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Preface

Programming with Mathematica
Well-designed tools  are  not  simply  things  of  beauty  to  be  admired.  They are,  above all,  a  joy  to
use.  They  seem  to  have  their  own  consistent  and  readily  apparent  internal  logic;  using  them
seems natural – intuitive even – in that it is hard to imagine using any other tool, and, typically, a
minimal amount of effort is required to solve the problem for which those tools were designed.
You  might  even  begin  to  think  that  your  problems  were  designed  for  the  tool  rather  than  the
other way around.

Programming with Mathematica is, first and foremost, a joy. Having used various programming
languages  throughout  my  life  (starting  with  Algol  and  Fortran),  it  is  now  hard  for  me  to
imagine using a tool other than Mathematica  to solve most of the computational problems that I
encounter.  Having  at  my  fingertips  an  extremely  well-thought-out  language,  combined  with
tools  for  analysis,  modeling,  simulation,  visualization,  interface  creation,  connections  to  other
technologies, import and export, seems to give me everything I might need. 

Ultimately though, no tool can solve every problem you might encounter;  what really makes
Mathematica the indispensable tool for many computational scientists, engineers, and even artists
and musicians, is its capability for infinite extension through programming. As a language, built
upon the shoulders of such giants as Lisp, Prolog, Apl and C++, Mathematica has extended some
of the best ideas from these languages and created some new ones of its own. A powerful pattern
matching  language  together  with  a  rule-based  paradigm  for  transforming  expressions  provides
for  a  natural  approach to  writing programs to  solve  problems.  By “natural”  I  mean a  quick and
direct implementation, one that mirrors as closely as possible the statement of the problem to be
solved.  From  there,  it  is  just  a  short  path  to  prototyping  and  eventually  a  program  that  can  be
tested for correctness and efficiency.

But there are tools, and there are tools! Some tools are very domain-specific, meaning that they
are designed for a narrow set of tasks defined by a certain discipline or framework and are inap-
propriate  for  tasks  outside  of  their  domain.  But  Mathematica  has  taken  a  different  approach.  It
provides broadly useful  tools  by abstracting the computational  tasks (through symbolic  expres-
sion manipulation) in such a way that it  has found wide use in fields as varied as genomics and
bioinformatics, astronomy, image processing, social networks, linguistics, and much more.



In  addition  to  the  breadth  of  fields  that  can  be  addressed  with  Mathematica,  the  variety  and
extent of the computational tasks that now challenge us have greatly expanded since the turn of
the  millennium.  This  is  due  to  the  explosion  in  the  sheer  amount  of  information  and  data  that
people study. This expansion mirrors the rapid growth in computer hardware capabilities of the
1990s and 2000s which saw speed and storage grow exponentially. Now the challenge is to find
software solutions that are up to the task of managing this growth in information and data. Given
the variety of data objects that people are interested in studying, tools that provide generality and
avoid  domain-specific  solutions  will  be  the  most  broadly  useful  across  disciplines  and  across
time. Mathematica has been around now for over two decades and it continues to find application
in surprising places.

Using this book
This book is designed for anyone who wants to learn how to write Mathematica programs to solve
problems. It  does not presuppose a formal knowledge of programming principles as taught in a
modern course on a language such as C or Java,  but there is  quite a bit  of overlap between this
material  and  what  you  would  expect  in  such  a  formal  course.  You  will  learn  about  the  basic
building blocks of the Mathematica language: expressions; the syntax of that language; and how to
put  these  objects  together  to  make  more  complicated  expressions.  But  it  is  more  than  just  a
primer on the language. The focus is on solving problems and, as such, this is an example-driven
book.  The  approach  here  is  practical.  Programming  is  about  solving  problems  and  besides  the
obvious  necessity  of  learning  the  rules  of  the  language,  many  people  find  it  instructive  and
concrete  to  see  concepts  put  into  action.  The  book  is  packed  with  examples  both  in  the  text
proper and in the exercises. Some of these examples are quite simple and straightforward and can
be understood with  a  modicum of  understanding of  Mathematica.  Other  examples  and exercises
are more involved and may require a bit more study before you feel that you have mastered the
underlying  concepts  and  can  apply  them  to  related  problems.  Since  this  book  is  written  for
readers  with  various  backgrounds  in  programming  languages  and  using  Mathematica,  I  think  it
best to not identify “levels of difficulty” with the examples and exercises. 

Becoming  a  proficient  programmer  requires  not  only  a  clear  understanding  of  the  language
but  also  practice  using  it.  As  such,  one  of  the  aims  of  this  book  is  to  provide  the  novice  with
examples of good programming style and practice. Many of the examples in the chapters are, by
design, concise, in order to focus on a concept that is being developed. More involved examples
drawing  together  several  different  conceptual  ideas  appear  in  the  examples  and  applications
sections at  the end of  many of  the chapters.  Depending upon your needs and level  of  expertise,
you can either start with first principles, move on to basic examples, and then to more involved
applications  of  these  concepts,  or  you  might  find  yourself  looking  at  interesting  examples  and
then, as the need arises, jumping back into the discussion of syntax or usage earlier in a chapter. 
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The exercises (over 290 of them) are designed to extend and expand upon the topics discussed
in the chapters in which they occur. You cannot learn how to program by simply reading a book;
the old maxim, “you learn by doing” is  as  true of  learning how to speak a  foreign (natural)  lan-
guage as it is true of learning a computer programming language. Try to do as many exercises as
you can; create and solve problems that interest you; “life is not a spectator sport” and neither is
learning how to program.

Due to resource limitations, all the solutions could not be included in the printed book. Fortu-
nately, we live in an age of easily disseminated information, and so you will find an extended set
of  solutions  to  most  of  the  exercises  in  both  notebook  and  PDF  format  at  www.cam-
bridge.org/wellin. In addition, many of the programs developed in the sections and exercises are
included as packages at the same website.

Scope of this book
This  book  evolved  from  an  earlier  project,  An  Introduction  to  Programming  with  Mathematica,  the
third  edition  of  which  was  also  published  by  Cambridge  University  Press.  As  a  result  of  several
factors,  including  a  long  time  between  editions,  much  new  material  due  to  major  upgrades  in
Mathematica,  the  original  authors  traveling  different  paths  –  it  seemed  as  if  a  new  title  was  in
order, one that both reflects and builds upon this history while incorporating the latest elements
of Mathematica itself.

The  several  versions  of  Mathematica  that  have  been  released  since  the  third  edition  of  An
Introduction to Programming with Mathematica was published now include extensive coverage in new
application  areas,  including  image  processing,  control  systems,  wavelets,  graphs  and  networks,
and  finance.  The  present  book  draws  from  many  of  these  areas  in  the  never-ending  search  for
good examples that not only help to illustrate conceptual problems, but also serve as interesting
and  enlightening  material  on  their  own.  The  examples,  exercises,  and  applications  draw  from  a
variety of fields, including:

Ê textual analysis and natural language processing: corpus linguistics, word stemming, stop words, 
comparative textual analysis, scraping websites for data, sorting strings, bigrams and n-
grams, word games (anagrams, blanagrams, palindromes), filtering text;

Ê bioinformatics: analysis of nucleotide sequences, computing GC ratios, displaying blocks of 
genetic information, searching for subsequences, protein-protein interaction networks, dot 
plots;

Ê computer science: hashing (checksums), encoding/encryption, sorting, adjacency structures, 
triangular numbers, Hamming numbers, Fibonacci numbers, Euler numbers, root finders, 
random number generation algorithms, sieving;

Ê finance and economics: time-series analysis, trend plots, stock screens;
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Ê data analysis: filtering signals, cleaning data, stem plots, statistical tests, lag plots, 
correlograms, visualizing spread of data;

Ê geometry: convex hull, diameter of pointsets, point-in-polygon problems, traveling salesman-
type problems, hypocycloids and epicycloids, Apollonius’ circle;

Ê image processing: resizing, filtering, segmentation;

Ê graphs and networks: random graphs, regular graphs, bond percolation, connected 
components.

Chapter 1 is designed as a brief tour of the current version of Mathematica as of the publication
of this book. The examples give a sense of the scope of Mathematica’s  usage in science, engineer-
ing, and other analytic fields. Included is a basic introduction to the syntax of Mathematica expres-
sions, working with the Mathematica interface, and also pointers to the documentation features.

Several  important  topics  are  introduced  in  Chapter  2  that  are  used  throughout  the  book,  in
particular, structure of expressions, evaluation of expressions, various aspects of function defini-
tions, predicates, relational and logical operators, and attributes.

Lists are an essential data type in Mathematica and an understanding of how to work with them
provides  a  practical  framework  for  the  generalization  of  these  ideas  to  arbitrary  expressions.
Chapter  3  focuses  on  structure,  syntax,  and  tools  for  working  with  lists.  These  topics  are  all
extended in later chapters in the context of various programming tasks. Included in this chapter
are discussions of functions for creating, displaying, testing, measuring lists, various visualization
tools,  arrays  (sparse  and  otherwise),  list  component  assignment,  and  using  Span  to  extract
ranges of elements.

Patterns and rules are introduced in Chapter 4. Even though pattern-based programming may
be new to many, patterns are so essential to all  programming in Mathematica,  that it  seems most
natural  to  introduce  them  at  this  point  and  then  use  them  in  later  chapters  on  functional  and
procedural  programming.  Topics  include  a  discussion  of  structured  patterns,  conditional  pat-
terns,  sequence  pattern  matching,  using  data  types  to  match  an  expression,  repeated  patterns,
replacement  rules,  and  numerous  examples  of  functions  and  programs  that  make  heavy  use  of
pattern matching.

The chapter on functional programming (Chapter 5) introduces the many functions built into
Mathematica  associated  with  this  programming  paradigm:  Map,  Apply,  Thread,  Outer,
Select,  Pick ,  and  many  others.  Scoping  constructs  are  explicitly  called  out  in  a  separate
section. A section on pure functions includes numerous examples to help understand this impor-
tant construct in the context of concrete problems. Adding options,  error trapping and messag-
ing, so important for well-designed functions and programs, are discussed in this chapter so that
they  can  be  used  in  all  that  follows.  Numerous  applied  examples  are  included  such  as  protein
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interaction  networks,  Hamming  distance,  defining  new  graphics  objects,  creating  palettes  for
project files, and much more.

Procedural programming may be most familiar to those who learned programming in a more
traditional language such as Fortran or C. The syntax of procedural programming in Mathemat-
ica is quite similar to that in C and Chapter 6 is designed to help you transition to using Mathemat-
ica  procedurally but also mixing it with other programming styles when and where appropriate.
Looping constructs and their syntax are discussed in terms of basic examples which are then built
upon and extended in the remainder of the book. Included are piecewise-defined functions, flow
control, and several classical examples such as sieving for primes and sorting algorithms.

The  chapter  on  recursion,  Chapter  7,  gives  a  basic  introduction  to  programming  recursively-
defined functions. The main concepts – base cases, recursion on the tail, recursion with multiple
arguments, and so on – are introduced through illustrative examples. The chapter concludes with
a  discussion  of  dynamic  programming,  a  technique  for  greatly  speeding  up  recursive  computa-
tions by automatically creating definitions at runtime.

Chapter  8  introduces the various types of  number you can work with in Mathematica  –  exact,
machine-precision,  arbitrary-precision as well  as  different number types and arrays of  numbers.
It includes an extended discussion of random number generators and functions for sampling and
choosing random numbers.  The examples and applications section includes a  program to com-
pute the radius of  gyration tensor of  a  random walk as  well  as  material  on statistical  tests,  both
built-in and user-defined tests for checking the randomness of sequences of numbers.

The chapter on strings, Chapter 9, is included in recognition of the ubiquity of these objects in
broad areas of science, engineering, linguistics, and many other fields. Topics include an introduc-
tion to the structure and syntax of strings, basic operations on strings including those that mirror
similar  operations  on  lists,  an  extensive  discussion  on  string  patterns  including  regular  expres-
sions such as are found in languages like Perl and Python, and many applications and examples
drawn from linguistics, computer science, and bioinformatics.

Chapter  10  on  visualization  is  designed  to  give  you  a  good  sense  of  the  symbolic  graphics
language so that you can both create your own graphics scenes and functions and also make your
objects as efficient as possible. Included is a discussion of primitives, directives, and options, all of
which is mirrored in the section on sound. A section on efficient graphics structures is included
that  discusses  multi-objects  such  as  multi-points  and  multi-lines,  as  well  as  material  on
GraphicsComplex,  a compact way to represent a graphical object with many repeated primi-
tive  elements.  Many  extended  examples  are  included  for  functions  to  plot  points  in  space  con-
nected  by  lines,  economic  or  financial  trend  plots,  space-filling  molecule  plots  for  proteins  and
other chemicals, and root plotting functions.

Dynamic objects were introduced in Mathematica  6,  and there have,  sadly,  been few resources
for learning the ins and outs of dynamic programming. Dynamic objects provide tools to create
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interactive elements in your documents from as simple as an animation to as complex as…well,
as  complex  as  you  can  imagine.  In  Chapter  11  we  introduce  dynamic  objects,  starting  with  top-
level  functions Animate  and Manipulate ,  moving on to viewers and various control  objects
that can be used to control  changing parameters.  The primitive elements that lie  underneath all
these top-level functions are Dynamic  and DynamicModule,  which are the foundations of the
entire interactive machinery now built into Mathematica.  The chapter closes with several applica-
tions  including  building  up  interfaces  to  work  with  multi-dimensional  data,  extending  work
earlier in the book on palettes for file openers, event handlers to interact more with your mouse,
and a simple geometry demonstration due to Apollonius.

As  a  result  of  the  many  comments  and  suggestions  from  people  in  the  broad  Mathematica
community, I have included a chapter on writing efficient programs, Chapter 12. Although there
are many approaches you might take to solve a problem, it is often difficult for the novice to tell
which is the most appropriate, or the most efficient, or which scales best. Several “good practices”
are  considered,  including  choosing  the  right  function,  choosing  the  right  algorithm,  listability,
pure functions, packed arrays, and so on. Sections on parallel computation and on compiling are
also  included.  These  issues  are  discussed  through  the  use  of  concrete  examples  drawn  from
earlier parts of the book.

The chapter on applications, Chapter 13, builds upon much of the work in the rest of the book
but extends it for those who wish to turn their code into programs and applications that can be
shared with colleagues, students, or clients. The focus is on making your Mathematica programs as
much like built-in functions as possible, thereby taking advantage of the interface elements that a
user  of  your  code  would  already  know  and  expect  from  working  in  Mathematica,  things  like
writing  modular  functions,  usage  messages,  overloading,  and  creating  and  working  with
packages.

In  trying  to  keep  this  book  both  introductory  and  concise,  many  topics  had  to  be  left  out.
Some  of  these  topics  include:  creation  of  new  data  types;  the  internals  for  ordering  of  rules;
upvalues,  downvalues  and  other  internal  transformation  rules;  tuning  and  debugging;  connect-
ing to external programs and databases; interacting with web servers. All of these topics are both
interesting  and  important  but  there  was  simply  not  enough  room  in  the  present  volume  to
include them.

Colophon
This book was written and developed in Mathematica. Stylesheets were created to the page specifi-
cations  designed  by  the  author  while  adhering  to  the  constraints  of  the  publisher’s  production
department. Pages were output to PostScript and then distilled to PDF with Adobe Distiller using
a configuration file  supplied by the  publisher  to  set  such parameters  as  resolution,  font  embed-
dings, as well as color and image conversions.
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The  text  for  this  book,  including  mathematical  formulas,  is  set  in  Albertina,  a  humanist  font
designed  by  the  Dutch  calligrapher  Chris  Brand  (1921–1999),  and  digitized  by  the  Dutch  Type
Library (dtl).  Captions and labels use the fairly animated sans serif Syntax, designed by the Swiss
typographer Hans Eduard Meier (1922– ).
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An introduction to Mathematica
Overview of basic operations · Numerical computation · Symbolic computation · Graphics and 

visualization · Data import and analysis · Dynamic and interactive computation · 
Programming · Starting up Mathematica · Notebook interface · Entering input · Mathematical 

expressions · Syntax of functions · Lists · Dealing with errors · Help and documentation

Mathematica is a very large and seemingly complex system. It contains thousands of functions for
performing  various  tasks  in  science,  mathematics,  engineering,  and  many  other  disciplines.
These  tasks  include  numerical  and  symbolic  computation,  programming,  data  analysis,  knowl-
edge  representation,  and  visualization  of  information.  In  this  introductory  chapter,  we  give  a
sense  of  its  breadth  and  depth  by  looking  at  some  computational  and  programming  examples
drawn from a variety of fields.  The last part of the chapter covers basic topics in getting started,
including how to  enter  and evaluate  expressions,  how to  deal  with  errors,  and how to  get  help,
with pointers to the documentation system. Users already familiar with Mathematica could lightly
skim this chapter.

1.1 Overview of basic operations
Numerical and symbolic computation
On a very basic level, Mathematica can be thought of as a sophisticated calculator. With it you can
enter mathematical expressions and compute their values.

In[1]:= 2.0 � 10 p
10

‰

10

Out[1]= 3.5987 � 106

You can store values in memory to be used in subsequent computations. For example, the follow-
ing three inputs compute the Lorentz factor for an object moving at half the speed of light.



In[2]:= c = 299792458
Meter

Second
;

In[3]:= v =
c

2

Out[3]=
149896229 Meter

Second

In[4]:= NB 1 -
v2

c2
F

Out[4]= 0.866025

Yet Mathematica  differs from calculators and simple computer programs in its ability to calculate
exact results and to compute to an arbitrary degree of precision.

In[5]:=
1

2
+
1

3
+
1

5
+
1

7
+

1

11
+

1

13

Out[5]=
40361

30030

In[6]:= 21024

Out[6]= 179769313486231590772930519078902473361797697894230657273 Ö

430081157732675805500963132708477322407536021120113879 Ö

871393357658789768814416622492847430639474124377767893 Ö

424865485276302219601246094119453082952085005768838150 Ö

682342462881473913110540827237163350510684586298239947 Ö

245938479716304835356329624224137216

In[7]:= NASinA2017 � 21ê5E, 40E

Out[7]= -0.9999999999999999785677712610609832590685

One  of  the  most  significant  features  of  Mathematica  is  its  ability  to  manipulate  and  compute
with symbolic expressions. For example, you can factor polynomials and simplify trigonometric
expressions.

In[8]:= FactorAx7 - 1E

Out[8]= H-1 + xL I1 + x + x2 + x3 + x4 + x5 + x6M
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In[9]:= TrigReduceASin@3 qD5E

Out[9]=
1

16
H10 Sin@3 qD - 5 Sin@9 qD + Sin@15 qDL

You can simplify expressions using assumptions about variables contained in those expressions.
For example, if k is assumed to be an integer, sinH2p k + xL simplifies to sinHxL.

In[10]:= Assuming@k œ Integers, Simplify@Sin@2 p k + xDDD

Out[10]= Sin@xD

Functions are available for solving systems of equations, for example, this solves a symbolic 2ä2

linear system.

In[11]:= LinearSolveBK
a11 a12
a21 a22

O, K
x1
x2

OF

Out[11]= ::
a22 x1 - a12 x2

-a12 a21 + a11 a22
>, :

a21 x1 - a11 x2

a12 a21 - a11 a22
>>

You can solve  and plot  solutions  to  differential  equations,  for  example,  a  system representing a
linear damped pendulum.

In[12]:= soln = DSolve@8y''@xD + 2 y'@xD + 30 y@xD ã 0,
y@0D ã 1, y'@0D ã 1 ê 2<, y@xD, xD

Out[12]= ::y@xD Ø
1

58
‰-x I58 CosA 29 xE + 3 29 SinA 29 xEM>>

In[13]:= Plot@y@xD ê. soln, 8x, 0, 5<, PlotRange Ø AllD

Out[13]=

1 2 3 4 5

-0.5

0.5

1.0
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You can create and then operate on functions that are defined piecewise.

In[14]:= sinc@x_D = Piecewise@ 881, x ã 0<<, Sin@xD ê xD

Out[14]=

1 x ã 0
Sin@xD

x
True

In[15]:= IntegrateB
sincAx2E

x
, xF

Out[15]=
CosIntegralAx2E

2
-
SinAx2E

2 x2

One of the advantages of working symbolically is that you can quickly see underlying formu-
las  and  algorithms  at  work.  For  example,  this  computes  a  present  value  for  an  annuity  of  36

payments of $500 using a symbolic effective interest rate.

In[16]:= presentValue = TimeValue@Annuity@500, 36D, r, 0D

Out[16]=

500 I-1 + H1 + rL36M

r H1 + rL36

A  plot  clearly  shows  the  relationship  between  the  interest  rate  and  the  present  value  of  the
annuity.

In[17]:= Plot@presentValue, 8r, 0.0, 0.10<D

Out[17]=

0.02 0.04 0.06 0.08 0.10

6000

8000

10 000

12 000

14 000

16 000

18 000

In  fact,  symbolic  expressions  are  very  general  objects  –  you  can  work  with  them  as  you  would
any expression.

In[18]:= FactorB
7

- 1F

Out[18]= -1 + 1 + +
2

+
3

+
4

+
5

+
6
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In[19]:= Rotate@Style@"Mathematica", "Text"D, 45 DegreeD

Out[19]=

Mathem
atica

Graphics and visualization
Visualizing functions or sets of data often provides greater insight into their structure and proper-
ties.  Mathematica  has  a  wide  range  of  visualization  capabilities,  including  two-  and  three-dimen-
sional plots of functions or datasets, contour and density plots of functions of two variables, bar
charts,  histograms  and  other  charting  functions  for  data,  and  many  other  functions  for  special-
ized areas such as statistical analysis, financial analysis, wavelets, and others. In addition, with the
Mathematica  programming  language  you  can  construct  graphical  images  “from  the  ground  up”
using primitive elements, as we will see in Chapter 10.

Here is a stream plot of the vector field 8cosH1 - x + y2L, sinH1 + x2 - yL<.

In[20]:= strm = StreamPlotA9CosA-1 - x + y2E, SinA1 + x2 - yE=,

8x, -3, 3<, 8y, -3, 3<, Frame Ø NoneE

Out[20]=

This plot can be thought of as a symbolic expression that can then be used in other expressions,
such as a texture on a surface.

In[21]:= Plot3DASinA-1 - x + y2E, 8x, -3, 3<,

8y, -3, 3<, PlotStyle Ø Texture@strmD, Mesh Ø NoneE

Out[21]=
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Of  course,  discrete  data,  requiring  analysis  and  visualization,  are  commonly  what  you  will
work  with.  Here  we  import  isotope  data  and  then  plot  the  atomic  mass  number  against  the
binding energy for all stable isotopes.

In[22]:= data = Outer@IsotopeData@Ò1, Ò2D &, IsotopeData@"Stable"D,
8"MassNumber", "BindingEnergy", "Symbol"<D;

In[23]:= Take@data, 8D

Out[23]= 991, 0., 1H=, 92, 1.112283, 2H=, 93, 2.572681, 3He=,

94, 7.073915, 4He=, 96, 5.332345, 6Li=, 97, 5.606291, 7Li=,

99, 6.462758, 9Be=, 910, 6.475071, 10B==

In[24]:= ListLinePlot@data@@All, 81, 2<DD,
Mesh Ø All, PlotRange Ø 80, 9<, Frame Ø True,
FrameLabel Ø 8Style@"Atomic mass number", 9D,

Style@"Binding energy HMeVL", 9D<D

Out[24]=
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Data from many possible sources – imported from a collector,  a database,  an online source –
can be  used directly.  For  example,  this  imports  the  positions  of  the  atoms on a  human protein,
grouped by amino acid residue.

In[25]:= positions = ProteinData@"PAH", "AtomPositions", "Residue"D;
Take@positions@@All, 2DD, 8D

Out[26]= 88-2540.6, 3683.2, 1606.4<, 8-2198.3, 3551.7, 1698.<,
8-2103.1, 3212.1, 1554.4<, 8-2017.6, 2937.4, 1804.2<,
8-1649.6, 2912.8, 1901.5<, 8-1451.6, 2689.9, 2141.6<,
8-1397.1, 2827.3, 2492.5<, 8-1198.3, 2531.6, 2626.9<<

These data can then be used to visualize the conformation of the protein backbone by running a
Bézier curve through the data and wrapping that curve in a tube.
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In[27]:= Graphics3D@Tube@BezierCurve@positions@@All, 2DDD, 80DD

Out[27]=

Working with data
A typical workflow with many kinds of data involves: import, cleaning/filtering, analysis, visual-
ization,  export  of  results.  The  data  itself  can  take  many  different  forms:  tabular/numerical  data,
images, sound files, movies, HTML pages, and many other types. Once the data are in Mathemat-
ica, the statistical and visualization tools can be applied to analyze and visualize them. For exam-
ple, this imports some sample data from a spreadsheet.

In[28]:= data = Import@"sampledata.xlsx", 8"Data", 1<D

Out[28]= 880., -8.18672<, 80.25, -4.6057<,
80.5, -0.709252<, 80.75, 0.300171<, 81., 1.91848<,
81.25, 2.2322<, 81.5, 2.7596<, 81.75, 1.94169<,
82., 0.748574<, 82.25, -0.852022<, 82.5, -0.368416<,
82.75, 0.690119<, 83., 0.488073<, 83.25, 1.83513<,
83.5, 2.80307<, 83.75, 7.2199<, 84., 11.6129<<

A plot of the raw data gives a quick picture of the behavior.

In[29]:= ListPlot@dataD

Out[29]=

1 2 3 4

-5

5

10

This fits the data with a linear model using the basis functions x, x2, and x3.

In[30]:= model = LinearModelFitAdata, 9x, x2, x3=, xE;
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In[31]:= model@"BestFit"D

Out[31]= -8.42456 + 19.815 x - 11.4307 x2 + 1.93117 x3

This shows the model together with the raw data.

In[32]:= Show@
Plot@model@xD, 8x, 0, 4<, PlotRange Ø AllD,
ListPlot@dataD

D

Out[32]=

1 2 3 4

-5

5

10

Data can be imported directly from the internet; in the following, we import an image from a
NASA website and operate on it using built-in image processing tools.

In[33]:= sun = Import@
"http:êêwww.nasa.govêimagesêcontentê491318main_week27-

transit_946-710.jpg"D

Out[33]=

In[34]:= EdgeDetect@sunD

Out[34]=

In the following, three-dimensional digital elevation data contained in an archive from the USGS
National Elevation Dataset are used to reconstruct a surface.
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In[35]:= Import@"NED_40638016.zip"D

Out[35]=

In[36]:= Import@"NED_40638016.zip", "CoordinateSystemInformation"D

Out[36]= GEOGCS Ø 8NAD83, DATUM Ø 8North_American_Datum_1983, SPHEROID Ø

8GRS 1980, 6378137, 298.257, AUTHORITY Ø 8EPSG, 7019<<,
TOWGS84 Ø 80, 0, 0, 0, 0, 0, 0<, AUTHORITY Ø 8EPSG, 6269<<,

PRIMEM Ø 8Greenwich, 0, AUTHORITY Ø 8EPSG, 8901<<,
UNIT Ø 8degree, 0.0174533, AUTHORITY Ø 8EPSG, 9108<<,
AXIS Ø 8Lat, NORTH<, AXIS Ø 8Long, EAST<,
AUTHORITY Ø 8EPSG, 4269<<

In[37]:= elevations = Import@"NED_40638016.zip", 8"ARCGrid", "Data"<D;
Dimensions@elevationsD

Out[38]= 8575, 799<

In[39]:= ListPlot3D@elevations, MaxPlotPoints Ø 300,
ColorFunction Ø "Topographic", PlotRange Ø AllD

Out[39]=
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Dynamic interactivity
In addition to the computational  tools  such as  those described above,  Mathematica  also contains
tools for creating dynamic interfaces to interact with expressions with which you are working. In
this  section we will  give a  few short  examples  of  what  is  possible,  waiting until  Chapter  11  for  a
methodical look at how to program these elements.

Several functions are available to create interfaces in which you manipulate parameters dynami-
cally  through  controls  such  as  sliders,  tabs,  checkboxes,  pulldown  menus,  and  other  mouse-
driven interfaces.

In[40]:= TabView@
Table@TraditionalForm@f@xDD Ø Plot@f@xD, 8x, 0, 2 p<D,
8f, 8Sin, Cos, Tan<<DD

Out[40]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL cosHxL tanHxL

You can interact with plots directly through the use of dynamic Locator  objects. In the follow-
ing  example,  moving  the  points  with  your  mouse  will  cause  the  fitted  model  and  its  plot  to  be
dynamically updated.

In[41]:= ManipulateA

model = LinearModelFitApts, 9x, x2, x3=, 8x<E;

Plot@model@xD, 8x, 0, 1<, PlotRange Ø 2D,
88pts, 88.1, .6<, 8.2, -.4<, 8.45, 0.3<,

80.56, 0.1<, 8.92, .25<<<, Locator<E

Out[41]=
0.2 0.4 0.6 0.8 1.0

-2

-1

1

2
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The  following  fine  tunes  a  segmentation  task  by  using  dynamic  elements  to  manually  select
regions to start the segmentation.

In[42]:= DynamicModuleB8pts = 8881, 186<, 8238, 188<, 889, 281<<<,

LocatorPane@Dynamic@ptsD, Row@8
Image@headD,
Dynamic@Image@

Colorize@ImageForestingComponents@head, pts, 5DDDD<DD,

Initialization ß :head = ;>F

Out[42]=

Programming
With  the  3000+  functions  built  into  Mathematica,  it  would  seem  as  if  a  function  is  available  to
compute just about anything you might want. But that impression is mistaken. There are simply
more kinds of calculations than could possibly be included in a single program. Whether you are
interested in simulating a bond percolation computation or finding the mean square distance of a
random walk on a torus, Mathematica does not have a built-in function to do everything that you
could possibly want. What it does have – and what really makes it the amazingly useful tool it is –
is  the  capability  to  define  your  own  functions  and  use  them  like  the  built-in  functions.  This  is
called programming, and it is what this book is all about.

Sometimes,  the  programs  you  create  will  be  succinct  and  focused  on  a  very  specific  task.
Mathematica  possesses  a  rich  set  of  tools  that  enable  you  to  quickly  and  naturally  translate  the
statement  of  a  problem  into  a  program.  For  example,  the  following  program  defines  a  test  for
perfect numbers, numbers that are equal to the sum of their proper divisors.

In[43]:= PerfectQ@n_D := DivisorSigma@1, nD ã 2 n
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Define  a  second  function  to  select  those  numbers  from  a  range  of  integers  that  pass  this  PerÖ
fectQ test.

In[44]:= PerfectSearch@n_D := Select@Range@nD, PerfectQD

This then finds all perfect numbers less than 1 000 000.

In[45]:= PerfectSearchA106E

Out[45]= 86, 28, 496, 8128<

Sometimes you need to create new objects and operate with them like the built-in expressions.
For example, below we create a new graphical object that behaves much like some of the built-in
graphics  objects.  An auxiliary  function defines  the  vertices  of  a  regular  n-gon,  while  the  second
function,  RegularPolygon,  creates  a  polygon  graphics  object  that  will  display  as  a  regular
polygon like built-in objects such as Circle, Line , and Polygon .

In[46]:= vertices@n_D := Table@8Cos@2 p a ê nD, Sin@2 p a ê nD<, 8a, 0, n<D

In[47]:= RegularPolygon ê: Graphics@RegularPolygon@n_DD :=

Graphics@Line@vertices@nDD, AspectRatio Ø AutomaticD

In[48]:= Graphics@RegularPolygon@8DD

Out[48]=

Of course, sooner or later the task at hand requires a more involved program, stretching across
several lines or even pages of code. More involved programs, especially those intended for others,
typically  have  features  such  as  optional  arguments,  warning  messages  issued  when  the  user
supplies bad arguments, usage messages, and so on. For example, here is a program – with some
of these elements – that generates a network representing a bond percolation problem.

In[49]:= Options@BondPercolationD = Options@GraphD;

In[50]:= BondPercolation::baddims =
"The arguments `1` and `2`, giving the grid

dimensions, should be positive integers.";
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In[51]:= BondPercolation::usage =
"BondPercolation@8m,n<,probD simulates a bond

percolation on an män rectangular lattice

using 0<prob<1 as the probability of a bond

forming between a site and its neighbors.";

In[52]:= BondPercolation@8m_, n_<, prob_, opts : OptionsPattern@DD :=

Module@8gr<, If@! HIntegerQ@mD && IntegerQ@nDL,
Message@BondPercolation::baddims, m, nD,
gr = GridGraph@8m, n<D; Graph@Pick@EdgeList@grD,

RandomVariate@BernoulliDistribution@probD,
EdgeCount@grDD, 1D, optsDDD

This runs a simulation for a 13ä21 grid, assuming a 47% probability of a bond between any pair of
vertices.

In[53]:= gr = BondPercolation@813, 21<, 0.47D;
HighlightGraph@GridGraph@813, 21<D,
gr, GraphHighlightStyle Ø "DehighlightGray"D

Out[54]=

Setting up the percolation program to return a Graph  object enables you to take advantage of all
the built-in functions for styling or doing computation on the graph, for example, computing the
size  of  the  strongly  connected  components;  or  determining  if  there  is  a  cycle  that  visits  every
vertex exactly once; or finding connected paths from one edge to another.

In[55]:= Map@Length, ConnectedComponents@grDD

Out[55]= 83, 16, 11, 3, 4, 3, 2, 2, 12,
65, 15, 9, 2, 4, 2, 59, 2, 7, 2, 18, 2<

In[56]:= HamiltonianGraphQ@grD

Out[56]= False
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In[57]:= FindPercolationPath@gr_, dims : 8dimx_, dimy_<D :=

Module@8vert, bot, top, spFun<,
vert = VertexList@GridGraph@dimsDD;
bot = Select@vert, Mod@Ò, dimxD ã 1 &D;
top = Select@vert, Mod@Ò, dimxD ã 0 &D;
spFun = FindShortestPath@gr, All, AllD;
Cases@Outer@spFun, bot, topD,
lis_List ê; Length@lisD � 0, 82<DD

In[58]:= path = FindPercolationPath@gr, 813, 21<D;
HighlightGraph@GridGraph@813, 21<D,
Apply@UndirectedEdge, Map@Partition@Ò, 2, 1D &, pathD, 82<D,
GraphHighlightStyle Ø "Thick"D

Out[59]=

These examples use a variety of programming styles and constructs: functional programming,
rule-based  programming,  pure  functions,  and  more.  We  do  not  expect  you  to  understand  the
different programming examples in this section at this point – that is what this book is all about!
What  you  should  understand  is  that,  in  many  ways,  Mathematica  is  designed  to  be  as  broadly
useful  as possible and that there are many computations for which Mathematica  does not have a
built-in  function,  so,  to  make  full  use  of  its  many  capabilities,  you  will  sometimes  need  to  pro-
gram. The main purpose of this book is to show you how.

Another  purpose  is  to  teach  you  the  basic  principles  of  programming.  These  principles  –
making assignments,  defining rules,  using conditionals,  recursion,  and iteration – are applicable
(with great differences in detail, to be sure) to all other programming languages.

1.2 Getting started
Before  you  can  really  get  going  using  Mathematica,  you  will  need  to  know  how  to  start  your
Mathematica  session,  how  to  stop  it,  and  how  to  get  out  of  trouble  when  things  go  wrong.  This
section  provides  information  about  starting  Mathematica,  working  with  the  notebook  interface,
basic syntax of commands, and several other topics that will be of interest to the novice.
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Starting up Mathematica
How you start up Mathematica will depend somewhat on the platform you are using. 

Ê Windows: go to the Start menu and choose Programs � Wolfram Mathematica � 

Mathematica X (where X represents the current version, Mathematica 8 as of the publication 
of this book).

Ê Macintosh OS X: double-click the Mathematica icon in the folder in which it was installed, 
typically, the Applications folder.

Ê Linux/Unix: type mathematica in a shell and then press Û.

The computer will then load parts of Mathematica into its memory and soon a blank window will
appear on the screen. This window, called a notebook, is the visual interface to Mathematica.

The notebook interface
All your work in Mathematica  is typically done in what is referred to as a notebook.  This notebook
interface  has  many  of  the  familiar  tools  and  characteristics  of  a  word  processor  –  menus,  tool-
bars,  palettes – but also includes items specific to the work you will  do with Mathematica includ-
ing  tools  for  writing  text,  entering  and  formatting  mathematical  formulas,  constructing  and
editing  graphics,  and  balancing  brackets  in  code.  In  addition,  notebooks  provide  features  for
outlining  material  and  creating  slide  shows  which  you  may  find  useful  for  giving  talks  and
demonstrations. Of course, notebooks are also the environment in which you perform computa-
tions, write and run programs, create graphics, import data and files, and so on.

When  a  blank  notebook  first  appears  on  the  screen,  either  from  just  starting  Mathematica  or
from  selecting  New  in  the  File  menu,  you  can  start  typing  immediately.  For  example,  type
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N@Pi, 200D and then press ˜ÎÛÏ (hold down the Shift key while pressing the Enter key) to
evaluate  an  expression.  Mathematica  will  evaluate  the  result  and  print  the  200-decimal  digit
approximation to p on the screen.

Notice  that  when you evaluate  an expression in a  notebook,  Mathematica  adds input  and output
prompts.  In  the  example  notebook  above,  these  are  denoted  In[1]:=  and  Out[1]=.  These  prompts
can be thought of as markers (or labels) that you can refer to during your Mathematica session. 

When  you  start  typing,  Mathematica  places  a  bracket  on  the  far  right  side  of  the  window  that
encloses  the  cell  in  which you are  working.  These  cell  brackets  are  helpful  for  organizational  pur-
poses  within  the  notebook.  Double-clicking  cell  brackets  will  open  any  collapsed  cells,  or  close
any groups of cells. In the notebook displayed below, double-clicking the cell bracket containing
“1.1 Overview of basic operations” will open (or close) the cell to display (or hide) its contents:
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With cell brackets you can organize your work in an orderly manner and create outlines of your
material.  For  a  complete  description  of  cell  brackets  and  many  other  interface  features  consult
the built-in tutorial Working with Cells (WMDC), where WMDC refers to the Wolfram Mathemat-
ica Documentation Center.

For information on other features such as saving, printing, and editing notebooks, consult the
tutorial Using a Notebook Interface (WMDC).

Entering input
New  input  can  be  entered  whenever  there  is  a  horizontal  line  that  runs  across  the  width  of  the
notebook.  If  one  is  not  present  where  you  wish  to  place  an  input  cell,  move  the  cursor  up  and
down until it changes to a horizontal bar and then click the mouse once. A horizontal line should
appear across the width of the window. You can immediately start  typing and an input cell  will
be created.

Input  can  be  entered  exactly  as  it  appears  in  this  book.  To  get  Mathematica  to  evaluate  any
expression that you have entered, press ˜+Û, that is, hold down the Shift key and then press
the Enter key (on Mac OS X, press ˜+Á).

You  can  enter  mathematical  expressions  in  a  traditional  looking  two-dimensional  format
using either palettes for quick entry of template expressions, or keyboard equivalents. For exam-
ple, the following expression can be entered by using the Basic Math Assistant  palette (under the
Palettes  menu),  or  through  a  series  of  keystrokes.  For  details  of  inputting  mathematical  expres-
sions, see the tutorial Entering Two-Dimensional Input (WMDC).

In[1]:= ‡
1

1 - x3
„x

Out[1]=

ArcTanB 1+2 x

3
F

3
-
1

3
Log@1 - xD +

1

6
LogA1 + x + x2E

As  noted  previously,  Mathematica  enters  the  In  and  Out  prompts  for  you.  You  do  not  type  these
prompts. You will see them after you evaluate your input.

To refer to the result of the previous calculation use the symbol %.

In[2]:= 2100

Out[2]= 1267650600228229401496703 205 376

In[3]:= % + 1

Out[3]= 1267650600228229401496703 205 377

To refer to the result of any earlier calculation use its Out@iD label or, equivalently, % i.
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In[4]:= Out@1D

Out[4]=

ArcTanB 1+2 x

3
F

3
-
1

3
Log@1 - xD +

1

6
LogA1 + x + x2E

In[5]:= %2

Out[5]= 1267650600228229401496703 205 376

Mathematical expressions
You can enter  mathematical  expressions  in  a  linear  syntax  using arithmetic  operators  common
to almost all computer languages.

In[6]:= 39 ê 13

Out[6]= 3

Enter this expression in the traditional form by typing 39, ‚Î/Ï, then 13.

In[7]:=
39

13

Out[7]= 3

The caret (^) is used for exponentiation.

In[8]:= 2^5

Out[8]= 32

To enter this expression in a more traditional typeset form, type 2, ‚Î^Ï, and then 5.

In[9]:= 25

Out[9]= 32

Multiplication can be indicated by putting a space between the two factors, as in mathematics.
Mathematica  will  automatically  display  the  traditional  multiplication  sign,  �,  between  two  num-
bers. The asterisk (*) is also used for that purpose, as is traditional in most computer languages.

In[10]:= 2 � 5

Out[10]= 10

In[11]:= 2 * 5

Out[11]= 10

Operations are given the same precedence as in mathematics. In particular, multiplication and
division have a higher precedence than addition and subtraction: 3 +4 � 5 equals 23 and not 35.
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In[12]:= 3 + 4 � 5

Out[12]= 23

You can enter typeset expressions in several  different ways:  directly from the keyboard as we
did above, using a long, functional form, or via palettes available from the Palettes menu. Table 1.1

shows some of the more commonly used typeset expressions and how they are entered through
the keyboard.  Try to  become comfortable  entering these  inputs  so that  you can easily  enter  the
kinds of expressions in this book.

Table 1.1. Entering typeset expressions

Display form Long HfunctionalL form Key strokes

x2 Superscript@x,2D x,‚+6,2

xi Subscript@x,iD x,‚+_,i
x
y

FractionBox@x,2D x,‚+ê,y

x SqrtBox@xD ‚+2,x

x ¥ y GreaterEqual@x,2D x,Â,>=,Â,y

Syntax of functions
Built-in functions are also written as they are in mathematics books, except that function names
are capitalized and their arguments are enclosed in square brackets. 

In[13]:= FactorAx5 - 1E

Out[13]= H-1 + xL I1 + x + x2 + x3 + x4M

Almost all the built-in functions are spelled out in full, as in the above example. The exceptions
to  this  rule  are  well-known  abbreviations  such  as  D  for  differentiation,  Sqrt  for  square  roots,
Log  for  logarithms,  and  Det  for  the  determinant  of  a  matrix.  The  convention  of  spelling  out
function  names  is  quite  useful  when  you  are  not  sure  whether  a  function  exists  to  perform  a
particular task. For example, to compute the conjugate of a complex number, an educated guess
would be:

In[14]:= Conjugate@3 + 4 ÂD

Out[14]= 3 - 4 Â

Functions of more than one argument separate their arguments with commas, as in traditional
mathematical  notation.  For  example,  while  the  following  one-argument  form  of  RandomReal
gives a single random number between 0 and 10, the two-argument form can be used to generate
a vector or an array of random numbers.
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In[15]:= RandomReal@10D

Out[15]= 3.27946

In[16]:= RandomReal@10, 12D

Out[16]= 83.47031, 4.01486, 1.3706, 3.326, 0.676231, 8.12965,
3.40873, 7.27445, 6.34518, 1.39347, 2.04957, 2.45416<

Lists
Lists  are  a  basic  data  type  in  Mathematica  and  are  used  to  represent  vectors  and  matrices  (and
tensors  of  any  dimension),  as  well  as  additional  arguments  to  functions  such  as  in  Plot  and
Integrate.  Although square brackets @  and D  are used to enclose the arguments to functions,
curly braces 8 and < are used to indicate a list or range of values. 

Using lists to represent vectors,  the following computes the dot product of two vectors using
traditional notation.

In[17]:= 8a, b, c<.8x, y, z<

Out[17]= a x + b y + c z

Lists are used as the arguments to many built in functions.

In[18]:= PlotBSinBx + 2 Sin@xDF, 8x, -2 p, 2 p<F

Out[18]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

In[19]:= Integrate@Cos@xD, 8x, a, b<D

Out[19]= -Sin@aD + Sin@bD

In[20]:= RandomReal@8-100, 100<, 85, 5<D

Out[20]= 88-43.2895, -3.24399, 34.0708, -30.6333, -5.28155<,
825.1997, 76.4115, 54.9255, 46.6512, -55.571<,
8-40.5392, 20.3037, 36.1977, -78.2481, -93.5398<,
8-27.7766, 67.3532, 59.0608, 80.207, -58.7632<,
822.7737, -6.28497, -81.3275, 65.8295, -76.538<<
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In the Plot  example,  the list  8x, -2 p, 2 p<  indicates that  the function sinIx + 2 sinHxLM
is to be plotted over an interval as x takes on values from -2 p to 2 p. The Integrate expression

above is  equivalent  to  the  integral  Ÿa
bcosHxL „x.  In  the  last  example  with RandomReal ,  the  first

list  specifies  the  range  from  which  numbers  will  be  chosen  and  the  second  list  specifies  the
dimensions, in this case, a 5ä5 array.

Mathematica’s list-manipulating capabilities will be explored in detail in Chapter 3.

Semicolons
When you end an expression with a semicolon (;), Mathematica  computes its value but does not
display it. This is quite helpful when the result of the expression would be very long and you do
not need to see it. In the following example, we first create a list of the integers from 1  to 10 000,
suppressing their display with the semicolon; we then compute their sum and average.

In[21]:= nums = Range@10000D;

In[22]:= Total@numsD

Out[22]= 50005000

In[23]:=
%

Length@numsD

Out[23]=
10001

2

With  the  notebook  interface,  you  can  input  as  many  lines  as  you  like  within  an  input  cell;
Mathematica will evaluate them all, in order, when you enter ˜ÎÛÏ.

Alternative input syntax
There are several different ways to write expressions in Mathematica. Usually, you will simply use
the traditional notation, fun@xD,  for example.  But you should be aware of several alternatives to
this syntax that are sometimes used (see Table 1.2).

Here is an example of standard function notation for a function, N , of one argument.

In[24]:= N@pD

Out[24]= 3.14159

This uses a prefix operator.

In[25]:= Nüp

Out[25]= 3.14159
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Here is the postfix operator notation.

In[26]:= p êê N

Out[26]= 3.14159

For  functions  with  two  arguments,  you  can  use  an  infix  notation.  The  following  expression  is
identical to N@p, 30D.

In[27]:= p~N~30

Out[27]= 3.14159265358979323846264338328

Table 1.2. Alternative function notation

Notation Input

Traditional N@pD
Prefix Nüp

Postfix pêêN
Infix p~N~100

Finally, many people prefer to use a more traditional syntax when entering and working with
mathematical  expressions.  For  example,  this  computes  an  integral  using  standard  Mathematica
syntax.

In[28]:= Integrate@1 ê Sin@xD, xD

Out[28]= -LogBCosB
x

2
FF + LogBSinB

x

2
FF

The  same  integral,  represented  in  a  more  traditional  manner,  can  be  entered  from  palettes  or
using keyboard shortcuts.

In[29]:= ‡
1

Sin@xD
„x

Out[29]= -LogBCosB
x

2
FF + LogBSinB

x

2
FF

Many  mathematical  functions  have  traditional  symbols  associated  with  their  operations  and,
when available,  these can be used instead of the fully spelled-out names. For example, this com-
putes the intersection of two sets using the Intersection function.

In[30]:= Intersection@8a, b, c, d, e<, 8b, f, a, z<D

Out[30]= 8a, b<

Or you can do the same computation using more traditional notation.
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In[31]:= 8a, b, c, d, e< › 8b, f, a, z<

Out[31]= 8a, b<

To learn how to enter these and other notations quickly, either from palettes or directly from
the keyboard using shortcuts, refer to the tutorial Two-Dimensional Expression Input (WMDC).

Comments
Input can include comments  –  text  that  is  not evaluated – by enclosing that text  with H*  and *L.
The comment is inert; it will be ignored by the Mathematica evaluator.

In[32]:= D@Sin@xD, 8x, 1<D H* first derivative of sin w.r.t. x *L

Out[32]= Cos@xD

Errors
Nobody  is  perfect.  In  the  course  of  using  and  programming  Mathematica,  you  will  encounter
various  sorts  of  errors,  some obvious,  some very  subtle,  some easily  rectified.  Perhaps  the  most
frequent  error  you  will  make  is  misspelling  the  name  of  a  function.  Mathematica  uses  syntax-
coloring to help you identify misspelled symbol names. For example, in the following input, Sin
is  deliberately  misspelled.  Mathematica  colors  any  symbol  it  does  not  know  about  blue.  If  you
evaluate  the  input,  it  is  returned  unevaluated  because  Mathematica  has  no  built-in  rules  for  a
function whose name is Sine.

In[33]:= Sine@30 DegreeD

Out[33]= Sine@30 °D

Of course it does have rules for the function Sin.

In[34]:= Sin@30 DegreeD

Out[34]=
1

2

Having your original expression returned unevaluated – as if this were perfectly normal – is a
problem  you  will  often  encounter.  Aside  from  misspelling  a  function  name,  or  simply  using  a
function that does not exist, another case where this occurs is when you give the wrong number
of  arguments  to  a  function,  especially  to  a  user-defined  function.  For  example,  the  PerfecÖ
tSearch  function  defined  earlier  takes  a  single  argument;  if  we  mistakenly  give  it  two  argu-
ments, the input is returned unevaluated because Mathematica has no rule for a function PerfecÖ
tSearch with two arguments.

In[35]:= PerfectSearchA106, 4E

Out[35]= PerfectSearch@1000000, 4D
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Some kinds of inputs generate genuine error messages. Syntax errors, as shown above, are one
example.  The built-in functions are designed to usually warn you of  such errors in input.  In the
first example below, we have supplied the Det  function with a nonsquare matrix. In the second
example,  FactorInteger  operates  on  integers  only  and  so  the  real  number  argument  causes
the error condition.

In[36]:= Det@881, 2, 4<, 82, 8, 4<<D

Det::matsq : Argument 881, 2, 4<, 82, 8, 4<< at position 1 is not a non-empty square matrix. à

Out[36]= Det@881, 2, 4<, 82, 8, 4<<D

In[37]:= FactorInteger@34.2D

FactorInteger::exact : Argument 34.2` in FactorInteger@34.2D is not an exact number. à

Out[37]= FactorInteger@34.2D

Section 5.7  will  introduce the framework for  creating and issuing your own messages for  the
programs you develop in Mathematica.

Getting out of trouble
Although  it  is  convenient  to  have  Mathematica  tell  you  when  you  have  done  something  wrong,
from time to time, you will evaluate an input which will cause Mathematica to misbehave in some
way,  perhaps  by  just  going  silent  and  not  returning  a  result  for  a  long  time  or  by  printing  out
screen after screen of not terribly useful information. In these cases, you can try to “interrupt” the
calculation. How you do this depends on your computer’s operating system:

Ê Macintosh OS X: type ÌÎ.Ï (the Command key and the period);

Ê Windows: type ‡Î.Ï (the Alt key and the period);

Ê Linux/Unix: type ‚Î.Ï and then type a and then Á.

These attempts to stop the computation will sometimes fail. If after waiting a reasonable amount
of time (say, a few minutes), Mathematica still seems to be stuck, you will have to “kill the kernel”.
Before  attempting to  kill  the  kernel,  try  to  convince  yourself  that  the  computation is  really  in  a
loop from which it will not return and that it is not just an intensive computation that requires a
lot of time. Killing the kernel is accomplished by selecting Quit Kernel from the Evaluation menu.
The kernel can then be restarted without killing the front end by first selecting Start Kernel � Local

under the Kernel  menu, or you can simply evaluate a command in a notebook and a new kernel
should start up automatically.

The front end and the kernel
When you work in Mathematica  you are actually  working with two separate programs.  They are
referred  to  as  the  front  end  and  the  kernel.  The  front  end  is  the  user  interface.  It  consists  of  the
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notebooks that you work in together with the menu system, palettes (which are really just note-
books),  and any element that accepts input from the keyboard or mouse.  The kernel  is  the pro-
gram  that  does  the  calculations.  So  a  typical  operation  between  the  user  (you)  and  Mathematica
consists  of  the  following  steps,  where  the  program  that  is  invoked  in  each  step  is  indicated  in
parentheses:

Ê enter input in the notebook (front end);

Ê send input to the kernel to be evaluated by pressing ˜-Û (front end);

Ê compute the result and send it back to the front end (kernel);

Ê format and display the result in the notebook (front end).

There is one remaining piece that we have not yet mentioned. Since the kernel and front end
are  two  separate  programs,  a  means  of  communication  is  necessary  for  these  two  programs  to
“talk” to each other. That communication protocol is called MathLink and it comes bundled with
Mathematica. It operates behind the scenes, completely transparent to the user. 

MathLink  is  a  very  general  communications  protocol  that  is  not  limited  to  communication
between the front end and the kernel, but can also be used to set up communication between the
front end and other programs on your computer, programs like compiled C and Fortran code. It
can also be used to connect a kernel to a word processor or spreadsheet or many other programs. 

In  fact,  there  are  numerous  communications  protocols  that  come  with  Mathematica.  For
example,  you can communicate  with SQL databases  via  DatabaseLink,  Java  through J/Link,  .NET
via  .NET/Link.  These  protocols  allow  you  to  extend  Mathematica  into  these  other  domains  and
work with them in the Mathematica  interface.  These are all  beyond the scope of  this  book,  but if
you  are  interested,  there  is  extensive  documentation  for  each  in  the  Documentation  Center  as
well as several books and articles on these protocols (see the bibliography at the end of this book).

1.3 Getting help
Function information
Mathematica  contains extensive documentation that you can access in a variety of ways. It is also
designed so that you can create new documentation for your own functions and program in such
a way that users of your programs can get help in exactly the same way as they would for Mathe-
matica’s built-in functions.

If you know the name of a function but are unsure of its syntax or what it does, the easiest way
to find out about it is to evaluate ?function. For example, here is the usage message for Map.
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In[1]:= ? Map

MapA f , exprE or f êü expr applies f to each element on the first level in expr.

MapA f , expr, levelspecE applies f to parts of expr specified by levelspec. �à

Also,  if  you  were  not  sure  of  the  name  of  a  command,  you  can  use  wildcard  characters  to
display all  functions that contain certain characters.  For example, this displays all  functions that
start with "Random".

In[2]:= ? Random*

System`

Random RandomGraph RandomPermutation RandomSample

RandomChoice RandomImage RandomPrime RandomSeed

RandomComplex RandomInteger RandomReal RandomVariate

Clicking  on  one  of  these  links  will  produce  a  short  usage  statement  about  that  function.  For
example,  if  you  were  to  click  the  RandomGraph  link,  here  is  what  would  be  displayed  in  your
notebook.

RandomGraph@8n, m<D gives a pseudorandom graph with n vertices and m edges.

RandomGraph@8n, m<, kD gives a list of k pseudorandom graphs.

RandomGraphAgdist, …E samples from the random graph distribution gdist.�à

Clicking the à  hyperlink would take you directly  to the Documentation Center  where a  much
more detailed explanation of this function can be found.

You can also get help by highlighting any Mathematica function and pressing the f1 key on your
keyboard (or ·+˜+F on Macintosh OS X) to display the documentation for that function.

The Documentation Center
Mathematica  contains  an  extensive  set  of  reference  materials  called  the  Documentation  Center.
The  Documentation  Center  allows  you  to  search  for  functions  easily  and  it  provides  extensive
documentation, examples, and links to related items.
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To open the documentation, select Documentation Center under the Help  menu. You should
quickly see something like the following:

Notice  the  eight  categories:  Core  Language,  Mathematics  and  Algorithms,  Visualization  and
Graphics,  Data  Manipulation,  Computable  Data,  Dynamic  Interactivity,  Notebooks  and  Docu-
ments, and Systems Interfaces & Deployment. Clicking any category will open to an extended list
of topics in that area.

Suppose  you  were  looking  for  information  about  three-dimensional  parametric  plots.  First
click the Visualization and Graphics category,  then Function Visualization.  The Documentation
Center should look like this:
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Clicking the ParametricPlot3D link will take you to the reference page for that function.

Alternatively,  you  could  have  evaluated  ?ParametricPlot3D  and  then  clicked  the  à  link  at
the end of the usage message.

Many  additional  features  are  available  in  the  Documentation  Center  including  dozens  of
examples showing the usage of each function, applications, and related functions.
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2

The Mathematica language
Expressions · Types of expressions · Atoms · Structure of expressions · Evaluation of expressions · 

Defining variables and functions · Immediate and delayed assignments · Term rewriting · 
Functions with multiple definitions · Predicate functions · Relational and logical operators · Bit 

operators · Attributes

Although programming languages are commonly thought to have their early history in the 1940s
and 1950s when the first  digital  computers came about,  they in fact go back much earlier to the
creation of the Jacquard loom (1801) and also player pianos (~1870s), both of which used physical
punch cards to code instructions. Regardless of whether you use punch cards or a more modern
means  to  create  and  store  your  programs,  programming  languages  are  described  by  specifying
their syntax and semantics. Syntax refers to the form, indicating what symbols can be put together
in what order to make a meaningful construct in any given language. In other words, the syntax
of a programming language is the set of rules that define what is a valid input or program. Seman-
tics, on the other hand, refers to the meaning of expressions within a language. Although we will
not  give  a  complete,  rigorous  description  of  the  syntax  of  the  Mathematica  language  here,  it  is
important to understand some of the basic structures and their syntax upon which everything is
built.  Fortunately,  the  Mathematica  language  can  be  understood  quickly  by  learning  about  just  a
few  basic  objects.  In  this  chapter  we  will  focus  on  the  Mathematica  language  with  particular
emphasis on expressions. We will also look at how to define and name new expressions, how to
combine them using logical operators, and how to control properties of expressions through the
use of attributes.

2.1 Expressions
All  the  objects  that  you  work  with  in  Mathematica  have  a  similar  underlying  structure  even
though they may appear different at first sight. This means that things like a simple computation,



a data object, a graphic, the cells in your Mathematica notebook, even the notebook itself, all have
a similar structure – they are all expressions, and an understanding of their structure and syntax is
essential to mastering Mathematica.

Types of expressions
When doing a simple arithmetic operation such as 3 + 4 � 5, you are usually not concerned with
exactly how a system such as Mathematica actually performs the additions or multiplications. Yet
it is extremely useful to be able to see the internal representation of expressions as this allows you
to manipulate them in a consistent and powerful manner.

Internally, Mathematica categorizes the objects that it operates on as different types: integers are
distinct from real numbers; lists are distinct from numbers. One of the reasons that it is useful to
identify  these  different  data  types  is  that  specialized  algorithms  can  be  used  on  certain  classes  of
objects that will help to speed up the computations involved.

The Head  function is used to identify types of objects. For numbers, it will report whether the
number is an integer, a rational number, a real number, or a complex number.

In[1]:= 8Head@7D, Head@1 ê 7D, Head@7.0D, Head@7 + 2 ÂD<

Out[1]= 8Integer, Rational, Real, Complex<

In fact, every Mathematica  expression has a Head  that gives some information about that type of
expression.

In[2]:= Head@81, 2, 3, 4, 5<D

Out[2]= List

In[3]:= HeadB F

Out[3]= Image

In[4]:= Head@a + bD

Out[4]= Plus

Atoms
The basic building blocks of Mathematica – the atoms – from which every expression is ultimately
constructed  are  symbols,  numbers,  and  strings.  In  addition,  graphs  and  sparse  arrays  are  also
atomic (see Table 2.1). 
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In[5]:= 8AtomQ@x31D, AtomQ@1.2345D, AtomQ@"The rain in Spain"D<

Out[5]= 8True, True, True<

Table 2.1. Atomic expressions

Atom Examples
Integer -3,0,28,…

Rational - 1

2
, 8

9
,…

Real 0.2348,…

Complex 5-4Â,…

String "The cat in the hat."

Symbol Plot, myFun,…

SparseArray SparseArray@<4>,83,3<D

Graph

Image

Although you can determine the type of any atomic expression using Head  as described above,
in general you cannot directly extract parts of an atom.

In[6]:= Part@1.2345, 1D

Part::partd : Part specification 1.2345P1T is longer than depth of object. à

Out[6]= 1.2345P1T

A symbol consists of a sequence of letters and digits,  not starting with a digit.  This applies to
both user-defined symbols and to the built-in symbols.

In[7]:= Head@x31D

Out[7]= Symbol

In[8]:= Head@IntegrateD

Out[8]= Symbol

In Mathematica, built-in constants are all symbols.
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In[9]:= 8Head@pD, Head@‰D, Head@EulerGammaD, Head@KhinchinD<

Out[9]= 8Symbol, Symbol, Symbol, Symbol<

Strings  are  also  atomic  objects;  they  are  composed  of  characters  and  are  enclosed  in  quotes.
Strings will be discussed in detail in Chapter 9.

In[10]:= Head@"Mathematica"D

Out[10]= String

Graphs are abstract objects consisting of vertices and edges. They too are atomic.

In[11]:= HeadB F

Out[11]= Graph

In[12]:= AtomQB F

Out[12]= True

Sparse arrays are a special kind of atomic expression. They give a compact and highly efficient
means of representing large arrays of numbers, typically with many zero elements. Sparse arrays
in  Mathematica  are  represented  by  SparseArray  whose  output  form  displays  the  number  of
nondefault elements and the dimension of the array.

In[13]:= mat = SparseArray@8i_, i_< Ø 1, 84, 4<D

Out[13]= SparseArray@<4>, 84, 4<D

In[14]:= MatrixForm@matD
Out[14]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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In[15]:= AtomQ@matD

Out[15]= True

We will have more to say about sparse arrays in Section 8.3.

Structure of expressions
As mentioned earlier,  everything in  Mathematica  is  an expression.  Expressions  are  either  atomic,
as  described  in  the  previous  section,  or  they  are  normal  expressions,  built  up  from  atomic  expres-
sions and containing a head and zero or more elements. Normal expressions are of the following
form, where h is the head of the expression and the ei  are the elements which may themselves be
atomic or normal expressions.

h@e1, e2, …, enD

Using  Head  to  determine  the  type  of  atomic  expressions  is  entirely  general.  For  normal
expressions, Head  simply gives the head of that expression.

In[16]:= Head@a + b + cD

Out[16]= Plus

To see the full internal representation of an expression, use FullForm.

In[17]:= FullForm@a + b + cD
Out[17]//FullForm=

Plus@a, b, cD

In[18]:= FullForm@8a, b, c<D
Out[18]//FullForm=

List@a, b, cD

The important thing to notice is that both of these objects (the sum and the list) have very similar
internal  representations.  Each  is  made  up  of  a  function  (Plus  and  List ,  respectively),  each
encloses its arguments in square brackets, and each separates its arguments with commas. This is
the form of every normal expression in Mathematica.

Regardless of how an atomic or normal expression may appear in your notebook, its structure
is  uniquely  determined  by  its  head  and  parts  as  seen  using  FullForm.  This  is  important  for
understanding  the  Mathematica  evaluation  mechanism  which  depends  on  the  matching  of  pat-
terns based on their internal representation, a subject we will turn to in detail in Chapter 4.

The number of elements in any expression is given by its length. The internal representation,
as returned by FullForm, displays this expression as a function with three arguments.

In[19]:= Length@a + b + cD

Out[19]= 3
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Here is a more complicated expression.

In[20]:= expr = Sin@xD Ia x2 + b x + cM

Out[20]= Ic + b x + a x2M Sin@xD

Its  head  is  Times  because  it  is  composed  of  the  product  of  Sin@xD  and  the  quadratic
polynomial.

In[21]:= Head@exprD

Out[21]= Times

Its length is 2 since it only contains two factors.

In[22]:= Length@exprD

Out[22]= 2

Although the FullForm  of this expression is a little harder to decipher, if you look carefully you
should see that it is composed of the product of Plus@…D and Sin@xD. In other words, its head,
Times, has two arguments.

In[23]:= FullForm@exprD
Out[23]//FullForm=

Times@Plus@c, Times@b, xD, Times@a, Power@x, 2DDD, Sin@xDD

There  are  several  important  differences  between  atomic  expressions  and  nonatomic  expres-
sions. While the heads of all expressions are extracted in the same way – using the Head  function
–  the  head  of  an  atom  provides  different  information  than  the  head  of  other  expressions.  As
mentioned above, the head of a symbol or string is the kind of atom that it is.

In[24]:= Head@IntegrateD

Out[24]= Symbol

In[25]:= Head@"hello"D

Out[25]= String

The head of a number is the specific kind of number that it is, its data type.

In[26]:= Head@2D

Out[26]= Integer

In[27]:= Head@5.21D

Out[27]= Real

The FullForm of an atom (except a complex or rational number) is the atom itself.
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In[28]:= FullForm@fD
Out[28]//FullForm=

f

In[29]:= FullFormB
5

7
F

Out[29]//FullForm=

Rational@5, 7D

Atoms have  no parts  (which of  course  is  why they are  called  atoms).  In  contrast,  nonatomic
expressions do have parts. To extract different parts of an expression, use the Part  function. For
example, the first part of the expression a + b is a.

In[30]:= Part@a + b, 1D

Out[30]= a

The second part is b.

In[31]:= Part@a + b, 2D

Out[31]= b

This should be clearer from looking at the internal representation of this expression.

In[32]:= FullForm@a + bD
Out[32]//FullForm=

Plus@a, bD

So  Part@a + b, 1D  is  another  way  of  asking  for  the  first  element  of  Plus@a, bD,  which  is
simply a. In general, Part@expr, nD gives the nth element of expr. The zeroth part is the head of
the expression.

In[33]:= Part@a + b, 0D

Out[33]= Plus

As stated above, atomic expressions have no parts.

In[34]:= Part@"vini vidi vici", 1D

Part::partd : Part specification vini vidi viciP1T is longer than depth of object. à

Out[34]= vini vidi viciP1T

This  error  message  indicates  that  the  string  "vini vidi vici"  has  no  first  part,  since  it  is
atomic. The expression expr@@1DD is shorthand for Part@expr, 1D. Similarly, complex numbers
are atomic and hence have no parts.

In[35]:= H3 + 4 ÂL@@1DD

Part::partd : Part specification H3 + 4 ÂLP1T is longer than depth of object. à

Out[35]= H3 + 4 ÂLP1T
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Because  everything  in  Mathematica  has  the  common  structure  of  an  expression,  most  of  the
built-in functions that are used for list manipulation, such as Part , can also be used to manipu-
late the arguments of any other kind of expression (except atoms).

In[36]:= Append@w + x y, zD

Out[36]= w + x y + z

This result can best be understood by looking at the FullForm of the following two expressions.

In[37]:= FullForm@w + x yD
Out[37]//FullForm=

Plus@w, Times@x, yDD

In[38]:= FullForm@w + x y + zD
Out[38]//FullForm=

Plus@w, Times@x, yD, zD

Appending  z  to  w + x y  is  equivalent  to  adding  z  as  an  argument  to  the  Plus  function.  More
generally:

In[39]:= Append@f@a, bD, cD

Out[39]= f@a, b, cD

For more complicated expressions, you might find it useful to display the internal representa-
tion  with  the  TreeForm  function,  which  shows  the  “tree  structure”  of  an  expression.  In  the
following example,  the  root  node of  the  tree  is  Plus ,  which then branches  three  times  at  c,  bx,
and at ax2, the latter two branching further.

In[40]:= TreeFormAa x2 + b x + cE
Out[40]//TreeForm=

Plus

c Times

b x

Times

a Power

x 2

In[41]:= HeadAa x2 + b x + cE

Out[41]= Plus
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The second element of this expression is the second term in the sum.

In[42]:= PartAa x2 + b x + c, 2E

Out[42]= b x

The second element of that is the second factor in the product.

In[43]:= FullForm@%D
Out[43]//FullForm=

Times@b, xD

In[44]:= Part@b x, 2D

Out[44]= x

You could extract the second part of the second element directly using Part .

In[45]:= PartAa x2 + b x + c, 2, 2E

Out[45]= x

Although parts of atomic expressions cannot, in general, be extracted with the Part  function,
there  are  selectors  available  that  operate  on  various  atomic  expressions.  Selectors  are  functions
that  return  some  part  of  a  data  object.  In  modern  programming  languages,  they  are  used  to
separate  functions  that  operate  on  data  objects  from  the  data  objects  themselves.  For  example,
here are some of the selectors for rational numbers, real numbers, complex numbers, graphs, and
sparse arrays.

In[46]:= :NumeratorB
3

4
F, DenominatorB

3

4
F>

Out[46]= 83, 4<

In[47]:= MantissaExponent@3333.14152D

Out[47]= 80.333314, 4<

In[48]:= 8Re@3 - 4 ID, Im@3 - 4 ID<

Out[48]= 83, -4<

In[49]:= 8VertexList@CompleteGraph@5DD, EdgeList@CompleteGraph@5DD<

Out[49]= 881, 2, 3, 4, 5<, 81 � 2, 1 � 3, 1 � 4,
1 � 5, 2 � 3, 2 � 4, 2 � 5, 3 � 4, 3 � 5, 4 � 5<<

In[50]:= arr = SparseArray@Band@81, 1<D Ø 1, 84, 4<D;
ArrayRules@arrD

Out[51]= 881, 1< Ø 1, 82, 2< Ø 1, 83, 3< Ø 1, 84, 4< Ø 1, 8_, _< Ø 0<

2.1 Expressions 37



Evaluation of expressions
The evaluator, the part of Mathematica that evaluates expressions, follows a well-prescribed set of
rules  to  insure  correctness  and  consistency  in  program  evaluation.  For  example,  in  a  logical
expression  such  as  expr1 && expr2 && expr3,  Mathematica  evaluates  the  expressions  expri  in  order

until  it  finds  one to  be  false,  at  which point,  evaluation is  terminated.  Although there  are  many
such rules built in (some a bit more esoteric than others), it is quite useful to identify a few of the
evaluation rules whose consequences you will occasionally encounter.

Briefly, the evaluation sequence involves the following series of steps:
1. When you evaluate an expression (by pressing ˜-Á or ˜-Û), it is left unchanged 

if that expression is a number or string.

In[52]:= 123.456

Out[52]= 123.456

2. If the expression is a symbol, it is rewritten if there is an applicable rule, built-in or user-
defined. If there is no such rule for the symbol, it is unchanged.

In[53]:= mysymbol

Out[53]= mysymbol

If the expression is not a number, string, or symbol, its parts are evaluated in a specific order:
3. The head of the expression is evaluated.

4. The elements of the expression are evaluated in order, except when the head is a symbol 
with a Hold  attribute. In this case, some of its arguments are left in their unevaluated 
forms.

5. After the head and arguments of an expression are each completely evaluated, the 
expression is rewritten if there is an applicable rule in the global rule base (after making 
any necessary changes to the arguments based on the attributes of the head). User-
defined rules are checked, then the built-in rule base.

6. After carrying out the previous steps, the resulting expression is evaluated in the same 
way and then the result of that evaluation is evaluated, and so on until there are no more 
applicable rules.

These steps just give an outline of what happens internally in the standard evaluation procedure.
If  you  are  interested  in  the  details,  including  nonstandard  evaluation,  see  the  two  tutorials,
Evaluation and Evaluation of Expressions (WMDC).
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As indicated above, arguments of expressions are evaluated prior to being passed to the calling
function (typically given by the head). This principle is common to many modern programming
languages  but  it  does  cause  some  surprises  occasionally.  For  example,  looking  at  the  internal
representation  of  a  simple  sum,  you  might  expect  something  like  Plus@2, 2D,  but  that  is  not
what is returned after evaluation.

In[54]:= FullForm@2 + 2D
Out[54]//FullForm=

4

This is a consequence of the fact that arguments to functions are evaluated before being passed up
to the calling function, in this case, Plus . So, how can you see the internal form of an expression
before the evaluator gets to it? The answer is to use one of the many Hold  functions.

In[55]:= FullForm@HoldForm@2 + 2DD
Out[55]//FullForm=

HoldForm@Plus@2, 2DD

Wrapping an expression in HoldForm  causes that expression to be kept in an unevaluated form
as it is passed up to FullForm.  Many of the built-in functions have one of the Hold  attributes,
thus preventing initial evaluation of their arguments. 

In[56]:= Attributes@PlotD

Out[56]= 8HoldAll, Protected<

In[57]:= PlotATableAxi, 8i, 2, 8, 2<E, 8x, -1, 1<, PlotStyle Ø

8Dashing@.01D, Dashing@.03D, Dashing@.05D, Dashing@.07D<E

Out[57]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Ordinarily, Plot  can handle lists of functions and apply unique styles to each function. In this
case, the list structure of the first argument is not explicit – it would be after Table  is evaluated
but  the  HoldAll  attribute  of  Plot  prevents  that.  To  override  any  Hold  attribute,  wrap  the
argument in Evaluate (or use the Evaluated option to Plot).
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In[58]:= PlotAEvaluateüTableAxi, 8i, 2, 8, 2<E, 8x, -1, 1<, PlotStyle Ø

8Dashing@.01D, Dashing@.03D, Dashing@.05D, Dashing@.07D<E

Out[58]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Another approach to preventing the evaluator from initially evaluating an expression is to use
Defer.

In[59]:= Defer@2 + 2D

Out[59]= 2 + 2

In[60]:= Defer@FullForm@2 + 2DD

Out[60]= Plus@2, 2D

The advantage of using Defer  like this is that the output it returns is evaluatable. In other words
you can put your cursor in the output cell and evaluate it. 

In[61]:= Plus@2, 2D

Out[61]= 4

Exercises
1. Give the full (internal) form of the expression a Hb + cL.

2. What is the traditional representation of Times@a, Power@Plus@b, cD, -1DD.

3. What is the part specification of the b in the expression a x2 + b x + c?

4. What do you expect to be the result of the following operations? Use the FullForm of the expres-
sions to understand what is going on.

a. IIx2 + yM z ê wM@@2, 1, 2DD.

b. Ha ê bL@@2, 2DD.

2.2 Definitions
Defining variables and functions
One  of  the  most  common  tasks  in  any  programming  environment  is  to  define  functions,  con-
stants, and procedures to perform various tasks. Sometimes a particular function that you need is
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not part of the built-in set of functions. Other times, you may need to use an expression over and
over again and so it would be useful to define it once and have it available for future reference. By
defining  your  own  functions  and  constants  you  essentially  expand  the  range  of  Mathematica’s
capabilities in such a way that they work with all the built-in functions seamlessly.

For example, you might define a constant a to have a certain numeric value.

In[1]:= a = N@2 pD

Out[1]= 6.28319

Then, whenever a  is used in a subsequent computation, Mathematica  will find the rule associated
with a and will substitute that value wherever a occurs.

In[2]:= Cos@aD

Out[2]= 1.

To check what definitions are associated with a, evaluate ? a.

In[3]:= ? a

Global`a

a = 6.28319

The expression a = N@2 pD  is called an assignment  – we are assigning the value of the right-hand
side  to  the  symbol  on  the  left-hand  side.  In  this  example,  we  have  made  an  assignment  of  a
constant to the symbol a.

You  can  also  set  up  assignments  to  define  functions.  For  example,  to  define  a  function  f,
enclose  its  arguments  in  square  brackets  and  use  x_  to  indicate  the  variable  that  will  be  substi-
tuted for x on the right-hand side.

In[4]:= f@x_D =
1

1 + x

Out[4]=
1

1 + x

The expression f@x_D on the left-hand side of this assignment is a pattern. It indicates the class of
expressions  for  which  this  definition  should  be  used.  We  will  have  much  more  to  say  about
patterns and pattern matching in Mathematica  in Chapter 4,  but, for now, it is enough to say that
the pattern f@x_D matches f@any expressionD.

Once you have defined the rule for f, you can evaluate it at different values by replacing x with
any expression: numbers, symbolic expressions, images, anything!
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In[5]:= f@.1D

Out[5]= 0.909091

In[6]:= f@1D

Out[6]=
1

2

In[7]:= fAa2E

Out[7]=
1

1 + a2

In[8]:= fB F

Out[8]=
1

1 +

In this last example, the graph is a symbolic expression that is matched by the pattern x_  in the
definition  for  f.  Although  it  might  not  make  much  mathematical  sense  to  add  and  subtract
integers from a graph, symbolically it is entirely consistent.

Clear the symbols that are no longer needed.

In[9]:= Clear@a, fD

Immediate vs. delayed assignments
When you make an assignment to a symbol, you are usually only interested in giving that symbol
a specific value and then using the symbol name to represent that value in subsequent computa-
tions. When you set up definitions for functions, those functions might depend upon the values
of  previously  defined  functions  or  other  expressions.  In  such  instances  it  is  useful  to  delay  the
assignment  until  the  function  is  actually  used  in  a  computation.  This  is  the  basic  difference
between immediate and delayed assignments.

An immediate assignment is written SetAlhs, rhsE or, more commonly,

lhs = rhs
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Here  lhs  is  an  abbreviation  for  “left-hand  side”  and  rhs  abbreviates  “right-hand  side”.  Using
Defer,  you  can  see  the  internal  form  of  this  assignment  before  Mathematica  has  evaluated  it.
Assignments are expressions with a head and two elements.

In[10]:= Defer@FullForm@x = 5DD

Out[10]= Set@x, 5D

As an example, consider defining a symbol rand1 using an immediate assignment that generates
a uniformly distributed random number between 0 and 1.

In[11]:= rand1 = RandomReal@D

Out[11]= 0.584973

Notice that the output of this assignment is the value of the right-hand side and that Mathematica
evaluates the right-hand side immediately, that is, when the assignment is made.

Delayed assignments use SetDelayedAlhs, rhsE or, in its standard input form:

lhs := rhs

Here is the internal representation of a delayed assignment.

In[12]:= Defer@FullForm@x := 5DD

Out[12]= SetDelayed@x, 5D

As an example,  consider  a  symbol  rand2  to  be  defined similarly  to  rand1,  but  with  a  delayed
assignment.

In[13]:= rand2 := RandomReal@D

Notice that the delayed assignment does not return a value when the assignment is made. In fact,
the right-hand side will not be evaluated until the symbol rand2 is used. 

Let us call the function rand1 five times.

In[14]:= Table@rand1, 85<D

Out[14]= 80.584973, 0.584973, 0.584973, 0.584973, 0.584973<

Because the right-hand side of rand1  was evaluated when the definition was made, rand1  was
assigned the value 0.584973. Each subsequent call to rand1 returns that value.

In[15]:= ? rand1

Global`rand1

rand1 = 0.584973

On the other hand, creating a table of values using rand2 produces a very different result.
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In[16]:= Table@rand2, 85<D

Out[16]= 80.174616, 0.469985, 0.0302229, 0.34487, 0.858773<

Each of the five times that rand2  is  called inside Table,  Mathematica  looks up the definition of
rand2, and sees that it should evaluate RandomReal@D. It does this each time it is called, generat-
ing a new random number each iteration inside Table.

In[17]:= ? rand2

Global`rand2

rand2 := RandomReal@D

Term rewriting
Rules  are  used  in  Mathematica  to  rewrite  expressions,  that  is,  to  transform  an  expression  to
another form. For this reason, these rules are often called rewrite rules  but we will  usually refer to
them  simply  as  rules  when  there  is  no  chance  of  confusing  them  with  other  types  of  rules.
Together with pattern matching, rewrite rules are the key to evaluation and transformation of all
expressions in Mathematica.

In  Mathematica,  you  work  with  two  kinds  of  rules:  rules  for  the  built-in  functions,  which  are
part  of  every  Mathematica  session,  and  user-defined  rules,  which  you  enter  during  a  particular
session.  User-defined  rules  essentially  provide  a  mechanism  for  extending  the  rule  base  of
Mathematica.

Information about both kinds of rules is obtained by evaluating ?name. In the case of a built-in
function, the resulting usage message gives information about the syntax for using the function
and a brief statement explaining what the function does.

In[18]:= ? Map

MapA f , exprE or f êü expr applies f to each element on the first level in expr.

MapA f , expr, levelspecE applies f to parts of expr specified by levelspec. �à

For user-defined rules, the rule itself is printed. The crucial difference between rules created with
the  SetDelayed  and  Set  functions  becomes  apparent  by  querying  Mathematica  for  the  rules
associated with the symbols rand1 and rand2.

In[19]:= ? rand1

Global`rand1

rand1 = 0.584973
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A rule created using the Set  function has the same left-hand side as the function that created
it  but the right-hand side of the rule may differ from the right-hand side of the function.  This is
because the right-hand side of the rule was evaluated at the moment the definition was made, in
this case, returning a number between 0 and 1.

On  the  other  hand,  a  rule  created  using  the  SetDelayed  function  looks  exactly  like  the
function  that  created  it.  This  is  because  both  the  left-hand  side  and  right-hand  side  of  a
SetDelayed  function are placed in the rule base without being evaluated.

In[20]:= ? rand2

Global`rand2

rand2 := RandomReal@D

In view of this difference between the SetDelayed  and Set functions, when should you use
one or the other function to create a rule? When you define a function, you usually do not want
either the left-hand side or the right-hand side to be evaluated; you just want to make it available
for  use  when  the  appropriate  function  call  is  made.  This  is  precisely  what  occurs  when  a
SetDelayed  function  is  entered,  so  the  SetDelayed  function  is  commonly  used  in  writing
function definitions.  When you make a value declaration, you do not want the left-hand side to
be evaluated; you just want to make it a nickname to serve as shorthand for a value. This is what
happens  when  a  Set  function  is  entered  and  so  the  Set  function  is  commonly  used  to  make
value declarations, such as assigning a numeric value to a constant or variable.

A new rule overwrites,  or replaces,  an older rule with the same left-hand side.  However,  keep
in mind that  two rules  that  only  differ  in  the name of  their  pattern variables  are  considered the
same by Mathematica. Clear@nameD is used to remove rules from the global rule base.

Functions with multiple definitions
When you create function definitions, usually the definition is associated with the head of the left-
hand  side  of  your  definition.  So,  for  example,  the  following  assignment  associates  the  rule
1 + x + x2 with the head f.

In[21]:= f@x_D := 1 + x + x2

There  can  be  many  evaluation  rules  associated  with  one  symbol.  The  following  assignments
associate additional rules with the symbol f.

In[22]:= f@x_, y_D := x + y
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In[23]:= f@x_, y_, z_D :=
1

x + y - z

To view all the rules associated with f, use ?f.

In[24]:= ? f

Global`f

f@x_D := 1 + x + x2

f@x_, y_D := x + y

f@x_, y_, z_D := 1

x+y-z

The  advantage  of  this  structure  is  that  you  can  use  one  name  for  a  function  that  will  behave
differently depending upon the number or form of arguments you give to that function. Using a
different symbol for each of these tasks would require you and those who use your programs to
remember  multiple  function  names  when  one  might  be  sufficient.  For  example,  here  are  two
definitions for a function, one for an arbitrary argument and another for a list of two expressions.

In[25]:= fun@x_D := Abs@xD

In[26]:= fun@8x_, y_<D := SqrtAx2 + y2E

Different rules will be called and evaluated depending upon the pattern match as determined by
the argument structure.

In[27]:= fun@-12D

Out[27]= 12

In[28]:= fun@82, 3<D

Out[28]= 13

In[29]:= fun@2 + 3 ID

Out[29]= 13

This  is  a  very  simplistic  example,  one that  would need some modification if  we wanted to  con-
sider it for, say, a norm computation. 

In[30]:= fun@"string"D

Out[30]= Abs@stringD
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In[31]:= fun@88a, b<, 8c, d<<D

Out[31]= : a2 + c2 , b2 + d2 >

Writing more explicit  rules for such a computation is  straightforward enough but requires a bit
more  discussion  of  patterns  and  predicates  to  do  properly.  These  topics  will  be  discussed  in
Chapter 4 on patterns and rules.

Clear symbols that are no longer needed.

In[32]:= Clear@x, f, g, n, funD

Exercises
1. What rules are created by each of the following functions? Check your predictions by evaluating 

them and then querying Mathematica with ?function_name.

a. randLis1@n_D := RandomReal@1, 8n<D

b. randLis2@n_D := Hx = RandomReal@D; Table@x, 8n<DL

c. randLis3@n_D := Hx := RandomReal@D; Table@x, 8n<DL

d. randLis4@n_D = Table@RandomReal@D, 8n<D

2. Consider two functions f and g, which are identical except that one is written using an immediate 
assignment and the other using a delayed assignment.

In[1]:= f@n_D = SumAH1 + xLj, 8j, 1, n<E;

In[2]:= g@n_D := SumAH1 + xLj, 8j, 1, n<E

Explain why the outputs of these two functions look so different. Are they in fact different?

In[3]:= f@2D

Out[3]=
H1 + xL I-1 + H1 + xL2M

x

In[4]:= g@2D

Out[4]= 1 + x + H1 + xL2

3. Write rules for a function log (note lowercase) that encapsulate the following identities:

log Ha bL = log HaL + logHbL;
log I a

b
M = log HaL - logHbL;

log HanL = n logHaL.
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4. Create a piecewise-defined function gHxL based on the following and then plot the function from –2 
to 0.

g HxL =
- 1 - Hx + 2L2 -2 § x § -1

1 - x2 x < 0

2.3 Predicates and Boolean operations
Predicates
When working with many kinds of data, you are often presented with the problem of extracting
values  that  meet  certain  criteria.  Similarly,  when  you  write  programs,  what  to  do  next  at  any
particular point in your program will often depend upon some test or condition being met. Every
programming  language  has  constructs  for  testing  data  or  conditions.  Some  of  the  most  useful
constructs for these sorts of tests are called predicates. A predicate is a function that returns a value
of  true  or  false  depending  upon  whether  its  argument  passes  a  test.  For  example,  the  predicate
PrimeQ tests for the primality of its argument.

In[1]:= PrimeQA231 - 1E

Out[1]= True

Other predicates are available for testing numbers to see whether they are even, odd, integral, and
so on.

In[2]:= OddQ@21D

Out[2]= True

In[3]:= EvenQ@21D

Out[3]= False

In[4]:= IntegerQB
5

9
F

Out[4]= False

NumericQ  tests  whether  its  argument  is  a  numeric  quantity.  Essentially,  NumericQ@xD
returns a value of True  whenever N@xD evaluates to an explicit number.

In[5]:= NumericQ@pD

Out[5]= True

In[6]:= NumericQ@¶D

Out[6]= False
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This  is  distinct  from a  related  function,  NumberQ ,  which evaluates  to  True  whenever  its  argu-
ment is an explicit number, that is, has head one of Integer , Rational, Real , Complex .

In[7]:= NumberQ@3.2D

Out[7]= True

In[8]:= NumberQ@pD

Out[8]= False

Some predicate  functions  can take  a  second argument  to  test  the  form of  the  elements  of  an
expression.  For  example,  this  tests  whether  the  argument  is  a  vector  and  if  its  elements  are  all
prime.

In[9]:= VectorQA923 - 1, 27 - 1, 231 - 1=, PrimeQE

Out[9]= True

Many other predicates are available for testing expressions such as atoms, lists, various matri-
ces, polynomials, and much more.

In[10]:= AtomQ@"string"D

Out[10]= True

In[11]:= ListQ@8a, b, c<D

Out[11]= True

In[12]:= SymmetricMatrixQB
1 2 3

2 4 5

3 5 6

F

Out[12]= True

In[13]:= PolynomialQB
1

x
+

1

x2
+

1

x3
, xF

Out[13]= False

In[14]:= ConnectedGraphQB F

Out[14]= True

In[15]:= IntervalMemberQ@Interval@82, 3<D, pD

Out[15]= False
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Relational and logical operators
Another  class  of  commonly-used predicates  are  the  relational  operators.  They are  used to  com-
pare two or more expressions and they return a value of True  or False.  The relational opera-
tors in Mathematica are Equal  (ã), Unequal  (�), Greater  (>), Less  (<), GreaterEqual(¥),
and LessEqual (§). They can be used to compare numbers or arbitrary expressions.

In[16]:= 7 < 5

Out[16]= False

In[17]:= 3 ã 7 - 4 ã
6

2

Out[17]= True

In[18]:= x2 - 1 ==
x4 - 1

x2 + 1
êê Simplify

Out[18]= True

Note  that  the  relational  operators  have  lower  precedence  than  arithmetic  operators.  The
second example above is interpreted as 3 ã H7 - 4L  and not as H3 ã 7L - 4.  Table 2.2  lists the
relational operators and their various input forms.

The  logical  operators  (sometimes  known  as  Boolean  operators)  determine  the  truth  of  an
expression based on Boolean arithmetic. For example, the conjunction of two true statements is
always true.

In[19]:= 4 < 5 && 8 > 1

Out[19]= True

The  Boolean  operation  AND  is  represented  in  Mathematica  by  And,  with  shorthand  notation
&&  or  � .  Here  is  a  table  that  gives  all  the  possible  values  for  the  And  operator.  (The  function
TruthTable is developed in Exercise 10 in Section 5.8.)

In[20]:= TruthTable@A � B, 8A, B<D

Out[20]=

A B A Ï B

T T T

T F F

F T F

F F F

50 The Mathematica language



Table 2.2. Relational operators

StandardForm Long HfunctionalL form Meaning
x ã y Equal@x, yD test for equality

x � y Unequal@x, yD unequal

x > y Greater@x, yD greater than

x < y Less@x, yD less than

x ¥ y GreaterEqual@x, yD greater than or equal

x § y LessEqual@x, yD less than or equal

The  logical  OR  operator,  represented  by  Or  and  with  shorthand  notation  »»  (or  �),  is  true
when either of its arguments is true.

In[21]:= 4 == 3 »» 3 ==
6

2

Out[21]= True

In[22]:= 0 == 0.0001 Î p ==
22

7

Out[22]= False

In[23]:= TruthTable@A � B, 8A, B<D

Out[23]=

A B A Í B

T T T

T F T

F T T

F F F

Note the difference between this Boolean OR and the natural  language notion of “or.”  A phrase
such  as,  “It  is  cold  or  it  is  hot,”  uses  the  word  “or”  in  an  exclusive  sense,  that  is,  it  excludes  the
possibility that it  is both  cold and hot. The logical Or  (�) is inclusive in the sense that if  A  and B
are both true, then A Í B is also true.

In[24]:= True »» True

Out[24]= True

Table 2.3 shows the logical operators and their input forms.
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Table 2.3. Logical operators

StandardForm TraditionalForm Long form Meaning
!x Ÿx Not@xD not
x && y x � y And@x, yD and

x »» y x � y Or@x, yD or

Hx »» yL&&!Hx && yL x � y Xor@x, yD exclusive or

!Hx »» yL x � y Nor@x, yD negation of or

!x »» y x � y Implies@x, yD implication

Mathematica also contains an operator for the exclusive or, Xor.

In[25]:= Xor@True, TrueD

Out[25]= False

In[26]:= Xor@True, FalseD

Out[26]= True

In[27]:= TruthTable@A � B, 8A, B<D

Out[27]=

A B A � B

T T F

T F T

F T T

F F F

An additional set of useful operators are the bitwise logical operators  (see Table 2.4). These func-
tions  operate  on  integers  as  binary  bits.  For  example,  BitOr@x, yD  gives  the  integer  whose
binary  representation  has  1s  wherever  the  binary  representation  of  x  or  y  has  1s.  Here  is  the
bitwise OR of 21 and 19, given in binary form.

In[28]:= BaseForm@BitOr@2^^10101, 2^^10011D, 2D
Out[28]//BaseForm=

101112

In[29]:= BitOr@21, 19D

Out[29]= 23

In[30]:= BaseForm@23, 2D
Out[30]//BaseForm=

101112

Similarly,  BitXor@x, yD  gives  the  integer  with  1s  at  positions  where  either  x  or  y  have  1s,  but
not both.
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In[31]:= BaseForm@BitXor@2^^10101, 2^^10011D, 2D
Out[31]//BaseForm=

1102

Table 2.4. Bitwise operators

Long HfunctionalL form Meaning
BitAnd@x, yD bitwise AND of x and y

BitOr@x, yD bitwise OR of x and y

BitNot@xD bitwise NOT of x
BitXor@x, yD bitwise XOR of x and y

In Section 5.8  we will  look at an application of bitwise operators to an example involving error-
correcting codes: the computation of Hamming distance.

Exercises
1. Create a predicate function that returns a value of True if its argument is between –1 and 1.

2. Define a predicate function CharacterQ@strD that returns true if its argument str is a single string 
character, and returns false otherwise.

3. Write a predicate function NaturalQ@nD that returns a value of True if n is a natural number and 
False otherwise, that is, NaturalQ@nD is True if n is among 0, 1, 2, 3, ….

4. Create a predicate function SubsetQ@lis1, lis2E that returns a value of True if lis1 is a subset of lis2. 

Remember, the empty set, 8<, is a subset of every set.

5. Create a predicate function CompositeQ that tests whether its argument is a nonprime integer.

2.4 Attributes
All functions in Mathematica have certain properties that control various aspects of their behavior.
These  properties,  called attributes,  can make a  function commutative  or  associative,  or  they may
give the function the ability to be threaded over a list. The attributes of any function are displayed
with the Attributes  function.

In[1]:= Attributes@PlusD

Out[1]= 8Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected<

The  Flat  attribute  indicates  that  this  function  (Plus)  is  associative.  That  is,  given  three
elements to add,  it  does not matter  which two are added first.  In mathematics,  this  is  known as
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associativity  and  is  written  as  a + Hb + cL = Ha + bL+ c.  In  Mathematica  this  could  be  indicated  by
saying  that  the  two  expressions  Plus@a, Plus@b, cDD  and  Plus@Plus@a, bD, cD  are
equivalent to the flattened form Plus@a, b, cD.  When Mathematica  knows that a function has
the attribute Flat , it writes it in flattened form.

In[2]:= Plus@Plus@a, bD, cD

Out[2]= a + b + c

Functions  with  the  attribute  OneIdentity  have  the  property  that  repeated  application  of
that  function  to  the  same  argument  will  have  no  effect.  For  example,  Plus@Plus@a, bDD  is
equivalent to Plus@a, bD, hence only one addition is performed.

In[3]:= FullForm@Plus@Plus@a + bDDD
Out[3]//FullForm=

Plus@a, bD

The  Orderless  attribute  indicates  that  the  function  is  commutative,  that  is,  a + b = b + a.
This allows Mathematica to write such an expression in an order that is useful for computation. It
does  this  by  sorting  the  elements  into  a  canonical  order.  For  expressions  consisting  of  letters  and
words, this ordering is alphabetic.

In[4]:= t + h + i + n

Out[4]= h + i + n + t

Sometimes a canonical order is readily apparent.

In[5]:= x3 + x5 + x4 + x2 + 1 + x

Out[5]= 1 + x + x2 + x3 + x4 + x5

Other times, it is not so apparent.

In[6]:= x3 y2 + y7 x5 + y x4 + y9 x2 + 1 + x

Out[6]= 1 + x + x4 y + x3 y2 + x5 y7 + x2 y9

As an aside, note that some formatting functions use ordering rules that are different from those
used by the default output formats.

In[7]:= TraditionalFormAx3 + x5 + x4 + x2 + 1 + xE
Out[7]//TraditionalForm=

x5 + x4 + x3 + x2 + x + 1

When  a  symbol  has  the  attribute  Protected,  the  user  is  prevented  from  modifying  the
function in any significant way. All built-in functions have this attribute.

The  other  attributes  for  the  Plus  function  (Listable  and  NumericFunction)  will  be
discussed  in  later  chapters.  For  a  complete  list  of  the  attributes  that  symbols  can  have,  see  the
tutorial Attributes (WMDC).
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Although it is unusual to want to alter the attributes of a built-in function, it is fairly common
to  change  the  default  attributes  of  a  user-defined  function.  For  example,  suppose  you  had  a
function  that  you  wanted  to  inherit  the  Orderless  attribute.  Without  explicitly  setting  that
attribute, the function does not reorder its arguments.

In[8]:= f@b, e, t, sD

Out[8]= f@b, e, t, sD

The SetAttributes function is used to change the attributes of a function. Explicitly setting f
to have the Orderless attribute causes its arguments to be automatically sorted.

In[9]:= SetAttributes@f, OrderlessD

In[10]:= f@b, e, t, sD

Out[10]= f@b, e, s, tD

Note: using Clear to clear definitions associated with a symbol does not clear attributes.

In[11]:= Clear@fD

In[12]:= ? f

Global`f

Attributes@fD = 8Orderless<

To  clear  only  attributes,  use  ClearAttributesAsymbol, attributeE.  To  clear  all  values,  defini-

tions, attributes and messages associated with a symbol, use ClearAll@symD.

In[13]:= ClearAll@fD

In[14]:= ? f

Global`f

We will see some applications of SetAttributes in Sections 5.2 and 6.2.

Exercises
1. Ordinarily, when you define a function, it has no attributes. Mathematica evaluates the arguments 

before passing them up to the calling function. So, in the following case, 2 + 3 is evaluated before it 
is passed to f.

In[1]:= f@x_ + y_D := x2 + y2
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In[2]:= f@2 + 3D

Out[2]= f@5D

Use one of the Hold  attributes to give f the property that its argument is not evaluated first. The 
resulting output should look like this:

In[3]:= f@2 + 3D

Out[3]= 13

2. Define a function that takes each number in a vector of numbers and returns that number if it is 
within a certain interval, say -0.5 < x < 0.5, and returns x  otherwise. Then make your function 
listable so that it can operate on vectors (lists) directly.
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3

Lists
Structure and syntax of lists · Creating lists · Displaying lists · Arrays · Analyzing lists · Testing 

lists · Measuring lists · Extracting elements of lists · Rearranging lists · List component 
assignment · Working with multiple lists

Lists are the fundamental data structure used in Mathematica  to group objects together.  They are
quite general and they can be used to represent a vast array of objects: vectors, matrices, tensors,
iterator  and  parameter  specifications,  and  much  more.  An  extensive  set  of  built-in  functions  is
available to manipulate lists in a variety of ways, ranging from simple operations, such as rearrang-
ing  the  order  of  list  elements  to  more  sophisticated  operations  such  as  partitioning,  sorting,  or
applying a function to a list. For example, this sorts a list numerically.

In[1]:= Sort@84, 16, 1, 77, 23<D

Out[1]= 81, 4, 16, 23, 77<

Fast  and efficient  linear algebra functions are available for  operating on vectors and matrices.  A
vector is just a flat list of values; a matrix can be thought of as a list of vectors of the same length.
For example, this muliplies a symbolic matrix by a vector.

In[2]:= 88a, b<, 8c, d<<.8x, y<

Out[2]= 8a x + b y, c x + d y<

Elements in lists can be rearranged, removed, new elements added, and operations performed
on select elements or on the list as a whole or on multiple lists. 

In[3]:= 8a, b, c< ‹ 8c, d, e<

Out[3]= 8a, b, c, d, e<

In[4]:= 8a, b, c< › 8c, d, e<

Out[4]= 8c<



Lists are also used to delineate a range of values for some variable or iterator. For example, the
second argument to the Table  function is a list that specifies the iterator variable and the values
that it should range over.

In[5]:= TableAi2, 8i, 1, 5<E

Out[5]= 81, 4, 9, 16, 25<

Similarly,  the  plotting  functions  use  lists  to  specify  the  range  over  which  a  variable  should  be
evaluated.

In[6]:= Plot@Sin@xD, 8x, 0, 2 p<D

Out[6]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

In  this  chapter,  we  will  demonstrate  the  use  of  built-in  Mathematica  functions  to  manipulate
lists in various ways. Almost anything you might wish to do to a list can be accomplished using
built-in functions. It is important to have a solid understanding of these functions, since a key to
good, efficient programming in Mathematica  is to use the built-in functions whenever possible to
manipulate list structures.

3.1 Creating and displaying lists
List structure and syntax
Lists  in  Mathematica  are  created  using  the  built-in  List  function  which  has  the  standard  input
form of a sequence of elements separated by commas and enclosed in braces.

8e1, e2, …, en<

Internally,  lists  are  stored  in  the  functional  form  using  the  List  function  with  an  arbitrary
number of arguments.

List@e1, e2, …, enD

FullForm gives the internal representation.

In[1]:= FullForm@8a, b, c<D
Out[1]//FullForm=

List@a, b, cD
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The  arguments  of  the  List  function  (the  list  elements)  can  be  any  type  of  expression,  including
numbers, symbols, functions, strings, images, and even other lists.

In[2]:= :2.4, Sin, "ossifrage", , 85, 3<, 8<>

Out[2]= :2.4, Sin, ossifrage, , 85, 3<, 8<>

List construction
In addition to using the List  function to collect various expressions, you can generate lists from
scratch by creating the objects and then placing them in a list.
RangeAimin, imax, diE  generates a list  of  ordered numbers starting from imin  and going up

to, but not exceeding, imax in increments of di.

In[3]:= Range@0, 30, 3D

Out[3]= 80, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30<

If di is not specified, a value of 1 is used.

In[4]:= Range@4, 8D

Out[4]= 84, 5, 6, 7, 8<

If neither imin nor di is specified, then both are given the value of 1.

In[5]:= Range@4D

Out[5]= 81, 2, 3, 4<

It is not necessary for imin, imax, or di to be integers.

In[6]:= Range@1.5, 6.3, .75D

Out[6]= 81.5, 2.25, 3., 3.75, 4.5, 5.25, 6.<

TableAexpr, 9i, imin, imax, di=E  generates  a  list  by  evaluating  expr  a  number  of  times  as

determined by the iterator list.

In[7]:= TableA2k, 8k, 1, 10, 2<E

Out[7]= 82, 8, 32, 128, 512<

The  first  argument,  2k  in  the  above  example,  is  the  expression  that  is  evaluated  to  produce  the
elements  in  the  list.  The  second  argument  to  the  Table  function,  9i, imin, imax, di=,  is

referred to as the iterator list. This list specifies the number of times the expression is evaluated and
hence the number of elements in the list. The value imin is the value of i used in the expression to
create  the first  list  element.  The value di  is  the incremental  increase  in  the value of  i  used in the
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expression to create additional list elements. The value imax is the maximum value of i used in the
expression to  create  the  last  list  element.  If  incrementing i  by  di  gives  a  value  greater  than imax,
that value is not used.

In[8]:= Table@i, 8i, 1, 10, 2<D

Out[8]= 81, 3, 5, 7, 9<

TableAi, 9i, imin, imax, di=E  is  equivalent  to  RangeAimin, imax, diE.  As  with  the  Range

function, the arguments to Table can be simplified when the iterator increment is 1.

In[9]:= TableA2i, 8i, 1, 10<E

Out[9]= 82, 4, 8, 16, 32, 64, 128, 256, 512, 1024<

Similarly, both imin and di can be omitted and are then assumed to be 1.

In[10]:= TableAi2, 8i, 5<E

Out[10]= 81, 4, 9, 16, 25<

The iterator  variable  may or  may not  appear  in  the expression being evaluated.  In  this  case,  the
iterator variable may be omitted as well. The expression will then simply be evaluated that many
times.

In[11]:= Table@RandomReal@D, 83<D

Out[11]= 80.765026, 0.623783, 0.596162<

The expression that the Table  function evaluates can be completely arbitrary.  In the follow-
ing computation, it is used to create a list of plots.

In[12]:= Table@Plot@BesselJ@n, xD, 8x, 0, 10<D, 8n, 2, 5<D

Out[12]= :
2 4 6 8 10

-0.2

0.2

0.4

,
2 4 6 8 10

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

,

2 4 6 8 10

-0.2

-0.1

0.1

0.2

0.3

0.4

,
2 4 6 8 10

-0.2

-0.1

0.1

0.2

0.3

>
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Table  can be used to create a  nested  list,  that  is,  a  list  containing other lists  as  elements.  This
can be done by using additional iterators.

In[13]:= Table@i + j, 8j, 1, 4<, 8i, 1, 3<D

Out[13]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<, 85, 6, 7<<

When  there  is  more  than  one  iterator,  their  order  is  important,  because  the  value  of  the  outer
iterator is varied for each value of the inner iterator. In the above example, for each value of j (the
inner iterator), i was varied from 1 to 3, producing a three-element list for each of the four values
of j. If you reverse the iterator order, you will get an entirely different list.

In[14]:= Table@i + j, 8i, 1, 3<, 8j, 1, 4<D

Out[14]= 882, 3, 4, 5<, 83, 4, 5, 6<, 84, 5, 6, 7<<

The value of the outer iterator may depend on the value of the inner iterator; this can result in a
nonrectangular list.

In[15]:= Table@i + j, 8i, 1, 3<, 8j, 1, i<D

Out[15]= 882<, 83, 4<, 84, 5, 6<<

However,  the inner  iterator  may not  depend on the outer  iterator  because,  as  we have seen,  the
inner iterator is fixed as the outer one varies.

In[16]:= Table@i + j, 8i, 1, j<, 8j, 1, 3<D

Table::iterb : Iterator 8i, 1, j< does not have appropriate bounds. à

Out[16]= Table@i + j, 8i, 1, j<, 8j, 1, 3<D

Like  the  function  being  evaluated,  the  iterator  structure  can  be  quite  arbitrary.  In  fact,  it  can  be
almost any expression, for example, a list of primes or a list of image effects.

In[17]:= Table@2p - 1, 8p, 82, 3, 5, 7, 13, 17<<D

Out[17]= 83, 7, 31, 127, 8191, 131071<

In[18]:= TableBImageEffectB , effectF,

8effect, 8"Charcoal", "Posterization", "Solarization"<<F

Out[18]= : , , >

Rather  than  evaluating  the  iterator  for  a  range  of  values,  these  arbitrary  iterator  specifications
cause the function to be evaluated for each of the discrete values in the iterator list. So in the first
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example,  the  expression  2p - 1  is  evaluated  for  each  value  of  p  equal  to  2,  3,  5,  7,  13,  17;  in  the
second  example,  ImageEffect  is  evaluated  for  each  of  the  three  different  effects,
"Charcoal", "Posterization", and "Solarization". 

Displaying lists
The default output form of a list, like its input form, uses the curly brace notation.

In[19]:= 81, 2, 3<

Out[19]= 81, 2, 3<

Several  formatting  functions  are  available  for  displaying  lists  in  different  forms.  For  example,
MatrixForm  displays one-dimensional lists as column vectors.

In[20]:= MatrixForm@8a, b, c<D
Out[20]//MatrixForm=

a
b

c

It displays rectangular arrays as traditional matrices.

In[21]:= MatrixForm@88a, b, c<, 8d, e, f<<D
Out[21]//MatrixForm=

a b c

d e f

TableForm  is useful for displaying nested lists (multi-dimensional data) in a simple rectangular
array.

In[22]:= lis = Table@i + j, 8i, 1, 4<, 8j, 1, 3<D

Out[22]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<, 85, 6, 7<<

In[23]:= TableForm@lisD
Out[23]//TableForm=

2 3 4

3 4 5

4 5 6

5 6 7

Another useful function for displaying nested lists is Grid . It contains numerous options specifi-
cally for formatting tabular data.

In[24]:= data = 88"Trial", "Value"<, 81, 0.264084<, 82, 0.185688<,
83, 0.156994<, 84, 0.486455<, 85, 0.334819<, 86, 0.799379<<;
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In[25]:= Grid@data, Frame Ø All,
Background Ø LightGray, ItemSize Ø 8Automatic, 1.5<,
BaseStyle Ø 8FontFamily Ø "Helvetica", 8<, FrameStyle Ø ThinD

Out[25]=

Trial Value

1 0.264084

2 0.185688

3 0.156994

4 0.486455

5 0.334819

6 0.799379

Large arrays of data present a special problem in terms of display. In general you do not want
to look at thousands or millions of rows and columns of numbers in a large array. Functions like
ArrayPlot  and MatrixPlot  are useful for visualizing the structure of such expressions.  The
correlation between the array of numbers and the “cells” in the plot should be quite apparent for
small arrays.

In[26]:= mat = 881, 0, 1<, 80, 2, 0<, 81, 0, 1<<;
MatrixForm@matD

Out[27]//MatrixForm=

1 0 1

0 2 0

1 0 1

In[28]:= ArrayPlot@mat, Mesh Ø AllD

Out[28]=

This is particularly useful for large arrays. For example, the following matrix is a representation of
the topology of the US Western States power grid (Watts and Strogatz 1998).

In[29]:= grid = Import@
"http:êêwww.cise.ufl.eduêresearchêsparseêMMêNewmanêpower.

tar.gz", 8"TAR", "powerêpower.mtx"<D

Out[29]= SparseArray@<13188>, 84941, 4941<, PatternD
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ArrayPlot  shows the structure of the array, in this case giving a visual sense that this matrix is
symmetric.

In[30]:= ArrayPlot@gridD

Out[30]=

You could also visualize this sparse array as an adjacency graph where the edges represent the
transmission  lines  between  power  stations  (nodes).  This  representation  only  gives  connectivity
information; no geographic information is conveyed.

In[31]:= AdjacencyGraph@gridD

Out[31]=

Arrays
In addition to Table  and Range, several other functions are available for constructing lists from
scratch, including Array,  ConstantArray,  and SparseArray .  Each of these functions has a
similar syntax to Table and Range.
Array  is,  in some sense, a generalization of Table  in that you can create arrays of elements

wrapped in arbitrary functions. For example, here is a 4ä4 array where each element is wrapped
in a symbolic function g.
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In[32]:= Array@g, 84, 4<D êê MatrixForm
Out[32]//MatrixForm=

g@1, 1D g@1, 2D g@1, 3D g@1, 4D
g@2, 1D g@2, 2D g@2, 3D g@2, 4D
g@3, 1D g@3, 2D g@3, 3D g@3, 4D
g@4, 1D g@4, 2D g@4, 3D g@4, 4D

If the function is Greater , we have the following.

In[33]:= Array@Greater, 84, 4<D êê MatrixForm
Out[33]//MatrixForm=

False False False False

True False False False

True True False False

True True True False

Converting the True/False values to 1s and 0s using Boole, gives a lower triangular matrix.

In[34]:= Boole@%D êê MatrixForm
Out[34]//MatrixForm=

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

ConstantArray is useful for quickly creating constant vectors, arrays, and tensors.

In[35]:= ConstantArray@1, 812<D

Out[35]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

SparseArray  is  used  to  create  sparse  array  objects,  that  is,  arrays  where  most  of  the  ele-
ments are some constant term, typically zero.  The first  argument to SparseArray  is  usually a
list specifying the nondefault positions and their values. The optional second argument is used to
specify the array dimensions. For example, this creates a 3ä3 array with symbolic values a, b, and
g on the diagonal.

In[36]:= array = SparseArray@881, 1< Ø a, 82, 2< Ø b, 83, 3< Ø g<, 83, 3<D

Out[36]= SparseArray@<3>, 83, 3<D

What  is  returned  by  SparseArray  is  an  object  whose  first  argument,  <3>  in  this  example,
indicates  that  there  are  three  nondefault  elements;  the  dimensions  are  given  by  the  second
argument, the list 83, 3<. 
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You can view the array in a traditional matrix form or convert it to a regular list structure.

In[37]:= MatrixForm@arrayD
Out[37]//MatrixForm=

a 0 0

0 b 0

0 0 g

In[38]:= Normal@arrayD

Out[38]= 88a, 0, 0<, 80, b, 0<, 80, 0, g<<

Sparse arrays provide a compact representation for what could otherwise be a very large array.
For example,  this uses a different syntax to create a 1000ä1000  array with random numbers on
the diagonal.

In[39]:= bigarray =
SparseArray@Band@81, 1<D ß RandomReal@D, 81000, 1000<D

Out[39]= SparseArray@<1000>, 81000, 1000<D

The two big advantages of working with sparse arrays are a compact representation and being
able to take advantage of fast linear algebra routines designed explicitly for sparse arrays. So, even
though bigarray has 10

6 numbers in it, it only takes about 40 000 bytes to store internally.

In[40]:= ByteCount@bigarrayD

Out[40]= 40800

Linear algebra on sparse objects can be quite fast, especially compared with corresponding dense
calculations.

In[41]:= Inverse@bigarrayD; êê Timing

Out[41]= 80.36709, Null<

In[42]:= Det@bigarrayD; êê Timing

Out[42]= 80.137751, Null<

Sparse arrays will be discussed in more detail in Section 8.3.

Exercises
1. Generate the list 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<< in two 

different ways using the Table function.

2. A table containing ten random 1s and 0s can be created using RandomInteger@1, 810<D. Create 
a ten-element list of random 1s, 0s and -1s.
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3. Create a ten-element list of random 1s and -1s. This list can be viewed as the steps taken in a random 
walk along the x-axis, where a step can be taken in either the positive x direction (corresponding to 
1) or the negative x direction (corresponding to -1) with equal likelihood. 

The random walk in one, two, three (and even higher) dimensions is used in science and engineer-
ing to represent phenomena that are probabilistic in nature. We will use a variety of random walk 
models throughout this book to illustrate many different programming concepts. 

4. Generate both of the following arrays using the Table function.

In[1]:= Array@f, 5D

Out[1]= 8f@1D, f@2D, f@3D, f@4D, f@5D<

In[2]:= Array@f, 83, 4<D

Out[2]= 88f@1, 1D, f@1, 2D, f@1, 3D, f@1, 4D<,
8f@2, 1D, f@2, 2D, f@2, 3D, f@2, 4D<,
8f@3, 1D, f@3, 2D, f@3, 3D, f@3, 4D<<

5. Construct an integer lattice graphic like the one below. Start by creating pairs of coordinate points 
to connect with lines – here we have written the coordinates explicitly but you should generate 
them programmatically. Once you have your coordinate pairs, you can display the graphic as 
follows:

In[3]:= coords = 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<,
88-2, 1<, 82, 1<<, 88-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,
880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<;

Graphics@Line@coordsDD

Out[4]=

6. Import six images, resize them to the same dimensions, then display them inside a 3ä2 grid using 
options for Grid  to format the output.

3.2 The structure of lists
Testing a list
To  find  the  locations  of  specific  elements  in  a  list,  use  Position.  For  example,  the  following
result  indicates  that  the  number  5  occurs  in  the  first  and  third  positions  in  the  list.  The  extra
braces are used to avoid confusion with the case when elements are nested within a list.
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In[1]:= Position@85, 7, 5, 2, 1, 4<, 5D

Out[1]= 881<, 83<<

In the following, the expression f occurs once, in the third position within the second inner list.

In[2]:= Position@88a, b, c<, 8d, e, f<<, fD

Out[2]= 882, 3<<

Other functions exist  to select  or count the number of  elements in a list  that match a certain
pattern. For example, Count gives the frequency of an expression or pattern in a list.

In[3]:= Count@85, 7, 5, 2, 1, 4<, 5D

Out[3]= 2

You can test for membership in a list using MemberQ .

In[4]:= MemberQ@85, 7, 5, 2, 1, 4<, 3D

Out[4]= False

Alternatively, you can test whether a list is free of a particular expression.

In[5]:= FreeQ@85, 7, 5, 2, 1, 4<, 3D

Out[5]= True

Measuring lists
Recall  from Chapter  2  that  Length@exprD  is  used to  give  the  number of  elements  in  expr.  For  a
simple unnested (linear) list, the Length function tells you how many elements are in the list.

In[6]:= Length@8a, b, c, d, e, f<D

Out[6]= 6

In a nested list,  each inner list  is  an element of the outer list.  Therefore,  the Length  of  a nested
list indicates the number of inner lists, not their sizes.

In[7]:= Length@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D

Out[7]= 2

To find out more about the structure of nested lists, use the Dimensions  function.

In[8]:= Dimensions@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D

Out[8]= 82, 3, 2<

This  indicates  that  there are two inner lists,  that  each inner list  contains three lists,  and that  the
innermost lists each have two elements. MatrixForm  helps to see the structure better.
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In[9]:= MatrixForm@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D
Out[9]//MatrixForm=

1

2

3

4

5

6

K
a
b
O K

c
d
O K

e
f
O

The number of dimensions of a (possibly nested) list, is given by ArrayDepth .

In[10]:= ArrayDepth@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D

Out[10]= 3

This is identical to the number of levels in that expression as displayed by TreeForm  (remember
that the head of an expression is at level 0).

In[11]:= TreeForm@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D
Out[11]//TreeForm=

List

List

List

1 2

List

3 4

List

5 6

List

List

a b

List

c d

List

e f

Exercises
1. Given a list of integers such as the following, count the number of 0s. Find a way to count all those 

elements of the list which are not 1s.

In[1]:= ints = RandomInteger@8-5, 5<, 30D

Out[1]= 8-2, -2, 2, -1, -1, -3, -5, 3, -4, -4, -3, 4, -3,

4, 2, -2, -3, 1, 2, 3, -2, -4, 1, -1, 1, 1, 5, -2, 0, 3<

2. Given the list 8881, a<, 82, b<, 83, c<<, 884, d<, 85, e<, 86, f<<<, determine its 
dimensions. Use the Dimensions function to check your answer.

3. Find the positions of the 9s in the following list. Confirm using Position.

882, 1, 10<, 89, 5, 7<, 82, 10, 4<, 810, 1, 9<, 86, 1, 6<<
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3.3 Operations on lists
Extracting elements
The  Part  function  is  designed  for  extracting  elements  from  expressions  by  identifying  their
position within that expression. For example, this extracts the third element in the list vec.

In[1]:= vec = 82, 3, 7, 8, 1, 4<;

In[2]:= Part@vec, 3D

Out[2]= 7

The Part  function is abbreviated using double brackets as shorthand notation.

In[3]:= vec@@3DD

Out[3]= 7

To get the elements from more than one location, extract them using a list.  For example, this
picks out the second and fourth elements of vec.

In[4]:= vec@@82, 4<DD

Out[4]= 83, 8<

If you wanted elements in positions 2 through 4, use a list or the Range function.

In[5]:= vec@@82, 3, 4<DD

Out[5]= 83, 7, 8<

In[6]:= vec@@Range@2, 4DDD

Out[6]= 83, 7, 8<

A  shorthand  notation  for  the  Span  function  provides  a  more  compact  way  of  doing  the  same
thing.

In[7]:= vec@@2 ;; 4DD

Out[7]= 83, 7, 8<

For  multi-dimensional  lists,  you  have  to  specify  both  the  sublist  and  the  position  of  the  ele-
ment in that sublist that you are interested in. Here is a sample 3ä3 matrix that we will work with.

In[8]:= mat = Table@ai,j, 8i, 3<, 8j, 3<D;

In[9]:= MatrixForm@matD
Out[9]//MatrixForm=

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
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This picks out the first part of the second sublist.

In[10]:= mat@@2, 1DD

Out[10]= a2,1

For  multi-dimensional  lists,  several  options  are  available  to  extract  different  parts.  A  common
operation  involves  extracting  rows  or  columns  from  a  matrix.  The  following  input  extracts  the
entire second column of mat. Think of this as getting all rows, and the second column.

In[11]:= mat@@All, 2DD êê MatrixForm
Out[11]//MatrixForm=

a1,2
a2,2
a3,2

And here is the third row of this matrix.

In[12]:= mat@@3, AllDD

Out[12]= 8a3,1, a3,2, a3,3<

If you only specify one argument, the second is assumed to be All.

In[13]:= mat@@3DD

Out[13]= 8a3,1, a3,2, a3,3<

In  addition  to  extracting  elements  from  specific  locations  in  a  list,  you  can  extract  consecu-
tively placed elements within the list using Take . Element positions are counted from either the
front or the back of a list.

In[14]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 2D

Out[14]= 81, 9<

In[15]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, -2D

Out[15]= 8107, 197<

If you take consecutive elements from a list other than from the front and the back, you need to
remember that the numbering of positions is different front-to-back and back-to-front.

In[16]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 82, 4<D

Out[16]= 89, 7, 17<

In[17]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 8-5, -3<D

Out[17]= 817, 33, 57<
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You can mix positive and negative indices.

In[18]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 8-5, 4<D

Out[18]= 817<

You can also take elements in steps. This takes the first through sixth element in increments of 2,
that is, it takes every other element.

In[19]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 81, 6, 2<D

Out[19]= 81, 7, 33<

Another shorthand notation exists for ranges of this sort.

In[20]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 1 ;; 6 ;; 2D

Out[20]= 81, 7, 33<

Drop  is  used  to  discard  elements  from  a  list,  keeping  the  rest.  Elements  are  removed  from
either end of the list or from consecutive locations.

In[21]:= Drop@81, 9, 7, 17, 33, 57, 107, 197<, 2D

Out[21]= 87, 17, 33, 57, 107, 197<

In[22]:= Drop@81, 9, 7, 17, 33, 57, 107, 197<, -1D

Out[22]= 81, 9, 7, 17, 33, 57, 107<

In[23]:= Drop@81, 9, 7, 17, 33, 57, 107, 197<, 83, 5<D

Out[23]= 81, 9, 57, 107, 197<

Use Delete to remove elements at specific locations.

In[24]:= Delete@81, 9, 7, 17, 33, 57, 107, 197<, 1D

Out[24]= 89, 7, 17, 33, 57, 107, 197<

In[25]:= Delete@81, 9, 7, 17, 33, 57, 107, 197<, 883<, 84<<D

Out[25]= 81, 9, 33, 57, 107, 197<

Certain extractions are used so often that a named function exists for the operation.

In[26]:= First@81, 9, 7, 17, 33, 57, 107, 197<D

Out[26]= 1

In[27]:= Last@81, 9, 7, 17, 33, 57, 107, 197<D

Out[27]= 197

In[28]:= Rest@81, 9, 7, 17, 33, 57, 107, 197<D

Out[28]= 89, 7, 17, 33, 57, 107, 197<
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In[29]:= Most@81, 9, 7, 17, 33, 57, 107, 197<D

Out[29]= 81, 9, 7, 17, 33, 57, 107<

Rearranging lists
Every  list  can  be  sorted  into  a  canonical  order.  For  lists  of  numbers  or  letters,  this  ordering  is
usually obvious.

In[30]:= SortB:3,
223

71
,
22

7
,
355

113
,
25

8
>F

Out[30]= :3,
25

8
,
223

71
,
355

113
,
22

7
>

In[31]:= N@%D

Out[31]= 83., 3.125, 3.14085, 3.14159, 3.14286<

In[32]:= Sort@8"s", "p", "a", "m"<D

Out[32]= 8a, m, p, s<

As an aside, note that Sort  orders symbols such as p and ‰ by their names, not their values. This
is  due  to  the  great  generality  of  Sort  whereby  it  can  work  with  any  collection  of  numbers,
strings, and symbols.

In[33]:= Sort@8p, 5, ‰<D

Out[33]= 85, ‰, p<

Convert to explicit numbers to order by the values of these expressions.

In[34]:= Sort@N@8p, 5, ‰<DD

Out[34]= 82.71828, 3.14159, 5.<

Mathematica  uses  the  following canonical  orderings:  numbers  are  ordered by  numerical  value
with  complex  numbers  first  ordered  by  real  part  and  then  by  absolute  value  of  the  imaginary
part;  symbols  and  strings  are  ordered  alphabetically;  powers  and  products  are  ordered  in  a
manner  corresponding  to  the  terms  in  a  polynomial;  expressions  are  ordered  depth-first  with
shorter expressions first.

In[35]:= SortA9x3, x5, x=E

Out[35]= 9x, x3, x5=

In[36]:= Sort@8Expand@Ha + bL^2D, a Hb + cL, a b<D

Out[36]= 9a b, a2 + 2 a b + b2, a Hb + cL=
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You  can  also  sort  lists  according  to  an  ordering  function  that  you  can  specify  as  a  second
argument to Sort .

In[37]:= SortB:3, 1.7, p, -4,
22

7
>, GreaterF

Out[37]= :
22

7
, p, 3, 1.7, -4>

When applied to a nested list, Sort  will use the first element of each nested list to determine
the order.

In[38]:= Sort@882, c<, 87, 9<, 8e, f, g<, 81, 4.5<, 8x, y, z<<D

Out[38]= 881, 4.5<, 82, c<, 87, 9<, 8e, f, g<, 8x, y, z<<

For  multi-dimensional  lists,  SortBy  is  also  useful.  Its  second  argument  is  a  function  that  is
applied to each element in the list, and the result of that function gives the criterion used for the
sort.

In[39]:= SortBy@88b, 2<, 8a, 3<, 8c, 1<, 8d, 0<<, LastD

Out[39]= 88d, 0<, 8c, 1<, 8b, 2<, 8a, 3<<

In addition to sorting, various functions are available to rearrange lists. For example, the order
of the elements in a list can be reversed.

In[40]:= Reverse@81, 2, 3, 4, 5<D

Out[40]= 85, 4, 3, 2, 1<

All the elements can be rotated a specified number of positions to the right or the left.

In[41]:= RotateLeft@81, 2, 3, 4, 5<D

Out[41]= 82, 3, 4, 5, 1<

By default RotateLeft  (and RotateRight) shifts the list one position to the left (right). This
rotates every element two positions to the right.

In[42]:= RotateRight@81, 2, 3, 4, 5<, 2D

Out[42]= 84, 5, 1, 2, 3<

Partition  rearranges list elements to form a nested list. It may use all the elements and simply
divvy up a list. Here we partition the list into nonoverlapping sublists of length 2.

In[43]:= Partition@81, 4, 1, 5, 9, 2<, 2D

Out[43]= 881, 4<, 81, 5<, 89, 2<<

You might be interested in only using some of the elements from a list. For example, this takes
one-element sublists, with an offset of 2, that is, every other one-element sublist.
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In[44]:= Partition@81, 4, 1, 5, 9, 2<, 1, 2D

Out[44]= 881<, 81<, 89<<

You can also create overlapping inner lists,  consisting of ordered pairs (two-element sublists)
whose second element is the first element of the next ordered pair.

In[45]:= Partition@81, 4, 1, 5, 9, 2<, 2, 1D

Out[45]= 881, 4<, 84, 1<, 81, 5<, 85, 9<, 89, 2<<

The Transpose  function pairs off the corresponding elements of the inner lists. Its argument
is a single list consisting of nested lists.

In[46]:= Transpose@88x1, x2, x3, x4<, 8y1, y2, y3, y4<<D

Out[46]= 88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<<

In[47]:= mat = 88x1, x2, x3, x4<, 8y1, y2, y3, y4<, 8z1, z2, z3, z4<<;
Transpose@matD

Out[48]= 88x1, y1, z1<, 8x2, y2, z2<, 8x3, y3, z3<, 8x4, y4, z4<<

For rectangular lists, you might think of Transpose as exchanging the rows and columns of the
corresponding matrix.

In[49]:= MatrixForm@matD
Out[49]//MatrixForm=

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

In[50]:= Transpose@matD êê MatrixForm
Out[50]//MatrixForm=

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

Elements can be added to the front, the back, or to any specified position in a given list.

In[51]:= Append@81, 2, 3, 4<, 5D

Out[51]= 81, 2, 3, 4, 5<

In[52]:= Prepend@81, 2, 3, 4<, 0D

Out[52]= 80, 1, 2, 3, 4<

In[53]:= Insert@81, 2, 3, 4<, 2.5, 3D

Out[53]= 81, 2, 2.5, 3, 4<
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Elements  at  specific  locations  in  a  list  can be  replaced with other  elements.  Here,  b  replaces  the
element in the second position of the list.

In[54]:= ReplacePart@8a, b, c, d, e<, b, 2D

Out[54]= 8a, b, c, d, e<

Some list operations result in deeply nested lists that you may need to flatten. This removes all
the inner braces, creating a linear list of elements.

In[55]:= Flatten@8883, 1<, 82, 4<<, 885, 3<, 87, 4<<<D

Out[55]= 83, 1, 2, 4, 5, 3, 7, 4<

You can limit  the  degree  of  flattening,  removing only  some of  the  inner  lists.  For  example,  two
inner lists, each having two ordered pairs, can be turned into a single list of four ordered pairs by
only flattening down one level deep.

In[56]:= Flatten@8883, 1<, 82, 4<<, 885, 3<, 87, 4<<<, 1D

Out[56]= 883, 1<, 82, 4<, 85, 3<, 87, 4<<

List component assignment
Up until this point, most of the list manipulation functions we have looked at are nondestructive.
In other words, operating on a list by, say, reversing its elements, does not change the original list.

In[57]:= lis = 80, 1, 2, 3, 4<;

In[58]:= Reverse@lisD

Out[58]= 84, 3, 2, 1, 0<

In[59]:= lis

Out[59]= 80, 1, 2, 3, 4<

Sometimes though, it is convenient to modify the list directly. This can be accomplished with list
component assignments. The general syntax for modifying a list is:

nameAAinteger_valued _expressionEE = expr

The  name  must  be  the  name  of  a  list.  The  integer_valued_expression  must  evaluate  to  a  legal  sub-
script, that is, a valid position specification for the elements of a list. The assignment returns the
value of expr  (as assignments always do),  but has the effect of changing the list  to which name  is
bound. In other words, this is a destructive operation, changing the value of the list on which you
are operating. For example, this replaces the first element of the above list, lis, with the value 10.

In[60]:= lisP1T = 10

Out[60]= 10
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The value of lis itself has changed.

In[61]:= lis

Out[61]= 810, 1, 2, 3, 4<

Components of nested lists can be modified as well.

name@@expr1, expr2DD = expr

expr1  and  expr2  are  expressions  that  must  evaluate  to  integers.  expr1  chooses  the  sublist  of  name,

and expr2 the element of that sublist.

Here is a 2ä3 nested list.

In[62]:= A = 881, 2, 3<, 84, 5, 6<<;

This assigns the third element in the second sublist the value 20.

In[63]:= AP2, 3T = 20

Out[63]= 20

In[64]:= A

Out[64]= 881, 2, 3<, 84, 5, 20<<

Note  that  assigning  one  array  name  to  another  array  makes  a  copy  of  the  first.  In  this  way,
component assignments to either one will not affect the other.

In[65]:= B = A

Out[65]= 881, 2, 3<, 84, 5, 20<<

In[66]:= BP1, 2T = 30

Out[66]= 30

In[67]:= B

Out[67]= 881, 30, 3<, 84, 5, 20<<

In[68]:= A

Out[68]= 881, 2, 3<, 84, 5, 20<<

In[69]:= AP2, 1T = 40

Out[69]= 40

In[70]:= B

Out[70]= 881, 30, 3<, 84, 5, 20<<

This behavior differs from that of languages such as C where aliasing can allow one list to point to
another; with pointers, changing one array will have an effect on any array that points to it.
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As an example of  list  component assignment,  we create a  matrix consisting of  1s everywhere
except for 0s on the border. Start by creating a matrix of 1s and then replace all elements on the
borders with 0s.

In[71]:= mat = ConstantArray@1, 85, 5<D;
MatrixForm@matD

Out[72]//MatrixForm=

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

To  specify  the  first  and  last  rows  of  mat,  use  mat@@81, -1<, AllDD,  and  similarly  for  the
columns.

In[73]:= mat@@81, -1<, AllDD = 0;
mat@@All, 81, -1<DD = 0;
MatrixForm@matD

Out[75]//MatrixForm=

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

Because Mathematica is so efficient at list operations, many computations using list component
assignment  are  often  several  orders  of  magnitude  faster  than  other  approaches.  The  reasons
behind this are discussed in Chapter 12.

Multiple lists
A  number  of  the  functions  described  earlier  in  this  chapter,  such  as  Transpose,  work  with
several lists if  they are inside a nested list  structure.  The following functions,  on the other hand,
operate on multiple lists as arguments but without the need for the nesting. For example, Join
concatenates two lists.

In[76]:= Join@82, 5, 7, 3<, 8d, a, e, j<D

Out[76]= 82, 5, 7, 3, d, a, e, j<

Here is the union of two lists.

In[77]:= 84, 1, 2< ‹ 85, 1, 2<

Out[77]= 81, 2, 4, 5<
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In[78]:= Union@84, 1, 2<, 85, 1, 2<D

Out[78]= 81, 2, 4, 5<

When the Union  function is  used either on a single list  or on a number of lists,  a  list  is  formed
consisting  of  the  original  elements  in  canonical  order  with  all  duplicate  elements  removed.
Complement  gives  all  those  elements  in  the  first  list  that  are  not  in  the  other  list  or  lists.

IntersectionAlis1, lis2, …E finds all those elements common to the lisi.

In[79]:= Complement@84, 1, 2<, 85, 1, 2<D

Out[79]= 84<

In[80]:= 84, 1, 2< › 85, 1, 2<

Out[80]= 81, 2<

These last  three functions,  Union,  Complement ,  and Intersection,  treat  lists  somewhat
like  sets  in  that  there  are  no duplicates  and the order  of  elements  in  the lists  is  not  respected.  If
you simply want to remove duplicates without sorting, use DeleteDuplicates.

In[81]:= Flatten@884, 1, 2<, 85, 1, 2<<D

Out[81]= 84, 1, 2, 5, 1, 2<

In[82]:= DeleteDuplicates@%D

Out[82]= 84, 1, 2, 5<

A  common  task  when  working  with  data  that  you  wish  to  display  in  a  tabular  format  is
prepending a list of header information. 

In[83]:= header = 8"Column A", "Column B"<;
data = RandomReal@1, 85, 2<D

Out[84]= 880.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<

When using PrependAexpr, elemE, elem must have the same structure as the elements of expr.

In[85]:= Prepend@data, headerD

Out[85]= 88Column A, Column B<, 80.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<

You can do the same with Join ,  but  note that  to insure that  the two lists  have the same struc-
ture, header needs to be wrapped in 8<.

3.3 Operations on lists 79



In[86]:= Join@8header<, dataD

Out[86]= 88Column A, Column B<, 80.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<

We can display  this  list  of  headers  and data  adding some formatting  through the  use  of  several
options to Grid .

In[87]:= Grid@Join@8header<, dataD,
Frame Ø All, Alignment Ø Left,
FrameStyle Ø Thin, ItemStyle Ø 8"Menu", 8<D

Out[87]=

Column A Column B

0.327946 0.347031

0.401486 0.13706

0.3326 0.0676231

0.812965 0.340873

0.727445 0.634518

Using Join  as follows does not work because the two lists have different structures.

In[88]:= Grid@Join@header, dataDD

Out[88]= Grid@8Column A, Column B, 80.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<D

In[89]:= Dimensions@headerD

Out[89]= 82<

In[90]:= Dimensions@dataD

Out[90]= 85, 2<

Exercises
1. Given a list of data points, 88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<, 8x5, y5<<, 

separate the x and y components to get:

88x1, x2, x3, x4, x5<, 8y1, y2, y3, y4, y5<<

2. Consider a two-dimensional random walk on a square lattice. (A square lattice can be envisioned as 
a two-dimensional grid, just like the lines on graph paper.) Each step can be in one of the four 
directions: 81, 0<, 80, 1<, 8-1, 0<, 80, -1<, corresponding to steps in the compass directions 
east, north, west and south, respectively. Use the list 881, 0<, 80, 1<, 8-1, 0<, 80, -1<< to 
create a list of the steps of a ten-step random walk.

3. Extract elements in the even-numbered locations in the list 8a, b, c, d, e, f, g<.
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4. Given a matrix, use list component assignment to swap any two rows.

5. Create a function AddColumnAmat, col, posE that inserts a column vector col into the matrix mat 
at the column position given by pos. For example:

In[1]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[2]//MatrixForm=

5 0 9 1
0 0 0 5
9 6 2 5
1 2 2 2

In[3]:= AddColumn@mat, 8a, b, c, d<, 3D êê MatrixForm
Out[3]//MatrixForm=

5 0 a 9 1
0 0 b 0 5
9 6 c 2 5
1 2 d 2 2

6. Suppose you are given a list S of length n, and a list P containing n different numbers between 1 and 
n, that is, P is a permutation of Range@nD. Compute the list T such that for all k between 1 and n, 
TPkT = SPPPkTT. For example, if S = 8a, b, c, d< and P = 83, 2, 4, 1<, then 
T = 8c, b, d, a<.

7. Given the lists S and P in the previous exercise, compute the list U such that for all k between 1 and 
n, UPPPkTT = SPkT, that is, SPiT takes the value from position PPiT in U. Thus, for 
S = 8a, b, c, d< and P = 83, 2, 4, 1<, U = 8d, b, a, c<. Think of it as moving SP1T to 
position PP1T, SP2T to position PP2T, and so on. Hint: start by pairing the elements of P with the 
elements of S.

8. How would you perform the same task as Prepend@8x, y<, zD using the Join  function?

9. Starting with the lists 81, 2, 3, 4< and 8a, b, c, d<, create the list 82, 4, b, d<.

10. Starting with the lists 81, 2, 3, 4< and 8a, b, c, d<, create the list 
81, a, 2, b, 3, c, 4, d<.

11. Given two lists, find all those elements that are not common to the two lists. For example, starting 
with the lists, 8a, b, c, d< and 8a, b, e, f<, your answer would return the list 8c, d, e, f<.

12. One of the tasks in computational linguistics involves statistical analysis of text using what are 
called n-grams. These are sequences of n adjacent letters or words and their frequency distribution in 
a body of text can be used to predict word usage based on the previous history or usage. Import a 
file consisting of some text and find the twenty most frequently occurring word combinations. Pairs 
of words that are grouped like this are called bigrams, that is, n-grams for n = 2. 

Use the following StringSplit  code to split long strings into a list of words that can then be 
operated on with the list manipulation functions. Regular expressions are discussed in detail in 
Section 9.4.
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In[4]:= words =
StringSplit@"Use StringSplit to split long strings into words.",

RegularExpression@"\\W+"DD
Out[4]= 8Use, StringSplit, to, split, long, strings, into, words<

13. Based on the previous exercise, create a function NGrams@str, nD that takes a string of text and 
returns a list of n-grams, that is a list of the n adjacent words. For example:

In[5]:= text = "Use StringSplit to split long strings into words.";

NGrams@text, 3D

Out[6]= 88Use, StringSplit, to<, 8StringSplit, to, split<,
8to, split, long<, 8split, long, strings<,
8long, strings, into<, 8strings, into, words<<
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Patterns and rules
Patterns · Pattern matching by type · Structured patterns · Sequence pattern matching · 

Conditional pattern matching · Alternatives · Repeated patterns · Functions that use patterns · 
Transformation rules · Creating and using replacement rules · Counting coins · Closed paths · 

Finding maxima · Finding subsequences · Sorting lists

The use of rules to transform expressions from one form to another is one of the most powerful
tools  available  in  the  Mathematica  programming  language.  The  thousands  of  rules  built  in  to
Mathematica  can be expanded limitlessly through the creation of  user-defined rules.  These rewrite
rules can be used to change the form of expressions and to filter data based on some criteria, and
can  be  set  up  to  apply  to  broad  classes  of  expressions  or  they  can  be  limited  to  certain  narrow
domains  through  the  use  of  appropriate  pattern  matching  techniques.  Using  rules,  you  can
perform  many  of  the  tasks  normally  associated  with  more  traditional  programming  paradigms
such as procedural and functional programming. 

When you define a function via an assignment such as the function f below, you are defining a
rule  that  says  whenever  f  is  given  an  argument,  it  should  be  replaced  with  that  argument
squared. This rule will be applied automatically whenever you evaluate fAanythingE.

In[1]:= f@x_D := x2

In[2]:= f@5 ÂD

Out[2]= -25

In[3]:= f@LegendreP@5, xDD

Out[3]=
1

64
I15 x - 70 x3 + 63 x5M2



In[4]:= fB F

Out[4]=

2

On  the  other  hand,  you  can  set  up  rules  to  be  applied  on  demand  by  using  the  replacement
operator  ReplaceAll ,  written  in  shorthand  notation  as  /..  These  rules  can  then  be  used  to
transform one expression into another. For example, this rule adds the elements in each ordered
pair.

In[5]:= 88x1, y1<, 8x2, y2<, 8x3, y3<< ê. 8x_, y_< ß x + y

Out[5]= 8x1 + y1, x2 + y2, x3 + y3<

And here is a rule that interchanges the coordinate points that make up a plot, essentially reflect-
ing in the line y = x.

In[6]:= gr = Plot@Sin@xD, 8x, 0, p<D;

In[7]:= Show@8gr, gr ê. 8x_?NumberQ, y_?NumberQ< ß 8y, x<,
Graphics@8Dashed, Line@880, 0<, 8p, p<<D<D<,

PlotRange Ø All, AspectRatio Ø AutomaticD

Out[7]=

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Rules can be used to transform any object in Mathematica, such as strings, arrays, or images.

In[8]:= StringReplace@"acgttttccctgagcataaaaacccagcaatacg",
8"ca" Ø "CA", "tt" Ø "TT"<D

Out[8]= acgTTTTccctgagCAtaaaaaccCAgCAatacg
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In[9]:=

0.4683 0.2699 "NAN"

0.8323 0.1458 0.683

"NAN" 0.4935 0.4033

ê. H_String Ø 0.0L êê MatrixForm

Out[9]//MatrixForm=

0.4683 0.2699 0.

0.8323 0.1458 0.683

0. 0.4935 0.4033

In[10]:= ê. 8r_, g_, b_< ß 1 - 8r, g, b<

Out[10]=

Rule-based programming has broad application to many different programming tasks and it is
essential in learning how to program in Mathematica. Although the syntax will be new to anyone
brought up on imperative programming common to many procedural languages such as C  and
Fortran,  it  quickly becomes natural,  providing a direct connection between the statement of a
problem  and  its  expression  in  a  rule-based  program.  We  start  this  chapter  with  a  thorough
introduction  to  pattern  matching  and  then  proceed  to  a  discussion  of  transformation  rules  in
which patterns  are  used to  identify  the parts  of  an expression that  is  to  be  transformed.  Finally,
we will conclude the chapter with several concrete examples that make use of pattern matching
and transformation rules to show their application to some common programming tasks.

4.1 Patterns
Patterns  are  objects  in  Mathematica  that  are  used  to  represent  classes  of  expressions.  Pattern
matching  is  the  mechanism  that  Mathematica  uses  to  determine  if  a  particular  rule  should  be
applied  to  a  given  expression.  You  use  patterns  to  identify  the  class  of  expressions  for  which  a
user-defined  function  may  apply,  that  is,  for  argument  checking.  They  are  also  used  to  extract
parts  of  an expression based on a  criteria  of  interest.  There are  many different  types of  patterns
that  you  can  work  with  in  Mathematica  and  this  section  introduces  their  syntax  and  begins  to
show some of the great variety of things that are done with them.
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Blanks
When  you  make  an  assignment  to  a  symbol,  like  x = 4,  you  are  making  a  rule  that  should  be
applied  to  the  literal  expression  x.  Loosely  speaking,  the  rule  says,  replace  x  with  the  value  4
whenever  x  is  encountered.  We  have  seen  that  you  can  also  define  functions  of  one  or  more
arguments that allow you to substitute arbitrary expressions for those arguments.

In[1]:= f@x_D := x + 1

The  left-hand  side  of  the  above  assignment  is  a  pattern.  It  contains  a  pattern  object,  the  blank
(underscore), that can stand for any expression, not just the literal expression x. 

In[2]:= f@zD

Out[2]= 1 + z

In[3]:= f@BobD

Out[3]= 1 + Bob

While any specific expression can be pattern matched (because any object must match itself),
we usually want to be able to pattern match large classes of expressions (for example, an expres-
sion having Image  as its head or a sequence of numbers within a certain range). This is accom-
plished through patterns and pattern matching. To start, we will define a pattern as an expression
that may contain blanks; specifically, one of the following: a single blank (_), a double blank (__),
or  a  triple  blank  (___).  This  is  not  quite  accurate  since  arbitrary  expressions  can  be  used  as
patterns, but for now, we will only discuss patterns involving blanks.

It  is  useful  to  identify  the  pattern  matched  by  an  expression  so  that  it  can  be  referred  to  by
name elsewhere. For example, in the function f  defined above, the argument is a pattern named
x.  The argument is referred to as x  on the right-hand side of the definition. Labeled patterns can
be used with single, double, and triple blanks.

To see what class of expressions are matched by a given pattern, use MatchQ. For example, the
following  tests  whether  the  symbol  Bob  matches  any  expression  because  the  single  underscore
can stand for any Mathematica expression.

In[4]:= MatchQ@Bob, _D

Out[4]= True

Clear definitions before continuing.

In[5]:= Clear@fD
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Pattern matching by type
As stated above, the single blank matches every expression.

In[6]:= :MatchQ@1.2, _D, MatchQ@"Ciao", _D, MatchQB , _F>

Out[6]= 8True, True, True<

Oftentimes  you  are  interested  in  a  more  restrictive  pattern.  For  example,  you  might  want  to
define  a  function  that  accepts  only  integers  as  arguments,  or  a  function  that  only  operates  on
images.  One way of restricting the class of expressions matched by a pattern is  to match on the
head of the expression. This is done with patterns of the form _head.  For example, the following
tests whether the number 3.14 matches any expression with head Real .

In[7]:= MatchQ@3.14, _RealD

Out[7]= True

Of course 3.14 does not match any expression with head Integer .

In[8]:= MatchQ@3.14, _IntegerD

Out[8]= False

In[9]:= Head@3.14D

Out[9]= Real

To  look  at  a  list  of  expressions  and  see  which  ones  are  matched  by  a  particular  pattern,  use
Cases.  Cases@expr, pattD  returns  those  elements  of  expr  that  are  matched by the  pattern patt.
For example, the only two elements of the list below that have head Integer  are 3 and 17. Notice
the fourth element is a string.

In[10]:= Cases@83, 3.14, 17, "4", 4 + 5 I<, _IntegerD

Out[10]= 83, 17<

In[11]:= Cases@83, 3.14, 17, "4", 4 + 5 I<, _StringD

Out[11]= 84<

Remember  that  the  OutputForm  of  strings  is  to  display  without  the  quote  characters.  If  you
want to check the structure of this last output, use FullForm or check its head.

In[12]:= FullForm@%D
Out[12]//FullForm=

List@"4"D
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This next example matches all those expressions with head g.

In[13]:= Cases@8g@xD, f@xD, g@h@xDD, g@a, 0D<, _gD

Out[13]= 8g@xD, g@h@xDD, g@a, 0D<

The only expression below that is matched by the pattern _Plus is a + b. The string has head
String. But isn’t 2 + 3 matched by the pattern _Plus? 

In[14]:= Cases@8a + b, 2 + 3, "3+4"<, _PlusD

Out[14]= 8a + b<

Recall  from  Section  2.1,  that  Mathematica  evaluates  the  arguments  to  functions  before  passing
them  up  to  the  calling  function.  So  the  expression  2 + 3  in  this  example  is  evaluated  first  and
returns an expression that does not have head Plus .

In[15]:= FullForm@2 + 3D
Out[15]//FullForm=

5

In  practice,  pattern  matching  on  heads  is  extremely  useful  for  restricting  the  kinds  of  argu-
ments  on  which  a  defined  function  can  operate.  For  example,  the  following  function  sets  up  a
rule for expressions of the form f@integerD.  Only those expressions matched by this pattern will
cause the rule to be invoked.

In[16]:= f@x_IntegerD := x + 1

In[17]:= f@5D

Out[17]= 6

In[18]:= f@1.25D

Out[18]= f@1.25D

In[19]:= Clear@fD

Structured patterns
Patterns can also be set up to match arbitrary expressions. In the following example, the pattern
8p_, q_< matches any list with two elements.

In[20]:= Cases@88a, b<, 8<, 81, 0<, 8c, d, 3<<, 8p_, q_<D

Out[20]= 88a, b<, 81, 0<<

In  fact,  there  is  no  need  to  name  the  patterns  in  this  last  example  as  they  are  not  referred  to
elsewhere. Hence, the following is equivalent.
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In[21]:= Cases@88a, b<, 8<, 81, 0<, 8c, d, 3<<, 8_, _<D

Out[21]= 88a, b<, 81, 0<<

The  following  result  might  be  a  bit  surprising.  The  pattern  we  are  using  for  matching  is  a
symbolic expression involving a general pattern in both numerator and denominator.

In[22]:= CasesB:2,
9

3
,
1

3
,

x

y + z
>,

a_

b_
F

Out[22]= :
x

y + z
>

Why doesn’t  the pattern match 9ê3?  Mathematica  evaluates  the elements of  expressions first  and
so when 9ê3 is evaluated, it reduces to an integer.

In[23]:=
9

3

Out[23]= 3

What is even more mysterious is the fact that the pattern a_ ê b_  does not match 1ê3.  A look at
the internal representation of this fraction gives a clue.

In[24]:= FullFormB
1

3
F

Out[24]//FullForm=

Rational@1, 3D

The  pattern  matcher  is  a  syntactic  tool,  not  a  semantic  one.  This  means  that  patterns  match
expressions based on the explicit structure of the expression, not what that expression means or
what  it  might  reduce  to.  This  is  an  important  principle  to  keep  in  mind  when  you  are  creating
and using patterns.

In[25]:= MatchQB
1

3
, Rational@a_, b_DF

Out[25]= True

Structured arguments provide a clean mechanism for writing rules that only apply to the kinds
of  expressions  for  which  you  want  them  to  apply.  The  following  function  definition  is  for  an
argument consisting of a list of two expressions. 

In[26]:= f@8x_, y_<D :=
x2

y3
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In[27]:= f@8a, b<D

Out[27]=
a2

b3

The  pattern  does  not  match  in  the  following  case.  The  function  f  is  expecting  a  list  of  two
elements as an argument, but here, it is getting a sequence of two elements, not a list.

In[28]:= f@a, bD

Out[28]= f@a, bD

The alternative to such a structured pattern on the left-hand side of this definition would be to
use a more general pattern matching the head of the expression. But this requires a clumsy right-
hand side in which you need to extract the various parts of the list to operate on them.

In[29]:= ff@list_ListD := list@@1DD2 ë list@@2DD3

In[30]:= Clear@f, ffD

Sequence pattern matching
A sequence  consists of a number of expressions separated by commas. For example, the elements
of expressions are written as sequences. In both the full form and traditional representation for a
list, the elements are given as a sequence of expressions.

In[31]:= FullForm@8a, b, c, d, e<D
Out[31]//FullForm=

List@a, b, c, d, eD

The double  blank (BlankSequence)  represents  a  sequence of  one or  more expressions.  So,
the pattern 8p__< matches any list consisting of a sequence of one or more elements. 

In[32]:= Cases@88<, 8a<, 8b, c<, 8d, e, f<<, 8p__<D

Out[32]= 88a<, 8b, c<, 8d, e, f<<

Using the name p is actually unnecessary here as it is never referred to elsewhere.

In[33]:= Cases@88<, 8a<, 8b, c<, 8d, e, f<<, 8__<D

Out[33]= 88a<, 8b, c<, 8d, e, f<<

Using the triple blank (BlankNullSequence), which represents a sequence of zero or more
expressions, this pattern matches any list consisting of a sequence of zero or more elements.

In[34]:= Cases@88<, 8a<, 8b, c<, 8d, e, f<<, 8___<D

Out[34]= 88<, 8a<, 8b, c<, 8d, e, f<<

The  pattern  8___Symbol<  matches  any  list  consisting  of  a  sequence  of  zero  or  more  ele-
ments, all of which have head Symbol.
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In[35]:= MatchQ@8a, b, c<, 8___Symbol<D

Out[35]= True

In[36]:= MatchQ@8a, 2, c<, 8___Symbol<D

Out[36]= False

In  the  following  examples,  the  list  8a, b, c<  is  matched  by  the  pattern  _,  as  well  as  by
List@__D  and  List@___D.  However,  the  list  8a, b, c<  is  not  matched  by  the  pattern
List@_D because, for the purposes of pattern matching, a sequence is not an expression. 

In[37]:= MatchQ@8a, b, c<, _D

Out[37]= True

In[38]:= MatchQ@8a, b, c<, 8_<D

Out[38]= False

The next two examples return True  but not for the reason you might think.

In[39]:= MatchQ@8a, b, c<, __D

Out[39]= True

In[40]:= MatchQ@8a, b, c<, x__D

Out[40]= True

The pattern __ is  matched by a  sequence of  one or  more expressions.  In  this  case  the entire  list
matches that pattern, regardless of the contents of that list.

In[41]:= MatchQ@8<, __D

Out[41]= True

In  the  example  above  where  the  labeled  pattern  x__  is  used,  the  label  x  does  not  affect  the
success or failure of the pattern match. 

In[42]:= MatchQ@8a, b, c<, __D

Out[42]= True

Two  final  notes:  first,  the  discussion  about  pattern  matching  on  lists  applies  equally  to  any
expression. For example, the following returns True, with x naming the sequence a, b, c.

In[43]:= MatchQ@Plus@a, b, cD, Plus@x__DD

Out[43]= True

Second, sometimes the expression you are working on has a more complicated or nested struc-
ture.  In  such  cases,  you  will  often  need  to  coax  the  pattern  matcher  to  dig  a  little  deeper  in  its
search  for  a  match.  For  example,  using  the  structured  pattern  Hvar_L^n_  to  find  expressions
consisting of a variable raised to a power, this fails initially.
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In[44]:= CasesAa x4 + b x3 + c x2 + d x + e, Hvar_L^n_E

Out[44]= 8<

The  reason  Cases  did  not  find  any  expressions  matching  the  pattern  is  that  the  polynomial  is
deeply nested and Cases, by default, only looks at the first level of the expression.

In[45]:= FullFormAa x4 + b x3 + c x2 + d x + eE
Out[45]//FullForm=

Plus@e, Times@d, xD, Times@c, Power@x, 2DD,
Times@b, Power@x, 3DD, Times@a, Power@x, 4DDD

There certainly are some variables raised to powers in there. To get Cases  to find them, give it a
third argument that specifies the level to search down to. Rather than guessing or spending time
trying  to  figure  out  that  level,  you  can  just  use  Infinity  as  the  level  specification  and  this
means, go all the way down the expression tree.

In[46]:= CasesAa x4 + b x3 + c x2 + d x + e, Hvar_L^n_, InfinityE

Out[46]= 9x2, x3, x4=

Again note that there was no need to name the patterns in this example as they were not referred
to elsewhere. You might find it easier though to read such expressions using named patterns; it is
your choice.

In[47]:= CasesAa x4 + b x3 + c x2 + d x + e, H_L^_, InfinityE

Out[47]= 9x2, x3, x4=

Conditional pattern matching
Attaching a  condition Conditions are used to place a constraint on the labeled parts  of  an expres-
sion.  The  general  notation  for  conditional  patterns  is  expr_ ê; test.  The  pattern  match  is  only
possible if the predicate test returns True .

In this first example, the pattern named n  must meet the condition that its square root passes
the IntegerQ test; in other words, that n is a square.

In[48]:= CasesB81, 2, 3, 4, 5, 6, 7, 8, 9<, n_ ê; IntegerQB n FF

Out[48]= 81, 4, 9<

In  the  following  case,  the  expressions  that  are  matched  by  the  pattern  are  powers  where  the
exponent passes the EvenQ test.

In[49]:= Cases@8x, x^2, x^3, x^4, x^5<, _^Hn_L ê; EvenQ@nDD

Out[49]= 9x2, x4=
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Let us try a more applied problem. Given an array, how can we test that it is a square matrix?
One way is to check that the dimensions are identical.

In[50]:= mat = RandomReal@1, 83, 3<D;
MatrixForm@matD

Out[51]//MatrixForm=

0.139347 0.204957 0.245416
0.283553 0.48378 0.670354
0.346834 0.473592 0.625998

In[52]:= Dimensions@matD

Out[52]= 83, 3<

In  the  definition  below,  the  condition  that  the  expression  passes  the  matrix  test  is  added  to  the
left-hand  side.  This  avoids  having  to  check  tensors  where  the  first  two  dimensions  might  be
identical but the tensor clearly should not be classified as a square matrix.

In[53]:= SquareMatrixQ@mat_ ê; MatrixQ@matDD :=

Dimensions@matD@@1DD ã Dimensions@matD@@2DD

In[54]:= SquareMatrixQ@matD

Out[54]= True

In[55]:= mat = RandomReal@1, 83, 4<D;
MatrixForm@matD

Out[56]//MatrixForm=

0.882058 0.774627 0.733256 0.222145
0.297304 0.601519 0.680989 0.108759
0.0323011 0.361117 0.836766 0.795304

In[57]:= SquareMatrixQ@matD

Out[57]= False

A 1ä1 matrix is also square.

In[58]:= SquareMatrixQ@881<<D

Out[58]= True

We mentioned above that matching a list like 8a, b, c< with the pattern x_ is different from
matching it with x___ because of the various expressions that can be associated with�x.

In[59]:= MatchQ@84, 6, 8<, x_ ê; Length@xD > 4D

Out[59]= False
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In[60]:= MatchQ@84, 6, 8<, 8x___< ê; Length@xD > 4D

Length::argx : Length called with 3 arguments; 1 argument is expected. à

Out[60]= False

In[61]:= MatchQ@84, 6, 8<, 8x___< ê; Plus@xD > 10D

Out[61]= True

In the first example,  x  was associated with the entire list  84, 6, 8<;  since the length of the list
84, 6, 8< is not greater than 4, the match failed. In the second example, x became the sequence
4, 6, 8  so  that  the  condition  was  Length@4, 6, 8D > 4;  but  Length  can  only  have  one
argument, hence the error. In the last example, x was again associated with 4, 6, 8, but now the
condition was Plus@4, 6, 8D > 10, which is perfectly valid syntax, and true.

Shorthand  notation There  is  a  convenient  shorthand  notation  for  conditional  patterns  that  is
commonly used. The condition expr_ ê; test can be shortened to expr_ ? test. 

In[62]:= MatchQB , _?ImageQF

Out[62]= True

Note the difference in syntax between using a predicate and a head to pattern match: to match
a class of expressions that have head h, you use _h. To match a class of expressions that evaluate
to True  when the predicate test is applied, use _? test.

In[63]:= MatchQ@81, 2, 3<, _ListD

Out[63]= True

In[64]:= MatchQ@81, 2, 3<, _?NumberQD

Out[64]= False

In  the  above  example,  even  though  the  list  81, 2, 3<  consists  of  numbers,  it  does  not  match
? NumberQ  because its  head (List)  does not pass the NumberQ  test.  If  you want to match the
list consisting of a sequence of numbers, use the double blank as follows.

In[65]:= MatchQ@81, 2, 3<, 8__?NumberQ<D

Out[65]= True

Cases finds all elements of its first argument that match a pattern.
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In[66]:= Cases@81, 2, 3, a<, _?NumberQD

Out[66]= 81, 2, 3<

The pattern _?Negative  matches any expression that  passes  the Negative  test,  that  is,  it
returns true when Negative is applied to it.

In[67]:= Cases@8-2, 7, -1.2, 0, -5 - 2 I<, _?NegativeD

Out[67]= 8-2, -1.2<

Here is a simple application of attaching a predicate. This definition of the Fibonacci function
tests its argument to see that it is an integer.

In[68]:= f@1D = f@2D = 1;

In[69]:= f@n_?IntegerQD := f@n - 1D + f@n - 2D

Because of the predicate, f  will not evaluate for noninteger arguments; in other words, noninte-
ger arguments do not match the pattern _?IntegerQ.

In[70]:= f@1.2D

Out[70]= f@1.2D

In[71]:= 8f@5D, f@10D, f@20D<

Out[71]= 85, 55, 6765<

Note that you can test that the argument is both an integer and positive by using a logical connec-
tive – in this case, logical AND.

In[72]:= Clear@fD
f@1D = f@2D = 1;

In[74]:= f@n_ ê; IntegerQ@nD && Positive@nDD := f@n - 1D + f@n - 2D

In[75]:= 8f@5D, f@10D, f@20.0D, f@-10D<

Out[75]= 85, 55, f@20.D, f@-10D<

Examples Let  us  look at  a  few examples  of  the  use  of  conditional  patterns.  We will  only  scratch
the surface here of what can be done with them but we will be using and extending them through-
out the rest of this book.

In  our  first  example,  we  create  a  predicate  function  that  tests  whether  a  positive  integer  is
composite. The argument is checked to see if it has head Integer  and if it is greater than 1. 

In[76]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD
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In[77]:= CompositeQ@16D

Out[77]= True

In[78]:= CompositeQA231 - 1E

Out[78]= False

In this next input, the pattern matches all those expressions that are between 2 and 5.

In[79]:= Cases@81, 2, 3, 4, 5, 6, 7, 8<, x_ ê; 2 < x < 5D

Out[79]= 83, 4<

This is essentially a filter and we can use this technique to filter all sorts of data. For example, here
we remove outliers from a signal.

In[80]:= sig = Import@"signal.dat", "List"D;
ListPlot@sig, PlotRange Ø 8-1, 1<D

Out[81]=
200 400 600 800 1000

-1.0

-0.5

0.5

1.0

In[82]:= ListPlot@
Cases@sig, p_ ê; -0.3 < p < 0.3D,
PlotRange Ø 8-1, 1<D

Out[82]=
200 400 600 800 1000

-1.0

-0.5

0.5

1.0

Stock  screens  can  be  thought  of  similarly.  We  can  use  the  same  technique  as  above  to  extract
those members of the Dow Jones Industrials that have a large market capitalization.

In[83]:= CasesAFinancialData@"^DJI", "Members"D,

s_ ê; FinancialData@s, "MarketCap"D > 1011E

Out[83]= 8BAC, CVX, GE, IBM, INTC, JNJ, JPM,
KO, MRK, MSFT, PFE, PG, T, VZ, WMT, XOM<

In the following screen, two predicates are connected by logical  AND to give those members of
the Dow Jones Industrials that have a large market capitalization and a low price-earnings ratio.

96 Patterns and rules



In[84]:= CasesAFinancialData@"^DJI", "Members"D,

s_ ê; IFinancialData@s, "MarketCap"D > 1011 &&

FinancialData@s, "PERatio"D < 12ME

Out[84]= 8BAC, CVX, INTC, JPM, XOM<

Alternatives
Another kind of pattern uses alternatives. Alternatives are denoted p1 p2 … pn  where the pi  are
independent patterns. This pattern will match an expression whenever any one of those indepen-
dent patterns match it.

In the following example, x^2 matches “an expression which is either the symbol x raised to a
real number or the symbol x raised to an integer.”

In[85]:= MatchQ@x^2, x^_Real x^_IntegerD

Out[85]= True

Here the pattern matches any expression that has head Integer or Rational or Real.

In[86]:= CasesB:1, 3.1,
2

3
, x, 3 + 4 I, "Hello">,

_Integer _Rational _RealF

Out[86]= :1, 3.1,
2

3
>

You should think of p1 p2 … pn  as pattern p1 or pattern p2 or…. But note that this is different
from the logical OR which requires predicates, not patterns, as its argument. 

Repeated patterns
From the discussion of double and triple blanks,  we have seen that you can set up a function to
have  a  sequence  of  arguments  the  length  of  which  is  not  known  ahead  of  time.  For  example,
__List  matches  expressions with head List  with a  sequence of  one or  more elements  inside
that list.

In[87]:= MatchQ@81, 2, 3, 4, 5<, __ListD

Out[87]= True

To compute the mean of a list,  you could set up the function definition so that the argument
has head List . Any number of elements can be used inside this list.

In[88]:= mean@x_ListD := Total@xD ê Length@xD

You would probably want a separate rule for the special case when the list is empty.
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In[89]:= mean@8<D := 0

In[90]:= mean@8a, b, c, d<D

Out[90]=
1

4
Ha + b + c + dL

In[91]:= meanARangeA102EE

Out[91]=
101

2

But what if you wanted to restrict the arguments inside a list, say to numbers only. You could try
something like this:

In[92]:= MatchQ@81, 2, 3, 4, 5<, 8__?NumberQ<D

Out[92]= True

Or,  you  could  use  Repeated@patternD  (shorthand  notation  is  pattern ..)  which  stands  in  for  a
sequence of one or more expressions all of which match pattern; in this case, a sequence of expres-
sions all of which pass the NumberQ  test.

In[93]:= MatchQ@81, 2, 3, 4, 5<, 8_?NumberQ ..<D

Out[93]= True

Similarly,  there  is  RepeatedNull@patternD  (shorthand  notation  pattern ...),  a  pattern  object
that will match a sequence of zero or more expressions all matching pattern.

In[94]:= MatchQ@8<, 8_?NumberQ ...<D

Out[94]= True

A  second  argument  can  be  specified  for  both  Repeated  and  RepeatedNull  to  limit  the
number  of  expressions  that  are  returned.  For  example,  this  matches  lists  of  numbers,  returning
the first three matches.

In[95]:= Cases@881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<<,
8Repeated@_?NumberQ, 3D<D

Out[95]= 881<, 81, 2<, 81, 2, 3<<

As an example of the use of these repeated pattern objects, let us create two rules for a function
that  we  will  use  later  to  display  random  walks  in  two  and  three  dimensions.  The  first  pattern,
88_, _< ..<,  matches  any  sequence  of  one  or  more  two-dimensional  coordinates.  Similarly,
88_, _, _< ..<  matches  any  sequence  of  one  or  more  three-dimensional  coordinates.  We
could be a bit more careful and insist that each element in the list pass the NumberQ  test, but we
will omit that here for purposes of clarity.
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In[96]:= showWalk@coords : 88_, _< ..<D :=

ListLinePlot@coords, AspectRatio Ø AutomaticD

In[97]:= showWalk@coords : 88_, _, _< ..<D :=

Graphics3D@Line@coordsDD

This is defined and developed further as ShowWalk in Chapter 13. Loading the package from that
chapter, we generate a random walk and test one of the showWalk rules written here.

In[98]:= << PwM`RandomWalks`

In[99]:= RandomWalk@12, Dimension Ø 3D

Out[99]= 880, 0, -1<, 80, 1, -1<, 80, 0, -1<, 80, -1, -1<,
8-1, -1, -1<, 8-1, -1, -2<, 8-1, 0, -2<, 8-2, 0, -2<,
8-2, 0, -1<, 8-3, 0, -1<, 8-2, 0, -1<, 8-2, 0, -2<<

In[100]:= showWalk@RandomWalk@2500, Dimension Ø 3DD

Out[100]=

Note  that  we  have  not  yet  written  a  rule  for  the  one-dimensional  case.  Hence  the  following
returns  unevaluated  as  there  is  no  rule  for  showWalk  when  its  argument  is  a  one-dimensional
vector.

In[101]:= showWalk@RandomWalk@5, Dimension Ø 1DD

Out[101]= showWalk@81, 0, -1, 0, -1<D

We  have  used  one  additional  construct  in  these  rules  for  showWalk,  named  patterns.  The
pattern  88_, _< ..<  will  be  matched  by  any  list  of  one  or  more  lists  of  pairs.  The  pattern  is
named  coords  using  the  construction  coords : 88_, _< ..<.  We  then  refer  to  the  entire
argument  by  name  inside  the  body  of  the  function.  This  really  is  no  different  than  an  ordinary
function definition like f below where we name the argument x and refer to the argument by its
name  on  the  right-hand  side  of  the  function  definition.  The  following  two  function  definitions
are equivalent. It is of course more convenient to use the more compact first definition.
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In[102]:= f@x_D := x + 1

In[103]:= f@x : _D := x + 1

Functions that use patterns
We have already seen several functions that make use of patterns: MatchQ  is used to check if an
expression  is  matched  by  a  pattern;  Cases  returns  all  those  elements  in  an  expression  that  are
matched by a pattern. But there are several other functions that are quite useful and follow on the
syntax of these two functions we have already discussed. For example, using Cases, this returns
all those elements in the list of integers that are divisible by 3.

In[104]:= ints = RandomInteger@20, 812<D

Out[104]= 83, 13, 5, 11, 0, 16, 7, 1, 12, 16, 11, 4<

In[105]:= Cases@ints, x_ ê; Mod@x, 3D ã 0D

Out[105]= 83, 0, 12<

But what  if  you were interested in all  those elements  that  are  not  divisible  by 3?  DeleteCases
takes the same syntax as Cases but deletes those elements that are matched by the pattern.

In[106]:= DeleteCases@ints, x_ ê; Mod@x, 3D ã 0D

Out[106]= 813, 5, 11, 16, 7, 1, 16, 11, 4<

If you were interested in the positions within the list at which the pattern is matched, Position
is the function to use.

In[107]:= Position@ints, x_ ê; Mod@x, 3D ã 0D

Out[107]= 881<, 85<, 89<<

And if you wanted a count of the number of elements in the list that are matched by the pattern,
use Count.

In[108]:= Count@ints, x_ ê; Mod@x, 3D ã 0D

Out[108]= 3

Notice how all four of these functions use the exact same syntax. They are all quite useful in the
common  task  of  finding  information  about  the  elements  within  an  expression  that  meet  some
criteria you are interested in. 

As a nontrivial example, suppose you have a collector in the field that gives information about
some  phenomena  that  you  are  studying.  Normally,  it  returns  a  list  of  real  numbers  at  specified
intervals,  but  whenever it  fails,  it  inserts  a  string such as "NA".  Using Count  and Position  it
would  be  straightforward  to  find  the  rate  of  failure  and  the  positions  (times)  at  which  those
failures occurred. 
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In[109]:= signal = Import@"collectorData.dat", "List"D;

In[110]:= Dimensions@signalD

Out[110]= 88860<

In[111]:= badvals = Count@signal, _StringD

Out[111]= 19

In[112]:= N@badvals ê Length@signalDD

Out[112]= 0.00214447

In[113]:= Position@signal, _StringD

Out[113]= 88299<, 8700<, 81394<, 81488<, 81991<, 82195<, 82360<,
82628<, 83413<, 83466<, 83553<, 83662<, 85064<,
85079<, 85505<, 86861<, 86870<, 87118<, 87449<<

Exercises
1. Use conditional patterns to find all those numbers in a list of integers that are divisible by 2 or 3 or 5.

2. Write down five conditional patterns that match the expression 84, 8a, b<, "g"<.

3. Write a function Collatz that takes an integer n as an argument and returns 3 n + 1 if n is an odd 
integer and returns n ê2 if n is even.

4. Write the Collatz function from the above exercise, but this time you should also check that the 
argument to Collatz is positive.

5. Use alternatives to write a function abs@xD that returns x if x ¥ 0, and -x if x < 0, whenever x is an 

integer or a rational number. Whenever x is complex, abs@xD should return reHxL2 + imHxL2 .

6. Create a function swapTwoAlisE that returns lis with only its first two elements interchanged; for 

example, the input swapTwo@8a, b, c, d, e<D should return 8b, a, c, d, e<. If lis has fewer 
than two elements, swapTwo just returns lis. Write swapTwo using three clauses: one for the empty 
list, one for one-element lists, and one for all other lists. Then write it using two clauses: one for lists 
of length 0 or 1 and another for all longer lists.
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4.2 Transformation rules
Transformation  rules  are  ubiquitous  in  Mathematica.  They  are  used  to  represent  solutions  to
equations,  as  a  means  to  specify  options  for  functions,  and  they  form  the  basis  of  most  of  the
algebraic manipulation in Mathematica.  In this section we will look at how to use pattern match-
ing together with replacement rules to transform expressions.

Creating and using replacement rules
A replacement rule is of the form pattern Ø replacement or pattern ß replacement. Just like traditional
function definitions, the left-hand side of each of these rules matches an expression and the right-
hand side describes the transformation of that expression.

One of the most common uses for rules is to make substitutions of the form expr ê. rule. Any
part of expr that is matched by the pattern in rule will be rewritten according to that rule.

In[1]:= x + y ê.y Ø a

Out[1]= x + a

A rule that produces the same output but using assignments would look like this:

In[2]:= y = a;

In[3]:= x + y

Out[3]= x + a

The main difference between the replacement rule and the assignment is that the assignment will
automatically be used whenever there is an appropriate pattern match during evaluation. When
x + y was evaluated, a rule was found for y (specifically, y = a) and a substitution was automati-
cally made.

Another key difference is that no assignment was made in the first case but one was made in
the latter case. Let us clear that value before going on.

In[4]:= Clear@yD

Here is the standard input form of the above rule.

In[5]:= ReplaceAll@x + y, y Ø aD

Out[5]= x + a

And in general, it is

ReplaceAllAexpr, pattern Ø replacementE

Whether you use the standard form with ReplaceAll  or  use the shorthand notation,  there
are  some  important  things  to  note  about  the  evaluation  of  transformation  rules.  To  start,  the
expression itself is first evaluated. Then both the left-hand side and right-hand side of the rule are
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evaluated,  unless  there  are  parts  of  the  right-hand  side  that  have  the  Hold  attribute.  Finally,
everywhere that the evaluated left-hand side of the rule appears in the evaluated expression, it is
replaced by the evaluated right-hand side of the rule.

In[6]:= 8a, a< ê. a Ø RandomReal@D

Out[6]= 80.69089, 0.69089<

Trace  shows how the transformation rule works. Note in particular, that the right-hand side
of the rule (RandomReal@D) is evaluated first.

In[7]:= Trace@8a, a< ê. a Ø RandomReal@DD

Out[7]= 888RandomReal@D, 0.833525<, a Ø 0.833525, a Ø 0.833525<,
8a, a< ê. a Ø 0.833525, 80.833525, 0.833525<<

Just as in the case of assignments, there are immediate and delayed transformation rules. In an
immediate  rule  (pattern Ø replacement),  the  replacement  will  be  evaluated  immediately.  For  delayed
rules (pattern ß replacement), the replacement is only evaluated after the substitution is made.

In[8]:= 8a, a< ê. a ß RandomReal@D

Out[8]= 80.753241, 0.926807<

In[9]:= Trace@8a, a< ê. a ß RandomReal@DD

Out[9]= 88a ß RandomReal@D, a ß RandomReal@D<,
8a, a< ê. a ß RandomReal@D,
8RandomReal@D, RandomReal@D<, 8RandomReal@D, 0.228649<,
8RandomReal@D, 0.793173<, 80.228649, 0.793173<<

In general, it is a good idea to use delayed rules whenever you have global symbols on the right-
hand side of your rules to avoid the possibility of values for these symbols being used automati-
cally during evaluation. If there are no global symbols on the right-hand side of your rules, it may
be safe to use an immediate rule.

The  kinds  of  patterns  that  you  can  use  with  transformation  rules  are  limitless.  For  example,
using the symbol List  as the pattern, this changes the following list to a sum.

In[10]:= 8a, b, c< ê. List Ø Plus

Out[10]= a + b + c

Transformation rules can also be written using labeled patterns.  In the first  example below, a
pattern  is  used  to  identify  the  two  elements  in  an  ordered  pair  that  we  wish  to  reverse.  In  the
second example, the pattern matches elements on the diagonal of a matrix and this is used to set
all elements on the diagonal to 0.

In[11]:= 883, 4<, 87, 2<, 81, 5<< ê.8x_, y_< ß 8y, x<

Out[11]= 884, 3<, 82, 7<, 85, 1<<
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In[12]:= mat = 88a, b, c<, 8d, e, f<, 8g, h, i<<;
MatrixForm@matD

Out[13]//MatrixForm=

a b c

d e f

g h i

In[14]:= ReplacePart@mat, 8i_, i_< Ø 0D êê MatrixForm

Out[14]//MatrixForm=

0 b c

d 0 f

g h 0

ReplacePartAexpr, i Ø valE  is  used  to  replace  the  part  of  expr  at  position  i  with  val.  In  the

example above,  we have used the pattern 8i_, i_<  to stand in for a two-dimensional position
in  which  the  row  and  column  positions  are  the  same,  as  indicated  by  the  similarly  named  pat-
terns i_.

To use multiple rules with an expression, enclose them in a list.

In[15]:= 8a, b, c< ê.8c ß b, b ß a<

Out[15]= 8a, a, b<

A transformation rule is applied only once to each part of an expression (in contrast to a rewrite
rule)  and  multiple  transformation  rules  are  used  in  parallel.  Hence,  in  the  above  example,  the
symbol c is transformed into b but it is not further changed into a. 

In  order  to  apply  one  or  more  transformation  rules  repeatedly  to  an  expression  until  the
expression no longer changes, ReplaceRepeated  is used. For example, the product of x and y
below is replaced by the sum of x  and y,  but this is only done for the first such occurrence that
matches.

In[16]:= a b c d ê. x_ y_ ß x + y

Out[16]= a + b c d

Using ReplaceRepeated, the rule is applied repeatedly until the expression no longer changes.

In[17]:= a b c d êê. x_ y_ ß x + y

Out[17]= a + b + c + d

Let us now look at a few problems that can be solved directly using transformation rules.

Example: counting coins
As  our  first  example  of  the  use  of  transformation  rules,  we  will  write  a  program  to  perform  an
operation most of us do every day: calculating how much change you have in your pocket.
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Suppose you have the following collection of  coins and assume p,  n,  d,  and q  represent pennies,
nickels, dimes, and quarters, respectively (modify as appropriate for different currencies). 

In[18]:= coins = 8p, p, q, n, d, d, p, q, q, p<;

Here are the values, given by a list of rules.

In[19]:= values = 8p Ø .01, n Ø .05, d Ø .10, q Ø .25<;

This replaces each coin by its value.

In[20]:= coins ê. values

Out[20]= 80.01, 0.01, 0.25, 0.05, 0.1, 0.1, 0.01, 0.25, 0.25, 0.01<

And here is the value of the set of coins.

In[21]:= Total@coins ê. valuesD

Out[21]= 1.04

Finally, here is a function that wraps up all these steps.

In[22]:= CountChange@coins_ListD :=

Total@coins ê.8p Ø .01, n Ø .05, d Ø .10, q Ø .25<D

In[23]:= CountChange@8p, q, q, d, d, p, q, q, d, d<D

Out[23]= 1.42

Example: closed paths
In this example,  we will  create a new graphics function for plotting paths through points in the
plane.  This  problem  arises  in  visualizing  the  convex  hull  of  a  set  of  points  (see  Exercise  3  in
Section  10.2)  as  well  as  with  finding  shortest-tour  types  of  problems  (Section  10.4).  A  path
through a set of points typically is closed, meaning that the last point is connected to the first. We
will use a rule to deal with that constraint.

Let us start with some data, eighteen pairs of coordinates representing points in the plane.

In[24]:= data = RandomReal@20, 818, 2<D;

An  intuitive,  although  naive,  description  of  the  convex  hull  in  two  dimensions  is  the  smallest
convex polygon enclosing a set of points. We will need the ConvexHull  function defined in the
Computational Geometry package.

In[25]:= << ComputationalGeometry`

ConvexHull  returns the indices of the ordered pairs that make up the convex hull of the entire
list. Here are those positions from the list data.

In[26]:= hull = ConvexHull@dataD

Out[26]= 82, 16, 18, 4, 3, 1, 17, 15<
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To extract the points in these positions, use Part .

In[27]:= data@@hullDD

Out[27]= 8818.3903, 9.39165<, 814.8516, 18.1203<,
84.23631, 19.0618<, 81.21992, 17.663<, 80.904923, 15.6848<,
85.70375, 2.09678<, 810.3783, 2.066<, 818.3251, 5.95079<<

Here  is  a  graphic  showing  the  original  points  (ListPlot)  together  with  a  line  through  the
points in the convex hull.

In[28]:= Show@8ListPlot@dataD, Graphics@8Line@data@@hullDDD,
PointSize@.015D, Red, Point@data@@hullDDD<D<D

Out[28]=

5 10 15

5

10

15

Almost!  To  close  up  the  figure,  we  need  the  last  point  in  the  convex  hull  connected  to  the  first
point. A rule does the job nicely. Here, p1_  represents the first point in the list and pn__  repre-
sents the sequence of remaining points. 

In[29]:= Show@8ListPlot@dataD,
Graphics@8Line@data@@hullDD ê. 8p1_, pn__< ß 8p1, pn, p1<D,

PointSize@.015D, Red, Point@data@@hullDDD<D<D

Out[29]=

5 10 15

5

10

15

Let us turn this into a reusable function, PathPlot,  that we will find useful later, specifically
in  Section  10.4  where  we  develop  algorithms  for  finding  simple  closed  paths  of  points  in  the
plane.

In[30]:= PathPlot@coords_ListD :=

Graphics@8Line@coords ê. 8p1_, pn__< ß 8p1, pn, p1<D,
PointSize@.015D, Red, Point@coordsD<D
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Here is a more substantial set of points – 1500 points in the plane normally distributed about 0.

In[31]:= data = RandomVariate@NormalDistribution@0, 2D, 81500, 2<D;

In[32]:= Show@8ListPlot@dataD, PathPlot@dataPConvexHull@dataDTD<,
AspectRatio Ø AutomaticD

Out[32]= -6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Example: finding maxima
Our  next  example  employs  a  sophisticated  rewrite  rule  that  demonstrates  most  of  the  things
discussed  in  this  section:  the  repeated  use  of  a  transformation  rule  with  delayed  evaluation,
sequence patterns, and conditional pattern matching.

The maxima function returns the elements in a list of positive numbers that are bigger than all
the preceding numbers in the list. 

In[33]:= maxima@x_ListD :=

x êê.8a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<

The  transformation  rule  repeatedly  looks  through  the  list  for  two  elements  (b  and  d  here),
separated by  a  sequence  of  zero or  more  elements,  such that  the  second selected element  (d)  is
less  than  or  equal  to  the  first  selected  element  (b).  When  that  condition  is  met,  the  second  ele-
ment is dropped. The process stops when there are no two elements such that the second is less
than or equal to the first.

In[34]:= maxima@83, 5, 2, 6, 1, 8, 4, 9, 7<D

Out[34]= 83, 5, 6, 8, 9<

This  is  actually  a  variation  of  a  sorting  algorithm  known  as  insertion  sort.  We  will  look  at
sorting algorithms in some detail at the end of this chapter, Section 4.3.
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Exercises
1. Here is a rule designed to switch the order of each pair of expressions in a list. It works fine on the 

first example, but fails on the second.

In[1]:= 88a, b<, 8c, d<, 8e, f<< ê. 8x_, y_< ß 8y, x<

Out[1]= 88b, a<, 8d, c<, 8f, e<<

In[2]:= 88a, b<, 8c, d<< ê. 8x_, y_< ß 8y, x<

Out[2]= 88c, d<, 8a, b<<

Explain what has gone wrong and rewrite this rule to correct the situation, that is, so that the second 
example returns 88b, a<, 8d, c<<.

2. The following compound expression returns a value of 14. Describe the evaluation sequence that 
was followed. Use the Trace function to check your answer. 

In[3]:= z = 11;

a = 9;

z + 3 ê.z Ø a

Out[5]= 14

Then use the Hold  function in the compound expression to obtain a value of 12.

3. Create a function to compute the area of any triangle, given its three vertices. The area of a triangle is 
one-half the base times the altitude. For arbitrary points, the altitude requires a bit of computation 
that does not generalize. The magnitude of the cross product of two vectors gives the area of the 
parallelogram that they determine. The cross product is only defined for three-dimensional vectors, 
so to compute the area of a two-dimensional triangle using the cross product you will need to 
embed the edges (vectors) in three-dimensional space, say, in the plane z = 0. Try a second imple-
mentation using determinants instead of cross products.

4. Use pattern matching to extract all negative solutions of the following polynomial:

x9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123

Then extract all real solutions, that is, those which are not complex.

5. Create a rewrite rule that uses a repeated replacement to “unnest” the nested lists within a list.

In[6]:= unNest@88a, a, a<, 8a<, 88b, b, b<, 8b, b<<, 8a, a<<D

Out[6]= 8a, a, a, a, b, b, b, b, b, a, a<

6. Define a function using pattern matching and repeated replacement to sum the elements of a list.

7. Using the built-in function ReplaceList , write a function cartesianProduct that takes two 
lists as input and returns the Cartesian product of these lists.

In[7]:= cartesianProduct@8x1, x2, x3<, 8y1, y2<D

Out[7]= 88x1, y1<, 8x1, y2<, 8x2, y1<, 8x2, y2<, 8x3, y1<, 8x3, y2<<

8. Write a function to count the total number of multiplications in any polynomial expression. For 
example, given a power, your function should return one less than the exponent.
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In[8]:= MultiplyCountAt5E

Out[8]= 4

In[9]:= MultiplyCount[a x y t]

Out[9]= 3

In[10]:= MultiplyCountAa x y t4 + w tE

Out[10]= 7

9. Create six graphical objects, one each to represent the faces of a standard six-sided die. Dice@nD 
should display the face of the appropriate die, as below.

In[11]:= Table@Dice@nD, 8n, 1, 6<D

Out[11]= : , , , , , >

One way to approach this problem is to think of a die face as a grid of nine elements, some of which 
are turned on (white) and some turned off (blue above). Then create one set of rules for each die 
face. Once your rules are defined, you could use something like the following graphics code (a bit 
incomplete as written here) to create your images.

Dice@n_D := GraphicsGrid@
Map@Graphics, Partition@Range@9D, 3D ê. rules@@nDD, 82<DD

4.3 Examples and applications
This next section focuses on two classical problems in computer science: encryption and sorting.
Even though we will only scratch the surface of these two very deep problems, they are so impor-
tant and ubiquitous in modern computing that it is well worthwhile learning about them. At an
introductory level, these problems are well suited to a rule-based approach.

Finding subsequences
Consider  the  problem  of  finding  a  particular  subsequence  within  a  sequence  of  numbers.  This
computation is similar to one involving nucleotide sequence lookups in genes, something that is
solved for the specific domain of genes with GenomeLookup.

In[1]:= GenomeLookup@"GCTCTCTAATGGCAT"D

Out[1]= 888Chromosome3, 1<, 8140240043, 140240057<<,
88Chromosome7, -1<, 841460946, 41460960<<,
88Chromosome8, 1<, 892015447, 92015461<<,
88Chromosome21, 1<, 832732065, 32732079<<<

We  will  focus  on  sequences  of  digits  here  and  wait  to  solve  the  problem  involving  arbitrary
strings – not just gene sequences – until Section 9.5.

To prototype for numeric sequences, assume both the sequence and the subsequence are given
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as lists of numbers; we will find the positions at which the subsequence 3238  occurs in the digits
of p.

Here are the first 50  digits of p,  starting from the right of the decimal point.  Initially,  we only
work with a small number of digits so we can easily check on our progress.

In[2]:= pidigs = First@RealDigits@p, 10, 50, -1DD

Out[2]= 81, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3,

2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0,

2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0<

The subsequence is also given as a list of digits.

In[3]:= subseq = 83, 2, 3, 8<;

One  approach  to  this  problem  is  to  partition  the  list  of  digits  in  pidigs  into  lists  of  the  same
length as the list subseq, with overlapping sublists of offset one. This means that we will exam-
ine all sublists of length four from pidigs.

In[4]:= p = Partition@pidigs, Length@subseqD, 1D

Out[4]= 881, 4, 1, 5<, 84, 1, 5, 9<, 81, 5, 9, 2<, 85, 9, 2, 6<,
89, 2, 6, 5<, 82, 6, 5, 3<, 86, 5, 3, 5<, 85, 3, 5, 8<,
83, 5, 8, 9<, 85, 8, 9, 7<, 88, 9, 7, 9<, 89, 7, 9, 3<,
87, 9, 3, 2<, 89, 3, 2, 3<, 83, 2, 3, 8<, 82, 3, 8, 4<, 83, 8, 4, 6<,
88, 4, 6, 2<, 84, 6, 2, 6<, 86, 2, 6, 4<, 82, 6, 4, 3<, 86, 4, 3, 3<,
84, 3, 3, 8<, 83, 3, 8, 3<, 83, 8, 3, 2<, 88, 3, 2, 7<, 83, 2, 7, 9<,
82, 7, 9, 5<, 87, 9, 5, 0<, 89, 5, 0, 2<, 85, 0, 2, 8<, 80, 2, 8, 8<,
82, 8, 8, 4<, 88, 8, 4, 1<, 88, 4, 1, 9<, 84, 1, 9, 7<, 81, 9, 7, 1<,
89, 7, 1, 6<, 87, 1, 6, 9<, 81, 6, 9, 3<, 86, 9, 3, 9<, 89, 3, 9, 9<,
83, 9, 9, 3<, 89, 9, 3, 7<, 89, 3, 7, 5<, 83, 7, 5, 1<, 87, 5, 1, 0<<

Now we are ready for the pattern match. From the list p above, we are looking for the positions of
any  sublist  that  matches  83, 2, 3, 8<.  The  subsequence  3238  occurs  starting  at  the  fifteenth
digit in pidigs.

In[5]:= pos = Position@p, subseqD

Out[5]= 8815<<

To mirror the default  output of  Position,  we will  give the starting and ending positions of
this match.

In[6]:= pos ê. 8num_?IntegerQ< ß 8num, num + Length@subseqD - 1<

Out[6]= 8815, 18<<

Finally, let us turn this into a function and test it on a much larger example. Note that we use
the pattern _List  on both arguments,  digits  and subseq,  so that FindSubsequence  will
only match arguments that have head List . 
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In[7]:= FindSubsequence@digits_List, subseq_ListD :=

Module@8p, len = Length@subseqD<,
p = Partition@digits, len, 1D;
Position@p, subseqD ê.
8num_?IntegerQ< ß 8num, num + len - 1<D

Store the first 10 000 000 digits of p in the symbol pidigs.

In[8]:= pidigs = FirstARealDigitsAp, 10, 107, -1EE;

The  subsequence  314159  occurs  seven  times  in  the  first  10 000 000  digits  of  p,  starting  with  the
176 451st digit.

In[9]:= FindSubsequence@pidigs, 83, 1, 4, 1, 5, 9<D êê Timing

Out[9]= 88.38962, 88176451, 176456<, 81259351, 1259356<,
81761051, 1761056<, 86467324, 6467329<, 86518294, 6518299<,
89753731, 9753736<, 89973760, 9973765<<<

In  Exercise  1  at  the  end  of  this  section,  you  are  asked  to  create  a  version  of  FindSubseÖ
quence  that  takes  numbers  instead  of  lists  as  its  arguments.  In  Section  9.5  we  will  develop  a
different approach to this problem, one using string-processing functions that gives a substantial
speedup compared to the computation in this section.

Sorting a list
The next example,  sorting lists,  also incorporates several  of  the concepts discussed in this  chap-
ter: using a delayed rule, conditional patterns, and several types of sequence pattern matching.

We  will  create  a  rule  named  listSort  that,  upon  repeated  application,  will  put  a  list  of
numbers  into  numerical  order.  To  account  for  the  first  and  last  elements  in  the  list,  we  use
BlankNullSequence  (___).

In[10]:= listSort = 88x___, a_?NumericQ, b_?NumericQ, y___< ß

8x, b, a, y< ê; b < a<;

The  expression  that  has  to  match  the  pattern  8x___, a_, b_, y___<  is  a  list  of  at  least  two
elements  since  x___  and  y___  will  match  zero  or  more  elements.  The  condition  on  the  right-
hand side of the rule says that whenever b is less than a, switch the order of a and b in the origi-
nal list to output 8x, b, a, y<.

Here is a list of ten real numbers between 0 and 1.

In[11]:= nums = RandomReal@1, 810<D

Out[11]= 80.0391631, 0.675771, 0.586596, 0.362437, 0.24047,
0.90963, 0.280937, 0.102957, 0.888019, 0.581504<

Note that  applying the listSort  rule  to  nums  results  in  only one transformation,  in  this  case
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only  the  second  and  third  numbers  are  sorted  (the  first  two  numbers  in  nums  were  already  in
numerical order).

In[12]:= nums ê. listSort

Out[12]= 80.0391631, 0.586596, 0.675771, 0.362437, 0.24047,
0.90963, 0.280937, 0.102957, 0.888019, 0.581504<

To  apply  a  transformation  rule  repeatedly  until  the  expression  being  operated  on  no  longer
changes, use ReplaceRepeated (êê.).

In[13]:= nums êê. listSort

Out[13]= 80.0391631, 0.102957, 0.24047, 0.280937, 0.362437,
0.581504, 0.586596, 0.675771, 0.888019, 0.90963<

Because  we  used  ?NumericQ  as  part  of  the  pattern  match,  listSort  will  work  on  expres-
sions  that  may  not  be  explicit  numbers,  but  are  numerical  in  nature,  that  is,  expressions  that
return explicit numbers when N  is applied to them.

In[14]:= 8‰, p, EulerGamma, GoldenRatio, 1< êê. listSort

Out[14]= 8EulerGamma, 1, GoldenRatio, ‰, p<

By way of comparison, the built-in Sort  function, because of its great generality, sorts symbols
by their names and so does not return a numerically-sorted list here.

In[15]:= Sort@8‰, p, EulerGamma, GoldenRatio, 1<D

Out[15]= 81, ‰, EulerGamma, GoldenRatio, p<

One way around this is to give Sort  a second argument causing it to sort by numerical value.

In[16]:= Sort@8‰, p, EulerGamma, GoldenRatio, 1<, LessD

Out[16]= 8EulerGamma, 1, GoldenRatio, ‰, p<

Our listSort algorithm is essentially an implementation of the classical bubble sort. It is far
less  efficient  than  many  other,  more  commonly  used,  sorting  algorithms,  especially  those  that
employ a divide-and-conquer strategy. This is because the pattern matcher generates all possible
pairs  of  adjacent  elements  and  then  compares  them.  The  computational  complexity  of  the
bubble sort algorithm is known to be OIn2M, meaning running time is proportional to the square

of the size of the input.

In[17]:= times =
Table@First@Timing@HRandomReal@1, 8n<D êê. listSortL;DD,
8n, 50, 150, 10<D

Out[17]= 80.055971, 0.082766, 0.169308, 0.287193, 0.397787,
0.498622, 0.762439, 1.04713, 1.31721, 1.6914, 2.09163<
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In[18]:= model = LinearModelFitAtimes, 9x, x2=, xE;

In[19]:= model@"BestFit"D

Out[19]= 0.11057 - 0.0514218 x + 0.0209072 x2

In[20]:= Show@8Plot@model@tD, 8t, 1, 10<D, ListPlot@timesD<D

Out[20]=

4 6 8 10

0.5

1.0

1.5

The  built-in  Sort  function  uses  a  classical  algorithm  called  “merge  sort”  (discussed  in  Section
7.4), which starts by dividing the list into two parts of approximately equal size. It then sorts each
part  recursively  and finally  merges  the two sorted sublists.  For  numerical  input  it  has  computa-
tional complexity a mere OHn logHnLL.

In[21]:= Timing@Sort@numsD;D

Out[21]= 80.000029, Null<

In[22]:= times = Table@First@Timing@Sort@RandomReal@1, 8n<DD;DD,
8n, 500000, 1500000, 100 000<D

Out[22]= 80.153327, 0.183019, 0.211981, 0.250083, 0.285453,
0.328241, 0.356609, 0.404033, 0.440554, 0.469802, 0.52071<

In[23]:= model = LinearModelFit@times, 8x, Log@xD<, xD;
model@"BestFit"D

Out[24]= 0.112765 + 0.0408967 x - 0.0191854 Log@xD

In[25]:= Show@8Plot@model@tD, 8t, 1, 10<D, ListPlot@timesD<D

Out[25]=

2 4 6 8 10

0.20

0.25

0.30

0.35

0.40

0.45

The  above  implementation  of  listSort  only  works  for  numerical  arguments.  It  can  be  over-
loaded to work on characters of strings. This is implemented in Section 9.1.

 For  detailed  information  on  the  theory  and  implementation  of  modern  cipher  and  sorting
algorithms, see Sedgewick and Wayne (2011) and Wagon (1999).
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Exercises
1. The function FindSubsequence defined in this section suffers from the limitation that the 

arguments digits and subseq must both be lists of numbers. Write another definition of 
FindSubsequence that takes two integers as arguments. So, for example, the following should 
work:

In[1]:= n = RandomIntegerA10200E

Out[1]= 99886364225785890637248382678171952235146647070036321273192 Ö

078968865572610676045767583093169497891617017225261830124 Ö

007777401603464795137556513541607966794013354513861062656 Ö

302896471480157720676043512

In[2]:= FindSubsequence@n, 22D

Out[2]= 889, 10<, 835, 36<, 8105, 106<<

2. Plot the function sinHxL over the interval [–2 p, 2 p] and then reverse the x- and y-coordinates of each 
point by means of a transformation rule to display a reflection in the line y = x.

3. Given a two-column array of data,

In[3]:= data = RandomReal@80, 10<, 85, 2<D;
MatrixForm@data, TableAlignments Ø "."D

Out[4]//MatrixForm=

2.75703 8.36575
7.99197 4.86756
1.90927 5.59835
7.76051 2.29443
3.87192 8.11463

create a new array that consists of three columns where the first two columns are identical to the 
original, but the third column consists of the norm of the two numbers from the first two columns.

2.75703 8.36575 8.80835
7.99197 4.86756 9.35761
1.90927 5.59835 5.91497
7.76051 2.29443 8.09258
3.87192 8.11463 8.99105

4. Occasionally, when collecting data from an instrument, the collector fails or returns a bad value. In 
analyzing the data, the analyst has to make a decision about what to use to replace these bad values. 
One approach is to replace them with a column mean. Given an array of numbers such as the 
following, create a function to replace each "NAN" with the mean of the numbers that appear in 
that column.

data =

0.9034 "NAN" 0.7163 0.8588
0.3031 0.5827 0.2699 0.8063

0.0418 0.8426 "NAN" 0.8634

"NAN" 0.8913 0.0662 0.8432

;
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5

Functional programming
Higher-order functions · Map · Apply · Thread and MapThread · The Listable attribute · Inner 

and Outer · Select and Pick · Iterating functions · Nest · FixedPoint · NestWhile · Fold · Defining 
functions · Compound functions · Scoping constructs · Pure functions · Options · Creating and 

issuing messages · Hamming distance · Josephus problem · Regular polygons · Protein 
interaction networks · Palettes for project files · Operating on arrays

Functional programming, the use and evaluation of functions as a programming paradigm, has a
long and rich history in programming languages. Lisp came about in the search for a convenient
language  for  representing  mathematical  concepts  in  programs.  It  borrowed  from  the  lambda
calculus  of  the  logician  Alonzo  Church.  More  recent  languages  have  in  turn  embraced  many
aspects  of  Lisp  –  in  addition  to  Lisp’s  offspring  such  as  Scheme  and  Haskell,  you  will  find  ele-
ments  of  functional  constructs  in  Java,  Python,  Ruby,  and  Perl.  Mathematica  itself  has  clear
bloodlines to Lisp, including the ability to operate on data structures such as lists as single objects
and in its representation of mathematical properties through rules. Being able to express ideas in
science,  mathematics,  and  engineering  in  a  language  that  naturally  mirrors  those  fields  is  made
much easier by the integration of these tools.

Functions not only offer a familiar paradigm to those representing ideas in science, mathemat-
ics,  and  engineering,  they  provide  a  consistent  and  efficient  mechanism  for  computation  and
programming. In Mathematica, unlike many other languages, functions are considered “first class”
objects,  meaning  they  can  be  used  as  arguments  to  other  functions,  they  can  be  returned  as
values, and they can be part of many other kinds of data objects such as arrays. In addition, you
can create and use functions at runtime, that is, when you evaluate an expression. This functional
style of programming distinguishes Mathematica from traditional procedural languages like C and
Fortran.  A  solid  facility  with  functional  programming  is  essential  for  taking  full  advantage  of
the Mathematica language to solve your computational tasks.



5.1 Introduction
Functions are objects that operate on expressions and output unique expressions for each input.
For example,  here is  a  definition for  a  function that  takes a  vector of  two variables  as  argument
and returns a vector of three elements.

In[1]:= f@8u_, q_<D := :Cos@qD 1 - u2 , Sin@qD 1 - u2 , u>

You can evaluate the function for numeric or symbolic values.

In[2]:= f@80, 0.5<D

Out[2]= 80.877583, 0.479426, 0<

In[3]:= f@8-1 ê 2, y<D

Out[3]= :
1

2
3 Cos@yD,

1

2
3 Sin@yD, -

1

2
>

Functions can be significantly more complicated objects. Below is a function that operates on
functions.  It  takes two arguments:  a function or expression, and a list  containing the variable of
integration and the integration limits.

In[4]:= Integrate@Exp@I p xD, 8x, a, b<D

Out[4]=

Â I‰Â a p - ‰Â b pM

p

This  particular  function  can  be  also  be  given  a  different  argument  structure:  a  function  and  a
variable.

In[5]:= Integrate@Exp@I p xD, xD

Out[5]= -
Â ‰Â p x

p

Whereas  procedural  programs  provide  step-by-step  sets  of  instructions,  functional  program-
ming involves the application of functions to their arguments and typically operates on the entire
expression  at  once.  For  example,  here  is  a  traditional  procedural  approach  to  switching  the
elements in a list of pairs.

In[6]:= lis = 88a, 1<, 8b, 2<, 8g, 3<<;

In[7]:= temp = Table@0, 8Length@lisD<D;
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In[8]:= Do@temp@@iDD = 8lis@@i, 2DD, lis@@i, 1DD<,
8i, 1, Length@lisD<D;

temp

Out[9]= 881, a<, 82, b<, 83, g<<

Here  is  a  functional  approach  to  solving  the  same  problem.  The  Map  function  takes  the
Reverse  function as an argument and uses it to operate on the list directly.

In[10]:= Map@Reverse, lisD

Out[10]= 881, a<, 82, b<, 83, g<<

This  simple  example  illustrates  several  of  the  key  features  of  functional  programming.  A
functional approach often allows for a more direct implementation of the solution to a problem,
especially  when list  manipulations  are  involved.  The procedural  approach required first  allocat-
ing  an  array,  temp,  of  the  same  size  as  lis;  then  extracting  and  putting  parts  of  the  list  into
temp  one-by-one,  looping  over  lis;  and  finally  returning  the  value  of  temp.  The  functional
approach, although implying an iteration, avoids an explicit looping structure.

In  this  chapter,  we  first  take  a  look  at  some  of  the  most  powerful  and  useful  functional  pro-
gramming  constructs  in  Mathematica  –  the  so-called  higher-order  functions  such  as  Map,  Apply
and  Thread  –  and  then  discuss  the  creation  of  functions,  using  many  of  the  list  manipulation
constructs discussed earlier. It is well worthwhile to spend time familiarizing yourself with these
functions from the chapter on lists. Having a large vocabulary of built-in functions will not only
make  it  easier  to  follow  the  programs  and  do  the  exercises  here,  but  will  enhance  your  own
programming skills as well. 

One  of  the  unique  features  of  a  functional  language  such  as  Mathematica  (and  also  Lisp,
Haskell, Scheme, and others) is the ability to create a function at runtime, meaning that you do
not  need  to  formally  declare  such  a  function.  In  Mathematica  this  is  implemented  through  pure
functions.  For  example,  without  creating  a  formal  function  definition,  we  use  a  pure  function
below to filter data for values in a narrow band around zero.

In[11]:= data = RandomRealA8-1, 1<, 106E;

In[12]:= Select@data, Function@x, -0.00001 < x < 0.00001DD

Out[12]= 96.73666 � 10-6, 2.05057 � 10-6, -6.53306 � 10-6,

6.29973 � 10-6, -1.50788 � 10-6, 7.90283 � 10-6,

3.94237 � 10-6, 7.09181 � 10-6, -8.69555 � 10-6=

We will introduce and explore pure functions in Section 5.6.
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Localization  of  variables,  common  to  many  modern  programming  languages,  allows  you  to
isolate symbols and definitions that are local to a function in order to keep them from interfering
with, or being interfered by, global symbols. These are discussed in Section 5.5.

Although  optional  arguments  and  messaging  are  not  specific  to  functional  constructs,  we
introduce them in this chapter to start building up the complexity of our examples.  Developing
your functions so that  they behave like built-in functions makes them easier  to use for you and
users  of  your  programs.  Providing  options  and  issuing  messages  when  things  goes  wrong  are
common mechanisms for doing this and they are introduced in Section 5.7.

Finally,  we put a lot of the pieces together from this chapter and the chapters on lists and on
patterns  to  program more extensive  examples  and applications,  touching on areas  as  diverse  as
signal processing, geometry, bioinformatics, and data processing.

5.2 Functions for manipulating expressions
Three of  the most powerful  functions,  and some of  those most commonly used by experienced
Mathematica  programmers  are  Map,  Apply,  and  Thread.  They  provide  efficient  and  sophisti-
cated  ways  of  manipulating  expressions  in  Mathematica.  In  this  section  we  will  discuss  their
syntax and look at  some simple examples of  their  use.  We will  also briefly look at  some related
functions  (Inner  and  Outer),  which  will  prove  useful  in  manipulating  the  structure  of  your
expressions;  finally,  in  this  section  we  introduce  Select  and  Pick ,  which  are  used  to  extract
elements of an expression based on some criteria of interest. These higher-order functions are in
the  toolkit  of  every  experienced Mathematica  programmer and they  will  be  used throughout  the
rest of this book.

Map
Map applies a function to each element in a list. 

In[1]:= MapBHead, :3,
22

7
, p>F

Out[1]= 8Integer, Rational, Symbol<

This can be illustrated using an undefined function f and a simple linear list.

In[2]:= Map@f, 8a, b, c<D

Out[2]= 8f@aD, f@bD, f@cD<

More  generally,  mapping  a  function  f  over  the  expression  g@a, b, cD  essentially  wraps  the
function f around each of the elements of g.

In[3]:= Map@f, g@a, b, cDD

Out[3]= g@f@aD, f@bD, f@cDD
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This  symbolic  computation  is  identical  to  Map@f, 8a, b, c<D,  except  in  that  example  g  is
replaced  with  List  (remember  that  FullForm@8a, b, c<D  is  represented  internally  as
List@a, b, cD).

The real power of the Map function is that you can map any function across any expression for
which that  function makes sense.  For example,  to reverse the order of  elements in each list  of  a
nested list, use Reverse  with Map, 

In[4]:= Map@Reverse, 88a, b<, 8c, d<, 8e, f<<D

Out[4]= 88b, a<, 8d, c<, 8f, e<<

The elements in each of the inner lists in a nested list can be sorted.

In[5]:= Map@Sort, 882, 6, 3, 5<, 87, 4, 1, 3<<D

Out[5]= 882, 3, 5, 6<, 81, 3, 4, 7<<

Often, you will need to define your own function to perform a computation on each element
of a list. Map is expressly designed for this sort of computation. Here is a list of three elements.

In[6]:= vec = 82, p, g<;

If  you wished to square each element and add 1,  you could first  define a  function that  performs
this computation on its arguments.

In[7]:= f@x_D := x2 + 1

Mapping this function over vec,  will  then wrap f  around each element and evaluate f  of those
elements.

In[8]:= Map@f, vecD

Out[8]= 95, 1 + p2, 1 + g2=

The Map function is such a commonly used construct in Mathematica that a shorthand notation

exists for it: fun êü expr  is equivalent to MapA fun, exprE. Hence the above computation can also

be written as:

In[9]:= f êü vec

Out[9]= 95, 1 + p2, 1 + g2=

While it does make your code a bit more compact, the use of such shorthand notation comes at
the cost of readability. Experienced Mathematica programmers and those who prefer such an infix
notation  tend  to  use  them  liberally.  We  will  use  the  longer  form  in  general  in  this  book  but
encourage you to become comfortable with either syntax as it will make it easier for you to read
programs created by others more readily.

5.2 Functions for manipulating expressions 119



Apply
Whereas Map is used to perform the same operation on each element of an expression, Apply  is
used to change the structure of an expression.

In[10]:= Apply@h, g@a, b, cDD

Out[10]= h@a, b, cD

The  function  h  was  applied  to  the  expression  g@a, b, cD  and  Apply  replaced  the  head  of
g@a, b, cD with h.

If the second argument is a list, applying h to that expression simply replaces its head (List)
with h.

In[11]:= Apply@h, 8a, b, c<D

Out[11]= h@a, b, cD

The  following  computation  shows  the  same  thing,  except  we  are  using  the  internal  representa-
tion of the list 8a, b, c< here to better see how the structure is changed.

In[12]:= Apply@h, List@a, b, cDD

Out[12]= h@a, b, cD

The  elements  of  List  are  now  the  arguments  of  h.  Essentially,  you  should  think  of
Apply@h, exprD as replacing the head of expr with h. 

In the following example, List@1, 2, 3, 4D  has been changed to Plus@1, 2, 3, 4D  or,
in other words, the head List  has been replaced by Plus . 

In[13]:= Apply@Plus, 81, 2, 3, 4<D

Out[13]= 10

Plus@a, b, c, dD  is  the  internal  representation  of  the  sum  of  these  four  symbols  that  you
would normally write a + b + c + d.

In[14]:= Plus@a, b, c, dD

Out[14]= a + b + c + d

Like  Map,  Apply  has  a  shorthand  notation:  the  expression  fun üü expr  is  equivalent  to

ApplyA fun, exprE. So, the above computation could be written as follows:

In[15]:= Plus üü 81, 2, 3, 4<

Out[15]= 10

One  important  distinction  between  Map  and  Apply  concerns  the  level  of  the  expression  at

which  each  operates.  By  default,  Map  operates  at  level  1.  That  is,  in  MapAh, exprE,  h  will  be

applied to each element at the top level of expr.  So, for example, if expr  consists of a nested list, h
will be applied to each of the sublists, but not deeper, by default.
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In[16]:= Map@h, 88a, b<, 8c, d<<D

Out[16]= 8h@8a, b<D, h@8c, d<D<

If  you  wish  to  apply  h  at  a  deeper  level,  then  you  have  to  specify  that  explicitly  using  a  third
argument to Map.

In[17]:= Map@h, 88a, b<, 8c, d<<, 82<D

Out[17]= 88h@aD, h@bD<, 8h@cD, h@dD<<

Apply,  on the other hand, operates at level 0  by default. That is, in ApplyAh, exprE,  Apply

looks at part 0 of expr (that is, its Head) and replaces it with h.

In[18]:= Apply@f, 88a, b<, 8c, d<<D

Out[18]= f@8a, b<, 8c, d<D

Again, if  you wish to apply h  at  a different level,  then you have to specify that explicitly using a
third argument to Apply.

In[19]:= Apply@h, 88a, b<, 8c, d<<, 81<D

Out[19]= 8h@a, bD, h@c, dD<

For example, to apply Plus  to each of the inner lists, you need to specify that Apply will operate
at level 1.

In[20]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<, 81<D

Out[20]= 86, 18<

If you are a little unsure of what has just happened, consider the following example and, instead
of p, think of Plus .

In[21]:= Apply@p, 881, 2, 3<, 85, 6, 7<<, 81<D

Out[21]= 8p@1, 2, 3D, p@5, 6, 7D<

Applying at the default level 0, is quite different. This is just vector addition, adding element-wise.

In[22]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<D

Out[22]= 86, 8, 10<

Applying  functions  at  level  1  is  also  a  common  task  and  it  too  has  a  shorthand  notation:
fun üüü expr is equivalent to ApplyA fun, expr, 81<E.

In[23]:= p üüü 881, 2, 3<, 85, 6, 7<<

Out[23]= 8p@1, 2, 3D, p@5, 6, 7D<
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Thread and MapThread
The Thread  function “threads” a function over several lists. You can think of it as extracting the
first  element  from  each  of  the  lists,  wrapping  a  function  around  them,  then  extracting  the  next
element in each list and wrapping the function around them, and so on.

In[24]:= Thread@g@8a, b, c<, 8x, y, z<DD

Out[24]= 8g@a, xD, g@b, yD, g@c, zD<

You can accomplish the same thing with MapThread. It differs from Thread in that it takes two
arguments – the function that you are mapping and a list of two (or more) lists as arguments of
the function. It creates a new list in which the corresponding elements of the old lists are paired
(or zipped together).

In[25]:= MapThread@g, 88a, b, c<, 8x, y, z<<D

Out[25]= 8g@a, xD, g@b, yD, g@c, zD<

You  could  perform  this  computation  manually  by  first  zipping  together  the  two  lists  using
Transpose, and then applying g at level one.

In[26]:= Transpose@88a, b, c<, 8x, y, z<<D

Out[26]= 88a, x<, 8b, y<, 8c, z<<

In[27]:= Apply@g, %, 81<D

Out[27]= 8g@a, xD, g@b, yD, g@c, zD<

With Thread,  you can fundamentally change the structure of the expressions you are using.
For example, this threads the Equal function over the two lists given as its arguments.

In[28]:= Thread@Equal@8a, b, c<, 8x, y, z<DD

Out[28]= 8a ã x, b ã y, c ã z<

In[29]:= Map@FullForm, %D

Out[29]= 8Equal@a, xD, Equal@b, yD, Equal@c, zD<

Here is another example of the use of Thread. We start off with a list of variables and a list of
values. 

In[30]:= vars = 8x1, x2, x3, x4, x5<;

In[31]:= values = 81.2, 2.5, 5.7, 8.21, 6.66<;

From these two lists, we create a list of rules.

In[32]:= Thread@Rule@vars, valuesDD

Out[32]= 8x1 Ø 1.2, x2 Ø 2.5, x3 Ø 5.7, x4 Ø 8.21, x5 Ø 6.66<
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Notice  how  we  started  with  a  rule  of  lists  and  Thread  produced  a  list  of  rules.  In  this  way,  you
might think of Thread as a generalization of Transpose.

Here are a few more examples of MapThread.  Power  takes two arguments, the base and the
exponent,  so  the  following  raises  each  element  in  the  first  list  to  the  power  given  by  the  corre-
sponding element in the second list.

In[33]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D

Out[33]= 832, 6, 9<

Using  Trace,  you  can  view  some  of  the  intermediate  steps  that  Mathematica  performs  in  doing
this calculation.

In[34]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D êê Trace

Out[34]= 9MapThread@Power, 882, 6, 3<, 85, 1, 2<<D,

925, 61, 32=, 925, 32=, 961, 6=, 932, 9=, 832, 6, 9<=

Using the List  function, the corresponding elements in the three lists are placed in a list struc-
ture (note that Transpose would do the same thing).

In[35]:= MapThread@List, 885, 3, 2<, 86, 4, 9<, 84, 1, 4<<D

Out[35]= 885, 6, 4<, 83, 4, 1<, 82, 9, 4<<

The Listable attribute
Many of the built-in functions that take a single argument have the property that,  when a list  is
the argument, the function is automatically applied to all the elements in the list. In other words,
these  functions  are  automatically  mapped  on  to  the  elements  of  the  list.  For  example,  the  Log
function has this attribute.

In[36]:= Log@8a, E, 1<D

Out[36]= 8Log@aD, 1, 0<

You get the same result using Map,  but it is a bit more to write and, as we will see in Chapter 12,
the direct approach is much more efficient for large computations.

In[37]:= Map@Log, 8a, E, 1<D

Out[37]= 8Log@aD, 1, 0<

Similarly,  many of  the built-in functions that  take two or more arguments have the property
that, when multiple lists are the arguments, the function is automatically applied to all the corre-
sponding elements in the list. In other words, these functions are automatically threaded onto the
elements of the lists. For example, this is essentially vector addition.
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In[38]:= 84, 6, 3< + 85, 1, 2<

Out[38]= 89, 7, 5<

This gives the same result as using the Plus  function with MapThread.

In[39]:= MapThread@Plus, 884, 6, 3<, 85, 1, 2<<D

Out[39]= 89, 7, 5<

Functions  that  are  either  automatically  mapped  or  threaded  onto  the  elements  of  list  argu-
ments are said to be Listable. Many of Mathematica’s built-in functions have this attribute.

In[40]:= Attributes@LogD

Out[40]= 8Listable, NumericFunction, Protected<

In[41]:= Attributes@PlusD

Out[41]= 8Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected<

By default, user-defined functions do not have any attributes associated with them. So, for exam-
ple, if you define a function g, it will not automatically thread over a list.

In[42]:= g@8a, b, c, d<D

Out[42]= g@8a, b, c, d<D

If  you  want  a  function  to  have  the  ability  to  thread  over  lists,  give  it  the  Listable  attribute
using SetAttributes.

In[43]:= SetAttributes@g, ListableD

In[44]:= g@8a, b, c, d<D

Out[44]= 8g@aD, g@bD, g@cD, g@dD<

Recall from Section 2.4  that clearing a symbol only clears values associated with that symbol.
It does not clear any attributes associated with the symbol.

In[45]:= Clear@gD

In[46]:= ? g

Global`g

Attributes@gD = 8Listable<

You can use ClearAttributes to clear specific attributes associated with a symbol.

In[47]:= ClearAttributes@g, ListableD
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In[48]:= ? g

Global`g

Inner and Outer
The  Outer  function  applies  a  function  to  all  the  combinations  of  the  elements  in  several  lists.
This is a generalization of the mathematical outer product, which produces a matrix from a pair of
vectors.

In[49]:= Outer@f, 8x, y<, 82, 3, 4<D

Out[49]= 88f@x, 2D, f@x, 3D, f@x, 4D<, 8f@y, 2D, f@y, 3D, f@y, 4D<<

Using the List  function as an argument, you can create lists of ordered pairs that combine the
elements of several lists.

In[50]:= Outer@List, 8x, y<, 82, 3, 4<D

Out[50]= 888x, 2<, 8x, 3<, 8x, 4<<, 88y, 2<, 8y, 3<, 8y, 4<<<

Here is the classical outer product of two vectors, obtained by wrapping Times  around each pair
of elements.

In[51]:= Outer@Times, 8u1, u2, u3<, 8v1, v2, v3, v4<D êê MatrixForm
Out[51]//MatrixForm=

u1 v1 u1 v2 u1 v3 u1 v4
u2 v1 u2 v2 u2 v3 u2 v4
u3 v1 u3 v2 u3 v3 u3 v4

With Inner,  you can thread a function onto several lists and then use the result as the argu-
ment to another function.

In[52]:= Inner@f, 8a, b, c<, 8d, e, f<, gD

Out[52]= g@f@a, dD, f@b, eD, f@c, fDD

This function lets you carry out some interesting operations.

In[53]:= Inner@List, 8a, b, c<, 8d, e, f<, PlusD

Out[53]= 8a + b + c, d + e + f<

In[54]:= Inner@Times, 8x1, y1, z1<, 8x2, y2, z2<, PlusD

Out[54]= x1 x2 + y1 y2 + z1 z2

Looking at these two examples, you can see that Inner is really a generalization of the mathemat-
ical dot product.
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In[55]:= Dot@8x1, y1, z1<, 8x2, y2, z2<D

Out[55]= x1 x2 + y1 y2 + z1 z2

Select and Pick
When working with data, a common task is to extract all those elements that meet some criteria
of interest. For example, you might want to filter out all numbers in an array outside of a certain
range  of  values.  Or  you  might  need  to  find  all  numbers  that  are  of  a  particular  form  or  pass  a
particular test. We have already seen how you can use Cases  with patterns to express the criteria
of interest. In this section we will explore two additional functions that can be used for such tasks.
SelectAexpr, predicateE  returns  all  those  elements  in  expr  that  pass  the  predicate  test.  For

example, here we select those elements in this short list of integers that pass the EvenQ test.

In[56]:= Select@81, 2, 3, 4, 5, 6, 7, 8, 9<, EvenQD

Out[56]= 82, 4, 6, 8<

This finds Mersenne numbers (numbers of the form 2n - 1) that are prime.

In[57]:= Select@Table@2n - 1, 8n, 1, 100<D, PrimeQD

Out[57]= 83, 7, 31, 127, 8191, 131071, 524 287, 2 147 483 647,
2305843009213693951, 618 970 019 642 690 137 449 562 111<

You can also create your own predicates to specify the criteria in which you are interested. For
example, given an array of numbers, we first create a function, inRange, that returns True  if its
argument falls in a certain range, say between 20 and 30. 

In[58]:= data = 824.39001, 29.669, 9.321, 20.8856,
23.4736, 22.1488, 14.7434, 22.1619, 21.1039,
24.8177, 27.1331, 25.8705, 39.7676, 24.7762<;

In[59]:= inRange@x_D := 20 § x § 30

Then select those elements from data that pass the test, inRange. 

In[60]:= Select@data, inRangeD

Out[60]= 824.39, 29.669, 20.8856, 23.4736, 22.1488,
22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762<

Pick  can also be used to extract elements based on predicates, but it is more general than just

that. In its simplest form, PickAexpr, selListE picks those elements from expr whose correspond-

ing value in selList is True .

In[61]:= Pick@8a, b, c, d, e<, 8True, False, True, False, True<D

Out[61]= 8a, c, e<
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You  can  also  use  binary  values  in  the  second  argument,  but  then  you  need  to  provide  a  third
argument to Pick  indicating that the selector value is 1.

In[62]:= Pick@8a, b, c, d, e<, 81, 0, 1, 0, 1<, 1D

Out[62]= 8a, c, e<

Let us work through an example that is a bit more interesting. We will create a random graph
and assign a probability to each edge. Then, using Pick , we will include only those edges whose
corresponding  probability  is  less  than  some  threshold  value.  We  will  start  with  the  edges  in  a
complete graph, that is, a graph in which there is an edge between every pair of vertices.

In[63]:= CompleteGraph@11D

Out[63]=

Here are the edges.

In[64]:= edges = EdgeRules@CompleteGraph@11DD

Out[64]= 81 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6, 1 Ø 7, 1 Ø 8, 1 Ø 9, 1 Ø 10, 1 Ø 11,
2 Ø 3, 2 Ø 4, 2 Ø 5, 2 Ø 6, 2 Ø 7, 2 Ø 8, 2 Ø 9, 2 Ø 10, 2 Ø 11, 3 Ø 4,
3 Ø 5, 3 Ø 6, 3 Ø 7, 3 Ø 8, 3 Ø 9, 3 Ø 10, 3 Ø 11, 4 Ø 5, 4 Ø 6,
4 Ø 7, 4 Ø 8, 4 Ø 9, 4 Ø 10, 4 Ø 11, 5 Ø 6, 5 Ø 7, 5 Ø 8, 5 Ø 9,
5 Ø 10, 5 Ø 11, 6 Ø 7, 6 Ø 8, 6 Ø 9, 6 Ø 10, 6 Ø 11, 7 Ø 8, 7 Ø 9,
7 Ø 10, 7 Ø 11, 8 Ø 9, 8 Ø 10, 8 Ø 11, 9 Ø 10, 9 Ø 11, 10 Ø 11<

The number of edges in the complete graph grows quickly with n. It is the same as the number of

2-element subsets of a list of length n which is given by the binomial coefficient 
n
2

.

In[65]:= Length@edgesD == Binomial@11, 2D

Out[65]= True

We  start  by  creating  a  list  of  probabilities  consisting  of  random  real  numbers  between  0  and  1.
For Pick ,  this list and the list of edges must be the same length. This list is then used to choose
those  edges  whose  corresponding  probability  is  less  than  .3  (you  could  choose  any  threshold
between 0 and 1). Essentially we have a probability for each edge and we are choosing those edges
whose corresponding probability value is below the threshold.
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In[66]:= probs = RandomReal@1, Binomial@11, 2DD;
Short@probs, 6D

Out[67]//Short=

80.100506, 0.71338, 0.140067, 0.247101, 0.737098,

á46à, 0.467768, 0.692795, 0.439899, 0.940476<

The third argument to Pick  below is the pattern that the corresponding element of probs must
match.

In[68]:= includedEdges = Pick@edges, probs, pr_ ê; pr < .3D

Out[68]= 81 Ø 2, 1 Ø 4, 1 Ø 5, 1 Ø 7, 1 Ø 10, 2 Ø 8, 2 Ø 9, 2 Ø 11, 3 Ø 4,

4 Ø 5, 4 Ø 7, 4 Ø 9, 5 Ø 6, 5 Ø 7, 6 Ø 7, 6 Ø 9, 7 Ø 8, 8 Ø 10<

Finally, we turn this list of included edges into a graph.

In[69]:= Graph@includedEdges, GraphLayout Ø "CircularEmbedding"D

Out[69]=

Let us try this out with more vertices and a lower probability of an edge connecting any two.

In[70]:= n = 100;
p = .03;
edges = EdgeRules@CompleteGraph@nDD;
probs = RandomReal@1, Binomial@n, 2DD;
includedEdges = Pick@edges, probs, pr_ ê; pr < pD;
Graph@includedEdges, GraphLayout Ø "CircularEmbedding"D

Out[75]=

128 Functional programming



In  fact,  this  functionality  is  built  into  BernoulliGraphDistribution@n, prD  which  con-
structs an n-vertex graph, starting with an edge connecting every pair of vertices and then selects
edges independently via a Bernoulli trial with probability pr. 

In[76]:= RandomGraph@BernoulliGraphDistribution@100, 0.03D,
GraphLayout Ø "CircularEmbedding"D

Out[76]=

This mirrors the construction of our random graph above, although we used a uniform probabil-
ity distribution (the default for RandomReal) rather than running Bernoulli trials via a Bernoulli
distribution.  In  addition,  a  bit  more  work  is  needed  to  insure  that  our  simple  randomGraph
always returns a graph with n vertices. 

As  an  aside,  it  does  not  take  a  very  large  probability  threshold  to  significantly  increase  the
likelihood that any two vertices will be connected; in this next computation, it is only .08. 

In[77]:= n = 100;
p = .08;
edges = EdgeRules@CompleteGraph@nDD;
probs = RandomReal@1, Binomial@n, 2DD;
includedEdges = Pick@edges, probs, pr_ ê; pr < pD;
Graph@includedEdges, GraphLayout Ø "CircularEmbedding"D

Out[82]=
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Exercises

1. Rewrite the definition of SquareMatrixQ given in Section 4.1 to use Apply.

2. Given a set of points in the plane (or 3-space), find the maximum distance between any pair of these 
points. This is often called the diameter of the pointset.

3. An adjacency matrix can be thought of as representing a graph of vertices and edges where a value 
of 1 in position aij indicates an edge between vertex i and vertex j, whereas aij = 0 indicates no such 

edge between vertices i and j.

In[1]:= mat = RandomInteger@1, 85, 5<D;
MatrixForm@matD

Out[2]//MatrixForm=

0 0 0 1 1
0 0 1 1 0
1 1 1 0 1
0 1 1 0 0
0 0 0 1 1

In[3]:= AdjacencyGraph@mat, VertexLabels Ø "Name"D

Out[3]=

Compute the total number of edges for each vertex in both the adjacency matrix and graph represen-
tations. For example, you should get the following edge counts for the five vertices represented in 
the above adjacency matrix. Note: self-loops count as two edges each.

83, 4, 7, 5, 5<

4. Create a function ToGraphAlisE that takes a list of pairs of elements and transforms it into a list of 

graph (directed) edges. For example:

In[4]:= lis = RandomInteger@9, 812, 2<D

Out[4]= 884, 3<, 86, 4<, 80, 1<, 86, 0<, 85, 2<, 84, 7<,
86, 4<, 87, 1<, 87, 6<, 87, 8<, 84, 0<, 83, 4<<

In[5]:= ToGraph@lisD

Out[5]= 84 � 3, 6 � 4, 0 � 1, 6 � 0, 5 � 2,

4 � 7, 6 � 4, 7 � 1, 7 � 6, 7 � 8, 4 � 0, 3 � 4<

Make sure that your function also works in the case where its argument is a single list of a pair of 
elements.
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In[6]:= ToGraph@83, 6<D

Out[6]= 3 � 6

5. Create a function RandomColor@D that generates a random RGB color. Add a rule for 
RandomColor@nD to create a list of n random colors.

6. Create a graphic that consists of n circles in the plane with random centers and random radii. 
Consider using Thread or MapThread  to thread Circle@…D across the lists of centers and radii. 
Use RandomColor from the previous exercise to give each circle a random color.

7. Use MapThread  and Apply to mirror the behavior of Inner.

8. While matrices can easily be added using Plus , matrix multiplication is a bit more involved. The 
Dot function, written as a single period, is used.

In[7]:= 881, 2<, 83, 4<<.8x, y<

Out[7]= 8x + 2 y, 3 x + 4 y<

Perform matrix multiplication on 881, 2<, 83, 4<< and 8x, y< without using Dot.

9. FactorInteger@nD returns a nested list of prime factors and their exponents for the number n.

In[8]:= FactorInteger@3628800D

Out[8]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Use Apply to reconstruct the original number from this nested list.

10. Repeat the above exercise but instead use Inner to reconstruct the original number n from the 
factorization given by FactorInteger@nD.

11. Create a function PrimeFactorForm@nD that formats its argument n in prime factorization form. 
For example:

In[9]:= PrimeFactorForm@12D

Out[9]= 22 ÿ 31

You will need to use Superscript  and CenterDot  to format the factored integer.

12. The Vandermonde matrix arises in Lagrange interpolation and in reconstructing statistical distribu-
tions from their moments. Construct the Vandermonde matrix of order n, which should look like 
the following:

1 x1 x1
2 � x1

n-1

1 x2 x2
2 � x2

n-1

ª ª ª � ª

1 xn xn
2 � xn

n-1

13. Using Inner, write a function div@vecs, varsD that computes the divergence of an n-dimensional 
vector field, vecs = 8e1, e2, …, en< dependent upon n variables, vars = 8v1, v2, …, vn<. The 
divergence is given by the sum of the pairwise partial derivatives.
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14. The example in the section on Select and Pick  found those Mersenne numbers 2n - 1 that are 
prime doing the computation for all exponents n from 1 to 100. Modify that example to only use 
prime exponents (since a basic theorem in number theory states that a Mersenne number with 
composite exponent must be composite).

5.3 Iterating functions
A  common  task  in  computer  science,  mathematics,  and  many  sciences  is  to  repeatedly  apply  a
function  to  some  expression.  Iterating  functions  has  a  long  and  rich  tradition  in  the  history  of
computing  with  perhaps  the  most  famous  example  being  Newton’s  method  for  root  finding.
Another area, chaos theory, rests on studying how iterated functions behave under small perturba-
tions of their initial  conditions or starting values.  In this section, we will  introduce several func-
tions  available  in  Mathematica  for  function  iteration.  In  later  chapters  we  will  apply  these  and
other  programming  constructs  to  look  at  some  applications  of  iteration,  including  Newton’s
method, the visualization of Julia sets, and several types of numerical computation.

Nest
The Nest  function is used to iterate functions. Here, g  is iterated four times starting with initial
value a.

In[1]:= Nest@g, a, 4D

Out[1]= g@g@g@g@aDDDD

NestList performs the same iteration but displays all the intermediate values.

In[2]:= NestList@g, a, 4D

Out[2]= 8a, g@aD, g@g@aDD, g@g@g@aDDD, g@g@g@g@aDDDD<

Using a starting value of 0.85, this generates a list of ten iterates of the Cos function.

In[3]:= NestList@Cos, 0.85, 10D

Out[3]= 80.85, 0.659983, 0.790003, 0.703843, 0.76236, 0.723208,
0.749687, 0.731902, 0.743904, 0.73583, 0.741274<

The list elements above are the values of 0.85, Cos@0.85D, Cos@Cos@0.85DD, and so on.

In[4]:= 80.85, Cos@0.85D, Cos@Cos@0.85DD, Cos@Cos@Cos@0.85DDD<

Out[4]= 80.85, 0.659983, 0.790003, 0.703843<
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Using a lowercase symbol cos, you can see the symbolic computation clearly. Although this is a
useful tip for helping you to see the structure of such computations, be careful to keep the itera-
tion  count  manageable;  otherwise  you  can  easily  generate  many  pages  of  symbolic  output  on
your screen.

In[5]:= NestList@cos, 0.85, 3D

Out[5]= 80.85, cos@0.85D, cos@cos@0.85DD, cos@cos@cos@0.85DDD<

The  objects  that  you  can  iterate  are  entirely  general  –  they  could  be  graphics.  For  example,
suppose we had a triangle in the plane that we wanted to rotate iteratively. Starting with a set of
vertices,  here  is  a  display  of  the  starting  triangle.  To  close  up  the  figure,  the  rule
8a_, b_< ß 8a, b, a< is used to copy the first point in vertices to the end of the list.

In[6]:= vertices = :80, 0<, 81, 0<, :1 ê 2, 3 í 2>>;

In[7]:= tri = Line@vertices ê. 8a_, b__< ß 8a, b, a<D;
Graphics@triD

Out[8]=

This  creates  a  function  that  we  will  iterate  inside  Nest .  rotation  takes  a  graphical  object
and rotates it p ê 13 radians about the point 81, 1<.

In[9]:= rotation@gr_D := Rotate@gr, p ê 13, 81, 1<D

Here are eighteen steps of this iteration.

In[10]:= Graphics@NestList@rotation, tri, 18DD

Out[10]=
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Or you can iterate a translation. First, create some translation vectors.

In[11]:= vecs = 1 ê 2 vertices

Out[11]= :80, 0<, :
1

2
, 0>, :

1

4
,

3

4
>>

The translation function creates three objects translated by the vectors vecs.

In[12]:= translation@gr_D := Translate@gr, vecsD

In[13]:= Graphics@8Blue, NestList@translation, tri, 3D<D

Out[13]=

The  exercises  at  the  end  of  this  section  build  upon  these  ideas  to  create  a  more  interesting  and
well-known object, the Sierpinski triangle. 

FixedPoint
In the example of the cosine function from the previous section, the iterates converge to a fixed
point, that is, a point x such that x = cosHxL. To apply a function repeatedly to an expression until
it  no  longer  changes,  use  FixedPoint .  This  function  is  particularly  useful  when  you  do  not
know  how  many  iterations  to  perform  on  a  function  whose  iterations  eventually  converge.  For
example, here is a function that, when iterated, gives a fixed point for the Golden ratio.

In[14]:= golden@f_D := 1 +
1

f

In[15]:= FixedPoint@golden, 1.0D

Out[15]= 1.61803

Using  FixedPointList ,  you  can  see  all  the  intermediate  results.  FullForm  shows  all  digits
computed, making it easier to see the convergence. Here we display every third element in the list.

In[16]:= phi = FixedPointList@golden, 1.0D;
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In[17]:= phi@@1 ;; -1 ;; 3DD êê FullForm
Out[17]//FullForm=

List@1.`, 1.6666666666666665`, 1.6153846153846154`,
1.6181818181818182`, 1.6180257510729614`,
1.618034447821682`, 1.6180339631667064`,
1.6180339901755971`, 1.6180339886704433`,
1.6180339887543225`, 1.6180339887496482`,
1.6180339887499087`, 1.618033988749894`D

Sometimes,  the  iteration  does  not  converge  quickly  and  you  need  to  relax  the  constraint  on
the closeness of successive iterates. For example, the cosine function has a fixed point but there is
some difficulty converging using the default values for FixedPoint .

In[18]:= TimeConstrained@
FixedPoint@Cos, 0.85D,
5D

Out[18]= $Aborted

 In such cases, either you can give an optional third argument to indicate the maximum number
of  iterations  to  perform  or  you  can  specify  a  looser  tolerance  for  the  comparison  of  successive
iterates.

In[19]:= FixedPoint@Cos, 0.85, 100D

Out[19]= 0.739085

In the following computation, we stop the iteration when two successive iterates differ by less
than 10

-10. (We will discuss the odd notation involving # and & in Section 5.6, on pure functions.)

In[20]:= FixedPointACos, 0.85, SameTest Ø IAbs@Ò1 - Ò2D < 10-10 &ME

Out[20]= 0.739085

NestWhile
The Nest  function iterates a fixed number of times, whereas FixedPoint  iterates until a fixed
point  is  reached.  Sometimes  you  want  to  iterate  until  a  condition  is  met.  NestWhile  (or
NestWhileList)  is  perfect  for  this.  For  example,  here  we  find  the  next  prime  after  a  given
number, using CompositeQ from Exercise 5 of Section 2.3.

In[21]:= addOne@n_D := n + 1

In[22]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD
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In[23]:= NestWhileAaddOne, 2100, CompositeQE

Out[23]= 1267650600228229401496703 205 653

In[24]:= PrimeQ@%D

Out[24]= True

Verify with the built-in function that computes the next prime after a given number.
In[25]:= NextPrimeA2100E

Out[25]= 1267650600228229401496703 205 653

Fold
Whereas  Nest  and  NestList  operate  on  functions  of  one  variable,  Fold  and  FoldList
generalize  this  notion  by  iterating  a  function  of  two  arguments.  In  the  following  example,  the
function f is first applied to a starting value x and the first element from a list, then this result is
used  as  the  first  argument  of  the  next  iteration,  with  the  second  argument  coming  from  the
second element in the list, and so on.

In[26]:= Fold@f, x, 8a, b, c<D

Out[26]= f@f@f@x, aD, bD, cD

Use FoldList to see all the intermediate values.

In[27]:= FoldList@f, x, 8a, b, c<D

Out[27]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

It is easier to see what is going on with FoldList  by working with an arithmetic operator. This
generates “running sums.”

In[28]:= FoldList@Plus, 0, 8a, b, c, d, e<D

Out[28]= 80, a, a + b, a + b + c, a + b + c + d, a + b + c + d + e<

In[29]:= FoldList@Plus, 0, 81, 2, 3, 4, 5<D

Out[29]= 80, 1, 3, 6, 10, 15<

The built-in Accumulate  function also creates running sums but it does not return the initial
value 0 as in FoldList.

In[30]:= Accumulate@81, 2, 3, 4, 5<D

Out[30]= 81, 3, 6, 10, 15<
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Exercises
1. Determine the locations after each step of a ten-step one-dimensional random walk. (Recall that 

you have already generated the step directions in Exercise 3 at the end of Section 3.1.)

2. Create a list of the step locations of a ten-step random walk on a square lattice.

3. Using Fold , create a function fac@nD that takes an integer n as argument and returns the factorial 
of n, that is, nHn - 1L Hn - 2L�3 ÿ2 ÿ 1.

4. The Sierpinski triangle is a classic iteration example. It is constructed by starting with an equilateral 
triangle (other objects can be used) and removing the inner triangle formed by connecting the 
midpoints of each side of the original triangle.

ö

The process is iterated by repeating the same computation on each of the resulting smaller triangles. 

ö ö �  ö  �

One approach is to take the starting equilateral triangle and, at each iteration, perform the appropri-
ate transformations using Scale and Translate , then iterate. Implement this algorithm, but be 
careful about nesting large graphical structures too deeply.

5.4 Programs as functions
A computer  program is  a  set  of  instructions  (a  recipe)  for  carrying out  a  computation.  When a
program  is  evaluated  with  appropriate  inputs,  the  computation  is  performed  and  the  result  is
returned.  In  a  certain  sense,  a  program is  a  mathematical  function and the  inputs  to  a  program
are the arguments of the function. Executing a program is equivalent to applying a function to its
arguments or, as it is often referred to, making a function call.

Building up programs
Using the output of one function as the input of another is one of the keys to functional program-
ming.  This  nesting of  functions is  commonly referred to by mathematicians as  “composition of
functions.”  In  Mathematica,  this  sequential  application of  several  functions is  sometimes referred
to as  a  nested  function  call.  Nested function calls  are  not  limited to  using a  single  function repeat-
edly, such as with the built-in Nest  and Fold  functions.
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As an example, consider the following expression involving three nested functions.

In[1]:= Total@Sqrt@Range@2, 8, 2DDD

Out[1]= 2 + 3 2 + 6

This  use  of  functions as  arguments  to  other  functions is  a  key part  of  functional  programming,
but if you are new to it, it is instructive to step through the computation working from the inside
out.  In this computation, the Mathematica  evaluator does the computation from the most deeply
nested expression outward. The inner-most function is Range  and it produces a list of numbers
from 2 through 8 in steps of 2. Moving outwards, Sqrt  is then applied to the result of the Range
function  to  produce  a  list  of  the  square  roots.  Finally,  Total  adds  up  the  elements  in  the  list
produced by Sqrt .

In[2]:= Range@2, 8, 2D

Out[2]= 82, 4, 6, 8<

In[3]:= Sqrt@%D

Out[3]= 9 2 , 2, 6 , 2 2 =

In[4]:= Total@%D

Out[4]= 2 + 3 2 + 6

Wrapping Trace  around the computation shows all  the intermediate expressions that are used
in this evaluation. 

In[5]:= Trace@Total@Sqrt@Range@2, 8, 2DDDD

Out[5]= 998Range@2, 8, 2D, 82, 4, 6, 8<<, 82, 4, 6, 8< ,

9 2 , 4 , 6 , 8 =, 9 2 , 2 =, 9 4 , 2=,

9 6 , 6 =, 9 8 , 2 2 =, 9 2 , 2, 6 , 2 2 ==,

TotalA9 2 , 2, 6 , 2 2 =E, 2 + 3 2 + 6 =

You can read nested functions in much the same way that  they are  created,  starting with the
innermost functions and working towards the outermost functions. 

listEvenQ As another example, the following expression determines whether all the elements in a
list are even numbers.

In[6]:= Apply@And, Map@EvenQ, 82, 4, 6, 7, 8<DD

Out[6]= False

Let  us  step  through  the  computation  much  the  same  as  Mathematica  does,  from  the  inside  out.
Start by mapping the predicate EvenQ to every element in the list 82, 4, 6, 7, 8<.
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In[7]:= Map@EvenQ, 82, 4, 6, 7, 8<D

Out[7]= 8True, True, True, False, True<

Apply the logical function And to the result of the previous step.

In[8]:= Apply@And, %D

Out[8]= False

Actually,  EvenQ  has  the  Listable  attribute  –  it  automatically  maps  across  lists  and  so  this
computation can be shortened a bit.

In[9]:= Attributes@EvenQD

Out[9]= 8Listable, Protected<

Finally, here is a definition that can be used on arbitrary lists.

In[10]:= listEvenQ@lis_D := Apply@And, EvenQ@lisDD

In[11]:= listEvenQ@811, 5, 1, 18, 16, 6, 17, 6<D

Out[11]= False

maxima In the next example, we return to a computation done with rules in Chapter 4 – return-
ing the  elements  in  a  list  of  positive  numbers  that  are  bigger  than all  the  preceding numbers  in
the list.

In[12]:= Rest@DeleteDuplicates@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDD

Out[12]= 83, 6, 8<

Tracing the evaluation shows the intermediate steps of the computation.

In[13]:= Trace@Rest@
DeleteDuplicates@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDDD

Out[13]= 888FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D,
8Max@0, 3D, 3<, 8Max@3, 1D, Max@1, 3D, 3<,
8Max@3, 6D, 6<, 8Max@6, 5D, Max@5, 6D, 6<,
8Max@6, 4D, Max@4, 6D, 6<, 8Max@6, 8D, 8<,
8Max@8, 7D, Max@7, 8D, 8<, 80, 3, 3, 6, 6, 6, 8, 8<<,

DeleteDuplicates@80, 3, 3, 6, 6, 6, 8, 8<D, 80, 3, 6, 8<<,
Rest@80, 3, 6, 8<D, 83, 6, 8<<

FoldList  is  first  applied  to  the  Max,  0,  and  the  list  83, 1, 6, 5, 4, 8, 7<.  Look  at  the
Trace of this computation to see what FoldList is doing here.

In[14]:= FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D

Out[14]= 80, 3, 3, 6, 6, 6, 8, 8<
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DeleteDuplicates is then applied to the result of the previous step to remove the duplicates.

In[15]:= DeleteDuplicates@%D

Out[15]= 80, 3, 6, 8<

Finally, Rest  is applied to the result of the previous step to drop the first element, 0.

In[16]:= Rest@%D

Out[16]= 83, 6, 8<

Here is the function definition.

In[17]:= maxima@lis_D := Rest@DeleteDuplicates@FoldList@Max, 0, lisDDD

Applying maxima  to  a  list  of  numbers  produces  a  list  of  all  those  numbers  that  are  larger  than
any number that comes before it.

In[18]:= maxima@84, 2, 7, 3, 4, 9, 14, 11, 17<D

Out[18]= 84, 7, 9, 14, 17<

Example: shuffling cards
Here is an interesting application of building up a program with nested functions – the creation
and shuffling of a deck of cards.

In[19]:= cardDeck = Flatten@Outer@List,
8®, ©, ™, ´<, Join@Range@2, 10D, 8�, �, �, �<DD, 1D

Out[19]= 88®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<, 8®, 8<, 8®, 9<, 8®, 10<,
8®, �<, 8®, �<, 8®, �<, 8®, �<, 8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<,
8©, 7<, 8©, 8<, 8©, 9<, 8©, 10<, 8©, �<, 8©, �<, 8©, �<, 8©, �<,
8™, 2<, 8™, 3<, 8™, 4<, 8™, 5<, 8™, 6<, 8™, 7<, 8™, 8<, 8™, 9<, 8™, 10<,
8™, �<, 8™, �<, 8™, �<, 8™, �<, 8´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<,
8´, 7<, 8´, 8<, 8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<

The suit icons are entered by typing in \[ClubSuit], \[DiamondSuit], etc., or by using one
of the character palettes built into Mathematica.  We have used special characters to represent the
jack, queen, king, and ace rather than the plain symbols J, Q, K, and A. This is to avoid the possibil-
ity that these symbols may have rules associated with them that would interfere with our intent
here. In fact, K already has meaning – it is a built-in symbol.

In[20]:= ? K

K is a default generic name for a summation index in a symbolic sum.

You  might  think  of  cardDeck  as  a  name  for  the  expression  given  on  the  right-hand  side  of
the  immediate  definition,  or  you  might  think  of  cardDeck  as  defining  a  function  with  zero
arguments.
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To  understand  what  is  going  on  here,  we  will  build  up  this  program  from  scratch,  working
from the inside out. First, we form a list of the number and face cards in a suit by combining a list
of the numbers 2 through 10, with a four-element list representing the jack, queen, king, and ace,
8�, �, �, �<.

In[21]:= Join@Range@2, 10D, 8�, �, �, �<D

Out[21]= 82, 3, 4, 5, 6, 7, 8, 9, 10, �, �, �, �<

Next we pair each of the 13 elements in this list with each of the four elements in the list represent-
ing the card suits 8®, ©, ™, ´<.  This produces a list of 52  ordered pairs representing the cards
in a deck, where the king of clubs, for example, is represented by 8®, �<). 

In[22]:= Outer@List, 8®, ©, ™, ´<, %D

Out[22]= 888®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<,
8®, 8<, 8®, 9<, 8®, 10<, 8®, �<, 8®, �<, 8®, �<, 8®, �<<,

88©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, �<, 8©, �<, 8©, �<, 8©, �<<,

88™, 2<, 8™, 3<, 8™, 4<, 8™, 5<, 8™, 6<, 8™, 7<, 8™, 8<,
8™, 9<, 8™, 10<, 8™, �<, 8™, �<, 8™, �<, 8™, �<<,

88´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<, 8´, 7<, 8´, 8<,
8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<<

While we now have all the cards in the deck, they are grouped by suit in a nested list. We there-
fore unnest the list.

In[23]:= Flatten@%, 1D

Out[23]= 88®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<, 8®, 8<, 8®, 9<,
8®, 10<, 8®, �<, 8®, �<, 8®, �<, 8®, �<, 8©, 2<, 8©, 3<,
8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<, 8©, 9<, 8©, 10<,
8©, �<, 8©, �<, 8©, �<, 8©, �<, 8™, 2<, 8™, 3<, 8™, 4<, 8™, 5<,
8™, 6<, 8™, 7<, 8™, 8<, 8™, 9<, 8™, 10<, 8™, �<, 8™, �<,
8™, �<, 8™, �<, 8´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<, 8´, 7<,
8´, 8<, 8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<

Voila!
The  step-by-step  construction  used  here,  applying  one  function  at  a  time,  checking  each

function call separately, is a very efficient way to prototype your programs in Mathematica. We will
use this technique again in many subsequent examples.

Next,  let  us  perform  what  is  called  a  perfect  shuffle,  consisting  of  cutting  the  deck  in  half  and
then  interleaving  the  cards  from  the  two  halves.  Rather  than  working  with  the  large  list  of  52

ordered  pairs  during  the  prototyping,  we  will  use  a  short  list  of  an  even  number  of  ordered
integers.
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In[24]:= lis = Range@6D

Out[24]= 81, 2, 3, 4, 5, 6<

First divide the list into two equal-sized lists and then apply the built-in Riffle  function which
interleaves  two  lists.  Notice  that  even  with  this  simple  prototype,  we  are  using  code  that  will
generalize to arbitrary inputs. That is, rather than give 3  as the second argument to Partition
here, we let Mathematica compute the length.

In[25]:= Partition@lis, Length@lisD ê 2D

Out[25]= 881, 2, 3<, 84, 5, 6<<

In[26]:= Apply@Riffle, %D

Out[26]= 81, 4, 2, 5, 3, 6<

That does the job. Given this prototype, here is a function to perform a perfect shuffle on a deck
of cards.

In[27]:= shuffle@lis_D := Apply@Riffle, Partition@lis, Length@lisD ê 2DD

In[28]:= shuffle@81, 2, 3, 4, 5, 6<D

Out[28]= 81, 4, 2, 5, 3, 6<

In[29]:= shuffle@cardDeckD

Out[29]= 88®, 2<, 8™, 2<, 8®, 3<, 8™, 3<, 8®, 4<, 8™, 4<, 8®, 5<, 8™, 5<,
8®, 6<, 8™, 6<, 8®, 7<, 8™, 7<, 8®, 8<, 8™, 8<, 8®, 9<, 8™, 9<,
8®, 10<, 8™, 10<, 8®, �<, 8™, �<, 8®, �<, 8™, �<, 8®, �<,
8™, �<, 8®, �<, 8™, �<, 8©, 2<, 8´, 2<, 8©, 3<, 8´, 3<,
8©, 4<, 8´, 4<, 8©, 5<, 8´, 5<, 8©, 6<, 8´, 6<, 8©, 7<, 8´, 7<,
8©, 8<, 8´, 8<, 8©, 9<, 8´, 9<, 8©, 10<, 8´, 10<, 8©, �<,
8´, �<, 8©, �<, 8´, �<, 8©, �<, 8´, �<, 8©, �<, 8´, �<<

Unfortunately, this definition for shuffle does not properly handle lists of odd length. 
In[30]:= shuffle@8a, b, c, d, e<D

Partition::ilsmp : Single or list of positive machine-sized

integers expected at position 2 of PartitionB8a, b, c, d, e<,
5

2
F. à

Out[30]= :a,
5

2
, b,

5

2
, c,

5

2
, d,

5

2
, e>

This is not an uncommon situation when writing programs: after some prototyping and writing
of code to solve the problem, you try it out on various inputs and, if you are thorough, you cover
all the possible situations that your program was designed to take into account. In this case, one
of those scenarios pointed up a deficiency in our program. Fortunately, this can be corrected by
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making  a  few  minor  modifications  including  the  use  of  a  different  argument  structure  for
Partition. 

PartitionAlist, n, d, 1, 8<E

The  first  argument  given  to  Partition,  lis,  is  the  list  on  which  we  are  operating.  The  second
argument, n,  gives the size of the sublists.  The third argument, d,  gives the offset:  in this case no
overlap  by  setting  this  argument  to  the  same  value  as  the  size  of  the  sublists.  The  fourth  argu-
ment, 1, treats the lists as cyclic. And the fifth argument, 8<, allows for no padding so the lists can
be  of  unequal  length.  Since  we  want  to  take  into  account  lists  of  odd  length,  we  also  use
Ceiling  to get an integer value for len.

In[31]:= Clear@shuffleD

In[32]:= shuffle@lis_D := Module@8len = Ceiling@Length@lisD ê 2D<,
Apply@Riffle, Partition@lis, len, len, 1, 8<DDD

In[33]:= shuffle@81, 2, 3, 4, 5<D

Out[33]= 81, 4, 2, 5, 3<

In[34]:= shuffle@81, 2, 3, 4, 5, 6<D

Out[34]= 81, 4, 2, 5, 3, 6<

An  obvious  thing  to  do  with  a  deck  of  cards  is  to  deal  them!  Simply  use  RandomSample,
which randomly chooses without replacement.

In[35]:= deal@n_D := RandomSample@cardDeck, nD

In[36]:= deal@5D

Out[36]= 88´, 3<, 8©, 5<, 8©, �<, 8™, �<, 8™, �<<

Compound functions
There  are  several  major  drawbacks  to  the  above  approach  to  dealing  cards.  To  use  deal,  the
definition  of  cardDeck  must  be  entered  before  calling  deal.  It  would  be  much  more  conve-
nient if we could incorporate this function within the deal function definition itself. This can be
done using compound function definitions, or simply, compound functions.  The left-hand side of a
compound function is the same as that of a user-defined function. The right-hand side consists of
expressions enclosed in parentheses, separated by semicolons.

name@arg1 _, arg2 _, …, argn _D := Hexpr1; expr2; …; exprmL

The  expressions  expri  can  be  any  expression:  a  simple  value  assignment  or  a  user-defined  func-

tion, for example. When a compound function is evaluated with particular argument values, the
expressions on the right-hand side are evaluated in order and the result  of  the evaluation of  the
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last expression is returned (by adding a semicolon after exprm,  the display of the final evaluation

result can also be suppressed).
We will work with the deal  function to illustrate how a compound function is created. Here

is a compound expression consisting of two inputs, separated by a semicolon.

In[37]:= cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,
Join@Range@2, 10D, 8�, �, �, �<DD, 1D;

deal@n_D := RandomSample@cardDeck, nD

To convert to a compound function, first remove the old definitions.

In[39]:= Clear@deal, cardDeckD

Now create and enter the new definition.

In[40]:= deal@n_D := H
cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,

Join@Range@2, 10D, 8�, �, �, �<DD, 1D;
RandomSample@cardDeck, nD

L

Let us check that this works.

In[41]:= deal@5D

Out[41]= 88´, �<, 8®, 8<, 8™, 4<, 8™, �<, 8®, �<<

Several  things  should  be  pointed  out  about  the  right-hand  side  of  a  compound  function
definition. Since the expressions on the right-hand side are evaluated in order, value declarations
and (auxiliary) function definitions should be given before they are used and the argument names
used on the left-hand side of auxiliary function definitions must  differ from the argument names
used by the compound function itself.

Secondly,  note  the  use  of  parentheses  wrapped  around  the  compound  expressions  (those
separated by semicolons).  If  you omitted the parentheses,  Mathematica  would think the function
definition  ended  at  the  first  semicolon.  This  is  a  bit  of  an  inconvenience  that  we  will  deal  with
more effectively in the next section on scoping constructs.

Finally,  when  you  evaluate  a  compound  function  definition,  you  are  creating  not  only  the
function  but  also  the  auxiliary  functions  and  the  value  declarations.  If  you  then  remove  the
function  definition  using  Clear,  the  auxiliary  function  definitions  and  value  declarations
remain.  This  can  cause  a  problem  if  you  subsequently  try  to  use  the  names  of  these  auxiliary
functions and values elsewhere. Again, this issue will be addressed in the next section on scoping
constructs.

How does the global rule base treat compound functions? When a compound function defini-
tion  is  entered,  a  rewrite  rule  corresponding  to  the  entire  definition  is  created.  Each  time  the
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compound function is  subsequently called,  rewrite  rules  are  created from the auxiliary function
definitions and value declarations within the compound function.

In[42]:= ? cardDeck

Global`cardDeck

cardDeck = 88®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<, 8®, 8<, 8®, 9<,
8®, 10<, 8®, �<, 8®, �<, 8®, �<, 8®, �<, 8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<,
8©, 6<, 8©, 7<, 8©, 8<, 8©, 9<, 8©, 10<, 8©, �<, 8©, �<, 8©, �<, 8©, �<,
8™, 2<, 8™, 3<, 8™, 4<, 8™, 5<, 8™, 6<, 8™, 7<, 8™, 8<, 8™, 9<, 8™, 10<,
8™, �<, 8™, �<, 8™, �<, 8™, �<, 8´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<,
8´, 7<, 8´, 8<, 8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<

It is considered bad programming practice to leave auxiliary definitions in the global rule base if
they are not explicitly needed by the user of your function. In fact, it could interfere with a user’s
workspace and cause unintended problems. To prevent these additional rewrite rules from being
placed in the global rule base, you can localize their names by using the Module construct in the
compound function definition. This is discussed in the next section.

Exercises

1. Using Total, create a function to sum the first n positive integers.

2. Rewrite the listEvenQ function from this section using MemberQ .

3. Using the shuffle function developed in this section, how many shuffles of a deck of cards (or 
any list, for that matter) are needed to return the deck to its original order?

4. Many lotteries include games that require you to pick several numbers and match them against the 
“house.” The numbers are independent, so this is essentially random sampling with replacement. 
The built-in RandomChoice does this. For example, here are five random samples from the 
integers 0 through 9.

In[1]:= RandomChoice@Range@0, 9D, 5D

Out[1]= 84, 1, 8, 7, 4<

Write your own function randomChoiceAlis, nE that performs a random sampling with replace-

ment, where n is the number of elements being chosen from the list lis. Here is a typical result using 
a list of symbols.

In[2]:= randomChoice@8a, b, c, d, e, f, g, h<, 12D

Out[2]= 8g, c, a, a, d, h, c, a, c, f, c, a<

5. Use Trace on the rule-based maxima from Section 4.2 and maxima developed in this section to 
explain why the functional version is much faster than the pattern matching version.
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6. Write your own user-defined functions using the Characters and StringJoin functions to 
perform the same operations as StringInsert and StringDrop.

7. Write a function interleave that interleaves the elements of two lists of unequal length. (You 
have already seen how to interleave lists of equal length using Partition  earlier in this section 
with the shuffle function.) Your function should take the lists 8a, b, c, d< and 81, 2, 3< as 
inputs and return 8a, 1, b, 2, c, 3, d<.

8. Write nested function calls using ToCharacterCode and FromCharacterCode to perform the 
same operations as the built-in StringJoin and StringReverse functions.

5.5 Scoping constructs
Localizing names: Module
When you define functions using assignments,  it  is  generally a good idea to isolate the names  of
values and functions defined on the right-hand side from the outside world in order to avoid any
conflict  with  the  use  of  a  name  elsewhere  in  the  session  (for  example,  cardDeck  from  the
previous section might be used elsewhere to represent a pinochle deck).  This localization of the
variable  names  is  done  by  wrapping  the  right-hand  side  of  the  function  definition  with  the
Module function.

name@arg1 _, arg2 _, …, argn _D := ModuleA9name1, name2 = value, …=,

body_of _function
E

The first argument of Module  is a list of the symbols to be localized. If you wish, you can assign
values  to  these  names,  as  is  shown  with  name2  above;  the  assigned  value  is  only  an  initial  value
and can be changed subsequently. The list of variables to be localized is separated from the right-
hand  side  by  a  comma  and  so  the  parentheses  enclosing  the  right-hand  side  of  a  compound
function are not needed.

Let  us  use  Module  to  rewrite  the  deal  function  from  the  previous  section,  localizing  the
auxiliary symbol cardDeck.

In[1]:= Clear@deal, cardDeckD

In[2]:= deal@n_D := Module@8cardDeck<,
cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,

Join@Range@2, 10D, 8�, �, �, �<DD, 1D;
RandomSample@cardDeck, nDD
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In[3]:= deal@5D

Out[3]= 88©, 7<, 8´, 8<, 8©, 5<, 8©, �<, 8©, 10<<

Briefly, when Module  is encountered, the symbols that are being localized (cardDeck in the
above  example)  are  temporarily  given  new  and  unique  names,  and  all  occurrences  of  those
symbols in the body of the Module are given those new names as well. In this way, these unique
and  temporary  names,  which  are  local  to  the  function,  will  not  interfere  with  any  names  of
functions or values outside of the Module.

To  see  how  Module  works  we’ll  trace  a  computation  involving  a  simple  function,  showing
some of the internals.

In[4]:= f@n_D := Module@8tmp = Range@nD<,
tmp = N@tmpD;
tmp.tmpD

In[5]:= f@5D

Out[5]= 55.

In[6]:= Trace@f@5DD

Out[6]= 8f@5D, Module@8tmp = Range@5D<, tmp = N@tmpD; tmp.tmpD,
8Range@5D, 81, 2, 3, 4, 5<<, 8tmp$1532 = 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5<<,
8tmp$1532 = N@tmp$1532D; tmp$1532.tmp$1532,

888tmp$1532, 81, 2, 3, 4, 5<<, N@81, 2, 3, 4, 5<D, 81., 2., 3., 4., 5.<<,
tmp$1532 = 81., 2., 3., 4., 5.<, 81., 2., 3., 4., 5.<<,

88tmp$1532, 81., 2., 3., 4., 5.<<, 8tmp$1532, 81., 2., 3., 4., 5.<<,
81., 2., 3., 4., 5.<.81., 2., 3., 4., 5.<, 55.<, 55.<, 55.<

Looking at the trace, the local variable tmp has been renamed tmp$1532, a unique and new name.
In this way, the local variable will not interfere with any global variable whose name is tmp. 

It is generally a good idea to wrap the right-hand side of all compound function definitions in
the  Module  function.  Another  way  to  avoid  conflicts  between  the  names  of  auxiliary  function
definitions  is  to  use  a  function that  can be  applied without  being given a  name.  Such functions
are called pure functions and are discussed in Section 5.6.

Localizing values: Block
Occasionally,  you  will  need  to  localize  a  value  associated  with  a  symbol  without  localizing  the
symbol  name  itself.  For  example,  you  may  have  a  recursive  computation  that  requires  you  to
temporarily reset the system variable $RecursionLimit. You can do this with Block, thereby
only localizing the value of $RecursionLimit  during the evaluation inside Block. Block  has
the same syntax as Module.
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In[7]:= Block@8$RecursionLimit = 20<,
x = g@xDD

$RecursionLimit::reclim : Recursion depth of 20 exceeded. à

Out[7]= g@g@g@g@
g@g@g@g@g@g@g@g@g@g@g@g@g@g@Hold@g@xDDDDDDDDDDDDDDDDDDDD

Notice the global value of $RecursionLimit is unchanged.

In[8]:= $RecursionLimit

Out[8]= 256

Module,  on  the  other  hand,  creates  an  entirely  new  symbol,  $RecursionLimit$nn  that  has
nothing to do with the global variable $RecursionLimit, and so Module would be inappropri-
ate for this particular task. Block only affects the values of these symbols, not their names.

As another example, we will do a computation with fixed ten-digit precision by setting the two
system variables $MaxPrecision  and $MinPrecision  to 10.  In general you would not want
to set these variables globally.

In[9]:= Block@8$MaxPrecision = 10, $MinPrecision = 10<,
Log@1000000`10DD

Out[9]= 13.81551056

In[10]:= Precision@%D

Out[10]= 10.

In fact, Block is used to localize the iterators in Table, Do, Sum , and Product . 

Localizing constants: With
Another  scoping  construct  is  available  when  you  simply  need  to  localize  constants.  If,  in  the
body  of  your  function,  you  use  a  variable  that  is  assigned  a  constant  once  and  never  changes,
then With  is the preferred means to localize that constant.

This sets the global variable y to have the value 5.

In[11]:= y = 5;

Here is a simple function that initializes y as a local constant.

In[12]:= f@x_D := With@8y = x + 1<, yD

We see the global symbol is unchanged and it does not interfere with the local symbol y inside of
With .

In[13]:= y

Out[13]= 5
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In[14]:= f@2D

Out[14]= 3

With  is  particularly  handy  when  you  want  to  perform  a  computation  and  experiment  with
some  values  of  your  parameters  without  setting  them  globally.  For  example,  suppose  you  are
prototyping code for a function that returns an upper triangular matrix, that is, a matrix with 0s
below the diagonal. In the following example, the matrix will have 1s on and above the diagonal.
With  is used here to temporarily set the value of n, the size of the matrix.

In[15]:= With@8n = 5<,
Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D

D êê MatrixForm
Out[15]//MatrixForm=

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

The advantage of  this  approach is  that  it  is  extremely easy to  turn this  into a  reusable  function.
Copying  and  pasting  the  line  of  code  starting  with  Table@…D  essentially  gives  the  right-hand
side of the function definition without the need to modify any parameters.

In[16]:= UpperTriangularMatrix@n_D :=

Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D

In[17]:= UpperTriangularMatrix@6D êê MatrixForm
Out[17]//MatrixForm=

1 1 1 1 1 1

0 1 1 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

Finally,  it  should  be  noted  that  With  is  generally  faster  than  Module,  so  if  you  are  really
working with local constants – that is, symbols whose values do not change in the body of your
functions – you will see some speed improvements.

In[18]:= f1@n_D := Module@8tmp = NüRange@nD<,
tmp.tmpD
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In[19]:= TimingA

DoAf1@100D, 9105=E

E

Out[19]= 80.882004, Null<

In[20]:= f2@n_D := With@8tmp = NüRange@nD<,
tmp.tmpD

In[21]:= TimingA

DoAf2@100D, 9105=E

E

Out[21]= 80.513982, Null<

Example: matrix manipulation
In  this  example  we  will  create  functions  to  switch  rows  or  columns  of  a  matrix.  As  seen  in  the
solution to Exercise 4 in Section 3.3, the need for localization becomes apparent quickly.

Let us prototype with a small 5ä5 matrix.

In[22]:= SeedRandom@123D;
mat = RandomInteger@9, 85, 5<D;

In[23]:= MatrixForm@matD
Out[24]//MatrixForm=

7 4 0 2 6

7 9 8 3 9

8 5 2 6 2

6 2 0 4 1

7 6 8 3 6

We could use a parallel assignment to switch two rows, say rows 2 and 3. 

In[25]:= 8mat@@2DD, mat@@3DD< = 8mat@@3DD, mat@@2DD<

Out[25]= 888, 5, 2, 6, 2<, 87, 9, 8, 3, 9<<

The  problem  with  this  approach  is  that  mat  is  changed  by  the  assignment.  List  component
assignment is a destructive operation.
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In[26]:= mat êê MatrixForm
Out[26]//MatrixForm=

7 4 0 2 6

8 5 2 6 2

7 9 8 3 9

6 2 0 4 1

7 6 8 3 6

We  can  avoid  this  problem  by  using  a  local  variable,  lmat,  and  only  operating  on  that  expres-
sion, not the original matrix. When the computation is done, we return the value of lmat.

In[27]:= switchRows@mat_, 8r1_, r2_<D := Module@8lmat = mat<,
8lmat@@r1DD, lmat@@r2DD< = 8lmat@@r2DD, lmat@@r1DD<;
lmatD

This can be written a bit more compactly using list component assignment on the correct parts.

In[28]:= switchRows@mat_, 8r1_, r2_<D := Module@8lmat = mat<,
lmat@@8r1, r2<DD = lmat@@8r2, r1<DD;
lmatD

In[29]:= SeedRandom@123D;
mat = RandomInteger@9, 85, 5<D;

In[31]:= switchRows@mat, 82, 3<D êê MatrixForm
Out[31]//MatrixForm=

7 4 0 2 6

8 5 2 6 2

7 9 8 3 9

6 2 0 4 1

7 6 8 3 6

Using local variables in this situation is preferable as the original matrix is left unchanged.

In[32]:= mat êê MatrixForm
Out[32]//MatrixForm=

7 4 0 2 6

7 9 8 3 9

8 5 2 6 2

6 2 0 4 1

7 6 8 3 6

You can even use negative indices to count rows from the end. For example, this switches the first
and the last row.
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In[33]:= switchRows@mat, 81, -1<D êê MatrixForm
Out[33]//MatrixForm=

7 6 8 3 6

7 9 8 3 9

8 5 2 6 2

6 2 0 4 1

7 4 0 2 6

Switching columns is basically switching rows of the transposed matrix and then transposing
back.

In[34]:= switchColumns@mat_, 8c1_, c2_<D :=

TransposeüswitchRows@Transpose@matD, 8c1, c2<D

In[35]:= switchColumns@mat, 83, 4<D êê MatrixForm
Out[35]//MatrixForm=

7 4 2 0 6

7 9 3 8 9

8 5 6 2 2

6 2 4 0 1

7 6 3 8 6

This is a fairly simplistic function, one that will fail if you are not careful with the row or column
numbers.

In[36]:= switchRows@mat, 81, 6<D
switchRows::badargs :

The absolute value of the row indices 1 and 6 in switchRows@mat,81,6<D must
be between 1 and 5, the size of the matrix.

Out[36]= 887, 4, 0, 2, 6<, 87, 9, 8, 3, 9<,
88, 5, 2, 6, 2<, 86, 2, 0, 4, 1<, 87, 6, 8, 3, 6<<

In  Exercise  1  of  Section  5.7  we  will  do  some  argument  checking  and  issue  an  appropriate
message when bad arguments are passed to these functions.

Exercises
1. Write a compound function definition for the location of steps taken in an n-step random walk on a 

square lattice. The step directions can be taken to be the compass directions with north represented 
by 81, 0<, south by 8-1, 0<, and so on. Hint: consider using the Accumulate function.

2. The PerfectSearch function defined in Section 1.1 is impractical for checking large numbers 
because it has to check all numbers from 1 through n. If you already know the perfect numbers 
below 500, say, it is inefficient to check all numbers from 1 to 1000 if you are only looking for 
perfect numbers in the range 500 to 1000. Modify PerfectSearch so that it accepts two num-
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bers as input and finds all perfect numbers between the inputs. For example, 
PerfectSearchAa, bE will produce a list of all perfect numbers in the range from a to b.

3. A number, n, is k-perfect if the sum of its proper divisors equals k n. Redefine PerfectSearch 
from the previous exercise so that it accepts as input two numbers a and b, a positive integer k, and 
computes all k-perfect numbers in the range from a to b. Use your rule to find the only three 4-
perfect numbers less than 2 200 000.

4. Often in processing files you are presented with expressions that need to be converted into a format 
that can be more easily manipulated inside Mathematica. For example, a file may contain dates in the 
form 20120515 to represent May 15, 2012. Mathematica represents its dates as a list in the form 
9 year, month, day, hour, minutes, seconds=. Write a function convertToDate@nD to convert a 

number consisting of eight digits such as 20120515 into a list of the form 82012, 5, 15<.

In[2]:= convertToDate@20120515D

Out[2]= 82012, 5, 15<

5. Create a function zeroColumns@mat, m ;; nD that zeros out columns m through n in matrix mat. 
Include rules to handle the cases of zeroing out one column or a list of nonconsecutive columns.

5.6 Pure functions
Many computations that  you perform involve creating and using a function quickly to perform
some transformation on an expression. Typically, you introduce a formal function definition and
then use that function explicitly.

In[1]:= f@x_D := x2

In[2]:= Map@f, 8a, b, c, c, e<D

Out[2]= 9a2, b2, c2, c2, e2=

But what if  you could use a function “on the fly” without creating an explicit  definition? That is
what you can do with pure functions. A pure function is a function that does not have a name and
that can be used “on the spot”, at the moment it is created. This is often convenient, especially if
the function is only going to be used once or if  it  will  be used as an argument to a higher-order
function,  such  as  Map,  Fold ,  or  Nest .  The  built-in  function  Function  is  used  to  create  pure
functions.

Syntax of pure functions
The  basic  form  of  a  pure  function  is  FunctionAx, bodyE  for  a  pure  function  with  a  single

variable  x  (any  symbol  can  be  used  for  the  variable),  and  FunctionA8x, y, …<, bodyE  for  a

pure  function  with  more  than  one  variable.  The  body  looks  like  the  right-hand  side  of  a  user-
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defined function definition,  with the  variables  x,  y,  …,  where  argument  names would be.  As  an
example, here is a pure function that squares its argument.

In[3]:= FunctionAz, z2E

Out[3]= FunctionAz, z2E

There is also a standard input form that can be used in writing a pure function which is easier
to write than the Function  notation but can be a bit cryptic to read. The right-hand side of the
function definition is rewritten by replacing the variable by the number sign, or, hash symbol (#)
and ending the expression with the ampersand symbol (&) to indicate that this is a pure function.

Ò2 &

If there is more than one variable, #1, #2, and so on are used.
A  pure  function  can  be  used  exactly  like  more  conventional  looking  functions,  by  following

the  function  with  the  argument  values  enclosed  in  square  brackets.  First  we  show  the  pure
function using Function.

In[4]:= FunctionAz, z2E@6D

Out[4]= 36

Here  is  the  same  thing,  but  using  the  more  cryptic  shorthand  notation;  the  parentheses  in  the
following example are purely for readability and can be omitted if you wish.

In[5]:= IÒ2 &M@6D

Out[5]= 36

In fact,  you can do anything with a pure function that you can do with a formally-defined func-
tion. You can evaluate it at a value, plot it, integrate it, and so on.

In[6]:= Ò2 &@10D

Out[6]= 100

In[7]:= PlotAÒ2 &@xD, 8x, -2, 2<E

Out[7]=

-2 -1 1 2

1

2

3

4
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In[8]:= IntegrateAÒ2 &@xD, xE

Out[8]=
x3

3

If you prefer, you can give a pure function a name and then use that name to call the function
later. This has the same effect as defining the function in the more traditional manner (although,
as  we  will  see  later,  working  with  pure  functions  can  give  significant  speed  increases  on  many
types of computations).

In[9]:= squared = Ò2 &;

In[10]:= squared@6D

Out[10]= 36

Pure functions are very commonly used with higher-order functions like Map  and Apply,  so,
before going further, let us first look at a few basic examples of the use of pure functions.

Here is a list of numbers.

In[11]:= lis = 82, -5, 6.1<;

Now suppose we wished to square each number and then add 1 to it. The pure function that does
this is Ò2 + 1 &. So that is what we need to map across this list.

In[12]:= MapAÒ2 + 1 &, lisE

Out[12]= 85, 26, 38.21<

In the next example we will create a set of data and then use the Select function to filter out
outliers.

In[13]:= data = 824.39001, 29.669, 9.321, 20.8856,
23.4736, 22.1488, 14.7434, 22.1619, 21.1039,
24.8177, 27.1331, 25.8705, 39.7676, 24.7762<;

A plot of the data shows there are two outliers.

In[14]:= ListPlot@dataD

Out[14]=

2 4 6 8 10 12 14

10

20

30

40
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We  introduced  the  Select  function  in  Section  5.2.  Recall  Select@expr, testD  returns  those
elements from expr that return True  when test is applied to them. We will use a pure function as
the test, in this case excluding all data points that lie outside of the range 20 to 30. 

In[15]:= Select@data, 20 § Ò § 30 &D

Out[15]= 824.39, 29.669, 20.8856, 23.4736, 22.1488,
22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762<

Using pure functions
A  good  way  to  become  comfortable  with  pure  functions  is  to  see  them  in  action,  so  we  will
convert  some  of  the  functions  we  defined  earlier  into  pure  functions,  showing  both  the  short-
hand notation and the Function form so that you can decide which you prefer to use.

listEvenQ This function tests whether all the elements of a list are even.

In[16]:= listEvenQ@lis_D := Apply@And, EvenQ@lisDD

In[17]:= listEvenQ@82, 4, 5, 8<D

Out[17]= False

Here it is written using pure functions.

In[18]:= Function@lis, Apply@And, EvenQ@lisDDD@82, 4, 5, 8<D

Out[18]= False

In[19]:= HApply@And, EvenQ@ÒDDL &@82, 4, 5, 8<D

Out[19]= False

maxima This function returns each element in the list greater than all previous elements.

In[20]:= maxima@x_D := Union@Rest@FoldList@Max, 0, xDDD

In[21]:= maxima@82, 6, 3, 7, 9, 2<D

Out[21]= 82, 6, 7, 9<

Here it is written using pure functions.

In[22]:= Function@x, Union@Rest@FoldList@Max, 0, xDDDD@
82, 6, 3, 7, 9, 2<D

Out[22]= 82, 6, 7, 9<

In[23]:= Union@Rest@FoldList@Max, 0, ÒDDD &@82, 6, 3, 7, 9, 2<D

Out[23]= 82, 6, 7, 9<
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Pure predicate functions The following examples use a pure function as a predicate to check various
criteria.  In  the  first  example,  we  are  testing  if  8a, b, c<  has  head  List  and  if  the  length  of
8a, b, c< is greater than 2. Since it passes both of these conditions, MatchQ returns True .

In[24]:= MatchQ@8a, b, c<, _List?HLength@ÒD > 2 &LD

Out[24]= True

Even though the head of 8a, b, c<  is  List ,  the condition below fails  since the list  has length
less than 4.

In[25]:= MatchQ@8a, b, c<, _List?HLength@ÒD > 4 &LD

Out[25]= False

Note that when using a pure function as in ? test,  because of the precedence Mathematica gives
to evaluating various quantities, it is necessary to enclose the entire function, including the &,  in
parentheses.

In Exercise 1 in Section 5.4, you were asked to create a function to sum the integers 1 through n.
The following works fine if n is a positive integer, but is not well-defined otherwise.

In[26]:= sumInts@n_D := Total@Range@nDD

In[27]:= sumInts@1.3D

Out[27]= 1

In[28]:= sumInts@-3D

Out[28]= 0

Some argument checking, using pure function predicates can rectify this.

In[29]:= Clear@sumIntsD

In[30]:= sumInts@n_?HIntegerQ@ÒD && Positive@ÒD &LD := Total@Range@nDD

In[31]:= sumInts@-1.3D

Out[31]= sumInts@-1.3D

In[32]:= sumInts@100D

Out[32]= 5050

Indexing  with  pure  functions Oftentimes  it  is  necessary  to  index  parts  of  an  expression  by  the
position of each element. MapIndexed  is designed for this purpose and it is often used with
pure functions.
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Given  an  expression  to  index,  the  default  behavior  of  MapIndexed  is  to  create  pairs  (ei, i),
where  ei  is  the  ith  element  in  the  expression,  and then to  pass  them as  arguments  to  a  function
given as the first argument to MapIndexed . 

In[33]:= expr = 8a, b, c, d, e<;
MapIndexed@f, exprD

Out[34]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D, f@d, 84<D, f@e, 85<D<
If instead of a symbolic function f, we use List , we get pairs of the form 8ei, 8i<<.

In[35]:= MapIndexed@List, exprD

Out[35]= 88a, 81<<, 8b, 82<<, 8c, 83<<, 8d, 84<<, 8e, 85<<<

Using  pure  functions  you  can  modify  this  quite  a  bit  by  operating  on  either  the  index  or  the
subexpression.  With  MapIndexed ,  #2  refers  to  the  index  and  #1  to  the  element  itself.  For
example, the following pure function is a list consisting of the first part of the index (strip away
one set of braces) followed by the element in that position.

In[36]:= MapIndexed@8FirstüÒ2, Ò1< &, exprD

Out[36]= 881, a<, 82, b<, 83, c<, 84, d<, 85, e<<

Nested  pure  functions You  can  also  create  nested  pure  functions;  the  key  is  to  keep  the  variables
straight. For example, the following pure function is mapped over the list to square each element.

In[37]:= MapAÒ2 &, 83, 2, 7<E

Out[37]= 89, 4, 49<

When dealing with nested pure functions, the shorthand notation can be used for each of the
pure  functions  but  care  needs  to  be  taken to  avoid  confusion as  to  which #  variable  belongs  to
which pure  function.  This  can be  avoided by using Function,  in  which case  different  variable
names can be used. Note the order in which the arguments are slotted into these two pure func-
tions – the outer function gets the arguments first.

In[38]:= FunctionAy, MapAFunctionAx, x2E, y + 1EE@83, 2, 7<D

Out[38]= 816, 9, 64<

In[39]:= FunctionAx, MapAFunction@y, y + 1D, x2EE@83, 2, 7<D

Out[39]= 810, 5, 50<

Example: searching for attributes and options
As  described  in  Section  2.4,  many  built-in  functions  have  a  set  of  properties,  or,  attributes,  that
govern their behavior in various ways. For example, functions that have the Listable  attribute
automatically map or thread across lists of arguments.
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In[40]:= Attributes@SinD

Out[40]= 8Listable, NumericFunction, Protected<

In[41]:= SinB:
p

6
,

p

3
,

p

2
, p>F

Out[41]= :
1

2
,

3

2
, 1, 0>

In this section we will create a function that searches the entire built-in symbol list for functions
with a given attribute or option.

It  is  easy  to  check  one  function.  MemberQAlist, formE  returns  true  if  an  element  of  list

matches the pattern form.

In[42]:= MemberQ@Attributes@SinD, ListableD

Out[42]= True

A list of all the built-in functions is given by the following.

In[43]:= names = Names@"System`*"D;

In[44]:= RandomSample@names, 10D

Out[44]= 8ListCorrelate, DoubleLeftArrow,
NotebookClose, FileDate, CylinderBox, SortBy,
PrecedesSlantEqual, Ordering, Socket, PlotRangePadding<

One minor point to note: the output of Names is a list of strings.

In[45]:= FullForm@%D
Out[45]//FullForm=

List@"SetterBoxOptions", "NumberForm",
"VirtualGroupData", "DumpGet", "Sin", "HilbertMatrix",
"DelimiterMatching", "VerticalTilde"D

Fortunately, Attributes  can take either a symbol or a string as an argument so we do not need
to worry about the distinction here (but we will need to worry about this when we do something
similar for options).

In[46]:= Attributes@"Sin"D

Out[46]= 8Listable, NumericFunction, Protected<

Hopefully it is clear how we should proceed. We want to select all those System`  symbols that
have  a  given  attribute.  For  example,  this  selects  all  those  System`  symbols  that  have  the
Constant attribute.
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In[47]:= Select@names, MemberQ@Attributes@ÒD, ConstantD &D

Out[47]= 8Catalan, ChampernowneNumber, Degree, E, EulerGamma,
Glaisher, GoldenRatio, Khinchin, MachinePrecision, Pi<

Let us turn this into a function that takes the attribute as an argument. Note, this function is “self-
contained”; the user does not need to evaluate Names@"System`"D  prior to using it  as we did
above.

In[48]:= FunctionsWithAttribute@attrib_SymbolD :=

Select@Names@"System`*"D, MemberQ@Attributes@ÒD, attribD &D

In[49]:= FunctionsWithAttribute@ConstantD

Out[49]= 8Catalan, ChampernowneNumber, Degree, E, EulerGamma,
Glaisher, GoldenRatio, Khinchin, MachinePrecision, Pi<

In[50]:= FunctionsWithAttribute@OrderlessD

Out[50]= 8ArithmeticGeometricMean, BitAnd, BitOr, BitXor, CoprimeQ,
DiracComb, DiracDelta, DiscreteDelta, Equivalent,
GCD, HeavisideLambda, HeavisidePi, HeavisideTheta,
KroneckerDelta, LCM, Majority, Max, Min, Multinomial,
Plus, Times, UnitBox, UnitStep, UnitTriangle, Xnor, Xor<

Attempting  to  mimic  this  function  for  options  instead  of  attributes  requires  several  adjust-
ments. First, note that Options , unlike Attributes , does not take a string as an argument.

In[51]:= Options@"Integrate"D

Out[51]= 8<

We can work around this by converting strings to symbols.

In[52]:= Options@Symbol@"Integrate"DD

Out[52]= 8Assumptions ß $Assumptions,
GenerateConditions Ø Automatic, PrincipalValue Ø False<

The second issue is that options are given as a list of rules which is a more deeply nested expres-
sion structure than the list of attributes.

In[53]:= MemberQ@Options@IntegrateD, AssumptionsD

Out[53]= False

The tree structure shows that the option names occur down at level 2.
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In[54]:= TreeForm@Options@IntegrateDD
Out[54]//TreeForm=

List

RuleDelayed

Assumptions $Assumptions

Rule

GenerateConditions Automatic

Rule

PrincipalValue False

So we need to instruct MemberQ  to search at that level by giving it a third argument, 82<.

In[55]:= MemberQ@Options@IntegrateD, Assumptions, 82<D

Out[55]= True

Finally, note that warning messages are issued for some of the symbols.

In[56]:= Select@Names@"System`*"D,
MemberQ@Options@Symbol@ÒDD, InterpolationOrder, 82<D &D;

Options::opmix : Cannot mix streams and non-streams in 8Courier, 10.<. à
ToExpression::notstrbox :

FEPrivate`FrontEndResourceString@GetFEKernelInitD is not a string or a box.
ToExpression can only interpret strings or boxes as Mathematica input. à

Since the computation is correct, we can simply turn off the display of the warning messages by
using Quiet. Here then is our function.

In[57]:= FunctionsWithOption@opt_SymbolD :=

Quiet@Select@Names@"System`*"D,
MemberQ@Options@Symbol@ÒDD, opt, 82<D &DD

In[58]:= FunctionsWithOption@StepMonitorD

Out[58]= 8FindArgMax, FindArgMin, FindFit, FindMaximum,
FindMaxValue, FindMinimum, FindMinValue, FindRoot,
NArgMax, NArgMin, NDSolve, NMaximize, NMaxValue,
NMinimize, NMinValue, NonlinearModelFit, NRoots<
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Exercises
1. Write a function to sum the squares of the elements of a numeric list.

2. In Exercise 2 from Section 5.2 you were asked to create a function to compute the diameter of a set 
of points in n-dimensional space. Modify that solution by instead using the Norm  function and pure 
functions to find the diameter.

3. Rewrite the code from Section 5.3 for finding the next prime after a given integer so that it uses pure 
functions instead of relying upon auxiliary definitions addOne and CompositeQ.

4. Create a function RepUnit@nD that generates integers of length n consisting entirely of ones. For 
example RepUnit@7D should produce 1111111.

5. Given a set of numerical data, extract all those data points that are within one standard deviation of 
the mean of the data.

In[1]:= data = RandomVariate@NormalDistribution@0, 1D, 82500<D;

6. Write a pure function that moves a random walker from one location on a square lattice to one of 
the four adjoining locations with equal probability. For example, starting at 80, 0<, the function 
should return 80, 1<, 80, -1<, 81, 0<, or 8-1, 0< with equal likelihood. Now, use this pure 
function with NestList to generate the list of step locations for an n-step random walk starting at 
80, 0<.

7. Find all words in the dictionary that start with the letter q and are of length five. Here is the list of 
words in the dictionary that comes with Mathematica.

In[2]:= words = DictionaryLookup@D;
RandomSample@words, 24D

Out[3]= 8leafage, uncorrupted, cocci, disadvantaged, inflicter, Moira,

interpolates, squander, archer, tricking, lithosphere,

deforested, throb, soapboxes, monopolies, advisedly, silencer,

tames, satanists, individuals, snorter, huh, noised, WWW<

8. A naive approach to polynomial arithmetic would require three additions and six multiplications to 
carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using Horner’s method for fast 
polynomial multiplication, this expression can be represented as d + xHc + xHb + a xLL, where there 
are now half as many multiplications. You can see this using the MultiplyCount function 
developed in Exercise 8 of Section 4.2.

In[4]:= MultiplyCountAa x3 + b x2 + c x + dE

Out[4]= 6

In[5]:= MultiplyCount@d + x Hc + x Hb + a xLLD

Out[5]= 3

In general, the number of multiplications in an n-degree polynomial is given by:

In[6]:= Binomial@n + 1, 2D

Out[6]=
1

2
n H1 + nL
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This, of course, grows quadratically with n, whereas Horner’s method grows linearly. Create a 
function HornerAlis, varE that gives a representation of a polynomial in Horner form. Here is 

some sample output that your function should generate.

In[7]:= Horner@8a, b, c, d<, xD

Out[7]= d + x Hc + x Hb + a xLL

In[8]:= Expand@%D

Out[8]= d + c x + b x2 + a x3

9. Graphs that are not too dense are often represented using adjacency structures which consist of a list 
for each vertex vi that includes those other vertices that vi is connected to. Create an adjacency 
structure for any graph, directed or undirected. For example, consider the graph gr below.

In[9]:= gr = RandomGraph@88, 12<, VertexLabels Ø "Name"D

Out[9]=

Start by creating an adjacency list for any given vertex; that is, a list of those vertices to which the 
given vertex is connected. For example, the adjacency list for vertex 8 in the above graph would be:

83, 4, 5, 7<

The adjacency structure is then the list of adjacency lists for every vertex in that graph. It is common 
to prepend each adjacency list with its vertex; typically the adjacency structure takes the following 
form where this syntax indicates that vertex 1 is connected to vertices 2 and 6; vertex 2 is connected 
to vertices 1, 4, and 5; and so on.

881, 82, 6<<, 82, 81, 4, 5<<, 83, 85, 7, 8<<, 84, 82, 7, 8<<,
85, 82, 3, 6, 8<<, 86, 81, 5<<, 87, 83, 4, 8<<, 88, 83, 4, 5, 7<<<

10. Use FoldList to compute an exponential moving average of a list 8x1, x2, x3<. You can check 
your result against the built-in ExponentialMovingAverage.

In[10]:= ExponentialMovingAverage@8x1, x2, x3<, aD

Out[10]= 8x1, x1 + a H-x1 + x2L, x1 + a H-x1 + x2L + a H-x1 - a H-x1 + x2L + x3L<

11. A well-known programming exercise in many languages is to generate Hamming numbers, 
sometimes referred to as regular numbers. These are numbers that divide powers of 60 (the choice of 
that number goes back to the Babylonians who used 60 as a number base). Generate a sorted 
sequence of all Hamming numbers less than 1000. The key observation is that these numbers have 
only 2, 3, and 5 as prime factors.
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5.7 Options and messages
When  developing  programs  that  will  be  used  by  your  colleagues,  students,  or  customers,  it  is
always a good idea to think about the user interface to your code. That is, how will the user figure
out the correct syntax, how will they get helpful information, and so on. The easier it is for a user
(including  yourself!)  to  actually  use  your  code,  the  more  likely  it  is  to  be  used  for  its  intended
purpose. One of the hallmarks of modern languages is that they provide a framework for you to
apply standard design principles making it easier to develop programs that look and behave in a
consistent  manner.  One  of  the  pieces  of  this  framework  is  a  mechanism  for  passing  messages
when  a  bad  argument  is  given  or  a  certain  condition  occurs.  Another  piece  is  using  optional
arguments,  or  options,  to  modify  the  default  behavior  of  your  functions.  In  this  section  we
discuss  how  you  can  set  up  your  functions  so  that  they  inherit  this  framework,  making  them
behave just like built-in Mathematica functions in terms of argument structure and messaging.

Options
When  writing  your  own  programs,  it  is  often  difficult  to  predict  how  a  user  will  interact  with
them. You might, for example, write separate functions to handle special cases, but the problem
with having a separate function for each special case is that the user can soon become overloaded
with the variety of  functions to learn.  A cleaner approach,  one used by the built-in functions in
Mathematica,  is  to  use  optional  arguments  to  specify  some  variant  or  special  case  rather  than  to
have a separate function for each such case. In this section, we will show how to write options for
your functions so that they behave like the built-in options in Mathematica.

When you create a function, generally you design the argument structure in such a way that it
covers the most common cases for which you intended to use this function. For example, given
the required arguments, the Plot  function returns a basic plot.

In[1]:= Plot@Sin@xD, 8x, 0, 2 p<D

Out[1]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

But  there  is  also  a  mechanism  for  overriding  the  default  behavior  by  specifying  optional  argu-
ments, or simply, options. Options are specified following any required arguments and are gener-
ally given as a rule: optionname Ø value.
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In[2]:= Plot@Sin@xD, 8x, 0, 2 p<,
GridLines Ø Automatic,
Frame Ø TrueD

Out[2]=

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

This  provides  a  consistent  framework  for  modifying  the  default  behavior  of  the  built-in  func-
tions. Below we will outline this framework and then start to put it into action at the end of this
chapter in Section 5.8 and then again repeatedly in later chapters.

The first part of the framework is to declare that a function will have optional arguments and
identify  their  names  and  default  values.  For  example,  the  following  indicates  that  a  function
named  myFun  will  have  two  optional  arguments,  opt1  and  opt2  and  declares  their  default
values to be a and b, respectively.

In[3]:= Options@myFunD = 8opt1 Ø a, opt2 Ø b<

Out[3]= 8opt1 Ø a, opt2 Ø b<

The  second  piece  of  the  options  framework  is  to  set  up  the  argument  structure  to  allow  for
optional  arguments.  This  is  done  by  using  OptionsPattern  following  any  required  argu-
ments.  So  in  the  example  below,  the  required  argument  is  x  and  this  statement  indicates  that
some number (possibly zero) of optional arguments will follow that required argument.

myFun@x_, OptionsPattern@DD := …

The  third  piece  of  the  framework  is  using  OptionsValue  to  extract  the  value  of  a  given
option in the function definition.

In[4]:= myFun@x_, OptionsPattern@DD :=

2 x + 3 OptionValue@opt1D + 4 OptionValue@opt2D

Let us try it out, first with default values for the options.

In[5]:= myFun@aD

Out[5]= 2 a + 3 a + 4 b

Now exercise the options.

In[6]:= myFun@a, opt1 Ø x, opt2 Ø yD

Out[6]= 2 a + 3 x + 4 y
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So far,  so good, but let us use the options framework to do something a bit more interesting.
There are many times when it  would be useful to use,  or inherit,  some or all  the options from a
built-in function. This saves time and effort in that the structure already is in place, you just need
to borrow it. Fortunately, this is quite straightforward using Options . We will create a function
StemPlot  that  inherits  options  from  ListPlot  and  displays  discrete  data  as  stems;  that  is,
points of height specified by the values of the data with lines drawn to the axis.

In[7]:= Options@StemPlotD = Options@ListPlotD;
StemPlot@lis_, opts : OptionsPattern@DD :=

ListPlot@lis, opts, Filling Ø AxisD

We  named  the  optional  arguments  opts  so  that  we  can  slot  whatever  options  are  given  into
ListPlot. This is done by having opts precede any other options we wish to use. This way the
user-passed options, appearing first, will override any similarly named options that come later. 

In[9]:= StemPlot@Range@12DD

Out[9]=

Here we exercise some of the options, all inherited from ListPlot.

In[10]:= StemPlot@Range@8D, Filling Ø 4,
FillingStyle Ø 88Purple, Dashed<<, Frame Ø True,
PlotLabel Ø Style@"A stem plot", "Menu"DD

Out[10]=

0 2 4 6 8
0

2

4

6

8
A stem plot

As  an  alternative  to  how  we  set  up  the  options  for  StemPlot,  you  could  also  set  up  the
inheritance of the options directly in the definition for your function, rather than using a separate
Options@…D = … statement.
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In[11]:= StemPlot@lis_, opts : OptionsPattern@ListPlotDD :=

ListPlot@lis, opts, Filling Ø AxisD

At the end of Section 9.5 in the example on displaying DNA sequences and again in the visual-
ization  functions  in  Section  10.4  we  will  look  at  some  variations  of  this  options  framework  in
which you can mix options from different functions. 

Messages
When you give an invalid argument to a Mathematica function, it returns a warning message.

In[12]:= Inverse@81.2, 2.3, 4.5<D

Inverse::matsq : Argument 81.2, 2.3, 4.5< at position 1 is not a non-empty square matrix. à

Out[12]= Inverse@81.2, 2.3, 4.5<D

You  can  set  up  your  own  functions  to  do  likewise.  The  basic  framework  is:  define  the  message
and then use a rule to issue the message under the appropriate conditions. 

Let us set up a message for the simple function CompositeQ discussed in Section 5.3. Here is
the original definition.

In[13]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD

As written, this function returns unevaluated for any argument that does not match the pattern
n_Integer ê; n > 1.  It  is  a good candidate for a warning message when it  is given arguments
that do not match this pattern.

In[14]:= CompositeQ@pD

Out[14]= CompositeQ@pD

We  would  like  to  set  up  a  message  that  is  issued  whenever  a  bad  argument  is  passed  to
CompositeQ.  Messages  have  names  of  the  form  symbol::tag,  where  symbol  is  the  symbol  with
which you want to associate the message. The tag  should be chosen to reflect the purpose of the
message. So in our case we will create a message CompositeQ::badarg.

In[15]:= CompositeQ::badarg =
"Bad argument to CompositeQ. It should be

an integer greater than 1.";

To  issue  this  message,  we  create  a  general  rule  that  covers  all  arguments  other  than  integers
greater than 1 which is covered by the rule we wrote above.

In[16]:= CompositeQ@n_D := Message@CompositeQ::badargD

In[17]:= CompositeQ@pD
CompositeQ::badarg : Bad argument to CompositeQ. It should be an integer greater than 1.
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So far, so good. We could go a bit further and pass the bad argument itself into the message. Built-
in functions do this automatically.

In[18]:= FactorInteger@pD

FactorInteger::exact : Argument p in FactorInteger@pD is not an exact number. à

Out[18]= FactorInteger@pD

This is  accomplished by using `1`  to indicate the position in the string to slot  in a  value.  Then
use a two-argument form of Message  to issue the warning with a value slotted into the string.

In[19]:= CompositeQ::badarg =
"Argument `1` in CompositeQ@`1`D is not an

integer greater than 1.";

In[20]:= CompositeQ@n_D := Message@CompositeQ::badarg, nD

In[21]:= CompositeQ@pD
CompositeQ::badarg : Argument p in CompositeQ@pD is not an integer greater than 1.

We can go one step further and create a more general rule, one that could cover more than one
argument or more complicated argument structures and, in addition to issuing the warning, also
return  the  input  unevaluated.  The  If  statement  below  checks  to  see  if  the  argument,  n,  is  an
integer greater than 1. If it is, the If  statement returns True , the conditional is satisfied, and the
right-hand side of the definition will be invoked. If the argument is not an integer greater than 1,
then the message is issued and False  is returned to the condition, making the pattern match fail
(which causes the input to be returned), and so the right-hand side is not evaluated.

In[22]:= Clear@CompositeQD

In[23]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD

In[24]:= CompositeQ@n_D ê; If@TrueQ@Head@nD ã Integer && n > 1D, True,

Message@CompositeQ::badarg, nD; FalseD := NotüPrimeQ@nD

In[25]:= CompositeQ@pD
CompositeQ::badarg : Argument p in CompositeQ@pD is not an integer greater than 1.

Out[25]= CompositeQ@pD

In[26]:= CompositeQ@8a, b, c<D
CompositeQ::badarg :

Argument 8a, b, c< in CompositeQ@8a, b, c<D is not an integer greater than 1.

Out[26]= CompositeQ@8a, b, c<D
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Of course,  you could have multiple messages associated with any symbol by writing another
symbol::tag and modifying your code appropriately. This is what functions like Inverse  do for
the various arguments that could be given.

In[27]:= Inverse@8a, b, c<D

Inverse::matsq : Argument 8a, b, c< at position 1 is not a non-empty square matrix. à

Out[27]= Inverse@8a, b, c<D

In[28]:= Inverse@88a, b<, 8a, b<<D

Inverse::sing : Matrix 88a, b<, 8a, b<< is singular. à

Out[28]= Inverse@88a, b<, 8a, b<<D

Exercises
1. In Section 5.5 we developed a function switchRows that interchanged two rows in a matrix. Create 

a message for this function that is issued whenever a row index greater than the size of the matrix is 
used as an argument. For example,

In[1]:= mat = RandomInteger@80, 9<, 84, 4<D;
MatrixForm@matD

Out[2]//MatrixForm=

3 5 1 8
5 9 7 4
5 0 7 1
4 2 3 0

In[3]:= switchRows@mat, 85, 2<D
switchRows::badargs :

The absolute value of the row indices 5 and 2 in switchRows@mat,85,2<D must
be between 1 and 4, the size of the matrix.

Out[3]= 883, 5, 1, 8<, 85, 9, 7, 4<, 85, 0, 7, 1<, 84, 2, 3, 0<<

You should also trap for a row index of 0.

In[4]:= switchRows@mat, 80, 2<D
switchRows::badargs :

The absolute value of the row indices 0 and 2 in switchRows@mat,80,2<D must
be between 1 and 4, the size of the matrix.

Out[4]= 883, 5, 1, 8<, 85, 9, 7, 4<, 85, 0, 7, 1<, 84, 2, 3, 0<<

2. Create an error message for StemPlot, developed in this section, so that an appropriate message is 
issued if the argument is not a list of numbers.
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5.8 Examples and applications
In this section we will put several of the concepts we have explored to work in solving concrete,
real-world  problems.  Some  of  these  solutions  are  short  and  avoid  the  use  of  auxiliary  function
definitions  –  so-called  one-liners.  Others  require  localization  constructs  and  auxiliary  function
definitions.  The  examples  include  a  problem  from  signal  processing  on  computing  Hamming
distance;  one  from  ancient  history,  the  Josephus  problem;  a  graphical  problem  on  the  creation
and display  of  regular  polygons;  a  practical  problem involving the  creation of  a  palette  to  open
files from a project directory; and a data processing problem on cleaning/filtering arrays of data
in which the notion of modular programs is discussed.

Hamming distance
When a signal is transmitted over a channel in the presence of noise, errors often occur. A major
concern in telecommunications is  measuring (and of course,  trying to minimize) that error.  For
two  lists  of  binary  symbols,  the  Hamming  distance  is  defined  as  the  number  of  nonmatching
elements and so gives a measure of how well these two lists of binary digits match up. In this first
example, we will create a function to compute the Hamming distance of a binary signal.

Let us first think about how we might determine if two binary numbers are identical. Various
tests  of  equality  are  available.  SameQ@x, yD  will  return  True  if  x  and  y  are  identical.  It  differs
from Equal  (ã) in that, for numbers, Equal  tests for numerical equality within a certain toler-
ance, but SameQ is testing for identical structures.

In[1]:= SameQ@0, 0.0D

Out[1]= False

In[2]:= Equal@0, 0.0D

Out[2]= True

Here is what SameQ returns for the different pairings of binary numbers.

In[3]:= 8SameQ@0, 0D, SameQ@1, 0D, SameQ@1, 1D<

Out[3]= 8True, False, True<

So we need to thread SameQ over the two lists of binary numbers,

In[4]:= MapThread@SameQ, 881, 0, 0, 1, 1<, 80, 1, 0, 1, 0<<D

Out[4]= 8False, False, True, True, False<

and then count up the occurrences of False.

In[5]:= Count@%, FalseD

Out[5]= 3
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Putting these last two pieces together, we have our first definition for Hamming distance.

In[6]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD

In[7]:= HammingDistance1@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D

Out[7]= 3

We might also try to solve this problem by a more direct approach. Since we are dealing with
binary  information,  we  will  use  some  of  the  logical  binary  operators  built  into  Mathematica.
BitXor@x, yD  returns the bitwise XOR of x  and y.  So if  x  and y  can only be among the binary
integers 0 or 1, BitXor will return 0 whenever they are the same and will return 1 whenever they
are different. Note that BitXor is listable and so automatically threads over lists.

In[8]:= BitXor@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D

Out[8]= 81, 1, 0, 0, 1<

And here are the number of 1s that occur in that list.

In[9]:= Total@%D

Out[9]= 3

Here then is our bit-operator based version for the Hamming distance computation.

In[10]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[11]:= HammingDistance2@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D

Out[11]= 3

Let us compare the running times of these implementations using a large data set, in this case
two lists consisting of one million 0s and 1s.

In[12]:= sig1 = RandomIntegerA1, 9106=E;

In[13]:= sig2 = RandomIntegerA1, 9106=E;

In[14]:= Timing@HammingDistance1@sig1, sig2DD

Out[14]= 80.497098, 499922<

In[15]:= Timing@HammingDistance2@sig1, sig2DD

Out[15]= 80.007763, 499922<

That  is  quite  a  difference  in  the  efficiency  of  these  two  approaches!  Using  bit  operators  gives  a
speedup  of  almost  two  orders  of  magnitude.  We  will  leave  a  discussion  of  the  causes  of  this
difference until Chapter 12.  There are numerous other approaches that you might consider – the
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exercises ask you to write implementations of HammingDistance that use Select and Cases
and also one using modular arithmetic.

As  an  aside,  the  above  computations  are  not  a  bad  check  on  the  built-in  random  number
generator  –  we  would  expect  that  about  one-half  of  the  paired-up  lists  would  contain  different
elements.

The Josephus problem
Flavius Josephus (37 – ca. 100 AD) was a Jewish historian who fought in the Roman–Jewish war of
the first century ad. Through his writings comes the following story; see Herstein and Kaplansky
(1978) or Graham, Knuth, and Patashnik (1994):

The Romans had chased a group of ten Jews into a cave and were about to attack. Rather than die at the hands of 
their enemy, the group chose to commit suicide one by one. Legend has it though, that they decided to go around 
their circle of ten individuals and eliminate every other person until only one was left.

The Josephus problem is stated simply: who was the last to survive? Although a bit macabre, this
problem  has  a  definite  mathematical  interpretation  that  lends  itself  well  to  a  functional  style  of
programming.  We  will  start  by  changing  the  problem  a  bit  (the  importance  of  rewording  a
problem can hardly be overstated; the key to most problem-solving resides in turning something
we cannot work with into something we can).  We will  restate  the problem as  follows:  n  people
are lined up; the first person is moved to the end of the line; the second person is removed from
the line; the third person is moved to the end of the line; and so on until only one person remains
in the line.

The  statement  of  the  problem  indicates  that  there  is  a  repetitive  action,  performed  over  and
over again.  It  can be encoded with the RotateLeft  function (move the person at  the front of
the line to the back of the line) followed by the use of the Rest  function (remove the next person
from the line).

In[16]:= Rest@RotateLeft@8a, b, c, d<DD

Out[16]= 8c, d, a<

At this point it should be fairly clear where this computation is headed. We want to take a list
and,  using  the  Nest  function,  iterate  the  pure  function  Rest@RotateLeft@ÒDD &  until  only
one  element  remains.  A  list  of  n  elements  will  need  n - 1  iterations.  We  will  create  the  list  of  n
elements using Range@nD. Here then is the function survivor.

In[17]:= survivor@n_D := Nest@Rest@RotateLeft@ÒDD &, Range@nD, n - 1D
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Trying out  the  survivor  function on a  list  of  ten,  we see  that  the  survivor  is  the  fifth  starting
position.

In[18]:= survivor@10D

Out[18]= 85<

Tracing  the  applications  of  RotateLeft  in  this  example  gives  a  clear  picture  of  what  is
happening.  Using TracePrint  with a  second argument shows only the results  of  the applica-
tions of RotateLeft  that occur during evaluation of the expression survivor@6D.

In[19]:= TracePrint@survivor@6D, RotateLeftD

RotateLeft

82, 3, 4, 5, 6, 1<

RotateLeft

84, 5, 6, 1, 3<

RotateLeft

86, 1, 3, 5<

RotateLeft

83, 5, 1<

RotateLeft

81, 5<

Out[19]= 85<

And,  of  course,  you  could  generate  the  list  of  survivors  at  each  round  by  using  NestList
instead of Nest .

In[20]:= With@8n = 6<, NestList@Rest@RotateLeft@ÒDD &, Range@nD, n - 1DD

Out[20]= 881, 2, 3, 4, 5, 6<, 83, 4, 5, 6, 1<,
85, 6, 1, 3<, 81, 3, 5<, 85, 1<, 85<<

Regular graphs/polygons
Section 1.1  included some brief  code to  create  and display regular  polygons from points  equally
spaced on a circle.  Here we will  use some of  the built-in graph machinery together with several
functional  programming  constructs  to  create  an  alternative  implementation.  The  advantage  of
this  approach is  that  we can then take  advantage  of  the  style  and formatting functionality  built
into Graph objects.
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Let  us  start  by  creating  a  regular  pentagon.  Whereas  the  code  in  Section  1.1  identified  the
vertices spatially as  coordinates in the plane,  graphs identify the vertices by their  index;  a  graph
with five vertices labels them 1, 2, 3, 4, 5.

In[21]:= Range@5D

Out[21]= 81, 2, 3, 4, 5<

We need to connect vertex 1 to vertex 2, vertex 2 to vertex 3, and so on. This is done by partition-
ing  this  list  of  five  vertices  into  overlapping  pairs.  The  last  argument  to  Partition  indicates
that the list is cyclic.

In[22]:= pairs = Partition@Range@5D, 2, 1, 1D

Out[22]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 1<<

We  next  turn  each  pair  of  vertices  into  an  (undirected)  edge.  Note  the  need  to  apply
UndirectedEdge  at level 1.

In[23]:= Apply@UndirectedEdge, pairs, 81<D

Out[23]= 81 � 2, 2 � 3, 3 � 4, 4 � 5, 5 � 1<

Then, we turn the rules into a graph object that will display as a polygon.

In[24]:= Graph@%D

Out[24]=

Finally, we put all the above pieces together to create a reusable function, adding several Graph
options to stylize the graph.

In[25]:= RegularGraph@n_IntegerD := Graph@
Apply@UndirectedEdge, Partition@Range@nD, 2, 1, 1D, 81<D,
VertexSize Ø 0.002, EdgeStyle Ø ThickD
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In[26]:= RegularGraph@5D

Out[26]=

In  the  above  implementation,  we  have  hard-coded  the  two  options,  VertexSize  and
EdgeStyle.  That  is  fine for  the default  representation,  but  let  us  take advantage of  all  the rich
formatting  and  stylistic  functionality  built  into  Graph  objects.  This  is  done  by  passing  the
options for Graph to our RegularGraph function. 

Let  us also try a different approach to constructing the vertex rules,  using MapThread.  First,
we rotate the original list one position to the left.

In[27]:= lis = Range@5D;
pairs = 8lis, RotateLeft@lisD<

Out[28]= 881, 2, 3, 4, 5<, 82, 3, 4, 5, 1<<

Then we thread UndirectedEdge  over these paired vertices.

In[29]:= MapThread@UndirectedEdge, pairsD

Out[29]= 81 � 2, 2 � 3, 3 � 4, 4 � 5, 5 � 1<

Using the options framework introduced in Section 5.7, set up RegularGraph to inherit all the
options of Graph.

In[30]:= Options@RegularGraphD = Options@GraphD;

In[31]:= RandomSample@Options@RegularGraphD, 8D

Out[31]= 8AspectRatio Ø Automatic, AxesOrigin Ø Automatic,
VertexLabels Ø Automatic, FrameTicksStyle Ø 8<,
Properties Ø 8<, GraphLayout Ø Automatic,
BaselinePosition Ø Automatic, EdgeStyle Ø Automatic<
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We use the localization construct With  here as the list of vertices, verts, is really a constant, an
expression that does not change in the body of the function.

In[32]:= RegularGraph@n_Integer, opts : OptionsPattern@DD :=

With@8verts = Range@nD<,
Graph@
MapThread@UndirectedEdge, 8verts, RotateLeft@vertsD<D,
opts,
VertexSize Ø 0.002, EdgeStyle Ø ThickDD

Here  then  is  a  regular  pentagon,  displayed  as  a  graph,  using  a  variety  of  options  to  stylize  the
output.

In[33]:= RegularGraph@5, VertexSize Ø Small,
VertexStyle Ø Red, VertexLabels Ø "Name",
VertexLabelStyle Ø Directive@"Menu", 8DD

Out[33]=

Representing these  objects  as  graphs  provides  not  only  styling and labeling options,  but  also
gives  access  to  functions  for  operating  on  and  measuring  graphs.  For  example,  a  quick  check
shows that regular graphs are 2-regular, meaning that every vertex has two edges.

In[34]:= VertexDegree@RegularGraph@5DD

Out[34]= 82, 2, 2, 2, 2<

Or you can determine if another graph is isomorphic to a regular graph.

In[35]:= IsomorphicGraphQ@RegularGraph@4D, HypercubeGraph@2DD

Out[35]= True

As an aside, the built-in CycleGraph@nD returns a similar object.
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In[36]:= CycleGraph@5, VertexLabels Ø "Name"D

Out[36]=

Protein interaction networks
Proteins interact with other proteins in biological processes as varied as DNA replication, signal
transduction,  movement  of  molecules  into  and  between  cells,  and  essentially  all  processes  in
living cells. In fact, signal transduction, a process in which proteins control the signaling into and
out  of  the  cell,  is  key  to  the  study  of  diseases  including  many  cancers.  Their  importance  in  all
cellular activity has given rise to active work in the visualization of these protein-protein interac-
tions (PPIs). In this section, we will combine some of the functional constructs, pattern matching,
and graph tools to visualize proteins within networks that have a high level of interaction.

We  will  work  with  proteins  from  the  worm  Caenorhabditis  elegans,  a  heavily  studied  organism
(Worm Interactome Database).  The data,  courtesy of  Dana-Farber  Cancer  Institute  and Harvard
Medical School, are in the form of a text file. This imports that file from the internet and displays
the first twelve entries.

In[37]:= data = Import@
"http:êêinteractome.dfci.harvard.eduêC_elegansêgraphsê

sequence_edgesêwi2007.txt", "TSV"D;

In[38]:= Take@data, 12D

Out[38]= 88ÒIDA, IDB<, 8AC3.3, F29G6.3<, 8AC3.3, R05F9.10<,
8AC3.3, Y69H2.3<, 8AC3.7, Y40B10A.2<, 8B0001.4, F19B6.1<,
8B0001.7, B0281.5<, 8B0001.7, F37H8.1<,
8B0024.10, C06A1.1<, 8B0024.12, C06E2.1<,
8B0024.14, B0228.1<, 8B0024.14, C05G6.1<<

The  data  are  of  the  form  8protein1, protein2<  indicating  an  interaction  between  these  two

named  proteins.  Using  the  function  ToGraph,  developed  in  Exercise  4  of  Section  5.2,  we  turn
these lists into edges, where each edge represents an interaction between two proteins (vertices).

In[39]:= ToGraph@lis : 88_, _< ..<D := Apply@DirectedEdge, lis, 81<D
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In[40]:= ToGraph@lis : 8_, _<D := Apply@DirectedEdge, lisD

In[41]:= ToGraph@Take@data, 12DD

Out[41]= 8ÒIDA � IDB, AC3.3 � F29G6.3, AC3.3 � R05F9.10,
AC3.3 � Y69H2.3, AC3.7 � Y40B10A.2, B0001.4 � F19B6.1,
B0001.7 � B0281.5, B0001.7 � F37H8.1, B0024.10 � C06A1.1,
B0024.12 � C06E2.1, B0024.14 � B0228.1, B0024.14 � C05G6.1<

We need to delete the first  entry ("ÒIDA" � "IDB")  which is  meant as a comment.  So we use
ToGraph on Rest@dataD and then visualize the result with Graph.

In[42]:= edgerules = ToGraph@Rest@dataDD;
gr = Graph@edgerulesD

Out[43]=

It is a fairly dense graph showing all the protein interactions, and, as a result, it is a bit difficult to
discern  detail.  Many  of  the  interactions  involve  only  two  proteins  as  seen  in  the  small  compo-
nents  on the right  and bottom of  the above output.  Our task in this  example is  to find the sub-
graph consisting of all those proteins with at least n interactions with other proteins. We will take
n = 12; that is, proteins that have at least 12 interactions with other proteins.

The vertices (the proteins) are strings.

In[44]:= vertices = VertexList@grD;
Take@vertices, 5D êê FullForm

Out[45]//FullForm=

List@"AC3.3", "F29G6.3", "R05F9.10", "Y69H2.3", "AC3.7"D

VertexDegree@gr, vertexD  gives  the  number  of  edges  incident  to  vertex  in  graph gr.  So  in  our
protein  network,  the  vertex  degree  for  vertex  vi  gives  the  number  of  interactions  between  that
protein represented by vi and all other proteins.

In[46]:= VertexDegree@gr, "R05F9.10"D

Out[46]= 86
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A slightly different syntax for VertexDegree  gives the degree for every vertex in the graph. So
from  the  tally  below,  vertices  with  one  edge  occur  933  times  in  this  network,  vertices  with  two
edges occur 246 times, and so on. There is only one vertex with 86 edges.

In[47]:= SortBy@TallyüVertexDegree@grD, FirstD

Out[47]= 881, 933<, 82, 246<, 83, 107<, 84, 64<, 85, 40<, 86, 21<,
87, 19<, 88, 6<, 89, 10<, 810, 6<, 811, 2<, 812, 11<, 813, 2<,
814, 1<, 815, 2<, 816, 3<, 817, 2<, 818, 2<, 819, 3<,
821, 2<, 823, 1<, 824, 2<, 828, 1<, 830, 1<, 831, 3<,
839, 1<, 844, 1<, 845, 1<, 847, 1<, 849, 1<, 886, 1<<

To  extract  all  those  vertices  that  have  a  vertex  degree  greater  than  12,  use  Select  with  the
appropriate predicate.

In[48]:= Select@VertexList@grD, HVertexDegree@gr, ÒD > 12 &LD

Out[48]= 8R05F9.10, Y69H2.3, Y40B10A.2, DH11.4, K09B11.9, R02F2.5,

ZK1053.5, W05H7.4, C18G1.2, T11B7.1, F52E1.7, F46A9.5,

Y54E2A.3, ZK858.4, C50F4.1, K12C11.2, C06G1.5, Y65B4BR.4,

F32B4.4, ZK849.2, C36C9.1, ZK1055.7, C06A5.9, W09C2.1, F44G3.9,

ZK121.2, M04G12.1, T21G5.5, W10C8.2, F01G10.2, Y55F3C.6<

Or, we thread the inequality over the list of vertex degrees and pick those vertices for which this
inequality is true.

In[49]:= proteins = Pick@VertexList@grD, Thread@VertexDegree@grD > 12DD

Out[49]= 8R05F9.10, Y69H2.3, Y40B10A.2, DH11.4, K09B11.9, R02F2.5,

ZK1053.5, W05H7.4, C18G1.2, T11B7.1, F52E1.7, F46A9.5,

Y54E2A.3, ZK858.4, C50F4.1, K12C11.2, C06G1.5, Y65B4BR.4,

F32B4.4, ZK849.2, C36C9.1, ZK1055.7, C06A5.9, W09C2.1, F44G3.9,

ZK121.2, M04G12.1, T21G5.5, W10C8.2, F01G10.2, Y55F3C.6<

Thread is needed here because Greater  (>) is not listable.

In[50]:= 81, 2, 3, 4< > 3

Out[50]= 81, 2, 3, 4< > 3

In[51]:= Attributes@GreaterD

Out[51]= 8Protected<

Note that Thread  can thread over two expressions that are not the same structurally,  as in our
example here.

In[52]:= Thread@81, 2, 3, 4< > 3D

Out[52]= 8False, False, False, True<
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Now we get all those interactions that involve proteins as defined above.

In[53]:= edges = Cases@EdgeList@grD, Hp1_ � p2_L ê;
MemberQ@proteins, p1D && MemberQ@proteins, p2D, InfinityD;

In[54]:= Take@edges, 12D

Out[54]= 8C06A5.9 � C36C9.1, C06A5.9 � DH11.4, C06A5.9 � F44G3.9,

C06G1.5 � DH11.4, C06G1.5 � F32B4.4, C06G1.5 � K09B11.9,

C06G1.5 � W05H7.4, C06G1.5 � Y54E2A.3, C06G1.5 � ZK121.2,

C06G1.5 � ZK849.2, C36C9.1 � K09B11.9, C36C9.1 � Y54E2A.3<

We delete self-loops (although proteins certainly can interact with themselves).

In[55]:= gr1 = DeleteCases@edges, x_ � x_D;
Take@gr1, 12D

Out[56]= 8C06A5.9 � C36C9.1, C06A5.9 � DH11.4, C06A5.9 � F44G3.9,

C06G1.5 � DH11.4, C06G1.5 � F32B4.4, C06G1.5 � K09B11.9,

C06G1.5 � W05H7.4, C06G1.5 � Y54E2A.3, C06G1.5 � ZK121.2,

C06G1.5 � ZK849.2, C36C9.1 � K09B11.9, C36C9.1 � Y54E2A.3<

Finally, we use Graph and several options to visualize this PPI.

In[57]:= Graph@gr1, VertexStyle Ø Red, VertexSize Ø Large,
VertexLabels Ø "Name", VertexStyle Ø Directive@OrangeD,
GraphLayout Ø "CircularEmbedding",
EdgeShapeFunction Ø "CarvedArrow"D

Out[57]=

The exercises include an extension of this PPI visualization in which you are asked to color the
vertices according to that protein’s biological processes.

Palettes for project files
In  this  next  example  we  will  use  the  functional  constructs  developed  in  this  chapter  to  create  a
palette of hyperlinks to files in a given directory. This is particularly useful if you are working on a
project consisting of numerous files, all of which live in the same location. 

Let  us  start  by  getting  a  list  of  files  from  a  project  directory.  We  will  use  the  notebook  files
("*.nb")  from  the  directory  PwM.  You  could  choose  any  directory  containing  your  project
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notebooks. In this case we will only work with the first nine files in this directory. The palette will
consist of a column of buttons, one for each file. 

In[58]:= dir = FileNameJoin@8$BaseDirectory, "Applications", "PwM"<D;
files = Take@FileNames@"*.nb", dirD, 9D

Out[59]= 8êLibraryêMathematicaêApplicationsêPwMê01Introduction.nb,
êLibraryêMathematicaêApplicationsêPwMê02Language.nb,
êLibraryêMathematicaêApplicationsêPwMê03Lists.nb,
êLibraryêMathematicaêApplicationsêPwMê04PatternsAndRules.nb,
êLibraryêMathematicaêApplicationsêPwMê05Functions.nb,
êLibraryêMathematicaêApplicationsêPwMê06Procedural.nb,
êLibraryêMathematicaêApplicationsêPwMê07Recursion.nb,
êLibraryêMathematicaêApplicationsêPwMê08Numerics.nb,
êLibraryêMathematicaêApplicationsêPwMê09Strings.nb<

Hyperlink has a two-argument form: the first argument is the label, the second argument is the
target file for that label.

In[60]:= ? Hyperlink

Hyperlink@uriD represents a hyperlink that jumps to the specified URI when clicked.

Hyperlink@label, uriD represents a hyperlink to be displayed as label. �à

So  we  will  need  to  create  a  list  of  labels  corresponding  to  our  list  of  files.  As  a  label  for  each
button, we will use the basic file name, as given by FileBaseName.

In[61]:= labels = Map@FileBaseName, filesD

Out[61]= 801Introduction, 02Language, 03Lists, 04PatternsAndRules,

05Functions, 06Procedural, 07Recursion, 08Numerics, 09Strings<

Now, we thread Hyperlink  over the labels and files.  Note the use of a pure function to slot in
each label and file in the correct location. 

In[62]:= MapThread@Hyperlink@Ò1, Ò2D &, 8labels, files<D

Out[62]= 901Introduction, 02Language, 03Lists, 04PatternsAndRules,

05Functions, 06Procedural, 07Recursion, 08Numerics, 09Strings=

Although  it  is  not  obvious  in  print,  the  above  list  consists  of  hyperlinks  to  each  of  the  files.
Clicking any of these links will open the corresponding file.

Now let us create a palette of these links. We wrap the list of links in Column to give a vertical
list of buttons.

In[63]:= CreatePalette@
Column@MapThread@Hyperlink@Ò1, Ò2D &, 8labels, files<DDD;
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Here is a screenshot of this palette.

With a  little  more work,  we can add some styles  to the links as  well  as  options to Hyperlink,
Column, and CreatePalette.

In[64]:= linkStyles = 8FontSize Ø 14, FontColor Ø White<;
linkOpts = 8ImageSize Ø 8Automatic, 16<<;
colOpts = 8Background Ø DarkerüGray, Dividers Ø All<;
palOpts = 8WindowTitle Ø "File Palette",

WindowElements Ø "MagnificationPopUp"<;

In[68]:= CreatePalette@Column@
MapThread@Hyperlink@Style@Ò1, linkStylesD, Ò2, linkOptsD &,
8labels, files<D, colOptsD, palOptsD;

Operating on arrays
Up  to  this  point,  many  of  the  examples  we  have  worked  through  resulted  in  short  programs,
either  what  are  often  called  “one-liners”  or  simply  short,  self-contained  programs.  One  of  the
advantages  of  such  an  approach  is  that  everything  you  might  need  to  run  the  program  is  con-
tained in the body of your function. Although it may seem convenient to put all auxiliary defini-
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tions into the body of a function, there are several good reasons not to do so. One large chunk of
code with many definitions embedded is often difficult to debug. Running the program may fail
with  several  warning  or  error  messages  displayed  and  no  clear  indication  at  which  line  in  your
program the problem lies. The same holds for a program that returns an incorrect result. Another
issue has to do with efficiency. If your program takes longer than you think it should to run, how
do you locate the bottleneck?

Modern programming design uses a modular concept to break up computational or program-
matic tasks into small separate chunks and then put the pieces together in one program in such a
way that you can isolate each part and diagnose errors or inefficient code more readily. Although
we have been trying to adhere to this approach implicitly up to this point, in this section we will
explicitly look at how a modular approach is implemented in Mathematica, using a matrix-process-
ing example: replacing “bad” entries in a matrix with the column mean.

In working with tabular data collected by an instrument or by some other means, you occasion-
ally find nonnumeric values (strings, for example) in the matrix where either the instrument has
failed to collect a datum point for some reason or the value is “out of range.” If an analysis of the
matrix  depends  upon  numeric  values,  what  should  be  used  to  replace  the  nonnumeric  values?
One  solution  is  to  replace  them  with  the  column  mean;  that  is,  take  the  column  in  which  the
nonnumeric  value  occurs,  compute  the  column  mean  using  only  the  numeric  values,  and  then
replace the nonnumeric value with this mean. 

To prototype, we will use a small matrix of integers, making it easier to check our work along
the way.

In[69]:= mat =

44 72 6 "NAN"

"NAN" 46 28 75

19 10 40 2

99 98 "NAN" 47

;

First, extract and work on the first column and then later extend this to all the other columns.

In[70]:= col1 = mat@@All, 1DD;
MatrixForm@col1D

Out[71]//MatrixForm=

44

NAN
19

99

We  need  to  extract  just  the  numeric  values.  Cases,  with  the  appropriate  pattern,  will  do  that.
Several approaches using different patterns could be used.
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In[72]:= Cases@col1, _?NumberQD

Out[72]= 844, 19, 99<

In[73]:= Cases@col1, Except@_StringDD

Out[73]= 844, 19, 99<

Then compute the mean of these numeric values.

In[74]:= Mean@Cases@col1, _?NumberQDD

Out[74]= 54

Replace the string "NAN" with the mean.

In[75]:= col1 ê. "NAN" Ø Mean@Cases@col1, _?NumberQDD êê MatrixForm

Out[75]//MatrixForm=

44

54

19

99

This operation needs to be performed on each column so we write a function that will be mapped
across the columns of a matrix.

In[76]:= colMean@col_D := col ê. "NAN" ß Mean@Cases@col, _?NumberQDD

In[77]:= Map@colMean, Transpose@matDD

Out[77]= :844, 54, 19, 99<, 872, 46, 10, 98<,

:6, 28, 40,
74

3
>, :

124

3
, 75, 2, 47>>

Since  we  operated  on  the  columns,  the  above  array  is  a  list  of  the  column  vectors.  We  need  to
transpose back.

In[78]:= MatrixForm@Transpose@%DD
Out[78]//MatrixForm=

44 72 6 124

3

54 46 28 75

19 10 40 2

99 98 74

3
47

Finally, let us put these pieces together:

In[79]:= ReplaceElement@mat_D :=

Transpose@Map@colMean, Transpose@matDDD
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In[80]:= ReplaceElement@matD êê MatrixForm
Out[80]//MatrixForm=

44 72 6 124

3

54 46 28 75

19 10 40 2

99 98 74

3
47

and try it out on a larger matrix of approximate numbers.

In[81]:= mat =

0.737 "NAN" -0.2648 -0.5882 0.49

0.1984 -0.3382 -0.5793 0.9473 0.8809

-0.5538 0.5038 -0.9728 0.4061 "NAN"

-0.0839 0.8139 "NAN" -0.7658 0.5081

0.9343 0.6257 -0.3668 0.0851 -0.8783

;

In[82]:= ReplaceElement@matD êê MatrixForm
Out[82]//MatrixForm=

0.737 0.4013 -0.2648 -0.5882 0.49

0.1984 -0.3382 -0.5793 0.9473 0.8809

-0.5538 0.5038 -0.9728 0.4061 0.250175

-0.0839 0.8139 -0.545925 -0.7658 0.5081

0.9343 0.6257 -0.3668 0.0851 -0.8783

Perform a quick, manual check on the second column.

In[83]:= Mean@8-0.3382, 0.5038, 0.8139, 0.6257<D

Out[83]= 0.4013

With  just  a  few  small  adjustments,  ReplaceElement  can  work  with  arbitrary  strings,  not
just "NAN" as above. Instead of the “hard-coded” string "NAN" in columnMean, we introduce a
second argument str and use that wherever "NAN" appeared in the previous version.

In[84]:= colMean@col_, str_StringD :=

col ê. str ß Mean@Cases@col, _?NumberQDD

In[85]:= ReplaceElement@mat_, str_StringD :=

Transpose@Map@colMean@Ò, strD &, Transpose@matDDD

Here you can see  the  real  advantage  of  using modular  code.  Rather  than rewrite  the  entire  pro-
gram, we make one change to colMean, writing a new rule to accommodate an arbitrary string,
and  then  create  a  second  rule  for  ReplaceElement  with  a  second  argument  to  specify  the
string, and replacing colMean with the pure function colMean@Ò, strD &. 

Let us try out the new code.
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In[86]:= mat2 = 88-0.4444, "NêA", 0.3319, 0.4242, 0.<,
8-0.5088, -0.6955, 0.8398, 0.4287, -0.9319<,
8"NêA", 0.8287, 0.5286, 0.2591, -0.6978<,
80.6499, 0.4035, -0.099, 0.6052, 0.5332<,
80.2575, -0.0589, -0.4938, "NêA", -0.5924<<;

MatrixForm@mat2D
Out[87]//MatrixForm=

-0.4444 NêA 0.3319 0.4242 0.

-0.5088 -0.6955 0.8398 0.4287 -0.9319

NêA 0.8287 0.5286 0.2591 -0.6978

0.6499 0.4035 -0.099 0.6052 0.5332

0.2575 -0.0589 -0.4938 NêA -0.5924

In[88]:= ReplaceElement@mat2, "NêA"D êê MatrixForm
Out[88]//MatrixForm=

-0.4444 0.11945 0.3319 0.4242 0.

-0.5088 -0.6955 0.8398 0.4287 -0.9319

-0.01145 0.8287 0.5286 0.2591 -0.6978

0.6499 0.4035 -0.099 0.6052 0.5332

0.2575 -0.0589 -0.4938 0.4293 -0.5924

Of course, we should check that this code is reasonably efficient. This creates a random matrix,
then inserts strings here and there, and finally runs ReplaceElement.

In[89]:= With@8size = 1000<,
mat = RandomReal@1, 8size, size<D;
rmat = ReplacePart@mat,

RandomInteger@81, size<, 8size, 2<D ß "NAN"D
D;

ReplaceElement@rmat, "NAN"D; êê Timing

Out[90]= 80.877081, Null<

That  is  not  too  bad  –  processing  a  1000ä1000  matrix  in  under  a  second.  That  is  on  the  same
order of magnitude as some of the highly optimized built-in linear algebra functions.

In[91]:= mat = RandomReal@1, 81000, 1000<D;
8Timing@Inverse@matD;D, Timing@Det@matD;D<

Out[92]= 880.403233, Null<, 80.140302, Null<<

In the exercises you are asked to go a bit further and rewrite ReplaceElement  to accept an
arbitrary  list  of  strings  that  should  be  used  as  the  nonnumeric  values  to  be  replaced  with  the
column means.
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Exercises

1. Write a version of the function that computes Hamming distance by using Count to find the 
number of nonidentical pairs of corresponding numbers in two binary signals.

2. Write an implementation of Hamming distance using the Total function and then compare 
running times with the other versions discussed in this chapter.

3. Extend the survivor function developed in this section to a function of two arguments, so that 
survivor@n, mD returns the survivor starting from a list of n people and executing every mth 
person.

4. Create a function medianAlisE that computes the median of a one-dimensional list. Create one rule 

for the case when lis has an odd number of elements and another rule for the case when the length 
of lis is even. In the latter case, the median is given by the average of the middle two elements of lis.

5. One of the best ways to learn how to write programs is to practice reading code. We list below a 
number of one-liner function definitions along with a very brief explanation of what these user-
defined functions do and a typical input and output. Deconstruct these programs to see what they 
do and then reconstruct them as compound functions without any pure functions.

a. Tally the frequencies with which distinct elements appear in a list.

In[1]:= tally@lis_D := Map@H8Ò, Count@lis, ÒD<L &, Union@lisDD

In[2]:= tally@8a, a, b, b, b, a, c, c<D

Out[2]= 88a, 3<, 8b, 3<, 8c, 2<<

In[3]:= Tally@8a, a, b, b, b, a, c, c<D

Out[3]= 88a, 3<, 8b, 3<, 8c, 2<<

b. Divide up a list such that the length of each part is given by the second argument.

In[4]:= split1@lis_, parts_D :=

HInner@Take@lis, 8Ò1, Ò2<D &, Drop@Ò1, -1D + 1, Rest@Ò1D, ListD &L@
FoldList@Plus, 0, partsDD

In[5]:= split1@Range@10D, 82, 5, 0, 3<D

Out[5]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<

This is the same as the previous program, done in a different way.

In[6]:= split2@lis_, parts_D :=

Map@Take@lis, Ò1 + 81, 0<D &, Partition@FoldList@Plus, 0, partsD, 2, 1DD
6. In Section 4.2 we created a function CountChangeAlisE that took a list of coins and, using transfor-

mation rules, returned the monetary value of that list of coins. Rewrite CountChange to use a 
purely functional approach. Consider using Dot, or Inner, or Tally.

7. Write a function that generates a one-dimensional off-lattice, random walk, that is, a walk with step 
positions any real number between -1 and 1. Then do the same for two- and three-dimensional off-
lattice walks.
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8. Extend the range of ReplaceElement developed in this section to accept a list of strings consid-
ered as nonnumeric matrix entries, each of which should be replaced by a column mean.

9. Extend the visualization of PPI networks from this section by coloring vertices according to the 
biological process in which they are involved. The built-in ProteinData  contains this informa-
tion, for example:

In[7]:= ProteinData@"KLKB1", "BiologicalProcesses"D

Out[7]= 8BloodCoagulation, Fibrinolysis,

InflammatoryResponse, Proteolysis<

10. Create a function TruthTable@expr, varsD that takes a logical expression such as A�B and 
outputs a truth table similar to those in Section 2.3. You can create a list of truth values using 
Tuples. For example,

In[8]:= Tuples@8True, False<, 2D

Out[8]= 88True, True<, 8True, False<, 8False, True<, 8False, False<<

You will also find it helpful to consider threading rules over the tuples using MapThread  or 
Thread.

11. Given a list of expressions, lis, create a function NearToAlis, elem, nE that returns all elements of 

lis that are exactly n positions away from elem. For example:

In[9]:= chars = CharacterRange@"a", "z"D

Out[9]= 8a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[10]:= NearTo@chars, "q", 3D

Out[10]= 88n<, 8t<<

Write a second rule, NearToAlis, elem, 8n<E that returns all elements in lis that are within n 

positions of elem. 

In[11]:= NearTo@chars, "q", 84<D

Out[11]= 88m, n, o, p, q, r, s, t, u<<

Finally, create you own distance function (DistanceFunction) and use it with the built-in 
Nearest  to do the same computation.

Two useful functions for these tasks are Position and Extract . Extract@expr, posD returns 

elements from expr whose positions pos are given by Position.

12. A Smith number is a composite number such that the sum of its digits is equal to the sum of the digits 
of its prime factors. For example, the prime factorization of 852 is 22 ÿ31 ÿ71

1, and so the sum of the 
digits of its prime factors is 2 + 2 + 3 + 7 + 1 = 15 which is equal to the sum of its digits, 
8 + 5 + 2 = 15. Write a program to find all Smith numbers less than 10 000. 
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6

Procedural programming
Loops and iteration · Do loops and For loops · Random permutations · While loops · NestWhile 
and NestWhileList · Flow control · Conditional functions · Piecewise-defined functions · Which 

and Switch · Argument checking · Classifying points · Sieve of Eratosthenes · Sorting algorithms

Conventional programming languages like C and Fortran embody a style of programming that
has roots in the early days of computing when resource constraints forced programmers to write
their  code  in  a  step-by-step  manner.  These  procedures,  as  they  came  to  be  known,  typically
involved certain basic elements: looping over an array, conditional statements that controlled the
flow of execution, logical constructs to build up tests, and functions to jump from one place in a
program  to  another.  Although  newer  languages  have  introduced  many  new  programming
paradigms,  procedural  programming continues to be used and remains an appropriate  style  for
certain kinds of problems.

A  procedure  is  a  series  of  instructions  that  are  evaluated  in  a  definite  order.  The  following
program is a procedure.

In[1]:= mat = 88a, b, c<, 8d, e, f<, 8g, h, k<<;

In[2]:= newmat = mat;

In[3]:= Do@newmat@@i, jDD = mat@@j, iDD,
8i, Length@matD<, 8j, Length@matD<D

In[4]:= newmat

Out[4]= 88a, d, g<, 8b, e, h<, 8c, f, k<<



In[5]:= MatrixForm@%D
Out[5]//MatrixForm=

a d g

b e h

c f k

This procedure is  a compound expression consisting of a sequence of four expressions:  the first
assigns  the  symbolic  3ä3  matrix  to  the  symbol  mat;  the  second  is  also  an  assignment,  copying
the matrix to another symbol, newmat; the third expression loops through the matrix, interchang-
ing columns and rows of the original and putting them into the new matrix – essentially perform-
ing a transpose operation; the final expression simply outputs the new matrix.

Procedural programs also typically involve some flow control. What this means is that, depend-
ing  upon  a  certain  condition,  different  steps  in  the  procedure  will  be  followed.  Perhaps  the
simplest example of this is an If statement.

In[6]:= f@x_D := IfA20 § x § 30, x2,

Print@"The number ", x, " is outside the range."DE

In[7]:= f@25D

Out[7]= 625

In[8]:= f@-67D

The number -67 is outside the range.

The  value  of  the  first  argument  of  the  If  function  determines  the  direction  of  the  rest  of  the
evaluation.  This  is  a  control  structure.  Procedural  programs typically  contain  a  series  of  expres-
sions to evaluate in some order and functions to control the flow of execution. 

In  this  chapter  we  will  explore  these  topics  in  addition  to  conditional  definitions  which  are
another form of flow control. All these features will greatly expand what you can do with Mathe-
matica  and many applications of these techniques will be explored in later chapters on recursion
and numerics.

6.1 Loops and iteration
Newton’s method
One of the most famous of all numerical algorithms is Newton’s method for finding the roots of
a  function.  Even  though  Mathematica  includes  a  built-in  function,  FindRoot,  that  implements
this method, this is  a classical  use of iteration and so central  to numerical  analysis that it  is  well
worth your time learning how to implement it.
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Throughout  this  section  we  will  work  with  the  function  x2 - 2,  whose  root  is,  of  course,  the
square root of 2. Here is the computation using the built-in FindRoot. The number 1 in the list
8x, 1< is the initial guess of the root.

In[1]:= FindRootAx2 - 2 ã 0, 8x, 1<E

Out[1]= 8x Ø 1.41421<

So why should you learn how to program Newton’s method? The underlying algorithm is the
basis of many more advanced root-finding techniques in numerical analysis. But also, with many
numerical problems, the built-in operations are designed to work for the broadest possible set of
situations, and might therefore have occasional trouble with certain exceptional cases. An under-
standing  of  these  issues  can  help  in  such  situations.  An  example  is  the  following  piecewise
function.

In[2]:= f@x_D := PiecewiseA980, x ã 0<, 9x + x2 Sin@2 ê xD, x � 0==E;

Plot@f@xD, 8x, -.2, .2<D

Out[3]=
-0.2 -0.1 0.1 0.2

-0.15

-0.10

-0.05

0.05

0.10

0.15

In[4]:= FindRoot@f@xD ã 0, 8x, 1<D
FindRoot::lstol :

The line search decreased the step size to within tolerance specified by AccuracyGoal
and PrecisionGoal but was unable to find a sufficient decrease in
the merit function. You may need more than MachinePrecision 
digits of working precision to meet these tolerances. à

Out[4]= 9x Ø 1.81096 � 10-9=

This  particular  function  is  discontinuous  at  the  root  with  its  derivative  changing  sign  as  x  gets
closer and closer to zero. Although this is a somewhat pathological example, you can still better
approximate this function’s root by using some options to FindRoot  to help speed convergence
and increase the precision.
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In[5]:= FindRoot@f@xD ã 0, 8x, 1<,
WorkingPrecision Ø 90, MaxIterations Ø 200D

Out[5]= 9x Ø

7.0064923216240853546186479164495806564013097093825788587Ö

8534141944895541342930300743319094 � 10-46=

Although  finding  roots  of  functions  such  as  this  are  the  exception  rather  than  the  norm,  it  is
instructive to program your own root-finding functions and learn about algorithm implementa-
tion, numerical issues, and, in the process, the structure of iterative programming.

Do loops and For loops
Suppose you are given a function f  and can compute its derivative, f £. Then Newton’s algorithm
works as follows:

Ê give an initial estimate of the root, say x0;

Ê keep generating better estimates, x1, x2, …, using the following rule until you are done (we 
will discuss this later):

xi+1 = xi -
f HxiL
f £HxiL

.

The method is illustrated in Figure 6.1. The basic idea, as learned in a first-year calculus course, is
to choose an initial estimate x0, draw the tangent to the function at f Hx0L, and set x1  to the point
where  that  tangent  line  intersects  the  x-axis.  Under  favorable  circumstances,  the  estimates  get
closer  and  closer  to  the  root.  “Unfavorable  conditions”  include  a  poor  choice  for  the  initial
estimate and the function not being continuously differentiable in a neighborhood of the root.

Figure 6.1. Illustration of Newton’s method.

f Hx0L

x0x1

We will discuss in a moment when to stop the iteration, but first let us look at an example. For
the  function f HxL = x2 - 2,  the  derivative  is  f £HxL = 2 x.  This  specific  case  is  shown in  Figure  6.2,
with 2 itself as the initial estimate. Let us see what happens after five iterations of this procedure.
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In[6]:= f@x_D := x2 - 2

In[7]:= x0 = 1;

In[8]:= x1 = NBx0 -
f@x0D

f£@x0D
F

Out[8]= 1.5

In[9]:= x2 = NBx1 -
f@x1D

f£@x1D
F

Out[9]= 1.41667

In[10]:= x3 = NBx2 -
f@x2D

f£@x2D
F

Out[10]= 1.41422

In[11]:= x4 = NBx3 -
f@x3D

f£@x3D
F

Out[11]= 1.41421

In[12]:= x5 = NBx4 -
f@x4D

f£@x4D
F

Out[12]= 1.41421

As you can see, these values are getting closer and closer to the real square root of 2,  which is
approximately 1.4142135.

Figure 6.2. Newton’s method for f HxL = x2 - 2.

f Hx0L

x0=2x1x2

We need to discuss how to decide when we are confident that the answer we have computed is
accurate enough. First, though, note one thing: wherever we decide to stop, say at the fifth itera-
tion, all the previous values we computed are of no interest. So we could have avoided introduc-
ing those new names by instead just writing the following:
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In[13]:= a = 2;

In[14]:= a = NBa -
f@aD

f£@aD
F

Out[14]= 1.5

In[15]:= a = NBa -
f@aD

f£@aD
F

Out[15]= 1.41667

In[16]:= a = NBa -
f@aD

f£@aD
F

Out[16]= 1.41422

In[17]:= a = NBa -
f@aD

f£@aD
F

Out[17]= 1.41421

In[18]:= a = NBa -
f@aD

f£@aD
F

Out[18]= 1.41421

After each iteration, the symbol a  is assigned the new value computed, thus overwriting the old
values of a.

To return to the question of when to terminate the computation, one simple answer is: repeat
it ten times. 

In[19]:= Do@a = N@a - f@aD ê f'@aDD, 810<D

In general, Do@expr, 8n<D, evaluates expr n times. So, in this case, we can initialize a and perform
the ten evaluations as follows:

In[20]:= a = 1;

DoBa = NBa -
f@aD

f£@aD
F, 810<F

In[22]:= a

Out[22]= 1.41421

The Do loop itself yields no value (or rather, it yields the special value Null , which is a symbol
Mathematica  uses  when  there  is  no  result  from  an  evaluation;  nothing  is  printed).  But,  more
importantly, at the end of the iteration the value assigned to a is very close to the square root of 2.
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The  arguments  of  the  Do  function  are  the  same  as  those  of  Table  (see  Section  3.2  and  also
Exercise 2 at the end of this section).

DoAexpr, 9i, imin, imax, di=E

This loop repeatedly evaluates expr with the variable i taking the values imin, imin + di, and so on, as
long as the value of imax  is not exceeded. The loop is repeated a total of eHimax - iminL ë diu  times,

where  dexprt  gives  the  floor  of  expr  (more  precisely,  the  loop  is  actually  repeated  a  total  of
max(1,eHimax - iminL ë diu)  times).  Furthermore,  if  di  is  omitted,  it  is  assumed  to  be  one;  if  only  i

and imax are given, both imin and di are assumed to be one.

To print each approximation and label it with a number, we could use a compound expression
inside the body of the Do loop, in this case, adding a Print statement.

In[23]:= a = 1;
Do@a = N@a - f@aD ê f'@aDD;
Print@"iteration ", i, ": ", aD, 8i, 1, 5<D

iteration 1: 1.5

iteration 2: 1.41667

iteration 3: 1.41422

iteration 4: 1.41421

iteration 5: 1.41421

Another commonly used control structure in procedural code is the For  loop. Its function is
similar  to that  of  a  Do  loop,  but  instead of  an iterator  list,  you explicitly  specify  a  starting value
and increment for the iterator. The For function in Mathematica has the following syntax:

ForAstart, test, increment, bodyE

Do  loops and For loops are quite similar and in fact you can often cast a problem using either
construction.  For  example,  here  is  a  For  implementation  of  the  Do  loop  given  above  for  New-
ton’s method.

In[25]:= ForBa = 1; i = 0, i < 10, i++, a = NBa -
f@aD

f£@aD
FF

In[26]:= a

Out[26]= 1.41421

In  this  example,  the  start  conditions  are  a = 1  and  i = 0;  the  test  is  i < 10;  increment  is  i++
which is shorthand for increasing the value of i  by one; the body of the function is the same as
for the Do loop, namely, Newton’s formula.
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We will return to this problem repeatedly throughout this book: in some of the exercises later
in this  chapter we will  explore some efficiencies that  can be gained from a more careful  look at
the evaluations done within the iterations; we will use a different loop structure, While,  later in
this  section;  and  in  Chapter  8  we  will  explore  mechanisms  for  gaining  finer  control  over  the
precision and accuracy of the Newton iteration.

Example: random permutations
Let  us  look  at  another  example  of  a  Do  loop.  We  will  create  a  function  that  takes  a  list  as  an
argument and generates a random permutation of its elements.

To build this function up step-by-step, start with a small list of ten elements.

In[27]:= lis = Range@10D

Out[27]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

The idea is to choose a position within the list at random and remove the element in that position
and put it into a new list lis2.

In[28]:= rand := RandomInteger@81, Length@lisD<D

In[29]:= x = Part@lis, randD

Out[29]= 2

In[30]:= lis2 = 8<;
lis2 = Append@lis2, xD

Out[31]= 82<

We then repeat the above process on the remaining elements of the list. Note that lis is assigned
the value of this new list, thus overwriting the previous value.

In[32]:= lis = Complement@lis, 8x<D

Out[32]= 81, 3, 4, 5, 6, 7, 8, 9, 10<

In[33]:= x = lisPrandT
lis2 = Append@lis2, xD
lis = Complement@lis, 8x<D

Out[33]= 6

Out[34]= 82, 6<

Out[35]= 81, 3, 4, 5, 7, 8, 9, 10<

In this example we know explicitly how many iterations to perform in our Do  loop: n  iterations,
where n is the length of the list, lis.

Before proceeding, we should clear some symbols.
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In[36]:= Clear@lis, lis2, x, randD;

Now we just put the pieces of the previous computations together in one input.

In[37]:= lis = Range@10D;
lis2 = 8<;
Do@
x = Part@lis, RandomInteger@81, Length@lisD<DD;
lis2 = Append@lis2, xD;
lis = Complement@lis, 8x<D,
8i, 1, 10<D

When we are done, the result is left in the new list lis2.

In[40]:= lis2

Out[40]= 82, 6, 8, 4, 3, 10, 9, 7, 1, 5<

Here then is our function randomPermutation that takes a list as an argument and generates a
random permutation of that list’s elements.

In[41]:= randomPermutation@arg_ListD :=

Module@8lis = arg, x, lis2 = 8<<,
Do@
x = Part@lis, RandomInteger@81, Length@lisD<DD;
lis2 = Append@lis2, xD;
lis = Complement@lis, 8x<D,
8i, 1, Length@lisD<D;

lis2D

Here is a permutation of the list consisting of the first 20 integers.

In[42]:= randomPermutation@Range@20DD

Out[42]= 88, 14, 7, 10, 16, 13, 11, 6,
17, 12, 2, 19, 18, 5, 9, 15, 4, 1, 20, 3<

And here is a random permutation of the lowercase letters of the English alphabet.

In[43]:= alphabet = CharacterRange@"a", "z"D

Out[43]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[44]:= randomPermutation@alphabetD

Out[44]= 8n, k, b, v, d, r, o, y, x, j, h,
f, c, t, p, q, i, e, u, w, s, g, a, z, m, l<

This functionality is built into Mathematica via the RandomSample function. 
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In[45]:= RandomSample@CharacterRange@"a", "z"DD

Out[45]= 8x, b, e, a, p, l, o, r, m, t, y,
s, u, w, f, q, g, z, j, h, i, n, d, v, c, k<

Nonetheless,  it  is  useful  to  program these functions yourself  to  give  you a  better  understanding
(and  appreciation)  of  the  underlying  algorithms  as  well  as  some  practical  facility  at  using  the
programming constructs such as the Do loop in this example.

In[46]:= Clear@x, lis, lis2D

While loops
Let  us  return to  Newton’s  method for  finding roots  and see  how we can use  a  different  control
structure  to  improve the procedure by fine-tuning the number of  iterations  that  are  performed.
In  the  previous  section on Do  loops,  we  explicitly  stopped the  iteration after  ten  times  through
the loop. Ten times is okay for f HxL = x2 - 2, but not always. Consider the function x - sinHxL.

In[47]:= g@x_D := x - Sin@xD

It has a root at 0.

In[48]:= g@0D

Out[48]= 0

However, ten iterations of Newton’s algorithm does not get very close to it.

In[49]:= xi = 1.0;

DoBxi = NBxi -
g@xiD

g£@xiD
F, 810<F

In[51]:= xi

Out[51]= 0.0168228

Twenty-five iterations does a bit better.

In[52]:= xi = 1.0;

DoBxi = NBxi -
g@xiD

g£@xiD
F, 825<F

In[54]:= xi

Out[54]= 0.0000384172

In  practice,  no  fixed  number  of  iterations  is  going  to  do  the  trick  for  all  functions.  We  need  to
iterate  repeatedly  until  our  estimate  is  close  enough  to  stop.  When  is  that?  When  f HxiL  is  very
close to zero. So, choose e to be a very small number, and iterate until f HxiL < e.

But how can we write a loop that will test some condition and stop when the condition is no
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longer met?  The looping construct  Do  iterates  a  fixed number of  times.  We need a  new kind of
iterative function. It is While, and it has the following form.

While@test, exprD

The  first  argument  is  the  test  or  condition,  the  second  is  the  body,  expr.  It  works  like  this:
evaluate the test; if it is true, then evaluate the body and then the test again. If it is true, then again
evaluate the body and the test. Continue this way until the test evaluates to False. Note that the
body may not be evaluated at all (if the test is false the first time), or it may be evaluated once, or a
thousand times.

This is just what we want: if the estimate is not yet close enough, compute a new estimate and
try again. Newton’s method insures, under suitable conditions, that the iteration will converge to
the root. Those conditions are that the initial guess is near the root and not near a local minimum
or maximum, and also that the function is continuously differentiable near the root.

In[55]:= f@x_D := x2 - 2

In[56]:= e = .0001;
xi = 50;

WhileBAbs@f@xiDD > e,

xi = NBxi -
f@xiD

f£@xiD
FF

In[59]:= xi

Out[59]= 1.41422

To finish,  let  us put all  these pieces into a reusable function.  And instead of simply returning
the value of xi, we will return a rule of the form 9x Ø value= similar to the built-in functions such

as Solve, DSolve, FindRoot, and others.

In[60]:= findRoot@fun_Symbol, 8var_, init_<, e_D := ModuleB8xi = init<,

WhileBAbs@fun@xiDD > e,

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

In[61]:= findRoot@f, 8x, 2<, .0001D

Out[61]= 8x Ø 1.41422<

As written, this function only accepts a symbol such as f for its first argument. Users might want
to  provide  an  expression  like  x2 - 2,  or  even  an  equation  such  as  x2 - 2 ã 0.  The  best  way  to
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accommodate these different kinds of arguments is to overload findRoot  by giving additional
rules  that  cover  these  cases.  In  both  of  the  rules  below  we  are  setting  up  a  local  variable,  fun,
using  a  pure  function.  In  the  first  case,  the  value  on  the  right-hand  side  of  the  equation  is  sub-
tracted  from  the  expression  on  the  left-hand  side;  in  the  second  rule,  we  are  just  passing  the
expression to the pure function directly and then using that in the body of the function.

In[62]:= findRoot@expr_ ã val_, 8var_, init_<, e_D :=

ModuleB8xi = init, fun = Function@fvar, expr - valD<,

WhileBAbs@fun@xiDD > e,

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

In[63]:= findRoot@expr_, 8var_, init_<, e_D :=

ModuleB8xi = init, fun = Function@fvar, exprD<,

WhileBAbs@fun@xiDD > e,

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

Let us see how these additional rules work for various kinds of expressions that could be used to
represent this problem.

In[64]:= findRoot@f, 8x, 2.0<, 0.0001D

Out[64]= 8x Ø 1.41422<

In[65]:= findRoot@x^2 - 2, 8x, 2.0<, 0.0001D

Out[65]= 8x Ø 1.41422<

In[66]:= findRoot@x^2 - 2 ã 0, 8x, 2.0<, 0.0001D

Out[66]= 8x Ø 1.41422<

In[67]:= findRoot@f@xD ã 0, 8x, 2.0<, 0.0001D

Out[67]= 8x Ø 1.41422<

Let  us  work  with  this  example  a  little  more.  Suppose  you  would  like  to  know  how  many
iterations  were  needed  to  find  the  answer.  Built-in  numerics  functions  and  many  visualization
functions  use  the  option  EvaluationMonitor  to  keep  track  of  and  display  information
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derived  from  the  numerical  operations  these  functions  are  performing  internally.  For  example,
EvaluationMonitor  is  used here  first  to  display intermediate  values  of  x  and,  in  the second
example, to count and display the number of iterations performed.

In[68]:= FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß Print@xDD

1.

1.5

1.41667

1.41422

1.41421

1.41421

Out[68]= 8x Ø 1.41421<

In[69]:= Block@8count = 0<,
8FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß count++D,
StringForm@"Number of iterations Ø `1`", countD<D

Out[69]= 88x Ø 1.41421<, Number of iterations Ø 6<

We  can  mirror  this  functionality  in  our  findRoot  function  in  several  different  ways.  One
possibility is to insert a Print expression to show the value of xi each time through the loop.

In[70]:= findRoot@fun_Symbol, 8var_, init_<, e_D := ModuleB8xi = init<,

WhileBAbs@fun@xiDD > e,

Print@"x = ", xiD;

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

In[71]:= findRoot@f, 8x, 2.0<, 0.0001D

x = 2.

x = 1.5

x = 1.41667

Out[71]= 8x Ø 1.41422<

Counting the lines shows that  the function converged after  three iterations (we were seeing the
value  of  xi  at  the  beginning  of  each  execution  of  the  body).  Alternatively,  insert  a  counter  that
keeps track of the number of iterations and return that as part of the answer.
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In[72]:= findRoot@fun_Symbol, 8var_, init_<, e_D :=

ModuleB8xi = init, count = 0<,

WhileBAbs@fun@xiDD > e,

count = count + 1;

xi = NBxi -
fun@xiD

fun£@xiD
FF;

88var Ø xi<,

StringForm@"Number of iterations Ø `1`", countD<F

In[73]:= findRoot@f, 8x, 2<, 0.0001D

Out[73]= 88x Ø 1.41422<, Number of iterations Ø 3<

Here is another question: in all these versions of findRoot, fun@xiD is computed two times
at  each  iteration,  once  in  the  condition  and  once  in  the  body.  In  some  circumstances,  calls  to
functions  can be  very  time consuming,  and should  be  minimized.  Can we set  things  up so  that
fun@xiD is only computed once in each iteration?

The solution to this is to create a new local variable, funxi, which always contains the value of
fun@xiD for the current value of xi. We can ensure that it does so by recomputing it whenever
xi is reassigned.

In[74]:= Clear@findRootD

In[75]:= findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD<,

WhileBAbs@funxiD > e,

xi = NBxi -
funxi

fun£@xiD
F;

funxi = fun@xiDF;

8var Ø xi<F

In[76]:= findRoot@f, 8x, 2.0<, 0.0001D

Out[76]= 8x Ø 1.41422<

In all our examples, we used Module to introduce a local variable to which we assigned values
in  the  body  of  the  While  loop.  We  did  this  to  avoid  a  common  error  in  the  use  of  iteration:
attempting to assign a value to a function’s argument. 
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For  example,  the  following  version  of  findRoot  does  not  work.  (Wrapping  the  input  in
TimeConstrained@…, 2D  restricts  the  computation  to  two  seconds  regardless  of  the
outcome.)

In[77]:= Clear@findRootD

In[78]:= findRoot@fun_, x_, e_D :=

WhileBAbs@fun@xDD > e,

x = NBx -
fun@xD

fun£@xD
FF;

x

In[79]:= TimeConstrained@
findRoot@Sin, 0.1, .01D,
2D

Set::setraw : Cannot assign to raw object 0.1`. à

General::stop : Further output of Set::setraw will be suppressed during this calculation. à

Out[79]= $Aborted

What happened can be seen from the trace, of which we have only shown some of the output.

In[80]:= TimeConstrained@
TracePrint@findRoot@Sin, 0.1, .01D, findRootD,
2D

findRoot

WhileBAbs@Sin@0.1DD > 0.01, 0.1 = NB0.1 -
Sin@0.1D

Sin£@0.1D
FF; 0.1

Set::setraw : Cannot assign to raw object 0.1`. à

General::stop : Further output of Set::setraw will be suppressed during this calculation. à

Out[80]= $Aborted

The symbol x in the body of findRoot is replaced by the argument 0.1, leaving an expression
of the form 0.1 = something, which is not possible. It is, of course, bad programming practice and
leads to wrong results to call a function and find, when it is done, that your global variables have
changed  values.  There  is  a  way  around  this,  using  the  HoldFirst  attribute,  but  introducing
local variables is a bit cleaner and a more direct approach.
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NestWhile and NestWhileList
Let us look again at the last version of the findRoot function we just created.

In[81]:= findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD<,

WhileBAbs@funxiD > e,

xi = NBxi -
funxi

fun'@xiD
F;

funxi = fun@xiDF;

8var Ø xi<F

The  While  loop  evaluates  the  body  of  this  function  (the  two  assignments,  one  to  xi  and  the
other to funxi) until the test fails. There is another function we could use to simplify this calcula-
tion – it is NestWhile. 

NestWhileA f, init, testE

This function iterates f  with initial value init, while test continues to be true.
Let us rewrite findRoot  using NestWhile. The first argument is the function we are iterat-

ing. Here we will use a pure function that represents the Newton iteration. The second argument
to  NestWhile  is  the  initial  guess,  the  initial  value  for  the  iteration.  The  third  argument  to
NestWhile is the test that will be performed each time through the loop until it returns False.
We are going to add one new construct here: a default value for e.  The syntax is e_: 0.0001  and
what this means is that this is an optional argument that, when omitted, takes the value 0.0001.

In[82]:= f@x_D := x2 - 2

In[83]:= findRoot@fun_, 8var_, init_<, e_: 0.0001D := ModuleB8result<,

result =

NestWhileBÒ -
fun@ÒD

fun'@ÒD
&, N@initD, Abs@fun@ÒDD > e &F;

8var Ø result<F

This computes the square root of 2 with an initial guess of 2.0.

In[84]:= findRoot@f, 8x, 2.0<D

Out[84]= 8x Ø 1.41422<
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Try it with a nondefault value for e, a wider tolerance.

In[85]:= findRoot@f, 8x, 2.0<, 0.1D

Out[85]= 8x Ø 1.41667<

Exercise  6  asks  you  to  create  a  variation  of  this  findRoot  function  that  returns  a  list  of  all
intermediate values computed during the iteration.

Before  going  on,  we  should  mention  that  the  functions  introduced  in  this  section  are  rather
simplistic implementations of Newton’s algorithm. At this stage, we are only interested in learn-
ing  about  how  to  use  some  of  Mathematica’s  procedural  functions  to  implement  the  iterations
here. In their current form, they have some serious limitations regarding accuracy and precision
that we will address in Chapter 8,  where we will discuss numerical issues in detail.  The exercises
at the end of this section also walk you through several improvements to these functions.

Exercises

1. Compare the use of a Do  loop with using the function Nest  (see Section 5.3). In particular, compute 
the square root of 2 using Nest .

2. Do  is closely related to Table, the main difference being that Do  does not return any value, 
whereas Table does. Use Table instead of Do  to rewrite one of the findRoot functions given in 
this section. Compare the efficiency of the two approaches.

3. Compute Fibonacci numbers iteratively. Fibonacci numbers consist of the sequence 1, 1, 2, 3, 5, 8, 13, 
…, where, after the first two 1s, each Fibonacci number is the sum of the previous two numbers in 
the sequence. You will need to have two variables, say this and prev, giving the two most recent 
Fibonacci numbers, so that after the ith iteration, this and prev have the values Fi and Fi-1, 
respectively.

4. One additional improvement can be made to the findRoot program developed in this section. 
Notice that the derivative of the function fun is recomputed each time through the loop. This is 
quite inefficient. Rewrite findRoot so that the derivative is computed only once and that result is 
used in the body of the loop.

5. Another termination criterion for root-finding is to stop when xi - xi+1 < e, that is, when two 
successive estimates are very close. The idea is that if you are not getting much improvement, you 
must be very near the root. The difficulty in programming this is that you need to remember the two 
most recent estimates computed. (It is similar to computing Fibonacci numbers iteratively, as in 
Exercise 3.) Program findRoot this way.

6. The built-in FindRoot function is set up so that you can monitor intermediate computations using 
the option EvaluationMonitor and Reap  and Sow. For example, the following sows the values 
of x and f HxL and when FindRoot is done, Reap  displays the sown expressions.

In[1]:= f@x_D := x2 - 2
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In[2]:= Reap@
FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß Sow@8x, f@xD<DD

D
Out[2]= 98x Ø 1.41421<, 9981., -1.<, 81.5, 0.25<,

81.41667, 0.00694444<, 91.41422, 6.0073 � 10-6=,

91.41421, 4.51061 � 10-12=, 91.41421, 4.44089 � 10-16====

Modify each of the versions of findRoot presented in the text that uses a Do  or While loop to 
produce a similar output to that above.

7. To guard against starting with a poor choice of initial value, modify your solution to the previous 
exercise to take, as an argument, a list of initial values, and simultaneously compute approximations 
for each until one converges; then return that one.

8. The bisection method is quite useful for finding roots of functions. If a continuous function f HxL is 
such that f HaL < 0 and f HbL > 0 for two real numbers a and b, then, as a consequence of the Intermedi-
ate Value Theorem of calculus, a root of f  must occur between a and b. If f  is now evaluated at the 
midpoint of a and b, and if f Ha + bL ê2 < 0, then the root must occur between Ha + bL ê2 and b; if not, 
then it occurs between a and Ha + bL ê2. This bisection can be repeated until a root is found to a 
specified tolerance.

Define bisectA f, 9x, a, b=, eE to compute a root of f , within e, using the bisection 

method. You should give it two initial values a and b and assume that f HaL ÿ f HbL < 0, that is, f HaL and 

f HbL differ in sign.

9. Using a While loop, write a function gcd@m, nD that computes the greatest common divisor 
(gcd) of m and n. The Euclidean algorithm for computing the gcd of two positive integers m and n, 
sets m = n and n = m mod n. It iterates this process until n = 0, at which point the gcd of m and n is 
left in the value of m.

10. Create a procedural definition for each of the following functions. For each function, create a 
definition using a Do  loop and another using Table. 

For example, the following function first creates an array consisting of 0s of the same dimension 
as mat. Then inside the Do  loop it assigns the element in position 8j, i< in mat to position 
8i, j< in matA, effectively performing a transpose operation. Finally, it returns matA, since the Do  
loop itself does not return a value.

In[3]:= transposeDo@mat_D :=

Module@8matA, rows = Length@matD, cols = Length@mat@@1DDD, i, j<,
matA = ConstantArray@0, 8rows, cols<D;
Do@matAPi, jT = matPj, iT,
8i, 1, rows<,
8j, 1, cols<D;

matAD
In[4]:= mat1 = 88a, b, c<, 8d, e, f<, 8g, h, i<<;
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In[5]:= MatrixForm@mat1D
Out[5]//MatrixForm=

a b c
d e f

g h i

In[6]:= MatrixForm@transposeDo@mat1DD
Out[6]//MatrixForm=

a d g
b e h

c f i

This same computation could be performed with a structured iteration using Table.

In[7]:= transposeTable@mat_?MatrixQD := Module@8matA, rows, cols<,
8rows, cols< = Dimensions@matD;
matA = ConstantArray@0, 8rows, cols<D;
Table@matA@@i, jDD = mat@@j, iDD, 8i, rows<, 8j, cols<D

D
In[8]:= transposeTable@mat1D êê MatrixForm

Out[8]//MatrixForm=

a d g
b e h

c f i

a. Create the function reverse@vecD that reverses the elements in the list vec.

b. Create a function rotateRight@vec, nD, where vec is a vector and n is a (positive or negative) 
integer.

c. Create a procedural implementation of rotateRows, which could be defined in this functional 
way:

In[9]:= rotateRows@mat_D :=

Map@rotateRight@matPÒT, Ò - 1D &, Range@1, Length@matDDD
That is, it rotates the ith row of mat by i - 1 places to the right.

d. Create a procedural function rotateRowsByS, which could be defined in this functional way:

In[10]:= rotateRowsByS@mat_, S_D ê; Length@matD == Length@SD :=

Map@HrotateRight@matPÒ1T, SPÒ1TD &L, Range@1, Length@matDDD
That is, it rotates the ith row of matA by the amount S@@iDD.

e. Create a function pickAlisa, lisbE, where lisa and lisb are lists of equal length, and lisb contains 

only Boolean values (False and True). This function selects those elements from lisa corre-
sponding to True in lisb. For example, the result of the following should be 8a, b, e<.

pick@8a, b, c, d, e<, 8True, True, False, False, True<D
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6.2 Flow control
Conditional functions
In  this  section  we  will  look  at  functions  that  control  the  flow  of  execution  of  an  evaluation.
Perhaps the simplest and easiest to understand is If.  Here is a rather simplistic implementation
of the absolute value function, using If.

In[1]:= abs@x_D := If@x ¥ 0, x, -xD

In[2]:= abs@-4D

Out[2]= 4

The If  function takes three arguments: IfAtest, then, elseE. If test evaluates to True , the second

argument, then, is evaluated; if the test evaluates to False, the third argument, else, is evaluated. 
Once defined, these functions can be used with any other computations. For example, abs can

now be mapped over a list of numbers.

In[3]:= Map@abs, 8-2, -1, 0, 1, 2<D

Out[3]= 82, 1, 0, 1, 2<

By default, this function will not automatically map across lists.

In[4]:= abs@8-2, -1, 0, 1, 2<D

Out[4]= If@8-2, -1, 0, 1, 2< ¥ 0, 8-2, -1, 0, 1, 2<, -8-2, -1, 0, 1, 2<D

If you want abs to behave like many of the built-in functions and automatically map across lists
when  they  are  given  as  the  argument  to  abs,  you  need  to  make  the  function  Listable  as
described in Sections 2.4 and 5.2.

In[5]:= SetAttributes@abs, ListableD

In[6]:= abs@8-2, -1, 0, 1, 2<D

Out[6]= 82, 1, 0, 1, 2<

Here are some additional examples using If.  Given a list, the following function divides each
element of the list by 100 unless an element is nonnumeric.

In[7]:= divideBy100@lis_D := MapBIfBNumericQ@ÒD,
Ò

100
, ÒF &, lisF

In[8]:= divideBy100@85, p, 0, a<D

Out[8]= :
1

20
,

p

100
, 0, a>
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The following function resizes large images and leaves them alone if they are smaller than some
threshold size.

In[9]:= img = ;

In[10]:= ResizeImage@img_Image, target_: 100D :=

If@FirstüImageDimensions@imgD > target,
ImageResize@img, targetD, imgD

In[11]:= ResizeImage@img, 75D

Out[11]=

In[12]:= ImageDimensions@%D

Out[12]= 875, 75<

As an aside,  Mathematica  automatically resizes images when used inline such as the input where
img is defined above. The full size of the original image is quite a bit larger.

In[13]:= ImageDimensions@imgD

Out[13]= 8512, 512<

Oftentimes  you  will  find  yourself  using  nested  If/Then/Else  chains  to  deal  with  multiple
conditions  that  need  to  be  checked.  In  the  following  example,  we  create  plot  labels  that  are
determined by the interpolation order chosen. The parameter order  will be manipulated inside
the dynamic interface. To start, create a static plot.
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In[14]:= data = Table@Sin@x yD, 8x, 0, 4, 0.5<, 8y, 0, 4, 0.5<D;
ListPlot3D@data, InterpolationOrder Ø 0,
PlotLabel Ø "Voronoi cells"D

Out[15]=

The labels  of  this  dynamic  interface  will  change  depending upon the  value  of  the  parameter,
order. Figure 6.3 displays the four panes from the dynamic interface.

In[16]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
If@order == "None", "Linear",
If@order == 0, "Voronoi cells",
If@order == 1, "Baricentric",
If@order == 2, "Natural neighbor"
D

D
D

D
D,
88order, "None", "InterpolationOrder"<, 8"None", 0, 1, 2<<D;

This code contains several nested Ifs, each occurring in the false clause of the previous one. The
structure of the computation is a sequence of tests of predicates condi until one is found to be true,
at which point a result can be computed.

IfAcond1, result1,

IfAcond2, result2,
ª

IfAcondn, resultn,

�, resultn+1E �EE

Such a sequence of cascading  If  statements,  although common to most procedural code, can be
quite  long,  somewhat  difficult  to  read,  and  hard  to  debug.  An  alternative  is  to  use  a  Which
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statement  that  essentially  collapses  the  nested  structure  to  a  more  manageable  object.  We  will
explore Which later in this section.

Figure 6.3. Manipulate showing different interpolation orders used to construct a surface.

Conditional  definitions  can  be  written  using  another  construct  in  Mathematica,  the
Condition  operator /; that has already been introduced in the context of conditional patterns
in Section 4.1. For example, the abs function can be entered (using several definitions) as follows:

In[17]:= Clear@absD

In[18]:= abs@x_D := x ê; x ¥ 0

In[19]:= abs@x_D := -x ê; x < 0

The  first  definition  should  be  interpreted  as  “abs@xD  is  equal  to  x  whenever  (or  under  the
condition that) x is greater than or equal to zero” and the second definition as “abs@xD is equal
to the opposite of x whenever x is less than zero.”

The conditions on the right-hand side of the rules can also be entered on the left-hand side of
these definitions as follows:

In[20]:= Clear@absD

In[21]:= abs@x_ ê; x ¥ 0D := x

In[22]:= abs@x_ ê; x < 0D := -x

This  last  notation  has  the  advantage  of  preventing  the  right-hand  side  of  the  definitions  from
being evaluated whenever the pattern on the left does not match.
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In[23]:= abs@-4D

Out[23]= 4

In[24]:= abs@zD

Out[24]= abs@zD

The abs function defined above is fine for integers and real number arguments, but, since the
complex numbers cannot be ordered, the tests comparing the argument x with zero will fail.

In[25]:= abs@3 + 4 ID

GreaterEqual::nord : Invalid comparison with 3 + 4 Â attempted. à

Less::nord : Invalid comparison with 3 + 4 Â attempted. à

Out[25]= abs@3 + 4 ÂD

Exercise 3  at the end of this section walks through a solution to this problem through the use of
several more specific rules.

Piecewise-defined functions
The  last  absolute  value  function  given  in  the  previous  section  is  defined  piecewise.  This  means
that for different intervals, or under different conditions, the values will be computed differently.
Piecewise is designed specifically for such problems. The syntax is:

 Piecewise@88e1, c1<, …, 8en, cn<<D

Piecewise  outputs  e1  if  c1  is  true,  e2  if  c2  is  true,  …  ,  en  if  cn  is  true,  and  zero  otherwise  (the
default).  So,  for  example,  here  is  the  definition  for  the  absolute  value  function  given  as  a  piece-
wise object.

In[26]:= abspw@x_D := Piecewise@88x, x ¥ 0<, 8-x, x < 0<<D

Piecewise objects display as you would expect in traditional mathematical notation.

In[27]:= abspw@xD

Out[27]=

x x ¥ 0

-x x < 0

0 True

One  of  the  advantages  to  using  Piecewise  compared  with  the  previous  approaches  is  that
the earlier implementations given in terms of conditionals are not fully supported by many of the
built-in functions.
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In[28]:= Clear@absD

In[29]:= abs@x_D := x ê; x ¥ 0

In[30]:= abs@x_D := -x ê; x < 0

In[31]:= Integrate@abs@xD, 8x, -1, 1<D

Out[31]= ‡
-1

1

abs@xD „x

In[32]:= D@abs@xD, xD

Out[32]= abs£@xD

Piecewise,  on  the  other  hand,  is  fully  integrated  with  the  algebraic,  symbolic,  and  graphical
functions in Mathematica and so is preferable to other approaches.

In[33]:= Integrate@abspw@xD, 8x, -1, 1<D

Out[33]= 1

In[34]:= D@abspw@xD, xD

Out[34]=

-1 x < 0

1 x > 0

Indeterminate True

In[35]:= Plot@abspw@xD, 8x, -2, 2<D

Out[35]=

-2 -1 1 2

0.5

1.0

1.5

2.0
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Which and Switch
Recall  the  earlier  plot  of  some  three-dimensional  data  using  cascading  Ifs  to  specify  different
plot labels.

In[36]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
If@order == "None", "Linear",
If@order == 0, "Voronoi cells",
If@order == 1, "Baricentric",
If@order == 2, "Natural neighbor"
D

D
D

D
D,
8order, 8"None", 0, 1, 2<<D;

It can be a little difficult to read these nested If statements and figure out which clause goes with
which If.  Fortunately,  cascaded Ifs  are  so  common that  there  is  a  more  direct  way of  writing
them, using the function Which.

WhichAcond1, result1,
cond2, result2,
ª

condn, resultn,

True, resultn+1E

This  has  exactly  the  same  effect  as  the  cascaded  If  expression  above:  it  tests  each  condition  in
turn,  and,  when  it  finds  an  i  such  that  condi  is  true,  it  returns  resulti  as  the  result  of  the  Which
expression itself. If none of the conditions turns out to be true, then it will test the final condition,
namely the expression True , which always evaluates to true, and it will then return resultn+1.
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In[37]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
Which@
order == "None", "Linear",
order == 0, "Voronoi cells",
order == 1, "Baricentric",
order == 2, "Natural neighbor"DD,

88order, "None", "Interpolation order"<, 8"None", 0, 1, 2<<D

Out[37]=

Interpolation order None 0 1 2

One  additional  function  deserves  mention.  Our  use  of  Which  is  still  quite  special  in  that  it
consists of a simple sequence of comparisons between a variable and a constant. Since this is also
a  common  form,  Mathematica  provides  a  special  function  for  it,  called  Switch.  Where  Which
compares values to determine which result to evaluate, Switch does pattern matching.

SwitchAexpr,
pattern1, result1,
pattern2, result2,
ª,

patternn, resultn,

_, resultn+1E

This  evaluates  expr  and  then  checks  each  pattern  sequentially  to  see  whether  expr  matches;  as
soon  as  expr  matches  one,  say  patterni,  it  returns  the  value  of  resulti.  Of  course,  if  none  of  the

patterns pattern1, …, patternn matches, the general pattern _ certainly will.
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Here  is  a  toy  example  showing  how  Switch  works.  If  the  expression  expr  matches  the
pattern _Integer, that is, if it has head Integer , then “I am an integer” will be returned. If not,
but expr has head Rational, then “I am rational” is returned, and so on.

In[38]:= WhatAmI@expr_D := Switch@expr,
_Integer, "I am an integer",

_Rational, "I am rational",

_Real, "I am real",

_Complex, "I am complex",

_, "I am not a number"D

In[39]:= WhatAmI@3 + 4 ID

Out[39]= I am complex

In[40]:= WhatAmI@funD

Out[40]= I am not a number

Notice that Switch  uses the blank character, _,  for the final, or default  case, just as Which  often
uses the always-true expression True. 

Here then is the version of the Manipulate  example using Switch instead of Which. 

In[41]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
Switch@order,
"None", "Linear",
0, "Voronoi cells",
1, "Baricentric",
2, "Natural neighbor"DD,

88order, "None", "Interpolation order"<,
8"None", 0, 1, 2<<D;

If  all  the patterns happen to be constants,  the Switch  expression is  equivalent to the following
Which expression.

WhichA
expr == pattern1, result1,
expr == pattern2, result2,

ª,

expr ã patternn, resultn,

True, resultn+1E
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Argument checking
When you write functions, you often know ahead of time that their definitions are valid only for
certain kinds of inputs. For example, the following recursive definition for the factorial function
only makes sense for positive integers.

In[42]:= factorial@0D = 1;

factorial@n_D := n factorial@n - 1D

In[44]:= factorial@5D

Out[44]= 120

If you were to give factorial an argument that was not a positive integer, the recursion could
run away from you.

In[45]:= factorial@3.4D êê Short

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

Conditionals  are  a  convenient  way  of  checking  that  the  arguments  to  a  function  pass  some
test.  For  example,  there  are  several  ways  that  you  could  make  the  factorial  function  valid
only under the condition that its argument is a positive integer. Here is how you might approach
it using the If construct to test that n passes the appropriate criteria.

In[46]:= Clear@factorialD

In[47]:= factorial@0D = 1;

In[48]:= factorial@n_D := If@IntegerQ@nD && n > 0, n factorial@n - 1DD

In[49]:= 8factorial@5D, factorial@-3D, factorial@2.4D<

Out[49]= 8120, Null, Null<

The function works fine for positive integers, but since we did not give an alternative condition to
the If function, nothing is returned (technically, Null is returned) when the test condition fails.

Let us define a message that will be output in the case that the argument to factorial  fails
the positive integer test.

In[50]:= factorial::noint =
"The argument `1` is not a positive integer.";

Message@messname, e1, e2, …D  prints  using  StringForm@messname, e1, e2, …D,  where
messname  is  the  value  of  the  message  name  and  the  ei  are  substituted  for  any  expressions  of  the
form `i`.  We will  use Message  as the third argument to the If  function; when the condition
fails,  the  message  will  be  triggered.  In  the  above  example,  the  message  name  is  noint  and  its
value  is  the  string  beginning  with  "The argument…".  In  this  example,  the  value  of  n  will  be
substituted into the string where the `1` occurs.
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In[51]:= factorial@n_D := If@IntegerQ@nD && n > 0,

n factorial@n - 1D,
Message@factorial::noint, nDD

In[52]:= factorial@-4D
factorial::noint : The argument -4 is not a positive integer.

Exercises
1. Create a function UpperTriangularMatrix@8m, n<D that generates an män upper triangular 

matrix, that is, a matrix containing 1s on and above the diagonal and 0s below the diagonal. Create 
an alternative rule that defaults to 1 for the upper values, but allows the user to specify a nondefault 
upper value.

In[1]:= UpperTriangularMatrix@83, 3<D êê MatrixForm
Out[1]//MatrixForm=

1 1 1
0 1 1
0 0 1

In[2]:= UpperTriangularMatrix@84, 4<, zD êê MatrixForm
Out[2]//MatrixForm=

z z z z
0 z z z
0 0 z z
0 0 0 z

2. Write a function signum@xD which, when applied to an integer x, returns -1, 0, or 1, if x is less than, 
equal to, or greater than 0, respectively. Write it in four ways: using three clauses, using a single 
clause with If , using a single clause with Which, and using Piecewise .

3. The definition of the absolute value function in this section does not handle complex numbers 
properly. 

In[3]:= abs@3 + 4 ID

GreaterEqual::nord : Invalid comparison with 3 + 4 Â attempted. à

Less::nord : Invalid comparison with 3 + 4 Â attempted. à

Out[3]= abs@3 + 4 ID

Correct this problem by rewriting abs to include a specific rule for the case where its argument is 
complex.

4. Use If  in conjunction with Map or Fold  to define the following functions:

a. In a list of numbers, double all the positive numbers, but leave the negative numbers alone.
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b. remove3Repetitions alters three or more consecutive occurrences in a list, changing them 
to two occurrences; if there are only two occurrences to begin with, they are left alone. For 
example, remove3Repetitions@80, 1, 1, 2, 2, 2, 1<D will return 
80, 1, 1, 2, 2, 1<.

c. Add the elements of a list in consecutive order, but never let the sum go below 0.

In[4]:= positiveSum@85, 3, -13, 7, -3, 2<D

Out[4]= 6

Since the –13 caused the sum to go below 0, it was instead put back to 0 and the summation contin-
ued from there.

5. Rewrite the median function from Exercise 4 in Section 5.8 using an If  control structure.

6. Using NestWhileList, write a function CollatzSequence@nD that produces the Collatz 
sequence for any positive integer n. The Collatz sequence is generated as follows: starting with a 
number n, if it is even, then output n ê2; if n is odd, then output 3n + 1. Iterate this process while n � 1.

6.3 Examples and applications
Classifying points
Quadrants  in the Euclidean plane are  traditionally  numbered counterclockwise from quadrant  i
(x and y positive) to quadrant iv (x positive, y negative) with some convention adopted for points
that lie  on either of  the axes.  In this section we will  create a function that classifies any point in
the plane according to this scheme (see Table 6.1).  We will  give a number of different solutions:
using multi-clause function definitions with predicates,  single-clause definitions with If  and its
relatives, and combinations of the two.

Table 6.1. Quadrant classification

Point Classification
H0, 0L 0

y=0 Hon the x-axisL -1

x=0 Hon the y-axisL -2

Quadrant i 1

Quadrant ii 2

Quadrant iii 3

Quadrant iv 4
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Perhaps  the  first  solution  that  suggests  itself  is  one  that  uses  a  clause  for  each  of  the  cases
above.

In[1]:= quadrant@80, 0<D := 0

quadrant@8x_, 0<D := -1

quadrant@80, y_<D := -2

quadrant@8x_, y_<D := 1 ê; x > 0 && y > 0

quadrant@8x_, y_<D := 2 ê; x < 0 && y > 0

quadrant@8x_, y_<D := 3 ê; x < 0 && y < 0

quadrant@8x_, y_<D := 4 H* x < 0 && y < 0 *L

It is not a bad idea to include the last condition as a comment to yourself;  it  is not needed as an
actual  condition  like  the  three  rules  preceding  it  because  this  rule  will  apply  to  any  argument
8x, y< without condition. Evaluating the rule last will cause it to be checked last by the pattern
matcher.

Here is a list of points that we will use as our test cases.

In[8]:= pts = 880, 0<, 84, 0<, 80, 1.3<,
82, 4<, 8-2, 4<, 8-2, -4<, 82, -4<<;

In[9]:= Map@quadrant, ptsD

Out[9]= 80, -1, -2, 1, 2, 3, 4<

Translated directly to a one-clause definition using If, this becomes:

In[10]:= quadrant@8x_, y_<D :=

If@x ã 0 && y ã 0, 0,
If@y ã 0, -1,
If@x ã 0, -2,
If@x > 0 && y > 0, 1,
If@x < 0 && y > 0, 2,
If@x < 0 && y < 0, 3, 4DDDDDD

In[11]:= Map@quadrant, ptsD

Out[11]= 80, -1, -2, 1, 2, 3, 4<

Actually, a more likely solution here uses Which.

In[12]:= quadrant@8x_, y_<D := Which@
x == 0 && y == 0, 0,
y == 0, -1,
x == 0, -2,
x > 0 && y > 0, 1,
x < 0 && y > 0, 2,
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x < 0 && y < 0, 3,
True, 4 H* x>0&&y< 0 *L D

In[13]:= Map@quadrant, ptsD

Out[13]= 80, -1, -2, 1, 2, 3, 4<

Each of  our  solutions  so far  suffers  from a  certain degree  of  inefficiency,  because  of  repeated
comparisons  of  a  single  value  with  0.  Take  the  last  solution  as  an  example,  and  suppose  the
argument is (-5,-9). It will require five comparisons of -5  with 0  and three comparisons of -9

with 0 to obtain this result.

In[14]:= quadrant@8-5, -9<D

Out[14]= 3

The steps to perform this computation are:
1. evaluate x ã 0; since it is false, the associated y ã 0 will not be evaluated, and we next

2. evaluate y ã 0 on the following line; since it is false, we

3. evaluate x ã 0 on the third line; since it is false, we

4. evaluate x > 0 on next line; since it is false, the associated y > 0 will not be evaluated, 
and we next,

5. evaluate x < 0 on the next line; since it is true, we do,

6. the y > 0 comparison, which is false, so we next,

7. evaluate x < 0 on the next line; since it is true, we then evaluate y < 0, which is also true, 
so we return the answer 3.

How  can  we  improve  this?  By  nesting  conditional  expressions  inside  other  conditional  expres-
sions.  In  particular,  as  soon  as  we  discover  that  x  is  less  than,  greater  than,  or  equal  to  0,  we
should  make  maximum  use  of  that  fact  without  rechecking  it.  That  is  what  the  following
quadrant function does.

In[15]:= quadrant@8x_, y_<D := Which@
x ã 0, If@y ã 0, 0, -2D,
x > 0, Which@y > 0, 1, y < 0, 4, True, -1D,
True, Which@y < 0, 3, y > 0, 2, True, -1D

D

In[16]:= Map@quadrant, ptsD

Out[16]= 80, -1, -2, 1, 2, 3, 4<

Let  us  count  up  the  comparisons  for  H-5, -9L  this  time:  (i)  evaluate  x ã 0;  since  it  is  false,  we
next, (ii) evaluate x > 0; since it is false, we go to the third branch of the Which,  evaluate True ,
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which  is,  of  course,  true,  then  we  (iii)  evaluate  y < 0,  which  is  true,  and  we  return  3.  Thus,  we
made only three comparisons, a substantial improvement.

When  pattern  matching  is  used,  as  in  our  first,  multi-clause  solution,  efficiency  calculations
can be more difficult. It would be inaccurate to say that Mathematica has to compare x and y to 0
to  tell  whether  the  first  clause  applies;  what  actually  happens  is  more  complex.  What  is  true,
however,  is  that  it  will  do the  comparisons  indicated in  the  last  four  clauses.  So,  even if  we dis-
count the first three clauses with argument H-5, -9L,  some extra comparisons are done. Specifi-
cally:  (i)  the  comparison  x > 0  is  done;  then,  (ii)  x < 0  and  (iii)  y > 0;  then,  (iv)  x < 0  and  (v)
y < 0. This can be avoided by using conditional expressions within clauses.

In[17]:= quadrant@80, 0<D := 0

quadrant@8x_, 0<D := -1

quadrant@80, y_<D := -2

quadrant@8x_, y_<D := If@x < 0, 2, 1D ê; y > 0

quadrant@8x_, y_<D := If@x < 0, 3, 4D H* ê; y<0 *L

In[22]:= Map@quadrant, ptsD

Out[22]= 80, -1, -2, 1, 2, 3, 4<

Now, no redundant comparisons are done. For H-5, -9L, since y > 0 fails, the fourth clause is not
used,  so  the  x > 0  comparison  in  it  is  not  done.  Only  the  single  x < 0  comparison  in  the  final
clause is done, for a total of two comparisons.

Having  implemented  all  these  versions  of  quadrant,  you  should  still  be  mindful  of  a  basic
fact  of  life  in programming:  your time is  more valuable than your computer’s  time.  You should
not spend your time worrying about how slow a function is until there is a demonstrated need to
worry. Far more important is the clarity and simplicity of the code, since this will determine how
much time you (or another programmer) will have to spend when it comes time to modify it. In
the  case  of  quadrant,  we  would argue that  we were  lucky and found a  version (the  final  one)
that wins on both counts (if only programming were always like that!).

Finally,  a  technical,  but  potentially  important,  point:  not  all  the  versions  of  quadrant  work
exactly the same way. The integer 0, as a pattern, does not match the real number 0.0, since they
have  different  heads.  Thus,  using  the  last  version  as  an  example,  quadrant@80.0, 0.0<D
returns 4.

In[23]:= quadrant@80.0, 0.0<D

Out[23]= 4

Exercise  4  walks  through  the  use  of  alternatives  to  deal  more  efficiently  with  these  various
cases.
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Sieve of Eratosthenes
One  of  the  oldest  algorithms  in  the  history  of  computing  is  the  Sieve  of  Eratosthenes.  Named
after the famous Greek astronomer Eratosthenes (ca. 276 – ca. 194 bc), this method is used to find
all  prime  numbers  below  a  given  number  n.  The  great  feature  of  this  algorithm  is  that  it  finds
prime numbers without doing any division, an operation that took considerable skill and concen-
tration before the introduction of the Arabic numeral system. In fact,  in our implementation its
only operations are addition and component assignment.

The  algorithm  can  be  summarized  as  follows.  To  find  all  the  prime  numbers  less  than  an
integer n:

1. create a list of the integers 1 through n;

2. starting with p = 2, cross out all multiples of p;

3. increment p (that is, add 1 to p) and cross out all multiples of p;

4. repeat the previous two steps until p > n .

You should convince yourself that the numbers that are left after all the crossings out are in fact
the  primes  less  than  n.  This  algorithm  lends  itself  very  well  to  a  procedural  approach,  so  let  us
walk through the steps.

We  will  use  a  For  structure  for  this  problem.  The  syntax  is  ForAstart, test, incr, bodyE,

where  start  will  first  be  evaluated  (initializing  values),  and  then  incr  and  body  will  be  repeatedly
evaluated until test fails.

1. Let lis be a list containing all the integers between 1 and n.

In[24]:= n = 20;
lis = Range@nD

Out[25]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

Let p = 2. Repeat the following two steps:
2. Starting at position 2p, “cross out” every pth value in lis. We will assign 1 to lis at 

positions 2p, 3p, and the 1 will represent a crossed-out value.

In[26]:= p = 2;
Do@lis@@iDD = 1, 8i, 2 p, n, p<D

In[28]:= lis

Out[28]= 81, 2, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, 1<

3. While p § n , increment p by 1, until lis@@pDD is not 1, or until p > n .
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In[29]:= n = 20;
lis = Range@nD;
For@p = 2,
p � 1 && p § Floor@Sqrt@nDD,
p++,
Do@lis@@iDD = 1, 8i, 2 p, n, p<DD

The numbers other than 1 in lis are all the prime numbers less than or equal to n.

In[32]:= DeleteCases@lis, 1D

Out[32]= 82, 3, 5, 7, 11, 13, 17, 19<

Let us put these steps together in the function Sieve. 

In[33]:= Clear@n, p, lisD

In[34]:= Sieve@n_IntegerD := Module@8lis = Range@nD, p<,
For@p = 2,
p � 1 && p § Floor@Sqrt@nDD,
p++,
Do@lis@@iDD = 1, 8i, 2 p, n, p<DD;

DeleteCases@lis, 1DD

Here  are  a  few  simple  tests  to  check  the  correctness  of  our  function.  First  a  basic  check  that
Sieve  returns the same list  of primes as the built-in functions.  The built-in PrimePi@xD  gives
the number of primes pHxL less than or equal to x. 

In[35]:= Map@Prime, RangeüPrimePi@100DD

Out[35]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

In[36]:= Sieve@100D

Out[36]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

We should check that the list of primes less than 10 000 is the same as that produced by the built-
in functions. 

In[37]:= WithA9n = 104=, Sieve@nD ã Map@Prime, RangeüPrimePi@nDDE

Out[37]= True

Next, we check that Sieve produces the correct number of primes less than a large integer.

In[38]:= LengthASieveA105EE

Out[38]= 9592
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In[39]:= PrimePiA105E

Out[39]= 9592

Finally, we do some simple timing tests to check the efficiency of this algorithm against the built-
in functions that are optimized for this task.

In[40]:= SieveA105E; êê Timing

Out[40]= 81.03762, Null<

In[41]:= MapAPrime, RangeüPrimePiA105EE; êê Timing

Out[41]= 80.009463, Null<

For numbers in this range (less than about 10
5), sieving is fairly efficient. But, beyond this range, it

gets slower and slower. The implementation here is quite basic and there are a number of things
that we could do to optimize it. In Section 12.2 we will make several improvements to this sieving
algorithm reducing the  overall  number  of  computations  performed by carefully  structuring the
Do  loop. Ultimately,  if  you are interested in working on very large numbers,  it  would be best to
consider specialized algorithms that are asymptotically fast. For large integers, PrimePi  uses an
algorithm  due  to  Lagarias,  Miller,  and  Odlyzko  (Lagarias  and  Odlyzko  1987)  that  is  based  on
estimates of the density of primes.

Sorting algorithms
In Section 4.3 we developed a sorting routine in which the pattern matcher was invoked to check
every  pair  of  adjacent  elements  in  a  list  to  see  if  they  were  out  of  order.  Although  that  code  is
quite  compact,  it  is  not  terribly  efficient  due to the large number of  pattern matches  needed.  In
this  section  we  will  develop  two  well-known  sorting  algorithms  –  selection  sort  and  bubble  sort  –
that lend themselves to procedural approaches quite well. Although these two algorithms are still
slow for larger input, it is instructive to work through them as they are good exercises in procedu-
ral programming and provide useful insights into the issues involved in sorting lists of numbers.

We will  start  with the selection sort  algorithm, as it  is  fairly simple to understand and imple-
ment.  After  developing  the  algorithm,  we  will  look  at  its  computational  complexity  as  well  as
create a quick visualization of the algorithm at work.

The  selection  sort  algorithm  works  by  finding  (selecting)  the  smallest  number  in  a  list  and
exchanging  it  with  the  element  in  the  first  position  in  the  list.  It  then  finds  the  next  smallest
element in the list and exchanges it with the element in the second position. It continues like this
to the end of the list at which point the entire list is sorted. 
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We  already  have  developed  some  of  the  pieces  needed  here;  in  particular,  the  solution  to
Exercise 4 from Section 3.3 has code for swapping two elements in a list, say elements in positions
i and j:

lis@@8i, j<DD = lis@@8 j, i<DD

We  will  create  a  local  variable  slist  that  is  a  copy  of  the  list  that  we  wish  to  sort  and  then
operate only on slist. If two elements are out of order, we swap them:

If@slist@@iDD > slist@@ jDD,
slist@@8i, j<DD = slist@@8 j, i<DDD

The  only  real  difficulty  is  determining  the  correct  starting  and  ending  values  for  the  iterators  i
and  j.  We  will  use  a  Do  loop,  fix  i  and  then  have  j  vary;  then  increment  i  and  have  j  vary
through its values again, and so on. Here is the code.

In[42]:= selectionSort@lis_D := Module@8slist = lis, len = Length@lisD<,
Do@
If@slistPiT > slistPjT,
slistP8i, j<T = slistP8j, i<TD,

8i, len - 1<, 8j, i, len<D;
slistD

Let us try it out on a small vector containing some repeated values (one of the things you want to
test for in sorting algorithms).

In[43]:= vec = RandomInteger@10, 50D

Out[43]= 80, 8, 9, 5, 4, 1, 4, 6, 3, 9, 6, 6, 7, 2, 6, 8,

2, 10, 3, 3, 4, 7, 8, 5, 4, 7, 3, 0, 0, 2, 10, 2, 1,

1, 10, 5, 2, 0, 2, 10, 5, 6, 5, 8, 10, 7, 3, 1, 9, 4<

In[44]:= selectionSort@vecD

Out[44]= 80, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,

3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,

7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10<

Let us try it out on a larger vector of random reals.

In[45]:= vec = RandomReal@1, 81500<D;

In[46]:= selectionSort@vecD; êê Timing

Out[46]= 83.5133, Null<

As  a  quick  check,  we  compare  it  with  the  built-in  Sort  function,  first  for  correctness,  then  for
speed.
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In[47]:= selectionSort@vecD ã Sort@vecD

Out[47]= True

In[48]:= Timing@Sort@vecD;D

Out[48]= 80.000241, Null<

Obviously,  our  naive  implementation  of  selection  sort  is  not  going  to  compare  with  the
efficiency  of  the  built-in  Sort ,  which  uses  a  much  more  efficient  algorithm  known  as  merge
sort. In fact, selection sort is known to have computational complexity OIn2M, meaning we would

expect the time to do selection sort to be proportional to the square of the size of the input.  To
get a basic confirmation of the complexity, average several trials of increasing size and then plot
the timings. We will choose three trials for each size of the input from 100 to 2000 in steps of 100.

In[49]:= times = Table@
vec = RandomReal@1, 8size<D;
mean = MeanüTable@FirstüTiming@selectionSort@vecDD, 83<D;
8size, mean<,
8size, 100, 2000, 100<D

Out[49]= 88100, 0.0144407<, 8200, 0.058554<,
8300, 0.133603<, 8400, 0.219965<, 8500, 0.350014<,
8600, 0.517022<, 8700, 0.69728<, 8800, 0.932<,
8900, 1.1802<, 81000, 1.45561<, 81100, 1.73962<,
81200, 2.06994<, 81300, 2.39579<, 81400, 2.82256<,
81500, 3.18691<, 81600, 3.80523<, 81700, 4.16283<,
81800, 4.76077<, 81900, 5.37576<, 82000, 5.73151<<

Here is a plot of the times with the size of the input on the horizontal axis and average time (in
seconds) for the three trials on the vertical axis.

In[50]:= dataplot = ListPlot@times, Mesh Ø All, DataRange Ø 8100, 2000<D

Out[50]=
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Fitting the data to a linear model shows very good agreement with quadratic complexity.
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In[51]:= lm = LinearModelFit@times, 8x, x^2<, xD;
lm@"BestFit"D êê TraditionalForm

Out[52]//TraditionalForm=

� - - +

In[53]:= Show@dataplot,
Plot@lm@"BestFit"D, 8x, 100, 2000<, PlotStyle Ø RedDD

Out[53]=
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Finally, let us create an animation that shows the selection sort algorithm at work. To do so, we
will convert the Do  loop to a For  loop and insert one line of code to “record” the sort after each
pass,  that  is,  for  each  value  of  i.  Start  by  converting  from  the  Do  loop  implementation.  For
readability  purposes,  we  will  convert  the  double  loop  –  iterators  i  and  j  in  the  Do  loop  –  and
write this using two (nested) For loops.

In[54]:= selectionSortFor@lis_D :=

Module@8slist = lis, len = Length@lisD<,
For@i = 1, i § len, i++,
For@j = i + 1, j § len, j++,
If@slistPiT > slistPjT, slistP8i, j<T = slistP8j, i<TD

DD;
slistD

Let us perform a quick check.

In[55]:= selectionSortFor@RandomInteger@100, 820<DD

Out[55]= 83, 3, 9, 18, 20, 31, 41, 43, 45,
47, 53, 53, 56, 57, 60, 60, 63, 85, 97, 98<

For  the  animation,  we  want  the  value  of  slist  before  each  increment  of  the  iterator  i.  We
will simply append that value to a temporary list and when done with the sort, return that tempo-
rary  list  of  lists  to  animate.  Because  of  inclusion  of  AppendTo,  this  code  is  going  to  be  slower
than  the  previous  implementations.  But  since  the  AppendTo  is  not  part  of  the  actual  sort,  it
should not slow things down too much. Nonetheless, we only use it here for purposes of creating
the visualization. Figure 6.4 shows several frames from the animation.
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In[56]:= selectionSortList@lis_D :=

Module@8slist = lis, len = Length@lisD, temp = 8<<,
For@i = 1, i § len, i++,
AppendTo@temp, slistD;
For@j = i + 1, j § len, j++,
If@slistPiT > slistPjT, slistP8i, j<T = slistP8j, i<TD

DD;
tempD

In[57]:= vec = RandomReal@1, 500D;
sort = selectionSortList@vecD;

In[59]:= ListAnimate@ListPlot êü sortD

Figure 6.4. Frames from selection sort animation: after 1, 50, 100, 150, 200, 300, 400, and 500 steps.
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Bubble  sort Another  elementary  sorting  algorithm  somewhat  similar  to  selection  sort  is  bubble
sort. It operates on adjacent elements, exchanging them if they are out of order. After numerous
passes, but specifically when no more swaps are needed, the list is sorted.

Note, in this implementation, the iterator i starts at n, equal to the length of the list, and then
decrements down to 1.

In[60]:= bubbleSort@lis_D := Module@8slist = lis, n = Length@lisD<,
For@i = n, i > 0, i--,
For@j = 2, j § i, j++,
If@slistPj - 1T > slistPjT,
slistP8j - 1, j<T = slistP8j, j - 1<TD

DD;
slistD

In[61]:= vec = RandomReal@1, 81500<D;
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Bubble sort has computational complexity similar to that of selection sort, that is OIn2M, which

is too slow for serious sorting work.

In[62]:= bubbleSort@vecD; êê Timing

Out[62]= 85.66688, Null<

In[63]:= bubbleSort@vecD ã Sort@vecD

Out[63]= True

For a more detailed discussion of sorting algorithms, including their computational complex-
ity, see Knuth (1998) or Sedgewick and Wayne (2011).

Exercises

1. Using an If  function, write a function gcd@m, nD that implements the Euclidean algorithm (see 
Exercise 9 of Section 6.1) for finding the greatest common divisor of m and n.

2. The digit sum of a number is given by adding the digits of that number. For example, the digit sum of 
7763 is 7 + 7 + 6 + 3 = 23. If you iterate the digit sum until the resulting number has only one digit, 
this is called the digit root of the original number. So the digit root of 7763 is 
7763 Ø 7 + 7 + 6 + 3 = 23 Ø 2 + 3 = 5. Create a function to compute the digit root of any positive 
integer.

3. Use Piecewise  to define the quadrant function given in this section.

4. In the version of quadrant using If  and Which developed in this section, the point 80.0, 0.0< 
is not handled properly because of how Mathematica treats the real number 0.0 compared with the 
integer 0. Write another version of quadrant using alternatives (discussed in Section 4.1) to handle 
this situation and correctly return the 0.

5. Extend quadrant to three dimensions, following this rule: for point (x, y, z), if z ¥ 0, then give the 
same classification as (x, y), with the exception that 0 is treated as a positive number (so the only 
classifications are 1, 2, 3, and 4); if z < 0, add 4 to the classification of (x, y) (with the same exception). 
For example, H1, 0, 1L is in octant 1, and H0, -3, -3L is in octant 8. quadrant should work for points 
in two or three dimensions.

6. Consider a sequence of numbers generated by the following iterative process: starting with the list 
of odd integers 1, 3, 5, 7, …, the first odd number greater than 1 is 3, so delete every third number 
from the list; from the list of remaining numbers, the next number is 7, so delete every seventh 
number; and so on. The numbers that remain after this process has been carried out completely are 
referred to as lucky numbers (Weisstein, Lucky numbers). Use a sieving method to find all lucky 
numbers less than 1000.

7. Create an animation for bubble sort similar to the animation in the text for selection sort. 
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7

Recursion
Fibonacci numbers · Thinking recursively · List length · Recursion with multiple arguments · 
Multiplying pairwise elements · Dealing cards, recursively · Finding maxima · Higher-order 

functions · Dynamic programming · Merge sort · Run-length encoding

Many  important  and  classical  problems  in  mathematics  and  computer  science  are  defined,  or
have solutions in terms of recursive definitions: the factorial function, the natural numbers, many
divide-and-conquer  algorithms,  and  parsers  for  programming  languages  all  use  recursion  in
fundamental ways. A function is defined using recursion if in its definition, it makes calls to itself.
The  great  advantage  of  recursive  definitions  is  their  simplicity  and  directness.  Their  one  major
drawback however, is how quickly the depth and complexity can increase to the point of making
your computations intractable.

This  programming  paradigm  is  easily  implemented  in  Mathematica  in  a  manner  that  is  both
natural and quite efficient. In fact, many of the built-in operations of Mathematica could be written
in Mathematica itself using recursion. In this chapter, we will present several examples of recursion
and explain  how recursive  functions  are  written and what  you can do to  work around some of
their potential inefficiencies.

7.1 Fibonacci numbers
Recursive  definitions  of  mathematical  quantities  were  used  by  mathematicians  for  centuries
before  computers  even  existed.  One  famous  example  is  the  definition  of  a  special  sequence  of
numbers  first  studied  in  the  Middle  Ages  by  the  Italian  mathematician  Leonardo  Fibonacci
(ca. 1170 – ca. 1250). The Fibonacci numbers have since been studied extensively, finding application
in  such  diverse  areas  as  random  number  generation,  compression  algorithms,  musical  tunings,
phyllotaxy  in  plants,  population  generation,  and  much  more.  See  Knuth  (1997)  for  a  detailed
discussion.



The Fibonacci numbers are generated as follows: start with two 1s, then add them to generate
the third number in the sequence; and generally, each new number in the sequence is created by
adding the previous two numbers you have written down.

1 1 2 3 5 8 13 21 …

F1 F2 F3 F4 F5 F6 F7 F8 …

The simplest way to define these numbers is with recursion.

F1 = 1

F2 = 1

Fn = Fn-2 + Fn-1, for n > 2

If we think of this sequence as a function, we would just change this to a functional definition.

FH1L = 1

FH2L = 1

FHnL = FHn - 2L+ FHn - 1L, for n > 2

In this form, we can translate the definition directly into Mathematica.

In[1]:= F@1D = 1;

In[2]:= F@2D = 1;

In[3]:= F@n_D := F@n - 2D + F@n - 1D ê; n > 2

As  it  turns  out,  the  condition  n > 2  is  unnecessary  because  Mathematica  looks  up  specific  rules
such as F@1D = 1 before more general rules like that for F@nD. 

Here is a list of the first twenty-six Fibonacci numbers.

In[4]:= Table@F@iD, 8i, 1, 26<D

Out[4]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75 025, 121 393<

It is somewhat amazing that this works, but note that whenever you want to compute F@nD  for
some n > 2, you only apply F to numbers smaller than n. Let us trace the evaluation of F@4D only
looking at expressions that involve an F@integerD or a sum of two Fs.
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In[5]:= TracePrint@F@4D, F@_IntegerD F@_D + F@_DD

F@4D

F@4 - 2D + F@4 - 1D

F@2D

F@3D

F@3 - 2D + F@3 - 1D

F@1D

F@2D

Out[5]= 3

The first two lines indicate that F@4D is rewritten to F@4 - 2D + F@4 - 1D, and the lines that are
indented  show  the  calls  of  F@2D  and  F@3D.  The  lines  showing  calls  to  F@1D  and  F@2D  do  not
have  any  indented  lines  under  them,  since  those  values  are  computed  directly  by  a  single  rule,
without making any recursive calls.

There are two key things to understand about recursion:

Ê You can always apply a function within its own definition, so long as you apply it only to 
smaller values.

Ê You can apply the function to smaller and smaller values, but you must eventually reach a 
value that can be computed without recursion. In the case of the Fibonacci numbers, the 
numbers that can be computed without recursion – the base cases – are F@1D and F@2D.

These  principles  are  applied  repeatedly  in  this  chapter  and  more  generally  in  any  recursive
function definitions.  In  terms of  the  Fibonacci  numbers,  we will  return to  them later  in  Section
7.3, where we will see what can be done about a serious inefficiency in our implementation (also,
see Exercise 2 below).

Exercises
1. For each of the following sequences of numbers, see if you can deduce the pattern and write a 

Mathematica function to compute the general term.

a.
2, 3, 6, 18, 108, 1944, 209 952, …
A1 A2 A3 A4 A5 A6 A7 …

b.
0, 1, -1, 2, -3, 5, -8, 13, -21, …
B1 B2 B3 B4 B5 B6 B7 B8 B9 …

c.
0, 1, 2, 3, 6, 11, 20, 37, 68, …

C1 C2 C3 C4 C5 C6 C7 C8 C9 …

7.1 Fibonacci numbers 233



2. The numbers FAn represent the number of additions that are done in the course of evaluating the 
Fibonacci function F@nD defined in this section.

0 0 1 2 4 7 12 20 33 …

FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 …

Write a function FA such that FA@nD = FAn.

3. A faster approach to computing Fibonacci numbers uses various identities associated with these 
numbers (The Fibonacci Sequence 2011). We start the base case at 0 instead of 1 here. The notation 
dnumbert represents the floor of number. You can use IntegerPart .

f0 = 0

f1 = 1

fn =

f @kD H f @kD + 2 f @k - 1D n even, k = dn ê2t
H2 f @kD + f @k - 1DL H2 f @kD - f @k - 1DL + 2 n mod 4 = 1, k = dn ê2t
H2 f @kD + f @k - 1DL H2 f @kD - f @k - 1DL - 2 otherwise

Implement this algorithm. Consider using Which for the different conditions.

4. The Fibonacci sequence can also be defined for negative integers using the following formula 
(Graham, Knuth, and Patashnik 1994):

F-n = H-1Ln-1 Fn

The first few terms are 

0 1 -1 2 -3 5 -8 13 -21 …
F0 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 …

Write the definitions for Fibonacci numbers with negative integer arguments.

7.2 Thinking recursively
The  procedure  by  which  expressions  are  rewritten  during  Mathematica’s  evaluation  process  –  as
seen  using  Trace  or  TracePrint  –  provides  insight  into  how  recursion  works.  But  that
knowledge is of only limited usefulness in writing recursive functions.

Indeed, the real trick is to forget the evaluation process and simply assume that the function you
are  defining  will  return  the  correct  answer  when  applied  to  smaller  values.  Suspend  disbelief  –
you  will  begin  to  see  how  simple  recursion  really  is.  In  this  section,  we  will  start  with  some
relatively  simple  recursive  programs  of  some  common  computational  tasks,  gradually  building
up the complexity of the examples.
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Length of a list
In Chapter 5,  we looked at functional implementations of some list-oriented functions in Mathe-
matica.  Although most of these functions have more efficient implementations in terms of func-
tional  constructs,  they  provide  a  convenient  vehicle  for  discussing  recursion,  and  so  in  this
section  we  will  use  them  to  give  you  some  practice  with  the  basic  concepts  of  recursive
programming.

As noted in our discussion of Fibonacci  numbers,  recursion works if  the arguments of  recur-
sive calls are smaller than the original argument. The same principle applies to functions on lists.
One  common  case  is  when  the  argument  in  the  recursive  call  is  the  “tail”  (think,  Rest)  of  the
original argument. An example is a recursively defined version of the built-in Length  function.
The idea is that the length of a list is always one greater than the length of its tail.

In[1]:= length@lis_D := length@Rest@lisDD + 1

Applying length to a list, however, leads to trouble.

In[2]:= length@8a, b, c<D

Rest::norest : Cannot take the rest of expression 8< with length zero. à

Rest::argx : Rest called with 0 arguments; 1 argument is expected. à

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

Well,  perhaps  it  is  already  obvious,  but  what  we  are  experiencing  is  one  of  the  most  common
errors in defining functions recursively – we forgot the base cases. For length,  there is just one
base case, the empty list.

In[3]:= length@8<D := 0

Now length works as intended.

In[4]:= length@8a, b, c<D

Out[4]= 3

Recursion with multiple arguments
Recursion  is  of  course  used  for  functions  with  multiple  arguments  as  well.  The  following  func-
tion addPairsAlis1, lis2E  takes two lists of numbers of equal length and returns a list contain-

ing the pairwise sums; think vector addition.
The idea is  to apply addPairs  recursively to the tails  of  both lists.  The base case consists  of

the two empty lists.

In[5]:= addPairs@8<, 8<D := 8<
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In[6]:= addPairs@8x1_, r1___<, 8x2_, r2___<D :=

Join@8x1 + x2<, addPairs@8r1<, 8r2<DD

In[7]:= addPairs@81, 2, 3<, 84, 5, 6<D

Out[7]= 85, 7, 9<

In[8]:= addPairs@8x1, y1, z1<, 8x2, y2, z2<D

Out[8]= 8x1 + x2, y1 + y2, z1 + z2<

Multiplying pairwise elements
Recursive calls do not always have to be on the tail of the original argument. Any smaller list will
do.  The function multPairwise  multiplies  together  successive  pairs  of  elements  in  a  list.  The
trick is to make the recursive call on the tail of the tail.

In[9]:= multPairwise@8<D := 8<
multPairwise@8x_, y_, r___<D :=

Join@8x y<, multPairwise@8r<DD

In[11]:= multPairwise@83, 9, 17, 2, 6, 60<D

Out[11]= 827, 34, 360<

Note,  we are doing no argument checking in these basic examples as we are focused on how
recursion works at this point. So, for example, the multPairwise  function above fails for lists
containing an odd number of elements.

In[12]:= multPairwise@83, 9, 17, 2, 6, 60, 12<D

Join::heads : Heads List and multPairwise at positions 1 and 2 are expected to be the same. à

Join::heads : Heads List and multPairwise at positions 1 and 3 are expected to be the same. à

Join::heads : Heads List and multPairwise at positions 1 and 4 are expected to be the same. à

General::stop : Further output of Join::heads will be suppressed during this calculation. à

Out[12]= Join@827<, 834<, 8360<, multPairwise@812<DD

Some of the exercises extend these examples asking you to create additional rules to deal with
unintended arguments as well as exceptional or pathological cases.

Dealing cards, recursively
Recall  the deal  function defined in Chapter  5:  deal@nD  produces a  list  of  n  playing cards ran-
domly chosen from a 52-card deck. Here is how we might write this function recursively.

First, dealing zero cards is easy.

In[13]:= deal@0D := 8<

Now,  suppose  we have  dealt  n - 1  cards;  how do we deal  n?  Just  randomly deal  a  card  from the
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remaining 52 - Hn - 1L = 53 - n.  To do this,  take the complement  of  the card deck with the dealt
cards and add it to the list of cards already dealt.

In[14]:= deal@n_D := Module@8dealt = deal@n - 1D<,
Append@dealt, RandomChoice@Complement@cardDeck, dealtDDD

D

Here again is the cardDeck function defined earlier in Chapter 5.

In[15]:= cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,
Join@Range@2, 10D, 8�, �, �, �<DD, 1D;

And here is the recursive deal.

In[16]:= deal@5D

Out[16]= 88´, �<, 8™, 2<, 8´, �<, 8™, 4<, 8®, 9<<

Finding maxima
Given a list of numbers, the function maxima from Section 5.4 produces a list of those numbers
greater than all those that precede them.

In[17]:= maxima@89, 2, 10, 3, 14, 9<D

Out[17]= 89, 10, 14<

To  program  this  using  a  recursive  definition  we  start  by  assuming  that  we  can  easily  compute
maximaARestAlisEE for any list, lis, and then ask ourselves: how can we compute maximaAlisE

starting from maximaARestAlisEE? 

In[18]:= maxima@Rest@89, 2, 10, 3, 14, 9<DD

Out[18]= 82, 10, 14<

The  answer  is  to  remove  any  values  not  greater  than  FirstAlisE,  then  put  FirstAlisE  at  the

beginning of the result.

In[19]:= Select@%, Ò > 9 &D

Out[19]= 810, 14<

In[20]:= Join@89<, %D

Out[20]= 89, 10, 14<

Again, the base case needs to be accounted for, and we end up with the following:

In[21]:= Clear@maximaD
maxima@8<D := 8<

In[23]:= maxima@8x_, r___<D := Join@8x<, Select@maxima@8r<D, Ò > x &DD
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In[24]:= maxima@83, 6, 2, 1, 8, 7, 12<D

Out[24]= 83, 6, 8, 12<

The lesson of this section – and it is an important one – is not to worry about how the recur-
sive cases are computed;  assume  that  they work,  and just  think about how to compute the value
you want from the result of the recursive call.

Higher-order functions
Many of the built-in functions discussed in Chapter 5  could be written as user-defined functions
using  recursion.  Although  they  may  not  be  as  efficient  as  the  built-in  functions,  creating  them
will give you good practice with recursion and should also give you some insight into how these
functions operate.

We start with Map. We will call our version map. mapA f, lisE applies f  to each element of the

list lis.  This is a simple recursion on the tail of lis:  if we assume that mapA f, RestAlisEE  works,

then mapA f, lisE is easily obtained from it by joining fAFirstAlisEE to the beginning.

In[25]:= map@f_, 8<D := 8<
map@f_, 8x_, y___<D := Join@8f@xD<, map@f, 8y<DD

We can quickly check that our map does what was intended.

In[27]:= map@f, 81, 2, 3<D

Out[27]= 8f@1D, f@2D, f@3D<

We give one more example of a built-in function that can be defined using recursion, and leave
the rest as exercises. NestA f, x, nE applies f  to x, n times. The recursion is, obviously, on n.

In[28]:= nest@f_, x_, 0D := x

nest@f_, x_, n_D := f@nest@f, x, n - 1DD

This iterates the Sin function four times starting with initial value q.

In[30]:= nest@Sin, q, 4D

Out[30]= Sin@Sin@Sin@Sin@qDDDD

Exercises

1. Create a recursive function to reverse the elements in a flat list.

2. Create a recursive function to transpose the elements of two lists. Write an additional rule to 
transpose the elements of three lists.

3. Write a recursive function sumOddElementsAlisE that adds up only the elements of the list lis that 

are odd integers. lis may contain even integers and nonintegers.

238 Recursion



4. Write a recursive function sumEveryOtherElementAlisE that adds up lis@@1DD, lis@@3DD, 

lis@@5DD, etc. Each of these elements is a number. lis may have any number of elements.

5. Write a function addTriplesAlis1, lis2, lis3E that is like addPairs in that it adds up the 

corresponding elements of the three equal-length lists of numbers.

6. Write a function multAllPairsAlisE that multiplies every consecutive pair of integers in the 

numerical list lis. Add a rule that issues an appropriate warning message if the user supplies a list 
with an odd number of elements.

In[1]:= multAllPairs@83, 9, 17, 2, 6, 60<D

Out[1]= 827, 153, 34, 12, 360<

7. Write the function maxPairsAlis1, lis2E which, for numerical lists of equal length, returns a list of 

the larger value in each corresponding pair.

8. The function riffleAlis1, lis2E, which merges two lists of equal length, can be defined as follows:

In[2]:= riffle@lis1_, lis2_D := Flatten@Transpose@8lis1, lis2<DD

In[3]:= riffle@8a, b, c<, 8x, y, z<D

Out[3]= 8a, x, b, y, c, z<

Rewrite riffle using recursion.

9. maxima can also be computed more efficiently with an auxiliary function.

maxima@8<D := 8<
maxima@8x_, r___<D := maxima@x, 8r<D

The two-argument version has this meaning: maximaAx, lisE gives the maxima of the list 

JoinA8x<, lisE. Define it. (Hint: the key point about this is that maximaAx, lisE is equal to 

maximaAx, RestAlisEEif x ¥ FirstAlisE.) Compare its efficiency with the version in the text.

10. Write recursive definitions for Fold , FoldList, and NestList.

7.3 Dynamic programming
The function F  defined in Section 7.1  is  simple,  but  quite  “expensive” to execute.  The reason for
this excessive cost is easy to see – in the course of computing F@nD, there are numbers m < n for
which  F@mD  is  computed  many  times.  For  instance,  F@n -2D  is  computed  twice  –  it  is  called
from  F@nD  and  also  from  F@n -1D;  F@n -3Dis  computed  three  times;  and  F@n -4D  five  times.
The number of calls to the Fibonacci function to compute F@nD  is F@nD  itself! This grows expo-
nentially and is therefore quite impractical for large n.  Even computing the first thirty Fibonacci
numbers using this approach will be slow.

This  continual  recalculation  can  be  eliminated  by  memorizing  these  values  as  they  are  com-
puted  using  a  technique  known  as  dynamic  programming.  The  idea  is  to  dynamically  create  rules
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during  evaluation.  Using  dynamic  programming,  a  delayed  assignment  whose  right-hand  side  is
an immediate assignment of the same name is defined.

f@x_D := f@xD = right-hand side

When an expression matches this rule, term rewriting creates a Set function (immediate assign-
ment) with the specific argument value which, upon evaluation of the right-hand side, becomes a
new rule. Since the global rule base is always consulted during evaluation, storing results as rules
can  cut  down  on  computation  time,  especially  in  recursive  computations.  It  is  like  caching
values, but in this case we are caching rules.

In  this  way,  dynamic  programming  can  be  described  as  a  method  in  which  rewrite  rules  are
added to the global rule base dynamically, that is, during the running of a program. A well-known
application of this is to speed up the computation of Fibonacci numbers.

The  following  definition  of  fibD  (D  for  dynamic)  is  just  like  the  definition  of  F,  but  it  adds  a
rule  fibD@nD = fibD@n -2D +fibD@n -1D  to  the  global  rule  base  the  first  time  the  value  is
computed.  Since  Mathematica  always  chooses  the  most  specific  rule  to  apply  when  rewriting,
whenever  a  future  request  for  fibD@nD  is  made,  the  new  rule  will  be  used  instead  of  the  more
general rule in the program. Thus, for every n, fibD@nD will be computed just once; after that, its
value will be found in the rule base.

In[1]:= Clear@fibDD

In[2]:= fibD@1D = 1;
fibD@2D = 1;

fibD@n_D := fibD@nD = fibD@n - 2D + fibD@n - 1D

We can see the change in the trace of fibD@4D as compared with that for F in Section 7.1. Specifi-
cally, there is only one evaluation of fibD@3D now, since the second evaluation of it is just a use
of  a  global  rule.  Only  those  expressions  in  the  following  computation  that  match  the  pattern
given  by  the  second  argument  to  TracePrint  will  be  shown:  either  fibD  with  an  integer
argument or an assignment for fibD.

In[5]:= TracePrint@fibD@4D,
fibD@_IntegerD HfibD@_D = fibD@_D + fibD@_DLD

fibD@4D

fibD@4D = fibD@4 - 2D + fibD@4 - 1D

fibD@2D

fibD@3D
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fibD@3D = fibD@3 - 2D + fibD@3 - 1D

fibD@1D

fibD@2D

fibD@3D

fibD@4D

Out[5]= 3

Another way to understand what is going on is to look at the global rule base after  evaluating
fibD@4D.

In[6]:= ? fibD

Global`fibD

fibD@1D = 1

fibD@2D = 1

fibD@3D = 2

fibD@4D = 3

fibD@n_D := fibD@nD = fibD@n - 2D + fibD@n - 1D

The  cost  of  executing  fibD  is  dramatically  lower  (see  Table  7.1).  It  is  linear  in  n,  rather  than  in
F@nD which grows exponentially.

Furthermore, these costs are only for the first time fibD@nD is computed; in the future, we can
find fibD@nD for free, or rather, for the cost of looking it up in the global rule base.

In[7]:= Timing@fibD@100DD

Out[7]= 80.000543, 354224848179261 915 075<

Table 7.1. Number of additions in Fibonacci algorithm using dynamic programming

n 5 10 15 20 25

additions of fibD@nD 3 8 13 18 23

Dynamic programming can be a useful technique, but needs to be used with care. It will entail
some  increased  cost  in  memory,  as  the  global  rule  base  is  expanded  to  include  the  new  rules.
Furthermore, you could still bump up against the built-in limits with a large computation.
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In[8]:= fibD@1000D

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

In  such  cases,  if  you  know  that  the  algorithm  is  correct,  you  can  temporarily  increase  the
recursion limit.  But you first need to clear out the values to fibD  that were assigned during the
previous, failed computation.

In[9]:= Clear@fibDD

In[10]:= fibD@1D := 1;
fibD@2D := 1

fibD@n_D := fibD@nD = fibD@n - 2D + fibD@n - 1D

In[13]:= Block@8$RecursionLimit = ¶<,
fibD@1000D

D

Out[13]= 43466557686937456435688527 675 040 625 802 564 660 517 371 780 Ö
402481729089536555417949 051 890 403 879 840 079 255 169 295 Ö
922593080322634775209689 623 239 873 322 471 161 642 996 440 Ö
906533187938298969649928 516 003 704 476 137 795 166 849 228 Ö
875

Exercises

1. An Eulerian number, denoted [
n
k
_, gives the number of permutations with k increasing runs of 

elements. For example, for n = 3 the permutations of {1,2,3} contain four increasing runs of length 1, 

namely {1,3,2}, {2,1,3}, {2,3,1}, and {3,1,2}. Hence, [
3

1

_ = 4.

In[1]:= Permutations@81, 2, 3<D

Out[1]= 881, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

This can be programmed using the following recursive definition (Graham, Knuth, and Patashnik 
1994), where n and k are assumed to be integers:

[
n
k
_ = Hk + 1L [

n - 1

k
_ + Hn - kL [

n - 1

k - 1

_, for n > 0,

[
0

k
_ =

1 k = 0

0 k � 0.

Create a function EulerianNumberAn, kE. You can check your work against Table 7.2 which 

displays the first few Eulerian numbers.
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Table 7.2. Eulerian number triangle

[
n
0

_ [
n
1

_ [
n
2

_ [
n
3

_ [
n
4

_ [
n
5

_ [
n
6

_ [
n
7

_ [
n
8

_

0 1

1 1 0

2 1 1 0

3 1 4 1 0

4 1 11 11 1 0

5 1 26 66 26 1 0

6 1 57 302 302 57 1 0

7 1 120 1191 2416 1191 120 1 0

8 1 247 4293 15 619 15 619 4293 247 1 0

Because of the triple recursion, you will find it necessary to use a dynamic programming implemen-
tation to compute any Eulerian numbers of even modest size. 

Hint: Although the above formulas will compute it, you can add the following rule to simplify some 
of the computation:

[
n
k
_ = 0, for k ¥ n

2. Using dynamic programming is one way to speed up the computation of the Fibonacci numbers, 
but another is to use a different algorithm. A much more efficient algorithm is based on the follow-
ing identities.

F1 = 1

F2 = 1

F2n = 2Fn-1Fn + Fn
2, for n ¥ 1

F2n+1 = Fn+1
2 + Fn

2, for n ¥ 1

Program a Fibonacci number generating function using these identities.

3. You can still speed up the code for generating Fibonacci numbers in the previous exercise by using 
dynamic programming. Do so, and construct tables like those in this section, giving the number of 
additions performed for various n by the two programs you have just written.

4. Calculation of the Collatz numbers, as described in Exercise 6 from Section 6.2, can be implemented 
using recursion and sped up by using dynamic programming. Using recursion and dynamic 
programming, create the function collatz@n, iD, which computes the ith iterate of the Collatz 
sequence starting with integer n. Compare its speed with that of your original solution.
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7.4 Classical examples
Merge sort
Sorting  the  elements  of  a  list  is  one  of  the  most  common  and  important  tasks  in  computer
science.  There  are  quite  a  few well-studied algorithms that  have been developed for  performing
various types of sorting. These include selection sort, insertion sort, bubble sort, quick sort, heap
sort,  merge  sort,  and  many  others.  We  have  already  looked  at  a  rather  primitive  list  sorting
algorithm in  Section 4.3  and some elementary  sorting algorithms in  Section 6.3.  In  this  section,
we will develop an algorithm for merge sort, which is a classical divide-and-conquer algorithm. 

The procedure for merge sort consists of three basic steps:
1. split the original list into two parts of roughly equal size;

2. sort each part recursively;

3. finally, merge the two sorted sublists.

We  will  start  with  the  last  step  first  –  creating  a  function  merge  that  takes  two  lists,  each
assumed  to  be  sorted,  and,  using  recursion,  produces  a  single  merged,  sorted  list.  First  we  deal
with the cases of when either of the two lists is empty.

In[1]:= merge@lis_List, 8<D := lis

merge@8<, lis_ListD := lis

The recursion then is on the tail of the sublists. We use the triple blank to pattern match ra  and
rb here so that they can represent zero, one, or more arguments.

In[3]:= merge@8a_, ra___<, 8b_, rb___<D :=

If@a § b,
Join@8a<, merge@8ra<, 8b, rb<DD,
Join@8b<, merge@8a, ra<, 8rb<DD

D

Here are several test cases.

In[4]:= merge@81, 4, 7<, 82, 6, 9, 14<D

Out[4]= 81, 2, 4, 6, 7, 9, 14<

In[5]:= merge@814<, 82, 5, 7, 8<D

Out[5]= 82, 5, 7, 8, 14<

Now we turn to the sorting function. This too will  be defined recursively by first dividing the
list  into  two  sublists,  performing  the  sort  on  each  sublist  and  then  merging  these  two  sorted
sublists  using  the  above  merge  function.  Here  are  the  two  base  cases:  the  empty  list  and  a  list
with a single element in it.
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In[6]:= MergeSort@8<D := 8<;
MergeSort@8x_<D := 8x<;

Here is the recursion.

In[8]:= MergeSort@lis_ListD := ModuleB:div = FloorB
Length@lisD

2
F>,

merge@

MergeSort@Take@lis, divDD, MergeSort@Drop@lis, divDDDF

Let  us  look  at  a  few  test  cases  to  check  for  correctness  and  get  a  sense  of  the  efficiency  of  our
program.

In[9]:= vecI = RandomInteger@81, 20<, 20D

Out[9]= 86, 20, 5, 5, 4, 2, 18, 19, 20,
11, 7, 11, 5, 10, 15, 6, 9, 10, 6, 2<

In[10]:= MergeSort@vecID

Out[10]= 82, 2, 4, 5, 5, 5, 6, 6, 6, 7,
9, 10, 10, 11, 11, 15, 18, 19, 20, 20<

In[11]:= vecR = RandomReal@80, 1<, 1000D;

In[12]:= Timing@
Block@8$RecursionLimit = ¶<,
MergeSort@vecRD;

DD

Out[12]= 80.083562, Null<

Notice the need to increase the built-in recursion limit for larger computations. This limitation in
our  current  definitions  is  due  to  the  facts  that  both  merge  and  MergeSort  use  recursion  and
that  MergeSort  has  a  double  recursive  call  in  it.  In  comparison,  the  built-in  Sort  function,
which uses  a  modified  merge  sort,  is  optimized for  dealing with  large  arrays  of  numbers  and is
much, much faster.

In[13]:= Timing@Sort@vecRD;D

Out[13]= 80.000125, Null<

Not  surprisingly,  Sort  can  perform  this  computation  about  three  orders  of  magnitude  faster
than our MergeSort for lists of this size. The double recursion of MergeSort together with the
recursion in the auxiliary merge  function has come at a fairly steep cost. The exercises will give
you a chance to refine the MergeSort and improve its efficiency.
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Run-length encoding
We now turn to another,  somewhat more involved example – programming run-length encod-
ing.  runEncode  implements  a  method  commonly  used  to  compress  large  amounts  of  data  in
those cases where the data are likely to contain long sequences (“runs”) of the same value. A good
example is the representation of video images in a computer as collections of color values for the
individual  dots,  or  pixels,  in  the  image.  Since  video  images  often  contain  large  areas  of  a  single
color,  this  representation  may  lead  to  lists  of  hundreds,  or  even  thousands  of  occurrences  of
identical  color  values,  one  after  another.  Such  a  sequence  can  be  represented  very  compactly
using just two numbers, the color value and the length of the run.
runEncode  compresses a list by dividing it into runs of occurrences of a single element, and

returns a list of the runs, each represented as a pair containing the element and the length of its
run. So the following list,

{9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5}

should produce the following encoding.

889, 5<, 84, 1<, 83, 4<, 85, 6<<

Given a list,  lis,  we just assume that runEncodeARestAlisEE  gives the compressed form of the

tail of lis (call it res), and ask ourselves: how can we compute runEncodeAlisE? Let x be lis@@1DD,

and consider the cases:
1. We define what runEncode should do in the two base cases: when the list is empty and 

when the list consists of only one element.

In[14]:= runEncode@8<D := 8<
runEncode@8x_<D := 88x, 1<<

2. res might be 8<, if lis has one element. In this case, lis = 8x< and 
runEncodeAlisE = 8x, 1<.

3. If the length of lis is greater than one, res has the form 99 y, k=, …=, and there are two 

cases:

Ê y = x: runEncodeAlisE = 99 y, k + 1=, …=

Ê y � x: runEncodeAlisE = 98x, 1<, 9 y, k=, …=

In[16]:= runEncode@8x_, res___<D := Module@8R = runEncode@8res<D, p<,
p = First@RD;
If@x ã First@pD,
Join@88x, pP2T + 1<<, Rest@RDD,
Join@88x, 1<<, RDDD
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In[17]:= runEncode@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[17]= 889, 5<, 84, 1<, 83, 4<, 85, 6<<

This can be made a lot clearer by replacing the last clause above with a transformation rule.

In[18]:= runEncodeT@8x_, res__<D :=

runEncodeT@8res<D ê.88y_, k_<, s___< Ø

If@x == y, 88x, k + 1<, s<, 88x, 1<, 8y, k<, s<D

In[19]:= runEncodeT@8<D := 8<
runEncodeT@8x_<D := 88x, 1<<

In[21]:= runEncodeT@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[21]= 889, 5<, 84, 1<, 83, 4<, 85, 6<<

Mathematica  contains a function Split  which effectively does run-length encoding, although
it represents the output in a slightly different form from our runEncode functions.

In[22]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[22]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

You could easily convert the output of Split  to that produced by our runEncode functions by
mapping the appropriate pure function.

In[23]:= Map@First@Tally@ÒDD &, %D

Out[23]= 889, 5<, 84, 1<, 83, 4<, 85, 6<<

We leave it as an exercise to go in the other direction, that is, convert the output of our runEnÖ
code function to that produced by Split.

Finally, we should mention some efficiency issues. Each of the run-length encoding implemen-
tations presented in this section is reasonably fast for relatively small inputs, vectors of length less
than  a  few  hundred.  But  for  larger  vectors  and  for  certain  cases,  they  get  quite  bogged  down,
mostly due to the deep recursion needed in these cases. This can be seen quite plainly as follows:

In[24]:= data = Range@300D;

In[25]:= runEncode@dataD

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

Join::heads : Heads List and If at positions 1 and 2 are expected to be the same. à

Out[25]= If@1 ã 82, 1<, Join@881, p$191261P2T + 1<<, Rest@R$191261DD,
Join@881, 1<<, R$191261DD

A  possible  solution  would  be  to  acknowledge  the  deep  recursion  here  and  increase  the  built-in
recursion limit.
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In[26]:= Block@8$RecursionLimit = ¶<,
Timing@runEncode@dataD;DD

Out[26]= 80.005932, Null<

But  trying  larger  examples  shows  that  the  underlying  algorithm,  although  mostly  linear  in  the
size of the input, is quite slow for input as small as about 10 000 in length.

In[27]:= BlockA8$RecursionLimit = ¶<,

TableATimingArunEncodeARangeA2k 103EE;E@@1DD, 8k, 0, 3<EE

Out[27]= 80.041358, 0.10847, 0.393503, 1.55499<

In such cases it is best to rethink your algorithm and either try to refine it or find a different and
better  implementation.  In  the  case  of  run-length  encoding,  a  more  direct,  functional  approach
proves  to  be  much  more  efficient.  Although  the  following  code  does  not  use  recursion,  we
present  it  here  anyway  so  the  reader  can  compare  it  with  the  recursive  functions  and  perform
some efficiency tests on the various implementations.

Here is an example list we will use to prototype the code.

In[28]:= vec = 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<;

First take overlapping pairs from vec.

In[29]:= Partition@vec, 2, 1D

Out[29]= 889, 9<, 89, 9<, 89, 9<, 89, 9<, 89, 4<, 84, 3<, 83, 3<, 83, 3<,
83, 3<, 83, 5<, 85, 5<, 85, 5<, 85, 5<, 85, 5<, 85, 5<<

Each run ends at the position at which a pair from the above partition contains different elements.

In[30]:= end = Flatten@Position@%, 8a_, b_< ê; a � bDD

Out[30]= 85, 6, 10<

We have to add the positions at the beginning and at the end of the list.

In[31]:= end = Join@80<, end, 8Length@vecD<D

Out[31]= 80, 5, 6, 10, 16<

Here is the ending position paired up with the next ending position for each run.

In[32]:= Partition@end, 2, 1D

Out[32]= 880, 5<, 85, 6<, 86, 10<, 810, 16<<

To  indicate  where  the  run  starts,  not  where  the  previous  run  ended,  we  add  1  to  each  first
coordinate.

In[33]:= runs = Map@Ò + 81, 0< &, %D

Out[33]= 881, 5<, 86, 6<, 87, 10<, 811, 16<<
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Now each pair from runs  consists of the starting position and the run length. We can use these
pairs as the second argument to Take  as in the following example.

In[34]:= Take@8a, b, c, d, e<, 83, 5<D

Out[34]= 8c, d, e<

So, finally, here is the list of runs.

In[35]:= Map@Take@vec, ÒD &, runsD

Out[35]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

Here then is the function split that produces output identical to the built-in Split.

In[36]:= split@lis_D := Module@8end, t, runs<,
end =
Flatten@Position@Partition@lis, 2, 1D, 8a_, b_< ê; a � bDD;

t = Partition@Join@80<, end, 8Length@lisD<D, 2, 1D;
runs = Map@Ò + 81, 0< &, tD;
Map@Take@lis, ÒD &, runsDD

In[37]:= split@vecD

Out[37]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

This implementation is extremely efficient. For example, here is a binary vector weighted more
heavily with ones.

In[38]:= data = RandomChoiceA8.25, .75< Ø 80, 1<, 105E;

In[39]:= Timing@split@dataD;D@@1DD

Out[39]= 0.386471

By  comparison,  we  see  that  our  split  is  only  about  one  order  of  magnitude  slower  than  the
built-in function, which is optimized for such tasks.

In[40]:= Timing@Split@dataD;D@@1DD

Out[40]= 0.01539

And here is a quick check to make sure our result is consistent with the built-in function.

In[41]:= split@dataD == Split@dataD

Out[41]= True
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Exercises
1. Modify one of the runEncode functions so that it produces output in the same form as the built-in 

Split function.

In[1]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[1]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

2. A slightly more efficient version of runEncode uses a three-argument auxiliary function.

runEncode@8<D := 8<
runEncode@8x_, r___<D := runEncode@x, 1, 8r<D

runEncodeAx, k, 8r<E computes the compressed version of 8x, x, x, …, x, r<, where the xs 

are given k times. Define this three-argument function. Using the Timing function, compare the 
efficiency of this version with our earlier version; be sure to try a variety of examples, including lists 
that have many short runs and ones that have fewer, but longer runs. Use Table to generate lists 
long enough to see any difference in speed.

3. Write the function runDecode, which takes an encoded list produced by runEncode and returns 
its unencoded form.

In[2]:= runDecode@889, 5<, 84, 1<, 83, 4<, 85, 6<<D

Out[2]= 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<

4. The MergeSort function defined in this section becomes quite slow for moderately sized lists. 
Perform some experiments to determine if the bottleneck is caused mostly by the auxiliary merge 
function or the double recursion inside MergeSort itself. Once you have identified the cause of the 
problem, try to rewrite MergeSort to overcome the bottleneck issues.
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8

Numerics
Types of numbers · Digits and number bases · Random numbers · Precision and accuracy · 

Representation of approximate numbers · Exact vs. approximate numbers · High precision vs. 
machine precision · Computations with mixed number types · Working with precision and 
accuracy · Arrays of numbers · Sparse arrays · Packed arrays · Newton’s method revisited · 

Radius of gyration of a random walk · Statistical tests

Of the many data types that are used in programming – numbers, strings, symbols, lists – num-
bers are perhaps the most familiar.  You can work with all  kinds of  numbers in Mathematica,  but
what distinguishes it from traditional programming languages and other computational systems
is  that  with  it  you  can  operate  on  numbers  of  any  size  and  to  any  degree  of  precision.  In  this
chapter  we  will  explore  some  of  the  issues  related  to  working  with  numerical  quantities  and
show how you can incorporate these ideas into programs that  involve numerical  computations
to gain greater control over the precision and accuracy of your results as well  as to improve the
efficiency of your numerical computations and programs.

8.1 Numbers in Mathematica
One  of  the  first  things  you  will  notice  as  you  start  using  Mathematica  is  the  manner  in  which  it
treats  numbers  compared  with  other  systems  such  as  calculators,  traditional  programming
languages, and other technical computing software. In most traditional programming languages,
you must declare the type of number your functions can take as an argument. Although Mathemat-
ica automatically handles such details for you an understanding of the different number types and
how they invoke different algorithms is helpful for taking full advantage of Mathematica’s numeri-
cal capabilities and for writing efficient programs.



Mathematica operates differently depending upon the type of input you give it. For example, the
following two inputs each compute sinHp ê 3L but something quite different results.

In[1]:= SinB
p

3
F

Out[1]=
3

2

In[2]:= SinB
p

3.0
F

Out[2]= 0.866025

Not only are different kinds of output returned, but Mathematica uses entirely different algorithms
for these two computations. In the first case, it looks up identities involving the sine function and
multiples  of  p ê 3  and  applies  the  appropriate  transformation  rule  to  give  an  algebraic  result.  In
the  second  example,  because  a  floating-point  number  is  involved  in  the  input,  a  numerical
routine (a series expansion for sine) is used and the computation is carried out to insure a result
with  the  same  precision  as  the  input.  In  the  first  case,  the  exact  computation  is  performed  in
software; in the second case, most of the computation is done in the hardware of your computer.

Another  important  numerical  feature  involves  computations  with  high-precision  numbers.
When  you  need  to,  you  can  raise  the  number  of  digits  of  precision  of  the  numbers  with  which
you are working. For example, this computes p to 200-digit precision.

In[3]:= N@p, 200D

Out[3]= 3.141592653589793238462643383279502884197169399375105820974Ö
9445923078164062862089986280348253421170679821480865132823Ö
0664709384460955058223172535940812848111745028410270193852Ö
11055596446229489549303820

You  can  extend  such  arbitrary-precision  computations  to  Mathematica’s  built-in  functions.  Con-

sider  the  numerical  solution  of  the  van  der  Pol  equation  x££HtL- 1
5
I1 - x2HtLM x£HtL+ xHtL = 0  with

the given initial conditions.

In[4]:= soln = NDSolveA9x££@tD - 1 ê 5 I1 - x@tD2M x£@tD + x@tD == 0,

x@0D == 1, x£@0D == 0=, x, 8t, 0, 30<E

Out[4]= 88x Ø InterpolatingFunction@880., 30.<<, <>D<<

The solution is represented as an interpolating function, one that passes through the solution
over the range for t from 0 to 30. Here is a plot of the original function evaluated at this numeri-
cal solution, essentially giving a visual picture of the error in the solution.
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In[5]:= PlotBx££@tD -
1

5
I1 - x@tD2M x£@tD + x@tD ê.soln,

8t, 0, 30<, PlotRange Ø 9-10-5, 10-5=F

Out[5]=
5 10 15 20 25 30

-0.00001

-5.� 10-6

5.� 10-6

0.00001

By increasing the precision of the internal algorithms used to solve this differential equation, we
can get a more precise solution.

In[6]:= soln24 = NDSolveB

:Hx£L£@tD -
1

5
I1 - x@tD2M x£@tD + x@tD == 0, x@0D == 1, x£@0D == 0>,

x, 8t, 0, 30<, WorkingPrecision Ø 26, PrecisionGoal Ø 24F

Out[6]= 88x Ø InterpolatingFunction@
880, 30.000000000000000000000000<<, <>D<<

The plot of the original function evaluated at this higher-precision solution clearly shows much
smaller error obtained with soln24. Note the scale on the vertical axis.

In[7]:= PlotBx££@tD -
1

5
I1 - x@tD2M x£@tD + x@tD ê.soln24,

8t, 0, 30<, PlotRange Ø 9-10-7, 10-7=F

Out[7]=
5 10 15 20 25 30

-1.� 10-7

-5.� 10-8

5.� 10-8

1.� 10-7

Working with numbers and understanding issues of precision and accuracy and the interplay
between your machine’s hardware and software are essential to working with any computational
system or programming language.  In this  chapter  we will  discuss  all  these issues  to help you to
perform efficient computations and write fast code.
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Types of numbers
There are four kinds of numbers represented in Mathematica – integer, rational, real, and complex.
In  addition,  mathematical  constants  like  p  and  ‰  are  symbols  but  with  numerical  properties.
Integers  are  considered  to  be  exact  and  are  represented  without  a  decimal  point;  rational  num-
bers are quotients of integers and are also considered to be exact.

As discussed in Section 2.1,  numbers are atomic expressions, meaning they cannot be broken
down into smaller parts. Use the Head  function to identify the type of number you are working
with.

In[8]:= MapBHead, :3,
22

7
, 3.14, 2.34 + 2.09618 I, p>F

Out[8]= 8Integer, Rational, Real, Complex, Symbol<

Use FullForm to see how Mathematica represents these objects internally.

In[9]:= MapBFullForm, :3,
22

7
, 3.14, 2.34 + 2.09618 I, p>F

Out[9]= 83, Rational@22, 7D, 3.14`, Complex@2.34`, 2.09618`D, Pi<

Rational numbers As can be seen in the above example, Mathematica simplifies rational numbers to
lowest terms and leaves them as exact numbers.

This representation of rational numbers as a pair of integers has one more consequence. If you
need to pattern match with rational numbers it is important to be aware of their internal represen-
tation. For example, trying to pattern match with x_ ê y_ will not work.

In[10]:=
3

4
ê.

x_

y_
Ø 8x, y<

Out[10]=
3

4

But pattern matching instead with Rational works fine.

In[11]:=
3

4
ê.Rational@x_, y_D Ø 8x, y<

Out[11]= 83, 4<

The  pattern  matcher  works  on  the  internal  form  of  expressions.  So  although  two  expressions
may be semantically equivalent, if their underlying structure is different, the pattern matcher will
distinguish between them. In other words, the pattern matcher is syntactic, not semantic.

Real numbers Any number containing a decimal point is classified as a real number in Mathemat-
ica.  These  numbers  are  not  considered exact  and hence are  often referred to  as  approximate  num-
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bers.  This often leads to confusion for new users of Mathematica.  You may know that the number
6.0  is  identical  to  the  number  6,  from  a  mathematical  perspective,  but  from  the  perspective  of  the
floating-point unit (FPU) of your computer they are quite different both in terms of their represen-
tation and in terms of the algorithms that are used to do arithmetic with them. 

One  way  to  see  that  these  numbers  are  different  is  to  compare  them  using  Equal  (ã)  and
SameQ(===). 

In[12]:= 6 ã 6.0

Out[12]= True

In[13]:= 6 === 6.0

Out[13]= False

Equal  effectively converts the integer 6  to an approximate number and then compares the last
seven binary digits (roughly the last two decimal digits) of the two numbers. SameQ, on the other
hand, checks to see if they are identical expressions. Since one is an exact integer and the other is
an approximate real number, SameQ returns False.

We  will  have  much  more  to  say  about  approximate  numbers  including  a  full  discussion  of
precision and accuracy in Section 8.2.

Complex  numbers Complex  numbers  are  of  the  form  a + bi,  where  a  and  b  are  any  numbers  –

integer, rational, or real. Mathematica represents -1  by the symbols I or Â.

In[14]:= z = 3 + 4 Â

Out[14]= 3 + 4 Â

In[15]:= Head@zD

Out[15]= Complex

In[16]:= FullForm@zD
Out[16]//FullForm=

Complex@3, 4D

You can add and subtract complex numbers.

In[17]:= z + H2 - ÂL

Out[17]= 5 + 3 Â

You can find the real and imaginary parts of any complex number.

In[18]:= 8Re@zD, Im@zD<

Out[18]= 83, 4<
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The absolute value of  any number is  its  distance to the origin in the complex plane.  The conju-
gate  can  be  thought  of  as  the  reflection  of  the  complex  number  in  the  real  axis  of  the  complex
plane.

In[19]:= 8Conjugate@zD, Abs@zD<

Out[19]= 83 - 4 Â, 5<

The phase angle is given by the argument.

In[20]:= Arg@4 ÂD

Out[20]=
p

2

Each of these properties of complex numbers can be visualized geometrically, as shown in Figure
8.1.

Figure 8.1. Geometric representation of complex numbers in the plane.

z = a + Â b

†z§

z� = a - Â b

argHzL

a
Re

b

Im

For purposes of pattern matching, complex numbers are quite similar to rational numbers. A
complex  number  z = a + b Â  is  treated  as  a  single  object  for  many  operations,  and  is  stored  as
ComplexAa, bE, hence x_ +Â y_ will not match with a complex number.  

In[21]:= MatchQ@2 - 3 I, a_ + I b_D

Out[21]= False

In[22]:= FullForm@2 - 3 ID
Out[22]//FullForm=

Complex@2, -3D
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To  match  a  complex  number  z,  use  the  pattern  Complex@x_, y_D  (or  z_Complex)  and  use
Re@zD  and  Im@zD  to  extract  the  real  and  imaginary  parts.  This  is  particularly  important  if  you
need  to  plot  complex  numbers  in  the  plane.  For  example,  here  are  the  roots  of  a  cyclotomic
polynomial.

In[23]:= Clear@zD;
roots = NSolve@Cyclotomic@11, zD, zD

Out[24]= 88z Ø -0.959493 - 0.281733 Â<, 8z Ø -0.959493 + 0.281733 Â<,
8z Ø -0.654861 - 0.75575 Â<, 8z Ø -0.654861 + 0.75575 Â<,
8z Ø -0.142315 - 0.989821 Â<, 8z Ø -0.142315 + 0.989821 Â<,
8z Ø 0.415415 - 0.909632 Â<, 8z Ø 0.415415 + 0.909632 Â<,
8z Ø 0.841254 - 0.540641 Â<, 8z Ø 0.841254 + 0.540641 Â<<

Using a replacement rule, the values of each root are substituted into the list 8Re@zD, Im@zD<
to create coordinate points in the plane.

In[25]:= pts = 8Re@zD, Im@zD< ê. roots

Out[25]= 88-0.959493, -0.281733<, 8-0.959493, 0.281733<,
8-0.654861, -0.75575<, 8-0.654861, 0.75575<,
8-0.142315, -0.989821<, 8-0.142315, 0.989821<,
80.415415, -0.909632<, 80.415415, 0.909632<,
80.841254, -0.540641<, 80.841254, 0.540641<<

In[26]:= Graphics@8PointSize@MediumD, Point@ptsD<, Axes Ø AutomaticD

Out[26]=
-0.5 0.5

-1.0

-0.5

0.5

1.0

Mathematical  constants Built-in  constants  such  as  p,  ‰,  Â,  and  Degree  are  not  treated  as  explicit
numbers by Mathematica.

In[27]:= 8Head@pD, NumberQ@pD<

Out[27]= 8Symbol, False<

These mathematical constants have an attribute that essentially alerts Mathematica to the fact that
they  are  numeric  in  nature.  Here  is  a  list  of  all  those  built-in  symbols  that  have  the  Constant
attribute; this uses FunctionsWithAttribute defined in Section 5.6.
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In[28]:= FunctionsWithAttribute@ConstantD

Out[28]= 8Catalan, ChampernowneNumber, Degree, E, EulerGamma,
Glaisher, GoldenRatio, Khinchin, MachinePrecision, Pi<

All  mathematical  constants  and  any  expressions  that  are  explicit  numbers  are  considered
numeric and will return a value of True  when NumericQ is applied to them.

In[29]:= Map@NumericQ, 8Catalan, E, Pi<D

Out[29]= 8True, True, True<

For purposes of comparison, Mathematica  converts any symbol with this attribute to a real num-
ber, using what it perceives to be necessary precision.

In[30]:= RandomReal@8f, ‰<D

Out[30]= 1.73228

In[31]:= ‰p > p‰

Out[31]= True

In[32]:= NumericQ@p‰D

Out[32]= True

Note, in particular, that the symbol ¶ is not numeric.

In[33]:= NumericQ@¶D

Out[33]= False

If  you  have  to  distinguish  between  explicit  numbers  and  symbols  that  represent  numbers,  then
use NumberQ .

In[34]:= Map@NumberQ, 83.14, p<D

Out[34]= 8True, False<

Digits and number bases
To extract a list of the digits of a number use either IntegerDigits or RealDigits .

In[35]:= IntegerDigits@1293D

Out[35]= 81, 2, 9, 3<

In[36]:= RealDigits@N@EulerGammaDD

Out[36]= 885, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 9<, 0<

Numbers in base 10  can be displayed in other bases by means of the BaseForm  function. For
example, the following displays 18 in base 2.
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In[37]:= BaseForm@18, 2D
Out[37]//BaseForm=

100102

The operator b^ ^n takes the number n in base b and converts it to base 10.

In[38]:= 2^^10010

Out[38]= 18

The letters of the alphabet are used for numbers in bases larger than 10. For example, here are
the numbers 1 through 20 in base 16.

In[39]:= Table@BaseForm@j, 16D, 8j, 1, 20<D

Out[39]= 8116, 216, 316, 416, 516, 616, 716, 816, 916, a16,
b16, c16, d16, e16, f16, 1016, 1116, 1216, 1316, 1416<

Numbers  other  than integers  can be represented in  bases  different  from 10.  Here  are  the first
few digits of p in base 2.

In[40]:= BaseForm@N@pD, 2D
Out[40]//BaseForm=

11.001001000011111112

Recall that Mathematica is only displaying six significant decimal digits while storing quite a few
more. In the exercises you are asked to convert the base 2 representation back to base 10. You will
need  the  digits  from  the  base  2  representation,  which  are  obtained  with  the  RealDigits
function.

In[41]:= RealDigits@N@pD, 2D

Out[41]= 881, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,

1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0<, 2<

The 2 in this last result indicates where the binary point is placed and can be stripped off this list
by wrapping First around the expression RealDigits@N@pD, 2D.

You are not restricted to integral bases such as in the previous examples. The base can be any
real number greater than one. For example:

In[42]:= RealDigits@N@pD, N@GoldenRatioDD

Out[42]= 881, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0<, 3<
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Random numbers
Statistical work and numerical experimentation often require random numbers to test hypothe-
ses. Several different random number functions are used to generate random numbers in various
ranges, domains, and distributions.

Using  RandomReal  without  any  arguments  will  generate  a  uniformly  distributed  random
real number between 0 and 1.

In[43]:= RandomReal@D

Out[43]= 0.225009

RandomReal  can be given a range of numbers. For example, this generates a random real in the
range 0 to 100.

In[44]:= RandomReal@80, 100<D

Out[44]= 41.6008

Use a second argument to create vectors or arrays of random numbers.

In[45]:= RandomReal@8-10, 10<, 812<D

Out[45]= 83.48021, 7.14373, -4.43218, 2.47535, 4.67863, -4.43861,
4.85942, 9.88515, 6.85049, -0.90122, -1.10244, -2.11616<

In[46]:= RandomReal@1, 85, 5<D êê MatrixForm
Out[46]//MatrixForm=

0.830433 0.144071 0.161864 0.177618 0.541445
0.993166 0.786002 0.550678 0.62231 0.790748
0.683565 0.853041 0.481592 0.0215971 0.584457
0.481247 0.41259 0.567719 0.639649 0.231998
0.224393 0.266376 0.83076 0.526745 0.716633

Similar functions are available for generating random integers and complex numbers; they have
the same syntax as RandomReal .

In[47]:= RandomInteger@8-100, 100<, 88<D

Out[47]= 8-26, 66, -31, 26, 82, -54, 17, 7<

In[48]:= RandomComplex@D

Out[48]= 0.273891 + 0.242711 Â

A  good  random  number  generator  will  distribute  random  numbers  evenly  over  many  trials.
For example, this generates a list of 10 000 integers between 0 and 9.

In[49]:= numbers = RandomInteger@80, 9<, 810 000<D;

To  plot  of  the  frequency  with  which  each  of  the  digits  0  through  9  occur  start  by  tallying  the
frequency of each integer and sorting on the first number in each pair.
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In[50]:= snumbers = Sort@Tally@numbersDD

Out[50]= 880, 1004<, 81, 983<, 82, 1051<, 83, 959<, 84, 954<,
85, 964<, 86, 1024<, 87, 1023<, 88, 1041<, 89, 997<<

In[51]:= BarChart@Map@Last, snumbersD, ChartLabels Ø Range@0, 9D,
ChartElementFunction Ø "FadingRectangle"D

Out[51]=

Each of the numbers 0 through 9 occurs roughly one-tenth of the time. You would not want these
numbers to occur exactly one-tenth of the time, as there would be no randomness in this. In fact,
for a uniform distribution of the numbers 0 through 9, any sequence of 10 000 digits is equally as
likely  to  occur  as  any other  sequence  of  10 000  digits.  A sequence  of  10 000  numbers  that  con-
tains exactly 1000 occurrences of the digit 0 followed by 1000 occurrences of the digit 1, followed
by  1000  occurrences  of  the  digit  2,  etc.,  is  no  more  likely  than  the  sequence  that  contains  ten
thousand 7s, for example.

In  addition  to  working  with  uniformly  distributed  random  numbers  (the  default  for
RandomReal), you can also work with any of the built-in distributions or even your own, user-
defined distribution. RandomVariate  is  designed for generating numbers for any distribution,
continuous  or  discrete,  univariate  or  multivariate.  For  example,  suppose  you  wished  to  work
with the normal (or Gaussian) distribution. Here are 2500 points in 3-space, normally distributed
about the origin with standard deviation one.

In[52]:= Graphics3D@88Opacity@0.4D, Sphere@80, 0, 0<, 3D<,
Point@RandomVariate@NormalDistribution@0, 1D, 82500, 3<DD<D

Out[52]=
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This gives ten random numbers using the c2 distribution with four degrees of freedom.

In[53]:= RandomVariate@ChiSquareDistribution@4D, 10D

Out[53]= 83.46865, 6.37075, 8.29378, 5.57685, 1.89799,
2.03538, 1.71713, 8.30217, 1.99303, 0.351816<

Additional  functions are available for generating random samples from lists,  with or without
replacement.  For  example,  RandomChoice  selects  elements  from a  list  with replacement.  That
can be a list of numbers or any arbitrary expressions.

In[54]:= RandomChoice@8"red", "blue", "green"<, 20D

Out[54]= 8red, blue, blue, blue, green, blue, red, red, red, red, green,
blue, red, green, green, blue, green, green, green, green<

Randomly choosing from the list 81, -1< can be used to create step directions in a one-dimen-
sional  random  walk.  A  value  of  1  indicates  a  step  of  unit  length  to  the  right  and  a  value  of  -1

indicates a step to the left. 

In[55]:= RandomChoice@81, -1<, 812<D

Out[55]= 81, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1<

The  random  walk  is  then  created  by  generating  running  sums,  or  accumulating  the  step
directions.

In[56]:= Accumulate@%D

Out[56]= 81, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 4<

In[57]:= walk1D@steps_D := Accumulate@RandomChoice@81, -1<, 8steps<DD

Visualizing  with  ListLinePlot  shows  the  displacement  from  the  origin  on  the  vertical  axis
and the number of steps on the horizontal axis.

In[58]:= ListLinePlot@walk1D@20000DD

Out[58]=

5000 10 000 15 000 20 000

-150

-100

-50

RandomSample,  on the other hand,  selects  without replacement and so its  output is  limited
by the size of the list from which you are selecting. For example, this generates a random permuta-
tion on the first twenty integers.
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In[59]:= RandomSample@Range@20D, 20D

Out[59]= 817, 3, 19, 9, 15, 20, 13, 2,
10, 11, 8, 6, 16, 5, 4, 12, 1, 7, 18, 14<

Weights  can be assigned in both RandomChoice  and RandomSample.  This  chooses ten 0s
and 1s, with a 25% chance of a 0 being chosen and a 75% chance of a 1.

In[60]:= RandomChoice@80.25, 0.75< Ø 80, 1<, 10D

Out[60]= 80, 1, 1, 1, 1, 0, 1, 1, 1, 1<

Using a similar syntax to RandomReal  and RandomInteger, you can create vectors, arrays,
and tensors of random numbers.

In[61]:= RandomChoice@80, 1<, 84, 4<D êê MatrixForm
Out[61]//MatrixForm=

0 0 1 1

0 0 1 1

1 0 0 1

0 1 0 1

Exercises
1. Define a function complexToPolar that converts complex numbers to their polar representa-

tions. Then, convert the numbers 3 + 3Â and ‰pÂê3 to polar form.

2. Using the built-in Fold  function, write a function convertAlis, bE that accepts a list of digits in 

any base b (less than 20) and converts it to a base 10 number. For example, 11012 is 13 in base 10, so 
your function should handle this as follows:

In[1]:= convert@81, 1, 0, 1<, 2D

Out[1]= 13

3. Create a function to compute the sum of the digits of any integer. Write an additional rule to give 
the sum of the base-b digits of an integer. Then use your function to compute the Hamming weight of 
any integer: the Hamming weight of an integer is given by the number of 1s in the binary representa-
tion of that number.

4. Write a function sumsOfCubes@nD that takes a positive integer argument n and computes the 
sums of cubes of the digits of n (Hayes 1992).

5. Use NestList to iterate the process of summing cubes of digits, that is, generate a list starting with 
an initial integer of the successive sums of cubes of digits. For example, starting with 4, the list 
should look like: 84, 64, 280, 520, 133, …<. Note, 64 = 4

3, 280 = 6
3 + 4

3, etc. Extend the list 
for at least 15 values and make an observation about any patterns you notice. Experiment with other 
starting values.
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6. Binary shifts arise in the study of computer algorithms because they often allow you to speed up 
calculations by operating in base 2 or in bases that are powers of 2. Try to discover what a binary 
shift does by performing the following shift on 24 (base 10). First get the integer digits of 24 in base 2.

In[2]:= IntegerDigits@24, 2D

Out[2]= 81, 1, 0, 0, 0<

Then, do a binary shift, one place to the right.

In[3]:= RotateRight@%D

Out[3]= 80, 1, 1, 0, 0<

Finally, construct an integer from these binary digits and convert back to base 10.

In[4]:= FromDigits@%, 2D

Out[4]= 12

Experiment with other numbers (including both odd and even integers) and make some conjectures.

7. The survivor@nD function from Section 5.8 can be programmed using binary shifts. This can be 
done by rotating the base 2 digits of the number n by one unit to the left and then converting this 
rotated list back to base 10. For example, if n = 10, the base 2 representation is 10102; the binary shift 
gives 01012; converting this number back to base 10 gives 5, which is the output to survivor@5D. 
Program a new survivor function using the binary shift.

8. Using the Dice function from Exercise 9 in Section 4.2, create a function RollDice@D that “rolls” 
two dice and displays them side-by-side. Then create an additional rule, RollDice@nD, that rolls a 
pair of dice n times and displays the result in a list or row.

9. Create functions walk2D and walk3D that generate two-dimensional and three-dimensional 
lattice walks, respectively. For example, the two-dimensional case can use compass directions north, 
south, east, west that are represented by the list 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<. 

10. A surprisingly simple pseudorandom number algorithm is the linear congruential method. It is quite 
easy to implement and has been studied extensively. Sequences of random numbers are generated 
by a formula such as the following:

xn+1 = xn b + 1 Hmod mL.

The starting value x0 is the seed, b is the multiplier, and m is the modulus. Recall that 7 mod 5 is the 
remainder upon dividing 7 by 5.

In[5]:= Mod@7, 5D

Out[5]= 2

Implement the linear congruential method and test it with a variety of numbers m and b. If you find 
that the generator gets in a loop easily, try a large value for the modulus m. See Knuth (1997) for a 
full treatment of random number generating algorithms.

11. Implement a quadratic congruential random number generator. The iteration is given by the following, 
where a, b, and c are the parameters, m is the modulus, and x0 is the starting value:

xn+1 = Ia xn
2 + b xn + cM mod m
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12. John von Neumann, considered by many to be the “father of computer science,” suggested a 
random number generator known as the middle-square method. Starting with a ten-digit integer, 
square the initial integer and then extract its middle ten digits to get the next number in the 
sequence. For example, starting with 1234567890, squaring it produces 1524157875019052100. The 
middle digits are 1578750190, so the sequence starts out 1234567890, 1578750190, 4521624250, …. 
Implement a middle square random number generator and then test it on a 1000-number sequence. 
Was the “father of computer science” a good random number generator?

13. Information theory, as conceived by Claude Shannon in the 1940s and 1950s, was originally inter-
ested in maximizing the amount of data that can be stored and retrieved over some channel such as 
a telephone line. Shannon devised a measure, now called the entropy, that gives the theoretical 
maxima for such a signal. Entropy can be thought of as the average uncertainty of a single random 
variable and is computed by the following, where pHxL is the probability of event x over a domain X:

HHXL = -�xœX pHxL log2 pHxL

Generate a plot of the entropy (built into Mathematica as Entropy) as a function of success probabil-
ity. You can simulate n trials of a coin toss with probability p using:

RandomVariate@BernoulliDistribution@pD, nD

See Manning and Schütze (1999) for a discussion of entropy in the context of information theory 
generally and in natural language processing in particular. Also, see Claude Shannon’s very readable 
original paper on the mathematical theory of communication (Shannon 1948).

8.2 Numerical computation
Precision and accuracy
When working with real numbers in any programming language, you are working with inexact,
or  approximate  quantities.  In  Mathematica,  any  number  that  contains  a  decimal  point  is  consid-
ered to be an approximate number. An approximate number can be specified explicitly,  such as
1.57, or you can use N  to get approximations to exact quantities.

In[1]:= e = N@‰D

Out[1]= 2.71828

The precision  of  an approximate number provides  a  measure of  the relative  uncertainty in the
value of that number. This can be represented as the number of significant decimal digits in that
number. Accuracy gives a measure of the absolute size of the uncertainty in the value of a number.
It can be thought of as the number of these digits to the right of the decimal point.

In[2]:= 8Precision@eD, Accuracy@eD<

Out[2]= 8MachinePrecision, 15.5203<

For an exact number, these are both infinite. 
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In[3]:= 8Precision@3 ê 4D, Accuracy@3 ê 4D<

Out[3]= 8¶, ¶<

For arbitrary-precision numbers, you are measuring the size of the relative and absolute errors.

In[4]:= a = 22.111111111111111111;
8Precision@aD, Accuracy@aD<

Out[5]= 819.3446, 18.<

The  symbol  MachinePrecision  is  used  to  indicate  a  machine-precision  number.  There  is
no measure of the uncertainty of machine-precision numbers since machine-precision arithmetic
does not keep track of significance. As we will see, this is in contrast to arbitrary-precision num-
bers for which Mathematica is able to track the uncertainty. 

To  see  the  effective  number  of  digits  in  the  representation  of  a  machine  number  on  your
computer, evaluate $MachinePrecision .

In[6]:= $MachinePrecision

Out[6]= 15.9546

Numbers  that  can  be  operated  with  on  your  computer’s  hardware  (typically  the  FPU)  are
called  machine  numbers.  Typically,  64  binary  digits  (IEEE  double  floats)  are  needed  to  specify  a
machine  number:  one  for  the  sign,  eleven  for  the  exponent,  and  fifty-two  for  the  mantissa
(actually  fifty-three,  since  the  leading  digit  is  implicitly  taken  as  zero).  The  value  of
$MachinePrecision  is H64 - 11L log

10
2, giving machine numbers of about 16 decimal digits.

In[7]:= 53 Log@10, 2D êê N

Out[7]= 15.9546

The  reason  we  refer  to  these  numbers  as  “approximate”  is  that  there  is  some  uncertainty  about
their value. To be more precise about this, an approximate number x is one in which the value of

x  lies  somewhere  inside  of  an  interval  x - d
2

 to  x + d
2

 for  some  uncertainty  d.  A  number  with

precision p is then defined to have uncertainty x 10
-p.

In[8]:= p ê. Solve@d == Abs@xD 10-p, pD
Solve::ifun : Inverse functions are being used by Solve, so some solutions

may not be found; use Reduce for complete solution information. à

Out[8]= :-
LogB d

Abs@xD
F

Log@10D
>

In other words, the precision of a real number x is given by - log
10
Hd ê x L for some uncertainty d.

So we could manually compute the precision of e  above using an uncertainty of 10
-15,  which is

approximately what Mathematica assumes for machine-precision numbers.
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In[9]:= -LogB10,
10-15

Abs@eD
F

Out[9]= 15.4343

On the other hand, a number with accuracy a will have uncertainty d = 10
-a  and hence accuracy

can be expressed as - log
10
HdL.

Another way to think about precision and accuracy involves the notion of scale (Knapp 2001).
If the scale of a number is defined as log

10
n , then you can think of the precision of a number as

being equal to scale + accuracy. The scale is essentially a measure of the size of the logarithm of the
number itself.

In[10]:= scale@x_D := Log@10, Abs@xDD

Looking at a few examples will help to make this more concrete. In this first example, the scale is
zero so precision and accuracy are the same.

In[11]:= x = 1.0;
8InputForm@xD, scale@xD, Accuracy@xD, Precision@xD<

Out[12]= 81., 0., 15.9546, MachinePrecision<

The  number  0.01  is  a  machine-precision  number;  because  of  the  two  digits  to  the  right  of  the
decimal point, its accuracy is increased and its scale is -2.

In[13]:= x = 0.01;
8InputForm@xD, scale@xD, Accuracy@xD, Precision@xD<

Out[14]= 80.01, -2., 17.9546, MachinePrecision<

And  going  in  the  other  direction,  for  the  number  1000.0,  scale  is  increased  and  accuracy
decreased.  Each addition of  a  digit  to the left  of  the decimal point has the effect  of  reducing the
number of significant digits to the right of the decimal point by one.

In[15]:= x = 1000.0;
8InputForm@xD, scale@xD, Accuracy@xD, Precision@xD<

Out[16]= 81000., 3., 12.9546, MachinePrecision<

Representation of approximate numbers
When Mathematica displays numbers in output, the default is to print six digits.

In[17]:= pi = N@pD

Out[17]= 3.14159

Do not assume that typing in what is displayed will result in the same value.
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In[18]:= pi - 3.14159

Out[18]= 2.65359 � 10-6

This seemingly strange behavior – the fact that pi does not appear to be equal to 3.14159 – can be
explained by looking at the internal representation of this expression.

In[19]:= FullForm@piD
Out[19]//FullForm=

3.141592653589793`

The  command  N@pD  causes  Mathematica  to  first  convert  p  to  a  machine-precision  number,  and
then to  display  the  number  of  digits  determined by  the  built-in  output  formatting  rules,  which,
by default,  specify six digits to display in the output. Any computations with this number occur
using the number’s full precision.

Note  that  a  number  mark  `  was  printed  at  the  end  of  the  above  number.  This  is  a  machine-
independent  mark  used  to  indicate  that  this  is  a  machine-precision  number.  When  you  work
with numbers that are not at machine precision, this will be indicated by a number following the
number mark. For example, here is a high-precision number.

In[20]:= N@p, 18D

Out[20]= 3.14159265358979324

The following shows the full internal representation of this number with the precision indicated
by the 18 following the number mark. The extra digits are a result of the adaptive procedure that
N  uses to increase the working precision of internal computations so that the requested precision
can be achieved.

In[21]:= FullForm@%D
Out[21]//FullForm=

3.1415926535897932384626433832795028842`18.

You can use this number mark to set the precision of a number.

In[22]:= x = 1.23`25

Out[22]= 1.230000000000000000000000

In[23]:= 8Precision@xD, Accuracy@xD<

Out[23]= 825., 24.9101<

Similarly, you can set the accuracy using the double number mark.

In[24]:= y = 1.23``25

Out[24]= 1.230000000000000000000000
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In[25]:= 8Precision@yD, Accuracy@yD<

Out[25]= 825.0899, 25.<

In  a  sense,  Mathematica  treats  all  machine  real  numbers  as  having  the  same  precision.  And,
most  significantly,  there  is  no  real  measure  of  how  uncertain  a  machine  number  is  since  the
hardware-dependent machine-precision arithmetic does not keep track of significance. Explicitly
setting the precision with N  or using number marks forces Mathematica  to use significance arith-
metic  and  thus  track  precision  throughout  a  computation.  This  is  not  possible  with  machine-
precision numbers.  So,  even a  number  with three  digits  of  precision is  considered more precise
than  a  machine-precision  number  since  Mathematica  is  able  to  track  its  precision  using  signifi-
cance arithmetic.

Exact vs. approximate numbers
As  described  above,  all  integers  and  rational  numbers  are  considered  exact.  For  complex  num-
bers, if both the real and imaginary parts are exact, then the complex number is treated as exact.

In[26]:= :Precision@7D, PrecisionB
1

9
F, Precision@3 + 4 ID>

Out[26]= 8¶, ¶, ¶<

Exact numbers have more precision than any approximate number. Representing a number with
infinite precision is another way of saying that it is exact. 

As we saw in the example at the beginning of this chapter, this distinction between exact and
approximate  numbers  allows  Mathematica  to  operate  on  expressions  involving  such  numbers
differently.

In[27]:= :CosB
p

4
F, CosB

p

4.0
F>

Out[27]= :
1

2
, 0.707107>

But, in fact, more is true. As far as Mathematica  is concerned, all integers are not created equal. In
stark  contrast  to  programming  languages,  such  as  C  or  Pascal  that  typically  restrict  computa-
tions with integers to 16 or 32 bits (this restricts integers to a magnitude of 216  in the case of 16-bit
integers,  or to a magnitude of  232  in the case of  32-bit  integers),  Mathematica  allows you to com-
pute with integers and rational numbers of arbitrary size. A machine integer is an integer whose
magnitude is small enough to fit into your machine’s natural word size, and to be operated on by
the machine’s instructions, generally on its floating-point processor. Word size means the num-
ber of bits used to represent integers.
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If two integers are to be added, Mathematica  first checks to see if the numbers can be added as
machine integers. On most computers, machine integers typically have a word size of �2

31.  You
can see this using a function defined in the Developer` context.

In[28]:= Developer`MachineIntegerQA231E

Out[28]= False

In[29]:= Developer`MachineIntegerQA231 - 1E

Out[29]= True

You could also see how this  is  dealt  with outside of  Mathematica  by compiling a  C program and
giving it an input that causes an overflow.

In[30]:= cAdd = Compile@88n, _Integer<<, n + 1, CompilationTarget Ø "C"D

Out[30]= CompiledFunction@8n<, n + 1, -CompiledCode-D

The hardware of the machine that this C function is using to do this computation cannot handle
numbers of this size.

In[31]:= cAdd@2^31 - 1D
CompiledFunction::cfne :

Numerical error encountered; proceeding with uncompiled evaluation. à

Out[31]= 2147483648

This number is within range.

In[32]:= cAdd@2^31 - 2D

Out[32]= 2147483647

We will have more to say about compiling functions in Section 12.4.
Arithmetic  operations  on  integers  within  the  word-size  range  can  be  performed  using  the

machine’s own instructions (typically on the machine’s FPU), whereas operations on integers out
of that range must be done by software, which can be less efficient.

If the two numbers to be added are machine integers and Mathematica can determine that their
sum is a machine integer, then the addition is performed at this low level.

If,  on  the  other  hand,  either  of  the  integers  or  their  sum  is  larger  than  the  size  of  a  machine
integer, then Mathematica performs the arithmetic using special algorithms. Integers in this range
are referred to as extended-precision integers. For example, the following computation, although
impossible to execute on most machine FPUs, is handled by Mathematica’s arithmetic algorithms
for operating on extended-precision integers.
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In[33]:= 2256 + 21024

Out[33]= 179769313486231590772930519078902473361797697894230657273 Ö

430081157732675805500963132708477322407536021120113879 Ö

871393357658789768814416622492847430639474124377767893 Ö

424865485276302219601246094119453082952085005768838150 Ö

682342462881589705199778143432586921495693274206093217 Ö

230604120280344292940337537353777152

Rational numbers are treated somewhat similarly to integers in Mathematica  since the rational
number a ê b can be thought of as a pair of integers, and, in fact, as we saw earlier, it is represented
as RationalAa, bE.  In this way, algorithms for exact rational arithmetic will  use integer arith-

metic (either machine or extended) to perform many of the necessary computations.

High precision vs. machine precision
Real numbers (often referred to as “floating-point numbers”) contain decimal points; they are not
considered exact.

In[34]:= 8Head@1.61803D, Precision@1.61803D<

Out[34]= 8Real, MachinePrecision<

In[35]:= 8Head@1.4987349873487454511D,
Precision@1.4987349873487454511D<

Out[35]= 8Real, 19.1757<

In a manner similar to how integers are treated, Mathematica uses different internal algorithms to
do  arithmetic  on  real  numbers,  depending  upon  whether  you  are  using  high-precision  reals  or
not.  Whenever  possible,  arithmetic  operations  on  real  numbers  are  performed  using  machine-
precision (fixed) reals. Real numbers that can be computed at the hardware level of the machine
are referred to as fixed-precision reals. This is seen from the computation of the precision of the
number 1.61803 above; MachinePrecision was returned.

 The number of digits that each machine uses for fixed-precision real numbers is given by the
system variable $MachinePrecision .

In[36]:= $MachinePrecision

Out[36]= 15.9546

Here are the limits on the size of machine numbers with which you can work.

In[37]:= 8$MinMachineNumber, $MaxMachineNumber<

Out[37]= 92.22507 � 10-308, 1.79769 � 10308=
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Creating a compiled C function that simply divides its argument by 10,  shows that the hardware
is restricted to the numbers given above.

In[38]:= div10 = Compile@88x, _Real<<, x ê 10, CompilationTarget Ø "C"D

Out[38]= CompiledFunctionB8x<,
x

10
, -CompiledCode-F

In[39]:= div10A10-308E

CompiledFunction::cfsa :
Argument 1 ê H1000000000000000000000000000000000000000000000000á211à

0000000000000000000000000000000000000000000000000L 
at position 1 should be a machine-size real number. à

Out[39]= 1 ê
1000000000000000000000000000000000000000000000000000000000 Ö

000000000000000000000000000000000000000000000000000000000 Ö

000000000000000000000000000000000000000000000000000000000 Ö

000000000000000000000000000000000000000000000000000000000 Ö

000000000000000000000000000000000000000000000000000000000 Ö

000000000000000000000000

The  limit  imposed  by  $MaxMachineNumber  is  essentially  given  by  21023 * 1.1111 …11  (53  total
binary digits), a number just smaller than 21024. The number 53 comes from the number of binary
digits that are used to specify the mantissa for any floating-point number.

In[40]:= n = NA21024E

Out[40]= 1.797693134862316 � 10308

In[41]:= MantissaExponent@nD

Out[41]= 80.1797693134862316, 309<

In[42]:= Length@FirstüRealDigits@First@%D, 2DD

Out[42]= 53

In[43]:= $MaxMachineNumber

Out[43]= 1.79769 � 10308

As  with  machine  integers  discussed  above,  although  there  is  a  limit  to  the  magnitude  of  the
machine-precision numbers on any given computer, you can still compute with numbers outside
of  this  range.  Real  numbers  larger  than  machine-precision  reals  are  referred  to  as  multiple-,  or
extended-precision reals and arithmetic on such numbers is called multiple-precision arithmetic
or arbitrary-precision floating-point arithmetic. On a machine whose $MachinePrecision  is
16 decimal digits, computations involving real numbers with greater than 16 significant digits will
be performed using arbitrary-precision algorithms.
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When  doing  computations  on  inexact  numbers,  Mathematica  uses  two  different  types  of
arithmetic,  depending upon the  precision of  the  numbers  involved.  Machine-precision floating-
point  arithmetic  is  used  whenever  the  numbers  can  be  handled  in  the  machine’s  hardware
routines. For example:

In[44]:= 8Precision@1.23D, Accuracy@1.23D<

Out[44]= 8MachinePrecision, 15.8647<

In[45]:= 8Sin@1.23D, Precision@Sin@1.23DD, Accuracy@Sin@1.23DD<

Out[45]= 80.942489, MachinePrecision, 15.9803<

Mathematica  represents 1.23  as a machine floating-point number and will use machine arithmetic
on it whenever possible. The accuracy of the sine of this number is a reflection of the fact that this
number is a machine number a bit smaller than 1. 

In the following example, n has smaller accuracy due to the fact that there is an explicit num-
ber of digits to the right of the decimal point and roughly speaking, for machine-precision num-
bers,  the number of digits to the right of the decimal plus the number of digits to the left  of the
decimal should add up to the number of decimal digits given by $MachinePrecision .

In[46]:= n = 12345.6789101112

Out[46]= 12345.7

In[47]:= 8Precision@nD, Accuracy@nD, scale@nD<

Out[47]= 8MachinePrecision, 11.8631, 4.09151<

You can adjust the precision of numbers with SetPrecision, although you should note that
this function will not make an inexact number more exact.

In[48]:= SetPrecisionB
1

3
, 30F

Out[48]= 0.333333333333333333333333333333

Using SetPrecision on an approximate number returns a number that might look odd at first
sight. This happens because SetPrecision is adding digits that are zero in base 2.

In[49]:= SetPrecision@0.6000000000, 20D

Out[49]= 0.59999999999999997780

In fact, Mathematica has created more digits than are displayed.

In[50]:= FullForm@%D
Out[50]//FullForm=

0.59999999999999997779553950749686919152736663818359375`20.
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As an aside,  you can effectively  do fixed-precision computation by setting $MaxPrecision
and $MinPrecision  to the same value. As their names imply, these two global variables limit
the number of digits of precision in arbitrary-precision numbers.

In[51]:= Block@8$MaxPrexision = 4, $MinPrecision = 4<,
Exp@2`4DD êê FullForm

Out[51]//FullForm=

7.38905609893065022723042744657678036101`4.

Using an infamous function, the logistic map, you can see the effect of using fixed precision on
unstable computations. 

In[52]:= f@x_D := 4 x H1 - xL

First,  using  extended  precision,  you  can  see  that  iterating  this  function  causes  such  a  loss  of
precision  that  the  results  have  no  significant  digits  after  about  50  iterations.  This  is  indicated
below by the last  few iterates framed with an error box.  Hovering your mouse over these boxes
displays a message, “No significant digits are available to display.”

In[53]:= NestList@f, N@3 ê 10, 30D, 60D

Out[53]= 90.300000000000000000000000000000, 0.84000000000000000000000000000,

0.53760000000000000000000000000, 0.9943449600000000000000000000,
0.0224922420903936000000000000, 0.087945364544562906155706388,
0.32084390959874737541453901, 0.87161238108855278877223283,
0.4476169528867848545299176, 0.9890240655005387296585600,
0.043421853445299224857323, 0.16614558435469672277398,
0.55416491661653231340733, 0.9882646472316964067436, 0.0463905370548282497866,
0.176953820506371427531, 0.58256466365828124158, 0.97273230525997957131,
0.1060966702543419638, 0.3793606672611335716, 0.941784605585284283,
0.21930544907141921, 0.68484227631600947, 0.8633333315452640,
0.4719555607528770, 0.996854037709258, 0.01254426084803,
0.04954760947123, 0.1883705754677, 0.6115484070626, 0.950227811527,
0.18917967091, 0.61356289210, 0.9484138782, 0.1956999755, 0.629605980,
0.93280916, 0.25070493, 0.7514079, 0.7471763, 0.755615, 0.73864,
0.77220, 0.7036, 0.8341, 0.553, 0.99, 0.05, 0.2, 0.6, 0., 0., 0.,

0.�102, 0.�105, 0.�1011, 0.�1024, 0.�1049, 0.�1098, 0.�10197, 0.�10396=

Trying  the  same  computation  but  with  30-digit  fixed  precision,  Mathematica  essentially  is  using
SetPrecision@…, 30D  at  every  step  in  this  computation  and  hence  there  is  no  loss  of
precision.

In[54]:= Block@8$MinPrecision = 30, $MaxPrecision = 30<,
values = NestList@f, N@3 ê 10, 30D, 60DD;
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In[55]:= ListPlot@Map@Precision, valuesDD

Out[55]=

10 20 30 40 50 60

10

20

30

40

50

60

Let us clear unneeded symbols.

In[56]:= Clear@a, b, n, x, f, valuesD

Computations with mixed number types
When doing computations with numbers,  Mathematica  tries  to work with the most  general  type
of number in the expression at hand. For example, when adding two rational numbers, the sum is
a rational number, unless of course it can be reduced to an integer.

In[57]:=
34

21
+

2

11

Out[57]=
416

231

In[58]:=
3

4
+
9

4

Out[58]= 3

But,  if  one  of  the  terms  is  a  real  number,  then  all  computations  are  done  using  real-number
arithmetic – Mathematica works at the lowest precision of the numbers in the expression.

Here  the  machine-precision  number  2.0  is  raised  to  an  exact  integer  power.  A  machine-
precision result is returned.

In[59]:= 2.0100

Out[59]= 1.26765 � 1030

In[60]:= Precision@%D

Out[60]= MachinePrecision

Similarly,  if  a  machine-precision  number  is  added  to  a  high-precision  number,  Mathematica  will
perform the computation at the lower machine precision.
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In[61]:= 2.1 + 3.0`30

Out[61]= 5.1

In[62]:= Precision@%D

Out[62]= MachinePrecision

Because  Mathematica  keeps  track  of  the  precision  for  arbitrary-precision  numbers,  doing
arithmetic with two such numbers causes significance arithmetic to be used allowing for a result
with precision close to that of the summands themselves.

In[63]:= 2.1`35 + 3.0`45

Out[63]= 5.1000000000000000000000000000000000

In[64]:= Precision@%D

Out[64]= 35.3854

And similarly when one number has machine precision and another has arbitrary precision.

In[65]:= a = N@2D;

In[66]:= b = NA299, 30E;

In[67]:= 8Precision@aD, Precision@bD, Precision@a bD<

Out[67]= 8MachinePrecision, 30., MachinePrecision<

When a  symbol  such as  p  is  present  in  the  expression to  be  computed,  Mathematica  does  not
necessarily convert the symbol to a machine number.

In[68]:= Simplify@Sin@k pD, k œ IntegersD

Out[68]= 0

In[69]:= Simplify@Sin@k N@pDD, k œ IntegersD

Out[69]= Sin@3.14159 kD

It  will  convert  symbolic  constants  for  purposes  of  comparison  and  whenever  an  approximate
number is present in the input.

In[70]:= p < 4

Out[70]= True

In[71]:= 9p2, p2.0=

Out[71]= 9p2, 9.8696=

For  addition  of  real  numbers,  it  is  their  accuracy  that  counts  most.  Recall,  Accuracy@xD
measures the absolute error in the number x, essentially given by the number of digits to the right
of the decimal point.
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In[72]:= 8Accuracy@1.23D, Accuracy@12.5D<

Out[72]= 815.8647, 14.8577<

In[73]:= Accuracy@1.23 + 12.5D

Out[73]= 14.8169

For machine-precision numbers, which have a fixed number of digits, you can think of adding a
digit to the left of the decimal point as essentially removing one digit from the right of the deci-
mal point.

This is not the case though for extended-precision numbers, where all the digits to the right of
the decimal can be considered significant.

In[74]:= Accuracy@123.4444444444444444444444444444D

Out[74]= 28.

In[75]:= Accuracy@12321.4444444444444444444444444444D

Out[75]= 28.

In  an  analogous  manner  to  the  use  of  Precision  with  multiplication,  the  Accuracy  of  an
addition will be the minimum of the accuracies of the summands.

In[76]:= Accuracy@1.1111111111111111 + 1.11111111111111111111D

Out[76]= 15.6078

In[77]:= Accuracy@1.1111111111111111D

Out[77]= 15.9088

Adding  a  machine  number  to  an  extended-precision  or  an  exact  number  can  lead  to  some
unexpected results.

In[78]:= 1.0 + 10-25

Out[78]= 1.

In[79]:= Accuracy@%D

Out[79]= 15.9546

In[80]:= AccuracyA10-25E

Out[80]= ¶

Working with precision and accuracy
In  this  section  we  will  put  the  notions  of  precision  and  accuracy  discussed  above  into  practice
and  see  how  they  are  controlled  and  modified  with  the  built-in  numerical  functions.  In  Sec-
tion 8.4 we will implement these ideas in several user-defined examples.
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When you do computations with Mathematica’s numerical functions, results are returned at the
default machine precision.

In[81]:= NIntegrateBSinA x2E, :x, 0, p >F

Out[81]= 0.894831

In[82]:= Precision@%D

Out[82]= MachinePrecision

If you need results with higher precision change the option PrecisionGoal, which sets the
desired precision of the result (similarly for accuracy, with AccuracyGoal).

Here is the same computation as above, but asking for 30 digits of precision in the result.

In[83]:= NIntegrateBSinAx2E, :x, 0, p >, PrecisionGoal Ø 30F

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect one of the following: singularity, value of

the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< = 
83.14158056070655424163353807570642217683598573785275220870971679687<.
NIntegrate obtained 0.894831469484146` and 
1.6524379533168436`*^-16 for the integral and error estimates. à

Out[83]= 0.894831

Mathematica  is  complaining  that  it  is  unable  to  produce  a  result  with  the  requested  precision.  If
you  look  at  the  default  value  for  the  option  WorkingPrecision,  you  will  see  that  it  is  set  to
MachinePrecision.  This  means that  the internal  algorithms will  work at  machine precision,
essentially  on  the  hardware  of  your  machine  which  is  fast.  But,  in  this  example,  that  was  not
sufficient to guarantee a result with much higher precision. 

In[84]:= Options@NIntegrateD

Out[84]= 8AccuracyGoal Ø ¶,
Compiled Ø Automatic, EvaluationMonitor Ø None,
Exclusions Ø None, MaxPoints Ø Automatic,
MaxRecursion Ø Automatic, Method Ø Automatic,
MinRecursion Ø 0, PrecisionGoal Ø Automatic,
WorkingPrecision Ø MachinePrecision<
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To insure that the PrecisionGoal  is  met,  we need to increase the WorkingPrecision  a
bit above the PrecisionGoal. 

In[85]:= NIntegrateBSinAx2E, :x, 0, p >,

PrecisionGoal Ø 30, WorkingPrecision Ø 32F

Out[85]= 0.89483146948414495880102201341651

In[86]:= Precision@%D

Out[86]= 32.

How  much  to  increase  the  value  of  WorkingPrecision  above  that  of  PrecisionGoal  is  a
bit  dependent  upon  the  problem  at  hand,  but  a  simple  rule  of  thumb  is  to  start  by  setting
WorkingPrecision about 10–15% higher than your PrecisionGoal. 

Another option to numerical  functions that is  important to understand is  MaxIterations.
As its name implies, this is the maximum number of iterations that a given iterative function will
perform  in  doing  its  computation.  For  example,  the  default  value  of  MaxIterations  in
FindRoot is 100.

In[87]:= Options@FindRootD

Out[87]= 8AccuracyGoal Ø Automatic, Compiled Ø Automatic,
DampingFactor Ø 1, Evaluated Ø True, EvaluationMonitor Ø None,
Jacobian Ø Automatic, MaxIterations Ø 100,
Method Ø Automatic, PrecisionGoal Ø Automatic,
StepMonitor Ø None, WorkingPrecision Ø MachinePrecision<

For many computations,  this  limit  will  be  sufficient.  But  with root  finding,  for  example,  a  func-
tion  that  is  very  flat  near  the  desired  zero  may  need  a  higher  number  of  iterations  to  find  that
zero. For example, the function x11 - x8  has a root at zero of course, but FindRoot  has difficulty
locating it and is unable to guarantee its precision and accuracy using the default settings.

In[88]:= FindRootAx11 - x8, 8x, 0.5<E

FindRoot::cvmit :
Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[88]= 9x Ø 7.76534 � 10-7=

8.2 Numerical computation 279



In[89]:= PlotAx11 - x8, 8x, -1, 1<E

Out[89]=

-1.0 -0.5 0.5 1.0

-0.25

-0.20

-0.15

-0.10

-0.05

If you increase the value of MaxIterations, you will get a more accurate result.

In[90]:= FindRootAx11 - x8, 8x, 0.5<, MaxIterations Ø 200E

Out[90]= 9x Ø 7.01949 � 10-8=

To  get  even  more  accuracy,  try  increasing  AccuracyGoal.  As  discussed  above,  you  should
increase the value of the WorkingPrecision option as well.

In[91]:= FindRootAx11 - x8, 8x, 0.5<, AccuracyGoal Ø 30,

WorkingPrecision Ø 32, MaxIterations Ø 700E

Out[91]= 9x Ø 6.4471177850662807136865275894714 � 10-30=

One  additional  option  to  Mathematica’s  numerical  functions  that  we  will  explore  is
EvaluationMonitor . This option can be used to evaluate an expression during the computa-
tion of the function. For example, suppose you would like to see all the intermediate values that
FindRoot  comes  up  with  during  its  computation.  You  could  simply  print  the  values  that  x
takes on throughout the computation using a Print  statement. InputForm shows all the digits
present in the internal representation of the number.

In[92]:= FindRoot@Sin@xD, 8x, 2.0<,
EvaluationMonitor ß Print@InputForm@xDDD

2.

4.185039863261519

2.467893674514666

3.266186277569106

3.1409439123176353

3.1415926536808043

3.141592653589793

Out[92]= 8x Ø 3.14159<

280 Numerics



This approach suffers from the fact that the Print  expression produces no output and so there
is  no  direct  way  to  access  these  intermediate  values.  A  different  and  more  useful  approach  was
introduced in Exercise 6  in Section 6.1;  it sows the intermediate values of x  during the computa-
tion and then reaps them at the end.

In[93]:= Reap@
FindRoot@Sin@xD, 8x, 2.0<,
EvaluationMonitor ß Sow@InputForm@xDDD

D

Out[93]= 88x Ø 3.14159<,
882., 4.185039863261519, 2.467893674514666, 3.266186277569106,

3.1409439123176353, 3.1415926536808043, 3.141592653589793<<<

Note  the  use  of  the  delayed  rule  above  with  EvaluationMonitor .  This  ensures  that  the
right-hand  side  of  the  rule  is  not  evaluated  before  FindRoot  starts  its  computation.  We  have
also wrapped x with InputForm to display all digits.

A similar approach can be used to extract the explicit  values computed during the numerical
computation of the solution of a differential equation. For example, this computes the solution of
the differential equation, reaping the triple 8x, f@xD, f'@xD< from the solution.

In[94]:= soln = Reap@
NDSolve@8f''@xD + f'@xD + f@xD ã 0, f@0D ã 1, f'@0D ã 1<, f,
8x, 0, 10<, EvaluationMonitor ß Sow@8x, f@xD, f'@xD<DDD;

Here are the first six values from the solution.

In[95]:= Take@soln@@2, 1DD, 6D

Out[95]= 880., 1., 1.<, 80.000102139, 1.0001, 0.999796<,
80.000102139, 1.0001, 0.999796<,
80.000204278, 1.0002, 0.999591<,
80.000204278, 1.0002, 0.999591<, 80.00472055, 1.0047, 0.99057<<

Exercises
1. Explain why Mathematica is unable to produce a number with 100 digits of precision in the following 

example.

In[1]:= N@1.23, 100D

Out[1]= 1.23

In[2]:= Precision@%D

Out[2]= MachinePrecision
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2. Determine what level of precision is necessary when computing NA 2 , precE
200

 to produce 

accuracy in the output of at least 100 digits.

3. Explain why the following computation produces an unexpected result (that is, why the value 
0.000000000001 is not returned).

In[3]:= 1.0 - 0.999999999999

Out[3]= 9.99978 � 10-13

4. How close is the number ‰p 163  to an integer? Use N, but mind the precision of your computations.

8.3 Arrays of numbers
Scientists,  engineers,  and  everyone  who  works  with  numbers  typically  use  arrays  to  store  and
represent  their  data.  In  many  applications  these  arrays  can  become  quite  large  and  hence  pose
special problems when computing with them.  The main issues with these arrays are representing
and storing such large objects and finding efficient algorithms for computing with them. Mathe-
matica  uses two special  data types to make computations with arrays faster and more efficient –
sparse arrays and packed arrays. In this section we will introduce each of these data types and see
how a working knowledge of them can help your work with very large sets of data.

Sparse arrays
In the sciences,  engineering,  and many other  disciplines  it  is  not  uncommon to work with very
large  matrices  that  have  mostly  zeros  as  elements.  These  matrices,  or  arrays,  are  referred  to  as
sparse and many optimized algorithms have been developed by the linear algebra community for
working  with  such  objects.  Using  these  algorithms,  you  can  work  with  arrays  that  are  often
several  orders  of  magnitude  larger  than  dense  arrays  and  at  speeds  much  faster  than  those  for
dense arithmetic.

There are two main sources for sparse arrays: either you import them from an external file or
source or you can create them in Mathematica  from scratch. We will start by importing a sample
sparse  matrix  from  a  well-known  test  suite  from  the  US  National  Institute  of  Standards  and
Technology (Sparse Matrix Collection, NIST). 

In[1]:= mat = Import@
"http:êêphase.hpcc.jpêmirrorsêMatrixMarketêdataêHarwell-

Boeingêbcspwrêbcspwr09.psa.gz"D

Out[1]= SparseArray@<6511>, 81723, 1723<, PatternD

In[2]:= Head@matD

Out[2]= SparseArray
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The  data  in  this  matrix  represent  the  US  western  power  grid  and  are  in  the  Harwell-Boeing
format.  The  compact  representation  given  in  the  output  indicates  that  this  matrix  has  6511

nonzero elements and that its dimensions are 1723ä1723. Even though the matrix has this special
representation internally,  it  can still  be operated on directly as an ordinary matrix.  For example,
here we find the dimensions, test for symmetry, and visualize the matrix structure.

In[3]:= Dimensions@matD

Out[3]= 81723, 1723<

In[4]:= SymmetricMatrixQ@matD

Out[4]= True

In[5]:= ArrayPlot@matD

Out[5]=

The two great advantages of working with sparse arrays are their compact representation and
the speed with which you can perform linear algebra operations on them.

In[6]:= ByteCount@matD

Out[6]= 33696

In[7]:= Timing@mat.mat;D

Out[7]= 80.000618, Null<

A  dense  matrix  of  the  same  size  is  many  orders  of  magnitude  larger  in  terms  of  the  number  of
bytes used internally to store it. 

In[8]:= densemat = RandomReal@1, 81723, 1723<D;

In[9]:= ByteCount@densematD

Out[9]= 23750000

And  linear  algebra  on  the  dense  matrix  is  also  much  slower  than  the  corresponding  sparse
computation.

In[10]:= Timing@densemat.densemat;D

Out[10]= 81.43976, Null<

The other  way to work with sparse  arrays  in Mathematica  is  to  create  them from scratch with
the SparseArray  function. The first argument to SparseArray  specifies the rules to be used
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to  create  the  nonzero  elements  and  the  second  argument  specifies  the  dimensions  of  the  array.
For example, this creates a 5ä5 sparse array object with elements on the diagonal equal to 1.

In[11]:= spmat = SparseArray@8i_, i_< Ø 1, 85, 5<D

Out[11]= SparseArray@<5>, 85, 5<D

Wrapping Normal around a sparse array object converts it into a list of lists. 

In[12]:= Normal@spmatD

Out[12]= 881, 0, 0, 0, 0<, 80, 1, 0, 0, 0<,
80, 0, 1, 0, 0<, 80, 0, 0, 1, 0<, 80, 0, 0, 0, 1<<

Using MatrixForm , you can view the array in a more traditional form. This use of Normal and
MatrixForm  makes sense only for small to moderate-sized matrices.

In[13]:= MatrixForm@spmatD
Out[13]//MatrixForm=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Here are the rules associated with this sparse array object.  Notice that in addition to the explicit
rules we specified, Mathematica uses the rule 8_, _< Ø 0 for the default cases, that is, any element
not explicitly specified by a rule should be set to 0.

In[14]:= ArrayRules@spmatD

Out[14]= 881, 1< Ø 1, 82, 2< Ø 1, 83, 3< Ø 1,

84, 4< Ø 1, 85, 5< Ø 1, 8_, _< Ø 0<

Using a third argument to SparseArray , you can specify that the implicit elements are other
than 0.

In[15]:= spmat2 = SparseArray@8i_, i_< Ø 1, 85, 5<, 13D

Out[15]= SparseArray@<5>, 85, 5<, 13D

In[16]:= MatrixForm@spmat2D
Out[16]//MatrixForm=

1 13 13 13 13
13 1 13 13 13
13 13 1 13 13
13 13 13 1 13
13 13 13 13 1

Here is a slightly more complicated specification for the rules associated with a sparse array. In
this  example,  the  diagonal  elements  are  1,  and the  elements  whose vertical  and horizontal  posi-
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tions differ by one will be 6. Band  is a convenient function for representing elements on and off
the  diagonal  of  a  matrix.  Band@81, 1<D  gives  the  diagonal;  Band@81, 2<D  gives  the  off-
diagonal just above the main diagonal; and so on.

In[17]:= spmat3 = SparseArray@
8Band@81, 1<D Ø 1, Band@81, 2<D Ø 6, Band@82, 1<D Ø 6<, 88, 8<D

Out[17]= SparseArray@<22>, 88, 8<D

In[18]:= MatrixForm@spmat3D
Out[18]//MatrixForm=

1 6 0 0 0 0 0 0

6 1 6 0 0 0 0 0

0 6 1 6 0 0 0 0

0 0 6 1 6 0 0 0

0 0 0 6 1 6 0 0

0 0 0 0 6 1 6 0

0 0 0 0 0 6 1 6

0 0 0 0 0 0 6 1

Here is a simple pictorial representation of a sparse array using ArrayPlot. 

In[19]:= ArrayPlot@spmat3D

Out[19]=

Using a larger array, you can clearly see the nature of the “sparseness” of values.

In[20]:= ArrayPlot@SparseArray@
8i_, j_< ê; Abs@i - jD § 8 ß RandomInteger@4D, 8100, 100<DD

Out[20]=
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Let  us  take  a  look  at  some  computations  on  some  large  sparse  arrays  to  see  how  speed  and
memory issues  are  affected.  First  we create  a  100 000ä100 000  sparse  array with random num-
bers on and just off the diagonal, and zeros everywhere else.

In[21]:= mat = SparseArrayA

88i_, j_< ê; Abs@i - jD § 2 ß RandomReal@D<, 9105, 105=E

Out[21]= SparseArray@<499994>, 8100 000, 100 000<D

Here is a vector consisting of 100 000 random numbers.

In[22]:= b = RandomReal@1, Length@matDD;

First, note the difference in size of this sparse array compared with a dense array. The sparse array
takes up approximately six megabytes.

In[23]:= N@ByteCount@matDD Byte

Out[23]= 6.40088 � 106 Byte

The corresponding dense array would require 80 gigabytes to store (assuming 8 bytes per double
float).

In[24]:= NA105 105 8E Byte

Out[24]= 8. � 1010 Byte

Computations involving this sparse linear system are extremely fast.

In[25]:= Timing@LinearSolve@mat, bD;D

Out[25]= 80.037164, Null<

In[26]:= Timing@mat.mat;D

Out[26]= 80.080528, Null<

Packed arrays
One  of  the  great  advantages  of  the  Mathematica  programming  language  is  that  it  seamlessly
handles  the  administrative  tasks  of  dealing  with  a  wide  variety  of  data  types.  So,  for  example,
when you perform computations with floating-point  numbers,  Mathematica  determines the type
of  numbers  you  are  working  with  and  then  either  it  performs  the  computation  on  your
machine’s floating-point processor (if working with numbers that fit there) or it does the compu-
tation  using  extended-precision  software  routines.  Similarly,  computations  involving  integers
will  be  done  in  hardware  or  using  special  software  routines  depending  upon  the  size  of  the
integers relative to your machine’s hardware constraints.

However, all this comes at a cost, and the cost involves the administrative overhead necessary
to  determine  the  appropriate  routine  and  whether  to  perform  the  computation  in  hardware  or
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software.  For  small  computations,  this  overhead  is  not  noticeable,  but  for  large  computations
involving tens of thousands of rows and columns of a matrix, say, this overhead could cause your
computations to slow down considerably.

Fortunately, there is a way to bypass some of this overhead and get significant speed improve-
ments together with a smaller memory footprint.  The technology that does this is referred to as
packed arrays and they are fairly simple to understand. Whenever possible Mathematica will automat-
ically represent a list of a single type of machine numbers (integer, real, or complex) as an array,
in  fact,  a  packed array  object.  So  a  matrix  consisting  of  all  machine  real  numbers  will  be  repre-
sented internally as a packed array. This internal representation is transparent to the user.

Here is a 1000ä1000 array consisting of random real numbers. 

In[27]:= mat = RandomReal@1, 81000, 1000<D;

Mathematica  recognizes  that  this  array  consists  entirely  of  machine  numbers  and  so  it  packs  the
array automatically.

In[28]:= Developer`PackedArrayQ@matD

Out[28]= True

Let us also create an array that is not packed. We can do this by replacing one of the elements in
mat with a number that is not a machine floating-point number. Here we replace the element in
the first row, second column of mat with the integer 1.

In[29]:= mat2 = ReplacePart@mat, 1, 81, 2<D;

In[30]:= Developer`PackedArrayQ@mat2D

Out[30]= False

The first thing to notice is the memory saving obtained by using packed arrays. 

In[31]:= Map@ByteCount, 8mat, mat2<D

Out[31]= 88000168, 32048040<

In  this  example,  it  takes  75%  less  memory  to  store  the  packed  array  over  the  similar  unpacked
array.

In[32]:=
32048040 - 8000168

32048040
êê N

Out[32]= 0.75037

The time to compute the minimum value is roughly an order of magnitude faster for the packed
array.

In[33]:= Map@Timing@Min@ÒD;D &, 8mat, mat2<D

Out[33]= 880.002753, Null<, 80.010015, Null<<
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Simple arithmetic on such objects is also significantly sped up with packed arrays.

In[34]:= Timing@Do@mat + mat, 8100<D;D

Out[34]= 80.98052, Null<

In[35]:= Timing@Do@mat2 + mat2, 8100<D;D

Out[35]= 88.62979, Null<

When packed arrays are used in Mathematica,  the compiler is  invoked,  thus generally improv-
ing  the  time  it  takes  for  the  computation  to  take  place.  Many  of  the  built-in  functions  are
designed to take advantage of the packed array technology. But they do not  invoke the compiler
whenever  the  time  it  takes  to  compile  is  close  to  the  running  time  of  the  computation  itself.
There  are  length  limits  on  many  common  Mathematica  functions  that  determine  whether  the
compiler will be used or not. For example, the length limit for Table is 250.

In[36]:= m1 = TableAi2, 8i, 1.0, 249<E;

Developer`PackedArrayQ@m1D

Out[37]= False

In[38]:= m2 = TableAi2, 8i, 1.0, 250<E;

Developer`PackedArrayQ@m2D

Out[39]= True

For  NestList,  it  is  100  (remember  that  NestListA f, init, nE  produces  a  list  of  n + 1  ele-

ments because it prepends the initial value to the list of iterates).

In[40]:= n1 = NestList@Sin, .5, 98D;
Developer`PackedArrayQ@n1D

Out[41]= False

In[42]:= n2 = NestList@Sin, .5, 99D;
Developer`PackedArrayQ@n2D

Out[43]= True

These length limits are system parameters that can be displayed and set with SystemOptions.
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In[44]:= SystemOptions@"CompileOptions"D

Out[44]= 8CompileOptions Ø 8ApplyCompileLength Ø ¶,

ArrayCompileLength Ø 250, AutoCompileAllowCoercion Ø False,

AutoCompileProtectValues Ø False, AutomaticCompile Ø False,

BinaryTensorArithmetic Ø False, CompileAllowCoercion Ø True,

CompileConfirmInitializedVariables Ø True,

CompiledFunctionArgumentCoercionTolerance Ø 2.10721,

CompiledFunctionMaxFailures Ø 3, CompileDynamicScoping Ø False,

CompileEvaluateConstants Ø True, CompileOptimizeRegisters Ø False,

CompileReportCoercion Ø False, CompileReportExternal Ø False,

CompileReportFailure Ø False, CompileValuesLast Ø True,

FoldCompileLength Ø 100, InternalCompileMessages Ø False,

ListableFunctionCompileLength Ø 250,

MapCompileLength Ø 100, NestCompileLength Ø 100,

NumericalAllowExternal Ø False, ProductCompileLength Ø 250,

ReuseTensorRegisters Ø True, SumCompileLength Ø 250,

SystemCompileOptimizations Ø All, TableCompileLength Ø 250<<

So how do you best take advantage of packed arrays when you write your code? First,  when-
ever possible,  it  is  important that  you insure that  your lists  and arrays consist  of  machine num-
bers all of the same type – integer, real, or complex. In addition, whenever possible, try to operate on
lists  and  arrays  all  at  once  instead  of  looping  through  your  arrays.  Listable  operations  with
packed  array  input  will  use  the  compiler  and  will  produce  packed  array  output.  Fortunately,
many  of  the  commonly  used  functions  have  this  attribute  (FunctionsWithAttribute  is
defined in Section 5.6).

In[45]:= names = FunctionsWithAttribute@ListableD;
Length@namesD

Out[46]= 363

Here is a sample of the symbols that have this attribute.

In[47]:= RandomSample@names, 30D

Out[47]= 8BesselI, SpheroidalRadialFactor, PrimePowerQ, PolynomialGCD,

InverseJacobiDC, ArcCot, CreateDirectory, JacobiNS, ZernikeR,

StopScheduledTask, IntegerPart, PolyLog, ChebyshevT, IntegerString,

InverseJacobiCD, HarmonicNumber, AiryAi, PrimeOmega, NevilleThetaD,

Floor, LegendreQ, Divide, GCD, StirlingS2, FractionalPart, JacobiCS,

SpheroidalS1Prime, NumberFieldRootsOfUnity, SinhIntegral, In<
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Exercises
1. Create a function RandomSparseArray@nD that generates an nän sparse array with random 

numbers along the diagonal.

2. Write a function TridiagonalMatrix@n, p, qD that creates an nän matrix with the integer p 
on the diagonal, the integer q on the upper and lower subdiagonals, and 0s everywhere else.

3. Create a vector vec consisting of 100 000 random real numbers between 0 and 1. Check that it is 
indeed a packed array by using Developer`PackedArrayQ. Then replace one element in vec 
with an integer. Check that this new vector is not a packed array. Finally, perform some memory 
and timing tests on these two vectors, using functions such as Max, Norm , RootMeanSquare .

4. An interesting computation of the Fibonacci numbers can be obtained using the determinant of a 
certain tri-diagonal matrix: 1s on the diagonal and Â = -1  running along each subdiagonal. For 
example, the following 4ä4 matrix has determinant equal to the fifth Fibonacci number.

In[1]:=

1 Â 0 0
Â 1 Â 0
0 Â 1 Â
0 0 Â 1

Out[1]= 5

Create a function that computes the nth Fibonacci number using a sparse array implementation of 
this tri-diagonal matrix. You will need special rules for n = 1 and n = 2.

5. An efficient approach to computing large Fibonacci numbers relies upon the observation that a 
certain matrix has its characteristic polynomial equal to the characteristic equation for the 
Fibonacci numbers.

In[2]:= mat = K
1 1
1 0

O;

poly = CharacteristicPolynomial@mat, xD

Out[3]= -1 - x + x2

In[4]:= Solve@poly ã 0, xD

Out[4]= ::x Ø
1

2
I1 - 5 M>, :x Ø

1

2
I1 + 5 M>>

The Fibonacci numbers Fn can be generated from successive powers of this matrix.

1 1

1 0

n

=
Fn+1 Fn

Fn Fn-1

Use these facts to implement an algorithm for computing the Fibonacci numbers using the built-in 
MatrixPower  function with sparse arrays.
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8.4 Examples and applications
Mathematica’s built-in numerical functions are designed to guarantee the accuracy of their results
as much as possible and they are optimized to minimize the work done to generate those results.
Functions such as  FindRoot,  NDSolve ,  NMinimize,  and NIntegrate  use options to allow
you  to  adjust  their  behavior  and  get  finer  control  over  precision,  accuracy,  and  other  internal
aspects of the underlying numerical routines.

In this section we will  first  discuss how to incorporate the ideas on controlling precision and
accuracy discussed earlier in this chapter into your own numerical programs using the Newton’s
method  root  finder  as  an  example.  The  last  two  examples  are  a  bit  more  advanced.  The  first,
computing the radius of gyration of a random walk, is a purely numerical computation involving
some  linear  algebra  and  eigenvector/eigenvalue  computation.  The  computation  is  then  inter-
preted  visually,  thus  providing  a  nice  marriage  of  numerics  and  visualization.  The  final  set  of
examples  in  this  section  involve  the  creation  of  statistical  tests  that  can  be  used  on  various
datasets.  Although  many  such  tests  are  built  into  Mathematica,  it  is  not  only  instructive  but  also
sometimes necessary to construct your own tests for special purposes.

Newton’s method revisited
In Section 6.1 we wrote a program to implement Newton’s method for finding roots of equations.

findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD<,

WhileBAbs@funxiD > e,

xi = NBxi -
funxi

fun£@xiD
F;

funxi = fun@xiDF;

8var Ø xi<F

One of the limitations of this implementation is that the user has little control over the precision
or accuracy of the results. In addition, although the loop will continue until values are within e of
the root, there is no mechanism for automatically adjusting this tolerance, nor for controlling the
number of iterations that are performed. In this section we will rewrite this root-finding function
to take advantage of the options for numerical functions that control precision and accuracy.

First  we will  change the iterative  structure  from a While  loop to a  fixed point  iteration.  The
first  argument to FixedPoint  is  the function that we are iterating,  so that will  be the same as
the function above, namely, xi - f HxiL ê f £HxiL. The second argument to FixedPoint  is the initial
value for the iteration. The third argument is the maximum number of iterations. So, using a pure
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function for the first argument, the Newton iteration will look like this:

FixedPointBÒ -
fun@ÒD

fun'@ÒD
&, initx, maxIterationsF

Let us set up the needed options with some default values.

In[1]:= Options@findRootD = 8
MaxIterations ß $IterationLimit,
PrecisionGoal Ø Automatic,
WorkingPrecision Ø Automatic

<;

The  default  value  of  MaxIterations  is  set  to  $IterationLimit  (normally  4096)  using  a
delayed  rule  so  that  $IterationLimit  is  not  evaluated  until  the  option  is  called.  The  two
options  PrecisionGoal  and  WorkingPrecision  are  set  to  Automatic,  which,  at  the
moment,  has  no  value  associated  with  it.  In  the  body  of  our  function,  we  will  take  a  value  of
Automatic for PrecisionGoal to mean a precision that is equal to the precision of the initial
value passed to findRoot.

If@precisionGoal === Automatic,
precisionGoal = Precision@initDD

As we saw in the previous section, we will  need to bump up the value of WorkingPrecision
to something a little bigger than PrecisionGoal.  We will set it to be ten more digits than the
precision goal.

If@workingPrecision === Automatic,
workingPrecision = precisionGoal + 10D;

initx = SetPrecision@init, workingPrecisionD

Here then is the definition of findRoot with these added pieces.

In[2]:= findRoot@fun_, 8var_, init_?NumericQ<,
opts : OptionsPattern@DD :=

ModuleB8maxIterations, precisionGoal,

workingPrecision, initx, df = fun£, result<,
8maxIterations, precisionGoal, workingPrecision< =
OptionValue@
8MaxIterations, PrecisionGoal, WorkingPrecision<D;

If@precisionGoal === Automatic, precisionGoal =
Precision@initDD; If@workingPrecision === Automatic,

workingPrecision = precisionGoal + 10D;
initx = SetPrecision@init, workingPrecisionD;

292 Numerics



result = SetPrecisionBFixedPointBÒ1 -
fun@Ò1D

df@Ò1D
&,

initx, maxIterationsF, precisionGoalF;

8var Ø result<F

Let us use findRoot to find the roots of various functions.

In[3]:= f@x_D := x2 - 2

In[4]:= findRoot@f, 8x, 1.0<D

Out[4]= 8x Ø 1.41421<

The precision of this result is the same as the precision of the initial guess.

In[5]:= Precision@%D

Out[5]= MachinePrecision

Setting PrecisionGoal higher generates a high-precision result.

In[6]:= findRootBSin, :x,
14

10
>, PrecisionGoal Ø 40F

Out[6]= 8x Ø 3.141592653589793238462643383279502884197<

In[7]:= Hx ê. %L - p

Out[7]= 0. � 10-40

There  are  still  a  number  of  problems  that  can  arise  with  this  implementation  of  Newton’s
method. First  is  the possibility that the derivative of the function we are working with might be
equal to zero. This will produce a division-by-zero error. Another type of difficulty that can arise
in root finding occurs when the derivative of the function in question is either difficult or impossi-
ble  to  compute.  As  a  very  simple  example,  consider  the  function  x + 3 ,  which  has  a  root  at
x = -3.  Both the built-in function FindRoot  and our user-defined root finder will fail with this
function since a symbolic derivative cannot be computed.

In[8]:= D@Abs@x + 3D, xD

Out[8]= Abs£@3 + xD

One  way  around  such  problems  is  to  use  a  numerical  derivative  (as  opposed  to  an  analytic
derivative). The secant method approximates f £HxkL using the difference quotient:

f IxkM- f Ixk-1M
xk-xk-1
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To  implement  this  method,  we  overload  findRoot  by  adding  a  rule  for  the  case  when  two
initial values are given.

In[9]:= findRoot@f_, 8var_, a_, b_<D := ModuleB8x1 = a, x2 = b, df<,

WhileBAbs@f@x2DD >
1

1010
,

df =
f@x2D - f@x1D

x2 - x1
;

8x1, x2< = :x2, x2 -
f@x2D

df
>F;

8var Ø x2<F

In[10]:= f@x_D := Abs@x + 3D

In[11]:= findRoot@f, 8x, -3.1, -1.8<D

Out[11]= 8x Ø -3.<

In the exercises, you are asked to refine this last implementation by writing it in a functional style
and including mechanisms to gain finer control over precision and accuracy in a manner similar
to what we did with the findRoot function earlier in this section.

Radius of gyration of a random walk
In this next example we will work through the computation and visualization of a certain way of
measuring the extent of  a dataset.  In particular we will  compute the radius of  gyration of a ran-
dom  walk.  Given  some  masses  distributed  about  an  axis,  the  radius  of  gyration  gives  the  root
mean square distance from the masses to the their center of gravity or to the axis. It has applica-
tion  in:  structural  engineering  in  determining  where  columns  may  buckle;  polymer  physics  to
describe certain properties of a polymer chain; and other theoretical areas.

One means of  characterizing the shape of  random walks focuses on their  asphericity,  a  mea-
sure of how far the distribution of walk locations is from being spherically symmetric. As it turns
out,  this  really  is  another  way  of  measuring  the  anisotropic  (not  uniform  in  each  dimension)
nature  of  random  walks.  To  get  a  sense  of  this,  consider  a  two-dimensional  off-lattice  random
walk.  It  is  hard  to  tell  much  from  one  such  walk  –  one  might  be  severely  elongated  along  the
horizontal axis, another might be elongated along a different axis (Figure 8.2).
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Figure 8.2. Two 2500-step, off-lattice walks.
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There  are  several  measures  one  could  use  to  characterize  the  shape  of  individual  random
walks; see for example, Costa and Cesar (2001). Using a quantity called the radius of gyration tensor,
we can get a good sense of the extent of these random walks in the sense of length and direction
of certain orthogonal vectors that span the walk (Figure 8.3).

Figure 8.3. A 10 000-step off-lattice walk. The two thick lines are in the direction of greatest and 
smallest extent of the walk. The center of mass is located at the intersection of these two lines.
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The  radius  of  gyration  tensor  for  a  two-dimensional  random  walk  is  given  by  the  following
(Rudnick and Gaspari 2004):

� =

1
n �i=1

n �xi - �x��2 1
n �i=1

n �xi - �x�� � yi - � y��
1
n �i=1

n �xi - �x�� � yi - � y�� 1
n �i=1

n � yi - � y��2

The quantities 1
n �i=1

n �xi - �x��2  and 1
n �i=1

n � yi - � y��2  are the sums of the squares of the distances

of the step locations from the center of mass divided by the number of step locations. The center of
mass  is  the sum of  the step locations divided by the number of  step locations and is  denoted by
��x�, � y��. For example, for a 10 000-step off-lattice walk, this computes the center of mass coordi-
nates which we will label cmx and cmy.

In[12]:= Needs@"PwM`RandomWalks`"D
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In[13]:= coords = RandomWalk@10000, Dimension Ø 2, LatticeWalk Ø FalseD;

In[14]:= 8cmx, cmy< = Mean@coordsD

Out[14]= 870.6457, 58.1533<

This gives a quick visual check, showing the center of mass as a red point.

In[15]:= Show@8
ListLinePlot@coords, PlotStyle Ø LightGrayD,
Graphics@8PointSize@MediumD, Red, Point@Mean@coordsDD<D

<D

Out[15]=
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The radius of gyration tensor �  defined above can be computed as follows. First,  separate the x-
and y-coordinates.

In[16]:= 8xcoords, ycoords< = Transpose@coordsD;

Then compute the off-diagonal elements of the matrix �.

In[17]:= xy = Hxcoords - cmxL.Hycoords - cmyL ê Length@coordsD

Out[17]= 513.817

This gives the computation for the tensor � itself.

In[18]:= � = 99MeanAHxcoords - cmxL2E, xy=, 9xy, MeanAHycoords - cmyL2E==;

In[19]:= MatrixForm@�D
Out[19]//MatrixForm=

930.16 513.817

513.817 438.695

These  computations  are  bundled  up  in  the  function  RadiusOfGyrationTensor  defined  in
the package PwM`RandomWalks`.

In[20]:= RadiusOfGyrationTensor@lis_D :=

ModuleA8cmx, cmy, xcoords, ycoords, xy<,

8cmx, cmy< = Mean@lisD;
8xcoords, ycoords< = Transpose@lisD;
xy = Hxcoords - cmxL.Hycoords - cmyL ê Length@lisD;
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99MeanAHxcoords - cmxL2E, xy=, 9xy, MeanAHycoords - cmyL2E==E

In[21]:= RadiusOfGyrationTensor@coordsD

Out[21]= 88930.16, 513.817<, 8513.817, 438.695<<

This function is quite efficient, computing the radius of gyration tensor for a one-million step
random walk in under a second.

In[22]:= walk = RandomWalkA106, LatticeWalk Ø FalseE;

In[23]:= H� = RadiusOfGyrationTensor@walkDL êê Timing

Out[23]= 80.337405, 8849173., -19009.3<, 8-19 009.3, 18 798.5<<<

Next  we  will  try  to  visualize  this  system.  The  eigenvectors  of  �  point  in  the  directions  of
greatest  and  smallest  spans  of  the  walk.  The  eigenvalues  give  a  measure  of  how  elongated  the
walk is in these directions.  This can be seen by creating lines along each eigenvector of a length
proportional to the corresponding eigenvalues. In the computation below, the slope of the line is
given by the y-coordinate of the eigenvector divided by the corresponding x-coordinate.

In[24]:= 8v1x, v1y< = FirstüEigenvectors@�D

Out[24]= 8-0.901163, 0.43348<

In[25]:= 8v2x, v2y< = LastüEigenvectors@�D

Out[25]= 8-0.43348, -0.901163<

In[26]:= ev1 =
v1y

v1x
Hx - cmxL + cmy êê Expand

Out[26]= 92.1355 - 0.481023 x

In[27]:= ev2 =
v2y

v2x
Hx - cmxL + cmy êê Expand

Out[27]= -88.7124 + 2.0789 x

Putting  all  these  pieces  together,  we  create  the  function  EigenvectorPlot  that  returns  a
plot of the original data set together with plots of the orthogonal lines ev1  and ev2,  and puts a
large red point at their intersection, the center of mass.

In[28]:= EigenvectorPlot@data : 88_, _< ..<, tensor_D := ModuleB

8T = tensor, cmx, cmy, x, l1, l2, v1x, v1y, v2x, v2y, l1, l2<,
8l1, l2< = Eigenvalues@TD;
8cmx, cmy< = Mean@dataD;
88v1x, v1y<, 8v2x, v2y<< = Eigenvectors@TD;
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l1 =
v1y

v1x
Hx - cmxL + cmy;

l2 =
v2y

v2x
Hx - cmxL + cmy;

Show@8
ListLinePlot@data, PlotStyle Ø LightGrayD,
Plot@l1, 8x, cmx - l1, cmx + l1<,
PlotStyle Ø 8Gray, Thick<D,

Plot@l2, 8x, cmx - l2, cmx + l2<,
PlotStyle Ø 8Gray, Thick<D,

Graphics@8PointSize@LargeD, Red, Point@Mean@dataDD<D

<, AspectRatio Ø AutomaticDF

In[29]:= � = RadiusOfGyrationTensor@coordsD;
EigenvectorPlot@coords, �D

Out[30]=
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Statistical tests
Working  with  data  often  involves  checks  for  randomness  or  goodness-of-fit  to  a  distribution.
Numerous tools are built in to perform certain tests, but there are so many situations where you
need to construct your own tests that it is useful to study what tools can be used for these tasks.
In this section, we will explore several statistical tests for randomness of a sequence.

Built-in  tests Mathematica  has  numerous  built-in  tests  for  answering such questions  as  how good
the  fit  is  between  a  dataset  and  a  distribution,  or  even  between  several  datasets.  These  tests  are
automatically  chosen  by  functions  such  as  DistributionFitTest  and,  in  fact,  you  can  see
various test statistics and p-values for many different tests.

In[31]:= data = RandomVariateANormalDistribution@D, 9104=E;

DistributionFitTest  creates a HypothesisTestData  object from which you can get
various  test  results  and  properties.  In  the  following  example,  we  have  also  set  the  significance
level to a smaller value than the default of .05.
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In[32]:= � = DistributionFitTest@data, Automatic,
"HypothesisTestData", SignificanceLevel Ø .01D

Out[32]= HypothesisTestData@áDistributionFitTestàD

With p-values significantly larger than zero,  we can be reasonably confident that the random
number generator is doing a fine job.

In[33]:= �@"TestDataTable", AllD

Out[33]=

Statistic P-Value

Anderson-Darling 0.451966 0.276274

Cramér-von Mises 0.0589674 0.397779
Jarque-Bera ALM 1.87111 0.391968

Kolmogorov-Smirnov 0.00595404 0.561924

Kuiper 0.0100215 0.648128

Pearson c2 80.176 0.379777

Watson U2 0.0536632 0.40886

Comparing the data created from a normal distribution with a uniform distribution gives very
low p-values as might be expected.

In[34]:= DistributionFitTest@data, UniformDistribution@D,
8"TestDataTable", "PearsonChiSquare"<D

Out[34]=
Statistic P-Value

Pearson c2 10 000. 2.683064656446425�10-2075

In[35]:= DistributionFitTest@data,
UniformDistribution@D, "TestConclusion"D

Out[35]= The null hypothesis that the data is distributed according
to the UniformDistribution@80,1<D is rejected at the
5. percent level based on the Cramér-von Mises test.

Let us now turn to the creation of tests of randomness where the data we will be working with
consist  of  sequences  of  random  numbers.  We  will  look  at  three  different  kinds  of  tests:  those
involving frequencies, fixed ranges of values, and also probability or p-values. In all cases, we will
consider binary sequences, that is, sequences of numbers consisting entirely of 0s and 1s. Finally,
we  will  create  one  function  for  testing  for  autocorrelation  and  another  function  for  visualizing
correlations in time-series data, correlograms.

Frequency tests In a frequency test  on binary sequences,  we are interested in the proportion of 0s
and 1s in the sequence. Obviously, in a random binary sequence, these would be about the same.
The test first computes an observed test statistic sobs  and uses that to compute a p-value which is
finally  compared  with  a  threshold,  typically  .01.  A  large  p-value  would  indicate  a  greater  likeli-
hood of randomness. A p-value near or less than .01 would suggest nonrandomness.
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The steps in computing the test statistic (the p-value) are as follows:
1. Convert 0s to -1, then add the bits. If the converted individual bits are denoted �i, and 

the length of the sequence is n, then the sum is given by Sn = �1 + �2 +�+ �n.

2. Compute the statistic Sobs =
Sn

n
.

3. The p-value is given by erfc
Sobs

2
 where erfc is the complementary error function. If the 

p-value is greater than or equal to .01, then conclude the sequence is random.

We start by creating a sequence of values ±1.

In[36]:= data = 2 RandomInteger@1, 8100<D - 1

Out[36]= 8-1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1,

-1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1,

1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1,

-1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,

1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1<

The  test  statistic  is  given  by  the  following  formula,  where  the  ei  are  the  elements  (±1)  of  the
sequence and n is the length of the sequence.

sobs =
e1+e2+�+en

n

In[37]:= Sobs@seq_ListD := Abs@Total@seqDD í Length@seqD

In[38]:= Sobs@dataD êê N

Out[38]= 0.6

Finally, the p-value is given by the error function:

In[39]:= ErfcBSobs@dataD í 2 F êê N

Out[39]= 0.548506

The large p-value,  compared with .01,  would suggest a sufficiently random sequence.  This was a
very short sequence, so let us repeat with a much longer sequence.

In[40]:= data = 2 RandomIntegerA1, 9106=E - 1;

ErfcBSobs@dataD í 2 F êê N

Out[41]= 0.841481

Let  us  now  try  this  test  on  a  random  number  generator  known  to  be  problematic  –  a  linear
congruential  generator.  BlockRandom  is  used  here  and  in  what  follows  to  keep  the  random
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seeds local to the block in which they are called. In this way, seeding will not affect other (global)
random computations.

In[42]:= BlockRandom@SeedRandom@0,
Method Ø 8"Congruential", "Multiplier" Ø 15, "Increment" Ø 1,

"Modulus" Ø 381<D; 2 RandomInteger@1, 20D - 1D

Out[42]= 8-1, -1, -1, -1, -1, -1, -1, 1,
-1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1<

In[43]:= data = BlockRandomASeedRandom@0, Method Ø

8"Congruential", "Multiplier" Ø 15, "Increment" Ø 1,

"Modulus" Ø 381<D; 2 RandomIntegerA1, 106E - 1E;

NBErfcB
Sobs@dataD

2
FF

Out[44]= 1.98947 � 10-15

Clearly, with such a small p-value, the linear congruential generator with these parameter values
is not a good choice for generating sequences of random numbers. 

Fixed range tests With fixed range tests, a test statistic is computed and the test is said to fail if the
statistic is outside of the range of values. The frequency (monobit) test above is an example of a
fixed range test. In this section we will run a simulation for a relatively large number of trials and
tally the number of trials that pass or fail the test.

Assuming a sequence of one million zeros and ones, we would expect about 500 000 ones. So
at a .01 significance level, the test will be passed if the number of ones is in the range 500 000 � x,
where x is given by the following:

In[45]:= WithB9significance = 0.01, n = 106=,

1

2
n InverseCDFBNormalDistribution@0, 1D, 1 -

significance

2
FF

Out[45]= 1287.91

Here is a function that encodes the statistic and returns $Pass  if  the total number of ones in
the  sequence  is  within  the  prescribed  range,  and  returns  $Fail  otherwise.  No  special  signifi-
cance is attached to these expressions – any suitable string would do.

In[46]:= test@data_, expect_, significance_D :=

ModuleB8n = Length@dataD, ran<,

ran =
1

2
n InverseCDFB
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NormalDistribution@0, 1D, 1 -
significance

2
F;

If@Hexpect - ranL < Total@dataD < Hexpect + ranL,

"$Pass", "$Fail"DF

Let us simulate 100 tests, each with a significance level of .01. Note the need for a delayed assign-
ment in defining data.

In[47]:= data := RandomIntegerA1, 9106=E;

In[48]:= TableBtestBdata,
Length@dataD

2
, 0.01F, 8100<F;

In[49]:= Tally@%D

Out[49]= 88$Pass, 99<, 8$Fail, 1<<

Although frequency tests such as the one above are fairly basic, they can be good at detecting
an abundance of zeros or ones in a binary sequence. For example, if we were to weight the genera-
tor, the test is quite good at finding failures even with a very small weight factor.

In[50]:= WithA8e = 0.0015, trials = 100<,

TableAtestARandomChoiceA80.5 + e, 0.5 - e< Ø 80, 1<, 9106=E,

5 � 105, 0.01E, 8trials<E

E êê

Tally

Out[50]= 88$Fail, 70<, 8$Pass, 30<<

Runs tests A runs test is primarily concerned with detecting an unusual (nonrandom) number of
runs of zeros or ones in a binary sequence. 

The steps in computing the test statistic (the p-value) are as follows:
1. Compute the proportion of ones in the sequence: p = H�1 + �2 +�+ �nL ê n.

2. Compute the statistic Vnobs = �k=1
n-1 rHkL+ 1, where rHkL = 0 if �k = �k+1 and rHkL = 1 other-

wise; this is computing the number of runs in the sequence.

3. The p-value is given by erfc
Vnobs-2 n pH1-pL

2 2 n pH1-pL
. If the p-value is greater than or equal to .01, 

then we conclude the sequence is random.
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Let us generate some binary data.

In[51]:= data = RandomInteger@1, 8100<D

Out[51]= 81, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,

0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1<

Then we compute the proportion of 1s:

In[52]:= pi = Total@dataD ê Length@dataD êê N

Out[52]= 0.6

To  compute  Vnobs  we  use  Split  to  partition  by  runs  of  the  same  number  and  then  count  the
number of runs present.

In[53]:= Vn = Length@Split@dataDD

Out[53]= 45

Here  is  the  function  using  the  above  pieces  of  code  with  one  modification  –  using  Mean  to
compute pi.

In[54]:= RunsTest@data_D :=

ModuleB8n = Length@dataD, pi = Mean@dataD, Vn<,

Vn = Length@Split@dataDD;

NBErfcBAbs@Vn - 2 n pi H1 - piLD í J2 2 n pi H1 - piLNFF

F

For the small  sequence of  0s  and 1s,  the statistic  is  far  enough from 0  that  we can conclude the
sequence exhibits randomness.

In[55]:= RunsTest@dataD

Out[55]= 0.531971

The  following  example  is  part  of  the  NIST  test  suite  for  testing  randomness  in  binary
sequences.

In[56]:= seq =
1100100100001111110110 101 010 001 000 100 001 011 010 001 100 Ö
001000110100110001001100 011 001 100 010 100 010 111 000;

data = IntegerDigits@seqD;

In[57]:= Length@dataD

Out[57]= 100
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In[58]:= RunsTest@dataD

Out[58]= 0.500798

Since this  p-value is  significantly  greater  than .01,  we can conclude the sequence passes  our  test
for randomness.

The runs test is commonly used to detect runs of 0s or 1s in a binary sequence. A very small (or
large)  number  of  oscillations  would  have  fewer  (or  more)  runs  than  expected.  For  example,  a
sequence of 100 bits consisting of fifty 1s followed by fifty 0s would have only two runs, which is
quite a lot fewer than the expected fifty runs. See Rukhin et al. (2010) for further information on
runs tests.

Autocorrelation  tests  and  correlograms Sometimes  a  quick  visualization  can  give  a  good  sense  of
statistical  information at  a  glance.  One commonly used visualization in time-series  analysis,  for
example,  is  an  autocorrelation  plot,  or,  more  broadly,  correlograms.  These  plots  provide  visual
information showing correlations for data at various time or position lags. 

For testing randomness in sequences of numbers,  the autocorrelation statistic should be near
zero. For time series, the statistic can help determine if one datum point is related to a subsequent
value in a list  or if  the values are unrelated and essentially represent uncorrelated data,  or white
noise. 

We will  use the built-in statistical  functions to create a visualization of autocorrelation statis-
tics  for  a  range of  time lags.  We will  start  with a  small  dataset  consisting of  a  sequence of  1000

random integers between one and one hundred.

In[59]:= data = RandomInteger@81, 100<, 81000<D;

Assuming a lag of 1, we need to pair up the second element with the first, the third element with
the  second,  and  in  general,  create  a  list  8xi-1, xi<  for  each  element  in  the  dataset.  Finally  we  run
Correlation  on these two vectors.

In[60]:= Correlation@Drop@data, 1D, Drop@data, -1DD êê N

Out[60]= 0.019673

The computed autocorrelation values will generally be in the range [-1, 1] with values close to 0
being more closely associated with randomness.

Here then is  a  function to compute the autocorrelation for  arbitrary time lags,  with a  default
time lag of 1.

In[61]:= AutoCorrelation@data_, lag_: 1D :=

Correlation@Drop@data, lagD, Drop@data, -lagDD
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Let us create a set of autocorrelation statistics for time lags from 1 to 40.

In[62]:= correlations =
NüTable@AutoCorrelation@data, lagD, 8lag, 1, 40, 1<D;

Typically, autocorrelation data like the above are visualized over the range of time lags that are
being used. Here is a plot with dashed lines set at the constant values 0.1 and –0.1 to highlight the
range of the autocorrelation values.

In[63]:= ListPlot@correlations, AspectRatio Ø .35,
Frame Ø True, Axes Ø False, PlotRange Ø 8-0.25, 0.25<,
FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed, Line@880, 0.1<, 840, 0.1<<D,

Line@880, -0.1<, 840, -0.1<<D<D

Out[63]=
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With a bit more work, we could turn all the work above into a function that takes three argu-
ments:  the data that are being studied,  a  list  indicating the range of time lags,  and a scalar value
for  the  dashed  lines  range.  (See  Section  10.1  for  more  information  on  working  with  graphics
functions  and  their  many  options.)  These  types  of  plots  are  commonly  referred  to  as  correlo-
grams. 

In[64]:= Correlogram@data_, 8lagmin_, lagmax_, incr_: 1<, coeff_D :=

Module@8corrs, len<,
len = Hlagmax - lagmin + 1L ê incr;
corrs = Table@8lag, AutoCorrelation@data, lagD<,

8lag, lagmin, lagmax, incr<D;
ListPlot@corrs,
AspectRatio Ø .35, Frame Ø True, Axes Ø False,
FrameLabel Ø 8"Lag", "Autocorrelation"<,
FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed, Line@880, coeff<, 8len, coeff<<D,

Line@880, -coeff<, 8len, -coeff<<D<DD
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In[65]:= Correlogram@data, 81, 100<, 0.05D

Out[65]=

0 20 40 60 80 100
-0.10

-0.05

0.00

0.05

Lag

A
ut

oc
or

re
la

tio
n

Interestingly,  if  the  data  exhibit  periodicity,  the  correlogram  will  follow  this  fluctuation  at  the
same  frequency.  For  example,  mean  monthly  air  temperatures  taken  over  a  twenty-year  period
show this phenomenon quite clearly.

In[66]:= temps = WeatherData@"Chicago", "MeanTemperature",
881992, 1<, 82012, 1<, "Month"<, "Value"D;

In[67]:= Correlogram@temps, 81, 40<, 0.35D

Out[67]=
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Several  improvements  to  this  function  such  as  adding  options  to  indicate  the  autocorrelation
range and options to be passed to ListPlot are discussed in Exercise 8 below.

See Chatfield (2004) or Box, Jenkins, and Reinsel (2008) for more information on the analysis
and visualization of time-series statistics.

Exercises
1. Write a functional implementation of the secant method. Your function should accept as argu-

ments the name of a function and two initial guesses. It should maintain the precision of the inputs 
and it should output the root at the precision of the initial guess, and the number of iterations 
required to compute the root. Consider using the built-in functions FixedPoint or Nest .

2. The findRoot function developed in this section suffers from several inefficiencies. One of them is 
that if the precision goal is no more than machine precision, all intermediate computations should 
be done at the more efficient machine precision as well. Modify findRoot so that it will operate at 
machine precision if the precision goal is at most machine precision.

3. In the findRoot program, we added SetPrecisionAresult, precisionGoalE at the very end to 

return the final result at the precision goal, but we have done no test to insure that the result meets 
the required precision. Add a test to the end of the findRoot function so that, if this condition is 
not met, an error message is generated and the current result is output.
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4. Some functions tend to cause root-finding methods to converge rather slowly. For example, the 
function f HxL = sinHxL - x requires over ten iterations of Newton’s method with an initial guess of 
x0 = 0.1 to get three-place accuracy. 

In[1]:= FindRoot@Sin@xD - x, 8x, 0.1<,
MaxIterations Ø 12, EvaluationMonitor ß Sow@xDD êê Reap

FindRoot::cvmit :
Failed to converge to the requested accuracy or precision within 12 iterations. à

Out[1]= 88x Ø 0.000770503<,
880.1, 0.0666556, 0.0444337, 0.0296215, 0.0197474, 0.0131648,

0.00877654, 0.00585102, 0.00390068, 0.00260045,
0.00173363, 0.00115576, 0.000770503<<<

Implement the following acceleration of Newton’s method and determine how many iterations of 
the function f HxL = sinHxL - x, starting with x0 = 0.1, are necessary for six-place accuracy.

accelNewtonHxL =
f HxL f £HxL

A f £HxLE2- f HxL f ££HxL

This accelerated method is particularly useful for functions with multiple roots.

5. The norm of a matrix gives some measure of the size of that matrix. The norm of a matrix A is 
indicated by �A¥. There are numerous matrix norms, but all share certain properties. For n�n 
matrices A and B:

(i.) �A¥ ¥ 0;

(ii.) �A¥ = 0 if and only if A is the zero matrix;

(iii.) �c A¥ = c �A¥ for any scalar c;

(iv.) �A + B¥ = �A¥ + �B¥;

(v.) �A B¥ § �A¥ �B¥.

One particularly useful norm is the l¶ norm, sometimes referred to as the max norm. For a vector, 
this is defined as

�x”¥¶ = max1§i§n xi .

The corresponding matrix norm is defined similarly. Hence, for a matrix A = ai j, we have

�A¥¶ = max1§i§n �j=1
n ai j .

This computes the sum of the absolute values of the elements in each row, and then takes the 
maximum of these sums, that is, the l¶ matrix norm is the max of the l¶ norms of the rows.

Write a function norm@mat, ¶D that takes a square matrix as an argument and outputs its � ÿ¥¶ 

norm. Compare your function with the built-in Norm  function. Include rules for the l2 and l1 norms.

6. If a matrix A is nonsingular (invertible), then its condition number is defined as �A¥ ÿ±A-1�. A matrix is 

called well-conditioned if its condition number is close to 1, the condition number of the identity 
matrix. A matrix is called ill-conditioned if its condition number is significantly larger than 1.
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Write a function conditionNumber@matD that uses norm defined in the previous exercise or 
the built-in Norm  function and outputs the condition number of mat. Use conditionNumber to 
compute the condition number of the first ten Hilbert matrices.

7. Create a function LagPlotAdata, lagE that plots data (a one-dimensional vector) against the data 

lagged by a displacement, lag. For example, if lag = 1, then LagPlot would display values 8xi-1, xi}. 
Use NIST’s lew.dat which consists of 200 observations of beam deflection data and whose lag plot 
indicates a lack of randomness in the sequence of numbers. You can import and post-process the 
data using the following:

In[2]:= data = Import@
"http:êêitl.nist.govêdiv898êeducationêedaêlew.dat", "Data"D;

Short@lewdata = Cases@data, 8x_?NumberQ< ß xDD
Out[3]//Short=

8-213, -564, -35, -15, 141, á190à, -385, 198, -218, -536, 96<

Or, if you have the files associated with this book, use something like the following:

In[4]:= lewdata = Import@
FileNameJoin@8NotebookDirectory@D, "Data", "lew.dat"<D, "List"D;

8. Modify the Correlogram function developed in this section to provide for an option, 
Coefficient, that sets the range of values for the dashed lines within which the autocorrelation 
coefficients are hoped to lie. In addition, set things up so Correlogram inherits all the options of 
ListPlot.

Then use your function to look at some time-series data, such as that below; the plot here shows 
a high degree of autocorrelation for small time lags, but less so for larger lags, suggesting a serial 
dependence in the data. In finance, autocorrelation analysis (usually referred to as serial correlation) 
is used to predict how price movements may be affected by each other.

In[5]:= data = FinancialData@"^DJI", 882011, 1, 1<, 82011, 12, 31<<, "Value"D;

In[6]:= Correlogram@data, 81, 150<, Coefficient Ø 0.5,

Filling Ø Axis, PlotRange Ø 8-1, 1<,
PlotLabel Ø Style@"Dow Jones 2011: autocorrelation plot", 8D,
FrameLabel Ø 88"Autocorrelation", None<, 8"Lag", None<<D

Out[6]=

9. Create random walks on the binary digits of p. For a one-dimensional walk, use 
RealDigits@num, 2D to get the base 2 digits and then convert each 0 to –1 so that you have a 
vector of ±1s for the step directions; then use Accumulate. For the two-dimensional walk, use 
Partition  to pair up digits and then use an appropriate transformation to have the four pairs, 
80, 0<, 80, 1<, 81, 0<, and 81, 1< map to the compass directions; then use Accumulate. See 
Bailey et al. (2012) for more on visualizing digits of p.
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9

Strings
Structure and syntax · Character codes · Sorting lists of characters · Ordered words · Operations 

on strings · Strings vs. lists · Encoding text · Indexed symbols · Anagrams · String patterns°· 
Finding subsequences with strings · Alternatives · Regular expressions · Word stemming · 

Random strings · Partitioning strings · Adler checksum · Substring searches · DNA sequence 
analysis · Displaying DNA sequences · Blanagrams

Strings are used across many disciplines to represent filenames, data, and other objects: linguists
working  with  text  data  study  representation,  classification,  and  patterns  involved  in  audio  and
text  usage;  biologists  dealing  with  genomic  data  as  strings  are  interested  in  sequence  structure
and  assembly  and  perform  extensive  statistical  analysis  of  their  data;  programmers  operate  on
string  data  for  such  tasks  as  text  search,  file  manipulation,  and  text  processing.  Strings  are  so
ubiquitous that almost every modern programming language has a string datatype and dozens of
functions for operating on and with strings.

 In Mathematica, strings are represented by any concatenation of characters enclosed in double
quotes. 

In[1]:= StringQ@"The magic words are squeamish ossifrage."D

Out[1]= True

Strings are also used to represent file names that you import and export.

In[2]:= Import@"ExampleDataêocelot.jpg"D

Out[2]=



Strings are used as arguments, option values, and as the output to many functions.

In[3]:= GenomeData@"SNORD107"D

Out[3]= GGTTCATGATGACACAGGACCTTGTCTGAACATAATGATTTCAAAATTTGAGCTTAAAAÖ
ATGACACTCTGAAATC

In[4]:= StringQ@%D

Out[4]= True

In  this  chapter  we  will  introduce  the  tools  available  for  working  with  strings  in  Mathematica.
We will begin with a look at the structure and syntax of strings, then move on to a discussion of
the many high-level functions that are optimized for string manipulation. String patterns follow
on  the  discussion  of  patterns  in  Chapter  4  and  we  will  introduce  an  alternative  syntax  (regular
expressions)  that  provides  a  very  compact  mechanism  for  working  with  strings.  The  chapter
closes  with  several  applied  examples  drawn  from  computer  science  (checksums)  as  well  as
bioinformatics (working with DNA sequences) and also word games (anagrams, blanagrams).

9.1 Structure and syntax
Strings  are  expressions  consisting  of  a  number  of  characters  enclosed in  quotes.  The  characters
can  be  anything  you  can  type  from  your  keyboard,  including  uppercase  and  lowercase  letters,
numbers, punctuation marks, and spaces. For example, here is the standard set of printable Ascii
characters.

In[1]:= CharacterRange@" ", "~"D

Out[1]= 8 , !, ", Ò, $, %, &, ', H, L, *, +, ,, -, ., ê, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, :, ;, <, =, >, ?, ü, A, B, C, D, E,
F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X,

Y, Z, @, \, D, ^, _, `, a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 8, », <, ~<

Other character sets are available as well. For example, here are the lowercase Greek letters. These
are  typically  entered  from  one  of  Mathematica’s  many  built-in  character  palettes,  or  using  a  key-
board shortcut such as Â-a-Â for a.

In[2]:= CharacterRange@"a", "w"D

Out[2]= 8a, b, g, d, �, z, h, q, i, k, l,
m, n, x, o, p, r, V, s, t, u, j, c, y, w<

When Mathematica displays a string in output, it appears without the quotes. This is the default
behavior of the formatting rules for OutputForm .
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In[3]:= "The magic words are squeamish ossifrage."

Out[3]= The magic words are squeamish ossifrage.

Use InputForm or FullForm to display these quotes in output.

In[4]:= FullForm@"The magic words are squeamish ossifrage."D
Out[4]//FullForm=

"The magic words are squeamish ossifrage."

Various predicates test whether a string consists entirely of letters, or uppercase and lowercase
letters.

In[5]:= LetterQ@"ossifrage"D

Out[5]= True

In[6]:= LetterQ@"x1"D

Out[6]= False

In[7]:= LowerCaseQ@"strings"D

Out[7]= True

Use === (SameQ) to test for equality of strings.

In[8]:= "sty" === "sty "

Out[8]= False

Several functions are available for working with the structure of strings.

In[9]:= Head@"The magic words are squeamish ossifrage."D

Out[9]= String

In[10]:= StringLength@"The magic words are squeamish ossifrage."D

Out[10]= 40

StringLength also works with lists of strings. In other words, it has the Listable attribute.

In[11]:= StringLength@
8"How", "I", "wish", "I", "could", "calculate", "pi"<D

Out[11]= 83, 1, 4, 1, 5, 9, 2<

Character codes
One way to work with strings is to convert them to a list of character codes and then operate on
the codes using mathematical functions. Each character in a computer’s character set is assigned
a  number,  called  its  character  code.  By  general  agreement,  almost  all  computers  use  the  same
character codes, called the Ascii code. In this code, the uppercase letters A, B, …, Z are assigned the
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numbers 65, 66, …, 90 while the lowercase letters a, b, …, z have the numbers 97, 98, …, 122 (note
that the number of an uppercase letter is 32 less than its lowercase version). The numbers 0, 1, …,
9 are coded as 48, 49, …, 57 while the punctuation marks period, comma, and exclamation point
have  the  codes  46,  44,  and  33,  respectively.  The  space  character  is  represented  by  the  code  32.

Table 9.1 shows the characters and their codes.

Table 9.1. Ascii character codes

Characters Ascii codes
A, B, …, Z 65, 66, …, 90

a, b, …, z 97, 98, …, 122

0, 1, …, 9 48, 49, …, 57

. HperiodL 46

, HcommaL 44

? Hquestion markL 63

â  HspaceL 32

Here are the printable Ascii characters.

In[12]:= FromCharacterCode@Range@32, 126DD

Out[12]=

!"Ò$%&'HL*+,-.ê0123456789:;<=>?üABCDEFGHIJKLMNOPQRSTUVWXYZ
@\D^_`abcdefghijklmnopqrstuvwxyz8»<~

ToCharacterCodeAcharE converts any string character char to its Ascii code.

In[13]:= ToCharacterCode@%D

Out[13]= 832, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126<

You can also get a list of the characters in a range if  you know how they are ordered by their
character codes.
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In[14]:= CharacterRange@"a", "z"D

Out[14]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[15]:= Flatten@ToCharacterCode@%DD

Out[15]= 897, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122<

Characters from other languages can also be used, for example, Greek and Japanese.

In[16]:= FromCharacterCode@Range@913, 1009DD

Out[16]= ABGDEZHQIKLMNXOPR STUFCYW�������abgd�zhqiklmnxoprVstujcyw���Ö
	
� J¢��fv�������¥��ª�������	
����ø�

In[17]:= FromCharacterCode@Range@30 010, 30 030DD

Out[17]= 町画甼甽甾甿畀���畄�畆�畈畉畊畋界畍畎
Unicode charts for many languages are available online (for example,  www.unicode.org/charts).
With these charts you can find the hexadecimal code for characters in many different languages.
For Gujarati, the first character in its code table has hex value 0A90.  Here we convert from base
16 and then display the character.

In[18]:= 16^^0A90

Out[18]= 2704

In[19]:= FromCharacterCode@%D

Out[19]= �
Using  the  character  code  representation  of  characters,  the  following  series  of  computations

changes a word from lowercase to uppercase.

In[20]:= ToCharacterCode@"mathematica"D

Out[20]= 8109, 97, 116, 104, 101, 109, 97, 116, 105, 99, 97<

In[21]:= % - 32

Out[21]= 877, 65, 84, 72, 69, 77, 65, 84, 73, 67, 65<

In[22]:= FromCharacterCode@%D

Out[22]= MATHEMATICA

Or, simply use a built-in function that is designed specifically for this task.

In[23]:= ToUpperCase@"mathematica"D

Out[23]= MATHEMATICA
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Sorting lists of characters
As a practical  example of the use of character codes,  we will  extend the simple sorting function
from Chapter 4  to work with lists of string characters. Although written to operate on numbers,
this  rule  can be  overloaded to  work on characters  by  making only  a  few small  changes.  Here  is
the original rule from Section 4.3.

In[24]:= listSort = 88x___, a_?NumericQ, b_?NumericQ, y___< ß

8x, b, a, y< ê; b < a<;

The  first  change  is  to  check  that  the  patterns  a  and  b  have  head  String  instead  of  testing  for
numbers with the predicate NumericQ.  Second, instead of the numerical comparison a < b,  we
need to compare their character codes.

In[25]:= ToCharacterCode@8"q", "t"<D

Out[25]= 88113<, 8116<<

In[26]:= charSort = 8x___, a_String, b_String, y___< ß 8x, b, a, y< ê;
First@ToCharacterCode@bDD < First@ToCharacterCode@aDD

Out[26]= 8x___, a_String, b_String, y___< ß 8x, b, a, y< ê;
First@ToCharacterCode@bDD < First@ToCharacterCode@aDD

Here is a list of characters.

In[27]:= chars = 8"d", "h", "c", "m", "r", "l", "c", "h", "t", "d", "j"<;

Here is the sort.

In[28]:= chars êê. charSort

Out[28]= 8c, c, d, d, h, h, j, l, m, r, t<

Section 9.5 explores the use of character codes to create hash tables, or checksums.

Ordered words
When studying word or language structure,  a common task is to find all  words within a corpus
that meet some criteria you are interested in. In this brief example, we will use character codes to
search for  words whose letters  are  “in order”  when read from the first  letter  to the last.  We will
create  a  Boolean  function  OrderedWordQ  that  returns  True  or  False  depending  upon
whether its argument is  in alphabetic order.  So OrderedWordQ@"best"D  would return True
but OrderedWordQ@"brag"D  would return False.  Then we will use this predicate to find all
words in a dictionary that are ordered in this sense.

Start by getting a list of all words in the dictionary using DictionaryLookup.
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In[29]:= words = DictionaryLookup@D;
Short@words, 4D

Out[30]//Short=

8a, Aachen, aah, Aaliyah, aardvark, aardvarks,

Aaron, abaci, aback, abacus, abacuses, abaft,

á92 495à, Zürich, zwieback, Zwingli, Zworykin, zydeco,

zygote, zygotes, zygotic, zymurgy, Zyrtec, Zyuganov<

Alternatively,  you can use the data in WordData,  which contains phrases in addition to words.
You could use any similar resource for your list of words.

In[31]:= Short@WordData@AllD, 4D
Out[31]//Short=

80, 1, 10, 100, 1000, 10000, 100000, 1000000,

1000000000, 1000000000000, 1000th, 100th, á149168à,

Zyloprim, zymase, zymogen, zymoid, zymology, zymolysis,

zymolytic, zymosis, zymotic, zymurgy, Zyrian<

First, consider the character code of a string.

In[32]:= ToCharacterCode@"best"D

Out[32]= 898, 101, 115, 116<

Then we only need to know if this list of codes is in order.

In[33]:= OrderedQ@%D

Out[33]= True

Here is a predicate that returns True  if its argument is ordered in this alphabetic sense.

In[34]:= OrderedWordQ@word_StringD := OrderedQ@ToCharacterCode@wordDD

Now we will find all the words in the dictionary file that comes with Mathematica that are ordered
in  this  way;  we  will  use  Select  to  return  those  words  that  pass  the  test.  Finally,  we  randomly
sample 40 of them.

In[35]:= orderedwords = Select@words, OrderedWordQD;

In[36]:= RandomSample@orderedwords, 40D

Out[36]= 8Tabor, dot, loos, first, Phipps, Gap, I, Kent, Milo, Dior,
bells, or, ABS, Kass, ens, Nader, been, adds, a, Hiss, access,
Lajos, Kerr, allow, cellos, Babel, Rh, his, ah, almost, abbes,
chippy, Cam, ABC, ally, Igor, cent, Odell, floppy, Tory<

Almost  correct!  In  the  English  character  code  set,  capitals  appear  before  lowercase  letters.  So,
although  our  words  are  ordered  in  the  sense  of  character  codes,  they  are  not  ordered  in  the
commonly-used sense. 
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In[37]:= ToCharacterCode@"A"D

Out[37]= 865<

In[38]:= ToCharacterCode@"a"D

Out[38]= 897<

One  approach  to  resolving  this  issue  is  to  only  work  with  words  of  the  same  case.  We  could
either convert words of the form uppercase/lowercase to lowercase/lowercase or we could select
only  words  from  the  dictionary  that  match  a  pattern  that  codes  for  this.  We  will  wait  until  the
discussion of string patterns in Section 9.3 to correct this issue.

Exercises
1. Convert the first character in a string (which you may assume to be a lowercase letter) to uppercase.

2. Given a string of digits of arbitrary length, convert it to its integer value. (Hint: you may find that the 
Dot function is helpful.)

3. Create a function UniqueCharacters@strD that takes a string as its argument and returns a list of 
the unique characters in that string. For example, UniqueCharacters@"Mississippi"D 
should return 8M, i, s, p<.

9.2 Operations on strings
Strings are expressions and, like other expressions (such as numbers and lists), there are built-in
functions  available  to  operate  on  them.  Many  of  these  functions  are  very  similar  to  those  for
operating on lists. In this section we will first look at some of these basic functions for operating
on strings and then use them on some nontrivial examples: analyzing a large piece of text, encod-
ing strings, creating index variables, and finally, a word game for creating anagrams.

Basic string operations
StringTake , which has a similar syntax to Take , is used to extract parts of a string. The second
argument specifies the positions of the characters to extract.  So,  for example,  this takes the first
twelve characters in this string.

In[1]:= StringTake@"Three quarks for Muster Mark!", 12D

Out[1]= Three quarks

And this takes the last twelve characters from the string.

In[2]:= StringTake@"Three quarks for Muster Mark!", -12D

Out[2]= Muster Mark!
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A list of the individual characters is returned by Characters .

In[3]:= Characters@"Three quarks for Muster Mark!"D

Out[3]= 8T, h, r, e, e, , q, u, a, r, k, s, ,
f, o, r, , M, u, s, t, e, r, , M, a, r, k, !<

StringJoin  concatenates strings.

In[4]:= StringJoin@"q", "u", "a", "r", "k", "s"D

Out[4]= quarks

The shorthand notation for StringJoin  is str1 < > str2.

In[5]:= "x" <> "22"

Out[5]= x22

The following functions mirror those for list operations.

In[6]:= StringReverse@"abcde"D

Out[6]= edcba

In[7]:= StringDrop@"abcde", -1D

Out[7]= abcd

In[8]:= StringPosition@"abcde", "bc"D

Out[8]= 882, 3<<

In[9]:= StringCount@"When you wish upon a star", "o"D

Out[9]= 2

In[10]:= StringInsert@"abcde", "T", 3D

Out[10]= abTcde

In[11]:= StringReplace@"abcde", "cd" Ø "CD"D

Out[11]= abCDe

Some  functions  are  quite  specific  to  strings  and  do  not  have  analogs  with  lists.  For  example,
conversion to uppercase and lowercase.

In[12]:= ToUpperCase@"words"D

Out[12]= WORDS

This trims substrings from a string using alternative patterns (discussed further in Section 9.3). So
if either "http:êê" or "ê" is found, they will be trimmed.

In[13]:= StringTrim@"http:êêwww.google.comê", "http:êê" "ê"D

Out[13]= www.google.com
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Strings vs. lists
For some computations, you might be tempted to convert a string to a list of characters and then
operate on the list using some list manipulation functions. For example, this first constructs a list
of the individual characters and then uses Count  to get the number of occurrences of the letter B
in the list of characters from the text of Charles Darwin’s On the Origin of Species.

In[14]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;
StringTake@text, 200D

Out[15]= INTRODUCTION. When on board H.M.S. 'Beagle,' as
naturalist, I was much struck with certain facts
in the distribution of the inhabitants of South
America, and in the geological relations of the present

In[16]:= Count@Characters@textD, "B"D êê Timing

Out[16]= 80.167993, 427<

Since  the  string  functions  in  Mathematica  are  optimized for  working on strings  directly  you will
often find that they are much faster than the more general list manipulation functions. 

In[17]:= StringCount@text, "B"D êê Timing

Out[17]= 80.001424, 427<

This speedup results from the fact that the string pattern matching algorithms are operating only
on a well-defined finite alphabet and string expressions are essentially flat structures, whereas the
algorithms  for  more  general  expression  matching  are  designed  to  operate  on  arbitrary  expres-
sions with potentially much more complicated structures. 

Converting to lists and using list manipulation functions will often be more cumbersome than
working with the string functions directly. For example, finding a word within a chunk of text by
first  converting to  a  list  of  characters  would be  quite  indirect  and computationally  more  taxing
than simply using StringCount  directly.

In[18]:= StringCount@text, "selection"D êê Timing

Out[18]= 80.005508, 351<

In  fact,  sometimes  you  will  even  find  it  more  efficient  to  convert  a  numerical  problem  to  one
involving  strings,  do  the  work  with  string  manipulation  functions,  and  then  convert  back  to
numbers as in the subsequence example in Section 9.5.

Encoding text
In this example, we will develop functions for coding and decoding strings of text. The particular
coding  that  we  will  use  is  quite  simplistic  compared  with  contemporary  commercial-grade
ciphers, but it will give us a chance to see how to combine string manipulation, the use of func-
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tional programming constructs, and rule-based programming all in a very practical example that
should be accessible to anyone.

The problem in encryption is  to  develop an algorithm that  can be used to  encode a  string of
text and then a dual algorithm that can be used to decode the encrypted message. Typically,  the
input string is referred to as the plaintext and the encoded output as the ciphertext. 

To start, we will limit ourselves to the 26 lowercase letters of the alphabet.

In[19]:= alphabet = CharacterRange@"a", "z"D

Out[19]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

One  of  the  simplest  encryption  schemes  is  attributed  to  Julius  Caesar  who  is  said  to  have  used
this cipher to encode communications with his generals. The scheme is simply to shift each letter
of the alphabet some fixed number of places to the left and is commonly referred to as a substitu-
tion cipher.  Using Thread,  we can set  up rules  that  implement this  shift,  here just  shifting one
place to the left.

In[20]:= CaesarCodeRules = Thread@alphabet Ø RotateLeft@alphabetDD

Out[20]= 8a Ø b, b Ø c, c Ø d, d Ø e, e Ø f, f Ø g, g Ø h, h Ø i,
i Ø j, j Ø k, k Ø l, l Ø m, m Ø n, n Ø o, o Ø p, p Ø q, q Ø r,
r Ø s, s Ø t, t Ø u, u Ø v, v Ø w, w Ø x, x Ø y, y Ø z, z Ø a<

The decoding rules are simply to reverse the encoding rules.

In[21]:= CaesarDecodeRules = Map@Reverse, CaesarCodeRulesD

Out[21]= 8b Ø a, c Ø b, d Ø c, e Ø d, f Ø e, g Ø f, h Ø g, i Ø h,
j Ø i, k Ø j, l Ø k, m Ø l, n Ø m, o Ø n, p Ø o, q Ø p, r Ø q,
s Ø r, t Ø s, u Ø t, v Ø u, w Ø v, x Ø w, y Ø x, z Ø y, a Ø z<

To  code  a  string,  we  will  decompose  the  string  into  individual  characters,  apply  the  code  rules,
and then join up the resulting characters in a “word.”

In[22]:= Characters@"hello"D

Out[22]= 8h, e, l, l, o<

In[23]:= % ê. CaesarCodeRules

Out[23]= 8i, f, m, m, p<

In[24]:= StringJoin@%D

Out[24]= ifmmp
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Here is the function to accomplish this.

In[25]:= encode@str_String, coderules_D :=

StringJoin@Characters@strD ê. coderulesD

Similarly, here is the decoding function.

In[26]:= decode@str_String, decoderules_D :=

StringJoin@Characters@strD ê. decoderulesD

Let us try it out on a phrase.

In[27]:= encode@"squeamish ossifrage", CaesarCodeRulesD

Out[27]= trvfbnjti pttjgsbhf

In[28]:= decode@%, CaesarDecodeRulesD

Out[28]= squeamish ossifrage

In  this  example,  we  have  shifted  one  position  for  each  letter  to  encode  (and  decode).  It  is
thought  that  Caesar  (or  his  cryptographers)  used  a  shift  of  length  three  to  encode  his  military
messages.  In  the  exercises,  you  are  asked  to  implement  a  different  shift  length  in  the  encoding
and decoding functions. 

Even  with  longer  shifts,  the  Caesar  cipher  is  terribly  insecure  and  highly  prone  to  cracking
since  there  are  only  26  possible  shifts  with  this  simple  cipher.  A  slightly  more  secure  cipher
involves permuting the letters of the alphabet. 

In[29]:= p = RandomSample@alphabetD

Out[29]= 8a, m, j, c, d, k, p, u, x, z, b,
w, n, e, t, s, g, l, y, h, v, i, f, o, q, r<

Using Thread,  we create a rule for each letter paired up with the corresponding letter from the
permutation p.

In[30]:= PermutationCodeRules = Thread@alphabet Ø pD

Out[30]= 8a Ø a, b Ø m, c Ø j, d Ø c, e Ø d, f Ø k, g Ø p, h Ø u,
i Ø x, j Ø z, k Ø b, l Ø w, m Ø n, n Ø e, o Ø t, p Ø s, q Ø g,
r Ø l, s Ø y, t Ø h, u Ø v, v Ø i, w Ø f, x Ø o, y Ø q, z Ø r<

Again, the decoding rules are obtained by simply reversing the above rules.

In[31]:= PermutationDecodeRules = Thread@p Ø alphabetD

Out[31]= 8a Ø a, m Ø b, j Ø c, c Ø d, d Ø e, k Ø f, p Ø g, u Ø h,
x Ø i, z Ø j, b Ø k, w Ø l, n Ø m, e Ø n, t Ø o, s Ø p, g Ø q,
l Ø r, y Ø s, h Ø t, v Ø u, i Ø v, f Ø w, o Ø x, q Ø y, r Ø z<
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In[32]:= encode@"squeamish ossifrage", PermutationCodeRulesD

Out[32]= ygvdanxyu tyyxklapd

In[33]:= decode@%, PermutationDecodeRulesD

Out[33]= squeamish ossifrage

Although  these  substitution  ciphers  are  not  terribly  difficult  to  crack,  they  should  give  you
some  good  practice  in  working  with  strings  and  the  various  Mathematica  programming  con-
structs.  Modern  commercial-grade  ciphers  such  as  public-key  ciphers  are  often  based  on  the
difficulty of factoring large integers. For a basic introduction to the history of ciphers, see Sinkov
(1966). A more thorough treatment can be found in Paar and Pelzl (2010).

Indexed symbols
When  developing  algorithms  that  operate  on  large  structures  (for  example,  large  systems  of
equations), it is often helpful to be able to create a set of unique symbols with which to work. As
an example of operations on strings, we will use some of the functions discussed in this section to
develop a little utility function that creates unique symbols. Although there is a built-in function,
Unique, that does this, it has some limitations for this particular task. 

In[34]:= Table@Unique@"x"D, 88<D

Out[34]= 8x3, x4, x5, x6, x7, x8, x9, x10<

One potential limitation of Unique  is that it uses the first unused  symbol of a particular form. It
does this to avoid overwriting existing symbols. 

In[35]:= Table@Unique@"x"D, 88<D

Out[35]= 8x11, x12, x13, x14, x15, x16, x17, x18<

However, if you want to explicitly create a list of indexed symbols with a set of specific indices,
it  is  useful  to  create  a  different  function.  First,  note  that  a  string  can  be  converted  to  a  symbol
using ToExpression or by wrapping the string in Symbol.

In[36]:= Head@"x1"D

Out[36]= String

In[37]:= ToExpression@"x1"D êê Head

Out[37]= Symbol

In[38]:= Symbol@"x1"D êê Head

Out[38]= Symbol
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StringJoin  is  used to  concatenate  strings.  So,  let  us  concatenate  the  variable  with  the  index,
first with one number and then with a range of numbers.

In[39]:= StringJoin@"x", "8"D êê FullForm
Out[39]//FullForm=

"x8"

In[40]:= ToExpression@Map@"x" <> ToString@ÒD &, Range@12DDD

Out[40]= 8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12<

We put all the pieces of code together.

In[41]:= MakeVarList@x_Symbol, n_IntegerD :=

ToExpression@Map@ToString@xD <> ToString@ÒD &, Range@nDDD

In[42]:= MakeVarList@tmp, 20D

Out[42]= 8tmp1, tmp2, tmp3, tmp4, tmp5, tmp6,
tmp7, tmp8, tmp9, tmp10, tmp11, tmp12, tmp13,
tmp14, tmp15, tmp16, tmp17, tmp18, tmp19, tmp20<

Let  us  create  an  additional  rule  for  this  function  that  takes  a  range  specification  as  its  second
argument.

In[43]:= MakeVarList@x_Symbol, 8n_Integer, m_Integer<D :=

ToExpression@Map@ToString@xD <> ToString@ÒD &, Range@n, mDDD

In[44]:= MakeVarList@tmp, 820, 30<D

Out[44]= 8tmp20, tmp21, tmp22, tmp23, tmp24,
tmp25, tmp26, tmp27, tmp28, tmp29, tmp30<

Note that we have not been too careful about argument checking. 

In[45]:= MakeVarList@tmp, 8-2, 2<D

Out[45]= 8-2 + tmp, -1 + tmp, tmp0, tmp1, tmp2<

In the exercises you are asked to correct this.

Anagrams
Anagrams  are  words  that  have  the  same  set  of  letters  but  in  a  different  order.  Good  Scrabble
players are adept at anagram creation. Anagrams can be created by taking a word, extracting and
permuting its characters, and then finding which permutations are real words. 

Start by getting the characters in a word.

In[46]:= chars = Characters@"tame"D

Out[46]= 8t, a, m, e<
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Permute the characters.

In[47]:= p = Permutations@charsD

Out[47]= 88t, a, m, e<, 8t, a, e, m<, 8t, m, a, e<, 8t, m, e, a<,
8t, e, a, m<, 8t, e, m, a<, 8a, t, m, e<, 8a, t, e, m<,
8a, m, t, e<, 8a, m, e, t<, 8a, e, t, m<, 8a, e, m, t<,
8m, t, a, e<, 8m, t, e, a<, 8m, a, t, e<, 8m, a, e, t<,
8m, e, t, a<, 8m, e, a, t<, 8e, t, a, m<, 8e, t, m, a<,
8e, a, t, m<, 8e, a, m, t<, 8e, m, t, a<, 8e, m, a, t<<

Concatenate the characters in each list.

In[48]:= words = Map@StringJoin, pD

Out[48]= 8tame, taem, tmae, tmea, team, tema, atme, atem,
amte, amet, aetm, aemt, mtae, mtea, mate, maet,
meta, meat, etam, etma, eatm, eamt, emta, emat<

Now, which of these “words” are really words? One way to check is to select those that are in the
dictionary.  Those  elements  in  words  that  are  not  in  the  dictionary  will  return  8<  when  run
against DictionaryLookup, so we omit those using �.

In[49]:= Select@words, DictionaryLookup@Ò, IgnoreCase Ø TrueD � 8< &D

Out[49]= 8tame, team, mate, meta, meat<

Putting all the pieces together, we have the function Anagrams.

In[50]:= Anagrams@word_StringD :=

Module@8chars = Characters@wordD, words<,
words = Map@StringJoin, Permutations@charsDD;
Select@words, DictionaryLookup@Ò, IgnoreCase Ø TrueD � 8< &D

D

In[51]:= Anagrams@"parsley"D êê Timing

Out[51]= 80.300797, 8parsley, parleys, players, replays, sparely<<

In[52]:= Anagrams@"elvis"D

Out[52]= 8elvis, evils, levis, lives, veils<

In[53]:= Anagrams@"instance"D

Out[53]= 8instance, ancients, canniest<

Other than extracting the characters of a word and joining the permuted list of characters, the
operations  here  are  essentially  those  on  lists  (of  strings)  and  pattern  matching.  Exercise  2  in
Section  9.5  discusses  a  more  direct  approach  to  this  problem,  one  that  avoids  the  creation  of
permutations of the characters in the word.
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Exercises

1. Create a function PalindromeQ@strD that returns a value of True  if its argument str is a palin-
drome, that is, if the string str is the same forward and backward. For example, refer is a palindrome.

2. Create a function StringRotateLeft@str, nD that takes a string str, and returns a string with the 
characters rotated to the left n places. For example:

In[1]:= StringRotateLeft@"a quark for Muster Mark ", 8D

Out[1]= for Muster Mark a quark

3. In creating the function MakeVarList in this section, we were not careful about the arguments 
that might be passed. Correct this problem using pattern matching on the arguments to this 
function to insure that the indices are positive integers only.

4. Create a function StringPad@str, 8n<D that pads the end of a string with n whitespace charac-
ters. Then create a second rule StringPad@str, nD that pads the string out to length n. If the input 
string has length greater than n, issue a warning message. Finally, mirroring the argument structure 
for the built-in PadLeft , create a third rule StringPad@str, n, mD that pads with n whitespaces 
at the front and m whitespaces at the end of the string.

5. Modify the Caesar cipher so that it encodes by shifting five places to the right. Include the space 
character in the alphabet.

6. A mixed-alphabet cipher is created by first writing a keyword followed by the remaining letters of 
the alphabet and then using this as the substitution (or cipher) text. For example, if the keyword is 
django, the cipher text alphabet would be:

djangobcefhiklmpqrstuvwxyz

So, a is replaced with d, b is replaced with j, c is replaced with a, and so on. As an example, the piece 
of text

 the sheik of araby 

would then be encoded as

tcg scgeh mo drdjy

Implement this cipher and go one step further to output the cipher text in blocks of length five, 
omitting spaces and punctuation. 

7. Modify the alphabet permutation cipher so that instead of being based on single letters, it is instead 
based on adjacent pairs of letters. The single letter cipher will have 
26 ! = 403 291 461 126 605 635 584 000 000 permutations; the adjacent pairs cipher will have 
26

2 ! = 1.883707684133810� 10
1621 permutations.
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9.3 String patterns
Most of the string operations we have looked at  up until  this point have involved literal  strings.
For example, in string replacement, we have specified both the explicit string that we are operat-
ing on as well as the replacement string.

In[1]:= StringReplace@"11ê28ê1986", "ê" Ø "-"D

Out[1]= 11-28-1986

But  the  real  power  of  programming  with  strings  comes  with  the  use  of  patterns  to  represent
different classes of strings. A string pattern is a string expression that contains symbolic patterns.
Much  of  the  pattern  matching  discussed  in  the  previous  chapters  extends  to  strings  in  a  very
powerful manner. For example, this uses patterns to change the first letter in a string to uppercase.

In[2]:= str = "colorless green ideas sleep furiously";

In[3]:= StringReplace@str, f_ ~~ rest__ ß ToUpperCase@fD <> restD

Out[3]= Colorless green ideas sleep furiously

Or, use a conditional pattern to check if a word begins with an uppercase character.

In[4]:= StringMatchQ@"Jekyll", f_?UpperCaseQ ~~ rest___D

Out[4]= True

To get started, you might find it helpful to think of strings as a sequence of characters and use
the same general principles on these expressions as you do with lists. 

For example, the expression 8a, b, c, c, d, e< matches the pattern 8__, s_, s_, __<
because  it  is  a  list  that  starts  with  a  sequence  of  one  or  more  elements,  it  contains  an  element
repeated once, and then ends with a sequence of one or more elements.

In[5]:= MatchQ@8a, b, c, c, d, e<, 8__, s_, s_, __<D

Out[5]= True

If we now use a string instead of a list and StringMatchQ  instead of MatchQ,  we get a similar
result using the shorthand notation ~~ for StringExpression. 

In[6]:= StringMatchQ@"abccde", __ ~~ s_ ~~ s_ ~~ __D

Out[6]= True

str1 ~~ str2  is  shorthand  notation  for  StringExpression@str1, str2D,  which,  for  the  purpose
of pattern matching, represents a sequence of strings.

In[7]:= "a" ~~ "b"

Out[7]= ab
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In[8]:= Defer@FullForm@"a" ~~ "b"DD

Out[8]= StringExpression@"a", "b"D

StringExpression is quite similar to StringJoin  (both can be used to concatenate strings)
except that with StringExpression, you can concatenate nonstrings.

The next example also shows the similarity between the general expression pattern matching
that we explored earlier in Chapter 4 and string patterns. Using Cases, the following returns all
those expressions that match the pattern _Symbol, that is, pick out all symbols from the list.

In[9]:= Cases@81, f, g, 6, x, t, 2, 5<, _SymbolD

Out[9]= 8f, g, x, t<

With strings we use StringCases  whose second argument is a pattern that represents a class of
characters  to  match.  StringCases  returns  those  substrings  that  match a  given pattern.  Many
named patterns are available for various purposes. For example, LetterCharacter  matches a
single letter.

In[10]:= StringCases@"1fg6xt25", LetterCharacterD

Out[10]= 8f, g, x, t<

Match single digits with DigitCharacter  and one or more digits with NumberString.

In[11]:= StringCases@"1fg6xt25", DigitCharacterD

Out[11]= 81, 6, 2, 5<

In[12]:= StringCases@"1fg6xt25", NumberStringD

Out[12]= 81, 6, 25<

To see the generality and power of working with string patterns, suppose we were looking for
a  nucleotide  sequence  in  a  gene  consisting  of  a  repetition  of  A  followed  by  any  character,  fol-
lowed by T.  Using a gene from the human genome, the following string pattern neatly does the
job.

In[13]:= gene = GenomeData@"IGHV357"D

Out[13]= AAGTCCTGTGTGAAGTTTATTGATGGAGTCAGAGGCAGAAAATTGTACAGCCCAGTGGTTCAÖ

CTGAGACTCTCCTGCAAAGCCTCTGATTTCACCTTTACTGGCTACAGCATGAGCTTGGTÖ

CCAGCAGGCTTCATGACAGGGATTGGTGTGGGTGGAAACAGTGAGTGATCAAGTGGGAGÖ

TTCTCAGAGTTACTCTCCATGAGTACAAATAAATTAACAGTCCCAAGCGACACCTTTTCÖ

ATGTGCAGTCTACCTTACAATGACCAACCTGAAAGCCAAGGACAAGGCTGTGTATTACTÖ

GTGAGGGA

In[14]:= StringCases@gene, "AA" ~~ _ ~~ "T"D

Out[14]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<
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Here are the starting and ending positions of these substrings. StringPosition  takes the same
syntax as StringCases , analogous to Position and Cases.

In[15]:= StringPosition@gene, "AA" ~~ _ ~~ "T"D

Out[15]= 881, 4<, 813, 16<, 840, 43<, 841, 44<,
8172, 175<, 8207, 210<, 8211, 214<, 8212, 215<<

And if you wanted to return those characters that follow all occurrences of the string "GTC", you
can name the pattern and use a rule to return it.

In[16]:= StringCases@gene, pat : "GTC" ~~ x_ ß pat <> xD

Out[16]= 8GTCC, GTCA, GTCC, GTCC, GTCT<

In this example, the pattern is pat : "GTC" ~~ x_. This pattern is named pat and it consists of
the string GTC which is then followed by any character. That character is named x so that we can
refer  to  it  in  the  replacement  expression  on  the  right-hand  side  of  the  rule.  The  replacement
expression is the pattern pat concatenated with the character named x.

As  another  example  of  the  use  of  string  patterns,  suppose  you  were  interested  in  scraping
phone numbers off of a web page; you need to construct a pattern that matches the form of the
phone numbers you are looking for. In this case we use the form n-nnn-nnn-nnnn which matches
the  form  of  North  American  phone  numbers.  NumberString  comes  in  handy  as  it  picks  up
strings  of  numbers  of  any  length.  Otherwise  you  would  have  to  use  DigitCharacter ..
which matches repeating digits.

In[17]:= webpage = Import@
"http:êêwww.wolfram.comêcompanyêcontact.cgi", "HTML"D;

In[18]:= StringCases@webpage,
NumberString ~~ "-" ~~ NumberString ~~
"-" ~~ NumberString ~~ "-" ~~ NumberString D

Out[18]= 8+1-217-398-0700, +1-217-398-0747,
+1-217-398-5151, +1-217-398-0747, +1-217-398-6500<

Finding subsequences with strings
In this section we will explore a related problem to the one in Section 4.3, where we searched for
subsequences within a sequence of numbers. Here we will transform the problem from working
with lists of digits to one where we work with strings.

Using pattern matching it is not too difficult to construct the pattern of interest. For example,
suppose  we  were  looking  for  the  substring  are  within  a  larger  string.  Using  the  special  named
string pattern WordBoundary  which matches the beginning or end of  a  word,  we concatenate
(StringJoin)  the  patterns  we  need.  See  Table  9.3  in  the  next  section  for  a  listing  of  other
named patterns.
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In[19]:= StringCases@"The magic words are squeamish ossifrage.",
WordBoundary ~~ "are" ~~ WordBoundaryD

Out[19]= 8are<

In[20]:= StringPosition@"The magic words are squeamish ossifrage.",
WordBoundary ~~ "are" ~~ WordBoundaryD

Out[20]= 8817, 19<<

To start, we will prototype with a short sequence of digits of p, converted to a string.

In[21]:= num = ToString@N@p, 50DD

Out[21]= 3.1415926535897932384626433832795028841971693993751

Check that the output is in fact a string.

In[22]:= 8Head@numD, InputForm@numD<

Out[22]= 8String,
"3.1415926535897932384626433832795028841971693993751"<

For  our  purposes  here,  we are  only  interested in  the  digits  following the decimal  point.  We can
extract them by splitting the string of digits on the decimal point and then taking the second part
of that expression. This will generalize for numbers with an arbitrary number of digits before the
decimal point.

In[23]:= StringSplit@num, "."D

Out[23]= 83, 1415926535897932384626433832795028841971693993751<

In[24]:= Part@%, 2D

Out[24]= 1415926535897932384626433832795028841971693993751

The subsequence 3238 occurs starting 15 positions to the right of the decimal point.

In[25]:= StringPosition@%, "3238"D

Out[25]= 8815, 18<<

Collecting the code fragments, we turn this into a function.

In[26]:= FindSubsequence@num_?NumberQ, subseq_?NumberQD :=

With@8n = ToString@numD, s = ToString@subseqD<,
StringPosition@Part@StringSplit@n, "."D, 2D, sD

D

Let us try it out on a more challenging example: finding occurrences of the sequence 314159 in
the decimal expansion of p.

In[27]:= pi = NAp, 107E;
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In[28]:= FindSubsequence@pi, 314159D êê Timing

Out[28]= 84.39282,
88176451, 176456<, 81259 351, 1 259 356<, 81 761 051, 1 761 056<,
86467324, 6467329<, 86518 294, 6 518 299<,
89753731, 9753736<, 89973 760, 9 973 765<<<

Comparing with the function that takes lists of digits developed in Section 4.3,  our string imple-
mentation is about twice as fast.

In[29]:= pidigs = FirstARealDigitsAp, 10, 107, -1EE;

Timing@
FindSubsequence@pidigs, 83, 1, 4, 1, 5, 9<D

D

Out[30]= 89.08731,
88176451, 176456<, 81259 351, 1 259 356<, 81 761 051, 1 761 056<,
86467324, 6467329<, 86518 294, 6 518 299<,
89753731, 9753736<, 89973 760, 9 973 765<<<

Alternatives
We have already seen general patterns with alternatives discussed in Chapter 4. Here we will use
alternatives  with  string  patterns.  The  idea  is  quite  similar.  For  example,  a  common  task  in
genome  analysis  is  determining  the  GC  content  or  ratios  of  the  nucleobases  guanine  (G)  and
cytosine (C) to all four bases in a given fragment of genetic material. 

In[31]:= gene = GenomeData@"MRPS35P1"D;

You could count the occurrences of G and the occurrences of C and add them together. 

In[32]:= StringCount@gene, "G"D + StringCount@gene, "C"D

Out[32]= 41

But  it  is  much  easier  to  use  alternatives  to  indicate  that  you  want  to  count  all  occurrences  of
either  G  or  C.  The  syntax  for  using  alternative  string  patterns  is  identical  to  that  for  general
expressions that we introduced in Section 4.1.

In[33]:= StringCount@gene, "G" "C"D

Out[33]= 41

We will return to the computation of GC content in Section 9.5.
As  a  slightly  more  involved  example,  suppose  you  are  interested  in  tallying  the  lengths  of

words in a corpus. You might start by using StringSplit  to split the large string into a list of
words.
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In[34]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;

In[35]:= sstext = StringSplit@textD;
Short@sstext, 6D

Out[36]//Short=

8INTRODUCTION., When, on, board, H.M.S.,
'Beagle,', as, naturalist,, I, was, much, struck,
á149839à, forms, most, beautiful, and, most,
wonderful, have, been,, and, are, being,, evolved.<

Looking at the result, you will see that some elements of this list include various types of punctua-
tion. For example, StringSplit , with default delimiters, missed certain hyphenated words and
some punctuation.

In[37]:= sstext@@853, 362<DD

Out[37]= 8species--that, statements;<

There are 149863 elements in this split list.

In[38]:= Length@sstextD

Out[38]= 149863

Fortunately, StringSplit  takes a second argument that specifies the delimiters to match. The
pattern  is  given  as  a  set  of  alternatives  followed  by  the  repeated  operator  to  catch  one  or  more
repetitions of any of these delimiters.  Searching through the text will  help to come up with this
list of alternatives. 

In[39]:= splitText = StringSplit@text,
H" " "." "," ";" ":" "'" "\"" "?" "!" "-"L ..D;

In[40]:= Short@splitText, 5D
Out[40]//Short=

8INTRODUCTION, When, on, board, H, M, S, Beagle,
as, naturalist, I, á151181à, beautiful, and, most,
wonderful, have, been, and, are, being, evolved<

Notice that this list contains many more elements than the initial approach given above.

In[41]:= Length@splitTextD

Out[41]= 151202

Finally, here is a histogram showing the distribution of word lengths in the text,  On the Origin of
Species.
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In[42]:= Histogram@StringLength@splitTextD, Frame Ø True,
FrameLabel Ø 8"Word length", "Frequency"<,
FrameTicks Ø 88Automatic, None<, 8Automatic, None<<D

Out[42]=

Let us compare this with a different text:  A Portrait  of  the Artist  as a Young Man,  by James Joyce
(available online at Project Gutenberg). We are postprocessing here by removing metadata at the
beginning and at the end of the file.

In[43]:= joyce = StringTake@Import@
"http:êêwww.gutenberg.orgêcacheêepubê4217êpg4217.txt",
"Text"D, 688 ;; -18843D;

StringTake@joyce, 875, 164<D

Out[44]= Once upon a time and a very good time it
was there was a moocow coming down along the road

An alternative syntax uses a list of delimiters as given by Characters . The repeated pattern, ..,
helps to catch such constructions as “--”, “::” and double-spaces.

In[45]:= words = StringSplit@joyce, Characters@":,;.!?'\- "D ..D;
Histogram@StringLength@wordsD, Frame Ø True,
FrameLabel Ø 8"Word length", "Frequency"<,
FrameTicks Ø 88Automatic, None<, 8Automatic, None<<D

Out[46]=
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In  the  next  section,  on  regular  expressions,  we  will  see  that  there  are  more  compact  ways  of
accomplishing some of these tasks.

Exercises
1. At the end of Section 9.1 we created a predicate OrderedWordQ to find all words in a dictionary 

whose letters are in alphabetic order. This predicate used character codes and returned incorrect 
results for words that started with a capital letter. Correct this error by only selecting words from 
the dictionary that start with a lowercase letter. Consider using a conditional string pattern involv-
ing the built-in function LowerCaseQ.

2. Given a list of words, some of which start with uppercase characters, convert them all to words in 
which the first character is lowercase. You can use the words in the dictionary as a good sample set.

3. Create a function Palindromes@nD that finds all palindromic words of length n in the dictionary. 
For example, kayak is a five-letter palindrome.

4. Find the number of unique words in a body of text such as Alice in Wonderland.

In[1]:= text = ExampleData@8"Text", "AliceInWonderland"<D;

After splitting the text into words, convert all uppercase characters to lowercase so that you count 
words such as hare and Hare as the same word.

Such computations are important in information retrieval systems, for example, in building 
term-document incidence matrices used to compare the occurrence of certain terms across a set of 
documents (Manning, Raghavan, and Schütze 2008).

9.4 Regular expressions
In  addition  to  the  use  of  string  patterns  discussed  up  to  this  point,  you  can  also  specify  string
patterns using what are known as regular  expressions.  Regular expressions in Mathematica  follow a
syntax  very  close  to  that  of  the  Perl  programming  language.  This  syntax  is  quite  compact  and
powerful but it  comes at  the cost of  readability – regular expressions tend to be quite cryptic to
humans. As a result, we will only cover a few examples of their use here and refer the interested
reader  to  the  Mathematica  documentation  on  string  patterns  (Working  with  String  Patterns,
WMDC).

You should think of regular expressions as an alternative syntax for string pattens. To indicate
that  you  are  using  a  regular  expression,  wrap  the  expression  in  RegularExpression .  For
example, the regular expression . is a wildcard character. It matches any single character except a
newline. To use it as a string pattern, write RegularExpression@"."D.

In[1]:= StringMatchQ@"a", RegularExpression@"."DD

Out[1]= True
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The string "abc" does not match the pattern because it does not consist of a single character.

In[2]:= StringMatchQ@"abc", RegularExpression@"."DD

Out[2]= False

You can also match a set or range of characters. For example, this matches any of the characters a
through z.

In[3]:= StringMatchQ@"a", RegularExpression@"@a-zD"DD

Out[3]= True

Certain  constructs  give  patterns  with  repeating  elements.  For  example,  "c*"  is  a  pattern
matched by a string with character c repeated zero or more times; "c+" stands in for the charac-
ter c repeated one or more times.

In[4]:= StringMatchQ@"aa", RegularExpression@"a*"DD

Out[4]= True

In[5]:= StringMatchQ@"aaab", RegularExpression@"a+"DD

Out[5]= False

You can also match on concatenated characters using the syntax c1 c2 ….

In[6]:= StringPosition@"ACAACTGGAGATCATGACTG",
RegularExpression@"ACT"DD

Out[6]= 884, 6<, 817, 19<<

Several  constructs  are  available  for  classes  of  characters.  The  named  classes  in  the  last  two
entries of Table 9.2 include alpha, ascii, blank, digit, space, word, and several more.

Table 9.2. Regular expressions classes of characters

Regular expression Meaning

\\d digit 0–9

\\D nondigit

\\s space, newline, tab, whitespace

\\S non-whitespace character

\\w word character, e.g. letter, digit

\\W nonword character
@@:class:DD characters in a named class

@^@:class:DD characters not in a named class
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The regular expression a.*  matches any expression beginning with the character a  followed by
any sequence of characters.

In[7]:= StringMatchQ@"all in good time", RegularExpression@"a.*"DD

Out[7]= True

The regular expression \\d represents any digit 0 through 9. 

In[8]:= StringCases@"1a2b3c4d", RegularExpression@"\\d"DD

Out[8]= 81, 2, 3, 4<

The  regular  expression  a.+\\d  matches  any  expression  beginning  with  an  a,  followed  by  any
character repeated one or more times, followed by a digit.

In[9]:= StringCases@"abc1, abd2, abc", RegularExpression@"a.+\\d"DD

Out[9]= 8abc1, abd2<

Let us try something more ambitious. This finds all words in text that are of length 16 to 18.

In[10]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;
StringCases@text, RegularExpression@"\\b\\w816,18<\\b"DD êê
DeleteDuplicates

Out[11]= 8agriculturalists, disproportionably,
malconformations, experimentalists, palaeontological,
incomprehensibly, PALAEONTOLOGICAL, palaeontologists,
intercommunication, incomprehensible<

 The regular expression \\b matches any word boundary (typically whitespace, period, comma,
etc.) and \\w816, 18< matches any word of length 16 to 18. 

Various shortcuts exist for some commonly used patterns (Table 9.3).

Table 9.3. Patterns for special locations within strings

Pattern Matches
StartOfString beginning of entire string

EndOfString end of entire string

StartOfLine beginning of a line

EndOfLine end of a line
WordBoundary boundary between words

Conveniently, you can mix regular expressions and other string patterns in various ways. This
accomplishes the same thing as the previous computation, but using WordBoundary, instead of
the regular expression \\b.
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In[12]:= StringCases@text,
WordBoundary ~~ RegularExpression@"\\w816,18<"D ~~
WordBoundaryD êê DeleteDuplicates

Out[12]= 8agriculturalists, disproportionably,
malconformations, experimentalists, palaeontological,
incomprehensibly, PALAEONTOLOGICAL, palaeontologists,
intercommunication, incomprehensible<

Sometimes you will need to refer to the pattern by name in order to perform some operation
on  it.  This  is  similar  to  the  situation  with  regular  named  patterns.  For  example,  given  a  list  of
words,  some of  which are uppercase/lowercase,  this  uses  string patterns to transform the list  to
all lowercase words, naming the pattern that is matched by the first character after a word bound-
ary, a.

In[13]:= words = 8"festively", "frolicking",
"subcategories", "retreated", "recompiling",
"Barbary", "Herefords", "geldings", "Norbert",
"incalculably", "proselytizers", "topmast"<;

In[14]:= StringReplace@words, WordBoundary ~~ a_ ß ToLowerCase@aDD

Out[14]= 8festively, frolicking, subcategories, retreated,
recompiling, barbary, herefords, geldings,
norbert, incalculably, proselytizers, topmast<

So how do we name a pattern with regular expressions so that we can refer to it on the right-
hand  side  of  a  rule?  The  syntax  using  regular  expressions  is  to  wrap  the  pattern  in  parentheses
and  then  refer  to  it  using  "$n",  where  n  is  the  nth  occurrence  of  such  patterns.  For  example,
\\b(\\w)  is  a  named pattern that is  matched by an expression consisting of  a  word boundary
followed by a word character. The subexpression matching (\\w) is referenced by "$1" on the
right-hand side of the rule.

In[15]:= StringReplace@words,
RegularExpression@"\\bH\\wL"D ß ToLowerCase@"$1"DD

Out[15]= 8festively, frolicking, subcategories, retreated,
recompiling, barbary, herefords, geldings,
norbert, incalculably, proselytizers, topmast<

To change the second character after the word boundary to uppercase,  use "$2"  to refer to the
expression that matches the second (\\w).
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In[16]:= StringReplace@words, RegularExpression@"\\bH\\wLH\\wL"D ß
ToLowerCase@"$1"D ~~ ToUpperCase@"$2"DD

Out[16]= 8fEstively, fRolicking, sUbcategories, rEtreated,
rEcompiling, bArbary, hErefords, gEldings,
nOrbert, iNcalculably, pRoselytizers, tOpmast<

A  particularly  useful  construct  in  many  situations  is  the  lookahead/lookbehind  construct.
H? = pattL  is used when the following text must match patt  and H? < = pattL  is used when the
preceding text must match patt. For example, this finds all those words in some example text that
follow "Raven, ".

In[17]:= text = ExampleData@8"Text", "TheRaven"<D;

In[18]:= StringCases@text,
RegularExpression@"H?<=Raven, L\\w+"DD

Out[18]= 8sitting, never<

There  are  many  more  constructs  available  for  doing  quite  sophisticated  things  with  regular
expressions. We will explore some of these in the exercises below and in the examples in Section
9.5.  For a more detailed discussion, see the tutorials Regular Expressions (WMDC) and Working
with String Patterns (WMDC).

Word stemming
Many  aspects  of  linguistic  analysis  include  a  study  of  the  words  used  in  a  piece  of  text  or  in  a
speech. For example, you might be interested in comparing the complexity of articles written in
two different newspapers. The length and frequency of certain words might be a useful measure
for  such  an  analysis.  Patterns  in  usage  of  certain  word  combinations  can  be  used  to  identify
authenticity or the identity of an author a work. 

There  are  some  basic  issues  that  arise  again  and  again  in  such  analyses.  For  example,  what
should  be  done  with  contractions  such  as  shouldn't?  What  about  sets  of  words  such  as  run,  runs,
ran,  running.  Are  they  considered  distinct?  One  approach  in  language  processing  is  to  strip  suf-
fixes and reduce alternate forms to some stem.  This process, known as word stemming, is exten-
sively used in many online search systems to try to distill  user's queries to some basic form that
can be processed and operated on. It is a bit tricky, as natural languages are notorious for excep-
tions to almost any rule.  For example,  although the word entertainment  can sensibly be stemmed
to entertain, the stem of comment is certainly not com. In other words, a rule that dropped the suffix
ment is too broad and returns nonwords in many cases. In most word stemming algorithms, there
are  numerous  rules  for  the  many  cases  that  need  to  be  examined;  and  there  are  many  special
cases. In this section, we will create a set of rules for word stemming to show how these rules are
described  and  how  the  string  pattern  constructs  in  Mathematica  provide  a  good  set  of  tools  to
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implement these concepts. A full-fledged stemming application would include hundreds of rules
for each language, so we will only give a small set here to indicate the general process.

Words ending in …xes The first set of stemming rules we will create involves a relatively small set
of  words  in  the  English  language –  those  ending in  xes,  such as  boxes  or  complexes.  The  rule  is  to
strip off the es. 

To  prototype,  we  collect  all  the  words  in  the  dictionary  that  end  in  xes.  We  will  also  restrict
ourselves to words that are all lowercase. Quiet  is used here to suppress the error messages that
arise  when  StringTake  operates  on  words  of  length  less  than  three.  Alternatively,  you  could
put an extra clause (StringLength@wD ¥ 3) in the conjunction.

In[19]:= words = DictionaryLookup@w__ ê; StringTake@w, -3D === "xes" &&

LowerCaseQüStringTake@w, 1DD êê Quiet

Out[19]= 8admixes, affixes, annexes, anticlimaxes, apexes, appendixes,

aviatrixes, axes, bandboxes, bollixes, boxes, breadboxes,

calyxes, chatterboxes, circumflexes, climaxes, coaxes,

complexes, convexes, coxes, crucifixes, cruxes, detoxes,

duplexes, equinoxes, exes, faxes, fireboxes, fixes,

flexes, flummoxes, fluxes, foxes, gearboxes, hatboxes,

hexes, hoaxes, horseboxes, hotboxes, ibexes, iceboxes,

indexes, influxes, intermixes, jinxes, jukeboxes,

laxes, letterboxes, loxes, lummoxes, lunchboxes, lynxes,

mailboxes, matchboxes, maxes, minxes, mixes, moneyboxes,

multiplexes, nixes, onyxes, orthodoxes, outboxes, outfoxes,

overtaxes, oxes, paintboxes, paradoxes, parallaxes,

perplexes, phalanxes, phoenixes, pickaxes, pillboxes,

pixes, poleaxes, postboxes, postfixes, poxes, prefixes,

premixes, prophylaxes, pyxes, reflexes, relaxes, remixes,

saltboxes, sandboxes, saxes, sexes, shadowboxes, simplexes,

sixes, snuffboxes, soapboxes, sphinxes, squeezeboxes,

strongboxes, suffixes, surtaxes, taxes, telexes, thoraxes,

tinderboxes, tippexes, toolboxes, transfixes, triplexes,

tuxes, unfixes, vertexes, vexes, vortexes, waxes, xeroxes<

Here  is  the  replacement  rule.  The  regular  expression  "H\\wLHxLes"  will  be  matched  by  any
word character followed by xes.  It  is  replaced by that word character followed only by x.  On the
right-hand side of the rule, $1  refers to the first pattern on the left, H\\ wL;  and $2  refers to the
second pattern on the left, HxL.

In[20]:= rule1 = RegularExpression@"H\\wLHxLes"D ß "$1$2";
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In[21]:= stemmed = StringReplace@words, rule1D

Out[21]= 8admix, affix, annex, anticlimax, apex, appendix, aviatrix, ax,

bandbox, bollix, box, breadbox, calyx, chatterbox, circumflex,

climax, coax, complex, convex, cox, crucifix, crux, detox,

duplex, equinox, ex, fax, firebox, fix, flex, flummox, flux,

fox, gearbox, hatbox, hex, hoax, horsebox, hotbox, ibex,

icebox, index, influx, intermix, jinx, jukebox, lax, letterbox,

lox, lummox, lunchbox, lynx, mailbox, matchbox, max, minx,

mix, moneybox, multiplex, nix, onyx, orthodox, outbox,

outfox, overtax, ox, paintbox, paradox, parallax, perplex,

phalanx, phoenix, pickax, pillbox, pix, poleax, postbox,

postfix, pox, prefix, premix, prophylax, pyx, reflex, relax,

remix, saltbox, sandbox, sax, sex, shadowbox, simplex, six,

snuffbox, soapbox, sphinx, squeezebox, strongbox, suffix,

surtax, tax, telex, thorax, tinderbox, tippex, toolbox,

transfix, triplex, tux, unfix, vertex, vex, vortex, wax, xerox<

In[22]:= Select@stemmed, NotüMemberQ@DictionaryLookup@D, ÒD &D

Out[22]= 8max, poleax, postfix, prophylax<

This is pretty good; it appears only four stemmed words are not in the dictionary; although max
might  be  considered  an  abbreviation,  postfix  is  certainly  a  word!  Nonetheless,  these  sorts  of
exceptions are common and will need to be dealt with separately. 

Plural  nouns  ending  …mming A  word  such  as  programming  has  a  stem  of  program;  so  the  rule  for
words ending in …mming  could be: drop the ming.  Start be gathering all the words in the dictio-
nary that end with …mming.

In[23]:= words =
DictionaryLookup@w__ ê; StringTake@w, -5D === "mming"D êê Quiet

Out[23]= 8bedimming, brimming, bumming, chumming, clamming, cramming,

damming, deprogramming, diagramming, dimming, drumming,

flimflamming, gumming, hamming, hemming, humming, jamming,

lamming, lemming, monogramming, multiprogramming, programming,

ramming, reprogramming, rimming, scamming, scramming, scrumming,

scumming, shamming, shimming, skimming, slamming, slimming,

slumming, spamming, stemming, strumming, summing, swimming,

thrumming, tramming, trimming, unjamming, whamming, whimming<
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Recall the regular expression \\ w + represents a word character repeated some number of times;
\\ b  represents  a  word  boundary;  the  $1  refers  to  the  first  expression  H\\ w +L,  that  is,  the
characters up to the mming. These characters will be joined with a single m.

In[24]:= rule2 = RegularExpression@"H\\w+Lmming\\b"D ß "$1" ~~ "m";

In[25]:= StringReplace@words, rule2D

Out[25]= 8bedim, brim, bum, chum, clam, cram, dam, deprogram, diagram, dim,

drum, flimflam, gum, ham, hem, hum, jam, lam, lem, monogram,

multiprogram, program, ram, reprogram, rim, scam, scram,

scrum, scum, sham, shim, skim, slam, slim, slum, spam, stem,

strum, sum, swim, thrum, tram, trim, unjam, wham, whim<

Again,  this  is  quite  good  although  the  word  lemming  has  been  stemmed  to  the  nonword  lem,
something that will need to be dealt with as a special case. The way to do that is to order the rules
so that the special cases are caught first.

In[26]:= rule2 = 8"lemming" ß "lemming",
RegularExpression@"H\\w+Lmming\\b"D ß "$1" ~~ "m"

<;

In[27]:= StringReplace@words, rule2D

Out[27]= 8bedim, brim, bum, chum, clam, cram, dam, deprogram, diagram,

dim, drum, flimflam, gum, ham, hem, hum, jam, lam, lemming,

monogram, multiprogram, program, ram, reprogram, rim, scam,

scram, scrum, scum, sham, shim, skim, slam, slim, slum, spam,

stem, strum, sum, swim, thrum, tram, trim, unjam, wham, whim<

Words  ending  in  …otes Numerous  rules  are  needed  for  turning  plural  words  into  their  singular
stems. To see this, consider a naive rule that simply drops the s for any such words.

In[28]:= StringReplace@8"possess", "thrushes", "oasis"<,
RegularExpression@"H\\w+Ls"D ß "$1"D

Out[28]= 8posses, thrushe, oasi<

This is clearly too general a rule. In fact, several different rules are needed for words that end in s,
depending upon the preceding characters. Here, we will only deal with words that end in …otes.
First gather the words in the dictionary that match this pattern.
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In[29]:= words = DictionaryLookup@w__ ê; StringTake@w, -4D === "otes" &&

LowerCaseQüStringTake@w, 1DD êê Quiet

Out[29]= 8anecdotes, antidotes, asymptotes, banknotes, compotes, connotes,

cotes, coyotes, creosotes, demotes, denotes, devotes,

dotes, dovecotes, emotes, footnotes, garrotes, keynotes,

litotes, misquotes, motes, notes, outvotes, promotes,

quotes, remotes, rotes, totes, unquotes, votes, zygotes<

Here is the replacement rule.

In[30]:= rule3 = RegularExpression@"H\\w+LHoteLs"D ß "$1$2";

In[31]:= StringReplace@words, rule3D

Out[31]= 8anecdote, antidote, asymptote, banknote, compote,

connote, cote, coyote, creosote, demote, denote,

devote, dote, dovecote, emote, footnote, garrote,

keynote, litote, misquote, mote, note, outvote, promote,

quote, remote, rote, tote, unquote, vote, zygote<

Stemming litotes gives the nonword litote. This can again be resolved by adding some specific rules
for these not uncommon situations.

Plural to singular Let us try to deal with the general problem of stemming plural forms to singular.
This is  a  more difficult  scenario to deal  with as there are many rules and even more exceptions.
We  will  begin  by  showing  how  the  order  of  the  replacement  rules  matters  in  the  stemming
process.

You  might  imagine  the  rules  given  in  Table  9.4  being  used  to  stem  plurals  (these  are  not
complete,  but  they  will  get  us  started).  In  fact,  these  are  step  1a  of  the  commonly-used  Porter’s
algorithm for word stemming in the English language.

Table 9.4. Stemming rules, plural to singular

Rule Example
… ssesØ… ss possesesØpossess

… shesØ… sh churchesØ church
… iesØ… y theoriesØ theory

… ssØ… ss passØpass

… usØ… us abacusØ abacus
… sØ… catsØ cat
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The  order  in  which  such  rules  are  used  is  important.  You  do  not  want  the  last  rule  being  used
before any of the others. As we saw with the previous set of rules, Mathematica will apply rules in
the order in which they are given, assuming that they have roughly the same level of specificity.
Note  also  that  some of  these  rules  are  designed to  leave  certain  words  unchanged.  For  example
neither pass nor abacus are plural and they should not be stemmed. 

Here  then  is  a  rough  attempt  at  stemming  plural  words.  First  we  gather  the  words  from  the
dictionary that end in s and display a random sample of them.

In[32]:= words = DictionaryLookup@w__ ê;
StringTake@w, -1D ã "s" && LowerCaseQüStringTake@w, 1DD;

randwords = RandomSample@words, 30D

Out[33]= 8spitfires, oranges, misconceptions, antennas, ventrals,

recommends, prepossesses, churns, turnarounds, loyalists,

sectarians, generators, demonetizes, reconstructs,

laundress, thrashers, skiffs, libertines, sings, augurs,

reeves, wienies, bigmouths, hypnotics, instants, garters,

estrangements, antioxidants, roadies, churchgoers<

In[34]:= rules = 8
RegularExpression@"H\\w+LHssLHesL"D ß "$1$2",
RegularExpression@"H\\w+LHshLHesL"D ß "$1$2",
RegularExpression@"H\\w+LHiesL"D ß "$1" ~~ "y",
RegularExpression@"H\\w+LHssL"D ß "$1$2",
RegularExpression@"H\\w+LHusL"D ß "$1$2",
RegularExpression@"H\\w+LHsL"D ß "$1"

<;

In[35]:= StringReplace@randwords, rulesD

Out[35]= 8spitfire, orange, misconception, antenna, ventral, recommend,

prepossess, churn, turnaround, loyalist, sectarian, generator,

demonetize, reconstruct, laundress, thrasher, skiff,

libertine, sing, augur, reeve, wieny, bigmouth, hypnotic,

instant, garter, estrangement, antioxidant, roady, churchgoer<

This process of word stemming requires a lot of trial and error and the creation of many rules for
the exceptions. Another approach, called lemmatization, does a more careful and thorough job by
working with vocabularies and performing morphological analysis of the words to better under-
stand how to reduce them to a root. For more information, see Manning, Raghavan, and Schütze
(2008).
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Exercises
1. Rewrite the genomic example in Section 9.3 to use regular expressions instead of string patterns to 

find all occurrences of the sequence AAanythingT. Here is the example using general string patterns.

In[1]:= gene = GenomeData@"IGHV357"D;

In[2]:= StringCases@gene, "AA" ~~ _ ~~ "T"D

Out[2]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<

2. Rewrite the web page example in Section 9.3 to use regular expressions to find all phone numbers 
on the page; that is, expressions of the form nnn–nnn–nnnn. Modify accordingly for other web pages 
and phone numbers formatted for other regions.

3. Create a function UcLcAwordE that takes its argument word and returns the word with the first letter 

uppercase and the rest of the letters lowercase.

4. Use a regular expression to find all words given by DictionaryLookup  that consist only of the 
letters a, e, i, o, u, and y in any order with any number of repetitions of the letters.

5. The basic rules for pluralizing words in the English language are roughly, as follows: if a noun ends 
in ch, s, sh, j, x, or z, it is made plural by adding es to the end. If the noun ends in y and is preceded by a 
consonant, replace the y with ies. If the word ends in ium, replace with ia (Chicago Manual of Style 
2010). Of course, there are many more rules and even more exceptions, but you can implement a 
basic set of rules to convert singular words to plural based on these rules and then try them out on 
the following list of words.

In[3]:= words = 8"building", "finch", "fix", "ratio",

"envy", "boy", "baby", "faculty", "honorarium"<;
6. A common task in transcribing audio is cleaning up text, removing certain phrases such as um, er, 

and so on, and other tags that are used to make a note of some sort. For example, the following 
transcription of a lecture from the University of Warwick, Centre for Applied Linguistics (BASE 
Corpus), contains quite a few fragments that should be removed, including newline characters, 
parenthetical remarks, and nonwords. Use StringReplace with the appropriate rules to “clean” 
this text and then apply your code to a larger corpus.

In[4]:= text = "okay well er today we're er going to be carrying on with the er
French \nRevolution you may have noticed i was sort of getting
rather er enthusiastic \nand carried away at the end of the
last one i was sort of almost er like i sort \nof started at
the beginning about someone standing on a coffee table and
s-, \nshouting to arms citizens as if i was going to sort
of leap up on the desk and \nsay to arms let's storm the
Rootes Social Building @laughterD or er let's go \nout arm
in arm singing the Marseillaise or something er like that";

7. Find the distribution of sentence lengths for any given piece of text. ExampleData@"Text"D 
contains several well-known books and documents that you can use. You will need to think about 
and identify sentence delimiters carefully. Take care to deal properly with words such as Mr., Dr., 
and so on that might incorrectly trigger a sentence-ending detector.

8. In web searches and certain problems in natural language processing (NLP), it is often useful to filter 
out certain words prior to performing the search or processing of the text to help with the perfor-
mance of the algorithms. Words such as the, and, is, and so on are commonly referred to as stop words 
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for this purpose. Lists of stop words are almost always created manually based on the constraints of 
a particular application. We will assume you can import a list of stop words as they are commonly 
available across the internet. For our purposes here, we will use one such list that comes with the 
materials for this book.
In[5]:= stopwords = RestüImport@"StopWords.dat", "List"D;

RandomSample@stopwords, 12D
Out[6]= 8what, look, taken, specify, wants, thorough,

they, hello, whose, them, mightn't, particular<

Using the above list of stop words, or any other that you are interested in, first filter some sample 
“search phrases” and then remove all stop words from a larger piece of text.

In[7]:= searchPhrases = 8"Find my favorite phone",

"How deep is the ocean?", "What is the meaning of life?"<;
9. Modify the previous exercise so that the user can supply a list of punctuation in addition to the list 

of stop words to be used to filter the text.

9.5 Examples and applications
This section puts together many of the concepts and techniques developed earlier in the chapter
to  solve  several  nontrivial  applied  problems.  The  first  example  creates  a  function  to  generate
random strings, mirroring the syntax of the built-in random number functions. People who work
with  large  strings,  such  as  those  in  genomic  research,  often  partition  their  strings  into  small
blocks and then perform some analysis on those substrings. We develop functions for partition-
ing  strings  as  well  as  several  examples  for  analyzing  sequences  of  genetic  code.  An  additional
example covers checksums, which are used to verify stored and transmitted data. Finally, a word
game is included in which we create blanagrams, a variant of anagrams.

Random strings
A blasphemous sect suggested … that all men should juggle letters and symbols until they constructed, by an 
improbable gift of chance, these canonical books.

— Jorge L. Borges, The Library of Babel

Those who work with genomic data often need to test their algorithms on strings. While it may
be sensible to test against real data – for example, using genes on the human genome – random
data  might  be  more  appropriate  to  quickly  test  and  measure  the  efficiency  of  an  algorithm.
Although Mathematica  has a variety of functions for creating random numbers, random variates,
and so on,  it  does not have a function to create random sequences of  strings.  In this  section we
will create one.

To start,  we will  choose the characters A,  C,  T,  and G – representing the nucleotide,  or DNA,
bases – as our alphabet, that is, the letters in the random strings we will create.
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In[1]:= chars = 8"A", "C", "T", "G"<;

The key observation is  that we want to choose one character at  random from this list.  Since we
need to repeat this n times, we need to randomly choose with replacement. That is the purpose of
RandomChoice.

In[2]:= RandomChoice@chars, 10D

Out[2]= 8C, A, C, G, G, G, C, G, A, T<

This expression is a list of strings.

In[3]:= FullForm@%D
Out[3]//FullForm=

List@"C", "A", "C", "G", "G", "G", "C", "G", "A", "T"D

Finally, we concatenate the strings.

In[4]:= StringJoin@%D êê FullForm
Out[4]//FullForm=

"CACGGGCGAT"

So a first  attempt at putting these pieces together would look like this.  Note the use of a default
value of 1 for the optional argument n (see Section 6.1 for a discussion of default values for argu-
ments to functions).

In[5]:= RandomString@chars_List, n_Integer: 1D :=

StringJoin@RandomChoice@chars, nDD

In[6]:= RandomString@8"A", "C", "T", "G"<, 500D

Out[6]= TACTGACCCTTCGACTAAGGTACCAACCCGGGCACTCTCCACAGGCAGAACGTTTACCGCCCCTCCTGGCÖ

AACTGGCGGAACCATACTGGTTATACGCGTCGGCCACGCGATACCTATATAAGCAAACGCCCGACCÖ

GATGTAAGATGTTATTTAAGGTCGCTGATGATTGACTCGACGGGCACACCACGATGTCGCTGATCAÖ

CCTACATTAAACCTACGCGCATTCCCGGGCCCTCTATATTGGAGAGGGTAAGTGGTTGAGAAACTTÖ

ATGGCAACTATTCTAGCTTACAAACTCACACACAAGGTCACCTAATGCCAACAACGGAGAGACGTCÖ

CCCTGCGTACCATCAGACCGACAAGATCGAATGGGCTTGAGGCACTTGGCTAATAGCTATGCGTAGÖ

TACTGGCGGTAGGATCGTGAAGACTATCGACGCCAATGCGAGGGCTGGATAAGAACACTGCACCGAÖ

GGTATACAGTCTGCGAAAGGCGCCTCAATGCACT

The default value of the second argument gives one choice.

In[7]:= RandomString@8"A", "C", "T", "G"<D

Out[7]= G

We can make the arguments a bit more general using structured patterns. The first argument
in this next version must be a list consisting of a sequence of one or more strings.

In[8]:= Clear@RandomStringD
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In[9]:= RandomString@8ch__String<, n_Integer: 1D :=

StringJoin@RandomChoice@8ch<, nDD

In[10]:= RandomString@8"a", "b", "d"<, 12D

Out[10]= dbbdbaaabdbd

Here is a ten-character password generator.

In[11]:= RandomString@
CharacterRange@"A", "z"D ‹ CharacterRange@"0", "9"D, 10D

Out[11]= 9SZ1zkMPDI

It is not hard to extend this function to create n random strings of a given length. We essentially
pass that argument structure to RandomChoice.

In[12]:= RandomString@8ch__String<, 8n_Integer, len_Integer<D :=

Map@StringJoin, RandomChoice@8ch<, 8n, len<DD

In[13]:= RandomString@8"A", "C", "T", "G"<, 84, 12<D

Out[13]= 8TCCAACTAACTC, GTACTACCCTGG, GGTAAGCTATTT, GCACTCTCGCTT<

In[14]:= RandomString@8"A", "C", "T", "G"<, 850, 1<D

Out[14]= 8G, T, C, A, A, C, G, A, A, T, G, G, G, A, A, T,
G, G, T, G, G, G, T, G, A, T, T, C, G, G, G, A, G,
A, C, G, C, A, C, A, A, T, T, G, C, G, C, T, C, T<

The exercises at the end of this section include a problem that asks you to add an option that
provides a mechanism to weight the individual characters in the random string.

Partitioning strings
Some  string  analysis  requires  strings  to  be  broken  up  into  blocks  of  a  certain  size  and  then
computations are performed on those blocks. Although there is no built-in function for partition-
ing  strings,  we  can  easily  create  one,  taking  advantage  of  the  syntax  and  speed  of  the  built-in
Partition function.

The Partition  function requires a list  as its  first  argument.  To start,  we will  give it  a list  of
the characters in a prototype string, a gene on the human genome.

In[15]:= GenomeData@"IGHVII671", "Name"D

Out[15]= immunoglobulin heavy variable HIIL-67-1
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In[16]:= str = GenomeData@"IGHVII671"D

Out[16]= ATGTCCTATTCAGGAGCAGCTACAGCAGTCATGCCTAGGTGTGAAGATCACACACTGACÖ
CTCACCCATGCTGTCTCTGGCCACTTCATCACAACCAATGCTTAATATTGGACGTGÖ
GATCTGCCAGTCCCCGGGGAATGGGTTGAATGGAT

In[17]:= Characters@strD

Out[17]= 8A, T, G, T, C, C, T, A, T, T, C, A, G, G, A, G, C, A, G, C, T, A, C, A, G, C,

A, G, T, C, A, T, G, C, C, T, A, G, G, T, G, T, G, A, A, G, A, T, C, A, C,

A, C, A, C, T, G, A, C, C, T, C, A, C, C, C, A, T, G, C, T, G, T, C, T, C,

T, G, G, C, C, A, C, T, T, C, A, T, C, A, C, A, A, C, C, A, A, T, G, C, T,

T, A, A, T, A, T, T, G, G, A, C, G, T, G, G, A, T, C, T, G, C, C, A, G, T,

C, C, C, C, G, G, G, G, A, A, T, G, G, G, T, T, G, A, A, T, G, G, A, T<

Now, partition this list of characters into lists of length 4 with offset 1.

In[18]:= Partition@Characters@strD, 4, 4, 1D

Out[18]= 88A, T, G, T<, 8C, C, T, A<, 8T, T, C, A<, 8G, G, A, G<,
8C, A, G, C<, 8T, A, C, A<, 8G, C, A, G<, 8T, C, A, T<,
8G, C, C, T<, 8A, G, G, T<, 8G, T, G, A<, 8A, G, A, T<, 8C, A, C, A<,
8C, A, C, T<, 8G, A, C, C<, 8T, C, A, C<, 8C, C, A, T<, 8G, C, T, G<,
8T, C, T, C<, 8T, G, G, C<, 8C, A, C, T<, 8T, C, A, T<, 8C, A, C, A<,
8A, C, C, A<, 8A, T, G, C<, 8T, T, A, A<, 8T, A, T, T<, 8G, G, A, C<,
8G, T, G, G<, 8A, T, C, T<, 8G, C, C, A<, 8G, T, C, C<, 8C, C, G, G<,
8G, G, A, A<, 8T, G, G, G<, 8T, T, G, A<, 8A, T, G, G<, 8A, T, A, T<<

Because  the  number  of  characters  in  str  is  not  a  multiple  of  4,  this  use  of  Partition  has
padded the last sublist with the first two characters from the original string; in other words, this
has treated the list cyclically; not quite what we want here.

In[19]:= Mod@StringLength@strD, 4D ã 0

Out[19]= False

A slightly different syntax for Partition gives an uneven subset at the end. We will need to use
this form so as not to lose or introduce any spurious information.

In[20]:= parts = Partition@Characters@strD, 4, 4, 1, 8<D

Out[20]= 88A, T, G, T<, 8C, C, T, A<, 8T, T, C, A<, 8G, G, A, G<,
8C, A, G, C<, 8T, A, C, A<, 8G, C, A, G<, 8T, C, A, T<,
8G, C, C, T<, 8A, G, G, T<, 8G, T, G, A<, 8A, G, A, T<, 8C, A, C, A<,
8C, A, C, T<, 8G, A, C, C<, 8T, C, A, C<, 8C, C, A, T<, 8G, C, T, G<,
8T, C, T, C<, 8T, G, G, C<, 8C, A, C, T<, 8T, C, A, T<, 8C, A, C, A<,
8A, C, C, A<, 8A, T, G, C<, 8T, T, A, A<, 8T, A, T, T<, 8G, G, A, C<,
8G, T, G, G<, 8A, T, C, T<, 8G, C, C, A<, 8G, T, C, C<, 8C, C, G, G<,
8G, G, A, A<, 8T, G, G, G<, 8T, T, G, A<, 8A, T, G, G<, 8A, T<<
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Finally, convert each sublist into a contiguous string.

In[21]:= Map@StringJoin, partsD

Out[21]= 8ATGT, CCTA, TTCA, GGAG, CAGC, TACA, GCAG, TCAT,

GCCT, AGGT, GTGA, AGAT, CACA, CACT, GACC, TCAC, CCAT, GCTG,

TCTC, TGGC, CACT, TCAT, CACA, ACCA, ATGC, TTAA, TATT, GGAC,

GTGG, ATCT, GCCA, GTCC, CCGG, GGAA, TGGG, TTGA, ATGG, AT<

This puts everything together in a function.

In[22]:= StringPartition@str_String, blocksize_D := Map@StringJoin,
Partition@Characters@strD, blocksize, blocksize, 1, 8<DD

This partitions the string into nonoverlapping blocks of length 12.

In[23]:= StringPartition@str, 12D

Out[23]= 8ATGTCCTATTCA, GGAGCAGCTACA, GCAGTCATGCCT, AGGTGTGAAGAT,

CACACACTGACC, TCACCCATGCTG, TCTCTGGCCACT, TCATCACAACCA,

ATGCTTAATATT, GGACGTGGATCT, GCCAGTCCCCGG, GGAATGGGTTGA, ATGGAT<

This function operates on large strings fairly fast. Here we partition a random string of length ten
million into nonoverlapping blocks of length ten.

In[24]:= data = RandomStringA8"A", "T", "C", "G"<, 107E;

In[25]:= Timing@StringPartition@data, 10D;D

Out[25]= 82.91544, Null<

Adler checksum
Checksums,  or  hashes,  are  commonly  used  to  check  the  integrity  of  data  when  that  data  are
either  stored  or  transmitted.  A  checksum  might  be  created,  for  example,  when  some  data  are
stored  on  a  disk.  To  check  the  integrity  of  that  data,  the  checksum  can  be  recomputed  and  if  it
differs  from  the  stored  value,  there  is  a  very  high  probability  that  the  data  was  tampered  with.
Hash functions are used to create hash tables which are used for record lookup in large arrays of
data.  As  an  example  of  the  use  of  character  codes,  we  will  implement  a  basic  checksum  algo-
rithm, the Adler checksum. 

Mathematica has a built-in function, Hash , that can be used to create hash codes, or checksums. 

In[26]:= Hash@"Mathematica"D

Out[26]= 1089499110

If the string is changed, its checksum changes accordingly.

In[27]:= Hash@"mathematica"D

Out[27]= 1007196870
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We  will  implement  a  basic  hash  code,  known  as  the  Adler-32  checksum  algorithm.  Given  a
string  c1 c2 �cn  consisting  of  concatenated  characters  ci,  we  form  two  16-bit  sums  m  and  n  as
follows:

m = 1 + cc1 + cc2 +�+ ccn mod 65 521,

n = H1 + cc1L+ H1 + cc1 + cc2L+�+ H1 + cc1 + cc2 +�+ ccnL mod 65 521,

where cci  is the character code for the character ci. The number 65521 is chosen as it is the largest
prime  smaller  than  216.  Choosing  primes  for  this  tasks  seems  to  reduce  the  probability  that  an
interchange of two bytes will not be detected. Finally, the Adler checksum is given by

m + 65 536 n

Let us take Mathematica as our test word. We start by getting the Ascii character codes for each
character.

In[28]:= str = "Mathematica";
codes = ToCharacterCode@strD

Out[29]= 877, 97, 116, 104, 101, 109, 97, 116, 105, 99, 97<

The number m above is given by the cumulative sums of the character codes, with 1 prepended to
that list. (This step could also be done using FoldList.)

In[30]:= mList = Accumulate@Join@81<, codesDD

Out[30]= 81, 78, 175, 291, 395, 496, 605, 702, 818, 923, 1022, 1119<

In[31]:= m = Last@mListD

Out[31]= 1119

The number n is given by the cumulative sums from this last list, omitting the 1 at the beginning
as it is already part of the cumulative sums.

In[32]:= nList = Accumulate@Rest@mListDD

Out[32]= 878, 253, 544, 939, 1435, 2040, 2742, 3560, 4483, 5505, 6624<

In[33]:= n = Last@nListD

Out[33]= 6624

In[34]:= m + 65536 n

Out[34]= 434111583

We can check our result against the algorithm implemented in the Hash  function.

In[35]:= Hash@"Mathematica", "Adler32"D

Out[35]= 434111583
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Finally,  this  puts  these  steps  together  in  a  reusable  function.  Our  prototype  worked  with  small
numbers  and  so  the  need  to  work  mod  65521  was  not  necessary.  For  general  inputs,  the  arith-
metic will be done using this modulus.

In[36]:= AdlerChecksum@str_StringD := Module@8codes, n, m<,
codes = ToCharacterCode@strD;
m = Mod@Accumulate@Join@81<, codesDD, 65 521D;
n = Mod@Accumulate@Rest@mDD, 65 521D;
Last@mD + Last@nD 65536

D

In[37]:= AdlerChecksum@"Mathematica"D

Out[37]= 434111583

As an aside, here is its hash code in hexadecimal.

In[38]:= IntegerString@%, 16D

Out[38]= 19e0045f

And here is a lengthier example.

In[39]:= AdlerChecksum@
"Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Fusce ultrices ornare odio. Proin adipiscing,
mi non pharetra eleifend, nibh libero laoreet
metus, at imperdiet urna ante in lectus."D

Out[39]= 3747169622

Search for substrings
As we have seen in this chapter, string patterns provide a powerful and compact mechanism for
operating on text data. In this example, we will create a function that searches the dictionary for
words containing a specified substring.

If our test substring is cite, here is how we would find all words that end in cite. Note the triple
blank pattern to match any sequence of zero or more characters.

In[40]:= DictionaryLookup@___ ~~ "cite"D

Out[40]= 8anthracite, calcite, cite, excite,
incite, Lucite, overexcite, plebiscite, recite<

Here are all words that begin with cite.

In[41]:= DictionaryLookup@"cite" ~~ ___D

Out[41]= 8cite, cited, cites<
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And this gives all words that have cite somewhere in them, at the beginning, middle, or end.

In[42]:= DictionaryLookup@___ ~~ "cite" ~~ ___D

Out[42]= 8anthracite, calcite, cite, cited, cites, elicited, excite,

excited, excitedly, excitement, excitements, exciter, exciters,

excites, incite, incited, incitement, incitements, inciter,

inciters, incites, Lucite, Lucites, overexcite, overexcited,

overexcites, plebiscite, plebiscites, recite, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<

Using the double blank gives words that have cite in them but not beginning or ending with cite.

In[43]:= DictionaryLookup@__ ~~ "cite" ~~ __D

Out[43]= 8elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,

incites, Lucites, overexcited, overexcites, plebiscites, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<

Let  us  put  these  pieces  together  in  a  reusable  function  FindWordsContaining.  We  will
include one option, WordPosition  that identifies where in the word the substring is expected
to occur. 

In[44]:= Options@FindWordsContainingD = 8WordPosition Ø "Start"<;

Depending upon the value of the option WordPosition,  Which  directs which expression will
be evaluated.

In[45]:= FindWordsContaining@str_String, OptionsPattern@DD :=

Module@8wp = OptionValue@WordPositionD<,
Which@
wp == "Start", DictionaryLookup@str ~~ ___D,
wp == "Middle", DictionaryLookup@__ ~~ str ~~ __D,
wp == "End", DictionaryLookup@___ ~~ strD,
wp ã "Anywhere", DictionaryLookup@___ ~~ str ~~ ___D

DD

Using the default value for WordPosition,  this finds all words in the dictionary that start with
the string cite.

In[46]:= FindWordsContaining@"cite"D

Out[46]= 8cite, cited, cites<

And this finds all words that have cite anywhere in the word.
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In[47]:= FindWordsContaining@"cite", WordPosition Ø "Anywhere"D

Out[47]= 8anthracite, calcite, cite, cited, cites, elicited, excite,

excited, excitedly, excitement, excitements, exciter, exciters,

excites, incite, incited, incitement, incitements, inciter,

inciters, incites, Lucite, Lucites, overexcite, overexcited,

overexcites, plebiscite, plebiscites, recite, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<

Finally,  here  is  a  dynamic  interface  that  includes  a  text  field  in  which  you  can  enter  an  input
string; tabs are used to specify in which part of the word you expect the string to occur.

In[48]:= Framed@Labeled@Manipulate@
FindWordsContaining@ToStringüstring, WordPosition Ø posD,
8string, bobs<, 88pos, "Anywhere", "Position"<,
8"Start", "Middle", "End", "Anywhere"<<,

ContentSize Ø 8300, 80<, SaveDefinitions Ø TrueD,
"Find words containing a string", TopD,

Background Ø LightGrayD

Out[48]=

Find words containing a string

string bobs

Position Start Middle End Anywhere

8bobs, bobsled, bobsledded, bobsledder,
bobsledders, bobsledding, bobsleds,
bobsleigh, bobsleighs, kabobs, nabobs,
skibobs, thingamabobs, thingumabobs<

For more on the creation of these sorts of dynamic interfaces, see Chapter 11.

DNA sequence analysis
DNA molecules are composed of sequences of the nitrogenous bases guanine, cytosine, thymine,
and adenine.  Guanine  and cytosine  bond with  three  hydrogen bonds  and thymine and adenine
bond  with  two.  Research  has  indicated  that  high  GC  content  (guanine  and  cytosine)  DNA  is
more stable  than that  with lower GC.  The exact  reasons for  this  are  not  completely  understood
and  determining  the  GC  content  of  various  DNA  materials  is  an  active  area  of  biomolecular
research.  GC content is  often described as a  percentage of  the guanine and cytosine nucleotides
compared  to  the  entire  nucleotide  content  (Cristianini  and  Hahn  2007).  In  this  section  we  will
create a function to compute the ratio of GC in any given DNA sequence or fragment.
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We will start by importing a FASTA file consisting of human mitochondrial DNA, displaying
some information about the contents of this file.

In[49]:= hsMito = Import@"ExampleDataêmitochondrion.fa.gz"D;

In[50]:= Import@"ExampleDataêmitochondrion.fa.gz",
8"FASTA", "Header"<D

Out[50]= 8gi»17981852»ref»NC_001807.4»
Homo sapiens mitochondrion, complete genome<

In[51]:= StringLength@hsMitoD

Out[51]= 816571<

In[52]:= StringTake@hsMito, 500D

Out[52]= 8GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGÖ
GGTGTGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTÖ

TTGATTCCTGCCTCATTCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTAÖ

CTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATAACAATTGAATGTCTGCACAGCÖ

CGCTTTCCACACAGACATCATAACAAAAAATTTCCACCAAACCCCCCCCTCCCCCCGCTTCTGGÖ

CCACAGCACTTAAACACATCTCTGCCAAACCCCAAAAACAAAGAACCCTAACACCAGCCTAACCÖ

AGATTTCAAATTTTATCTTTAGGCGGTATGCACTTTTAACAGTCACCCCCCAACTAACACATTAÖ

TTTTCCCCTCCCACTCCCATACTACTAATCTCATCAATACAACCCCC<

We use StringCount  to count the number of occurrences of G or C in this sequence.

In[53]:= gc = StringCount@hsMito, "G" "C"D

Out[53]= 87372<

And here is the number of occurrences of A or T.

In[54]:= at = StringCount@hsMito, "A" "T"D

Out[54]= 89199<

The GC percentage is given by the following ratio.

In[55]:= NB
gc

gc + at
F

Out[55]= 80.444874<

Here then is an auxiliary function we will use in what follows.

In[56]:= gcRatio@ls_StringD := Module@8gc, at<,
gc = StringCount@ls, "G" "C"D;
at = StringCount@ls, "A" "T"D;
N@gc ê Hgc + atLD

D
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Note that gcRatio  expects a string as an argument, but this fails with hsMito,  imported from
an external source.

In[57]:= Short@gcRatio@hsMitoD, 8D
Out[57]//Short=

gcRatio@
8GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGÖ

GGGTGTGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCÖ

TGTCTTTGATTCCTGCCTCATTCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAÖ

ACATACCTACTAAAGTGTGTTAATT …

TCTCGTCCCCATGGATGACCCCCCTCAGATAGGGGTCCCTTGACCACCATCCTCCGTGAAATCAATÖ

ATCCCGCACAAGAGTGCTACTCTCCTCGCTCCGGGCCCATAACACTTGGGGGTAGCTAAAÖ

GTGAACTGTATCCGACATCTGGTTCCTACTTCAGGGCCATAAAGCCTAAATAGCCCACACÖ

GTTCCCCTTAAATAAGACATCACGATG<D

It fails because Import  returns a list consisting of a string, not a raw string. We can remedy this
by writing a rule to deal with this argument structure and then call the first rule.

In[58]:= gcRatio@8str_String<D := gcRatio@strD

In[59]:= gcRatio@hsMitoD

Out[59]= 0.444874

Typically,  researchers are interested in studying the GC ratio on particular fragments of DNA
and comparing it with similar fragments on another molecule. One common way of doing this is
to compute the GC ratio for blocks of nucleotides of some given length. We will use the function
StringPartition,  developed earlier to partition the sequence into blocks of a given size. We
will work with a small random sequence to prototype.

In[60]:= blocksize = 10;
str = RandomString@8"A", "C", "T", "G"<, 125D;
lis = StringPartition@str, blocksizeD

Out[62]= 8GAGCTCTGAA, GTCCGCCCAG, TAAGGCCCCT, AATGCTGTGA,

TACCGCAGGG, ACACATGGAA, TACAAGAAGC, CCTAGCATTG,

TGATCTCCGC, CGGTAGCTTT, AGAGGGTCAG, GCTTAAGGCT, CTAGG<

Here are the GC ratios for each of the blocks given by lis.

In[63]:= Map@gcRatio, lisD

Out[63]= 80.5, 0.8, 0.6, 0.4, 0.7, 0.4, 0.4, 0.5, 0.6, 0.5, 0.6, 0.5, 0.6<

Finally, it is helpful to be able to identify each block by its starting position. So we first create a list
of the starting positions for each block and then transpose that with the ratios.

In[64]:= Table@i, 8i, 1, StringLength@strD, blocksize<D

Out[64]= 81, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121<
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In[65]:= Transpose@8Table@i, 8i, 1, StringLength@strD, blocksize<D,
Map@gcRatio, lisD<D

Out[65]= 881, 0.5<, 811, 0.8<, 821, 0.6<, 831, 0.4<,
841, 0.7<, 851, 0.4<, 861, 0.4<, 871, 0.5<, 881, 0.6<,
891, 0.5<, 8101, 0.6<, 8111, 0.5<, 8121, 0.6<<

Here are all the pieces in one function, GCRatio.

In[66]:= GCRatio@str_String, blocksize_IntegerD :=

Module@8lis, blocks<,
lis = StringPartition@str, blocksizeD;
blocks = Table@i, 8i, 1, StringLength@strD, blocksize<D;
Transpose@8blocks, Map@gcRatio, lisD<D

D

And again, a second rule in case the string is wrapped in a list.

In[67]:= GCRatio@8str_String<, blocksize_IntegerD :=

GCRatio@str, blocksizeD

Let us try it out first on our prototype sequence.

In[68]:= GCRatio@str, 10D

Out[68]= 881, 0.5<, 811, 0.8<, 821, 0.6<, 831, 0.4<,
841, 0.7<, 851, 0.4<, 861, 0.4<, 871, 0.5<, 881, 0.6<,
891, 0.5<, 8101, 0.6<, 8111, 0.5<, 8121, 0.6<<

And then on the human mitochondrial DNA with block size 1000.

In[69]:= gcdata = GCRatio@hsMito, 1000D

Out[69]= 881, 0.46<, 81001, 0.441<, 82001, 0.43<, 83001, 0.478<,
84001, 0.427<, 85001, 0.439<, 86001, 0.474<, 87001, 0.438<,
88001, 0.434<, 89001, 0.461<, 810001, 0.396<,
811001, 0.448<, 812001, 0.429<, 813001, 0.471<,
814001, 0.435<, 815001, 0.446<, 816001, 0.464098<<

Various types of analysis can then be performed on these blocks. For example, using Select,
this quickly finds regions of high GC content.

In[70]:= Select@gcdata, Last@ÒD > 0.47 &D

Out[70]= 883001, 0.478<, 86001, 0.474<, 813 001, 0.471<<
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Here is a quick visualization of the GC content across the blocks.

In[71]:= ListLinePlot@gcdata, Mesh Ø AllD

Out[71]=

5000 10 000 15 000
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Numerous comparative studies have been done looking at the GC content for different organ-
isms.  One  much-studied  organism  is  Thermoplasma  volcanium,  a  bacterium-like  organism  that
exists  in  very  high-acid  and  high-temperature  environments.  To  accommodate  the  extreme
conditions,  organisms  in  such  environments  often  have  high  GC  content  which  has  a  higher
thermal  stability.  The following sequence is  in  the  public  domain and was  obtained courtesy  of
the National Center for Biotechnology Information (NCBI Nucleotide Database).

In[73]:= thermoVolc =
Import@"638154522.tar.gz", "638154522ê638154522.fna"D;

StringTake@thermoVolc, 250D

Out[74]= 8TTTGTATAAGAAAAAATAGGAAAGGTTAATATCCATGCTCATATGGCTGTCCGAAAAAÖ
ATCAATAACGAATATTAACCACGATAAAATAAGGTAAGGAAAGAATCCTGCATGÖ
AGCACAATAGAAGAACGCATTAAGGAAATAGAAGACGAAATCAAGAGAACTCAGÖ
TACAATAAAGCCACTGAACACCACATCGGGCTTCTAAAAGCCAAGATTGCAAGGÖ
CTCCAGATGGAGGCTAGAGCCCATAAAGGA<

In[75]:= StringLength@FirstüthermoVolcD

Out[75]= 1584804

Here is the GC ratio for the entire sequence.

In[76]:= gcRatio@thermoVolcD

Out[76]= 0.399185
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And here are the ratios for block sizes of 100 000.

In[77]:= tVratios = GCRatioAthermoVolc, 105E

Out[77]= 881, 0.4094<, 8100001, 0.39122<, 8200001, 0.39003<,
8300001, 0.40184<, 8400001, 0.40104<, 8500001, 0.40368<,
8600001, 0.39334<, 8700001, 0.39086<, 8800001, 0.41034<,
8900001, 0.37086<, 81000001, 0.40323<, 81100001, 0.39508<,
81200001, 0.39598<, 81300001, 0.40744<,
81400001, 0.40825<, 81500001, 0.417091<<

In[78]:= BarChart@Map@Last, tVratiosD, BarSpacing Ø Medium,
ChartElementFunction Ø "GlassRectangle", ChartLabels Ø
Placed@Map@Last, tVratiosD, Top, HRotate@Ò, 90 DegreeD &LDD

Out[78]=

Displaying DNA sequences
DNA  sequences  are  typically  long  strings  of  nucleotides  that  are  difficult  to  visualize  simply  by
looking at the string of characters. Various visualization tools have been used to work with these
sequences  and  in  this  section  we  will  look  at  a  common  way  of  viewing  them  in  a  formatted
table. 

As before, we will prototype with a short random string consisting of nucleotide characters G,
C, A, and T.

In[79]:= str = RandomString@8"G", "C", "A", "T"<, 125D

Out[79]= TGGACCACTGAAATCTTTGACCTGGTTAAACAAATTATTTAGCTAGTCTGTAGGCACAGACAÖ

GTCCAACGGGTGTCCAGGAACGTTACCATGTCAAACTCGTTGCTCCGCCTCGGCCTTAAÖ

GGCG

Using StringPartition  developed earlier in this chapter,  we split  the string into blocks of a
desired size. 
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In[80]:= str1 = StringPartition@str, 10D

Out[80]= 8TGGACCACTG, AAATCTTTGA, CCTGGTTAAA, CAAATTATTT,

AGCTAGTCTG, TAGGCACAGA, CAGTCCAACG, GGTGTCCAGG,

AACGTTACCA, TGTCAAACTC, GTTGCTCCGC, CTCGGCCTTA, AGGCG<

We  have  13  blocks  here,  but  for  readability  purposes,  we  will  put  five  blocks  on  each  line  of
output. We use the blank string " " to pad out any string shorter than the blocksize, in this case
10).

In[81]:= str2 = Partition@str1, 5, 5, 1, " "D

Out[81]= 88TGGACCACTG, AAATCTTTGA, CCTGGTTAAA, CAAATTATTT, AGCTAGTCTG<,
8TAGGCACAGA, CAGTCCAACG, GGTGTCCAGG, AACGTTACCA, TGTCAAACTC<,
8GTTGCTCCGC, CTCGGCCTTA, AGGCG, , <<

The  following  code  gives  the  starting  positions  for  each  line  once  we  have  set  the  block  length
and row length.

In[82]:= blocklength = 10;
rowlength = 5;
ind = Select@Range@StringLength@strDD,

Mod@Ò, rowlength * blocklengthD ã 1 &D

Out[84]= 81, 51, 101<

We prepend the starting position of each row at the head of the row. Recall, the second argument
to Prepend  is the expression you wish to put in front (the indices) of your target expression (the
rows)

In[85]:= MapThread@Prepend@Ò1, Ò2D &, 8str2, ind<D

Out[85]= 881, TGGACCACTG, AAATCTTTGA, CCTGGTTAAA, CAAATTATTT, AGCTAGTCTG<,
851, TAGGCACAGA, CAGTCCAACG, GGTGTCCAGG, AACGTTACCA,

TGTCAAACTC<, 8101, GTTGCTCCGC, CTCGGCCTTA, AGGCG, , <<

This is what the formatted output should look like. 

In[86]:= Grid@%, Alignment Ø 88Right, 8Left<<, Automatic<D

Out[86]=

1 TGGACCACTG AAATCTTTGA CCTGGTTAAA CAAATTATTT AGCTAGTCTG
51 TAGGCACAGA CAGTCCAACG GGTGTCCAGG AACGTTACCA TGTCAAACTC

101 GTTGCTCCGC CTCGGCCTTA AGGCG

Finally,  let  us  put  this  all  together,  setting up an option,  BlockSize  that  is  combined with the
inherited options from Grid .
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In[87]:= Options@SequenceTableD = Join@8BlockSize Ø 10<, Options@GridDD

Out[87]= 8BlockSize Ø 10, Alignment Ø 8Center, Baseline<,
AllowedDimensions Ø Automatic, AllowScriptLevelChange Ø True,

AutoDelete Ø False, Background Ø None,

BaselinePosition Ø Automatic, BaseStyle Ø 8<,
DefaultBaseStyle Ø Grid, DefaultElement Ø Ñ,

DeleteWithContents Ø True, Dividers Ø None, Editable Ø Automatic,

Frame Ø None, FrameStyle Ø Automatic, ItemSize Ø Automatic,

ItemStyle Ø None, Selectable Ø Automatic, Spacings Ø Automatic<

In[88]:= SequenceTable@lis_String, opts : OptionsPattern@DD :=

Module@8n = OptionValue@BlockSizeD,
len = StringLength@lisD, rowlength = 5, str, blocks, ind<,

str = StringPartition@lis, nD;
blocks = Partition@str, 5, 5, 1, " "D;
ind = Select@Range@lenD, Mod@Ò, rowlength * nD ã 1 &D;
Grid@MapThread@Prepend@Ò1, Ò2D &, 8blocks, ind<D,
FilterRules@8opts<, Options@GridDD,
Alignment Ø 88Right, 8Left<<, Automatic<,
Frame Ø True, Dividers Ø 88True, False<, All<D

D

In[89]:= str = RandomString@8"C", "A", "T", "G"<, 178D

Out[89]= GTCACGTTTGACTGTCAGGAAGGATTCACGCTGATGAATCCGGGGCTGTAAGCCCATCTGCAÖ

AAGACATGAGGAGGGCTCGGGAGTCGAGAGATATTTCGTGCCCACGTTTAGACCTGCATÖ

ACAACCAAAGATCCTCGGTGCATACTACACGTCGCCTTCCTCGACCAGTAAGTGCGG

In[90]:= SequenceTable@strD

Out[90]=

1 GTCACGTTTG ACTGTCAGGA AGGATTCACG CTGATGAATC CGGGGCTGTA
51 AGCCCATCTG CAAAGACATG AGGAGGGCTC GGGAGTCGAG AGATATTTCG

101 TGCCCACGTT TAGACCTGCA TACAACCAAA GATCCTCGGT GCATACTACA
151 CGTCGCCTTC CTCGACCAGT AAGTGCGG

Let us exercise some of the options.

In[91]:= SequenceTable@str, BlockSize Ø 12,
Background Ø LightYellow, BaseStyle Ø Directive@FontSize Ø 8DD

Out[91]=
1 GTCACGTTTGAC TGTCAGGAAGGA TTCACGCTGATG AATCCGGGGCTG TAAGCCCATCTG

61 CAAAGACATGAG GAGGGCTCGGGA GTCGAGAGATAT TTCGTGCCCACG TTTAGACCTGCA
121 TACAACCAAAGA TCCTCGGTGCAT ACTACACGTCGC CTTCCTCGACCA GTAAGTGCGG
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Blanagrams
A blanagram is  an anagram for another word except for  the substitution of  one letter.  Think of
Scrabble with a blank square (blank + anagram = blanagram). For example, phyla  is a blanagram
of glyph:  replace the g  with an a  and find anagrams. In this section we will  create a function that
finds all blanagrams of a given word.

We will prototype with a simple word, glyph.

In[92]:= Characters@"glyph"D

Out[92]= 8g, l, y, p, h<

Start  by  replacing  the  first  letter  in  glyph  with  an  a  and  then  finding  all  anagrams  (using
Anagrams  from  Section  9.2).  The  third  argument  to  StringReplacePart  is  a  list  of  begin-
ning and ending positions for the replacement.

In[93]:= StringReplacePart@"glyph", "a", 81, 1<D

Out[93]= alyph

In[94]:= Anagrams@%D

Out[94]= 8phyla, haply<

Now do the same for each character position in the word.

In[95]:= Map@StringReplacePart@"glyph", "a", 8Ò, Ò<D &,
Range@StringLength@"glyph"DDD

Out[95]= 8alyph, gayph, glaph, glyah, glypa<

Running Anagrams on each of these strings, only two appear as words in the dictionary.

In[96]:= Flatten@Map@Anagrams, %DD

Out[96]= 8phyla, haply<

Having done this for the letter a, we now repeat for all other single characters.

In[97]:= CharacterRange@"a", "z"D

Out[97]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<
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In[98]:= blana = Table@
Map@StringReplacePart@"glyph", ch, 8Ò, Ò<D &,
Range@StringLength@"glyph"DDD,

8ch, CharacterRange@"a", "z"D<D
Out[98]= 88alyph, gayph, glaph, glyah, glypa<, 8blyph, gbyph, glbph, glybh, glypb<,

8clyph, gcyph, glcph, glych, glypc<, 8dlyph, gdyph, gldph, glydh, glypd<,
8elyph, geyph, gleph, glyeh, glype<, 8flyph, gfyph, glfph, glyfh, glypf<,
8glyph, ggyph, glgph, glygh, glypg<, 8hlyph, ghyph, glhph, glyhh, glyph<,
8ilyph, giyph, gliph, glyih, glypi<, 8jlyph, gjyph, gljph, glyjh, glypj<,
8klyph, gkyph, glkph, glykh, glypk<, 8llyph, glyph, gllph, glylh, glypl<,
8mlyph, gmyph, glmph, glymh, glypm<, 8nlyph, gnyph, glnph, glynh, glypn<,
8olyph, goyph, gloph, glyoh, glypo<, 8plyph, gpyph, glpph, glyph, glypp<,
8qlyph, gqyph, glqph, glyqh, glypq<, 8rlyph, gryph, glrph, glyrh, glypr<,
8slyph, gsyph, glsph, glysh, glyps<, 8tlyph, gtyph, gltph, glyth, glypt<,
8ulyph, guyph, gluph, glyuh, glypu<, 8vlyph, gvyph, glvph, glyvh, glypv<,
8wlyph, gwyph, glwph, glywh, glypw<, 8xlyph, gxyph, glxph, glyxh, glypx<,
8ylyph, gyyph, glyph, glyyh, glypy<, 8zlyph, gzyph, glzph, glyzh, glypz<<

Because of the extra nesting (Table@Map@…DD)  we need to flatten the output at  a deeper level;
and delete duplicates.

In[99]:= Flatten@Map@Anagrams, blana, 82<DD êê DeleteDuplicates

Out[99]= 8phyla, haply, glyph, lymph, sylph<

Finally, put all the pieces together to create the function Blanagrams.

In[100]:= Blanagrams@word_StringD := Module@8blana<,
blana = Table@

Map@StringReplacePart@word, ch, 8Ò, Ò<D &,
Range@StringLength@wordDDD,

8ch, CharacterRange@"a", "z"D<D;
DeleteDuplicates@Flatten@Map@Anagrams, blana, 82<DDD

D

This turns out to be fairly quick for small words, but it bogs down for larger words.

In[101]:= Blanagrams@"glyph"D êê Timing

Out[101]= 81.09503, 8phyla, haply, glyph, lymph, sylph<<

In[102]:= Blanagrams@"zydeco"D êê Timing

Out[102]= 87.82883, 8zydeco, cloyed, comedy, decoys<<

We will  wait  until  Section 12.3  to  optimize  this  code  by  profiling  (identifying  slow computa-
tional chunks) and taking advantage of parallel processing built into Mathematica. 
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Exercises
1. Generalize the RandomString function to allow for a Weights option so that you can provide a 

weight for each character in the generated string. Include a rule to generate a message if the number 
of weights does not match the number of characters. For example:

In[1]:= RandomString@8"A", "T", "C", "G"<, 30, Weights Ø 8.1, .2, .3, .4<D

Out[1]= GCGTCGTCGGGTCAGGTCCTCGTGTGGGCG

In[2]:= RandomString@8"A", "T", "C", "G"<, 85, 10<, Weights Ø 8.1, .4, .4, .1<D

Out[2]= 8TTCACTTCCC, ACAACTGGCC, GATTCTTTTC, TGTCCTTTGA, TTCCTGCTGT<

In[3]:= RandomString@8"A", "T", "C", "G"<, 85, 10<, Weights Ø 8.1, .4<D
RandomString::badwt :

The length of the list of weights must be the same as the length of the list of characters.

2. Write the function Anagrams developed in Section 9.2 without resorting to the use of 
Permutations. Consider using the Sort  function to sort the characters. Note the difference in 
speed of the two approaches: one involving string functions and the other list functions that operate 
on lists of characters. Increase the efficiency of your search by only searching for words of the same 
length as your source word.

3. Rewrite the function FindWordsContaining using regular expressions instead of the patterns 
used in this section. 

4. Using the text from several different sources, compute and then compare the number of punctua-
tion characters per 1000 characters of text. ExampleData@"Text"D gives a listing of many 
different texts that you can use.

5. The function StringPartition was developed specifically to deal with genomic data where one 
often needs uniformly-sized blocks to work with. Generalize StringPartition to fully accept 
the same argument structure as the built-in Partition . 

6. Rewrite the text encoding example from Section 9.2 using StringReplace and regular expres-
sions. First create an auxiliary function to encode a single character based on a key list of the form 
99pt

1
, ct1=, …= where pti is a plaintext character and cti is its ciphertext encoding. For example, the 

pair 8z, a< would indicate the character z in the plaintext will be encoded as an a in the ciphertext. 
Then create an encoding function encodeAstr, keyE using regular expressions to encode any string 

str using the key consisting of the plaintext/ciphertext character pairs.
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Graphics and visualization
Structure of graphics · Primitives and directives · Options · Structure of built-in graphics 

functions · Bézier curves · Hypocycloids · Efficient structures · Multi-objects · GraphicsComplex · 
Numeric vs. symbolic expressions · Sounds of mathematics · Sound primitives and directives · 
Space-filling plots · Plotting lines in space · Visualizing standard deviations · Simple closed 

paths · Points in a polygon · Root plotting · Trend plots · Brownian music

Visualization  is  a  means  to  organize,  represent,  and  make  sense  of  information.  The  visual
representation may involve functions, numerical or abstract data, text, and many other objects of
study.  Sometimes  the  representation  is  fixed  spatially  as  in  much  scientific  visualization;  other
times,  as  with  information  visualization,  a  spatial  representation  is  not  given  and  must  be  cre-
ated. In either domain, the idea is to find a representation that best conveys the information and
relationships under study.

Mathematica  contains  a  rich  set  of  tools  for  visualizing  functions,  data,  and  many  kinds  of
expressions. Generally the built-in graphics functions provide what you need for your visualiza-
tions,  but,  like  the  rest  of  the  Mathematica  programming  language,  you  will  periodically  find
yourself needing to create your own customized visualizations. Sometimes it is most efficient to
build upon existing visualization functions, modifying them as needed.

In[1]:= ProteinDotPlot@p1_, p2_, 8name1_String, name2_String<D :=

ArrayPlot@
Outer@Boole@Ò1 == Ò2D &, Characters@p1D, Characters@p2DD,
Frame Ø True, FrameLabel Ø 8name1, name2<D

In[2]:= seq1 = ProteinData@"SCNN1A"D;
seq2 = FirstüImport@"NP_001030.2.fasta", "FASTA"D;



In[4]:= ProteinDotPlot@seq1, seq2, 8"SCNN1A", "SCNN1G"<D

Out[4]=

SCNN1G

SC
N

N
1A

Other  times  you  will  find  it  best  to  create  such  visualizations  from  scratch,  using  the  graphics
building blocks. 

In[5]:= pts = RandomInteger@8-100, 100<, 824, 3<D;
Graphics3D@8

8Opacity@.3D, Line@Subsets@pts, 82<DD<,
8Red, Point@ptsD<<, PlotLabel Ø
StringForm@"`1` vertices, `2` edges", Length@ptsD,
Binomial@Length@ptsD, 2DDD

Out[6]=

In this chapter we will discuss how to construct functions for visualizing many different kinds
of  data  and  objects.  We  will  start  with  the  basic  building  blocks  of  graphical  expressions  in
Mathematica  –  primitives,  directives,  and  options.  We  then  discuss  ways  to  make  your  graphics
more efficient by looking at the internal representation of graphics objects as well as using multi-
objects  and  a  different  representation  that  results  in  a  compressed  graphics  object,
GraphicsComplex.  Finally,  we  will  develop  several  different  programs  for  visualizing  func-
tions,  data,  and  other  objects:  space-filling  plots  for  representing  proteins  and  other  chemical
structures;  a  plotting  function  for  displaying  points  in  3-space  that  is  particularly  useful  for
visualizing phenomena such as random walks;  a geometric computation that finds and displays
simple closed paths for a set of points in the plane; a standard computational geometry problem,
determining  if  a  point  is  inside  a  polygon,  convex  or  nonconvex;  creating  a  visualization  that
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finds  and displays  the  roots  of  a  function;  creation of  trend plots  for  visualizing trends  in  time-
series data such as financial data; and finally we develop a set of functions for creating and explor-
ing random music compositions.

Throughout  this  chapter  we  will  use  and  build  upon  the  different  constructs  and  program-
ming  paradigms  developed  earlier.  For  many  of  the  functions  that  are  developed  here  we  also
include  usage  messages,  an  options  structure,  and error  checking,  issuing appropriate  warnings
when something goes wrong or an incorrect input is supplied as an argument. Although the code
for these examples starts to become a bit lengthier, we try to break down the major concepts to
make it easier for you to parse these programs.

10.1 Structure of graphics

A line is a dot that went for a walk.

— Paul Klee

Cultivate your curves… they may be dangerous but they won’t be avoided.

— Mae West

All  Mathematica  graphics  are  constructed  from  objects  called  graphics  primitives  such  as  Point,
Line , Polygon , Circle. Primitives are the basic building blocks of all graphics in Mathematica.
They are used by built-in functions such as Plot  to create graphics. You too can create graphics
scenes from scratch using these building blocks by putting them together according to the rules
governing  the  structure  of  the  language  and  the  nature  of  the  problem  at  hand.  This  section
introduces the building blocks of graphics programming and discusses how to put them together
to make graphical objects.

The  three  graphics  elements  we  will  discuss  are  primitives,  directives,  and  options.  The  two-
dimensional  graphics  primitives  include  the  following:  Point,  Line ,  Polygon ,  Disk ,
Circle, Rectangle, BezierCurve , Arrow, Text  (see Table 10.1  or consult the documenta-
tion for a complete listing).

For  example,  here  is  a  circle  centered  at  the  origin  of  radius  1.  Evaluating  this  input  simply
returns the primitive circle object.

In[1]:= Circle@80, 0<, 1D

Out[1]= Circle@80, 0<, 1D

To display two-dimensional graphics primitives, wrap them in Graphics.
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In[2]:= Graphics@Circle@80, 0<, 1DD

Out[2]=

To display more than one graphics primitive, put them in a list.

In[3]:= Graphics@8Circle@80, 0<, 1D, Circle@81, 0<, 1D<D

Out[3]=

Graphics directives are used to modify primitives. For example, in the following input the first
circle  is  modified  with  the  Thick  directive  and  the  second  circle  with  the  Dashed  directive.
Note the use of lists to scope the directive with the primitive element it is modifying.

In[4]:= Graphics@8
8Thick, Circle@80, 0<, 1D<,
8Dashed, Circle@81, 0<, 1D<

<D

Out[4]=

Entire  graphics  are  customized  through  the  use  of  options.  Options  to  Graphics  should
follow any elements or list of elements given as arguments to Graphics. For example, this adds
axes and a frame around the graphic. Axes  and Frame are options to the Graphics function.
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In[5]:= Graphics@8
8Thick, Circle@80, 0<, 1D<,
8Dashed, Circle@81, 0<, 1D<

<,
Axes Ø True, Frame Ø TrueD

Out[5]=

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

For  three-dimensional  graphics,  a  different  wrapper  is  used  to  display  the  primitives,
Graphics3D .  In  the  following,  the  two  sphere  primitives  are  within  the  scope  of  the  Red
directive  and  the  cylinder  is  within  the  scope  of  the  Blue  directive.  Two  options  to
Graphics3D  are  used  here:  FaceGrids  adds  a  grid  to  each  of  the  box  faces  and
ViewVertical  is used to change the vertical direction in the image. Note an identical structure
to that for Graphics.

In[6]:= Graphics3D@8
8Red, Sphere@80, 0, 0<D, Sphere@82, 2, 2<D<,
8Blue, Cylinder@880, 0, 0<, 82, 2, 2<<, .2D<

<,
FaceGrids Ø All, ViewVertical Ø 81, 0, 0<D

Out[6]=

This is the basic syntax for creating graphics objects from scratch: directives modify primitives in
their scope and options are used to modify the entire graphic.  In the following sections,  we will
look at graphics primitives, directives, and options in some detail.
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Graphics primitives
We  will  start  to  explore  these  graphics  elements  by  constructing  a  graphic  using  only  primitive
elements.  In  Section  8.1,  we  displayed  a  graphic  that  demonstrated  some  of  the  properties  of
complex numbers. Let us show how this graphic was created, using some of Mathematica’s graph-
ics primitives.

Table 10.1 lists some of the two-dimensional graphics primitives that we will use in this exam-
ple in addition to several other two-dimensional elements that are available. 

Three-dimensional  versions  of  Point,  Line ,  Polygon ,  and  Text  are  also  available  for
constructing  three-dimensional  graphics.  For  a  full  listing  of  Graphics3D  primitives,  see  the
tutorial Three-Dimensional Graphics Primitives (WMDC).

The graphic we will create will contain the following elements:

Ê points in the plane at a complex number a + b Â and at its conjugate a - b Â;

Ê lines drawn from the origin to each of these points;

Ê an arc, indicating the polar angle of the complex number;

Ê dashed lines indicating the real and imaginary values;

Ê a set of axes in the coordinate plane;

Ê labels for each of the above elements.

Table 10.1. Basic two-dimensional graphics primitives

Graphics primitive Usage
Point@8x, y<D point at position 8x, y<
Line@88x1, y1<,8x2, y1<,…<D line through the points 8xi, yi<
Rectangle@88xmin, ymin<,8xmax, ymax<<D filled rectangle

Polygon@88x1, y1<,8x2, y2<,…<D filled polygon

Circle@8x, y<, r,8q1, q2<D circular arc of radius r

Disk@8x, y<, rD filled disk of radius r

Raster@88x11, x12,…<,8x21, x22,…<,…<D rectangular array of gray levels

Text@expr,8x, y<D text centered at 8x, y<
Arrow@8pt1, pt2<D arrow from pt1 to pt2

First we choose a point in the first quadrant and then construct a line from the origin to this point.

In[7]:= z = 8 + 3 Â;
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Line@88x1, y1<, 8x2, y2<, …, 8xn, yn<<D  is  a  graphics  primitive  that  creates  a  polygonal
line from the point whose coordinates are Hx1, y1L to the point Hx2, y2L, etc. The points need not be
collinear.

In[8]:= line1 = Line@880, 0<, 8Re@zD, Im@zD<<D;

Let us also create a point at the coordinates of the complex number.

In[9]:= pt1 = Point@8Re@zD, Im@zD<D;

To display what we have created so far, wrap the Graphics  function around the points and lines
to display them as a two-dimensional graphics image.

In[10]:= Graphics@8
line1, pt1

<D

Out[10]=

Graphics directives
The  default  behavior  of  graphics  primitives  is  modified  by  using  graphics  directives.  Graphics
directives  work  by  changing  only  those  objects  within  their  scope.  The  directive  dir  will  affect
each of the primitives primi occurring within its scope. That scope is delineated using curly braces.

8dir, prim1, prim2, …, primn<

A  partial  list  of  the  two-dimensional  graphics  directives,  together  with  usage  statements,  is
given  in  Table  10.2.  For  a  complete  listing  of  the  three-dimensional  directives,  see  the  tutorial
Three-Dimensional Graphics Directives (WMDC).

Use the PointSize graphics primitive to increase the size of the point.

In[11]:= pt1 = 8PointSize@.025D, Point@8Re@zD, Im@zD<D<;

In[12]:= Graphics@8
line1, pt1

<D

Out[12]=
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Admittedly this is not too exciting, but it is a start. Let us add a line and a point for the conjugate.

In[13]:= cz = Conjugate@zD;
line2 = Line@880, 0<, 8Re@czD, Im@czD<<D;
pt2 = 8PointSize@.025D, Point@8Re@czD, Im@czD<D<;

In[16]:= Graphics@8
line1, pt1, line2, pt2

<D

Out[16]=

Table 10.2. Two-dimensional graphics directives

Graphics directive Usage
AbsoluteDashing@8d1, d2,…<D dashed line segments using absolute units

AbsoluteThickness@dD lines of thickness d measured in absolute units
CMYKColor@8c, m, y,b<D cyan, magenta, yellow, black values between 0 and 1

Dashing@8d1, d2,…<D dashed line segments of lengths d1, d2, …

GrayLevel@gD gray between 0 HblackL and 1 HwhiteL
Hue@h,s,bD hue, saturation, and brightness between 0 and 1

PointSize@rD point of radius r given as a fraction of width of plot

RGBColor@r, g,bD red, green, blue values between 0 and 1

Thickness@dD lines of thickness d given as fraction of width of plot

Graphics options
Whereas directives are used to modify the primitives that are within their scope, options are used
to modify  the  entire  graphic.  Options to  functions  are  placed after  any required arguments  and
are separated by commas. All of Mathematica’s graphics functions have options that allow you to
modify  some  attribute  of  the  entire  graphic.  Here  is  a  list  of  some  of  those  options  relevant  to
Graphics objects.
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In[17]:= Options@GraphicsD êê Short
Out[17]//Short=

8AlignmentPoint Ø Center, AspectRatio Ø Automatic,
Axes Ø False, AxesLabel Ø None, AxesOrigin Ø Automatic,
AxesStyle Ø 8<, á28à, PlotRegion Ø Automatic,
RotateLabel Ø True, Ticks Ø Automatic, TicksStyle Ø 8<<

Each option is specified as a rule with its default value given on the right-hand side of the rule. For
example, Axes  is one of the options for graphics types; it is set to False by default. 

Since  Axes  is  an  option  to  the  Graphics  function,  it  is  placed  after  the  graphics  elements
8line1, pt1, …<.  Using  the  value  Automatic  for  the  Axes  option  lets  Mathematica  figure
out  the  best  arrangement  for  the  axes  placement  and  labels,  given  the  elements  present  in  the
graphic.

In[18]:= Graphics@8line1, pt1, line2, pt2<, Axes Ø AutomaticD

Out[18]=
2 4 6 8

-3

-2

-1

1

2

3

Combining graphics elements
We have the basic structure of the graphic object so now let us add some additional elements. We
start  with  dashed  lines  indicating  the  real  and  imaginary  components  of  our  complex  number.
The Dashing  directive with Line  gives the desired effect.

In[19]:= hline =
8Dashing@80.04, 0.04<D, Line@880, Im@zD<, 8Re@zD, Im@zD<<D<;

In[20]:= vline =
8Dashing@80.04, 0.04<D, Line@88Re@zD, 0<, 8Re@zD, Im@zD<<D<;

Since we were using this graphic to display an arbitrary complex number, we are not interested in
the units on the axes, so we suppress the default value and add our own with the Ticks  option.
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<< places tick marks at Re[z] on the horizon-
tal axis and at Im[z] on the vertical axis and labels them a and b, respectively. In addition, let us
add labels on the axes. And, to make reading the input a bit easier, we will append new elements
as we go.

In[21]:= elements = 8line1, pt1, line2, pt2, hline, vline<;
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In[22]:= Graphics@elements,
Axes Ø Automatic, AxesLabel Ø 8"Re", "Im"<,
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[22]=

a
Re

b

Im

We  next  put  labels  at  the  two  complex  numbers  and  along  the  line  representing  the  length
Abs@zD.  We  will  use  another  graphics  primitive,  Text ,  to  annotate  these  primitives.
Text@expr, 8x, y<D  creates  a  text  object  of  the  expression  expr  and  centers  it  at  (x,  y).  So,  to
create “z = a + bÂ” as a piece of text centered at a point a little bit above and to the left of z, we use:

Text@"z =a+bi", 8Re@zD - 0.5, Im@zD + 0.35<D

Here then are the labels for the complex number and the length given by the absolute value of the
complex number. Defer  is needed here to prevent the expression z = a + bÂ from being evalu-
ated and thus overwriting the value of z. You could also use HoldForm for this purpose.

In[23]:= text1 = Text@Defer@z = a + b ÂD, 8Re@zD - .5, Im@zD + .35<D;
text2 = Text@Defer@Abs@zDD, 84.2, 2<D;

In[25]:= Graphics@AppendTo@elements, 8text1, text2<D, Axes Ø Automatic,
AxesLabel Ø 8Re, Im<, Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[25]=

z = a + Â b

†z§

a
Re

b

Im

Lastly,  we need to add the arc representing the polar angle and label it.  The arc can be gener-
ated with another graphics primitive. CircleA8x, y<, r, 9a, b=E  will draw an arc of a circle

centered at (x, y), of radius r, counterclockwise from an angle of a radians to an angle of b radians.
The arc that we are interested in will have a radius smaller than Abs@zD  and will be drawn from
the real (horizontal) axis to the line connecting the origin and z.  Here is the code for the arc and
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its label, as well as the graphic containing all the above elements (we also add the text to label the
conjugate).

In[26]:= arc = CircleB80, 0<,
Abs@zD

3
, 80, Arg@zD<F;

text3 = Text@Defer@Arg@zDD, 83.6, .6<D;
text4 = Text@Defer@Conjugate@zD = a - b ÂD,

8Re@czD - .5, Im@czD - .35<D;

In[29]:= Graphics@AppendTo@elements, 8text3, text4, arc<D,
Axes Ø True, AxesLabel Ø 8Re, Im<,
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[29]=

z = a + Â b

†z§

argHzL

z� = a - Â b

a
Re

b

Im

An  important  point  about  options  to  keep  in  mind  is  that  if  you  happen  to  give  one  option
multiple times, Mathematica will only use the first occurrence and ignore all others.

In[30]:= Graphics@elements,
Axes Ø True,
Axes Ø False,
AxesLabel Ø 8Re, Im<,
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[30]=

z = a + Â b

†z§

argHzL

z� = a - Â b

a
Re

b

Im
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We  have  made  assignments  to  many  different  symbols  in  this  section.  Before  going  on,  it
would be a good idea to clear the values associated with all these symbols. In Chapter 13  we will
talk about contexts in detail, but for now, you can clear the values associated with all symbols in
the Global` context by evaluating the following.

In[31]:= Clear@"Global`*"D

Structure of built-in graphics functions
Graphics  created  with  functions  such  as  Plot  and  ListPlot  are  constructed  using  the  same
syntax as described above for creating graphics from primitive elements: primitives such as lines
connecting points, and options governing the overall display. It is useful to get some insight into
this  structure  for  the  built-in  functions  for  those  situations  where  you  need  to  transform  or
modify a graphic created with Plot  or Plot3D say. 

Let us start by looking at the internal representation of a plot of the sine function.

In[32]:= sinplot = Plot@Sin@xD, 8x, 0, 2 p<D

Out[32]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

InputForm  displays the expression that could have been entered manually to get the same plot.
Short  is  used  here  to  display  an  abbreviated  listing  of  that  expression.  (Note:  The  formatted
output from Short will vary slightly depending upon the width of your notebook.)

In[33]:= Short@InputForm@sinplotD, 8D
Out[33]//Short=

GraphicsA

998<, 8<, 9Hue@0.67, 0.6, 0.6D, LineA991.28228 � 10-7, 1.28228 � 10-7=,

80.0019271655319089223, 0.001927164339004283<,
80.0038542028355462695, 0.00385419329326691<, << 426 >>,

8<< 2 >><, 96.283185178951315, -1.28228 � 10-7==E===, 8<< 7 >><E

This  graphic  consists  of  a  series  of  coordinates,  or  points,  in  the  plane  connected  by  lines  of  a
certain hue. There are several hundred points that are sampled to make this plot, some of which
are explicitly displayed above and the rest implicitly indicated by the notation <<n>>. The follow-
ing shows that there are precisely 431 points in this plot.
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In[34]:= Cases@InputForm@sinplotD,
Line@coords_ListD ß Length@coordsD, InfinityD

Out[34]= 8431<

Numerous options are used to display this plot. AbsoluteOptions@grD is useful for display-
ing what values were used with which options for any graphic gr.

In[35]:= RandomSample@AbsoluteOptions@sinplotD, 5D

Out[35]= 8LabelStyle Ø 8<, ImageMargins Ø 0.,
FormatType Ø TraditionalForm,
DisplayFunction Ø Identity, BaseStyle Ø 8<<

To see how an understanding of this internal structure can be used to perform some transfor-
mations,  here  we  use  a  geometric  transformation  on  the  coordinates  of  the  lines  to  essentially
perform a reflection in the line y = x.

In[36]:= Show@8
sinplot,
Graphics@8Dashed, Line@88-1, -1<, 86, 6<<D<D,
sinplot ê. line_Line ß GeometricTransformation@

line, ReflectionTransform@8-1, 1<DD
<, PlotRange Ø All, AspectRatio Ø 1D

Out[36]=

-1 1 2 3 4 5 6
-1

1

2

3

4

5

6

There are three graphical elements present in this plot: the original sinplot, a dashed line, and
the  transformed  sinplot.  For  the  transformation  rule  operating  on  sinplot,  the  pattern
line_Line  will  match any expression in sinplot  that has head Line .  It  will  be transformed
into a line that is reflected according to ReflectionTransform. 

sinplot ê. line_Line ß GeometricTransformation@
line, ReflectionTransform@8-1, 1<DD
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Example: Bézier curves
The  representation  and  visualization  of  information  is  a  common  task  in  almost  any  area  of
research  or  analytic  activity.  The  variety  of  data  that  people  study  can  give  rise  to  a  vast  set  of
representations.  If  the  data  consist  of  interrelated  objects,  their  relationships  are  often  repre-
sented in  a  graph where  vertices  represent  the  objects  under  study and an edge  connecting any
two vertices indicates a “relationship” of some kind – interactions amongst proteins, friends in a
group of individuals, or airline routes between a set of hubs. 

If  you were studying friendship networks,  the objects  of  study would be people:  each person
would be represented by a vertex; a relationship between two people would be represented by an
edge  between  two  vertices.  For  example,  in  Figure  10.1,  which  represents  a  friendship  network,
you can see at a glance that Mara has six friends, Luigi has three, and so on.

Figure 10.1. Friendship network for ten people.

The use of graphs to represent such information is convenient from a computational point of
view since you can take advantage of all the built-in functions to measure and query graphs, such
as  vertex  edge  counts  (how  many  friends  any  given  person  has),  shortest  paths  (how  many
degrees of separation between any two people), or centrality measures (measures of the influence
or importance of a particular individual). Using graphs in Mathematica to represent such data also
gives you immediate access to the formatting and styling functionality of Graph objects.

In this example we will work through the creation of a function to use Bézier curves instead of
lines  as  the graphical  object  for  edges.  Table  10.3  lists  the various curve graphics  primitives  that
can be used for such purposes. Let us start with a simple undirected graph with only three edges
and vertices.
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In[37]:= Graph@81 � 2, 2 � 3, 3 � 1<D

Out[37]=

The  Graph  option  that  controls  the  edges  is  called  EdgeShapeFunction  and  it  is  its  value
with which we will work. To begin, there are numerous named styles built in to Mathematica that
can be given (GraphElementData@"Edge"D gives a complete list).

In[38]:= Graph@81 � 2, 2 � 3, 3 � 1<, EdgeShapeFunction Ø "DottedLine"D

Out[38]=

As  of  the  writing  of  this  book,  there  are  no  values  for  EdgeShapeFunction  that  produce
curves or other objects that are not essentially stylized lines and arrows. So we will create one.

The documentation for EdgeShapeFunction  indicates that the function it expects needs to

be  of  the  following  form:  funA88x1, y1<, 8x2, y2<, …<, vi � vjE.  The  8xi, yi<  are  the

coordinates of the vertices used to create line segments for the edge connecting vertex vi  to vertex
vj.  In  fact,  you can see  precisely  what  form this  takes  using  the  following.  The  notation ## is  a

sequence  of  arguments  passed  to  a  pure  function;  in  this  example,  that  is  a  sequence  of  lists  of
vertices and rules as printed here.
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In[39]:= Graph@81 � 2, 2 � 3, 3 � 1<,
EdgeShapeFunction Ø HHPrint@8ÒÒ<D; Line@Ò1DL &LD

9980.866025, 0.5<, 93.88578 � 10-16, 1.==, 1 � 2=

8880.866025, 0.5<, 80., 0.<<, 1 � 3<

9993.88578 � 10-16, 1.=, 80., 0.<=, 2 � 3=

Out[39]=

We would like to replace Line  with BezierCurve , but a Bézier curve with two control points
is just a straight line. 

In[40]:= GraphicsüBezierCurve@880.866025, 0.5<, 80., 0.<<D

Out[40]=

We will  use  a  rule  to  introduce  additional  points  that  can be  used to  create  higher-order  Bézier
curves. First, we will naively add a random point between any pair of existing points (represented
by the patterns a and b in this code). The function edgeFun expects two arguments: a list of the
coordinates  and  an  edge.  Although  we  do  not  use  the  edge  information  here,  we  do  return  a
Bézier  curve  that  uses  the  control  points  given  on  the  right-hand  side  of  the  delayed  rule.  The
various curve primitives, including Bézier curves, are listed in Table 10.3.

In[41]:= edgeFun@pts_, e_D := Module@8controlPts<,
controlPts = pts ê. 8a_, b_< ß 8a, RandomReal@80, 1<, 2D, b<;
BezierCurve@controlPtsDD
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In[42]:= Graph@81 � 2, 2 � 3, 3 � 1<, EdgeShapeFunction Ø edgeFunD

Out[42]=

That works, but rather than use an arbitrary, random coordinate as the additional control point,
we really should get a little more control over the control points. So, instead let us add two new
control points that are dependent upon the positions of a and b.

In[43]:= edgeFun@pts_, e_D := Module@8controlPts<,
controlPts =
pts ê. 8a_, b_< ß 8a, 8a@@1DD + 2 b@@1DD ê 3, a@@2DD<,

8a@@1DD + 2 b@@1DD ê 3, b@@2DD<, b<;
BezierCurve@controlPtsDD

Let us try it out on some different graphs.

In[44]:= CompleteGraph@5, EdgeShapeFunction Ø edgeFunD

Out[44]=

In[45]:= WheelGraph@13, EdgeShapeFunction Ø edgeFunD

Out[45]=
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Here is  a  slight  variation on the creation of  the additional  control  points  from the two points  a
and b.

In[46]:= edgeFun@pts_, e_D := Module@8controlPts<,
controlPts = pts ê. 8a_, b_< ß 8a, 8a@@1DD + .1 b@@1DD, a@@2DD<,

8a@@1DD + .1 b@@1DD, b@@2DD<, b<;
BezierCurve@controlPtsDD

In[47]:= RandomGraph@UniformGraphDistribution@30, 50D,
GraphLayout Ø "CircularEmbedding",
EdgeShapeFunction Ø edgeFunD

Out[47]=

In[48]:= TreeGraph@EdgeListüCompleteKaryTree@3, 5D,
GraphLayout Ø "SpringElectricalEmbedding",
EdgeShapeFunction Ø edgeFunD

Out[48]=

Table 10.3. Curve primitives

Graphics primitive Usage
BezierCurve@8pt1, pt2,…<D Bézier curve with control points pti

BSplineCurve@8pt1, pt2,…<D nonuniform B-spline curve with control points pti

JoinedCuve@8segmt1, segmt2,…<D curve with segmt1 followed by segmt2, etc.

FilledCuve@8segmt1, segmt2,…<D filled curve with segmt1 followed by segmt2, etc.
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Example: hypocycloids
Hypocycloids are curves generated by following a  fixed point  on a  smaller  circle  rolling around
the inside of  a  larger  circle.  In what  follows,  we will  combine graphics  primitives  and directives
together with a built-in graphics function to create a visualization of hypocycloids. 

Figure 10.2. Hypocycloid generated by rolling a smaller circle inside a larger circle.

The formula for a hypocycloid is given parametrically by the following, where r is the radius of
the smaller circle and R is the radius of the larger circle

In[49]:= Hypocycloid@8a_, b_<, q_D :=

:Ha - bL Cos@qD + b CosBq
a - b

b
F, Ha - bL Sin@qD - b SinBq

a - b

b
F>

In[50]:= Hypocycloid@8R, r<, qD êê TraditionalForm
Out[50]//TraditionalForm=

: HqL H - L+
q H - L

, HqL H - L-
q H - L

>

Here is a plot of the curve for various values of the two radii  R  and r  where their ratio R ê r  is  an
integer.

In[51]:= Table@
ParametricPlot@
Hypocycloid@8R, 1<, qD, 8q, 0, 2 p<, Axes Ø NoneD,

8R, 3, 7, 1<D

Out[51]= : , , , , >
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And here are some curves for rational, but noninteger values of R ê r.

In[52]:= TableBParametricPlot@Hypocycloid@8R, 1<, qD,

8q, 0, 2 Denominator@RD p<, Axes Ø NoneD,

:R, :
3

2
,
5

3
,
7

2
,
13

5
,
21

13
>>F

Out[52]= : , , , , >

In  fact,  the  curve  only  “closes  up”  when  the  ratio  R ê r  is  an  integer  or  a  rational  number.  Inter-
ested readers should consult Maor (1998) or visit the MathWorld page on hypocycloids (Weisstein
2011).

To start putting the graphics pieces together in our scene, we will fix the two radii for purposes
of  developing  the  code  and  then  make  them  parameters  that  can  be  set  by  the  user  when  our
code is ready. Here is the outer circle, blue and thick.

In[53]:= With@8R = 3, r = 1<,
Graphics@8

Blue, Thick, Circle@80, 0<, RD
<DD

Out[53]=

To draw the smaller inner circle, we first need to know its center. This will change as the smaller
circle rotates around. In fact it is dependent upon the parameter q. It is given by the following (left
to the reader to verify).

In[54]:= center@q_, R_, r_D := HR - rL 8Cos@qD, Sin@qD<

Here then are the two circles together, with the smaller circle given with a fixed (for now) center
set by the angle q.
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In[55]:= With@8q = p ê 6, R = 3, r = 1<,
Graphics@8

8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<

<DD

Out[55]=

We know where the center of the smaller circle is so let us draw a large point there together with
a thick line from the center to the hypocycloid. Also we include a red point that shows the fixed
point on the smaller circle that will trace out the hypocycloid as the angle q changes.

In[56]:= WithB:q =
p

6
, R = 3, r = 1>, Graphics@8

8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick, Line@8center@q, R, rD, Hypocycloid@8R, r<, qD<D<,
8Red, PointSize@.02D, Point@Hypocycloid@8R, r<, qDD<

<DF

Out[56]=

Of course we want to include the hypocycloid itself,  from 0 to q.  We will  combine a parametric
plot of the curve with the graphics primitives we have developed so far. Because the plot ranges
are quite different for the ParametricPlot@…D and the Graphics@…D pieces of the code, we
need to add PlotRange Ø All as an option to the entire graphic, that is, as part of Show .
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In[57]:= With@8q = p ê 6, R = 3, r = 1<,
Show@8

ParametricPlot@Hypocycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@8
8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick,
Line@8center@q, R, rD, Hypocycloid@8R, r<, qD<D<,

8Red, PointSize@.015D, Point@Hypocycloid@8R, r<, qDD<
<D

<, PlotRange Ø All, GridLines Ø AutomaticDD;

Finally, we sketch out the entire curve by having q go from 0 to 2p.

In[58]:= With@8q = 2 p, R = 3, r = 1<,
Show@8

ParametricPlot@Hypocycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@8
8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick,
Line@8center@q, R, rD, Hypocycloid@8R, r<, qD<D<,

8Red, PointSize@.015D, Point@Hypocycloid@8R, r<, qDD<
<D

<, PlotRange Ø All, GridLines Ø AutomaticDD

Out[58]=

In Section 11.1 we will go a bit further and create several dynamic interfaces so that we can see
the curve sketched out in real time while also providing controls to change the radii of each circle.
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Exercises

1. Create a primitive color wheel by coloring successive sectors of a disk according to the Hue 
directive.

2. Create a graphic that contains a circle, a triangle, and a rectangle. Your graphic should include an 
identifying label for each object.

3. Create a three-dimensional graphic containing six Cuboid graphics primitives, randomly placed in 
the unit cube. Add an opacity directive to make them transparent.

4. Create a graphic consisting of a unit cube together with a rotation of 45° about the vertical axis 
through the center of that cube. Then create a dynamically rotating cube using Manipulate.

5. Create a graphic that consists of 500 points randomly distributed about the origin with standard 
deviation 1. Then, set the points to have random-size radii between 0.01 and 0.1 units and are 
colored randomly according to a Hue function.

6. Create a graphic that represents the solution to the following algebraic problem that appeared in the 
Calculus&Mathematica courseware (Porta, Davis, and Uhl 1994). Find the positive numbers r such 
that the following system has exactly one solution in x and y.

Hx - 1L2 + H y - 1L2 = 2

Hx + 3L2 + H y - 4L2 = r2

Once you have found the right number r, then plot the resulting circles in true scale on the same 
axes, plotting the first circle with solid lines and the two solutions with dashed lines together in one 
graphic.

7. Create a graphic of the sine function over the interval (0, 2 p) that displays vertical lines at each 
point calculated by the Plot  function to produce its plot.

8. Using options to the Plot  function, create a plot showing the probability density function (pdf) of 
a normal distribution together with vertical lines at the first and second standard deviations. Your 
plot should look something like the following for a normal distribution with m = 0 and s = 1:

9. Modify ProteinDotPlot from the introduction to this chapter to accept options from 
ArrayPlot .
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10. Modify the Hypocycloid code to create epicycloids, which are like hypocycloids except the smaller 
circle rotates on the outside of the larger circle. Then create an animation showing the epicycloid 
being sketched out as the smaller circle rotates around the larger circle. If your animation includes a 
way to select different radii for the circles, you will need to deal with the plot range as the size of the 
smaller circle changes.

10.2 Efficient structures
The built-in graphics functions are optimized for the tasks for which they are designed. What this
means  is  that  for  a  broad  set  of  possible  arguments,  these  function  construct  and  display  the
graphics  scene  quickly  and  efficiently,  keeping  the  size  of  the  resulting  graphic  manageable.
When  creating  visualizations  of  sizable  datasets  you  can  find  yourself  with  very  large  graphical
objects that are not optimal in terms of memory usage, storage on disk, and interactivity. In this
section we will look at several approaches to optimizing graphical expressions introducing multi-
objects  and  GraphicsComplex  as  two  efficient  structures  for  working  with  larger  objects.
Lastly, we will look at the use of numeric vs. symbolic expressions in the internal representation
of graphical expressions.

Multi-objects
Visualizations that involve many graphics primitives often contain large data structures contain-
ing many instances of a single primitive object. For example, mapping Point across a set of pairs
of coordinates is one way to create a graphic.

In[1]:= data = RandomReal@NormalDistribution@0, 1D, 85, 2<D;
gr1 = Graphics@Map@Point, dataDD;
FullForm@gr1D

Out[3]//FullForm=

Graphics@
List@Point@List@1.3587408177258289`, 1.0129471456926376`DD,
Point@List@-0.7139297202638747`, -0.08647150174959149`DD,
Point@List@1.0899030510218575`, -0.5685559001434687`DD,
Point@List@0.22032467637820483`, 1.1101331398563001`DD,
Point@List@-0.16904296153230453`, 0.22391875152064022`DDDD

Note  that  Point  occurs  five  times  in  the  above  expression,  once  for  each  point  created.  On
the  other  hand,  simply  wrapping  Point  around  the  entire  list  of  coordinate  pairs  creates  the
same image, but note that Point is only used once in the underlying expression.
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In[4]:= gr2 = Graphics@Point@dataDD;
FullForm@gr2D

Out[5]//FullForm=

Graphics@
Point@List@List@1.3587408177258289`, 1.0129471456926376`D,

List@-0.7139297202638747`, -0.08647150174959149`D,
List@1.0899030510218575`, -0.5685559001434687`D,
List@0.22032467637820483`, 1.1101331398563001`D,
List@-0.16904296153230453`, 0.22391875152064022`DDDD

The form in this latter case is  referred to as a multi-point  expression,  and is  treated differently than
expressions  with  numerous  primitives.  The  internal  representation  of  multi-element  objects  is
more compact and the Mathematica  front end is able to render these objects much more quickly.
Scaling up the size of the previous examples, this becomes quite apparent.

In[6]:= data = RandomVariate@NormalDistribution@0, 1D, 85000, 3<D;

In[7]:= AbsoluteTiming@
gr1 = Graphics3D@8PointSize@.005D, Map@Point, dataD<DD

Out[7]= :0.003957, >

In[8]:= AbsoluteTiming@
gr2 = Graphics3D@8PointSize@.005D, Point@dataD<DD

Out[8]= :0.000029, >

In[9]:=
First@%%D

First@%D

Out[9]= 1.4 � 102
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Although  the  differences  in  kernel  timings  are  impressive  (two  to  three  orders  of  magnitude  in
this example), the time it takes the front end to render these two objects is vastly different, with
the first expression taking much much longer. 

Since Timing  and AbsoluteTiming  measure kernel times, you will have to use a different
function, SessionTime , to measure total wall clock time for a computation including the time
it takes the front end to format and render the resulting expression.

In[10]:= t1 = SessionTime@D;
gr1 = Graphics3D@8PointSize@.005D, Map@Point, dataD<D
t2 = SessionTime@D;
Ht2 - t1L Seconds

Out[11]=

Out[13]= 0.391888 Seconds

In[14]:= t1 = SessionTime@D;
gr2 = Graphics3D@8PointSize@.005D, Point@dataD<D
t2 = SessionTime@D;
Ht2 - t1L Seconds

Out[15]=

Out[17]= 0.021632 Seconds

Moreover, the memory needed to represent these objects is also vastly different with that for the
multi-point expression being some 10–12 times smaller.

In[18]:= :ByteCount@gr1D, ByteCount@gr2D, NB
ByteCount@gr1D

ByteCount@gr2D
F>

Out[18]= 81240216, 120392, 10.3015<

Point,  Line ,  Polygon ,  Arrow  are  the  only  graphics  primitives  that  have  multi-element
forms. The exercises at the end of this section and several applications at the end of this chapter
explore other examples of multi-objects.
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GraphicsComplex
Graphical expressions often contain repetitions of the coordinate points used in the graphic. For
example, a coordinate triple 8x, y, z< might have several polygons that share that vertex and so
it  would  be  repeated  for  each  of  those  polygons.  A  GraphicsComplex  is  an  expression  that
you can use to compress the representation of such objects.  It  works by specifying each coordi-
nate  once,  and  then  only  referring  to  the  coordinate  by  an  index,  given  by  its  position  in  the
coordinate list.

Many  of  the  three-dimensional  and  region  plotting  functions  use  GraphicsComplex  to
represent the graphical expression that would otherwise be quite a bit larger.

In[19]:= plt = Plot3DB 1 - x2 - y2 , 8x, -1, 1<, 8y, -1, 1<F

Out[19]=

In[20]:= Short@InputForm@pltD, 2D
Out[20]//Short=

Graphics3D@GraphicsComplex@880.00027901781728316324,
-0.9999998571428571, 0.0004559203033409366<,

8-0.42857136734693874, << 2 >><, 8<< 3 >><,
<< 2198 >>, 8-0.4999999285714286, 0.6249999107142856,
0.5979028111234589<<, << 2 >>D, 8<< 6 >><D

GraphicsComplex  takes  two arguments:  a  list  of  coordinate  points  in  2-  or  3-space,  followed
by a  list  of  graphics  primitives  where each point  is  referenced by its  position within the coordi-
nate point list.

GraphicsComplex@8pt1, pt2, …<, primitivesD

For example, here is a simple expression consisting of five points on the unit circle with the first
point repeated at the end to close up the polygon.

In[21]:= vertices@n_D := TableB:CosB
2 p a

n
F, SinB

2 p a

n
F>, 8a, 0, n<F
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In[22]:= coords = vertices@5D

Out[22]= :81, 0<, :
1

4
J-1 + 5 N,

5

8
+

5

8
>, :

1

4
J-1 - 5 N,

5

8
-

5

8
>,

:
1

4
J-1 - 5 N, -

5

8
-

5

8
>, :

1

4
J-1 + 5 N, -

5

8
+

5

8
>, 81, 0<>

The following creates a line connecting the points in order. The explicit coordinates are given as
the  first  argument.  The  second  argument  contains  the  primitives,  in  this  case,  a  single  Line
object. In the Line  primitive, the points are referred to by their position in the list coords.

In[23]:= GraphicsComplex@coords, Line@81, 2, 3, 4, 5, 6<DD

Out[23]= GraphicsComplexB:81, 0<, :
1

4
J-1 + 5 N,

5

8
+

5

8
>,

:
1

4
J-1 - 5 N,

5

8
-

5

8
>, :

1

4
J-1 - 5 N, -

5

8
-

5

8
>,

:
1

4
J-1 + 5 N, -

5

8
+

5

8
>, 81, 0<>, Line@81, 2, 3, 4, 5, 6<DF

Wrapping Graphics (or Graphics3D) around a GraphicsComplex displays the expression.

In[24]:= Graphics@GraphicsComplex@coords, Line@81, 2, 3, 4, 5, 6<DDD

Out[24]=

Changing  the  indices  used  in  the  second  argument  results  in  lines  connecting  the  same  coordi-
nates but in a different order.
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In[25]:= Graphics@GraphicsComplex@coords, Line@81, 3, 5, 2, 4, 6<DDD

Out[25]=

If  you  wanted  to  add  points  at  each  coordinate,  do  so  in  the  second  argument  to
GraphicsComplex.

In[26]:= Graphics@GraphicsComplex@coords, 8
Line@81, 3, 5, 2, 4, 6<D,
Blue, PointSize@.05D, Point@81, 2, 3, 4, 5, 6<D

<DD

Out[26]=

Once the list of coordinate points is specified (first argument of GraphicsComplex), the points
can  be  referenced  as  many  times  as  needed.  In  the  following  example,  the  same  set  of  points  is
referred to in the first line segment as well as in the following two rotated line segments.

In[27]:= Graphics@8
GraphicsComplex@coords, 8

8Line@81, 2, 3, 4, 5, 6<D<,
8Dashed, Rotate@Line@81, 2, 3, 4, 5, 6<D, 30 DegreeD<,
8Thick, Rotate@Line@81, 2, 3, 4, 5, 6<D, 60 DegreeD<

<D
<D

Out[27]=
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Numeric vs. symbolic expressions
One of the great strengths of Mathematica  is that you generally do not need to worry about what
type of numbers you are working with when performing many operations. This is true of graphi-
cal  work  as  well  as  other  kinds  of  computation.  You  can  work  with  approximate  numbers  or
symbolic/exact expressions and your graphics will just work. But for large graphical expressions,
you may want to think about the types of numbers used. 

For example,  here is  a  graphics primitive – a polygon – generated from a list  of  exact coordi-
nates. 

In[28]:= tri = GraphicsBPolygonB:80, 0<, 81, 0<, :
1

2
,

3

2
>>FF

Out[28]=

The front  end,  which renders  the  graphic,  converts  this  list  of  exact  coordinates  into  a  numeric
representation and maintains this in a cached form for purposes of efficiency. You can see this by
converting to the internal box structure.

In[29]:= ToBoxes@triD

Out[29]= GraphicsBoxBPolygonBoxBNCacheB:80, 0<, 81, 0<, :
1

2
,

3

2
>>,

880, 0<, 81, 0<, 80.5, 0.866025<<FFF

The exact coordinates as well as the numeric approximations are both part of this internal repre-
sentation.  Although  this  allows  the  front  end  to  render  the  graphic  quickly,  it  comes  at  a  cost.
Here is the size of this little graphic expression.

In[30]:= ByteCount@triD

Out[30]= 872

Turning  off  this  cache  results  in  a  simpler  internal  representation,  one  in  which  the  symbolic
expression is not stored.
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In[31]:= tri2 = GraphicsBPolygonB:80, 0<, 81, 0<, :
1

2
,

3

2
>>F,

Method Ø 8"CacheSymbolicGraphics" Ø False<F;

In[32]:= ToBoxes@tri2D

Out[32]= GraphicsBox@PolygonBox@880, 0<, 81, 0<, 80.5, 0.866025<<D,
Method Ø 8CacheSymbolicGraphics Ø False<D

Fortunately,  there is an easier way to get around this issue and that is simply to give the coordi-
nates as numeric values rather than symbolic expressions.

In[33]:= ntri = Graphics@Polygon@880, 0<, 81, 0<, 80.5, 0.866<<DD

Out[33]=

In[34]:= ToBoxes@ntriD

Out[34]= GraphicsBox@PolygonBox@880, 0<, 81, 0<, 80.5, 0.866<<DD

The resulting expression is about half the size of the cached version.

In[35]:= ByteCount@ntriD

Out[35]= 472

This becomes more important as the size and complexity of your graphics increases. Here is a
random collection of lines in 3-space, first using symbolic coordinates.

In[36]:= pairs = RandomChoiceB

JoinBRange@8D, :
1

2
,

2

2
,

3

2
,
1

2
J1 - 5 N>F, 82000, 3<F;
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In[37]:= lines3D = Graphics3D@
8Opacity@.2D, Line@Partition@pairs, 2DD<D êê Timing

Out[37]= :0.00233, >

In[38]:= ByteCount@lines3DD

Out[38]= 833624

Here is the same graphic but using numerical coordinates only.

In[39]:= npairs = N@pairsD;
nlines3D = Graphics3D@

8Opacity@.2D, Line@Partition@npairs, 2DD<D êê Timing

Out[40]= :0.000167, >

In[41]:= ByteCount@nlines3DD

Out[41]= 336344

The  version  using  numerical  approximations  for  the  coordinates  is  about  2.5  times  smaller  in
size. Also, the time to render the graphic is almost an order of magnitude faster from the kernel’s
perspective, and about twice as fast for the front end (you could use a similar approach to that in
the  previous  section  where  we  used  SessionTime).  This  is  mostly  a  result  of  not  having  to
carry around all  that  extra information.  Of course,  if  your graphical  expression is  highly depen-
dent upon exact/symbolic expressions, then these suggestions might be moot. In that case, using
either GraphicsComplex and/or multi-objects should make the representation more efficient.
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Exercises
1. Create a hexagonal grid of polygons like the one below.

First create the grid by performing appropriate translations using either Translate  or the geomet-
ric transformation TranslationTransform. Compare this approach with a multi-polygon 
approach.

2. Create a graphic consisting of a three-dimensional lattice, that is, lines on the integer coordinates in 
3-space. Compare approaches that use multi-lines as opposed to those that do not.

3. A common problem in computational geometry is finding the boundary of a given set of points. 
One way to think about this is to imagine the points as nails in a board and then to stretch a rubber 
band around all the nails. The stretched rubber band lies on a convex polygon commonly called the 
convex hull of the point set. The problem of determining the convex hull of a set of points has 
application in computer vision, pattern recognition, image processing, and many other areas. Using 
the ConvexHull function defined in the Computational Geometry package, create a function 
ConvexHullPlot for visualizing the convex hull together with its point set. The resulting graphic 
should include the points labeled with text as well as the convex polygon drawn as a line around the 
point set.

In[1]:= pts = RandomReal@1, 820, 2<D;

In[2]:= Needs@"ComputationalGeometry`"D

In[3]:= ConvexHull@ptsD

Out[3]= 812, 19, 2, 1, 9, 6, 4, 10, 7, 8<
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In[4]:= ConvexHullPlot@ptsD

Out[4]=

1 2

3
4

5

6

7 8

9

10

11
12

13

14

15
16

17
18

19

20

4. Extend Exercise 9 from Section 8.4 to random walks on the base n digits of p. For example, in base 3, 
a 1 corresponds to an angle of 120° from the current position, 2 corresponds to 240°, and 0 to 360°. 
In base 4 the step angles will be multiples of 90° and in general, for base n, the step angles will be 
multiples of 360 ° ên. Use GraphicsComplex to visualize the walks. Include a color function that 
depends upon the length of the walk. For more on random walks on digits of p in various bases, see 
Bailey et al. (2012).

10.3 Sound
Although it might seem odd to include a section on sound in a chapter on graphics, there is much
similarity  between  these  two  objects  from  both  an  experiential  as  well  as  computational  and
programmatic points of view. Graphics and sound are both used to visualize phenomena and to
convey information, and both can be used to analyze data. 

The  syntax  of  the  functions  for  sound  in  Mathematica  follows  that  for  graphics  expressions.
There  are  top-level  functions  that  provide  a  basic  interface  for  working  with  sounds  together
with  options  built  in  for  modifying  their  default  behaviors.  And,  like  graphics,  there  are  lower-
level primitive objects for constructing sounds from scratch. 

In  this  section we will  introduce the  symbolic  sound language in  Mathematica  and,  in  Section
10.4, use it to construct several example sound expressions – compositions.

The sound of mathematics
We hear sound when the air around our ears compresses and expands the air near the eardrum.
Depending upon how the eardrum vibrates, different signals are sent to the brain via the auditory
nerves after  the cochlea in the inner ear does some signal  processing to convert  the mechanical
sound  waves  into  electrochemical  impulses.  These  signals  are  then  interpreted  in  the  brain  as
various sounds. Musical tones compress and expand the air periodically according to sine waves.
The human ear is able to hear these waves when the frequency is between approximately 20 and
20 000 oscillations per second, or hertz. 

396 Graphics and visualization



One  oscillation  of  sinHxL  occurs  between  0  and  2 p;  sin H4 xL  oscillates  four  times  in  the  same
interval.

In[1]:= Plot@8Sin@xD, Sin@4 xD<, 8x, 0, 2 p<D

Out[1]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Mathematica is able to take a function such as sine and sample its amplitudes roughly 8000 times
per second,  and then send corresponding voltages to the speaker on your computer to produce
the  sound  of  the  sine  wave.  The  function  that  accomplishes  this  is  Play ,  which  has  the  same
syntax as the Plot  command.

In[2]:= ? Play

PlayA f , 8t, tmin, tmax<E creates an object that plays as a sound whose amplitude

is given by f as a function of time t in seconds between tmin and tmax. �à

The function Sin@256 tD  oscillates 256  times each 2 p  units,  so, if  we want to “play” a func-
tion  that  oscillates  256  times  per  second,  we  want  Sin@256 t H2 pLD.  This  plays  the  function
for one second.

In[3]:= Play@Sin@256 t H2 pLD, 8t, 0, 1<D

Out[3]=

Pressing  the  play  button  in  the  lower-left  corner  of  the  generated  interface  should  play  a  note
close  to  middle  C  played  for  one  second.  The  graphic  that  Mathematica  outputs  with  the  sound
object is a somewhat primitive attempt to display the waveform. You can suppress this graphical
display and only play the sound by using EmitSound.  This gives a slight saving in terms of the
expressions that are stored with your notebook.

In[4]:= Play@Sin@256 t H2 pLD, 8t, 0, 1<D êê EmitSound

The Play  function encodes the sound amplitudes using eight bits and samples functions at a
rate  of  about  8000  times  per  second,  or  hertz.  This  is  good  to  keep  in  mind  as  anomalies  can
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occur  when  playing  a  function  whose  periodicity  is  very  close  to  the  sample  rate.  Listen  to  the
quite surprising result that follows (you will have to check the SampleRate  on your computer
and adjust the following code accordingly). Try other frequencies that are close to the sample rate
on your computer. 

In[5]:= Options@Play, 8SampleDepth, SampleRate<D

Out[5]= 8SampleDepth Ø 8, SampleRate Ø 8000<

In[6]:= Play@Sin@8000 � 2 p tD, 8t, 0, 1<D

Out[6]=

Although  you  would  expect  a  tone  at  8000  hertz,  you  get  something  quite  different.  Play  is
sampling the function 8000 times. Since the function itself oscillates 8000 times on this interval,
the samples appear to be about the same and so Play  misses the periodic nature of this function.
If Play  did adaptive sampling, much like Plot  does, then it could avoid this particular problem.
You  could,  of  course,  increase  the  sampling.  This  is  analogous  to  increasing  the  value  of
PlotPoints  in the initial sampling of points in such functions as Plot .

In[7]:= Play@Sin@8000 � 2 p tD, 8t, 0, 1<, SampleRate Ø 44 000D

Out[7]=

In  addition  to  playing  continuous  functions  with  Play ,  you  can  also  play  lists  of  discrete
amplitudes using ListPlay. For example, here are the digits of a rational number.

In[8]:= digits = First[RealDigits[N[1/19, 5000]]];
Take[digits,50]

Out[9]= 85, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2,
1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4,
2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8<

The  periodic  nature  of  rational  numbers  should  give  a  tone  when  played  as  a  repeating  set  of
amplitudes  and  it  does.  Mathematica  scales  the  amplitudes  to  fit  in  a  range  that  ListPlay  can
work with and that is audible.
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In[10]:= ListPlay@digitsD

Out[10]=

Contrast that with a nonperiodic list of digits, the digits of p – white noise.

In[11]:= irratdigits = First@RealDigits@N@p, 5000DDD;
ListPlay@irratdigitsD

Out[12]=

Sound primitives and directives
You  can  think  of  Play  and  ListPlay  as  audio  analogues  of  Plot  and  ListPlot.  They  are
top-level functions that provide a clean and easy-to-use interface for the user. But, as with graph-
ics objects,  you can create sound objects from scratch,  building them up from primitives (Table
10.4) and styling them with directives.

Table 10.4. Basic sound primitives

Sound primitive Usage
SoundNote@pitchD music-like sound note

SampledSoundFunction@ f, n,rD amplitude levels given by a function

SampledSoundList@8a1, a2,…<, rD amplitude levels given as a list

SoundNote  creates a sound primitive. Just as Graphics  and Graphics3D  are used to display
graphics primitives, Sound  is wrapped around sound primitives to play them on your computer.
For example, this generates middle C, played for the default one second.

In[13]:= Sound@SoundNote@"C"DD

Out[13]=

1 s
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Given a numeric value n,  SoundNote@nD  will generate a note n  semitones above middle C. The
parameter n can also take on negative integer values to generate tones below middle C. For exam-
ple, this plays a note five semitones below middle C, that is, G below middle C.

In[14]:= Sound@SoundNote@-5DD êê EmitSound

Set  the  duration of  each sound using a  second argument  to  Sound.  For  example,  this  plays  the
note for two seconds.

In[15]:= Sound@SoundNote@0D, 2D êê EmitSound

To  play  several  notes  simultaneously  as  a  chord,  include  them  in  a  list  as  an  argument  to
SoundNote. Here is an augmented ninth chord (think Jimi Hendrix’s Purple Haze).

In[16]:= Sound@SoundNote@8"E2", "GÒ", "B", "D", "G"<DD êê EmitSound

You can also specify a style which is essentially a midi instrument. Note how this syntax mirrors
that for graphics directives. The style (directive) precedes the primitives which it modifies and is
scoped in a manner similar to graphics.

In[17]:= Sound@8
"GuitarDistorted", SoundNote@8"E2", "GÒ", "B", "D", "G"<D

<D êê EmitSound

In[18]:= Sound@8"GuitarDistorted",
SoundNote@8"E2", "B2", "E2"<D,
SoundNote@8"E3", "GÒ3", "B3", "D3", "G3"<D,
SoundNote@8"E2", "B2", "E2"<D,
SoundNote@8"E3", "GÒ3", "B3", "D3", "G3"<D

<D

Out[18]=

4 s

Alternatively, you can create sounds by sampling amplitude levels given by functions or lists.
For  example,  this  samples  the  sine  function  8000  times  per  second  (sample  rate),  by  applying
Sin to the integers 1 through 4000.

In[19]:= Sound@SampledSoundFunction@Sin@ÒD &, 4000, 8000DD

Out[19]=

400 Graphics and visualization



This  creates  a  middle C tone from a list  of  amplitudes,  sampled at  22 050  times per  second,  half
the rate used by audio cds.

In[20]:= rate = 22050;
lis = Table@Sin@261.626 � 2 p tD, 8t, 0, 0.5, 1 ê rate<D;
Sound@SampledSoundList@lis, rateDD

Out[22]=

Exercises
1. Evaluate Play@Sin@1000 ê xD, 8x, -2, 2<D. Explain the dynamics of the sound generated 

from this function.

2. Experiment with the Play  function by creating arithmetic combinations of sine functions. For 
example, you might try the following.

In[1]:= PlayB
Sin@440 � 2 p tD

Sin@660 � 2 p tD
, 8t, 0, 1<F

Out[1]=

3. Create a tone that doubles in frequency each second.

4. Create a “composition” using the digits of p as representing notes on the C scale where a digit n is 
interpreted as a note n semitones from middle C. For example, the first few digits, 1, 4, 1, 5 would give 
the notes one, four, one, and five semitones from middle C.

5. A square wave consists of the addition of sine waves, each an odd multiple of a fundamental fre-
quency, that is, it consists of the sum of sine waves having frequencies f0, 3 f0, 5 f0, 7 f0, etc. Create a 
square wave with a fundamental frequency f0 of 440 hertz. The more overtones you include, the 
“squarer” the wave.

6. Create a square wave consisting of the sum of sine waves with frequencies f0, 3 f0, 5 f0, 7 f0, etc., and 
amplitudes 1, 1/3, 1/5, 1/7, respectively. This is actually a truer square wave than that produced in the 
previous exercise.

7. Create a square wave consisting of overtones that are randomly out of phase. How does this wave 
differ from the previous two?
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8. A sawtooth wave consists of the sum of both odd- and even-numbered overtones: f0, 2 f0, 3 f0, 4 f0, etc. 
with amplitudes in the ratios 1, 1/2, 1/3, 1/4, etc. Create a sawtooth wave and compare its tonal 
qualities with the square wave.

9. A wide variety of sounds can be generated using frequency modulation (FM) synthesis. The basic idea of 
FM synthesis is to use functions of the form

a sinH2 p Fc, t + mod sinH2 p Fm tLL.

where a is the peak amplitude, Fc is the carrier frequency in hertz, mod is the modulation index, and 
Fm is the modulating frequency in hertz. 

Determine what effect varying the parameters has on the resulting tones by creating a series of 
FM synthesized tones. First, create a function FM@Amp, Fc, mod, Fm, timeD that implements 
the above formula and generates a tone using the Play  function. Then you should try several 
examples to see what effect varying the parameters has on the resulting tones. For example, you can 
generate a tone with strong vibrato at a carrier frequency at middle A for one second by evaluating 
FM@1, 440, 45, 5, 1D.

10.4 Examples and applications
Up  until  this  point,  we  have  looked  at  the  tools  that  are  available  to  construct  relatively  simple
graphics  in  Mathematica  using  the  graphics  building  blocks  –  primitives,  directives,  and  options.
In this section we consider problems that are more involved or whose solution requires geomet-
ric  insight  as  we  construct  our  programs.  We  will  not  restrict  our  programs  to  those  only  con-
structed  from  graphics  primitives  but  will  also  build  upon  and  modify  some  of  the  built-in
functions for our purposes here.

We will  begin with four examples whose solutions involve building functions from primitive
graphics  elements:  creating  space-filling  plots  for  proteins  and  other  chemicals,  plotting  lines
from data in three dimensions,  finding simple closed paths through a set of data,  and determin-
ing if a point lies inside or outside of a polygon. The next three problems use built-in functions in
order  to  take  advantage  of  established  algorithms  for  computation  and  options  for  formatting
and  styling:  visualizing  the  distribution  of  data  including  some  statistical  properties,  root  plot-
ting, and trend plots. The last example uses sound primitives and directives to construct musical
compositions tied to scaling functions.

Space-filling plots
Our  first  graphics  example  uses  three-dimensional  graphics  primitives  to  construct  a  visualiza-
tion of molecular structures. The built-in data collection ChemicalData contains a property for
generating  these  plots  –  "SpaceFillingMoleculePlot"  –  but  you  cannot  use  this  with
other objects such as a protein or any object not in ChemicalData.
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In[1]:= ChemicalData@"AceticAcid", "SpaceFillingMoleculePlot"D

Out[1]=

The information needed to construct such a plot for any given molecule is:

Ê the list of atoms in the molecule;

Ê the positions in space of each atom;

Ê the radius of each atom;

Ê the color for each atom.

These data can come from a variety of sources. For our purposes, we will use some of the built-in
data collections in Mathematica to gather the data. 

The  list  of  atoms  for  a  known  chemical  is  given  by  the  "VertexTypes"  property  of
ChemicalData.

In[2]:= atoms = ChemicalData@"AceticAcid", "VertexTypes"D

Out[2]= 8O, O, C, C, H, H, H, H<

Their positions in space are given by "AtomPositions".

In[3]:= positions = ChemicalData@"AceticAcid", "AtomPositions"D

Out[3]= 88-140.19, -68.091, -9.3099<, 8-43.767, 87.394, -133.26<,
887.692, 9.1899, 45.963<, 8-36.804, 12.256, -38.892<,
8159.89, 81.044, 7.1474<, 8130.97, -90.809, 43.377<,
862.271, 35.133, 148.73<, 8-220.07, -66.118, -63.757<<

The van der Waals radius of any atom is the radius of an imaginary, circumscribed sphere about
the atom. It has been computed for many atoms (not all) and is also built into Mathematica.

In[4]:= radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD

Out[4]= 8152., 152., 170., 170., 120., 120., 120., 120.<

The units are picometers, where 1 pm = 10
-12 m = 10

-2 � (ångströms). Atoms typically have radii
in the range 60–520 pm, or, 0.6–5.2 �.
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In[5]:= Map@ElementData@"C", "VanDerWaalsRadius", ÒD &,
8"Value", "Units"<D

Out[5]= 8170., Picometers<

A  commonly-used  color  scheme  for  atoms  was  developed  in  the  1950s  and  1960s  by  Corey,
Pauling, and later Koltun, known as the CPK model. It is built into Mathematica via ColorData.

In[6]:= colors = Map@ColorData@"Atoms", ÒD &, atomsD

Out[6]= 8RGBColor@0.800498, 0.201504, 0.192061D,
RGBColor@0.800498, 0.201504, 0.192061D,
RGBColor@0.4, 0.4, 0.4D, RGBColor@0.4, 0.4, 0.4D,
RGBColor@0.65, 0.7, 0.7D, RGBColor@0.65, 0.7, 0.7D,
RGBColor@0.65, 0.7, 0.7D, RGBColor@0.65, 0.7, 0.7D<

9color, SphereAcenter, radiusE=  is the graphics expression that we will use for each atom. The

key observation here is that this list needs to be generated for each atom in a given molecule that
we are visualizing. We have three lists: colors, positions, and radii. We want to slot them
into  a  graphics  list  of  the  form  9color, SphereApos, radiusE=.  We  use  MapThread,  where  #1

pulls  an  element  from  the  first  list,  colors;  #2  pulls  an  element  from  the  second  list,  posiÖ
tions; and #3 pulls an element from the third list, radii.

In[7]:= Graphics3D@8
MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, positions, radii<D

<D

Out[7]=

This is the basic structure we need. We will next add some directives and options to get the effects
in which we are interested. Using the Specularity  directive gives control over the reflection of
the lights. Setting the Lighting  option to "Neutral" sets the light sources used to illuminate
the object to be white in color.
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In[8]:= Graphics3D@8Specularity@White, 40D,
MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, positions, radii<D

<, Lighting Ø "Neutral"D

Out[8]=

Putting  all  these  pieces  together,  here  is  the  function  ChemicalSpaceFillingPlot.  It  is
dependent upon ChemicalData  and ElementData  for all  the atomic data.  If  you have other
sources that you are drawing from, you will have to modify it accordingly.

In[9]:= ChemicalSpaceFillingPlot@chem_D :=

Module@8elements, pos, radii<,
elements = ChemicalData@chem, "VertexTypes"D;
pos = ChemicalData@chem, "AtomPositions"D;
radii =
Map@ElementData@Ò, "VanDerWaalsRadius"D &, elementsD;

Graphics3D@8Specularity@White, 50D,
MapThread@8ColorData@"Atoms", Ò1D, Sphere@Ò2, Ò3D< &,
8elements, pos, radii<D

<, Lighting Ø "Neutral"DD

Try it out on an amino acid, l-tryptophan.

In[10]:= ChemicalSpaceFillingPlot@"LTryptophan"D

Out[10]=
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Using the legending functionality new to Mathematica 9, you can add a legend for each element.
(Mathematica 9) In[1]:=

ChemicalSpaceFillingPlot@chem_D :=

Module@8elements, pos, radii<,
elements = ChemicalData@chem, "VertexTypes"D;
pos = ChemicalData@chem, "AtomPositions"D;
radii =
Map@ElementData@Ò, "VanDerWaalsRadius"D &, elementsD;

Legended@
Graphics3D@8Specularity@White, 50D,

MapThread@8ColorData@"Atoms", Ò1D, Sphere@Ò2, Ò3D< &,
8elements, pos, radii<D

<, Lighting Ø "Neutral"D,
SwatchLegend@
ColorData@"Atoms", Ò1D & êü DeleteDuplicates@elementsD,
Map@ElementData@Ò, "StandardName"D &,
DeleteDuplicates@elementsDD, LegendFunction Ø "Panel",

LegendMarkers Ø "SphereBubble", LegendMarkerSize Ø 12DDD

(Mathematica 9) In[2]:=

ChemicalSpaceFillingPlot@"LTryptophan"D
(Mathematica 9) Out[2]=

Let us go a few steps further and create a similar function for working with the proteins built
into ProteinData . Whereas ChemicalData  uses "VertexTypes" to get a list of the atoms,
we need to use "AtomTypes" for ProteinData . Otherwise the code is similar.

In[11]:= atoms = ProteinData@"A2M", "AtomTypes"D;

In[12]:= colors = Map@ColorData@"Atoms", ÒD &, atomsD;
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In[13]:= positions = ProteinData@"A2M", "AtomPositions"D;
radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD;
Graphics3D@8Specularity@White, 40D,

MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, positions, radii<D
<, Lighting Ø "Neutral"D

Out[15]=

Here is the bundled code for proteins.

In[16]:= ProteinSpaceFillingPlot@prot_D :=

Module@8atoms, pos, radii, colors<,
atoms = ProteinData@prot, "AtomTypes"D;
colors = Map@ColorData@"Atoms", ÒD &, atomsD;
pos = ProteinData@prot, "AtomPositions"D;
radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD;
Graphics3D@8Specularity@White, 50D,

MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, pos, radii<D
<, Lighting Ø "Neutral"DD

It  seems  to  work  fine  here  on  an  enzyme  involved  in  the  regulation  of  cell  motility  and
morphology.

In[17]:= ProteinSpaceFillingPlot@"PAK1"D

Out[17]=
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But it fails when the database we are drawing from (ProteinData) has missing data.

In[18]:= ProteinSpaceFillingPlot@"LOC100132316"D
ColorData::notprop : NotAvailable is not a known property

for ColorData. Use ColorData@"Properties"D for a list of properties. à
MapThread::mptd : Object Missing@ColorData@Atoms, NotAvailableDD at position 82, 1< in 

MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8Missing@ColorData@Atoms, NotAvailableDD, Missing@
NotAvailableD, Missing@ElementData@NotAvailable, VanDerWaalsRadiusDD<D 

has only 0 of required 1 dimensions. à

In[19]:= pos = ProteinData@"LOC100132316", "AtomPositions"D

Out[19]= Missing@NotAvailableD

We can pass on the " Missing@…D "  output in such cases by adding a conditional that checks
to see if the head Missing is part of the data.

In[20]:= MemberQ@Join@8atoms, pos<D, _MissingD

Out[20]= True

Here is the updated code. We have also set things up so ProteinSpaceFillingPlot inherits
the options from Graphics3D .

In[21]:= Clear@ProteinSpaceFillingPlotD

In[22]:= ProteinSpaceFillingPlot@prot_,
opts : OptionsPattern@Graphics3DDD :=

Module@8atoms, pos, radii<,
atoms = ProteinData@prot, "AtomTypes"D;
pos = ProteinData@prot, "AtomPositions"D;
If@MemberQ@Join@8atoms, pos<D, _MissingD,
Missing@"NotAvailable"D,
radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD;
Graphics3D@8Specularity@White, 50D,

MapThread@8ColorData@"Atoms", Ò1D, Sphere@Ò2, Ò3D< &,
8atoms, pos, radii<D

<, opts, Lighting Ø "Neutral"DDD
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Let us exercise some of the graphics options.

In[23]:= ProteinSpaceFillingPlot@"ABL1IsoformA",
Boxed Ø False, FaceGrids Ø AllD

Out[23]=

And here is what happens for a protein for which data are not available.

In[24]:= ProteinSpaceFillingPlot@"ACR"D

Out[24]= Missing@NotAvailableD

Plotting lines in space
Mathematica  has  two  basic  functions  for  visualizing  two-dimensional  data:  ListPlot  and
ListLinePlot.  Although  there  is  a  function  for  scatter  plots  of  points  in  three  dimensions,
there  is  no  function  for  plotting  three-dimensional  data  connected  by  lines;  three-dimensional
random walks are good examples of a phenomenon in need of such a visual tool. In this section
we will create a new function, ListLinePlot3D that you can use to plot datasets consisting of
triples  of  numbers  (that  is,  coordinates  of  points  in  3-space),  connecting  successive  data  points
with lines. 

Here are some data that we will  use to prototype our function. It  consists of twenty triples of
random integers between -10 and 10.

In[25]:= data = RandomInteger@8-10, 10<, 820, 3<D

Out[25]= 882, 7, 8<, 8-2, 3, -7<, 85, -8, -7<, 8-6, -3, -9<, 83, 3, -6<,
82, -3, 1<, 8-3, -7, 8<, 8-3, -4, 1<, 8-6, 9, -1<, 8-10, 10, 7<,
8-2, 4, 4<, 85, 8, -10<, 84, 4, 6<, 8-9, 7, 2<, 8-9, -2, 1<,
8-10, 0, 9<, 88, 0, 1<, 8-8, -7, 9<, 8-3, -5, 0<, 8-9, 0, -2<<
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For a very basic first attempt, we simply connect each coordinate triple with a line.

In[26]:= Graphics3D@Line@dataDD

Out[26]=

We would like to be able to use all the options for Graphics3D  in our function, so we start to
set up the options framework.

In[27]:= Options@ListLinePlot3DD = Options@Graphics3DD;

In[28]:= ListLinePlot3D@lis_List, opts : OptionsPattern@DD :=

Graphics3D@Line@lisD, optsD

Let us exercise some of the Graphics3D  options with our new function.

In[29]:= ListLinePlot3D@data, Axes Ø TrueD

Out[29]=
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10
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Our goal is to create a function that behaves much like the two-dimensional ListLinePlot.
Here are the pieces that we will include:

Ê two rules for ListLinePlot3D: one for the case of a single dataset and another rule for 
plotting multiple datasets;

Ê the options inherited from Graphics3D ;

Ê additional options that are not Graphics3D  options: PlotStyle, Mesh , and 
MeshStyle;

Ê a usage message;

Ê a warning message for bad values of the Mesh  option.
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Let us set up the option structure first. As noted above, there are three options we are interested
in using that are not options to Graphics3D .

In[30]:= MemberQ@First êü Options@Graphics3DD,
PlotStyle Mesh MeshStyleD

Out[30]= False

We start by adding these, together with their default values, to the list of Graphics3D  options.
In the body of our function, we will need to define the behavior for each of the possible values of
these options.

In[31]:= Remove@ListLinePlot3DD

In[32]:= Options@ListLinePlot3DD = Join@8
Mesh Ø None,
MeshStyle Ø Automatic,
PlotStyle Ø ColorData@1D@1D

<,
Options@Graphics3DDD;

The  use  of  ColorData  here  warrants  a  note.  Built-in  functions  such  as  Plot  and  ListPlot
choose the default color for the PlotStyle  using this construction. ColorData@1D  is a color
scheme consisting of  a  palette  of  colors.  The first  color  in this  list  is  the familiar  dark blue style
you see in plotting a function with Plot  or ListPlot.

In[33]:= ColorData@1D

Out[33]= ColorDataFunctionB81, ¶, 1<, F

In[34]:= ColorData@1D@1D

Out[34]= RGBColor@0.2472, 0.24, 0.6D

Here is a first attempt at putting this function together. The first argument, lis, is checked to
make sure it consists of a list of one or more triples; the plot style is picked up from the value of
the PlotStyle option.

In[35]:= ListLinePlot3D@lis : 88_, _, _< ..<,
opts : OptionsPattern@DD :=

Module@8plotStyle = OptionValue@PlotStyleD<,
Graphics3D@8plotStyle, Line@lisD<, optsD

D
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In[36]:= ListLinePlot3D@dataD

Out[36]=

The rule that works with multiple datasets requires us to thread a list of colors over each dataset.

In[37]:= ListLinePlot3D@lis_List, opts : OptionsPattern@DD :=

Module@8colors = ColorData@1D@ÒD & êü Range@Length@lisDD<,
Graphics3D@Thread@8colors, Line êü lis<D, optsDD

This  is  a  very  general  rule  that  does  no  pattern  matching  on  the  first  argument  other  than  to
check  that  it  has  head  List .  It  would  be  better  to  give  a  more  specific  pattern  that  will  be
matched by lists of lists of the appropriate structure. The pattern 88_, _, _< ..< is matched by
a  list  of  one  or  more  triples.  Hence  the  pattern  888_, _, _< ..< ..<  is  matched  by  one  or
more lists of lists of one or more triples, that is, multiple sets of three-dimensional data. Below we
give this pattern a name, lis, so that we can refer to that pattern in the body of the function.

In[38]:= ListLinePlot3D@lis : 888_, _, _< ..< ..<,
opts : OptionsPattern@DD :=

Module@8colors = ColorData@1D@ÒD & êü Range@Length@lisDD<,
Graphics3D@Thread@8colors, Line êü lis<D, optsDD

Here  are  four  datasets  consisting  of  fifteen  triples  of  random  number  each.  Four  different
colors are automatically chosen from ColorData – one for each set of lines/data.

In[39]:= data = RandomReal@1, 84, 15, 3<D;
ListLinePlot3D@dataD

Out[40]=
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Next, we add the mesh and mesh style machinery. We will set things up so that the Mesh  option
can take only  two different  values,  None  or  All.  So,  let  us  create  an error  message that  will  be
issued if a different value is given to the Mesh  option. We do this in the rule for a single dataset.

In[41]:= ListLinePlot3D::badmesh =
"The value of the Mesh option should

be either None or All";

We should also create a usage message for this function.

In[42]:= ListLinePlot3D::usage =
"ListLinePlot3D@lisD creates a three-dimensional graphic of

lines connecting the points given in lis which are
assumed to be lists consisting of three coordinates.";

In[43]:= ? ListLinePlot3D

ListLinePlot3D@lisD creates a three-dimensional graphic of lines connecting the
points given in lis which are assumed to be lists consisting of three coordinates.

Here then is our function with all the pieces included.

In[44]:= ListLinePlot3D@lis : 88_, _, _< ..<, opts : OptionsPattern@DD :=

Module@8plotStyle, mesh, meshStyle, gr3DOpts<,
mesh = OptionValue@MeshD;
plotStyle = If@

OptionValue@PlotStyleD === Automatic,
ColorData@1D@1D,
OptionValue@PlotStyleDD;

meshStyle = If@
OptionValue@MeshStyleD === Automatic,
8PointSize@MediumD, ColorData@1D@1D<,
OptionValue@MeshStyleDD;

gr3DOpts = FilterRules@8opts<, Options@Graphics3DDD;
Which@
mesh === All, Graphics3D@8Flattenü8plotStyle, Line@lisD<,

Flattenü8meshStyle, Point@lisD<<, gr3DOptsD,
mesh === None, Graphics3D@Flattenü8plotStyle, Line@lisD<,
gr3DOptsD,

True, Message@ListLinePlot3D::badmeshDDD
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Some comments on the code:

Ê Starting with plotStyle, the If statement will return ColorData@1D@1D if the value of 
PlotStyle is Automatic. Otherwise, the user-supplied value is used. The same applies 
for meshStyle.

Ê gr3DOpts is used to filter only those options that are specific to Graphics3D  and then 
those are passed into that function towards the end of the code. 

Ê The Which statement determines what value of Mesh  to use; if a value other than All or 
None is given, the warning message is issued. 

Ê Flatten  is used (three times) to insure the options are in the scope of the graphics 
primitives that they are modifying. 

Let  us  try  out  the  code  on  a  list  of  triples  of  numbers  generated  from  a  three-dimensional
random walk (the code for the RandomWalk function is developed in Section 13.1).

In[45]:= << PwM`RandomWalks`

In[46]:= RandomWalk@4, Dimension Ø 3, LatticeWalk Ø FalseD

Out[46]= 88-0.331614, 0.7767, -0.535509<, 80.077708, 1.6684, -0.728714<,
80.539855, 0.798301, -0.5574<, 8-0.134958, 1.17306, 0.0783545<<

You could alternatively use any list of triples of numbers.

In[47]:= RandomReal@80, 1<, 84, 3<D

Out[47]= 880.391577, 0.379059, 0.645299<, 80.313523, 0.983738, 0.304593<,
80.302268, 0.75095, 0.624754<, 80.340422, 0.626443, 0.90892<<

First, we generate a plot using the default option values.

In[48]:= walk = RandomWalk@500, Dimension Ø 3, LatticeWalk Ø FalseD;
ListLinePlot3D@walkD

Out[48]=
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We then try out several options.

In[49]:= ListLinePlot3D@walk, Mesh Ø All,
MeshStyle Ø 8PointSize@SmallD, Gray<,
PlotStyle Ø 8Blue, Thickness@.001D<, FaceGrids Ø AllD

Out[49]=

There is, of course, much more we could add but this should give you a good idea of the kinds of
things that should be included in such a function. In the exercises, you are asked to extend these
ideas  to  make  the  function  even  more  robust  and  useful,  including  incorporating  these  various
options into the rule for multiple datasets. 

Simple closed paths
Our next example of a graphical programming problem solves a very simplified variation of what
are known as traveling salesman problems. For a given set of points, a closed path is one that travels to
every point and returns to the starting point. The traveling salesman problem asks for the shortest
closed  path  that  connects  an  arbitrary  set  of  points.  The  traveling  salesman  problem  is  one  of
great theoretical, as well as practical, importance. Airline routing and telephone cable wiring over
large regions are examples of problems that could benefit from a solution to the traveling sales-
man problem. 

From  a  theoretical  point  of  view,  the  traveling  salesman  problem  is  part  of  a  large  class  of
problems  that  are  known  as  NP-complete  problems.  These  are  problems  that  can  be  solved  in
polynomial time using nondeterministic algorithms. A nondeterministic algorithm  has the ability to
“choose”  among  many  options  when  faced  with  numerous  choices,  and  then  to  verify  that  the
solution  is  correct.  The  outstanding  problem  in  computer  science  at  present  is  known  as  the
� = � � problem. This equation says that any problem that can be solved by a nondeterministic
algorithm  in  polynomial  time  (��)  can  be  solved  by  a  deterministic  algorithm  in  polynomial
time  (�).  It  is  widely  believed  that  � � � �  and  considerable  effort  has  gone  into  solving  this
problem. See Cook (2000), Lawler et al. (1985) or Pemmaraju and Skiena (2003).

Our  focus  will  be  on  a  solvable  problem  that  is  a  substantial  simplification  of  the  traveling
salesman problem. We will find a simple closed path  – a closed path that does not intersect itself –
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through a set  of  n  points.  For example,  Figure 10.3  displays a simple closed path through fifteen
points chosen at random in the plane. 

Figure 10.3. A simple closed path for fifteen points.

We  will  demonstrate  a  graphical  solution  to  the  problem  by  working  with  a  small  number  of
points and then generalizing to arbitrary numbers of points. Let us first create a set of ten pairs of
points in the unit square.

In[50]:= SeedRandom@1234D;
coords = RandomReal@1, 810, 2<D

Out[51]= 880.876608, 0.521964<, 80.0862234, 0.377913<,
80.0116446, 0.927266<, 80.543757, 0.479332<,
80.245349, 0.759896<, 80.984993, 0.217045<,
80.459017, 0.884729<, 80.583854, 0.263973<,
80.91956, 0.423835<, 80.98729, 0.587943<<

Next,  we  visualize  the  closed  path  through  this  set  of  points  using  PathPlot,  developed  in
Section 4.2.

In[52]:= PathPlot@coordsD

Out[52]=

A  simple  closed  path  is  one  that  does  not  cross  itself.  Simply  taking  the  coordinates  in  the
order in which they are given is  not going to work here.  Finding an ordering of the points such
that a simple closed path results is geometric in nature. To develop an algorithm that insures our
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path does not cross itself for any set of points in the plane, we will first pick a point from our set at
random and call this the base point.

In[53]:= base = RandomChoice@coordsD

Out[53]= 80.0862234, 0.377913<

Figure 10.4. Sorting points by polar angle.

Base

p1

p2

p3

The path problem can be solved by first computing the counterclockwise (polar) angle between a
horizontal line and each of the remaining points,  using the base point as the vertex of the angle
(Figure  10.4).  Then,  sorting  the  points  according to  this  angle  and connecting the  points  in  this
order should produce the desired result. 

First we compute the polar angle between two points a and b (you should verify the trigonome-
try necessary to find this angle in the various cases).

In[54]:= angle@a_List, b_ListD := Apply@ArcTan, Hb - aLD

We  can  use  this  function  to  compute  the  polar  angle  between  our  base  point  and  each  of  the
points  in  the  list  coords.  We  need  to  make  sure  that  we  do  not  try  to  compute  the  angle
between  the  base  point  and  itself  as  this  will  evaluate  to  ArcTan@0, 0D,  which  is  undefined.
This  situation  can  be  avoided  by  removing  the  base  point  from  the  list  of  coordinates  when
computing the angles.

In[55]:= remain = Complement@coords, 8base<D

Out[55]= 880.0116446, 0.927266<, 80.245349, 0.759896<,
80.459017, 0.884729<, 80.543757, 0.479332<,
80.583854, 0.263973<, 80.876608, 0.521964<,
80.91956, 0.423835<, 80.984993, 0.217045<, 80.98729, 0.587943<<

In[56]:= Map@angle@base, ÒD &, remainD

Out[56]= 81.70573, 1.17608, 0.936601, 0.218137,

-0.225085, 0.180276, 0.0550508, -0.177111, 0.229001<

The  angle  function  gives  an  ordering  on  the  list  of  coordinates.  SortAlist, orderFunE  sorts

list  according to  the  ordering  function orderFun,  which is  a  two-argument  predicate.  We wish to
sort coords according to our ordering function on the angles between each point and the base
point. The following code accomplishes this.
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In[57]:= s = Sort@remain, angle@base, Ò1D § angle@base, Ò2D &D

Out[57]= 880.583854, 0.263973<, 80.984993, 0.217045<,
80.91956, 0.423835<, 80.876608, 0.521964<,
80.543757, 0.479332<, 80.98729, 0.587943<, 80.459017, 0.884729<,
80.245349, 0.759896<, 80.0116446, 0.927266<<

This is our list of coordinates sorted according to the polar angle between each point and the base
point. Put the base point at the beginning of the list and close the path by adding the base point to
the end.

In[58]:= path = Join@8base<, s, 8base<D

Out[58]= 880.0862234, 0.377913<, 80.583854, 0.263973<,
80.984993, 0.217045<, 80.91956, 0.423835<,
80.876608, 0.521964<, 80.543757, 0.479332<,
80.98729, 0.587943<, 80.459017, 0.884729<, 80.245349, 0.759896<,
80.0116446, 0.927266<, 80.0862234, 0.377913<<

In[59]:= PathPlot@pathD

Out[59]=

If we collect the above commands into a program SimpleClosedPath, then we can find such
paths for arbitrary sets of coordinates.

In[60]:= SimpleClosedPath@lis_D := Module@8base, angle, sorted<,
base = RandomChoice@lisD;
angle@a_, b_D := Apply@ArcTan, b - aD;
sorted = Sort@Complement@lis, 8base<D,

angle@base, Ò1D § angle@base, Ò2D &D;
Join@8base<, sorted, 8base<DD

Now we can create large sets of points and find the corresponding simple closed paths.

In[61]:= data = RandomReal@1, 825, 2<D;
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In[62]:= PathPlot@SimpleClosedPath@dataDD

Out[62]=

In[63]:= data = RandomReal@1, 8100, 2<D;

In[64]:= PathPlot@SimpleClosedPath@dataDD

Out[64]=

Although the algorithm we have developed in this section for computing simple closed paths
seems to work fairly well, there are certain conditions under which it will still fail. The exercises at
the  end of  this  section investigate  some of  those  conditions  and walk  you through how best  to
improve this algorithm.

Points in a polygon
Determining  whether  a  point  in  the  plane  lies  inside  of  a  polygon  is  a  common  task  in  many
computational  areas.  It  has  broad  application  in  robot/computer  vision,  motion  sensing,  and
geographic  information  systems  (GIS),  and  is  the  basis  of  many  algorithms  in  computational
geometry.  In  this  section  we  will  solve  this  problem,  first  working  with  an  idealized  situation
when  the  polygon  is  convex.  The  second  implementation  will  be  more  general  (and  more
involved) and solves the problem for nonconvex polygons.
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There  are  two  commonly  used  algorithms  for  solving  point-in-polygon  problems.  One,  ray
crossing, involves drawing a ray from the point in question horizontally out to infinity and then
asking how many times the ray crosses an edge of the polygon. If the number of crossings is even,
you have entered the polygon as many times as you have exited it and so the point is outside. If
the number of crossings is odd, then the point is inside the polygon. The ray crossing method is
what we will use in the more general nonconvex case below. 

Another  commonly  used  algorithm  for  point-in-polygon  problems  involves  winding  num-
bers. This method computes the subtended angle from the point in question to each edge of the
polygon  and  determines  the  number  of  turns  the  boundary  of  the  polygon  makes  about  the
point.  We  will  not  implement  this  here;  the  interested  reader  is  directed  to  O’Rourke  (1998)  or
Heckbert (1994).

Convex  polygons We  start  with  a  simplification  of  this  problem,  one  in  which  the  polygons  are
convex.  A polygon is  convex  if  any line segment connecting a  pair  of  vertices  is  completely  con-
tained in the polygon; otherwise it is concave.

Figure 10.5. Convex (left) and concave polygons.

To solve the problem, we will need one important fact: given a line determined by two points,
Hx1, y1L, Hx2, y2L, a third point Hx3, y3L is to the left of the other two if the triangle formed by these
three  points  has  positive  area,  where  the  signed  area  of  a  triangle  is  given  by  the  following
determinant.

AreaÛ = 1

2

x1 y1 1

x2 y2 1

x3 y3 1

We can check this with a simple example. 

In[65]:= pt1 = 80, 0<;
pt2 = 81, 1<;
ptL = 81 ê 2, 1<;
ptR = 81 ê 2, 0<;
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In[69]:= Graphics@8
Point@8pt1, pt2<D, Line@8pt1, pt2<D,
Red, Point@8ptL, ptR<D

<, Axes Ø AutomaticD

Out[69]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

To construct the correct determinant,  we need to embed the points in 3-space by padding them
with 1s.

In[70]:= Map@PadRight@Ò, 3, 1D &, 8pt1, pt2, ptL<D

Out[70]= :80, 0, 1<, 81, 1, 1<, :
1

2
, 1, 1>>

This gives the area of the triangle formed by these three points.

In[71]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=

Det@Map@PadRight@Ò, 3, 1D &, triDD ê 2

In[72]:= TriangleArea@8pt1, pt2, ptL<D

Out[72]=
1

4

Note that this area is positive. Now use ptR instead of ptL.

In[73]:= TriangleArea@8pt1, pt2, ptR<D

Out[73]= -
1

4

This negative quantity indicates that ptR is not to the left of the line formed by pt1 and pt2. The
following predicate returns a value of True  if the given point is to the left of the other two.

In[74]:= leftOfQ@line : 88_, _<, 8_, _<<, pt : 8_, _<D :=

TriangleArea@Join@8pt<, lineDD ¥ 0

In[75]:= leftOfQ@8pt1, pt2<, ptLD

Out[75]= True

In[76]:= leftOfQ@8pt1, pt2<, ptRD

Out[76]= False
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Figure 10.6. One point inside and one point outside a polygon.

Now  we  are  ready  to  answer  the  question  posed  at  the  beginning  of  this  section:  given  a
convex polygon and a point, how do you determine if that point is inside or outside the polygon?
The basic idea is to take each line segment making up the polygon (its edges) and determine if the
given point is to the left of each segment.

Partitioning  that  list  of  vertices  of  the  polygon  into  pairs  will  give  us  the  line  segments  we
need.  Note the need to use overlap in the partition so that the last  line consists  of  the last  point
paired with the first.

In[77]:= poly = 884, 0<, 87, 0<, 87, 5<, 80, 5<<;
pt1 = 86, 3<; pt2 = 81, 1<;

In[79]:= lines = Partition@poly, 2, 1, 1D

Out[79]= 8884, 0<, 87, 0<<, 887, 0<, 87, 5<<,
887, 5<, 80, 5<<, 880, 5<, 84, 0<<<

Now map leftOfQ with pt2 across these lines.

In[80]:= Map@leftOfQ@Ò, pt2D &, linesD

Out[80]= 8True, True, True, False<

The given point is not to the left of all the lines. In fact, this test fails for the last line, the diagonal
from the upper left to lower right.  But the other point,  pt1,  is to the left of all  lines of the poly-
gon. This point is inside.

In[81]:= Map@leftOfQ@Ò, pt1D &, linesD

Out[81]= 8True, True, True, True<

To check that leftOfQ  returns True  for all  lines we take the conjunction of the list of Boolean
values. If one or more are False, logical And will return False.
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In[82]:= pointInPolygonQ@poly_, pt_D :=

And üü Map@leftOfQ@Ò, ptD &, Partition@poly, 2, 1, 1DD

In[83]:= pointInPolygonQ@poly, pt1D

Out[83]= True

In[84]:= pointInPolygonQ@poly, pt2D

Out[84]= False

Nonconvex polygons The case of nonconvex polygons is a bit more complicated. First, a moment’s
thought should convince you that the algorithm we used for convex polygons will fail for noncon-
vex polygons. The point inside the polygon in Figure 10.7  will give False  for at least one of the
edges of the polygon.

This more general scenario can be solved using a ray crossing algorithm. The idea is to draw a
horizontal ray starting at the point in question, extending out to infinity (the restriction of the ray
being horizontal can be relaxed with suitable adjustments to the algorithm). Then the point is in
or out of the polygon if the number of crossings of edges is odd or even, respectively (try it with
the two points and polygon in Figure 10.7).

Figure 10.7. Point-in-polygon problem, nonconvex case.

Below, we give the vertices of the polygon in Figure 10.7 together with the coordinates for the
two points; ptOut is outside and ptIn is inside.

In[85]:= poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<,
82., -1.1<, 82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<<;

ptOut = 84 ê 3, -2 ê 3<; ptIn = 81 ê 3, 1 ê 3<;
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In[87]:= Show@8
Graphicsü8PointSize@.02D, Point@8ptOut, ptIn<D<,
PathPlot@polyD

<, Axes Ø AutomaticD

Out[87]=
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As before, here are the edges of the polygon.

In[88]:= edges = Partition@poly, 2, 1, 1D

Out[88]= 888-0.5, 0<, 80.5, -1<<, 880.5, -1<, 81.5, 0<<,
881.5, 0<, 82., -1.1<<, 882., -1.1<, 82.5, 0<<,
882.5, 0<, 81.5, 2<<, 881.5, 2<, 81., 1<<,
881., 1<, 80., 1<<, 880., 1<, 8-0.5, 0<<<

First,  we  do  a  little  preprocessing.  We  can  omit  horizontal  edges  from  consideration  as  the
imaginary horizontal ray will never cross them.

In[89]:= edges2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D

Out[89]= 888-0.5, 0<, 80.5, -1<<, 880.5, -1<, 81.5, 0<<,
881.5, 0<, 82., -1.1<<, 882., -1.1<, 82.5, 0<<,
882.5, 0<, 81.5, 2<<, 881.5, 2<, 81., 1<<, 880., 1<, 8-0.5, 0<<<

We  also  delete  edges  where  the  edge  is  entirely  above  or  entirely  below  the  y-coordinate  of  the
test point 8x, y<.

In[90]:= 8x, y< = ptIn;

edges3 = DeleteCases@edges2, 88x1_, y1_<, 8x2_, y2_<< ê;
HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD

Out[91]= 8882.5, 0<, 81.5, 2<<, 880., 1<, 8-0.5, 0<<<

Next we orient these two line segments so that they extend from smallest y-coordinate to largest.

In[92]:= edges4 = Map@ReverseüSortBy@Ò, LastD &, edges3D

Out[92]= 8881.5, 2<, 82.5, 0<<, 880., 1<, 8-0.5, 0<<<
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Computing the area  of  the two triangles  formed by these  pairs  of  lines  and the target  point,  we
see that one area is positive and one area is negative.

In[93]:= TriangleArea@Join@Ò, 88x, y<<DD & êü edges4

Out[93]= 8-2., 0.333333<

That  is,  there  are  an  odd  number  of  positive  triangle  areas  and  so  we  conclude  that  the  target
point is inside the polygon.

In[94]:= Count@%, _?PositiveD

Out[94]= 1

In[95]:= OddQ@Count@
TriangleArea@Join@Ò, 88x, y<<DD & êü edges4, _?PositiveDD

Out[95]= True

Here is a function that puts all these pieces together.

In[96]:= PointInPolygonQ@poly : 88_, _< ..<, pt : 8x_, y_<D :=

Module@8edges, e2, e3, e4<,
edges = Partition@poly, 2, 1, 1D;
e2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D;
e3 = DeleteCases@e2, 88x1_, y1_<, 8x2_, y2_<< ê;

HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD;
e4 = Map@ReverseüSortBy@Ò, LastD &, e3D; OddQ@
Count@TriangleArea@Join@Ò, 8pt<DD & êü e4, _?PositiveDDD

In[97]:= Map@PointInPolygonQ@poly, ÒD &, 8ptIn, ptOut<D

Out[97]= 8True, False<

Let us try this  function out with some other examples.  First,  a  set  of  five points and our con-
cave polygon.

In[98]:= pts = Table@8i, 0<, 8i, -1, 3<D;
Graphics@8PointSize@MediumD, Point@ptsD, LightYellow,

Opacity@.6D, EdgeForm@BlackD, Polygon@polyD<, Axes Ø TrueD

Out[99]=
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The first and last points are outside and the other points are inside the polygon.

In[100]:= Map@PointInPolygonQ@poly, ÒD &, ptsD

Out[100]= 8False, True, True, True, False<

And here is a much larger example, one that will begin to give us a sense of the efficiency of this
algorithm.

In[101]:= pts = RandomReal@8-1, 3<, 87500, 2<D;

In[102]:= Timing@Map@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[102]= 81.16082, Null<

Although this  is  really  quite  fast  at  determining if  7500  points  are  inside the given polygon,  the
computation can be sped up significantly by running in parallel. This is addressed in Section 12.3.

Finally, here is a graphic coloring those points inside the polygon black and those outside light
gray.  The  key  here  is  to  use  GatherBy  on  the  set  of  points,  pts.  The  second  argument  to
GatherBy  is  the  specification  for  how  points  should  be  gathered.  In  this  case,  all  those  points
that  return  True  for  PointInPolygonQ@poly, ÒD &  will  be  in  one  list  returned  by
GatherBy  and those that fail this test will be in another list. We are calling these two lists in and
out for points that are inside and outside the polygon, respectively.

In[103]:= Graphics@8
8PointSize@TinyD, GatherBy@pts,

PointInPolygonQ@poly, ÒD &D ê. 8in_List, out_List< ß

88Black, Pointüin<, 8LightGray, Pointüout<<<,
Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@MediumD, Point@polyD

<D

Out[103]=

There  is  one  wrinkle  in  the  use  of  GatherBy  to  separate  all  those  points  that  pass  the
PointInPolygonQ  test  from  those  that  do  not.  If  the  first  point  in  the  list  of  points  checked
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passes the test, then the first group of points will be gathered by all having passed the test. But if
the first point fails the test, then all such failures will be grouped first and this will incorrectly be
identified  as  the  in  list  and  colored  and  styled  accordingly.  Exercise  11  asks  you  to  correct  this
problem.

Visualizing standard deviations
In  Exercise  8  of  Section  10.1,  we  created  a  visualization  of  standard  deviation  for  a  parametric
distribution –  in  that  case,  a  normal  distribution.  Suppose instead that  you have some data  and
you are interested in seeing which data points live within one or two standard deviations of the
mean.  A  box-and-whisker  chart  gives  you  an  overview  of  the  spread  of  the  data,  including  the
mean,  confidence  intervals,  the  data  within  various  quantiles,  and  some  sense  of  the  outliers,  if
any. Figure 10.8 shows a screenshot of a BoxWhiskerChart for some normally distributed data.

In  this  section  we  will  create  a  different  visualization  showing  a  scatter  plot  of  some  two-
dimensional data together with dashed lines bounding the area that is within one (or two) stan-
dard deviations of the mean. The key observation is that we want to separate the data into those
points  that  are  within  the  range  of  one  or  two  standard  deviations  from  the  mean  and  format
them accordingly.  Points outside the desired range will  be formatted differently.  In the previous
example, PointInPolygonQ, we used GatherBy  to group the two sets of point. We will use a
different  approach  here;  using  Pick ,  we  operate  on  the  indices  of  the  points  rather  than  the
coordinates directly.

Figure 10.8. Box-and-whisker chart with descriptive statistics in tooltip.

Let us start with a small dataset as we prototype. 

In[104]:= data = RandomVariate@NormalDistribution@0, 1D, 812<D

Out[104]= 80.100989, -0.368311, 0.204546, -1.75602, 0.236539, 0.61813,

-0.301258, 0.250047, 0.015467, -0.917397, 0.558073, 1.3482<

We will use Pick  to select the indices of those data points that are within one standard deviation
of the mean. First, here is a list of all indices, from 1 through the length of the data.
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In[105]:= lenrange = Range@Length@dataDD

Out[105]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12<

Here  are  those  indices  for  which  the  corresponding  data  point  is  within  one  (n = 1)  standard
deviation of the mean. Note that several are outside this threshold.

In[106]:= n = 1;
m = Mean@dataD;
s = StandardDeviation@dataD;
in = Pick@lenrange, Thread@Abs@Hdata - mL ê sD < nDD

Out[109]= 83, 4, 7, 8, 9, 10, 11, 12<

Using Complement , we have the indices of those points that are outside the threshold.

In[110]:= out = Complement@lenrange, inD

Out[110]= 81, 2, 5, 6<

We will use these two sets of indices to create points of the form 9index, value=.

In[111]:= in = Transpose@8in, data@@inDD<D

Out[111]= 883, -0.657262<, 84, -0.767936<,
87, -0.317394<, 88, 0.482023<, 89, -0.415365<,
810, -0.0952418<, 811, 0.436777<, 812, 0.259615<<

In[112]:= out = Transpose@8out, data@@outDD<D

Out[112]= 881, 1.14664<, 82, -0.933961<, 85, -1.03752<, 86, 1.16042<<

Now we use ListPlot  to visualize,  setting different plot styles for the two sets of data in  and
out. We also add horizontal lines at one standard deviation from the mean.

In[113]:= len = Length@dataD;
ListPlot@8in, out<, PlotStyle Ø 8Blue, Pink<, PlotRange Ø All,
Epilog Ø 8Dashed, Line@880, m + n s<, 8len, m + n s<<D,

Line@880, m - n s<, 8len, m - n s<<D<D

Out[114]=
4 6 8 10 12
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This  puts  all  the  pieces  together,  checking  that  the  data  are  one-dimensional  vectors,  inheriting
options  from ListPlot,  doing some checking to  make sure  that  the  partitions  of  the  data  are
both nonempty and returning Missing@D if they are.

In[115]:= StandardDeviationPlot@data_?VectorQ,
n_: 1, opts : OptionsPattern@ListPlotDD :=

Module@8in, out, len = Length@dataD, lenrange,
m = Mean@dataD, s = StandardDeviation@dataD<,

lenrange = Range@Length@dataDD;
in = Pick@lenrange, Thread@Abs@Hdata - mL ê sD < nDD;
out = Complement@lenrange, inD;
in = If@Length@inD === 0,

8Missing@D<, Transpose@8in, data@@inDD<DD;
out = If@Length@outD === 0, 8Missing@D<,

Transpose@8out, data@@outDD<DD;
ListPlot@8in, out<,
opts,
PlotStyle Ø 8Blue, Pink<,
PlotRange Ø All,
Epilog Ø 8Dashed,

Line@880, m + n s<, 8len, m + n s<<D,
Line@880, m - n s<, 8len, m - n s<<D<DD

Using  a  larger  dataset  with  mean  5  and  standard  deviation  8,  here  is  a  plot  highlighting  all
those points within two standard deviations of the mean.

In[116]:= data = RandomVariate@NormalDistribution@5, 8D, 8600<D;
StandardDeviationPlot@data, 2D

Out[117]=
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Root plotting
In  this  section  we  will  use  our  knowledge  of  built-in  graphics  functions  together  with  various
programming  techniques  from  previous  chapters  to  write  a  program  that  plots  a  function
together with all  its  roots in a given interval.  Finding all  the roots of a real-valued function on a
given interval  is  made straightforward by NSolve,  which can be given bounded regions within
which roots are to be found. A second approach uses the meshing algorithms in Plot  to extract
and plot those roots on the horizontal axis.

Let us use a sinc function to prototype our work, as it has numerous roots in the interval below.

In[118]:= Plot@Sinc@xD, 8x, -10, 10<D

Out[118]=
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The roots are easily computed using NSolve with the domain specification -10 < z < 10 restrict-
ing the solutions to that interval.

In[119]:= soln = NSolve@Sinc@zD ã 0 && -10 < z < 10, zD

Out[119]= 88z Ø -9.42478<, 8z Ø -6.28319<, 8z Ø -3.14159<,
8z Ø 3.14159<, 8z Ø 6.28319<, 8z Ø 9.42478<<

To  display  these  roots  as  points  overlaid  on  the  plot  of  the  original  function,  we  need  to  create
point objects for each root and then use them in the graphic. 

In[120]:= pts = Map@Point@8Ò, 0<D &, z ê. solnD

Out[120]= 8Point@8-9.42478, 0<D, Point@8-6.28319, 0<D,
Point@8-3.14159, 0<D, Point@83.14159, 0<D,
Point@86.28319, 0<D, Point@89.42478, 0<D<
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In[121]:= Plot@Sinc@zD, 8z, -10, 10<, Epilog Ø 8
Red, PointSize@MediumD, pts<D

Out[121]=
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Here  then  is  our  first  implementation,  combining  the  above  steps.  Note  that  we  have  created  a
local  variable  f,  which  is  a  pure  function  that  is  then  used  throughout  the  body  of  RootPlot.
One  other  change  uses  multi-points  to  give  a  slightly  more  efficient  graphics  structure  (see
Section 10.3).

In[122]:= RootPlot@fun_, 8var_, varmin_, varmax_<D :=

Module@8f = Function@z, funD<,
Plot@f@varD, 8var, varmin, varmax<, Epilog Ø 8

Red, PointSize@MediumD, PointüMap@8Ò, 0< &, var ê.
NSolve@f@varD ã 0 && varmin < var < varmax, varDD<DD

In[123]:= RootPlot@Sinc@zD, 8z, -10, 10<D

Out[123]=
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Let us try some more ambitious computations.

In[124]:= RootPlotBz SinBz + 2 Sin@zDF, 8z, -5, 10<F

Out[124]=
-4 -2 2 4 6 8 10
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-2

2

In[125]:= RootPlotASin@2 xD + SinA3 x1.5E + SinA5 x1.7E, 8x, 0, 22<E

Out[125]=
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For  functions  with  many  roots  on  the  given  interval,  the  large  points  might  obscure  other  fea-
tures of the graphic as seen in the plot above. Also, in the first example above, the default plotting
range missed several key features of the function. It would be ideal if we could modify these plots
as  needed.  Before  we add options to  RootPlot,  note  that  there  are  two built-in  functions  here
that can take options, Plot  and NSolve. And we could also add some directives and options to
the graphics primitives that are part of the Epilog.

The  key  to  passing  the  options  to  the  appropriate  function  inside  RootPlot  is  to  use
FilterRules . So first we set up RootPlot to inherit the options of both NSolve and Plot .

In[126]:= ClearAll@RootPlotD

In[127]:= Options@RootPlotD = Join@Options@NSolveD, Options@PlotDD;
RandomSample@Options@RootPlotD, 8D

Out[128]= 8MaxRecursion Ø Automatic, ContentSelectable Ø Automatic,
Filling Ø None, Evaluated Ø Automatic,
PlotRangePadding Ø Automatic, ImageSizeRaw Ø Automatic,
MeshShading Ø None, Ticks Ø Automatic<
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Next  we  set  up  the  argument  structure  to  accept  options  by  putting  OptionsPattern@D
immediately following the required arguments and giving the set of options a name, opts. Note
the need to put the optional argument placeholder opts before any options that are hard-coded,
in this case, Epilog. That way you can override any hard-coded option as Mathematica only pays
attention to the first of multiple instances of an option.

The syntax for extracting the options for a  particular  function,  say Plot ,  is  given below; but
remember  that  Plot  has  the  HoldAll  attribute  and  so  you  need  to  wrap  FilterRules  in
Evaluate to force the evaluation here.

This puts all the pieces together.

In[129]:= RootPlot@fun_, 8var_, varmin_, varmax_<,
opts : OptionsPattern@DD := Module@8f = Function@z, funD<,
Plot@f@varD, 8var, varmin, varmax<,
Evaluate@FilterRules@8opts<, Options@PlotDDD,
Epilog Ø 8

Red, PointSize@MediumD, PointüMap@8Ò, 0< &,
var ê. NSolve@f@varD ã 0 && varmin < var < varmax,

var, FilterRules@8opts<, Options@NSolveDDDD
<

D
D

In[130]:= RootPlotBz SinBz + 2 Sin@zDF, 8z, -4, 10<, PlotRange Ø AllF

Out[130]=
-4 -2 2 4 6 8 10
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In[131]:= RootPlotASin@2 xD + SinA3 x3ê2E + SinA5 x3ê2E, 8x, 0, 18<,

WorkingPrecision Ø 24, GridLines Ø AutomaticE

Out[131]=
5 10 15
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There is certainly much more we could do to improve this function, such as providing options
to  modify  the  style  of  the  points.  But  instead,  we  will  turn  to  a  different  approach  that  takes
advantage of much of the built-in machinery in the plotting functions. Our second implementa-
tion  will  make  use  of  Mesh  and  MeshFunctions  as  these  options  do  a  lot  of  computational
work that we can harness for our purposes here. As a side note, it will also help to avoid problems
with certain analytic functions:

In[132]:= TimeConstrained@
RootPlot@RiemannSiegelZ@zD, 8z, 1000, 1100<D,
15D

Out[132]= $Aborted

The key observation is: setting Mesh  to 880.0<< creates only mesh points at height 0.0, that is,
on the horizontal axis. MeshFunctions should have a value that places the mesh points on the
curve.

In[133]:= Plot@Sinc@zD, 8z, -10, 10<, Mesh Ø 880.0<<,
MeshFunctions Ø 8Sinc@xD ê. x Ø Ò &<,
MeshStyle Ø 8Red, PointSize@MediumD<D

Out[133]=
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Here then is our second implementation of RootPlot. First we set the RootPlot options to
inherit all those from Plot . 

In[134]:= ClearAll@RootPlotD

In[135]:= Options@RootPlotD = Options@PlotD;

Using  OptionsPattern  after  the  required  arguments  says  that  the  argument  structure  of
RootPlot  may include options following the required arguments. The set of options is given a
name,  opts,  and  used  inside  of  Plot  where  we  want  any  optional  arguments  to  be.  As  noted
previously,  it  is  important  to  put  opts  before  any  explicitly  given  options  as  Mathematica  will
only honor the first occurrence of an option if it occurs more than once. 

In[136]:= RootPlot@fun_, 8var_, varmin_, varmax_<,
opts : OptionsPattern@DD := Module@8f = fun<,
Plot@f, 8var, varmin, varmax<,
opts,
Mesh Ø 880<<, MeshFunctions Ø 8f ê. var Ø Ò &<,
MeshStyle Ø 8Red, PointSize@MediumD<DD

Let us now exercise some of the options. Note in this example that the adaptive routines built
into the  Plot  function are  quite  efficient,  especially  compared with the  difficulty  that  NSolve
had with this particular function.

In[137]:= RootPlot@RiemannSiegelZ@zD, 8z, 1000, 1100<,
PlotStyle Ø Gray,
MeshStyle Ø 8Pink, PointSize@.015D<D êê Timing

Out[137]= :0.72826,
1020 1040 1060 1080 1100
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>
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In[138]:= RootPlotBz SinBz + 2 Sin@zDF, 8z, -4, 20<,

PlotRange Ø All,
MeshStyle Ø Directive@Opacity@0.5D, PointSize@MediumDD,

GridLines Ø AutomaticF

Out[138]=

Exercise 9 asks you to use Mesh  in a manner similar to how we used it here in RootPlot but
to find and display curves of intersection for two surfaces in 3-space.

Trend plots
Trend  plots  provide  a  visual  representation  of  trends  in  data.  They  are  used  throughout  the
financial world to give a quick visual indication of the magnitude of growth or loss over a speci-
fied time period. For example, a simple ten-day moving average shows a smoothed trend line. 

In[139]:= TradingChart@8"AAPL", DatePlus@-180D<,
8FinancialIndicator@"SimpleMovingAverage", 10D<D

Out[139]=
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Or you could use a linear regression model for the trend lines where the standard error of the fit
is allowed to vary �5%. In this example the trend line ranges over the past ten time periods (days).
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In[140]:= TradingChart@8"AAPL", DatePlus@-180D<,
8FinancialIndicator@"LinearRegressionTrendlines", 10D<D

Out[140]=
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In  this  section  we  will  develop  a  different  visualization  that  overlays  trend  lines  on  a  plot  of
time-series  data  (Figure  10.9).  Our  trend  lines  will  show  user-specified  growth  rates
8r1, r2, …, rn<  measured  from  some  starting  value  and  projecting  out  for  the  time  period
covered by the data.

Figure 10.9.  Trend plot of financial data over 180-day time period.
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In  addition  to  giving  the  time-series  data  and  the  rates  to  be  displayed,  the  user  should  have  a
mechanism to supply options to adjust the plot range and modify style and formatting informa-
tion. We will use DateListPlot  as our base function and modify it accordingly for our needs
in this visualization.

Let us start with some data we can use to start prototyping. 

In[141]:= data = FinancialData@"SP500",
8"August 30 2011", "December 30 2011"<D;
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In[142]:= Length@dataD

Out[142]= 86

In[143]:= DateListPlot@dataD

Out[143]=
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To construct the trend lines, we will essentially make lines of a given slope/growth rate starting at
the first point in the dataset.

In[144]:= pt1 = First@dataD

Out[144]= 882011, 8, 30<, 1212.92<

The following rule constructs a line starting at this point with a growth rate of 5%.  Note that we
are  attaching  this  new  value  to  the  date  given  by  the  last  point  in  our  dataset.  This  way  we  are
keeping our data in a form that can continue to be used by DateListPlot  which expects data
of the form 9date, value=.

In[145]:= pt2 = Last@dataD ê.
8date_List, val_?NumberQ< ß 8date, 1.05 pt1@@2DD<

Out[145]= 882011, 12, 30<, 1273.57<

Given a set of time-series data and a growth rate r, here is a utility function to create a line starting
at the first point in the data and growing at a rate r.

In[146]:= tline@data_, r_D := 8Dashed, Gray,

Line@8First@dataD, Last@dataD ê. 8date_List, val_?NumberQ< ß

8date, H1 + r L data@@1, 2DD<<D<

The trend lines at growth rates of ±5%, ±10% are given as part of Epilog  to DateListPlot. In
this  example,  we  had  to  tinker  manually  with  the  plot  range  values  in  order  for  the  trend  lines
and data all to be included in the plot properly. We will try to automate some of that later.
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In[147]:= DateListPlot@data, Joined Ø True,
Epilog ß 8

tline@data, 0.05D, tline@data, 0.10D,
tline@data, -0.05D, tline@data, -0.10D

<, PlotRange Ø 81080, 1340<D

Out[147]=
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We can simplify the tline part of this code by noting that each call to tline uses data and
a different rate. This is a good candidate for Map.

In[148]:= DateListPlot@data, Joined Ø True,
Epilog ß Map@tline@data, ÒD &, 8-0.05, -0.10, 0.05, 0.10<D,
PlotRange Ø 81080, 1340<D

Out[148]=
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We now have all the pieces to start putting together our function, TrendPlot.  It will inherit
the  options  from DateListPlot  and take  two required arguments:  the  time-series  data  and a
list  of  growth  rates.  We  have  added  the  FrameTicks  option  here  with  some  values  that  will
suppress ticks on the top and right of the frame. Our plan is to add a custom tick specification to
the right-hand side of the frame giving the rates of the trend lines.

In[149]:= Options@TrendPlotD = Options@DateListPlotD;
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In[150]:= TrendPlot@data_, rates_List, opts : OptionsPattern@DD :=

Module@8tline<,
tline@r_D := 8Dashed, Gray,

Line@8First@dataD, Last@dataD ê.
8d_List, val_?NumberQ< ß 8d, H1 + r L data@@1, 2DD<<D<;

DateListPlot@data, Joined Ø True,
FrameTicks Ø 88Automatic, None<, 8Automatic, None<<,
Epilog ß Map@tline, ratesD, optsDD

In[151]:= TrendPlot@data, 80.05, 0.10, -0.05, -0.10<,
PlotRange Ø 81080, 1340<D

Out[151]=
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The tick specification that we will use for the right-hand side of the plot will display the rates next
to  their  corresponding  trend  line.  The  custom  tick  specification  is  of  the  form  9value, label=,

where value gives the location on the vertical axis and label is a string that will display the rate. The
MapThread code below is a bit cryptic, but essentially what it is doing is taking a rate (a number
between -1 and 1) and multiplying by that initial value to get the location. The second argument
is slotted into a string using StringForm .

In[152]:= rates = 80.05, 0.10, -0.05, -0.10<;

In[153]:= init = data@@1, 2DD

Out[153]= 1212.92

In[154]:= MapThread@8H1 + Ò1L init, StringForm@" `1`%", Ò2D< &,
8rates, 100 rates<D

Out[154]= 881273.57, 5.`%<, 81334.21, 10.`%<,
81152.27, -5.%<, 81091.63, -10.%<<

Putting these pieces together, we have this updated version of TrendPlot.

In[155]:= ClearAll@TrendPlotD;

In[156]:= Options@TrendPlotD = Options@DateListPlotD;
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In[157]:= TrendPlot@data_, rates_List, opts : OptionsPattern@DD :=

Module@8tLine, rtTicks, init = data@@1, 2DD<,

tLine@r_D := 8Dashed, Gray,

Line@8First@dataD, Last@dataD ê.
8d_List, val_?NumberQ< ß 8d, H1 + r L init<<D<;

rtTicks = MapThread@8H1 + ÒL init, StringForm@" `1`%", Ò2D< &,
8rates, 100 rates<D;

DateListPlot@data, Joined Ø True,
Epilog ß Map@tLine, ratesD, opts,
FrameTicks Ø 88Automatic, rtTicks<, 8Automatic, None<<D

D

In[158]:= TrendPlot@data, rates, PlotRange Ø 81080, 1340<D

Out[158]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

5.%

10.%

-5.%

-10.%

Finally,  let  us  add  several  more  features:  the  option  TrendlineStyle  gives  the  user  the
chance  to  modify  the  style  of  the  trend  lines  themselves,  somewhat  similar  to  PlotStyle  for
many visualization functions. Also we add usage messages for the function TrendPlot  as well
as its new option TrendlineStyle. 

In[159]:= ClearAll@TrendPlotD
TrendPlot::usage =

"TrendPlot@data,8r1,r2,…<D plots data with
trend lines showing growth rates over time.";

In[161]:= TrendlineStyle::usage =
"TrendlineStyle is an option for TrendPlot that

specifies the style of the trend lines.";

In[162]:= Options@TrendPlotD =
Join@8TrendlineStyle Ø Automatic<, Options@DateListPlotDD;
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In[163]:= TrendPlot@data_, rates_List,

opts : OptionsPattern@DD := Module@
8min, max, tlStyle, tLine, rtTicks, init = data@@1, 2DD<,

8min, max< = 8Min@data@@All, 2DDD, Max@data@@All, 2DDD<;

tlStyle = If@OptionValue@TrendlineStyleD === Automatic,
8Dashed, Gray<, OptionValue@TrendlineStyleDD;

tLine@r_D := Flattenü8tlStyle,
Line@8First@dataD, Last@dataD ê.

8d_List, val_?NumberQ< ß 8d, H1 + r L init<<D<;

rtTicks = MapThread@8H1 + ÒL init, StringForm@" `1`%", Ò2D< &,
8rates, 100 rates<D;

DateListPlot@data, Joined Ø True,
Epilog ß Map@tLine, ratesD,
FilterRules@8opts<, Options@DateListPlotDD,
PlotRange Ø 80.97 min, 1.04 max<,
FrameTicks Ø 88Automatic, rtTicks<, 8Automatic, None<<DD

Let  us  try  out  the  code  together  with  various  options,  some  of  which  are  options  to
DateListPlot and one option specific to TrendPlot.

In[164]:= TrendPlot@data, rates,
PlotStyle Ø 8Thick, Blue<,
TrendlineStyle Ø 8Thick, Dashed, LighterüGray<D

Out[164]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

5.%

10.%

-5.%

-10.%

The  above  code  contains  a  very  primitive  attempt  at  choosing  a  sensible  plot  range.  The
exercises ask you to make this a bit more rigorous by incorporating the maximum and minimum
values of the data together with the user-specified rates to find a better plot range.
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Brownian music
Imagine playing an audio sample at different speeds. Normally you would expect the character of
the resulting sound to be quite different than the original. Speeding up a recording of your voice
makes it sound cartoon-like, and if sped up enough, unintelligible. Slowing down a recording of
the first few bars of Gershwin’s Rhapsody in Blue would make the clarinet solo sound like a rumble. 

There are some sounds though that sound roughly the same when played at different speeds.
Benoît  Mandelbrot described these sounds as “scaling noises” (Mandelbrot 1982).  White noise is
probably the most common example of a scaling noise. If you tuned a radio in between stations,
recorded the noise, and then played the recording at different speeds, you would hear roughly the
same sound, although you would have to adjust the volume to get this effect.

Mandelbrot  additionally  characterized  white  noise  as  having  zero  autocorrelation.  This  means
that  the  fluctuations  in  such  a  sound  at  any  moment  are  completely  unrelated  to  any  previous
fluctuations.  In  this  section  we  will  implement  an  algorithm  for  composing  tunes  with  zero
autocorrelation. We will then see how to generate tunes that have varying degrees of correlation
among the notes.

A simple “melody” with no correlation can be generated by randomly selecting notes from a
scale.  First  we  generate  the  frequencies  of  the  12  semitones  from  a  C  major  scale.  This  is  just  a
chromatic scale beginning with middle C.

In[165]:= cmajor = Table@SoundNote@iD, 8i, 0, 11<D

Out[165]= 8SoundNote@0D, SoundNote@1D, SoundNote@2D, SoundNote@3D,
SoundNote@4D, SoundNote@5D, SoundNote@6D, SoundNote@7D,
SoundNote@8D, SoundNote@9D, SoundNote@10D, SoundNote@11D<

This plays the entire scale.

In[166]:= Sound@cmajorD

Out[166]=

12 s

Here is a list of twenty notes randomly selected from the C major scale.

In[167]:= Sound@RandomChoice@cmajor, 20DD

Out[167]=

20 s
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Going  a  little  further,  we  can  add  some  rests  and  randomize  the  durations  of  each  note.  The
symbol None is interpreted by Sound as a rest.

In[168]:= notes = Join@8None<, Range@0, 11DD

Out[168]= 8None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<

In[169]:= durations = Range@1 ê 8, 1, 1 ê 8D

Out[169]= :
1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1>

In[170]:= MapThread@SoundNote@Ò1, Ò2D &,
8RandomChoice@notes, 8D, RandomChoice@durations, 8D<D

Out[170]= :SoundNoteBNone,
7

8
F, SoundNoteB11,

1

4
F,

SoundNoteB11,
3

4
F, SoundNoteB2,

1

4
F, SoundNoteB11,

5

8
F,

SoundNoteB3,
1

8
F, SoundNoteB1,

1

4
F, SoundNote@10, 1D>

In[171]:= Sound@%D

Out[171]=

4.13 s

Let us turn this into a reusable function that takes the number of notes and the instrument as
arguments.

In[172]:= RandomCompose@n_Integer, instrument_: "Piano"D :=

With@8notes = Join@8None<, Range@0, 11DD,
durations = Range@1 ê 8, 1, 1 ê 8D<,

Sound@8instrument,
MapThread@SoundNote@Ò1, Ò2D &,
8RandomChoice@notes, nD, RandomChoice@durations, nD<D<DD
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In[173]:= RandomCompose@20, "Vibraphone"D

Out[173]=

11.25 s

A listener would be hard pressed to find a pattern or any autocorrelation in this “tune” and the
music  is  quite  uninteresting  as  a  result.  Melodies  generated  using  this  scaling  are  referred  to  as
1 ê f 0, where the 0 loosely refers to the level of correlation.

We leave as an exercise the writing of more sophisticated 1 ê f 0  melodies, where the likelihood
of a note being chosen obeys a certain probability distribution.

We  now  move  in  the  other  direction  and  generate  melodies  that  are  overly  correlated.  The
randomness  will  be  applied  to  the  distance  between  notes,  essentially  performing  a  “random
walk”  through  the  C  major  scale.  Music  generated  in  such  a  way  is  called  Brownian  because  it
behaves much like the movement of particles suspended in liquid – Brownian motion. 

Here  is  our  random  walk  function,  essentially  borrowed  from  Section  13.1.  We  will  limit  the
“distance” any step can take to the range -4 to 4.

In[174]:= Accumulate@RandomChoice@Range@-4, 4D, 12DD

Out[174]= 80, 3, 1, -1, -1, -3, -2, 1, 4, 2, 5, 1<

This puts all the pieces together, plus one additional piece to create random durations.

In[175]:= BrownianCompose@steps_Integer, instr_: "Vibraphone"D :=

Module@8walk, durs<,
walk@n_D := Accumulate@RandomChoice@Range@-4, 4D, nDD;
durs = RandomChoice@Range@1 ê 16, 1, 1 ê 16D, 8steps<D;
Soundü
MapThread@SoundNote@Ò1, Ò2, instrD &, 8walk@stepsD, durs<DD

In[176]:= BrownianCompose@18, "Marimba"D

Out[176]=

10 s
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This melody has a different character from the 1 ê f 0  melody produced above.  In fact,  it  is  quite
overcorrelated and it is often referred to as 1 ê f 2  music as a result of a computed spectral density.
Although  different  in  character  from  1 ê f 0  music,  it  is  just  as  monotonous.  The  melody  mean-
ders up and down the scale aimlessly without any central theme. The exercises contain a discus-
sion  of  1 ê f  music  (or  noise),  that  is,  music  that  is  moderately  correlated.  1 ê f  noise  is  quite
widespread  in  nature  and  is  intimately  tied  to  areas  of  science  that  study  fractal  behavior;  see
Casti (1992) or Mandelbrot (1982).

Exercises
1. Create a function ComplexListPlot that plots a list of complex numbers in the complex plane 

using ListPlot. Set initial options so that the PlotStyle  is red, the PointSize  is a little larger 
than the default, and the horizontal and vertical axes are labeled “Re” and “Im,” respectively. Set it 
up so that options to ComplexListPlot are inherited from ListPlot. 

2. Create a function ComplexRootPlot that plots the complex solutions to a polynomial in the 
plane. Use your implementation of ComplexListPlot that you developed in the previous 
exercise. 

3. Modify PathPlot so that it inherits options from Graphics as well as having its own option, 
PathClosed, that can take on values of True  or False and closes the path accordingly by 
appending the first point to the end of the list of coordinate points.

4. Extend the code for ListLinePlot3D so that the rule for multiple datasets incorporates the 
options that were used for the single dataset rule in the text.

5. Although the program SimpleClosedPath works well, there are conditions under which it will 
occasionally fail. Experiment by repeatedly computing SimpleClosedPath for a set of ten points 
until you see the failure. Determine the conditions that must be imposed on the selection of the base 
point for the program to work consistently.

6. Modify SimpleClosedPath so that the point with the smallest x-coordinate of the list of data is 
chosen as the base point; repeat but with the largest y-coordinate.

7. Another way of finding a simple closed path is to start with any closed path and progressively make 
it simpler by finding intersections and changing the path to avoid them. Prove that this process 
ends, and that it ends with a closed path. Write a program to implement this procedure and then 
compare the paths given by your function with those of SimpleClosedPath given in the text.

8. Following on the framework of the RootPlot example in this section, create a function 
ShowWalk@walkD that takes the coordinates of a random walk and plots them in one, two, or three 
dimensions, depending upon the structure of the argument walk. For example:

In[1]:= << PwM`RandomWalks`
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In[2]:= ShowWalk@RandomWalk@500, Dimension Ø 1D,
Frame Ø True, GridLines Ø AutomaticD

Out[2]=

0 100 200 300 400 500

-25

-20

-15

-10

-5

0

5

In[3]:= ShowWalk@RandomWalk@500, Dimension Ø 2D,
Mesh Ø All, MeshStyle Ø Directive@Brown, PointSize@SmallDDD

Out[3]=

-5 5 10

-12

-10

-8

-6

-4

-2

2

In[4]:= ShowWalk@RandomWalk@2500, Dimension Ø 3D,
Background Ø LightGray, BoxRatios Ø 81, 1, 1<D

Out[4]=

9. Use Mesh  in a manner similar to its use in the RootPlot function to highlight the intersection of 
two surfaces, say sinH2 x - cosH yLL and sinHx - cosH2 yLL. You may need to increase the value of 

MaxRecursion to get the sampling just right.

10. Rewrite TrendPlot to compute a more robust plot range, one based on the minimum and 
maximum values of the data together with the minimum and maximum user-specified rates.
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11. Modify the graphics code at the end of the PointInPolygonQ example so that GatherBy always 
orders the two lists so that the list of points that pass occurs before the list of points that fail the test.

12. Write a function pentatonic that generates 1ë f 2 music choosing notes from a five-tone scale. A 

pentatonic scale can be played on a piano by beginning with C¤, and then playing only the black 
keys: C¤, EŸ, F¤, AŸ, C¤. The pentatonic scale is common to Chinese, Celtic, and Native American 
music.

13. Modify the routine for generating 1ë f 0 music so that frequencies are chosen according to a speci-

fied probability distribution. For example, you might use the following distribution that indicates a 
note and its probability of being chosen: C – 5%, C¤ – 5%, D – 5%, EŸ – 10%, E – 10%, F – 10%, F¤ – 
10%, G – 10%, AŸ – 10%, A – 10%, BŸ – 5%, B – 5%, C – 5%.

14. Modify the routine for generating 1ë f 0 music so that the durations of the notes obey 1ë f 0 scaling.

15. If you read musical notation, take a musical composition such as one of Bach’s Brandenburg Concertos 
and write down a list of the frequency intervals x between successive notes. Then find a function 
that interpolates the power spectrum of these frequency intervals and determine if this function is 
of the form f HxL = c êx for some constant c. (Hint: To get the power spectrum, you will need to square 

the magnitude of the Fourier transform: take Abs@Fourier@…DD2 of your data.) Compute the 
power spectra of different types of music using this procedure.
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Dynamic expressions
Manipulating expressions · Control objects · Setter bars · Popup menus · Sliders · Locators · 
Input fields · Control · Viewers · Animating the hypocycloid · Visualizing logical operators · 

Structure of dynamic expressions · Dynamic · DynamicModule · Dynamic tips · Examples and 
applications · Creating interfaces for visualizing data · File openers · Dynamic random walks · 

Apollonius’ circle

Up to this point, all the programming we have discussed has involved the creation of expressions
that produce static output. Changing the value of a symbol does not change the value of a previ-
ously computed expression. But you can set things up so that Mathematica automatically updates
symbols and expressions throughout your notebooks. This is done through a symbolic dynamic
language.  At  its  heart  is  the  Dynamic  construct  that  is  used  to  update  an  arbitrary  expression
essentially  in  real  time.  This  primitive dynamic building block,  together  with numerous control
objects,  provides  a  dynamic  language  that  you  can  use  to  construct  arbitrary  dynamic  expres-
sions. And, like the graphics language, high-level functions are available that provide a clean and
simple interface to many of these dynamic features.

We  start  by  giving  a  brief  overview  of  several  top-level  functions  such  as  Manipulate  and
Animate  that  are  designed  to  make  it  easy  for  you  to  create  and  control  dynamic  processes.
Very little programming is needed to get started with these objects. But to go further, we will look
at the underlying primitive objects, Dynamic  and DynamicModule, to get a better understand-
ing of this dynamic language and how you can use it to create your own interactive and dynamic
interfaces.

11.1 Manipulating expressions
The Table  function evaluates its argument over the range of values specified by its iterator list; it
returns a static list of values. 



In[1]:= TableAi2, 8i, 1, 100, 2<E

Out[1]= 81, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625,
729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025,
2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969,
4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561,
6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801<

Manipulate , using the same syntax as Table, displays its output dynamically.

In[2]:= ManipulateAi2, 8i, 1, 100, 2<E

Out[2]=
i

1

Manipulate  automatically creates a user interface to display the output together with controls
such as sliders to dynamically change the value of the parameter i.  As you move the slider with
your mouse, the value of i changes as does the value of the output expression i2.
Animate  creates a similar interface as Manipulate  but provides less control over the details

of the interaction. For example, this animates the function sinc Hb xL as b varies from 1 to 5.

In[3]:= Animate@
Plot@Sinc@b xD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
8b, 1, 5<D

Out[3]=

b

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

In fact, Animate  just creates a Manipulate  object that displays a running animation when you
evaluate  the  Animate  expression.  Both  functions  provide  similar  display,  layout,  and  manage-
ment  of  the  output  but  Manipulate  gives  a  bit  more  flexibility  and  control  of  several  details.
For our purposes here, we will mostly use Manipulate  for the remainder of this chapter.

To begin expanding the kinds of things you can do with Manipulate , let us first manipulate
multiple  parameters.  This  is  done by adding a  new parameter  list.  In the following example,  we
have added a new parameter c that essentially gives a phase shift. 
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In[4]:= Manipulate@
Plot@Sinc@b x + cD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
8b, 1, 5<,
8c, -2 p, 2 p<D

Out[4]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

By  default,  the  initial  value  of  the  parameter  is  given  by  the  first  value  following  the  parameter
itself  in the parameter list.  So, for the parameter list 8b, 1, 5<,  the value 1  is  the starting value
for b; and for the second parameter list, -2 p is the starting value for c. 

You can give different starting values by modifying the parameter list. For example, the follow-
ing specifies that b should start at 3 while taking values between 1 and 5. Similarly, c is set to start
at 0 below.

In[5]:= Manipulate@
Plot@Sinc@b x + cD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
88b, 3<, 1, 5<,
88c, 0<, -2 p, 2 p<D

Out[5]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

One more useful  variation is  to label  the control  for each parameter using a different expres-
sion than the symbol itself. The syntax for this is: 99param, init, label=, min, max=, where label

typically is a descriptive string, but can be any expression. For example,  we have pasted an arbi-
trary graphic for the label for c below.
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In[6]:= ManipulateB

Plot@Sinc@b x + cD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
88b, 3, "Frequency"<, 1, 5<,

::c, 0, >, -2 p, 2 p>F

Out[6]=

Frequency

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

The basic idea behind the creation of these dynamic interfaces is to take some static output or
visualization and to make it dynamic by adding a parameter that you can change using an inter-
face element such as a slider.  The next three sections introduce different control objects such as
pulldown menus, locators, and viewers. Following that we combine several of the programming
principles  developed  elsewhere  in  this  book  to  create  two  dynamic  interfaces:  a  dynamic  Venn
diagram to visualize expressions in propositional logic and also a reworking of the hypocycloid
code developed in Section 10.1 to animate the sketching out of the curve.

Control objects
The  objects  created  above  with  Animate  and  Manipulate  all  used  sliders  to  control  the
parameters  that  were  being  manipulated.  The  slider  is  a  convenient  and  easy-to-use  control
object that should be familiar to most computer users. But other controls are commonly used for
various purposes: checkboxes to toggle values on and off, pulldown menus to select from a list of
values,  two-dimensional  sliders  to  manipulate  two  parameters  at  once,  input  fields  to  enter
expressions from the keyboard, and much more. In this section we will introduce some of these
control objects. A complete listing and links to documentation can be found in the guide page on
Control Objects (WMDC).

Setter  bars  and  popup menus In  the  previous  examples  the  parameters  were  controlled by a  slider.
Moving the slider  changed the value of  the  parameter  and any expression dependent  upon that
parameter inside the Manipulate . But sometimes you want to choose values for your parame-
ter from a list of discrete values. A setter bar is a convenient control object for this. There are two
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ways  of  specifying  the  setter  bar  as  the  controller.  One  way  is  to  use  a  different  syntax  for  the
parameter  list.  Specifically,  something  of  the  form  9param, 9val1, val2, …, valn==  will  cause

Manipulate  to automatically use a setter bar instead of a slider.

In[7]:= Manipulate@
Plot@f@xD, 8x, 0, 2 p<D,
8f, 8Sin, Cos, Tan<<D

Out[7]=

f Sin Cos Tan

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Alternatively,  you can explicitly  set  the  ControlType  inside  the  parameter  list.  Here  we over-
ride  the  default  specified  by  the  syntax  of  the  parameter  list  and  explicitly  specify  that  a
PopupMenu should be used instead.

In[8]:= Manipulate@
Plot@f@xD, 8x, 0, 2 p<D,
8f, 8Sin, Cos, Tan<, ControlType Ø PopupMenu<D

Out[8]=

f Sin

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Two-dimensional  sliders When  two  different  parameters  need  to  be  controlled  simultaneously,  a
two-dimensional  slider,  Slider2D,  can  be  used.  The  syntax  for  this  control  object  is
8param, 8x1, y1<, 8x2, y2<<. where 8x1, y1< are the smallest x and y values that the parame-
ter can take on and 8x2, y2< are the maximum values.

In  the  following  example,  the  parameter  center  is  controlled  by  a  two-dimensional  slider
because the parameter list is of the form that generates a Slider2D  control object. The value of
the center parameter is a list of two numbers that are passed dynamically to the first argument,
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the  center,  of  the  larger,  red  disk.  As  you  move  the  slider,  the  vertical  and  horizontal  values
change as does the location of the red disk in the output.

In[9]:= Manipulate@
Graphics@8Opacity@.5D,

8Red, Disk@center, 1.5D<,
8Blue, Disk@81.5, 0<, 1D<

<, PlotRange Ø 88-3, 3<, 8-3, 2<<D,
8center, 8-1, -1<, 82, 2<<D

Out[9]=

center

The following graphic contains four fixed control points, one dynamic point controlled by the
slider, and a Bézier curve determined by these points. Moving the slider horizontally or vertically
changes  the  x-  or  y-coordinate  of  the  dynamic  point  pt.  This  parameter  has  a  default  starting
value of 8-3, -1<, while it can range over the values 8-3, -3< to 82, 2<.

In[10]:= Manipulate@
Graphics@8

BezierCurve@Join@8pt<, controlPtsDD,
Dashed, Line@Join@8pt<, controlPtsDD,
Red, Point@controlPtsD, PointSize@LargeD,
Blue, Point@ptD<,

PlotRange Ø 3.1, ImageSize Ø SmallD,
88pt, 8-3, -1<<, 8-3, -3<, 82, 2<<,
Initialization ß
8controlPts = 88-2, 1<, 80, -1<, 81, 1<, 82, 0<<<D
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Out[10]=

pt

We  have  used  an  Initialization  option  to  Manipulate  in  which  the  controlPts  are
defined. This option provides a way for you to include any needed definitions with the interface
itself. This is particularly useful if you send your notebook to a colleague or student and you want
the  interface  to  be  self-contained;  in  other  words,  the  user  can  work  with  it  without  having  to
search  for  and  evaluate  any  dependent  definitions,  such  as  controlPts,  prior  to  using  the
interface.

Locators In  the  examples  above  involving  2D  sliders,  it  would  be  much  more  convenient  to  be
able to grab and manipulate objects in the graphic scene directly rather than using an intermedi-
ary like the Slider2D  control object. This is what locators are for – they give you direct control
over some object in the dynamic output. 

For example, here is a static graphic: three points wrapped in Polygon , that is, a triangle.

In[11]:= Graphics@8EdgeForm@BlackD,
LightGray, Polygon@880, 0<, 82, 0<, 81, 1<<D<D

Out[11]=

You could make one of the points dynamic with the Slider2D  control but instead we will use
the  Locator  control  object  to  manipulate  the  point  directly.  In  fact,  one  of  the  advantages  of
locators is  that you can have as many of them as you wish.  So let  us turn all  the vertices of  this
polygon into locators.
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In[12]:= Manipulate@
Graphics@8EdgeForm@BlackD, LightGray, Polygon@ptsD<D,
88pts, 880, 0<, 82, 0<, 81, 1<<<, Locator<D

Out[12]=

After moving some of the vertices around with your mouse, here is how the graphic might look.

New  locators  can  be  added  by  clicking  your  mouse;  this  requires  setting  the  option
LocatorAutoCreate .  Wherever  you click,  a  new locator  will  be  created in  that  position and
added to the list of existing locators.

In[13]:= Manipulate@
Graphics@8EdgeForm@BlackD, LightGray, Polygon@ptsD<D,
88pts, 880, 0<, 82, 0<, 81, 1<<<,
Locator, LocatorAutoCreate Ø True<D

Out[13]=

Returning  to  the  example  of  the  Bézier  curve  from  the  previous  section,  here  we  turn  all  the
control points into locators.
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In[14]:= Manipulate@
Graphics@8

8Thick, BezierCurve@controlPtsD<,
8Dashed, Line@controlPtsD, Point@controlPtsD<

<D,
88controlPts, 88-2, 1<, 80, -1<, 81, 1<, 82, 0<<<, Locator<D

Out[14]=

InputField In all the examples up to this point, the parameter was controlled with a mouse action:
pulldown  menus,  sliders,  locators,  and  so  on.  If  instead,  you  need  to  interact  with  the  dynamic
object through the keyboard, then you need to use the InputField  control object. 

The  following  example  uses  three  parameters:  f,  xmin,  and  xmax.  All  are  InputField
controls. To change the value of any one, type in the input field and press Enter to evaluate with
the new values.

In[15]:= Manipulate@Plot@f@xD, 8x, xmin, xmax<D,
8f, Sin<, 8xmin, 0<, 8xmax, 2 p<, ControlType Ø InputFieldD

Out[15]=

f Sin

xmin 0

xmax 2 p

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Let  us  try  something a  bit  more  ambitious  –  a  dynamic  table  of  weather  information,  one  in
which a user types in a city name to get the information for that city. Start by creating a static grid
with  the  meteorological  information.  We  have  added  several  options  to  Grid  to  format  the
output.
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In[16]:= conditions =
8"Elevation", "Humidity", "Pressure", "StationName",
"Temperature", "WindChill", "WindDirection", "WindSpeed"<;

In[17]:= Grid@
Map@8Ò, WeatherData@"Chicago", ÒD

WeatherData@"Chicago", Ò, "Units"D< &, conditionsD ê.
_Missing ß "", Frame Ø All, Alignment Ø Left,

Background Ø LightYellowD

Out[17]=

Elevation 190. Meters

Humidity 0.7

Pressure 1019.64 Millibars

StationName KMDW

Temperature 2. DegreesCelsius

WindChill 14.37 DegreesCelsius

WindDirection Degrees

WindSpeed 0.

Finally, instead of the static value "Chicago" we use a parameter City, giving it an initial value
Copenhagen; also set ControlType Ø InputField.

In[18]:= Manipulate@
Grid@Map@8Ò1, WeatherData@ToString@CityD, ÒD WeatherData@

ToString@CityD, Ò, "Units"D< &, conditionsD ê.
_Missing ß "", Frame Ø All, Alignment Ø Left,

Background Ø LightYellowD, 8City, Copenhagen<,
ControlType Ø InputFieldD

Out[18]=

City Copenhagen

Elevation 5. Meters

Humidity 0.871

Pressure 1008 Millibars

StationName EKCH

Temperature 1. DegreesCelsius

WindChill -3.62 DegreesCelsius

WindDirection 80 Degrees

WindSpeed 17.7 KilometersPerHour

In  this  particular  example,  it  was  not  necessary  to  explicitly  specify  the  ControlType  as  the
syntax of the parameter list would cause Manipulate  to automatically use an input field as the
controller.
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Control wrapper
The control objects that we have looked at so far were all specified by the parameter syntax or by
explicitly using ControlType . You can get greater control (pardon the pun) over these objects
by using the Control  wrapper. Hence, the following two expressions are equivalent.

In[19]:= Manipulate@
Plot@Sin@b Ht - cLD, 8t, -2 p, 2 p<D,
88b, 2<, 1, 8<,
88c, 4<, 1, 8<

D

Out[19]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

In[20]:= Manipulate@
Plot@Sin@b Ht - cLD, 8t, -2 p, 2 p<D,
Control@88b, 2<, 1, 8<D,
Control@88c, 4<, 1, 8<D

D

Out[20]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

The advantage of using the Control  wrapper is  that it  can give you greater flexibility in the
placement  and  formatting  of  your  dynamic  interfaces.  For  example,  the  following  puts  the
controls inside a Grid  so that we can arrange them precisely how we want. The labels "freq"
and "phase" make up one row of the grid, while the controls for the parameters b and c make
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up  the  next  row  of  the  grid.  Within  each  Control ,  we  have  used  ControlType  to  specify  a
VerticalSlider  rather  than  the  default  horizontal  slider.  Lastly,  ControlPlacement  is
used to put the controls on the left-hand side of the pane.

In[21]:= Manipulate@Plot@Sin@b Ht - cLD, 8t, -2 p, 2 p<, PlotRange Ø 1D,
Grid@88"freq", "phase"<,

8Control@88b, 2, Null<, 1, 8, VerticalSlider<D,
Control@88c, 4, Null<, 1, 8, VerticalSlider<D<

<D, ControlPlacement Ø LeftD

Out[21]=

freq phase

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Viewers
In  addition  to  Animate  and  Manipulate  many  other  functions  are  available  for  dynamic
interaction  using  your  mouse  or  other  pointing  devices  to  control  the  changing  parameters.  In
this section we will look at various viewers that give you the ability to display different output by
clicking a button (or tab).

For  example,  the  following  TabView  contains  a  list  of  three  expressions.  Clicking  the  tabs
causes the corresponding expression to be evaluated and displayed in the TabView  pane.

In[22]:= TabViewA9231 - 1, PrimeQA231 - 1E, BaseFormA231 - 1, 2E=E

Out[22]=
2147483647

1 2 3

Because  TabView  does  not  have  any  Hold  attributes,  its  arguments  are  evaluated  first,  before
being passed up to TabView  itself. You can see this by repeatedly clicking any of the tabs below.
The random numbers are generated when the TabView  itself is first evaluated.

In[23]:= TabView@8RandomInteger@D, RandomReal@D, RandomComplex@D<D

Out[23]=
0.844099 + 0.756196 Â

1 2 3
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In[24]:= Attributes@TabViewD

Out[24]= 8Protected, ReadProtected<

A  variation  of  the  syntax  for  TabView  gives  labels  to  the  tabs  that  you  can  customize  with  a
string or any arbitrary expression. The syntax is:

 9label1 Ø expr1, label2 Ø expr2, …, labeln Ø exprn=.

In[25]:= TabView@8"sinHxL" Ø Plot@Sin@xD, 8x, 0, 2 p<D,
"sinH2xL" Ø Plot@Sin@2 xD, 8x, 0, 2 p<D<D

Out[25]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL sinH2xL

This is another good candidate for Map.

In[26]:= TabView@Map@TraditionalForm@ÒD Ø Plot@Ò, 8x, 0, 2 p<D &,
8Sin@xD, Sin@2 xD, Sin@3 xD<DD

Out[26]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL sinH2 xL sinH3 xL

In  addition  to  TabView ,  there  are  several  other  viewers  with  similar  characteristics.  Their
behavior  is  suggested  by  their  name:  FlipView,  MenuView,  OpenerView ,  PopupView,  and
SlideView. For example, OpenerView  provides a convenient interface for hiding and opening

expressions. The syntax is OpenerViewA9label, expr=E. 
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In[27]:= OpenerView@
8"Info on OpenerView", "OpenerView@8expr1,expr2<D represents

an object which displays as an opener,

together with expr1 if the opener is closed,

and both expr1 and expr2 if it is open."<D

Out[27]= Info on OpenerView

A second argument set to True  will display the opener open, that is, with expr visible.

In[28]:= OpenerView@8"Chapter 11", Column@8"\tSection 11.1",
"\tSection 11.2", "\tSection 11.3"<D<, TrueD

Out[28]= Chapter 11

Section 11.1

Section 11.2

Section 11.3

In Section 11.3 we will put together a nontrivial application of OpenerView , an enhancement
of the palette for opening files from a project directory introduced in Section 5.8.

Animating the hypocycloid
The hypocycloid example developed in Section 10.1  is a good candidate for a dynamic visualiza-
tion;  the  phenomenon  it  describes  involves  varying  a  parameter  (the  angle  q)  that  causes  more
and more of the curve to be sketched out. Below is the static code from that section, incorporated
into one function to generate a plot for given radii and angle q.

Inside  the  Manipulate  interface,  we  would  like  a  control  for  each  of  the  two  radii.  The
syntax of the parameter list 8R, 83, 4, 5, 6, 7, 8<, Setter< specifies R as the parameter
that can take on the values 83, 4, 5, 6, 7, 8< with a control consisting of a setter button to
select  the  different  radii.  Also  with  a  little  mathematics,  you  should  find  that  the  number  of
rotations  until  the  curve  closes  up  is  given  by  2 p Denominator@HR - rL ê rD,  although  you
may need to be careful if R ê r is irrational as the curve will never close up in that case!
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In[29]:= HypocycloidPlot@R_, r_, q_D := ModuleB8hypocycloid, center<,

hypocycloid@8a_, b_<, t_D := :Ha - bL Cos@tD + b CosB
t Ha - bL

b
F,

Ha - bL Sin@tD - b SinB
t Ha - bL

b
F>;

center@th_, R1_, r2_D := HR1 - r2L 8Cos@thD, Sin@thD<;

Show@8ParametricPlot@hypocycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@88Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.02D, Point@center@q, R, rDD<, 8Thick,
Line@8center@q, R, rD, hypocycloid@8R, r<, qD<D<, 8Red,
PointSize@.02D, Point@hypocycloid@8R, r<, qDD<<D<,

PlotRange Ø All, GridLines Ø AutomaticD

F

In[30]:= HypocycloidPlot@3, 1, 2 p - p ê 3D

Out[30]=
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In[31]:= Manipulate@
HypocycloidPlot@R, r, qD,
88q, 1<, 0, 2 p Denominator@HR - rL ê rD<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<D

Out[31]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

It  might not be obvious, but there is a small problem: at q = 0  the ParametricPlot  starts off
ranging from 0 to 0, which returns an error. It might be easiest to have the animation start just a
little past 0, say at 0.01.

In[32]:= Manipulate@
HypocycloidPlot@R, r, qD,
8q, 0 + 0.01, 2 p Denominator@HR - rL ê rD<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<D

Out[32]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5
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We  include  the  definition  of  HypocycloidPlot  by  using  the  SaveDefinitions  option  so
that the interface becomes self-contained; alternatively, you could include the entire definition of
HypocycloidPlot  as  part  of  the  Initialization  option  to  Manipulate .  Here  then  is
our final version of this hypocycloid sketcher.

In[33]:= Manipulate@
HypocycloidPlot@R, r, qD,
8q, 0 + 0.01, 2 p Denominator@HR - rL ê rD<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<,
SaveDefinitions Ø TrueD

Out[33]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

There is one issue that will arise when the radius, r, of the “inner” circle is larger than the radius, R,
of the “outer” circle. In this case, the graphic will bounce around a bit as Mathematica computes a
different plot range for these values. In Exercise 7 you are asked to correct this problem. Exercise
8  asks  you  to  create  a  similar  dynamic  interface  for  epicycloids,  curves  that  are  generated  by
rolling a smaller circle around the outside of a larger circle. 

Visualizing logical operators
In  this  example  we  will  create  a  dynamic  visualization  of  the  basic  logical  operators  And,  Or,
Implies  and so on,  using two-circle  Venn diagrams.  First  we will  create  a  static  image for  the
And operator, and then extend this to the other operators in the dynamic interface.

Given their centers, this creates two circles A and B (the default radius for Circle is 1).

In[34]:= c1 = 8-1 ê 2, 0<;
c2 = 81 ê 2, 0<;
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In[36]:= Graphics@8Circle@c1D, Circle@c2D,
Text@"A", 8-.5, .75<D, Text@"B", 8.5, .75<D<D

Out[36]=

A B

The region representing A Ï B  (that is, “A  and B”) consists of all those points common to A  and
B.  We will display this using RegionPlot .  First we describe the regions as inequalities that can
be used by RegionPlot .

In[37]:= eqns = ApplyAHÒ1 + xL2 + HÒ2 + yL2 < 1 &, 8c1, c2<, 81<E

Out[37]= : -
1

2
+ x

2

+ y2 < 1,
1

2
+ x

2

+ y2 < 1>

In[38]:= RegionPlot@Apply@And, eqnsD,
8x, -1, 1<, 8y, -1, 1<, Frame Ø FalseD

Out[38]=

Putting the two graphics together, adjusting for plot ranges, and adding some labels, we have the
following:

In[39]:= Show@RegionPlot@Apply@And, eqnsD, 8x, -2, 2<,
8y, -2, 2<, Frame Ø None, PlotLabel Ø A && B,
PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<, AspectRatio Ø Automatic,
MaxRecursion Ø 5D, Graphics@8Circle@c1D, Circle@c2D,
Text@"A", 8-.5, .75<D, Text@"B", 8.5, .75<D<DD

Out[39]=

For the dynamic visualization, we want to be able to use any logical function, not just And. So
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we replace And  everywhere by a parameter, say f,  and set the values this parameter can take on
as the list 8And, Or, …<.

In[40]:= Manipulate@Show@
RegionPlot@Apply@f, eqnsD, 8x, -2, 2<,
8y, -2, 2<, Frame Ø None, PlotLabel Ø f@A, BD,
PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<,
AspectRatio Ø Automatic, MaxRecursion Ø 5D,

Graphics@8Circle@8-1 ê 2, 0<D, Circle@81 ê 2, 0<D,
Text@"A", 8-.5, .75<D, Text@"B", 8.5, .75<D<D

D, 88f, Xor, "Logical function"<,
8And, Or, Xor, Implies, Nand, Nor<<D

Out[40]=

Logical function Xor

A B

A � B

See Ruskey and Weston (2005) for an excellent survey of work on Venn diagrams.

Exercises
1. Create a dynamic interface that displays various diagrams and plots of the amino acids. A list of the 

amino acids is given by:

In[1]:= ChemicalData@"AminoAcids"D

Out[1]= 8Glycine, LAlanine, LSerine, LProline, LValine, LThreonine,

LCysteine, LIsoleucine, LLeucine, LAsparagine, LAsparticAcid,

LGlutamine, LLysine, LGlutamicAcid, LMethionine, LHistidine,

LPhenylalanine, LArginine, LTyrosine, LTryptophan<

The diagrams and plots that should be included are built into ChemicalData:

In[2]:= StringCases@ChemicalData@"Properties"D,
__ ~~ "Diagram" H__ ~~ "Plot"LD êê Flatten

Out[2]= 8CHColorStructureDiagram, CHStructureDiagram,

ColorStructureDiagram, MoleculePlot,

SpaceFillingMoleculePlot, StructureDiagram<

11.1 Manipulating expressions 467



2. Create a dynamic interface that applies several built-in effects to an image. The effects are given by 
ImageEffect  and include "Charcoal", "Solarization", "GaussianNoise" and many 
others. See the documentation for ImageEffect  for a complete list.

3. Modify the dynamic Venn diagram created in this section to display a truth table like that developed 
in Exercise 9 from Section 5.8. Include the truth table side-by-side with the Venn diagram, like in the 
following:

Logical function Xor

A B A�B

T T F

T F T

F T T

F F F

A B

A � B

4. Create a dynamic interface that displays some sample text using two different fonts from your 
system’s list of fonts. Set it up so that you can select which two fonts to compare by using a pull-
down menu. The list of fonts on your system is given by the following:

In[3]:= fonts = FE`Evaluate@FEPrivate`GetPopupList@"MenuListFonts"DD;

In[4]:= RandomSample@fonts, 3D

Out[4]= 8Gurmukhi Sangam MN Ø Gurmukhi Sangam MN, Impact Ø Impact,

DTL Albertina TOT Italic Ø DTL Albertina TOT Italic<

5. Take one of the two-dimensional random walk programs developed elsewhere in this book (for 
example, Sections 8.1 and 13.1) and create an animation that displays successive steps of the random 
walk.

6. Create a plot of sinHqL side-by-side with a circle and a dynamic point that moves along the curve and 
the circle as q varies from 0 to 2p.

q

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
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7. Modify the Manipulate expression that animates the hypocycloid so that the plot range deals 
with the situation when the radius of the inner circle is larger than the radius of the outer circle.

8. An epicycloid is a curve that can be generated by tracing out a fixed point on a circle that rolls around 
the outside of a second circle. The formula for an epicycloid is quite similar to that for the hypocy-
cloid. The epicycloid is given parametrically by the following:

x = Ha + bL cosHqL - b cosK a+b
b

qO,

y = Ha + bL sinHqL - b sinK a+b
b

qO.

Create a dynamic interface to animate the epicycloid similar to that for the hypocycloid in this 
section.

9. In the 1920s and 1930s the artist Marcel Duchamp created what he termed rotoreliefs, spinning 
concentric circles (and variants thereof) giving a three-dimensional illusion of depth (Duchamp 
1926). Create you own rotoreliefs by starting with several concentric circles of different radii, then 
varying their centers around a path given by another circle, and animating.

10. Create a dynamic table that displays the temperature of several cities around the world. Include a 
control (pulldown menu or setter bar) to switch the display between Celsius and Fahrenheit.

11. Looking forward to Chapter 13 where we develop a full application for computing and visualizing 
random walks, create a dynamic interface that displays random walks, adding controls to select the 
number of steps from a pulldown menu, the dimension from a setter bar, and a checkbox to turn on 
and off lattice walks. 

12. Create a visualization of two-dimensional vector addition. The interface should include either a 2D 
slider for each of two vectors in the plane or locators to change the position of each vector; the 
display should show the two vectors as well as their vector sum. Extend the solution to three 
dimensions. (The solution of this vector arithmetic interface is due to Harry Calkins of Wolfram 
Research.)

red vector

blue vector
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6
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13. Create a dynamic interface to display information about a word drawn from WordData. The 
interface should include an input field for the word and use tabs to display either a definition, the 
Porter stem, or synonyms (try other word properties in WordData).

11.2 The structure of dynamic expressions
The interactive tools we have looked at in this chapter, Manipulate , TabView , OpenerView ,
and  so  on,  provide  a  convenient  and  relatively  easy-to-use  interface  for  generating  interactive
expressions  in  Mathematica.  But  sometimes  you  will  find  that  you  need  finer  control  over  the
expressions you are working with or you simply need to work on a more primitive level. This is
quite  similar  to  the  situation  with  graphics  in  Mathematica.  There  are  dozens  of  built-in,  higher-
level  functions  such  as  Plot ,  DateListPlot,  ArrayPlot,  and  so  on  that  are  designed  to
handle a wide set of inputs and to return output that has high fidelity and accuracy, and are also
aesthetically  attractive.  But,  as  discussed  in  Section  10.1,  primitive  objects  are  also  available  to
create graphics using basic building blocks known as graphics primitives. 

For  dynamic  interfaces,  the  primitive  elements  that  are  used  to  construct  the  higher-level
functions such as Manipulate  are Dynamic  and DynamicModule. Similarly to graphics, you
can  build  dynamic  interfaces  from  these  primitive  elements  directly.  That  is  the  subject  of  this
section. 

Before  going  further  we  should  note  that  discussing  dynamic  objects  in  a  static  book  is  a  bit
problematic.  Dynamic  objects,  as  their  name  suggests,  change  dynamically  and  when  updated,
their  values  change  wherever  they  occur.  This  is  quite  different  from  the  situation  with  static
symbols.  For  this  reason,  this  section is  best  “read”  by evaluating the  examples  in  order  in  your
own  Mathematica  notebooks  and  observing  changes  to  previous  computations  as  subsequent
expressions are evaluated.

Dynamic
Whenever you make an assignment,  you are fixing the value of a symbol at  the time the defini-
tion is made. For example, the symbol t is given the value 10 here.

In[1]:= t = 10

Out[1]= 10

Whenever you use t, its (static) value will be automatically substituted.

In[2]:= 4 t - 1

Out[2]= 39

Change the value associated with t and all subsequent evaluations will use the new value.
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In[3]:= t = 5;
4 t - 1

Out[4]= 19

The outputs of previous computations involving t all retain the history, essentially showing you
the  value  when  the  assignment  was  evaluated.  The  rule,  t = 10,  is  stored  in  memory  by  the  kernel.
Close the kernel and that rule is no longer known, that is, you will need to reevaluate the rule in a
new session to give the symbol t that value again.

Another kind of output is possible: a dynamic output which is automatically updated to reflect
the current value of the symbol.

In[5]:= t + 1

Out[5]= 6

In[6]:= Dynamic@t + 1D

Out[6]= 1 + Bobby

Change the value of t and any dynamic outputs will change immediately. 

In[7]:= t = Bobby

Out[7]= Bobby

The  value  of  the  expression  t + 1  above  is  6,  reflecting  that  the  symbol  t  in  that  expression  is
static: it gets its value from the last assigned value for t, which in this case was 5. But note that the
expression  Dynamic@t + 1D  has  a  different  value.  The  dynamic  expression  has  automatically
updated to reflect the current value of its  argument.  Even though we evaluated t = Bobby  later
in the session, it is that value that is used inside of Dynamic . 

It is important to note that Dynamic@exprD displays as expr but internally it is represented as a
dynamic object.

In[8]:= Dynamic@3 + wD

Out[8]= 3 + w

In[9]:= InputForm@%D

Out[9]//InputForm=

Dynamic@3 + wD

Any expression can be dynamic. For example, running ImageConvolve with an appropriate
kernel  on  this  image  returns  a  static  object.  When  it  was  evaluated  immediately  following  the
evaluation of img, it used that current value to perform the operation.
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In[10]:= img = ;

In[11]:= ImageConvolve@img, 88-1, 0, 1<, 8-4, 0, 4<, 8-1, 0, 1<<D

Out[11]=

Change  the  value  of  img  in  a  subsequent  computation  and  the  above  expression  does  not
change, but any dynamic version does.

In[12]:= img = ;

In[13]:= Dynamic@
ImageConvolve@img, 88-1, 0, 1<, 8-12, 0, 12<, 8-1, 0, 1<<DD

Out[13]=

Let us start to build up interactive expressions using this dynamic building block. First, here is
a  slider  object;  by  default  it  moves  between  values  0  and  1.  You  can  move  the  slider  with  your
mouse, but with no argument, it is not connected to anything.

In[14]:= Slider@D

Out[14]=
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Let us give it a dynamic variable z, and display the value of z to the right of the slider.

In[15]:= 8Slider@Dynamic@zDD, z<

Out[15]= 9 , 0.=

If you move the above slider, you will see that the value of z displayed to the right of the slider is
not updating, it remains at 0. The reason is that the symbol z is not dynamic so it does not update.
To make it dynamic, wrap it in Dynamic .

In[16]:= 8Slider@Dynamic@zDD, Dynamic@zD<

Out[16]= 9 , 0.502=

Now moving this latest slider causes the value of z to update dynamically. As you move the slider
you  will  notice  that  the  previous  slider  also  moves!  This  is  because  it  too  has  a  dynamic  z  as
argument. The plot below will also automatically update as you change the value of z in the slider
above.

In[17]:= Dynamic@Plot@Sin@x + 4 zD, 8x, 0, 2 p<DD

Out[17]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

When creating dynamic plots, be careful not simply to wrap the variable z in Dynamic  as this
will not create a dynamic plot. 

In[18]:= Plot@Sin@x + 4 Dynamic@zDD, 8x, 0, 2 p<D

Out[18]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

In fact no curve is generated because Plot  needs specific values to create the curve. It is the plot
itself that we want to update dynamically, so Plot  should be wrapped in Dynamic .

Putting  the  slider  together  with  the  dynamic  plot,  you can essentially  build  up a  scene  much
like Manipulate . Manipulate  uses these very objects to construct its interfaces.
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In[19]:= Panel@Column@8
Slider@Dynamic@zDD,
Dynamic@Plot@Sin@x + 4 zD, 8x, 0, 2 p<DD

<D
D

Out[19]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This use of Dynamic  inside of a slider is entirely general and can be applied to any control object,
not just sliders.

In[20]:= 8InputField@Dynamic@varDD, Dynamic@varD<

Out[20]= : var , var>

Normally,  Dynamic@exprD  only  updates  when  the  value  of  expr  changes.  You  can  force
dynamic expressions to update after a fixed interval by using the option UpdateInterval . For
example, this creates a display of the current date and time, updating every second. 

In[21]:= Dynamic@DateString@D, UpdateInterval Ø 1D

Out[21]= Sat 1 Dec 2012 15:45:44

DynamicModule
As  noted  above,  having  several  dynamic  instances  of  a  variable  in  a  notebook  will  cause  all  of
them  to  be  updated  whenever  any  of  them  are.  For  example,  as  you  move  one  of  the  sliders
below, the other moves in sync. This is because both sliders are tied to the same global variable, x.

In[22]:= 8Slider@Dynamic@xDD, Slider@Dynamic@xDD<

Out[22]= 9 , =

This behavior might cause problems if a global symbol interferes with a dynamic version of that
symbol  inadvertently.  Much  like  Module  is  used  to  localize  symbols  in  functions,
DynamicModule  is used to localize variables in dynamic interfaces. For example, assigning the
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global symbol x the value zero affects the two sliders above. Change its value and the sliders will
update accordingly.

In[23]:= x = 0;

On  the  other  hand,  the  following  expression  localizes  x  and  initializes  it  to  0.5.  You  can  still
move the sliders below but changing this local x will have no affect on any global x such as those
in the sliders above.

In[24]:= DynamicModule@8x = 0.5<,
8Slider@Dynamic@xDD, Slider@Dynamic@xDD<

D

Out[24]= 9 , =

Use additional dynamic modules if you want the two local variables to be independent.

In[25]:= 8DynamicModule@8x = 0.25<, Slider@Dynamic@xDDD,
DynamicModule@8x = 0.75<, Slider@Dynamic@xDDD<

Out[25]= 9 , =

In the following example we build a graphics scene consisting of a tube passing through some
points.  A slider is displayed that controls the radius of the tube. In this example we have simply
put the graphic and the slider side-by-side by placing them in a list inside the DynamicModule.

In[26]:= pts = Table@8Sin@tD, Cos@tD, t ê 5<, 8t, 0, 20, .25<D;

In[27]:= DynamicModule@8r = 0.1<, 8
Graphics3D@8EdgeForm@D, Red, Tube@pts, Dynamic@rDD<D,
Slider@Dynamic@rD, 80.05, 1<D

<D

Out[27]= : , >

Going a bit further, this puts the graphic in a panel and places a vertical slider to its left. We have
added an Appearance  option to the slider to give it a different “thumb.”

11.2 The structure of dynamic expressions 475



In[28]:= DynamicModule@8r = 0.1<,
Panel@
Graphics3D@8EdgeForm@D, Red, Tube@pts, Dynamic@rDD<D,
VerticalSlider@Dynamic@rD,
80.05, 1<, Appearance Ø "RightArrow"D,

LeftD,
Initialization ß
8pts = Table@8Sin@tD, Cos@tD, t ê 5<, 8t, 0, 20, .25<D<D

Out[28]=

One of the advantages of DynamicModule  is that it saves state. What this means is that you
can  end  your  Mathematica  session,  close  the  notebook,  restart  Mathematica  and  reopen  the  note-
book  and  any  output  created  with  a  DynamicModule  will  be  in  the  same  state  as  when  you
closed  the  notebook.  This  is  because  the  output  of  a  DynamicModule  includes  an  expression
embedded  in  the  output  that  is  initialized  when  it  is  displayed  again.  That  expression  includes
values of the local variables created with DynamicModule.  Another way of thinking about this
is  that  global  variables are known to (and in a  sense,  owned by) the kernel;  variables created by
DynamicModule, on the other hand, live in the front end. 

Let  us  recreate  some  of  the  objects  from  earlier  in  this  chapter  that  used  the  top-level
Manipulate , but instead, we will put them together using these dynamic building blocks. First,
here  is  the  dynamic  triangle  from  Section  11.1.  The  variable  pts  is  localized  inside
DynamicModule  and  initialized  with  three  points.  LocatorPane@pos, exprD  is  a  low-level
object that creates a pane with locators given at the positions specified by pos  and a background
given  by  the  expression  expr.  So,  in  this  example,  Dynamic@ptsD  gives  the  (dynamic)  locator
positions and Graphics@…D is displayed in the background.
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In[29]:= DynamicModule@8pts = 88-1, 0<, 81, 0<, 80, 1<<<,
LocatorPane@Dynamic@ptsD, Graphics@8

LightGray, EdgeForm@BlackD, Dynamic@Polygon@ptsDD<DDD

Out[29]=

As another  example  of  the  use  of  LocatorPane ,  here  is  a  dynamic Bézier  curve  as  defined by
several control points.

In[30]:= DynamicModule@8pts = 880, 0<, 81, 1<, 82, 1<<<,
LocatorPane@Dynamic@ptsD,
Graphics@DynamicüBezierCurve@ptsDDDD

Out[30]=

One very useful thing that can be done with locators is to constrain them to a defined region.
This  is  done  by  giving  LocatorPane  a  third  argument  that  defines  the  constrained  area.  For
example,  this  constrains  the  locator  to  the  square  with lower  left  vertex at  8-1, -1<  and upper
right vertex at 81, 1<. The background consists of an ellipse. There is no interaction between the
background  and  the  locator  in  this  example.  We  have  added  a  rectangle  to  identify  the  area  in
which the locator is constrained.

In[31]:= LocatorPane@80, 0<, Graphics@8
Circle@80, 0<, 83, 2<D,
EdgeForm@DashedD,
Opacity@.25D, Rectangle@8-1, -1<, 81, 1<D<D,

88-1, -1<, 81, 1<<D

Out[31]=
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Dynamic tips
Because dynamic expressions update frequently,  such as whenever you move a locator with the
mouse, they can trigger a lot of evaluation during the updates. This can be the main cause of slow
dynamics. In this section we will look at several things to consider to make your dynamic expres-
sions as efficient as possible. 

First,  think  about  where  you  use  Dynamic .  You  might  think  that  you  only  need  to  wrap
variables  with  it,  but  this  may  not  produce  what  you  want.  Consider  the  following  dynamic
integration. Moving the slider you will  see that only the value of a  updates,  not the value of the
entire integral. 

In[32]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 80, 1<D,
Integrate@Exp@Dynamic@aD vD, 8v, 0, 1<D

<D

Out[32]= : ,
-1 + ‰0.

0.
>

It is the integration that you want to be dynamic here. So wrap Integrate in Dynamic .

In[33]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 80, 1<D,
Dynamic@Integrate@Exp@a vD, 8v, 0, 1<DD

<D

Out[33]= 9 , 1.=

Similarly for a dynamic plot label.

In[34]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 81, 5<D,
Plot@Sin@Dynamic@aD vD, 8v, 0, 2 p<,
PlotLabel Ø StringForm@"Frequency = `1`", Dynamic@aDDD

<D

Out[34]= : ,

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
Frequency = a$$

>

Since both the plot and the plot label need to be updated dynamically, it is probably a bit cleaner
to wrap the entire plot in Dynamic .
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In[35]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 81, 5<D,
Dynamic@Plot@Sin@a vD, 8v, 0, 2 p<,

PlotLabel Ø StringForm@"Frequency = `1`", aDDD
<D

Out[35]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Frequency = 1.

>

This last example might lead you to conclude that it is generally a good idea to wrap larger and
larger  expressions  in  Dynamic .  But  this  can  lead  to  inefficiencies  in  that  the  entire  plot  will
update frequently. For a simple two-dimensional plot such as the sine function above, this is not
too  expensive.  But  for  a  three-dimensional,  high-resolution  surface  with  transparency  this
inefficiency might slow things down to an unacceptable level.

The  following  three-dimensional  plot  includes  an  opacity  directive,  increased  adaptive  sam-
pling through MaxRecursion, and a dynamic view point, all of which add up to a computation-
ally intensive object that is a bit slow to manipulate.

In[36]:= DynamicModuleA8q = 0<, 9

DynamicüPlot3DA Ix2 + y2M ExpA1 - x2 - y2E, 8x, -p, p<,

8y, -p, p<, PlotStyle Ø 8Purple, Opacity@0.5D<,
Mesh Ø None, MaxRecursion Ø 5,
SphericalRegion Ø True,

ViewPoint Ø RotationTransform@q, 80, 0, 1<D@83, 0, 3<DE,

Slider@Dynamic@qD, 80, 2 p<D=E

Out[36]= : , >

It  is  not  necessary  to  redraw  the  entire  plot  when  the  viewpoint  changes.  By  wrapping  just  the
value  of  the  ViewPoint  option in  Dynamic ,  the  entire  plot  is  not  recomputed every  time the
viewpoint changes thus making the manipulation with the mouse much quicker. 
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In[37]:= DynamicModuleA8q = 0<, 9

Plot3DA Ix2 + y2M ExpA1 - x2 - y2E, 8x, -p, p<,

8y, -p, p<, PlotStyle Ø 8Purple, Opacity@0.5D<,
Mesh Ø None, MaxRecursion Ø 5,
SphericalRegion Ø True,
ViewPoint Ø
Dynamic@RotationTransform@q, 80, 0, 1<D@83, 0, 3<DDE,

Slider@Dynamic@qD, 80, 2 p<D=E

Out[37]= : , >

This  is  not  a  hard-and-fast  rule.  There  are  some  situations  where  you  need  to  be  careful  about
wrapping  expressions  in  Dynamic .  The  following  does  not  work  because  PlotPoints  needs
to pass an explicit  numeric value to Plot  to generate the graphic.  Wrapping Dynamic  around
an expression causes  that  expression to remain unevaluated until  the front  end receives  it,  typi-
cally when you display it in your notebook. But the kernel is where Plot  lives and the kernel is
unable to do the computation to generate the plot at this point. 

In[38]:= DynamicModule@8pp = 5<, 8
Plot@Sin@xD, 8x, 0, 2 p<,
PlotPoints Ø Dynamic@ppD, MaxRecursion Ø 0D,

Slider@Dynamic@ppD, 85, 30<D
<D

Out[38]= :
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

, >

The reason the examples above with ViewPoint  worked is  that  ViewPoint  is  an option that
does its computations in the front end, which is where Dynamic  lives.
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Exercises

1. Display a random word from the dictionary (DictionaryLookup) that changes every second.

2. Create a dynamic interface consisting of a locator constrained to the unit circle.

3. Create a dynamic interface that controls one sphere rotating about another.

11.3 Examples and applications
Creating interfaces for visualizing data
Analyzing and visualizing large sets of data is made easier by interfaces that allow you to quickly
select  the  data  you  are  interested  in  and  make  comparisons.  For  example,  consider  trying  to
interpret  some  data  that  lists  energy  used  by  type  (coal,  natural  gas,  nuclear,  renewables,  etc.)
over  the  years.  One  large  spreadsheet  covering  say  thirty  years  of  such  data  can  be  difficult  to
parse.  An  interface  in  which  you  can  see  a  time-series  plot  for  any  chosen  energy  source  and
compare it with any other would be a very useful visualization of such a large dataset.

In  this  section,  we will  import  data  from the  US National  Bureau of  Economic  Research that
gives industrial production by sector from 1790–1915 (Davis 2004). The industrial sectors for this
historical  data  are:  food,  textiles,  wood/paper,  leather,  chemicals/fuels,  machinery,  and  metals.
The data uses 1850 as a benchmark, that is, the index for that year is 100.

Let  us  start  by  importing  the  data  from  the  internet,  and  displaying  the  first  few  rows  of  the
spreadsheet.

In[1]:= data = Import@
"http:êêwww.nber.orgêdataêindustrial-production-indexêip-

sectors.xls", 8"XLS", "Data", 1<D;
Take@data, 3D

Out[2]= 88Year, Food, Textiles, Wood_Paper,

Leather, Chemicals_Fuels, Machinery, Metals<,
81827., 28.6996, 18.4986, 16.7097, 15.8894, 22.221,
28.5287, 22.6592<, 81828., 29.5944, 15.8334,
20.2374, 16.7859, 21.6499, 29.7857, 21.2395<<

The  first  row  consists  of  column  headers  which  we  can  use  to  label  the  categories  that  will  be
displayed in our interface.

In[3]:= categories = Restüdata@@1DD

Out[3]= 8Food, Textiles, Wood_Paper,

Leather, Chemicals_Fuels, Machinery, Metals<

Our visualization will use DateListPlot, so we need to transform the data into a form suitable
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for that function. It expects the time-series data in the form 9date, value=. The first two columns

are the year and food sectors. So let us prototype the transformation with just that subset of data.

In[4]:= food = data@@2 ;; -1, 81, 2<DD ê.
8year_, val_< ß 88Roundüyear<, val<;

In[5]:= Take@food, 8D

Out[5]= 8881827<, 28.6996<, 881828<, 29.5944<,
881829<, 26.2247<, 881830<, 32.7878<, 881831<, 33.6961<,
881832<, 31.9668<, 881833<, 34.8419<, 881834<, 33.6196<<

Let’s do the same for textiles, that is, columns 1 and 3.

In[6]:= textiles = data@@2 ;; -1, 81, 3<DD ê.
8year_, val_< ß 88Roundüyear<, val<;

In[7]:= Take@textiles, 8D

Out[7]= 8881827<, 18.4986<, 881828<, 15.8334<,
881829<, 15.3377<, 881830<, 16.1311<, 881831<, 23.0132<,
881832<, 23.1964<, 881833<, 25.2582<, 881834<, 26.4568<<

With just these two sectors, we can try out the syntax for TabView .

In[8]:= TabView@8
"Food" Ø DateListPlot@foodD,
"Textiles" Ø DateListPlot@textilesD

<D

Out[8]=

1840 1860 1880 1900
0

500

1000

1500

Food Textiles

For the full dataset we need to extend these computations to all columns (sectors). Mapping the
rule above across the range of columns 2 through 8 does this.

In[9]:= ipData = Map@data@@2 ;; -1, 81, Ò<DD ê.
8year_, val_< ß 88Roundüyear<, val< &, Range@2, 8DD;
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TabView  is expecting a list of rules of the form label Ø expression.  Our labels will come from the
categories list  and the expressions will  be the plots.  Threading across these two lists  puts all  the
pieces together. We have also added some options to DateListPlot.

In[10]:= allData = MapThread@
Ò1 Ø DateListPlot@Tooltip@Ò2D, 81827<, Joined Ø True,

Mesh Ø All, ImageSize Ø 220, AspectRatio Ø 1 ê 2D &,
8categories, ipData<D;

Here is the rule for the second sector, the textiles.

In[11]:= allData@@2DD

Out[11]= Textiles Ø

Finally, pass allData to TabView  and add a frame and a label for the entire interface.

In[12]:= Framed@Labeled@
TabView@allData,
ControlPlacement Ø Left, Background Ø LightGrayD,

"US Industrial Production by Sector H1790-1915L",
Top, LabelStyle Ø Directive@WhiteDD, Background Ø GrayD

Out[12]=

US Industrial Production by Sector H1790-1915L

Food

Textiles

Wood_Paper

Leather

Chemicals_Fuels

Machinery

Metals

It looks like machine-based manufacturing took off in the later half of the nineteenth century
(due to the Industrial Revolution no doubt) and this is reflected in most of these sectors.
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File openers
In Section 5.8  we created a basic palette consisting of buttons that, when clicked, open a file in a
project  directory.  Let  us  take  that  a  few  steps  further  and  create  a  palette  that  has  different  sec-
tions  that  can  be  opened  and  closed  using  OpenerView .  For  our  purposes,  we  will  create  one
opener for all notebooks in a given directory and another opener for packages. You can organize
your openers in whatever manner is most sensible for your working environment.

The notebooks (.nb) and packages (.m) are located in the following directory:

In[13]:= dir = FileNameJoin@8$BaseDirectory, "Applications", "PwM"<D

Out[13]= êLibraryêMathematicaêApplicationsêPwM

The  buttons  on  the  palette  are  hyperlinks  of  the  form  HyperlinkAlabel, urlE.  So  we  need  to

create labels  and URLs (uniform resource locators)  for each file  that  will  be listed in the palette.
First, here are the full pathnames for each of the files. We only display the packages here.

In[14]:= notebooks = FileNames@"*.nb", dirD;
packages = FileNames@"*.m", dirD

Out[15]= 8êLibraryêMathematicaêApplicationsêPwMêCollatz.m,
êLibraryêMathematicaêApplicationsêPwMêCommon.m,
êLibraryêMathematicaêApplicationsêPwMêPrintPrep.m,
êLibraryêMathematicaêApplicationsêPwMêPWM.m,
êLibraryêMathematicaêApplicationsêPwMêRandomWalks.m<

Second, we create the labels using each file’s base name.

In[16]:= nblabels = Map@FileBaseName, notebooksD;
paclabels = Map@FileBaseName, packagesD

Out[17]= 8Collatz, Common, PrintPrep, PWM, RandomWalks<

As before, we need to thread Hyperlink  over these two lists. Clicking on any of the links in the
output opens the corresponding file in the front end.

In[18]:= MapThread@Hyperlink@Ò1, Ò2D &, 8paclabels, packages<D

Out[18]= 9Collatz, Common, PrintPrep, PWM, RandomWalks=

Here are the openers for the packages and notebooks. Note, we wrap the links in Column to get a
vertical list rather than the default horizontal arrangement.

In[19]:= OpenerView@8"Packages", Columnü
MapThread@Hyperlink@Ò1, Ò2D &, 8paclabels, packages<D<D

Out[19]= Packages
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In[20]:= OpenerView@8"Notebooks", Columnü
MapThread@Hyperlink@Ò1, Ò2D &, 8nblabels, notebooks<D<D

Out[20]= Notebooks

Next we put these two openers inside a column and then wrap that in CreatePalette.

In[21]:= CreatePalette@Column@8

OpenerView@8"Notebooks", ColumnüMapThread@
Hyperlink@Ò1, Ò2D &, 8nblabels, notebooks<D<D,

OpenerView@8"Packages", ColumnüMapThread@
Hyperlink@Ò1, Ò2D &, 8paclabels, packages<D<D

<D
D;

Here is a screenshot of the palette just created after having clicked the Packages opener label. 

The default settings for CreatePalette, Column, and Hyperlink  create a fairly plain palette
so let us add several options to format it nicely.

In[22]:= openerStyles = 8FontSize Ø 12, FontColor Ø White<;
linkStyles = 8FontSize Ø 9, FontColor Ø Red<;

In[24]:= colOpts = 8Background Ø DarkerüGray, Dividers Ø All<;
linkOpts = 8ImageSize Ø 8Automatic, 15<<;
palOpts = 8WindowTitle Ø "File Palette",

WindowElements Ø "MagnificationPopUp"<;
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Here then is the polished palette.

In[27]:= CreatePalette@
Column@8

OpenerView@8Style@"Notebooks", openerStylesD,
ColumnüMapThread@Hyperlink@Style@Ò1, linkStylesD,

Ò2, linkOptsD &, 8nblabels, notebooks<D<D,
OpenerView@8Style@"Packages", openerStylesD,

ColumnüMapThread@Hyperlink@Style@Ò1, linkStylesD,
Ò2, linkOptsD &, 8paclabels, packages<D<D

<, colOptsD,
palOptsD;

Dynamic random walks
The  random  walk  functions  that  are  developed  throughout  this  book  are  good  candidates  for
dynamic interfaces allowing you to watch the evolution of a random walk by varying the number
of  steps  displayed  in  a  graphic.  The  PwM`RandomWalks  package  is  fully  developed  in  Section
13.4  so  we  will  simply  use  the  main  function,  RandomWalk,  here  by  loading  the  package  that
accompanies this book.

In[28]:= << PwM`RandomWalks`

The  first  interface  we  will  create  is  a  basic  animation  of  a  two-dimensional  lattice  walk.  To
prevent the graphics frame from bouncing around as Mathematica  recomputes the plot range for
each  frame,  we  precompute  the  walk  and  find  the  minimum  and  maximum  values  in  both  the
horizontal  and  vertical  directions.  These  are  xran  and  yran  used  below.  The  rest  of  the
Manipulate  is straightforward including a nested list as the second argument to Manipulate
to generate a pulldown list for values of n, allowing the user to select the size of the random walk.
We use DynamicModule here to initialize and localize the symbols rw, xran, and yran. 
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In[29]:= Manipulate@DynamicModule@8rw, xran, yran<,
rw = RandomWalk@n, Dimension Ø 2, LatticeWalk Ø TrueD;
8xran, yran< = Map@8Min@ÒD, Max@ÒD< &, Transpose@rwDD;
Animate@Graphics@Line@Take@rw, iDD,

PlotRange Ø 8xran, yran<D, 88i, 100<, 2, n, 1<DD,
88n, 500, "total steps"<, 8100, 500, 1500, 2500<<D

Out[29]=

total steps 100 500 1500 2500

i

Another  control  that  can  be  incorporated  with  dynamic  interfaces  is  EventHandler.  The
“events” that this function works with are mouse or keyboard events, that is, clicks, drags, use of
the  up  arrow  key,  and  so  on.  The  first  argument  to  EventHandler  is  typically  a  dynamic
expression. The second argument identifies the “event” that will trigger an update and an action
that should be performed when that occurs. So, the following displays a random number to high
precision in a  frame;  when the mouse is  clicked while  the cursor  hovers  over  that  expression,  a
new  random  number  will  be  generated  and  displayed.  The  variable  rand  is  initialized  in  the
DynamicModule.

In[30]:= DynamicModule@8rand = RandomReal@1, WorkingPrecision Ø 20D<,
EventHandler@Framed@Dynamic@randDD, 8"MouseClicked" ß

Hrand = RandomReal@1, WorkingPrecision Ø 20DL<
DD

Out[30]= 0.25563842007137634608

The  action  that  is  triggered  by  an  event  can  be  given  by  any  expression.  So  let  us  use
EventHandler  to  create  a  graphic  that  displays  a  new  random  walk  each  time  the  graphic  is
clicked;  the  right-hand  side  of  the  rule  with  MouseClicked  is  the  event  that  will  be  triggered
when the mouse is clicked. That event is a reevaluation of the random walk, rw, for 2500 steps.
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In[31]:= DynamicModule@8rw = RandomWalk@2500, LatticeWalk Ø FalseD<,
EventHandler@
Dynamic@Graphics@88Thin, Line@rwD<<DD,
8"MouseClicked" ß

Hrw = RandomWalk@2500, LatticeWalk Ø FalseDL<DD

Out[31]=

Every  time  you  click  on  the  above  graphics,  a  new  2500-step  random  walk  is  generated  and
displayed.

To add a setter bar for setting the length of the walk as well as a checkbox for lattice/off-lattice
walks,  we  put  the  entire  object  inside  of  a  Manipulate .  Fixing  the  ContentSize  forces
Mathematica to fit the graphic inside of a fixed graphics box.

In[32]:= Manipulate@DynamicModule@
8rw = RandomWalk@len, LatticeWalk Ø lwD<, EventHandler@
Dynamic@Graphics@88Thin, Line@rwD<<DD, 8"MouseClicked" ß

Hrw = RandomWalk@len, LatticeWalk Ø lwDL<DD,
8len, 8100, 1000, 10000, 25 000<<,
88lw, False, "Lattice walk"<, 8True, False<<,
ContentSize Ø 8200, 100<D

Out[32]=

len 100 1000 10 000 25 000

Lattice walk

Apollonius’ circle
Our final dynamic example is a demonstration of an ancient bit of geometry. Circles are typically
defined as the set of points some fixed distance (radius) from a given point (the center). Another
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definition,  due  to  the  Greek  astronomer  Apollonius  of  Perga  (ca.  262  bc  –  ca.  190  bc),  defines  a
circle as the locus of points P,  such that the ratio of the distances of two fixed points A  and B  to
point P is a constant, different from one (Figure 11.1).

Figure 11.1. Circle defined as the locus of points such that PA ê PB  is a constant.

P

A B

In this section we will create a graphic including the following dynamic elements: a point P, lines
PA and PB, and a display of the ratio of the two distances. Point P will be a locator restricted to a
circle.  This  restriction  is  accomplished  by  using  a  second  argument  to  Dynamic .  Normalize
takes a vector as input and returns a unit vector, thus restricting point P to the unit circle.

Dynamic@ptP, HptP = Normalize@ÒDL &D

The two lines connecting point P  to points A  and B  are dynamic, as is point P  itself. Here then is
our initial interface with point P initialized to start at q = 2 p ê 3.

In[33]:= DynamicModuleB

:ptP = :CosB
2 p

3
F, SinB

2 p

3
F>, ptA = :-

3

2
, 0>, ptB = :-

2

3
, 0>>,

LocatorPane@Dynamic@ptP, HptP = Normalize@ÒDL &D, Graphics@
8Gray, Circle@80, 0<, 1D, Line@88-1.75, 0<, 81.5, 0<<D,
Green, PointSize@0.025D, Point@Dynamic@ptPDD,
Blue, Point@ptAD, Dynamic@Line@8ptA, ptP<DD,
Red, Point@ptBD, Dynamic@Line@8ptB, ptP<DD<,

PlotRange Ø 88-1.75, 1.5<, 8-1.1, 1.1<<DDF

Out[33]=

Let us add some text identifying the two fixed points and also a plot label with a dynamic string
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that shows the ratio PA ê PB of the distances.

In[34]:= DynamicModuleB

:ptP = :CosB
2 p

3
F, SinB

2 p

3
F>, ptA = :-

3

2
, 0>, ptB = :-

2

3
, 0>>,

LocatorPane@Dynamic@ptP, HptP = Normalize@Ò1DL &D, Graphics@
8Gray, Circle@80, 0<, 1D, Line@88-1.75, 0<, 81.5, 0<<D,
Green, PointSize@0.025D, Point@Dynamic@ptPDD,
Blue, Point@ptAD, Dynamic@Line@8ptA, ptP<DD,
Text@"A", ptA, 82, -1<D, Red, Point@ptBD,
Dynamic@Line@8ptB, ptP<DD, Text@"B", ptB, 8-3, -1<D<,

PlotRange Ø 88-1.75, 1.5<, 8-1.1, 1.1<<, PlotLabel Ø
Dynamic@StringForm@"Ratio = `1`", EuclideanDistance@

ptA, ptPD ê EuclideanDistance@ptB, ptPDDDDDF

Out[34]=
A B

Ratio =
3

2

Exercises
1. Here are data on Nobel prizes in the fields of chemistry, medicine, and physics, available from the 

National Bureau of Economic Research.

In[1]:= data =

Import@"http:êêwww.nber.orgênobelêJones_Weinberg_2011_PNAS.xlsx",
8"XLSX", "Data", 1<D;

In[2]:= Take@data, 4D

Out[2]= 88name, field, year_birth, year_prize, year_research_mid,

year_death, TheoryOrTheoryAndEmpirical, age_highdegree<,
8Van'T Hoff, Jacobus Henricus, Chemistry, 1852., 1901., 1885.,

1911., 1., 22.<, 8Fischer, Hermann Emil, Chemistry, 1852.,

1902., 1895., 1919., 0., 22.<, 8Arrhenius, Svante August,

Chemistry, 1859., 1903., 1884., 1927., 1., 25.<<
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Create a TabView  visualization showing the age of each prize recipient vs. the year of prize award. 
Include one tab for each of the three fields given in the data and also include a plot label that displays 
the mean age at award for each field.

2. Using FunctionsWithAttribute developed in Section 5.6, create a paneled interface that 
displays all built-in functions with a specified attribute. Include an input field control to allow the 
user to type in an attribute. Do likewise for FunctionsWithOption also developed in Section 5.6.

3. Create a dynamic interface that displays twenty random points in the unit square whose locations 
are randomized each time you click your mouse on the graphic display of these points. Add a 
checkbox to toggle the display of the shortest path (FindShortestTour) through the points.

4. Create a similar dynamic interface to that in the industrial production index problem in this section 
but comparing industrial production with unemployment rates with retail sales data over the last 
twenty years or some other suitable time period. Annual and historical retail sales data are available 
at the US Census Bureau (www.census.gov/retail); unemployment data are available at the US 
Bureau of Labor Statistics (www.bls.gov/cps/cpsatabs.htm); industrial production indices are 
available at the US Federal Reserve System (www.federalreserve.gov/releases/g17/download.htm).
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Optimizing Mathematica 
programs

Measuring evaluation time · Memory storage · Low-level vs. high-level functions · Pattern 
matching · Reducing size of computation · Symbolic vs. numeric computation · Listability · Pure 

functions · Packed arrays · Parallel processing · Distributing definitions across subkernels · 
Profiling · Compiling · Compiling to C

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all 
evil.

— Donald E. Knuth (Knuth 1992)

When  you  are  first  learning  to  program  in  a  language  your  emphasis  is  usually  on  correctness,
that is,  getting your programs to run and return accurate and error-free results  – and rightly so.
There is little point in trying to speed up a program that returns incorrect answers! You develop
your  programs,  prototyping  with  simple  inputs  so  that  you  can  see  at  a  glance  how  things  are
progressing. At some point in the development process you start to increase the size or complex-
ity  of  the  inputs  to  your  program  and,  if  all  goes  well,  the  program  scales  well.  But  commonly,
there are bottlenecks at various stages of the computation that slow things down. Some of these
may be unavoidable,  but  often you can find optimizations  that  improve the efficiency and run-
ning  time  of  your  programs.  This  chapter  introduces  some  of  the  optimization  principles  to
think  about  both  during  the  development  process  and  after  they  are  complete  and  you  are
satisfied that they produce the desired output. 

There  are  two  measures  we  will  focus  on  –  timing  and  memory  footprint.  Sometimes  one
plays a more prominent role than the other. But ultimately, squeezing another tenth of a second



out of a computation that is only going to be run once or twice does not make a lot of sense. On
the  other  hand,  if  that  computation  is  part  of  a  loop  that  is  going  to  be  evaluated  thousands  of
times,  little  things  really  start  to  add  up.  You  will  be  the  best  judge  of  where  you  need  to  focus
your efforts. We will start by creating some auxiliary functions that can help measure timing. The
rest of the chapter is designed to provide some case studies and tips to guide you in your efforts
to improve your Mathematica programs. It includes an introduction to parallel processing and also
compilation in Mathematica.

12.1 Measuring efficiency
Evaluation time
Two built-in functions, Timing and AbsoluteTiming , are commonly used to measure evalua-
tion time. Both functions give the time to evaluate an expression in the kernel.  The main differ-
ence  between  them  is  that  Timing  is  a  bit  system-dependent.  On  computers  with  multiple
processors,  threads  may  be  dealt  with  differently  from  one  multi-core  system  to  another;
Timing will include time spent on all threads on one system but ignore some of them on others.
AbsoluteTiming  should be more consistent across systems.

One  of  the  problems  with  measuring  timing  is  that  computers  are  often  doing  many  things
simultaneously: checking mail,  running system scripts in the background, and so on. To give an
accurate  measure  of  the  time  spent  on  a  computational  task  and  to  take  into  account  these
background  tasks,  we  will  run  several  trials  and  then  average  the  results.  AverageTiming,
defined below, does this.  Note that it  is set up to return only the average time; the result itself  is
not  returned.  You  should  modify  the  function  accordingly  if  you  want  both  the  result  and  the
timing returned, similar to what Timing and AbsoluteTiming  return.

First,  we  set  things  up  so  that  AverageTiming  has  the  HoldAll  attribute.  This  way  its
argument,  the  expression to  be  measured,  does  not  evaluate  before  it  is  used inside the body of
the AverageTiming function itself.

In[1]:= SetAttributes@AverageTiming, HoldAllD

In[2]:= AverageTiming@expr_, trials_D :=

Mean@Table@First@AbsoluteTiming@exprDD, 8trials<DD

As a simple test, here we compute the time needed to invert a large matrix.

In[3]:= mat = RandomReal@1, 81000, 1000<D;
AbsoluteTiming@mat.mat;D

Out[4]= 80.146887, Null<
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And for five trials, the average time is given by the following.

In[5]:= AverageTiming@mat.mat, 5D

Out[5]= 0.137580

For  a  compound  expression,  you  could  either  enclose  the  subexpressions  in  a  list  or  separate
them with semicolons.

In[6]:= AverageTiming@8
mat.mat,
Inverse@matD,
Det@matD

<, 3D

Out[6]= 0.436309

In[7]:= AverageTiming@
mat.mat;
Inverse@matD;
Det@matD;,
3D

Out[7]= 0.425944

Memory storage
ByteCount  gives  the  number  of  bytes  needed  to  store  an  expression.  For  example,  in  Section
10.2,  we  saw  the  vast  difference  in  storage  of  a  multi-point  graphics  object  compared  with  a
graphics object that does not use multi-points. 

In[8]:= pts = RandomReal@1, 8100, 2<D;
gr = Graphics@Map@Point, ptsDD;
grMulti = Graphics@Point@ptsDD;

In[11]:= 8ByteCount@grD, ByteCount@grMultiD<

Out[11]= 824088, 1864<

Different  computer  systems  may  store  expressions  differently  and  so  it  is  possible  that
ByteCount could give slightly different results from one system to another.

One additional function we should point out is MemoryInUse . This gives the current amount
of memory used by the kernel. It will change after each computation, but because the internals of
Mathematica’s  memory management are fairly complicated,  it  may not be ideal  to use systemati-
cally for our purposes here.
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In[12]:= start = MemoryInUse@D

Out[12]= 436963112

In[13]:= vec = RandomRealA1, 9106=E;

In[14]:= end = MemoryInUse@D

Out[14]= 444965728

In[15]:= end - start

Out[15]= 8002616

In[16]:= ByteCount@vecD

Out[16]= 8000168

If  you clear  the value of  vec,  the amount of  memory in use should go down but it  will  depend
upon the current state of your session and so is not a simple way to track memory usage.

In[17]:= vec =.

In[18]:= MemoryInUse@D

Out[18]= 444965992

12.2 Efficient programs
Low-level vs. high-level functions
Many computational tasks are first programmed as procedures that loop through an expression,
extracting  and  operating  on  various  pieces,  and  then  putting  the  transformed  pieces  into  a
temporary list  or array.  Typical examples include adding lists of numbers,  operating on rows or
columns from a matrix, and so on. This low-level approach to a common task is typical of proce-
dural  languages,  but  a  modern  language  such  as  Mathematica  provides  many  functions  that  are
optimized for these tasks. Using such tools can save time and effort in many common tasks, not
just in coding and debugging but in the running of your programs.

As  an  example,  consider  the  task  of  reversing  pairs  of  elements  in  a  matrix.  The  standard
procedural  approach  starts  by  setting  up  a  temporary  list  of  the  same  size  as  the  input.  Then,
inside  a  Do  loop,  parts  are  extracted  and  put  in  a  list  in  the  order  we  want  and  assigned  to  the
appropriate element in the temporary list.

In[1]:= mat = 88a, b<, 8c, d<, 8d, e<<;
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In[2]:= temp = Table@0, 8Length@matD<D;
Do@temp@@iDD = 8mat@@i, 2DD, mat@@i, 1DD<,

8i, 1, Length@matD<D;
temp

Out[4]= 88b, a<, 8d, c<, 8e, d<<

Reversing the elements in a list is a fairly common task and a functional construct is available for
just this. 

In[5]:= Map@Reverse, matD

Out[5]= 88b, a<, 8d, c<, 8e, d<<

Not only is the code compact and quite readable,  but this functional approach is much faster in
practice. Here is a matrix consisting of one million pairs of numbers.

In[6]:= mat = RandomRealA1, 9106, 2=E;

Reversing  each  pair  with  a  procedural  approach  takes  about  two  to  three  seconds  whereas  the
functional approach speeds this up by over an order of magnitude.

In[7]:= AverageTiming@
temp = Table@0, 8Length@matD<D;
Do@temp@@iDD = 8mat@@i, 2DD, mat@@i, 1DD<,
8i, 1, Length@matD<D,

3D

Out[7]= 2.361527

In[8]:= AbsoluteTiming@Map@Reverse, matD;D

Out[8]= 80.127700, Null<

The point is that although you can program in a procedural manner in Mathematica, there often
are some good reasons not to, the main ones being ease of coding and the efficiency of running
your programs. The built-in Mathematica  functions are optimized to be as fast as possible for the
types  of  input  and computations for  which they are  designed.  And with the thousands of  func-
tions that  are  built  in,  you have at  your  fingertips  a  vast  set  of  tools  that  are  designed for  many
specialized tasks. 

As a second example, consider summing a list of numbers. Several different implementations
are possible.

In[9]:= sumDo@n_D := Module@8i = 0, result = 0<,
Do@result = result + i, 8i, 1.0, n<D;
resultD
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In[10]:= AverageTimingAsumDoA106E, 3E

Out[10]= 0.868591

In[11]:= sumTable@n_D := Module@8result = 0.0<,
Table@result = result + i, 8i, 1.0, n<D;
resultD

In[12]:= AverageTimingAsumTableA106E, 3E

Out[12]= 0.883381

In[13]:= AverageTimingASumAi, 9i, 1.0, 106=E, 3E

Out[13]= 0.313786

In[14]:= sumApply@n_D := Apply@Plus, NüRange@nDD

In[15]:= AverageTimingAsumApplyA106E, 3E

Out[15]= 0.261534

Of  all  these  approaches  (and  there  are  many  more!),  using  Total  is  optimal.  It  is  designed
expressly for the task of adding lists of numbers.

In[16]:= sumTotal@n_D := Total@NüRange@nDD

In[17]:= AverageTimingAsumTotalA106E, 3E

Out[17]= 0.007976

You  might  wonder  why  Sum ,  which  is  also  designed  for  this  task,  is  slower  than  both  the
functional  approach  with  Apply  and  the  approach  with  Total.  The  Sum  function  contains
hundreds  of  rules  for  the  various  expressions  it  can  handle  and  also  has  to  keep  track  of  an
iterator  i.  Although  these  constructs  are  necessary  for  complicated  summations,  this  extra
overhead comes at a cost that is reflected in the timings here.

As an aside, some mathematical knowledge goes a long way in this particular case. The sum of

the integers 1 through n is given by the binomial expression 
n + 1

2
.

In[18]:= BinomialA106 + 1, 2E êê Timing

Out[18]= 80.000024, 500000500000<

In[19]:= BinomialA106 + 1, 2E ã TotalARangeA106EE

Out[19]= True
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Pattern matching
As we have seen throughout this book, pattern matching is one of the key features of Mathematica
and distinguishes it  from many other programming languages. It  provides a natural mechanism
to identify classes of expressions that you want to operate on or transform based on some criteria
of interest. But for computations where speed is at a premium, the convenience of pattern match-
ing can be overshadowed by slower overall evaluation. In this section we will look at some larger
examples that highlight this issue and discuss other approaches that you might want to consider.

A  fairly  common  task  is  counting  the  number  of  elements  in  an  expression  that  meet  some
criteria. For example, suppose you want to count the positive numbers in a vector. You could use
Count with the appropriate pattern.

In[20]:= vec = RandomReal@8-1, 1<, 810<D

Out[20]= 8-0.517127, 0.999706, 0.838879, -0.948481, 0.152518,
0.314375, -0.475982, -0.855164, 0.451484, 0.679374<

In[21]:= Count@vec, _?PositiveD

Out[21]= 6

For a more arithmetic approach, you could use Sign  which returns -1 for negative numbers and
1 for positive numbers; then add 1 to each element, turning the -1s into 0s and the 1s into 2s.

In[22]:= Sign@vecD

Out[22]= 8-1, 1, 1, -1, 1, 1, -1, -1, 1, 1<

In[23]:= Sign@vecD + 1

Out[23]= 80, 2, 2, 0, 2, 2, 0, 0, 2, 2<

Lastly, add up the numbers and divide by 2.

In[24]:= Total@Sign@vecD + 1D ê 2

Out[24]= 6

The first approach using Count  seems much more natural and easier to code and read, while
the second approach involves a lot of steps to get the same result. You might think that the more
natural,  compact  approach  using  Count  would  be  faster.  But,  for  large  vectors,  this  is  not  the
case.

In[25]:= vec = RandomRealA8-1, 1<, 9106=E;

In[26]:= Count@vec, _?PositiveD êê Timing

Out[26]= 80.532912, 500310<
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In[27]:= Total@Sign@vecD + 1D ê 2 êê Timing

Out[27]= 80.017079, 500310<

Why is this? The pattern matcher can work with many different kinds of expressions – numbers,
strings,  functions,  images,  and  so  on.  One  of  the  things  it  must  do  in  order  to  maintain  this
generality is work with arbitrary arrays of numbers so that it can identify different types that may
be  present  in  that  array.  Total  and  Sign ,  on  the  other  hand,  are  purely  arithmetic  functions
and they can and do operate on packed arrays of numbers whenever possible, thus taking advan-
tage  of  compiled  code.  You  can  see  that  this  is  the  case  by  turning  on  the  display  of  a  message
that is issued whenever an array is unpacked internally.

In[28]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD

Out[28]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø True<

In[29]:= Count@vec, _?PositiveD

Developer`FromPackedArray::unpack : Unpacking array in call to Count. à

Out[29]= 500310

In[30]:= Total@Sign@vecD + 1D ê 2

Out[30]= 500310

The call  to Count  caused the packed vector to be unpacked. This was not the case with Total
and Sign . Although not prohibitively expensive here, pattern matching comes at a cost. We will
have more to say about packed arrays later in this section.

Reset the packed array message option to its default value.

In[31]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD

Out[31]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø False<

As another, less trivial, example, we will look at two approaches for generating upper triangu-
lar matrices – matrices with 0s below the diagonal and,  in this case,  1s everywhere else.  We will
start  by  using  SparseArray .  The  pattern  matcher  is  invoked  to  determine  the  value  of  the
nonzero elements.
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In[32]:= With@8n = 5<,
SparseArray@8i_, j_< ê; i § j Ø 1, 8n, n<D

D êê MatrixForm
Out[32]//MatrixForm=

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

In[33]:= With@8n = 500<,
matSA = SparseArray@8i_, j_< ê; i § j Ø 1, 8n, n<D

D êê Timing

Out[33]= 80.36844, SparseArray@<125 250>, 8500, 500<D<

Using a procedural approach is significantly faster.

In[34]:= With@8n = 5<,
Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D

D êê MatrixForm
Out[34]//MatrixForm=

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

In[35]:= With@8n = 500<,
matT = Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D;

D êê Timing

Out[35]= 80.010477, Null<

That is over thirty times faster using If  to determine the nonzero elements. The comparison is a
bit unfair since we are not accounting for the internals of Table  compared with SparseArray .
But  you  could  check  that,  in  general,  creating  sparse  array  objects  is  quite  fast  compared  with
using Table for similarly-sized expressions.

In[36]:= matT = TableA0, 9i, 104=, 9j, 104=E; êê Timing

Out[36]= 82.65011, Null<

In[37]:= matSA = SparseArrayA8_, _< Ø 0, 9104, 104=E; êê Timing

Out[37]= 80.000062, Null<
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Only one rule was necessary to create this sparse array of 0s.

In[38]:= ArrayRules@matSAD

Out[38]= 88_, _< Ø 0<

For  the  upper  triangular  matrix  above,  the  position index for  every  element  had to  be  compared
with  the  pattern  to  determine  its  value.  The  approach  using  Table  had  just  as  many  compar-
isons to make but it did not invoke the pattern matcher to do so.

We  should  check  to  make  sure  that  the  matrices  produced  by  these  two  approaches  are  the
same.

In[39]:= matSA ã matT

Out[39]= True

As an aside, the two matrices are not identical as one has the structure of a sparse array and the
other is a list. SameQ (===) tests if they have identical structures and elements.

In[40]:= matSA === matT

Out[40]= False

Reducing size of computation
Although  it  may  seem  obvious,  you  should  look  to  reduce  the  raw  number  of  computations
performed when trying to optimize your programs. Usually, such inefficiencies are not apparent
on  a  first  look.  As  an  example,  consider  the  following  two  loops  used  to  add  up  the  first  one
million integers.

In[41]:= I

ForAi = 0; result = 0, i § 106, i++, result = result + iE;

result

M êê Timing

Out[41]= 82.25038, 500000500000<

In[42]:= I

result = 0;

DoAresult = result + i, 9i, 1, 106=E;

result

M êê Timing

Out[42]= 80.888957, 500000500000<

Why is the Do loop faster? Think about how many computations are done in each loop. With the
For  loop, there is a comparison of i with 10

6, an increment of i, the addition result + i, and
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an  assignment  to  result.  That  is  essentially  four  computations  each  time  through  the  loop.
Inside the Do  loop,  there is  the addition result + i,  the assignment,  and the increment of  the
iterator i. There are at least 25% fewer raw computations with the Do loop for this computation.

As a more applied example, consider the Sieve of Eratosthenes we implemented in Section 6.3.
For each value of p inside the For loop, the Do  loop runs for i = 2 p to i = n in increments of p.
In the code below, we have made a slight modification to Sieve  to add a counter that gives the
number of iterations of the inner Do loop.

In[43]:= SieveCnt@n_IntegerD := Module@8ints = Range@nD, p, cnt = 0<,
For@p = 2,
p � 1 && p § Floor@Sqrt@nDD,
p++,
Do@ints@@iDD = 1; cnt++, 8i, 2 p, n, p<DD;

DeleteCases@ints, 1D;
cnt

D

For this computation, 532 988 iterations of the inner Do loop were performed.

In[44]:= SieveCntA105E êê Timing

Out[44]= 81.13214, 532988<

So  how  could  we  reduce  the  overall  number  of  computations?  We  will  use  list  component
assignment, discussed in Section 3.3. We do this by having the Do  loop cross out values (assign a
value of 1) to multiples of p in the list ints, but instead of using the For loop to get those values
of p, use the Part  function with the Span  shorthand 2 p ;; -1 ;; p indicating that we extract
parts 2 p through the end in steps of p, that is, the multiples of p.

In[45]:= Sieve2@n_IntegerD := ModuleB8ints = Range@nD<,

DoBints@@2 p ;; -1 ;; pDD = 1,

:p, 2, n >F;

DeleteCases@ints, 1DF

First let us do a few basic checks for correctness.

In[46]:= Sieve2@100D

Out[46]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<
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In[47]:= Length@Sieve2@1000DD

Out[47]= 168

In[48]:= PrimePi@1000D

Out[48]= 168

Next we check the speed of this function.

In[49]:= Sieve2A105E; êê Timing

Out[49]= 80.02608, Null<

That  is  almost  two orders  of  magnitude  faster!  Let  us  count  the  number  of  iterations  inside  the
Do loop in Sieve2.

In[50]:= Sieve2Cnt@n_IntegerD := ModuleB8ints = Range@nD, cnt = 0<,

DoBints@@2 p ;; -1 ;; pDD = 1;

cnt++,

:p, 2, n >F;

DeleteCases@ints, 1D;
cnt

F

In[51]:= Sieve2CntA105E êê Timing

Out[51]= 80.025143, 315<

Although it appears as if we have reduced the sheer number of computations from over 500 000

to about 300, that is not quite accurate – it is a bit subtle as to why things have in fact been sped
up.  For  Sieve2,  there  is  an  implicit  iteration  given  by  intsP2 p ;; -1 ;; pT = 1  that  is,  in
fact,  handled in compiled C code.  So what we are seeing is  the difference between explicit  itera-
tion in Mathematica and implicit iteration that is being done at the level of compiled C code. The
list component assignment transfers that iteration to compiled code and this is what has caused
the significant speedup.

A  different  example  of  superfluous  computation  occurs  when  you  are  passing  a  table  to  a
function that has one of the Hold  attributes. In the following example, the HoldAll  attribute of
Plot  keeps  the  Table  from being evaluated initially.  In  fact,  the  Table  is  evaluated over  and
over as each value of x is used to construct the plot. The first value returned below is the timing,
the second number (45080) is the value of the counter, cnt.
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In[52]:= Block@8cnt = 0<,
Plot@Table@cnt++; LegendreP@n, xD, 8n, 1, 10<D, 8x, 0, 1<D;
cntD êê Timing

Out[52]= 80.299285, 45080<

Forcing the evaluation of the Table  before it  is  passed to Plot  results in far fewer evaluations
there which is reflected in the speedup as well.

In[53]:= Block@8cnt = 0<,
Plot@Table@cnt++; LegendreP@n, xD, 8n, 1, 10<D,
8x, 0, 1<, Evaluated Ø TrueD;

cntD êê Timing

Out[53]= 80.048092, 10<

Many  of  the  plotting  functions  have  the  attribute  Evaluated.  For  those  that  do  not,  you  can
wrap the function to be plotted in Evaluate to the same effect.

Symbolic vs. numeric computation
Another  issue to think about  in  trying to improve the speed and efficiency of  your programs is
the  contrast  between  numeric  and  symbolic  computation.  In  general,  numeric-based  computa-
tion  can  be  quite  fast  as  much  of  it  is  done  on  the  hardware  of  your  machine  rather  than  in
software  (see  the  discussion  in  Section  8.2).  This  is  not  a  hard-and-fast  rule;  many  of  the  linear
algebra operations take advantage of numeric libraries such as Basic Linear Algebra Subprograms
(Blas) that are optimized for the hardware of your machine. As a result, differences in evaluation
time amongst different computers will inevitably occur.

To get a sense of some of the differences between numeric and symbolic computation,  let  us
revisit the radius of gyration tensor computation from Section 8.4. Here is the code developed in
that section.

RadiusOfGyrationTensor@lis_D :=

ModuleA8cmx, cmy, xcoords, ycoords, xy<,

8cmx, cmy< = Mean@lisD;
8xcoords, ycoords< = Transpose@lisD;
xy = Hxcoords - cmxL.Hycoords - cmyL ê Length@lisD;
99MeanAHxcoords - cmxL2E, xy=, 9xy, MeanAHycoords - cmyL2E==E

First, let us compute the tensor for an exact matrix (a lattice walk) and also for a matrix consisting
of approximate numbers (off-lattice walk).

In[54]:= << PwM`RandomWalks`

In[55]:= walkLat = RandomWalkA106, LatticeWalk Ø TrueE;
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In[56]:= RadiusOfGyrationTensor@walkLatD êê Timing

Out[56]= :12.8358, ::
3726499413459 191

62500000000
,
2 620 753 801 968 301

125 000 000 000
>,

:
2620753801968301

125000000000
,
5331 861 173 105 511

250 000 000 000
>>>

In[57]:= walkOffLat = RandomWalkA106, LatticeWalk Ø FalseE;

In[58]:= RadiusOfGyrationTensor@walkOffLatD êê Timing

Out[58]= 80.439694, 8830542.9, 16265.8<, 816 265.8, 141 897.<<<

That is almost one-and-a-half orders of magnitude faster compared with the exact input. So what
is causing this difference? We will focus on the three computations at the heart of this function:
computing  column  means,  a  transpose  operation,  and  a  dot  product.  This  process  of  profiling
code  to  isolate  the  parts  in  which  the  most  time  is  spent  is  something  that  can  be  done  using
integrated development environments  (IDEs)  such as  Wolfram Workbench.  We will  adopt  a  very
basic  approach  here  since  our  function  is  fairly  simple  to  deconstruct.  Section  12.3  discusses
profiling in more detail.

First, here is the column mean computation for the two walks.

In[59]:= 8cmxL, cmyL< = Mean@walkLatD; êê Timing

Out[59]= 80.012443, Null<

In[60]:= 8cmxOL, cmyOL< = Mean@walkOffLatD; êê Timing

Out[60]= 80.004598, Null<

Second, this is the transpose computation.

In[61]:= 8xcoordsL, ycoordsL< = Transpose@walkLatD; êê Timing

Out[61]= 80.025509, Null<

In[62]:= 8xcoordsOL, ycoordsOL< = Transpose@walkOffLatD; êê Timing

Out[62]= 80.09116, Null<

And finally, this is the dot product step.

In[63]:= HxcoordsL - cmxLL.HycoordsL - cmyLL êê Timing

Out[63]= :4.0323,
2620753801968301

125000
>

In[64]:= HxcoordsOL - cmxOLL.HycoordsOL - cmyOLL êê Timing

Out[64]= 90.054526, 1.62658 � 1010=
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The  transpose  operation  is  several  times  faster  for  symbolic  (integer)  input  but  the  absolute
time for the transpose operation is small relative to the overall time for the entire computation; a
large difference in timing occurs for the dot product. We can verify these operations by abstract-
ing  them  out  of  the  context  of  the  radius  of  gyration  computation.  First,  we  compute  the  dot
product on an exact 1000ä1000 matrix, followed by the same computation on a matrix consist-
ing of floating point numbers.

In[65]:= matInt = RandomInteger@100, 81000, 1000<D;

In[66]:= AbsoluteTiming@matInt.matInt;D

Out[66]= 80.697565, Null<

In[67]:= matRe = RandomReal@100, 81000, 1000<D;

In[68]:= AbsoluteTiming@matRe.matRe;D

Out[68]= 80.159191, Null<

A  naive  interpretation  of  this  result  is  that  using  approximate  numbers  for  the  dot  product
provides  a  significant  speedup  compared  with  the  same  operation  using  integers.  But  there  are
two caveats.  First,  the linear algebra libraries that are optimized for your computer may contain
slightly slower or faster implementations for integer or floating point computation than those for
another machine. Second, because Mathematica automatically threads such linear algebra compu-
tations  over  any  multiple  cores  that  are  available,  some  of  these  operations  will  see  significant
speedups on machines with larger numbers of cores. 

In fact,  the difference in timings for many linear algebra operations scales. Behind the scenes,
so to speak, multi-threading is happening automatically. You can get a hint of this by comparing
Timing and AbsoluteTiming  for these operations.

In[69]:= AbsoluteTiming@matRe.matRe;D

Out[69]= 80.158654, Null<

In[70]:= Timing@matRe.matRe;D

Out[70]= 80.301283, Null<

On the machine on which these computations were run, Timing  is  adding the total time spent
on all threads that were launched to do this computation.

So what can you take away from this discussion? If you have a program that you need to speed
up, profiling is a sensible way to find those computations to optimize. Once you find the bottle-
necks, try to see if  you can replace an exact computation with one using approximate numbers.
Of  course,  if  you  need  an  exact  result  for  some  reason,  then  simply  switching  to  approximate
arithmetic is not an option and you will have to consider one of the other approaches discussed
in this chapter.
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Listability
Many Mathematica functions have the Listable  attribute. Functions with this attribute automati-
cally thread across lists element-wise. We have seen examples of this in many places in this book,
for example, with vector and matrix operations:

In[71]:= 81, 2, 3, 4< + 810, 20, 30, 40<

Out[71]= 811, 22, 33, 44<

In[72]:= 10 81, 2, 3, 4, 5<

Out[72]= 810, 20, 30, 40, 50<

But there is much more to listable functions. For large inputs, they can automatically take advan-
tage  of  multi-threading on vector  operations  for  machines  whose  hardware  supports  this.  Most
of  the  elementary  functions  call  specialized  code  that  performs  this  multi-threading  behind  the
scenes.  The way to best  take advantage of  this  behavior is  to use these functions directly on the
vectors or matrices with which you are working. 

Mapping elementary functions like Sin  across a vector is fast, but does not take direct advan-
tage of the listability attribute.

In[73]:= vec = RandomRealA8-100, 100<, 106E;

In[74]:= AbsoluteTiming@Map@Sin, vecD;D

Out[74]= 80.071676, Null<

Simply wrapping Sin  around the input vec  causes a vectorized version of Sin  to be called and
this is the fastest way to perform the computation, essentially working at the speeds of compiled
code.

In[75]:= AbsoluteTiming@Sin@vecD;D

Out[75]= 80.006034, Null<

User-defined functions can inherit the Listable attribute. 

In[76]:= SetAttributes@fun, ListableD;
fun@x_D := IfA-1 < x < 1, Exp@xD, x2E

In[78]:= AbsoluteTiming@fun@vecD;D

Out[78]= 81.918452, Null<

You  can  squeeze  even  more  speed  out  of  this  function  by  defining  it  as  a  pure  function  that  is
listable. This is done by giving Function a third argument, Listable.
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In[79]:= purefun = FunctionA8x<, IfA-1 < x < 1, Exp@xD, x2E, ListableE;

In[80]:= AbsoluteTiming@purefun@vecD;D

Out[80]= 80.107282, Null<

To  generate  a  list  of  all  built-in  functions  that  have  the  listable  attribute  you  can  use
FunctionsWithAttributes defined in Section 5.6.

In[81]:= lis = FunctionsWithAttribute@ListableD;
Length@lisD

Out[82]= 275

In[83]:= RandomSample@lis, 25D

Out[83]= 8NonPositive, ExtendedGCD, Negative, BesselJ,
SpheroidalS2Prime, Sqrt, Ceiling, MakeExpression,
FactorialPower, ChebyshevT, Log, Log10, BesselK,
InverseGudermannian, BetaRegularized, PolyGamma, QBinomial,
ParabolicCylinderD, BitSet, BitAnd, IntegerLength,
StruveL, NumberFieldRootsOfUnity, Together, Factorial2<

Pure functions
The last example in the previous section raises another efficiency issue: the use of pure functions
vs.  formally-defined  functions.  As  a  simple  example,  consider  two  functions,  one  defined  using
pure functions and a second defined using a formal function assignment.

In[84]:= vec = RandomRealA8-100, 100<, 106E;

In[85]:= fun1 = FunctionA8x<, x2 + 1E;

In[86]:= fun2@x_D := x2 + 1

In[87]:= AbsoluteTiming@Map@fun1, vecD;D

Out[87]= 80.065884, Null<

In[88]:= AbsoluteTiming@Map@fun2, vecD;D

Out[88]= 81.301795, Null<

What accounts for this substantial difference in timing? For expressions above a certain size, Map
will  automatically  try  to  compile  that  expression.  Below  is  a  list  of  the  system  options  that  are
involved with internal compilation.
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In[89]:= SystemOptions@"CompileOptions"D

Out[89]= 8CompileOptions Ø 8ApplyCompileLength Ø ¶,

ArrayCompileLength Ø 250, AutoCompileAllowCoercion Ø False,

AutoCompileProtectValues Ø False, AutomaticCompile Ø False,

BinaryTensorArithmetic Ø False, CompileAllowCoercion Ø True,

CompileConfirmInitializedVariables Ø True,

CompiledFunctionArgumentCoercionTolerance Ø 2.10721,

CompiledFunctionMaxFailures Ø 3,

CompileDynamicScoping Ø False, CompileEvaluateConstants Ø

True, CompileOptimizeRegisters Ø False,

CompileReportCoercion Ø False, CompileReportExternal Ø False,

CompileReportFailure Ø False, CompileValuesLast Ø True,

FoldCompileLength Ø 100, InternalCompileMessages Ø False,

ListableFunctionCompileLength Ø 250,

MapCompileLength Ø 100, NestCompileLength Ø 100,

NumericalAllowExternal Ø False, ProductCompileLength Ø 250,

ReuseTensorRegisters Ø True, SumCompileLength Ø 250,

SystemCompileOptimizations Ø All, TableCompileLength Ø 250<<

For expressions whose size is below the threshold of MapCompileLength  little absolute differ-
ence in timing results.

In[90]:= vecSmall = RandomReal@8-100, 100<, 899<D;

In[91]:= AbsoluteTiming@Map@fun1, vecSmallD;D

Out[91]= 80.000398, Null<

In[92]:= AbsoluteTiming@Map@fun2, vecSmallD;D

Out[92]= 80.000197, Null<

Turning off the auto-compile feature by setting the threshold to ¶ shows nearly identical timings
for the computations on the large arrays.

In[93]:= SetSystemOptions@"CompileOptions" Ø "MapCompileLength" Ø ¶D;

In[94]:= AbsoluteTiming@Map@fun1, vecD;D

Out[94]= 81.833040, Null<

In[95]:= AbsoluteTiming@Map@fun2, vecD;D

Out[95]= 81.397250, Null<

For  programs  that  call  functions  within  loops  in  particular,  this  discussion  would  suggest  that
you will see speed improvements by using pure functions on larger arrays whenever possible.
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Reset the system option to its default value.

In[96]:= SetSystemOptions@"CompileOptions" Ø "MapCompileLength" Ø 100D;

Packed arrays
As indicated in Section 8.3, large arrays are operated on very quickly and efficiently when they are
packed. Many functions automatically pack arrays.

In[97]:= Range@1000D êê Developer`PackedArrayQ

Out[97]= True

In[98]:= RandomIntegerA80, 2<, 103E êê Developer`PackedArrayQ

Out[98]= True

In[99]:= FourierARandomIntegerA80, 2<, 103EE êê Developer`PackedArrayQ

Out[99]= True

But  some  functions  do  not,  and  in  particular,  many  expressions  created  from  scratch  are  not
packed.  For  example,  the  compass  directions  used  in  the  random  walk  example  developed  in
Section 13.1, are not packed.

In[100]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;
Developer`PackedArrayQ@NSEWD

Out[101]= False

In[102]:= ByteCount@NSEWD

Out[102]= 488

The walk function using Accumulate  and RandomChoice  is already quite fast. It only takes
a few seconds to perform a two-dimensional lattice walk of ten million steps.

In[103]:= AccumulateARandomChoiceANSEW, 107EE; êê AbsoluteTiming

Out[103]= 83.385123, Null<

For this function, it is not speed that is a constraint, it is memory use. The output of walk2D is an
array of dimensions 10 000 000ä2. Its memory footprint is quite large, over 1 GB!

In[104]:= AccumulateARandomChoiceANSEW, 107EE êê ByteCount

Out[104]= 1120000040

It turns out that RandomChoice  is the culprit. When choosing from a set of alternatives it does
not produce a packed array automatically.
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In[105]:= RandomChoice@NSEW, 1000D êê Developer`PackedArrayQ

Out[105]= False

Because the original array NSEW  was not itself  packed, RandomChoice  did not create a packed
array  as  output.  If  we  force  NSEW  to  become  packed,  then  RandomChoice  will  generate  a
packed array.

In[106]:= NSEWpacked =
Developer`ToPackedArray@880, 1<, 80, -1<, 81, 0<, 8-1, 0<<D;

RandomChoice@NSEWpacked, 1000D êê Developer`PackedArrayQ

Out[107]= True

With  this  new  definition,  the  random  walk  code  produces  a  packed  array  result.  The  computa-
tion also runs about  four  to eight  times faster  than before  and consumes less  than one-tenth of
the memory.

In[108]:= packedResult = AccumulateARandomChoiceANSEWpacked, 107EE; êê

AbsoluteTiming

Out[108]= 80.360374, Null<

In[109]:= Developer`PackedArrayQ@packedResultD

Out[109]= True

In[110]:= ByteCount@packedResultD

Out[110]= 80000168

Note that  the Accumulate  function was given a  packed array from RandomChoice  and it
produced  a  result  that  was  also  packed.  Many  Mathematica  functions,  but  not  all,  will  produce
packed results  when given packed input.  It  is  not  difficult  to  inadvertently  trigger  unpacking of
an array,  so  a  useful  debugging technique is  to  ask Mathematica  to  issue  a  message whenever  an
array is forced to unpack.

In[111]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD

Out[111]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø True<

To see the warning message in action,  map a function with no definition over the packed array
returned by RandomChoice.
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In[112]:= foo êü RandomChoice@NSEWpacked, 81000<D;
During evaluation of In[112]:=

Developer`FromPackedArray::punpackl1 :

Unpacking array with dimensions 81000, 2< to level 1. à

You probably will not want this message turned on all the time, but it can be quite handy if you
are trying to understand where in your program an array is being unpacked.

In[113]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD

Out[113]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø False<

Other  functions  in  SystemOptions  are  worth  exploring;  for  example,  note  the  value  of
TableCompileLength, 250. This is the threshold above which Table  will automatically pack
its output.

In[114]:= vec = Table@RandomReal@D, 8249<D;
Developer`PackedArrayQ@vecD

Out[115]= False

In[116]:= vec = Table@RandomReal@D, 8250<D;
Developer`PackedArrayQ@vecD

Out[117]= True

Below  this  threshold,  the  input  is  small  enough  that  it  can  be  operated  on  directly  without  a
significant loss of speed. A balance is struck between the speed gained from working with packed
arrays and the extra overhead to covert between unpacked and packed expressions.

One  last  note  about  manual  packing:  you  can  only  pack  arrays  consisting  of  machine-size
integers, reals, or complex numbers. A machine-real can be tested with MachineNumberQ .

In[118]:= MachineNumberQ@N@1, 100DD

Out[118]= False

For integers, machine numbers are typically in the range [-2
31 + 1, 2

31 - 1].

In[119]:= MapADeveloper`MachineIntegerQ, 9-231, -231 + 1, 231 - 1, 231=E

Out[119]= 8False, True, True, False<

In[120]:= smallInts = RandomIntegerA920, 231=, 8100<E;

In[121]:= Developer`PackedArrayQ@smallIntsD

Out[121]= True
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In[122]:= longInts = RandomIntegerA9231, 263=, 8100<E;

In[123]:= Developer`PackedArrayQ@longIntsD

Out[123]= False

One final point: machine numbers and Mathematica’s support for them are evolving concepts –
as  machines  become  more  powerful  and  the  libraries  that  support  them  are  extended,  these
definitions  will  change.  Mathematica  9  (not  released  when  this  book  went  to  print)  will  support
machine numbers on 64-bit  machines that are larger than those discussed here and so numbers
in the range [-2

63 + 1, 2
63 - 1] will be considered machine numbers.

(Mathematica 9) In[1]:=

MapADeveloper`MachineIntegerQ, 9-263, -263 + 1, 263 - 1, 263=E
(Mathematica 9) Out[1]=

8False, True, True, False<

Exercises
1. Modify AverageTiming to return both the average time and the result of evaluating its argument, 

mirroring the behavior of Timing and AbsoluteTiming .

2. The nth triangular number is defined as the sum of the integers 1 through n. They are so named 
because they can be represented visually by arranging rows of dots in a triangular manner (Figure 
12.1). Program several different approaches to computing triangular numbers and compare their 
efficiency.

Figure 12.1. Pictorial representation of the first five triangular numbers.

3. Several different implementations of the Hamming distance computation were given in Section 5.8; 
some run much faster than others. For example, the version with bit operators runs about one-and-
a-half orders of magnitude faster than the version using Count and MapThread . Using some of the 
concepts from this section, determine what is causing these differences.

In[1]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD

In[2]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[3]:= sig1 = RandomIntegerA1, 9106=E;

In[4]:= sig2 = RandomIntegerA1, 9106=E;
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In[5]:= Timing@HammingDistance1@sig1, sig2DD

Out[5]= 80.459499, 498955<

In[6]:= Timing@HammingDistance2@sig1, sig2DD

Out[6]= 80.00906, 498955<

12.3 Parallel processing
Most  modern  computers  now  come  with  multiple  core  processors  enabling  many  tasks  to  be
performed  in  parallel.  Many  system  operations  are  automatically  distributed  across  multiple
processors and Mathematica also does some automatic parallelization, particularly for many linear
algebra operations. But there are plenty of computations that can be done in parallel that are not
otherwise  automatically  threaded  or  parallelized.  In  this  section  we  will  see  how  you  can  use
Mathematica’s parallel processing framework to speed up many kinds of computation.

Depending upon your licensing,  Mathematica  can be launched and run on each available  core
on your computer.  In general,  it  will  handle the communication between the master kernel and
the  subkernels  automatically  and  when  the  computation  is  done,  it  will  also  gather  the  results
from  the  subprocesses.  Although  there  are  tools  for  getting  fine  control  over  many  of  these
aspects of parallel computation, in this section we will introduce the basic functionality only and
point you at other resources for further study.

Basic examples
Let  us  start  with  a  straightforward  example  –  factoring  a  list  of  large  integers.  (These  integers
were  created  by  multiplying  several  large  prime  numbers  together,  giving  numbers  that  are
generally more difficult to factor than a random integer of the same size.)

In[1]:= ints = 86816621442891306800 904 744 383 119 905 653 635 103 851,
73388383728563244425930 590 337 481 080 121 879 717 077,
52013328811529395666589 446 962 910 372 930 994 642 737,
505513202541467917512 749 204 086 148 326 575 935 117 323<;

Doing the computation on one processor takes about eight seconds.

In[2]:= AbsoluteTiming@Map@FactorInteger, intsDD

Out[2]= 87.460074, 888322901609390 167, 1<, 83 515 118 683 942 573, 1<,
86005635550849761, 1<<, 882 294 373 045 611 351, 1<,
83323461128609971, 1<, 89 624 378 352 212 737, 1<<,

881570432314085519, 1<, 85 086 852 194 050 141, 1<,
86510979192425803, 1<<, 887 415 796 267 244 853, 1<,
87673045464769561, 1<, 88 883 967 089 924 631, 1<<<<
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The machine on which this computation was performed has two processors on which Mathemat-
ica can run kernels. (Actually, the machine has two physical processors and two virtual ones and
so $ProcessorCount returns 4.) 

In[3]:= $ProcessorCount

Out[3]= 4

This launches Mathematica on each of the available processors.

In[4]:= LaunchKernels@D

Out[4]= 8KernelObject@1, localD, KernelObject@2, localD,
KernelObject@3, localD, KernelObject@4, localD<

To do the factorization in parallel, use ParallelMap  instead of Map. Mathematica will automati-
cally distribute the computations across the subkernels and return the result of each.

In[5]:= AbsoluteTiming@ParallelMap@FactorInteger, intsDD

Out[5]= 83.935546, 888322901609390 167, 1<, 83 515 118 683 942 573, 1<,
86005635550849761, 1<<, 882 294 373 045 611 351, 1<,
83323461128609971, 1<, 89 624 378 352 212 737, 1<<,

881570432314085519, 1<, 85 086 852 194 050 141, 1<,
86510979192425803, 1<<, 887 415 796 267 244 853, 1<,
87673045464769561, 1<, 88 883 967 089 924 631, 1<<<<

When  finished,  you  can  terminate  the  Mathematica  processes  on  the  subkernels  by  evaluating
CloseKernels.

In[6]:= CloseKernels@D

Out[6]= 8KernelObject@1, local, <defunct>D,
KernelObject@2, local, <defunct>D,
KernelObject@3, local, <defunct>D,
KernelObject@4, local, <defunct>D<

If you prefer, launching and closing kernels can be managed using a graphical user interface by
selecting  Parallel  Kernel  Configuration  or  Parallel  Kernel  Status  from  the  Evaluation  menu  (Figure
12.2).  From  this  interface  you  can  set  the  properties  that  you  want  to  monitor  as  well  as  set
various configuration parameters for your kernels.
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Figure 12.2. Parallel kernel user interface.

Let  us  look  at  another  example,  this  time  drawn  from  Section  5.2  where  we  computed
Mersenne primes.

In[7]:= SelectATableA2Prime@nD - 1, 8n, 1, 1000<E, PrimeQE; êê

AbsoluteTiming

Out[7]= 858.590406, Null<

Although there is a parallel version of Table, we will use another function, Parallelize , that
automatically handles much of the parallelization.

In[8]:= LaunchKernels@D

Out[8]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[9]:= ParallelizeASelectATableA2Prime@nD - 1, 8n, 1, 1000<E,

PrimeQEE; êê AbsoluteTiming

Out[9]= 832.961034, Null<

A  Method  option  is  available  for  Parallelize  with  which  you  can  set  the  size  of  the  pieces
that  are sent  to the kernels  to give you some additional  control  of  overhead and load balancing
amongst  the  kernels.  Setting  the  method  to  "FinestGrained"  breaks  ups  the  computation
into  the  smallest  possible  chunks.  "CoarsestGrained"  on  the  other  hand,  breaks  up  the
computation  into  as  many  pieces  as  there  are  kernels  and  is  more  appropriate  when  all  the
computational chunks take the same amount of time.

In[10]:= ParallelizeASelectATableA2Prime@nD - 1, 8n, 1, 1000<E, PrimeQE,

Method Ø "FinestGrained"E; êê AbsoluteTiming

Out[10]= 834.440888, Null<

Another function for parallel computation is ParallelEvaluate. With it, you can evaluate
any expression on all subkernels or some subset of the subkernels if you wish. The key difference
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between ParallelEvaluate  and other functions is that functions such as Parallelize  or
ParallelMap  distribute  the  computation  across  subkernels,  whereas  ParallelEvaluate
does the same computation on all kernels.

In[11]:= ParallelEvaluate@8$KernelID, $ProcessID, AbsoluteTime@D<D

Out[11]= 995, 11906, 3.548690244467625 � 109=,

96, 11907, 3.548690244467849 � 109=,

97, 11908, 3.548690244468009 � 109=,

98, 11909, 3.548690244468174 � 109==

Of  course,  some  computations  do  not  parallelize  neatly.  For  example,  any  computation  that
depends upon previous values is  generally not a good candidate for parallel  computation as the
overhead of communicating between subkernels would often erase any gains that might be made
by splitting the computation.

In[12]:= Parallelize@Accumulate@Range@40DDD
Parallelize::nopar1 :

Accumulate@Range@40DD cannot be parallelized; proceeding with sequential evaluation. à

Out[12]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,
153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406,
435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820<

It is important also to note that many of the built-in functions automatically multi-thread, thus
gaining  a  significant  degree  of  parallelism.  What  this  means  is  that  trying  to  run  some  of  these
functions  using  the  parallel  framework  will  not  give  any  further  speedup  as  they  already  are
running in parallel, but behind the scenes so to speak. This is true of the linear algebra functions
in particular.

In[13]:= mat = RandomReal@1, 8500, 500<D;

In[14]:= Do@Inverse@matD, 8100<D êê AbsoluteTiming

Out[14]= 83.325530, Null<

In[15]:= ParallelDo@Inverse@matD, 8100<D êê AbsoluteTiming

Out[15]= 82.947143, Null<

Distributing definitions across subkernels
Let  us  now  apply  these  ideas  to  some  more  substantial  computations  where  the  use  of  parallel
processing provides a real boost.

Recall the functions developed in Section 10.4 for determining if a point is inside or outside of
a polygon.
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In[16]:= Needs@"PwM`Chap10Visualization`"D

In[17]:= ? PointInPolygonQ

PointInPolygonQ@poly,ptD returns True if the
point pt is inside the polygon specified by the set of vertices poly.

Given a large list of points and a polygon, it takes some time to determine which points are inside
the polygon.

In[18]:= pts = RandomReal@8-1, 3<, 810 000, 2<D;
poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<, 82., -1.1<,

82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<, 8-0.5, 0<<;

In[20]:= gbPts = GatherBy@pts, PointInPolygonQ@poly, ÒD &D;
Graphics@8

8PointSize@TinyD, If@PointInPolygonQ@poly, gbPts@@1, 1DDD,
gbPts, Reverse@gbPtsDD ê. 8in_List, out_List< ß

88Black, Pointüin<, 8LightGray, Pointüout<<<,
Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@MediumD, Point@polyD<D

Out[21]=

In[22]:= AbsoluteTiming@Map@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[22]= 81.713795, Null<

This is a good candidate for a parallel computation since the large set of points can be distributed
across the subkernels and each checked against the polygon using the PointInPolygonQ code. 

In[23]:= AbsoluteTiming@ParallelMap@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[23]= 83.558163, Null<

Using  ParallelMap  gave  us  no  speedup  here.  What  happened  is  that  the  subkernels  knew
nothing of  PointInPolygonQ  nor  any of  the  other  code that  was  given as  user-defined func-
tions. In such situations, you will need to distribute these dependent definitions across the subker-
nels before running the parallel computation.
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In[24]:= DistributeDefinitions@
PointInPolygonQ, TriangleArea, pts, polyD

Out[24]= 8PointInPolygonQ, TriangleArea, pts<

Now  the  speedup  is  quite  pronounced  –  about  four  times  the  serial  computation  –  which  is  all
that we can expect on a system with four subkernels.

In[25]:= Timing@ParallelMap@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[25]= 80.293113, Null<

In[26]:= CloseKernels@D;

Profiling
When you are  developing programs it  is  not  always  obvious  where  speed bottlenecks  may live.
Especially with longer programs, there are numerous steps where the evaluation can bog down. If
you  are  trying  to  determine  which  steps  will  benefit  from  running  in  parallel  you  need  to  get
some sense of where most of the time is being spent. One way to help locate the computational
bottlenecks is to profile the code. Integrated development environments such as Wolfram Work-
bench  have  built-in  profilers,  but  here  we  will  create  a  simple  set  of  profiling  steps  to  determine
where we should focus our efforts in improving the running time of our code. 

Recall the Blanagrams function from Section 9.5. 

In[27]:= Blanagrams@word_StringD := Module@8blana<,
blana = Table@Map@StringReplacePart@word, ch, 8Ò, Ò<D &,

Range@StringLength@wordDDD,
8ch, CharacterRange@"a", "z"D<D;

DeleteDuplicates@Flatten@Map@Anagrams, blana, 82<DDDD

Although the nested functions might obscure the numerous computations being done here,  we
will break things down into three parts:

Ê using Table to create a list of alternate “words” by sequentially replacing each letter in 
word with one of the twenty-six letters a through z;

Ê mapping Anagrams across the list produced by Table;

Ê flattening and deleting duplicates.

To do the profiling of the steps in this code, we first create a small auxiliary function that wraps
AbsoluteTiming  around an expression and adds a tag to make it  easy to identify the various
steps  of  the  computation.  The  timing  function  is  given  the  HoldAll  attribute  to  prevent
AbsoluteTiming  from evaluating before its argument is passed to it.
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In[28]:= timing@expr_, tag_D :=

Print@8NumberForm@FirstüAbsoluteTiming@exprD, 10D, tag<D
SetAttributes@timing, HoldAllD;

For the test word, "string",  here are the three steps pulled out of the Blanagrams  function.
First, load the package containing the definition of Anagrams.

In[30]:= Needs@"PwM`Chap09Strings`"D

In[31]:= word = "string";
timing@tmp = Table@

Map@StringReplacePart@word, ch, 8Ò, Ò<D &,
Range@StringLength@wordDDD,

8ch, CharacterRange@"a", "z"D<D;, "table"D;

timing@Flatten@tmp2 = Map@Anagrams, tmp, 82<DD;,
"map Anagrams"D;

timing@DeleteDuplicates@Flatten@tmp2DD;,
"flatten and delete duplicates"D

80.001996, table<

87.357115, map Anagrams<

80.000043, flatten and delete duplicates<

Creating  the  many  possible  letter  combinations  is  very  quick.  Similarly,  flattening  and  deleting
duplicates at the end is not too expensive. The greatest part of this computation is spent mapping
Anagrams  across  the  many  word  combinations.  So  we  can  simply  try  to  parallelize  that  using
ParallelMap .

In[35]:= BlanagramsParallel@word_StringD := Module@8blana<,
blana = Table@

Map@StringReplacePart@word, ch, 8Ò, Ò<D &,
Range@StringLength@wordDDD,

8ch, CharacterRange@"a", "z"D<D;
DeleteDuplicatesü
Flatten@ParallelMap@Anagrams, blana, 82<DD

D

There is no need to distribute BlanagramsParallel across the subkernels as the only parallel
piece in it  is  ParallelMap .  But ParallelMap  is  mapping Anagrams  which is  not a built-in
function, so we need to distribute that definition across the subkernels.
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In[36]:= LaunchKernels@D

Out[36]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[37]:= DistributeDefinitions@AnagramsD

Out[37]= 8Anagrams<

In[38]:= BlanagramsParallel@"strands"D êê AbsoluteTiming

Out[38]= 819.959044, 8strands, stander,
sanders, dristan, strains, rostand, tundras<<

For comparison, here is the computation done serially on one kernel.

In[39]:= Blanagrams@"strands"D êê AbsoluteTiming

Out[39]= 833.712342, 8strands, stander,
sanders, dristan, strains, rostand, tundras<<

On the machine on which this computation was run, we are getting almost a 2×  speedup. Recall
that each evaluation of Anagrams makes a call to DictionaryLookup to check that the string
is in fact a word appearing in the dictionary. This bit of extra overhead is a further bottleneck in
this particular code. We could next look to Anagrams as another source of code to optimize and
speed up, but we will leave that as an exercise to the interested reader.

Note:  There  is  a  mechanism  to  automatically  launch  packages  on  all  parallel  kernels.
ParallelNeedsA" package` "E  evaluates  NeedsA" package` "E  on  each  of  the  available

subkernels.

In[40]:= ParallelNeeds@"PwM`Chap09Strings`"D

You can then see that the package has been added to the context path of each subkernel.

In[41]:= ParallelEvaluate@$ContextPath, Kernels@DD

Out[41]= 88PwM`Chap09Strings`, PacletManager`,
WebServices`, System`, Global`<, 8PwM`Chap09Strings`,
PacletManager`, WebServices`, System`, Global`<,

8PwM`Chap09Strings`, PacletManager`, WebServices`,
System`, Global`<, 8PwM`Chap09Strings`,
PacletManager`, WebServices`, System`, Global`<<

In[42]:= ParallelEvaluate@Anagrams@"float"DD

Out[42]= 88float, aloft<, 8float, aloft<,
8float, aloft<, 8float, aloft<<

In[43]:= CloseKernels@D;

522 Optimizing Mathematica programs



Exercises
1. In the eighteenth century, Leonhard Euler proved that all even perfect numbers must be of the form 

2p-1 H2p - 1L for 2p - 1 prime. (No one has yet proved that any odd perfect numbers exist.) Use this 
fact to find all even perfect numbers for p < 10

4.

2. The following code can be used to create a plot of the Mandelbrot set. It uses Table to compute the 
value for each point in the complex plane on a small grid. We have deliberately chosen a relatively 
coarse grid (n = 100) as this is an intensive and time-consuming computation. The last argument to 
NestWhileList, 250 here, sets a limit on the number of iterations that can be performed for each 
input.

In[1]:= Mandelbrot@c_D :=

Length@NestWhileList@Ò ^2 + c &, 0, Abs@ÒD < 2 &, 1, 250DD

In[2]:= data = WithB8n = 100<, TableBMandelbrot@x + I yD,

:y, -0.5, 0.5,
1

n
>, :x, -1.75, -0.75,

1

n
>FF;

In[3]:= ArrayPlot@data, ColorFunction Ø "GreenPinkTones"D

Out[3]=

Increase the resolution of the graphic by running the computation in parallel. 

12.4 Compiling
In addition to the techniques outlined earlier in this chapter, you can also create compiled func-
tions  in  Mathematica  in  a  variety  of  ways.  Compiled  functions  are  objects  that  can  be  executed
quickly  by  being  close  to  the  machine  code  of  your  computer.  The  great  advantage  of  working
with compiled functions is that they are very fast.  Part of the reason they are fast is that they do
not  need to  worry  about  all  the  possible  kinds  of  expressions  on which they might  be  called  to
operate. For example, the built-in Plus  function has to handle any kind of argument it might be
given. 
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In[1]:= 81 ê 3 + 2, 2 - 4 I + 5.1, 2 + 7<

Out[1]= :
7

3
, 7.1 - 4. Â, 9>

This kind of generality comes at a cost: Mathematica  needs to keep track of the kinds of numbers
you are passing to arithmetic functions so that the correct internal rule is applied, precision and
accuracy are tracked and maintained, and so on. A compiled function, on the other hand, has its
argument type explicitly specified so that it only operates on arguments of that type.

Compile
Let  us  start  with a  simple example,  creating a  compiled function called cfun.  It  is  expecting an
argument x, that must match the pattern _Real, that is, the argument must have head Real. 

In[2]:= cfun = Compile@88x, _Real<<, x^2 + 1D

Out[2]= CompiledFunctionA8x<, x2 + 1, -CompiledCode-E

Mathematica  creates  a  CompiledFunction  object  using  something  called  the  Mathematica
virtual  machine.  Essentially  Mathematica  contains  a  compiler  that  can  be  used  for  this  purpose.
The advantage is that it is easy to use and does not require you to have a C compiler installed on
your computer. On the other hand, it is not going to compete in optimized code with a commer-
cial C compiler. We will look at compiling to C in the next section.

You use a compiled function like any other, for example, you can evaluate it at an argument or
plot it, or integrate it.

In[3]:= cfun@2.0D

Out[3]= 5.

In[4]:= Plot@cfun@xD, 8x, -1, 1<D

Out[4]=

-1.0 -0.5 0.5 1.0

1.2

1.4

1.6

1.8

2.0

In[5]:= NIntegrate@cfun@xD, 8x, 0, 1<D

Out[5]= 1.33333
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The point of creating and working with compiled functions is  that they can speed up computa-
tions.  This  is  most  pronounced  with  expressions  that  have  to  be  evaluated  many  times.  For
example, let us return to the function created in Section 12.1.

In[6]:= fun@x_D := IfA-1 < x < 1, Exp@xD, x2E

In[7]:= vec = RandomRealA8-100, 100<, 106E;

In[8]:= AbsoluteTiming@Map@fun, vecD;D

Out[8]= 81.948716, Null<

In[9]:= purefun = FunctionA8x<, IfA-1 < x < 1, Exp@xD, x2E, ListableE;

In[10]:= AbsoluteTiming@purefun@vecD;D

Out[10]= 80.107674, Null<

Here is the compiled version.

In[11]:= compfun = CompileA88x, _Real<<, IfA-1 < x < 1, Exp@xD, x2EE

Out[11]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[12]:= AbsoluteTiming@Map@compfun, vecD;D

Out[12]= 80.205933, Null<

Not  bad,  but  we  can  go  a  bit  further  and  add  a  runtime  attribute  to  the  compiled  function  that
makes it listable.

In[13]:= compfunListable = CompileA88x, _Real<<,

IfA-1 < x < 1, Exp@xD, x2E, RuntimeAttributes Ø 8Listable<E

Out[13]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[14]:= AbsoluteTiming@compfunListable@vecD;D

Out[14]= 80.098877, Null<

Another option, Parallelization Ø True,  sets the function to run in parallel  if  run on a
multi-core machine.
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In[15]:= compfunParallel =

CompileA88x, _Real<<, IfA-1 < x < 1, Exp@xD, x2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[15]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[16]:= AbsoluteTiming@compfunParallel@vecD;D

Out[16]= 80.098661, Null<

An  additional  option  can  be  specified  to  optimize  for  speed:  "RuntimeOptions"  with  the
value "Speed" . The caveat here is that this turns off checks and warning messages that might be
issued if underflow or overflow errors were caught. Use it with caution.

In[17]:= compfunSpeed = CompileA88x, _Real<<,

IfA-1 < x < 1, Exp@xD, x2E, RuntimeAttributes Ø 8Listable<,

Parallelization Ø True, "RuntimeOptions" Ø "Speed"E

Out[17]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[18]:= AbsoluteTiming@compfunSpeed@vecD;D

Out[18]= 80.088693, Null<

If  you  want  to  see  some  of  the  internals  of  what  Compile  produces  and  operates  on,  use
CompilePrint  which is defined in the CompiledFunctionTools package (we only show a short
fragment of the code).

In[19]:= << CompiledFunctionTools`

In[20]:= CompilePrint@compfunSpeedD êê Short
Out[20]//Short=

1 argument
1 Boolean register
2 In … 0

8 R2 = Square@ R0D
9 R4 = R2
10 Return
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Compiling to C
If you have a third-party C compiler installed on your computer, you can compile your functions
to C, thus taking advantage of any optimizations inherent in your C compiler. If you are not sure
if  your system has a  C compiler  installed,  you can evaluate SystemInformation@D  and look
under  the  section  External  Compilers  �  Available  C  Compilers.  Alternatively,  you  can  list  any  C
compilers that are installed on your computer as follows:

In[21]:= Needs@"CCompilerDriver`"D

In[22]:= CCompilers@D

Out[22]= 88Name Ø GCC,
Compiler Ø CCompilerDriver`GCCCompiler`GCCCompiler,
CompilerInstallation Ø êusrêbin, CompilerName Ø Automatic<<

The  syntax  to  compile  to  C  code  is  Compile@…, CompilationTarget Ø "C"D.  For
example, the following code compiles the function from the last section to C. 

In[23]:= compfunC = CompileA88x, _Real<<,

IfA-1 < x < 1, Exp@xD, x2E, CompilationTarget Ø "C"E

Out[23]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

For  this  example,  the  C  compiler  provides  a  speedup  over  using  Compile  using  Mathematica’s
virtual machine as we did in the previous section.

In[24]:= AbsoluteTiming@Map@compfunC, vecD;D

Out[24]= 80.073675, Null<

Finally, let us combine several of the optimization suggestions in this chapter in one nontrivial
computation.  We  will  create  a  compiled  function  that  computes  the  points  in  the  Julia  set.  The
Julia  set  is  the  set  of  points  in  the  complex  plane  that  remain  unbounded  under  iteration  of  a
function  such  as  z2 + c.  For  most  values  of  c œ �  (the  set  of  complex  numbers),  this  iteration
generates  fractals.  The  basic  idea  is  to  fix  a  value  of  c  in  the  complex  plane  and  then  iterate  the
function for points z  on a fine grid in the complex plane. Since there are many points and many
iterations for each point,  this is  very computationally intensive and so it  is  a good candidate for
some of the techniques we have been discussing in this chapter.

First,  here is  the compiled version of  the Julia  set  function.  Length  returns the length of  the
list of iterates. We will iterate each point until the iterate is a certain distance from the origin. 
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In[25]:= cJulia = Compile@88z, _Complex<, 8c, _Complex<<,
LengthüFixedPointList@HÒ ^2 + c &L,

z, 100, SameTest Ø HAbs@Ò2D > 2.0 &LD,
CompilationTarget Ø "C", RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, "RuntimeOptions" Ø "Speed"D

Out[25]= CompiledFunctionA8z, c<,

LengthAFixedPointListAÒ12 + c &, z, 100,

SameTest Ø HAbs@Ò2D > 2. &LEE, -CompiledCode-E

The grid of values that the function will evaluate is given by ParallelTable below. The result
is passed to ArrayPlot  which colors each point in the grid according to its iteration length as
given by cnt.

In[26]:= LaunchKernels@D

Out[26]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[27]:= DistributeDefinitions@cJuliaD

Out[27]= 8cJulia, z<

Different Julia sets are generated for different complex numbers c.  Here is the Julia set for the
complex number, c = -0.8 -0.156 Â.

In[28]:= WithB8res = 250<,

ArrayPlotBParallelTableB-cJulia@x + y Â, -0.8 - 0.156 ÂD,

:y, -1.5, 1.5,
1

res
>, :x, -1.5, 1.5,

1

res
>F,

ColorFunction Ø "Pastel"FF êê AbsoluteTiming

Out[28]= :3.436401, >

Changing c means changing both its real and imaginary parts so this is a good candidate for a
2D slider. Two modifications are needed here: the value of c  from the parameter list will be a list
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of  two  numbers  that  need  to  be  converted  into  a  complex  number  for  the  second  argument  of
cJulia;  and we have reduced the resolution of the grid of points used to make quick updating
easier. We also have included a setter bar to select different grid resolutions. The default value for
the resolution is set low so that you can quickly move the 2D slider to find an interesting result
and then click one of the higher-resolution buttons to see it in full fidelity.

In[29]:= ManipulateB

WithB8res1 = res<,

ArrayPlotBTableBcJulia@x + y I, Apply@Ò1 + Ò2 I &, cDD,

:y, -1.5, 1.5,
1

res1
>, :x, -1.5, 1.5,

1

res1
>F,

ColorFunction Ø "Pastel",
PlotLabel Ø Style@StringForm@"c = `1`",

Dynamic@HÒ1 + Ò2 I &L üü cDD, 10DFF,

Row@8
Control@
88c, 8-0.123, 0.745<, "c"<, 8-1.5, -1.5<, 81.5, 1.5<<D,

Spacer@40D,
Control@88res, 20, "resolution"<, 820, 50, 100<<D

<D, Bookmarks Ø 8
"Siegel disk" ß Hc = 8-0.391, -0.587<L,
"Douady's Rabbit" ß Hc = 8-0.123, 0.745<L<,

SaveDefinitions Ø TrueF

Out[29]=

c resolution 20 50 100

c = -0.123+0.745 Â
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One  way  to  deal  with  the  tug  between  quick  interactivity  and  high  resolution  is  to  use  the
function  ControlActive@act, normD  that  returns  the  value  act  when  the  controller  is  active
(for  example,  when  you  are  moving  a  slider)  and  returns  the  value  norm  when  the  controller  is
not active (for example, when you release the slider). In this way, dynamically changing the value
of  the  parameter  will  result  in  quick  updates  since  the  low-resolution  value  will  be  used  during
that  update,  but  the  graphic  will  snap  to  a  high-resolution  image  soon  after  you  release  the
mouse.  Which  actual  values  to  choose  for  ControlActive  will  depend  a  bit  on  the  speed  of
your hardware and some other factors, so you will have to experiment to find appropriate values.

In[30]:= Manipulate@
ArrayPlot@
Table@-cJulia@x + y Â, Apply@Complex, cDD,
8y, -1.5, 1.5, 1 ê ControlActive@30, 1000D<,
8x, -1.5, 1.5, 1 ê ControlActive@30, 1000D<

D, ColorFunction Ø "GreenPinkTones"
D,
88c, 8-0.8, -0.156<<, 8-1, -1<, 81, 1<<

D

Out[30]=

c

As we saw in Section 11.1,  it  is a bit more convenient to use a locator instead of a 2D slider so
that you can manipulate the point c directly. Below, we also include a different implementation of
the Julia function as part of the initialization as well as a dynamic plot label to display the value of
the parameter c as the locator is moved.
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In[31]:= ManipulateB

Graphics@8
PointSize@TinyD, Point@Transpose@8Re@ÒD, Im@ÒD<D &ü

Nest@julia@Apply@Complex, locD, ÒD &, 80.0<, 12DD
<,
PlotLabel Ø StringForm@"c = `1`", Apply@Complex, locDDD,

88loc, 8-0.4, 0.6<<, 8-2, -2<, 82, 2<, Locator<,

Initialization ß :

julia = CompileB88c, _Complex<, 8z, _Complex, 1<<,

FlattenB: z - c , -J z - c N>FF

>,

SaveDefinitions Ø True

F

Out[31]=

c = -0.4+0.6 Â

Exercises
1. Create a compiled function that computes the distance to the origin of a two-dimensional point. 

Then compare it to some of the built-in functions such as Norm  and EuclideanDistance for a 
large set of points. If you have a C compiler installed on your computer, use the Compile  option, 
CompilationTarget Ø "C" and compare the results.

2. Modify the previous exercise under the assumption that complex numbers are given as input to 
your compiled function.
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3. Many other iteration functions can be used for the Julia set computation. Experiment with some 
other functions such as c sinHzL, c ‰z, or Gaston Julia’s original function:

 z4 + z3 ëHz - 1L + z2 ëIz3 + 4 z2 + 5M + c. 

For these functions, you will have to adjust the test to determine if a point is unbounded upon 
iteration. Try HAbs@Im@ÒDD > 50 &L. 
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13

Applications and packages
Random walk application · Lattice walks · Off-lattice walks · RandomWalk · Error and usage 
messages · Visualization · Animation · Working with packages · Package location · Contexts · 
Package framework · Creating and installing the package · RandomWalks package · Running 

the package

When you have developed several programs for some related tasks, you will find it convenient to
group them together  and make them available  as  a  cohesive  application that  can easily  be  used
and incorporated in your work. Packages and applications are part of the framework in Mathemat-
ica that makes this possible. A package is simply a text file containing Mathematica code. Typically
you put related functions in a package. So there might be a computational geometry package or a
random  walks  package  that  includes  functions  in  support  of  those  tasks.  An  application,  in
Mathematica, is a set of packages together with various user-interface elements such as documenta-
tion, palettes, and perhaps stylesheets. 

When  you  develop  an  application,  it  is  important  to  think  about  how  your  functions  work
with each other as well  as how well  they integrate with the rest  of  Mathematica.  The user’s  inter-
face to your programs should be as close as possible to that of the built-in functions in Mathemat-
ica so that users can more easily pick up the syntax and usage. Packages provide the framework to
do this. In this chapter, features such as options, argument checking, messaging, and documenta-
tion are all discussed in the context of a larger application – random walks. We will gather much
of  the  code  fragments  from  earlier  chapters  and  add  an  options  framework,  error  and  usage
messages, and some new interactive visualization tools as we develop the RandomWalks package
in this chapter.



13.1 Random walk application
Random walks are widely used to represent random processes in nature:  physicists  use them to
model the transport of molecules, biologists work with models of the locomotion of organisms,
engineers use random walks to model heat conduction, and economists model time behavior of
financial  markets  with  them.  This  model  can  be  envisioned  by  thinking  of  a  person  taking  a
succession  of  steps  that  are  randomly  oriented  with  respect  to  one  another.  It  provides  a  good
application of Mathematica to a problem that involves a diverse set of computational tasks: model-
ing, simulation, statistical analysis, visualization, and interface construction.

In  this  section,  we  will  gather  many  of  the  random  walk  programs  from  earlier  sections  and
exercises in this book and create an application for working with random walks in one, two, and
three  dimensions.  Our  application  will  include  options  for  setting  the  dimension  and  whether
the  random walk  is  on or  off  the  lattice.  We will  add error  and usage  messages  as  well  as  func-
tions for visualization and animation. Finally, we will introduce contexts and the package frame-
work and pour our application into a package that can be distributed to others and used like any
other  Mathematica  package.  The  contents  of  the  RandomWalks  package  are  included  with  the
materials that accompany this book (see Preface).

Lattice walks
One-dimensional  lattice  walks The  simplest  random  walk  model  consists  of  a  number  of  steps  of
equal  length,  back-and-forth  along  a  line.  A  step  in  the  direction  of  the  positive  horizontal  axis
corresponds to a value of 1 and a step in the direction of the negative horizontal axis corresponds
to a value of -1. A list of the successive step directions of a t-step random walk in one dimension
is  therefore  a  list  of  t  randomly  selected  1s  and  -1s.  For  example,  here  are  five  step  directions,
randomly selected from the list 8-1, 1<.

In[1]:= dirs = RandomChoice@8-1, 1<, 5D

Out[1]= 8-1, -1, -1, 1, 1<

From these step directions how do we create  the random walk?  A moment’s  thought  should
convince you that we can add one step direction to the previous location to generate the “walk”.
Accumulate  essentially computes partial sums, which is perhaps clearer with an example using
symbolic input. 

In[2]:= Accumulate@8a, b, c, d, e<D

Out[2]= 8a, a + b, a + b + c, a + b + c + d, a + b + c + d + e<
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So  if  we  accumulate  the  list  dirs  above,  this  generates  a  list  of  the  locations  of  a  one-dimen-
sional five-step walk starting at the origin.

In[3]:= Accumulate@dirsD

Out[3]= 8-1, -2, -3, -2, -1<

Here then is a function, walk1D, that generates a list of the step locations of a t-step random walk.

In[4]:= walk1D@t_D := Accumulate@RandomChoice@8-1, 1<, tDD

Here is a small run of the walk1D program for ten steps.

In[5]:= walk1D@10D

Out[5]= 8-1, -2, -1, -2, -1, -2, -1, -2, -3, -4<

To  visualize  such  a  random  walk  quickly  we  use  ListLinePlot.  The  heights  of  the  graph
represent distances from the starting point and the number of steps is given along the horizontal
axis.

In[6]:= ListLinePlot@walk1D@1000DD

Out[6]=
200 400 600 800 1000
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Here is a picture of twelve random walks, each of length 1000. 

In[7]:= ListLinePlot@Table@walk1D@1000D, 812<DD

Out[7]=
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One property that  starts  to become apparent  with these plots  is  the fact  that  as  the length of
the  random  walk  increases,  so  does  the  average  distance  to  the  origin,  as  seen  by  the  vertical
height from the curves to the horizontal axis. A plot comparing walk length with distance to the
origin shows those distances growing ever wider.
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In[8]:= ListLinePlot@Table@8len, AbsüLastüwalk1D@lenD<,
8len, 1000, 500000, 1000<D, AspectRatio Ø .3D

Out[8]=

100 000 200 000 300 000 400 000 500 000

500

1000

1500

Before we go further, there is one minor wrinkle in this implementation of walk1D. The use of
Accumulate  does not give the origin as the first element in its output. For purposes of analyz-
ing these random walks numerically, it is often convenient to have the list of locations start at the
origin. This can be accomplished by using FoldList  instead of Accumulate ,  joining 0  to the
output of Accumulate .

In[9]:= SeedRandom@0D;
FoldList@Plus, 0, RandomChoice@8-1, 1<, 10DD

Out[10]= 80, 1, 0, 1, 0, -1, 0, 1, 2, 1, 0<

In[11]:= SeedRandom@0D;
Join@80<, walk1D@10DD

Out[12]= 80, 1, 0, 1, 0, -1, 0, 1, 2, 1, 0<

In  the  next  section  we  will  implement  a  slightly  different  approach  using  identity  matrices.  We
will use the simpler code here in the text to aid in readability but either implementation could be
altered to start at the origin using a construct like Join  above.

Two-dimensional  lattice  walks The random walk model in higher dimensions is a bit  more compli-
cated than the random walk in one dimension. In one dimension, each step of the walk is either a
forward step represented by 1 or a backwards step represented by -1. In higher dimensions, a step
can take a range of orientations with respect to previous steps. 

Figure 13.1. Two-dimensional rectangular lattice.
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We will consider a random walk on a lattice, appropriately referred to as a lattice walk.  Specifi-
cally, we will look at a lattice walk on the two-dimensional rectangular lattice (Figure 13.1).
This  walk consists  of  steps of  uniform length,  randomly taken in the north,  south,  east,  or  west
direction – the compass directions. Essentially, we are working with the following four vectors in the
Cartesian  plane.  These  four  points  are  often  referred  to  as  the  von  Neumann  neighborhood  of  the
central point (Figure 13.2). 

In[13]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;

Figure 13.2. A site with its four nearest (von Neumann) neighbors.

A  list  of  t  step  increments  is  created  by  randomly  selecting  one  of  the  four  directions  and  then
adding that vector to the existing site. For example, this chooses two step directions from NSEW.

In[14]:= RandomChoice@NSEW, 2D

Out[14]= 881, 0<, 80, -1<<

If the current site had coordinates 82, 3<, then adding the first step location to that site gives the
new position.

In[15]:= 82, 3< + 81, 0<

Out[15]= 83, 3<

Adding the second step location to 83, 3< gives the next position.

In[16]:= % + 80, -1<

Out[16]= 83, 2<

Using Accumulate  as  we did  in  the  case  of  the  one-dimensional  random walk,  we iterate  this
process for an arbitrary number of steps. Here is a program to generate a list of the step locations
of a t-step, two-dimensional lattice walk.

In[17]:= walk2D@t_D := Accumulate@RandomChoice@NSEW, tDD

Try this out on a ten-step walk, that is, for t = 10.
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In[18]:= walk2D@10D

Out[18]= 88-1, 0<, 80, 0<, 80, 1<, 80, 2<,
80, 3<, 81, 3<, 82, 3<, 82, 2<, 82, 1<, 82, 2<<

There  is  more  than  a  little  similarity  between  the  two  functions  walk1D  and  walk2D.  Both
use Accumulate , randomly choosing t elements from some list. In the case of one-dimensional
walks,  that  list  is  simply  8-1, 1<;  for  two-dimensional  walks  it  is  the  list  NSEW.  Let  us  try  a
slightly different approach, one that uses these similarities to simplify the lattice walk code.

The key observation is to think about this as a vector problem. In two dimensions, the vectors
that RandomChoice is choosing are essentially the two orthogonal vectors 81, 0< and 80, 1<
together with the opposite of each of these. Both these vectors are given by the identity matrix of
the appropriate dimension.

In[19]:= Join@IdentityMatrix@1D, -IdentityMatrix@1DD

Out[19]= 881<, 8-1<<

In[20]:= Join@IdentityMatrix@2D, -IdentityMatrix@2DD

Out[20]= 881, 0<, 80, 1<, 8-1, 0<, 80, -1<<

In[21]:= Join@IdentityMatrix@3D, -IdentityMatrix@3DD

Out[21]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<,
8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<

This  makes  the  code  for  the  random  walks  consistent  but  it  also  generalizes  to  n-dimensional
space. We will pursue this approach for the lattice walks.

Before we write the code for the n-dimensional lattice walk, we need to make one adjustment
in  the  case  of  one-dimensional  walks.  IdentityMatrix@1D  returns  the  list  81<  so  we  will
need to flatten that list for this case only.

Here then is the code for an n-dimensional lattice walk.

In[22]:= latticeWalk@steps_, dim_D := Module@8w<,
w = Accumulate@RandomChoice@Join@

IdentityMatrix@dimD, -IdentityMatrix@dimDD, stepsDD;
If@dim ã 1, Flatten@wD, wDD

In[23]:= latticeWalk@5, 2D

Out[23]= 880, -1<, 8-1, -1<, 8-2, -1<, 8-2, -2<, 8-2, -1<<

We visualize the path these steps take in the plane by connecting each of these points with a line.
This  displays  a  2500-step  random  walk.  We  have  set  the  AspectRatio  so  that  our  plot  has  a
more natural ratio of height to width. 
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In[24]:= ListLinePlot@latticeWalk@2500, 2D, AspectRatio Ø AutomaticD

Out[24]=
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And here is a one-dimensional lattice walk.

In[25]:= ListLinePlot@latticeWalk@2500, 1DD

Out[25]=
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Three-dimensional  lattice  walks In  three  dimensions,  there  are  six  different  directions  that  can  be
taken at any given step (Figure 13.3).

Figure 13.3. A site (cube) with its six nearest neighbors in a three-dimensional rectangular lattice.

We  have  seen  above  that  steps  along  the  direction  given  by  the  nearest  neighbors  can  be
represented  by  joining  the  identity  matrix  with  its  opposite;  this  is  already  built  into  the  latÖ
ticeWalk function.
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In[26]:= Join@IdentityMatrix@3D, -IdentityMatrix@3DD

Out[26]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<,
8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<

The visualization of these points in 3-space is straightforward – connect each point with a line
(or tube) and then convert to a graphical object to display.

In[27]:= Graphics3D@Tube@latticeWalk@2500, 3DDD

Out[27]=

As  an  aside,  the  latticeWalk  function  can  be  used  to  create  n-dimensional  walks  for  any
positive  integer  n > 0.  Although  visualizing  such  objects  is  difficult,  we  can  still  ask  questions
about the nature of such walks similar to the discussion in Section 8.4. For example, here are five
steps in a nine-dimensional random walk.

In[28]:= latticeWalk@5, 9D

Out[28]= 880, 0, 1, 0, 0, 0, 0, 0, 0<,
80, 0, 1, 1, 0, 0, 0, 0, 0<, 80, -1, 1, 1, 0, 0, 0, 0, 0<,
80, -1, 1, 1, 1, 0, 0, 0, 0<, 8-1, -1, 1, 1, 1, 0, 0, 0, 0<<

This computes the distance to the origin of the last step in this nine-dimensional walk.

In[29]:= Norm@Last@%DD

Out[29]= 5

Off-lattice walks
Although lattice walks are fairly easy to visualize and program, there are many physical phenom-
ena,  such  as  Brownian  motion,  for  which  walks  off  the  lattice  are  more  appropriate  models.  In
this  section,  we  will  create  off-lattice  versions  of  the  random  walk  functions  from  the  previous
section. They are similar to the lattice walk code except that the step directions are real numbers
in a  certain range instead of  integers  from the lattice.  Once they are  developed,  we will  create  a
function,  offLatticeWalk,  that  will  call  the  appropriate  function  for  a  given  dimension.  For
two and three dimensions, we have chosen to use walks in which each step is of unit length. You
are encouraged to modify these programs to allow other step lengths.
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One-dimensional  off-lattice  walk In  the  one-dimensional  case,  steps  of  unit  length  give  the  lattice
walk described above. For our off-lattice walk, we will take step directions chosen to be any real
number between -1 and 1. Of course, this means that for this case, steps are not of length 1.

In[30]:= walk1DOffLattice@t_D := Accumulate@RandomReal@8-1, 1<, tDD

In[31]:= walk1DOffLattice@5D

Out[31]= 80.187697, 0.0873112, 0.0752274, -0.906305, -1.896<

Two-dimensional  off-lattice  walk In  the  two-dimensional  case,  we  essentially  compute  polar  points
and so the directions are polar angles between 0  and 2 p;  the coordinates of the points are given
by the pair Hcos q, sin qL, which gives steps of unit length.

In[32]:= walk2DOffLattice@t_D :=

Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, tDDD

In[33]:= walk2DOffLattice@5D

Out[33]= 88-0.993598, -0.112978<,
8-0.900142, -1.1086<, 8-1.81362, -0.701705<,
8-2.08523, -1.66411<, 8-1.12155, -1.93117<<

Let us quickly check that each step is of length 1.

In[34]:= Partition@%, 2, 1D

Out[34]= 888-0.993598, -0.112978<, 8-0.900142, -1.1086<<,
88-0.900142, -1.1086<, 8-1.81362, -0.701705<<,
88-1.81362, -0.701705<, 8-2.08523, -1.66411<<,
88-2.08523, -1.66411<, 8-1.12155, -1.93117<<<

In[35]:= Apply@EuclideanDistance, %, 1D

Out[35]= 81., 1., 1., 1.<

Three-dimensional  off-lattice  walk There  are  several  different  ways  to  approach  the  three-dimen-
sional off-lattice walk. Using a spherical coordinate system, a point uniformly distributed on the
sphere can be obtained from the following equations (Weisstein, Sphere point picking):

x = cosHqL 1 - u2 ,

y = sinHqL 1 - u2 ,
z = u.

We need to produce pairs  of  random numbers q  and u  with q  in the interval [0, 2 pL  and u  in the
interval [-1, 1]. Here then is the function to generate t steps of an off-lattice random walk in three
dimensions.
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In[36]:= walk3DOffLattice@t_D := AccumulateBTableB

FunctionB8q, u<, :Cos@qD 1 - u2 , Sin@qD 1 - u2 , u>F üü

8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<F

F

In[37]:= walk3DOffLattice@4D

Out[37]= 880.487841, -0.240428, -0.83917<,
81.14515, 0.153194, -1.48183<,
80.686236, 1.00981, -1.24599<, 81.13357, 0.93944, -0.354398<<

Again, check that each step is of unit length.

In[38]:= Apply@EuclideanDistance, Partition@%, 2, 1D, 1D

Out[38]= 81., 1., 1.<

The  offLatticeWalk  function We  now  use  the  common  elements  to  simplify  our  code,  similarly  to
what  we did  earlier  with  the  lattice  walk  code.  The only  difference  amongst  these  three  cases  is
the function that we are accumulating. We will use Which  to slot in the appropriate function to
Accumulate , based on the value of the dimension argument, dim.

In[39]:= offLatticeWalk@t_, dim_D := ModuleB8f1, f2, f3<,

f1 = RandomReal@8-1, 1<, tD;
f2 = Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, tDD;

f3 = TableB

FunctionB8q, u<, :Cos@qD 1 - u2 , Sin@qD 1 - u2 , u>F üü

8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<F;

Which@
dim ã 1, Accumulate@f1D,
dim ã 2, Accumulate@f2D,
dim ã 3, Accumulate@f3D

D

F
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Try out the code for dimensions one through three.

In[40]:= ListLinePlot@offLatticeWalk@10 000, 1DD

Out[40]=
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In[41]:= ListLinePlot@offLatticeWalk@10 000, 2D,
AspectRatio Ø AutomaticD

Out[41]=
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In[42]:= Graphics3D@LineüoffLatticeWalk@10 000, 3DD

Out[42]=

RandomWalk
We  have  now  developed  two  separate  functions,  latticeWalk  and  offLatticeWalk.  Our
intention is that these will be auxiliary functions that the user should not have to remember. It is
preferable  to  have  one  function,  RandomWalk,  that  has  a  simple,  easy-to-remember  interface
that  calls  the  appropriate  function  when  needed.  In  computer  languages,  the  RandomWalk
function  is  often  called  the  public  function,  the  user’s  interface  to  the  underlying  code.  The  two
auxiliary  functions  latticeWalk  and  offLatticeWalk  are  referred  to  as  private  functions
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and  are  kept  hidden  from  the  user  interface.  The  developer  of  such  code  is  then  free  to  change
these underlying private constructs as the need arises and the user does not need to worry about
them as the public interface remains unchanged.

Following on from the discussion of options in Section 5.7,  we start  by creating two optional
arguments  (options)  to  our  RandomWalk  function  –  LatticeWalk  and  Dimension  –  and
give  their  default  values.  These  are  the  values  that  will  be  used  whenever  explicit  options  to
RandomWalk  are  not  given.  The  idea  is  that  if  LatticeWalk  has  a  value  of  True ,
RandomWalk  will  call  the  latticeWalk  function.  Similarly,  if  the  Dimension  option  has  a
value of 3 say, that will be passed to the appropriate function automatically.

In[43]:= Options@RandomWalkD = 8LatticeWalk Ø True, Dimension Ø 2<

Out[43]= 8LatticeWalk Ø True, Dimension Ø 2<

Here is the RandomWalk function with the option structure in place.

In[44]:= RandomWalk@t_, OptionsPattern@DD := Module@8dim, latticeQ<,
8latticeQ, dim< = OptionValue@8LatticeWalk, Dimension<D;
If@latticeQ, latticeWalk@t, dimD, offLatticeWalk@t, dimDD

D

Some comments on this code are in order:

Ê To pass the options into the RandomWalk function, we use OptionsPattern  on the left-
hand side of the function definition. 

Ê To extract the values from the options, we use OptionValue . We can use the syntax 
OptionValue@8LatticeWalk, Dimension<D to extract the values of these options 
since, in this case, OptionValue  will assume the function to which the options are 
referring is the head of the left-hand side of the rule.

Ê We assign the values of the options to local symbols latticeQ and dim inside the body of 
the RandomWalk function.

Ê Note the use of If to check the value of the LatticeWalk option and then call the 
appropriate auxiliary (private) function. If the LatticeWalk option has been set to True, 
then the first branch of the If statement is followed, giving the lattice walk. If 
LatticeWalk has any other value (False, for example), then the off-lattice definition is 
used.

This will  be the user-interface to the random walk machinery we are building.  The two func-
tions latticeWalk and offLatticeWalk will be private, meaning the user does not need to
know anything about them to use RandomWalk. 
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Let  us  exercise  the  options  and  check  that  each  of  the  six  possible  walks  produces  a  sensible
result. First, we compute the lattice walks.

In[45]:= RandomWalk@5, Dimension Ø 1D

Out[45]= 8-1, 0, -1, 0, 1<

In[46]:= RandomWalk@5D

Out[46]= 881, 0<, 82, 0<, 83, 0<, 84, 0<, 85, 0<<

In[47]:= RandomWalk@5, Dimension Ø 3D

Out[47]= 880, 0, -1<, 8-1, 0, -1<, 8-1, 0, -2<, 8-1, 0, -1<, 80, 0, -1<<

And here are some off-lattice walks in one, two, and three dimensions.

In[48]:= RandomWalk@5, Dimension Ø 1, LatticeWalk Ø FalseD

Out[48]= 80.197714, 0.337862, -0.32516, -0.80017, 0.0871163<

In[49]:= RandomWalk@5, Dimension Ø 2, LatticeWalk Ø FalseD

Out[49]= 88-0.960645, 0.277779<,
8-1.65285, -0.443924<, 8-2.64838, -0.538359<,
8-1.7695, -0.0613185<, 8-2.62799, 0.451512<<

In[50]:= RandomWalk@5, Dimension Ø 3, LatticeWalk Ø FalseD

Out[50]= 880.715746, -0.465297, -0.520775<,
80.327593, -0.724388, -1.4052<,
80.032606, -0.0297681, -2.06131<,
81.00896, -0.0818691, -2.27113<,
81.79858, -0.658968, -2.47958<<

Error and usage messages
While  developing  programs,  it  is  a  good  idea  to  anticipate  how  a  user  of  your  programs  will
interact with them. In particular, it is good programming style to try to catch any errors the user
may  make  and  respond  with  an  appropriate  message.  It  is  also  a  good  idea  to  make  your  func-
tions,  as  much  as  possible,  behave  like  built-in  functions  in  terms  of  these  error  and  warning
messages.  A  user  that  has  already  become  familiar  with  these  elements  in  Mathematica  does  not
need to learn new elements and this makes it that much easier for anyone to adopt and use your
code.

One of the conditions we might want to check for with our RandomWalk function is that the
user enters a positive integer as the first argument. Let us first write the warning message.

In[52]:= RandomWalk::rwn = "Argument `1` is not a positive integer.";
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And here is a simple trap for this condition that will be placed in the body of RandomWalk:

If@! HIntegerQ@tD && t > 0L, Message@RandomWalk::rwn, tD, …D

If  the  first  argument,  t  (the  number  of  steps),  to  RandomWalk  passes  the  test  inside  this  If
statement  –  if  it  fails  to  be  an  integer  or  fails  to  be  greater  than  zero  –  then  a  message  will  be
generated substituting the argument t for `1` in the rwn message above.

In[53]:= Message@RandomWalk::rwn, -42D
RandomWalk::rwn : Argument -42 is not a positive integer.

Let us also create a  warning message to be issued if  the value of  the Dimension  option is  any-
thing but the integers 1, 2, or 3.

In[54]:= RandomWalk::baddim =
"The value `1` of the option Dimension is

not an integer between 1 and 3.";

In[55]:= Message@RandomWalk::baddim, 0D
RandomWalk::baddim : The value 0 of the option Dimension is not an integer between 1 and 3.

The usage message for RandomWalk begins with a function template. 

In[56]:= RandomWalk::usage =
"RandomWalk@tD generates a t-step random walk.

The default behavior gives a two-dimensional
lattice walk with steps in one of the four
compass directions. The option LatticeWalk
takes values True or False. The value of the
option Dimension can be any of 1, 2, or 3.";

Below  is  the  rewritten  RandomWalk  function  with  the  messaging  included.  Which  is  used
here  so  that  if  the  either  of  the  first  two  conditions  pass,  then  the  corresponding  warning  mes-
sage  is  issued.  If  the  two  conditions  fail  –  if  the  argument  is  a  positive  integer  –  then  the  last
condition, True,  passes and the If  statement is evaluated generating a lattice or off-lattice walk
depending  upon  the  value  of  latticeQ.  We  clear  out  any  previous  definitions  for
RandomWalk.  Clear  does not remove messages and options. If you need to remove messages,
attributes, or options, use ClearAll or Remove.

In[57]:= Clear@RandomWalkD
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In[58]:= RandomWalk@t_, OptionsPattern@DD := Module@8dim, latticeQ<,
8latticeQ, dim< = OptionValue@8LatticeWalk, Dimension<D;
Which@
! HIntegerQ@tD && t > 0L, Message@RandomWalk::"rwn", tD,
! HIntegerQ@dimD && 1 § dim § 3L,
Message@RandomWalk::baddim, dimD,
True, If@latticeQ, latticeWalk@t, dimD,
offLatticeWalk@t, dimDDDD

If we pass a noninteger or negative argument to RandomWalk, the warning will be triggered.

In[59]:= RandomWalk@-6D
RandomWalk::rwn : Argument -6 is not a positive integer.

If the value of the Dimension option is invalid, another warning is issued.

In[60]:= RandomWalk@12, Dimension Ø 4D
RandomWalk::baddim : The value 4 of the option Dimension is not an integer between 1 and 3.

Visualization
Since  our  random  walks  can  be  represented  by  points  (and  possibly  lines)  in  the  plane  or  in  3-
space, we can use built-in visualization functions or graphics primitives that are designed to work
with these objects. There are two advantages to this approach: once implemented, computations
are very fast and the resulting graphics objects are as compact as possible. Both of these facts are
quite  important  when  working  with  very  large  graphical  objects,  objects  that  can  have  over  a
million components, for example.

We  will  prototype  the  visualization  functions  by  first  creating  simplified  functions  without
options or messaging. Once that framework is in place, we will then flesh out the full versions by
adding in these other components.

For  one-dimensional  random  walks  we  simply  connect  the  coordinates  with  a  line  using  the
built-in function ListLinePlot.

ListLinePlotAcoordsE

If our list of coordinates consists of pairs of numbers, ListLinePlot  will plot each pair in the
coordinate plane using the usual association of first coordinate of each pair along the horizontal
axis and the second coordinate of each pair along the vertical axis.
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Since  there  is  no  provision  for  ListLinePlot  to  take  coordinate  triples,  we  will  have  to
manually construct the graphics from primitive elements in the three-dimensional case. Alterna-
tively, you could call ListLinePlot3D developed in Section 10.4. 

Graphics3DALineAcoordsEE

Here is the code for ShowWalk. The patterns 88_, _< ..< and 88_, _, _< ..< match the
cases of one or more pairs or triples of coordinates, respectively. In each case, the pattern is given
a name, coords, to be used in the body of each function.

In[61]:= ShowWalk@coords_?VectorQD := ListLinePlot@coordsD

In[62]:= ShowWalk@coords : 88_, _< ..<D :=

ListLinePlot@coords, AspectRatio Ø AutomaticD

In[63]:= ShowWalk@coords : 88_, _, _< ..<D := Graphics3D@Line@coordsDD

This displays a 100 000-step one-dimensional random walk.

In[64]:= ShowWalkARandomWalkA105, Dimension Ø 1EE

Out[64]=

20 000 40 000 60 000 80 000 100 000

-400

-300

-200

-100

Here is a 100 000-step, two-dimensional, off-lattice walk.

In[65]:= ShowWalkARandomWalkA105, Dimension Ø 2, LatticeWalk Ø FalseEE

Out[65]=

50 100 150 200 250 300 350

-50

50

100

150

200

250
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And here is a three-dimensional lattice walk.
In[66]:= ShowWalkARandomWalkA104, Dimension Ø 3, LatticeWalk Ø TrueEE

Out[66]=

Next,  we  want  to  use  the  many  built-in  graphics  options  with  our  ShowWalk  function  but
some  options  are  only  valid  for  ListLinePlot  (one  and  two  dimensions)  and  other  options
are specific to Graphics3D .  By filtering the appropriate options, we ensure that Graphics3D
options  are  passed  to  the  Graphics3D  function  and  ListLinePlot  options  are  passed  to
ListLinePlot.  This is  done by using FilterRules .  For example,  the expression below will
return only those options that are specific to ListLinePlot.

FilterRules@8opts<, Options@ListLinePlotDD

Here are the rewritten rules for ShowWalk, including the options structure.

In[67]:= Clear@ShowWalkD

In[68]:= Options@ShowWalkD =
Join@Options@ListLinePlotD, Options@Graphics3DDD;

In[69]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords,
FilterRules@8opts<, Options@ListLinePlotDDD

In[70]:= ShowWalk@coords : 88_, _< ..<, opts : OptionsPattern@DD :=

ListLinePlot@coords,
Append@FilterRules@8opts<, Options@ListLinePlotDD,
AspectRatio Ø AutomaticDD

In[71]:= ShowWalk@coords : 88_, _, _< ..<, opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD
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Alternatively, you could put all the different patterns inside a Switch and choose the appropri-
ate  function  based  on  the  pattern  match  inside  Switch.  That  approach  may  be  a  bit  more
compact, but it comes at the cost of readability and greater difficulty modifying the code later.

Here  is  a  500-step  off-lattice  walk  in  two  dimensions  for  which  we  have  passed  options  to
ListLinePlot to set the aspect ratio and also to display all coordinates visited as points. 

In[72]:= ShowWalk@RandomWalk@500, LatticeWalk Ø FalseD,
Mesh Ø All, AspectRatio Ø AutomaticD

Out[72]=
-15 -10 -5

-5

5

This exercises some of the three-dimensional graphics options for ShowWalk.

In[73]:= ShowWalk@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseD,
FaceGrids Ø 88-1, 0, 0<, 80, 1, 0<, 80, 0, -1<<,
BoxStyle Ø 8Thin, Gray<, AspectRatio Ø AutomaticD

Out[73]=

There are several  alternative approaches that could be used to visualize random walks.  Other
approaches  (for  example,  one  using  GraphicsComplex  and  another  using  graphs)  have  their
advantages;  we  will  find  that  graphics  primitives  and  the  built-in  ListLinePlot,  as  we  have
done here, is extremely fast and is the most efficient in terms of the size of the objects that we will
be  generating.  These  issues  and  alternative  approaches  are  explored  in  some  detail  in  the  exer-
cises at the end of this chapter.

Animation
Looking  at  the  visualizations  of  random  walks,  it  is  clear  that  a  lattice  walk  repeatedly  revisits
sites  in the course of  its  meandering.  As a  result,  it  is  difficult  to discern the history of  the walk
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from  a  snapshot  of  the  path.  The  best  way  to  see  the  entire  evolution  of  the  walk  in  an  unob-
scured fashion is to create an animation.

Animations are created by successively displaying graphical expressions, one frame at a time.
This is most easily accomplished with Animate , passing it one additional step in each frame. 

You  might  try  to  animate  a  random  walk  by  wrapping  Animate  around  ListLinePlot,
making the length, n, the parameter to be manipulated by Animate .

In[74]:= Animate@
ListLinePlot@RandomWalk@nDD, 8n, 1, 500, 1<D

Out[74]=

n

-5 5 10 15

-15

-10

-5

5

But a moment’s thought should convince you that this is not the correct approach. For each value
of  n,  the  expression  ListLinePlot@RandomWalk@…DD  is  reevaluated  and  a  new  walk  is
created  so  there  is  no  correlation  between  successive  “steps.”  A  second  problem  is  that  the
bounding  box  of  each  plot  is  jumping  around  quite  a  bit  as  Mathematica  computes  a  new  plot
range for each frame.

To tackle the first problem, we will pregenerate the entire walk and then take successive steps
using TakeAwalk, nE and pass the first n steps of the walk to Graphics@Line@…DD.

In[75]:= walk = RandomWalk@8D

Out[75]= 881, 0<, 81, -1<, 81, -2<,
80, -2<, 80, -1<, 80, 0<, 80, 1<, 81, 1<<

In[76]:= Take@walk, 1D

Out[76]= 881, 0<<

In[77]:= Take@walk, 2D

Out[77]= 881, 0<, 81, -1<<

In[78]:= Take@walk, 3D

Out[78]= 881, 0<, 81, -1<, 81, -2<<

Here is a sample 2000-step random walk that we will use for our animation.

In[79]:= rw = RandomWalk@2000, Dimension Ø 2, LatticeWalk Ø FalseD;

For  the  second  problem,  the  plot  range  issue,  we  need  to  find  the  minimum  and  maximum
values in the horizontal and vertical directions from our walk so that we can pass their values to
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the PlotRange  option. Otherwise Mathematica  would set the plot range for each graphic frame
using a heuristic that only looks at the values of the coordinates for that particular frame and not
the  entire  set  of  graphics  frames  in  the  animation.  This  would  create  a  different  size  frame  for
each graphic, causing quite a bit of jumpiness in the animation. 

We first  transpose  the  matrix  of  coordinates  from 88x1, y1<, 8x2, y2<, …, 8xn, yn<<  to
88x1, x2, …, xn<, 8 y1, y2, …, yn<<; this generalizes to three-dimensional lists as well. Then
we get the minimum and maximum values from each using Map.

In[80]:= Map@8Min@ÒD, Max@ÒD< &, Transpose@rwDD

Out[80]= 88-28.5516, 23.1099<, 8-18.4443, 25.678<<

This output, by design, is precisely of the form needed by PlotRange. 
Here is the code to create an animation of the random walk rw.  In print,  we can only show a

representative snapshot of the animation. We have set DisplayAllSteps  to True  to override
the default behavior of Animate  to skip some of the frames. You will  have to balance the need
for speed with the need to see the entire sequence.

In[81]:= Animate@
Graphics@Line@Take@rw, stepsDD,
PlotRange Ø Map@8Min@ÒD, Max@ÒD< &, Transpose@rwDDD,

8steps, 2, Length@rwD, 1<,
DisplayAllSteps Ø TrueD

Out[81]=

steps

Here are the similar computations for the three-dimensional walk.

In[82]:= rw3 = RandomWalk@10000, Dimension Ø 3, LatticeWalk Ø TrueD;

In[83]:= Map@8Min@ÒD, Max@ÒD< &, Transpose@rw3DD

Out[83]= 88-103, 0<, 8-128, 1<, 8-39, 14<<

And this creates the animation using these range of values for x, y, and z as the PlotRange.
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In[84]:= Animate@
Graphics3D@Line@Take@rw3, stepsDD,
PlotRange Ø Map@8Min@ÒD, Max@ÒD< &, Transpose@rw3DDD,

8steps, 2, Length@rw3D, 1<D

Out[84]=

steps

The code for two and three dimensions is bundled up in the AnimateWalk function.

In[85]:= AnimateWalk@coords_List, opts : OptionsPattern@AnimateDD :=

Module@8range, dim = Last@Dimensions@coordsDD<,
range = H8Min@ÒD, Max@ÒD< &L êü Transpose@coordsD;
Animate@If@dim ã 2, Graphics, Graphics3DD üü

8Line@Take@coords, stepsDD, PlotRange Ø range<,
8steps, 2, Length@coordsD, 1<, optsDD

In[86]:= rw4 = RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseD;
AnimateWalk@rw4, DisplayAllSteps Ø TrueD

Out[87]=

steps

Some additional  user  interface  elements  could include checkboxes  to  toggle  lattice/off-lattice
walks,  a pulldown menu to select the size of the walk,  other elements such as buttons to let the
user set the dimension, and so on. Section 11.3  discussed several different dynamic interfaces for
random  walks  including  one  to  generate  new  walks  by  simply  clicking  your  mouse  on  the
graphic (using EventHandler).
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Exercises
1. Although all the lattice walks in this chapter were done on the square lattice, we could also imple-

ment the walks on lattices with different geometries. For example, the hexagonal lattice in two 
dimensions can be used as the grid on which our random walkers move.

Create a two-dimensional random walk that can move in one of six directions each separated by 60 
degrees.

2. Generate random walks where the step length t occurs with a probability proportional to 1ë t2. 

These walks are sometimes referred to as Lévy flights.

3. Create a version of ShowWalk that uses GraphicsComplex directly. The first argument to 
GraphicsComplex is the coordinate information as given by RandomWalk; the second argument 
should be graphics primitives (Line , Point) that indicate how the coordinates should be 
displayed.

4. Create a visualization of random walks that takes advantage of the efficiency of Graph to store and 
represent large amounts of graphical data. The first argument to Graph can be a list of rules that 
represents the connectivity information. For example, 2 � 3 indicates that the second vertex is 
connected to the third vertex with a directed edge. Use the option VertexCoordinates to pass 
the explicit coordinate information from RandomWalk to Graph. Run some tests to determine the 
efficiency (in terms of running time and memory) of this approach as compared to the ShowWalk 
function that was developed in this chapter.

5. Create a function that generates random walks with random step length. Advanced: Do the same 
but allow for arbitrary distributions.

6. Create a random walk that is bounded by a region in the Cartesian plane, for example, a circle 
centered at the origin of radius 2.

7. Create a one-dimensional random walk over the digits of p – if the digit is even, take a step to the 
right; if the digit is odd, take a step to the left.
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13.2 Overview of packages
When you begin a Mathematica session, the built-in functions are immediately available for you to
use.  There  are,  however,  many  more  functions  that  you  can  access  that  reside  in  files  supplied
with Mathematica.  In principle,  the only difference between those files and the ones you create is
that those were written by professional programmers. There is another difference: the definitions
in  those  files  are  placed  in  special  structures  called  packages.  Indeed,  these  files  themselves  are
often called “packages” instead of “files.”

Packages are text files that contain Mathematica  commands. They are designed to make it easy
to  distribute  your  programs  to  others,  but  they  also  provide  a  framework  for  you  to  write  pro-
grams  that  integrate  with  Mathematica  in  a  seamless  manner.  That  framework  includes  a  name
localizing  construct,  analogous to Module,  but  for  entire  files  of  definitions.  The idea is  to allow
you, the programmer, to define a collection of functions for export.  These exported functions are
for  the  users  of  your  package  to  work  with  and  are  often  referred  to  as  public  functions.  Other
functions, those that are not for export, are auxiliary, or private functions, and are not intended to be
accessible to users. The package framework, and contexts specifically, provide a convenient way
to declare some functions public and others private. Contexts will be introduced in Section 13.3.
Finally,  in  Section  13.4,  we  will  put  all  these  ideas  together,  using  the  random  walk  code  devel-
oped earlier in this chapter.

Working with packages
Mathematica  packages  have  been  written  for  a  great  variety  of  problem  domains.  Many  are  pro-
vided  with  each  version  of  Mathematica  and  are  referred  to  as  the  Standard  Extra  Packages.  Their
documentation is available in the Documentation Center (under the Help menu). 

For  example,  one  of  the  packages  listed  under  the  Standard  Extra  Packages  is  the  Computa-
tional  Geometry  package.  It  provides  functionality  for  computing and visualizing such things as
Delaunay triangulations, Voronoi diagrams, and convex hulls of lists of points.

Once you know which package you want to use, you load it using either Get or Needs.
Ê << ComputationalGeometry` will read the file and evaluate each expression and 

definition as if it had been typed in. Actually, the argument of << is a string, but the 
quotation marks can be omitted. << package` is shorthand for GetA" package` "E.

In[1]:= << ComputationalGeometry`

Ê Needs@"ComputationalGeometry`"D will read the package, just like <<, but only if it 
has not already been read.

In[2]:= Needs@"ComputationalGeometry`"D

13.2 Overview of packages 555



Once  a  package  has  been  loaded  into  the  Mathematica  kernel,  you  can  access  and  use  the
functions defined in that package just like any built-in function. For example, you can use ? to get
the usage message for any of those functions.

In[3]:= ? ConvexHull

ConvexHullA99x1, y1=, 9x2, y2=, …=E yields the planar convex hull of the points 99x1, y1=, …=,

represented as a list of point indices arranged in counterclockwise order.�à

Using a  function from a package is  just  like using a  built-in function.  For  example,  this  com-
putes the convex hull of a small set of points in the plane using the ConvexHull  function.

In[4]:= ConvexHull@RandomInteger@100, 810, 2<DD

Out[4]= 81, 9, 4, 7, 8, 5<

Here a list of hyperlinks to the documentation for each of the functions defined in this package.

In[5]:= ? ComputationalGeometry`*

ComputationalGeometry`

AllPoints DelaunayTriangulationQ Ray

BoundedDiagram DiagramPlot TileAreas

ConvexHull Hull TriangularSurfacePlot

ConvexHullArea LabelPoints TrimPoints

ConvexHullMedian NearestNeighbor VoronoiDiagram

DelaunayTriangulation PlanarGraphPlot

Clicking any of the above links will display the usage message associated with that function.
You can also display a list of the names defined in the package using Names.

In[6]:= Names@"ComputationalGeometry`*"D

Out[6]= 8AllPoints, BoundedDiagram, ConvexHull,

ConvexHullArea, ConvexHullMedian, DelaunayTriangulation,

DelaunayTriangulationQ, DiagramPlot, Hull, LabelPoints,

NearestNeighbor, PlanarGraphPlot, Ray, TileAreas,

TriangularSurfacePlot, TrimPoints, VoronoiDiagram<

If you forget the name of the package, you can easily browse through the Documentation Center
which lists  all  packages,  names,  and usage messages  of  the  functions  defined in  these  packages.
Alternatively,  you  locate  where  the  directory  of  packages  is  stored  on  your  system  and  browse
through it using your operating system’s interface.
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Package location
All  the  built-in  Mathematica  packages  are  located  in  one  of  several  directories  on  Mathematica’s
search path.  If  you put  your package in  one of  these  special  directories,  it  will  be  found quickly
when you try to load it with Get or Needs. This search path is given by $Path. Here we display
only some of these locations.

In[7]:= Take@$Path, 8D êê TableForm
Out[7]//TableForm=

êApplicationsêMathematica.appêSystemFilesêLinks
êUsersêwellinêLibraryêMathematicaêKernel
êUsersêwellinêLibraryêMathematicaêAutoload
êUsersêwellinêLibraryêMathematicaêApplications
êLibraryêMathematicaêKernel
êLibraryêMathematicaêAutoload
êLibraryêMathematicaêApplications
.

Typically, packages are put in one of the Applications directories on that path.

In[8]:= Select@$Path, MatchQ@FileNameTake@ÒD, "Applications"D &D êê
TableForm

Out[8]//TableForm=

êUsersêwellinêLibraryêMathematicaêApplications
êLibraryêMathematicaêApplications
êApplicationsêMathematica.appêAddOnsêApplications

Certain special directories are identified on your system using one of the $ functions below. 

In[9]:= $UserBaseDirectory

Out[9]= êUsersêwellinêLibraryêMathematica

In[10]:= $BaseDirectory

Out[10]= êLibraryêMathematica

In[11]:= $InstallationDirectory

Out[11]= êApplicationsêMathematica.app

These directories will be different on different operating systems but putting a package in one of
them will work across systems consistently. For example, the instructions to install the packages
that accompany this book specify that you should put them in one of the directories given by the
following:

In[12]:= FileNameJoin@8$BaseDirectory, "Applications"<D

Out[12]= êLibraryêMathematicaêApplications
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In[13]:= FileNameJoin@8$UserBaseDirectory, "Applications"<D

Out[13]= êUsersêwellinêLibraryêMathematicaêApplications

Alternatively,  you  could  use  the  Install  item  in  the  File  menu  to  be  guided  through  the  process
somewhat automatically. This is described for the RandomWalks package in Section 13.4.

If  you  know  the  name  of  your  package,  you  can  use  FindFile  to  see  precisely  where  the
package  is  located.  Specifically,  using  the  package  name as  an  argument  returns  the  location of
the Kernel/init.m file. This works whether your package has been loaded or not.

In[14]:= FindFile@"PwM`"D

Out[14]= êLibraryêMathematicaêApplicationsêPwMêKernelêinit.m

13.3 Contexts
Every  symbol  you  use  in  a  computation  in  Mathematica  has  a  full  name  consisting  of  the  symbol
preceded by the context in which the name was first mentioned. The context is a means for organiz-
ing symbols.  You can think of  the context  like  a  namespace –  different  symbols  are  in  different
contexts just like different files on your computer live in different directories.

When you first start your session, the current context is Global` (note the back quote), and any
symbol you mention now has full name Global`symbol. $Context gives the current context.

In[1]:= $Context

Out[1]= Global`

Here is a function created, by default, in the Global` context.

In[2]:= f@x_D := x + 1

Context@symD gives the context of the symbol sym.

In[3]:= Context@fD

Out[3]= Global`

You can use the function by specifying its full name.

In[4]:= Global`f@3D

Out[4]= 4

But, of course, it is much more convenient to use the regular, short form.

In[5]:= f@3D

Out[5]= 4

Mathematica  first  searches  the current  context  for  definitions associated with any symbols;  by
default, this is the Global`  context. To see a list of the contexts that Mathematica  uses to search
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for  symbols,  use  $ContextPath.  Note  that  the  ComputationalGeometry`  context  is
included as we loaded that package in the previous section. 

In[6]:= $ContextPath

Out[6]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

As we saw above, any symbols defined when your session begins have context Global`. Built-
in  functions  have  context  System`.  Symbols  defined in  packages  have  their  context  set  by  the
package (discussed below).

In[7]:= Map@Context, 8Integrate, f, ConvexHull<D

Out[7]= 8System`, Global`, ComputationalGeometry`<

To use a different context for any new symbols you mention, use the function Begin.

In[8]:= Begin@"ContextA`"D

Out[8]= ContextA`

In[9]:= g@x_D := x + 2

This uses g by specifying its full name.

In[10]:= ContextA`g@3D

Out[10]= 5

Or,  since we are  currently  in  the ContextA`  context,  use  the short  name.  In  this  new context,
the name g is an abbreviation for ContextA`g.

In[11]:= g@3D

Out[11]= 5

Here is the current context.

In[12]:= $Context

Out[12]= ContextA`

 Note that we can still refer to f, even though it was not defined in this context. This is because
f lives in the Global` context which is searched as part of $ContextPath.

In[13]:= Map@Global`f, 85, 7, 9<D

Out[13]= 86, 8, 10<

In[14]:= Map@f, 85, 7, 9<D

Out[14]= 86, 8, 10<

After exiting the context using End, you may define a different g, having context Global`.
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In[15]:= End@D

Out[15]= ContextA`

In[16]:= g@x_D := x + 3

In[17]:= g@3D

Out[17]= 6

In[18]:= Context@gD

Out[18]= Global`

We  now  have  two  definitions  of  g:  one  definition  of  Global`g  and  one  of  ContextA`g.
Since  our  current  context  is  Global`,  when  we  just  say  g  we  get  Global`g;  but  we  can  still
refer to ContextA`g by its full name.

In[19]:= g@3D

Out[19]= 6

In[20]:= ContextA`g@3D

Out[20]= 5

The question arises: when you enter a symbol sym, how does Mathematica decide which version
of  sym  to  use?  And  how  can  you  tell  which  one  it  has  chosen?  As  we  saw  above,  the  function
Context  gives the context of a symbol.

In[21]:= Context@MapD

Out[21]= System`

In[22]:= Context@ContextA`gD

Out[22]= ContextA`

You can also use ?.

In[23]:= ?g

Global`g

g@x_D := x + 3

How does Mathematica decide which definition to use? It maintains two variables, $Context  and
$ContextPath.  $Context  contains  the  current  context;  $ContextPath  contains  a  list  of
contexts.  Mathematica  looks  in  $Context  first,  then  in  the  contexts  in  $ContextPath  in  the
order in which they appear there; if it does not find the symbol at all, then it creates it in context
$Context. Of course, none of this applies if you give the symbol’s full name.
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In[24]:= $Context

Out[24]= Global`

In[25]:= $ContextPath

Out[25]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

In[26]:= Begin@"ContextA`"D

Out[26]= ContextA`

In[27]:= $Context

Out[27]= ContextA`

In[28]:= $ContextPath

Out[28]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

In[29]:= End@D

Out[29]= ContextA`

In[30]:= $Context

Out[30]= Global`

So the effect of entering a new context using Begin  is simply to change the value of $Context;
End@D changes it back. In either case, $ContextPath is not changed.

In[31]:= $ContextPath

Out[31]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

One final  point  about contexts:  contexts  can be nested within contexts,  that  is,  you can have
context names like A`B`C`.

In[32]:= Begin@"A`"D H* enter context A` *L

Out[32]= A`

In[33]:= Begin@"`B`"D H* enter context A`B` *L

Out[33]= A`B`

In[34]:= Begin@"`C`"D H* enter context A`B`C` *L

Out[34]= A`B`C`

In[35]:= End@D H* back in context A`B` *L

Out[35]= A`B`C`
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In[36]:= End@D H* back in context A` *L

Out[36]= A`B`

In[37]:= End@D H* back in context Global` *L

Out[37]= A`

Note  the  back  quote  before  the  context  name  in  the  second  and  third  Begin.  This  is  used  to
indicate that the new context should be a subcontext of the current context. We could have also
indicated this as follows:

In[38]:= Begin@"A`"D

Out[38]= A`

In[39]:= Begin@"A`B`"D

Out[39]= A`B`

In[40]:= Begin@"A`B`C`"D

Out[40]= A`B`C`

Nested contexts are a way of managing the multiplicity of contexts. In fact, package names are
contexts. When you load a package using Needs or <<, Mathematica translates the package name
directly into a path name in the hierarchical file system on your computer.

For example, you can load the package RandomWalks.m that lives in a directory PwM accord-
ing to the commands given in Table 13.1.

Table 13.1. Commands to load packages on different systems

Operating System Input

Windows << PwM\RandomWalks.m

Unix XêLinux << PwMêRandomWalks.m

Since Mathematica provides a system-independent means of loading packages, you can simply use
Get with the following syntax and Mathematica will automatically translate this into a path name
appropriate for your computer.

<< PwM`RandomWalks`
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13.4 Creating packages
Packages provide a framework to organize a collection of related functions. With them, you can
identify private functions and constants that the user, or client, of the package will not ordinarily
see.  Usage  and  warning  messages  for  the  public  functions,  those  that  the  user  of  your  package
will interact with, are also defined in the package. When set up properly using contexts, packages
help to avoid naming collisions, or shadowing, with other definitions of those names. 

In  this  section,  we  will  lay  out  the  package  framework  that  you  can  use  as  a  template  for
developing  all  your  packages.  We  will  briefly  show  some  ways  that  you  can  easily  deploy  your
packages.  All  of  these  components  are  demonstrated  using  the  random  walk  application  devel-
oped earlier in this chapter.

Package framework
Every package uses a framework containing several common elements.  Let us start by outlining
each  of  those  pieces  that  you  need  to  include  in  your  package  (Program  Listing  13.1).  You  can
create these in a new Mathematica notebook or use the PackageTemplate.nb notebook that accom-
panies this book’s support materials (see Preface).

Program Listing 13.1. Package template

BeginPackage@"package`"D

H* usage messages *L
package::usage = "usage message here…";

H* options *L
Options@packageD = 8opt1 Ø value1, opt2 Ø value2, …<

H* private context *L
Begin@"`Private`"D

H* function definitions *L
fun@x_D := …

fun2@x_, y_D := …

H* end private context *L
End@D

EndPackage@D
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BeginPackage  and  EndPackage Packages  start  with  a  BeginPackage  statement  and  end  with  an

EndPackage .  Evaluating  BeginPackageA"package`"E  sets  $Context  to  package`,  and

$ContextPath  to 9package, System`=.  EndPackage@D  resets both variables to their values

prior to the evaluation of BeginPackage@D, and then prepends package` to $ContextPath.
As an example, suppose you are in a Mathematica  session, with current context Global`, and

you read in a file containing the following:

BeginPackage@"package`"D

  f@x_D := …

  g@y_D := …

EndPackage@D

After  it  is  read,  the  functions  f  and  g,  with  full  names  package`f  and  package`g,  will  be
defined,  and  the  context  package`  will  be  in  $ContextPath.  If  you  do  not  have  any  other
definitions of f, you can refer to it as just f; if there are other definitions for a symbol f in other
contexts, then use package`f; and similarly for the function g.

In[1]:= $ContextPath

Out[1]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

In[2]:= BeginPackage@"myPackage`"D

Out[2]= myPackage`

In[3]:= $ContextPath

Out[3]= 8myPackage`, System`<

It is important to realize, too, that Mathematica determines the full name of any symbol when it
reads it  in.  Thus,  if  g  calls  f,  then the occurrence of f  in the body of g  becomes package`f  when
package  is  loaded.  g  will  always call  this  f,  even if  there is  a  different  f  defined in the context  in
which the call to g is made.

The BeginPackage  function can be given multiple  arguments.  The second and subsequent
arguments  are  the  names  of  other  packages  that  this  one  uses.  They  are  treated  as  if  they  were
arguments to the Needs  function, that is, they are loaded if they have not already been. Further-
more, they are included in $ContextPath  during the loading of this package, so its functions can
refer to their functions by their short names.
EndPackage@D  resets  $Context  and  $ContextPath  to  their  prior  values,  except  that

package` is added to the front of $ContextPath.
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In[4]:= EndPackage@D

In[5]:= $ContextPath

Out[5]= 8myPackage`, ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

Usage  and  warning  messages Put  usage  messages  for  all  public  functions  immediately  after  the
BeginPackage.  Defining  usage  messages  for  the  functions  in  your  packages  creates  symbols
for  the  functions  in  the  current  context.  Each  of  the  functions  for  which  you  define  a  usage
message  will  be  exported  for  public  use,  that  is,  those  functions  are  visible  and  usable  immedi-
ately  after  loading  the  package.  This  is  in  contrast  to  any  functions  that  are  defined  in  your
package for which you do not have usage messages (or, more precisely, for those functions that
you have not explicitly exported by mentioning that symbol before the Begin  statement). Those
functions will be private, unavailable for the user of your package to access.

Making your functions behave much like the built-in functions will make it easier for users of
your packages, since they will expect usage messages and general functionality similar to that of
Mathematica’s  functions.  It  is  also  a  good  way  for  you  to  document  your  programs.  You  might
even consider writing your usage messages before you write the function definitions in Mathemat-
ica. This will help you to understand clearly what it is you want your functions to do.

As discussed earlier (Section 5.7), usage messages have the following syntax:

In[6]:= funName::usage =
"funName@x,yD computes something using x and y.";

In[7]:= ? funName

funName@x,yD computes something using x and y.

The message itself starts with a template for that function. This template is used by Mathematica
to provide a convenient user-interface feature: function templates. For any built-in function, you
can get a template by entering the function name and then selecting Make Template from the Edit

menu, or use the appropriate keyboard shortcut. When you do, this is the kind of thing you will
see:

Plot3DA f , 9 x , xmin , xmax =, 9 y , ymin , ymax =E

By  starting  your  usage  message  with  the  template  for  your  function,  you  automatically  inherit
this user interface element.

funNameA x , y E
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Options Options  for  each  public  function  should  follow  next.  Options  for  private  functions
should follow the  Begin  statement,  that  is,  options  for  private  functions  should  themselves  be
private.

OptionsA functionNameE = 9opt1 Ø value1, opt2 Ø value2=

Begin  private  context The  Begin  command  changes  the  current  context  without  affecting  the
context  path.  By  starting  the  argument  `Private`  with  a  context  mark  `,  we  change  to  a
subcontext of the current context.

Function  definitions Definitions  for  both  public  and  private  functions  follow  next.  Only  those
functions  that  have  been  declared  public  (typically  via  usage  messages  before  the  Begin  state-
ment) will be available to the user of your package.

End private  context The End@D  command closes the Begin@D  and puts you back in the package
context  package`.  Any  symbols  that  were  defined  in  the  subcontext  package`Private`  can  no
longer be accessed.

EndPackage The EndPackage@D command puts you back in the context you were in prior to the
BeginPackage@D command, typically Global`.

Creating and installing the package
Since  a  package  is  simply  a  text  file,  you  could  create  and  develop  it  in  a  text  editor  if  you  pre-
ferred. But there are much more convenient environments in which you can do package develop-
ment. One such application is an IDE such as Wolfram Workbench. In these IDEs, you can develop
your code, debug it, profile (look for bottlenecks), and create and deploy documentation. Work-
ing  with  IDEs  is  beyond  the  scope  of  this  book  and  there  are  excellent  resources  available  for
learning about them. Instead, we will focus on package development using an environment you
should already be familiar with: the Mathematica notebook interface. 

Using  a  Mathematica  notebook  as  your  programming  environment  provides  several  useful
tools for package development that we will outline here. In particular, converting your notebook
into a package and installing it in a location that will make it instantly available are both straight-
forward using the front end.  Probably the most useful  aspect of using Mathematica  notebooks as
your programming environment is the fact that you can experiment and try out code snippets or
large-scale programs all in the same environment in which you are used to working.

As  you are  creating  your  package,  keep each function definition,  each option statement,  and
so on in a separate cell. This is generally a good practice whether you are developing packages or
not.  This way,  if  a  problem arises,  an error or warning message will  be issued immediately after
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the cell that triggers that message. If you had dozens of definitions in one cell, warning messages
would still be issued after that input cell, but you would have a difficult time trying to determine
which part of your code was causing the problem.

Once  you  have  completed  the  code  development  in  your  notebook,  select  all  Input  cells
(option-click on Mac OS X or Alt-click on Windows) and then convert them to initialization cells
by selecting Cell Properties � Initialization Cell from the Cell menu. This marks those cells that will
be included in the package. Saving your notebook at this point should trigger a dialog that asks if
you would like to create an autogenerated package from this notebook. Answering yes will cause
a package (a text file with the .m extension instead of .nb) to be saved in the same location as your
notebook.  Furthermore,  that  package  will  be  automatically  updated  whenever  you  save  any
changes to the corresponding notebook.

Finally,  to  install  the  package,  select  Install  from  the  File  menu.  This  will  bring  up  a  dialog  in
which  you  can  identify  the  type  of  item  to  install  (Package),  the  source  (point  to  your  newly
created and saved notebook containing initialization cells),  the install  name (typically  the name
of  your  package),  and  whether  the  package  should  be  made  available  to  all  users  of  your  com-
puter or just you (Figure 13.4).

Figure 13.4. Deploying packages through the File � Install menu item.

RandomWalks package
In  this  section,  we list  the  RandomWalks  package,  elements  of  which were  developed in  earlier
chapters.  We  will  add  several  important  user  interface  elements,  such  as  additional  usage  state-
ments. The full package is included in the PwM archive that accompanies this book (see Preface).

Because  we  have  worked  with  several  RandomWalk  implementations  in  this  chapter,  it  is  a
good  idea  to  clear  all  definitions,  attributes,  and  options  in  the  Global`  context  before
proceeding.
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In[8]:= ClearAll@"Global`"D

BeginPackage The RandomWalks  package lives  in  a  directory,  PwM,  which itself  lives  inside  one
of the Applications directories that are on Mathematica’s path. This is reflected in the argument to
BeginPackage. This expression sets the value of Context`, which causes $ContextPath  to
be set to 8PwM`RandomWalks`, System`<.

In[9]:= BeginPackage@"PwM`RandomWalks`"D

Out[9]= PwM`RandomWalks`

As mentioned above, you could import one or more packages by using an optional argument
to BeginPackage. In that case, you would have:

BeginPackageA"PwM`RandomWalks`", 9package1, package2, …=E

Usage  statements Usage  statements  for  each  of  the  public  functions  are  given  next.  We  also  pro-
vide a usage message for each option to RandomWalk. 

In[10]:= RandomWalk::usage =
"RandomWalk@tD generates a t-step random walk.

The default behavior gives a two-dimensional
lattice walk with steps in one of the four
compass directions. The option LatticeWalk
takes values True or False. The value of the
option Dimension can be any of 1, 2, or 3.";

In[11]:= Dimension::usage =
"Dimension is an option to RandomWalk that

determines whether the random walk will
be a one-, two-, or three-dimensional
walk. Possible values are 1, 2, or 3.";

In[12]:= LatticeWalk::usage =
"LatticeWalk is an option to RandomWalk that

determines whether the random walk will
be a lattice walk or an off-lattice walk.
Possible values are True and False.";
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In[13]:= ShowWalk::usage =
"ShowWalk@walkD displays a one, two, or three-dimensional

random walk connecting each site with a line.
Graphics options can be passed to ShowWalk.
E.g., ShowWalk@walk, BackgroundØGrayLevel@0DD
to produce a black background.";

Warning  messages One message  is  for  a  bad value  for  the  argument  that  specifies  the  number  of
steps, and another message is for a bad value given to the Dimension option.

In[14]:= RandomWalk::rwn = "Argument `1` is not a positive integer.";

In[15]:= RandomWalk::baddim =
"The value `1` of the option Dimension is

not an integer between 1 and 3.";

Options Next  we  list  options  for  public  functions.  This  declares  RandomWalk  to  have  two
options and sets their default values.

In[16]:= Options@RandomWalkD = 8LatticeWalk Ø True, Dimension Ø 2<;

Begin  private  context The  argument  `Private`  changes  the  current  context  to  a  subcontext  of
the current context. This new subcontext is PwM`RandomWalks`Private`. 

In[17]:= Begin@"`Private`"D

Out[17]= PwM`RandomWalks`Private`

Function  definitions Public  and  private  function  definitions  are  given  below.  RandomWalk  and
ShowWalk are the main public functions in this package. Note that latticeWalk and offLatÖ
ticeWalk  are  both  private.  The  user  has  no  need  to  worry  about  them,  let  alone  be  aware  of
them. 

We have not included all the definitions here that are included in the RandomWalks package.
The full package includes definitions for animating random walks, computing radius of gyration
tensor, and several others.

In[18]:= latticeWalk@steps_, dim_D := Module@8w<,
w = Accumulate@RandomChoice@Join@

IdentityMatrix@dimD, -IdentityMatrix@dimDD, stepsDD;
If@dim ã 1, Flatten@wD, wDD
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In[19]:= offLatticeWalk@t_, dim_D := Module@8f1, f2, f3<,
f1 = RandomReal@8-1, 1<, tD;
f2 = Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, tDD;
f3 = Function@8f, q<, 8Sin@fD Cos@qD, Sin@fD Sin@qD,

Cos@fD<D üüü RandomReal@80, 2 p<, 8t, 2<D;
Which@
dim ã 1, Accumulate@f1D,
dim ã 2, Accumulate@f2D,
dim ã 3, Accumulate@f3D

DD

In[20]:= RandomWalk@t_, OptionsPattern@DD := Module@8dim, latticeQ<,
8latticeQ, dim< = OptionValue@8LatticeWalk, Dimension<D;
Which@
! HIntegerQ@tD && t > 0L, Message@RandomWalk::"rwn", tD,
! HIntegerQ@dimD && 1 § dim § 3L,
Message@RandomWalk::baddim, dimD,
True, If@latticeQ, latticeWalk@t, dimD,
offLatticeWalk@t, dimDD

D
D

In[21]:= RandomWalk@x__D ê; Message@RandomWalk::rwn, xD := Null

RandomWalk@D ê; Message@General::argx, RandomWalk, 0D := Null;

In[23]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords,
FilterRules@8opts<, Options@ListLinePlotDDD

In[24]:= ShowWalk@coords : 88_, _< ..<, opts : OptionsPattern@DD :=

ListLinePlot@coords,
Append@FilterRules@8opts<, Options@ListLinePlotDD,
AspectRatio Ø AutomaticDD

In[25]:= ShowWalk@coords : 88_, _, _< ..<, opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD
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End  private  context The  End@D  command  closes  the  matching  Begin@D  and  returns  us  to  the
context  RandomWalks`.  Symbols  that  were  defined  in  PwM`RandomWalks`Private`  can
no longer be accessed.

In[26]:= End@D

Out[26]= PwM`RandomWalks`Private`

EndPackage End the package and reset $Context and $ContextPath.

In[27]:= EndPackage@D

Running the package
It is a good idea, when doing package development, to start with a new session before testing out
your package. This way you can avoid some issues with contexts that might arise if you evaluated
some context-changing commands in one context and then loaded a package in another.

In[28]:= Quit@D

Assuming  that  the  RandomWalks  package  has  been  installed  in  a  directory/folder  where
Mathematica can find it, this loads the package.

In[1]:= << PwM`RandomWalks`

Here is the usage message for the RandomWalk function.

In[2]:= ? RandomWalk

RandomWalk@tD generates a t-step random walk. The default
behavior gives a two-dimensional lattice walk with steps in one of
the four compass directions. The option LatticeWalk takes values True
or False. The value of the option Dimension can be any of 1, 2, or 3.

This gives a random walk of length 10 in two dimensions.

In[3]:= RandomWalk@10, Dimension Ø 2D

Out[3]= 880, -1<, 81, -1<, 82, -1<, 81, -1<, 81, -2<,
82, -2<, 81, -2<, 81, -1<, 80, -1<, 81, -1<<

Check that RandomWalk  does the right thing when passed a bad argument or given a value for
the Dimension option that the function is not set up to handle.

In[4]:= RandomWalk@-5D
RandomWalk::rwn : Argument -5 is not a positive integer.

In[5]:= RandomWalk@100, Dimension Ø 5D
RandomWalk::baddim : The value 5 of the option Dimension is not an integer between 1 and 3.
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This shows a 2500-step off-lattice random walk using the default of two dimensions.

In[6]:= ShowWalk@RandomWalk@2500, LatticeWalk Ø FalseDD

Out[6]=
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-40

-30

-20

-10

Here is a 5000-step two-dimensional random walk with some graphics options.

In[7]:= ShowWalk@RandomWalk@5000D, Frame Ø TrueD

Out[7]=
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-40

-30
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0

10

And here is a 2500 step off-lattice random walk in three dimensions followed by an animation.

In[8]:= ShowWalk@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD

Out[8]=
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In[9]:= AnimateWalk@
RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD

Out[9]=

Steps

Walk length: 2313

Exercises
1. The following set of exercises will walk you through the creation of a package Collatz, a package 

of functions for performing various operations related to the Collatz problem that we investigated 
earlier (Exercises 3 and 4 of Section 4.1, Exercise 6 of Section 6.2, and Exercise 4 of Section 7.3). 
Recall that the Collatz function, for any integer n, returns 3 n + 1 for odd n, and n ê2 for even n. The 
(as yet unproven) Collatz Conjecture is the statement that, for any initial positive integer n, the 
iterates of the Collatz function always reach the cycle 4, 2, 1,…. Start by creating an auxiliary 
function collatz@nD that returns 3 n + 1 for n odd and n ê2 for n even.

a. Create the function CollatzSequence@nD that lists the iterates of the auxiliary function 
collatz@nD. Here is some sample output of the CollatzSequence function.

In[1]:= CollatzSequence@7D

Out[1]= 87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

b. Create a usage message for CollatzSequence and warning messages for each of the following 
situations:

notint: the argument to CollatzSequence is not a positive integer

argx: CollatzSequence was called with the wrong number of arguments

c. Modify the definition of CollatzSequence that you created in part a. above so that it does 
some error trapping and issues the appropriate warning message that you created in part b.

d. Finally, put all the pieces together and write a package Collatz` that includes the appropriate 
BeginPackage and Begin statements, usage messages, warning messages, and function 
definitions. Make CollatzSequence a public function and collatz a private function. Put 
your package in a directory where Mathematica can find it on its search path and then test it to see 
that it returns correct output such as in the examples below.
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In[11]:= Quit@D;

In[1]:= << PwM`Collatz`

In[2]:= ? CollatzSequence

CollatzSequence@nD computes the sequence of Collatz iterates starting with
initial value n. The sequence terminates as soon as it reaches the value 1.

Here are various cases in which CollatzSequence is given bad input.

In[3]:= CollatzSequence@-5D
CollatzSequence::notint : First argument, -5, to CollatzSequence must be a positive integer.

In[4]:= CollatzSequence@4, 6D

CollatzSequence::argx : CollatzSequence called with 2 arguments; 1 argument is expected. à

Out[4]= CollatzSequence@4, 6D

And this computes the sequence for starting value 27.

In[5]:= CollatzSequence@27D

Out[5]= 827, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484,

242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,

233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,

445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,

850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,

3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46,

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<

2. The square end-to-end distance of a two-dimensional walk is defined as Ix f - xiM
2 + I y f - yiM

2, where 

8xi, yi< and 9x f , y f = are the initial and final locations of the walk, respectively. Assuming the initial 

point is the origin, then this simplifies to x f
2 + y f

2 . Write a function SquareDistance that takes a 

two-dimensional walk as an argument and computes the square end-to-end distance. Write a usage 
message and include this function as a publicly exported function in the RandomWalks package.
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Solutions to exercises
Below we give solutions to many of the exercises in this book. Space does not allow the inclusion of every 
solution in print, but all solutions are provided online both as a PDF file and in notebook form at www.cam-
bridge.org .

2 The Mathematica language
2.1 Expressions
1. The expression a Hb + cL is given in full form as Times@a, Plus@b, cDD.

3. There are three elements in the expression, with the term b x being the second. 
In[1]:= expr = a x2 + b x + c;

In[2]:= FullForm@exprD
Out[2]//FullForm=

Plus@c, Times@b, xD, Times@a, Power@x, 2DDD

The first element of Times@b, xD is b, so the part specification is 2, 1.

In[3]:= expr@@2DD

Out[3]= b x

In[4]:= expr@@2, 1DD

Out[4]= b

2.2 Definitions
1. This exercise focuses on the difference between immediate and delayed assignments.

a. This will generate a list of n random numbers.

In[1]:= randLis1@n_D := RandomReal@1, 8n<D

In[2]:= randLis1@3D

Out[2]= 80.251941, 0.214991, 0.615347<

b. Since the definition for x is an immediate assignment, its value does not change in the body of 
randLis2. But each time randLis2 is called, a new value is assigned to x.

In[3]:= randLis2@n_D := Hx = RandomReal@D; Table@x, 8n<DL

In[4]:= randLis2@3D

Out[4]= 80.225983, 0.225983, 0.225983<



In[5]:= randLis2@3D

Out[5]= 80.817911, 0.817911, 0.817911<

c. Because the definition for x is a delayed assignment, the definition for randLis3 is functionally 
equivalent to randLis1.

In[6]:= randLis3@n_D := Hx := RandomReal@D; Table@x, 8n<DL

In[7]:= randLis3@3D

Out[7]= 80.395331, 0.652456, 0.243081<

d. In an immediate assignment, the right-hand side of the definition is evaluated first. But in this case, n 
does not have a value, so Table  is not able to evaluate properly.

In[8]:= randLis4@n_D = Table@RandomReal@D, 8n<D

Table::iterb : Iterator 8n< does not have appropriate bounds. à

Out[8]= Table@RandomReal@D, 8n<D

In[9]:= Clear@xD

3. The rules for the logarithm function are as follows. Note, there is no need to program the division rule 
separately. Do you see why? (Look at FullForm@x ê yD.)

In[10]:= log@a_ * b_D := log@aD + log@bD

In[11]:= log@a_n_D := n log@aD

In[12]:= logAx y2 z3E

Out[12]= log@xD + 2 log@yD + 3 log@zD

In[13]:= log@x ê yD

Out[13]= log@xD - log@yD

2.3 Predicates and Boolean operations
1. There are several ways to define this function, either using the relational operator for less than, or with the 

absolute value function.
In[1]:= f@x_D := -1 < x < 1

In[2]:= f@x_D := Abs@xD < 1

In[3]:= f@4D

Out[3]= False

In[4]:= f@-0.35D

Out[4]= True

3. A number n can be considered a natural number if it is both an integer and greater than or equal to zero. 
There is some disagreement in the mathematics community about 0, but for our purposes, we will adopt 
the convention that 0 is a natural number.
In[5]:= NaturalQ@n_D := IntegerQ@nD && n ¥ 0

In[6]:= NaturalQ@0D

Out[6]= True
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In[7]:= NaturalQ@-4D

Out[7]= False

5. There are three tests that have to be satisfied: integer, greater than 1, not prime.
In[8]:= CompositeQ@n_D := IntegerQ@nD && n > 1 && Not@PrimeQ@nDD

In[9]:= CompositeQA231 - 1E

Out[9]= False

In[10]:= CompositeQA231 + 1E

Out[10]= True

This is more neatly done using conditional pattern matching. See, for example, Section 4.1 on patterns.

2.4 Attributes
1. First clear any definitions and attributes that might be associated with f.

In[1]:= ClearAll@fD

Then set the HoldAll attribute to prevent initial evaluation of the argument of this function.

In[2]:= SetAttributes@f, HoldAllD

In[3]:= f@x_ + y_D := x2 + y2

In[4]:= f@a + bD

Out[4]= a2 + b2

In[5]:= f@2 + 3D

Out[5]= 13

2. Here is a small list of random numbers to use.
In[6]:= vec = RandomReal@8-1, 1<, 10D

Out[6]= 8-0.847838, -0.241155, 0.318935, 0.711714, 0.427628,

-0.342618, -0.601334, -0.733025, -0.58182, -0.985515<

The function could be set up to take two arguments, the number and the bound.

In[7]:= fun@x_?NumberQ, bound_D := IfB-bound < x < bound, x, x F

Make fun listable.

In[8]:= SetAttributes@fun, ListableD

In[9]:= fun@vec, 0.5D

Out[9]= 80. + 0.920781 Â, -0.241155, 0.318935, 0.843631, 0.427628, -0.342618,

0. + 0.775457 Â, 0. + 0.856169 Â, 0. + 0.762771 Â, 0. + 0.992731 Â<
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3 Lists
3.1 Creating and displaying lists
1. You can take every other element in the iterator list, or encode that in the expression 2 j.

In[1]:= Table@j, 8i, 0, 8, 2<, 8j, 0, i, 2<D

Out[1]= 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<<

In[2]:= Table@2 j, 8i, 0, 4<, 8j, 0, i<D

Out[2]= 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<<

3. Here are three ways to generate the list.
In[3]:= 2 RandomInteger@1, 810<D - 1

Out[3]= 81, -1, 1, -1, -1, 1, -1, 1, -1, -1<

In[4]:= H-1LRandomInteger@1,810<D

Out[4]= 8-1, -1, -1, -1, 1, 1, 1, -1, -1, -1<

The most direct way to do this is to use RandomChoice.

In[5]:= RandomChoice@8-1, 1<, 810<D

Out[5]= 8-1, 1, 1, 1, -1, -1, 1, 1, -1, -1<

5. Some thought is needed to get the iterators right using Table .
In[6]:= xmin = -2; xmax = 2; ymin = -1; ymax = 1;

hlines = Table@88xmin, y<, 8xmax, y<<, 8y, ymin, ymax<D
Out[7]= 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<, 88-2, 1<, 82, 1<<<

In[8]:= vlines = Table@88x, ymin<, 8x, ymax<<, 8x, xmin, xmax<D

Out[8]= 888-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,
880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<

Join the two sets of lines and then flatten to remove one set of braces.

In[9]:= pairs = Flatten@8hlines, vlines<, 1D

Out[9]= 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<,
88-2, 1<, 82, 1<<, 88-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,
880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<

In[10]:= Graphics@Line@pairsDD

Out[10]=

Here is a function that puts all this together:

In[11]:= Lattice@8xmin_, xmax_<, 8ymin_, ymax_<D :=

Module@8hlines, vlines, coords<,
hlines = Table@88xmin, y<, 8xmax, y<<, 8y, ymin, ymax<D;
vlines = Table@88x, ymin<, 8x, ymax<<, 8x, xmin, xmax<D;
coords = Flatten@8hlines, vlines<, 1D;
Graphics@Line@coordsDDD
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In[12]:= Lattice@8-3, 3<, 8-2, 2<D

Out[12]=

3.2 The structure of lists
1. Here is the list of integers to use.

In[1]:= ints = RandomInteger@8-5, 5<, 30D

Out[1]= 82, 0, 0, -3, -3, 0, -1, 3, 0, 0, -4, 0, -3, 2,

1, 5, -2, 4, 5, 1, 0, -5, -4, 4, -3, -4, 1, -3, 1, -3<

Count all elements that match 0.

In[2]:= Count@ints, 0D

Out[2]= 7

Count all integers in ints that do not match 1.

In[3]:= Count@ints, Except@1DD

Out[3]= 26

3. The Position  function tells us that the 9s are located in the second sublist, first position, and in the 
fourth sublist, third position.
In[4]:= Position@882, 1, 10<, 89, 5, 7<, 82, 10, 4<, 810, 1, 9<, 86, 1, 6<<, 9D

Out[4]= 882, 1<, 84, 3<<

3.3 Working with lists
1. This is a straightforward use of the Transpose function.

In[1]:= Transpose@88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<, 8x5, y5<<D

Out[1]= 88x1, x2, x3, x4, x5<, 8y1, y2, y3, y4, y5<<

2. Here is one way to do it. First create a list representing the directions.
In[2]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;

RandomChoice chooses with replacement.

In[3]:= RandomChoice@NSEW, 810<D

Out[3]= 880, 1<, 8-1, 0<, 8-1, 0<, 80, -1<,
80, -1<, 8-1, 0<, 80, 1<, 8-1, 0<, 80, -1<, 80, -1<<

3. Start by dropping the first element in the list, then create a nested list of every other element in the remain-
ing list, and finally unnest the resulting list.
In[4]:= Rest@8a, b, c, d, e, f, g<D

Out[4]= 8b, c, d, e, f, g<

In[5]:= Partition@%, 1, 2D

Out[5]= 88b<, 8d<, 8f<<
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In[6]:= Flatten@%D

Out[6]= 8b, d, f<

This can also be done directly in one step using Part with Span. The expression 2 ;; -1 ;; 2 indicates 
the range from the second element to the last element in increments of 2.

In[7]:= Part@8a, b, c, d, e, f, g<, 2 ;; -1 ;; 2D

Out[7]= 8b, d, f<

4. The standard procedural approach is to use a temporary variable to do the swapping.
In[8]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[9]//MatrixForm=

6 7 6 5
8 2 7 1
9 4 4 7
4 4 0 7

In[10]:= temp = mat@@1DD;
mat@@1DD = mat@@2DD;
mat@@2DD = temp;

MatrixForm@matD
Out[13]//MatrixForm=

8 2 7 1
6 7 6 5
9 4 4 7
4 4 0 7

But you can use parallel assignments to avoid the temporary variable.

In[14]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[15]//MatrixForm=

2 3 6 9
1 6 8 6
9 9 0 5
3 0 1 6

In[16]:= 8mat@@2DD, mat@@1DD< = 8mat@@1DD, mat@@2DD<;
MatrixForm@matD

Out[17]//MatrixForm=

1 6 8 6
2 3 6 9
9 9 0 5
3 0 1 6

In fact you can make this a bit more compact.
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In[18]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[19]//MatrixForm=

8 9 0 6
8 5 9 5
0 5 4 4
8 2 3 5

In[20]:= mat@@82, 1<DD = mat@@81, 2<DD;
MatrixForm@matD

Out[21]//MatrixForm=

8 5 9 5
8 9 0 6
0 5 4 4
8 2 3 5

A key point to notice is that in this exercise, the matrix mat was overwritten in each case; in other words, 
these were destructive operations. Section 5.5 discusses how to handle row and column swapping properly 
so that the original matrix remains untouched.

5. You need to first transpose the matrix to operate on the columns as rows. 
In[22]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[23]//MatrixForm=

0 7 5 1
5 5 4 7
2 6 2 4
7 4 8 3

In[24]:= Transpose@matD

Out[24]= 880, 5, 2, 7<, 87, 5, 6, 4<, 85, 4, 2, 8<, 81, 7, 4, 3<<

Now insert the column vector at the desired position. Then transpose back.

In[25]:= Insert@Transpose@matD, 8a, b, c, d<, 3D êê MatrixForm
Out[25]//MatrixForm=

0 5 2 7
7 5 6 4
a b c d
5 4 2 8
1 7 4 3

In[26]:= TransposeüInsert@Transpose@matD, 8a, b, c, d<, 3D êê MatrixForm
Out[26]//MatrixForm=

0 7 a 5 1
5 5 b 4 7
2 6 c 2 4
7 4 d 8 3

Here then is the function, with some basic argument checking to make sure the number of elements in the 
column vector is the same as the number of rows of the matrix. 

In[27]:= AddColumn@mat_, col_, pos_D ê; Length@colD ã Length@matD :=

Transpose@Insert@Transpose@matD, col, posDD
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8. Join expects lists as arguments.
In[28]:= Join@8z<, 8x, y<D

Out[28]= 8z, x, y<

9. Joining the two lists and then using Part with Span is the most direct way to do this.
In[29]:= expr = Join@81, 2, 3, 4<, 8a, b, c, d<D

Out[29]= 81, 2, 3, 4, a, b, c, d<

In[30]:= expr@@2 ;; -1 ;; 2DD

Out[30]= 82, 4, b, d<

11. This is another way of asking for all those elements that are in the union but not the intersection of the two 
sets.

In[31]:= A = 8a, b, c, d<;
B = 8a, b, e, f<;

In[33]:= Complement@A ‹ B, A › BD

Out[33]= 8c, d, e, f<

In[34]:= Complement@Union@A, BD, Intersection@A, BDD

Out[34]= 8c, d, e, f<

13. This is a straightforward extension of the previous exercise.
In[35]:= NGrams@text_, n_D := Partition@

StringSplit@text, RegularExpression@"\\W+"DD, n, 1D
In[36]:= sentence = "Use StringSplit to split long strings into words.";

NGrams@sentence, 3D
Out[37]= 88Use, StringSplit, to<, 8StringSplit, to, split<, 8to, split, long<,

8split, long, strings<, 8long, strings, into<, 8strings, into, words<<

4 Patterns and rules
4.1 Patterns
1. Start by creating a list of integers with which to work.

In[1]:= lis = RandomInteger@1000, 820<D

Out[1]= 8775, 422, 36, 680, 264, 470, 794, 174, 619,

584, 342, 345, 104, 997, 988, 576, 808, 958, 336, 551<

IntegerQ  is a predicate; it returns True or False , so we need to use the logical OR to separate clauses 
here.

In[2]:= Cases@lis, n_ ê; IntegerQ@n ê 2D »» IntegerQ@n ê 3D »» IntegerQ@n ê 5DD

Out[2]= 8775, 422, 36, 680, 264, 470, 794, 174,

584, 342, 345, 104, 988, 576, 808, 958, 336<

This is a bit more compact and direct.
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In[3]:= Cases@lis, n_ ê; Mod@n, 2D ã 0 »» Mod@n, 3D ã 0 »» Mod@n, 5D ã 0D

Out[3]= 8775, 422, 36, 680, 264, 470, 794, 174,

584, 342, 345, 104, 988, 576, 808, 958, 336<

Once you are familiar with pure functions (Section 5.6), you can also do this with Select .

In[4]:= Select@lis, Mod@Ò, 2D ã 0 »» Mod@Ò, 3D ã 0 »» Mod@Ò, 5D ã 0 &D

Out[4]= 8775, 422, 36, 680, 264, 470, 794, 174,

584, 342, 345, 104, 988, 576, 808, 958, 336<

3. The Collatz function has a direct implementation based on its definition. There is no need to check 
explicitly that the argument is an integer since OddQ and EvenQ  handle that.
In[5]:= Collatz@n_?OddQD := 3 n + 1

In[6]:= Collatz@n_?EvenQD :=
n

2

Here we iterate the Collatz function fifteen times starting with an initial value of 23.

In[7]:= NestList@Collatz, 23, 15D

Out[7]= 823, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<

Check for arguments that do not match the patterns above.

In[8]:= Collatz@24.0D

Out[8]= Collatz@24.D

5. Using alternatives, this gives the definition for real, integer, or rational arguments.
In[9]:= abs@x_Real x_Integer x_RationalD := If@x ¥ 0, x, -xD

Here is the definition for complex arguments.

In[10]:= abs@x_ComplexD := Re@xD2 + Im@xD2

Note that these rules are not invoked for symbolic arguments.

In[11]:= MapBabs, :-3, 3 + 4 I,
-4

5
, a>F

Out[11]= :3, 5,
4

5
, abs@aD>

4.2 Transformation rules
1. The problem here is that the pattern is too general and has been matched by the entire expression, which 

has the form 8x_, y_<, where x is matched by 8a, b< and y is matched by 8c, d<. To fix this, use 
patterns to restrict the expressions that match.
In[1]:= 88a, b<, 8c, d<< ê. 8x_Symbol, y_Symbol< ß 8y, x<

Out[1]= 88b, a<, 8d, c<<

In[2]:= 88a, b<, 8c, d<, 8e, f<< ê. 8x_Symbol, y_Symbol< ß 8y, x<

Out[2]= 88b, a<, 8d, c<, 8f, e<<

3. The cross product is only defined for three dimensions, so first we need to embed the two-dimensional 
vectors in 3-space; in this case, in the plane z = 0. 
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In[3]:= 8x1, y1< ê.8x_, y_< ß 8x, y, 0<

Out[3]= 8x1, y1, 0<

We need to compute the cross product of two vectors that span the triangle.

In[4]:= Cross@8x2, y2< - 8x1, y1< ê.8x_, y_< ß 8x, y, 0<,
8x3, y3< - 8x1, y1< ê.8x_, y_< ß 8x, y, 0<D

Out[4]= 80, 0, -x2 y1 + x3 y1 + x1 y2 - x3 y2 - x1 y3 + x2 y3<

Here are the coordinates for a triangle.

In[5]:= a = 80, 0<;
b = 85, 0<;
c = 83, 2<;

And here is the computation for the cross product.

In[8]:= Cross@b - a ê.8x_, y_< ß 8x, y, 0<, c - a ê.8x_, y_< ß 8x, y, 0<D

Out[8]= 80, 0, 10<

So the given area is then just half the magnitude of the cross product.

In[9]:=
Norm@%D

2
Out[9]= 5

This is done more simply using determinants. Note the change here: each vector (edge of triangle) is 
embedded in the plane z = 1.

In[10]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=
1

2
Det@tri ê.8x_, y_< ß 8x, y, 1<D

In[11]:= TriangleArea@8a, b, c<D

Out[11]= 5

In[12]:= Clear@a, b, cD

4. First, get the solutions to this polynomial.
In[13]:= soln = SolveAx9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123 ã 0, xE

Out[13]= 88x Ø -2.80961<, 8x Ø -1.85186 - 2.15082 Â<, 8x Ø -1.85186 + 2.15082 Â<,
8x Ø -0.376453<, 8x Ø 0.323073<, 8x Ø 1.06103 - 3.12709 Â<,
8x Ø 1.06103 + 3.12709 Â<, 8x Ø 1.30533<, 8x Ø 3.13931<<

The pattern needs to match an expression consisting of a list with a rule inside where the value on the 
right-hand side of the rule should pass the Negative  test.

In[14]:= Cases@soln, 8x_ Ø _?Negative<D

Out[14]= 88x Ø -2.80961<, 8x Ø -0.376453<<

Here are two solutions for the noncomplex roots.

In[15]:= Cases@soln, 8_ Ø _Real<D

Out[15]= 88x Ø -2.80961<, 8x Ø -0.376453<,
8x Ø 0.323073<, 8x Ø 1.30533<, 8x Ø 3.13931<<
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In[16]:= DeleteCases@soln, 8_ Ø _Complex<D

Out[16]= 88x Ø -2.80961<, 8x Ø -0.376453<,
8x Ø 0.323073<, 8x Ø 1.30533<, 8x Ø 3.13931<<

6. Note the need to put y in a list on the right-hand side of the rule. Also, an immediate rule is required here.
In[17]:= sumList@lis_D := First@lis êê.8x_, y___< Ø x + 8y<D

In[18]:= sumList@81, 5, 8, 3, 9, 3<D

Out[18]= 29

8. For an expression of the form PowerAa, bE, the number of multiplies is b - 1.

In[19]:= Cases@8x^4<, Power@_, exp_D ß exp - 1D

Out[19]= 83<

For an expression of the form TimesAa, b, c, …E, the number of multiplications is given by one less 

then the number of arguments.

In[20]:= Cases@8a b c d e<, fac_Times ß Length@facD - 1D

Out[20]= 84<

For a mix of terms of these two cases, we will need to total up the counts from the respective terms. Here is 
a function that puts this all together. Use Infinity  as a third argument to Cases  to make sure the 
search goes all the way down the expression tree.

In[21]:= MultiplyCount@expr_?PolynomialQD :=

TotalüCases@8expr<, Power@_, exp_D ß exp - 1, InfinityD +

TotalüCases@8expr<, fac_Times ß Length@facD - 1, InfinityD
In[22]:= MultiplyCountAa b2 c d5E

Out[22]= 8

In[23]:= poly = ExpandAHx + y - zL3E

Out[23]= x3 + 3 x2 y + 3 x y2 + y3 - 3 x2 z - 6 x y z - 3 y2 z + 3 x z2 + 3 y z2 - z3

In[24]:= MultiplyCount@polyD

Out[24]= 28

9. First, we create a grid of the nine locations on the die.
In[25]:= lis = Partition@Range@9D, 3D;

Grid@lisD

Out[26]=

1 2 3
4 5 6
7 8 9

Next, use graphics primitives to indicate if a location on the grid is colored (on) or not (off).

In[27]:= off = 8Red, Disk@D<;
on = 8White, Disk@D<;

Here are the rules for a five.
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In[29]:= GraphicsGrid@Map@Graphics,
lis ê. 81 Ø on, 2 Ø off, 3 Ø on,

4 Ø off, 5 Ø on, 6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,
82<D, Background Ø Red, Spacings Ø 10, ImageSize Ø 50D

Out[29]=

The five other rules are straightforward. Here then is a function that wraps up the code. Note the use of the 
Background  option to GraphicsGrid to pick up the color from the value of off.

In[30]:= Dice@n_D :=

Module@8rules, off = 8DarkerüBlue, Disk@D<, on = 8White, Disk@D<<,
rules = 8

81 Ø off, 2 Ø off, 3 Ø off,

4 Ø off, 5 Ø on, 6 Ø off, 7 Ø off, 8 Ø off, 9 Ø off<,
81 Ø off, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø off,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø off<,
81 Ø off, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø on,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø off<,
81 Ø on, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø off,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,
81 Ø on, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø on, 6 Ø off,

7 Ø on, 8 Ø off, 9 Ø on<,
81 Ø on, 2 Ø off, 3 Ø on, 4 Ø on, 5 Ø off, 6 Ø on,

7 Ø on, 8 Ø off, 9 Ø on<
<;

GraphicsGrid@Map@Graphics,
Partition@Range@9D, 3D ê. rules@@nDD,
82<D, Background Ø First@offD, Spacings Ø 10, ImageSize Ø 40D

D
In[31]:= Table@Dice@nD, 8n, 1, 6<D

Out[31]= : , , , , , >

4.3 Examples and applications
1. Here is the function FindSubsequence as given in the text. 

In[1]:= FindSubsequence@lis_List, subseq_ListD :=

Module@8p, len = Length@subseqD<,
p = Partition@lis, len, 1D;
Position@p, subseqD ê. 8num_?IntegerQ< ß 8num, num + len - 1<D

This creates another rule associated with FindSubsequence that simply takes each integer argument, 
converts it to a list of integer digits, and then passes that off to the rule above.

In[2]:= FindSubsequence@n_Integer, subseq_IntegerD :=
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Module@8nlist = IntegerDigits@nD, sublist = IntegerDigits@subseqD<,
FindSubsequence@nlist, sublistD

D

Create the list of the first 100 000 digits of p.

In[3]:= pi = FromDigitsARealDigitsANAPi, 105E - 3E@@1DDE;

The subsequence 1415 occurs seven times at the following locations in this digit expansion of p.

In[4]:= FindSubsequence@pi, 1415D

Out[4]= 881, 4<, 86955, 6958<, 829136, 29139<, 845234, 45237<,
879687, 79690<, 885880, 85883<, 888009, 88012<<

2. Here is the plot of the sine function.
In[5]:= splot = Plot@Sin@xD, 8x, -2 p, 2 p<D

Out[5]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

This replacement rule interchanges each ordered pair of numbers. Note the need to modify the plot range 
here.

In[6]:= Show@splot ê. 8x_?NumberQ, y_?NumberQ< ß 8y, x<, PlotRange Ø 8-2 p, 2 p<D

Out[6]=
-1.0 -0.5 0.5 1.0

-6

-4

-2

2

4

6

Although this particular example may have worked without the argument checking (_?NumberQ), it is a 
good idea to include it so that pairs of arbitrary expressions are not pattern matched here. We only want to 
interchange pairs of numbers, not pairs of options or other expressions that might be present in the 
underlying expression representing the graphic.

3. We are embedding the two-dimensional data into a three-dimensional array. The embedding function is 
written directly as a transformation rule.
In[7]:= data = RandomReal@80, 1<, 88, 2<D

Out[7]= 880.925874, 0.136988<, 80.0928518, 0.895481<,
80.863376, 0.0878501<, 80.15219, 0.773304<, 80.10783, 0.0809593<,
80.374144, 0.880981<, 80.711271, 0.608961<, 80.208222, 0.329782<<
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In[8]:= data ê. 8x_, y_< ß 8x, y, Norm@8x, y<D< êê MatrixForm
Out[8]//MatrixForm=

0.925874 0.136988 0.935953
0.0928518 0.895481 0.900282
0.863376 0.0878501 0.867834
0.15219 0.773304 0.788137
0.10783 0.0809593 0.134839
0.374144 0.880981 0.957137
0.711271 0.608961 0.936344
0.208222 0.329782 0.390016

5 Functional programming
5.2 Functions for manipulating expressions
1. First, here is the definition given in Section 4.1.

In[1]:= SquareMatrixQ@mat_?MatrixQD :=

Dimensions@matD@@1DD ã Dimensions@matD@@2DD

For a matrix, Dimensions  returns a list of two integers. Applying Equal  to the list will return True if 
the two dimensions are identical, that is, if the matrix is square.

In[2]:= SquareMatrixQ@mat_?MatrixQD := Apply@Equal, Dimensions@matDD

2. First create a set of points with which to work.
In[3]:= points = RandomReal@1, 8100, 2<D;

The set of all two-element subsets is given by:

In[4]:= pairs = Subsets@points, 82<D;

Apply the distance function to pairs. Note the need to apply EuclideanDistance at level 1.

In[5]:= Apply@EuclideanDistance, pairs, 81<D;

The maximum distance (diameter) is given by Max .

In[6]:= Max@%D

Out[6]= 1.2765

Here is a function that puts it all together.

In[7]:= PointsetDiameter@pts_ListD :=

Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD
In[8]:= PointsetDiameter@pointsD

Out[8]= 1.2765

In fact, this function works on n-dimensional point sets.
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In[9]:= points3D = RandomReal@1, 85, 3<D

Out[9]= 880.0776908, 0.260979, 0.796066<,
80.707468, 0.453237, 0.155118<, 80.728849, 0.580631, 0.319354<,
80.88149, 0.0464455, 0.0383026<, 80.238723, 0.844875, 0.0790128<<

In[10]:= PointsetDiameter@points3DD

Out[10]= 1.12531

3. Here is a test matrix.
In[11]:= mat = RandomInteger@1, 85, 5<D;

MatrixForm@matD
Out[12]//MatrixForm=

0 0 1 1 0
0 0 0 0 1
1 1 1 0 0
1 1 0 1 1
1 1 0 0 1

A bit of thought should convince you that adding the matrix to its transpose and then totaling all the 1s in 
each row will give the correct count.

In[13]:= Map@Total, mat + Transpose@matDD

Out[13]= 85, 4, 5, 6, 6<

Using graphs you can accomplish the same thing.

In[14]:= gr = AdjacencyGraph@mat, VertexLabels Ø "Name"D

Out[14]=

In[15]:= VertexDegree@grD

Out[15]= 85, 4, 5, 6, 6<

4. Applying DirectedEdge at level 1 will do the trick.
In[16]:= ToGraph@lis : 88_, _< ..<D := Apply@DirectedEdge, lis, 81<D

In[17]:= lis = RandomInteger@9, 812, 2<D;
ToGraph@lisD

Out[18]= 80 � 6, 7 � 9, 5 � 3, 8 � 0, 3 � 6,

0 � 5, 9 � 3, 1 � 7, 0 � 2, 2 � 4, 4 � 3, 4 � 5<

This rule fails for the case when the argument is a single flat list of a pair of elements.

In[19]:= ToGraph@83, 6<D

Out[19]= ToGraph@83, 6<D
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A second rule is needed for this case.

In[20]:= ToGraph@lis : 8_, _<D := Apply@DirectedEdge, lisD

In[21]:= ToGraph@83, 6<D

Out[21]= 3 � 6

5. RGBColor  takes a sequence of three values between 0 and 1. So you only need to apply RGBColor  to this 
list.

In[22]:= RandomColor@D := Apply@RGBColor, RandomReal@1, 83<DD

A second rule uses pattern matching to make sure the argument, n, to RandomColor is a positive integer; 
then create a list of n triples of random reals before applying RGBColor  at level 1.

In[23]:= RandomColor@n_Integer?PositiveD :=

Apply@RGBColor, RandomReal@1, 8n, 3<D, 81<D

6. First, create the random centers and radii.
In[24]:= n = 12;

centers = RandomReal@8-1, 1<, 8n, 2<D
Out[25]= 880.226222, -0.111298<, 80.462016, -0.845492<, 80.840404, 0.558368<,

8-0.989743, 0.633542<, 80.23714, -0.315888<, 80.476561, 0.873451<,
80.65813, -0.916153<, 80.287248, -0.833235<, 8-0.70788, 0.685656<,
80.215158, -0.464512<, 80.65807, -0.925023<, 80.962352, 0.477038<<

In[26]:= radii = RandomReal@1, 8n<D

Out[26]= 80.883751, 0.549666, 0.576343, 0.470191, 0.425309, 0.0544009,

0.553858, 0.0168329, 0.940539, 0.669541, 0.755542, 0.865138<

MapThread is perfect for the task of grabbing one center, one radii, and wrapping Circle  around them.

In[27]:= circles = MapThread@Circle, 8centers, radii<D êê Short

Out[27]//Short= 8Circle@80.226222, -0.111298<, 0.883751D,
á10à, Circle@80.962352, á20à<, á19àD<

In[28]:= Graphics@circlesD

Out[28]=

And here is a rule to transform each circle into a scoped list that includes Thick  and RandomColor. 
Note the need for the delayed rule (ß).
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In[29]:= Graphics@circles ê. Circle@x__D ß 8Thick, RandomColor@D, Circle@xD<D

Out[29]=

7. Here is the Inner  example from the text.
In[30]:= Inner@f, 8a, b, c<, 8d, e, f<, gD

Out[30]= g@f@a, dD, f@b, eD, f@c, fDD

Using MapThread, we zip together the two lists and wrap f around each pair. Then apply g.

In[31]:= MapThread@f, 88a, b, c<, 8d, e, f<<D

Out[31]= 8f@a, dD, f@b, eD, f@c, fD<

In[32]:= Apply@g, %D

Out[32]= g@f@a, dD, f@b, eD, f@c, fDD

9. To get down to the level of the nested lists, you have to use a second argument to Apply .
In[33]:= facs = FactorInteger@3628800D

Out[33]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

In[34]:= Apply@Power, facs, 81<D

Out[34]= 8256, 81, 25, 7<

One more use of Apply  is needed to multiply these terms.

In[35]:= Apply@Times, %D

Out[35]= 3628800

Here is a function that puts this all together.

In[36]:= ExpandFactors@lis_D := Apply@Times, Apply@Power, lis, 81<DD

In[37]:= FactorInteger@295232799039604140847618609643520000000D

Out[37]= 882, 32<, 83, 15<, 85, 7<, 87, 4<, 811, 3<,
813, 2<, 817, 2<, 819, 1<, 823, 1<, 829, 1<, 831, 1<<

In[38]:= ExpandFactors@%D

Out[38]= 295232799039604140847618609643520000000

11. First, here is the prime factorization of a test integer:
In[39]:= lis = FactorInteger@10!D

Out[39]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Apply Superscript  at level 1 to each of the sublists:

In[40]:= Apply@Superscript, lis, 81<D

Out[40]= 928, 34, 52, 71=

Finally, apply CenterDot to this list.
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In[41]:= Apply@CenterDot, %D

Out[41]= 28 ÿ 34 ÿ 52 ÿ 71

Put it all together (using shorthand notation for Apply ) and Apply  at level 1.

In[42]:= PrimeFactorForm@p_D := CenterDot üü HSuperscript üüü FactorInteger@pDL

In[43]:= PrimeFactorForm@20!D

Out[43]= 218 ÿ 38 ÿ 54 ÿ 72 ÿ 111 ÿ 131 ÿ 171 ÿ 191

Unfortunately, this rule fails for numbers that have only one prime factor.

In[44]:= PrimeFactorForm@9D

Out[44]= CenterDotA32E

A second rule is needed for this special case.

In[45]:= PrimeFactorForm@p_?PrimePowerQD :=

First@Superscript üüü FactorInteger@pDD
In[46]:= PrimeFactorForm@9D

Out[46]= 32

A subtle point is that Mathematica has automatically ordered these two rules, putting the one involving 
prime powers first.

In[47]:= ? PrimeFactorForm

Global`PrimeFactorForm

PrimeFactorForm@p_?PrimePowerQD :=

First@Apply@Superscript, FactorInteger@pD, 81<D

PrimeFactorForm@p_D :=

CenterDot üü Apply@Superscript, FactorInteger@pD, 81<D

This reordering (we evaluated the rules in a different order) is essential for this function to work properly. 
If the general rule was checked first, it would apply to arguments that happen to be prime powers and it 
would give wrong answers.

One final point: the expressions returned by PrimeFactorForm will not evaluate like ordinary expres-
sions due to the use of CenterDot which has no evaluation rules associated with it. You could add an 
“interpretation” to such expressions by using InterpretationAdisp, exprE as follows.

In[48]:= PrimeFactorForm@p_IntegerD := With@8fp = FactorInteger@pD<,
Interpretation@
CenterDot üü HSuperscript üüü fpL,
Times üü HPower üüü fpLDD

Now the output of the following expression can be evaluated directly to get an interpreted result.

In[49]:= PrimeFactorForm@12!D

Out[49]= 210 ÿ 35 ÿ 52 ÿ 71 ÿ 111
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12. This is a straightforward application of the Outer  function.
In[50]:= VandermondeMatrix@n_, x_D :=

Outer@Power, Table@xi, 8i, 1, n<D, Range@0, n - 1DD
In[51]:= VandermondeMatrix@4, xD êê MatrixForm

Out[51]//MatrixForm=

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3

1 x4 x4
2 x4

3

14. First create a table of primes and then use that list for values of p in the second table.
In[52]:= primes = Table@Prime@nD, 8n, 1, 50<D

Out[52]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229<

In[53]:= Select@Table@2p - 1, 8p, primes<D, PrimeQD

Out[53]= 83, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727<

Or you could do the same thing more directly.

In[54]:= SelectATableA2Prime@nD - 1, 8n, 1, 50<E, PrimeQE

Out[54]= 83, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727<

5.3 Iterating functions
1. First generate the step directions.

In[1]:= TableAH-1LRandom@IntegerD, 810<E

Out[1]= 81, 1, -1, 1, -1, 1, -1, -1, -1, 1<

Or the following also works.

In[2]:= steps = 2 RandomInteger@1, 810<D - 1

Out[2]= 8-1, 1, -1, -1, -1, -1, -1, -1, -1, 1<

Then, starting at 0, the fold operation generates the locations.

In[3]:= FoldList@Plus, 0, stepsD

Out[3]= 80, -1, 0, -1, -2, -3, -4, -5, -6, -7, -6<

3. Starting with 1, fold the Times  function across the first n integers.
In[4]:= fac@n_D := Fold@Times, 1, Range@nDD

In[5]:= fac@10D

Out[5]= 3628800
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4. First create the vertices of the triangle. Wrapping them in N@…D helps to keep the graphical structures small 
(see Section 10.2 for more on this).
In[6]:= vertices = N@880, 0<, 81, 0<, 81 ê 2, 1<<D;

This gives the three different translation vectors.

In[7]:= translateVecs = 0.5 vertices

Out[7]= 880., 0.<, 80.5, 0.<, 80.25, 0.5<<

Here is the set of transformations of the triangle described by vertices, scaled by 0.5, and translated 
according to the translation vectors.

In[8]:= tri = Polygon@verticesD;
Graphics@8

Blue, Translate@Scale@tri, 0.5, 80., 0.<D, translateVecsD
<D

Out[9]=

Finally, iterate the transformations by wrapping them in Nest.

In[10]:= Graphics@
8Blue, Nest@8Blue, Translate@Scale@Ò, 0.5, 80., 0.<D, translateVecsD< &,

Polygon@verticesD, 3D<D

Out[10]=

Once you have been through the rest of this chapter, you should be able to turn this into a reusable 
function, scoping local variables, using pure functions, and adding options.

In[11]:= SierpinskiTriangle@iter_, opts : OptionsPattern@GraphicsDD :=

Module@8vertices, vecs<,
vertices = N@880, 0<, 81, 0<, 81 ê 2, 1<<D;
vecs = 0.5 vertices;

Graphics@
8Blue, Nest@8Blue, Translate@Scale@Ò, 0.5, 80., 0.<D, vecsD< &,

Polygon@verticesD, iterD<, optsDD
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In[12]:= SierpinskiTriangle@8, ImageSize Ø TinyD

Out[12]=

5.4 Programs as functions
1. Generate the list of integers 1 through n, then total that list.

In[1]:= sumInts@n_D := Total@Range@nDD

In[2]:= sumInts@100D

Out[2]= 5050

In[3]:= sumInts@1000D

Out[3]= 500500

We have not been careful to check that the arguments are positive integers here. See Section 5.6 for a 
proper definition to check arguments.

2. Use MemberQ to check if any elements of the list pass the OddQ test. If they do, True is returned and so we 
take the Boolean negation of that. In other words, if the list contains an odd number, False  is returned, 
indicating that the list does not consist of even numbers exclusively.
In[4]:= listEvenQ2@lis_D := Not@MemberQ@lis, _?OddQDD

In[5]:= listEvenQ2@82, 4, 6, 4, 8<D

Out[5]= True

In[6]:= listEvenQ2@82, 4, 6, 5, 8<D

Out[6]= False

Alternatively, you could have FreeQ  check to see if the list is free of numbers that are equal to 1 mod 2.

In[7]:= listEvenQ3@lis_D := FreeQ@lis, p_ ê; Mod@p, 2D ã 1D

In[8]:= listEvenQ3@82, 4, 6, 4, 8<D

Out[8]= True

In[9]:= listEvenQ3@82, 4, 6, 5, 8<D

Out[9]= False

3. Some simple experiments iterating the shuffle function shows that the number of shuffles to return the 
deck to its original state is dependent upon the number of cards in the deck. For a deck of 52 cards, eight 
such perfect (Faro) shuffles will return the deck to its original state.

In[10]:= shuffle@lis_D := Module@8len = Ceiling@Length@lisD ê 2D<,
Apply@Riffle, Partition@lis, len, len, 1, 8<DDD
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In[11]:= Nest@shuffle, Range@52D, 8D

Out[11]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52<

4. The obvious way to do this is to take the list and simply pick out elements at random locations. The right-
most location in the list is given by Length@lisD, using Part and RandomInteger .

In[12]:= randomChoice@lis_, n_D := lisPRandomInteger@81, Length@lisD<, 8n<DT

In[13]:= randomChoice@8a, b, c, d, e, f, g, h<, 12D

Out[13]= 8c, a, g, h, g, f, e, g, a, c, c, d<

6. Here is our user-defined stringInsert.
In[14]:= stringInsert@str1_, str2_, pos_D := StringJoinüJoin@

Take@Characters@str1D, pos - 1D,
Characters@str2D,
Drop@Characters@str1D, pos - 1D

D
In[15]:= stringInsert@"Joy world", "to the ", 5D

Out[15]= Joy to the world

In[16]:= stringDrop@str_, pos_D := StringJoin@Drop@Characters@strD, posDD

In[17]:= stringDrop@"ABCDEF", -2D

Out[17]= ABCD

The idea in these two examples is to convert a string to a list of characters, operate on that list using list 
manipulation functions like Join, Take, and Drop, then convert back to a string. More efficient 
approaches use string manipulation functions directly (see Chapter 9).

8. First, here is how we might write our own StringJoin.
In[18]:= FromCharacterCode@Join@

ToCharacterCode@"To be, "D, ToCharacterCode@"or not to be"D
DD

Out[18]= To be, or not to be

And here is a how we might implement a StringReverse.

In[19]:= FromCharacterCode@Reverse@ToCharacterCode@%DDD

Out[19]= eb ot ton ro ,eb oT

5.5 Scoping constructs
1. In the first definition, we only use one auxiliary function inside the Module .

In[1]:= latticeWalk2D@n_D := Module@8NSEW = 881, 0<, 8-1, 0<, 80, 1<, 80, -1<<<,
Accumulate@RandomChoice@NSEW, nDDD

In[2]:= latticeWalk2D@10D

Out[2]= 88-1, 0<, 80, 0<, 80, 1<, 80, 2<,
80, 3<, 80, 2<, 8-1, 2<, 80, 2<, 80, 1<, 8-1, 1<<
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2. The following function creates a local function perfectQ using the Module  construct. It then checks 
every other number between n and m by using a third argument to the Range  function.
In[3]:= PerfectSearch@n_, m_D := Module@8perfectQ<,

perfectQ@j_D := Total@Divisors@jDD ã 2 j;

Select@Range@n, m, 2D, perfectQDD
In[4]:= PerfectSearch@2, 10000D

Out[4]= 86, 28, 496, 8128<

This function does not guard against the user supplying “bad” inputs. For example, if the user starts with 
an odd number, then this version of PerfectSearch will check every other odd number, and, since it is 
known that there are no odd perfect numbers below at least 10

300, none is reported.

In[5]:= PerfectSearch@1, 10000D

Out[5]= 8<

You can fix this situation by using the (as yet unproved) assumption that there are no odd perfect numbers. 
This next version first checks that the first argument is an even number.

In[6]:= Clear@PerfectSearchD

In[7]:= PerfectSearch@n_?EvenQ, m_D := Module@8perfectQ<,
perfectQ@j_D := Total@Divisors@jDD ã 2 j;

Select@Range@n, m, 2D, perfectQDD

Now, the function only works if the first argument is even.

In[8]:= PerfectSearch@2, 10000D

Out[8]= 86, 28, 496, 8128<

In[9]:= PerfectSearch@1, 1000D

Out[9]= PerfectSearch@1, 1000D

3. This function requires a third argument.
In[10]:= Clear@PerfectSearchD;

PerfectSearch@n_, m_, k_D := Module@8perfectQ<,
perfectQ@j_D := Total@Divisors@jDD ã k j;

Select@Range@n, mD, perfectQDD

The following computation can be quite time consuming and requires a fair amount of memory to run to 
completion. If your computer’s resources are limited, you should split up the search intervals into smaller 
units or try running this in parallel. See Section 12.3 for a discussion on how to set up parallel computation.

In[12]:= PerfectSearch@1, 2200000, 4D êê AbsoluteTiming

Out[12]= 831.730753, 830240, 32760, 2178540<<

We also give a speed boost by using DivisorSigma@1, jD which gives the sum of the divisors of j.

In[13]:= PerfectSearchParallel@n_, m_, k_D :=

Module@8perfectQ<, perfectQ@j_D := DivisorSigma@1, jD ã k j;

Distribute@perfectQD;
Parallelize@Select@Range@n, m, 2D, perfectQDDD
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In[14]:= PerfectSearchParallel@2, 2200000, 4D êê AbsoluteTiming

Out[14]= 84.435988, 830240, 32760, 2178540<<

4. Many implementations are possible for convertToDate. The task is made easier by observing that 
DateList  handles this task directly if its argument is a string.

In[15]:= DateList@"20120515"D

Out[15]= 82012, 5, 15, 0, 0, 0.<

The string is necessary otherwise DateList  will interpret the integer as an absolute time (from Jan 1 

1900).

In[16]:= DateList@20120515D

Out[16]= 81900, 8, 21, 21, 1, 55.<

So we need to convert the integer to a string first,

In[17]:= DateList@ToString@20120515DD

Out[17]= 82012, 5, 15, 0, 0, 0.<

and then take the first three elements.

In[18]:= Take@%, 3D

Out[18]= 82012, 5, 15<

Here is the function that puts these steps together.

In[19]:= convertToDate@n_IntegerD := Take@DateList@ToString@nDD, 3D

In[20]:= convertToDate@20120515D

Out[20]= 82012, 5, 15<

With a bit more manual work, you could also do this with StringTake .

In[21]:= convertToDate2@n_Integer ê; Length@IntegerDigits@nDD ã 8D :=

Module@8str = ToString@nD<,
8StringTake@str, 4D, StringTake@str, 85, 6<D, StringTake@str, -2D<D

In[22]:= convertToDate2@20120515D

Out[22]= 82012, 05, 15<

You could avoid working with strings by making use of FromDigits . This uses With to create a local 
constant d, as this expression never changes throughout the body of the function.

In[23]:= convertToDate3@num_D := With@8d = IntegerDigits@numD<,
8FromDigits@Take@d, 4DD,
FromDigits@Take@d, 85, 6<DD,
FromDigits@Take@d, 87, 8<DD<D

In[24]:= convertToDate3@20120515D

Out[24]= 82012, 5, 15<

5. The computation of zeroing out one or more columns of a matrix can be handled with list component 
assignment. We need to use a local variable here to avoid changing the original matrix.
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In[25]:= mat = RandomReal@1, 85, 5<D;
MatrixForm@matD

Out[26]//MatrixForm=

0.199196 0.763633 0.916951 0.254458 0.670371
0.831198 0.82132 0.351393 0.933563 0.431222
0.0868469 0.457891 0.299765 0.362697 0.462591
0.715115 0.780563 0.264595 0.445087 0.639657
0.306235 0.960085 0.151313 0.110208 0.809649

Here is a rule for zeroing out one column:

In[27]:= zeroColumns@mat_, n_IntegerD := Module@8lmat = mat<,
lmat@@All, nDD = 0;

lmatD

This next rule is for zeroing out a range of columns:

In[28]:= zeroColumns@mat_, Span@m_, n_DD := Module@8lmat = mat<,
lmat@@All, m ;; nDD = 0;

lmatD

We also need a final rule for zeroing out a discrete set of columns whose positions are given by a list.

In[29]:= zeroColumns@mat_, lis : 8__<D := Module@8lmat = mat<,
lmat@@All, lisDD = 0;

lmatD
In[30]:= zeroColumns@mat, 3D êê MatrixForm

Out[30]//MatrixForm=

0.199196 0.763633 0 0.254458 0.670371
0.831198 0.82132 0 0.933563 0.431222
0.0868469 0.457891 0 0.362697 0.462591
0.715115 0.780563 0 0.445087 0.639657
0.306235 0.960085 0 0.110208 0.809649

In[31]:= zeroColumns@mat, 1 ;; 2D êê MatrixForm
Out[31]//MatrixForm=

0 0 0.916951 0.254458 0.670371
0 0 0.351393 0.933563 0.431222
0 0 0.299765 0.362697 0.462591
0 0 0.264595 0.445087 0.639657
0 0 0.151313 0.110208 0.809649

In[32]:= zeroColumns@mat, 81, 3, 5<D êê MatrixForm
Out[32]//MatrixForm=

0 0.763633 0 0.254458 0
0 0.82132 0 0.933563 0
0 0.457891 0 0.362697 0
0 0.780563 0 0.445087 0
0 0.960085 0 0.110208 0
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5.6 Pure functions
1. This function adds the squares of the elements in a list.

In[1]:= elementsSquared@lis_D := TotalAlis2E

In[2]:= elementsSquared@81, 3, 5, 7, 9<D

Out[2]= 165

Using a pure function, this becomes:

In[3]:= FunctionAlis, TotalAlis2EE@81, 3, 5, 7, 9<D

Out[3]= 165

or simply,

In[4]:= TotalAÒ2E &@81, 3, 5, 7, 9<D

Out[4]= 165

2. To compute the distance between two points, use either EuclideanDistance or Norm.
In[5]:= pts = RandomReal@1, 84, 2<D

Out[5]= 880.197291, 0.772739<, 80.125458, 0.9729<,
80.674665, 0.105554<, 80.679087, 0.196272<<

In[6]:= Norm@pts@@1DD - pts@@2DDD

Out[6]= 0.21266

In[7]:= EuclideanDistance@pts@@1DD, pts@@2DDD

Out[7]= 0.21266

Now we need the distance between every pair of points. So we first create the set of pairs.

In[8]:= pairs = Subsets@pts, 82<D

Out[8]= 8880.197291, 0.772739<, 80.125458, 0.9729<<,
880.197291, 0.772739<, 80.674665, 0.105554<<,
880.197291, 0.772739<, 80.679087, 0.196272<<,
880.125458, 0.9729<, 80.674665, 0.105554<<,
880.125458, 0.9729<, 80.679087, 0.196272<<,
880.674665, 0.105554<, 80.679087, 0.196272<<<

Then we compute the distance between each pair and take the Max .

In[9]:= Apply@Norm@Ò1 - Ò2D &, pairs, 81<D

Out[9]= 80.21266, 0.820379, 0.751294, 1.02661, 0.953759, 0.0908256<

In[10]:= Max@%D

Out[10]= 1.02661

Or, use Outer  on the set of points directly, but not the need to get the level correct.

In[11]:= MaxüOuter@Norm@Ò1 - Ò2D &, pts, pts, 1D

Out[11]= 1.02661

Now put it all together using a pure function in place of the distance function. The diameter function 
operates on lists of pairs of numbers, so we need to specify them in our pure function as Ò1 and Ò2.
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In[12]:= diameter@lis_D := Max@Apply@Norm@Ò1 - Ò2D &, Subsets@lis, 82<D, 81<DD

In[13]:= diameter@ptsD

Out[13]= 1.02661

EuclideanDistance is a bit faster here, but for large datasets, the difference is more pronounced.

In[14]:= Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD

Out[14]= 1.02661

In[15]:= pts = RandomReal@1, 81500, 2<D;
Max@Apply@Norm@Ò1 - Ò2D &, Subsets@pts, 82<D, 81<DD êê Timing

Out[16]= 86.50623, 1.36706<

In[17]:= Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD êê Timing

Out[17]= 81.60753, 1.36706<

3. Pure functions are needed to replace both addOne and CompositeQ:
In[18]:= nextPrime@n_Integer ê; n > 1D := NestWhile@Ò + 1 &, n, Not@PrimeQ@ÒDD &D

Here is a quick check for correctness.

In[19]:= nextPrimeA2123E ã NextPrimeA2123E

Out[19]= True

Compare timing with the built-in function.

In[20]:= TimingAnextPrimeA22500E;E

Out[20]= 80.336794, Null<

In[21]:= TimingANextPrimeA22500E;E

Out[21]= 80.312704, Null<

5. Here are some sample data taken from a normal distribution.
In[22]:= data = RandomVariate@NormalDistribution@0, 1D, 8500<D;

Quickly visualize the data together with dashed lines drawn one standard deviation from the mean.

In[23]:= mean = Mean@dataD;
sd = StandardDeviation@dataD;
len = Length@dataD;
ListPlot@data,
Epilog Ø 8Dashed, Red,

Line@880, mean + sd<, 8len, mean + sd<<D,
Line@880, mean - sd<, 8len, mean - sd<<D<

D

Out[26]=
100 200 300 400 500

-2

-1

1

2

3

Select those data elements whose distance to the mean is less than one standard deviation.
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In[27]:= filtered = Select@data, HAbs@HÒ - meanLD < sd &LD;

Here is a quick check that we get about the value we might expect (we would expect about 68% for 
normally distributed data).

In[28]:= NB
Length@filteredD

Length@dataD
F

Out[28]= 0.686

In[29]:= ListPlot@filtered, PlotRange Ø All,

Epilog Ø 8Dashed, Red,

Line@880, mean + sd<, 8len, mean + sd<<D,
Line@880, mean - sd<, 8len, mean - sd<<D<

D

Out[29]=
50 100 150 200 250 300 350

-1.0

-0.5

0.5

1.0

8. Using Fold, this pure function requires two arguments. The key is to start with an initial value of 0.
In[30]:= Horner@list_List, var_D := Fold@var Ò1 + Ò2 &, 0, listD

In[31]:= Horner@8a, b, c, d, e<, xD

Out[31]= e + x Hd + x Hc + x Hb + a xLLL

In[32]:= Expand@%D

Out[32]= e + d x + c x2 + b x3 + a x4

9. Here is the prototype graph we will work with:
In[33]:= SeedRandom@16D;

gr = RandomGraph@810, 15<, VertexLabels Ø "Name"D

Out[34]=

And here are its edges and its vertices:

In[35]:= EdgeList@grD

Out[35]= 82 � 10, 2 � 3, 3 � 5, 4 � 5, 4 � 1, 4 � 7, 4 � 3,

5 � 7, 5 � 8, 6 � 5, 9 � 8, 9 � 6, 10 � 9, 10 � 8, 10 � 4<

In[36]:= VertexList@grD

Out[36]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
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Below are those edges from vertex 3 to any other vertex. In other words, this gives the adjacency list for 
vertex 3.

In[37]:= With@8u = 3<,
Select@VertexList@grD, HEdgeQ@gr, UndirectedEdge@u, ÒDD &LD

D
Out[37]= 82, 4, 5<

The case for directed graphs is similar. Here then is a function that returns the adjacency list for a given 
vertex u in graph gr.

In[38]:= adjacencyList@gr_, u_D := If@DirectedGraphQ@grD,
Select@VertexList@grD, EdgeQ@gr, DirectedEdge@u, ÒDD &D,
Select@VertexList@grD, EdgeQ@gr, UndirectedEdge@u, ÒDD &D

D

The adjacency structure is then given by mapping the above function across the vertex list.

In[39]:= AdjacencyStructure@gr_GraphD :=

Map@8Ò, adjacencyList@gr, ÒD< &, VertexList@grDD
In[40]:= AdjacencyStructure@grD

Out[40]= 881, 84<<, 82, 83, 10<<, 83, 82, 4, 5<<,
84, 81, 3, 5, 7, 10<<, 85, 83, 4, 6, 7, 8<<, 86, 85, 9<<,
87, 84, 5<<, 88, 85, 9, 10<<, 89, 86, 8, 10<<, 810, 82, 4, 8, 9<<<

Check that it works for a directed graph also.

In[41]:= gr2 = Graph@81 � 2, 2 � 1, 3 � 1, 3 � 2, 4 � 1, 4 � 2, 4 � 4<,
VertexLabels Ø "Name"D

Out[41]=

In[42]:= AdjacencyStructure@gr2D

Out[42]= 881, 82<<, 82, 81<<, 83, 81, 2<<, 84, 81, 2, 4<<<

11. A first, naive implementation will use the fact that the factors are all less than 6. Here are the factors for a 
single integer.

In[43]:= facs = FactorInteger@126D

Out[43]= 882, 1<, 83, 2<, 87, 1<<

This extracts only the prime factors.

In[44]:= Map@First, facsD

Out[44]= 82, 3, 7<

In this case, they are not all less than 6.
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In[45]:= Max@%D < 6

Out[45]= False

Putting these pieces together, here are the Hamming numbers less than 1000.

In[46]:= Select@Range@1000D, Max@Map@First, FactorInteger@ÒDDD < 6 &D
Out[46]= 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,

50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150,
160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320,
324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600,
625, 640, 648, 675, 720, 729, 750, 768, 800, 810, 864, 900, 960, 972, 1000<

Factoring is slow for large integers and so this implementation does not scale well. This finds the 507 
Hamming numbers less than 10

6.

In[47]:= WithA9n = 106=,

Select@Range@nD, Max@Map@First, FactorInteger@ÒDDD < 6 &D
E; êê Timing

Out[47]= 87.83722, Null<

See Dijkstra (1981) for a different implementation that starts with h = 81<, then builds lists 2 h, 3 h, 5 h, 
merges these lists, and iterates.

In[48]:= HammingNumberList@n_D := ModuleB8lim<,

lim = IfBn < 100, Ceiling@Log2@nDD, CeilingBLog2B
n

2 � 3 � 5
F Log2@nDFF;

Join@81<, Take@Union üü NestList@
Union üü Outer@Times, 82, 3, 5<, ÒD &, 82, 3, 5<, limD, n - 1D

DF

In[49]:= HammingNumber@n_D := Part@HammingNumberList@nD, nD

In[50]:= HammingNumberList@20D

Out[50]= 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36<

In[51]:= HammingNumber@1691D êê Timing

Out[51]= 80.122587, 2125764000<

This gives the one-millionth Hamming number.

In[52]:= HammingNumberA106E êê Timing

Out[52]= 814.88,
519312780448388736089589843750000000000000000000000000000000 Ö

000000000000000000000000<

5.7 Options and messages
1. The message will slot in the values of the row indices being passed to the function switchRows, as well as 

the length of the matrix, that is, the number of matrix rows.
In[1]:= switchRows::badargs =

"The absolute value of the row indices `1` and `2`
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in switchRows@mat,`1`,`2`D must be between

1 and `3`, the size of the matrix.";

The message is issued if either of the row indices have absolute value greater than the length of the matrix 
or if either of these indices is equal to 0.

In[2]:= switchRows@mat_, 8r1_Integer, r2_Integer<D :=

Module@8lmat = mat, len = Length@matD<,
If@Abs@r1D > len »» Abs@r2D > len »» r1 r2 ã 0,

Message@switchRows::badargs, r1, r2, lenD,
lmat@@8r1, r2<DD = lmat@@8r2, r1<DDD;

lmatD
In[3]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[4]//MatrixForm=

0 0 8 5
4 6 9 9
0 0 0 3
2 7 0 8

In[5]:= switchRows@mat, 80, 4<D

switchRows::badargs : The absolute value of the row indices 
0 and 4 in switchRows@mat,0,4D must be between 1 and 4, the size of the matrix.

Out[5]= 880, 0, 8, 5<, 84, 6, 9, 9<, 80, 0, 0, 3<, 82, 7, 0, 8<<

In[6]:= switchRows@mat, 82, 8<D

switchRows::badargs : The absolute value of the row indices 
2 and 8 in switchRows@mat,2,8D must be between 1 and 4, the size of the matrix.

Out[6]= 880, 0, 8, 5<, 84, 6, 9, 9<, 80, 0, 0, 3<, 82, 7, 0, 8<<

2. If the first argument is not a list containing numbers, then issue a message.
In[7]:= MatchQ@81, 2, a<, 8__?NumericQ<D

Out[7]= False

Here is the message:

In[8]:= StemPlot::badarg =

"The first argument to StemPlot must be a list of numbers.";

In[9]:= Options@StemPlotD = Options@ListPlotD;

In[10]:= StemPlot@lis_, opts : OptionsPattern@DD :=

If@MatchQ@lis, 8__?NumericQ<D,
ListPlot@lis, opts, Filling Ø AxisD,
Message@StemPlot::badargD

D
In[11]:= StemPlot@4D

StemPlot::badarg : The first argument to StemPlot must be a list of numbers.

In[12]:= StemPlot@81, 2, c<D

StemPlot::badarg : The first argument to StemPlot must be a list of numbers.
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In[13]:= StemPlot@81, 2, 3, 4, 5<D

Out[13]=

5.8 Examples and applications
1. Here are two sample lists.

In[1]:= l1 = 81, 0, 0, 1, 1<;
l2 = 80, 1, 0, 1, 0<;

First, pair them.

In[3]:= ll = Transpose@8l1, l2<D

Out[3]= 881, 0<, 80, 1<, 80, 0<, 81, 1<, 81, 0<<

Here is the conditional pattern that matches any pair where the two elements are not identical. The 
Hamming distance is the number of such nonidentical pairs.

In[4]:= Count@ll, 8p_, q_< ê; p � qD

Out[4]= 3

Finally, here is a function that puts this all together.

In[5]:= HammingDistance3@lis1_List, lis2_ListD :=

Count@Transpose@8lis1, lis2<D, 8p_, q_< ê; p � qD
In[6]:= HammingDistance3@l1, l2D

Out[6]= 3

The running times of this version of HammingDistance are quite a bit slower than those where we used 
bit operators. This is due to additional computation (Transpose, Length) and the use of pattern 
matching and comparisons at every step.

In[7]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[8]:= data1 = RandomIntegerA1, 9106=E;

In[9]:= data2 = RandomIntegerA1, 9106=E;

In[10]:= Timing@HammingDistance2@data1, data2DD

Out[10]= 80.00861, 501049<

In[11]:= Timing@HammingDistance3@data1, data2DD

Out[11]= 80.766642, 501049<

2. Using Total , which simply gives the sum of the elements in a list, Hamming distance can be computed as 
follows:

In[12]:= HammingDistance4@lis1_, lis2_D := Total@Mod@lis1 + lis2, 2DD
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Timing tests show that the implementation with Total  is quite a bit more efficient than the previous 
versions, although still slower than the version that uses bit operators.

In[13]:= sig1 = RandomIntegerA1, 9106=E;

In[14]:= sig2 = RandomIntegerA1, 9106=E;

In[15]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[16]:= Map@8Ò, Timing@Ò@sig1, sig2DD< &, 8HammingDistance1,

HammingDistance2, HammingDistance3, HammingDistance4<D êê Grid

Out[16]=

HammingDistance1 80.48052, 499991<
HammingDistance2 80.006952, 499991<
HammingDistance3 80.764652, 499991<
HammingDistance4 80.023833, 499991<

3. Just one change is needed here: add a second argument to RotateLeft  that specifies the number of 
positions to rotate. We have used NestList  to display the intermediate steps.

In[17]:= survivor@n_, m_D := NestList@Rest@RotateLeft@Ò, m - 1DD &, Range@nD, n - 1D

In[18]:= survivor@11, 3D

Out[18]= 881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<, 84, 5, 6, 7, 8, 9, 10, 11, 1, 2<,
87, 8, 9, 10, 11, 1, 2, 4, 5<, 810, 11, 1, 2, 4, 5, 7, 8<,
82, 4, 5, 7, 8, 10, 11<, 87, 8, 10, 11, 2, 4<,
811, 2, 4, 7, 8<, 87, 8, 11, 2<, 82, 7, 8<, 82, 7<, 87<<

4. The median of a list containing an odd number of elements is the middle element of the sorted list.
In[19]:= median@lis_List ê; OddQ@Length@lisDDD :=

Part@Sort@lisD, Ceiling@Length@lisD ê 2DD

When the list has an even number of elements, take the mean of the middle two.

In[20]:= median@lis_List ê; EvenQ@Length@lisDDD :=

Module@8len = Length@lisD ê 2<,
Mean@Part@Sort@lisD, len ;; len + 1DD

D

Check the two cases – an even number of elements, and an odd number of elements. Then compare with 
the built-in Median .

In[21]:= dataE = RandomInteger@10000, 100000D;

In[22]:= dataO = RandomInteger@10000, 100001D;

In[23]:= median@dataED êê Timing

Out[23]= 80.020506, 4977<

In[24]:= Median@dataED êê Timing

Out[24]= 80.020093, 4977<

In[25]:= median@dataOD êê Timing

Out[25]= 80.018505, 4962<

In[26]:= Median@dataOD êê Timing

Out[26]= 80.020531, 4962<
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The two rules given here should be more careful about the input, using pattern matching to insure that 
these rules only apply to one-dimensional lists. The following modifications handle that more robustly.

In[27]:= Clear@medianD

In[28]:= median@lis : 8__< ê; OddQ@Length@lisDDD :=

Part@Sort@lisD, Ceiling@Length@lisD ê 2DD
In[29]:= median@lis : 8__< ê; EvenQ@Length@lisDDD :=

Module@8len = Length@lisD ê 2<,
Mean@Part@Sort@lisD, len ;; len + 1DDD

6. Here is a list of coins (modify for other currencies).
In[30]:= coins = 8p, p, q, n, d, d, p, q, q, p<;

First count the occurrences of each.

In[31]:= Map@Count@coins, ÒD &, 8p, n, d, q<D

Out[31]= 84, 1, 2, 3<

Then a dot product of this count vector with a value vector does the trick.

In[32]:= %.8.01, .05, .10, .25<

Out[32]= 1.04

In[33]:= CountChange@lis_D :=

Dot@Map@Count@lis, ÒD &, 8p, n, d, q<D, 8.01, .05, .10, .25<D
In[34]:= CountChange@coinsD

Out[34]= 1.04

In[35]:= CountChange2@lis_D :=

Inner@Times,
Map@Count@lis, ÒD &, 8p, n, d, q<D, 8.01, .05, .10, .25<, PlusD

In[36]:= CountChange2@coinsD

Out[36]= 1.04

And here is a rule-based approach.

In[37]:= Tally@coinsD ê. 8d Ø .10, n Ø .05, p Ø .01, q Ø .25<

Out[37]= 880.01, 4<, 80.25, 3<, 80.05, 1<, 80.1, 2<<

In[38]:= Total@Apply@Times, %, 81<DD

Out[38]= 1.04

In[39]:= CountChange3@lis_D := Module@8freq<,
freq = Tally@lisD ê. 8p Ø .01, n Ø .05, d Ø .10, q Ø .25<;
Total@Apply@Times, freq, 81<DDD

In[40]:= CountChange3@coinsD

Out[40]= 1.04

7. The two-dimensional implementation insures steps of unit length by mapping the pure function 
8Cos@ÒD, Sin@ÒD< & over the angles.

In[41]:= walk1DOffLattice@steps_D := Accumulate@RandomReal@8-1, 1<, stepsDD

608 Solutions to exercises



In[42]:= walk2DOffLattice@steps_D :=

Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, stepsDDD

The three-dimensional walk requires two angles, q in the interval @0, 2 pL and f in the interval [-1, 1]. See 
Section 13.1 for a discussion of the three-dimensional off-lattice walk.

In[43]:= walk3DOffLattice@t_D := AccumulateB

TableBFunctionB8q, f<, :Cos@qD 1 - f2 , Sin@qD 1 - f2 , f>F üü

8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<FF

With the one-dimensional walk, the vertical axis gives displacement from the origin and the horizontal 
axis shows the number of steps.

In[44]:= ListLinePlot@walk1DOffLattice@1000DD

Out[44]=

200 400 600 800 1000

-30

-25

-20

-15

-10

-5

In[45]:= ListLinePlot@walk2DOffLattice@5000DD

Out[45]=

-80 -60 -40 -20

-50

-40

-30

-20

-10

In[46]:= Graphics3D@Line@walk3DOffLattice@5000DDD

Out[46]=
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8. Column 4 of this matrix contains several different nonnumeric values.
In[47]:= mat3 = 880.796495, "NêA", 0.070125, "nan", 0.806554<,

8"nn", -0.100365, 0.992736, -0.320560, -0.0805351<,
80.473571, 0.460741, 0.030060, -0.412400, 0.788522<,
80.614974, -0.503201, 0.615744, 0.966053, -0.011776<,
8-0.828415, 0.035514, 0.8911617, "NêA", -0.453926<<;

MatrixForm@col4 = mat3@@All, 4DDD
Out[48]//MatrixForm=

nan
-0.32056
-0.4124
0.966053

NêA

To pattern match on either "NêA" or "nan", use Alternatives (»).

In[49]:= col4 ê. "NêA" "nan" Ø Mean@Cases@mat3@@All, 4DD, _?NumberQDD êê
MatrixForm

Out[49]//MatrixForm=

0.0776977
-0.32056
-0.4124
0.966053
0.0776977

Convert the list of strings to a set of alternatives.

In[50]:= Apply@Alternatives, 8"NêA", "nan", "nn"<D

Out[50]= NêA nan nn

Here is a third set of definitions, including a new rule for ReplaceElement where the second argument 
is a list of strings. And another rule for ReplaceElement accommodates the new argument structure of 
colMean.

In[51]:= colMean@col_, 8strings___String<D :=

col ê. Apply@Alternatives, 8strings<D Ø Mean@Cases@col, _?NumberQDD
In[52]:= ReplaceElement@mat_, 8strings__<D :=

Transpose@Map@colMean@Ò, 8strings<D &, Transpose@matDDD
In[53]:= ReplaceElement@mat3, 8"NêA", "nan", "nn"<D êê MatrixForm

Out[53]//MatrixForm=

0.796495 -0.0268277 0.070125 0.0776977 0.806554
0.264156 -0.100365 0.992736 -0.32056 -0.0805351
0.473571 0.460741 0.03006 -0.4124 0.788522
0.614974 -0.503201 0.615744 0.966053 -0.011776
-0.828415 0.035514 0.891162 0.0776977 -0.453926

9. Start with a prototype logical expression.
In[54]:= Clear@A, BD

In[55]:= expr = HA »» BL � C;

In[56]:= vars = 8A, B, C<;
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List all the possible truth value assignments for the variables.

In[57]:= tuples = Tuples@8True, False<, Length@varsDD

Out[57]= 88True, True, True<, 8True, True, False<,
8True, False, True<, 8True, False, False<, 8False, True, True<,
8False, True, False<, 8False, False, True<, 8False, False, False<<

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[58]:= rules = Map@Thread@vars Ø ÒD &, tuplesD

Out[58]= 88A Ø True, B Ø True, C Ø True<, 8A Ø True, B Ø True, C Ø False<,
8A Ø True, B Ø False, C Ø True<, 8A Ø True, B Ø False, C Ø False<,
8A Ø False, B Ø True, C Ø True<, 8A Ø False, B Ø True, C Ø False<,
8A Ø False, B Ø False, C Ø True<, 8A Ø False, B Ø False, C Ø False<<

Replace the logical expression with each set of rules.

In[59]:= expr ê. rules

Out[59]= 8True, False, True, False, True, False, True, True<

Put these last values at the end of each “row” of the tuples.

In[60]:= table = TransposeüJoin@Transpose@tuplesD, 8expr ê. rules<D

Out[60]= 88True, True, True, True<, 8True, True, False, False<,
8True, False, True, True<, 8True, False, False, False<,
8False, True, True, True<, 8False, True, False, False<,
8False, False, True, True<, 8False, False, False, True<<

Create a header for table.

In[61]:= head = Append@vars, TraditionalForm@exprDD

Out[61]= 8A, B, C, A Í B � C<

Prepend head to table.

In[62]:= Prepend@table, headD

Out[62]= 88A, B, C, A Í B � C<, 8True, True, True, True<, 8True, True, False, False<,
8True, False, True, True<, 8True, False, False, False<,
8False, True, True, True<, 8False, True, False, False<,
8False, False, True, True<, 8False, False, False, True<<

5 Functional programming 611



Pour into a grid.

In[63]:= Grid@Prepend@table, headDD

Out[63]=

A B C A Í B � C

True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[64]:= Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headDD

Out[64]=

A B C A Í B � C

T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Add formatting via options to Grid.

In[65]:= Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø Black, -1 Ø Black, -2 Ø LightGray<,

81 Ø Black, 2 Ø LightGray, -1 Ø Black<<,
BaseStyle Ø 8FontFamily Ø "Times"<D

Out[65]=

A B C A � B� C

T T T T

T T F F

T F T T

T F F F

F T T T

F T F F

F F T T

F F F T
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Put the pieces together.

In[66]:= TruthTable@expr_, vars_D :=

Module@8len = Length@varsD, tuples, rules, table, head<,
tuples = Tuples@8True, False<, lenD;
rules = Thread@vars Ø Ò1D & êü tuples;
table = TransposeüJoin@Transpose@tuplesD, 8expr ê. rules<D;
head = Append@vars, TraditionalForm@exprDD;
Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø 8Thin, Black<,

-1 Ø 8Thin, Black<, -2 Ø 8Thin, LightGray<<,
81 Ø 8Thin, Black<, 2 Ø 8Thin, LightGray<, -1 Ø 8Thin, Black<<<,

BaseStyle Ø 8FontFamily Ø "Times"<DD
In[67]:= TruthTable@AÏ B � Ÿ C, 8A, B, C<D

Out[67]=

A B C A � B� � C
T T T F

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F T

10. PositionAlis, elemE returns a list of positions at which elem occurs in lis. ExtractAlis, posE returns 

those elements whose positions are specified by Position .
In[68]:= NearTo@lis_List, elem_, n_D :=

Module@8pos = Position@lis, elemD<, Extract@lis, 8pos - n, pos + n<DD
In[69]:= NearTo@lis_List, elem_, 8n_<D := Module@

8pos = Position@lis, elemD<, Extract@lis, Range@pos - n, pos + nDDD
In[70]:= chars = CharacterRange@"a", "z"D;

In[71]:= NearTo@chars, "q", 3D

Out[71]= 88n<, 8t<<

In[72]:= NearTo@chars, "q", 84<D

Out[72]= 88m, n, o, p, q, r, s, t, u<<

The key to writing the distance function is to observe that it must be a function of two variables and return 
a numeric value (the distance metric). We are finding the difference of the positions of a target element in 
the list with the element in question, y and x, respectively in the pure function. The use of @@1, 1DD is to 
strip off extra braces returned by Position .

In[73]:= NearToN@lis_, elem_, n_D :=

Nearest@lis, elem, 82 n + 1, n<, DistanceFunction Ø

Function@8x, y<, Abs@HPosition@lis, yD - Position@lis, xDLP1, 1TDDD
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In[74]:= NearToN@chars, "q", 4D

Out[74]= 8q, p, r, o, s, n, t, m, u<

6 Procedural programming

6.1 Loops and iteration
1. To compute the square root of a number r, iterate the following expression.

In[1]:= fun@x_D := x2 - r;

SimplifyBx -
fun@xD

fun'@xD
F

Out[2]=
r + x2

2 x

This can be written as a pure function, with a second argument giving the initial guess. Here we iterate ten 
times, starting with a high-precision initial value, 2.0 to 30-digit precision.

In[3]:= nestSqrt@r_, init_D := NestB
r + Ò2

2 Ò
&, init, 10F

In[4]:= nestSqrt@2, N@2, 30DD

Out[4]= 1.41421356237309504880168872

2. Here is a first basic attempt to replace the Do loop with Table .
In[5]:= f@x_D := x2 - 2

In[6]:= a = 2;

TableBa = NBa -
f@aD

f£@aD
F, 810<F

Out[7]= 81.5, 1.41667, 1.41422, 1.41421, 1.41421,

1.41421, 1.41421, 1.41421, 1.41421, 1.41421<

In[8]:= findRoot@fun_Symbol, 8var_, init_<, iter_ : 10D := ModuleB8xi = init<,

TableBxi = NBxi -
fun@xiD

fun£@xiD
F, 8iter<F;

8var Ø xi<F

In[9]:= findRoot@f, 8x, 2<D

Out[9]= 8x Ø 1.41421<

This runs the iteration only three times.

In[10]:= findRoot@f, 8x, 2<, 3D

Out[10]= 8x Ø 1.41422<

3. Note that this version of the Fibonacci function is much more efficient than the simple recursive version 
given in Chapter 7, and is closer to the version there that uses dynamic programming.
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In[11]:= fib@n_D := Module@8prev = 0, this = 1, next<,
Do@next = prev + this;

prev = this;

this = next,

8n<D;
prevD

In[12]:= Table@fib@iD, 8i, 1, 10<D

Out[12]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

Actually, this code can be simplified a bit by using parallel assignments.

In[13]:= fib2@n_D := Module@8f1 = 0, f2 = 1<,
Do@8f1, f2< = 8f2, f1 + f2<,
8n - 1<D;

f2D
In[14]:= Table@fib2@iD, 8i, 1, 10<D

Out[14]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

Both of these implementations are quite fast and avoid the deep recursion of the classical definition. 

In[15]:= 8Timing@fib@100000D;D, Timing@fib2@100000D;D<

Out[15]= 880.22523, Null<, 80.183665, Null<<

5. The variable b is the current approximation, and the variable a is the previous approximation.

In[16]:= findRoot@fun_, 8var_, init_<, e_D := ModuleB8a = init, b = fun@initD<,

WhileBAbs@b - aD > e,

a = b;

b = NBb -
fun@bD

fun£@bD
FF;

8var Ø b<F

In[17]:= f@x_D := x2 - 50

In[18]:= findRoot@f, 8x, 10<, 0.0001D

Out[18]= 8x Ø 7.07107<

7. Based on a previous version of findRoot, the following adds multiple initial values.

In[19]:= findRootList@fun_, inits_List, e_D := ModuleB8a = inits<,

WhileBMin@Abs@Map@fun, aDDD > e,

a = MapBNBÒ -
fun@ÒD

fun£@ÒD
F &, aFF;

Select@a, Min@Abs@Map@fun, aDDD == Abs@fun@ÒDD &DF

In[20]:= findRootListAIÒ2 - 50M &, 8-10, 1, 10<, .001E

Out[20]= 8-7.07108, 7.07108<

8. A bit of variable swapping is needed here depending on whether or not a sign change occurs.
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In[21]:= bisect@f_, 8var_, a_, b_<, e_D :=

ModuleB:midpt = NB
a + b

2
F, low = a, high = b>,

WhileBAbs@f@midptDD > e,

If@Sign@f@lowDD ã Sign@f@midptDD, low = midpt, high = midptD;

midpt =
low + high

2
F;

8var Ø midpt<F

In[22]:= f@x_D := x2 - 2

bisect@f, 8x, 0, 2<, .0001D
Out[23]= 8x Ø 1.41418<

9. This is a direct implementation of the Euclidean algorithm. 
In[24]:= gcd@m_, n_D := Module@8a = m, b = n, tmpa<,

While@b > 0,

tmpa = a;

a = b;

b = Mod@tmpa, bDD;
aD

In[25]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[25]= 11

You can avoid the need for the temporary variable tmpa by performing a parallel assignment as in the 
following function. In addition, some argument checking insures that m and n are integers.

In[26]:= gcd@m_Integer, n_IntegerD := Module@8a = m, b = n<,
While@b > 0,

8a, b< = 8b, Mod@a, bD<D;
aD

In[27]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[27]= 11

6.2 Flow control
1. If, for element ai j, i is bigger than j, then we are below the diagonal and should insert a 0, otherwise insert a 

1.
In[1]:= UpperTriangularMatrix@8m_, n_<D := Table@If@i ¥ j, 0, 1D, 8i, m<, 8j, n<D

A default value can be given for an optional argument that specifies the elements above the diagonal. 

In[2]:= UpperTriangularMatrix@8m_, n_<, val_: 1D :=

Table@If@i ¥ j, 0, valD, 8i, m<, 8j, n<D
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In[3]:= UpperTriangularMatrix@85, 5<, aD êê MatrixForm
Out[3]//MatrixForm=

0 a a a a
0 0 a a a
0 0 0 a a
0 0 0 0 a
0 0 0 0 0

3. The test as the first argument of If on the right-hand side checks to see if x is an element of the domain of 

complex numbers and, if it is, then reHxL2 + imHxL2  is computed. If x is not complex, nothing is done, but 

then the other definitions for abs will be checked.
In[4]:= Clear@absD;

abs@x_D := SqrtARe@xD2 + Im@xD2E ê; x œ Complexes;

abs@x_D := x ê; x ¥ 0

abs@x_D := -x ê; x < 0

In[8]:= abs@3 + 4 ID

Out[8]= 5

In[9]:= abs@-3D

Out[9]= 3

The condition itself can appear on the left-hand side of the function definition, as part of the pattern 
match. Here is a slight variation on the abs definition.

In[10]:= Clear@absD
abs@x_D := If@x ¥ 0, x, -xD
abs@x_ ê; x œ ComplexesD := SqrtARe@xD2 + Im@xD2E

In[13]:= abs@3 + 4 ID

Out[13]= 5

In[14]:= abs@-3D

Out[14]= 3

5. This is a straightforward conversion from the two rules given in Exercise 4 in Section 5.8 to an If 
statement.

In[15]:= medianP@lis : 8__<D := Module@8len = Length@lisD<,
If@OddQ@lenD,
Part@Sort@lisD, Ceiling@len ê 2DD,
MeanüPart@Sort@lisD, len ê 2 ;; len ê 2 + 1D

DD
In[16]:= dataO = RandomInteger@10000, 100001D;

dataE = RandomInteger@10000, 100000D;
In[18]:= medianP@dataOD êê Timing

Out[18]= 80.01935, 5005<

In[19]:= Median@dataOD êê Timing

Out[19]= 80.018673, 5005<
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In[20]:= medianP@dataED êê Timing

Out[20]= :0.019162,
10019

2
>

In[21]:= Median@dataED êê Timing

Out[21]= :0.019867,
10019

2
>

6. First, define the auxiliary function using conditional statements.

In[22]:= collatz@n_D :=
n

2
ê; EvenQ@nD

In[23]:= collatz@n_D := 3 n + 1 ê; OddQ@nD

Alternatively, use If.

In[24]:= collatz@n_Integer?PositiveD := If@EvenQ@nD, n ê 2, 3 n + 1D

Then iterate Collatz, starting with n, and continue while n is not equal to 1.

In[25]:= CollatzSequence@n_D := NestWhileList@collatz, n, Ò � 1 &D

In[26]:= CollatzSequence@17D

Out[26]= 817, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

6.3 Examples and applications
1. Here is the gcd function implemented using an If structure.

In[1]:= Clear@gcdD

In[2]:= gcd@m_Integer, n_IntegerD := If@m > 0, gcd@Mod@n, mD, mD, gcd@m, nD = nD

In[3]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[3]= 11

2. Given an integer, this totals the list of its digits.
In[4]:= Total@IntegerDigits@7763DD

Out[4]= 23

To repeat this process until the resulting integer has only one digit, use While . 

In[5]:= digitRoot@n_Integer?PositiveD := Module@8locn = n, lis<,
While@
Length@lis = IntegerDigitsülocnD > 1,

locn = Total@lisDD;
locnD

In[6]:= digitRoot@7763D

Out[6]= 5

This can also be accomplished without iteration as follows:

In[7]:= digitRoot2@n_Integer?PositiveD := If@Mod@n, 9D ã 0, 9, Mod@n, 9DD
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In[8]:= digitRoot2@1000!D

Out[8]= 9

4. The alternatives we need to check for are 0 0.0 for both x and y.
In[9]:= quadrant@80 0.0, 0 0.0<D := 0

quadrant@8x_, 0 0.0<D := -1

quadrant@80 0.0, y_<D := -2

quadrant@8x_, y_<D := If@x < 0, 2, 1D ê; y > 0

quadrant@8x_, y_<D := If@x < 0, 3, 4D
In[14]:= quadrant@80.0, 0<D

Out[14]= 0

In[15]:= quadrant@81, 0<D

Out[15]= -1

6. Start with a small list of odd numbers.
In[16]:= ints = Range@1, 100, 2D

Out[16]= 81, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,

37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,

69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99<

On the first iteration, drop every third number, that is, drop 5, 11, 17, and so on.

In[17]:= p = ints@@2DD;
ints = Drop@ints, p ;; -1 ;; pD

Out[18]= 81, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49,

51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99<

Get the next number, 7, in the list ints; then drop every seventh number.

In[19]:= p = ints@@3DD;
ints = Drop@ints, p ;; -1 ;; pD

Out[20]= 81, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37, 43, 45, 49,

51, 55, 57, 63, 67, 69, 73, 75, 79, 85, 87, 91, 93, 97, 99<

Iterate. You will need to be careful about the upper limit of the iterator i.

In[21]:= ints = Range@1, 1000, 2D;
Do@
p = ints@@iDD;
ints = Drop@ints, p ;; -1 ;; pD,
8i, 2, 32<D

ints
Out[23]= 81, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93,

99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195,
201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297,
303, 307, 319, 321, 327, 331, 339, 349, 357, 361, 367, 385, 391, 393, 399, 409, 415,
421, 427, 429, 433, 451, 463, 475, 477, 483, 487, 489, 495, 511, 517, 519, 529,
535, 537, 541, 553, 559, 577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639,
643, 645, 651, 655, 673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741,
745, 769, 777, 781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885,
895, 897, 903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997<
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It would be more efficient if you did not need to manually determine the upper limit of the iteration. A 
While  loop is better for this task. The test checks that the value of the iterator has not gone past the length 
of the successively shortened lists.

In[24]:= LuckyNumbers@n_Integer?PositiveD :=

Module@8p, i = 2, ints = Range@1, n, 2D<,
While@ints@@iDD < Length@intsD,
p = ints@@iDD;
ints = Drop@ints, p ;; -1 ;; pD;
i++D;

intsD
In[25]:= LuckyNumbers@1000D

Out[25]= 81, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93,
99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195,
201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297,
303, 307, 319, 321, 327, 331, 339, 349, 357, 361, 367, 385, 391, 393, 399, 409, 415,
421, 427, 429, 433, 451, 463, 475, 477, 483, 487, 489, 495, 511, 517, 519, 529,
535, 537, 541, 553, 559, 577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639,
643, 645, 651, 655, 673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741,
745, 769, 777, 781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885,
895, 897, 903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997<

This latter approach is also reasonably fast. Here is the time it takes to compute all lucky numbers less than 
one million; there are 71918 of them.

In[26]:= LengthALuckyNumbersA106EE êê Timing

Out[26]= 80.313757, 71918<

7. Use the same constructs as were used in the text for selection sort.
In[27]:= bubbleSortList@lis_D :=

Module@8slist = lis, len = Length@lisD, tmp = 8<<,
For@i = len, i > 0, i--,

AppendTo@tmp, slistD;
For@j = 2, j § i, j++,

If@slistPj - 1T > slistPjT,
slistP8j - 1, j<T = slistP8j, j - 1<TDDD;

tmpD
In[28]:= data = RandomReal@1, 500D;

sort = bubbleSortList@dataD;
ListAnimate@ListPlot êü sortD;
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7 Recursion

7.1 Fibonacci numbers
1. The key here is to get the stopping conditions right in each case.

a. This is a straightforward recursion, multiplying the previous two values to get the next.

In[1]:= a@1D := 2

a@2D := 3

a@i_D := a@i - 1D a@i - 2D
In[4]:= Table@a@iD, 8i, 1, 8<D

Out[4]= 82, 3, 6, 18, 108, 1944, 209952, 408146688<

b. The sequence is obtained by taking the difference of the previous two values.

In[5]:= b@1D := 0

b@2D := 1

b@i_D := b@i - 2D - b@i - 1D
In[8]:= Table@b@iD, 8i, 1, 9<D

Out[8]= 80, 1, -1, 2, -3, 5, -8, 13, -21<

c. Here we add the previous three values.

In[9]:= c@1D := 0

c@2D := 1

c@3D := 2

c@i_D := c@i - 3D + c@i - 2D + c@i - 1D
In[13]:= Table@c@iD, 8i, 1, 9<D

Out[13]= 80, 1, 2, 3, 6, 11, 20, 37, 68<

2. It is important to get the two base cases right here.
In[14]:= FA@1D := 0

FA@2D := 0

FA@i_D := FA@i - 2D + FA@i - 1D + 1

In[17]:= Map@FA, Range@9DD

Out[17]= 80, 0, 1, 2, 4, 7, 12, 20, 33<

It is interesting to note that the number of additions needed to compute the nth Fibonacci number is one 
less than the nth Fibonacci number itself. As the Fibonacci numbers grow, so too does the computation!

In[18]:= Fibonacci êü Range@9D

Out[18]= 81, 1, 2, 3, 5, 8, 13, 21, 34<

3. This is a direct implementation of the traditional mathematical notation given in the exercise. Avoiding 
the double recursion of the naive implementation reduces the memory required and speeds things up 
significantly, although it is still too slow for large numbers.

In[19]:= Clear@fib, fD;
fib@0D = 0;

fib@1D = 1;
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In[22]:= fib@n_Integer?PositiveD := With@8k = IntegerPart@n ê 2D<,
Which@
EvenQ@nD, fib@kD Hfib@kD + 2 fib@k - 1DL,
Mod@n, 4D ã 1, H2 fib@kD + fib@k - 1DL H2 fib@kD - fib@k - 1DL + 2,

True, H2 fib@kD + fib@k - 1DL H2 fib@kD - fib@k - 1DL - 2

DD
In[23]:= TimingüTable@fib@iD, 8i, 1, 40<D

Out[23]= 80.024248, 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393,

196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887,

9227465, 14930352, 24157817, 39088169, 63245986, 102334155<<

4. You can use your earlier definition of the Fibonacci numbers, or use the built-in Fibonacci.
In[24]:= f@n_Integer?NonPositiveD := H-1Ln-1 Fibonacci@-nD

In[25]:= f@0D = 0;

f@-1D = 1;

In[27]:= Table@f@iD, 8i, 0, -8, -1<D

Out[27]= 8f@iD, f@iD, f@iD, f@iD, f@iD, f@iD, f@iD, f@iD, f@iD<

7.2 Thinking recursively
1. This is similar to the length function in the text – recursion is on the tail. The base case is a list consisting 

of a single element.
In[1]:= reverse@8x_, y__<D := Join@reverse@8y<D, 8x<D

In[2]:= reverse@8x_<D := 8x<

In[3]:= reverse@81, b, 3 ê 4, "practice makes perfect"<D

Out[3]= :practice makes perfect,
3

4
, b, 1>

3. Recursion is on the tail.
In[4]:= sumOddElements@8<D := 0

sumOddElements@8x_, r___<D := x + sumOddElements@8r<D ê; OddQ@xD
sumOddElements@8x_, r___<D := sumOddElements@8r<D

In[7]:= sumOddElements@82, 3, 5, 6, 7, 9, 12, 13<D

Out[7]= 37

4. Again, recursion is on the tail.
In[8]:= sumEveryOtherElement@8<D := 0

sumEveryOtherElement@8x_<D := x

sumEveryOtherElement@8x_, y_, r___<D := x + sumEveryOtherElement@8r<D
In[11]:= sumEveryOtherElement@81, 2, 3, 4, 5, 6, 7, 8, 9<D

Out[11]= 25

5. This is a direct extension of the addPairs function discussed in this section.
In[12]:= addTriples@8<, 8<, 8<D := 8<

addTriples@8x1_, y1___<, 8x2_, y2___<, 8x3_, y3___<D :=
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Join@8x1 + x2 + x3<, addTriples@8y1<, 8y2<, 8y3<DD
In[14]:= addTriples@8w1, x1, y1, z1<, 8w2, x2, y2, z2<, 8w3, x3, y3, z3<D

Out[14]= 8w1 + w2 + w3, x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3<

7. Recursion is on the tails of each of the two lists.
In[15]:= maxPairs@8<, 8<D := 8<

maxPairs@8x_, r___<, 8y_, s___<D :=

Join@8Max@x, yD<, maxPairs@8r<, 8s<DD
In[17]:= maxPairs@81, 2, 4<, 82, 7, 2<D

Out[17]= 82, 7, 4<

8. Again, we do recursion on the tails of the two lists.
In[18]:= riffle@8<, 8<D := 8<

riffle@8x_, r___<, 8y_, s___<D := Join@8x, y<, riffle@8r<, 8s<DD
In[20]:= riffle@8a, b, c<, 8x, y, z<D

Out[20]= 8a, x, b, y, c, z<

Here is the built-in function that does this.

In[21]:= Riffle@8a, b, c<, 8x, y, z<D

Out[21]= 8a, x, b, y, c, z<

9. Here is maxima using an auxiliary function.
In[22]:= maxima@8<D := 8<

maxima@8x_, r___<D := maxima@x, 8r<D
In[24]:= maxima@x_, 8<D := 8x<

maxima@x_, 8y_, r___<D := maxima@x, 8r<D ê; x ¥ y

maxima@x_, 8y_, r___<D := Join@8x<, maxima@y, 8r<DD

7.3 Dynamic programming
1. Here are the rules translated directly from the formulas given in the exercise.

In[1]:= EulerianNumber@0, k_D = 0;

EulerianNumber@n_Integer, 0D = 1;

EulerianNumber@n_Integer, k_IntegerD ê; k ¥ n = 0;

In[4]:= EulerianNumber@n_Integer, k_IntegerD :=

Hk + 1L EulerianNumber@n - 1, kD + Hn - kL EulerianNumber@n - 1, k - 1D
In[5]:= Table@EulerianNumber@n, kD, 8n, 0, 7<, 8k, 0, 7<D êê TableForm

Out[5]//TableForm=

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
1 11 11 1 0 0 0 0
1 26 66 26 1 0 0 0
1 57 302 302 57 1 0 0
1 120 1191 2416 1191 120 1 0
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Because of the triple recursion, computing larger values is not only time and memory intensive but also 
bumps up against the built-in recursion limit.

In[6]:= EulerianNumber@25, 15D êê Timing

Out[6]= 818.7849, 531714261368950897339996<

This is a good candidate for dynamic programming. In the following implementation we have temporarily 
reset the value of $RecursionLimit  using Block .

In[7]:= Clear@EulerianNumberD;

In[8]:= EulerianNumber@0, k_D = 0;

EulerianNumber@n_Integer, 0D = 1;

EulerianNumber@n_Integer, k_IntegerD ê; k ¥ n = 0;

In[11]:= EulerianNumber@n_Integer, k_IntegerD :=

Block@8$RecursionLimit = Infinity<,
EulerianNumber@n, kD =

Hk + 1L EulerianNumber@n - 1, kD + Hn - kL EulerianNumber@n - 1, k - 1DD
In[12]:= EulerianNumber@25, 15D êê Timing

Out[12]= 80.002171, 531714261368950897339996<

In[13]:= EulerianNumber@600, 65D; êê Timing

Out[13]= 80.411056, Null<

In[14]:= N@EulerianNumber@600, 65DD

Out[14]= 4.998147102049161 � 101091

2. This implementation uses the identities given in the exercise together with some pattern matching for the 
even and odd cases.

In[15]:= F@1D := 1

F@2D := 1

In[17]:= F@n_?EvenQD := 2 FB
n

2
- 1F FB

n

2
F + FB

n

2
F
2

F@n_?OddQD := FB
n - 1

2
+ 1F

2
+ FB

n - 1

2
F
2

In[19]:= Map@F, Range@10DD

Out[19]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

In[20]:= TimingAFA104E;E

Out[20]= 80.410249, Null<

3. The use of dynamic programming speeds up the computation by several orders of magnitude.
In[21]:= FF@1D := 1

FF@2D := 1

In[23]:= FF@n_?EvenQD := FF@nD = 2 FFB
n

2
- 1F FFB

n

2
F + FFB

n

2
F
2

FF@n_?OddQD := FF@nD = FFB
n - 1

2
+ 1F

2
+ FFB

n - 1

2
F
2

624 Solutions to exercises



In[25]:= Map@FF, Range@10DD

Out[25]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

In[26]:= TimingAFFA105E;E

Out[26]= 80.00133, Null<

This is fairly fast, even compared with the built-in Fibonacci which uses a method based on the binary 
digits of n.

In[27]:= TimingAFibonacciA105E;E

Out[27]= 80.002, Null<

7.4 Classical examples
1. Perhaps the most straightforward way to do this is to write an auxiliary function that takes the output from 

runEncode and produces output such as Split  would generate.
In[1]:= runEncode@8<D := 8<

runEncode@8x_<D := 88x, 1<<
In[3]:= runEncode@8x_, res___<D := Module@8R = runEncode@8res<D, p<,

p = First@RD;
If@x ã First@pD,
Join@88x, pP2T + 1<<, Rest@RDD,
Join@88x, 1<<, RDDD

Then our split simply operates on the output of runEncode. The iterator for the Table  is the second 
element in each sublist, that is, the frequency.

In[4]:= sp@lis_D := Map@Table@Ò@@1DD, 8Ò@@2DD<D &, lisD

In[5]:= sp@883, 2<, 84, 1<, 82, 5<<D

Out[5]= 883, 3<, 84<, 82, 2, 2, 2, 2<<

In[6]:= split@lis_D := sp@runEncode@lisDD

In[7]:= split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[7]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

Check against the built-in function.

In[8]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[8]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

2. The order of this list of rules is the order in which the Mathematica evaluator will search for a pattern match.
In[9]:= runEncode@8<D := 8<

runEncode@8x_, r___<D := runEncode@x, 1, 8r<D
runEncode@x_, k_, 8<D := 88x, k<<
runEncode@x_, k_, 8x_, r___<D := runEncode@x, k + 1, 8r<D
runEncode@x_, k_, 8y_, r___<D := Join@88x, k<<, runEncode@y, 1, 8r<DD

3. Recursion is on the tail.
In[14]:= runDecode@8<D := 8<

runDecode@88x_, k_<, r___<D := Join@Table@x, 8k<D, runDecode@8r<DD
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In[16]:= runDecode@889, 5<, 84, 1<, 83, 4<, 85, 6<<D

Out[16]= 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<

8 Numerics
8.1 Numbers
1. This function gives the polar form as a list consisting of the magnitude and the polar angle.

In[1]:= complexToPolar@z_D := 8Abs@zD, Arg@zD<

In[2]:= complexToPolar@3 + 3 ÂD

Out[2]= :3 2 ,
p

4
>

In[3]:= complexToPolarB‰
p Â

3 F

Out[3]= :1,
p

3
>

2. This function uses a default value of 2 for the base. (Try replacing Fold with FoldList  to see more 
clearly what this function is doing.)
In[4]:= convert@digits_List, base_ : 2D := Fold@Hbase Ò1 + Ò2L &, 0, digitsD

Here are the digits for 9 in base 2:

In[5]:= IntegerDigits@9, 2D

Out[5]= 81, 0, 0, 1<

This converts them back to the base 10 representation.

In[6]:= convert@%D

Out[6]= 9

Note, this functionality is built into the function FromDigitsAlis, baseE.

In[7]:= FromDigits@81, 0, 0, 1<, 2D

Out[7]= 9

This function is essentially an implementation of Horner’s method for fast polynomial multiplication.

In[8]:= convert@8a, b, c, d, e<, xD

Out[8]= e + x Hd + x Hc + x Hb + a xLLL

In[9]:= Expand@%D

Out[9]= e + d x + c x2 + b x3 + a x4

3. One rule can cover both parts of this exercise, using a default value of 10 for the base.
In[10]:= DigitSum@n_, base_: 10D := Total@IntegerDigits@n, baseDD

In[11]:= DigitSum@10!D

Out[11]= 27
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The Hamming weight of a number is the number of 1s in its binary representation.

In[12]:= DigitSumA231 - 1, 2E

Out[12]= 31

Here is a comparison with a built-in function:

In[13]:= DigitCountA231 - 1, 2, 1E

Out[13]= 31

8. Mapping Dice (from Exercise 9 in Section 4.2) over a list of two random integers between 1 and 6 simu-
lates a roll of a pair of dice.

In[14]:= Map@Dice, RandomInteger@81, 6<, 82<DD

Out[14]= : , >

Here is a function to do that.

In[15]:= RollDice@D := GraphicsRow@Map@Dice, RandomInteger@81, 6<, 82<DDD

In[16]:= RollDice@D

Out[16]=

And here is the rule for rolling the pair of dice n times.

In[17]:= RollDice@n_D := Table@RollDice@D, 8n<D

In[18]:= RollDice@4D

Out[18]= : , , , >

9. Using the hint in the exercise, here are the directions for the two- and three-dimensional cases.
In[19]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;

In[20]:= NSEW3 = 881, 0, 0<, 80, 1, 0<, 80, 0, 1<, 8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<;

The walk functions follow directly from the one-dimensional case given in the text.

In[21]:= walk2D@t_D := Accumulate@RandomChoice@NSEW, tDD

In[22]:= walk3D@t_D := Accumulate@RandomChoice@NSEW3, tDD

Exercise the functions and visualize.
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In[23]:= ListLinePlot@walk2D@1500D, AspectRatio Ø AutomaticD

Out[23]=

-30 -20 -10

-40

-30

-20

-10

In[24]:= Graphics3D@Line@walk3D@2500DDD

Out[24]=

For a more complete discussion of these functions, see Section 13.1.

10. Here is the linear congruential generator.
In[25]:= linearCongruential@x_, mod_, mult_, incr_D := Mod@mult x + incr, modD

With modulus 100 and multiplier 15, this generator quickly gets into a cycle.

In[26]:= NestList@linearCongruential@Ò, 100, 15, 1D &, 5, 10D

Out[26]= 85, 76, 41, 16, 41, 16, 41, 16, 41, 16, 41<

With a larger modulus and multiplier, it appears as if this generator is doing better.

Here are the first 60 terms starting with a seed of 0.

In[27]:= data = NestList@linearCongruential@Ò, 381, 15, 1D &, 0, 5000D;
Take@data, 60D

Out[28]= 80, 1, 16, 241, 187, 139, 181, 49, 355, 373, 262, 121, 292, 190, 184, 94,

268, 211, 118, 247, 277, 346, 238, 142, 226, 343, 193, 229, 7, 106,

67, 244, 232, 52, 19, 286, 100, 358, 37, 175, 340, 148, 316, 169, 250,

322, 259, 76, 379, 352, 328, 349, 283, 55, 64, 199, 319, 214, 163, 160<

Sometimes it is hard to see if your generator is doing a poor job. Graphical analysis can help by allowing 
you to see patterns over larger domains. Here is a ListPlot  of this sequence taken out to 5000 terms.

628 Solutions to exercises



In[29]:= ListPlot@data, PlotStyle Ø PointSize@.005DD

Out[29]=

1000 2000 3000 4000 5000

50
100
150
200
250
300
350

It appears as if certain numbers are repeating. Looking at the plot of the Fourier data shows peaks at 
certain frequencies, indicating a periodic nature to the data.

In[30]:= ListPlot@Abs@Fourier@dataDD, PlotStyle Ø PointSize@.005DD

Out[30]=

1000 2000 3000 4000 5000

10

20

30

40

50

Using a much larger modulus and multiplier and an increment of zero (actually, these are the default 
values for Mathematica’s built-in "Congruential" method for SeedRandom ), you can keep your 
generator from getting in such short loops.

In[31]:= ListPlot@data = NestList@linearCongruential@Ò1, 2305843009213693951,

1283839219676404755, 0D &, 1, 5000D, PlotStyle Ø PointSize@.005DD

Out[31]=

10002000300040005000

5.0�1017

1.0�1018

1.5�1018

2.0�1018

In[32]:= ListPlot@Abs@Fourier@dataDD, PlotStyle Ø PointSize@.005DD

Out[32]=

10002000300040005000

5.0�1017

1.0�1018

1.5�1018

12. Here is a simple implementation of the middle square method. It assumes a ten-digit seed. To work with 
arbitrary-length seeds, modify the number of middle digits that are extracted with the Part function.

In[33]:= middleSquareGenerator@n_, seed_: 1234567890D :=

Module@8tmp = 8seed<, s2, len, s = seed<,
Do@
s2 = IntegerDigits@s^2D;
len = Length@s2D;
s = FromDigits@If@len < 20, PadLeft@s2, 20, 0D, s2D@@6 ;; 15DDD;
AppendTo@tmp, sD,
8n<D;

tmp

D
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In[34]:= middleSquareGenerator@3D

Out[34]= 81234567890, 1578750190, 4521624250, 858581880<

In[35]:= data = middleSquareGenerator@1000D;
Take@data, 12D

Out[36]= 81234567890, 1578750190, 4521624250, 858581880,

1628446643, 8384690979, 428133239, 2980703366,

5925560837, 2712329881, 7333833654, 1160645429<

13. Run 10 000 trials with a range of probabilities from 0 to 1 in increments of .001.
In[37]:= incr = 0.001;

trials = 10000;

lis = Table@
RandomVariate@BernoulliDistribution@pD, trialsD, 8p, 0, 1, incr<D;

Pair up the probabilities with the entropies (in base 2) for each trial.

In[40]:= info = Transpose@8Range@0, 1, incrD, Map@Entropy@2, ÒD &, lisD<D;

Make a plot.

In[41]:= ListPlot@info, AspectRatio Ø 1,

GridLines Ø Automatic, PlotStyle Ø PointSize@SmallDD

Out[41]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8.2 Working with numbers
1. The number 1.23 has machine precision.

In[1]:= Precision@1.23D

Out[1]= MachinePrecision

Asking Mathematica to generate 100 digits of precision from a number that only contains about 16 digits of 
precision would require it to produce 84 digits without any information about where those digits should 
come from.

2. This generates a table showing the number of digits of precision needed in the input compared with the 
accuracy of the result.
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In[2]:= TableB:x, AccuracyBNB 2 , xF
200

- J 2 N
200

F>, 8x, 100, 140, 5<F êê

TableForm
Out[2]//TableForm=

100 67.596
105 72.596
110 77.596
115 82.596
120 87.596
125 92.596
130 97.596
135 102.596
140 107.596

8.3 Arrays of numbers
1. Note the need for a delayed rule in this function.

In[1]:= RandomSparseArray@n_IntegerD :=

SparseArray@8Band@81, 1<D ß RandomReal@D<, 8n, n<D
In[2]:= Normal@RandomSparseArray@5DD êê MatrixForm

Out[2]//MatrixForm=

0.778393 0 0 0 0
0 0.685614 0 0 0
0 0 0.639995 0 0
0 0 0 0.79101 0
0 0 0 0 0.427544

2. Here is the definition of TridiagonalMatrix.
In[3]:= TridiagonalMatrix@n_, p_, q_D := SparseArray@

8Band@81, 1<D Ø p, Band@81, 2<D Ø q, Band@82, 1<D Ø q<, 8n, n<D
In[4]:= TridiagonalMatrix@5, a, bD

Out[4]= SparseArray@<13>, 85, 5<D

In[5]:= Normal@%D êê MatrixForm
Out[5]//MatrixForm=

a b 0 0 0
b a b 0 0
0 b a b 0
0 0 b a b
0 0 0 b a

3. First we create the packed array vector. 
In[6]:= vec = RandomVariateANormalDistribution@1, 3D, 9105=E;

In[7]:= Developer`PackedArrayQ@vecD

Out[7]= True

Replacing the first element in vec with a 1 gives an expression that is not packed.

In[8]:= newvec = ReplacePart@vec, 1, 1D;

In[9]:= Developer`PackedArrayQ@newvecD

Out[9]= False
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The size of the unpacked object is about four times larger than the packed array.

In[10]:= Map@ByteCount, 8vec, newvec<D

Out[10]= 8800168, 3200040<

Sorting the packed object is about three times faster than sorting the unpacked object.

In[11]:= Timing@Do@Sort@vecD, 85<DD

Out[11]= 80.094712, Null<

In[12]:= Timing@Do@Sort@newvecD, 85<DD

Out[12]= 80.243469, Null<

Finding the minimum element is about one order of magnitude faster with the packed array.

In[13]:= Timing@Min@vecD;D

Out[13]= 80.000213, Null<

In[14]:= Timing@Min@newvecD;D

Out[14]= 80.002076, Null<

4. Since the definition involving determinants only makes sense for n > 2, we include a condition on the left-
hand side of that definition and also specific rules for the cases n = 1, 2.

In[15]:= fibMat@n_ ê; n > 2D := DetüSparseArray@
8Band@81, 1<D Ø 1, Band@82, 1<D Ø Â, Band@81, 2<D Ø Â<, 8n - 1, n - 1<D

In[16]:= fibMat@1D = fibMat@2D = 1;

In[17]:= Table@fibMat@iD, 8i, 1, 20<D

Out[17]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

144, 233, 377, 610, 987, 1597, 2584, 4181, 6765<

The computation of determinants using decomposition methods is on the order of OIn3M computational 

complexity. So this computation tends to slow down considerably for large n.

In[18]:= TimingAfibMatA103EE
Out[18]= 86.7663,

43466557686937456435688527675040625802564660517371780402481729089536 Ö
555417949051890403879840079255169295922593080322634775209689623239873 Ö
322471161642996440906533187938298969649928516003704476137795166849228 Ö
875<

In[19]:= FibonacciA103E ã fibMatA103E

Out[19]= True

5. The sparse array needs only one rule 82, 2< Ø 0 together with a third argument that specifies the default 
values should be set to 1. Then pick off the nth Fibonacci number in the first row, second column.

In[20]:= fibMat2@n_D := Module@8mat<,
mat = SparseArray@882, 2< Ø 0<, 82, 2<, 1D;
MatrixPower@mat, nD@@1, 2DD

D

Quick check of the first few numbers.
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In[21]:= Table@fibMat2@nD, 8n, 1, 10<D

Out[21]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

The time to compute a large number is quite fast.

In[22]:= TimingAfibMat2A103EE
Out[22]= 80.000216,

43466557686937456435688527675040625802564660517371780402481729089536 Ö
555417949051890403879840079255169295922593080322634775209689623239873 Ö
322471161642996440906533187938298969649928516003704476137795166849228 Ö
875<

Check correctness against the built-in function, using a large random integer n.

In[23]:= WithA9n = RandomIntegerA106E=,

fibMat2@nD ã Fibonacci@nD
E

Out[23]= True

8.4 Examples and applications
1. We will overload findRoot to invoke the secant method when given a list of two numbers as the second 

argument.
In[1]:= Options@findRootD = 8

MaxIterations ß $RecursionLimit,

PrecisionGoal Ø Automatic,

WorkingPrecision Ø Automatic

<;
In[2]:= findRoot@fun_, 8var_, x1_?NumericQ, x2_?NumericQ<, OptionsPattern@DD :=

ModuleB8maxIterations, precisionGoal,

workingPrecision, initx, df, next, result<,
8maxIterations, precisionGoal, workingPrecision< =

OptionValue@8MaxIterations, PrecisionGoal, WorkingPrecision<D;
If@precisionGoal === Automatic,

precisionGoal = Min@8Precision@x1D, Precision@x2D<DD;
If@workingPrecision === Automatic,

workingPrecision = precisionGoal + 10D;
initx = SetPrecision@8x1, x2<, workingPrecisionD;
df@a_, b_D := Hfun@bD - fun@aDL ê Hb - aL;

next@8a_, b_<D := :a, b -
fun@bD

df@a, bD
>;

result = SetPrecision@
FixedPoint@next, initx, maxIterationsD@@2DD, precisionGoalD;

8var Ø result<F

In[3]:= f@x_D := x2 - 2
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In[4]:= findRoot@f, 8x, 1., 2.<D

Out[4]= 8x Ø 1.41421<

In[5]:= findRoot@f, 8x, 1.0`60, 2.0`50<D

Out[5]= 8x Ø 1.4142135623730950488016887242096980785696740946953<

In[6]:= Precision@%D

Out[6]= 50.

5. Here is a three-dimensional vector.
In[7]:= vec = 81, -3, 2<;

This computes the l¶ norm of the vector.

In[8]:= norm@v_?VectorQ, l_: InfinityD := Max@Abs@vDD

In[9]:= norm@vecD

Out[9]= 3

Compare this with the built-in Norm function.

In[10]:= Norm@vec, InfinityD

Out[10]= 3

Here is a 3�3 matrix.

In[11]:= mat = 881, 2, 3<, 81, 0, 2<, 82, -3, 2<<;

Here, then, is the matrix norm.

In[12]:= norm@m_?MatrixQ, l_: InfinityD :=

norm@Total@Abs@Transpose@mDDD, InfinityD
In[13]:= norm@matD

Out[13]= 7

Again, here is a comparison with the built-in Norm function.

In[14]:= Norm@mat, InfinityD

Out[14]= 7

Notice how we overloaded the definition of the function norm so that it would act differently depending 
upon what type of argument it was given. This is a particularly powerful feature of Mathematica. The 
expression _?MatrixQ on the left-hand side of the definition causes the function norm to use the 
definition on the right-hand side only if the argument is in fact a matrix (if it passes the MatrixQ test). If 
that argument is a vector (if it passes the VectorQ test), then the previous definition is used. 

6. Here is the function to compute the condition number of a matrix (using the l2 norm).
In[15]:= conditionNumber@m_?MatrixQD := Norm@m, 2D Norm@Inverse@mD, 2D

In[16]:= conditionNumber@HilbertMatrix@3DD êê N

Out[16]= 524.057

Compare this with the condition number of a random matrix.
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In[17]:= mat = RandomInteger@5, 83, 3<D;
conditionNumber@matD êê N

Out[18]= 2.31709

An alternative definition for the condition number of a matrix is the ratio of largest to smallest singular 
value.

In[19]:= NüSingularValueList@matD

Out[19]= 86.37231, 4.22261, 2.75013<

In[20]:= First@%D ê Last@%D

Out[20]= 2.31709

In[21]:= conditionNumber2@mat_?MatrixQD :=

Module@8sv = SingularValueList@matD<,
First@svD ê Last@svDD

In[22]:= conditionNumber2@matD êê N

Out[22]= 2.31709

7. Pairing up values with preceding values is accomplished by transposing the appropriate lists.

TransposeA9DropAdata, lagE, DropAdata, - lagE=E

Here then is the code for LagPlot.

In[23]:= LagPlot@data_, lag_ : 1, opts : OptionsPattern@ListPlotDD :=

ListPlot@Transpose@8Drop@data, lagD, Drop@data, -lagD<D, optsD

Trying it out on a sequence of “random” numbers generated using a linear congruential generator shows 
patterns that indicate a very low likelihood of randomness in the sequence.

In[24]:= data = BlockRandom@SeedRandom@1, Method Ø 8"Congruential",
"Multiplier" Ø 11, "Increment" Ø 0, "Modulus" Ø 17<D;

RandomReal@1, 81000<DD;
In[25]:= Table@LagPlot@data, i, ImageSize Ø SmallD, 8i, 1, 4<D

Out[25]= :

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

>

NIST describes the data in lew.dat as originating “from an underlying single-cycle sinusoidal model.”

In[26]:= lewdata = Import@
FileNameJoin@8NotebookDirectory@D, "Data", "lew.dat"<D, "List"D;

8 Numerics 635



In[27]:= LagPlot@lewdata, 1, ImageSize Ø SmallD

Out[27]=
-400 -200 200

-400

-200

200

8. First, set the options for Correlogram, giving a default value for Coefficient of 0.05.
In[28]:= Options@CorrelogramD = Join@8Coefficient Ø 0.05<, Options@ListPlotDD;

In[29]:= Correlogram@data_,
8lagmin_, lagmax_, incr_: 1<, opts : OptionsPattern@DD :=

Module@8rh, corrs<,
rh = OptionValue@CoefficientD;
corrs = Table@8lag, AutoCorrelation@data, lagD<,

8lag, lagmin, lagmax, incr<D;
ListPlot@corrs,
FilterRules@8opts<, Options@ListPlotDD, AspectRatio Ø .4,

Frame Ø True, Axes Ø False, PlotRange Ø Automatic,

FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed,

Line@880, rh<, 8Hlagmax - lagmin + 1L ê incr, rh<<D,
Line@880, -rh<, 8Hlagmax - lagmin + 1L ê incr, -rh<<D<D

D
In[30]:= AutoCorrelation@data_, lag_: 1D :=

Correlation@Drop@data, lagD, Drop@data, -lagDD

Try out the function on some sinusoidal data with some noise added.

In[31]:= data = Table@RandomReal@8-2, 2<D
Sin@x + RandomReal@8-.25, .25<DD, 8x, 0, 10 p, .05<D;

Exercise some of the options.

In[32]:= Correlogram@data, 81, 100<, Coefficient Ø 0.1,

Filling Ø Axis, PlotRange Ø 8-0.2, 0.2<,
FrameLabel Ø 88"Auto-correlation coeff.", None<, 8"Lags", None<<D

Out[32]=

9. Here are the binary digits of p. First  is used to get only the digits from RealDigits .
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In[33]:= First@RealDigits@N@Pi, 12D, 2DD

Out[33]= 81, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0,

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0<

Convert 0s to -1s.

In[34]:= 2 % - 1

Out[34]= 81, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1,

-1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1<

Here then is a plot for the first fifty thousand digits.

In[35]:= ListLinePlot@
With@8digits = 50000<,
Accumulate@2 First@RealDigits@N@Pi, digitsD, 2DD - 1D

DD

Out[35]=

50 000 100 000 150 000
-100

100

200

300

400

For the two-dimensional case, use Partition to pair up the binary digits, then a transformation rule to 
convert them to compass directions.

In[36]:= With@8digs = First@RealDigits@N@Pi, 50000D, 2DD<,
ListLinePlot@Accumulate@

Partition@digs, 2, 2D ê. 880, 0< Ø 8-1, 0<, 81, 1< Ø 80, -1<<D,
AspectRatio Ø AutomaticDD

Out[36]=

-50 50 100

-300

-200

-100

8 Numerics 637



9 Strings
9.1 Structure and syntax
1. Here is a test string we will use for this exercise.

In[1]:= str = "this is a test string"

Out[1]= this is a test string

This extracts the first character from str.

In[2]:= StringTake@str, 1D

Out[2]= t

Here is its character code.

In[3]:= ToCharacterCode@%D

Out[3]= 8116<

For each lowercase letter of the English alphabet, subtracting 32 gives the corresponding uppercase 
character.

In[4]:= % - 32

Out[4]= 884<

Convert back to a character.

In[5]:= FromCharacterCode@%D

Out[5]= T

Take the original string minus its first character.

In[6]:= StringDrop@str, 1D

Out[6]= his is a test string

Finally, join the previous string with the capital T.

In[7]:= StringJoin@%%, %D

Out[7]= This is a test string

You can do this more efficiently using ToUpperCase  and StringTake . This approach is more general 
in that it does not assume that the first character in your string is lower case.

In[8]:= ToUpperCase@StringTake@str, 1DD

Out[8]= T

In[9]:= StringTake@str, 2 ;; -1D

Out[9]= his is a test string

In[10]:= ToUpperCase@StringTake@str, 1DD <> StringTake@str, 2 ;; -1D

Out[10]= This is a test string

3. Start by extracting the individual characters in a string.
In[11]:= str = "Mississippi";

Characters@strD
Out[12]= 8M, i, s, s, i, s, s, i, p, p, i<
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This gives the set of unique characters in this string.

In[13]:= Union@Characters@strDD

Out[13]= 8i, M, p, s<

Union  sorts the list whereas DeleteDuplicates  does not.

In[14]:= DeleteDuplicates@Characters@strDD

Out[14]= 8M, i, s, p<

Here then is the function.

In[15]:= UniqueCharacters@str_StringD := DeleteDuplicates@Characters@strDD

Try it out on a more interesting example.

In[16]:= protein = ProteinData@"PP2672"D
Out[16]= MKSSEELQCLKQMEEELLFLKAGQGSQRARLTPPLPRALQGNFGAPALCGIWFAEHLHPAVGMPPNYNSSMLSLSPERÖ

TILSGGWSGKQTQQPVPPLRTLLLRSPFSLHKSSQPGSPKASQRIHPLFHSIPRSQLHSVLLGLPLLFIQTRPSÖ
PPAQYGAQMPLRYICFGPNIFWGSKKPQKE

In[17]:= UniqueCharacters@proteinD

Out[17]= 8M, K, S, E, L, Q, C, F, A, G, R, T, P, N, I, W, H, V, Y<

It even works in the degenerate case.

In[18]:= UniqueCharacters@""D

Out[18]= 8<

9.2 Operating with strings
1. Here is the function that checks if a string is a palindrome.

In[1]:= PalindromeQ@str_StringD := StringReverse@strD == str

In[2]:= PalindromeQ@"mood"D

Out[2]= False

In[3]:= PalindromeQ@"PoP"D

Out[3]= True

An argument that is a number is converted to a string and then the previous rule is called.

In[4]:= PalindromeQ@num_IntegerD := PalindromeQ@ToString@numDD

In[5]:= PalindromeQ@12522521D

Out[5]= True

Get all words in the dictionary that comes with Mathematica.

In[6]:= words = DictionaryLookup@D;

Select those that pass the PalindromeQ test.
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In[7]:= Select@words, PalindromeQD
Out[7]= 8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,

eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,
MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,
pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,
shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<

2. Use the argument structure of RotateLeft .
In[8]:= StringRotateLeft@str_, n_: 1D :=

StringJoin@RotateLeft@Characters@strD, nDD
In[9]:= StringRotateLeft@"squeamish ossifrage", 5D

Out[9]= mish ossifragesquea

4. First, using StringJoin , put n spaces at the end of the string.
In[10]:= StringPad@str_String, 8n_<D := StringJoin@str, Table@" ", 8n<DD

In[11]:= StringPad@"ciao", 85<D êê FullForm
Out[11]//FullForm=

"ciao "

For the second rule, first create a message that will be issued if the string is longer than n.

In[12]:= StringPad::badlen =

"Pad length `1` must be greater than the length of string `2`.";

In[13]:= StringPad@str_String, n_D := With@8len = StringLength@strD<, If@len > n,

Message@StringPad::badlen, n, strD, StringPad@str, 8n - len<DDD
In[14]:= StringPad@"ciao", 8D êê FullForm

Out[14]//FullForm=

"ciao "

In[15]:= StringPad@"ciao", 3D

StringPad::badlen : Pad length 3 must be greater than the length of string ciao.

Finally, here is a rule for padding at the beginning and end of the string.

In[16]:= StringPad@str_String, n_, m_D :=

StringJoin@Table@" ", 8n<D, str, Table@" ", 8m<DD
In[17]:= StringPad@"ciao", 3, 8D êê FullForm

Out[17]//FullForm=

" ciao "

Note, StringInsert could also be used.

In[18]:= StringInsert@"ciao", " ", 81, -1<D êê FullForm
Out[18]//FullForm=

" ciao "

In[19]:= StringPad2@str_String, n_, m_D :=

StringInsert@str, " ", Join@Table@1, 8n<D, Table@-1, 8m<DDD
In[20]:= StringPad2@"ciao", 3, 8D êê FullForm

Out[20]//FullForm=

" ciao "
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5. This is a simple modification of the code given in the text. But first we add the space character to the 
alphabet.

In[21]:= ToCharacterCode@" "D

Out[21]= 832<

In[22]:= alphabet = Join@8FromCharacterCode@32D<, CharacterRange@"a", "z"DD

Out[22]= 8 , a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[23]:= coderules = Thread@alphabet Ø RotateRight@alphabet, 5DD

Out[23]= 8 Ø v, a Ø w, b Ø x, c Ø y, d Ø z, e Ø , f Ø a, g Ø b, h Ø c,

i Ø d, j Ø e, k Ø f, l Ø g, m Ø h, n Ø i, o Ø j, p Ø k, q Ø l,

r Ø m, s Ø n, t Ø o, u Ø p, v Ø q, w Ø r, x Ø s, y Ø t, z Ø u<

In[24]:= decoderules = Map@Reverse, coderulesD

Out[24]= 8v Ø , w Ø a, x Ø b, y Ø c, z Ø d, Ø e, a Ø f, b Ø g, c Ø h,

d Ø i, e Ø j, f Ø k, g Ø l, h Ø m, i Ø n, j Ø o, k Ø p, l Ø q,

m Ø r, n Ø s, o Ø t, p Ø u, q Ø v, r Ø w, s Ø x, t Ø y, u Ø z<

In[25]:= code@str_StringD := Apply@StringJoin, Characters@strD ê. coderulesD

In[26]:= decode@str_StringD := Apply@StringJoin, Characters@strD ê. decoderulesD

In[27]:= code@"squeamish ossifrage"D

Out[27]= nlp whdncvjnndamwb

In[28]:= decode@%D

Out[28]= squeamish ossifrage

6. First, here is the list of characters from the plaintext alphabet.
In[29]:= PlainAlphabet = CharacterRange@"a", "z"D

Out[29]= 8a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

Here is our key, django:

In[30]:= key = "django"

Out[30]= django

And here is the cipher text alphabet, prepending the key:

In[31]:= StringJoin@Charactersükey, Complement@PlainAlphabet, CharactersükeyDD

Out[31]= djangobcefhiklmpqrstuvwxyz

Make a reusable function.

In[32]:= CipherAlphabet@key_StringD := With@8k = Characters@keyD<,
StringJoin@k, Complement@CharacterRange@"a", "z"D, kDDD

Generate the coding rules:

In[33]:= codeRules = Thread@PlainAlphabet Ø CharactersüCipherAlphabet@"django"DD

Out[33]= 8a Ø d, b Ø j, c Ø a, d Ø n, e Ø g, f Ø o, g Ø b, h Ø c,

i Ø e, j Ø f, k Ø h, l Ø i, m Ø k, n Ø l, o Ø m, p Ø p, q Ø q,

r Ø r, s Ø s, t Ø t, u Ø u, v Ø v, w Ø w, x Ø x, y Ø y, z Ø z<

The encoding function follows that in the text of this section.
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In[34]:= encode@str_StringD := StringJoin@Characters@strD ê. codeRulesD

In[35]:= encode@"the sheik of araby"D

Out[35]= tcg scgeh mo drdjy

Omit spaces and punctuation and output in blocks of length 5 (using StringPartition from Section 
9.5).

In[36]:= StringPartition@str_String, seq__D :=

Map@StringJoin, Partition@Characters@strD, seqDD
In[37]:= StringSplit@encode@"the sheik of araby"D, RegularExpression@"\\W+"DD

Out[37]= 8tcg, scgeh, mo, drdjy<

In[38]:= StringJoin@Riffle@StringPartition@StringJoin@%D, 5, 5, 1, ""D, " "DD

Out[38]= tcgsc gehmo drdjy

Finally, this puts all these pieces together.

In[39]:= Clear@encodeD;
encode@str_String, key_String, blocksize_: 5D :=

Module@8CipherAlphabet, codeRules, s1, s2, s3<,
CipherAlphabet@k_D :=

StringJoin@Characters@kD,
Complement@CharacterRange@"a", "z"D, Characters@kDDD;

codeRules =

Thread@CharacterRange@"a", "z"D Ø CharactersüCipherAlphabet@keyDD;

s1 = StringJoin@Characters@strD ê. codeRulesD;
s2 = StringSplit@s1, RegularExpression@"\\W+"DD;
s3 = StringPartition@StringJoin@s2D, blocksize, blocksize, 1, ""D;
StringJoin@Riffle@s3, " "DDD

In[41]:= encode@"the sheik of araby", "django", 3D

Out[41]= tcg scg ehm odr djy

9.3 String patterns
1. First, recall the predicate created in Section 9.1.

In[1]:= OrderedWordQ@word_StringD := OrderedQ@ToCharacterCode@wordDD

DictionaryLookup  can be given a pattern as its argument and it will return only those words that 
match the pattern. Using StringJoin , test the first character with LowerCaseQ ; the remainder of the 
word (zero or more characters) has no conditions.

In[2]:= words = DictionaryLookup@f_?LowerCaseQ ~~ r___D;
Short@words, 4D

Out[3]//Short= 8a, aah, aardvark, aardvarks, abaci, aback, abacus,

á81804à, zwieback, zydeco, zygote, zygotes, zygotic, zymurgy<
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In[4]:= Select@words, OrderedWordQD;
RandomSample@%, 20D

Out[5]= 8now, coop, ills, firs, chops, ass, chin, ells, go, clops,

lox, sty, beep, alp, dims, befit, any, accost, aims, amp<

2. We will work with a small sample of words from the dictionary.
In[9]:= words = DictionaryLookup@D;

sample = RandomSample@words, 12D
Out[10]= 8habitually, aborting, remote, bean, dinned, clothes,

sine, quail, resolutely, hiya, dreamers, hearings<

StringReplace  operates on any words that match the pattern and leave those that do not match 
unchanged.

In[11]:= StringReplace@sample, f_?UpperCaseQ ~~ r___ ß ToLowerCase@fD ~~ rD

Out[11]= 8habitually, aborting, remote, bean, dinned, clothes,

sine, quail, resolutely, hiya, dreamers, hearings<

3. You can do a dictionary lookup with a pattern that tests whether the word is palindromic. Then find all 
palindromic words of a given length. Note the need for BlankSequence  (__) as the simple pattern _ 
would only find words consisting of one character.

In[12]:= Palindromes@len_IntegerD := DictionaryLookup@
w__ ê; Hw == StringReverse@wD && StringLength@wD ã lenLD

We also add a rule to return all palindromes of any length.

In[13]:= Palindromes@D := DictionaryLookup@w__ ê; Hw == StringReverse@wD LD

In[14]:= Palindromes@7D

Out[14]= 8deified, repaper, reviver<

In[15]:= Palindromes@D

Out[15]= 8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did,

dud, DVD, eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook,

level, ma'am, madam, mam, MGM, minim, mom, mum, nan, non, noon,

nun, oho, pap, peep, pep, pip, poop, pop, pup, radar, redder, refer,

repaper, reviver, rotor, sagas, sees, seres, sexes, shahs, sis,

solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<

4. First import some sample text.
In[16]:= text = ExampleData@8"Text", "AliceInWonderland"<D;

To split into words, use a similar construction to that in this section.

In[17]:= words = StringSplit@text, Characters@":;\"',.?ê\-` *"D ..D;
Short@words, 4D

Out[18]//Short= 8I, DOWN, THE, RABBIT, HOLE, Alice, was, beginning,

á9955à, might, what, a, wonderful, dream, it, had, been<

Get the total number of (nonunique) words.

In[19]:= Length@wordsD

Out[19]= 9971
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Convert uppercase to lowercase.

In[20]:= lcwords = ToLowerCase@wordsD;
Short@lcwords, 4D

Out[21]//Short= 8i, down, the, rabbit, hole, alice, was, beginning,

á9955à, might, what, a, wonderful, dream, it, had, been<

Finally, count the number of unique words.

In[22]:= DeleteDuplicates@lcwordsD êê Length

Out[22]= 1643

In fact, splitting words using a list of characters as we have done here is not terribly robust. A better 
approach uses regular expressions (introduced in Section 9.4):

In[23]:= words = StringSplit@text, RegularExpression@"\\W+"DD;
Length@wordsD

Out[24]= 9970

In[25]:= lcwords = StringReplace@words,
RegularExpression@"H@A-ZDL"D ß ToLowerCase@"$1"DD;

DeleteDuplicates@lcwordsD êê Length

Out[26]= 1528

9.4 Regular expressions
1. The pattern used earlier in the chapter was "AA" ~~ _ ~~ "T". In a regular expression, we want the 

character A repeated exactly once. Use the expression "A82,2<" for this. The regular expression "." 
stands for any character. 
In[1]:= gene = GenomeData@"IGHV357"D;

In[2]:= StringCases@gene, RegularExpression@"A82,2<.T"DD

Out[2]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<

2. First, read in the web page.
In[3]:= webpage =

Import@"http:êêwww.wolfram.comêcompanyêcontact.cgi", "HTML"D;

In the original example in Section 9.3, we used the pattern NumberString, to represent arbitrary strings 
of numbers. The regular expression "\\d+" accomplishes a similar thing but it will also match strings of 
numbers that may not be in a phone number format (try it!). Instead, use "\\d83<" to match a list of 
exactly three digits, and so on.

In[4]:= StringCases@webpage,
RegularExpression@"\\d83<.\\d83<.\\d84<"DD êê DeleteDuplicates

Out[4]= 8217-398-0700, 217-398-0747, 617-764-0094<

3. First, here is the function using regular expressions. H.L will be matched by any single character; the 
parentheses are used to refer to this expression on the right-hand side of the rule as "$1". Similarly, 
parentheses surround @a - zD + which is matched by any sequence of lowercase characters; this expres-
sion is referred to on the right as "$2".
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In[5]:= UcLc@word_StringD := StringReplace@word,
RegularExpression@"H.LH@a-zD+L"D ß ToUpperCase@"$1"D ~~ "$2"D

In[6]:= UcLc@"hello"D

Out[6]= Hello

You can also do this with string patterns.

In[7]:= UcLc@word_StringD := StringReplace@word,
WordBoundary ~~ x_ ~~ y__ ß ToUpperCase@xD ~~ ToLowerCase@yDD

In[8]:= UcLc@"ciao"D

Out[8]= Ciao

4. The first solution uses regular expressions. The second uses string patterns and alternatives.
In[9]:= DictionaryLookup@RegularExpression@"@aeiouyD+"D, IgnoreCase Ø TrueD

Out[9]= 8a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you<

In[10]:= DictionaryLookup@H"a" "e" "i" "o" "u" "y"L .., IgnoreCase Ø TrueD

Out[10]= 8a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you<

5. Here is the short list of words with which we will work.
In[11]:= words = 8"building", "finch", "fix", "ratio",

"envy", "boy", "baby", "faculty", "honorarium"<;

Using regular expressions, these rules encapsulate those given in the exercise.

In[12]:= rules = 8
HRegularExpression@"H\\w+Lx"D ß "$1" ~~ "x" ~~ "es"L,
HRegularExpression@"H\\w+LHchL"D ß "$1" ~~ "$2" ~~ "es"L,
HRegularExpression@"H\\w+LH@aeiouDLHyL"D ß

"$1" ~~ "$2" ~~ "$3" ~~ "s"L,
HRegularExpression@"H\\w+LHyL"D ß "$1" ~~ "ies"L,
HRegularExpression@"H\\w+LHiLum"D ß "$1" ~~ "$2" ~~ "a"L,
HRegularExpression@"H\\w+LH.L"D ß "$1" ~~ "$2" ~~ "s"L

<;
In[13]:= StringReplace@words, rulesD

Out[13]= 8buildings, finches, fixes, ratios,

envies, boys, babies, faculties, honoraria<

Of course, lots of exceptions exist:

In[14]:= StringReplace@8"man", "cattle"<, rulesD

Out[14]= 8mans, cattles<

7. Start by importing a somewhat lengthy text, Charles Darwin’s On the Origin of Species.
In[16]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;

There are numerous instances of “Mr.” and “Dr.”, words that end in a period that would trigger a sentence-
ending detector such as StringSplit .

In[17]:= StringCount@text, "Mr." "Dr."D

Out[17]= 119
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To keep our sentence count accurate, we will replace such words (and a few others in this particular text) 
with words that will not cause errors in our sentence count. This step of cleaning text based on identified 
issues is a common one in textual analysis.

In[18]:= cleanText =

StringReplace@text, 8"Mr." Ø "Mr", "Dr." Ø "Dr", "H.M.S." Ø "HMS"<D;
In[19]:= t = StringTake@cleanText, 200D

Out[19]= INTRODUCTION. When on board HMS 'Beagle,' as naturalist, I was much

struck with certain facts in the distribution of the inhabitants

of South America, and in the geological relations of the present to

Now split on a small set of delimiters.

In[20]:= s = StringSplit@cleanText, Characters@".!?"D ..D;
Short@s, 5D

Out[21]//Short= 8INTRODUCTION, á4225à,

There is grandeur in this view of life, with

its several powers, hav … s most beautiful and

most wonderful have been, and are being, evolved<

The same thing can be accomplished with a regular expression.

In[22]:= s = StringSplit@cleanText, RegularExpression@"@.!?D+"DD;

Using a regular expression, this counts the number of words in each sentence.

In[23]:= sentenceLens = StringCount@s, RegularExpression@"\\w+"DD;

Finally, here is a histogram displaying the distribution of sentence lengths.

In[24]:= Histogram@sentenceLensD

Out[24]=

It looks like there are some very long sentences!
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In[25]:= Select@s, StringCount@Ò, RegularExpression@"\\w+"DD > 200 &D
Out[25]= 8 I have attempted to show that the geological record is extremely imperfect; that only a small portion

of the globe has been geologically explored with care; that only certain classes of organic

beings have been largely preserved in a fossil state; that the number both of specimens and

of species, preserved in our museums, is absolutely as nothing compared with the incalculable

number of generations which must have passed away even during a single formation; that, owing

to subsidence being necessary for the accumulation of fossiliferous deposits thick enough to

resist future degradation, enormous intervals of time have elapsed between the successive

formations; that there has probably been more extinction during the periods of subsidence, and

more variation during the periods of elevation, and during the latter the record will have been

least perfectly kept; that each single formation has not been continuously deposited; that the

duration of each formation is, perhaps, short compared with the average duration of specific

forms; that migration has played an important part in the first appearance of new forms in

any one area and formation; that widely ranging species are those which have varied most, and

have oftenest given rise to new species; and that varieties have at first often been local<

8. First read in some sample phrases.
In[25]:= searchPhrases = 8"Find my favorite phone",

"How deep is the ocean?", "What is the meaning of life?"<;

There are several ways to approach this problem. We will break it up into two steps: first eliminating 
punctuation, then a sample set of stop words.

In[26]:= tmp = StringSplit@"How deep is the ocean?", Characters@":,;.!? "D ..D

Out[26]= 8How, deep, is, the, ocean<

In[27]:= stopwords = 8"how", "the", "is", "an"<;

In[28]:= Apply@Alternatives, stopwordsD

Out[28]= how the is an

Note the need for WordBoundary in what follows; otherwise, ocean would be split leaving oce because an 
is a stop word.

In[29]:= StringSplit@tmp, WordBoundary ~~ Apply@Alternatives, stopwordsD ~~

WordBoundary, IgnoreCase Ø TrueD êê Flatten

Out[29]= 8deep, ocean<

In[30]:= FilterText@str_String, stopwords_ListD := Module@8tmp<,
tmp = StringSplit@str, Characters@":,;.!? "D ..D;
FlattenüStringSplit@tmp, WordBoundary ~~

Apply@Alternatives, stopwordsD ~~ WordBoundary, IgnoreCase Ø TrueD
D

In[31]:= stopwords = RestüImport@"StopWords.dat", "List"D;

In[32]:= FilterText@"What is the meaning of life?", stopwordsD

Out[32]= 8meaning, life<

9.5 Examples and applications
1. One rule is needed for one-dimensional output and another for multi-dimensional output.

In[1]:= ClearAll@RandomStringD

In[2]:= Options@RandomStringD = 8Weights Ø 8<<;

In[3]:= RandomString::badwt =

"The length of the list of weights must be the same
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as the length of the list of characters.";

In[4]:= RandomString@8c__String<, n_Integer: 1, OptionsPattern@DD :=

Module@8wts = OptionValue@WeightsD<,
Which@
Length@wtsD ã 0, StringJoin@RandomChoice@8c<, nDD,
Length@wtsD ã Length@8c<D,
StringJoin@RandomChoice@wts Ø 8c<, nDD,
True, Message@RandomString::badwtD

DD
In[5]:= RandomString@8c__String<, 8n_Integer, len_Integer<,

OptionsPattern@DD := Module@8wts = OptionValue@WeightsD<,
Which@
Length@wtsD ã 0, Map@StringJoin, RandomChoice@8c<, 8n, len<DD,
Length@wtsD ã Length@8c<D,
Map@StringJoin, RandomChoice@wts Ø 8c<, 8n, len<DD,
True, Message@RandomString::badwtD

DD
In[6]:= RandomString@8"A", "C", "T"<D

Out[6]= A

In[7]:= RandomString@8"A", "C", "T"<, 10D

Out[7]= TCCTCACCCC

In[8]:= RandomString@8"A", "C", "T"<, 84, 10<D

Out[8]= 8ACATCTCATC, TCCCACTATC, AAACCCTCTC, CAATATAATC<

In[9]:= RandomString@8"A", "C", "T"<, 84, 10<, Weights Ø 8.2, .7, .1<D

Out[9]= 8CAAAACCCCC, CCCCACCCTC, CACCCCCACC, CAACCCCCCT<

In[10]:= RandomString@8"A", "C", "T"<, 84, 10<, Weights Ø 8.2, .7<D

RandomString::badwt : The length of the list of weights must be the same as the length of the list of characters.

2. Two words are anagrams if they contain the same letters but in a different order. This function is fairly 
slow as it sorts and compares every word in the dictionary with the sorted characters of the input word.

In[11]:= Anagrams2@word_StringD := Module@8chars = Sort@Characters@wordDD<,
DictionaryLookup@x__ ê; Sort@Characters@xDD ã charsDD

In[12]:= Anagrams2@"parsley"D êê Timing

Out[12]= 82.1535, 8parleys, parsley, players, replays, sparely<<

You can speed things up a bit by only working with those words in the dictionary of the same length as the 
source word.

In[13]:= Anagrams3@word_StringD := Module@8len = StringLength@wordD, words<,
words = DictionaryLookup@w__ ê; StringLength@wD ã lenD;
Select@words, Sort@Characters@ÒDD ã Sort@Characters@wordDD &D

D
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In[14]:= Anagrams3@"parsley"D êê Timing

Out[14]= 80.890161, 8parleys, parsley, players, replays, sparely<<

In fact, you can speed this up a bit further by using regular expressions even though the construction of 
the regular expression in this case is a bit clumsy looking. The lesson here is that conditional string 
patterns tend to be slower.

In[15]:= Anagrams4@word_StringD := Module@8len = StringLength@wordD, words<,
words =

DictionaryLookup@RegularExpression@"\\w8" <> ToString@lenD <> "<"DD;
Select@words, Sort@Characters@ÒDD ã Sort@Characters@wordDD &D

D
In[16]:= Anagrams4@"parsley"D êê Timing

Out[16]= 80.098408, 8parleys, parsley, players, replays, sparely<<

3. The pattern "\\bcite.*\\b" matches any string starting with a word boundary followed by the string 
cite, followed by characters repeated one or more times, followed by a word boundary.

In[17]:= DictionaryLookup@RegularExpression@"\\bcite.*\\b"DD

Out[17]= 8cite, cited, cites<

With suitable modifications to the above for the target string occurring in the middle, end, or anywhere, 
here is the rewritten function. Note the need for StringJoin  here to properly pass the argument str, as 
a string, into the body of the regular expression.

In[18]:= Options@FindWordsContainingD = 8WordPosition Ø "Start"<;

In[19]:= FindWordsContaining@str_String, OptionsPattern@DD :=

Module@8wp = OptionValue@WordPositionD<,
Which@
wp == "Start", DictionaryLookup@
RegularExpression@StringJoin@"\\b", str, ".*\\b"DDD,

wp == "Middle", DictionaryLookup@
RegularExpression@StringJoin@"\\b.+", str, ".+\\b"DDD,

wp == "End", DictionaryLookup@RegularExpression@
StringJoin@"\\b.*", str, "\\b"DDD,

wp ã "Anywhere", DictionaryLookup@
RegularExpression@StringJoin@"\\b.*", str, ".*\\b"DDD

DD
In[20]:= FindWordsContaining@"cite"D

Out[20]= 8cite, cited, cites<

In[21]:= FindWordsContaining@"cite", WordPosition Ø "End"D
Out[21]= 8anthracite, calcite, cite, excite,

incite, Lucite, overexcite, plebiscite, recite<

In[22]:= FindWordsContaining@"cite", WordPosition Ø "Middle"D
Out[22]= 8elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,
incites, Lucites, overexcited, overexcites, plebiscites, recited,
reciter, reciters, recites, solicited, unexcited, unsolicited<
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In[23]:= FindWordsContaining@"cite", WordPosition Ø "Anywhere"D
Out[23]= 8anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,
incitement, incitements, inciter, inciters, incites, Lucite, Lucites,
overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,
recited, reciter, reciters, recites, solicited, unexcited, unsolicited<

5. Here is the function as developed in the text.
In[24]:= StringPartition@str_String, blocksize_D := Map@StringJoin,

Partition@Characters@strD, blocksize, blocksize, 1, 8<DD

This passes the argument structure directly to Partition.

In[25]:= Clear@StringPartitionD

In[26]:= StringPartition@str_String, seq__D :=

Map@StringJoin, Partition@Characters@strD, seqDD
In[27]:= str = RandomString@8"A", "C", "G", "T"<, 20D

Out[27]= ATCTGTTCCAAGGTACGATT

Try out some of the argument structures commonly used with Partition. For example, this partitions 
the string into blocks of length 3 with offset 1, with no padding

In[28]:= StringPartition@str, 3, 3, 1, 8<D

Out[28]= 8ATC, TGT, TCC, AAG, GTA, CGA, TT<

6. Start by creating a substitution cipher by simply shifting the alphabet three characters to the left.
In[29]:= keyRL3 = Transpose@

8CharacterRange@"a", "z"D, RotateLeft@CharacterRange@"a", "z"D, 3D<D
Out[29]= 88a, d<, 8b, e<, 8c, f<, 8d, g<, 8e, h<, 8f, i<, 8g, j<, 8h, k<, 8i, l<,

8j, m<, 8k, n<, 8l, o<, 8m, p<, 8n, q<, 8o, r<, 8p, s<, 8q, t<,
8r, u<, 8s, v<, 8t, w<, 8u, x<, 8v, y<, 8w, z<, 8x, a<, 8y, b<, 8z, c<<

Next, encode a single character using a designated key.

In[30]:= encodeChar@char_String, key_ListD :=

FirstüCases@key, 8char, next_< ß nextD
In[31]:= encodeChar@"z", keyRL3D

Out[31]= c

Finally, here is the encoding function. Recall the "$1" on the right-hand side of the rule refers to the first 
(and only in this case) regular expression on the left that is enclosed in parentheses.

In[32]:= encode@str_String, key_ListD := StringReplace@str,
RegularExpression@"H@a-zDL"D ß encodeChar@"$1", keyDD

The decoding uses the same key, but reverses the pairs.

In[33]:= decode@str_String, key_ListD := encode@str, Map@Reverse, keyDD

In[34]:= encode@"squeamish ossifrage", keyRL3D

Out[34]= vtxhdplvk rvvliudjh

In[35]:= decode@%, keyRL3D

Out[35]= squeamish ossifrage
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You might want to modify the encoding rule to deal with uppercase letters. One solution is simply to 
convert them to lowercase.

In[36]:= encode@str_String, key_ListD := StringReplace@ToLowerCase@strD,
RegularExpression@"H@a-zDL"D ß encodeChar@"$1", keyDD

In[37]:= encode@"Squeamish Ossifrage", keyRL3D

Out[37]= vtxhdplvk rvvliudjh

10 Graphics and visualization
10.1 Structure of graphics
1. The color wheel can be generated by mapping the Hue  directive over successive sectors of a disk. Note that 

the argument to Hue  must be scaled so that it falls within the range 0 to 1.
In[1]:= colorWheel@n_D :=

Graphics@H8Hue@Rescale@Ò, 80, 2 p<DD, Disk@80, 0<, 1, 8Ò, Ò + n<D< &L êü
Range@0, 2 p, nDD

Here is a color wheel created from 256 separate sectors (hues).

In[2]:= colorWheelB
p

256
F

Out[2]=

3. Cuboid  takes a list of three numbers as the coordinates of its lower-left corner. This maps the object 
across two such lists.
In[3]:= Map@Cuboid, RandomReal@1, 82, 3<DD

Out[3]= 8Cuboid@80.989389, 0.262121, 0.446654<D,
Cuboid@80.712346, 0.910876, 0.329548<D<

Below is a list of six cuboids and the resulting graphic. Notice the large amount of overlap of the cubes. 
You can reduce the large overlap by specifying minimum and maximum values of the cuboid.

In[4]:= cubes = Map@Cuboid, RandomReal@1, 86, 3<DD;

In[5]:= Graphics3D@8Opacity@.5D, cubes<D

Out[5]=

4. Start by creating a unit cube centered on the origin. An opacity directive adds transparency.
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In[6]:= Graphics3D@8Opacity@.25D, Cuboid@8-0.5, -0.5, -0.5<D<,
Boxed Ø False, Axes Ø AutomaticD

Out[6]=

Next rotate 45°. Note the third argument of Rotate  used to specify the axis about which the rotation 
should occur.

In[7]:= Graphics3D@8Opacity@.25D, Cuboid@8-.5, -.5, -.5<D,
Rotate@Cuboid@8-.5, -.5, -.5<D, 45 °, 80, 0, 1<D<D

Out[7]=

Here is the dynamic version. The angle q is the parameter that is manipulated here.

In[8]:= Manipulate@
Graphics3D@
Rotate@Cuboid@8-.5, -.5, -.5<D, q, 80, 0, 1<D, PlotRange Ø 1D,

8q, 0, 2 p<D

Out[8]=

q

5. First we create the Point  graphics primitives using a normal distribution with mean 0 and standard 
deviation 1.
In[9]:= randomcoords := Point@RandomVariate@NormalDistribution@0, 1D, 81, 2<DD

This creates the point sizes according to the specification given in the statement of the problem.

In[10]:= randomsize := PointSize@RandomReal@8.01, .1<DD

This will assign a random color to each primitive. The four-argument form of Hue  specifies hue, satura-
tion, brightness, opacity.

In[11]:= randomcolor := Hue@RandomReal@D, 1, 1, .4D
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Here then are 500 points. (You may find it instructive to look at just one of these points.)

In[12]:= pts = Table@8randomcolor, randomsize, randomcoords<, 8500<D;

And here is the graphic.

In[13]:= Graphics@ptsD

Out[13]=

6. The algebraic solution is given by the following steps. First solve the equations for x and y.

In[14]:= Clear@x, y, rD

In[15]:= soln = SolveA9Hx - 1L2 + Hy - 1L2 ã 2, Hx + 3L2 + Hy - 4L2 ã r2=, 8x, y<E

Out[15]= ::x Ø
1

50
-58 + 4 r2 - 3 -529 + 54 r2 - r4 , y Ø

1

50
131 - 3 r2 - 4 -529 + 54 r2 - r4 >,

:x Ø
1

50
-58 + 4 r2 + 3 -529 + 54 r2 - r4 , y Ø

1

50
131 - 3 r2 + 4 -529 + 54 r2 - r4 >>

Then find those values of r for which the x and y coordinates are identical.

In[16]:= Solve@8
Hx ê. solnP1TL ã Hx ê. solnP2TL,
Hy ê. solnP1TL ã Hy ê. solnP2TL<,

rD

Out[16]= ::r Ø -5 - 2 >, :r Ø 5 - 2 >, :r Ø -5 + 2 >, :r Ø 5 + 2 >>

Here then are those values of r that are positive.

In[17]:= Cases@%, 8r Ø _?Positive<D

Out[17]= ::r Ø 5 - 2 >, :r Ø 5 + 2 >>

To display the solution, we will plot the first circle with solid lines and the two solutions with dashed lines 
together in one graphic. Here is the first circle centered at (1, 1).

In[18]:= circ = CircleB81, 1<, 2 F;

Here are the circles that represent the solution to the problem.

In[19]:= r1 = 5 - 2 ;

r2 = 5 + 2 ;
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In[21]:= Graphics@8circ, Circle@8-3, 4<, r1D, Circle@8-3, 4<, r2D<,
Axes Ø AutomaticD

Out[21]=

-8 -6 -4 -2 2
-2

2

4

6

8

10

We wanted to display the solutions (two circles) using dashed lines. The graphics directive 
Dashing@8x, y<D directs all subsequent lines to be plotted as dashed, alternating the dash x units and 
the space y units. We use it as a graphics directive on the two circles c1 and c2. The circles inherit only 
those directives in whose scope they appear.

In[22]:= dashc1 = 8Dashing@8.025, .025<D, Circle@8-3, 4<, r1D<;
dashc2 = 8Dashing@8.05, .05<D, Circle@8-3, 4<, r2D<;

In[24]:= Graphics@8circ, dashc1, dashc2<, Axes Ø AutomaticD

Out[24]=

-8 -6 -4 -2 2
-2

2

4

6

8

10

7. Here is a plot of the sine function.
In[25]:= sinplot = Plot@Sin@xD, 8x, 0, 2 p<D

Out[25]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Using pattern matching, here are the coordinates.

In[26]:= Short@coords = Cases@sinplot, Line@8x__<D ß x, InfinityD, 2D

Out[26]//Short= 991.28228 � 10-7, 1.28228 � 10-7=, á429à, 8á1à<=

Create vertical lines from each coordinate.

In[27]:= Short@lines = Map@Line@88Ò@@1DD, 0<, Ò<D &, coordsD, 2D

Out[27]//Short= 9LineA991.28228 � 10-7, 0=, 8á23à, á23à<=E, á430à=
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Here then is the final graphic.

In[28]:= Show@sinplot, Graphics@8Thickness@.001D, lines<DD

Out[28]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

8. First set the distribution and compute the mean and standard deviation.
In[29]:= � = NormalDistribution@0, 1D;

s = StandardDeviation@�D;
m = Mean@�D;

Next we manually construct four vertical lines at the standard deviations going from the horizontal axis to 
the pdf curve.

In[32]:= PlotAPDF@�, xD, 8x, -4, 4<, Filling Ø Axis,

Epilog Ø 8White, Line@888m + s, 0<, 8m + s, PDF@�, m + sD<<, 88m - s, 0<,
8m - s, PDF@�, m - sD<<, 88m + 2 s, 0<, 8m + 2 s, PDF@�, m + 2 sD<<,

88m - 2 s, 0<, 8m - 2 s, PDF@�, m - 2 sD<<<D<, AxesOrigin Ø 8-4, 0<,
Ticks Ø 888-2 s, "-2s"<, 8-s, "-s"<, 8m, "m"<, 8s, "s"<, 82 s, "2s"<<,

Automatic<, AspectRatio Ø 0.4,

PlotLabel Ø StringFormA"Normal distribution: m=`1`, s=`2` ", m, sEE

Out[32]=

And here is a little utility function to make the code a bit more readable and easier to use.

In[33]:= sdLine@�_, m_, s_D := Line@888m + s, 0<, 8s + m, PDF@�, m + sD<<,
88m - s, 0<, 8-s + m, PDF@�, m - sD<<<D

In[34]:= PlotAPDF@�, xD, 8x, -4, 4<, Filling Ø Axis,

Epilog Ø 8White, Thickness@.0035D, sdLine@�, m, sD, sdLine@�, m, 2 sD<,
AxesOrigin Ø 8-4, 0<,
Ticks Ø 888-2 s, "-2s"<, 8-s, "-s"<, 8m, "m"<, 8s, "s"<, 82 s, "2s"<<,

Automatic<, AspectRatio Ø 0.4,

PlotLabel Ø StringFormA"Normal distribution: m=`1`, s=`2` ", m, sEE

Out[34]=
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9. Following the discussion of options in Section 5.7, we use OptionsPattern to inherit options from 
ArrayPlot.

In[35]:= ProteinDotPlot@p1_, p2_, opts : OptionsPattern@ArrayPlotDD :=

ArrayPlot@Outer@Boole@Ò1 == Ò2D &, Characters@p1D, Characters@p2DD,
opts, Frame Ø TrueD

In[36]:= seq1 = ProteinData@"SCNN1A"D;
seq2 = ProteinData@"SCNN1G"D;

In[38]:= ProteinDotPlot@seq1, seq2,

FrameLabel Ø 8"SCNN1A", "SCNN1G"<,
LabelStyle Ø 8FontFamily Ø "Times", 11<D

Out[38]=

SCNN1G

SC
N
N
1A

10.2 Efficient structures
1. Here is the implementation using TranslationTransform .

In[1]:= vertices@n_D := TableB:CosB
2 p a

n
F, SinB

2 p a

n
F>, 8a, 0, n<F

In[2]:= hexagon = Polygon@vertices@6DD;
Graphics@8EdgeForm@GrayD, LightGray, hexagon<D

Out[2]=

In[3]:= GraphicsB:

EdgeForm@GrayD, LightGray,

TableBGeometricTransformationBhexagon,

TranslationTransformB:3 i +
3

4
IH-1Lj + 1M,

3 j

2
>F

F, 8i, 5<, 8j, 8<F

>F

Out[3]=
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Or use Translate directly.

In[4]:= gr1 = GraphicsB:

EdgeForm@GrayD, LightGray,

TableB

TranslateBhexagon, :3 i +
3

4
IH-1Lj + 1M,

3 j

2
>F, 8i, 5<, 8j, 8<F

>F

Out[4]=

This implementation contains one Polygon per hexagon.

In[5]:= Count@gr1, _Polygon, InfinityD

Out[5]= 40

Now use multi-polygons. The following version of hexagon is defined so that it can take a pair of transla-
tion coordinates. Note also the need to flatten the table of vertices so that Polygon can be applied to the 
correct list structure.

In[6]:= Clear@hexagonD;

hexagon@8x_, y_<D := TableB:CosB
2 p i

6
F + x, SinB

2 p i

6
F + y>, 8i, 1, 6<F

In[8]:= gr2 = GraphicsB:EdgeForm@GrayD, LightGray, PolygonBFlattenB

TableBhexagonB:3 i +
3

4
IH-1Lj + 1M,

3 j

2
>F, 8i, 5<, 8j, 8<F, 1FF

>F

Out[8]=

In[9]:= Count@gr2, _Polygon, InfinityD

Out[9]= 1

2. One approach to creating the lattice is to manually specify the coordinates for the lines and then map the 
Line primitive across these coordinates. We will work with a small lattice.

In[10]:= xmin = 0; xmax = 3;

ymin = 0; ymax = 3;

zmin = 0; zmax = 3;

Table@88x, ymin, zmin<, 8x, ymax, zmin<<, 8x, xmin, xmax<D
Out[13]= 8880, 0, 0<, 80, 3, 0<<, 881, 0, 0<, 81, 3, 0<<,

882, 0, 0<, 82, 3, 0<<, 883, 0, 0<, 83, 3, 0<<<

10 Graphics and visualization 657



Here are the three grids.

In[14]:= gridX =

Table@88xmin, y, z<, 8xmax, y, z<<, 8y, ymin, ymax<, 8z, zmin, zmax<D;
gridY = Table@88x, ymin, z<, 8x, ymax, z<<,

8x, xmin, xmax<, 8z, zmin, zmax<D;
gridZ = Table@88x, y, zmin<, 8x, y, zmax<<,

8x, xmin, xmax<, 8y, ymin, ymax<D;

Finally, map Line across these grids and display as a Graphics3D  object.

In[17]:= gr1 = Graphics3D@8
Map@Line, gridX, 82<D,
Map@Line, gridY, 82<D,
Map@Line, gridZ, 82<D

<, Boxed Ø FalseD

Out[17]=

In[18]:= Count@gr1, _Line, InfinityD

Out[18]= 48

Using multi-lines reduces the number of Line objects substantially.

In[19]:= gr2 = Graphics3D@8
Map@Line, gridXD,
Map@Line, gridYD,
Map@Line, gridZD

<, Boxed Ø FalseD

Out[19]=

In[20]:= Count@gr2, _Line, InfinityD

Out[20]= 12

3. The Computational Geometry package contains a function for computing the convex hull. 
ConvexHull@ptsD returns a list of the indices of the points on the convex hull. 

In[21]:= Needs@"ComputationalGeometry`"D

658 Solutions to exercises



In[22]:= pts = RandomReal@1, 812, 2<D;
ch = ConvexHull@ptsD

Out[23]= 810, 1, 2, 9, 11, 7, 8<

Use those indices as the positions in pts through which we wish to pass a line. Note the need to close up 
the polygon, connecting the last point with the first.

In[24]:= Graphics@GraphicsComplex@pts, Line@ch ê. 8a_, b__< ß 8a, b, a<DDD

Out[24]=

Now add the text.

In[25]:= ran = Range@Length@ptsDD;
Graphics@GraphicsComplex@pts,

8Line@ch ê. 8a_, b__< ß 8a, b, a<D, PointSize@.015D, Point@ranD,
Map@Text@StringForm@"`1`", ÒD, pts@@ÒDD, 8-1.25, -1.25<D &, ranD<DD

Out[26]=

1

2
3

4

5

6

7

8

9

10

11

12

Putting everything together, note that because Module  is a scoping construct, you need to give full 
context names for any function that is defined in a package loaded inside Module .

In[27]:= Clear@ConvexHullPlotD

In[28]:= ConvexHullPlot@pts_, opts : OptionsPattern@GraphicsDD :=

Module@8ch, ran = Range@Length@ptsDD<,
Needs@"ComputationalGeometry`"D;
ch = ComputationalGeometry`ConvexHull@ptsD;
Graphics@8GraphicsComplex@

pts,

8Line@ch ê. 8a_, b__< ß 8a, b, a<D,
PointSize@.015D, Point@ranD,
Map@
Text@StringForm@"`1`", ÒD, pts@@ÒDD, 8-1.25, -1.25<D &, ranD

<
D<, optsDD
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In[29]:= ConvexHullPlot@ptsD

Out[29]=

1

2
3

4

5

6

7

8

9

10

11

12

4. Here is the random walk on the digits of p in bases given by the second argument.
In[30]:= RandomWalkPi@d_, base_ ê; base > 2D := Module@8digits, angles, rules<,

digits = First@RealDigits@N@p, dD, baseDD;
angles = RestüRange@0., 2 p, 2 p ê HbaseLD;
rules = MapThread@Ò1 Ø Ò2 &, 8Range@0, base - 1D, angles<D;
Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, digits ê. rulesDD

D

Using ListPlot , here is a quick visualization on base 5 digits:

In[31]:= ListLinePlot@RandomWalkPi@10000, 5D, AspectRatio Ø AutomaticD

Out[31]=

-100 -50
-20

20

40

60

80

100

120

Here is the GraphicsComplex .

In[32]:= walk = RandomWalkPi@10000, 5D;
len = Length@walkD;

In[34]:= Graphics@GraphicsComplex@walk,
8AbsoluteThickness@.2D, Line@Range@lenDD<D, AspectRatio Ø AutomaticD

Out[34]=

And here it is with color mapped to the distance from the origin.
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In[35]:= GraphicsBGraphicsComplexBwalk,

MapB:HueB
ÒP1T

len
F, AbsoluteThickness@.25D, Line@ÒD> &,

Partition@Range@2, lenD, 2, 1DFF, AspectRatio Ø AutomaticF

Out[35]=

10.3 Sound
1. When x is close to -2, the frequency is quite low. As x increases, the fraction 1000 êx increases, making the 

frequency of the sine function bigger. This in turn makes the tone much higher in pitch. As x approaches 0, 
the function is oscillating more and more, and at 0, the function can be thought of as oscillating infinitely 
often. In fact, it is oscillating so much that the sampling routine is not able to compute amplitudes effec-
tively and, hence, we hear noise near x = 0.

In[1]:= PlayBSinB
1000

x
F, 8x, -2, 2<F

3. To generate a tone whose rate increases one octave per second, you need the sine of a function whose 
derivative doubles each second (frequency is a rate). That function is 2t. You need to carefully choose 
values for t that generates tones in a reasonable range.
In[2]:= PlayASinA2tE, 8t, 10, 14<E êê EmitSound

4. First generate 100 digits for a 100-note “composition”.
In[3]:= digs = First@RealDigits@N@p, 100DDD;

Fix note duration at 0.5 seconds.

In[4]:= Sound@SoundNote@Ò, 0.5D & êü digsD êê EmitSound

Change the duration to be dependent upon the digit. Also change the midi instrument.

In[5]:= Sound@SoundNote@Ò, 1 ê HÒ + 1L, "Vibraphone"D & êü digsD êê EmitSound

Go a bit further, expanding the range of notes that will be played.

In[6]:= Sound@SoundNote@1 + 2 Ò, 1 ê HÒ + 1L, "Vibraphone"D & êü digsD êê EmitSound

5. Here is a function that creates a square wave with decreasing amplitudes for higher overtones.

In[7]:= squareWave@freq_, n_D := SumB
Sin@freq i 2 p tD

i
, 8i, 1, n, 2<F
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In[8]:= Plot@squareWave@440, 17D, 8t, 0, .01<D

Out[8]=
0.002 0.004 0.006 0.008 0.010

-0.5

0.5

Here then, is an example of playing a square wave.

In[9]:= Play@squareWave@440, 17D, 8t, 0, .5<D êê EmitSound

8. This function creates a sawtooth wave. The user specifies the fundamental frequency and the number of 
terms in the approximation.

In[10]:= sawtoothWave@freq_, n_D := SumB
Sin@freq i 2 p tD

i
, 8i, 1, n<F

In[11]:= Plot@sawtoothWave@440, 17D, 8t, 0, .01<D

Out[11]=
0.002 0.004 0.006 0.008 0.010

-1.5
-1.0
-0.5

0.5
1.0
1.5

This plays the wave for a half-second duration.

In[12]:= Play@sawtoothWave@440, 17D, 8t, 0, .5<D êê EmitSound

10.4 Examples and applications
1. The function ComplexListPlot plots a list of numbers in the complex plane – the real part is identified 

with the horizontal axis and the imaginary part is identified with the vertical axis. Start by setting the 

options for ComplexListPlot to inherit those for ListPlot .
In[1]:= Options@ComplexListPlotD = Options@ListPlotD;

In[2]:= ComplexListPlot@points_, opts : OptionsPattern@DD :=

ListPlot@Map@8Re@ÒD, Im@ÒD< &, pointsD,
opts, PlotStyle Ø 8Red, PointSize@.025D<,
AxesLabel Ø 8Style@"Re", 10D, Style@"Im", 10D<,
LabelStyle Ø Directive@"Menu", 7DD

This plots four complex numbers in the plane and uses some options, inherited from ListPlot .

In[3]:= ComplexListPlot@8-1 + I, 2 + I, 1 - 2 I, 0, 1<,
PlotStyle Ø 8Blue, PointSize@MediumD<D

Out[3]= -1.0 -0.5 0.5 1.0 1.5 2.0
Re

-2.0

-1.5

-1.0

-0.5

0.5

1.0

Im
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2. The function ComplexRootPlot takes a polynomial, solves for its roots, and then uses 
ComplexListPlot from the previous exercise to plot these roots in the complex plane.
In[4]:= ComplexRootPlot@poly_, z_, opts : OptionsPattern@DD := ComplexListPlot@

z ê. NSolve@poly == 0, zD, opts, AspectRatio Ø AutomaticD
In[5]:= ComplexRootPlot@Cyclotomic@17, zD, z, GridLines Ø AutomaticD

Out[5]=
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3. First, set up the options structure.
In[6]:= Options@PathPlotD = Join@8ClosedPath Ø True<, Options@GraphicsDD;

Make two changes to the original PathPlot: add an If statement that checks the value of ClosedPath 
and if True, appends the first point to the end of the list; if False, it leaves the coordinate list as is. The 
second change is to filter those options that are specific to Graphics  and insert them in the appropriate 
place.

In[7]:= PathPlot@lis_List, opts : OptionsPattern@DD := Module@8coords = lis<,
If@OptionValue@ClosedPathD, coords = coords ê. 8a_, b__< ß 8a, b, a<D;
Graphics@8Line@coordsD, PointSize@MediumD, Red, Point@coordsD<,
FilterRules@8opts<, Options@GraphicsDDDD

In[8]:= SeedRandom@424D;
coords = RandomReal@1, 810, 2<D;

In[10]:= PathPlot@coords, ClosedPath Ø True, GridLines Ø AutomaticD

Out[10]=

5. Choosing a base point randomly and then sorting according to the arc tangent could cause a number of 

things to go wrong with the algorithm. The default branch cut for ArcTan  gives values between -p ê2 and 

p ê2. (You are encouraged to think about why this could occasionally cause the algorithm in the text to 

fail.) By choosing the base point so that it lies at some extreme of the diameter of the set of points, the polar 

angle algorithm given in the text will work consistently. If you choose the base point so that it is lowest and 

left-most, then all the angles will be in the range (0, p].
In[11]:= SimpleClosedPath1@lis_ListD := Module@8base, angle, sorted<,

base = First@SortBy@lis, LastDD;
angle@a_, b_D := ArcTan üü Hb - aL;
sorted = Sort@Complement@lis, 8base<D,

angle@base, Ò1D § angle@base, Ò2D &D; Join@8base<, sorted, 8base<DD

10 Graphics and visualization 663



In[12]:= pts = RandomReal@1, 820, 2<D;

In[13]:= PathPlot@coords_ListD :=

Show@Graphics@8Line@coordsD, PointSize@MediumD,
RGBColor@1, 0, 0D, Point êü coords<DD

In[14]:= PathPlot@SimpleClosedPath1@ptsDD

Out[14]=

8. Create three rules, one for each of the three dimensions of random walk that will be passed to ShowWalk. 
Some pattern matching will help to identify the rule to use for the one-, two-, and three-dimensional cases.

In[15]:= MatchQ@81, 2, 3<, _?VectorQD

Out[15]= True

In[16]:= MatchQ@881, 1<, 81, 2<, 80, 2<<, 88_, _< ..<D

Out[16]= True

In[17]:= MatchQ@881, 1, 0<, 81, 2, 0<, 80, 2, 0<<, 88_, _, _< ..<D

Out[17]= True

The first rule uses a pattern that will be matched by a one-dimensional vector.

In[18]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords, FilterRules@8opts<, Options@ListLinePlotDDD

The second rule uses a pattern that will be matched by a list of one or more pairs of numbers.

In[19]:= ShowWalk@coords : 88_?NumberQ, _?NumberQ< ..<,
opts : OptionsPattern@DD :=

ListLinePlot@coords, Append@FilterRules@8opts<,
Options@ListLinePlotDD, AspectRatio Ø AutomaticDD

The third rule uses a pattern that will be matched by one or more triples of numbers.

In[20]:= ShowWalk@coords : 88_?NumberQ, _?NumberQ, _?NumberQ< ..<,
opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD

9. Use PlotStyle to highlight the two different surfaces and MeshStyle and Mesh to highlight their 
intersection.

In[21]:= f@x_, y_D := Sin@2 x - Cos@yDD;
g@x_, y_D := Sin@x - Cos@2 yDD;
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In[23]:= Plot3D@8f@x, yD, g@x, yD<, 8x, -p, p<, 8y, -p, p<, Mesh Ø 880.<<,
MaxRecursion Ø 4, MeshFunctions Ø Hf@Ò1, Ò2D - g@Ò1, Ò2D &L,
MeshStyle Ø 8Thick, Red<, PlotStyle Ø 8Cyan, Yellow<D

Out[23]=

11. If the first point returned by GatherBy  fails the PointInPolygonQ test, then reverse the two lists (out 
and in), otherwise, leave it alone.

In[24]:= poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<,
82., -1.1<, 82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<<;

pts = RandomReal@8-1, 3<, 87500, 2<D;
In[26]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=

Det@Map@PadRight@Ò, 3, 1D &, triDD ê 2
In[27]:= PointInPolygonQ@poly : 88_, _< ..<, pt : 8x_, y_<D :=

Module@8edges, e2, e3, e4<,
edges = Partition@poly ê. 8a_, b__< ß 8a, b, a<, 2, 1D;
e2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D;
e3 = DeleteCases@e2,

88x1_, y1_<, 8x2_, y2_<< ê; HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD;
e4 = Map@ReverseüSortBy@Ò, LastD &, e3D;
OddQ@Count@TriangleArea@Join@Ò, 8pt<DD & êü e4, _?PositiveDD

D
In[28]:= gbPts = GatherBy@pts, PointInPolygonQ@poly, ÒD &D;

Graphics@8
8PointSize@SmallD,
If@PointInPolygonQ@poly, gbPts@@1, 1DDD, gbPts, Reverse@gbPtsDD ê.
8in_List, out_List< ß 88Black, Pointüin<, 8LightGray, Pointüout<<<,

Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@LargeD, Point@polyD

<D

Out[29]=
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14. First set up the options structure.
In[30]:= Options@BrownianComposeD = 8Weights Ø Automatic<;

In[31]:= BrownianCompose@steps_Integer, instr_: "Vibraphone",

OptionsPattern@DD := Module@8walk, durs, weights<,
weights = If@OptionValue@WeightsD === Automatic,

Table@1 ê 9, 89<D, OptionValue@WeightsDD;
walk@n_D := Accumulate@RandomChoice@weights Ø Range@-4, 4D, nDD;
durs = RandomChoice@Range@1 ê 16, 1, 1 ê 16D, 8steps<D;
SoundüMapThread@SoundNote@Ò1, Ò2, instrD &, 8walk@stepsD, durs<D

D
In[32]:= BrownianCompose@18, "Marimba"D êê EmitSound

In[33]:= BrownianCompose@18, "Marimba",

Weights Ø AbsüRandomVariate@NormalDistribution@0, 4D, 9DD êê EmitSound

11 Dynamic expressions
11.1 Manipulating expressions
1. We will put this together in two parts: first create a function to display any amino acid using one of the 

various diagrams; then pour it into a Manipulate . Note, this function is dependent upon 
ChemicalData to create the displays. You could modify it to use you own visualizations, such as the 
space-filling plots in Section 10.4.
In[1]:= AminoAcidPlot@aa_String, diagram_: "ColorStructureDiagram"D :=

Labeled@Framed@ChemicalData@aa, diagramD, ImageSize Ø AllD,
ChemicalData@aa, "Name"D, LabelStyle Ø Directive@"Menu", 9DD

In[2]:= AminoAcidPlot@"Glycine"D

Out[2]=

N

O

O

N
H

N
H

O
H

glycine
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In[3]:= Manipulate@
AminoAcidPlot@aminoacid, diagramD,
88aminoacid, "LAlanine", "Amino acid"<, aa<,
8diagram, 8"StructureDiagram", "CHColorStructureDiagram",

"CHStructureDiagram", "ColorStructureDiagram",

"MoleculePlot", "SpaceFillingMoleculePlot"<<,
Initialization ß 8aa = ChemicalData@"AminoAcids"D<D

Out[3]=
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2. This is a straightforward use of Manipulate . The lengthy parameter list forces a pulldown menu to be 
used as the control.

In[4]:= ManipulateB

ImageEffectB , effectF,

8effect, 8"Charcoal", "Embossing", "OilPainting",

"Posterization", "Solarization", "MotionBlur", "Noise",

"GaussianNoise", "SaltPepperNoise", "PoissonNoise"<<F

Out[4]=

effect Charcoal

3. Here is the code for the TruthTable function from Exercise 9 in Section 5.8:
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In[5]:= TruthTable@expr_, vars_D :=

Module@8len = Length@varsD, tuples, rules, table, head<,
tuples = Tuples@8True, False<, lenD;
rules = HThread@vars Ø Ò1D &L êü tuples;
table = Transpose@Join@Transpose@tuplesD, 8expr ê. rules<DD;
head = Append@vars, TraditionalForm@exprDD;
Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD, Dividers Ø

881 Ø 8Thin, Black<, -1 Ø 8Thin, Black<, -2 Ø 8Thin, LightGray<<,
81 Ø 8Thin, Black<, 2 Ø 8Thin, LightGray<, -1 Ø 8Thin, Black<<<DD

This puts the truth table together with the Venn diagram using Row .

In[6]:= ManipulateBRow@8TruthTable@f@A, BD, 8A, B<D,

Show@RegionPlot@f üü eqns, 8x, -2, 2<, 8y, -2, 2<, Frame Ø None,

PlotLabel Ø f@A, BD, PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<,
AspectRatio Ø Automatic, MaxRecursion Ø 5D, Graphics@8Circle@c1D,
Circle@c2D, Text@Style@"A", FontSlant Ø "Italic"D, 8-.5, .8<D,
Text@Style@"B", FontSlant Ø "Italic"D, 8.5, .8<D<D,

ImageSize Ø SmallD<D, 88f, Xor, "Logical function"<,
8And, Or, Xor, Implies, Nand, Nor<<,

Initialization ß :c1 = :-
1

2
, 0>; c2 = :

1

2
, 0>;

eqns = ApplyAHÒ1 + xL2 + HÒ2 + yL2 < 1 &, 8c1, c2<, 81<E>,

SaveDefinitions Ø TrueF

Out[6]=

Logical function Xor

A B A�B

T T F
T F T
F T T
F F F

5. First load the package that contains the random walk code. You could use you own implementation as well.
In[7]:= << PwM`RandomWalks`

Create a 1000-step, two-dimensional, lattice walk.

In[8]:= rw = RandomWalk@1000, Dimension Ø 2, LatticeWalk Ø TrueD;
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This is a basic start. Take is used to display successive increments. Note the need for the 1 in the parameter 
list to insure that steps only take on integer values.

In[9]:= Animate@
Graphics@Line@Take@rw, nDDD,
8n, 2, Length@rwD, 1<D

Out[9]=

n

The output above suffers from the fact that the display jumps around a lot as Mathematica tries to figure out 
a sensible plot range for each frame. Instead, we should fix the plot range for all frames to avoid this 
jumpiness. This is done in the definitions for xran and yran in the Initialization below.

In[10]:= Manipulate@
Graphics@Line@Take@rw, nDD, PlotRange Ø 8xran, yran<D,
8n, 2, Length@rwD, 1<,
Initialization ß 8

rw = RandomWalk@1000, Dimension Ø 2, LatticeWalk Ø TrueD;
8xran, yran< = Map@8Min@Ò1D, Max@Ò1D< &, Transpose@rwDD<D

Out[10]=

n

6. Putting the two graphics pieces (Graphics@…D and Plot@…D) in a grid gives you finer control over their 
placement and formatting.
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In[12]:= Manipulate@Grid@
88Graphics@8Circle@D, Blue, PointSize@.04D, Point@8Cos@qD, Sin@qD<D<,

Axes Ø TrueD, Plot@Sin@xD, 8x, 0, 2 p<, ImageSize Ø 300,

Epilog Ø 8Blue, Line@88q, 0<, 8q, Sin@qD<<D, PointSize@.025D,
Point@8q, Sin@qD<D<D<<, Frame Ø AllD, 8q, 0, 2 p<D

Out[12]=
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8. Just a few modifications to the code for the hypocycloid are needed: use the formula for the epicycloid; 
change the center of the rotating circle so that its radius is R + r, not R - r; and modify the plot range.

In[12]:= EpicycloidPlot@R_, r_, q_D := ModuleB8epicycloid, center<,

epicycloid@8a_, b_<, t_D :=

:Ha + bL Cos@tD - b CosBt
a + b

b
F, Ha + bL Sin@tD + b SinBt

a + b

b
F>;

center@th_, R1_, r2_D := HR1 + r2L 8Cos@thD, Sin@thD<;
Show@8

ParametricPlot@epicycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@8
8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick, Line@8center@q, R, rD, epicycloid@8R, r<, qD<D<,
8Red, PointSize@.015D, Point@epicycloid@8R, r<, qDD<

<D<, PlotRange Ø 1.5 HR + rL, GridLines Ø AutomaticDF

First, create a static image.

In[13]:= EpicycloidPlot@3, 1, 2 pD

Out[13]=
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And here is the dynamic version.

In[14]:= Manipulate@EpicycloidPlot@R, r, qD,
8q, 0 + 0.01, 2 Denominator@HR - rL ê rD p<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<, SaveDefinitions Ø TrueD

Out[14]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

9. Modify the radii and the centers to get different effects. Try using transparent disks instead of circles.
In[15]:= Manipulate@

Graphics@
Table@Circle@r ê 4 8Cos@tD, Sin@tD<, 1.1 - rD, 8r, .2, 1, .05<D,
PlotRange Ø 1D,

8t, 0, 2 p, .1<,
TrackedSymbols ß 8t<D

Out[15]=

t

11. Using the programs developed in Section 13.1, here is the code, including a pulldown menu for the steps 
parameter, a setter bar for the dimension parameter, and a checkbox for the lattice parameter.
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In[16]:= Manipulate@
ShowWalküRandomWalk@steps, Dimension Ø dim, LatticeWalk Ø latticeQD,
8steps, 8100, 250, 500, 750, 1000, 10000<<,
88dim, 1, "Dimension"<, 81, 2, 3<<,
88latticeQ, True, "Lattice walk"<, 8True, False<<,
Initialization ß Needs@"PWM`RandomWalks`"D, SaveDefinitions Ø TrueD

Out[16]=

steps 100

Dimension 1 2 3

Lattice walk

20 40 60 80 100

2
4
6
8

10
12

12. Here is the solution using Slider2D . Using Locator instead is left for the reader.
In[17]:= Manipulate@

Graphics@8
Red, Arrow@880, 0<, pt1<D,
Blue, Arrow@880, 0<, pt2<D,
Green, Arrow@880, 0<, pt1 + pt2<D,
Dashed, Orange, Line@8pt1, pt1 + pt2, pt2<D<,

PlotRange Ø 6, Axes Ø True, GridLines Ø AutomaticD,
88pt1, 81, 4<, "Red vector"<, 8-5, -5<, 85, 5<<,
88pt2, 83, 1<, "Blue vector"<, 8-5, -5<, 85, 5<<,
ControlPlacement Ø LeftD

Out[17]=

Red vector

Blue vector
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11.2 The structure of dynamic expressions
1. Use the UpdateInterval option to Dynamic.

In[1]:= Dynamic@RandomChoice@DictionaryLookup@DD, UpdateInterval Ø 5D

Out[1]= goners

2. Normalize takes a vector as input and returns a unit vector.
In[2]:= DynamicModule@8pt = 81, 0<<, Graphics@8

Circle@D,
Locator@Dynamic@pt, Hpt = Normalize@ÒDL &DD

<DD

Out[2]=

11.3 Examples and applications
1. Import the data only; the first four columns give name, field, birth year, award year.

In[1]:= data =

Import@"http:êêwww.nber.orgênobelêJones_Weinberg_2011_PNAS.xlsx",
8"XLSX", "Data", 1, All, 81, 2, 3, 4<<D;

In[2]:= data@@81, -1<DD

Out[2]= 88name, field, year_birth, year_prize<,
8Nambu, Yoichiro, Physics, 1921., 2008.<<

In[3]:= data@@-1DD ê.
8a__String, birth_Real, award_Real< ß 8a, birth, award, award - birth<

Out[3]= 8Nambu, Yoichiro, Physics, 1921., 2008., 87.<

In[4]:= nobelData = data@@2 ;; -1DD ê. 8a__String, birth_Real, award_Real< ß

8a, birth, award, award - birth<;
In[5]:= chem = Cases@nobelData, 8name_String, "Chemistry", rest__<D;

med = Cases@nobelData, 8name_String, "Medicine", rest__<D;
physics = Cases@nobelData, 8name_String, "Physics", rest__<D;

In[8]:= timeChem = chem@@All, 84, 5<DD;
timeMed = med@@All, 84, 5<DD;
timePhysics = physics@@All, 84, 5<DD;
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In[9]:= DateListPlot@Tooltip@timeChem ê. 8a_, b_< ß 88Roundüa<, b<D,
Joined Ø True, Mesh Ø All,

PlotLabel Ø StringForm@"Average age for chemistry Nobel award = `1`",

Mean@timeChem@@All, 2DDDDD

Out[9]=

In[10]:= TabView@
MapThread@Ò1 Ø DateListPlot@

Tooltip@Ò2 ê. 8a_, b_< ß 88Roundüa<, b<D, Joined Ø True, Mesh Ø All,

PlotLabel Ø StringForm@"Average age for `1` Nobel award = `2`",

Ò1, Mean@Ò2@@All, 2DDDDD &,

88"Chemistry", "Medicine", "Physics"<,
8timeChem, timeMed, timePhysics<<DD

Out[10]=

Chemistry Medicine Physics

3. Create a static version of the problem; we use GraphicsComplex  to display the points and the tour.
In[13]:= pts = RandomReal@1, 820, 2<D;

In[14]:= Graphics@GraphicsComplex@pts, PointüRange@Length@ptsDDD,
Axes Ø AutomaticD

Out[14]=
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In[15]:= tour = Last@FindShortestTour@ptsDD;
Graphics@GraphicsComplex@pts,

8Line@tourD, Red, PointSize@.015D, Point@tourD<D, Axes Ø AutomaticD

Out[16]=
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Here is the dynamic interface using EventHandler to choose a new set of random points with each 
mouse click. 

In[17]:= Manipulate@
DynamicModule@8pts = RandomReal@1, 820, 2<D, tour<,
tour = Dynamic@Last@FindShortestTour@ptsDDD;
EventHandler@
Dynamic@Graphics@GraphicsComplex@pts,

If@Not@showtourD, PointüRange@Length@ptsDD, 8Line@tourD, Red,

PointSize@MediumD, Point@tourD<DD, Axes Ø AutomaticDD,
8"MouseClicked" ß Hpts = RandomReal@1, 820, 2<DL<

DD,
88showtour, False, "Show tour"<, 8True, False<<,
ContentSize Ø 8220, 140<D

Out[17]=

Show tour

0.2 0.4 0.6 0.8

0.4
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A suggested addition would be to add a control to change the number of points that are used. But be 
careful: traveling salesman type problems are notoriously hard; in fact they are known to be NP-hard, 
meaning they cannot be computed in polynomial time. See Lawler et al. (1985) for more on traveling 
salesman problems.
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12 Optimizing Mathematica programs
12.2 Efficient programs
1. Collect the results of the Table  and pull out the parts needed – the timings and the result.

In[1]:= SetAttributes@AverageTiming, HoldAllD

In[2]:= AverageTiming@expr_, trials_D := Module@8lis<,
lis = Table@AbsoluteTiming@exprD, 8trials<D;
8Mean@lis@@All, 1DDD, lis@@1, 2DD<

D
In[3]:= AverageTiming@FactorInteger@50! + 1D, 5D

Out[3]= 81.311202, 88149, 1<, 83989, 1<, 874195127103, 1<,
86854870037011, 1<, 8100612041036938568804690996722352077, 1<<<

2. The first implementation essentially performs a transpose of the two lists, wrapping SameQ  around each 
corresponding pair of numbers. It then does a pattern match (Count ) to determine which expressions of 
the form SameQAexpr

1
, expr

2
E return False . 

In[4]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[5]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[6]:= sig1 = RandomIntegerA1, 9106=E;

In[7]:= sig2 = RandomIntegerA1, 9106=E;

In this case, it is the threading that is expensive rather than the pattern matching with Count .

In[8]:= res = MapThread@SameQ, 8sig1, sig2<D; êê Timing

Out[8]= 80.469637, Null<

In[9]:= Count@res, FalseD êê Timing

Out[9]= 80.049376, 499582<

The reason the threading is expensive can be seen by turning on the packing message as discussed in this 
section.

In[10]:= SetSystemOptions@"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD

Out[10]= PackedArrayOptions Ø

8ListableAutoPackLength Ø 250, PackedArrayMathLinkRead Ø True,

PackedArrayPatterns Ø True, PackedRange Ø True, UnpackMessage Ø True<

In[11]:= res = MapThread@SameQ, 8sig1, sig2<D;

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions 81000000<. à

The other factors contributing to the significant timing differences have to do with the fact that BitXor  
has the Listable  attribute. MapThread does not. And so, BitXor  can take advantage of specialized 
(compiled) codes internally to speed up its computations. 

In[12]:= Attributes@BitXorD

Out[12]= 8Flat, Listable, OneIdentity, Orderless, Protected<
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In[13]:= Attributes@MapThreadD

Out[13]= 8Protected<

In[14]:= Timing@temp = BitXor@sig1, sig2D;D

Out[14]= 80.00373, Null<

And finally, compute the number of 1s using Total  which is extremely fast at adding lists of numbers.

In[15]:= Timing@Total@tempD;D

Out[15]= 80.003227, Null<

Return the packed array messaging to its default value.

In[16]:= SetSystemOptions@"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD;

3. A first attempt, using a brute force approach, is to total the list 81, 2, …, n< for each n.
In[17]:= TriangularNumber@n_D := Total@Range@nDD

In[18]:= Table@TriangularNumber@iD, 8i, 1, 100<D
Out[18]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210,

231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630,
666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225,
1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953,
2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775, 2850,
2926, 3003, 3081, 3160, 3240, 3321, 3403, 3486, 3570, 3655, 3741, 3828, 3916,
4005, 4095, 4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950, 5050<

In[19]:= TimingATriangularNumberA107EE

Out[19]= 83.86688, 50000005000000<

A second approach uses iteration. As might be expected, this is the slowest of the approaches here.

In[20]:= TriangularNumber2@n_D := Fold@Ò1 + Ò2 &, 0, Range@nDD

In[21]:= TimingATriangularNumber2A107EE

Out[21]= 87.34643, 50000005000000<

This is a situation where some mathematical knowledge is useful. The nth triangular numbers is just the 

(n + 1)th binomial coefficient 
n + 1

2

 .

In[22]:= TriangularNumber3@n_D := Binomial@n + 1, 2D

In[23]:= TimingATriangularNumber3A107EE

Out[23]= 80.000045, 50000005000000<

12.3 Parallel processing
1. First we find those values of p for which 2p - 1 is prime. This first step is quite compute-intensive; fortu-

nately, it parallelizes well.
In[1]:= LaunchKernels@D

Out[1]= 8KernelObject@1, localD, KernelObject@2, localD,
KernelObject@3, localD, KernelObject@4, localD<
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In[2]:= primes = ParallelizeASelectARange@10000D, PrimeQA2Ò - 1E &EE

Out[2]= 82, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,

607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941<

So for each of the above values of the list primes, 2p-1 H2p - 1L will be perfect (thanks to Euler).

In[3]:= perfectLis = MapA2Ò-1 I2Ò - 1M &, primesE;

And finally, a check.

In[4]:= perfectQ@j_D := Total@Divisors@jDD ã 2 j;

In[5]:= Map@perfectQ, perfectLisD

Out[5]= 8True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True<

In[6]:= CloseKernels@D;

These are very large numbers indeed.

In[7]:= 2Ò-1 I2Ò - 1M &@9941D êê N

Out[7]= 5.988854963873362 � 105984

2. Only two changes are required to run this in parallel – distribute the definition for Mandelbrot and 

change Table  to ParallelTable . Of course, to increase the resolution, the grid now has many more 

divisions in each direction (n = 500).
In[8]:= Mandelbrot@c_D :=

Length@NestWhileList@Ò ^2 + c &, 0, Abs@ÒD < 2 &, 1, 250DD
In[9]:= LaunchKernels@D

Out[9]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[10]:= DistributeDefinitions@MandelbrotD

Out[10]= 8Mandelbrot<

In[11]:= data = WithB8n = 500<, ParallelTableB

Mandelbrot@x + Â yD, :y, -0.5, 0.5,
1

n
>, :x, -1.75, -0.75,

1

n
>FF;

In[12]:= ArrayPlot@data, ColorFunction Ø "CMYKColors"D

Out[12]=

12.4 Compiling
1. First, create a test point with which to work.
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In[1]:= pt = RandomReal@1, 82<D

Out[1]= 80.333881, 0.135321<

The following does not quite work because the default pattern is expected to be a flat expression.

In[2]:= distReal = CompileA88p, _Real<<, SqrtAFirst@pD2 + Last@pD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Compile::part : Part specification pP1T cannot be compiled since the argument
is not a tensor of sufficient rank. Evaluation will use the uncompiled function. à

Out[2]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

Give a third argument to the pattern specification to deal with this: 8p, _Real, 1<.

In[3]:= ArrayDepth@ptD

Out[3]= 1

In[4]:= distReal = CompileA88p, _Real, 1<<, SqrtAFirst@pD2 + Last@pD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[4]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

In[5]:= distReal@ptD

Out[5]= 0.360261

Check it against the built-in function:

In[6]:= Norm@ptD

Out[6]= 0.360261

Check that it threads properly over a list of points.

In[7]:= pts = RandomReal@1, 83, 2<D

Out[7]= 880.223743, 0.810299<, 80.873595, 0.72168<, 80.951892, 0.547475<<

In[8]:= distReal@ptsD

Out[8]= 80.840622, 1.13313, 1.0981<

Norm does not have the Listable  attribute so it must be mapped over the list.

In[9]:= Map@Norm, ptsD

Out[9]= 80.840622, 1.13313, 1.0981<

In[10]:= distReal@ptsD == Map@Norm, ptsD

Out[10]= True

Now scale up the size of the list of points and check efficiency.

In[11]:= pts = RandomRealA1, 9106, 2=E;

In[12]:= AbsoluteTiming@distReal@ptsD;D

Out[12]= 80.109824, Null<
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In[13]:= AbsoluteTiming@Map@Norm, ptsD;D

Out[13]= 80.113652, Null<

In[14]:= distReal@ptsD ã Map@Norm, ptsD

Out[14]= True

Compiling to C (assuming you have a C compiler installed), speeds things up even more.

In[15]:= distReal = CompileA88p, _Real, 1<<,

SqrtAFirst@pD2 + Last@pD2E, RuntimeAttributes Ø 8Listable<,

Parallelization Ø True, CompilationTarget Ø "C"E

Out[15]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

You can squeeze a little more speed out of these functions by using Part instead of First  and Last.

In[16]:= distReal2 = CompileA88p, _Real, 1<<,

SqrtAp@@1DD2 + p@@2DD2E, RuntimeAttributes Ø 8Listable<,

Parallelization Ø True, CompilationTarget Ø "C"E

Out[16]= CompiledFunctionB8p<, pP1T2 + pP2T2 , -CompiledCode-F

In[17]:= AbsoluteTiming@distReal2@ptsD;D

Out[17]= 80.059632, Null<

As an aside, the mean distance to the origin for random points in the unit square approaches the follow-
ing, asymptotically.

In[18]:= NIntegrateB x2 + y2 , 8x, 0, 1<, 8y, 0, 1<F

Out[18]= 0.765196

In[19]:= MeanüdistReal@ptsD

Out[19]= 0.765452

2. We need to make just three slight modifications to the code from the previous exercise: remove the rank 
specification; specify Complex as the type; extract the real and imaginary parts to do the norm 
computation.

In[20]:= Clear@distComplexD;
distComplex = CompileA88z, _Complex<<, SqrtARe@zD2 + Im@zD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[21]= CompiledFunctionB8z<, Re@zD2 + Im@zD2 , -CompiledCode-F

In[22]:= pts = RandomComplex@1, 83<D

Out[22]= 80.349519 + 0. Â, 0.506776 + 0. Â, 0.153516 + 0. Â<

In[23]:= distComplex@ptsD

Out[23]= 80.349519, 0.506776, 0.153516<

In[24]:= distComplex@ptsD == Map@Norm, ptsD

Out[24]= True
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3. Here is the computation for the iteration function c sinHzL using c = 1 + 0.4 Â.
In[25]:= cJulia2 = Compile@88z, _Complex<, 8c, _Complex<<, Module@8cnt = 1<,

FixedPoint@Hcnt++; c Sin@ÒDL &,

z, 100, SameTest Ø HAbs@Im@Ò2DD > 50 &LD; cntD,
CompilationTarget Ø "C", RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, "RuntimeOptions" Ø "Speed"D

Out[25]= CompiledFunction@8z, c<,
Module@8cnt = 1<, FixedPoint@Hcnt++; c Sin@Ò1DL &, z, 100,

SameTest Ø HAbs@Im@Ò2DD > 50 &LD; cntD, -CompiledCode-D

In[26]:= WithB8res = 100<,

ArrayPlotBParallelTableB-cJulia2@x + y I, 1 + 0.4 ID, :y, -2 p, 2 p,
1

res
>,

:x, -2 p, 2 p,
1

res
>F, ColorFunction Ø ColorData@"CMYKColors"DFF

Out[26]=

13 Applications and packages
13.1 Random walk application
3. Here is the usage message for GraphicsComplex ,

In[1]:= ? GraphicsComplex

GraphicsComplexA8pt1, pt2, …<, dataE represents a graphics complex in which

coordinates given as integers i in graphics primitives in data are taken to be pti. �à

The first argument to GraphicsComplex  is a list of coordinate points, such as the output from 
RandomWalk. The second argument is a set of graphics primitives indexed by the positions of the points 
in the list of coordinates. Here are two examples, one in two dimensions and the other in three.

In[2]:= Needs@"PWM`RandomWalks`"D
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In[3]:= Graphics@GraphicsComplex@
RandomWalk@500, LatticeWalk Ø FalseD, Line@Range@500DDDD

Out[3]=

In[4]:= Graphics3D@GraphicsComplex@RandomWalk@500,
Dimension Ø 3, LatticeWalk Ø FalseD, Line@Range@500DDDD

Out[4]=

We can quickly modify the code for ShowWalk developed in the chapter to use GraphicsComplex  
instead.

In[5]:= ShowWalkGC@walk_D :=

Module@8dim = Dimensions@walkD, ran = Range@Length@walkDD<,
If@Length@dimD ã 1 »» dimP2T ã 2,

Graphics@GraphicsComplex@walk, Line@ranDDD,
Graphics3D@GraphicsComplex@walk, Line@ranDDDDD

In[6]:= ShowWalkGC@RandomWalk@2500DD

Out[10]=

In[7]:= ShowWalkGC@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD

Out[7]=

Here are some comparisons of running times for this approach and the ShowWalk function developed in 
the chapter.

In[8]:= rw = RandomWalk@1000000, Dimension Ø 3, LatticeWalk Ø FalseD;

In[9]:= Timing@gc = ShowWalkGC@rwD;D

Out[9]= 80.003836, Null<

In[10]:= Timing@sw = ShowWalk@rwD;D

Out[10]= 80.12881, Null<
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4. Start by creating a list of rules that indicate the first point is connected to the second, the second point is 
connected to the third, and so on. If you have ten points, partition them as follows.

In[11]:= Partition@Range@10D, 2, 1D

Out[11]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 89, 10<<

The graph rules are created by applying DirectedEdge at level 1.

In[12]:= Apply@DirectedEdge, %, 81<D

Out[12]= 81 � 2, 2 � 3, 3 � 4, 4 � 5, 5 � 6, 6 � 7, 7 � 8, 8 � 9, 9 � 10<

Here is a little function that puts these pieces together.

In[13]:= Clear@bondsD;
bonds@n_D := Apply@DirectedEdge, Partition@Range@nD, 2, 1D, 81<D

The bond information is the first argument to Graph ; the coordinates given by RandomWalk are the 
value of the option VertexCoordinates.

In[15]:= << PWM`RandomWalks`

In[16]:= With@8steps = 1500<, Graph@bonds@stepsD,
VertexCoordinates Ø RandomWalk@steps, LatticeWalk Ø TrueDDD

Out[16]=

One of the advantages of representing these random walks as graphs is that you have all the graph 
formatting and styling functions available to quickly modify your graph.

In[17]:= With@8steps = 1500<,
Graph@bonds@stepsD, DirectedEdges Ø False, EdgeStyle Ø Gray,

VertexSize Ø 81 Ø 8"Scaled", .025<, steps Ø 8"Scaled", .025<<,
VertexStyle Ø 81 Ø 8Opacity@0.4D, Green<, steps Ø 8Opacity@0.4D, Red<<,
VertexCoordinates Ø RandomWalk@steps, LatticeWalk Ø FalseDDD

Out[17]=

The disadvantage of this approach is that it is limited to two-dimensional walks. Graph  does not support 
three-dimensional objects and it does not make much sense in one dimension.
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13.4 Creating packages
1. Here are the definitions for the auxiliary collatz function.

In[1]:= collatz@n_?EvenQD := n ê 2

In[2]:= collatz@n_?OddQD := 3 n + 1

a. This is essentially the definition given in the solution to Exercise 5 from Section 6.2.

In[3]:= CollatzSequence@n_D := NestWhileList@collatz, n, Ò � 1 &D

In[4]:= CollatzSequence@7D

Out[4]= 87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

b. First we write the usage message for CollatzSequence, our public function. Notice that we write no 
usage message for the private collatz function.

In[5]:= CollatzSequence::usage =

"CollatzSequence@nD computes the sequence of Collatz

iterates starting with initial value n. The sequence

terminates as soon as it reaches the value 1.";

Here is the warning message that will be issued whenever CollatzSequence is passed an argument that 
is not a positive integer.

In[6]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence must

be a positive integer.";

c. Here is the modified definition which now issues the warning message created above whenever the 
argument n is not a positive integer.

In[7]:= CollatzSequence@n_D :=

If@IntegerQ@nD && n ¥ 0, NestWhileList@collatz, n, Ò � 1 &D,
Message@CollatzSequence::notint, nDD

The following case covers the situation when CollatzSequence is passed two or more arguments. Note 
that it uses the built-in argx message, which is issued whenever built-in functions are passed the wrong 
number of arguments.

In[8]:= CollatzSequence@_, args__D ê; Message@CollatzSequence::argx,
CollatzSequence, Length@8args<D + 1D := Null

d. The package begins by giving usage messages for every exported function. The functions to be exported 
are mentioned here – before the subcontext Private` is entered – so that the symbol 
CollatzSequence has context Collatz`. Notice that collatz is not mentioned here and hence 
will not be accessible to the user of this package.

In[9]:= Quit@D

In[1]:= BeginPackage@"PwM`Collatz`"D;

In[2]:= CollatzSequence::usage =

"CollatzSequence@nD computes the sequence of Collatz

iterates starting with initial value n. The sequence

terminates as soon as it reaches the value 1.";

In[3]:= CollatzSequence::notint =
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"First argument, `1`, to CollatzSequence must

be a positive integer.";

A new context PwM`Collatz`Private` is then begun within PwM`Collatz. All the definitions of this 
package are given within this new context. The context PwM`Collatz`CollatzSequence is defined 
within the System` context. The context of collatz, on the other hand, is PwM`Collatz`Private`.

In[4]:= Begin@"`Private`"D;

In[5]:= collatz@n_?EvenQD := n ê 2

In[6]:= collatz@n_?OddQD := 3 n + 1

In[7]:= CollatzSequence@n_D :=

If@IntegerQ@nD && n ¥ 0, NestWhileList@collatz, n, Ò � 1 &D,
Message@CollatzSequence::notint, nDD

In[8]:= CollatzSequence@_, args__D ê; Message@CollatzSequence::argx,
CollatzSequence, Length@8args<D + 1D := Null

In[9]:= End@D;

In[10]:= EndPackage@D

After the End@D and EndPackage@D functions are evaluated, $Context  and $ContextPath revert to 
whatever they were before, except that PwM`Collatz` is added to $ContextPath. Users can refer to 
CollatzSequence using its short name, but they can only refer to the auxiliary function collatz by 
its full name. The intent is to discourage clients from using collatz at all, and doing so should definitely 
be avoided, since the author of the package may change or remove auxiliary definitions at a later time.
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Index
|, Alternatives, 97

&&, And, 50

@@, Apply, 120

@@@, Apply at level one, 121

_, Blank, 86

___, BlankNullSequence, 111

__, BlankSequence, 86

 
;, CompoundExpression, 21

/;, Condition, 92, 211

 
==, Equal, 170, 255

 
<<, Get, 555

 
?, Information, 25–26

 
/@, Map, 118

||, Or, 51

 
.., Repeated, 98, 412, 548–549

..., RepeatedNull, 98

//., ReplaceRepeated, 104

 
===, SameQ, 170

=, Set, 42

:=, SetDelayed, 43

#, Slot, 154

##, SlotSequence, 377–378

~~, StringExpression, 325

<>, StringJoin, 317

 
`, (context mark), 558

`, (number mark), 268

Aborting calculations, 24

AbsoluteOptions, 375

AbsoluteTiming, 494

Accumulate, 136

Accuracy, 265, 276

AccuracyGoal, 278

Adelston, Larry, xvii
Adjacency matrices, 130

Adjacency structures, 163

AdjacencyGraph, 64, 130

Adler checksum, 347

Alternative input syntax, 21–22

Alternatives (|), 97

in string patterns, 329

Amino acids
residues of, 6–7

visualization of, 402–409

Anagrams, 322, 359, 361

And (&&), 50

Animate, 450

Animations
Animate, 450, 553

displaying all steps, 553

random walk, 469, 552–553

sorting algorithms, 228–230

Annuity, present value, 4
Appearance, 475–476

Append, 75

Apply (@@), 120

ArcTan, 417

Area of triangles, 108, 421

Arguments to functions, 217

Array, 64



ArrayDepth, 69

ArrayPlot, 64

ArrayRules, 284

Arrays, 282

constant, ConstantArray, 65, 78

creating, 64–65

of random numbers, 260

operations on, 182

packed, 286

random sparse, 290

sparse, SparseArray, 32, 65, 282

Ascii characters, 311–312

Assignments, 40

compared with transformation rules, 102

delayed, 43

immediate, 42

to list components, 76, 153

Assumptions, in simplification, 3
Atoms, 30

testing for, AtomQ, 49

Attributes, 53

clearing, ClearAll, 55

clearing, ClearAttributes, 55, 124, 546

finding functions with, 160

Flat, 53–54

Listable, 56, 123, 208

OneIdentity, 54

Orderless, 54

Protected, 54

setting for a function, 55

Autocorrelation, 304

of white noise, 446

 
Band, 285

BaseForm, 258–259

Begin, 559

Bernoulli trials, 129

BernoulliGraphDistribution, 129

Bézier curves, 6–7

as edges in graphs, 376–380

with dynamic control points, 454–455

BezierCurve, 378

Bigrams, 81–82

Binary shifts, computations with, 264

Binding energy, of isotopes, 6

Binomial, 127, 498

Bit operators, 52–53, 171

BitOr, 52

BitXor, 52, 171

Blanagrams, 359, 520

Blank (_), 86

BlankNullSequence (___), 86, 111

BlankSequence (__), 86

Blas routines, 505

Block, 147

BlockRandom, 300–301

Bond percolation, 12–14

Boole, 65

Boolean expressions
truth tables, 50, 188

visualizing with Venn diagrams, 468

Boolean operators, 50

Borges, Jorge L., 343

BoxWhiskerChart, 427

Brackets
cell, 16

for lists, 20

Bubble sort, 112, 229

ByteCount, 495

 
C language

compilers, 527

number representation, 269

numerical limits of, 270, 272

pointers, 77

Caenorhabditis elegans, 177

Caesar, Julius, 319, 384

Calculations, interrupting or aborting, 24

Calkins, Harry, xvii, 469

Cards, creating deck of, 140

Cartesian products, using transformation rules, 108

Cases

basic examples, 87, 183–184

level specification of, 92

Cell brackets, 16

Center of mass, 295

CharacterRange, 310

Characters, in other languages, 313

Characters, 317
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Checksums, 347

Adler, 348

ChemicalData, 402–403

Chemicals
positions of atoms, 403

radius of atoms, VanDerWaalsRadius, 403

visualization of, 402

ChiSquareDistribution, 262

Church, Alonzo, 115

Ciphers
Caesar, 319, 324

permutation, 320, 324

Circles, graphics primitive, Circle, 365

ClearAll, 55, 567–568

ClearAttributes, 55, 124

Clearing
all symbols in Global` context, 374

attributes, ClearAll, 55

attributes, messages, or options, ClearAll, 546

values, 42

Closed paths, example of transformation rules, 105

CloseKernels, 516

Collatz sequences, 101, 219

defined recursively, 243

package for, 573

Color functions, CPK model for atoms, 404

Color wheel, 385

ColorData, 411

Column, 182

options for, 485–486

Comments, 23

CompilationTarget, 527

Compile, 524

Compiled functions, 524

making listable, 525

parallelization of, 525

run-time options of, 526

CompiledFunction, 524

CompiledFunctionTools, 526

CompilePrint, 526

Compiling, 523

autocompile, 509

to C, 527

Complement, 79

Complex numbers, 35, 212, 255

length of, Abs, 256

pattern matching with, 256

phase angle, Arg, 256

plotting in the plane, 257

visualization of, 256, 446

Composite numbers, 53, 95

Compound expressions, 21

Compression, encoding used in, 246

Computation
fixed-precision, 148, 274

symbolic vs. numeric, 505

threading, 518

Computational complexity, of sort algorithms, 112, 
228

Computational geometry
convex hull, 105, 395

point in polygon, 419, 518

ray crossing algorithms, 420, 423

Condition number of matrices, 307

Conditional functions
If, 208

Piecewise, 212

Switch, 215

Which, 214

Conditions, in patterns, Condition (/;), 92, 211

Connected components, of graphs, 13

ConnectedGraphQ, 49

ConstantArray, 65, 78

Constants
attributes of, 258

mathematical, 257

ContentSize, 488

Contexts, 558

current, $Context, 558

exiting current, End, 559–560

nested, 562

of symbols, Context, 560

path for, $ContextPath, 561

private, 563, 569

starting new, Begin, 559

Control, 459

Control objects, 452

inputting text, InputField, 457

LocatorPane, 476–477

locators, 455

popup menus, 453

setter bars, 453
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Control objects (continued)
sliders, 472

two-dimensional slider, Slider2D, 453–454, 
529

viewers, 460

wrappers for, 459

ControlActive, 530

ControlType, 453

Convex hulls
ConvexHull, 395

in computing closed paths, 105

Convex polygons, 420

Coordinates, spherical, 541

Correlation, 304

Correlograms, 305

Count, 68, 100

Counting
coins, using transformation rules, 104

number of multiplies, MultiplyCount, 108

steps inside looping constructs, 201, 503

CPK model, for coloring atoms, 404

CreatePalette, 485

CycleGraph, 176–177

Cylinder, 367

 
Darwin, Charles, 330

Dashing, 371

Data
adding headers to tabular, 79

autocorrelation of, 304

displaying tabular, Grid, 62–63

dynamic tables of, 457–458

dynamic visualization of, 481

filtering, 114

finding convex hull for, 395–396

fitting with linear model, 7, 113, 228

handling missing, 408–409

importing, 7, 282

industrial production, 483

linear regression trendlines, 440

mean, 97, 429

measuring extent of, 294

Nobel prizes, 490

nonnumeric values in, 183

scraping from web pages, 327, 342

standard deviation of, 429

stem plots of, 166

time series, 438

trends in, 436

visualizing, ArrayPlot, 63

visualizing autocorrelation of, 305

Date conversion, 153

DateListPlot, 481, 483

Defaults for function arguments, 204

Defer, 40

Definitions
for functions, 41

multiple, 45

of variables, 41

recursive, 232

Delayed assignments, SetDelayed (:=), 43

Delayed rules, RuleDelayed (:>), 103

Delete, 72

DeleteCases, 100

DeleteDuplicates, 79

Detecting edges in images, 8
Diameter of pointsets, 130, 164

Dice
rolling of, 264

visualization using transformation rules, 109

DictionaryLookup, 162, 314, 349

dynamic lookups, 481

Differential equations
precision of solutions, 252

visualizing solutions of, 3
Digit sums, 263

Digital roots, 230

DigitCharacter, 326

Dimensions, 68

DisplayAllSteps, 552

DistanceFunction, 188

DistributeDefinitions, 518

DistributionFitTest, 298

Divergence of vector field, 131–132

DNA
bases used in random strings, 343

computing GC ratios, 351

displaying sequences of, 356

sequence analysis, 351

Do

counting steps inside loop, 503–504

syntax of, 194
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Documentation Center, 26

Dot product, Dot, 125–126

Duchamp, Marcel, rotoreliefs, 469

Dynamic, 472

Dynamic expressions, 470

Animate, 450

constraining movement of, 477

direct manipulation, Locator, 455

efficiency, 479

finding substrings with, 349

formatting of, 459

issues with updating, 474, 479

limiting evaluation while active, 531

locators, 11, 455

Manipulate, 450

modifying appearance, 476

mouse events used in, 487–488

OpenerView, 462

reducing computation within, 479

saving state, 476

scoping of, DynamicModule, 474

setting control type, ControlType, 453

TabView, 10, 460

update intervals, UpdateInterval, 474

viewers, 460

Dynamic programming, 239

DynamicModule, 474

 
Edge detection, EdgeDetect, 8, 472

EdgeShapeFunction, 377

Eigenvectors, visualization of, 297–298

Elements of lists, 59

Elevation data, reconstructing surface from, 8
EmitSound, 397

Encoding
in compression algorithms, 246

text, 318

End, 559–560

Entropy, 265

Epicycloids, 386, 469

Equal (ã), 170, 255

Equality, testing for, SameQ vs. Equal, 170, 255

Eratosthenes, sieving, 224, 503

Error function, complementary, Erfc, 300

Errors, syntax coloring of, 23

Euler, Leonhard, 523

Eulerian numbers, 242

Evaluate, 39, 505

Evaluated, 505

Evaluation
deferring, Defer, 40

of input, 17

overriding held, 39–40

preventing with HoldForm, 39

EvaluationMonitor, 201, 280

EventHandler, 487

ExponentialMovingAverage, 163

Exponentiation, notation, 19

Expressions, 29

atomic, 30

entering traditional, 18–19

head of, 30

internal form of, 33

mapping functions over, 118

normal, 33

number of elements in, 33

parts of, 35

selecting parts, 35, 37

structure of, 33

threading functions over, 122

visualizing with TreeForm, 36

 
FaceGrids, 367

Factorial, by iteration, 137

Factoring
large integers, 515

numbers, 132

polynomials, 2
Fibonacci numbers

computed iteratively, 205

computed using determinants, 290

definition, 95

matrix computation, 290

negative integer indices, 234

recursive implementation, 232

speeding up computation of, 234

using dynamic programming, 240

File browsers, dynamic using OpenerView, 484
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Filtering data, 96, 100, 114, 126

FilterRules, 432–433, 549

FinancialData, 96, 437

FindFile, 558

FindRoot, 191

displaying intermediate values, 201, 205

options for, 279

FindShortestTour, 491

First, 72

Fitting data, 7–8

LinearModelFit, 113, 228

Fixed range tests, 301

Fixed-precision computations, 148, 274

FixedPoint, 134

Flat, 53–54

Flatten, 76, 141

Fold, 136, 239

FoldList, 136, 239

Fonts, displaying lists of, 468

For, syntax of, 195

FreeQ, 68

Frequency modulation (FM) synthesis, 402

Frequency tests, 299

Friendship network, 376

FromCharacterCode, 312

Front end, 24

FullForm, 33

of strings, 311

Function, 153, 156

Functions
alternate syntax for, 21

applying, Apply, 120

argument checking, 217

compound, 143

conditional, 208

definitions for, 41

indexed, MapIndexed, 158

information about, 25–26

inheriting options, 166, 175

iterated, Nest, 132

making listable, 123

mapping of, 118

multiple definitions for, 45

nesting of, 137

options for built-in, 164

piecewise-defined, 4, 48, 212

predicate, 48, 126

pure, Function, 153, 156

setting attributes, 55

templates for, 565

threading, Thread, 122

 
GatherBy, 426

GC ratios, 329, 351

GenomeData, 345

GenomeLookup, 109

Geometric transformations, 375

translations, 395

Get (<<), 555

Glosemeyer, Darren, xvii
Golden ratio, as fixed point, 134

Graphics
box representation, 392

cached values, 392

color wheels, 385

defining new objects, 12

directives, 366, 369

displaying, 365–366

efficient representation of, 386

lighting of three-dimensional, 404

lines in, Line, 369, 409

multi-objects, 386

numeric vs. symbolic values, 392

options, 366, 370

points in, 369

primitives, 365, 368

reflection of lights, Specularity, 404

reflection transforms, 375

representation with GraphicsComplex, 389

rotating, 133

space-filling plots, 402

structure of built-in, 374

text in, Text, 372

three-dimensional, 367

tick marks and labels, 371

translation of, 134

visualization of trends in data, 436

visualizing roots of functions, 430

Graphics, 365
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Graphics3D, 367

GraphicsComplex, 389

Graphs
adjacency, 64, 130

adjacency structures, 163

bond percolation, 12–14

connected components, 13

counting edges incident to vertex, 
VertexDegree, 178

deleting self-loops, 180

function for edges, 377

power grid as, 63

random, 127

regular, 176

representing networks, 376

testing for connected, ConnectedGraphQ, 49

Greatest common divisor, 206, 230

Grid, 62

displaying DNA sequences, 357

inheriting options from, 358

 
Hamiltonian cycle, 13

Hamming distance, 170, 187

efficiency issues, 514

Hamming (regular) numbers, 163

Hamming weight, 263

Hash tables, 347

Hendrix, Jimi, 400

Hexagonal lattice, 395

HoldAll, 433, 504

used to measure timing, 494

HoldForm, 39

Horner’s method, for polynomial multiplication, 
162

Hyperlink, 181

Hyperlinks
styles for, 485

syntax for, 484

Hypocycloids, 381

animation of, 462

HypothesisTestData, 299

 
IdentityMatrix, 538

If, 208

nested structures, 210

Image processing
edge detection, 8, 472

effects, ImageEffect, 468

resizing, 209

segmentation, 11

Immediate assignment, 42

Importing
data, 7
images, 8

Indexed functions, MapIndexed, 157

Industrial production data, 483

Inequalities, visualizing systems of, 466

Infix notation, 22

Information, about built-in functions, 25–26

Information retrieval, 332

Information theory, 265

Initialization, 454–455

Inner products, Inner, 125

Input
alternative syntax for, 21

entering, 17

evaluation of, 17

InputField, 457

InputForm

of plots, 374

of strings, 311

Insert, 75

Integer lattice, 67

IntegerDigits, 258

Interactomes, 177

Interleaving lists, Riffle, 142, 239

Interrupting calculations, 24

Intersection of lists, Intersection, 79

Intervals, testing for membership, 
IntervalMemberQ, 49

InverseCDF, 301

Isotopes, binding energies, 6
Iteration

counting steps, 201

fixed point, FixedPoint, 134

functions of two arguments, Fold, 136

intermediate values, EvaluationMonitor, 
201, 280

intermediate values, Reap and Sow, 281

of functions, 132

setting with built-in functions, 
MaxIterations, 279

Sierpinski triangle, 137

with conditions, NestWhile, 135
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 Johnson, Bob, xvii
Join, 78

Josephus problem, 172, 264

Joyce, James, 331

Julia, Gaston, 532

Julia sets, 527

 
Kelly, Michael, xvii
Kernel, 24

Klee, Paul, 365

Kuzniarek, Andre, xvii
 
Lag plots, 308

Lags in time series, 304

Languages
C, 269

Lisp, xi, 115

Last, 72

Lattices
hexagonal, 395

three-dimensional, 395

visualizing integer, 67

LaunchKernels, 516

Length of
expressions, Length, 33

lists, 68

LetterCharacter, 326

LetterQ, 311

Lévy flights, 554

Lighting, 404

Linear congruential method, for generating 
random numbers, 264, 301

Linear systems of equations, solution of, 3
LinearModelFit, 113, 228

Lines
connecting 3D data with, 409

dashed, 371

in two-dimensional graphics, 369

Lisp programming language, xi, 115

Listability, 508

of compiled functions, 525

setting attribute, 56, 123, 208

Listable, 123

ListPlay, 398–399

ListQ, 49

Lists
complement of, 79

component assignment, 76, 150

constructing, 59

counting frequency of elements in, 68

creating nested, 61

deleting duplicates, 79

depth of, 69

displaying, 62

elements of, 59

extracting elements from, 70

flattening, 76

interleaving, Riffle, 142, 239

internal representation, 58

intersection of, 79

joining, 78

measuring, 68

merging, 244

partitioning, 74, 174

permutations of, 196

position of elements in, 67–68

removing elements, 72

replacing parts of, 76

reversing order of, 74

rotating, 74

sorting, 73, 111

syntax of, 20, 58

taking sublists, 70–71

testing for, ListQ, 49

testing for membership in, 68

transposing, 75

union of, 78

visual representation, TreeForm, 69

Localization of
constants, With, 148, 176

names, Module, 146

values, Block, 147

Locator, 455

LocatorAutoCreate, 456

LocatorPane, 477

Logical operators, 50

visualizing expressions with, 466

Logistic maps, loss of precision with, 274

Lookahead/lookbehind constructs, 336
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Loops
Do, 194

Do vs. Table, 205

efficiency issues, 502

For, 195

NestWhile, 204

While, 199

Lorentz factor, 1
LowerCaseQ, 311

Lucky numbers, 230

 
Machine numbers, 266

MachineIntegerQ, 270, 513

MachineNumberQ, 513

MachinePrecision, 266, 277

Mandelbrot, Benoît, 446

Mandelbrot set, 523

Manipulate

basic syntax, 450

example with conditional functions, 210

initial values for parameters, 451

initializing, Initialization, 454–455

labels for parameters, 451

multiple parameters, 450–451

saving definitions, 465

size of content area, 488

Map (/@), 118

at different levels, 121

MapIndexed, 157

Mapping over expressions, automatically, 
Listable, 124

MapThread, 122, 170, 175, 181, 185

MatchQ, 86

Mathematical constants, 257

Mathematical expressions, linear syntax, 18

Matrices
adding columns and rows, 81

adjacency, 130

column means, 188

displaying with MatrixForm, 62

identity, 538

ill-conditioned, 307

multiplication, 131

norm, 307

predicate for square, 93, 130

swapping rows and columns, 81, 150

testing for symmetry, SymmetricMatrixQ, 
49, 283

tridiagonal, 290

upper triangular, 149, 218

Vandermonde, 131

visualizing, MatrixPlot, 63

MatrixForm, 62

and sparse arrays, 284

MatrixPlot, 63

MaxIterations, 279

Mean of data, 97

Median, 187, 219

MemberQ, 68, 161

MemoryInUse, 495–496

Merge sort, 113, 244

Mersenne prime numbers, 126, 132

computing in parallel, 517

Mesh, 415, 434

MeshFunctions, 434

Messages, 167

creating error, 546

for built-in functions, 167

framework for, 169

issuing, Message, 169

multiple, 169

usage, 546, 565, 568, 571

midi instruments, 400

Missing, 408

Modular design, 183

Module, 146

compared to With, 149–150

Most, 73

MouseClicked, 487–488

Moving averages, exponential, 163

Multi-objects, 386

Multi-threaded computation, 518

Multiplication, syntax for, 18

Musical scales
pentatonic, 448

random walk across, 445

 
Named patterns, 99

Names, 161, 556

Natural language processing
n-grams, 81
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Natural language processing (continued)
stop words, 342–343

word length in corpora, 329

word stemming, 336

Nearest, 188

Needs, 555

Nest, 132

Nested function call, 137

Nested functions, pure, 158

NestList, 132, 239

NestWhile, 135, 204

Networks
friendship, 376

protein-protein interaction, 177

represented as graphs, 376

Newton’s method
accelerating for slow convergence, 307

controlling precision of, 291

derivative undefined, 293

for root finding, 192

numerical derivatives, 293

tolerance for, 199

NIntegrate, 278

Nobel prizes, 491

Norm
of matrices, 307

used to compute distance in Euclidean space, 162

Normal, 284

Normal expressions, 33

NormalDistribution, 261

Normalize, 489

Notebooks, working with, 15

NP-complete problems, 415

NSolve, 430

Number mark (`), 268

NumberQ, 49, 258

Numbers, 251

accuracy of, Accuracy, 265

approximate, 266

bases of, 258

complex, Complex, 35, 212, 255

composite, 53, 95

computation with mixed types, 275

converting between bases, 263

display of approximate, 267

Eulerian, 242

exact vs. approximate, 269

extracting digits of, 258

factoring, 131

Fibonacci, 95, 205, 232

floating-point, Real, 255

Hamming (regular), 163

high precision vs. machine precision, 271

IEEE floating-point, 266

internal representation, FullForm, 254

lucky, 230

machine, 266

Mathematica compared to C, 269

mathematical constants, 257

Mersenne, 126

Mersenne prime, 132, 517

natural, 53

perfect, 11, 152, 523

polar representation, 263

precision of, 265

random, RandomReal, 260

rational, Rational, 254

rep units, 162

scale of approximate, 267

size limits, 271

test for composite, 53

testing for, NumericQ, 48

testing for explicit, NumberQ, 258

triangular, 514

type of, Head, 254

NumberString, 326

NumericQ, 48

 
OneIdentity, 54

OpenerView, 462

for file browsers, 485

Operators
bit, 52

infix notation for, 24

logical, 50

postfix notation for, 22

prefix notation for, 21

relational, 50

Options, 164

argument structure, OptionsPattern, 165

defaults, 204
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extracting values of, OptionValue, 165

filtering, FilterRules, 432–433, 549

finding functions with, 160

for built-in functions, 165

for graphics, 367, 370

for three-dimensional graphics, 415

for two-dimensional graphics, 370

framework for, 164

inheriting from built-in functions, 166, 175

multiple instances of, 373

obtaining for graphics expressions, 375

use of Automatic in, 414

OptionsPattern, 165, 433

OptionValue, 165

Or (||), 51

OrderedQ, 315

Outer products, Outer, 125, 141

Output, referring to previous, 17

OutputForm, of strings, 87, 310

 
� = � �, 415

P-values, for statistical tests, 298

Packages, 558

beginning, BeginPackage, 564

built-in, 555

developing, 563

ending, EndPackage, 564

getting names in, 556

installing, 567

loading, 555, 562

location of, 557

template for, 563

Packed arrays, 286

converting expressions to, ToPackedArray, 
512

functions that autopack, 512

size of, 287

testing for, PackedArrayQ, 287

turning on messages associated with, 512

unpacking, 500

Palettes
creation of, CreatePalette, 181–182, 485

customizing styles for, 182

Palindromes, 324, 332

Parallel computation
basic examples, 515

closing kernels, CloseKernels, 516

computations that do not parallelize, 518

distributing definitions, 518

graphical user interface for, 517

launching kernels, LaunchKernels, 516

loading packages on subkernels, 522

with compiled functions, 526

$ProcessorCount, 516

ParallelEvaluate, 518

Parallelize, 517

ParallelMap, 516

ParallelNeeds, 522

ParallelTable, 528

ParametricPlot, 383

Part, 35, 70

shorthand notation, [[…]], 70

Partition, 74, 143

Partitioning
lists, 74, 174

lists of digits, 110

lists of vertices, 422

strings, 345

Parts of expressions, Part, 35, 70

Pascoletti Adriano, xvii
Password generator, 345

PathPlot, 106

Pattern matching, efficiency issues, 499

Patterns, 85

alternatives in (|), 97

conditions on, Condition (/;), 92

finding expressions that match (Cases), 87

function arguments as structured, 344

in function definitions, 41, 88

matching (MatchQ), 86

matching sequence of expressions, 90

matching types of expressions, 87

named, 99

regular expressions, 332

repeated, 97–98, 549

structured, 88

syntactic vs. semantic matching, 89

Pentatonic scales, 448

Percolation, bond, 14

Perfect numbers, 152, 523

searching for, 11
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Permutations, 323

Permutations of lists, 196

Pi (p)
finding sequence of digits in, 110, 328

playing digits of, 401

random walks on digits of, 308, 396

Pick, 127–128, 179, 428

Piecewise, 212

Piecewise functions, 4, 48

Play, 397

Plot, structure of, 374

Points
in polygons, 419, 519

in two-dimensional graphics, Point, 369

multi-objects, 386

PointSize, 369

Polar representation of numbers, 263

Polygons
finding points in convex, 420

finding points in nonconvex, 423, 519

interactive, 456, 477

regular, 12, 173

used to create hexagonal lattice, 395

Polynomials
fast multiplication with Horner’s method, 163

plotting complex solutions of, 446

testing for, PolynomialQ, 49

Pooh, Charles, xvii
PopupMenu, 453

Porter’s stemming algorithm, 340

Position, 67–68, 100

Postfix operators, 22

Power grid, as graph, 63–64

Precision
exact vs. approximate numbers, 269

fixed, 148, 274

high vs. machine, 271

of approximate numbers, Precision, 265

of internal algorithms, 278

setting, SetPrecision, 273

PrecisionGoal, 278

Predicates, 48

as pure functions, 157

Prefix operators, 21

Prepend, 75

Previous output, 17

Prime numbers, sieving, 224, 503

PrimePi, 225

PrimeQ, 48

Print, 201, 280

Private, 569

Procedures, 189

Profiling, 506, 520

Programs
choosing efficient approach, 496

functional, 115

measuring efficiency of, 494

memory used in, 495

parallel, 515

profiling, 506, 520

Protected attribute, Protected, 54

ProteinData, 406

Proteins
conformation of backbone, 6–7

dot plot, 363, 385

interaction networks, 177

visualization of, 406

Pure functions, 153

as predicates, 157

efficiency issues, 509

listable, 508–509

nested, 158

sequence of arguments, (##), 377–378

 
Quadrants, in Cartesian plane, 219

Quadratic congruential method, for generating 
random numbers, 264

 
Radius of gyration tensor, 294

symbolic vs. numeric input, 505

visualization of, 295

Random sparse arrays, 290

Random numbers
from distributions, RandomVariate, 261

linear congruential generator, 264, 301

localizing generators, BlockRandom, 301

quadratic congruential generator, 264

seeding generators for, SeedRandom, 301

testing sequences of, 299

weighting choices, 263
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Random sampling
with replacement, RandomChoice, 145, 262

without replacement, RandomSample, 262, 315

Random strings, 343, 361

Random walks
across C major scale, 445

animation of, 469, 553

applications of, 534

as graphs, 554

bounded, 554

dynamic interfaces for, 469, 488

lattice walks, 264, 534

Lévy flights, 554

off-lattice, 187, 540

on digits of p, 308, 396, 554

on hexagonal lattice, 554

one-dimensional, 67, 137, 262

shape of, 294

square end-to-end distance, 574

three-dimensional, 539, 541

two-dimensional lattice, 80, 137, 152, 162, 536

using GraphicsComplex, 554

visualization of, 98–99, 446, 547

RandomChoice, 145, 262

used to construct random strings, 345

RandomColor, 131

RandomComplex, 260

RandomInteger, 260

RandomReal, 260

RandomSample, 145, 197, 262

RandomVariate, 261

Range, 59

Rational numbers, 254

Ray crossing algorithm, for point in polygon 
problems, 420, 423

Real numbers, 254

RealDigits, 258

Reap, 281

Recursive definitions, 232

used to define higher-order functions, 238

with multiple arguments, 235

ReflectionTransform, 375

RegionPlot, 466

Regression models, 436

Regular expressions, 332

classes of characters in, 333

lookahead/lookbehind, 336

mixing with string patterns, 334

named patterns with, 334

referring to patterns in, 335

RegularExpression, 332

Regular polygons, 12, 173

Relational operators, 50

Remove, 546

Rep units, 162

Repeated (..), 98, 412, 548–549

RepeatedNull (...), 98

Replacement rules, ReplaceAll (/.), 102

ReplacePart, 76, 104, 287

ReplaceRepeated (//.), 104

Rest, 72

Reverse, 74, 119

Riffle, 142, 239

Rolling dice, 264

Root finding
bisection method, 206

Newton’s method, 192

secant method, 293

Root mean square distance, 294

Root plots, 430

Rotate, 133

RotateLeft, 74, 175

RotateRight, 74

Rotoreliefs, 469

Rules
delayed, RuleDelayed (:>), 103

getting information for, 44

rewrite, 44

user-defined, 44

Run-length encoding, 246

Runs tests, 302

 
SameQ (===), 170, 255

SampleDepth, 398

SampledSoundFunction, 399

SampleRate, 398

SaveDefinitions, 465

Sawtooth waves, 402

Scale, of numbers, 267

Scaling noises, 446
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Scoping, 146

localization of constants, With, 148, 176

localization of names, Module, 146

localization of values, Block, 147

tracing, 147

Secant method
for Newton root-finding, 293

for root finding, 306

SeedRandom, 301

Select, 126, 179, 315

using pure functions with, 156

Selection sort, 225–229

Selectors, 37

Semantics, definition of, 29

Sequences, 90

subsequence search within, 109, 114, 328

SessionTime, 388

Set (=), 42

SetAttributes, 55, 208

SetDelayed (:=), 43

SetPrecision, 273

SetSystemOptions, 500

Shannon, Claude, 265

Sherlock, Tom, xvii
Short, 374

Shortest path problems, 415

Shorthand notation
&&, And, 50

@@, Apply, 120

/;, Condition, 92, 211

&, Function, 154

/@, Map, 119

||, Or, 51

/., ReplaceAll, 102

//., ReplaceRepeated, 104

;;, Span, 70

~~, StringExpression, 325

<>, StringJoin, 317

@@@, applying at level one, 121

[[…]], Part, 70

Shuffling cards, 141

Sierpinski triangle, 137

Sieve of Eratosthenes, 224

improving efficiency of, 503

Sign function, Sign, 218, 499

Signal processing, Hamming distance, 170, 187, 514

Simple closed paths, 415, 446

Simplification
of trigonometric expressions, 3
using assumptions, 3

Sin, dynamic visualization of, 468

Slider, 472

Slider2D, 453–454, 529

SlotSequence (##), 377–378

Solving equations
differential, 3
increasing precision for, 253

van der Pol, 252

Solving linear systems, 3
Sort, 73, 119

SortBy, 74, 179, 424

Sorting, 225

animation of, 228–230

basic algorithm for lists, 111

bubble sort, 112, 229

computational complexity of, 112, 228

lists, 73

merge sort, 113, 244

points by base angles, 417

selection sort, 226

strings, 314

symbols, 112

Sound, 396

chords, 400

of functions, Play, 397

of rational numbers, 398

physics of, 396

playing, EmitSound, 397

playing discrete amplitude levels, ListPlay, 
399

primitives, SoundNote, 399

sample depth, SampleDepth, 398

sample rate, SampleRate, 398

sampling amplitude levels, 400

scaling, 445

setting duration of, 400

using midi instruments, 400

SoundNote, 399

Sow, 281

Space-filling plots, 402

Span, (;;), 70
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Sparse arrays, 32, 65, 282

converting to lists, Normal, 284

efficiency issues, 500–502

rules for, ArrayRules, 284

testing for symmetry of, 283

visualization of, ArrayPlot, 283

SparseArray, 65, 282

Specularity, 404

Speed of light, 1
Sphere, 367

Split, 247

Square waves, 401

Standard deviation, 162, 385

visualization of, 427

Starting Mathematica, 15

Statistical tests, 298

autocorrelation, 304

fixed range, 301

frequency test, 299

NIST test suite, 303

runs test, 302

Stem plots, 166

Stemming words, 336

Stop words, 342–343

Stream plots, 5
StringCount, 317

StringDrop, 146, 317

StringExpression (~~), 325

StringInsert, 148, 317

StringJoin (< >), 146, 317

StringMatchQ, 325

StringPosition, 317

StringReplace, 317

StringReverse, 146, 317

Strings, 309

alternatives in patterns, 329

and Unicode, 313

changing case, 313

character codes, 312

concatenating, StringJoin, 146, 317

converting to Ascii, ToCharacterCode, 312

converting to symbols, 321

creating random, 343

encoding, 319

finding substrings, 349

in output, 310

length of, StringLength, 311

operations compared to lists, 318

operations on, 316

padding, 324

partitioning, 345

patterns for, 325

random, 343, 361

regular expressions for, 332

sorting characters in, 314

tests on, 311

trimming, 317

StringSplit, 81, 328

alternative patterns with, 330

StringTake, 316

StringTrim, 317

Structured patterns, 88, 344

Subsets, testing for, 53

Surfaces
reconstructing, 8–9

visualizing intersection of, 447

Switch, 215

Switch vs. Which, 216

Symbol, 321

Symbolic computation
basic, 2
compared with numeric, 392

Symbols, converting from strings, 321

SymmetricMatrixQ, 49, 283

Syntax
alternative forms, 22

coloring for errors, 23

definition of, 29

for multiplication, 18–19

of functions, 19

SystemOptions, 288–299, 500, 513

 
Table, 59

creating nested lists with, 61

TableForm, 62

TabView, 10, 460, 482

Tafjord, Oyvind, xvii
Take, 71

Term rewriting, 44
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Testing equality, SameQ vs. Equal, 170, 255

Tests for randomness, 299

Text, 372

Text analysis
cleaning transcribed audio, 342

distribution of sentence lengths, 342

distribution of word lengths, 329–331

punctuation counts in, 361

stemming words, 336

stop words, 342–343

Textures, for graphics, 5
Thermoplasma volcanium, GC content of, 355

Thread, 122, 179

Ticks, 371

Time series
lags in data, 304

serial dependence in data, 308

statistical tests for, 304

visualization of, Correlogram, 305

visualization of trends in, 436

Time value, of annuities, 4
Timing, 494

ToBoxes, 392

ToExpression, 321

ToPackedArray, 512

ToUpperCase, 313, 317

TracePrint, 173, 240

Transformation rules, 102

Cartesian product example, 108

closed paths example, 105

compared with assignments, 102

counting change example, 104

dice visualization example, 109

finding maxima example, 107

syntax of, 102

Translate, 134, 395

TranslationTransform, 395

Transposing
expressions, Thread, 123

lists, Transpose, 75, 428

matrices, 152

Traveling salesman problems, 415

TreeForm, 36

Trend plots, 436

Triangles
area of, 108, 421

dynamic with locators, 455

Triangular numbers, 514

Tridiagonal matrices, 290

Truth tables, 50, 188

Tryptophan, 405

Tube, 7, 475

 
Unicode, 313

Union, 78

Unique, 321

UpdateInterval, 474

Upper triangular matrices, 149, 218

efficiently generating, 502

Usage messages, 413, 568

 
van der Pol equations, 252

van der Waals radius, 403

Vandermonde matrix, 131

Variables, definitions for, 41

Vector field, stream plot, 5
Vectors

divergence, 131–132

dot product, 125–126

normalizing, 489

of random numbers, 260

visualization of arithmetic for, 469

Venn diagrams, 465, 468

VertexDegree, 178

ViewPoint, 479

ViewVertical, 367

von Neumann, John, 265

von Neumann neighborhood, 537

 
Warning messages, 167, 413

WeatherData, 457–458, 469

Web pages, scraping data from, 327, 342

Weights, for random number generation, 263

West, Mae, 365

Whepley, Faisal, xvii
Which, 214

While, syntax of, 199

With, 148, 176

compared to Module, 149–150
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Word games
anagrams, 322, 361

blanagrams, 359, 520

Word stemming, 336

lemmatization, 341

Porter’s algorithm, 340

WordData, 315

displaying information from, 470

Words
pluralizing, 342

singularizing, 340

stemming, 336

stop, 342–343

WorkingPrecision, 278

 
Xor, (�), 52

 
$BaseDirectory, 557

$Context, 558

$ContextPath, 559

$InstallationDirectory, 557

$KernelID, 518

$MachinePrecision, 266, 271

$MaxMachineNumber, 271

$MaxPrecision, 274

$MinMachineNumber, 271

$MinPrecision, 274

$Path, 557

$ProcessID, 518

$ProcessorCount, 516

$RecursionLimit, 245

$UserBaseDirectory, 557
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