
The Linear Algebra Survival Guide: Illustrated with Mathematica

 AlgebraThe Linear
Survival Guide

Illustrated with Mathematica

Fred E. Szabo, PhD
Concordia University

Montreal, Canada

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO • PARIS • SAN DIEGO
AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD•

Academic Press is an Imprint of Elsevier

Academic Press is an imprint of Elsevier

525 B Street, Suite 1800, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their
own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of
any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-409520-5

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

Printed and bound in the USA

For information on all Academic Press

 visit our website at http://store.elsevier.com/

125, London Wall, EC2Y 5AS.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

About the Matrix Plot

MatrixForm[A= RandomInteger[{-−9, 9}, {9, 9}]]

-−4 -−9 1 6 8 5 6 7 -−8
1 -−5 -−5 2 -−8 8 8 1 -−8
-−7 -−4 2 -−1 9 3 1 7 6
-−3 -−1 6 4 -−9 1 -−2 0 9
7 -−8 -−4 -−1 -−6 -−8 5 5 1
7 -−5 -−3 -−3 -−1 -−2 -−9 8 -−1
-−1 6 5 6 -−5 4 7 -−9 5
-−7 8 -−7 5 4 -−1 1 -−5 4
8 -−2 8 7 -−8 -−9 4 -−3 -−7

MatrixPlot[A]

The image on the previous page is a Mathematica matrix plot of a random 9-by-9 matrix with integer
elements between -9 and 9.

Random matrices are used throughout the book where matrix forms are required to illustrate
concepts, properties, or calculations, but where the numerical content of the illustrations is largely
irrelevant.

The presented image shows how matrix forms can be visualized as two-dimensional blocks of color or
shades of gray.

The principal goal in the preparation of this guide has been to make the book useful for students,
teachers, and researchers using linear algebra in their work, as well as to make the book
sufficiently complete to be a valuable reference source for anyone needing to understand the
computational aspects of linear algebra or intending to use Mathematica to extend their knowledge
and understanding of special topics in mathematics.

This book is both a survey of basic concepts and constructions in linear algebra and an introduction
to the use of Mathematica to represent them and calculate with them. Some familiarity with
Mathematica is therefore assumed. The topics covered stretch from adjacency matrices to
augmented matrices, back substitution to bilinear functionals, Cartesian products of vector spaces
to cross products, defective matrices to dual spaces, eigenspaces to exponential forms of complex
numbers, finite-dimensional vector spaces to the fundamental theorem of algebra, Gaussian
elimination to Gram–Schmidt orthogonalization, Hankel matrices to Householder matrices, identity
matrices to isomorphisms of vector spaces, Jacobian determinants to Jordan matrices, kernels of
linear transformations to Kronecker products, the law of cosines to LU decompositions, Manhattan
distances to minimal polynomials, vector and matrix norms to the nullity of matrices, orthogonal
complements to overdetermined linear systems, Pauli spin matrices to the Pythagorean theorem,
QR decompositions to quintic polynomials, random matrices to row vectors, scalars to symmetric
matrices, Toeplitz matrices to triangular matrices, underdetermined linear systems to upper-
triangular matrices, Vandermonde matrices to volumes of parallelepipeds, well-conditioned
matrices to Wronskians, and zero matrices to zero vectors.

All illustrations in the book can be replicated and used to discover the beauty and power of
Mathematica as a platform for a new kind of learning and understanding. The consistency and
predictability of the Wolfram Language on which Mathematica is built are making it much easier to
concentrate on the mathematics rather than on the computer code and programming features
required to produce correct, understandable, and often inspiring mathematical results. In addition,
the included manipulations of many of the mathematical examples in the book make it easy and
instructive to explore mathematical concepts and results from a computational point of view.

The book is based on my lecture notes, written over a number of years for several undergraduate
and postgraduate courses taught with various iterations of Mathematica. I hereby thank the
hundreds of students who have patiently sat through interactive Mathematica-based lectures and
have enjoyed the speculative explorations of a large variety of mathematical topics which only the
teaching and learning with Mathematica makes possible. The guide also updates the material in the
successful textbook “Linear Algebra: An Introduction Using Mathematica,” published by
Harcourt/Academic Press over a decade ago.

The idea for the format of this book arose in discussion with Patricia Osborn, my editor at
Elsevier/Academic Press at the time. It is based on an analysis of what kind of guide could be
written that meets two objectives: to produce a comprehensive reference source for the conceptual
side of linear algebra and, at the same time, to provide the reader with the computational
illustrations required to learn, teach, and use linear algebra with the help of Mathematica. I am
grateful to the staff at Elsevier/Academic Press, especially Katey Birtcher, Sarah Watson and
Cathleen Sether for seeing this project through to its successful conclusion and providing tangible
support for the preparation of the final version of the book. Last but not least I would like to thank
Mohanapriyan Rajendran (Project Manager S&T, Elsevier, Chennai) for his delightful and
constructive collaboration during the technical stages of the final composition and production.

Preface

xii | The Linear Algebra Survival Guide

Many students and colleagues have helped shape the book. Special thanks are due to Carol
Beddard and David Pearce, two of my teaching and research assistants. Both have helped me
focus on user needs rather than excursions into interesting but esoteric topics. Thank you Carol
and David. Working with you was fun and rewarding.

I am especially thankful to Stephen Wolfram for his belief in the accessibility of the computable
universe provided that we have the right tools. The evolution and power of the Wolfram Language
and Mathematica have shown that they are the tools that make it all possible.

Fred E Szabo
Beaconsfield, Quebec

Fall 2014

To my family: Isabel, Julie and Stuart, Jahna and Scott, and Jessica, Matthew, Olivia, and Sophie

Dedication

Fred E. Szabo

Department of Mathematics, Concordia University, Montreal, Quebec, Canada

Fred E. Szabo completed his undergraduate studies at Oxford University under the guidance of

Sir Michael Dummett, and received a Ph.D. in mathematics from McGill University under the

supervision of Joachim Lambek. After postdoctoral studies at Oxford University and visiting

professorships at several European universities, he returned to Concordia University as a faculty

member and dean of graduate studies. For more than twenty years, he developed methods for

the teaching of mathematics with technology. In 2012 he was honored at the annual Wolfram

Technology Conference for his work on "A New Kind of Learning" with a Wolfram Innovator

Award. He is currently professor and Provost Fellow at Concordia University.

Professor Szabo is the author of five Academic Press publications:

- Actuaries' Survival Guide, 2nd Edition

- Linear Algebra: Introduction Using Maple, 1st Edition

- Linear Algebra: Introduction Using Mathematica, 1st Edition

- Actuaries' Survival Guide, 1st Edition

- The Linear Algebra Survival Guide, 1st Edition

About the Author

Introduction

How to use this book

This guide is meant as a standard reference to definitions, examples, and Mathematica techniques for linear algebra.
Complementary material can be found in the Help sections of Mathematica and on the Wolfram Alpha website. The main
purpose of the guide is therefore to collect, in one place, the fundamental concepts of finite-dimensional linear algebra and
illustrate them with Mathematica.

The guide contains no proofs, and general definitions and examples are usually illustrated in two, three, and four dimen-
sions, if there is no loss of generality. The organization of the material follows both a conceptual and an alphabetic path,
whichever is most appropriate for the flow of ideas and the coherence of the presentation.

All linear algebra concepts covered in this book are explained and illustrated with Mathematica calculations, examples, and
additional manipulations. The Mathematica code used is complete and can serve as a basis for further exploration and
study. Examples of interactive illustrations of linear algebra concepts using the Manipulate command of Mathematica are
included in various sections of the guide to show how the illustrations can be used to explore computational aspects of
linear algebra.

Linear algebra

From a computational point of view, linear algebra is the study of algebraic linearity, the representation of linear transforma-
tions by matrices, the axiomatization of inner products using bilinear forms, the definition and use of determinants, and the
exploration of linear systems, augmented matrices, matrix equations, eigenvalues and eigenvectors, vector and matrix
norms, and other kinds of transformations, among them affine transformations and self-adjoint transformations on inner
product spaces. In this approach, the building blocks of linear algebra are systems of linear equations, real and complex
scalars, and vectors and matrices. Their basic relationships are linear combinations, linear dependence and independence,
and orthogonality. Mathematica provides comprehensive tools for studying linear algebra from this point of view.

Mathematica

The building blocks of this book are scalars (real and complex numbers), vectors, linear equations, and matrices. Most of
the time, the scalars used are integers, playing the notationally simpler role of real numbers. In some places, however, real
numbers as decimal expansions are needed. Since real numbers may require infinite decimal expansions, both recurring
and nonrecurring, Mathematica can represent them either symbolically, such as ⅇ and π𝜋, or as decimal approximations. By
default, Mathematica works to 19 places to the right of the decimal point. If greater accuracy is required, default settings
can be changed to accommodate specific computational needs. However, questions of computational accuracy play a
minor role in this book.

In this guide, we follow the lead of Mathematica and avoid the use of ellipses (lists of dots such as "...") to make general
statements. In practically all cases, the statements can be illustrated with examples in two, three, and four dimensions. We
can therefore also avoid the use of sigmas (Σ) to express sums.

The book is written with and for Mathematica 10. However, most illustrations are backward compatible with earlier versions
of Mathematica or have equivalent representations. In addition, the natural language interface and internal link to Wolfram/Al-
pha extends the range of topics accessible through this guide.

Mathematica cells

Mathematica documents are called notebooks and consist of a column of subdivisions called cells. The properties of
notebooks and cells are governed by stylesheets. These can be modified globally in the Mathematica Preferences or cell-
by-cell, as needed. The available cell types in a document are revealed by activating the toolbars in the Window > Show
Toolbar menu. Unless Mathematica is used exclusively for input–output calculations, it is advisable to show the toolbar
immediately after creating a notebook or to make Show Toolbar a default notebook setting.

Mathematica documents are called notebooks and consist of a column of subdivisions called cells. The properties of
notebooks and cells are governed by stylesheets. These can be modified globally in the Mathematica Preferences or cell-
by-cell, as needed. The available cell types in a document are revealed by activating the toolbars in the Window > Show
Toolbar menu. Unless Mathematica is used exclusively for input–output calculations, it is advisable to show the toolbar
immediately after creating a notebook or to make Show Toolbar a default notebook setting.

Mathematica documentation

Mathematica Help is extensive and systematic. To look for help, the Help > Documentation Center command will produce
access to the search field of the Documentation Center.

Quitting the Mathematica kernel

It sometimes happens that we would like to abort a calculation or other Mathematica activity. The command Quit aborts
the current computation and annuls all computed and assigned values to variables and other objects. Selecting Evaluation
> Quit Kernel > Local is equivalent to invoking the Quit command.

Clearing assigned and computed values

The commands Clear and ClearAll can be used to remove previously assigned values to specific variables and
symbols without resetting other definitions and assignments to their default. For example, typing Clear[x,y] into an input
cell will remove values previously assigned to the variables x and y.

Generalizing illustrations with Manipulations

Many entries of the guide contain interactive manipulation sections. The manipulations can be used to explore the effect of
numerical input changes on outputs. In particular, they provide a setting for “what if?” type questions. The ranges of the
Manipulate parameters are usually arbitrarily chosen. They are easily modified to explore specific numerical questions. The
Manipulate feature of Mathematica is explained and documented in the Wolfram Documentation section of Mathematica.

Predictive interface

Starting with Mathematica 9, the writing of Mathematica commands has become amazingly simple. A Suggestion Bar
usually appears in any new input cell that is alphabetically organized and tries to anticipate both the built-in and user-
defined concepts and definitions the user is about to type. This feature is amazing. It not only facilitates the writing of
Mathematica code but also avoids having to respect specific grammatical conventions and spellings. The Suggestion Bar
contains other features that make working with Mathematica a joy and much less code-dependent.

Assumptions about prior knowledge

This guide focuses on the learning, teaching, and review of linear algebra. Mathematica is the principal tool for doing so. It
is therefore assumed that the reader has a basic knowledge of Mathematica. However, the illustrations can be followed,
modified, and extended by mimicking the given examples.

The Wolfram Language

All Mathematica commands begin with capital letters. It is therefore advisable to use lower case letters to name defined
objects. When naming matrices, this recommendation is usually not followed in this guide in order to make the presentation
conform to the usual notations of linear algebra.

Vectors and matrices are often presented in row form as lists and lists of lists, surrounded by curly brackets ({}). Two-
dimensional displays of vectors and matrices can be built by using Mathematica palettes. Command + Enter and Command
+ Comma in OS X, or Control + Enter and Control + Comma in Windows add columns and rows to the palettes for larger
vectors and matrices. For easier readability or conceptual visualization, two-dimensional outputs of matrices are always
forced by embedding the specification of the matrices in the MatrixForm commands.

 2 | The Linear Algebra Survival Guide

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

dimensional displays of vectors and matrices can be built by using Mathematica palettes. Command + Enter and Command
+ Comma in OS X, or Control + Enter and Control + Comma in Windows add columns and rows to the palettes for larger
vectors and matrices. For easier readability or conceptual visualization, two-dimensional outputs of matrices are always
forced by embedding the specification of the matrices in the MatrixForm commands.

Matrix multiplication and matrix-vector products must always be linked by a period (.). The arguments of functions such as
f[x] must be enclosed in square brackets ([]). The metavariables used to define functions must be followed by underscores
(f[x_]:=).
The two sides of equations written in Mathematica must be separated by double equal signs (==). Single equal signs are
used for definitions, the naming of objects, and similar purposes.

Mathematica commands can be written on several lines, written in the same cell and separated by pressing Enter. The
command Shift + Enter evaluates a cell. Mathematica notebooks can be evaluated globally by selecting the Evaluation >
Evaluate Notebook menu item. Conversely, all Mathematica outputs in a notebook can be removed at once by selecting the
Cell > Delete All Output menu item.

In addition to the material available in the Help file, relevant resources can also be found on the Internet by simply typing a
topic of interest followed by “with mathematica.” However, some of the results found on the Internet no longer apply to
recent versions of Mathematica.

Only input cells can be used for computations. Depending on the document style, input cells are the default cells of
Mathematica notebooks and the new cell selection automatically begins a new input cell. All cell types available in a
particular notebook are listed in the Toolbar associated with a particular notebook style.

Since lists of numbers correspond to row vectors and rows of matrices, the transpose is often required when working with
columns. However, vectors cannot be transposed since Mathematica is designed to recognize from the context whether a
row or column vector is required for a specific calculation. If column vectors are explicitly required, curly brackets must be
used to separate the elements of the vectors.

The examples included in this guide are designed to make it easy to understand the Mathematica syntax required for linear
algebra. Mathematica and the Wolfram Research website contain tutorials that facilitate the learning of Mathematica basics.

To replicate some of the material in this guide it may be necessary to click on Enable Dynamics if it appears at the top of
the active Mathematica document.

Matrices

Most items in this guide involve matrices. In the Wolfram Language, a matrix is a list of lists. More specifically, a list of rows.
The statement,

A = {{1, 2, 3}, {4, 5, 6}}

for example, displays the “matrix” {{1,2,3},{4,5,6}} and names it A. Mathematica can be forced to display the matrix
A in the customary two-dimension form in several ways.

◼ Using MatrixForm to display a matrix in two-dimensional form

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

However, internally, Mathematica still considers A to be a list of lists.

The Linear Algebra Survival Guide | 3

A

{{1, 2, 3}, {4, 5, 6}}

◼ Using TraditionalForm to display a matrix

TraditionalForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

◼ Using //MatrixForm as a suffix to display a matrix in two-dimensional form

A = {{1, 2, 3}, {4, 5, 6}} /∕/∕ MatrixForm

1 2 3
4 5 6

A

1 2 3
4 5 6

By adjoining //MatrixForm to the definition of the matrix A, we force Mathematica to produce a two-dimensional output. The
price we pay is that the output is no longer a computable object.

Head[A]

MatrixForm

The Head command shows that instead of being a list (of lists) the output is no more than a MatrixForm.

◼ Forcing two-dimensional output in a notebook

If we evaluate the command

$Post := If[MatrixQ[#], MatrixForm[#], #] & (1)

at the beginning of a notebook, all matrices will be displayed in two-dimensional form. However, this does not change their
internal definition as lists of lists.

$Post := If[MatrixQ[#], MatrixForm[#], #] &

A = {{1, 2, 3}, {4, 5, 6}}

1 2 3
4 5 6

A

1 2 3
4 5 6

 4 | The Linear Algebra Survival Guide

A + A

2 4 6
8 10 12

The Quit command erases the Post command and all other ad hoc definitions, assignments, and computed values. The
command Clear[A] can also be used to remove an assignment without clearing the Post command.

Quit[]

A = {{1, 2, 3}, {4, 5, 6}}

{{1, 2, 3}, {4, 5, 6}}

◼ Using the Mathematica Preferences to force TraditionalOutput in all notebooks.

The TraditionalOutput format of matrices and all other objects for which several output options exist can be reset globally in
the Mathematica Preferences. The choice of

Preferences > Evaluation > Format type of new output cells > TraditionalOutput

forces all outputs to be in TraditionalForm.

In OS X, the Preference menu is found in the Mathematica drop-down menu, whereas in Windows, it is found in the Edit
drop-down menu. For matrices this means that they are output in two-dimensional form. The Quit command will not change
this option back to StandardForm.

◼ Capital letters and the names of matrices

In standard linear algebra books, matrices are named with capital letters. However, Mathematica uses capital letters for
built-in symbols, commands, and functions. Hence naming matrices with capital letters may be unwise. In particular, the
letters C, D, E, I, K, N, and Q are reserved letters and should not be used. For easier readability and since this guide is
exclusively about linear algebra, this recommendation is not followed. In most illustrations, matrices are named with the
capital letter A.

◼ Matrices as two-dimensional inputs

The built-in palettes can be used to construct matrices as two-dimensional inputs:

Palettes > Basic Math Assistant > Typesetting >
 
 

◼ Special symbols

Special symbols, such as the imaginary number ⅈ, can be entered in several ways. The quickest way is to type Esc ii Esc
(the Escape key followed by two i’s followed by the Escape key). Similar instructions on inputting special symbols occur in
various places in the chapters below. The palettes in the Palettes menu can also be used to input special symbols.

Palettes > Basic Math Assistant > Typesetting > ⅈ

also inputs the symbol ⅈ. The required equivalent keyboard entry using Esc can be seen by letting the cursor rest on the
symbol ⅈ in the menu. The same holds for all other displayed symbols.

Random matrices

Most illustrations and manipulations in this guide use relatively small random matrices with integer elements if the numerical
content of the examples is irrelevant. This makes the examples more concrete and simplifies the notation. Two-dimensional
notation for vectors and matrices is often used to conform to the standard ways of representation, although internally
Mathematica uses the one-dimensional form.

The Linear Algebra Survival Guide | 5

notation for vectors and matrices is often used to conform to the standard ways of representation, although internally
Mathematica uses the one-dimensional form.

◼ A two-dimensional random matrix with integer elements

MatrixForm[A = RandomInteger[{0, 9}, {3, 5}]]

8 7 3 0 4
3 8 2 7 9
3 4 0 6 1

produces a random 3-by-5 matrix with integer elements between 0 and 9 in two-dimensional form. However, the name A
stands for the same matrix as a one-dimensional list of rows. The conversion of the input cell containing the command

MatrixForm[A = RandomInteger[{0, 9}, {3, 5}]]

and the output cell containing the result of the computation

8 7 3 0 4
3 8 2 7 9
3 4 0 6 1

to DisplayFormula cells ensures that the generated matrix is not changed by a second evaluation command (Shift + Enter).
This change of cell types preserves the internal meaning A as a computable object.

◼ A one-dimensional output of the matrix A

A

{{8, 7, 3, 0, 4}, {3, 8, 2, 7, 9}, {3, 4, 0, 6, 1}}

◼ A two-dimensional random real matrix with non-integer elements

MatrixForm[A = RandomReal[{0, 9}, {2, 3}]]

2.3487 6.53058 2.2666
6.60772 0.398364 5.2241

The resulting matrix output can be preserved by changing the Output cell in which the matrix is displayed to a DisplayFor-
mula cell.

MatrixForm[A]

2.3487 6.53058 2.2666
6.60772 0.398364 5.2241

The usual Copy and Paste commands display the matrix in the 19-place default format in which Mathematica works with
the generated “real” numbers.

2.348698292382359` 6.53057615064426` 2.266599355944713`
6.607721548969266` 0.3983641332231951` 5.224099904694331`

Illustrations

Topics in illustrations are identified by a descriptive title and introduced with a square bullet (■). In most cases, the
illustrations are based on random matrices with integer coefficients if this entails no loss of generality. To preserve the
specific matrices generated in this way, the matrices are named and displayed in DisplayFormula cells.

 6 | The Linear Algebra Survival Guide

The matrices used in the illustrations are usually embedded in a MatrixForm command. This ensures a two-dimensional
output for easy viewability. But it also preserves the one-dimensional nature of Mathematica output required internally for
specific calculations.

The command

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

produces a computable object named A:

A

{{1, 2, 3}, {4, 5, 6}}

The Head function tells us that A is a list (hence a computable object):

Head[A]

List

The command

B = {{1, 2, 3}, {4, 5, 6}} /∕/∕ MatrixForm

1 2 3
4 5 6

produces a two-dimension object named B:

B

1 2 3
4 5 6

However, the Head function confirms that B is a non-computable object called a MatrixForm.

Head[B]

MatrixForm

In all but a few illustrations, we avoid the suffix //MatrixForm.

An illustration can be as simple as

◼ A 3-by-3 real matrix with three distinct real eigenvalues

A = {{2, 3, 1}, {0, 3, 2}, {0, 0, 4}};

The Linear Algebra Survival Guide | 7

Eigenvalues[A]

{4, 3, 2}

or as complicated as

◼ An orthogonal projection in ℝ2

projection = Graphics[{Arrow[{{1, 2}, {10, 2}}], Arrow[{{1, 2}, {5, 8}}],
Arrow[{{5, 8}, {5, 2}}], Arrow[{{1, 1.8}, {5, 1.8}}]}, Axes → True]

4 6 8 10

3

4

5

6

7

8

Manipulations

Many Mathematica functions and commands can be embedded in Manipulation environments controlled by parameters for
varying numerical inputs. By changing the values of the parameters, the effect of numerical changes on the properties of
the illustrated mathematical objects can be studied.

Here is a simple example to illustrate how Manipulation works. How do changes in the elements of the following matrix A
affect the eigenvalues of the matrix?

MatrixForm[A = {{0, 1}, {-−1, 0}}]

0 1
-−1 0

Eigenvalues[A]

{ⅈ, -−ⅈ}

Let us add parameters to some of the elements of A and explore the invertibility of the resulting matrices. For what integer
values of -6 ≤ a ≤ 6 and -6 ≤ b ≤ 6 does the matrix B = {{a, 1}, {-1, b}} have real eigenvalues?

Manipulate[{B = {{a, 1}, {-−1, b}}, Eigenvalues[B]}, {a, -−6, 6, 1}, {b, -−6, 6, 1}]

 8 | The Linear Algebra Survival Guide

a

b

{{1, 1}, {-−1, -−2}}, 
1

2
-−1 -− 5 ,

1

2
-−1 + 5 

We can combine Manipulate and Eigenvalues to explore the eigenvalues of 2-by-2 matrices with integer elements. If we
let a = 1 and b = - 2, for example, the manipulation produces a matrix that has real eigenvalues. By letting the Manipulate
parameters range over real numbers, we can force Mathematica to produce decimal outputs.

Manipulate[{B = {{a, 1}, {-−1, b}}, Eigenvalues[B]}, {a, -−6, 6}, {b, -−6, 6}]

a

b

{{{1., 1}, {-−1, -−2.}}, {-−1.61803, 0.618034}}

The N function confirms that the associated results are equal:

N
1

2
-−1 -− 5 ,

1

2
-−1 + 5 

{-−1.61803, 0.618034}

Notation

Unless Mathematica terminology requires something else, the following notations are used in the Text cells of this guide.
Vectors are named in regular bold format. The symbol v denotes a vector. Matrices are usually named in capital italic
format. The symbol A denotes a matrix. A matrix with n rows and m columns is called an n-by-m matrix. Built-in Mathemat-
ica functions and commands are written in regular bold format. The random integer function and the command for solving
linear systems, for example, are referred by writing RandomInteger and LinearSolve. Variables are written in italic format.
The letters x, y, z, for example, denote variables. Constants are also written in italic format. The letters a, b, c, for example,
denote constants. Defined functions and commands are numbered within the alphabetical items in which they occur. In Text
cells, numerals are written in regular text font. The symbols 1, 2, 3, for example, denote the numbers 1, 2, and 3.

Duplications

In order to make the individual entries of this guide as readable as possible, minor duplications of illustrations became
inevitable. In most cases, they are differentiated as much as possible in the presentations by emphasizing different
nuances of overlapping ideas and techniques.

The Linear Algebra Survival Guide | 9

Companion Site

Interactive Mathematica Manipulation excerpts from the book, the ClassroomUtilities package, and other material
complementary to this guide are published and periodically updated on the Elsevier Companion Site.

 10 | The Linear Algebra Survival Guide

A

Addition of matrices

Matrices are added element by element. It works provided the matrices to be added have the same dimensions (the same
number of rows and columns). In Mathematica, a plus sign between two matrices defines addition.

Properties of matrix addition

(A + B) + C = A + (B + C) (1)

A + B = B + A (2)

A + O = A (3)

A + (-−1) A = O (4)

Mathematical systems satisfying these four conditions are known as Abelian groups. For any natural number n > 0, the set
of n-by-n matrices with real elements forms an Abelian group with respect to matrix addition.

The sum of an n-by-m matrix A and an n-by-m matrix B is the matrix (A + B) whose ijth element is (A[[i, j]]+ B[[i, j]]).

Illustration

◼ Addition of two matrices

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

Dimensions[A]

{2, 3}

MatrixForm[B = {{a, b, c}, {d, e, f}}]

a b c
d e f

Dimensions[B]

{2, 3}

MatrixForm[A + B]

1 + a 2 + b 3 + c
4 + d 5 + e 6 + f

The Linear Algebra Survival Guide | 11

Dimensions[A + B]

{2, 3}

◼ Sum of two 3-by-2 matrices

MatrixForm[A = {{a, b}, {c, d}, {e, f}}]

a b
c d
e f

MatrixForm[B = {{1, 2}, {3, 4}, {5, 6}}]

1 2
3 4
5 6

MatrixForm[A + B]

1 + a 2 + b
3 + c 4 + d
5 + e 6 + f

◼ Two matrices whose sum is not defined

MatrixForm[A = RandomInteger[{0, 9}, {3, 4}]]

A =
4 9 8 7
2 6 0 4
0 6 3 5

;

MatrixForm[B = RandomInteger[{0, 9}, {3, 3}]]

B =
0 5 8
9 9 6
6 0 1

;

A + B

Thread::tdlen : Objects of unequal length in {0, 5, 8} + {4, 9, 8, 7} cannot be combined. $

Thread::tdlen : Objects of unequal length in {9, 9, 6} + {2, 6, 0, 4} cannot be combined. $

Thread::tdlen : Objects of unequal length in {6, 0, 1} + {0, 6, 3, 5} cannot be combined. $

General::stop : Further output of Thread::tdlen will be suppressed during this calculation. $
{{0, 5, 8} + {4, 9, 8, 7}, {9, 9, 6} + {2, 6, 0, 4}, {6, 0, 1} + {0, 6, 3, 5}}

◼ Sum of a nonzero and zero matrix

12 | The Linear Algebra Survival Guide

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

MatrixForm[Z = {{0, 0, 0}, {0, 0, 0}}]

0 0 0
0 0 0

A + Z ⩵ A

True

◼ Sum of a matrix A and the matrix (-1) A

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]
MatrixForm[(-−1) A]

1 2 3
4 5 6

-−1 -−2 -−3
-−4 -−5 -−6

MatrixForm[A + (-−1) A]

0 0 0
0 0 0

◼ Subtraction of two matrices

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

MatrixForm[B = {{a, b, c}, {d, e, f}}]

a b c
d e f

MatrixForm[A + (-−1) B]

1 -− a 2 -− b 3 -− c
4 -− d 5 -− e 6 -− f

A + (-−1) B ⩵ A -− B

True

The Linear Algebra Survival Guide | 13

Manipulation

◼ Addition of two 3-by-4 matrices

Clear[a, b]

A = {{1, 3 a, 0, 5}, {8, 6, 8, 3}, {3, 3, 6, 2}};

B = {{6, 2, 9, 3}, {2 b, 4, 7, 3}, {1, 5, 7, 3}};

Manipulate[Evaluate[A + B], {a, -−3, 5, 1}, {b, -−2, 4, 1}]

a

b

{{7, -−7, 9, 8}, {4, 10, 15, 6}, {4, 8, 13, 5}}

We use Manipulate and Evaluate to explore the sum of two matrices. The displayed matrix is obtained by letting a = -3
and b = -2.

Adjacency matrix

The adjacency matrix of a simple labeled graph is the matrix A with A[[i, j]]= 1 or 0 according to whether the vertex vi is

adjacent to the vertex vj or not. For simple graphs without self-loops, the adjacency matrix has 0s on the diagonal. For

undirected graphs, the adjacency matrix is symmetric.

Illustration

◼ The adjacency matrix of an undirected graph

 14 | The Linear Algebra Survival Guide

Graph[{1 4 2, 2 4 3, 3 4 1}]

The arrow / can be created by typing Esc ue Esc.

MatrixForm[AdjacencyMatrix[%]]

0 1 1
1 0 1
1 1 0

◼ The adjacency matrix of a directed graph

Graph[{1 6 2, 2 6 3, 3 6 1}]

The arrow 0 can be created by typing Esc de Esc.

MatrixForm[AdjacencyMatrix[%]]

0 1 0
0 0 1
1 0 0

◼ The adjacency matrix of an undirected graph is symmetric

The Linear Algebra Survival Guide | 15

Graph[{1 4 2, 1 4 3, 2 4 3, 2 4 4, 3 4 4}]

MatrixForm[AdjacencyMatrix[%]]

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

◼ The adjacency matrix of a directed graph can be nonsymmetric

Graph[{1 6 2, 2 6 1, 3 6 1, 3 6 2, 4 6 1, 4 6 2}]

MatrixForm[AdjacencyMatrix[%]]

0 1 0 0
1 0 0 0
1 1 0 0
1 1 0 0

◼ The adjacency matrix of the graph with self-loops has 1s on the diagonal.

 16 | The Linear Algebra Survival Guide

Graph[{1 4 2, 2 4 3, 3 4 1, 2 4 2}]

MatrixForm[AdjacencyMatrix[%]]

0 1 1
1 1 1
1 1 0

◼ The adjacency matrix of a large graph

Graph[Table[i 6 Mod[i^2, 10^3], {i, 0, 10^3 -− 1}]];

A = AdjacencyMatrix[%]

SparseArray Specified elements: 1000
Dimensions: {1000, 1000}



MatrixPlot[A]

1 200 400 600 800 1000

1

200

400

600

800

1000

1 200 400 600 800 1000
1

200

400

600

800

1000

The Linear Algebra Survival Guide | 17

Adjoint matrix

The adjoint of a square matrix A is the transpose of the cofactor matrix of A. In MathWorld, at http://mathworld.wolfram.com/-
Cofactor.html, the Mathematica functions for building adjoint matrices are defined as follows:

MinorMatrix[m_List?MatrixQ] := Map[Reverse, Minors[m], {0, 1}] (1)

CofactorMatrix[m_List?MatrixQ] := MapIndexed[#1 (-−1)^(Plus @@ #2) &, MinorMatrix[m], {2}] (2)

These defined functions are not included in Mathematica’s function repertoire and need to be activated by typing Shift
+ Enter.

Illustration

◼ The cofactor matrix of a 3-by-3 matrix with integer entries

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 10}}]

1 2 3
4 5 6
7 8 10

MinorMatrix[m_List?MatrixQ] := Map[Reverse, Minors[m], {0, 1}]

CofactorMatrix[m_List?MatrixQ] := MapIndexed[#1 (-−1)^(Plus @@ #2) &, MinorMatrix[m], {2}]

MatrixForm[MinorMatrix[A]]

2 -−2 -−3
-−4 -−11 -−6
-−3 -−6 -−3

MatrixForm[cfA = CofactorMatrix[A]]

2 2 -−3
4 -−11 6
-−3 6 -−3

Transpose[Det[A] Inverse[A]] ⩵ cfA

True

The adjoint matrix of the given matrix A is the transpose of the cofactor matrix of A:

◼ The adjoint matrix of a 3-by-3 matrix computed from a cofactor matrix

MatrixForm[adjA = Transpose[cfA]]

2 4 -−3
2 -−11 6
-−3 6 -−3

The adjoint is equal to the determinant times the inverse of the given matrix:

 18 | The Linear Algebra Survival Guide

fredeszabo
Sticky Note
Marked set by fredeszabo

Inverse[A] ⩵ (1/∕Det[A]) adjA

True

◼ A general cofactor matrix

Clear[a, A]; A = Array[a## &, {3, 3}]; A /∕/∕ MatrixForm

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

CofactorMatrix[A]

{{-−a2,3 a3,2 + a2,2 a3,3, a2,3 a3,1 -− a2,1 a3,3, -−a2,2 a3,1 + a2,1 a3,2},
{a1,3 a3,2 -− a1,2 a3,3, -−a1,3 a3,1 + a1,1 a3,3, a1,2 a3,1 -− a1,1 a3,2},
{-−a1,3 a2,2 + a1,2 a2,3, a1,3 a2,1 -− a1,1 a2,3, -−a1,2 a2,1 + a1,1 a2,2}}

Manipulation

◼ Exploring cofactor matrices

MinorMatrix[m_List?MatrixQ] := Map[Reverse, Minors[m], {0, 1}]

CofactorMatrix[m_List?MatrixQ] := MapIndexed[#1 (-−1)^(Plus @@ #2) &, MinorMatrix[m], {2}]

Manipulate[MatrixForm[CofactorMatrix[{{a, 2, 3}, {4, b, 6}, {7, c, 10}}]],
{a, -−3, 3, 1}, {b, -−3, 3, 1}, {c, -−3, 3, 1}]

a

b

c

-−12 2 9
-−29 -−51 5
21 30 1

We combine Manipulate, MatrixForm, and CofactorMatrix to explore cofactor matrices. If we let a = b = c = -3, for
example, the manipulation produces the cofactor matrix of the matrix {{-3, 2, 3}, {4, -3, 6}, {7, -3, 10}}.

If a matrix A represents a linear transformation T : V ⟶ V on an inner product space V in an orthonormal basis B, the
transpose of A represents a linear transformation T *⋆ : V ⟶ V called the adjoint of T. The transformations T and T *⋆ are
linked by the equation <T[u], v> = <u, T *⋆[v] > for all vectors u and v in V.

The Linear Algebra Survival Guide | 19

If a matrix A represents a linear transformation T : V ⟶ V on an inner product space V in an orthonormal basis B, the
transpose of A represents a linear transformation T *⋆ : V ⟶ V called the adjoint of T. The transformations T and T *⋆ are
linked by the equation <T[u], v> = <u, T *⋆[v] > for all vectors u and v in V.

Illustration

Clear[x, y, z, u, v, w]

MatrixForm[A = {{2, 1, 7}, {3, 5, 8}, {6, 4, 2}}]

2 1 7
3 5 8
6 4 2

MatrixForm[B = Transpose[A]]

2 3 6
1 5 4
7 8 2

With respect to the Euclidean inner product (the dot product), the transformation T and its adjoint T *⋆ are related by the
equation

Expand[Dot[A.{x, y, z}, {u, v, w}] ⩵ Dot[{x, y, z}, B.{u, v, w}]]

True

Manipulation

◼ Exploring a transformation and its adjoint by varying the transformation matrix

MatrixForm[A = {{a, 1, 7}, {3, 5, b}, {6, c, 2}}]

a 1 7
3 5 b
6 c 2

Manipulate[Evaluate[Dot[A.{1, 2, 3}, {4, 5, 6}] ⩵ Dot[{1, 2, 3}, Transpose[A].{4, 5, 6}]],
{a, -−2, 2, 1}, {b, -−5, 5, 1}, {c, -−8, 8, 1}]

a

b

c

True

 20 | The Linear Algebra Survival Guide

Adjoint transformation

We combine Manipulate, Evaluate, Dot, and Transpose, to explore adjoint transformations. The manipulation shows, for
example, that the transformation and its transpose determined by a = - 2, b = - 5, and c = -1 are adjoint.

Adjugate of a matrix

The adjugate of a matrix is the transpose of the cofactor matrix of the matrix. On the website http://mathematica.stackex-
change.com, a Mathematica function for calculating adjugates is defined:

adj[m_] :=
Map[Reverse, Minors[Transpose[m], Length[m] -− 1], {0, 1}]*⋆
Table[(-−1)^(i + j), {i, Length[m]}, {j, Length[m]}];

(1)

This function is not included in the Mathematica repertoire and must to be activated by pressing Shift + Enter.

Illustration

◼ Adjugate of a 2-by-2 matrix

adj[m_] := Map[Reverse, Minors[Transpose[m], Length[m] -− 1], {0, 1}]*⋆
Table[(-−1)^(i + j), {i, Length[m]}, {j, Length[m]}]

A = {{a, b}, {c, d}};

adj[A]

{{d, -−b}, {-−c, a}}

◼ Adjugate of a numerical 3-by-3 matrix

MatrixForm[A = {{6, 1, 9}, {3, 2, 0}, {5, 6, 8}}]

6 1 9
3 2 0
5 6 8

MatrixForm[adj[A]]

16 46 -−18
-−24 3 27
8 -−31 9

Inverse[A] ⩵ (1/∕Det[A]) adj[A]

True

The Linear Algebra Survival Guide | 21

fredeszabo
Sticky Note
Marked set by fredeszabo

Illustration

If the translation vector is zero, then the affine transformation is simply an invertible matrix transformation.

◼ An affine transformation defined by an invertible matrix without a translation

Clear[A, u]

MatrixForm[A = {{3, 2}, {9, 1}}]

3 2
9 1

Det[A]

-−15

affineA[u_] := A.u

u = {1, 2};

affineA[u]

{7, 11}

◼ An affine transformation defined by an invertible matrix together with a translation

Clear[u, v, A]

A = RandomInteger[{0, 9}, {2, 2}];

A =
3 2
9 1

;

affine[u_, v_] := A.u + v

u = {1, 2}; v = {3, 4};

affine[u, v]

{10, 15}

Mathematica has a built-in function for affine transformations:

◼ An affine transformation defined with the AffineTransform command

A = RandomInteger[{0, 9}, {2, 2}];

A =
3 2
9 1

; b =
3
4

;

 22 | The Linear Algebra Survival Guide

Affine transformation

An affine transformation is an invertible matrix transformation from ℝ2 to ℝ2, followed by a translation.

tA = AffineTransform[{A, {3, 4}}]

TransformationFunction
3 2 3
9 1 4
0 0 1



tA[{1, 2}]

{10, 15}

B =
3 2
9 1

; b =
0
0

;

tB = AffineTransform[{B, {0, 0}}]

TransformationFunction
3 2 0
9 1 0
0 0 1



tB[{1, 2}]

{7, 11}

◼ An affine transformation from ℝ2 to ℝ2 defined in two-dimensional matrix notation

f[{x_, y_}] :=
1 2
3 4

.
x
y

+
5
6

;

MatrixForm[f[{0, 0}]]

5
6

MatrixForm[f[{3, 4}]]

16
31

MatrixForm
5
6

+
16
31

⩵ f[{0, 0}] + f[{3, 4}]

True

◼ An affine transformation defined with the AffineTransform function

t = AffineTransform[{{{a1,1, a1,2}, {a2,1, a2,2}}, {b1, b2}}];

t[{x, y}]

{{{0}, {0}}1 + x a1,1 + y a1,2, {{0}, {0}}2 + x a2,1 + y a2,2}

A = {{1, 2}, {3, 4}}; b = {5, 6};

The Linear Algebra Survival Guide | 23

t = AffineTransform[{A, b}];

t[{7, 8}]

{28, 59}

With the help of homogeneous coordinates, a matrix multiplication and the addition of a translation vector can be combined
into a single operation. Here is how. Embed ℝ2 into ℝ3 and redefine matrix multiplication.

◼ Using homogeneous coordinates to combine a matrix multiplication and the addition of a translation vector

Clear[A, b, x, y]

A = {{1, 2}, {3, 4}}; b = {5, 6};

A.{x, y} + b

{5 + x + 2 y, 6 + 3 x + 4 y}

◼ Converting the 2-by-2 matrix A and the vector b to a 3-by-3 matrix hA and a 3-by-3 matrix hb

MatrixForm[hA = {{1, 2, 0}, {3, 4, 0}, {0, 0, 1}}]

1 2 0
3 4 0
0 0 1

MatrixForm[hb = {{1, 0, 5}, {0, 1, 6}, {0, 0, 1}}]

1 0 5
0 1 6
0 0 1

◼ Combining the matrix multiplication and translation into two matrix multiplications

hb.hA.{x, y, 1}

{5 + x + 2 y, 6 + 3 x + 4 y, 1}

◼ Projecting the resulting vector from ℝ3 toℝ2

p[{u_, v_, w_}] := {u, v}

p[{5 + x + 2 y, 6 + 3 x + 4 y, 1}]

{5 + x + 2 y, 6 + 3 x + 4 y}

As we can see, the two results are identical:

p[{5 + x + 2 y, 6 + 3 x + 4 y, 1}] == A.{x, y} + b

True

 24 | The Linear Algebra Survival Guide

◼ A general affine transformation form defined with the affine transform

T = AffineTransform[{{{a1,1, a1,2}, {a2,1, a2,2}}, {b1, b2}}]

TransformationFunction

a1,1 a1,2 {5, 6}1
a2,1 a2,2 {5, 6}2
0 0 1



T[{x, y}]

{{5, 6}1 + x a1,1 + y a1,2, {5, 6}2 + x a2,1 + y a2,2}

T = AffineTransform[{{{1, 2}, {3, 4}}, {5, 6}}]

TransformationFunction
1 2 5
3 4 6
0 0 1



T[{3, 2}]

{12, 23}

{{1, 2}, {3, 4}}.{3, 2} + {5, 6} == T[{3, 2}]

True

A clockwise rotation can be represented both ways, as a matrix multiplication and as an affine transformation.

◼ A clockwise rotation represented by a matrix multiplication

cwr =
Cos[Pi/∕3] Sin[Pi/∕3]
-−Sin[Pi/∕3] Cos[Pi/∕3]


1

2
,

3

2
, -−

3

2
,
1

2


cwr.{1, 0}


1

2
, -−

3

2


◼ A clockwise rotation represented by an affine transformation

cwt = AffineTransform[{{{Cos[Pi/∕3], Sin[Pi/∕3]}, {-−Sin[Pi/∕3], Cos[Pi/∕3]}}, {0, 0}}]

TransformationFunction

1

2

3

2
0

-−
3

2

1

2
0

0 0 1



The Linear Algebra Survival Guide | 25

cwt[{1, 0}]


1

2
, -−

3

2


◼ A counterclockwise rotation represented by a matrix multiplication

ccwr =
Cos[Pi/∕3] -−Sin[Pi/∕3]
Sin[Pi/∕3] Cos[Pi/∕3]


1

2
, -−

3

2
, 

3

2
,
1

2


ccwr.{1, 0}


1

2
,

3

2


◼ A counterclockwise rotation represented by an affine transformation

ccwt = AffineTransform[{{{Cos[Pi/∕3], Sin[Pi/∕3]}, {-−Sin[Pi/∕3], Cos[Pi/∕3]}}, {0, 0}}]

TransformationFunction

1

2

3

2
0

-−
3

2

1

2
0

0 0 1



ccwt[{1, 0}]


1

2
, -−

3

2


◼ A shear along the x-axis

A shear along the x- and y-axis can be represented both ways, as a matrix multiplication and as an affine transformation.

s = 5; v = {3, -−7};

shear1[s_, v_] := {{1, s}, {0, 1}}.v

shear1[s, v]

{-−32, -−7}

shear2 = AffineTransform[{{{1, s}, {0, 1}}, {0, 0}}]

TransformationFunction
1 5 0
0 1 0
0 0 1



 26 | The Linear Algebra Survival Guide

shear2[{3, -−7}]

{-−32, -−7}

◼ A shear along the y-axis

s = 5; v = {3, -−7};

shear3[s_, v_] := {{1, 0}, {s, 1}}.v

shear3[s, v]

{3, 8}

shear4 = AffineTransform[{{{1, 0}, {s, 1}}, {0, 0}}]

TransformationFunction
1 0 0
5 1 0
0 0 1



shear4[{3, -−7}]

{3, 8}

◼ A reflection about y = x represented by a matrix and an affine transform

A reflection about the lines y = x can also be represented both ways, as a matrix multiplication and an affine transformation.

MatrixFormreflyx =
0 1
1 0

;

point = {Cos[Pi/∕3], Sin[Pi/∕3]}


1

2
,

3

2


reflyx.point


3

2
,
1

2


t = AffineTransform[{reflyx, {0, 0}}]

TransformationFunction
0 1 0
1 0 0
0 0 1



The Linear Algebra Survival Guide | 27

t[point]


3

2
,
1

2


Algebraic multiplicity of an eigenvalue

The number of repetitions of a linear factor (t - λ𝜆) in the factorization of the characteristic polynomial p[A, t] of a matrix A into
linear factors is called the algebraic multiplicity of the eigenvalue λ𝜆.

Illustration

MatrixForm[A = UpperTriangularize[RandomInteger[{0, 3}, {5, 5}]]];

A =

1 3 1 0 0
0 3 2 0 1
0 0 0 1 0
0 0 0 3 1
0 0 0 0 3

;

Clear[t]

p[A, t] = CharacteristicPolynomial[A, t]

-−27 t + 54 t2 -− 36 t3 + 10 t4 -− t5

Factor[p[A, t]]

-−(-−3 + t)3 (-−1 + t) t

Eigenvalues[A]

{3, 3, 3, 1, 0}

The algebraic multiplicity of eigenvalue 1 is 1, and that of the eigenvalues 0 and 3 is 2.

◼ Algebraic multiplicities of eigenvalues

A =

1 2 0 3 1
0 0 2 0 0
0 0 0 2 1
0 0 0 a a
0 0 0 0 3

;

p[A, t] = CharacteristicPolynomial[A, t]

(3 -− t) a t2 -− t3 -− a t3 + t4

 28 | The Linear Algebra Survival Guide

Factor[p[A, t]]

-−(-−3 + t) (-−1 + t) t2 (-−a + t)

Eigenvalues[A]

{3, 1, 0, 0, a}

Manipulation

◼ Algebraic multiplicities of eigenvalues

A = {{1, 2, 0, 3}, {0, 0, 2, 0}, {0, 0, a, 2}, {0, 0, a, a}};

Manipulate[Evaluate[Factor[CharacteristicPolynomial[A, t]]], {a, -−2, 2, 1}]

a

(-−1 + t) t 8 + 4 t + t2

If we combine Manipulate, Evaluate, Factor, and CharacteristicPolynomial and let a = - 2, the manipulation displays the
factored characteristic polynomial of the generated matrix and implies that the multiplicities of the eigenvalues of the matrix
are 1, 1, and 2.

Angle

An angle is a measure of revolution, expressed in either degrees or radians. An angle θ𝜃 between two vectors u and v,
expressed in radians, is the value of the function ArcCos[θ𝜃] where Cos[θ𝜃] is the cosine determined by u and v.

1 revolution = 360 degrees = 2 π𝜋 radians

f[degrees_] :=
2 π

360
degrees; g[radians_] :=

360

2 π
radians;

{f[360], g[2 π]}

{2 π, 360}

Illustration

◼ Angle between two vectors with respect to the Euclidean norm

cos[u_, v_] :=
Dot[u, v]

Sqrt[Dot[u, u]] Sqrt[Dot[v, v]]

The Linear Algebra Survival Guide | 29

u = {3, 4}; v = {1, 5};

cos[u, v]

23

5 26

radians = N[ArcCos[cos[u, v]]]

0.446106

degrees = g[radians]

25.56

◼ Angle between two vectors with respect to a non-Euclidean norm

A = {{5, 1}, {2, 7}};

MatrixForm[AAt = A.Transpose[A]]

26 17
17 53

{SymmetricMatrixQ[AAt], PositiveDefiniteMatrixQ[AAt]}

{True, True}

The following command defines an inner product between vectors u and v:

〈u_, v_〉 := u.AAt.v

cos[u_, v_] :=
〈u, v〉

〈u, v〉 〈v, v〉

u = {3, 2}; v = {1, 9};

cos[u, v]

61

185

radians = N[ArcCos[cos[u, v]]]

0.959144

degrees = g[radians]

54.9549

 30 | The Linear Algebra Survival Guide

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

◼ The angle between two vectors in ℝ3

u = {1, 2, 3}; v = {4, 5, 6};

cosine = (Dot[u, v])/∕(Norm[u] Norm[v]);

angle = N[ArcCos[cosine]]

0.225726

This tells us that the angle between the vectors u and v is 0.225726 radians. In degrees, we get

angledeg = g[angle]

12.9332

Area of a parallelogram

If u and v are two vectors in ℝ3, then the Euclidean norm Norm[Cross[u, v]] of the cross product of u and v is the area of
the parallelogram determined by u and v.

Illustration

◼ Area of a parallelogram

u = {1, 2, 3}; v = {4, 5, 6};

area = Norm[Cross[u, v]]

3 6

Manipulation

◼ Exploring the areas of parallelograms

Manipulate[Norm[Cross[{1, a, 3}, {b, 5, 6}]], {a, -−3, 3, 1}, {b, -−2, 2, 1}]

a

b

3 26

The Linear Algebra Survival Guide | 31

We combine Manipulate, Norm, and Cross to explore the area of parallelograms. If we let a = 2 and b = - 2, the manipula-
tion produces the area of the parallelogram determined by the vectors {1, 2, 3} and {-2, 5, 6}.

Area of a triangle

The area of the triangle described by three points P (p1, p2, p3), Q(q1, q2, q3), and R(r1, r2, r3) in ℝ3 is half the area of the
parallelogram determined by vectors

uPQ = {p1 -−q1, p2 -−q2, q3 -−q3} and vPR = {p1 -− r1, p2 -− r2, p3 -− r3}

Illustration

◼ Area of a triangle described by the points P1 = {1, 2, 3}, P2 = {-−2, 1, 4}, and P3 = {5, 4, 2}

P1 = {1, 2, 3}; P2 = {-−2, 1, 4}; P3 = {5, 4, 2};

u = P1 -− P2; v = P1 -− P3;

area =
1

2
Norm[Cross[u, v]]

3

2

In the plane, the formula for the area of a triangle is half the product of the base and height of the triangle.

◼ Area = 1

2
(Base × Height)

v1 = {0, 0}; v2 = {6, 0}; v3 = {3, 2};

area =
1

2
(6 × 2)

6

By putting the z-coordinate equal to zero, we can use the norm and cross product functions to find the areas of triangles in
the plane.

◼ Area = half the norm of the cross product of the vectors {6, 0, 0} and {3, 2, 0}

area =
1

2
Norm[Cross[{6, 0, 0}, {3, 2, 0}]]

6

Manipulation

◼ Exploring the area of triangles

 32 | The Linear Algebra Survival Guide

Manipulate
1

2
Norm[Cross[{6, a, 0}, {3, 2 b, 0}]], {a, -−2, 2, 1}, {b, -−2, 2, 1}

a

b

15

We combine Manipulate, Norm, and Cross to explore the areas of triangles. If we let a = - 2 and b = 2, for example, the
manipulation shows that the area of the triangle determined by the vectors {6, -2, 0} and {3, 4, 0} is 15.

Array

Mathematica handles huge arrays of numeric, symbolic, textual, or any other data, with any dimension or structure. Vectors
(lists of data) and matrices (two-dimensional lists of data) are special cases of arrays.

Illustration

◼ A one-dimensional array (vector in ℝ5) generated by the squaring function

v = Array#2 &, 5

{1, 4, 9, 16, 25}

◼ A two-dimensional array (a 3-by-4 matrix) generated by the square-root function

MatrixForm[A = Array[Sqrt[#] &, {3, 4}]]

1 1 1 1

2 2 2 2

3 3 3 3

◼ A 2-by-2 array with polynomial elements

Clear[t]

A11 = RandomInteger[{0, 9}, {2, 2}]

A11 = {{2, 2}, {6, 5}};

cp11 = CharacteristicPolynomial[A11, t]

-−2 -− 7 t + t2

The Linear Algebra Survival Guide | 33

A12 = RandomInteger[{0, 9}, {2, 2}]

A12 = {{1, 5}, {9, 5}};

cp12 = CharacteristicPolynomial[A12, t]

-−40 -− 6 t + t2

A21 = RandomInteger[{0, 9}, {2, 2}]

A21 = {{2, 6}, {0, 4}};

cp21 = CharacteristicPolynomial[A21, t]

8 -− 6 t + t2

A22 = RandomInteger[{0, 9}, {2, 2}]

A22 = {{2, 9}, {0, 0}};

cp22 = CharacteristicPolynomial[A22, t];

MatrixForm[A = {{cp11, cp12}, {cp21, cp22}}]

-−2 -− 7 t + t2 -−40 -− 6 t + t2

8 -− 6 t + t2 -−2 t + t2

Arrow

Vectors are frequently represented graphically by arrows in a Cartesian coordinate system to illustrate their length and
direction. The Mathematica Arrow function can be used to represent arrows in two- and three-dimensional coordinate
systems.

Illustration

◼ An arrow in ℝ2

Graphics[Arrow[{{0, 0}, {1, .2}}], Axes → True]

0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15
0.20

◼ An arrow in ℝ3

 34 | The Linear Algebra Survival Guide

Graphics3D[Arrow[{{.1, .2, .25}, {.2, .75, 0}}], Axes → True]

0.10
0.15

0.20

0.2

0.4

0.6

0.0

0.1

0.2

Manipulation

◼ Arrows in ℝ2

Manipulate[Graphics[Arrow[{{a, b}, {1, .2}}], Axes → True], {a, -−2, 2}, {b, -−3, 3}]

The Linear Algebra Survival Guide | 35

a

b

-−2.0 -−1.5 -−1.0 -−0.5 0.5 1.0

-−3.0

-−2.5

-−2.0

-−1.5

-−1.0

-−0.5

We combine Manipulate, Graphics, and Arrow to explore the representation of vectors as arrows. If we let a = - 2 and b =
- 3, for example, the manipulation displays an arrow in ℝ2 starting at {-2, -3} and ending at {1, .2}.

Augmented matrix

The augmented matrix of a linear system is the matrix of the coefficients of the variables of the system and the vector of
constants of the system.

Illustration

◼ The augmented matrix of a linear system in three variables and two equations

 36 | The Linear Algebra Survival Guide

system = {3 x + 5 y -− z ⩵ 1, x -− 2 y + 4 z ⩵ 5};

MatrixForm[augA = {{3, 5, -−1, 1}, {1, -−2, 4, 5}}]

3 5 -−1 1
1 -−2 4 5

◼ Combining the coefficient matrix and a constant vector using ArrayFlatten

MatrixForm[A = {{3, 5, -−1}, {1, -−2, 4}}]

3 5 -−1
1 -−2 4

MatrixForm[v = {{1}, {5}}]

1
5

MatrixForm[augA = ArrayFlatten[{{A, v}}]]

3 5 -−1 1
1 -−2 4 5

◼ Combining the coefficient matrix and a constant vector using CoefficientArrays and ArrayFlatten

system = {3 x + 5 y -− z ⩵ 1, x -− 2 y + 4 z ⩵ 5};

A = Normal[CoefficientArrays[system, {x, y, z}]][[2]];

v = {{1}, {5}};

MatrixForm[augA = ArrayFlatten[{{A, v}}]]

3 5 -−1 1
1 -−2 4 5

◼ Combining the coefficient matrix and a constant vector using Join

system = {3 x + 5 y -− z ⩵ 1, x -− 2 y + 4 z ⩵ 5};

A = {{3, 5, -−1}, {1, -−2, 4}};

v = {{1}, {5}};

MatrixForm[Join[A, v, 2]]

3 5 -−1 1
1 -−2 4 5

The ClassroomUtilities add-on package for Mathematica contains two elegant converters for alternating between linear
systems and augmented matrices.

The Linear Algebra Survival Guide | 37

◼ Using the ClassroomUtilities

Needs["ClassroomUtilities`"]

eqns = {3 x + y ⩵ 4, x -− y ⩵ 1}; vars = {x, y};

MatrixForm[CreateAugmentedMatrix[eqns, vars]]

3 1 -−4
1 -−1 -−1

Clear[x, y]

A = {{3, 1, -−4}, {1, -−1, -−1}}; vars = {x, y};

CreateEquations[A, vars]

{3 x + y ⩵ -−4, x -− y ⩵ -−1}

Manipulation

◼ Linear systems and their augmented matrices

Manipulate[{{3 x + 5 y -− z c ⩵ a, x -− 2 y + 4 z ⩵ b},
MatrixForm[{{3, 5, -−c, a}, {1, -−2, 4, b}}]}, {a, 0, 5, 1}, {b, 0, 5, 1}, {c, -−5, 5, 1}]

a

b

c

{3 x + 5 y + 5 z ⩵ 3, x -− 2 y + 4 z ⩵ 2},
3 5 5 3
1 -−2 4 2



We use Manipulate and MatrixForm to explore the connection between linear systems and their augmented matrices. If
we let a = 3, b = 2, and c = - 5, for example, the manipulation displays the resulting linear system and its augmented matrix.

 38 | The Linear Algebra Survival Guide

B

Back substitution

A linear system Av = b can sometimes be solved by decomposing the coefficient matrix A into a product LU, where L is a
lower-triangular and U is an upper-triangular matrix. The system can then be solved by solving the systems Lw = b and Uv
= w. Since U is upper-triangular, the system Uv = w can be solved by back substitution. (The associated system Lw = b is
solved by forward substitution.)

Illustration

◼ Solving a linear system in three equations and three variables

system = {eq1, eq2, eq3} = {x -− 2 y + 5 z ⩵ 12, 4 y + 3 z ⩵ 5, 2 z ⩵ 4};

solutionz = Reduce[eq3]

z ⩵ 2

solutiony = Reduce[eq2 /∕. {z → 2}]

y ⩵ -−
1

4

solutionx = Reduce[eq1 /∕. {z → 2, y → -−1/∕4}]

x ⩵
3

2

Flatten[Reduce[system, {x, y, z}]] ⩵ (solutionx && solutiony && solutionz)

True

Band matrix

A band matrix is a sparse matrix whose nonzero elements occur only on the main diagonal and on zero or more diagonals
on either side of the main diagonal.

Illustration

◼ A diagonal matrix is a band matrix

MatrixForm[A = DiagonalMatrix[{1, 2, 3, 0, 5, 5}]];

The Linear Algebra Survival Guide | 39

A =

1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0
0 0 0 0 5 0
0 0 0 0 0 5

;

◼ A Hessenberg matrix is a band matrix

A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13., 14, 15, 16}};

{p, h} = HessenbergDecomposition[A];

MatrixForm[Chop[h]]

1. -−5.3669 0.443129 0
-−16.5831 33.0873 -−9.55746 0

0 -−2.20899 -−0.0872727 0
0 0 0 0

◼ A shear matrix is a band matrix

A = {{1, a}, {b, 1}};

A.{x, y}

{x + a y, b x + y}

◼ Two-dimensional display of a band matrix

diagonal = {0, 2, 1, 5, 8, 0, 8, 9};

A = SparseArray[DiagonalMatrix[diagonal]]

SparseArray Specified elements: 6
Dimensions: {8, 8}



A /∕/∕ MatrixForm

0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 5 0 0 0 0
0 0 0 0 8 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 8 0
0 0 0 0 0 0 0 9

◼ A Jordan block is a band matrix

 40 | The Linear Algebra Survival Guide

A = {{27, 48, 81}, {-−6, 0, 0}, {1, 0, 3}};

{s, j} = JordanDecomposition[A];

MatrixForm[j]

6 0 0
0 12 1
0 0 12

Basic variable of a linear system

The variables of a linear system Av = b corresponding to the pivot columns of the coefficient matrix A are the basic
variables of the system.

Illustration

◼ Basic variables of a linear system

system = {3 x + 4 y -− z ⩵ 9, x + y + 4 z ⩵ 1};

A = {{3, 4, -−1}, {1, 1, 4}};

MatrixForm[RowReduce[A]]

1 0 17
0 1 -−13

Since the first and second columns of A are the pivot columns of the given linear system, the variables x and y are basic
variables of the system.

Basis of a vector space

A basis of a vector space is a linearly independent subset of vectors that spans the space.

Illustration

◼ A basis for ℝ3

basis = {{0, 3, 2}, {5, 8, 1}, {5, 0, 6}}

◼ Linear independence

Solve[a {0, 3, 2} + b {5, 8, 1} + c {5, 0, 6} ⩵ {0, 0, 0}]

{{a → 0, b → 0, c → 0}}

◼ Span

The Linear Algebra Survival Guide | 41

span = Solve[a {0, 3, 2} + b {5, 8, 1} + c {5, 0, 6} ⩵ {x, y, z}, {a, b, c}]

a →
1

155
(-−48 x + 25 y + 40 z), b →

1

155
(18 x + 10 y -− 15 z), c →

1

155
(13 x -− 10 y + 15 z)

span /∕. {x → 1, y → 1, z → 1}

a →
17

155
, b →

13

155
, c →

18

155


coordinates = a →
17

155
, b →

13

155
, c →

18

155


a →
17

155
, b →

13

155
, c →

18

155


{1, 1, 1} == a {0, 3, 2} + b {5, 8, 1} + c {5, 0, 6} /∕. coordinates

{True}

The columns or rows of an invertible matrix are linearly independent and every vector in the space can be written as a
unique linear combination of the columns or the rows of the matrix, provided that the order of the columns or rows is
respected. Therefore the columns or rows form a basis of the column space or row space of the matrix.

◼ An invertible matrix considered as a basis for ℝ3

MatrixForm[A = RandomInteger[{0, 9}, {3, 3}]];

A =
5 8 5
9 9 0
8 0 6

;

Det[A]

-−522

Solve[{x, y, z} ⩵ a A[[1]] + b A[[2]] + c A[[3]], {x, y, z}]

{{x → 5 a + 9 b + 8 c, y → 8 a + 9 b, z → 5 a + 6 c}}

{x, y, z} /∕. {{x → 5 a + 9 b + 8 c, y → 8 a + 9 b, z → 5 a + 6 c}}

{{5 a + 9 b + 8 c, 8 a + 9 b, 5 a + 6 c}}

The result shows that every vector {x, y, z} in ℝ3 can be written as a linear combination of the rows of the matrix A. To show
that the rows form a basis, the uniqueness of the linear combination still needs to be verified.

◼ The rank (number of linearly independent rows or columns) of a matrix

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 10}};

 42 | The Linear Algebra Survival Guide

MatrixRank[A]

3

This tells us that the three rows of the matrix m are linearly independent. So are the three columns.

lc = {x, y, z} == a A[[1]] + b A[[2]] + c A[[3]]

{x, y, z} ⩵ {a + 4 b + 7 c, 2 a + 5 b + 8 c, 3 a + 6 b + 10 c}

Solve[lc, {x, y, z}]

{{x → a + 4 b + 7 c, y → 2 a + 5 b + 8 c, z → 3 a + 6 b + 10 c}}

Since the rows of the matrix A are linearly independent, each vector {x, y, z} in the space ℝ3 can be written as a unique
linear combination of the rows of A. Randomly generated n-by-n matrices with real entries are often (usually) invertible.
Their rows and columns can therefore be used as bases for ℝn.

◼ A basis for ℝ5 derived from randomly generated matrices

MatrixForm[A = RandomInteger[{0, 9}, {5, 5}]];

A =

9 7 9 3 5
3 9 2 5 7
4 7 5 6 1
7 3 4 4 1
1 2 5 3 1

;

MatrixRank[A]

5

Reduce[a A[[1]] + b A[[2]] + c A[[3]] + d A[[4]] + e A[[5]] ⩵ 0, {a, b, c, d, e}]

a ⩵ 0 && b ⩵ 0 && c ⩵ 0 && d ⩵ 0 && e ⩵ 0

This shows that the rows of the matrix A are linearly independent and form a basis for ℝ5. Similarly, the calculation

Reduce[a A[[All,1]] + b A[[All,2]] + c A[[All,3]] + d A[[All,4]] + e A[[All,5]] ⩵ 0, {a, b, c, d, e}]

a ⩵ 0 && b ⩵ 0 && c ⩵ 0 && d ⩵ 0 && e ⩵ 0

shows that the columns of A are linearly independent and also form a basis for ℝ5.

Manipulation

◼ Linearly dependent and independent vectors

Manipulate[Evaluate[Reduce[a {1, 2, 3} + b {4, 5, 6 } + c {7, 8, 9 d} ⩵ {0, 0, 0}, {a, b, c}]],
{d, -−2, 2, 1}]

The Linear Algebra Survival Guide | 43

d

b ⩵ -−2 a && c ⩵ a

We combine Manipulate and Reduce to explore the linear dependence and independence of vectors in ℝ3. The displayed
window shows, for example, that if we let d = 1, the generated vectors are linearly dependent. On the other hand, if we let d
= 2, the generated vectors are linearly independent.

d

a ⩵ 0 && b ⩵ 0 && c ⩵ 0

◼ Exploring the invertibility of a matrix

Manipulate[Inverse[{{a, b}, {2, 3}}], {a, -−2, 2, 1}, {b, -−2, 2, 1}]

a

b

-−
3

2
, -−1, {1, 1}

We combine Manipulate and Inverse to explore the invertibility of matrices. If we let a = b = - 2, for example, the window
displays the inverse of the generated matrix.

Bijective linear transformation

A linear transformation T : V ⟶ W from a vector space V to a vector space W is bijective if it is both injective (one-to-one)
and surjective (onto). Bijective transformations are invertible in the sense that there exists a linear transformation S : W ⟶
V for which S[T[v]] = v and T[S[w]] = w for all v in V and w in W.

Illustration

◼ A bijective linear transformation from ℝ2 to ℝ2

T[{x_, y_}] := {{Cos[θ], Sin[θ]}, {-−Sin[θ], Cos[θ]}}.{x, y}

 44 | The Linear Algebra Survival Guide

S[{x_, y_}] := {{Cos[θ], -−Sin[θ]}, {Sin[θ], Cos[θ]}}.{x, y}

θ = π/∕3; x = 1; y = 1;

{T[{x, y}], S[{x, y}]}


1

2
+

3

2
,
1

2
-−

3

2
, 

1

2
-−

3

2
,
1

2
+

3

2


Simplify[Composition[S, T][{x, y}] ⩵ {x, y}]

True

Simplify[Composition[T, S][{x, y}] ⩵ {x, y}]

True

Bilinear functional

If V is a real vector space, then a function T[u, v] from V⨯V with values in the real vector space ℝ is a (real) bilinear
functional if it is linear both in u and v. A similar definition leads to the idea of a complex bilinear functional. In the context of
linear functionals, the values T[u, v] are usually written as 〈u, v〉. Bilinearity is defined by the following properties:

Properties of bilinear functionals

〈a u + b v, w〉 = a 〈u, w〉 + b 〈u, w〉 (1)

〈u, c v + d w〉 = c 〈u, v〉 + d 〈u, w〉 (2)

Illustration

◼ The trace as a bilinear functional on 2-by-2 real matrices

Clear[a, b, c, d, e, f, g, h]

A = {{a, b}, {c, d}}; B = {{e, f}, {g, h}};

{Tr[A], Tr[B]}

{a + d, e + h}

Tr[3 A + 5 B] ⩵ Expand[3 Tr[A] + 5 Tr[B]]

True

◼ Multiplication as a bilinear functional on ℝ2

Clear[x, y, z, a, b, c, d]

The Linear Algebra Survival Guide | 45

T[x_, y_] := x y

left = Expand[T[a x + b y, z]] ⩵ a T[x, z] + b T[y, z];

right = Expand[T[x, c y + d z]] ⩵ c T[x, y] + d T[x, z];

a = b = 1; x = 5; y = -−6; z = 3;

{T[a x + b y, z], T[x, z] + b T[y, z]}

{-−3, -−3}

c = d = 1; x = 2; y = 7; z = -−9;

{T[x, c y + d z], c T[x, y] + d T[x, z]}

{-−4, -−4}

◼ The dot product as a bilinear functional on ℝ4

Clear[x, y, z, a, b, c, d, e, f, g, h, i, j, k, l]

cr = CharacterRange["a", "l"]

{a, b, c, d, e, f, g, h, i, j, k, l}

x = {a, b, c, d}; y = {e, f, g, h}; z = {i, j, k, l};

Expand[Dot[5 x + 7 y, z] ⩵ 5 Dot[x, z] + 7 Dot[y, z]]

True

 46 | The Linear Algebra Survival Guide

C

Cartesian product of vector spaces

The Cartesian product U × V of two finite-dimensional vector spaces U and V consists of all pairs {u, v} of vectors u in U
and v in V. The vector space operations are defined componentwise:

{u1, v1} + {u2, v2} = {u1 + u2, v1 + v2} (1)

a {u, v} = {a u, a v} (2)

Illustration

◼ The Cartesian product of two vector spaces

basisU = {{1, 0}, {0, 1}}

{{1, 0}, {0, 1}}

basisV = {{1, 2, 3}, {0, 4, 1}}

{{1, 2, 3}, {0, 4, 1}}

basisUV = Tuples[{basisU, basisV}]

{{{1, 0}, {1, 2, 3}}, {{1, 0}, {0, 4, 1}}, {{0, 1}, {1, 2, 3}}, {{0, 1}, {0, 4, 1}}}

Cauchy–Schwarz inequality

If u and v are two vectors in an inner product space V, then the Cauchy–Schwarz inequality states that for all vectors u and
v in V,

=〈u, v〉>2 ≤ Dot[〈u, u〉, 〈v, v〉] (1)

The bilinear functional <u, v> is the inner product of the space V. The inequality becomes an equality if and only if u and v
are linearly dependent.

Illustration

◼ The Cauchy–Schwarz inequality of two vectors in ℝ3

u = {1, 2, 3}; v = {-−4, 5, 6};

Abs[Dot[u, v]]2 ≤ Dot[u, u] Dot[v, v]

True

The Linear Algebra Survival Guide | 47

Abs[Dot[u, v]]2, Dot[u, u] Dot[v, v]

{576, 1078}

If w is a multiple of u, for example, then the inequality becomes an equality:

w = 3 u;

Abs[Dot[u, w]]2 == Dot[u, u] Dot[w, w]

True

◼ The Cauchy–Schwarz inequality of two vectors in ℂ2

u = {3 + I, -−5}; v = {5 -− 2 I, 6 + I};

Abs[Dot[u, Conjugate[v]]]2 ≤ Dot[u, Conjugate[u]] Dot[v, Conjugate[v]]

True

Manipulation

◼ Cauchy–Schwarz inequalities

u = {b, 2, 3}; v = {a, 5, 6};

ManipulateEvaluateAbs[Dot[u, v]]2 ≤ Dot[u, u] Dot[v, v], {a, -−2, 2}, {b, -−5, 5}

a

b

True

We can combine Manipulate, Abs, and Dot to explore the Cauchy–Schwarz inequality. If we assign the values a = - 2 and
b = - 5, for example, the manipulation shows that the Cauchy–Schwarz inequality holds for the vectors {- 5, 2, 3} and {- 2, 5,
6}.

Cayley–Hamilton theorem

One of the best-known properties of characteristic polynomials is that all square real or complex matrices satisfy their
characteristic polynomials. This result is known as the Cayley–Hamilton theorem.

 48 | The Linear Algebra Survival Guide

Illustration

◼ The Cayley–Hamilton theorem illustrated with a 3-by-3 matrix

A =
2 1 1
4 1 7
5 3 0

;

characteristicPolynomialA = Det[A -− t IdentityMatrix[3]]

28 t + 3 t2 -− t3

charPolyA = -−MatrixPower[A, 3] + 3 MatrixPower[A, 2] + 28 A

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

This shows that the matrix A satisfies of its own characteristic polynomial.

Manipulation

◼ The Cayley–Hamilton illustrated with Manipulate

A =
2 1 1
a 1 7
5 3 0

;

cpA = CharacteristicPolynomial[A, t]

-−12 + 3 a + 24 t + a t + 3 t2 -− t3

Manipulate[
Evaluate[-−MatrixPower[A, 3] + 3 MatrixPower[A, 2] + (24 + a) A -− (12 -− 3 a) IdentityMatrix[3]],
{a, -−5, 5, 1}]

a

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}

We can use Manipulate, MatrixPower, and IdentityMatrix to show that the Cayley–Hamilton theorem holds for the
generated matrices. If we let a = - 5, for example, the manipulation shows that the Cayley–Hamilton theorem holds for the
generated matrix.

The Linear Algebra Survival Guide | 49

Characteristic polynomial

The characteristic polynomial p[t] of an n-by-n real or complex matrix A in the variable t is the polynomial

p[t] = Det[A -− t IdentityMatrix[n]] (1)

The roots of p[t] are the eigenvalues of the matrix A.

Illustration

◼ The characteristic polynomial of a 5-by-5 matrix

Clear[A, t]

A = RandomInteger[{0, 9}, {5, 5}];

A =

4 3 8 1 9
1 7 4 9 8
5 3 8 5 1
2 3 6 0 5
4 9 8 6 8

;

CharacteristicPolynomial[A, t]

3206 -− 851 t -− 675 t2 -− 8 t3 + 27 t4 -− t5

◼ Using determinants to find the characteristic polynomial of a 5-by-5 matrix

Det[A -− t IdentityMatrix[5]]

3206 -− 851 t -− 675 t2 -− 8 t3 + 27 t4 -− t5

The two calculations show that

CharacteristicPolynomial[A, t] == Det[A -− t IdentityMatrix[5]]

True

Cholesky decomposition

The Cholesky decomposition of a square matrix is a decomposition of a Hermitian, positive-definite matrix into a product of
a lower-triangular matrix and its conjugate transpose.

Illustration

◼ Cholesky decomposition of a 2-by-2 symmetric positive-definite matrix

 50 | The Linear Algebra Survival Guide

Change-of-basis matrix

See Coordinate conversion matrix

MatrixForm[A = {{2, 1}, {1, 2}}]

2 1
1 2

{HermitianMatrixQ[A], PositiveDefiniteMatrixQ[A]}

{True, True}

cdA = CholeskyDecomposition[A]

 2 ,
1

2
, 0,

3

2


ConjugateTranspose[cdA].cdA

{{2, 1}, {1, 2}}

◼ Cholesky decomposition of a 3-by-3 symmetric positive-definite matrix

A =
2 -−1 0
-−1 2 1
0 1 2

;

{PositiveDefiniteMatrixQ[A], HermitianMatrixQ[A]}

{True, True}

MatrixForm[cdA = CholeskyDecomposition[A]]

2 -−
1

2

0

0
3

2

2

3

0 0
2

3

MatrixForm[ConjugateTranspose[cdA].cdA]

2 -−1 0
-−1 2 1
0 1 2

The Linear Algebra Survival Guide | 51

Illustration

◼ A subspace of ℝ3 with codimension 2 in ℝ3

V = ℝ3; W = {{a, 0, b} : a, b ∈ Reals};

The dimension of V is 3 and the dimension of the subspace W is 2. Hence the codimension of W is 1.

◼ A subspace of ℝ5 with codimension 3 in ℝ5

V = ℝ5; W = span[{{1, 0, 1, 0, 1}, {0, 1, 1, 0, 0}}]

W = {a {1, 0, 1, 0, 1} + b {0, 1, 1, 0, 0} : a, b ∈ ℝ} = {a, b, b, 0, a} : a, b ∈ ℝ}

Since W is a subspace of ℝ5 of dimension 2, its codimension in ℝ5 is 3.

Codomain of a linear transformation

The codomain of a linear transformation T is the vector space in which the transformation takes its values.

The notation T : A ⟶ B identifies the vector space A as the domain of T and the vector space B as its codomain. The
range of T is the subspace of the codomain of T consisting of all values of T. If the range of T coincides with the codomain
of T, the transformation T is said to be onto or surjective. If there exists a transformation S : B ⟶ A for which the composi-
tion (S · T) of S and T is the identity transformation idA : A ⟶ A on A and the composition (T · S) is the identity transforma-
tion idB : B ⟶ B, then the transformation T is said to be one-to-one or injective. If T is both onto and one-to-one, it is said
to be bijective.

Illustration

◼ An injective linear transformation T : ℝ2 ⟶ ℝ3

T[{x_, y_}] := {x + y, 2 x -− y, y};

T[{1, 2}]

{3, 0, 2}

The codomain of the transformation T is ℝ3. However, not every vector in ℝ3 is a value of T. For example, the vector {5, 5,
5} in ℝ3 is not a value of T.

Clear[x, y, a, b, c, d]

Solve[{x + y, 2 x -− y, y} ⩵ {5, 5, 5}, {x, y}]

{}

◼ A surjective linear transformation T : ℝ3 ⟶ ℝ2

T[{x_, y_, z_}] := {y, x};

 52 | The Linear Algebra Survival Guide

Codimension of a vector subspace

If W is a subspace of a finite-dimensional vector space V, then the codimension of the subspace W in the space V is the
difference dim[V] - dim[W] between the dimension of the space V and the dimension of the subspace W.

T[{-−2, 3, 5}]

{3, -−2}

The codomain of the transformation T is ℝ2. And, any vector {x, y} in ℝ2 is a value of T.

Solve[{x, y} ⩵ T[{a, b, c}], {a, b, c}]

Solve::svars : Equations may not give solutions for all "solve" variables. $

{{a → y, b → x}}

T[{a, b, c}] /∕. {a → y, b → x}

{x, y}

◼ A bijective linear transformation T : ℝ[t, 3]⟶ ℝ4

Ta_ + b_ t_ + c_ t_2 + d_ t_3 := {a, b, c, d}

S[{a_, b_, c_, d_}] := a + b t + c t2 + d t3

Composition[S, T]a + b t + c t2 + d t3

a + b t + c t2 + d t3

Composition[T, S][{a, b, c, d}]

{a, b, c, d}

Cofactor matrix

The cofactor matrix of a square matrix A is the matrix of cofactors of A. The cofactors cfAij are (-−1)i+ j times the determi-

nants of the submatrices Aij obtained from A by deleting the ith rows and jth columns of A. The cofactor matrix is also

referred to as the minor matrix. It can be used to find the inverse of A.

Illustration

◼ Cofactor matrix of a 3-by-3 matrix

A =
4 5 2
1 4 6
7 0 6

;

cfA11 = (-−1)1+1 Det
4 6
0 6

; cfA12 = (-−1)1+2 Det
1 6
7 6

; cfA13 = (-−1)1+3 Det
1 4
7 0

;

cfA21 = (-−1)2+1 Det
5 2
0 6

; cfA22 = (-−1)2+2 Det
4 2
7 6

; cfA23 = (-−1)2+3 Det
4 5
7 0

;

The Linear Algebra Survival Guide | 53

cfA31 = (-−1)3+1 Det
5 2
4 6

; cfA32 = (-−1)3+2 Det
4 2
1 6

; cfA33 = (-−1)3+3 Det
4 5
1 4

;

MatrixForm[cfA = {{cfA11, cfA12, cfA13}, {cfA21, cfA22, cfA23}, {cfA31, cfA32, cfA33}}]

24 36 -−28
-−30 10 35
22 -−22 11

(1/∕Det[A]) Transpose[cfA] ⩵ Inverse[A]

True

The following Mathematica definition can be used to calculate the cofactors of a given matrix:

Clear[A, i, j]

A =
4 5 2
1 4 6
7 0 6

;

Cofactor[m_List?MatrixQ, {i_Integer, j_Integer}] :=
(-−1)^(i + j) Det[Drop[Transpose[Drop[Transpose[m], {j}]], {i}]]

The Cofactor command is a defined command and needs to be activated before it can be used by typing Shift + Enter.

CfA = MatrixForm[Table[Cofactor[A, {i, j}], {i, 1, 3}, {j, 1, 3}]];

MatrixForm[cfA] ⩵ CfA

True

The next Mathematica definitions can be used to calculate the cofactor matrix in one step:

MinorMatrix[m_List?MatrixQ] := Map[Reverse, Minors[m], {0, 1}]

CofactorMatrix[m_List?MatrixQ] := MapIndexed[#1 (-−1)^(Plus @@ #2) &, MinorMatrix[m], {2}]

Both commands are defined commands and must be activated by typing Shift + Enter before they can be used. The
commands are defined in MathWorld at http://mathworld.wolfram.com/Cofactor.html.

MatrixForm[MinorMatrix[A]]

24 -−36 -−28
30 10 -−35
22 22 11

Column space

The column space of a matrix A is the set of all linear combinations of the columns of A. The column space of the matrix
tells us if and when a linear system Av = b has a solution v.

 54 | The Linear Algebra Survival Guide

Illustration

◼ A basis for the column space of a 3-by-4 matrix

MatrixForm[A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {0, 1, 3, 0}}]

1 2 3 4
5 6 7 8
0 1 3 0

MatrixForm[B = RowReduce[A]]

1 0 0 -−5
0 1 0 9
0 0 1 -−3

The reduction shows that the first three columns of the matrix B are pivot columns. They are linearly independent and span
the column space of A.

◼ Linear independence

Clear[a, b, c]

Solvea
1
5
0

+ b
2
6
1

+ c
3
7
3

==
0
0
0

, {a, b, c}

{{a → 0, b → 0, c → 0}}

Thus the zero vector is a linear combination of the first three columns if and only if the coefficients a, b, and c are zero.

The fourth column of A is a linear combination of the first three:

Solvea
1
5
0

+ b
2
6
1

+ c
3
7
3

==
4
8
0

, {a, b, c}

{{a → -−5, b → 9, c → -−3}}

-−5
1
5
0

+ 9
2
6
1

-− 3
3
7
3

==
4
8
0

True

◼ Spanning

Clear[a, b, c, x, y, z]

The Linear Algebra Survival Guide | 55

Solvea
1
5
0

+ b
2
6
1

+ c
3
7
3

==

x
y
z

, {a, b, c}

a →
1

4
(-−11 x + 3 y + 4 z), b →

1

4
(15 x -− 3 y -− 8 z), c →

1

4
(-−5 x + y + 4 z)

This shows that every vector {x. y, z} in the column space of the matrix A can be constructed as a linear combination of the
first three columns of the matrix A.

◼ The column space of a 3-by-5 matrix determined by the pivot columns of the matrix

MatrixForm[Transpose[A = RandomInteger[{0, 9}, {5, 3}]]]

A =
0 4 8 3 4
8 5 0 6 9
2 7 3 8 1

;

MatrixForm[Transpose[A]]

0 4 8 3 4
8 5 0 6 9
2 7 3 8 1

MatrixForm[B = RowReduce[Transpose[A]]]

1 0 0 -−
11

272

26

17

0 1 0
43

34
-−
11

17

0 0 1 -−
35

136

14

17

This shows that the first three columns of A are the pivot columns of A. They are linearly independent and span the column
space of A.

◼ Linear independence

Solve[a B[[All,1]] + b B[[All,2]] + c B[[All,3]] ⩵ {0, 0, 0}, {a, b, c}]

{{a → 0, b → 0, c → 0}}

◼ The third column as a linear combination of the first three columns

Clear[a, b, c]

Solve[a B[[All,1]] + b B[[All,2]] + c B[[All,3]] ⩵ {-−11/∕272, 43/∕34, -−35/∕136}, {a, b, c}]

a → -−
11

272
, b →

43

34
, c → -−

35

136


◼ The fourth column as a linear combination of the first three columns

Clear[a, b, c]

 56 | The Linear Algebra Survival Guide

Solve[a B[[All,1]] + b B[[All,2]] + c B[[All,3]] ⩵ {26/∕17, -−11/∕17, 14/∕17}, {a, b, c}]

a →
26

17
, b → -−

11

17
, c →

14

17


Column vector

A column vector is a vertical list of scalars. In Mathematica, column vectors are represented as lists of singleton lists.

Illustration

◼ A column vector of height 3 in standard form

Unless required to do otherwise, Mathematica outputs column vectors in standard form.

columnvector = {{1}, {2}, {3}}

{{1}, {2}, {3}}

◼ A column vector of height 3 in traditional form.

MatrixForm[columnvector]

1
2
3

Companion matrix

The (Frobenius) companion matrix of the monic polynomial

p[t] = a0 + a1 t + ⋯ + an-−1 t
n-−1 + tn (1)

is the square matrix

C[p] =

0 0 … 0 -−a0
1 0 … 0 -−a1
0 1 … 0 -−a2
⋮ ⋮ ⋱ ⋮ ⋮
0 0  1 -−an-−1

(2)

The characteristic polynomial and the minimal polynomial of C[p] are both equal to p[t]. Sometimes the companion matrix is
defined as the transpose of C[p].

Illustration

◼ Companion matrix of a monic polynomial of degree 3

The Linear Algebra Survival Guide | 57

p = t3 -− 4 t2 + 5;

The following defined Mathematica function can be used to calculate the companion matrix of a polynomial:

CompanionMatrix[p_, x_] := Module[{n, w = CoefficientList[p, x]}, w = -−w/∕Last[w];
n = Length[w] -− 1;
SparseArray[{{i_, n} ⧴ w[[i]], {i_, j_} /∕; i ⩵ j + 1 → 1}, {n, n}]]

The command is defined in MathWorld and can be found at http://mathworld.wolfram.com/CompanionMatrix.html.

MatrixForm[Normal[CompanionMatrix[p, t]]]

0 0 -−5
1 0 0
0 1 4

◼ Companion matrix of a monic polynomial of degree 4

p = 3 + 5 t -− 7 t3 + t4;

MatrixForm[A = Normal[CompanionMatrix[p, t]]]

0 0 0 -−3
1 0 0 -−5
0 1 0 0
0 0 1 7

Complex conjugate

The complex conjugate of the complex number (a + b ⅈ) is the number (a - b ⅈ).

Illustration

◼ The complex conjugates of five complex numbers

numbers = {{3 -− 7 I}, {5 I}, {9}, {-−2 + 4 I}, {8 + I}}

{{3 -− 7 ⅈ}, {5 ⅈ}, {9}, {-−2 + 4 ⅈ}, {8 + ⅈ}}

conjugates = Conjugate[numbers]

{{3 + 7 ⅈ}, {-−5 ⅈ}, {9}, {-−2 -− 4 ⅈ}, {8 -− ⅈ}}

◼ The conjugates of a product and a quotient of complex numbers

numbers = {{3 -− 7 I} {5 I}, {9}/∕{-−2 + 4 I}}

{35 + 15 ⅈ}, -−
9

10
-−
9 ⅈ

5


 58 | The Linear Algebra Survival Guide

conjugates = Conjugate[numbers]

{35 -− 15 ⅈ}, -−
9

10
+
9 ⅈ

5


Composition of linear transformations

If T is a linear transformation from ℝn to ℝm and S is a linear transformation from ℝm to ℝp, then the composition of T and S,
denoted by (S∘T), is defined by S(T(x)) for all x in ℝn. The composite transformation (S ∘ T) is represented by the matrix
product ST of the matrices S and T provided that the domain basis of S is the same as the codomain basis of T.

Illustration

◼ The composition function

Composition[f, g][x, y] == f[g[x, y]]

True

◼ Composition of a linear transformation from ℝ3 toℝ2 with a linear transformation from ℝ2 to ℝ2

T[{x_, y_, z_}] := {3 x + 2 y -− 4 z, x -− 5 y + 3 x}

S[{u_, v_}] := {4 u -− 2 v, 2 u + v}

T[{1, 2, 3}]

{-−5, -−6}

S[{-−5, -−6}]

{-−8, -−16}

The matrices representing the transformations T, S, and the composition of T and S are as follows:

mT= Transpose[{T[{1, 0, 0}], T[{0, 1, 0}], T[{0, 0, 1}]}]

{{3, 2, -−4}, {4, -−5, 0}}

mS = Transpose[{S[{1, 0}], S[{0, 1}]}]

{{4, -−2}, {2, 1}}

mP = mS.mT

{{4, 18, -−16}, {10, -−1, -−8}}

The Linear Algebra Survival Guide | 59

mP.{1, 2, 3}

{ 8, -− 16}

This last operation shows that the matrix mP produces the same result as the composition of the functions T and S.

Condition number of a matrix

Various definitions of condition numbers of matrices are used to measure the impact of a relatively small change in inputs
on the outputs. For example, the condition numbers associated with a linear equation Av = b measure how inaccurate the
solution v will be after a small change in the coefficient matrix A. Thus the condition number of a matrix A relative to a
matrix norm is defined as the norm of A divided by the norm of the inverse of A.

Illustration

◼ Condition numbers of Hilbert matrices

hilbert = Table[HilbertMatrix[n], {n, 1, 5}];

conditionnumbers = Table[LinearAlgebra`MatrixConditionNumber[hilbert[[n]]], {n, 1, 5}]

{1, 27, 748, 28375, 943656}

This example shows the rapid growth of the condition numbers of even small Hilbert matrices.

Another measure used to calculate the condition number of a matrix is the two-norm consisting of the ratio of the largest to
the smallest singular value of the matrix.

{u, w, v} = SingularValueDecomposition[hilbert[[5]]];

MatrixForm[N[w]]

1.56705 0. 0. 0. 0.
0. 0.208534 0. 0. 0.
0. 0. 0.0114075 0. 0.
0. 0. 0. 0.000305898 0.

0. 0. 0. 0. 3.28793×10-−6

 In the case of the 5-by-5 Hilbert matrix, the condition number based on the two-norm is therefore

N[w][[1]][[1]]/∕N[w][[5]][[5]]

476607.

 60 | The Linear Algebra Survival Guide

Illustration

◼ Congruence transformation of a 5-by-5 symmetric matrix

A =

0 2 0 3 0
2 2 0 1 0
0 0 0 2 0
3 1 2 0 0
0 0 0 0 0

;

SymmetricMatrixQ[A]

True

N[Eigenvalues[A]]

{4.93812, -−3.65125, 1.36381, -−0.650674, 0.}

B = {{5, 3, 3, 9, 5}, {5, 6, 4, 4, 9}, {2, 0, 3, 5, 6}, {5, 7, 0, 1, 9}, {8, 5, 6, 5, 0}};

Det[B]

3728

N[Eigenvalues[Transpose[B].A.B]]

{2299.83, -− 226.481, -− 6.48762, 5.13604, 0.}

Both A and BTAB have two positive eigenvalues, two negative eigenvalues, and one zero eigenvalue.

Congruent symmetric matrices

Two symmetric matrices A and B are said to be congruent if there exists an orthogonal matrix Q for which A = QTBQ.

Illustration

◼ Two congruent symmetric matrices

A = {{3, -−1}, {-−1, 3}}; B = {{2, 0}, {0, 4}};

Solve[{{a, b}, {b, c}}.B.{{a, b}, {b, c}} == {{3, -−1}, {-−1, 3}}];

Q = {{a, b}, {b, c}} /∕. a → -−
1

2
, c →

1

2
, b → -−

1

2


The Linear Algebra Survival Guide | 61

Congruence transformation

For any n-by-n symmetric matrix A and any nonsingular n-by-n matrix B, the transformation A ⟶ BTAB is a congruence
transformation. Congruence transformations preserve the number of positive, negative, and zero eigenvalues.

Q.Transpose[Q] ⩵ IdentityMatrix[2]

True

A ⩵ Transpose[Q].B.Q

True

◼ Congruence and quadratic forms

The previous calculations show that following two matrices are congruent:

A =
3 -−1
-−1 3

and B =
2 0
0 4

◼ Plotting q[x, y] and q[u, v]

q[x_, y_] := {x, y}.A.{x, y}

plot1 = Plot3D[q[x, y], {x, -−5, 5}, {y, -−5, 5}]

q[u_, v_] := {u, v}.B.{u, v}

plot2 = Plot3D[q[u, v], {u, -−5, 5}, {v, -−5, 5}]

 62 | The Linear Algebra Survival Guide

-−
1

2
, -−

1

2
, -−

1

2
,

1

2


Conjugate transpose

The conjugate transpose of a complex matrix is the result of transposing the matrix and replacing its elements by their
conjugates.

Illustration

◼ The conjugate transpose of a 2-by-2 complex matrix

MatrixForm[A = {{3 + I, -−5}, {-−I, 4 -− I}}]

3 + ⅈ -−5
-−ⅈ 4 -− ⅈ

MatrixForm[ConjugateTranspose[A]]

3 -− ⅈ ⅈ
-−5 4 + ⅈ

◼ The conjugate transpose of a 3-by-3 real matrix

MatrixForm[A = RandomReal[{0, 9}, {3, 3}]];

A =
5.77847 3.40248 8.44687
5.34368 6.38133 1.38616
0.838548 0.3028 8.92482

MatrixForm[ConjugateTranspose[A] ⩵ Transpose[A]]

True

Consistent linear system

A linear system is consistent if it has a solution. A consistent system can have either one solution or infinitely many
solutions. In the latter case, the system is said to be underdetermined.

Illustration

◼ A consistent linear system in two equations and two variables

system = {3 x -− 5 y ⩵ 1, x + y ⩵ 10};

solution = Solve[system]

x →
51

8
, y →

29

8


system /∕. solution

{{True, True}}

The Linear Algebra Survival Guide | 63

◼ A consistent linear system in two equations and three variables

system = {3 x -− 5 y + z ⩵ 1, x + y ⩵ 10};

solution = Solve[system]

{{y → 10 -− x, z → 51 -− 8 x}}

Simplify[system /∕. solution]

{{True, True}}

◼ A consistent linear system in three equations and two variables

system = {3 x -− 5 y ⩵ 1, x + y ⩵ 10, 4 x -− 4 y ⩵ 11};

solution = Solve[system]

x →
51

8
, y →

29

8


system /∕. solution

{{True, True, True}}

◼ A consistent underdetermined linear system

Clear[x, y, z, b]

A = {{1, 1, 1}, {1, 1, 3}}; b = {1, 4};

LinearSolve[A, b]

-−
1

2
, 0,

3

2


Reduce[{x + y + z ⩵ 1, x + y + 3 z ⩵ 4}, {x, y}]

z ⩵
3

2
&& y ⩵ -−

1

2
-− x

As we can see, the LinearSolve command produces one solution, whereas the Reduce command produces all solutions.

Manipulation

◼ Consistent and non-consistent linear systems

Clear[x, y, a, b]

system = {x + a y ⩵ 1, x -− b y ⩵ 2};

 64 | The Linear Algebra Survival Guide

Manipulate[Evaluate[Reduce[system, {x, y}]], {a, -−5, 5, 1}, {b, 0, 10, 1}]

a

b

x ⩵ 2 && y ⩵
1

5
(-−1 + x)

We can combine Manipulate and Reduce to explore the consistency of linear systems. If we let a = - 5 and b = 0, the
manipulation shows that the resulting system is consistent. Other assignments produce inconsistent systems. For example,
the assignment a = b = 0 produces an inconsistent system.

Contraction along a coordinate axis

For any real number 0 < s < 1, a left-multiplication of a vector v in ℝ2 by the matrix

MatrixForm[A = {{s, 0}, {0, 1}}]

1

2
0

0 1

is a contraction along the x-axis. A left-multiplication by the matrix

MatrixForm[B = {{1, 0}, {0, s}}]

1 0

0
1

2

is a contraction along the y-axis.

Illustration

◼ Contractions along the coordinate axes

Clear[A, B, s]

MatrixForm[A = {{s, 0}, {0, 1}}]

s 0
0 1

The Linear Algebra Survival Guide | 65

MatrixForm[B = {{1, 0}, {0, s}}]

1 0
0 s

v = {3, 5}; s =
1

2
;

{A.v, B.v}


3

2
, 5, 3,

5

2


Coordinate conversion matrix

Let v be a vector in an n-dimensional real or complex vector space V, let [v]B1
 be the coordinate vector of v in a basis B1,

and let [v]B1
be the coordinate vector of v in a basis B2. Then there exists an invertible matrix P for which P[v]B1

= [v]B2
 and

P-−1[v]B2
 = P[v]B1

. The matrix P is called a coordinate conversion matrix.

Illustration

◼ A 2-by-2 coordinate conversion matrix from the basis B1 to the basis B2 for ℝ2

Clear[P, v, a, b]

B1 = {{1, 0}, {0, 1}}; B2 = {{2, 1}, {1, 3}}; v = vB1 = {5, -−3};

Reduce[{5, -−3} ⩵ a {2, 1} + b {1, 3}, {a, b}]

a ⩵
18

5
&& b ⩵ -−

11

5

vB2 = {a, b} /∕. a →
18

5
, b →

-−11

5



18

5
, -−

11

5


Reduce[{1, 0} ⩵ a {2, 1} + b {1, 3}, {a, b}]

a ⩵
3

5
&& b ⩵ -−

1

5

Reduce[{0, 1} ⩵ a {2, 1} + b {1, 3}, {a, b}]

a ⩵ -−
1

5
&& b ⩵

2

5

 66 | The Linear Algebra Survival Guide

P = 
3

5
,

-−1

5
, 

-−1

5
,
2

5
;

P.{5, -−3}


18

5
, -−

11

5


Inverse[P].
18

5
, -−

11

5


{5, -−3}

◼ A coordinate conversion matrix for two bases for ℝ3

Clear[a, b, c]

B1 = {{1, 2, 3}, {0, 1, 0}, {1, 0, 1}}; B2 = {{0, 1, 1}, {1, 1, 0}, {1, 0, 1}};

The columns of the coordinate conversion matrix from B1 to B2 are the coordinate vectors of the B1 basis vectors in the
basis B2.

Reduce[{1, 2, 3} ⩵ a {0, 1, 1} + b {1, 1, 0} + c {1, 0, 1}, {a, b, c}]

a ⩵ 2 && b ⩵ 0 && c ⩵ 1

Reduce[{0, 1, 0} ⩵ a {0, 1, 1} + b {1, 1, 0} + c {1, 0, 1}, {a, b, c}]

a ⩵
1

2
&& b ⩵

1

2
&& c ⩵ -−

1

2

Reduce[{1, 0, 1} ⩵ a {0, 1, 1} + b {1, 1, 0} + c {1, 0, 1}, {a, b, c}]

a ⩵ 0 && b ⩵ 0 && c ⩵ 1

P = Transpose{2, 0, 1}, 
1

2
,
1

2
,

-−1

2
, {0, 0, 1};

v = {5, 4, -−2};

Reduce[v == a {1, 2, 3} + b {0, 1, 0} + c {1, 0, 1}, {a, b, c}]

a ⩵ -−
7

2
&& b ⩵ 11 && c ⩵

17

2

Reduce[v == d {0, 1, 1} + e {1, 1, 0} + f {1, 0, 1}, {d, e, f}]

d ⩵ -−
3

2
&& e ⩵

11

2
&& f ⩵ -−

1

2

The Linear Algebra Survival Guide | 67

P.
-−7

2
, 11,

17

2
 == -−

3

2
,
11

2
, -−

1

2


True

Coordinate system

Vectors in ℝ2 and ℝ3 are often represented as arrows in a Cartesian coordinate system. The system consists of two
perpendicular lines that cross at a point {0, 0} referred to as the origin of the system. The points along the horizontal axis
(the x-axis) are labeled with the real numbers in their natural ordering, with the number 0 at the origin, positive real numbers
to the right, and negative real numbers to the left of the origin. The points along the vertical axis (the y-axis) are also labeled
with the real numbers in their natural ordering, with the number 0 at the origin. Positive real numbers are placed above the
x-axis and negative ones below.

Illustration

◼ A Cartesian coordinate system for ℝ2

Plot[{}, {x, -−10, 10}, Axes → True]

-−10 -−5 5 10

-−1.0

-−0.5

0.5

1.0

The idea of a graph in a Cartesian coordinate system can be extended to ℝ3.

◼ A Cartesian coordinate system for ℝ3

 68 | The Linear Algebra Survival Guide

Plot3D[{{}}, {x, -−10, 10}, {y, -−10, 10}, Axes → True]

-−10
-−5

0
5

10 -−10

-−5

0

5

10

-−1.0
-−0.5
0.0
0.5
1.0

Coordinate vector

The coordinate vector vB in a basis B = {b1, ..., bn} of a vector v in the standard basis of an n-dimensional real or complex
vector space V is the vector {a1, ..., an} in ℝn or ℂn with the coordinates a1, ..., an for which v = a1 b1 + ⋯ + an bn.

Illustration

◼ A coordinate vector in ℝ2

Quit[]

v = {3, -−5}; B = {{1, 2}, {-−3, 4}};

Reduce[v ⩵ a1 B[[1]] + a2 B[[2]], {a1, a2}]

a1 ⩵ -−
3

10
&& a2 ⩵ -−

11

10

vB = 
-−3

10
,

-−11

10
;

The vector vB is the coordinate vector of v in the basis B, because the elements of vB are the coefficients, a1 and a2,
needed to express v as a linear combination of the basis vectors b1 and b2.

◼ A coordinate vector in ℝ3

v = {3, 4, 5}; B = {{1, 1, 1}, {1, -−1, 1}, {0, 0, 1}};

Reduce[v ⩵ a1 B[[1]] + a2 B[[2]] + a3 B[[3]], {a1, a2, a3}]

a1 ⩵
7

2
&& a2 ⩵ -−

1

2
&& a3 ⩵ 2

The Linear Algebra Survival Guide | 69

vB = 
7

2
,

-−1

2
, 2;

Correlation coefficient

The (Pearson) correlation coefficient combines covariances and standard deviations into a single formula that measures the
degree to which two vectors in ℝn are correlated.

Covariance[x, y]/∕(StandardDeviation[x] StandardDeviation[y]) =
Dot[x, y]

Norm[x] Norm[y]
(1)

Illustration

◼ The correlation coefficient of two data sets as a cosine of an angle

x = {2, 6, 3, 1, 8, 9}; y = {6, 2, 0, -−3, 9, 2}; mx = Mean[x]; my = Mean[y];

pcx =
1

6
Table[(x[[i]] -− mx), {i, 1, 6}];

pcy =
1

6
Table[(y[[i]] -− my), {i, 1, 6}];

pcv[x, y] = 6 Total[pcx pcy]

lhs = (1/∕6) (1/∕5) pcv[x, y]/∕(StandardDeviation[pcx] StandardDeviation[pcy])

rhs = Dot[pcx, pcy]/∕(Norm[pcx] Norm[pcy])

lhs ⩵ rhs

Correlation matrix

A correlation matrix is an m-by-m matrix whose elements are the pairwise correlation coefficients of m vectors in ℝn.

Illustration

◼ The correlation matrix of three data sets

x = {2, 6, 3, 1, 8}; y = {6, 2, 0, -−3, 9}; z = {1, 2, 1, 2, -−5};

lhs = MatrixForm[N[Correlation[Transpose[{x, y, z}]]]]

rhs = MatrixForm[N[
{{Correlation[x, x], Correlation[x, y], Correlation[x, z]},
{Correlation[y, x], Correlation[y, y], Correlation[y, z]},
{Correlation[z, x], Correlation[z, y], Correlation[z, z]}}]]

 70 | The Linear Algebra Survival Guide

lhs ⩵ rhs

Cosine of an angle

The cosine of an angle between two vectors u and v in a vector space V, equipped with an inner product 〈u, v〉, is the
scalar defined by the formula

cosine[u, v] =
〈u, v〉

〈u, u〉 〈v, v〉
(1)

Illustration

The dot product and Euclidean norm of a vector can be used to find the cosine of the angle between two vectors.

◼ The cosine of the angle between two vectors in ℝ2

u = {1, 2}; v = {3, 4};

cosine[u_, v_] := (Dot[u, v])/∕(Norm[u] Norm[v])

angle[u, v] = N[ArcCos[cosine[u, v]]]

0.179853

◼ The cosine of the angle between two vectors in ℝ3

u = {1, 2, 3}; v = {4, 5, 6};

cosine = (Dot[u, v])/∕(Norm[u] Norm[v])

16
2

11

7

N[cosine]

0.974632

The dot product, norm, and cosine are related by the identity

Dot[x, y] == Norm[x] Norm[y] cosine[x, y] (2)

◼ The dot product, Euclidean norm, and cosine identity

x = {1, 2}; y = {3, 4};

N[cos[x, y] = (Dot[x, y])/∕(Norm[x] Norm[y])]

0.98387

The Linear Algebra Survival Guide | 71

Dot[x, y] == Norm[x] Norm[y] cos[x, y]

True

Covariance

The covariance of two vectors in ℝn measures how the vectors vary together. It is based on the dot product of the mean-
deviation form of the vectors.

Illustration

◼ Dot products and the covariance of two data sets

x = {2, 6, 3, 1, 8, 9}; y = {6, 2, 0, -−3, 9, 2}; mx = Mean[x]; my = Mean[y];

pcx =
1

6
Table[(x[[i]] -− mx), {i, 1, 6}];

pcy =
1

6
Table[(y[[i]] -− my), {i, 1, 6}];

pcv[x, y] = 6 Total[pcx pcy];

scx =
1

5
Table[(x[[i]] -− mx), {i, 1, 6}];

scy =
1

5
Table[(y[[i]] -− my), {i, 1, 6}];

scv[x, y] = 5 Dot[scx, scy]

101

15

scv[x, y] ⩵ Covariance[x, y]

True

Covariance matrix

The (sample) covariance matrix of different vectors in ℝn is the matrix whose elements are the pairwise covariances of the
vectors. The diagonal elements of the matrix are (sample) variances of the individual sets of data.

Illustration

◼ Variances and covariances

 72 | The Linear Algebra Survival Guide

x = {2, 6, 3, 1, 8}; y = {6, 2, 0, -−3, 9}; z = {1, 2, 1, 2, -−5};

{Variance[x], Variance[y], Variance[z]}


17

2
,
227

10
,
87

10


lhs = MatrixForm[Covariance[Transpose[{x, y, z}]]]

17

2

37

4
-−
25

4
37

4

227

10
-−
219

20

-−
25

4
-−
219

20

87

10

rhs = MatrixForm[
{{Variance[x], Covariance[x, y], Covariance[x, z]},
{Covariance[y, x], Variance[y], Covariance[y, z]},
{Covariance[z, x], Covariance[z, y], Variance[z]}}]

17

2

37

4
-−
25

4
37

4

227

10
-−
219

20

-−
25

4
-−
219

20

87

10

lhs ⩵ rhs

True

Cramer’s rule

If Av = b is a linear system and A is an n-by-n invertible matrix, then Cramer’s rule says that for each 1 ≤ i ≤ n,

vi =
Det[A[vi /∕b]]

Det[A]
(1)

where Avi b is the matrix obtained by replacing the ith column of A by the vector b.

Illustration

Quit[]

◼ Using Cramer’s rule to solve a linear system

system = {x + y -− z ⩵ 4, 2 x -− y + 2 z ⩵ 18, x -− y + z ⩵ 5}; variables = {x, y, z};

The Linear Algebra Survival Guide | 73

Solve[system, variables]

x →
9

2
, y → 8, z →

17

2


MatrixForm[cA = Normal[CoefficientArrays[system, {x, y, z}]][[2]]]

1 1 -−1
2 -−1 2
1 -−1 1

A[x/∕b] = {{4, 1, -−1}, {18, -−1, 2}, {5, -−1, 1}};

A[y/∕b] = {{1, 4, -−1}, {2, 18, 2}, {1, 5, 1}};

A[z/∕b] = {{1, 1, 4}, {2, -−1, 18}, {1, -−1, 5}};

solution = x =
Det[A[x/∕b]]

Det[cA]
, y =

Det[A[y/∕b]]

Det[cA]
, z =

Det[A[z/∕b]]

Det[cA]



9

2
, 8,

17

2


This shows that the solution found using Cramer’s rule is the same as that found with Solve.

Cross product

Although many geometric concepts in ℝ3 are the obvious extensions of their analogues in ℝ2, there exist exceptions. One
such is the construction of a vector that is orthogonal to two given vectors. Only in ℝ3 can we define an operation on two
vectors known as the vector cross product of the two vectors. The built-in Mathematica Cross function computes vector
cross products.

In ℝ3, any two nonzero linearly independent vectors u and v can be combined to create a third vector w which is orthogonal
to both u and v.

Illustration

◼ A vector cross product

u = {1, 2, 3}; v = {-−3, 0, 1};

w = Cross[u, v]

{2, -−10, 6}

Dot[u, w] ⩵ Dot[v, w] ⩵ 0

True

 74 | The Linear Algebra Survival Guide

◼ Graphic representation of a vector cross product

Graphics3D[{Arrow[{{0, 0, 0}, {1, 2, 3}}],
Arrow[{{0, 0, 0}, {-−3, 0, 1}}], Arrow[{{0, 0, 0}, {2, -−10, 6}}]}, Axes → True]

-−2
0

2

-−10

-−5

0

0

2

4

6

Various geometric constructions are based on the cross product. For a meaningful construction, the two given vectors need
to be linearly independent nonzero vectors.

◼ A vector cross product

Any two nonzero linearly independent vectors u and v in ℝ3 determine a vector w that is orthogonal to both u and v in the
Euclidean inner product (dot product).

u = {1, 2, 3}; v = {4, 5, 6};

w = Cross[u, v]

{-−3, 6, -−3}

Dot[w, u] ⩵ Dot[w, v] ⩵ 0

True

The cross product can be calculated using the determinant formula for 1-by-3 vectors, together with the symbolic vectors i,
j, and k.

◼ Using determinants to calculate a vector cross product

MatrixForm[A = {{i, j, k}, {1, 2, 3}, {4, 5, 6}}]

i j k
1 2 3
4 5 6

Det[A]

-−3 i + 6 j -− 3 k

The Linear Algebra Survival Guide | 75

i = {1, 0, 0}; j = {0, 1, 0}; k = {0, 0, 1};

Cross[x, y] ⩵ -−3 i + 6 j -− 3 k

x⨯y ⩵ {-−3, 6, -−3}

The absolute values of the norm of the cross product represents the area of the parallelogram determined by the vectors x
and y.

◼ Areas of parallelograms and vector cross products

u = {1, 2, 3}; v = {4, 5, 6};

w = Cross[u, v];

parallelogram = Abs[Norm[w]]

3 6

The area of one of the triangles obtained from the parallelogram by dividing it using one of its diagonals is half the area of
the parallelogram.

◼ Areas of triangles and vector cross products

u = {1, -−2, 3}; v = {4, 5, 1};

w = Cross[u, v];

triangle =
1

2
Abs[Norm[w]]

579

2

Manipulation

◼ The vector cross product of two nonzero vectors in ℝ3

Manipulate[Cross[{a, 2, 3}, {4, b, 6}], {a, -−3, 3}, {b, -−2, 2}]

a

b

{13.65, 8.4, -−8.33}

 76 | The Linear Algebra Survival Guide

We use Manipulate and Cross to explore the cross product of two nonzero vectors. As expected, the resulting vector is
(approximately) orthogonal to both the vectors {0.6, 2, 3} and {4, - 0.55, 6}:

Chop[Dot[{0.6, 2, 3}, {13.65`, 8.399999999999999`, -−8.33`}]]

0

Chop[Dot[{4, -−0.55, 6}, {13.65`, 8.399999999999999`, -−8.33`}]]

0

The Linear Algebra Survival Guide | 77

D

Defective matrix

An n-by-n matrix is defective if it does not have a set of n linearly independent eigenvectors. Defective matrices are not
diagonalizable.

Illustration

◼ A 4-by-4 defective matrix

MatrixForm[A = Normal[SparseArray[{{2, 3} → 1, {3, 2} → 0}, {4, 4}]]]

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

Eigenvectors[A]

{{0, 0, 0, 1}, {0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, 0}}

The calculation shows that the 4-by-4 matrix A has a maximum of three linearly independent eigenvectors. It is therefore a
defective matrix.

An n-by-n real matrix may not have n linearly independent real eigenvectors and may therefore be considered to be
defective as a real matrix.

◼ A real 2-by-2 matrix (defective as a real matrix)

MatrixForm[A = {{Cos[π/∕3], Sin[π/∕3]}, {-−Sin[π/∕3], Cos[π/∕3]}}]

1

2

3

2

-−
3

2

1

2

N[Eigenvectors[A]]

-−1.4803×10-−16 -− 1. ⅈ, 1., 2.22045×10-−16 + 1. ⅈ, 1.

The calculations show that the real matrix A has no real eigenvectors. Hence it is defective (as a real matrix).

 78 | The Linear Algebra Survival Guide

Illustration

◼ The determinant of a 1-by-1 matrix

MatrixForm[A = {{a}}]

(a)

Det[A]

a

◼ The determinant of a 2-by-2 matrix

MatrixForm[A = {{a, b}, {c, d}}]

a b
c d

TraditionalForm[Det[A]]

a d -− b c

◼ The determinant of a 3-by-3 matrix

MatrixForm[A = {{a, b, c}, {d, e, f}, {g, h, i}}]

a b c
d e f
g h i

Det[A]

-−c e g + b f g + c d h -− a f h -− b d i + a e i

Various formulas for calculating determinants exist. Here is an example of the Laplace expansion of the determinant of a 3-
by-3 matrix.

◼ The determinant of a matrix calculated by an expansion along the first row of the matrix

MatrixForm[A = {{a, b, c}, {d, e, f}, {g, h, i}}]

a b c
d e f
g h i

The determinant of 3-by-3 matrix A can be calculated as a linear combination of the first row of A and the determinants of
three 2-by-2 submatrices of A.

A11 = {{e, f}, {h, i}};

A12 = {{d, f}, {g, i}};

The Linear Algebra Survival Guide | 79

Determinant

The determinant of a square matrix is a scalar associated with the matrix. It is defined by induction on the size of the matrix.

A13 = {{d, e}, {g, h}};

Expand[Det[A] ⩵ a Det[A11] -− b Det[A12] + c Det[A13]]

True

Manipulation

◼ Determinants of 3-by-3 matrices

Manipulate[Det[{{a, b, c}, {1, 2, 3}, {4, 5, 6}}], {a, -−2, 2, 1}, {b, -−2, 2, 1}, {c, -−2, 2, 1}]

a

b

c

0

We can combine Manipulate and Det to explore the determinants of matrices. If we assign the values a = b = c = - 2, for
example, the manipulation shows that the determinant of the resulting matrix is zero. Other assignments to a, b, and c such
as a = - 2, b = - 1, and c = - 2 produce a matrix with a nonzero determinant:

a

b

c

6

Diagonal

See Diagonal of a matrix, Jordan block, subdiagonal, superdiagonal

Diagonal decomposition

Eigenvalues and eigenvectors are needed for the diagonal decomposition of a matrix A into a product of the form
P dM P-−1 consisting of an invertible matrix P whose columns are eigenvectors of A and a diagonal matrix dM whose
diagonal entries are eigenvalues of A. The decomposition of an n-by-n real matrix requires n linearly independent
eigenvectors.

 80 | The Linear Algebra Survival Guide

P dM P-−1 consisting of an invertible matrix P whose columns are eigenvectors of A and a diagonal matrix dM whose
diagonal entries are eigenvalues of A. The decomposition of an n-by-n real matrix requires n linearly independent
eigenvectors.

Illustration

Eigenvectors and eigenvalues are the building blocks of diagonal decompositions of real matrices. Suppose we would like
to rewrite a matrix A as a product

P.DiagonalMatrix[Eigenvalues[A]].Inverse[P] (1)

then the diagonal matrix DiagonalMatrix[Eigenvalues[A]] must consist of the eigenvalues of A and the columns of P must
be associated eigenvectors.

◼ A diagonal decomposition of a 3-by-3 real matrix

MatrixForm[A = {{2, 1, 1}, {4, 1, 7}, {5, 3, 0}}]

2 1 1
4 1 7
5 3 0

evalues = Eigenvalues[A]

{7, -−4, 0}

MatrixForm[dM = DiagonalMatrix[evalues]]

7 0 0
0 -−4 0
0 0 0

MatrixForm[evectors = Eigenvectors[A]]

1 3 2
1 -−19 13
-−3 5 1

Mathematica outputs the eigenvectors of A as row vectors. In order to form a matrix whose columns are eigenvectors, we

must transpose them.

MatrixForm[A == Transpose[evectors].dM.Inverse[Transpose[evectors]]]

True

The matrices

MatrixForm[P = Transpose[evectors]]

and

MatrixForm[dM = DiagonalMatrix[evalues]]

The Linear Algebra Survival Guide | 81

yield a diagonal decomposition of the matrix A. The matrix P is not unique. Different choices of eigenvectors produce
different decompositions.

Manipulation

All real 3-by-3 matrices have at least one real eigenvalue since their characteristic polynomials are real polynomials of odd
degree and real polynomials of odd degree cut the x-axis at least once. The point of intersection of the graph of the
polynomial and of the x-axis corresponds to a real eigenvalue of the matrix.

◼ Using Manipulate to explore eigenvalues

The matrix

MatrixForm[A = {{1, 0, 5}, {6, 2, 0}, {1, 0, 3}}]

1 0 5
6 2 0
1 0 3

has three real eigenvalues.

Eigenvalues[A]

2 + 6 , 2, 2 -− 6 

We can use the Plot function to visualize these eigenvalues as the roots of the characteristic polynomials of A.

cpA = CharacteristicPolynomial[A, t]

-−4 -− 6 t + 6 t2 -− t3

Plot[cpA, {t, -−5, 5}]

-−4 -−2 2 4

50

100

150

200

250

300

What happens if we replace the third row of A by {a, 0, 3}, with a ranging over a wider interval of scalars?

A = {{1, 0, 5}, {6, 2, 0}, {a, 0, 3}}

{{1, 0, 5}, {6, 2, 0}, {a, 0, 3}}

Manipulate[Eigenvalues[{{1, 0, 5}, {6, 2, 0}, {a, 0, 3}}], {a, -−5, 5}]

 82 | The Linear Algebra Survival Guide

a

2 1 + ⅈ 6 , 2 1 -− ⅈ 6 , 2

We can combine Manipulate and Eigenvalues to explore the nature of the eigenvalues of matrices. The manipulation
shows that for negative values of a, some of the eigenvalues of the real matrix A are not real. Therefore the resulting matrix
is not diagonalizable, although it has three distinct (complex) eigenvalues.

Diagonal matrix

A diagonal matrix A is a square array whose elements A[[i, j]] in the ith row and jth column are zero if i≠ j. For some

applications it is convenient to extend this definition to rectangular matrices. In that case, the matrices are padded with
either zero rows and/or zero columns and are sometimes called generalized diagonal matrices.

Illustration

◼ A 5-by-5 diagonal matrix

MatrixForm[DiagonalMatrix[{1, 2, 3, 4, 5}]]

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

◼ A generalized diagonal matrix obtained by appending a row of zeros

MatrixForm[Append[DiagonalMatrix[{1, 2, 3, 4, 5}], {0, 0, 0, 0, 0}]]

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5
0 0 0 0 0

◼ A generalized diagonal matrix obtained by appending a column of zeros

The Linear Algebra Survival Guide | 83

MatrixForm[Transpose[Append[DiagonalMatrix[{1, 2, 3, 4, 5}], {0, 0, 0, 0, 0}]]]

1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0

Diagonal matrices can be created using the SparseArray function by specifying the nonzero elements.

◼ A 4-by-4 diagonal matrix

MatrixForm[Normal[SparseArray[{{1, 1} → 5, {2, 2} → 2, {3, 3} → 5}, {4, 4}]]]

5 0 0 0
0 2 0 0
0 0 5 0
0 0 0 0

◼ A 4-by-5 diagonal matrix

MatrixForm[Normal[SparseArray[{{1, 1} → 5, {2, 2} → 2, {3, 3} → 5, {4, 4} → 6}, {4, 5}]]]

5 0 0 0 0
0 2 0 0 0
0 0 5 0 0
0 0 0 6 0

Diagonal of a matrix

The diagonal of an m-by-n matrix A is the list of all elements A[[i,i]] of A for i from 1 to m.

Illustration

◼ Diagonal of a 4-by-6 matrix

A = RandomInteger[{0, 9}, {4, 6}];

A =

2 8 0 0 8 7
0 3 2 4 4 1
1 0 7 8 2 0
5 8 7 0 9 1

;

Diagonal[A]

{2, 3, 7, 0}

◼ Diagonal of a 4-by-4 matrix

 84 | The Linear Algebra Survival Guide

A =

8 8 9 3
4 0 6 7
8 3 8 5
8 6 4 5

;

diagonalA = {A[[1, 1]], A[[2, 2]], A[[3, 3]], A[[4, 4]]}

{8, 0, 8, 5}

diagonalA ⩵ Diagonal[A]

True

◼ Diagonal of a 4-by-5 matrix

A = RandomInteger[{0, 9}, {4, 5}];

A =

1 4 1 1 8
9 1 9 9 3
2 2 7 2 6
0 5 6 1 9

;

diagonalA = {A[[1, 1]], A[[2, 2]], A[[3, 3]], A[[4, 4]]}

{1, 1, 7, 1}

The superdiagonal of an m-by-n matrix A is the list of all elements A[[i,i+1]] for i from 1 to (m - 1).

◼ The superdiagonal of a 4-by-6 matrix

A =

2 8 0 0 8 7
0 3 2 4 4 1
1 0 7 8 2 0
5 8 7 0 9 1

;

Diagonal[A, 1]

{8, 2, 8, 9}

The subdiagonal of an m-by-n matrix A is the list of all elements A[[i+1,i]] for i from 2 to m.

◼ The subdiagonal of a 4-by-6 matrix

A =

2 8 0 0 8 7
0 3 2 4 4 1
1 0 7 8 2 0
5 8 7 0 9 1

;

Diagonal[A, -−1]

{0, 0, 7}

The Linear Algebra Survival Guide | 85

Difference equation

If the vectors in a list {v0, v1, v2, ..., vn, ...} are connected by a matrix A for which vn+1 = Avn for n = 0, 1, 2, ..., then the
equation vn+1 = Avn is called a linear difference equation.

Illustration

◼ A difference equation based on a 2-by-2 matrix

MatrixForm[A = {{0.75, 0.5}, {0.25, 0.5}}]

0.75 0.5
0.25 0.5

v0 = {100 000, 200 000}

{100 000, 200 000}

The list consisting of the first three elements of the list {v0, v1, v2, ..., vn, ...} is

{v0, v1 = A.v0, v2 = A.v1}

{{100 000, 200 000}, {175 000., 125 000.}, {193 750., 106 250.}}

Dimension of a vector space

A vector space is finite-dimensional if it has a basis consisting of a finite number of basis vectors. Since all bases of a finite-
dimensional vector space have the same number of elements, this number is defined to be the dimension of the space.

Illustration

◼ A two-dimensional vector space

The space ℝ2 of all pairs of real numbers {a, b} is a two-dimensional vector space. The sets

B1 = {e1 = {1, 0}, e2 = {0, 1}}

B2 = {b1 = {3, -−4}, b2 = {1, 1}}

are two bases for the same space.

◼ A one-dimensional vector space

The space ℂ of all complex numbers is a one-dimensional complex vector space. The set

ℂ = {1}

{1}

is a basis for ℂ since every complex number z is a multiple of 1.

 86 | The Linear Algebra Survival Guide

◼ A four-dimensional vector space

The space ℝ[t,3] of real polynomials of degree 3 or less is a four-dimensional vector space since the set

B = 1, t, t2, t3

is a basis for the space.

◼ A four-dimensional vector space

A = RandomInteger[{0, 9}, {4, 5}];

A =

7 1 9 7 5
2 9 8 2 9
0 6 4 0 6
4 7 7 7 5

;

B = RowReduce[A];

B =

1 0 0 0 -−4
0 1 0 0 -−1
0 0 1 0 3
0 0 0 1 1

;

The first four columns of the matrix B are the pivot columns of the matrix A. They therefore form a basis for the column
space of A. We can use the Length function to calculate its dimension.

Length[B]

4

Dimensions of a matrix

The numbers of rows and columns of a matrix, in that order, are called the dimensions of the matrix.

Illustration

◼ A matrix of dimensions {3, 4}

A = RandomInteger[{0, 9}, {3, 4}];

A =
0 7 2 2
5 7 8 5
9 4 7 1

;

Dimensions[A]

{3, 4}

◼ A matrix of dimensions {4, 3}

A = RandomInteger[{0, 9}, {4, 3}];

The Linear Algebra Survival Guide | 87

A =

4 3 0
3 4 7
6 1 5
3 5 2

;

Dimensions[A]

{4, 3}

◼ Dimensions of a square matrix

A = RandomInteger[{0, 9}, {4, 4}];

A =

3 4 5 6
0 4 3 1
3 0 5 8
9 4 2 9

;

Dimensions[A]

{4, 4}

Dirac matrix

The Dirac matrices are 4-by-4 matrices arising in quantum electrodynamics. They are Hermitian and unitary.

Illustration

◼ The 4-by-4 Dirac matrices

MatrixForm[I4 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

MatrixForm[σ1 = {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}]

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

MatrixForm[σ2 = {{0, -−ⅈ, 0, 0}, {ⅈ, 0, 0, 0}, {0, 0, 0, -−ⅈ}, {0, 0, ⅈ, 0}}]

0 -−ⅈ 0 0
ⅈ 0 0 0
0 0 0 -−ⅈ
0 0 ⅈ 0

 88 | The Linear Algebra Survival Guide

MatrixForm[σ3 = {{1, 0, 0, 0}, {0, -−1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, -−1}}]

1 0 0 0
0 -−1 0 0
0 0 1 0
0 0 0 -−1

MatrixForm[ρ1 = {{0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}}]

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

MatrixForm[ρ2 = {{0, 0, -−ⅈ, 0}, {0, 0, 0, -−ⅈ}, {ⅈ, 0, 0, 0}, {0, ⅈ, 0, 0}}]

0 0 -−ⅈ 0
0 0 0 -−ⅈ
ⅈ 0 0 0
0 ⅈ 0 0

MatrixForm[ρ3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -−1, 0}, {0, 0, 0, -−1}}]

1 0 0 0
0 1 0 0
0 0 -−1 0
0 0 0 -−1

{HermitianMatrixQ[σ1], HermitianMatrixQ[ρ3]}

{True, True}

{UnitaryMatrixQ[σ1], UnitaryMatrixQ[ρ3]}

{True, True}

Direct sum of vector spaces

The zero subspaces are useful for the definition of direct sums of subspaces. If two subspaces U and V of a vector space
W are disjoint, in other words, if they share only the zero vector of the space, and if BU is a basis for U and BV is a basis for
V, then every vector w in W can be written as a unique sum u + v, with u in BU and v in BV . The union of U and V, in that
order, is called the direct sum of U and V and is written as U⊕V.

The direct sum symbol ⊕ is produced by typing Esc c+ Esc.

Illustration

◼ A direct sum of two subspaces of ℝ4

If B1 and B2 are the two bases

The Linear Algebra Survival Guide | 89

B1 = {{1, 0, 0, 0}, {0, 1, 0, 0}};

B2 = {{0, 0, 1, 0}};

of subspaces of ℝ4 and V is the subspace of all vectors of the form {a, b, c, 0}, then W = span[B1]⊕span[B2] :

w = {a, b, c, 0} == a {1, 0, 0, 0} + b {0, 1, 0, 0} + c {0, 0, 1, 0}

True

◼ The direct sums of four vector spaces generated by the 3-by-5 matrix

A = {{3, 1, 0, 2, 4}, {1, 1, 0, 0, 2}, {5, 2, 0, 3, 7}};

Dimensions[A]

{3, 5}

◼ The coordinate spaceℝ5 as a direct sum of the null space and the row space of a matrix A

nsA = NullSpace[A]

{{-−1, -−1, 0, 0, 1}, {-−1, 1, 0, 1, 0}, {0, 0, 1, 0, 0}}

rsA = RowReduce[A]

{{1, 0, 0, 1, 1}, {0, 1, 0, -−1, 1}, {0, 0, 0, 0, 0}}

The null space and the row space are subspaces of ℝ5 with dimensions 3 and 2. The spaces are disjoint and the sum of
their dimensions is therefore 5.

Solve[nsA[[1]] == a rsA[[1]] + b rsA[[2]], {a, b}]

{}

Solve[nsA[[2]] == a rsA[[1]] + b rsA[[2]], {a, b}]

{}

Solve[nsA[[3]] == a rsA[[1]] + b rsA[[2]], {a, b}]

{}

Solve[rsA[[1]] == a nsA[[1]] + b nsA[[2]] + c nsA[[3]], {a, b, c}]

{}

Solve[rsA[[2]] == a nsA[[1]] + b nsA[[2]] + c nsA[[3]], {a, b, c}]

{}

 90 | The Linear Algebra Survival Guide

The union of nsA and rsA forms a basis for ℝ5. This is expressed by saying that ℝ5 is a direct sum of the null and row
spaces.

The notation NullSpace[A]⊕RowSpace[A] ⩵ ℝ5 expresses the fact that the direct sum of the two disjoint subspaces is

all of ℝ5.

◼ The coordinate spaceℝ3 as a direct sum of the left null space and the column space of A

lnsA = NullSpace[Transpose[A]]

{{-−3, -−1, 2}}

csA = RowReduce[Transpose[A]]

1, 0,
3

2
, 0, 1,

1

2
, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}

The left null space and the column space are subspaces of ℝ3 with dimensions 1 and 2. The spaces are disjoint and the
sum of their dimensions 3.

Solve[lnsA[[1]] == a csA[[1]] + b csA[[2]], {a, b}]

{}

Solve[csA[[1]] == a lnsA[[1]], a]

{}

Solve[csA[[2]] == a lnsA[[1]], a]

{}

Hence we can form the direct sum leftnullSpace[A]⊕ columnSpace[A] of the left null space and the column space
to build ℝ3.

It may happen that some of the four subspaces of a matrix are zero spaces. In that case, their bases are empty and their
dimensions therefore are zero.

◼ Direct sums involving zero subspaces

MatrixForm[A = {{1, 2}, {3, 4}}]

1 2
3 4

NullSpace[A]

{}

MatrixForm[RowReduce[A]]

1 0
0 1

The Linear Algebra Survival Guide | 91

This shows that the null space of A is the zero subspace Z = {{0, 0}} of ℝ2 and therefore

Z⊕ RowSpace[A] = RowSpace[A] = ℝ2

Similarly,

NullSpace[Transpose[A]]

{}

MatrixForm[RowReduce[Transpose[A]]]

1 0
0 1

The left null space of A is therefore also the zero subspace Z = {{0, 0}} of ℝ2. Hence

Z⊕ ColumnSpace[A] = ColumnSpace[A] = ℝ2

Discrete Fourier transform

The discrete Fourier transform converts a list of data into a list of Fourier series coefficients. The Mathematica Fourier
function and its inverse, the InverseFourier function, are the built-in tools for the conversion. The Fourier function can also
be defined explicitly in terms of matrix multiplication using Fourier matrices.

Illustration

◼ A Fourier transform and its matrix equivalent

data = {-−1, -−1, -−1, -−1, 1, 1, 1, 1};

dftdata = Fourier[data]

{0. + 0. ⅈ, -−0.707107 -− 1.70711 ⅈ, 0. + 0. ⅈ, -−0.707107 -− 0.292893 ⅈ,
0. + 0. ⅈ, -−0.707107 + 0.292893 ⅈ, 0. + 0. ⅈ, -−0.707107 + 1.70711 ⅈ}

sfmdata = N[Simplify[FourierMatrix[8].data]]

{0., -−0.707107 -− 1.70711 ⅈ, 0., -−0.707107 -− 0.292893 ⅈ,
0., -−0.707107 + 0.292893 ⅈ, 0., -−0.707107 + 1.70711 ⅈ}

dftdata ⩵ sfmdata

True

◼ An inverse Fourier transform and its matrix equivalent

fcdata = {0. + 0. I, -−0.707107 -− 1.70711 I, 0. + 0. I, -−0.707107 -− 0.292893 I,
0. + 0. I, -−0.707107 + 0.292893 I, 0. + 0. I, -−0.707107 + 1.70711 I};

 92 | The Linear Algebra Survival Guide

ifdata = InverseFourier[fcdata]

{-−1., -−1., -−1., -−1., 1., 1., 1., 1.}

ifF = Simplify[Inverse[FourierMatrix[8]]];

sfmdata = Chop[ifF.fcdata]

{-−1., -−1., -−1., -−1., 1., 1., 1., 1.}

Discriminant of a Hessian matrix

See Hessian matrix

Disjoint subspaces

Two subspaces U and V of a vector space W are disjoint if they only have the zero vector in common.

Illustration

◼ Two disjoint proper subspaces

Quit[]

W = ℝ5; S = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}}; T = {{0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}};

U = {a S[[1]] + b S[[2]]}

V = {c T[[1]] + d T[[2]]}

By construction, the subspaces U and V are disjoint:

Solve[a S[[1]] + b S[[2]] ⩵ c T[[1]] + d T[[2]], {a, b, c, d}]

Distance between a point and a plane

The Euclidean distance d[point,plane] between a point {p, q, r} and a plane ax + by + cz + d = 0 in the space 𝔼3 is

Abs[a x + b y + c z + d /∕. {x → p, y → q, z → r}]Sqrta2 + b2 + c2 (1)

Illustration

◼ The Euclidean distance between a point and a plane

{p, q, r} = {1, 2, 3};

The Linear Algebra Survival Guide | 93

plane = 3 x -− y + 4 z -− 9 ⩵ 0;

numerator = Abs[3 x -− y + 4 z -− 9 /∕. {x → 1, y → 2, z → 3}]

61

2

denominator = Sqrt32 + (-−1)2 + 42

26

distance =
numerator

denominator

61

2 26

◼ Using projections and normals to compute the Euclidean distance between a point and a plane

The Euclidean distance between an external point P{p, q, r} and the point Q {x0, y0, z0} in the plane ax + by + cz + d = 0 is
also equal to the Euclidean norm of the orthogonal projection of the vector (Q - P) = {x0 -−p, y0 -−q, z0 -− r} onto the normal {a,
b, c} of the given plane.

Clear[x, y, z, p, q, r]

plane = 3 x -− y + 4 z -− 9 ⩵ 0;

externalpoint = {p, q, r} = {1, 2, 3};

normal = {3, -−1, 4};

Reduce[plane, {x, y, z}]

z ⩵
9

4
-−
3 x

4
+
y

4

planarpoint = {x0, y0, z0} = {0, 0, 9/∕4};

Projection[externalpoint -− planarpoint, normal]


6

13
, -−

2

13
,

8

13


Norm[%]

2
2

13

 94 | The Linear Algebra Survival Guide

Distance function

A distance function on a vector space V is a function that assigns a nonnegative real number d(u, v) to every pair of vectors
{u, v} in V and has the following properties:

Properties of distance functions

d[u, v] ≥ 0 (1)

d[u, v] = d[v, u] (2)

d[u, v] ≤ d[u, w] + d[w, v] (3)

d[u, v] = 0 if and only if u = v (4)

Illustration

◼ The distance between two vectors determined by a norm

Like all other norms, the Euclidean norm and the p-norms define distance functions. But there are others. The function

d[u, v] =
1 if u ≠ v

0 otherwise
(5)

is a distance function.

In topology and other fields, distance functions are called metrics and spaces equipped with metrics are called metric
spaces.

◼ A distance function for ℝ2

d[u_, v_] := If[u ≠ v, 1, 0]

{d[{1, 2}, {2, 3}], d[{a, b}, {a, b}]}

{1, 0}

◼ The Euclidean distance function for ℝ2

d[{u_, v_}, {r_, s_}] := Sqrt(u -− r)2 + (v -− s)2

d[{1, 2}, {4, -−5}]

58

d[{1, 2}, {4, -−5}] ⩵ Norm[{1 -− 4, 2 + 5}, 2]

True

The Linear Algebra Survival Guide | 95

Domain of a linear transformation

The domain of a linear transformation T is the vector space on which T acts. The notation T : A ⟶ B identifies the vector
space A as the domain of T and the vector space B as its codomain.

Illustration

◼ The domain, codomain, and range of a linear transformation T from ℝ2 to ℝ3

T[{x_, y_}] := {x, y, 0}

T[{1, 1}]

{1, 1, 0}

The domain of T is ℝ2, the codomain of T is ℝ3, and the range of T is the subspace of ℝ3 consisting of all vectors of the
form {x, y, 0}.

Dot product

The dot product of two real vectors is the sum of the componentwise products of the vectors. In spite of its name, Mathemat-
ica does not use a dot (.) to represent this function. It must be written in the Dot notation. The period (the dot) is used to
designate matrix multiplication.

Properties of dot products

Dot[u, v] = Dot[v, u] (1)

Dot[u, v + w] = Dot[u, v] + Dot[u, w] (2)

Dot[u, r v + w] = r Dot[u, v] + Dot[u, w] (3)

Dot[r u, s v] = (r s) Dot[u, v] (4)

Illustration

◼ The dot product of two vectors in ℝ2

Clear[a, b, v, w]

v = {1, 2}; w = {a, b};

Dot[v, w]

a + 2 b

◼ The dot product of two vectors in ℝ3

Clear[x, a, b, c]

 96 | The Linear Algebra Survival Guide

x = {1, 2, 3}; y = {a, b, c};

Dot[x, y]

a + 2 b + 3 c

◼ The dot product of two vectors in ℝ5

Clear[a, b, c, d, e, r, s]

r = {1, 2, 3, 4, 5}; s = {a, b, c, d, e};

Dot[r, s]

a + 2 b + 3 c + 4 d + 5 e

◼ The dot product and the standard deviation

data = Range[10];

average = Mean[data];

dot = Dot[(data -− average), (data -− average)];

sample = Length[data] -− 1;

stdevdata = Sqrt
1

sample
dot

55

6

stdevdata ⩵ StandardDeviation[data]

True

Manipulation

◼ Exploring the dot product

Manipulate[Dot[{a, b}, {-−5, 2}], {a, -−3, 3, 1}, {b, -−4, 4, 1}]

The Linear Algebra Survival Guide | 97

a

b

7

We use Manipulate and Dot to explore the dot product. If we let a = - 3 and b = - 4, then the manipulation shows, for
example, that the dot product of the generated vectors is 7.

◼ Sample standard deviations

Manipulatedata = Range[n]; average = Mean[data];

dot = Dot[(data -− average), (data -− average)]; sample = Length[data] -− 1;

stdevdata = Sqrt
1

sample
dot, {n, 2, 100, 1}

n

5
101

3

We use Manipulate, Range, Mean, Dot, Length, and Sqrt to explore sample standard deviations.

StandardDeviation[Range[100]]

5
101

3

For n = 100, the manipulation shows that the sample standard deviation of the list {1, 2, ..., 100} is 5 101

3
.

Dual space

Consider the two-dimensional coordinate space V = ℝ2. A linear functional f is a function ℝ2 → ℝ preserving linear
combinations. Each dual space has a basis consisting of linear functionals. It’s called a dual basis and defined on the dual
space of V.

 98 | The Linear Algebra Survival Guide

Illustration

◼ A dual space of ℝ3

Let V be the real vector space ℝ3 and consider the following linear functionals on V:

f1[{x_, y_, z_}] := 3 x + y;

f2[{x_, y_, z_}] := y -− z;

f3[{x_, y_, z_}] := x + y + 2 z;

We show that set {f1, f2, f3} is a basis for V *⋆:

Clear[x, y, z, a, b, c];

Expand[a (3 x + y) + b (y -− z) + c (x + y + 2 z)]

3 a x + c x + a y + b y + c y -− b z + 2 c z

◼ The set of linear functionals {f1, f2, f3} spans V *⋆.

Solve[{d, e, f} == {3 a + c, a + b + c, -−b + 2 c}, {a, b, c}]

a →
1

8
(3 d -− e -− f), b →

1

4
(-−d + 3 e -− f), c →

1

8
(-−d + 3 e + 3 f)

This shows that every linear combination of linear functionals on V can be written uniquely as a linear combination of the
linear functionals f1, f2, and f3.

◼ The set of linear functionals {f1, f2, f3} is also linearly independent.

Solve[{3 a + c, a + b + c, -−b + 2 c} ⩵ {0, 0, 0}, {a, b, c}]

{{a → 0, b → 0, c → 0}}

This shows that the zero linear functional can only be written as the trivial linear combination of the linear functionals
f1, f2, and f3.

◼ Construction of a basis for V for which {f1, f2, f3} is a dual basis.

To show that {f1, f2, f3} is a dual basis, there must exist a basis {e1, e2, e3} for V for which fi(ej) = 1 if i = j and 0 if i ≠ j. Let

B = {e1 = {x1, y1, z1}, e2 = {x2, y2, z2}, e3 = {x3, y3, z3}};

be the required basis. Then {f1, f2, f3} is a dual basis, provided that e1, e2, and e3 are the following vectors:

solution1 = Flatten[Solve[{3 x1 + y1 ⩵ 1, y1 -− z1 ⩵ 0, x1 + y1 + 2 z1 ⩵ 0}, {x1, y1, z1}]]

x1 →
3

8
, y1 → -−

1

8
, z1 → -−

1

8


The Linear Algebra Survival Guide | 99

solution2 = Flatten[Solve[{3 x2 + y2 ⩵ 0, y2 -− z2 ⩵ 1, x2 + y2 + 2 z2 ⩵ 0}, {x2, y2, z2}]]

x2 → -−
1

4
, y2 →

3

4
, z2 → -−

1

4


solution3 = Flatten[Solve[{3 x3 + y3 ⩵ 0, y3 -− z3 ⩵ 0, x3 + y3 + 2 z3 ⩵ 1}, {x3, y3, z3}]]

x3 → -−
1

8
, y3 →

3

8
, z3 →

3

8


e1 = {x1, y1, z1} /∕. solution1


3

8
, -−

1

8
, -−

1

8


e2 = {x2, y2, z2} /∕. solution2

-−
1

4
,
3

4
, -−

1

4


e3 = {x3, y3, z3} /∕. solution3

-−
1

8
,
3

8
,
3

8


To show that B = {e1, e2, e3} is a basis for V, it suffices to show that the matrix B is invertible.

B = {e1, e2, e3}


3

8
, -−

1

8
, -−

1

8
, -−

1

4
,
3

4
, -−

1

4
, -−

1

8
,
3

8
,
3

8


Det[B]

1

8

The following calculations show that {f1, f2, f3} is a dual basis for V with respect to the basis {e1, e2, e3} :

{f1[e1], f1[e2], f1[e3]}

{1, 0, 0}

{f2[e1], f2[e2], f2[e3]}

{0, 1, 0}

{f3[e1], f3[e2], f3[e3]}

{0, 0, 1}

 100 | The Linear Algebra Survival Guide

E

Echelon form

See Row echelon matrix

Eigenspace

The span of the set of all eigenvectors associated with an eigenvalue λ𝜆 is the eigenspace of λ𝜆.

Illustration

◼ The eigenspaces of a 4-by-4 matrix

Clear[A, B, t, u, v, w]

MatrixForm[A = {{4, 7, 2, 0}, {7, 7, 9, 2}, {2, 0, 1, 9}, {8, 8, 2, 4}}]

4 7 2 0
7 7 9 2
2 0 1 9
8 8 2 4

MatrixForm[B = UpperTriangularize[{{4, 7, 2, 0}, {7, 7, 9, 2}, {2, 0, 1, 9}, {8, 8, 2, 4}}]]

4 7 2 0
0 7 9 2
0 0 1 9
0 0 0 4

Eigensystem[B]

{{7, 4, 4, 1}, {{7, 3, 0, 0}, {1, 0, 0, 0}, {0, 0, 0, 0}, {17, -−9, 6, 0}}}

◼ The eigenspace of the eigenvalue 7

Reduce[B.{t, u, v, w} ⩵ 7 {t, u, v, w}, {t, u, v, w}]

u ⩵
3 t

7
&& v ⩵ 0 && w ⩵ 0

Therefore the eigenspace of the eigenvalue 7 consists of all vectors of the form

The Linear Algebra Survival Guide | 101

{t, u, v, w} /∕. u →
3 t

7
, v → 0, w → 0

t,
3 t

7
, 0, 0

In particular, the vector

{t, u, v, w} /∕. {t → 7, u → 3, v → 0, w → 0}

{7, 3, 0, 0}

computed with the Eigensystem function yields a basis for the eigenspace of the eigenvalue 7.

◼ The eigenspace of the eigenvalue 4

Reduce[B.{t, u, v, w} ⩵ 4 {t, u, v, w}, {t, u, v, w}]

u ⩵ 0 && v ⩵ 0 && w ⩵ 0

Therefore the eigenspace of the eigenvalue 4 consists of all vectors of the form

{t, u, v, w} /∕. {u → 0, v → 0, w → 0}

{t, 0, 0, 0}

In particular, the vector

{t, u, v, w} /∕. {t → 1, u → 0, v → 0, w → 0}

{1, 0, 0, 0}

computed with the Eigensystem function, forms a basis for the eigenspace of the eigenvalue 4.

◼ The eigenspace of the eigenvalue 1

Reduce[B.{t, u, v, w} ⩵ {t, u, v, w}, {t, u, v, w}]

u ⩵ -−
9 t

17
&& v ⩵

6 t

17
&& w ⩵ 0

Therefore the eigenspace of the eigenvalue 1 consists of all vectors of the form

{t, u, v, w} /∕. u →
-−9 t

17
, v →

6 t

17
, w → 0

t, -−
9 t

17
,
6 t

17
, 0

The vector

 102 | The Linear Algebra Survival Guide

{t, u, v, w} /∕. {t → 17, u → -−9, v → 6, w → 0}

{17, -−9, 6, 0}

forms a basis for the eigenspace of the eigenvalue 1.

Manipulation

◼ Eigenvalues and eigenvectors

Manipulate[Eigensystem[A = {{4, a, a, a}, {0, a, b, 2}, {0, 0, 1, 9}, {0, 0, 0, 4}}],
{a, -−1, 1, 1}, {b, -−2, 2, 1}]

a

b

{{4, 4, -−1, 1}, {{1, 0, 0, 0}, {0, 0, 0, 0}, {1, 5, 0, 0}, {1, 1, 2, 0}}}

We use Manipulate and Eigensystem to explore eigenvalues and eigenvectors. The example shows, for example, that if a
= -1 and b = 1, the input matrix

A = {{4, -−1, -−1, -−1}, {0, -−1, 1, 2}, {0, 0, 1, 9}, {0, 0, 0, 4}};

has the eigenvalues

valuesA = {4, 4, -−1, 1};

and associated eigenvectors

vectorsA = {{1, 0, 0, 0}, {0, 0, 0, 0}, {1, 5, 0, 0}, {1, 1, 2, 0}};

The following table confirms that this is correct:

Table[A.vectorsA[[i]] ⩵ valuesA[[i]] vectorsA[[i]], {i, 1, 4}]

{True, True, True, True}

The Eigensystem function outputs both zero and nonzero vectors of eigenspaces.

The Linear Algebra Survival Guide | 103

Illustration

◼ A 3-by-3 real matrix with three distinct real eigenvalues

A = {{2, 3, 1}, {0, 3, 2}, {0, 0, 4}};

Eigenvalues[A]

{4, 3, 2}

◼ A 3-by-3 real matrix with two distinct real eigenvalues

A = {{2, 3, 1}, {0, 1, 2}, {0, 0, 1}};

Eigenvalues[A]

{2, 1, 1}

◼ A 2-by-2 real matrix without real eigenvalues

Although every n-by-n numerical matrix has n (not necessarily distinct) eigenvalues, some real matrices may only have
complex eigenvalues.

A = {{0, -−1}, {1, 0}};

cpA = CharacteristicPolynomial[A, t]

1 + t2

Eigenvalues[A]

{ⅈ, -−ⅈ}

Solvet2 + 1 ⩵ 0, t

{{t → -−ⅈ}, {t → ⅈ}}

It is easy to explain geometrically why the matrix A has no real eigenvalues. The matrix represents a rotation transformation
and rotations do not map nonzero vectors to multiples of themselves.

◼ A 2-by-2 family of real matrices without real eigenvalues

If Sin[x] is not equal to zero then the following matrix has no real eigenvalues.

A = {{Cos[x], Sin[x]}, {-−Sin[x], Cos[x]}};

Eigenvalues[A]

{Cos[x] -− ⅈ Sin[x], Cos[x] + ⅈ Sin[x]}

◼ A 4-by-4 real matrix with two real and two complex eigenvalues

 104 | The Linear Algebra Survival Guide

Eigenvalue

An eigenvalue of a square matrix A is a scalar λ𝜆 for which there exists a nonzero vector v with the property that Av = λ𝜆v.
The eigenvalues of a real square matrix may be all real, both real and complex, or all complex. All n-by-n triangular real
matrices have n real eigenvalues.

A =

0 1 1 -−1
-−1 -−1 -−3 3
-−3 0 3 -−2
0 1 1 -−3

;

cpA = CharacteristicPolynomial[A, t]

-−18 -− 5 t -− 6 t2 + t3 + t4

Plot[cpA, {t, -−5, 5}]

-−4 -−2 2 4

100

200

300

400

500

N[Eigenvalues[A]]

{-−3.05739, 2.73717, -−0.339888 + 1.42667 ⅈ, -−0.339888 -− 1.42667 ⅈ}

The determinant of a matrix is equal to the product of the eigenvalues of the matrix.

◼ Eigenvalues and determinants

A = RandomInteger[{0, 9}, {4, 4}];

MatrixForm[A = {{8, 6, 3, 0}, {1, 0, 5, 5}, {9, 8, 8, 7}, {4, 1, 5, 8}}]

8 6 3 0
1 0 5 5
9 8 8 7
4 1 5 8

eigenvals = N[Eigenvalues[A]]

{19.9177, 3.06525 + 0.922228 ⅈ, 3.06525 -− 0.922228 ⅈ, -−2.04819}

Chopeigenvals[[1]] eigenvals[[2]] eigenvals[[3]] eigenvals[[4]]

-−418.

Det[A]

-−418

The Linear Algebra Survival Guide | 105

The trace of a matrix is equal to the sum of the eigenvalues of the matrix.

◼ Eigenvalues and traces

A = RandomInteger[{0, 9}, {4, 4}];

A = {{8, 6, 3, 0}, {1, 0, 5, 5}, {9, 8, 8, 7}, {4, 1, 5, 8}};

Tr[A]

24

Chopeigenvals[[1]] + eigenvals[[2]] + eigenvals[[3]] + eigenvals[[4]]

24.

◼ Eigenvalues and determinants

The determinant of a matrix is equal to the product of the eigenvalues of the matrix.

A = RandomInteger[{0, 9}, {4, 4}];

A = {{8, 6, 3, 0}, {1, 0, 5, 5}, {9, 8, 8, 7}, {4, 1, 5, 8}};

Det[A]

-−418

eigenvals = N[Eigenvalues[A]]

{19.9177, 3.06525 + 0.922228 ⅈ, 3.06525 -− 0.922228 ⅈ, -−2.04819}

Chopeigenvals[[1]] eigenvals[[2]] eigenvals[[3]] eigenvals[[4]]

-−418.

Manipulation

◼ Eigenvalues of a 4-by-4 matrix

Clear[A]

MatrixForm[A = {{1 + a, 6, 3, 0}, {1, 2 -− b, 5, 5}, {9, 8, 8, 3 + c}, {4, 1, 5, 8}}]

1 + a 6 3 0
1 2 -− b 5 5
9 8 8 3 + c
4 1 5 8

 106 | The Linear Algebra Survival Guide

Manipulate[Evaluate[Eigenvalues[A]], {a, -−4, 4, 1}, {b, -−5, 5, 1}, {c, -−3, 3, 1}]

a

b

c

Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 1,

Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 2,

Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 3,

Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 4

We combine Manipulate, Evaluate, and Eigenvalues to explore the eigenvalues of different matrices by varying the
values of a, b, and c. By letting a = - 4, b = - 5, and c = - 3, for example, the manipulation displays the eigenvalues of the
generated matrix as the roots of the polynomial

p[t_] := -−1143 + 192 t + 29 t2 -− 20 t3 + t4

NRoot-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 1, Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 2,

Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 3,

Root-−1143 + 192 #1 + 29 #12 -− 20 #13 + #14 &, 4

{-−3.92763, 17.9912, 2.96821 -− 2.71388 ⅈ, 2.96821 + 2.71388 ⅈ}

The NSolve command confirms the results:

NSolve[p[t] ⩵ 0, t]

{{t → -−3.92763}, {t → 2.96821 -− 2.71388 ⅈ}, {t → 2.96821 + 2.71388 ⅈ}, {t → 17.9912}}

Eigenvector

An eigenvector of a square real matrix A is a nonzero vector v for which there exists an eigenvalue λ𝜆 for which Av = λ𝜆v.

Illustration

◼ An approximate eigenvector of a real matrix

A = RandomInteger[{0, 9}, {3, 3}];

The Linear Algebra Survival Guide | 107

MatrixForm[A = {{7, 1, 1}, {7, 8, 9}, {8, 3, 7}}]

7 1 1
7 8 9
8 3 7

{v1, v2, v3} = N[Eigenvectors[A]]

{{0.343958, 1.67981, 1.}, {2.23599, -−6.83207, 1.}, {0.260048, -−2.08773, 1.}}

Reduce[A.v1 == λ v1]

λ ⩵ 14.7911

N[Eigenvalues[A]]

{14.7911, 4.39173, 2.81718}

◼ Eigenvectors of a diagonal matrix

A = DiagonalMatrix[{1, 2, 2, 4}]

{{1, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 4}}

Eigenvectors[A]

{{0, 0, 0, -−1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}

Eigenvalues[A]

{4, 2, 2, 1}

A.{0, 0, 0, -−1} ⩵ 4 {0, 0, 0, -−1}

True

A.{0, 0, 1, 0} ⩵ 2 {0, 0, 1, 0}

True

A.{0, 1, 0, 0} ⩵ 2 {0, 1, 0, 0}

True

A.{1, 0, 0, 0} ⩵ {1, 0, 0, 0}

True

◼ Eigenvectors of a triangular matrix

 108 | The Linear Algebra Survival Guide

A = RandomInteger[{0, 9}, {3, 3}];

MatrixForm[A = {{5, 0, 8}, {2, 2, 9}, {3, 1, 0}}]

5 0 8
2 2 9
3 1 0

tA = LowerTriangularize[A]

{{5, 0, 0}, {2, 2, 0}, {3, 1, 0}}

Eigenvectors[tA]

{{15, 10, 11}, {0, 2, 1}, {0, 0, 1}}

Eigenvalues[tA]

{5, 2, 0}

tA.{15, 10, 11} ⩵ 5 {15, 10, 11}

True

tA.{0, 2, 1} ⩵ 2 {0, 2, 1}

True

tA.{0, 0, 1} ⩵ 0 {0, 0, 1}

True

◼ Eigenvectors as bases for null spaces

MatrixForm[A = {{5, 0, 0}, {2, 2, 0}, {3, 1, 0}}]

5 0 0
2 2 0
3 1 0

Eigensystem[A]

{{5, 2, 0}, {{15, 10, 11}, {0, 2, 1}, {0, 0, 1}}}

NullSpace[(A -− 5 IdentityMatrix[3])]

{{15, 10, 11}}

The Linear Algebra Survival Guide | 109

NullSpace[(A -− 2 IdentityMatrix[3])]

{{0, 2, 1}}

NullSpace[(A -− 0 IdentityMatrix[3])]

{{0, 0, 1}}

This shows that the eigenvectors of A associated with each λ𝜆 are the basis vectors for the null spaces of each of the
matrices (A - λ𝜆 IdentityMatrix).

◼ Eigenvectors and diagonalization of matrices

If a square matrix A is equal to a product P dM P-−1 of an invertible matrix P and a diagonal matrix dM, then the columns of

P are eigenvectors of A.

MatrixForm[A = {{5, 0, 0}, {2, 2, 0}, {3, 1, 4}}]

5 0 0
2 2 0
3 1 4

{eigenvalues, eigenvectors} = Eigensystem[A]

{{5, 4, 2}, {{3, 2, 11}, {0, 0, 1}, {0, -−2, 1}}}

Transpose[eigenvectors].DiagonalMatrix[eigenvalues].Inverse[Transpose[eigenvectors]]

{{5, 0, 0}, {2, 2, 0}, {3, 1, 4}}

The resulting matrix product is equal to the original matrix A.

Elementary matrix

An elementary matrix is a matrix obtained from an identity matrix by applying one elementary row operation to the identity
matrix.

Illustration

◼ An elementary matrix resulting from the interchange of two rows

A = IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

A = {A[[1]], A[[3]], A[[2]]}

{{1, 0, 0}, {0, 0, 1}, {0, 1, 0}}

◼ An elementary matrix resulting from multiplication of a row by a nonzero constant

 110 | The Linear Algebra Survival Guide

A = IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

A[[2]] = 3 A[[2]];
A

{{1, 0, 0}, {0, 3, 0}, {0, 0, 1}}

◼ An elementary matrix resulting from the addition of a multiple of a row to another row

A = IdentityMatrix[3]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

A[[3]] = A[[3]] -− 4 A[[1]];
A

{{1, 0, 0}, {0, 1, 0}, {-−4, 0, 1}}

Elementary row operation

The elementary row operations on a matrix are the interchange of two rows, the multiplication of a row by a nonzero
constant, and the addition of a multiple of a row to another row.

Illustration

◼ Interchange of two rows

A =
2 6 9 0 1
7 6 7 9 2
1 0 7 2 9

;

MatrixForm[B = {A[[3]], A[[2]], A[[1]]}]

1 0 7 2 9
7 6 7 9 2
2 6 9 0 1

◼ Multiplication of a row by a nonzero constant

A =
2 6 9 0 1
7 6 7 9 2
1 0 7 2 9

;

A[[2]] = 5 A[[2]]; MatrixForm[A]

2 6 9 0 1
35 30 35 45 10
1 0 7 2 9

◼ Addition of a multiple of one row to another row

The Linear Algebra Survival Guide | 111

A =
2 6 9 0 1
7 6 7 9 2
1 0 7 2 9

;

A[[3]] = A[[3]] -− 4 A[[2]]; MatrixForm[A]

2 6 9 0 1
7 6 7 9 2

-−27 -−24 -−21 -−34 1

Euclidean distance

The Euclidean distance between two vectors u and v in the space ℝn is the two-norm of the difference vector (u - v).

Illustration

◼ The distance between two vectors in ℝ2

x = {1, -−2}; y = {-−3, 4};

EuclideanDistance[x, y]

2 13

◼ The distance between two vectors in ℝ2

x = {1, -−2}; y = {-−3, 4};

distance[x_, y_] := Norm[x -− y, 2]

distance[x, y]

2 13

◼ The distance between two vectors in ℝ3

Since Norm[v] = Norm[v, 2] by default, we can omit the 2-option when using the Norm function for calculating Euclidean
distances.

x = {1, 2, 3}; y = {4, 5, 6};

distance[x_, y_] := Norm[x -− y]

distance[x, y]

3 3

◼ The distance between two vectors in ℝ4

distance[x_List, y_List] /∕; Length[x] == Length[y] := Sqrt[Total[(x -− y)^2]]

 112 | The Linear Algebra Survival Guide

vector1 = {1, 2, 3, 4}; vector2 = {5, 6, 7, 8};

distance[vector1, vector2]

8

Euclidean norm

The Euclidean norm Norm[v, 2] or simply Norm[v] = KvL function on a coordinate space ℝn is the square root of the sum of
the squares of the coordinates of v.

Properties of Euclidean norms

KvL > 0when v ≠ 0 (1)

KvL = 0 if and only if v = 0 (2)

Qk vR = =k> QvR for all scalars k and all vectors v (3)

Kv + wL ≤ KvL + KwL (4)

(where MkN denotes the absolute value of the scalar k)

Illustration

◼ Euclidean norm (length) of a vector in ℝ2

vector = {a, b};

NvectorO = Norm[vector]

Abs[a]2 + Abs[b]2

◼ A non-Euclidean norm (length) of a vector in ℝ2

vector = {a, b};

NvectorO3 = Norm[vector, 3]

Abs[a]3 + Abs[b]3
13

For any real number p ≥ 1, we can define a non-Euclidean “p-norm:”

NvectorOp = Norm[vector, p]

Abs[a]p + Abs[b]p
1

p

The Linear Algebra Survival Guide | 113

Manipulation

◼ A Euclidean norm

Manipulate[Norm[Range[n]], {n, 1, 9, 1}]

n

55

Norm[{1, 2, 3, 4, 5}]

55

We use Manipulate, Norm, and Range to explore the Euclidean norm of real vectors. If we let n = 5, for example, the
manipulation displays the Euclidean norm of the vector {1, 2, 3, 4, 5}.

Euclidean space

The coordinate spaces ℝn, equipped with the dot products as inner products, are usually called Euclidean spaces and are
often denoted by 𝔼n. The dot product serves as the basis for defining the standard geometric concepts in these spaces.

Illustration

◼ Length of a vector in 𝔼3

v = {1, 2, 3};

lengthv = Sqrt[Dot[v, v]]

14

Norm[v]

14

◼ Orthogonality of two vectors in 𝔼3

The vectors u = {1, 2, 3} and v = {-2, 1, 0} are orthogonal in 𝔼3 :

Dot[{1, 2, 3}, {-−2, 1, 0}]

0

 114 | The Linear Algebra Survival Guide

We can represent them graphically by two perpendicular arrows in 𝔼3 :

Graphics3D[{Arrow[{{0, 0, 0}, {1, 2, 3}}], Arrow[{{0, 0, 0}, {-−2, 1, 0}}]}, Axes → True]

-−2
-−1

0
1

0.0
0.5

1.0
1.5

2.0

0

1

2

3

◼ Cosine of the angle between two vectors in 𝔼2

v = {1, 0}; w = {1, 1};

cosvw =
Dot[v, w]

Norm[v] Norm[w]

1

2

◼ Angle between two vectors in 𝔼2

v = {1, 0}; w = {1, 1};

cosvw =
Dot[v, w]

Norm[v] Norm[w]
;

angle = ArcCos[cosvw]

π

4

The standard basis of 𝔼4 are the columns (or rows) of the 4-by-4 identity matrix.

◼ Standard basis of 𝔼4

The Linear Algebra Survival Guide | 115

MatrixForm[A = IdentityMatrix[4]]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

stBasis = {A[[All,1]], A[[All,2]], A[[All,3]], A[[All,4]]}

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

◼ Orthogonal matrix with columns and rows in 𝔼3

A = RandomInteger[{0, 9}, {3, 3}];

A =
3 4 2
8 7 2
8 5 2

;

B = Orthogonalize[A]

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

{Dot[B[[1]], B[[2]]] ⩵ 0, Dot[B[[1]], B[[3]]] ⩵ 0, Dot[B[[2]], B[[3]]] ⩵ 0}

{True, True, True}

Transpose[B] ⩵ Inverse[B]

True

Exact solution

See Linear system

Expansion along a coordinate axis

For any real number s > 1, a left-multiplication of a vector v in ℝ2 by the matrix

MatrixForm[A = {{s, 0}, {0, 1}}]

s 0
0 1

is an expansion along the x-axis. A left-multiplication by the matrix

 116 | The Linear Algebra Survival Guide

MatrixForm[B = {{1, 0}, {0, s}}]

1 0
0 s

is an expansion along the y-axis.

Illustration

◼ Expansions along the coordinate axes

Clear[A, B, s]

MatrixForm[A = {{s, 0}, {0, 1}}]

s 0
0 1

MatrixForm[B = {{1, 0}, {0, s}}]

1 0
0 s

v = {3, 5}; s = 2;

{A.v, B.v}

{{6, 5}, {3, 10}}

This shows that the vector {3, 5} is expanded to {6, 5} by left-multiplication by A, and expanded to {3,10} by left-multiplica-
tion by B.

Exponential form of complex numbers

The exponential form ⅇⅈ θ𝜃 of a complex number (x + ⅈ y) is based on Euler’s formula

Exp[ⅈ θ] ⩵ Cos[θ] + ⅈ Sin[θ] (1)

Illustration

◼ Exponential form of the complex number {x, y} =  1

2
, 1

2


{1/∕Sqrt[2], 1/∕Sqrt[2]} ⩵ {Re[Exp[I π/∕4]], Im[Exp[I π/∕4]]}

True

The Linear Algebra Survival Guide | 117

ComplexExpand[Exp[I π/∕4]] ⩵
1

2
+

1

2
ⅈ

True

◼ Euler’s formula for the complex number {x, y} =  1

2
, 1

2


ComplexExpand[Exp[I π/∕4]] ⩵ ComplexExpand[Cos[π/∕4] + I Sin[π/∕4]]

True

 118 | The Linear Algebra Survival Guide

F

Finite-dimensional vector space

A finite-dimensional vector space is a vector space that has a finite basis. Every finite-dimensional real or complex vector
space is isomorphic, as a vector space, to a coordinate space ℝn or ℂn. The number of elements n of any basis of a space
is called the dimension of the space.

Illustration

◼ The five-dimensional real coordinate space

The space ℝ5 consists of all lists of the form {a, b, c, d, e}, where a, b, c, d, and e are real numbers. The addition and scalar
multiplications are defined as follows:

Vector addition

{a1, a2, a3, a4, a5} + {b1, b2, b3, b4, b5} == {a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5} (1)

True

Scalar multiplication

a {a1, a2, a3, a4, a5} == {a a1, a a2, a a3, a a4, a a5} (2)

True

The dimension of the space is 5.

In linear algebra, the space ℝ5 is usually defined in terms of columns instead of rows of real numbers. The definition using
rows in this guide is designed to match the way Mathematica calculates with vectors and matrices.

If column vectors are required, they can be defined as lists of singleton lists. For example, a column vector of height 5 can
be defined as {{a}, {b}, {c}, {d}, {e}}. The MatrixForm and TraditionalForm functions can then be used to display the
vectors in column format.

MatrixForm[vector1 = {{a}, {b}, {c}, {d}, {e}}]

a
b
c
d
e

vector1

{{a}, {b}, {c}, {d}, {e}}

The Linear Algebra Survival Guide | 119

TraditionalForm[vector2 = {{1}, {2}, {3}}]

1
2
3

vector2

{{1}, {2}, {3}}

◼ The five-dimensional real polynomial space ℝ[t,4]

The vectors of this space are real polynomials of degree 4 or less and the scalars are real numbers.

Vector addition

Collecta0 + a1 t + a2 t
2 + a3 t

3 + a4 t
4 + b0 + b1 t + b2 t

2 + b3 t
3 + b4 t

4, t (3)

a0 + b0 + t (a1 + b1) + t2 (a2 + b2) + t3 (a3 + b3) + t4 (a4 + b4)

Scalar multiplication

Expanda a0 + a1 t + a2 t
2 + a3 t

3 + a4 t
4 (4)

a a0 + a t a1 + a t2 a2 + a t3 a3 + a t4 a4

Forward substitution

A linear system Av = b can sometimes be solved by decomposing the coefficient matrix A into a product LU, where L is a
lower-triangular matrix and U is an upper-triangular matrix. The system Av = b can then be solved by solving the systems
Lw = b and Uv = w. Since L is lower-triangular, the system Lw = b can then be solved by forward substitution. (The
associated system Uv = w is then solved by back substitution.)

Illustration

◼ Solving a linear system by forward substitution

Clear[x, y, z]

system = {eq1, eq2, eq3} = {x ⩵ 2, x -− 3 y ⩵ 9, 2 x + 4 y -− 6 z ⩵ 8};

The matrix of coefficients representing this system is lower-triangular. Each variable can be solved by forward substitution
of the previous variable’s value.

solx = Reduce[eq1]

x ⩵ 2

 120 | The Linear Algebra Survival Guide

soly = Reduce[eq2 /∕. {x → 2}]

y ⩵ -−
7

3

solz = Reduce[eq3 /∕. {x → 2, y → -−7/∕3}]

z ⩵ -−
20

9

Flatten[Reduce[system, {x, y, z}]] ⩵ (solx && soly && solz)

True

The last equation shows that the solutions found by forward substitution are the same as those found by solving the system
with the Reduce command.

Fourier matrix

A Fourier matrix is a scalar multiple of the n-by-n Vandermonde matrix for the roots of unity ω𝜔 = ⅇ-−(2π𝜋ⅈ)/∕n. The scalar 1

n
 is

a normalization factor which makes the associated Vandermonde matrix unitary. The Mathematica FourierMatrix function
does not use a scaling factor.

1/∕Sqrt[n]
{1, 1, 1, ..., 1},

1, ω, ω2, ..., ωn-−1,

1, ω2, ..., ω2 (n-−1), ...,

1, ωn-−1, ..., ω(n-−1) (n-−1)

(1)

where ω𝜔 = ⅇ-−(2π𝜋ⅈ)/∕n is an nth root of unity in which ⅈ = -−1 .

Illustration

◼ A 2-by-2 Fourier matrix

ω = Exp[-−(2 π I)/∕2]

-−1

MatrixForm[F2 = (1/∕Sqrt[2]) {{1, 1}, {1, ω}}]

1

2

1

2

1

2

-−
1

2

The Linear Algebra Survival Guide | 121

UnitaryMatrixQ[F2]

True

The built-in Mathematica function produces the same result.

MatrixForm[FourierMatrix[2]]

1

2

1

2

1

2

-−
1

2

◼ A 4-by-4 Fourier matrix

ω = Exp[-−(2 π I)/∕4]

-−ⅈ

MatrixFormF4 = (1/∕Sqrt[4]) {1, 1, 1, 1}, 1, ω, ω2, ω3, 1, ω2, ω4, ω6, 1, ω3, ω6, ω9

1

2

1

2

1

2

1

2
1

2
-−

ⅈ

2
-−
1

2

ⅈ

2
1

2
-−
1

2

1

2
-−
1

2
1

2

ⅈ

2
-−
1

2
-−

ⅈ

2

UnitaryMatrixQ[F4]

True

The Mathematica FourierMatrix function uses Exp 2π𝜋 ⅈ
4

 instead of Exp-− 2π𝜋 ⅈ
4

:

ρ = Exp[(2 π I)/∕4]

ⅈ

MatrixForm[F = FourierMatrix[4]]

1

2

1

2

1

2

1

2
1

2

ⅈ

2
-−
1

2
-−

ⅈ

2
1

2
-−
1

2

1

2
-−
1

2
1

2
-−

ⅈ

2
-−
1

2

ⅈ

2

 122 | The Linear Algebra Survival Guide

MatrixFormρF = (1/∕Sqrt[4]) {1, 1, 1, 1}, 1, ρ, ρ2, ρ3, 1, ρ2, ρ4, ρ6, 1, ρ3, ρ6, ρ9

1

2

1

2

1

2

1

2
1

2

ⅈ

2
-−
1

2
-−

ⅈ

2
1

2
-−
1

2

1

2
-−
1

2
1

2
-−

ⅈ

2
-−
1

2

ⅈ

2

F ⩵ ρF

True

Fourier transform

See Discrete Fourier transform

Fredholm’s theorem

Fredholm’s theorem states that if A is an m-by-n matrix, then the orthogonal complement of the row space of A is the null
space of A and the orthogonal complement of the column space of A is the left null space of A.

Illustration

◼ Comparing the null space of A and the orthogonal complement of the row space of A

Clear[a, b, c, d, e]

MatrixForm[A = {{3, 1, 0, 2, 4}, {1, 1, 0, 0, 2}, {5, 2, 0, 3, 7}}]

3 1 0 2 4
1 1 0 0 2
5 2 0 3 7

nsA = NullSpace[A]

{{-−1, -−1, 0, 0, 1}, {-−1, 1, 0, 1, 0}, {0, 0, 1, 0, 0}}

rrA = RowReduce[A]

{{1, 0, 0, 1, 1}, {0, 1, 0, -−1, 1}, {0, 0, 0, 0, 0}}

ovrrA1 = Reduce[Dot[{a, b, c, d, e}, {1, 0, 0, 1, 1}] ⩵ 0, {a, b, c, d, e}]

e ⩵ -−a -− d

The Linear Algebra Survival Guide | 123

ovrrA2 = Reduce[Dot[{a, b, c, d, e}, {0, 1, 0, -−1, 1}] ⩵ 0, {a, b, c, d, e}]

e ⩵ -−b + d

Reduce[-−a -− d ⩵ d -− b, {a, b, d}]

d ⩵ -−
a

2
+
b

2

With this last result, e becomes:

e = -−a -− d = -−a -− (b/∕2 -− a/∕2) = -−a + a/∕2 -− b/∕2 = -−a/∕2 -− b/∕2

Hence all vectors v in orthogonal complement of the row space of A are of the form

v = {a, b, c, b/∕2 -− a/∕2, -−a/∕2 -− b/∕2}

a, b, c, -−
a

2
+
b

2
, -−

a

2
-−
b

2


These vectors also defined the null space of A:

Simplify[A.v]

{0, 0, 0}

Free variable of a linear system

The free variables of a linear system Av = b are the variables that are not determined by the pivot columns of the coefficient
matrix A.

Illustration

◼ Free variables of a linear system

Clear[x, y, z]

system = {3 x + 4 y -− z -− w ⩵ 9, x + y + 4 z ⩵ 1};

A = {{3, 4, -−1, -−1}, {1, 1, 4, 0}};

MatrixForm[RowReduce[A]]

1 0 17 1
0 1 -−13 -−1

Since the first and second columns of A are the pivot columns of the linear system, the variables x and y are basic variables
of the system and the variable z and w are the free variables of the system.

 124 | The Linear Algebra Survival Guide

Frobenius companion matrix

See Companion matrix

Frobenius norm

The Frobenius norm KALF of an m-by-n real matrix A is the square root of the trace of the matrix AT A.

Illustration

◼ The Frobenius norm of a general 2-by-3 real matrix

A = {{a11, a12, a13}, {a21, a22, a23}};

Norm[A, Frobenius]

Abs[a11]
2 + Abs[a12]

2 + Abs[a13]
2 + Abs[a21]

2 + Abs[a22]
2 + Abs[a23]

2

Sqrt[Tr[Transpose[A].A]]

a11
2 + a12

2 + a13
2 + a21

2 + a22
2 + a23

2

◼ The Frobenius norm of a numerical 3-by-2 real matrix

A = {{1, 2}, {3, 4}, {5, 6}};

Norm[A, Frobenius]

91

The definition of the Frobenius norm, using the trace, produces the same result:

Norm[A, Frobenius] ⩵ Sqrt[Tr[Transpose[A].A]]

True

Manipulation

◼ The Frobenius norm of a 4-by-5 real matrix

A =

2 1 4 2 5 7
3 9 a 8 2 2 9
2 8 7 5 b 6 3
9 3 6 5 6 5

;

Manipulate[Evaluate[Sqrt[Tr[Transpose[A].A]]], {a, -−2, 2, 1}, {b, -−3, 3, 1}]

The Linear Algebra Survival Guide | 125

a

b

4 74

We use Manipulate, Sqrt, Tr, and Transpose to explore the Frobenius norm of real matrices. For a = - 2 and b = - 3, for
example, the manipulation displays the Frobenius norm of the generated matrix. By varying the values of a and b, we can
calculate the Frobenius norms of other matrices.

Full rank of a matrix

An n-by-n matrix is of full rank if its rank is n. A square matrix that is not of full rank is said to be rank deficient.

Illustration

◼ A real matrix that is of full rank

A = RandomReal[{0, 9}, {3, 3}];

A =
1.2672497552861213` 7.260324652231585` 6.404178280507901`
6.373852525598297` 4.371460236056876` 5.717126196739134`
3.2916555250409` 3.608127689047624` 1.369108253600869`

;

MatrixRank[A]

4

This shows that the matrix A is of full rank.

◼ A complex 4-by-4 matrix of full rank

MatrixForm[A = {{1, 2 I, 3 -− I, 4}, {4 I, 3, 2, 2 I}, {0, 8 -− 4 I, 0, 0}, {1, 1, 1, 1}}]

1 2 ⅈ 3 -− ⅈ 4
4 ⅈ 3 2 2 ⅈ
0 8 -− 4 ⅈ 0 0
1 1 1 1

MatrixRank[A]

4

◼ A real 4-by-4 matrix that is rank deficient (not of full rank)

 126 | The Linear Algebra Survival Guide

MatrixForm[A = {{1, 0, 0, 0}, {-−1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}}]

1 0 0 0
-−1 0 0 0
0 1 0 0
0 0 0 1

MatrixRank[A]

3

Fundamental subspace

See Column space, left null space, matrix-based subspace, null space, row space

Fundamental theorem of algebra

The fundamental theorem of algebra says that every polynomial a0 + a1 x +⋯+ an xn with complex coefficients a0, a1, …, an
factors into linear factors over the field ℂ of complex numbers. The theorem is used in linear algebra to guarantee the
existence of eigenvalues of real and complex square matrices.

A theorem usually referred to the unsolvability of the quintic establishes that there is no general algorithm for finding the
linear factors of arbitrary real or complex polynomials of degree 5 or higher, even if their coefficients are integers. In
general, numerical techniques must therefore be used to calculate eigenvalues.

Illustration

◼ Linear factors of a polynomial of degree 2 with rational roots

p = 3 + 2 x -− 5 x2;

Factor[p]

{0, -−13, -−36}

◼ Linear factors of a polynomial of degree 4 with complex roots

p = 1 + x4;

Factor[p, Extension -−> {Sqrt[2], I}]

{2, 17, 82}

◼ Linear factors of a polynomial of degree p = 3 + 2 x -− 5 x2;

Clear[p, x]

p = 1 + x5;

The Linear Algebra Survival Guide | 127

Roots[p ⩵ 0, x]

x ⩵ -−1 || x ⩵ -−(-−1)25 || x ⩵ -−(-−1)45 || x ⩵ (-−1)15 || x ⩵ (-−1)35

p ⩵ SimplifyComplexExpand(x + 1) x + (-−1)25 x + (-−1)45 x -− (-−1)15 x -− (-−1)35

True

 128 | The Linear Algebra Survival Guide

G

Gaussian elimination

Gaussian elimination is a procedure for converting a matrix to row echelon form using elementary row operations. Neither
the resulting row echelon form nor the steps of the process is unique.

The difference between Gaussian and Gauss–Jordan elimination is that the former produces a matrix in row echelon form,
while the latter produces a matrix in unique reduced row echelon form.

Illustration

◼ Conversion of a 4-by-4 matrix to row echelon form

MatrixForm[A = {{0, 2, 3, 4}, {0, 0, 0, 0}, {6, 7, 0, 8}, {0, 4, 1, 8}}]

0 2 3 4
0 0 0 0
6 7 0 8
0 4 1 8

Interchange rows 2 and 4:

A = {A[[1]], A[[4]], A[[3]], A[[2]]}

{{0, 2, 3, 4}, {0, 4, 1, 8}, {6, 7, 0, 8}, {0, 0, 0, 0}}

Interchange rows 1 and 3 :

A = {A[[3]], A[[2]], A[[1]], A[[4]]}

{{6, 7, 0, 8}, {0, 4, 1, 8}, {0, 2, 3, 4}, {0, 0, 0, 0}}

Add - 1/2 row 2 to row 3 :

MatrixFormA = A[[1]], A[[2]], A[[3]] -−
1

2
A[[2]], A[[4]]

6 7 0 8
0 4 1 8

0 0
5

2
0

0 0 0 0

The final matrix is in row echelon form.

The Linear Algebra Survival Guide | 129

Gauss–Jordan elimination is a procedure for converting a matrix to reduced row echelon form using elementary row
operations. It is a refinement of Gaussian elimination. The reduced row echelon form of a matrix is unique, but the steps of
the procedure are not.

Two linear systems are equivalent (have the same solutions) if and only if the reduced row echelon forms of the augmented
matrices of the two systems obtained by Gauss–Jordan elimination are identical. This property is known as the Church–
Rosser property of the underlying equivalence relation.

Illustration

◼ Gauss–Jordan elimination applied to a 3-by-5 real matrix

A = {{6, 6, 0, 3, 5}, {4, 0, 5, 3, 8}, {3, 7, 3, 4, 4}};

RowReduce[A]

1, 0, 0,
13

64
,
199

192
, 0, 1, 0,

19

64
, -−

13

64
, 0, 0, 1,

7

16
,
37

48


◼ Gauss–Jordan elimination applied to a 5-by-3 real matrix

A = {{4, 8, 3}, {3, 1, 7}, {0, 0, 1}, {3, 2, 5}, {3, 6, 9}};

RowReduce[A]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}, {0, 0, 0}}

◼ Gauss–Jordan elimination applied to a 4-by-4 real matrix

A =

0 2 3 4
0 0 0 0
6 7 0 8
0 4 1 8

; B =

6 7 0 8
0 4 1 8

0 0
5

2
0

0 0 0 0

;

MatrixForm[RowReduce[B]]

1 0 0 -−1
0 1 0 2
0 0 1 0
0 0 0 0

RowReduce[B] ⩵ RowReduce[A]

True

This last result shows that two different matrices can have the same reduced row echelon form.

 130 | The Linear Algebra Survival Guide

Gauss–Jordan elimination

Illustration

◼ The general solution of a linear system of three equations in four variables

eq1 = -−5 x2 + 15 x3 + 4 x4 ⩵ 7; eq2 = x1 -− 2 x2 -− 4 x3 + 3 x4 ⩵ 6; eq3 = 2 x1 + 4 x3 + 3 x4 ⩵ 1;

The augmented matrix of the system in the variables x1, x2, x3, x4, in that order, is

A =
0 -−5 15 4 7
1 -−2 -−4 3 6
2 0 4 3 1

;

The reduced row echelon form of the matrix A is

MatrixForm[B = RowReduce[A]]

1 0 0
89

60

19

20

0 1 0 -−
31

40
-−
83

40

0 0 1
1

120
-−

9

40

The pivot columns of the matrix A are its first three columns, so that the basic variables of the system are x1, x2, and x3,
and the free variable of the system is x4. The matrix B is the augmented matrix of the linear system

x1 +
89

60
x4 ⩵

19

20
, x2 -−

31

40
x4 == -−

83

40
, x3 +

1

120
x4 == -−

9

40
;

This list of equations is the general solution of the original system since it provides explicit expressions of the basic
variables x1, x2, and x3 of the system in terms of the free variable x4 of the system.

If we assign the value 0 to the free variable x4, for example, we get the following values for x1, x2, and x3 :

x1 +
89

60
x4 ⩵

19

20
, x2 -−

31

40
x4 == -−

83

40
, x3 +

1

120
x4 == -−

9

40
 /∕. {x4 → 0}

x1 ⩵
19

20
, x2 ⩵ -−

83

40
, x3 ⩵ -−

9

40


The four calculated values form a particular solution of the original system:

{eq1, eq2, eq3} /∕. x1 →
19

20
, x2 → -−

83

40
, x3 → -−

9

40
, x4 → 0

{True, True, True}

The Linear Algebra Survival Guide | 131

General solution of a linear system

The general solution of a linear system is a linear system that expresses the basic variables of the system in terms of the
free variables of the system.

Illustration

Clear[A, p, t]

A = UpperTriangularize[RandomInteger[{0, 3}, {5, 5}]];

A =

1 2 0 3 1
0 0 2 0 0
0 0 0 2 1
0 0 0 3 3
0 0 0 0 3

;

p[A, t] = CharacteristicPolynomial[A, t]

9 t2 -− 15 t3 + 7 t4 -− t5

Factor[p[A, t]]

-−(-−3 + t)2 (-−1 + t) t2

Eigenvalues[A]

{3, 3, 1, 0, 0}

The algebraic multiplicity of eigenvalue 1 is 1, and that of the eigenvalues 0 and 3 is 2.

Eigensystem[A]

{{3, 3, 1, 0, 0},
{{35, 8, 12, 18, 0}, {0, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {-−2, 1, 0, 0, 0}, {0, 0, 0, 0, 0}}}

Mathematica displays the vectors {{35, 8, 12, 18, 0} and {0, 0, 0, 0, 0}} as two candidates for eigenvectors associated with
the eigenvalue 3. But since the zero vector is not an eigenvector, the eigenspace of the eigenvalue 3 is only the span of the
single vector {35, 8, 12, 18, 0} and has dimension 1. For the same reason, the dimension of the eigenvalue 0 is also 1. This
shows that the matrix A is not diagonalizable since the sum of the dimensions of the eigenspaces is less than the dimen-
sion of the matrix.

 132 | The Linear Algebra Survival Guide

Geometric multiplicity of an eigenvalue

The geometric multiplicity of an eigenvalue of a matrix is the dimension of the eigenspace associated with the eigenvalue.
The geometric multiplicity of an eigenvalue is always less than or equal to the algebraic multiplicity of the eigenvalue.

 A matrix is diagonalizable if and only if all geometric and algebraic multiplicities of the eigenvalues of the matrix are equal.

Graphics[Rotate[Rectangle[], 30 Degree]]

◼ Translation of a circle in ℝ2

Graphics[Translate[Circle[], {1, 0}], Axes → True]

0.5 1.0 1.5 2.0

-−1.0

-−0.5

0.5

1.0

◼ Translation of a sphere in ℝ3

The Linear Algebra Survival Guide | 133

Geometric transformation

Mathematica comes with a variety of geometric transforms and geometric matrix transformations corresponding to
operations in transformational geometry. Here are some examples. The full list of transforms can be explored in the
Mathematica Help file: Help > Documentation Center > Geometric Transforms.

Illustration

◼ Rotation of a rectangle

Graphics3D[Translate[Sphere[], {1, 0, 0}], Axes → True]

◼ Scaling of a disk in ℝ2

Graphics[{Pink, Scale[Disk[], {1, 1/∕2}]}]

◼ Scaling of a cylinder in ℝ3

 134 | The Linear Algebra Survival Guide

Graphics3D[Scale[Cylinder[], {1/∕2, 1, 1}, {0, 0, 0}], Boxed → False]

◼ Shearing of a rectangle in ℝ2

ShearingTransform[θ, {1, 0}, {0, 1}];

Graphics[GeometricTransformation[Rectangle[],
ShearingTransform[30 Degree, {1, 0}, {0, 1}]], Frame → True]

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

◼ Reflection of a point in ℝ2 about the line y = x

rt = ReflectionTransform[{1, -−1}];

rt[{x, y}]

{y, x}

◼ Reflection of a point of ℝ3 in the z-plane

The Linear Algebra Survival Guide | 135

rt = ReflectionTransform[{0, 0, 1}];

rt[{x, y, z}]

{x, y, -−z}

Gram–Schmidt process

The Gram–Schmidt process is an algorithm for converting a list of linearly independent vectors into a list of mutually
orthogonal vectors. It is based on the orthogonal decomposition of given vectors.

Illustration

◼ Orthogonalization of two vectors in ℝ3

vectors = {{5, 2, 3}, {8, 5, 4}}

{{5, 2, 3}, {8, 5, 4}}

orthovectors = Orthogonalize[vectors]


5

38
,

2

19
,

3

38
, -−

3

1387
,

33

1387
, -−

17

1387


Dot[orthovectors[[1]], orthovectors[[2]]]

0

◼ The Gram–Schmidt process applied to three vectors

Clear[u, v, w]

u = {1, 0, 1}; v = {1, 1, 1}; w = {0, 1, 1};

ov2 = Orthogonalize[{u, v}]


1

2
, 0,

1

2
, {0, 1, 0}

Dot[ov2[[1]], ov2[[2]]]

0

 136 | The Linear Algebra Survival Guide

MatrixForm[ov3 = Orthogonalize[{u, v, w}]]

1

2

0
1

2

0 1 0

-−
1

2

0
1

2

The resulting set of vectors is orthogonal.

{Dot[ov3[[1]], ov3[[2]]], Dot[ov3[[1]], ov3[[3]]], Dot[ov3[[2]], ov3[[3]]]}

{0, 0, 0}

◼ Another illustration of the Gram–Schmidt process

Proj[u_, v_] := (Dot[u, v]/∕Dot[u, u]) u

The defined function Proj[u,v] will produce the projection of the vector v onto the vector u.

v1 = {1, 0, 1}; v2 = {1, 1, 1}; v3 = {0, 1, 1};

Next we use the projections of v2 onto v1, and v3 onto v1 and v2, to create orthogonal vectors.

u1 = v1; u2 = v2 -− Proj[u1, v2]; u3 = v3 -− Proj[u1, v3] -− Proj[u2, v3];

MatrixForm[ov4 = {u1, u2, u3}]

1 0 1
0 1 0

-−
1

2
0

1

2

The resulting set of vectors is orthogonal

{Dot[ov4[[1]], ov4[[2]]], Dot[ov4[[1]], ov4[[3]]], Dot[ov4[[2]], ov4[[3]]]}

{0, 0, 0}

since the pairwise dot products of its vectors are all zero.

Manipulation

◼ Orthogonalization of two linearly independent vectors in ℝ2

u = {1, 2}; v = {-−2, 2};

The Linear Algebra Survival Guide | 137

Manipulate[Orthogonalize[Evaluate[{{1 + a, 2}, {-−2, 2 + b}}]], {a, -−3, 3, 1}, {b, -−3, 3, 1}]

a

b

-−
1

2
,

1

2
, {0, 0}

We use Manipulate, Orthogonalize, and Evaluate to explore the effect of the Gram–Schmidt process on two linearly
independent vectors in ℝ2. If a = - 3 and b = 0, then the two vectors are identical and cannot be orthogonalized. Mathemat-
ica normalizes the first vector and converts the second vector to the zero vector in ℝ2. If a = - 3 and b = 1, for example, the
manipulation produces two normal orthogonal vectors.

◼ Orthogonalization of three linearly independent vectors in ℝ3

u = {1, 0, 0}; v = {0, 1, 0}; w = {0, 0, 1};

Manipulate[Orthogonalize[Evaluate[{{1 + a, 0, 0}, {0, 1 + b, 0}, {0, 0, 1 + c}}]],
{a, -−3, 3, 1}, {b, -−3, 3, 1}, {c, -−3, 3, 1}]

a

b

c

{{-−1, 0, 0}, {0, 0, 0}, {0, 0, 0}}

We use Manipulate, Orthogonalize, and Evaluate to explore the effect of the Gram–Schmidt process on three linearly
independent vectors in ℝ3. If a = - 2 and b = c = - 1, for example, then the manipulation shows that the three resulting
vectors cannot be orthogonalized. On the other hand, if a = - 3, b = 2, and c = - 2, for example, the manipulation produces
three normal orthogonal vectors.

 138 | The Linear Algebra Survival Guide

a

b

c

{{-−1, 0, 0}, {0, 1, 0}, {0, 0, -−1}}

The Linear Algebra Survival Guide | 139

H

Hankel matrix

A Hankel matrix is a square matrix A whose elements A[[i, j]] are equal to its elements A[[i-−1, j+1]] . In other words, the skew-

diagonals of a Hankel matrix are constant.

Illustration

◼ A 4-by-4 Hankel matrix

MatrixForm[H = HankelMatrix[4]]

1 2 3 4
2 3 4 0
3 4 0 0
4 0 0 0

The skew-diagonals of H are {1}, {2, 2}, {3, 3, 3}, {4, 4, 4, 4}, {0, 0, 0}, {0, 0}, and {0}.

◼ A general 4-by-4 Hankel matrix

MatrixForm[H = HankelMatrix[{a, b, c, d}]]

a b c d
b c d 0
c d 0 0
d 0 0 0

◼ A complex Hankel matrix

MatrixForm[H = HankelMatrix[{1, 1 + 2 I, 3 + 4 I}]]

1 1 + 2 ⅈ 3 + 4 ⅈ
1 + 2 ⅈ 3 + 4 ⅈ 0
3 + 4 ⅈ 0 0

◼ A more general complex Hankel Matrix

MatrixForm[H = HankelMatrix[{1, 1 + 2 I, 3 + 4 I}, {3 + 4 I, 5 -− I, 2 I}]]

1 1 + 2 ⅈ 3 + 4 ⅈ
1 + 2 ⅈ 3 + 4 ⅈ 5 -− ⅈ
3 + 4 ⅈ 5 -− ⅈ 2 ⅈ

Manipulation

◼ Exploring 4-by-4 Hankel matrices

 140 | The Linear Algebra Survival Guide

Manipulate[MatrixForm[H = HankelMatrix[{a, 2, 3, 4}, {4, b, c, 5}]],
{a, -−2, 2, 1}, {b, -−3, 3, 1}, {c, 0, 4, 1}]

a

b

c

-−2 2 3 4
2 3 4 -−3
3 4 -−3 0
4 -−3 0 5

We use Manipulate, MatrixForm, and HankelMatrix to explore Hankel matrices. If we let a = - 2, b = - 3, and c = 0, for
example, the manipulation displays a Hankel matrix. Other choices of values for a, b, and c produce other Hankel matrices.

Height of a column vector

The height of a column vector is the number of rows of the vector.

Illustration

◼ The height of a column vector with three rows

MatrixForm[v = RandomInteger[{0, 9}, {3, 1}]]

v =
7
6
5

;

Dimensions[v]

{3, 1}

The height of the vector v is 3, the first component of the Dimensions output.

◼ The height of a complex column vector with two rows

MatrixForm[v = {3 -− I, 6 + 8 I}]

3 -− ⅈ
6 + 8 ⅈ

The Linear Algebra Survival Guide | 141

Dimensions[v]

{2}

Hermitian inner product

A Hermitian inner product is a bilinear functional <u, v> on a complex vector space satisfying the following properties:

Properties of Hermitian inner products

〈u, v〉 = Conjugate[〈v, u〉] (1)

〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 (2)

〈u, v + w〉 = 〈u, v〉 + 〈u, w〉 (3)

〈a u, v〉 = a 〈u, v〉 (4)

〈u, a v〉 = Conjugate[a] 〈u, v〉 (5)

〈u, u〉 ≥ 0 (6)

〈u, u〉 = 0 if and only if u = 0 (7)

Illustration

◼ A Hermitian inner product

〈u_, v_〉 := u.A.Conjugate[v]

where A is a Hermitian positive-definite matrix.

In pencil-and-paper linear algebra, the vectors u and v are assumed to be column vectors. Therefore the vector v must be
transposed in the definition and the inner product is defined as the product of a column vector u times a Hermitian positive-
definite matrix A times the conjugate transpose of the column vector v. In Mathematica transposition is not required since
the appropriate orientation of the vectors is understood from the context.

◼ A complex inner product determined by an identity matrix

MatrixForm[A = IdentityMatrix[2]]

1 0
0 1

u = {3 + I, -−I}; v = {4, 2 + I};

u.A.Conjugate[v]

11 + 2 ⅈ

 142 | The Linear Algebra Survival Guide

◼ A Hermitian inner product determined by a diagonal matrix

MatrixForm[A = {{3, 0}, {0, 5}}]

3 0
0 5

PositiveDefiniteMatrixQ[A]

True

u = {3 + I, -−I}; v = {4, 2 + I};

u.A.Conjugate[v]

31 + 2 ⅈ

◼ The Hermitian inner product of two complex vectors in ℂ2 computed using the dot product

u = {a + b I, c + d I}; v = {e + f I, g + h I};

hDot[u_, v_] := Dot[u, Conjugate[v]]

hDot[u, v]

(a + ⅈ b) (Conjugate[e] -− ⅈ Conjugate[f]) + (c + ⅈ d) (Conjugate[g] -− ⅈ Conjugate[h])

u = {1 + I, 2 -− I}; v = {3 -− 2 I, 1 + I};

hDot[u, v]

2 + 2 ⅈ

◼ Verification of the inner product calculation of two complex vectors in ℂ2 using matrix multiplication

u.IdentityMatrix[2].Conjugate[v] ⩵ hDot[u, v]

True

Hermitian matrix

A Hermitian matrix is a square matrix with complex entries that is equal to its own conjugate transpose. A real matrix is
Hermitian if it is symmetric.

Illustration

◼ A 2-by-2 Hermitian matrix A

The Linear Algebra Survival Guide | 143

MatrixForm[A = {{3 + I, -−I}, {-−I, 6}}]

3 + ⅈ -−ⅈ
-−ⅈ 6

The matrix A is not Hermitian.

HermitianMatrixQ[A]

False

However, its conjugate transpose is Hermitian.

MatrixForm[ConjugateTranspose[A]]

3 -− ⅈ ⅈ
ⅈ 6

HermitianMatrixQ[{{1, 3 + 4 I}, {3 -− 4 I, 2}}]

True

◼ A 3-by-3 Hermitian matrix A

MatrixForm[A = {{2, 2 + I, 4}, {2 -− I, 3, I}, {4, -−I, 1}}]

2 2 + ⅈ 4
2 -− ⅈ 3 ⅈ
4 -−ⅈ 1

HermitianMatrixQ[A]

True

◼ Another 3-by-3 Hermitian matrix H

The next matrix and its transpose are both Hermitian and so is its conjugate transpose.

MatrixForm[H = {{1, 2 I, 3 + 4 I}, {-−2 I, 5, 6 -− 7 I}, {3 -− 4 I, 6 + 7 I, 8}}]

1 2 ⅈ 3 + 4 ⅈ
-−2 ⅈ 5 6 -− 7 ⅈ
3 -− 4 ⅈ 6 + 7 ⅈ 8

HermitianMatrixQ[H]

True

 144 | The Linear Algebra Survival Guide

MatrixForm[Transpose[H]]

1 -−2 ⅈ 3 -− 4 ⅈ
2 ⅈ 5 6 + 7 ⅈ

3 + 4 ⅈ 6 -− 7 ⅈ 8

HermitianMatrixQ[Transpose[H]]

True

MatrixForm[ConjugateTranspose[H]]

1 2 ⅈ 3 + 4 ⅈ
-−2 ⅈ 5 6 -− 7 ⅈ
3 -− 4 ⅈ 6 + 7 ⅈ 8

H ⩵ ConjugateTranspose[H]

True

HermitianMatrixQ[{{1, 2 I, 3 + 4 I}, {-−2 I, 5, 6 -− 7 I}, {3 -− 4 I, 6 + 7 I, 8}}]

True

◼ A real Hermitian matrix

MatrixForm[A = RandomInteger[{0, 9}, {2, 3}]]

3 9 4
6 0 1

MatrixForm[H = Transpose[A].A]

45 27 18
27 81 36
18 36 17

HermitianMatrixQ[H]

True

The Linear Algebra Survival Guide | 145

Illustration

◼ The Hessenberg decomposition of a 4-by-4 matrix

{p, h} = HessenbergDecomposition

1. 2. 3. 4.
5. 6. 7. 8.
9. 10. 11. 12.
13. 14. 15. 16.

;

The matrix h is an upper Hessenberg matrix:

MatrixForm[h]

1. -−5.3669 0.443129 -−4.50542×10-−16

-−16.5831 33.0873 -−9.55746 -−7.76819×10-−15

0. -−2.20899 -−0.0872727 -−6.32932×10-−16

0. 0. -−3.11293×10-−15 -−5.99553×10-−16

Hessian matrix

A Hessian matrix is a square matrix whose elements are second-order partial derivatives of a given function.

Illustration

Determinants can be used to classify critical points of differentiable functions. For example, if f : ℝ2 ⟶ ℝ is a function with
continuous second partial derivatives fxx, fxy, fyx, and fyy, then the matrix

MatrixForm[Hf = {{fxx, fxy}, {fyx, fyy}}]

fxx fxy
fyx fyy

is a Hessian matrix. Its determinant Det[Hf] is called the discriminant of f. We know from calculus that if v = {x, y} is a critical
point of f, in other words, if fx[v] = fy [v] = 0 and Det[Hf] > 0, then f[v] is a local minimum of f if fxx[v] > 0 and a local

maximum if fxx[v] < 0. If Det[Hf] < 0, then v is a saddle point of f. If Det[Hf] = 0, the test fails.

◼ Hessian matrix

f[x_, y_] := x2 + y2 -− x + 4 y + 3;

 146 | The Linear Algebra Survival Guide

Hessenberg matrix

A Hessenberg matrix is a square matrix that is close to being triangular. An upper Hessenberg matrix has zeros below the
first subdiagonal, and a lower Hessenberg matrix has zeros above the first superdiagonal.

A Hessenberg decomposition of a matrix A is a matrix decomposition of a matrix PHPH = A into a unitary matrix P and a
Hessenberg matrix H and the conjugate transpose PH of P.

Plot3D[f[x, y], {x, -−3, 3}, {y, -−3, 3}]

fxx = D[f[x, y], x, x]; fxy = D[f[x, y], x, y];

fyx = D[f[x, y], y, x]; fyy = D[f[x, y], y, y];

Hf = {{fxx, fxy}, {fyx, fyy}}

{{2, 0}, {0, 2}}

Det[Hf]

4

{Reduce[D[f[x, y], x] ⩵ 0, {x, y}], Reduce[D[f[x, y], y] ⩵ 0, {x, y}]}

x ⩵
1

2
, y ⩵ -−2

Since the determinant of Hf > 0, f has a local minimum at {x, y} = {1/2, -2}.

Hilbert matrix

A Hilbert matrix is a square matrix H whose ijth element H[[i, j]] is (i + j - 1)-−1. Hilbert matrices are canonical examples of ill-

conditioned matrices that are difficult to use in numerical computations. Their ill-conditioned nature is measured in terms of
their condition numbers. The larger the condition numbers, the more ill-conditioned the matrix.

Illustration

The Hilbert matrices of dimensions 2, 3, and 4 are the following:

◼ The 2-by-2 Hilbert matrix

The Linear Algebra Survival Guide | 147

MatrixForm[HilbertMatrix[2]]

1
1

2
1

2

1

3

◼ The 3-by-3 Hilbert matrix

MatrixForm[HilbertMatrix[3]]

1
1

2

1

3
1

2

1

3

1

4
1

3

1

4

1

5

◼ The 4-by-4 Hilbert matrix

MatrixForm[HilbertMatrix[4]]

1
1

2

1

3

1

4
1

2

1

3

1

4

1

5
1

3

1

4

1

5

1

6
1

4

1

5

1

6

1

7

Manipulation

◼ Exploring n-by-n Hilbert matrices

Manipulate[MatrixForm[HilbertMatrix[n]], {n, 2, 6, 1}]

n

1
1

2
1

2

1

3

We use Manipulate, MatrixForm, and HilbertMatrix to generate Hilbert matrices. If n = 2, for example, the manipulation
displays the Hilbert matrix of dimension 2.

 148 | The Linear Algebra Survival Guide

Illustration

◼ Point in ℝ2 with homogeneous coordinates in ℝ3

hcoordinates = {1, 2, 3}

{1, 2, 3}

point = {1/∕3, 2/∕3}


1

3
,
2

3


◼ Point in ℝ2 with homogeneous coordinates in ℝ3

hcoordinates = {6, 9, 3}

{6, 9, 3}

point = {2, 3}

{2, 3}

◼ Homogeneous coordinates in ℝ3 associated with a point in ℝ2

point = {3, 5}

{3, 5}

hcoordinates = {3, 5, 1}

{3, 5, 1}

◼ Homogeneous coordinates in ℝ3 associated with a point in ℝ2

point = {3, 2}

{3, 2}

hcoordinates = {9, 6, 3}

{9, 6, 3}

◼ Homogeneous coordinates of a linear equation

Using the homogeneous coordinates {x1, x2, x2} for {x, y}, we can rewrite the linear equation

a1 x + a2 y + a3 ⩵ 0

as

The Linear Algebra Survival Guide | 149

Homogeneous coordinate

For any point {x, y} in ℝ2, the coordinates of the point {x, y, 1} in ℝ3 are homogeneous coordinates since x

1
= x and y

1
= y.

These coordinates are used in affine geometry to express affine transformations by matrix multiplication.

a1 x1 + a2 x2 + a3 x3 ⩵ 0

Homogeneous linear system

A homogeneous linear system is a linear system of the form Av = 0. The solution space of the system can be found in
various ways.

Illustration

◼ Solving a homogeneous linear system with infinitely many solutions

system = {x + 2 y + z ⩵ 0, x -− y -− 2 z ⩵ 0, 2 x + y -− z ⩵ 0};

Solve[system]

{{y → -−x, z → x}}

We assign a parameter t to replace the variable z

{t, -−t, t}

{t, -−t, t}

Next we verify that all values of the parameter t satisfy the given system.

system /∕. {x → t, y → -−t, z → t}

{True, True, True}

Next we identify a basis for the solutions space:

{t, -−t, t} ⩵ t {1, -−1, 1}

True

Hence the set {{1, -1, 1}} is a basis for the solution space of the given system.

The NullSpace function of Mathematica can be used to solve a homogeneous linear system by applying it to the
“coefficient matrix” of the linear system.

◼ Using the NullSpace function to solve a homogeneous linear system

system = {x + 2 y + z ⩵ 0, x -− y -− 2 z ⩵ 0, 2 x + y -− z ⩵ 0};

A = {{1, 2, 1}, {1, -−1, -−2}, {2, 1, -−1}};

NullSpace[A]

{{1, -−1, 1}}

 150 | The Linear Algebra Survival Guide

◼ A homogeneous linear system with two equations in three variables

equations = {3 x + 4 y -− z ⩵ 0, x -− 2 y + 5 z ⩵ 0};

solution = Solve[equations, {x, y, z}]

Solve::svars : Equations may not give solutions for all "solve" variables. $

y → -−
8 x

9
, z → -−

5 x

9


equations /∕. solution

{{True, True}}

coefficientmatrix = {{3, 4, -−1}, {1, -−2, 5}};

The LinearSolve command can also be used to find a solution of a homogeneous linear system. However, it fails to
produce all solutions.

LinearSolve[coefficientmatrix, {0, 0}]

{0, 0, 0}

coefficientmatrix.{0, 0, 0}

{0, 0}

Manipulation

◼ Manipulating a homogeneous linear system in three equations and three variables

equations = {3 x + 4 y -− z ⩵ 0, x -− 2 y + 5 z ⩵ 0, x + y + z ⩵ 0};

coefficients = {{3, 4, -−1}, {1, -−2, 5}, {1, 1, 1}};

f = LinearSolve[coefficients]

LinearSolveFunction
-−1 Matrix dimensions: {3, 3}



f[{0, 0, 0}]

{0, 0, 0}

Manipulate[Evaluate[f[{a, b, c}]], {a, -−2, 2, 1}, {b, -−2, 2, 1}, {c, -−2, 2, 1}]

The Linear Algebra Survival Guide | 151

a

b

c


3

2
, -−2, -−

3

2


We use Manipulate and Evaluate to explore the solutions of linear systems. If a = b = c = - 2, for example, the manipula-
tion displays the solution {3/2, - 2, - 3/2} of the associated linear system.

◼ A family of vectors generated by using the linear combinations determined by a linear system

Manipulate[x {1, 1, 2} + y {2, -−1, 1} + z {1, -−2, -−1}, {x, -−5, 5}, {y, -−6, 6}, {z, -−8, 8}]

x

y

z

{-−25, 17, -−8}

We use Manipulate to calculate the vector obtained by assigning numerical values to the coefficients x, y, and z. If we let x
= - 5, y = - 6, and z = - 8, for example, the manipulation produces the vector {- 25, 17, - 8}.

The substitution operator /. confirms this solution.

x {1, 1, 2} + y {2, -−1, 1} + z {1, -−2, -−1} /∕. {x → -−5, y → -−6, z → -−8}

{-−25, 17, -−8}

Householder matrix

A real square matrix is a Householder matrix if it is of the form

IdentityMatrix -−
2

Dot[v, v]
u.Transpose[u] (1)

determined by a nonzero column vector u and the row vector v associated with u.

 152 | The Linear Algebra Survival Guide

Every Householder matrix is orthogonal. Householder matrices describe reflections about a plane or hyperplane containing
the origin. Householder matrices are used in numerical linear algebra to perform QR decompositions.

Illustration

u = {{1}, {2}, {3}};

u.Transpose[u]

{{1, 2, 3}, {2, 4, 6}, {3, 6, 9}}

v = Flatten[u]

{1, 2, 3}

MatrixFormh = IdentityMatrix[3] -−
2

Dot[v, v]
(u.Transpose[u])

6

7
-−
2

7
-−
3

7

-−
2

7

3

7
-−
6

7

-−
3

7
-−
6

7
-−
2

7

OrthogonalMatrixQ[h]

True

The Linear Algebra Survival Guide | 153

I

Identity matrix

An identity matrix is a square matrix with 1s on the main diagonal and 0s elsewhere. It has the property that for any n-by-n
matrix,

A.IdentityMatrix[n] ⩵ IdentityMatrix[n].A (1)

The Mathematica function IdentityMatrix[n] computes the n-by-n identity matrix.

Illustration

◼ The 3-by-3 identity matrix

MatrixForm[IdentityMatrix[3]]

1 0 0
0 1 0
0 0 1

Identity matrices are identities with respect to vector multiplication in matrix spaces.

MatrixForm[A = {{9, 1, 6}, {9, 4, 1}, {3, 4, 0}}]

9 1 6
9 4 1
3 4 0

MatrixForm[A.IdentityMatrix[3] ⩵ A]

True

Identity matrices can also be formed using the SparseArray function by specifying the values of the nonzero elements.

◼ The 2-by-2 identity matrix

MatrixForm[Normal[s = SparseArray[{{1, 1} → 1, {2, 2} → 1, {3, 3} → 1}]]]

1 0 0
0 1 0
0 0 1

Ill-conditioned matrix

A matrix is ill-conditioned if a small change in its elements produces significant errors in the solutions of associated linear
systems.

 154 | The Linear Algebra Survival Guide

MatrixForm[A = {{1, 2}, {2, 3.999}}]

1 2
2 3.999

b = {4, 7.999};

LinearSolve[A, b]

{2., 1.}

c = {4.001, 7.998};

LinearSolve[A, c]

{-−3.999, 4.}

N[LinearAlgebra`MatrixConditionNumber[A]]

35 988.

A = {{1, 1}, {1, 0.999}}

{{1, 1}, {1, 0.999}}

N[LinearAlgebra`MatrixConditionNumber[A]]

4000.

b = {1, 0.999}; c = {1.0001, 0.998};

LinearSolve[A, b]

{0., 1.}

LinearSolve[A, c]

{-−1.0999, 2.1}

Illustration

◼ An ill-conditioned 2-by-2 matrix

MatrixForm[A = {{1, 1}, {1, 0.999}}]

1 1
1 0.999

The Linear Algebra Survival Guide | 155

N[LinearAlgebra`MatrixConditionNumber[A]]

4000.

b = {1, 0.999}; c = {1.0001, 0.998};

LinearSolve[A, b]

{0., 1.}

LinearSolve[A, c]

{-−1.0999, 2.1}

This calculation shows that by making small changes in the constant vector b, the solutions of the associated linear
systems change significantly.

◼ An ill-conditioned 2-by-2 matrix

MatrixForm[A1 = {{1, -−1}, {-−1, 1}}]

1 -−1
-−1 1

N[LinearAlgebra`MatrixConditionNumber[A1]]

∞

MatrixForm[A2 = {{1, -−1}, {-−1, 1.00001}}]

1 -−1
-−1 1.00001

N[LinearAlgebra`MatrixConditionNumber[A2]]

400 004.

The singularity of the matrix A1 is also affected by the small change in one of its elements:

{Det[A1], Det[A2]}

{0, 0.00001}

This suggests that whereas the matrix A1 is singular, the matrix A2 is nonsingular since its determinant is nonzero.

◼ An ill-conditioned matrix in terms of its singular values

MatrixForm[A = {{1.001, 2.001}, {2.001, 3.001}}]

1.001 2.001
2.001 3.001

 156 | The Linear Algebra Survival Guide

s = SingularValueList[A]

{4.23796, 0.235962}

conditionnumberA = s[[1]]/∕s[[2]]

17.9603

Image of a linear transformation

The image of a linear transformation T : V ⟶ W is the set of all vectors T[v] in W. The image of T is a subspace of W. If T
is a matrix transformation, then the image of T is the column space of T.

Illustration

◼ The trace of a linear transformation T : ℝ2×2 ⟶ ℝ as an image

Clear[A, B, s, T, a, b, c, d, e, f, g, h]

T[{{a_, b_}, {c_, d_}}] := Tr[{{a, b}, {c, d}}]

A = {{a, b}, {c, d}}; B = {{e, f}, {g, h}};

Expand[s (T[A] + T[B])]

a s + d s + e s + h s

Expand[s T[A] + s T[B]]

a s + d s + e s + h s

◼ The image of a matrix transformation T : ℝ3 ⟶ ℝ2

A = {{1, 2, 3}, {4, 5, 6}};
T[{x_, y_, z_}] := A.{x, y, z}

The 2-by-3 matrix takes vectors from ℝ3 to vectors in ℝ2.

T[{x, y, z}]

{x + 2 y + 3 z, 4 x + 5 y + 6 z}

On the other hand, the 3-by-2 matrix

A = {{1, 2}, {3, 4}, {5, 6}};
T[{x_, y_}] := A.{x, y}

takes vectors from ℝ2 to vectors in ℝ3.

The Linear Algebra Survival Guide | 157

T[{x, y}]

{x + 2 y, 3 x + 4 y, 5 x + 6 y}

Incidence matrix

The incidence matrix A of an undirected graph has a row for each vertex and a column for each edge of the graph. The
element A[[i, j]] of A is 1 if the ith vertex is a vertex of the jth edge and 0 otherwise.

The incidence matrix A of a directed graph has a row for each vertex and a column for each edge of the graph. The element
A[[i, j]] of A is -1 if the ith vertex is an initial vertex of the jth edge, 1 if the ith vertex is a terminal vertex, and 0 otherwise.

Illustration

◼ The incidence matrix of an undirected graph

CycleGraph[4]

MatrixForm[IncidenceMatrix[%]]

1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1

◼ The incidence matrix of a directed graph

 158 | The Linear Algebra Survival Guide

Graph[{1 6 2, 2 6 3, 3 6 4, 4 6 1}]

MatrixForm[IncidenceMatrix[%]]

-−1 0 0 1
1 -−1 0 0
0 1 -−1 0
0 0 1 -−1

◼ The incidence matrix of an undirected graph has no negative entries

g = Graph[{1 4 2, 2 4 3, 3 4 1}]

MatrixForm[IncidenceMatrix[g]]

1 0 1
1 1 0
0 1 1

The sum of the elements in any column of incidence matrix of an undirected graph is always 2.

The Linear Algebra Survival Guide | 159

◼ The incidence matrix of a directed graph has some negative entries

g = Graph[{1 6 2, 2 6 3, 3 6 1}]

If a directed graph has no self-loops, the sum of the elements of its incidence matrix is always 0.

◼ The incidence matrix of a graph with self-loops has entries equal to 2.

g = Graph[{1 4 2, 2 4 3, 3 4 1, 3 4 3}]

MatrixForm[IncidenceMatrix[g]]

1 0 1 0
1 1 0 0
0 1 1 2

◼ A matrix plot of a large incidence matrix

Graph[Table[i → Mod[i^2, 10^3], {i, 0, 10^3 -− 1}]];

 160 | The Linear Algebra Survival Guide

Timing[A = IncidenceMatrix[%]]

0.000160, SparseArray Specified elements: 1996
Dimensions: {1000, 1000}



MatrixPlot[A]

1 200 400 600 800 1000

1

200

400

600

800

1000

1 200 400 600 800 1000
1

200

400

600

800

1000

Inconsistent linear system

An inconsistent linear system is a linear system that has no solution.

Illustration

◼ An inconsistent linear system in four equations and three unknowns

Clear[A, b, x, y, z]

A =

1 3 5
9 1 8
2 2 3
0 6 3

; b =

1
2
3
4

;

system = Thread[A.{x, y, z} ⩵ Flatten[b], Alignment → Right]

{x + 3 y + 5 z, 9 x + y + 8 z, 2 x + 2 y + 3 z, 6 y + 3 z} ⩵ {1, 2, 3, 4}

Solve[system, {x, y, z}]

{}

The Linear Algebra Survival Guide | 161

This shows that there are no values of x, y, and z for which the system has a solution. The same result can be obtained by
showing that the associated matrix equation has no solution.

LinearSolve[A, b];

LinearSolve::nosol : Linear equation encountered that has no solution. $

Manipulation

◼ Exploring the consistency of a linear system

Manipulate[LinearSolve[{{1, 3, 5}, {9, 1, 8}, {10, 4, a}}, {1, 2, 2}], {a, 10, 15, 1}]

a

-−
2

39
, -−

8

39
,
1

3


We use Manipulate and LinearSolve to explore the consistency of linear systems in three equations and three variables.
The manipulation shows that if we let a = 10, the generated system is consistent. On the other hand, if a = 13, an inconsis-
tent system results.

LinearSolve[{{1, 3, 5}, {9, 1, 8}, {10, 4, 13}}, {1, 2, 2}]

LinearSolve::nosol : Linear equation encountered that has no solution. $

Manipulate[{{1, 3, 5}, {9, 1, 8}, {10, 4, a}}.{x, y, z} ⩵ {1, 2, 2},
{a, 10, 16, 1}, {x, -−5, 5, 1}, {y, -−5, 5, 1}, {z, -−5, 5, 1}]

a

x

y

z

False

We use Manipulate to show that the linear system

{x + 3 y + 5 z, 9 x + y + 8 z, 10 x + 4 y + 13 z} ⩵ {1, 2, 2}

 162 | The Linear Algebra Survival Guide

is inconsistent.

LinearSolve[{{1, 3, 5}, {9, 1, 8}, {10, 4, 13}}, {1, 2, 2}]

LinearSolve::nosol : Linear equation encountered that has no solution. $
LinearSolve[{{1, 3, 5}, {9, 1, 8}, {10, 4, 13}}, {1, 2, 2}]

Injective linear transformation

A linear transformation T : V ⟶ W from a vector space V to a vector space W is injective (one-to-one) if T[u] = T[v] only if
u = v for all vectors u and v in V.

Illustration

◼ An injective linear transformation T : ℝ[t,2] ⟶ ℝ2

Clear[T, a, b, c, t]

Ta_ + b_ t_ + c_ t_2 := {a, b}

Ta + b t + c t2 == Tc + d t + e t2

{a, b} ⩵ {c, d}

◼ An injective linear transformation T : ℝ2⨯3 ⟶ ℝ6

Clear[T, a, b, c, d, e, f, A, B]

T[{{a_, b_}, {c_, d_}, {e_, f_}}] := {a, b, c, d, e, f}

MatrixForm[A = {{a, b}, {c, d}, {e, f}}]

a b
c d
e f

T[A]

{a, b, c, d, e, f}

Clear[g, h, i, j, k, l]

MatrixForm[B = {{g, h}, {i, j}, {k, l}}]

g h
i j
k l

The Linear Algebra Survival Guide | 163

T[B]

{g, h, i, j, k, l}

Hence

T[A] ⩵ T[B]

{a, b, c, d, e, f} ⩵ {g, h, i, j, k, l}

if and only if A = B.

Inner product

An inner product < u, v > on a vector space V is a bilinear functional in the variables u and v on the vector space V
satisfying the following equations:

Properties of inner products

〈u, v〉 = 〈v, u〉 (1)

〈a u, v〉 = a 〈u, v〉 (2)

〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 (3)

〈u, u〉 ≥ 0 (4)

〈u, u〉 = 0 if and only if u = 0. (5)

Illustration

◼ The inner product on the Euclidean vector space 𝔼2

By definition, a Euclidean n-space is the coordinate space ℝn, equipped with the dot product inner product.

〈u_, v_〉 := Sqrt[Dot[u, v]]

u = {1, 2}; v = {3, 4};

〈u, v〉

11

Norm[{1, 2}] ⩵ 〈{1, 2}, {1, 2}〉

True

Any positive-definite symmetric n-by-n matrix A can be used to define an inner product. If A is an identity matrix, the inner
product defined by A is the Euclidean inner product.

 164 | The Linear Algebra Survival Guide

◼ A nonstandard inner product on the coordinate vector space ℝ2

Clear[A]

MatrixForm[A = DiagonalMatrix[{2, 3}]]

2 0
0 3

PositiveDefiniteMatrixQ[A]

True

The following sample calculations show that the function

〈u_, v_〉 := u.A.v

defines an inner product.

u = {1, 2}; v = {3, 4};

〈u, v〉

30

〈u, v〉 ⩵ 〈v, u〉

True

〈{1, 2}, {3, 4}〉 ⩵ 〈{3, 4}, {1, 2}〉

True

〈a u, v〉 ⩵ a 〈u, v〉

True

〈{a, 2 a}, {3, 4}〉 ⩵ a 〈{1, 2}, {3, 4}〉

True

w = {5, 6};

〈u + w, v〉 ⩵ 〈u, v〉 + 〈w, v〉

True

〈{6, 8}, {3, 4}〉 ⩵ 〈{1, 2}, {3, 4}〉 + 〈{5, 6}, {3, 4}〉

True

The Linear Algebra Survival Guide | 165

〈u, u〉 ≥ 0

True

〈{1, 2}, {1, 2}〉 ≥ 0

True

Clear[x, y]

Reduce[〈{x, y}, {x, y}〉 ⩵ 0, {x, y}, Reals]

x ⩵ 0 && y ⩵ 0

The function 〈u,v〉 satisfies the definition of an inner product:

〈u, v〉 ⩵ 〈v, u〉

True

〈{1, 2}, {3, 4}〉 ⩵ 〈{3, 4}, {1, 2}〉

True

{1, 2}.A.{3, 4}

30

{3, 4}.A.{1, 2}

30

〈v, u〉

30

〈{3, 4}, {1, 2}〉

30

Manipulation

◼ Exploring inner products on ℝ3

Manipulate[{1, 2, 3}.DiagonalMatrix[{a, b, 1}].{4, 5, 6}, {a, -−5, 5, 1}, {b, -−5, 5, 1}]

 166 | The Linear Algebra Survival Guide

a

b

-−52

We use Manipulate and DiagonalMatrix to explore inner products on ℝ3. The manipulation displays the value of the inner
product if for a = b = - 5.

Inner product norm

An inner product norm is a vector norm KwL = < w, w > determined by an inner product <u, v>.

Illustration

◼ The space ℝ3 as an inner product space with a nonstandard inner product norm

Clear[A]

MatrixForm[A = DiagonalMatrix[{1, 2, 3}]]

1 0 0
0 2 0
0 0 3

〈u_, v_〉 := u.A.v

u = {2, -−1, 3}; v = {1, 1, 1};

〈u, v〉

9

The associated vector norm is

Nw_O := Sqrt[〈w, w〉]

NuO

33

and the normalized vector n corresponding to vector u is

The Linear Algebra Survival Guide | 167

n =
1

NuO
u


2

33
, -−

1

33
,

3

11


NnO

1

Manipulation

◼ Exploring vector norms

Manipulate[Sqrt[{1, 2, 3, 4}.DiagonalMatrix[{1, a, b, 3}].{1, 2, 3, 4}],
{a, -−3, 3, 1}, {b, -−4, 4, 1}]

a

b

5

We use Manipulate, Sqrt, and DiagonalMatrix to explore the norms of vectors determined by different diagonal matrices.
The display is the norm obtained by letting a = - 2 and b = -4.

Inner product space

An inner product space is a vector space equipped with an inner product.

Illustration

◼ The coordinate space ℝ2 as an inner product space

Clear[x, y, z]

Dot[x, y] = < x, y >

x = {1, 2}; y = {-−5, 3}; z = {-−1, 12};

Dot[x, y]

1

 168 | The Linear Algebra Survival Guide

Dot[x, y] ⩵ Dot[y, x]

True

Dot[-−4 x, y] ⩵ -−4 Dot[x, y]

True

Dot[x + y, z] ⩵ Dot[x, z] + Dot[y, z]

True

Dot[x, x] > 0

True

◼ The coordinate space ℝ3 as an inner product space

A = RandomInteger[{0, 9}, {3, 3}];

MatrixForm[A]

1 0 0
0 2 0
0 0 3

MatrixForm[M = Transpose[A].A]

1 0 0
0 4 0
0 0 9

M =
110 90 14
90 106 14
14 14 2

;

SymmetricMatrixQ[M]

True

PositiveDefiniteMatrixQ[M]

True

A necessary and sufficient condition for a complex matrix to be positive-definite is that the Hermitian part

AH =
1

2
A + AH (1)

is positive-definite. In the real case, this reduces to the requirement that the symmetric part

The Linear Algebra Survival Guide | 169

AT =
1

2
A + AT (2)

is positive-definite.

PositiveSemidefiniteMatrixQ
1

2
(M + Transpose[M])

True

The following sample calculations show that the function

〈u_, v_〉 := u.M.v

defines an inner product.

u = {1, 2, 3}; v = {4, -−1, 3};

〈u, v〉

1128

〈{1, 2, 3}, {4, -−1, 3}〉

1128

〈u, v〉 ⩵ 〈v, u〉

True

〈{1, 2, 3}, {4, -−1, 3}〉 ⩵ 〈{4, -−1, 3}, {1, 2, 3}〉

True

〈4 u, v〉 ⩵ 4 〈u, v〉

True

〈{4, 8, 12}, {4, -−1, 3}〉 ⩵ 4 〈{1, 2, 3}, {4, -−1, 3}〉

True

w = {3, 0, 2};

〈u + w, v〉 ⩵ 〈u, v〉 + 〈w, v〉

True

 170 | The Linear Algebra Survival Guide

〈{4, 2, 5}, {4, -−1, 3}〉 ⩵ 〈{1, 2, 3}, {4, -−1, 3}〉 + 〈{3, 0, 2}, {4, -−1, 3}〉

True

〈u, u〉 > 0

True

〈{1, 2, 3}, {1, 2, 3}〉 > 0

True

Interpolating polynomial

The polynomial p[t] of degree n whose graph passes through (n + 1) points in ℝ2 is the interpolating polynomial in the
variable t for the given points.

Illustration

◼ An interpolating polynomial of degree 3

points = {{-−1, 5}, {0, -−2}, {2, 7}, {3, 4}};

p[t_] := a0 + a1 t + a2 t
2 + a3 t

3;

system = {p[-−1] ⩵ 5, p[0] ⩵ -−2, p[2] ⩵ 7, p[3] ⩵ 4}

{a0 -− a1 + a2 -− a3 ⩵ 5, a0 ⩵ -−2, a0 + 2 a1 + 4 a2 + 8 a3 ⩵ 7, a0 + 3 a1 + 9 a2 + 27 a3 ⩵ 4}

Solve[system]

a0 → -−2, a1 → 0, a2 →
65

12
, a3 → -−

19

12


p1 = -−2 +
65

12
t2 -−

19

12
t3;

plot1 = ListPlot[points];

plot2 = Plot[p1, {t, -−2, 4}];

The Linear Algebra Survival Guide | 171

Show[plot1, plot2]

-−1 1 2 3

-−2

2

4

6

The Mathematica Fit function can also be used to calculate an interpolating polynomial with real coefficients.

p2 = Fitpoints, 1, t, t2, t3, t

-−2. -− 4.63083×10-−15 t + 5.41667 t2 -− 1.58333 t3

Chop[p1 ⩵ p2]

True

Intersection of subspaces

If U and V are two subspaces of a vector space W, then the intersection (U ⋂ V) of U and V is the set of vectors of W
belonging to both U and V. The intersection of two subspaces is always a subspace. If U and V have no nonzero vectors in
common, then (U ⋂ V) is the zero subspace of W. In that case, the subspaces U and V are said to be disjoint.

Illustration

◼ Two disjoint subspaces of ℝ4

U = {a {1, 3, 0, 1} : a ∈ ℝ}

V = {a {0, 3, 0, 2} : a ∈ ℝ}

Reduce[{a, 3 a, 0, a} ⩵ {0, 3 a, 0, 2 a}, a]

a ⩵ 0

Hence

U ⋂ V = {{0, 0, 0, 0}}

 172 | The Linear Algebra Survival Guide

◼ Two non-disjoint subspaces of ℝ4

U = span[{{a, 3 a, 0, b} , {0, 0, 0, b}}];

V = span[{{a, 3 a, 0, a} }];

Reduce[{a, 3 a, 0, b} == {a, 3 a, 0, a}, {a, b}]

b ⩵ a

Hence

U ⋂ V = {{a, 3 a, 0, a} : a ∈ ℝ}

Invariant subspace

A subspace W of a vector space V is invariant under a linear operator T : V ⟶ V (is T-invariant) if the vectors T[v] belong
to W for all vectors v in W.

Illustration

◼ A subspace of ℝ3 invariant under a projection operator

T[{x_, y_, z_}] := {x, y, 0}

Sy = {{0, y, 0} : y ∈ Reals}

T[{0, y, 0}]

{0, {-−5, 3}, 0}

◼ A subspace of ℝ3 not invariant under a linear operator

T[{x_, y_, z_}] := {0, x, y}

Sxy = {{x, y, 0} : x, y ∈ Reals}

T[{1, 1, 0}]

{0, 1, 1}

Since the vector {1, 1, 0} belongs to the subspace Sxy, but the vector T[{1, 1, 0)} = {0, 1, 1} does not, the subspace Sxy is
not T-invariant.

A linear operator T : ℝn ⟶ ℝn is representable by a diagonal matrix if and only if ℝn is a direct sum of one-dimensional T-
invariant subspaces of ℝn.

◼ Two one-dimensional T-invariant subspaces of ℝ3

Suppose that T is linear operator represented in the standard basis of ℝ3 by the matrix

The Linear Algebra Survival Guide | 173

A =
1 1 0
1 1 1
0 0 0

{{1, 1, 0}, {1, 1, 1}, {0, 0, 0}}

Then the following calculation

Eigensystem[A]

{{2, 0, 0}, {{1, 1, 0}, {-−1, 1, 0}, {0, 0, 0}}}

shows that 2 is the only eigenvalue of A and that it has precisely two associated one-dimensional eigenspaces:

E1 = {{a, a, 0} : a ∈ Reals}

E2 = {{-−a, a, 0} : a ∈ Reals}

Hence ℝ3 is not a direct sum of one-dimensional A-invariant eigenspaces of the matrix A.

◼ Three one-dimensional T-invariant subspaces of ℝ3

A =
4 3 9
0 1 3
0 0 2

;

Eigensystem[A]

{{4, 2, 1}, {{1, 0, 0}, {-−9, 3, 1}, {-−1, 1, 0}}}

The calculation

Solve[{x, y, z} ⩵ a {1, 0, 0} + b {-−9, 3, 1} + c {-−1, 1, 0}, {a, b, c}]

{}

shows that every vector {x, y, z} in ℝ3 is a (unique) linear combination of the eigenvectors {1, 0, 0}, {-9, 3, 1}, {-1, 1, 0}.

Since eigenvectors belonging to distinct eigenvalues are linearly independent, the space ℝ3 is a direct sum of the three
associated A-invariant eigenspaces:

A.{a, 0, 0} ⩵ 4 {a, 0, 0}

True

A.{-−9 b, 3 b, b} ⩵ 2 {-−9 b, 3 b, b}

True

A.{-−c, c, 0} ⩵ {-−c, c, 0}

True

 174 | The Linear Algebra Survival Guide

Inverse of a linear transformation

The inverse of a linear transformation T : V ⟶ W between two real or complex vector spaces V and W is a linear transfor-
mation S : W ⟶ V for which S(T(v)) = v for all vectors v in V and T(S(w)) = w for all vectors w in W.

If T from ℝn to ℝn is an invertible linear transformation represented by a matrix A, then the inverse matrix of A represents
the inverse S of T.

Illustration

◼ Inverse of a linear transformation from ℝ2 to ℝ2

T[{x_, y_}] := {x + y, x -− y}

S[{u_, v_}] := 
1

2
(u + v),

1

2
(u -− v)

u = {3, 7};

{T[u], S[T[u]]}

{{10, -−4}, {3, 7}}

In the standard basis of ℝ2, the linear transformations T and S are represented by the following matrices:

MatrixForm[T = Transpose[{{1, 1}, {1, -−1}}]]

1 1
1 -−1

MatrixForm[S = Transpose[{{1/∕2, 1/∕2}, {1/∕2, -−1/∕2}}]]

1

2

1

2
1

2
-−
1

2

These matrices are inverses of each other:

{S.T ⩵ IdentityMatrix[2], T.S ⩵ IdentityMatrix[2]}

{True, True}

The Linear Algebra Survival Guide | 175

Properties of matrix inverses

Inverse[Inverse[A]] = A (1)

Inverse[A.B] = Inverse[B].Inverse[A] (2)

Transpose[Inverse[A]] = Inverse[Transpose[A]] (3)

Inverse[A].A = A.Inverse[A] = IdentityMatrix (4)

Inverse[a A] = (1 /∕ a) Inverse[A] if a ≠ 0 (5)

Det[Inverse[A]] = 1 /∕ Det[A] (6)

Illustration

◼ The inverse of a 2-by-2 matrix

A = {{1, 2}, {3, 4}};

MatrixForm[Inverse[A]]

-−2 1
3

2
-−
1

2

MatrixForm[id2 = IdentityMatrix[2]]

1 0
0 1

{A.Inverse[A] ⩵ IdentityMatrix[2], A.Inverse[A] == IdentityMatrix[2]}

{True, True}

Not all matrices are invertible.

◼ A non-invertible 3-by-3 matrix

B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

Inverse[B];

Inverse::sing : Matrix {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} is singular. $

Mathematica tells us that this matrix has no inverse. Matrices that have no inverse are called singular.

In addition to the Inverse function, Mathematica also supports the superscript notation of matrix inversion. For any given

invertible matrix A, we can define the inverse of A by A-− 1.

 176 | The Linear Algebra Survival Guide

Inverse of a matrix

The inverse of a matrix A is a matrix B for which A B = B A = IdentityMatrix[n], where n is the dimension of A. Not every
square matrix has an inverse. Matrix inverses have the following properties:

fredeszabo
Sticky Note
Marked set by fredeszabo

◼ The matrix A is a finite product of elementary matrices.

◼ The matrix A is equivalent to an identity matrix.

◼ The matrix equation Av = 0 has only the trivial (zero) solution.

◼ The null space of A is a zero space: NullSpace[A] = {0}.

◼ The matrix A has full rank: MatrixRank[A] = n.

◼ The columns of A are linearly independent.

◼ If A is a real matrix, the columns of A span ℝn.

◼ The transpose of A is invertible.

◼ The scalar 0 is not an eigenvalue of A.

◼ The matrix A has a left inverse LA and a right inverse R A and L A = R A.

The inverse of a matrix A is a matrix B for which A B = B A is an identity matrix. This definition forces the matrix A to be
square. Not all square matrices have inverses. However, matrices that aren’t square can have one-sided inverses: either
AB or BA may be an identity matrix.

Illustration

◼ Inverse of a 2-by-2 matrix

A = {{1, 2}, {3, 4}};

B = Inverse[A]

{-−2, 1}, 
3

2
, -−

1

2


A.B ⩵ B.A ⩵ IdentityMatrix[2]

True

◼ One-sided inverse of a 2-by-3 matrix

A = {{1, 2, 3}, {4, 5, 6}};

B = PseudoInverse[A]

-−
17

18
,
4

9
, -−

1

9
,
1

9
, 

13

18
, -−

2

9


A.B

{{1, 0}, {0, 1}}

The Linear Algebra Survival Guide | 177

For any numerical n-by-n matrix A with real or complex scalars, the following statements are equivalent:

◼ The matrix A is invertible (nonsingular).

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

B.A


5

6
,
1

3
, -−

1

6
, 

1

3
,
1

3
,
1

3
, -−

1

6
,
1

3
,
5

6


These calculations show that the matrix A has a right inverse, but not a left inverse. The PseudoInverse function produces
a one-sided inverse or an inverse, depending on whether or not the given matrix is invertible.

◼ Inverse of a 3-by-3 matrix

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 10}};

inverseA = Inverse[A]

{-−2, 1}, 
3

2
, -−

1

2


A.inverseA ⩵ inverseA.A ⩵ IdentityMatrix[3]

True

If A is an invertible matrix, both the PseudoInverse and the Inverse functions produce the inverse of A.

PseudoInverse[A] ⩵ Inverse[A]

True

Manipulation

◼ The inverse of a 3-by-3 matrix

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9 a}}]

1 2 3
4 5 6
7 8 9 a

Manipulate[Evaluate[MatrixForm[PseudoInverse[A]]], {a, 2, 5, 1}]

a

-−
14

9

4

9

1

9
10

9

1

9
-−
2

9
1

9
-−
2

9

1

9

 178 | The Linear Algebra Survival Guide

We can combine Manipulate, Evaluate, MatrixForm, and PseudoInverse to explore the pseudoinverses of the generated
matrices. The displayed pseudoinverse is obtained by letting a = 2.

Invertible matrix

A matrix A is invertible if there exists a matrix B, called the inverse of A and usually denoted by A-−1, for which the products
(A B) and (B A) are an identity matrix. An invertible matrix is always square.

There is an intimate connection between the Gaussian elimination steps for linear systems and the invertibility of matrix
operations. Every invertible matrix is a (nonunique) product of elementary matrices and every elementary matrix is the
result of a single application of a Gaussian elimination step to an identity matrix. This means that for small matrices, we
have an excellent idea of the geometric meaning of invertibility.

Illustration

◼ An invertible 2-by-2 matrix

MatrixForm[A1 = {{1, 2}, {3, 4}}]

1 2
3 4

MatrixForm[A2 = Inverse[A1]]

1 2
3 4

-−2 1
3

2
-−
1

2

A1.A2 ⩵ IdentityMatrix[2] ⩵ A2.A1

True

◼ Invertible 2-by-2 elementary matrices

EA1 =
0 1
1 0

(interchange of rows 1 and 2)

EA2 =
1 0
0 s

(multiplication of row 2 by a nonzero constant s)

EA3 =
s 0
0 1

(multiplcation of row 1 by a nonzero constant s)

EA4 =
1 s
0 1

(addition of s times row 2 to row 1)

EA5 =
1 0
s 1

(addition of s times row 1 to row 2)

◼ Invertible 3-by-3 matrices

The Linear Algebra Survival Guide | 179

A =
9 3 1
-−1 3 0
4 0 9

;

Adding 9 times the second row to the first row

E1 =
1 9 0
0 1 0
0 0 1

;

MatrixForm[A2 = E1. A]

0 30 1
-−1 3 0
4 0 9

Adding 4 times the second row to the third row

E2 =
1 0 0
0 1 0
0 4 1

;

MatrixForm[A3 = E2. A2]

0 30 1
-−1 3 0
0 12 9

Interchanging the first and second rows

E3 =
0 1 0
1 0 0
0 0 1

;

MatrixForm[A4 = E3. A3]

-−1 3 0
0 30 1
0 12 9

Multiplying the first row by -−1

E4 =
-−1 0 0
0 1 0
0 0 1

;

MatrixForm[A5 = E4. A4]

1 -−3 0
0 30 1
0 12 9

Dividing the second row by 30

 180 | The Linear Algebra Survival Guide

E5 =
1 0 0
0 1/∕30 0
0 0 1

;

MatrixForm[A6 = E5. A5]

1 -−3 0

0 1
1

30

0 12 9

Subtracting 12 times the second row from the third row

E6 =
1 0 0
0 1 0
0 -−12 1

;

MatrixForm[A7 = E6. A6]

1 -−3 0

0 1
1

30

0 0
43

5

Adding 3 times the second row to the first row

E7 =
1 3 0
0 1 0
0 0 1

;

MatrixForm[A8 = E7. A7]

1 0
1

10

0 1
1

30

0 0
43

5

Multiplying the third row by 5/43

E8 =
1 0 0
0 1 0
0 0 5/∕43

;

MatrixForm[A9 = E8. A8]

1 0
1

10

0 1
1

30

0 0 1

Subtracting 1/30 times the third row from the second row

The Linear Algebra Survival Guide | 181

E9 =
1 0 0
0 1 -−1/∕30
0 0 1

;

MatrixForm[A10 = E9. A9]

1 0
1

10

0 1 0
0 0 1

Subtracting 1/10 times the third row from the second row

E10 =
1 0 -−1/∕10
0 1 0
0 0 1

;

MatrixForm[A11 = E10. A10]

1 0 0
0 1 0
0 0 1

The product of the ten elementary matrices used to convert the matrix A to the 3-by-3 identity matrix is the inverse B =
matrix of the matrix A.

B = E10.E9.E8.E7.E6.E5.E4.E3.E2.E1 ⩵ Inverse[A]

True

Isometry

An isometry on a normed vector space is an invertible linear transformation that preserves the distances between the
vectors of the space. Orthogonal transformations are isometries.

Illustration

◼ An orthogonal transformation preserving the Euclidean distances between vectors in ℝ2

MatrixForm[A = {{Cos[x], Sin[x]}, {-−Sin[x], Cos[x]}}]; x = π/∕3;

u = {1, 3}; v = {-−5, 4};

distance[u_, v_] := Norm[u -− v]

distance[u, v]

37

 182 | The Linear Algebra Survival Guide

Simplify[distance[A.u, A.v]]

37

The linear transformation represented by the orthogonal matrix A in the standard basis of ℝ2 is an isometry.

Isomorphism of vector spaces

Many different vector spaces are isomorphic. This means that we can translate the vectors from one space one-by-one to
vectors in another space and conversely in a way that preserves the vector space structure: that is, linear combinations are
preserved. Here is the basic theorem that makes this statement precise.

Every n-dimensional real vector space is isomorphic to the real coordinate space ℝn and every n-dimensional complex
vector space is isomorphic to the complex coordinate space ℂn. These isomorphisms are the basis for being able to use
matrix representations of linear transformations and matrix multiplication for the composition of linear transformations.
Different choices of bases produce different isomorphisms.

In principle, this suggests that in finite-dimensional linear algebra, we can always work with column or row vectors
and matrix operations. However, often the nature of the vectors and their additional structure is not captured by this
basic isomorphism.

Illustration

◼ An isomorphism between the polynomial space ℝ[t,3] and the coordinate space ℝ4

Consider the following two bases for ℝ[t,3] and ℝ4 :

Basis1 = 1, t, t2, t3;

Basis2 = {e1 = {1, 0, 0, 0}, e2 = {0, 1, 0, 0}, e3 = {0, 0, 1, 0}, e4 = {0, 0, 0, 1}};

The definition

T[1] = e1, T[t] = e2, Tt2 = e3, Tt3 = e4

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

determines a unique invertible linear transformation T from ℝ[t,3] to ℝ4 whose inverse is defined by

S[e1] = 1, S[e2] = t, S[e3] = t2, S[e4] = t3

Hence the spaces ℝ[t,3] and ℝ4 are isomorphic.

◼ An isomorphism between the matrix space ℝ2⨯2 of 2-by-2 real matrices and the coordinate space ℝ4

Consider the following basis for ℝ2⨯2

B = {A11, A12, A21, A22};

where

The Linear Algebra Survival Guide | 183

fredeszabo
Sticky Note
Marked set by fredeszabo

A11 = {{1, 0}, {0, 0}};
A12 = {{0, 1}, {0, 0}};
A21 = {{0, 0}, {1, 0}};
A22 = {{0, 0}, {0, 1}};

Any real matrix A = {{a, b},{c, d}} is a unique sum of the four basis matrices:

{{a, b}, {c, d}} ⩵ a A11 + b A12 + c A21 + d A22

True

We map the basis B to the standard basis for ℝ4 :

T[A11] = {1, 0, 0, 0};
T[A12] = {0, 1, 0, 0};
T[A21] = {0, 0, 1, 0};
T[A22] = {0, 0, 0, 1};

By definition, the function T defines an isomorphism from ℝ2⨯2 to ℝ4.

 184 | The Linear Algebra Survival Guide

J

Jacobian determinant

If F and G are two differentiable functions in some region in ℝ4 and u and v are differentiable functions in x and y, then
determinants and Cramer’s rule can be used to find the partial derivatives

ux = -−
Det[{{Fx, Fv}, {Gx, Gv}}]

Det[{{Fu, Fv}, {Gu, Gv}}]
and vx = -−

Det[{{Fu, Fx}, {Gu, Gx}}]

Det[{{Fu, Fv}, {Gu, Gv}}]

uy = -−
Det[{{Fy, Fv}, {Gy, Gv}}]

Det[{{Fu, Fv}, {Gu, Gv}}]
and vy = -−

Det[{{Fu, Fy}, {Gu, Gy}}]

Det[{{Fu, Fv}, {Gu, Gv}}]

at all points {x,y} at which Det[{{Fu, Fv}, {Gu, Gv}}] ≠ 0.

The four determinants involved are called the Jacobians of the functions F and G are denoted by

J
F, G

x, v
, J

F, G

y, v
, J

F, G

u, x
, J

F, G

u, v


Illustration

◼ The Jacobian of the polar coordinate transformation

F[r_, θ_] := r Cos[θ];

G[r_, θ_] := r Sin[θ];

Det[{{D[F[r, θ], r], D[F[r, θ], θ]}, {D[G[r, θ], r], D[G[r, θ], θ]}}]

r Cos[θ]2 + r Sin[θ]2

Simplifyr Cos[θ]2 + r Sin[θ]2

r

Hence the Jacobian of the polar coordinate transformation is

J
F, G

r, θ
 = r (1)

◼ Using Jacobians to calculate partial derivatives

F[x_, y_, u_, v_] := x2 + y3 x + u2 + v3;

G[x_, y_, u_, v_] := x2 + 3 y x + u4 -− v2;

The Linear Algebra Survival Guide | 185

J[F, G, u, v] =
Det[
{{D[F[x, y, u, v], u], D[F[x, y, u, v], v]}, {D[G[x, y, u, v], u], D[G[x, y, u, v], v]}}];

J[F, G, x, v] =
Det[
{{D[F[x, y, u, v], x], D[F[x, y, u, v], v]}, {D[G[x, y, u, v], x], D[G[x, y, u, v], v]}}];

J[F, G, u, x] =
Det[
{{D[F[x, y, u, v], u], D[F[x, y, u, v], x]}, {D[G[x, y, u, v], u], D[G[x, y, u, v], x]}}];

J[F, G, y, v] =
Det[
{{D[F[x, y, u, v], y], D[F[x, y, u, v], v]}, {D[G[x, y, u, v], y], D[G[x, y, u, v], v]}}];

J[F, G, u, y] =
Det[
{{D[F[x, y, u, v], u], D[F[x, y, u, v], y]}, {D[G[x, y, u, v], u], D[G[x, y, u, v], y]}}];

ux = Simplify
-−J[F, G, x, v]

J[F, G, u, v]


-−
(4 + 6 v) x + 9 v y + 2 y3

4 u + 3 u3 v

vx = Simplify
-−J[F, G, u, x]

J[F, G, u, v]


2 x -− 4 u2 x + 3 y -− 2 u2 y3

2 v + 6 u2 v2

uy = Simplify
-−J[F, G, y, v]

J[F, G, u, v]


-−
3 x 3 v + 2 y2

4 u + 3 u3 v

vy = Simplify
-−J[F, G, u, y]

J[F, G, u, v]


3 x -− 6 u2 x y2

2 v + 6 u2 v2

 186 | The Linear Algebra Survival Guide

Illustration

◼ A diagonal 2-by-2 Jordan block

J1 = MatrixForm[DiagonalMatrix[{3, 3}]]

3 0
0 3

◼ A 2-by-2 Jordan block

J2 = MatrixForm[{{3, 1}, {0, 3}}]

3 1
0 3

◼ A 3-by-3 Jordan block

J3 = {{3, 1, 0}, {0, 3, 1}, {0, 0, 3}}

3 1 0
0 3 1
0 0 3

◼ A 4-by-4 Jordan block

J3 = {{5, 1, 0, 0}, {0, 5, 1, 0}, {0, 0, 5, 1}, {0, 0, 0, 5}}

5 1 0 0
0 5 1 0
0 0 5 1
0 0 0 5

Jordan matrix

A matrix J is a Jordan matrix if it is a direct sum of Jordan blocks. The JordanDecomposition function yields the Jordan
decomposition of a square matrix. The result is a list {s, j} where s is a similarity matrix and j is a matrix in Jordan canonical
form. Every square matrix is similar to a Jordan matrix, also called a matrix in Jordan canonical form. (Mathematica uses
the lower-case letter s and j as names for the outputs of the JordanDecomposition function.)

Illustration

◼ A direct sum of Jordan blocks

The direct sum of the Jordan blocks J1 and J2 is the following matrix:

The Linear Algebra Survival Guide | 187

Jordan block

A Jordan block is a square matrix which has zero entries everywhere except on the diagonal, where the entries are a fixed
scalar, and except on the superdiagonal, where the entries are either all 0s or all 1s.

MatrixForm[J1 ⊕J2 = {{3, 1, 0, 0, 0, 0, 0}, {0, 3, 1, 0, 0, 0, 0}, {0, 0, 3, 0, 0, 0, 0},
{0, 0, 0, 5, 1, 0, 0}, {0, 0, 0, 0, 5, 1, 0}, {0, 0, 0, 0, 0, 5, 1}, {0, 0, 0, 0, 0, 0, 5}}]

3 1 0 0 0 0 0
0 3 1 0 0 0 0
0 0 3 0 0 0 0
0 0 0 5 1 0 0
0 0 0 0 5 1 0
0 0 0 0 0 5 1
0 0 0 0 0 0 5

(The direct sum symbol is created by typing Esc c+ Esc.)

◼ A Jordan decomposition

MatrixForm[A = {{27, 48, 81}, {-−6, 0, 0}, {1, 0, 3}}]

27 48 81
-−6 0 0
1 0 3

{S, J} = JordanDecomposition[A];

Map[MatrixForm, %]



3 18 2

-−3 -−9 -−
1

4

1 2 0

,
6 0 0
0 12 1
0 0 12



MatrixForm[S.J.Inverse[S]]

27 48 81
-−6 0 0
1 0 3

The matrix S is a similarity matrix and the J is the Jordan form of the matrix A.

Manipulation

◼ Exploring Jordan decompositions

MatrixForm[A = RandomInteger[{0, 9}, {3, 3}]]

A =
0 7 5
9 1 9
9 9 5

;

 188 | The Linear Algebra Survival Guide

Manipulate[{S, J} = N[JordanDecomposition[{{a, 7, 5}, {9, 1, 9}, {9, 9, 5}}]], {a, -−5, 5, 1}]

a

{{{-−4.97792, -−0.572864, 0.513742}, {3.34385, -−0.592494, 0.841237}, {1., 1., 1.}},
{{-−9.70659, 0., 0.}, {0., -−5.48822, 0.}, {0., 0., 17.1948}}}

We use Manipulate, N, and JordanDecomposition to explore the Jordan decompositions by varying the parameter a. If a
= - 4, for example, then the manipulation shows that the Jordan decomposition of the matrix

A =
-−4 7 5
9 1 9
9 9 5

is the product of S, J, and the inverse of S:

MatrixForm[Chop[S.J.Inverse[S]]]

-−4. 7. 5.
9. 1. 9.
9. 9. 5.

The Linear Algebra Survival Guide | 189

K

Kernel of a linear transformation

The kernel of a linear transformation T : V ⟶ W from a vector space V to a vector space W is the set of all vectors v in V
with the property that T[v] = 0 in W. It is a subspace of V. The kernel of a matrix transformation TA is the null space of the
matrix A.

Illustration

◼ The kernel of a projection in ℝ3

T[{x_, y_, z_}] := {x, y, 0}

T[{x, y, z}] ⩵ {0, 0, 0}

{x, y, 0} ⩵ {0, 0, 0}

Therefore the set of all vectors {0, 0, z} is the kernel of T.

◼ The kernel of a linear transformation from ℝ3 to ℝ2

T[{x_, y_, z_}] := {3 x, -−4 z}

T[{x, y, z}] ⩵ {0, 0}

{3 x, -−4 z} ⩵ {0, 0}

The set of all vectors {0, y, 0} is the kernel of T.

◼ The kernel of a matrix transformation from ℝ3 to ℝ3

A =
1 4 9
7 5 5
2 0 1

;

NullSpace[A]

{}

The kernel of the matrix transformation TA is the zero subspace of ℝ3. The transformation TA is invertible since the matrix A
is invertible.

 190 | The Linear Algebra Survival Guide

MatrixForm[B = Inverse[A]]

-−
5

73

4

73

25

73

-−
3

73

17

73
-−
58

73
10

73
-−

8

73

23

73

A.B ⩵ B.A ⩵ IdentityMatrix[3]

True

◼ A matrix transformation from ℝ3 to ℝ3 with a one-dimensional kernel

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

A =
1 2 3
4 5 6
7 8 9

;

NullSpace[A]

{{1, -−2, 1}}

The kernel of the matrix transformation TA is the span of the vector {1, -2, 1}.

A.(k*⋆{1, -−2, 1})

{0, 0, 0}

Kronecker delta

The Kronecker delta function δ𝛿{n1,n2,...} is a function on a list {n1, n2, ... } of lists that equals 1 if all ni are equal and 0

otherwise. The built-in KroneckerDelta function calculates Kronecker deltas.

Illustration

◼ The Kronecker delta function on a list of three unequal lists

data = {{1, 9}, {0, 1}, {5, 3}};

KroneckerDelta[{1, 9}, {0, 1}, {5, 3}]

0

◼ The Kronecker delta function on a list of two equal lists

data = {{1, 2}, {1, 2}};

The Linear Algebra Survival Guide | 191

KroneckerDelta[{1, 2}, {1, 2}]

1

◼ Using the Kronecker delta to construct an identity matrix

MatrixForm[A = Table[KroneckerDelta[i, j], {i, 1, 3}, {j, 1, 3}]]

1 0 0
0 1 0
0 0 1

Manipulation

◼ The Kronecker delta of a list of three lists

Manipulate[KroneckerDelta[{1, b}, {a -− 1, c}, {b, b}], {a, 1, 4, 1}, {b, 0, 3, 1}, {c, 1, 5, 1}]

a

b

c

1

We use Manipulate and KroneckerDelta to calculate Kronecker deltas. The displayed value 1 is obtained by letting a = 2
and b = c = 1.

Kronecker product

The most intriguing and ingenious operation on matrices is their multiplication. One such operation is the Kronecker
product. The built-in KroneckerProduct function calculates such products.

Illustration

◼ The Kronecker product of two 2-by-2 matrices

Clear[a, b, c, d, r, s, t, u]

MatrixForm[L = {{a, b}, {c, d}}]

a b
c d

 192 | The Linear Algebra Survival Guide

MatrixForm[R = {{r, s}, {t, u}}]

r s
t u

MatrixForm[KroneckerProduct[L, R]]

a r a s b r b s
a t a u b t b u
c r c s d r d s
c t c u d t d u

Manipulation

A = {{2, 3}, {4, 6}}; B = {{a, 5}, {7, b}};

Manipulate[MatrixForm[KroneckerProduct[{{2, 3}, {4, 6}}, {{a, 5}, {7, b}}]],
{a, -−3, 3, 1}, {b, -−4, 4, 1}]

a

b

-−2 10 -−3 15
14 -−4 21 -−6
-−4 20 -−6 30
28 -−8 42 -−12

We can combine Manipulate, MatrixForm, and KroneckerProduct to explore the Kronecker products of different
matrices. The displayed matrix is obtained by letting a = - 1 and b = - 2.

The Linear Algebra Survival Guide | 193

L

Law of cosines

If θ𝜃 is an angle between two vectors u and v in ℝ2 or ℝ3, then the law of cosines says that

Qu -− vR2 ⩵ QuR2 +QvR2 -−2 NuO NvO Cos[θ] (1)

where KwL denotes the Euclidean norm of a vector w.

This law can be used to determine the angle between two vectors.

Illustration

◼ The law of cosines for two vectors in ℝ2

u = {1, 2}; v = {-−3, 4};

Norm[u -− v]2 ⩵ Norm[u]2 + Norm[v]2 -− 2 Norm[u] Norm[v] Cos[θ]

20 ⩵ 30 -− 10 5 Cos[θ]

Solve[%, Cos[θ]]

Cos[θ] →
1

5


θ = NArcCos
1

5


1.10715

The angle θ𝜃 is measured in radians.

◼ The law of cosines for two vectors in ℝ3

Clear[θ]

u = {1, 2, 3}; v = {-−3, 4, -−5};

Norm[u -− v]2 ⩵ Norm[u]2 + Norm[v]2 -− 2 Norm[u] Norm[v] Cos[θ]

84 ⩵ 64 -− 20 7 Cos[θ]

 194 | The Linear Algebra Survival Guide

Solve[%, Cos[θ]]

Cos[θ] → -−
1

7


θ = NArcCos-−
1

7


1.95839

Let us use the Mathematica VectorAngle function to verify the validity of these calculations.

VectorAngle[u, v]

ArcCos-−
1

7


As expected, the two calculations produce the same result.

Least squares

For any given linear system Av = b, the method of least squares produces a solution of the system AT Av = AT b. If Av = b
has a solution, then the equation AT Av = AT b has the same solution. If Av = b has no solution, then the equation
AT Av = AT b produces a “best-possible” approximate solution for Av = b. The Mathematica LeastSquares function can be
used to find least-squares solutions.

Illustration

◼ A least-squares solution of an inconsistent linear system

system = {3 x + 7 y -− z ⩵ 12, x + 2 y + 5 z ⩵ 1, 2 x -− y + 2 z ⩵ 1, x + y + z ⩵ 0};

Solve[system, {x, y, z}]

{}

MatrixForm[A = {{3, 7, -−1}, {1, 2, 5}, {2, -−1, 2}, {1, 1, 1}}]

3 7 -−1
1 2 5
2 -−1 2
1 1 1

The Linear Algebra Survival Guide | 195

MatrixForm[b = {12, 1, 1, 0}]

12
1
1
0

LinearSolve[Transpose[A].A, Transpose[A].b]


704

527
,
543

527
, -−

9

17


LeastSquares[A, b]


704

527
,
543

527
, -−

9

17


The solutions found by the LeastSquares function agree with the solutions found by the LinearSolve function if the linear
system is consistent. In other words, if the associated matrix equation Av = b has a solution.

◼ A least-squares solution of a matrix with full rank

Clear[b]

A = {{6, 3, 1}, {2, 0, 2}, {8, 7, 3}}; b = {1, 2, 3};

MatrixRank[A]

3

LeastSquares[A, b]

{0, 0, 1}

LinearSolve[A, b]

{0, 0, 1}

Manipulation

◼ Exploring the least-squares solutions of a linear system

A = {{3, 7, -−1}, {1, 2, 5}, {2, -−1, 2}, {1, 1, 1}}; b = {12, 1, 1, a};

Manipulate[Evaluate[LeastSquares[A, b]], {a, -−3, 3, 1}]

 196 | The Linear Algebra Survival Guide

a


704

527
,
543

527
, -−

9

17


We combine Manipulate, Evaluate, and LeastSquares to explore the least-squares solutions of different linear systems. If
let a = 0, for example, the displayed vector agrees with solution found earlier.

Left null space

The left null space of a matrix A consists of all vectors v for which vA = 0. It is also the null space of the transpose of A.

Illustration

◼ A basis for the left null space of a 3-by-4 matrix

A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {1, 1, 1, 1}};

leftnullspace = NullSpace[Transpose[A]]

{{1, -−1, 4}}

k*⋆{1, -−1, 4}.A

{0, 0, 0, 0}

The left null space is a subspace of ℝ3. Its dimension is 1 and its codimension is 3 - 1 = 2. In this example, all scalar
multiples of the vector {1, -1, 4} are mapped to zero by left-multiplication.

Length of a vector

The length of a vector in a Euclidean vector space is based on the Pythagorean theorem. The measure is known as the
Euclidean norm KvL of a vector v. Since the world “length” has a different meaning in Mathematica, the phrase “Euclidean
norm” will be used in this guide.

See Euclidean norm

The Linear Algebra Survival Guide | 197

Illustration

◼ A linear combination of three vectors in ℝ2

Clear[a, b, c, d, e, f]

scalars = {2, 3, 4};

vectors = {{a, b}, {c, d}, {e, f}};

lc = Dot[scalars, vectors]

{2 a + 3 c + 4 e, 2 b + 3 d + 4 f}

lc ⩵ 2 {a, b} + 3 {c, d} + 4 {e, f}

True

◼ A linear combination of vectors in ℝ3

Clear[a, b, c, d, e, f, g, h, i]

u = {a, b, c}; v = {e, d, f}; w = {g, h, i};

lc1 = 3 u + 4 v + 5 w

{3 a + 4 e + 5 g, 3 b + 4 d + 5 h, 3 c + 4 f + 5 i}

◼ Different linear combinations representing the same vector

Clear[u, v, w, a, b, c]

u = {1, 2}; v = {3, 4}; w = {5, 6};

lc = a u + b v + c w;

Reduce[lc ⩵ 0, {a, b, c}]

b ⩵ -−2 a && c ⩵ a

u -− 2 v + w ⩵ 3 u -− 6 v + 3 w

True

The idea of using linearly independent vectors as building blocks of linear combinations is to force the representations to be
unique.

 198 | The Linear Algebra Survival Guide

Linear combination

Linear combinations are the building blocks for vectors in vector spaces. A linear combination of vectors is a vector
obtained from a list of scalars and a corresponding list of vectors by forming their dot product.

Linear dependence

A finite list of nonzero vectors is linearly dependent if the zero vector is a linear combination of the given vectors in which
not all scalars are zero. This means that each vector in the list can be written as a linear combination of the others.

Illustration

◼ A linearly dependent list of vectors in ℝ3

vectors = {{4, 6, 3}, {3, 4, 5}, {7, 10, 8}};

a {4, 6, 3} + b {3, 4, 5} + c {7, 10, 8} /∕. {a → -−1, b → -−1, c → 1}

{0, 0, 0}

{7, 10, 8} ⩵ {4, 6, 3} + {3, 4, 5}

True

Manipulation

◼ Linear dependence and independence of vectors in ℝ3

Clear[a, b]

The following calculation shows that if c = 0, then the three vectors {a, 0, 0}, {0, b, 0}, and {-1, -1, 0} are linearly dependent
if a = b = 1:

a = b = 1; c = 0;

Reduce[a {1, 0, 0} + b {0, 1, 0} + {-−1, -−1, c} ⩵ {0, 0, 0}]

True

On the other hand, the reduction

Reduce[a {1, 0, 0} + b {0, 1, 0} + {-−a, -−b, 1} ⩵ {0, 0, 0}]

False

shows that for all nonzero values of a and b, the three vectors {a, 0, 0}, {0, b, 0}, {-a, -b, 1} are linearly independent. For
example,

1 {1, 0, 0} + 2 {0, 1, 0} + {-−1, -−1, 1} ⩵ {0, 0, 0}

False

is false.

We can combine these ideas into a manipulation:

The Linear Algebra Survival Guide | 199

Manipulate[Reduce[a {1, 0, 0} + b {0, 1, 0} + {-−a, -−b, c} ⩵ {0, 0, 0}],
{a, -−2, 2, 1}, {b, -−2, 2, 1}, {c, -−3, 3, 1}]

a

b

c

False

We combined Manipulate and Reduce to explore the linear dependence and independence of three generated vectors in
ℝ3. The manipulation shows that if a = 1, b = 2, and c = 1, for example, the three vectors {1, 0, 0}, {0, 2, 0}, and {- 1, - 2, 1}
are linearly independent.

Linear dependence relation

A linear dependence relation among the columns A[[All,1,]], ..., A[[All,n]], of a matrix A is any nontrivial solution of the equation

x1 A[[All,1,]] +⋯+xn A[[All,n]] = 0.

Illustration

◼ A linear dependence relation among the columns of a 3-by-4 matrix

A = RandomInteger[{0, 9}, {2, 3}];

A =
9 1 6
5 7 7

;

dependenceRelations = Flatten[Solve[x1 A[[All,1]] + x2 A[[All,2]] + x3 A[[All,3]] ⩵ 0, {x1, x2, x3}]]

Solve::svars : Equations may not give solutions for all "solve" variables. $

{a, b, c}2 →
33

35
{a, b, c}1, {a, b, c}3 → -−

58

35
{a, b, c}1

The columns of A have infinitely many dependence relations. One of them is {-35, -33, 58}.

x1 A[[All,1]] + x2 A[[All,2]] + x3 A[[All,3]] /∕. dependenceRelations

{0, 0}

 200 | The Linear Algebra Survival Guide

Linear equation

A linear equation is an equation in the variables x1, ..., xn and the scalars a0, a1, ..., an, b of the form

a0 + a1 x1 + ⋯ + an xn = b (1)

Illustration

◼ A linear equation in three variables

3 x + 4 y -− z ⩵ 5;

The semicolon indicates that the output of the equations is not required and should be suppressed. Otherwise both the
input and output are displayed:

3 x + 4 y -− z ⩵ 5

3 x+4 y-− z & 5

We can use dot products to create linear equations

◼ A linear equation created with a dot product

equation = Dot[{a0, a1, a2}, {1, x1, x2}] ⩵ b

a0 + a1 x1 + a2 x2 ⩵ b

Manipulation

◼ Linear equations in three variables

Quit[]

Manipulate[Dot[{a, b, 5}, {x, y, z}] ⩵ 1, {a, 1, 5, 1}, {b, -−5, 5, 1}]

a

b

x -− 5 y + 5 z ⩵ 1

We combine Manipulate and Dot to build linear equations. If we let a = 1 and b = - 5, the manipulation produces the linear
equation x - 5 y + 5 z = 1.

The Linear Algebra Survival Guide | 201

A list of vectors in a vector space is linearly independent if the zero vector of the space can only be written as a trivial linear
combination of the given vectors. A list of vectors is linearly independent if and only if it is not linearly dependent. A list of n
vectors in ℝn is linearly independent if and only if the n-by-n matrix whose rows are the given n vectors is invertible. The
rank of an n-by-m matrix identifies the number of linearly independent row and/or columns of the matrix.

Illustration

◼ Two linearly independent vectors in ℝ2

v = {1, 2}; w = {3, 4};

Solve[a v + b w ⩵ {0, 0}, {a, b}]

{{a → 0, b → 0}}

◼ Two linearly independent vectors in ℝ3

v = {1, 2, 3}; w = {4, 5, 6};

Solve[a v + b w ⩵ {0, 0, 0}, {a, b}]

{{a → 0, b → 0}}

◼ Three linearly independent vectors in ℝ3

u = {1, 2, 3}; v = {4, 5, 6}; w = {7, 8, 10};

Solve[a u + b v + c w ⩵ {0, 0, 0}, {a, b, c}]

{{a → 0, b → 0, c → 0}}

◼ Three linearly independent vectors in ℝ4

A = {{8, 9, 0, 1}, {8, 2, 4, 9}, {7, 8, 1, 6}};

lc = a A[[1]] + b A[[2]] + c A[[3]];

Solve[lc ⩵ 0, {a, b, c}]

{{a → 0, b → 0, c → 0}}

◼ Using the MatrixRank function to calculate the maximum number of linearly independent rows and/or columns of a
matrix

A = {{0, 0, 0, 0, 2, 0}, {1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 1, 0}};

MatrixRank[A]

2

 202 | The Linear Algebra Survival Guide

Linear independence

Manipulation

We can use the Manipulate function to explore the linear dependence and independence of vectors.

◼ Linear dependence and independence of two vectors in ℝ2

Reduce[a {1, 2} + b {-−1, 3} == {0, 0}, {a, b}]

a ⩵ 0 && b ⩵ 0

Therefore the vectors {1, 2} and {-1, 3} are linearly independent.

Manipulate[Evaluate[Reduce[a {2, 3} + b {4, c} == {0, 0}]],
{a, -−6, 6, 1}, {b, -−6, 6, 1}, {c, -−6, 6, 1}]

a

b

c

True

We combine Manipulate, Evaluate, and Reduce to generate both linearly dependent and linearly independent vectors. If
we let a = -2, b = 1, and c = 6, the generated vectors are linearly dependent.

Linear operator

A linear operator T is a linear transformation from a vector space V to V. If V is finite-dimensional, then any matrix
representing T is square.

Illustration

◼ A linear operator on ℝ2

A = RandomInteger[{0, 9}, {2, 2}];

MatrixForm[A = {{7, 4}, {2, 5}}]

7 4
2 5

We can check that A preserves linear combinations:

The Linear Algebra Survival Guide | 203

lin1 = Expand[A.(a {x, y} + b {u, v})]

7 a2 + 23 b + 4 a e, 34 b + 7 a b + 4 a d, 45 b + 7 a c + 4 a f,

2 a2 + 22 b + 5 a e, 29 b + 2 a b + 5 a d, 36 b + 2 a c + 5 a f

lin2 = Expand[a A.{x, y} + b A.{u, v}]

7 a2 + 23 b + 4 a e, 34 b + 7 a b + 4 a d, 45 b + 7 a c + 4 a f,

2 a2 + 22 b + 5 a e, 29 b + 2 a b + 5 a d, 36 b + 2 a c + 5 a f

lin1 ⩵ lin2

True

◼ A linear operator on ℝ[t,3]

A = RandomInteger[{0, 9}, {4, 4}];

MatrixForm[A = {{7, 3, 9, 4}, {1, 4, 7, 7}, {9, 9, 0, 6}, {5, 8, 2, 7}}]

7 3 9 4
1 4 7 7
9 9 0 6
5 8 2 7

p = 1 + t -− t3;

q = 3 t + t2;

linearcombination = Expand[4 p -− 7 q]

4 -− 17 t -− 7 t2 -− 4 t3

T[p] = A.{1, 0, 0, 0}

{7, 1, 9, 5}

T[q] = A.{0, t, 0, 0}

{3 t, 4 t, 9 t, 8 t}

 204 | The Linear Algebra Survival Guide

Illustration

◼ Two equations in three unknowns

Clear[x, y, z, v, b]

{eq1, eq2} = {3 x + y + z ⩵ 5, x -− y ⩵ 2};

A = {{3, 1, 1}, {1, -−1, 0}};

v = {x, y, z};

b = {5, 2};

In MatrixForm, the matrix equation corresponding to the given linear system is

3 1 1
1 -−1 0

.
x
y
z

=
5
2

In StandardForm, the system becomes an equation between two vectors.

A.v ⩵ b

{3 x + y + z, x -− y} ⩵ {5, 2}

◼ A matrix converted to a linear system

A matrix that combines the coefficients of the variables and the constants of a linear system can be used to represent a
linear system:

Clear[x, y]

A =
1 2 3
4 5 6

;

s = Column[{x + 2 y ⩵ 3, 4 x + 5 y ⩵ 6}, Alignment → Right]

x + 2 y ⩵ 3
4 x + 5 y ⩵ 6

◼ Consistent linear system

A linear system Av = b is consistent if there exists a vector v satisfying the equation.

A = {{3, 1, 1}, {1, -−1, 0}};

v = {x, y, z};

b = {5, 2};

The Linear Algebra Survival Guide | 205

Linear system

A linear system is a list of linear equations {eq1, ..., eqn}. Its matrix form is a matrix equation Av = b consisting of the

coefficient matrix A, the equations {eq1, ..., eqn}, the vector v of variables of the system, and the vector b of the constant

values of the equations.

solution = LinearSolve[A, b]


7

4
, -−

1

4
, 0

A.solution ⩵ b

True

◼ A linear system with two equations with one solution

Clear[x, y]

system1 = {3 x + 4 y ⩵ 9, x -− y ⩵ 7};

is a system of two linear equations in two variables. It has one solution.

solution1 = Flatten[Solve[system1]]

x →
37

7
, y → -−

12

7


system1 /∕. solution1

{True, True}

◼ A linear system with three equations and no solution

system2 = {3 x + 4 y ⩵ 9, x -− y ⩵ 7, 4 x + y ⩵ 6};

is a linear system of three equations in two variables. It has no solution.

solution2 = Flatten[Solve[system2]]

{}

◼ A linear system in two equations and three variables with infinitely many solutions

system3 = {3 x + 4 y + z ⩵ 9, x -− y + 2 z ⩵ 7};

is a linear system of two equations in three variables. It has infinitely many solutions.

solution3 = Flatten[Solve[system3]]

y →
11

9
-−
5 x

9
, z →

37

9
-−
7 x

9


Simplify[system3 /∕. solution3]

{True, True}

For every value assigned to z, the variables x and y take on specific values provided by the output rules so that the list {x, y,
z} is a solution of the system. Since there are infinitely many scalars for z, there are infinitely many lists that satisfy the
given system.

 206 | The Linear Algebra Survival Guide

For every value assigned to z, the variables x and y take on specific values provided by the output rules so that the list {x, y,
z} is a solution of the system. Since there are infinitely many scalars for z, there are infinitely many lists that satisfy the
given system.

◼ Using Reduce to calculate the exact solutions of linear systems

system = {x + 4 y ⩵ 12, x -− y ⩵ 1};

Reduce[system, {x, y}]

x ⩵
16

5
&& y ⩵

11

5

lines = ContourPlot[{x + 4 y ⩵ 12, x -− y ⩵ 1}, {x, -−5, 5}, {y, -−5, 5}, Axes → True]

-−4 -−2 0 2 4

-−4

-−2

0

2

4

◼ Visualizing the solution of a linear system

The solution of a linear system with one solution is the point of intersection of the lines representing the equations in the

system.

intersection = ListPlot[{{16/∕ 5, 11/∕ 5}}, PlotStyle → {Green, PointSize[0.05]}];

Show[lines, intersection]

-−4 -−2 0 2 4

-−4

-−2

0

2

4

If the equations contain three variables, the situation is analogous, but a little harder to visualize.

◼ A linear system in three equations and three variables

The Linear Algebra Survival Guide | 207

fredeszabo
Sticky Note
Marked set by fredeszabo

Clear[x, y, z]

equations = {x + y + z ⩵ 5, 3 x + y -− z ⩵ 9, 2 x -− y + z ⩵ 1};

Solve[equations, {x, y, z}]

{{x → 2, y → 3, z → 0}}

The equations of the system determine three planes in ℝ3 meeting at the point {2, 3, 0}. We can use the ContourPlot3D
and the ListPointPlot3D functions to visualize the solution of the linear systems:

planes = ContourPlot3D[Evaluate[equations], {x, -−5, 5}, {y, -−5, 5}, {z, -−5, 5}, Axes → True];

point = ListPointPlot3D[{{2, 3, 0}}, PlotStyle → PointSize[0.15]];

Show[planes, point]

A matrix, together with a vector, can also represent a linear system. We require matrix multiplication for this purpose.

◼ A matrix and a vector combined to construct a linear system

coefficients = {{1, 2}, {4, 5}};

constants = {3, 6};

Using matrix multiplication, the given linear system can be built from the coefficients of the variables, written in matrix form,
and the constants of the equations, written in vector form, using the Thread command:

Column[Thread[coefficients.{x, y} ⩵ constants], Alignment → Right]

x + 2 y ⩵ 3
4 x + 5 y ⩵ 6

◼ Using matrices and LinearSolve to solve linear systems

equations = {x + 2 y ⩵ 5, 3 x + 4 y ⩵ 9};

 208 | The Linear Algebra Survival Guide

StandardForm[coefficents = {{1, 2}, {3, 4}}];

constants = {5, 9};

LinearSolve[coefficents, constants]

{-−1, 3}

If we replace x by -1 and y by 3 in the two equations of the given system, the first equation reduces to the identity 5 == 5
and the second to the identity 9 == 9. We therefore say that the pair {-1, 3} is a solution of the given system since it
satisfies all of the equations in the system. In this notation it is understood that the first element of {-1, 3} corresponds to x
and the second element to y.

The geometric interpretation of this example say that the two straight lines in ℝ2 determined by the two equations of the
system pass through the point {-1. 3}. We can use Manipulate to explore the impact of numerical changes in the coeffi-
cients on the solutions of linear systems.

Manipulation

The Manipulate function can be used to explore the solutions of systems obtained by introducing various parameters that
change the numerical ranges of the variables involved.

◼ Exploring the solutions of linear systems

Clear[x, y, z, a, b, c]

equations = {x + 2 y + 3 z ⩵ 6, a x + b y + c z ⩵ 9};

coefficients = {{1, 2, 3}, {a, b, c}};

constants = {6, 9};

LinearSolve[coefficients, constants]

-−
6 (-−3 + b)

2 a -− b
,
3 (-−3 + 2 a)

2 a -− b
, 0

Manipulate[Evaluate[Reduce[equations, {x, y, z}]], {a, -−3, 3, 1}, {b, -−3, 3, 1}, {c, -−3, 3, 1}]

The Linear Algebra Survival Guide | 209

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

a

b

c

y ⩵
1

3
(-−45 -− 6 x) && z ⩵

1

3
(6 -− x -− 2 y)

We combine the Manipulate, Evaluate, and Reduce commands to explore the solutions of different linear systems. The
displayed solutions are obtained by letting a = b = c = -3.

Linear transformation

A function from one vector space to another is called linear transformation if it preserves linear combinations. All real m-by-
n matrices determine linear transformations from ℝn to ℝm, and all complex m-by-n matrices determine linear transforma-
tions from ℂn to ℂm.

The matrix representations of the functions defining linear transformations are basis-dependent. The same linear transforma-
tions have different matrix representations if different bases are used for their definitions. In this guide we use standard
bases most of the time to illustrate the ideas involved in the constructions. However, orthonormal bases also play a key role
in the matrix representation of linear transformations.

The image of a transformation T from a vector space V to a vector space W is the set of all vectors T[w] in W and the kernel
of T is the set all vectors v in V that are mapped to 0 in W by T.

Linear combinations are preserved by a transformation T if, for any vectors u and v, and scalars s and t:

T[s u + t v] = s T[u] + t T[v] (1)

Illustration

◼ A linear transformation from ℝ2×3 to ℝ2×2

Clear[u, v, a, b, c, d, e, f]

MatrixForm[A = {{1, 2, 3}, {3, 4, 5}}]

1 2 3
3 4 5

B = {{a, b}, {c, d}, {e, f}};

T[B_] := A.B

u = RandomInteger[{0, 9}, {3, 2}];

 210 | The Linear Algebra Survival Guide

u =
4 3
9 6
0 3

;

v = RandomInteger[{0, 9}, {3, 2}];

v =
1 2
1 7
2 7

;

Simplify[T[3 u + 5 v] ⩵ 3 T[u] + 5 T[v]]

True

◼ A linear transformation from ℝ4 to ℝ[t,3]

T[{a_, b_, c_, d_}] := a + b t + c t2 + d t3

T[{1, 2, 3, 4}]

1 + 2 t + 3 t2 + 4 t3

Plot1 + 2 t + 3 t2 + 4 t3, {t, -−4.5, 4.5}

-−4 -−2 2 4

-−200

200

400

◼ A linear transformation from ℝ3⨯3 to ℝ

Clear[A, T, a, b, c, d, e, f, g, h, i]

T[A_] := Tr[A]

A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

B = {{a, b, c}, {d, e, f}, {g, h, i}};

The Linear Algebra Survival Guide | 211

T[A]

15

T[B]

a + e + i

Clear[x, y]

Simplify[T[x A + y B] ⩵ x T[A] + y T[B]]

True

◼ A linear transformation from ℝ2 to ℝ3

Clear[x, y]

MatrixForm[A = {{1, 2}, {3, 4}, {5, 6}}]

1 2
3 4
5 6

T[{x_, y_}] := A.{x, y}

T[{x, y}]

{x + 2 y, 3 x + 4 y, 5 x + 6 y}

Clear[a, b, w, x, y, z]

Simplify[T[a {x, y} + b {w, z}] ⩵ a T[{x, y}] + b T[{w, z}]]

True

◼ A linear transformation from ℝ3 to ℝ2 represented in the standard bases

Consider the following linear transformation:

T[{x_, y_, z_}] := {3 x + 2 y -− 4 z, x -− 5 y + 3 z}

T[{1, 2, 3}]

{-−5, 0}

Clear[a, b, x, y, z]

 212 | The Linear Algebra Survival Guide

Simplify[T[a {1, 2, 3} + b {x, y, z}] ⩵ a T[{1, 2, 3}] + b T[{x, y, z}]]

True

We represent T by a matrix A in the standard basis sB of ℝ3 (basis for the domain of T) and the standard basis sC of ℝ2
(basis for the codomain of T).

T[{x_, y_, z_}] := {3 x + 2 y -− 4 z, x -− 5 y + 3 z}

sB = {x1 = {1, 0, 0}, x2 = {0, 1, 0}, x3 = {0, 0, 1}};

sC = {y1 = {1, 0}, y2 = {0, 1}};

MatrixForm[A = Transpose[Join[{T[x1], T[x2], T[x3]}, 2]]]

3 2 -−4
1 -−5 3

A.{a, b, c}

{3 a + 2 b -− 4 c, a -− 5 b + 3 c}

T[{a, b, c}] ⩵ A.{a, b, c}

True

◼ A linear transformation from ℝ3 to ℝ2 represented in two nonstandard bases

Consider the following linear transformation:

T[{x_, y_, z_}] := {3 x + 2 y -− 4 z, x -− 5 y + 3 z}

We represent T by a matrix A in a nonstandard basis nB of ℝ3 (basis for the domain of T) and a nonstandard basis nC of ℝ2
(basis for the codomain of T).

nB = {x1 = {1, 1, 1}, x2 = {1, 1, 0}, x3 = {1, 0, 0}};

nC = {y1 = {1, 3}, y2 = {2, 5}};

Solve[T[x1] == a y1 + b y2, {a, b}]

{{a → -−7, b → 4}}

Solve[T[x2] ⩵ c y1 + d y2, {c, d}]

{{c → -−33, d → 19}}

Solve[T[x3] ⩵ e y1 + f y2, {e, f}]

{{e → -−13, f → 8}}

The Linear Algebra Survival Guide | 213

A =
-−7 -−33 -−13
4 19 8

;

Solve[{1, 2, 3} == g x1 + h x2 + k x3, {g, h, k}]

{{g → 3, h → -−1, k → -−1}}

Hence the vector {1, 2, 3}, written in the basis nB, is {3, -1, -1}. We now multiply the matrix A (written in the two nonstandard
bases) by the coordinate vectors of {1, 2, 3} to find its image in the basis nC:

Flatten
-−7 -−33 -−13
4 19 8

.
3
-−1
-−1



{25, -−15}

Clear[r, s]

Solve[25 {1, 3} -− 15 {2, 5} == r {1, 0} + s {0, 1}, {r, s}]

{{r → -−5, s → 0}}

As we can see, the image vector {25, -15} in the basis nC is the same as the image vector {-5, 0} in the standard basis.

Relative to suitable bases, the matrix [T] for a linear transformation T may have a particularly simple form. It may, for
example, be diagonal, triangular, or symmetric.

◼ A linear transformation represented by a symmetric matrix

Let T be a linear transformation from ℝ3 to ℝ3 and let its values T [e1], T [e2], and T [e3] have the following values on the
standard basis of ℝ3 :

sB = {e1 = {1, 0, 0}, e2 = {0, 1, 0}, e3 = {0, 0, 1}};

T[e1] = 2 e1 + 3 e2 + 5 e3

{2, 3, 5}

T[e2] = 3 e1 -− 7 e2 + 6 e3

{3, -−7, 6}

T[e3] = 5 e1 + 6 e2 -− 9 e3

{5, 6, -−9}

Then the matrix representing T in the standard basis for both the domain and codomain of T is the symmetric matrix

A =
2 3 5
3 -−7 6
5 6 -−9

;

u = {1, 2, 3};

 214 | The Linear Algebra Survival Guide

A.u

{23, 7, -−10}

◼ A coordinate conversion matrix

If T is an identity transformation, its matrix in the standard basis sB and a nonstandard basis nB is called a coordinate

conversion or change-of-basis matrix from sB to nB.

sB = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

nB = {{1, 2, 3}, {0, 1, 0}, {1, 0, 1}};

Calculating the coordinates of the vector xsB in the standard basis sB:

xsB = {1, 1, 1};

Solve[xsB ⩵ a B[[1]] + b B[[2]] + c B[[3]], {a, b, c}]

{{a → 0, b → 1, c → 1}}

xnB = {0, 1, 1};

The coordinate conversion matrix A from sB to nB provides a formula for converting any vector xnB in sB to its correspond-
ing vector xsB in the nonstandard basis nB.

Solve[{1, 0, 0} ⩵ a {1, 2, 3} + b {0, 1, 0} + c {1, 0, 1}, {a, b, c}]

a → -−
1

2
, b → 1, c →

3

2


Solve[{0, 1, 0} ⩵ a {1, 2, 3} + b {0, 1, 0} + c {1, 0, 1}, {a, b, c}]

{{a → 0, b → 1, c → 0}}

Solve[{0, 0, 1} ⩵ a {1, 2, 3} + b {0, 1, 0} + c {1, 0, 1}, {a, b, c}]

a →
1

2
, b → -−1, c → -−

1

2


MatrixForm[A = Transpose[{{-−1/∕2, 1, 3/∕2}, {0, 1, 0}, {1/∕2, -−1, -−1/∕2}}]]

-−
1

2
0

1

2

1 1 -−1
3

2
0 -−

1

2

A.xsB ⩵ xnB

True

The Linear Algebra Survival Guide | 215

fredeszabo
Sticky Note
Marked set by fredeszabo

Manipulation

◼ Exploring the values of a linear transformation

T[{x_, y_, z_}] := {3 x + 2 y -− 4 z, x -− 5 y + 3 z};

Manipulate[Evaluate[T[{x, y, z}]], {x, -−2, 2, 1}, {y, -−2, 2, 1}, {z, -−2, 2, 1}]

x

y

z

{-−7, 2}

We use Manipulate and Evaluate to explore the values of a linear transformation.The displayed value of T is obtained by
letting x = - 1, y = 0, and z = 1.

Lower-triangular matrix

An n-by-n matrix A = A[[i, j]] is lower-triangular if A[[i, j]] = 0 for all i < j. That is, if all entries above the main diagonal are 0.

Illustration

◼ A lower-triangular matrix

MatrixForm[A = {{1, 0, 0, 0}, {2, 5, 0, 0}, {3, 6, 8, 0}, {4, 7, 9, 10}}]

1 0 0 0
2 5 0 0
3 6 8 0
4 7 9 10

◼ A lower-triangular matrix obtained by triangularization

MatrixForm[A = RandomInteger[{0, 9}, {5, 5}]]

0 7 7 1 4
7 3 0 5 7
8 9 8 7 1
1 3 6 3 3
0 3 0 3 0

 216 | The Linear Algebra Survival Guide

MatrixForm[B = LowerTriangularize[A]]

0 0 0 0 0
7 3 0 0 0
8 9 8 0 0
1 3 6 3 0
0 3 0 3 0

LU decomposition

An LU decomposition of a matrix A is a product of a lower-triangular matrix L and an upper-triangular matrix U. If A is an m-
by-n matrix that can be reduced to row echelon form without requiring a permutation of rows then there exist a lower-
triangular matrix L with 1s on the diagonal and an m-by-n row echelon matrix U such that A = LU. For every real m-by-n
matrix A there exists a permutation matrix P for which the matrix product PA can be reduced to row echelon form without a
permutation of rows.

Illustration

◼ An LU decomposition of a 3-by-3 matrix

A = {{1, 2, 3}, {2, 5, 7}, {2, 4, 1}};

L = {{1, 0, 0}, {2, 1, 0}, {2, 0, 1}};

U = {{1, 2, 3}, {0, 1, 1}, {0, 0, -−5}};

A ⩵ L.U

True

◼ An LU decomposition of a 3-by-3 matrix using Mathematica

A = {{1, 2, 3}, {2, 5, 7}, {2, 4, 1}};

{lu, p, c} = LUDecomposition[A]

{{{1, 2, 3}, {2, 1, 1}, {2, 0, -−5}}, {1, 2, 3}, 1}

The lu component combines the matrices L and U, the p component specifies the permutation of the rows of the matrix
required (none in this example), and the 1 component is a condition number of the matrix. A condition number close to 1
indicates that the matrix is well conditioned so that its inverse can be computed with good accuracy.

The matrices L and U can be extracted from lu using sparse arrays.

L = lu SparseArray[{i_, j_} /∕; j < i → 1, {3, 3}] + IdentityMatrix[3]

{{1, 0, 0}, {2, 1, 0}, {2, 0, 1}}

The Linear Algebra Survival Guide | 217

U = UpperTriangularize[lu]

{{1, 2, 3}, {0, 1, 1}, {0, 0, -−5}}

L.U

1 2 3
2 5 7
2 4 1

◼ An LU decomposition requiring a permutation of rows

MatrixForm[A = {{1, 2, 3}, {2, 4, 1}, {2, 5, 7}}]

1 2 3
2 4 1
2 5 7

{lu, p, c} = LUDecomposition[A]

{{{1, 2, 3}, {2, 1, 1}, {2, 0, -−5}}, {1, 3, 2}, 0}

MatrixForm[L = lu SparseArray[{i_, j_} /∕; j < i → 1, {3, 3}] + IdentityMatrix[3]]

1 0 0
2 1 0
2 0 1

MatrixForm[U = UpperTriangularize[lu]]

1 2 3
0 1 1
0 0 -−5

MatrixForm[P = {{1, 0, 0}, {0, 0, 1}, {0, 1, 0}}]

1 0 0
0 0 1
0 1 0

The matrix P is created by permuting rows 2 and 3 of the identity matrix.

A ⩵ P.L.U

True

A ==
1 2 3
2 4 1
2 5 7

==
1 0 0
0 0 1
0 1 0

.
1 0 0
2 1 0
2 0 1

.
1 2 3
0 1 1
0 0 -−5

⩵ P.L.U

True

 218 | The Linear Algebra Survival Guide

M

Manhattan distance

The Manhattan distance between two vectors (city blocks) is equal to the one-norm of the distance between the vectors.
The distance function (also called a “metric”) involved is also called the “taxi cab” metric.

Illustration

◼ The Manhattan distance as the sum of absolute differences

ManhattanDistance[{a, b, c}, {x, y, z}]

Abs[a -− x] + Abs[b -− y] + Abs[c -− z]

◼ The one-norm as Manhattan distance between two city blocks

block1 = {1, 2, 3, 4}; block2 = {5, 6, 7, 8};

Norm[block1 -− block2, 1]

16

◼ The Manhattan length of two blocks

block1 = {5, 2, -−3, 4}; block2 = {1, 6, -−7, 8};

{Norm[block1, 1], Norm[block2, 1]}

{14, 22}

Markov matrix

See Stochastic matrix

Mathematica domain of a scalar

Mathematica classifies scalars into three domains: integers, reals, and complexes. They can be used for specifying
assumptions about variables.

The Linear Algebra Survival Guide | 219

Illustration

3 ∈ Integers,
1

3
∈ Integers,

1

3
∈ Rationals, π ∈ Integers, π ∈ Reals, ⅈ ∈ Reals, ⅈ ∈ Complexes

{True, False, True, False, True, False, True}

Matrix

In its simplest form, a matrix is an array of scalars arranged in rows and columns. If the scalars are real numbers, we call
the matrix a real matrix and if the scalars are complex numbers, we call it a complex matrix. The scalars in a matrix are
called the elements of the matrix.

In Mathematica, the standard form of a matrix is represented internally in one-dimensional form as a list of rows. The
StandardForm command is the default Mathematica command for representing matrices.

Mathematica can also be forced to output a matrix in the usual two-dimensional form by embedding the assignment
statement in a MatrixForm or TraditionalForm command. Depending on the context, it might be useful to make the
TraditionalForm option the default output option. This can be done in the Mathematica Preferences. As in the case of
vectors, the StandardForm option produces rows of rows, and the MatrixForm and TraditionalForm options produce
columns.

Illustration

◼ A matrix in standard form

StandardFormA =
1 2 3
4 5 6



{{1, 2, 3}, {4, 5, 6}}

◼ A matrix in traditional form

MatrixFormA =
1 2 3
4 5 6



1 2 3
4 5 6

MatrixForm[A = {{7, 5, 2, 2, 4}, {8, 4, 5, 0, 9}, {6, 1, 5, 3, 9}}]

7 5 2 2 4
8 4 5 0 9
6 1 5 3 9

Mathematica has several built-in symbols for generating matrices.

◼ A 2-by-3 matrix

 220 | The Linear Algebra Survival Guide

A = {{1, 2, 3}, {4, 5, 6}}

1 2 3
4 5 6

Since all built-in Mathematica symbols begin with capital letters, naming user-defined objects such as vectors, systems of
equations, and matrices is best done by using either single or multiple lower-case letters.

◼ A 2-by-3 array of dimensions {2,3}

The array

A =
1 2 3
4 5 6

;

is a matrix consisting of the two rows

row1 = (1 2 3); row2 = (4 6 6);

and the three columns

column1 =
1
4

; column2 =
2
5

; column3 =
3
6

;

The number of rows and columns of A are called its dimensions.

Dimensions[{{1, 2, 3}, {4, 5, 6}}]

{2, 3}

The matrix has two rows and three columns.

◼ A 2-by-3 matrix verified abstractly to be a matrix

A = {{1, 2, 3}, {4, 5, 6}}

1 2 3
4 5 6

MatrixQ[A]

True

Although this calculation tells us that, as expected, the given list of lists is a matrix, a more informative question might be
whether the rows and columns are lists of the same lengths, as expected.

◼ A 2-by-3 matrix with three columns of height 2

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

The Linear Algebra Survival Guide | 221

columns = {Length[A[[All, 1]]], Length[A[[All, 2]]], Length[A[[All, 2]]]}

{2, 2, 2}

More compactly, we can use the Table function.

columns = Table[Length[A[[All, i]]] ⩵ 2, {i, 1, 3}]

{True, True, True}

We could even use an if–then construction.

If[x == {1, 2, 3}, Length[A[[All, x]]] ⩵ 2, "Does not apply"]

True

We can also identify the length of each row separately:

rows = {Length[A[[1]]], Length[A[[2]]]}

{3, 3}

◼ A 3-row array that is not a matrix

The MatrixForm option fails since A is not a matrix:

MatrixForm[A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}]

{1, 2, 3}
{4, 5}

{6, 7, 8}

Dimensions[A]

{3}

◼ A 3-by-3 array with pairs of integers as elements, generated by the Table command

MatrixForm[A = Table[{n, m}, {n, 1, 3}, {m, 1, 3}]]

1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

◼ A 3-by-3 array with indexed labels as elements, generated by the Table command

 222 | The Linear Algebra Survival Guide

MatrixForm[A = Table[a[n, m], {n, 1, 3}, {m, 1, 3}]]

a[1, 1] a[1, 2] a[1, 3]
a[2, 1] a[2, 2] a[2, 3]
a[3, 1] a[3, 2] a[3, 3]

◼ Another way of generating a table with indexed elements, generated by the Array command

MatrixForm[A = Array[a, {3, 3}]]

a[1, 1] a[1, 2] a[1, 3]
a[2, 1] a[2, 2] a[2, 3]
a[3, 1] a[3, 2] a[3, 3]

◼ A 3-by-4 array with indexed elements, generated by a pure (unnamed) function

MatrixForm[A = Array[a#1,#2 &, {3, 4}]]

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4

◼ A sparse array with elements suppressed and then revealed using the MatrixForm option

S = SparseArray[{{1, 1} → 1, {2, 2} → 2, {3, 3} → 3, {1, 3} → 4}]

SparseArray[<4>, {3, 3}]

SparseArray["<"4">", {3, 3}]

A = MatrixForm[S]

1 0 4
0 2 0
0 0 3

◼ A 3-by-2 matrix generated by the Partition command

MatrixForm[A = Partition[{1, 2, 3, 4, 5, 6}, 2]]

1 2
3 4
5 6

◼ A 3-by-3 array with comma-separated indexes, generated by the Subscript function

A = Array[Subscript[a, #1, #2] &, {3, 3}] /∕/∕ MatrixForm

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

The Linear Algebra Survival Guide | 223

◼ The same array with comma-separated indexes, generated by the Table command

MatrixForm[A = Table[an,m, {n, 1, 3}, {m, 1, 3}]]

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

◼ A matrix with variable elements

A = {{1, 2}, {4, 5}};

MatrixForm[A -− t IdentityMatrix[2]]

1 -− t 2
4 5 -− t

◼ A matrix with polynomial elements

A = {{1, 2}, {0, 4}}; id2 = IdentityMatrix[2];

MatrixForm[cA = A -− id2 x]

1 -− x 2
0 4 -− x

Matrix addition

See Addition of matrices

Matrix decomposition

Matrix decomposition involves expressing a matrix as a product of two or more matrices of a special type. Examples include
the LU decomposition (expressing a matrix as a product of an upper- and lower-triangular matrix) and singular value
decomposition.

Illustration

A = {{1, 2}, {3, 4}};

◼ Singular value decomposition

{u, w, v} = N[SingularValueDecomposition[A]]

{{{0.404554, 0.914514}, {0.914514, -−0.404554}},
{{5.46499, 0.}, {0., 0.365966}}, {{0.576048, -−0.817416}, {0.817416, 0.576048}}}

 224 | The Linear Algebra Survival Guide

A == u.w.Transpose[v]

True

◼ Diagonal decomposition

{evalsA, evecsA} = Eigensystem[A]


1

2
5 + 33 ,

1

2
5 -− 33 , 

1

6
-−3 + 33 , 1, 

1

6
-−3 -− 33 , 1

A ⩵ Transpose[evecsA].DiagonalMatrix[evalsA].Inverse[Transpose[evecsA]]

True

Matrix equation

A matrix equation (also called a matrix-vector equation) is an equation of the form Av = b, where A is an m-by-n matrix,
called the coefficient matrix, v is an n-by-1 column vector, and b is an m-by-1 column vector.

Illustration

◼ A matrix equation with a 2-by-3 coefficient matrix

A = RandomInteger[{0, 9}, {2, 3}];

A =
6 2 4
6 4 3

;

v = {{1}, {2}, {3}}; b = {{22}, {23}};

6 2 4
6 4 3

.v ⩵ b

True

◼ A matrix equation with a 3-by-2 coefficient matrix

A = RandomInteger[{0, 9}, {3, 2}];

A =
7 2
4 2
4 5

;

v = {{1}, {2}}; b = {{2}, {3}, {4}};

7 2
4 2
4 5

.v ⩵ b

False

The Linear Algebra Survival Guide | 225

Matrix norm

See Norm

Matrix space

A matrix space ℝm⨯n (or ℂm⨯n for complex numbers) is a vector space of dimension m×n that consists of the set of all m-by-
n real (or complex) matrices.

Illustration

◼ Vector addition in ℝ3⨯4

A = RandomInteger[{0, 9}, {3, 4}];

A =
2 8 7 1
0 3 7 9
3 0 0 4

;

B = RandomInteger[{0, 9}, {3, 4}];

B =
0 0 7 1
4 3 2 4
4 3 1 8

;

MatrixForm[A + B]

2 8 14 2
4 6 9 13
7 3 1 12

◼ Scalar multiplication in ℝ3⨯4

MatrixForm[5 A]

10 40 35 5
0 15 35 45
15 0 0 20

Matrix-vector product

A matrix-vector product Av is a vector obtained by multiplying an m-by-n matrix A by an n-by-1 column vector v.

Illustration

◼ Using a matrix equation to solve a linear system

system = {6 x + 2 y == 5, 3 x + 4 y == 9};

 226 | The Linear Algebra Survival Guide

matrixequation = MatrixForm[{{6, 2}, {3, 4}}].MatrixForm[{{x}, {y}}] ⩵ MatrixForm[{{5}, {9}}]

6 2
3 4

.
x
y

⩵
5
9

◼ Extracting a matrix-vector product from a linear system

system = {5 x -− 7 y + 9 z ⩵ 4, x + y -− 3 z ⩵ 5};

matrixvectorproduct = {{5, -−7, 9}, {1, 1, -−3}}.{x, y, z}

{5 x-−7 y+9 z, x+ y-−3 z}

◼ Building and solving a linear system using a matrix-vector product

system = {5 x -− 7 y + 9 z ⩵ 4, x + y -− 3 z ⩵ 5, 2 x -− y + 9 z ⩵ 8};

matrixvectorproduct = {{5, -−7, 9}, {1, 1, -−3}, {2, -−1, 9}}.{x, y, z}

{5 x-−7 y+9 z, x+ y-−3 z, 2 x-− y+9 z}

newsystem = matrixvectorproduct ⩵ {4, 5, 8}

{5 x-−7 y+9 z, x+ y-−3 z, 2 x-− y+9 z} & {4, 5, 8}

Reduce[newsystem, {x, y, z}]

x &
65

18
 y &

89

36
 z &

13

36

Manipulation

The Manipulate function can be used to explore the numerical properties of the solution of a linear system built from a
matrix-vector equation.

Manipulate[Evaluate[Reduce[{{5, -−7, 9 a}, {1, b, -−3}, {2 c, -−1, 9}}.{x, y, z} ⩵ {4, 5, 8}]],
{a, 1, 5}, {b, 1, 2}, {c, 1, 9}]

a

b

c

x ≠ 04.31 \
y -−9 z+8

2 x
y ≠ 01.761 \

-−x +3 z+5

y
z ≠ 02.77 \

-−5 x +7 y +4

9 z

The Linear Algebra Survival Guide | 227

We use Manipulate, Evaluate, and Reduce to display the solutions of the matrix equation obtained by letting a = 2.77, b =
1.761, and c = 4.31.

Minimal polynomial

Every characteristic polynomial of a matrix has a monic polynomial (i.e., with leading coefficient equal to 1) of least degree
that also satisfies the matrix. The polynomial is called the minimal polynomial of the matrix.

In spite of its name, the MinimalPolynomial function in Mathematica does not calculate the minimal polynomial of a matrix.
The MinimalPolynomial command serves an unrelated purpose. (The command MinimalPolynomial[s, t] produces the
minimum polynomial in t for which the algebraic number s is a root.)

Illustration

◼ Minimal polynomial of a matrix

A = {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};

cpA = CharacteristicPolynomial[A, t]

-−4 t3 + t4

Factor[cpA]

(-−4 + t) t3

MatrixForm[A.(A -− 4 IdentityMatrix[4])]

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Hence the minimum polynomial of A is

(t -− 4) t

◼ Construction of a minimal polynomial with a companion matrix

Companion matrices can be used to construct matrices for given minimal polynomials.

p = 3 -− 4 t + t3 + t5;

A =

0 0 0 0 -−3
1 0 0 0 4
0 1 0 0 0
0 0 1 0 -−1
0 0 0 1 -−1

;

 228 | The Linear Algebra Survival Guide

cpA = CharacteristicPolynomial[A, t]

-−3 + 4 t -− t3 -− t4 -− t5

Factor[cpA]

-−3 + 4 t -− t3 -− t4 -− t5

The polynomial cpA is the minimal polynomial of A.

◼ Mathematica code for constructing minimal polynomials

The following defined Mathematica function can be used to calculate the minimal polynomial of a matrix. We apply it to
confirm that the minimum polynomial of the matrix

MatrixForm[A = {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}]

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

is t2 -−4 t.

MatrixMinimalPolynomial[a_List?MatrixQ, x_] := Module[
{i, n = 1, qu = {}, mnm = {Flatten[IdentityMatrix[Length[a]]]}},
While[Length[qu] == 0, AppendTo[mnm, Flatten[MatrixPower[a, n]]];
qu = NullSpace[Transpose[mnm]]; n++];
First[qu].Table[x^i, {i, 0, n -− 1}]]

This function is not built into Mathematica and needs to be activated by typing Shift + Enter. It can be found on the
MathWorld website at http://mathworld.wolfram.com/MatrixMinimalPolynomial.html.

A = {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};

mpA = MatrixMinimalPolynomial[A, t]

-−4 t + t2

The Cayley–Hamilton theorem says that the matrix A satisfies the minimal polynomial mpA.

MatrixFormas [MatrixPower[A, 2] -− 4 A]

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Minor matrix

See Cofactor matrix

The Linear Algebra Survival Guide | 229

Multiplication of matrices

The result of combining two matrices using matrix multiplication is called a matrix product. In Mathematica, matrix
multiplication is defined by placing a period between the two matrices to be multiplied.

The product of an m-by-n matrix A and an n-by-p matrix B is the m-by-p matrix whose elements are the dot products of the
rows of A and the columns of B. The definition is designed to represent the composition of linear transformations repre-
sented by the matrices A and B.

In this guide, we write AB or (A B) in Text cells for the result of multiplying the matrix A by the matrix B. If needed, we
denote the result of multiplying the three matrices A, B, and C by (A B C). However, the letter C is never used as a name for
a matrix in an Input cell since in Mathematica the letter C is a reserved symbol for various syntactic purposes.

Properties of matrix multiplication
A.(B.C) = (A.B).C (1)

A.(B + C) = A.B + A.C (2)

(B + C).A = B.A + C.A (3)

a (A.B) = (a A).B = A.(a B) (4)

A.IdentityMatrix = A (5)

One of the important features of matrix multiplication is the fact that it is not commutative. Multiplying matrix transformations
is analogous to composing the associated linear transformations rather than multiplying them.

Illustration

◼ Noncommutativity of matrix multiplication

Clear[a, b, c, d]

A = {{1, 2}, {3, 4}};

B = {{a, b}, {c, d}};

MatrixForm[A.B]

a + 2 c b + 2 d
3 a + 4 c 3 b + 4 d

MatrixForm[B.A]

a + 3 b 2 a + 4 b
c + 3 d 2 c + 4 d

A.B ⩵ B.A /∕. {a → 1, b → 1, c → 1, d → 1}

False

◼ Multiplication of two matrices

 230 | The Linear Algebra Survival Guide

MatrixForm[matLeft = {row1, row2} = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

MatrixForm[matRight = {{a, b}, {c, d}, {e, f}}]

a b
c d
e f

MatrixForm[matLeft.matRight]

a + 2 c + 3 e b + 2 d + 3 f
4 a + 5 c + 6 e 4 b + 5 d + 6 f

MatrixForm[Transpose[matRight]]

a c e
b d f

The rows of the transpose of the right matrix are the columns of the left matrix.

MatrixForm[matLeftmatRight =
{{Dot[row1, {a, c, e}], Dot[row1, {b, d, f}]},
{Dot[row2, {a, c, e}], Dot[row2, {b, d, f}]}}]

a + 2 c + 3 e b + 2 d + 3 f
4 a + 5 c + 6 e 4 b + 5 d + 6 f

matLeft.matRight ⩵ matLeftmatRight

True

We can use matrix multiplication to solve linear systems by representing the Gaussian elimination operations by matrix
multiplication. We can also treat matrix multiplication as the composition of linear transformations (functions that preserve
the linear combination of vectors).

◼ The product of a 3-by-4 and a 4-by-2 matrix

MatrixForm[A = {{4, 4, 7, 9}, {7, 8, 5, 1}, {8, 9, 8, 1}}]

4 4 7 9
7 8 5 1
8 9 8 1

MatrixForm[B = {{3, 4}, {5, 9}, {9, 8}, {9, 3}}]

3 4
5 9
9 8
9 3

The Linear Algebra Survival Guide | 231

MatrixForm[P = A.B]

176 135
115 143
150 180

P is the product matrix of A and B.

◼ The product of a 2-by-2 and a 2-by-3 matrix as a matrix of dot products

MatrixForm[A = {{1, 2}, {3, 4}}]

1 2
3 4

MatrixForm[B = {{2, 1, 3}, {4, 5, 6}}]

2 1 3
4 5 6

MatrixForm[A.B]

10 11 15
22 23 33

Dot[A[[1]], B[[All, 1]]]

10

Table[Dot[A[[i]], B[[All, j]]], {i, 1, 2}, {j, 1, 3}]

{{10, 11, 15}, {22, 23, 33}}

MatrixForm[A.B == Table[Dot[A[[i]], B[[All, j]]], {i, 1, 2}, {j, 1, 3}]]

True

Manipulation

◼ Multiplication of a 2-by-3 matrix A and a 3-by-2 matrix B

Clear[a]

A = {{3, 5 a, 6}, {1, 3, -−2}}; B = {{4, a}, {5, 1}, {2, 3}};

Manipulate[Evaluate[A.B], {a, -−6, 6, 1}]

 232 | The Linear Algebra Survival Guide

a

{{-−76, -−14}, {15, -−7}}

We use Manipulate and Evaluate to explore the product of two matrices. The displayed matrix is obtained by letting a = - 4.

The Linear Algebra Survival Guide | 233

N

Norm

The norms KvL of a vector v and KAL of a matrix A are nonnegative real numbers that measure the size of v and A. In the
case of a vector, norms are generalizations of the Euclidean lengths of vectors.

Vector norm

The norm of a vector has various definitions, depending on the use to be made of the idea. The standard norm or Euclidean
norm of a vector is based on the theorem of Pythagoras. A vector norm is a function v ⟶ KvL on a vector space V which
assigns a nonnegative real number KvL to every vector v in V with the following properties:

Properties of vector norms

NvO > 0 if v ≠ 0 (1)

NvO = 0 if and only if v = 0 (2)

Na vO = XaY NvO for all scalars a (3)

Nv + wO ≤ NvO + NwO (4)

The last inequality is known as the triangle inequality.

Illustration

◼ The Euclidean norm of a vector in ℝ2

u = {1, 1};

Norm[u]

2

As in the case of ℝ2, the length of a vector is based on the theorem of Pythagoras. Here too, we use the word norm in order
to avoid any conflict with the use of length in Mathematica for the number of elements of a list.

◼ The Euclidean norm of two vectors in ℝ3

u = {1, 2, 3}; v = {a, b, c};

{Norm[u], Norm[v]}

 14 , Abs[a]2 + Abs[b]2 + Abs[c]2 

 234 | The Linear Algebra Survival Guide

{Norm[u], Norm[v]} /∕. {a → 1, b → 1, c → 1}

 14 , 3 

The default norm is the Euclidean norm, also known as the two-norm. The parameter 2 in the command Norm[v, 2] can
therefore be suppressed. Other norms exist and many of them are based on inner products.

◼ The Euclidean norm of a vector in ℝ4 and ℂ4

Clear[a, b, c, d]

w = {a, b, c, d};

Norm[w]

Abs[a]2 + Abs[b]2 + Abs[c]2 + Abs[d]2

ComplexExpand√Abs[a]2 + Abs[b]2 + Abs[c]2 + Abs[d]2,

{a, b, c, d}, TargetFunctions → Conjugate

√(a Conjugate[a] + b Conjugate[b] + c Conjugate[c] + d Conjugate[d])

w1 = {1, 2, 3, 4}

{1, 2, 3, 4}

Norm[w1]

30

w2 = {1, ⅈ, 3 + 4 ⅈ, 6}

{1, ⅈ, 3 + 4 ⅈ, 6}

Norm[w2]

3 7

In Euclidean spaces, a vector is a geometrical object that possesses both a magnitude and a direction defined in terms of
the dot product. The associated norm is called the two-norm. The idea of a norm can be generalized.

◼ The two-norm of a vector in ℝ3

vector = {1, 2, 3};
magnitude = Norm[vector, 2]

14

The Linear Algebra Survival Guide | 235

Norm[vector] == Norm[vector, 2]

True

Other norms on finite-dimensional non-Euclidean spaces (except for p = 2) are the p-norms, for any real number p greater
than or equal to 1. The Euclidean two-norm is one of them.

◼ Four p-norms of a vector in ℝ2

u = {1, 2};

{Norm[u, 1], Norm[u, 2], Norm[u, 3], Norm[u, 4]}

3, 5 , 323, 1714

The N function can be used to calculate approximations of these norms:

N[{Norm[u, 1], Norm[u, 2], Norm[u, 3], Norm[u, 4]}]

{3., 2.23607, 2.08008, 2.03054}

For any given p ≥ 1, the p-norm of a vector v in ℝn is defined to be

NuOp = Norm[x, p] = 
i=1

n

Abs[ui]
p

1p

◼ The seven-norm of a vector in ℝ5

u = {1, 2, -−3, 4, -−5};

NuO7 = TotalTable[Abs[u[[i]]], {i, 1, 5}]7
17

527 387317

Norm[u, 7] == NuO7

True

N[Norm[u, 7]]

5.15566

Manipulation

We can use the Manipulate function to compare the p-norms within specified ranges.

◼ p-norms of a vector in ℝ5

Clear[p]

 236 | The Linear Algebra Survival Guide

u = Range[5]

{1, 2, 3, 4, 5}

Table[N[Norm[u, p]], {p, 1, Length[u]}]

{15., 7.4162, 6.0822, 5.59365, 5.36022}

Manipulate[Table[N[Norm[u, p]], {p, a, b}], {a, 1, 10, 1}, {b, 1, 10, 1}]

a

b

{15.}

We use Manipulate, Table, and Norm to explore p-norms. If a = b = 1, for example, the manipulation shows that the norm
of the vector u = Range[5] is approximately 15.0.

N[Norm[u, 1]]

15.

This shows that for a = b = 7, the seven-norm of the vector u calculated by the Manipulate function, is precisely the seven-
norm obtained in the previous example using the definition of the seven-norm.

All vectors can be converted to vectors of length 1 by multiplying them by the reciprocals of their norms. The results are
called normal vectors.

◼ Normalizing two vectors in ℝ3

Clear[a, b, c]

u = {1, 2, 3}; v = {a, b, c};

{Norm[u], Norm[v]}

 14 , Abs[a]2 + Abs[b]2 + Abs[c]2 

normalu = u/∕Norm[u]


1

14
,

2

7
,

3

14


The Linear Algebra Survival Guide | 237

Norm[normalu]

1

normalv = v/∕Norm[v];

All vectors obtained by assigning numerical values (not all zero) have norm 1:

Norm[normalv] /∕. {a → -−3, b → 2, c → 1}

1

◼ Link between the dot product, the Euclidean norm, and the cosine identity

Dot[x, y] == Norm[x] Norm[y] cosine[x, y] (1)

x = {1, 2}; y = {3, 4};

N[cos[x, y] = (Dot[x, y])/∕(Norm[x] Norm[y])]

0.98387

Dot[x, y] == Norm[x] Norm[y] cos[x, y]

True

Matrix norm

A matrix norm is a measure of the size of the matrix. They include the Frobenius norm, the max norm, the one-norm, the
two-norm, and the infinity-norm.

Properties of matrix norms

QAR ≥ 0 (1)

QAR = 0 if and only if A = 0 (2)

Qk AR = =k> QAR (3)

QA + BR ≤ QAR + QBR (4)

NA.BO ≤ QAR QBR (5)

The property KABL ≤ KAL KBL assumes that the matrices A and B are square and that the product AB is defined.

Illustration

◼ The Frobenius norm of a 2-by-2 real matrix

 238 | The Linear Algebra Survival Guide

A = {{9, -−3}, {-−2, 1}};
NAOF = Sqrt[Tr[Transpose[A].A]]

95

◼ The max norm of an n-by-n orthogonal matrix

Since an n-by-n orthogonal matrix A preserves the Euclidean norm of a vector v in ℝn, KA.vL=KvL, for all vectors v in ℝn.

The max norm QARMax of A induced by the Euclidean vector norm is 1 since it is defined to be the maximum of the ratios
KA.vL/KvL = KvL/KvL = 1, taken over all nonzero vectors v.

◼ The Frobenius norm of the 4-by-4 Hilbert matrix

MatrixForm[H = HilbertMatrix[4]]

1
1

2

1

3

1

4
1

2

1

3

1

4

1

5
1

3

1

4

1

5

1

6
1

4

1

5

1

6

1

7

NHOF = N[Sqrt[Tr[Transpose[H].H]]]

1.50973

The norm function of Mathematica has a “Frobenius” option:

N[Norm[H, "Frobenius"]]

1.50973

◼ The one-norm of the 4-by-4 Hilbert matrix

H = HilbertMatrix[4];

NHO1 = N[Max[Table[Total[H[[All, n]]], {n, 1, 4}]]]

2.08333

◼ The two-norm of the 4-by-4 Hilbert matrix

H = HilbertMatrix[4]; N[SingularValueList[H]];

NHO2 = Max[N[SingularValueList[H]]]

1.50021

◼ The infinity-norm of the 4-by-4 Hilbert matrix

The Linear Algebra Survival Guide | 239

H = HilbertMatrix[4];

NHO∞ = N[Max[Table[Total[H[[n]]], {n, 1, 4}]]]

2.08333

Every vector norm induces a matrix norm KAL as the maximum of the vector norms KAvL taken over all vectors v for which
KvL = 1.

◼ The induced norm of a nonsingular m-by-n matrix

A =
5 4
6 2

;

A.{Cos[x], Sin[x]}

{5 Cos[x] + 4 Sin[x], 6 Cos[x] + 2 Sin[x]}

Norm[{5 Cos[x] + 4 Sin[x], 6 Cos[x] + 2 Sin[x]}] /∕. {Cos[x] → 1, Sin[x] → 0}

61

Since orthogonal matrices preserve Euclidean norms, the induced matrix norm KAL of an orthogonal matrix is 1.

◼ The induced norm of an orthogonal matrix

A = {{Cos[θ], Sin[θ]}, {-−Sin[θ], Cos[θ]}};

θ = π/∕3;

Simplify[Norm[A.{Cos[π/∕4], Sin[π/∕4]}]] == Norm[{Cos[π/∕4], Sin[π/∕4]}] ⩵ 1

True

As is pointed out in http://mathworld.wolfram.com/MatrixNorm.html, the task of computing an induced matrix norm is difficult
in general since it involves “a nonlinear optimization problem with constraints.” A geometric interpretation of the maximum
value of KAvL/KvL over all unit vectors v is the maximum stretching factor obtained when multiplying the vectors on the
unit sphere by the matrix A.

◼ Stretching of a unit circle in ℝ2

A = {{2, 0}, {0, 3}};

circle = Cos[x]2 + Sin[x]2 ⩵ 1;

A.{Cos[x], Sin[x]}

{2 Cos[x], 3 Sin[x]}

 240 | The Linear Algebra Survival Guide

ParametricPlot[{2 Cos[x], 3 Sin[x]}, {x, 0, 2 π}]

-−2 -−1 1 2

-−3

-−2

-−1

1

2

3

Norm[{2 Cos[π/∕2], 3 Sin[π/∕2]}]

3

This shows that the induced norm of the diagonal matrix A is 3.

Normal basis of a vector space

A normal basis of a normed vector space is a basis in which the vectors all have a norm of 1.

Illustration

◼ Normalization of a basis for ℝ2 relative to the Euclidean norm on ℝ2

basis = {{1, 2}, {3, 4}};

normalizedbasis = 
1

Norm[{1, 2}]
{1, 2},

1

Norm[{3, 4}]
{3, 4}


1

5
,

2

5
, 

3

5
,
4

5


{Norm[normalizedbasis[[1]]], Norm[normalizedbasis[[2]]]}

{1, 1}

◼ Normalization of a basis for ℝ2 relative to the one-norm on ℝ2

The Linear Algebra Survival Guide | 241

basis = {{1, 2}, {3, 4}};

normalizedbasis = 
1

Norm[{1, 2}, 1]
{1, 2},

1

Norm[{3, 4}, 1]
{3, 4}


1

3
,
2

3
, 

3

7
,
4

7


{Norm[normalizedbasis[[1]], 1], Norm[normalizedbasis[[2]], 1]}

{1, 1}

{1, 1}

◼ Normalization of a basis for ℝ2 relative to the infinity-norm on ℝ2

basis = {{1, 2}, {3, 4}};

normalizedbasis = 
1

Norm[{1, 2}, Infinity]
{1, 2},

1

Norm[{3, 4}, Infinity]
{3, 4}


1

2
, 1, 

3

4
, 1

{Norm[normalizedbasis[[1]], Infinity], Norm[normalizedbasis[[2]], Infinity]}

{1, 1}

{1, 1}

Normal equation

See Normalization of a matrix equation

Normal matrix

A complex square matrix A is normal if AA *⋆ = A *⋆A, where A *⋆ is the conjugate transpose of A.

Normality can be used to test for diagonalizability since a matrix is normal if and only if it is unitarily similar to a diagonal
matrix and is therefore diagonalizable since all matrices of the form ConjugateTranspose[A].A and A.ConjugateTrans-
pose[A] are diagonalizable.

Illustration

◼ A normal complex 2-by-2 matrix

 242 | The Linear Algebra Survival Guide

MatrixForm[A = {{0, Cos[π/∕4] I}, {-−Sin[π/∕4] I, 0}}]

0
ⅈ

2

-−
ⅈ

2

0

NormalMatrixQ[A]

True

◼ A normal real 3-by-3 matrix

MatrixForm[A = {{1, 2, -−1}, {-−1, 1, 2}, {2, -−1, 1}}]

1 2 -−1
-−1 1 2
2 -−1 1

NormalMatrixQ[A]

True

Normal to a plane

In Euclidean geometry, a vector emanating from a point in a plane is a normal to the plane if it is perpendicular to every
nonzero vector determined by two points in the plane. If a x + b y + c z + d = 0 is a plane, then the vector n = {a, b, c} is
normal to the given plane.

Illustration

◼ A normal to a plane

Clear[a, b, c, d]

plane = a x + b y + c z + d == 0;

point0 = {x0, y0, z0};

eq1 = a x0 + b y0 + c z0 + d == 0;

point1 = {x1, y1, z1};

eq2 = a x1 + b y1 + c z1 + d == 0;

eq3 = a (x0 -− x1) + b (y0 -− y1) + c (z0 -− z1) ⩵ 0

a (x0 -− x1) + b (y0 -− y1) + c (z0 -− z1) ⩵ 0

The Linear Algebra Survival Guide | 243

Dot[{a, b, c}, {(x0 -− x1), (y0 -− y1), (z0 -− z1)}] ⩵ 0

a (x0 -− x1) + b (y0 -− y1) + c (z0 -− z1) ⩵ 0

Therefore the vector n = {a, b, c} is normal to the plane a x + b y + c z + d = 0.

Manipulation

◼ Equations of planes determined by the point {1, 2, 3} and their normal {a, b, c}.

Manipulate[Expand[Dot[{a, b, c}, {a (x -− 1), b (y -− 2), c (z -− 3)}] ⩵ 0],
{a, -−3, 3, 1}, {b, -−3, 3, 1}, {c, 0, 4, 1}]

a

b

c

-−25 + 4 x + 9 y + z ⩵ 0

We use Manipulate, Expand, and Dot to explore equations of planes. The manipulation produces the linear equation also
obtained with the following command:

Expand[Dot[{-−2, -−3, 1}, {-−2 (x -− 1), -−3 (y -− 2), 1 (z -− 3)}] ⩵ 0]

-−25 + 4 x + 9 y + z ⩵ 0

Normalization of a matrix equation

The normalization of a matrix equation Av = b refers to the process of multiplying both sides of the equation by the
transpose of the coefficient matrix A. Even if the original equation Av = b has no solution, its normalized version
AT Av = AT b is always solvable. Normalization preserves the solutions of Av = b.

The normal equation of a matrix equation Av = b is the equation obtained by normalizing the equation. It is called a normal
equation because the vector (b - Av) is normal to the range of A.

Illustration

◼ Normalization of a vector equation

A = RandomInteger[{0, 9}, {2, 3}];

A =
4 0 8
6 2 5

;

 244 | The Linear Algebra Survival Guide

MatrixForm[Transpose[A]]

4 6
0 2
8 5

v =

x
y
z

; b =
3
5

;

equation =
4 0 8
6 2 5

.
x
y
z

==
3
5

normalizedequation =
4 6
0 2
8 5

.
4 0 8
6 2 5

.
x
y
z

==
4 6
0 2
8 5

.
3
5

◼ Normalization preserves the solutions of consistent matrix equations.

A = {{4, 5, 6}, {1, 8, 7}}; v = {x, y, z}; b = {2, 3};

LinearSolve[A, b]


1

27
,
10

27
, 0

LinearSolve[Transpose[A].A, Transpose[A].b]


1

27
,
10

27
, 0

◼ Normalization produces “best possible” approximations of inconsistent matrix equations.

Clear[v, x, y, z, b, A]

A = {{4, 5, 6}, {8, 10, 12}}; v = {x, y, z}; b = {2, 3};

LinearSolve[A, b]

LinearSolve::nosol : Linear equation encountered that has no solution. $
LinearSolve[{{4, 5, 6}, {8, 10, 12}}, {2, 3}]

solution = LinearSolve[Transpose[A].A, Transpose[A].b]


2

5
, 0, 0

Transpose[A].A.solution == Transpose[A].b

True

The Linear Algebra Survival Guide | 245

Manipulation

◼ Normalization of a matrix equation

Clear[u, v, A, a, b]

MatrixForm[A = {{1, 2}, {3, 4}, {4, 7}}]; b = {1, 2, 3};

Reduce[Transpose[A].A.{u, v} ⩵ Transpose[A].b]

v ⩵
4

15
&& u ⩵

3

10

Clear[u, v]

Manipulate[Reduce[Transpose[A].A.{a u, v} ⩵ Transpose[A].b], {a, -−3, 3, 1}]

a

v ⩵
4

15
&& u ⩵

3

10

We use Manipulate, Reduce, and Transpose to visualize the normalization of matrix equations. The manipulation
produces the result for a = 1.

Normalization of a vector

The normalization of a vector v in a normed vector space is the process of multiplying v by the reciprocal of its norm. This
results in a vector in the same direction as v, but with a norm (or length) of 1.

Illustration

◼ Normalization of a vector in ℝ4 with respect to the Euclidean norm on ℝ4

v = {1, 2, 3, 4};

nv =
1

Norm[v]
v


1

30
,

2

15
,

3

10
, 2

2

15


 246 | The Linear Algebra Survival Guide

Norm[%]

1

Normed vector space

A vector space equipped with a vector norm is a normed vector space.

Illustration

◼ The Euclidean norm for ℝ2

The square root of Dot[u, u] is a vector norm called the Euclidean or two-norm.

u = {1, 2, 3};

Norm[u]

14

Norm[u] ⩵ Norm[u, 2]

True

◼ The p-norms for ℝ3

The Euclidean norm can be generalized to the family of so-called p-norms for all real numbers greater than or equal to 1.

u = {1, -−2, 3}; p = 1;

Norm[u, 1]

6

Norm[u, p] == (Abs[1] + Abs[-−2] + Abs[3])11

True

u = {-−1, 2, -−3, 4}; p = 3;

Norm[u, p]

1023

Abs[-−1]3 + Abs[2]3 + Abs[-−3]3 + Abs[4]3
13

1023

The Linear Algebra Survival Guide | 247

◼ The one-norm for ℝ3

The one-norm on the real vector space ℝn is the sum of the absolute values of the coordinates of the vectors:

Quit[]

au = {a1 x1, a2 x2, a3 x3};

NauO1 = Xa1 x1Y + Xa2 x2Y + Xa3 x3Y

=a1 x1> + =a2 x2> + =a3 x3>

a = 3; u = {1, 2, 3};

a u

{3, 6, 9}

Na uO1 = Abs[3] + Abs[6] + Abs[9]

18

◼ The infinity-norm for ℝ3

The infinity-norm on the real vector space ℝn is the absolute value of the largest coordinate of the vectors:

ax = {a1 x1, a2 x2, a3 x3};

NaxO∞ = Max[Xa1 x1Y, Xa2 x2Y, Xa3 x3Y]

Max[=31 x1>, =32 x2>, =33 x3>]

a = 3; u = {1, 2, 3};

a u

{3, 6, 9}

Na uO∞ = Max[Abs[3], Abs[6], Abs[9]]

9

 248 | The Linear Algebra Survival Guide

Illustration

◼ A basis for the null space of a 2-by-2 matrix

A =
7 1 0 6 7
4 9 7 3 5
9 2 5 4 4

;

nspaceA = NullSpace[A]

{{-−11, -−14, 15, 0, 13}, {-−199, -−167, 217, 260, 0}}

A.nspaceA[[1]]

{0, 0, 0}

A.nspaceA[[2]]

{0, 0, 0}

The matrix A maps all linear combinations of the basis vectors nspaceA[[1]] and nspaceA[[2]] to zero:

Simplify[A.(a nspaceA[[1]] + b nspaceA[[2]])]

{0, 0, 0}

◼ A basis for the null space of a 3-by-4 matrix

MatrixForm[A = {{9, 9, 2, 8}, {6, 9, 4, 3}, {5, 7, 2, 8}}]

9 9 2 8
6 9 4 3
5 7 2 8

nspaceA = NullSpace[A]

{{26, -−52, 69, 12}}

u = a {26, -−52, 69, 12}

{78, -−156, 207, 36}

A.u

{0, 0, 0}

Thus the null space of the matrix A is the one-dimensional subspace of ℝ4 consisting of all multiples of the vector {26, -52,
69, 12}.

◼ Eigenspaces considered as a null spaces

The Linear Algebra Survival Guide | 249

Null space

The null space of an m-by-n real matrix tells us which vectors v solve the homogeneous equation Av = 0. Mathematica has
a built-in command for computing the bases of null spaces. Eigenspaces are typical examples of null spaces.

MatrixForm[A = {{9, 0, 0}, {6, 9, 0}, {5, 7, 2}}]

9 0 0
6 9 0
5 7 2

The Eigensystem command produces a list of eigenvalues and eigenvectors of a matrix.

{evalues, evectors} = Eigensystem[A]

{{9, 9, 2}, {{0, 1, 1}, {0, 0, 0}, {0, 0, 1}}}

The eigenvalues of A are therefore 9 and 2, and the corresponding (nonzero) eigenvectors are {0, 1, 1} and {0, 0, 1}.
Mathematica includes the zero vector of the eigenspace of 9 in its output, although the zero vector is not actually an
eigenvector. However, it does of course belong to the eigenspace of an eigenvalue.

The command

NullSpace[A -− 9 IdentityMatrix[3]]

{{0, 1, 1}}

produces a basis for the eigenspace of the eigenvalue 9 of A. The command,

NullSpace[A -− 2 IdentityMatrix[3]]

{{0, 0, 1}}

on the other hand, produces a basis for the eigenspace of the eigenvalue 2 of A.

Manipulation

◼ Eigenspaces as null spaces

Clear[a, A]

MatrixForm[A = {{9 , 2}, {5 , a}}]

9 2
5 a

evalues = Eigenvalues[A]


1

2
9 + a -− 121 -− 18 a + a2 ,

1

2
9 + a + 121 -− 18 a + a2 

NullSpace[A -− evalues[[1]] IdentityMatrix[2]]


1

10
9 -− a -− 121 -− 18 a + a2 , 1

 250 | The Linear Algebra Survival Guide

NullSpace[A -− evalues[[2]] IdentityMatrix[2]]


1

10
9 -− a + 121 -− 18 a + a2 , 1

Manipulate[Evaluate[NullSpace[A -− evalues[[1]] IdentityMatrix[2]]], {a, -−1, 3, 1}]

a

-−
1

5
, 1

We use Manipulate, Evaluate, NullSpace, and IdentityMatrix to explore the eigenspace of first eigenvalue of the
generated matrix as a null space.

Manipulate[Evaluate[NullSpace[A -− evalues[[2]] IdentityMatrix[2]]], {a, -−1, 3, 1}]

a

{{2, 1}}

We use Manipulate, Evaluate, NullSpace, and IdentityMatrix to explore the eigenspace of second eigenvalue of the
generated matrix as a null space.

If we let a = 0 in the matrix A, the two Manipulate illustrations display the bases of the two null spaces obtained with the
Eigenvectors command, as expected:

Eigenvectors[A] /∕. {a → 0}

-−
1

5
, 1, {2, 1}

The Linear Algebra Survival Guide | 251

A = RandomInteger[{0, 9}, {3, 4}];

A =
5 2 3 3
9 8 0 1
1 8 2 6

;

NullSpace[A]

{{76, -−115, -−286, 236}}

This shows that the null space of A has a basis consisting of one nonzero vector. Hence the nullity of the matrix A is 1.

◼ The nullity of a random 4-by-6 matrix

A = RandomInteger[{0, 9}, {4, 6}];

A =

9 8 2 9 5 8
3 3 8 9 4 4
5 4 1 7 6 8
6 5 6 4 2 2

;

NullSpace[A]

{{-−351, 398, 62, -−125, 0, 122}, {-−713, 862, 46, -−199, 244, 0}}

This shows that the null space of A has a basis consisting of two nonzero vectors. Hence the nullity of the matrix A is 2.

 252 | The Linear Algebra Survival Guide

Nullity of a matrix

The dimension of the null space of a matrix is called the nullity of the matrix.

Illustration

◼ The nullity of a random 3-by-4 matrix

O

Orthogonal basis

A basis of an inner product space is orthogonal if all of its vectors are pairwise orthogonal.

Illustration

◼ An orthogonal basis of ℝ2 in the Euclidean inner product

◼ Linear independence

B = {{1, 2}, {-−2, 1}};

Det[B]

5

◼ Spanning

Solve[{x, y} ⩵ a {1, 2} + b {-−2, 1}, {a, b}]

a →
1

5
(x + 2 y), b →

1

5
(-−2 x + y)

◼ Orthogonality

Dot[{1, 2}, {-−2, 1}]

0

◼ An orthogonal basis of ℝ3 in the Euclidean inner product

◼ Linear independence

B = 21 5 , 42 5 , 0, -−8 105 , 4 105 , 5 105 , -−10 21 , 5 21 , -−20 21 ;

Det[B]

-−1 157 625

◼ Spanning

The Linear Algebra Survival Guide | 253

Solve[{x, y, z} ⩵ a B[[1]] + b B[[2]] + c B[[3]], {a, b, c}]

a →
1

525
5 x + 2 5 y ,

b →
-−8 105 x + 4 105 y + 5 105 z

11 025
, c →

-−2 21 x + 21 y -− 4 21 z

2205


◼ Orthogonality

{Dot[B[[1]], B[[2]]], Dot[B[[1]], B[[3]]], Dot[B[[2]], B[[3]]]}

{0, 0, 0}

Orthogonal complement

The orthogonal complement Sc of a subset S of an inner product space V is the set of all vectors v in V with the property
that <v, w> = 0 for all w in S.

Illustration

◼ Orthogonal complement of a subset of ℝ2 in the Euclidean inner product

Let S be the set of all vectors in ℝ2 of the form {a, 0}. Then y belongs to Sc if Dot[x, y] = 0 for all real numbers a.

Solve[Dot[{a, 0}, {b, c}] ⩵ 0, b]

{{b → 0}}

Therefore the orthogonal complement Sc of S in ℝ2 is the set of all vectors {0, c} in ℝ2, for all real numbers c.

◼ A null space as the orthogonal complement of the row space of a matrix

A = RandomInteger[{0, 9}, {3, 5}];

MatrixForm[A = {{9, 0, 4, 1, 8}, {7, 3, 5, 3, 7}, {0, 5, 6, 9, 0}}]

9 0 4 1 8
7 3 5 3 7
0 5 6 9 0

MatrixForm[S = NullSpace[A]]

-−12 -−6 5 0 11
5 3 -−13 7 0

 254 | The Linear Algebra Survival Guide

MatrixForm[T = RowReduce[A]]

1 0 0 -−
5

7

12

11

0 1 0 -−
3

7

6

11

0 0 1
13

7
-−

5

11

Table[Dot[S[[i]], T[[j]]], {i, 1, 2}, {j, 1, 3}]

{{0, 0, 0}, {0, 0, 0}}

Since the set

S ⋃ T

{-−12, -−6, 5, 0, 11}, 0, 0, 1,
13

7
, -−

5

11
,

0, 1, 0, -−
3

7
,

6

11
, 1, 0, 0, -−

5

7
,
12

11
, {5, 3, -−13, 7, 0}

is a basis for ℝ5 and since each vector in S is orthogonal to each vector in T, the orthogonal complement Sc of S is T and
the orthogonal complement, Tc of T is S.

We can also use the DisjointQ function to confirm that the spans of S and T are disjoint:

DisjointQ[S, T]

True

Orthogonal decomposition

Orthogonal projections and orthogonal complements can be used for an orthogonal decomposition of a vector into a sum of
orthogonal vectors.

Properties of projections and orthogonal complements

Proj[u, v] =
〈u, v〉

〈v, v〉
v (1)

Perp[u, v] = u -−
〈u, v〉

〈v, v〉
v (2)

Proj[u, v] + Perp[u, v] = u (3)

Proj[u, v] = a v (4)

〈Perp[u, v], v〉 = 0 (5)

The Linear Algebra Survival Guide | 255

Illustration

◼ An orthogonal projection in ℝ2

projection = Graphics[{Arrow[{{1, 2}, {10, 2}}], Arrow[{{1, 2}, {5, 8}}],
Arrow[{{5, 8}, {5, 2}}], Arrow[{{1, 1.8}, {5, 1.8}}]}, Axes → True]

4 6 8 10

3

4

5

6

7

8

◼ The orthogonal projection Proj[u, v] of a vector u onto a vector v and the vector component Perp[u,v] of u orthogonal to v

Clear[a]

Proj[u_, v_] :=
Dot[u, v]

Dot[v, v]
v

Perp[u_, v_] := u -− Proj[u, v]

u = {1, 2, 3}; v = {5, 0, 3};

{Proj[u, v], Perp[u, v]}


35

17
, 0,

21

17
, -−

18

17
, 2,

30

17


Proj[u, v] + Perp[u, v] ⩵ u

True

Solve[Proj[u, v] ⩵ a v, a]

a →
7

17


 256 | The Linear Algebra Survival Guide

Dot[Perp[u, v], v] ⩵ 0

True

◼ Using the Mathematica Projection function to decompose a vector into a sum of two orthogonal vectors in ℝ3

Clear[a]

u = {1, 2, 3}; v = {3, 5, 7};

perpComp[u, v] = u -− Projection[u, v]

-−
19

83
, -−

4

83
,
11

83


Projection[u, v]


102

83
,
170

83
,
238

83


Projection[u, v] + perpComp[u, v] ⩵ u

True

Solve[Projection[u, v] ⩵ a v, a]

a →
34

83


Dot[perpComp[u, v], v] ⩵ 0

True

The calculations show that the vectors Projection[u, v] and perpComp[u, v] combine into an orthogonal decomposition of
the vector u.

Manipulation

◼ Orthogonal projections in ℝ2

Manipulate[Projection[{a, b}, {1, 2}], {a, -−3, 3, 1}, {b, -−4, 4, 1}]

The Linear Algebra Survival Guide | 257

a

b

-−
1

5
, -−

2

5


We use Manipulate and Projection to explore projections in ℝ2. The manipulation produces the projection of the vector {-1,
0} onto the vector {1, 2}.

Orthogonal matrix

An orthogonal matrix is real square matrix whose inverse is its transpose. Much effort has gone into approximating
invertible matrices with orthogonal ones because of the ease of computing transposes. The singular value decomposition is
one technique for finding the best orthogonal approximation of a real invertible matrix.

Every invertible matrix or, more generally, every linearly independent set of real vectors, can be orthogonalized by the
Gram–Schmidt process. The Orthogonalize function of Mathematica implements this process.

Orthogonal matrices are the matrices that preserve the standard inner product.

Illustration

◼ A 3-by-3 orthogonal matrix

A =

6

7
-−
2

7
-−
3

7

-−
2

7

3

7
-−
6

7

-−
3

7
-−
6

7
-−
2

7

; u = {1, 2, 3}; v = {4, 5, 6};

A.Transpose[A] ⩵ Transpose[A].A ⩵ IdentityMatrix[3]

True

Dot[u, v] ⩵ Dot[A.u, A.v]

True

◼ Applying the Gram–Schmidt process to an invertible matrix

A = RandomInteger[{0, 9}, {3, 3}];

A =
6 5 6
4 3 9
7 3 1

;

 258 | The Linear Algebra Survival Guide

Det[A]

97

As we can see, the matrix A is invertible and its columns and rows are therefore linearly independent.

oA = Orthogonalize[A]


6

97
,

5

97
,

6

97
, -−

170

158 401
, -−

174

158 401
,

315

158 401
, 

27

1633
, -−

30

1633
, -−

2

1633


Transpose[oA] ⩵ Inverse[oA]

True

Orthogonal matrices preserve the Euclidean inner product.

◼ Orthogonal matrices and the Euclidean inner product

u = {1, 2, 3}; v = {4, 5, 6};

A =

6

97

5

97

6

97

-−
170

158 401

-−
174

158 401

315

158 401

27

1633

-−
30

1633

-−
2

1633

;

Transpose[A] ⩵ Inverse[A]

True

Dot[u, v] ⩵ Dot[A.u, A.v]

True

◼ An orthogonal matrix is a matrix whose inverse equals its transpose.

A = {{4, 7}, {1, 3}, {1, 5}};

tA = Transpose[A];

oA = Orthogonalize[tA.A]


1

5
,

2

5
, -−

2

5
,

1

5


Inverse[oA] ⩵ Transpose[oA]

True

The Linear Algebra Survival Guide | 259

◼ Orthogonal matrices associated with a singular value decomposition

A =
1 0 1
0 3 0
1 0 3

;

{u, w, v} = SingularValueDecomposition[A];

MatrixForm[u]

2

2+ 2+ 2
2

0 -−
2

2+ 2-− 2
2

0 1 0

2+ 2

2+ 2+ 2
2

0
2-− 2

2+ 2-− 2
2

MatrixForm[v]

-−1+ 2

1+ -−1+ 2
2

0
-−1-− 2

1+ -−1-− 2
2

0 1 0
1

1+ -−1+ 2
2

0
1

1+ -−1-− 2
2

The matrices u and v are orthogonal:

Simplify[Transpose[u] ⩵ Inverse[u]]

True

Simplify[Transpose[v] ⩵ Inverse[v]]

True

The matrix w is diagonal:

MatrixForm[w]

2 3 + 2 2  0 0

0 3 0

0 0 2 3 -− 2 2 

 260 | The Linear Algebra Survival Guide

SingularValueList[A]

 2 3 + 2 2 , 3, 2 3 -− 2 2 

The matrix A is diagonalized by u, w, and v:

Simplify[A ⩵ u.w.Transpose[v]]

True

As expected, the singular values of A are the square roots of the eigenvalues of both the matrix A AT and ATA.

Sqrt[Eigenvalues[A.Transpose[A]]]

 2 3 + 2 2 , 3, 2 3 -− 2 2 

Sqrt[Eigenvalues[Transpose[A].A]]

 2 3 + 2 2 , 3, 2 3 -− 2 2 

Orthogonal projection

The orthogonal projection of one vector onto another is the basis for the decomposition of a vector into a sum of orthogonal
vectors. The projection of a vector v onto a second vector w is a scalar multiple of the vector w.

Illustration

◼ Orthogonal projections in ℝ2

v = {1, 2}; w = {3, 4};

vpw = Projection[v, w]


33

25
,
44

25


This is the projection of the vector v onto the vector w.

Solve[vpw ⩵ a w, a]

a →
11

25


This shows that when the vector v is projected onto w, the result is a vector that is in the same direction as w, but w
is scaled by a factor of 11/25.

The Linear Algebra Survival Guide | 261

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

Similarly, we can project the vector w onto v.

wpv = Projection[w, v]


11

5
,
22

5


Solve[wpv ⩵ b v, b]

b →
11

5


◼ Orthogonal projections in ℝ3

u = {1, 2}; v = {3, 4};

Projection[u, v]


33

25
,
44

25


The projection of the vector v onto the vector w can be used to decompose the vector v into a sum of orthogonal vectors.

◼ Orthogonal decomposition in ℝ3

(v -− vpw) + vpw ⩵ v

True

Dot[v -− vpw, vpw]

154

25

The projection can be reversed by projecting the vector w onto the vector v and decomposing the vector w into a sum of
orthogonal vectors.

(w -− wpv) + wpv ⩵ w

True

Dot[w -− wpv, wpv]

0

The Projection function can be applied to vectors of arbitrary length.

◼ Orthogonal projections in ℝ3

u = {1, 2, 3}; v = {4, 5, 6};

 262 | The Linear Algebra Survival Guide

upv = Projection[u, v]


128

77
,
160

77
,
192

77


vpu = Projection[v, u]


16

7
,
32

7
,
48

7


Orthogonal transformation

A linear transformation (linear operator) on a real inner product space V is an orthogonal transformation if it preserves the
inner product <u, v> = <T[u], T[v]> for all vectors u and v in V.

If a matrix TA represents a linear transformation T : V ⟶ V in an orthonormal basis B, then the transpose Transpose[TA]
represents a linear transformation from V to V called the adjoint T *⋆ of T.

Let T be an orthogonal transformation on a finite-dimensional inner product space. Then the following conditions are
equivalent:

< u, v > = < T [u], T [v] > for all u and v (1)

N u O =  T [u]  for all u (2)

T ∘T *⋆ = T *⋆ ∘T , where T *⋆ is the adjoint of T (3)

Illustration

◼ Two adjoint linear transformations on ℝ 2

Clear[a, b, c, d]

T = {{1, 2}, {3, 4}};

T*⋆ = Transpose[T];

u = {a, b}; v = {c, d};

ExpandDot[T.u, v] ⩵ Dotu, T*⋆.v

True

◼ Two adjoint linear transformations on ℝ 3

T = {{1, 0, 2}, {4, 3, 0}, {0, 0, 3}};

T*⋆ = Transpose[T];

u = {1, 2, 3}; v = {4, 5, 6};

The Linear Algebra Survival Guide | 263

Dot[T.u, v], Dotu, T*⋆.v

{132, 132}

Orthogonal vectors

Two vectors u and v in a vector space equipped with an inner product <u, v> are orthogonal if <u, v> = 0. Two numerical
vectors are orthogonal in the Euclidean sense if their dot product is zero.

The orthogonality of vectors is a stronger relationship than their linear independence. Orthogonal vectors are always
linearly independent and can be used to build unique linear combinations, but they are more. In ℝ3, in particular, and
nowhere else, orthogonal vectors can be constructed using an operation called the cross product. This operation has many
powerful uses in scientific applications.

The Mathematica function for computing cross products is the Cross function.

Illustration

◼ Two orthogonal vectors in ℝ2

u = {1, 2}; v = {-−2, 1};

Dot[u, v]

0

Since orthogonal vectors are linearly independent, the calculation also shows that the two vectors are linearly independent.

Solve[a u + b v == 0 {a, b}]

{{a → 0, b → 0}}

As in the case of ℝ2, orthogonality is a concept generalizing the idea of perpendicularity and two vectors may be orthogonal
in one norm and not in another. The default is the Euclidean norm.

◼ Two orthogonal vectors in ℝ3

u = {1, 2, 3}; v = {-−3, 0, 1};

Dot[u, v]

0

 264 | The Linear Algebra Survival Guide

Graphics3D[{Arrow[{{0, 0, 0}, {1, 2, 3}}], Arrow[{{0, 0, 0}, {-−3, 0, 1}}]}, Axes -−> True]

-−3
-−2

-−1
0

10.0
0.5

1.0
1.5

2.0

0

1

2

3

The vectors are also linearly independent:

Reduce[a {1, 2, 3} + b {-−3, 0, 1} == 0, {a, b}]

a ⩵ 0 && b ⩵ 0

◼ Three orthogonal vectors in ℝ3

u = {1, 2, 3}; v = {-−3, 0, 1};

w = Cross[u, v]

{2, -−10, 6}

The Dot function can be used to verify the pairwise orthogonality of the three vectors:

{Dot[u, v], Dot[u, w], Dot[v, w]}

{0, 0, 0}

◼ Graphing two orthogonal vectors in ℝ2

u = {1, 2}; v = {-−2, 1};

Dot[u, v]

0

The Linear Algebra Survival Guide | 265

Graphics[{Arrow[{{0, 0}, {1, 2}}], Arrow[{{0, 0}, {-−2, 1}}]}, Axes -−> True]

-−2.0 -−1.5 -−1.0 -−0.5 0.5 1.0

0.5

1.0

1.5

2.0

This image shows that orthogonal vectors can be thought of as being perpendicular to each other.

The idea of orthogonality of two vectors can be modified by replacing the dot product function by a more general function
called an inner product. In that case, two vectors are orthogonal if their inner product is zero.

If u.w.Transpose[v] is a singular value decomposition of a matrix A, the columns of u and the columns of v are orthogonal.

◼ Singular vectors produced by a singular value decomposition are orthogonal

A =
9 6 8
9 2 6
7 8 2

;

{u, w, v} = SingularValueDecomposition[A];

N[u]

{{0.679681, 0.161157, 0.715585},
{0.534613, 0.559111, -−0.633706}, {0.502218, -−0.813279, -−0.29386}}

lsv = Table[N[u, 3][[All, i]], {i, 1, 3}]

{{0.680, 0.535, 0.502}, {0.161, 0.559, -−0.813}, {0.716, -−0.634, -−0.294}}

Table[Dot[lsv[[i]], lsv[[j]]], {i, 1, 3}, {j, 1, 3}]

1.00, 0.×10-−3, 0.×10-−3, 0.×10-−3, 1.00, 0.×10-−3, 0.×10-−3, 0.×10-−3, 1.00

Floor[%]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

rsv = Table[N[v, 3][[All, i]], {i, 1, 3}]

{{0.735, 0.467, 0.491}, {0.146, -−0.817, 0.558}, {-−0.662, 0.338, 0.669}}

Table[Dot[rsv[[i]], rsv[[j]]], {i, 1, 3}, {j, 1, 3}]

1.0, 0.×10-−3, 0.×10-−3, 0.×10-−3, 1.00, 0.×10-−3, 0.×10-−3, 0.×10-−3, 1.00

 266 | The Linear Algebra Survival Guide

fredeszabo
Sticky Note
Marked set by fredeszabo

Floor[%]

{{0, 0, 0}, {0, 1, 0}, {0, 0, 1}}

As expected, the resulting vectors are orthogonal.

Manipulation

We can use manipulations to explore the orthogonality of vectors

◼ The orthogonality of two vectors in ℝ2

Clear[a, b]

u = {a, 3}; v = {-−2, b};

Reduce[Dot[u, v] == 0, {a, b}]

Manipulate[Evaluate[Dot[u, v]], {a, -−4, 7, 1}, {b, -−3, 4, 1}]

b ⩵
2 a

3

a

b

0

We use Manipulate, Evaluate, and Dot to explore the orthogonality of vectors. The manipulation shows that if a = 3 and b
= 2, or if a = 6 and b = 4, for example, the generated vectors u and v are orthogonal. On the other hand, if a = b = 2, the
corresponding vectors u = {2, 3} and v = {-2, 2} are not.

a

b

2

The Linear Algebra Survival Guide | 267

Orthogonality

See Orthogonal matrix, orthogonal projection, orthogonal vectors

Orthogonalization

See Gram–Schmidt process

Orthonormal basis

 A basis is orthonormal if all of its vectors have a norm (or length) of 1 and are pairwise orthogonal.

One of the main applications of the Gram–Schmidt process is the conversion of bases of inner product spaces to orthonor-
mal bases.

The Orthogonalize function of Mathematica converts any given basis of a Euclidean space 𝔼n into an orthonormal basis. It
can also be used to orthogonalize a set of vectors in a non-Euclidean space,

Illustration

◼ An orthonormal basis for ℝ3

u = {1, 0, 1}; v = {1, 1, 1}; w = {0, 1, 1};

ou = Orthogonalize[{u, v, w}]


1

2
, 0,

1

2
, {0, 1, 0}, -−

1

2
, 0,

1

2


Table[Norm[ou[[i]]], {i, 1, 3}]

{1, 1, 1}

Table[Dot[ou[[i]], ou[[j]]], {i, 1, 3}, {j, 1, 3}]

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

◼ An orthonormal basis for ℝ2 relative to a nonstandard inner product.

Clear[x, y, u, v]

MatrixForm[A = DiagonalMatrix[{2, 3}]]

2 0
0 3

The function

 268 | The Linear Algebra Survival Guide

〈u_, v_〉 := u.A.v

defines a nonstandard inner product on ℝ2.

Next we construct two vectors in ℝ2 that are orthogonal in the inner product ip:

u = {1, 2}; v = {x, y};

Reduce[〈u, v〉 ⩵ 0, {x, y}]

y ⩵ -−
x

3

〈{1, 2}, {3, -−1}〉

0

Now we take two vectors in ℝ2 that are not orthogonal in the inner product ip and orthogonalize them:

w = {4, 6};

〈u, w〉

44

ip[u_, v_] := 〈u, v〉

{vector1, vector2} = Orthogonalize[{u, w}, ip]


1

14
,

2

7
, 

3

7
, -−

1

21


〈vector1, vector2〉

0

Manipulation

◼ Exploring orthonormal bases for ℝ2

We can use manipulations to visualize the numerical properties of orthonormal bases generated from random matrices.

The Linear Algebra Survival Guide | 269

Manipulate[Orthogonalize[{{a, 9}, {3, 3}}], {a, -−5, 5, 1}]

a

-−
1

10
,

3

10
, 

3

10
,

1

10


We use Manipulate and Orthogonalize to convert linearly independent vectors to orthogonal vectors. For each assign-
ment of an integer between -5 and 5 to the parameter a, the Orthogonalize function produces an orthonormal basis for ℝ2.
If a = -3, for example, the Manipulate function displays the orthogonal matrix

A = -−
1

10
,

3

10
, 

3

10
,

1

10
;

OrthogonalMatrixQ[A]

True

The rows of the generated matrix A form an orthonormal basis for ℝ2 in the standard inner product.

Overdetermined linear system

A linear system is overdetermined if it has more equations than unknowns. When the system is expressed as matrix-vector
equation, the matrix of coefficients will have more rows than columns.

Illustration

◼ An overdetermined inconsistent linear system with three equations in two variables

system = {x + y ⩵ 1, 2 x -− y ⩵ 4, x + 5 y ⩵ 3};

Solve[system, {x, y}]

{}

◼ An overdetermined consistent linear system with three equations and two variables

system = {x + 2 y ⩵ 5, 5 x + 6 y ⩵ 6, 4.5 x + 6 y ⩵ 8.25};

A = {{1, 2}, {5, 6}, {4.5, 6}}; b = {5, 6, 8.25};

 270 | The Linear Algebra Survival Guide

LinearSolve[A, b]

{-−4.5, 4.75}

◼ An approximate solution for an overdetermined inconsistent linear system in matrix form

A = {{1., 2.}, {5., 6.}, {4.5, 6.}}; b = {5., 6., 5.};

LinearSolve[A, b];

LinearSolve::nosol : Linear equation encountered that has no solution. $

◼ Using LeastSquares to solve an inconsistent overdetermined linear system

We can sometimes find a best possible approximation of a solution of an inconsistent system by using the method of least
squares:

LeastSquares[A, b]

{-−3.35294, 3.60294}

This method is equivalent to applying the transpose of the coefficient matrix to both sides and then inverting the new
coefficient matrix, if this is possible.

LinearSolve[Transpose[A].A, Transpose[A].b]

{-−3.35294, 3.60294}

The resulting vector {-3.35294, 3.60294} is a best approximation in the sense of least squares.

The Linear Algebra Survival Guide | 271

P

Particular solution of a linear system

The solution of a linear system obtained by assigning numerical values to the free variables of a linear system is a particular
solution of the linear system.

Illustration

◼ Particular solutions of a linear system

system = {3 x + 5 y -− z -− 1 ⩵ 0, x -− 2 y + 4 z -− 5 ⩵ 0};

A = Normal[CoefficientArrays[system, {x, y, z}]][[2]];

v = {{1}, {5}};

MatrixForm[augmentedmatrixA = Join[A, v, 2]]

3 5 -−1 1
1 -−2 4 5

MatrixForm[pivotcolumns = RowReduce[augmentedmatrixA]]

1 0
18

11

27

11

0 1 -−
13

11
-−
14

11

The associated linear system is

reducedsystem = x +
18

11
z ==

27

11
, y -−

13

11
z ⩵ -−

14

11


x +
18 z

11
⩵

27

11
, y -−

13 z

11
⩵ -−

14

11


This shows that the variables x and y can be considered to be the basic variables of the system and then z is free. By
assigning numerical values to z, the corresponding numerical values of x and y produce a particular solution of the given
system:

system2 = x +
18

11
z ==

27

11
, y -−

13

11
z ⩵ -−

14

11
 /∕. {z → 0}

x ⩵
27

11
, y ⩵ -−

14

11


Manipulation

◼ Particular solutions of a linear system

 272 | The Linear Algebra Survival Guide

Manipulate[Solve[{3 x + 5 y -− z -− 1 ⩵ 0, x -− 2 y + 4 z -− 5 ⩵ 0}, {x, y}], {z, -−2, 2, 1}]

z

x →
27

11
, y → -−

14

11


We use Manipulate and Solve to calculate particular solutions of linear systems. This manipulation displays the particular
solution of the given linear system by assigning 0 to the free variable z.

Pauli spin matrix

The Pauli spin matrices are three complex matrices that arise in Pauli’s treatment of spin in quantum mechanics. The Pauli
matrices, together with the identity matrix, form a basis for the space of all 2-by-2 complex matrices.

Illustration

◼ The Pauli spin matrices

MatrixForm[P1 = {{0, 1}, {1, 0}}]

0 1
1 0

MatrixForm[P2 = {{0, -−ⅈ}, {ⅈ, 0}}]

0 -−ⅈ
ⅈ 0

MatrixForm[P3 = {{1, 0}, {0, -−1}}]

1 0
0 -−1

Clear[a, b, c, d, u, v, x, y]

A = {{u, v}, {x, y}};

Solve[A == a IdentityMatrix[2] + b P1 + c P2 + d P3, {a, b, c, d}]

a →
u + y

2
, b →

v + x

2
, c →

1

2
ⅈ (v -− x), d →

u -− y

2


The Linear Algebra Survival Guide | 273

solution = Flattena →
u + y

2
, b →

v + x

2
, c →

ⅈ v

2
-−

ⅈ x

2
, d →

u

2
-−
y

2


a →
u + y

2
, b →

v + x

2
, c →

ⅈ v

2
-−

ⅈ x

2
, d →

u

2
-−
y

2


A ⩵ Simplify[a IdentityMatrix[2] + b P1 + c P2 + d P3 /∕. solution]

True

Perfectly conditioned matrix

An invertible matrix A is perfectly conditioned relative to a matrix norm KAL if its condition number KAL A-−1L = 1.

Illustration

◼ A perfectly conditioned matrix in the infinity-norm

A = 10-−6, 0, 0, 10-−6;

T = Map[Total, Abs[A]];

NAO∞ = Max[T]

1

1 000 000

B = Inverse[A];

iT = Map[Total, Abs[B]];

NBO∞ = Max[iT]

1 000 000

ConditionNumber = NAO∞ NBO∞

1

◼ A matrix that is not a perfectly conditioned matrix in the infinity-norm

A = {{2, -−1, 0}, {2, -−4, -−1}, {-−1, 0, 2}};

T = Map[Total, Abs[{{2, 1, 0}, {2, 4, 1}, {1, 0, 2}}]]

{3, 7, 3}

 274 | The Linear Algebra Survival Guide

NAO∞ = Max[T]

7

B = Inverse[A]


8

13
, -−

2

13
, -−

1

13
, 

3

13
, -−

4

13
, -−

2

13
, 

4

13
, -−

1

13
,

6

13


iT = Map[Total, Abs[B]]


11

13
,

9

13
,
11

13


NBO∞ = Max[iT]

11

13

ConditionNumber = N[NAO∞ NBO∞]

5.92308

◼ A perfectly conditioned matrix in the Euclidean norm

MatrixForm[A = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1.000001}}]

1 0 0
0 1 0
0 0 1.

ConditionNumber = Norm[A] Norm[Inverse[A]]

1.

Manipulation

◼ Changes in a condition number of a matrix

Clear[a, b]

MatrixForm[A = {{1 + a, 0}, {0, 1 + b}}]

1 + a 0
0 1 + b

Manipulate[Evaluate[Norm[A] Norm[Inverse[A]]], {a, -−0.001, 0.001}, {b, 0, 5}]

The Linear Algebra Survival Guide | 275

a

b

2.65992

We use Manipulate, Evaluate, Norm, and Inverse to explore the effect of making small changes to the elements of a 2-
by-2 matrix. The manipulation displays the condition number of the matrix obtained from the matrix A by adding a = 0.00003
and b = 1.66 to the diagonal elements of A.

Permutation matrix

A permutation matrix is a matrix obtained from an identity matrix by permuting the rows of the matrix.

Illustration

MatrixForm[A = IdentityMatrix[4]]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

◼ A permutation matrix involving one elementary row operation

MatrixForm[perm3214 = {A[[All,3]], A[[All,2]], A[[All,1]], A[[All,4]]}]

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

The matrix perm3214 is also an elementary matrix

◼ A permutation matrix involving more than elementary row operations

MatrixForm[perm3412 = {A[[All,3]], A[[All,4]], A[[All,1]], A[[All,2]]}]

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

The matrix perm3412 is not an elementary matrix since it involves more than one permutation of rows.

 276 | The Linear Algebra Survival Guide

Pivot column of a matrix

The pivot columns of a matrix A are the columns that correspond to the pivots of a reduced row echelon matrix B obtained
by row reducing A. The pivot columns of any reduced row echelon matrix are the columns of the matrix containing the pivot
elements of the matrix. The pivot elements of a reduced row echelon matrix are the leading elements of the nonzero rows
of the matrix. The leading element of a nonzero row of a matrix in reduced row echelon form is the leftmost nonzero
element of the row.

Illustration

MatrixForm[A = {{4, 0, 8}, {-−9, 0, 5}, {0, 0, 4}}]

4 0 8
-−9 0 5
0 0 4

MatrixForm[B = RowReduce[A]]

1 0 0
0 0 1
0 0 0

The 1s in the first and second rows of the reduced row echelon matrix B are the pivots of B. The first and third columns of B
are the pivot columns of B. Hence the first and third columns of A are the pivot columns of A since A is row equivalent to B.

Manipulation

◼ Exploring the pivot columns of a matrix obtained by row reduction

Manipulate[RowReduce[{{1, 1, 1}, {2, 1, 1}, {a, b, c}}],
{a, -−5, 5, 1}, {b, -−5, 5, 1}, {c, -−5, 5, 1}]

a

b

c

{{1, 0, 0}, {0, 1, 1}, {0, 0, 0}}

We use Manipulate and RowReduce to explore the pivot columns of 3-by-3 matrices. The manipulation displays the pivot
columns of the matrix

MatrixForm[A = {{1, 1, 1}, {2, 1, 1}, {-−2, -−3, -−3}}]

The Linear Algebra Survival Guide | 277

1 1 1
2 1 1
-−2 -−3 -−3

obtained by letting a = - 2, b = c = - 3. The manipulation shows that the first and second columns of A are pivot columns.

Plane in Euclidean space

The set of solutions {x, y, z} of a linear equation ax + by +cz + d = 0 forms a plane in the Euclidean space 𝔼3.

Illustration

◼ A plane in 𝔼3

plane = 3 x -− 2 y + z -− 5 ⩵ 0;

ContourPlot3D[Evaluate[plane], {x, -−10, 10}, {y, -−10, 10}, {z, -−10, 10}]

◼ Point-normal form of the equation of a plane in 𝔼3

 278 | The Linear Algebra Survival Guide

The coefficients of the variables of x, y, and z form a vector called the normal to the given plane.

plane = 3 x -− 2 y + z -− 5 ⩵ 0;

normal = {3, -−2, 1};

The normal is perpendicular to any vector {x - x0, y -−y0, z-−z0} formed with the arbitrary point {x, y, z} and fixed point {x0,
y0, z0} in the plane.

A fixed point in the plane is any solution of the linear equation of the plane.

Solve[plane, {x, y, z}]

Solve::svars : Equations may not give solutions for all "solve" variables. $
{{z → 5 -− 3 x + 2 y}}

If {x0, y0, z0} = {1, 1, z0} is a point in the plane, then z must be equal to 4.

plane /∕. {x → 1, y → 1, z → 4}

True

The normal vector {3, -2, 1} is perpendicular to the vector {x - 1, y - 1, z - 4} determined by the two points in the plane.
Therefore

pnformplaneq = Expand[Dot[{3, -−2, 1}, {x -− 1, y -− 1, z -− 4}] ⩵ 0]

-−5 + 3 x -− 2 y + z ⩵ 0

As expected, the point-normal form of the equation is identical to the original equation.

TraditionalForm[plane -− pnformplaneq ⩵ 0]

True

◼ Three-point form of the equation of a plane in 𝔼3

givenplane = 3 x -− 2 y + z -− 5 ⩵ 0;

Solve[givenplane, {x, y, z}]

Solve::svars : Equations may not give solutions for all "solve" variables. $
{{z → 5 -− 3 x + 2 y}}

threepoints = {{0, 0, 5}, {1, 0, 2}, {1, 1, 4}};

equation = a x + b y + c z + d ⩵ 0;

The Linear Algebra Survival Guide | 279

eq1 = equation /∕. {x → 0, y → 0, z → 5}

5 c + d ⩵ 0

eq2 = equation /∕. {x → 1, y → 0, z → 2}

a + 2 c + d ⩵ 0

eq3 = equation /∕. {x → 1, y → 1, z → 4}

a + b + 4 c + d ⩵ 0

parameters = Flatten[Solve[{eq1, eq2, eq3}, {a, b, c, d}]]

Solve::svars : Equations may not give solutions for all "solve" variables. $

b → -−
2 a

3
, c →

a

3
, d → -−

5 a

3


parameters /∕. {a → 3}

{b → -−2, c → 1, d → -−5}

computedplane = equation /∕. {a → 3, b → -−2, c → 1, d → -−5}

-−5 + 3 x -− 2 y + z ⩵ 0

givenplane -− computedplane ⩵ 0

True

Manipulation

The following manipulation shows that at least for the specified range of the parameters c and d, the point-normal form of
the equation of a plane is independent of the choice of the fixed points in the plane.

◼ Point-invariance of the point-normal form

plane = 3 x -− 2 y + z -− 5 ⩵ 0;

Solve[plane, {x, y, z}]

Solve::svars : Equations may not give solutions for all "solve" variables. $
{{z → 5 -− 3 x + 2 y}}

Clear[c, d]

normal = {3, -−2, 1};

 280 | The Linear Algebra Survival Guide

planarvector = {x -− c, y -− d, z -− (5 -− 3 c + 2 d)};

Manipulate[Evaluate[Expand[Dot[normal, planarvector] ⩵ 0]], {c, -−5, 5, 1}, {d, -−5, 5, 1}]

c

d

-−5 + 3 x -− 2 y + z ⩵ 0

We use Manipulate, Evaluate, Expand, and Dot to explore the point-invariance of a plane in ℝ3. By varying the values of c
and d we can see that no matter which fixed points we choose, the point s = {-5, -1, 18} or {0, 0, 5}, for example, the
equation of the plane remains unchanged.

Polar form of a complex number

The polar form of a nonzero complex number z = {x, y} is an expression of the form {r, θ𝜃}, where x = r Cos[θ𝜃] and y = r

Sin[θ𝜃], determined by the modulus r = x2 +y2 and the angle θ𝜃 determined by z and the real coordinate axis.

Since there are infinitely many possible angles θ𝜃 for which this definition makes sense, there are infinitely many representa-
tions of a complex number in polar form.

Illustration

Re

Im

{x,y} = r (Cos[θ𝜃] + ⅈ Sin[θ𝜃])

θ𝜃

0

r

The Linear Algebra Survival Guide | 281

Mathematica has built-in transformation functions between the polar and Cartesian representations of complex numbers.

Illustration

◼ Transformation of a nonzero complex numbers using the CoordinateTransform function

Clear[r, θ]

CoordinateTransform["Polar" → "Cartesian", {r, θ}]

{r Cos[θ], r Sin[θ]}

Clear[x, y]

CoordinateTransform[{"Cartesian" -−> "Polar"}, {x, y}]

 x2 + y2 , ArcTan[x, y]

◼ Transformation of a complex number in polar form to cartesian form

CoordinateTransform["Polar" → "Cartesian", {5, π/∕4}]


5

2
,

5

2


◼ Transformation of a complex number in cartesian form to polar form

CoordinateTransform[{"Cartesian" -−> "Polar"}, {1, -−1}]

 2 , -−
π

4


◼ Multiplication of complex numbers in polar form

z1 = r1 (Cos[θ1] + I Sin[θ1]);

z2 = r2 (Cos[θ2] + I Sin[θ2]);

Simplify[z1 z2 == r1 r2 (Cos[θ1 + θ2] + I Sin[θ1 + θ2])]

True

Manipulation

◼ Using Manipulate to explore the product of complex numbers

Clear[a, b, ϕ, θ]

 282 | The Linear Algebra Survival Guide

z1 = a (Cos[ϕ] + I Sin[ϕ]); z2 = b (Cos[θ] + I Sin[θ]);

Manipulate[a b (Cos[ϕ + θ] + I Sin[ϕ + θ]), {a, -−2, 2}, {b, -−2, 2}, {ϕ, 0, π}, {θ, 0, π}]

a

b

ϕ

θ

0.752185 + 0.658952 ⅈ

a = -−1; b = 1; ϕ = 1.5708; θ = 2.29022;

z1 = a (Cos[ϕ] + I Sin[ϕ])

3.67321×10-−6 -− 1. ⅈ

z2 = b (Cos[θ] + I Sin[θ])

-−0.658951 + 0.752186 ⅈ

z1 z2

0.752183 + 0.658954 ⅈ

We use Manipulate to visualize the product complex numbers. The manipulation produces the product of the two complex
numbers obtained by assigning numerical values to the parameters a, b, ϕ𝜑, and θ𝜃.

Polynomial space

The set of real polynomials ℝ[t,n] of degree less than or equal to n in the variable t forms a real vector space of dimension
(n + 1) called a polynomial space.

Illustration

◼ Vector addition in ℝ[t,4]

ℝ[t,4] is the set of real polynomials of degree less than or equal to 4, in the variable t.

p = 3 + t -− 7 t2 + t3;

q = 5 t + t4;

The Linear Algebra Survival Guide | 283

p + q

3 + 6 t -− 7 t2 + t3 + t4

◼ Scalar multiplication in ℝ[t,6]

r = 3 + 6 x -− 7 x2 + x3 + x4 + 3 x6;

Expand[-−2 r]

-−6 -− 12 x + 14 x2 -− 2 x3 -− 2 x4 -− 6 x6

Positive-definite matrix

A symmetric real n-by-n matrix A is positive-definite if Transpose[v]Av is positive for any nonzero column vector v of n real
numbers. All real diagonal matrices with positive diagonal elements are positive-definite. Positive-definite matrices are used
to define inner products. An n-by-n Hermitian matrix A is said to be positive-definite if ConjugateTranspose[v]Av is real
and positive for all nonzero complex vectors v.

Illustration

◼ A positive-definite diagonal matrix

MatrixForm[A = DiagonalMatrix[{1, 2, 3}]]

1 0 0
0 2 0
0 0 3

PositiveDefiniteMatrixQ[A]

True

◼ A 3-by-3 positive-definite matrix

All real symmetric matrices with positive diagonal elements are positive-definite.

A =
2 -−1 0
-−1 2 1
0 1 2

;

PositiveDefiniteMatrixQ[A]

True

 284 | The Linear Algebra Survival Guide

Principal axis theorem

The principal axis theorem says that for every real quadratic form q[x] = xT A x, there exist an orthogonal matrix Q and a
diagonal matrix dM for which A = Q dM QT .

Illustration

◼ The principal axes of a quadratic form

q[x_, y_] := 3 x2 -− 2 x y + 3 y2

Plot3D[q[x, y], {x, -−5, 5}, {y, -−5, 5}]

q[x, y] ⩵ Expand{x, y}.
3 -−1
-−1 3

.{x, y}

True

q[x, y] ⩵ Expand[{x, y}.{{3, -−1}, {-−1, 3}}.{x, y}]

True

A = {{3, -−1}, {-−1, 3}};

evalsA = Eigenvalues[A]

{4, 2}

evecsA = Eigenvectors[A]

{{-−1, 1}, {1, 1}}

The Linear Algebra Survival Guide | 285

Q = Orthogonalize[evecsA]

-−
1

2
,

1

2
, 

1

2
,

1

2


dM = DiagonalMatrix[evalsA]

{{4, 0}, {0, 2}}

A ⩵ Q.dM.Transpose[Q]

True

q[x, y] ⩵ Expand[{x, y}.A.{x, y}]

q[x, y] ⩵ 3 x2 -− 2 x y + 3 y2

q[x, y] ⩵ Simplify[{x, y}.Q.dM.Transpose[Q].{x, y}]

q[x, y] ⩵ 3 x2 -− 2 x y + 3 y2

{u, v} = {x, y}.Q

-−
x

2
+

y

2
,

x

2
+

y

2


Transpose[Q].{x, y}

-−
x

2
+

y

2
,

x

2
+

y

2


q[u_, v_] := {u, v}.dM.{u, v}

q[u, v] ⩵ 4 u2 + 2 v2

True

 286 | The Linear Algebra Survival Guide

Plot3D[q[u, v], {u, -−5, 5}, {v, -−5, 5}]

The calculation shows that q[x, y] and q[u, v] represent the same quadratic form.

Product of two vector spaces

See Cartesian product of two vector spaces

Pseudoinverse of a matrix

The pseudoinverse of a matrix (also called a Penrose matrix) is a generalization of an inverse matrix. An easy way to
construct pseudoinverse matrices comes from the method of least squares. However, Mathematica also has a specific
PseudoInverse function for this purpose. For any invertible matrix A,

PseudoInverse[A] = Inverse[A]

Illustration

◼ The pseudoinverse of a 3-by-3 matrix

RandomInteger[{0, 9}, {3, 3}]

9 6 2
7 8 4
9 0 1

The Linear Algebra Survival Guide | 287

A =
9 6 2
7 8 4
9 0 1

; b =
1
2
3

;

LinearSolve[A, b]

10
51

-−
55
102
21
17

LinearSolve[Transpose[A].A, Transpose[A].b]

10
51

-−
55
102
21
17

PseudoInverse[A] ⩵ Inverse[Transpose[A].A].Transpose[A]

True

◼ The pseudoinverse of a 3-by-4 matrix

A =
7 1 8 7
9 7 5 3
5 8 8 6

;

MatrixForm[B = PseudoInverse[A]]

6179

127 097

18 994

127 097
-−

17 488

127 097

-−
30 617

254 194

3995

127 097

28 175

254 194
5762

127 097
-−

8349

127 097

7861

127 097
15 159

254 194
-−

10 023

127 097

12 983

254 194

MatrixForm[A.B]

1 0 0
0 1 0
0 0 1

◼ The pseudoinverse of an invertible matrix

A = RandomInteger[{0, 9}, {4, 4}];

A =

7 5 5 0
9 8 9 7
7 2 3 6
1 5 0 2

;

 288 | The Linear Algebra Survival Guide

Det[A]

1099

PseudoInverse[A] ⩵ Inverse[A]

True

Pythagorean theorem

If u and v are two orthogonal vectors in ℝn in the Euclidean inner product, then Qu + vR2 = QuR2 + QvR2, where KwL is the
Euclidean norm of any vector w.

Illustration

◼ The Pythagorean theorem in ℝ2

u = {1, -−2}; v = {2, 1};

Dot[u, v]

0

Norm[u + v]2 ⩵ Norm[u]2 + Norm[v]2

True

◼ The Pythagorean theorem in ℝ3

u = {1, -−2, 3}; v = {2, 1, 0};

Dot[u, v]

0

Norm[u + v]2 ⩵ Norm[u]2 + Norm[v]2

True

Manipulation

◼ The Pythagorean theorem in ℝ3

Clear[a, b]

u = {a, -−2, 3}; v = {2, b, 0};

The Linear Algebra Survival Guide | 289

ManipulateNorm[{a, -−2, 3}]2 + Norm[{2, b, 0}]2 ⩵ Norm[{a, -−2, 3} + {2, b, 0}]2,

{a, -−10, 10, 1}, {b, -−10, 10, 1}

a

b

True

We use Manipulate and Norm to explore the Pythagorean theorem. This manipulation shows that if a = b, then the
theorem holds since the vectors {a, -2, 3} and {2, b, 0} are orthogonal in the Euclidean space 𝔼3. For example, if a = b = - 9,
then

Dot[{-−9, -−2, 3}, {2, -−9, 0}]

0

 290 | The Linear Algebra Survival Guide

Q

QR decomposition

The Gram–Schmidt process can be used to decompose a matrix A into a specific matrix product QR. If A is an m-by-n
matrix whose n columns are linearly independent vectors in ℝm, then there exists an m-by-n matrix Q whose columns form
an orthonormal set in ℝm and an n-by-n upper-triangular matrix R such that A = QR.

The product matrix QR is the QR decomposition of the matrix A.

The built-in Mathematica function QRDecomposition makes it easy to decompose suitable matrices in to QR products.

Illustration

◼ A QR decomposition of a 3-by-3 matrix

MatrixForm[A = {{1, 3, 0}, {0, 5, 7}, {2, -−8, 4}}]

1 3 0
0 5 7
2 -−8 4

{q, r} = QRDecomposition[A]


1

5
, 0,

2

5
, 

28

1605
, 5

5

321
, -−

14

1605
, -−

10

321
,

14

321
,

5

321
,

 5 , -−
13

5
,

8

5
, 0,

321

5
, 35

5

321
-−

56

1605
, 0, 0,

118

321


MatrixForm[Q = Transpose[q]]

1

5

28

1605

-−
10

321

0 5
5

321

14

321

2

5

-−
14

1605

5

321

The Linear Algebra Survival Guide | 291

MatrixForm[R = r]

5 -−
13

5

8

5

0
321

5
35

5

321
-−

56

1605

0 0
118

321

Q.R ⩵ A

True

◼ A QR decomposition of a 3-by-2 matrix

MatrixForm[A = {{1, 3}, {0, 5}, {2, -−8}}]

1 3
0 5
2 -−8

{q, r} = QRDecomposition[A];

Transpose[q].r ⩵ A

True

MatrixForm[q]

1

5

0
2

5

28

1605

5
5

321
-−

14

1605

MatrixForm[r]

5 -−
13

5

0
321

5

As we can see, the matrix r is upper-triangular. Since its diagonal elements are nonzero, we also know that it is invertible.

◼ A QR decomposition of a 2-by-3 matrix

MatrixForm[A = {{1, 3, 1}, {2, 5, 7}}]

1 3 1
2 5 7

 292 | The Linear Algebra Survival Guide

{q, r} = QRDecomposition[A];

q


1

5
,

2

5
, 

2

5
, -−

1

5


Transpose[q] ⩵ Inverse[q]

True

r

 5 ,
3

5
+ 2 5 , 3 5 , 0,

1

5
, -− 5 

The matrix q is orthogonal and the matrix r is upper-triangular, as expected.

Manipulation

◼ Exploring QR decompositions

MatrixForm[A = {{a, 3}, {2, b}}];

{q, r} = QRDecomposition[A];

Manipulate[Evaluate[q], {a, -−4, 4, 1}, {b, -−4, 4, 1}]

a

b

-−
2

5
,

1

5
, -−

1

5
, -−

2

5


The Linear Algebra Survival Guide | 293

Manipulate[Evaluate[r], {a, -−4, 4, 1}, {b, -−4, 4, 1}]

a

b

2 5 , -−2 5 , 0, 5 

We use Manipulate, QRDecomposition, and Evaluate to explore the matrices q and r produced by a QR decomposition.
If a = b = - 4, for example, the generated matrix q is orthogonal and the associated matrix r is upper-triangular:

q = -−
2

5
,

1

5
, -−

1

5
, -−

2

5
;

OrthogonalMatrixQ[q]

True

and

MatrixFormr = 2 5 , -−2 5 , 0, 5 

2 5 -−2 5

0 5

Quadratic form

A quadratic form q: V ⟶ ℝ on a real inner product space V is a function q[v] = f[v, v] for some symmetric bilinear form f: V⨯
V ⟶ ℝ.

Illustration

◼ A quadratic form defined by a 2-by-2 symmetric matrix

Clear[x, y, v, q]

MatrixForm[A = {{1, 2}, {2, 3}}]

1 2
2 3

v = {x, y};

 294 | The Linear Algebra Survival Guide

q[v_] := Expand[v.A.v]

q[v]

x2 + 4 x y + 3 y2

◼ Converting a quadratic form to a matrix product

Clear[q, x, y, a, b, c]

q[{x_, y_}] := 7 x2 -− 9 y2

Expand[{x, y}.{{a, b}, {b, c}}.{x, y}]

a x2 + 2 b x y + c y2

Thus a = 7, 2b = 0, and c = -9, so that

q[{x, y}] == {x, y}.{{7, 0}, {0, -−9}}.{x, y}

True

◼ A quadratic form on ℝ3

Clear[x, y, z, a, b, c, d, e, f]

q[{x_, y_, z_}] := 3 x2 -− 2 x y + 3 x z + 6 y2 + 5 y z -− 8 z2

MatrixForm[A = {{a, b, c}, {b, d, e}, {c, e, f}}]

a b c
b d e
c e f

Expand[{x, y, z}.{{a, b, c}, {b, d, e}, {c, e, f}}.{x, y, z}]

a x2 + 2 b x y + d y2 + 2 c x z + 2 e y z + f z2

MatrixFormB = A /∕. a → 3, b → -−1, c →
3

2
, d → 6, e →

5

2
, f → -−8

3 -−1
3

2

-−1 6
5

2
3

2

5

2
-−8

q[{x, y, z}] == Expand[{x, y, z}.B.{x, y, z}]

True

The Linear Algebra Survival Guide | 295

Quintic polynomial

A quintic polynomial is a complex polynomial of degree 5.

The fundamental theorem of algebra guarantees that every polynomial equation of the form p = 0, involving a polynomial p
of degree n, has n roots in the complex plane (counting multiplicity of the roots). According to the theorem of the unsolvabil-
ity of the quintic, there is no algorithm for finding the solutions of arbitrary polynomials of degree 5 or higher consisting only
of the four arithmetic operations together with the extraction of roots.

Numerical approximation techniques for solving polynomial equations involving polynomials of degree 5 or higher must
usually be applied.

Illustration

MatrixForm[
A = {{7, 1, 1, 9, 4}, {7, 7, 7, 2, 9}, {3, 2, 5, 6, 0}, {2, 1, 2, 2, 1}, {4, 0, 9, 1, 7}}]

7 1 1 9 4
7 7 7 2 9
3 2 5 6 0
2 1 2 2 1
4 0 9 1 7

cpt = CharacteristicPolynomial[A, t]

-−1342 -− 1508 t + 968 t2 -− 231 t3 + 28 t4 -− t5

Roots[cpt ⩵ 0, t]

t ⩵ Root1342 + 1508 #1 -− 968 #12 + 231 #13 -− 28 #14 + #15 &, 1 ||

t ⩵ Root1342 + 1508 #1 -− 968 #12 + 231 #13 -− 28 #14 + #15 &, 2 ||

t ⩵ Root1342 + 1508 #1 -− 968 #12 + 231 #13 -− 28 #14 + #15 &, 3 ||

t ⩵ Root1342 + 1508 #1 -− 968 #12 + 231 #13 -− 28 #14 + #15 &, 4 ||

t ⩵ Root1342 + 1508 #1 -− 968 #12 + 231 #13 -− 28 #14 + #15 &, 5

The symbol # represents the values of the root. These values can be approximated numerically using the

Mathematica N[] command:

N[Roots[cpt ⩵ 0, t]]

t ⩵ -−0.61186 || t ⩵ 4.45378 || t ⩵ 17.7945 || t ⩵ 3.18179 -− 4.18941 ⅈ || t ⩵ 3.18179 + 4.18941 ⅈ

 296 | The Linear Algebra Survival Guide

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

fredeszabo
Sticky Note
Marked set by fredeszabo

R

Random matrix

Mathematica can generate a random matrix in several ways. The commands RandomInteger and RandomReal are the
two basic commands.

In the commands RandomInteger[{a ,b}, {c, d}] and RandomReal[{a ,b}, {c, d}], the interval {a, b} determines the range of
integers or real numbers between a and b, and the pair {c, d} determines the dimensions of the matrix.

Illustration

◼ A random 3-by-4 matrix with integer elements

A = RandomInteger[{0, 9}, {3, 4}];

A =
0 8 4 2
4 6 8 1
8 6 5 1

;

Dimensions[%]

{3, 4}

◼ A random 4-by-3 matrix with real elements

A = RandomReal[{0, 9}, {4, 3}];

A =

7.016438851674735` 5.594529085595454` 1.7651835472965853`
5.9705522429768525` 1.1846711298028172` 2.073325573818849`
5.688608735820997` 8.284427980487944` 4.309072260274204`
3.683700829298914` 5.904113691672606` 8.621603444105805`

;

Dimensions[%]

{4, 3}

Manipulation

◼ A family of matrices with random integer elements

The Linear Algebra Survival Guide | 297

Manipulate[MatrixForm[RandomInteger[{0, 9}, {a, b}]], {a, 2, 5, 1}, {b, 2, 5, 1}]

a

b

9 9
0 2

We use Manipulate, MatrixForm, and RandomInteger to generate random 2-by-2 matrices with integer elements
displayed in two-dimensional form. Every evaluation of the Manipulate command generates a new matrix.

◼ A family of matrices with random real elements

Manipulate[MatrixForm[RandomReal[{0, 9}, {a, b}]], {a, 2, 5, 1}, {b, 2, 5, 1}]

a

b

7.27451 7.66723
7.74096 7.04218

We use Manipulate, MatrixForm, and RandomReal to generate random 2-by-2 matrices with real elements displayed in
two-dimensional form. Every evaluation of the Manipulate command generates a new matrix.

Range of a linear transformation

The range of a linear transformation T : V ⟶ W from a vector space V to a vector space W is the set of all vectors T[u] in
W. The range of T is a subspace of W. If T is a matrix transformation, then its range is the column space of T. The range of
T is also called the image of the transformation.

Illustration

◼ The range of a 2-by-4 matrix transformation

A = {{7, 3, 8, 1}, {3, 8, 1, 0}};

v = {1, 2, 3, 4};

 298 | The Linear Algebra Survival Guide

The vector b = {41, 22} is one of the vectors in the range of the transformation defined by the matrix A since it is a solution
of the matrix equation Av = b:

A.v ⩵ {41, 22}

True

Now consider a general vector in ℝ4 and its image vectors A.u:

Clear[a, b, c, d]

u = {a, b, c, d};

A.u

{7 a + 3 b + 8 c + d, 3 a + 8 b + c}

The range of the transformation defined by A is the set of all vectors of the form

{7 a + 3 b + 8 c + d, 3 a + 8 b + c}

a = 1; b = 2; c = 3; d = 4;

{7 a + 3 b + 8 c + d, 3 a + 8 b + c} ⩵ {41, 22}

True

Notice that the vector {41, 22} satisfies this equation for the vector {1, 2, 3, 4}.

◼ The range of a 3-by-2 matrix transformation

MatrixForm[A = {{1, 6}, {7, 1}, {4, 2}}]

1 6
7 1
4 2

A.{u, v}

{{7, 14, 21, 28}, {8, 16, 24, 32}, {6, 12, 18, 24}}

The range of the matrix transformation A consists of all vectors {x, y, z} in ℝ3 satisfying the conditions

{x, y, z} = {u + 6 v, 7 u + v, 4 u + 2 v}

{{7, 14, 21, 28}, {8, 16, 24, 32}, {6, 12, 18, 24}}

for all real numbers u and v. Here are two such vectors:

{u + 6 v, 7 u + v, 4 u + 2 v} /∕. {u → 0, v → 0}

{{7, 14, 21, 28}, {8, 16, 24, 32}, {6, 12, 18, 24}}

The Linear Algebra Survival Guide | 299

{u + 6 v, 7 u + v, 4 u + 2 v} /∕. {u → 1, v → 1}

{{7, 14, 21, 28}, {8, 16, 24, 32}, {6, 12, 18, 24}}

◼ The column space of A

Clear[A, B, v, s, r, a, b, c, d]

A =
7 3 8 1
3 8 1 0

;

MatrixForm[B = RowReduce[Transpose[A]]]

1 0
0 1
0 0
0 0

v = {1, 2, 3, 4};

solution = Flatten[Solve[A.v ⩵ r B[[1]] + s B[[2]], {s, r}]]

{s → 22, r → 41}

This calculation shows that the vector {22, 41} lies in the range of the linear transformation defined by the matrix A.

Reduce
22
41

== a
7
3

+ b
3
8

+ c
8
1

+ d
1
0

, {a, b, c, d}

c ⩵ 41 -− 3 a -− 8 b && d ⩵ -−306 + 17 a + 61 b

22
41

==
7
3

+
3
8

+ (41 -− 3 -− 8)
8
1

-− 228
1
0

True

Rank-deficient matrix

An n-by-n matrix whose rank is not n is said to be rank-deficient.

Illustration

◼ A rank-deficient 5-by-5 matrix

A = Normal[SparseArray[{{1, 1} → 1, {2, 2} → 0, {3, 3} → 3, {5, 5} → 4}]]

{{1, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 3, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 4}}

 300 | The Linear Algebra Survival Guide

{Dimensions[A], MatrixRank[A]}

{{5, 5}, 3}

The rank of A is 3, while its dimensions are 5-by-5. This means that the matrix A is rank-deficient.

Manipulation

Clear[A, a, b]

MatrixForm[A = {{8, a, 4, 6}, {4, 2, b, 6}, {a, 0, 0, 0}, {0, 0, 0, 0}}]

8 a 4 6
4 2 b 6
a 0 0 0
0 0 0 0

Manipulate[MatrixRank[{{8, a, 4, 6}, {4, 2, b, 6}, {a, 0, 0, 0}, {0, 0, 0, c}}],
{a, -−2, 4, 1}, {b, -−3, 6, 1}, {c, -−2, 2, 1}]

a

b

c

3

We use Manipulate and MatrixRank to explore rank-deficient matrices. The manipulation shows that if a = b = c = 0, the
resulting matrix has rank 2. If a = b = 0, and c = 1, the resulting matrix has rank 3. If a = 1, b = 0, and c = 1, the resulting
matrix has rank 4 and is of full rank.

Rank–nullity theorem

The rank–nullity theorem guarantees that for any linear transformation T: V ⟶ W connecting two finite-dimensional vector
spaces V and W, the dimension of V is the sum of the dimensions of the kernel and the image of T.

Illustration

◼ The rank and nullity of a 5-by-4 matrix

The Linear Algebra Survival Guide | 301

MatrixForm[A = {{0, 1, 1, 0, 0}, {1, 0, 1, 0, 0}, {0, 0, 1, 0, 0}, {1, 1, 1, 1, 1}}]

0 1 1 0 0
1 0 1 0 0
0 0 1 0 0
1 1 1 1 1

The matrix A represents a linear transformation from ℝ5 toℝ4

MatrixRank[A]

4

NullSpace[A]

{{0, 0, 0, -−1, 1}}

Dimensions[%]

{1, 5}

Since the null space of A contains a single vector, the nullity of A is 1. By the rank–nullity theorem:

rank + nullity = 4 + 1 = 5 = dimension of ℝ5

◼ The rank–nullity theorem for a 5-by-6 matrix

MatrixForm[A = Normal[SparseArray[{{1, 1} → 1, {2, 2} → 2, {3, 3} → 3, {1, 3} → 4, {5, 6} → -−3}]]]

1 0 4 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 -−3

The matrix A represents a linear transformation from ℝ6 toℝ5

MatrixRank[A]

4

NullSpace[A]

{{0, 0, 0, 0, -−1, 0}, {0, 0, 0, -−1, 0, 0}}

Dimensions[%]

{2, 6}

Since the null space of A contains two vectors, the nullity of A is 2. By the rank–nullity theorem,

rank + nullity = 4 + 2 = 6 = dimension of ℝ6

 302 | The Linear Algebra Survival Guide

Rank of a matrix

The rank of a matrix is the number of linearly independent rows of the matrix. It is also called the row rank of the matrix. The
row rank of a matrix equals its column rank, the number of linearly independent columns of the matrix.

The rank is also the number of pivots of a reduced row echelon matrix.

Illustration

◼ A 5-by-5 matrix of rank 5

A = {{6, 5, 7, 3, 6, 1, 0}, {5, 5, 2, 8, 8, 4, 5}, {6, 1, 8, 0, 9, 5, 4},
{9, 7, 2, 6, 3, 1, 3}, {4, 2, 7, 5, 0, 2, 0}, {13, 9, 9, 11, 3, 3, 3}};

MatrixRank[A]

5

As expected, the reduced row echelon matrix B determined by the matrix A has five pivot columns:

MatrixForm[B = RowReduce[A]]

1 0 0 0 0
164

313

823

939

0 1 0 0 0 -−
2075

1878
-−
1085

939

0 0 1 0 0 -−
205

3756
-−

967

1878

0 0 0 1 0
625

1252

905

1878

0 0 0 0 1
709

1878

419

939

0 0 0 0 0 0 0

◼ A 3-by-4 matrix of rank 2

A = {{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}};

The reduced row echelon matrix B determined by the matrix A has two pivot columns:

MatrixForm[B = RowReduce[A]]

1 0 0 0
0 1 0 0
0 0 0 0

Hence the rank of the matrix A must be 2:

MatrixRank[A]
2

◼ A 2-by-4 matrix of rank 0

A = {{0, 0, 0, 0}, {0, 0, 0, 0}};

The Linear Algebra Survival Guide | 303

The reduced row echelon matrix B determined by the matrix A has no pivot columns:

MatrixForm[B = RowReduce[A]]

0 0 0 0
0 0 0 0

Hence the rank of the matrix A must be zero:

MatrixRank[A]

0

Manipulation

◼ Exploring the rank of 4-by-4 matrices

Manipulate[MatrixRank[{{8, a, 4, 6}, {4, 2, b, 6}, {a, 0, 0, 0}, {0, b, 0, 0}}],
{a, -−2, 4, 1}, {b, -−3, 6, 1}]

a

b

4

We use Manipulate and MatrixRank to generate 4-by-4 matrices with possibly different rank. The assignment of a = - 2
and b = - 3, for example, generates a matrix with rank 4. The assignment of a = 0 and b = - 3 generates a matrix of rank 3.

a

b

3

Rational canonical form

A matrix is in rational canonical form if it is a direct sum of companion matrices. Every square matrix is similar to a matrix in
rational canonical form.

 304 | The Linear Algebra Survival Guide

As discussed in the section on companion matrices, the following defined Mathematica function can be used to calculate
companion matrices:

CompanionMatrix[p_, x_] := Module[{n, w = CoefficientList[p, x]}, w = -−w/∕Last[w];
n = Length[w] -− 1;
SparseArray[{{i_, n} ⧴ w[[i]], {i_, j_} /∕; i ⩵ j + 1 → 1}, {n, n}]]

Illustration

◼ A matrix in rational canonical form

Clear[A, x]

p1 = 1 + 3 x2 -− 2 x3 + x4;

MatrixForm[array1 = Normal[CompanionMatrix[p1, x]]]

0 0 0 -−1
1 0 0 0
0 1 0 -−3
0 0 1 2

p2 = 2 x + 5 x2 + x3;

MatrixForm[Normal[array2 = CompanionMatrix[p2, x]]]

0 0 0
1 0 -−2
0 1 -−5

MatrixForm[ap1 = ArrayPad[array1, {0, 3}]]

0 0 0 -−1 0 0 0
1 0 0 0 0 0 0
0 1 0 -−3 0 0 0
0 0 1 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

MatrixForm[ap2 = ArrayPad[array2, {4, 0}]]

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 -−2
0 0 0 0 0 1 -−5

The Linear Algebra Survival Guide | 305

MatrixForm[A = ap1 + ap2]

0 0 0 -−1 0 0 0
1 0 0 0 0 0 0
0 1 0 -−3 0 0 0
0 0 1 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 -−2
0 0 0 0 0 1 -−5

The matrix A is in rational canonical form since it is a direct sum of companion matrices.

Rayleigh quotient

The Rayleigh quotient of a Hermitian matrix A and a nonzero vector v is the scalar

Conjugate[v].A.v

Conjugate[v].v
(1)

If A and v are real, then A is symmetric and the conjugate transpose of v is the transpose of v (or simply v in Mathematica).
The Rayleigh coefficient occurs in problems in engineering, pattern recognition, and related fields.

Illustration

◼ The Rayleigh coefficient of a 2-by-2 Hermitian matrix and a vector v in ℂ2

Clear[v, A, R]

MatrixForm[A = {{1, 3 + 4 I}, {3 -− 4 I, 2}}]

1 3 + 4 ⅈ
3 -− 4 ⅈ 2

HermitianMatrixQ[A]

True

R[A_, v_] :=
Conjugate[v].A.v

Conjugate[v].v

v = {3 -− I, 5};

R[A, v]

22

7

 306 | The Linear Algebra Survival Guide

Rectangular matrix

An m-by-n matrix is rectangular if m ≠ n.

Illustration

◼ A random real rectangular 3-by-5 matrix

MatrixForm[A = RandomReal[{0, 9}, {3, 5}]]

8.05463 4.62611 0.29784 6.95849 4.99793
5.69969 3.86907 4.76395 1.14268 4.36128
7.75929 2.2516 8.12218 3.29463 8.73757

A =
4.23662 0.922396 6.00001 0.17665 4.94943
3.32964 4.50523 6.1601 0.984526 5.48412
7.75887 6.37372 0.299192 6.55342 5.90837

Dimensions[%]

{3, 5}

◼ A random rectangular 6-by-2 matrix with integer elements

MatrixForm[A = RandomInteger[{0, 9}, {6, 2}]]

0 6
6 8
3 0
5 6
8 7
7 0

Dimensions[%]

{6, 2}

Reduced row echelon matrix

The leading entry of a nonzero row of a matrix in row echelon form is called a pivot of the matrix. An m-by-n row echelon
matrix is in reduced row echelon form if it has the following properties: Either the matrix is a zero matrix or all of its pivots
are 1 and all entries above its pivots are 0.

The RowReduce function of Mathematica reduces a matrix to its reduced row echelon form.

Illustration

◼ A 4-by-5 reduced row echelon matrix

The Linear Algebra Survival Guide | 307

0 0 1 8 1
0 0 0 5 4
0 0 0 0 6
0 0 0 0 0

The matrix is a matrix in row echelon form, but is not in reduced row echelon form.

◼ Reduction of a 4-by-5 matrix to reduced row echelon form

A =

0 0 1 8 1
0 0 0 5 4
0 0 0 0 6
0 0 0 0 0

{{0, 0, 1, 8, 1}, {0, 0, 0, 5, 4}, {0, 0, 0, 0, 6}, {0, 0, 0, 0, 0}}

MatrixForm[B = RowReduce[A]]

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

◼ Reduction of a random 3-by-3 real matrix to reduced row echelon form

A = RandomReal[{0, 9}, {3, 3}];

A =
2.0716982088321423` 2.497526720307203` 7.236524211079711`
5.554095004848561` 1.9196532271480322` 0.9904680439688676`
5.341640232827222` 1.875793841070399` 8.202469374845403`

;

MatrixForm[B = RowReduce[A]]

1 0. 0.
0 1 0.
0 0 1

Reflection

The left-multiplications Av, Bv, and Rv of a vector v in ℝ2 by the matrices

MatrixForm[A = {{-−1, 0}, {0, 1}}]

-−1 0
0 1

MatrixForm[B = {{1, 0}, {0, -−1}}]

1 0
0 -−1

 308 | The Linear Algebra Survival Guide

MatrixForm[R = {{0, 1}, {1, 0}}]

0 1
1 0

respectively, represent reflections of v about the x-axis, the y-axis, and the line y = x.

These and more general reflections can be produced with the built-in ReflectionMatrix function.

MatrixForm[A == ReflectionMatrix[{1, 0}]]

True

MatrixForm[B == ReflectionMatrix[{0, 1}]]

True

MatrixForm[R == ReflectionMatrix[{1, -−1}]]

True

Illustration

◼ Three reflections of a vector in ℝ2

v = {3, 5};

{A.v, B.v, R.v}

{{-−3, 5}, {3, -−5}, {5, 3}}

As expected, the vector {3, 5} became {-3, 5} when reflected about the x-axis, {3, -5} when reflected about the y-axis, and
{5, 3} when reflected about the line y = x.

◼ Three reflections of a general vector in ℝ2

Clear[x, y]

v = {x, y};

{A.v, B.v, R.v}

{{-−x, y}, {x, -−y}, {y, x}}

◼ Reflections of vectors in ℝ3 about a plane through the origin

The Linear Algebra Survival Guide | 309

vector1 = {1, 2, 3};
plane = Dot[{1, 1, 1}, {x, y, z}] ⩵ 0;
MatrixForm[R3D = ReflectionMatrix[{1, 1, 1}]]

1

3
-−
2

3
-−
2

3

-−
2

3

1

3
-−
2

3

-−
2

3
-−
2

3

1

3

R3D.vector1

{-−3, -−2, -−1}

vector2 = {1, 2, -−3}
R3D.vector2

{1, 2, -−3}

The last calculation illustrates the fact that reflections of points in the plane remain fixed.

Roots of unity

Solutions of equations of the form xn = 1 are called roots of unity.

Illustration

◼ Second roots of unity

roots2 = x2 ⩵ 1;

Solve[roots2]

{{x → -−1}, {x → 1}}

◼ Third roots of unity

roots3 = x3 ⩵ 1;

Solve[roots3]

{x → 1}, x → -−(-−1)13, x → (-−1)23

points1 = Re-−(-−1)13, Im-−(-−1)13

-−
1

2
, -−

3

2


 310 | The Linear Algebra Survival Guide

points2 = Re(-−1)23, Im(-−1)23

-−
1

2
,

3

2


◼ Fourth roots of unity

roots4 = x4 ⩵ 1;

Solve[roots4]

{{x → -−1}, {x → -−ⅈ}, {x → ⅈ}, {x → 1}}

◼ Fifth roots of unity

roots5 = Table[{Cos[2 Pi*⋆i/∕5], Sin[2 Pi*⋆i/∕5]}, {i, 0, 4}];

pl1 := ListPlotroots5, PlotMarkers → {Automatic, Medium},

PlotLabel → Style"Roots of Unity 115", 16, Bold;

The Linear Algebra Survival Guide | 311

pl2 := PolarPlot[1, {t, 0, 2 Pi}, PlotStyle → Red];
Show[{pl1, pl2}, PlotRange → {{-−1.5, 1.5}, {-−1.5, 1.5}}, AspectRatio → Automatic]

●

●

●

●

●

-−1.5 -−1.0 -−0.5 0.5 1.0 1.5

-−1.5

-−1.0

-−0.5

0.5

1.0

1.5

Roots of Unity 11/∕5

This plot shows the locations of the fifth roots of unity on the complex plane.

Manipulation

◼ Roots of unity

Manipulate[roots = Table[{Cos[2 Pi*⋆n/∕a], Sin[2 Pi*⋆n/∕a]}, {n, 0, (a + 1)}], {a, 1, 7, 1}]

a

{1, 0}, -−
1

2
,

3

2
, -−

1

2
, -−

3

2
, {1, 0}, -−

1

2
,

3

2


 312 | The Linear Algebra Survival Guide

We use Manipulate, Table, Cos, and Sin to explore roots of unity. If i = 3 and a = 5, for example, then manipulation
produces the conjugate of a root of the polynomial equation x5 ⩵ 1.

Manipulate[{Cos[2 Pi*⋆i/∕a], Sin[2 Pi*⋆i/∕a]}, {i, 0, 5, 1}, {a, 1, 5, 1}]

i

a


1

4
-−1 + 5 , -−

5

8
+

5

8


roots5 = Solvex5 ⩵ 1

{x → 1}, x → -−(-−1)15, x → (-−1)25, x → -−(-−1)35, x → (-−1)45

{Re[x /∕. roots5[[3]]], -−Im[x /∕. roots5[[3]]]}


1

4
-−1 + 5 , -−

5

8
+

5

8


Rotation

Rotations in ℝ2 are the result of the multiplication of points {x, y} in the plane by rotation matrices of the form:

Clear[θ]

MatrixForm[cw = {{Cos[θ], Sin[θ]}, {-−Sin[θ], Cos[θ]}}]

Cos[θ] Sin[θ]
-−Sin[θ] Cos[θ]

for clockwise rotation, or

MatrixForm[ccw = {{Cos[θ], -−Sin[θ]}, {Sin[θ], Cos[θ]}}]

Cos[θ] -−Sin[θ]
Sin[θ] Cos[θ]

for counterclockwise rotation.

The built-in RotationMatrix function can be used to calculate counterclockwise rotations:

The Linear Algebra Survival Guide | 313

ccw ⩵ RotationMatrix[θ]

True

Illustration

◼ A clockwise rotation of a point p = {x, y} by an angle θ𝜃 is the left-multiplication of {x, y} by the rotation matrix

Clear[θ, x, y, cw, cwr]

MatrixForm[cw = {{Cos[θ], Sin[θ]}, {-−Sin[θ], Cos[θ]}}];

cwr[{x_, y_}] := cw.{x, y}

θ = π/∕2; {x, y} = {1, 0};

cwr[{x, y}]

{0, -−1}

As expected, a clockwise rotation of the point {1, 0} by π𝜋/2 radians is the point {0, -1}.

◼ A counterclockwise rotation of a point p = {x, y} by an angle θ𝜃 is the left-multiplication of {x, y} by the rotation matrix

Clear[θ, ccw, ccwr, x, y]

MatrixForm[ccw = {{Cos[θ], -−Sin[θ]}, {Sin[θ], Cos[θ]}}];

ccwr[{x_, y_}] := ccw.{x, y}

θ = π/∕2; {x, y} = {1, 0};

ccwr[{x, y}]

{0, 1}

As expected, a counterclockwise rotation of the point {1, 0} by π𝜋/2 radians produces the point {0, 1}.

The built-in Mathematica RotationTransform rotates vectors counterclockwise in the plane.

Clear[θ, x, y]

r = RotationTransform[θ]

TransformationFunction
Cos[θ] -−Sin[θ] 0
Sin[θ] Cos[θ] 0

0 0 1


θ = π/∕2; {x, y} = {1, 0};

 314 | The Linear Algebra Survival Guide

r[{x, y}]

{0, 1}

Manipulation

◼ Clockwise rotations of a vector in ℝ2

Manipulate[{{Cos[θ], Sin[θ]}, {-−Sin[θ], Cos[θ]}}.{1, 0}, {θ, 0, 4 π}]

θ

{-−0.809017, 0.587785}

We use Manipulate to explore the clockwise rotations of the vector {1, 0} in ℝ2. If θ𝜃 = 3.76991 radians, for example, then
the vector {1, 0} is displaced to the vector {- 0.809017, 0.587785}.

Norm[{-−0.809017, 0.587785}]

1.

Row echelon matrix

To define a row echelon matrix, we need the idea of a leading entry. The first nonzero entry from the left in a row of a matrix
is called a leading entry of the matrix. A matrix is a row echelon matrix if it satisfies the following conditions:

Definition of a row echelon matrix

1. All zero rows of a row echelon matrix occur below all nonzero rows.

2. All entries below a leading entry of a row echelon are zero.

3. The leading entry of a nonzero row of a row echelon matrix occurs in a column to the right of the column containing the
leading entry of the row above it.

Illustration

◼ A 4-by-5 row echelon matrix

0 0 1 8 1
0 0 0 5 4
0 0 0 0 6
0 0 0 0 0

◼ Row reduction of a 4-by-5 matrix

The Linear Algebra Survival Guide | 315

A =

6 0 1 8 1
7 7 1 5 4
9 4 3 5 6
8 1 2 4 3

;

MatrixForm[B = RowReduce[A]]

1 0 0 0 -−
35

274

0 1 0 0
61

137

0 0 1 0
246

137

0 0 0 1 -−
1

274

Manipulation

◼ Row reduction of 2-by-2 matrices

Manipulate[MatrixForm[RowReduce[{{a, -−3, 5}, {b, 8, 2}}]], {a, -−5, 5, 1}, {b, -−5, 5, 1}]

a

b

1 0 -−
46

55

0 1 -−
3

11

We use Manipulate, MatrixForm, and RowReduce to reduce 2-by-3 matrices to reduced row echelon form and display
them two-dimensionally. If we let a = b = - 5, for example, the manipulation produces the matrix

MatrixForm[RowReduce[{{-−5, -−3, 5}, {-−5, 8, 2}}]]

1 0 -−
46

55

0 1 -−
3

11

Row-equivalent matrices

Two matrices are row equivalent if they have the same reduced row echelon form. A matrix and its reduced row echelon
form are row equivalent. The built-in RowReduce function of Mathematica reduces a matrix to its unique reduced row
echelon form.

Row-equivalent matrices can be interpreted as augmented matrices of linear systems with the same solutions.

 316 | The Linear Algebra Survival Guide

Illustration

◼ Two row-equivalent matrices

A =

6 0 1 8 1
7 7 1 5 4
9 4 3 5 6
8 1 2 4 3

; B =

1 7 0 -−3 3
6 0 1 8 1
9 4 3 5 6
16 2 4 8 6

;

{MatrixForm[RowReduce[A]], MatrixForm[RowReduce[B]]}



1 0 0 0 -−
35

274

0 1 0 0
61

137

0 0 1 0
246

137

0 0 0 1 -−
1

274

,

1 0 0 0 -−
35

274

0 1 0 0
61

137

0 0 1 0
246

137

0 0 0 1 -−
1

274



RowReduce[A] ⩵ RowReduce[B]

True

◼ Two linear system with the same solutions

Clear[x, y, z, w]

system1 = {6 x + z + 8 w ⩵ 1, 7 x + 7 y + z + 5 w ⩵ 4, 9 x + 4 y + 3 z + 5 w ⩵ 6, 8 x + y + 2 z + 4 w == 3};

system2 = {x ⩵ -−35/∕274, y ⩵ 61/∕137, z == 246/∕137, w == -−1/∕274};

Solve[system1, {x, y, z, w}]

x → -−
35

274
, y →

61

137
, z →

246

137
, w → -−

1

274


Solve[system2, {x, y, z, w}]

x → -−
35

274
, y →

61

137
, z →

246

137
, w → -−

1

274


Row space

The row space of a matrix is the set of all linear combinations of the rows of the matrix.

Illustration

◼ A basis for the row space of a 3-by-4 matrix

The Linear Algebra Survival Guide | 317

A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {0, 1, 3, 0}};

rowspace = RowReduce[A]

{{1, 0, 0, -−5}, {0, 1, 0, 9}, {0, 0, 1, -−3}}

The command RowReduce produces a basis for this space. The row space is a subspace of ℝ4. Its dimension is 3 and its
codimension is 4 -3 = 1.

◼ A basis for the row space of a 4-by-3 matrix

TraditionalForm[A = {{5, 1, 5}, {0, 5, 9}, {2, 8, 4}, {9, 9, 6}}]

5 1 5
0 5 9
2 8 4
9 9 6

TraditionalForm[rA = RowReduce[A]]

1 0 0
0 1 0
0 0 1
0 0 0

rowspace = a {1, 0, 0} + b {0, 1, 0} + c {0, 0, 1} for all scalars a, b, c

Row vector

A row vector is a list of scalars.

Illustration

◼ A row vector of length 3

rowvector = {1, 2, 3}

{1, 2, 3}

By default, Mathematica considers vectors to be row vectors. The Flatten command can be used to convert a column
vector into a row vector.

◼ Conversion of a column vector to a row vector

columnvector = {{1}, {2}, {3}}

{{1}, {2}, {3}}

 318 | The Linear Algebra Survival Guide

Flatten[columnvector]

{1, 2, 3}

Manipulation

◼ A linear combination of row vectors

u = Range[5]; v = Reverse[2 Range[5]]; w = {2, 2, 2, 2, 2};

u + v + w

{13, 12, 11, 10, 9}

Manipulate[Evaluate[a u + b v + c w], {a, -−2, 2, 1}, {b, -−2, 2, 1}, {c, -−2, 2, 1}]

a

b

c

{13, 12, 11, 10, 9}

We use Manipulate and Evaluate to explore the linear combinations of three vectors in ℝ5. If a = b = c = 1, for example,
the manipulation displays the sum of the three given vectors.

The Linear Algebra Survival Guide | 319

S

Scalar

The constants used in most linear algebra contexts are either real numbers or complex numbers. They are jointly referred
to as scalars. Complex numbers are often involved when roots of polynomials (eigenvalues, for example) are calculated.
They are required extensively in engineering.

Mathematica divides the scalars into domains: integers, rational numbers, real numbers, and complex numbers.
Integers are written in the usual notation: 0, 1, -1, 2, -2, and so on, and integers followed by a decimal point, such as 0., 1.,
-1., 2., -2., and so on, are considered to be decimal approximations of integers. Rational numbers can be written in two

ways: both 2/3 and 2

3
 represent the same fraction. The N function converts exact and symbolic numbers into decimals and

displays five places to the right of the decimal point. The underlying accuracy of the displayed numbers is unaffected by the
display.

Real scalars

{N[5], N[Exp[1]], N[π]}

{5., 2.71828, 3.14159}

Real numbers can be displayed to any level of accuracy within the limits of the computer used by Mathematica.

N[π, 30]

3.14159265358979323846264338328

◼ Real addition

3.0 + 5.918

8.918

◼ Real subtraction

12.583 -− 25.9999

-−13.4169

◼ Real multiplication

In Mathematica, a single blank space invokes multiplication. Mathematica automatically inserts the times symbol:

4.689 × 6

28.134

Alternately, a star can be used to designate multiplication

 320 | The Linear Algebra Survival Guide

4.689*⋆6

28.134

The times symbol × can be inserted explicitly by typing Esc * Esc.

◼ Real division

9.174555/∕126.4

0.0725835

◼ The real number 1

The number 1 is a scalar. Mathematica thinks of it as an integer (an exact real number). If we want to think of it as a real
number as such, we use the N function to convert it.

N[1]

1.

Appending a decimal point to an integer signals to Mathematica that this number is an approximate number.

N[1, 29]

1.0000000000000000000000000000

Although the number 1 can be represented as an infinitely repeating decimal expression, most finite approximations are
considered to be good enough to stand for the number 1.

1 == .99

True

Internally, the precision of the approximations are recorded and can be modified for specific calculations, if required.

◼ Precision of the real number 1.

Precision[1.]

MachinePrecision

Precision[.99]

40.

Some real numbers represented by non-repeating decimals have symbolic names that can be approximated at the time of
evaluation to any desired degree of precision (within the hardware limitations of the computers used).

◼ The real number ⅇ

The real number ⅇ is very different from the number 1 and other integers: it is irrational (cannot be represented by a
terminating or repeating decimal expansion) and transcendental (is not the root of a polynomial with integer coefficients).

The Linear Algebra Survival Guide | 321

Exp[1]

ⅇ

Depending on its use, the transcendental number ⅇ can be approximated with the N function to any desired number of
decimals:

N[Exp[1]]

2.71828

Mathematica assigns an infinite precision to the symbolic number ⅇ:

Precision[Exp[1]]

∞

◼ The real number π𝜋

The real number π𝜋 has properties similar to the real number ⅇ: it is irrational and transcendental.

π

π

The transcendental number π𝜋 can also be approximated with the N function to any desired number of decimals:

N[π]

3.14159

Mathematica also assigns an infinite precision of the symbolic number π𝜋:

Precision[π]

∞

On the other hand, Mathematica assigns what is called the MachinePrecision to the numerical expressions ⅇ.0 and π𝜋.0.

Precision[Exp[1] .0]

MachinePrecision

Precision[π .0]

MachinePrecision

However, these distinctions are neglected in most parts of this book. They do come up implicitly in the use of random
matrices.

◼ An array of random real scalars

 322 | The Linear Algebra Survival Guide

RandomReal[{0, 9}, {3, 2}]

{{7.27419, 0.948809}, {4.06732, 8.69741}, {3.22765, 2.77941}}

If we cut and paste this matrix into a new input field, their MachinePrecision appears.

MatrixForm[A = {{6.31429, 0.681646}, {7.38745, 5.25242}, {2.27482, 6.07207}}]

6.31429 0.681646
7.38745 5.25242
2.27482 6.07207

Mathematica computes the sum, difference, product, and quotient of two real numbers as follows:

x = 3.999; y = -−12.12356;
{x + y, x -− y, x *⋆ y, x/∕y}

{-−8.12456, 16.1226, -−48.4821, -−0.329854}

Complex scalars

Complex numbers require the use of the symbol ⅈ denoting the square root of minus one. In calculations, the symbols ⅈ is
represented by the capital letter “I” in input statements, or it can be written by typing Esc ii Esc.

◼ Complex scalars

A complex scalar is an expression of the form (x + y ⅈ), where x and y are real scalars. The letter ⅈ denotes the square root
of -1. In Mathematica calculations, the capital letter “I” is interpreted as ⅈ.

I ⩵ ⅈ

True

Mathematica computes the sum, difference, product, and quotient of two complex numbers as follows:

◼ Complex addition, subtraction, multiplication, and division

x = 3 + 4 I; y = -−5 + 9 I;
Simplify[{x + y, x -− y, x *⋆ y, x/∕y}]

-−2 + 13 ⅈ, 8 -− 5 ⅈ, -−51 + 7 ⅈ,
21

106
-−
47 ⅈ

106


◼ Conjugate of a complex scalar

Conjugate[{3 -− 4 I, -−5 + 7 I}]

{3 + 4 ⅈ, -−5 -− 7 ⅈ}

◼ Complex exponential scalar

The Linear Algebra Survival Guide | 323

Exp[3 + 4 I] ⩵ ⅇ3+4 I

True

◼ Power of a complex scalar

(3 + 4 I)5

-−237 -− 3116 ⅈ

Manipulation

◼ Real arithmetic

Manipulate[{a + b, a -− b, a b, a/∕b}, {a, -−5, 5}, {b, 1, 5}]

a

b

{-−3.8, -−6.2, -−6., -−4.16667}

We use Manipulate to explore the sums, differences, products, and quotients of real numbers. For example, if a = -5 and b
= 1.2, then

{a + b, a -− b, a b, a/∕b} == {-−3.8, -−6.2, -−6., -−4.16667};

◼ Complex arithmetic

 324 | The Linear Algebra Survival Guide

Manipulate[{(a + b I) + (c + d I), (a + b I) -− (c + d I), (a + b I) *⋆(c + d I), (a + b I) /∕(c + d I)},
{a, 2, 5, 1}, {b, 1, 5, 1}, {c, 1, 3, 1}, {d, -−1, 1, 1}]

a

b

c

d

3, 1 + 2 ⅈ, 3 -− ⅈ,
1

2
+
3 ⅈ

2


We use Manipulate to explore the sums, differences, products, and quotients of complex numbers. For example, if a = 2
and b = 1, c = 1 and d = -1, then

(a+b I) + (c+d I), (a+b I) -− (c+d I), (a+b I) *⋆ (c+d I), (a+b I)  (c+d I) == 3, 1 + 2 ⅈ, 3 -− ⅈ,
1

2
+
3 ⅈ

2


For example,

(2 + I)*⋆(1 -− I) ⩵ 3 -− I

True

Scalar multiple of a matrix

Matrices can be ��multiplied by scalars componentwise. The result of multiplying a matrix by a scalar is called a scalar
multiple of the matrix. In Mathematica, placing a scalar to the left of a matrix with a space in between defines scalar
multiplication.

Illustration

◼ Scalar multiple of a matrix

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

MatrixForm[s A]

s 2 s 3 s
4 s 5 s 6 s

The Linear Algebra Survival Guide | 325

Every element in the matrix A is multiplied by the scalar s.

Illustration

◼ Multiplication by the scalar 1

vector = Range[5]; scalar = 1;

1 vector

{1, 2, 3, 4, 5}

1 vector ⩵ vector

True

Manipulation

◼ Scalar multiple of a 3-by-2 matrix

Clear[a]

Manipulate[MatrixForm[a {{1, 2, 3}, {4, 5, 6}}], {a, -−10, 10, 1}]

a

-−9 -−18 -−27
-−36 -−45 -−54

We use Manipulate and MatrixForm to explore the scalar products of a 2-by-3 matrix and display the result in two-
dimensional form. For example, if a = -9, then the scalar product

a {{1, 2, 3}, {4, 5, 6}}

is the matrix

-−9 -−18 -−27
-−36 -−45 -−54

 326 | The Linear Algebra Survival Guide

fredeszabo
Sticky Note
Marked set by fredeszabo

Scalar triple product

The scalar triple product of three vectors u, v, and w in ℝ3 is the value of the function

Dot[u, Cross[v, w]] (1)

The ScalarTripleProduct function is also available in the ClassroomUtilities package and can be activated by either
loading the package using the command

<< ClassroomUtilities`

or by invoking the package using the Needs command:

Needs["ClassroomUtilities`"]

Illustration

◼ A scalar triple product in ℝ3 calculated with the Dot and Cross functions

u = {1, 2, 3}; v = {-−5, 3, 1}; w = {1, 0, 1};

Dot[u, Cross[v, w]] ⩵ Det[{u, v, w}]

True

Needs["ClassroomUtilities`"]

ScalarTripleProduct[u, v, w]

6

◼ Using the scalar triple product to find the equation of the plane passing through the points with position vectors u, v, w:

Clear[u, v, w, x, y, z, p]

u = {1, 2, 3}; v = {-−2, 1, 1}; w = {4, 4, 4};

p = {x, y, z};

Det[{u -− p, v -− p, w -− p}] ⩵ 0

-−12 -− 3 x + 3 y + 3 z ⩵ 0

Expand[Det[{u -− p, v -− p, w -− p}] ⩵ Dot[u -− p, Cross[v -− p, w -− p]]]

True

The Linear Algebra Survival Guide | 327

Scalar multiplication

See Vector space

ContourPlot3D[Evaluate[-−12 -− 3 x + 3 y + 3 z ⩵ 0], {x, -−10, 10}, {y, -−10, 10}, {z, -−10, 10}]

Manipulation

◼ A scalar triple product in ℝ3

<< ClassroomUtilities`

 328 | The Linear Algebra Survival Guide

Manipulate[ScalarTripleProduct[{1, 2, 3}, {-−5 a, 3 b, 1}, {a, 0, 4 c}],
{a, -−3, 3, 1}, {b, -−2, 2, 1}, {c, -−1, 16, 1/∕4}]

a

b

c

84

We use Manipulate in combination with the ScalarTripleProduct function in the ClassroomUtilities package to explore the
scalar triple product of vectors in ℝ3. For example, the scalar triple product of the vectors {1,2,3}, {15, -6, 1}, and {-3, 0, -4},
obtained by letting a = -3, b = -2, and c = -1, is 84.

Scaling

A scaling is a linear transformation on an n-dimensional Euclidean space represented by an n-by-n diagonal matrix all of
whose diagonal elements are positive. The scaling is uniform if all diagonal elements are equal. In that case, the transforma-
tion enlarges or shrinks an object by a scale factor that is the same in all directions.

Illustration

◼ A uniform scaling on ℝ2

Clear[a, b]

dM = {{2, 0}, {0, 2}}; vector = {a, b};

dM.vector

{2 a, 2 b}

The vector {a, b} is scaled by a factor of 2.

Simplify[Norm[dM.vector] ⩵ 2 Norm[vector]]

True

◼ A uniform scaling on ℝ3

The Linear Algebra Survival Guide | 329

dM = {{1/∕2, 0, 0}, {0, 1/∕2, 0}, {0, 0, 1/∕2}}; vector = {a, b, c};

dM.vector


a

2
,
b

2
,
c

2


The vector {a, b, c} is scaled by a factor of 1/2.

SimplifyNorm[dM.vector] ⩵
1

2
Norm[vector]

True

◼ A Nonuniform scaling on ℝ4

Clear[a, b, c, d]

dM = {{2, 0, 0, 0}, {0, 3, 0, 0}, {0, 0, 1/∕3, 0}, {0, 0, 0, 1}};

vector = {a, b, c, d};

dM.vector

2 a, 3 b,
c

3
, d

Manipulation

◼ Scaling along the x-, y-, and z-axis

Clear[x, y, z, a, b, c]

Manipulate[{{a, 0, 0}, {0, b, 0}, {0, 0, c}}.{1, 2, 3}, {a, .1, 5}, {b, .1, 5}, {c, .1, 5}]

a

b

c

{2.21, 1.54, 7.53}

We use Manipulate to explore the scaling of vectors in ℝ3 along the x-, y-, and z-axis. For example, if we let a = 2.21, b =
0.77, and c = 2.51, then the vector {1, 2, 3} becomes the vector {2.21, 1.54, 7.53}.

 330 | The Linear Algebra Survival Guide

Schur decomposition

If A is an n-by-n complex matrix, then A can be decomposed into a product Q U Q-−1, where Q is a unitary matrix, Q-−1 is the
conjugate transpose of Q, and U is upper-triangular.

Illustration

◼ Schur decomposition of a 3-by-3 matrix

A = N[{{27, 48, 81 I}, {-−6 I, 0, 0}, {1, 0, 3}}];

{q, u} = SchurDecomposition[A]

{{{-−0.323801 + 0.923776 ⅈ, 0.0111915 + 0.203727 ⅈ, 0.0124449 + 0.00253488 ⅈ},
{0.169698 + 0.107746 ⅈ, -−0.951375 -− 0.176081 ⅈ, 0.152471 + 0.0150415 ⅈ},
{-−0.0207515 + 0.0308893 ⅈ, -−0.0198055 -− 0.147845 ⅈ, -−0.19754 -− 0.968165 ⅈ}},

{{28.4584 -− 6.62034 ⅈ, 6.79676 + 32.1819 ⅈ, -−42.0055 -− 74.5259 ⅈ},
{0. + 0. ⅈ, -−2.41644 + 7.02789 ⅈ, -−1.69622 -− 17.6608 ⅈ},
{0. + 0. ⅈ, 0. + 0. ⅈ, 3.95803 -− 0.407549 ⅈ}}}

MatrixForm[q]

-−0.323801 + 0.923776 ⅈ 0.0111915 + 0.203727 ⅈ 0.0124449 + 0.00253488 ⅈ
0.169698 + 0.107746 ⅈ -−0.951375 -− 0.176081 ⅈ 0.152471 + 0.0150415 ⅈ

-−0.0207515 + 0.0308893 ⅈ -−0.0198055 -− 0.147845 ⅈ -−0.19754 -− 0.968165 ⅈ

MatrixForm[u]

28.4584 -− 6.62034 ⅈ 6.79676 + 32.1819 ⅈ -−42.0055 -− 74.5259 ⅈ
0. + 0. ⅈ -−2.41644 + 7.02789 ⅈ -−1.69622 -− 17.6608 ⅈ
0. + 0. ⅈ 0. + 0. ⅈ 3.95803 -− 0.407549 ⅈ

Chop[q.u.Inverse[q]] ⩵ A

True

ConjugateTranspose[q] ⩵ Inverse[q]

True

Self-adjoint transformation

If V is an inner product space, then a linear transformation T : V ⟶ V is self-adjoint if <T[u], v> = <u, T[v]> for all vectors u
and v in V.

If A is a matrix representing T in an orthonormal basis for V, then T is self-adjoint if and only if A is symmetric.

Illustration

◼ A self-adjoint linear transformation

The Linear Algebra Survival Guide | 331

T = {{Cos[π], -−Sin[π]}, {Sin[π], Cos[π]}}

{{-−1, 0}, {0, -−1}}

T*⋆ = Transpose[T]

{{-−1, 0}, {0, -−1}}

T = {{1, 0, 2}, {4, 3, 0}, {0, 0, 3}};

u = {1, 2, 3}; v = {4, 5, 6};

Dot[T.u, v] == Dot[u, T.v]

True

For any linear transformation T on a real inner product space V, the transformation T *⋆ ∘T -− I is self-adjoint (with I the
appropriate identity transformation)

◼ Construction of a self-adjoint linear transformation

T = RandomInteger[{0, 9}, {4, 4}];

T =

9 7 7 0
8 3 4 6
4 7 3 1
4 1 8 8

;

MatrixFormT *⋆ = Transpose[T]

9 8 4 4
7 3 7 1
7 4 3 8
0 6 1 8

MatrixFormS = T *⋆.T -− IdentityMatrix[4]

176 119 139 84
119 107 90 33
139 90 137 91
84 33 91 100

The linear transformation S is self-adjoint:

u = {1, 2, 3, 4}; v = {5, 6, 7, 8};

Dot[S.u, v] ⩵ Dot[u, S.v]

True

Every self-adjoint transformation T on a finite-dimensional real inner product space can be represented by a diagonal matrix
whose diagonal elements are the eigenvalues of T.

 332 | The Linear Algebra Survival Guide

Manipulation

◼ Self-adjoint linear transformations defined by 3-by-3 symmetric matrices

MatrixForm[A = {{1, 2, 4 a}, {4 b, 4, 5}, {8, 2, 2}}]

1 2 4 a
4 b 4 5
8 2 2

MatrixForm[S = Transpose[A].A -− IdentityMatrix[3]]

64 + 16 b2 18 + 16 b 16 + 4 a + 20 b
18 + 16 b 23 24 + 8 a

16 + 4 a + 20 b 24 + 8 a 28 + 16 a2

u = {1, 2, 3}; v = {5, 6, 7};

Manipulate[Evaluate[Dot[S.u, v] ⩵ Dot[u, S.v]], {a, -−1, 1, 1}, {b, -−1, 1, 1}]

a

b

True

We use Manipulate, Evaluate, and Dot to confirm the self-adjointness of the linear transformation determined by a
symmetric matrix. The manipulation shows that if a and b are any two integers between -1 and 1, for example, the linear
operator S defined by the given symmetric matrix is self-adjoint.

Shear

1. For any real number s, a left-multiplication of a vector v in ℝ2 by the matrix

MatrixForm[A = {{1, s}, {0, 1}}]

1 s
0 1

is a shear along the x-axis.

2. For any real number s, a left-multiplication of a vector v in ℝ2 by the matrix

The Linear Algebra Survival Guide | 333

MatrixForm[A = {{1, 0}, {s, 1}}]

1 0
s 1

is a shear along the y-axis

Illustration

◼ A shear along the x-axis for s = 3

s = 3;

MatrixForm[A = {{1, s}, {0, 1}}]

1 3
0 1

v = {4, 5}

{4, 5}

xshearedvector = A.v

{19, 5}

arrow1 = Arrow[{{0, 0}, {4, 5}}];

arrow2 = Arrow[{{0, 0}, {19, 5}}];

Graphics[{arrow1, arrow2}, Axes → True]

5 10 15

1

2

3

4

5

The matrix A sheared the vector {4, 5} along the x-axis to {19, 5}.

◼ A shear along the y-axis for s = 3

s = 3;

MatrixForm[A = {{1, 0}, {s, 1}}]

1 0
3 1

 334 | The Linear Algebra Survival Guide

v = {1, -−1}

{1, -−1}

yshearedvector = A.v

{1, 2}

arrow3 = Arrow[{{0, 0}, {1, -−1}}];

arrow4 = Arrow[{{0, 0}, {1, 2}}];

Graphics[{arrow3, arrow4}, Axes → True]

0.2 0.4 0.6 0.8 1.0

-−1.0

-−0.5

0.5

1.0

1.5

2.0

The matrix A sheared the vector {1, -1} along the y-axis to {1, 2}.

The ShearingTransform[θ𝜃, v, n] represents a shear by θ𝜃 radians along the direction of the vector v, normal to the vector n,
keeping the origin fixed.

◼ A 30o shear along the x-axis applied to the unit rectangle:

The Linear Algebra Survival Guide | 335

Graphics[GeometricTransformation[Rectangle[],
ShearingTransform[30 Degree, {1, 0}, {0, 1}]], Frame → True]

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

◼ A 30o shear along the y-axis applied to the unit rectangle:

Graphics[GeometricTransformation[Rectangle[],
ShearingTransform[30 Degree, {0, 1}, {1, 0}]], Frame → True]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

 336 | The Linear Algebra Survival Guide

Illustration

◼ A sum of three indexed scalars in sigma notation

{s1, s2, s3} = {4, -−3, 7};


n=1

3

sn

8

This sum can also be written using the Sum function:

Sum[sn, {n, 1, 3}]

8

◼ A sum of four indexed vectors in sigma notation

A = RandomInteger[{0, 9}, {4, 5}]

{{4, 6, 1, 8, 4}, {9, 8, 4, 7, 4}, {8, 0, 9, 0, 0}, {5, 7, 5, 6, 4}}

{v1, v2, v3, v4} = A[[1]], A[[2]], A[[3]], A[[4]]

{{4, 6, 1, 8, 4}, {9, 8, 4, 7, 4}, {8, 0, 9, 0, 0}, {5, 7, 5, 6, 4}}


k=1

4

vk

{26, 21, 19, 21, 12}

◼ A linear combination of six indexed scalars and vectors in sigma notation

{s1, s2, s3, s4, s5, s6} = {2, 3, 1, 5, 6, -−2};
A = {{3, 6, 7}, {3, 5, 6}, {1, 6, 6}, {5, 2, 5}, {0, 8, 4}, {6, 8, 4}};
{v1, v2, v3, v4, v5, v6} = A[[1]], A[[2]], A[[3]], A[[4]], A[[5]], A[[6]];


k=1

6

sk vk

{29, 75, 79}

The Linear Algebra Survival Guide | 337

Sigma notation

Sums of indexed scalars, vectors, and linear combinations of scalars and vectors can be written compactly in sigma
notation. Sigma is the capital Greek letter S and can be written by typing Esc Sigma Esc.

Illustration

◼ Two similar matrices

A = RandomInteger[{0, 9}, {3, 3}];

A =
9 5 4
6 6 1
8 1 3

;

P = RandomInteger[{0, 9}, {3, 3}];

P =
7 2 7
5 4 1
9 7 8

;

Det[P]

106

Since the determinant of P is nonzero, the matrix P is invertible and we can use it to construct a matrix B similar to A.

MatrixForm[B = Inverse[P].A.P]

3485

106

2003

106

1121

53

-−
1947

106
-−
1199

106
-−
612

53

-−
1051

106
-−
661

106
-−
189

53

By construction, the matrices A and B are similar.

A ⩵ P.B.Inverse[P]

True

Similarity matrix

If two matrices A and B are connected by an invertible matrix S for which A = SBS-−1, then the matrix S is called a similarity
matrix.

Illustration

◼ A 2-by-2 similarity matrix

MatrixForm[A = {{1, 2}, {3, 4}}]

1 2
3 4

 338 | The Linear Algebra Survival Guide

Similar matrices

Two matrices A and B are similar if there exists an invertible matrix P for which A = PBP-−1.

MatrixForm[B = {{-−2, 3}, {-−4, 7}}]

-−2 3
-−4 7

MatrixForm[S = {{0, 2}, {2, 4}}]

0 2
2 4

B == S.A.Inverse[S]

True

The matrix S is a similarity matrix.

◼ A 3-by-3 similarity matrix

A = RandomInteger[{0, 9}, {3, 3}];

A =
9 6 4
9 2 9
5 0 7

;

{values, vectors} = N[Eigensystem[A]]

{{16.6603, 2., -−0.660254}, {{1.93205, 1.8, 1.}, {-−2., 1., 2.}, {-−1.53205, 1.8, 1.}}}

A == Chop[Transpose[vectors].DiagonalMatrix[values].Inverse[Transpose[vectors]]]

True

The transpose of the matrix of eigenvectors is a similarity matrix.

Manipulation

◼ Similarity matrices

Clear[a, b]

A = {{1, 2, 3}, {4, 5, 6}, {1, 1, 1}};

S = {{a, 3, 2}, {1, 5, b}, {a, 4, 4}};

Reduce[Det[S] ⩵ 0, {a, b}]

a ≠ 0 && b ⩵
2 (-−2 + 5 a)

a

B = S.A.Inverse[S];

This calculation shows that if a is not zero and b is 2 (-−2+5 a)
a

, the matrix S can be used to convert the matrix A to the similar

matrix B = SAS-−1.

The Linear Algebra Survival Guide | 339

This calculation shows that if a is not zero and b is 2 (-−2+5 a)
a

, the matrix S can be used to convert the matrix A to the similar

matrix B = SAS-−1.

Manipulate[Evaluate[B == S.A.Inverse[S]], {a, 1, 2, 1}, {b, -−3, 5}]

a

b

True

We use Manipulate, Evaluate, and Inverse to construct similar matrices. The manipulation shows that the constructed
matrices are similar.

Similarity transformation

The multiplication A ⟶ PAP-−1 of a matrix A by invertible matrix P is called a similarity transformation.

Illustration

◼ A similarity transformation of a 2-by-2 matrix

P = RandomInteger[{0, 9}, {2, 2}];

P =
4 6
8 5

;

Det[P]

-−28

Since P is invertible, we can use it to define a similarity transformation.

simtrans[A_] := P.A.Inverse[P]

MatrixForm[simtrans[{{1, 2}, {3, 4}}]]

73

14

1

7
173

28
-−

3

14

Manipulation

◼ Exploring similarity transformation

 340 | The Linear Algebra Survival Guide

A = {{1, 2}, {3, 4}};

S = {{a, 3}, {1, 5}};

Reduce[Det[S] ⩵ 0, a]

a ⩵
3

5

Det[{{3/∕5, 3}, {1, 5}}]

0

The transformation A ⟶ SAS-−1 is a similarity transformation for all a ≠ 3/5.

Manipulate[Evaluate[{A, S.A.Inverse[S]}], {a, -−5, 0}]

a

{{1, 2}, {3, 4}}, -−
9

14
,
11

14
, -−

29

14
,
79

14


We use Manipulate, Evaluate, and Inverse to construct similar transformations. The manipulation shows that the
constructed transformations are similarity transformations.

Singular matrix

A square numerical matrix is singular if it is not invertible. A numerical matrix is singular if and only if its determinant is 0.

Illustration

◼ A singular diagonal matrix with a zero element in the diagonal

v = {1, 0, 3, 4};

MatrixForm[A = DiagonalMatrix[v]]

1 0 0 0
0 0 0 0
0 0 3 0
0 0 0 4

The Linear Algebra Survival Guide | 341

Det[A]

0

Since the determinant of A is zero, the matrix is singular.

Inverse[A];

Inverse::sing : Matrix {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 3, 0}, {0, 0, 0, 4}} is singular. $

◼ A singular sparse matrix

MatrixForm[S = Normal[SparseArray[{{2, 3} -−> a, {3, 2} -−> b}, {3, 3}]]]

0 0 0
0 0 a
0 b 0

Det[S]

0

Manipulation

◼ Exploring the singularity of 2-by-2 matrices

Clear[a, b]

Det[{{a, 2}, {2, b}}]

-−4 + a b

Manipulate[Det[{{a, 2}, {2, b}}], {a, -−10, 10, 1}, {b, -−10, 10, 1}]

a

b

0

We use Manipulate and Det to explore the singularity of matrices. The manipulation shows, for example, that the
generated matrix is singular if a = b = -2 and nonsingular otherwise since for two nonzero parameters c and d,

 342 | The Linear Algebra Survival Guide

Solve[Det[{{c, 2}, {2, d}}] ⩵ 0]

d →
4

c


if and only if d == 4/c.

Singular value

A singular value of a real matrix A is the positive square root of an eigenvalue of the symmetric matrix AAT or AT A.

Illustration

◼ The singular values of ATA and AAT of a 2-by-3 matrix A

A = {{1, 2, 3}, {4, 5, 6}};

SingularValueList[A]


1

2
91 + 8065 ,

1

2
91 -− 8065 

MatrixForm[AtA = Transpose[A].A]

17 22 27
22 29 36
27 36 45

Sqrt[Eigenvalues[AtA]]


1

2
91 + 8065 ,

1

2
91 -− 8065 , 0

MatrixForm[AAt = A.Transpose[A]]

14 32
32 77

Sqrt[Eigenvalues[AAt]]


1

2
91 + 8065 ,

1

2
91 -− 8065 

Sqrt[Eigenvalues[AAt]] == SingularValueList[A]

True

The Linear Algebra Survival Guide | 343

The difference between computing singular values using AATand AT A is that in one case 0 may come up as a singular
value whereas it may not do so in the other case.

◼ The singular values of a matrix A coinciding with the square roots of the eigenvalues of both of ATA and AAT

A =
1 0 1
0 3 0
1 0 3

;

sv1 = Sqrt[Eigenvalues[Transpose[A].A]]

 2 3 + 2 2 , 3, 2 3 -− 2 2 

sv2 = Sqrt[Eigenvalues[A.Transpose[A]]]

 2 3 + 2 2 , 3, 2 3 -− 2 2 

SingularValueList[A] ⩵ sv1 ⩵ sv2

True

Manipulation

◼ Exploring the singular values of 3-by-2 matrices

Manipulate[SingularValueList[{{4., 1}, {2, b}, {3, a}}], {a, -−3, 3}, {b, -−3, 3}]

a

b

{6.00692, 3.45209}

We use Manipulate and SingularValueList to explore the singular values of 3-by-2 matrix. The manipulation shows, for
example, that the singular values of the matrix

MatrixForm[{{4., 1}, {2, -−3}, {3, -−3}}]

4. 1
2 -−3
3 -−3

are 6.00692 and 3.45209.

 344 | The Linear Algebra Survival Guide

Singular value decomposition

The singular value decomposition of a matrix allows us to write any rectangular real matrix A as a product u.w.Trans-
pose[v] of two orthogonal matrices u and v and a diagonal matrix w. If A is not square, the matrix w is padded with rows or
columns of zeros. (Mathematica uses the lower-case letters u and v for the orthogonal matrices and the letter w for the
diagonal matrix calculated by the SingularValueDecomposition function.)

Illustration

◼ A singular value decomposition of a 3-by-3 real matrix

The computing cost of powers of A is reduced by decomposing A as a product of the form u.w.Transpose[v] and then
computing the power of the decomposed product.

MatrixForm[A = {{3, 1, -−1}, {1, -−1, 1}, {2, -−1, -−1}}]

3 1 -−1
1 -−1 1
2 -−1 -−1

{u, w, v} = N[SingularValueDecomposition[A], 5];

MatrixForm[u]

-−0.81441 -−0.43925 0.37920
-−0.15694 0.79585 0.58481
-−0.55866 0.41676 -−0.71708

Inverse[u] ⩵ Transpose[u]

True

MatrixForm[v]

-−0.95013 0.16667 0.26357
-−0.025253 -−0.88353 0.46769
0.31082 0.43771 0.84368

Inverse[v] ⩵ Transpose[v]

True

MatrixForm[w]

3.9126 0 0
0 1.8696 0
0 0 1.0936

A ⩵ u.w.Transpose[v]

True

The Linear Algebra Survival Guide | 345

Timing[MatrixPower[A, 100]]

{0.000919, {{73 278 692 513 007 179 808 797 058 918 974 595 206 140 665 801,
21 889 768 781 166 777 101 194 626 797 160 254 862 590 538 775,
-−13 032 913 129 465 196 384 521 495 342 374 527 860 094 984 975},

{26 318 196 607 017 567 459 531 192 524 553 118 363 838 315 675,
7 861 756 517 594 023 195 701 380 367 297 893 262 017 395 201,
-−4 680 798 173 937 965 048 824 767 567 196 926 144 896 122 625},

{30 494 254 084 781 183 127 379 556 412 141 919 221 437 746 850,
9 109 225 999 788 755 407 161 333 294 589 789 646 143 899 525,
-−5 423 526 959 958 347 879 308 316 814 880 697 241 725 935 499}}}

Timing[MatrixPower[u.w.Transpose[v], 100]]

0.000286, 7.×1046, 2.2×1046, -−1.3×1046,

2.6×1046, 8.×1045, -−5.×1045, 3.0×1046, 9.×1045, -−5.×1045

This calculation shows that the computing cost of the matrix A100 measured in time is 0.000919 seconds, whereas the
corresponding computing cost of (u.w.Transpose[v])100 is 0.000286 seconds. These values are hardware dependent and
may differ from computer to computer.

◼ A singular value decomposition of a 2-by-3 matrix

A =
3 1 -−1
1 -−1 1

;

{u, w, v} = SingularValueDecomposition[A];

MatrixForm[N[u]]

0.992508 -−0.122183
0.122183 0.992508

N[Inverse[u] ⩵ Transpose[u]]

True

N[MatrixForm[v]]

0.92941 0.369048 0.
0.260956 -−0.657192 0.707107
-−0.260956 0.657192 0.707107

N[Chop[MatrixForm[Inverse[v] -− Transpose[v]]] == MatrixForm[ConstantArray[0, {3, 3}]]]

3.33067×10-−16 -−5.55112×10-−17 5.55112×10-−17

1.11022×10-−16 0. 0.
0. 0. 0.

⩵
0. 0. 0.
0. 0. 0.
0. 0. 0.

N[MatrixForm[w]]

3.33513 0. 0.
0. 1.69614 0.

 346 | The Linear Algebra Survival Guide

N[A == u.w.Inverse[v]]

True

◼ A singular value decomposition of a 3-by-2 matrix

A =
3 1
1 -−1
-−1 1

;

{u, w, v} = SingularValueDecomposition[A];

MatrixForm[N[u]]

0.92941 0.369048 0.
0.260956 -−0.657192 0.707107
-−0.260956 0.657192 0.707107

The following display shows that the matrix w is diagonal:

MatrixForm[N[w]]

3.33513 0.
0. 1.69614
0. 0.

MatrixForm[N[v]]

0.992508 -−0.122183
0.122183 0.992508

The following calculation shows that the matrices u and v are orthogonal:

{N[Inverse[u] ⩵ Transpose[u]], N[Inverse[v] ⩵ Transpose[v]]}

{True, True}

Manipulation

◼ The singular value decomposition of 2-by-2 matrices

The Linear Algebra Survival Guide | 347

Manipulate[{u, w, v} = SingularValueDecomposition[{{2., a}, {3, 4}}], {a, -−1, 1, 1}]

a

{{{0.0985376, 0.995133}, {0.995133, -−0.0985376}},
{{5.01976, 0.}, {0., 2.19134}}, {{0.633989, 0.773342}, {0.773342, -−0.633989}}}

We use Manipulate and SingularValueDecomposition to explore the singular value decomposition of 2-by-2 matrices. If
we let a = -1, for example, then the manipulation produces a list consisting of three matrices {u, w, v}, with the property that
the matrix {{2., -1}, {3, 4}} is the product of u, w, and the transpose of v.

Singular vector

For any real or complex m-by-n matrix A, the left-singular vectors of A are the eigenvectors of AAT . They are equal to the
columns of the matrix u in the singular value decomposition {u, w, v} of A. The right-singular vectors of A are the eigenvec-
tors of the matrix v in the singular value decomposition of A.

Illustration

◼ Left-singular vectors of a 2-by-3 matrix

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

{u, w, v} = SingularValueDecomposition[A];

MatrixForm[N[Transpose[u]]]

0.386318 0.922366
-−0.922366 0.386318

MatrixForm[AAt = A.Transpose[A]]

14 32
32 77

MatrixForm[Eigenvectors[N[AAt]]]

0.386318 0.922366
-−0.922366 0.386318

◼ Right-singular vectors of a 2-by-3 matrix

 348 | The Linear Algebra Survival Guide

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

{u, w, v} = SingularValueDecomposition[A];

MatrixForm[N[Transpose[v]]]

0.428667 0.566307 0.703947
0.805964 0.112382 -−0.581199
0.408248 -−0.816497 0.408248

MatrixForm[AtA = Transpose[A].A]

17 22 27
22 29 36
27 36 45

MatrixForm[Eigenvectors[N[AtA]]]

0.428667 0.566307 0.703947
0.805964 0.112382 -−0.581199
0.408248 -−0.816497 0.408248

Skew symmetric matrix

A square matrix is skew symmetric if its transpose is equal to the matrix multiplied by -1, that is AT = -−A.

Illustration

◼ A skew symmetric 4-by-4 matrix

MatrixForm[A = {{2, 1, 5, 4}, {5, 7, 7, 1}, {2, 5, 8, 6}, {4, 2, 1, 6}}]

2 1 5 4
5 7 7 1
2 5 8 6
4 2 1 6

SymmetricMatrixQ[A + Transpose[A]]

True

A ==
1

2
(A + Transpose[A]) +

1

2
(A -− Transpose[A])

True

For every square matrix A, the matrix (A - Transpose[A]) is skew symmetric.

The Linear Algebra Survival Guide | 349

MatrixForm[B = A -− Transpose[A]]

0 -−4 3 0
4 0 2 -−1
-−3 -−2 0 5
0 1 -−5 0

(-−1) B ⩵ Transpose[B]

True

Every real n-by-n matrix B is skew symmetric if and only if Dot[B.x, y] = - Dot[x, B.y].

◼ A skew symmetric matrix characterized by the dot product

MatrixForm[A = RandomInteger[{0, 9}, {3, 3}]]

6 1 6
7 9 5
0 2 6

MatrixForm[B = A -− Transpose[A]]

0 -−6 6
6 0 3
-−6 -−3 0

Dot[B.{1, 2, 3}, {a, b, c}] == Simplify[-−Dot[{1, 2, 3}, B.{a, b, c}]]

6 a + 15 b -− 12 c ⩵ 3 (2 a + 5 b -− 4 c)

Solution of a linear system

The solutions of a linear system in n equations and m variables {x1, ..., xm} are lists of scalars {a1, ..., am} satisfying each of
the n equations.

Illustration

Linear systems can be solved in several ways.

◼ Solving a linear system using Gaussian elimination

Clear[x, y]

system = {6 x + 2 y == 5, 3 x + 4 y == 9};

TraditionalForm[matrixequation = {{6, 2}, {3, 4}}.{{x}, {y}} ⩵ {{5}, {9}}]

6 x+2 y
3 x+4 y &

5
9

 350 | The Linear Algebra Survival Guide

lhs1 = {{1, -−2}, {0, 1}}.{{6, 2}, {3, 4}};
rhs1 = {{1, -−2}, {0, 1}}.{{5}, {9}};

TraditionalForm[lhs1.{{x}, {y}} ⩵ rhs1]

-−6 y
3 x+4 y &

-−13
9

lhs2 = {{0, 1}, {1, 0}}.lhs1;
rhs2 = {{0, 1}, {1, 0}}.rhs1;

TraditionalForm[lhs2.{{x}, {y}} ⩵ rhs2]

3 x+4 y
-−6 y &

9
-−13

lhs3 = {{1, 4/∕6}, {0, 1}}.lhs2;
rhs3 = {{1, 4/∕6}, {0, 1}}.rhs2;

TraditionalForm[lhs3.{{x}, {y}} ⩵ rhs3]

3 x
-−6 y &

1
3

-−13

lhs4 = {{1/∕3, 0}, {0, 1}}.lhs3;
rhs4 = {{1/∕3, 0}, {0, 1}}.rhs3;

TraditionalForm[lhs4.{{x}, {y}} ⩵ rhs4]

x
-−6 y &

1
9

-−13

lhs5 = {{1, 0}, {0, -−1/∕6}}.lhs4;
rhs5 = {{1, 0}, {0, -−1/∕6}}.rhs4;

TraditionalForm[lhs5.{{x}, {y}} ⩵ rhs5]

x
y &

1
9
13
6

The values x = 1/9 and y = 13/6 are a solution of the given linear system:

{6 x + 2 y == 5, 3 x + 4 y == 9} /∕. {x → 1/∕9, y → 13/∕6}

{True, True}

◼ Another method of applying Gaussian elimination to solve a linear system

system = {6 x + 2 y == 5, 3 x + 4 y == 9};

◼ Step 1

The Linear Algebra Survival Guide | 351

A = {{6, 2, 5}, {3, 4, 9}}

{{6, 2, 5}, {3, 4, 9}}

◼ Step 2

A = {A[[2]], A[[1]]}

{{3, 4, 9}, {6, 2, 5}}

◼ Step 3

A[[2]] = A[[2]] -− 2 A[[1]];
A

{{3, 4, 9}, {0, -−6, -−13}}

◼ Step 4

A[[2]] =
-−1

6
A[[2]];

A

{3, 4, 9}, 0, 1,
13

6


A[[1]] = A[[1]] -− 4 A[[2]];
A

3, 0,
1

3
, 0, 1,

13

6


A[[1]] =
1

3
A[[1]];

A

1, 0,
1

9
, 0, 1,

13

6


system /∕. x →
1

9
, y →

13

6


{True, True}

◼ Solving a linear system in two equations and two variables using matrix inversion

system = {6 x + 2 y == 5, 3 x + 4 y == 9};

A = {{6, 2}, {3, 4}}; b = {5, 9};

 352 | The Linear Algebra Survival Guide

solution = Inverse[A].b


1

9
,
13

6


◼ Solving a linear equation in two equations and three variables using the LinearSolve command

system = {6 x + 2 y + z == 5, 3 x + 4 y -− z == 9};

A = {{6, 2, 1}, {3, 4, -−1}}; b = {5, 9};

solution = LinearSolve[A, b]


1

9
,
13

6
, 0

system /∕. x →
1

9
, y →

13

6
, z → 0

{True, True}

◼ Solving a linear system using an upper and lower matrix decomposition

A = {{1, -−3, 2, -−2}, {3, -−2, 0, -−1}, {2, 36, -−28, 27}, {1, -−3, 22, 5}};
b = {-−11, -−4, 155, 10};

{lu, p, c} = LUDecomposition[A]

{{{1, -−3, 2, -−2}, {3, 7, -−6, 5}, {2, 6, 4, 1}, {1, 0, 5, 2}}, {1, 2, 3, 4}, 0}

MatrixForm[lower = {{1, 0, 0, 0}, {3, 1, 0, 0}, {2, 6, 1, 0}, {1, 0, 5, 1}}]

1 0 0 0
3 1 0 0
2 6 1 0
1 0 5 1

MatrixForm[upper = {{1, -−3, 2, -−2}, {0, 7, -−6, 5}, {0, 0, 4, 1}, {0, 0, 0, 2}}]

1 -−3 2 -−2
0 7 -−6 5
0 0 4 1
0 0 0 2

A ⩵ lower.upper

True

LinearSolve[A, b] ⩵ LinearSolve[upper, LinearSolve[lower, b]]

True

The Linear Algebra Survival Guide | 353

Span of a list of vectors

The span of a list of vectors is the set of all linear combinations of the vectors.

Illustration

◼ Span of two vectors in ℝ2

Clear[a, b]

vectors = {{1, 2}, {3, 4}};

span = {a {1, 2} + b {3, 4}}

{{a + 3 b, 2 a + 4 b}}

Thus the span of the vectors {1, 2} and {3, 4} is the set of all vectors of the form {a + 3 b, 2 a + 4 b} for all real numbers a
and b. All vectors in ℝ2 lie in the span of the two vectors.

Let {x, y} be a given vector in ℝ2. Then the following calculation shows that {x, y} can be written as {a + 3 b, 2 a + 4 b} for
suitable scalars a and b:

Clear[x, y, a, b]

{x, y} = {1, 2};

Solve[{a + 3 b, 2 a + 4 b} ⩵ {x, y}, {a, b}]

{{a → 1, b → 0}}

{1, 2} ⩵ {1 + 3 × 0, 2 × 1 + 4 × 0}

True

◼ Spans and linear independence

If every vector within that span has a unique expression as a linear combination of the vectors on the left, then any solution
is unique. In that case, the span also forms a basis of the space generated by the given vectors. The number of vectors in
this basis is called the dimension of the space.

◼ Four linearly independent vectors in ℝ4 span ℝ4

Clear[w, x, y, z]

equation = w

1
2
3
1

+ x

4
0
6
3

+ y

3
3
9
8

+ z

5
4
3
1

==

0
0
0
0

;

 354 | The Linear Algebra Survival Guide

Solve[equation, {w, x, y, z}]

{{w → 0, x → 0, y → 0, z → 0}}

This shows that the four given vectors are linearly independent.

The same conclusion can be drawn from the fact that the matrix

MatrixForm[A = {{1, 4, 3, 5}, {2, 0, 3, 4}, {3, 6, 9, 3}, {1, 3, 8, 1}}]

1 4 3 5
2 0 3 4
3 6 9 3
1 3 8 1

is invertible.

Det[A]

-−264

This means that every vector {w, x, y, z} in ℝ4 can be written as a unique linear combination of the four columns or rows of
the matrix A.

Clear[a, b, c, d]

Reduce[{w, x, y, z} ⩵ a A[[All,1]] + b A[[All,2]] + c A[[All,3]] + d A[[All,4]], {a, b, c, d}]

a ⩵ -−
31 w

88
+
9 x

44
+
125 y

264
-−
21 z

44
&& b ⩵

5 w

44
-−
5 x

22
+
7 y

44
-−
3 z

22
&&

c ⩵ -−
w

44
+

x

22
-−
13 y

132
+
5 z

22
&& d ⩵

17 w

88
+
5 x

44
-−
43 y

264
+
3 z

44

Manipulation

◼ Linear combinations of the columns of a matrix

Clear[A, a, b, c, d, w, x, y, z]

A =

1 4 3 5
2 0 3 4
3 6 9 3
1 3 8 1

;

The Linear Algebra Survival Guide | 355

Manipulate[
Reduce[{w, x, y, z} ⩵ a A[[All,1]] + b A[[All,2]] + c A[[All,3]] + d A[[All,4]], {a, b, c, d}],
{w, -−2, 2, 1}, {x, -−2, 2, 1}, {y, -−2, 2, 1}, {z, -−2, 2, 1}]

w

x

y

z

a ⩵
10

33
&& b ⩵

2

11
&& c ⩵ -−

10

33
&& d ⩵ -−

14

33

We use Manipulate and Reduce to explore the linear combinations of the columns of a generated matrix. The manipulation
shows, for example, that the vector {-2, -2, -2} can be represented as a linear combination of the columns of a given 4-by-4
matrix.

Sparse matrix

Mathematica has special sparse array technology for efficiently handling arrays with literally astronomical numbers of
elements when only a small fraction of the elements are nonzero.

Illustration

◼ A sparse 3-by-3 matrix

S = SparseArray[{{1, 1} → 1, {2, 2} → 2, {3, 3} → 3, {1, 3} → 4}]

SparseArray Specified elements: 4
Dimensions: {3, 3}



MatrixForm[Normal[S]]

1 0 4
0 2 0
0 0 3

The SparseArray[<4>, {3,3}] output tells us that the matrix has three rows and three columns and four zero elements. The
Normal command reveals all or part of the matrix in a Mathematica window, depending on the dimensions of the matrix.

◼ A sparse matrix generated with four nonzero elements

 356 | The Linear Algebra Survival Guide

SparseArray[Table[{2^i} → 1, {i, 4}]]

SparseArray Specified elements: 4
Dimensions: {16}



MatrixForm[Partition[Normal[%], 4]]

0 1 0 1
0 0 0 1
0 0 0 0
0 0 0 1

◼ A large sparse array

S = SparseArray[Table[{2^i, 3^i + i} → 1, {i, 10}]]

SparseArray Specified elements: 10
Dimensions: {1024, 59 059}



The matrix has 10 zero elements and the pair {1024,59059} specifies is dimension: 1024 rows and 59059 columns.

Dimensions[S]

{1024, 59 059}

◼ A sparse array with 13 nonzero elements

S = SparseArray[{{i_, i_} → -−2, {i_, j_} /∕; Abs[i -− j] ⩵ 1 → 1}, {5, 5}]

SparseArray Specified elements: 13
Dimensions: {5, 5}



MatrixForm[Normal[S]]

-−2 1 0 0 0
1 -−2 1 0 0
0 1 -−2 1 0
0 0 1 -−2 1
0 0 0 1 -−2

Spectral decomposition

For every real symmetric matrix A there exists an orthogonal matrix Q and a diagonal matrix dM such that A = QT dM Q.
This decomposition is called a spectral decomposition of A since Q consists of the eigenvectors of A and the diagonal
elements of dM are corresponding eigenvalues. The terminology derives from the fact that the set of eigenvalues of a
matrix is also called the “spectrum” of the matrix.

The Linear Algebra Survival Guide | 357

matrix is also called the “spectrum” of the matrix.

Illustration

◼ Spectral decomposition of a 2-by-2 real symmetric matrix

MatrixForm[A = {{3, -−4}, {-−4, -−3}}];

MatrixForm[Q = Orthogonalize[Eigenvectors[A]]]

1

5

2

5

-−
2

5

1

5

MatrixForm[dM = DiagonalMatrix[Eigenvalues[A]]]

-−5 0
0 5

A ⩵ Transpose[Q].dM.Q

True

◼ Spectral decomposition of a 4-by-4 real symmetric matrix

MatrixForm[A = {{1, 0, 0, 0}, {0, 1, 1, 0}, {0, 1, 1, 0}, {0, 0, 0, 1}}];

MatrixForm[Q = Orthogonalize[Eigenvectors[A]]]

0 -−
1

2

-−
1

2

0

0 0 0 1
1 0 0 0

0 -−
1

2

1

2

0

MatrixForm[dM = DiagonalMatrix[Eigenvalues[A]]]

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

A ⩵ Transpose[Q].dM.Q

True

 358 | The Linear Algebra Survival Guide

Spectral theorem

The complex spectral theorem for a linear operator T : V ⟶ V on a finite-dimensional unitary vector space V says that V
has an orthonormal basis consisting of eigenvectors of T if and only if T is normal.

The real spectral theorem for a linear operator S : V ⟶ V on a finite-dimensional inner product space V says that if S is a
self-adjoint linear operator on V, then V has an orthonormal basis consisting of eigenvectors of T if and only if T is self-
adjoint.

The spectral theorem for real symmetric matrices A says that there exists an orthogonal matrix Q and a diagonal matrix dM
whose diagonal elements are the eigenvalues of A such that A = Q dM QT . Numerous other spectral theorems provide

conditions under which matrices can be diagonalized.

Illustration

◼ The spectral decomposition of A as a linear combination of eigenvalues and eigenvectors

For the orthogonal decomposition Q dM QT  of the matrix A,

0 -−
1

2

-−
1

2

0

0 0 0 1
1 0 0 0

0 -−
1

2

1

2

0

.

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

.

0 0 1 0

-−
1

2

0 0 -−
1

2

-−
1

2

0 0
1

2

0 1 0 0

we can rewrite this matrix product as,

A = λ1 u1.u1
T + λ2 u2.u2

T + λ3 u2.u2
T + λ4 u4.u4

T (1)

where λ𝜆1 = 2, λ𝜆2 = λ𝜆3 = 1, and λ𝜆4 = 0. The vectors ui = Q[[i]] and ui
T = Q[[All,i]] are the rows and columns of Q, respectively.

This linear combination is also referred to as the “spectral decomposition” of A. If u is a 4-by-1 matrix, then uT is a 1-by-4
matrix. So that u.uT is a 4-by-1-by-4 = 4-by-4 matrix. This explains the equation

A = λ1 u1 u1
T + λ2 u2 u2

T + λ3 u3 u3
T + λ3 u4 u4

T

as a sum of 4-by-4 matrices.

A =

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

;

MatrixForm

0 0 1 0

-−
1

2

0 0 -−
1

2

-−
1

2

0 0
1

2

0 1 0 0

.

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

.

0 -−
1

2

-−
1

2

0

0 0 0 1
1 0 0 0

0 -−
1

2

1

2

0

 ⩵ MatrixForm[A]

True

We can rewrite this matrix product as

The Linear Algebra Survival Guide | 359

A1 = 2

0

-−
1

2

-−
1

2

0

. 0 -−
1

2

-−
1

2

0 ; A2 = 1

0
0
0
1

.(0 0 0 1);

A3 = 1

1
0
0
0

.(1 0 0 0); A4 = 0

0

-−
1

2

1

2

0

. 0 -−
1

2

1

2

0 ;

A1 + A2 + A3 + A4 ⩵ A

True

Square matrix

A matrix is square if it has the same number of rows and columns. The Dimensions function calculates the number of rows
and columns of a matrix and can therefore be used to test whether or not a matrix is square. Only square matrices have
eigenvalues and eigenvectors.

Illustration

◼ A 4-by-4 square matrix

A = RandomInteger[{0, 9}, {4, 4}];

A =

7 3 6 1
5 9 5 9
6 2 9 3
0 4 1 3

;

Dimensions[A]

{4, 4}

◼ A non-square (rectangular) matrix

The following two matrices are not square:

B1 =
5 4 7 3
9 5 3 9
1 2 6 2

;

Dimensions[B1]

{3, 4}

 360 | The Linear Algebra Survival Guide

B2 =

4 7 3
5 3 9
2 6 2
2 0 4

;

Dimensions[B2]

{4, 3}

Standard basis

A standard basis for ℝn is a basis consisting of vectors all of whose coordinates are 0 except for a single entry equal to 1. A
standard basis for the space ℝ[t,n] of polynomials consists of powers of t.

Illustration

◼ The standard basis of ℝ3

Clear[sB]

sB = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

◼ The standard basis of the polynomial space ℝ[t,4] of polynomials in t of degree less than or equal to 4

Clear[sB]

sB = 1, t, t2, t3, t4

◼ The standard basis of ℝ2⨯3

Clear[aB, a, b]

sB = {B11, B12, B13, B21, B22, B23};

where

MatrixForm[B11 = {{1, 0, 0}, {0, 0, 0}}]

1 0 0
0 0 0

MatrixForm[B12 = {{0, 1, 0}, {0, 0, 0}}]

0 1 0
0 0 0

MatrixForm[B13 = {{0, 0, 1}, {0, 0, 0}}]

0 0 1
0 0 0

The Linear Algebra Survival Guide | 361

MatrixForm[B21 = {{0, 0, 0}, {1, 0, 0}}]

0 0 0
1 0 0

MatrixForm[B22 = {{0, 0, 0}, {0, 1, 0}}]

0 0 0
0 1 0

MatrixForm[B23 = {{0, 0, 0}, {0, 0, 1}}]

0 0 0
0 0 1

Standard deviation of a numerical vector

The population standard deviation σ𝜎 measures the spread of a vector in ℝn. It is defined to be the square root of the
population variance of the vector. The sample standard deviation s is defined to the square root of the sample variance of
the vector.

Illustration

◼ The population standard deviation of a vector in ℝ6

x = {2, 6, 3, 1, 8, 9}; mx = Mean[x];

σ = SqrtTotal
1

6
Table(x[[i]] -− mx)2, {i, 1, 6}

329

6

◼ The sample standard deviation of a vector in ℝ6

x = {2, 6, 3, 1, 8, 9}; mx = Mean[x];

s = SqrtTotal
1

5
Table(x[[i]] -− mx)2, {i, 1, 6}

329

30

The Mathematica StandardDeviation function computes the sample standard deviation of a vector.

s == StandardDeviation[x]

True

 362 | The Linear Algebra Survival Guide

Stochastic matrix

A stochastic matrix is a square matrix whose columns are probability vectors. A probability vector is a numerical vector
whose entries are real numbers between 0 and 1 whose sum is 1.

1. A stochastic matrix is a matrix describing the transitions of a Markov chain. It is also called a Markov matrix.

2. A right stochastic matrix is a square matrix of nonnegative real numbers whose rows add up to 1.

3. A left stochastic matrix is a square matrix of nonnegative real numbers whose columns add up to 1.

4. A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column adding up to 1.

Illustration

◼ A right stochastic matrix

MatrixForm[RM = {{.5, 0, .5}, {.5, .25, .25}, {1, 0, 0}}]

0.5 0 0.5
0.5 0.25 0.25
1 0 0

◼ A left stochastic matrix

MatrixForm[LM = Transpose[{{.5, 0, .5}, {.5, .25, .25}, {1, 0, 0}}]]

0.5 0.5 1
0 0.25 0

0.5 0.25 0

◼ A doubly stochastic matrix

MatrixForm[DM = {{.5, 0, .5}, {.5, .25, .25}, {0, .75, .25}}]

0.5 0 0.5
0.5 0.25 0.25
0 0.75 0.25

◼ A finite Markov process

A finite Markov process is a random process on a graph, where from each state you specify the probability of selecting
each available transition to a new state.

Finite Markov processes are used to model a variety of decision processes in areas such as games, weather, manufactur-
ing, business, and biology.

The DiscreteMarkovProcess function generates a Markov chain from a stochastic matrix A and an initial probability vector
v.

A = {{0, 1/∕2, 1/∕2}, {1/∕2, 0, 1/∕2}, {1/∕2, 1/∕2, 0}};

v = {1/∕3, 0, 2/∕3};

The Linear Algebra Survival Guide | 363

P = DiscreteMarkovProcess[v, A];

data1 = Normal[RandomFunction[P, {0, 10}]];

data2 = Normal[RandomFunction[P, {0, 10}]];

plot1 = ListLinePlot[data1, PlotStyle → Directive[Red, Thick]];

plot2 = ListLinePlot[data2, PlotStyle → Directive[Green, Thickness[0.02]]];

Show[plot1, plot2]

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Subdiagonal of a matrix

The subdiagonal of an n-by-m matrix A is the list of all elements A[[i+1,i]] of the matrix A.

Illustration

◼ The subdiagonal of a 4-by-3 matrix

A = RandomInteger[{0, 9}, {4, 3}];

A =

5 9 3
0 9 0
8 1 7
4 6 0

;

Diagonal[A, -−1]

{0, 1, 0}

 364 | The Linear Algebra Survival Guide

Diagonal[A, -−1] ⩵ {A[[2,1]], A[[3,2]], A[[4,3]]}

True

Submatrix

A submatrix of a matrix A is a matrix obtained from A by deleting some rows and/or columns of A.

Illustration

A = RandomInteger[{0, 9}, {4, 6}];

A =

1 5 0 1 8 2
6 8 4 9 3 3
1 3 7 7 8 1
3 9 2 9 3 7

;

◼ The submatrix of A obtained by deleting the first row and first column of A

S11 =
8 4 9 3 3
3 7 7 8 1
9 2 9 3 7

;

◼ The submatrix of A obtained by deleting the second and third rows and the sixth column

S236 =
1 5 0 1 8
3 9 2 9 3

;

Subspace

A subspace S of a vector space V is a subset of all vectors in V, with the same vector addition and scalar multiplication as
those on V. Strictly speaking, the operations on S are the restrictions of the operations on V to the subset S. For this to
make sense, however, the set S has to be closed under the given vector addition and scalar multiplication. That is, the sum
of two vectors in S must also be a vector in S.

Every vector space is a subspace of itself. But most spaces have proper subspaces whose sets of vectors are only part of
the entire set of vectors of the ambient space. However, all subspaces must have the same set of scalars of the given
space.

Every vector space has a zero subspace, a subspace whose only vector is the zero vector of the original space. By
definition, the empty set is a basis of a zero space and the space therefore has dimension zero.

Illustration

◼ Subspaces of ℝ2

Every line through the point {0, 0} defines a subspace of ℝ2.

◼ A one-dimensional subspace of ℝ2

The Linear Algebra Survival Guide | 365

line = y == 3 x;

subspace = {{x, y} : y ⩵ 3 x  x, y ∈ Reals}

Every point in ℝ2 other than the origin {0, 0} determines a subspace of ℝ2

◼ A basis for a one-dimensional subspace of ℝ2

point = {1, 3};

basis = {point}

{{1, 3}}

subspace = {x, y} ⩵ a {1, 3}

{{2, 6, 3, 1, 8, 9}, y} ⩵ {a, 3 a}

Two intersecting lines through the origin {0, 0} determine a subspace of ℝ2. If the lines do not overlap, they generate a two-
dimensional subspace of ℝ2. In that case, the subspace is actually all of ℝ2.

◼ Two disjoint subspaces of ℝ2

Clear[x, y]

line1 = y == 3 x;

line2 = y ⩵ -−2 x;

subspace1 = {{x, y} : y ⩵ 3 x  x, y ∈ Reals}

subspace2 = {{x, y} : y ⩵ -−2 x  x, y ∈ Reals}

The two subspaces have only the zero vector in common:

Solve[3 x ⩵ -−2 x, x]

{{x → 0}}

◼ A basis for a subspace of ℝ2

basis = {{3, 1}, {1, -−2}};

This set forms a basis for a subspace of dimension 2. In other words, it forms a basis for the ambient space ℝ2 since all
vectors {x, y} in ℝ2 are linear combinations of the vectors {3, 1} and {1, -2}:

Solve[{x, y} ⩵ a {3, 1} + b {1, -−2}, {a, b}]

a →
1

7
(2 x + y), b →

1

7
(x -− 3 y)

◼ Subspaces of ℝ3

 366 | The Linear Algebra Survival Guide

Lines through the origin {0,0,0}, planes through the origin, the zero subspace, and ℝ3 itself are all subspaces of ℝ3.

◼ A plane through the origin of ℝ3 forms a two-dimensional subspace of ℝ3

Clear[x, y, z]

plane = z ⩵ 3 x -− 2 y

z ⩵ 3 x -− 2 y

Reduce[plane, {x, y, z}]

z ⩵ 3 x -− 2 y

ContourPlot3D[Evaluate[plane], {x, -−5, 5}, {y, -−5, 5}, {z, -−5, 5}, Axes → True]

Reduce[3 x -− 2 y ⩵ 0, {x, y}]

y ⩵
3 x

2

The Linear Algebra Survival Guide | 367

Reduce[3 x -− 2 y ⩵ 0, {x, y}]

y ⩵
3 x

2

If we assign two appropriate values to x, we get two linearly independent vectors for different values of z lying in the given
plane. They form a basis for the space.

◼ A basis for a two-dimensional subspace of ℝ3

basis = {{2, 3, 0}, {6, -−3, 24}};

z ⩵ 3 x -− 2 y /∕. {x → 2, y → 3, z → 0}

True

z ⩵ 3 x -− 2 y /∕. {x → 6, y → -−3, z → 24}

True

The two vectors form a basis for the plane, a two-dimensional subspace of ℝ3, since they are linearly independent:

Solve[a {2, 3, 0} + b {6, -−3, 24} ⩵ {0, 0, 0}, {a, b}]

{{a → 0, b → 0}}

Many important vector spaces arise as proper parts of larger spaces, coordinate spaces in particular. Among them are four
spaces associated with every real matrix. These are called the row space, the column space, the null space, and the left
null space of a given matrix. Their dimensions do not exceed the number of rows and columns of the given matrix.

◼ The four vector spaces generated by a 3-by-5 real matrix

MatrixForm[A = {{3, 1, 0, 2, 4}, {1, 1, 0, 0, 2}, {5, 2, 0, 3, 7}}]

3 1 0 2 4
1 1 0 0 2
5 2 0 3 7

MatrixForm[ns = NullSpace[A]]

-−1 -−1 0 0 1
-−1 1 0 1 0
0 0 1 0 0

LinearSolve
-−1 -−1 0 0 1
-−1 1 0 1 0
0 0 1 0 0

, {0, 0, 0}

{0, 0, 0, 0, 0}

Therefore the null space of A has dimension 0 since only the zero vector is in its basis.

 368 | The Linear Algebra Survival Guide

lns = NullSpace[Transpose[A]]

{{-−3, -−1, 2}}

Therefore the left null space of A has dimension 1. Every vector in the left null space is a multiple of the vector {-3,-1,2}.

{-−3, -−1, 2}.A

{0, 0, 0, 0, 0}

MatrixForm[rs = RowReduce[A]]

1 0 0 1 1
0 1 0 -−1 1
0 0 0 0 0

Therefore the row space of A has dimension 2. Every vector in the row space of A is a linear combination of the vectors {1,
0, 0, 1,1 } and {0, 1, 0, -1, 1}.

a {1, 0, 0, 1, 1} + b {0, 1, 0, -−1, 1}

{a, b, 0, a -− b, a + b}

MatrixForm[cs = Transpose[RowReduce[Transpose[A]]]]

1 0 0 0 0
0 1 0 0 0
3

2

1

2
0 0 0

a

1
0
3

2

+ b

0
1
1

2

{a}, {b}, 
3 a

2
+
b

2


This tells us that the column space of A has dimension 2. Every vector in the column space is a linear combination of the
vectors {1, 0, 3/2} and {0, 1, 1/2}.

The four spaces are connected by the direct sum operation:

nullSpace[A]⊕rowSpace[A] (1)

leftnullSpace[A]⊕columnSpace[A] (2)

The direct sum of two vector spaces is the union of two subspaces of a given space, provided that they only have the zero
vector in common. Every vector in the ambient space is a unique sum of vectors from the two subspaces.

All vector spaces have a zero-dimensional subspace whose only vector is the zero vector of the space. It is convenient to
consider the empty set { } to be the basis of the zero subspace. All subspaces of a given vector space have the zero vector
in common. If this is the only common vector, the subspaces are said to be disjoint.

The Linear Algebra Survival Guide | 369

Manipulation

◼ Straight lines as subspaces of ℝ2

Clear[a, b, x, y]

Manipulate[ContourPlot[{y == a x, y ⩵ b x}, {x, -−5, 5}, {y, -−5, 5}, Axes → True],
{a, -−20, 20}, {b, -−20, 20}]

a

b

-−4 -−2 0 2 4

-−4

-−2

0

2

4

We use Manipulate and ContourPlot to visualize lines through the origin as subspaces of ℝ2. For example, the manipula-
tion displays the subspace defined by the equations y = -0.7x and y = -16x.

 370 | The Linear Algebra Survival Guide

Sum of subspaces

If U and V are two subspaces of a vector space W, the sum (U + V) of U and V is the span of the set-theoretical union of U
and V.

Illustration

◼ The sum of two subspaces of ℝ4

U = {{a, a, 0, b} : a, b ∈ ℝ}
V = {{0, b, b, c} : b, c ∈ ℝ}

U + V = span[{a {1, 1, 0, 0} + c {0, 0, 0, 1} + b {0, 1, 1, 0} + c {0, 0, 0, 1}} : a, b, c ∈ ℝ]

◼ The sum of two disjoint subspaces of ℝ3

U = {{a, a, 0} : a ∈ ℝ}
V = {{0, 0, b} : bℝ}

U + V = span[{a {1, 1, 0} + b {0, 0, 1}} : a, b ∈ ℝ]

Superdiagonal of a matrix

The superdiagonal of an n-by-m matrix A is the list of all elements A[[i,i+1]] of the matrix A.

Illustration

◼ The superdiagonal of a 3-by-4 matrix

A = RandomInteger[{0, 9}, {3, 4}];

A =
9 9 8 8
0 9 7 2
5 9 7 8

;

Diagonal[A, 1]

{9, 7, 8}

Diagonal[A, 1] ⩵ {A[[1,2]], A[[2,3]], A[[3,4]]}

True

Surjective linear transformation

A linear transformation T : V ⟶ W from a vector space V to a vector space W is surjective (onto) if for every vector w in W
there exists a vector v in V for which w = T[v].

The Linear Algebra Survival Guide | 371

Illustration

◼ A surjective linear transformation T : ℝ4 ⟶ ℝ2⨯2

Clear[a, b, c, d, T, A, S]

T[{a_, b_, c_, d_}] := {{a, b}, {c, d}}

A = {{1, 2}, {3, 4}};

Solve[A == T[{a, b, c, d}], {a, b, c, d}]

{{a → 1, b → 2, c → 3, d → 4}}

The transformation T is also injective. Its inverse S is defined by

S[{{a_, b_}, {c_, d_}}] := {a, b, c, d}

S[A]

SparseArray Specified elements: 13
Dimensions: {5, 5}

[{{1, 2}, {3, 4}}]

T[S[{{a, b}, {c, d}}]] == {{a, b}, {c, d}}

{{9, 7, 7, 0}, {8, 3, 4, 6}, {4, 7, 3, 1}, {4, 1, 8, 8}}

SparseArray Specified elements: 13
Dimensions: {5, 5}

[{{a, b}, {c, d}}] ⩵ {{a, b}, {c, d}}

S[T[{a, b, c, d}]] ⩵ {a, b, c, d}

SparseArray Specified elements: 13
Dimensions: {5, 5}

[

{{9, 7, 7, 0}, {8, 3, 4, 6}, {4, 7, 3, 1}, {4, 1, 8, 8}}[{a, b, c, d}]] ⩵ {a, b, c, d}

◼ A surjective linear transformation T: ℝ3 ⟶ℝ2

Clear[T, a, b, c]

T[{a_, b_, c_}] := {a, c}

 372 | The Linear Algebra Survival Guide

T[{1, 2, 3}]

{1, 3}

The transformation T is surjective since every vector {a, b, c} gets mapped to the vector {a, c} for all real numbers a and c.
However, it is not injective. The vectors {a, 0, c} and {a, 1, c}, for example, get mapped to the same vector {a, c}.

Sylvester’s theorem

If q is a real quadratic form on ℝn, then there exist integers r and s, with s ≤ r ≤ n, depending uniquely on q, such that

q[x1, ..., xn] = x1
2 + ⋯ + xs2 -− xs+1

2 -− ⋯ -− xr2 (1)

in some orthonormal basis for ℝn.

Sylvester’s theorem tells us, for example, that by choosing a suitable basis, we can make an ellipse look like a circle, but
we can never choose a basis, for example, that makes an ellipse look like a hyperbola.

Illustration

◼ Ellipses and circles

q1[x_, y_] := 2 x2 + 5 y2;

plot1 = ContourPlot[q1[x, y], {x, -−4, 4}, {y, -−4, 4}]

q2[x_, y_] := x2 + y2;

The Linear Algebra Survival Guide | 373

plot2 = ContourPlot[q2[x, y], {x, -−4, 4}, {y, -−4, 4}]

The number of pluses and minuses in the canonical representation of a quadratic form provided by Sylvester’s theorem is
sometimes called the signature of the form and can be used to give a classification of these forms:

◼ Classifying quadratic forms

q1[x, y] = x2 + y2 (1)

q2[x, y] = -−x2 + y2 (2)

q3[x, y] = x2 -− y2 (3)

q4[x, y] = -−x2 -− y2 (4)

The signatures of these quadratic forms are {1, 1}, {-1, 1}, {1, -1}, and {-1, -1}.

More generally,

q1[x, y] = λ x2 + μy2 and λ > 0, μ > 0 (1)

q2[x, y] = λ x2 + μy2 and λ < 0, μ > 0 (2)

q3[x, y] = λ x2 + μy2 and λ > 0, μ < 0 (3)

q4[x, y] = λ x2 + μy2 and λ < 0, μ < 0 (4)

where λ𝜆 and μ𝜇 are the eigenvalues of q.

Manipulation

◼ Plotting quadratic forms

 374 | The Linear Algebra Survival Guide

Manipulate[Plot3D[a x^2 + b y^2, {x, -−5, 5}, {y, -−5, 5}], {a, -−1, 1}, {b, -−1, 1}]

a

b

We use Manipulate and Plot3D to visualize the quadratic forms determined by the equations ax2 +by2. The image in the

manipulation window displays the graph of the quadratic form -−x2 -−y2.

Symmetric matrix

A matrix S is symmetric if it equals its transpose. Real matrices of the form AAT and AT A are symmetric and have
nonnegative eigenvalues.

Illustration

◼ A symmetric matrix

The Linear Algebra Survival Guide | 375

MatrixForm[S = {{1, 2, 3}, {2, 4, 5}, {3, 5, 6}}]

1 2 3
2 4 5
3 5 6

SymmetricMatrixQ[S]

True

◼ A symmetric matrix of the form S.Transpose[S]

MatrixForm[R1 = S.Transpose[S]]

14 25 31
25 45 56
31 56 70

SymmetricMatrixQ[R1]

True

N[Eigenvalues[R1]]

{128.705, 0.265977, 0.029212}

◼ A symmetric matrix of the form Transpose[S].S

MatrixForm[R2 = Transpose[S].S]

14 25 31
25 45 56
31 56 70

SymmetricMatrixQ[R2]

True

N[Eigenvalues[R2]]

{128.705, 0.265977, 0.029212}

◼ A symmetric matrix of the form (A + AT)

For every square matrix A, the matrix (A + AT) is symmetric

A =

8 3 6 7
5 0 6 7
5 5 0 0
0 4 5 1

;

 376 | The Linear Algebra Survival Guide

SymmetricMatrixQ[A + Transpose[A]]

True

System of linear equations

See Linear system

The Linear Algebra Survival Guide | 377

T

Toeplitz matrix

A n-by-n matrix is a Toeplitz matrix if the elements in the first row and the first column are successive integers.

The ToeplitzMatrix function built into Mathematica can be used to create Toeplitz matrices.

Illustration

◼ A 4-by-4 Toeplitz matrix

MatrixForm[T = ToeplitzMatrix[4]]

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

The elements in row one and column one are the successive integers from 1 to 4.

◼ Building Toeplitz matrices

Table[MatrixForm[ToeplitzMatrix[n]], {n, 2, 5, 1}]


1 2
2 1

,
1 2 3
2 1 2
3 2 1

,

1 2 3 4
2 1 2 3
3 2 1 2
4 3 2 1

,

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1



Trace

The trace of a square matrix A is the sum of the diagonal elements of the matrix A. The trace of a matrix can be computed
with the built-in Tr function. The trace of A is also the (approximate) sum of the eigenvalues of A. The trace function
satisfies the following properties:

Properties of the trace function

Tr[A] = Tr[Transpose[A]] (1)

Tr[A.B] = Tr[B.A] (2)

Tr[B.A.Inverse[B]] = Tr[A] (3)

 378 | The Linear Algebra Survival Guide

Illustration

◼ The trace of a general 3-by-3 matrix

Clear[A, a, b, c, d, e, f, g, h, i]

MatrixForm[A = {{a, b, c}, {d, e, f}, {g, h, i}}]

a b c
d e f
g h i

Tr[A]

a + e + i

◼ The trace of a 4-by-4 matrix

MatrixForm[A = RandomInteger[{0, 9}, {4, 4}]]

1 2 4 1
2 5 7 8
2 5 3 7
4 5 3 6

Tr[A]

15

Total[N[Eigenvalues[A]]]

15. + 0. ⅈ

◼ The trace of a 2-by-2 real matrix

A = RandomReal[{0, 9}, {2, 2}];

A =
6.073493017009433` 2.5207312136769584`
7.104724528204983` 0.09315320872764765`

;

Tr[A]

6.16665

◼ The trace of a 4-by-4 matrix as the sum of the eigenvalues of the matrix

A = RandomInteger[{0, 9}, {4, 4}];

The Linear Algebra Survival Guide | 379

A =

1 0 8 6
8 7 5 1
2 3 9 8
0 5 1 9

;

Tr[A] ⩵ N[Total[Eigenvalues[A]]]

True

Manipulation

◼ Exploring the trace of 2-by-2 matrices

Manipulate[{A = {{a, b}, {4, 4}}, Tr[A]}, {a, -−5, 5, 1}, {b, -−5, 5, 1}]

a

b

{{{-−5, 0}, {4, 4}}, -−1}

We use Manipulate and Tr to explore the trace of 2-by-2 matrices with integer elements. If we let a = -5 and b = 0, for
example, the manipulation produces the matrix

MatrixForm[{{-−5, 0}, {4, 4}}]

-−5 0
4 4

and its trace -1.

◼ Calculating the trace of a 3-by-3 matrix

Clear[A, a, b, c]

MatrixForm[A = {{a, 1, 2}, {3, b, 4}, {5, 6, c}}]

a 1 2
3 b 4
5 6 c

Manipulate[Evaluate[Tr[A]], {a, -−5, 5, 1}, {b, -−3, 3, 1}, {c, -−4, 4, 1}]

 380 | The Linear Algebra Survival Guide

a

b

c

-−4

We use Manipulate, Evaluate, and Tr to display the traces of selected matrices. The manipulation produces that the trace
of the matrix obtain by letting a = - 5, b = 0, and c = 1 is - 4.

Transformation

See Affine transformation, linear transformation

Transformational geometry

The name transformation, as used in linear algebra for matrix-based functions, comes from transformational geometry,
where rotations, shears, reflections, and translations are studied. All of these transformations can be represented by
invertible matrices, except for translations.

Linear transformations, as the name suggests, transform vectors from {a, b} to a new location {a’, b’ }; this is the image of
the vector {a, b} under the transformation. However, they do not transform the origin {0, 0}. So any geometric figure such as
a triangle with one vertex at the origin cannot be moved by matrix multiplication.

This problem has led to the development of affine geometry, a combination of matrix multiplication and the subsequent
addition of translation vectors. It is intriguing that these two types of operations can nevertheless be combined in special 3-
by-3 matrices using homogeneous coordinates.

Transition matrix

See Stochastic matrix

Translation

A translation is a displacement of a vector by the addition of a nonzero vector.

Illustration

◼ Translation of vectors in ℝ2

translation[vector_] := vector + {3, 4}

The Linear Algebra Survival Guide | 381

translation[{5, 6}]

{8, 10}

◼ Translation of vectors in ℝ3

translation[vector_] := vector + {a, b, c}

translation[{5, 6, 7}]

{5 + a, 6 + b, 7 + c}

Manipulation

◼ Translation of vectors in ℝ4

Manipulate[{1, 2, 3, 4} + {a, b, c, d}, {a, -−5, 5}, {b, -−4, 4}, {c, 0, 9}, {d, -−8, -−3}]

a

b

c

d

{-−2.61, 4.5, 6.5, -−0.765}

We use Manipulate to translate vectors in ℝ4. If we let a = -3.61, b = 2.5, c = 3.5, and d = -4.765, then the manipulation
shows that the sum of the vectors {1, 2, 3, 4} and {a, b, c, d} is {-2.61, 4.5, 6.5, -0.765}.

Transpose of a matrix

Matrices can be converted into other matrices by interchanging their rows and columns. This operation is called matrix
transposition and produces a matrix called the transpose of the given matrix. All matrices can be transposed. In addition to
the Transpose function, Mathematica supports the superscript notation AT , also denoting the transpose of A. The
transpose function satisfies the following properties:

Properties of the transpose function

Transpose[Transpose[A]] = A (1)

Transpose[A.B] = Transpose[B].Transpose[A] (2)

 382 | The Linear Algebra Survival Guide

Transpose[A + B] = Transpose[A] + Transpose[B] (3)

Transpose[a A] = a Transpose[A] (4)

Illustration

◼ Transposition of a matrix

MatrixForm[A = {{1, 2, 3}, {4, 5, 6}}]

1 2 3
4 5 6

MatrixForm[Transpose[A]]

1 4
2 5
3 6

As expected, the transpose of the transpose of a matrix returns the original matrix.

Transpose[Transpose[A]] ⩵ A

True

Triangle inequality

In a normed vector space, the norms KuL, KvL, and Ku + vL of any three vectors u, v, and (u + v) are related by the
inequality

Qu + vR ≤ QuR + QvR (1)

The inequality is an example of a triangle inequality and corresponds to the relationship between the lengths of the three
sides of a triangle.

Illustration

◼ The triangle inequality for two real numbers x and y,

Clear[x, y]

Abs[x + y] ≤ Abs[x] + Abs[y];

x = 5; y = -−7;

Abs[x + y] ≤ Abs[x] + Abs[y]

True

◼ The triangle inequality for two complex numbers (a + b ⅈ) and (c + d ⅈ),

The Linear Algebra Survival Guide | 383

Clear[a, b, c, d]

Abs[(a + b ⅈ) + (c + d ⅈ)] ≤ Abs[(a + b ⅈ)] + Abs[(c + d ⅈ)];

a = 5; b = 2; c = -−4; d = -−1;

Abs[(a + b ⅈ) + (c + d ⅈ)] ≤ Abs[(a + b ⅈ)] + Abs[(c + d ⅈ)]

True

◼ The triangle inequality for two vectors in the Euclidean space 𝔼3

x = {1, 2, 3}; y = {4, 5, 6};

Norm[x + y, 2] ≤ Norm[x, 2] + Norm[y, 2]

True

Triangular matrix

A triangular matrix is a square matrix whose elements above or below the main diagonal are zero. Diagonal matrices are
automatically triangular.

The UpperTriangularize and LowerTriangularize built into Mathematica can be used to convert given matrices to
triangular ones.

Illustration

◼ A triangular matrix with integer elements

A = {{6, 1, 4, 3, 2}, {7, 0, 1, 4, 2}, {0, 3, 1, 3, 4}, {6, 2, 4, 0, 4}, {2, 4, 5, 8, 4}};

MatrixForm[UpperTriangularize[A]]

6 1 4 3 2
0 0 1 4 2
0 0 1 3 4
0 0 0 0 4
0 0 0 0 4

MatrixForm[LowerTriangularize[A]]

6 0 0 0 0
7 0 0 0 0
0 3 1 0 0
6 2 4 0 0
2 4 5 8 4

 384 | The Linear Algebra Survival Guide

Underdetermined linear system

A linear system is underdetermined if it has more unknowns than equations. When the system is expressed as matrix-
vector equation, the matrix of coefficients will have more columns than rows. The solutions of consistent underdetermined
systems may contain a free variable.

Illustration

◼ An underdetermined consistent linear system in two equations and three variables

system = {3 x + 4 y -− z ⩵ 5, x -− y + 7 z ⩵ 4};

solutions = Solve[system, {x, y, z}]

Solve::svars : Equations may not give solutions for all "solve" variables. $

y →
13

9
-−
22 x

27
, z →

7

9
-−
7 x

27


The variable x is said to be free. We can assign to it any real number value, and find a corresponding value for y and z.

Simplify[system /∕. solutions]

{{True, True}}

solutions /∕. {x → 1}

y →
17

27
, z →

14

27


◼ An underdetermined linear system in three equations and four variables

Clear[w, x, y, z]

system = {x + y -− z ⩵ 1, 2 x -− y ⩵ 4, x + 5 y -− 5 w ⩵ 3};

Reduce[system, {w, x, y, z}]

x ⩵
23

11
+
5 w

11
&& y ⩵

2

11
+
10 w

11
&& z ⩵

14

11
+
15 w

11

◼ An underdetermined inconsistent linear system

A = {{1, 2, 3}, {1, 2, 3}}; b = {1, 2};

LinearSolve[A, b]

LinearSolve::nosol : Linear equation encountered that has no solution. $
LinearSolve[{{1, 2, 3}, {1, 2, 3}}, {1, 2}]

The Linear Algebra Survival Guide | 385

U

fredeszabo
Sticky Note
Marked set by fredeszabo

Unit circle

The unit circle in a normed vector space V consists of all unit vectors of V.

Illustration

◼ The unit circle of ℝ2 relative to the Euclidean norm

Clear[a, b]

v = {a, b}; u = Normalize[v];

Simplify[Norm[u]]

1

The unit circle is thus the set of all vectors whose components are of the form


a

=a>2 + =b>2
,

b

=a>2 + =b>2


◼ The unit circle of ℝ2 relative to the one-norm

v = {a, b}; u =
1

Norm[v, 1]
v


a

Abs[a] + Abs[b]
,

b

Abs[a] + Abs[b]


Simplify[Norm[u, 1]]

1

◼ The unit circle of ℝ2 relative to the infinity-norm

v = {a, b}; a = 3; b = -−5; u =
1

Norm[v, Infinity]
v


3

5
, -−1

Norm[u, Infinity]

1

◼ Plotting the three unit circles relative to different norms

 386 | The Linear Algebra Survival Guide

ContourPlot[
{Norm[{x, y}, 1] ⩵ 1, Norm[{x, y}, 2] ⩵ 1, Norm[{x, y}, Infinity] ⩵ 1},
{x, -−1.1, 1.1}, {y, -−1.1, 1.1}, Axes → True]

-−1.0 -−0.5 0.0 0.5 1.0

-−1.0

-−0.5

0.0

0.5

1.0

Unit vector

A unit vector in a normed vector space is a vector for which KvL = 1 in the norm of the space.

Illustration

◼ A unit vector in the Euclidean space ℝ2

v = {3, 7};

u =
1

Norm[v]
v


3

58
,

7

58


The Linear Algebra Survival Guide | 387

Norm[u] ⩵ 1

True

◼ A unit vector in ℝ3 relative to a nonstandard inner product

Clear[x, y, z]

MatrixForm[A = DiagonalMatrix[{1, 2, 3}]];

w = {x, y, z};

〈u_, v_〉 := u.A.v

Nw_O := Sqrt[〈w, w〉]

NwO

x2 + 2 y2 + 3 z2

w123 = w /∕. {x → 1, y → 2, z → 3}

{1, 2, 3}

Nw123O

6

u =
1

Nw123O
w123


1

6
,
1

3
,
1

2


NuO

1

Unitary matrix

A unitary matrix is a matrix whose inverse equals it conjugate transpose. Unitary matrices are the complex analog of real
orthogonal matrices. If U is a square, complex matrix, then the following conditions are equivalent :

◼ U is unitary.

◼ The conjugate transpose U *⋆ of U is unitary.

◼ U is invertible and U-−1 = U *⋆.

 388 | The Linear Algebra Survival Guide

◼ The columns of U form an orthonormal basis with respect to the inner product determined by U.

◼ The rows of U form an orthonormal basis with respect to the inner product determined by U.

◼ U is an isometry with respect to the inner product determined by U.

◼ U is a normal matrix with eigenvalues lying on the unit circle.

Illustration

◼ A 2-by-2 unitary matrix

MatrixForm[A = {{0, I}, {I, 0}}]

0 ⅈ
ⅈ 0

Inverse[A] ⩵ ConjugateTranspose[A]

True

MatrixForm[ConjugateTranspose[A]]

0 -−ⅈ
-−ⅈ 0

MatrixForm[A.ConjugateTranspose[A]]

1 0
0 1

◼ A unitary matrix of the form ⅈ.IdentityMatrix[2]

MatrixForm[B = I IdentityMatrix[2]]

ⅈ 0
0 ⅈ

Inverse[B] ⩵ ConjugateTranspose[B]

True

◼ A more general unitary matrix

MatrixFormM =
1

2
{{1 -− I, 1 + I}, {1 + I, 1 -− I}} 

1

2
-−

ⅈ

2

1

2
+

ⅈ

2
1

2
+

ⅈ

2

1

2
-−

ⅈ

2

The Linear Algebra Survival Guide | 389

Inverse[M] ⩵ ConjugateTranspose[M]

True

◼ A 3-by-3 real unitary matrix

MatrixFormA =
1

2
{1, 0, 1}, 0, 2 , 0, {-−1, 0, 1}

1

2

0
1

2

0 1 0

-−
1

2

0
1

2

UnitaryMatrixQ[A]

True

A.ConjugateTranspose[A] ⩵ IdentityMatrix[3]

True

◼ A 2-by-2 complex unitary matrix

A =
1

2
{{1, ⅈ}, {ⅈ, 1}};

UnitaryMatrixQ[A]

True

A.ConjugateTranspose[A] ⩵ A.Inverse[A]

True

Upper-triangular matrix

An n-by-n matrix A = A[[i, j]] is upper-triangular if A[[i, j]] = 0 for all i > j. That is, if all entries below the main diagonal are 0.

Illustration

◼ An upper-triangular matrix

 390 | The Linear Algebra Survival Guide

MatrixForm[A = {{1, 2, 3, 4}, {0, 5, 6, 7}, {0, 0, 8, 9}, {0, 0, 0, 10}}]

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10

◼ An upper-triangular matrix obtained by triangularization

A = RandomInteger[{0, 9}, {5, 5}];

A =

8 5 5 1 0
7 4 6 3 1
2 3 0 8 2
8 9 7 4 1
5 2 4 1 3

;

MatrixForm[B = UpperTriangularize[A]]

8 5 5 1 0
0 4 6 3 1
0 0 0 8 2
0 0 0 4 1
0 0 0 0 3

Manipulation

◼ Exploring upper-triangular matrices

Manipulate[MatrixForm[UpperTriangularize[{{1, 2 a, 3}, {4, 5, 6 b}, {7, 8 c, 9}}]],
{a, -−2, 2, 1}, {b, -−3, 3, 1}, {c, -−5, 5, 1}]

a

b

c

1 2 3
0 5 12
0 0 9

We use Manipulate, MatrixForm, and UpperTriangularize to construct and explore upper-triangular matrices. If we let a =
1, b = 2, and c = 3, then the UpperTriangualize function converts the matrix

MatrixForm[{{1, 2, 3}, {4, 5, 12}, {7, 24, 9}}]

The Linear Algebra Survival Guide | 391

1 2 3
4 5 12
7 24 9

to the upper-triangular matrix

1 2 3
0 5 12
0 0 9

 392 | The Linear Algebra Survival Guide

V

Vandermonde matrix

A Vandermonde matrix arises in the solutions of linear systems, the calculation of the coefficients of Lagrange interpolating
polynomials, As expectedand similar situations.

Illustration

◼ Vandermonde matrix of order 4 in the variables x1, x2, x3 and x4

MatrixFormV = Table1, xi, xi
2, xi

3, {i, 1, 4}

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3

1 x4 x4
2 x4

3

In many applications, {x1, x2, x3, x4} = {1, 2, 3, 4}. In the case of n variables, the list of variables is often Range[n].

The following defined function produced Vandermonde matrices:

Vandermonde[x_] := TableRange[x]n, {n, 0, x -− 1}

◼ A Vandermonde matrix of order 4 for {x1, x2, x3, x4} = {1, 2, 3, 4}

MatrixForm[Vandermonde[4]]

1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

◼ A Vandermonde matrix of order 4 in the variables w, x, y, z

MatrixForm[Outer[Power, {w, x, y, z}, Range[0, 3]]]

1 w w2 w3

1 x x2 x3

1 y y2 y3

1 z z2 z3

◼ The InterpolatingPolynomial function and its Vandermonde matrix counterpart

InterpolatingPolynomial[{1, 4, 9, 16, 25}, x]

(x-−1) (x+1)+1

The Linear Algebra Survival Guide | 393

Consider the list of five points

points = {{1, 3}, {2, 1}, {3, 6}, {4, 2}, {5, 4}};

then the Lagrange polynomial is a polynomial of degree four passing through the five points. The given data determine a
linear system and the coefficient matrix is an example of a Vandermonde matrix.

Expand[InterpolatingPolynomial[points, x]]

31 x4

24
-−
187 x3

12
+
1553 x2

24
-−
1277 x

12
+59

We can find this polynomial by finding its list of coefficients as the solution of a linear system.

p[x_] := a0 + a1 x + a2 x
2 + a3 x

3 + a4 x
4

p[1] ⩵ 3

a0+a1+a2+a3+a4 & 3

p[2] ⩵ 1

a0+2 a1+4 a2+8 a3+16 a4 & 1

p[3] ⩵ 6

a0+3 a1+9 a2+27 a3+81 a4 & 6

p[4] ⩵ 2

a0+4 a1+16 a2+64 a3+256 a4 & 2

p[5] ⩵ 4

a0+5 a1+25 a2+125 a3+625 a4 & 4

sys = {p[1] ⩵ 3, p[2] ⩵ 1, p[3] ⩵ 6, p[4] ⩵ 2, p[5] ⩵ 4};

Solve[sys, {a0, a1, a2, a3, a4}]

a0 → 59, a1 → -−
1277

12
, a2 →

1553

24
, a3 → -−

187

12
, a4 →

31

24


◼ Solving a linear system involving a 5-by-5 Vandermonde matrix

 394 | The Linear Algebra Survival Guide

MatrixForm[Vandermonde[5]]

1 1 1 1 1
1 2 4 8 16
1 3 9 27 81
1 4 16 64 256
1 5 25 125 625

LinearSolve[Vandermonde[5], {3, 1, 6, 2, 4}]

59, -−
1277

12
,
1553

24
, -−

187

12
,
31

24


fp = {3, 1, 6, 2, 4}

{3, 1, 6, 2, 4}

◼ Constructing the associated approximating polynomial and comparing it with the polynomial obtained by using the built-
in Fit function.

N
31 x4

24
-−
187 x3

12
+
1553 x2

24
-−
1277 x

12
+ 59

59. -− 106.417 x + 64.7083 x2 -− 15.5833 x3 + 1.29167 x4

Fitfp, 1, x, x2, x3, x4, x

59. -− 106.417 x + 64.7083 x2 -− 15.5833 x3 + 1.29167 x4

Manipulation

◼ Exploring Vandermonde matrices

We can manipulate the defined Vandermonde function

Clear[x, n]

Vandermonde[x_] := TransposeTableRange[x]n, {n, 0, x -− 1}

to explore Vandermonde matrices of any dimension. For example, the following command generated all Vandermonde
matrices n-by-n matrices for all n between 5 and 20:

The Linear Algebra Survival Guide | 395

Manipulate[MatrixForm[Vandermonde[x]], {x, 5, 20, 1}]

x

1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128
1 3 9 27 81 243 729 2187
1 4 16 64 256 1024 4096 16 384
1 5 25 125 625 3125 15 625 78 125
1 6 36 216 1296 7776 46 656 279 936
1 7 49 343 2401 16 807 117 649 823 543
1 8 64 512 4096 32 768 262 144 2 097 152

We use Manipulate, MatrixForm, and the defined function Vandermonde to explore the Vandermonde matrix generated
by letting x = 8.

Variance of a vector

The population variance of a vector x = {x1, ..., xn} inℝn is 1

n
 times the sum of squared differences from the mean. The

sample variance of the vector x is 1

n-−1
 times the squared differences from the mean.

Illustration

◼ The population variance of a vector in ℝ6

v = {2, 6, 3, 1, 8, 9}; mx = Mean[v];

pv = Total
1

6
Table(x[[i]] -− mx)2, {i, 1, 6}

329

36

◼ The sample variance of the vector v

sv =
6

5
pv

329

30

The Mathematica variance function computes the sample variance of the vector.

 396 | The Linear Algebra Survival Guide

Vector

A vector is any element of a vector space. The name vector is a collective name for mathematical objects studied in linear
algebra. The terminology stems from physics, where vectors represent forces and are often depicted by arrows.

The direction and length of the arrow starting at point P and ending at point Q have physical interpretations. In Latin, the
word vector means “carrier,” an appropriate term for a force that carries an object from P to Q. Some of the properties of the
calculus of arrows have given rise to the more general notion of vector in linear algebra.

The Mathematica vector testing function VectorQ applied to an expression v returns True if v is a list or a one-dimensional
SparseArray object where none of the elements are lists and returns False otherwise. This means that objects in certain
vector spaces such as polynomials and matrices are not classified as vectors by the VectorQ function.

Illustration

◼ Vector test

The Mathematica function VectorQ returns True if the argument v in VectorQ[v] is a list or a sparse array and false
otherwise.

x = Range[5]

{1, 2, 3, 4, 5}

VectorQ[x]

True

x = RandomInteger[{0, 9}, {2, 2}];

VectorQ[x]

False

◼ Vectors in the coordinate space ℝ2

space = ℝ2; vector = {1, 1.2};

The Linear Algebra Survival Guide | 397

Graphics[Arrow[{{0, 0}, {1, 1.2}}], Axes → True]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

◼ Vectors in the coordinate space ℝ3

space = ℝ3; vector = {1, 2, 3};

VectorQ[vector]

True

 398 | The Linear Algebra Survival Guide

Graphics3D[Arrow[{{0, 0, 0}, {1, 2, 3}}], Axes → True]

0.0
0.5

1.0

0.0

0.5

1.0

1.5

2.0

0

1

2

3

◼ Vectors in the polynomial space ℝ[t,3]

space = ℝ[t, 3] real polynomials of degree at most 3;

vector = 2 + 4 t -− 5 t2 + t3;

Mathematica does not consider polynomials to be vectors. Hence the VectorQ test fails.

VectorQ[vector]

False

vector3 = {vector /∕. {t → 1}, vector /∕. {t → 2}, vector /∕. {t → 3}}

{2, -−2, -−4}

However, the list of integers obtained from the polynomial by assigning numerical values to t qualifies again, as expected,
as a vector in the Mathematica sense.

VectorQ[vector3]

True

The Linear Algebra Survival Guide | 399

◼ Vectors in the matrix space ℝ2⨯3

space = ℝ2⨯3 (real 2⨯3 matrices);

vector = {{1, 2, 3}, {4, 5, 6}};

Mathematica does not consider matrices to be vectors. Hence the VectorQ test fails.

VectorQ[vectors]

False

◼ Test for a vector of real-valued numeric quantities

VectorQ[{1, Pi, Sin[1], Sqrt[2]}, NumericQ[#] && Im[#] ⩵ 0 &]

True

Vector addition

See Vector space

Vector component

The arrows corresponding to the vectors {x, 0, 0}, {0, y, 0}, and {0, 0, z} determined by the arrow corresponding to the
vector v = {x, y, z} in ℝ3 are often called the components of v.

Illustration

◼ The components of the vector {1, 1} in ℝ2

Graphics[
{Arrow[{{0, 0}, {1, 1}}], Arrow[{{0, 0}, {1, 0}}], Arrow[{{0, 0}, {0, 1}}]}, Axes -−> True]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

 400 | The Linear Algebra Survival Guide

{1, 1} ⩵ {1, 0} + {0, 1}

True

{1, 1} ⩵ {1, 0} + {0, 1}

True

◼ The components of the vector {1, 1, 1} in ℝ3

Graphics3D[{Arrow[{{0, 0, 0}, {1, 1, 1}}], Arrow[{{0, 0, 0}, {1, 0, 0}}],
Arrow[{{0, 0, 0}, {0, 1, 0}}], Arrow[{{0, 0, 0}, {0, 0, 1}}]}]

{1, 1, 1} ⩵ {1, 0, 0} + {0, 1, 0} + {0, 0, 1}

True

The Linear Algebra Survival Guide | 401

Vector norm

See Norm

Vector spaces

Vector spaces are made of two types of objects, vectors and scalars. The vectors of a vector space can be added and
multiplied by scalars. The vector space axioms describe the properties of these operations.

Properties of vector addition

(u + v) + w = u + (v + w) (1)

u + v = v + u (2)

u + 0 = u (3)

u + (-−u) = 0 (4)

for all vectors u, v, w and the zero vector 0

Properties of scalar multiplication

(a + b) u = a u + b u (1)

a (u + v) = a u + a v (2)

1 u = u (3)

a (b u) = (a b) u (4)

for all scalars a, b, and 1 and all vectors u and v.

Scalars of a vector space

The scalars of vector spaces are either the set ℝ of real numbers, visualized geometrically as the linearly ordered points on
a line, or the set of complex numbers ℂ, visualized geometrically as the points in a plane, organized geometrically on
concentric circles centered at the point {0, 0}.

Vector spaces over real numbers are known as real vector spaces and vector spaces with complex scalars are known as
complex vector spaces. All real vector spaces have all real numbers as scalars and all complex vector spaces have all
complex numbers as scalars. The difference between the spaces arises from the nature of their vectors and from the
algebraic differences of the real and complex numbers.

Real scalars

realscalars = Table[{n, 0}, {n, -−20, 20}];

 402 | The Linear Algebra Survival Guide

Vector cross product

See Cross product

ListPlot[realscalars]

-−20 -−10 10 20

-−1.0

-−0.5

0.5

1.0

Complex scalars

complexscalars =
Table[{{Cos[n], Sin[n]}, {1.5 Cos[n], 1.5 Sin[n]}, {2 Cos[n], 2 Sin[n]}}, {n, -−20, 20}];

ListPlot[complexscalars, AspectRatio → 1]

-−2 -−1 1 2

-−2

-−1

1

2

Vectors of a vector space

The vectors of a vector space come in all shapes and kinds. They can be numbers, lists of numbers, matrices, functions,
polynomials, solutions of certain types of equations, and so on. However, in order to count as vectors, it must be possible to
add the objects involved in a consistent way and it must also be possible to multiply them by scalars subject to certain
compatibility conditions.

The Linear Algebra Survival Guide | 403

The parallelogram law

In Mathematica, vectors are often represented as lists and arrays and visualized as arrows. The parallelogram law for
arrows can be used to give a visual interpretation of vector addition. Scalar multiplication can then depicted by stretching or
shrinking arrows and by inverting their directions.

◼ Using Graphics and Arrow to illustrate the parallelogram law

Graphics[{Arrow[{{1, 1}, {3, 2}}], Arrow[{{1, 1}, {2, 4}}],
Arrow[{{3, 2}, {4, 5}}], Arrow[{{2, 4}, {4, 5}}], {Green, Arrow[{{1, 1}, {4, 5}}]}}]

◼ Using the ClassroomUtilities package to illustrate parallelogram law

Needs["ClassroomUtilities`"]

With[{a = {0, 1}, b = {2, 1}},
VectorDiagram[{a, b, a + b}, {{a, a + b}, {b, a + b}}]]

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

 404 | The Linear Algebra Survival Guide

Coordinate spaces

The sets ℝn of columns of real numbers of height n form vector spaces for all n = 1,2,3,... We call these spaces real
coordinate spaces. The numbers n are called the dimensions of the spaces.

◼ The real coordinate space V = ℝ1 = ℝ of dimension 1

◼ The vectors of V are the real numbers.

◼ The scalars of V are the real numbers.

◼ Vector addition and scalar multiplication are the addition and multiplication of real numbers.

◼ The set {1} is the standard basis of V.

◼ The real coordinate space V = ℝ2 of dimension 2

◼ The vectors of V are the pairs {x, y} of real numbers x and y.

◼ The scalars of V are the real numbers.

◼ Vector addition is the addition of pairs of real numbers.

◼ {u1, u2} + {v1, v2} = {u1 + v1, u2 + v2}

◼ Scalar multiplication is the componentwise multiplication of real numbers.

◼ s {u, v} = {s u, s v}

◼ The set {{1, 0}, {0, 1}} is the standard basis of V.

◼ The real coordinate space V = ℝ3 of dimension 3

◼ The vectors of V are the triples {x, y, z} of real numbers x, y, z.

◼ The scalars of V are the real numbers.

◼ Vector addition is the addition of triples of real numbers.

◼ {u1, u2, u3} + {v1, v2, v3} = {u1 + v1, u2 + v2, u3 + v3}

◼ Scalar multiplication is the componentwise multiplication of real numbers.

◼ s {u, v, w} = {s u, s v, s w}

◼ The set { {1, 0, 0}, {0, 1, 0}, {0, 0, 1} } is the standard basis of V.

◼ The complex coordinate space V = ℂ1 = ℂ of dimension 1

◼ The vectors of V are the complex numbers.

◼ The scalars of V are the complex numbers.

◼ Vector addition and scalar multiplication are the addition and multiplication of complex numbers.

◼ The set {1} is the standard basis of V.

The Linear Algebra Survival Guide | 405

Polynomial spaces

Polynomials over the real or complex numbers can be added and modified by multiplying them by real or complex numbers.
The operations satisfy the axioms of a vector space. Limits on the degrees of the polynomials can be imposed to obtain
finite-dimensional spaces.

◼ The set ℝ[t] of real polynomials in the variable t forms a vector space. We call this space an infinite-dimensional
polynomial space since it has no finite basis.

◼ The vectors of V = ℝ[t] are real polynomials.

◼ The scalars of V are the real numbers.

◼ Vector addition is the addition of real polynomials.

◼ p = Dot{1, 2, 0, 3}, 1, t, t2, t3

◼ 1 + 2 t + 3 t3

◼ q = Dot{0, 0, 1, 1, 0, 1}, 1, t, t2, t3, t4, t5

◼ t2 + t3 + t5

◼ p + q

◼ 1 + 2 t + t2 + 4 t3 + t5

◼ Scalar multiplication is the multiplication of real polynomials by real numbers.

◼ Expands 1 + 2 t + t2 + 4 t3 + t5 = s + 2 s t + s t2 + 4 s t3 + s t5

◼ The standard basis of V is the infinite set of all powers of the variable t.

◼ The polynomial space of real polynomials of degree ≤ 3

◼ The vectors of V are the polynomials a0 +a1 t +a2 t2 +a3 t3 of dimension less than or equal to 3 over the real
numbers.

◼ The scalars of V are the real numbers.

◼ Vector addition is the addition of real polynomials.

◼ a0 + a1 t + a2 t2 + a3 t3 + b0 + b1 t + b2 t2 + b3 t3 =
(a0 + b0) + (a1 + b1) t + (a2 + b2) t2 + (a3 + b3) t3

◼ Scalar multiplication is the multiplication of polynomials by real numbers.

◼ s a0 + a1 t + a2 t2 + a3 t3 = (s a0) + (s a1) t + (s a2) t2 + (s a3) t3

◼ The set {1, t, t2, t3 } of powers of t is the standard basis of V.

Matrix spaces

Matrices over the real or complex number can be added and modified by multiplying them by real or complex numbers. The
operations require that the matrices to be added or multiplied by scalars have the same dimension. All matrix spaces are
finite-dimensional.

 406 | The Linear Algebra Survival Guide

operations require that the matrices to be added or multiplied by scalars have the same dimension. All matrix spaces are
finite-dimensional.

◼ The real matrix space V = ℝ2⨯3 of dimension 6

◼ The vectors of V are 2-by-3 matrices with real elements.

◼ The scalars of V are the real numbers.

◼ Vector addition is the addition of 2-by-3 matrices.

◼ 
4 1 9
9 0 7

 + 
1 7 2
8 6 8

 = 
5 8 11
17 6 15



◼ Scalar multiplication is the componentwise multiplication of the matrix elements by fixed scalars.

◼ s 
4 1 9
9 0 7

 = 
4 s s 9 s
9 s 0 7 s



◼ The set of the following six 2-by-3 matrices is a basis for V:

◼ 
1 0 0
0 0 0

, 
0 1 0
0 0 0

, 
0 0 1
0 0 0

, 
0 0 0
1 0 0

, 
0 0 0
0 1 0

, 
0 0 0
0 0 1



A nonstandard four-dimensional real vector space

A vector space whose vectors form a subset of another vector space may fail to be a subspace of the given space because
its vector space operations may fail to agree with the operations on the ambient space. Here is an example. It comes from
affine geometry. The ideas involved in this example arise in the study of affine transformations.

◼ The vectors of the space V are real 3-by-3 matrices of the form

a b 0
c d 0
0 0 1

◼ The scalars of the space V are real numbers.

◼ Vector addition is defined by

a b 0
c d 0
0 0 1

 +
e f 0
g h 0
0 0 1

 =
a + e b + f 0
c + g d + h 0
0 0 1

◼ Scalar addition is defined by

s
a b 0
c d 0
0 0 1

=
s a sb 0
s c s d 0
0 0 1

The defined operations satisfy the axioms of a vector space. However, they are not the operations in ℝ3.

◼ The set of the following four matrices is a basis of V:


1 0 0
0 0 0
0 0 1

,
0 1 0
0 0 0
0 0 1

,
0 0 0
1 0 0
0 0 1

,
0 0 0
0 1 0
0 0 1



The Linear Algebra Survival Guide | 407

Arrows representing vectors

Needs["ClassroomUtilities`"]

VectorDiagram3D[{{2, 0, 0}, {0, 2, 0}, {1, 0, 1}},
{}, VectorStyles → {Directive[Red], Automatic}]

Vector triple product

The vector triple product of three vectors u, v, w in ℝ3 is the vector Cross[Cross[u, v], w] .

Illustration

◼ The vector triple product of three vectors in ℝ3

u = {1, 2, 3}; v = {4, 5, 6}; w = {7, 8, 9};

VectorTripleProduct[u_, v_, w_] := Cross[Cross[u, v], w]

VectorTripleProduct[u, v, w]

{78, 6, -−66}

◼ A vector triple product identity

 408 | The Linear Algebra Survival Guide

Cross[Cross[u, v], w] ⩵ -−Cross[w, Cross[u, v]]

True

Manipulation

◼ Vector triple products

Manipulate[Cross[Cross[{1, 2, a}, {4, b, 6}], {7, 8, c}],
{a, 0, 5, 1}, {b, 0, 5, 1}, {c, 0, 5, 1}]

a

b

c

{80, -−85, 30}

We use Manipulate and Cross to explore vector triple products. If a = 3, b = 1, and c = 4, for example, the manipulation
shows that the vector triple product of the vectors {1, 2, 3}, {4, 1, 6}, and {7, 8, 4} is the vector {80, -85, 30}.

Volume of a parallelepiped

A parallelepiped in ℝ3 is a prism whose faces are all parallelograms. If u = {a, b, c}, v = {d, e, f}, and w = {g, h, i} are three
vectors defining the parallelepiped, then its volume is the absolute value of the determinant of the 3-by-3 matrix {u, v, w}.

Illustration

◼ The volume of a parallelepiped calculated using determinants

u = {1, 2, -−3}; v = {-−3, 4, 5}; w = {-−2, 1, 8};

volumne = Abs[Det[{u, v, w}]]

40

The volume is also the absolute value of the scalar triple product.

◼ The volume of a parallelepiped calculated using scalar triple products

u = {1, 2, 3}; v = {4, 5, 6}; w = {-−2, 1, 8};

The Linear Algebra Survival Guide | 409

Abs[Dot[u, Cross[v, w]]]

12

Abs[ScalarTripleProduct[u, v, w]]

12

Manipulation

◼ The volume of a parallelepiped

Manipulate[Abs[Det[{{1, 2, 3 a}, {3 b, 4, 5}, {2, c, 8}}]],
{a, -−2, 2, 1}, {b, -−2, 2, 1}, {c, -−2, 2, 1}]

a

b

c

52

We use Manipulate, Abs, and Det to explore the volume of parallelepipeds. If we let a = - 2, b = 1, and c = 0, for example,
the volume of the parallelepiped determined by the vectors {1, 2, -6}, {3, 4, 5}, and {2, 0, 8} is 52 cubic units.

 410 | The Linear Algebra Survival Guide

W

Well-conditioned matrix

A square matrix is well-conditioned if its condition number is only slightly above 1. The assessment of whether a matrix is or
is not well-conditioned is context-dependent.

Illustration

◼ A well-conditioned 2-by-2 matrix

MatrixForm[A = {{1, 0}, {0, 1.1}}]

1 0
0 1.1

s = SingularValueList[A]

{1.1, 1.}

conditionnumberA = s[[1]]/∕s[[2]]

1.1

◼ A well-conditioned 3-by-3 matrix

MatrixForm[A = DiagonalMatrix[{1, 1.01, 1}]]

1. 0. 0.
0. 1.01 0.
0. 0. 1.

s = SingularValueList[A]

{1.01, 1., 1.}

conditionnumber = 1.01/∕1.

1.01

Wronskian

Wronskians are arrays of derivatives of differentiable functions in determinant notation. They are used to study differential
equations and, for example, to show that a set of solutions is linearly independent.

In Mathematica, Wronskians can be computed easily by using the built-in Wronskian function.

The Linear Algebra Survival Guide | 411

Illustration

◼ A Wronskian of two functions

Wronskian[{Exp[x], Exp[2 x]}, x]

ⅇ3 x

We can express the Wronskian as the determinant of the functions and their first derivatives:

MatrixForm[A = {{Exp[x], Exp[2 x]}, {D[Exp[x], x], D[Exp[2 x], x]}}]

ⅇx ⅇ2 x

ⅇx 2 ⅇ2 x

Det[A]

ⅇ3 x

◼ A Wronskian of three functions

ExpandWronskianx5, Exp[x], Exp[2 x], x

20 ⅇ3 x x3 -− 15 ⅇ3 x x4 + 2 ⅇ3 x x5

Again, we can obtain the Wronskian as the determinant of the functions and their first and second derivatives.

MatrixFormA = x5, Exp[x], Exp[2 x], Dx5, x, D[Exp[x], x], D[Exp[2 x], x],

Dx5, {x, 2}, D[Exp[x], {x, 2}], D[Exp[2 x], {x, 2}]

x5 ⅇx ⅇ2 x

5 x4 ⅇx 2 ⅇ2 x

20 x3 ⅇx 4 ⅇ2 x

Det[A]

20 ⅇ3 x x3 -− 15 ⅇ3 x x4 + 2 ⅇ3 x x5

If x = 1, for example, then the Wronskian is not equal to zero:

Det[A] /∕. {x → 1}

7 ⅇ3

Therefore the functions x5, ⅇx, and ⅇ2 x are linearly independent for x = 1.

Manipulation

◼ Exploring Wronskian determinants

 412 | The Linear Algebra Survival Guide

ManipulateExpandWronskianxn, Exp[m x], x, {n, 1, 5, 1}, {m, 1, 5, 1}

n

m

-−3 ⅇ2 x x2 + 2 ⅇ2 x x3

We use Manipulate, Expand, and Wronskian to explore the Wronskian determinant of two differentiable functions. If we
let n = 3 and m = 2, for example, the manipulation produces the Wronskian determinant

-−3 ⅇ2 x x2 + 2 ⅇ2 x x3

of x3 and ⅇ2 x.

The Linear Algebra Survival Guide | 413

Z

Zero matrix

A zero matrix is a matrix made up entirely of zero elements. It is the additive identity for matrix addition.

Illustration

◼ A zero matrix as an additive identity

MatrixForm[Z = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}]

0 0 0
0 0 0
0 0 0

MatrixForm[A = RandomInteger[{0, 9}, {3, 3}]]

3 3 6
0 7 4
1 7 5

A + Z ⩵ A

True

◼ A 2-by-5 zero matrix

MatrixForm[ConstantArray[0, {2, 5}]]

0 0 0 0 0
0 0 0 0 0

◼ A 2-by-2 zero matrix

MatrixForm[Array[0 &, {2, 2}]]

0 0
0 0

◼ A 3-by-4 zero matrix

MatrixForm[Normal[SparseArray[{i_, j_} → 0, {3, 4}]]]

0 0 0 0
0 0 0 0
0 0 0 0

◼ Converting a nonzero matrix to a zero matrix

 414 | The Linear Algebra Survival Guide

A = RandomInteger[{1, 5}, {4, 5}];

MatrixForm[A = {{2, 4, 4, 3, 3}, {2, 4, 5, 2, 5}, {3, 2, 1, 5, 3}, {3, 5, 2, 1, 4}}]

2 4 4 3 3
2 4 5 2 5
3 2 1 5 3
3 5 2 1 4

S = SparseArray[{}, {4, 5}];

MatrixForm[A S]

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

◼ Creating a 2-by-4 zero matrix using scalar multiplication

A = RandomInteger[{0, 9}, {2, 4}];

A =
0 7 6 9
2 8 5 0

;

MatrixForm[Z = 0 A]

0 0 0 0
0 0 0 0

Zero space

A zero space is a vector space whose only vector is a zero vector. All vector spaces have a zero-dimensional subspace
whose only vector is the zero vector of the space. It is convenient to consider the empty set { } to be the basis of the zero
subspace. All subspaces of a given vector space have the zero vector in common. If this is the only common vector, the
subspaces are said to be disjoint.

Illustration

◼ The zero subspace of ℝ is the space Z1 = {0}.

◼ The zero subspace of ℝ2 is the space Z2 = {{0, 0}}.

◼ The zero subspace of ℝ3 is the space Z3 = {{0, 0, 0}}.

◼ The zero subspace of ℝ2×3 is the space Z2×3 = 
0 0 0
0 0 0

.

◼ The zero subspace of ℝ[t] is the space Z0 = {0}, where 0 is the zero polynomial.

The Linear Algebra Survival Guide | 415

Zero vector

The zero vector of a vector space V is the vector 0 with the property that v + 0 = v for all vectors v in V.

Illustration

◼ The zero vector of ℝ5

zero = {0, 0, 0, 0, 0};

{a, b, c, d, e} + zero ⩵ {a, b, c, d, e}

True

◼ The zero vector in the polynomial space ℝ[t,3]

zero = 0 + 0 t + 0 t2 + 0 t3;

a + b t + c t2 + d t3 + zero == a + b t + c t2 + d t3

True

◼ The zero vector in the matrix space ℝ2⨯3

MatrixForm[zero = {{0, 0, 0}, {0, 0, 0}}]

0 0 0
0 0 0

a b c
d e f

+ zero ==
a b c
d e f

True

 416 | The Linear Algebra Survival Guide

Index

AA
Addition of matrices, 11–14
Adjacency matrix, 14–17
Adjoint matrix, 18–19
Adjoint transformation, 20–21
Adjugate of a matrix, 21
Affine transformation, 22–28
Algebraic multiplicity of an eigenvalue, 28–29
Angle, 29–31
Area of a parallelogram, 31–32
Area of a triangle, 32–33
Array, 33–34
Arrow, 34–36
Augmented matrix, 36–38

B
Back substitution, 39
Band matrix, 39–41
Basic variable of a linear system, 41
Basis of a vector space, 41–44
Bijective linear transformation, 44–45
Bilinear functional, 45–46

C
Cartesian coordinate system. See Coordinate system
Cartesian product of vector spaces, 47
Cauchy–Schwarz inequality, 47–48
Cayley–Hamilton theorem, 48–49
Change-of-basis matrix. See Coordinate conversion matrix
Characteristic polynomial, 50
Cholesky decomposition, 50–51
Clockwise rotation matrix, 313
Codimension of a vector subspace, 52
Codomain of a linear transformation, 52–53
Cofactor matrix, 53–54
Column space, 54–57
Column vector, 57
Companion matrix, 57–58
Complex conjugate, 58–59
Complex number

exponential form, 117–118
polar form, 281–283

Complex scalars. See Scalar
Composition of linear transformations, 59–60
Condition number of a matrix, 60
Congruence transformation, 61
Congruent symmetric matrices, 61–62
Conjugate transpose, 63
Consistent linear system, 63–65
Contraction along a coordinate axis, 65–66
Coordinate conversion matrix, 66–68
Coordinate system, 68–69
Coordinate vector, 69–70
Correlation coefficient, 70
Correlation matrix, 70–71
Cosine of an angle, 71–72
Counterclockwise rotation matrix, 313
Covariance, 72
Covariance matrix, 72–73

Cramer’s rule, 73–74
Cross product, 74–77

DD
Defective matrix, 78
Determinant, 79–80
Diagonal. See Diagonal of a matrix; Jordan block;
 Subdiagonal; Superdiagonal
Diagonal decomposition, 80–83
Diagonal matrix, 83–84
Diagonal of a matrix, 84–85
Difference equation, 86
Dimension of a vector space, 86–87
Dimensions of a matrix, 87–88
Dirac matrix, 88–89
Direct sum of vector spaces, 89–92
Discrete Fourier transform, 92–93
Discriminant of a Hessian matrix. See Hessian matrix
Disjoint subspaces, 93
Distance between a point and a plane, 93–94
Distance function, 95
Domain of a linear transformation, 96
Dot product, 96–98
Dual space, 98–100

E
Echelon form. See Row echelon matrix
Eigenspace, 101–103
Eigenvalue, 104–107
Eigenvector, 107–110
Elementary matrix, 110–111
Elementary row operation, 111–112
Euclidean distance, 112–113
Euclidean norm, 113–114
Euclidean space, 114–116
Exact solution. See Linear system
Expansion along a coordinate axis, 116–117
Exponential form of complex numbers, 117–118

F
Finite-dimensional vector space, 119–120
Forward substitution, 120–121
Fourier matrix, 121–123
Fourier transform. See Discrete Fourier transform
Fredholm’s theorem, 123–124
Free variable of a linear system, 124
Frobenius companion matrix. See Companion matrix
Frobenius norm, 125–126
Full rank of a matrix, 126–127
Fundamental subspace. See Column space; Left null space; Matrix-based subspace;

Null space; Row space
Fundamental theorem of algebra, 127–128

G
Gaussian elimination, 129
Gauss–Jordan elimination, 130
General solution of a linear system, 131
Geometric multiplicity of an eigenvalue, 132
Geometric transformation, 133–136
Gram–Schmidt process, 136–139

418 | Index

Hankel matrix, 140–141
Height of a column vector, 141–142
Hermitian inner product, 142–143
Hermitian matrix, 143–145
Hessenberg matrix, 146
Hessian matrix, 146–147
Hilbert matrix, 147–148
Homogeneous coordinate, 149–150
Homogeneous linear system, 150–152
Householder matrix, 152–153

II
Identity matrix, 154
Ill-conditioned matrix, 154–157
Image of a linear transformation, 157–158
Incidence matrix, 158–161
Inconsistent linear system, 161–163
Injective linear transformation, 163–164
Inner product, 164–167

norm, 167–168
space, 168–171

Interpolating polynomial, 171–172
Intersection of subspaces, 172–173
Invariant subspace, 173–174
Inverse of a linear transformation, 175
Inverse of a matrix, 176–179
Invertible matrix, 179–182
Isometry, 182–183
Isomorphism of vector spaces, 183–184

J
Jacobian determinant, 185–186
Jordan block, 187
Jordan matrix, 187–189

K
Kernel of a linear transformation, 190–191
Kronecker delta, 191–192
Kronecker product, 192–193

L
Law of cosines, 194–195
Least squares, 195–197
Left null space, 197
Length of a vector, 197
Linear algebra, 1
Linear combination, 198
Linear dependence, 199–200
Linear dependence relation, 200
Linear equation, 201
Linear independence, 201–203
Linear operator, 203–204
Linear system, 205–210

overdetermined, 270–271
particular solutions, 272–273
solutions, 350–353
underdetermined, 385

Linear transformation, 210–216
bijective, 44–45
codomain, 52–53
composition of, 59–60
domain, 96
image of, 157–158

Index | 419

H

injective, 163–164
inverse of, 175
kernel of, 190–191
range of, 298–300
surjective, 371–373

Lower-triangular matrix, 216–217
LU decomposition, 217–218

MM
Manhattan distance, 219
Markov matrix. See Stochastic matrix
Mathematica, 1

basic knowledge, 2
cells, 1–2
Clear and ClearAll command, 2

documentation, 2
domains of scalars, 219–220
duplications, 9
Manipulate feature, 2
notation, 9
Quit command, 2
Suggestion Bar, 2
Wolfram language, 2–3

Matrix, 3–8, 220–224
Matrix addition. See Addition of matrices
Matrix decomposition, 224–225
Matrix equation, 225

normalization, 244–246
Matrix multiplication, 230–233
Matrix norm, 238–241. See also Norm
Matrix space, 226
Matrix-vector equation. See Matrix equation
Matrix-vector product, 226–228
Minimal polynomial, 228–229
Minor matrix. See Cofactor matrix
Multiplication of matrices, 230–233

N
Norm. See Euclidean norm; Frobenius norm; Matrix norm; Vector norm
Normal basis of a vector space, 241–242
Normalization of a matrix equation, 244–246
Normalization of a vector, 246–247
Normal matrix, 242–243
Normal to a plane, 243–244
Normed vector space, 247–248
Nullity of a matrix, 252
Null space, 249–251

O
Orthogonal basis, 253–254
Orthogonal complement, 254–255
Orthogonal decomposition, 255–258
Orthogonality. See Orthogonal matrix; Orthogonal projection;

Orthogonal vectors
Orthogonalization. See Gram–Schmidt process
Orthogonal matrix, 258–261
Orthogonal projection, 261–263
Orthogonal transformation, 263–264
Orthogonal vectors, 264–267
Orthonormal basis, 268–270
Overdetermined linear system, 270–271

| Index420

Companion Site, 10

PP
Particular solution of a linear system, 272–273
Pauli spin matrix, 273–274
Penrose matrix, 287–289
Perfectly conditioned matrix, 274–276
Permutation matrix, 276
Pivot column of a matrix, 277–278
Plane in Euclidean space, 278–281
Polar form of a complex number, 281–283
Polynomial space, 283–284
Positive-definite matrix, 284
Principal axis theorem, 285–287
Product of vector spaces. See Cartesian product of vector spaces
Pseudoinverse of a matrix, 287–289
Pythagorean theorem, 289–290

Q
QR decomposition, 291–294
Quadratic form, 294–295
Quintic polynomial, 296

R
Random matrix, 5–8, 297–298
Range of a linear transformation, 298–300
Rank-deficient matrix, 300–301
Rank-nullity theorem, 301–302
Rank of a matrix, 303–304
Rational canonical form, 304–306
Rayleigh quotient, 306
Real scalars. See Scalar
Rectangular matrix, 307
Reduced row echelon matrix, 307–308
Reflection, 308–310
Roots of unity, 310–313
Rotation, 313–315
Rotation matrix, 313
Row echelon matrix, 315–316
Row-equivalent matrices, 316–317
Row space, 317–318
Row vector, 318–319

S
Scalar multiple of a matrix, 325–326
Scalar multiplication. See Vector space
Scalar

complex numbers, 323–325
integers, 320
rational numbers, 320
real numbers, 320–323

Scalar triple product, 327–329
Scaling, 329–330
Schur decomposition, 331
Self-adjoint transformation, 331–333
Shear, 333–336
Sigma notation, 337
Similarity matrix, 338–340
Similarity transformation, 340–341
Similar matrices, 338
Singular matrix, 341–343
Singular value, 343–344
Singular value decomposition, 345–348
Singular vector, 348–349
Skew symmetric matrix, 349–350
Solution of a linear system, 350–353

Index | 421

Span of a list of vectors, 354–356
Sparse matrix, 356–357
Spectral decomposition, 357–358
Spectral theorem, 359–360
Square matrix, 360–361
Standard basis, 361–362
Standard deviation of a numerical vector, 362
Stochastic matrix, 363–364
Subdiagonal of a matrix, 364–365
Submatrix, 365
Subspace, 365–370
Sum of subspaces, 371
Superdiagonal of a matrix, 371
Surjective linear transformation, 371–373
Sylvester’s theorem, 373–375
Symmetric matrix, 375–377
System of linear equations. See Linear system

TT
Toeplitz matrix, 378
Trace, 378–381
Transformation. See Affine transformation; Linear transformation
Transformational geometry, 381
Transition matrix. See Stochastic matrix
Translation, 381–382
Transpose of a matrix, 382–383
Triangle inequality, 383–384
Triangular matrix, 384

U
Underdetermined linear system, 385
Unitary matrix, 388–390
Unit circle, 386–387
Unit vector, 387–388
Upper-triangular matrix, 390–392

V
Vandermonde matrix, 393–396
Variance of a vector, 396
Vector, 397–400
Vector addition. See Vector space
Vector component, 400–401
Vector cross product. See Cross product
Vector norm, 234–238. See also Norm
Vector space

arrow representation, 408
complex scalars, 403
coordinate spaces, 405
matrix spaces, 406–407
normal basis, 241–242
norms, 247–248
parallelogram law, 404
polynomial spaces, 406
real scalars, 402–403
scalar multiplication, 402
vector addition, 402
vectors, 403

Vector triple product, 408–409
Volume of a parallelepiped, 409–410

W
Well-conditioned matrix, 411
Wolfram language, 2–3

| Index422

Wronskian, 411–413

ZZ
Zero matrix, 414–415
Zero space, 415
Zero vector, 416

Index | 423

