THE
QUALITATIVE THEORY
OF

ORDINARY
DIFFERENTIAL EQUATIONS

AN INTRODUCTION

Fred Brauer and John A. Nohel

University of Wisconsin

DOVER PUBLICATIONS, INC., NEW YORK



To our parents

Copyright © 1969 by Fred Brauer and John A. Nohel.
All rights reserved under Pan American and International Copyright Conventions.

Published in Canada by General Publishing Company, Ltd., 30 Lesmill Road, Don Mills,
Toronto, Ontario.

This Dover edition, first published in 1989, is an unabridged, corrected republication of the
work first published by W. A. Benjamin, Inc., New York, 1969.

Manufactured in the United States of America
Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11501

Library of Congress Cataloging-in-Publication Data

Brauer, Fred.
The qualitative theory of ordinary differential equations.

Reprint, Originally published: New York : W. A. Benjamin, 1969.
Bibliography: p.
Includes index.
1. Differential equations. 2. Stability. 1. Nohel, John A. II. Title.
QA372.B823 1989 515.3'5 88-30943
1SBN 0-486-65846-5 (pbk.)



PREFACE

In this book we present a self-contained introduction to some important
aspects of modern qualitative theory for ordinary differential equations.
Since only a minimal background in techniques of solution of differential
equations such as is normally acquired in an elementary undergraduate
course is assumed, the book is accessible to any student of physical sciences,
mathematics, or engineering who has a good knowledge of calculus and of
the elements of linear algebra. In addition, algebraic results are stated as
needed; the less familiar ones are proved either in the text or in appendixes.

Our principal objective is the study of stability theory in Chapters 4, 5
and the applications considered in Chapter 6. Here the reader will find a
rigorous but elementary treatment of several topics which are of importance
in modern engineering and physics. In effect, these methods provide the
justification of many approximations ordinarily assumed to be valid. At
the same time readers interested in mathematical theory will find here an
introduction to several topics of current research interest. Chapters 1, 2,
and 3 serve as preparation. Some of this preparatory material has already
been presented (but in less detail) in [2]. The reader familiar with Chapters
6 and 7 of [2] can begin the present book with Chapter 4.

There are, of course, several interesting and important topics which we
have omitted and for several reasons. For example, the Poincaré-Bendixson
theory of plane autonomous systems and the theory of the index of a critical
point are not included, because we can hardly improve upon the beautiful
presentation by W. Hurewicz in [13]. Other topics, such as the use of fixed
point theorems and implicit function theorems require a more sophisticated
background than we wish to assume. For this reason we have also omitted
the important methods of Poincaré and of averaging for establishing existence
of and approximation to periodic solutions of almost linear perturbed sys-
tems. In a different direction, the reader interested in pursuing the study of

ii



iv Preface

boundary value problems is referred to Chapter S of [2] for an introduction
and to Chapters 7 to 12 of {4] or to [26] for a more advanced treatment.

At the University of Wisconsin we have each taught one-semester courses
to juniors and seniors (in mathematics, physical sciences, and engineering)
based on the first five chapters. There is, however, ample maternal here for
a one-semester course for those students who are prepared to begin with
Chapter 4. :

Throughout the text and at the end of several chapters, the reader will
find numerous exercises, some routine, and some more difficult. These are
designed to help follow the argument and to provide a better understanding
of the subject and, thus, they form an essential part of the book. The
interested reader will find many problems from the first three chapters
solved in our book, Problems and Solutions in Ordinary Differential Equations
(W. A. Benjamin, Inc. New York, 1968).

It is impossible to acknowledge all the help, direct and indirect, from which
we have benefited in the preparation of this book. Certainly, the stimulating
influences of Professors Norman Levinson and Earl Coddington, and of our
colleagues Charles Conley, Jacob Levin, and Wolfgang Wasow, have been
valuable. Professors H. A. Antosiewicz, J. K. Hale, A. Strauss, and A. D.
Ziebur read portions of a preliminary version of the manuscript and we
acknowledge with pleasure their many useful suggestions. Professors B.
Berndt, D. Ferguson, and J. Williamson gallantly served as our assistants in
teaching some of this material and we are grateful for their helpful comments.
In preparing Chapter 6 we have found valuable ideas in some unpublished
lecture notes by Professor Lawrence Markus and we are grateful to him for
making them available to us. Finally, it is a pleasure to acknowledge the
help of Mrs. Phyllis J. Rickli who has converted almost illegible handwriting
into a clean manuscript, and the help of the staff of W. A. Benjamin, Inc., in
the construction of this book. Naturally any errors that may remain in
spite of all this assistance are our responsibility, and we would appreciate
being advised of them.

Fred Brauer
John A. Nohel
Madison, Wisconsin
October 1968
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SYSTEMS OF
Chapter / DIFFERENTIAL EQUATIONS

Differential equations originated in Newton’s efforts to explain the motion
of particles. In modern science and technology, the mathematical descrip-
tion of complex physical processes often leads to systems of ordinary differen-
tial equations. However, we shall use only the very simple mass-spring systems
to illustrate this and leave other examples to the exercises. In spite of their
simplicity these examples are prototypes of mathematical models of other
much more complicated physical systems. Further, these examples serve to
motivate and illustrate much of the theory with which we will be concerned.

Before turning to the construction of these mathematical models, we recall
some aspects of the Newtonian model for the motion of a system of particles.
In this model, it is assumed that a body, called a particle, can be represented
as a point having mass. (We shall assume knowledge of the rather difficult
concept of mass; for practical purposes, mass can be measured by the weight
of the body.) It is assumed that, in the absence of “ forces,” the motion of
each particle is unaccelerated and therefore is straight-line motion with con-
stant, perhaps zero, velocity (Newton’s first law). The presence of accelera-
tion is therefore to be interpreted as a sign of the presence of a force. This is
a vector quantity* given by

Newton’s second law:

If F is the force acting on a particle of mass m moving with a velocity

* Throughout the book vectors will be indicated by boldface type.
1



2 1 Systems of Differential Equations

(vector) v, then
d
F=—
5 (mv)

The vector quantity mv is called the momentum of the particle. If the mass
is constant, Newton’s second law may be written as

F=m=— = ma,
mdt ma

where a is the acceleration vector of the particle. For a system consisting
of several particles, Newton’s laws are applicable to each particle.

In the Newtonian model, the gravitational force can be shown (experi-
mentally) to be proportional to mass, so that problems involving gravitational
forces on particles near the earth’s-surface can be handled conveniently by
assuming that the acceleration g due to gravity is constant.

1.1 A Simple Mass-Spring System

A weight mass of m is suspended from a rigid horizontal support by means
of a very light spring (see Figure 1.1). The weight is allowed to move only
along a vertical line (no lateral motion in any direction is permitted). The
spring has a natural {unstretched) length L when no weight is suspended from it.

L g v

L L+a
x
y =0———— —1 Equilibrium
_—'
JE |
_-*
F,

v
Figure 1.1




1.1 A Simple Mass-Spring System 3

When the weight is attached, the system has an equilibrium position at which
the spring is stretched to a length L + a, where a is a positive number. We
may set the system in motion by displacing the weight from this equilib-
rium position by a prescribed amount and releasing it either from rest or with
some prescribed initial velocity, Our task is to describe in mathematical
terms the motion of the system.

Since the motion is restricted to a vertical line, the position of the weight
can be described completely by the displacement y from the equilibrium po-
sition (see Figure 1.1). The mathematical equivalent of the motion of the
mass-spring system will then be a function ¢ such that y = ¢(t) describes the
position of the weight for each value of ¢ = 0, where ¢ = Q0 represents the
starting time of the motion. In order to determine the motion, that is, to
determine the function ¢, we must impose additional restrictions on ¢. For
example, if we displace the weight a distance y, and then release it, we would
require that ¢(0) = y,. If we release it from rest at this position, we will
also require that ¢'(0) =0. Experience suggests that with these additional
conditions, the motion is completely determined.

In order to obtain a mathematical model for this system, we must use
appropriate physical principles and certain simplifying approximations.
The basic tool is Newton’s second law. We first give mathematical expres-
sions for the forces acting on the weight using physical principles and approxi-
mations, and then using Newton’s second law we obtain an equation that
must be satisfied by the function ¢. Our assumptions are as follows:

(a) The spring has zero mass.

(b) The weight can be treated as though it were a particle of mass m,

(c) The spring satisfies Hooke’s law, which states that the spring exerts a
restoring force on the weight toward the equilibrium position; the mag-
nitude of this force is proportional to the amount by which the spring
is stretched from its natural length. The constant of proportionality
k > 0 is called the spring constant, and a spring obeying Hooke’s law
is called a linear spring.

(d) There is no air resistance and the only external force is a constant ver-
tical gravitational attraction.

We stress the fact that a different set of physical assumptions would lead to a
different mathematical model. Further, the accuracy of a particular mathe-
matical model in predicting physical phenomena will depend primarily on
the reasonableness of the physical assumptions.

Newton’s second law is stated above in terms of vectors. Since in this
problem the motion is restricted to a line, the vectors involved are one-
dimensional, and vector notation is not needed. With reference to Figure 1.1,



4 | Systems of Differential Equations

we shall measure the displacement y from equilibrium (y = 0), choosing the
downward direction as positive. The force of gravity F| in Figure 1.1 is mg,
and the restoring force of the spring F, is —k(y + a) by Hooke’s law. Ob-
serve that Figure 1.1 has been drawn with y > 0 so that F, is directed upward.

¢ EXERCISE

1. Sketch the analogue of Figure 1.1 with y < 0 and compute the forces F; and
F; in this case.

The total force acting on the weight is
Fy+ F,=mg—k(y + a)

The equilibrium position occurs when this total force is zero. Therefore at

GQUIIEUI ium, Mg — k(O + a) = 0, ora= mg/"k Thus we can rew

force at any position y of the mass as

By Newton’s second law,

d d?y
F1+F2= —ky=a-i(mv)=m7t—2

Therefore the motion of the system is specified by the equation

dly k
—Lﬁ;+ ;y=0 (1.1)

Equation (1.1) is the mathematical model for the mass-spring system under
the assumptions (a), (b), (c), (d). [t is a differential equation (of the second
order). To obtain specific information about a particular motion, we must
specify other information. For example, we have already remarked that if
we release the weight from rest with an initial displacement y,, we must
impose the pair of initial conditions

¢O0) =y, ¢©)=0 (1.2)

The mathematical problem is then to find a function ¢ defined for all 1> 0
satisfying the differential equation (1.1), that is, ¢"(¢) + (k/m)¢(t) =0 for




1.1 A Simple Mass-Spring System 5

t > 0, and the initial condition (1.2). Such a function is called a solution of
the differential equation (1.1) obeying the initial conditions (1.2). We may
hope that this solution will give a good approximation to the actual motion
of a real mass-spring system, and that we can use the solution to predict
properties of the motion that can be measured experimentally.

We can modify the model in several ways by attempting to use physical
laws that are closer to reality. For example, leaving assumptions (a), (b), ()

Intact, we could replace assumption (d) by

(d’) There is air resistance proportional to the velocity in addition to the
gravitational attraction.

[n this case, the mathematical model for the mass-spring system will be the
equation

Gt ==+ —y=0 (1.3)

together with the initial conditions (1.2), in place of (1.1} and (1.2). The
term (b/m) dy/dt is the appropriate mathematical translation of the resistance
force of air, where b is a nonnegative constant.

¢ EXERCISE
2. Derive equation (1.3). [Hint: In Figure 1.1 there will now be a force F,

arising from assumption (d’).]

Another possible model is obtained by replacing (¢) by the assumption
that there is a restoring spring force that is not necessarily linear and leaving
assumptions (a), (b), (d) intact. In this case, we replace Equation (1.1) by

\‘:

2
d | Al — N
72 TaUI=Y

o~
——
4
S

where g(y) is a so-called nonlinear spring term. To conform with reality,
we might assume that g(y) is positive when y is positive and negative when y
is negative. The precise form of the function g depends on the physical law
assumed in place of Hooke’s law; we might have g(y) = (k,/m)y + k, 3.
Differential equations such as (1.1), (1.3), or (1.4) describe the ““ equation
of motion™ of particular systems. As we shall see, their solutions describe
the nature of all the possible motions of the physical system as predicted by
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each mathematical model. When conditions such as (1.2) are added, we
single out one or more special solutions to predict the behavior of the system
if the motion starts from some particular state or configuration.

The reader may wish to acquire additional facility in the mathematical
formulation of simple physical problems. The exercises below provide some
practice in this, and give rise to differential equations that will be used fre-
quently for ilfustrative purposes.

e EXERCISES

3. A penduium is made by attaching a weight of mass m to a very light and
rigid rod of length L mounted on a pivot so that the system can swing in a vertical
plane (see Figure 1.2). The weight is displaced initially to an angle 8, from
the vertical and released from rest.

(i) The rod is rigid, of constant length L, and of zero mass.
(ii) The weight can be treated as though it were a particle of mass m.
(iii) There is no air resistance; the pivot is without friction; and the only
external force present is a constant vertical attraction.

[Hint: At any time ¢, the gravitational force F, has magnitude mg and is directed
downward. There is also a force F, of tension in the rod of magnitude T directed
along the rod toward the pivot.]
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(1 ‘5)

whare 80\ — 8. and B'(
¥ anld Vv

N’
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also the unknown quantity 7. However, if the angle & can be determined from
the second equation, then the magnitude of the tension T can be found from the
first equation; in fact, 7 = mg cos 6 + mL(d8/dt)*:. Therefore, the motion of the
pendulum is completely determined by the second equation, which may be written
in the form .

48 g .
;,t—,—l-zsnnf):o (1.6)

-t

4. Suppose we replace assumption (iii) in Exercise 3 by:

(iv) The pendulum encounters resistance, due to the pivot and the surround-
ing air, which is proportional to the velocity vector;

and leave the remaining assumptions unchanged. Show that the equation of
motion for this system is

=2 sinf—=— (.7
m

in place of (1.6). The last term is the appropriate mathematical translation of the
additional resistance force. Note that equation (1.7) reduces to (1.6) if k¥ =0.

5. What is the magnitude of the tension assuming that # has been found from
Equation (1.7)?

1.2 Coupled Mass-Spring Systems

Consider a mass m, suspended vertically from a rigid support by a weight-
less spring of natural length L,, with a second mass m, suspended from the
first by means of a second weightless spring of natural length L, as shown in
Figure1.3. We shall make the same assumptions here as wedid for the single
mass-spring system in Sectibn 1.1, In particular, we assume that the masses
my and m, can be treated as point masses, and that both springs obey Hooke’s
law and have respectively the spring constants k, k,. Welet y,(#), y,(¢) be
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ke

Figure 1.3

the respective displacements at time ¢ of the masses m;, m, from equilibrium
(that is, the point at which the system remains at rest, before being set into
motion). As in the simple case, the quantities y; and y, are vector functions
of time. However, since the motion is along a straight line, no confusion
will arise if vector notation is not employed. We also assume that air resis-
tance is negligible and that no external forces other than gravity act on the
system.

The description of the model is completed by specification of y;(0), y;(0),
¥,(0), y2(0), the initial displacement and initial velocity of each mass. To
derive the equations for the motion under the present hypotheses, we apply
the same technique as in the simple case in Section 1.1. It is easy to see that
at any time ¢ the net force acting on the mass m, is —k,[y,(t) — y,(¢}], while
that acting on the mass m, is —k,y,(¢) + k,[y,(r) — 3,(0)].

o EXERCISE

1. Show that at any time ¢ the net force acting on m, is —k,yi(r) + k2ly(¢) —
yi($)). [Hint: Let L, + a, be the equilibrium position of the mass m; measured
downward from the vertical support; let L, + L, + a. be the position of m,
measured downward from the support, assuming that m, is zero. Now add the
mass m,; to get the equilibrium position of the system. Write down the sum of
the forces acting on m,; amd m;, and then evaluate the constants ai, @, as in
Section 1.1. Note that the final expression for the net force is independent of m;,
my, Ly, L2 y 1, > ]
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Thus by Newton’s second law we have immediately

my" = —kiy, + ky(y2 — y1) (1.8)
my ¥y = —ky(y» — y,)

as the differential equations describing the motion. As pointed out above,
we also prescribe the initial values y,(0), ¥1(0), ¥,(0), ¥5(0). Thus our prob-
lem has led us to an initial value problem for a system of two differential
equations, each of second order.

By a solution of this problem we mean a pair of functions ¢,, ¢, defined
for t = 0, twice differentiable, satisfying for each ¢ the equation (1.8) and for
t = 0 the given initial conditions. Naturally, the same questions about the
accuracy of the present model and about the reasonableness of the various
hypotheses can be asked, just as in the single mass-spring system considered
in Section 1.1.

¢ EXERCISES

2. Derive the equations of motion of the system shown in Figure 1.3 if it is
assumed that air resistance is proportional to velocity.

3. Consider three masses m,, m;, ma connected by means of three springs
(obeying Hooke’s law) with constants k., k2, k3 and moving on a frictionless
horizontal table as shown in Figure 1.4, with the mass m, subjected to a given

7

2 k, k. ks F(t)
/;’——fmp m T me 50— m -
7

A A A
Figure 1.4

external force F(¢). Let x.(¢), x2(t), xa(t) be the displacements respectively of
my, m; , ms at any time ¢, measured from equilibrium at time 1 =0. (At equi-
librium the springs are in their natural, unstretched position.) Derive the equa-
tions of motion for this system and write down the initial conditions, assuming
that the system starts from rest.

It is clear that if n springs and n masses are used in the above problems,
then the equations of motion would consist of n equations for the displace-
ments of the masses, each equation being of second order.

¢ EXERCISE

4. Use Kirchoff’s law (sum of voltage drops around a closed circuit equals
zero) to write the differential equations satisfied by the currents 7; and #; in the
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idealized circuit shown in Figure 1.5, where L,, L are given constant inductances;
R., R: are given constant resistances; and E is a given impressed voltage.
(Recall that Li‘(t) is the voltage drop across an inductor of inductance L due
to a current i(¢+) and Ri(¢) is the voltage drop across a resistance R due to a
current i(¢).)

| L, ' L, |

RO W

Figure 1.5

{

1.3 Systems of First-Order Equations

The examples in Section 1.2 cannot be conveniently expressed in terms of
single differential equations. In this chapter we shall study systems of first-
order differential equations of the form

y'1 =f1(t! Vi, Y25 ""yn)
y'2 =f2(ts Yo Yas .40 yn)

(1.9)

ly::=fn(t: Yis Vase-es yn)

where f,, f5, ..., f, are n given functions defined in some region D of
(n + 1)-dimensional Euclidean space and y,, y,, ..., y, are the n unknown
functions. For a precise definition of region, see p. 24. For the present,
the intuitive notion is quite adequate. We shall see below that the systems
considered in Sections 1.1 and 1.2 are special cases of the system (1.9). To
solve (1.9) means to find an interval / on the ¢ axis and n functions ¢, ..., ¢,
defined on 7 such that

(i) @1(0), P5(9), ..., ¢,(r) exist for each ¢ in J,
(ii) the point (¢, ¢,(?), ..., ¢,(¢)) remains in D for each ¢ in /,
(i) $1(6) = 7, $1(0), $2(1), ..., $4(D)) for each tin 1 (j=1,..., m).
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Naturally, the functions f; may be real or complex valued. We shall
assume the real case unless otherwise stated. While the geometric inter-
pretation {see, for example, [2, p. 15]) is no longer so immediate as in the case
n=1, a solution of (1.9) (that is, a set of n functions ¢,, ..., ¢,onaninterval I}
can be visualized as a curve in the (74 1)-dimensional region D, with each
point p on the curve given by the coordinates (7, ¢.(z}, ..., ¢,(t)) and with

¢i(t) being the component of the tangent vector to the curve in the direction
v This interpretation reduces to the familiar one for n=1 and the curve

Fi AL IRRCITPTOlAlion redudces 10 e 1allill LG Lt

in D defined by any solution of (1.9) can therefore again be called a solution
curve. The initial value problem associated with a system such as (1.9) is the
problem of finding a solution (in the sense defined above) passing through a
given point Pg: (tg, 1y, 712, ..., 1) (we do not write (fg, Pig, «--» Vna) tO
avoid double subscripts) of D. In general, we cannot expect to be able to
solve (1.9) except in very special cases. Nevertheless, it is desired to obtain
as much information as possible about the behavior of solutions of systems.
For this reason we shall develop a considerable amount of theory for systems
of differential equations.

Example 1. Consider the differential equation y' = y?. Here n=1,

the region D is the whole (¢, ) space, f(t, y) = y* is defined everywhere,
and
n
()= ————
1 —n(t —1o)

is a solution on an interval I containing t, for which ¢(t,) = n; for example,
if # > 0, this solution exists for —o0 <t <ty + 1/5. To see this we verify
that ¢ satisfies (i), (ii), (iii) of the definition.

o EXERCISES

1. Construct the above solution ¢ by the method of separation of variables

Lrm

(S" , 10T c;\aluplc, lL, Ch. 2 Lj} ) and sketch the slapu
2. What is the interval of validity of the above solution ¢ if y <0?
3. Discuss the case n =0.

Example 2, Consider the system

Y1 =.V12

Va=y+ 1



12 1 Systems of Differential Fquations

Here n = 2, the region D is the whole (¢, y,, ¥,) space, and

_ 11
() I —n(t— 1)
b _ t exp(t—s)
2(’)"’72‘”‘!’(“’0)*”?1] l—nl(s——t)ds
to 0

is a solution on an interval I containing ¢, for which ¢,(to) = #,, ¢2(t0) =1, .
For 5, > 0 this solution exists for — o0 < ¢ <145 + (1/1,).

¢ EXERCISES

4. Verify the statements made for the system in Example 2 above.

5. Construct the above solution by combining the method of separation of
variables (Exercise 1 above) with the method of solving linear differential equa-
tions of first order (see, for example, [2, Ch. 2]).

6. Discuss the case 7, <0.

7. Discuss the case 5, =0

8. Verify that each of the following functions or sets of functions is a solution
of the given differential equation or system satisfying the given initial conditions.
Determine the interval of validity in each case.

@ ¥ =1y%(to, m) =0, 1); $(t) = (1 — 137112,

(®) ¥ =ty*; (to, 7)) = (0, —1); $(r) = —(1 — £*) 7172,

(©) ¥i =2, ¥ = y1; (fo, 70, 12y = (0, 1, 1); $:(1) = &', $als) ="

(d) yi=y2,¥s =y1; (o, 71, 2) = (0, 1, —1); $1(t) = e7?, $2(t) =—e"*

9. Consider the differential equation

0 (1<0; —0 < y < ®)
¥y ={2y'/? (t>20;0< y< @)
y? (t=0; —0 < y<0)

(a) Determine whether

| (t<0)
¢(‘)‘{(r+ D: (>0

Y

is a solution on — o < t < .
(b) Is ¢(¢) continuous everywhere?
(c) Is ¢'(¢) continuous everywhere ?
10. Consider the differential equation ¥y’ = 2/(r2 — 1) with f({¢, ) =2/t*— 1)
defined on each of the domains Dy ={(t,y)| —0 <t < —1,|y| <®}, D=
{0, )| —1<t<l, |yl <o}, and Dy ={(t,y)| 1 <t < 0, |y| < o}. Verify that

(1) = log [— il

t+1
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is a solution of this equation on each of theintervals —c0 <t < —1, —1 <t <1,
and 1 <t < . (A graph of ¢ will show why y = ¢(¢) is not a solution on an
interval such as —2 <t <2)

11. Consider the differential equation y’ = (y* — 1}/2. Verify that

14 ce
1-—ce

() =

is a solution of this equation on an appropriate interval 1, for any choice of the
constant ¢. [Hint: Try this first for specific values of ¢ such as c=0,c =1,
¢ = —1.] Draw graphs for ¢ for each choice of c.

We observe that (1.8) and the systems derived from physical considerations
in the exercises in Sections 1.1 and 1.2 are systems of second-order equations,
while (1.9) is a system of first-order equations. We shall show that the
system (1.9) of first-order equations is sufficiently general to include all such
problems, and in particular all single nth-order equations are included as a
special case in (1.9). We shall also see that the theory of nth-order equations
is a special case of the corresponding theory for systems of first-order equations.

Example 3. Consider the second-order equation

y'=g9yY) (1.10)

where g is a given function. Puty =y, )’ =y,; we then have y; =y’ =y,
and from (1.10), " = y5 = g(t, y,, ¥,). Thus (1.10) can be described by the
system of two first-order equations

Yi=1Yy2
; 1.11
y2=g(t’yl9 yz) ( )

which is a special case of (1.9) with n=2, f,(t, ¥1, y2) =y, folt, ¥y y2) =
g(t, ¥, ¥2). Toprove that (1.10) and (1.11) are equivalent, let ¢ be a solution
of (1.10) on some interval 7; then y, = ¢(¢}, y, = ¢'(¢) is a solution of (1.11)
on I since y; = @' =y, and y; = ¢" = g(¢, ¢(t), $'(?)) = g(t, y1, y»). Con-
versely, let ¢, ¢, be a solution of (1.11) on I, then y = ¢,(r) (that is, the first
component) is a solution of (1.10) on I since y" =¢{ =(¢d})' =¢5 =

9(t, ¢y, 62) = g(t, 1, ¢1) = g(t, », ')

e EXERCISES

12. Write a system of two first-order differential equations equivalent to the
second-order equation

B”+%sin6=0
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with initial conditions 6(0) = 8,, 8'(0) = 0, which determines the motion of a
simple pendulum (Section 1.1).

13. Show that the equation y” + 3y" —4y'+ 2y =0 is equivalent to the
system of three first-order equations

y’l =Yz

Yi=ys
Ya=—2y.+4y,— 3y

Example 3. The scalar equation of nth order

yW=gt,y,y,...., 5" ") (1.12)

can be reduced to a system of # first-order equations by the change of variable
Nn=¥y2=¥,..., ¥, =y"" 1. Then (1.12) is seen to be equivalent to the
system

Y1 =12
Y2=y;3

{ (1.13)
Yn-1= Vn

Y=g, Vi, Y250 Vp)

which is another special case of (1.9). The proof of the equivalence of (1.12)
and (1.13) is only a slight generalization of the proof in Example 3.

¢ EXERCISE
14. Establish the equivalence of (1.12) and (1.13).

Example 5. Returning to the system (1.8) of two second-order equations
governing the motion of the system of two masses in Figure 1.3, we let
Y=Y Y2 =Y, y3=2 ys =2, and we obtain that (1.8) is equivalent to the
system of four first-order equations

] 1)

’—
1= Jx2

J

k, k k
y2= - (—1'*"—2))’1 + == y3

e i 1.14)
V3=1Ya (1

I} kZ
Vo= m, s —y0)

which is another special case of (1.9).
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o EXERCISES

15. Establish the equivalence of the systems (1.9) and (1.14).

16. Write the systems of second-order equations derived in Exercises 2, 3,
and 4, Section 1.2, as equivalent systems of first-order equations.

17. Reduce the system

y’l +y; =J’12 +J’22
2yi + 3y2 =202

to the form (1.9). [Hint: Solve for yi and y3.]

1.4 Vector-Matrix Notation for Systems

In Example 5, Section 1.3, we obtained the system (1.14), of four first-
order equations. We notice that we can describe this system completely by
giving the matrix of coefficients

0 1 0 0\
B k, + k, 0 EE_ 0
m my

0 0O 0 1

k k
5 ooon
ms m,

If, in addition, we define the column vectors

Y1 Y1

¥ , Vs

Y= y =1,
Y3

Y3
\74/ \vi/
then we may write the system (1.14) in the compact form
y' = Ay

where the right-hand side is the usual matrix-vector product. We shall see
that we can always represent a system of first-order differential equations as
a single first-order vector differential equation.
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We define y to be a point in #n-dimensional Euclidean space, E,, with co-
ordinates (y;, ¥5, ..., ¥,)*. Unless otherwise indicated, E, will represent real
n-dimensional Euclidean space; that is, the coordinates (y,, ..., ¥, of the
vector y are real numbers. However, the entire theory developed here carries
over to the complex case with only minor changes, which will be indicated
where necessary. We next define functions

fj(tSY)=f:i(tay1""ayn) (j=ls'--:n)

and thus the system (1.9) can be written in the form

Y= f1(t, y)

yrz .=f2(t’ Y)
. (1.15)

\yr =5t Y)

Proceeding heuristically (we will be more precise below), we next observe
that the functions f;, ..., f, can be regarded as n components of the vector-
valued function f defined by

£, y) = ([t y), ... [t )
We also define

Y =01

Thus the system of n first-order equations (1.9), and all the systems that arose
earlier in this section (see also (1.15)), can be written in the very compact form

y =1(t,y) (1.16)

The system (1.16) resembles the familiar single first-order equation y’ = f(, y),

Ny IR | PRSP, U

with y, f replaced by the vectors y, f, respectively.

Example 1. We may write the system (1.11),
1=z
Y2 =9(t, y1, y2)

* The distinction between y as a column vector and y as a point in E, will be clear
from the context, and should cause no confusion,
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as y’ = f(ts Y) With y= (yls J’z) and

fl(ts y) =.fl(tsn Y1 y2) =Y,
fZ(t’ Y) "_"fZ(ts J1s y2) =g(ta 34T y2)

so that
f(ts V) ( g( s V1s yZ))

¢ EXERCISE

1. Write the systems (1.13), (1.14), and the systems in Exercises 13, 16, and 17
of Section 1.3, each in the form y’ = f(¢, y) and in each case determine the vector f.

We shall assume that the reader is familiar with the elements of vector
algebra. However, we recall certain basic well-known facts, as well as cite
some that may be new, in order to proceed with a systematic study of (1.16).
We define the zero vector 0 (the origin of E,) by 0 = (0, ..., 0) and for any
point y € E, we define ¢y, where ¢ is any real or complex number, by the
relation

Cy= (cyla cyZ) sy Cyn)

If y and z are two vectors in E,, we define their sum y + z to be the vector

Y+z=(y +2z;, Y2+ 25,0, Y+ 2y)

and, of course,y —z=1y + (—2). Two vectors y and z are equal if and only
ify;=2z,(i=1,...,n). The Euclidean length of the vector y is defined by
the relation

Iyl = Dl - + 217 = [z Iy.lz]

Notice that |y,] is well-defined for y; complex and thus ||y|| is also defined for
a complex vector y. We need the notion of length in order to measure
distances between solutions of systems. However, for the purpose of dealing
with systems of differential equations such as (1.16), it turns out to be more
convenient to define a different quantity for the length (or norm) of a vector y
than the familiar Euclidean length, namely

¥l = Iyl + byl ooyl = 3 I
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Agalin, |y| is well defined for either real or complex vectors y. No confusion
need arise from using the absolute value sign for different purposes; on the
left-hand side |y| is the notation for length of the vector y; on the right-hand
side we sum the absolute values of the components of y. Observe, for
example, that if y=3+i3—17), then l|y|=03+i>+|3-i]*]"*=
(10 + 10)"/% = (20)"/? and |y| = |3 +i] + |3~ i| = |y} = v2llyl. In general,
the quantities |y|| and |y| are related, as follows.

e EXERCISE
2. If y € E,, show that
< [yl < Vnlyl
[Hint: Use the inequality 2]uv| < |ul?+ |v|? and show that Jly |2 < |y|? < nlly|%.]
The important point about this inequality is that |y| is small if and only if

Iyl is small.
The length fonction |y| has the following important properties:

(i) |yl =0 and |y| =0 if and only if y = 0.
(i) If ¢ is any complex number, |cy| = |¢]| |y|.
(iit) Forallyand z, |y + z| < |y| + |z].

The proofs are immediate from well-known properties of complex numbers.
For example, to prove (ii) we have

leyl = X leyl = 3 lel Iyl =lel X |yl = Icl Iyl
i=1 j=1 i=t

Similarly, for (iii) we use the inequality |u + v| < |4| + |¢| valid for any
complex numbers u and v.
¢ EXERCISE

3. Show that the Euclidean length |ly|| of a vector y also satisfies the properties
(i), (ii), (iii) above. [Hint: To prove (iii) you will need to apply the Schwarz in-
equality for sums, that is,

n 2 n n
2 a:b:! < Y lal* X |62
i=1 i=1 I=1

to the term 2(>_%-1y:Z:) which arises in the expansion of

ly +z|> = ;lly: +z/|* = i);l i+ z2)yi+ z)

= S+ £ e Bz
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Using the length function, we define the distance between two vectors y and z,
d(y, z) by the relation
d(y, z) = ly — |

The distance function d(y, z) has the following important properties for
arbitrary vectors y, z, v:

)..

Y Al ~ ) Aan Al =\
'\’-) HAYs ’4) = YV alld «y, &)

(i) d(y, z) = d(z,y).
(i) d(y, z) < d(y, v} + d(v, z) (triangle inequality).

— N 1fand Anly iFf v
= v 11 4iixu X

The proofs of these properties follow immediately from the corresponding
properties (i), (ii), (iii} of the length function. For example, to prove (iii)
we have d(y, z) =y -zl =|(y—-v)+ (v—2|<ly—v| +|v—z] = d(y, v) +
d(v, z).

Any function satisfying the properties (i}, (ii), (iii) is cailed a distance
function. For example, p(y, z) = [y — z|| for any vectors y, z is such a
function, and represents the Euclidean distance between the points y and z

in E, .

e EXERCISE

4, Show that p(y, z) = |ly — z|| also satisfies the properties of a distance func-
tion. [Note: The proof of (iii) is harder than for the distance function d. You
will need to use the Schwarz inequality, as in Exercise 3.]

To define continuity, differentiability, and integrability of vector functions,
we need the notion of limit for vectors. We first use the distance function
dto define convergence. A sequence {y®} of vectors in E, is said to converge
to the vector y if and only if d(y®, y) = |y® — y| = 0 as k - o0 and in this
case we write lim,, , yY¥ =y or {y*}—>y. Since

y® =yl =P =y + 3P = yal 4+ + 1P =yl

where y* = (', ...,y y = (y,, ..., y,), the above definition says that the
sequence of vectors {y}— y as k - o0 if and only if each component of y*)
tends to the corresponding component of the vector y (the components form
sequences of real or complex numbers). It is clear that all properties of
limits of sequences of complex numbers may now be assumed to hold for
sequences of vectors without further explanation.

If we use the Euclidean distance function p(y, z) = ||y — z|j, we say that
the sequence {y®} converges to the vector y if and only if p(y*,y) =
Iy — yl > 0 as k— co. It seems clear that the concept of convergence
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should not depend on the particular distance function used. We establish
this for the distance functions d(y, z) and p(y, z) in Exercise 5.

¢ EXERCISE

5. Let{y®} be a sequence of vectors. Show that |y’ — y| -0 as k- oo if and
only if {[y*® — y||—0 as k — oo, [Hint: Use Exercise 2.]

ssians to each

Leraresy s eis ir

A vector-valued function g = g(t) is a correspondence that

number t in an interval I one and only one vector g(t); we write

&) = (g, ..., 9,0))

and we call g, the kth component (real- or complex-valued scalar function)

of the vector function g. Because of our definition of convergence we shall

now define g to be continuous, differentiable, or integrable on I if and only if |

each component of g has this property. ‘
If g is differentiable on I we denote its derivative by g" and we define

g =(91,92---:9n)

Similarly, if g is continuous on I we denote its integral from a to b (@ and b
on I) by |5 g(s) ds and we define

b b b b
f g(s)ds = (f g(s) ds, J. g,(s)ds, ..., J. g.(5) ds)
We take note of the very important inequality

b b
j g(s) ds| < f lg)lds  (a<b) (1.17)

To prove (1.17) we have, successively

+.-.+

[a.5)ds

[a:ds

fg(s) ds

b b b
< J. lg.()] ds + -+ + f |94(s)| ds = f |g(s)| ds

¢ EXERCISE

6. Justify each step in the proof of inequality (1.17). Note that in the middle
step you have ordinary absolute values.
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It is also true that

b
< [ g ds

f:g(s) ds

for any continuous vector g, but the proof is more difficult than the one for
(1.17).
We can now return to the system

y =1(y) (1.16)

where the vector-valued function f is defined in some (# + 1)-dimensional
region D in (¢, y;, ¥2, ..., V,) space. To find a solution of (1.16) (compare
Section 1.3) means to find a real interval I and a vector function ¢ defined
on I such that:

(i) ¢'(¢) exists foreachfon /;
(i) the point (¢, ¢(?)) lies in D foreach r on /;
(ii1) ¢'(r) =1(t, (1)) for every t on L

Thus the analogy between (1.16) and a single scalar equation of first order is
complete, Just as for the scalar equation, to solve an initial value problem
for the system (1.16) with the initial condition ¢(¢;) = n, where (¢,, 1) is a
point in D, means to find a solution ¢ of (1.16) in the above sense passing
through the point (¢,, 1) of D, that is, satisfying §(f,) =n. While it is not
in general possible to solve (1.16) explicitly, we can illustrate the concepts
with some simple problems.

Example 2. The system

is of the form (1.16) with y = (y,, y,), (¢, ¥) = (5, ;). We may also write

it as y' = Ay, where 4 = ((l) (1)) Then also f(f,y) = Ay. Clearly, Ay is
well-defined on D, all of (¢, y,, ¥,) space, and ¢(¢) = (e, €') is a solution valid
for —ao < 1 < 0, since (i), (ii), (iii) of the definition are satisfied. Note that

¢, ¢ a constant, is also a solution.

¢ EXERCISES

7. Can you find (guess) another solution $(r) of the system in Example 2 on
— o0 < ¢ < o that is not of the form ¢¢(¢)?
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8. Find a solution ¢ of the system

¥

Y1 =—Nn

Ya2=yi+ya
that satisfies the initial condition $(0)=(2,1). [Hint: Solve the first equation
and substitute in the second equation. The reader may wish to refer to [2,
Section 2.2} for this method of solution. What is the interval I of validity ?]

9. Find a solution ¢ of the system
Yi=—n
y2=py1+1ty:

satisfying the initial condition ¢(0) = (2, 1).
10. Describe a method for solving the ““triangular system”

(YT =@uyi+azya+--- ~+ Q1n Yn
y2 = daz y2 4+ " + Qzn P
4
yr’l-—l= Qn-1,n-1YVn-1 +an-1.uyn
\yrfl = am:yn

where a,, (j = i) are constants; note that a,; with j < i are zero.
11. Find a solution ¢ of the system

yi=yi+y2+f(t)
Ya=y1+y2
where f{t) is a continuous function, satisfying the initial condition ¢(0) = (0, 0).
[Hint: Define v(t) = y.(t) + y2(2).]
12. In Exercise 8 compute another solution < satisfying the initial condition
$(0)=(2,2). Thencompute |d(t) — L(r)|, where & is the solution in Exercise 8.

The reader will notice that all the examples in the exercises above are of
the form (1.16), but at the same time they are: (1) linear in the components
of y; and (2) of a very special “triangular” form, which makes it possible
for us to solve them explicitly. We shall have much more to say about

cgeneral linear cveteme in Chanter 2
avll'l“‘. AAAAYLA L UJ WikWALl) ALAL vamru\l% -y

1.5 The Need for a Theory

The task of formulating a mathematical model for the motion of a physical
system such as the mass-spring system or the simple pendulum leads to a
differential equation; different physical approximations of the same system
lead to different models (that is, different differential equations). Let us look
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at just one of these, namely, the one for the simple pendulum starting from
an initial angle 6, at rest,
d’0 g
—+-sin@=0 1.6
dt* L (16)
Suppose we intend to use this model to determine the motion; we would
first have to find a solution 6 = ¢(z) of the equation that satisfies (1.6),

LI T,

and the initial conditions
$0) =6, ¢'©0)=0 (1.18)

Unfortunately, no solution expressible in terms of elementary functions can
be found. -It would be disconcerting if there were no solution! This would
seem to mean that there would have to be an internal inconsistency in the
set of assumptions that were made about the physical approximation. Since
an actual pendulum certainly moves, this would mean that our model is quite
useless, and we would have to construct a new model. Therefore, in order
for a mathematical model to be useful it must at least have solutions; a very
important aspect of mathematical theory has to do with proving that certain
classes of differential equations have solutions. For brevity we describe this
as the existence problem. Indeed, as far as our specific problem is concerned,
we can prove that the differential equation (1.6) has a solution satisfying (1.18)
(see Theorem 1.2, Theorem 3.3, p. 123, or Exercise 2, Section 3.1, p. 110,
and Exercise 12, p. 118).

This is not the only requirement that is desirable for a useful model.
Suppose we displace a pendulum to an angle 8, and release it and watch the
resulting motion of the pendulum. Experience suggests that if we could re-
peat the experiment exactly, we would get exactly the same motion. Des-
scribed differently, this is the hypothesis of determinism; a particular set of
initial conditions must result in exacily one motion. Applied to a differential
equation, this means that there should be exactly one solution for a given
set of initial conditions. For brevity, we refer to this as the uniqueness
problem. For example, if we start an experiment with the pendulum at rest
with zero displacement [@, = 0], we know from experience that it will stay
at rest. This motion is described by saying that 8 =0 for all t > 0. This
means that we would want to be sure that the only solution ¢(¢) of the equa-
tion (1.6) that obeys ¢(0) =0, ¢'(0) = 0, is ¢(r) = 0. This is indeed the case
(see Theorem 1.2, or Theorem 3.4, p. 125, or Exercise 1, Section 3.3, p. 126).

There is a third property that experience suggests as a requirement for a
satisfactory model. Experiments cannot in fact be repeated in exactly the
same way. However, if all of the initial conditions are almost exactly the
same, we expect the outcomes to be almost the same. We therefore desire
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that the solutions of our mathematical model should also have this property.
Stating this in mathematical language, we say that the solutions of a differen-
tial equation ought to depend continuously on the values of the initial con-
ditions. We refer to this property as continuity of the solution with respect
to initial conditions. (See Theorem 3.7, p. 135.)

Thus, a mathematical model of a physical process should have the following
three properties.

P o ds o -...__ o~ PR

(a) A solution bdubly g the gwcu initial conditions exists.

(b) Each set of initial conditions leads to a unique solution (that is, two
solutions that satisfy the same initial conditions are identical).

(c) The solutions depend continuously on the initial conditions.

Mathematicians have shown that wide classes of differential equations obey
the requirements (a), (b), (c), even for equations for which there is no possible
method for finding the solutions explicitly. We will state some of these
general results without proofs in Section 1.6; they will guarantee, for example,
that the various mass-spring systems and pendulum equations satisfy require-
ments (a), (b), (c).

e EXERCISE

1. Prove existence, uniqueness, and continuity of the solution ¢ of the equation
Y'=f(t), where f is continuous for ¢ in an interval I, such that é(z0) =yo,
@'(t0) = zo for some o in I [Hint: Use the fundamental theorem of the calculus.]
Note that the solution is a continuous function of (Z, o, Yo, Zo).

1.6 Existence, Uniqueness, and Continuity

In what follows we let D represent a region in (n + 1)-dimensional space;
this is a set of points with the property that given any point (¢,, 1) in D, the
interior of the (n + 1)-dimensional “ box”

B={(t,5)|lto~to] <a,ly - ul <b}

will, for a, b > 0 and sufficiently small, lie entirely in D. (We note that if we
use the Euclidean norm |y — q{| < &, then the set

C={(t.y)|lt=tol <a, Iy - ul <)

would specify a ““cylinder” whose cross section by a hyperplane ¢ = con-
stant would be an n-dimensional sphere.) The most important special cases:

the whole space, a half space {(t,¥)]0 << o0, |y| =0}, and “infinite
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strips ”* (for example, {(¢, y)| |t — to| < o0, |y| < 2}), have the above property

of a region.

The reader should observe that if (¢, , y,) is on the “ boundary ™ of D, every
box centered at (7, y,) contains points that are notin D. (In fact, this state-
ment can be used to give a precise definition of the boundary of D.) In
other words, boundary points are not included in D. If (¢, y,) is a point of
D that lies ““ close *’ to the boundary, then the numbers g and b in the definition
of region must necessarily be chosen small.

In what follows, whenever we say that a certain function f is continuous on
D we are assuming that it is continuous at all points of D, but we make no
assumption concerning its behavior on the boundary. If fis continuous at
some boundary points of D as well as in D, then { is still continuous on the
region D. In many problems that arise, this is precisely the situation, but
the continuity of f at some boundary points is not essential.

¢ EXERCISES

1. Consider the region D= {(t, »)|(t — D*+ (y + 2)* < 4} in E;.
(a) Construct at least two rectangles centered at the following points, which
lie entirely in D: (1, —2), (0, — 1), (2, -3), (1, — %)
(b) Show that the points (1, 0) and (—1, —2) are boundary points.
(¢) Consider the collection of points {(r, )]t~ 1)*+ (y +2)><4}. Is this a
region?
2. Which of the following collections of points are regions in E,?
@) {¢,N|t>0, ~xc <y< oo},
®) {t, )] —co<t<owo, -2<y< o}
© {&y|0<t<l,—o<y<o}
(d {1,y -0 <t<oo, ~0<y<o}
3. Show that the collection of points {(z,y)| ~1 <t <1, y=t3?} in E, con-
tains only boundary points.
4. Consider the region D= {(f, »)|t*+ y* <1} in E,. Are the following
functions continuous on D?

(@ f(t,y)=

(b) g(¢, y) = 1
)gt!y)_l_tz_yz'

5. Which of the following collections of points are regions ? Sketch, if possible.
{Unless implied otherwise, y is in E,.)

@ {Lno<t<1, 1<y <2

b) {t.N0<t<1,1 <yl <2}

©) {&yHE—D*+ lyl* <7

(d) {3, p2)| £>0, y:% +y2* <2%).
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6. Consider the region D = {(t, ¥1, ¥2)|t> > y1*+ y2?} in E;. Are the follow-
ing functions continuous on D?

1
nity2—?

(a) f(t, Y1, y2)=

y
(b) g(t, y1,y2) = 7‘— .

of
{c) % (¢, y1, y2), where fis as in part (a).
1
og L
(d) 5- (t, 11, ¥2), where g is as in part (b).
2

We are now ready to state our first important result.

Theorem 1.1. Let f be a vector function (with n components) defined in a
region D of (n + 1)-dimensional Euclidean space. Let the vectors f, of/oy,
(k=1,...,n) be continuous in D. Then given any point (1,,M) in D there
exists a unique solution ¢ of the system

y =1(y) (1.16)

satisfying the initial condition §(t,) = . The solution ¢ exists on any interval
1 containing t, for which the points (t, ¢(t)), with t in I, lie in D. Furthermore,
the solution ¢ is a continuous function of the “ triple” (t, 1y, n).

If the region D is the entire (¢, y) space, then it follows from Theorem 1.1
that every solution exists as long as its norm remains finite. This obvious
remark will be quite useful in showing whether a solution exists for all ¢.
An example will help clarify this point.

Example 1. Consider the scalar differential equation y’ = ay (x constant),
Here f(¢, ) = ay and of/¢y (t, y) = . Both fand 9f/dy are continuous in the
whole (#, y) plane. Theorem 1.1 shows that there is a unique solution ¢ of

y’ = ay through every point (¢,, y,) in the plane. It is easily verified that

(1) = yo exp [a(t — 2,)]

is a solution of this initial value problem. Therefore ¢(t) = y, exp [a(z — 7,)]
is the only solution. Also, since |@¢(t)] = |yol exp [a(t — ;)] is finite when-
ever ¢ 1s finite, all points (¢, ¢(#)), —c0 <t < 00, lie in D and therefore this
solution ¢ exists for —o0 < ¢ < 0.
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¢ EXERCISES

7. Find a solution of y" = ay through (1, 0). Is this the only solution through
(1,0)?

8. (a) Show that —1/tis a solution of y* = y? passing through (—1, 1).

(b) Show that #(t) = —1/r is the only solution of y’ =y? passing through
(—1, 1). Be sure to determine an appropriate region D before applying
Theorem 1.1. .

(c) What is the largest interval on which () = — 1/¢ is a solution of y’ = y?
through the point {(—1, 1)? The reader should observe that Exercise 8
shows that a solution of " = f(¢, ) does not necessarily exist for all ¢ even
though fand &f/éy are continuous in the whole plane.

Example 2. Discuss the problem of existence and uniqueness of solutions
of the initial value problem for the system

3

-
F 3 T ke

y
¥y =(cos )y, + >y,
Y3=y, — V2

This system is of the form y' =f(t,y) with y=(,, y:,¥5;), ft,y) =
(ty, +y3, (cos D)y, + t2ys, ¥, — ¥,); hence f{(z, y) is continuous for [¢| < oo,
ly| < c0o.  Moreover, 0of/dy, =(0,cost, 1), f/dy, =(,0, —1), of/oy; =
(1, £, 0), which are also continuous for [f| < o0, ly| < 0. Thus D is all of
four-dimensional (¢, y;, y,,y;) space, and by Theorem 1.1, through any
point (¢,, n) there passes a unique solution ¢ existing on some interval con-
taining f,. It can be shown, see the corollary to Theorem 2.1, p. 39, that the
solution ¢ actually exists on the interval —o0 < ¢ < 0.

¢ EXERCISES

9. Verify that the systems in Exercises 8, 9, 10, and 11 of Section 1.4, satisfy
the hypothesis of Theorem 1.1 in the domain D: — o <t < @, |y} < co.
10. Discuss the existence and uniqueness of solutions of the system

wl — el 2
JL 1

4 2
Y=y 4+ ¥y

11. Find a solution ¢ = (¢,, ¢2) of the system in Exercise 10 that satisfies the
initial condition ¢;(—1) =1, ¢2(—1) =0. Discuss the interval I on which the
solution & exists.

We now consider solutions ¢(¢) of the scalar second-order differential
equation

y' =gt y,y) (1.10)
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with initial conditions ¢(t,) = yo, ¢'(to) = 2o, Where g(2, y, z) is defined in a
region D of (¢, y, z) space. As we have seen in Section 1.1, several applica-
tions lead to problems of this form. In Example 3, Section 1.3, we showed
that (1.10) is equivalent to the system

Yi=1Y;
, 1.11
Y2 =49 ¥1, ¥2) (1.11)

by using the substitution y = y,, ' = y,. Thus if ¢ is a solution of (1.10)
satisfying the initial conditions ¢(2y) = yo, ¢'(fe) = 25, then Y(t) =
W (D), Y1(1)) = (¢(1), ¢'(1)) is the corresponding solution of (1.11) satisfying
the initial condition

V(to) = (¢(t0),  ¢'(to) = o, 20)

In addition, as shown in Example 1, Section 1.4, the system (1.11) is precisely
of the form of Equation (1.16) with

ft, ) = (2, 9(t, y1, 2))

to which Theorem 1.1 is applicable. Therefore, as an immediate corollary
of this theorem, we have the following result on existence, uniqueness, and
continuity of solutions of the initial value problem for scalar second-order
differential equations.

Theorem 1.2. Let g, 0g/0y, and 0g/0z be continuous in a given region D.
Let (ty, yo, 2o) be a given point of D. Then there exists an interval containing
to and exactly one solution ¢, defined on this interval, of the differential equation

" =g(t, y, y') that passes through(t,, ¥, zo) (that is, the solution ¢ satisfies the
initial conditions ¢(ty) = yo, ¢'(to) = 25). The solution exists for those values
of t for which the points (t, ¢(1), ¢'(t)) lie in D. Further, the solution ¢ is a
continuous function, not only of t, but of ty, yo, zo as well (in fact, of the quad-
ruple (ts t() » Yo ZO))'

If the region D is the entire (¢, y, z) space, then it follows from Theorem 1.2
that every solution exists for those values of ¢ for which the solution and its
derivative remain finite.

Example 3. Consider the scalar equation y” + k¥’ + &, sin y = 0, where
k, and k, are constants, This equation is a model of the motion of a damped
simple pendulum with no external forces (see Equation (1.7)). It can be
written in the form y” = g(t, y, y') with g(¢t, y, z) = —k,z — k, sin y, dg/0y =
—k, cos y, 0g/dz = —k,. Clearly, g, dg/8y, and 0g/0z are continuous for all
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(t, y, z), no matter what the constants k, and k, are. Thus Theorem 1.2
shows that given any triple (¢y, yo, zo), the differential equation " +
kv + k,siny =0 has a unique solution ¢ with ¢(t;) = y,, ¢'(te) = z,.
Note that here the region D can be taken to be the whole three-dimensional
space. It can also be shown that |¢(7)| and |¢'(¢)| are finite, and that this
implies that the solution ¢ exists on —oo < ¢ < o0. (This will be done in
Chapter 5.) 1t follows, in particular, that the various models for the simple
pendulum discussed in Section 1.1 have these properties.

o EXERCISES

12. Discuss the existence and uniqueness of solutions ¢ of y"+ ky=0
(k constant) with initial conditions $(to) = yo, ¢'(t0) = zo.

13. Discuss the existence and uniqueness of solutions ¢ of y” + p(¢)y" + q(¢)y =
f(t), with initial conditions ¢(to) =y, $'(fo) = zo, where p, ¢, and f are given
functions continuous on some interval a << t < b, where a < to < b.

14. (a) Show that ¢(¢) = 0 is the only solution of y” + p(#)y’ + ¢(t)y = 0 satis-
fying the initial condition $(0) = ¢'(0) = 0, if p and ¢ are continuous on
some interval containing 0 in its interior.

(b) Show that if {(¢) is a solution of »” + p(2)y’ + ¢(¢t)y = O that is tangent to
the ¢ axis at some point (¢, 0, 0), then #(¢) = 0.

15. It is easily verified that ¢, cos 2¢ + ¢, sin 2¢ is a solution of y” + 4y =0 on

— o <t < o for every choice of the constants ¢; and ¢, .
(a) Determine c; and ¢ so that this solution satisfies the initial conditions

s o)

(b) Write down the solution ¢ satisfying the initial conditions

- -

and prove that this is the only solution satisfying these conditions.
16. Consider the differential equation

. |y (t =0, —0o <y<w)
Y7o <0 -o<y<wm)

(a) Is the function

1 <0
o=le G0

a solutionon —o0 <t < 0?

(b) Ts ¢(r) continuous everywhere ?

(c) Is ¢'(+) continuous everywhere ?

(d) Can you apply Theorem 1.2 to obtain the existence of a unique solution
such that ¢(0) = 1, ¢'(0) = 1? Explain fully.
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17. Show that the only solution of
YAy + 1+ =0
that touches the r axis at some point (7o, 0) is the identically zero solution.

Finally, there are problems where higher-order scalar differential equations
are encountered. For example, in elasticity theory, equations of the fourth
order arise naturally We are interested in equations of order », of the
form y™ = h(t, y, ¥, ..., "~ 1). We observe that the cases when n = | and
n = 2 are the ones we have already discussed. Here /2 is a function defined in
some region D in the (n + 1)-dimensional (¢, y,, ¥, ..., y,) space. Combin-
ing Example 4, Section 1.3 with Theorem 1.1, we obtain, exactly as in the
second-order scalar case, the following result on existence, uniqueness, and
continuity ef solutions of the initial value problem for scalar differential
equations of order ».

Theorem 1.3. Let h, 5]1/{3}11,, ..., 0h/dy, be continuous in a given region D.
Let(ty, 1y, ..., n,) be agiven point of D. Then there exists an interval contain-
ing ty, and exactly one solution ¢, defined on this interval, of the differential
equation Yy =h(t,y, ¥, ...,y V) thar passes through (tq, 1y, ..., N,
[that is, the solution ¢ satisfies the initial conditions ¢(ty) = ny, d'(t0) =125 - - -,
¢ V(t,) = n,]. The solution exists for those values of t for which the points
(7, p(2), '), ..., ¢"1N)) lie in D. Further, the solution ¢ is a continuous

function of the (n + 2) variables t, ty, 0y, ..., f,.

The proofs of all the results stated in this section may be found in Chapter 3.

¢ EXERCISES

18. (a) Show that the differential equation y*> + 2y” 4+ 3y = 0 has a unique
solution ¢ satisfying the initial conditions ¢(1) =1, ¢'(1) =0, ¢"(1) = —1,
¢ (1) =2.

(b) Show that (¢) = 0 is the unique solution of this equation satisfying the
initial conditions $(—1) = $'(—1) = " (—1) = $"(—1) = 0.

19. Show that () = 5 is the unique solution of y” + (y — 5)% = 0 satisfying

the initial conditions ¢(to) =5, ¢'(#0) = ¢"(to) =0 for any 1o, — 0 < £ < 0.

"n TTea tha raq ]1- Af Evammnla § Qantinn 1 2\ fn r‘nr‘n tha avictanca and
WSE TNIE resuit of xar ll.P'l.\.r o A RIUALIVLE L. SauUce the exisience ang

uniqueness of solutions of the coupled mass-spring system, Equation (1.8), p. 9.

1.7 'The Gronwall Inequality

In the systematic study of systems of differential equations we shall often
need to make use of an important inequality, which we now digress to state
and prove. This inequality, known as the Gronwall inequality, will be
applied frequently in what follows.
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Theorem 1.4. (Gronwall Inequality.) Let K be a nonnegative constant and
let f and g be continuous nonnegative functions on some interval o <t < f§
satisfying the inequality

F <K+ [ f5)g(s) ds
Jora<it< B. Then
10 s Kexp ([ 905 ds)

fora <t<p.

Proof. Let U(t) = K + {' f(s)g(s) ds, and observe that U(x) = K. Then
f(t) < U(t) by hypothesis, and, by the fundamental theorem of integral cal-
culus and because g(f) = 0, we obtain

U@ =f0g) s Ug() @<i1<p)

We multiply this inequality by exp (- [,g(s) ds) and apply the identity
t 1
U'(t)exp (— fg(s) ds) ~ U(t)g(t) exp (-— fg(s) ds)

= [U(t) exp (—— f:g(s) ds)]’

to obtain

z?; [U(I) exp (— f:g(s) ds)] <0

Integration from a to ¢ gives
U(t) exp (— J:g(s) ds) ~U(@) <0
or, since £(f) < U(t) and U(x) = K,
s v <Ko ([s0ds)  @sr<p

which is the desired inequality. |}
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¢ EXERCISES

1. Let K, and K be positive constants and let f be a continuous nonnegative
function on an interval « < ¢ < B satisfying the inequality

fO< K +Ke j' £(5) ds

Show that
f@)Y< K, exp [K;(t — )]

2. Find all continuous nonnegative functions fon 0 <t <1 such that
fo< j f&)ds, 0<r<i
3. Let f(¢) be a nonnegative function satisfying the inequality
fO<Kk+e(t—a)+K, J f(s) ds,
on aninterval « < tp < B, where ¢, K, K, are given positive constants. Show that
1) < K oxp (Kot — o)) + 2~ (explKa(t — )] — 1)
[Hint: Consider
Uy=Ki+e(t—a)+ K> J: f(s) ds}
4, Find all continuous (not necessarily differentiable) functions f(¢) such that

Uor=] rod 120



LINEAR SYSTEMS, WITH AN
Chapter - 2 INTRODUCTION TO
PHASE SPACE ANALYSIS

2.1 Introduction

We shall study linear systems of differential equations (that is, the system
y = K¢, y) in which (¢, y) is linear in the components of y), in considerable
detail.

Example 1. Consider the system

yi=yi—ty,+¢
ya=12y, =y, (2.1)
Vs=yi+ys—yst+2f

which is linear in y,, y,, y3 and of the form y' = {(z, y) with y = (3, ¥2, ¥3),
f(, )= 0y — 92, %1 — y3, 1 + y2 — y3) +(€,0,2¢7").  We observe that

tha mnt
il

anrasantad o v
EILAL 1w 11Iatll 1A

thn yant e £, — Fuy 42\- —-— 1) LY 1L v —_ 1 Yrne lhaw o
LLIL ¥ LUL u_l ‘)’2 g 4 J’l J/3 3 J’l - J/z }3, wall U ICJJIUDC It as

vector product A(#)y with

1 —t 0
Ai)y={¢* 0 -1
1 1 -1

and with y regarded as a column vector. Thus the system (2.1) can be written
as y = A(t)y + g(¢), where g(¢) is the given vector (€', 0, 2¢ "), also regarded
as a column vector.

33
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¢ EXERCISE

1. Represent each of the systems in Example 2 (p. 21) and in Exercises 8, 9,
10, 11, (p. 22), Section 1.4, in the form y’' = A(?)y + g(¢). Identify the matrix
A(t) and the vector g(1).

More generally we see that the system y' = {(¢, y), with (¢, y) linear in the
components of y, has the form

Vi=a Oy +a(Oy, + 0+ a,(y, + 94(2)
V2 = ay()y; + a(Oys + -+ + a2, (Dy, + g:(t)

(2.2)
y;: = anl(t)yl + anZ(t)yZ + 4+ ann(t)yn + gn(t)
and can be represented as
y = A(t)y + g(t) (2.3)
where
ay(ag (1) - ag(t) g.(t
ayy(t)ay (f) -+ ay, (1) g,(t)
Ay =] - and g() =
anl(t)anZ(t) e aun(t) gn(t)

and where y is the column vector with components yy, ..., y,.

¢ EXERCISE

2. Write the scalar linear equation »™ -+ a:(¢) Y+ -+ an_1(t)y +
a.(t)y = b(t) as a system y’ = A(t)y + g(¢). Determine the matrix A(z) and the
vector g(2).

We assume that the reader is familiar with the elementary matrix operations
of addition and multiplication, and with the properties of determinants. We
will deal for the most part with n-by-n matrices and with vectors, either column
vectors (n-by-1 matrices) or occasionally also row vectors (1-by-n matrices).
We shall denote square matrices by capital letters and vectors by small bold-
face letters. We denote by O the #-by-» matrix with all elements zero and by
E the n-by-n identity matrix, that is, the matrix with each diagonal element 1
and all other elements zero. We have AE = EA = A for every n-by-n matrix

A; also, Eb = b for any column vectorb. We recall that the #-by-n matrices
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A and B are said to commute if and only if 4B = BA. Unless otherwise
stated, all matrices will be #-by-n.

If 4 is a matrix, we let det 4 denote the determinant of 4. We have the
following basic properties, which are assumed to be familiar.

(i) For matrices A and B, det (4B) = det A - det B.
(ii) If det 4 # 0, A is called nonsingular and has an inverse 4~ such that

AA™'=A"'A=E

Moreover,

e EXERCISE
3. Use the resuit of (i) and (ii) to show that det (4 -*) = 1/det A.

(i1i) Consider the system of linear algebraic equations
Ax=Db 2.4)

where A is a given matrix, b is a given (column) vector, and x is the unknown
vector. The system (2.4) has a unique solution if and only if det 4 # 0.
This solution is given by x = A~ 'b; in particular, if b=0, then x =0. If
b = 0, the system has a nontrivial solution (that is, a solution x # 0} if and only
ifdet A =0.

(iv) If det 4 # 0, the n columns of A considered as vectors are linearly
independent, and conversely, if the n columns of A4 are linearly independent,
then det 4 # 0.

¢ EXERCISES

4. Prove property (iv).
5. State (look up) the theorem concerning the system (2.4) in the case det 4 =0
but b # 0.

We define the norm (length) of a matrix A4, denoted by |A4|, by

|4} =

i

|a;l (2.5)

1

riNel
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that is, as the sum of the absolute values of all the elements. Notice that if 4
is n-by-1 or 1-by-n, that is, a vector, then (2.5) reduces to our previous defini-
tion of the length (norm) of a vector. We readily verify that the matrix norm
satisfies the following properties:

(i) 14 + B| < |4] + |B)
(i) |4B| < |A4] - |B|
(iii) |A4b| < |A4] « [b|

for matrices 4, B of complex numbers and column vectors b with » compo-
nents. The above norm is convenient for our purposes; other matrix norms
satisfying the properties (i), (i1), (iii) are possible.

¢ EXERCISE
6. Prove the properties (i), (ii), (iii) of the norm |A4|.

In Section 1.4, (p. 19) we defined the concept of convergence of a sequence
of vectors in terms of a vector norm and used it to discuss continuity, differen-
tiability, and integrability of vector functions. We now use the matrix norm
(2.5) to do the same for matrices.

Definition. The sequence of matrices {A™®} converges to the matrix A if and
only if the sequence of real numbers {|A — A®|} has limit zero, and in this case
we write

{AP} >4 or lim AV =4

k=0

Clearly, because of the definition of the norm, this means that {4®} — A if
and only if the sequence {a{’} of complex numbers, representing the element
in the ith row and jth column in the matrices {4¥}, converges to the element
a,; of the matrix A as k — oo for each of the n® elements (i, j=1,...,n). A
matrix function A(¢)is a correspondence that assigns to each point 7 of aninterval
I one and only one »-by-» matrix A(¢). Using the remark following the defini-
tion of convergence of a sequence of matrices, we see that it is consistent to say
that a matrix function A(¢) is continuous, differentiable, or integrable on an
interval I if and only if each of its #? elements g, ,(t) is continuous, differen-
tiable, or integrable respectively on I.
We shall often need to use the important inequality

f dA(t)b(t)dtl < f:IA(t)IIb(t)I dt (2.6)
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for ¢ < d, assuming, for example, that A(¢) and b(¢) are continuous on ¢ <
t<d J

¢ EXERCISES

7. Prove the inequality (2.6). [Hint: Use (1.17), p. 20, and property (iii), p. 36.]
. 8. Let @(¢) be a nonsingular matrix, differentiable on a real ¢ interval I. Prove
that ®-1(¢) is differentiable and find a formula for (®~')'(¢). [Hint. For the
second part use ©()® () == E and differentiate.}

2.2 Existence and Uniqueness for Linear Systems

We now return to the linear system
y =A@y + &) (2.3

where we assume that the matrix 4(¢) and the vector g(t) are continuous on an
interval /. Then the vector function f(z, y) = A(¢r)y + g(¢) of Theorem 1.1
(p. 26) is continuous for (¢, y) in D, where D is thestrip {(#, )|t € I, |y] < 0},
and of/dy, = col(a (1), ay(®), ..., au())(k =1, ..., n) where col stands for
column; hence of/dy, are also continuous in D for k=1,...,n  Thus by
Theorem 1.1, (2.3) has a unique solution ¢(¢) passing through any given point
(to, M) With #4 in I; and this solution exists on some interval containing the
point ¢, inits interior. Theorem 1.1 also says that the solution ¢ exists on any
interval J containing the point f; and contained in the interval I for
which the points (¢, ¢(¢)) with ¢t in J lie in D. For the present case of D this
means that the solution exists on the whole interval I (finite or infinite) pro-
vided it can be proved that |¢(?)], the norm of the solution ¢, is bounded by a
constant independent of ¢ (such a bound is called an a priori bound). This is
indeed always possible if I is a closed bounded interval as we now prove.

Theorem 2.1. If A(t), g(t) aré continuous on some interval a <t <b,
ifa<ty<b, and if Im| < o, then the system (2.3) has a unique solution &(t)
satisfying the initial condition ¢(t,) = N and existing on the interval a <t < b.

Proof. Let ¢(¢) be the unique solution satisfying &(#,) = %, existing for ¢
on an interval J. To show that this solution exists on the whole interval
a < t < b, it suffices, by the above remarks, to show that |¢{f)| is bounded by
a constant independent of t. For ¢ in J, substitution of ¢ into (2.3) gives

¢'(1) = A[O)(r) + g(t)
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Integration gives

B0 - 0(10) = | A(sYB(s) ds + J ‘gs)ds  (tinJ)

from which, using the initial condition and taking norms, we obtain

T [ PR Lot o]
Pl =l + “ Jt g(s) asl

to

We continue with the argument for ¢ > ¢,; using properties of the norm and
the inequality (2.6), we have

ld(O)] < [nf + L |A() [(s) ds + £ t lg(s)lds  (tinJ)

Since

i + [ 18G9 ds < Il + max [g(O} (s — 10

agt<h

< [0l + max [g(0)[(b — a) = K,

ast<h

and, letiing

K, = max [4(1),

ag<t<h

fiA(S)I id(s)] ds < max [A(1)] (f:olda(s)l ds) =K, J:)|¢(s)‘ ds

axtsh
this inequality can be written as
4
OO <K, +K, [ () ds  (tinJ)
to

where K, and K, are constants. Note that the constants K; and K, are
nonnegative and independent of ¢, but that they do depend on A(¢), g(¢), a,b.

e EXERCISE

1. Show that for ¢ < #, we have | ()} <K, + K, [.° | b(s)] ds.

Then by the Gronwall inequality (Section 1.7, p. 31), we obtain, for both
t<toand t > ¢,,
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l$()| < K; exp (Kz |t — to]) < Ky exp [(b — @)K;]1  (tinJ)

This shows that [¢p(2)| is bounded by a constant. By Theorem 1.1 (p. 26),
therefore, ¢(z) exists on the entire interval a < ¢t < b, and this compietes the
proof. |

We remark that, interpreted geometrically, this proof shows that the solu-
tion remains inside an {n + 1)-dimensional “box” of “base” ¢ <t < b and
“height”’” 2)y], where |y] < K| exp [K,(b — a)].

We note also that if A(¢) and g(¢) in (2.4) are continuous on — o < ¢ < o,
the above arguments apply to every finite subinterval; of course, in this case
the solution ¢(r) need not remain bounded as t - + . The same remark
applies if A(r) and g(¢) are continuous on a < ¢ < b, but not necessarily on
a <t<b. This leads to the following consequence of Theorem 2.1.

Corollary to Theorem 2.1. If A(t), g(t) are continuous on an interval I,
closed or open, finite or infinite, and if t, € I, In| < co, then the equation (2.3) has
a unique solution §(t) satisfying the initial condition §(t,) = W and existing on 1.

¢ EXERCISES

2. Prove the above corollary.
3. Suppose A(z) and g(¢) are continuous for — < < ¢ < « and that

fi;A(z}} dr < @

and
f:lg(t)l dt <

Show that the solution $(t) of ¥y = A(t)y + g(¢) exists for — o0 <t < <« and
compute a bound for {$(¢)| valid for — oo < < 00,
4. State the analogue of Theorem 2.1 and its corollary for the scalar equation

ao(t)y™ + ai()y™ "D+ o+ au ()Y + anlt)y = b(t)

where ao, a1,4,, ..., 4., b are continuous functions and ao # 0 on a bounded
interval a <t < b.

2.3 Linear Homogeneous Systems

We are now ready to discuss the structure of solutions of the linear system
(2.3), and we begin with the linear homogeneous system

y = A(t)y @.7)
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We assume that the n-by-» matrix A(¢) is continuous on an interval I and then
by Theorem 2.1 and its corollary, we see immediately that given any point
(to, M), tp in I, there exists one and only one solution ¢ of (2.7) such that
®(¢;) =m. In particular, and this is most important for what follows, given
the point (¢, , 0), ¢, any point of 7, (2.7) has the unique solution ¢ =0 on J,
satisfying the initial condition ¢(z;) = 0, this is because by inspection 0 is
always a solution of (2.7), and by Theorem 2.1 this is the only solution
through (7,, 0).

To obtain a result about the structure of solutions of the linear homoge-
neous system (2.7) we first observe that if ¢, and ¢, are any solutions of (2.7)
on an interval 7, and ¢, and c, are any (real or complex) constants, then the
linearity of (2.7) tells us that

(c1P) +c29;) =11 + 205 = c APy + ¢ APy = Ae by + 2 ;)

-

P A S T T S SR U Y 2 N A r | UL T
mar 18, ¢y + C, P, IS Again a SOIUtion O1 {<£./) On 4, 1N tng 1anguage o
linear algebra this shows that the solutions of (2.7) form a vector space over

the complex numbers. We denote this vector space by V.

We remind the reader that an abstract vector space over the real (or com-
plex) numbers is a set of elements for which operations of addition and multi-
plication by scalars satisfying certain well-known properties are defined.

e EXERCISES

1. Look up the axioms for an abstract vector space.

2. Verify that the set of real (or complex) functions continuous on an interval /
forms a vector space over the real (or complex) numbers, with addition and
multiplication by scalars defined in the usual way.

3. Verify that the set of real (or complex) vector functions

1) = (), ..., fllt)
continuous on an interval I forms a vector space over the real (or complex) num-

bers, with addition and multiplication by scalars defined in the usual way.

A subset S of a vector space is called a subspace if it is closed under the for-
mation of sums and products by scalars. It is easy to prove directly from the
definition of a vector space that any subspace of a vector space is itself a
vector space with the same operations.

e EXERCISE

4. Prove that a subspace of a vector space is a vector space.

Combining the results of Exercises 3 and 4, we see that the set of solutions
V of (2.7) is a subspace of the vector space of continuous vector functions over
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the real (or complex) numbers, and is therefore a vector space. It is now
natural to ask, What is the dimension of the vector space ¥ ? In order to
discuss this problem, and indeed to define the dimension of a vector space, we
must recall the definitions of linear dependence and independence of sets of
vectors.

Definition, A set of vectors v(,v,, ..., Vv, is linearly dependent if there exist
scalars ¢y, ¢y, ..., ¢y, not all zero, such that the linear combination

v+ v+t av=0

Definition. A4 set of vectors vy, v,, ..., Vv, is linearly independent if it is not
linearly dependent.

These definitions contain the definitions of linear dependence and inde-
pendence of functions as very special cases (see, for example, Section 3.3,
p. 69, of [2]). There the underlying vector space is the vector space of
continuous functions on an interval I; see Exercise 2 above.

e EXERCISES

5. Formulate the definitions of linear dependence and independence of a set
of k vector functions f,(¢), ..., fi(t) continuous on an interval /. (See Exercise 3
above for the underlying vector space.)

6. Show that the vectors

oy of) ol

are linearly independent in £s. [Hint: Suppose they are linearly dependent
and obtain a contradiction.]
7. Show that the vectors

_I. .1. ) i; 7 0.
VI =(2), vz =(3), Vvs =( 10)’ V4 ___(_-1),
3 3 -3 17

are linearly dependent in E;.
8. Show that if r, # r, the vectors (functions)

vi = exp (ri?), v, =exp(rzt)

are linearly independent in the space of continuous functions on — a0 <# < 0.
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9. Show that the vectors

_{ exp (i) [ exp(rz1)
Vi =\ riexp (nd))’ V=1, exp(ra2t)

are linearly independent in the space of continuous vector functions with two
components on — o < ¢ < co provided r1 # ra.
10. Repeat Exercise 9 for the vectors

_ cos? v. — sin ¢
Vi =\ —sint ) 2 " \cost
A set S of vectors is said to form a basis of a vector space V if it is linearly

independent and if every vector in ¥ can be expressed as a linear combination
of vectors in §.

e EXERCISES

11. Show that if S is a basis of a vector space V, then the expression of every
vector in ¥ as a linear combination of vectors in § is unique. [Hint: Suppose a
vector vimay beexpressedasv=civi+ c:vo++aw=divi+ d.v, + -+
di vi , where S consists of the vectors vi,vz,..., Vi. Showthatci =d,, ¢c: = d,
vesy Ok = d; ]

12, Show that the vectors vy, v, v; in Exercise 6 above form a basis of E,.

13. Show that the vectors

o I (1R

also form a basis of E;.
14. Show that any linearly independent set of three vectors in E; is a basis

OfEs.

We can now define the dimension of a particular vector space V to be the
number of elements in any basis of V. A vector space is called finite-
dimensional if it has a finite basis. Thus, for example, E, has dimension ».
It can be shown that every basis of a finite-dimensional vector space has the
same number of elements. We note that the space C of continuous functions
on a finite interval is not finite-dimensional because the infinite set 1, ¢,
t3,...,t" ..., is linearly independent on any interval and is contained

in C.
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We now return to the problem of finding the dimension of the vector space
V of solutions of (2.7). We have the answer in the following basic results.

Theorem 2.2. If the complex n-by-n matrix A(¢) is continuous on an inter-
val I, then the solutions of the system

s
y = AQ)y (2.7)
on I form a vector space of dimension n over the complex numbers.

Proof. We have already established that the solutions form a vector space
V over the complex numbers. To establish that the dimension of V is n,
we need to construct a basis for V¥ consisting of n linearly independent
vectors in V, that is, of n linearly independent solutions of (2.7) on I. We
proceed as follows, Let #, be any point of [ and let 6;,0,,...,6, beanyn
linearly independent points (vectors) in Euclidean »n-space E,. For example

i

0
6.=] 1 |~ jthrow =12,...,n)

0

¥

are obviously n such vectors. By Theorem 2.1 and its corollary the system
(2.7) possesses n solutions ¢y, ¢, ..., §,, each of which exists on the entire
interval /, and each solution ¢; satisfies the initial condition

¢j(t()) = cj (J' = 15 2’ Tty n) (2'8)

------

Suppose they are not. Then there exist complex constants a,,4,,...,4d,,
not all zero, such that

ad, () +a b, 8)+ -+ a,p,(t)=0  foreverytonl
In particular, putting ¢ = t,, and using the initial conditions (2.8), we have

a6, + a,6, + - +a,6,=0
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But this is impossible (unless a(, a,, ..., a, are all zero) because it contradicts
the assumed linear independence of 64, 65, ..., 0,.

To complete the proof we must show that these n linearly independent
solutions of (2.7) span ¥, that is, they have the property that every solution
() of (2.7) can be expressed as a linear combination of the solutions
o, ¢y, ..., ¢,. Weproceed as follows. Compute the value of the solution
{r at 7, and let {(z,) =06. Since the constant vectors 6,,6,,...,0, are
linearly independent in Euclidean n-space E,, they form a basis for E; and
there exist unique constants ¢,, ¢;, ..., ¢, such that the constant vector ¢ can
be represented as

o= 610'1 +0202 + -+ C,,O’,,
(see Exercise 12, for the case n = 3). Now consider the vector

§(t) = 10,(1) + c,Po(t) + -+ + ¢, b,(1)

Clearly, ¢(¢) is a solution of (2.7) on I. (Why? Prove this.) Moreover,
the initial value of ¢ is (using (2.8))

d’(to) = 6'10'1 + 6262 + 0+ C,,G,, =0

Therefore ¢(t) and Y(t) are both solutions of (2.7) on I with ¢(t,) = Y(7,) = ©.
Therefore, by the uniqueness part of Theorem 2.1, ¢(¢) = Y(¢) forevery  on 1
and the solution {(¢) is expressed as the unique linear combination

V(Y= c;py(2) + 2+ -+ ¢, (t) forevery tonl (2.9

¢ EXERCISE

15. Show that this expression of Y(z) as a linear combination of &.(¢), ...,
$a(t) is unique. [Hint: See Exercise 11.]

Thus we have shown that the solutions ¢, ¢,,..., ¢, of (2.7) span
the vector space V. Since they are also linearly independent, they form a
basis for the solution space V, and the dimension of V' is n. This completes
the proof of Theorem 2.2. |

We often say that the linearly independent solutions ¢4, ..., ¢, form a
fundamentai set of soiutions, There are clearly infinitely many different
fundamental sets of solutions of (2.7). (Why?)
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e EXERCISES

16. Prove the following analogue of Theorem 2.2 for systems with real coeffi-
cients If the real n-by-n matrix A(¢) is continuous on an interval /, then the real
solutions of (2.7) on { form a vector space of dimension n over the real numbers.

17. Write the linear homogeneous scalar equation

ao(Dy™ 4+ a (t)y" V4 auoa ()Y +alt)y =0

where ag, ai, ..., a, are continuous on [ and ao{t) # 0, as a system and interpret
Theorem 2.2 for this equation.

We can interpret Theorem 2.2 in a different and useful way. A matrix of n
rows whose columns are solutions of (2.7) is called a solution matrix. Now
if we form an n-by-n matrix using the above # linearly independent solutions
as columns, we will have a solution matrix on J, but also its columns
will be linearly independent solutions of (2.7) on /. A solution matrix
whose columns are linearly independent on 7 is called a fundamental matrix
for (2.7) on 1. Let us denote the fundamental matrix formed from the solu-
tions ¢, ¢, ..., ¢, as columns by ®. Then the statement that every solu-
tidn  is the linear combination (2.9) for some unique choice of the constants

Cyy -+ €, 18 simply that
Y(t) = D7) (2.10)

where @ is the fundamental matrix constructed above and ¢ is the column
vector components ¢y, ..., ¢,. Itisclear that if ®(¢) is any other fundamental

matrix of (2.7) in Z, then the above solution ¥ can be expressed as
V(i)=&  foreverytonl

for a suitably chosen constant vector & Clearly every solution of (2.7) on 1
can be expressed in this form by using any fundamental matrix.

¢ EXERCISE

18. Given that Y(t,) = o, determine the vector &.

We see from the discussion above that to find any solution of (2.7) we need
to find n linearly independent solutions on J, or equivalently, we need to find
a fundamental matrix. A natural qQuestion, then, is the following: Suppose
we have found a solution matrix of (2.7) on some interval . Can we test in
some simple way whether this solution matrix is a fundamental matrix? We
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shall see (Theorem 2.4) that any solution matrix ®(¢), not necessarily the
special solution matrix uvsed in (2.10), is a fundamental matrix of (2.7) if and
only if det ®(¢) # Oonl. However, it is convenient to establish an important
auxiliary result first,

Theorem 2.3. (Abel’s Formula.) If ® is a solution matrix of (2.7) on I and
if to is any point of 1, then

det ©(1) = det O(1,) exp U Z a;{s) ds] foreverytinl  (2.11)

to j=1

It follows immediately from Theorem 2.3 (since ¢, is arbitrary) that either
det d(¢) # O'for each ¢ in I or det ®(t) = O for every ¢in I.

SRS Let us denote the columns
roof of Theorem 2.3. Let us denote the colu samwu_yq;l,lpz,.. ,q.u,,,

let d), have components (¢;;, z;, ..., ¢,;). Then the statement that ¢; is a
solution of (2.7) on I can be written in terms of components as

=Y apdy (hj=1,...,n) (2.12)

It is now necessary to recall that the derivative of det ® is 2 sum of n determi-
nants:

?11 ¢z ¢'1; @'in
¢21 ¢22 f.sz @ 2n
(det @) = : : . :
qbni ¢n2 ¢nj e ¢nn
¢11 ¢12 ¢1j ¢’1n
®2; ¢22 05'21' P 2n
. A . .
+ o1l oL TraJ T on +...
¢n1 ¢u2 e ¢uj e ¢nn
¢11 @12 ¢1j @ 1
+ . . . .
¢’n—1,1 ¢n—1,2 ¢’n—1,j ¢’n 1,n
d);al ¢:12 ¢:IJ ¢ma




2.3 Linear Homogeneous Systems 47

This fact is easily proved by induction.
Using (2.12) we obtain

Za1k¢k1 Zalk¢k2 Za1k¢un
k=1 k=1 k=1
(det q))f = ¢21 ¢22 T ¢2|‘l
‘i)nl 4’;:2 T d)rm
¢’11 4’12 ¢1n
Z Aoy Pry Z Ay Pz - Z a3k Pxn
k=1 k=1 K=1
+ ¢3y ¢32 @3 + -
¢nl ¢n2 ¢rm
@11 ¢12 P 1n
. . . .
¢’n—1,1 ¢n-—1,2 ¢'n-1,n
Z Qi Pr1 Z Qe brz Z Ak Pin
k=1 k=1 k=1

Using elementary row operations, we can evaluate each determinant. For
example, in the first determinant we multiply the second row by a;,, the
third by a@,5, ..., the nth by a,,, add these (n — 1) rows, and then subtract the
result from the first row. This leaves a,, as a factor of the resulting first row.
Proceeding similarly with the other determinants we obtain

(det @) = a,, det ® +a,, det @ + - + a,, det D

for every ¢ on I, or equivalently,
(det @) = ( Y a,‘k(t)) det © (2.13)
k=1 ‘

which is a first-order scalar equation for det ®. Its solution is seen to be
(2.11) without difficulty. §
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¢ EXERCISES

19. Show that (2.11) is the unique solution of the scalar equation

y = (Z auc(t))y

k=1

satisfying the initial condition y(#,) = det @(o).

20. Show that the jth determinant in the expression for (det @) in the proof of
Theorem 2.3 is a;; det @.

21. Write the scalar equation ao(?)y™ + *** + an-1(t)y" + a«(t)y =0 where
ao, dy, ..., a, are continuous on I and ao(t) 0 on I as a system. Then show
that for this specific system det @ is precisely the Wronskian (see Section 3.3, p. 75
of [2]). Theorem 2.3 for this scalar equation is the same as Theorem 3.4, p. 78

of [2],if n=2.

Theorem 2.4. A solution matrix ® of (2.7) on an interval I is a fundamental
matrix of (2.7) on 1 if and only if det ®©(¢) # O for every t on I.

Proof of Theorem 2.4. 1f det ®(¢) # 0 for every ¢ on I, the columns of the
solution matrix are obviously linearly independent on 7, and therefore @ is a
fundamental matrix of (2.7} on L

Conversely, if @ is a fundamental matrix, then every solution ¢ of (2.7) on
I has the form ¢(t) = ®(¢)c for some constant vector c. For each fixed t, in 7
and any vector ¢(t,), because ®(t) is a fundamental matrix, the system of
algebraic equations ¢(z,) = ©(¢,)c has a unique solution for ¢. Therefore
(see property (iii) of determinants given in Section 2.1), det ®(¢,) # 0. Now
Abel’s formula (Theorem 2.3) gives det ®(¢) # 0 for every ¢ on I. This
completes the proof of Theorem 2.4, |

The reader is warned that 2 matrix may have its determinant identically
zero on some interval, although its columuns are linearly independent. Indeed,
let

I ¢t t?
O()=|0 2 ¢
0 00

Then clearly det ®(1) =0, — 0 < ¢ < o0, and yet the columns are linearly
independent. This, according to Theorem 2.4, cannot happen for solutions
of (2.7).
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¢ EXERCISE

22. State Theorem 2.4 for the scalar equation in Exercise 21 (p. 48) in terms of
the Wronskian determinant. (For n =2, this is Theorem 3.3, p. 76 of [2].)

It is important from the practical point of view to remark that Theorems
2.3 and 2.4 together imply that to test whether a solution matrix of (2.7)is a
fundamental matrix, it suffices to evaluate its determinant at one point!
This point can frequently be chosen to make the calculation a simple one.

o EXERCISES
23. Show, with the aid of Theorem 2.3, that

cost sint
—sint¢ cost

is a fundamental matrix for the system »' = 4y where

0 1
A= o
v'24. Show, with the aid of Theorems 2.3, 2.4 that

( exp (rit)  exp (r2t) )

riexp (rit) raexp(rat)

is a fundamental matrix for the system y’ = 4y where

A:( 0 1)
—adz: —a

and r,, r, are the distinct roots of the quadratic equation z? + @1z +a, =0.
(We shall learn in Section 2.5 how to construct this fundamental matrix.)

If ® is a fundamental matrix of (2.7) on 7, and C is a nonsingular constant
(complex) matrix, then ®C is clearly a solution matrix (prove this), and since
det ®C = det @ - det C it follows from Theorem 2.4 that ®C is also a funda-
mental matrix on 1.

¢ EXERCISE

25. Show that C®, where C is a constant matrix and ® is a fundamental
matrix, need not be a solution matrix of (2.7).

Now suppose © and W are two fundamental matrices of (2.7) on /. Letting
Y, be the jth column of ¥, it follows from (2.10) that §; = &¢;,j=1, ..., n,
where c; are suitable constant vectors. Therefore if we define C as the
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constant matrix whose columns are the vectors ¢;,j=1,...,n, we have at
once that W(¢) = ©(¢#)C for every ¢t on I. Since det ® and det ¥ are both
different from zero on I (why?), we also have det C # 0 so that C is a non-
singular constant matrix, These remarks put together give the following
relation between different fundamental matrices.

Theorem 2.5. If © is a fundamental matrix for y' = A(t)y on I and C is a

nonsingular constant matrix, then ®C is also a fundamental matri

A(t)y on 1. Every fundamental matrix of (2.7) is of this form for some non-
singular matrix C.

y for v/ =
ry

v g

¢ EXERCISE

26. Consider the system ¥’ = A(¢)y where 4(¢) is continuous for — oo <t < 0
and A(r) is periodic with period 2w, that is, A(t + 2n) = A(¢). Show that if

P Y PN P Y S PIRp Iy Y, Iy S-S, ot bt o dlaman mm da AR 1 AN FXr: +.
WAL 15 d TULUAILIICLHILA] ITIAUIA 01 — W < < W, HICL dU Iy WAL T 27T ). LExirie.

Substitute and apply the theory of this section.] Thus, prove that
O(t + 2m) = O()C

for some nonsingular matrix C.

The result established in Exercise 26 is fundamental to the theory of linear
systems with periodic coefficients. To proceed with this theory would re-
quire the result that the nonsingular constant matrix C has a logarithm,
treated in Appendix 3. The interested reader may return to this topic in
Section 2.9 after he has completed Section 2.6.

¢ EXERCISES
27. (a) Show that
12t
o =5 i)
is a fundamental matrix for the system y’ = A(¢)y where

0 1
AE) m(——Z/tz 2/:)

on any interval I not including the origin.
(b) Does the fact that det ®(0) = 0 contradict Theorem 2.4?
28. Show that if a real homogeneous system of two first-order equations has
a fundamental matrix

el't e—!l
je't —je~"
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then
cost sint
—sint cost
is also a fundamental matrix. Can you find another real fundamental matrix?

The reader who is acquainted with the theory of scalar linear equations of
order »n should have noticed that we have now obtained here as a very special
case essentially all of that theory, and that this has been accomplished with no
additional effort.

2.4 Linear Nonhomogeneous Systems

We now use the theory developed in Sections 2.2 and 2.3 to discuss the
form of solutions of the nonhomogeneous system

y = A(t)y + g(t) (2.14)

where A(t) is a given continuous matrix and g(¢} is a given continuous vector
onaninterval . The entire development rests on the assumption that we can
find a fundamental matrix of the corresponding homogeneous system y’' =
A(t)y. The vector g(t) is usually referred to as a forcing term because if
(2.14) describes a physical system, g(f) represents an external force. By
Theorem 2.1 and its corollary, we know that given any point (¢y, n), 7, in I,
there is a unique solution ¢ of (2.14) existing in all of 7 such that &(z,) = 1.

To construct solutions of (2.14) we let (7} be a fundamental matrix of the
homogeneous system y' = A(¢)y on I; @ exists as a consequence of Theorem
2.2 (see also remarks immediately following its proof). Suppose ¢; and ¢,
are any two solutions of (2.14) onZ. Then ¢, — ¢, is a solution of the homo-

genenus svetem on J
g 8§ system on /1,

A A W e

¢ EXERCISE

1. Verify this fact.

By Theorem 2.2, and the remarks immediately following its proof, there
exists a constant vector ¢ such that

¢, — ¢, = Dc (2.15)
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¢ EXERCISE

2. Assuming uniqueness for the solution of the initial value problem for the
homogeneous system, use the above argument to establish uniqueness of solutions
of the initial value problem for (2.14),

Formula (2.15) tells us that to find any solution of (2.14), we need only
know one solution of (2.14). (Every other solution differs from the known
one by some solution of the homogeneous system.) There is a simple
method, known as variation of constants, to determine a solution of (2.14)
provided we know a fundamental matrix for the homogeneous system y’ =
A(t)y. Let ® be such a fundamental matrix on /. We attempt to find a
solution  of (2.14) of the form

V() = ©()v(r) (2.16)
where v is a vector to be determined. (Note that if v is a constant vector, then
Y satisfies the homogeneous system and thus for the present purpose v(¢) = ¢
is ruled out.) Suppose such a solution exists. Then substituting (2.16) into
(2.14), we find for all ¢t on I

V(1) = Q'(O)v(t) + D()v'(t) = A(D)D()v(t) + g(2)

Since ® is a fundamental matrix of the homogeneous system, ®’(7) =

A(t)D(t), and the terms involving A(¢)®@(¢)v{s) cancel. Therefore if Y(¢) =
®(t)v(t) is a solution of (2.14), we must determine v(¢) from the relation

O()v'(1) = g(0)

Since @(¢) is nonsingular on 7 we can premultiply by ® ~'(¢) and we have, on
integrating,

v(t) = f;cp-l(s)g(s) ds  (t,,tonl)
and therefore (2.16) becomes

U(t) = O(1) j‘ :qr )a(s)ds  (ty,ton ) (2.17)
Thus if (2.14) has a solution § of the form (2.16), then ¥ is given by (2.17).

Vo Wy, [N (Y « S PO MY o T I A [ . . S oI Puprpy g [P S S N Py
LOonversely, UClLe Y by (£.1/7), WICIC W 1d d 1URUALLCTILd]L HIdilIA Of LIC
homogeneous system on /. Then, differentiating (2.17) and using the funda-
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mental theorem of calculus, we have

ZORLI0Y] 01 (s)g(s) ds + DO (1)g(r)

= 4000) [ ™ H(98(6) ds + ()
and using (2.17) again,

V'(t) = A(V() + g(t)

for every £ on I. Obviously y(r,) = 0. Thus we have proved the variation
of constants formula:

Theorem 2.6. If ® is a fundamental matrix of y' = A(t)y on I, then the
Junction

¥ = o) [ "©(s)e(s) ds

is the (unique) solution of (2.14) satisfying the initial condition
V(t) =0 and valid on 1

Combining Theorem 2.6 with the remarks made at the beginning of this
section, we see that every solution ¢ of (2.14) on 7 has the form

O() = du(1) + V(?) (2.18)

where Y is the solution of Equation (2.14) satisfying the initial condition
Y(1,) =0, and ¢, is that solution of the homogeneous system satisfying the
same initial condition at ¢4 as ¢, for example, ¢,(7;) = 1.

¢ EXERCISES

i 2 1
2
Sin t . ez: tezt . .
g(r) = (cos ,)- Verify that ®(t) = (0 e“) is a fundamental matrix of

y’ = Ay. Find that solution ¢ of the nonhomogeneous system for which

¢(0>=(_}).
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4. Find the solution ¢ of the system y’ = Ay + g(t) with A the same as in

Exercise 3 above and with g(t) = (eoz,), satisfying the initial condition $(0) =

)

5. Consider the system y’ = A(t)y + g(¢), where

(2 2) == ()

/

I
Find the solution ¢ satisfying the initial condition ¢(2) = ( ) and determine the

4
interval of validity of this solution. [Hint: Use the fundamental matrix given
in Exercise 27, Section 2.3.].

6. Consider the second-order scalar equation

Y+ p@)y" +aq(t)y =f(t) (2.19)

with p, g, f continuous on an interval I. Let ¢, ¢, be linearly independent
(scalar) solutions of the homogeneous equation associated with (2.19).
(a) Write (2.19) as an equivalent system of two first-order equations and show
that

wo-(% %

is a fundamental matrix of the associated homogeneous system on 1.
(b) Use Theorem 2.6 to find the solution Y of the inhomogeneous system in
part (a) for which W(to) =0, to on I. (Or obtain this solution directly.)

(c) Writing { = (i ), show that

C o) hi(s) — u(t)ha(s)
‘o W (s)

(t) = f(s)ds

where W (t) = det @(z), is that solution of (2.19) for which ,(#,) =0,
Yi(to) = 0. (Compare with formula (3.34), p. 105 of [2]; where ao(?) = 1,
a,(t) = p(t), ax(t) = 4(1).)

7. Consider the scalar equation of order »,
Li(y) = ao(t)y™ + ai(t)y" D + - + ault)y = f(¢)

where @o, @1, ..., an, and f are continuous on an interval 7 and a.(t) #0 on 1.
Let ¢4, ..., ¢, be n linearly independent solutions of the homogeneous equation
(a) Write the equation L.{y) =f(¢) as an equivalent system of »n first-order
equations and find a fundamentai matrix of the corresponding homoge-
neous system.
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(b) Use Theorem 2.6 to find a particular solution of the inhomogeneous
system and thus deduce the general solution of L.(y) =f(r). (See also
pp. 107-108 of [2].)

Exercises 6 and 7 above show that the entire theory of the linear nonhomo-
geneous scalar equation is contained in the development of this section.

2.5 Linear Systems with Constant Coefficients

The results of Section 2.4 show that in order to solve any linear system we
need to find a fundamental matrix of the corresponding homogeneous system.
If the homogeneous system has constant coefficients, that is, A({) =4, a
constant matrix, we can obtain explicitly a fundamental matrix of the linear
homogeneous system

y = Ay (2.20)

and use this fundamental matrix to solve the inhomogeneous system by
Theorem 2.6. We must first define the exponential of a matrix, e™ or exp M,
where M is an n-by-n matrix. We say (see also the discussion of convergence
of a sequence of matrices using the matrix norm (2.5)) that a series ) 2., U,
of matrices converges if and only if the sequence {> 7_, U,} of partial sums con-
verges, where convergence of a sequence of matrices is defined in Section 2.1.
The limit of this sequence of partial sums is called the sum of the series.

Combining the definition of convergence of a sequence of matrices with the
Cauchy criterion for sequences of real or complex numbers, we can establish
the following result:

Lemma 2.1. A sequence {A,} of matrices converges if and only if given a
number & > 0, there exists an integer N = N(g) > 0 such that |A,, — A,| <e
whenever m, p > N.

o EXERCISE
1. Interpret Lemma 2.1 to obtain a similar criterion for the convergence of a
series of matrices X, Uk.

We now define exp M to be the sum of the series
2 M3 Mk
expM=E+M+§*+—3'T+"'+?!*+"' (2.21)

(E is the n-by-n identity matrix.) We have a right to do this only if we can
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first show that this series converges for every complex n-by-n matrix M. To
see whether it does, we define the partial sums
M? M*

Sc=E+M+ort b o (2.22)

and we use the Cauchy criterion for sequences of matrices (Lemma 2.1 above).
Thus using the matrix norm, we have for m > p

= M

SZ

Z S k!

k=p+1

1S, — S,

e EXERCISE

2. Use properties of the matrix norm to justify the above calculation; note that
this calculation is possible because the sums in (2.22) are finite.
From elementary calculus we know that for any matrix M, Ml =
2o (M|*kY) (note that M| is a real number). Hence the sum
Sm_ (1M |}k Y) is the partial sum of a series of positive numbers that is known
to converge. Therefore, by the Cauchy criterion for convergence of series of
real numbers, we see that given ¢ > 0, there exists an integer N > 0 such that

| S — Spl <& form,p>N

This proves the convergence of the series on the right side of (2.21) and thus
establishes the validity of (2.21) for every matrix M.
Noting that |E| = n, we have immediately

|M|* IM]*
Horr b

jexp M| < (n = 1)+ 1+ M| + = 7

=(n—-1) + M
It can be shown that if P is another #-by-n matrix, we have
expM-expP=exp(M+ P) (2.23)
if M and P commute (MP = PM).

e EXERCISE
3. Prove (2.23).

A useful property is that if T is a nonsingular n-by-n matrix,

T ~exp M)T = exp (T ~*MT). (2.24)
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s EXERCISE
4. Verify (2.24). [Hint: Use (2.21).]

We now establish the result for linear systems with constant coefficients
y = Ay (2.20)
Theorem 2.7. The matrix
®(r) = exp(A4t) (2.25)
is the fundamental matrix of (2.20) with ®(0) = E on — o0 <t < 00,
Proof of Theorem 2.7. That ®(0) = E is obvious from (2.21). Using
(2.21) with M = At (well defined for ~o0 <t < 00 and every n-by-n matrix

A), we have by differentiation of the power series (which is easily justified)

A2t A3t2 Aktk—-l
Ay =d+ 21 20 L
@p A =4+ T+ S+ T

+ - =4 exp At

— o <t < oo. Therefore exp At is a solution matrix of (2.20) (its columns
are solutions of (2.20)). Since det ®(0) = det £' = I, Theorem 2.3 (Abel’s
formula) with #, = 0 gives

det (exp At) = exp ( ¥ akk)t #0 for -0 <t< o0
k=0

Therefore by Theorem 2.4, ®(¢) is a fundamental matrix of (2.20). This
completes the proof of Theorem 2.7. J}

e EXERCISE
5. Prove
Alt A3t2 Aﬂtk-l

(exp At) =A+—1!—+'—2!—+'“+(k_1)!

+: —o<t<

It follows from Theorem 2.7 and Equation (2.10), that every solution ¢ of
the system (2.20) has the form

d(t)=(expAt)e (—o<t< 0) (2.26)

for a suitably chosen constant vector ¢.
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e EXERCISES
6. Show that if ¢ is that solution of (2.20) satisfying ¢(t,) =n, then
$() = [exp At — to)In (—o<t< ™) (2.27)
7. Show that if @(¢) = e*4, then @ ~'(¢) =e~"4,

We now proceed to find some fundamental matrices in certain special
cases, that is, we evaluate exp(z4) for certain matrices 4.

Example 1. Find a fundamental matrix of the system y = Ay if 4 is a
diagonal matrix,

d, 0
. d,
A= .
\o 4
From (2.21)
d, 0 d,? 0
A —_— E ! . t ) . tz ..
exp (At) =E + . ot . 2 + -
0 d, 0 d,?
dF 0
¢k
+ k_ +
0 dr
exp (d,?) 0
exp (d, 1)
\ 0 exp (d, 1)/

and by Theorem 2.7 this is a fundamental matrix. This result is, of course,
obvious since in the present case each equation of the system is y; = d; y,
(k =1, ..., n) and can be integrated.

Example 2. Find a fundamental matrix of y' = Ay if

-6
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Solution.

Since

(6 9+ o

and since these two matrices commute, we have

30 0 1
exp At = exp (0 3)t * exp (0 O)t
S (e 0 0 1 0 1\2 ¢
=(5 &)[E+(o o)+ (0 o) m*]

2
But (g (l)) = (g g) and the infinite series terminates after two terms.

Therefore,

_ oafl ¢
exXp At =e¢ (0 1)

and by Theorem 2.7 this is a fundamental matrix.

e EXERCISES

8. Find a fundamental matrix of the system y’ = Ay if

and check your answer by direct integration of the given system.
9. Find a fundamental matrix of the system y’ = Ay if

01 0
1
0 o,

where A4 is an n-by-n matrix.



60 2 Linear Systems

10. Find a fundamental matrix of the system y’ = Ay where A is the n-by-n
matrix

2 1 0
2 1
A=
1
0 2

The reader will have noticed that the examples and exercises presented so
far, all of which involve the calculation of ¢'4, are of a rather special form.
In order to be able to handle more complicated problems and in order to
obtain a general representation of solutions of (2.20) in a more explicit form
than merely exp (f4) (that is, if we want to evaluate explicitly the entries of
the matrix exp (24)), we need to introduce the notion of eigenvalue of a
matrix.

Consider the system y' = Ay, and look for a solution of the form

d()=eMe  (c#0)

where the constant 4 and the vector ¢ are to be determined. Such a form is
suggested by the above examples. Substitution shows that e*’c is a solution
if and only if

Aet'c = de*Me
Since e** # 0, this condition becomes
(AE—- A =0

which can be regarded as a linear homogeneous algebraic system for the
vector ¢. This system has a nontrivial solution if and only if 4 is chosen in
such a way that

det (AE— A)=0

This suggests the following definition.

If A is any n-by-n matrix, the polynomial in 4 of degree », p(A) =
det (AE — A), is called the characteristic polynomial of A; its » roots (not
necessarily distinct) are called the eigenvalues (also characteristic values)
of A. We remark that if 4 = 0 is not an eigenvalue of 4, the constant term

of p(2) is p(0) = —det 4 # 0,and thus A is nonsingular.For a given eigen-
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value 44, we say that a nonzero vector ¢, is an eigenvector corresponding to
the eigenvalue 1, if and only if (4g E — A)ey = 0.

Example 3. Find the eigenvalues of the matrix

A=y

Consider the equation det (AE — 4) = 0.

A—2 -1
1 A—4

)=(,1-2)(,1—4)+1=,12-6,1+9=0

Thus 4 = 3 is an eigenvalue of A of multiplicity two. To find a corresponding
eigenvector we consider the system

BE-A}c=0

or

l "_1 C 1) _ 0 or Cl - 02 - 0
1 —1fle¢;/ 10 ¢ —¢y =0
Any vector ¢ with components ¢, = ¢, , where ¢;, ¢, is a solution

1 . . .
Thus any vector ¢ = a(l , where « is any scalar, is an eigenvector correspond-

ing to the eigenvalue A =3. The reader will note that even though the
eigenvalue has multiplicity two, the corresponding eigenvectors form a sub-
space of E, whose dimension is only one.

¢ EXERCISES

11. Compute the eigenvalues and corresponding eigenvectors of each of the
following matrices. In each case, determine the subspace spanned by the eigen-

vectors.
-3 1 7
(@) (_g g) G| 0 4 —1
00 2
3 -1 —4 2
10 3\ {
(c) /s 1 -1 (d) i ? _g —g
\s 1 - \1 2 —1 —3}
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12. Show that if A4 is a triangular matrix of the form

dir diz *° din
azz \
0 .
A= 0
l ' |
\0 -+ 0 aw
the eigenvalues of Aare A =a. (i =1, ..., n), and the corresponding eigenvectors
v;(i=1,...,n) form a basis for E,.

Suppose the constant n-by-n matrix A has »n linearly independent eigen-
vectors vy, ..., v, corresponding to the eigenvalues 4,, ..., 4,. These vectors
form a basis of E,. In particular, if 4,, ..., 1, are distinct, this will be the
case (see Appendix 1, Theorem 1). It follows from our earlier discussion that
exp (A;1)v; (j=1, ..., n) are solutions of y’ = Ay (the reader may easily
verify this directly by substitution). Since these solutions are obviously
linearly independent on — o0 < ¢ < o0 it follows that the matrix ®(¢) whose
columns are exp (4,¢)vy, ..., exp (4,¢)v, is a fundamental matrix on
-0 <t < o00. We shall denote this matrix by

©(#) = (exp (A11)v1, - - -, €xp (Au 1)V,)

Incidentally, since e is also a fundamental matrix (even though we have
not calculated it explicitly), it follows from Theorem 2.5 that

et = @(1)C

for some nonsingular constant matrix C. This technique can always be used
to construct a fundamental matrix if the eigenvalues of A are distinct.

If the eigenvalues are not all distinct, it may still be possible to find n
linearly independent eigenvectors, for example, if 4 is a diagonal constant
matrix whose diagonal entries are not all distinct or if A4 is the triangular
matrix of Exercise 12. In this case we may again apply the above technique
to find a fundamental matrix of y' = Ay. However, the technique will fail
if the eigenvectors do not form a basis for E,. As shown in Example 2,
there may then be solutions that cannot be expressed using only exponential
functions and constant vectors.

Example 4. Find a fundamental matrix of the system y’ = Ay, where

3 s
A=(_S 3).
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The eigenvalues of 4 are roots of the equation

3J—4 5

det(A—-/lE)=det( _5 3.3

)=12—61+34=0

Thus A; ; =3 1 5i. The cigenvector u = (::1) corresponding to the eigen-
2

value 4, = 3 + 5i must satisfy the linear homogeneous algebraic system

e (3 3o

Thus u,, u, satisfy the system of equations

—iul +U2=0

_ul _iu2=0

and therefore

=)

is an eigenvector for any constant «. Clearly it spans a one-dimensional
U

, ) corresponding to the eigen-
2

subspace. Similarly, the eigenvector v = (

value 1, = 3 — 5i is found to be

)

for any constant . Clearly it also spans a one-dimensional subspace and
since

det

]
i J“2¢°

the eigenvectors u and v are linearly independent; in fact, they form a basis
for E,.

Since 4, =3 + 5i and A, = 3 — 5i are eigenvalues of 4 having u, = (:)

and u, = (;) as corresponding respective eigenvectors, it follows from the
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discussion after Exercise 12, p. 62, that

o (1) =expt(3 + 5:')(;) and ¢,(¢) =exp (3 — 5i) (11)

are solutions. Moreover, ¢, and ¢, are lincarly independent and therefore

o(1) = (&?xp t(3+5i) iexpt(3—5i)

"7 \iexpt(3+5i) expit3—5i))
is a fundamental matrix. Observe that det ®(0) = 2, which gives another
proof of the linear independence of the solutions ¢,, ¢, (by Theorem 2.4,
p. 48).

To determine the form of e'4 when A is an arbitrary matrix, we require the
following result from linear algebra (see Appendix 1). We note that the
following method, which leads to the formula (2.30) below, is always applic-
able, and includes the technique described above as a special case.

Let A be a (complex) n-by-n matrix. Compute A;, 4,, ..., 4, the distinct
eigenvalues of A with respective multiplicities n,, n,, ..., n,, where
ny +n, + -+ +n, =n. Corresponding to each eigenvalue A; of multiplicity
n; consider the system of linear equations

(A—MEYx=0 (j=1,2,...,k) (2.28)

The solutions of each such linear system obviously span a subspace of E,
which we call X; (j=1,2,...,k). The result from linear algebra needed
(see Appendix 1) tells us that for every x € E, there exist unique vectors
Xi, X2, -.+5 X, Where X; € X;, such that

X=Xy +X3+ 4+ X (2.29)

and x;e X;(j=1,...,k). Itis important to know that the linear algebraic
system (2.28) has n; linearly independent solutions so that the dimension of
X;isn;. We note that if all the eigenvalues of A are distinct, that is, if each
n;=1(j=1,..., k) and k = n, then the vectors x,, x,, ..., X, are suitable
multiples of fixed eigenvectors that are linearly independent and span E,.
Thus, if v;, ..., v, is a fixed set of linearly independent eigenvectors of A and
if X is an arbitrary vector, the vectors x; are given by x; = ¢;v; for some
scalars ¢; (j=1,...,n).

In the language of linear algebra, E, is the direct sum of subspaces
X Xyyooy X,

E=X®X,® @ X
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such that the dimension of X, is n;, X, is invariant under A, and the trans-
formation defined by the matrix 4 — 4; E is nilpotent on X of index at most
n, (this is just another way of stating (2.28)).

It may, in fact, happen that in (2.28) (4 — 4, E)*x =0 forall x in X; and
g < ny, as the following example demonstrates.

Example 5. Consider the matrix

4 1 0 00
04100
A=]0 0 4 0 O
0 00 40
0000 4

then £, is £, and 4 = 4 is the only eigenvalue, with multiplicity 5; that is,
k = 1. Since there is only one eigenvalue, no decomposition into subspaces
is necessary, and E5 = X;. According to the theorem, n, = 5, so that cer-
tainly (4 — 4E)°> = 0. However, as the reader can easily verify (4 — 4E)® = 0
but (4 —4E)* #0. Thereforeg=3<n, =5.

To apply this theory to the linear system y’ = Ay, we look for that solution
¢(2) satisfying the initial condition ¢(0) = n. By Theorem 2.7., we know that
(1) = '*n and our object is to evaluate e*4q explicitly, that is, to see exactly
what the components of ¢ are. We compute 4,, 4,, ..., 4, the eigenvalues
of A of multiplicities ny, n,, ..., ., respectively. We apply the theorem to
the initial vector i and in accordance with (2.29) we have

N=vy+vy+" "+V
where v; is some suitable vector in the subspace X; (j=1, ..., k). Since
the subspace X is generated by the system (2.28), v, must be some solution
of (2.28). Now e'4n=Y)7%., *v;, and we may write
e4v; = exp (4,1) exp [(4A — A; E)t]v,
t2
= eXp (Ajt)[E + (A - A E)+ 5—!(‘4 —LEP .-

rnj_'l

(ﬂj - 1)!

+ (4-12, E)"-r‘l]v,

for —o0 <t < oo, where the series in parentheses terminates because v; is
a solution of (2.28); thus the term (4 — 1; E)"v; = 0 and all subsequent terms
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arezero. Observethatthevectorsw; = (4 - 4; E)’v;,forp=0,1,...,n;, -1,
belong to the subspace X; because

(A - le)"’WJ = (A - AJE)M[(A - AjE)pVJ] = (A - /1} E)nj+pv‘, =0

Thus the vector e'4v; remains in X, for —c0 <t < . Applying the above
calculations to the solution ¢(f) = e'*n of y' = Ay, we have

¢(I)=e'An=e'AiVJ=ie‘AvJ
=1 Jj=1

k nj=1
— — e — ny-1
—'j;exp (}.jt)[E +HA—-AE)+ -+ =D (4 - A,Ey ],,j
or finally, the solution ¢ satisfying ¢$(0) = n is
k nj=—1 ti
d(1) =) exp (ljt)[ Y TG l,E)‘]v,-, (—o<t<w) (2.30)
Jj=1 j=0 1!

We point out again that if (4 — 4; E)" = 0 where g; < n;, then the sum on
i in Equation (2.30) will contain only g,, rather than#;, terms. This formula
also tells us precisely how the components of the solution behave as functions
of t for any given coefficient matrix A4.

Example 6. Solve the linear system ¥y’ = Ay if A is the matrix in Example 3
above. Also obtain a fundamental matrix.
From Example 3 we know that 4, = 3 is an eigenvalue of multiplicity 2.

In the above notation, n, = 2. Therefore only the subspace X| in this case
(X, = E,) is relevant. We readily calculate

-1 1
a-se- (1)
and we also see that
_ 2_(0 O
(A - 3E) --(0 0)

so that (2.28) is satisfied for every vector in £,. Substituting in (2.30) with
n=2n= ('h)’ we find
N2

$(t) = e¥[E + t(4 — 3E)]n
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and therefore

wo=ele+A(Z )]G

- es:['h +H—m + '?z)]
n2 + H(—=ny +13)

(2.31)

is the solution with &(0) =n. To construct a fundamental matrix we may
appeal to Theorem 2.7, which says that exp 74 is a fundamental matrix. So
far, we have computed, in Equation (2.31), exp (t4)q for an arbitrary constant
vector . But

1 0 1 0
exp A = exp tA(0 1) = (exp tA(O), exp tA(l)),

{1\ {0\
where the solution vectors exp tAu)) and exp IAH) are found from (2.31)

by substituting first n = ((l)) and then n = (‘1)), respectively. Therefore, a

fundamental matrix is

- a3t I"‘t t
@(r)—exptA—e( t 14t

Example 7. Consider the system

X{=3x; ~ X3 + X3
!
x2=2x1 +x3

X3= X;—X;+2x;
which has coefficient matrix
-1 1 \

3
A'={2 0 1
\1 -1 2}

Find that solution ¢ satisfying the initial condition

and also find a fundamental matrix.
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The characteristic polynomial of A is det (AE — 4) = (1 — 1)(4 — 2)?, and
therefore the eigenvalues are 4, = 1, 1, = 2 with multiplicities n; = 1, n, = 2,
respectively.

In the notation of (2.28), we consider the systems of algebraic equations

(A-E)x=0 and (4-2E)*x=0

in order to determine the subspaces X, and X, of E. Taking these in suc-
cession, we have first

2 —1 1 2x1—x2+x3=0
(A-Ex={f{2 -1 1]x=0 or 2x, —x,+x;=0
l —I 1 xl _ -xz + x3 = 0
&)
Thus X, is the subspace spanned by the vectors [ x, | with x; =0, x, = x,,
X3

and clearly dim X; = 1. Next

0 00
(A~2E)2x=(——1 1 O)x=0 or ~X1H¥=0

110 —x % =0
Xy
Thus X, is the subspace spanned by vectors |x,| with x; =x, and x,
X3

arbitrary; clearly, dim X, = 2. The reader is advised to picture these sub-
spaces in £5. Observe that the rank of the matrix A — Eis 2. Thus by a
well-known result of linear algebra, dim X; =3 —2=1. Similarly, the
rank of the matrix (4 — 2E)? is clearly 1 and dim X, =3 —-1=2.

We now wish to find vectors v, € X|, v, € X, such that we can write the
initial vector n as

n=Vyt+V;
0 i
Since v, € X;, v, =| a} for some scalar «, and since v, € X,, v, =| B8] for
« Y

some scalars 8, y. Therefore

fm\ [0\ (A

W )
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sothat B =5, a + f=n,, « +y =1n3;. Solving these equations for «, B, 7,
we find that o = 5, —#;, B =1,y =13 —n2 + 4, and

0 M
YiI=\{N"2—M ¥, = 1
N2 —m ny— M+ Mm

Thus by the formula (2.30), we find that the solution ¢ such that ¢(0) =y
18 given by

&) = e'v, + e*(E + H{(A — 2E))v,

0 1 -1 1 o
= e'(n2 — ;h) + ez’(E + t(2 -2 1))( n )
ny— M 1 =1 0//\n—n2+mnm
0 1+t -t 1t m
= e'(r,rz - m) + ez‘(?.t 1 -2t t)( ;h )
N2 =M t =t Y \—m+mn

To find a fundamental matrix, we proceed as in Example 6. Putting n

0/ \0/ \1
early independent solutions that we use as columns of the matrix

1 0 /0
successively equal to (0), (1), (0) in this formula, we obtain the three lin-

(1 + H)e* —te?* te®
(D(f) — etA =1 —¢ + (I + t)e‘.’t e — teZ: tez:
—e' + o2t ol — o2t g2t

Hence ®(t) is the fundamental matrix that reduces to the identity matrix
when ¢ = 0.

Example 8. Find a fundamental matrix for the system y' = Ay with

4 1000
0 4100
A=10 0 4 0 O
000 40
0 0 00 4

Using the results of Example 5, we have (4 — 4E)® = 0, sothat (4 — 4EY®’x =0
for any vector x in £5 and the initial vector ) remains arbitrary. Since there
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is only one eigenvalue (1 = 4), only the subspace X; = E; is relevant and we
have, from (2.30),

&(r) = e*[E + #(A ~ 4E)+ (A 4E)'In.

Therefore
- 01000 001 0 0\
00100 {00000
ot)=c*|E+7J0 0 0 0 0)]+={0 0 0 0 o]
00000 2looooo
i 00000 000 0 0/

Again letting n successively assume the values
1 0 0 0 0
0 1 0 0 0
N =|0} M=|0}) ns=}1} na=|0} n5=|0
0 0 0 1 0
0 0 0 0 1

in the above formula, the resulting solutions will be linearly independent and
can be used as columns of a fundamental matrix. Thus

t2
1!2—!00
401 ¢t 0 0
®D=¢16 0 1 0 0
00 0 1 0
0 0 0 0 1

is a fundamental matrix.

¢ EXERCISES

Find a fundamental matrix for each of the following systems y’ = Ay having
the coefficient matrix given. Also find a particular solution satisfying the given
initial condition.

(3 3 0= ()
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{ 3 -1 —¢4 2\ { 1\
te. z—i:g-;;“’m-—?'
\i 5 o/
[Note: The characteristic polynomial is (A — 1)? - (A + 1)2.]
17. Find that solution of the system
Y1 =Yy1+ yz-+8in¢
y; =2y, +cost
such that »,(0) = 1, y,(0) =

Py ey e tha no
5UIIUUUD Dya‘-hlll, lll‘.ﬂ‘il oW

Aannatante farm 1la€nQ 1ﬂ’,/|'|
DUIJDL“]AI.D AL ARILLILGE 11k WIWW L LV S e 1 J

Consider the scalar linear differential equation of second order
V'+py +qy=0 (2.32)

where p and g are constants. We can solve this equation as a special case of
the theory developed here as outlined in the following exercises.

e EXERCISES
18. Show that Equation (2.32) is equivalent to the system y’ = Ay with

(2

and compute the eigenvalues A,, Az of A.

19. Compute a fundamental matrix for the system in Exercise 18 if A; #A;,
that is, if p? # 4q, and construct the general solution of Equation (2.32) in this
case.

20. Compute a fundamental matrix for the system in Exercise 18 in the case
Ay = Az = A, that is, p? = 4q, and construct the general solution of (2.32) in the
case p2 =4q. Note that 4 — AE is never zero in this case, so that the fundamen-
tal matrix, as well as the general solution of (2.32), must necessarily contain a
term in te’:,

21. Generalize the results of Exercises 18, 19, and 20 to the scalar equation

yrﬂ+p1yll+p2yl+p3y:0

where p;, p:, ps are constants. (Needless to say, you are not expected actually
to solve a cubic equation.)
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Using the variation of constants formula (Theorem 2.6), we may find a
particular solution of the nonhomogeneous system

Y = Ay + g(®) (2.33)

where A4 is a constant matrix and g is a given continuous function. The
variation of constants formula with ®(2) = exp (¢4) as a fundamental matrix
of the homogeneous system now becomes particularly simple in appearance.
We have ®7!(s) = exp (—s4), @)D 1(s) = exp [(t — 5)4]; if the initial
condition is §(fy) = N, P,(2) = exp [(t —#,)AJn and the solution of (2.33) is

b= exp [t~ t)4In + [ exp[(t = )Alg(s)ds (-0 << )
’ (2.34)

where ¢4 is the fundamental matrix of the homogeneous system that we can
construct by the method of this section. Note how easy it is to compute the
inverse of ® and also ®(t)®~'(s) in this case.

Example 9. Solve the initial value problem

y = Ay + g(t)

3t
where A is the constant matrix in Example 6, and where g(r) = (el ), with the

initial condition ¢(0) =%. From Example 6 we have

O(t) = ¢4 = e3‘(1 _ tt 1 .tq. t)
O(1)® " '(s) = exp [(t — s)A] = exp [3(¢t - s)](l__(t(t__"s)s ) 1 +t (—t _S, S))

/4 N A 1 ~—3Srs PR
3 1—‘{l—5)‘r'e !\t—-!'}
exp [(t —s)A]g(s) = e (—(t —S)+e ¥+t s))
Therefore

(l—t ¢ e 1= (t—=5)+e ¥t —5s)
d’(‘):eB( ~t 1+t)"+e3 fo (—(t—S)+e'3’(1 +f—s)) %

and the integrals are easily evaluated.
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e EXERCISES

22. Write the solution &(r) of the system (2.33) if A is the matrix in
Example 7 and g is any vector with three continuous components, subject to the
initial condition () =n.

23. By converting to an equivalent system, find the general solution of the
scalar equation

Yy —y=f@)

where fis continuous, by using the theory of this section.
24. Given the matrix

01
a=(19)
Show that A2 = —-E, A®> = — A4, A* = E, and compute A™ where m is an arbitrary

positive integer.
25. Use the result of Exercise 24 and the definition (2.21) to show that

oa [ ©o8¢ sin ¢
~ \—sint cost

[Note: In this case the above approach is easier than the one in which Equation
(2.30) is used.]
2

26. Compute ¢4 if 4 = (—-l ;) [Hint: Use Exercise 24 and 25.]

27. Use the results of this section and Exercise 25 ta find the general solution
of the scalar equation

Y +y=f@)

where f is continuous.

2.6 Similarity of Matrices and the Jordan Canonical Form

Consider the linear system
y = Ay (2.20)

where A is an n-by-n constant matrix. The change of variable y = Tz where
T is some nonsingular constant matrix, transforms the system (2.20) to the
system

Z =T 4Tz (2.35)
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Our object is to choose the matrix T in such a way as to make the coefficient
matrix B =T 'AT of (2.35) as simple as possible. This should then facilitate
the calculation of exp B, which is a fundamental matrix of (2.35). Since
A =TBT"', Exercise 4, Section 2.5, shows that exp t4 = exp ({TBT )=
T(exp tB)T~!. Thus, exp t4 and (by Theorem 2.5) T(exptB) are both
fundamental matrices of (2.20). We will see that a great simplification is
always possible by a proper choice of the matrix 7. This will provide an
alternative treatment, primarily of theoretical value, of linear systems with
constant coefficients.

e EXERCISE

1. Show that transformation y = T(¢)z, where T is a nonsingular differentiable
matrix function on some interval /, reduces the linear system y’ = A(t)y, where
A(t) is continuous on I, to the system

2 = (T {OANTE) ~ T (T )z

This is much more comglicated than the system (2.35), which suggests that the
method we are going ta present is valuable primarily for systems with constant
coefficients.

In order to present this topic we need a new concept. Let 4 and B be two
n-by-n matrices of complex numbers. We say that 4 and B are similar,
notation A ~ B, if and only if there exists a nonsingular matrix 7" such that

T 'AT =B

An important fact is that similar matrices have the same characteristic poly-
nomial (for this reason, the coefficients of the characteristic polynomial of a
matrix A are the same as those of any matrix similar to 4 and are called
similarity invariants) and hence the same eigenvalues. To prove this, we let
A and B be similar; then

det (AE — B) = det (AE — T~'AT) = det {T~Y(AE — A)T)
= (det T~ 1)(det AE — A) det T = det (AE — A)

¢ EXERCISE

2. Justify each step of the above calculation.

We note, however, that matrices with the same eigenvalues need not be
similar; for example,

L PN Y

(0 0
A.-(O 0) B

l
e,
< C
&
a—
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¢ EXERCISE

3. Show that the matrices 4 and B are not similar.

We remark also that the coefficient matrices of the systems (2.20) and (2.35)
above, obtained by the change of variable y = Tz are similar.
Given a matrix A4, our task is to see

(i) how simple we can make T~ ! AT by a suitable choice of the matrix T’
(i) how we choose T to achieve this.

Both of these questions are intimately connected with the nature of the eigen-
values and eigenvectors of 4. Let us begin with the simplest casein which the
matrix A has n linearly independent eigenvectors vy, ..., v, corresponding to
the eigenvalues 4;, ..., 4,. (As we have seen, this case always arises if
Ats 425 ..., A, are distinct; see Appendix 1.)

Define the matrix

T = (Vl, v2 3 rery vn) (2.36)

having these » linearly independent eigenvectors as columns. Thus T is a
nonsingular constant matrix. We assert that

T 'AT=D
where D is the diagonal matrix
Aq 0
D= 3 (2.37)
0 | An
To see this, we compute (using the definition of eigenvalue and matrix

multiplication):

T AT =T 'A(V,, Va, ..., ¥,)
=T Y(Avy, Av,, ..., 4v,)
= T YAV, A Ve oy AV,
= (AT vy, A,T vy, ., 4T 7))
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But for any j, since v, is the jth column of 7, we have
T~'v; = jth column of T~'T = jth column of E

and therefore T7'AT = D. Summarizing, we have proved the following
simple result.

Theorem 2.8. (Diagonal Canonical Form.) If the n-by-n constant
matrix A has n linearly independent eigenvectors vy, ..., v,, corresponding to
the eigenvalues 1,, 2, , ..., A,, then A is similar to the diagonal matrix D given

by (2.37) and the matrix T that accomplishes the similarity is given by (2.36).

In the general case, the matrix 4 does not necessarily possess n linearly
independent eigenvectors. However, the result from linear algebra, which we

invoked in our treatment in Section 2.5, leads to the following simplification.
Let 4, ..., 4 be the distinct eigenvalues of 4 with respective multiplicities

M,Nyynns nk. Let X; be the subspace of E, generated by the system (2.28)
forj=1,2,..., k. Let the matrix T be defined as follows:

T=(Vigs¥ezseeva Yipp ooos Yits Yz oo os Vi) (2.38)

where v;y, ..., V;, is any basis for X;,j=1,..., k. Clearly T'is a2 nonsingu-
lar matrix. Then, because X; is invariant under 4, that is, Av € X; for every
vin X; (recall that X is the hyperplane generated by solutions of the system
(4 = A; EY¥x = 0), we have

T AT =18
where
B,
2
B= . (2.39)
\ 0 By

in which each B, is an n;-by-n; matrix.

¢ EXERCISE
4. Show that B has the form given by (2.39)

Thus we may say that 4 is similar to a block diagonal matrix, which, of
course, reduces to Theorem 2.8 if the eigenvectors are linearly independent.
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By a proper choice of the basis for each subspace X;,j=1,...,k, we can
make a significant further simplification, as shown in the following result (see,
for example, [11] or [14] or Appendix 1 for the proof):

Theorem 2.9. (Jordan Canonical Form.) For each complex constant
n-by-n matrix A there exists a nonsingular matrix T such that the matrix J =
T ~YAT is in the canonical form

Jo 0
J = . (2.40)

0 J,

P B P - e

where Jy is a diagonal matrix with diagonal elemen
sarily distinct)

Ay
Az
']0 = (2.41)
Ax
and each J, is an n,-by-n, matrix of the form
(AH,, 1 0 0
0 2 :
= P 1 -0 (p=1,...,5) (2.42)
. . . . 1
\ 0 0 Ayp

where Ay, need not be different from Ay, if p#qandk +n + 1, + -+ +
ni=n. The numbers A;(i=1,2,...,k+5s) are the eigenvalues of A.
If 4; is a simple eigenvalue of A, it appears in the block J,.

A matrix may be similar to a diagonal matrix without having simple eigen-
values; the identity matrix E is an example. While Theorem 2.9 is a very
useful theoretical tool, it is not easy to apply to a specific matrix if there are
multiple eigenvalues. Even in the simplest case n = 2 there are difficulties to
be overcome. For example, suppose A is a 2-by-2 matrix havingAi=3asa
double eigenvalue. Then, according to Theorem 2.9, the canonical form J
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could be either

G Y 0= )

and without further study, which we will not undertake, we simply do not
know which of the two possibilities is correct. It should be noted that the
matrices J and J are not similar. Only in the case of distinct eigenvalues is
there no doubt from what we have presented about the canonical form; it is
the one given by (2.37). But notice that even in that case the work is not
finished—we must still find the similarity transformation matrix 7! Admit-
tedly, if we know the proper canonical form, we can always find the matrix T
by solving the system of n? equations

AT =TJ (2.43)

for the elements of the matrix 7. In case the matrix 4 has n linearly indepen-
dent eigenvectors, Theorem 2.8 tells us how to find the similarity transfor-

mation matrix 7.

e EXERCISES

5. Let A= (:1,- ;), use Theorem 2.9 to determine the canonical form of 4

and use the system (2.43) to find the transformation matrix T. [Hint: A, =2,
Az = —1 are the eigenvalues; hence (2.43) is the system

4 Yr-rf; )

Let T:(t“ t”); substitute and determine 7. Answer: Tz(: _;)-]

t21 l22
Also determine T by using the alternative procedure.
6. Show by direct computation that for the matrices A, J, T of Exercise 3,

T-'AT=J.

7. Use the result of Exercise 5 together with the change of variable y = 7z to
PRY

find a fundamental matrix of the system y’ = 4y, where 4 = G ; ) .

In order to apply Theorem 2.9 to solve the system y’' = Ay we make the
change of variable y = Tz where we now choose T to be that matrix for which
T ~'AT =J is the Jordan canonical form of 4 (Theorem 2.9). Then the

transformed system is
Z =T 'ATz=Jz (2.44)

Clearly, a fundamental matrix of (2.44) is exp (tJ), which can be evaluated
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explicitly and very concisely as follows. First, from (2.40) and the definition
of the exponential of a matrix, we have

exp (tJ,) 0

exp (tJ,)
exp(t)) = . (—oc <t <o)

0 exp(tJ,) (2.45)
where, from the same definition,
exp At
exp 12 I {
exp ity = " (=00 <t <o)

exp A1 (2.46)

To evaluate exp tJ, we proceed as follows (see Examples 1 and 2, and Exer-
cises 8, 9, and 10, Section 2.5). From (2.42)

T, = Jes,Ey + N, (2.47)

where E, is the n, x n, identity matrix and N, is the n, x n, matrix

01 0
N,= C (2.48)
c 1
0 0

Clearly, 4, , £ and N, commute, and therefore
exp tJ, = exp (A4, 1) exp N,t (2.49)

It is readily verified tha N, is
exp (tN,) terminates and ( see a

hoe o 22

(np— 1)'
0
exp tJ, = exp (A+, 1| . o : (2.50)

n“lpote“t (N7 = 0), and thus the series defining
Iso Exercise 9, Section 2.5).

AU
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(p=12,...,5; —00 <t < 0c0). Substitution of (2.46) and (2.50) into (2.45)
gives the fundamental matrix of (2.44), which reduces to the identity at t = 0,
as well as the evaluation of exp (tJ). To evaluate the fundamental matrix
exp t4 of y' = Ay we use the formula (see Exercise 4, Section 2.5).

exptA=exp[tTJT '] =T{exp ()T !
and the formula for exp tJ derived above.

¢ EXERCISE

8. Show that if N is any nilpotent matrix (not merely the special matrix N,
defined by (2.48) above), then exp (Nt) is a matrix polynomial (that is, a matrix
whose elements are polynomials in ¢).

2.7 Asymptotic Behavior of Solutions of Linear Systems with Constant
Coeflicients

In many problems, in order to apply formula (2.34), and others derivable
from it, we need to obtaina useful estimate for the norm of exp (24) fort > 0.
For example, in order to measure the growth of solutions of (2.33) as t —» o
we need to estimate |¢(z)] as ¢ — co where ¢(t) is given by (2.34). This, how-
ever, cannot be done without some useful estimate for |exp (24)].

Theorem 2.10. If Ay, 4, ..., A, are the distinct eigenvalues of A, where A;
has multiplicity n;andny + 1y + *** + n, = n and if p is any number larger than
the real part of Ay, ..., A, that is

p> max (Ri;) (2.51)

J=1,...,k

then there exists a constant K > 0 such that

lexp (t4)| < Kexp(pt) (0<t< o) (2.52)

Proof. We have seen that "4 is a fundamental matrix of the linear system
y' = Ay. Combining this fact with the formula (2.30) for any solution ¢(¢) of
this system, we see that every element of the matrix ' is of the form
Yk _ pft) exp (A;1), where pi(t) is a polynomial of degree not more than
f g 1% T - o rhmcnn dm cotialg +ha Sexnmcamlid. £ &1% dla- 1ok oo 77 a2 -
\ﬂj - 1). LI £ I> CIUBUIL LU datldly LU LI ualily \L.Jl), LI |¢ GBP tAJ I)[ =

t* exp [(R4;)t] < e** for ¢ large enough, and every term in the sum Y 5, p(t)
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exp (4;t) is at most Me?* (0 < ¢ < o) for some constant M. As there are at
most #? such terms in the matrix e*4, (2.52) holds with K = Mn?, where M is
the largest of the n? values of M.

We also remark that the constant p in (2.52) may be chosen as any number
greater than or equal to the largest of #4,, #4,, ..., #4,, whenever every
eigenvalue whose real part is equal to this maximum is itself simple. In
particular, this is always true if 4 has no multiple eigenvalues.

e EXERCISE
1. Prove Theorem 2.10 by transforming A to the Jordan canonical form.
[Hint: Use formulas (2.45)-(2.50).]

As far as applications are concerned, the following consequence of Theorem
2.10 is of great importance.

Corollary to Theorem 2.10. If all eigenvalues of A have real parts negative,
then every solution ¢(t) of the system

y = Ay (2.20)

approaches zero as t —» +co. More precisely, there exist constants K > 0,
o > O such that

o) <Re™™ (0<t< o) (2.53)

It is, of course, also true that under the hypothesis of the corollary, there
exist constants K > 0, o > 0 such that

lexp t4] < Ke™"! (0<t < 0) (2.54)

To prove the corollary we choose —a (o > 0) as any number larger than
the real part of every eigenvalue (—o plays the role of p in Theorem 2.10).
By Theorem 2.7 every solution has the form exp (¢#4)c for some constant vec-
tor ¢. By Theorem 2.10

&) < lexp (t4)] le] < Klele ™ =Ke™®* (0 <t< )

e EXERCISE

2. Show that if all eigenvalues have real part negative or zero and if those
eigenvalues with zero real part are simple, there exists a constant X > 0 such that
lexp tA| < K,(0 < ¢ < ), and hence every solution of ¥ = Ay is bounded on
0<r< w,
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We also remark, that using Theorem 2.10 in (2.34), for example, we obtain
the following estimate for solutions of ¥’ = Ay + g(¢).

$01 < K I¥l exp [p(t — 1] + K | "exp [o(t — 5)] lg(s)| ds
’ O<ty<t< o)

where K, p are defined by the theorem. If we have more information on
g(#) and on the characteristic roots of 4, we can deduce more from this
estimate. An example is given by the following exercise.

e EXERCISE

3. Show that if the hypothesis of Exercise 2 is satisfied and if _f:; |g(s)| ds < oo,
then every solution ¢(¢) of (2.33) on 0 < 1o < ¢t < ® is bounded.

VN W o A

Another consequence of Theorem (2.10) is that every solution of a linear
system of differential equations grows no faster than an exponential function.
This fact is needed to solve linear systems with constant coefficients by the
method of Laplace transforms (see, for example [2, Ch. 9]).

Theorem 2.11. Suppose that in the linear nonhomogeneous system
y =Ady+g@) (2.33)

the function g(t) grows no faster than an exponential function, that is, there exist
real constants M > 0, T > 0, a such that

|g(t)] < Me™ (t=T1)

Then every solution & of (2.33) grows no faster than an exponential function,
that is, there exist real constants K > 0, b such that

b)) < K  (t=>T)

q
o
=

/A
11

Proof. It follows from Theorem 2.1 that every solution ¢ of (2.33) exists
on 0 <t < co. By the variation of constants formula (2.34), every solution
of (2.33) has the form

o)) = ¢ + f ‘e““"‘g(s) ds
0

for a suitably chosen constant vector c. By Theorem 2.10, there exists a real
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number p and a constant K; > 0 such that
le4] < Kie”* (0<t< )

Here p may be any number larger than the real part of every eigenvalue of 4
as defined in the inequality (2.51). We now write the variation of constants
formula in the form

"R + 4 PT I+ Y VY » Ft
¢(1) =e"c+ Jo e’ 7g(s) ds + JTe

{4
i+

Dg(s) ds

Letting K, = sup |g(s)| and using the known boundson [g(s)| for t > T and
O<r<T
on [e*4], we obtain the estimate

T t
1B(0)] < K, [c]e” + K, fo 19K, ds + K, fre”“'s)Me"’ ds

From this, we obtain
|d(1)] < Keb* (t=2T)

where b is the larger of a and p. Using this estimate in the system (2.33), we
see that ¢'(?) also satisfies an inequality of the same type. Of course, the con-
stant K does not have the same value as (2.52).

e EXERCISES

4. Evaluate the constant X in Theorem 2.11.

5. Obtain an explicit estimate for {&’(¢)| in Theorem 2.11.

6. Let ¢ be a solution of the nth-order linear equation
”(n) + a;u"‘"” + cen + a. i :f(t)

where a;, a2, ..., a, are constants, and where f is continuous on 0 <t < @
and grows no faster than an exponential function. Show that &(t), ¢°(¢), ...,
$(¢) all grow no faster than an exponential function.

2.8 Autonomous Systems—Phase Space—Two-Dimensional Systems

In the system y’ = f(1, y) a case of considerable importance in applications
occurs if f does not depend on ¢ explicitly. Such systems are called autono-
mous. We will therefore study the system

Y =g(y) (2.55

i

where g is a real function defined in some real n-dimensional domain D in
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y-space. The reader will note that D is now n-dimensional, not (n + 1)-
dimensional. The implication of this will be clear in a moment. We shall
assume throughout that g and dg/dy; (j =1, ..., n) are continuous in D, so
that by Theorem 1.1 (p. 26), given any (¢,, 1), 1} in D, there exists a unique
real solution ¢ of (2.55) satisfying the initial condition ¢(z,) =n. This
solution exists on some interval / and is a continuous function of (¢, ¢y, 1)
with ¢, t, on I, nin D. We observe that a linear system with constant coeffi-
cients y' = Ay is autonomous, as is any scalar differential equation in which
the independent variable does not enter explicitly, for example, 6" +
(g/L) sin 8 = 0, the pendulum equation derived in Section 1.1 (p. 6).

Autonomous systems have several important properties. If ¢(¢) is a solu-
tion of (2.55) existing for —oo <t < co, then it is easily verified by direct
substitution that for any constant a, ¢(¢ + a) is also a solution of (2.55). We
therefore say that an autonomous system is invariant under translations of the
independent variable. In particular, if ¢(¢) is that solution for which $(0) =
M, then ¢(r — 1,) is that solution of (2.55) satisfying the Initial condition
&(t,) =n. (For linear systems with constant coefficients this was established
in Equation (2.27), p. 58.)

Solutions of autonomous systems are conveniently represented by curves
in n-space rather than (n + 1)-dimensional space. The reason for this is that
to every autonomous system such as (2.55) there corresponds a unique vector
field g(y) at points of the domain D in Euclidean n-space and this vector field
is independent of z. Thus, if we think of (2.55) as representing the equations
of motion of a moving particle, then to each point y in D there corresponds
the vector g(y) which is the velocity vector of the particle at y, and this velocity
vector does not depend on ¢. Let ¢(z, n) be that solution of (2.55), satisfying
the initial condition ¢(#,, n) = 1, where n is any point of D. Then ¢ repre-
sents the motion of the particle obeying the law (2.55), passing through
the point i in D at time ¢ = #,, and we can completely characterize this mo-
tion by the curve C (see Figure 2.1) in the n-dimensional region D prescribed

C:y = ¢{t,m)

Figure 2.1
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by the parametric equation y = ¢(, ), where the time ¢ plays the role of a
parameter. We can assign a direction to the curve C corresponding to the
direction of increasing ¢, indicated by an arrow in Figure 2.1.

Example 1. In the special case of a dynamical system with one degree of
freedom (mass-spring, pendulum, and so on) in which x is the displacement
and the acceleration x” is determined by a scalar equation of the form

x" = F(x, x)
we write y; = X, y, = x’ and obtain the autonomous system

Yi=1Y2
Y’z = F(,Vh J’z)

Now the solutions (motions) can be represented by curves in the (y,, y,)
plane. This displacement-velocity plane is often referred toas the Poincaré*
phase plane. More generally, if (2.55) represents the motion of a dynamical
system of n degrees of freedom. Its motion can be represented by curves
in the phase space of 2» dimensions.

With reference to the above discussion and because the system (2.55) is
invariant under translation of time, ¢(z + ¢, n) is, for any constant #;, also a
solution (2.55). It may be interpreted as that solution (motion) which passes
through the point n at time ¢ = 0 (not at time 7;). This is not the same
motion as that represented by the solution ¢(z, ). The two solutions differ
by the phase r,. But the motions ¢(#, n) and (7 + ¢4, ) are represented by
the same curve Cin D. In fact, for any constant a, the motion ¢(¢ + a, 1) is
also represented by the curve C. The curve C in D is called an orbit, trajec-
tory, or path of (2.55). From the above remarks we see that for a given orbit
C there are infinitely many motions—in fact, a one-parameter family of solu-
tions—differing from one another by a phase.

A point a in D is called a eritical point of the system

y =gy (2.55)

if and only if g(a) = 0.

Thus the critical points are those points of D at which the vector field
g(y) vanishes. 1If a is a critical point of (2.55), then the constant vector
¢(t) = a is a solution of (2.55). The orbit of this solution is the single point

* The eminent French mathematician Henri Poincaré pioneered much of the research in
the qualitative theory of differential equations.
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a of Din phase space. From a physical viewpoint, critical points correspond
to rest or equilibrium states: For the simple undamped pendulum equation

q .
9"+ >sinf=0
+Lsm

(see Exercise 3, Section 1.1), the autonomous system corresponding to (2.55) is

7

n=y2

Yy = — 9 sin
2 L 1
Its critical points are at (a7, 0), where n =0, +1, +2,..., and D is the

whole (y;, ¥,) plane. We shall have much more to say about this system and
tha lhahavia f1 i

. .
r At 1 Aalntiane in Atinan &)
LWLV ULLIavYIVUL Ui 1 ALun

1ANc =Y
ANFILD LA WAWWLIVS IR Ve ke,

Example 2. Consider the system y' = Ay where

_ ‘_2 0 _ yl
=(% ) v=0)
Then in the above notation g(y) = Ay; D is the whole (y,, y,) (phase) plane;
and since det 4 # 0, the origin is the only critical point. A fundamental

matrix 1s

e ¥ 0
(o o)

and thus every solution is of the form

o =( 1)

for some constant vector n = (Z‘) Here we have arbitrarily chosen ¢, = 0.
2

Notice that ¢t — 7, , n) is that solution passing through the pointgatt =1,.
Let P, = (11, 11,) be any point in the (y;, ¥,) plane. Then the solution ¢(¢, 1)
for ¢t > 0 is represented by the parametric equations y, = ¢,(t) = e~ %'y,
y2 = ¢,(t) = e 3y, for t >0 and this represents the portion of the curve
shown in Figure 2.2 between P, and the origin, as is verified by elementary
calculus; the arrow indicates the direction of increasing #. Notice that the
slope of the tangent to this curve, dy,/dy,, also tends to zero as t = + 0.
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Yz

Figure 2.2

Similarly, ¢ < O represents the portion of the curve in Figure 2.2 above the
point P, . It should be noted that lim (s, n) = 0, that is, both the solution

[ S d J+'s]

and the orbit approach the origin as t > + 0. Proceeding in this way by
choosing various points of the phase plane as initial points, we obtain the so-
called phase portrait of the system, shown in Figure 2.3. Again, the arrow on
every orbit approaches the origin (as t > + o).

Yo

4/6*

Figure 2.3
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e EXERCISES

1. Obtain the phase portrait of the system y’ = Ay where 4 = ((2) (3))

2. Obtain the phase portrait of the system y’ = Ay where A =(_(2} _;)

3. Obtain the phase portrait of the system y’ = Ay where A4 z(g mg)

4, Obtain the phase portrait for the scalar equation x” 4+ 4x=0. [Hint:
Use the system y1 = y,, y3 = —4y,.]
5. Write the simple pendulum equation 6” + g/L sin 6 =0 as the system

4

Y1=)2

2 =;i£ siny:  where y1 =6, y, ="

We conclude this section with a complete discussion of the phase portraits
of linear two-dimensional autonomous systems. The motivation for these
considerations is the following: Suppose that in the case n =2, g(y) in
(2.55) has the form

)= (4027}

where

9101, ¥2) = auyy +ag; o + (31, y3)
92001, ¥2) = Gy + azy o + ha(y1, y2)

where a,,, a,,, @51, 4, are real constants with @ a,, —a;;a,; # 0 and
where h,, h, are real, continuously differentiable functions defined in some
domain D in the plane having the origin y, = y, =0 in its interior and
hy, hy are “small” when |y,], |y,| are small; for example, in the sense that

hyys,
lim y;))l,z=o (=1,2).

2
»13 432240 (yl + ¥,

This condition certainly holds if, for example, 4,, A, are analyticat y;, =y, =
0 and if their Taylor expansions begin with quadratic terms. Then (2.55)
becomes

y' = Ay + h(y) (2.56)
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where

4= ) 2= ) o= Gii)

and with det 4 # 0 and |h(y)| small when |y} is small in some appropriate
sense. We shall call h(y) the perturbation term and (2.56) the perturbed
system. Many problems arising in applications have the form (2.56).

Example 3. Consider the simple pendulum equation 8" + g/L sin 8 = 0.
Then if y; =0, y, =10,

!

Yyi=1J)2

3 5
ro 9. __9 (I r L
Ya= —psy = L‘V'+L(3!+5!+ )

Thus here, in the notation of (2.56),

gy’ »’
» hi(yy, y2)=0 hz(J’J,)’z)=‘L(?'!--'-§~!—+"')

and the above hypotheses are satisfied.

Intuitively, we expect that if Jh(y)| is small for small |y|, then the behavior of
solutions of (2.56) near enough to the origin would be similar to the behavior
of the system in which the perturbations are zero. This latter system is linear
with constant coefficients:

Y = Ay

and thus easy to analyze. It can be shown that thisintuitionis essentially, but
not completely, correct. (For the case of the nonlinear pendulum equation,
see Sections 6.1 and 6.2.)

Here we shall be content to analyze the general two-dimensional linear
system y' = Ay with constant coefficients. Let us make the change of
variable y = Tz where T is a nonsinguiar constant matrix (to be determined),
and substitute, obtaining the system

z = (T 14T)z (2.57)

whose coefficient matrix T~ AT is similar to 4. For simplicity, and because
this is the case that arises in applications most frequently, we consider only the
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case det 4 # 0. This means that zero is not an eigenvalue of 4, and that the
origin is the only critical point. For the case when det 4 = 0, the reader
is referred to Exercises 19 and 20, p. 95.

As is done in Appendix 2, we may show that there is a real nonsingular
matrix 7 such that 7~ 4T is equal to one of the following six matrices:

Q) (1 0) where (4 < A < 0)

or OD<u<i)
(i A O\ where A >0
Wl 2 or A<0
(iii) (3 2)y<0<l
(iv) A where 1 > 0
0 or A<0
v\ o,v#0

(v)( c)c>0 or 6<0

(vi) (_8 (‘;) y#£0

The cases (v), (vi) correspond to complex conjugate eigenvalues of 4, ¢ + iv
and +iv, respectively. In the four remaining cases the eigenvalues A, u are
real. We obtain the possible phase portraits of (2.57) by assuming that
T ~1A4T is one of the forms (i)-(vi). We emphasize that at this stage we in no
way imply that these phase portraits of (2.57) also represent the phase por-
traits of the perturbed system (2.56), although such would be the hope, at
least for |y| small. We also remark that the actual phase portraits of the
linear system y’ = Ay differ from those constructed below for the system
(2.57) by the fact that the nonsingular transformation matrix 7 distorts but
does not change the character of these portraits.

Case (i). (This is essentially Example 2 and Exercise 1 above.) The
solution of (2.57) through the point (1,, 75) # (0,0) at t =0 is

=)

If u < A <0, we have ¢p(¢) - 0 as ¢ = + o0 and we obtain the phase portrait in
Figure 2.4 with every orbit tending to the originas t » +c0. If0<pu<4,
we obtain the phase portrait in Figure 2.5 with every orbit tending away from
the origin as ¢ — c0. Arrows indicate the direction of increasing 7. The
origin in Figures 2.4 and 2.5 corresponding to Case (i) is called an improper
node.
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Ya

e

2N

Figure 2.4

Y2

Figure 2.5

¢ EXERCISE
6. Justify the phase portrait for Case (i) 0 < p <A,

Case (ii). Here the solution of (2.57) through (5, #,) # (0,0) at t =0 is
At
o0 =(5?)

it
€ N

and if 4 > 0, we obtain the phase portrait in Figure 2.6, whereas the case
A <0 corresponds to Figure 2.7. Note that all orbits are straight lines
tending away from the origin if A > 0 and toward the origin if 41 <0.

The ratio ¢,(t)/¢(¢) if n, # 0 is constant, as is ¢,(t)/P,(?) if 5, =0. The
origin in Case (ii) is called a proper node.
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Y Ys
A
—t - b J1 - - h g
- / ! \\ - / | \\
Figure 2.6 Figure 2.7

Case (iii). Here
e“fh
o) = (e“ "Iz)
with 4 <0 and 4> 0, is the solution through (n;, n,) at £ =0. Now as
t - o0, ¢,(t) > + o0 according as y; >0 orn, <0and ¢,(1)+0as - + 0.
It is easy to see that if |A| = |u|, the orbits would be rectangular hyperbolas;

for arbitrary 4 > 0, 4 < 0 they resemble these curves as shown in Figure 2.8.
Quite naturally, the origin in Case (iii) is called a saddle point.

Y3
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e EXERCISE
7. Construct the phase portrait in Case (iii) if A <0 and u > 0.

Case (iv). Here

&(t) = (”‘ o 1')e’“

is that solution passing through (1, #,) at £ = 0 and if A < 0 the phase por-
trait 1s easily characterized by the fact that every orbit tends to the origin as
t— +o00 and has the same limiting direction at (0,0). For, dy,/dy, =
d3/P1 = (Ad,/(Ady + ¢3)) =0 as 1 = + oo (see Figure 2.9). The origin in
Case (iv) is called (as in Case (i)) an improper node.

Yz
—ﬁ.\ﬁ
— ]
—— e »
: ——
——
—
Figpre 2.9

¢ EXERCISE

8. Construct the phase portrait in Case (iv) with A > 0.

Case (v). Here the solution, for the case ¢ > 0, passing through the point
(n.n2)at1=01is

_ e[ M1 COSVI+ N, sinve
o) =e (—m sin vt + 1, cos vt
Let p = (> + n,°)"/?, cos « = n,/p, sina = n,/p. Then

o pcos(vt—a)
d(1)=e (—p sin (vt — oz))
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Letting r, 8 be the polar coordinates, y; = r cos 8, y, = r sin 8, we may write
the solution in polar form r(f) = pe°’, 0(t) = — (vt — «). Eliminating the
parameter ¢, we have r = A exp (—o/v)0 where A = pexp [(g/v)a]. Thus
the phase portrait is a family of spirals, as shown in Figure 2.10, for the case
& > 0, v > 0 and the origin is called a spiral point. In this case the orbits tend
away from zero as t — + oo (or, equivalently, approach zero as 1 -» — c0).

Y:

)

=

Figure 2.10

¥

s
-/

7N

Figure 2.11
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¢ EXERCISE

9. Sketch the phase portrait for the Case (v) in case o << 0, v < 0.

Case (vi). This is a special case of Case (v} with 6 = 0. From the above
formulas we see that the orbits are concentric circles of radius p oriented as
shown for v > 0 in Figure 2.11. The origin is called a center.

e EXERCISE

10. Sketch the phase portrait in Case (vi) when v <0,

We observe from the possible cases considered above that all solutions of
(2.57) and also their orbits tend to the origin as t — + oo if and only if both

eigenvalues of 4 have negative real parts; in this case we say that the origin
is an attractor of the linear svetem (2.57). One of the results that can he

HWESESRTEUE WUR W RMMLRE OFOLWEER (e T ). ViAW AW winT LiAdv  wika

established is that the origin remains an attractor when we add the perturba-
tion terms (see Theorem 4.3, p. 161, and the application, p. 163). Notice that
in case of a saddle point or center, the origin is not an attractor and, as might
be expected, these are the most difficult cases to treat when perturbation
terms are added.

e EXERCISES

Sketch the phase portrait of each of the following scalar equations by convert-
ing to an equivalent system. Identify the origin and decide whether it is
an attractor.

11. x4+ x=0. 15. x" —3x"+ 2x =0.
12 x" —3x" +x=0. 16. x"+3x"+2x=0.
13. x" 4+ 3x"+x=0. 17. x" —2x" 4 x=0.
14. x4+ 3x' —x=0. 18. x" — x' — 6x=0.

19. To illustrate the complexity of the case when the origin is not the only
critical point of an linear system, consider the system

Yi=yi1—y2

Y2 =2y1— 2y2
(a) Show that there is a line of critical points.
(b) Sketch the phase portrait.

[Hint: y; =2y}, and the eigenvalues of the coefficient matrix are 0 and —1.}
20. Repeat as much as you can of Exercise 19 for the system

y’; anuyi+ @z y2

¥2 = d21y1 -+ Qa2 Y2

where @12 — Q12421 = 0, but not all of A, 12, dz1, Q22 Are ZCIrO.
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2.9 Linear Systems with Periodic Coefficients
We first consider the linear system
y = A@)y (2.58)

where A(t) is a continuous periodic #-by-n matrix of period @ [that is,
A(t + w) = A(t), — o0 <t < 0]. We observe (see also Section 2.3, Exercise
26) that if ®(¢) is a fundamental matrix for (2.58) then

O'(t + )= Al + o)Wt + ) = A(DHD(t + w)

Thus ®(t + w) is a solution matrix of (2.58) and by Abel’s formula (Theorem
2.3) det ®(t + w) # 0. Thus (by Theorem 2.4) ®(t + w) is also a fundamen-
tal matrix of (2.58) and therefore (by Theorem 2.5) there exists a nonsingular
constant matrix C such that

O(t+w)y=0(1)C (~00<t< ) (2.59)

It can be shown (see Appendix 3) that corresponding to every nonsingular
constant matrix C there exists a matrix R such that C = exp (wR). We note
that if ®(0) = E, then from (2.59)

®(w) = exp wR (2.60)
We may now establish the following result.

Theorem 2.12 (Floquet’s Theorem.) Let A(¢) be a continuous periodic matrix
of period w and let ®(t) be any fundamental matrix of the system (2.58). Then
there exists a periodic nonsingular matrix P(t) of period w and a constant matrix
R such that

— P 0 EN
®(t) = P(t) exp (tR) 4£.01)

The reader should observe that if A(¢) is a constant matrix, hence periodic of
any period w, the above result reduces to the well-known one for constant
coefficients with P(¢) = E, and R = A.

Proof of Theorem 2.12. Let ®@ be an arbitrary given fundamental matrix of
(2.58). Let R be the matrix determined by ® as above from (2.59). Define

Pty=®(t)exp(—tR) (—w0<t< ) (2.62)
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Clearly, P(t), being the product of two nonsingular matrices, is nonsingular.
Moreover,

Pt + w) = O(t + w) exp (—(t + w)R)

= @(2) exp (wR) exp (— (! + W)R)
=@(t)exp(—tR)=P(t) (~w <t< )

Thus P(¢) has period w and, solving (2.62) for ®(¢), we obtain (2.61) as
asserted. ||

REMARK If A(?) is real (of course, its period w is real), then even if ®(¢)
is real, it is not necessarily true that the matrix Risreal. (Note, forexample,
that if n = 1 and if C in (2.59) turns out to be any negative real number, then
C does not have a real logarithm, so that R cannot be real.)

In this case we use

O + 20) = Ot + w)C = O()C?
and we define § by

C?=¢28 (2.63)
and it can be shown (see [4, p. 8]) that S is real (see also Appendix 3). Itcan

then further be shown that there exists a real nonsingular matrix Q(f) of
period 2w such that

®(r) = Q(r) exp (15) (2.64)

¢ EXERCISE
1. Assuming the validity of (2.63), prove this statement.

The Floquet theorem can be used to transform the system (2.58) to a
linear system with constant coefficients as follows. Let

Yy =FP(t)u (2.65)
where P is the periodic matrix of Theorem 2.12. Since, from (2.58)

[P(t) exp (¢tR)]' = P'(¢) exp (tR) + P(*)R exp (1R)
= A(t)P(t) exp (R)
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it follows that
P'(t) = A(t)YP(t) — P(t)R
Thus

y = P(tu’ + P'(t)u = P(t)u' + (A(t)P(t) — P(1)R)u
= A(t)P(t)u

and therefore
P(t)u’ — P(t)Ru =0
or
u' = Ru (2.66)

which is a linear system with constant coefficients. This establishes the fol-
lowing result.

Corollary 1 to Theorem 2.12. The change of variable y = P(t)utransformsthe
periodic system (2.58) to the system (2.66) with constant coefficients.

The reader should note, however, that this pleasant fact requires complete
knowledge of the matrices P(¢) and R—by no means a trivial requirement.

It is customary to call the eigenvalues 4, of the nonsingular matrix exp (wR)
the multipliers of the system (2.58), and to call the eigenvalues p; of the matrix
R the characteristic exponents of the system (2.58). It follows from Appendix
3 that

1
p==logh, (i=1...,n) (2.67)

The multipliers have the following interesting property, which justifies their
name,

Corollary 2 to Theorem 2.12. A solution ¢(t) of the system (2.58) has the
property

d(t + w) = kd(?) (—o0 <t <o)

where k is a constant, if and only if k is an eigenvalue of ®(w) = exp (wR).
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¢ EXERCISES

2. Prove Corollary 2. [Hint: let $(t) = ®(t)d(0) where O(¢) is the funda-
mental matrix of (2.58) that is the identity at 1 =0.]

3. Use Corollary 2 to deduce that there is a solution $(¢) of the system (2.1)
of period w if and only if 1 is a multiplier of the system (2 58).

4. Show that if —1 is a multiplier of the system (2.58), then there is a solution
of (2.58) of least period 2w.

The relation (2.67) between the multipliers and the characteristic exponents
combined with Theorem 2.12 leads to the following useful result.

Corollary 3 to Theorem 2.12. If the characteristic exponents of the system
(2.58) have negative real parts (or equivalently, if the multipliers of the sys-
tem (2.58) have magnitude strictly less than 1), then all solutions of the
system (2.58) approach zero as t — + 0.

The reader should note that if A(¢r) is a constant matrix, this result is
the corollary to Theorem 2.10. Moreover, relation (2.53) holds, with practi-
cally the same proof for the system (2.58).

¢ EXERCISE
5. Prove Corollary 3. [Hint: Use (2.61), (2.67), and the fact that P(¢) periodic
implies | P(7)| bounded.]

The results of Corollaries 1, 2, 3 hinge on specific knowledge of the multi-
pliers (or equivalently, of the characteristic exponents) of the system (2.58).
That this is by no means a simple problem can be seen in the following special
case.

Example 1. Consider the scalar equation
u' + p(th’ +q(tu =0 (2.68)
where p, g are continuous functions of périod wint. Determine an equation

satisfied by the multipliers.
Letting y; = u, y, = v’, we obtain the equivalent system

1]

y

Y2
2.69
V= — (2.69)

q(t)y, — p(t)y2

S

Let ®(¢) be the fundamental matrix that is the identity at t = 0. Then

(b0 ()
q’(’)‘(d:;(t) 50) (270)
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where ¢, ¢, are the solutions of (2.68) such that ¢,(0) = ¢5(0) = 1, ¢,(0) =
$1(0) = 0. According to the definition of multipliers and Equation (2.60),
the multipliers are the eigenvalues of ®(w) and therefore, using (2.70), they
satisfy the equation

det (B(w) — AE) = 1% — (¢ (0) + P2{(@))A + det B(w) =0

By Abel’s formula (Theorem 2.3, p. 46),

det ®(w) = det O(0) exp (— f:p(s) ds) = exp (-—~ f:p(s) ds)

Thus the multipliers are the roots of the equation

—
N
~J
S

~—’

The reader should note that we cannot compute the coefficient (¢,(w) +
¢3(w)) without knowledge of the solutions ¢,, ¢, of (2.68), and these are in
general impossible to find. Nevertheless, the equation (2.71) for the multi-
pliers gives some useful information, as is shown by the following exercises.

o EXERCISES
6. Given the scalar equation
u” + (a+ bp(t)u =0 (2.72)

where a, b are real constants and p is a real continuous function of period w.
(a) Use the result of Example 1 to show that the multipliers are determined
from the equation ’

A2— A(@,D)A+1=0 2.73)
where in the notation of Example 1

A(gi b) = (]i)}(g_)) + r‘,{_)“(n\

T

A depends on the constants a, b (in fact continuously, as can be shown
from Theorem 3.8, p. 137) because the solutions ¢, ¢. do.

(b) Show that if —2 < A(a, b) < 2, then the multipliers are complex conjugate
and have magnitude 1. [Hint: Solve (2.73) by the quadratic formula.}]

(¢) Show that if —2 < A(a, b) < 2, then all solutions of (2.72) together with
their first derivatives are bounded on — o0 <t < 0. [Hint: From (b),
compute the characteristic exponents in terms of A(a, b), showing that
they are pure imaginary; then apply Theorem 2.12, specifically (2.61), to
the system (2.66).]
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(d) If either A(a, b) < —2 or A(a, b) > 2, show by the technique of part (c)
that the multipliers are both real and at least one of them has magnitude
greater than 1. Deduce that at least one characteristic exponent has a
positive real part so that there is, in either case, at least one unbounded
solution of (2.72) on — oo <t << 0.

(e) If A(a, b) =2, show that (2.72) has at least one solution of period w.
[Hint: See Exercise 3.]

(f) If Aa, b) = —2, show that (2.72) has at least one solution of period 2w.

[Hint: See Exercise 4.]
7. In Equation (2.72), take w = 1, and suppose that a > 0, a # n?*n? for any
integer n.

(a) Constder first the case & = 0; show that

Ala, 0) =2 cos Va

and deduce that -2 < A(a, 0) <2. [Hint: Find the solutions ¢, ¢» of
Exercise 6 by solving the equation u#” + au = 0, then compute A(q, 0).]

(b) Assuming the continuity of A(a, b) as a function of the pair (a, b), show
that the multipliers and characteristic exponents of (2.72) are continuous
functions of (a, b).

(¢) Show that all solutions of (2.72) are bounded if a # n*#? and if b is small.
[Hint: Show that —2 < A(a, b) < 2 for a # n*n?, and for b small. Then
apply Exercise 6¢.)

We turn briefly to the nonhomogeneous system
y =A@y + g(t) (2.74)

where we assume throughout that A(¢) and g(r) 4re continuous and periodic in ¢
of the same period . Note that the case A(f)aconstant matrix is not excluded.
An important special case of (2.74) is the scalar equation

u +au +a,u=Acoskt

where a,, a, are constants, which arises in several applications.
We wish to study the question of the existence of periodic solutiot

(2.74). The following general result holds.

Theorem 2.13. A solution §(t) of (2.74) is periodic of period w in t if and only
if d(w) = &(0).

Proof. If ¢ is periodic of period w, it is obvious that ¢{w)=¢(0).
Conversely suppose ¢(7) is a solution of (2.74) such that ¢{w) =¢(0). Con-
sider the functions ¢(#) and Y(t) =¢d(t + w). Then ¢ and Y are both
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solutions of (2.74) and {(0) = ¢(w) = $(0). Thus the solutions ¢ and
have the same initial values and by the uniqueness theorem (Theorem 2.1)
d(2) = Y(r) = d(t + w), —0 <t < o, which proves the periodicity. J

A more useful criterion for periodicity of solution is the following one.

Theorem 2.14, The system (2.74) has a periodic solution of period w for
any periodic forcing vector g of period w if and only if the homogeneous system

y' = A(t)y has no periodic solution of period v except the trivial solution y = 0.

Proof. Let ®(r) be the fundamental matrix of the homogeneous system
(2.58) that is the identity matrix at + =0. In fact, ® is given by (2.61),
p. 96. By “the variation of constants formula (Theorem 2.6) every solu-
tion Y(?) of (2.74) has the form

V(o) = BOWO) + B() [ @ (9g(5) ds

By Theorem 2.13, the solution y will be periodic if and only if {(0) = y(w).
But

V@) = A@HO) + &) [ 0719 ds

and the periodicity condition Y(w) = {(0) becomes

[ - @) N(O) = 0@) [ &~ '()e(5)ds

This is a linear nonhomogeneous system of algebraic equations for the
components of the vector y(0), which must be solvable for every periodic
forcing vector g. This is possible if and only if det (E — ®(w)) # 0. Thus
(2.60) and the definition of muitipliers says that the solution ¥ of (2.74) is
periodic if and only if 1 is not a multiplier of the homogeneous system
y = A(t)y. This combined with Corollary 2 to Theorem 2.12, using k =1,
implies the result. ||

The reader should note that Theorem 2.14 is a result about all periodic
forcing terms of fixed period. It may happen that the homogeneous system
has a periodic solution, and yet for some forcing terms g, so does the non-
homogeneous system. This is exhibited by the following example.
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o EXERCISE

8. Discuss this phenomenon for the scalar equation ¥” + « = sin 2¢, which has
u = —% sin 2t as a periodic solution of period 27 (note the least period is , but
this is not the issue}. Can you suggest other examples?

e MISCELLANEOUS EXERCISES

1. What is wrong with the following calculation for an arbitrary continuous
matrix A(¢)?

d | 4 4
7 [exp _[0 A(s) ds] == _A(t) exp [J.m A(s) ds]

so that exp (I:OA(S) ds) is a fundamental matrix of ¥y’ = A(¢)y for an arbitrary
continuous matrix A(r).
2. Find a fundamental matrix for the system y’ = Ay, where A4 is the matrix.

o (i) wa(1 Y

—6 2
4 —1 —1 —-1 1 =2
i A=(1 2 -1 G A= 41 o0
i -1 2 2 1 —1
2 1 0\ [ 2 -1 —1)\
k) A=|0 2 4 B A={ 2 -1 -2
1 0 —1 -1 1 2
4 -1 0
myA=|3 1 -1
t 0 1

3. Sketch the phase portrait for each of the systems in Exercises 2a-2e and
determine in each case whether the origin is a node, saddle point, spiral point, or
center, For which of these is the origin an attractor?



104 2 Linear Systems

4. Find the general solution of the system y' = Ay + b(¢) in each of the
following cases

(@) 4 = (‘1’ (1)) b(1) = (2:’,)

® A=(:; §) b(t)=((1)).

/ -\ f I \
-—23 sMnir

( ])’ b(r) = (—Zc:ost)'

( b(t) = (_gj::)

A
(e) Az(; :}), b(r) =] cost |-

' Vo)

5. Suppose m is not an eigenvalue of the matrix A. Show that the nonhomo-
geneous system

(SRS
I

(c) 4

¢

l

(d) 4

—_—
N
S emmm—

y = Ay + ce™
has a solution of the form

$(t) =pe™

and calculate the vector p in terms of 4 and c.
6. Suppose m is not an eigenvalue of the matrix 4. Show that the nonhomo-
geneous system

k
Y =Ay+ 2. ¢ e
Jj=o
has a solution of the form

(1) = 2, pste™

[Hint: Show that p, satisfies the algebraic system
A—mE)p. = —¢
(A_mE)pJZ(j+1)pJ+l‘"cj (j:O,l,...,k—l)
and that these systems can be solved recursively.]
7. Consider the system
1y = Ay
where A is a constant matrix, Show that 4 =e4 ¢ ' is a fundamental matrix
for t #0 in two ways: (i) by direct substitution; (ii) by making the change of
variable |¢| = €.
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8. Find the general solution of the system
1y = Ay + blt)

9. Consider the system of differential equations
Vi=3i+2n+yi—y.=0
Yi—2yi+y2+y:=0

(b) Find a fundamental matrix for the system in part (a).
(¢) Find the general solution of the original system.
(d) Find the solution of the original system satisfying the initiai conditions

y1(0) =0, y1(0) =1, y2(0) = 0.
10. Repeat the procedure of Exercise 8 for the system
Yi+Yi—y:i+y2=0
yi+yn+yr+y2=0

In part (d) find that solution satisfying the initial conditions y,(0) =0,

11. Consider the matrix differential equation

Y=AY+ YB

where A, B, and Y are n X n matrices.
(a) Show that the solution satisfying the initial condition ¥ (0) = C, where Cis
a given n X n matrix, is given by

Y(t) = et Ce”
(b) Show that

Z = — j e‘'Ce" dr
v}

is the unique solution of the matrix equation
AX+ XB=C

whenever the integral exists,
(c) Show that the integral for Z in part (b) exists if all eigenvalues of both A
and B have negative real parts,
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12. Let Y(r) be the solution of the matrix differential equation
Y’ = A()Y, YO =E
and let Z(t) be the solution of the matrix differential equation
Z'=ZB(t) Z(0)=E

where A(r) and B(r) are continuous on an interval I containing the origin. Show
that the solution of the matrix differential equation

X’ =A()YX + XB(1) X0)=C

for any given constant matrix Cis Y(#)CZ(t).
13. (a) Consider the electrical circuit shown in Figure 2.12, with currents and
voltages (with polarities) as shown. Use Kirchhoff’s laws successively at
the nodes A4, B, C, and show that the circuit is governed by the system

A 3/5 henry B
o T e -~
l C‘D " = 5/3 furads — 1/6 farad 1 ohm e
— —
C
Figure 2.12
S, L.
3 vy=—h 4+
r
gvz =l — U2
3.
sl =0y — Uy
5 .

for the unknowns vy, v, f1; is is known.
(b) Find the general solution of the system derived in part (a).

REMARK. Consider the mechanical system shown in Figure 2.13, consisting
of two masses m, and m, connected by a spring with a spring constant k, sliding
on frictionless supports. A force F(r) is applied to m, and m, is connected to a
rigid wall by a dashpot (resistance) with damping constant p. Let y, and »:
denote the positions of m, and m,; respectively, and define v, = y{, v2 = y3,
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mvy = kz+ F(r)

’

F4 =P — U
myv; =puvyt+ kz=10

which is equivalent to the circuit equations of part (a) if we make the identifica-
tions F=is, —zk=1/,m =5/3,m;=1/6,p=1, k =5/3.

14. A weight of mass m is connected to a rigid wall by a spring with spring
constant k. A second weight of mass m is connected to this weight by a second
spring with spring constant k. A force F'is applied to this second weight. The
whole system slides on a frictionless table (see Figure 2.14). Let y denote the
displacement of the first weight from equilibrium and let z denote the displace-~
ment of the second weight from equilibrium.

k k F
s B O) —y ™ p——FEE 0 m -

A /7,
Figure 2.14

AN

(a) Show that the motion of the system is governed by
my” = —ky + k(z — y) = ~2ky + kz
mz" = —k(z—y)+ F(t)

(b) Show that the solution of the homogeneous system, with F(r}=0, is a
superposition of two simple harmonic motions with natural frequencies

1 3—{—&/5 TERFANTE 1 3__\/5 12 e\ 1/2
=) () o =56

(c} Obtain an expression for the general solution of the nonhomogeneous
system,




Chapter 3 EXISTENCE THEORY

This chapter is devoted to the study of existence, uniqueness, and continuity
properties of solutions of the system

y =1ty

In the course of this study, we shall prove Theorem 1.1 (p. 26), which is
applicable to the study of mathematical models for. many physical problems.

3.1 Existence in the Scalar Case

To simplify the exposition, we begin with the problem of proving the
existence of a solution ¢ of the scalar differential equation

¥ =f(ty) (3.1)

satisfying the initial conditions

¢(to) = ¥o (3.2)

_ pS
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concerned only with existence of solutions near the initial point
108

1, since it is
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(fo,y0). To
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treat this problem we make certain hypotheses on f in some rectangle
centered at (fy, o). This will mean that we can apply the local result of this
section at every point in a region D in which f satisfies these hypotheses.

Suppose f is continuous in D and that (ty, y,) is an arbitrary point of D.
The first step in our development is the observation that the initial value
problem (3.1), (3.2) is equivalent to the problem of finding a continuous
function p(¢), defined in some interval 7 containing ¢, , such that y(¢) satisfies
the integral equation*

O =0+ | T w)ds (el (3.3)

This equivalence is made precise as follows.

4
3

Tocmia 21 e oo )
LEmma o.1. 1_; (,u i§ d 501iii £) O

interval I, then ¢ satisfies (3 on 1 Conversely, if y(t) is a olunon of (3 3)
on some interval J containing ty , then y(t) satisfies (3.1) on J and also the initial
condition (3.2).

22

Proof. If ¢ is a solution of (3.1) on I satisfying (3.2), we have

') =7(t, (1)) (tel)

and integrating from #4 to any t on I, we obtain

t
(1) — d(te) = | S5, $(s)) ds
to
Imposing the initial condition (3.2) we see that ¢ satisfies (3.3).

Conversely, if y(t) is a continuous solution of (3.3), then by the continuity
of the function f(s, ¥(s)) under the integral in (3.3) y(¢) is differentiable. Thus
by the fundamental theorem of calculus applied to (3.3) we have that y(¢)
satisfies

Y@y =sxy1) (ted)
and putting ¢ = t, in (3.3), we have y(¢t,) = yo. This completes the proof. {

* Equation (3.3) is called an integral equation (of Volterra type) because the unknown
function appears both under and outside the integral sign.
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Lemma 3.1 permits us to establish existence of a solution of (3.1), (3.2) by
proving existence of a solution of (3.3). This is important because integrals
are in general easier to estimate than derivatives.

e EXERCISES
1. Determine the integral equation equivalent to the initial value problem
yi=124+p*  p0)=1
2. Prove that the initial value problem
Y +g,y)=0 y0)=yo y(0)=zo (3.4)

where ¢ is continuous in some region D containing (0, y¢), is equivalent to the
integral equation

YO =yo+ 2ot = | (1= 9gls, 9(5) ds (3.5)

[Hint: To show that if ¢ is a solution of (3.4) on I, then ¢ satisfies (3.5) on I,
integrate (3.4) twice and use the fact that

J: {f:g(v-, H(7)) dv-} ds = fot { J;tds}g(pr, 7)) dr

= | 0= gtr, gty

To prove that a solution of (3.5) is a solution of (3.4), proceed as in the proof of
Lemma 3.1. But now you will need to use the formula_

R

A H, ) ds = H A sd
5| He s ds=He D+ | =@ 9 ds

O
which is easily proved by the chain rule, assuming only that H, ¢H/¢r are con-
tinuous on some rectangle containing s =t = 0.]

3. Construct an equivalent integral equation to the initial value problem

Y+ uiy=9(t1), ¥0)=yo, ¥y (0)=z

assuming that g Is continuous in a region D containing (0, yo) and where p >0
is a constant. [Hint: Assuming a solution ¢ of the differential equation on an
interval [ that satisfies the initial conditions, apply the variation of constants
formula (Exercise 6, Section 2.4, p. 54). To prove the converse, proceed as in
Exercise 2.

Answer:

Zo sin ult — s)
y(t) = yo cOS ut - i sin pt + fo ——M;-L——-—- g(s, ¥(s)) ds.]
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4. Prove that if ¢ is a solution of the integral equation

y(t)=e”+aJ. sin (t—s)%(-?ds

(assuming the existence of the integral), then ¢ satisfies the differential equation
Y+ (1 +ea/t)y=0.

Returning to the main question of proving the existence of solutions of
(3.3) (and thereby of (3.1), (3.2)), we outline a plausible method of attacking
this problem. We start by using the constant function ¢y(t) = y, as an ap-
proximation to a solution. We substitute this approximation into the right

side of (3.3) and use the result

810 = 7o + [ S5, 9o ds

as a next approximation to a solution. Then we substitute this approxi-
mation ¢,(¢) into the right side of (3.3) to obtain what we hope is a still
better approximation ¢,(t) given by

mm=m+fmw@mh

and we continue the process. Our goal is to find a function ¢ with the
property that when it is substituted in the right side of (3.3), the result is the
same function ¢. If we continue our approximation procedure, we may
hope that the sequence of functions {¢,(t)}, called successive approximations,
converges to a limit function that has this property. Under suitable hypo-
theses this is the case, and precisely this approach will be used to prove the
existence of a solution of the integral equation (3.3).

»

=3
s
=1
=]
™)
j—
.
=

5. Construct the successive approximations to the solution ¢ of the differential
equation y’ = —y that satisfies ¢(0) =2. Do these successive approximations
converge to a familiar function, and if so, is this function a solution of the
problem?

We will consider the problem (3.1), (3.2) first with fand df/8y continuous on
a closed rectangle R = {(t, )| [t — to|l < a, [y — ¥ol < b} centered at (t4, yo).
Thus the functions f and Jf/dy are bounded on R, and there exist constants
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M > 0, K > 0 such that

a
Lt < M, )5—’;(:, y)' <K (3.6)

for all points (¢, y) in R. If (¢, y,) and (7, y,) are two points in R, then by the
mean value theorem, there exists a number # between y; and y, such that

0
£ty y2) = £t y)) = %(r, D2 — 1)

Since the point (¢, #) is also in R, |3f]dy(t, n)] < K, and we obtain

|f(t, y2) = f(t1, 1)) < K|y, — 0l (3.7)
valid whenever (¢, y,) and (¢, y,) are in R.

Definition. A4 function f that satisfies an inequality of the form (3.7) for all
(t, m), (8, y,) in a region D is said to satisfy a Lipschitz condition in D.

The above argument shows that if f and Jf/cy are continuous on R, then f
satisfies a Lipschitz condition in R. It is possible for f to satisfy a Lipschitz
condition in a region without having a continuous partial derivative with
respect to p there, for example, f(¢, y) = t|y| defined in any region containing
(0,0). In this chapter, we assume the continuity of df/dy for simplicity, but
we could instead assume that f satisfies a Lipschitz comdition without sub-
stantial changes in the proofs.

Example 1. If f(z, y) = /3 in the rectangle R= {(t, )| 1t] < 1, Iy <2},
then f does not satisfy a Lipschitz condition in R.

To establish this, we need only to produce a suitable pair of points for
which (3.7) fails to hold with any constant K. Consider the points

(t’ yl), (ta 0)5 Wlth -1 <t< la 1 > 0

Then

[, y) —f1,0) »i”? -2/3
y1—0 Y1

b S P .l Y, YWY, S TR | PRSI DRSNS TR 7 —213 o L e
INOW, Co0sing y; > U suinciently smal, it 1s ciear that A = y; ©'~ can o€ madae
larger than any preassigned constant. Therefore (3.7) fails to hold for any K.
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o EXERCISES

6. Compute a Lipschitz constant X as in (3.7), and then show that each of the
following functions f satisfies the Lipschitz condition in the regions indicated.
@ fGy =14y, {6, Yt <1, |yl <3}
(b) f(t, ¥) =p(t)cos y +q(t)sin y, {2, y)| [¢] <100, |y| < w0}, where p, g are
continuous functions on — 100 < ¢ < 100,

(©) f(t, y)=texp (—y*), {1, )] 11] <1, |y] < o0}
7. Show that f(t, y) =t|y| satisfies a Lipschitz condition in the region

{(t&, W [t] <1, |y| < oo}

We have already indicated that we will use an approximation procedure to
establish the existence of solutions. Now let us define the successive approxi-
mations in the general case by the equations

do(t) = yo
b01(D) = yo + f fls,dsNds  (j=0,1,2,...) (3.8)

Before we can do anything with these successive approximations, we must
show that they are defined properly. This means that in order to define
®;+1 on some interval /, we must first know that the point (s, ¢;(s)) remains in
the rectangle R for every s in 1.

Lemma 3.2. Define o to be the smaller of the positive numbers a and b|M.
Then the successive approximations ¢ ; given by (3.8) are defined on the interval
I={t||t — to| < o}, and on this interval

Proof. The proof is by induction. It is obvious that ¢(z) is defined on /7
and satisfies (3.9) with j =0 on 7. Now assume that for any j=n>=1, ¢,
is defined and satisfies (3.9) on 7 (then, of course, the point (¢, ¢,(¢)) remains
in R for tel). Then by (3.8) ¢, is defined on I. To complete the proof
we need to show that for te 1, ¢,.,(t) remains in R, or analytically that
¢, .+ satisfies (3.9) withj=n + 1. But from (3.8), the induction hypothesis,
and (3.6) we have

<

|+ 1(t) = Yol =

J (s, $uls)) ds

J /G, us))] ds

<Mlt—t)l<Ma<bh

This establishes the lemma. |



114 3 Existence Theory

In order to explain the choice of « in Lemma 3.2, we observe that the con-
dition [ (1, y)| < M implies that a solution ¢ of (3.1), (3.2) cannot cross the
lines of slope M and — M through the initial point (¢,, yo). The relation
(3.9) established in the above lemma says that the successive approximations
@; do not cross these lines either. The length of the interval I depends on
where these lines meet the rectangle R. If they meet the vertical sides of the
rectangle (Figure 3.1), then we define a = a, while if they meet the top and
bottom of the rectangle (Figure 3.2), then we define a = b/M. In either
case, all the successive approximations remain in the triangles indicated in
the figures.

We can now state and prove the fundamental local existence theorem.

(to» Yo + b) (to Yo + b)

(lo + @, y0) {to + @, yo)

a=a

Figure 3.1 Figure 3.2

Theorem 3.1. Suppose f and df[0y are continuous on the closed rectangle R
and satisfy the bounds (3.6). Then the successive approximations ¢ ;, given by
(3.8), converge (uniformly) on the interval I = {t|t — t,| < a}, to a solution ¢
of the differential equation (3.1) that satisfies the initial conditions (3.2).

Proof. Lemma 3.2 shows that the successive approximations ¢; are
defined on the interval . To prove the convergence of the sequence {¢;} on
I we write the obvious identity

Jj—1

¢O(t) + Zl[¢m+ l(t) - ¢m(t)]

The next step is to estimate the difference between ¢; and ¢;,,. We work
on the interval 7, < r < t; + a to the right of #,, but the argument can easily
be modified to give the result on the interval t, —a <t <1t,. We define

rj(t) = |¢j+l(t) - ¢j(t)|5 (.] = 0’ 1’ 2: . )
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Then, using the definition (3.8) and the Lipschitz condition (3.7), we have

r)=1¢;+1() — D) =

[ L6 0N = Fs. 65- (90 ds

< [1£05 96 = 165, (D)

<K [ 16/6) = 109 ds

= K_[:r,-_l(s) ds, (j=1,2,..) (3.10)

The case j = 0 is slightly different. We have, from (3.6)

ro(t) = |¢1(t) — do(t)] = f (s, dols)) ds

<| (s, $o( ) ds < M(t ~ 1) (3.11)

From (3.10) and (3.11) we will prove by induction that

MEKI(t — )/ !

G+l (j=01,2,...;t,<t<ty+a) (3.12)

r{f) <

The case j = 0 of (3.12) is already established. Assume that (3.12) is true for
j=p -1 for some integer p > 1; then (3.10) gives, on using the induction
hypothesis,

t P—1(a_ ¢ \P
MKP~(s—1,) s

p!

r(1) sthr,,_l(s) ds < Kj

ta
v

_ MKP(t - to)’t!
B (p+ D!

;o (lst<ty+a)

which is (3.12) for j = p. This proves (3.12).

a YERDOMNIQER
F LALRVIOL

8. Prove the analogue of the inequality (3.12) for the interval to —a <t <t,.
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Combining (3.12) with the result of Exercise 8, we have

MKt — 1)1 _ M[K]|t - tol¥*! < M(Ka)'*!
G+D!  KG+D! T KG+ D!

(J=0,12,...5|t=ty| <)

rit) < (3.13)

It follows from (3.13) that the series ) 5% ,r,(z) is dominated on the interval
[t — fo] <« by the series of positive constants M{K Y 2=, (Ka)/*1/(j + 1)1,
which converges to (M/K)eX*. By the comparison test, the series Z}‘;Or Fe3)
converges (in fact, uniformly) on the interval I = {¢ | It — ty| < a}. In view
of the definition of the r;, this implies the absolute (and uniform) conver-
gence on |t — 15| < o of the series Y 72 o[, +1(1) — ¢ ,(£)].

Since ¢ (1) = Po(t) + 2120 [Pm+1(t) — Pn(£)], this also proves the con-
vergence of the sequence {¢;(¢)} for every ¢ in the interval I to some function
of ¢, which we call ¢(r). We will show that the function ¢ is continuous and
satisfies the integral equation (3.3) on 1.

From the definition of ¢(¢),

#0) = 6+ 3. (Gue 1)) = )
therefore, using ¢; = ¢o + Yzt [Pms1 — Puls
B0 = 80 = T (s = 41D,

Now from (3.13)

160) = B01 S 5 Vs = 4,01 S 3 )
M §'; (Ka)**! <g (Ko)/ *1 = (Koo)*

<— _ < (3.14)
K. =in+1D! K{+1)!.5 n!
Jj+1
_MEYT ke el
K (+ D!

It is an elementary exercise to see that

rem Aj+1
\AX)
£, =

TG+

-0 as j— oo
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To prove the continuity of ¢(¢t) on 1, let € >0 be given. We have
o+ h) —PO)=d(t +h) — ¢t + h) + ¢t + ) — () + ¢,(1)— $(¢), and
thus

Iz +h) — SO < [@(t + h) — ¢t + D) + [Pt + h) — ¢ (1)}
+ |ty — PN < 2¢; + |t + h) — ¢ (D)

by the above estimate. Choosing j sufficiently large and |A] SLﬁ‘iczenﬂy small,
and using lim g; = 0 and the continuity of the ¢ (), we can make
=

oz + h) — (1)l <&

We now wish to show that the limit function ¢(¢) satisfies the integral equa-
tion (3.3). We will do this by letting j — o0 in the definition (3.8) of the
successive approximations and by showing that

lim f f(s, ps)) ds = f £(s, $(s)) ds (3.15)

J= @

Once this is done the proof of the theorem is completed by applying Lemma
3.1. To prove (3.15), we have, using the Lipschitz condition (3.7) and the
estimate (3.14),

(8) — ¢y(s)l ds

: Lf(s, $(s)) = f(s, ()] ds | < K

<eg Me’“"Kc:z

and this approaches zero as j — oo for every f on I. This establishes (3.15)
and completes the proof. [

Incidentally, we have also established the following useful consequence in
the course of the proof of (3.14).

Corollary. The error committed by stopping with the jth approximation
¢ (1) satisfies the estimate

M( )j+1 Ka

KG+nr©

(1) — d,(D] <

for every t on 1.
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o EXERCISES

9. Construct the successive approximations to the solution ¢ of the differential
equation y’ = y, that satisfies $(0) = 1.

10. Construct the successive approximations to the solution ¢ of the problem
in Exercise 9, but using ¢o(f} = cos 7 instead of ¢,(¢) = 1. Do these successive
approximations converge, and if so, what is their limit?

11. Construct the successive approximations ¢o, ¢, ¢, ¢; to the solution ¢
of the differential equation y’ = cos y that satisfies ¢(0) =0.

12. Consider the integral equation

§6)=yo+ 20t — [ (¢ = 5)g(s, ¥(5)) ds (34)

of Exercise 2, where g(t, y), dg/2y (¢, y) are continuous on the rectangle R =
{0, )] |t! <a, |y — yo| < b}. (Thus they are automatically bounded on R.) Let
lg(, »)| <M, |ég/oy(t, y)] < K for all (¢, y) € R. Define

$o(t) =yo
SO =yo+ 20t — [ (=995, huaDds  (1=1,2,..)

Show that (a) the ¢, are well defined for |¢] <«, where
- - a
o = min (a, b/ M) M:|ZOI+M'2'

(b) {¢n} converges to a solution of the integral equation (3.4) on [¢| <.
This together with Exercise 2 establishes the existence of solutions of the
initial value problem y” + g(¢, y) = 0, ¥(0) = yo, y'(0) = zo.

13. Consider the integral equation

y(t):e“—i—ocf sin (t——s)zg—)ds

T

of Exercise 4. Define the successive approximations

(a) Show by induction that

o

(n— Dt

Since ¢u(t) = dolt) + (b1 — do) + * = + (ult) — Pa-1(1)) this shows that
the ¢, are well defined for 1 < ¢ < 0, and {¢,} converge uniformly for
1 < t < o to a continuous limit function ¢.

(b) Show that the limit function satisfies the given integral equation.

| nlt) = du_1(1)] < (I<t<oo;n=1,2,...)
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(¢} Using
| al®) < h1(t) — Ppa(t)) + -+ | falt) — P a(2)]

and the above estimate for |$.(¢t) — ¢.-1(r)|, show that the limit function
satisfies the estimate

() < e 1<t<®

Theorem 3.1 is not the best possible result of its type. Under the hypo-
theses of Theorem 3.1, we can establish uniqueness of solutions of (3.1),
(3.2), as we shall prove in Section 3.3. However, we may have existence of
solutions without uniqueness. In fact, the following result is true.

Theorem 3.2. Suppose f is continuous on the rectangle R, and suppose
|Lf(t, )| < M forall points (t, y) in R. Let a be the smaller of the positive num-
bers a and b/M. Then there is a solution ¢ of the differential equation (3.1)
that satisfies the initial condition (3.2) existing on the interval |t — ty] < a.

We shall make no attempt to prove Theorem 3.2, as its proof is considerably
more difficult than the proof of Theorem 3.1. It cannot be proved by the
method of successive approximations, as the successive approximations may
not converge under the hypotheses of Theorem 3.2. A proof may be found
in [4], Chapter 1, Theorem 1.2. That the hypotheses of Theorem 3.2 do not
guarantee uniqueness is shown by the following example. .

Example 2. Consider the equation y' =3y*3, with f(, y) = 3y*3,
(8f10y(t, y)) = 2y~ 13, Since df/dy is not continuous for y = 0, we cannot
apply Theorem 3.1 to deduce the existence of a solution of y' =f(¢, y)
through the point (0, 0). By the method of Example I (p. 112) we see that f
does not satisfy a Lipschitz condition either. Since f is continuous in the
whole (#, y) plane, we can apply Theorem 3.2 to this problem. In fact, there
is an infinite number of solutions through (0, 0). For each constant ¢ > 0,
the function ¢, defined by

{0 (-0 <t <)
Pcll) = (t—c)? (c<t<w)
is a solution of y = 3y*/3 through (0, 0) (see Figure 3.3). In addition, the
identically zero function is a solution of this initial value problem. Of
course, for every initial point (7,, ¥,) with y, =0 we have existence by
Theorem 3.1 (and uniqueness by Theorem 3.4).
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1 1
) ! ! l ¢
(fo, 0) ¢, C2 C

Figure 3.3

¢ EXERCISES

14. Do the successive approximations for solutions ¢ of ¥ = 3y%*3 with
#(0) = 0 converge to a solution? |

15. Do the successive approximations for solutions of the problem considered
in Exercise 14, but using

0 0<t<1)
P=1\,_1 (<r<w)

instead of ¢o(t) =0, converge to a solution?

If fand df]dy are continuous on a region D, not necessarily a rectangle, then
given any point (¢4, o) in D we can construct a rectangle R lying entirely in
D with center at (#y, yg). The hypotheses of Theorem 3.1 are then satisfied
in R, and Theorem 3.1 gives us the existence of a solution ¢(¢) of y' = f(¢, y)
through the point (#y, yo) on some interval about t,. In fact, this solution
may exist on a larger interval than the one constructed in the proof of Theorem
3.1. We shall return to this problem in Section 3.4.

Example 3. Consider the function f defined in the region D in the (¢, y)
plane, where Dis given by —0 <t <1, —00 <y < o0, by

2t O<t<l, —0o<y<0)

- 4
JE=19_2  w<i<i,0<y<)

[0 (—0o<t<0, -0 <y< )

I
t—Zt O<t<1,t?<y< o)
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Mt =1

1 sy =2u —“'—ry

Figure 3.4

This function f is continucus and bounded by the constant 2 on D. The
successive approximations to the solution ¢ of y' = f(¢, y) through the initial
point (0, 0) are given by

bo(t) =0

Ga—1(t) = ¢?

dut)=—-1t* (O<t<l;k=12,..)

Thus the successive approximations alternate between ¢t and —¢* and do
not converge.

¢ EXERCISES
16. Show by a direct computation that the successive approximations
o) =0
$i) = [ Fs, or(s) ds

where fis the function defined in Example 3, become

ban—1(t) =12
¢zk(t)2_tz (k———O, 1,2,...; OStSI)
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17. Show that neither of the functions ¢ and —¢2, 0 < ¢ < 1, which are limits
of convergent subsequences of successive approximations in Example 3 and in
Exercise 16, is a solution of the problem y' =f(, ) (0 <t < 1).

We can invoke Theorem 3.2 to give the existence of a solution in Example
3, but it is clear that the method of successive approximations cannot be used
to obtain this solution.

3.2 Existence Theory for Systems of First-Order Equations

We now wish to consider the extension of the results of Section 3.1 to
systems of first-order equations of the form

y

III

£, y) (3.16)

where y and f are vectors with » components and where ¢ is a scalar. Before
proceeding, we remind the reader that because of the equivalence of single
scalar differential equations of nth order and systems of first-order equations
(established in Section 1.3, p. 14), every result that is established for (3.16)
has an immediate interpretation for an nth-order scalar equation, or for that
matter a system of such equations of any order.

In what follows D will represent a region in n + 1 dimensions {see Section
1.6, p. 24). Let f be continuously differentiable with respect to ¢ and
with respect to the components of y at all points of D (for short, we write
f € C’'(D)), and suppose that there exists a constant X > 0 such that the norms
of of/dy; satisfy

f
’a—(r,y)‘sx G=1.00m) (3.17)
0y;

for all (¢, y) in D. Such an inequality is automatically satisfied if fe C’, for
example, on the closed “box” B={({,y)||t—ti<a,ly—1n<b} for
some fixed positive numbers @ and b, or on any closed, bounded setin (n + 1)-
dimensional space. It then follows that for any points (¢, y), (¢, z) in D we
have the inequality

Iz, y) — £(z, 2)| < K|y — 2| (3.18)
This may be seen by applying the mean value theorem to each variable
separately and then using (3.17), or by the following argument. Define the
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function G by
Glo)=1(t,z+o(y—2z)) @O=<axl)

and consider f(t, y) — f(¢, z). We have
f(t,y) - 1(t, z) = G(1) — G(0) = le’(a) do.
0

By the chain rule, letting f, = of/0y,; (j=1, ..., n), we have

G'(o) =1, (1, z+ a(y — 2))(yy — z)) +1,,(t, 2+ oy — 2))(y2 — 2,)
+ 0+ fyu(t, z+ U(y - z))(yn - Z")

Using the bound (3.17), we find

1
e, y) = £, 2)| < [ 1G'(0)] do
< K{lys = 21 + 2 = 72l + lya =zl = Kly — 1

which is (3.18). A function fsatisfying an inequality of the form (3.18) for any
points (1, y), (¢, z) in D is said to satisfy a Lipschitz condition in D with Lip-
schitz constant XK. A function f satisfying (3.18) need not, of course, be of
the class C’ and all the remarks made in the simple case of scalar functions
apply here.

The analogue of Theorem 3.1 is the following result.

Theorem 3.3. Let f and offoy; (j=1,...,n) be continuous on the box
B={(t,y) I |t — to] < a, |y — n| < b}, where a and b are positive numbers, and
satisfying the bounds

If(t, y)| < M, <K (G=L...,n (3.19)

Jor (t,y) in B. Let o be the smaller of the numbers a and b{M and define the
successive approximations

( do(t) =1 t
|40 =1+ [ 16 0,- () s

o~
L
[\
S’
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Then the sequence {{,} of successive approximations converges (uniformly) on the
interval |t — to| < o to a solution ¢(t) of (3.16), that satisfies the initial condition

d(zo) = 1.

The choice of « is suggested by the same reasoning as in Theorem 3.1.

The proof is step by step, line by line the same as the proof of Theorem 3.1,
with the scalars f, ¢, y, replaced by the vectors f, ¢, 1, and in obvious places
the absolute value is replaced by the norm. We remind the reader that the
first step is to establish the equivalence of the initial value probiem with the
integral equation

0 =0+ [ s, 49) d (3.21)

and then work with (3.21). This is the analogue of Lemma 3.1.

¢ EXERCISES

1. Give a detailed proof of Theorem 3.3. (The reader is urged to carry out this
proof with care, in order to appreciate the usefulness of introducing vectors.)

2. By writing the scalar equation y™ =g(t, y, ', ..., y"~) as a system of n
first-order equations (see Section 1.3, p. 14), apply Theorem 3.3 to deduce an
existence theorem for this scalar equation.

3. Given the system

Vi=yt+y2+1
.sz =J’12—J’22—1

Let y = (ﬁ‘) and let B be the “box™ {(s, y)lltl <1, |y| <2}. Determine the
2

bounds M, K in (3.19) for f and &f/8y, for this case. Determine « of Theorem 3.3.
Compute the first three successive approximations of the solution ¢(r) satisfying

the initial condition $(0) =0, ¢ = (i‘)
2

T __.

3.3 Uniqueness of Solutions

Our next goal is to prove that under suitable hypotheses there is only one
solution ¢ of the system of differential equations

y =f¢y) (3.22)

that satisfies the 1nitial condition

() =n (3.23)
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We have seen by examples in the scalarcase thatthe assumption of continuity
of f is not enough to guarantee uniqueness. On the other hand, we assert
that the hypotheses of Theorem 3.3 are enough to guarantee uniqueness.
The principal tool in the proof is the Gronwall inequality (Theorem 1.4,
p. 31).

Theorem 3.4. Suppose f and of/dy;(j=1,...,n) are continuous on the
[19 box,’

B={ty|lt—tl<aly—ml<b}

Then there exists at most one solution of (3.22) satisfying the initial condition
(3.23).

We recall that under the hypotheses of Theorem 3.4 we have already
established the existence of at least one solution ¢ of (3.22), (3.23) existing on
the interval | — #,| < &, where a is defined as in Theorem 3.3. We also
recall that the hypotheses of Theorem 3.4 imply the inequality (3.18) (the
Lipschitz condition).

Proof of Theorem 3.4. Suppose that ¢, and ¢, are two solutions of (3.22),
(3.23) which both exist on some common interval J containing f,. Since
every solution of (3.22), (3.23) also satisfies the integral equation (3.21), we
have

ou(t) =1 + f (s, (s)) ds

b =1+ j £(s, 92(5)) ds

for every ¢ in J. Subtracting these two equations, we obtain

-

[ PaPRY & PR rt o d ] PR BN n~s 1 RS S | b
P21) = @ul1) = | LS, P2S)) = 1S, @1(S))] ds

to

Taking norms and using (3.18), we have

ld2(2) — b,(D] <

f: |€(s, d2(s)) — (s, b, ()] ds

<K| [ 16205 = 6:(6) dsi (for 1 € J)
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where [Of/0y (1, y) < K(j=1,...,n), for all (¢, y) € R. Taking first the case
t > t, and then 7 < 1y, we find that the Gronwall inequality (p. 31) implies
for both cases that {$,(¢) — &,(r)] < 0. Since |$,(r) — ¢,(¢)| is nonnegative,
we have |§,(r) — &, ()] =0 for all ¢ in J, or d,(¢) = ¢,(¢) for t inJ. Thus
there cannot be two distinct solutions of (3.22), (3.23) on J, and this proves

uniqueness. |
It is not necessary to assume as much as continuity of of/dy; (j =1, ..., n)

to insure uniqueness. It 1s clear from the proof of Theorem 3.4 that the
Lipschitz condition (3.18), which here follows automatically from the con-
tinuity of of/dy;(j=1, ..., n), could be used in the hypothesis of Theorem
3.4 instead of the continuity of of/dy;(j=1,..., n) without changing the
proof. It 1s possible to prove uniqueness of solutions under considerably
weaker hypotheses, but in most problems Theorem 3.4 is applicable and
such more refined results are not needed.

Y +gt, =0, yO) =y, »y(O0)==z

where g is a given function defined on a rectangle R : |t| <a, |y — yo| < b. Refer
to Exercise 12, Section 3.1. [Hint: Under appropriate hypotheses if ¢, and ¢,
are both solutions of the initial value problem existing on some interval || <«,

we have
() =yo+ 2ot = | (1= 90 N s (k=1,2)

for |t| < «; subtract the two equations corresponding to & =1 and k = 2, then
use the Lipschitz condition (3.7), and finally appeal to the Gronwall inequality
in the form given in Exercise 3, Section 1.7, p. 32.]

We will prove one other uniqueness theorem for a scalar equation, because
its proof illustrates the type of reasoning used in proving general uniqueness
theorems and because it is related to Example 3 of Section 3.1.

Theorem 3.5. Suppose [ is continuous on the rectangle R = {(t,y)

|t —to] € a, |y — yol < b}, and monotone nonincreasing in y for each fixed
t on the rectangle R. Then the initial value problem

¥y =fY) (3.1
@(t0) = yo (3.2)

has at most one solution on any interval J with t, as left end point.
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Proof. Suppose ¢; and ¢, are two solutions of (3.1), (3.2), which may
agree on some interval to the right of ¢y, but which differ somewhere in 7, <
t <ty + a, for somea, >0. We may assume that ¢, >¢, on some interval
fh<t<t+h<ty+awhiled,=¢, onty <1<t (heret, may be the same
as 1, but need not be). More precisely, ¢, is the greatest lower bound of the
set £ of values of ¢ on which ¢, > ¢;. This greatest lower bound exists
because the set E is bounded below, at any rate, by f.

This implies f(t, ¢,(#)) = f(, p,(#)) on t; <t < t; + h. Since ¢, and ¢,
are both solutions of (3.1), we have ¢{ = ¢@5 ont; <t <t +h The func-
tion u = ¢, — ¢,, then, is by hypothesis strictly positive on t; <t <t + h.
Since #' = ¢p3 — ¢} <0, w has a nonpositive derivativeon t; <t < t; + &, and
satisfies u(z,) = 0. This is impossible, and the supposition ¢, > ¢, on t; <
t < t; + h must be false. Thus the solutions ¢, and ¢, are actually identical
on ty <t <ty+a;. This completes the proof of the theorem. |

e EXERCISE

2. Use Theorem 3.5 to prove uniqueness of the solution for >0 in Example 3
of Section 3.1.

Exercise 2 shows that in Example 3, Section 3.1, we have uniqueness. We
have already shown that the successive approximations for that example do
not converge. Thus uniqueness does not imply the convergence of succes-
sive approximations. On the other hand, Example 2 and Exercise 14, Sec-
tion 3.1 show that the convergence of successive approximations does not
imply uniqueness.

3.4 Continuation of Solutions

The existence theorems of Sections 3.1 and.3.2 say that under suitable
hypotheses there is a solution of a differential equation or system of differen-
tial equations that exists on some, possibly small, interval. The question to
be studied in this section is whether this solution in fact exists on a larger
interval.

Example 1. Consider the scalar initial value problem

Y=y, y0)=1
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whose solution ¢ can be written explicitly as ¢(¢) = 1/(1 — ¢) (see Example 1,
Section 1.3, p. 11). Clearly the solution exists on —o0 <¢ < 1. Suppose
we try to determine the interval of validity as given by Theorem 3.1. Here R

is the rectangle R = {(¢, y) | It <a,|y — 1] < b} and « and M of Theorem 3.1

are given by M = maxg (y%) = (1 + b)?, &« = min (a, b/M). The largest value
of the positive number b/(1 + b)* is 1/4.

¢ EXERCISE

1. Using calculus or otherwise, show that

b ) _1
omree\(T+B)2) T4

Therefore, independent of the choice of a,« < 1/4. Thus, Theorem 3.1
gives existence of a solution on |#{ < 1/4. From the explicit formula for the
solution it is clear that the solution actually exists on a much larger interval.

Suppose that f and of/dy; (j= 1, ..., n) are continuous in a given region D
in (n + 1)-dimensional space. Let (¢;, ) be a given point in D. Consider

the initial value problem

y =1(y) (3.22)
y(to) =1 (3.23)

By the definition of a region (p. 24), there exist numbers a > 0, & > 0 such
that the “box™ B = {(t,y) l |t — t5] < a, |y ~— 0l < b}, centered at (¢,, 1) is

contained in D. By Theorem 3.3 there exists a number « > 0 and a unique
solution ¢ of (3.22), (3.23) existing on the interval |t — t,| < o (see Figure
3.5).

Now consider the point (¢, + o, ¢p(?, + &)) as a new initial point. Since
this point is in D (definitely not on the boundary of D), there exist numbers
a, > 0, b; > 0 such that the box

B ={t,y)|lt =+ )| <ay,ly ~¢{t, + )| < by},

centered at (¢, + o, ®(#o + «)) is contained in D (see Figure 3.6). Consider
the system of differential equations (3.22), subject to the initial condition

y{to + 2) = §(to + ) (3.24)

By Theorem 3.3, there exists a number a; > 0 and a unique solution ¥ of
(3.22), (3.24) existing on the interval |t —(7, + a)| <, (see Figure 3.6).
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(to + 2, dl7o + %))

Figure 3.6
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Because of the uniqueness,
&(1) = Y(1), (to+oa—o; <t <ty +a) (3.25)
We may now define the function ¢ on the interval t, — 0 < t <ty + & + &

o+ %)

(1) = Y(1), (to +a <<ty + o+ o)

€
™
S
il
<
sy
~
—
_—
By
<
I
<
(Y
LY
A
b3

(see Figure 3.6). It is easy to verify that this function ¢ is a solution of
(3.22), (3.23)'on the interval t, —a <t <ty + a +o;. Thus ¢ is a solution
of (3.22), (3.23) on a larger interval than the interval |t — #,] < o on which
we originally constructed the solution ¢. This solution ¢ is called the
continuation to the right of the solution ¢ to the interval 1, —a <t <1, +

x4+ oy

e EXERCISES

2. Show that the function & satisfies the integral equation (3.21) on the

interval to — o <t <fo+ o + ;.

3. Consider the solution ¢ of Example 1 above, which has been shown to exist
on the interval —1 < r <. Consider now the continuation of ¢ to the right
obtained by finding the solution ¢ through the point (3, ). Show that on any
rectangle R ={(r, W | [t —H <a, |y —% < b}, M =maxg y* = (% + b)*. Deduce,
similarly to Example 1, that «, = 1%. This now gives existence on —1 <1 < 7%.

4. Continue, similarly to what was done in Exercise 3, the solution ¢ of

Example 1 to the left of the point (—%, %).

The solution ¢ may be continued to the left from the point (¢, — «,
¢(t, — a)) in a similar way, as suggested by Exercise 4.

e EXERCISE

5. Formulate the continuation to the left.

In Example 1 and Exercises 3 and 4 we have indicated how to cdntinue the
solution ¢ of y' = y2, where ¢(0) = 1, to the right and to the left of the inter-
val [t} < &, with « = min (a, b/M) = 1/4. From the explicit solution ¢(¢) =
/(1 — t) we know that it exists for —o0 <t < 1.

In order to establish this fact, and a general result on how far the solution
can be continued, we need the following auxiliary result.
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Lemma 3.3. Suppose f, of/0y;(j=1, ..., n) are continuous in a domain D
and suppose || is bounded in D. Let ¢ be a solution of

y =1ty (3.22)
() =1 (3.23)

existing on a finite interval y <t <8. Then lim &(1) and lim $(r) exist.

f—d- l_.},-i-

Proof. Let t; and t, be any two points on the interval y <t <4 with
t, <t,. Then, since ¢ satisfies the integral equation (3.21),

(1) = -+ [ G5, (s
b =n+ [ :’f(s, $(s)) ds
Subtraction gives
b(t2) — $(0) = | 'f«s, (s)) ds
and the assumption [f(z, y)| < M for (t, y) € D now gives

(1) — (1) < Mt; — 1]

Since the right side tends to zero as ¢, and ¢, both tend to é from below, the
Cauchy convergence criterion shows that ¢(¢) tends to a limit as ¢ tends to 6
from below. We obtain the proof that ¢(¢) tends to a limit as ¢ tends to y
from above in an analogous way by letting ¢, and ¢, tend to y from above. |}

\Tl\!ll L 8- al-
INOW wi Lan

¢(0) =1lim ¢(t), &(y) =1lim (1)

e 1oyt

and we have the solution ¢ defined on the closed interval y <r<4. The
continuation process described above can be repeated provided the graph of
the solution remains in a region in which f and of/dy;(j=1,...,n) are
continuous, and this continuation process 1s carried out by means of boxes
remaining in D, precisely as B and B, were used above.
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Theorem 3.6. Suppose that £ and 0f[dy;(j= 1, ..., n) are continuous in a
given region D and suppose f is bounded on D. Let (ty,n) be a given point
of D. Then the unique solution ¢ of the systemy' = (1, ¥) passing through the
point (o, W) can be extended until its graph meets the boundary of D.

Proof. Suppose the solution ¢ cannot be extended up to the boundary of
D, but can be extended totheright only to aninterval t, <t <i. By Lemma
3.3, (_Ib(?) = lim dr)(t) exists. If (7, ¢(?)) 1S a hnlmdary point of D, we are done.

a22%3% WALl S VN wiawelen " [T W ¥ AV

i
If not, there is a box centered at (7, ¢(#)) lying in D. But now we can extend
the solution ¢ to the right of 7 by the method given above, resulting in a
contradiction. This shows that ¢ can be extended up to the boundary of D.
An analogous argument shows that ¢ can also be extended to the left up to
the boundary of D, and this completes the proof. |

The reader should note that in the proof of Theorem 3.6, it is possible that
t=+o0. Ifi= +o00, then it is possible that lim |p(¢)| = 0. If < oo,

=i~

since f is assumed to be bounded on D, we must have lim |¢(f)] < 0.
t—i~

In many problems the hypothesis that f is bounded on D madg in Theorem
3.6 is not satisfied if D is taken as the maximal possible domain of definition
of f. For the equation y* = y? considered in Example 1, if D is taken to be
the whole (¢, y) plane, the function f(¢, y) = y* is not bounded. We may
handle this problem as follows.

Example 2. Consider the solution ¢ of the equation )’ = y* such that
¢(0) = 1. Here D is the whole plane. If we consider the equation on the
region D, = {(t, )| —0 <t < o, [y{ < 4} instead of D, then f(1, y) = y*
is bounded on D, by 4% and Theorem 3.6 is applicable. It shows that the
solution ¢(t) = 1/(1 — t) can be continued for those values of ¢ such that
() =1/(1 —t) < A, or —~c0 <t <1—~1/4. However, since this result
holds for an arbitrary 4 > 0, ¢(t) can be continued to the interval — o0 <
t < 1, but not to the interval —co <t <1,

In Exercises 3 and 4 above, the solution ¢ was ““ built up” on a union (or
sum) of contiguous (adjacent) closed intervals. If such a continuation can be
accomplished in a finite number of steps, the resuiting solution will be valid on
a closed interval. If however, an infinite number of steps is required, as is in
fact the case for the equation in Example 2, then the resulting solution may be
valid only on an open interval. This can happen because an infinite union of
closed intervals need not be closed. For example, the union of the inter-
vals 1 —(I/m <t <1 ~1j(n+ 1) (n=1,2,...)is the interval 0 < ¢ < 1.
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In applications a very common example is the case where the domain D is
the whole (r,y) space. We start with an arbitrary infinite box B, =
{(t,¥}| — o0 <1 < @, |y] < 4} containing the initial point (7,, ) and em-
ploy the argument of Example 2 above. By Theorem 3.6, the solution ¢
can be continued to the boundary of B,. Clearly, either this gives the
existence of the solution ¢ on —oo0 <t < 00 or there exists a 7 such that

lim |(r)| = A4; in the second alternative we enlarge the box B, by increasing
1t

A It may lldppCll that Uy ulUmeg finite but lar TgE € ugn we obtain
existence of the solution ¢ on —oo <t < oo. Inthiscase, ¢o is also bounded
on —oo < t <00, since [p(t)| < Aon—o0 <t <oo. If, however, the solution
¢ reaches the portion |y| = A4 of the boundary of B, for 4 > 0, there are two
possibilities. Either ¢ exists on — o0 < ¢ < oo (but is not bounded), or there

exists a finite number T such that lim |[¢p()] = c0. We can now summarize.
=T

Corollary to Theorem 3.6. If D is the entire (1, y) space and if f and of/0y;
(j=1,...,n) are continuous on D, then the solution ¢ of y' = 1(t,y) can be
continued uniquely in both directions for as long as |§(t)| remains finite.

A similar result holds for the case where D is the infinite strip a < t < b,
ly| < oo, and f, of/dy; (j =1, ..., n) are continuous on D.

This corollary does not say that if D is the entire (7, y) space, then every
solution can be extended to the interval — o0 < ¢ < 0.

¢ EXERCISES

6. Show that the solution ¢ of 3’ = —y?, where ¢(1) =1 exists for 0 <t <
but cannot be continued to the left beyond 1 =0.

7. Show that no solution, other than ¢(¢r) = 0, of the equation " = —y? can
be extended to the interval — o0 <1 < o0,

8. Formulate, as another corollary to Theorem 3.6, the result on continuation
if f is defined on the infinite strip D = {(t, y)|a <t < b, |y| < o},
For the existence of solutions of the linear system

y = A1)y + g(t) (3.26)

where A(¢) is a continuous n-by-n matrix and g(¢) is a continuous vector on
some interval 7, we refer the reader to Theorem 2.1, p. 37, where existence is
established for the case I = {t]a <t < b}.* The case of existence of solutions
of the system (3.26) on an arbitrary interval follows from Theorem 3.6, the

* We note that Theorem 2.1 depends on Theorem 1.1, which has now been completely
justified.
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corollary, and Exercise 8, using the same estimates that were obtained in the

proof of Theorem 2.1.
There are special cases where we can prove a global result directly from

successive approximations, as is illustrated by the following result.

¢ EXERCISES

9. Let f be a continuous scalar function defined on the domain D =
{(t, ||t — to] <a,|y| < ©} where « is an arbitrary positive real number.
Suppose df/dy is bounded on D, that is, there exists a constant K = K(x) >0
depending on « but not on y, such that

< K(a)

of

a} (f) y)

Show that the successive approximations

do(t) = yo

$ult) = Yo -+ f £Gs, dnr(sDds  (n=1,2,..)
o

approach a (unique) solution ¢ of y’ = f(¢, ¥) satisfying the initial condition
#(to) = yo. Also show

M
[ ()] < |yol + e (eX—1) for |t—to| <«

where K= K(x) and M = max |f(t, yo)|. [Hint: The trick now is to get

It=tgl=sa
around the fact that f(¢, y) itself is not necessarily bounded on D, even though

Sf(t, yo)is bounded.
(a) Induction easily shows that each ¢, (n=0,1,...) is well defined for

[t — to] <. Now

1610 = $o <|[1f(s, yo)l ds| <Mt —tal
(b) Show by induction that

MK Y|t — to|"
[a(t) — -1 () < I, |

(c) Deduce the uniform convergence of {¢,} to a limit function ¢ on
lt""’ tol < o, Then, for lt— tol goc,

$0) = 30l =| T, $(0) = -1 < T 1$:0) = s}

2 MK"- ‘It-fl A—;(e'“—l)

A

from which, on taking the limit, we obtain the asserted bound for |$(¢)|.
(d) Show that the limit function ¢() is a solution of the problem.}
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10. Let f(¢, ) be a continuous scalar function on the whole (¢, y) plane.
Suppose that df/dy is also continuous and for any « > 0 suppose

o

5}(”) <K=K(x) (t|<ea, |y <o)

Show that given any (fo, yo) the equation y’ = f(¢, ») has a unique solution ¢(¢)
on — oo < t < co, such that ¢(to) = yo. [Hint: By Exercise 9, |$(r)| is bounded
on every interval |t — o] <a; now apply the corollary to Theorem 3.6.]
i1. Show that the equation '
Yy =p(t)cos y+q(t)siny

where p, g are continuous functions on — o < r << 0 has a (unique) solution ¢
on — oo < t < oo, satisfying the arbitrary initial condition ¢(to) = yo. {Hint:
Use Exercise 10.]

3.5 Dependence on Initial Conditions and Parameters
A solution ¢ of the system of differential equations
y =1f(y) _ (3.27)

passing through the point (#,, 1) depends not only on ¢, but also on the
initial point (¢, ). When we wish to emphasize this dependence, we will
write the solution as ¢(t, 1, 11). We will show that under suitable hypoth-
eses ¢ depends continuously on the initial values, and in fact that ¢ is a
continuous function of the “triple” (¢, ¢,, ). As in the previous sections
of this chapter, we make no attempt to prove the most refined result of this

type.

Theorem 3.7. Supposefandof/dy;(j =1, ..., n)arecontinuous and bounded
inagivenregion D. We assume that the bounds (3.19) are satisfied on D (rather
than on the box B). Let ¢ be the solution of the system (3.27) passing through
the point (t,, ) and let  be the solution of (3.27) passing through the point
(1o, ). Suppose that ¢ and \ both exist on some interval o < t < f§. Then
to each £ > O there corresponds 6 > 0 such that if |t — 1} < 6, and | — | <4,
then

o) — YDl <e (x<t<p, a<i<f) (3.28)

Proof. Since ¢ is the solution of (3.27) through the point (#,, 1), we have
forevery t,a <t < f,

() =n + [ s, $()) ds (3.29)
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Since { is the solution of (3.27) through the point (i,, fi), we have for
every ha <1< B,

W) = 4+ [ S5, ) ds (3.30)
Since

J[16. 0 ds = [ 165, 00 ds-+ [ s, ) s
subtraction of (3.30) from (3.29) gives

B — W0 =1~ + [ [1G5 $6)) ~ 16 W1 ds + [ %6, 060 ds

(1) — W) < [n — 4| + f: (s, §(s)) — £(s, W(s))| ds

H

+|[ s denias| @31
Using (3.19) to estimate the right-hand side of (3.31), we obtain
60 = (01 < In =l + K| [ 166) ~ W) ds | + M 1o — o
If |t, — 1] < 8, I ~)| < 3, then we have
160 = ¥01 =6 + K| 196) — W0l ds | + M5 (3.32)

The Gronwall inequality (Theorem 1.4, p. 31) applied to (3.32) gives
() — V(D) < 6(1 + M) exp (K|t — To|) < 6(1 + M) exp [K(B — )]

using the fact that |t — 35| < f — . Since [Y(r) — W(B)| < |f (s, W(s)ids| <
Mt — 1 < M3 if |t — 1] < 8, we have

|b(1) — Y@ < 19(t) — Y(O)] + () — W) < 6(1 + M)e P~ + oM

Now, given £>0, we need only choose § < ¢/[M + (1 + M)eX?~ %7 to
obtain (3.28) and thus complete the proof. |
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Theorem 3.7 shows that the solution ¢(, #,, 1) of (3.27) passing through
the point (¢4, i) is a continuous function of the ““triple” (¢, ¢,,m). It is
possible to show that if the initial point (7, , ) of V is sufficiently close to the
graph of the solution ¢, then there is a common interval on which both
solutions ¢ and  exist (see [4]. Ch. 1, Theorem 7.1).

We also remark that in practice the solutions ¢ and { are usually known to
remain in a closed bounded subset of D, so that the hypothesis that f and
of/0y; are bounded is automatically satisfied on this subset (which is all that
is needed in the above proof), even though it may not hold on D.

Continuous dependence on initial conditions is true under considerably
weaker hypotheses than those of Theorem 3.7. In fact, it can be shown that
uniqueness of solutions by itself implies the continuous dependence of solu-
tions on injtial conditions. For a proof, see [4, Ch. 2, Theorem 4.1].

The technique used to prove Theorem 3.7 can be applied to establish the
following result.

Theorem 3.8. Let f, g be defined in a domain D and satisfy the hypotheses of
Theorem 3.7. Let ¢ and \y be solutions of y' = (1, y), ¥y’ = g(t, y) respectively,
such that ¢(ty) =1, W(t,) = ), existing on a common interval a <t < f.
Suppose :

(e, y) —g(r, )i <e¢
for (t,y) in D. Then the solutions &,  satisfy the estimate

() — Y(t)| < [n — fi] exp (K|t — 2,]) + e(f — ) exp (K|t — 1,])
foralltina <t <§f.

¢ EXERCISE

1. Prove Theorem 3.8, [Hint: Write the integral equations satisfied by ¢
and ¢, and subtract to obtain

SO — 9O =n— A+ | (s, $6)— 16, P} ds

+ | 6 b — 86, b)) ds

Then take norms, and use (3.19), the hypotheses, and the Gronwal
inequality to obtain the result.]

Theorem 3.8 says roughly that if two differential equations have their
right-hand sides “‘ close together,” their solutions cannot differ by very much.
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One immediate consequence of Theorem 3.8 is another proof of uniqueness
(Theorem 3.4). We simply take g(¢,y) =1(1,¥), 4 =1). Then ¢ =0, and
Theorem 3.8 gives ¢(7) = (7).

Theorem 3.8 also gives a different type of continuity property, as indicated
below.

¢ EXERCISE

Y T at mra b vantae frematian

iffs wAl blan n on o 4
L LA QERUE, Y ) UG A D HUUIIW O1 VECLOI TUNCUON3 t

sense that |f(z, y) — fu(2, »)| < & for all (¢, y) in D, with & 0 s k— co and let f and
fik =1, 2,...) satisfy the hypotheses of Theorem 3.8. Let {¥.} be a sequence of
constants converging ton. Let .(?) be the solution of y’ = fi(r, y) with .(t0) = ¥
(k=1,2,...), existing on a < t < 8, and let ¢(¢) be the solution of y’ =1 (¢, ¥) with
&(t,) =, existing on « <t <. Show that iim Pu(t) = () for « <t < B.

1- converges o F14 w tha
nat converges to i(z, J; in the

e MISCELLANEOUS EXERCISES
1. Consider the differential equation y’ = y, with the solution ¢(t) = ' satis-
fying the initial condition ¢(0) =1. Let p(¢) be any polynomial in ¢ and define

dol(t) = p(r)
$lt) =1 +f $a()ds  (k=1,2,..)
0

(@) Is lim ¢u(r) = ¢(¢)? Prove your answer.
k- o

(b) What general statement can you make concerning the initial * guess” ¢o(2)
and the convergence of the successive approximations? What happens
if the 1 in the definition of ¢«() for £ > 1 is replaced by some other function,
say p(t)?

2. Consider the scalar differential equation

Y =1

where fand 8f}8y are continuous in a region D in the (7, y) plane, and let (1o, o)
be a point in D. Let G be a bounded subregion of D containing (¢,, yo) and let G
be the closure of G. Define

M =max | f(z, y)|

Through (¢o, o) construct the lines AB and CD of slope M and —M, respec-
tively, as shown in Figure 3.7. Now construct vertical lines HI, JK intersecting
the ¢ axis at « and B, respectively, so that the isosceles triangles HOI, JOK are
contained in G. Let ¢o(f) be any continuous function defined on « < ¢ <{ 8such
that the set of points {(#, ¢o(#))| « <t < B} is contained in G. Define

b =yo+ [ fls, $oNds  (<1<P)
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Figure 3.7

and generally
b =yo+ | S5, gslDds  (k=1,23,..5a<t<P)
to

Prove that the successive approximations {¢«(¢)} converge (uniformly) to the
(unique) solution &(t) of y" = f(t, y) with ¢(to) =yo on « <<t <8, and estimate
the error |$(t) — du(t)| on a« <t < B in terms of

K= max [o(t) + 1)) form=20

I

ef
K, E—(t,y)] form>1
Y |

max
G 1%/

[Hint: Follow the proof of Theorem 3.1.]

(REMARK. The same result holds if fsatisfies a Lipschitz condition.)

3. In the notation of Exercise 2, suppose that a function ¢(t) has been found
satisfying the hypotheses of Exercise 2, and also constants K >0, 6 >0 are

lqu(f)"‘ﬁbo(')}S.Klt'—fo" (<t <h)
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Show that

K. Kyt —1t
80— p <Klt— | 4 G| esrsp

where K is as in Exercise 2. Can you generalize this result? [Hipz: Assume
an estimate for |¢n(t) — dn-1(t) on « <t < B and compute an estimate for
[(t) — dm(t)] On a < 1 < B.]

4. Let ¢(tr) be the solution of y = t*+ y? on 0 <t <1, with ¢(0)=0.
Show that

1 3 i 7

Q) (3: +63r)
[Hinzt: In the notation of Exercise 3, let ¢o(¢) =13/3, and compute ¢.(r) and
|$:(2) — do(r)]. Then apply the result of Exercise 3 to the differential equation
¥ =1%+ y? on the closed rectangle {(#, y)|0 <t < 1, |y| < A4} for some suitably
chosen 4 > 0. Such a choice is 4 = 0.36, and this gives K, = 0.72.

5. Prove the Osgood unigueness theorem: Suppose that the function £(z, y)
satisfies the condition

| f(t, y2) — U, y ) < h(|ly: — yi))

for every pair of points (¢, ¥1), (¢, y2) in a region D. Here we assume that the
function A(x) is continuous for 0 < ¥ <« for some « > 0, that 4(x) > 0, and that
I du
a:m € h(u) =®
Then through each point (¢, v,) in D there is at most one solution of the equation
v =f(t,y). [Hint: Suppose ¢, and ¢. are two solutions with ¢i(r) =
$2(t0) = yo. Define P(t) = $2(t) — $:(¢) and suppose ¢(r) £ 0. Then show
that ['(¢)| < A(Jf(2)|) < 2h([{(¢)]). Suppose (1) #0, for some t, >£,, and
let u(t) be the solution of ' = 2Ah(u) satisfying the initial condition u(z,) =
|(t1)]; u(r) is strictly positive for fo <t <<#,. Show that ¢'(r;) <u'(ty) and
therefore y(¢) > u(t) on some interval to the left of 7,. Then show that ¢(¢) > u(r)
for 1, <t < t; and obtain a contradiction.]

6. Show that the functions A(u) = Ku* (x>1), h(u) = Kulog |u}, A(x) =
Kulog |u |loglog |u]|, and so on, satisfy the Osgood condition of Exercise 5.
(The case h(u) = Ku is, of course, the Lipschitz condition.)

7. Let f(t, y) and g(z, y) be continuous and satisfy a Lipschitz condition with
respect to y in a region D. Suppose [£(¢, ¥) — g(t, y)| < ¢ in D for some £ > 0,
Let ¢:() be a solution of y" =f(¢, ) and let ¢.(z) be a solution of y' = g(z, )
such that |$2(t0) — ¢i(te)| < & for some ¢, and some & >0. Show that for all ¢
for which ¢4(z) and ¢,(¢) both exist,

< 0.00155¢® O<r< )

162(8) — Bu(t)] < 8 exp (K|t — to] + %(exp (Kt — to]— 1)

where K is the Lipschitz constant. [Hint: Show that |¢y(r) — u(1)l <8
+ [to [K|$2(s) — $1(s)| + €] ds and complete the argument by a slight generaliza-
tion of the Gronwall inequality (see Exercise 3, Section 1.7, p. 32).]
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8. Obtain the analogues of Exercises 2, 5, and 7 for systems of the form
y' =f£(t, y), where f and y are vectors and where f satisfies suitable hypotheses.
9, Let g(¢) bea differentiable function on 0 <<t <#. Show that the differential
equation
=y +qt)y =y
has a solution $1(2,A) on 0 <t <7 with $4(0,A) =0, $(0,A) =1, such that
T

VA
$i(t, ) =cos V Az + M,

$1(t, A) =sin + M,

where | M| < K/A, | M| < K/VAon0 < ¢ < for some constant K. [Hint: Con-
sider the integral equation

Qi '\/-i‘! 1

LA AL OV, v
&, ) Y JD sin VXt — )g(s)d(s, A) ds

and use successive approximations as in Exercise 13, Section 3.1, to prove the
existence of a bounded solution ¢,(z, A). Then estimate

ot <
M, =ﬁ fo sin VAt — $)q(s) (s, A) ds.

Differentiate the integral equation to obtain the desired estimate for ¢i(z, A).]
10. Show that the differential equation considered in Exercise 9 has a solution
$2(1, AY on 0 < 1 <, with ¢,(0, A) = 1, ¢2(0, A) =0, such that

d1(t, A) =cos VAt + M
da(t, A) = —VAsinVa + 3 cos\/XtJ q(s) ds = M.,

where | M| < K/VA, |Ms < K/VX on 0<t < for some constant K. [Hint:
Proceed as in Exercise 9, using an appropriate integral equation.]

REMARK. Exercises 9and 10above, coupled with the Liouville transformation
[2, Exercise 5, p. 234] are the starting points for the study of the asymptotic
behavior of eigenvalues and eigenfunctions of general Sturm-Liouville boundary
value problems; see, for example, [26).

11. Let £, offdy; (j=1, ..., n) be continuous in a domain D. Let ¢(1, 1o, M)
be the solution of y’'=f(¢ y) for which (4, fto,n) =n and suppose that
¢ is differentiable with respect to each of its #+ 2 variables. Show that
edbjon, (t, e, ) (i=1,..., n) is that solution of the linear system

s 3

w =1,(1, $)w 3.3)
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for which &d/én (o, to, n) =¢;, the familiar unit vector in the jth coordinate
direction where f,(¢, $) denotes the matrix (2fi/éy,(¢, &)).

12. Under the hypotheses of Exercise 11, show that éd/ct, (¢, to,n) is the
solution of (3.33) for which

2
'a'}:(fo,fo,"l)z —f(to,m)

13. Under the hypotheses of Exercise 11, show that

8 7, 2
%(l, to,n): — z 62([, to,n)ﬁ(l‘o,'fl)
o J=1 7]1



y STABILITY OF LINEAR AND
Chapter ALMOST LINEAR SYSTEMS

4.1 Introduction

Ideally one would like to compute explicitly all solutions of every differen-
tial equation, or system of differential equations. However, as we have seen,
there are actually very few equations (beyond linear equations with constant
coefficients, and even here there are difficulties if the order of the equation or
system is high) for which we can do this. In this chapter we begin to study
qualitative properties of solutions of differential equations, without solving the
equations explicitly. This marks the beginning of the modern theory of
differential equations, which was pioneered primarily by the independent work
of two mathematicians, A. M. Lyapunov and H. Poincaré, at the turn of the
century ; their ideas continue to stimulate current researchin the subject. The
reader might well ask why we do not simply calculate the solutions numer-
ically on a high-speed computer and use whatever information can be obtained
from the numerical solution. This is precisely what we can do if we desire
information about one specific solution. However, in many problems, for
example, those of design of complex systems, automatic controls, and so
forth, we want certain information of a qualitative nature about all solutions.

Moreover, we often want to know whether a certain property of these
solutions remains unchanged if the system is subjected to various types of
changes (usually called perturbations). We shall be much more specific
later; however, the point is that for such studies the computer and the cal-
culation of a few specific solutions do not provide a satisfactory answer.
These qualitative studies are also important from the practical point of view

143
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because in most problems (this is already true for the simplest mass-spring or
pendulum system) both the differential equations and the measurement of
initial values and various other data involve approximations. Indeed, in
almost every mathematical model of a physical problem a number of effects
have been neglected. It is therefore important to study how sensitive the
particular model is to small perturbations or changes of initial conditions and
of various parameters. Another drawback in the use of numerical approxi-
mations is that often it is of interest to show that a solution of a differential
equation tends to zero as  — co. While a numerical approximation method
may suggest that this is true, it cannot be used to prove it.

One qualitative phenomenon of great practical interest is the notion of
stability of a certain state or solution of a system of differential equations.
This chapter and Chapter 5 are devoted primarily to the study of this prop-
erty and conditions under which a solution is stable. This concept will be
motivated and defined precisely in the next section. Then stability of linear
systems (which represent the simplest case) will be considered briefly and
followed by an investigation of ‘‘almost linear’’ systems using analytical
methods. Such nonlinear systems are important because no physical system
is truly linear—linearization is just another idealization of reality. The aim
of this investigation is to find out under what conditions the addition of non-
linear terms does not drastically alter the behavior of the linear system; or,
to put it another way: Under what conditions does the perturbed system
behave more or less like the linearized system? We shall also look briefly at
the concept of asymptotic equivalence, which is important for certain prob-
lems to which the other techniques cannot be applied. Finally, we shall apply
some of the techniques developed here to the study and stability of periodic
solutions of nonlinear periodic systems. Several important cases of nonlinear
systems that are not necessarily almost linear will be studied in Chapter 5.

We remark that our objective is not to prove the most general or most
sophisticated results on stability; rather, we wish to convey a simple and
intuitive view of this important subject. We will also see from several
examples in this and the subsequent chapters that some nonlinear problems
exhibit phenomena that cannot be duplicated by linear systems, and in certain
applications, such as the theory of automatic controls studied in Chapter 6,
we therefore need to build nonlinearities into the system in order to achieve a
desired effect.

4.2 Definitions of Stability

FRgey e

To be able to present the ideas in a simple geometrical setting, let us
consider a physical system whose equations of motion are given by the
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autonomous system

y =1{y) 4.1)

where the real continuous vector-valued function f with # components is
defined in some region D in real n-dimensional Euclidean space. We assume

throughout that fe C'(D), which guarantees existence and uniqueness of
cn]uhr\ne n? H\n lrn'hal uolnn nrr\k]nm f‘nr (A ]\ (Thpnrﬂmc 1 Q n 17% anl
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3.4, p. 125). Then, as we have seen in SCCUOH 2.8 (p. 184), thc solutions
of (4.1) can be conveniently pictured as curves in the phase space. The
behavior of solutions of (4.1) is indicated by these curves. Lety =y, be an
isolated critical point of (4.1) (that is, f(y,) = 0), so that ¢(¢) = y,—a constant
vector—is a solution of (4.1). A critical point of (4.1) is an equilibrium or
rest point of the associated physical system. In phase space the equilibrium
solution () = y, is represented as a single point. Now suppose the system
is displaced slightly from this equilibrium state; that is, suppose we consider a
solution Y(#) of (4.1) that passes through the point n at a time 7, (se¢ Figure
4.1), where the Euclidean distance || — yo!| is small. (We remind the reader

‘J"z

—— 3y

phase space

Figure 4.1

that because of errors in measurements it would be impossible to start the
physical system exactly at y,.) Let us now inquire what happens to the
system when we start the motion at a point 1 different from y,, but near y, .
Will the resulting motion Y remain close to the equilibrium state for t > #,?
If it does, this, roughly speaking, is stability of the equilibrium solution y,.
(The reader may find it helpful to think of an undamped simple pendulum
displaced slightly from the equilibrium at 0 =0,0" =0.) If the motion
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(solution {) does remain near the equilibrium position y, and if in addition
the solution \ tends to return to the equilibrium position as time ¢ increases
to infinity, then, roughly speaking, this is asymptotic stability of the equilibrium
solution y,. (The reader might think of a damped pendulum.) If, on the
other hand, the solution { leaves every small neighborhood of y,, this,
roughly speaking, is instability of the equilibrium solutiony,. (The undamped
pendulum displaced slightly from the equilibrium at 6 = x, 6° =0.) More
precisely, we have the following definitions.

Definition 1. (Sce Figure 4.2.) The equilibrium solution y, of (4.1) is said to
be stable if for each number & > 0 we can find a number § > 0 (depending on &)
such that if Y(t) is any solution of (4.1) having |{t,) — yoll < 8, then the
solution (t) exists for all t > t, and ||Y(t) — yoll <e& for t > t, (where for
convenience the norm is the Euclidean distance that makes neighborhoods
spherical).

phase space

Figure 4.2

Definition 2. (See Figure 4.3.) The equilibrium solution y, is said to be
asymptotically stable if it is stable and if there exists a number &, > 0 such that
if (t) is any solution of (4.1) having |[Y(t,) — Yoll < 8¢, then lim Y1) =y,.

=++wm

13

The equilibrium solution y, is said to be unstable if it is not stable.
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Figure 4.3

e EXERCISE

1. Decide for which of the two-dimensional linear systems considered in
Section 2.8, p. 86, the origin y = 0 is a stable, asymptotically stable, or unstable
equilibrium point.

We stress the fact that the system (4.1) can have all solutions (motions)
approaching a critical point y, without the critical point y, being asymp-
totically stable. An example of this type of behavior is given by the two-
dimensional system

, Hy—-x+)° , Yy — 2%)
FTEEE AL T T E 0 + G+

(See [8, p.191].) It should be observed that because (4.1) is autonomous,
and hence (see Section 2.8, p. 84) invariant under translations of time,
the numbers &, §, in Definitions 1 and 2 are independent of ¢,. In this
case the stability and asymptotic stability are uniform. We shall not pursue
the concepts of uniform stability and uniform asymptotic stability here.
Rather, we refer the reader to more advanced books, such as [3, 5, 8, 9, 15,
21, 25].

We now generalize the concept of stability to that of an arbitrary solution
of the nopautonomous system

y =1(t,y) (4.2)
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where the real vector f with n components is defined and continuous in some
region D = {(t,y)|0 <t < o0, ly| < a} of real (n + 1)-dimensional Euclidean
space, where a > 0 is some constant. We shall assume throughout that f,
offéy; (j=1, ..., n) are continuous in D. "Let ¢(¢) be some solution of (4.2)
existing for 0 <t < oo. We shall denote by (¢, ¢,, yo), where 1, =0, a
solution of (4.2) for which Y(t,, to, Yo) = ¥o -

242 ax L Lf o e L . a2l

Definition 3. A4 solution §(t) of (4.2) is said to be stable if for every ¢ > 0
and every t, = 0 there exists a § > 0 (6 now depends on both ¢ and possibly t,)
such that whenever |Q(t,) — yo| < 8, the solution (t, ty, y,) exists for t > t,

and satisfies |d(t) — K2, 15, Vo)l < efort>t,.

We can f)icture this concept geometrically for the case n = 1 as in Figure 4.4.

‘l’(rs tO, )'o)
0]

Figure 4.4

It may be shown, by an argument involving uniqueness of solutions and
continuous dependence on initial conditions, that if a solution is stable in
the above sense for a given #,, then it is also stable for any other initial time
t; > 1,. For this reason, in verifying the stability of a solution, we may

wanarl unt A ¢ 0
YUl L A" N v,

cnirh a
nn YY1l W

O’DH uuSlf

a Yo
1l 4 LAiNW

0 =
Definition 4. The solution $(t) of (4.2) is said to be asymptotically stable

if it is stable and if there exists 8y > 0 such that whenever |§(ty) — Yol < d¢
the solution (1, ty,y,) approaches the solution ¢(t)ast— o (that is,

lim [Y(t, to, Yo) — &) = 0).

| g o]

We note that d, may also depend on #,.
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Example 1. The scalar equation ' = —y/(1 + t) has y = 0 as a solution.
We see, by separation of variables, that y(t, ¢y, ¥o) = yo(l + to)/(1 + 2) 18
the solution through the point (¢,, y,). Clearly, therefore, the zero solution
is stable (Definition 3), even asymptotically stable (Definition 4). Note that
since (1 + #,)/(1 + )| < 1 fort > t,both é and J, are independentof t,. We
may take ¢ = ¢ in Definition 3 and §, arbitrary in Definition 4.

¢ EXERCISE
2. Show by using Definitions 3 and 4 (or Definitions 1 and 2) with y, = 0 that
the zero solution of the scalar equation y* = —ay (« > 0) is stable and also asymp-

totically stable. Find suitable numbers 8, 6, and show that in this case they do
not depend on #,. Note that here the given equation is autonomous. Sketch the
solutions in (¢, y) space and also in phase space. (Note that the equation is
autonomous and one-dimensional so that phase space is just a line!)

The reader should observe that even for a stable solution, the neighboring
solution may behave badly for ¢t <t,. For example, the solution y =0 of
the equation y’ = —3° is asymptotically stable. By separation of variables,
we find Y(1, 1o, ¥o) = 1ol [1 + 2y0%(¢ ~ 15)]~ /%, which approaches zero as
t — + 00, but it does not exist for all ¢ < ¢,; in particular, it becomes infinite
as t—ty — 1/2y,%

The solutions in Example 1 and Exercise 2 have the property that for every
to,» Vo, not only for small |yy|, the corresponding solution ¥(¢, ¢y, yo)
approaches zero as t > o©. (Note that the given equations are linear and we
shall see in the next section that this is generally true for linear systems.)
We say in these cases that the zero solution is globally asymptotically stable.
That this property does not hold in general when the equation is nonlinear
can be seen from the equation y' = —y + 2.

s EXERCISE

3. Show that the zero solution of y* = —y 4 »? is asymptotically stable, but
not globally; that is, not all solutions tend to zero as t —~ 4. [Hint: Show by
separation of variables that ¢, 1o, ve) = [((1/y0) — 1) exp (— ( — #5)) + 1]~ ! and
note that both y =0 and y=1 are critical points of the equation.] Sketch
all solutions in the (¢,y) plane; you may take o =0. Also, sketch all solutions in
phase space. (The system is autonomous and one-dimensional; thus phase space is
just a line!) What can you conclude about the solution y =17

The equation considered in Exercise 3 suggests an important problem. If
a solution ¢(t) is asymptotically stable, but not globally (that is, if not all
solutions starting anywhere approach ¢ as 7 — 00), what is the region of
asymptotic stability? In other words, for a given t,, describe the set of
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initial values y, such that lim |J«(s, 14, ¥o) — $(#)] = 0. This, in general, is

t—+aw

a difficult (and largely unsolved) but important practical problem. How-
ever, the method of Lyapunov developed in Chapter 5 gives a possible tech-
nique for obtaining an estimate for such a region, and this is done in
Section 5.5.

We remark that for the purpose of studying the stability of a given solution
&(2) of the system (4.1) or (4.2), it is convenient to make the change of variable

y=x+6()
Theny = x"+¢’'(r) = (2, x + (1)) and since ¢'(r) = £(r,${(r)) we have

X' = £(t, % + 6(1)) - £, $(1))

L,.n.- rex L - = 0 :A_. n“ ...-._..«t‘n...«. A avgtars Tk iF ,l.-.‘-‘._.n
CDOCL VE L l =vuisa DUIUL Ul vl l LIAlMMULIIICU dYDLCLLL. 11ius i1 W¢ aeiine

f(, =10, x +d(@) - £(s, ¢(t)), then the solutton (1) of (4.2) corre-
sponds to the identically zero solution of x’ =f(z, x). We can therefore
always assume—without any loss of generality—that y = 0 is a solution of
the given system (4.1) or (4.2) and we can limit our study of stability to that
of the zero solution. This will be done in the remainder of this chapter unless
otherwise noted. The reader should note that for an autonomous system
the above change of variable may yield a nonautonomous system, unless the
solution ¢ whose stability is being investigated is a constant.

¢ EXERCISES

4. For each of the following scalar differential equations, decide whether the
solution given is asymptotically stable, stable but not asymptotically stable, or
unstable.

(@) ¥ =0,¢(t)=1. (b) ¥ =y, (1) =0.
© ¥y =y ¢()=e¢" (dy=—y¢()=0
@y =—ydt)y=e"". ) y=—y,4(t)=0

5. l“OI‘mUldIC and lnIt:I'pI'CI UCHHIUOI]S 1—4 IOI‘ me case WﬂCl’l ZETO 15 a bUluuUH
of the given equation and the stability or asymptotic stability of this zero solution
is to be defined.

6. By writing the scalar equation

u® =f(t, u,u, ..., u""")

as an equivalent system, define the concept of stability and asymptotic stability
of a solution u = () defined for r >>t,. Here it is assumed that the function
f(t, 21, z2, ..., z,) is defined on some (n + 1)-dimensional region, say 0 < < oo,
lzil <a, |z2) <a, ..., |z.] < a for some constant a > 0. [Hint: Let ydt, to, uo) be
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the solution with ¥t , fo, uo) = e, P{to, to, o) =g, ..., Y" " Xto, Lo, Ue) =
o™~ existing on fo < t <oo. Now look at Definitions 3 and 4 and apply them
to the given equation.]

7. If in Exercise 6, n =2, give a physical interpretation of stability and asymp-
totic stability of the zero solution (that is, assume that f(z, 0, 0) =0) if u represents
displacement from equilibrium and &’ the velocity.

8. Show that for the linear system y’ = A(z)y, where A(¢) is continuous for
0 < ¢ <0, stability or asymptotic stability of the zero solution implies that of
every other solution. [Hint: Let &(r) be the solution whose stability is to be
tested and consider the solution y = ¢ 4z where z is **small,” Show that
z'(t) == A(r)z(t) and now use the fact that 0 is a stable or asymptotically stable
solution of this equation.]

9. For each of the following scalar differential equations, decide whether the
solution given is asymptotically stable, stable but not asymptotically stable, or
unstable.

(@ y"=0,4()=0. (b) y" =0, ¢(t)=1.

© Y +4y=0,4()=0. (d) ¥ + 4y =0, $(r) = cos 2¢.

(€ Yy +4y +4y=0,4(1)=0. (f) y"+4y +4y =0, (1) =e"?".
(8 y"—4y=0,4()=0. (h) y"— 4y =0, (t) = e~ %,

4.3 Linear Systems

The simplest general system for which stability questions are easily and
completely decided is the linear system

y = Ay 4.3)

where A is a real constant n x n matrix. As weshall see,asimplecriterionfor
the zero solution of (4.3) can be given in terms of the eigenvalues of 4. It
should be noted that even this case can present serious practical computational
difficulties, especially if the real parts of some of the eigenvalues are near
zero, and the accuracy of the calculation is in doubt.

By simply looking at Theorem 2.10 (p. 80) and its corollary (p. 81), we
immediately establish the following basic result.

Theorem 4.1. [f all eigenvalues of A have nonpositive real parts and all those
eigenvalues with zero real parts are simple, then the solution y =0 of (4.3) is
stable. If (and only if ) all eigenvalues of A have negative real parts, the zero
solution of (4.3) is asymptotically stable.  In fact, in this case if (¢, t,) denotes
the fundamental matrix of (4.3) which is the identity at 1 =1y, ¥(I, 1,) =
exp ((t — t,)A) and there exist constants K > 0, ¢ > 0 such that
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W1, 1) < Kexp (—o(t —15))  (t,<t < 0) (4.4)

with ¢ > 0 in the case that all eigenvalues of A have negative real parts and
o = 0 if there are simple eigenvalues with zero real part. If one or more eigen-
values of A have a positive real part, the zero solution of (4.3} is unstable.

The case with some eigenvalues with zero real part not simple, assuming
the remaining eigenvalues have négative real parts, requires special investi-
gation which we shall not undertake in general (see Example 3 below). We
note that the estimate (4.4) is just the aforementioned corollary to Theorem
2.10, with ¢+ = Q replaced by t =¢,. The number o is any real number such
that —o is larger than the real part of every eigenvalue of 4. If all eigen-
values with- the largest real part are simple, then —o¢ may be taken equal to
this largest real part. To prove the stability of the zero solution in this case
we note that every solution of (4.3) has the form (#) = W(¢, to)y(t5). Then
using (4.4) with ¢ = 0, we have [y(?)| < K|Y(#,)| for to <t < co0. Thus using
Definition 1 or 3, we take 0 < &/K and we have |Y(t)| <e for to <t <
provided |Y(¢y)| < &/K.

¢ EXERCISES

1. Give a rigorous proof of asymptotic stability for the case %A, <0
(j=1,2,..., nyand of instability in the case %A, > 0, for one or more A, where
A1, ..., A, are the eigenvalues of A.

2. State Theorem 4.1 for the scalar equation #™ + qu®™V + <« + g &’
+ a,u =0 wherea;, a:, ..., a,areconstants. [Hint: See Exercise 6, Section 4.2.
Write as an equivalent system, Compute the characteristic polynomial and use
it to state the result.]

The reader should observe that actually much more than Theorem 4.1 is
true in the case of the system (4.3). Namely, the stability properties are
global. In particular, if all Z4; <0 (j=1, ..., n), all solutions, not only
those with |J/(0)] small, approach zero as ¢t —+ co. That stability properties
are global for all linear systems, not merely for those with constant coefficients,
follows from the fact that for a linear system we have the representation
theorem (Theorem 2.2, p. 43, and the remarks following it, p. 45) for every
solution in the form ®(¢, t,)c where ® is, say, the fundamental matrix that is
the identity at t = ¢, and ¢ is a constant vector.

Example 1. For the scalar equation ¥” — u = 0 we obtain the equivalent
system of the form (4.3) with

)

/

A=

—

<
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and with eigenvalues +1. Therefore by Theorem 4.1 the zero solution of
the system and hence of the scalar equation (see Exercise 2) is unstable,

Example 2. Proceeding in the same way to analyze the scalar equatjon
u" + 2ku’ 4+ u =0, with k > 0, we obtain the matrix

0 1
4= (—1 —Zk)

N\ /

with eigenvalues 1 = —k + (k> — DY2. Now if £ > 1, both eigenvalues are
real and negative, while if 0 <k < 1, both eigenvalues have negative real
parts. Thus in both cases by Theorem 4.1 and Exercise 2, the origin is
asymptotically stable. Note that if k <0, the zero solution is unstable.
What happens if £k = 0?

Example 3. For the equation #**) + 2u” + u = 0 the matrix of the equiva-
lent system

OO -
o - O
o - O O

has eigenvalues +i and —i each of multiplicity two, real part zero. It is
easily seen that the zero solution is not stable, because cos, sin f, f cos ¢,
t sin ¢ are linearly independent solutions of the original equation, and the
result follows from Exercise 6, Section 4.2, with n = 4 because every solu-
tion has the form (z) = ¢, cos t + ¢, sin t + ¢3¢ cos t + ¢, ¢ sin ¢; unless
c3 = ¢, = 0 such a solution and its derivatives are not bounded.

However, this situation is not always the one that prevails in the case of
multiple eigenvalues with zero real part. For example, the system

where A is the zero matrix, clearly has the zero solution stable. (Prove this?!)
In general, it can be shown that in the case of eigenvalues with zero real part,
one has stability if those with zero real part are simple roots of the minimal
polynomial (see [7, Vol. 1, p. 1297), while the remaining ones have real parts
negative.
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¢ EXERCISES

Determine for which of the following scalar equations or systems the zero solu-
tion is stable, asymptotically stable, or unstable,

3. u"wt+u=0.
4, "+ 54"+ 6u=0.
5. "+ 2’ +u=0.
6. uY —2u"+u=0.
7. "+ 2ku’ + a?u =0 (k > 0, «? > 0 constants).
8. uww+u —6éu=0.
9. ¥ = Ay;
1 -1 1 -1
-3 3 -5 4
A= 8§ -4 4 —4
15 —-10 11 -11
10. v = Ay;
00 0 0
00 0 0
4= 0 0 -1 3
0 0 o -1

11. Sketch the solution curves in Exercises 3, 4, 5, 7, 8 in the phase plane, and
decide in which cases the origin is an attractor (see Section 2.8, p. 95).

12. Suppose that the solution y == 0 of the system y’ = A(¢)y is stable. Prove
that every solution of the system is bounded.

For the scalar equation
u(ﬂ) + alu(”—l) + «s + an—lu' + a"u = 0

where a,, a,, ..., a, are real constants (see Exercise 2 above), it can be shown
(see Routh-Hurwitz criterion [3, p. 21]) that the zero solution is asymptotic-
ally stable if and only if the determinants

Dl = al D2 - det (‘11 a3)

1 a,
a, a3 as - ) © Gy
/1 a, 4, ﬂzk—z\
0 a, a; Ar4-3
1 a, A24-4a
0 a A2k-5
Dy=det] 1 k=213,...,n
0 . .
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and with a; =0 for j>n, are strictly positive, and it is stable if all the deter-
minants are nonnegative. Thereader should verify the criterion for Exercises
4,5, 6,7, 8 above; however, for a proof we refer, for example, to [5]. We
remark only that this stability criterion is simply the requirement that all
roots of the characteristic polynomial

FQ)=z2"+az2" '+ +a,.,z+a,
lie in the left half of the complex z plane.

e EXERCISE

13. Use the Routh-Hurwitz criterion to derive a criterion for the asymptotic
stability of the zero solution of each of the following scalar equations. Note

that for a second-order equation, D, = g,, D, = det (01 0)_

1 az.
@) u"+pu'+qu=0 (Answer: p >0, q > 0);
(b) u"+pu” +qu' +ru=90 {(Answer: p >0,r >0, pg >r);

©) 4 pu" +qu” +ru' + su=0 (Answer: s >0,¢>0,p >0,
r(pq — r)> p*s);
where p, q, r, s are real constants.

We now turn briefly to some of the simpler aspects of the much more
difficult case of linear systems with variable coefficients; we consider first the
system

Y =(4+ B()y (4.5)
where A is a constant matrix and B(¢) is continuous and *‘small ” in the sense

that lim B(t) =0. Thus for large ¢+ we would expect solutions of (4.5) to

=+ 0

behave like those of y' = Ay.

Example 4. Determine whether the zero solution of the scalar equation

1y

y=(—~1+

t+ l}y
is asymptotically stable. We would expect this to be the case, from com-
parison with the equation y' = —y. Indeed, by separation of variables we

se¢ that every solution of the given equation has the form

¢() = yo(t + De™"
so that the solution y = 0 is asymptotically stable (in fact, globally).

This example generalizes to the following result.
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Theorem 4.2. Let all the eigenvalues of A have real parts negative and let
B(t) be continuous for 0 <t < oo withlim B(t) =0. Then the zero solution

-0

of (4.5) is globally asymptotically stable.

Proof. For any given (¢y, ¥o), to > 0, we have, from Theorem 2.1, p. 37,
with A(t) = A + B(¢), that the (unique) solution (¢, t,, y,), satisfying the
initial condition Y(ty, ¢y, ¥o) = ¥, exists for all £ >¢,. Our problem is to

.
o s [PryT— ~ e e mwm r e s am

show that this solution through the arbitrary point (¢, y,) satisfies the con-
ditions of Definitions 3 and 4 (Section 4.2). By the variation of constants
formula (Theorem 2.6, p. 53), using B(¢)y as the “‘inhomogeneous term,”
we can express the solution by means of the equivalent integral equation

’ !
Wi, to, Yo) = exp (1 = 1) Ao + [ exp ((t — ABEI(s, 1o, Yo) ds
to
(tr<t<o) (4.6
By the hypothesis on A, exp((t — t,)A4) satisfies (4.4) (p. 152) with o, K as

defined there. Since lim B(t) =0, given any n > 0, there exists a number

= o
T > t, such that |B(f)| <n for t = T. Similar to (4.6) and using \(T, ¢, , Yo)
as initial value as well as uniqueness, we have
t
V(t, to, Yo) = " " TN(T, 1o, ¥o) + f e MB(sWi(s, o, ¥o) ds
T

(T<t<ow)

Thus using (4.4) (with 1, = T) and |B(t)| < 5 for t > T, we obtain
(2, to, o)l < Ke™*“"DIW(T, 1y, ¥o)l
|4
+Kn [ €T, 1,y ds (T <1< c0)
T

Multiplying both sides of the inequality by ¢°* and applying the Gronwall
inequality (Theorem 1.4, p. 31) to the function |Y(z, #,, ¥,)| €°’, we obtain

I\l’(t’ tO H] YO)l < Kl\l’(Ta [0 s YO)l e—(a—Kr,)(t—T) (TS I < CD) (47)

From this we can conclude that if 0 < 5 < /K, the solution (¢, ¢, y,) will
approach zero, in fact, exponentially. This does not yet prove that the zero
solution of (4.5) is stable. To do this we compute a bound on |Y(T, 75, ¥o)I.
Returning to (4.6) and now restricting ¢ to the interval ¢, <t < T, we have
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Wi, 1o, ¥o)l < K exp [ —a(t — 15)]|¥ol
+ KK f exp [ —o(t — $)11W(s, to» Yo)l ds

where

K; = max |B(s)|
to=t<T
Multiplying by ¢°* and applying the Gronwall inequality again, we obtain
easily

(2, 26, Yol | < Klyol exp [—a(t — t5) + K K(t — t,)]
< Klyolexp [KiK(t — t;)} (1o <t<T) (4.8)

Therefore
(T, to, Yo)l < Klyol exp [K\K(T ~ 15} (o < T) (4.9)

From this we can see that we can make (7, ¢,, Y,)| small by choosing |y,|
sufficiently small. This together with (4.7) gives the stability. In detail,
substituting (4.9) into (4.7), we obtain

(s, o, Yo)l < [K? |yol exp (K K(T — to))] exp [~ (¢ — Kn)(t — T)]
(T<t<w) (4.10)

Let K, = max [K exp [K,K(T — t4)], K? exp [K,K(T — t,)]]. Then from
(4.8) and (4.10) we have

K, 1y ol (toy <t <T)

4.11
K,lyple” @~ ¥nt=D (T <t < o0) @.1n)

Wi, 165 Yo)l <

Now for a given matrix 4 we can compute K and o; we next pick any
0 <n <o/Kand then T > t, so that |B(t)] <n fort>T7. We then compute
K, and finally also K,. Now (see Definition 3, Section 4.2}, given any ¢ > 0,
choose & <¢/K,. Then from (4.11), if ly,l <4, (¢, ty, ¥o)l <& for all
t > ty so that the zero solution is stable. From (4.11) it is clear that the zero
solution is globally asymptotically stable. §

The proof of Theorem 4.2 actually yields a slightly stronger result.
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Corollary to Theorem 4.2. Let all eigenvalues of A have negative real
parts, so that

le!| < Ke™ "
for some constants K> 0, 6 >0 and all t > 0. Let B(t) be continuous for
0 <t < o0 and let there exist T > 0 such that

N ~ T™
iv=— 1 )

Then the zero solution of (4.5) is globally asymptoetically stable.

s EXERCISES

14. Prove the above corollary.

15. Prove the following result: Let all eigenvalues of A4 have real parts
negative, and let B(¢) be continuous for 0 < ¢ < oo and such that {*| B(s)| ds < oo,
Then the zero solution of (4.5) is asymptotically stable. [Hint: Start with (4.6)
and take norms; then use the Gronwall inequality.]

16. Show that if all solutions of y' = Ay are bounded and if B(¢) satisfies the
hypothesis of Exercise 15, then all solutions of (4.5) are bounded on 7, << ¢ < .
Is the zero solution of (4.5) stable? (Obviously it need not be asymptotically

stable.)

At this point one might be greatly tempted to conjecture that for the general
case

y = A(t)y 4.12)

where A(#) is continuous for 7, < t < oo, the following result should hold.
If all the eigenvalues of A(t) (these are now functions of ¢) have their real
parts negative and bounded away from zero (that is, there exists a constant
o> Osuch that Z (1) < —a,j=1,2,...,n), theny = 0 is an asymptotically
stable solution of (4.12). Unfortunately no such result holds. For example
(see [21, p. 494]), if

A(t) =
—1 — 9 cos? 61 + 12 sin 6t cos 6¢ 12 cos? 61 + 9 sin 6¢ cos 6¢
—12sin? 67 + 9sin 67 cos 6t —(1 + 9 sin? 6¢ + 12 sin 6 cos 6¢

the eigenvalues are 4; = —1, A, = —10 (constants). However, as is easily
verified,

e b 1Y a . —131faim £+
W T 4L D Il v

/ £4% 4 _’)n o L%\
®(t) — .r} 5_13 \ 1 l.- i & VUD UL }
(c0561—51 ) e~ 172 sin 61 + cos 61)
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is a fundamental matrix of (4.12) so that the zero solution is not even stable.
It can be shown, however, that the strict negativity of all the eigenvalues of
A(t) for ¢t > T > 0 plus, for example, the conditions (i) the eigenvalues of
A(o0) = lim A(¢) all have real parts negative and (it) the elements of A(¢) are

1=+

continuous and have only a finite number of maxima and minima on the
interval T < t < oo, lead to the asymptotic stability of the zero solution of
(4.12). Observe that neither (i) nor (ii) holds in the above example.

¢ EXERCISE
17. Show that for the system y’ = A(¢)y, where

{1 e*
AW ‘( 0 — 1)
the solution y = 0 is unstable even though the eigenvalues of A(t) are A,(t) = —1,
Az(f) = - l.

While there exist several general results about the asymptotic behavior of
solutions of (4.12) in some special cases, little beyond what we have done
can be proved at an elementary level. We remark that there is a complete
theory for (4.12) if the matrix A(?) is periodic, and some general results if A(r)
is almost periodic. Also useful for asymptotic behavior of solutions of (4.12)
are the theories of ““ asymptotic equivalence” (Section 4.6) and the so-called
‘““type numbers ™ (see, for example, [3, p. 50]). We choose not to pursue
these specialized topics deeply in order to devote our attention to nonlinear
systems. We should remark that one can also learn more about the asymp-
totic behavior of solutions of (4.12) by refining the concepts of stability and
asymptotic stability. However, ordinarily it is very hard to check whether
a given solution possesses this refined type of stability or not, except in the
case of constant or periodic coefficients or whenever the system is autono-
mous, and we shall not pursue this topic further.

¢ EXERCISES
18. State and prove the analogue of Theorem 4.1 for the system
Yy = A(t)y

where A(t) is a continuous, periodic matrix of real period w. [Hint: Use Theorem
2.12, p. 96, and the definition of multiplier or characteristic exponent.]
19. State and prove the analogue of Theorem 4.2 for the system

v — A L R \\Ww
J NCING J 1 &INE SIS

where A(¢) is a continuous periodic matrix of real period w.
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4.4 Almost Linear Systems

Suppose that y, is a critical point of the nonlinear autonomous system
y = F(y) 4.13)

where F is continuous and has continuous first partial derivatives in a domain
D in n-dimensional phase space. To test whether this equilibrium point is
stable or not we consider (see Definitions 1 and 2, Section 4.2, and Figures 4.2
and 4.3) the solution V given by

V(1) =yo + (1) (4.14)

Thus
z'(r) = F(y, + 2(1)

but since F(y,) = 0, F(y, + 2(¢)) = F(y, + 2(t)) — F(y,). Applying the mean
value theorem to this difference we obtain the almost linear system

2'(1) = Fy(yo)z + g(z) (4.15)

where g(z) is continuous,

lim 8@ _
jaifo |zl
|
so that g((l) = 0, and where F,(y,) is the constant matrix whose e¢lement in the
ith row and jth column is 6F;/dy;(y,). If the components of F(y) can be

expanded in power series, g{z) would be a vector whose components are
power series beginning with quadratic terms in the components of 2.  Clearly,
if =0 is a stable or asymptotically stable solution of (4.15), then the same
will be true of the equilibrium point y, of (4.13), as can be seen by applying
the definition of stability or asymptotic stability to the solution y =y, of
(4.13). The above remarks suggest that we should study the stability proper-

ties of the zero solution of systems of the form

0

y = Ay +1(s,y) (4.16)
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where A is a constant matrix and where we shall assume that f is continuous
in (¢, y) in the region D= {(¢,y){0 <t < o0, |y| < k}, where k£ > 0 is some
constant, £(z, 0) =0, and |f| is small for small |y| in the sense of (4.18) below.

¢ EXERCISE

1. Show that if () is a solution on 0 <f < ® of the system y' =F(, y),
where F and F, are continuous for 0 < ¢ < «, |y| <k, then to test the stability of
the solution ¢ (see Definitions 3 and 4, Section 4.2), it suffices to consider the
stability of the zero solution of the almost linear system

z = A(t)z + (1, z) @17
where A(t) = Fy (¢, $(z)) and f is a continuous vector satisfying

lim .2 _ 0

laj~0 |2l
uniformlyin¢, so thatf(¢,0) = 0. [Hint: Consider the solution $(t) = &b(¢) + 2(t)
of y =F(s, y) where z is “smail.”” Now apply the same steps that ied from
4.13) to (4.15).]

The basic idea is to compare solutions of (4.16) (more generally of (4.17)),
calied the perturbed system, to those of the linear system resulting from drop-
ping all the nonlinear terms f, called the unperturbed system. Concerning
(4.16), we prove the following basic stability result, which is due to Poincaré
and Perron.

Theorem 4.3. Suppose all eigenvalues of A have negative real parts, £(t, y)
and (Of/dy;) (¢, y) (j= 1, ..., n) are continuous in (¢, y) for0 <t < o0, |y| <k
where k > 0 is a constant, and £ is small in the sense that

LG
Iyl-o (¥l

uniformly with respect tot on 0 <t < co. Then the solution y = 0 of (4.16) is
asymptotically stable.

(4.18)

Thus, the addition of “small” (in the sense of (4.18)) nonlinear terms to
the linear system y’ = Ay does not affect the asymptotic stability of the zero
solution of the system. However, the zero solution of (4.16) is not necessarily
globally asymptotically stable. We shall see that the proof uses a variant of
the method used to prove Theorem 4.2 (and is in fact easier than the proof
of Theorem 4.2). We remark that the hypothesis of existence and continuity
of of/dy, (=1, ..., n) is actually unnecessary, as we could use an existence
theorem (Theorem 3.2, p. 119) that does not require this hypothesis instead
of Theorem 3.3 (p. 123).
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Proof of Theorem 4.3. Given any point (¢, Yo), |¥o| <k, the equation
(4.16) has a (local) solution (2, #,, yo) satisfying (4o, ¢, Yo) = ¥, , accord-
ing to Theorem 3.3 (p. 123), existing on some, possibly small, interval to the
right of ¢t,. For as long as this solution exists, we can express it by using
the variation of constants formula (Theorem 2.6, p. 53) in the form of the
integral equation

Wt 0, ¥) = exp [(1 = 10)Alvo + | exp [(t = )ATH(s, (s, o, Yo)) ds
(4.19)

which is equivalent to (4.16) and the initial condition y(2,, 5, ¥o) = ¥o. To
establish the stability of the zero solution of (4.16) we apply Definition 3,
Section 4.2, and in order to do this we must show that for |y,| small enough
the solution Yi(, ¢, ¥,) can be continued in such a way that |{s| stays small.
From the condition (4.18) we have that given any # > 0 there exists a number
o > 0, independent of ¢, such that [f(¢, ¥)| < #n|y|, provided |y| < a. We will
naturally always take a < k, so that f will be defined. Let yo| < ®. Because
of the assumption regarding the eigenvalues of A4, exp [(¢ — t,)A4] satisfies the
estimate (4.4) and therefore, for as long as |{(¢, ¢y, Yo)| < &, we have from

4.19)

NI, to, Yo)l < K exp [—a(t — 1) 1Yol
+ j Knexp [—a(t — )]s, to, Yol ds (£ to)

Now, multiplying by e°’, we obtain from the Gronwall inequality (Theorem
1.4, p. 31)

exp (1) Wz, 2o, Yo)l < K exp (1) [yo| exp [nK(t — 1,)]
and therefore
(2, 20, Yo)l < K|Yol exp [ —(o — nK)(t — £,)] (4.20)

for all those t > ¢, for which |{(z)] <a. But now we choose a fixed n,
0 <np<oa/K. Then for any given ¢, 0 <e<a, we choose §d =¢/K<a.
Then if |yo| < 6, it follows from (4.20) that |{«(¢, 1o, ¥o)| <e < aforallt> ¢,
and this bound is independent of z. Therefore, by Theorem 3.6 (p. 132) the
local solution y can be continued to the boundary of D, that is, for all ¢ > ¢,
and (4.20) is satisfied. This means that
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(2, 20, Yo)l < Klyol exp [—(6 —nK)(t —10)] (fo <t <o) (421)

But now we have shown much more than the stability of the zero solution of
(4.16); namely, all solutions (¢, #,, Yo) with |yo| < &/K, for any & with
0 < ¢ < o, approach zero (exponentially by (4.21)) and therefore the zero
solution of (4.16) is asymptotically stable. It may appear at first glance that
circular reasoning is involved. However, the reader should convince himself
that the argument is not circular. |

The motion of a damped simple pendulum is governed by a differential
equation of the form

o+ 0+ Isino=o0
m L
Often one replaces this by the simpler model
ko 9
0 +—0+=6=0
¥ m ¥ L

which can be solved explicitly (see, for example, [2, Section 3.4]). If we
write these equations as systems, by setting 6 = y;, 8’ = y,, we obtain y' =
Ay + f(y) and y’ = Ay, respectively, for the two models with

1 0
k)] 1=

— —

g g .
I 'E(yl — sin y,)

Since 4 has eigenvalues —k/2m + (k*/4m* — g/L)!/?, which both have nega-
tive rzal parts if k, m, g, and L are positive, and since

93
-—‘+"'ISM|9|3

!%@m9_9ﬂ=% s

for some constant M, we may apply Theorem 4.3. We see that the use of
the more refined model, including the nonlinear term f(y), does not give a
radically different behavior of the solution from that obtained from the
simpler linear model for |y| sufficiently small as # — cc.

As a simple application of Theorem 4.3 we return for a moment to the
two-dimensional autonomous systems studied in Section 2.8 (p. 95). There
we claimed that if the origin is an attractor for the linear system 2" = Az where
A is a 2 x 2 constant matrix, the same is true for the perturbed autonomous
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system y’ = Ay + h(y), where the perturbation terms satisfy (4.18). Because
the origin is an attractor of the linear system, the matrix 4 has both eigen-
values with negative real parts. Thus Theorem 4.3 is applicable, and justifies
the previous claim. The reader should note, however, that this does not
mean that the configuration in the phase plane for the perturbed system in
any way resembles the phase portrait of the linear system except in that the
orbits approach the origin. It can be shown ([4, p. 382]), for example, that
if the origin is a center for the linear system, it may be a center or a spiral
point for the nonlinear system. This result requires quite a different analysis
from what we can make there.

Theorem 4.3 has an immediate and rather obvious generalization to the
system

Y =4+ By +1(ty) (4.22)

where 4 and f are exactly as in Theorem 4.3 and where the matrix B(t)
satisfies the hypothesis of Theorem 4.2. Several problems of considerable
practical interest can be written in the form (4.22). Combining the tech-
niques of Theorems 4.2 and 4.3, we easily prove the following result.

Theorem 4.4. If A and { satisfy the hypothesis of Theorem 4.3 and if B(t) is
continuous for 0 < t < oo with lim B(t) = 0, then the zero solution of (4.22) is

t—+ oo

asymptotically stable.

e EXERCISES

2. Prove Theorem 4.4. [Hint: Study the proofs of Theorems 4.2 and 4.3.]
3. Formulate and prove a corollary to Theorem 4.4 analogous to the corollary
to Theorem 4.2,

In the equations for a damped simple pendulum, the linear part depends
on the constants k, m, g, L, all of which are derived from experimental data
and therefore subject to experimental error. This means that a complete
discussion of these models should consider the effect of the addition of a
linear term with small coefficients (it is to be hoped that the experimental
errors are small). The content of Theorem 4.4 and its corollary (Exercise 3)
is that such a term does not have a drastic effect on the solutions of the
system.

Occasionally we encounter a system of the form

y =Ay +{(t,y) + h(t, y) (4.23)

where A4 and f satisfy the hypothesis of Theorem 4.3 and where, for example,
for small |y|, say |y| <k, h(z, y) — 0 as t = + oo uniformly with respect to y
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or |h(t, y)| < A(¢) where j;’f A(t) dt < oo. 1In such cases y =0 need not be a
solution of (4.23), because h(#, y) need not even depend on y (for example,
we may have h(z, y) = g(¢) whereg(t) > 0as r - +o0). Thus we cannot speak
of the stability of the zero solution unless h(z, y) = 0. Nevertheless, the
techniques employed in the proofs of Theorems 4.3, 4.4 do apply and we may
obtain a result on the asymptotic behavior of solutions of (4.23) as ¢ - co.

Theorem 4.5. In equation (4.2

211 LET L

(1) the eigenvalues of A all have negative real part;
(i) lim |f(s, y)/ly| = O uniformlyint on 0 <t < o0;

l¥{=0

(iit) Jh(t, Yy} < A(t) for 0 <t < o0, lyl <k for some k>0, where A is
a continuous nonnegative function on 0 <t < 00 such that A(t) =
fi*t As)ds—0as t — co.

There then exists T, > 0 such that every solution ¢ of (4.23) with |&(T)| small
enough for any T > T, remains small fort > T, and lim ¢(t) = 0.

10

Proof. By the variation of constants formula (Theorem 2.6, p. 53), every
solution ¢ of (4.23) existing on some interval to the right of T satisfies the
integral equation

&) = A DY(T) + [ (s, (s)) ds + [ A4, §(s)) ds
T T
(4.24)

By the hypothesis (ii), given any & > O there exists 4 > 0 such that {f (s, ¢(s))|
< g|d(s)] for as long as |d(s)] < 4. Using this and (i), (iii) in (4.24), we
obtain

t t
lb(1)] < Ke™® =D |d(T)| + Jf eKe™ 79 |b(s)] ds + Jf KA(s)e™ 7= ds
T T

for as long as (1)} < J, for some constants K > 0, o > 0 (recall (4.4), which
follows from (i)). Multiplying this inequality by "~ and applying a
slight generalization of the Gronwall inequality (see Exercise 3, Section 1.7,
p. 32), we obtain |

l¢(r)| < K ld)(T)le—(a—Ks)(r—T) + J-;Kl(s)e—-(a—-l(s)(r—s) ds (425)
T
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for all t > T for which |¢(#)] < d. It will now be shown that if 7 is chosen
sufficiently large, then |¢(t)] < d forall t > 7. We will handle the two terms
on the right side of (4.25) separately. To estimate the second one, we need
the following lemma, which will be proved after the proof of Theorem 4.5 is
completed.

Lemma 4.1. If A satisfies (i) and if w > 0, then there exists Ty such that

t
tim j e 2= 9)(s) ds = 0 (4.26)
T

i=co

foralT>T,.

We choose ¢ < 0/K, @ =0 — Ke. By Lemma 4.1 there exists T, such that
¢ 0
j KA(s)e ™ 99 ds <2 (T <1< o)
T

for T>T7,. Then, by choosing |§(7T)| < /2K, we obtain |¢(¢)] <é for
T<t< oo from (4.25). Thus (4.25) is valid for T<t <co. From (4.25)
we also see, using Lemma 4.1, that lim |p(2)] = 0. §

| S« ¢]

Note that without more information about 1 we cannot say how rapidly
lb(2)| decays.

Proof of Lemma 4.1. It will first be shown that for every T2 1, 1 > T,
t H
j e**A(s) ds < f e“STDA(s) ds (4.27)
T T-1

To see this, we write

14 ot r I's+l 1

JT_le"’(”i)A(s) ds = JT_le“’(s+i)le A(u) duJ ds

> J:A(u)[f_* g6t ds] du

as may be seen by interchanging the order of integration in the integral. The
first iterated integral is extended over the region R in Figure 4.5. Note that
in the last integral, we are integrating a nonnegative function over the smaller
region in Figure 4.5. Evaluating the inner integral and usinge® — 1 > w
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Figure 4.5

for @ > 0, we obtain

t ¢ e? -1 f
“ETDA(syds = | Au e“"‘(———) du > | e*A(u) du
[ oAy ds = [ ae(— [ e

which proves (4.27). To complete the proof of Lemma 4.1, given £¢> 0,
choose 7, so that A(s) < ¢ forall s> 7, — 1. Then from (4.27)

t 4
f e N(s)ds = e ! f e*A(s) ds
T

T

t
<e o j @G+ DA(s) ds
T—1

_ t ce®
< ge “"f et ds «
-1 w

Thus the integral can be made small by suitable choice of T,, and every
T =T,. To prove (4.26) (T, having been fixed), given an arbitrary n > 0,
1> T>T,s0 that A(s) < n for s > 1 — 1, we write

t T !
fe_w(t_s)ﬁ(s) ds = f e-—w(t—s))l(s) dS-f-fe“w('_s)A(S) ds

T T

= e [ e™A(s)ds + [ e "92(s) ds

T
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For the given # we may choose ¢ > T so large that
e f e A(s) ds < 1
T

By the argument used above,

fort>1t>T. Therefore
t ew
f e ) (5)ds < r[(l + —)
T w

for ¢ sufficiently large. Since # is arbitrary, this proves (4.26). |

e EXERCISES

4. Show that if A(z) is a continuous nonnegative function on 0 < ¢t < « such
that lim A(¢) =0, then

1=

r+1
Iim A(?) = lim Ms) ds =0
5. Show that if A(¢) is a continuous nonnegative function on 0 < ¢ < o such
that [ A(s) ds is finite, then

1

lim A(#) = lim A(s) ds =0

1= a0 [ X o

Exercises 4 and 5 give conditions under which hypothesis (iii) of Theorem
4.5 is satisfied.

Theorem 4.3 and its generalizations have several serious drawbacks from
the practical point of view. In the first place, no hint is given as to how close
to zero a solution must start in order to approach zero. No method is given
in these theorems for estimating the region of asymptotic stability. We have
already pointed out (see Exercise 3, Section 4.2) that when dealing with non-
linear problems we cannot expect the results to be global; thus it would be
unreasonable to expect all solutions (with arbitrary initial conditions) in
Theorem 4.3 to approach zero. If the region of stability or asymptotic

P e PR T Y P R W N

To illustrate why, suppose for example that the steady state (equilibrium)
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speed of some mechanical system is 17,000 mph and the best that can be done
to estimate J, in the definition of asymptotic stability is éy, = 0.5; the result
that the equilibrium solution is asymptotically stable is of little practical
value, unless it can also be shown that perturbations of more than 0.5 from
equilibrium at time ¢ = ¢, lead to solutions that tend to move away from
equilibrium. If such is the case, the given system is probably too sensitive
to disturbances to be of any practical use.

In the second place, if the zero solution of the unperturbed linear system is
stable but not asymptotically stable (see Theorem 4.1), Theorem 4.3 and its
generalizations give no information about the behavior of the perturbed sys-
tem. In particular, no information is obtained by this method if the matrix
A =10. Thereis a very good reason for this. In such cases it is usually the
nonlinear terms that determine the stability properties of the system. For
example, consider the scalar equations ¥’ = —u> and &' = u> (here 4 of (4.16)
is the 1 x 1 zero matrix, so that all solutions of the unperturbed system in
both cases are u = constant and the zero solution of the unperturbed system
is stable but not asymptotically stable). By explicit solution (separation of
variables) we see that for the first equation u = 0 is globally asymptotically
stable, while for the second u = 0 is unstable. The methods employed so far
are simply too crude to detect these differences. The Lyapunov method
(Chapter 5) provides the only general technique available at present for
handling such problems, although it is not always easy to apply in particular
cases.*

In more advanced treatments, such as [3, 5, 217, the reader may find several
other generalizations of Theorem 4.3 to the case where the unperturbed linear
system has a variable coefficient matrix. These generalizations require the
concept of uniform asymptotic stability, which we are not considering. To
see that more than simple asymptotic stability of the unperturbed system is
needed, consider the system

yi= —ay,

¥y = (sin log t + cos log t — 2a)y, + y,? (4.28)

which is of the form y' = A(N)y + (1, y) with

—a 0 0
A= ( 0 (sinlogt+ coslogt— 2a)) {1y = (ylz)

* We do not mean to imply that the Lyapunov second method considered in Chapter 5
provides the answer to all stability questions. There are many important problems, such
as the stability theory of Hamiltonian systems and stability theory of periodic solutions, in
which it is of limited use.
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Observe that f(f, y) does satisfy (4.18). Now the unperturbed system z’ =
A(t)z has

e 0
‘P(t) = ( 0 et sin Iogr—Zar)

as a fundamental matrix (by direct integration), Thus every solution of the
unperturbed system is of the form ¥(¢)c, where ¢ is a constant vector, and
this approaches zero for every ¢ as ¢ — o0, provided | < 2a. Now if we look
at the perturbed system, we see that its explicit solution (s, t,, y,) is (here
it is convenient to write out the components, using ¢ = (¢;, ¢;) =¥ " '(¢,)yo)

at

Ot to, yo) =cre”

Gty to yo) = &8 (o, ¢, [[omeumios )
\ Y0 7

4

(4.29)

as can be verified by the variation of constants formula in the second equation
of (4.28).

e EXERCISE
6. Carry out the derivation of (4.29).

It can now be shown by a rather intricate analysis (see, for example, [3,
p. 47]) that if we further restrict @ to the interval 1 <2a <1 + ¢7%/2, then
¢,(t, ty,¥o) = 0 only if ¢, =0. This shows that in the case of variable co-
efficients in the linear unperturbed equation, asymptotic stability of the zero
solution of the unperturbed equation does mot imply asymptotic stability of
the perturbed equation, so that the analogue of Theorem 4.3 is not true
without further restriction.

e EXERCISES

7. Show that if ¢, #0, {da(t, 15, ¥o)| is unbounded, where ¢, is defined in
(4.29). This establishes the above conclusion. [Hint. Let {1,}:- 1 be the sequence
with 1, =exp [(2n + d)w]; then sinlogt, =1, n=1,2,..., and —sinlogs>1}
on the interval exp [(2n — $)n] <s <exp [(2n — H)n]. Show that

' —2
f exp(—ssinlog s)ds > t, [exp (__.é_f) — exp (—w)]exp (3t,e "
Q .

so that |b,(z, 1o, Yo) =|ci|? exp {[1 — 2a + te~"ta} + a(n), where o(n) is a
function that tends to 0 as n — o0, Since 1 — 2a 4 (e~ "/2) > 0, this proves the
result.]
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8. State Theorem 4.3 and its generalizations for the scalar equation u” + a,u’
+ au=g(t, u, u’) where a, and a, are real constants. Be sure to specify the
condition that must be satisfied by ai, a,.

4.5 Conditional Stability

We now examine briefly what happens if the unperturbed system is unstable
and we add perturbation terms of the type considered in Theorem 4.3. Up
to now we have always started by assuming that the zero solution of the un-
perturbed system is asymptotically stable. As before, we assume that the
unperturbed system has constant coefficients. Because the geometric inter-
pretation i1s easy, we shall suppose that the coefficient matrix 4 isa 2 x 2
matrix with real coefficients having one eigenvalue positive and the other
negative. We shall also assume that the perturbation terms do not depend
on t explicitly, in order to permit the phase plane interpretation; however,
this is not at all necessary. Thus we consider the autonomous two-dimen-
sional system

y = Ay + g(y) (4.30)

and by hypothesis the unperturbed system has a saddle point at the origin.
(See Section 2.8, p. 92.) Without loss of generality we may suppose that a
change of variable y = Tz has already been made so that A4 is in the simple
canonical form

A=("6‘ g) Jopu>0 (4.31)
Thus the unperturbed system z' = Az has the phase portrait given in Figure
4.6. This has the important property that if a solution of z' = Az starts on
the z, axis, then it approaches the origin. If, on the other hand, a solution
does not start on the z; axis, then it moves away (in fact, exponentially) from
the origin as + - c0. The idea of our next result is to show that if the per-
turbation terms g(y) are suitably restricted, then there exists a curve C passing
through the origin of y-space such that if a solution of (4.30) starts away from
C close enough to the origin, then it cannot approach the origin. (It in fact
moves away from the origin.) This is the case of the saddle point for the
perturbed system.

Theorem 4.6. Let g, dg/dy; (j=1,2) be continuous for |y] < k for some

constant k > 0 (k can be small), and let g(0) = 0 and lim |dg/dy;] = 0(j=1,2).
fy=0

If the eigenvalues of A are A, —p, with A, p > 0, then there exists in y space a
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)

VI

Figure 4.6

real curve C passing through the origin such that if ¢ is any solution of (4.30)
with ¢(0) (or ¢(t;)) on C and |§(0) small enough, then ¢(t)—0 as t - .
Moreover, no solution ¢(t) with 1¢(0)| small enough, but not on C, can remain
small for t > 0, in particular, the zero solution of (4.30) is unstable.

For obvious reasons this type of behavior is sometimes called conditional
stability of the zero solution. A similar behavior occurs in the general case
with A an n x n matrix having &k eigenvalues with negative real parts and
(n — k) eigenvalues with positive real parts. There are k linearly independent
solutions of the unperturbed system that approach zero and (n — k) linearly
independent solutions of the unperturbed system that tend away from zero.
When nonlinear terms satisfying suitable hypotheses are added, there exists a
surface S of dimension k containing the origin of y space, and solutions of the
full system with respect to S behave in the same way that those of (4.30)
behave with respect to the curve C. For a precise statement and proof in
the general (even nonautonomous) case see [4, p. 330].

Before proceeding with the proof, we remark again that we will not be
able to consider the case when the matrix 4 has one or more eigenvalues
with zero real part in this setting. This, as might be expected, is the really
difficult case and except for isolated instances that may arise in the sequel
(for example, Theorem 4.7; Example 3, Section 5.2, p. 197; and Sections
6.1, 6.2), we consider this case to be beyond the scope of this book.
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Proof of Theorem 4.6. We remark that because (4.30) is autonomous we

can assume that #, = 0 without loss of generality. Referring to (4.31), define
the matrices

Uy = (g—"' g) UL(E) = (g SM) 4.32)

so that

et = Uy(t) + Uy(t)
Then

(U (¢ = 5)| = e~
and

[U,(t — )| = *¢~9

and therefore (we shall see in the proof why this is convenient) there exist
constants o, ¢ > 0 (just pick 0 <« + ¢ < u and ¢ < 1) such that

[U(t — 5)) < e T3 if t>s (4.33a)
and
[U,(t — 5)| < &7~ if t<s (4.33b)

Using the hypothesis concerning g, given ¢ > 0, we may choose é > 0 such
that 0 < é <k and

gy} — eI <ely—y* (¥l y*<d) (4.34)

(Consider g(y) — g(y*), apply the mean value theorem component-wise, and
then take norms.)

The proof is divided into several parts. We first assume that (4.30) has a
solution y(#) with |y(¢)| small (at any rate less than k), and this solution exists
for 0 < t < o0; we show that y(¢) satisfies the integral equation

t
v = U (w0 + [ U,(t - 9ey

vy | AN A bl BN AP AL i ~ 2N
JO Jr
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Define the function

2() = 30 = UiO¥(O) - [ U, = i) ds + [ Ut = D(y(s)) ds
(4.36)

It is an elementary exercise to see that |z(¢)| is bounded on 0 < ¢ < 0. To
prove this, we make use of (4.33), and the assumption (4.34) that implies that
le(y(t))] is bounded whenever |y(¢)] < 6. From (4.36) we readily compute
that z(¢) satisfies

z = Az (4.37)

e EXERCISE

1 Dmin 74 3T
1. Frove (4.37),

Now what initial conditions does z(¢) satisfy? Clearly

2(0) = YO) ~ U,O©) + [ Ua(~9(x(s)) ds

and when written out, using U, (0)U,(0) = U,(0), Uy(O)U,(—s) = 0, this yields
U;(0)z(0) = 0. Therefore z,(0) =0, where z =(z,, z,). Now if z(0) #0,
then U,(0)z(0) = z,(0) # 0 because U,(0) + U,(0) is the identity matrix. But
then we have that z(¢) given by (4.36) is a bounded solution of (4.37) with
z,(0) = 0, z,(0) # 0; this means that z,(1) = 0, z,(¢) = z,(0)e*’, A >0, and
thus clearly |z(¢)| cannot be bounded unless z(t) = 0. This shows that y(¢)
satisfies (4.35).

We next show that (4.35) has a solution w(z) that stays small if |y(0)| is
small enough (we hardly need to point out that w(¢) also satisfies (4.30)).
Define the successive approximations

wo(t) =0
Mo a0 = U20¥0) + [ Uit = Dm0 ds = [ Ut = 9w, ) ds
(n=0,1,..)  (4.38)

We have, from (4.33), g(0) = 0, and (4.38),

W1(2) = wo(] < [U ()] Iy(0)] < e”®** |y(0)| < e™*|y(0))  (t=0)
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We now choose ¢ (see (4.34)) such that ¢/e < %; this determines a ¢ in (4.34).
We then prove by induction (note that the case k = 0 is already verified)

ly(0)} -

5 (t=0) (4.39)

|wy 4 (1) — w(D)] <
¢ EXERCISE

2. Prove (4.319)
Frove (4,3%),

Define

w(t) = wo(£) + (W, (£) — Wo(£)) + =+ + (W, (1) — W,y (1)) + -+
Then '

i \

Iw(®)! < |y(0)| e“"(l Fo ? + - ) =2|y(0)fe™™ (1 20)

and clearly if |y(0)] < §/2 (of (4.34)), then {w,(¢)} is a well-defined sequence
that converges uniformly for all £ > 0 and w(?) satisfies the estimate

W) < de™*  (t>0) (4.40)

so that it indeed remains small to t > 0. The reader should have no difficulty
in verifying that w is the desired solution,

o EXERCISE

3. Show that the limit function w(z) satisfies the integral equation (4.35) and
hence by equivalence also (4.30).

We next establish the uniqueness of solutions of (4.35) that are ** small.”
(Note that it is obvious that under our hypotheses the differential equation
(4.30) has a unique solution of the initial value problem. This, however,
does not imply the result for (4.35) without proof.) For the same initial
vector y(0) let w(z, y(0)), 8(z, y(0)) be solutions of (4.35) such that |w(z, y(0))/,
|6(z, y(O)| <& for t= 0. Define M = lub |[w(z, y(0)) —0(z, y(0))|. Then

tz0)

from (4.35) we have, using (4.33), (4.34),

(1, 300) = 02, YOI < 007 [[¢7 (s, 3(0)) — O(s, 3O ds

A0

+ ge” J e”"*|w(s, y(0)) — 6(s, y(0))| ds

t
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Taking the least upper bound under the integral sign on the right and then
integrating, we obtain

IW(t, ¥(0)) — B(t, YO < & M(1 — ey + £ < 21
a o [

and thus also M < (2¢/o)M. Since ¢ < 6/4 we get M < M/2, whichis a con-
tradiction, and this proves uniqueness of solutions of the integral equation
(4.35).

We now return to the integral equation (4.35) to establish the existence of
the curve C.

Define the vector a = (a;, 0). From (4.35) we see that

w(0) = U,(0)y(0) — | Us(—s)gw(s)) ds (4.41)

Yo

but because of the special nature of U, and U, (see (4.32)) only the first com-
ponent of U,(1)y(0) (hence of y(0)), and only the second component of the
integral are relevant. Remembering (Theorem 3.7, p. 135) that the solution
w is a continuous function of the initial conditions (w = w(¢, a)), we put
y(0) = a and we have (writing out the components)

w,(0, a) = a,

9200,0) = = [ Us(=5)glw(s, ) ds

For small |y(0)|, that is, for small |a|, the equation

ba) = w0, @) = = [ Us(~ g, a)) ds =0

defines a curve C passing through the origin. It is clear from (4.40) that
if the initia! point (3,(0), y,(0)) = (ay, ¥(a,)) lies on C with |a,| small (so that
la;| + W(a,)| < &), then the corresponding solution of (4.35) (hence of (4.30))
approaches zero.

It remains to be shown that if r(¢) is any solution of (4.30) with r(0) small
but not on C, then one cannot have |r(t)| < 6 for 1 = 0, where J is defined
by (4.34) and 6 < k. Suppose that |r(¢)| < 6 fort > 0. Then integration of
(4.30) and use of variation of constants gives

At

r(f) = ¢r(0) + J e~ 4g(x(s)) ds
1]
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Now using (4.32), we can write this in the form

((1) = U,(OF(0) + U(0r(0) + [ Uyt — )g(e(9)) ds
; 0

+ j: Us(t — s)gx(s)) ds — | ULt~ g ds  (4.42)

t

n it/ (f— c’\.' and
i IUZ\ (SRR

e the definition of

u:lf\prn all :nfporn]c
¥Y liwl W Wil Ve‘ i

because |g(r(s))| is b nde
(4.32))

jo Us(t = )e(e(s))ds = Un(0) | Ua(=9)g(x(s)) ds
(4.42) can be written as

(1) = UL(OKO) + Us(De + [ Uyt — 9ga(9) ds

0
- f Uy(t —s)g(r(s))ds  (4.43)
t
where the constant vector ¢ is

e =1(0) + [ Us(=9)(x(s) ds

Since |r(¢t)] < 8, by hypothesis, the left-hand side is bounded for 0 < ¢ < o0;
now, by the argument already used several times, each term on the right-hand
side of (4.43) is also bounded, except possibly the term U,(f)e. But from
(4.32) U,(f)e is the vector (0, e*'c;), and 4 > 0. Since the left-hand side of
(4.43) is bounded, the right-hand side of (4.43) must also be bounded, and
this implies that ¢, =0. But if ¢, =0, U,(¢)¢e =0, and therefore r(r) is a
solution of (4.35) (compare (4.43) and (4.35) with U,(¢)c =0). But by
uniqueness of ** small ™ solutions of (4.35) already established, since |r(t)| < 4,
r(0) must be a point on the curve C and therefore we have contradicted the
assumption that r(0)is not on C. This completes the proof of Theorem 4.6. |

¢ EXERCISE

4. Show that the simple undamped pendulum, governed by the equation

6" + Lsm f=0
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has an unstable (actually conditionally stable) equilibrium point at 6 = =
[Hint: (a) Write as a system

Yy =2

7= — gsin
Y2 I Ji

(b) Make the change of variable v, =y, — =, v> =y, and show that the
corresponding linear unperturbed system has a saddle point at v, =0, v, =0,
Then apply Theorem 4.6.]

4.6 Asymi)totic Equivalence

equivalence of two systems. This notion has already been touched on
indirectly; it can sometimes be useful in studying asymptotic behavior.
Consider the two systems of n equations

X' = A(?)x (4.44)
y = Aty + (1, y) (4.45)

where A(?) is continuous for 1, <t < 00 (f; >0), and f(¢, y) is continuous
for t, <t <oo and |y| < k, where £ > 0 is a constant.

Definition. We say that the systems (4.44) and (4.45) are asymptotically
equiralent if to each solution x(t) of (4.44) with |X(t,)| sufficiently small there
corresponds a solution y(t) of (4.45) such that

lim [y(t) - x()| =0

| Saadie 7]

and if to each solution Y(t) of (4.45) with |§(ty)] sufficiently small there corre-
sponds a solution R(t) of (4.44) such that

lim [§(r) — (1)) = 0

| Sl

We remark that the solutions x(¢) and y(¢) (or ®(¢) and $(¢)) need not both
satisfy the same initial conditions, and that they need only be defined for
sufficiently large 1.
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Example 1. The scalar equations

are asymptotically equivalent. Every solution of the first equation has the
form x(¢) =t + ¢, for some constant ¢,, and every solution of the second
equation has the form y(t) =t — 1/t + ¢, for some constant ¢,. The equiva-
lence in both directions is obtained by takingc;, = ¢,. Notethatec, = x(1) — 1
but ¢; = y(1).

If A(r) is a constant matrix whose eigenvalues all have negative real parts
and if f satisfies the hypothesis of Theorem 4.3, then (4.44) and (4.45) are
asymptotically equivalent (in fact much more is true!).

Example 2. The scalar equations

X'=-~x y=-y+)

are asymptotically equivalent because every solution of each equation with
sufficiently small initial value tends to zero as 1 — c0. Note, however, that
there is no solution x{r) of the first equation corresponding to the solution
y(t) = | of the second equation such that lim |x(¢) — y(#)] = 0. This explains

=0

why the definition of asymptotic equivalence specified small initial values.

Example 3. We have shown in Exercise 4, Section 3.1 (p. 111) and
Exercise 13, Section 3.1 (p. 118) that the integral equation

y(t)=¢e"+a J‘ Jsin (t—13) }—(zi) ds
f S

where o is a given constant, has a bounded solution ¢(#), and that ¢(z) is a
solution of the differential equation

- o
Y+ (1 + ?) y=0 (4.46)

By the same argument, we could establish the existence of a bounded solution
o(1), |¢(2)} < K, of the integral equation

y(h=ce" +ce”" +« stin (t—7s) y—lzsf ds (4.47)
s

t
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for every ¢, ¢,, and show that ¢(r) is a solutton of (4.46). Thus

oG

M

Ko
t

(1) — (¢, " + c,e” )| —<~l!ﬂf s < Ko ftmf;=

and lim |¢(¢) ~ (c;€" + ¢, e7"*)| = 0. This shows that corresponding to a

t=— oo
solution ¢;e" + ¢, e of the equation x” + x = 0 there is a solution ¢(#) of
(4.46) such that lim [¢(¢) — (c,€” + c,e” )| = 0. Since a solution of (4.46)
oo
satisfies (4.47) for some choice of ¢;, ¢,, to every solution ¢(t) of (4.46)
corresponds a solution ;e + &, ¢ " of x" + x = 0 such that

lim |@(t) — (¢,€" + e,e7 ) = 0.

to o

1 74

Therefore the second-order equations x” + x = 0 and (4.46) are asymptotically
equivalent. As (4.46) can be obtained from the Bessel equation by a change
of dependent variable (see, for example, [2, p. 171]), this asymptotic equiva-
lence is of great value in studying the behavior of the Bessel functions J,()
and Y,(r) for large ¢.

This last example suggests that asymptotic equivalence might be useful
where some stronger concept, such as asymptotic stability, might not be
obtainable. In particular, suppose A(t) = 4 (a constant matrix) and we
know that all solutions of (4.44) are bounded, but do not necessarily tend
to zero. This happens if 4 has at least one eigenvalue with zero real part
while the remaining ones have negative real parts. Then (4.44) has a
periodic solution, p(¢). 1If (4.44) and (4.45) are asymptotically equivalent,
(4.45) must have a solution y(¢) that behaves, asymptotically as t - + oo, like
the periodic solution p(¢). This situation is not covered by any of the theorems
discussed so far.

A simple nontrivial result of this type on asymptotic equivalence is the
following concerning linear systems, due to N. Levinson (1946).

Theorem 4.7. Let A be a constant matrix such that all solutions of
X' = Ax (4.48)

are bounded on 0 < t < 0. Let B(t) be a continuous matrix such that

f “|B(s)| ds < o (4.49)
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Then (4.48) and the system
= (4 + B())y (4.50)
are asymptotically equivalent.

Sketch of Proof. 1t is first shown that under the hypothesis all solutions

of (4.50) are nlen hnnndpr{ on D <t < 0. (Thm 1s done uc1n0 the variation

\ Terv) G v LIiwiWwud WL A7 A LEW 1igm Ll YULITGWIW/IL

of constants formula; sece Exercise 16, Sectlon 4.3.) Without loss of gener-
ality we next assume that a linear change of variable x = 7z has been made in
(4.48) and T chosen so that T "' AT is of the form

A, 0

0 4,
where A, is a matrix having all those eigenvalues of A with real parts negative
and A4, has all those eigenvalues of 4 with real parts zero. We assume that

A is already in this form and, as in the proof of Theorem 4.6, we define the
matrices

vo=(5 5 o= o)

It now follows from Theorem 2.10 (p. 80) and the hypothesis that there
exist constant K, ¢ > 0, such that

\U;(t =)l < Ke™°0"9  (0<s<t)
[U,(t —si < K (s=2t=20)

(4.51)

Now every solution y(z) of (4.50) can be written in the form

y(t) = e'4c + f Ut = $)BGs)y(s) ds — f “UL(t = 9)BG)() ds  (4.52)
. |

¢

where e'¢ is some solution of (4.48). This is easily established from the
variation of constants formula, as was done in the proof of Theorem 4.6.
For this solution y(r), we have, from (4.51), (4.52),

190) = eel < K [[e 9 B@)ye) ds + [ KBy ds
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Since every solution is bounded (see Exercise 16, p. 158), we have |y(1)] < K|

’

(0 <t < o), and using (4.49), we find that both integrals on the right-hand

side approach zero (see Exercise 2 below). Therefore

lim {y(t) — ec| =0

o0

The justification of the above steps is contained in the following exercises.

e EXERCISES

1. Derive (4.52) and then show that if ¢ is a solution of (4.52) ¢’(r) =
(4 + B(t))(t). [Hint: Apply the variation of constants formula to (4.50) using
B(?)y as the inhomogeneous term. Then rewrite similarly to (4.42). The fact

that |y(¢)| is bounded ensures the existence of all the integrals in (4.52). (Prov
this fact.)]

PR - . .

2. Prove that if r is a continuous nonnegative in
0 <t < co and if o >0, then

(@) lim | r(s)ds=0
(b) lim | e *" = (s)ds =0

t— o )

c

ot ln famalaet e it
LEETADIC (\5Calarl) TUNCLIon on

[Hiat: To prove (b) writee ' j:, e’r(s)ds = e _fg e”r(s) ds + _f; e~ =9 (5) ds.
The first of these integrals clearly can be made as small as described for each fixed
T > 0 by choosing ¢ sufficiently large. For the second integral, choose T large
enough so that_f;0 r(s) dsisassmallasdesired, and thenshowthat j‘r e~ U () ds <
§r r(s)dsforall t >T.]

Now, given a solution x(¢) of (4.48) we can construct a solution y(¢) of
(4.50) by solving the integral equation

where x(¢) = ¢'4¢ for some constant vector .

e EXERCISE

3. Use the method of successive approximations to show that (4.53) has a

Lhnismdad cnlittinm srhinal 1o alen o Lt dad caliziine ~AF 74 &M FIFt_s, Qo s+l
UUULIUCU DULULIULL, WL 1D aldU da DUULIUMEU dULULIVLIL UL \#*. 0V ), Lfzire, OCC LIl

proof of Theorem 4.6, which is more difficult than this.]

[¢]
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The result of Exercise 3, together with the above calculations, shows that
lim |y(¢) — x(#)] = 0. Given a solution $(¢) of (4.50), it is easy to construct

t—rag
a solution &(¢) of (4.48) such that lim |§(z) — %(¢)| = 0, as the analogue of
| S ¢}

(4.53) now gives an explicit representation, rather than an integral equation,
for %(¢), and this completes the proof of asymptotic equivalence. |

The reader should observe that Theorem 4.7 is applicable to the problem
studied in Example 3. Since in Example 3 all the eigenvalues of the matrix 4
have real part zero, the proof is simplified by the fact that there is no need to
split the matrix exp (14) into two parts. The argument used in Theorem 4.7
can be used to obtain a result for the nonlinear system

y =Ay + gty | (4.54)
Theorem 4.8. Let A be a real constant matrix satisfying the hypotheses of

Theorem 4.7. Let g, 0gl/dy; (j=1,...,n) be continuous for 0 <t < oo,
iyl <k, for some k > 0. Suppose

lg(t, y)I < A() |yl

for 0<t< oo, |yl <k, where f At)dt < oo. Then (4.48) and (4.54) are
0

asymptotically equivalent.

e EXERCISES

4. Prove Theorem 4.8. [Hint: Study the proofs of Theorems 4.6 and 4.7; see
also [21, p. 514].]

5. Extend Theorems 4.7, 4.8 to the case where the matrix 4 = A(t) is periodic
in ¢ with period w.

Note that Theorem 4.8 does not apply to the important case of autonomous
perturbations, (Why not?)

4.7 Stability of Periodic Solutions

Consider the real system with # components

y =F(@,y) (4.33)
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where F is periodic of period w in . Suppose that F is continuous in (¢, ¥)
and has continuous second partial derivatives with respect to the components
of y in a domain D={(#,y)|0 <t < w, |y] < k} where k > 0 is some con-
stant. Suppose that (4.55) has a periodic solution y = p(¢) of period w in ¢
(it is in general a very difficult problem to obtain or even verify the existence
of such a solution, but that is not the issue here). We wish to test the stability
of the periodic solution p(#); in particular, we would like to determine suffi-
cient conditions that assure its asymptotic stability.

We proceed much as in Section 4.4, where we investigated the stability of a
critical point. Consider the solution { of (4.55) given by

Y(2) = p(t) + z(r) (4.56)

Then §'(2) = F(t, p(¢) + z()) = p'(¢) + 2'(¢). But p'(#) = F(¢, p(¢)) and hence
z satisfies the equation

2'(t) = F(t, p(t)) + z(2) — F(z, p(?))
Applying the mean value theorem shows that z satisfies the equation
' =F,(t, o)z + g(t, ) (4.57)

where g is periodic of period w in ¢ continuous in (¢, z) for all ¢ and for |z}
‘“small” and

tim 2521 _ (4.58)
lzl~o [Z]

moreover the matrix Fy(¢, p(¢)) is continuous and periodic in ¢ of period w.
Clearly z = 0 is a solution of (4.57) and from the definitions of stability and
asymptotic stability (see Definitions 3 and 4, Section 4.2) it follows that the
periodic solution p(¢) of the system (4.55) is stable or asymptotically stable if
and only if z = § is respectively a stable or asymptotically stable solution of
the system (4.57). This suggests that we study almost linear systems of the
form

z = A(t)z + g(t, z) (4.59)
where A(t) is a periodic matrix of period w in ¢ and where g(¢, z) is a continuous

(4.58). Clearly (4.57) is a special case of (4.59) with A(z) = F(¢, p(?)).
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The linear part of (4.59) is the linear system X’ = A(#)x with periodic coeffi-
cients of period w. As we have seen (see Theorem 2.12, p. 96 and Corol-
lary 1, p. 98), such a system can be transformed to a linear system with
constant coefficients by a suitable nonsingular linear transformation. Let
P(t) and R be the matrices in Floquet’s theorem (p. 96) with respect to the
linear system x" = A(¢)x. Define the change of variable

z = P(t)u | (4.60)
This transforms the almost linear system (4.59) to the almost linear system

u' = Ru+ P~ 1()g(t, P(Hu) (4.61)
which has constant coefficients.

e EXERCISE

1. Establish (4.61). [Hint: Use (4.60) in (4.59) and follow the proof of
Theorem 2.12, Corollary 1, p. 98.]

We may now apply the theory of Section 4.4 to the system (4.61) in order to
obtain asymptotic stability criteria for the zero solution of the system (4.59)
(and hence of the periodic solution p(z) of (4.55)). By looking at the linear
system x' = A(1)x, we have the following result as a consequence of Floquet
theory and Theorem 4.3,

Theorem 4.9. Let g and 0g/0z; (j =1, ..., n) be periodic in t of period w
and continuous in (t, z) for |z] < ky (k; > 0 a constant). Let (4.58) be satisfied.
Let A(t) be a continuous n-by-n periodic matrix of period w in t. Let the multi-
pliers 4., A5, ..., 4, (counting multiplicities) of the linear system x' = A(1)x
have magnitude |1, <1 (k= 1,...,n). Then the zero solution of (4.59) is
asymptotically stable.

nvhyp el £ Y
P g 1D

- D <
v Iy now e

2. Prove Theorem 4.9. [Hints: (a) Consider the transformed system (4.61)
and show that the nonlinear term P ~!'(¢)g(t, P(¢)u) satisfies condition (4.58) if g
does. (b) Apply Theorem 4.3 and the relation (2.67), p. 98, between the eigen-
values of R and the multipliers Ay, Az, ..., A,.]

3. Use Theorem 4.9 to state and prove an asymptotic stability theorem for the
periodic solution p(t) of (4.55).

4. Let p(z) be a periodic solution of period w of the autonomous system

Yy =F(y)
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Show that in this case the analysis that led to (4.57) now yields the system
z' = Fy(p(1))z + g(2)

in which ¢ does not enter explicitly and where g satisfies (4.58).

5. In Exercise 4, show that x = p’(#) is a solution of the linear system x" =
F(p{s)x. [Hint: Substitute.]

6. Use the result of Exercise 5 to show that 1 is a multiplier of the linear
system X' = F(p(¢))x. [Hint: Use Exercise 3, Section 2.9, p. 99.]

Exercises 4-6 show that Theorem 4.9 is never applicable in the study of
asymptotic stability of a periodic solution of an autonomous system. It is for
this reason that for periodic solutions of autonomous systems, a different type
of stability, called orbital stability, is introduced. The interested reader is
referred to [4, Ch. 13].

¢ EXERCISES

7. State and prove the analogue of Theorem 4.4 when 4 = A(¢) is a periodic
matrix of period w.

8. State and prove the analogue of Theorem 4.5 when 4 = A(¢) is a periodic
matrix of period w.

9. State and prove the analogue of Theorem 4.6 when 4 = A(¢) is a periodic
matrix of period w.



LYAPUNOV’S SECOND

Chapter ) METHOD

5.1 Introductory Remarks

Instead of trying to determine the stability of a nonlinear system by first
examining the linear approximation (as was done in Chapter 4), we now
explore an entirely different approach. This technique, discovered by Lya-
punov at the end of the nineteenth century, was rediscovered and has been
applied effectively to entirely new problems, especially during the past 20
years. The technique is also called the direct method because the technique
can be applied directly to the differential equation, without any knowledge
of the solutions, provided the person using the method is clever enough to
construct the right auxiliary functions. As we will show by means of
examples (for example, Example 4, Section 5.2), the right choice is not at all
obvious. In addition to giving us criteria for stability, asymptotic stability,
and instability of solutions (critical points), the method gives us a way of
estimating the region of asymptotic stability, as we shall see in Section 5.5.
This is something the linear approximation can never hope to do, because, as
we have seen in Section 4.3, stability properties of linear systems are global
but the addition of a nonlinear term may change the region of stability or
asymptotic stability completely. (Recall the scalar equation ' = —u + u?,
where the origin is globaily asymptotically stable for the linear approximation,
but that is changed drastically when the nonlinear term u? is added.)

The idea behind the method can be traced to a result of Lagrange (stated
by him about 1800 and proved later by Dirichlet): If in a certain rest position

187
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a conservative mechanical system has minimum potential energy, then this
position corresponds to a stable equilibrium; if the rest position does not corre-
spond to minimum potential energy, then the equilibrium is unstable. For sim-
plicity we consider a particle of mass m moving in a straight line under the
action of a force f(y) that depends on the position y but not on the time ¢.
Then the equation of motion is

my” = f(y) (5.1

The statement that the system is conservative means that the force function
fis determined by a potential function U by the relation f(y) = —grad U =
—dU|dy; U(y) is called the potential energy. In a particular case, the poten-
tial energy may have the graph shown in Figure 5.1, with rest positions cor-
responding to points 4, 0, B, C, D. Then Lagrange’s theorem says that the

U(y)

Figure 5.1

rest points corresponding to 0, D are stable, while those corresponding to
A, B, C are unstable. For simplicity we assume, as indicated in the figure,
that U(0) = 0 and f(0) = — U’'(0) = 0 (note that U is determined only up to a
constant); and that U(y) > 0 if y# 0so that y = 0 is a stable equilibrium point
corresponding to a minimum of U(y). We can write (5.1) as a system of
first-order autonomous equations by letting y, =y, y, = J';
Yi=1J2
(5.2)

du
mys = J) = = o2

The kinetic energy of the system is T = (m/2)y'* = (m/2)y,* and the total
energy V is
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m
2

We remark that 0V/dy, = my,, dV /ey, = U'(y,) = — f(y,), so that (5.2) can
be written in the form (the so-called Hamiltonian form)

V(yi, y2) = Uy + J’22 (3.3)

, 1oV , _bav
mday, V2= m oy,
or (5.4)
, _6H , 0H
V= 0z = dy

where we let p, =y, vy, = z, and H{y, z} = (1/m)V{(y, z) is called the Hamil-
tonian for (5.2). Because of the importance of such systems in certain appli-
cations, we digress to make a few remarks about Hamiltonian systems.
More generally, a system of 2 equations determined by a single scalar func-

tion H(y,, ..., y,, z;, ..., z,} is called Hamiltonian if it is of the form
. O0H
Yi=—7—
9z (i=1,...,n) (5.5)
, 0H
= = —
oy;
e EXERCISES
1. If & = (¢, ..., ¢2.) is any solution of the Hamiltonian system (5.5), prove

that H(¢i, ..., ¢2a) is a constant.

REMARK. A function constant along solution curves of a system is called an
integral of the system.

2. With reference to (5.1), show that if f(») is continuous for |y| near zero and
if yf(y) < O for y # 0and |y| small, then thepotential energy U(y) = — |3 /(o) do
has a minimum at y = 0.

3. In the conservative system described above, suppose that m = 1 and that
the motion takes place in three dimensions. The force f(y) is now given by
f(y) = — grad W(y); thatis, fi(y1, ¥z, y3) = —EW[eyi(yi, ¥2,¥3), i =1, 2, 3, and
the motion is prescribed by the equations y; = fi(y1, y2,y3) i=1,2,3.

(a) Write the equivalent system of six first-order equations by letting y; = z,

(i==1,2,3)

(b) Skow that if the Hamiltonian H is defined as the total energy: H(yi, .,
Y3, 21, 22, 23) = Wy, y2, y3) + I°_, z.%, the equations of motion form a
Hamiltonian system in the sense of (5.5). (Exercise 1 above says that
along any solution of a Hamiltonian system the total energy is constant.
This is the principle of conservation of energy.)
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4. Show that the equation of motion for an undamped simple pendulum,
Y +(g/L)siny =0 (see Section 1.1, p. 6), can be written as a Hamiltonian
system. What is the total energy? What does Lagrange’s principle tell you
about the critical points of the system?

Let us now return to an intuitive demonstration of Lagrange’s theorem for
the single system (5.1) or (5.2). This demonstration contains the intuitive
ideas behind Lyapunov’s second method. We restrict ourselves to the

simple case of an equilibrium point at y; = y, = 0, when the potential energy

has a minimum at y; = 0. We assume that {(0) = 0 (as in Figure 5.1); thus
by the minimum property, U(y,) > 0 for y, # 0 and |y| small. We wish to
show that the equilibrium point y, =0, y, =0 of (5.1) is stable. If V is
defined by (5.3) we know (Exercise 1) that V is constant along a solution,
Consider now the family of curves V{y,, v,) = ¢ (constant) in the (y,, y,)
phase plane. 1f ¢ < 0 there are no real curves. If ¢ = 0 we get the single
point y, =y, = 0. If ¢ > 0 but ¢ issufficiently small, thenthe set V(y,, y,) =¢

is a family of curves. There is a neighborhood of the origin that contains
exactly one of these curves I',, given by the equation y, = +[(2/m)(c —
U(y))Y]*?. This curve T, is closed, surrounds the origin, and is symmetric

with respect to the y, axis, as shown in Figure 5.2. Clearly, by the property

Ya

(TN
N

Figure 5.2

of a minimum if ¢; and ¢, are small with ¢; < ¢, < ¢, then the corresponding
curves I'; and T, are situated as shown, shrinking down to the origin as ¢
decreases to zero. If a solution (y,(¢), y,(¢)) begins at time t, with |y,(#,)]
and |y,(#o)] small, it stays close to the origin because it lies on the curve
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I' given by the equation

U(yy) + .VZ = U(y(ty)) + 5 ¥22 (o)

for which U(y,(f0)) + (m/2)y,*(t,) can be made as small as desired by choosing
|y(t9)] and |y2(t0)| small enough. Thus the curve I can be made to remain

A e Y oz rrran mxrlasmle faer At e b v b bk la b, am o~

ar Ulllalily LlUbC lU I.“C Ul iglll Willl.ll Uy U.Cll.llll.iUll Ul bl.d.UlHl.y \UCll]llllUﬁ 1,
Section 4.2, p. 146) says that the origin is stable, and completes a sketch of
the proof. Notice, however, that the origin cannot be asymptotically stable
in the case discussed above, because each nonzero solution lies on a curve I',
and these curves certainly do not approach the origin. It is clear, intuitively,
that in order to have the origin asymptotically stable, the total energy would at
least have to decrease to zero as a function of time as t — o0 and that could

hnnnpn nnlv in the presence of a dqmnmo term. such ag f'rmhnn which would
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cause dlssmatlon of energy (for example, a damped pendulum). We will see,
when we discuss the Liénard equation, that these statements are essentially
correct. We will also see that it is the V function (5.3) that is basic to the
method we are about to describe.

¢ EXERCISE

5. Show that if the potential energy has a maximum at the equilibrium point
yi = y; =0, then the origin is unstable.

We remark that it can be shown that if the potential energy has an inflec-
tion point at y, = y, = 0, then the origin is also unstable.

5.2 Lyapunov’s Theorems

For clarity of exposition we will consider first autonomous systems of the
form

y =1(y) (5.6)

where f and of/dy; (j=1, ..., n) are continuous in a region D of n-dimen-
sional y-space. (D may be the whole space.) We will assume that D con-
tains the origin in its interior, that f(0) = 0 (that is, the origin is a critical
point of (5.6) so that y = 0 is a solution of (5.6)), and that the origin is an
isolated critical point of (5.6). This means that there is a neighborhood of
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the origin containing no other critical points. We will present criteria for the
stability and instability of the zero solution. The consideration of the zero
solution is no restriction since, as we have seen previously, the problem of
investigating the stability of any critical point y = y, can always be trans-
formed to an investigation of the zero solution (see, for example, Section
4.2, p. 150).

We have seen in Section 2.8 (p. 85) that solutions of autonomous systems
such as (5.6) are conveniently represented as orbits in phase space. In the
presentation of stability theory for autonomous systems, it is convenient to
introduce certain additional terminology and some stmple facts concerning
orbits. If C is an orbit of (5.6) corresponding to the solution ¢(z) existing
on —w < t < o, we denote by C* (the positive semiorbit) the set of points of
C with coordinates ¢(¢) where ¢, < t < o0 for any 7, and by C ™ (the negative
semiorbit) the set of points of C with coordinates ¢(r), where —c0 <t < t,.
Then C=C™* u C~ (the union of C* and C ™) is often referred to as the
full orbit.

There is a close connection between uniqueness of solutions of the initial
value problem for (5.6) (as guaranteed by Theorem 1.1, p. 26) and the
following simple facts, which are of general interest. In what follows it will
be convenient to denote by ¢(z, 1) the solution of y" = f(y) that satisfies the
initial condition ¢(t,, ) = 0.

Lemma 5.1.  If v is any point of D that is not a critical point of (5.6), then
through the point 1| there passes at most one orbit of (5.6).

Proof. Suppose there are two orbits C and € through n. Let C be
generated by the solution (¢, n) with &(z,, n) = n; let  be generated by the
solution (¢, ) with Y(#;, n) =n. We suppose that ¢, # ¢, (otherwise we
finish by a trivial argument). Since (5.6) is invariant under translations of ¢,
the function &(¢t) = y(t + ¢, — t,, n) is another solution of (5.6) representing
C and E(to) = ¥(t,,m) =1n. By uniqueness of the solution of the initial
value problem (Theorem 1.1, p. 26), E(f)=¢(t, i) and therefore the orbits
C and C coincide. -

Lemma 5.2. If an orbit C of (5.6) passes through some ordinary point of D,
then C cannot reach any critical point & in D in finite time. (More precisely, if C
is generated by a solution ¢ and if lim¢(t) =a, o in D, then a = 4-00.)

t—+a
¢ EXERCISE

5.2. [Hint: Suppose it did; use a simple continuation argu-
f . ..

1 My 1
EUILL g

A simple consequence of Lemmas 5.1 and 5.2 is the following result.
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Lemma 5.3. An orbit C of (5.6) that passes through at least one ordinary
point of D cannot cross itself, unless it is a closed curve in D. In this case, C
corresponds to a periodic solution of (5.6).

e EXERCISE

2. Prove Lemma 5.3. [Recall that a solution &(¢) of (5.6) is periodic with
period wif d(t + w)=P()(— oo << ). Itisobvious thatif ¢ isa periodic

iV R, [ T L, PR, S-S Ry T

bOlUllOﬂ its oroit is a LlUbC(.l curve. lﬂﬁ pUll]l is L0 prove the converse! j

We will postpone to Section 5.4 certain generalizations of what follows
for autonomous systems and to Section 5.6 the generalizations to nonautono-
mous systems. As has been our practice, our objective is to present the salient
features of the method and not the most sophisticated results. The inter-
ested reader is referred to [8 9, 15, or 25] for more advanced treatments.

We will be concerned with the construction of certain scalar functions and
we require a number of definitions. Let F(y) be a scalar continuous func-
tion (that is, a real-valued function of the variables y,, v,, ..., y,) defined on

some region ) containing the origin; again, Q could be the whole space.

Definition 1. The scalar function V(y) is said to be positive definite on the set
Qifandonly if V() =0and V(y) > 0 fory # G and y in Q.

Definition 2. The scalar function V(y) is negative definite on the set Q
ifand only if — V(y) is positive definite on €.

Example 1. If n =23 the function W(y) = y,% + y;> + y52 is obviously
positive definite (on the whole space), but the function V(y) = y,?, while
obviously nonnegative, is not positive definite because ¥(y) = 0 on the plane
v, = 0 (that is, at every point of the (v, ¥;) plane).

e EXERCISE

3.If n=2 and V (31, y2) =I§‘g(c) do + y2%/2, where g is continuous and
og(o) > 0 for o # 0, prove that V is positive definite on the whole (1, y2) plane.
What can you say if og(c) >07?

We will assume throughout that the scalar function V(y) has continuous
first-order partial derivatives at every point of the region Q.

Definition 3. The derivative of V with respect to the system y' = {(y) is the
scalar product
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0 aVv
V(y) = grad V(y) - (y) = i(ym(y) W+

0
; ;/(y)f..(y) 5.7)

d

The reader is urged to note that V*(y) can be computed directly from the
differential equation without any knowledge of the solutions. Herein lies the

power of the Lyapunov method. We observe that if ¢(¢) is any solution of
(5.6), then by the chain rule, the definition of solution, and (5.7) we have

oV

d av
—V 1)) = — t (1 t (t
o (b(1) 37 (b)) + - + o (d(Ne(1)
\Q" an.r NV WA *
—_ _ + WY — V¥ (A (8 Q)
"ké.,l Ve WU LW ) Vo) (3.9)

In words, along a solution ¢ the total derivative of V(¢(¢)) with respect to ¢
coincides with the derivative of V' with respect to the system evaluated at

y = ¢(2).
Example 2. For the system
Yi=Y2
Y= =y — 2y,
and the given function
V(y1, ¥2) =3y + 3,%)

we obtain, using the definition (5.7) with fi(») =vy,,2(y) = —y, — 2y,
V*(y1s ¥2) = ¥1¥2 + ¥2(—=y1 — 292) = =295°.
ReMARK. The system of this example is equivalent to the scalar equation
W+ 2 +u=0

which can be regarded as a model for a damped linearized oscillator. Thus V

represents the total energy (3y,% = $u?® is the potential energy and 4y,? =
3(w')? is the kinetic energy). From (5.8) and the above calculation, we have
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J ;
= [V(8:1(), ¢:()] = V(1) $:(0)] = ~2[¢,(1]* <0

This immediately tells us that the total energy is a nonincreasing function of r.

e EXERCISE

4. Consider the function V(y,, y.) defined by (5.3). Compute the derivative
of V(y1, y,) with respect to the system (5.2).

We now state and illustrate Lyapunov’s original theorems for autonomous
systems; we postpone their proofs to Section 5.3.

Theorem 5.1. If there exists a scalar function V(y) that is positive definite
and for which V*(y) < 0 (that is, the derivative (5.7) with respect to y' = f(y)
IS nonpositive) on some region € containing the origin, then the zero solution of
y' = f(y) is stable.

Theorem 5.2, If there exists a scalar function V(y) that is positive definite
and for which V *(y) is negative definite on some region Q) containing the origin,
then the zero solution of y' = K(y) is asymptotically stable.

We also have two instability results.

Theorem 5.3. If there exists a scalar function V(y), V(0) =0, such that
V *(y) is either positive definite or negative definite on some region Q containing
the origin and if there exists in every neighborhood N of the origin, N < Q, at
least one point a # 0 such that V(a) has the same sign as V*(y), then the
zero solution of 'y =f(y) is unstable.

Theorem 5.4. If there exists a scalar function V such that in a region Q
containing the origin,

V¥=V+ W

where A > 0 is a constant and W is either identically zero or W is a nonnegative
or a nonpositive function such that in every neighborhood N of the origin, N < Q,
there is at least one point & such that V(a) - W(a) > 0, then the zero solution
of y' = 1(y) is unstable.

The reader will notice immediately that each of these theorems depends on
the existence of a scalar function V with certain properties. Four points
must be emphasized. First, nothing is said about how the function V is to be
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constructed, and this is the principal limitation of this method—there are no
general methods for the construction of such functions. Second, the theorems
give sufficient conditions for stability and instability, but these conditions are
by no means necessary, as we shall soon see. In Section 5.4 we shall present
certain improvements. Third, in the case of Theorems 5.1, 5.2, we see that,
in view of the definition of stability, solutions starting close to the equilibrium
position exist and are bounded for all 1 > 0. Finally, in the case of Theorem
5.2, nothing is said about the size of the region of asymptotic stability (the
set of inttial values for which solutions tend to zero). We shall return to this
problem in Section 5.5.

Next, let us look at these theorems geometrically. In particular, let us
discuss the condition ¥ *(y) < 0 in Theorem 5.1, where V is positive definite
in a region Q. Let ¢ be a constant and consider the equation V(y) = c;
because V is posttive definite in Q we need consider only values ¢ > 0, and
for ¢ =0 the equation V(y) =0 gives only the origin in phase space. If
¢ > 0, the equation V(y) = ¢ represents a surface (see Figure 5.3 in the case

N~

Figure 5.3

n=2). Since V is positive definite, if ¢ > 0 is sufficientiy small, this surface
has a component whose interior contains the origin, and since V is continuous
this component shrinks to the origin as ¢ — 0. (In most simple examples,
such as Example 2, the surface V(y) = ¢ consists only of the component
surrounding the origin.) Now, by definition V' *(y) = grad V' (y) * f(y), where
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grad V(y) is a vector normal to the surface V(y) = ¢ in the direction shown in
Figure 5.3. The assumption V' *(y) <0 means that the vector f(y) cannot
point into the ““exterior” of the region bounded by the surface V(y) =c
(at any rate it cannot point into the exterior of that component of the region
bounded by the surface V(y) = ¢ that contains the origin for sufficiently small
c > 0). But the vector f(y) is the tangent vector to the orbit of the system
y = f(y) at each point y. Therefore, for sufficiently small c, the orbit of a
solution starting close enough to the origin cannot leave the region bounded
by the surface V(y) = c¢; that is, for sufficiently small ¢ the orbit must remain
close to the origin, so that the origin is stable. This is almost a proof of
Theorem 5.1. If ¥ *(y) is negative definite, as in the hypothesis of Theorem
5.2, the orbits actually cross from the exterior to the interior of the region
bounded by the surface V(y) = ¢ for every ¢ > 0, no matter how small, and
this leads to asymptotic stability. The instability results can be discussed in a
similar way.

Example 3. Consider the equation 4" + g(«) = 0, where g is continuously
differentiable for |u| < k, with some constant ¥ > 0, and ug(u) > 0 if u # 0.
Thus, by continuity, g(0) = 0. (This condition is satisfied if g(«) = sin u, the
case of the undamped simple pendulum.) Writing the equation as a system of
first-order equations, we have

yi=y

5.9

Ya=—g(y1) )

and the origin y, = y, =0 is an isolated critical point. To investigate the

stability of this equilibrium point we wish to see if one of Lyapunov’s

theorems stated above can be applied. To do that we must try to select a

suitable V function. If we think of g(u) as the restoring force of a spring or

pendulum acting on the particle of unit mass at a displacement u from equilib-

rium and of &” as the velocity of the particle, then the potential energy at a
displacement « from equilibrium is

f:g(a) do

On the other hand, the kinetic energy is 4(u#’)? so that the total energy is

L(u')? + f:g(a) do
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This suggests that for the system (5.9) we might try this total energy as the V
function

V132 = 922 + | 9(0) do (5.10)

This function is defined on the region Q= {(y,, y2)| Iyl <k, I¥,l < w0},
¥(0, 0) = 0 and since ag(c) > 0, the graph of g has the form suggested in
Figure 5.4, so that

1
f g(c)do >0 forO< |yl <k
0

g(o)
ag
Figure 5.4
Therefore V(y,, y,) is positive definite on Q. Now the derivative of V with
s A, t~ flhia cuctarny & Q) 1o fnaq Farminla (& T
lbDlJb\rI. LU MW O YORWELL \J. 7] 10 DLV 11Ul 1uid \J.77)

V*(01s ¥2) = y2¥s + g(r)yi = y2(—9(31)) + g(y1)y, =0
[(y, y2)inQ]  (5.11)

Thus we have found a function V that satisfies the hypothesis of Theorem 5.1

and therefore the equilibrium solution y, =y, = 0 is stable. We have in
this case also found much more. Namely, the V function (5.10) can be used
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to obtain a complete phase plane portrait of the system. Because of (5.8)
and (5.11) we know that if (¥, ¥20) is any point in @ and if ($,(1), $a(1))
is any solution of (5.9) through this point, then d/dr V(¢ (1), ¢i(t)) =
V*(y(1), ¢,(1)) =0, and integration gives

V(g (r), p,(2)) = constant = V(4. V2o)

Thus the orbit of every solution starting at (y,,, ¥5,) in Q is a curve C whose
equation is given by

2
Yao

2
}72 Y1 . Y10
—2-+j0 g(o)do = 5 +f0 g9(o) do

Because of the hypothesis concerning g these orbits are, for |[y;ql, V2ol
sufficiently small, closed curves about the origin, symmetric with respect to
the y, axis, such as those shown in Figure 5.5. Therefore (see Lemma
5.3), every such solution of (5.9) is periodic, and we cannot hope to prove
more; for example, asymptotic stability of the zero solution.

S

2

Z N\
/)]
—

Figure 5.5
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e EXERCISES

5. Carry out a similar analysis for the case of the simple pendulum equation
6” 4 sin 8 = 0, written as the system

Y =W
y: = —sin y,

in the neighborhood of y, =y, =0.

() Qlatrh tha nhaoca narteait far [}
Laj IRivivldl Lilv Plidovw pJuluaall 1uvl IJ"I{

(b) Sketch the phase portrait for |y,|

—
(L

=
T A
<

2.

[REMARK. The reader should note that sin y, =y, -+ #{(y1) where h(y,) =
O(y:1?) as |yi| — 0, so that the system can be written in the almost linear form

y = Ay +1(y)

where

0 1 0
A=(-1 o)* f(Y):(h(yl))

however, since the eigenvalues of A4 are A= +i none of the theory of
Section 4.4 applies to this system. Thus Lyapunov’s second method can some-
times handle these most critical cases. The reader will benefit from a comparison
of the orbits sketched above to those of the linearized system y’ = Ay near the
origin. Notice that every orbit of the linear system is a circle. However, the
character of the orbits of the nonlinear system changes drastically. This is an
example of what we referred to in Section 4.1: a nonlinear system will exhibit
phenomena that a linear system cannot hope to achieve. For a more complete
discussion, see Sections 6.1, 6.2.]

6. In the system of Exercise 5 try to make a similar analysis for the critical
point y, = =, y, =0 and show that none of the theorems 5.1, 5.2, 5.3, 5.4 apply.
[Note: We shall see later, from the phase portrait that the interested reader can
make for himself by using the same V function as the one already employed,
that the critical point y, = m, y, = 0 is unstable, in fact a saddle point.] What
can you say about the critical point y; = #mr, y; = 0 where n 1S a positive integer?
[This problem is discussed in detail in Section 6.2.}

7. Show that the system in Exercise 3, Section 5.1, has the zero solution
yvi=z,=0 (i=1,2,3) stable. [Hint: Show that the total energy can be
used as a V function in Theorem 5.1, if one assumes that the potential energy
W (yi, ¥2, ¥a) is positive definite in some neighborhood of y; =y, =y =0.]

Example 4. Consider the system

’
Vi, = —V, — Va
J1 JL i

(5.12)

Yo=Yy, =y’
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and investigate the stability of y, =y, =0. Here we have no physical
motivation for trying any particular V function. In such cases we might try
a function such as V = y, %2 + y,2, which is obviously positive definite. The
question is, what 1s V'* with respect to this particular system? We have

V¥(y1s ¥2) = 291 (=y1 = y2) + 2¥5(yy — ¥5°) = =2y,% = 2p,*

and this is obviously negative definite. Thus we were very lucky (as the
next example will show, such is not always the case) and we can conclude
from Theorem 5.2 that y; = y, = 0 is an asymptotically stable solution of our
system. Notice that we have no information as yet about the region of

asymptotic stability. We will return to this problem later.

e EXERCISES

8. Write the system (5.12) in Example 4 in the almost linear form y’ = Ay
+ f(») and see if you can draw any conclusion about the solutiony, =y, =0by
using the appropriate theorem on almost linear systems.

9. Find the other critical points (if any) of the system (5.12). What conclu-
sions can you draw about their stability? Does this tell you anything about the
region of asymptotic stability of the zero solution of (5.12)?

Example 5. The Liénard Equation. Consider thescalarequation (Liénard’s
equation)

uw+u +gy=0 (5.13)

or, written as a system,

Vi =Yz

.

y2=—g(y1) — ¥z (514
where g satisfies the hypothesis of Example 3 (g is continuously differentiable
for |u] < k, k > Osome constant, ug (1) > 0, u # 0)—such a function is usually
called a nonlinear spring. Physically, under this assumption (5.13) might
represent the motion of a simple pendulum, with g{u) = sin #, which en-
counters air resistance proportional to the velocity (Section 1.1, p. 7); or
as another example, the motion of a mass-spring system (Section 1.1, p. 5)
in which the restoring force of the spring is now g(u) (rather than ku) and
where the air resistance is proportional to the velocity. As in Example 3, we
might quite naturally try * the total energy™ as a V function. Thus
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yz?' Y1
V(s y2) =2+ | gl) do (5.15)
0

would seem like a good candidate. Indeed, it is positive definite in the
region Q = {(y1, y))|Im| <k, |y,] < ©}. Now the derivative of V with
respect to (5.14) is

V¥, ¥2) = ya(—g(n) = ¥2) + gy, = —»,° (5.16)

Since V*(y;, ¥2) <0 in Q we can certainly conclude, by an application of
Theorem 5.1, that the zero solution of (5.14) is stable. But V' *(y,, y,) is not
negative definite in Q (note that V*(y,, y,) = 0 at all points (y,, 0), that is,
on the y, axis) and therefore we cannot invoke Theorem 5.2 to conclude that
the zero solution of (5.14) is asymptotically stable. Yet we certainly expect
that this is the case; for, if g(x) is linear (g(x) = bx, b > 0) or almost linear,
we can establish this fact by an easy application of Theorems 4.1 (p. 151)
and 4.3 (p. 161), respectively, but notice that we cannot infer this behavior
here, even in simple cases, by using Lyapunov’s theorems and V of (5.15).

e EXERCISE

10. If g(x) is linear or almost linear (g(x) = bx + o(|x|), as |x| =0, b > 0)
show that the zero solution of (5.14) is asymptotically stable.

We recall that because we can apply Theorem 5.1 in both Example 3 and
Example 5 to deduce the stability of the zero solution, we establish auto-
matically the existence on 0 < ¢ < oo and the boundedness of those solu-
tions (¢, ¢,) for which |¢,(0)] and |$,(0)| are sufficiently smalil (see the
definition of stability, Section 4.2, p. 146).

Example 6. We shall now show how the J function (5.15) constructed for
the Liénard equation in Example 5 can be modified in order that asymptotic
stability of the zero solution can be deduced directly from the Lyapunov
method, even if g{x) is not necessarily almost linear, but does satisfy the key
hypothesis ug(u) > 0 (u # 0). In Section 5.4 we will obtain this asymptotic
stability by a different approach. Consider the function

2
y Y1
Uy y2) ==+ By + | 9(0) do =V (yi y2) + Ba(yo)ys

(5.17)
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where (v, y,) is in the region Q = {(y;, y,)|lyi| <k, [y,] < 0}, and where
is a small positive number to be determined by several requirements. The
first of these is that U(y,, y,) should be positive definite. The motivation is
very simple: if U is a quadratic form, say ay,? + by,y, + cy,?, then we can
certainly choose real numbers a, b, ¢ so that ay,? + by, y, + cy,? is positive
definite. Here we try to do the analogous thing and we can expect to be
successful because g(y,) has the sign of y,.

We recall the obvious inequality for real numbers 4, B: 2|AB| < A* + B?,

and, more generally, for any y > 0, letting 4 = u/\/ )—z B =\/ ;m, we have

2
2uv| € — + y? (5.18)
Y

Thus from (5.17) and (5.18) with y = 1 we have
Uy, y2) = V(yi, v2) — l—; {8°(n1) + y2%}
2 Y1 ﬁ 3
= i1 = pya* + [_g(6) do =5 g(0) (5.19)

for (yy, y,) in the region Q. Now consider

2 r
tim Y ) _ lim 29(y1)g'(y1)

o = 29'(0)
yi=0 f g(o.) do. 10 g(yl)

(by I'Hospital’s rule). Since g is continuously differentiable this limit exists.
Since og(0) > 0 for ¢ # 0 we have [} g(o) do >0 for 0 <|y,| <k. There-
fore, there exists a constant C > 0 (where C depends on the constant k) such
that

rd LY Fal [‘yl 4 . |
g°(y1)<C | glo)do

—
]
x-«
IA
IA
x-
—
—

4
where k, is any positive constant less than k. Note that the ratio

g*(ry)
"“g(a) do
‘0

is obviously positive for 0 < |y,| < k.
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Substituting this in (5.19), we obtain the inequality

CB\
Vw2 i =gyt +(1-F)[[awds s

Thus if we choose 0 < § < min (1, 2/C), we have U(y,, ¥,) positive definite
for ~ky <y, <ky, [yal < 0.
Let us now compute the derivative U*(y,, y,) with respect to the system

(5.14) and see if we can also choose f§ to make U*(y,, y,) negative definite.
Starting with (5.17) we have

U*(y1, y2) = yao(—g9(y1) — y2) + ﬁgf(h)hz
+ Ba(yIL—9g(1) — y21 + 90y )y
= —3,2 + Bg'(r)y2° = Ba(y)y> — Ba*(»y)

Therefore, using (5.18), we have

B (g (y1)

~Ut(yy, y2) 2 ¥2° = Bg' )y’ — AN + 9y ) + Bg*(yy)

Welet M = max |g'(y)|, where 0 < k; < k, and we obtain
ki <y <k

— Ut 2 2|1 = B+ 2|+ 61 -ly)g Go (521

Now choose y sufficiently large, in particular y = | will do, so that (1 —
1/2y) > 0. Now choose f sufficiently small so that 0 < f < 1/(M + y/2);
then U*(y,, y,) is negative definite. Recall that we have already chosen f
small enough so that 0 < § < min (1, 2/C); this can certainly be done. Thus
(5.20) and (5.21) show that the function U(y,, y,) defined by (5.17) is positive
definite and has U*(y,, y,) (with respect to the system (5.14)) negative definite
for —k, <y, <k, |y,] < o0, where k, is any constant satisfying 0 < k; < k.
Therefore by Lyapunov’s theorem (Theorem 5.2) the zero solution is asymp-
totically stable.

¢ EXERCISES

11. Discuss, by the above method, the stability of the zero solution of the equa-
tion u”"+ au’ + bu+ u*=0, where a>0,b>0 are given fixed constants.
[Hint: Note that g(u) = bu + u?, b >0 and show that for || sufficiently small,
ug(u) > 0 (u £ 0).]
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12. Discuss, by the above method, the stability of the zero solution of the
Liénard equation

u’ + h(u, ' + gluy =20

where g(u) is as in Example 5 and 2(u, u’), which can be thought of as representing
damping of a mechanical or electrical system that depends on the displacement
and velocity, is continuously differentiable and satisfies

h(u, v) >0 for all (u, v} s (0, 0) that satisfy (|u], |v] <k, < k)

that is, the damping is positive definite. [Hint: Use the same V function as in
Example § and modify it in the same way.]

We shall return to Examples 5 and 6 in Sections 5.4, 5.5, and 6.3. For the
moment the important point this example shows is that when a particular V
function only permits us to conclude stability, it can sometimes be modified
in such a way as to give asymptotic stability.

We close this section with a trivial example of instability.

Example 7. Consider the scalar equation #' = u?, which has zero as a
solution. By direct integration we can show that the zero solution is not
stable. We can also see it by using the V function V(u) = u?, which is cer-
tainly positive definite for — o0 < u < 0o and for which V*(u) = 2u(u®) = 2u*
is also positive definite. Therefore the conclusion follows from Theorem 5.3.

5.3 Proofs of Lyapunov’s Theorems

We normally employ the notation (1, t,, ¥o) to denote the solution of
(5.6) satisfying the initial condition §(ty, t,, ¥o) = Yo ; however, (5.6) is
autonomous and therefore it is no loss of generality to suppose that ¢, =0
(the system is invariant under translation of time), and we shall simply write
&(t) for the solution that satisfies the initial condition ¢(0) =y, .

Proof of Theorem 5.1. By positive definiteness of ¥ on Q, there exists a
sphere of radius r > 0, contained in the region Q center at the origin of the
phase plane, such that

Ky)>0(y#0, 1yl <r) and V¥y)<O0(ly} <r)
(Because of the easy geometric interpretation we employ the Euclidean norm

| ; the proof is unchanged if we use the norm | |.) Let y, #0, ||y,ll <7,
be given. Consider the solution ¢(¢) of (5.6), with ¢(0) =y,. By local
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existence (Theorem 3.3, p. 123) this solution exists on 0 < ¢ < t,, for some
t; > 0, and can be continued to the right (Theorem 3.6, p. 132) certainly for
as long as ||¢p(r)|| < r. Suppose that [0, #,) is the largest interval of existence
of the solution ¢(¢) that can be achieved by continuation. Then either
Aty =4+wor(i)0<t < +00. We will show that for ||y,]| chosen small
enough, (ii) cannot arise.

By (5.8) we know that

d
S V@)=V @) <0,  (0<t<t)

and by integration

V@)~ V(o) = [ V*(@(s) ds <0

Therefore,
0 < V(1)) < V(yy) O<t<t) (5.22)

where the inequality on the left follows from the assumption y, # 0 (which
implies, by uniqueness of solution of (5.6), that ¢(¢) # 0). Let ¢>0 be
given with 0 < ¢ < r and let .S be the closed set between the spheres of radius
¢ and radius r; that is, § = {y | e < |yl €r}. Then by continuity of V and the

fact that S is closed, u = min V(y) exists and is strictly positive (it is in fact
ye§
assumed for some point y in S). Since lim V(y) =0, we can choose a
-0

y
number J, 0 < § < u such that for ||yo|| <93, V(yo) < #. Then according to
(5.22) the solution ¢(t), §(0) =y,, llyol| < 0 satisfies

0< V() < Vy)<u for0<r<t (5.23)

By the definition of u as the minimum value this implies |¢(¢)| < ¢ for
0 <t <t,. But this then must mean that ¢, = + 0. For, if at some first
point ¢, > #, ||§p(?,)| = &, then for ¢ = ¢, we also have, from the definition of
p again and from (5.23),

p < V(1) < V(yo) <

which is absurd. Thus ¢, = + ¢ and corresponding to the given ¢ > Q we
have found a 6 > 0 such that |y,| < J implies |[¢p(?)]] <& for 0 <t < 0.
This completes the proof. |
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Proof of Theorem 5.2. By Theorem 5.1 the zero solution is stable. In
particular, for ¢ = r (see the above proof for notation), there exists a 6 > 0
such that all solutions ¢(z) of (5.6) with ¢(0) =y, and |ly,l < & exists on
0 <t < oo and satisfy

ot <r  (£20)

tion of ¢ which is bounded below. Therefore lim V(¢p(#)) exists. Sup-

t= 4+

We already know from Theorem 5.1 that V(d(¢)) is a nonincreasing func-

pose that for some 0 < 5 < r we could have
Vp(t)=n>0 forr=0 (5.24)

We will show that (5.24) is impossible. By continuity, for the above #, there
exists a 4 > 0,0 < & < r such that

0< V(y)<n whenever |yl <4 (5.25)

Therefore, the solutions ¢(z) for which (5.24) holds must satisfy {($(z)|| =
fort> 0. LetS be the set of y lying between the spheres of radius§ and r,
that is, § ={y|0<d < |ly] <r}. Consider the function —~¥*(y) on the
closed bounded set S. By hypothesis on fand V, — V' *(y) (defined by (5.7))
is continuous and positive definite. Let

p = min (—V*(y))> 0
YeS§S
Since 0 is not a point of S we have (using also (5.8))

d
- V@W) = V@), (1>0)

Integrating, we obtain V((2)) < V(y,) — ut for t > 0. But then clearly
for ¢ large enough V{(¢(¢)) is negative, which is an obvious contradiction.
Thus (5.24) is impossible and we must have lim V(§(¢)) = 0, which implies

= oo
lim () = 0. Since this holds for every solution ¢(t) with |ly,| <, this
[ - o]

completes the proof, |

Proof of Theorem 5.3. Suppose that V*(y) is positive definite in Q, and let
lyll <r be a sphere of radius r properly contained in Q for some r >0,
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Then V(y), being continuous in £, is bounded on every closed bounded sub-
set of Q and in particular there exists a constant M > 0 such that |V(y)| < M
for ||yl <r. For any solution ¢(¢) of (5.6) V* positive definite implies
V(1)) — V(9(0)) =[5V *(d(s)) ds > 0, so that ¥ (d(1)) > V(d(0)) for ¢ > 0.
By hypothesis there exists a point a # 0, ||a|| < r such that V(a) > 0. Let ¢z,
a) be that solution of (5.6) which satisfies the initial condition ¢(0, a) = a. Since
V(y) is continuous on () and V(0) = 0, there exists a § > 0 such that |V(y)| <
V(a) for |ly]l < 8. By the existence theory of Chapter 3 the solution &b(t, a) exists
on some interval [0, ¢,), where we assume—if it exists—that ¢, is the first point at
which ||b(#,, @)l = r; if no such ¢, exists, let#, = + . We show that #, = + o
is not possible. Consider the solution &(¢, a) on the interval [0, ¢,). Since V(d(t,
a)) = V(a) > 0, V(d(z, a)) is nondecreasing on 0 =< ¢ < ¢,. But |ly]| < & implies
IV(y)| < V(a) and, therefore, we must also have ||p(z, a)]| = & for 0 < ¢ < t.
Define '

p= min V¥y)

0<ds|yilsr

Since V* is continuous on the closed region between the two concentric
spheres, this minimum exists and is assumed at some point ¢,0 < d <
I#l <r, and since V* is positive definite, u> 0. We therefore have
V¥ p(t,a) =2 u>0for 0<t<t,. Thus V(d(r, a)) = V(a) + ut and there-
fore also lim V((t,a)) = +o0. Since, however, |V (y)| < M for |y|| <,

=+ ow

there must exist a first #;, 0 <, < o0, such that |[§(¢,, a)]| =r. Therefore,
no matter how small |laj| > 0 is taken, the solution ¢(z, a) will reach the boundary
llyll = r at some finite #+ = ¢, and the zero solution cannot be stable. |

We omit the proof of Theorem 5.4.

¢ EXERCISE
1. Prove Theorem 5.4. [Hint: Study the proof of Theorem 5.3.]

5.4 Invariant Sets and Stability

The Liénard equation, Example 5, Section 5.2 (p. 201) provides us with an
example of a V function to which Lyapunov’s original result (Theorem 5.2)
cannot be applied to deduce asymptotic stability of the zero solution. Al-
though it was possible to modify the V function for the Liénard equation
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(Example 6, p. 202, and Exercises 11, 12, p. 204) in such a way that Theorem
5.2 could be applied to the modification, this modification, particularly in
more complicated problems, can be technically quite tedious and may even be
impossible. Our object now is to show that in many cases we can still con-
clude asymptotic stability with the original Lyapunov V function (certainly at
least as far as Example 5, Section 5.2, is concerned).

The motivation for the present generalization is again found in the Liénard
equation. Take the equation (5.13), written as the system

Yi=1V2

, 5.14
ya=—9g()— ¥z (>:14)
and consider the original positive definite V function (5.15), which represents
the “total energy” of a moving particle obeying the law (5.13), where
g(p,) satisfies the hypothesis stated in Example 2, Section 5.2. Then the
derivative of ¥ with respect to (5.14) is

V¥, ¥2) = ~»,° (3.16)

and thus V*(y,,0)=0 even if y, #0; V*(y,, y,) is negative everywhere
except on the y; axis. It is clear intuitively that every solution, except
possibly those that start on the y, axis, must approach the origin, provided, of
course, they start close enough to the origin. This can be established rigor-
ously by an argument paralleling the proof of Theorem 5.2. It is also clear
by looking at (5.14) (see Figure 5.6) that if a solution starts on the y, axis,
close to the origin, but not at the origin, then because at such a point y, =
—~g(y;) # 0, this solution cannot stay on the y, axis and thus moves away
(note also that y, =0, y; # 0 is not a solution of (5.14)). But as soon as it
moves away from the y, axis it is *“ captured” (because V*(yy, ;) = —y,%)
and is ““ pulled in”’ toward the origin; of course, in the process of approaching
the origin it may cross the y, axis infinitely often. We will see that the
asymptotic stability of the zero solution of (5.14) can also be deduced from a
general principle that for the particular system (5.14) uses the ¥ function
(5.15) and the expression (5.16) and the concept of invariant set, which we will
now introduce. We will make use of this concept to analyze the set of points
y for which V*(y) = 0 (for the system (5.14) this was the set of all points on
the y, axis).
We consider the autonomous system

y =1(y) (5.6)
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Y2

/typical semiorbit C*

Figure 5.6

where f(y) and of/dy; (j=1,2,...,n) are continuous in the n-dimensional
space £,. We remind the reader that this means that every solution can be
continued for as long as it remains bounded (see Corollary to Theorem 3.6,
p. 133).

Definition 1. A set I of points in E, is (positively) invariant with respect to
the system (5.6) if every solution of (5.6) starting in I" remains in T for all future
time *

Geometrically (see Section 5.2) we denote by C ¥ the positive semiorbit
associated with a solution ¢ of (5.6). If po = §(t,) is a point of the set I" and
if T is invariant with respect to (5.6), then the semiorbit C* through p, lies
inforall t 2¢,(C* =T). For example, for the system (5.14) the origin
vy =y, =0 is clearly an invariant set. (Explain!) Similarly, each curve in
Figure 5.5 (Section 5.2} is an invariant set of the system (5.9) if g(y,) satisfies
the hypothesis of Example 2, Section 5.2, (Explain!) Naturally, much more
complicated possibilities can arise. For example, let ¥ be any continuously

* In what follows we will use the term invariant set in place of positively invariant set.
We remark that the name invariant set is sometimes reserved for a set invariant both as
t— +oo and as t - —o0; see [16, p. 58].
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differentiable function (¥ not necessarily positive definite) such that V*(y) <
0. Let S, be the set of all points of R, that satisfy the inequality V(y) < k.
(This can be a very complicated set with several different components even for
n = 2; see, for example, Figure 5.3.) We use the notation S, = {y| V(y) < k}.
However, for every k the set S,, in fact, each of its components, is an invariant
set with respect to the system (5.6). For, if y, € S, and if ¢(t, y,) is the solu-
tion of (5.6) through the point y,, then d/dt [V(d(z, yo))1 = V*(d(t, y,), and
therefore d/dtr [Vi(g(t, ¥))] < 0, so that V(d(z, ¥o)) < V(¥,). Since y, € S,
V(d(t, yo)) < k for all ¢, and thus ¢ (¢, yo)eS; for all ¢ > 0, which shows that
S, is invariant. However, if y, is in one component of S, , &(f, y,) necessarily
remains in the same component of S, for all # > 0. Thus each component
of S, is an invariant set. We remark also that because no conditions are
imposed on the set S, the solution ¢ that lies in S, can, of course, become
infinite whenever any component of the set S, is unbounded. We remark
further that if, however, F(y) is positive definite, the set .S; must have at least
one component H, that for sufficiently small k > O contains the origin; more-
over, this component H, shrinks to the origin as k — 0 (see Figure 5.3). But
since H, is an invariant set, every solution starting in H, stays in H, for k
small enough, and this, incidentally, gives us another proof of Theorem 5.1.

Now when, for example, the hypothesis of this simple stability theorem
(Theorem 5.1) is satisfied, solutions starting near the origin may, but do not
necessarily, approach zero. To analyze what happens to these solutions we
need another concept,

Let ¢ be a solution of (5.6) and let C ™ be its positive semiorbit.

Definition 2. A point p in E, is said to lie in the positive limit set L(C*)
(or is said to be a limit point of the orbit C *) of the solution &(¢) if and only if
there exists a sequence {t,} — + o0 as n — o0 such that lim ¢(¢,) = p.

n— oo

Thus L(C *) is the set of all limit points (accumulation points) of the orbit
C*. For example, the origin is the positive limit set (that is, L(C*) =
(0, 0)) of the semiorbit C* shown in Figure 5.6 spiraling toward the origin.
Every critical point p of (5.6) is the limit set L(C *) of the semiorbit C'*
through p. (Why?) Referring to Figure 5.5, Section 5.2, we see that every
orbit C* of the system (5.9) has the property that L(C 7) = C*. (Explain
carefully!) Again, in general, the positive limit sets of positive semiorbits
can be very complicated. We shall see how, using positive limit sets and
invariant sets, we can make qualitative statements about solutions of general
autonomous systems such as (5.6). Positive limit sets have a number of
interesting geometric properties of which we state only those essential for our
development. Let ¢(7, y,) be the solution of (5.6) satisfying the initial con-
dition §(0, yo) = ¥yo, Where y, is a point of E,, and let C* be the positive
semiorbit of ¢(z, y,).

Ed s £
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Lemma 5.4, If the solution ¢(t,y,) is bounded for 0 <t < oo (that is, if
there exists a constant M such that [|§(t, yo)| < M for 0 <t < ), then its
positive limit set L(C ™) is a nonempty invariant set (with respect to (5.6)).
Moreover, the solution ¢(t, ¥,) approaches the set L(C*) as t - + oo (in the
sense that for each ¢ > 0 there exists a T > 0 such that for every r > T there
exists a point p in L(C ") (possibly depending on f) such that |§(¢, y,) —
pll < ¢; that is, for ¢ sufficiently large the semiorbit of the solution ¢(¢, y,) lies
arbitrarily close to points of L(C *)).

Proof. Since ¢(t, y,) is bounded, its orbit C™ lies in the interior of some
closed sphere S, of sufficiently large radius. Consider the sequence of
points {¢(n, yo)} (n=1,2,...); this is an infinite sequence such that
id(n, yo)ll is bounded. Hence there is a subsequence that converges to a
point p of the closed sphere S,,. By definition p is in L{(C*) and thus L(C™)
is nonempty. Note that we have also shown that L(C¥) is contained in S, .
(Why D

To show that L(C") is an invariant set, let pe L(C"). Then by definition
there exists a sequence {#,} — + oo as n — oo such that ¢(¢,, yo) = pas»n — oo.
Consider the solution ¢(¢, p). By continuous dependence of solutions on
their initial values (Theorem 3.7, p. 135) we have for any # > 0

lim (b(ts d)(tn » y())) = d)(ta p)

n=x0

We must show that ¢(z, p) is a point of L(C*). But obviously

(b(ts ¢(tn H] yO)) = ¢(t + tn ’ yO)

and therefore

¢(I: p) = lim ¢(t + 1, YO)

n— 0

is a point of L(C™).*

To show that ¢(z, y,) approaches L(C*) as r — o0, suppose this is false.
Then there exists ¢ > 0 and a sequence t, — o0 such that {|{¢(z,, yo) — pll = ¢
for all p in L(C*); that is, there is a sequence of points ¢(r,, ¥o) that remain

* We have actually proved more. Namely, the relation lim &(r, (1., yo)) = &1, p)

is true for every . It follows that &(r, p) is a point of L(C *) for every ¢, and thus the
full orbit through p is contained in L{(C*). This shows that L(C *} is invariant in both
directions.
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at a positive distance from L(C*). But the solution ¢(¢, y,) is bounded;
therefore the sequence {{(?,, ¥o)} % has a subsequence {{(7,, , ¥o)}i= that
converges to some point p which must be in L{C™*) by the definition of L(C*);
this is a contradiction. |

Suppose now that ¢(¢, y,) is a bounded solution of (5.6) whose orbit C*
can be shown by some method to lie in some set Q = R", where { contains
the origin. Suppose that we have found some scalar function V(y) that is
continuously differentiable in Q and for which the derivative with respect to
(5.6) V* < 0 (V may or may not be positive definite; it need not even be non-
negative). We now want to describe the behavior of the scalar function V
on the limit set L(C ™) of solutions ¢(¢, ¥,)-

Lemma 5.5, Let V be continuously differentiable in a set Q containing the
origin and let V*(y) <0 at all points of Q. Let yoe Q and let ¢(t,y,) be a
bounded solution of (5.6) whose positive semiorbit C* lies in Q for all t > 0 and

let the positive limit set L(C*) of (1, yo) lie in Q.  Then V*(y) = 0 at all points
of L(C*).

Proof. Lety,, y, be two points of L(C*). Then there exist sequences
{t,}, {s,} = o0 as n— oo such that

lim (b(tn ’ YO) =Y hm (b(sn 3 yO) =Y.

n=ro n—*cC

Since d/dt [V(d(¢, ¥o))] = V¥ (s, ¥,)) <0, V(d(t,y,)) is a nonincreasing
function of ¢t and V(¢(t, yo)) is bounded below (V is continuous and {¢} is
bounded; note that if V is nonnegative, it is automatically bounded below,
but for the lemma this is unnecessary). Thus V(¢(¢, y,)) has a limit as ¢ — co.
Let this limit be A. Then

A=limV[d(t,, Yo)1 = lim V[d(s,, ¥o)]

n—r o n=wx

and so by continuity of V on Q, V(y;) = V(y,) = A; that is, V(y)= A4 on
L(C™"). But by Lemma 5.4, L(C*) is a positively invariant set: if y e L(C™),
o1, y) e L(C*) for all t > 0, where ¢(0, y) =y. But now for eachy e L{(C™)

dA

d
VAy) = V¥ (0, y) = 7 [V (d(t, ¥D]i=0 = = =0

and this completes the proof. §
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We can now state a general principle on behavior of solutions of (5.6).
As corollaries we obtain some useful stability results. As has been our
practice throughout, we do not attempt to state the most general results
known to date. In fact, any more general result than Theorem 5.5 is prob-
ably considerably more complicated.

Theorem 5.5. Let V(y) be a nonnegative scalar function defined on some set
Q < R, containing the origin. Let V be continuously differentiable on Q, let
V*(y) < 0 at all points of Q, and let V(0) = 0. For some real constant A >0
let C; be the component of the set S, = {y| V(y) < A} which contains the origin.
Suppose that C, is a closed bounded subset of Q. Let E be the subset of Q defined
by E={y| V*(y) = 0}. Let M be the largest positively invariant subset of E
(with respect to (5.6)). Then every solution of (5.6) starting in C, at t =0
approaches the set M as t - + o0, ‘

Proof. Llety,e C, and let ¢(t, yo) be the solution of (5.6) satisfying the
initial condition ¢(0,y,)=y,. Then by (5.8) and the hypothesis
didt [V(t, (1, Yo))1 = V*(§(t, ¥,)) <0 and so V(t, ¢(t,y,)) is a decreasing
function of . Therefore ¢(¢, y,) remains in C, for all 1> 0. Since C, is
closed and bounded, the positive limit set L(C ™) of the solution ¢(t, y,) also
liesinC;. ByLlemma 5.5, V*(y) = 0 at all points y of L(C ") and so by defini-
tion L{C*) is contained in E. Since L(C*) is an invariant set, Lemma 5.4
insures that L{(C*) is contained in M and also that ¢(t, y,) tends to L(C™)
(and hence to M) as t - + . This completes the proof. |

The problem that motivated the above considerations becomes a very
special case of the following result, which in turn follows immediately from
Theorem 3.5.

Corollary 1. For the systemy' = £(y), let there exist a positive definite, con-
tinuously differentiable scalar function V on some set Q in E, (containing the
origin) and let V¥*(y) < 0 at all points of Q. Let the origin be the only invariant
subset (with respect to (5.6)) of the set E= {y|V*(y)=0}. Then the zero

solution of (5.6) is asymptotically stable.

e EXERCISE
1. Prove Corollary 1. [Hint: First apply Theorem 5.1, then Theorem 5.5.]
Example 1. Returning to the Liénard equation written as the system

(5.14), with g satisfying the hypothesis in Example 2, Section 5.2, we use the
V function (5.15) having V*(y;, y,) = —y,%, so that V*(y,,0) =0, even
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though y, # 0. The set E is therefore the y, axis. However, as already
shown at the beginning of this section, the origin is the only invariant subset
of E. Thus by Corollary 1 the zero solution is asymptotically stable. The
reader should compare this easy proof to the tedious one in Examples 5 and 6,
Section 5.2, which proves the same result.

¢ EXERCISE

2. Prove the above result for the equation u” -+ f(uu’ + g{u) =0 where
JS@) >0 for u+#0 and ug(u) > 0 for u+ 0.

If by some method (one such method will be given in the next section) we
can show that all solutions of (5.6) remain bounded as ¢ — co, then the follow-
ing result concerning bounded solutions of (5.6) is useful.

Coroliary 2. Let V(y) be a nonnegative continuousiy differentiable function
such that V*(y) <0 for all y in E, and let V(0) = 0. Let E be the set in E, defined
by E= {y|V*(y) = 0}. Let M be the largest invariant subset of E. Then all
bounded solutions of (5.6) approach the set M as t - + 0.

¢ EXERCISE
3. Prove Coroliary 2.

5.5 The Extent of Asymptotic Stability—Global Asymptotic Stability

None of the results up to now, with the exception of Theorem 5.5, has given
any indication of the size of the region of asymptotic stability. However,
as previously indicated, this is perhaps the most important practical question.
Let Q be an open set in E, containing the origin. Let there exist a positive
definite scalar function ¥(y) which, with respect to

y =1(y) (5.6)

has V*(y) <0 in Q. Let the origin be the only invariant subset of the set
E={y|V*(y)=0}. Looking at Corollary 1 to Theorem 3.5, we might be
led to the conjecture that the set  is contained in the region of asymptotic
stability of the zero solution of (5.6). However, this set is in general too large
and the conjecture is false, even if Q is a bounded set, for the following reason.
We consider again the set C,, the component of §; = {y| ¥(y) < 4} containing
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the origin, for A > 0. For A =0 we get the origin. When n = 2 (see Figure
5.7), for small 4 > 0 we get closed bounded regions containing the origin and
contained in Q. But this can fail to be true when 4 becomes too large. In
this case (see Figure 5.7) the sets C; can extend outside € (and they may even

A< Ay <A <4,

Figure 5.7

be unbounded); of course, the difficulty is that for such 4, C; contain points
at which ¥V*(y) <0 need not hold. However, from Theorem 5.5 we can at
least say that every closed bounded region C; contained in Q lies in the region
of asymptotic stability, and this is considerably better than anything we have
been able to say up to now. We can compute the largest A =4, so that
C; has this property, as the largest value of A for which the component of
S; = {y| ¥(y) = 4} containing the origin actually meets the boundary of .
We can also say, even when Q is unbounded, that all those sets C, that are
completely contained in Q are positively invariant sets with respect to (5.6).
Therefore a solution of (5.6) starting in C; at t = 0 is bounded, and thus tends
to the origin by Corollary 2 of Theorem 5.5. This shows that such a set C;
must be contained in the region of asymptotic stability. In fact we can
certainly say: The region of asymptotic stability is at least as large as the
largest invariant set contained in Q. In particular, the interior of C, is con-
tained in the region of asymptotic stability. We shall now illustrate these
ideas by actual examples.
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Example 1. Consider the scalar equation
W+u +u+ut=0 (5.26)
which, written as a system, is

Yi=12 ,
, 5.27
.V2=_.V1“.V12“‘.V2 ( )

There are two critical points (—1, 0) and (0, 0), and by using the linear ap-
proximation and Theorems 4.3 (p. 161) and 4.6 (p. 171), we see that the first
is unstable and the second is asymptotically stable. However, we know
nothing about the region of asymptotic stability, except for the obvious
remark that (—1, 0) cannot be in it.

o EXERCISE

1. Show that the zero solution is asymptotically stable by using Corollary 1,
Theorem 5.5, exactly as in Example 1, Section 5.4.

Our problem is to estimate the region of asymptotic stability. We note
that (5.26) is a Liénard equation with g(u) = u + u?; we try (see (5.15)) the
V function

Vre, y2) = v + 4v0 + 1,7 (5.28)

This function is positive definite on the set Q@ = {(y,, y,) | y22 > —»% — $y,3}
together with the origin and sketched in Figure 5.8.

We have V*(yy, 5) = pi¥2 + 11202 — 27 = Wi¥z — i’y = — 5% so that
V*(y,, y,) < 0 on the whole plane, in particular, on Q. To apply Theorem
5.5 and our discussion above on extent of asymptotic stability, we look at
the subset E of Q given by £ = {(y, y,) € Q| V*(yy, ¥,) = 0}. This is clearly
the portion of the y, axis with y, > —3. Notice that E contains both of the
critical points (— I, 0) and (0, 0) and these are both invariant subsets of E.
By examining the system (5.27) on the y, axis, that is, the system (5.27) with
¥, =0, namely

’

yi=20
' 5.29
Y2= —yY1 =V, ( )
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Y2
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Figure 5.8

we see that the points (—1, 0), (0, 0) are the only invariant subsets of E, be-
cause at all other points of E, y, # 0. Clearly Q cannot be the region of
asymptotic stability. Define Q;, = Q —(—1,0), that is, Q with the point
(—1,0) deleted. Then, at least, the origin is the only invariant subset of
that part of E which lies in ©,. The boundary of Q, consists of the curve

2 - 2 _ 2y 3 and the noint (—1.0) We now look at the reciong
\ A L] U’. Y W RIS XYY AN/ AN LS 24 Al B W 1 v&l\.}llu

Jz T T 31 auau Pt

C,={(1, )| V(yy, y;) £ A} that lie in Q,. A little consideration shows
that the curve FV(y,,y;) = ¥(—1,0) passes through the boundary point
(—1,0) of Q, and is the closed curve shown in Figure 5.8. Since V(—1,0) =
} — 4 =1, the value 1 in our discussion on extent of asymptotic stability is
4 =1 and the boundary curve is given by ¥(y,, ¥,) =1. Thus the region of

asymptotic stability certainly includes the bounded set

OF = {(y, )V (v, 2) <3 = {0nL ) ri>— L3y + 3’ + 2y < 1
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However, it is almost certainly a larger set than Q*. Notice that we cannot
hope to enlarge our estimate by enlarging Q¥ in such a way that the point
(=1, 0) would be included. But consider the region Q**, which is Q* to-
gether with the interior of the rectangle whose vertices are (0, 0) (—1,0),
(=1, ./3/3),(0,/3/3), as shown in Figure 5.9. If we can show that no solu-
tion can leave Q** across the left and top edge of the rectangle, we will have

Figure 5.9

that Q** is contained in the region of asymptotic stability. On the left edge,
yr=-=1land 0<y, < \/3/3. Then from (5.27) yi =y,=20 and Yy, =

function —y, — y;? assumes its maximum value at the point y; = —} and from
(5.27) we have y\ = \/3]3>0,ph = =y, ~y, —»> < — /33 - +} <.
Thus no solution starting in Q** can leave through the edge y, = —1 orthe

edge y, = w/3/3 and this shows the desired property of Q**. Other refine-
ments are possible. The actual region of asymptotic stability is shown in
Figure 5.10. Here the origin is a spiral point and (—~ I, 0) a saddle point.

¢ EXERCISE

2. Discuss the scalar equation «” + av’ + b+ u?> =0; a >0, b > 0 are given
constants. Determine an estimate for the region of asymptotic stability of the
zero solution,

Example 2. Consider the Liénard equation

u" + G’ + gluy =0 (5.30)
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Figure 5.10

where g(0) =0, ug(u) >0 (u+# 0) for —o0 <u < oo and for some a > 0,
uF(u) > 0 for 0 < ju| < a, where F(u) =\|¢ f(o) do with f and g continuously
differentiable. It is easily shown by the method already employed (Corollary
1, Theorem 5.5) that the zero solution is asymptotically stable. Again, the
problem is to determine the region of asymptotic stability. Here we employ
a different equivalent system, namely

yi=y.—F(y)

5.31
-g(yy) ( )

et
™
i

where F(3,) = [¥' f(0) do.
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¢ EXERCISE

3. Show that (5.30) and (5.31) are equivalent. [Hint: Put y, =u,y, =
u' + F(u).]

Define G(y,) =% g(¢) do and try the V function

[ )
+
%)
—
A
-
Lh
W
[\ ]
N’

which is positive definite in the whole plane. Now V*(y,, y,) = y,( —g(y,))

+ g2 — F(y)) = —g(»)F(»), and since by hypothesis g(y,) has the
sign of y;, we have immediately that F*(y,, y;) <0 on the strip

Q={(y;, y)| —a<y <a, —0 <y, <0}

(see Figure 5.11).

1

Figure 5.11

¢ EXERCISE

4. Show VF*(),, ¥2) <0 on Q, considering the cases 0 <y, <a and —a <
»1 < 0 separately.



222 5 Lyapunov’s Second Method

Therefore, by Exercise 4, the origin is stable, and from V*(y,y,)=
—g(¥,}YF(y,) we see that the set £ of Theorem 5.5 is the y, axis:

E={(y;,y2)1y1 =0}

But, since for (y,, y,) in E

Yi= 2
y; =10

we see that the origin is the only invariant subset of E and thus the origin is
(Corollary 1, Theorem 5.5) asymptotically stable.

We now wish to consider the curves V(y, y;) = 4 for —a <y, < a with
increasing values of 1 beginning with 2 =0. These are closed curves
symmetric about the y; axis. For —a <y, <0, G(y,) decreases and for
0 <y, <a, G(y,) increases. Thus the curve ¥(y,, y,) = /4 first makes contact
with the boundary of Q at one of the points (—a, 0) or (a,0). The best
value of 4 is 4 = min (G(a), G(—a)) and C; = {(y;, ¥} Ly,2 + G(») < i}.
Hence, directly from Theorem 5.5, every solution starting in C;. approaches
the origin (see Figure 5.11).

¢ EXERCISE
5. For the (Van der Pol) equation of nonlinear circuit theory
W +e(l —uhu'+u=0 ¢ >0 a constant

use the method of Example 2 to determine an estimate of the region of asymp-
totic stability in the phase plane. {Answer: y,% + y,? < 3.]

[voTE. It will be shown in Chapter 6 that the Van der Pol equation has a
periodic solution (limit cycle) in the form of a closed curve in the phase plane
containing the origin. What you have shown here is that this periodic solution
lies outside the region you have determined. This is of considerable practical
importance. Notice also that the term f(u) is not positive on the entire interval
—a < u < a{a=1in the above example); but the term F(u)g(u) = e(u — u>/3)u is
certainly positive for 0 < |u| <\/ 3. This is the point of the above technique and
the reason why the equivalent system of the form (5.31) is employed!}

6. Another and more usual form of the Van der Pol equation is
@ v +e—Dv+v=0 ¢ > 0 a constant

Show that the identically zero solution is unstable. [Hinz: (2) Show that the

chanee of variable + = —r transformes (%) ta the eauation
change of variable 1 Ftranstorms (%) to the equation

d*u

(**) =+ &(l Uuz)ﬁlJru:O
dr dr
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where u(r) = v(—7), which is the equation of Exercise 5. Thus to study the
behavior of solutions of (*) as t — + o0 is the same as studying that of (*¥) as
T—> — 00,

(b) Alternatively, use the equivalent system (5.31) for (*) and the energy
function (5.32) to find

¥y
V*(y., y2) = &y (1 — %)

from which the result follows directly.]

In many problems, in control theory or nuclear reactor dynamics, for
example, in which the zero solution of (5.6) is known to be asymptotically
stable, it is important to determine whether all solutions, no matter what
their initial values may be, approach the origin. In other words, we wish to
determine whether the region of asymptotic stability is the whole space E,.
If this is the case, we say that the zero solution of (5.6) is g}ﬁuauy asymptotic-
ally stable. As we will see, everything depends on finding a *“ good enough ™’
V function. For, with enough hypothesis on the V function, it is very easy
to give a criterion for global asymptotic stability. We have already shown,
as a consequence of Corollary 1 and Corollary 2, Theorem 5.5, that if V(y)
is positive definite, if, with respect to (5.6), V*(y) <0, and if in the set E =
{y | ¥*(y) = 0} the origin is the only invariant subset, then the zero solution of
(5.6) is asymptotically stable (Corollary 1) and all bounded solutions of (5.6)
approach zero as ¢t — 4+ o0 (Corollary 2). Thus we only need to prove a
result that insures that all solutions of (5.6) are bounded. (The boundedness
of all solutions of a system is often called Lagrange stability.) Let the above
V function have the additional property

V(y)— oo as [yl-»o (5.33)

let y, be any point in R, and let §(z, y,) be the local solution of (5.6) through
yo existing for 0 < ¢ < t,. From (5.8) and the hypothesis we have, for as
long as ¢(z, y,) exists,

d
= [V@(t ¥0)] = V({1 ¥) <0

Therefore V(d(z, vo)) < V(y,) (a constant) and the hypothesis (5.33) implies
that [|d(%, yo)l is bounded by a constant that depends only on y, and not on
t;. Therefore, by the Coroliary to Theorem 3.6 (p. 133), the solution ¢ can
be continued for all ¢, 0 < ¢ < oo, and for all such ¢ the solution ¢ remains
bounded by this same constant. Since y, is arbitrary this shows that all
solutions of (5.6) are bounded. To summarize, we have proved the following
result.
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Theorem 5.6. Let there exist a scalar function V(y) such that:

(i) V(y) is positive definite on E, and V(y) = o as ||y} - o
(ii) with respect to (5.6), V*(y) <0on R,;
(iii) the origin is the only invariant subset of the set E = {y| V*(y) = 0}.

Then the zero solution of Yy’ =1(y) is globally asymptoticaily stable.
As an immediate consequence of Theorem 5.6, we have the following results.

Corollary 1. Let there exist a scalar Junction V(y) that satisfies (i) above
and that has V*(y) negative definite. Then the zero solution of y' = f(y) is
globally asymptotically stable.

Corollary 2. Ifonly (i) and (ii) of Theorem 5.6 are satisfied, then all solutions
of 'Y =1(y) are bounded for t > 0 (that is, (5.6) is Lagrange stable).

Example 3. Consider the Liénard equation u” + ' + g(u) = 0 where we
assume g(u) continuously differentiable for all # and

ug(u) >0 (u+#0) (5.34)

G(x) = J:g(a) do— oo  as|x| - o (5.35)

We assert that the zero solution is globally asymptotically stable.

Proof. The equivalent system is

= Y2

Yi
2= —g(y1) = y2

y

If we choose the familiar V function

V(¥1, y2) = 332 + G(yy)

then we have already shown, using it and Corollary 1, Theorem 5.5, that the
origin is asymptotically stable (see Example 1, Section 5.5). Since hypothesis
(i) of Theorem 5.6 is clearly fulfilled because of the requirement (5.35), the
result follows from Theorem 5.6. |}



5.5 Global Asymptotic Stability 225

¢ EXERCISES
7. What can you say about the solutions of
w4+ fau’ + gu) =0

where g() is as in Example 3 and f(«) is a continuously differentiable function
that satisfies the condition f(v) > 0 for all v # 0?
8. Use the method of Exercise 7 to obtain conditions under which the results of

FEvarnica 7 hald fAar tha minara canaral annntina
LLAVIWIAG F O HIUVIA TV LV LLIVI S Ebllyl ai U\-lu“‘-lull

u’' 4+ hu, u ' + g(u) =0
9. Replace condition (5.34) in Example 3 by the condition

G(x) :j g(e)doa >0 forall x #0
1)

[y, Ry

Z.
2,
<3
—
-1
(93
72}
=
[l
v
=}
-t
-
=
(¢
a
o)
ol
=]
=
o "
= ‘o
7]
| o
Q
=
“.
[=3
(1]
a
[=R
5.
m 2]
-
S
8.
72
[973
2]
-3 7]

it occasionally happens that it is somewhat difficult to find a ¥ function
that satisfies all three conditions of Theorem 5.6. In that case it can some-
times be useful to prove the boundedness of all solutions first, and separately
establish the proposition that all bounded solutions approach zero. To
illustrate this, consider the Liénard equation again, but under different assump-
tions. We now remove the requirement that G(v) = [§ g(¢) do — o, and
replace it by a stronger requirement on the damping.

Example 4. Consider the equation
u” + f(uu’ + gw)=20

where f, g are continuously differentiable functions for — o0 < v < o0, and
assume that

ug(u)>0  if(u #0) (5.36)
Sf(u)>0 if (u # 0) (5.37)
|F(u)|—» 00 as |u|— o where F(u) = Juf(a) do (5.38)

(Note that this is satisfied if f(«) = 1.) We claim that the zero solution js again
globally asymptotically stable.
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Writing the equation as the system

y
4

Y2

= —g(y)) = f(y)y2 (5.39)

’
1
’

2

we define the V function V(y,, y,) = G(y,) + 1y,® for which V*(y,y,) =
—f(y1)y;®. By the familiar argument we can deduce, from Corollary 2 to
Theorem 5.5, only that every bounded solution approaches zero; we cannot
use Theorem 5.6, because we cannot satisfy the hypothesis ¥(y) —» oo as
llyll = oo unless we know that

G(u)=JZg(a)da—*w as |u| - o0

which we are no longer assuming. However, we can use another method to
prove that all solutions are bounded. Let A > 0, a > 0 be arbitrary given
numbers, and consider the region Q defined by the inequalities

V(yl’ }’2) < )L
02 + F())? < a®

For each pair (4, @),  is a bounded region as shown in Figure 5.12. Let
Yo = (10, V20) be any given point. Then by proper choice of (4, @) we can
assure that (y;,, y,0) lies strictly inside Q. Let ¢(¢, y,) be a solution of
(5.39) such that ¢(0, yo) = yo. It will be shown that ¢(z,y,) cannot leave £,

Y2

N
Voup) =2

J1

Figure 5.12
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which will show that ¢(z, y,), which is an arbitrary solution, is bounded. To
leave Q, the solution must either cross V(y,, y,) = 4 or one of the curves
y, = +a — F(y,), where we have chosen a > 0 so large that the part of the
curve y, = a — F(y,) that is also the boundary of Q corresponds to y, > 0,
and similarly, the part of y, = —a — F(y;) corresponds to y; <0. As
V* (1, ¥o)) <0, the solution ¢(¢, y,) cannot cross V(y,, y,) = A. To show
that it does not cross either of the curves y, = +a ~ F(y,), we consider the
function W(1) = [@,(t, yo) + F(d.(t, yo)]1°. Then we see easily that

W(t) = 2(¢,(1, Yo} + F(1(2, Yo)D9(1(2, ¥o))

Suppose the solution ¢(t, y,) reaches the “right” boundary curve y, = a
— F(3,),y; > 0;thenalongthis part of the boundary W'(t) = —2ag(¢(t,yo)) <
0, because here y, > 0 and a > 0; thus the solution ¢ cannot cross outside Q
through the curve y, =a — F(y,). A similar argument applies to the ‘‘left”
boundary curve, and completes the proof that every solution is bounded.

¢ EXERCISES

10. Show that at each point of the ““left” boundary y; = —a— F(31), W'(t) <
0, so that the solution $(z, y,) cannot leave Q along the left boundary curve.
11. Consider the system*

x'= I—ZI ai )
B (5.40)

—h(x, Yy +biglx) (G=1,...,n

where a,, b, are constants, x is a scalar, y = (», ..., »»), h, g are continuously
differentiable for —oo <x < o, ljy]| < oo, xg(x) >0 for all x#0, G(x)=
{> g(0) do— o as [x| — o, A(x,y) >0 for x %0,y #0. Show that if either (a)
there exists a constant ¢ such that a, =cbh, (i =1, ..., n) with at least one b, # 0,
or(b) ailb; >0(i=1,..., n), then the solution x =0, y = 0 of (5.40) is globally
asymptotically stable. [Hint: For (a) try the V function

i

1 12
Vi, ) =2 G +35 L v

for (b) modify ¥ in a suitable way.]
12. Consider the scalar equation u” + u’ + g(u) =0 where g is continuously
differentiable for — o0 < u < o and

G(u) =J.:g(c) do— o as |ul—+ o

* A certain problem in reactor dynamics can be transformed to this form.
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[Note: No assamption such as ug(u) > 0 for u = 0 is now made.] Can you make
any qualitative statement about the global behavior of solutions? [Hint: Start
by trying to apply Corollary 2 to Theorem 5.6.]

13. Consider the scalar equation

'+ f” +au' + bu=0

where a > 0, b > 0 are constants and where f(z) is differentiable for — 0 < z < 0.
What condition must f satisfy in order that the zero solution be globally asymp-
totically stable? [Hint: For the equivalent system y\=y,,y;=y;,y}=
—by, — ay, — f(y2)ys try the V function

a y2
V(yi, y2,y3) = 3 yat+by2ys+ b fo of (o) do + ¥(bys + ay,)?

Answer. There exists a constant ¢ > bfasuch that f(y.) > ¢ > bfafor — 0 <
y < . Whau can you say if ¢ > b/a?]

5.6 Nonautonomous Systems

We consider the system

y =1@7y) (3.41)

in which f depends explicitly on ¢. The theory already developed in this
chapter can be extended to nonautonomous systems. We will assume that
fand of/dy; (j = 1, ..., n) are continuous in a region D of (n + I1)-dimensional
(1, y) space. The region D may be the whole space. However, we will
always require that D contains H ={(s,0)|# > 0} in its interior. We will
also assume that f(z, 0) = 0 so that y = 0 is a solution of (5.41). We remind
the reader that the investigation of the stability of any solution can be re-
duced to this case (see Section 4.2, p. 150).

As in Section 5.2, we will study the stability by means of scalar ¥ functions
that may now depend on both # and y. This naturally requires us to modify
the earlier definitions as follows. Let V(¢, y) be a scalar continuous function
having continuous first-order partial derivatives with respect to ¢ and the
components of y in a region Q in (¢, y) space. We will also assume that Q
contains the set H = {(z, 0)| ¢ = 0}.

Definition 1. The scalar function V(1, y) is said to be positive definite on the
set () if and only if V(t, 0) = 0 and there exists a scalar function W(y),
independent of t, with V(t, y) = W(y) for (¢, y) in Q and such that W(y) is positive
definite in the sense of Definition 1 (Section 5.2).
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Definition 2, The scalar function V(t, y) is negative definite on Q if and only
if —V(t,) is positive definite on Q.

Example 1. If n=2 let V(t,y) =2+ + Oy, 20’ + 3,2 = W(y)
for 0 < t < oo and W(y)is positive definite on the whole y-space. Thus V(z,y)
is positive definite on Q = {(¢, y)|# = 0}.

Example2. Ifn=2letV(s,v) = y;2 + »,2/(1 + . Consider ¥(¢,0,a,) =
Y AW \*rJ/ J1 VLT ! J \YyaywgrJ

a,2/(1 + ¢). Since this approaches zero as t -0, we cannot hope to find a

suitable function W. This V¥ function is not positive definite in the sense of

Definition 1 even though ¥(#, y) > 0 for y # 0.

¢ EXERCISE
1. Let n=3. Which of the following functions V(t, y) are positive definite
on a suitable set 27
@ Vi, y)=y+ys
(B) V{t,y) =t(3® + y2* + ya?).
© V(t,y)=y12+ y22 — ys*.
@ Ve, Y=y +y2t+ys*+2y.yscost.

Definition 3. The derivative of V(1, y) with respect to the systemy' = 1(t, y) is

4 oV
=500+ 3 26056 (542

If ¢ is any solution of (5.41), we have

d
il $(1)) = V*(t, (1)) (5.43)
e EXERCISE
2. Prove formula (5.43).

The stability result for (5.41) is virtually identical to the result in the
autonomous case:

Theorem 5.7. If there exists a scalar function V(t, y) that is positive defi-
nite and for which V*(t, y) < 0 (that is, the derivative (5.42) with respect to
the system (5.41) is nonpositive) on some region £ that contains the set H =
{(¢, 0)| t > 0}, then the zero solution of y' = f(1, y) is stable.
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¢ EXERCISE
3. Prove Theorem 5.7. [Hint: Follow the proof of Theorem 5.1.]

Example 3. Investigate the stability of the zero solution of the equation
y" + a(t)y = 0 assuming that a(t) > 6 >0 and 2'(1) < 0 (0 < ¢ < ).
Writing the equation as an equivalent system, we have

(5.44)

Consider the scalar function

V(t, 1, y2) = alt)y,® + }’22

Fa% Fam . 1

which is obviously positive definite on & = {{7, y}| # < 0} because
V({t, y1, 2) 2 69,2 + y2°
Using (5.42) and (5.44), we have

V¥, ¥y y2) =a' )y 2 <0

on Q, because a'(¢) < 0. Therefore, Theorem 5.7 implies that the solution
y, =y, = 0 of (5.44) is stable.

We remark that if &(z) = (¢,(¢), ¢,(1)) is any solution of (5.44), it follows
from (5.43) and the above calculations that

0 < 8¢, 2(1) + ¢,2(1) < V{1, (1)) < V(0, $(0)) < a(0)¢,%(0) + ¢,%(0)

Thus every local solution of (5.44) can be continued (by Corollary to Theorem
3.6, p. 133) to the interval 0 <7 < o0 and the solution remains bounded.
Since (5.44) is linear, this result should not come as a surprise (see Exercise 12,

Qantinn 43 n 184)
AW W YA WAL —'l'.-l, tl. ‘JTI.

¢ EXERCISES

4. Let g(z, ), g:(¢, ¥), g,(¢, ¥) be continuous in the region Q = {(z, y)| t = 0}.
Let g(t, ) = h(y) > 0if y > 0 and g(¢, y) < h(y) < 0 if y <0 on Q (by continuity
g(t,0) =0) and let yg,(t,¥) <0 on Q. Show that the zero of the equation
y'+g(t,y) =0 is stable. [Hint: Write the equivalent system and try the
function V (1, y1, y2) = y22/2 +{a(t, o) do.]

5. Apply the result or technique of Exercise 4 to obtain a stability criterion (in
terms of a(t)) for the zero solution of the equation y” + a(t)y* = 0.

6. Generalize the result of Exercise 5 to the equation y” + a(t)h(y) = 0.
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We now turn to asymptotic stability of the zero solution of the system (5.41).
One would be tempted to conjecture, in light of Theorem 5.2, that if the
function (1, y) of Theorem 5.7 also satisfies the condition that V*(z,y) is
negative definite on the region Q= {(¢, y|f = 0}, then the zero solution
should be asymptotically stable. This turns out to be false unless an
additional restriction is imposed. For this purpose we require another
concept.

Definition 4. A scalar function U(t, y) is said to satisfy an infinitesimal upper
bound if and only if for every ¢ > Q there exists a 6 > 0 such that

U, Dl <e  on{(t,y)lt=0,lyl <6}

Example 4. The function

Fife v w. Y= {
UL V1 J2) =\

is positive definite on the set Q ={(#, y;, ;)11 > 0}, but clearly does not
satisfy an infinitesimal upper bound. On the other hand, the function

U(t, 1, y2) = yit + v

1+1¢
also positive definite on Q, does satisfy an infinitesimal upper bound.

¢ EXERCISE

7. Prove the statements made in Example 4.
We may now state Lyapunov’s classical result.

Theorem 5.8. If there exists a scalar function V(t, y) that is positive definite,
satisfies an infinitesimal upper bound, and for which V*(1, y) is negative definite,
then the zero solution of y' = {(¢, y) is asymptotically stable.

¢ EXERCISE

8. Prove Theorem 5.8. [Hint: See the proof of Theorem 5.2 and observe that
the infinitesimal upper bound gives the additional information needed to take
into account the dependence of V' (z, y) on ¢.}

Example 5. Consider the system

¥y =—a(t)y, — by,
Y2 =by, — c()y,
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where b is a real constant and where a, ¢ are real continuous functions defined
for ¢t > 0 satisfying

aty=6>0 c(t)=26>0 0<t<ow)

We wish to show the solution y, = y, = 0 is asymptotically stable. Consider
the function

V(t, yi, Y2) =12 + 322
V¥, y1, ¥2) = 2yi(—alt)y, — by,) + 2y,(by, — (1))
= —2a(t)y,? — 2c(t)y,* < ~26(y,> + y23)

Clearly V is positive definite and satisfies an infinitesimal upper bound;
moreover, V*(1, y,,y,) is negative definite. Thus Theorem 5.8 yields the
result,

Example 6. Consider the system

yi= —a(t)y, — by, + g:(t, y1, ¥2)

1
) 5.45
yz = by, — c()y, + 92(t, ¥15 ¥2) (5.43)

where a, b, ¢ are as in Example 5 above and where g,, ¢, are real continuous
functions defined on the region {(#, ¥, ¥,)|10<t< 0, 0 < y,® + 3,2 <r?}
for some constant r > 0 that satisfy

g i t, L] y .
it 1 2)21)12 =0 (j=1,2) (5.46)

lim 3

Y124 y22=+0 (yl + Y2

This condition implies that g,(r, 0,0)=0 (j = 1, 2); thus y, = y, = 0 is a crit-

ical point and we wish to establish its asymptotic stability. (We remark that

the system (5.45) is a perturbation, in the sense of Theorem 4.3 (p. 161), of

the linear system in Example 5. Note that Theorem 4.3 is not applicable

because here the unperturbed system does not have constant coefficients.)

To establish the asymptotic stability consider the same ¥ function as be-
fore. However, with respect to the system (5.45) we now obtain

VXt 15 p2) < = 2080017 + y2) + y191(t y1, ¥2) + 9292(1, Y1, ¥2)]
Using (5.46), given any ¢ > 0 there exists a number # > 0 such that

19,8 y1, ¥ < e + y21 2 for yi4y,t<n? (j=1,2)
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Thus

[19:(t, y1, ¥2) + 29208 p1, Y2l < e + ¥, )Y230pl + 12D

for y,2 + y,2 <n?  Since [y;] < (,® + y,2)'? (j =1, 2), we obtain

V¥t y1, ¥2) < =28(0, % + 122 + 4e(ys? + 3,2

provided y,2 + y,2 < 2. Choosing ¢ = 6/4 (any number less than /2 will
do) and determining the corresponding n we obtain

V*(t, y1, ¥2) S =0 + ) 2 + 5,2 <n?)

Thus V* is negative definite on the set {(¢, y1, ¥2)|# =0, »,2 + ¥,2 <#*} and
this shg Y h t Theorem 5.8 v:e]de the desired result.

o EXERCISES

9. Show that in the systems in Example 5 above all solutions tend to zero
exponentially, [Hint: If ¢ = (¢4, ¢2) is any solution, show that

d
= V(6 $1(0), () < =28V (1, $u(1), $2()

Integrate this inequality, which gives
$12(1) + $23(1) < ($1%(0) + $22(0))e2%.)

10. Formulate and prove an analogous result for the system (5.45) discussed in
Example 6.

It is easy to give an example of a system to which Theorem 5.8 cannot be
applied, and yet we expect that the zero solution is asymptotically stable.

Example 7. Consider the scalar equation
Y +alt)y +y=0 (5.47)

where a(f) is a continuous function defined on 0 <t < o satisfying
a(t) 2 6 > 0, where 6 > Ois a constant. We may think of a(¢)y’ as a damping
term of a linear oscillator. It can be shown that if a() is also bounded above,
then every solution of the equation (5.47) together with its derivative ap-
proaches zero. This, however, does not foliow from Theorem 5.8. For
consider the equivalent system
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Y=Yz

, 5.48
y2=—y;—a(t)y, (5.48)
and the positive definite scalar function ¥(t, y,, y,) = y,2 + y,? having an
infinitesimal upper bound. However,

V*(t, vy, p2) = —2a(t)y,? < —268p,°

Thus V*(¢, y,, ¥,) is nonpositive, but not negative definite.

¢ EXERCISES

11. Use the method of Example 6, Section 5.2, to discuss the asymptotic
stability of the zero solution of the system (5.48).

17 Nanaraliza tha raciilt AFf Evarnica 11 ¢~ tha an
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Y +a@)y +g(y) =0

where g is a continuously differentiable function such that yg(y) > 0 for y # 0.

For problems such as the one considered in Example 7, it is natural to
inquire whether the results and techniques discussed in Section 5.4 for au-
tonomous systems can be carried over to the nonautonomous cases. One
difficulty in doing this is that the notion of invariant set, natural for auton-
omous systems, cannot be defined directly for nonautonomous systems.
However, for a class of problems that may be calied asymptotically autonomous
systems, analogous results do hold and we state one such theorem below.
The proof, as well as other related theorems, may be found in [25, Ch. 3].

Let f(z, y) and h(y) be continuous together with their first derivatives with
respect to the components of y in a set {(#, ¥)]0 <t < w0, ye Q} where Q is
some set in y-space.

Definition. The system

y=1ty (5.41)

is said to be asymptotically autonomous on the set Q if and only if (a)
lim (¢, y) =h(y) for ye Q and this convergence is uniform for y in closed

| S dle]

bounded subsets of Q.
(o) For every ¢ >0 and every y e Q there exists a 6(¢, y) > 0 such that
If(t, X} — £(¢, y)| < &, whenever |x —y| <d for0 <t < 0.



5.6 Nonautonomous Systems 235

Example 8. Consider the scalar equation

' 1 2
= — —_— <
y (1+1 I)y (0<t < o)

This equation is asymptotically autonomous on any closed bounded set
Q= {y[yl < K} where K > 0 is a constant. For:

1
2) lim — {1+ —— |y = —p?
() lim (+I+t)y y

uniformly with respect to y in Q.

/ I\ . .
— ; Z — £
®) 1/, ) = Jt, 3 < (1 + ) 0 = <
<2 =X <2y +xlly—xl<e
whenever [y — x| < § = min (X, &/6K).

¢ EXERCISE

13. Justify the above choice of 8. [Hint: |y + x| <|y| + |x| < 3K whenever
Iyl <Kand |x—~y} <8.]

Theorem 5.9. (See p. 214 and compare with Theorem 5.5.) Suppose the
system (5.41) is asymptotically autonomous on some set L in y-space. Suppose
f(t,y) is bounded for 0 <t < co whenever y lies in a closed bounded set

Q= {y’ iyl < K, K> 0}. Suppose there exists a nonnegative scalar function
V(t, y) such that V*(t,y) < ~ W(y) where W(y) = 0 with W(y) =0 only for

ye Q (this defines Q, that is, Q= {y| W(y)=0}). Let M be the largest
positively invariant subset of Q with respect to the limiting autonomous system

y' = h(y) (5.49)

Then every bounded solution of (5.41) approaches M as t - . In particular,
if all solutions of (5.41) are bounded, then every solution of (5.41) approaches M.

Example 9. We will now establish the asymptotic stability (global) of
the zero solution of the system (5.48), considered in Example 7 above. In
the notation of Theorem 5.9 we have
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V(t, y1, ¥2) =% + p2?
V*(t, y1, 1) S —28p,°

so that

Wy, y2) = 25}"22

and Q= {(y,,¥,)|y, =0}, that is, the y, axis. On this set Q (5.48) is
asymptotically autonomous and the corresponding limiting system is

y1=0

’ 5.50
Y2=—W ( )

which is obtained from (5.48) by putting y, =0, In order to apply Theorem
5.9 we must assume not only the condition a(t)>d6>0 for 0 <t < @
(already made in Example 7) but also [a(¢)] < K for 0 <t < 00 where K> 0
is a constant. This insures that |f(¢, y)] is bounded whenever |y is bounded.

We observe next that every solution of (5.48) exists on 0 < f < o0 and is
bounded. This may be seen as follows. Let ¢ = (¢,, ¢,) be any solution;
then for as long as it exists we have from Example 7

d
SV, 6.0, 2(1) < ~269,1() <0

Therefore,
V(t, §u(1), d2(1)) < V(0, $4(0), ¢2(0) = ¢,%(0) + ¢,°(0)

Thus by a familiar argument ¢ exists on 0 < ¢ < o0 and is bounded.

To apply Theorem 5.9 we need to obtain M, the largest invariant subset
of Q with respect to the system (5.50). Since every solution of (5.50) has
the form ¢,(¢) = ¢,, ¢,(f) = ¢, — ¢,t, where ¢, and ¢, are arbitrary constants,
M is clearly the origin and this, by Theorem 5.9, proves the resuit.

e EXERCISES
14. Generalize the result of Example 9 to the equation

¥ +at)y +g(»)=0 |

where g is a continuously differentiable function such that yg(y) > 0 (y # 0).
15. For the equation considered in Exercise 14 show that all solutions,
together with their first derivatives, tend to zero as ¢ — - o if it is also assumed

ot lirs f-‘" A=Y A —— e thite 1 thic ~raga tha zava ealiitian i¢ olahally acvmin.
11at il Joy\U} u — W, LITUD 11F Lil1D QAo LIV LUV OVIULIULE 1D sluuall)’ aoy Lilp=

[Elindes

totically stable.

-+



Chapter 0 SOME APPLICATIONS

6.1 Introduction

In this chapter we consider several applications with extensions of the
theory developed to this point. We will concentrate on two topics: (a) the
existence of periodic solutions of unforced second-order equations; this will
include both the damped and undamped pendulum, as well as the Van der Pol
and Liénard equations, which have been referred to previously; (b) the
regulator, also known as the Lur’e problem.

Our treatment is not at all exhaustive; our purpose is to indicate possible
directions for further study. Thus, for example, in our discussion of the
existence of periodic solutions, we do not study the general Poincaré-
Bendixson theory and theory of the index (see, for example, [13]), methods
involving fixed point theorems (see, for example, [20]), the methods of
Poincaré and the method of averaging for perturbed almost linear systems
(see [3, 4, 9,10, 19, 22, 23]), and singularly perturbed systems (see [24]).
The latter topics are somewhat beyond the intended level of this book and
require additional background material. The general Poincaré-Bendixson
theory is readily accessible and beautifully treated in [13]. With respect to
the regulator problem, the reader is referred to [1, 17, 18] for a more com-
plete treatment, including also such questions as controllability and optimal

control.
237



238 6 Some Applications

6.2 The Undamped Oscillator

We consider the equation
U +gw)=0 (6.1)
where throughout we will assume that
ug(u) > 0 (u+#0) (6.2)

and that g is continuously differentiable on —o0 <u < 0. Let y;, =,
y, = u'; then (6.1) with initial conditions #(0) = 5, ¥'(0} = n, is equivalent
to the system

yi=y; y1(0) = n, (6.3)
ya = —g(yy) V2(0) = n,

Because of (6.2), y, =0, y, = 0 is the only critical point of (6.3). We have
already seen (see Example 3, Section 5.2, p. 197), using the positive definite
scalar energy function,

Vi) =22+ [ g0y do (6.4

having V*(y,, y,) = 0, that every solution of (6.3) with |n,| + |n,| sufficiently
small is periodic; the solution curves are simple closed curves in the (y, y,)
phase plane, symmetric about the y, axis. These solution curves are, of
course, precisely those components of the curves

V(¥1, y2) = Vlny, #2) = constant (6.5)

containing the origin in their interior; see Figure 6.1. We recall also that if,
in addition to (6.2), we assume that lim [} g(o)do = co, then every

lyif—a0

solution of (6.3) is periodic. We will now study the nature of these periodic
solutions in more detail.

In order to study the dependence of the period of the periodic solutions on
the amplitude, we will assume

g) = —g(—u) (6.6)
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b

Y

\4, 0)

Vi, 32) = V(n, 12)

2
_ni L §Y
== +fgg(a)da

\

o S

Figure 6.1

(that is, g is an odd function). This assumption used in (6.4} implies that
V('_yl, yZ) = V(yla yZ)

so that the curves (6.5) are also symmetric about the y, axis. Thus it makes
sense to speak of the amplitude of the periodic solution generated by a
particular curve (6.5); this is simply a value of y; = 4 > 0, for which

V(A’ 0) = V('h, 712)

See Figure 6.1.

Notice that ,%/2 + [§ g(6) do = [§ g(0) do. We establish the following
result.

Theorem 6.1. Let (6.2) and (6.6) be satisfied. Then there exists a neighbor-
hood N of the origin in the phase plane such that if (n,, n,) is in N, then the
solution of (6.3) through (n,, n,) is periodic. Let T(A) > 0 be the least period
of all periodic solutions that generate the solution curve through the point (A, 0)
in N, with A > 0 and sufficiently small. Then

=22 e~ e
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where G(u) = |3 g(0) do. Moreover,

: 22 [g(4) — 9()]
T = et V2, s ot

Proof. Consider the solution (y,(¢), y,(f)) of (6.3) through the point
(A, 0) (see Figure 6.1)). Because of the symmetry of the solution curve

72 0)
2

+ G(yi(D) = G(4) (6.7)

T(A)/4 is the first positive value of ¢ for which y,(f) =0. From (6.3) and
(6.7) we have

! —_— 1/2
¥i =2 = [AG(4) - Gy )Y (6.8)

Notice that |y,| < A implies that G(y,) < G(4). Separation of variables in
(6.8) yields formally

T(4) _ f dy
4 /24 [G(@) = G I

(6.9)

which is the first result in Theorem 6.1, provided the improper integral con-
verges; notice that the integrand becomes infinite as y; - 4. Therefore,
consider

. A—¢e dyl
lim J, tow— comr™ ¢19

We have for any 0 < B< A and small ¢ > 0

._A."'E Ay .,B

J “wyi =J “ri
o [G(4) -Gy} Yo [G(A) - G(y)]'?

A=e dy,
* L [G(A) — G(r1'"

The first of these is an ordinary Riemann mtegral of a continuous function

N R neda Af o T tha cannn A Ln mean alita thanream
oni = V1 < i, 1uucpcuuclu Of &. 1ntne sCLuiiv, Uy n¢ méan vaue ulculcul,

there exists a £, 0 < B < € < A — g, such that
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G(4) — G(y1) = g(E)A — y1)
where we have used g(¢) = G'(¢). Tﬁerefore

J‘A_a dy, < 1 J‘A_e dy,
» TG - GOIT™ = min GOy A=y

o P T . Y T G S, S I WOt I
S2INCe g(c) > V I0T ¢ %= U and since o > U, we can o Sure iat

min |g(&)|V? > 0.

B<{<Ad—¢
Thus
A~z
“ dyl 3 < ' 2 s [£1/2 _ (_/1 _ 3)1/2}
‘s [G(4) — G(y,)] . I?H: lg(
<E<A—¢

which shows that the limit (6.10) exists and therefore the integral (6.9)
converges.

To establish the second result in Theorem 6.1 we have to differentiate the
improper integral (6.9). The fundamental theorem of calculus cannot be
applied and using the definition of derivative directly without some prelimin-
ary trick is also not productive. We notice that the function

G(A4) — G(A — x)

H(x, A) = X (6.11)
g(A) x=0

is continuous at x = 0. Therefore, by the continuity of H(x, A) in x, on
0<x<4,

rA du

dy, _2
B J [G(A) — G(A — u))*/?

— - A /= I‘A

n

(6.12)

—2ff [H(u A)]l[Z 1/2

We now remind the reader of the formula

{rmf(x o) dx} f(b(a), a)b'(a) — f(a(a), a)a (a)—l—f g—-— (x, o) dx

a(ax) a(a)



242 6 Some Applications

which holds if f, df/dx are continuous for a(a) < x < b(x) and a(x), b(x)
continuous for ¢ < a < d (see, for example, [12, p. 360]). Applying this
formula and proceeding purely formally, we obtain, using (6.11) and (6.12),

SNV
)= [, HAT
42 /E I'A___L I-{__ _l_\fou A\\‘3/2i /ii A\] du
LV JG \/; L\ 2}\ \#, A1)} oA ’ }J

2./2 A1 A) — g(4 —
=__l/__ﬁjo __J__;_[H(u, A)]-Slz[g( }—g( u)] d

U

_2/2 g(4) — g(4 ~ u)
~ [GANT" V2 I [G(A) — GA -’ ¥

22 g(4) — g(0)
Vi = d

G472 A) - 6@’

as asserted in the statement of Theorem 6.1. By a standard theorem (see,
for example, [12, p. 361]), the formal differentiation is justified provided the
differentiated integral converges uniformly with respect to 4 on some interval
a« <A< pB. Since g(x) is continuously differentiable and G'(x) = g(x), this is
easily shown to be the case for the integral

4 g(A)—g(o)
J, o —e T (6.13)

for 0 << A<p. This completes the proof of Theorem 6.1. §

¢ EXERCISE

1. Establish the convergence of the integral (6.13). [Hint: Proceed as in the
proof of the existence of the limit (6.10), splitting the range of integrationfrom 0 to
A — ¢ into two parts and using the mean value theorem on both the differences
9(A4) — g(o) and G(A) — G(o).]

We can deduce several consequences of Theorem 6.1.

Corollary 1. If the hypotheses of Theorem 6.1 are satisfied and if in addition
g(x) is monotone increasing in some neighborhood of x = 0 [for example, if
g'(0) > 0], then we also have
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)= — 2./2g(4) IA[G(a)g’(a) ~ 1] do 6.14)

G(4) [9(0))* 21 [G(4) - G(e)]'/*

The proof of Corollary 1 begins with the formula for T'(4) derived in
Theorem 6.1 and involves a careful analysis of the integral

A= —
(=90 L s a0

— 3

Je  [G(4) — G(o)]*

with the aid of integration by parts. For details, the reader is referred to
[19, p. 5].

Corollary 2. Let the hypothesis of Corollary 1 be satisfied and assume in
addition that g"(x) is continuous. Ifg"(x)>00n0 < x < A and if g"(x) is not

™ Ay - N /\/n- I B DI S o
identically equal to zero, then T'(A) < 0. If g"(x)<0on 0 <x< A4 and if

g"(x) is not identically zero, then T'(A) > 0.

Proof. Consider the case g"(x) > 0. To show that 7°(4) < 0 it suffices,
from (6.14), to show that

G(o)g'(0) 1
[g(a)]z =5 =20 (6.15)

and that W(o) #0 for 0 <o < A. But a straightforward calculation shows
that

W(o) =

d
T {[g(e)T1*W(0)} = G(s)g"(0) (6.16)
e EXERCISE
2. Prove (6.16).

Since g2 W is well defined at ¢ = 0 and is zero, then we have

9@ W(o) = | G ds

But G(1) > 0, g"(7) = 0,and g" is notidentically zero ; therefore [g(6)]* W(o) > 0
for ¢ > 0. Since also g(a) # 0 for ¢ # 0, this implies that W(s) > 0 for
0 <o < 4 and this completes the proof in the case g'(x) > 0. The other
part is similar, and this completes the proof. }
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e EXERCISE
3. Carry out the proof in the case g”(x) < 0.

A spring g(u) is called hard if g"(x) > O and soft if g"(x) < 0. As we can see
from Corollary 2, these definitions relate to the variation of the period with
amplitude as follows: If g"(x) = 0 but is not identically zero on 0 < x < A,
then the period T(A4) is a decreasing function of 4 as 4 increases, and the
opposite statement holds if ¢"(x) < 0, but is not identically zero as 0 < x < A.
For the simple undamped pendulum

g .
X}=—Sinx
g(x) T

Thus g°(x) = —g/Lsinx <0 for 0 < x <=, so that the pendulum may be
regarded as a soft spring and, as expected, its period increases as the ampli-
tude increases. Notice, however, that a linear spring g{x) = kx, k > 0, is
both hard and soft; here g"(x) =0, and as we know, the period T = 2n/\/ k
is a constant.

6.3 The Pendulum

In this section, we will discuss the simple undamped pendulum of length L
(1.6), governed by the equation

w4 % sinu="0 (6.17)

In the notation of Theorem 6.1, g(u) = (g/L)sinu. Thus G(u) = (g/L)
(1 —cos u). The hypotheses of Theorem 6.1 are satisfied for —zn <u<n
and the period of the pendulum is given by

2L\ A do 2
YT ) )y [cos o — cos 47172

(en]
IN
s
A
)

where, because g(u) is odd, 4 is the amplitude.

e EXERCISE
1. Show that

/r\
T(A4) =4(§)

172 .mf2 A
iy

Jo (1 — k% sin? $)'"
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where k =sin (4/2). [Hint: In the formula given by Theorem 6.1, let sin (¢/2) =
k sin ¢ and use the identity cos 0 = I — 2 sin? (5/2) = 1 — 2k?sin? ¢.}

2. The integral in Exercise 1 is called an elliptic integral of the first kind for
0 < k <1, and it cannot be evaluated explicitly. We have by Taylor’s theorem
for0<k <1

k? 3
(1 —k%sin?¢)~"2 =1 +—i-sin2¢+§k‘sin4q$ F e
Use this to estimate the period of the pendulum for any amplitude A4 for which
0 <k =sin (A4/2) < 4, that is, for 0 < 4 < =/3, within an error of 1/10.

We now wish to obtain a complete phase portrait of the pendulum. The
above analysis and the theory of Section 6.1 (see also Example 3, Section
5.2, p. 197), are valid only for —n <u <n. The physical problem of a
simple pendulum has a second equilibrium point atu=m. Itis physically

obvious and has &lS(‘) been shown in Exercise -'+ Section 4. .J, p. I II that this
equilibrium point is unstable. The complete phase portrait must refiect this

fact,

The system
Yi=1)2
g (6.18)
yy = — —sin y,

L

obtained from (6.17) by letting y, = u, y, = ¢/, is equivalent to (6.17). We
shall obtain the complete phase portrait for (6.18) by a careful study of the
energy function

, 1 g
Vi ya= 552" + 7 (1 —cos y)) (6.19)
which is (6.4) with g(y,) =g/Lsiny,. As we have seen in Example 3,
Section 5.2, p. 197, V*(y,, v-\ = 0 and all solutions of (6.18) lie on some
curve

V(yhyZ) =h

where / is a constant, If the solution passes through a point (4, 0) (so that
in case 0 < 4 < n the amplitude of the pendulum is A4), h=V(4,0) =
(g/L) (1 — cos 4). Thus to construct the complete phase portrait we simply
construct the family of curves V(y,, y,) = h for all values of h > 0. Before
doing this let us recall that for 0 < 4 < r all solutions of (6.18) are periodic
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and their graphs in the phase are given by the equations

1 g
5y22+-i(1—cosy1)=~L€(l —cos A)

for 0 < A <=n. In fact this relation holds for the graphs of all solution
curves, through the points (A, 0) for all values of A. To determine these
graphs we solve this relation for y, and we obtain

Zg 1/2
y2= % (f) (cos y; — cos A)'/2 (6.20)

For each A #nn,n=0, +1, +2, ..., this gives a closed curve. If —n <
A < n, relation (6.20) gives one of the closed curves shown in Figure 6.2.
If 4 =0, (6.20) gives only the origin in Figure 6.2.

b=

g

(0, 2\/ z) (0, 2\/% sin %)

@0 Jmo

TN
(=7, 0)\(—4,0) k—/

(0’ - ‘/% (o, -2 \/% sin 5)

Figure 6.2

For soluttons through (4, 0) with 4 > n (and similarly with 4 < —7) we
take advantage of the periodicity of the function (cos y; — cos A). Thus for
each 4 we obtain one of the curves shown in Figure 6.3. If A = 2nn, the
solution curve given by (6.20) reduces to the single point (2nm, 0). The
solution curves in Figure 6.3 through the point (4, 0) correspond to the
motion of an undamped pendulum with initial displacement 4 and initial
velocity zero. Alternatively we may think of each closed curve in Figure 6.3
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Figure 6.3

as corresponding to the motion of the pendulum with initial displacement #,
and initial velocity n, where (5, n,) is any point on the curve.

We may, however, also use the energy function (6.19) to obtain the graphs
of all solutions of the system (6.18), not merely those through the points (4, 0).
To do this, consider the family of curves

1 g
Vi, y2)=53:" + 7 (I —cosy))=h

or

Vg = i{Q[h - % (1 = cos yl)]}m (6.21)

for 0<h<ow. If 0<h<2g/L, we merely reproduce Figure 6.3 already
obtained. For in each such case y, = 0 whenever # — g/L (1 — cos y,) =0
or whenever cosy, =1—h(L/g); but if 0<h<2g/L, then —1<1—
h(L{g) <1 and therefore for each 0 < & < 2g/L there is a y, = 4 for which
y, = 0; in fact, by periodicity y, = 0fory, = A £ 2nn (n =0, 1,...). There-
fore, the solution of (6.18) through any point (4 + 2an, 0) has for its graph

one of the closed curves in Figure 6.3, or possibly the single point (2nz, 0).
If h > 2g/L,

g g 49 g g
h—z(_l—cosyl)=h—z+zcosy1Zh—z—z>0

Thus from (6.21), it is clear that there is no value of y, for which y, =0.
Therefore such solutions are not inciuded in Figure 6.3. 1n fact, the interiors
of all the closed curves correspond to the case /# < 2g/L. Moreover, the
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curve V(y,,y,) =i with h > 2g/L cannot be a closed curve, and hence these
corresponding solutions are not periodic. The curves aresstill given by (6.21)
and because of the periodicity in y, of the function & — g/L(1 — cos y,), they
are periodic in y, of period 2=z; they are also symmetric about the y, axis.
Several of these are sketched in Figure 6.4. Figures 6.3 and 6.4 constitute the
complete phase portrait.

i
| P&l

2
V(yj. ’ .Vz).= z‘?‘

}%\M
2g

V(ys, ys) = —

(1> ¥2) 7

Figure 6.4

There is a simple way to construct the phase portrait associated with any
scalar equation of the form

U +gu)y=0 (6.1)

where g and g’ are real and continuous, having the equivalent system

Yi=V2 (6.3)
ya=—g(yy)

where it is not necessarily assumed that ug(u) > 0, (u # 0). Consider the
energy function

y2!

3 + G(y,) (6.22)

V(yl’ yZ) =

where G(y,) = |} g(o) do. It is still the case that

V¥(yy, y2) = v —g(ny)) + g(y)(y5) =0

Therefore the graph of any solution of (6.3) lies on some real curve V(y,, y,) =
hinthe (y,, y,) plane, where /1 is a constant ; in particular, the solution through
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the point (1, 1,) is given by the curve V(3. y;) = V(n,, ). The real curves
V(y,. y,) = I are given by equations

y2 = +[2(h — G(y)]'"?

for all y, for which 2 — G(y,) = 0. To construct the phase portrait we con-

struct the curve y, = G(y;) in the (y, y,) plane, and proceed as in Figures
6.5, 6.6, where we have carried out the construction for the case of the pen-

Wiy WS Y w wiaa e UL

dulum with G(y;) = (g/L)Y(1 — cos y;). On the same graph in Figure 6.5,

Ayz

[ Y2 =’12
Iy — G(P,) hy = G(y)
— e T —— e —— T — g —— —— — e —— )y =I*
/TN /TN N / "y
h / \I[ !\ u g ’yl
—4r | -3n —2r | —@ 0 T 2n 3n l 4n

¥, =2[h — G(p)]* 2 /V(.V;’ y2) =1y

|
|
|
|
|
|
|
|
|
|
|
1
|

— 4

V(yl: yl) = hl

Figure 6.5 and 6.6
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constructseveral lines y, = h. Foraparticular # = A, consider the differences
hy — G(y,) for those admissible y, for which A, — G(y,) is positive. These
differences can be measured in Figure 6.5. For the same y, in Figure 6.6,
directly below Figure 6.5, construct the ordinates y, = +[2(k, — G(y,)]"/%.
By doing this for all admissible y, we obtain all the curves V(y,, y,) = A,.
By repeating this for all 0 </ < o0, we obtain the entire phase portrait.
In particular, for # =0 we obtain the points (+2nn,0), n=0,1,2,...,
which are, of course, the equilibrium points of the system (6.18).

For 0 < h; < 2g/L we obtain closed curves such as those shown for 2 = i,
in Figure 6.6. For h, > 2g/L, we consider the difference h, — G(y,) =
h, — g/L(1 — cos y,), which, as we have seen, is strictly positive for — o0 <
y; < oo. This gives rise to the typical curve V(y,, ¥,) = h, shown in Figure
6.6. Clearly none of the curves V(y,y,) =h, > 2g/L is closed. The
character of the curves changes for i = 2g/L = h*. The curves V(y,, y,) = h,
constructed in the same way, separate the closed curves from the others and
they are said to constitute the separatrix. Figure 6.6 is, of course, the same as
Figures 6.3 and 6.4.

e EXERCISE

3. Use the general method corresponding to Figures 6,5 and 6.6 to obtain the
phase portrait of the system

i =y
vz = —g(n)

for each of the following special cases of g(y:). Also, find the separatrix if there

is one.
(a) g(31) = y: (compare Figure 6.6).

3

(b) g(y1) =y — Zg— (compare Figure 6.6).

© g(y)=x»>
(d) g(y1) = yr — 3%
© g(y) =n>

6.4 Self-Excited Oscillations—Periodic Solutions of the Liénard
Equation

In the case of the undamped linear oscillator #” + k*u =0, k > 0, or the
undamped nonlinear oscillator, which we studied in Section 6.2, every solu-
tion (at least, every solution with sufficiently small initial position and initial
velocity) is periodic; it is of constant period 2n/k in the linear case and of
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variable period depending on the amplitude in the nonlinear case. Since in
most physical systems friction is present, the above phenomena are ex-
ceptional. For a damped linear oscillator of the form " + aw’ + k*u =0,
every solution approaches zero as t — + 0 if a >0, while every solution
becomes unbounded as t — + oo if a < 0, thus the only periodic solution is
the identically zero one. A similar situation holds for the (autonomous)
nonlinear equation u” + f(u, u)u' + g(u) = 0, where g(u) is a nonlinear spring
and where the damping is of a fixed sign. We have already discussed several
results for this equation in Chapter 5.

An entirely different situation arises when the damping changes sign. The
equation

u e —Du'+u=0

where ¢ > 0 is a parameter, arises in the theory of feedback electronic circuits
(see [3, pp. 154-155] or [22, pp. 119-128]). It was first studied extensively by
Van der Pol, and is therefore known as the Van der Pol equation, but it has
also received much attention from other authors. As we have seen in
Exercise 6, Section 5.5, p. 222, the identically zero solution of the Van der
Pol equation is unstable. However, much more than this can be learned
from a careful analysis of the above-mentioned exercise. In the notation of
(5.31), p. 220, the equivalent system to the Van der Pol equation is y} =

y2 —&(n°/3) = yy), ya = =y Wetake V(yy, y2) =4(n 2 + »,?), and from
Definition 3, Section 5.2 (p. 193),

V* (¥, ¥2) = _SJ’xz((J’12/3) -1)= 8()’12 - ()’14/3))

Thus V*(y,, y,) is positive for y,2 < 3. From this we easily see that every
solution starting at a point (y,o, ¥,0) inside the circle y,? + y,2 < 3 in the
phase plane moves, as ! increases, in the direction of increasing V, that is,
outward (V*(y,, y2) = 0). We therefore say that the “flow” is outward.
On the other hand, every solution starting at a point (y,4, ¥,0) in the region
4 2
1

> 3 moves inward in order to decrease V(y, y;) (V*(y, y2) <0), and

we say that the flow is inward. When such a solution crosses one of the
lines |y,| =\/ 3, it may move away from the origin, However, from the

equations y, = —y,, |y| <\/ 3, we see that |5l S\/ 3. Thus such a solution
remains bounded and therefore it can be continued across the entire strip

-\/ 3<y, <./3. Once it leaves this strip it again moves inward, Thus it
seems plausible that the Van der Pol equation has a nonzero periodic solu-
tion. This is indeed the case, as the following more general development will
show.
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We consider the Liénard equation
'+ f(wu + gu) =0 (6.23)

where f and g are continuously differentiable for —oo <u <o00. We let
G(u) = [9(0) do, F(u) = [ f(c) do.

(i) ug(u) >0, (u #0)
(i) lim |F(u)| = + o0

|uf— o0

and that for some a, b > 0

(i) F(u) <0, (U< —a,0<u<b)
F(u) > 0, (—a<u<0,u>b)

Then (6.23) has a nontrivial periodic solution.

The reader will note that under the above hypotheses, the origin in the
phase plane is the only critical point of (6.23) and of its equivalent system
(6.24).

¢ EXERCISE

1. Show that the Van der Pol equation satisfies the hypotheses of Theorem
6.2. Determine a and b.

Proof of Theorem 6.2. The system

Yi=y2— F(yy)
V2= —g(y;)

o~
=
[\
B
'

is equivalent to (6.23) (see Exercise 3, Section 5.5, p. 221). Under our
hypotheses the origin is the only critical point of (6.24). Consider the energy
function

0 2
V(yi 92) = =5 + G(y1)



6.4 Periodic Solutions of the Liénard Equation 253
for which, with respect to the system (6.24), we have

V*(01, y2) = yao(—g(n) + gy )(y2 — F(J’l)) = —g(y))F(y))

(see Definition 3, Section 5.2, p. 193). For small values of ¥, the curves
Viy(, ¥;) = V, in the (y,, y,) plane have components that are closed curves

V2 40, 4,)

F(0, F.
O B(b, 25)

y2=F(y)

)
|
b

- —— —

/

'D(b, yZ.D)

EQO, —E,)

Figure 6.7

symmetric about the y, axis and encircling the origin (see Figure 6.7). These
curves increase in size as V, increases. If (¢,, ¢,) is a solution of (6.24)
starting very near the origin but not at the origin, then

d
7 V(:(1), ¢2(1)) = VX1(0), 92(1)) = —g($1(DF(¢:(1))

(see (5.8), p. 194). The hypotheses imply that d/dt V{(¢,(), ¢,(f)) = 0 and
thus such a solution curve penetrates the curve V(y,, y,} = ¥, as f increases
for any sufficiently small ¥V, > 0 and moves outward in the direction of
increasing values of V,,. The origin is therefore an unstable critical point.

Consider now the curve y, = F(y,) in the phase plane (Figure 6.7). On
this curve, we have, from (6.24), y; =0, y; = —g(y,). Suppose that a solu-
tion (¢b,(1), ¢,(1)) of (6.24) starts at a point 4(0, 4,) at ¢t = O for some 4, > 0.
Initially, ¢71(0) = A4, >0, ¢3(0) =0, and the solution curve moves to the
right into the first quadrant as ¢ increases. For as long as y, > F(y,) and
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¥; > 0, we have ¢1(2) > 0, ¢5(¢) <0, so that the solution curve continues to
move to the right in the first quadrant with a negative slope until it meets the
curve y, = F(y,) at a point C. The solution curve may or may not intersect
the line y, = b; this depends on the size of A,. On the curve y, = F(y),
¢1(t) =0and ¢5(¢) < 0if y; > 0, and the solution curve therefore crosses into
the region y, < F(y,), where ¢(r) <0, ¢5(t) <0. We note that once the
solution curve has crossed into this region at C, it cannot cross the curve
y, = F(y,) again before it reaches the y, axis. For suppose it does cross again
at some point (y,, y,) with j, > 0, ¥, = F(y,), where F(y;) — y, > 0 on some
interval y, < y; <y, + h, withsmall/2 > 0. Then on thisinterval [ /()| < &k,
g(y)) = 4 > 0 for some constants k >0, A > 0. But then on the solution
curve in this neighborhood we have

do, ___ 96D L

do, ¢, ~ F(¢y) + 0, (@1, ¢2) = V1, J2)
da

f(qbl)“o%f-* — o0, (¢1,¢2)_,(_}-,1,f2)

(f(¢,) — dp,/d¢, is the difference between the slopes of the curves y, =
F(y,) and the solution curve), and this is impossible. By a similar argument,
the solution cannot cross the y, axis at the origin of the phase plane. Once
we know that the solution curve cannot cross the curve y, = F(y,) again
before reaching the y, axis, we know that ¢(z) < 0, ¢3(f) <0, but |dd,/d¢,|
is finite on this portion of the curve. Therefore the solution cannot become
infinite between C and the y, axis, and must cross the y, axis at a point E
(Figure 6.7). Proceeding with the same argument, we see that we may
continue the solution and that it intersects the y, axis again at some point F.

Starting at F, we can recover the entire segment AF by continuing back-
ward in time. Thus we may say that the solution curve revolves around the
origin in a clockwise direction as ¢ increases, and this is true for every solu-
tion except the identically zero one. By the continuity of solutions with
respect to initial conditions, the coordinates of the points B, C, D, E, F can
be regarded as continuous functions of the point 4. As A, — + o0, the
points B, C, D, E, F, G, H also “move out to infinity” with B, D, G, H
remaining on the lines y; = b and y;, = —a.

From the fact djdt V(g,(t), (1)) = —g{,())F(¢p,(1)), and from the
hypothesis, we conclude that for sufficiently smallV, > 0,V *(¢ (1), ¢2())=> 0
at all points of the closed curve V(y,, y,) = Vy, with the equality holding
only on the y, axis. Thus for all sufficiently small 4, > 0 the point F on
the solution curve lies above the point 4 in Figure 6.7. Next, it will be
shown that for sufficiently large 4, > 0, the point F lies below the point 4 in
Figure 6.7. For this purpose we consider the energy function V¥ at the points
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A, B, C, D, E, F. Along the solution (¢,, ¢,) we have

Vi, ¢2)—-"i’- + G(o0)

Considering ¢, as a function of ¢, along the solution curve, we have

dv de, I —g(é) —g(¢9,)F(¢,)

kel el ] Posny ] RUC trapny T7ey

On the portion of the solution curve from 4 to B we have g(¢,) > 0, F(¢,) <
0, ¢2 - F(¢1) > 0, sO that

VB—VA= ~ deh. d¢1=

As A, increases, ¢, — oo and b remains fixed. Therefore

Him (V= V,)=0

Az + oo

Similarly, lim (Vz — Vp) =0. Now, regarding ¢, as a function of ¢, on
Az= 4w

the portion BD of the solution curve, we have

av _ dé, _ _($2 = F$)] _
T = 0149680 52 = 0+ gt - LT < pig)

since g(¢,) # 0 on B,B. Since by hypothesis F(y,) > 0 for y; > b,

28 y2B
Vo Vo= [ oddy = [ Fgp) dbs>0

y2p d¢2 Yoo

But lim |F(u)) = +00, and as A, — + 00, y,p— +0o while y,, > —o0.
{u] >0

Therefore

lim (Vg —~ Vp)= +
A=+
Combining these limiting statements, we conclude that for large 4, >0,

Vg < V,. Thus, if E has coordinates (0, — E;) with E; > 0, we have Vg =
E,2[2 <V, = A,%]2, so that E, < A, for sufficiently large A,. We may



256 6 Some Applications

repeat the argument on the portion EF of the solution curve. Letting F have
coordinates (0, F,) with F, >0, we find, by considering the differences
Ve — Ve, Vy— Vg, Ve — Vy exactly as above, that F, <E,. Thus
0< F, <E, <A,,and Flies below 4 on the y, axis.

e EXERCISE
2. Show that F, < E,.

Since the displacement 4, — F, is a continuous function of 4, that is positive
for large values of 4, and negative for small values of A,, there is a value
A, such that A, = F,(4,). Clearly, the solution through the point (0, 4,) is
periodic, and this completes the proof. §

We next consider the question when the periodic solution constructed in
Theorem 6.2 is unique. This requires some additional hypotheses. In
particular, we obtain the following result with the aid of Theorem 6.2.

Theorem 6.3. Suppose
(i) ugw) >0, (u+#0)
(ii) g(w) = —g(—w), S =f(-w)
and that for some b > 0,
(i) F(u) <0, (0O<u<b)
F(u) > 0, (u>b)
(iv) F(u) is monotone increasing for u > b and 1lim F(u) = co.

UK

Then the equation
'+ f(wu + gu) =0 (6.23)
has a unique nontrivial periodic solution p(t).
We note that, compared to Theorem 6.2, the additional hypotheses here are
that g(#) is an odd function, f(«) is an even function, and F(u) is monotone
increasing for u > b, Since the system is autonomous, the uniqueness of the

periodic solution means, of course, up to translations in time.

Proof of Theorem 6.3. We again consider the equivalent system

and we construct in Figure 6.8 the auxiliary curve y, = F(»,) just as in



6.4 Periodic Solutions of the Liénard Equation 257

Figure 6.7 (F(y,) is odd). We construct again the curve I': ABCDE exactly
as in Figure 6.7. This curve is given by the equations y; = ¢,(?), y, = ¢,(?),
where ¢,, ¢, is that solution of (6.24) for which ¢;(0) =0, ¢,(0) = 4,.
By symmetry considerations, it suffices to draw the portion y; > 0 of the phase

72 40, 4,)
FIO N r

1Ty SSLs

E(O, - EZ)

E(0, —E)

Figure 6.8

plane. Moreover, the solution is periodic if and only if 4, = E,. Recall
that in proving Theorem 6.2 we showed that E, < A, for sufficiently large 4,
and E, > A, for sufficiently small A,. It will now be shown that £,%2 — 4,2
is a strictly monotone decreasing function of 4,, and it therefore vanishes
for only one value of 4,. This will imply that the periodic solution whose
existence we already know from Theorem 6.2 is unique.

Consider another starting point 4 (0, 4,) in Figure 6.8 with 0 < 4, < 4,.
We construct the arc of the solution curve T : ABCDE in the same way as
ABCDE, taking A close enough to A so that this solution curve also crosses
y, = b. The curve T is given by the equations y, =& (), y, =@ ,(¢), where
$,(0) =0, ¢,(0)= A, as shown. We shall compare the variation of the
function ¥(y,, ) = ¥,%/2 + G(3,) along the two solution curves I" and T.
We first compare Vg — ¥V, and V3 — V;. From

4V _ —g(@)F($)
i%, " &, - F@)
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which was computed in the proof of Theorem 6.2, we see that on the portion
from A to B and 4 to B, ¢, > &, so that

d¢'1 (d’n $2) < (61, $,)

Therefore

b dv b dv

Vo= Va= [ go- G 8401 < [ @1, 8 by = Vo~ Vi

Similarly, Vg — Vp < Vg~ V5. Construct the horizontal lines through
B, D intersecting the curve I" in the points P, Q, respectively, as shown.
From the monotonicity of F, from ¢, > &, on the arcs PQ, BD, and from

(avijag, }(qul, cpz ) = rupl ), which was also computed in the proof of Theorem
6.2, we have

Vo= [ X G F)des= [ F@) de,

y2o d‘f’z yip
<j”’F(¢,)d¢2 m(qbl,cbz) Ve — Vo

But V decreases along I' when y, = b, and therefore V, -~ V, > 0, V, — V, > 0.
Now wehave Vy — V), = (Vy — V) + (V, — V) + (V, — V) > Vg — Vp, or
VD_ VB<V5 - VE'

Therefore, combining these inequalities, we obtain

Ve—=V,<Vg—V;
From the definition of ¥, this last inequality means that
E22 - A22 <E22 - 122

which says that E,? — 4,7 is a strictly monotone decreasing function of 4,
(provided, of course, that the solution curves considered are such that the
point C lies to the right of the line y, = b). As already remarked, this
completes the proof of Theorem 6.3. |

Let Q be the orbit of the periodic solution p(t). If (¢p,(r), P,(f)) is any
solution of the system (6.24), let C* be its positive semiorbit. Let us con-
sider its positive limit set L(C *) (see Definition 2, Section 5.4, p. 211). We
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have the following consequence of the proof of Theorem 6.3.
Corollary to Theorem 6.3. L(CT)=Q

To see this we need only note that the flow is outward in the interior of
and inward in the exterior of Q (by the monotonicity of E,? — 4,%).

e EXERCISE
3. Consider the equation
™) W+ Fu)+u=0

where F(w) = (¢ f(0) do satisfies the hypotheses of Theorem 6.3. Show that (¥)
has a unique nontrivial periodic solution. [Hint: Let #’ =y and differentiate
(*).] Note that the equation u” + e(u’?/3) — u’) + u =0, which is called the

Rayleigh equation, is of this form for ¢ > 0.

Consider again the equation
u' +eF)+u=90 (e>0) (6.25)

where F satisfies, for example, hypothesis (iii) of Theorem 6.3, but this is not
at all necessary in the sequel. The system

’

i
y2 = —&F(y;) — yy

y2
(6.26)

is equivalent to (6.25). Its orbits in the phase plane may be sketched con-
veniently by the following method, which is due to Liénard. Consider the
curve I': y, = —&F(y,) in the phase plane (see Figure 6.9). Since

dp_ _#@)+ ) (6.27)

ay, Y2
it follows that the direction field has a horizontal tangent at each point
of the curve I' distinct from the origin (at the origin we have the only
critical point of (6.26)). We may now construct the direction field at an
arbitrary point P as follows: Construct the horizontal line through P inter-
secting the curve I" at Q. Drop the perpendicular from Q intersecting the
y, axis at R The direction of the field at P is then perpendicuiar to the
segment RP,
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Y1

\J’s = —&F(yy)

Figure 6.9

e EXERCISES

4. Justify the above construction. [Hint: Show that the slope of RP is
y2/(y1 + €F(y2)) and compare with (6.27).]
5. Use this method to construct several orbits in the case that
y2?

F(yz) = _3‘ — Y2

and ¢ = 1, with some orbits starting near the origin and some ” far” away from
the origin.
6. Use the above construction to indicate that the equation

WwW—eSinu)+u=0
has infinitely many periodic solutions. Why does this not contradict Theorem

6.3?

The discussion of forced oscillations of equations of the types considered
up to now in this chapter can be carried out by using topological methods,
somewhat beyond the scope of this book; see, for example, [3,9, 20].



6.5 The Regulator Problem 261

Other approaches, particularly useful when the nonlinear system is almost
linear, are the method of Poincaré and the method of averaging mentioned in
the introduction to this chapter.

6.5 The Regulator Problem

We now study a different application. Consider a physical system gov-
erned by the real system of differential equations

y =1(y) (6.28)

having an isolated stable equilibrium point that, without loss of generality,
we can take as the origin. It is assumed that the real function f is defined in
region D containing 0. It is desired to keep the system operating as closely
to the origin as possible. The usual procedure is to linearize the system
around the origin. This consists of writing (6.28) in the form

Yy = Ay + g(y) (6.29)

where, with sufficient hypothesis on f (for example, f € C3(D)), A is the real
constant matrix that has (df;/dy;)(0) in the ith row and jth column, and the
real vector function g satisfies

lim —-= =0
ly)~o ¥l

We now drop the nonlinear terms g(y). Notice that if all the eigenvalues of
A have real parts negative, it follows from Theorem 4.3 (p. 161) that the
zero solution of (6.29) is asymptotically stable. In other words, solutions of
(6.29) that begin near the origin behave qualitatively like those of the linear

system
z = Az (6.30)

Under this hypothesis, every solution of (6.29) behaves in future time like
some solution of (6.30), if it comes sufficiently near the origin at some instant

of time 1.

We shall assume throughout that all the eigenvalues of 4 have negative real
part. Such a matrix A4 is called a stability matrix. This means that every
solution of the (uncontrolled) iinear system (6.30) tends to zero as t — +co.
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To maintain the system near the origin and to make the solutions tend to zero
more rapidly than in the uncontrolled case we add an external control. This
is done mathematically in the following way. We replace (6.30) by the
system

z' = Az — b (6.31)

where b is a constant vector and where ¢ is a scalar function that depends on
the state .of the system. The control of the system may be accomplished in
different ways that correspond to various selections of the function £&. One
such way is to determine ¢ from a scalar differential equation of the form

¢ = ¢(o) (6.32)

where ¢ = ¢z — p¢. Here p is a real constant, ¢ is a constant column vector,
and ¢” denotes the transpose of . The function ¢(¢) is calied the charac-
teristic function of the control mechanism, and ¢ is called the feedback
control signal. The characteristic function, which depends on the nature of
the control mechanism (for example, a servomechanism), is usually highly
nonlinear.

We shall assume throughout that ¢ belongs to the class C of real admissible
characteristic functions satisfying the following assumptions.

(1) ¢(o) is continuous for — o0 < ¢ < 0.
(i) ap(a) > 0 (c # 0).
(i) lim f3p() 4 = +eo.

d’l-tCO

Assumption (ii) implies that ¢(0) = 0 and the graph of ¢ lies in the first and
third quadrants. Assumption (iif) means that the graph of ¢ cannot ap-
proach the horizontal axis too rapidly as |g| — co.

The mathematical problem is to determine sufficient conditions that de-
pend only on the known matrix A, the constant vectors b and ¢, and the
constant p such that for all admissible characteristic functions ¢ in the class C
every solution z(t), £(¢) of the system

z' = Az — b¢

. (6.33)

¢ =¢6), o=cz—pt
approaches zero as t - 0. A system exhibiting such behavior is said to be
absolutely stable. We shall solve this problem by using Lyapunov’s second
method. Assuming that we have determined such conditions insures that
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errorsin the measurement of initial conditions and a wide selection of admissible
characteristic function do not change the qualitative behavior (performance)
of the system in any significant way. We may, in fact, now wish to select an
admissible function ¢ that insures that the system will satisfy some other
criterion. For example, we may ask how to choose ¢ so that a solution
z(1), &(t) of (6.33) will enter a preassigned neighborhood of the origin in
minimum time. We will not be able to investigate this important problem.

We remark that controlling the linear system (6.30) in the above manner
does not, of course, insure the control of the nonlinear system (6.28) or (6.29).
It is, however, reasonable to expect that it does insure the control of (6.28)
in a small neighborhood of the origin.

Before carrying the discussion further, it is convenient to transform the
system (6.33) under investigation to an equivalent form. Let

Xx=Az—-bé, o=c"z-pé¢ (6.34)

These equations define a linear transformation 7 from (z, £) space to (x, )
space. The matrix of this transformation, which we call M, is

M= [fT :2] (6.35)

We now make use of a result from matrix theory to the effect that if A is
nonsingular, then

det M =(—p + c"A"'b) det A4
This result is proved in Appendix 4. Since A4 is assumed to be a stability
matrix, it is nonsingular, and thus the transformation 7 is nonsingular if and
only if

p#cTA™ b (6.36)

Comparing (6.33) and (6.34), we have z' = x. Differentiating the first
equation of (6.34), we obtain, on using (6.33),

X' = Az’ — bf' = Ax — b¢’ = Ax — b¢(0)
In the same way, we obtain

¢ =¢Tx — pd(o)
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Thus (6.33) and the system

X' = Ax — b¢(0o)
¢ =e'x — pi(o) (6.37)

are equivalent, provided (6.36) is satisfied.
We note that (x,, 6,) is a critical point of (6.37) if and only if

Axo = bg(a)
"Xy = p(o,)

Since A is nonsingular, x, = A~ 'bg(e,), so that
(c"A™'b — p)ip(ao) = 0

In view of (6.36) this implies ¢(a,) = 0; since ¢ is an admissible characteristic
function, we conclude that xo =0 and g, =0. Therefore, the origin in
(x, 6) space is the only critical point of (6.37).

In the sequel we shall employ symmetric matrices. An »n-by-n matrix
B =(b;;) is said to be symmetric if and only if b;=b,,(/,j=1,...,n)
(that is, if and only if B = BT).

e EXERCISE
1. If P and Q are matrices so that the product PQ is well defined, show that

(PQ)T = Q7PT (6.38)

With each n-by-n symmetric matrix B = (b;;) we can associate the quadratic
form

™=

n
y'By = 2 2 biviy
i=1i

It

1

/ \

Example 1. If B= (D“ D”), then
b12 b22

yTBy = 15’11}’12 + 2by, y1¥2 + by, y22

Definition. T7The real symmetric n-by-n matrix B is said to be positive definite
if and only if the quadratic form y* By is positive definite.

It can be shown that for a real symmetric matrix B the eigenvalues are all
real [7, Vol. 1, p. 273], and that the matrix B is positive definite if and only if
all the eigenvalues of B are positive [7, Vol. 1, p. 309].
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¢ EXERCISES

2. (a) By applying the definition, derive a necessary and sufficient condition
for the positive definiteness of the real matrix

bu 0O
(" %)

(b) Generalize to an arbitrary diagonal matrix.
3. Show that the real symmetric matrix

bl 1 bl 2
B= (bn bn)
is positive definite if and only if by, > 0 and by,b,; — b3, > 0.
4. (a) Apply the criterion of Exercise 3 to the matrix

2 2
B =(2 3)
A /
(b) Compute the eigenvalues of B and verify the remarks immediately pre-
ceding Exercise 2.

Exercise 3 is a very special case of the following general result.

Sylvester’s Theorem. The real symmetric n-by-n matrix B is positive
definite if and only if

byy by by
b, b b

det B;=det| * 150, (j=1,2,...,n)
bli bif

For a proof we refer the reader to Appendix 4. The determinants det B;
(=1, ..., n) are called the principal minors.
We will also have occasion to use the following result, which is also of

independent interest.

Lyapunov’s Theorem on Matrices. Let A be a given constant stable matrix
and let C be a given symmetric positive definite matrix. Then there exists a
symmetric positive definite matrix B such that

ATB+ BA=—~C

The proof of this theorem is also given in Appendix 4. The motivation
of the theorem in the context of differential equations is the following.
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Consider the linear system with constant coefficients
Yy = Ay (6.39)

where A4 is a stable matrix (not necessarily symmetric). We look for a
positive definite scalar function of the form

Viv — vIT By
FAJ/ J “J

with the intention of applying Lyapunov’s second method (Theorem 5.6,
Corollary 1, p. 224), where B is some positive definite matrix (to be deter-
mined below). Now compute the derivative V'* of V with respect to the
system (6.39) (see (5.8), p. 194). We have, for any solution y(¢) of (6.39),

V() = 7 [V((e)] = OBy

= (y"()))By(t) +y (t)By (1)
= (¥y'(1)"By(t) + y'(t)BAy(1)
= (Ay(1)"By(t) + y'(1)BAy(?)
=y ()A"By(t) + y'(t)BAy(?)
= y'(1)(A"B + BA)y(t)

In this calculation we have used the easily established fact that (y7)' =
(y)" for any differentiable vector y, as well as Exercise 1. Thus

V*(y) =y'(4"B + BA)y
Thus V*(y) will be negative definite if and only if the symmetric matrix
—C=A"B + B4

is positive definite. Lyapunov’s theorem, stated earlier, tells us that for any
given positive definite matrix C and any given stable matrix 4, we can satisfy
this requirement with a positive definite matrix B.

matrices B and C, such that ATB + B4 = —C.
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Thus

~Vix0)= (¢?a)) s (¢?a)) (6.42)

Since p > d"C ~'d and C is positive definite, it follows from Theorem 1,
Appendix 4, and Sylvester’s theorem that

det S=(p —dTC 'd)det C >0

Using Sylvester’s theorem again, we see that S is positive definite, hence
V *(x, o) is negative definite on the whole (X, &) space. Sincex =0,6 =0 is
the only critical point of the system (6.37), Corollary 1 of Theorem 5.6
(p. 224) implies that the solutionx =0, ¢ = 0 of (6 37) is globally asymptoti-

¥ R i L ll. fz L 1 AN R A0, X, AN

uauy’ stable for Cvery admissible (p Since pFC T4 0.0/7) ana v. JJ) arc
equivalent and the same result holds for (6.33). |}

It will now be shown that the condition p # ¢’ 4~ !b, which was used in the
preliminary transformation, follows automatically from the main hypothesis
p >d7C ~'d of Theorem 6.4.

Corollary. If p>d"C 4, then p # cTA ',

Proof. Suppose p>d'C~'d, but p=c"47'b. Consider the linear
system

X =Ax~-Db
(6.43)

¢ =¢'x — po

By Theorem 6.4 and the remark following its statement, every solution of
(6.43) tends to zero as t — co. We use the condition p = ¢4~ !b, together
with the result from matrix theory used earlier (see (6.35)), for the (n + 1)
X (n + 1) matrix

A —b
M=(c" —p)

We recall that since A4 is nonsingular,

det M =(—p+c"A7'b)det 4
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Since p = ¢"47'b, the matrix M of the system (6.43) is singular. Therefore
the system of algebraic equations

Ax —-b=0

e’x —po =0

We now make some additional remarks concerning the conditions of
Theorem 6.4.

(i) The absolute stability condition p > d7C ~'d implies that p > 0. To
see this we note that if C is positive definite, its (necessarily real) eigenvalues

are all positive; hence the eigenvalues of C ™! (which are the reciprocals of the
eigenvalues of C) are also all positive and C ' is positive definite. The fact

Sivwd wa Giw LKaidv ka PPYSAIN W aledil 21w 2dAWwe

that p is positive is also to be expected from the expression (6.41), for
V*0, 0) = —p[p(a)]’.

(ii) The absolute stability condition p > d"C ~'d may be replaced by the
conditions that p >0 and C — dd”/p be positive definite. To see this, we
note that the equation (6.41) can be written in the form

—V*x, 6) = xT(C - ?-l:l)—T)x + (\/B ¢(o) + ﬂ‘—:)z (6.44)

e EXERCISES

1. Show that (6.41) and (6.44) are equivalent.
2. Show that — V*(x, o), as given by (6.44), is positive definite if p >0 and
C —dd7/p is a positive definite matrix.

(iii) The class of admissible controls can be widened considerably without
affecting the conclusion of Theorem 6.4. It can be shown that the system
(6.37) is absolutely stable under the hypotheses of Theorem 6.4 even if the
admissible controls are not required to satisfy the condition lim [ ¢(¢) d¢ =

|al—¢oo

+o00. See [18, p. 28). This is done by first showing that the condition
p>d7C~'d implies p > ¢4~ 'b (and not merely p # ¢4~ 'b, as shown
above). Subsequently we show, using this, that if (x(¢), a(¢)) is any solution
of (6.37), then |x(#)| < o0, |6(f)] < 00. The result then follows from Theorem
5.6, p. 224.

We conclude with some remarks about t
and the regulator problem in g

e relation between Theore £ A
e 1CLldUIOIL DECLWECIL lﬂCOl'U U.4
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e EXERCISES

5. Find a positive definite symmetric matrix B such that ATB+ BA = —C,
where

definiteness of the result.]
6. Find a stable matrix 4 such that

A"™B+ BA=-C

where

71 2 0
B=(1 3)’ C=(o 12)

6.6 Absolute Stability of the Regulator System

In order to obtain conditions for the absolute stability of the original
control system (6.33) we make the preliminary transformation (6.34) and
obtain the equivalent system,

x' = Ax — b¢(o)

(6.37)
¢ = cTx — pi(o)
provided p# ¢4 'b. We shall prove the following result.
Theorem 6.4. Let A be a given stability matrix. Let C be any positive
definite symmetric matrix and define B o be the positive definite symmetric
matrix such that

ATB+ BA=-C (6.40)

Define d = Bb—1%c. Then if p#c¢TA™'b and if p > dTC 14, the system
(6.37), and equivalently the original system (6.33), is absolutely stable for all
admissible characteristic functions. (If the system (6.37) is studied indepen-
dent of the original system (6.33), the condition p # ¢4~ 'b is not needed.)
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Progf. Consider the function
V(x, 6) = x"Bx + ©(c)

where

®(o) = f:qs(s) ds

The hypotheses on ¢ and B imply that V is positive definite on the entire
(x, 6) space and that V(x, o) —> oo as |x| and |o| become infinite. Let
(x(t), a(2)) be any solution of (6.37). Then by (5.8), p. 194, and (6.37),
(6.40),

= (X'(1)"Bx(1) + x"()BX'(t) + p(a(t))o'(1)
= [Ax(f) — b(a(£))1"Bx(t) + x"(1)B[Ax(t) — bo(a(1))]
+ pla())e™(t) — pd(o(1))]
= xT(1)ATBx(2) — b"Bx(1)(a(1)) + x"(1)BAX()
— x7()Bb(a(t)) + c"x()p(a(1)) — pLP(a(1))]*
= —xT()Cx(t) — ¢(a()[D"Bx(f) + x"()Bb — eTx(¢)
‘ + p(o(1))]

Since B is symmetric and since e"x(¢) = x7(¢)c, we have, using the definition
of d,

b Bx(t) + x7(£)Bb — cTx(¢) = 2x7(t)Bb — x"(f)c
= x"()[2Bb — ¢] = 2x"(?)d

Therefore,
V*x, 0) = —xTCx — 2¢(c)x"d — p[¢(0)]? (6.41)

We now define the real symmetric matrix

c d
S=(6T p)
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(i) The absolute stability condition p > (Bb—1¢)"C ~'(Bb —1c) of
Theorem 6.4 depends on the choice of the positive matrix C. Once C is fixed,
this determines the positive definite matrix B. This condition is least
restrictive (that is, permits the largest range of values of p) if C is chosen
such that (Bb — 1¢)"C ~'(Bb — 4¢) is a minimum. This question how to
best choose C has not been resolved in general, except when A and C are
diagonal, and we shall not go into it. See [9, p. 148].

(ii) If we permit only linear characteristic functions ¢(o) = uo for all
possible u > 0, we can obtain better conditions for global asymptotic stability.
We illustrate this with the following example.

Example 1. Consider the two-dimensional system

x'= —ax —~ buo
(6.45)
' =cx — puc
corresponding to an uncontrolled one-dimensional system x' = —ax. Here

x, 0,0, B,c, p are all scalars. We first analyze the linear system (6.45)
directly. The solution x = 0, ¢ = 0 of (6.45) is globally asymptotically stable
for every u > 0 if and only if both eigenvalues of the matrix

("

¢ —pu
have negative real parts for every u > 0. The eigenvalues are the roots of the
quadratic equation

A2+ (o + pp)d + pbe + ap) =0

It is easy to verify that these eigenvalues both have negative real part if and
only if

¢ EXERCISE

3. Verify the above condition.

If « <0, we cannot have a + pup >0 for small u >0, and thus o > 0.
If p <0, the condition o + up > 0 cannot be satisfied for large u > 0; thus
p=>0. Ifa=0,the condition a + up > 0 reduces to p > 0. It follows that
the solution x = 0, 6 = 0 of (6.45) is globally asymptotically stable for every
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u>0if and only if « > 0, p = 0 (with «, p not both zero) and bc + ap > 0.
If bc > 0, then be + ap > 0 is satisfied whenever o > 0, p > 0 and «, p are not
both zero. Thus for bc > 0 we have global asymptotic stability of the solu-
tionx =0, 0 =0of (6.45) ifand onlyif &« > 0, p = 0 (2, p not both zero). If
be =0, we must have a > 0,p > 0. Ifbc<0,welet z= —bc>0. In this
case we have global asymptotic stability if and only if ap >z, 22 0, p 2 0.

Now let us apply Theorem 6.4 to the problem (6.45). Here the matrices
B and C arescalars. The equation (6.40) becomes —2aB = - C, and thus B
is determined by B = c¢/2a. In the notation of Theorem 6.4, d = Bb — 4c =
Cb/2a — ¢/2, and the condition p > d7C ~'d becomes

>(Cb/20t~-c/2)2 b2C ¢ be

C 4C 20

To obtain the best possible result, we must choose C so as to minimize
b*Cjda* + c*/4C — bc/2a. Tt is easy to verify that this quantity is minimized
by taking C = a|c/b], and the minimum value is |bc|/2a — be/2x. Thus if
bc > 0, the best possible global asymptotic stability condition given by
Theorem 6.4 is p > 0. However, if bc > 0, the direct approach taken earlier
gives global asymptotic stability under the less restrictive condition p > 0,
provided o« > 0. The reader should note that if « =0, Theorem 6.4 is not
applicable since the zero solution of the uncontrolled system is not globally
asymptotically stable. The direct approach in the case « = 0 gives a condi-
tion p > 0 under which the control can bring about global asymptoticstability.

If bc <0, we again let z= —bc > 0. Then Theorem 6.4 gives the condi-
tion ap > |bcl/2 — be/2 = z. - This is the same as the condition given by the
direct approach.

¢ EXERCISE
4. Compare the results obtained by the direct approach and by application
of Theorem 6.4 in case bc =0.

A e ~ e form a ~ “
(lll) Iy L«Ulltl Ul bybl in Uf t}“c p Lil lU 3..)} iS l.lUl thc Ull}y PUbblblllly !ll

(6.33) we are applying a feedback —b¢ to the uncontrolled system z' = Az,
and this feedback is determined by an equation for its derivative. Such a
system is called an indirect control. 1t would also be possible to consider a
direct control, in which the feedback is determined directly. Such a control
system would be governed by a system of differential equations

z' = Az — bé

¢ = (o) (6.46)
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By the transformation ¢ = ¢’z we can show that (6.46) is equivalent to

z' = Az — bop(o) .
(6.4

g=c¢'2

Differentiation gives
o' = ¢’z = ¢"(Az — bp(0)) = ¢" Az — c"b(o)

and then (6.47) appears to have the form of (6.37), but with ¢/ 4 in place of
¢’ and ¢”b in place of p. It would appear that Theorem 6.4 can also be
applied to the direct control problem (6.47). It turns out, however, that for
the direct control problem, the derivative V'* of the relevant scalar function
introduced in the proof of Theorem 6.4 is not negative definite and some
modification of the procedure is necessary. However, we shall not discuss
this problem further; see, for example, [1, 9, 17, or 18].

¢ EXERCISES

Apply the theory of this section and obtain criteria for the absolute stability
of the following control systems

5. x' = —kx — ¢(o) where k& >0, c, p are real numbers, and ¢(o) is an
o’ =cx — pdlo) admissible characteristic function.
6. X' = —kx — ¢(0), o = cx, where k > 0, ¢ are real numbers, and ¢(o) is an

admissible characteristic function.



GENERALIZED

Appendix 1 EIGENVECTORS,
INVARIANT SUBSPACES,
AND CANONI
OF MATRICE

In the study of linear systems of differential equations with constant coeffi-
cients (Section 2.5, p. 55), we have made use of some results about matrices
and linear transformations with which the reader may not be familiar. We
therefore include the proofs of these results here for the sake of completeness.
For a more detailed account and a discussion of related topics, we refer the
reader to such sources as [7, 11, 14].

We will assume that the reader is familiar with the concepts of subspace,
linear independence, basis, dimension, eigenvalue, and eigenvector. We
recall that if T is a linear transformation of E, into itself, then corresponding
to any basis {v;, Vo, ..., v,} of E, thereis an » x n matrix A that represents
the linear transformation T with respect to this basis. The elements a;;
(i,j=1,..., n) of this matrix A are defined by

T‘Vl-= ZGJ,VJ (i=1,...,n) (1)

Corresponding to a different basis {w,, w,, ..., w,} of E, there is a different
matrix B that represents 7. It can also be shown that the matrices 4 and B
are similar; that is, there exists a nonsingular matrix P such that

B=P7'4P
274
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¢ EXERCISE

1. Establish the above relation. [Hint: In addition to (1), let Tw, = Z,b,,w,.
Since {v;} and {w;} form bases, there exist nonsingular matrices P and Q such
thatw, = %,p,;v,and v, = Z,q,,w,. Compute Tv, = T(Z,¢: W) in terms of the
{v;} in order to show 4 = PBQ. Then establish separately that Q =P 1.}

The study of canonical forms of matrices involves the choice of a basis of
E, relative to which the matrix of a given linear transformation takes a par-
ticularly simple form. Equivalently, this study involves the determination
of a matrix of a particularly simple form that is similar to a given matrix.

For example, suppose that a linear transformation T (or a matrix A) has n
linearly independent eigenvectors v, v,, ..., V, corresponding to the eigen-
values A, 4,, ..., 4,, respectively. These eigenvectors form a basis of E,,
and since Tv; = A;v; (i = 1, ..., n), the matrix of T with respect to this basis is

the diagonal matrix

A, -
Az
B = . (2)

A

Thus a matrix with » linearly independent eigenvectors is always similar to a
diagonal matrix, and we say that a matrix with » linearly independent eigen-
vectors has a diagonal canonical form. As the determination of the eigen-
vectors of a matrix and the verification that they are linearly independent is a
tedious procedure, this criterion is not very practical. A more convenient
condition that implies that a matrix can be diagonalized is given by the
following result.

Theorem 1. A set of k eigenvectors corresponding to any k distinct eigen-
values is linearly independent.

Proof. We shall prove the theorem by induction on the number k of
eigenvectors. For k = 1, the result is trivial. Now, assume that every set
of (p — 1) eigenvectors corresponding to (p — 1) distinct eigenvalues of a
given matrix A is linearly independent. Let v,, ..., v, be eigenvectors of A4
corresponding to the eigenvalues 4,,..., 4,, respectively, with 4; # A; for

> p’
i#j. Suppose that v,,..., v, are linearly dependent, so that there exist
constants ¢y, ¢z, ..., ¢,, not all zero, such that

CIV1+C2V2+"'+C‘,VP=0 (3)
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We may assume ¢; #0. Applying 4 — 1, E to both sides of this equation,
we obtain

ex{dy — 4o+ c3(A3 = ADvs + - + (A, — 4V, =0

But v,, v;, ..., v, are linearly independent by the inductive hypothesis, and
therefore c(d; — 4,)=0(j=2,3,...,p). Since ,;# 4, (j=2,3,...,p),
we have ¢; =0 (j=2, 3, ..., p), and (3) becomes ¢,v, = 0. Since ¢, # 0,
vy = 0, which is a contradiction and shows that vy, ..., v, are linearly indepen-
dent. This proves the theorem by induction. [

Corollary. If a matrix A has n distinct eigenvalues 2, ..., 1,, then the cor-
responding eigenvectors form a basis of E,, and A is similar to the diagonal
matrix

If the eigenvalues of a matrix are not all distinct, there may still be n linearly
independent eigenvectors, so that the matrix can be diagonalized. However,

this is not always possible. For example, the matrix 4 = [g (1)] has zero as

its only eigenvalue (a double root of the characteristic equation) and every
. . . 1
eigenvector is a scalar multiple of the vector (O)

To discuss the situation when there are fewer than n linearly independent
eigenvectors, we introduce the concept of generalized eigenvector. If for
some value A and some integer p > 1, there is a vector v such that

(A—AEYv=0 but (4—AEY lv%0 4)

then v is said to be a generalized eigenvector of index p corresponding to the
generalized eigenvalue 4. When p =1, 1 is an eigenvalue and v a corre-
sponding eigenvector. We note that since u = (4 — AE)*~'v # 0, and since
because of (4), (4 — AE)u = (A — AE)Pv = 0, the * generalized eigenvalue™ 4
must be an eigenvalue of 4 with a corresponding eigenvector u.

Lemma 1. Ifv is a generalized eigenvector of index p, then the vectors v,
(A — AEW, ..., (A — AEY"'v are linearly independent.
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Proof. 1If the given vectors are linearly dependent, then one of them, say
(A4 — AEY'vfor some k (0 < k < p — 1), can be written as a linear combination
of the later ones,

p-1 _
(A—AEYv= Y c(A- EYv
j=k+1
Since (4 — AE)'v =0 fo applic’atio“l of E)~!17* to both sides

c
the linear independence of the given vectors. |

Given an eigenvalue A of 4, we consider the subspace X of E, consisting of
all generalized eigenvectors corresponding to A together with the zero vector.

Let r be the largest index of any such generalized eigenvector, so that
(A—AEYx=0 for every xe X, but (4 — }F'\r 1v=£0 for some yE

m = Jm L SRanase - .

Since, by Lemma 1, X contains at least r lmearly mdependent vectors, r Is
finite (in fact, r < #). The integer r is called the index of X, and dim X > r.

The subspace X may also be described as the null space of the linear trans-
formation (T — AE)" (or the null space of the matrix (4 — AE)). Let Y be
the range of the linear transformation (T — AE)". We recall that the range
of the linear transformation (7' — AE)" is the set of vectors y € E, such that
(T'— 2EYz =y for some ze E,. By the theory of linear algebraic systems,
dim X + dim Y =#. (The reader can find this in any text on linear algebra.)
Next, we observe that X and Y are disjoint subspaces; for if v is in both X
and Y, then (T — AE)Yv=0 and v=(T — AE)a for some ueE,. Thus
(T — AE)Y*"u = (T — AE)v = 0, and thus u is a generalized eigenvector; that is,
ue X. But since r is the largest index of any generalized eigenvector cor-
responding to 4, v=(T — AEYu=0. This shows that X and Y are disjoint
subspaces of E, whose dimensions add up to n. It follows that E, is the
direct sum of X and Y (written E, = X @ Y), that is, that every vector ve E,
has a unique decomposition v=x+y, with xe X, ye 7.

The subspaces X and Y are invariant under T, that is, Tx € X for every

xe Xand Tye Yforeveryye Y. To see this we observe that X and Y are

invariant under (7' — AE), and it follows easily that they are invariant under T,

Next, suppose that the subspace X has dimension k, and let v, ..., v, be
a basis of X. Then Y has dimension (n — &), and if v, ., ..., V, Is a basis of
Y, the fact that E, = X ® Y implies that v;, ..., ¥;, ¥, 4y, ..., V, 1s a basis of
E,. Since Xisinvariantunder T, Tv,e X (i=1,..., k), andsincev,, ..., v,

is a basis of X,
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Note that the sum is from j =1 to j =k, not to j = n. Similarly,

TV,-= Z a_,,vj (i=k+l,...,!1)

n
f=k+1

Comparing these formulas to (1), p. 274, we see that the matrix 4 of T with
respect to the basis v, ..., v, of E, is a * block diagonal”’ matrix,

|4, 0]

=0 4l
Here the k x k matrix A, represents the restriction 7y of the transformation T
to the subspace X and the (n — k) x (n — k) matrix A4, represents the restric-

tion T, of T to the subspace Y.
Since for the block diagonal matrix A4

det (4 ~ E) = det (4, — AE) det (4, — 1E,)

where E| is the k x k identity matrix and E, is the (n — k) x (n — k) identity
matrix, the characteristic polynomial of A (or of T) is the product of the
characteristic polynomials of 4, and of A4, (or of T; and of T5).

We have now developed the algebraic machinery needed to prove the
following basic theorem, which is used in Section 2.5 (p. 64).

Theorem 2. Let A, A,, ..., 4 be the distinct eigenvalues of a matrix A, with
multiplicities ny, n,, ..., ny,, respectively. Then E, is the direct sum of the
subspaces Xy, ..., Xy of generalized eigenvectors corresponding to the eigen-
values Ay, ..., A, respectively. The subspace X; is invariant under A, has
dimension n;, and

(A= A4EY'x=0 forevery xeX; (j=1,...,n)

Proof. On X, the transformation T corresponding to the matrix A has
only the eigenvalue 1;. For if 4 is an eigenvalue and v a corresponding

eigenvector in X;, and if r; is the index of X;, then
0=(Ad—AEyv=(4A—- AE)y'"" (A A;E)
=A-LEN Y Av=2,v)=(A - LE""'(A— A
=(A-AYA—-LEY T iv=r = (A= A)v

and A= 4;. Thus X; contains all the eigenvectors of A corresponding to
the eigenvalue 4;, but no other eigenvector.
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nilpotent transformations. A linear transformation L such that L" = 0 but
L'~! # 0 is said to be nilpotent of index ». We recall that the subspace X is
the null space of the transformation represented by the matrix (4 — 4; E)".
Since X is invariant under (4 — 1; E), we may regard (4 — 4; E) as a linear
transformation on X; that is nilpotent of index r;.

Let L be a nilpotent linear transformation of index r on a vector space X
of dimension n. Then there is a vector u such that L'n =0 but L' 'u # 0.
By Lemma 1, the chain of vectors u, Lu, ..., L' 'u is linearly independent.
We will form a basis for X consisting of several chains of this type. If r ==n,
then we have a basis of X consisting of the vectorsu, Lu, ..., L" " 'u. Ifr <n,
let U; be the subspace of X spanned by these vectors. For every v¢ U,
consider the chain v, Lv, ..., L*~!v where each vector LPy, 0 < p < 5 — 1, lies
outside U, but L°ve U,. We choose a v that maximizes the length s of
this chain, and we let r, < r be the length of this maximal chain. Then
v, Lv, ..., L"*"'v are outside U, but Lve U;. Sinceu, La, ..., L  'uisa
basis of U,, we may write

r—1
Lv= Y ¢;L’n (%)
j=0

We apply L" ™" to both sides of this equation and use L'a = L"v = 0 to see that

r2—1 .
cj Lj+r rzu
=D

r—1
0=Lv= )Y ¢, /" "=
j=0 j

Since L' ~"u, L'""2*'w, ..., L""'u are linearly independent, ¢; =0 for j=
0,1,...,r, — 1. Thus (5) becomes

Lv = Z chju (6)
Jj=ra2
Wa AaGna
¥¥yuw Ulldlllv
r—1 .
w=v— Y ¢;L/"™
Jj=r2

Then it is clear from (6) that L"?u, = 0. On the other hand

r-1
Lku2=Lkv_.zc1Lk+J‘*r2u (k=0’ l,...,l‘z— 1)

J=rz
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Since L**i~"u is in U, but L*v is outside U;, L'u, is outside U,
(k=0,1,...,r, —1). Thus every nonzero linear combination of u,,
Lu,, ..., L'*"'a, is outside U,. Let U, be the subspace of X spanned by u,,
Lu,, ..., L"*"'a,; then U, and U, are disjoint. The direct sum U; @ U, is
invariant under L.
¢ EXERCISE
2. Prove the last statement,

If this direct sum is not all of X, we construct a maximal chain outside
U, @ U, by the same method. Continuing in this manner, we can write X
as a direct sum of a finite number of subspaces U, U,, ..., U,, each of which

is spanned by a chain of the type given above. Thus we have proved the
following result.

Theorem 3. Let L bea nilpotent linear transformation of index r on a vector
space X of dimension n. Then X has a basis of the form

LI'"‘uw,L""2u,...,Lu,u, L™ 'a,,L"*" %u,,...,u,,...,L" tu, ...,
with

r>r,>ry>"2r>1 and L™u, =0 (k=1,2,...,0

To construct the matrix B that represents L with respect to the basis given

by Theorem 3, we denote the basis elements respectively by v, v, ..., V,.
Then we have

Lv, =0, Lvy=v,...,Lv,=v,_,

Lvr+1 = 03 Lvr+2 = Veap1s oo Lvn = Vpey.

From the definition (1) of the matrix of a linear transformation with respect
to a given basis, we see that B has the form

B,

B= 3 ©)
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where B, is the r, x r, matrix given by

Appendix 1

=
I

[0 1
0
I,
| 0——0

0—0O0 |
. |
0

0

=

The Jordan canonical form of a linear transformation T is now obtained by
combining Theorems 2 and 3. According to Theorem 2, we can decompose

E, into a direct sum of subspaces X,,..., X;.

On the subspace X;, the

transformation T — A, E is nilpotent of index r;. We now use Theorem 3 to
construct a basis for the subspace X;. The matrix of the transformation
T — A; E restricted to X, has the form (7). Thus with respect to this basis,
the matrix of the restriction of T to X; has the form

where C; is the r; X r; matrix C;.

This gives the following important result.

Cy

4 1 0—0
0 "0

, I
0——0 ¥

G

Theorem 4. (Jordan Canonical Form.) Let T be alinear transformation of

E, with eigenvalues A, .

.., Ax of multiplicities n,, ..

., hy, respectively. Then

there exists a basis of E, relative to which T is given by a Jordan canonical matrix

A,
A4,

-
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Here A;isann; x n; matrix that has all diagonal elements equal to A;, and that
has chains of 1’s separated by single O0’s immediately above the main diagonal,
and all other elements zero.

Corollary. Every matrix is similar to a Jordan canonical matrix.

It can also be shown that, except for the order of the blocks A4;, the Jordan
canonical form is unique.




- CANONICAL FORMS
Appendix OF 2x2 MATRICES

We consider a 2 x 2 matrix 4, which we regard as the coefficient matrix of
a two-dimensional linear system with constant coefficients y' = Ay. The
change of variable y = Tz, where T is a nonsingular matrix, transforms this
to the system z’ = T~ 1ATz. Our object is to choose T in such a way as to
make the coefficient matrix T~ ! AT as simple as possible. A simplification is
always possible, as shown in the following result, which incidentally is entirely
independent of differential equations and is purely algebraic.

Theorem 1. Let A be a 2 x 2 matrix. Then there exists a nonsingular
2 x 2 matrix T such that T~ AT is one of the following:

o (o 2) (4 # 1)

(A0
(1) lo A)
(iii) (g }1)

Proof. Case (i). Suppose A has distinct eigenvalues 4, 4. Let x # 0 be
an eigenvector corresponding to A and Iet y #£ 0 be an eigenvector corre-
sponding to u; that is, x is a nonzero vector such that Ax=Ax and yis a
nonzero vector such that Ay = uy.
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We define the 2 x 2 matrix 7"whose columns are the (column) vectors x and
y, which we write

X
r=my=(3 )

In order to show that 7'is nonsingular, we must prove that x and y are linearly
independent. Suppose not; then there exist constants ¢;, ¢, such that

X+ c,y=0

Since x and y are both different from zero, both ¢; and ¢, are different from
zero. Thus, we may write

multiplying both sides on the left by A and using Ax = Ax, Ay = uy, we
obtain

Ax=Ax=—=Ay=—-=py
Cy 1
Since Ax = —(c,/c,)Ay, this becomes
€2
—Ay=——uy
€y 1

This is impossible unless either ¢, =0 or 4 = g, both of which are false,
Therefore, x and y are linearly independent, and T is nonsingular.
It is easy to verify that

Thus,

T AT = T Y(Ax, Ay) = T~ '(Ax, nuy)
_ L ( 2 .—yz)(lxl uyl) - (l 0)
X1¥2 — Xy \—X2 Xy J\Ax; puy, 0 wu

This completes the proof in Case (i).
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Case (if). Suppose A has a double eigenvalue A for which there are two
linearly independent eigenvectors X and y. Then defining 7 exactly as in
Case (1), we see that T is nonsingular because its columns are given linearly
independent. The same calculation as in Case (i) (but with u replaced by 1)
shows that

iy (2O
TAT_(O,1

Case (iii). Suppose A4 has a double eigenvalue A but any two eigenvectors
are linearly dependent (that is, the space of eigenvectors has dimension 1).
Let v be a nonzero vector which is not an eigenvector of 4 and let

u=(_(A4— AE)v

Since v is not an eigenvector, and A — AE is not the zero matrix, u # 0; we
will show that u is an eigenvector.

We assert that the vectors u and v are linearly independent. Suppose not;
then there exist constants ¢;, ¢, such that

cqu+c,v=10

Since u and v are both different from zero, both ¢, and ¢, are different from
zero. Using the definition of u and the fact that ¢, # 0, we may rewrite
this as

(A= AE)Y +c,v=0

or

cl[(A—AE+9E)v]=0

C1

This says that 4 — ¢,/c, is an eigenvalue of 4. Since 4 is the only eigenvalue,
¢, = 0, which is a contradiction. Thus, u and v are linearly independent and
span the space E, .

Let x be any eigenvector of 4; we may therefore write

X = qu + bv
If a =0, then multiple of v, and therefore v is an eigenvector (but by
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0=(A~AE)x=a(A — AE)u + b(A — ZE)v

~a(4 - 2B+ bu=al (4 - ”*gE)“]

This says that 4 — b/a is an eigenvalue, and since A is the only eigenvalue
b =0. Therefore, x is a nonzero multiple of u, and u must be an eigenvector.

Now, we define

T=(uv)= (zl "1)

2 U

As in Case (1),

1 F- o \
T-1 — . Y2 Y1
Uiby — U0 \TU2 Uy

We have, using (4 — AE)y = Av — 1v,

T AT = T~ '(Au, Ay)
= T~ 1(An, u + Av)
= T '(Au, iv) + T~1(0, u)

AT — (”2 “”1) 0 ”‘)
U0y —uyv, \—uy uy f\0 u,

0 1)\ (A1
“E+(o 0)“(0 /1)

i

This completes the proof of the theorem. With reference to the above proof,
the reader should note that in showing that u = (4 — AE)v is an eigenvector
we have actually shown that (4 — AE)*w = 0 for every vector w in E,.
For this reason we say that 4 — AE is nilpotent on £, . |

We remark that if 4 is a real matrix and if its eigenvalues are real, then the
matrix T constructed in each of the three cases above is real. However, if 4
is real but has complex eigenvalues (necessarily complex conjugates), the
matrix 7 will not be real and it is of interest to learn the simplest form of
T~ ! AT which can be achieved with a real matrix 7. The answer lies in the
following result.
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Theorem 2. Let Abeareal2 x 2 matrix with complex conjugate eigenrvalues
o+ iffi. Then there exists a real nonsingular matrix T such that

T AT = (_“ﬁ f)

Proof. let u+ jv be an eigenvector corresponding to the eigenvalue
o + iff, where u and v are real. If v = 0, so that this eigenvector is real,

Au = (x + if)u

the left side of which is real and the right side of which is not real. Thus,
v # 0, and a similar argument shows that u # 0.
We define the matrix T with columns u and v,

U v
T=(uv)= (u; t‘:)

In order to show that T is nonsingular, we must show that u and v are linearly
independent. Suppose not; then there exist real constants ¢,, ¢, both different

from zero such that
cqu+c,vy=0

Since ¢; # 0, and A(u + iv) = («x + if)(u + 7v), we have

A(u+iv)=A(— g-%v+iv) =(a+iﬁ)(— %%-1-1')\1
thus
Av = (a + if)y

Then v is a real eigenvector, and as remarked above this is impossible. Thus
u and v are linearly independent and T is nonsingular.
Taking real and imaginary parts in the equation

A(a + iv) = (o + if)(u + iv)
we obtain

Au=oun — fiv Av = fu + av
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Therefore,
AT = (Au, Av) = (aun — fv, fu + av)

and

leAT=—-—1-——( Uy -‘Ul)(aul ""'Bvl ﬁul +°w1)
U0y =ty vy \—tz Uy [\owy — Pv,  Pu; + av,

- (fﬁ ﬁ)

This completes the proof of the theorem. |}



3 THE LOGARITHM
Appendix OF A MATRIX

In our discussion of linear systems with periodic coefficients (Section 2.9,
p. 96), we made use of the fact that every nonsingular matrix has a logarithm.
This appendix is devoted to a proof of that result, and to some remarks
concerning the possibility that the logarithm of a real matrix may not be
real.

Theorem 1. Let B be a nonsingular n x n matrix. Then there exists an
n X n matrix A (called a logarithm of B) such that

‘=R (1)
Proof. 1f B is similar to B, so that T~ !BT = B for some nonsingular
matrix T, and if exp A= B, then
B=TBT '=TeAT™! = exp (TAT™)

and thus TAT ! is a logarithm of B. Therefore, to prove Theorem 1, it is
sufficient to prove (1) when B is in a suitable canonical form. Thus if
ALy ..., A are the distinct eigenvalues of B, with multiplicities n,, ..., n,
respectively, we may assume that

B,
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where
(B, - 4LEN=0 (=1...,4

(See Theorem 2, Appendix 1.) Here, £, denotes the n; x n; identity matrix.
Thus we may write

1
J j-j

Using the power series expansion

(=1
1 P

log(1 + x) = x? Ix] < 1

s

formally, we write

A

J

1
= log B; = E, log 4; + log (E,,J. + — ZJ-)

,1 Z 1)P+l AP
=E, log4; + (—~)
p '1_;‘

n,—l(_l)p-!-l ZN\P ‘
=E,log4;+ (2 =10 2)
p=1 P g

with the power series terminating because Z;/ = 0. Note, since B is non-
singular, that A; # 0,so thatlog 4, is defined. If we compute exp [log (1 + x)]
by expanding the power series for log (I + x),substituting into the power series
for the exponential function, and then rearranging terms, we obtain simply
('1 + x). If we pcuuuu the same operauons with ulcu,uu:a, we obtain the
same terms, and there is no convergence problem since the series (2) for

A; =log B; terminates. Thus we have

n;j— 1 -1 p+l ZA\P
exp (4;) = exp (E,, log 4;) f:xp[j =D (__f) ]
p=1 P A

J
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We now write

rAl
Az

where 4, is defined by (2). Then

Cexp A4,
exp A, B,
eXp A = . = . =B

exp A,

and the theorem is proved. |

The reader will note that the matrix 4 in Theorem 1 may not be real even
though B is real. Only if all the eigenvalues of B are real and positive will
the matrix 4 given by Theorem 1 be real. It can be shown that if B is a real
matrix, then B2 must have a real logarithm. The proof of this fact depends
on the real canonical form for matrices, which we have not discussed, and
we refer the reader to [7].

We conclude this appendix by giving explicit expressions for the logarithm
of a 2 x 2 real matrix B in canonical form. As pointed out in the proof of
Theorem 1, once we have explicit expressions for the logarithm when B is in
canonical form, we can easily compute the logarithm in general. As shown
in Appendix 2, a nonsingular real 2 x 2 matrix is similar to one of the
following three real matrices:

@ B=(* (L #0, u+0)
0 u

(ii) B = (3 D (4 #0)

(iii)B=(_‘fﬁ g) (8 # 0)

We consider each of these cases in turn.
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Case (). We take 4 = (8% O ) and then
0 logu

thus

If either A or u is negative, 4 is not real. However

A2 0
7=(0 )
0 u?

and

log 42 0
oe )= (8" 1)

is real since A2 >0, u2 > 0.

Case (ii). We take

_(logA 0O 0
A‘( 0 logl)+

O xlm=

then

bl By

=
\“w/
| S——

won=( )00 9+

L T

1
_(* O\ 3)_
=(¢ 9 -

1

Do
—
fi

>~
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If A <0, 4is not real. However,

2 2
2 _
=0 %)

and

is real. It is easy to verify that

2
( " )=(g )y
0 log A2

Case (iii). We take

log (o + 2)'/2 tan—1 8
A= =4, +4,

_.tan—l g ]Og (az + ﬂZ)lIZ

where
4 = [log (a® + B%)1/2 0
1= 0 log (o + B2)"/2
0 tan~! E.I
A= x
i —tan~1 P 0
] p 4

Since, as is easily verified, 4,4, = A, A;, we have exp (4) = exp (4,) exp (4,).
But

az + Bz)uz 0
€xp (Al) = [( 0 (QZ + '32)112]

= (az + ﬁ2)1/2E
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and as we have shown in Exercise 25, Section 2.5, p. 73,

cos (tan‘1 g) sin (tan'l g)-
_-sin (ta\m"l g) cos (tan'l g)_

Since cos (tan~! §/a) = a/(@ + 632, sin (tan™* Bla) = Bi(o® + B2, we
have

exp (4;) =

1
w4 =gy

Thus

exp(4) = exp (A) exp(dp) = (*; 7) =

and

log (a + pg2)'/2 tan~! B
log B = *

_tan—l g log (az + ﬁ2)1/2

We note that in this case log B is real.




SOME RESULTS FROM
Appendix 4 MATRIX THEORY

This appendix contains the proofs of three theorems about matrices that
are used in the study of the regulator problem in Chapter 6. Although these
theorems are of interest in their own right and have algebraic applications
and ramifications, we shall only prove what is needed for the applications
in Chapter 6.

I. The first result is concerned with the evaluation of determinants of a
particular form.

Theorem 1. Consider the (n + 1) x (n + 1) matrix.
A -b
M=
[cT —p]
where Aisann x nmatrix, p is a scalar, bandc are n-dimensional column vectors,

b, €y

bn cn
and ¢ is the transpose of ¢.  Suppose that A is nonsingular. Then

det M = (—p + cTA~'b) det 4 ()
296
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Proof. We prove the theorem by induction onn. If n =1, so that 4 # 0,
b, ¢, p are all scalars, then M is a 2 x 2 matrix and then (using 4 = det 4,
A ldetA=1)

det M= —Ap+¢'b=(—p+cTA7'b)det 4

Thus (1) is true for n = 1. Assume that (1) is true forany (n — ) x (n — 1)
matrix M, any (n — 1)-dimensional vectors b, ¢, and for any scalar p. We

congider

WS A A WA

e
AR

where r = A™'b. Expanding the determinant of this matrix by cofactors of
the first row, we obtain

"1 0 0 r ]
0 0 ra
det [ET _r ]=det :
¢ 0
0 o 1 r,
..cl ) Cy _p.J
1 0 0 r,]] 0 1 0 0"
0 _ 0 :
=det| © .- 70 ¢ |H(=lrrde| s f o - T
o - 0 1 r, o 0o --- 0 1
L C2 Cn — P ..c.l C, Cn
(3)

We now apply the induction hypothesis to evaluate the first determinant
using A = E, the identity matrix; thus its value is —p — Y., ¢;r;. The
second determinant on the right-hand side of (3) may be evaluated by ex-
panding by cofactors of its first column; its value is (—1)""'c;. Substituting
the results into (3), we obtain

=-p-Yer=—p—cr=—p+c’dA™d (4
J=1
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Taking determinants of both sides of (2), and using

A"l 0

det [0 1

] = det (4™) = (det 4)~!

as well as (4) yields
(det A)"'det M =—p+cTA™ D
This proves (1) and completes the proof of Theorem 1.
II. The second result is Sylvester’s theorem on positive definite matrices.
Theorem 2, Let

byy v by,

bnl Tt bun

be a real symmetric matrix. Then B is positive definite if and only if each of the
principal minors

by, - bu
det B, = det (G=1,...,n)
by *++ by

is positive.

Proof. We prove the theorem by induction on n. It is obviously true for
n=1. Now suppose thatitistrueforn =p. Considerthe(p+ 1) x (p +1)
symmetric matrix

d bl.p+1

B . .

By =|F ] d=|: - (5

pt1 I:dT bp+l,p+1 b . )
pptl

Let x be a(p + 1)-dimensionai column vector with components x;, X, ,..., x,,
X,+1, and let y be the p-dimensional column vector formed from the first p
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components of x, so that

X

=] =i 7
y - X [xp+l]

Xp
A straighttorward calculation shows that
XTB, X =Y B, ¥ + X538y + X, Y+ Xp 4 1bp iy pa1¥pas (6)

It is clear from (6), with x,,, = 0, that B, must be positive definite if B,,,
is to be positive definite. We may also rewrite (6) in the form

xTBp+ 1X = (yT + xp+ ldTB; I)Bp(y + xp'l- IB; ld)
+ (bps1,pe1 —47B )],

From this it is clear that B, ,, is positive definite if and only if B, is positive
definite; that is, if and only if

det B > 0,det B, >0,...,det B,> 0
and if and only if
boi1,p+1 — 4B 'd>0
But by Theorem 1 above,
det Byyy = (b,+1,,+1 — d"B, 'd) det B,
Thus B, ., is positive definite if and only if
det B; >0, det B, >0, ...,det B, >0, det B,,,; >0
which proves the theorem by induction. |

III. The final result needed is Lyapunov’s theorem on the solvability of
matrix equations.

Theorem 3. Let A be a given stable matrix and let C be any positive definite
symmetric matrix. Then there exists a unique matrix B such that

AB+BAT = —-C @)
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Moreover, the matrix B is symmetric and positive definite.
Proof. We begin by solving the matrix differential equation

Y =AY+ YAT (8)
(see Exercise 11, p. 105). We let

Y(1) = U(t) exp (A71)
where U is a matrix to be determined. Then (8) becomes

Y'=U'exp(AT) + Uexp (ATHAT = AU exp (A7) + Uexp (ATHAT
or

U'=AU (9)
The solution U(t) of (9) with U(0) = C is

U@ =e'C
(Theorem 2.7, p. 57). Thus the solution Y(¢) of (8) with Y(0) =Cis

Y(1) = exp (A1) Cexp (471 (10)

The next step is to use (10) to solve the matrix equation (7). We define
the matrix

B= fmexp (A1)C exp (A1) dt = fw Y(f) dt (11)

provided this integral converges; here Y(¢) is given by (10). Before making
use of the matrix B, we must show that under our hypothesis the integral
converges. Since A4 is assumed to be a stable matrix, all of its eigenvalues
have negative real part. Theeigenvalues of A7 are the same as the eigenvalues
of 4. By the Corollary to Theorem 2.10, p. 81, there exist constants K > 0,
¢ > 0 such that
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Thus

lexp (A1)C exp (ATt)| < |exp (A1) {C] |exp (A71)|
< K2|C| exp (—20t)

This proves the convergence of the integral (11).
We next show that the matrix B provides the solution of the system (7).
Thus

AB+BA"=Af Y(z)dz+f Y(t) dt AT
(¢ 0

= “TAY() + Y()AT] dt = f Y1) dt = lim Y(R)— Y(0)
[0

4] R+ w

where we have used the fact that Y(¢) defined by (10) satisfies (8) and that
Y(0) = C. The convergence of the integral (11) implies lim Y(R) =0,

R—w

and thus AB + BAT = — Y(0) = —~C, and therefore B is a solution of (7).
We may regard (7) as a system of n? algebraic equations for the elements

of B. Since this system has a solution for every nonhomogeneous term C,

the determinant of its coefficients is nonzero, and therefore this solution is

unique.
Finally, we must show that the solution B given by (11) is symmetric, and
positive definite.  Since € is symmetric,

Y7(t) = (exp (ANC exp (A71))T = exp (AN)CT exp (471)
= exp (ANC exp (471) = Y(1)

and BT = [@ Y7(t) dt = [§ Y(r) dt = B. 1f x is any nonzero vector,

[= 2]
x"Bx = x" J( exp (A1)C exp (ATt) dt x
0

= " (exp (ATHX)"Clexp (ATH)x) dt
0

Since C is positive definite, (exp (476)x)T C (exp (471)x) > 0, and therefore
x"Bx > 0. This completes the proof of the theorem. |
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A priori bound, 37
Abel’s formula, 46, 48, 57
Abel’s theorem, 100
Absolute stability, 267-273
Acceleration, 1
due to gravity, 2
Alr resistance, 3, 5, 8, 9, 201
Almost linear system, 144, 160-171,
184, 185, 201, 261
perturbed, 237
stability of, 143-151, 160-171
Amplitude, 238, 239, 244, 245, 251
Asymptotic behavior of solutions,
159, 165, 178
of linear systems with constant
coefficients, 80-83
Asymptotic equivalence, 144, 159,
178-183
Asymptotic stability, 147, 150-152,
155, 159, 160, 169, 170, 180,
184, 197, 199, 202, 205, 209,
232, 234
criteria of, 185
of equilibrium solution, 146
extent of, 215-228
global, 215-228, 271, 272
region of, 149, 168, 187, 196, 201,
215-220, 222, 223

uniform, 147, 169
of unperturbed system, 169
of zero solution, 150, 151
Attractor, 95, 103, 154, 163, 164
Autonomous equation, 149, 188
Autonomous perturbations, 183
Autonomous systems, 83-95, 145,
149, 150, 159, 185, 192, 193,
195, 209, 211, 234, 256
nonlinear, 160
perturbed, 163
stability of, 192
two-dimensional, 163, 171
Averaging, method of, 237, 261

Basis, 62, 63, 76, 274, 275, 280, 281
for vector space, 42

Bessel equation, 180

Bessel functions, 180

Boundary, 25

Boundary points, 25

Boundedness, 223, 225

Canonical form, 77, 78, 171,
274-283, 290, 292
diagonal, 76, 275
Jordan, 73-80, 279, 282, 283
real, 292
of 2 x 2 matrices, 284-289
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Cauchy convergence criterion, 56,
131
Center, 95, 103, 164
Chain rule, 110, 123, 194
Change of variable, 73
Characteristic exponents, 98-101,
159
Characteristic function, 262
admissible, 262, 263, 264, 267,
269, 273
linear, 271
Characteristic polynomial, 60, 68,
71, 714, 152, 155, 278, 279
Characteristic roots (see Eigen-
values)
Characteristic values, 60
Circuit, 10
Coefficient matrix, 67, 70, 75, 95
Cofactors, 35
Column vector, 15, 33, 34, 45
Comparison test, 116
Components, 34
of region, 197, 211
of set, 211
Conditional stability, 171-178
of zero solution, 172
Conservation of energy, 189
Conservative mechanical system,
188, 189
Constant coefficients, 55
Continuation, 130, 131, 133, 192,
206
of solutions, 127-135
Continuity, 24-30
of solutions, 28, 30, 108
of vector functions, 19
Continuous dependence on initial
conditions, 137, 148
Continuous dependence on initial
values, 212
Control, 261
admissible, 270

Controllability, 237
Control system, 267, 272
Control theory, 223
Convergence, 19
absolute, 116
of successive approximations, [14
uniform, 116, 134
Critical points, 85, 86, 90, 95, 145,
147, 160, 187, 191, 192, 200,
201, 211, 252, 264, 269
isolated, 191, 197
stability of, 184
unstable, 253
Current, 9

Damping, 225, 251
Damping term, 191
Dependence on initial conditions
and parameters, 135-142
Derivative
of vector function, 20
of V with respect to system, 193,
194, 209
Determinant, 34, 35, 47-49, 154,
155, 265, 296
Determinism, 23
Diagonal matrix (see Matrix)
Differentiability, of vector func-
tions, 19
Dimension, 65, 274, 277-279, 281
of vector space, 41
Direct control, 272
Direct control problem, 273
Direct method, 187
Direct sum, 277, 279
of subspaces, 64
Direction field, 259
Dirichlet, 187
Dissipation of energy, 191
Distance between two vectors, 19
Distance function, 19
Dynamical system, 85



Eigenvalues, 60-65, 70, 71, 74-76,
81, 90, 95, 98, 100, 104, 105,
151-153, 156, 158, 159,
161-165, 171, 172, 179-181,
183, 185, 200, 261, 264, 265,
270, 271, 275-279, 287, 284,
300

complex, 287, 28

o0

distinct, 76, 78, 276
double, 77, 286
generalized, 276
of matrix, 60
multiple, 77, 81, 153
multiplicity of, 65, 66, 68, 76, 80,
278, 282, 290
multiplicity »;, 64
multiplicity two, 61
simple, 77
Eigenvector, 61-63, 75, 76, 274, 275,
278, 279, 287, 288
corresponding, 61-63, 276
generalized (see Generalized
eigenvectors)
linearly dependent, 275, 277, 286
linearly independent, 62-64, 75,
76, 18, 275, 276, 286
Electrical system, 205
Elliptic integral, 245
Energy function, 238, 245, 247, 248,
252, 254
Equation of motion, 5, 8, 9
of pendulum, 6
Equation of nth order, 14
Equilibrium, 4, 9, 107, 146, 151, 168,
169, 197
Equilibrium point, 145, 190, 191,
197, 250
asymptotically stable, 147
conditionally stable, 178
stable, 147
unstable, 147, 178, 245
Equilibrium position, 3, 8, 146, 196
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Equilibrium solution, 145, 198
asymptotically stable, 146
stable, 146
unstable, 146

Equilibrium state, 86, 145

Equivalent integral equation, 156

Equivalent system, 13, 14, 73, 95,

153, 220, 223, 224, 228, 230,
233, 248, 267
of first-order equations, 54, 105
of n first-order equations, 54

Euclidean distance, 19

Euclidean length, 17, 18

Euclidean norm, 24, 205

Euclidean space, 10, 16, 26

Existence of solutions, 24-30,

108, 111, 119, 120, 130, 133,
145

bounded, 179

of initial value problem, 118

periodic, 101, 237

of scalar differential equations,
108-122

Existence problem, 23

Existence theory, 108-142
for systems of first-order equa-

tions, 122-124

Existence and uniqueness
for linear systems, 37-39
of solutions, 29

Experimental error, 164

Exponential of matrix, 55, 79

Feedback, 272

Feedback control signal, 262
Feedback electronic circuit, 251
Finite basis, 42

Fixed point theorem, 237
Floguet’s theorem, 96, 97, 185
Forcing term, 51

Forcing vector, periodic, 102
Friction, 251
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Function
linear independence of, 41
vector-valued, 20, 21
Function ¥, 193, 195, 201, 202, 209,
211, 213, 217, 221, 223, 224,
227, 228
negative definite, 193, 195, 201,
202, 224, 229, 231, 232, 234,
266, 269
positive definite, 193, 195, 196,
198, 200, 202, 205, 207-209,
211, 214, 215, 217, 221, 224,
228-232, 234, 268, 269
Fundamental matrix, 45, 46, 48-55,
57, 60, 62, 64, 66, 67, 69-72,
74,78, 80, 86, 96, 99, 102-103,
151, 152, 159
Fundamental set of solutions, 44
Fundamental theorem of calculus,
24, 53, 109, 241

General solution, 55, 71, 73, 104,
105, 107

Generalized eigenvalues, 276

Generalized eigenvectors, 274-283

index of, 277

Global result, 134

Gravitational attraction, 3, §

Gravitational force, 2

Gravity, 8

Gronwall inequality, 30-32, 38, 125,
126, 136, 137, 140, 156, 157,
162, 165

Hamiltonian form, 189

Hamiltonian systems, 169, 189

Homogeneous equation, 54

Homogeneous system (see Linear
systems)

malratla low: 2 & 7 0
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L'Hoépital’s rule, 203

v

Identity matrix, 34, 55, 77, 102
Improper integral, 240
Improper node, 90, 93
Index, theory of, 237
Indirect control, 272
Inductance, 10
Infinitesimal upper bound, 231,
232, 234
Inhomogeneous system (see Linear
systems)
Initial condition, 4, 9, 21-23, 26, 30,
37, 38, 43, 53, 54, 108, 110,
124, 134, 135, 162, 176, 192,
205
continuity of solution with respect
to, 24
Initial displacement, 247
Initial position, 250
Initial value, 9, 196
Initial value problem, 9, 11, 26-28,
72, 109, 110, 124, 126, 145,
175, 192
Initial velocity, 3, 247, 250
Instability, 152, 196, 205
of equilibrium solution, 146
Integrability of vector functions, 19
Integral equation, 109-111, 116-118,
124, 130, 131, 137, 141, 162,
173, 174, 176, 179, 182,
183
equivalent to initial value prob-
lem, 110
of Volterra type, 109
Integral of system, 189
Invariance under translations of
time, 84, 85, 147, 192, 205
Invariant, 76
Invariant set, 208-216, 234
Invariant subset, 215, 218, 222, 224,
235, 236

oo

wvariant crhong ca
nvariant subspace,
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Inverse matrix (see Matrix)
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Jordan canonical form, 73-80, 279,
282, 283
Jordan canonical matrix, 282, 283

Kinetic energy, 188, 194, 197
Kirchoff’s law, 9, 106

Lagrange, 187
Lagrange stability, 223, 224
Lagrange’s theorem, 188, 190
Laplace transform, 82
Levinson, N., 180
Liénard, 259
Liénard equation, 191, 201, 202,
205, 209, 214, 217, 219, 224,
225, 237
periodic solutions of, 250-261
Limit cycle, 222
Limit point of orbit, 211
Limiting autonomous system, 235,
236
Linear approximations, 187
Linear combination, 41
of solutions, 44
of vectors, 42
Linear dependence, 41
of functions, 41
Linear differential equations
first-order, 12
second-order, 13
Linear homogeneous scalar equa-
tion, 45
Linear independence, 41, 44, 64, 274
of functions, 41
Linear systems, 34, 37, 65, 66, 80,
95, 96, 133, 149, 151-159,
161, 200
algebraic, 277
control of, 263
with constant coefficients, 55-74,
82, 84, 89, 98, 185

Index 369

of differential equations, 33
homogeneous, 39-53, 55, 72, 102,
107
algebraic, 63
associated, 54
corresponding, 51, 54, 55
of first-order equations, 50
inhomogeneous, 54, 55
nonhomogeneous, 51-55, 101,
104, 107
of algebraic equations, 102
with periodic coefficients, 50,
96-107, 185, 290
stability of, 143-159
stability properties of, 187
two-dimensional, 147
with constant coefficients, 89
unperturbed, 169, 170
with variable coefficients, 155
Linear unperturbed equation, 170
Linearization, 144
Linearized system, 200
Linearly dependent eigenvectors,
275, 271, 286
Linearly dependent set of vectors, 41
Linearly independent columns, 48
Linearly independent eigenvectors,
62-64, 75, 76, 718, 275, 276,
286
Linearly independent points, 43
Linearly independent set of vectors,
41-44
Linearly independent solutions, 43—
45, 54,62, 64,69, 70,153, 172
of homogeneous equations, 54
Liouville transformation, 141
Lipschitz condition, 112, 115, 117,
119, 123, 125, 126, 139, 140
Lipschitz constant, 113, 123, 140
Local existence theorem, 114
Local problem, 108
Logarithm of matrix, 50, 290-295
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Lur’e problem, 237
Lyapunov, A. M., 143, 187
Lyapunov second method, 150, 169,
187-236, 262, 266
Lyapunov theorem, 191-208, 231
on matrices, 265, 266, 299
proof of, 205-208

Mass, 7, 14
Mass-spring system, 1-7, 9, 22, 201
coupled, 7-10, 30
Mathematical model, 1, 3, 6, 23, 24,
108
for mass-spring system, 5, 22
Matrix, 15, 33, 37
almost periodic, 159
block diagonal, 76, 278, 279
constant, 50, 55, 72, 99
constant diagonal, 62
constant nonsingular, 89
continuous, 40
diagonal, 58, 75, 77, 265, 275, 276
elementary operations of, 34
inverse, 35
Jordan canonical, 282, 283
nilpotent, 80, 287
nonsingular, 35, 50, 52, 56, 77, 90,
97, 274, 275
nonsingular constant, 49, 50, 62,
73, 96
periodic, 96, 159, 184-186
positive definite, 271, 298
rank of, 68
real nonsingular, 97
real symmetric, 268
similar, 74-76, 89
similarity of, 73-80
stable, 265, 267, 299, 300
symmetric, 264, 298
positive definite, 264-267,
299-301
triangular, 62

Matrix differential equation, 105,
106, 300
Matrix function, 36
continuous, 36
differentiable, 36
integrable, 36
Matrix norm, 35, 36, 56
Matrix polynomial, 80
Mean value theorem, 122, 160, 173,
184, 240
Mechanical system, 106, 205
Minimal polynomial, 153
Minimum potential energy, 188
Model, 9
Momentum, 2
Motion, 3-6, 22, 84, 147
Multiplicities, 185
Multipliers, 98, 99-102, 159, 185,186

Natural frequencies, 107
Negative semiorbit, 192
Newton, 1
Newtonian model, 1, 2
Newton’s first law, 1
Newton’s second law, 1-3, 9
Nilpotent, 79
Nilpotent matrix, 80, 287
Nilpotent transformation, 65, 280
of index, 280, 281
Node, 103
Nonautonomous system, 147, 150,
193, 228-236
Nonhomogeneous system (see
Linear systems)
Nonlinear systems, 144,159, 164, 200
control of, 263
Nonlinear term, 161, 163, 169, 172
Nonsingular matrix (see Matrix)
Norm, 26, 38
properties of, 38
of vector, 17
Null spacey 277




Optimal control, 237
Orbit, 85, 87, 90-93, 95, 164, 192,
193, 197, 200, 211-213, 259,
260
of solution, 85
Orbital stability, 186
Oscillations
forced, 260
self-excited, 250-261
Oscillator
damped linearized, 194
linear damped, 251
linear undamped, 250
nonlinear undamped, 250
undamped, 238-244
Osgood condition, 140
Osgood uniqueness theorem, 140

Particle, 1, 2
Particular solution, 55
of nonhomogeneous system, 72
Path, 85
Pendulum, 6, 7, 244-250
damped, 191, 237
damped simple, 163, 164
simple, 22, 23, 201
simple undamped, 145, 146, 177,
197, 244-246
undamped, 237
Pendulum equation, 84
nonlinear, 89
simple, 89, 200
simple undamped, 86
Period, 238, 239, 244, 245, 250
Periodic matrix (see Matrix)
Periodicsolution, 102, 180, 193, 222,
238, 239, 245, 248, 251, 256,
260
asymptotically stable, 184, 185
of autonomous systems, stability
of, 186
of Liénard equation, 250-261
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of nonlinear periodic systems,
stability of, 144
stability, 183-186
Perron, 161
Perturbation, 89, 169, 232
Perturbation term, 89, 95, 164,
171
Perturbed equation, asymptotic
stability of, 170
Perturbed system, 89, 90, 161, 164,
169, 170
Phase, 85
Phase plane, 86, 154, 164, 171, 190,
222, 239, 253, 254, 259
Phase portrait, 87-91, 93-95, 103,
164, 171, 199, 200, 245, 248-
250
of linear two-dimensional sys-
tems, 88
Phase space, 83-95, 145, 149, 160,
192, 196
Physical approximations, 22, 23
Physical assumptions, 3
Physical phenomena, 3
Physical problems, 6
Physical system, 1, 5, 22, 251, 261
Poincaré, H., 143, 161
Poincaré method, 261
Poincaré phase plane, 85
Poincaré-Bendixson theory, 237
Polar coordinate, 94
Polar form, 94
Positive limit set, 211-214, 258
Positive semiorbit, 192, 210, 211,
213, 258
Potential energy, 188-191, 194, 197,
200
Potential function, 188
Principal minors, 265, 298
Proof by induction, 113, 115, 134,
276
Proper node, 91
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Quadratic form, 264

positive definite, 264
Qualitative phenomenon, 144
Qualitative properties, 143

Range, 279
of linear transformation, 277
Rayleigh equation, 259
Reactor dynamics, 223, 227
Region, 10, 21, 24, 28
(see also Asymptotic stability,
region of)
Regulator problem, 237, 261-267,
270, 296
Regulator system, absolute stability
of, 267-273
Resistance, 10
Rest position, 187
Restoring force, of a spring, 197
Routh-Hurwitz criterion, 154, 155
Row vectors, 34

Saddle point, 92, 95, 103, 171, 200,
219
of linear unperturbed system, 178
of perturbed system, 171
Scalar differential equation, 39,
47-49, 71, 95, 99, 100, 103,
108, 122, 151-154, 171, 205,
233
asymptotically equivalent, 179
higher-order, 30
linear, 51
of order n, 54, 122
of second order, 54, 71
Scalar linear equation, 51
Schwarz inequality, 18, 19
Semiorbit, 211, 212
Separation of variables, 11, 12, 149,
155, 169
Separatrix, 250
Sequence, of matrices, 55

Series of matrices, 55
convergence of, 55
sum of, 55
Servomechanism, 262
Similar matrices (see Matrix)
Similarity invariants, 74
Singularly perturbed system, 237
Solution, 9, 11, 30
asymptotically stable, 148, 149,
151, 169, 187
bounded, 154, 158, 181, 182, 196,
202, 212, 213, 215, 223, 225-
227, 230, 235
giobal behavior of, 228
globally asymptotically stable,
149
instability of, 187
linearly independent (see Linearly
independent solutions)
periodic (see Periodic solutions)
stability of, 187
stable, 148, 149, 151
structure of, 40
unbounded, 251
unique, 30, 37, 39, 40, 48, 51, 132,
135
unstable, 151
zero (see Zero solution)
Solution curve, 11
Solution matrix, 45, 46, 48, 49, 57,
96
Solution space, basis for, 44
Span, 280
Spiral point, 94, 103, 164, 219
Spring, 7, 106, 107
constants of, 7, 106, 107
hard, 244
linear, 3, 244
nonlinear, 5, 201, 251
soft, 244
Stable equilibrium, 188
Stable equilibrium point, 188




Stability, 144-151, 157, 159-~161,
184, 196, 197, 201, 202, 204,
205, 208-215, 228, 230
absolute, 267-273
of almost linear systems, 143~151,
160-171
asymptotic (see Asymptotic
stability)
conditional (see Conditional
stability)
with global properties, 152
of linear systems, 143-159
of periodic solutions, 183-186
of solutions, 148
uniform, 147
of zero solution, 150, 152, 165,
192
Stability criterion, 155, 230
Stability matrix, 261, 263
Stability theory, of periodic solu-
tions, 169
Steady state (see Equilibrium)
Sturm-Liouville boundary value
problem, 141
Subspace, 40, 61, 64-66, 68, 76, 274,
271, 280, 281
direct sum of, 279, 282
disjoint, 277
index of, 277
one-dimensional, 63
spanned, 68
spanned by eigenvectors, 61
Successive approximations, 111,
113, 114, 117-124, 127, 134,
139, 141, 174, 182
convergence of, 127, 138
Sylvesteres theorem, 265, 269,
298
Symmetric matrix (see Matrix)
Systems
absolutely stable, 262
of algebraic equations, 48, 68
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asymptotically autonomous,
234-236

asymptotically equivalent, 181

of differential equations, 128
first order, 10-15

“of first-order equations, 197

linear algebraic, 64

of linear algebraic equations, 35

of linear equations, 64

of two differential equations, 9

of two second-order equations, 14

Tangent vector, 11

Taylor’s theorem, 245

Total energy, 188, 189, 191, 194,
195, 197, 198, 200, 201, 209

Trajectory, 85

Triangular matrix (see Matrix)

Two-dimensional systems, §3-95,
271

Type numbers, 159

Uncontrolled system, 272
Uniform convergence, 116, 134
Unique solution, 30, 37, 39, 40, 48,
51, 132, 135
Uniqueness, 24-30, 125-127, 130
of initial value problem, 192
of solutions, 27, 28, 30, 52, 108,
119, 124-127, 137, 145, 148,
175, 176, 192, 206
periodic, 256, 257
Uniqueness problem, 23
Uniqueness theorem, 126
Unperturbed equation, 170
Unperturbed system, 171, 172, 232
asymptotically stable, 171
unstable, 171

Van der Pol equation, 222, 237, 251,
252
unstable, 251
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Variation of constants formula, 53,
71,72, 82,102, 162, 165, 170,

181, 182
Vector, 37, 124
constant, 49
linearly independent, 35
sum of two, 17
zero, 17
Vector algebra, 17
Vector differential equation, 15
Vector field, 84
Vector function, 21, 26, 36, 37
continuous, 20
differentiable, 20
integrable, 20
Vector-matrix notation, 15-22
Vector norm, 36
Vector space, 40, 43, 45
abstract, 40
axioms for, 40
basis for, 42, 43
of continuous functions, 40-42
dimension of, 41-44

finite-dimensional, 42
Velocity vector, 84
Voltage, impressed, 10
Voltage drop, 10

Wronskian, 48, 49

Zero solution,
asymptotically stable, 154, 158,
161, 169, 185, 195, 201, 202,
204, 214, 215, 220, 223, 231,
232, 233
globally asymptotically stable,
156-158, 161, 223-225, 227,
228, 235, 236, 269, 271
instability of, 192
stability of, 150,, 152, 165, 192
stability properties of, 160
stable, 153, 154, 157, 159, 169,
195, 200, 202, 207, 229, 230
unstable, 154, 159, 172, 195, 208,
222
Zero vector, 17




