
more information - www.cambridge.org/9781107009462

http://www.cambridge.org/9781107009462

Programming withMathematica R©

An Introduction

Starting from first principles, this book covers all of the foundational material needed to
develop a clear understanding of the Mathematica language, with a practical emphasis on
solving problems. Concrete examples throughout the text demonstrate how Mathematica
can be used to solve problems in science, engineering, economics/finance, computational
linguistics, geoscience, bioinformatics, and a range of other fields.

� Assumes no formal knowledge of programming.
� Over 285 exercises give the reader plenty of practice using the language to solve problems.
� Ideal for self-study, or for anyone wishing to further their understanding of Mathematica.
� Mathematica notebooks containing examples, programs and solutions to exercises are

available from www.cambridge.org/wellin.

Paul Wellin worked for Wolfram Research from the early-1990s through 2011, directing the
Mathematica training efforts with the Wolfram Education Group. He has taught mathemat-
ics at both public schools and at the university level for over 12 years. He has given talks,
workshops, and seminars around the world on the integration of technical computing and
education and he has served on numerous government advisory panels on these issues. He
is the author of several books on Mathematica.

Programming withMathematica R©

An Introduction

PAUL WELLIN

cambridge university press

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107009462

C© Paul Wellin 2013

Text set in DTL Albertina 11/13 pt; captions set in Syntax LT System Mathematica R©.
Designed and typeset by the author.

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

Page 8. Photographs used courtesy of NASA.

Page 343. Quotation from “The Library of Babel” by Jorge Luis Borges. Translated by James E. Irby,
from LABYRINTHS, copyright C© 1962, 1964 by New Directions Publishing Corp.

Reprinted by permission of New Directions Publishing Corp.

Page 472. Bottom: Marcel Duchamp, “Roue de bicyclette” C© 2012 Artists Rights Sociery (ARS),
New York / ADAGP, Paris / Succession Marcel Duchamp.

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-00946-2 Hardback

Additional resources for this publication at www.cambridge.org/wellin

Mathematica and Wolfram Mathematica are registered trademarks of Wolfram Research, Inc.

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781107009462
http://www.cambridge.org/wellin

Contents

1

1.1

Numerical and symbolic computation · Graphics and visualization · Working with data · Dynamic
interactivity · Programming

1.2 Getting started · 14

Starting up Mathematica · The notebook interface · Entering input · Mathematical expressions · Syntax of
functions · Lists · Semicolons · Alternative input syntax · Comments · Errors · Getting out of trouble · The front
end and the kernel

1.3 Getting help · 25

Function information · The Documentation Center

2 The Mathematica language
2.1 Expressions · 29

Types of expressions · Atoms · Structure of expressions · Evaluation of expressions · Exercises

2.2 Definitions · 40

Defining variables and functions · Immediate vs. delayed assignments · Term rewriting · Functions with
multiple definitions · Exercises

2.3 Predicates and Boolean operations · 48

Predicates · Relational and logical operators · Exercises

2.4 Attributes · 53

Exercises

Preface · page xi

An introduction to Mathematica
Overview of basic operations · 1

3 Lists
3.1 Creating and displaying lists · 58

List structure and syntax · List construction · Displaying lists · Arrays · Exercises

3.2 The structure of lists · 67

Testing a list · Measuring lists · Exercises

3.3 Operations on lists · 70

Extracting elements · Rearranging lists · List component assignment · Multiple lists · Exercises

4 Patterns and rules
4.1 Patterns · 85

Blanks · Pattern matching by type · Structured patterns · Sequence pattern matching · Conditional pattern
matching · Alternatives · Repeated patterns · Functions that use patterns · Exercises

4.2 Transformation rules · 102

Creating and using replacement rules · Example: counting coins · Example: closed paths · Example: finding
maxima · Exercises

4.3 Examples and applications · 109

Finding subsequences · Sorting a list · Exercises

5 Functional programming
5.1 Introduction · 116

5.2 Functions for manipulating expressions · 118

Map · Apply · Thread and MapThread · The Listable attribute · Inner and Outer · Select and Pick · Exercises

5.3 Iterating functions · 132

Nest · FixedPoint · NestWhile · Fold · Exercises

5.4 Programs as functions · 137

Building up programs · Example: shuffling cards · Compound functions · Exercises

5.5 Scoping constructs · 146

Localizing names: Module · Localizing values: Block · Localizing constants: With · Example: matrix
manipulation · Exercises

5.6 Pure functions · 153

Syntax of pure functions · Using pure functions · Example: searching for attributes and options · Exercises ·

vi Contents

5.7 Options and messages · 164

Options · Messages · Exercises

5.8 Examples and applications · 170

Hamming distance · The Josephus problem · Regular graphs/polygons · Protein interaction networks · Palettes
for project files · Operating on arrays · Exercises

6 Procedural programming
6.1 Loops and iteration · 190

Newton’s method · Do loops and For loops · Example: random permutations · While loops · NestWhile and
NestWhileList · Exercises

6.2 Flow control · 208

Conditional functions · Piecewise-defined functions · Which and Switch · Argument checking · Exercises

6.3 Examples and applications · 219

Classifying points · Sieve of Eratosthenes · Sorting algorithms · Exercises

7 Recursion
7.1 Fibonacci numbers · 231

Exercises

7.2 Thinking recursively · 234

Length of a list · Recursion with multiple arguments · Multiplying pairwise elements · Dealing cards,
recursively · Finding maxima · Higher-order functions · Exercises

7.3 Dynamic programming · 239

Exercises

7.4 Classical examples · 244

Merge sort · Run-length encoding · Exercises

8 Numerics
8.1 Numbers in Mathematica · 251

Types of numbers · Digits and number bases · Random numbers · Exercises

8.2 Numerical computation · 265

Precision and accuracy · Representation of approximate numbers · Exact vs. approximate numbers · High
precision vs. machine precision · Computations with mixed number types · Working with precision and
accuracy · Exercises

Contents vii

8.3 Arrays of numbers · 282

Sparse arrays · Packed arrays · Exercises

8.4 Examples and applications · 291

Newton’s method revisited · Radius of gyration of a random walk · Statistical tests · Exercises

9 Strings
9.1 Structure and syntax · 310

Character codes · Sorting lists of characters · Ordered words · Exercises

9.2 Operations on strings · 316

Basic string operations · Strings vs. lists · Encoding text · Indexed symbols · Anagrams · Exercises

9.3 String patterns · 325

Finding subsequences with strings · Alternatives · Exercises

9.4 Regular expressions · 332

Word stemming · Exercises

9.5 Examples and applications · 343

Random strings · Partitioning strings · Adler checksum · Search for substrings · DNA sequence analysis ·
Displaying DNA sequences · Blanagrams · Exercises

10 Graphics and visualization
10.1 Structure of graphics · 365

Graphics primitives · Graphics directives · Graphics options · Combining graphics elements · Structure of built-
in graphics functions · Example: Bézier curves · Example: hypocycloids · Exercises

10.2 Efficient structures · 386

Multi-objects · GraphicsComplex · Numeric vs. symbolic expressions · Exercises

10.3 Sound · 396

The sound of mathematics · Sound primitives and directives · Exercises

10.4 Examples and applications · 402

Space filling plots · Plotting lines in space · Simple closed paths · Points in a polygon · Visualizing standard
deviations · Root plotting · Trend plots · Brownian music · Exercises

11 Dynamic expressions
11.1 Manipulating expressions · 449

Control objects · Control wrapper · Viewers · Animating the hypocycloid · Visualizing logical operators ·
Exercises

viii Contents

11.2 The structure of dynamic expressions · 470

Dynamic · DynamicModule · Dynamic tips · Exercises

11.3 Examples and applications · 481

Creating interfaces for visualizing data · File openers · Dynamic random walks · Apollonius' circle · Exercises

12 Optimizing Mathematica programs
12.1 Measuring efficiency · 494

Evaluation time · Memory storage

12.2 Efficient programs · 496

Low-level vs. high-level functions · Pattern matching · Reducing size of computation · Symbolic vs. numeric
computation · Listability · Pure functions · Packed arrays · Exercises

12.3 Parallel processing · 515

Basic examples · Distributing definitions across subkernels · Profiling · Exercises

12.4 Compiling · 523

Compile · Compiling to C · Exercises

13 Applications and packages
13.1 Random walk application · 534

Lattice walks · Off-lattice walks · RandomWalk · Error and usage messages · Visualization · Animation ·
Exercises

13.2 Overview of packages · 555

Working with packages · Package location

13.3 Contexts · 558

13.4 Creating packages · 563

Package framework · Creating and installing the package · RandomWalks package · Running the package ·
Exercises

Contents ix

Solutions to exercises

2 The Mathematica language · 575

3 Lists · 578

4 Patterns and rules · 582

5 Functional programming · 588

6 Procedural programming · 614

7 Recursion · 621

8 Numerics · 626

9 Strings · 638

10 Graphics and visualization · 651

11 Dynamic expressions · 666

12 Optimizing Mathematica programs · 676

13 Applications and packages · 681

Bibliography · 687

Index · 695

x Contents

Preface

Programming with Mathematica
Well-designed tools are not simply things of beauty to be admired. They are, above all, a joy to
use. They seem to have their own consistent and readily apparent internal logic; using them
seems natural – intuitive even – in that it is hard to imagine using any other tool, and, typically, a
minimal amount of effort is required to solve the problem for which those tools were designed.
You might even begin to think that your problems were designed for the tool rather than the
other way around.

Programming with Mathematica is, first and foremost, a joy. Having used various programming
languages throughout my life (starting with Algol and Fortran), it is now hard for me to
imagine using a tool other than Mathematica to solve most of the computational problems that I
encounter. Having at my fingertips an extremely well-thought-out language, combined with
tools for analysis, modeling, simulation, visualization, interface creation, connections to other
technologies, import and export, seems to give me everything I might need.

Ultimately though, no tool can solve every problem you might encounter; what really makes
Mathematica the indispensable tool for many computational scientists, engineers, and even artists
and musicians, is its capability for infinite extension through programming. As a language, built
upon the shoulders of such giants as Lisp, Prolog, Apl and C++, Mathematica has extended some
of the best ideas from these languages and created some new ones of its own. A powerful pattern
matching language together with a rule-based paradigm for transforming expressions provides
for a natural approach to writing programs to solve problems. By “natural” I mean a quick and
direct implementation, one that mirrors as closely as possible the statement of the problem to be
solved. From there, it is just a short path to prototyping and eventually a program that can be
tested for correctness and efficiency.

But there are tools, and there are tools! Some tools are very domain-specific, meaning that they
are designed for a narrow set of tasks defined by a certain discipline or framework and are inap-
propriate for tasks outside of their domain. But Mathematica has taken a different approach. It
provides broadly useful tools by abstracting the computational tasks (through symbolic expres-
sion manipulation) in such a way that it has found wide use in fields as varied as genomics and
bioinformatics, astronomy, image processing, social networks, linguistics, and much more.

In addition to the breadth of fields that can be addressed with Mathematica, the variety and
extent of the computational tasks that now challenge us have greatly expanded since the turn of
the millennium. This is due to the explosion in the sheer amount of information and data that
people study. This expansion mirrors the rapid growth in computer hardware capabilities of the
1990s and 2000s which saw speed and storage grow exponentially. Now the challenge is to find
software solutions that are up to the task of managing this growth in information and data. Given
the variety of data objects that people are interested in studying, tools that provide generality and
avoid domain-specific solutions will be the most broadly useful across disciplines and across
time. Mathematica has been around now for over two decades and it continues to find application
in surprising places.

Using this book
This book is designed for anyone who wants to learn how to write Mathematica programs to solve
problems. It does not presuppose a formal knowledge of programming principles as taught in a
modern course on a language such as C or Java, but there is quite a bit of overlap between this
material and what you would expect in such a formal course. You will learn about the basic
building blocks of the Mathematica language: expressions; the syntax of that language; and how to
put these objects together to make more complicated expressions. But it is more than just a
primer on the language. The focus is on solving problems and, as such, this is an example-driven
book. The approach here is practical. Programming is about solving problems and besides the
obvious necessity of learning the rules of the language, many people find it instructive and
concrete to see concepts put into action. The book is packed with examples both in the text
proper and in the exercises. Some of these examples are quite simple and straightforward and can
be understood with a modicum of understanding of Mathematica. Other examples and exercises
are more involved and may require a bit more study before you feel that you have mastered the
underlying concepts and can apply them to related problems. Since this book is written for
readers with various backgrounds in programming languages and using Mathematica, I think it
best to not identify “levels of difficulty” with the examples and exercises.

Becoming a proficient programmer requires not only a clear understanding of the language
but also practice using it. As such, one of the aims of this book is to provide the novice with
examples of good programming style and practice. Many of the examples in the chapters are, by
design, concise, in order to focus on a concept that is being developed. More involved examples
drawing together several different conceptual ideas appear in the examples and applications
sections at the end of many of the chapters. Depending upon your needs and level of expertise,
you can either start with first principles, move on to basic examples, and then to more involved
applications of these concepts, or you might find yourself looking at interesting examples and
then, as the need arises, jumping back into the discussion of syntax or usage earlier in a chapter.

xii Preface

The exercises (over 290 of them) are designed to extend and expand upon the topics discussed
in the chapters in which they occur. You cannot learn how to program by simply reading a book;
the old maxim, “you learn by doing” is as true of learning how to speak a foreign (natural) lan-
guage as it is true of learning a computer programming language. Try to do as many exercises as
you can; create and solve problems that interest you; “life is not a spectator sport” and neither is
learning how to program.

Due to resource limitations, all the solutions could not be included in the printed book. Fortu-
nately, we live in an age of easily disseminated information, and so you will find an extended set
of solutions to most of the exercises in both notebook and PDF format at www.cam-
bridge.org/wellin. In addition, many of the programs developed in the sections and exercises are
included as packages at the same website.

Scope of this book
This book evolved from an earlier project, An Introduction to Programming with Mathematica, the
third edition of which was also published by Cambridge University Press. As a result of several
factors, including a long time between editions, much new material due to major upgrades in
Mathematica, the original authors traveling different paths – it seemed as if a new title was in
order, one that both reflects and builds upon this history while incorporating the latest elements
of Mathematica itself.

The several versions of Mathematica that have been released since the third edition of An
Introduction to Programming with Mathematica was published now include extensive coverage in new
application areas, including image processing, control systems, wavelets, graphs and networks,
and finance. The present book draws from many of these areas in the never-ending search for
good examples that not only help to illustrate conceptual problems, but also serve as interesting
and enlightening material on their own. The examples, exercises, and applications draw from a
variety of fields, including:

Ê textual analysis and natural language processing: corpus linguistics, word stemming, stop words,
comparative textual analysis, scraping websites for data, sorting strings, bigrams and n-
grams, word games (anagrams, blanagrams, palindromes), filtering text;

Ê bioinformatics: analysis of nucleotide sequences, computing GC ratios, displaying blocks of
genetic information, searching for subsequences, protein-protein interaction networks, dot
plots;

Ê computer science: hashing (checksums), encoding/encryption, sorting, adjacency structures,
triangular numbers, Hamming numbers, Fibonacci numbers, Euler numbers, root finders,
random number generation algorithms, sieving;

Ê finance and economics: time-series analysis, trend plots, stock screens;

Preface xiii

Ê data analysis: filtering signals, cleaning data, stem plots, statistical tests, lag plots,
correlograms, visualizing spread of data;

Ê geometry: convex hull, diameter of pointsets, point-in-polygon problems, traveling salesman-
type problems, hypocycloids and epicycloids, Apollonius’ circle;

Ê image processing: resizing, filtering, segmentation;

Ê graphs and networks: random graphs, regular graphs, bond percolation, connected
components.

Chapter 1 is designed as a brief tour of the current version of Mathematica as of the publication
of this book. The examples give a sense of the scope of Mathematica’s usage in science, engineer-
ing, and other analytic fields. Included is a basic introduction to the syntax of Mathematica expres-
sions, working with the Mathematica interface, and also pointers to the documentation features.

Several important topics are introduced in Chapter 2 that are used throughout the book, in
particular, structure of expressions, evaluation of expressions, various aspects of function defini-
tions, predicates, relational and logical operators, and attributes.

Lists are an essential data type in Mathematica and an understanding of how to work with them
provides a practical framework for the generalization of these ideas to arbitrary expressions.
Chapter 3 focuses on structure, syntax, and tools for working with lists. These topics are all
extended in later chapters in the context of various programming tasks. Included in this chapter
are discussions of functions for creating, displaying, testing, measuring lists, various visualization
tools, arrays (sparse and otherwise), list component assignment, and using Span to extract
ranges of elements.

Patterns and rules are introduced in Chapter 4. Even though pattern-based programming may
be new to many, patterns are so essential to all programming in Mathematica, that it seems most
natural to introduce them at this point and then use them in later chapters on functional and
procedural programming. Topics include a discussion of structured patterns, conditional pat-
terns, sequence pattern matching, using data types to match an expression, repeated patterns,
replacement rules, and numerous examples of functions and programs that make heavy use of
pattern matching.

The chapter on functional programming (Chapter 5) introduces the many functions built into
Mathematica associated with this programming paradigm: Map, Apply, Thread, Outer,
Select, Pick , and many others. Scoping constructs are explicitly called out in a separate
section. A section on pure functions includes numerous examples to help understand this impor-
tant construct in the context of concrete problems. Adding options, error trapping and messag-
ing, so important for well-designed functions and programs, are discussed in this chapter so that
they can be used in all that follows. Numerous applied examples are included such as protein

xiv Preface

interaction networks, Hamming distance, defining new graphics objects, creating palettes for
project files, and much more.

Procedural programming may be most familiar to those who learned programming in a more
traditional language such as Fortran or C. The syntax of procedural programming in Mathemat-
ica is quite similar to that in C and Chapter 6 is designed to help you transition to using Mathemat-
ica procedurally but also mixing it with other programming styles when and where appropriate.
Looping constructs and their syntax are discussed in terms of basic examples which are then built
upon and extended in the remainder of the book. Included are piecewise-defined functions, flow
control, and several classical examples such as sieving for primes and sorting algorithms.

The chapter on recursion, Chapter 7, gives a basic introduction to programming recursively-
defined functions. The main concepts – base cases, recursion on the tail, recursion with multiple
arguments, and so on – are introduced through illustrative examples. The chapter concludes with
a discussion of dynamic programming, a technique for greatly speeding up recursive computa-
tions by automatically creating definitions at runtime.

Chapter 8 introduces the various types of number you can work with in Mathematica – exact,
machine-precision, arbitrary-precision as well as different number types and arrays of numbers.
It includes an extended discussion of random number generators and functions for sampling and
choosing random numbers. The examples and applications section includes a program to com-
pute the radius of gyration tensor of a random walk as well as material on statistical tests, both
built-in and user-defined tests for checking the randomness of sequences of numbers.

The chapter on strings, Chapter 9, is included in recognition of the ubiquity of these objects in
broad areas of science, engineering, linguistics, and many other fields. Topics include an introduc-
tion to the structure and syntax of strings, basic operations on strings including those that mirror
similar operations on lists, an extensive discussion on string patterns including regular expres-
sions such as are found in languages like Perl and Python, and many applications and examples
drawn from linguistics, computer science, and bioinformatics.

Chapter 10 on visualization is designed to give you a good sense of the symbolic graphics
language so that you can both create your own graphics scenes and functions and also make your
objects as efficient as possible. Included is a discussion of primitives, directives, and options, all of
which is mirrored in the section on sound. A section on efficient graphics structures is included
that discusses multi-objects such as multi-points and multi-lines, as well as material on
GraphicsComplex, a compact way to represent a graphical object with many repeated primi-
tive elements. Many extended examples are included for functions to plot points in space con-
nected by lines, economic or financial trend plots, space-filling molecule plots for proteins and
other chemicals, and root plotting functions.

Dynamic objects were introduced in Mathematica 6, and there have, sadly, been few resources
for learning the ins and outs of dynamic programming. Dynamic objects provide tools to create

Preface xv

interactive elements in your documents from as simple as an animation to as complex as…well,
as complex as you can imagine. In Chapter 11 we introduce dynamic objects, starting with top-
level functions Animate and Manipulate , moving on to viewers and various control objects
that can be used to control changing parameters. The primitive elements that lie underneath all
these top-level functions are Dynamic and DynamicModule, which are the foundations of the
entire interactive machinery now built into Mathematica. The chapter closes with several applica-
tions including building up interfaces to work with multi-dimensional data, extending work
earlier in the book on palettes for file openers, event handlers to interact more with your mouse,
and a simple geometry demonstration due to Apollonius.

As a result of the many comments and suggestions from people in the broad Mathematica
community, I have included a chapter on writing efficient programs, Chapter 12. Although there
are many approaches you might take to solve a problem, it is often difficult for the novice to tell
which is the most appropriate, or the most efficient, or which scales best. Several “good practices”
are considered, including choosing the right function, choosing the right algorithm, listability,
pure functions, packed arrays, and so on. Sections on parallel computation and on compiling are
also included. These issues are discussed through the use of concrete examples drawn from
earlier parts of the book.

The chapter on applications, Chapter 13, builds upon much of the work in the rest of the book
but extends it for those who wish to turn their code into programs and applications that can be
shared with colleagues, students, or clients. The focus is on making your Mathematica programs as
much like built-in functions as possible, thereby taking advantage of the interface elements that a
user of your code would already know and expect from working in Mathematica, things like
writing modular functions, usage messages, overloading, and creating and working with
packages.

In trying to keep this book both introductory and concise, many topics had to be left out.
Some of these topics include: creation of new data types; the internals for ordering of rules;
upvalues, downvalues and other internal transformation rules; tuning and debugging; connect-
ing to external programs and databases; interacting with web servers. All of these topics are both
interesting and important but there was simply not enough room in the present volume to
include them.

Colophon
This book was written and developed in Mathematica. Stylesheets were created to the page specifi-
cations designed by the author while adhering to the constraints of the publisher’s production
department. Pages were output to PostScript and then distilled to PDF with Adobe Distiller using
a configuration file supplied by the publisher to set such parameters as resolution, font embed-
dings, as well as color and image conversions.

xvi Preface

The text for this book, including mathematical formulas, is set in Albertina, a humanist font
designed by the Dutch calligrapher Chris Brand (1921–1999), and digitized by the Dutch Type
Library (dtl). Captions and labels use the fairly animated sans serif Syntax, designed by the Swiss
typographer Hans Eduard Meier (1922–).

Acknowledgments
Although writing a book may appear to others as a solitary project, authors know better. I con-
sider myself very fortunate to have had wonderful colleagues to work with and have benefited in
innumerable ways from their expertise. The following people provided concrete help in dis-
cussing various topics and answering my many questions: Darren Glosemeyer on date plotting
functions, statistical tests, and statistical plots; Harry Calkins on graphics and general language
issues; Charles Pooh on graphs and networks; Dan Lichtblau on internal algorithms and numer-
ous language issues; Michael Kelly for some suggestions on trend lines implementation; Adriano
Pascoletti for permission to use and modify his code for computing points in nonconvex poly-
gons; Tom Sherlock and Faisal Whepley for help on front-end related issues; Oyvind Tafjord for
various questions and issues with string manipulation and regular expressions; Andre Kuzniarek
and Larry Adelston for layout and production questions.

In addition, I am grateful to the reviewers who provided valuable feedback on early drafts of
this book: Harry Calkins, Darren Glosemeyer, Mariusz Jankowski, Dan Lichtblau, and Oyvind
Tafjord. Any mistakes that remain are mine and mine alone. If you think you have found one,
please let me know so that I can update an errata page on the publisher’s website as well as in any
future printings of this book.

The entire editorial and production stages of this project have been miraculously smooth, in
no small part due to the team at Cambridge University Press. In particular, my editor, David
Tranah and his team, have been both supportive and encouraging throughout the project, provid-
ing all that an author can ask for. Clare Dennison and Abigail Jones were most helpful on the
innumerable editorial and production details that accompany a book project such as this.

Loved ones are the unnamed partners in writing a book. Although unrecognized to the reader,
they nonetheless play a critical role for the author. They provide nourishment (in its many
guises), support, feedback, and that all-too-critical element, time. I have been blessed with a
supportive family throughout this project. In particular, my wife Sheri has lovingly provided all
these things and more.

Finally, I would like to dedicate this book to the memory of a very special friend, Bob Johnson.
Bob was the person most responsible for getting me involved with Mathematica when, back in
1989, as chair of the mathematics department at Sonoma State University, he asked me to join
him in the basement (computers were always in basements in those days!?) at Sonoma State and
we took our first look at a strange new program called Mathematica running on a strange new

Preface xvii

computer housed in a strange black magnesium cube. The excitement of realizing that the worlds
of mathematics, science, and engineering would be dramatically changed by this new program
was matched by the joy Bob and I experienced in learning how to incorporate this tool into our
research and teaching. Bob was that unusual person who knew how to keep his eyes on the prize
and his encouragement of my efforts made a huge difference in my life and in the lives of others
as well. Thanks Bob.

Paul R. Wellin

xviii Preface

1

An introduction to Mathematica
Overview of basic operations · Numerical computation · Symbolic computation · Graphics and

visualization · Data import and analysis · Dynamic and interactive computation ·
Programming · Starting up Mathematica · Notebook interface · Entering input · Mathematical

expressions · Syntax of functions · Lists · Dealing with errors · Help and documentation

Mathematica is a very large and seemingly complex system. It contains thousands of functions for
performing various tasks in science, mathematics, engineering, and many other disciplines.
These tasks include numerical and symbolic computation, programming, data analysis, knowl-
edge representation, and visualization of information. In this introductory chapter, we give a
sense of its breadth and depth by looking at some computational and programming examples
drawn from a variety of fields. The last part of the chapter covers basic topics in getting started,
including how to enter and evaluate expressions, how to deal with errors, and how to get help,
with pointers to the documentation system. Users already familiar with Mathematica could lightly
skim this chapter.

1.1 Overview of basic operations
Numerical and symbolic computation
On a very basic level, Mathematica can be thought of as a sophisticated calculator. With it you can
enter mathematical expressions and compute their values.

In[1]:= 2.0 � 10 p
10

‰

10

Out[1]= 3.5987 � 106

You can store values in memory to be used in subsequent computations. For example, the follow-
ing three inputs compute the Lorentz factor for an object moving at half the speed of light.

In[2]:= c = 299792458
Meter

Second
;

In[3]:= v =
c

2

Out[3]=
149896229 Meter

Second

In[4]:= NB 1 -
v2

c2
F

Out[4]= 0.866025

Yet Mathematica differs from calculators and simple computer programs in its ability to calculate
exact results and to compute to an arbitrary degree of precision.

In[5]:=
1

2
+
1

3
+
1

5
+
1

7
+

1

11
+

1

13

Out[5]=
40361

30030

In[6]:= 21024

Out[6]= 179769313486231590772930519078902473361797697894230657273 Ö

430081157732675805500963132708477322407536021120113879 Ö

871393357658789768814416622492847430639474124377767893 Ö

424865485276302219601246094119453082952085005768838150 Ö

682342462881473913110540827237163350510684586298239947 Ö

245938479716304835356329624224137216

In[7]:= NASinA2017 � 21ê5E, 40E

Out[7]= -0.9999999999999999785677712610609832590685

One of the most significant features of Mathematica is its ability to manipulate and compute
with symbolic expressions. For example, you can factor polynomials and simplify trigonometric
expressions.

In[8]:= FactorAx7 - 1E

Out[8]= H-1 + xL I1 + x + x2 + x3 + x4 + x5 + x6M

2 An introduction to Mathematica

In[9]:= TrigReduceASin@3 qD5E

Out[9]=
1

16
H10 Sin@3 qD - 5 Sin@9 qD + Sin@15 qDL

You can simplify expressions using assumptions about variables contained in those expressions.
For example, if k is assumed to be an integer, sinH2p k + xL simplifies to sinHxL.

In[10]:= Assuming@k œ Integers, Simplify@Sin@2 p k + xDDD

Out[10]= Sin@xD

Functions are available for solving systems of equations, for example, this solves a symbolic 2ä2

linear system.

In[11]:= LinearSolveBK
a11 a12
a21 a22

O, K
x1
x2

OF

Out[11]= ::
a22 x1 - a12 x2

-a12 a21 + a11 a22
>, :

a21 x1 - a11 x2

a12 a21 - a11 a22
>>

You can solve and plot solutions to differential equations, for example, a system representing a
linear damped pendulum.

In[12]:= soln = DSolve@8y''@xD + 2 y'@xD + 30 y@xD ã 0,
y@0D ã 1, y'@0D ã 1 ê 2<, y@xD, xD

Out[12]= ::y@xD Ø
1

58
‰-x I58 CosA 29 xE + 3 29 SinA 29 xEM>>

In[13]:= Plot@y@xD ê. soln, 8x, 0, 5<, PlotRange Ø AllD

Out[13]=

1 2 3 4 5

-0.5

0.5

1.0

1.1 Overview of basic operations 3

You can create and then operate on functions that are defined piecewise.

In[14]:= sinc@x_D = Piecewise@ 881, x ã 0<<, Sin@xD ê xD

Out[14]=

1 x ã 0
Sin@xD

x
True

In[15]:= IntegrateB
sincAx2E

x
, xF

Out[15]=
CosIntegralAx2E

2
-
SinAx2E

2 x2

One of the advantages of working symbolically is that you can quickly see underlying formu-
las and algorithms at work. For example, this computes a present value for an annuity of 36

payments of $500 using a symbolic effective interest rate.

In[16]:= presentValue = TimeValue@Annuity@500, 36D, r, 0D

Out[16]=

500 I-1 + H1 + rL36M

r H1 + rL36

A plot clearly shows the relationship between the interest rate and the present value of the
annuity.

In[17]:= Plot@presentValue, 8r, 0.0, 0.10<D

Out[17]=

0.02 0.04 0.06 0.08 0.10

6000

8000

10 000

12 000

14 000

16 000

18 000

In fact, symbolic expressions are very general objects – you can work with them as you would
any expression.

In[18]:= FactorB
7

- 1F

Out[18]= -1 + 1 + +
2

+
3

+
4

+
5

+
6

4 An introduction to Mathematica

In[19]:= Rotate@Style@"Mathematica", "Text"D, 45 DegreeD

Out[19]=

Mathem
atica

Graphics and visualization
Visualizing functions or sets of data often provides greater insight into their structure and proper-
ties. Mathematica has a wide range of visualization capabilities, including two- and three-dimen-
sional plots of functions or datasets, contour and density plots of functions of two variables, bar
charts, histograms and other charting functions for data, and many other functions for special-
ized areas such as statistical analysis, financial analysis, wavelets, and others. In addition, with the
Mathematica programming language you can construct graphical images “from the ground up”
using primitive elements, as we will see in Chapter 10.

Here is a stream plot of the vector field 8cosH1 - x + y2L, sinH1 + x2 - yL<.

In[20]:= strm = StreamPlotA9CosA-1 - x + y2E, SinA1 + x2 - yE=,

8x, -3, 3<, 8y, -3, 3<, Frame Ø NoneE

Out[20]=

This plot can be thought of as a symbolic expression that can then be used in other expressions,
such as a texture on a surface.

In[21]:= Plot3DASinA-1 - x + y2E, 8x, -3, 3<,

8y, -3, 3<, PlotStyle Ø Texture@strmD, Mesh Ø NoneE

Out[21]=

1.1 5

Of course, discrete data, requiring analysis and visualization, are commonly what you will
work with. Here we import isotope data and then plot the atomic mass number against the
binding energy for all stable isotopes.

In[22]:= data = Outer@IsotopeData@Ò1, Ò2D &, IsotopeData@"Stable"D,
8"MassNumber", "BindingEnergy", "Symbol"<D;

In[23]:= Take@data, 8D

Out[23]= 991, 0., 1H=, 92, 1.112283, 2H=, 93, 2.572681, 3He=,

94, 7.073915, 4He=, 96, 5.332345, 6Li=, 97, 5.606291, 7Li=,

99, 6.462758, 9Be=, 910, 6.475071, 10B==

In[24]:= ListLinePlot@data@@All, 81, 2<DD,
Mesh Ø All, PlotRange Ø 80, 9<, Frame Ø True,
FrameLabel Ø 8Style@"Atomic mass number", 9D,

Style@"Binding energy HMeVL", 9D<D

Out[24]=

0 50 100 150 200
0

2

4

6

8

Atomic mass number

Bi
nd

in
g

en
er

gy
HM

eV
L

Data from many possible sources – imported from a collector, a database, an online source –
can be used directly. For example, this imports the positions of the atoms on a human protein,
grouped by amino acid residue.

In[25]:= positions = ProteinData@"PAH", "AtomPositions", "Residue"D;
Take@positions@@All, 2DD, 8D

Out[26]= 88-2540.6, 3683.2, 1606.4<, 8-2198.3, 3551.7, 1698.<,
8-2103.1, 3212.1, 1554.4<, 8-2017.6, 2937.4, 1804.2<,
8-1649.6, 2912.8, 1901.5<, 8-1451.6, 2689.9, 2141.6<,
8-1397.1, 2827.3, 2492.5<, 8-1198.3, 2531.6, 2626.9<<

These data can then be used to visualize the conformation of the protein backbone by running a
Bézier curve through the data and wrapping that curve in a tube.

6 An introduction to Mathematica

In[27]:= Graphics3D@Tube@BezierCurve@positions@@All, 2DDD, 80DD

Out[27]=

Working with data
A typical workflow with many kinds of data involves: import, cleaning/filtering, analysis, visual-
ization, export of results. The data itself can take many different forms: tabular/numerical data,
images, sound files, movies, HTML pages, and many other types. Once the data are in Mathemat-
ica, the statistical and visualization tools can be applied to analyze and visualize them. For exam-
ple, this imports some sample data from a spreadsheet.

In[28]:= data = Import@"sampledata.xlsx", 8"Data", 1<D

Out[28]= 880., -8.18672<, 80.25, -4.6057<,
80.5, -0.709252<, 80.75, 0.300171<, 81., 1.91848<,
81.25, 2.2322<, 81.5, 2.7596<, 81.75, 1.94169<,
82., 0.748574<, 82.25, -0.852022<, 82.5, -0.368416<,
82.75, 0.690119<, 83., 0.488073<, 83.25, 1.83513<,
83.5, 2.80307<, 83.75, 7.2199<, 84., 11.6129<<

A plot of the raw data gives a quick picture of the behavior.

In[29]:= ListPlot@dataD

Out[29]=

1 2 3 4

-5

5

10

This fits the data with a linear model using the basis functions x, x2, and x3.

In[30]:= model = LinearModelFitAdata, 9x, x2, x3=, xE;

1.1 7

In[31]:= model@"BestFit"D

Out[31]= -8.42456 + 19.815 x - 11.4307 x2 + 1.93117 x3

This shows the model together with the raw data.

In[32]:= Show@
Plot@model@xD, 8x, 0, 4<, PlotRange Ø AllD,
ListPlot@dataD

D

Out[32]=

1 2 3 4

-5

5

10

Data can be imported directly from the internet; in the following, we import an image from a
NASA website and operate on it using built-in image processing tools.

In[33]:= sun = Import@
"http:êêwww.nasa.govêimagesêcontentê491318main_week27-

transit_946-710.jpg"D

Out[33]=

In[34]:= EdgeDetect@sunD

Out[34]=

In the following, three-dimensional digital elevation data contained in an archive from the USGS
National Elevation Dataset are used to reconstruct a surface.

8 An introduction to Mathematica

In[35]:= Import@"NED_40638016.zip"D

Out[35]=

In[36]:= Import@"NED_40638016.zip", "CoordinateSystemInformation"D

Out[36]= GEOGCS Ø 8NAD83, DATUM Ø 8North_American_Datum_1983, SPHEROID Ø

8GRS 1980, 6378137, 298.257, AUTHORITY Ø 8EPSG, 7019<<,
TOWGS84 Ø 80, 0, 0, 0, 0, 0, 0<, AUTHORITY Ø 8EPSG, 6269<<,

PRIMEM Ø 8Greenwich, 0, AUTHORITY Ø 8EPSG, 8901<<,
UNIT Ø 8degree, 0.0174533, AUTHORITY Ø 8EPSG, 9108<<,
AXIS Ø 8Lat, NORTH<, AXIS Ø 8Long, EAST<,
AUTHORITY Ø 8EPSG, 4269<<

In[37]:= elevations = Import@"NED_40638016.zip", 8"ARCGrid", "Data"<D;
Dimensions@elevationsD

Out[38]= 8575, 799<

In[39]:= ListPlot3D@elevations, MaxPlotPoints Ø 300,
ColorFunction Ø "Topographic", PlotRange Ø AllD

Out[39]=

1.1 9

Dynamic interactivity
In addition to the computational tools such as those described above, Mathematica also contains
tools for creating dynamic interfaces to interact with expressions with which you are working. In
this section we will give a few short examples of what is possible, waiting until Chapter 11 for a
methodical look at how to program these elements.

Several functions are available to create interfaces in which you manipulate parameters dynami-
cally through controls such as sliders, tabs, checkboxes, pulldown menus, and other mouse-
driven interfaces.

In[40]:= TabView@
Table@TraditionalForm@f@xDD Ø Plot@f@xD, 8x, 0, 2 p<D,
8f, 8Sin, Cos, Tan<<DD

Out[40]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL cosHxL tanHxL

You can interact with plots directly through the use of dynamic Locator objects. In the follow-
ing example, moving the points with your mouse will cause the fitted model and its plot to be
dynamically updated.

In[41]:= ManipulateA

model = LinearModelFitApts, 9x, x2, x3=, 8x<E;

Plot@model@xD, 8x, 0, 1<, PlotRange Ø 2D,
88pts, 88.1, .6<, 8.2, -.4<, 8.45, 0.3<,

80.56, 0.1<, 8.92, .25<<<, Locator<E

Out[41]=
0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

10 An introduction to Mathematica

The following fine tunes a segmentation task by using dynamic elements to manually select
regions to start the segmentation.

In[42]:= DynamicModuleB8pts = 8881, 186<, 8238, 188<, 889, 281<<<,

LocatorPane@Dynamic@ptsD, Row@8
Image@headD,
Dynamic@Image@

Colorize@ImageForestingComponents@head, pts, 5DDDD<DD,

Initialization ß :head = ;>F

Out[42]=

Programming
With the 3000+ functions built into Mathematica, it would seem as if a function is available to
compute just about anything you might want. But that impression is mistaken. There are simply
more kinds of calculations than could possibly be included in a single program. Whether you are
interested in simulating a bond percolation computation or finding the mean square distance of a
random walk on a torus, Mathematica does not have a built-in function to do everything that you
could possibly want. What it does have – and what really makes it the amazingly useful tool it is –
is the capability to define your own functions and use them like the built-in functions. This is
called programming, and it is what this book is all about.

Sometimes, the programs you create will be succinct and focused on a very specific task.
Mathematica possesses a rich set of tools that enable you to quickly and naturally translate the
statement of a problem into a program. For example, the following program defines a test for
perfect numbers, numbers that are equal to the sum of their proper divisors.

In[43]:= PerfectQ@n_D := DivisorSigma@1, nD ã 2 n

1.1 11

Define a second function to select those numbers from a range of integers that pass this PerÖ
fectQ test.

In[44]:= PerfectSearch@n_D := Select@Range@nD, PerfectQD

This then finds all perfect numbers less than 1 000 000.

In[45]:= PerfectSearchA106E

Out[45]= 86, 28, 496, 8128<

Sometimes you need to create new objects and operate with them like the built-in expressions.
For example, below we create a new graphical object that behaves much like some of the built-in
graphics objects. An auxiliary function defines the vertices of a regular n-gon, while the second
function, RegularPolygon, creates a polygon graphics object that will display as a regular
polygon like built-in objects such as Circle, Line , and Polygon .

In[46]:= vertices@n_D := Table@8Cos@2 p a ê nD, Sin@2 p a ê nD<, 8a, 0, n<D

In[47]:= RegularPolygon ê: Graphics@RegularPolygon@n_DD :=

Graphics@Line@vertices@nDD, AspectRatio Ø AutomaticD

In[48]:= Graphics@RegularPolygon@8DD

Out[48]=

Of course, sooner or later the task at hand requires a more involved program, stretching across
several lines or even pages of code. More involved programs, especially those intended for others,
typically have features such as optional arguments, warning messages issued when the user
supplies bad arguments, usage messages, and so on. For example, here is a program – with some
of these elements – that generates a network representing a bond percolation problem.

In[49]:= Options@BondPercolationD = Options@GraphD;

In[50]:= BondPercolation::baddims =
"The arguments `1` and `2`, giving the grid

dimensions, should be positive integers.";

12 An introduction to Mathematica

In[51]:= BondPercolation::usage =
"BondPercolation@8m,n<,probD simulates a bond

percolation on an män rectangular lattice

using 0<prob<1 as the probability of a bond

forming between a site and its neighbors.";

In[52]:= BondPercolation@8m_, n_<, prob_, opts : OptionsPattern@DD :=

Module@8gr<, If@! HIntegerQ@mD && IntegerQ@nDL,
Message@BondPercolation::baddims, m, nD,
gr = GridGraph@8m, n<D; Graph@Pick@EdgeList@grD,

RandomVariate@BernoulliDistribution@probD,
EdgeCount@grDD, 1D, optsDDD

This runs a simulation for a 13ä21 grid, assuming a 47% probability of a bond between any pair of
vertices.

In[53]:= gr = BondPercolation@813, 21<, 0.47D;
HighlightGraph@GridGraph@813, 21<D,
gr, GraphHighlightStyle Ø "DehighlightGray"D

Out[54]=

Setting up the percolation program to return a Graph object enables you to take advantage of all
the built-in functions for styling or doing computation on the graph, for example, computing the
size of the strongly connected components; or determining if there is a cycle that visits every
vertex exactly once; or finding connected paths from one edge to another.

In[55]:= Map@Length, ConnectedComponents@grDD

Out[55]= 83, 16, 11, 3, 4, 3, 2, 2, 12,
65, 15, 9, 2, 4, 2, 59, 2, 7, 2, 18, 2<

In[56]:= HamiltonianGraphQ@grD

Out[56]= False

1.1 13

In[57]:= FindPercolationPath@gr_, dims : 8dimx_, dimy_<D :=

Module@8vert, bot, top, spFun<,
vert = VertexList@GridGraph@dimsDD;
bot = Select@vert, Mod@Ò, dimxD ã 1 &D;
top = Select@vert, Mod@Ò, dimxD ã 0 &D;
spFun = FindShortestPath@gr, All, AllD;
Cases@Outer@spFun, bot, topD,
lis_List ê; Length@lisD � 0, 82<DD

In[58]:= path = FindPercolationPath@gr, 813, 21<D;
HighlightGraph@GridGraph@813, 21<D,
Apply@UndirectedEdge, Map@Partition@Ò, 2, 1D &, pathD, 82<D,
GraphHighlightStyle Ø "Thick"D

Out[59]=

These examples use a variety of programming styles and constructs: functional programming,
rule-based programming, pure functions, and more. We do not expect you to understand the
different programming examples in this section at this point – that is what this book is all about!
What you should understand is that, in many ways, Mathematica is designed to be as broadly
useful as possible and that there are many computations for which Mathematica does not have a
built-in function, so, to make full use of its many capabilities, you will sometimes need to pro-
gram. The main purpose of this book is to show you how.

Another purpose is to teach you the basic principles of programming. These principles –
making assignments, defining rules, using conditionals, recursion, and iteration – are applicable
(with great differences in detail, to be sure) to all other programming languages.

1.2 Getting started
Before you can really get going using Mathematica, you will need to know how to start your
Mathematica session, how to stop it, and how to get out of trouble when things go wrong. This
section provides information about starting Mathematica, working with the notebook interface,
basic syntax of commands, and several other topics that will be of interest to the novice.

14 An introduction to Mathematica

Starting up Mathematica
How you start up Mathematica will depend somewhat on the platform you are using.

Ê Windows: go to the Start menu and choose Programs � Wolfram Mathematica �

Mathematica X (where X represents the current version, Mathematica 8 as of the publication
of this book).

Ê Macintosh OS X: double-click the Mathematica icon in the folder in which it was installed,
typically, the Applications folder.

Ê Linux/Unix: type mathematica in a shell and then press Û.

The computer will then load parts of Mathematica into its memory and soon a blank window will
appear on the screen. This window, called a notebook, is the visual interface to Mathematica.

The notebook interface
All your work in Mathematica is typically done in what is referred to as a notebook. This notebook
interface has many of the familiar tools and characteristics of a word processor – menus, tool-
bars, palettes – but also includes items specific to the work you will do with Mathematica includ-
ing tools for writing text, entering and formatting mathematical formulas, constructing and
editing graphics, and balancing brackets in code. In addition, notebooks provide features for
outlining material and creating slide shows which you may find useful for giving talks and
demonstrations. Of course, notebooks are also the environment in which you perform computa-
tions, write and run programs, create graphics, import data and files, and so on.

When a blank notebook first appears on the screen, either from just starting Mathematica or
from selecting New in the File menu, you can start typing immediately. For example, type

1.2 Getting started 15

N@Pi, 200D and then press ˜ÎÛÏ (hold down the Shift key while pressing the Enter key) to
evaluate an expression. Mathematica will evaluate the result and print the 200-decimal digit
approximation to p on the screen.

Notice that when you evaluate an expression in a notebook, Mathematica adds input and output
prompts. In the example notebook above, these are denoted In[1]:= and Out[1]=. These prompts
can be thought of as markers (or labels) that you can refer to during your Mathematica session.

When you start typing, Mathematica places a bracket on the far right side of the window that
encloses the cell in which you are working. These cell brackets are helpful for organizational pur-
poses within the notebook. Double-clicking cell brackets will open any collapsed cells, or close
any groups of cells. In the notebook displayed below, double-clicking the cell bracket containing
“1.1 Overview of basic operations” will open (or close) the cell to display (or hide) its contents:

16 An introduction to Mathematica

With cell brackets you can organize your work in an orderly manner and create outlines of your
material. For a complete description of cell brackets and many other interface features consult
the built-in tutorial Working with Cells (WMDC), where WMDC refers to the Wolfram Mathemat-
ica Documentation Center.

For information on other features such as saving, printing, and editing notebooks, consult the
tutorial Using a Notebook Interface (WMDC).

Entering input
New input can be entered whenever there is a horizontal line that runs across the width of the
notebook. If one is not present where you wish to place an input cell, move the cursor up and
down until it changes to a horizontal bar and then click the mouse once. A horizontal line should
appear across the width of the window. You can immediately start typing and an input cell will
be created.

Input can be entered exactly as it appears in this book. To get Mathematica to evaluate any
expression that you have entered, press ˜+Û, that is, hold down the Shift key and then press
the Enter key (on Mac OS X, press ˜+Á).

You can enter mathematical expressions in a traditional looking two-dimensional format
using either palettes for quick entry of template expressions, or keyboard equivalents. For exam-
ple, the following expression can be entered by using the Basic Math Assistant palette (under the
Palettes menu), or through a series of keystrokes. For details of inputting mathematical expres-
sions, see the tutorial Entering Two-Dimensional Input (WMDC).

In[1]:= ‡
1

1 - x3
„x

Out[1]=

ArcTanB 1+2 x

3
F

3
-
1

3
Log@1 - xD +

1

6
LogA1 + x + x2E

As noted previously, Mathematica enters the In and Out prompts for you. You do not type these
prompts. You will see them after you evaluate your input.

To refer to the result of the previous calculation use the symbol %.

In[2]:= 2100

Out[2]= 1267650600228229401496703 205 376

In[3]:= % + 1

Out[3]= 1267650600228229401496703 205 377

To refer to the result of any earlier calculation use its Out@iD label or, equivalently, % i.

1.2 Getting started 17

In[4]:= Out@1D

Out[4]=

ArcTanB 1+2 x

3
F

3
-
1

3
Log@1 - xD +

1

6
LogA1 + x + x2E

In[5]:= %2

Out[5]= 1267650600228229401496703 205 376

Mathematical expressions
You can enter mathematical expressions in a linear syntax using arithmetic operators common
to almost all computer languages.

In[6]:= 39 ê 13

Out[6]= 3

Enter this expression in the traditional form by typing 39, ‚Î/Ï, then 13.

In[7]:=
39

13

Out[7]= 3

The caret (^) is used for exponentiation.

In[8]:= 2^5

Out[8]= 32

To enter this expression in a more traditional typeset form, type 2, ‚Î^Ï, and then 5.

In[9]:= 25

Out[9]= 32

Multiplication can be indicated by putting a space between the two factors, as in mathematics.
Mathematica will automatically display the traditional multiplication sign, �, between two num-
bers. The asterisk (*) is also used for that purpose, as is traditional in most computer languages.

In[10]:= 2 � 5

Out[10]= 10

In[11]:= 2 * 5

Out[11]= 10

Operations are given the same precedence as in mathematics. In particular, multiplication and
division have a higher precedence than addition and subtraction: 3 +4 � 5 equals 23 and not 35.

18 An introduction to Mathematica

In[12]:= 3 + 4 � 5

Out[12]= 23

You can enter typeset expressions in several different ways: directly from the keyboard as we
did above, using a long, functional form, or via palettes available from the Palettes menu. Table 1.1

shows some of the more commonly used typeset expressions and how they are entered through
the keyboard. Try to become comfortable entering these inputs so that you can easily enter the
kinds of expressions in this book.

Table 1.1. Entering typeset expressions

Display form Long HfunctionalL form Key strokes

x2 Superscript@x,2D x,‚+6,2

xi Subscript@x,iD x,‚+_,i
x
y

FractionBox@x,2D x,‚+ê,y

x SqrtBox@xD ‚+2,x

x ¥ y GreaterEqual@x,2D x,Â,>=,Â,y

Syntax of functions
Built-in functions are also written as they are in mathematics books, except that function names
are capitalized and their arguments are enclosed in square brackets.

In[13]:= FactorAx5 - 1E

Out[13]= H-1 + xL I1 + x + x2 + x3 + x4M

Almost all the built-in functions are spelled out in full, as in the above example. The exceptions
to this rule are well-known abbreviations such as D for differentiation, Sqrt for square roots,
Log for logarithms, and Det for the determinant of a matrix. The convention of spelling out
function names is quite useful when you are not sure whether a function exists to perform a
particular task. For example, to compute the conjugate of a complex number, an educated guess
would be:

In[14]:= Conjugate@3 + 4 ÂD

Out[14]= 3 - 4 Â

Functions of more than one argument separate their arguments with commas, as in traditional
mathematical notation. For example, while the following one-argument form of RandomReal
gives a single random number between 0 and 10, the two-argument form can be used to generate
a vector or an array of random numbers.

1.2 Getting started 19

In[15]:= RandomReal@10D

Out[15]= 3.27946

In[16]:= RandomReal@10, 12D

Out[16]= 83.47031, 4.01486, 1.3706, 3.326, 0.676231, 8.12965,
3.40873, 7.27445, 6.34518, 1.39347, 2.04957, 2.45416<

Lists
Lists are a basic data type in Mathematica and are used to represent vectors and matrices (and
tensors of any dimension), as well as additional arguments to functions such as in Plot and
Integrate. Although square brackets @ and D are used to enclose the arguments to functions,
curly braces 8 and < are used to indicate a list or range of values.

Using lists to represent vectors, the following computes the dot product of two vectors using
traditional notation.

In[17]:= 8a, b, c<.8x, y, z<

Out[17]= a x + b y + c z

Lists are used as the arguments to many built in functions.

In[18]:= PlotBSinBx + 2 Sin@xDF, 8x, -2 p, 2 p<F

Out[18]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

In[19]:= Integrate@Cos@xD, 8x, a, b<D

Out[19]= -Sin@aD + Sin@bD

In[20]:= RandomReal@8-100, 100<, 85, 5<D

Out[20]= 88-43.2895, -3.24399, 34.0708, -30.6333, -5.28155<,
825.1997, 76.4115, 54.9255, 46.6512, -55.571<,
8-40.5392, 20.3037, 36.1977, -78.2481, -93.5398<,
8-27.7766, 67.3532, 59.0608, 80.207, -58.7632<,
822.7737, -6.28497, -81.3275, 65.8295, -76.538<<

20 An introduction to Mathematica

In the Plot example, the list 8x, -2 p, 2 p< indicates that the function sinIx + 2 sinHxLM
is to be plotted over an interval as x takes on values from -2 p to 2 p. The Integrate expression

above is equivalent to the integral Ÿa
bcosHxL „x. In the last example with RandomReal , the first

list specifies the range from which numbers will be chosen and the second list specifies the
dimensions, in this case, a 5ä5 array.

Mathematica’s list-manipulating capabilities will be explored in detail in Chapter 3.

Semicolons
When you end an expression with a semicolon (;), Mathematica computes its value but does not
display it. This is quite helpful when the result of the expression would be very long and you do
not need to see it. In the following example, we first create a list of the integers from 1 to 10 000,
suppressing their display with the semicolon; we then compute their sum and average.

In[21]:= nums = Range@10000D;

In[22]:= Total@numsD

Out[22]= 50005000

In[23]:=
%

Length@numsD

Out[23]=
10001

2

With the notebook interface, you can input as many lines as you like within an input cell;
Mathematica will evaluate them all, in order, when you enter ˜ÎÛÏ.

Alternative input syntax
There are several different ways to write expressions in Mathematica. Usually, you will simply use
the traditional notation, fun@xD, for example. But you should be aware of several alternatives to
this syntax that are sometimes used (see Table 1.2).

Here is an example of standard function notation for a function, N , of one argument.

In[24]:= N@pD

Out[24]= 3.14159

This uses a prefix operator.

In[25]:= Nüp

Out[25]= 3.14159

1.2 Getting started 21

Here is the postfix operator notation.

In[26]:= p êê N

Out[26]= 3.14159

For functions with two arguments, you can use an infix notation. The following expression is
identical to N@p, 30D.

In[27]:= p~N~30

Out[27]= 3.14159265358979323846264338328

Table 1.2. Alternative function notation

Notation Input

Traditional N@pD
Prefix Nüp

Postfix pêêN
Infix p~N~100

Finally, many people prefer to use a more traditional syntax when entering and working with
mathematical expressions. For example, this computes an integral using standard Mathematica
syntax.

In[28]:= Integrate@1 ê Sin@xD, xD

Out[28]= -LogBCosB
x

2
FF + LogBSinB

x

2
FF

The same integral, represented in a more traditional manner, can be entered from palettes or
using keyboard shortcuts.

In[29]:= ‡
1

Sin@xD
„x

Out[29]= -LogBCosB
x

2
FF + LogBSinB

x

2
FF

Many mathematical functions have traditional symbols associated with their operations and,
when available, these can be used instead of the fully spelled-out names. For example, this com-
putes the intersection of two sets using the Intersection function.

In[30]:= Intersection@8a, b, c, d, e<, 8b, f, a, z<D

Out[30]= 8a, b<

Or you can do the same computation using more traditional notation.

22 An introduction to Mathematica

In[31]:= 8a, b, c, d, e< › 8b, f, a, z<

Out[31]= 8a, b<

To learn how to enter these and other notations quickly, either from palettes or directly from
the keyboard using shortcuts, refer to the tutorial Two-Dimensional Expression Input (WMDC).

Comments
Input can include comments – text that is not evaluated – by enclosing that text with H* and *L.
The comment is inert; it will be ignored by the Mathematica evaluator.

In[32]:= D@Sin@xD, 8x, 1<D H* first derivative of sin w.r.t. x *L

Out[32]= Cos@xD

Errors
Nobody is perfect. In the course of using and programming Mathematica, you will encounter
various sorts of errors, some obvious, some very subtle, some easily rectified. Perhaps the most
frequent error you will make is misspelling the name of a function. Mathematica uses syntax-
coloring to help you identify misspelled symbol names. For example, in the following input, Sin
is deliberately misspelled. Mathematica colors any symbol it does not know about blue. If you
evaluate the input, it is returned unevaluated because Mathematica has no built-in rules for a
function whose name is Sine.

In[33]:= Sine@30 DegreeD

Out[33]= Sine@30 °D

Of course it does have rules for the function Sin.

In[34]:= Sin@30 DegreeD

Out[34]=
1

2

Having your original expression returned unevaluated – as if this were perfectly normal – is a
problem you will often encounter. Aside from misspelling a function name, or simply using a
function that does not exist, another case where this occurs is when you give the wrong number
of arguments to a function, especially to a user-defined function. For example, the PerfecÖ
tSearch function defined earlier takes a single argument; if we mistakenly give it two argu-
ments, the input is returned unevaluated because Mathematica has no rule for a function PerfecÖ
tSearch with two arguments.

In[35]:= PerfectSearchA106, 4E

Out[35]= PerfectSearch@1000000, 4D

1.2 Getting started 23

Some kinds of inputs generate genuine error messages. Syntax errors, as shown above, are one
example. The built-in functions are designed to usually warn you of such errors in input. In the
first example below, we have supplied the Det function with a nonsquare matrix. In the second
example, FactorInteger operates on integers only and so the real number argument causes
the error condition.

In[36]:= Det@881, 2, 4<, 82, 8, 4<<D

Det::matsq : Argument 881, 2, 4<, 82, 8, 4<< at position 1 is not a non-empty square matrix. à

Out[36]= Det@881, 2, 4<, 82, 8, 4<<D

In[37]:= FactorInteger@34.2D

FactorInteger::exact : Argument 34.2` in FactorInteger@34.2D is not an exact number. à

Out[37]= FactorInteger@34.2D

Section 5.7 will introduce the framework for creating and issuing your own messages for the
programs you develop in Mathematica.

Getting out of trouble
Although it is convenient to have Mathematica tell you when you have done something wrong,
from time to time, you will evaluate an input which will cause Mathematica to misbehave in some
way, perhaps by just going silent and not returning a result for a long time or by printing out
screen after screen of not terribly useful information. In these cases, you can try to “interrupt” the
calculation. How you do this depends on your computer’s operating system:

Ê Macintosh OS X: type ÌÎ.Ï (the Command key and the period);

Ê Windows: type ‡Î.Ï (the Alt key and the period);

Ê Linux/Unix: type ‚Î.Ï and then type a and then Á.

These attempts to stop the computation will sometimes fail. If after waiting a reasonable amount
of time (say, a few minutes), Mathematica still seems to be stuck, you will have to “kill the kernel”.
Before attempting to kill the kernel, try to convince yourself that the computation is really in a
loop from which it will not return and that it is not just an intensive computation that requires a
lot of time. Killing the kernel is accomplished by selecting Quit Kernel from the Evaluation menu.
The kernel can then be restarted without killing the front end by first selecting Start Kernel � Local

under the Kernel menu, or you can simply evaluate a command in a notebook and a new kernel
should start up automatically.

The front end and the kernel
When you work in Mathematica you are actually working with two separate programs. They are
referred to as the front end and the kernel. The front end is the user interface. It consists of the

24 An introduction to Mathematica

notebooks that you work in together with the menu system, palettes (which are really just note-
books), and any element that accepts input from the keyboard or mouse. The kernel is the pro-
gram that does the calculations. So a typical operation between the user (you) and Mathematica
consists of the following steps, where the program that is invoked in each step is indicated in
parentheses:

Ê enter input in the notebook (front end);

Ê send input to the kernel to be evaluated by pressing ˜-Û (front end);

Ê compute the result and send it back to the front end (kernel);

Ê format and display the result in the notebook (front end).

There is one remaining piece that we have not yet mentioned. Since the kernel and front end
are two separate programs, a means of communication is necessary for these two programs to
“talk” to each other. That communication protocol is called MathLink and it comes bundled with
Mathematica. It operates behind the scenes, completely transparent to the user.

MathLink is a very general communications protocol that is not limited to communication
between the front end and the kernel, but can also be used to set up communication between the
front end and other programs on your computer, programs like compiled C and Fortran code. It
can also be used to connect a kernel to a word processor or spreadsheet or many other programs.

In fact, there are numerous communications protocols that come with Mathematica. For
example, you can communicate with SQL databases via DatabaseLink, Java through J/Link, .NET
via .NET/Link. These protocols allow you to extend Mathematica into these other domains and
work with them in the Mathematica interface. These are all beyond the scope of this book, but if
you are interested, there is extensive documentation for each in the Documentation Center as
well as several books and articles on these protocols (see the bibliography at the end of this book).

1.3 Getting help
Function information
Mathematica contains extensive documentation that you can access in a variety of ways. It is also
designed so that you can create new documentation for your own functions and program in such
a way that users of your programs can get help in exactly the same way as they would for Mathe-
matica’s built-in functions.

If you know the name of a function but are unsure of its syntax or what it does, the easiest way
to find out about it is to evaluate ?function. For example, here is the usage message for Map.

1. 25

In[1]:= ? Map

MapA f , exprE or f êü expr applies f to each element on the first level in expr.

MapA f , expr, levelspecE applies f to parts of expr specified by levelspec. �à

Also, if you were not sure of the name of a command, you can use wildcard characters to
display all functions that contain certain characters. For example, this displays all functions that
start with "Random".

In[2]:= ? Random*

System`

Random RandomGraph RandomPermutation RandomSample

RandomChoice RandomImage RandomPrime RandomSeed

RandomComplex RandomInteger RandomReal RandomVariate

Clicking on one of these links will produce a short usage statement about that function. For
example, if you were to click the RandomGraph link, here is what would be displayed in your
notebook.

RandomGraph@8n, m<D gives a pseudorandom graph with n vertices and m edges.

RandomGraph@8n, m<, kD gives a list of k pseudorandom graphs.

RandomGraphAgdist, …E samples from the random graph distribution gdist.�à

Clicking the à hyperlink would take you directly to the Documentation Center where a much
more detailed explanation of this function can be found.

You can also get help by highlighting any Mathematica function and pressing the f1 key on your
keyboard (or ·+˜+F on Macintosh OS X) to display the documentation for that function.

The Documentation Center
Mathematica contains an extensive set of reference materials called the Documentation Center.
The Documentation Center allows you to search for functions easily and it provides extensive
documentation, examples, and links to related items.

26 An introduction to Mathematica

To open the documentation, select Documentation Center under the Help menu. You should
quickly see something like the following:

Notice the eight categories: Core Language, Mathematics and Algorithms, Visualization and
Graphics, Data Manipulation, Computable Data, Dynamic Interactivity, Notebooks and Docu-
ments, and Systems Interfaces & Deployment. Clicking any category will open to an extended list
of topics in that area.

Suppose you were looking for information about three-dimensional parametric plots. First
click the Visualization and Graphics category, then Function Visualization. The Documentation
Center should look like this:

1.3 Getting help 27

Clicking the ParametricPlot3D link will take you to the reference page for that function.

Alternatively, you could have evaluated ?ParametricPlot3D and then clicked the à link at
the end of the usage message.

Many additional features are available in the Documentation Center including dozens of
examples showing the usage of each function, applications, and related functions.

28 An introduction to Mathematica

2

The Mathematica language
Expressions · Types of expressions · Atoms · Structure of expressions · Evaluation of expressions ·

Defining variables and functions · Immediate and delayed assignments · Term rewriting ·
Functions with multiple definitions · Predicate functions · Relational and logical operators · Bit

operators · Attributes

Although programming languages are commonly thought to have their early history in the 1940s
and 1950s when the first digital computers came about, they in fact go back much earlier to the
creation of the Jacquard loom (1801) and also player pianos (~1870s), both of which used physical
punch cards to code instructions. Regardless of whether you use punch cards or a more modern
means to create and store your programs, programming languages are described by specifying
their syntax and semantics. Syntax refers to the form, indicating what symbols can be put together
in what order to make a meaningful construct in any given language. In other words, the syntax
of a programming language is the set of rules that define what is a valid input or program. Seman-
tics, on the other hand, refers to the meaning of expressions within a language. Although we will
not give a complete, rigorous description of the syntax of the Mathematica language here, it is
important to understand some of the basic structures and their syntax upon which everything is
built. Fortunately, the Mathematica language can be understood quickly by learning about just a
few basic objects. In this chapter we will focus on the Mathematica language with particular
emphasis on expressions. We will also look at how to define and name new expressions, how to
combine them using logical operators, and how to control properties of expressions through the
use of attributes.

2.1 Expressions
All the objects that you work with in Mathematica have a similar underlying structure even
though they may appear different at first sight. This means that things like a simple computation,

a data object, a graphic, the cells in your Mathematica notebook, even the notebook itself, all have
a similar structure – they are all expressions, and an understanding of their structure and syntax is
essential to mastering Mathematica.

Types of expressions
When doing a simple arithmetic operation such as 3 + 4 � 5, you are usually not concerned with
exactly how a system such as Mathematica actually performs the additions or multiplications. Yet
it is extremely useful to be able to see the internal representation of expressions as this allows you
to manipulate them in a consistent and powerful manner.

Internally, Mathematica categorizes the objects that it operates on as different types: integers are
distinct from real numbers; lists are distinct from numbers. One of the reasons that it is useful to
identify these different data types is that specialized algorithms can be used on certain classes of
objects that will help to speed up the computations involved.

The Head function is used to identify types of objects. For numbers, it will report whether the
number is an integer, a rational number, a real number, or a complex number.

In[1]:= 8Head@7D, Head@1 ê 7D, Head@7.0D, Head@7 + 2 ÂD<

Out[1]= 8Integer, Rational, Real, Complex<

In fact, every Mathematica expression has a Head that gives some information about that type of
expression.

In[2]:= Head@81, 2, 3, 4, 5<D

Out[2]= List

In[3]:= HeadB F

Out[3]= Image

In[4]:= Head@a + bD

Out[4]= Plus

Atoms
The basic building blocks of Mathematica – the atoms – from which every expression is ultimately
constructed are symbols, numbers, and strings. In addition, graphs and sparse arrays are also
atomic (see Table 2.1).

30 The Mathematica language

In[5]:= 8AtomQ@x31D, AtomQ@1.2345D, AtomQ@"The rain in Spain"D<

Out[5]= 8True, True, True<

Table 2.1. Atomic expressions

Atom Examples
Integer -3,0,28,…

Rational - 1

2
, 8

9
,…

Real 0.2348,…

Complex 5-4Â,…

String "The cat in the hat."

Symbol Plot, myFun,…

SparseArray SparseArray@<4>,83,3<D

Graph

Image

Although you can determine the type of any atomic expression using Head as described above,
in general you cannot directly extract parts of an atom.

In[6]:= Part@1.2345, 1D

Part::partd : Part specification 1.2345P1T is longer than depth of object. à

Out[6]= 1.2345P1T

A symbol consists of a sequence of letters and digits, not starting with a digit. This applies to
both user-defined symbols and to the built-in symbols.

In[7]:= Head@x31D

Out[7]= Symbol

In[8]:= Head@IntegrateD

Out[8]= Symbol

In Mathematica, built-in constants are all symbols.

2.1 Expressions 31

In[9]:= 8Head@pD, Head@‰D, Head@EulerGammaD, Head@KhinchinD<

Out[9]= 8Symbol, Symbol, Symbol, Symbol<

Strings are also atomic objects; they are composed of characters and are enclosed in quotes.
Strings will be discussed in detail in Chapter 9.

In[10]:= Head@"Mathematica"D

Out[10]= String

Graphs are abstract objects consisting of vertices and edges. They too are atomic.

In[11]:= HeadB F

Out[11]= Graph

In[12]:= AtomQB F

Out[12]= True

Sparse arrays are a special kind of atomic expression. They give a compact and highly efficient
means of representing large arrays of numbers, typically with many zero elements. Sparse arrays
in Mathematica are represented by SparseArray whose output form displays the number of
nondefault elements and the dimension of the array.

In[13]:= mat = SparseArray@8i_, i_< Ø 1, 84, 4<D

Out[13]= SparseArray@<4>, 84, 4<D

In[14]:= MatrixForm@matD
Out[14]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

32 The Mathematica language

In[15]:= AtomQ@matD

Out[15]= True

We will have more to say about sparse arrays in Section 8.3.

Structure of expressions
As mentioned earlier, everything in Mathematica is an expression. Expressions are either atomic,
as described in the previous section, or they are normal expressions, built up from atomic expres-
sions and containing a head and zero or more elements. Normal expressions are of the following
form, where h is the head of the expression and the ei are the elements which may themselves be
atomic or normal expressions.

h@e1, e2, …, enD

Using Head to determine the type of atomic expressions is entirely general. For normal
expressions, Head simply gives the head of that expression.

In[16]:= Head@a + b + cD

Out[16]= Plus

To see the full internal representation of an expression, use FullForm.

In[17]:= FullForm@a + b + cD
Out[17]//FullForm=

Plus@a, b, cD

In[18]:= FullForm@8a, b, c<D
Out[18]//FullForm=

List@a, b, cD

The important thing to notice is that both of these objects (the sum and the list) have very similar
internal representations. Each is made up of a function (Plus and List , respectively), each
encloses its arguments in square brackets, and each separates its arguments with commas. This is
the form of every normal expression in Mathematica.

Regardless of how an atomic or normal expression may appear in your notebook, its structure
is uniquely determined by its head and parts as seen using FullForm. This is important for
understanding the Mathematica evaluation mechanism which depends on the matching of pat-
terns based on their internal representation, a subject we will turn to in detail in Chapter 4.

The number of elements in any expression is given by its length. The internal representation,
as returned by FullForm, displays this expression as a function with three arguments.

In[19]:= Length@a + b + cD

Out[19]= 3

2.1 Expressions 33

Here is a more complicated expression.

In[20]:= expr = Sin@xD Ia x2 + b x + cM

Out[20]= Ic + b x + a x2M Sin@xD

Its head is Times because it is composed of the product of Sin@xD and the quadratic
polynomial.

In[21]:= Head@exprD

Out[21]= Times

Its length is 2 since it only contains two factors.

In[22]:= Length@exprD

Out[22]= 2

Although the FullForm of this expression is a little harder to decipher, if you look carefully you
should see that it is composed of the product of Plus@…D and Sin@xD. In other words, its head,
Times, has two arguments.

In[23]:= FullForm@exprD
Out[23]//FullForm=

Times@Plus@c, Times@b, xD, Times@a, Power@x, 2DDD, Sin@xDD

There are several important differences between atomic expressions and nonatomic expres-
sions. While the heads of all expressions are extracted in the same way – using the Head function
– the head of an atom provides different information than the head of other expressions. As
mentioned above, the head of a symbol or string is the kind of atom that it is.

In[24]:= Head@IntegrateD

Out[24]= Symbol

In[25]:= Head@"hello"D

Out[25]= String

The head of a number is the specific kind of number that it is, its data type.

In[26]:= Head@2D

Out[26]= Integer

In[27]:= Head@5.21D

Out[27]= Real

The FullForm of an atom (except a complex or rational number) is the atom itself.

34 The Mathematica language

In[28]:= FullForm@fD
Out[28]//FullForm=

f

In[29]:= FullFormB
5

7
F

Out[29]//FullForm=

Rational@5, 7D

Atoms have no parts (which of course is why they are called atoms). In contrast, nonatomic
expressions do have parts. To extract different parts of an expression, use the Part function. For
example, the first part of the expression a + b is a.

In[30]:= Part@a + b, 1D

Out[30]= a

The second part is b.

In[31]:= Part@a + b, 2D

Out[31]= b

This should be clearer from looking at the internal representation of this expression.

In[32]:= FullForm@a + bD
Out[32]//FullForm=

Plus@a, bD

So Part@a + b, 1D is another way of asking for the first element of Plus@a, bD, which is
simply a. In general, Part@expr, nD gives the nth element of expr. The zeroth part is the head of
the expression.

In[33]:= Part@a + b, 0D

Out[33]= Plus

As stated above, atomic expressions have no parts.

In[34]:= Part@"vini vidi vici", 1D

Part::partd : Part specification vini vidi viciP1T is longer than depth of object. à

Out[34]= vini vidi viciP1T

This error message indicates that the string "vini vidi vici" has no first part, since it is
atomic. The expression expr@@1DD is shorthand for Part@expr, 1D. Similarly, complex numbers
are atomic and hence have no parts.

In[35]:= H3 + 4 ÂL@@1DD

Part::partd : Part specification H3 + 4 ÂLP1T is longer than depth of object. à

Out[35]= H3 + 4 ÂLP1T

2.1 Expressions 35

Because everything in Mathematica has the common structure of an expression, most of the
built-in functions that are used for list manipulation, such as Part , can also be used to manipu-
late the arguments of any other kind of expression (except atoms).

In[36]:= Append@w + x y, zD

Out[36]= w + x y + z

This result can best be understood by looking at the FullForm of the following two expressions.

In[37]:= FullForm@w + x yD
Out[37]//FullForm=

Plus@w, Times@x, yDD

In[38]:= FullForm@w + x y + zD
Out[38]//FullForm=

Plus@w, Times@x, yD, zD

Appending z to w + x y is equivalent to adding z as an argument to the Plus function. More
generally:

In[39]:= Append@f@a, bD, cD

Out[39]= f@a, b, cD

For more complicated expressions, you might find it useful to display the internal representa-
tion with the TreeForm function, which shows the “tree structure” of an expression. In the
following example, the root node of the tree is Plus , which then branches three times at c, bx,
and at ax2, the latter two branching further.

In[40]:= TreeFormAa x2 + b x + cE
Out[40]//TreeForm=

Plus

c Times

b x

Times

a Power

x 2

In[41]:= HeadAa x2 + b x + cE

Out[41]= Plus

36 The Mathematica language

The second element of this expression is the second term in the sum.

In[42]:= PartAa x2 + b x + c, 2E

Out[42]= b x

The second element of that is the second factor in the product.

In[43]:= FullForm@%D
Out[43]//FullForm=

Times@b, xD

In[44]:= Part@b x, 2D

Out[44]= x

You could extract the second part of the second element directly using Part .

In[45]:= PartAa x2 + b x + c, 2, 2E

Out[45]= x

Although parts of atomic expressions cannot, in general, be extracted with the Part function,
there are selectors available that operate on various atomic expressions. Selectors are functions
that return some part of a data object. In modern programming languages, they are used to
separate functions that operate on data objects from the data objects themselves. For example,
here are some of the selectors for rational numbers, real numbers, complex numbers, graphs, and
sparse arrays.

In[46]:= :NumeratorB
3

4
F, DenominatorB

3

4
F>

Out[46]= 83, 4<

In[47]:= MantissaExponent@3333.14152D

Out[47]= 80.333314, 4<

In[48]:= 8Re@3 - 4 ID, Im@3 - 4 ID<

Out[48]= 83, -4<

In[49]:= 8VertexList@CompleteGraph@5DD, EdgeList@CompleteGraph@5DD<

Out[49]= 881, 2, 3, 4, 5<, 81 � 2, 1 � 3, 1 � 4,
1 � 5, 2 � 3, 2 � 4, 2 � 5, 3 � 4, 3 � 5, 4 � 5<<

In[50]:= arr = SparseArray@Band@81, 1<D Ø 1, 84, 4<D;
ArrayRules@arrD

Out[51]= 881, 1< Ø 1, 82, 2< Ø 1, 83, 3< Ø 1, 84, 4< Ø 1, 8_, _< Ø 0<

2.1 Expressions 37

Evaluation of expressions
The evaluator, the part of Mathematica that evaluates expressions, follows a well-prescribed set of
rules to insure correctness and consistency in program evaluation. For example, in a logical
expression such as expr1 && expr2 && expr3, Mathematica evaluates the expressions expri in order

until it finds one to be false, at which point, evaluation is terminated. Although there are many
such rules built in (some a bit more esoteric than others), it is quite useful to identify a few of the
evaluation rules whose consequences you will occasionally encounter.

Briefly, the evaluation sequence involves the following series of steps:
1. When you evaluate an expression (by pressing ˜-Á or ˜-Û), it is left unchanged

if that expression is a number or string.

In[52]:= 123.456

Out[52]= 123.456

2. If the expression is a symbol, it is rewritten if there is an applicable rule, built-in or user-
defined. If there is no such rule for the symbol, it is unchanged.

In[53]:= mysymbol

Out[53]= mysymbol

If the expression is not a number, string, or symbol, its parts are evaluated in a specific order:
3. The head of the expression is evaluated.

4. The elements of the expression are evaluated in order, except when the head is a symbol
with a Hold attribute. In this case, some of its arguments are left in their unevaluated
forms.

5. After the head and arguments of an expression are each completely evaluated, the
expression is rewritten if there is an applicable rule in the global rule base (after making
any necessary changes to the arguments based on the attributes of the head). User-
defined rules are checked, then the built-in rule base.

6. After carrying out the previous steps, the resulting expression is evaluated in the same
way and then the result of that evaluation is evaluated, and so on until there are no more
applicable rules.

These steps just give an outline of what happens internally in the standard evaluation procedure.
If you are interested in the details, including nonstandard evaluation, see the two tutorials,
Evaluation and Evaluation of Expressions (WMDC).

38 The Mathematica language

As indicated above, arguments of expressions are evaluated prior to being passed to the calling
function (typically given by the head). This principle is common to many modern programming
languages but it does cause some surprises occasionally. For example, looking at the internal
representation of a simple sum, you might expect something like Plus@2, 2D, but that is not
what is returned after evaluation.

In[54]:= FullForm@2 + 2D
Out[54]//FullForm=

4

This is a consequence of the fact that arguments to functions are evaluated before being passed up
to the calling function, in this case, Plus . So, how can you see the internal form of an expression
before the evaluator gets to it? The answer is to use one of the many Hold functions.

In[55]:= FullForm@HoldForm@2 + 2DD
Out[55]//FullForm=

HoldForm@Plus@2, 2DD

Wrapping an expression in HoldForm causes that expression to be kept in an unevaluated form
as it is passed up to FullForm. Many of the built-in functions have one of the Hold attributes,
thus preventing initial evaluation of their arguments.

In[56]:= Attributes@PlotD

Out[56]= 8HoldAll, Protected<

In[57]:= PlotATableAxi, 8i, 2, 8, 2<E, 8x, -1, 1<, PlotStyle Ø

8Dashing@.01D, Dashing@.03D, Dashing@.05D, Dashing@.07D<E

Out[57]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Ordinarily, Plot can handle lists of functions and apply unique styles to each function. In this
case, the list structure of the first argument is not explicit – it would be after Table is evaluated
but the HoldAll attribute of Plot prevents that. To override any Hold attribute, wrap the
argument in Evaluate (or use the Evaluated option to Plot).

2.1 Expressions 39

In[58]:= PlotAEvaluateüTableAxi, 8i, 2, 8, 2<E, 8x, -1, 1<, PlotStyle Ø

8Dashing@.01D, Dashing@.03D, Dashing@.05D, Dashing@.07D<E

Out[58]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Another approach to preventing the evaluator from initially evaluating an expression is to use
Defer.

In[59]:= Defer@2 + 2D

Out[59]= 2 + 2

In[60]:= Defer@FullForm@2 + 2DD

Out[60]= Plus@2, 2D

The advantage of using Defer like this is that the output it returns is evaluatable. In other words
you can put your cursor in the output cell and evaluate it.

In[61]:= Plus@2, 2D

Out[61]= 4

Exercises
1. Give the full (internal) form of the expression a Hb + cL.

2. What is the traditional representation of Times@a, Power@Plus@b, cD, -1DD.

3. What is the part specification of the b in the expression a x2 + b x + c?

4. What do you expect to be the result of the following operations? Use the FullForm of the expres-
sions to understand what is going on.

a. IIx2 + yM z ê wM@@2, 1, 2DD.

b. Ha ê bL@@2, 2DD.

2.2 Definitions
Defining variables and functions
One of the most common tasks in any programming environment is to define functions, con-
stants, and procedures to perform various tasks. Sometimes a particular function that you need is

40 The Mathematica language

not part of the built-in set of functions. Other times, you may need to use an expression over and
over again and so it would be useful to define it once and have it available for future reference. By
defining your own functions and constants you essentially expand the range of Mathematica’s
capabilities in such a way that they work with all the built-in functions seamlessly.

For example, you might define a constant a to have a certain numeric value.

In[1]:= a = N@2 pD

Out[1]= 6.28319

Then, whenever a is used in a subsequent computation, Mathematica will find the rule associated
with a and will substitute that value wherever a occurs.

In[2]:= Cos@aD

Out[2]= 1.

To check what definitions are associated with a, evaluate ? a.

In[3]:= ? a

Global`a

a = 6.28319

The expression a = N@2 pD is called an assignment – we are assigning the value of the right-hand
side to the symbol on the left-hand side. In this example, we have made an assignment of a
constant to the symbol a.

You can also set up assignments to define functions. For example, to define a function f,
enclose its arguments in square brackets and use x_ to indicate the variable that will be substi-
tuted for x on the right-hand side.

In[4]:= f@x_D =
1

1 + x

Out[4]=
1

1 + x

The expression f@x_D on the left-hand side of this assignment is a pattern. It indicates the class of
expressions for which this definition should be used. We will have much more to say about
patterns and pattern matching in Mathematica in Chapter 4, but, for now, it is enough to say that
the pattern f@x_D matches f@any expressionD.

Once you have defined the rule for f, you can evaluate it at different values by replacing x with
any expression: numbers, symbolic expressions, images, anything!

2.2 Definitions 41

In[5]:= f@.1D

Out[5]= 0.909091

In[6]:= f@1D

Out[6]=
1

2

In[7]:= fAa2E

Out[7]=
1

1 + a2

In[8]:= fB F

Out[8]=
1

1 +

In this last example, the graph is a symbolic expression that is matched by the pattern x_ in the
definition for f. Although it might not make much mathematical sense to add and subtract
integers from a graph, symbolically it is entirely consistent.

Clear the symbols that are no longer needed.

In[9]:= Clear@a, fD

Immediate vs. delayed assignments
When you make an assignment to a symbol, you are usually only interested in giving that symbol
a specific value and then using the symbol name to represent that value in subsequent computa-
tions. When you set up definitions for functions, those functions might depend upon the values
of previously defined functions or other expressions. In such instances it is useful to delay the
assignment until the function is actually used in a computation. This is the basic difference
between immediate and delayed assignments.

An immediate assignment is written SetAlhs, rhsE or, more commonly,

lhs = rhs

42 The Mathematica language

Here lhs is an abbreviation for “left-hand side” and rhs abbreviates “right-hand side”. Using
Defer, you can see the internal form of this assignment before Mathematica has evaluated it.
Assignments are expressions with a head and two elements.

In[10]:= Defer@FullForm@x = 5DD

Out[10]= Set@x, 5D

As an example, consider defining a symbol rand1 using an immediate assignment that generates
a uniformly distributed random number between 0 and 1.

In[11]:= rand1 = RandomReal@D

Out[11]= 0.584973

Notice that the output of this assignment is the value of the right-hand side and that Mathematica
evaluates the right-hand side immediately, that is, when the assignment is made.

Delayed assignments use SetDelayedAlhs, rhsE or, in its standard input form:

lhs := rhs

Here is the internal representation of a delayed assignment.

In[12]:= Defer@FullForm@x := 5DD

Out[12]= SetDelayed@x, 5D

As an example, consider a symbol rand2 to be defined similarly to rand1, but with a delayed
assignment.

In[13]:= rand2 := RandomReal@D

Notice that the delayed assignment does not return a value when the assignment is made. In fact,
the right-hand side will not be evaluated until the symbol rand2 is used.

Let us call the function rand1 five times.

In[14]:= Table@rand1, 85<D

Out[14]= 80.584973, 0.584973, 0.584973, 0.584973, 0.584973<

Because the right-hand side of rand1 was evaluated when the definition was made, rand1 was
assigned the value 0.584973. Each subsequent call to rand1 returns that value.

In[15]:= ? rand1

Global`rand1

rand1 = 0.584973

On the other hand, creating a table of values using rand2 produces a very different result.

2.2 Definitions 43

In[16]:= Table@rand2, 85<D

Out[16]= 80.174616, 0.469985, 0.0302229, 0.34487, 0.858773<

Each of the five times that rand2 is called inside Table, Mathematica looks up the definition of
rand2, and sees that it should evaluate RandomReal@D. It does this each time it is called, generat-
ing a new random number each iteration inside Table.

In[17]:= ? rand2

Global`rand2

rand2 := RandomReal@D

Term rewriting
Rules are used in Mathematica to rewrite expressions, that is, to transform an expression to
another form. For this reason, these rules are often called rewrite rules but we will usually refer to
them simply as rules when there is no chance of confusing them with other types of rules.
Together with pattern matching, rewrite rules are the key to evaluation and transformation of all
expressions in Mathematica.

In Mathematica, you work with two kinds of rules: rules for the built-in functions, which are
part of every Mathematica session, and user-defined rules, which you enter during a particular
session. User-defined rules essentially provide a mechanism for extending the rule base of
Mathematica.

Information about both kinds of rules is obtained by evaluating ?name. In the case of a built-in
function, the resulting usage message gives information about the syntax for using the function
and a brief statement explaining what the function does.

In[18]:= ? Map

MapA f , exprE or f êü expr applies f to each element on the first level in expr.

MapA f , expr, levelspecE applies f to parts of expr specified by levelspec. �à

For user-defined rules, the rule itself is printed. The crucial difference between rules created with
the SetDelayed and Set functions becomes apparent by querying Mathematica for the rules
associated with the symbols rand1 and rand2.

In[19]:= ? rand1

Global`rand1

rand1 = 0.584973

44 The Mathematica language

A rule created using the Set function has the same left-hand side as the function that created
it but the right-hand side of the rule may differ from the right-hand side of the function. This is
because the right-hand side of the rule was evaluated at the moment the definition was made, in
this case, returning a number between 0 and 1.

On the other hand, a rule created using the SetDelayed function looks exactly like the
function that created it. This is because both the left-hand side and right-hand side of a
SetDelayed function are placed in the rule base without being evaluated.

In[20]:= ? rand2

Global`rand2

rand2 := RandomReal@D

In view of this difference between the SetDelayed and Set functions, when should you use
one or the other function to create a rule? When you define a function, you usually do not want
either the left-hand side or the right-hand side to be evaluated; you just want to make it available
for use when the appropriate function call is made. This is precisely what occurs when a
SetDelayed function is entered, so the SetDelayed function is commonly used in writing
function definitions. When you make a value declaration, you do not want the left-hand side to
be evaluated; you just want to make it a nickname to serve as shorthand for a value. This is what
happens when a Set function is entered and so the Set function is commonly used to make
value declarations, such as assigning a numeric value to a constant or variable.

A new rule overwrites, or replaces, an older rule with the same left-hand side. However, keep
in mind that two rules that only differ in the name of their pattern variables are considered the
same by Mathematica. Clear@nameD is used to remove rules from the global rule base.

Functions with multiple definitions
When you create function definitions, usually the definition is associated with the head of the left-
hand side of your definition. So, for example, the following assignment associates the rule
1 + x + x2 with the head f.

In[21]:= f@x_D := 1 + x + x2

There can be many evaluation rules associated with one symbol. The following assignments
associate additional rules with the symbol f.

In[22]:= f@x_, y_D := x + y

2.2 Definitions 45

In[23]:= f@x_, y_, z_D :=
1

x + y - z

To view all the rules associated with f, use ?f.

In[24]:= ? f

Global`f

f@x_D := 1 + x + x2

f@x_, y_D := x + y

f@x_, y_, z_D := 1

x+y-z

The advantage of this structure is that you can use one name for a function that will behave
differently depending upon the number or form of arguments you give to that function. Using a
different symbol for each of these tasks would require you and those who use your programs to
remember multiple function names when one might be sufficient. For example, here are two
definitions for a function, one for an arbitrary argument and another for a list of two expressions.

In[25]:= fun@x_D := Abs@xD

In[26]:= fun@8x_, y_<D := SqrtAx2 + y2E

Different rules will be called and evaluated depending upon the pattern match as determined by
the argument structure.

In[27]:= fun@-12D

Out[27]= 12

In[28]:= fun@82, 3<D

Out[28]= 13

In[29]:= fun@2 + 3 ID

Out[29]= 13

This is a very simplistic example, one that would need some modification if we wanted to con-
sider it for, say, a norm computation.

In[30]:= fun@"string"D

Out[30]= Abs@stringD

46 The Mathematica language

In[31]:= fun@88a, b<, 8c, d<<D

Out[31]= : a2 + c2 , b2 + d2 >

Writing more explicit rules for such a computation is straightforward enough but requires a bit
more discussion of patterns and predicates to do properly. These topics will be discussed in
Chapter 4 on patterns and rules.

Clear symbols that are no longer needed.

In[32]:= Clear@x, f, g, n, funD

Exercises
1. What rules are created by each of the following functions? Check your predictions by evaluating

them and then querying Mathematica with ?function_name.

a. randLis1@n_D := RandomReal@1, 8n<D

b. randLis2@n_D := Hx = RandomReal@D; Table@x, 8n<DL

c. randLis3@n_D := Hx := RandomReal@D; Table@x, 8n<DL

d. randLis4@n_D = Table@RandomReal@D, 8n<D

2. Consider two functions f and g, which are identical except that one is written using an immediate
assignment and the other using a delayed assignment.

In[1]:= f@n_D = SumAH1 + xLj, 8j, 1, n<E;

In[2]:= g@n_D := SumAH1 + xLj, 8j, 1, n<E

Explain why the outputs of these two functions look so different. Are they in fact different?

In[3]:= f@2D

Out[3]=
H1 + xL I-1 + H1 + xL2M

x

In[4]:= g@2D

Out[4]= 1 + x + H1 + xL2

3. Write rules for a function log (note lowercase) that encapsulate the following identities:

log Ha bL = log HaL + logHbL;
log I a

b
M = log HaL - logHbL;

log HanL = n logHaL.

2.2 Definitions 47

4. Create a piecewise-defined function gHxL based on the following and then plot the function from –2
to 0.

g HxL =
- 1 - Hx + 2L2 -2 § x § -1

1 - x2 x < 0

2.3 Predicates and Boolean operations
Predicates
When working with many kinds of data, you are often presented with the problem of extracting
values that meet certain criteria. Similarly, when you write programs, what to do next at any
particular point in your program will often depend upon some test or condition being met. Every
programming language has constructs for testing data or conditions. Some of the most useful
constructs for these sorts of tests are called predicates. A predicate is a function that returns a value
of true or false depending upon whether its argument passes a test. For example, the predicate
PrimeQ tests for the primality of its argument.

In[1]:= PrimeQA231 - 1E

Out[1]= True

Other predicates are available for testing numbers to see whether they are even, odd, integral, and
so on.

In[2]:= OddQ@21D

Out[2]= True

In[3]:= EvenQ@21D

Out[3]= False

In[4]:= IntegerQB
5

9
F

Out[4]= False

NumericQ tests whether its argument is a numeric quantity. Essentially, NumericQ@xD
returns a value of True whenever N@xD evaluates to an explicit number.

In[5]:= NumericQ@pD

Out[5]= True

In[6]:= NumericQ@¶D

Out[6]= False

48 The Mathematica language

This is distinct from a related function, NumberQ , which evaluates to True whenever its argu-
ment is an explicit number, that is, has head one of Integer , Rational, Real , Complex .

In[7]:= NumberQ@3.2D

Out[7]= True

In[8]:= NumberQ@pD

Out[8]= False

Some predicate functions can take a second argument to test the form of the elements of an
expression. For example, this tests whether the argument is a vector and if its elements are all
prime.

In[9]:= VectorQA923 - 1, 27 - 1, 231 - 1=, PrimeQE

Out[9]= True

Many other predicates are available for testing expressions such as atoms, lists, various matri-
ces, polynomials, and much more.

In[10]:= AtomQ@"string"D

Out[10]= True

In[11]:= ListQ@8a, b, c<D

Out[11]= True

In[12]:= SymmetricMatrixQB
1 2 3

2 4 5

3 5 6

F

Out[12]= True

In[13]:= PolynomialQB
1

x
+

1

x2
+

1

x3
, xF

Out[13]= False

In[14]:= ConnectedGraphQB F

Out[14]= True

In[15]:= IntervalMemberQ@Interval@82, 3<D, pD

Out[15]= False

2.3 Predicates and Boolean operations 49

Relational and logical operators
Another class of commonly-used predicates are the relational operators. They are used to com-
pare two or more expressions and they return a value of True or False. The relational opera-
tors in Mathematica are Equal (ã), Unequal (�), Greater (>), Less (<), GreaterEqual(¥),
and LessEqual (§). They can be used to compare numbers or arbitrary expressions.

In[16]:= 7 < 5

Out[16]= False

In[17]:= 3 ã 7 - 4 ã
6

2

Out[17]= True

In[18]:= x2 - 1 ==
x4 - 1

x2 + 1
êê Simplify

Out[18]= True

Note that the relational operators have lower precedence than arithmetic operators. The
second example above is interpreted as 3 ã H7 - 4L and not as H3 ã 7L - 4. Table 2.2 lists the
relational operators and their various input forms.

The logical operators (sometimes known as Boolean operators) determine the truth of an
expression based on Boolean arithmetic. For example, the conjunction of two true statements is
always true.

In[19]:= 4 < 5 && 8 > 1

Out[19]= True

The Boolean operation AND is represented in Mathematica by And, with shorthand notation
&& or � . Here is a table that gives all the possible values for the And operator. (The function
TruthTable is developed in Exercise 10 in Section 5.8.)

In[20]:= TruthTable@A � B, 8A, B<D

Out[20]=

A B A Ï B

T T T

T F F

F T F

F F F

50 The Mathematica language

Table 2.2. Relational operators

StandardForm Long HfunctionalL form Meaning
x ã y Equal@x, yD test for equality

x � y Unequal@x, yD unequal

x > y Greater@x, yD greater than

x < y Less@x, yD less than

x ¥ y GreaterEqual@x, yD greater than or equal

x § y LessEqual@x, yD less than or equal

The logical OR operator, represented by Or and with shorthand notation »» (or �), is true
when either of its arguments is true.

In[21]:= 4 == 3 »» 3 ==
6

2

Out[21]= True

In[22]:= 0 == 0.0001 Î p ==
22

7

Out[22]= False

In[23]:= TruthTable@A � B, 8A, B<D

Out[23]=

A B A Í B

T T T

T F T

F T T

F F F

Note the difference between this Boolean OR and the natural language notion of “or.” A phrase
such as, “It is cold or it is hot,” uses the word “or” in an exclusive sense, that is, it excludes the
possibility that it is both cold and hot. The logical Or (�) is inclusive in the sense that if A and B
are both true, then A Í B is also true.

In[24]:= True »» True

Out[24]= True

Table 2.3 shows the logical operators and their input forms.

2.3 Predicates and Boolean operations 51

Table 2.3. Logical operators

StandardForm TraditionalForm Long form Meaning
!x Ÿx Not@xD not
x && y x � y And@x, yD and

x »» y x � y Or@x, yD or

Hx »» yL&&!Hx && yL x � y Xor@x, yD exclusive or

!Hx »» yL x � y Nor@x, yD negation of or

!x »» y x � y Implies@x, yD implication

Mathematica also contains an operator for the exclusive or, Xor.

In[25]:= Xor@True, TrueD

Out[25]= False

In[26]:= Xor@True, FalseD

Out[26]= True

In[27]:= TruthTable@A � B, 8A, B<D

Out[27]=

A B A � B

T T F

T F T

F T T

F F F

An additional set of useful operators are the bitwise logical operators (see Table 2.4). These func-
tions operate on integers as binary bits. For example, BitOr@x, yD gives the integer whose
binary representation has 1s wherever the binary representation of x or y has 1s. Here is the
bitwise OR of 21 and 19, given in binary form.

In[28]:= BaseForm@BitOr@2^^10101, 2^^10011D, 2D
Out[28]//BaseForm=

101112

In[29]:= BitOr@21, 19D

Out[29]= 23

In[30]:= BaseForm@23, 2D
Out[30]//BaseForm=

101112

Similarly, BitXor@x, yD gives the integer with 1s at positions where either x or y have 1s, but
not both.

52 The Mathematica language

In[31]:= BaseForm@BitXor@2^^10101, 2^^10011D, 2D
Out[31]//BaseForm=

1102

Table 2.4. Bitwise operators

Long HfunctionalL form Meaning
BitAnd@x, yD bitwise AND of x and y

BitOr@x, yD bitwise OR of x and y

BitNot@xD bitwise NOT of x
BitXor@x, yD bitwise XOR of x and y

In Section 5.8 we will look at an application of bitwise operators to an example involving error-
correcting codes: the computation of Hamming distance.

Exercises
1. Create a predicate function that returns a value of True if its argument is between –1 and 1.

2. Define a predicate function CharacterQ@strD that returns true if its argument str is a single string
character, and returns false otherwise.

3. Write a predicate function NaturalQ@nD that returns a value of True if n is a natural number and
False otherwise, that is, NaturalQ@nD is True if n is among 0, 1, 2, 3, ….

4. Create a predicate function SubsetQ@lis1, lis2E that returns a value of True if lis1 is a subset of lis2.

Remember, the empty set, 8<, is a subset of every set.

5. Create a predicate function CompositeQ that tests whether its argument is a nonprime integer.

2.4 Attributes
All functions in Mathematica have certain properties that control various aspects of their behavior.
These properties, called attributes, can make a function commutative or associative, or they may
give the function the ability to be threaded over a list. The attributes of any function are displayed
with the Attributes function.

In[1]:= Attributes@PlusD

Out[1]= 8Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected<

The Flat attribute indicates that this function (Plus) is associative. That is, given three
elements to add, it does not matter which two are added first. In mathematics, this is known as

2. 53

associativity and is written as a + Hb + cL = Ha + bL+ c. In Mathematica this could be indicated by
saying that the two expressions Plus@a, Plus@b, cDD and Plus@Plus@a, bD, cD are
equivalent to the flattened form Plus@a, b, cD. When Mathematica knows that a function has
the attribute Flat , it writes it in flattened form.

In[2]:= Plus@Plus@a, bD, cD

Out[2]= a + b + c

Functions with the attribute OneIdentity have the property that repeated application of
that function to the same argument will have no effect. For example, Plus@Plus@a, bDD is
equivalent to Plus@a, bD, hence only one addition is performed.

In[3]:= FullForm@Plus@Plus@a + bDDD
Out[3]//FullForm=

Plus@a, bD

The Orderless attribute indicates that the function is commutative, that is, a + b = b + a.
This allows Mathematica to write such an expression in an order that is useful for computation. It
does this by sorting the elements into a canonical order. For expressions consisting of letters and
words, this ordering is alphabetic.

In[4]:= t + h + i + n

Out[4]= h + i + n + t

Sometimes a canonical order is readily apparent.

In[5]:= x3 + x5 + x4 + x2 + 1 + x

Out[5]= 1 + x + x2 + x3 + x4 + x5

Other times, it is not so apparent.

In[6]:= x3 y2 + y7 x5 + y x4 + y9 x2 + 1 + x

Out[6]= 1 + x + x4 y + x3 y2 + x5 y7 + x2 y9

As an aside, note that some formatting functions use ordering rules that are different from those
used by the default output formats.

In[7]:= TraditionalFormAx3 + x5 + x4 + x2 + 1 + xE
Out[7]//TraditionalForm=

x5 + x4 + x3 + x2 + x + 1

When a symbol has the attribute Protected, the user is prevented from modifying the
function in any significant way. All built-in functions have this attribute.

The other attributes for the Plus function (Listable and NumericFunction) will be
discussed in later chapters. For a complete list of the attributes that symbols can have, see the
tutorial Attributes (WMDC).

54 The Mathematica language

Although it is unusual to want to alter the attributes of a built-in function, it is fairly common
to change the default attributes of a user-defined function. For example, suppose you had a
function that you wanted to inherit the Orderless attribute. Without explicitly setting that
attribute, the function does not reorder its arguments.

In[8]:= f@b, e, t, sD

Out[8]= f@b, e, t, sD

The SetAttributes function is used to change the attributes of a function. Explicitly setting f
to have the Orderless attribute causes its arguments to be automatically sorted.

In[9]:= SetAttributes@f, OrderlessD

In[10]:= f@b, e, t, sD

Out[10]= f@b, e, s, tD

Note: using Clear to clear definitions associated with a symbol does not clear attributes.

In[11]:= Clear@fD

In[12]:= ? f

Global`f

Attributes@fD = 8Orderless<

To clear only attributes, use ClearAttributesAsymbol, attributeE. To clear all values, defini-

tions, attributes and messages associated with a symbol, use ClearAll@symD.

In[13]:= ClearAll@fD

In[14]:= ? f

Global`f

We will see some applications of SetAttributes in Sections 5.2 and 6.2.

Exercises
1. Ordinarily, when you define a function, it has no attributes. Mathematica evaluates the arguments

before passing them up to the calling function. So, in the following case, 2 + 3 is evaluated before it
is passed to f.

In[1]:= f@x_ + y_D := x2 + y2

2.4 Attributes 55

In[2]:= f@2 + 3D

Out[2]= f@5D

Use one of the Hold attributes to give f the property that its argument is not evaluated first. The
resulting output should look like this:

In[3]:= f@2 + 3D

Out[3]= 13

2. Define a function that takes each number in a vector of numbers and returns that number if it is
within a certain interval, say -0.5 < x < 0.5, and returns x otherwise. Then make your function
listable so that it can operate on vectors (lists) directly.

56 The Mathematica language

3

Lists
Structure and syntax of lists · Creating lists · Displaying lists · Arrays · Analyzing lists · Testing

lists · Measuring lists · Extracting elements of lists · Rearranging lists · List component
assignment · Working with multiple lists

Lists are the fundamental data structure used in Mathematica to group objects together. They are
quite general and they can be used to represent a vast array of objects: vectors, matrices, tensors,
iterator and parameter specifications, and much more. An extensive set of built-in functions is
available to manipulate lists in a variety of ways, ranging from simple operations, such as rearrang-
ing the order of list elements to more sophisticated operations such as partitioning, sorting, or
applying a function to a list. For example, this sorts a list numerically.

In[1]:= Sort@84, 16, 1, 77, 23<D

Out[1]= 81, 4, 16, 23, 77<

Fast and efficient linear algebra functions are available for operating on vectors and matrices. A
vector is just a flat list of values; a matrix can be thought of as a list of vectors of the same length.
For example, this muliplies a symbolic matrix by a vector.

In[2]:= 88a, b<, 8c, d<<.8x, y<

Out[2]= 8a x + b y, c x + d y<

Elements in lists can be rearranged, removed, new elements added, and operations performed
on select elements or on the list as a whole or on multiple lists.

In[3]:= 8a, b, c< ‹ 8c, d, e<

Out[3]= 8a, b, c, d, e<

In[4]:= 8a, b, c< › 8c, d, e<

Out[4]= 8c<

Lists are also used to delineate a range of values for some variable or iterator. For example, the
second argument to the Table function is a list that specifies the iterator variable and the values
that it should range over.

In[5]:= TableAi2, 8i, 1, 5<E

Out[5]= 81, 4, 9, 16, 25<

Similarly, the plotting functions use lists to specify the range over which a variable should be
evaluated.

In[6]:= Plot@Sin@xD, 8x, 0, 2 p<D

Out[6]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

In this chapter, we will demonstrate the use of built-in Mathematica functions to manipulate
lists in various ways. Almost anything you might wish to do to a list can be accomplished using
built-in functions. It is important to have a solid understanding of these functions, since a key to
good, efficient programming in Mathematica is to use the built-in functions whenever possible to
manipulate list structures.

3.1 Creating and displaying lists
List structure and syntax
Lists in Mathematica are created using the built-in List function which has the standard input
form of a sequence of elements separated by commas and enclosed in braces.

8e1, e2, …, en<

Internally, lists are stored in the functional form using the List function with an arbitrary
number of arguments.

List@e1, e2, …, enD

FullForm gives the internal representation.

In[1]:= FullForm@8a, b, c<D
Out[1]//FullForm=

List@a, b, cD

58 Lists

The arguments of the List function (the list elements) can be any type of expression, including
numbers, symbols, functions, strings, images, and even other lists.

In[2]:= :2.4, Sin, "ossifrage", , 85, 3<, 8<>

Out[2]= :2.4, Sin, ossifrage, , 85, 3<, 8<>

List construction
In addition to using the List function to collect various expressions, you can generate lists from
scratch by creating the objects and then placing them in a list.
RangeAimin, imax, diE generates a list of ordered numbers starting from imin and going up

to, but not exceeding, imax in increments of di.

In[3]:= Range@0, 30, 3D

Out[3]= 80, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30<

If di is not specified, a value of 1 is used.

In[4]:= Range@4, 8D

Out[4]= 84, 5, 6, 7, 8<

If neither imin nor di is specified, then both are given the value of 1.

In[5]:= Range@4D

Out[5]= 81, 2, 3, 4<

It is not necessary for imin, imax, or di to be integers.

In[6]:= Range@1.5, 6.3, .75D

Out[6]= 81.5, 2.25, 3., 3.75, 4.5, 5.25, 6.<

TableAexpr, 9i, imin, imax, di=E generates a list by evaluating expr a number of times as

determined by the iterator list.

In[7]:= TableA2k, 8k, 1, 10, 2<E

Out[7]= 82, 8, 32, 128, 512<

The first argument, 2k in the above example, is the expression that is evaluated to produce the
elements in the list. The second argument to the Table function, 9i, imin, imax, di=, is

referred to as the iterator list. This list specifies the number of times the expression is evaluated and
hence the number of elements in the list. The value imin is the value of i used in the expression to
create the first list element. The value di is the incremental increase in the value of i used in the

3.1 Creating and displaying lists 59

expression to create additional list elements. The value imax is the maximum value of i used in the
expression to create the last list element. If incrementing i by di gives a value greater than imax,
that value is not used.

In[8]:= Table@i, 8i, 1, 10, 2<D

Out[8]= 81, 3, 5, 7, 9<

TableAi, 9i, imin, imax, di=E is equivalent to RangeAimin, imax, diE. As with the Range

function, the arguments to Table can be simplified when the iterator increment is 1.

In[9]:= TableA2i, 8i, 1, 10<E

Out[9]= 82, 4, 8, 16, 32, 64, 128, 256, 512, 1024<

Similarly, both imin and di can be omitted and are then assumed to be 1.

In[10]:= TableAi2, 8i, 5<E

Out[10]= 81, 4, 9, 16, 25<

The iterator variable may or may not appear in the expression being evaluated. In this case, the
iterator variable may be omitted as well. The expression will then simply be evaluated that many
times.

In[11]:= Table@RandomReal@D, 83<D

Out[11]= 80.765026, 0.623783, 0.596162<

The expression that the Table function evaluates can be completely arbitrary. In the follow-
ing computation, it is used to create a list of plots.

In[12]:= Table@Plot@BesselJ@n, xD, 8x, 0, 10<D, 8n, 2, 5<D

Out[12]= :
2 4 6 8 10

-0.2

0.2

0.4

,
2 4 6 8 10

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

,

2 4 6 8 10

-0.2

-0.1

0.1

0.2

0.3

0.4

,
2 4 6 8 10

-0.2

-0.1

0.1

0.2

0.3

>

60 Lists

Table can be used to create a nested list, that is, a list containing other lists as elements. This
can be done by using additional iterators.

In[13]:= Table@i + j, 8j, 1, 4<, 8i, 1, 3<D

Out[13]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<, 85, 6, 7<<

When there is more than one iterator, their order is important, because the value of the outer
iterator is varied for each value of the inner iterator. In the above example, for each value of j (the
inner iterator), i was varied from 1 to 3, producing a three-element list for each of the four values
of j. If you reverse the iterator order, you will get an entirely different list.

In[14]:= Table@i + j, 8i, 1, 3<, 8j, 1, 4<D

Out[14]= 882, 3, 4, 5<, 83, 4, 5, 6<, 84, 5, 6, 7<<

The value of the outer iterator may depend on the value of the inner iterator; this can result in a
nonrectangular list.

In[15]:= Table@i + j, 8i, 1, 3<, 8j, 1, i<D

Out[15]= 882<, 83, 4<, 84, 5, 6<<

However, the inner iterator may not depend on the outer iterator because, as we have seen, the
inner iterator is fixed as the outer one varies.

In[16]:= Table@i + j, 8i, 1, j<, 8j, 1, 3<D

Table::iterb : Iterator 8i, 1, j< does not have appropriate bounds. à

Out[16]= Table@i + j, 8i, 1, j<, 8j, 1, 3<D

Like the function being evaluated, the iterator structure can be quite arbitrary. In fact, it can be
almost any expression, for example, a list of primes or a list of image effects.

In[17]:= Table@2p - 1, 8p, 82, 3, 5, 7, 13, 17<<D

Out[17]= 83, 7, 31, 127, 8191, 131071<

In[18]:= TableBImageEffectB , effectF,

8effect, 8"Charcoal", "Posterization", "Solarization"<<F

Out[18]= : , , >

Rather than evaluating the iterator for a range of values, these arbitrary iterator specifications
cause the function to be evaluated for each of the discrete values in the iterator list. So in the first

3.1 Creating and displaying lists 61

example, the expression 2p - 1 is evaluated for each value of p equal to 2, 3, 5, 7, 13, 17; in the
second example, ImageEffect is evaluated for each of the three different effects,
"Charcoal", "Posterization", and "Solarization".

Displaying lists
The default output form of a list, like its input form, uses the curly brace notation.

In[19]:= 81, 2, 3<

Out[19]= 81, 2, 3<

Several formatting functions are available for displaying lists in different forms. For example,
MatrixForm displays one-dimensional lists as column vectors.

In[20]:= MatrixForm@8a, b, c<D
Out[20]//MatrixForm=

a
b

c

It displays rectangular arrays as traditional matrices.

In[21]:= MatrixForm@88a, b, c<, 8d, e, f<<D
Out[21]//MatrixForm=

a b c

d e f

TableForm is useful for displaying nested lists (multi-dimensional data) in a simple rectangular
array.

In[22]:= lis = Table@i + j, 8i, 1, 4<, 8j, 1, 3<D

Out[22]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<, 85, 6, 7<<

In[23]:= TableForm@lisD
Out[23]//TableForm=

2 3 4

3 4 5

4 5 6

5 6 7

Another useful function for displaying nested lists is Grid . It contains numerous options specifi-
cally for formatting tabular data.

In[24]:= data = 88"Trial", "Value"<, 81, 0.264084<, 82, 0.185688<,
83, 0.156994<, 84, 0.486455<, 85, 0.334819<, 86, 0.799379<<;

62 Lists

In[25]:= Grid@data, Frame Ø All,
Background Ø LightGray, ItemSize Ø 8Automatic, 1.5<,
BaseStyle Ø 8FontFamily Ø "Helvetica", 8<, FrameStyle Ø ThinD

Out[25]=

Trial Value

1 0.264084

2 0.185688

3 0.156994

4 0.486455

5 0.334819

6 0.799379

Large arrays of data present a special problem in terms of display. In general you do not want
to look at thousands or millions of rows and columns of numbers in a large array. Functions like
ArrayPlot and MatrixPlot are useful for visualizing the structure of such expressions. The
correlation between the array of numbers and the “cells” in the plot should be quite apparent for
small arrays.

In[26]:= mat = 881, 0, 1<, 80, 2, 0<, 81, 0, 1<<;
MatrixForm@matD

Out[27]//MatrixForm=

1 0 1

0 2 0

1 0 1

In[28]:= ArrayPlot@mat, Mesh Ø AllD

Out[28]=

This is particularly useful for large arrays. For example, the following matrix is a representation of
the topology of the US Western States power grid (Watts and Strogatz 1998).

In[29]:= grid = Import@
"http:êêwww.cise.ufl.eduêresearchêsparseêMMêNewmanêpower.

tar.gz", 8"TAR", "powerêpower.mtx"<D

Out[29]= SparseArray@<13188>, 84941, 4941<, PatternD

3.1 Creating and displaying lists 63

ArrayPlot shows the structure of the array, in this case giving a visual sense that this matrix is
symmetric.

In[30]:= ArrayPlot@gridD

Out[30]=

You could also visualize this sparse array as an adjacency graph where the edges represent the
transmission lines between power stations (nodes). This representation only gives connectivity
information; no geographic information is conveyed.

In[31]:= AdjacencyGraph@gridD

Out[31]=

Arrays
In addition to Table and Range, several other functions are available for constructing lists from
scratch, including Array, ConstantArray, and SparseArray . Each of these functions has a
similar syntax to Table and Range.
Array is, in some sense, a generalization of Table in that you can create arrays of elements

wrapped in arbitrary functions. For example, here is a 4ä4 array where each element is wrapped
in a symbolic function g.

64 Lists

In[32]:= Array@g, 84, 4<D êê MatrixForm
Out[32]//MatrixForm=

g@1, 1D g@1, 2D g@1, 3D g@1, 4D
g@2, 1D g@2, 2D g@2, 3D g@2, 4D
g@3, 1D g@3, 2D g@3, 3D g@3, 4D
g@4, 1D g@4, 2D g@4, 3D g@4, 4D

If the function is Greater , we have the following.

In[33]:= Array@Greater, 84, 4<D êê MatrixForm
Out[33]//MatrixForm=

False False False False

True False False False

True True False False

True True True False

Converting the True/False values to 1s and 0s using Boole, gives a lower triangular matrix.

In[34]:= Boole@%D êê MatrixForm
Out[34]//MatrixForm=

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

ConstantArray is useful for quickly creating constant vectors, arrays, and tensors.

In[35]:= ConstantArray@1, 812<D

Out[35]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

SparseArray is used to create sparse array objects, that is, arrays where most of the ele-
ments are some constant term, typically zero. The first argument to SparseArray is usually a
list specifying the nondefault positions and their values. The optional second argument is used to
specify the array dimensions. For example, this creates a 3ä3 array with symbolic values a, b, and
g on the diagonal.

In[36]:= array = SparseArray@881, 1< Ø a, 82, 2< Ø b, 83, 3< Ø g<, 83, 3<D

Out[36]= SparseArray@<3>, 83, 3<D

What is returned by SparseArray is an object whose first argument, <3> in this example,
indicates that there are three nondefault elements; the dimensions are given by the second
argument, the list 83, 3<.

3.1 Creating and displaying lists 65

You can view the array in a traditional matrix form or convert it to a regular list structure.

In[37]:= MatrixForm@arrayD
Out[37]//MatrixForm=

a 0 0

0 b 0

0 0 g

In[38]:= Normal@arrayD

Out[38]= 88a, 0, 0<, 80, b, 0<, 80, 0, g<<

Sparse arrays provide a compact representation for what could otherwise be a very large array.
For example, this uses a different syntax to create a 1000ä1000 array with random numbers on
the diagonal.

In[39]:= bigarray =
SparseArray@Band@81, 1<D ß RandomReal@D, 81000, 1000<D

Out[39]= SparseArray@<1000>, 81000, 1000<D

The two big advantages of working with sparse arrays are a compact representation and being
able to take advantage of fast linear algebra routines designed explicitly for sparse arrays. So, even
though bigarray has 10

6 numbers in it, it only takes about 40 000 bytes to store internally.

In[40]:= ByteCount@bigarrayD

Out[40]= 40800

Linear algebra on sparse objects can be quite fast, especially compared with corresponding dense
calculations.

In[41]:= Inverse@bigarrayD; êê Timing

Out[41]= 80.36709, Null<

In[42]:= Det@bigarrayD; êê Timing

Out[42]= 80.137751, Null<

Sparse arrays will be discussed in more detail in Section 8.3.

Exercises
1. Generate the list 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<< in two

different ways using the Table function.

2. A table containing ten random 1s and 0s can be created using RandomInteger@1, 810<D. Create
a ten-element list of random 1s, 0s and -1s.

66 Lists

3. Create a ten-element list of random 1s and -1s. This list can be viewed as the steps taken in a random
walk along the x-axis, where a step can be taken in either the positive x direction (corresponding to
1) or the negative x direction (corresponding to -1) with equal likelihood.

The random walk in one, two, three (and even higher) dimensions is used in science and engineer-
ing to represent phenomena that are probabilistic in nature. We will use a variety of random walk
models throughout this book to illustrate many different programming concepts.

4. Generate both of the following arrays using the Table function.

In[1]:= Array@f, 5D

Out[1]= 8f@1D, f@2D, f@3D, f@4D, f@5D<

In[2]:= Array@f, 83, 4<D

Out[2]= 88f@1, 1D, f@1, 2D, f@1, 3D, f@1, 4D<,
8f@2, 1D, f@2, 2D, f@2, 3D, f@2, 4D<,
8f@3, 1D, f@3, 2D, f@3, 3D, f@3, 4D<<

5. Construct an integer lattice graphic like the one below. Start by creating pairs of coordinate points
to connect with lines – here we have written the coordinates explicitly but you should generate
them programmatically. Once you have your coordinate pairs, you can display the graphic as
follows:

In[3]:= coords = 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<,
88-2, 1<, 82, 1<<, 88-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,
880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<;

Graphics@Line@coordsDD

Out[4]=

6. Import six images, resize them to the same dimensions, then display them inside a 3ä2 grid using
options for Grid to format the output.

3.2 The structure of lists
Testing a list
To find the locations of specific elements in a list, use Position. For example, the following
result indicates that the number 5 occurs in the first and third positions in the list. The extra
braces are used to avoid confusion with the case when elements are nested within a list.

3. 67

In[1]:= Position@85, 7, 5, 2, 1, 4<, 5D

Out[1]= 881<, 83<<

In the following, the expression f occurs once, in the third position within the second inner list.

In[2]:= Position@88a, b, c<, 8d, e, f<<, fD

Out[2]= 882, 3<<

Other functions exist to select or count the number of elements in a list that match a certain
pattern. For example, Count gives the frequency of an expression or pattern in a list.

In[3]:= Count@85, 7, 5, 2, 1, 4<, 5D

Out[3]= 2

You can test for membership in a list using MemberQ .

In[4]:= MemberQ@85, 7, 5, 2, 1, 4<, 3D

Out[4]= False

Alternatively, you can test whether a list is free of a particular expression.

In[5]:= FreeQ@85, 7, 5, 2, 1, 4<, 3D

Out[5]= True

Measuring lists
Recall from Chapter 2 that Length@exprD is used to give the number of elements in expr. For a
simple unnested (linear) list, the Length function tells you how many elements are in the list.

In[6]:= Length@8a, b, c, d, e, f<D

Out[6]= 6

In a nested list, each inner list is an element of the outer list. Therefore, the Length of a nested
list indicates the number of inner lists, not their sizes.

In[7]:= Length@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D

Out[7]= 2

To find out more about the structure of nested lists, use the Dimensions function.

In[8]:= Dimensions@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D

Out[8]= 82, 3, 2<

This indicates that there are two inner lists, that each inner list contains three lists, and that the
innermost lists each have two elements. MatrixForm helps to see the structure better.

68 Lists

In[9]:= MatrixForm@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D
Out[9]//MatrixForm=

1

2

3

4

5

6

K
a
b
O K

c
d
O K

e
f
O

The number of dimensions of a (possibly nested) list, is given by ArrayDepth .

In[10]:= ArrayDepth@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D

Out[10]= 3

This is identical to the number of levels in that expression as displayed by TreeForm (remember
that the head of an expression is at level 0).

In[11]:= TreeForm@8881, 2<, 83, 4<, 85, 6<<, 88a, b<, 8c, d<, 8e, f<<<D
Out[11]//TreeForm=

List

List

List

1 2

List

3 4

List

5 6

List

List

a b

List

c d

List

e f

Exercises
1. Given a list of integers such as the following, count the number of 0s. Find a way to count all those

elements of the list which are not 1s.

In[1]:= ints = RandomInteger@8-5, 5<, 30D

Out[1]= 8-2, -2, 2, -1, -1, -3, -5, 3, -4, -4, -3, 4, -3,

4, 2, -2, -3, 1, 2, 3, -2, -4, 1, -1, 1, 1, 5, -2, 0, 3<

2. Given the list 8881, a<, 82, b<, 83, c<<, 884, d<, 85, e<, 86, f<<<, determine its
dimensions. Use the Dimensions function to check your answer.

3. Find the positions of the 9s in the following list. Confirm using Position.

882, 1, 10<, 89, 5, 7<, 82, 10, 4<, 810, 1, 9<, 86, 1, 6<<

3.2 The structure of lists 69

3.3 Operations on lists
Extracting elements
The Part function is designed for extracting elements from expressions by identifying their
position within that expression. For example, this extracts the third element in the list vec.

In[1]:= vec = 82, 3, 7, 8, 1, 4<;

In[2]:= Part@vec, 3D

Out[2]= 7

The Part function is abbreviated using double brackets as shorthand notation.

In[3]:= vec@@3DD

Out[3]= 7

To get the elements from more than one location, extract them using a list. For example, this
picks out the second and fourth elements of vec.

In[4]:= vec@@82, 4<DD

Out[4]= 83, 8<

If you wanted elements in positions 2 through 4, use a list or the Range function.

In[5]:= vec@@82, 3, 4<DD

Out[5]= 83, 7, 8<

In[6]:= vec@@Range@2, 4DDD

Out[6]= 83, 7, 8<

A shorthand notation for the Span function provides a more compact way of doing the same
thing.

In[7]:= vec@@2 ;; 4DD

Out[7]= 83, 7, 8<

For multi-dimensional lists, you have to specify both the sublist and the position of the ele-
ment in that sublist that you are interested in. Here is a sample 3ä3 matrix that we will work with.

In[8]:= mat = Table@ai,j, 8i, 3<, 8j, 3<D;

In[9]:= MatrixForm@matD
Out[9]//MatrixForm=

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

70 Lists

This picks out the first part of the second sublist.

In[10]:= mat@@2, 1DD

Out[10]= a2,1

For multi-dimensional lists, several options are available to extract different parts. A common
operation involves extracting rows or columns from a matrix. The following input extracts the
entire second column of mat. Think of this as getting all rows, and the second column.

In[11]:= mat@@All, 2DD êê MatrixForm
Out[11]//MatrixForm=

a1,2
a2,2
a3,2

And here is the third row of this matrix.

In[12]:= mat@@3, AllDD

Out[12]= 8a3,1, a3,2, a3,3<

If you only specify one argument, the second is assumed to be All.

In[13]:= mat@@3DD

Out[13]= 8a3,1, a3,2, a3,3<

In addition to extracting elements from specific locations in a list, you can extract consecu-
tively placed elements within the list using Take . Element positions are counted from either the
front or the back of a list.

In[14]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 2D

Out[14]= 81, 9<

In[15]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, -2D

Out[15]= 8107, 197<

If you take consecutive elements from a list other than from the front and the back, you need to
remember that the numbering of positions is different front-to-back and back-to-front.

In[16]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 82, 4<D

Out[16]= 89, 7, 17<

In[17]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 8-5, -3<D

Out[17]= 817, 33, 57<

3.3 Operations on lists 71

You can mix positive and negative indices.

In[18]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 8-5, 4<D

Out[18]= 817<

You can also take elements in steps. This takes the first through sixth element in increments of 2,
that is, it takes every other element.

In[19]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 81, 6, 2<D

Out[19]= 81, 7, 33<

Another shorthand notation exists for ranges of this sort.

In[20]:= Take@81, 9, 7, 17, 33, 57, 107, 197<, 1 ;; 6 ;; 2D

Out[20]= 81, 7, 33<

Drop is used to discard elements from a list, keeping the rest. Elements are removed from
either end of the list or from consecutive locations.

In[21]:= Drop@81, 9, 7, 17, 33, 57, 107, 197<, 2D

Out[21]= 87, 17, 33, 57, 107, 197<

In[22]:= Drop@81, 9, 7, 17, 33, 57, 107, 197<, -1D

Out[22]= 81, 9, 7, 17, 33, 57, 107<

In[23]:= Drop@81, 9, 7, 17, 33, 57, 107, 197<, 83, 5<D

Out[23]= 81, 9, 57, 107, 197<

Use Delete to remove elements at specific locations.

In[24]:= Delete@81, 9, 7, 17, 33, 57, 107, 197<, 1D

Out[24]= 89, 7, 17, 33, 57, 107, 197<

In[25]:= Delete@81, 9, 7, 17, 33, 57, 107, 197<, 883<, 84<<D

Out[25]= 81, 9, 33, 57, 107, 197<

Certain extractions are used so often that a named function exists for the operation.

In[26]:= First@81, 9, 7, 17, 33, 57, 107, 197<D

Out[26]= 1

In[27]:= Last@81, 9, 7, 17, 33, 57, 107, 197<D

Out[27]= 197

In[28]:= Rest@81, 9, 7, 17, 33, 57, 107, 197<D

Out[28]= 89, 7, 17, 33, 57, 107, 197<

72 Lists

In[29]:= Most@81, 9, 7, 17, 33, 57, 107, 197<D

Out[29]= 81, 9, 7, 17, 33, 57, 107<

Rearranging lists
Every list can be sorted into a canonical order. For lists of numbers or letters, this ordering is
usually obvious.

In[30]:= SortB:3,
223

71
,
22

7
,
355

113
,
25

8
>F

Out[30]= :3,
25

8
,
223

71
,
355

113
,
22

7
>

In[31]:= N@%D

Out[31]= 83., 3.125, 3.14085, 3.14159, 3.14286<

In[32]:= Sort@8"s", "p", "a", "m"<D

Out[32]= 8a, m, p, s<

As an aside, note that Sort orders symbols such as p and ‰ by their names, not their values. This
is due to the great generality of Sort whereby it can work with any collection of numbers,
strings, and symbols.

In[33]:= Sort@8p, 5, ‰<D

Out[33]= 85, ‰, p<

Convert to explicit numbers to order by the values of these expressions.

In[34]:= Sort@N@8p, 5, ‰<DD

Out[34]= 82.71828, 3.14159, 5.<

Mathematica uses the following canonical orderings: numbers are ordered by numerical value
with complex numbers first ordered by real part and then by absolute value of the imaginary
part; symbols and strings are ordered alphabetically; powers and products are ordered in a
manner corresponding to the terms in a polynomial; expressions are ordered depth-first with
shorter expressions first.

In[35]:= SortA9x3, x5, x=E

Out[35]= 9x, x3, x5=

In[36]:= Sort@8Expand@Ha + bL^2D, a Hb + cL, a b<D

Out[36]= 9a b, a2 + 2 a b + b2, a Hb + cL=

3.3 Operations on lists 73

You can also sort lists according to an ordering function that you can specify as a second
argument to Sort .

In[37]:= SortB:3, 1.7, p, -4,
22

7
>, GreaterF

Out[37]= :
22

7
, p, 3, 1.7, -4>

When applied to a nested list, Sort will use the first element of each nested list to determine
the order.

In[38]:= Sort@882, c<, 87, 9<, 8e, f, g<, 81, 4.5<, 8x, y, z<<D

Out[38]= 881, 4.5<, 82, c<, 87, 9<, 8e, f, g<, 8x, y, z<<

For multi-dimensional lists, SortBy is also useful. Its second argument is a function that is
applied to each element in the list, and the result of that function gives the criterion used for the
sort.

In[39]:= SortBy@88b, 2<, 8a, 3<, 8c, 1<, 8d, 0<<, LastD

Out[39]= 88d, 0<, 8c, 1<, 8b, 2<, 8a, 3<<

In addition to sorting, various functions are available to rearrange lists. For example, the order
of the elements in a list can be reversed.

In[40]:= Reverse@81, 2, 3, 4, 5<D

Out[40]= 85, 4, 3, 2, 1<

All the elements can be rotated a specified number of positions to the right or the left.

In[41]:= RotateLeft@81, 2, 3, 4, 5<D

Out[41]= 82, 3, 4, 5, 1<

By default RotateLeft (and RotateRight) shifts the list one position to the left (right). This
rotates every element two positions to the right.

In[42]:= RotateRight@81, 2, 3, 4, 5<, 2D

Out[42]= 84, 5, 1, 2, 3<

Partition rearranges list elements to form a nested list. It may use all the elements and simply
divvy up a list. Here we partition the list into nonoverlapping sublists of length 2.

In[43]:= Partition@81, 4, 1, 5, 9, 2<, 2D

Out[43]= 881, 4<, 81, 5<, 89, 2<<

You might be interested in only using some of the elements from a list. For example, this takes
one-element sublists, with an offset of 2, that is, every other one-element sublist.

74 Lists

In[44]:= Partition@81, 4, 1, 5, 9, 2<, 1, 2D

Out[44]= 881<, 81<, 89<<

You can also create overlapping inner lists, consisting of ordered pairs (two-element sublists)
whose second element is the first element of the next ordered pair.

In[45]:= Partition@81, 4, 1, 5, 9, 2<, 2, 1D

Out[45]= 881, 4<, 84, 1<, 81, 5<, 85, 9<, 89, 2<<

The Transpose function pairs off the corresponding elements of the inner lists. Its argument
is a single list consisting of nested lists.

In[46]:= Transpose@88x1, x2, x3, x4<, 8y1, y2, y3, y4<<D

Out[46]= 88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<<

In[47]:= mat = 88x1, x2, x3, x4<, 8y1, y2, y3, y4<, 8z1, z2, z3, z4<<;
Transpose@matD

Out[48]= 88x1, y1, z1<, 8x2, y2, z2<, 8x3, y3, z3<, 8x4, y4, z4<<

For rectangular lists, you might think of Transpose as exchanging the rows and columns of the
corresponding matrix.

In[49]:= MatrixForm@matD
Out[49]//MatrixForm=

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

In[50]:= Transpose@matD êê MatrixForm
Out[50]//MatrixForm=

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4

Elements can be added to the front, the back, or to any specified position in a given list.

In[51]:= Append@81, 2, 3, 4<, 5D

Out[51]= 81, 2, 3, 4, 5<

In[52]:= Prepend@81, 2, 3, 4<, 0D

Out[52]= 80, 1, 2, 3, 4<

In[53]:= Insert@81, 2, 3, 4<, 2.5, 3D

Out[53]= 81, 2, 2.5, 3, 4<

3.3 Operations on lists 75

Elements at specific locations in a list can be replaced with other elements. Here, b replaces the
element in the second position of the list.

In[54]:= ReplacePart@8a, b, c, d, e<, b, 2D

Out[54]= 8a, b, c, d, e<

Some list operations result in deeply nested lists that you may need to flatten. This removes all
the inner braces, creating a linear list of elements.

In[55]:= Flatten@8883, 1<, 82, 4<<, 885, 3<, 87, 4<<<D

Out[55]= 83, 1, 2, 4, 5, 3, 7, 4<

You can limit the degree of flattening, removing only some of the inner lists. For example, two
inner lists, each having two ordered pairs, can be turned into a single list of four ordered pairs by
only flattening down one level deep.

In[56]:= Flatten@8883, 1<, 82, 4<<, 885, 3<, 87, 4<<<, 1D

Out[56]= 883, 1<, 82, 4<, 85, 3<, 87, 4<<

List component assignment
Up until this point, most of the list manipulation functions we have looked at are nondestructive.
In other words, operating on a list by, say, reversing its elements, does not change the original list.

In[57]:= lis = 80, 1, 2, 3, 4<;

In[58]:= Reverse@lisD

Out[58]= 84, 3, 2, 1, 0<

In[59]:= lis

Out[59]= 80, 1, 2, 3, 4<

Sometimes though, it is convenient to modify the list directly. This can be accomplished with list
component assignments. The general syntax for modifying a list is:

nameAAinteger_valued _expressionEE = expr

The name must be the name of a list. The integer_valued_expression must evaluate to a legal sub-
script, that is, a valid position specification for the elements of a list. The assignment returns the
value of expr (as assignments always do), but has the effect of changing the list to which name is
bound. In other words, this is a destructive operation, changing the value of the list on which you
are operating. For example, this replaces the first element of the above list, lis, with the value 10.

In[60]:= lisP1T = 10

Out[60]= 10

76 Lists

The value of lis itself has changed.

In[61]:= lis

Out[61]= 810, 1, 2, 3, 4<

Components of nested lists can be modified as well.

name@@expr1, expr2DD = expr

expr1 and expr2 are expressions that must evaluate to integers. expr1 chooses the sublist of name,

and expr2 the element of that sublist.

Here is a 2ä3 nested list.

In[62]:= A = 881, 2, 3<, 84, 5, 6<<;

This assigns the third element in the second sublist the value 20.

In[63]:= AP2, 3T = 20

Out[63]= 20

In[64]:= A

Out[64]= 881, 2, 3<, 84, 5, 20<<

Note that assigning one array name to another array makes a copy of the first. In this way,
component assignments to either one will not affect the other.

In[65]:= B = A

Out[65]= 881, 2, 3<, 84, 5, 20<<

In[66]:= BP1, 2T = 30

Out[66]= 30

In[67]:= B

Out[67]= 881, 30, 3<, 84, 5, 20<<

In[68]:= A

Out[68]= 881, 2, 3<, 84, 5, 20<<

In[69]:= AP2, 1T = 40

Out[69]= 40

In[70]:= B

Out[70]= 881, 30, 3<, 84, 5, 20<<

This behavior differs from that of languages such as C where aliasing can allow one list to point to
another; with pointers, changing one array will have an effect on any array that points to it.

3.3 Operations on lists 77

As an example of list component assignment, we create a matrix consisting of 1s everywhere
except for 0s on the border. Start by creating a matrix of 1s and then replace all elements on the
borders with 0s.

In[71]:= mat = ConstantArray@1, 85, 5<D;
MatrixForm@matD

Out[72]//MatrixForm=

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

To specify the first and last rows of mat, use mat@@81, -1<, AllDD, and similarly for the
columns.

In[73]:= mat@@81, -1<, AllDD = 0;
mat@@All, 81, -1<DD = 0;
MatrixForm@matD

Out[75]//MatrixForm=

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0

Because Mathematica is so efficient at list operations, many computations using list component
assignment are often several orders of magnitude faster than other approaches. The reasons
behind this are discussed in Chapter 12.

Multiple lists
A number of the functions described earlier in this chapter, such as Transpose, work with
several lists if they are inside a nested list structure. The following functions, on the other hand,
operate on multiple lists as arguments but without the need for the nesting. For example, Join
concatenates two lists.

In[76]:= Join@82, 5, 7, 3<, 8d, a, e, j<D

Out[76]= 82, 5, 7, 3, d, a, e, j<

Here is the union of two lists.

In[77]:= 84, 1, 2< ‹ 85, 1, 2<

Out[77]= 81, 2, 4, 5<

78 Lists

In[78]:= Union@84, 1, 2<, 85, 1, 2<D

Out[78]= 81, 2, 4, 5<

When the Union function is used either on a single list or on a number of lists, a list is formed
consisting of the original elements in canonical order with all duplicate elements removed.
Complement gives all those elements in the first list that are not in the other list or lists.

IntersectionAlis1, lis2, …E finds all those elements common to the lisi.

In[79]:= Complement@84, 1, 2<, 85, 1, 2<D

Out[79]= 84<

In[80]:= 84, 1, 2< › 85, 1, 2<

Out[80]= 81, 2<

These last three functions, Union, Complement , and Intersection, treat lists somewhat
like sets in that there are no duplicates and the order of elements in the lists is not respected. If
you simply want to remove duplicates without sorting, use DeleteDuplicates.

In[81]:= Flatten@884, 1, 2<, 85, 1, 2<<D

Out[81]= 84, 1, 2, 5, 1, 2<

In[82]:= DeleteDuplicates@%D

Out[82]= 84, 1, 2, 5<

A common task when working with data that you wish to display in a tabular format is
prepending a list of header information.

In[83]:= header = 8"Column A", "Column B"<;
data = RandomReal@1, 85, 2<D

Out[84]= 880.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<

When using PrependAexpr, elemE, elem must have the same structure as the elements of expr.

In[85]:= Prepend@data, headerD

Out[85]= 88Column A, Column B<, 80.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<

You can do the same with Join , but note that to insure that the two lists have the same struc-
ture, header needs to be wrapped in 8<.

3.3 Operations on lists 79

In[86]:= Join@8header<, dataD

Out[86]= 88Column A, Column B<, 80.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<

We can display this list of headers and data adding some formatting through the use of several
options to Grid .

In[87]:= Grid@Join@8header<, dataD,
Frame Ø All, Alignment Ø Left,
FrameStyle Ø Thin, ItemStyle Ø 8"Menu", 8<D

Out[87]=

Column A Column B

0.327946 0.347031

0.401486 0.13706

0.3326 0.0676231

0.812965 0.340873

0.727445 0.634518

Using Join as follows does not work because the two lists have different structures.

In[88]:= Grid@Join@header, dataDD

Out[88]= Grid@8Column A, Column B, 80.327946, 0.347031<,
80.401486, 0.13706<, 80.3326, 0.0676231<,
80.812965, 0.340873<, 80.727445, 0.634518<<D

In[89]:= Dimensions@headerD

Out[89]= 82<

In[90]:= Dimensions@dataD

Out[90]= 85, 2<

Exercises
1. Given a list of data points, 88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<, 8x5, y5<<,

separate the x and y components to get:

88x1, x2, x3, x4, x5<, 8y1, y2, y3, y4, y5<<

2. Consider a two-dimensional random walk on a square lattice. (A square lattice can be envisioned as
a two-dimensional grid, just like the lines on graph paper.) Each step can be in one of the four
directions: 81, 0<, 80, 1<, 8-1, 0<, 80, -1<, corresponding to steps in the compass directions
east, north, west and south, respectively. Use the list 881, 0<, 80, 1<, 8-1, 0<, 80, -1<< to
create a list of the steps of a ten-step random walk.

3. Extract elements in the even-numbered locations in the list 8a, b, c, d, e, f, g<.

80 Lists

4. Given a matrix, use list component assignment to swap any two rows.

5. Create a function AddColumnAmat, col, posE that inserts a column vector col into the matrix mat
at the column position given by pos. For example:

In[1]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[2]//MatrixForm=

5 0 9 1
0 0 0 5
9 6 2 5
1 2 2 2

In[3]:= AddColumn@mat, 8a, b, c, d<, 3D êê MatrixForm
Out[3]//MatrixForm=

5 0 a 9 1
0 0 b 0 5
9 6 c 2 5
1 2 d 2 2

6. Suppose you are given a list S of length n, and a list P containing n different numbers between 1 and
n, that is, P is a permutation of Range@nD. Compute the list T such that for all k between 1 and n,
TPkT = SPPPkTT. For example, if S = 8a, b, c, d< and P = 83, 2, 4, 1<, then
T = 8c, b, d, a<.

7. Given the lists S and P in the previous exercise, compute the list U such that for all k between 1 and
n, UPPPkTT = SPkT, that is, SPiT takes the value from position PPiT in U. Thus, for
S = 8a, b, c, d< and P = 83, 2, 4, 1<, U = 8d, b, a, c<. Think of it as moving SP1T to
position PP1T, SP2T to position PP2T, and so on. Hint: start by pairing the elements of P with the
elements of S.

8. How would you perform the same task as Prepend@8x, y<, zD using the Join function?

9. Starting with the lists 81, 2, 3, 4< and 8a, b, c, d<, create the list 82, 4, b, d<.

10. Starting with the lists 81, 2, 3, 4< and 8a, b, c, d<, create the list
81, a, 2, b, 3, c, 4, d<.

11. Given two lists, find all those elements that are not common to the two lists. For example, starting
with the lists, 8a, b, c, d< and 8a, b, e, f<, your answer would return the list 8c, d, e, f<.

12. One of the tasks in computational linguistics involves statistical analysis of text using what are
called n-grams. These are sequences of n adjacent letters or words and their frequency distribution in
a body of text can be used to predict word usage based on the previous history or usage. Import a
file consisting of some text and find the twenty most frequently occurring word combinations. Pairs
of words that are grouped like this are called bigrams, that is, n-grams for n = 2.

Use the following StringSplit code to split long strings into a list of words that can then be
operated on with the list manipulation functions. Regular expressions are discussed in detail in
Section 9.4.

3.3 Operations on lists 81

In[4]:= words =
StringSplit@"Use StringSplit to split long strings into words.",

RegularExpression@"\\W+"DD
Out[4]= 8Use, StringSplit, to, split, long, strings, into, words<

13. Based on the previous exercise, create a function NGrams@str, nD that takes a string of text and
returns a list of n-grams, that is a list of the n adjacent words. For example:

In[5]:= text = "Use StringSplit to split long strings into words.";

NGrams@text, 3D

Out[6]= 88Use, StringSplit, to<, 8StringSplit, to, split<,
8to, split, long<, 8split, long, strings<,
8long, strings, into<, 8strings, into, words<<

82 Lists

4

Patterns and rules
Patterns · Pattern matching by type · Structured patterns · Sequence pattern matching ·

Conditional pattern matching · Alternatives · Repeated patterns · Functions that use patterns ·
Transformation rules · Creating and using replacement rules · Counting coins · Closed paths ·

Finding maxima · Finding subsequences · Sorting lists

The use of rules to transform expressions from one form to another is one of the most powerful
tools available in the Mathematica programming language. The thousands of rules built in to
Mathematica can be expanded limitlessly through the creation of user-defined rules. These rewrite
rules can be used to change the form of expressions and to filter data based on some criteria, and
can be set up to apply to broad classes of expressions or they can be limited to certain narrow
domains through the use of appropriate pattern matching techniques. Using rules, you can
perform many of the tasks normally associated with more traditional programming paradigms
such as procedural and functional programming.

When you define a function via an assignment such as the function f below, you are defining a
rule that says whenever f is given an argument, it should be replaced with that argument
squared. This rule will be applied automatically whenever you evaluate fAanythingE.

In[1]:= f@x_D := x2

In[2]:= f@5 ÂD

Out[2]= -25

In[3]:= f@LegendreP@5, xDD

Out[3]=
1

64
I15 x - 70 x3 + 63 x5M2

In[4]:= fB F

Out[4]=

2

On the other hand, you can set up rules to be applied on demand by using the replacement
operator ReplaceAll , written in shorthand notation as /.. These rules can then be used to
transform one expression into another. For example, this rule adds the elements in each ordered
pair.

In[5]:= 88x1, y1<, 8x2, y2<, 8x3, y3<< ê. 8x_, y_< ß x + y

Out[5]= 8x1 + y1, x2 + y2, x3 + y3<

And here is a rule that interchanges the coordinate points that make up a plot, essentially reflect-
ing in the line y = x.

In[6]:= gr = Plot@Sin@xD, 8x, 0, p<D;

In[7]:= Show@8gr, gr ê. 8x_?NumberQ, y_?NumberQ< ß 8y, x<,
Graphics@8Dashed, Line@880, 0<, 8p, p<<D<D<,

PlotRange Ø All, AspectRatio Ø AutomaticD

Out[7]=

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Rules can be used to transform any object in Mathematica, such as strings, arrays, or images.

In[8]:= StringReplace@"acgttttccctgagcataaaaacccagcaatacg",
8"ca" Ø "CA", "tt" Ø "TT"<D

Out[8]= acgTTTTccctgagCAtaaaaaccCAgCAatacg

84 Patterns and rules

In[9]:=

0.4683 0.2699 "NAN"

0.8323 0.1458 0.683

"NAN" 0.4935 0.4033

ê. H_String Ø 0.0L êê MatrixForm

Out[9]//MatrixForm=

0.4683 0.2699 0.

0.8323 0.1458 0.683

0. 0.4935 0.4033

In[10]:= ê. 8r_, g_, b_< ß 1 - 8r, g, b<

Out[10]=

Rule-based programming has broad application to many different programming tasks and it is
essential in learning how to program in Mathematica. Although the syntax will be new to anyone
brought up on imperative programming common to many procedural languages such as C and
Fortran, it quickly becomes natural, providing a direct connection between the statement of a
problem and its expression in a rule-based program. We start this chapter with a thorough
introduction to pattern matching and then proceed to a discussion of transformation rules in
which patterns are used to identify the parts of an expression that is to be transformed. Finally,
we will conclude the chapter with several concrete examples that make use of pattern matching
and transformation rules to show their application to some common programming tasks.

4.1 Patterns
Patterns are objects in Mathematica that are used to represent classes of expressions. Pattern
matching is the mechanism that Mathematica uses to determine if a particular rule should be
applied to a given expression. You use patterns to identify the class of expressions for which a
user-defined function may apply, that is, for argument checking. They are also used to extract
parts of an expression based on a criteria of interest. There are many different types of patterns
that you can work with in Mathematica and this section introduces their syntax and begins to
show some of the great variety of things that are done with them.

4. 85

Blanks
When you make an assignment to a symbol, like x = 4, you are making a rule that should be
applied to the literal expression x. Loosely speaking, the rule says, replace x with the value 4
whenever x is encountered. We have seen that you can also define functions of one or more
arguments that allow you to substitute arbitrary expressions for those arguments.

In[1]:= f@x_D := x + 1

The left-hand side of the above assignment is a pattern. It contains a pattern object, the blank
(underscore), that can stand for any expression, not just the literal expression x.

In[2]:= f@zD

Out[2]= 1 + z

In[3]:= f@BobD

Out[3]= 1 + Bob

While any specific expression can be pattern matched (because any object must match itself),
we usually want to be able to pattern match large classes of expressions (for example, an expres-
sion having Image as its head or a sequence of numbers within a certain range). This is accom-
plished through patterns and pattern matching. To start, we will define a pattern as an expression
that may contain blanks; specifically, one of the following: a single blank (_), a double blank (__),
or a triple blank (___). This is not quite accurate since arbitrary expressions can be used as
patterns, but for now, we will only discuss patterns involving blanks.

It is useful to identify the pattern matched by an expression so that it can be referred to by
name elsewhere. For example, in the function f defined above, the argument is a pattern named
x. The argument is referred to as x on the right-hand side of the definition. Labeled patterns can
be used with single, double, and triple blanks.

To see what class of expressions are matched by a given pattern, use MatchQ. For example, the
following tests whether the symbol Bob matches any expression because the single underscore
can stand for any Mathematica expression.

In[4]:= MatchQ@Bob, _D

Out[4]= True

Clear definitions before continuing.

In[5]:= Clear@fD

86 Patterns and rules

Pattern matching by type
As stated above, the single blank matches every expression.

In[6]:= :MatchQ@1.2, _D, MatchQ@"Ciao", _D, MatchQB , _F>

Out[6]= 8True, True, True<

Oftentimes you are interested in a more restrictive pattern. For example, you might want to
define a function that accepts only integers as arguments, or a function that only operates on
images. One way of restricting the class of expressions matched by a pattern is to match on the
head of the expression. This is done with patterns of the form _head. For example, the following
tests whether the number 3.14 matches any expression with head Real .

In[7]:= MatchQ@3.14, _RealD

Out[7]= True

Of course 3.14 does not match any expression with head Integer .

In[8]:= MatchQ@3.14, _IntegerD

Out[8]= False

In[9]:= Head@3.14D

Out[9]= Real

To look at a list of expressions and see which ones are matched by a particular pattern, use
Cases. Cases@expr, pattD returns those elements of expr that are matched by the pattern patt.
For example, the only two elements of the list below that have head Integer are 3 and 17. Notice
the fourth element is a string.

In[10]:= Cases@83, 3.14, 17, "4", 4 + 5 I<, _IntegerD

Out[10]= 83, 17<

In[11]:= Cases@83, 3.14, 17, "4", 4 + 5 I<, _StringD

Out[11]= 84<

Remember that the OutputForm of strings is to display without the quote characters. If you
want to check the structure of this last output, use FullForm or check its head.

In[12]:= FullForm@%D
Out[12]//FullForm=

List@"4"D

4.1 Patterns 87

This next example matches all those expressions with head g.

In[13]:= Cases@8g@xD, f@xD, g@h@xDD, g@a, 0D<, _gD

Out[13]= 8g@xD, g@h@xDD, g@a, 0D<

The only expression below that is matched by the pattern _Plus is a + b. The string has head
String. But isn’t 2 + 3 matched by the pattern _Plus?

In[14]:= Cases@8a + b, 2 + 3, "3+4"<, _PlusD

Out[14]= 8a + b<

Recall from Section 2.1, that Mathematica evaluates the arguments to functions before passing
them up to the calling function. So the expression 2 + 3 in this example is evaluated first and
returns an expression that does not have head Plus .

In[15]:= FullForm@2 + 3D
Out[15]//FullForm=

5

In practice, pattern matching on heads is extremely useful for restricting the kinds of argu-
ments on which a defined function can operate. For example, the following function sets up a
rule for expressions of the form f@integerD. Only those expressions matched by this pattern will
cause the rule to be invoked.

In[16]:= f@x_IntegerD := x + 1

In[17]:= f@5D

Out[17]= 6

In[18]:= f@1.25D

Out[18]= f@1.25D

In[19]:= Clear@fD

Structured patterns
Patterns can also be set up to match arbitrary expressions. In the following example, the pattern
8p_, q_< matches any list with two elements.

In[20]:= Cases@88a, b<, 8<, 81, 0<, 8c, d, 3<<, 8p_, q_<D

Out[20]= 88a, b<, 81, 0<<

In fact, there is no need to name the patterns in this last example as they are not referred to
elsewhere. Hence, the following is equivalent.

88 Patterns and rules

In[21]:= Cases@88a, b<, 8<, 81, 0<, 8c, d, 3<<, 8_, _<D

Out[21]= 88a, b<, 81, 0<<

The following result might be a bit surprising. The pattern we are using for matching is a
symbolic expression involving a general pattern in both numerator and denominator.

In[22]:= CasesB:2,
9

3
,
1

3
,

x

y + z
>,

a_

b_
F

Out[22]= :
x

y + z
>

Why doesn’t the pattern match 9ê3? Mathematica evaluates the elements of expressions first and
so when 9ê3 is evaluated, it reduces to an integer.

In[23]:=
9

3

Out[23]= 3

What is even more mysterious is the fact that the pattern a_ ê b_ does not match 1ê3. A look at
the internal representation of this fraction gives a clue.

In[24]:= FullFormB
1

3
F

Out[24]//FullForm=

Rational@1, 3D

The pattern matcher is a syntactic tool, not a semantic one. This means that patterns match
expressions based on the explicit structure of the expression, not what that expression means or
what it might reduce to. This is an important principle to keep in mind when you are creating
and using patterns.

In[25]:= MatchQB
1

3
, Rational@a_, b_DF

Out[25]= True

Structured arguments provide a clean mechanism for writing rules that only apply to the kinds
of expressions for which you want them to apply. The following function definition is for an
argument consisting of a list of two expressions.

In[26]:= f@8x_, y_<D :=
x2

y3

4.1 Patterns 89

In[27]:= f@8a, b<D

Out[27]=
a2

b3

The pattern does not match in the following case. The function f is expecting a list of two
elements as an argument, but here, it is getting a sequence of two elements, not a list.

In[28]:= f@a, bD

Out[28]= f@a, bD

The alternative to such a structured pattern on the left-hand side of this definition would be to
use a more general pattern matching the head of the expression. But this requires a clumsy right-
hand side in which you need to extract the various parts of the list to operate on them.

In[29]:= ff@list_ListD := list@@1DD2 ë list@@2DD3

In[30]:= Clear@f, ffD

Sequence pattern matching
A sequence consists of a number of expressions separated by commas. For example, the elements
of expressions are written as sequences. In both the full form and traditional representation for a
list, the elements are given as a sequence of expressions.

In[31]:= FullForm@8a, b, c, d, e<D
Out[31]//FullForm=

List@a, b, c, d, eD

The double blank (BlankSequence) represents a sequence of one or more expressions. So,
the pattern 8p__< matches any list consisting of a sequence of one or more elements.

In[32]:= Cases@88<, 8a<, 8b, c<, 8d, e, f<<, 8p__<D

Out[32]= 88a<, 8b, c<, 8d, e, f<<

Using the name p is actually unnecessary here as it is never referred to elsewhere.

In[33]:= Cases@88<, 8a<, 8b, c<, 8d, e, f<<, 8__<D

Out[33]= 88a<, 8b, c<, 8d, e, f<<

Using the triple blank (BlankNullSequence), which represents a sequence of zero or more
expressions, this pattern matches any list consisting of a sequence of zero or more elements.

In[34]:= Cases@88<, 8a<, 8b, c<, 8d, e, f<<, 8___<D

Out[34]= 88<, 8a<, 8b, c<, 8d, e, f<<

The pattern 8___Symbol< matches any list consisting of a sequence of zero or more ele-
ments, all of which have head Symbol.

90 Patterns and rules

In[35]:= MatchQ@8a, b, c<, 8___Symbol<D

Out[35]= True

In[36]:= MatchQ@8a, 2, c<, 8___Symbol<D

Out[36]= False

In the following examples, the list 8a, b, c< is matched by the pattern _, as well as by
List@__D and List@___D. However, the list 8a, b, c< is not matched by the pattern
List@_D because, for the purposes of pattern matching, a sequence is not an expression.

In[37]:= MatchQ@8a, b, c<, _D

Out[37]= True

In[38]:= MatchQ@8a, b, c<, 8_<D

Out[38]= False

The next two examples return True but not for the reason you might think.

In[39]:= MatchQ@8a, b, c<, __D

Out[39]= True

In[40]:= MatchQ@8a, b, c<, x__D

Out[40]= True

The pattern __ is matched by a sequence of one or more expressions. In this case the entire list
matches that pattern, regardless of the contents of that list.

In[41]:= MatchQ@8<, __D

Out[41]= True

In the example above where the labeled pattern x__ is used, the label x does not affect the
success or failure of the pattern match.

In[42]:= MatchQ@8a, b, c<, __D

Out[42]= True

Two final notes: first, the discussion about pattern matching on lists applies equally to any
expression. For example, the following returns True, with x naming the sequence a, b, c.

In[43]:= MatchQ@Plus@a, b, cD, Plus@x__DD

Out[43]= True

Second, sometimes the expression you are working on has a more complicated or nested struc-
ture. In such cases, you will often need to coax the pattern matcher to dig a little deeper in its
search for a match. For example, using the structured pattern Hvar_L^n_ to find expressions
consisting of a variable raised to a power, this fails initially.

4.1 Patterns 91

In[44]:= CasesAa x4 + b x3 + c x2 + d x + e, Hvar_L^n_E

Out[44]= 8<

The reason Cases did not find any expressions matching the pattern is that the polynomial is
deeply nested and Cases, by default, only looks at the first level of the expression.

In[45]:= FullFormAa x4 + b x3 + c x2 + d x + eE
Out[45]//FullForm=

Plus@e, Times@d, xD, Times@c, Power@x, 2DD,
Times@b, Power@x, 3DD, Times@a, Power@x, 4DDD

There certainly are some variables raised to powers in there. To get Cases to find them, give it a
third argument that specifies the level to search down to. Rather than guessing or spending time
trying to figure out that level, you can just use Infinity as the level specification and this
means, go all the way down the expression tree.

In[46]:= CasesAa x4 + b x3 + c x2 + d x + e, Hvar_L^n_, InfinityE

Out[46]= 9x2, x3, x4=

Again note that there was no need to name the patterns in this example as they were not referred
to elsewhere. You might find it easier though to read such expressions using named patterns; it is
your choice.

In[47]:= CasesAa x4 + b x3 + c x2 + d x + e, H_L^_, InfinityE

Out[47]= 9x2, x3, x4=

Conditional pattern matching
Attaching a condition Conditions are used to place a constraint on the labeled parts of an expres-
sion. The general notation for conditional patterns is expr_ ê; test. The pattern match is only
possible if the predicate test returns True .

In this first example, the pattern named n must meet the condition that its square root passes
the IntegerQ test; in other words, that n is a square.

In[48]:= CasesB81, 2, 3, 4, 5, 6, 7, 8, 9<, n_ ê; IntegerQB n FF

Out[48]= 81, 4, 9<

In the following case, the expressions that are matched by the pattern are powers where the
exponent passes the EvenQ test.

In[49]:= Cases@8x, x^2, x^3, x^4, x^5<, _^Hn_L ê; EvenQ@nDD

Out[49]= 9x2, x4=

92 Patterns and rules

Let us try a more applied problem. Given an array, how can we test that it is a square matrix?
One way is to check that the dimensions are identical.

In[50]:= mat = RandomReal@1, 83, 3<D;
MatrixForm@matD

Out[51]//MatrixForm=

0.139347 0.204957 0.245416
0.283553 0.48378 0.670354
0.346834 0.473592 0.625998

In[52]:= Dimensions@matD

Out[52]= 83, 3<

In the definition below, the condition that the expression passes the matrix test is added to the
left-hand side. This avoids having to check tensors where the first two dimensions might be
identical but the tensor clearly should not be classified as a square matrix.

In[53]:= SquareMatrixQ@mat_ ê; MatrixQ@matDD :=

Dimensions@matD@@1DD ã Dimensions@matD@@2DD

In[54]:= SquareMatrixQ@matD

Out[54]= True

In[55]:= mat = RandomReal@1, 83, 4<D;
MatrixForm@matD

Out[56]//MatrixForm=

0.882058 0.774627 0.733256 0.222145
0.297304 0.601519 0.680989 0.108759
0.0323011 0.361117 0.836766 0.795304

In[57]:= SquareMatrixQ@matD

Out[57]= False

A 1ä1 matrix is also square.

In[58]:= SquareMatrixQ@881<<D

Out[58]= True

We mentioned above that matching a list like 8a, b, c< with the pattern x_ is different from
matching it with x___ because of the various expressions that can be associated with�x.

In[59]:= MatchQ@84, 6, 8<, x_ ê; Length@xD > 4D

Out[59]= False

4.1 Patterns 93

In[60]:= MatchQ@84, 6, 8<, 8x___< ê; Length@xD > 4D

Length::argx : Length called with 3 arguments; 1 argument is expected. à

Out[60]= False

In[61]:= MatchQ@84, 6, 8<, 8x___< ê; Plus@xD > 10D

Out[61]= True

In the first example, x was associated with the entire list 84, 6, 8<; since the length of the list
84, 6, 8< is not greater than 4, the match failed. In the second example, x became the sequence
4, 6, 8 so that the condition was Length@4, 6, 8D > 4; but Length can only have one
argument, hence the error. In the last example, x was again associated with 4, 6, 8, but now the
condition was Plus@4, 6, 8D > 10, which is perfectly valid syntax, and true.

Shorthand notation There is a convenient shorthand notation for conditional patterns that is
commonly used. The condition expr_ ê; test can be shortened to expr_ ? test.

In[62]:= MatchQB , _?ImageQF

Out[62]= True

Note the difference in syntax between using a predicate and a head to pattern match: to match
a class of expressions that have head h, you use _h. To match a class of expressions that evaluate
to True when the predicate test is applied, use _? test.

In[63]:= MatchQ@81, 2, 3<, _ListD

Out[63]= True

In[64]:= MatchQ@81, 2, 3<, _?NumberQD

Out[64]= False

In the above example, even though the list 81, 2, 3< consists of numbers, it does not match
? NumberQ because its head (List) does not pass the NumberQ test. If you want to match the
list consisting of a sequence of numbers, use the double blank as follows.

In[65]:= MatchQ@81, 2, 3<, 8__?NumberQ<D

Out[65]= True

Cases finds all elements of its first argument that match a pattern.

94 Patterns and rules

In[66]:= Cases@81, 2, 3, a<, _?NumberQD

Out[66]= 81, 2, 3<

The pattern _?Negative matches any expression that passes the Negative test, that is, it
returns true when Negative is applied to it.

In[67]:= Cases@8-2, 7, -1.2, 0, -5 - 2 I<, _?NegativeD

Out[67]= 8-2, -1.2<

Here is a simple application of attaching a predicate. This definition of the Fibonacci function
tests its argument to see that it is an integer.

In[68]:= f@1D = f@2D = 1;

In[69]:= f@n_?IntegerQD := f@n - 1D + f@n - 2D

Because of the predicate, f will not evaluate for noninteger arguments; in other words, noninte-
ger arguments do not match the pattern _?IntegerQ.

In[70]:= f@1.2D

Out[70]= f@1.2D

In[71]:= 8f@5D, f@10D, f@20D<

Out[71]= 85, 55, 6765<

Note that you can test that the argument is both an integer and positive by using a logical connec-
tive – in this case, logical AND.

In[72]:= Clear@fD
f@1D = f@2D = 1;

In[74]:= f@n_ ê; IntegerQ@nD && Positive@nDD := f@n - 1D + f@n - 2D

In[75]:= 8f@5D, f@10D, f@20.0D, f@-10D<

Out[75]= 85, 55, f@20.D, f@-10D<

Examples Let us look at a few examples of the use of conditional patterns. We will only scratch
the surface here of what can be done with them but we will be using and extending them through-
out the rest of this book.

In our first example, we create a predicate function that tests whether a positive integer is
composite. The argument is checked to see if it has head Integer and if it is greater than 1.

In[76]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD

4.1 Patterns 95

In[77]:= CompositeQ@16D

Out[77]= True

In[78]:= CompositeQA231 - 1E

Out[78]= False

In this next input, the pattern matches all those expressions that are between 2 and 5.

In[79]:= Cases@81, 2, 3, 4, 5, 6, 7, 8<, x_ ê; 2 < x < 5D

Out[79]= 83, 4<

This is essentially a filter and we can use this technique to filter all sorts of data. For example, here
we remove outliers from a signal.

In[80]:= sig = Import@"signal.dat", "List"D;
ListPlot@sig, PlotRange Ø 8-1, 1<D

Out[81]=
200 400 600 800 1000

-1.0

-0.5

0.5

1.0

In[82]:= ListPlot@
Cases@sig, p_ ê; -0.3 < p < 0.3D,
PlotRange Ø 8-1, 1<D

Out[82]=
200 400 600 800 1000

-1.0

-0.5

0.5

1.0

Stock screens can be thought of similarly. We can use the same technique as above to extract
those members of the Dow Jones Industrials that have a large market capitalization.

In[83]:= CasesAFinancialData@"^DJI", "Members"D,

s_ ê; FinancialData@s, "MarketCap"D > 1011E

Out[83]= 8BAC, CVX, GE, IBM, INTC, JNJ, JPM,
KO, MRK, MSFT, PFE, PG, T, VZ, WMT, XOM<

In the following screen, two predicates are connected by logical AND to give those members of
the Dow Jones Industrials that have a large market capitalization and a low price-earnings ratio.

96 Patterns and rules

In[84]:= CasesAFinancialData@"^DJI", "Members"D,

s_ ê; IFinancialData@s, "MarketCap"D > 1011 &&

FinancialData@s, "PERatio"D < 12ME

Out[84]= 8BAC, CVX, INTC, JPM, XOM<

Alternatives
Another kind of pattern uses alternatives. Alternatives are denoted p1 p2 … pn where the pi are
independent patterns. This pattern will match an expression whenever any one of those indepen-
dent patterns match it.

In the following example, x^2 matches “an expression which is either the symbol x raised to a
real number or the symbol x raised to an integer.”

In[85]:= MatchQ@x^2, x^_Real x^_IntegerD

Out[85]= True

Here the pattern matches any expression that has head Integer or Rational or Real.

In[86]:= CasesB:1, 3.1,
2

3
, x, 3 + 4 I, "Hello">,

_Integer _Rational _RealF

Out[86]= :1, 3.1,
2

3
>

You should think of p1 p2 … pn as pattern p1 or pattern p2 or…. But note that this is different
from the logical OR which requires predicates, not patterns, as its argument.

Repeated patterns
From the discussion of double and triple blanks, we have seen that you can set up a function to
have a sequence of arguments the length of which is not known ahead of time. For example,
__List matches expressions with head List with a sequence of one or more elements inside
that list.

In[87]:= MatchQ@81, 2, 3, 4, 5<, __ListD

Out[87]= True

To compute the mean of a list, you could set up the function definition so that the argument
has head List . Any number of elements can be used inside this list.

In[88]:= mean@x_ListD := Total@xD ê Length@xD

You would probably want a separate rule for the special case when the list is empty.

4.1 Patterns 97

In[89]:= mean@8<D := 0

In[90]:= mean@8a, b, c, d<D

Out[90]=
1

4
Ha + b + c + dL

In[91]:= meanARangeA102EE

Out[91]=
101

2

But what if you wanted to restrict the arguments inside a list, say to numbers only. You could try
something like this:

In[92]:= MatchQ@81, 2, 3, 4, 5<, 8__?NumberQ<D

Out[92]= True

Or, you could use Repeated@patternD (shorthand notation is pattern ..) which stands in for a
sequence of one or more expressions all of which match pattern; in this case, a sequence of expres-
sions all of which pass the NumberQ test.

In[93]:= MatchQ@81, 2, 3, 4, 5<, 8_?NumberQ ..<D

Out[93]= True

Similarly, there is RepeatedNull@patternD (shorthand notation pattern ...), a pattern object
that will match a sequence of zero or more expressions all matching pattern.

In[94]:= MatchQ@8<, 8_?NumberQ ...<D

Out[94]= True

A second argument can be specified for both Repeated and RepeatedNull to limit the
number of expressions that are returned. For example, this matches lists of numbers, returning
the first three matches.

In[95]:= Cases@881<, 81, 2<, 81, 2, 3<, 81, 2, 3, 4<<,
8Repeated@_?NumberQ, 3D<D

Out[95]= 881<, 81, 2<, 81, 2, 3<<

As an example of the use of these repeated pattern objects, let us create two rules for a function
that we will use later to display random walks in two and three dimensions. The first pattern,
88_, _< ..<, matches any sequence of one or more two-dimensional coordinates. Similarly,
88_, _, _< ..< matches any sequence of one or more three-dimensional coordinates. We
could be a bit more careful and insist that each element in the list pass the NumberQ test, but we
will omit that here for purposes of clarity.

98 Patterns and rules

In[96]:= showWalk@coords : 88_, _< ..<D :=

ListLinePlot@coords, AspectRatio Ø AutomaticD

In[97]:= showWalk@coords : 88_, _, _< ..<D :=

Graphics3D@Line@coordsDD

This is defined and developed further as ShowWalk in Chapter 13. Loading the package from that
chapter, we generate a random walk and test one of the showWalk rules written here.

In[98]:= << PwM`RandomWalks`

In[99]:= RandomWalk@12, Dimension Ø 3D

Out[99]= 880, 0, -1<, 80, 1, -1<, 80, 0, -1<, 80, -1, -1<,
8-1, -1, -1<, 8-1, -1, -2<, 8-1, 0, -2<, 8-2, 0, -2<,
8-2, 0, -1<, 8-3, 0, -1<, 8-2, 0, -1<, 8-2, 0, -2<<

In[100]:= showWalk@RandomWalk@2500, Dimension Ø 3DD

Out[100]=

Note that we have not yet written a rule for the one-dimensional case. Hence the following
returns unevaluated as there is no rule for showWalk when its argument is a one-dimensional
vector.

In[101]:= showWalk@RandomWalk@5, Dimension Ø 1DD

Out[101]= showWalk@81, 0, -1, 0, -1<D

We have used one additional construct in these rules for showWalk, named patterns. The
pattern 88_, _< ..< will be matched by any list of one or more lists of pairs. The pattern is
named coords using the construction coords : 88_, _< ..<. We then refer to the entire
argument by name inside the body of the function. This really is no different than an ordinary
function definition like f below where we name the argument x and refer to the argument by its
name on the right-hand side of the function definition. The following two function definitions
are equivalent. It is of course more convenient to use the more compact first definition.

4.1 Patterns 99

In[102]:= f@x_D := x + 1

In[103]:= f@x : _D := x + 1

Functions that use patterns
We have already seen several functions that make use of patterns: MatchQ is used to check if an
expression is matched by a pattern; Cases returns all those elements in an expression that are
matched by a pattern. But there are several other functions that are quite useful and follow on the
syntax of these two functions we have already discussed. For example, using Cases, this returns
all those elements in the list of integers that are divisible by 3.

In[104]:= ints = RandomInteger@20, 812<D

Out[104]= 83, 13, 5, 11, 0, 16, 7, 1, 12, 16, 11, 4<

In[105]:= Cases@ints, x_ ê; Mod@x, 3D ã 0D

Out[105]= 83, 0, 12<

But what if you were interested in all those elements that are not divisible by 3? DeleteCases
takes the same syntax as Cases but deletes those elements that are matched by the pattern.

In[106]:= DeleteCases@ints, x_ ê; Mod@x, 3D ã 0D

Out[106]= 813, 5, 11, 16, 7, 1, 16, 11, 4<

If you were interested in the positions within the list at which the pattern is matched, Position
is the function to use.

In[107]:= Position@ints, x_ ê; Mod@x, 3D ã 0D

Out[107]= 881<, 85<, 89<<

And if you wanted a count of the number of elements in the list that are matched by the pattern,
use Count.

In[108]:= Count@ints, x_ ê; Mod@x, 3D ã 0D

Out[108]= 3

Notice how all four of these functions use the exact same syntax. They are all quite useful in the
common task of finding information about the elements within an expression that meet some
criteria you are interested in.

As a nontrivial example, suppose you have a collector in the field that gives information about
some phenomena that you are studying. Normally, it returns a list of real numbers at specified
intervals, but whenever it fails, it inserts a string such as "NA". Using Count and Position it
would be straightforward to find the rate of failure and the positions (times) at which those
failures occurred.

100 Patterns and rules

In[109]:= signal = Import@"collectorData.dat", "List"D;

In[110]:= Dimensions@signalD

Out[110]= 88860<

In[111]:= badvals = Count@signal, _StringD

Out[111]= 19

In[112]:= N@badvals ê Length@signalDD

Out[112]= 0.00214447

In[113]:= Position@signal, _StringD

Out[113]= 88299<, 8700<, 81394<, 81488<, 81991<, 82195<, 82360<,
82628<, 83413<, 83466<, 83553<, 83662<, 85064<,
85079<, 85505<, 86861<, 86870<, 87118<, 87449<<

Exercises
1. Use conditional patterns to find all those numbers in a list of integers that are divisible by 2 or 3 or 5.

2. Write down five conditional patterns that match the expression 84, 8a, b<, "g"<.

3. Write a function Collatz that takes an integer n as an argument and returns 3 n + 1 if n is an odd
integer and returns n ê2 if n is even.

4. Write the Collatz function from the above exercise, but this time you should also check that the
argument to Collatz is positive.

5. Use alternatives to write a function abs@xD that returns x if x ¥ 0, and -x if x < 0, whenever x is an

integer or a rational number. Whenever x is complex, abs@xD should return reHxL2 + imHxL2 .

6. Create a function swapTwoAlisE that returns lis with only its first two elements interchanged; for

example, the input swapTwo@8a, b, c, d, e<D should return 8b, a, c, d, e<. If lis has fewer
than two elements, swapTwo just returns lis. Write swapTwo using three clauses: one for the empty
list, one for one-element lists, and one for all other lists. Then write it using two clauses: one for lists
of length 0 or 1 and another for all longer lists.

4.1 Patterns 101

4.2 Transformation rules
Transformation rules are ubiquitous in Mathematica. They are used to represent solutions to
equations, as a means to specify options for functions, and they form the basis of most of the
algebraic manipulation in Mathematica. In this section we will look at how to use pattern match-
ing together with replacement rules to transform expressions.

Creating and using replacement rules
A replacement rule is of the form pattern Ø replacement or pattern ß replacement. Just like traditional
function definitions, the left-hand side of each of these rules matches an expression and the right-
hand side describes the transformation of that expression.

One of the most common uses for rules is to make substitutions of the form expr ê. rule. Any
part of expr that is matched by the pattern in rule will be rewritten according to that rule.

In[1]:= x + y ê.y Ø a

Out[1]= x + a

A rule that produces the same output but using assignments would look like this:

In[2]:= y = a;

In[3]:= x + y

Out[3]= x + a

The main difference between the replacement rule and the assignment is that the assignment will
automatically be used whenever there is an appropriate pattern match during evaluation. When
x + y was evaluated, a rule was found for y (specifically, y = a) and a substitution was automati-
cally made.

Another key difference is that no assignment was made in the first case but one was made in
the latter case. Let us clear that value before going on.

In[4]:= Clear@yD

Here is the standard input form of the above rule.

In[5]:= ReplaceAll@x + y, y Ø aD

Out[5]= x + a

And in general, it is

ReplaceAllAexpr, pattern Ø replacementE

Whether you use the standard form with ReplaceAll or use the shorthand notation, there
are some important things to note about the evaluation of transformation rules. To start, the
expression itself is first evaluated. Then both the left-hand side and right-hand side of the rule are

102 Patterns and rules

evaluated, unless there are parts of the right-hand side that have the Hold attribute. Finally,
everywhere that the evaluated left-hand side of the rule appears in the evaluated expression, it is
replaced by the evaluated right-hand side of the rule.

In[6]:= 8a, a< ê. a Ø RandomReal@D

Out[6]= 80.69089, 0.69089<

Trace shows how the transformation rule works. Note in particular, that the right-hand side
of the rule (RandomReal@D) is evaluated first.

In[7]:= Trace@8a, a< ê. a Ø RandomReal@DD

Out[7]= 888RandomReal@D, 0.833525<, a Ø 0.833525, a Ø 0.833525<,
8a, a< ê. a Ø 0.833525, 80.833525, 0.833525<<

Just as in the case of assignments, there are immediate and delayed transformation rules. In an
immediate rule (pattern Ø replacement), the replacement will be evaluated immediately. For delayed
rules (pattern ß replacement), the replacement is only evaluated after the substitution is made.

In[8]:= 8a, a< ê. a ß RandomReal@D

Out[8]= 80.753241, 0.926807<

In[9]:= Trace@8a, a< ê. a ß RandomReal@DD

Out[9]= 88a ß RandomReal@D, a ß RandomReal@D<,
8a, a< ê. a ß RandomReal@D,
8RandomReal@D, RandomReal@D<, 8RandomReal@D, 0.228649<,
8RandomReal@D, 0.793173<, 80.228649, 0.793173<<

In general, it is a good idea to use delayed rules whenever you have global symbols on the right-
hand side of your rules to avoid the possibility of values for these symbols being used automati-
cally during evaluation. If there are no global symbols on the right-hand side of your rules, it may
be safe to use an immediate rule.

The kinds of patterns that you can use with transformation rules are limitless. For example,
using the symbol List as the pattern, this changes the following list to a sum.

In[10]:= 8a, b, c< ê. List Ø Plus

Out[10]= a + b + c

Transformation rules can also be written using labeled patterns. In the first example below, a
pattern is used to identify the two elements in an ordered pair that we wish to reverse. In the
second example, the pattern matches elements on the diagonal of a matrix and this is used to set
all elements on the diagonal to 0.

In[11]:= 883, 4<, 87, 2<, 81, 5<< ê.8x_, y_< ß 8y, x<

Out[11]= 884, 3<, 82, 7<, 85, 1<<

4.2 Transformation rules 103

In[12]:= mat = 88a, b, c<, 8d, e, f<, 8g, h, i<<;
MatrixForm@matD

Out[13]//MatrixForm=

a b c

d e f

g h i

In[14]:= ReplacePart@mat, 8i_, i_< Ø 0D êê MatrixForm

Out[14]//MatrixForm=

0 b c

d 0 f

g h 0

ReplacePartAexpr, i Ø valE is used to replace the part of expr at position i with val. In the

example above, we have used the pattern 8i_, i_< to stand in for a two-dimensional position
in which the row and column positions are the same, as indicated by the similarly named pat-
terns i_.

To use multiple rules with an expression, enclose them in a list.

In[15]:= 8a, b, c< ê.8c ß b, b ß a<

Out[15]= 8a, a, b<

A transformation rule is applied only once to each part of an expression (in contrast to a rewrite
rule) and multiple transformation rules are used in parallel. Hence, in the above example, the
symbol c is transformed into b but it is not further changed into a.

In order to apply one or more transformation rules repeatedly to an expression until the
expression no longer changes, ReplaceRepeated is used. For example, the product of x and y
below is replaced by the sum of x and y, but this is only done for the first such occurrence that
matches.

In[16]:= a b c d ê. x_ y_ ß x + y

Out[16]= a + b c d

Using ReplaceRepeated, the rule is applied repeatedly until the expression no longer changes.

In[17]:= a b c d êê. x_ y_ ß x + y

Out[17]= a + b + c + d

Let us now look at a few problems that can be solved directly using transformation rules.

Example: counting coins
As our first example of the use of transformation rules, we will write a program to perform an
operation most of us do every day: calculating how much change you have in your pocket.

104 Patterns and rules

Suppose you have the following collection of coins and assume p, n, d, and q represent pennies,
nickels, dimes, and quarters, respectively (modify as appropriate for different currencies).

In[18]:= coins = 8p, p, q, n, d, d, p, q, q, p<;

Here are the values, given by a list of rules.

In[19]:= values = 8p Ø .01, n Ø .05, d Ø .10, q Ø .25<;

This replaces each coin by its value.

In[20]:= coins ê. values

Out[20]= 80.01, 0.01, 0.25, 0.05, 0.1, 0.1, 0.01, 0.25, 0.25, 0.01<

And here is the value of the set of coins.

In[21]:= Total@coins ê. valuesD

Out[21]= 1.04

Finally, here is a function that wraps up all these steps.

In[22]:= CountChange@coins_ListD :=

Total@coins ê.8p Ø .01, n Ø .05, d Ø .10, q Ø .25<D

In[23]:= CountChange@8p, q, q, d, d, p, q, q, d, d<D

Out[23]= 1.42

Example: closed paths
In this example, we will create a new graphics function for plotting paths through points in the
plane. This problem arises in visualizing the convex hull of a set of points (see Exercise 3 in
Section 10.2) as well as with finding shortest-tour types of problems (Section 10.4). A path
through a set of points typically is closed, meaning that the last point is connected to the first. We
will use a rule to deal with that constraint.

Let us start with some data, eighteen pairs of coordinates representing points in the plane.

In[24]:= data = RandomReal@20, 818, 2<D;

An intuitive, although naive, description of the convex hull in two dimensions is the smallest
convex polygon enclosing a set of points. We will need the ConvexHull function defined in the
Computational Geometry package.

In[25]:= << ComputationalGeometry`

ConvexHull returns the indices of the ordered pairs that make up the convex hull of the entire
list. Here are those positions from the list data.

In[26]:= hull = ConvexHull@dataD

Out[26]= 82, 16, 18, 4, 3, 1, 17, 15<

4.2 Transformation rules 105

To extract the points in these positions, use Part .

In[27]:= data@@hullDD

Out[27]= 8818.3903, 9.39165<, 814.8516, 18.1203<,
84.23631, 19.0618<, 81.21992, 17.663<, 80.904923, 15.6848<,
85.70375, 2.09678<, 810.3783, 2.066<, 818.3251, 5.95079<<

Here is a graphic showing the original points (ListPlot) together with a line through the
points in the convex hull.

In[28]:= Show@8ListPlot@dataD, Graphics@8Line@data@@hullDDD,
PointSize@.015D, Red, Point@data@@hullDDD<D<D

Out[28]=

5 10 15

5

10

15

Almost! To close up the figure, we need the last point in the convex hull connected to the first
point. A rule does the job nicely. Here, p1_ represents the first point in the list and pn__ repre-
sents the sequence of remaining points.

In[29]:= Show@8ListPlot@dataD,
Graphics@8Line@data@@hullDD ê. 8p1_, pn__< ß 8p1, pn, p1<D,

PointSize@.015D, Red, Point@data@@hullDDD<D<D

Out[29]=

5 10 15

5

10

15

Let us turn this into a reusable function, PathPlot, that we will find useful later, specifically
in Section 10.4 where we develop algorithms for finding simple closed paths of points in the
plane.

In[30]:= PathPlot@coords_ListD :=

Graphics@8Line@coords ê. 8p1_, pn__< ß 8p1, pn, p1<D,
PointSize@.015D, Red, Point@coordsD<D

106 Patterns and rules

Here is a more substantial set of points – 1500 points in the plane normally distributed about 0.

In[31]:= data = RandomVariate@NormalDistribution@0, 2D, 81500, 2<D;

In[32]:= Show@8ListPlot@dataD, PathPlot@dataPConvexHull@dataDTD<,
AspectRatio Ø AutomaticD

Out[32]= -6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Example: finding maxima
Our next example employs a sophisticated rewrite rule that demonstrates most of the things
discussed in this section: the repeated use of a transformation rule with delayed evaluation,
sequence patterns, and conditional pattern matching.

The maxima function returns the elements in a list of positive numbers that are bigger than all
the preceding numbers in the list.

In[33]:= maxima@x_ListD :=

x êê.8a___, b_, c___, d_, e___< ê; d § b ß 8a, b, c, e<

The transformation rule repeatedly looks through the list for two elements (b and d here),
separated by a sequence of zero or more elements, such that the second selected element (d) is
less than or equal to the first selected element (b). When that condition is met, the second ele-
ment is dropped. The process stops when there are no two elements such that the second is less
than or equal to the first.

In[34]:= maxima@83, 5, 2, 6, 1, 8, 4, 9, 7<D

Out[34]= 83, 5, 6, 8, 9<

This is actually a variation of a sorting algorithm known as insertion sort. We will look at
sorting algorithms in some detail at the end of this chapter, Section 4.3.

4.2 Transformation rules 107

Exercises
1. Here is a rule designed to switch the order of each pair of expressions in a list. It works fine on the

first example, but fails on the second.

In[1]:= 88a, b<, 8c, d<, 8e, f<< ê. 8x_, y_< ß 8y, x<

Out[1]= 88b, a<, 8d, c<, 8f, e<<

In[2]:= 88a, b<, 8c, d<< ê. 8x_, y_< ß 8y, x<

Out[2]= 88c, d<, 8a, b<<

Explain what has gone wrong and rewrite this rule to correct the situation, that is, so that the second
example returns 88b, a<, 8d, c<<.

2. The following compound expression returns a value of 14. Describe the evaluation sequence that
was followed. Use the Trace function to check your answer.

In[3]:= z = 11;

a = 9;

z + 3 ê.z Ø a

Out[5]= 14

Then use the Hold function in the compound expression to obtain a value of 12.

3. Create a function to compute the area of any triangle, given its three vertices. The area of a triangle is
one-half the base times the altitude. For arbitrary points, the altitude requires a bit of computation
that does not generalize. The magnitude of the cross product of two vectors gives the area of the
parallelogram that they determine. The cross product is only defined for three-dimensional vectors,
so to compute the area of a two-dimensional triangle using the cross product you will need to
embed the edges (vectors) in three-dimensional space, say, in the plane z = 0. Try a second imple-
mentation using determinants instead of cross products.

4. Use pattern matching to extract all negative solutions of the following polynomial:

x9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123

Then extract all real solutions, that is, those which are not complex.

5. Create a rewrite rule that uses a repeated replacement to “unnest” the nested lists within a list.

In[6]:= unNest@88a, a, a<, 8a<, 88b, b, b<, 8b, b<<, 8a, a<<D

Out[6]= 8a, a, a, a, b, b, b, b, b, a, a<

6. Define a function using pattern matching and repeated replacement to sum the elements of a list.

7. Using the built-in function ReplaceList , write a function cartesianProduct that takes two
lists as input and returns the Cartesian product of these lists.

In[7]:= cartesianProduct@8x1, x2, x3<, 8y1, y2<D

Out[7]= 88x1, y1<, 8x1, y2<, 8x2, y1<, 8x2, y2<, 8x3, y1<, 8x3, y2<<

8. Write a function to count the total number of multiplications in any polynomial expression. For
example, given a power, your function should return one less than the exponent.

108 Patterns and rules

In[8]:= MultiplyCountAt5E

Out[8]= 4

In[9]:= MultiplyCount[a x y t]

Out[9]= 3

In[10]:= MultiplyCountAa x y t4 + w tE

Out[10]= 7

9. Create six graphical objects, one each to represent the faces of a standard six-sided die. Dice@nD
should display the face of the appropriate die, as below.

In[11]:= Table@Dice@nD, 8n, 1, 6<D

Out[11]= : , , , , , >

One way to approach this problem is to think of a die face as a grid of nine elements, some of which
are turned on (white) and some turned off (blue above). Then create one set of rules for each die
face. Once your rules are defined, you could use something like the following graphics code (a bit
incomplete as written here) to create your images.

Dice@n_D := GraphicsGrid@
Map@Graphics, Partition@Range@9D, 3D ê. rules@@nDD, 82<DD

4.3 Examples and applications
This next section focuses on two classical problems in computer science: encryption and sorting.
Even though we will only scratch the surface of these two very deep problems, they are so impor-
tant and ubiquitous in modern computing that it is well worthwhile learning about them. At an
introductory level, these problems are well suited to a rule-based approach.

Finding subsequences
Consider the problem of finding a particular subsequence within a sequence of numbers. This
computation is similar to one involving nucleotide sequence lookups in genes, something that is
solved for the specific domain of genes with GenomeLookup.

In[1]:= GenomeLookup@"GCTCTCTAATGGCAT"D

Out[1]= 888Chromosome3, 1<, 8140240043, 140240057<<,
88Chromosome7, -1<, 841460946, 41460960<<,
88Chromosome8, 1<, 892015447, 92015461<<,
88Chromosome21, 1<, 832732065, 32732079<<<

We will focus on sequences of digits here and wait to solve the problem involving arbitrary
strings – not just gene sequences – until Section 9.5.

To prototype for numeric sequences, assume both the sequence and the subsequence are given

4. 109

as lists of numbers; we will find the positions at which the subsequence 3238 occurs in the digits
of p.

Here are the first 50 digits of p, starting from the right of the decimal point. Initially, we only
work with a small number of digits so we can easily check on our progress.

In[2]:= pidigs = First@RealDigits@p, 10, 50, -1DD

Out[2]= 81, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3,

2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0,

2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0<

The subsequence is also given as a list of digits.

In[3]:= subseq = 83, 2, 3, 8<;

One approach to this problem is to partition the list of digits in pidigs into lists of the same
length as the list subseq, with overlapping sublists of offset one. This means that we will exam-
ine all sublists of length four from pidigs.

In[4]:= p = Partition@pidigs, Length@subseqD, 1D

Out[4]= 881, 4, 1, 5<, 84, 1, 5, 9<, 81, 5, 9, 2<, 85, 9, 2, 6<,
89, 2, 6, 5<, 82, 6, 5, 3<, 86, 5, 3, 5<, 85, 3, 5, 8<,
83, 5, 8, 9<, 85, 8, 9, 7<, 88, 9, 7, 9<, 89, 7, 9, 3<,
87, 9, 3, 2<, 89, 3, 2, 3<, 83, 2, 3, 8<, 82, 3, 8, 4<, 83, 8, 4, 6<,
88, 4, 6, 2<, 84, 6, 2, 6<, 86, 2, 6, 4<, 82, 6, 4, 3<, 86, 4, 3, 3<,
84, 3, 3, 8<, 83, 3, 8, 3<, 83, 8, 3, 2<, 88, 3, 2, 7<, 83, 2, 7, 9<,
82, 7, 9, 5<, 87, 9, 5, 0<, 89, 5, 0, 2<, 85, 0, 2, 8<, 80, 2, 8, 8<,
82, 8, 8, 4<, 88, 8, 4, 1<, 88, 4, 1, 9<, 84, 1, 9, 7<, 81, 9, 7, 1<,
89, 7, 1, 6<, 87, 1, 6, 9<, 81, 6, 9, 3<, 86, 9, 3, 9<, 89, 3, 9, 9<,
83, 9, 9, 3<, 89, 9, 3, 7<, 89, 3, 7, 5<, 83, 7, 5, 1<, 87, 5, 1, 0<<

Now we are ready for the pattern match. From the list p above, we are looking for the positions of
any sublist that matches 83, 2, 3, 8<. The subsequence 3238 occurs starting at the fifteenth
digit in pidigs.

In[5]:= pos = Position@p, subseqD

Out[5]= 8815<<

To mirror the default output of Position, we will give the starting and ending positions of
this match.

In[6]:= pos ê. 8num_?IntegerQ< ß 8num, num + Length@subseqD - 1<

Out[6]= 8815, 18<<

Finally, let us turn this into a function and test it on a much larger example. Note that we use
the pattern _List on both arguments, digits and subseq, so that FindSubsequence will
only match arguments that have head List .

110 Patterns and rules

In[7]:= FindSubsequence@digits_List, subseq_ListD :=

Module@8p, len = Length@subseqD<,
p = Partition@digits, len, 1D;
Position@p, subseqD ê.
8num_?IntegerQ< ß 8num, num + len - 1<D

Store the first 10 000 000 digits of p in the symbol pidigs.

In[8]:= pidigs = FirstARealDigitsAp, 10, 107, -1EE;

The subsequence 314159 occurs seven times in the first 10 000 000 digits of p, starting with the
176 451st digit.

In[9]:= FindSubsequence@pidigs, 83, 1, 4, 1, 5, 9<D êê Timing

Out[9]= 88.38962, 88176451, 176456<, 81259351, 1259356<,
81761051, 1761056<, 86467324, 6467329<, 86518294, 6518299<,
89753731, 9753736<, 89973760, 9973765<<<

In Exercise 1 at the end of this section, you are asked to create a version of FindSubseÖ
quence that takes numbers instead of lists as its arguments. In Section 9.5 we will develop a
different approach to this problem, one using string-processing functions that gives a substantial
speedup compared to the computation in this section.

Sorting a list
The next example, sorting lists, also incorporates several of the concepts discussed in this chap-
ter: using a delayed rule, conditional patterns, and several types of sequence pattern matching.

We will create a rule named listSort that, upon repeated application, will put a list of
numbers into numerical order. To account for the first and last elements in the list, we use
BlankNullSequence (___).

In[10]:= listSort = 88x___, a_?NumericQ, b_?NumericQ, y___< ß

8x, b, a, y< ê; b < a<;

The expression that has to match the pattern 8x___, a_, b_, y___< is a list of at least two
elements since x___ and y___ will match zero or more elements. The condition on the right-
hand side of the rule says that whenever b is less than a, switch the order of a and b in the origi-
nal list to output 8x, b, a, y<.

Here is a list of ten real numbers between 0 and 1.

In[11]:= nums = RandomReal@1, 810<D

Out[11]= 80.0391631, 0.675771, 0.586596, 0.362437, 0.24047,
0.90963, 0.280937, 0.102957, 0.888019, 0.581504<

Note that applying the listSort rule to nums results in only one transformation, in this case

4.3 Examples and applications 111

only the second and third numbers are sorted (the first two numbers in nums were already in
numerical order).

In[12]:= nums ê. listSort

Out[12]= 80.0391631, 0.586596, 0.675771, 0.362437, 0.24047,
0.90963, 0.280937, 0.102957, 0.888019, 0.581504<

To apply a transformation rule repeatedly until the expression being operated on no longer
changes, use ReplaceRepeated (êê.).

In[13]:= nums êê. listSort

Out[13]= 80.0391631, 0.102957, 0.24047, 0.280937, 0.362437,
0.581504, 0.586596, 0.675771, 0.888019, 0.90963<

Because we used ?NumericQ as part of the pattern match, listSort will work on expres-
sions that may not be explicit numbers, but are numerical in nature, that is, expressions that
return explicit numbers when N is applied to them.

In[14]:= 8‰, p, EulerGamma, GoldenRatio, 1< êê. listSort

Out[14]= 8EulerGamma, 1, GoldenRatio, ‰, p<

By way of comparison, the built-in Sort function, because of its great generality, sorts symbols
by their names and so does not return a numerically-sorted list here.

In[15]:= Sort@8‰, p, EulerGamma, GoldenRatio, 1<D

Out[15]= 81, ‰, EulerGamma, GoldenRatio, p<

One way around this is to give Sort a second argument causing it to sort by numerical value.

In[16]:= Sort@8‰, p, EulerGamma, GoldenRatio, 1<, LessD

Out[16]= 8EulerGamma, 1, GoldenRatio, ‰, p<

Our listSort algorithm is essentially an implementation of the classical bubble sort. It is far
less efficient than many other, more commonly used, sorting algorithms, especially those that
employ a divide-and-conquer strategy. This is because the pattern matcher generates all possible
pairs of adjacent elements and then compares them. The computational complexity of the
bubble sort algorithm is known to be OIn2M, meaning running time is proportional to the square

of the size of the input.

In[17]:= times =
Table@First@Timing@HRandomReal@1, 8n<D êê. listSortL;DD,
8n, 50, 150, 10<D

Out[17]= 80.055971, 0.082766, 0.169308, 0.287193, 0.397787,
0.498622, 0.762439, 1.04713, 1.31721, 1.6914, 2.09163<

112 Patterns and rules

In[18]:= model = LinearModelFitAtimes, 9x, x2=, xE;

In[19]:= model@"BestFit"D

Out[19]= 0.11057 - 0.0514218 x + 0.0209072 x2

In[20]:= Show@8Plot@model@tD, 8t, 1, 10<D, ListPlot@timesD<D

Out[20]=

4 6 8 10

0.5

1.0

1.5

The built-in Sort function uses a classical algorithm called “merge sort” (discussed in Section
7.4), which starts by dividing the list into two parts of approximately equal size. It then sorts each
part recursively and finally merges the two sorted sublists. For numerical input it has computa-
tional complexity a mere OHn logHnLL.

In[21]:= Timing@Sort@numsD;D

Out[21]= 80.000029, Null<

In[22]:= times = Table@First@Timing@Sort@RandomReal@1, 8n<DD;DD,
8n, 500000, 1500000, 100 000<D

Out[22]= 80.153327, 0.183019, 0.211981, 0.250083, 0.285453,
0.328241, 0.356609, 0.404033, 0.440554, 0.469802, 0.52071<

In[23]:= model = LinearModelFit@times, 8x, Log@xD<, xD;
model@"BestFit"D

Out[24]= 0.112765 + 0.0408967 x - 0.0191854 Log@xD

In[25]:= Show@8Plot@model@tD, 8t, 1, 10<D, ListPlot@timesD<D

Out[25]=

2 4 6 8 10

0.20

0.25

0.30

0.35

0.40

0.45

The above implementation of listSort only works for numerical arguments. It can be over-
loaded to work on characters of strings. This is implemented in Section 9.1.

 For detailed information on the theory and implementation of modern cipher and sorting
algorithms, see Sedgewick and Wayne (2011) and Wagon (1999).

4.3 Examples and applications 113

Exercises
1. The function FindSubsequence defined in this section suffers from the limitation that the

arguments digits and subseq must both be lists of numbers. Write another definition of
FindSubsequence that takes two integers as arguments. So, for example, the following should
work:

In[1]:= n = RandomIntegerA10200E

Out[1]= 99886364225785890637248382678171952235146647070036321273192 Ö

078968865572610676045767583093169497891617017225261830124 Ö

007777401603464795137556513541607966794013354513861062656 Ö

302896471480157720676043512

In[2]:= FindSubsequence@n, 22D

Out[2]= 889, 10<, 835, 36<, 8105, 106<<

2. Plot the function sinHxL over the interval [–2 p, 2 p] and then reverse the x- and y-coordinates of each
point by means of a transformation rule to display a reflection in the line y = x.

3. Given a two-column array of data,

In[3]:= data = RandomReal@80, 10<, 85, 2<D;
MatrixForm@data, TableAlignments Ø "."D

Out[4]//MatrixForm=

2.75703 8.36575
7.99197 4.86756
1.90927 5.59835
7.76051 2.29443
3.87192 8.11463

create a new array that consists of three columns where the first two columns are identical to the
original, but the third column consists of the norm of the two numbers from the first two columns.

2.75703 8.36575 8.80835
7.99197 4.86756 9.35761
1.90927 5.59835 5.91497
7.76051 2.29443 8.09258
3.87192 8.11463 8.99105

4. Occasionally, when collecting data from an instrument, the collector fails or returns a bad value. In
analyzing the data, the analyst has to make a decision about what to use to replace these bad values.
One approach is to replace them with a column mean. Given an array of numbers such as the
following, create a function to replace each "NAN" with the mean of the numbers that appear in
that column.

data =

0.9034 "NAN" 0.7163 0.8588
0.3031 0.5827 0.2699 0.8063

0.0418 0.8426 "NAN" 0.8634

"NAN" 0.8913 0.0662 0.8432

;

114 Patterns and rules

5

Functional programming
Higher-order functions · Map · Apply · Thread and MapThread · The Listable attribute · Inner

and Outer · Select and Pick · Iterating functions · Nest · FixedPoint · NestWhile · Fold · Defining
functions · Compound functions · Scoping constructs · Pure functions · Options · Creating and

issuing messages · Hamming distance · Josephus problem · Regular polygons · Protein
interaction networks · Palettes for project files · Operating on arrays

Functional programming, the use and evaluation of functions as a programming paradigm, has a
long and rich history in programming languages. Lisp came about in the search for a convenient
language for representing mathematical concepts in programs. It borrowed from the lambda
calculus of the logician Alonzo Church. More recent languages have in turn embraced many
aspects of Lisp – in addition to Lisp’s offspring such as Scheme and Haskell, you will find ele-
ments of functional constructs in Java, Python, Ruby, and Perl. Mathematica itself has clear
bloodlines to Lisp, including the ability to operate on data structures such as lists as single objects
and in its representation of mathematical properties through rules. Being able to express ideas in
science, mathematics, and engineering in a language that naturally mirrors those fields is made
much easier by the integration of these tools.

Functions not only offer a familiar paradigm to those representing ideas in science, mathemat-
ics, and engineering, they provide a consistent and efficient mechanism for computation and
programming. In Mathematica, unlike many other languages, functions are considered “first class”
objects, meaning they can be used as arguments to other functions, they can be returned as
values, and they can be part of many other kinds of data objects such as arrays. In addition, you
can create and use functions at runtime, that is, when you evaluate an expression. This functional
style of programming distinguishes Mathematica from traditional procedural languages like C and
Fortran. A solid facility with functional programming is essential for taking full advantage of
the Mathematica language to solve your computational tasks.

5.1 Introduction
Functions are objects that operate on expressions and output unique expressions for each input.
For example, here is a definition for a function that takes a vector of two variables as argument
and returns a vector of three elements.

In[1]:= f@8u_, q_<D := :Cos@qD 1 - u2 , Sin@qD 1 - u2 , u>

You can evaluate the function for numeric or symbolic values.

In[2]:= f@80, 0.5<D

Out[2]= 80.877583, 0.479426, 0<

In[3]:= f@8-1 ê 2, y<D

Out[3]= :
1

2
3 Cos@yD,

1

2
3 Sin@yD, -

1

2
>

Functions can be significantly more complicated objects. Below is a function that operates on
functions. It takes two arguments: a function or expression, and a list containing the variable of
integration and the integration limits.

In[4]:= Integrate@Exp@I p xD, 8x, a, b<D

Out[4]=

Â I‰Â a p - ‰Â b pM

p

This particular function can be also be given a different argument structure: a function and a
variable.

In[5]:= Integrate@Exp@I p xD, xD

Out[5]= -
Â ‰Â p x

p

Whereas procedural programs provide step-by-step sets of instructions, functional program-
ming involves the application of functions to their arguments and typically operates on the entire
expression at once. For example, here is a traditional procedural approach to switching the
elements in a list of pairs.

In[6]:= lis = 88a, 1<, 8b, 2<, 8g, 3<<;

In[7]:= temp = Table@0, 8Length@lisD<D;

116 Functional programming

In[8]:= Do@temp@@iDD = 8lis@@i, 2DD, lis@@i, 1DD<,
8i, 1, Length@lisD<D;

temp

Out[9]= 881, a<, 82, b<, 83, g<<

Here is a functional approach to solving the same problem. The Map function takes the
Reverse function as an argument and uses it to operate on the list directly.

In[10]:= Map@Reverse, lisD

Out[10]= 881, a<, 82, b<, 83, g<<

This simple example illustrates several of the key features of functional programming. A
functional approach often allows for a more direct implementation of the solution to a problem,
especially when list manipulations are involved. The procedural approach required first allocat-
ing an array, temp, of the same size as lis; then extracting and putting parts of the list into
temp one-by-one, looping over lis; and finally returning the value of temp. The functional
approach, although implying an iteration, avoids an explicit looping structure.

In this chapter, we first take a look at some of the most powerful and useful functional pro-
gramming constructs in Mathematica – the so-called higher-order functions such as Map, Apply
and Thread – and then discuss the creation of functions, using many of the list manipulation
constructs discussed earlier. It is well worthwhile to spend time familiarizing yourself with these
functions from the chapter on lists. Having a large vocabulary of built-in functions will not only
make it easier to follow the programs and do the exercises here, but will enhance your own
programming skills as well.

One of the unique features of a functional language such as Mathematica (and also Lisp,
Haskell, Scheme, and others) is the ability to create a function at runtime, meaning that you do
not need to formally declare such a function. In Mathematica this is implemented through pure
functions. For example, without creating a formal function definition, we use a pure function
below to filter data for values in a narrow band around zero.

In[11]:= data = RandomRealA8-1, 1<, 106E;

In[12]:= Select@data, Function@x, -0.00001 < x < 0.00001DD

Out[12]= 96.73666 � 10-6, 2.05057 � 10-6, -6.53306 � 10-6,

6.29973 � 10-6, -1.50788 � 10-6, 7.90283 � 10-6,

3.94237 � 10-6, 7.09181 � 10-6, -8.69555 � 10-6=

We will introduce and explore pure functions in Section 5.6.

5.1 Introduction 117

Localization of variables, common to many modern programming languages, allows you to
isolate symbols and definitions that are local to a function in order to keep them from interfering
with, or being interfered by, global symbols. These are discussed in Section 5.5.

Although optional arguments and messaging are not specific to functional constructs, we
introduce them in this chapter to start building up the complexity of our examples. Developing
your functions so that they behave like built-in functions makes them easier to use for you and
users of your programs. Providing options and issuing messages when things goes wrong are
common mechanisms for doing this and they are introduced in Section 5.7.

Finally, we put a lot of the pieces together from this chapter and the chapters on lists and on
patterns to program more extensive examples and applications, touching on areas as diverse as
signal processing, geometry, bioinformatics, and data processing.

5.2 Functions for manipulating expressions
Three of the most powerful functions, and some of those most commonly used by experienced
Mathematica programmers are Map, Apply, and Thread. They provide efficient and sophisti-
cated ways of manipulating expressions in Mathematica. In this section we will discuss their
syntax and look at some simple examples of their use. We will also briefly look at some related
functions (Inner and Outer), which will prove useful in manipulating the structure of your
expressions; finally, in this section we introduce Select and Pick , which are used to extract
elements of an expression based on some criteria of interest. These higher-order functions are in
the toolkit of every experienced Mathematica programmer and they will be used throughout the
rest of this book.

Map
Map applies a function to each element in a list.

In[1]:= MapBHead, :3,
22

7
, p>F

Out[1]= 8Integer, Rational, Symbol<

This can be illustrated using an undefined function f and a simple linear list.

In[2]:= Map@f, 8a, b, c<D

Out[2]= 8f@aD, f@bD, f@cD<

More generally, mapping a function f over the expression g@a, b, cD essentially wraps the
function f around each of the elements of g.

In[3]:= Map@f, g@a, b, cDD

Out[3]= g@f@aD, f@bD, f@cDD

118 Functional programming

This symbolic computation is identical to Map@f, 8a, b, c<D, except in that example g is
replaced with List (remember that FullForm@8a, b, c<D is represented internally as
List@a, b, cD).

The real power of the Map function is that you can map any function across any expression for
which that function makes sense. For example, to reverse the order of elements in each list of a
nested list, use Reverse with Map,

In[4]:= Map@Reverse, 88a, b<, 8c, d<, 8e, f<<D

Out[4]= 88b, a<, 8d, c<, 8f, e<<

The elements in each of the inner lists in a nested list can be sorted.

In[5]:= Map@Sort, 882, 6, 3, 5<, 87, 4, 1, 3<<D

Out[5]= 882, 3, 5, 6<, 81, 3, 4, 7<<

Often, you will need to define your own function to perform a computation on each element
of a list. Map is expressly designed for this sort of computation. Here is a list of three elements.

In[6]:= vec = 82, p, g<;

If you wished to square each element and add 1, you could first define a function that performs
this computation on its arguments.

In[7]:= f@x_D := x2 + 1

Mapping this function over vec, will then wrap f around each element and evaluate f of those
elements.

In[8]:= Map@f, vecD

Out[8]= 95, 1 + p2, 1 + g2=

The Map function is such a commonly used construct in Mathematica that a shorthand notation

exists for it: fun êü expr is equivalent to MapA fun, exprE. Hence the above computation can also

be written as:

In[9]:= f êü vec

Out[9]= 95, 1 + p2, 1 + g2=

While it does make your code a bit more compact, the use of such shorthand notation comes at
the cost of readability. Experienced Mathematica programmers and those who prefer such an infix
notation tend to use them liberally. We will use the longer form in general in this book but
encourage you to become comfortable with either syntax as it will make it easier for you to read
programs created by others more readily.

5.2 Functions for manipulating expressions 119

Apply
Whereas Map is used to perform the same operation on each element of an expression, Apply is
used to change the structure of an expression.

In[10]:= Apply@h, g@a, b, cDD

Out[10]= h@a, b, cD

The function h was applied to the expression g@a, b, cD and Apply replaced the head of
g@a, b, cD with h.

If the second argument is a list, applying h to that expression simply replaces its head (List)
with h.

In[11]:= Apply@h, 8a, b, c<D

Out[11]= h@a, b, cD

The following computation shows the same thing, except we are using the internal representa-
tion of the list 8a, b, c< here to better see how the structure is changed.

In[12]:= Apply@h, List@a, b, cDD

Out[12]= h@a, b, cD

The elements of List are now the arguments of h. Essentially, you should think of
Apply@h, exprD as replacing the head of expr with h.

In the following example, List@1, 2, 3, 4D has been changed to Plus@1, 2, 3, 4D or,
in other words, the head List has been replaced by Plus .

In[13]:= Apply@Plus, 81, 2, 3, 4<D

Out[13]= 10

Plus@a, b, c, dD is the internal representation of the sum of these four symbols that you
would normally write a + b + c + d.

In[14]:= Plus@a, b, c, dD

Out[14]= a + b + c + d

Like Map, Apply has a shorthand notation: the expression fun üü expr is equivalent to

ApplyA fun, exprE. So, the above computation could be written as follows:

In[15]:= Plus üü 81, 2, 3, 4<

Out[15]= 10

One important distinction between Map and Apply concerns the level of the expression at

which each operates. By default, Map operates at level 1. That is, in MapAh, exprE, h will be

applied to each element at the top level of expr. So, for example, if expr consists of a nested list, h
will be applied to each of the sublists, but not deeper, by default.

120 Functional programming

In[16]:= Map@h, 88a, b<, 8c, d<<D

Out[16]= 8h@8a, b<D, h@8c, d<D<

If you wish to apply h at a deeper level, then you have to specify that explicitly using a third
argument to Map.

In[17]:= Map@h, 88a, b<, 8c, d<<, 82<D

Out[17]= 88h@aD, h@bD<, 8h@cD, h@dD<<

Apply, on the other hand, operates at level 0 by default. That is, in ApplyAh, exprE, Apply

looks at part 0 of expr (that is, its Head) and replaces it with h.

In[18]:= Apply@f, 88a, b<, 8c, d<<D

Out[18]= f@8a, b<, 8c, d<D

Again, if you wish to apply h at a different level, then you have to specify that explicitly using a
third argument to Apply.

In[19]:= Apply@h, 88a, b<, 8c, d<<, 81<D

Out[19]= 8h@a, bD, h@c, dD<

For example, to apply Plus to each of the inner lists, you need to specify that Apply will operate
at level 1.

In[20]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<, 81<D

Out[20]= 86, 18<

If you are a little unsure of what has just happened, consider the following example and, instead
of p, think of Plus .

In[21]:= Apply@p, 881, 2, 3<, 85, 6, 7<<, 81<D

Out[21]= 8p@1, 2, 3D, p@5, 6, 7D<

Applying at the default level 0, is quite different. This is just vector addition, adding element-wise.

In[22]:= Apply@Plus, 881, 2, 3<, 85, 6, 7<<D

Out[22]= 86, 8, 10<

Applying functions at level 1 is also a common task and it too has a shorthand notation:
fun üüü expr is equivalent to ApplyA fun, expr, 81<E.

In[23]:= p üüü 881, 2, 3<, 85, 6, 7<<

Out[23]= 8p@1, 2, 3D, p@5, 6, 7D<

5.2 Functions for manipulating expressions 121

Thread and MapThread
The Thread function “threads” a function over several lists. You can think of it as extracting the
first element from each of the lists, wrapping a function around them, then extracting the next
element in each list and wrapping the function around them, and so on.

In[24]:= Thread@g@8a, b, c<, 8x, y, z<DD

Out[24]= 8g@a, xD, g@b, yD, g@c, zD<

You can accomplish the same thing with MapThread. It differs from Thread in that it takes two
arguments – the function that you are mapping and a list of two (or more) lists as arguments of
the function. It creates a new list in which the corresponding elements of the old lists are paired
(or zipped together).

In[25]:= MapThread@g, 88a, b, c<, 8x, y, z<<D

Out[25]= 8g@a, xD, g@b, yD, g@c, zD<

You could perform this computation manually by first zipping together the two lists using
Transpose, and then applying g at level one.

In[26]:= Transpose@88a, b, c<, 8x, y, z<<D

Out[26]= 88a, x<, 8b, y<, 8c, z<<

In[27]:= Apply@g, %, 81<D

Out[27]= 8g@a, xD, g@b, yD, g@c, zD<

With Thread, you can fundamentally change the structure of the expressions you are using.
For example, this threads the Equal function over the two lists given as its arguments.

In[28]:= Thread@Equal@8a, b, c<, 8x, y, z<DD

Out[28]= 8a ã x, b ã y, c ã z<

In[29]:= Map@FullForm, %D

Out[29]= 8Equal@a, xD, Equal@b, yD, Equal@c, zD<

Here is another example of the use of Thread. We start off with a list of variables and a list of
values.

In[30]:= vars = 8x1, x2, x3, x4, x5<;

In[31]:= values = 81.2, 2.5, 5.7, 8.21, 6.66<;

From these two lists, we create a list of rules.

In[32]:= Thread@Rule@vars, valuesDD

Out[32]= 8x1 Ø 1.2, x2 Ø 2.5, x3 Ø 5.7, x4 Ø 8.21, x5 Ø 6.66<

122 Functional programming

Notice how we started with a rule of lists and Thread produced a list of rules. In this way, you
might think of Thread as a generalization of Transpose.

Here are a few more examples of MapThread. Power takes two arguments, the base and the
exponent, so the following raises each element in the first list to the power given by the corre-
sponding element in the second list.

In[33]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D

Out[33]= 832, 6, 9<

Using Trace, you can view some of the intermediate steps that Mathematica performs in doing
this calculation.

In[34]:= MapThread@Power, 882, 6, 3<, 85, 1, 2<<D êê Trace

Out[34]= 9MapThread@Power, 882, 6, 3<, 85, 1, 2<<D,

925, 61, 32=, 925, 32=, 961, 6=, 932, 9=, 832, 6, 9<=

Using the List function, the corresponding elements in the three lists are placed in a list struc-
ture (note that Transpose would do the same thing).

In[35]:= MapThread@List, 885, 3, 2<, 86, 4, 9<, 84, 1, 4<<D

Out[35]= 885, 6, 4<, 83, 4, 1<, 82, 9, 4<<

The Listable attribute
Many of the built-in functions that take a single argument have the property that, when a list is
the argument, the function is automatically applied to all the elements in the list. In other words,
these functions are automatically mapped on to the elements of the list. For example, the Log
function has this attribute.

In[36]:= Log@8a, E, 1<D

Out[36]= 8Log@aD, 1, 0<

You get the same result using Map, but it is a bit more to write and, as we will see in Chapter 12,
the direct approach is much more efficient for large computations.

In[37]:= Map@Log, 8a, E, 1<D

Out[37]= 8Log@aD, 1, 0<

Similarly, many of the built-in functions that take two or more arguments have the property
that, when multiple lists are the arguments, the function is automatically applied to all the corre-
sponding elements in the list. In other words, these functions are automatically threaded onto the
elements of the lists. For example, this is essentially vector addition.

5.2 Functions for manipulating expressions 123

In[38]:= 84, 6, 3< + 85, 1, 2<

Out[38]= 89, 7, 5<

This gives the same result as using the Plus function with MapThread.

In[39]:= MapThread@Plus, 884, 6, 3<, 85, 1, 2<<D

Out[39]= 89, 7, 5<

Functions that are either automatically mapped or threaded onto the elements of list argu-
ments are said to be Listable. Many of Mathematica’s built-in functions have this attribute.

In[40]:= Attributes@LogD

Out[40]= 8Listable, NumericFunction, Protected<

In[41]:= Attributes@PlusD

Out[41]= 8Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected<

By default, user-defined functions do not have any attributes associated with them. So, for exam-
ple, if you define a function g, it will not automatically thread over a list.

In[42]:= g@8a, b, c, d<D

Out[42]= g@8a, b, c, d<D

If you want a function to have the ability to thread over lists, give it the Listable attribute
using SetAttributes.

In[43]:= SetAttributes@g, ListableD

In[44]:= g@8a, b, c, d<D

Out[44]= 8g@aD, g@bD, g@cD, g@dD<

Recall from Section 2.4 that clearing a symbol only clears values associated with that symbol.
It does not clear any attributes associated with the symbol.

In[45]:= Clear@gD

In[46]:= ? g

Global`g

Attributes@gD = 8Listable<

You can use ClearAttributes to clear specific attributes associated with a symbol.

In[47]:= ClearAttributes@g, ListableD

124 Functional programming

In[48]:= ? g

Global`g

Inner and Outer
The Outer function applies a function to all the combinations of the elements in several lists.
This is a generalization of the mathematical outer product, which produces a matrix from a pair of
vectors.

In[49]:= Outer@f, 8x, y<, 82, 3, 4<D

Out[49]= 88f@x, 2D, f@x, 3D, f@x, 4D<, 8f@y, 2D, f@y, 3D, f@y, 4D<<

Using the List function as an argument, you can create lists of ordered pairs that combine the
elements of several lists.

In[50]:= Outer@List, 8x, y<, 82, 3, 4<D

Out[50]= 888x, 2<, 8x, 3<, 8x, 4<<, 88y, 2<, 8y, 3<, 8y, 4<<<

Here is the classical outer product of two vectors, obtained by wrapping Times around each pair
of elements.

In[51]:= Outer@Times, 8u1, u2, u3<, 8v1, v2, v3, v4<D êê MatrixForm
Out[51]//MatrixForm=

u1 v1 u1 v2 u1 v3 u1 v4
u2 v1 u2 v2 u2 v3 u2 v4
u3 v1 u3 v2 u3 v3 u3 v4

With Inner, you can thread a function onto several lists and then use the result as the argu-
ment to another function.

In[52]:= Inner@f, 8a, b, c<, 8d, e, f<, gD

Out[52]= g@f@a, dD, f@b, eD, f@c, fDD

This function lets you carry out some interesting operations.

In[53]:= Inner@List, 8a, b, c<, 8d, e, f<, PlusD

Out[53]= 8a + b + c, d + e + f<

In[54]:= Inner@Times, 8x1, y1, z1<, 8x2, y2, z2<, PlusD

Out[54]= x1 x2 + y1 y2 + z1 z2

Looking at these two examples, you can see that Inner is really a generalization of the mathemat-
ical dot product.

5.2 Functions for manipulating expressions 125

In[55]:= Dot@8x1, y1, z1<, 8x2, y2, z2<D

Out[55]= x1 x2 + y1 y2 + z1 z2

Select and Pick
When working with data, a common task is to extract all those elements that meet some criteria
of interest. For example, you might want to filter out all numbers in an array outside of a certain
range of values. Or you might need to find all numbers that are of a particular form or pass a
particular test. We have already seen how you can use Cases with patterns to express the criteria
of interest. In this section we will explore two additional functions that can be used for such tasks.
SelectAexpr, predicateE returns all those elements in expr that pass the predicate test. For

example, here we select those elements in this short list of integers that pass the EvenQ test.

In[56]:= Select@81, 2, 3, 4, 5, 6, 7, 8, 9<, EvenQD

Out[56]= 82, 4, 6, 8<

This finds Mersenne numbers (numbers of the form 2n - 1) that are prime.

In[57]:= Select@Table@2n - 1, 8n, 1, 100<D, PrimeQD

Out[57]= 83, 7, 31, 127, 8191, 131071, 524 287, 2 147 483 647,
2305843009213693951, 618 970 019 642 690 137 449 562 111<

You can also create your own predicates to specify the criteria in which you are interested. For
example, given an array of numbers, we first create a function, inRange, that returns True if its
argument falls in a certain range, say between 20 and 30.

In[58]:= data = 824.39001, 29.669, 9.321, 20.8856,
23.4736, 22.1488, 14.7434, 22.1619, 21.1039,
24.8177, 27.1331, 25.8705, 39.7676, 24.7762<;

In[59]:= inRange@x_D := 20 § x § 30

Then select those elements from data that pass the test, inRange.

In[60]:= Select@data, inRangeD

Out[60]= 824.39, 29.669, 20.8856, 23.4736, 22.1488,
22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762<

Pick can also be used to extract elements based on predicates, but it is more general than just

that. In its simplest form, PickAexpr, selListE picks those elements from expr whose correspond-

ing value in selList is True .

In[61]:= Pick@8a, b, c, d, e<, 8True, False, True, False, True<D

Out[61]= 8a, c, e<

126 Functional programming

You can also use binary values in the second argument, but then you need to provide a third
argument to Pick indicating that the selector value is 1.

In[62]:= Pick@8a, b, c, d, e<, 81, 0, 1, 0, 1<, 1D

Out[62]= 8a, c, e<

Let us work through an example that is a bit more interesting. We will create a random graph
and assign a probability to each edge. Then, using Pick , we will include only those edges whose
corresponding probability is less than some threshold value. We will start with the edges in a
complete graph, that is, a graph in which there is an edge between every pair of vertices.

In[63]:= CompleteGraph@11D

Out[63]=

Here are the edges.

In[64]:= edges = EdgeRules@CompleteGraph@11DD

Out[64]= 81 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6, 1 Ø 7, 1 Ø 8, 1 Ø 9, 1 Ø 10, 1 Ø 11,
2 Ø 3, 2 Ø 4, 2 Ø 5, 2 Ø 6, 2 Ø 7, 2 Ø 8, 2 Ø 9, 2 Ø 10, 2 Ø 11, 3 Ø 4,
3 Ø 5, 3 Ø 6, 3 Ø 7, 3 Ø 8, 3 Ø 9, 3 Ø 10, 3 Ø 11, 4 Ø 5, 4 Ø 6,
4 Ø 7, 4 Ø 8, 4 Ø 9, 4 Ø 10, 4 Ø 11, 5 Ø 6, 5 Ø 7, 5 Ø 8, 5 Ø 9,
5 Ø 10, 5 Ø 11, 6 Ø 7, 6 Ø 8, 6 Ø 9, 6 Ø 10, 6 Ø 11, 7 Ø 8, 7 Ø 9,
7 Ø 10, 7 Ø 11, 8 Ø 9, 8 Ø 10, 8 Ø 11, 9 Ø 10, 9 Ø 11, 10 Ø 11<

The number of edges in the complete graph grows quickly with n. It is the same as the number of

2-element subsets of a list of length n which is given by the binomial coefficient
n
2

.

In[65]:= Length@edgesD == Binomial@11, 2D

Out[65]= True

We start by creating a list of probabilities consisting of random real numbers between 0 and 1.
For Pick , this list and the list of edges must be the same length. This list is then used to choose
those edges whose corresponding probability is less than .3 (you could choose any threshold
between 0 and 1). Essentially we have a probability for each edge and we are choosing those edges
whose corresponding probability value is below the threshold.

5.2 Functions for manipulating expressions 127

In[66]:= probs = RandomReal@1, Binomial@11, 2DD;
Short@probs, 6D

Out[67]//Short=

80.100506, 0.71338, 0.140067, 0.247101, 0.737098,

á46à, 0.467768, 0.692795, 0.439899, 0.940476<

The third argument to Pick below is the pattern that the corresponding element of probs must
match.

In[68]:= includedEdges = Pick@edges, probs, pr_ ê; pr < .3D

Out[68]= 81 Ø 2, 1 Ø 4, 1 Ø 5, 1 Ø 7, 1 Ø 10, 2 Ø 8, 2 Ø 9, 2 Ø 11, 3 Ø 4,

4 Ø 5, 4 Ø 7, 4 Ø 9, 5 Ø 6, 5 Ø 7, 6 Ø 7, 6 Ø 9, 7 Ø 8, 8 Ø 10<

Finally, we turn this list of included edges into a graph.

In[69]:= Graph@includedEdges, GraphLayout Ø "CircularEmbedding"D

Out[69]=

Let us try this out with more vertices and a lower probability of an edge connecting any two.

In[70]:= n = 100;
p = .03;
edges = EdgeRules@CompleteGraph@nDD;
probs = RandomReal@1, Binomial@n, 2DD;
includedEdges = Pick@edges, probs, pr_ ê; pr < pD;
Graph@includedEdges, GraphLayout Ø "CircularEmbedding"D

Out[75]=

128 Functional programming

In fact, this functionality is built into BernoulliGraphDistribution@n, prD which con-
structs an n-vertex graph, starting with an edge connecting every pair of vertices and then selects
edges independently via a Bernoulli trial with probability pr.

In[76]:= RandomGraph@BernoulliGraphDistribution@100, 0.03D,
GraphLayout Ø "CircularEmbedding"D

Out[76]=

This mirrors the construction of our random graph above, although we used a uniform probabil-
ity distribution (the default for RandomReal) rather than running Bernoulli trials via a Bernoulli
distribution. In addition, a bit more work is needed to insure that our simple randomGraph
always returns a graph with n vertices.

As an aside, it does not take a very large probability threshold to significantly increase the
likelihood that any two vertices will be connected; in this next computation, it is only .08.

In[77]:= n = 100;
p = .08;
edges = EdgeRules@CompleteGraph@nDD;
probs = RandomReal@1, Binomial@n, 2DD;
includedEdges = Pick@edges, probs, pr_ ê; pr < pD;
Graph@includedEdges, GraphLayout Ø "CircularEmbedding"D

Out[82]=

5.2 Functions for manipulating expressions 129

Exercises

1. Rewrite the definition of SquareMatrixQ given in Section 4.1 to use Apply.

2. Given a set of points in the plane (or 3-space), find the maximum distance between any pair of these
points. This is often called the diameter of the pointset.

3. An adjacency matrix can be thought of as representing a graph of vertices and edges where a value
of 1 in position aij indicates an edge between vertex i and vertex j, whereas aij = 0 indicates no such

edge between vertices i and j.

In[1]:= mat = RandomInteger@1, 85, 5<D;
MatrixForm@matD

Out[2]//MatrixForm=

0 0 0 1 1
0 0 1 1 0
1 1 1 0 1
0 1 1 0 0
0 0 0 1 1

In[3]:= AdjacencyGraph@mat, VertexLabels Ø "Name"D

Out[3]=

Compute the total number of edges for each vertex in both the adjacency matrix and graph represen-
tations. For example, you should get the following edge counts for the five vertices represented in
the above adjacency matrix. Note: self-loops count as two edges each.

83, 4, 7, 5, 5<

4. Create a function ToGraphAlisE that takes a list of pairs of elements and transforms it into a list of

graph (directed) edges. For example:

In[4]:= lis = RandomInteger@9, 812, 2<D

Out[4]= 884, 3<, 86, 4<, 80, 1<, 86, 0<, 85, 2<, 84, 7<,
86, 4<, 87, 1<, 87, 6<, 87, 8<, 84, 0<, 83, 4<<

In[5]:= ToGraph@lisD

Out[5]= 84 � 3, 6 � 4, 0 � 1, 6 � 0, 5 � 2,

4 � 7, 6 � 4, 7 � 1, 7 � 6, 7 � 8, 4 � 0, 3 � 4<

Make sure that your function also works in the case where its argument is a single list of a pair of
elements.

130 Functional programming

In[6]:= ToGraph@83, 6<D

Out[6]= 3 � 6

5. Create a function RandomColor@D that generates a random RGB color. Add a rule for
RandomColor@nD to create a list of n random colors.

6. Create a graphic that consists of n circles in the plane with random centers and random radii.
Consider using Thread or MapThread to thread Circle@…D across the lists of centers and radii.
Use RandomColor from the previous exercise to give each circle a random color.

7. Use MapThread and Apply to mirror the behavior of Inner.

8. While matrices can easily be added using Plus , matrix multiplication is a bit more involved. The
Dot function, written as a single period, is used.

In[7]:= 881, 2<, 83, 4<<.8x, y<

Out[7]= 8x + 2 y, 3 x + 4 y<

Perform matrix multiplication on 881, 2<, 83, 4<< and 8x, y< without using Dot.

9. FactorInteger@nD returns a nested list of prime factors and their exponents for the number n.

In[8]:= FactorInteger@3628800D

Out[8]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Use Apply to reconstruct the original number from this nested list.

10. Repeat the above exercise but instead use Inner to reconstruct the original number n from the
factorization given by FactorInteger@nD.

11. Create a function PrimeFactorForm@nD that formats its argument n in prime factorization form.
For example:

In[9]:= PrimeFactorForm@12D

Out[9]= 22 ÿ 31

You will need to use Superscript and CenterDot to format the factored integer.

12. The Vandermonde matrix arises in Lagrange interpolation and in reconstructing statistical distribu-
tions from their moments. Construct the Vandermonde matrix of order n, which should look like
the following:

1 x1 x1
2 � x1

n-1

1 x2 x2
2 � x2

n-1

ª ª ª � ª

1 xn xn
2 � xn

n-1

13. Using Inner, write a function div@vecs, varsD that computes the divergence of an n-dimensional
vector field, vecs = 8e1, e2, …, en< dependent upon n variables, vars = 8v1, v2, …, vn<. The
divergence is given by the sum of the pairwise partial derivatives.

5.2 Functions for manipulating expressions 131

� e1

� v1

+
� e2

� v2

+� +
� en

� vn

14. The example in the section on Select and Pick found those Mersenne numbers 2n - 1 that are
prime doing the computation for all exponents n from 1 to 100. Modify that example to only use
prime exponents (since a basic theorem in number theory states that a Mersenne number with
composite exponent must be composite).

5.3 Iterating functions
A common task in computer science, mathematics, and many sciences is to repeatedly apply a
function to some expression. Iterating functions has a long and rich tradition in the history of
computing with perhaps the most famous example being Newton’s method for root finding.
Another area, chaos theory, rests on studying how iterated functions behave under small perturba-
tions of their initial conditions or starting values. In this section, we will introduce several func-
tions available in Mathematica for function iteration. In later chapters we will apply these and
other programming constructs to look at some applications of iteration, including Newton’s
method, the visualization of Julia sets, and several types of numerical computation.

Nest
The Nest function is used to iterate functions. Here, g is iterated four times starting with initial
value a.

In[1]:= Nest@g, a, 4D

Out[1]= g@g@g@g@aDDDD

NestList performs the same iteration but displays all the intermediate values.

In[2]:= NestList@g, a, 4D

Out[2]= 8a, g@aD, g@g@aDD, g@g@g@aDDD, g@g@g@g@aDDDD<

Using a starting value of 0.85, this generates a list of ten iterates of the Cos function.

In[3]:= NestList@Cos, 0.85, 10D

Out[3]= 80.85, 0.659983, 0.790003, 0.703843, 0.76236, 0.723208,
0.749687, 0.731902, 0.743904, 0.73583, 0.741274<

The list elements above are the values of 0.85, Cos@0.85D, Cos@Cos@0.85DD, and so on.

In[4]:= 80.85, Cos@0.85D, Cos@Cos@0.85DD, Cos@Cos@Cos@0.85DDD<

Out[4]= 80.85, 0.659983, 0.790003, 0.703843<

132 Functional programming

Using a lowercase symbol cos, you can see the symbolic computation clearly. Although this is a
useful tip for helping you to see the structure of such computations, be careful to keep the itera-
tion count manageable; otherwise you can easily generate many pages of symbolic output on
your screen.

In[5]:= NestList@cos, 0.85, 3D

Out[5]= 80.85, cos@0.85D, cos@cos@0.85DD, cos@cos@cos@0.85DDD<

The objects that you can iterate are entirely general – they could be graphics. For example,
suppose we had a triangle in the plane that we wanted to rotate iteratively. Starting with a set of
vertices, here is a display of the starting triangle. To close up the figure, the rule
8a_, b_< ß 8a, b, a< is used to copy the first point in vertices to the end of the list.

In[6]:= vertices = :80, 0<, 81, 0<, :1 ê 2, 3 í 2>>;

In[7]:= tri = Line@vertices ê. 8a_, b__< ß 8a, b, a<D;
Graphics@triD

Out[8]=

This creates a function that we will iterate inside Nest . rotation takes a graphical object
and rotates it p ê 13 radians about the point 81, 1<.

In[9]:= rotation@gr_D := Rotate@gr, p ê 13, 81, 1<D

Here are eighteen steps of this iteration.

In[10]:= Graphics@NestList@rotation, tri, 18DD

Out[10]=

5.3 Iterating functions 133

Or you can iterate a translation. First, create some translation vectors.

In[11]:= vecs = 1 ê 2 vertices

Out[11]= :80, 0<, :
1

2
, 0>, :

1

4
,

3

4
>>

The translation function creates three objects translated by the vectors vecs.

In[12]:= translation@gr_D := Translate@gr, vecsD

In[13]:= Graphics@8Blue, NestList@translation, tri, 3D<D

Out[13]=

The exercises at the end of this section build upon these ideas to create a more interesting and
well-known object, the Sierpinski triangle.

FixedPoint
In the example of the cosine function from the previous section, the iterates converge to a fixed
point, that is, a point x such that x = cosHxL. To apply a function repeatedly to an expression until
it no longer changes, use FixedPoint . This function is particularly useful when you do not
know how many iterations to perform on a function whose iterations eventually converge. For
example, here is a function that, when iterated, gives a fixed point for the Golden ratio.

In[14]:= golden@f_D := 1 +
1

f

In[15]:= FixedPoint@golden, 1.0D

Out[15]= 1.61803

Using FixedPointList , you can see all the intermediate results. FullForm shows all digits
computed, making it easier to see the convergence. Here we display every third element in the list.

In[16]:= phi = FixedPointList@golden, 1.0D;

134 Functional programming

In[17]:= phi@@1 ;; -1 ;; 3DD êê FullForm
Out[17]//FullForm=

List@1.`, 1.6666666666666665`, 1.6153846153846154`,
1.6181818181818182`, 1.6180257510729614`,
1.618034447821682`, 1.6180339631667064`,
1.6180339901755971`, 1.6180339886704433`,
1.6180339887543225`, 1.6180339887496482`,
1.6180339887499087`, 1.618033988749894`D

Sometimes, the iteration does not converge quickly and you need to relax the constraint on
the closeness of successive iterates. For example, the cosine function has a fixed point but there is
some difficulty converging using the default values for FixedPoint .

In[18]:= TimeConstrained@
FixedPoint@Cos, 0.85D,
5D

Out[18]= $Aborted

 In such cases, either you can give an optional third argument to indicate the maximum number
of iterations to perform or you can specify a looser tolerance for the comparison of successive
iterates.

In[19]:= FixedPoint@Cos, 0.85, 100D

Out[19]= 0.739085

In the following computation, we stop the iteration when two successive iterates differ by less
than 10

-10. (We will discuss the odd notation involving # and & in Section 5.6, on pure functions.)

In[20]:= FixedPointACos, 0.85, SameTest Ø IAbs@Ò1 - Ò2D < 10-10 &ME

Out[20]= 0.739085

NestWhile
The Nest function iterates a fixed number of times, whereas FixedPoint iterates until a fixed
point is reached. Sometimes you want to iterate until a condition is met. NestWhile (or
NestWhileList) is perfect for this. For example, here we find the next prime after a given
number, using CompositeQ from Exercise 5 of Section 2.3.

In[21]:= addOne@n_D := n + 1

In[22]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD

5.3 Iterating functions 135

In[23]:= NestWhileAaddOne, 2100, CompositeQE

Out[23]= 1267650600228229401496703 205 653

In[24]:= PrimeQ@%D

Out[24]= True

Verify with the built-in function that computes the next prime after a given number.
In[25]:= NextPrimeA2100E

Out[25]= 1267650600228229401496703 205 653

Fold
Whereas Nest and NestList operate on functions of one variable, Fold and FoldList
generalize this notion by iterating a function of two arguments. In the following example, the
function f is first applied to a starting value x and the first element from a list, then this result is
used as the first argument of the next iteration, with the second argument coming from the
second element in the list, and so on.

In[26]:= Fold@f, x, 8a, b, c<D

Out[26]= f@f@f@x, aD, bD, cD

Use FoldList to see all the intermediate values.

In[27]:= FoldList@f, x, 8a, b, c<D

Out[27]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

It is easier to see what is going on with FoldList by working with an arithmetic operator. This
generates “running sums.”

In[28]:= FoldList@Plus, 0, 8a, b, c, d, e<D

Out[28]= 80, a, a + b, a + b + c, a + b + c + d, a + b + c + d + e<

In[29]:= FoldList@Plus, 0, 81, 2, 3, 4, 5<D

Out[29]= 80, 1, 3, 6, 10, 15<

The built-in Accumulate function also creates running sums but it does not return the initial
value 0 as in FoldList.

In[30]:= Accumulate@81, 2, 3, 4, 5<D

Out[30]= 81, 3, 6, 10, 15<

136 Functional programming

Exercises
1. Determine the locations after each step of a ten-step one-dimensional random walk. (Recall that

you have already generated the step directions in Exercise 3 at the end of Section 3.1.)

2. Create a list of the step locations of a ten-step random walk on a square lattice.

3. Using Fold , create a function fac@nD that takes an integer n as argument and returns the factorial
of n, that is, nHn - 1L Hn - 2L�3 ÿ2 ÿ 1.

4. The Sierpinski triangle is a classic iteration example. It is constructed by starting with an equilateral
triangle (other objects can be used) and removing the inner triangle formed by connecting the
midpoints of each side of the original triangle.

ö

The process is iterated by repeating the same computation on each of the resulting smaller triangles.

ö ö � ö �

One approach is to take the starting equilateral triangle and, at each iteration, perform the appropri-
ate transformations using Scale and Translate , then iterate. Implement this algorithm, but be
careful about nesting large graphical structures too deeply.

5.4 Programs as functions
A computer program is a set of instructions (a recipe) for carrying out a computation. When a
program is evaluated with appropriate inputs, the computation is performed and the result is
returned. In a certain sense, a program is a mathematical function and the inputs to a program
are the arguments of the function. Executing a program is equivalent to applying a function to its
arguments or, as it is often referred to, making a function call.

Building up programs
Using the output of one function as the input of another is one of the keys to functional program-
ming. This nesting of functions is commonly referred to by mathematicians as “composition of
functions.” In Mathematica, this sequential application of several functions is sometimes referred
to as a nested function call. Nested function calls are not limited to using a single function repeat-
edly, such as with the built-in Nest and Fold functions.

5. 137

As an example, consider the following expression involving three nested functions.

In[1]:= Total@Sqrt@Range@2, 8, 2DDD

Out[1]= 2 + 3 2 + 6

This use of functions as arguments to other functions is a key part of functional programming,
but if you are new to it, it is instructive to step through the computation working from the inside
out. In this computation, the Mathematica evaluator does the computation from the most deeply
nested expression outward. The inner-most function is Range and it produces a list of numbers
from 2 through 8 in steps of 2. Moving outwards, Sqrt is then applied to the result of the Range
function to produce a list of the square roots. Finally, Total adds up the elements in the list
produced by Sqrt .

In[2]:= Range@2, 8, 2D

Out[2]= 82, 4, 6, 8<

In[3]:= Sqrt@%D

Out[3]= 9 2 , 2, 6 , 2 2 =

In[4]:= Total@%D

Out[4]= 2 + 3 2 + 6

Wrapping Trace around the computation shows all the intermediate expressions that are used
in this evaluation.

In[5]:= Trace@Total@Sqrt@Range@2, 8, 2DDDD

Out[5]= 998Range@2, 8, 2D, 82, 4, 6, 8<<, 82, 4, 6, 8< ,

9 2 , 4 , 6 , 8 =, 9 2 , 2 =, 9 4 , 2=,

9 6 , 6 =, 9 8 , 2 2 =, 9 2 , 2, 6 , 2 2 ==,

TotalA9 2 , 2, 6 , 2 2 =E, 2 + 3 2 + 6 =

You can read nested functions in much the same way that they are created, starting with the
innermost functions and working towards the outermost functions.

listEvenQ As another example, the following expression determines whether all the elements in a
list are even numbers.

In[6]:= Apply@And, Map@EvenQ, 82, 4, 6, 7, 8<DD

Out[6]= False

Let us step through the computation much the same as Mathematica does, from the inside out.
Start by mapping the predicate EvenQ to every element in the list 82, 4, 6, 7, 8<.

138 Functional programming

In[7]:= Map@EvenQ, 82, 4, 6, 7, 8<D

Out[7]= 8True, True, True, False, True<

Apply the logical function And to the result of the previous step.

In[8]:= Apply@And, %D

Out[8]= False

Actually, EvenQ has the Listable attribute – it automatically maps across lists and so this
computation can be shortened a bit.

In[9]:= Attributes@EvenQD

Out[9]= 8Listable, Protected<

Finally, here is a definition that can be used on arbitrary lists.

In[10]:= listEvenQ@lis_D := Apply@And, EvenQ@lisDD

In[11]:= listEvenQ@811, 5, 1, 18, 16, 6, 17, 6<D

Out[11]= False

maxima In the next example, we return to a computation done with rules in Chapter 4 – return-
ing the elements in a list of positive numbers that are bigger than all the preceding numbers in
the list.

In[12]:= Rest@DeleteDuplicates@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDD

Out[12]= 83, 6, 8<

Tracing the evaluation shows the intermediate steps of the computation.

In[13]:= Trace@Rest@
DeleteDuplicates@FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<DDDD

Out[13]= 888FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D,
8Max@0, 3D, 3<, 8Max@3, 1D, Max@1, 3D, 3<,
8Max@3, 6D, 6<, 8Max@6, 5D, Max@5, 6D, 6<,
8Max@6, 4D, Max@4, 6D, 6<, 8Max@6, 8D, 8<,
8Max@8, 7D, Max@7, 8D, 8<, 80, 3, 3, 6, 6, 6, 8, 8<<,

DeleteDuplicates@80, 3, 3, 6, 6, 6, 8, 8<D, 80, 3, 6, 8<<,
Rest@80, 3, 6, 8<D, 83, 6, 8<<

FoldList is first applied to the Max, 0, and the list 83, 1, 6, 5, 4, 8, 7<. Look at the
Trace of this computation to see what FoldList is doing here.

In[14]:= FoldList@Max, 0, 83, 1, 6, 5, 4, 8, 7<D

Out[14]= 80, 3, 3, 6, 6, 6, 8, 8<

5.4 Programs as functions 139

DeleteDuplicates is then applied to the result of the previous step to remove the duplicates.

In[15]:= DeleteDuplicates@%D

Out[15]= 80, 3, 6, 8<

Finally, Rest is applied to the result of the previous step to drop the first element, 0.

In[16]:= Rest@%D

Out[16]= 83, 6, 8<

Here is the function definition.

In[17]:= maxima@lis_D := Rest@DeleteDuplicates@FoldList@Max, 0, lisDDD

Applying maxima to a list of numbers produces a list of all those numbers that are larger than
any number that comes before it.

In[18]:= maxima@84, 2, 7, 3, 4, 9, 14, 11, 17<D

Out[18]= 84, 7, 9, 14, 17<

Example: shuffling cards
Here is an interesting application of building up a program with nested functions – the creation
and shuffling of a deck of cards.

In[19]:= cardDeck = Flatten@Outer@List,
8®, ©, ™, ´<, Join@Range@2, 10D, 8�, �, �, �<DD, 1D

Out[19]= 88®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<, 8®, 8<, 8®, 9<, 8®, 10<,
8®, �<, 8®, �<, 8®, �<, 8®, �<, 8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<,
8©, 7<, 8©, 8<, 8©, 9<, 8©, 10<, 8©, �<, 8©, �<, 8©, �<, 8©, �<,
8™, 2<, 8™, 3<, 8™, 4<, 8™, 5<, 8™, 6<, 8™, 7<, 8™, 8<, 8™, 9<, 8™, 10<,
8™, �<, 8™, �<, 8™, �<, 8™, �<, 8´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<,
8´, 7<, 8´, 8<, 8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<

The suit icons are entered by typing in \[ClubSuit], \[DiamondSuit], etc., or by using one
of the character palettes built into Mathematica. We have used special characters to represent the
jack, queen, king, and ace rather than the plain symbols J, Q, K, and A. This is to avoid the possibil-
ity that these symbols may have rules associated with them that would interfere with our intent
here. In fact, K already has meaning – it is a built-in symbol.

In[20]:= ? K

K is a default generic name for a summation index in a symbolic sum.

You might think of cardDeck as a name for the expression given on the right-hand side of
the immediate definition, or you might think of cardDeck as defining a function with zero
arguments.

140 Functional programming

To understand what is going on here, we will build up this program from scratch, working
from the inside out. First, we form a list of the number and face cards in a suit by combining a list
of the numbers 2 through 10, with a four-element list representing the jack, queen, king, and ace,
8�, �, �, �<.

In[21]:= Join@Range@2, 10D, 8�, �, �, �<D

Out[21]= 82, 3, 4, 5, 6, 7, 8, 9, 10, �, �, �, �<

Next we pair each of the 13 elements in this list with each of the four elements in the list represent-
ing the card suits 8®, ©, ™, ´<. This produces a list of 52 ordered pairs representing the cards
in a deck, where the king of clubs, for example, is represented by 8®, �<).

In[22]:= Outer@List, 8®, ©, ™, ´<, %D

Out[22]= 888®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<,
8®, 8<, 8®, 9<, 8®, 10<, 8®, �<, 8®, �<, 8®, �<, 8®, �<<,

88©, 2<, 8©, 3<, 8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<,
8©, 9<, 8©, 10<, 8©, �<, 8©, �<, 8©, �<, 8©, �<<,

88™, 2<, 8™, 3<, 8™, 4<, 8™, 5<, 8™, 6<, 8™, 7<, 8™, 8<,
8™, 9<, 8™, 10<, 8™, �<, 8™, �<, 8™, �<, 8™, �<<,

88´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<, 8´, 7<, 8´, 8<,
8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<<

While we now have all the cards in the deck, they are grouped by suit in a nested list. We there-
fore unnest the list.

In[23]:= Flatten@%, 1D

Out[23]= 88®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<, 8®, 8<, 8®, 9<,
8®, 10<, 8®, �<, 8®, �<, 8®, �<, 8®, �<, 8©, 2<, 8©, 3<,
8©, 4<, 8©, 5<, 8©, 6<, 8©, 7<, 8©, 8<, 8©, 9<, 8©, 10<,
8©, �<, 8©, �<, 8©, �<, 8©, �<, 8™, 2<, 8™, 3<, 8™, 4<, 8™, 5<,
8™, 6<, 8™, 7<, 8™, 8<, 8™, 9<, 8™, 10<, 8™, �<, 8™, �<,
8™, �<, 8™, �<, 8´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<, 8´, 7<,
8´, 8<, 8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<

Voila!
The step-by-step construction used here, applying one function at a time, checking each

function call separately, is a very efficient way to prototype your programs in Mathematica. We will
use this technique again in many subsequent examples.

Next, let us perform what is called a perfect shuffle, consisting of cutting the deck in half and
then interleaving the cards from the two halves. Rather than working with the large list of 52

ordered pairs during the prototyping, we will use a short list of an even number of ordered
integers.

5.4 Programs as functions 141

In[24]:= lis = Range@6D

Out[24]= 81, 2, 3, 4, 5, 6<

First divide the list into two equal-sized lists and then apply the built-in Riffle function which
interleaves two lists. Notice that even with this simple prototype, we are using code that will
generalize to arbitrary inputs. That is, rather than give 3 as the second argument to Partition
here, we let Mathematica compute the length.

In[25]:= Partition@lis, Length@lisD ê 2D

Out[25]= 881, 2, 3<, 84, 5, 6<<

In[26]:= Apply@Riffle, %D

Out[26]= 81, 4, 2, 5, 3, 6<

That does the job. Given this prototype, here is a function to perform a perfect shuffle on a deck
of cards.

In[27]:= shuffle@lis_D := Apply@Riffle, Partition@lis, Length@lisD ê 2DD

In[28]:= shuffle@81, 2, 3, 4, 5, 6<D

Out[28]= 81, 4, 2, 5, 3, 6<

In[29]:= shuffle@cardDeckD

Out[29]= 88®, 2<, 8™, 2<, 8®, 3<, 8™, 3<, 8®, 4<, 8™, 4<, 8®, 5<, 8™, 5<,
8®, 6<, 8™, 6<, 8®, 7<, 8™, 7<, 8®, 8<, 8™, 8<, 8®, 9<, 8™, 9<,
8®, 10<, 8™, 10<, 8®, �<, 8™, �<, 8®, �<, 8™, �<, 8®, �<,
8™, �<, 8®, �<, 8™, �<, 8©, 2<, 8´, 2<, 8©, 3<, 8´, 3<,
8©, 4<, 8´, 4<, 8©, 5<, 8´, 5<, 8©, 6<, 8´, 6<, 8©, 7<, 8´, 7<,
8©, 8<, 8´, 8<, 8©, 9<, 8´, 9<, 8©, 10<, 8´, 10<, 8©, �<,
8´, �<, 8©, �<, 8´, �<, 8©, �<, 8´, �<, 8©, �<, 8´, �<<

Unfortunately, this definition for shuffle does not properly handle lists of odd length.
In[30]:= shuffle@8a, b, c, d, e<D

Partition::ilsmp : Single or list of positive machine-sized

integers expected at position 2 of PartitionB8a, b, c, d, e<,
5

2
F. à

Out[30]= :a,
5

2
, b,

5

2
, c,

5

2
, d,

5

2
, e>

This is not an uncommon situation when writing programs: after some prototyping and writing
of code to solve the problem, you try it out on various inputs and, if you are thorough, you cover
all the possible situations that your program was designed to take into account. In this case, one
of those scenarios pointed up a deficiency in our program. Fortunately, this can be corrected by

142 Functional programming

making a few minor modifications including the use of a different argument structure for
Partition.

PartitionAlist, n, d, 1, 8<E

The first argument given to Partition, lis, is the list on which we are operating. The second
argument, n, gives the size of the sublists. The third argument, d, gives the offset: in this case no
overlap by setting this argument to the same value as the size of the sublists. The fourth argu-
ment, 1, treats the lists as cyclic. And the fifth argument, 8<, allows for no padding so the lists can
be of unequal length. Since we want to take into account lists of odd length, we also use
Ceiling to get an integer value for len.

In[31]:= Clear@shuffleD

In[32]:= shuffle@lis_D := Module@8len = Ceiling@Length@lisD ê 2D<,
Apply@Riffle, Partition@lis, len, len, 1, 8<DDD

In[33]:= shuffle@81, 2, 3, 4, 5<D

Out[33]= 81, 4, 2, 5, 3<

In[34]:= shuffle@81, 2, 3, 4, 5, 6<D

Out[34]= 81, 4, 2, 5, 3, 6<

An obvious thing to do with a deck of cards is to deal them! Simply use RandomSample,
which randomly chooses without replacement.

In[35]:= deal@n_D := RandomSample@cardDeck, nD

In[36]:= deal@5D

Out[36]= 88´, 3<, 8©, 5<, 8©, �<, 8™, �<, 8™, �<<

Compound functions
There are several major drawbacks to the above approach to dealing cards. To use deal, the
definition of cardDeck must be entered before calling deal. It would be much more conve-
nient if we could incorporate this function within the deal function definition itself. This can be
done using compound function definitions, or simply, compound functions. The left-hand side of a
compound function is the same as that of a user-defined function. The right-hand side consists of
expressions enclosed in parentheses, separated by semicolons.

name@arg1 _, arg2 _, …, argn _D := Hexpr1; expr2; …; exprmL

The expressions expri can be any expression: a simple value assignment or a user-defined func-

tion, for example. When a compound function is evaluated with particular argument values, the
expressions on the right-hand side are evaluated in order and the result of the evaluation of the

5.4 Programs as functions 143

last expression is returned (by adding a semicolon after exprm, the display of the final evaluation

result can also be suppressed).
We will work with the deal function to illustrate how a compound function is created. Here

is a compound expression consisting of two inputs, separated by a semicolon.

In[37]:= cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,
Join@Range@2, 10D, 8�, �, �, �<DD, 1D;

deal@n_D := RandomSample@cardDeck, nD

To convert to a compound function, first remove the old definitions.

In[39]:= Clear@deal, cardDeckD

Now create and enter the new definition.

In[40]:= deal@n_D := H
cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,

Join@Range@2, 10D, 8�, �, �, �<DD, 1D;
RandomSample@cardDeck, nD

L

Let us check that this works.

In[41]:= deal@5D

Out[41]= 88´, �<, 8®, 8<, 8™, 4<, 8™, �<, 8®, �<<

Several things should be pointed out about the right-hand side of a compound function
definition. Since the expressions on the right-hand side are evaluated in order, value declarations
and (auxiliary) function definitions should be given before they are used and the argument names
used on the left-hand side of auxiliary function definitions must differ from the argument names
used by the compound function itself.

Secondly, note the use of parentheses wrapped around the compound expressions (those
separated by semicolons). If you omitted the parentheses, Mathematica would think the function
definition ended at the first semicolon. This is a bit of an inconvenience that we will deal with
more effectively in the next section on scoping constructs.

Finally, when you evaluate a compound function definition, you are creating not only the
function but also the auxiliary functions and the value declarations. If you then remove the
function definition using Clear, the auxiliary function definitions and value declarations
remain. This can cause a problem if you subsequently try to use the names of these auxiliary
functions and values elsewhere. Again, this issue will be addressed in the next section on scoping
constructs.

How does the global rule base treat compound functions? When a compound function defini-
tion is entered, a rewrite rule corresponding to the entire definition is created. Each time the

144 Functional programming

compound function is subsequently called, rewrite rules are created from the auxiliary function
definitions and value declarations within the compound function.

In[42]:= ? cardDeck

Global`cardDeck

cardDeck = 88®, 2<, 8®, 3<, 8®, 4<, 8®, 5<, 8®, 6<, 8®, 7<, 8®, 8<, 8®, 9<,
8®, 10<, 8®, �<, 8®, �<, 8®, �<, 8®, �<, 8©, 2<, 8©, 3<, 8©, 4<, 8©, 5<,
8©, 6<, 8©, 7<, 8©, 8<, 8©, 9<, 8©, 10<, 8©, �<, 8©, �<, 8©, �<, 8©, �<,
8™, 2<, 8™, 3<, 8™, 4<, 8™, 5<, 8™, 6<, 8™, 7<, 8™, 8<, 8™, 9<, 8™, 10<,
8™, �<, 8™, �<, 8™, �<, 8™, �<, 8´, 2<, 8´, 3<, 8´, 4<, 8´, 5<, 8´, 6<,
8´, 7<, 8´, 8<, 8´, 9<, 8´, 10<, 8´, �<, 8´, �<, 8´, �<, 8´, �<<

It is considered bad programming practice to leave auxiliary definitions in the global rule base if
they are not explicitly needed by the user of your function. In fact, it could interfere with a user’s
workspace and cause unintended problems. To prevent these additional rewrite rules from being
placed in the global rule base, you can localize their names by using the Module construct in the
compound function definition. This is discussed in the next section.

Exercises

1. Using Total, create a function to sum the first n positive integers.

2. Rewrite the listEvenQ function from this section using MemberQ .

3. Using the shuffle function developed in this section, how many shuffles of a deck of cards (or
any list, for that matter) are needed to return the deck to its original order?

4. Many lotteries include games that require you to pick several numbers and match them against the
“house.” The numbers are independent, so this is essentially random sampling with replacement.
The built-in RandomChoice does this. For example, here are five random samples from the
integers 0 through 9.

In[1]:= RandomChoice@Range@0, 9D, 5D

Out[1]= 84, 1, 8, 7, 4<

Write your own function randomChoiceAlis, nE that performs a random sampling with replace-

ment, where n is the number of elements being chosen from the list lis. Here is a typical result using
a list of symbols.

In[2]:= randomChoice@8a, b, c, d, e, f, g, h<, 12D

Out[2]= 8g, c, a, a, d, h, c, a, c, f, c, a<

5. Use Trace on the rule-based maxima from Section 4.2 and maxima developed in this section to
explain why the functional version is much faster than the pattern matching version.

5.4 Programs as functions 145

6. Write your own user-defined functions using the Characters and StringJoin functions to
perform the same operations as StringInsert and StringDrop.

7. Write a function interleave that interleaves the elements of two lists of unequal length. (You
have already seen how to interleave lists of equal length using Partition earlier in this section
with the shuffle function.) Your function should take the lists 8a, b, c, d< and 81, 2, 3< as
inputs and return 8a, 1, b, 2, c, 3, d<.

8. Write nested function calls using ToCharacterCode and FromCharacterCode to perform the
same operations as the built-in StringJoin and StringReverse functions.

5.5 Scoping constructs
Localizing names: Module
When you define functions using assignments, it is generally a good idea to isolate the names of
values and functions defined on the right-hand side from the outside world in order to avoid any
conflict with the use of a name elsewhere in the session (for example, cardDeck from the
previous section might be used elsewhere to represent a pinochle deck). This localization of the
variable names is done by wrapping the right-hand side of the function definition with the
Module function.

name@arg1 _, arg2 _, …, argn _D := ModuleA9name1, name2 = value, …=,

body_of _function
E

The first argument of Module is a list of the symbols to be localized. If you wish, you can assign
values to these names, as is shown with name2 above; the assigned value is only an initial value
and can be changed subsequently. The list of variables to be localized is separated from the right-
hand side by a comma and so the parentheses enclosing the right-hand side of a compound
function are not needed.

Let us use Module to rewrite the deal function from the previous section, localizing the
auxiliary symbol cardDeck.

In[1]:= Clear@deal, cardDeckD

In[2]:= deal@n_D := Module@8cardDeck<,
cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,

Join@Range@2, 10D, 8�, �, �, �<DD, 1D;
RandomSample@cardDeck, nDD

146 Functional programming

In[3]:= deal@5D

Out[3]= 88©, 7<, 8´, 8<, 8©, 5<, 8©, �<, 8©, 10<<

Briefly, when Module is encountered, the symbols that are being localized (cardDeck in the
above example) are temporarily given new and unique names, and all occurrences of those
symbols in the body of the Module are given those new names as well. In this way, these unique
and temporary names, which are local to the function, will not interfere with any names of
functions or values outside of the Module.

To see how Module works we’ll trace a computation involving a simple function, showing
some of the internals.

In[4]:= f@n_D := Module@8tmp = Range@nD<,
tmp = N@tmpD;
tmp.tmpD

In[5]:= f@5D

Out[5]= 55.

In[6]:= Trace@f@5DD

Out[6]= 8f@5D, Module@8tmp = Range@5D<, tmp = N@tmpD; tmp.tmpD,
8Range@5D, 81, 2, 3, 4, 5<<, 8tmp$1532 = 81, 2, 3, 4, 5<, 81, 2, 3, 4, 5<<,
8tmp$1532 = N@tmp$1532D; tmp$1532.tmp$1532,

888tmp$1532, 81, 2, 3, 4, 5<<, N@81, 2, 3, 4, 5<D, 81., 2., 3., 4., 5.<<,
tmp$1532 = 81., 2., 3., 4., 5.<, 81., 2., 3., 4., 5.<<,

88tmp$1532, 81., 2., 3., 4., 5.<<, 8tmp$1532, 81., 2., 3., 4., 5.<<,
81., 2., 3., 4., 5.<.81., 2., 3., 4., 5.<, 55.<, 55.<, 55.<

Looking at the trace, the local variable tmp has been renamed tmp$1532, a unique and new name.
In this way, the local variable will not interfere with any global variable whose name is tmp.

It is generally a good idea to wrap the right-hand side of all compound function definitions in
the Module function. Another way to avoid conflicts between the names of auxiliary function
definitions is to use a function that can be applied without being given a name. Such functions
are called pure functions and are discussed in Section 5.6.

Localizing values: Block
Occasionally, you will need to localize a value associated with a symbol without localizing the
symbol name itself. For example, you may have a recursive computation that requires you to
temporarily reset the system variable $RecursionLimit. You can do this with Block, thereby
only localizing the value of $RecursionLimit during the evaluation inside Block. Block has
the same syntax as Module.

5.5 Scoping constructs 147

In[7]:= Block@8$RecursionLimit = 20<,
x = g@xDD

$RecursionLimit::reclim : Recursion depth of 20 exceeded. à

Out[7]= g@g@g@g@
g@g@g@g@g@g@g@g@g@g@g@g@g@g@Hold@g@xDDDDDDDDDDDDDDDDDDDD

Notice the global value of $RecursionLimit is unchanged.

In[8]:= $RecursionLimit

Out[8]= 256

Module, on the other hand, creates an entirely new symbol, $RecursionLimit$nn that has
nothing to do with the global variable $RecursionLimit, and so Module would be inappropri-
ate for this particular task. Block only affects the values of these symbols, not their names.

As another example, we will do a computation with fixed ten-digit precision by setting the two
system variables $MaxPrecision and $MinPrecision to 10. In general you would not want
to set these variables globally.

In[9]:= Block@8$MaxPrecision = 10, $MinPrecision = 10<,
Log@1000000`10DD

Out[9]= 13.81551056

In[10]:= Precision@%D

Out[10]= 10.

In fact, Block is used to localize the iterators in Table, Do, Sum , and Product .

Localizing constants: With
Another scoping construct is available when you simply need to localize constants. If, in the
body of your function, you use a variable that is assigned a constant once and never changes,
then With is the preferred means to localize that constant.

This sets the global variable y to have the value 5.

In[11]:= y = 5;

Here is a simple function that initializes y as a local constant.

In[12]:= f@x_D := With@8y = x + 1<, yD

We see the global symbol is unchanged and it does not interfere with the local symbol y inside of
With .

In[13]:= y

Out[13]= 5

148 Functional programming

In[14]:= f@2D

Out[14]= 3

With is particularly handy when you want to perform a computation and experiment with
some values of your parameters without setting them globally. For example, suppose you are
prototyping code for a function that returns an upper triangular matrix, that is, a matrix with 0s
below the diagonal. In the following example, the matrix will have 1s on and above the diagonal.
With is used here to temporarily set the value of n, the size of the matrix.

In[15]:= With@8n = 5<,
Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D

D êê MatrixForm
Out[15]//MatrixForm=

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

The advantage of this approach is that it is extremely easy to turn this into a reusable function.
Copying and pasting the line of code starting with Table@…D essentially gives the right-hand
side of the function definition without the need to modify any parameters.

In[16]:= UpperTriangularMatrix@n_D :=

Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D

In[17]:= UpperTriangularMatrix@6D êê MatrixForm
Out[17]//MatrixForm=

1 1 1 1 1 1

0 1 1 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

Finally, it should be noted that With is generally faster than Module, so if you are really
working with local constants – that is, symbols whose values do not change in the body of your
functions – you will see some speed improvements.

In[18]:= f1@n_D := Module@8tmp = NüRange@nD<,
tmp.tmpD

5.5 Scoping constructs 149

In[19]:= TimingA

DoAf1@100D, 9105=E

E

Out[19]= 80.882004, Null<

In[20]:= f2@n_D := With@8tmp = NüRange@nD<,
tmp.tmpD

In[21]:= TimingA

DoAf2@100D, 9105=E

E

Out[21]= 80.513982, Null<

Example: matrix manipulation
In this example we will create functions to switch rows or columns of a matrix. As seen in the
solution to Exercise 4 in Section 3.3, the need for localization becomes apparent quickly.

Let us prototype with a small 5ä5 matrix.

In[22]:= SeedRandom@123D;
mat = RandomInteger@9, 85, 5<D;

In[23]:= MatrixForm@matD
Out[24]//MatrixForm=

7 4 0 2 6

7 9 8 3 9

8 5 2 6 2

6 2 0 4 1

7 6 8 3 6

We could use a parallel assignment to switch two rows, say rows 2 and 3.

In[25]:= 8mat@@2DD, mat@@3DD< = 8mat@@3DD, mat@@2DD<

Out[25]= 888, 5, 2, 6, 2<, 87, 9, 8, 3, 9<<

The problem with this approach is that mat is changed by the assignment. List component
assignment is a destructive operation.

150 Functional programming

In[26]:= mat êê MatrixForm
Out[26]//MatrixForm=

7 4 0 2 6

8 5 2 6 2

7 9 8 3 9

6 2 0 4 1

7 6 8 3 6

We can avoid this problem by using a local variable, lmat, and only operating on that expres-
sion, not the original matrix. When the computation is done, we return the value of lmat.

In[27]:= switchRows@mat_, 8r1_, r2_<D := Module@8lmat = mat<,
8lmat@@r1DD, lmat@@r2DD< = 8lmat@@r2DD, lmat@@r1DD<;
lmatD

This can be written a bit more compactly using list component assignment on the correct parts.

In[28]:= switchRows@mat_, 8r1_, r2_<D := Module@8lmat = mat<,
lmat@@8r1, r2<DD = lmat@@8r2, r1<DD;
lmatD

In[29]:= SeedRandom@123D;
mat = RandomInteger@9, 85, 5<D;

In[31]:= switchRows@mat, 82, 3<D êê MatrixForm
Out[31]//MatrixForm=

7 4 0 2 6

8 5 2 6 2

7 9 8 3 9

6 2 0 4 1

7 6 8 3 6

Using local variables in this situation is preferable as the original matrix is left unchanged.

In[32]:= mat êê MatrixForm
Out[32]//MatrixForm=

7 4 0 2 6

7 9 8 3 9

8 5 2 6 2

6 2 0 4 1

7 6 8 3 6

You can even use negative indices to count rows from the end. For example, this switches the first
and the last row.

5.5 Scoping constructs 151

In[33]:= switchRows@mat, 81, -1<D êê MatrixForm
Out[33]//MatrixForm=

7 6 8 3 6

7 9 8 3 9

8 5 2 6 2

6 2 0 4 1

7 4 0 2 6

Switching columns is basically switching rows of the transposed matrix and then transposing
back.

In[34]:= switchColumns@mat_, 8c1_, c2_<D :=

TransposeüswitchRows@Transpose@matD, 8c1, c2<D

In[35]:= switchColumns@mat, 83, 4<D êê MatrixForm
Out[35]//MatrixForm=

7 4 2 0 6

7 9 3 8 9

8 5 6 2 2

6 2 4 0 1

7 6 3 8 6

This is a fairly simplistic function, one that will fail if you are not careful with the row or column
numbers.

In[36]:= switchRows@mat, 81, 6<D
switchRows::badargs :

The absolute value of the row indices 1 and 6 in switchRows@mat,81,6<D must
be between 1 and 5, the size of the matrix.

Out[36]= 887, 4, 0, 2, 6<, 87, 9, 8, 3, 9<,
88, 5, 2, 6, 2<, 86, 2, 0, 4, 1<, 87, 6, 8, 3, 6<<

In Exercise 1 of Section 5.7 we will do some argument checking and issue an appropriate
message when bad arguments are passed to these functions.

Exercises
1. Write a compound function definition for the location of steps taken in an n-step random walk on a

square lattice. The step directions can be taken to be the compass directions with north represented
by 81, 0<, south by 8-1, 0<, and so on. Hint: consider using the Accumulate function.

2. The PerfectSearch function defined in Section 1.1 is impractical for checking large numbers
because it has to check all numbers from 1 through n. If you already know the perfect numbers
below 500, say, it is inefficient to check all numbers from 1 to 1000 if you are only looking for
perfect numbers in the range 500 to 1000. Modify PerfectSearch so that it accepts two num-

152 Functional programming

bers as input and finds all perfect numbers between the inputs. For example,
PerfectSearchAa, bE will produce a list of all perfect numbers in the range from a to b.

3. A number, n, is k-perfect if the sum of its proper divisors equals k n. Redefine PerfectSearch
from the previous exercise so that it accepts as input two numbers a and b, a positive integer k, and
computes all k-perfect numbers in the range from a to b. Use your rule to find the only three 4-
perfect numbers less than 2 200 000.

4. Often in processing files you are presented with expressions that need to be converted into a format
that can be more easily manipulated inside Mathematica. For example, a file may contain dates in the
form 20120515 to represent May 15, 2012. Mathematica represents its dates as a list in the form
9 year, month, day, hour, minutes, seconds=. Write a function convertToDate@nD to convert a

number consisting of eight digits such as 20120515 into a list of the form 82012, 5, 15<.

In[2]:= convertToDate@20120515D

Out[2]= 82012, 5, 15<

5. Create a function zeroColumns@mat, m ;; nD that zeros out columns m through n in matrix mat.
Include rules to handle the cases of zeroing out one column or a list of nonconsecutive columns.

5.6 Pure functions
Many computations that you perform involve creating and using a function quickly to perform
some transformation on an expression. Typically, you introduce a formal function definition and
then use that function explicitly.

In[1]:= f@x_D := x2

In[2]:= Map@f, 8a, b, c, c, e<D

Out[2]= 9a2, b2, c2, c2, e2=

But what if you could use a function “on the fly” without creating an explicit definition? That is
what you can do with pure functions. A pure function is a function that does not have a name and
that can be used “on the spot”, at the moment it is created. This is often convenient, especially if
the function is only going to be used once or if it will be used as an argument to a higher-order
function, such as Map, Fold , or Nest . The built-in function Function is used to create pure
functions.

Syntax of pure functions
The basic form of a pure function is FunctionAx, bodyE for a pure function with a single

variable x (any symbol can be used for the variable), and FunctionA8x, y, …<, bodyE for a

pure function with more than one variable. The body looks like the right-hand side of a user-

5. 153

defined function definition, with the variables x, y, …, where argument names would be. As an
example, here is a pure function that squares its argument.

In[3]:= FunctionAz, z2E

Out[3]= FunctionAz, z2E

There is also a standard input form that can be used in writing a pure function which is easier
to write than the Function notation but can be a bit cryptic to read. The right-hand side of the
function definition is rewritten by replacing the variable by the number sign, or, hash symbol (#)
and ending the expression with the ampersand symbol (&) to indicate that this is a pure function.

Ò2 &

If there is more than one variable, #1, #2, and so on are used.
A pure function can be used exactly like more conventional looking functions, by following

the function with the argument values enclosed in square brackets. First we show the pure
function using Function.

In[4]:= FunctionAz, z2E@6D

Out[4]= 36

Here is the same thing, but using the more cryptic shorthand notation; the parentheses in the
following example are purely for readability and can be omitted if you wish.

In[5]:= IÒ2 &M@6D

Out[5]= 36

In fact, you can do anything with a pure function that you can do with a formally-defined func-
tion. You can evaluate it at a value, plot it, integrate it, and so on.

In[6]:= Ò2 &@10D

Out[6]= 100

In[7]:= PlotAÒ2 &@xD, 8x, -2, 2<E

Out[7]=

-2 -1 1 2

1

2

3

4

154 Functional programming

In[8]:= IntegrateAÒ2 &@xD, xE

Out[8]=
x3

3

If you prefer, you can give a pure function a name and then use that name to call the function
later. This has the same effect as defining the function in the more traditional manner (although,
as we will see later, working with pure functions can give significant speed increases on many
types of computations).

In[9]:= squared = Ò2 &;

In[10]:= squared@6D

Out[10]= 36

Pure functions are very commonly used with higher-order functions like Map and Apply, so,
before going further, let us first look at a few basic examples of the use of pure functions.

Here is a list of numbers.

In[11]:= lis = 82, -5, 6.1<;

Now suppose we wished to square each number and then add 1 to it. The pure function that does
this is Ò2 + 1 &. So that is what we need to map across this list.

In[12]:= MapAÒ2 + 1 &, lisE

Out[12]= 85, 26, 38.21<

In the next example we will create a set of data and then use the Select function to filter out
outliers.

In[13]:= data = 824.39001, 29.669, 9.321, 20.8856,
23.4736, 22.1488, 14.7434, 22.1619, 21.1039,
24.8177, 27.1331, 25.8705, 39.7676, 24.7762<;

A plot of the data shows there are two outliers.

In[14]:= ListPlot@dataD

Out[14]=

2 4 6 8 10 12 14

10

20

30

40

5.6 Pure functions 155

We introduced the Select function in Section 5.2. Recall Select@expr, testD returns those
elements from expr that return True when test is applied to them. We will use a pure function as
the test, in this case excluding all data points that lie outside of the range 20 to 30.

In[15]:= Select@data, 20 § Ò § 30 &D

Out[15]= 824.39, 29.669, 20.8856, 23.4736, 22.1488,
22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762<

Using pure functions
A good way to become comfortable with pure functions is to see them in action, so we will
convert some of the functions we defined earlier into pure functions, showing both the short-
hand notation and the Function form so that you can decide which you prefer to use.

listEvenQ This function tests whether all the elements of a list are even.

In[16]:= listEvenQ@lis_D := Apply@And, EvenQ@lisDD

In[17]:= listEvenQ@82, 4, 5, 8<D

Out[17]= False

Here it is written using pure functions.

In[18]:= Function@lis, Apply@And, EvenQ@lisDDD@82, 4, 5, 8<D

Out[18]= False

In[19]:= HApply@And, EvenQ@ÒDDL &@82, 4, 5, 8<D

Out[19]= False

maxima This function returns each element in the list greater than all previous elements.

In[20]:= maxima@x_D := Union@Rest@FoldList@Max, 0, xDDD

In[21]:= maxima@82, 6, 3, 7, 9, 2<D

Out[21]= 82, 6, 7, 9<

Here it is written using pure functions.

In[22]:= Function@x, Union@Rest@FoldList@Max, 0, xDDDD@
82, 6, 3, 7, 9, 2<D

Out[22]= 82, 6, 7, 9<

In[23]:= Union@Rest@FoldList@Max, 0, ÒDDD &@82, 6, 3, 7, 9, 2<D

Out[23]= 82, 6, 7, 9<

156 Functional programming

Pure predicate functions The following examples use a pure function as a predicate to check various
criteria. In the first example, we are testing if 8a, b, c< has head List and if the length of
8a, b, c< is greater than 2. Since it passes both of these conditions, MatchQ returns True .

In[24]:= MatchQ@8a, b, c<, _List?HLength@ÒD > 2 &LD

Out[24]= True

Even though the head of 8a, b, c< is List , the condition below fails since the list has length
less than 4.

In[25]:= MatchQ@8a, b, c<, _List?HLength@ÒD > 4 &LD

Out[25]= False

Note that when using a pure function as in ? test, because of the precedence Mathematica gives
to evaluating various quantities, it is necessary to enclose the entire function, including the &, in
parentheses.

In Exercise 1 in Section 5.4, you were asked to create a function to sum the integers 1 through n.
The following works fine if n is a positive integer, but is not well-defined otherwise.

In[26]:= sumInts@n_D := Total@Range@nDD

In[27]:= sumInts@1.3D

Out[27]= 1

In[28]:= sumInts@-3D

Out[28]= 0

Some argument checking, using pure function predicates can rectify this.

In[29]:= Clear@sumIntsD

In[30]:= sumInts@n_?HIntegerQ@ÒD && Positive@ÒD &LD := Total@Range@nDD

In[31]:= sumInts@-1.3D

Out[31]= sumInts@-1.3D

In[32]:= sumInts@100D

Out[32]= 5050

Indexing with pure functions Oftentimes it is necessary to index parts of an expression by the
position of each element. MapIndexed is designed for this purpose and it is often used with
pure functions.

5.6 Pure functions 157

Given an expression to index, the default behavior of MapIndexed is to create pairs (ei, i),
where ei is the ith element in the expression, and then to pass them as arguments to a function
given as the first argument to MapIndexed .

In[33]:= expr = 8a, b, c, d, e<;
MapIndexed@f, exprD

Out[34]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D, f@d, 84<D, f@e, 85<D<
If instead of a symbolic function f, we use List , we get pairs of the form 8ei, 8i<<.

In[35]:= MapIndexed@List, exprD

Out[35]= 88a, 81<<, 8b, 82<<, 8c, 83<<, 8d, 84<<, 8e, 85<<<

Using pure functions you can modify this quite a bit by operating on either the index or the
subexpression. With MapIndexed , #2 refers to the index and #1 to the element itself. For
example, the following pure function is a list consisting of the first part of the index (strip away
one set of braces) followed by the element in that position.

In[36]:= MapIndexed@8FirstüÒ2, Ò1< &, exprD

Out[36]= 881, a<, 82, b<, 83, c<, 84, d<, 85, e<<

Nested pure functions You can also create nested pure functions; the key is to keep the variables
straight. For example, the following pure function is mapped over the list to square each element.

In[37]:= MapAÒ2 &, 83, 2, 7<E

Out[37]= 89, 4, 49<

When dealing with nested pure functions, the shorthand notation can be used for each of the
pure functions but care needs to be taken to avoid confusion as to which # variable belongs to
which pure function. This can be avoided by using Function, in which case different variable
names can be used. Note the order in which the arguments are slotted into these two pure func-
tions – the outer function gets the arguments first.

In[38]:= FunctionAy, MapAFunctionAx, x2E, y + 1EE@83, 2, 7<D

Out[38]= 816, 9, 64<

In[39]:= FunctionAx, MapAFunction@y, y + 1D, x2EE@83, 2, 7<D

Out[39]= 810, 5, 50<

Example: searching for attributes and options
As described in Section 2.4, many built-in functions have a set of properties, or, attributes, that
govern their behavior in various ways. For example, functions that have the Listable attribute
automatically map or thread across lists of arguments.

158 Functional programming

In[40]:= Attributes@SinD

Out[40]= 8Listable, NumericFunction, Protected<

In[41]:= SinB:
p

6
,

p

3
,

p

2
, p>F

Out[41]= :
1

2
,

3

2
, 1, 0>

In this section we will create a function that searches the entire built-in symbol list for functions
with a given attribute or option.

It is easy to check one function. MemberQAlist, formE returns true if an element of list

matches the pattern form.

In[42]:= MemberQ@Attributes@SinD, ListableD

Out[42]= True

A list of all the built-in functions is given by the following.

In[43]:= names = Names@"System`*"D;

In[44]:= RandomSample@names, 10D

Out[44]= 8ListCorrelate, DoubleLeftArrow,
NotebookClose, FileDate, CylinderBox, SortBy,
PrecedesSlantEqual, Ordering, Socket, PlotRangePadding<

One minor point to note: the output of Names is a list of strings.

In[45]:= FullForm@%D
Out[45]//FullForm=

List@"SetterBoxOptions", "NumberForm",
"VirtualGroupData", "DumpGet", "Sin", "HilbertMatrix",
"DelimiterMatching", "VerticalTilde"D

Fortunately, Attributes can take either a symbol or a string as an argument so we do not need
to worry about the distinction here (but we will need to worry about this when we do something
similar for options).

In[46]:= Attributes@"Sin"D

Out[46]= 8Listable, NumericFunction, Protected<

Hopefully it is clear how we should proceed. We want to select all those System` symbols that
have a given attribute. For example, this selects all those System` symbols that have the
Constant attribute.

5.6 Pure functions 159

In[47]:= Select@names, MemberQ@Attributes@ÒD, ConstantD &D

Out[47]= 8Catalan, ChampernowneNumber, Degree, E, EulerGamma,
Glaisher, GoldenRatio, Khinchin, MachinePrecision, Pi<

Let us turn this into a function that takes the attribute as an argument. Note, this function is “self-
contained”; the user does not need to evaluate Names@"System`"D prior to using it as we did
above.

In[48]:= FunctionsWithAttribute@attrib_SymbolD :=

Select@Names@"System`*"D, MemberQ@Attributes@ÒD, attribD &D

In[49]:= FunctionsWithAttribute@ConstantD

Out[49]= 8Catalan, ChampernowneNumber, Degree, E, EulerGamma,
Glaisher, GoldenRatio, Khinchin, MachinePrecision, Pi<

In[50]:= FunctionsWithAttribute@OrderlessD

Out[50]= 8ArithmeticGeometricMean, BitAnd, BitOr, BitXor, CoprimeQ,
DiracComb, DiracDelta, DiscreteDelta, Equivalent,
GCD, HeavisideLambda, HeavisidePi, HeavisideTheta,
KroneckerDelta, LCM, Majority, Max, Min, Multinomial,
Plus, Times, UnitBox, UnitStep, UnitTriangle, Xnor, Xor<

Attempting to mimic this function for options instead of attributes requires several adjust-
ments. First, note that Options , unlike Attributes , does not take a string as an argument.

In[51]:= Options@"Integrate"D

Out[51]= 8<

We can work around this by converting strings to symbols.

In[52]:= Options@Symbol@"Integrate"DD

Out[52]= 8Assumptions ß $Assumptions,
GenerateConditions Ø Automatic, PrincipalValue Ø False<

The second issue is that options are given as a list of rules which is a more deeply nested expres-
sion structure than the list of attributes.

In[53]:= MemberQ@Options@IntegrateD, AssumptionsD

Out[53]= False

The tree structure shows that the option names occur down at level 2.

160 Functional programming

In[54]:= TreeForm@Options@IntegrateDD
Out[54]//TreeForm=

List

RuleDelayed

Assumptions $Assumptions

Rule

GenerateConditions Automatic

Rule

PrincipalValue False

So we need to instruct MemberQ to search at that level by giving it a third argument, 82<.

In[55]:= MemberQ@Options@IntegrateD, Assumptions, 82<D

Out[55]= True

Finally, note that warning messages are issued for some of the symbols.

In[56]:= Select@Names@"System`*"D,
MemberQ@Options@Symbol@ÒDD, InterpolationOrder, 82<D &D;

Options::opmix : Cannot mix streams and non-streams in 8Courier, 10.<. à
ToExpression::notstrbox :

FEPrivate`FrontEndResourceString@GetFEKernelInitD is not a string or a box.
ToExpression can only interpret strings or boxes as Mathematica input. à

Since the computation is correct, we can simply turn off the display of the warning messages by
using Quiet. Here then is our function.

In[57]:= FunctionsWithOption@opt_SymbolD :=

Quiet@Select@Names@"System`*"D,
MemberQ@Options@Symbol@ÒDD, opt, 82<D &DD

In[58]:= FunctionsWithOption@StepMonitorD

Out[58]= 8FindArgMax, FindArgMin, FindFit, FindMaximum,
FindMaxValue, FindMinimum, FindMinValue, FindRoot,
NArgMax, NArgMin, NDSolve, NMaximize, NMaxValue,
NMinimize, NMinValue, NonlinearModelFit, NRoots<

5.6 Pure functions 161

Exercises
1. Write a function to sum the squares of the elements of a numeric list.

2. In Exercise 2 from Section 5.2 you were asked to create a function to compute the diameter of a set
of points in n-dimensional space. Modify that solution by instead using the Norm function and pure
functions to find the diameter.

3. Rewrite the code from Section 5.3 for finding the next prime after a given integer so that it uses pure
functions instead of relying upon auxiliary definitions addOne and CompositeQ.

4. Create a function RepUnit@nD that generates integers of length n consisting entirely of ones. For
example RepUnit@7D should produce 1111111.

5. Given a set of numerical data, extract all those data points that are within one standard deviation of
the mean of the data.

In[1]:= data = RandomVariate@NormalDistribution@0, 1D, 82500<D;

6. Write a pure function that moves a random walker from one location on a square lattice to one of
the four adjoining locations with equal probability. For example, starting at 80, 0<, the function
should return 80, 1<, 80, -1<, 81, 0<, or 8-1, 0< with equal likelihood. Now, use this pure
function with NestList to generate the list of step locations for an n-step random walk starting at
80, 0<.

7. Find all words in the dictionary that start with the letter q and are of length five. Here is the list of
words in the dictionary that comes with Mathematica.

In[2]:= words = DictionaryLookup@D;
RandomSample@words, 24D

Out[3]= 8leafage, uncorrupted, cocci, disadvantaged, inflicter, Moira,

interpolates, squander, archer, tricking, lithosphere,

deforested, throb, soapboxes, monopolies, advisedly, silencer,

tames, satanists, individuals, snorter, huh, noised, WWW<

8. A naive approach to polynomial arithmetic would require three additions and six multiplications to
carry out the arithmetic in the expression a x3 + b x2 + c x + d. Using Horner’s method for fast
polynomial multiplication, this expression can be represented as d + xHc + xHb + a xLL, where there
are now half as many multiplications. You can see this using the MultiplyCount function
developed in Exercise 8 of Section 4.2.

In[4]:= MultiplyCountAa x3 + b x2 + c x + dE

Out[4]= 6

In[5]:= MultiplyCount@d + x Hc + x Hb + a xLLD

Out[5]= 3

In general, the number of multiplications in an n-degree polynomial is given by:

In[6]:= Binomial@n + 1, 2D

Out[6]=
1

2
n H1 + nL

162 Functional programming

This, of course, grows quadratically with n, whereas Horner’s method grows linearly. Create a
function HornerAlis, varE that gives a representation of a polynomial in Horner form. Here is

some sample output that your function should generate.

In[7]:= Horner@8a, b, c, d<, xD

Out[7]= d + x Hc + x Hb + a xLL

In[8]:= Expand@%D

Out[8]= d + c x + b x2 + a x3

9. Graphs that are not too dense are often represented using adjacency structures which consist of a list
for each vertex vi that includes those other vertices that vi is connected to. Create an adjacency
structure for any graph, directed or undirected. For example, consider the graph gr below.

In[9]:= gr = RandomGraph@88, 12<, VertexLabels Ø "Name"D

Out[9]=

Start by creating an adjacency list for any given vertex; that is, a list of those vertices to which the
given vertex is connected. For example, the adjacency list for vertex 8 in the above graph would be:

83, 4, 5, 7<

The adjacency structure is then the list of adjacency lists for every vertex in that graph. It is common
to prepend each adjacency list with its vertex; typically the adjacency structure takes the following
form where this syntax indicates that vertex 1 is connected to vertices 2 and 6; vertex 2 is connected
to vertices 1, 4, and 5; and so on.

881, 82, 6<<, 82, 81, 4, 5<<, 83, 85, 7, 8<<, 84, 82, 7, 8<<,
85, 82, 3, 6, 8<<, 86, 81, 5<<, 87, 83, 4, 8<<, 88, 83, 4, 5, 7<<<

10. Use FoldList to compute an exponential moving average of a list 8x1, x2, x3<. You can check
your result against the built-in ExponentialMovingAverage.

In[10]:= ExponentialMovingAverage@8x1, x2, x3<, aD

Out[10]= 8x1, x1 + a H-x1 + x2L, x1 + a H-x1 + x2L + a H-x1 - a H-x1 + x2L + x3L<

11. A well-known programming exercise in many languages is to generate Hamming numbers,
sometimes referred to as regular numbers. These are numbers that divide powers of 60 (the choice of
that number goes back to the Babylonians who used 60 as a number base). Generate a sorted
sequence of all Hamming numbers less than 1000. The key observation is that these numbers have
only 2, 3, and 5 as prime factors.

5.6 Pure functions 163

5.7 Options and messages
When developing programs that will be used by your colleagues, students, or customers, it is
always a good idea to think about the user interface to your code. That is, how will the user figure
out the correct syntax, how will they get helpful information, and so on. The easier it is for a user
(including yourself!) to actually use your code, the more likely it is to be used for its intended
purpose. One of the hallmarks of modern languages is that they provide a framework for you to
apply standard design principles making it easier to develop programs that look and behave in a
consistent manner. One of the pieces of this framework is a mechanism for passing messages
when a bad argument is given or a certain condition occurs. Another piece is using optional
arguments, or options, to modify the default behavior of your functions. In this section we
discuss how you can set up your functions so that they inherit this framework, making them
behave just like built-in Mathematica functions in terms of argument structure and messaging.

Options
When writing your own programs, it is often difficult to predict how a user will interact with
them. You might, for example, write separate functions to handle special cases, but the problem
with having a separate function for each special case is that the user can soon become overloaded
with the variety of functions to learn. A cleaner approach, one used by the built-in functions in
Mathematica, is to use optional arguments to specify some variant or special case rather than to
have a separate function for each such case. In this section, we will show how to write options for
your functions so that they behave like the built-in options in Mathematica.

When you create a function, generally you design the argument structure in such a way that it
covers the most common cases for which you intended to use this function. For example, given
the required arguments, the Plot function returns a basic plot.

In[1]:= Plot@Sin@xD, 8x, 0, 2 p<D

Out[1]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

But there is also a mechanism for overriding the default behavior by specifying optional argu-
ments, or simply, options. Options are specified following any required arguments and are gener-
ally given as a rule: optionname Ø value.

164 Functional programming

In[2]:= Plot@Sin@xD, 8x, 0, 2 p<,
GridLines Ø Automatic,
Frame Ø TrueD

Out[2]=

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

This provides a consistent framework for modifying the default behavior of the built-in func-
tions. Below we will outline this framework and then start to put it into action at the end of this
chapter in Section 5.8 and then again repeatedly in later chapters.

The first part of the framework is to declare that a function will have optional arguments and
identify their names and default values. For example, the following indicates that a function
named myFun will have two optional arguments, opt1 and opt2 and declares their default
values to be a and b, respectively.

In[3]:= Options@myFunD = 8opt1 Ø a, opt2 Ø b<

Out[3]= 8opt1 Ø a, opt2 Ø b<

The second piece of the options framework is to set up the argument structure to allow for
optional arguments. This is done by using OptionsPattern following any required argu-
ments. So in the example below, the required argument is x and this statement indicates that
some number (possibly zero) of optional arguments will follow that required argument.

myFun@x_, OptionsPattern@DD := …

The third piece of the framework is using OptionsValue to extract the value of a given
option in the function definition.

In[4]:= myFun@x_, OptionsPattern@DD :=

2 x + 3 OptionValue@opt1D + 4 OptionValue@opt2D

Let us try it out, first with default values for the options.

In[5]:= myFun@aD

Out[5]= 2 a + 3 a + 4 b

Now exercise the options.

In[6]:= myFun@a, opt1 Ø x, opt2 Ø yD

Out[6]= 2 a + 3 x + 4 y

5.7 Options and messages 165

So far, so good, but let us use the options framework to do something a bit more interesting.
There are many times when it would be useful to use, or inherit, some or all the options from a
built-in function. This saves time and effort in that the structure already is in place, you just need
to borrow it. Fortunately, this is quite straightforward using Options . We will create a function
StemPlot that inherits options from ListPlot and displays discrete data as stems; that is,
points of height specified by the values of the data with lines drawn to the axis.

In[7]:= Options@StemPlotD = Options@ListPlotD;
StemPlot@lis_, opts : OptionsPattern@DD :=

ListPlot@lis, opts, Filling Ø AxisD

We named the optional arguments opts so that we can slot whatever options are given into
ListPlot. This is done by having opts precede any other options we wish to use. This way the
user-passed options, appearing first, will override any similarly named options that come later.

In[9]:= StemPlot@Range@12DD

Out[9]=

Here we exercise some of the options, all inherited from ListPlot.

In[10]:= StemPlot@Range@8D, Filling Ø 4,
FillingStyle Ø 88Purple, Dashed<<, Frame Ø True,
PlotLabel Ø Style@"A stem plot", "Menu"DD

Out[10]=

0 2 4 6 8
0

2

4

6

8
A stem plot

As an alternative to how we set up the options for StemPlot, you could also set up the
inheritance of the options directly in the definition for your function, rather than using a separate
Options@…D = … statement.

166 Functional programming

In[11]:= StemPlot@lis_, opts : OptionsPattern@ListPlotDD :=

ListPlot@lis, opts, Filling Ø AxisD

At the end of Section 9.5 in the example on displaying DNA sequences and again in the visual-
ization functions in Section 10.4 we will look at some variations of this options framework in
which you can mix options from different functions.

Messages
When you give an invalid argument to a Mathematica function, it returns a warning message.

In[12]:= Inverse@81.2, 2.3, 4.5<D

Inverse::matsq : Argument 81.2, 2.3, 4.5< at position 1 is not a non-empty square matrix. à

Out[12]= Inverse@81.2, 2.3, 4.5<D

You can set up your own functions to do likewise. The basic framework is: define the message
and then use a rule to issue the message under the appropriate conditions.

Let us set up a message for the simple function CompositeQ discussed in Section 5.3. Here is
the original definition.

In[13]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD

As written, this function returns unevaluated for any argument that does not match the pattern
n_Integer ê; n > 1. It is a good candidate for a warning message when it is given arguments
that do not match this pattern.

In[14]:= CompositeQ@pD

Out[14]= CompositeQ@pD

We would like to set up a message that is issued whenever a bad argument is passed to
CompositeQ. Messages have names of the form symbol::tag, where symbol is the symbol with
which you want to associate the message. The tag should be chosen to reflect the purpose of the
message. So in our case we will create a message CompositeQ::badarg.

In[15]:= CompositeQ::badarg =
"Bad argument to CompositeQ. It should be

an integer greater than 1.";

To issue this message, we create a general rule that covers all arguments other than integers
greater than 1 which is covered by the rule we wrote above.

In[16]:= CompositeQ@n_D := Message@CompositeQ::badargD

In[17]:= CompositeQ@pD
CompositeQ::badarg : Bad argument to CompositeQ. It should be an integer greater than 1.

5.7 Options and messages 167

So far, so good. We could go a bit further and pass the bad argument itself into the message. Built-
in functions do this automatically.

In[18]:= FactorInteger@pD

FactorInteger::exact : Argument p in FactorInteger@pD is not an exact number. à

Out[18]= FactorInteger@pD

This is accomplished by using `1` to indicate the position in the string to slot in a value. Then
use a two-argument form of Message to issue the warning with a value slotted into the string.

In[19]:= CompositeQ::badarg =
"Argument `1` in CompositeQ@`1`D is not an

integer greater than 1.";

In[20]:= CompositeQ@n_D := Message@CompositeQ::badarg, nD

In[21]:= CompositeQ@pD
CompositeQ::badarg : Argument p in CompositeQ@pD is not an integer greater than 1.

We can go one step further and create a more general rule, one that could cover more than one
argument or more complicated argument structures and, in addition to issuing the warning, also
return the input unevaluated. The If statement below checks to see if the argument, n, is an
integer greater than 1. If it is, the If statement returns True , the conditional is satisfied, and the
right-hand side of the definition will be invoked. If the argument is not an integer greater than 1,
then the message is issued and False is returned to the condition, making the pattern match fail
(which causes the input to be returned), and so the right-hand side is not evaluated.

In[22]:= Clear@CompositeQD

In[23]:= CompositeQ@n_Integer ê; n > 1D := Not@PrimeQ@nDD

In[24]:= CompositeQ@n_D ê; If@TrueQ@Head@nD ã Integer && n > 1D, True,

Message@CompositeQ::badarg, nD; FalseD := NotüPrimeQ@nD

In[25]:= CompositeQ@pD
CompositeQ::badarg : Argument p in CompositeQ@pD is not an integer greater than 1.

Out[25]= CompositeQ@pD

In[26]:= CompositeQ@8a, b, c<D
CompositeQ::badarg :

Argument 8a, b, c< in CompositeQ@8a, b, c<D is not an integer greater than 1.

Out[26]= CompositeQ@8a, b, c<D

168 Functional programming

Of course, you could have multiple messages associated with any symbol by writing another
symbol::tag and modifying your code appropriately. This is what functions like Inverse do for
the various arguments that could be given.

In[27]:= Inverse@8a, b, c<D

Inverse::matsq : Argument 8a, b, c< at position 1 is not a non-empty square matrix. à

Out[27]= Inverse@8a, b, c<D

In[28]:= Inverse@88a, b<, 8a, b<<D

Inverse::sing : Matrix 88a, b<, 8a, b<< is singular. à

Out[28]= Inverse@88a, b<, 8a, b<<D

Exercises
1. In Section 5.5 we developed a function switchRows that interchanged two rows in a matrix. Create

a message for this function that is issued whenever a row index greater than the size of the matrix is
used as an argument. For example,

In[1]:= mat = RandomInteger@80, 9<, 84, 4<D;
MatrixForm@matD

Out[2]//MatrixForm=

3 5 1 8
5 9 7 4
5 0 7 1
4 2 3 0

In[3]:= switchRows@mat, 85, 2<D
switchRows::badargs :

The absolute value of the row indices 5 and 2 in switchRows@mat,85,2<D must
be between 1 and 4, the size of the matrix.

Out[3]= 883, 5, 1, 8<, 85, 9, 7, 4<, 85, 0, 7, 1<, 84, 2, 3, 0<<

You should also trap for a row index of 0.

In[4]:= switchRows@mat, 80, 2<D
switchRows::badargs :

The absolute value of the row indices 0 and 2 in switchRows@mat,80,2<D must
be between 1 and 4, the size of the matrix.

Out[4]= 883, 5, 1, 8<, 85, 9, 7, 4<, 85, 0, 7, 1<, 84, 2, 3, 0<<

2. Create an error message for StemPlot, developed in this section, so that an appropriate message is
issued if the argument is not a list of numbers.

5.7 Options and messages 169

5.8 Examples and applications
In this section we will put several of the concepts we have explored to work in solving concrete,
real-world problems. Some of these solutions are short and avoid the use of auxiliary function
definitions – so-called one-liners. Others require localization constructs and auxiliary function
definitions. The examples include a problem from signal processing on computing Hamming
distance; one from ancient history, the Josephus problem; a graphical problem on the creation
and display of regular polygons; a practical problem involving the creation of a palette to open
files from a project directory; and a data processing problem on cleaning/filtering arrays of data
in which the notion of modular programs is discussed.

Hamming distance
When a signal is transmitted over a channel in the presence of noise, errors often occur. A major
concern in telecommunications is measuring (and of course, trying to minimize) that error. For
two lists of binary symbols, the Hamming distance is defined as the number of nonmatching
elements and so gives a measure of how well these two lists of binary digits match up. In this first
example, we will create a function to compute the Hamming distance of a binary signal.

Let us first think about how we might determine if two binary numbers are identical. Various
tests of equality are available. SameQ@x, yD will return True if x and y are identical. It differs
from Equal (ã) in that, for numbers, Equal tests for numerical equality within a certain toler-
ance, but SameQ is testing for identical structures.

In[1]:= SameQ@0, 0.0D

Out[1]= False

In[2]:= Equal@0, 0.0D

Out[2]= True

Here is what SameQ returns for the different pairings of binary numbers.

In[3]:= 8SameQ@0, 0D, SameQ@1, 0D, SameQ@1, 1D<

Out[3]= 8True, False, True<

So we need to thread SameQ over the two lists of binary numbers,

In[4]:= MapThread@SameQ, 881, 0, 0, 1, 1<, 80, 1, 0, 1, 0<<D

Out[4]= 8False, False, True, True, False<

and then count up the occurrences of False.

In[5]:= Count@%, FalseD

Out[5]= 3

170 Functional programming

Putting these last two pieces together, we have our first definition for Hamming distance.

In[6]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD

In[7]:= HammingDistance1@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D

Out[7]= 3

We might also try to solve this problem by a more direct approach. Since we are dealing with
binary information, we will use some of the logical binary operators built into Mathematica.
BitXor@x, yD returns the bitwise XOR of x and y. So if x and y can only be among the binary
integers 0 or 1, BitXor will return 0 whenever they are the same and will return 1 whenever they
are different. Note that BitXor is listable and so automatically threads over lists.

In[8]:= BitXor@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D

Out[8]= 81, 1, 0, 0, 1<

And here are the number of 1s that occur in that list.

In[9]:= Total@%D

Out[9]= 3

Here then is our bit-operator based version for the Hamming distance computation.

In[10]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[11]:= HammingDistance2@81, 0, 0, 1, 1<, 80, 1, 0, 1, 0<D

Out[11]= 3

Let us compare the running times of these implementations using a large data set, in this case
two lists consisting of one million 0s and 1s.

In[12]:= sig1 = RandomIntegerA1, 9106=E;

In[13]:= sig2 = RandomIntegerA1, 9106=E;

In[14]:= Timing@HammingDistance1@sig1, sig2DD

Out[14]= 80.497098, 499922<

In[15]:= Timing@HammingDistance2@sig1, sig2DD

Out[15]= 80.007763, 499922<

That is quite a difference in the efficiency of these two approaches! Using bit operators gives a
speedup of almost two orders of magnitude. We will leave a discussion of the causes of this
difference until Chapter 12. There are numerous other approaches that you might consider – the

5.8 Examples and applications 171

exercises ask you to write implementations of HammingDistance that use Select and Cases
and also one using modular arithmetic.

As an aside, the above computations are not a bad check on the built-in random number
generator – we would expect that about one-half of the paired-up lists would contain different
elements.

The Josephus problem
Flavius Josephus (37 – ca. 100 AD) was a Jewish historian who fought in the Roman–Jewish war of
the first century ad. Through his writings comes the following story; see Herstein and Kaplansky
(1978) or Graham, Knuth, and Patashnik (1994):

The Romans had chased a group of ten Jews into a cave and were about to attack. Rather than die at the hands of
their enemy, the group chose to commit suicide one by one. Legend has it though, that they decided to go around
their circle of ten individuals and eliminate every other person until only one was left.

The Josephus problem is stated simply: who was the last to survive? Although a bit macabre, this
problem has a definite mathematical interpretation that lends itself well to a functional style of
programming. We will start by changing the problem a bit (the importance of rewording a
problem can hardly be overstated; the key to most problem-solving resides in turning something
we cannot work with into something we can). We will restate the problem as follows: n people
are lined up; the first person is moved to the end of the line; the second person is removed from
the line; the third person is moved to the end of the line; and so on until only one person remains
in the line.

The statement of the problem indicates that there is a repetitive action, performed over and
over again. It can be encoded with the RotateLeft function (move the person at the front of
the line to the back of the line) followed by the use of the Rest function (remove the next person
from the line).

In[16]:= Rest@RotateLeft@8a, b, c, d<DD

Out[16]= 8c, d, a<

At this point it should be fairly clear where this computation is headed. We want to take a list
and, using the Nest function, iterate the pure function Rest@RotateLeft@ÒDD & until only
one element remains. A list of n elements will need n - 1 iterations. We will create the list of n
elements using Range@nD. Here then is the function survivor.

In[17]:= survivor@n_D := Nest@Rest@RotateLeft@ÒDD &, Range@nD, n - 1D

172 Functional programming

Trying out the survivor function on a list of ten, we see that the survivor is the fifth starting
position.

In[18]:= survivor@10D

Out[18]= 85<

Tracing the applications of RotateLeft in this example gives a clear picture of what is
happening. Using TracePrint with a second argument shows only the results of the applica-
tions of RotateLeft that occur during evaluation of the expression survivor@6D.

In[19]:= TracePrint@survivor@6D, RotateLeftD

RotateLeft

82, 3, 4, 5, 6, 1<

RotateLeft

84, 5, 6, 1, 3<

RotateLeft

86, 1, 3, 5<

RotateLeft

83, 5, 1<

RotateLeft

81, 5<

Out[19]= 85<

And, of course, you could generate the list of survivors at each round by using NestList
instead of Nest .

In[20]:= With@8n = 6<, NestList@Rest@RotateLeft@ÒDD &, Range@nD, n - 1DD

Out[20]= 881, 2, 3, 4, 5, 6<, 83, 4, 5, 6, 1<,
85, 6, 1, 3<, 81, 3, 5<, 85, 1<, 85<<

Regular graphs/polygons
Section 1.1 included some brief code to create and display regular polygons from points equally
spaced on a circle. Here we will use some of the built-in graph machinery together with several
functional programming constructs to create an alternative implementation. The advantage of
this approach is that we can then take advantage of the style and formatting functionality built
into Graph objects.

5.8 Examples and applications 173

Let us start by creating a regular pentagon. Whereas the code in Section 1.1 identified the
vertices spatially as coordinates in the plane, graphs identify the vertices by their index; a graph
with five vertices labels them 1, 2, 3, 4, 5.

In[21]:= Range@5D

Out[21]= 81, 2, 3, 4, 5<

We need to connect vertex 1 to vertex 2, vertex 2 to vertex 3, and so on. This is done by partition-
ing this list of five vertices into overlapping pairs. The last argument to Partition indicates
that the list is cyclic.

In[22]:= pairs = Partition@Range@5D, 2, 1, 1D

Out[22]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 1<<

We next turn each pair of vertices into an (undirected) edge. Note the need to apply
UndirectedEdge at level 1.

In[23]:= Apply@UndirectedEdge, pairs, 81<D

Out[23]= 81 � 2, 2 � 3, 3 � 4, 4 � 5, 5 � 1<

Then, we turn the rules into a graph object that will display as a polygon.

In[24]:= Graph@%D

Out[24]=

Finally, we put all the above pieces together to create a reusable function, adding several Graph
options to stylize the graph.

In[25]:= RegularGraph@n_IntegerD := Graph@
Apply@UndirectedEdge, Partition@Range@nD, 2, 1, 1D, 81<D,
VertexSize Ø 0.002, EdgeStyle Ø ThickD

174 Functional programming

In[26]:= RegularGraph@5D

Out[26]=

In the above implementation, we have hard-coded the two options, VertexSize and
EdgeStyle. That is fine for the default representation, but let us take advantage of all the rich
formatting and stylistic functionality built into Graph objects. This is done by passing the
options for Graph to our RegularGraph function.

Let us also try a different approach to constructing the vertex rules, using MapThread. First,
we rotate the original list one position to the left.

In[27]:= lis = Range@5D;
pairs = 8lis, RotateLeft@lisD<

Out[28]= 881, 2, 3, 4, 5<, 82, 3, 4, 5, 1<<

Then we thread UndirectedEdge over these paired vertices.

In[29]:= MapThread@UndirectedEdge, pairsD

Out[29]= 81 � 2, 2 � 3, 3 � 4, 4 � 5, 5 � 1<

Using the options framework introduced in Section 5.7, set up RegularGraph to inherit all the
options of Graph.

In[30]:= Options@RegularGraphD = Options@GraphD;

In[31]:= RandomSample@Options@RegularGraphD, 8D

Out[31]= 8AspectRatio Ø Automatic, AxesOrigin Ø Automatic,
VertexLabels Ø Automatic, FrameTicksStyle Ø 8<,
Properties Ø 8<, GraphLayout Ø Automatic,
BaselinePosition Ø Automatic, EdgeStyle Ø Automatic<

5.8 Examples and applications 175

We use the localization construct With here as the list of vertices, verts, is really a constant, an
expression that does not change in the body of the function.

In[32]:= RegularGraph@n_Integer, opts : OptionsPattern@DD :=

With@8verts = Range@nD<,
Graph@
MapThread@UndirectedEdge, 8verts, RotateLeft@vertsD<D,
opts,
VertexSize Ø 0.002, EdgeStyle Ø ThickDD

Here then is a regular pentagon, displayed as a graph, using a variety of options to stylize the
output.

In[33]:= RegularGraph@5, VertexSize Ø Small,
VertexStyle Ø Red, VertexLabels Ø "Name",
VertexLabelStyle Ø Directive@"Menu", 8DD

Out[33]=

Representing these objects as graphs provides not only styling and labeling options, but also
gives access to functions for operating on and measuring graphs. For example, a quick check
shows that regular graphs are 2-regular, meaning that every vertex has two edges.

In[34]:= VertexDegree@RegularGraph@5DD

Out[34]= 82, 2, 2, 2, 2<

Or you can determine if another graph is isomorphic to a regular graph.

In[35]:= IsomorphicGraphQ@RegularGraph@4D, HypercubeGraph@2DD

Out[35]= True

As an aside, the built-in CycleGraph@nD returns a similar object.

176 Functional programming

In[36]:= CycleGraph@5, VertexLabels Ø "Name"D

Out[36]=

Protein interaction networks
Proteins interact with other proteins in biological processes as varied as DNA replication, signal
transduction, movement of molecules into and between cells, and essentially all processes in
living cells. In fact, signal transduction, a process in which proteins control the signaling into and
out of the cell, is key to the study of diseases including many cancers. Their importance in all
cellular activity has given rise to active work in the visualization of these protein-protein interac-
tions (PPIs). In this section, we will combine some of the functional constructs, pattern matching,
and graph tools to visualize proteins within networks that have a high level of interaction.

We will work with proteins from the worm Caenorhabditis elegans, a heavily studied organism
(Worm Interactome Database). The data, courtesy of Dana-Farber Cancer Institute and Harvard
Medical School, are in the form of a text file. This imports that file from the internet and displays
the first twelve entries.

In[37]:= data = Import@
"http:êêinteractome.dfci.harvard.eduêC_elegansêgraphsê

sequence_edgesêwi2007.txt", "TSV"D;

In[38]:= Take@data, 12D

Out[38]= 88ÒIDA, IDB<, 8AC3.3, F29G6.3<, 8AC3.3, R05F9.10<,
8AC3.3, Y69H2.3<, 8AC3.7, Y40B10A.2<, 8B0001.4, F19B6.1<,
8B0001.7, B0281.5<, 8B0001.7, F37H8.1<,
8B0024.10, C06A1.1<, 8B0024.12, C06E2.1<,
8B0024.14, B0228.1<, 8B0024.14, C05G6.1<<

The data are of the form 8protein1, protein2< indicating an interaction between these two

named proteins. Using the function ToGraph, developed in Exercise 4 of Section 5.2, we turn
these lists into edges, where each edge represents an interaction between two proteins (vertices).

In[39]:= ToGraph@lis : 88_, _< ..<D := Apply@DirectedEdge, lis, 81<D

5.8 Examples and applications 177

In[40]:= ToGraph@lis : 8_, _<D := Apply@DirectedEdge, lisD

In[41]:= ToGraph@Take@data, 12DD

Out[41]= 8ÒIDA � IDB, AC3.3 � F29G6.3, AC3.3 � R05F9.10,
AC3.3 � Y69H2.3, AC3.7 � Y40B10A.2, B0001.4 � F19B6.1,
B0001.7 � B0281.5, B0001.7 � F37H8.1, B0024.10 � C06A1.1,
B0024.12 � C06E2.1, B0024.14 � B0228.1, B0024.14 � C05G6.1<

We need to delete the first entry ("ÒIDA" � "IDB") which is meant as a comment. So we use
ToGraph on Rest@dataD and then visualize the result with Graph.

In[42]:= edgerules = ToGraph@Rest@dataDD;
gr = Graph@edgerulesD

Out[43]=

It is a fairly dense graph showing all the protein interactions, and, as a result, it is a bit difficult to
discern detail. Many of the interactions involve only two proteins as seen in the small compo-
nents on the right and bottom of the above output. Our task in this example is to find the sub-
graph consisting of all those proteins with at least n interactions with other proteins. We will take
n = 12; that is, proteins that have at least 12 interactions with other proteins.

The vertices (the proteins) are strings.

In[44]:= vertices = VertexList@grD;
Take@vertices, 5D êê FullForm

Out[45]//FullForm=

List@"AC3.3", "F29G6.3", "R05F9.10", "Y69H2.3", "AC3.7"D

VertexDegree@gr, vertexD gives the number of edges incident to vertex in graph gr. So in our
protein network, the vertex degree for vertex vi gives the number of interactions between that
protein represented by vi and all other proteins.

In[46]:= VertexDegree@gr, "R05F9.10"D

Out[46]= 86

178 Functional programming

A slightly different syntax for VertexDegree gives the degree for every vertex in the graph. So
from the tally below, vertices with one edge occur 933 times in this network, vertices with two
edges occur 246 times, and so on. There is only one vertex with 86 edges.

In[47]:= SortBy@TallyüVertexDegree@grD, FirstD

Out[47]= 881, 933<, 82, 246<, 83, 107<, 84, 64<, 85, 40<, 86, 21<,
87, 19<, 88, 6<, 89, 10<, 810, 6<, 811, 2<, 812, 11<, 813, 2<,
814, 1<, 815, 2<, 816, 3<, 817, 2<, 818, 2<, 819, 3<,
821, 2<, 823, 1<, 824, 2<, 828, 1<, 830, 1<, 831, 3<,
839, 1<, 844, 1<, 845, 1<, 847, 1<, 849, 1<, 886, 1<<

To extract all those vertices that have a vertex degree greater than 12, use Select with the
appropriate predicate.

In[48]:= Select@VertexList@grD, HVertexDegree@gr, ÒD > 12 &LD

Out[48]= 8R05F9.10, Y69H2.3, Y40B10A.2, DH11.4, K09B11.9, R02F2.5,

ZK1053.5, W05H7.4, C18G1.2, T11B7.1, F52E1.7, F46A9.5,

Y54E2A.3, ZK858.4, C50F4.1, K12C11.2, C06G1.5, Y65B4BR.4,

F32B4.4, ZK849.2, C36C9.1, ZK1055.7, C06A5.9, W09C2.1, F44G3.9,

ZK121.2, M04G12.1, T21G5.5, W10C8.2, F01G10.2, Y55F3C.6<

Or, we thread the inequality over the list of vertex degrees and pick those vertices for which this
inequality is true.

In[49]:= proteins = Pick@VertexList@grD, Thread@VertexDegree@grD > 12DD

Out[49]= 8R05F9.10, Y69H2.3, Y40B10A.2, DH11.4, K09B11.9, R02F2.5,

ZK1053.5, W05H7.4, C18G1.2, T11B7.1, F52E1.7, F46A9.5,

Y54E2A.3, ZK858.4, C50F4.1, K12C11.2, C06G1.5, Y65B4BR.4,

F32B4.4, ZK849.2, C36C9.1, ZK1055.7, C06A5.9, W09C2.1, F44G3.9,

ZK121.2, M04G12.1, T21G5.5, W10C8.2, F01G10.2, Y55F3C.6<

Thread is needed here because Greater (>) is not listable.

In[50]:= 81, 2, 3, 4< > 3

Out[50]= 81, 2, 3, 4< > 3

In[51]:= Attributes@GreaterD

Out[51]= 8Protected<

Note that Thread can thread over two expressions that are not the same structurally, as in our
example here.

In[52]:= Thread@81, 2, 3, 4< > 3D

Out[52]= 8False, False, False, True<

5.8 Examples and applications 179

Now we get all those interactions that involve proteins as defined above.

In[53]:= edges = Cases@EdgeList@grD, Hp1_ � p2_L ê;
MemberQ@proteins, p1D && MemberQ@proteins, p2D, InfinityD;

In[54]:= Take@edges, 12D

Out[54]= 8C06A5.9 � C36C9.1, C06A5.9 � DH11.4, C06A5.9 � F44G3.9,

C06G1.5 � DH11.4, C06G1.5 � F32B4.4, C06G1.5 � K09B11.9,

C06G1.5 � W05H7.4, C06G1.5 � Y54E2A.3, C06G1.5 � ZK121.2,

C06G1.5 � ZK849.2, C36C9.1 � K09B11.9, C36C9.1 � Y54E2A.3<

We delete self-loops (although proteins certainly can interact with themselves).

In[55]:= gr1 = DeleteCases@edges, x_ � x_D;
Take@gr1, 12D

Out[56]= 8C06A5.9 � C36C9.1, C06A5.9 � DH11.4, C06A5.9 � F44G3.9,

C06G1.5 � DH11.4, C06G1.5 � F32B4.4, C06G1.5 � K09B11.9,

C06G1.5 � W05H7.4, C06G1.5 � Y54E2A.3, C06G1.5 � ZK121.2,

C06G1.5 � ZK849.2, C36C9.1 � K09B11.9, C36C9.1 � Y54E2A.3<

Finally, we use Graph and several options to visualize this PPI.

In[57]:= Graph@gr1, VertexStyle Ø Red, VertexSize Ø Large,
VertexLabels Ø "Name", VertexStyle Ø Directive@OrangeD,
GraphLayout Ø "CircularEmbedding",
EdgeShapeFunction Ø "CarvedArrow"D

Out[57]=

The exercises include an extension of this PPI visualization in which you are asked to color the
vertices according to that protein’s biological processes.

Palettes for project files
In this next example we will use the functional constructs developed in this chapter to create a
palette of hyperlinks to files in a given directory. This is particularly useful if you are working on a
project consisting of numerous files, all of which live in the same location.

Let us start by getting a list of files from a project directory. We will use the notebook files
("*.nb") from the directory PwM. You could choose any directory containing your project

180 Functional programming

notebooks. In this case we will only work with the first nine files in this directory. The palette will
consist of a column of buttons, one for each file.

In[58]:= dir = FileNameJoin@8$BaseDirectory, "Applications", "PwM"<D;
files = Take@FileNames@"*.nb", dirD, 9D

Out[59]= 8êLibraryêMathematicaêApplicationsêPwMê01Introduction.nb,
êLibraryêMathematicaêApplicationsêPwMê02Language.nb,
êLibraryêMathematicaêApplicationsêPwMê03Lists.nb,
êLibraryêMathematicaêApplicationsêPwMê04PatternsAndRules.nb,
êLibraryêMathematicaêApplicationsêPwMê05Functions.nb,
êLibraryêMathematicaêApplicationsêPwMê06Procedural.nb,
êLibraryêMathematicaêApplicationsêPwMê07Recursion.nb,
êLibraryêMathematicaêApplicationsêPwMê08Numerics.nb,
êLibraryêMathematicaêApplicationsêPwMê09Strings.nb<

Hyperlink has a two-argument form: the first argument is the label, the second argument is the
target file for that label.

In[60]:= ? Hyperlink

Hyperlink@uriD represents a hyperlink that jumps to the specified URI when clicked.

Hyperlink@label, uriD represents a hyperlink to be displayed as label. �à

So we will need to create a list of labels corresponding to our list of files. As a label for each
button, we will use the basic file name, as given by FileBaseName.

In[61]:= labels = Map@FileBaseName, filesD

Out[61]= 801Introduction, 02Language, 03Lists, 04PatternsAndRules,

05Functions, 06Procedural, 07Recursion, 08Numerics, 09Strings<

Now, we thread Hyperlink over the labels and files. Note the use of a pure function to slot in
each label and file in the correct location.

In[62]:= MapThread@Hyperlink@Ò1, Ò2D &, 8labels, files<D

Out[62]= 901Introduction, 02Language, 03Lists, 04PatternsAndRules,

05Functions, 06Procedural, 07Recursion, 08Numerics, 09Strings=

Although it is not obvious in print, the above list consists of hyperlinks to each of the files.
Clicking any of these links will open the corresponding file.

Now let us create a palette of these links. We wrap the list of links in Column to give a vertical
list of buttons.

In[63]:= CreatePalette@
Column@MapThread@Hyperlink@Ò1, Ò2D &, 8labels, files<DDD;

5.8 Examples and applications 181

Here is a screenshot of this palette.

With a little more work, we can add some styles to the links as well as options to Hyperlink,
Column, and CreatePalette.

In[64]:= linkStyles = 8FontSize Ø 14, FontColor Ø White<;
linkOpts = 8ImageSize Ø 8Automatic, 16<<;
colOpts = 8Background Ø DarkerüGray, Dividers Ø All<;
palOpts = 8WindowTitle Ø "File Palette",

WindowElements Ø "MagnificationPopUp"<;

In[68]:= CreatePalette@Column@
MapThread@Hyperlink@Style@Ò1, linkStylesD, Ò2, linkOptsD &,
8labels, files<D, colOptsD, palOptsD;

Operating on arrays
Up to this point, many of the examples we have worked through resulted in short programs,
either what are often called “one-liners” or simply short, self-contained programs. One of the
advantages of such an approach is that everything you might need to run the program is con-
tained in the body of your function. Although it may seem convenient to put all auxiliary defini-

182 Functional programming

tions into the body of a function, there are several good reasons not to do so. One large chunk of
code with many definitions embedded is often difficult to debug. Running the program may fail
with several warning or error messages displayed and no clear indication at which line in your
program the problem lies. The same holds for a program that returns an incorrect result. Another
issue has to do with efficiency. If your program takes longer than you think it should to run, how
do you locate the bottleneck?

Modern programming design uses a modular concept to break up computational or program-
matic tasks into small separate chunks and then put the pieces together in one program in such a
way that you can isolate each part and diagnose errors or inefficient code more readily. Although
we have been trying to adhere to this approach implicitly up to this point, in this section we will
explicitly look at how a modular approach is implemented in Mathematica, using a matrix-process-
ing example: replacing “bad” entries in a matrix with the column mean.

In working with tabular data collected by an instrument or by some other means, you occasion-
ally find nonnumeric values (strings, for example) in the matrix where either the instrument has
failed to collect a datum point for some reason or the value is “out of range.” If an analysis of the
matrix depends upon numeric values, what should be used to replace the nonnumeric values?
One solution is to replace them with the column mean; that is, take the column in which the
nonnumeric value occurs, compute the column mean using only the numeric values, and then
replace the nonnumeric value with this mean.

To prototype, we will use a small matrix of integers, making it easier to check our work along
the way.

In[69]:= mat =

44 72 6 "NAN"

"NAN" 46 28 75

19 10 40 2

99 98 "NAN" 47

;

First, extract and work on the first column and then later extend this to all the other columns.

In[70]:= col1 = mat@@All, 1DD;
MatrixForm@col1D

Out[71]//MatrixForm=

44

NAN
19

99

We need to extract just the numeric values. Cases, with the appropriate pattern, will do that.
Several approaches using different patterns could be used.

5.8 Examples and applications 183

In[72]:= Cases@col1, _?NumberQD

Out[72]= 844, 19, 99<

In[73]:= Cases@col1, Except@_StringDD

Out[73]= 844, 19, 99<

Then compute the mean of these numeric values.

In[74]:= Mean@Cases@col1, _?NumberQDD

Out[74]= 54

Replace the string "NAN" with the mean.

In[75]:= col1 ê. "NAN" Ø Mean@Cases@col1, _?NumberQDD êê MatrixForm

Out[75]//MatrixForm=

44

54

19

99

This operation needs to be performed on each column so we write a function that will be mapped
across the columns of a matrix.

In[76]:= colMean@col_D := col ê. "NAN" ß Mean@Cases@col, _?NumberQDD

In[77]:= Map@colMean, Transpose@matDD

Out[77]= :844, 54, 19, 99<, 872, 46, 10, 98<,

:6, 28, 40,
74

3
>, :

124

3
, 75, 2, 47>>

Since we operated on the columns, the above array is a list of the column vectors. We need to
transpose back.

In[78]:= MatrixForm@Transpose@%DD
Out[78]//MatrixForm=

44 72 6 124

3

54 46 28 75

19 10 40 2

99 98 74

3
47

Finally, let us put these pieces together:

In[79]:= ReplaceElement@mat_D :=

Transpose@Map@colMean, Transpose@matDDD

184 Functional programming

In[80]:= ReplaceElement@matD êê MatrixForm
Out[80]//MatrixForm=

44 72 6 124

3

54 46 28 75

19 10 40 2

99 98 74

3
47

and try it out on a larger matrix of approximate numbers.

In[81]:= mat =

0.737 "NAN" -0.2648 -0.5882 0.49

0.1984 -0.3382 -0.5793 0.9473 0.8809

-0.5538 0.5038 -0.9728 0.4061 "NAN"

-0.0839 0.8139 "NAN" -0.7658 0.5081

0.9343 0.6257 -0.3668 0.0851 -0.8783

;

In[82]:= ReplaceElement@matD êê MatrixForm
Out[82]//MatrixForm=

0.737 0.4013 -0.2648 -0.5882 0.49

0.1984 -0.3382 -0.5793 0.9473 0.8809

-0.5538 0.5038 -0.9728 0.4061 0.250175

-0.0839 0.8139 -0.545925 -0.7658 0.5081

0.9343 0.6257 -0.3668 0.0851 -0.8783

Perform a quick, manual check on the second column.

In[83]:= Mean@8-0.3382, 0.5038, 0.8139, 0.6257<D

Out[83]= 0.4013

With just a few small adjustments, ReplaceElement can work with arbitrary strings, not
just "NAN" as above. Instead of the “hard-coded” string "NAN" in columnMean, we introduce a
second argument str and use that wherever "NAN" appeared in the previous version.

In[84]:= colMean@col_, str_StringD :=

col ê. str ß Mean@Cases@col, _?NumberQDD

In[85]:= ReplaceElement@mat_, str_StringD :=

Transpose@Map@colMean@Ò, strD &, Transpose@matDDD

Here you can see the real advantage of using modular code. Rather than rewrite the entire pro-
gram, we make one change to colMean, writing a new rule to accommodate an arbitrary string,
and then create a second rule for ReplaceElement with a second argument to specify the
string, and replacing colMean with the pure function colMean@Ò, strD &.

Let us try out the new code.

5.8 Examples and applications 185

In[86]:= mat2 = 88-0.4444, "NêA", 0.3319, 0.4242, 0.<,
8-0.5088, -0.6955, 0.8398, 0.4287, -0.9319<,
8"NêA", 0.8287, 0.5286, 0.2591, -0.6978<,
80.6499, 0.4035, -0.099, 0.6052, 0.5332<,
80.2575, -0.0589, -0.4938, "NêA", -0.5924<<;

MatrixForm@mat2D
Out[87]//MatrixForm=

-0.4444 NêA 0.3319 0.4242 0.

-0.5088 -0.6955 0.8398 0.4287 -0.9319

NêA 0.8287 0.5286 0.2591 -0.6978

0.6499 0.4035 -0.099 0.6052 0.5332

0.2575 -0.0589 -0.4938 NêA -0.5924

In[88]:= ReplaceElement@mat2, "NêA"D êê MatrixForm
Out[88]//MatrixForm=

-0.4444 0.11945 0.3319 0.4242 0.

-0.5088 -0.6955 0.8398 0.4287 -0.9319

-0.01145 0.8287 0.5286 0.2591 -0.6978

0.6499 0.4035 -0.099 0.6052 0.5332

0.2575 -0.0589 -0.4938 0.4293 -0.5924

Of course, we should check that this code is reasonably efficient. This creates a random matrix,
then inserts strings here and there, and finally runs ReplaceElement.

In[89]:= With@8size = 1000<,
mat = RandomReal@1, 8size, size<D;
rmat = ReplacePart@mat,

RandomInteger@81, size<, 8size, 2<D ß "NAN"D
D;

ReplaceElement@rmat, "NAN"D; êê Timing

Out[90]= 80.877081, Null<

That is not too bad – processing a 1000ä1000 matrix in under a second. That is on the same
order of magnitude as some of the highly optimized built-in linear algebra functions.

In[91]:= mat = RandomReal@1, 81000, 1000<D;
8Timing@Inverse@matD;D, Timing@Det@matD;D<

Out[92]= 880.403233, Null<, 80.140302, Null<<

In the exercises you are asked to go a bit further and rewrite ReplaceElement to accept an
arbitrary list of strings that should be used as the nonnumeric values to be replaced with the
column means.

186 Functional programming

Exercises

1. Write a version of the function that computes Hamming distance by using Count to find the
number of nonidentical pairs of corresponding numbers in two binary signals.

2. Write an implementation of Hamming distance using the Total function and then compare
running times with the other versions discussed in this chapter.

3. Extend the survivor function developed in this section to a function of two arguments, so that
survivor@n, mD returns the survivor starting from a list of n people and executing every mth
person.

4. Create a function medianAlisE that computes the median of a one-dimensional list. Create one rule

for the case when lis has an odd number of elements and another rule for the case when the length
of lis is even. In the latter case, the median is given by the average of the middle two elements of lis.

5. One of the best ways to learn how to write programs is to practice reading code. We list below a
number of one-liner function definitions along with a very brief explanation of what these user-
defined functions do and a typical input and output. Deconstruct these programs to see what they
do and then reconstruct them as compound functions without any pure functions.

a. Tally the frequencies with which distinct elements appear in a list.

In[1]:= tally@lis_D := Map@H8Ò, Count@lis, ÒD<L &, Union@lisDD

In[2]:= tally@8a, a, b, b, b, a, c, c<D

Out[2]= 88a, 3<, 8b, 3<, 8c, 2<<

In[3]:= Tally@8a, a, b, b, b, a, c, c<D

Out[3]= 88a, 3<, 8b, 3<, 8c, 2<<

b. Divide up a list such that the length of each part is given by the second argument.

In[4]:= split1@lis_, parts_D :=

HInner@Take@lis, 8Ò1, Ò2<D &, Drop@Ò1, -1D + 1, Rest@Ò1D, ListD &L@
FoldList@Plus, 0, partsDD

In[5]:= split1@Range@10D, 82, 5, 0, 3<D

Out[5]= 881, 2<, 83, 4, 5, 6, 7<, 8<, 88, 9, 10<<

This is the same as the previous program, done in a different way.

In[6]:= split2@lis_, parts_D :=

Map@Take@lis, Ò1 + 81, 0<D &, Partition@FoldList@Plus, 0, partsD, 2, 1DD
6. In Section 4.2 we created a function CountChangeAlisE that took a list of coins and, using transfor-

mation rules, returned the monetary value of that list of coins. Rewrite CountChange to use a
purely functional approach. Consider using Dot, or Inner, or Tally.

7. Write a function that generates a one-dimensional off-lattice, random walk, that is, a walk with step
positions any real number between -1 and 1. Then do the same for two- and three-dimensional off-
lattice walks.

5.8 Examples and applications 187

8. Extend the range of ReplaceElement developed in this section to accept a list of strings consid-
ered as nonnumeric matrix entries, each of which should be replaced by a column mean.

9. Extend the visualization of PPI networks from this section by coloring vertices according to the
biological process in which they are involved. The built-in ProteinData contains this informa-
tion, for example:

In[7]:= ProteinData@"KLKB1", "BiologicalProcesses"D

Out[7]= 8BloodCoagulation, Fibrinolysis,

InflammatoryResponse, Proteolysis<

10. Create a function TruthTable@expr, varsD that takes a logical expression such as A�B and
outputs a truth table similar to those in Section 2.3. You can create a list of truth values using
Tuples. For example,

In[8]:= Tuples@8True, False<, 2D

Out[8]= 88True, True<, 8True, False<, 8False, True<, 8False, False<<

You will also find it helpful to consider threading rules over the tuples using MapThread or
Thread.

11. Given a list of expressions, lis, create a function NearToAlis, elem, nE that returns all elements of

lis that are exactly n positions away from elem. For example:

In[9]:= chars = CharacterRange@"a", "z"D

Out[9]= 8a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[10]:= NearTo@chars, "q", 3D

Out[10]= 88n<, 8t<<

Write a second rule, NearToAlis, elem, 8n<E that returns all elements in lis that are within n

positions of elem.

In[11]:= NearTo@chars, "q", 84<D

Out[11]= 88m, n, o, p, q, r, s, t, u<<

Finally, create you own distance function (DistanceFunction) and use it with the built-in
Nearest to do the same computation.

Two useful functions for these tasks are Position and Extract . Extract@expr, posD returns

elements from expr whose positions pos are given by Position.

12. A Smith number is a composite number such that the sum of its digits is equal to the sum of the digits
of its prime factors. For example, the prime factorization of 852 is 22 ÿ31 ÿ71

1, and so the sum of the
digits of its prime factors is 2 + 2 + 3 + 7 + 1 = 15 which is equal to the sum of its digits,
8 + 5 + 2 = 15. Write a program to find all Smith numbers less than 10 000.

188 Functional programming

6

Procedural programming
Loops and iteration · Do loops and For loops · Random permutations · While loops · NestWhile
and NestWhileList · Flow control · Conditional functions · Piecewise-defined functions · Which

and Switch · Argument checking · Classifying points · Sieve of Eratosthenes · Sorting algorithms

Conventional programming languages like C and Fortran embody a style of programming that
has roots in the early days of computing when resource constraints forced programmers to write
their code in a step-by-step manner. These procedures, as they came to be known, typically
involved certain basic elements: looping over an array, conditional statements that controlled the
flow of execution, logical constructs to build up tests, and functions to jump from one place in a
program to another. Although newer languages have introduced many new programming
paradigms, procedural programming continues to be used and remains an appropriate style for
certain kinds of problems.

A procedure is a series of instructions that are evaluated in a definite order. The following
program is a procedure.

In[1]:= mat = 88a, b, c<, 8d, e, f<, 8g, h, k<<;

In[2]:= newmat = mat;

In[3]:= Do@newmat@@i, jDD = mat@@j, iDD,
8i, Length@matD<, 8j, Length@matD<D

In[4]:= newmat

Out[4]= 88a, d, g<, 8b, e, h<, 8c, f, k<<

In[5]:= MatrixForm@%D
Out[5]//MatrixForm=

a d g

b e h

c f k

This procedure is a compound expression consisting of a sequence of four expressions: the first
assigns the symbolic 3ä3 matrix to the symbol mat; the second is also an assignment, copying
the matrix to another symbol, newmat; the third expression loops through the matrix, interchang-
ing columns and rows of the original and putting them into the new matrix – essentially perform-
ing a transpose operation; the final expression simply outputs the new matrix.

Procedural programs also typically involve some flow control. What this means is that, depend-
ing upon a certain condition, different steps in the procedure will be followed. Perhaps the
simplest example of this is an If statement.

In[6]:= f@x_D := IfA20 § x § 30, x2,

Print@"The number ", x, " is outside the range."DE

In[7]:= f@25D

Out[7]= 625

In[8]:= f@-67D

The number -67 is outside the range.

The value of the first argument of the If function determines the direction of the rest of the
evaluation. This is a control structure. Procedural programs typically contain a series of expres-
sions to evaluate in some order and functions to control the flow of execution.

In this chapter we will explore these topics in addition to conditional definitions which are
another form of flow control. All these features will greatly expand what you can do with Mathe-
matica and many applications of these techniques will be explored in later chapters on recursion
and numerics.

6.1 Loops and iteration
Newton’s method
One of the most famous of all numerical algorithms is Newton’s method for finding the roots of
a function. Even though Mathematica includes a built-in function, FindRoot, that implements
this method, this is a classical use of iteration and so central to numerical analysis that it is well
worth your time learning how to implement it.

190 Procedural programming

Throughout this section we will work with the function x2 - 2, whose root is, of course, the
square root of 2. Here is the computation using the built-in FindRoot. The number 1 in the list
8x, 1< is the initial guess of the root.

In[1]:= FindRootAx2 - 2 ã 0, 8x, 1<E

Out[1]= 8x Ø 1.41421<

So why should you learn how to program Newton’s method? The underlying algorithm is the
basis of many more advanced root-finding techniques in numerical analysis. But also, with many
numerical problems, the built-in operations are designed to work for the broadest possible set of
situations, and might therefore have occasional trouble with certain exceptional cases. An under-
standing of these issues can help in such situations. An example is the following piecewise
function.

In[2]:= f@x_D := PiecewiseA980, x ã 0<, 9x + x2 Sin@2 ê xD, x � 0==E;

Plot@f@xD, 8x, -.2, .2<D

Out[3]=
-0.2 -0.1 0.1 0.2

-0.15

-0.10

-0.05

0.05

0.10

0.15

In[4]:= FindRoot@f@xD ã 0, 8x, 1<D
FindRoot::lstol :

The line search decreased the step size to within tolerance specified by AccuracyGoal
and PrecisionGoal but was unable to find a sufficient decrease in
the merit function. You may need more than MachinePrecision
digits of working precision to meet these tolerances. à

Out[4]= 9x Ø 1.81096 � 10-9=

This particular function is discontinuous at the root with its derivative changing sign as x gets
closer and closer to zero. Although this is a somewhat pathological example, you can still better
approximate this function’s root by using some options to FindRoot to help speed convergence
and increase the precision.

6.1 Loops and iteration 191

In[5]:= FindRoot@f@xD ã 0, 8x, 1<,
WorkingPrecision Ø 90, MaxIterations Ø 200D

Out[5]= 9x Ø

7.0064923216240853546186479164495806564013097093825788587Ö

8534141944895541342930300743319094 � 10-46=

Although finding roots of functions such as this are the exception rather than the norm, it is
instructive to program your own root-finding functions and learn about algorithm implementa-
tion, numerical issues, and, in the process, the structure of iterative programming.

Do loops and For loops
Suppose you are given a function f and can compute its derivative, f £. Then Newton’s algorithm
works as follows:

Ê give an initial estimate of the root, say x0;

Ê keep generating better estimates, x1, x2, …, using the following rule until you are done (we
will discuss this later):

xi+1 = xi -
f HxiL
f £HxiL

.

The method is illustrated in Figure 6.1. The basic idea, as learned in a first-year calculus course, is
to choose an initial estimate x0, draw the tangent to the function at f Hx0L, and set x1 to the point
where that tangent line intersects the x-axis. Under favorable circumstances, the estimates get
closer and closer to the root. “Unfavorable conditions” include a poor choice for the initial
estimate and the function not being continuously differentiable in a neighborhood of the root.

Figure 6.1. Illustration of Newton’s method.

f Hx0L

x0x1

We will discuss in a moment when to stop the iteration, but first let us look at an example. For
the function f HxL = x2 - 2, the derivative is f £HxL = 2 x. This specific case is shown in Figure 6.2,
with 2 itself as the initial estimate. Let us see what happens after five iterations of this procedure.

192 Procedural programming

In[6]:= f@x_D := x2 - 2

In[7]:= x0 = 1;

In[8]:= x1 = NBx0 -
f@x0D

f£@x0D
F

Out[8]= 1.5

In[9]:= x2 = NBx1 -
f@x1D

f£@x1D
F

Out[9]= 1.41667

In[10]:= x3 = NBx2 -
f@x2D

f£@x2D
F

Out[10]= 1.41422

In[11]:= x4 = NBx3 -
f@x3D

f£@x3D
F

Out[11]= 1.41421

In[12]:= x5 = NBx4 -
f@x4D

f£@x4D
F

Out[12]= 1.41421

As you can see, these values are getting closer and closer to the real square root of 2, which is
approximately 1.4142135.

Figure 6.2. Newton’s method for f HxL = x2 - 2.

f Hx0L

x0=2x1x2

We need to discuss how to decide when we are confident that the answer we have computed is
accurate enough. First, though, note one thing: wherever we decide to stop, say at the fifth itera-
tion, all the previous values we computed are of no interest. So we could have avoided introduc-
ing those new names by instead just writing the following:

6.1 Loops and iteration 193

In[13]:= a = 2;

In[14]:= a = NBa -
f@aD

f£@aD
F

Out[14]= 1.5

In[15]:= a = NBa -
f@aD

f£@aD
F

Out[15]= 1.41667

In[16]:= a = NBa -
f@aD

f£@aD
F

Out[16]= 1.41422

In[17]:= a = NBa -
f@aD

f£@aD
F

Out[17]= 1.41421

In[18]:= a = NBa -
f@aD

f£@aD
F

Out[18]= 1.41421

After each iteration, the symbol a is assigned the new value computed, thus overwriting the old
values of a.

To return to the question of when to terminate the computation, one simple answer is: repeat
it ten times.

In[19]:= Do@a = N@a - f@aD ê f'@aDD, 810<D

In general, Do@expr, 8n<D, evaluates expr n times. So, in this case, we can initialize a and perform
the ten evaluations as follows:

In[20]:= a = 1;

DoBa = NBa -
f@aD

f£@aD
F, 810<F

In[22]:= a

Out[22]= 1.41421

The Do loop itself yields no value (or rather, it yields the special value Null , which is a symbol
Mathematica uses when there is no result from an evaluation; nothing is printed). But, more
importantly, at the end of the iteration the value assigned to a is very close to the square root of 2.

194 Procedural programming

The arguments of the Do function are the same as those of Table (see Section 3.2 and also
Exercise 2 at the end of this section).

DoAexpr, 9i, imin, imax, di=E

This loop repeatedly evaluates expr with the variable i taking the values imin, imin + di, and so on, as
long as the value of imax is not exceeded. The loop is repeated a total of eHimax - iminL ë diu times,

where dexprt gives the floor of expr (more precisely, the loop is actually repeated a total of
max(1,eHimax - iminL ë diu) times). Furthermore, if di is omitted, it is assumed to be one; if only i

and imax are given, both imin and di are assumed to be one.

To print each approximation and label it with a number, we could use a compound expression
inside the body of the Do loop, in this case, adding a Print statement.

In[23]:= a = 1;
Do@a = N@a - f@aD ê f'@aDD;
Print@"iteration ", i, ": ", aD, 8i, 1, 5<D

iteration 1: 1.5

iteration 2: 1.41667

iteration 3: 1.41422

iteration 4: 1.41421

iteration 5: 1.41421

Another commonly used control structure in procedural code is the For loop. Its function is
similar to that of a Do loop, but instead of an iterator list, you explicitly specify a starting value
and increment for the iterator. The For function in Mathematica has the following syntax:

ForAstart, test, increment, bodyE

Do loops and For loops are quite similar and in fact you can often cast a problem using either
construction. For example, here is a For implementation of the Do loop given above for New-
ton’s method.

In[25]:= ForBa = 1; i = 0, i < 10, i++, a = NBa -
f@aD

f£@aD
FF

In[26]:= a

Out[26]= 1.41421

In this example, the start conditions are a = 1 and i = 0; the test is i < 10; increment is i++
which is shorthand for increasing the value of i by one; the body of the function is the same as
for the Do loop, namely, Newton’s formula.

6.1 Loops and iteration 195

We will return to this problem repeatedly throughout this book: in some of the exercises later
in this chapter we will explore some efficiencies that can be gained from a more careful look at
the evaluations done within the iterations; we will use a different loop structure, While, later in
this section; and in Chapter 8 we will explore mechanisms for gaining finer control over the
precision and accuracy of the Newton iteration.

Example: random permutations
Let us look at another example of a Do loop. We will create a function that takes a list as an
argument and generates a random permutation of its elements.

To build this function up step-by-step, start with a small list of ten elements.

In[27]:= lis = Range@10D

Out[27]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

The idea is to choose a position within the list at random and remove the element in that position
and put it into a new list lis2.

In[28]:= rand := RandomInteger@81, Length@lisD<D

In[29]:= x = Part@lis, randD

Out[29]= 2

In[30]:= lis2 = 8<;
lis2 = Append@lis2, xD

Out[31]= 82<

We then repeat the above process on the remaining elements of the list. Note that lis is assigned
the value of this new list, thus overwriting the previous value.

In[32]:= lis = Complement@lis, 8x<D

Out[32]= 81, 3, 4, 5, 6, 7, 8, 9, 10<

In[33]:= x = lisPrandT
lis2 = Append@lis2, xD
lis = Complement@lis, 8x<D

Out[33]= 6

Out[34]= 82, 6<

Out[35]= 81, 3, 4, 5, 7, 8, 9, 10<

In this example we know explicitly how many iterations to perform in our Do loop: n iterations,
where n is the length of the list, lis.

Before proceeding, we should clear some symbols.

196 Procedural programming

In[36]:= Clear@lis, lis2, x, randD;

Now we just put the pieces of the previous computations together in one input.

In[37]:= lis = Range@10D;
lis2 = 8<;
Do@
x = Part@lis, RandomInteger@81, Length@lisD<DD;
lis2 = Append@lis2, xD;
lis = Complement@lis, 8x<D,
8i, 1, 10<D

When we are done, the result is left in the new list lis2.

In[40]:= lis2

Out[40]= 82, 6, 8, 4, 3, 10, 9, 7, 1, 5<

Here then is our function randomPermutation that takes a list as an argument and generates a
random permutation of that list’s elements.

In[41]:= randomPermutation@arg_ListD :=

Module@8lis = arg, x, lis2 = 8<<,
Do@
x = Part@lis, RandomInteger@81, Length@lisD<DD;
lis2 = Append@lis2, xD;
lis = Complement@lis, 8x<D,
8i, 1, Length@lisD<D;

lis2D

Here is a permutation of the list consisting of the first 20 integers.

In[42]:= randomPermutation@Range@20DD

Out[42]= 88, 14, 7, 10, 16, 13, 11, 6,
17, 12, 2, 19, 18, 5, 9, 15, 4, 1, 20, 3<

And here is a random permutation of the lowercase letters of the English alphabet.

In[43]:= alphabet = CharacterRange@"a", "z"D

Out[43]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[44]:= randomPermutation@alphabetD

Out[44]= 8n, k, b, v, d, r, o, y, x, j, h,
f, c, t, p, q, i, e, u, w, s, g, a, z, m, l<

This functionality is built into Mathematica via the RandomSample function.

6.1 Loops and iteration 197

In[45]:= RandomSample@CharacterRange@"a", "z"DD

Out[45]= 8x, b, e, a, p, l, o, r, m, t, y,
s, u, w, f, q, g, z, j, h, i, n, d, v, c, k<

Nonetheless, it is useful to program these functions yourself to give you a better understanding
(and appreciation) of the underlying algorithms as well as some practical facility at using the
programming constructs such as the Do loop in this example.

In[46]:= Clear@x, lis, lis2D

While loops
Let us return to Newton’s method for finding roots and see how we can use a different control
structure to improve the procedure by fine-tuning the number of iterations that are performed.
In the previous section on Do loops, we explicitly stopped the iteration after ten times through
the loop. Ten times is okay for f HxL = x2 - 2, but not always. Consider the function x - sinHxL.

In[47]:= g@x_D := x - Sin@xD

It has a root at 0.

In[48]:= g@0D

Out[48]= 0

However, ten iterations of Newton’s algorithm does not get very close to it.

In[49]:= xi = 1.0;

DoBxi = NBxi -
g@xiD

g£@xiD
F, 810<F

In[51]:= xi

Out[51]= 0.0168228

Twenty-five iterations does a bit better.

In[52]:= xi = 1.0;

DoBxi = NBxi -
g@xiD

g£@xiD
F, 825<F

In[54]:= xi

Out[54]= 0.0000384172

In practice, no fixed number of iterations is going to do the trick for all functions. We need to
iterate repeatedly until our estimate is close enough to stop. When is that? When f HxiL is very
close to zero. So, choose e to be a very small number, and iterate until f HxiL < e.

But how can we write a loop that will test some condition and stop when the condition is no

198 Procedural programming

longer met? The looping construct Do iterates a fixed number of times. We need a new kind of
iterative function. It is While, and it has the following form.

While@test, exprD

The first argument is the test or condition, the second is the body, expr. It works like this:
evaluate the test; if it is true, then evaluate the body and then the test again. If it is true, then again
evaluate the body and the test. Continue this way until the test evaluates to False. Note that the
body may not be evaluated at all (if the test is false the first time), or it may be evaluated once, or a
thousand times.

This is just what we want: if the estimate is not yet close enough, compute a new estimate and
try again. Newton’s method insures, under suitable conditions, that the iteration will converge to
the root. Those conditions are that the initial guess is near the root and not near a local minimum
or maximum, and also that the function is continuously differentiable near the root.

In[55]:= f@x_D := x2 - 2

In[56]:= e = .0001;
xi = 50;

WhileBAbs@f@xiDD > e,

xi = NBxi -
f@xiD

f£@xiD
FF

In[59]:= xi

Out[59]= 1.41422

To finish, let us put all these pieces into a reusable function. And instead of simply returning
the value of xi, we will return a rule of the form 9x Ø value= similar to the built-in functions such

as Solve, DSolve, FindRoot, and others.

In[60]:= findRoot@fun_Symbol, 8var_, init_<, e_D := ModuleB8xi = init<,

WhileBAbs@fun@xiDD > e,

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

In[61]:= findRoot@f, 8x, 2<, .0001D

Out[61]= 8x Ø 1.41422<

As written, this function only accepts a symbol such as f for its first argument. Users might want
to provide an expression like x2 - 2, or even an equation such as x2 - 2 ã 0. The best way to

6.1 Loops and iteration 199

accommodate these different kinds of arguments is to overload findRoot by giving additional
rules that cover these cases. In both of the rules below we are setting up a local variable, fun,
using a pure function. In the first case, the value on the right-hand side of the equation is sub-
tracted from the expression on the left-hand side; in the second rule, we are just passing the
expression to the pure function directly and then using that in the body of the function.

In[62]:= findRoot@expr_ ã val_, 8var_, init_<, e_D :=

ModuleB8xi = init, fun = Function@fvar, expr - valD<,

WhileBAbs@fun@xiDD > e,

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

In[63]:= findRoot@expr_, 8var_, init_<, e_D :=

ModuleB8xi = init, fun = Function@fvar, exprD<,

WhileBAbs@fun@xiDD > e,

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

Let us see how these additional rules work for various kinds of expressions that could be used to
represent this problem.

In[64]:= findRoot@f, 8x, 2.0<, 0.0001D

Out[64]= 8x Ø 1.41422<

In[65]:= findRoot@x^2 - 2, 8x, 2.0<, 0.0001D

Out[65]= 8x Ø 1.41422<

In[66]:= findRoot@x^2 - 2 ã 0, 8x, 2.0<, 0.0001D

Out[66]= 8x Ø 1.41422<

In[67]:= findRoot@f@xD ã 0, 8x, 2.0<, 0.0001D

Out[67]= 8x Ø 1.41422<

Let us work with this example a little more. Suppose you would like to know how many
iterations were needed to find the answer. Built-in numerics functions and many visualization
functions use the option EvaluationMonitor to keep track of and display information

200 Procedural programming

derived from the numerical operations these functions are performing internally. For example,
EvaluationMonitor is used here first to display intermediate values of x and, in the second
example, to count and display the number of iterations performed.

In[68]:= FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß Print@xDD

1.

1.5

1.41667

1.41422

1.41421

1.41421

Out[68]= 8x Ø 1.41421<

In[69]:= Block@8count = 0<,
8FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß count++D,
StringForm@"Number of iterations Ø `1`", countD<D

Out[69]= 88x Ø 1.41421<, Number of iterations Ø 6<

We can mirror this functionality in our findRoot function in several different ways. One
possibility is to insert a Print expression to show the value of xi each time through the loop.

In[70]:= findRoot@fun_Symbol, 8var_, init_<, e_D := ModuleB8xi = init<,

WhileBAbs@fun@xiDD > e,

Print@"x = ", xiD;

xi = NBxi -
fun@xiD

fun£@xiD
FF;

8var Ø xi<F

In[71]:= findRoot@f, 8x, 2.0<, 0.0001D

x = 2.

x = 1.5

x = 1.41667

Out[71]= 8x Ø 1.41422<

Counting the lines shows that the function converged after three iterations (we were seeing the
value of xi at the beginning of each execution of the body). Alternatively, insert a counter that
keeps track of the number of iterations and return that as part of the answer.

6.1 Loops and iteration 201

In[72]:= findRoot@fun_Symbol, 8var_, init_<, e_D :=

ModuleB8xi = init, count = 0<,

WhileBAbs@fun@xiDD > e,

count = count + 1;

xi = NBxi -
fun@xiD

fun£@xiD
FF;

88var Ø xi<,

StringForm@"Number of iterations Ø `1`", countD<F

In[73]:= findRoot@f, 8x, 2<, 0.0001D

Out[73]= 88x Ø 1.41422<, Number of iterations Ø 3<

Here is another question: in all these versions of findRoot, fun@xiD is computed two times
at each iteration, once in the condition and once in the body. In some circumstances, calls to
functions can be very time consuming, and should be minimized. Can we set things up so that
fun@xiD is only computed once in each iteration?

The solution to this is to create a new local variable, funxi, which always contains the value of
fun@xiD for the current value of xi. We can ensure that it does so by recomputing it whenever
xi is reassigned.

In[74]:= Clear@findRootD

In[75]:= findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD<,

WhileBAbs@funxiD > e,

xi = NBxi -
funxi

fun£@xiD
F;

funxi = fun@xiDF;

8var Ø xi<F

In[76]:= findRoot@f, 8x, 2.0<, 0.0001D

Out[76]= 8x Ø 1.41422<

In all our examples, we used Module to introduce a local variable to which we assigned values
in the body of the While loop. We did this to avoid a common error in the use of iteration:
attempting to assign a value to a function’s argument.

202 Procedural programming

For example, the following version of findRoot does not work. (Wrapping the input in
TimeConstrained@…, 2D restricts the computation to two seconds regardless of the
outcome.)

In[77]:= Clear@findRootD

In[78]:= findRoot@fun_, x_, e_D :=

WhileBAbs@fun@xDD > e,

x = NBx -
fun@xD

fun£@xD
FF;

x

In[79]:= TimeConstrained@
findRoot@Sin, 0.1, .01D,
2D

Set::setraw : Cannot assign to raw object 0.1`. à

General::stop : Further output of Set::setraw will be suppressed during this calculation. à

Out[79]= $Aborted

What happened can be seen from the trace, of which we have only shown some of the output.

In[80]:= TimeConstrained@
TracePrint@findRoot@Sin, 0.1, .01D, findRootD,
2D

findRoot

WhileBAbs@Sin@0.1DD > 0.01, 0.1 = NB0.1 -
Sin@0.1D

Sin£@0.1D
FF; 0.1

Set::setraw : Cannot assign to raw object 0.1`. à

General::stop : Further output of Set::setraw will be suppressed during this calculation. à

Out[80]= $Aborted

The symbol x in the body of findRoot is replaced by the argument 0.1, leaving an expression
of the form 0.1 = something, which is not possible. It is, of course, bad programming practice and
leads to wrong results to call a function and find, when it is done, that your global variables have
changed values. There is a way around this, using the HoldFirst attribute, but introducing
local variables is a bit cleaner and a more direct approach.

6.1 Loops and iteration 203

NestWhile and NestWhileList
Let us look again at the last version of the findRoot function we just created.

In[81]:= findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD<,

WhileBAbs@funxiD > e,

xi = NBxi -
funxi

fun'@xiD
F;

funxi = fun@xiDF;

8var Ø xi<F

The While loop evaluates the body of this function (the two assignments, one to xi and the
other to funxi) until the test fails. There is another function we could use to simplify this calcula-
tion – it is NestWhile.

NestWhileA f, init, testE

This function iterates f with initial value init, while test continues to be true.
Let us rewrite findRoot using NestWhile. The first argument is the function we are iterat-

ing. Here we will use a pure function that represents the Newton iteration. The second argument
to NestWhile is the initial guess, the initial value for the iteration. The third argument to
NestWhile is the test that will be performed each time through the loop until it returns False.
We are going to add one new construct here: a default value for e. The syntax is e_: 0.0001 and
what this means is that this is an optional argument that, when omitted, takes the value 0.0001.

In[82]:= f@x_D := x2 - 2

In[83]:= findRoot@fun_, 8var_, init_<, e_: 0.0001D := ModuleB8result<,

result =

NestWhileBÒ -
fun@ÒD

fun'@ÒD
&, N@initD, Abs@fun@ÒDD > e &F;

8var Ø result<F

This computes the square root of 2 with an initial guess of 2.0.

In[84]:= findRoot@f, 8x, 2.0<D

Out[84]= 8x Ø 1.41422<

204 Procedural programming

Try it with a nondefault value for e, a wider tolerance.

In[85]:= findRoot@f, 8x, 2.0<, 0.1D

Out[85]= 8x Ø 1.41667<

Exercise 6 asks you to create a variation of this findRoot function that returns a list of all
intermediate values computed during the iteration.

Before going on, we should mention that the functions introduced in this section are rather
simplistic implementations of Newton’s algorithm. At this stage, we are only interested in learn-
ing about how to use some of Mathematica’s procedural functions to implement the iterations
here. In their current form, they have some serious limitations regarding accuracy and precision
that we will address in Chapter 8, where we will discuss numerical issues in detail. The exercises
at the end of this section also walk you through several improvements to these functions.

Exercises

1. Compare the use of a Do loop with using the function Nest (see Section 5.3). In particular, compute
the square root of 2 using Nest .

2. Do is closely related to Table, the main difference being that Do does not return any value,
whereas Table does. Use Table instead of Do to rewrite one of the findRoot functions given in
this section. Compare the efficiency of the two approaches.

3. Compute Fibonacci numbers iteratively. Fibonacci numbers consist of the sequence 1, 1, 2, 3, 5, 8, 13,
…, where, after the first two 1s, each Fibonacci number is the sum of the previous two numbers in
the sequence. You will need to have two variables, say this and prev, giving the two most recent
Fibonacci numbers, so that after the ith iteration, this and prev have the values Fi and Fi-1,
respectively.

4. One additional improvement can be made to the findRoot program developed in this section.
Notice that the derivative of the function fun is recomputed each time through the loop. This is
quite inefficient. Rewrite findRoot so that the derivative is computed only once and that result is
used in the body of the loop.

5. Another termination criterion for root-finding is to stop when xi - xi+1 < e, that is, when two
successive estimates are very close. The idea is that if you are not getting much improvement, you
must be very near the root. The difficulty in programming this is that you need to remember the two
most recent estimates computed. (It is similar to computing Fibonacci numbers iteratively, as in
Exercise 3.) Program findRoot this way.

6. The built-in FindRoot function is set up so that you can monitor intermediate computations using
the option EvaluationMonitor and Reap and Sow. For example, the following sows the values
of x and f HxL and when FindRoot is done, Reap displays the sown expressions.

In[1]:= f@x_D := x2 - 2

6.1 Loops and iteration 205

In[2]:= Reap@
FindRoot@f@xD, 8x, 1<, EvaluationMonitor ß Sow@8x, f@xD<DD

D
Out[2]= 98x Ø 1.41421<, 9981., -1.<, 81.5, 0.25<,

81.41667, 0.00694444<, 91.41422, 6.0073 � 10-6=,

91.41421, 4.51061 � 10-12=, 91.41421, 4.44089 � 10-16====

Modify each of the versions of findRoot presented in the text that uses a Do or While loop to
produce a similar output to that above.

7. To guard against starting with a poor choice of initial value, modify your solution to the previous
exercise to take, as an argument, a list of initial values, and simultaneously compute approximations
for each until one converges; then return that one.

8. The bisection method is quite useful for finding roots of functions. If a continuous function f HxL is
such that f HaL < 0 and f HbL > 0 for two real numbers a and b, then, as a consequence of the Intermedi-
ate Value Theorem of calculus, a root of f must occur between a and b. If f is now evaluated at the
midpoint of a and b, and if f Ha + bL ê2 < 0, then the root must occur between Ha + bL ê2 and b; if not,
then it occurs between a and Ha + bL ê2. This bisection can be repeated until a root is found to a
specified tolerance.

Define bisectA f, 9x, a, b=, eE to compute a root of f , within e, using the bisection

method. You should give it two initial values a and b and assume that f HaL ÿ f HbL < 0, that is, f HaL and

f HbL differ in sign.

9. Using a While loop, write a function gcd@m, nD that computes the greatest common divisor
(gcd) of m and n. The Euclidean algorithm for computing the gcd of two positive integers m and n,
sets m = n and n = m mod n. It iterates this process until n = 0, at which point the gcd of m and n is
left in the value of m.

10. Create a procedural definition for each of the following functions. For each function, create a
definition using a Do loop and another using Table.

For example, the following function first creates an array consisting of 0s of the same dimension
as mat. Then inside the Do loop it assigns the element in position 8j, i< in mat to position
8i, j< in matA, effectively performing a transpose operation. Finally, it returns matA, since the Do
loop itself does not return a value.

In[3]:= transposeDo@mat_D :=

Module@8matA, rows = Length@matD, cols = Length@mat@@1DDD, i, j<,
matA = ConstantArray@0, 8rows, cols<D;
Do@matAPi, jT = matPj, iT,
8i, 1, rows<,
8j, 1, cols<D;

matAD
In[4]:= mat1 = 88a, b, c<, 8d, e, f<, 8g, h, i<<;

206 Procedural programming

In[5]:= MatrixForm@mat1D
Out[5]//MatrixForm=

a b c
d e f

g h i

In[6]:= MatrixForm@transposeDo@mat1DD
Out[6]//MatrixForm=

a d g
b e h

c f i

This same computation could be performed with a structured iteration using Table.

In[7]:= transposeTable@mat_?MatrixQD := Module@8matA, rows, cols<,
8rows, cols< = Dimensions@matD;
matA = ConstantArray@0, 8rows, cols<D;
Table@matA@@i, jDD = mat@@j, iDD, 8i, rows<, 8j, cols<D

D
In[8]:= transposeTable@mat1D êê MatrixForm

Out[8]//MatrixForm=

a d g
b e h

c f i

a. Create the function reverse@vecD that reverses the elements in the list vec.

b. Create a function rotateRight@vec, nD, where vec is a vector and n is a (positive or negative)
integer.

c. Create a procedural implementation of rotateRows, which could be defined in this functional
way:

In[9]:= rotateRows@mat_D :=

Map@rotateRight@matPÒT, Ò - 1D &, Range@1, Length@matDDD
That is, it rotates the ith row of mat by i - 1 places to the right.

d. Create a procedural function rotateRowsByS, which could be defined in this functional way:

In[10]:= rotateRowsByS@mat_, S_D ê; Length@matD == Length@SD :=

Map@HrotateRight@matPÒ1T, SPÒ1TD &L, Range@1, Length@matDDD
That is, it rotates the ith row of matA by the amount S@@iDD.

e. Create a function pickAlisa, lisbE, where lisa and lisb are lists of equal length, and lisb contains

only Boolean values (False and True). This function selects those elements from lisa corre-
sponding to True in lisb. For example, the result of the following should be 8a, b, e<.

pick@8a, b, c, d, e<, 8True, True, False, False, True<D

6.1 Loops and iteration 207

6.2 Flow control
Conditional functions
In this section we will look at functions that control the flow of execution of an evaluation.
Perhaps the simplest and easiest to understand is If. Here is a rather simplistic implementation
of the absolute value function, using If.

In[1]:= abs@x_D := If@x ¥ 0, x, -xD

In[2]:= abs@-4D

Out[2]= 4

The If function takes three arguments: IfAtest, then, elseE. If test evaluates to True , the second

argument, then, is evaluated; if the test evaluates to False, the third argument, else, is evaluated.
Once defined, these functions can be used with any other computations. For example, abs can

now be mapped over a list of numbers.

In[3]:= Map@abs, 8-2, -1, 0, 1, 2<D

Out[3]= 82, 1, 0, 1, 2<

By default, this function will not automatically map across lists.

In[4]:= abs@8-2, -1, 0, 1, 2<D

Out[4]= If@8-2, -1, 0, 1, 2< ¥ 0, 8-2, -1, 0, 1, 2<, -8-2, -1, 0, 1, 2<D

If you want abs to behave like many of the built-in functions and automatically map across lists
when they are given as the argument to abs, you need to make the function Listable as
described in Sections 2.4 and 5.2.

In[5]:= SetAttributes@abs, ListableD

In[6]:= abs@8-2, -1, 0, 1, 2<D

Out[6]= 82, 1, 0, 1, 2<

Here are some additional examples using If. Given a list, the following function divides each
element of the list by 100 unless an element is nonnumeric.

In[7]:= divideBy100@lis_D := MapBIfBNumericQ@ÒD,
Ò

100
, ÒF &, lisF

In[8]:= divideBy100@85, p, 0, a<D

Out[8]= :
1

20
,

p

100
, 0, a>

208 Procedural programming

The following function resizes large images and leaves them alone if they are smaller than some
threshold size.

In[9]:= img = ;

In[10]:= ResizeImage@img_Image, target_: 100D :=

If@FirstüImageDimensions@imgD > target,
ImageResize@img, targetD, imgD

In[11]:= ResizeImage@img, 75D

Out[11]=

In[12]:= ImageDimensions@%D

Out[12]= 875, 75<

As an aside, Mathematica automatically resizes images when used inline such as the input where
img is defined above. The full size of the original image is quite a bit larger.

In[13]:= ImageDimensions@imgD

Out[13]= 8512, 512<

Oftentimes you will find yourself using nested If/Then/Else chains to deal with multiple
conditions that need to be checked. In the following example, we create plot labels that are
determined by the interpolation order chosen. The parameter order will be manipulated inside
the dynamic interface. To start, create a static plot.

6.2 Flow control 209

In[14]:= data = Table@Sin@x yD, 8x, 0, 4, 0.5<, 8y, 0, 4, 0.5<D;
ListPlot3D@data, InterpolationOrder Ø 0,
PlotLabel Ø "Voronoi cells"D

Out[15]=

The labels of this dynamic interface will change depending upon the value of the parameter,
order. Figure 6.3 displays the four panes from the dynamic interface.

In[16]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
If@order == "None", "Linear",
If@order == 0, "Voronoi cells",
If@order == 1, "Baricentric",
If@order == 2, "Natural neighbor"
D

D
D

D
D,
88order, "None", "InterpolationOrder"<, 8"None", 0, 1, 2<<D;

This code contains several nested Ifs, each occurring in the false clause of the previous one. The
structure of the computation is a sequence of tests of predicates condi until one is found to be true,
at which point a result can be computed.

IfAcond1, result1,

IfAcond2, result2,
ª

IfAcondn, resultn,

�, resultn+1E �EE

Such a sequence of cascading If statements, although common to most procedural code, can be
quite long, somewhat difficult to read, and hard to debug. An alternative is to use a Which

210 Procedural programming

statement that essentially collapses the nested structure to a more manageable object. We will
explore Which later in this section.

Figure 6.3. Manipulate showing different interpolation orders used to construct a surface.

Conditional definitions can be written using another construct in Mathematica, the
Condition operator /; that has already been introduced in the context of conditional patterns
in Section 4.1. For example, the abs function can be entered (using several definitions) as follows:

In[17]:= Clear@absD

In[18]:= abs@x_D := x ê; x ¥ 0

In[19]:= abs@x_D := -x ê; x < 0

The first definition should be interpreted as “abs@xD is equal to x whenever (or under the
condition that) x is greater than or equal to zero” and the second definition as “abs@xD is equal
to the opposite of x whenever x is less than zero.”

The conditions on the right-hand side of the rules can also be entered on the left-hand side of
these definitions as follows:

In[20]:= Clear@absD

In[21]:= abs@x_ ê; x ¥ 0D := x

In[22]:= abs@x_ ê; x < 0D := -x

This last notation has the advantage of preventing the right-hand side of the definitions from
being evaluated whenever the pattern on the left does not match.

6.2 Flow control 211

In[23]:= abs@-4D

Out[23]= 4

In[24]:= abs@zD

Out[24]= abs@zD

The abs function defined above is fine for integers and real number arguments, but, since the
complex numbers cannot be ordered, the tests comparing the argument x with zero will fail.

In[25]:= abs@3 + 4 ID

GreaterEqual::nord : Invalid comparison with 3 + 4 Â attempted. à

Less::nord : Invalid comparison with 3 + 4 Â attempted. à

Out[25]= abs@3 + 4 ÂD

Exercise 3 at the end of this section walks through a solution to this problem through the use of
several more specific rules.

Piecewise-defined functions
The last absolute value function given in the previous section is defined piecewise. This means
that for different intervals, or under different conditions, the values will be computed differently.
Piecewise is designed specifically for such problems. The syntax is:

 Piecewise@88e1, c1<, …, 8en, cn<<D

Piecewise outputs e1 if c1 is true, e2 if c2 is true, … , en if cn is true, and zero otherwise (the
default). So, for example, here is the definition for the absolute value function given as a piece-
wise object.

In[26]:= abspw@x_D := Piecewise@88x, x ¥ 0<, 8-x, x < 0<<D

Piecewise objects display as you would expect in traditional mathematical notation.

In[27]:= abspw@xD

Out[27]=

x x ¥ 0

-x x < 0

0 True

One of the advantages to using Piecewise compared with the previous approaches is that
the earlier implementations given in terms of conditionals are not fully supported by many of the
built-in functions.

212 Procedural programming

In[28]:= Clear@absD

In[29]:= abs@x_D := x ê; x ¥ 0

In[30]:= abs@x_D := -x ê; x < 0

In[31]:= Integrate@abs@xD, 8x, -1, 1<D

Out[31]= ‡
-1

1

abs@xD „x

In[32]:= D@abs@xD, xD

Out[32]= abs£@xD

Piecewise, on the other hand, is fully integrated with the algebraic, symbolic, and graphical
functions in Mathematica and so is preferable to other approaches.

In[33]:= Integrate@abspw@xD, 8x, -1, 1<D

Out[33]= 1

In[34]:= D@abspw@xD, xD

Out[34]=

-1 x < 0

1 x > 0

Indeterminate True

In[35]:= Plot@abspw@xD, 8x, -2, 2<D

Out[35]=

-2 -1 1 2

0.5

1.0

1.5

2.0

6.2 Flow control 213

Which and Switch
Recall the earlier plot of some three-dimensional data using cascading Ifs to specify different
plot labels.

In[36]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
If@order == "None", "Linear",
If@order == 0, "Voronoi cells",
If@order == 1, "Baricentric",
If@order == 2, "Natural neighbor"
D

D
D

D
D,
8order, 8"None", 0, 1, 2<<D;

It can be a little difficult to read these nested If statements and figure out which clause goes with
which If. Fortunately, cascaded Ifs are so common that there is a more direct way of writing
them, using the function Which.

WhichAcond1, result1,
cond2, result2,
ª

condn, resultn,

True, resultn+1E

This has exactly the same effect as the cascaded If expression above: it tests each condition in
turn, and, when it finds an i such that condi is true, it returns resulti as the result of the Which
expression itself. If none of the conditions turns out to be true, then it will test the final condition,
namely the expression True , which always evaluates to true, and it will then return resultn+1.

214 Procedural programming

In[37]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
Which@
order == "None", "Linear",
order == 0, "Voronoi cells",
order == 1, "Baricentric",
order == 2, "Natural neighbor"DD,

88order, "None", "Interpolation order"<, 8"None", 0, 1, 2<<D

Out[37]=

Interpolation order None 0 1 2

One additional function deserves mention. Our use of Which is still quite special in that it
consists of a simple sequence of comparisons between a variable and a constant. Since this is also
a common form, Mathematica provides a special function for it, called Switch. Where Which
compares values to determine which result to evaluate, Switch does pattern matching.

SwitchAexpr,
pattern1, result1,
pattern2, result2,
ª,

patternn, resultn,

_, resultn+1E

This evaluates expr and then checks each pattern sequentially to see whether expr matches; as
soon as expr matches one, say patterni, it returns the value of resulti. Of course, if none of the

patterns pattern1, …, patternn matches, the general pattern _ certainly will.

6.2 Flow control 215

Here is a toy example showing how Switch works. If the expression expr matches the
pattern _Integer, that is, if it has head Integer , then “I am an integer” will be returned. If not,
but expr has head Rational, then “I am rational” is returned, and so on.

In[38]:= WhatAmI@expr_D := Switch@expr,
_Integer, "I am an integer",

_Rational, "I am rational",

_Real, "I am real",

_Complex, "I am complex",

_, "I am not a number"D

In[39]:= WhatAmI@3 + 4 ID

Out[39]= I am complex

In[40]:= WhatAmI@funD

Out[40]= I am not a number

Notice that Switch uses the blank character, _, for the final, or default case, just as Which often
uses the always-true expression True.

Here then is the version of the Manipulate example using Switch instead of Which.

In[41]:= Manipulate@
ListPlot3D@data, InterpolationOrder Ø order,
PlotLabel Ø
Switch@order,
"None", "Linear",
0, "Voronoi cells",
1, "Baricentric",
2, "Natural neighbor"DD,

88order, "None", "Interpolation order"<,
8"None", 0, 1, 2<<D;

If all the patterns happen to be constants, the Switch expression is equivalent to the following
Which expression.

WhichA
expr == pattern1, result1,
expr == pattern2, result2,

ª,

expr ã patternn, resultn,

True, resultn+1E

216 Procedural programming

Argument checking
When you write functions, you often know ahead of time that their definitions are valid only for
certain kinds of inputs. For example, the following recursive definition for the factorial function
only makes sense for positive integers.

In[42]:= factorial@0D = 1;

factorial@n_D := n factorial@n - 1D

In[44]:= factorial@5D

Out[44]= 120

If you were to give factorial an argument that was not a positive integer, the recursion could
run away from you.

In[45]:= factorial@3.4D êê Short

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

Conditionals are a convenient way of checking that the arguments to a function pass some
test. For example, there are several ways that you could make the factorial function valid
only under the condition that its argument is a positive integer. Here is how you might approach
it using the If construct to test that n passes the appropriate criteria.

In[46]:= Clear@factorialD

In[47]:= factorial@0D = 1;

In[48]:= factorial@n_D := If@IntegerQ@nD && n > 0, n factorial@n - 1DD

In[49]:= 8factorial@5D, factorial@-3D, factorial@2.4D<

Out[49]= 8120, Null, Null<

The function works fine for positive integers, but since we did not give an alternative condition to
the If function, nothing is returned (technically, Null is returned) when the test condition fails.

Let us define a message that will be output in the case that the argument to factorial fails
the positive integer test.

In[50]:= factorial::noint =
"The argument `1` is not a positive integer.";

Message@messname, e1, e2, …D prints using StringForm@messname, e1, e2, …D, where
messname is the value of the message name and the ei are substituted for any expressions of the
form `i`. We will use Message as the third argument to the If function; when the condition
fails, the message will be triggered. In the above example, the message name is noint and its
value is the string beginning with "The argument…". In this example, the value of n will be
substituted into the string where the `1` occurs.

6.2 Flow control 217

In[51]:= factorial@n_D := If@IntegerQ@nD && n > 0,

n factorial@n - 1D,
Message@factorial::noint, nDD

In[52]:= factorial@-4D
factorial::noint : The argument -4 is not a positive integer.

Exercises
1. Create a function UpperTriangularMatrix@8m, n<D that generates an män upper triangular

matrix, that is, a matrix containing 1s on and above the diagonal and 0s below the diagonal. Create
an alternative rule that defaults to 1 for the upper values, but allows the user to specify a nondefault
upper value.

In[1]:= UpperTriangularMatrix@83, 3<D êê MatrixForm
Out[1]//MatrixForm=

1 1 1
0 1 1
0 0 1

In[2]:= UpperTriangularMatrix@84, 4<, zD êê MatrixForm
Out[2]//MatrixForm=

z z z z
0 z z z
0 0 z z
0 0 0 z

2. Write a function signum@xD which, when applied to an integer x, returns -1, 0, or 1, if x is less than,
equal to, or greater than 0, respectively. Write it in four ways: using three clauses, using a single
clause with If , using a single clause with Which, and using Piecewise .

3. The definition of the absolute value function in this section does not handle complex numbers
properly.

In[3]:= abs@3 + 4 ID

GreaterEqual::nord : Invalid comparison with 3 + 4 Â attempted. à

Less::nord : Invalid comparison with 3 + 4 Â attempted. à

Out[3]= abs@3 + 4 ID

Correct this problem by rewriting abs to include a specific rule for the case where its argument is
complex.

4. Use If in conjunction with Map or Fold to define the following functions:

a. In a list of numbers, double all the positive numbers, but leave the negative numbers alone.

218 Procedural programming

b. remove3Repetitions alters three or more consecutive occurrences in a list, changing them
to two occurrences; if there are only two occurrences to begin with, they are left alone. For
example, remove3Repetitions@80, 1, 1, 2, 2, 2, 1<D will return
80, 1, 1, 2, 2, 1<.

c. Add the elements of a list in consecutive order, but never let the sum go below 0.

In[4]:= positiveSum@85, 3, -13, 7, -3, 2<D

Out[4]= 6

Since the –13 caused the sum to go below 0, it was instead put back to 0 and the summation contin-
ued from there.

5. Rewrite the median function from Exercise 4 in Section 5.8 using an If control structure.

6. Using NestWhileList, write a function CollatzSequence@nD that produces the Collatz
sequence for any positive integer n. The Collatz sequence is generated as follows: starting with a
number n, if it is even, then output n ê2; if n is odd, then output 3n + 1. Iterate this process while n � 1.

6.3 Examples and applications
Classifying points
Quadrants in the Euclidean plane are traditionally numbered counterclockwise from quadrant i
(x and y positive) to quadrant iv (x positive, y negative) with some convention adopted for points
that lie on either of the axes. In this section we will create a function that classifies any point in
the plane according to this scheme (see Table 6.1). We will give a number of different solutions:
using multi-clause function definitions with predicates, single-clause definitions with If and its
relatives, and combinations of the two.

Table 6.1. Quadrant classification

Point Classification
H0, 0L 0

y=0 Hon the x-axisL -1

x=0 Hon the y-axisL -2

Quadrant i 1

Quadrant ii 2

Quadrant iii 3

Quadrant iv 4

6. 219

Perhaps the first solution that suggests itself is one that uses a clause for each of the cases
above.

In[1]:= quadrant@80, 0<D := 0

quadrant@8x_, 0<D := -1

quadrant@80, y_<D := -2

quadrant@8x_, y_<D := 1 ê; x > 0 && y > 0

quadrant@8x_, y_<D := 2 ê; x < 0 && y > 0

quadrant@8x_, y_<D := 3 ê; x < 0 && y < 0

quadrant@8x_, y_<D := 4 H* x < 0 && y < 0 *L

It is not a bad idea to include the last condition as a comment to yourself; it is not needed as an
actual condition like the three rules preceding it because this rule will apply to any argument
8x, y< without condition. Evaluating the rule last will cause it to be checked last by the pattern
matcher.

Here is a list of points that we will use as our test cases.

In[8]:= pts = 880, 0<, 84, 0<, 80, 1.3<,
82, 4<, 8-2, 4<, 8-2, -4<, 82, -4<<;

In[9]:= Map@quadrant, ptsD

Out[9]= 80, -1, -2, 1, 2, 3, 4<

Translated directly to a one-clause definition using If, this becomes:

In[10]:= quadrant@8x_, y_<D :=

If@x ã 0 && y ã 0, 0,
If@y ã 0, -1,
If@x ã 0, -2,
If@x > 0 && y > 0, 1,
If@x < 0 && y > 0, 2,
If@x < 0 && y < 0, 3, 4DDDDDD

In[11]:= Map@quadrant, ptsD

Out[11]= 80, -1, -2, 1, 2, 3, 4<

Actually, a more likely solution here uses Which.

In[12]:= quadrant@8x_, y_<D := Which@
x == 0 && y == 0, 0,
y == 0, -1,
x == 0, -2,
x > 0 && y > 0, 1,
x < 0 && y > 0, 2,

220 Procedural programming

x < 0 && y < 0, 3,
True, 4 H* x>0&&y< 0 *L D

In[13]:= Map@quadrant, ptsD

Out[13]= 80, -1, -2, 1, 2, 3, 4<

Each of our solutions so far suffers from a certain degree of inefficiency, because of repeated
comparisons of a single value with 0. Take the last solution as an example, and suppose the
argument is (-5,-9). It will require five comparisons of -5 with 0 and three comparisons of -9

with 0 to obtain this result.

In[14]:= quadrant@8-5, -9<D

Out[14]= 3

The steps to perform this computation are:
1. evaluate x ã 0; since it is false, the associated y ã 0 will not be evaluated, and we next

2. evaluate y ã 0 on the following line; since it is false, we

3. evaluate x ã 0 on the third line; since it is false, we

4. evaluate x > 0 on next line; since it is false, the associated y > 0 will not be evaluated,
and we next,

5. evaluate x < 0 on the next line; since it is true, we do,

6. the y > 0 comparison, which is false, so we next,

7. evaluate x < 0 on the next line; since it is true, we then evaluate y < 0, which is also true,
so we return the answer 3.

How can we improve this? By nesting conditional expressions inside other conditional expres-
sions. In particular, as soon as we discover that x is less than, greater than, or equal to 0, we
should make maximum use of that fact without rechecking it. That is what the following
quadrant function does.

In[15]:= quadrant@8x_, y_<D := Which@
x ã 0, If@y ã 0, 0, -2D,
x > 0, Which@y > 0, 1, y < 0, 4, True, -1D,
True, Which@y < 0, 3, y > 0, 2, True, -1D

D

In[16]:= Map@quadrant, ptsD

Out[16]= 80, -1, -2, 1, 2, 3, 4<

Let us count up the comparisons for H-5, -9L this time: (i) evaluate x ã 0; since it is false, we
next, (ii) evaluate x > 0; since it is false, we go to the third branch of the Which, evaluate True ,

6.3 Examples and applications 221

which is, of course, true, then we (iii) evaluate y < 0, which is true, and we return 3. Thus, we
made only three comparisons, a substantial improvement.

When pattern matching is used, as in our first, multi-clause solution, efficiency calculations
can be more difficult. It would be inaccurate to say that Mathematica has to compare x and y to 0
to tell whether the first clause applies; what actually happens is more complex. What is true,
however, is that it will do the comparisons indicated in the last four clauses. So, even if we dis-
count the first three clauses with argument H-5, -9L, some extra comparisons are done. Specifi-
cally: (i) the comparison x > 0 is done; then, (ii) x < 0 and (iii) y > 0; then, (iv) x < 0 and (v)
y < 0. This can be avoided by using conditional expressions within clauses.

In[17]:= quadrant@80, 0<D := 0

quadrant@8x_, 0<D := -1

quadrant@80, y_<D := -2

quadrant@8x_, y_<D := If@x < 0, 2, 1D ê; y > 0

quadrant@8x_, y_<D := If@x < 0, 3, 4D H* ê; y<0 *L

In[22]:= Map@quadrant, ptsD

Out[22]= 80, -1, -2, 1, 2, 3, 4<

Now, no redundant comparisons are done. For H-5, -9L, since y > 0 fails, the fourth clause is not
used, so the x > 0 comparison in it is not done. Only the single x < 0 comparison in the final
clause is done, for a total of two comparisons.

Having implemented all these versions of quadrant, you should still be mindful of a basic
fact of life in programming: your time is more valuable than your computer’s time. You should
not spend your time worrying about how slow a function is until there is a demonstrated need to
worry. Far more important is the clarity and simplicity of the code, since this will determine how
much time you (or another programmer) will have to spend when it comes time to modify it. In
the case of quadrant, we would argue that we were lucky and found a version (the final one)
that wins on both counts (if only programming were always like that!).

Finally, a technical, but potentially important, point: not all the versions of quadrant work
exactly the same way. The integer 0, as a pattern, does not match the real number 0.0, since they
have different heads. Thus, using the last version as an example, quadrant@80.0, 0.0<D
returns 4.

In[23]:= quadrant@80.0, 0.0<D

Out[23]= 4

Exercise 4 walks through the use of alternatives to deal more efficiently with these various
cases.

222 Procedural programming

Sieve of Eratosthenes
One of the oldest algorithms in the history of computing is the Sieve of Eratosthenes. Named
after the famous Greek astronomer Eratosthenes (ca. 276 – ca. 194 bc), this method is used to find
all prime numbers below a given number n. The great feature of this algorithm is that it finds
prime numbers without doing any division, an operation that took considerable skill and concen-
tration before the introduction of the Arabic numeral system. In fact, in our implementation its
only operations are addition and component assignment.

The algorithm can be summarized as follows. To find all the prime numbers less than an
integer n:

1. create a list of the integers 1 through n;

2. starting with p = 2, cross out all multiples of p;

3. increment p (that is, add 1 to p) and cross out all multiples of p;

4. repeat the previous two steps until p > n .

You should convince yourself that the numbers that are left after all the crossings out are in fact
the primes less than n. This algorithm lends itself very well to a procedural approach, so let us
walk through the steps.

We will use a For structure for this problem. The syntax is ForAstart, test, incr, bodyE,

where start will first be evaluated (initializing values), and then incr and body will be repeatedly
evaluated until test fails.

1. Let lis be a list containing all the integers between 1 and n.

In[24]:= n = 20;
lis = Range@nD

Out[25]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

Let p = 2. Repeat the following two steps:
2. Starting at position 2p, “cross out” every pth value in lis. We will assign 1 to lis at

positions 2p, 3p, and the 1 will represent a crossed-out value.

In[26]:= p = 2;
Do@lis@@iDD = 1, 8i, 2 p, n, p<D

In[28]:= lis

Out[28]= 81, 2, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, 1<

3. While p § n , increment p by 1, until lis@@pDD is not 1, or until p > n .

6.3 Examples and applications 223

In[29]:= n = 20;
lis = Range@nD;
For@p = 2,
p � 1 && p § Floor@Sqrt@nDD,
p++,
Do@lis@@iDD = 1, 8i, 2 p, n, p<DD

The numbers other than 1 in lis are all the prime numbers less than or equal to n.

In[32]:= DeleteCases@lis, 1D

Out[32]= 82, 3, 5, 7, 11, 13, 17, 19<

Let us put these steps together in the function Sieve.

In[33]:= Clear@n, p, lisD

In[34]:= Sieve@n_IntegerD := Module@8lis = Range@nD, p<,
For@p = 2,
p � 1 && p § Floor@Sqrt@nDD,
p++,
Do@lis@@iDD = 1, 8i, 2 p, n, p<DD;

DeleteCases@lis, 1DD

Here are a few simple tests to check the correctness of our function. First a basic check that
Sieve returns the same list of primes as the built-in functions. The built-in PrimePi@xD gives
the number of primes pHxL less than or equal to x.

In[35]:= Map@Prime, RangeüPrimePi@100DD

Out[35]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

In[36]:= Sieve@100D

Out[36]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

We should check that the list of primes less than 10 000 is the same as that produced by the built-
in functions.

In[37]:= WithA9n = 104=, Sieve@nD ã Map@Prime, RangeüPrimePi@nDDE

Out[37]= True

Next, we check that Sieve produces the correct number of primes less than a large integer.

In[38]:= LengthASieveA105EE

Out[38]= 9592

224 Procedural programming

In[39]:= PrimePiA105E

Out[39]= 9592

Finally, we do some simple timing tests to check the efficiency of this algorithm against the built-
in functions that are optimized for this task.

In[40]:= SieveA105E; êê Timing

Out[40]= 81.03762, Null<

In[41]:= MapAPrime, RangeüPrimePiA105EE; êê Timing

Out[41]= 80.009463, Null<

For numbers in this range (less than about 10
5), sieving is fairly efficient. But, beyond this range, it

gets slower and slower. The implementation here is quite basic and there are a number of things
that we could do to optimize it. In Section 12.2 we will make several improvements to this sieving
algorithm reducing the overall number of computations performed by carefully structuring the
Do loop. Ultimately, if you are interested in working on very large numbers, it would be best to
consider specialized algorithms that are asymptotically fast. For large integers, PrimePi uses an
algorithm due to Lagarias, Miller, and Odlyzko (Lagarias and Odlyzko 1987) that is based on
estimates of the density of primes.

Sorting algorithms
In Section 4.3 we developed a sorting routine in which the pattern matcher was invoked to check
every pair of adjacent elements in a list to see if they were out of order. Although that code is
quite compact, it is not terribly efficient due to the large number of pattern matches needed. In
this section we will develop two well-known sorting algorithms – selection sort and bubble sort –
that lend themselves to procedural approaches quite well. Although these two algorithms are still
slow for larger input, it is instructive to work through them as they are good exercises in procedu-
ral programming and provide useful insights into the issues involved in sorting lists of numbers.

We will start with the selection sort algorithm, as it is fairly simple to understand and imple-
ment. After developing the algorithm, we will look at its computational complexity as well as
create a quick visualization of the algorithm at work.

The selection sort algorithm works by finding (selecting) the smallest number in a list and
exchanging it with the element in the first position in the list. It then finds the next smallest
element in the list and exchanges it with the element in the second position. It continues like this
to the end of the list at which point the entire list is sorted.

6.3 Examples and applications 225

We already have developed some of the pieces needed here; in particular, the solution to
Exercise 4 from Section 3.3 has code for swapping two elements in a list, say elements in positions
i and j:

lis@@8i, j<DD = lis@@8 j, i<DD

We will create a local variable slist that is a copy of the list that we wish to sort and then
operate only on slist. If two elements are out of order, we swap them:

If@slist@@iDD > slist@@ jDD,
slist@@8i, j<DD = slist@@8 j, i<DDD

The only real difficulty is determining the correct starting and ending values for the iterators i
and j. We will use a Do loop, fix i and then have j vary; then increment i and have j vary
through its values again, and so on. Here is the code.

In[42]:= selectionSort@lis_D := Module@8slist = lis, len = Length@lisD<,
Do@
If@slistPiT > slistPjT,
slistP8i, j<T = slistP8j, i<TD,

8i, len - 1<, 8j, i, len<D;
slistD

Let us try it out on a small vector containing some repeated values (one of the things you want to
test for in sorting algorithms).

In[43]:= vec = RandomInteger@10, 50D

Out[43]= 80, 8, 9, 5, 4, 1, 4, 6, 3, 9, 6, 6, 7, 2, 6, 8,

2, 10, 3, 3, 4, 7, 8, 5, 4, 7, 3, 0, 0, 2, 10, 2, 1,

1, 10, 5, 2, 0, 2, 10, 5, 6, 5, 8, 10, 7, 3, 1, 9, 4<

In[44]:= selectionSort@vecD

Out[44]= 80, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,

3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,

7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10<

Let us try it out on a larger vector of random reals.

In[45]:= vec = RandomReal@1, 81500<D;

In[46]:= selectionSort@vecD; êê Timing

Out[46]= 83.5133, Null<

As a quick check, we compare it with the built-in Sort function, first for correctness, then for
speed.

226 Procedural programming

In[47]:= selectionSort@vecD ã Sort@vecD

Out[47]= True

In[48]:= Timing@Sort@vecD;D

Out[48]= 80.000241, Null<

Obviously, our naive implementation of selection sort is not going to compare with the
efficiency of the built-in Sort , which uses a much more efficient algorithm known as merge
sort. In fact, selection sort is known to have computational complexity OIn2M, meaning we would

expect the time to do selection sort to be proportional to the square of the size of the input. To
get a basic confirmation of the complexity, average several trials of increasing size and then plot
the timings. We will choose three trials for each size of the input from 100 to 2000 in steps of 100.

In[49]:= times = Table@
vec = RandomReal@1, 8size<D;
mean = MeanüTable@FirstüTiming@selectionSort@vecDD, 83<D;
8size, mean<,
8size, 100, 2000, 100<D

Out[49]= 88100, 0.0144407<, 8200, 0.058554<,
8300, 0.133603<, 8400, 0.219965<, 8500, 0.350014<,
8600, 0.517022<, 8700, 0.69728<, 8800, 0.932<,
8900, 1.1802<, 81000, 1.45561<, 81100, 1.73962<,
81200, 2.06994<, 81300, 2.39579<, 81400, 2.82256<,
81500, 3.18691<, 81600, 3.80523<, 81700, 4.16283<,
81800, 4.76077<, 81900, 5.37576<, 82000, 5.73151<<

Here is a plot of the times with the size of the input on the horizontal axis and average time (in
seconds) for the three trials on the vertical axis.

In[50]:= dataplot = ListPlot@times, Mesh Ø All, DataRange Ø 8100, 2000<D

Out[50]=

500 1000 1500 2000

1

2

3

4

5

Fitting the data to a linear model shows very good agreement with quadratic complexity.

6.3 Examples and applications 227

In[51]:= lm = LinearModelFit@times, 8x, x^2<, xD;
lm@"BestFit"D êê TraditionalForm

Out[52]//TraditionalForm=

� - - +

In[53]:= Show@dataplot,
Plot@lm@"BestFit"D, 8x, 100, 2000<, PlotStyle Ø RedDD

Out[53]=

500 1000 1500 2000

1

2

3

4

5

Finally, let us create an animation that shows the selection sort algorithm at work. To do so, we
will convert the Do loop to a For loop and insert one line of code to “record” the sort after each
pass, that is, for each value of i. Start by converting from the Do loop implementation. For
readability purposes, we will convert the double loop – iterators i and j in the Do loop – and
write this using two (nested) For loops.

In[54]:= selectionSortFor@lis_D :=

Module@8slist = lis, len = Length@lisD<,
For@i = 1, i § len, i++,
For@j = i + 1, j § len, j++,
If@slistPiT > slistPjT, slistP8i, j<T = slistP8j, i<TD

DD;
slistD

Let us perform a quick check.

In[55]:= selectionSortFor@RandomInteger@100, 820<DD

Out[55]= 83, 3, 9, 18, 20, 31, 41, 43, 45,
47, 53, 53, 56, 57, 60, 60, 63, 85, 97, 98<

For the animation, we want the value of slist before each increment of the iterator i. We
will simply append that value to a temporary list and when done with the sort, return that tempo-
rary list of lists to animate. Because of inclusion of AppendTo, this code is going to be slower
than the previous implementations. But since the AppendTo is not part of the actual sort, it
should not slow things down too much. Nonetheless, we only use it here for purposes of creating
the visualization. Figure 6.4 shows several frames from the animation.

228 Procedural programming

In[56]:= selectionSortList@lis_D :=

Module@8slist = lis, len = Length@lisD, temp = 8<<,
For@i = 1, i § len, i++,
AppendTo@temp, slistD;
For@j = i + 1, j § len, j++,
If@slistPiT > slistPjT, slistP8i, j<T = slistP8j, i<TD

DD;
tempD

In[57]:= vec = RandomReal@1, 500D;
sort = selectionSortList@vecD;

In[59]:= ListAnimate@ListPlot êü sortD

Figure 6.4. Frames from selection sort animation: after 1, 50, 100, 150, 200, 300, 400, and 500 steps.

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

0 100 200 300 400 500

0.2
0.4
0.6
0.8
1.0

Bubble sort Another elementary sorting algorithm somewhat similar to selection sort is bubble
sort. It operates on adjacent elements, exchanging them if they are out of order. After numerous
passes, but specifically when no more swaps are needed, the list is sorted.

Note, in this implementation, the iterator i starts at n, equal to the length of the list, and then
decrements down to 1.

In[60]:= bubbleSort@lis_D := Module@8slist = lis, n = Length@lisD<,
For@i = n, i > 0, i--,
For@j = 2, j § i, j++,
If@slistPj - 1T > slistPjT,
slistP8j - 1, j<T = slistP8j, j - 1<TD

DD;
slistD

In[61]:= vec = RandomReal@1, 81500<D;

6.3 Examples and applications 229

Bubble sort has computational complexity similar to that of selection sort, that is OIn2M, which

is too slow for serious sorting work.

In[62]:= bubbleSort@vecD; êê Timing

Out[62]= 85.66688, Null<

In[63]:= bubbleSort@vecD ã Sort@vecD

Out[63]= True

For a more detailed discussion of sorting algorithms, including their computational complex-
ity, see Knuth (1998) or Sedgewick and Wayne (2011).

Exercises

1. Using an If function, write a function gcd@m, nD that implements the Euclidean algorithm (see
Exercise 9 of Section 6.1) for finding the greatest common divisor of m and n.

2. The digit sum of a number is given by adding the digits of that number. For example, the digit sum of
7763 is 7 + 7 + 6 + 3 = 23. If you iterate the digit sum until the resulting number has only one digit,
this is called the digit root of the original number. So the digit root of 7763 is
7763 Ø 7 + 7 + 6 + 3 = 23 Ø 2 + 3 = 5. Create a function to compute the digit root of any positive
integer.

3. Use Piecewise to define the quadrant function given in this section.

4. In the version of quadrant using If and Which developed in this section, the point 80.0, 0.0<
is not handled properly because of how Mathematica treats the real number 0.0 compared with the
integer 0. Write another version of quadrant using alternatives (discussed in Section 4.1) to handle
this situation and correctly return the 0.

5. Extend quadrant to three dimensions, following this rule: for point (x, y, z), if z ¥ 0, then give the
same classification as (x, y), with the exception that 0 is treated as a positive number (so the only
classifications are 1, 2, 3, and 4); if z < 0, add 4 to the classification of (x, y) (with the same exception).
For example, H1, 0, 1L is in octant 1, and H0, -3, -3L is in octant 8. quadrant should work for points
in two or three dimensions.

6. Consider a sequence of numbers generated by the following iterative process: starting with the list
of odd integers 1, 3, 5, 7, …, the first odd number greater than 1 is 3, so delete every third number
from the list; from the list of remaining numbers, the next number is 7, so delete every seventh
number; and so on. The numbers that remain after this process has been carried out completely are
referred to as lucky numbers (Weisstein, Lucky numbers). Use a sieving method to find all lucky
numbers less than 1000.

7. Create an animation for bubble sort similar to the animation in the text for selection sort.

230 Procedural programming

7

Recursion
Fibonacci numbers · Thinking recursively · List length · Recursion with multiple arguments ·
Multiplying pairwise elements · Dealing cards, recursively · Finding maxima · Higher-order

functions · Dynamic programming · Merge sort · Run-length encoding

Many important and classical problems in mathematics and computer science are defined, or
have solutions in terms of recursive definitions: the factorial function, the natural numbers, many
divide-and-conquer algorithms, and parsers for programming languages all use recursion in
fundamental ways. A function is defined using recursion if in its definition, it makes calls to itself.
The great advantage of recursive definitions is their simplicity and directness. Their one major
drawback however, is how quickly the depth and complexity can increase to the point of making
your computations intractable.

This programming paradigm is easily implemented in Mathematica in a manner that is both
natural and quite efficient. In fact, many of the built-in operations of Mathematica could be written
in Mathematica itself using recursion. In this chapter, we will present several examples of recursion
and explain how recursive functions are written and what you can do to work around some of
their potential inefficiencies.

7.1 Fibonacci numbers
Recursive definitions of mathematical quantities were used by mathematicians for centuries
before computers even existed. One famous example is the definition of a special sequence of
numbers first studied in the Middle Ages by the Italian mathematician Leonardo Fibonacci
(ca. 1170 – ca. 1250). The Fibonacci numbers have since been studied extensively, finding application
in such diverse areas as random number generation, compression algorithms, musical tunings,
phyllotaxy in plants, population generation, and much more. See Knuth (1997) for a detailed
discussion.

The Fibonacci numbers are generated as follows: start with two 1s, then add them to generate
the third number in the sequence; and generally, each new number in the sequence is created by
adding the previous two numbers you have written down.

1 1 2 3 5 8 13 21 …

F1 F2 F3 F4 F5 F6 F7 F8 …

The simplest way to define these numbers is with recursion.

F1 = 1

F2 = 1

Fn = Fn-2 + Fn-1, for n > 2

If we think of this sequence as a function, we would just change this to a functional definition.

FH1L = 1

FH2L = 1

FHnL = FHn - 2L+ FHn - 1L, for n > 2

In this form, we can translate the definition directly into Mathematica.

In[1]:= F@1D = 1;

In[2]:= F@2D = 1;

In[3]:= F@n_D := F@n - 2D + F@n - 1D ê; n > 2

As it turns out, the condition n > 2 is unnecessary because Mathematica looks up specific rules
such as F@1D = 1 before more general rules like that for F@nD.

Here is a list of the first twenty-six Fibonacci numbers.

In[4]:= Table@F@iD, 8i, 1, 26<D

Out[4]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75 025, 121 393<

It is somewhat amazing that this works, but note that whenever you want to compute F@nD for
some n > 2, you only apply F to numbers smaller than n. Let us trace the evaluation of F@4D only
looking at expressions that involve an F@integerD or a sum of two Fs.

232 Recursion

In[5]:= TracePrint@F@4D, F@_IntegerD F@_D + F@_DD

F@4D

F@4 - 2D + F@4 - 1D

F@2D

F@3D

F@3 - 2D + F@3 - 1D

F@1D

F@2D

Out[5]= 3

The first two lines indicate that F@4D is rewritten to F@4 - 2D + F@4 - 1D, and the lines that are
indented show the calls of F@2D and F@3D. The lines showing calls to F@1D and F@2D do not
have any indented lines under them, since those values are computed directly by a single rule,
without making any recursive calls.

There are two key things to understand about recursion:

Ê You can always apply a function within its own definition, so long as you apply it only to
smaller values.

Ê You can apply the function to smaller and smaller values, but you must eventually reach a
value that can be computed without recursion. In the case of the Fibonacci numbers, the
numbers that can be computed without recursion – the base cases – are F@1D and F@2D.

These principles are applied repeatedly in this chapter and more generally in any recursive
function definitions. In terms of the Fibonacci numbers, we will return to them later in Section
7.3, where we will see what can be done about a serious inefficiency in our implementation (also,
see Exercise 2 below).

Exercises
1. For each of the following sequences of numbers, see if you can deduce the pattern and write a

Mathematica function to compute the general term.

a.
2, 3, 6, 18, 108, 1944, 209 952, …
A1 A2 A3 A4 A5 A6 A7 …

b.
0, 1, -1, 2, -3, 5, -8, 13, -21, …
B1 B2 B3 B4 B5 B6 B7 B8 B9 …

c.
0, 1, 2, 3, 6, 11, 20, 37, 68, …

C1 C2 C3 C4 C5 C6 C7 C8 C9 …

7.1 Fibonacci numbers 233

2. The numbers FAn represent the number of additions that are done in the course of evaluating the
Fibonacci function F@nD defined in this section.

0 0 1 2 4 7 12 20 33 …

FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 …

Write a function FA such that FA@nD = FAn.

3. A faster approach to computing Fibonacci numbers uses various identities associated with these
numbers (The Fibonacci Sequence 2011). We start the base case at 0 instead of 1 here. The notation
dnumbert represents the floor of number. You can use IntegerPart .

f0 = 0

f1 = 1

fn =

f @kD H f @kD + 2 f @k - 1D n even, k = dn ê2t
H2 f @kD + f @k - 1DL H2 f @kD - f @k - 1DL + 2 n mod 4 = 1, k = dn ê2t
H2 f @kD + f @k - 1DL H2 f @kD - f @k - 1DL - 2 otherwise

Implement this algorithm. Consider using Which for the different conditions.

4. The Fibonacci sequence can also be defined for negative integers using the following formula
(Graham, Knuth, and Patashnik 1994):

F-n = H-1Ln-1 Fn

The first few terms are

0 1 -1 2 -3 5 -8 13 -21 …
F0 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 …

Write the definitions for Fibonacci numbers with negative integer arguments.

7.2 Thinking recursively
The procedure by which expressions are rewritten during Mathematica’s evaluation process – as
seen using Trace or TracePrint – provides insight into how recursion works. But that
knowledge is of only limited usefulness in writing recursive functions.

Indeed, the real trick is to forget the evaluation process and simply assume that the function you
are defining will return the correct answer when applied to smaller values. Suspend disbelief –
you will begin to see how simple recursion really is. In this section, we will start with some
relatively simple recursive programs of some common computational tasks, gradually building
up the complexity of the examples.

234 Recursion

Length of a list
In Chapter 5, we looked at functional implementations of some list-oriented functions in Mathe-
matica. Although most of these functions have more efficient implementations in terms of func-
tional constructs, they provide a convenient vehicle for discussing recursion, and so in this
section we will use them to give you some practice with the basic concepts of recursive
programming.

As noted in our discussion of Fibonacci numbers, recursion works if the arguments of recur-
sive calls are smaller than the original argument. The same principle applies to functions on lists.
One common case is when the argument in the recursive call is the “tail” (think, Rest) of the
original argument. An example is a recursively defined version of the built-in Length function.
The idea is that the length of a list is always one greater than the length of its tail.

In[1]:= length@lis_D := length@Rest@lisDD + 1

Applying length to a list, however, leads to trouble.

In[2]:= length@8a, b, c<D

Rest::norest : Cannot take the rest of expression 8< with length zero. à

Rest::argx : Rest called with 0 arguments; 1 argument is expected. à

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

Well, perhaps it is already obvious, but what we are experiencing is one of the most common
errors in defining functions recursively – we forgot the base cases. For length, there is just one
base case, the empty list.

In[3]:= length@8<D := 0

Now length works as intended.

In[4]:= length@8a, b, c<D

Out[4]= 3

Recursion with multiple arguments
Recursion is of course used for functions with multiple arguments as well. The following func-
tion addPairsAlis1, lis2E takes two lists of numbers of equal length and returns a list contain-

ing the pairwise sums; think vector addition.
The idea is to apply addPairs recursively to the tails of both lists. The base case consists of

the two empty lists.

In[5]:= addPairs@8<, 8<D := 8<

7.2 Thinking recursively 235

In[6]:= addPairs@8x1_, r1___<, 8x2_, r2___<D :=

Join@8x1 + x2<, addPairs@8r1<, 8r2<DD

In[7]:= addPairs@81, 2, 3<, 84, 5, 6<D

Out[7]= 85, 7, 9<

In[8]:= addPairs@8x1, y1, z1<, 8x2, y2, z2<D

Out[8]= 8x1 + x2, y1 + y2, z1 + z2<

Multiplying pairwise elements
Recursive calls do not always have to be on the tail of the original argument. Any smaller list will
do. The function multPairwise multiplies together successive pairs of elements in a list. The
trick is to make the recursive call on the tail of the tail.

In[9]:= multPairwise@8<D := 8<
multPairwise@8x_, y_, r___<D :=

Join@8x y<, multPairwise@8r<DD

In[11]:= multPairwise@83, 9, 17, 2, 6, 60<D

Out[11]= 827, 34, 360<

Note, we are doing no argument checking in these basic examples as we are focused on how
recursion works at this point. So, for example, the multPairwise function above fails for lists
containing an odd number of elements.

In[12]:= multPairwise@83, 9, 17, 2, 6, 60, 12<D

Join::heads : Heads List and multPairwise at positions 1 and 2 are expected to be the same. à

Join::heads : Heads List and multPairwise at positions 1 and 3 are expected to be the same. à

Join::heads : Heads List and multPairwise at positions 1 and 4 are expected to be the same. à

General::stop : Further output of Join::heads will be suppressed during this calculation. à

Out[12]= Join@827<, 834<, 8360<, multPairwise@812<DD

Some of the exercises extend these examples asking you to create additional rules to deal with
unintended arguments as well as exceptional or pathological cases.

Dealing cards, recursively
Recall the deal function defined in Chapter 5: deal@nD produces a list of n playing cards ran-
domly chosen from a 52-card deck. Here is how we might write this function recursively.

First, dealing zero cards is easy.

In[13]:= deal@0D := 8<

Now, suppose we have dealt n - 1 cards; how do we deal n? Just randomly deal a card from the

236 Recursion

remaining 52 - Hn - 1L = 53 - n. To do this, take the complement of the card deck with the dealt
cards and add it to the list of cards already dealt.

In[14]:= deal@n_D := Module@8dealt = deal@n - 1D<,
Append@dealt, RandomChoice@Complement@cardDeck, dealtDDD

D

Here again is the cardDeck function defined earlier in Chapter 5.

In[15]:= cardDeck = Flatten@Outer@List, 8®, ©, ™, ´<,
Join@Range@2, 10D, 8�, �, �, �<DD, 1D;

And here is the recursive deal.

In[16]:= deal@5D

Out[16]= 88´, �<, 8™, 2<, 8´, �<, 8™, 4<, 8®, 9<<

Finding maxima
Given a list of numbers, the function maxima from Section 5.4 produces a list of those numbers
greater than all those that precede them.

In[17]:= maxima@89, 2, 10, 3, 14, 9<D

Out[17]= 89, 10, 14<

To program this using a recursive definition we start by assuming that we can easily compute
maximaARestAlisEE for any list, lis, and then ask ourselves: how can we compute maximaAlisE

starting from maximaARestAlisEE?

In[18]:= maxima@Rest@89, 2, 10, 3, 14, 9<DD

Out[18]= 82, 10, 14<

The answer is to remove any values not greater than FirstAlisE, then put FirstAlisE at the

beginning of the result.

In[19]:= Select@%, Ò > 9 &D

Out[19]= 810, 14<

In[20]:= Join@89<, %D

Out[20]= 89, 10, 14<

Again, the base case needs to be accounted for, and we end up with the following:

In[21]:= Clear@maximaD
maxima@8<D := 8<

In[23]:= maxima@8x_, r___<D := Join@8x<, Select@maxima@8r<D, Ò > x &DD

7.2 Thinking recursively 237

In[24]:= maxima@83, 6, 2, 1, 8, 7, 12<D

Out[24]= 83, 6, 8, 12<

The lesson of this section – and it is an important one – is not to worry about how the recur-
sive cases are computed; assume that they work, and just think about how to compute the value
you want from the result of the recursive call.

Higher-order functions
Many of the built-in functions discussed in Chapter 5 could be written as user-defined functions
using recursion. Although they may not be as efficient as the built-in functions, creating them
will give you good practice with recursion and should also give you some insight into how these
functions operate.

We start with Map. We will call our version map. mapA f, lisE applies f to each element of the

list lis. This is a simple recursion on the tail of lis: if we assume that mapA f, RestAlisEE works,

then mapA f, lisE is easily obtained from it by joining fAFirstAlisEE to the beginning.

In[25]:= map@f_, 8<D := 8<
map@f_, 8x_, y___<D := Join@8f@xD<, map@f, 8y<DD

We can quickly check that our map does what was intended.

In[27]:= map@f, 81, 2, 3<D

Out[27]= 8f@1D, f@2D, f@3D<

We give one more example of a built-in function that can be defined using recursion, and leave
the rest as exercises. NestA f, x, nE applies f to x, n times. The recursion is, obviously, on n.

In[28]:= nest@f_, x_, 0D := x

nest@f_, x_, n_D := f@nest@f, x, n - 1DD

This iterates the Sin function four times starting with initial value q.

In[30]:= nest@Sin, q, 4D

Out[30]= Sin@Sin@Sin@Sin@qDDDD

Exercises

1. Create a recursive function to reverse the elements in a flat list.

2. Create a recursive function to transpose the elements of two lists. Write an additional rule to
transpose the elements of three lists.

3. Write a recursive function sumOddElementsAlisE that adds up only the elements of the list lis that

are odd integers. lis may contain even integers and nonintegers.

238 Recursion

4. Write a recursive function sumEveryOtherElementAlisE that adds up lis@@1DD, lis@@3DD,

lis@@5DD, etc. Each of these elements is a number. lis may have any number of elements.

5. Write a function addTriplesAlis1, lis2, lis3E that is like addPairs in that it adds up the

corresponding elements of the three equal-length lists of numbers.

6. Write a function multAllPairsAlisE that multiplies every consecutive pair of integers in the

numerical list lis. Add a rule that issues an appropriate warning message if the user supplies a list
with an odd number of elements.

In[1]:= multAllPairs@83, 9, 17, 2, 6, 60<D

Out[1]= 827, 153, 34, 12, 360<

7. Write the function maxPairsAlis1, lis2E which, for numerical lists of equal length, returns a list of

the larger value in each corresponding pair.

8. The function riffleAlis1, lis2E, which merges two lists of equal length, can be defined as follows:

In[2]:= riffle@lis1_, lis2_D := Flatten@Transpose@8lis1, lis2<DD

In[3]:= riffle@8a, b, c<, 8x, y, z<D

Out[3]= 8a, x, b, y, c, z<

Rewrite riffle using recursion.

9. maxima can also be computed more efficiently with an auxiliary function.

maxima@8<D := 8<
maxima@8x_, r___<D := maxima@x, 8r<D

The two-argument version has this meaning: maximaAx, lisE gives the maxima of the list

JoinA8x<, lisE. Define it. (Hint: the key point about this is that maximaAx, lisE is equal to

maximaAx, RestAlisEEif x ¥ FirstAlisE.) Compare its efficiency with the version in the text.

10. Write recursive definitions for Fold , FoldList, and NestList.

7.3 Dynamic programming
The function F defined in Section 7.1 is simple, but quite “expensive” to execute. The reason for
this excessive cost is easy to see – in the course of computing F@nD, there are numbers m < n for
which F@mD is computed many times. For instance, F@n -2D is computed twice – it is called
from F@nD and also from F@n -1D; F@n -3Dis computed three times; and F@n -4D five times.
The number of calls to the Fibonacci function to compute F@nD is F@nD itself! This grows expo-
nentially and is therefore quite impractical for large n. Even computing the first thirty Fibonacci
numbers using this approach will be slow.

This continual recalculation can be eliminated by memorizing these values as they are com-
puted using a technique known as dynamic programming. The idea is to dynamically create rules

7. 239

during evaluation. Using dynamic programming, a delayed assignment whose right-hand side is
an immediate assignment of the same name is defined.

f@x_D := f@xD = right-hand side

When an expression matches this rule, term rewriting creates a Set function (immediate assign-
ment) with the specific argument value which, upon evaluation of the right-hand side, becomes a
new rule. Since the global rule base is always consulted during evaluation, storing results as rules
can cut down on computation time, especially in recursive computations. It is like caching
values, but in this case we are caching rules.

In this way, dynamic programming can be described as a method in which rewrite rules are
added to the global rule base dynamically, that is, during the running of a program. A well-known
application of this is to speed up the computation of Fibonacci numbers.

The following definition of fibD (D for dynamic) is just like the definition of F, but it adds a
rule fibD@nD = fibD@n -2D +fibD@n -1D to the global rule base the first time the value is
computed. Since Mathematica always chooses the most specific rule to apply when rewriting,
whenever a future request for fibD@nD is made, the new rule will be used instead of the more
general rule in the program. Thus, for every n, fibD@nD will be computed just once; after that, its
value will be found in the rule base.

In[1]:= Clear@fibDD

In[2]:= fibD@1D = 1;
fibD@2D = 1;

fibD@n_D := fibD@nD = fibD@n - 2D + fibD@n - 1D

We can see the change in the trace of fibD@4D as compared with that for F in Section 7.1. Specifi-
cally, there is only one evaluation of fibD@3D now, since the second evaluation of it is just a use
of a global rule. Only those expressions in the following computation that match the pattern
given by the second argument to TracePrint will be shown: either fibD with an integer
argument or an assignment for fibD.

In[5]:= TracePrint@fibD@4D,
fibD@_IntegerD HfibD@_D = fibD@_D + fibD@_DLD

fibD@4D

fibD@4D = fibD@4 - 2D + fibD@4 - 1D

fibD@2D

fibD@3D

240 Recursion

fibD@3D = fibD@3 - 2D + fibD@3 - 1D

fibD@1D

fibD@2D

fibD@3D

fibD@4D

Out[5]= 3

Another way to understand what is going on is to look at the global rule base after evaluating
fibD@4D.

In[6]:= ? fibD

Global`fibD

fibD@1D = 1

fibD@2D = 1

fibD@3D = 2

fibD@4D = 3

fibD@n_D := fibD@nD = fibD@n - 2D + fibD@n - 1D

The cost of executing fibD is dramatically lower (see Table 7.1). It is linear in n, rather than in
F@nD which grows exponentially.

Furthermore, these costs are only for the first time fibD@nD is computed; in the future, we can
find fibD@nD for free, or rather, for the cost of looking it up in the global rule base.

In[7]:= Timing@fibD@100DD

Out[7]= 80.000543, 354224848179261 915 075<

Table 7.1. Number of additions in Fibonacci algorithm using dynamic programming

n 5 10 15 20 25

additions of fibD@nD 3 8 13 18 23

Dynamic programming can be a useful technique, but needs to be used with care. It will entail
some increased cost in memory, as the global rule base is expanded to include the new rules.
Furthermore, you could still bump up against the built-in limits with a large computation.

7.3 Dynamic programming 241

In[8]:= fibD@1000D

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

In such cases, if you know that the algorithm is correct, you can temporarily increase the
recursion limit. But you first need to clear out the values to fibD that were assigned during the
previous, failed computation.

In[9]:= Clear@fibDD

In[10]:= fibD@1D := 1;
fibD@2D := 1

fibD@n_D := fibD@nD = fibD@n - 2D + fibD@n - 1D

In[13]:= Block@8$RecursionLimit = ¶<,
fibD@1000D

D

Out[13]= 43466557686937456435688527 675 040 625 802 564 660 517 371 780 Ö
402481729089536555417949 051 890 403 879 840 079 255 169 295 Ö
922593080322634775209689 623 239 873 322 471 161 642 996 440 Ö
906533187938298969649928 516 003 704 476 137 795 166 849 228 Ö
875

Exercises

1. An Eulerian number, denoted [
n
k
_, gives the number of permutations with k increasing runs of

elements. For example, for n = 3 the permutations of {1,2,3} contain four increasing runs of length 1,

namely {1,3,2}, {2,1,3}, {2,3,1}, and {3,1,2}. Hence, [
3

1

_ = 4.

In[1]:= Permutations@81, 2, 3<D

Out[1]= 881, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

This can be programmed using the following recursive definition (Graham, Knuth, and Patashnik
1994), where n and k are assumed to be integers:

[
n
k
_ = Hk + 1L [

n - 1

k
_ + Hn - kL [

n - 1

k - 1

_, for n > 0,

[
0

k
_ =

1 k = 0

0 k � 0.

Create a function EulerianNumberAn, kE. You can check your work against Table 7.2 which

displays the first few Eulerian numbers.

242 Recursion

Table 7.2. Eulerian number triangle

[
n
0

_ [
n
1

_ [
n
2

_ [
n
3

_ [
n
4

_ [
n
5

_ [
n
6

_ [
n
7

_ [
n
8

_

0 1

1 1 0

2 1 1 0

3 1 4 1 0

4 1 11 11 1 0

5 1 26 66 26 1 0

6 1 57 302 302 57 1 0

7 1 120 1191 2416 1191 120 1 0

8 1 247 4293 15 619 15 619 4293 247 1 0

Because of the triple recursion, you will find it necessary to use a dynamic programming implemen-
tation to compute any Eulerian numbers of even modest size.

Hint: Although the above formulas will compute it, you can add the following rule to simplify some
of the computation:

[
n
k
_ = 0, for k ¥ n

2. Using dynamic programming is one way to speed up the computation of the Fibonacci numbers,
but another is to use a different algorithm. A much more efficient algorithm is based on the follow-
ing identities.

F1 = 1

F2 = 1

F2n = 2Fn-1Fn + Fn
2, for n ¥ 1

F2n+1 = Fn+1
2 + Fn

2, for n ¥ 1

Program a Fibonacci number generating function using these identities.

3. You can still speed up the code for generating Fibonacci numbers in the previous exercise by using
dynamic programming. Do so, and construct tables like those in this section, giving the number of
additions performed for various n by the two programs you have just written.

4. Calculation of the Collatz numbers, as described in Exercise 6 from Section 6.2, can be implemented
using recursion and sped up by using dynamic programming. Using recursion and dynamic
programming, create the function collatz@n, iD, which computes the ith iterate of the Collatz
sequence starting with integer n. Compare its speed with that of your original solution.

7.3 Dynamic programming 243

7.4 Classical examples
Merge sort
Sorting the elements of a list is one of the most common and important tasks in computer
science. There are quite a few well-studied algorithms that have been developed for performing
various types of sorting. These include selection sort, insertion sort, bubble sort, quick sort, heap
sort, merge sort, and many others. We have already looked at a rather primitive list sorting
algorithm in Section 4.3 and some elementary sorting algorithms in Section 6.3. In this section,
we will develop an algorithm for merge sort, which is a classical divide-and-conquer algorithm.

The procedure for merge sort consists of three basic steps:
1. split the original list into two parts of roughly equal size;

2. sort each part recursively;

3. finally, merge the two sorted sublists.

We will start with the last step first – creating a function merge that takes two lists, each
assumed to be sorted, and, using recursion, produces a single merged, sorted list. First we deal
with the cases of when either of the two lists is empty.

In[1]:= merge@lis_List, 8<D := lis

merge@8<, lis_ListD := lis

The recursion then is on the tail of the sublists. We use the triple blank to pattern match ra and
rb here so that they can represent zero, one, or more arguments.

In[3]:= merge@8a_, ra___<, 8b_, rb___<D :=

If@a § b,
Join@8a<, merge@8ra<, 8b, rb<DD,
Join@8b<, merge@8a, ra<, 8rb<DD

D

Here are several test cases.

In[4]:= merge@81, 4, 7<, 82, 6, 9, 14<D

Out[4]= 81, 2, 4, 6, 7, 9, 14<

In[5]:= merge@814<, 82, 5, 7, 8<D

Out[5]= 82, 5, 7, 8, 14<

Now we turn to the sorting function. This too will be defined recursively by first dividing the
list into two sublists, performing the sort on each sublist and then merging these two sorted
sublists using the above merge function. Here are the two base cases: the empty list and a list
with a single element in it.

244 Recursion

In[6]:= MergeSort@8<D := 8<;
MergeSort@8x_<D := 8x<;

Here is the recursion.

In[8]:= MergeSort@lis_ListD := ModuleB:div = FloorB
Length@lisD

2
F>,

merge@

MergeSort@Take@lis, divDD, MergeSort@Drop@lis, divDDDF

Let us look at a few test cases to check for correctness and get a sense of the efficiency of our
program.

In[9]:= vecI = RandomInteger@81, 20<, 20D

Out[9]= 86, 20, 5, 5, 4, 2, 18, 19, 20,
11, 7, 11, 5, 10, 15, 6, 9, 10, 6, 2<

In[10]:= MergeSort@vecID

Out[10]= 82, 2, 4, 5, 5, 5, 6, 6, 6, 7,
9, 10, 10, 11, 11, 15, 18, 19, 20, 20<

In[11]:= vecR = RandomReal@80, 1<, 1000D;

In[12]:= Timing@
Block@8$RecursionLimit = ¶<,
MergeSort@vecRD;

DD

Out[12]= 80.083562, Null<

Notice the need to increase the built-in recursion limit for larger computations. This limitation in
our current definitions is due to the facts that both merge and MergeSort use recursion and
that MergeSort has a double recursive call in it. In comparison, the built-in Sort function,
which uses a modified merge sort, is optimized for dealing with large arrays of numbers and is
much, much faster.

In[13]:= Timing@Sort@vecRD;D

Out[13]= 80.000125, Null<

Not surprisingly, Sort can perform this computation about three orders of magnitude faster
than our MergeSort for lists of this size. The double recursion of MergeSort together with the
recursion in the auxiliary merge function has come at a fairly steep cost. The exercises will give
you a chance to refine the MergeSort and improve its efficiency.

7.4 Classical examples 245

Run-length encoding
We now turn to another, somewhat more involved example – programming run-length encod-
ing. runEncode implements a method commonly used to compress large amounts of data in
those cases where the data are likely to contain long sequences (“runs”) of the same value. A good
example is the representation of video images in a computer as collections of color values for the
individual dots, or pixels, in the image. Since video images often contain large areas of a single
color, this representation may lead to lists of hundreds, or even thousands of occurrences of
identical color values, one after another. Such a sequence can be represented very compactly
using just two numbers, the color value and the length of the run.
runEncode compresses a list by dividing it into runs of occurrences of a single element, and

returns a list of the runs, each represented as a pair containing the element and the length of its
run. So the following list,

{9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5}

should produce the following encoding.

889, 5<, 84, 1<, 83, 4<, 85, 6<<

Given a list, lis, we just assume that runEncodeARestAlisEE gives the compressed form of the

tail of lis (call it res), and ask ourselves: how can we compute runEncodeAlisE? Let x be lis@@1DD,

and consider the cases:
1. We define what runEncode should do in the two base cases: when the list is empty and

when the list consists of only one element.

In[14]:= runEncode@8<D := 8<
runEncode@8x_<D := 88x, 1<<

2. res might be 8<, if lis has one element. In this case, lis = 8x< and
runEncodeAlisE = 8x, 1<.

3. If the length of lis is greater than one, res has the form 99 y, k=, …=, and there are two

cases:

Ê y = x: runEncodeAlisE = 99 y, k + 1=, …=

Ê y � x: runEncodeAlisE = 98x, 1<, 9 y, k=, …=

In[16]:= runEncode@8x_, res___<D := Module@8R = runEncode@8res<D, p<,
p = First@RD;
If@x ã First@pD,
Join@88x, pP2T + 1<<, Rest@RDD,
Join@88x, 1<<, RDDD

246 Recursion

In[17]:= runEncode@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[17]= 889, 5<, 84, 1<, 83, 4<, 85, 6<<

This can be made a lot clearer by replacing the last clause above with a transformation rule.

In[18]:= runEncodeT@8x_, res__<D :=

runEncodeT@8res<D ê.88y_, k_<, s___< Ø

If@x == y, 88x, k + 1<, s<, 88x, 1<, 8y, k<, s<D

In[19]:= runEncodeT@8<D := 8<
runEncodeT@8x_<D := 88x, 1<<

In[21]:= runEncodeT@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[21]= 889, 5<, 84, 1<, 83, 4<, 85, 6<<

Mathematica contains a function Split which effectively does run-length encoding, although
it represents the output in a slightly different form from our runEncode functions.

In[22]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[22]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

You could easily convert the output of Split to that produced by our runEncode functions by
mapping the appropriate pure function.

In[23]:= Map@First@Tally@ÒDD &, %D

Out[23]= 889, 5<, 84, 1<, 83, 4<, 85, 6<<

We leave it as an exercise to go in the other direction, that is, convert the output of our runEnÖ
code function to that produced by Split.

Finally, we should mention some efficiency issues. Each of the run-length encoding implemen-
tations presented in this section is reasonably fast for relatively small inputs, vectors of length less
than a few hundred. But for larger vectors and for certain cases, they get quite bogged down,
mostly due to the deep recursion needed in these cases. This can be seen quite plainly as follows:

In[24]:= data = Range@300D;

In[25]:= runEncode@dataD

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

Join::heads : Heads List and If at positions 1 and 2 are expected to be the same. à

Out[25]= If@1 ã 82, 1<, Join@881, p$191261P2T + 1<<, Rest@R$191261DD,
Join@881, 1<<, R$191261DD

A possible solution would be to acknowledge the deep recursion here and increase the built-in
recursion limit.

7.4 Classical examples 247

In[26]:= Block@8$RecursionLimit = ¶<,
Timing@runEncode@dataD;DD

Out[26]= 80.005932, Null<

But trying larger examples shows that the underlying algorithm, although mostly linear in the
size of the input, is quite slow for input as small as about 10 000 in length.

In[27]:= BlockA8$RecursionLimit = ¶<,

TableATimingArunEncodeARangeA2k 103EE;E@@1DD, 8k, 0, 3<EE

Out[27]= 80.041358, 0.10847, 0.393503, 1.55499<

In such cases it is best to rethink your algorithm and either try to refine it or find a different and
better implementation. In the case of run-length encoding, a more direct, functional approach
proves to be much more efficient. Although the following code does not use recursion, we
present it here anyway so the reader can compare it with the recursive functions and perform
some efficiency tests on the various implementations.

Here is an example list we will use to prototype the code.

In[28]:= vec = 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<;

First take overlapping pairs from vec.

In[29]:= Partition@vec, 2, 1D

Out[29]= 889, 9<, 89, 9<, 89, 9<, 89, 9<, 89, 4<, 84, 3<, 83, 3<, 83, 3<,
83, 3<, 83, 5<, 85, 5<, 85, 5<, 85, 5<, 85, 5<, 85, 5<<

Each run ends at the position at which a pair from the above partition contains different elements.

In[30]:= end = Flatten@Position@%, 8a_, b_< ê; a � bDD

Out[30]= 85, 6, 10<

We have to add the positions at the beginning and at the end of the list.

In[31]:= end = Join@80<, end, 8Length@vecD<D

Out[31]= 80, 5, 6, 10, 16<

Here is the ending position paired up with the next ending position for each run.

In[32]:= Partition@end, 2, 1D

Out[32]= 880, 5<, 85, 6<, 86, 10<, 810, 16<<

To indicate where the run starts, not where the previous run ended, we add 1 to each first
coordinate.

In[33]:= runs = Map@Ò + 81, 0< &, %D

Out[33]= 881, 5<, 86, 6<, 87, 10<, 811, 16<<

248 Recursion

Now each pair from runs consists of the starting position and the run length. We can use these
pairs as the second argument to Take as in the following example.

In[34]:= Take@8a, b, c, d, e<, 83, 5<D

Out[34]= 8c, d, e<

So, finally, here is the list of runs.

In[35]:= Map@Take@vec, ÒD &, runsD

Out[35]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

Here then is the function split that produces output identical to the built-in Split.

In[36]:= split@lis_D := Module@8end, t, runs<,
end =
Flatten@Position@Partition@lis, 2, 1D, 8a_, b_< ê; a � bDD;

t = Partition@Join@80<, end, 8Length@lisD<D, 2, 1D;
runs = Map@Ò + 81, 0< &, tD;
Map@Take@lis, ÒD &, runsDD

In[37]:= split@vecD

Out[37]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

This implementation is extremely efficient. For example, here is a binary vector weighted more
heavily with ones.

In[38]:= data = RandomChoiceA8.25, .75< Ø 80, 1<, 105E;

In[39]:= Timing@split@dataD;D@@1DD

Out[39]= 0.386471

By comparison, we see that our split is only about one order of magnitude slower than the
built-in function, which is optimized for such tasks.

In[40]:= Timing@Split@dataD;D@@1DD

Out[40]= 0.01539

And here is a quick check to make sure our result is consistent with the built-in function.

In[41]:= split@dataD == Split@dataD

Out[41]= True

7.4 Classical examples 249

Exercises
1. Modify one of the runEncode functions so that it produces output in the same form as the built-in

Split function.

In[1]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[1]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

2. A slightly more efficient version of runEncode uses a three-argument auxiliary function.

runEncode@8<D := 8<
runEncode@8x_, r___<D := runEncode@x, 1, 8r<D

runEncodeAx, k, 8r<E computes the compressed version of 8x, x, x, …, x, r<, where the xs

are given k times. Define this three-argument function. Using the Timing function, compare the
efficiency of this version with our earlier version; be sure to try a variety of examples, including lists
that have many short runs and ones that have fewer, but longer runs. Use Table to generate lists
long enough to see any difference in speed.

3. Write the function runDecode, which takes an encoded list produced by runEncode and returns
its unencoded form.

In[2]:= runDecode@889, 5<, 84, 1<, 83, 4<, 85, 6<<D

Out[2]= 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<

4. The MergeSort function defined in this section becomes quite slow for moderately sized lists.
Perform some experiments to determine if the bottleneck is caused mostly by the auxiliary merge
function or the double recursion inside MergeSort itself. Once you have identified the cause of the
problem, try to rewrite MergeSort to overcome the bottleneck issues.

250 Recursion

8

Numerics
Types of numbers · Digits and number bases · Random numbers · Precision and accuracy ·

Representation of approximate numbers · Exact vs. approximate numbers · High precision vs.
machine precision · Computations with mixed number types · Working with precision and
accuracy · Arrays of numbers · Sparse arrays · Packed arrays · Newton’s method revisited ·

Radius of gyration of a random walk · Statistical tests

Of the many data types that are used in programming – numbers, strings, symbols, lists – num-
bers are perhaps the most familiar. You can work with all kinds of numbers in Mathematica, but
what distinguishes it from traditional programming languages and other computational systems
is that with it you can operate on numbers of any size and to any degree of precision. In this
chapter we will explore some of the issues related to working with numerical quantities and
show how you can incorporate these ideas into programs that involve numerical computations
to gain greater control over the precision and accuracy of your results as well as to improve the
efficiency of your numerical computations and programs.

8.1 Numbers in Mathematica
One of the first things you will notice as you start using Mathematica is the manner in which it
treats numbers compared with other systems such as calculators, traditional programming
languages, and other technical computing software. In most traditional programming languages,
you must declare the type of number your functions can take as an argument. Although Mathemat-
ica automatically handles such details for you an understanding of the different number types and
how they invoke different algorithms is helpful for taking full advantage of Mathematica’s numeri-
cal capabilities and for writing efficient programs.

Mathematica operates differently depending upon the type of input you give it. For example, the
following two inputs each compute sinHp ê 3L but something quite different results.

In[1]:= SinB
p

3
F

Out[1]=
3

2

In[2]:= SinB
p

3.0
F

Out[2]= 0.866025

Not only are different kinds of output returned, but Mathematica uses entirely different algorithms
for these two computations. In the first case, it looks up identities involving the sine function and
multiples of p ê 3 and applies the appropriate transformation rule to give an algebraic result. In
the second example, because a floating-point number is involved in the input, a numerical
routine (a series expansion for sine) is used and the computation is carried out to insure a result
with the same precision as the input. In the first case, the exact computation is performed in
software; in the second case, most of the computation is done in the hardware of your computer.

Another important numerical feature involves computations with high-precision numbers.
When you need to, you can raise the number of digits of precision of the numbers with which
you are working. For example, this computes p to 200-digit precision.

In[3]:= N@p, 200D

Out[3]= 3.141592653589793238462643383279502884197169399375105820974Ö
9445923078164062862089986280348253421170679821480865132823Ö
0664709384460955058223172535940812848111745028410270193852Ö
11055596446229489549303820

You can extend such arbitrary-precision computations to Mathematica’s built-in functions. Con-

sider the numerical solution of the van der Pol equation x££HtL- 1
5
I1 - x2HtLM x£HtL+ xHtL = 0 with

the given initial conditions.

In[4]:= soln = NDSolveA9x££@tD - 1 ê 5 I1 - x@tD2M x£@tD + x@tD == 0,

x@0D == 1, x£@0D == 0=, x, 8t, 0, 30<E

Out[4]= 88x Ø InterpolatingFunction@880., 30.<<, <>D<<

The solution is represented as an interpolating function, one that passes through the solution
over the range for t from 0 to 30. Here is a plot of the original function evaluated at this numeri-
cal solution, essentially giving a visual picture of the error in the solution.

252 Numerics

In[5]:= PlotBx££@tD -
1

5
I1 - x@tD2M x£@tD + x@tD ê.soln,

8t, 0, 30<, PlotRange Ø 9-10-5, 10-5=F

Out[5]=
5 10 15 20 25 30

-0.00001

-5.� 10-6

5.� 10-6

0.00001

By increasing the precision of the internal algorithms used to solve this differential equation, we
can get a more precise solution.

In[6]:= soln24 = NDSolveB

:Hx£L£@tD -
1

5
I1 - x@tD2M x£@tD + x@tD == 0, x@0D == 1, x£@0D == 0>,

x, 8t, 0, 30<, WorkingPrecision Ø 26, PrecisionGoal Ø 24F

Out[6]= 88x Ø InterpolatingFunction@
880, 30.000000000000000000000000<<, <>D<<

The plot of the original function evaluated at this higher-precision solution clearly shows much
smaller error obtained with soln24. Note the scale on the vertical axis.

In[7]:= PlotBx££@tD -
1

5
I1 - x@tD2M x£@tD + x@tD ê.soln24,

8t, 0, 30<, PlotRange Ø 9-10-7, 10-7=F

Out[7]=
5 10 15 20 25 30

-1.� 10-7

-5.� 10-8

5.� 10-8

1.� 10-7

Working with numbers and understanding issues of precision and accuracy and the interplay
between your machine’s hardware and software are essential to working with any computational
system or programming language. In this chapter we will discuss all these issues to help you to
perform efficient computations and write fast code.

8.1 Numbers in Mathematica 253

Types of numbers
There are four kinds of numbers represented in Mathematica – integer, rational, real, and complex.
In addition, mathematical constants like p and ‰ are symbols but with numerical properties.
Integers are considered to be exact and are represented without a decimal point; rational num-
bers are quotients of integers and are also considered to be exact.

As discussed in Section 2.1, numbers are atomic expressions, meaning they cannot be broken
down into smaller parts. Use the Head function to identify the type of number you are working
with.

In[8]:= MapBHead, :3,
22

7
, 3.14, 2.34 + 2.09618 I, p>F

Out[8]= 8Integer, Rational, Real, Complex, Symbol<

Use FullForm to see how Mathematica represents these objects internally.

In[9]:= MapBFullForm, :3,
22

7
, 3.14, 2.34 + 2.09618 I, p>F

Out[9]= 83, Rational@22, 7D, 3.14`, Complex@2.34`, 2.09618`D, Pi<

Rational numbers As can be seen in the above example, Mathematica simplifies rational numbers to
lowest terms and leaves them as exact numbers.

This representation of rational numbers as a pair of integers has one more consequence. If you
need to pattern match with rational numbers it is important to be aware of their internal represen-
tation. For example, trying to pattern match with x_ ê y_ will not work.

In[10]:=
3

4
ê.

x_

y_
Ø 8x, y<

Out[10]=
3

4

But pattern matching instead with Rational works fine.

In[11]:=
3

4
ê.Rational@x_, y_D Ø 8x, y<

Out[11]= 83, 4<

The pattern matcher works on the internal form of expressions. So although two expressions
may be semantically equivalent, if their underlying structure is different, the pattern matcher will
distinguish between them. In other words, the pattern matcher is syntactic, not semantic.

Real numbers Any number containing a decimal point is classified as a real number in Mathemat-
ica. These numbers are not considered exact and hence are often referred to as approximate num-

254 Numerics

bers. This often leads to confusion for new users of Mathematica. You may know that the number
6.0 is identical to the number 6, from a mathematical perspective, but from the perspective of the
floating-point unit (FPU) of your computer they are quite different both in terms of their represen-
tation and in terms of the algorithms that are used to do arithmetic with them.

One way to see that these numbers are different is to compare them using Equal (ã) and
SameQ(===).

In[12]:= 6 ã 6.0

Out[12]= True

In[13]:= 6 === 6.0

Out[13]= False

Equal effectively converts the integer 6 to an approximate number and then compares the last
seven binary digits (roughly the last two decimal digits) of the two numbers. SameQ, on the other
hand, checks to see if they are identical expressions. Since one is an exact integer and the other is
an approximate real number, SameQ returns False.

We will have much more to say about approximate numbers including a full discussion of
precision and accuracy in Section 8.2.

Complex numbers Complex numbers are of the form a + bi, where a and b are any numbers –

integer, rational, or real. Mathematica represents -1 by the symbols I or Â.

In[14]:= z = 3 + 4 Â

Out[14]= 3 + 4 Â

In[15]:= Head@zD

Out[15]= Complex

In[16]:= FullForm@zD
Out[16]//FullForm=

Complex@3, 4D

You can add and subtract complex numbers.

In[17]:= z + H2 - ÂL

Out[17]= 5 + 3 Â

You can find the real and imaginary parts of any complex number.

In[18]:= 8Re@zD, Im@zD<

Out[18]= 83, 4<

8.1 Numbers in Mathematica 255

The absolute value of any number is its distance to the origin in the complex plane. The conju-
gate can be thought of as the reflection of the complex number in the real axis of the complex
plane.

In[19]:= 8Conjugate@zD, Abs@zD<

Out[19]= 83 - 4 Â, 5<

The phase angle is given by the argument.

In[20]:= Arg@4 ÂD

Out[20]=
p

2

Each of these properties of complex numbers can be visualized geometrically, as shown in Figure
8.1.

Figure 8.1. Geometric representation of complex numbers in the plane.

z = a + Â b

†z§

z� = a - Â b

argHzL

a
Re

b

Im

For purposes of pattern matching, complex numbers are quite similar to rational numbers. A
complex number z = a + b Â is treated as a single object for many operations, and is stored as
ComplexAa, bE, hence x_ +Â y_ will not match with a complex number.

In[21]:= MatchQ@2 - 3 I, a_ + I b_D

Out[21]= False

In[22]:= FullForm@2 - 3 ID
Out[22]//FullForm=

Complex@2, -3D

256 Numerics

To match a complex number z, use the pattern Complex@x_, y_D (or z_Complex) and use
Re@zD and Im@zD to extract the real and imaginary parts. This is particularly important if you
need to plot complex numbers in the plane. For example, here are the roots of a cyclotomic
polynomial.

In[23]:= Clear@zD;
roots = NSolve@Cyclotomic@11, zD, zD

Out[24]= 88z Ø -0.959493 - 0.281733 Â<, 8z Ø -0.959493 + 0.281733 Â<,
8z Ø -0.654861 - 0.75575 Â<, 8z Ø -0.654861 + 0.75575 Â<,
8z Ø -0.142315 - 0.989821 Â<, 8z Ø -0.142315 + 0.989821 Â<,
8z Ø 0.415415 - 0.909632 Â<, 8z Ø 0.415415 + 0.909632 Â<,
8z Ø 0.841254 - 0.540641 Â<, 8z Ø 0.841254 + 0.540641 Â<<

Using a replacement rule, the values of each root are substituted into the list 8Re@zD, Im@zD<
to create coordinate points in the plane.

In[25]:= pts = 8Re@zD, Im@zD< ê. roots

Out[25]= 88-0.959493, -0.281733<, 8-0.959493, 0.281733<,
8-0.654861, -0.75575<, 8-0.654861, 0.75575<,
8-0.142315, -0.989821<, 8-0.142315, 0.989821<,
80.415415, -0.909632<, 80.415415, 0.909632<,
80.841254, -0.540641<, 80.841254, 0.540641<<

In[26]:= Graphics@8PointSize@MediumD, Point@ptsD<, Axes Ø AutomaticD

Out[26]=
-0.5 0.5

-1.0

-0.5

0.5

1.0

Mathematical constants Built-in constants such as p, ‰, Â, and Degree are not treated as explicit
numbers by Mathematica.

In[27]:= 8Head@pD, NumberQ@pD<

Out[27]= 8Symbol, False<

These mathematical constants have an attribute that essentially alerts Mathematica to the fact that
they are numeric in nature. Here is a list of all those built-in symbols that have the Constant
attribute; this uses FunctionsWithAttribute defined in Section 5.6.

8.1 Numbers in Mathematica 257

In[28]:= FunctionsWithAttribute@ConstantD

Out[28]= 8Catalan, ChampernowneNumber, Degree, E, EulerGamma,
Glaisher, GoldenRatio, Khinchin, MachinePrecision, Pi<

All mathematical constants and any expressions that are explicit numbers are considered
numeric and will return a value of True when NumericQ is applied to them.

In[29]:= Map@NumericQ, 8Catalan, E, Pi<D

Out[29]= 8True, True, True<

For purposes of comparison, Mathematica converts any symbol with this attribute to a real num-
ber, using what it perceives to be necessary precision.

In[30]:= RandomReal@8f, ‰<D

Out[30]= 1.73228

In[31]:= ‰p > p‰

Out[31]= True

In[32]:= NumericQ@p‰D

Out[32]= True

Note, in particular, that the symbol ¶ is not numeric.

In[33]:= NumericQ@¶D

Out[33]= False

If you have to distinguish between explicit numbers and symbols that represent numbers, then
use NumberQ .

In[34]:= Map@NumberQ, 83.14, p<D

Out[34]= 8True, False<

Digits and number bases
To extract a list of the digits of a number use either IntegerDigits or RealDigits .

In[35]:= IntegerDigits@1293D

Out[35]= 81, 2, 9, 3<

In[36]:= RealDigits@N@EulerGammaDD

Out[36]= 885, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 9<, 0<

Numbers in base 10 can be displayed in other bases by means of the BaseForm function. For
example, the following displays 18 in base 2.

258 Numerics

In[37]:= BaseForm@18, 2D
Out[37]//BaseForm=

100102

The operator b^ ^n takes the number n in base b and converts it to base 10.

In[38]:= 2^^10010

Out[38]= 18

The letters of the alphabet are used for numbers in bases larger than 10. For example, here are
the numbers 1 through 20 in base 16.

In[39]:= Table@BaseForm@j, 16D, 8j, 1, 20<D

Out[39]= 8116, 216, 316, 416, 516, 616, 716, 816, 916, a16,
b16, c16, d16, e16, f16, 1016, 1116, 1216, 1316, 1416<

Numbers other than integers can be represented in bases different from 10. Here are the first
few digits of p in base 2.

In[40]:= BaseForm@N@pD, 2D
Out[40]//BaseForm=

11.001001000011111112

Recall that Mathematica is only displaying six significant decimal digits while storing quite a few
more. In the exercises you are asked to convert the base 2 representation back to base 10. You will
need the digits from the base 2 representation, which are obtained with the RealDigits
function.

In[41]:= RealDigits@N@pD, 2D

Out[41]= 881, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,

1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0<, 2<

The 2 in this last result indicates where the binary point is placed and can be stripped off this list
by wrapping First around the expression RealDigits@N@pD, 2D.

You are not restricted to integral bases such as in the previous examples. The base can be any
real number greater than one. For example:

In[42]:= RealDigits@N@pD, N@GoldenRatioDD

Out[42]= 881, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0<, 3<

8.1 Numbers in Mathematica 259

Random numbers
Statistical work and numerical experimentation often require random numbers to test hypothe-
ses. Several different random number functions are used to generate random numbers in various
ranges, domains, and distributions.

Using RandomReal without any arguments will generate a uniformly distributed random
real number between 0 and 1.

In[43]:= RandomReal@D

Out[43]= 0.225009

RandomReal can be given a range of numbers. For example, this generates a random real in the
range 0 to 100.

In[44]:= RandomReal@80, 100<D

Out[44]= 41.6008

Use a second argument to create vectors or arrays of random numbers.

In[45]:= RandomReal@8-10, 10<, 812<D

Out[45]= 83.48021, 7.14373, -4.43218, 2.47535, 4.67863, -4.43861,
4.85942, 9.88515, 6.85049, -0.90122, -1.10244, -2.11616<

In[46]:= RandomReal@1, 85, 5<D êê MatrixForm
Out[46]//MatrixForm=

0.830433 0.144071 0.161864 0.177618 0.541445
0.993166 0.786002 0.550678 0.62231 0.790748
0.683565 0.853041 0.481592 0.0215971 0.584457
0.481247 0.41259 0.567719 0.639649 0.231998
0.224393 0.266376 0.83076 0.526745 0.716633

Similar functions are available for generating random integers and complex numbers; they have
the same syntax as RandomReal .

In[47]:= RandomInteger@8-100, 100<, 88<D

Out[47]= 8-26, 66, -31, 26, 82, -54, 17, 7<

In[48]:= RandomComplex@D

Out[48]= 0.273891 + 0.242711 Â

A good random number generator will distribute random numbers evenly over many trials.
For example, this generates a list of 10 000 integers between 0 and 9.

In[49]:= numbers = RandomInteger@80, 9<, 810 000<D;

To plot of the frequency with which each of the digits 0 through 9 occur start by tallying the
frequency of each integer and sorting on the first number in each pair.

260 Numerics

In[50]:= snumbers = Sort@Tally@numbersDD

Out[50]= 880, 1004<, 81, 983<, 82, 1051<, 83, 959<, 84, 954<,
85, 964<, 86, 1024<, 87, 1023<, 88, 1041<, 89, 997<<

In[51]:= BarChart@Map@Last, snumbersD, ChartLabels Ø Range@0, 9D,
ChartElementFunction Ø "FadingRectangle"D

Out[51]=

Each of the numbers 0 through 9 occurs roughly one-tenth of the time. You would not want these
numbers to occur exactly one-tenth of the time, as there would be no randomness in this. In fact,
for a uniform distribution of the numbers 0 through 9, any sequence of 10 000 digits is equally as
likely to occur as any other sequence of 10 000 digits. A sequence of 10 000 numbers that con-
tains exactly 1000 occurrences of the digit 0 followed by 1000 occurrences of the digit 1, followed
by 1000 occurrences of the digit 2, etc., is no more likely than the sequence that contains ten
thousand 7s, for example.

In addition to working with uniformly distributed random numbers (the default for
RandomReal), you can also work with any of the built-in distributions or even your own, user-
defined distribution. RandomVariate is designed for generating numbers for any distribution,
continuous or discrete, univariate or multivariate. For example, suppose you wished to work
with the normal (or Gaussian) distribution. Here are 2500 points in 3-space, normally distributed
about the origin with standard deviation one.

In[52]:= Graphics3D@88Opacity@0.4D, Sphere@80, 0, 0<, 3D<,
Point@RandomVariate@NormalDistribution@0, 1D, 82500, 3<DD<D

Out[52]=

8.1 Numbers in Mathematica 261

This gives ten random numbers using the c2 distribution with four degrees of freedom.

In[53]:= RandomVariate@ChiSquareDistribution@4D, 10D

Out[53]= 83.46865, 6.37075, 8.29378, 5.57685, 1.89799,
2.03538, 1.71713, 8.30217, 1.99303, 0.351816<

Additional functions are available for generating random samples from lists, with or without
replacement. For example, RandomChoice selects elements from a list with replacement. That
can be a list of numbers or any arbitrary expressions.

In[54]:= RandomChoice@8"red", "blue", "green"<, 20D

Out[54]= 8red, blue, blue, blue, green, blue, red, red, red, red, green,
blue, red, green, green, blue, green, green, green, green<

Randomly choosing from the list 81, -1< can be used to create step directions in a one-dimen-
sional random walk. A value of 1 indicates a step of unit length to the right and a value of -1

indicates a step to the left.

In[55]:= RandomChoice@81, -1<, 812<D

Out[55]= 81, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1<

The random walk is then created by generating running sums, or accumulating the step
directions.

In[56]:= Accumulate@%D

Out[56]= 81, 2, 1, 2, 3, 2, 3, 4, 5, 6, 5, 4<

In[57]:= walk1D@steps_D := Accumulate@RandomChoice@81, -1<, 8steps<DD

Visualizing with ListLinePlot shows the displacement from the origin on the vertical axis
and the number of steps on the horizontal axis.

In[58]:= ListLinePlot@walk1D@20000DD

Out[58]=

5000 10 000 15 000 20 000

-150

-100

-50

RandomSample, on the other hand, selects without replacement and so its output is limited
by the size of the list from which you are selecting. For example, this generates a random permuta-
tion on the first twenty integers.

262 Numerics

In[59]:= RandomSample@Range@20D, 20D

Out[59]= 817, 3, 19, 9, 15, 20, 13, 2,
10, 11, 8, 6, 16, 5, 4, 12, 1, 7, 18, 14<

Weights can be assigned in both RandomChoice and RandomSample. This chooses ten 0s
and 1s, with a 25% chance of a 0 being chosen and a 75% chance of a 1.

In[60]:= RandomChoice@80.25, 0.75< Ø 80, 1<, 10D

Out[60]= 80, 1, 1, 1, 1, 0, 1, 1, 1, 1<

Using a similar syntax to RandomReal and RandomInteger, you can create vectors, arrays,
and tensors of random numbers.

In[61]:= RandomChoice@80, 1<, 84, 4<D êê MatrixForm
Out[61]//MatrixForm=

0 0 1 1

0 0 1 1

1 0 0 1

0 1 0 1

Exercises
1. Define a function complexToPolar that converts complex numbers to their polar representa-

tions. Then, convert the numbers 3 + 3Â and ‰pÂê3 to polar form.

2. Using the built-in Fold function, write a function convertAlis, bE that accepts a list of digits in

any base b (less than 20) and converts it to a base 10 number. For example, 11012 is 13 in base 10, so
your function should handle this as follows:

In[1]:= convert@81, 1, 0, 1<, 2D

Out[1]= 13

3. Create a function to compute the sum of the digits of any integer. Write an additional rule to give
the sum of the base-b digits of an integer. Then use your function to compute the Hamming weight of
any integer: the Hamming weight of an integer is given by the number of 1s in the binary representa-
tion of that number.

4. Write a function sumsOfCubes@nD that takes a positive integer argument n and computes the
sums of cubes of the digits of n (Hayes 1992).

5. Use NestList to iterate the process of summing cubes of digits, that is, generate a list starting with
an initial integer of the successive sums of cubes of digits. For example, starting with 4, the list
should look like: 84, 64, 280, 520, 133, …<. Note, 64 = 4

3, 280 = 6
3 + 4

3, etc. Extend the list
for at least 15 values and make an observation about any patterns you notice. Experiment with other
starting values.

8.1 Numbers in Mathematica 263

6. Binary shifts arise in the study of computer algorithms because they often allow you to speed up
calculations by operating in base 2 or in bases that are powers of 2. Try to discover what a binary
shift does by performing the following shift on 24 (base 10). First get the integer digits of 24 in base 2.

In[2]:= IntegerDigits@24, 2D

Out[2]= 81, 1, 0, 0, 0<

Then, do a binary shift, one place to the right.

In[3]:= RotateRight@%D

Out[3]= 80, 1, 1, 0, 0<

Finally, construct an integer from these binary digits and convert back to base 10.

In[4]:= FromDigits@%, 2D

Out[4]= 12

Experiment with other numbers (including both odd and even integers) and make some conjectures.

7. The survivor@nD function from Section 5.8 can be programmed using binary shifts. This can be
done by rotating the base 2 digits of the number n by one unit to the left and then converting this
rotated list back to base 10. For example, if n = 10, the base 2 representation is 10102; the binary shift
gives 01012; converting this number back to base 10 gives 5, which is the output to survivor@5D.
Program a new survivor function using the binary shift.

8. Using the Dice function from Exercise 9 in Section 4.2, create a function RollDice@D that “rolls”
two dice and displays them side-by-side. Then create an additional rule, RollDice@nD, that rolls a
pair of dice n times and displays the result in a list or row.

9. Create functions walk2D and walk3D that generate two-dimensional and three-dimensional
lattice walks, respectively. For example, the two-dimensional case can use compass directions north,
south, east, west that are represented by the list 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<.

10. A surprisingly simple pseudorandom number algorithm is the linear congruential method. It is quite
easy to implement and has been studied extensively. Sequences of random numbers are generated
by a formula such as the following:

xn+1 = xn b + 1 Hmod mL.

The starting value x0 is the seed, b is the multiplier, and m is the modulus. Recall that 7 mod 5 is the
remainder upon dividing 7 by 5.

In[5]:= Mod@7, 5D

Out[5]= 2

Implement the linear congruential method and test it with a variety of numbers m and b. If you find
that the generator gets in a loop easily, try a large value for the modulus m. See Knuth (1997) for a
full treatment of random number generating algorithms.

11. Implement a quadratic congruential random number generator. The iteration is given by the following,
where a, b, and c are the parameters, m is the modulus, and x0 is the starting value:

xn+1 = Ia xn
2 + b xn + cM mod m

264 Numerics

12. John von Neumann, considered by many to be the “father of computer science,” suggested a
random number generator known as the middle-square method. Starting with a ten-digit integer,
square the initial integer and then extract its middle ten digits to get the next number in the
sequence. For example, starting with 1234567890, squaring it produces 1524157875019052100. The
middle digits are 1578750190, so the sequence starts out 1234567890, 1578750190, 4521624250, ….
Implement a middle square random number generator and then test it on a 1000-number sequence.
Was the “father of computer science” a good random number generator?

13. Information theory, as conceived by Claude Shannon in the 1940s and 1950s, was originally inter-
ested in maximizing the amount of data that can be stored and retrieved over some channel such as
a telephone line. Shannon devised a measure, now called the entropy, that gives the theoretical
maxima for such a signal. Entropy can be thought of as the average uncertainty of a single random
variable and is computed by the following, where pHxL is the probability of event x over a domain X:

HHXL = -�xœX pHxL log2 pHxL

Generate a plot of the entropy (built into Mathematica as Entropy) as a function of success probabil-
ity. You can simulate n trials of a coin toss with probability p using:

RandomVariate@BernoulliDistribution@pD, nD

See Manning and Schütze (1999) for a discussion of entropy in the context of information theory
generally and in natural language processing in particular. Also, see Claude Shannon’s very readable
original paper on the mathematical theory of communication (Shannon 1948).

8.2 Numerical computation
Precision and accuracy
When working with real numbers in any programming language, you are working with inexact,
or approximate quantities. In Mathematica, any number that contains a decimal point is consid-
ered to be an approximate number. An approximate number can be specified explicitly, such as
1.57, or you can use N to get approximations to exact quantities.

In[1]:= e = N@‰D

Out[1]= 2.71828

The precision of an approximate number provides a measure of the relative uncertainty in the
value of that number. This can be represented as the number of significant decimal digits in that
number. Accuracy gives a measure of the absolute size of the uncertainty in the value of a number.
It can be thought of as the number of these digits to the right of the decimal point.

In[2]:= 8Precision@eD, Accuracy@eD<

Out[2]= 8MachinePrecision, 15.5203<

For an exact number, these are both infinite.

8. 265

In[3]:= 8Precision@3 ê 4D, Accuracy@3 ê 4D<

Out[3]= 8¶, ¶<

For arbitrary-precision numbers, you are measuring the size of the relative and absolute errors.

In[4]:= a = 22.111111111111111111;
8Precision@aD, Accuracy@aD<

Out[5]= 819.3446, 18.<

The symbol MachinePrecision is used to indicate a machine-precision number. There is
no measure of the uncertainty of machine-precision numbers since machine-precision arithmetic
does not keep track of significance. As we will see, this is in contrast to arbitrary-precision num-
bers for which Mathematica is able to track the uncertainty.

To see the effective number of digits in the representation of a machine number on your
computer, evaluate $MachinePrecision .

In[6]:= $MachinePrecision

Out[6]= 15.9546

Numbers that can be operated with on your computer’s hardware (typically the FPU) are
called machine numbers. Typically, 64 binary digits (IEEE double floats) are needed to specify a
machine number: one for the sign, eleven for the exponent, and fifty-two for the mantissa
(actually fifty-three, since the leading digit is implicitly taken as zero). The value of
$MachinePrecision is H64 - 11L log

10
2, giving machine numbers of about 16 decimal digits.

In[7]:= 53 Log@10, 2D êê N

Out[7]= 15.9546

The reason we refer to these numbers as “approximate” is that there is some uncertainty about
their value. To be more precise about this, an approximate number x is one in which the value of

x lies somewhere inside of an interval x - d
2

 to x + d
2

 for some uncertainty d. A number with

precision p is then defined to have uncertainty x 10
-p.

In[8]:= p ê. Solve@d == Abs@xD 10-p, pD
Solve::ifun : Inverse functions are being used by Solve, so some solutions

may not be found; use Reduce for complete solution information. à

Out[8]= :-
LogB d

Abs@xD
F

Log@10D
>

In other words, the precision of a real number x is given by - log
10
Hd ê x L for some uncertainty d.

So we could manually compute the precision of e above using an uncertainty of 10
-15, which is

approximately what Mathematica assumes for machine-precision numbers.

266 Numerics

In[9]:= -LogB10,
10-15

Abs@eD
F

Out[9]= 15.4343

On the other hand, a number with accuracy a will have uncertainty d = 10
-a and hence accuracy

can be expressed as - log
10
HdL.

Another way to think about precision and accuracy involves the notion of scale (Knapp 2001).
If the scale of a number is defined as log

10
n , then you can think of the precision of a number as

being equal to scale + accuracy. The scale is essentially a measure of the size of the logarithm of the
number itself.

In[10]:= scale@x_D := Log@10, Abs@xDD

Looking at a few examples will help to make this more concrete. In this first example, the scale is
zero so precision and accuracy are the same.

In[11]:= x = 1.0;
8InputForm@xD, scale@xD, Accuracy@xD, Precision@xD<

Out[12]= 81., 0., 15.9546, MachinePrecision<

The number 0.01 is a machine-precision number; because of the two digits to the right of the
decimal point, its accuracy is increased and its scale is -2.

In[13]:= x = 0.01;
8InputForm@xD, scale@xD, Accuracy@xD, Precision@xD<

Out[14]= 80.01, -2., 17.9546, MachinePrecision<

And going in the other direction, for the number 1000.0, scale is increased and accuracy
decreased. Each addition of a digit to the left of the decimal point has the effect of reducing the
number of significant digits to the right of the decimal point by one.

In[15]:= x = 1000.0;
8InputForm@xD, scale@xD, Accuracy@xD, Precision@xD<

Out[16]= 81000., 3., 12.9546, MachinePrecision<

Representation of approximate numbers
When Mathematica displays numbers in output, the default is to print six digits.

In[17]:= pi = N@pD

Out[17]= 3.14159

Do not assume that typing in what is displayed will result in the same value.

8.2 Numerical computation 267

In[18]:= pi - 3.14159

Out[18]= 2.65359 � 10-6

This seemingly strange behavior – the fact that pi does not appear to be equal to 3.14159 – can be
explained by looking at the internal representation of this expression.

In[19]:= FullForm@piD
Out[19]//FullForm=

3.141592653589793`

The command N@pD causes Mathematica to first convert p to a machine-precision number, and
then to display the number of digits determined by the built-in output formatting rules, which,
by default, specify six digits to display in the output. Any computations with this number occur
using the number’s full precision.

Note that a number mark ` was printed at the end of the above number. This is a machine-
independent mark used to indicate that this is a machine-precision number. When you work
with numbers that are not at machine precision, this will be indicated by a number following the
number mark. For example, here is a high-precision number.

In[20]:= N@p, 18D

Out[20]= 3.14159265358979324

The following shows the full internal representation of this number with the precision indicated
by the 18 following the number mark. The extra digits are a result of the adaptive procedure that
N uses to increase the working precision of internal computations so that the requested precision
can be achieved.

In[21]:= FullForm@%D
Out[21]//FullForm=

3.1415926535897932384626433832795028842`18.

You can use this number mark to set the precision of a number.

In[22]:= x = 1.23`25

Out[22]= 1.230000000000000000000000

In[23]:= 8Precision@xD, Accuracy@xD<

Out[23]= 825., 24.9101<

Similarly, you can set the accuracy using the double number mark.

In[24]:= y = 1.23``25

Out[24]= 1.230000000000000000000000

268 Numerics

In[25]:= 8Precision@yD, Accuracy@yD<

Out[25]= 825.0899, 25.<

In a sense, Mathematica treats all machine real numbers as having the same precision. And,
most significantly, there is no real measure of how uncertain a machine number is since the
hardware-dependent machine-precision arithmetic does not keep track of significance. Explicitly
setting the precision with N or using number marks forces Mathematica to use significance arith-
metic and thus track precision throughout a computation. This is not possible with machine-
precision numbers. So, even a number with three digits of precision is considered more precise
than a machine-precision number since Mathematica is able to track its precision using signifi-
cance arithmetic.

Exact vs. approximate numbers
As described above, all integers and rational numbers are considered exact. For complex num-
bers, if both the real and imaginary parts are exact, then the complex number is treated as exact.

In[26]:= :Precision@7D, PrecisionB
1

9
F, Precision@3 + 4 ID>

Out[26]= 8¶, ¶, ¶<

Exact numbers have more precision than any approximate number. Representing a number with
infinite precision is another way of saying that it is exact.

As we saw in the example at the beginning of this chapter, this distinction between exact and
approximate numbers allows Mathematica to operate on expressions involving such numbers
differently.

In[27]:= :CosB
p

4
F, CosB

p

4.0
F>

Out[27]= :
1

2
, 0.707107>

But, in fact, more is true. As far as Mathematica is concerned, all integers are not created equal. In
stark contrast to programming languages, such as C or Pascal that typically restrict computa-
tions with integers to 16 or 32 bits (this restricts integers to a magnitude of 216 in the case of 16-bit
integers, or to a magnitude of 232 in the case of 32-bit integers), Mathematica allows you to com-
pute with integers and rational numbers of arbitrary size. A machine integer is an integer whose
magnitude is small enough to fit into your machine’s natural word size, and to be operated on by
the machine’s instructions, generally on its floating-point processor. Word size means the num-
ber of bits used to represent integers.

8.2 Numerical computation 269

If two integers are to be added, Mathematica first checks to see if the numbers can be added as
machine integers. On most computers, machine integers typically have a word size of �2

31. You
can see this using a function defined in the Developer` context.

In[28]:= Developer`MachineIntegerQA231E

Out[28]= False

In[29]:= Developer`MachineIntegerQA231 - 1E

Out[29]= True

You could also see how this is dealt with outside of Mathematica by compiling a C program and
giving it an input that causes an overflow.

In[30]:= cAdd = Compile@88n, _Integer<<, n + 1, CompilationTarget Ø "C"D

Out[30]= CompiledFunction@8n<, n + 1, -CompiledCode-D

The hardware of the machine that this C function is using to do this computation cannot handle
numbers of this size.

In[31]:= cAdd@2^31 - 1D
CompiledFunction::cfne :

Numerical error encountered; proceeding with uncompiled evaluation. à

Out[31]= 2147483648

This number is within range.

In[32]:= cAdd@2^31 - 2D

Out[32]= 2147483647

We will have more to say about compiling functions in Section 12.4.
Arithmetic operations on integers within the word-size range can be performed using the

machine’s own instructions (typically on the machine’s FPU), whereas operations on integers out
of that range must be done by software, which can be less efficient.

If the two numbers to be added are machine integers and Mathematica can determine that their
sum is a machine integer, then the addition is performed at this low level.

If, on the other hand, either of the integers or their sum is larger than the size of a machine
integer, then Mathematica performs the arithmetic using special algorithms. Integers in this range
are referred to as extended-precision integers. For example, the following computation, although
impossible to execute on most machine FPUs, is handled by Mathematica’s arithmetic algorithms
for operating on extended-precision integers.

270 Numerics

In[33]:= 2256 + 21024

Out[33]= 179769313486231590772930519078902473361797697894230657273 Ö

430081157732675805500963132708477322407536021120113879 Ö

871393357658789768814416622492847430639474124377767893 Ö

424865485276302219601246094119453082952085005768838150 Ö

682342462881589705199778143432586921495693274206093217 Ö

230604120280344292940337537353777152

Rational numbers are treated somewhat similarly to integers in Mathematica since the rational
number a ê b can be thought of as a pair of integers, and, in fact, as we saw earlier, it is represented
as RationalAa, bE. In this way, algorithms for exact rational arithmetic will use integer arith-

metic (either machine or extended) to perform many of the necessary computations.

High precision vs. machine precision
Real numbers (often referred to as “floating-point numbers”) contain decimal points; they are not
considered exact.

In[34]:= 8Head@1.61803D, Precision@1.61803D<

Out[34]= 8Real, MachinePrecision<

In[35]:= 8Head@1.4987349873487454511D,
Precision@1.4987349873487454511D<

Out[35]= 8Real, 19.1757<

In a manner similar to how integers are treated, Mathematica uses different internal algorithms to
do arithmetic on real numbers, depending upon whether you are using high-precision reals or
not. Whenever possible, arithmetic operations on real numbers are performed using machine-
precision (fixed) reals. Real numbers that can be computed at the hardware level of the machine
are referred to as fixed-precision reals. This is seen from the computation of the precision of the
number 1.61803 above; MachinePrecision was returned.

 The number of digits that each machine uses for fixed-precision real numbers is given by the
system variable $MachinePrecision .

In[36]:= $MachinePrecision

Out[36]= 15.9546

Here are the limits on the size of machine numbers with which you can work.

In[37]:= 8$MinMachineNumber, $MaxMachineNumber<

Out[37]= 92.22507 � 10-308, 1.79769 � 10308=

8.2 Numerical computation 271

Creating a compiled C function that simply divides its argument by 10, shows that the hardware
is restricted to the numbers given above.

In[38]:= div10 = Compile@88x, _Real<<, x ê 10, CompilationTarget Ø "C"D

Out[38]= CompiledFunctionB8x<,
x

10
, -CompiledCode-F

In[39]:= div10A10-308E

CompiledFunction::cfsa :
Argument 1 ê H100á211à

000L
at position 1 should be a machine-size real number. à

Out[39]= 1 ê
1000 Ö

000 Ö

000 Ö

000 Ö

000 Ö

000000000000000000000000

The limit imposed by $MaxMachineNumber is essentially given by 21023 * 1.1111 …11 (53 total
binary digits), a number just smaller than 21024. The number 53 comes from the number of binary
digits that are used to specify the mantissa for any floating-point number.

In[40]:= n = NA21024E

Out[40]= 1.797693134862316 � 10308

In[41]:= MantissaExponent@nD

Out[41]= 80.1797693134862316, 309<

In[42]:= Length@FirstüRealDigits@First@%D, 2DD

Out[42]= 53

In[43]:= $MaxMachineNumber

Out[43]= 1.79769 � 10308

As with machine integers discussed above, although there is a limit to the magnitude of the
machine-precision numbers on any given computer, you can still compute with numbers outside
of this range. Real numbers larger than machine-precision reals are referred to as multiple-, or
extended-precision reals and arithmetic on such numbers is called multiple-precision arithmetic
or arbitrary-precision floating-point arithmetic. On a machine whose $MachinePrecision is
16 decimal digits, computations involving real numbers with greater than 16 significant digits will
be performed using arbitrary-precision algorithms.

272 Numerics

When doing computations on inexact numbers, Mathematica uses two different types of
arithmetic, depending upon the precision of the numbers involved. Machine-precision floating-
point arithmetic is used whenever the numbers can be handled in the machine’s hardware
routines. For example:

In[44]:= 8Precision@1.23D, Accuracy@1.23D<

Out[44]= 8MachinePrecision, 15.8647<

In[45]:= 8Sin@1.23D, Precision@Sin@1.23DD, Accuracy@Sin@1.23DD<

Out[45]= 80.942489, MachinePrecision, 15.9803<

Mathematica represents 1.23 as a machine floating-point number and will use machine arithmetic
on it whenever possible. The accuracy of the sine of this number is a reflection of the fact that this
number is a machine number a bit smaller than 1.

In the following example, n has smaller accuracy due to the fact that there is an explicit num-
ber of digits to the right of the decimal point and roughly speaking, for machine-precision num-
bers, the number of digits to the right of the decimal plus the number of digits to the left of the
decimal should add up to the number of decimal digits given by $MachinePrecision .

In[46]:= n = 12345.6789101112

Out[46]= 12345.7

In[47]:= 8Precision@nD, Accuracy@nD, scale@nD<

Out[47]= 8MachinePrecision, 11.8631, 4.09151<

You can adjust the precision of numbers with SetPrecision, although you should note that
this function will not make an inexact number more exact.

In[48]:= SetPrecisionB
1

3
, 30F

Out[48]= 0.333333333333333333333333333333

Using SetPrecision on an approximate number returns a number that might look odd at first
sight. This happens because SetPrecision is adding digits that are zero in base 2.

In[49]:= SetPrecision@0.6000000000, 20D

Out[49]= 0.59999999999999997780

In fact, Mathematica has created more digits than are displayed.

In[50]:= FullForm@%D
Out[50]//FullForm=

0.59999999999999997779553950749686919152736663818359375`20.

8.2 Numerical computation 273

As an aside, you can effectively do fixed-precision computation by setting $MaxPrecision
and $MinPrecision to the same value. As their names imply, these two global variables limit
the number of digits of precision in arbitrary-precision numbers.

In[51]:= Block@8$MaxPrexision = 4, $MinPrecision = 4<,
Exp@2`4DD êê FullForm

Out[51]//FullForm=

7.38905609893065022723042744657678036101`4.

Using an infamous function, the logistic map, you can see the effect of using fixed precision on
unstable computations.

In[52]:= f@x_D := 4 x H1 - xL

First, using extended precision, you can see that iterating this function causes such a loss of
precision that the results have no significant digits after about 50 iterations. This is indicated
below by the last few iterates framed with an error box. Hovering your mouse over these boxes
displays a message, “No significant digits are available to display.”

In[53]:= NestList@f, N@3 ê 10, 30D, 60D

Out[53]= 90.300000000000000000000000000000, 0.84000000000000000000000000000,

0.53760000000000000000000000000, 0.9943449600000000000000000000,
0.0224922420903936000000000000, 0.087945364544562906155706388,
0.32084390959874737541453901, 0.87161238108855278877223283,
0.4476169528867848545299176, 0.9890240655005387296585600,
0.043421853445299224857323, 0.16614558435469672277398,
0.55416491661653231340733, 0.9882646472316964067436, 0.0463905370548282497866,
0.176953820506371427531, 0.58256466365828124158, 0.97273230525997957131,
0.1060966702543419638, 0.3793606672611335716, 0.941784605585284283,
0.21930544907141921, 0.68484227631600947, 0.8633333315452640,
0.4719555607528770, 0.996854037709258, 0.01254426084803,
0.04954760947123, 0.1883705754677, 0.6115484070626, 0.950227811527,
0.18917967091, 0.61356289210, 0.9484138782, 0.1956999755, 0.629605980,
0.93280916, 0.25070493, 0.7514079, 0.7471763, 0.755615, 0.73864,
0.77220, 0.7036, 0.8341, 0.553, 0.99, 0.05, 0.2, 0.6, 0., 0., 0.,

0.�102, 0.�105, 0.�1011, 0.�1024, 0.�1049, 0.�1098, 0.�10197, 0.�10396=

Trying the same computation but with 30-digit fixed precision, Mathematica essentially is using
SetPrecision@…, 30D at every step in this computation and hence there is no loss of
precision.

In[54]:= Block@8$MinPrecision = 30, $MaxPrecision = 30<,
values = NestList@f, N@3 ê 10, 30D, 60DD;

274 Numerics

In[55]:= ListPlot@Map@Precision, valuesDD

Out[55]=

10 20 30 40 50 60

10

20

30

40

50

60

Let us clear unneeded symbols.

In[56]:= Clear@a, b, n, x, f, valuesD

Computations with mixed number types
When doing computations with numbers, Mathematica tries to work with the most general type
of number in the expression at hand. For example, when adding two rational numbers, the sum is
a rational number, unless of course it can be reduced to an integer.

In[57]:=
34

21
+

2

11

Out[57]=
416

231

In[58]:=
3

4
+
9

4

Out[58]= 3

But, if one of the terms is a real number, then all computations are done using real-number
arithmetic – Mathematica works at the lowest precision of the numbers in the expression.

Here the machine-precision number 2.0 is raised to an exact integer power. A machine-
precision result is returned.

In[59]:= 2.0100

Out[59]= 1.26765 � 1030

In[60]:= Precision@%D

Out[60]= MachinePrecision

Similarly, if a machine-precision number is added to a high-precision number, Mathematica will
perform the computation at the lower machine precision.

8.2 Numerical computation 275

In[61]:= 2.1 + 3.0`30

Out[61]= 5.1

In[62]:= Precision@%D

Out[62]= MachinePrecision

Because Mathematica keeps track of the precision for arbitrary-precision numbers, doing
arithmetic with two such numbers causes significance arithmetic to be used allowing for a result
with precision close to that of the summands themselves.

In[63]:= 2.1`35 + 3.0`45

Out[63]= 5.1000000000000000000000000000000000

In[64]:= Precision@%D

Out[64]= 35.3854

And similarly when one number has machine precision and another has arbitrary precision.

In[65]:= a = N@2D;

In[66]:= b = NA299, 30E;

In[67]:= 8Precision@aD, Precision@bD, Precision@a bD<

Out[67]= 8MachinePrecision, 30., MachinePrecision<

When a symbol such as p is present in the expression to be computed, Mathematica does not
necessarily convert the symbol to a machine number.

In[68]:= Simplify@Sin@k pD, k œ IntegersD

Out[68]= 0

In[69]:= Simplify@Sin@k N@pDD, k œ IntegersD

Out[69]= Sin@3.14159 kD

It will convert symbolic constants for purposes of comparison and whenever an approximate
number is present in the input.

In[70]:= p < 4

Out[70]= True

In[71]:= 9p2, p2.0=

Out[71]= 9p2, 9.8696=

For addition of real numbers, it is their accuracy that counts most. Recall, Accuracy@xD
measures the absolute error in the number x, essentially given by the number of digits to the right
of the decimal point.

276 Numerics

In[72]:= 8Accuracy@1.23D, Accuracy@12.5D<

Out[72]= 815.8647, 14.8577<

In[73]:= Accuracy@1.23 + 12.5D

Out[73]= 14.8169

For machine-precision numbers, which have a fixed number of digits, you can think of adding a
digit to the left of the decimal point as essentially removing one digit from the right of the deci-
mal point.

This is not the case though for extended-precision numbers, where all the digits to the right of
the decimal can be considered significant.

In[74]:= Accuracy@123.4444444444444444444444444444D

Out[74]= 28.

In[75]:= Accuracy@12321.4444444444444444444444444444D

Out[75]= 28.

In an analogous manner to the use of Precision with multiplication, the Accuracy of an
addition will be the minimum of the accuracies of the summands.

In[76]:= Accuracy@1.1111111111111111 + 1.11111111111111111111D

Out[76]= 15.6078

In[77]:= Accuracy@1.1111111111111111D

Out[77]= 15.9088

Adding a machine number to an extended-precision or an exact number can lead to some
unexpected results.

In[78]:= 1.0 + 10-25

Out[78]= 1.

In[79]:= Accuracy@%D

Out[79]= 15.9546

In[80]:= AccuracyA10-25E

Out[80]= ¶

Working with precision and accuracy
In this section we will put the notions of precision and accuracy discussed above into practice
and see how they are controlled and modified with the built-in numerical functions. In Sec-
tion 8.4 we will implement these ideas in several user-defined examples.

8.2 Numerical computation 277

When you do computations with Mathematica’s numerical functions, results are returned at the
default machine precision.

In[81]:= NIntegrateBSinA x2E, :x, 0, p >F

Out[81]= 0.894831

In[82]:= Precision@%D

Out[82]= MachinePrecision

If you need results with higher precision change the option PrecisionGoal, which sets the
desired precision of the result (similarly for accuracy, with AccuracyGoal).

Here is the same computation as above, but asking for 30 digits of precision in the result.

In[83]:= NIntegrateBSinAx2E, :x, 0, p >, PrecisionGoal Ø 30F

NIntegrate::slwcon :
Numerical integration converging too slowly; suspect one of the following: singularity, value of

the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à
NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =
83.14158056070655424163353807570642217683598573785275220870971679687<.
NIntegrate obtained 0.894831469484146` and
1.6524379533168436`*^-16 for the integral and error estimates. à

Out[83]= 0.894831

Mathematica is complaining that it is unable to produce a result with the requested precision. If
you look at the default value for the option WorkingPrecision, you will see that it is set to
MachinePrecision. This means that the internal algorithms will work at machine precision,
essentially on the hardware of your machine which is fast. But, in this example, that was not
sufficient to guarantee a result with much higher precision.

In[84]:= Options@NIntegrateD

Out[84]= 8AccuracyGoal Ø ¶,
Compiled Ø Automatic, EvaluationMonitor Ø None,
Exclusions Ø None, MaxPoints Ø Automatic,
MaxRecursion Ø Automatic, Method Ø Automatic,
MinRecursion Ø 0, PrecisionGoal Ø Automatic,
WorkingPrecision Ø MachinePrecision<

278 Numerics

To insure that the PrecisionGoal is met, we need to increase the WorkingPrecision a
bit above the PrecisionGoal.

In[85]:= NIntegrateBSinAx2E, :x, 0, p >,

PrecisionGoal Ø 30, WorkingPrecision Ø 32F

Out[85]= 0.89483146948414495880102201341651

In[86]:= Precision@%D

Out[86]= 32.

How much to increase the value of WorkingPrecision above that of PrecisionGoal is a
bit dependent upon the problem at hand, but a simple rule of thumb is to start by setting
WorkingPrecision about 10–15% higher than your PrecisionGoal.

Another option to numerical functions that is important to understand is MaxIterations.
As its name implies, this is the maximum number of iterations that a given iterative function will
perform in doing its computation. For example, the default value of MaxIterations in
FindRoot is 100.

In[87]:= Options@FindRootD

Out[87]= 8AccuracyGoal Ø Automatic, Compiled Ø Automatic,
DampingFactor Ø 1, Evaluated Ø True, EvaluationMonitor Ø None,
Jacobian Ø Automatic, MaxIterations Ø 100,
Method Ø Automatic, PrecisionGoal Ø Automatic,
StepMonitor Ø None, WorkingPrecision Ø MachinePrecision<

For many computations, this limit will be sufficient. But with root finding, for example, a func-
tion that is very flat near the desired zero may need a higher number of iterations to find that
zero. For example, the function x11 - x8 has a root at zero of course, but FindRoot has difficulty
locating it and is unable to guarantee its precision and accuracy using the default settings.

In[88]:= FindRootAx11 - x8, 8x, 0.5<E

FindRoot::cvmit :
Failed to converge to the requested accuracy or precision within 100 iterations. à

Out[88]= 9x Ø 7.76534 � 10-7=

8.2 Numerical computation 279

In[89]:= PlotAx11 - x8, 8x, -1, 1<E

Out[89]=

-1.0 -0.5 0.5 1.0

-0.25

-0.20

-0.15

-0.10

-0.05

If you increase the value of MaxIterations, you will get a more accurate result.

In[90]:= FindRootAx11 - x8, 8x, 0.5<, MaxIterations Ø 200E

Out[90]= 9x Ø 7.01949 � 10-8=

To get even more accuracy, try increasing AccuracyGoal. As discussed above, you should
increase the value of the WorkingPrecision option as well.

In[91]:= FindRootAx11 - x8, 8x, 0.5<, AccuracyGoal Ø 30,

WorkingPrecision Ø 32, MaxIterations Ø 700E

Out[91]= 9x Ø 6.4471177850662807136865275894714 � 10-30=

One additional option to Mathematica’s numerical functions that we will explore is
EvaluationMonitor . This option can be used to evaluate an expression during the computa-
tion of the function. For example, suppose you would like to see all the intermediate values that
FindRoot comes up with during its computation. You could simply print the values that x
takes on throughout the computation using a Print statement. InputForm shows all the digits
present in the internal representation of the number.

In[92]:= FindRoot@Sin@xD, 8x, 2.0<,
EvaluationMonitor ß Print@InputForm@xDDD

2.

4.185039863261519

2.467893674514666

3.266186277569106

3.1409439123176353

3.1415926536808043

3.141592653589793

Out[92]= 8x Ø 3.14159<

280 Numerics

This approach suffers from the fact that the Print expression produces no output and so there
is no direct way to access these intermediate values. A different and more useful approach was
introduced in Exercise 6 in Section 6.1; it sows the intermediate values of x during the computa-
tion and then reaps them at the end.

In[93]:= Reap@
FindRoot@Sin@xD, 8x, 2.0<,
EvaluationMonitor ß Sow@InputForm@xDDD

D

Out[93]= 88x Ø 3.14159<,
882., 4.185039863261519, 2.467893674514666, 3.266186277569106,

3.1409439123176353, 3.1415926536808043, 3.141592653589793<<<

Note the use of the delayed rule above with EvaluationMonitor . This ensures that the
right-hand side of the rule is not evaluated before FindRoot starts its computation. We have
also wrapped x with InputForm to display all digits.

A similar approach can be used to extract the explicit values computed during the numerical
computation of the solution of a differential equation. For example, this computes the solution of
the differential equation, reaping the triple 8x, f@xD, f'@xD< from the solution.

In[94]:= soln = Reap@
NDSolve@8f''@xD + f'@xD + f@xD ã 0, f@0D ã 1, f'@0D ã 1<, f,
8x, 0, 10<, EvaluationMonitor ß Sow@8x, f@xD, f'@xD<DDD;

Here are the first six values from the solution.

In[95]:= Take@soln@@2, 1DD, 6D

Out[95]= 880., 1., 1.<, 80.000102139, 1.0001, 0.999796<,
80.000102139, 1.0001, 0.999796<,
80.000204278, 1.0002, 0.999591<,
80.000204278, 1.0002, 0.999591<, 80.00472055, 1.0047, 0.99057<<

Exercises
1. Explain why Mathematica is unable to produce a number with 100 digits of precision in the following

example.

In[1]:= N@1.23, 100D

Out[1]= 1.23

In[2]:= Precision@%D

Out[2]= MachinePrecision

8.2 Numerical computation 281

2. Determine what level of precision is necessary when computing NA 2 , precE
200

 to produce

accuracy in the output of at least 100 digits.

3. Explain why the following computation produces an unexpected result (that is, why the value
0.000000000001 is not returned).

In[3]:= 1.0 - 0.999999999999

Out[3]= 9.99978 � 10-13

4. How close is the number ‰p 163 to an integer? Use N, but mind the precision of your computations.

8.3 Arrays of numbers
Scientists, engineers, and everyone who works with numbers typically use arrays to store and
represent their data. In many applications these arrays can become quite large and hence pose
special problems when computing with them. The main issues with these arrays are representing
and storing such large objects and finding efficient algorithms for computing with them. Mathe-
matica uses two special data types to make computations with arrays faster and more efficient –
sparse arrays and packed arrays. In this section we will introduce each of these data types and see
how a working knowledge of them can help your work with very large sets of data.

Sparse arrays
In the sciences, engineering, and many other disciplines it is not uncommon to work with very
large matrices that have mostly zeros as elements. These matrices, or arrays, are referred to as
sparse and many optimized algorithms have been developed by the linear algebra community for
working with such objects. Using these algorithms, you can work with arrays that are often
several orders of magnitude larger than dense arrays and at speeds much faster than those for
dense arithmetic.

There are two main sources for sparse arrays: either you import them from an external file or
source or you can create them in Mathematica from scratch. We will start by importing a sample
sparse matrix from a well-known test suite from the US National Institute of Standards and
Technology (Sparse Matrix Collection, NIST).

In[1]:= mat = Import@
"http:êêphase.hpcc.jpêmirrorsêMatrixMarketêdataêHarwell-

Boeingêbcspwrêbcspwr09.psa.gz"D

Out[1]= SparseArray@<6511>, 81723, 1723<, PatternD

In[2]:= Head@matD

Out[2]= SparseArray

282 Numerics

The data in this matrix represent the US western power grid and are in the Harwell-Boeing
format. The compact representation given in the output indicates that this matrix has 6511

nonzero elements and that its dimensions are 1723ä1723. Even though the matrix has this special
representation internally, it can still be operated on directly as an ordinary matrix. For example,
here we find the dimensions, test for symmetry, and visualize the matrix structure.

In[3]:= Dimensions@matD

Out[3]= 81723, 1723<

In[4]:= SymmetricMatrixQ@matD

Out[4]= True

In[5]:= ArrayPlot@matD

Out[5]=

The two great advantages of working with sparse arrays are their compact representation and
the speed with which you can perform linear algebra operations on them.

In[6]:= ByteCount@matD

Out[6]= 33696

In[7]:= Timing@mat.mat;D

Out[7]= 80.000618, Null<

A dense matrix of the same size is many orders of magnitude larger in terms of the number of
bytes used internally to store it.

In[8]:= densemat = RandomReal@1, 81723, 1723<D;

In[9]:= ByteCount@densematD

Out[9]= 23750000

And linear algebra on the dense matrix is also much slower than the corresponding sparse
computation.

In[10]:= Timing@densemat.densemat;D

Out[10]= 81.43976, Null<

The other way to work with sparse arrays in Mathematica is to create them from scratch with
the SparseArray function. The first argument to SparseArray specifies the rules to be used

8.3 Arrays of numbers 283

to create the nonzero elements and the second argument specifies the dimensions of the array.
For example, this creates a 5ä5 sparse array object with elements on the diagonal equal to 1.

In[11]:= spmat = SparseArray@8i_, i_< Ø 1, 85, 5<D

Out[11]= SparseArray@<5>, 85, 5<D

Wrapping Normal around a sparse array object converts it into a list of lists.

In[12]:= Normal@spmatD

Out[12]= 881, 0, 0, 0, 0<, 80, 1, 0, 0, 0<,
80, 0, 1, 0, 0<, 80, 0, 0, 1, 0<, 80, 0, 0, 0, 1<<

Using MatrixForm , you can view the array in a more traditional form. This use of Normal and
MatrixForm makes sense only for small to moderate-sized matrices.

In[13]:= MatrixForm@spmatD
Out[13]//MatrixForm=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Here are the rules associated with this sparse array object. Notice that in addition to the explicit
rules we specified, Mathematica uses the rule 8_, _< Ø 0 for the default cases, that is, any element
not explicitly specified by a rule should be set to 0.

In[14]:= ArrayRules@spmatD

Out[14]= 881, 1< Ø 1, 82, 2< Ø 1, 83, 3< Ø 1,

84, 4< Ø 1, 85, 5< Ø 1, 8_, _< Ø 0<

Using a third argument to SparseArray , you can specify that the implicit elements are other
than 0.

In[15]:= spmat2 = SparseArray@8i_, i_< Ø 1, 85, 5<, 13D

Out[15]= SparseArray@<5>, 85, 5<, 13D

In[16]:= MatrixForm@spmat2D
Out[16]//MatrixForm=

1 13 13 13 13
13 1 13 13 13
13 13 1 13 13
13 13 13 1 13
13 13 13 13 1

Here is a slightly more complicated specification for the rules associated with a sparse array. In
this example, the diagonal elements are 1, and the elements whose vertical and horizontal posi-

284 Numerics

tions differ by one will be 6. Band is a convenient function for representing elements on and off
the diagonal of a matrix. Band@81, 1<D gives the diagonal; Band@81, 2<D gives the off-
diagonal just above the main diagonal; and so on.

In[17]:= spmat3 = SparseArray@
8Band@81, 1<D Ø 1, Band@81, 2<D Ø 6, Band@82, 1<D Ø 6<, 88, 8<D

Out[17]= SparseArray@<22>, 88, 8<D

In[18]:= MatrixForm@spmat3D
Out[18]//MatrixForm=

1 6 0 0 0 0 0 0

6 1 6 0 0 0 0 0

0 6 1 6 0 0 0 0

0 0 6 1 6 0 0 0

0 0 0 6 1 6 0 0

0 0 0 0 6 1 6 0

0 0 0 0 0 6 1 6

0 0 0 0 0 0 6 1

Here is a simple pictorial representation of a sparse array using ArrayPlot.

In[19]:= ArrayPlot@spmat3D

Out[19]=

Using a larger array, you can clearly see the nature of the “sparseness” of values.

In[20]:= ArrayPlot@SparseArray@
8i_, j_< ê; Abs@i - jD § 8 ß RandomInteger@4D, 8100, 100<DD

Out[20]=

8.3 Arrays of numbers 285

Let us take a look at some computations on some large sparse arrays to see how speed and
memory issues are affected. First we create a 100 000ä100 000 sparse array with random num-
bers on and just off the diagonal, and zeros everywhere else.

In[21]:= mat = SparseArrayA

88i_, j_< ê; Abs@i - jD § 2 ß RandomReal@D<, 9105, 105=E

Out[21]= SparseArray@<499994>, 8100 000, 100 000<D

Here is a vector consisting of 100 000 random numbers.

In[22]:= b = RandomReal@1, Length@matDD;

First, note the difference in size of this sparse array compared with a dense array. The sparse array
takes up approximately six megabytes.

In[23]:= N@ByteCount@matDD Byte

Out[23]= 6.40088 � 106 Byte

The corresponding dense array would require 80 gigabytes to store (assuming 8 bytes per double
float).

In[24]:= NA105 105 8E Byte

Out[24]= 8. � 1010 Byte

Computations involving this sparse linear system are extremely fast.

In[25]:= Timing@LinearSolve@mat, bD;D

Out[25]= 80.037164, Null<

In[26]:= Timing@mat.mat;D

Out[26]= 80.080528, Null<

Packed arrays
One of the great advantages of the Mathematica programming language is that it seamlessly
handles the administrative tasks of dealing with a wide variety of data types. So, for example,
when you perform computations with floating-point numbers, Mathematica determines the type
of numbers you are working with and then either it performs the computation on your
machine’s floating-point processor (if working with numbers that fit there) or it does the compu-
tation using extended-precision software routines. Similarly, computations involving integers
will be done in hardware or using special software routines depending upon the size of the
integers relative to your machine’s hardware constraints.

However, all this comes at a cost, and the cost involves the administrative overhead necessary
to determine the appropriate routine and whether to perform the computation in hardware or

286 Numerics

software. For small computations, this overhead is not noticeable, but for large computations
involving tens of thousands of rows and columns of a matrix, say, this overhead could cause your
computations to slow down considerably.

Fortunately, there is a way to bypass some of this overhead and get significant speed improve-
ments together with a smaller memory footprint. The technology that does this is referred to as
packed arrays and they are fairly simple to understand. Whenever possible Mathematica will automat-
ically represent a list of a single type of machine numbers (integer, real, or complex) as an array,
in fact, a packed array object. So a matrix consisting of all machine real numbers will be repre-
sented internally as a packed array. This internal representation is transparent to the user.

Here is a 1000ä1000 array consisting of random real numbers.

In[27]:= mat = RandomReal@1, 81000, 1000<D;

Mathematica recognizes that this array consists entirely of machine numbers and so it packs the
array automatically.

In[28]:= Developer`PackedArrayQ@matD

Out[28]= True

Let us also create an array that is not packed. We can do this by replacing one of the elements in
mat with a number that is not a machine floating-point number. Here we replace the element in
the first row, second column of mat with the integer 1.

In[29]:= mat2 = ReplacePart@mat, 1, 81, 2<D;

In[30]:= Developer`PackedArrayQ@mat2D

Out[30]= False

The first thing to notice is the memory saving obtained by using packed arrays.

In[31]:= Map@ByteCount, 8mat, mat2<D

Out[31]= 88000168, 32048040<

In this example, it takes 75% less memory to store the packed array over the similar unpacked
array.

In[32]:=
32048040 - 8000168

32048040
êê N

Out[32]= 0.75037

The time to compute the minimum value is roughly an order of magnitude faster for the packed
array.

In[33]:= Map@Timing@Min@ÒD;D &, 8mat, mat2<D

Out[33]= 880.002753, Null<, 80.010015, Null<<

8.3 Arrays of numbers 287

Simple arithmetic on such objects is also significantly sped up with packed arrays.

In[34]:= Timing@Do@mat + mat, 8100<D;D

Out[34]= 80.98052, Null<

In[35]:= Timing@Do@mat2 + mat2, 8100<D;D

Out[35]= 88.62979, Null<

When packed arrays are used in Mathematica, the compiler is invoked, thus generally improv-
ing the time it takes for the computation to take place. Many of the built-in functions are
designed to take advantage of the packed array technology. But they do not invoke the compiler
whenever the time it takes to compile is close to the running time of the computation itself.
There are length limits on many common Mathematica functions that determine whether the
compiler will be used or not. For example, the length limit for Table is 250.

In[36]:= m1 = TableAi2, 8i, 1.0, 249<E;

Developer`PackedArrayQ@m1D

Out[37]= False

In[38]:= m2 = TableAi2, 8i, 1.0, 250<E;

Developer`PackedArrayQ@m2D

Out[39]= True

For NestList, it is 100 (remember that NestListA f, init, nE produces a list of n + 1 ele-

ments because it prepends the initial value to the list of iterates).

In[40]:= n1 = NestList@Sin, .5, 98D;
Developer`PackedArrayQ@n1D

Out[41]= False

In[42]:= n2 = NestList@Sin, .5, 99D;
Developer`PackedArrayQ@n2D

Out[43]= True

These length limits are system parameters that can be displayed and set with SystemOptions.

288 Numerics

In[44]:= SystemOptions@"CompileOptions"D

Out[44]= 8CompileOptions Ø 8ApplyCompileLength Ø ¶,

ArrayCompileLength Ø 250, AutoCompileAllowCoercion Ø False,

AutoCompileProtectValues Ø False, AutomaticCompile Ø False,

BinaryTensorArithmetic Ø False, CompileAllowCoercion Ø True,

CompileConfirmInitializedVariables Ø True,

CompiledFunctionArgumentCoercionTolerance Ø 2.10721,

CompiledFunctionMaxFailures Ø 3, CompileDynamicScoping Ø False,

CompileEvaluateConstants Ø True, CompileOptimizeRegisters Ø False,

CompileReportCoercion Ø False, CompileReportExternal Ø False,

CompileReportFailure Ø False, CompileValuesLast Ø True,

FoldCompileLength Ø 100, InternalCompileMessages Ø False,

ListableFunctionCompileLength Ø 250,

MapCompileLength Ø 100, NestCompileLength Ø 100,

NumericalAllowExternal Ø False, ProductCompileLength Ø 250,

ReuseTensorRegisters Ø True, SumCompileLength Ø 250,

SystemCompileOptimizations Ø All, TableCompileLength Ø 250<<

So how do you best take advantage of packed arrays when you write your code? First, when-
ever possible, it is important that you insure that your lists and arrays consist of machine num-
bers all of the same type – integer, real, or complex. In addition, whenever possible, try to operate on
lists and arrays all at once instead of looping through your arrays. Listable operations with
packed array input will use the compiler and will produce packed array output. Fortunately,
many of the commonly used functions have this attribute (FunctionsWithAttribute is
defined in Section 5.6).

In[45]:= names = FunctionsWithAttribute@ListableD;
Length@namesD

Out[46]= 363

Here is a sample of the symbols that have this attribute.

In[47]:= RandomSample@names, 30D

Out[47]= 8BesselI, SpheroidalRadialFactor, PrimePowerQ, PolynomialGCD,

InverseJacobiDC, ArcCot, CreateDirectory, JacobiNS, ZernikeR,

StopScheduledTask, IntegerPart, PolyLog, ChebyshevT, IntegerString,

InverseJacobiCD, HarmonicNumber, AiryAi, PrimeOmega, NevilleThetaD,

Floor, LegendreQ, Divide, GCD, StirlingS2, FractionalPart, JacobiCS,

SpheroidalS1Prime, NumberFieldRootsOfUnity, SinhIntegral, In<

8.3 Arrays of numbers 289

Exercises
1. Create a function RandomSparseArray@nD that generates an nän sparse array with random

numbers along the diagonal.

2. Write a function TridiagonalMatrix@n, p, qD that creates an nän matrix with the integer p
on the diagonal, the integer q on the upper and lower subdiagonals, and 0s everywhere else.

3. Create a vector vec consisting of 100 000 random real numbers between 0 and 1. Check that it is
indeed a packed array by using Developer`PackedArrayQ. Then replace one element in vec
with an integer. Check that this new vector is not a packed array. Finally, perform some memory
and timing tests on these two vectors, using functions such as Max, Norm , RootMeanSquare .

4. An interesting computation of the Fibonacci numbers can be obtained using the determinant of a
certain tri-diagonal matrix: 1s on the diagonal and Â = -1 running along each subdiagonal. For
example, the following 4ä4 matrix has determinant equal to the fifth Fibonacci number.

In[1]:=

1 Â 0 0
Â 1 Â 0
0 Â 1 Â
0 0 Â 1

Out[1]= 5

Create a function that computes the nth Fibonacci number using a sparse array implementation of
this tri-diagonal matrix. You will need special rules for n = 1 and n = 2.

5. An efficient approach to computing large Fibonacci numbers relies upon the observation that a
certain matrix has its characteristic polynomial equal to the characteristic equation for the
Fibonacci numbers.

In[2]:= mat = K
1 1
1 0

O;

poly = CharacteristicPolynomial@mat, xD

Out[3]= -1 - x + x2

In[4]:= Solve@poly ã 0, xD

Out[4]= ::x Ø
1

2
I1 - 5 M>, :x Ø

1

2
I1 + 5 M>>

The Fibonacci numbers Fn can be generated from successive powers of this matrix.

1 1

1 0

n

=
Fn+1 Fn

Fn Fn-1

Use these facts to implement an algorithm for computing the Fibonacci numbers using the built-in
MatrixPower function with sparse arrays.

290 Numerics

8.4 Examples and applications
Mathematica’s built-in numerical functions are designed to guarantee the accuracy of their results
as much as possible and they are optimized to minimize the work done to generate those results.
Functions such as FindRoot, NDSolve , NMinimize, and NIntegrate use options to allow
you to adjust their behavior and get finer control over precision, accuracy, and other internal
aspects of the underlying numerical routines.

In this section we will first discuss how to incorporate the ideas on controlling precision and
accuracy discussed earlier in this chapter into your own numerical programs using the Newton’s
method root finder as an example. The last two examples are a bit more advanced. The first,
computing the radius of gyration of a random walk, is a purely numerical computation involving
some linear algebra and eigenvector/eigenvalue computation. The computation is then inter-
preted visually, thus providing a nice marriage of numerics and visualization. The final set of
examples in this section involve the creation of statistical tests that can be used on various
datasets. Although many such tests are built into Mathematica, it is not only instructive but also
sometimes necessary to construct your own tests for special purposes.

Newton’s method revisited
In Section 6.1 we wrote a program to implement Newton’s method for finding roots of equations.

findRoot@fun_, 8var_, init_<, e_D :=

ModuleB8xi = init, funxi = fun@initD<,

WhileBAbs@funxiD > e,

xi = NBxi -
funxi

fun£@xiD
F;

funxi = fun@xiDF;

8var Ø xi<F

One of the limitations of this implementation is that the user has little control over the precision
or accuracy of the results. In addition, although the loop will continue until values are within e of
the root, there is no mechanism for automatically adjusting this tolerance, nor for controlling the
number of iterations that are performed. In this section we will rewrite this root-finding function
to take advantage of the options for numerical functions that control precision and accuracy.

First we will change the iterative structure from a While loop to a fixed point iteration. The
first argument to FixedPoint is the function that we are iterating, so that will be the same as
the function above, namely, xi - f HxiL ê f £HxiL. The second argument to FixedPoint is the initial
value for the iteration. The third argument is the maximum number of iterations. So, using a pure

8.4 Examples and applications 291

function for the first argument, the Newton iteration will look like this:

FixedPointBÒ -
fun@ÒD

fun'@ÒD
&, initx, maxIterationsF

Let us set up the needed options with some default values.

In[1]:= Options@findRootD = 8
MaxIterations ß $IterationLimit,
PrecisionGoal Ø Automatic,
WorkingPrecision Ø Automatic

<;

The default value of MaxIterations is set to $IterationLimit (normally 4096) using a
delayed rule so that $IterationLimit is not evaluated until the option is called. The two
options PrecisionGoal and WorkingPrecision are set to Automatic, which, at the
moment, has no value associated with it. In the body of our function, we will take a value of
Automatic for PrecisionGoal to mean a precision that is equal to the precision of the initial
value passed to findRoot.

If@precisionGoal === Automatic,
precisionGoal = Precision@initDD

As we saw in the previous section, we will need to bump up the value of WorkingPrecision
to something a little bigger than PrecisionGoal. We will set it to be ten more digits than the
precision goal.

If@workingPrecision === Automatic,
workingPrecision = precisionGoal + 10D;

initx = SetPrecision@init, workingPrecisionD

Here then is the definition of findRoot with these added pieces.

In[2]:= findRoot@fun_, 8var_, init_?NumericQ<,
opts : OptionsPattern@DD :=

ModuleB8maxIterations, precisionGoal,

workingPrecision, initx, df = fun£, result<,
8maxIterations, precisionGoal, workingPrecision< =
OptionValue@
8MaxIterations, PrecisionGoal, WorkingPrecision<D;

If@precisionGoal === Automatic, precisionGoal =
Precision@initDD; If@workingPrecision === Automatic,

workingPrecision = precisionGoal + 10D;
initx = SetPrecision@init, workingPrecisionD;

292 Numerics

result = SetPrecisionBFixedPointBÒ1 -
fun@Ò1D

df@Ò1D
&,

initx, maxIterationsF, precisionGoalF;

8var Ø result<F

Let us use findRoot to find the roots of various functions.

In[3]:= f@x_D := x2 - 2

In[4]:= findRoot@f, 8x, 1.0<D

Out[4]= 8x Ø 1.41421<

The precision of this result is the same as the precision of the initial guess.

In[5]:= Precision@%D

Out[5]= MachinePrecision

Setting PrecisionGoal higher generates a high-precision result.

In[6]:= findRootBSin, :x,
14

10
>, PrecisionGoal Ø 40F

Out[6]= 8x Ø 3.141592653589793238462643383279502884197<

In[7]:= Hx ê. %L - p

Out[7]= 0. � 10-40

There are still a number of problems that can arise with this implementation of Newton’s
method. First is the possibility that the derivative of the function we are working with might be
equal to zero. This will produce a division-by-zero error. Another type of difficulty that can arise
in root finding occurs when the derivative of the function in question is either difficult or impossi-
ble to compute. As a very simple example, consider the function x + 3 , which has a root at
x = -3. Both the built-in function FindRoot and our user-defined root finder will fail with this
function since a symbolic derivative cannot be computed.

In[8]:= D@Abs@x + 3D, xD

Out[8]= Abs£@3 + xD

One way around such problems is to use a numerical derivative (as opposed to an analytic
derivative). The secant method approximates f £HxkL using the difference quotient:

f IxkM- f Ixk-1M
xk-xk-1

8.4 Examples and applications 293

To implement this method, we overload findRoot by adding a rule for the case when two
initial values are given.

In[9]:= findRoot@f_, 8var_, a_, b_<D := ModuleB8x1 = a, x2 = b, df<,

WhileBAbs@f@x2DD >
1

1010
,

df =
f@x2D - f@x1D

x2 - x1
;

8x1, x2< = :x2, x2 -
f@x2D

df
>F;

8var Ø x2<F

In[10]:= f@x_D := Abs@x + 3D

In[11]:= findRoot@f, 8x, -3.1, -1.8<D

Out[11]= 8x Ø -3.<

In the exercises, you are asked to refine this last implementation by writing it in a functional style
and including mechanisms to gain finer control over precision and accuracy in a manner similar
to what we did with the findRoot function earlier in this section.

Radius of gyration of a random walk
In this next example we will work through the computation and visualization of a certain way of
measuring the extent of a dataset. In particular we will compute the radius of gyration of a ran-
dom walk. Given some masses distributed about an axis, the radius of gyration gives the root
mean square distance from the masses to the their center of gravity or to the axis. It has applica-
tion in: structural engineering in determining where columns may buckle; polymer physics to
describe certain properties of a polymer chain; and other theoretical areas.

One means of characterizing the shape of random walks focuses on their asphericity, a mea-
sure of how far the distribution of walk locations is from being spherically symmetric. As it turns
out, this really is another way of measuring the anisotropic (not uniform in each dimension)
nature of random walks. To get a sense of this, consider a two-dimensional off-lattice random
walk. It is hard to tell much from one such walk – one might be severely elongated along the
horizontal axis, another might be elongated along a different axis (Figure 8.2).

294 Numerics

Figure 8.2. Two 2500-step, off-lattice walks.

-30 -20 -10 10

-20

-10

10

20

30

40

50

-15 -10 -5 5 10 15

-25

-20

-15

-10

-5

5

There are several measures one could use to characterize the shape of individual random
walks; see for example, Costa and Cesar (2001). Using a quantity called the radius of gyration tensor,
we can get a good sense of the extent of these random walks in the sense of length and direction
of certain orthogonal vectors that span the walk (Figure 8.3).

Figure 8.3. A 10 000-step off-lattice walk. The two thick lines are in the direction of greatest and
smallest extent of the walk. The center of mass is located at the intersection of these two lines.

-60 -40 -20 20 40

-40

-30

-20

-10

10

20

30

The radius of gyration tensor for a two-dimensional random walk is given by the following
(Rudnick and Gaspari 2004):

� =

1
n �i=1

n �xi - �x��2 1
n �i=1

n �xi - �x�� � yi - � y��
1
n �i=1

n �xi - �x�� � yi - � y�� 1
n �i=1

n � yi - � y��2

The quantities 1
n �i=1

n �xi - �x��2 and 1
n �i=1

n � yi - � y��2 are the sums of the squares of the distances

of the step locations from the center of mass divided by the number of step locations. The center of
mass is the sum of the step locations divided by the number of step locations and is denoted by
��x�, � y��. For example, for a 10 000-step off-lattice walk, this computes the center of mass coordi-
nates which we will label cmx and cmy.

In[12]:= Needs@"PwM`RandomWalks`"D

8.4 Examples and applications 295

In[13]:= coords = RandomWalk@10000, Dimension Ø 2, LatticeWalk Ø FalseD;

In[14]:= 8cmx, cmy< = Mean@coordsD

Out[14]= 870.6457, 58.1533<

This gives a quick visual check, showing the center of mass as a red point.

In[15]:= Show@8
ListLinePlot@coords, PlotStyle Ø LightGrayD,
Graphics@8PointSize@MediumD, Red, Point@Mean@coordsDD<D

<D

Out[15]=

20 40 60 80 100

20

40

60

80

The radius of gyration tensor � defined above can be computed as follows. First, separate the x-
and y-coordinates.

In[16]:= 8xcoords, ycoords< = Transpose@coordsD;

Then compute the off-diagonal elements of the matrix �.

In[17]:= xy = Hxcoords - cmxL.Hycoords - cmyL ê Length@coordsD

Out[17]= 513.817

This gives the computation for the tensor � itself.

In[18]:= � = 99MeanAHxcoords - cmxL2E, xy=, 9xy, MeanAHycoords - cmyL2E==;

In[19]:= MatrixForm@�D
Out[19]//MatrixForm=

930.16 513.817

513.817 438.695

These computations are bundled up in the function RadiusOfGyrationTensor defined in
the package PwM`RandomWalks`.

In[20]:= RadiusOfGyrationTensor@lis_D :=

ModuleA8cmx, cmy, xcoords, ycoords, xy<,

8cmx, cmy< = Mean@lisD;
8xcoords, ycoords< = Transpose@lisD;
xy = Hxcoords - cmxL.Hycoords - cmyL ê Length@lisD;

296 Numerics

99MeanAHxcoords - cmxL2E, xy=, 9xy, MeanAHycoords - cmyL2E==E

In[21]:= RadiusOfGyrationTensor@coordsD

Out[21]= 88930.16, 513.817<, 8513.817, 438.695<<

This function is quite efficient, computing the radius of gyration tensor for a one-million step
random walk in under a second.

In[22]:= walk = RandomWalkA106, LatticeWalk Ø FalseE;

In[23]:= H� = RadiusOfGyrationTensor@walkDL êê Timing

Out[23]= 80.337405, 8849173., -19009.3<, 8-19 009.3, 18 798.5<<<

Next we will try to visualize this system. The eigenvectors of � point in the directions of
greatest and smallest spans of the walk. The eigenvalues give a measure of how elongated the
walk is in these directions. This can be seen by creating lines along each eigenvector of a length
proportional to the corresponding eigenvalues. In the computation below, the slope of the line is
given by the y-coordinate of the eigenvector divided by the corresponding x-coordinate.

In[24]:= 8v1x, v1y< = FirstüEigenvectors@�D

Out[24]= 8-0.901163, 0.43348<

In[25]:= 8v2x, v2y< = LastüEigenvectors@�D

Out[25]= 8-0.43348, -0.901163<

In[26]:= ev1 =
v1y

v1x
Hx - cmxL + cmy êê Expand

Out[26]= 92.1355 - 0.481023 x

In[27]:= ev2 =
v2y

v2x
Hx - cmxL + cmy êê Expand

Out[27]= -88.7124 + 2.0789 x

Putting all these pieces together, we create the function EigenvectorPlot that returns a
plot of the original data set together with plots of the orthogonal lines ev1 and ev2, and puts a
large red point at their intersection, the center of mass.

In[28]:= EigenvectorPlot@data : 88_, _< ..<, tensor_D := ModuleB

8T = tensor, cmx, cmy, x, l1, l2, v1x, v1y, v2x, v2y, l1, l2<,
8l1, l2< = Eigenvalues@TD;
8cmx, cmy< = Mean@dataD;
88v1x, v1y<, 8v2x, v2y<< = Eigenvectors@TD;

8.4 Examples and applications 297

l1 =
v1y

v1x
Hx - cmxL + cmy;

l2 =
v2y

v2x
Hx - cmxL + cmy;

Show@8
ListLinePlot@data, PlotStyle Ø LightGrayD,
Plot@l1, 8x, cmx - l1, cmx + l1<,
PlotStyle Ø 8Gray, Thick<D,

Plot@l2, 8x, cmx - l2, cmx + l2<,
PlotStyle Ø 8Gray, Thick<D,

Graphics@8PointSize@LargeD, Red, Point@Mean@dataDD<D

<, AspectRatio Ø AutomaticDF

In[29]:= � = RadiusOfGyrationTensor@coordsD;
EigenvectorPlot@coords, �D

Out[30]=

20 40 60 80 100

20

40

60

80

Statistical tests
Working with data often involves checks for randomness or goodness-of-fit to a distribution.
Numerous tools are built in to perform certain tests, but there are so many situations where you
need to construct your own tests that it is useful to study what tools can be used for these tasks.
In this section, we will explore several statistical tests for randomness of a sequence.

Built-in tests Mathematica has numerous built-in tests for answering such questions as how good
the fit is between a dataset and a distribution, or even between several datasets. These tests are
automatically chosen by functions such as DistributionFitTest and, in fact, you can see
various test statistics and p-values for many different tests.

In[31]:= data = RandomVariateANormalDistribution@D, 9104=E;

DistributionFitTest creates a HypothesisTestData object from which you can get
various test results and properties. In the following example, we have also set the significance
level to a smaller value than the default of .05.

298 Numerics

In[32]:= � = DistributionFitTest@data, Automatic,
"HypothesisTestData", SignificanceLevel Ø .01D

Out[32]= HypothesisTestData@áDistributionFitTestàD

With p-values significantly larger than zero, we can be reasonably confident that the random
number generator is doing a fine job.

In[33]:= �@"TestDataTable", AllD

Out[33]=

Statistic P-Value

Anderson-Darling 0.451966 0.276274

Cramér-von Mises 0.0589674 0.397779
Jarque-Bera ALM 1.87111 0.391968

Kolmogorov-Smirnov 0.00595404 0.561924

Kuiper 0.0100215 0.648128

Pearson c2 80.176 0.379777

Watson U2 0.0536632 0.40886

Comparing the data created from a normal distribution with a uniform distribution gives very
low p-values as might be expected.

In[34]:= DistributionFitTest@data, UniformDistribution@D,
8"TestDataTable", "PearsonChiSquare"<D

Out[34]=
Statistic P-Value

Pearson c2 10 000. 2.683064656446425�10-2075

In[35]:= DistributionFitTest@data,
UniformDistribution@D, "TestConclusion"D

Out[35]= The null hypothesis that the data is distributed according
to the UniformDistribution@80,1<D is rejected at the
5. percent level based on the Cramér-von Mises test.

Let us now turn to the creation of tests of randomness where the data we will be working with
consist of sequences of random numbers. We will look at three different kinds of tests: those
involving frequencies, fixed ranges of values, and also probability or p-values. In all cases, we will
consider binary sequences, that is, sequences of numbers consisting entirely of 0s and 1s. Finally,
we will create one function for testing for autocorrelation and another function for visualizing
correlations in time-series data, correlograms.

Frequency tests In a frequency test on binary sequences, we are interested in the proportion of 0s
and 1s in the sequence. Obviously, in a random binary sequence, these would be about the same.
The test first computes an observed test statistic sobs and uses that to compute a p-value which is
finally compared with a threshold, typically .01. A large p-value would indicate a greater likeli-
hood of randomness. A p-value near or less than .01 would suggest nonrandomness.

8.4 Examples and applications 299

The steps in computing the test statistic (the p-value) are as follows:
1. Convert 0s to -1, then add the bits. If the converted individual bits are denoted �i, and

the length of the sequence is n, then the sum is given by Sn = �1 + �2 +�+ �n.

2. Compute the statistic Sobs =
Sn

n
.

3. The p-value is given by erfc
Sobs

2
 where erfc is the complementary error function. If the

p-value is greater than or equal to .01, then conclude the sequence is random.

We start by creating a sequence of values ±1.

In[36]:= data = 2 RandomInteger@1, 8100<D - 1

Out[36]= 8-1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1,

-1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1,

1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1,

-1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,

1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1<

The test statistic is given by the following formula, where the ei are the elements (±1) of the
sequence and n is the length of the sequence.

sobs =
e1+e2+�+en

n

In[37]:= Sobs@seq_ListD := Abs@Total@seqDD í Length@seqD

In[38]:= Sobs@dataD êê N

Out[38]= 0.6

Finally, the p-value is given by the error function:

In[39]:= ErfcBSobs@dataD í 2 F êê N

Out[39]= 0.548506

The large p-value, compared with .01, would suggest a sufficiently random sequence. This was a
very short sequence, so let us repeat with a much longer sequence.

In[40]:= data = 2 RandomIntegerA1, 9106=E - 1;

ErfcBSobs@dataD í 2 F êê N

Out[41]= 0.841481

Let us now try this test on a random number generator known to be problematic – a linear
congruential generator. BlockRandom is used here and in what follows to keep the random

300 Numerics

seeds local to the block in which they are called. In this way, seeding will not affect other (global)
random computations.

In[42]:= BlockRandom@SeedRandom@0,
Method Ø 8"Congruential", "Multiplier" Ø 15, "Increment" Ø 1,

"Modulus" Ø 381<D; 2 RandomInteger@1, 20D - 1D

Out[42]= 8-1, -1, -1, -1, -1, -1, -1, 1,
-1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1<

In[43]:= data = BlockRandomASeedRandom@0, Method Ø

8"Congruential", "Multiplier" Ø 15, "Increment" Ø 1,

"Modulus" Ø 381<D; 2 RandomIntegerA1, 106E - 1E;

NBErfcB
Sobs@dataD

2
FF

Out[44]= 1.98947 � 10-15

Clearly, with such a small p-value, the linear congruential generator with these parameter values
is not a good choice for generating sequences of random numbers.

Fixed range tests With fixed range tests, a test statistic is computed and the test is said to fail if the
statistic is outside of the range of values. The frequency (monobit) test above is an example of a
fixed range test. In this section we will run a simulation for a relatively large number of trials and
tally the number of trials that pass or fail the test.

Assuming a sequence of one million zeros and ones, we would expect about 500 000 ones. So
at a .01 significance level, the test will be passed if the number of ones is in the range 500 000 � x,
where x is given by the following:

In[45]:= WithB9significance = 0.01, n = 106=,

1

2
n InverseCDFBNormalDistribution@0, 1D, 1 -

significance

2
FF

Out[45]= 1287.91

Here is a function that encodes the statistic and returns $Pass if the total number of ones in
the sequence is within the prescribed range, and returns $Fail otherwise. No special signifi-
cance is attached to these expressions – any suitable string would do.

In[46]:= test@data_, expect_, significance_D :=

ModuleB8n = Length@dataD, ran<,

ran =
1

2
n InverseCDFB

8.4 Examples and applications 301

NormalDistribution@0, 1D, 1 -
significance

2
F;

If@Hexpect - ranL < Total@dataD < Hexpect + ranL,

"$Pass", "$Fail"DF

Let us simulate 100 tests, each with a significance level of .01. Note the need for a delayed assign-
ment in defining data.

In[47]:= data := RandomIntegerA1, 9106=E;

In[48]:= TableBtestBdata,
Length@dataD

2
, 0.01F, 8100<F;

In[49]:= Tally@%D

Out[49]= 88$Pass, 99<, 8$Fail, 1<<

Although frequency tests such as the one above are fairly basic, they can be good at detecting
an abundance of zeros or ones in a binary sequence. For example, if we were to weight the genera-
tor, the test is quite good at finding failures even with a very small weight factor.

In[50]:= WithA8e = 0.0015, trials = 100<,

TableAtestARandomChoiceA80.5 + e, 0.5 - e< Ø 80, 1<, 9106=E,

5 � 105, 0.01E, 8trials<E

E êê

Tally

Out[50]= 88$Fail, 70<, 8$Pass, 30<<

Runs tests A runs test is primarily concerned with detecting an unusual (nonrandom) number of
runs of zeros or ones in a binary sequence.

The steps in computing the test statistic (the p-value) are as follows:
1. Compute the proportion of ones in the sequence: p = H�1 + �2 +�+ �nL ê n.

2. Compute the statistic Vnobs = �k=1
n-1 rHkL+ 1, where rHkL = 0 if �k = �k+1 and rHkL = 1 other-

wise; this is computing the number of runs in the sequence.

3. The p-value is given by erfc
Vnobs-2 n pH1-pL

2 2 n pH1-pL
. If the p-value is greater than or equal to .01,

then we conclude the sequence is random.

302 Numerics

Let us generate some binary data.

In[51]:= data = RandomInteger@1, 8100<D

Out[51]= 81, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,

0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,

1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1<

Then we compute the proportion of 1s:

In[52]:= pi = Total@dataD ê Length@dataD êê N

Out[52]= 0.6

To compute Vnobs we use Split to partition by runs of the same number and then count the
number of runs present.

In[53]:= Vn = Length@Split@dataDD

Out[53]= 45

Here is the function using the above pieces of code with one modification – using Mean to
compute pi.

In[54]:= RunsTest@data_D :=

ModuleB8n = Length@dataD, pi = Mean@dataD, Vn<,

Vn = Length@Split@dataDD;

NBErfcBAbs@Vn - 2 n pi H1 - piLD í J2 2 n pi H1 - piLNFF

F

For the small sequence of 0s and 1s, the statistic is far enough from 0 that we can conclude the
sequence exhibits randomness.

In[55]:= RunsTest@dataD

Out[55]= 0.531971

The following example is part of the NIST test suite for testing randomness in binary
sequences.

In[56]:= seq =
1100100100001111110110 101 010 001 000 100 001 011 010 001 100 Ö
001000110100110001001100 011 001 100 010 100 010 111 000;

data = IntegerDigits@seqD;

In[57]:= Length@dataD

Out[57]= 100

8.4 Examples and applications 303

In[58]:= RunsTest@dataD

Out[58]= 0.500798

Since this p-value is significantly greater than .01, we can conclude the sequence passes our test
for randomness.

The runs test is commonly used to detect runs of 0s or 1s in a binary sequence. A very small (or
large) number of oscillations would have fewer (or more) runs than expected. For example, a
sequence of 100 bits consisting of fifty 1s followed by fifty 0s would have only two runs, which is
quite a lot fewer than the expected fifty runs. See Rukhin et al. (2010) for further information on
runs tests.

Autocorrelation tests and correlograms Sometimes a quick visualization can give a good sense of
statistical information at a glance. One commonly used visualization in time-series analysis, for
example, is an autocorrelation plot, or, more broadly, correlograms. These plots provide visual
information showing correlations for data at various time or position lags.

For testing randomness in sequences of numbers, the autocorrelation statistic should be near
zero. For time series, the statistic can help determine if one datum point is related to a subsequent
value in a list or if the values are unrelated and essentially represent uncorrelated data, or white
noise.

We will use the built-in statistical functions to create a visualization of autocorrelation statis-
tics for a range of time lags. We will start with a small dataset consisting of a sequence of 1000

random integers between one and one hundred.

In[59]:= data = RandomInteger@81, 100<, 81000<D;

Assuming a lag of 1, we need to pair up the second element with the first, the third element with
the second, and in general, create a list 8xi-1, xi< for each element in the dataset. Finally we run
Correlation on these two vectors.

In[60]:= Correlation@Drop@data, 1D, Drop@data, -1DD êê N

Out[60]= 0.019673

The computed autocorrelation values will generally be in the range [-1, 1] with values close to 0
being more closely associated with randomness.

Here then is a function to compute the autocorrelation for arbitrary time lags, with a default
time lag of 1.

In[61]:= AutoCorrelation@data_, lag_: 1D :=

Correlation@Drop@data, lagD, Drop@data, -lagDD

304 Numerics

Let us create a set of autocorrelation statistics for time lags from 1 to 40.

In[62]:= correlations =
NüTable@AutoCorrelation@data, lagD, 8lag, 1, 40, 1<D;

Typically, autocorrelation data like the above are visualized over the range of time lags that are
being used. Here is a plot with dashed lines set at the constant values 0.1 and –0.1 to highlight the
range of the autocorrelation values.

In[63]:= ListPlot@correlations, AspectRatio Ø .35,
Frame Ø True, Axes Ø False, PlotRange Ø 8-0.25, 0.25<,
FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed, Line@880, 0.1<, 840, 0.1<<D,

Line@880, -0.1<, 840, -0.1<<D<D

Out[63]=

0 10 20 30 40

-0.2

-0.1

0.0

0.1

0.2

With a bit more work, we could turn all the work above into a function that takes three argu-
ments: the data that are being studied, a list indicating the range of time lags, and a scalar value
for the dashed lines range. (See Section 10.1 for more information on working with graphics
functions and their many options.) These types of plots are commonly referred to as correlo-
grams.

In[64]:= Correlogram@data_, 8lagmin_, lagmax_, incr_: 1<, coeff_D :=

Module@8corrs, len<,
len = Hlagmax - lagmin + 1L ê incr;
corrs = Table@8lag, AutoCorrelation@data, lagD<,

8lag, lagmin, lagmax, incr<D;
ListPlot@corrs,
AspectRatio Ø .35, Frame Ø True, Axes Ø False,
FrameLabel Ø 8"Lag", "Autocorrelation"<,
FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed, Line@880, coeff<, 8len, coeff<<D,

Line@880, -coeff<, 8len, -coeff<<D<DD

8.4 Examples and applications 305

In[65]:= Correlogram@data, 81, 100<, 0.05D

Out[65]=

0 20 40 60 80 100
-0.10

-0.05

0.00

0.05

Lag

A
ut

oc
or

re
la

tio
n

Interestingly, if the data exhibit periodicity, the correlogram will follow this fluctuation at the
same frequency. For example, mean monthly air temperatures taken over a twenty-year period
show this phenomenon quite clearly.

In[66]:= temps = WeatherData@"Chicago", "MeanTemperature",
881992, 1<, 82012, 1<, "Month"<, "Value"D;

In[67]:= Correlogram@temps, 81, 40<, 0.35D

Out[67]=

0 10 20 30 40

-0.5

0.0

0.5

1.0

Lag

A
ut

oc
or

re
la

tio
n

Several improvements to this function such as adding options to indicate the autocorrelation
range and options to be passed to ListPlot are discussed in Exercise 8 below.

See Chatfield (2004) or Box, Jenkins, and Reinsel (2008) for more information on the analysis
and visualization of time-series statistics.

Exercises
1. Write a functional implementation of the secant method. Your function should accept as argu-

ments the name of a function and two initial guesses. It should maintain the precision of the inputs
and it should output the root at the precision of the initial guess, and the number of iterations
required to compute the root. Consider using the built-in functions FixedPoint or Nest .

2. The findRoot function developed in this section suffers from several inefficiencies. One of them is
that if the precision goal is no more than machine precision, all intermediate computations should
be done at the more efficient machine precision as well. Modify findRoot so that it will operate at
machine precision if the precision goal is at most machine precision.

3. In the findRoot program, we added SetPrecisionAresult, precisionGoalE at the very end to

return the final result at the precision goal, but we have done no test to insure that the result meets
the required precision. Add a test to the end of the findRoot function so that, if this condition is
not met, an error message is generated and the current result is output.

306 Numerics

4. Some functions tend to cause root-finding methods to converge rather slowly. For example, the
function f HxL = sinHxL - x requires over ten iterations of Newton’s method with an initial guess of
x0 = 0.1 to get three-place accuracy.

In[1]:= FindRoot@Sin@xD - x, 8x, 0.1<,
MaxIterations Ø 12, EvaluationMonitor ß Sow@xDD êê Reap

FindRoot::cvmit :
Failed to converge to the requested accuracy or precision within 12 iterations. à

Out[1]= 88x Ø 0.000770503<,
880.1, 0.0666556, 0.0444337, 0.0296215, 0.0197474, 0.0131648,

0.00877654, 0.00585102, 0.00390068, 0.00260045,
0.00173363, 0.00115576, 0.000770503<<<

Implement the following acceleration of Newton’s method and determine how many iterations of
the function f HxL = sinHxL - x, starting with x0 = 0.1, are necessary for six-place accuracy.

accelNewtonHxL =
f HxL f £HxL

A f £HxLE2- f HxL f ££HxL

This accelerated method is particularly useful for functions with multiple roots.

5. The norm of a matrix gives some measure of the size of that matrix. The norm of a matrix A is
indicated by �A¥. There are numerous matrix norms, but all share certain properties. For n�n
matrices A and B:

(i.) �A¥ ¥ 0;

(ii.) �A¥ = 0 if and only if A is the zero matrix;

(iii.) �c A¥ = c �A¥ for any scalar c;

(iv.) �A + B¥ = �A¥ + �B¥;

(v.) �A B¥ § �A¥ �B¥.

One particularly useful norm is the l¶ norm, sometimes referred to as the max norm. For a vector,
this is defined as

�x”¥¶ = max1§i§n xi .

The corresponding matrix norm is defined similarly. Hence, for a matrix A = ai j, we have

�A¥¶ = max1§i§n �j=1
n ai j .

This computes the sum of the absolute values of the elements in each row, and then takes the
maximum of these sums, that is, the l¶ matrix norm is the max of the l¶ norms of the rows.

Write a function norm@mat, ¶D that takes a square matrix as an argument and outputs its � ÿ¥¶

norm. Compare your function with the built-in Norm function. Include rules for the l2 and l1 norms.

6. If a matrix A is nonsingular (invertible), then its condition number is defined as �A¥ ÿ±A-1�. A matrix is

called well-conditioned if its condition number is close to 1, the condition number of the identity
matrix. A matrix is called ill-conditioned if its condition number is significantly larger than 1.

8.4 Examples and applications 307

Write a function conditionNumber@matD that uses norm defined in the previous exercise or
the built-in Norm function and outputs the condition number of mat. Use conditionNumber to
compute the condition number of the first ten Hilbert matrices.

7. Create a function LagPlotAdata, lagE that plots data (a one-dimensional vector) against the data

lagged by a displacement, lag. For example, if lag = 1, then LagPlot would display values 8xi-1, xi}.
Use NIST’s lew.dat which consists of 200 observations of beam deflection data and whose lag plot
indicates a lack of randomness in the sequence of numbers. You can import and post-process the
data using the following:

In[2]:= data = Import@
"http:êêitl.nist.govêdiv898êeducationêedaêlew.dat", "Data"D;

Short@lewdata = Cases@data, 8x_?NumberQ< ß xDD
Out[3]//Short=

8-213, -564, -35, -15, 141, á190à, -385, 198, -218, -536, 96<

Or, if you have the files associated with this book, use something like the following:

In[4]:= lewdata = Import@
FileNameJoin@8NotebookDirectory@D, "Data", "lew.dat"<D, "List"D;

8. Modify the Correlogram function developed in this section to provide for an option,
Coefficient, that sets the range of values for the dashed lines within which the autocorrelation
coefficients are hoped to lie. In addition, set things up so Correlogram inherits all the options of
ListPlot.

Then use your function to look at some time-series data, such as that below; the plot here shows
a high degree of autocorrelation for small time lags, but less so for larger lags, suggesting a serial
dependence in the data. In finance, autocorrelation analysis (usually referred to as serial correlation)
is used to predict how price movements may be affected by each other.

In[5]:= data = FinancialData@"^DJI", 882011, 1, 1<, 82011, 12, 31<<, "Value"D;

In[6]:= Correlogram@data, 81, 150<, Coefficient Ø 0.5,

Filling Ø Axis, PlotRange Ø 8-1, 1<,
PlotLabel Ø Style@"Dow Jones 2011: autocorrelation plot", 8D,
FrameLabel Ø 88"Autocorrelation", None<, 8"Lag", None<<D

Out[6]=

9. Create random walks on the binary digits of p. For a one-dimensional walk, use
RealDigits@num, 2D to get the base 2 digits and then convert each 0 to –1 so that you have a
vector of ±1s for the step directions; then use Accumulate. For the two-dimensional walk, use
Partition to pair up digits and then use an appropriate transformation to have the four pairs,
80, 0<, 80, 1<, 81, 0<, and 81, 1< map to the compass directions; then use Accumulate. See
Bailey et al. (2012) for more on visualizing digits of p.

308 Numerics

9

Strings
Structure and syntax · Character codes · Sorting lists of characters · Ordered words · Operations

on strings · Strings vs. lists · Encoding text · Indexed symbols · Anagrams · String patterns°·
Finding subsequences with strings · Alternatives · Regular expressions · Word stemming ·

Random strings · Partitioning strings · Adler checksum · Substring searches · DNA sequence
analysis · Displaying DNA sequences · Blanagrams

Strings are used across many disciplines to represent filenames, data, and other objects: linguists
working with text data study representation, classification, and patterns involved in audio and
text usage; biologists dealing with genomic data as strings are interested in sequence structure
and assembly and perform extensive statistical analysis of their data; programmers operate on
string data for such tasks as text search, file manipulation, and text processing. Strings are so
ubiquitous that almost every modern programming language has a string datatype and dozens of
functions for operating on and with strings.

 In Mathematica, strings are represented by any concatenation of characters enclosed in double
quotes.

In[1]:= StringQ@"The magic words are squeamish ossifrage."D

Out[1]= True

Strings are also used to represent file names that you import and export.

In[2]:= Import@"ExampleDataêocelot.jpg"D

Out[2]=

Strings are used as arguments, option values, and as the output to many functions.

In[3]:= GenomeData@"SNORD107"D

Out[3]= GGTTCATGATGACACAGGACCTTGTCTGAACATAATGATTTCAAAATTTGAGCTTAAAAÖ
ATGACACTCTGAAATC

In[4]:= StringQ@%D

Out[4]= True

In this chapter we will introduce the tools available for working with strings in Mathematica.
We will begin with a look at the structure and syntax of strings, then move on to a discussion of
the many high-level functions that are optimized for string manipulation. String patterns follow
on the discussion of patterns in Chapter 4 and we will introduce an alternative syntax (regular
expressions) that provides a very compact mechanism for working with strings. The chapter
closes with several applied examples drawn from computer science (checksums) as well as
bioinformatics (working with DNA sequences) and also word games (anagrams, blanagrams).

9.1 Structure and syntax
Strings are expressions consisting of a number of characters enclosed in quotes. The characters
can be anything you can type from your keyboard, including uppercase and lowercase letters,
numbers, punctuation marks, and spaces. For example, here is the standard set of printable Ascii
characters.

In[1]:= CharacterRange@" ", "~"D

Out[1]= 8 , !, ", Ò, $, %, &, ', H, L, *, +, ,, -, ., ê, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, :, ;, <, =, >, ?, ü, A, B, C, D, E,
F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X,

Y, Z, @, \, D, ^, _, `, a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, 8, », <, ~<

Other character sets are available as well. For example, here are the lowercase Greek letters. These
are typically entered from one of Mathematica’s many built-in character palettes, or using a key-
board shortcut such as Â-a-Â for a.

In[2]:= CharacterRange@"a", "w"D

Out[2]= 8a, b, g, d, �, z, h, q, i, k, l,
m, n, x, o, p, r, V, s, t, u, j, c, y, w<

When Mathematica displays a string in output, it appears without the quotes. This is the default
behavior of the formatting rules for OutputForm .

310 Strings

In[3]:= "The magic words are squeamish ossifrage."

Out[3]= The magic words are squeamish ossifrage.

Use InputForm or FullForm to display these quotes in output.

In[4]:= FullForm@"The magic words are squeamish ossifrage."D
Out[4]//FullForm=

"The magic words are squeamish ossifrage."

Various predicates test whether a string consists entirely of letters, or uppercase and lowercase
letters.

In[5]:= LetterQ@"ossifrage"D

Out[5]= True

In[6]:= LetterQ@"x1"D

Out[6]= False

In[7]:= LowerCaseQ@"strings"D

Out[7]= True

Use === (SameQ) to test for equality of strings.

In[8]:= "sty" === "sty "

Out[8]= False

Several functions are available for working with the structure of strings.

In[9]:= Head@"The magic words are squeamish ossifrage."D

Out[9]= String

In[10]:= StringLength@"The magic words are squeamish ossifrage."D

Out[10]= 40

StringLength also works with lists of strings. In other words, it has the Listable attribute.

In[11]:= StringLength@
8"How", "I", "wish", "I", "could", "calculate", "pi"<D

Out[11]= 83, 1, 4, 1, 5, 9, 2<

Character codes
One way to work with strings is to convert them to a list of character codes and then operate on
the codes using mathematical functions. Each character in a computer’s character set is assigned
a number, called its character code. By general agreement, almost all computers use the same
character codes, called the Ascii code. In this code, the uppercase letters A, B, …, Z are assigned the

9.1 Structure and syntax 311

numbers 65, 66, …, 90 while the lowercase letters a, b, …, z have the numbers 97, 98, …, 122 (note
that the number of an uppercase letter is 32 less than its lowercase version). The numbers 0, 1, …,
9 are coded as 48, 49, …, 57 while the punctuation marks period, comma, and exclamation point
have the codes 46, 44, and 33, respectively. The space character is represented by the code 32.

Table 9.1 shows the characters and their codes.

Table 9.1. Ascii character codes

Characters Ascii codes
A, B, …, Z 65, 66, …, 90

a, b, …, z 97, 98, …, 122

0, 1, …, 9 48, 49, …, 57

. HperiodL 46

, HcommaL 44

? Hquestion markL 63

â HspaceL 32

Here are the printable Ascii characters.

In[12]:= FromCharacterCode@Range@32, 126DD

Out[12]=

!"Ò$%&'HL*+,-.ê0123456789:;<=>?üABCDEFGHIJKLMNOPQRSTUVWXYZ
@\D^_`abcdefghijklmnopqrstuvwxyz8»<~

ToCharacterCodeAcharE converts any string character char to its Ascii code.

In[13]:= ToCharacterCode@%D

Out[13]= 832, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126<

You can also get a list of the characters in a range if you know how they are ordered by their
character codes.

312 Strings

In[14]:= CharacterRange@"a", "z"D

Out[14]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[15]:= Flatten@ToCharacterCode@%DD

Out[15]= 897, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122<

Characters from other languages can also be used, for example, Greek and Japanese.

In[16]:= FromCharacterCode@Range@913, 1009DD

Out[16]= ABGDEZHQIKLMNXOPR STUFCYW�������abgd�zhqiklmnxoprVstujcyw���Ö
	
� J¢��fv�������¥��ª�������	
����ø�

In[17]:= FromCharacterCode@Range@30 010, 30 030DD

Out[17]= 町画甼甽甾甿畀���畄�畆�畈畉畊畋界畍畎
Unicode charts for many languages are available online (for example, www.unicode.org/charts).
With these charts you can find the hexadecimal code for characters in many different languages.
For Gujarati, the first character in its code table has hex value 0A90. Here we convert from base
16 and then display the character.

In[18]:= 16^^0A90

Out[18]= 2704

In[19]:= FromCharacterCode@%D

Out[19]= �
Using the character code representation of characters, the following series of computations

changes a word from lowercase to uppercase.

In[20]:= ToCharacterCode@"mathematica"D

Out[20]= 8109, 97, 116, 104, 101, 109, 97, 116, 105, 99, 97<

In[21]:= % - 32

Out[21]= 877, 65, 84, 72, 69, 77, 65, 84, 73, 67, 65<

In[22]:= FromCharacterCode@%D

Out[22]= MATHEMATICA

Or, simply use a built-in function that is designed specifically for this task.

In[23]:= ToUpperCase@"mathematica"D

Out[23]= MATHEMATICA

9.1 Structure and syntax 313

Sorting lists of characters
As a practical example of the use of character codes, we will extend the simple sorting function
from Chapter 4 to work with lists of string characters. Although written to operate on numbers,
this rule can be overloaded to work on characters by making only a few small changes. Here is
the original rule from Section 4.3.

In[24]:= listSort = 88x___, a_?NumericQ, b_?NumericQ, y___< ß

8x, b, a, y< ê; b < a<;

The first change is to check that the patterns a and b have head String instead of testing for
numbers with the predicate NumericQ. Second, instead of the numerical comparison a < b, we
need to compare their character codes.

In[25]:= ToCharacterCode@8"q", "t"<D

Out[25]= 88113<, 8116<<

In[26]:= charSort = 8x___, a_String, b_String, y___< ß 8x, b, a, y< ê;
First@ToCharacterCode@bDD < First@ToCharacterCode@aDD

Out[26]= 8x___, a_String, b_String, y___< ß 8x, b, a, y< ê;
First@ToCharacterCode@bDD < First@ToCharacterCode@aDD

Here is a list of characters.

In[27]:= chars = 8"d", "h", "c", "m", "r", "l", "c", "h", "t", "d", "j"<;

Here is the sort.

In[28]:= chars êê. charSort

Out[28]= 8c, c, d, d, h, h, j, l, m, r, t<

Section 9.5 explores the use of character codes to create hash tables, or checksums.

Ordered words
When studying word or language structure, a common task is to find all words within a corpus
that meet some criteria you are interested in. In this brief example, we will use character codes to
search for words whose letters are “in order” when read from the first letter to the last. We will
create a Boolean function OrderedWordQ that returns True or False depending upon
whether its argument is in alphabetic order. So OrderedWordQ@"best"D would return True
but OrderedWordQ@"brag"D would return False. Then we will use this predicate to find all
words in a dictionary that are ordered in this sense.

Start by getting a list of all words in the dictionary using DictionaryLookup.

314 Strings

In[29]:= words = DictionaryLookup@D;
Short@words, 4D

Out[30]//Short=

8a, Aachen, aah, Aaliyah, aardvark, aardvarks,

Aaron, abaci, aback, abacus, abacuses, abaft,

á92 495à, Zürich, zwieback, Zwingli, Zworykin, zydeco,

zygote, zygotes, zygotic, zymurgy, Zyrtec, Zyuganov<

Alternatively, you can use the data in WordData, which contains phrases in addition to words.
You could use any similar resource for your list of words.

In[31]:= Short@WordData@AllD, 4D
Out[31]//Short=

80, 1, 10, 100, 1000, 10000, 100000, 1000000,

1000000000, 1000000000000, 1000th, 100th, á149168à,

Zyloprim, zymase, zymogen, zymoid, zymology, zymolysis,

zymolytic, zymosis, zymotic, zymurgy, Zyrian<

First, consider the character code of a string.

In[32]:= ToCharacterCode@"best"D

Out[32]= 898, 101, 115, 116<

Then we only need to know if this list of codes is in order.

In[33]:= OrderedQ@%D

Out[33]= True

Here is a predicate that returns True if its argument is ordered in this alphabetic sense.

In[34]:= OrderedWordQ@word_StringD := OrderedQ@ToCharacterCode@wordDD

Now we will find all the words in the dictionary file that comes with Mathematica that are ordered
in this way; we will use Select to return those words that pass the test. Finally, we randomly
sample 40 of them.

In[35]:= orderedwords = Select@words, OrderedWordQD;

In[36]:= RandomSample@orderedwords, 40D

Out[36]= 8Tabor, dot, loos, first, Phipps, Gap, I, Kent, Milo, Dior,
bells, or, ABS, Kass, ens, Nader, been, adds, a, Hiss, access,
Lajos, Kerr, allow, cellos, Babel, Rh, his, ah, almost, abbes,
chippy, Cam, ABC, ally, Igor, cent, Odell, floppy, Tory<

Almost correct! In the English character code set, capitals appear before lowercase letters. So,
although our words are ordered in the sense of character codes, they are not ordered in the
commonly-used sense.

9.1 Structure and syntax 315

In[37]:= ToCharacterCode@"A"D

Out[37]= 865<

In[38]:= ToCharacterCode@"a"D

Out[38]= 897<

One approach to resolving this issue is to only work with words of the same case. We could
either convert words of the form uppercase/lowercase to lowercase/lowercase or we could select
only words from the dictionary that match a pattern that codes for this. We will wait until the
discussion of string patterns in Section 9.3 to correct this issue.

Exercises
1. Convert the first character in a string (which you may assume to be a lowercase letter) to uppercase.

2. Given a string of digits of arbitrary length, convert it to its integer value. (Hint: you may find that the
Dot function is helpful.)

3. Create a function UniqueCharacters@strD that takes a string as its argument and returns a list of
the unique characters in that string. For example, UniqueCharacters@"Mississippi"D
should return 8M, i, s, p<.

9.2 Operations on strings
Strings are expressions and, like other expressions (such as numbers and lists), there are built-in
functions available to operate on them. Many of these functions are very similar to those for
operating on lists. In this section we will first look at some of these basic functions for operating
on strings and then use them on some nontrivial examples: analyzing a large piece of text, encod-
ing strings, creating index variables, and finally, a word game for creating anagrams.

Basic string operations
StringTake , which has a similar syntax to Take , is used to extract parts of a string. The second
argument specifies the positions of the characters to extract. So, for example, this takes the first
twelve characters in this string.

In[1]:= StringTake@"Three quarks for Muster Mark!", 12D

Out[1]= Three quarks

And this takes the last twelve characters from the string.

In[2]:= StringTake@"Three quarks for Muster Mark!", -12D

Out[2]= Muster Mark!

316 Strings

A list of the individual characters is returned by Characters .

In[3]:= Characters@"Three quarks for Muster Mark!"D

Out[3]= 8T, h, r, e, e, , q, u, a, r, k, s, ,
f, o, r, , M, u, s, t, e, r, , M, a, r, k, !<

StringJoin concatenates strings.

In[4]:= StringJoin@"q", "u", "a", "r", "k", "s"D

Out[4]= quarks

The shorthand notation for StringJoin is str1 < > str2.

In[5]:= "x" <> "22"

Out[5]= x22

The following functions mirror those for list operations.

In[6]:= StringReverse@"abcde"D

Out[6]= edcba

In[7]:= StringDrop@"abcde", -1D

Out[7]= abcd

In[8]:= StringPosition@"abcde", "bc"D

Out[8]= 882, 3<<

In[9]:= StringCount@"When you wish upon a star", "o"D

Out[9]= 2

In[10]:= StringInsert@"abcde", "T", 3D

Out[10]= abTcde

In[11]:= StringReplace@"abcde", "cd" Ø "CD"D

Out[11]= abCDe

Some functions are quite specific to strings and do not have analogs with lists. For example,
conversion to uppercase and lowercase.

In[12]:= ToUpperCase@"words"D

Out[12]= WORDS

This trims substrings from a string using alternative patterns (discussed further in Section 9.3). So
if either "http:êê" or "ê" is found, they will be trimmed.

In[13]:= StringTrim@"http:êêwww.google.comê", "http:êê" "ê"D

Out[13]= www.google.com

9.2 Operations on strings 317

Strings vs. lists
For some computations, you might be tempted to convert a string to a list of characters and then
operate on the list using some list manipulation functions. For example, this first constructs a list
of the individual characters and then uses Count to get the number of occurrences of the letter B
in the list of characters from the text of Charles Darwin’s On the Origin of Species.

In[14]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;
StringTake@text, 200D

Out[15]= INTRODUCTION. When on board H.M.S. 'Beagle,' as
naturalist, I was much struck with certain facts
in the distribution of the inhabitants of South
America, and in the geological relations of the present

In[16]:= Count@Characters@textD, "B"D êê Timing

Out[16]= 80.167993, 427<

Since the string functions in Mathematica are optimized for working on strings directly you will
often find that they are much faster than the more general list manipulation functions.

In[17]:= StringCount@text, "B"D êê Timing

Out[17]= 80.001424, 427<

This speedup results from the fact that the string pattern matching algorithms are operating only
on a well-defined finite alphabet and string expressions are essentially flat structures, whereas the
algorithms for more general expression matching are designed to operate on arbitrary expres-
sions with potentially much more complicated structures.

Converting to lists and using list manipulation functions will often be more cumbersome than
working with the string functions directly. For example, finding a word within a chunk of text by
first converting to a list of characters would be quite indirect and computationally more taxing
than simply using StringCount directly.

In[18]:= StringCount@text, "selection"D êê Timing

Out[18]= 80.005508, 351<

In fact, sometimes you will even find it more efficient to convert a numerical problem to one
involving strings, do the work with string manipulation functions, and then convert back to
numbers as in the subsequence example in Section 9.5.

Encoding text
In this example, we will develop functions for coding and decoding strings of text. The particular
coding that we will use is quite simplistic compared with contemporary commercial-grade
ciphers, but it will give us a chance to see how to combine string manipulation, the use of func-

318 Strings

tional programming constructs, and rule-based programming all in a very practical example that
should be accessible to anyone.

The problem in encryption is to develop an algorithm that can be used to encode a string of
text and then a dual algorithm that can be used to decode the encrypted message. Typically, the
input string is referred to as the plaintext and the encoded output as the ciphertext.

To start, we will limit ourselves to the 26 lowercase letters of the alphabet.

In[19]:= alphabet = CharacterRange@"a", "z"D

Out[19]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

One of the simplest encryption schemes is attributed to Julius Caesar who is said to have used
this cipher to encode communications with his generals. The scheme is simply to shift each letter
of the alphabet some fixed number of places to the left and is commonly referred to as a substitu-
tion cipher. Using Thread, we can set up rules that implement this shift, here just shifting one
place to the left.

In[20]:= CaesarCodeRules = Thread@alphabet Ø RotateLeft@alphabetDD

Out[20]= 8a Ø b, b Ø c, c Ø d, d Ø e, e Ø f, f Ø g, g Ø h, h Ø i,
i Ø j, j Ø k, k Ø l, l Ø m, m Ø n, n Ø o, o Ø p, p Ø q, q Ø r,
r Ø s, s Ø t, t Ø u, u Ø v, v Ø w, w Ø x, x Ø y, y Ø z, z Ø a<

The decoding rules are simply to reverse the encoding rules.

In[21]:= CaesarDecodeRules = Map@Reverse, CaesarCodeRulesD

Out[21]= 8b Ø a, c Ø b, d Ø c, e Ø d, f Ø e, g Ø f, h Ø g, i Ø h,
j Ø i, k Ø j, l Ø k, m Ø l, n Ø m, o Ø n, p Ø o, q Ø p, r Ø q,
s Ø r, t Ø s, u Ø t, v Ø u, w Ø v, x Ø w, y Ø x, z Ø y, a Ø z<

To code a string, we will decompose the string into individual characters, apply the code rules,
and then join up the resulting characters in a “word.”

In[22]:= Characters@"hello"D

Out[22]= 8h, e, l, l, o<

In[23]:= % ê. CaesarCodeRules

Out[23]= 8i, f, m, m, p<

In[24]:= StringJoin@%D

Out[24]= ifmmp

9.2 Operations on strings 319

Here is the function to accomplish this.

In[25]:= encode@str_String, coderules_D :=

StringJoin@Characters@strD ê. coderulesD

Similarly, here is the decoding function.

In[26]:= decode@str_String, decoderules_D :=

StringJoin@Characters@strD ê. decoderulesD

Let us try it out on a phrase.

In[27]:= encode@"squeamish ossifrage", CaesarCodeRulesD

Out[27]= trvfbnjti pttjgsbhf

In[28]:= decode@%, CaesarDecodeRulesD

Out[28]= squeamish ossifrage

In this example, we have shifted one position for each letter to encode (and decode). It is
thought that Caesar (or his cryptographers) used a shift of length three to encode his military
messages. In the exercises, you are asked to implement a different shift length in the encoding
and decoding functions.

Even with longer shifts, the Caesar cipher is terribly insecure and highly prone to cracking
since there are only 26 possible shifts with this simple cipher. A slightly more secure cipher
involves permuting the letters of the alphabet.

In[29]:= p = RandomSample@alphabetD

Out[29]= 8a, m, j, c, d, k, p, u, x, z, b,
w, n, e, t, s, g, l, y, h, v, i, f, o, q, r<

Using Thread, we create a rule for each letter paired up with the corresponding letter from the
permutation p.

In[30]:= PermutationCodeRules = Thread@alphabet Ø pD

Out[30]= 8a Ø a, b Ø m, c Ø j, d Ø c, e Ø d, f Ø k, g Ø p, h Ø u,
i Ø x, j Ø z, k Ø b, l Ø w, m Ø n, n Ø e, o Ø t, p Ø s, q Ø g,
r Ø l, s Ø y, t Ø h, u Ø v, v Ø i, w Ø f, x Ø o, y Ø q, z Ø r<

Again, the decoding rules are obtained by simply reversing the above rules.

In[31]:= PermutationDecodeRules = Thread@p Ø alphabetD

Out[31]= 8a Ø a, m Ø b, j Ø c, c Ø d, d Ø e, k Ø f, p Ø g, u Ø h,
x Ø i, z Ø j, b Ø k, w Ø l, n Ø m, e Ø n, t Ø o, s Ø p, g Ø q,
l Ø r, y Ø s, h Ø t, v Ø u, i Ø v, f Ø w, o Ø x, q Ø y, r Ø z<

320 Strings

In[32]:= encode@"squeamish ossifrage", PermutationCodeRulesD

Out[32]= ygvdanxyu tyyxklapd

In[33]:= decode@%, PermutationDecodeRulesD

Out[33]= squeamish ossifrage

Although these substitution ciphers are not terribly difficult to crack, they should give you
some good practice in working with strings and the various Mathematica programming con-
structs. Modern commercial-grade ciphers such as public-key ciphers are often based on the
difficulty of factoring large integers. For a basic introduction to the history of ciphers, see Sinkov
(1966). A more thorough treatment can be found in Paar and Pelzl (2010).

Indexed symbols
When developing algorithms that operate on large structures (for example, large systems of
equations), it is often helpful to be able to create a set of unique symbols with which to work. As
an example of operations on strings, we will use some of the functions discussed in this section to
develop a little utility function that creates unique symbols. Although there is a built-in function,
Unique, that does this, it has some limitations for this particular task.

In[34]:= Table@Unique@"x"D, 88<D

Out[34]= 8x3, x4, x5, x6, x7, x8, x9, x10<

One potential limitation of Unique is that it uses the first unused symbol of a particular form. It
does this to avoid overwriting existing symbols.

In[35]:= Table@Unique@"x"D, 88<D

Out[35]= 8x11, x12, x13, x14, x15, x16, x17, x18<

However, if you want to explicitly create a list of indexed symbols with a set of specific indices,
it is useful to create a different function. First, note that a string can be converted to a symbol
using ToExpression or by wrapping the string in Symbol.

In[36]:= Head@"x1"D

Out[36]= String

In[37]:= ToExpression@"x1"D êê Head

Out[37]= Symbol

In[38]:= Symbol@"x1"D êê Head

Out[38]= Symbol

9.2 Operations on strings 321

StringJoin is used to concatenate strings. So, let us concatenate the variable with the index,
first with one number and then with a range of numbers.

In[39]:= StringJoin@"x", "8"D êê FullForm
Out[39]//FullForm=

"x8"

In[40]:= ToExpression@Map@"x" <> ToString@ÒD &, Range@12DDD

Out[40]= 8x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12<

We put all the pieces of code together.

In[41]:= MakeVarList@x_Symbol, n_IntegerD :=

ToExpression@Map@ToString@xD <> ToString@ÒD &, Range@nDDD

In[42]:= MakeVarList@tmp, 20D

Out[42]= 8tmp1, tmp2, tmp3, tmp4, tmp5, tmp6,
tmp7, tmp8, tmp9, tmp10, tmp11, tmp12, tmp13,
tmp14, tmp15, tmp16, tmp17, tmp18, tmp19, tmp20<

Let us create an additional rule for this function that takes a range specification as its second
argument.

In[43]:= MakeVarList@x_Symbol, 8n_Integer, m_Integer<D :=

ToExpression@Map@ToString@xD <> ToString@ÒD &, Range@n, mDDD

In[44]:= MakeVarList@tmp, 820, 30<D

Out[44]= 8tmp20, tmp21, tmp22, tmp23, tmp24,
tmp25, tmp26, tmp27, tmp28, tmp29, tmp30<

Note that we have not been too careful about argument checking.

In[45]:= MakeVarList@tmp, 8-2, 2<D

Out[45]= 8-2 + tmp, -1 + tmp, tmp0, tmp1, tmp2<

In the exercises you are asked to correct this.

Anagrams
Anagrams are words that have the same set of letters but in a different order. Good Scrabble
players are adept at anagram creation. Anagrams can be created by taking a word, extracting and
permuting its characters, and then finding which permutations are real words.

Start by getting the characters in a word.

In[46]:= chars = Characters@"tame"D

Out[46]= 8t, a, m, e<

322 Strings

Permute the characters.

In[47]:= p = Permutations@charsD

Out[47]= 88t, a, m, e<, 8t, a, e, m<, 8t, m, a, e<, 8t, m, e, a<,
8t, e, a, m<, 8t, e, m, a<, 8a, t, m, e<, 8a, t, e, m<,
8a, m, t, e<, 8a, m, e, t<, 8a, e, t, m<, 8a, e, m, t<,
8m, t, a, e<, 8m, t, e, a<, 8m, a, t, e<, 8m, a, e, t<,
8m, e, t, a<, 8m, e, a, t<, 8e, t, a, m<, 8e, t, m, a<,
8e, a, t, m<, 8e, a, m, t<, 8e, m, t, a<, 8e, m, a, t<<

Concatenate the characters in each list.

In[48]:= words = Map@StringJoin, pD

Out[48]= 8tame, taem, tmae, tmea, team, tema, atme, atem,
amte, amet, aetm, aemt, mtae, mtea, mate, maet,
meta, meat, etam, etma, eatm, eamt, emta, emat<

Now, which of these “words” are really words? One way to check is to select those that are in the
dictionary. Those elements in words that are not in the dictionary will return 8< when run
against DictionaryLookup, so we omit those using �.

In[49]:= Select@words, DictionaryLookup@Ò, IgnoreCase Ø TrueD � 8< &D

Out[49]= 8tame, team, mate, meta, meat<

Putting all the pieces together, we have the function Anagrams.

In[50]:= Anagrams@word_StringD :=

Module@8chars = Characters@wordD, words<,
words = Map@StringJoin, Permutations@charsDD;
Select@words, DictionaryLookup@Ò, IgnoreCase Ø TrueD � 8< &D

D

In[51]:= Anagrams@"parsley"D êê Timing

Out[51]= 80.300797, 8parsley, parleys, players, replays, sparely<<

In[52]:= Anagrams@"elvis"D

Out[52]= 8elvis, evils, levis, lives, veils<

In[53]:= Anagrams@"instance"D

Out[53]= 8instance, ancients, canniest<

Other than extracting the characters of a word and joining the permuted list of characters, the
operations here are essentially those on lists (of strings) and pattern matching. Exercise 2 in
Section 9.5 discusses a more direct approach to this problem, one that avoids the creation of
permutations of the characters in the word.

9.2 Operations on strings 323

Exercises

1. Create a function PalindromeQ@strD that returns a value of True if its argument str is a palin-
drome, that is, if the string str is the same forward and backward. For example, refer is a palindrome.

2. Create a function StringRotateLeft@str, nD that takes a string str, and returns a string with the
characters rotated to the left n places. For example:

In[1]:= StringRotateLeft@"a quark for Muster Mark ", 8D

Out[1]= for Muster Mark a quark

3. In creating the function MakeVarList in this section, we were not careful about the arguments
that might be passed. Correct this problem using pattern matching on the arguments to this
function to insure that the indices are positive integers only.

4. Create a function StringPad@str, 8n<D that pads the end of a string with n whitespace charac-
ters. Then create a second rule StringPad@str, nD that pads the string out to length n. If the input
string has length greater than n, issue a warning message. Finally, mirroring the argument structure
for the built-in PadLeft , create a third rule StringPad@str, n, mD that pads with n whitespaces
at the front and m whitespaces at the end of the string.

5. Modify the Caesar cipher so that it encodes by shifting five places to the right. Include the space
character in the alphabet.

6. A mixed-alphabet cipher is created by first writing a keyword followed by the remaining letters of
the alphabet and then using this as the substitution (or cipher) text. For example, if the keyword is
django, the cipher text alphabet would be:

djangobcefhiklmpqrstuvwxyz

So, a is replaced with d, b is replaced with j, c is replaced with a, and so on. As an example, the piece
of text

 the sheik of araby

would then be encoded as

tcg scgeh mo drdjy

Implement this cipher and go one step further to output the cipher text in blocks of length five,
omitting spaces and punctuation.

7. Modify the alphabet permutation cipher so that instead of being based on single letters, it is instead
based on adjacent pairs of letters. The single letter cipher will have
26 ! = 403 291 461 126 605 635 584 000 000 permutations; the adjacent pairs cipher will have
26

2 ! = 1.883707684133810� 10
1621 permutations.

324 Strings

9.3 String patterns
Most of the string operations we have looked at up until this point have involved literal strings.
For example, in string replacement, we have specified both the explicit string that we are operat-
ing on as well as the replacement string.

In[1]:= StringReplace@"11ê28ê1986", "ê" Ø "-"D

Out[1]= 11-28-1986

But the real power of programming with strings comes with the use of patterns to represent
different classes of strings. A string pattern is a string expression that contains symbolic patterns.
Much of the pattern matching discussed in the previous chapters extends to strings in a very
powerful manner. For example, this uses patterns to change the first letter in a string to uppercase.

In[2]:= str = "colorless green ideas sleep furiously";

In[3]:= StringReplace@str, f_ ~~ rest__ ß ToUpperCase@fD <> restD

Out[3]= Colorless green ideas sleep furiously

Or, use a conditional pattern to check if a word begins with an uppercase character.

In[4]:= StringMatchQ@"Jekyll", f_?UpperCaseQ ~~ rest___D

Out[4]= True

To get started, you might find it helpful to think of strings as a sequence of characters and use
the same general principles on these expressions as you do with lists.

For example, the expression 8a, b, c, c, d, e< matches the pattern 8__, s_, s_, __<
because it is a list that starts with a sequence of one or more elements, it contains an element
repeated once, and then ends with a sequence of one or more elements.

In[5]:= MatchQ@8a, b, c, c, d, e<, 8__, s_, s_, __<D

Out[5]= True

If we now use a string instead of a list and StringMatchQ instead of MatchQ, we get a similar
result using the shorthand notation ~~ for StringExpression.

In[6]:= StringMatchQ@"abccde", __ ~~ s_ ~~ s_ ~~ __D

Out[6]= True

str1 ~~ str2 is shorthand notation for StringExpression@str1, str2D, which, for the purpose
of pattern matching, represents a sequence of strings.

In[7]:= "a" ~~ "b"

Out[7]= ab

9.3 String patterns 325

In[8]:= Defer@FullForm@"a" ~~ "b"DD

Out[8]= StringExpression@"a", "b"D

StringExpression is quite similar to StringJoin (both can be used to concatenate strings)
except that with StringExpression, you can concatenate nonstrings.

The next example also shows the similarity between the general expression pattern matching
that we explored earlier in Chapter 4 and string patterns. Using Cases, the following returns all
those expressions that match the pattern _Symbol, that is, pick out all symbols from the list.

In[9]:= Cases@81, f, g, 6, x, t, 2, 5<, _SymbolD

Out[9]= 8f, g, x, t<

With strings we use StringCases whose second argument is a pattern that represents a class of
characters to match. StringCases returns those substrings that match a given pattern. Many
named patterns are available for various purposes. For example, LetterCharacter matches a
single letter.

In[10]:= StringCases@"1fg6xt25", LetterCharacterD

Out[10]= 8f, g, x, t<

Match single digits with DigitCharacter and one or more digits with NumberString.

In[11]:= StringCases@"1fg6xt25", DigitCharacterD

Out[11]= 81, 6, 2, 5<

In[12]:= StringCases@"1fg6xt25", NumberStringD

Out[12]= 81, 6, 25<

To see the generality and power of working with string patterns, suppose we were looking for
a nucleotide sequence in a gene consisting of a repetition of A followed by any character, fol-
lowed by T. Using a gene from the human genome, the following string pattern neatly does the
job.

In[13]:= gene = GenomeData@"IGHV357"D

Out[13]= AAGTCCTGTGTGAAGTTTATTGATGGAGTCAGAGGCAGAAAATTGTACAGCCCAGTGGTTCAÖ

CTGAGACTCTCCTGCAAAGCCTCTGATTTCACCTTTACTGGCTACAGCATGAGCTTGGTÖ

CCAGCAGGCTTCATGACAGGGATTGGTGTGGGTGGAAACAGTGAGTGATCAAGTGGGAGÖ

TTCTCAGAGTTACTCTCCATGAGTACAAATAAATTAACAGTCCCAAGCGACACCTTTTCÖ

ATGTGCAGTCTACCTTACAATGACCAACCTGAAAGCCAAGGACAAGGCTGTGTATTACTÖ

GTGAGGGA

In[14]:= StringCases@gene, "AA" ~~ _ ~~ "T"D

Out[14]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<

326 Strings

Here are the starting and ending positions of these substrings. StringPosition takes the same
syntax as StringCases , analogous to Position and Cases.

In[15]:= StringPosition@gene, "AA" ~~ _ ~~ "T"D

Out[15]= 881, 4<, 813, 16<, 840, 43<, 841, 44<,
8172, 175<, 8207, 210<, 8211, 214<, 8212, 215<<

And if you wanted to return those characters that follow all occurrences of the string "GTC", you
can name the pattern and use a rule to return it.

In[16]:= StringCases@gene, pat : "GTC" ~~ x_ ß pat <> xD

Out[16]= 8GTCC, GTCA, GTCC, GTCC, GTCT<

In this example, the pattern is pat : "GTC" ~~ x_. This pattern is named pat and it consists of
the string GTC which is then followed by any character. That character is named x so that we can
refer to it in the replacement expression on the right-hand side of the rule. The replacement
expression is the pattern pat concatenated with the character named x.

As another example of the use of string patterns, suppose you were interested in scraping
phone numbers off of a web page; you need to construct a pattern that matches the form of the
phone numbers you are looking for. In this case we use the form n-nnn-nnn-nnnn which matches
the form of North American phone numbers. NumberString comes in handy as it picks up
strings of numbers of any length. Otherwise you would have to use DigitCharacter ..
which matches repeating digits.

In[17]:= webpage = Import@
"http:êêwww.wolfram.comêcompanyêcontact.cgi", "HTML"D;

In[18]:= StringCases@webpage,
NumberString ~~ "-" ~~ NumberString ~~
"-" ~~ NumberString ~~ "-" ~~ NumberString D

Out[18]= 8+1-217-398-0700, +1-217-398-0747,
+1-217-398-5151, +1-217-398-0747, +1-217-398-6500<

Finding subsequences with strings
In this section we will explore a related problem to the one in Section 4.3, where we searched for
subsequences within a sequence of numbers. Here we will transform the problem from working
with lists of digits to one where we work with strings.

Using pattern matching it is not too difficult to construct the pattern of interest. For example,
suppose we were looking for the substring are within a larger string. Using the special named
string pattern WordBoundary which matches the beginning or end of a word, we concatenate
(StringJoin) the patterns we need. See Table 9.3 in the next section for a listing of other
named patterns.

9.3 String patterns 327

In[19]:= StringCases@"The magic words are squeamish ossifrage.",
WordBoundary ~~ "are" ~~ WordBoundaryD

Out[19]= 8are<

In[20]:= StringPosition@"The magic words are squeamish ossifrage.",
WordBoundary ~~ "are" ~~ WordBoundaryD

Out[20]= 8817, 19<<

To start, we will prototype with a short sequence of digits of p, converted to a string.

In[21]:= num = ToString@N@p, 50DD

Out[21]= 3.1415926535897932384626433832795028841971693993751

Check that the output is in fact a string.

In[22]:= 8Head@numD, InputForm@numD<

Out[22]= 8String,
"3.1415926535897932384626433832795028841971693993751"<

For our purposes here, we are only interested in the digits following the decimal point. We can
extract them by splitting the string of digits on the decimal point and then taking the second part
of that expression. This will generalize for numbers with an arbitrary number of digits before the
decimal point.

In[23]:= StringSplit@num, "."D

Out[23]= 83, 1415926535897932384626433832795028841971693993751<

In[24]:= Part@%, 2D

Out[24]= 1415926535897932384626433832795028841971693993751

The subsequence 3238 occurs starting 15 positions to the right of the decimal point.

In[25]:= StringPosition@%, "3238"D

Out[25]= 8815, 18<<

Collecting the code fragments, we turn this into a function.

In[26]:= FindSubsequence@num_?NumberQ, subseq_?NumberQD :=

With@8n = ToString@numD, s = ToString@subseqD<,
StringPosition@Part@StringSplit@n, "."D, 2D, sD

D

Let us try it out on a more challenging example: finding occurrences of the sequence 314159 in
the decimal expansion of p.

In[27]:= pi = NAp, 107E;

328 Strings

In[28]:= FindSubsequence@pi, 314159D êê Timing

Out[28]= 84.39282,
88176451, 176456<, 81259 351, 1 259 356<, 81 761 051, 1 761 056<,
86467324, 6467329<, 86518 294, 6 518 299<,
89753731, 9753736<, 89973 760, 9 973 765<<<

Comparing with the function that takes lists of digits developed in Section 4.3, our string imple-
mentation is about twice as fast.

In[29]:= pidigs = FirstARealDigitsAp, 10, 107, -1EE;

Timing@
FindSubsequence@pidigs, 83, 1, 4, 1, 5, 9<D

D

Out[30]= 89.08731,
88176451, 176456<, 81259 351, 1 259 356<, 81 761 051, 1 761 056<,
86467324, 6467329<, 86518 294, 6 518 299<,
89753731, 9753736<, 89973 760, 9 973 765<<<

Alternatives
We have already seen general patterns with alternatives discussed in Chapter 4. Here we will use
alternatives with string patterns. The idea is quite similar. For example, a common task in
genome analysis is determining the GC content or ratios of the nucleobases guanine (G) and
cytosine (C) to all four bases in a given fragment of genetic material.

In[31]:= gene = GenomeData@"MRPS35P1"D;

You could count the occurrences of G and the occurrences of C and add them together.

In[32]:= StringCount@gene, "G"D + StringCount@gene, "C"D

Out[32]= 41

But it is much easier to use alternatives to indicate that you want to count all occurrences of
either G or C. The syntax for using alternative string patterns is identical to that for general
expressions that we introduced in Section 4.1.

In[33]:= StringCount@gene, "G" "C"D

Out[33]= 41

We will return to the computation of GC content in Section 9.5.
As a slightly more involved example, suppose you are interested in tallying the lengths of

words in a corpus. You might start by using StringSplit to split the large string into a list of
words.

9.3 String patterns 329

In[34]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;

In[35]:= sstext = StringSplit@textD;
Short@sstext, 6D

Out[36]//Short=

8INTRODUCTION., When, on, board, H.M.S.,
'Beagle,', as, naturalist,, I, was, much, struck,
á149839à, forms, most, beautiful, and, most,
wonderful, have, been,, and, are, being,, evolved.<

Looking at the result, you will see that some elements of this list include various types of punctua-
tion. For example, StringSplit , with default delimiters, missed certain hyphenated words and
some punctuation.

In[37]:= sstext@@853, 362<DD

Out[37]= 8species--that, statements;<

There are 149863 elements in this split list.

In[38]:= Length@sstextD

Out[38]= 149863

Fortunately, StringSplit takes a second argument that specifies the delimiters to match. The
pattern is given as a set of alternatives followed by the repeated operator to catch one or more
repetitions of any of these delimiters. Searching through the text will help to come up with this
list of alternatives.

In[39]:= splitText = StringSplit@text,
H" " "." "," ";" ":" "'" "\"" "?" "!" "-"L ..D;

In[40]:= Short@splitText, 5D
Out[40]//Short=

8INTRODUCTION, When, on, board, H, M, S, Beagle,
as, naturalist, I, á151181à, beautiful, and, most,
wonderful, have, been, and, are, being, evolved<

Notice that this list contains many more elements than the initial approach given above.

In[41]:= Length@splitTextD

Out[41]= 151202

Finally, here is a histogram showing the distribution of word lengths in the text, On the Origin of
Species.

330 Strings

In[42]:= Histogram@StringLength@splitTextD, Frame Ø True,
FrameLabel Ø 8"Word length", "Frequency"<,
FrameTicks Ø 88Automatic, None<, 8Automatic, None<<D

Out[42]=

Let us compare this with a different text: A Portrait of the Artist as a Young Man, by James Joyce
(available online at Project Gutenberg). We are postprocessing here by removing metadata at the
beginning and at the end of the file.

In[43]:= joyce = StringTake@Import@
"http:êêwww.gutenberg.orgêcacheêepubê4217êpg4217.txt",
"Text"D, 688 ;; -18843D;

StringTake@joyce, 875, 164<D

Out[44]= Once upon a time and a very good time it
was there was a moocow coming down along the road

An alternative syntax uses a list of delimiters as given by Characters . The repeated pattern, ..,
helps to catch such constructions as “--”, “::” and double-spaces.

In[45]:= words = StringSplit@joyce, Characters@":,;.!?'\- "D ..D;
Histogram@StringLength@wordsD, Frame Ø True,
FrameLabel Ø 8"Word length", "Frequency"<,
FrameTicks Ø 88Automatic, None<, 8Automatic, None<<D

Out[46]=

9.3 String patterns 331

In the next section, on regular expressions, we will see that there are more compact ways of
accomplishing some of these tasks.

Exercises
1. At the end of Section 9.1 we created a predicate OrderedWordQ to find all words in a dictionary

whose letters are in alphabetic order. This predicate used character codes and returned incorrect
results for words that started with a capital letter. Correct this error by only selecting words from
the dictionary that start with a lowercase letter. Consider using a conditional string pattern involv-
ing the built-in function LowerCaseQ.

2. Given a list of words, some of which start with uppercase characters, convert them all to words in
which the first character is lowercase. You can use the words in the dictionary as a good sample set.

3. Create a function Palindromes@nD that finds all palindromic words of length n in the dictionary.
For example, kayak is a five-letter palindrome.

4. Find the number of unique words in a body of text such as Alice in Wonderland.

In[1]:= text = ExampleData@8"Text", "AliceInWonderland"<D;

After splitting the text into words, convert all uppercase characters to lowercase so that you count
words such as hare and Hare as the same word.

Such computations are important in information retrieval systems, for example, in building
term-document incidence matrices used to compare the occurrence of certain terms across a set of
documents (Manning, Raghavan, and Schütze 2008).

9.4 Regular expressions
In addition to the use of string patterns discussed up to this point, you can also specify string
patterns using what are known as regular expressions. Regular expressions in Mathematica follow a
syntax very close to that of the Perl programming language. This syntax is quite compact and
powerful but it comes at the cost of readability – regular expressions tend to be quite cryptic to
humans. As a result, we will only cover a few examples of their use here and refer the interested
reader to the Mathematica documentation on string patterns (Working with String Patterns,
WMDC).

You should think of regular expressions as an alternative syntax for string pattens. To indicate
that you are using a regular expression, wrap the expression in RegularExpression . For
example, the regular expression . is a wildcard character. It matches any single character except a
newline. To use it as a string pattern, write RegularExpression@"."D.

In[1]:= StringMatchQ@"a", RegularExpression@"."DD

Out[1]= True

332 Strings

The string "abc" does not match the pattern because it does not consist of a single character.

In[2]:= StringMatchQ@"abc", RegularExpression@"."DD

Out[2]= False

You can also match a set or range of characters. For example, this matches any of the characters a
through z.

In[3]:= StringMatchQ@"a", RegularExpression@"@a-zD"DD

Out[3]= True

Certain constructs give patterns with repeating elements. For example, "c*" is a pattern
matched by a string with character c repeated zero or more times; "c+" stands in for the charac-
ter c repeated one or more times.

In[4]:= StringMatchQ@"aa", RegularExpression@"a*"DD

Out[4]= True

In[5]:= StringMatchQ@"aaab", RegularExpression@"a+"DD

Out[5]= False

You can also match on concatenated characters using the syntax c1 c2 ….

In[6]:= StringPosition@"ACAACTGGAGATCATGACTG",
RegularExpression@"ACT"DD

Out[6]= 884, 6<, 817, 19<<

Several constructs are available for classes of characters. The named classes in the last two
entries of Table 9.2 include alpha, ascii, blank, digit, space, word, and several more.

Table 9.2. Regular expressions classes of characters

Regular expression Meaning

\\d digit 0–9

\\D nondigit

\\s space, newline, tab, whitespace

\\S non-whitespace character

\\w word character, e.g. letter, digit

\\W nonword character
@@:class:DD characters in a named class

@^@:class:DD characters not in a named class

9.4 Regular expressions 333

The regular expression a.* matches any expression beginning with the character a followed by
any sequence of characters.

In[7]:= StringMatchQ@"all in good time", RegularExpression@"a.*"DD

Out[7]= True

The regular expression \\d represents any digit 0 through 9.

In[8]:= StringCases@"1a2b3c4d", RegularExpression@"\\d"DD

Out[8]= 81, 2, 3, 4<

The regular expression a.+\\d matches any expression beginning with an a, followed by any
character repeated one or more times, followed by a digit.

In[9]:= StringCases@"abc1, abd2, abc", RegularExpression@"a.+\\d"DD

Out[9]= 8abc1, abd2<

Let us try something more ambitious. This finds all words in text that are of length 16 to 18.

In[10]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;
StringCases@text, RegularExpression@"\\b\\w816,18<\\b"DD êê
DeleteDuplicates

Out[11]= 8agriculturalists, disproportionably,
malconformations, experimentalists, palaeontological,
incomprehensibly, PALAEONTOLOGICAL, palaeontologists,
intercommunication, incomprehensible<

 The regular expression \\b matches any word boundary (typically whitespace, period, comma,
etc.) and \\w816, 18< matches any word of length 16 to 18.

Various shortcuts exist for some commonly used patterns (Table 9.3).

Table 9.3. Patterns for special locations within strings

Pattern Matches
StartOfString beginning of entire string

EndOfString end of entire string

StartOfLine beginning of a line

EndOfLine end of a line
WordBoundary boundary between words

Conveniently, you can mix regular expressions and other string patterns in various ways. This
accomplishes the same thing as the previous computation, but using WordBoundary, instead of
the regular expression \\b.

334 Strings

In[12]:= StringCases@text,
WordBoundary ~~ RegularExpression@"\\w816,18<"D ~~
WordBoundaryD êê DeleteDuplicates

Out[12]= 8agriculturalists, disproportionably,
malconformations, experimentalists, palaeontological,
incomprehensibly, PALAEONTOLOGICAL, palaeontologists,
intercommunication, incomprehensible<

Sometimes you will need to refer to the pattern by name in order to perform some operation
on it. This is similar to the situation with regular named patterns. For example, given a list of
words, some of which are uppercase/lowercase, this uses string patterns to transform the list to
all lowercase words, naming the pattern that is matched by the first character after a word bound-
ary, a.

In[13]:= words = 8"festively", "frolicking",
"subcategories", "retreated", "recompiling",
"Barbary", "Herefords", "geldings", "Norbert",
"incalculably", "proselytizers", "topmast"<;

In[14]:= StringReplace@words, WordBoundary ~~ a_ ß ToLowerCase@aDD

Out[14]= 8festively, frolicking, subcategories, retreated,
recompiling, barbary, herefords, geldings,
norbert, incalculably, proselytizers, topmast<

So how do we name a pattern with regular expressions so that we can refer to it on the right-
hand side of a rule? The syntax using regular expressions is to wrap the pattern in parentheses
and then refer to it using "$n", where n is the nth occurrence of such patterns. For example,
\\b(\\w) is a named pattern that is matched by an expression consisting of a word boundary
followed by a word character. The subexpression matching (\\w) is referenced by "$1" on the
right-hand side of the rule.

In[15]:= StringReplace@words,
RegularExpression@"\\bH\\wL"D ß ToLowerCase@"$1"DD

Out[15]= 8festively, frolicking, subcategories, retreated,
recompiling, barbary, herefords, geldings,
norbert, incalculably, proselytizers, topmast<

To change the second character after the word boundary to uppercase, use "$2" to refer to the
expression that matches the second (\\w).

9.4 Regular expressions 335

In[16]:= StringReplace@words, RegularExpression@"\\bH\\wLH\\wL"D ß
ToLowerCase@"$1"D ~~ ToUpperCase@"$2"DD

Out[16]= 8fEstively, fRolicking, sUbcategories, rEtreated,
rEcompiling, bArbary, hErefords, gEldings,
nOrbert, iNcalculably, pRoselytizers, tOpmast<

A particularly useful construct in many situations is the lookahead/lookbehind construct.
H? = pattL is used when the following text must match patt and H? < = pattL is used when the
preceding text must match patt. For example, this finds all those words in some example text that
follow "Raven, ".

In[17]:= text = ExampleData@8"Text", "TheRaven"<D;

In[18]:= StringCases@text,
RegularExpression@"H?<=Raven, L\\w+"DD

Out[18]= 8sitting, never<

There are many more constructs available for doing quite sophisticated things with regular
expressions. We will explore some of these in the exercises below and in the examples in Section
9.5. For a more detailed discussion, see the tutorials Regular Expressions (WMDC) and Working
with String Patterns (WMDC).

Word stemming
Many aspects of linguistic analysis include a study of the words used in a piece of text or in a
speech. For example, you might be interested in comparing the complexity of articles written in
two different newspapers. The length and frequency of certain words might be a useful measure
for such an analysis. Patterns in usage of certain word combinations can be used to identify
authenticity or the identity of an author a work.

There are some basic issues that arise again and again in such analyses. For example, what
should be done with contractions such as shouldn't? What about sets of words such as run, runs,
ran, running. Are they considered distinct? One approach in language processing is to strip suf-
fixes and reduce alternate forms to some stem. This process, known as word stemming, is exten-
sively used in many online search systems to try to distill user's queries to some basic form that
can be processed and operated on. It is a bit tricky, as natural languages are notorious for excep-
tions to almost any rule. For example, although the word entertainment can sensibly be stemmed
to entertain, the stem of comment is certainly not com. In other words, a rule that dropped the suffix
ment is too broad and returns nonwords in many cases. In most word stemming algorithms, there
are numerous rules for the many cases that need to be examined; and there are many special
cases. In this section, we will create a set of rules for word stemming to show how these rules are
described and how the string pattern constructs in Mathematica provide a good set of tools to

336 Strings

implement these concepts. A full-fledged stemming application would include hundreds of rules
for each language, so we will only give a small set here to indicate the general process.

Words ending in …xes The first set of stemming rules we will create involves a relatively small set
of words in the English language – those ending in xes, such as boxes or complexes. The rule is to
strip off the es.

To prototype, we collect all the words in the dictionary that end in xes. We will also restrict
ourselves to words that are all lowercase. Quiet is used here to suppress the error messages that
arise when StringTake operates on words of length less than three. Alternatively, you could
put an extra clause (StringLength@wD ¥ 3) in the conjunction.

In[19]:= words = DictionaryLookup@w__ ê; StringTake@w, -3D === "xes" &&

LowerCaseQüStringTake@w, 1DD êê Quiet

Out[19]= 8admixes, affixes, annexes, anticlimaxes, apexes, appendixes,

aviatrixes, axes, bandboxes, bollixes, boxes, breadboxes,

calyxes, chatterboxes, circumflexes, climaxes, coaxes,

complexes, convexes, coxes, crucifixes, cruxes, detoxes,

duplexes, equinoxes, exes, faxes, fireboxes, fixes,

flexes, flummoxes, fluxes, foxes, gearboxes, hatboxes,

hexes, hoaxes, horseboxes, hotboxes, ibexes, iceboxes,

indexes, influxes, intermixes, jinxes, jukeboxes,

laxes, letterboxes, loxes, lummoxes, lunchboxes, lynxes,

mailboxes, matchboxes, maxes, minxes, mixes, moneyboxes,

multiplexes, nixes, onyxes, orthodoxes, outboxes, outfoxes,

overtaxes, oxes, paintboxes, paradoxes, parallaxes,

perplexes, phalanxes, phoenixes, pickaxes, pillboxes,

pixes, poleaxes, postboxes, postfixes, poxes, prefixes,

premixes, prophylaxes, pyxes, reflexes, relaxes, remixes,

saltboxes, sandboxes, saxes, sexes, shadowboxes, simplexes,

sixes, snuffboxes, soapboxes, sphinxes, squeezeboxes,

strongboxes, suffixes, surtaxes, taxes, telexes, thoraxes,

tinderboxes, tippexes, toolboxes, transfixes, triplexes,

tuxes, unfixes, vertexes, vexes, vortexes, waxes, xeroxes<

Here is the replacement rule. The regular expression "H\\wLHxLes" will be matched by any
word character followed by xes. It is replaced by that word character followed only by x. On the
right-hand side of the rule, $1 refers to the first pattern on the left, H\\ wL; and $2 refers to the
second pattern on the left, HxL.

In[20]:= rule1 = RegularExpression@"H\\wLHxLes"D ß "$1$2";

9.4 Regular expressions 337

In[21]:= stemmed = StringReplace@words, rule1D

Out[21]= 8admix, affix, annex, anticlimax, apex, appendix, aviatrix, ax,

bandbox, bollix, box, breadbox, calyx, chatterbox, circumflex,

climax, coax, complex, convex, cox, crucifix, crux, detox,

duplex, equinox, ex, fax, firebox, fix, flex, flummox, flux,

fox, gearbox, hatbox, hex, hoax, horsebox, hotbox, ibex,

icebox, index, influx, intermix, jinx, jukebox, lax, letterbox,

lox, lummox, lunchbox, lynx, mailbox, matchbox, max, minx,

mix, moneybox, multiplex, nix, onyx, orthodox, outbox,

outfox, overtax, ox, paintbox, paradox, parallax, perplex,

phalanx, phoenix, pickax, pillbox, pix, poleax, postbox,

postfix, pox, prefix, premix, prophylax, pyx, reflex, relax,

remix, saltbox, sandbox, sax, sex, shadowbox, simplex, six,

snuffbox, soapbox, sphinx, squeezebox, strongbox, suffix,

surtax, tax, telex, thorax, tinderbox, tippex, toolbox,

transfix, triplex, tux, unfix, vertex, vex, vortex, wax, xerox<

In[22]:= Select@stemmed, NotüMemberQ@DictionaryLookup@D, ÒD &D

Out[22]= 8max, poleax, postfix, prophylax<

This is pretty good; it appears only four stemmed words are not in the dictionary; although max
might be considered an abbreviation, postfix is certainly a word! Nonetheless, these sorts of
exceptions are common and will need to be dealt with separately.

Plural nouns ending …mming A word such as programming has a stem of program; so the rule for
words ending in …mming could be: drop the ming. Start be gathering all the words in the dictio-
nary that end with …mming.

In[23]:= words =
DictionaryLookup@w__ ê; StringTake@w, -5D === "mming"D êê Quiet

Out[23]= 8bedimming, brimming, bumming, chumming, clamming, cramming,

damming, deprogramming, diagramming, dimming, drumming,

flimflamming, gumming, hamming, hemming, humming, jamming,

lamming, lemming, monogramming, multiprogramming, programming,

ramming, reprogramming, rimming, scamming, scramming, scrumming,

scumming, shamming, shimming, skimming, slamming, slimming,

slumming, spamming, stemming, strumming, summing, swimming,

thrumming, tramming, trimming, unjamming, whamming, whimming<

338 Strings

Recall the regular expression \\ w + represents a word character repeated some number of times;
\\ b represents a word boundary; the $1 refers to the first expression H\\ w +L, that is, the
characters up to the mming. These characters will be joined with a single m.

In[24]:= rule2 = RegularExpression@"H\\w+Lmming\\b"D ß "$1" ~~ "m";

In[25]:= StringReplace@words, rule2D

Out[25]= 8bedim, brim, bum, chum, clam, cram, dam, deprogram, diagram, dim,

drum, flimflam, gum, ham, hem, hum, jam, lam, lem, monogram,

multiprogram, program, ram, reprogram, rim, scam, scram,

scrum, scum, sham, shim, skim, slam, slim, slum, spam, stem,

strum, sum, swim, thrum, tram, trim, unjam, wham, whim<

Again, this is quite good although the word lemming has been stemmed to the nonword lem,
something that will need to be dealt with as a special case. The way to do that is to order the rules
so that the special cases are caught first.

In[26]:= rule2 = 8"lemming" ß "lemming",
RegularExpression@"H\\w+Lmming\\b"D ß "$1" ~~ "m"

<;

In[27]:= StringReplace@words, rule2D

Out[27]= 8bedim, brim, bum, chum, clam, cram, dam, deprogram, diagram,

dim, drum, flimflam, gum, ham, hem, hum, jam, lam, lemming,

monogram, multiprogram, program, ram, reprogram, rim, scam,

scram, scrum, scum, sham, shim, skim, slam, slim, slum, spam,

stem, strum, sum, swim, thrum, tram, trim, unjam, wham, whim<

Words ending in …otes Numerous rules are needed for turning plural words into their singular
stems. To see this, consider a naive rule that simply drops the s for any such words.

In[28]:= StringReplace@8"possess", "thrushes", "oasis"<,
RegularExpression@"H\\w+Ls"D ß "$1"D

Out[28]= 8posses, thrushe, oasi<

This is clearly too general a rule. In fact, several different rules are needed for words that end in s,
depending upon the preceding characters. Here, we will only deal with words that end in …otes.
First gather the words in the dictionary that match this pattern.

9.4 Regular expressions 339

In[29]:= words = DictionaryLookup@w__ ê; StringTake@w, -4D === "otes" &&

LowerCaseQüStringTake@w, 1DD êê Quiet

Out[29]= 8anecdotes, antidotes, asymptotes, banknotes, compotes, connotes,

cotes, coyotes, creosotes, demotes, denotes, devotes,

dotes, dovecotes, emotes, footnotes, garrotes, keynotes,

litotes, misquotes, motes, notes, outvotes, promotes,

quotes, remotes, rotes, totes, unquotes, votes, zygotes<

Here is the replacement rule.

In[30]:= rule3 = RegularExpression@"H\\w+LHoteLs"D ß "$1$2";

In[31]:= StringReplace@words, rule3D

Out[31]= 8anecdote, antidote, asymptote, banknote, compote,

connote, cote, coyote, creosote, demote, denote,

devote, dote, dovecote, emote, footnote, garrote,

keynote, litote, misquote, mote, note, outvote, promote,

quote, remote, rote, tote, unquote, vote, zygote<

Stemming litotes gives the nonword litote. This can again be resolved by adding some specific rules
for these not uncommon situations.

Plural to singular Let us try to deal with the general problem of stemming plural forms to singular.
This is a more difficult scenario to deal with as there are many rules and even more exceptions.
We will begin by showing how the order of the replacement rules matters in the stemming
process.

You might imagine the rules given in Table 9.4 being used to stem plurals (these are not
complete, but they will get us started). In fact, these are step 1a of the commonly-used Porter’s
algorithm for word stemming in the English language.

Table 9.4. Stemming rules, plural to singular

Rule Example
… ssesØ… ss possesesØpossess

… shesØ… sh churchesØ church
… iesØ… y theoriesØ theory

… ssØ… ss passØpass

… usØ… us abacusØ abacus
… sØ… catsØ cat

340 Strings

The order in which such rules are used is important. You do not want the last rule being used
before any of the others. As we saw with the previous set of rules, Mathematica will apply rules in
the order in which they are given, assuming that they have roughly the same level of specificity.
Note also that some of these rules are designed to leave certain words unchanged. For example
neither pass nor abacus are plural and they should not be stemmed.

Here then is a rough attempt at stemming plural words. First we gather the words from the
dictionary that end in s and display a random sample of them.

In[32]:= words = DictionaryLookup@w__ ê;
StringTake@w, -1D ã "s" && LowerCaseQüStringTake@w, 1DD;

randwords = RandomSample@words, 30D

Out[33]= 8spitfires, oranges, misconceptions, antennas, ventrals,

recommends, prepossesses, churns, turnarounds, loyalists,

sectarians, generators, demonetizes, reconstructs,

laundress, thrashers, skiffs, libertines, sings, augurs,

reeves, wienies, bigmouths, hypnotics, instants, garters,

estrangements, antioxidants, roadies, churchgoers<

In[34]:= rules = 8
RegularExpression@"H\\w+LHssLHesL"D ß "$1$2",
RegularExpression@"H\\w+LHshLHesL"D ß "$1$2",
RegularExpression@"H\\w+LHiesL"D ß "$1" ~~ "y",
RegularExpression@"H\\w+LHssL"D ß "$1$2",
RegularExpression@"H\\w+LHusL"D ß "$1$2",
RegularExpression@"H\\w+LHsL"D ß "$1"

<;

In[35]:= StringReplace@randwords, rulesD

Out[35]= 8spitfire, orange, misconception, antenna, ventral, recommend,

prepossess, churn, turnaround, loyalist, sectarian, generator,

demonetize, reconstruct, laundress, thrasher, skiff,

libertine, sing, augur, reeve, wieny, bigmouth, hypnotic,

instant, garter, estrangement, antioxidant, roady, churchgoer<

This process of word stemming requires a lot of trial and error and the creation of many rules for
the exceptions. Another approach, called lemmatization, does a more careful and thorough job by
working with vocabularies and performing morphological analysis of the words to better under-
stand how to reduce them to a root. For more information, see Manning, Raghavan, and Schütze
(2008).

9.4 Regular expressions 341

Exercises
1. Rewrite the genomic example in Section 9.3 to use regular expressions instead of string patterns to

find all occurrences of the sequence AAanythingT. Here is the example using general string patterns.

In[1]:= gene = GenomeData@"IGHV357"D;

In[2]:= StringCases@gene, "AA" ~~ _ ~~ "T"D

Out[2]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<

2. Rewrite the web page example in Section 9.3 to use regular expressions to find all phone numbers
on the page; that is, expressions of the form nnn–nnn–nnnn. Modify accordingly for other web pages
and phone numbers formatted for other regions.

3. Create a function UcLcAwordE that takes its argument word and returns the word with the first letter

uppercase and the rest of the letters lowercase.

4. Use a regular expression to find all words given by DictionaryLookup that consist only of the
letters a, e, i, o, u, and y in any order with any number of repetitions of the letters.

5. The basic rules for pluralizing words in the English language are roughly, as follows: if a noun ends
in ch, s, sh, j, x, or z, it is made plural by adding es to the end. If the noun ends in y and is preceded by a
consonant, replace the y with ies. If the word ends in ium, replace with ia (Chicago Manual of Style
2010). Of course, there are many more rules and even more exceptions, but you can implement a
basic set of rules to convert singular words to plural based on these rules and then try them out on
the following list of words.

In[3]:= words = 8"building", "finch", "fix", "ratio",

"envy", "boy", "baby", "faculty", "honorarium"<;
6. A common task in transcribing audio is cleaning up text, removing certain phrases such as um, er,

and so on, and other tags that are used to make a note of some sort. For example, the following
transcription of a lecture from the University of Warwick, Centre for Applied Linguistics (BASE
Corpus), contains quite a few fragments that should be removed, including newline characters,
parenthetical remarks, and nonwords. Use StringReplace with the appropriate rules to “clean”
this text and then apply your code to a larger corpus.

In[4]:= text = "okay well er today we're er going to be carrying on with the er
French \nRevolution you may have noticed i was sort of getting
rather er enthusiastic \nand carried away at the end of the
last one i was sort of almost er like i sort \nof started at
the beginning about someone standing on a coffee table and
s-, \nshouting to arms citizens as if i was going to sort
of leap up on the desk and \nsay to arms let's storm the
Rootes Social Building @laughterD or er let's go \nout arm
in arm singing the Marseillaise or something er like that";

7. Find the distribution of sentence lengths for any given piece of text. ExampleData@"Text"D
contains several well-known books and documents that you can use. You will need to think about
and identify sentence delimiters carefully. Take care to deal properly with words such as Mr., Dr.,
and so on that might incorrectly trigger a sentence-ending detector.

8. In web searches and certain problems in natural language processing (NLP), it is often useful to filter
out certain words prior to performing the search or processing of the text to help with the perfor-
mance of the algorithms. Words such as the, and, is, and so on are commonly referred to as stop words

342 Strings

for this purpose. Lists of stop words are almost always created manually based on the constraints of
a particular application. We will assume you can import a list of stop words as they are commonly
available across the internet. For our purposes here, we will use one such list that comes with the
materials for this book.
In[5]:= stopwords = RestüImport@"StopWords.dat", "List"D;

RandomSample@stopwords, 12D
Out[6]= 8what, look, taken, specify, wants, thorough,

they, hello, whose, them, mightn't, particular<

Using the above list of stop words, or any other that you are interested in, first filter some sample
“search phrases” and then remove all stop words from a larger piece of text.

In[7]:= searchPhrases = 8"Find my favorite phone",

"How deep is the ocean?", "What is the meaning of life?"<;
9. Modify the previous exercise so that the user can supply a list of punctuation in addition to the list

of stop words to be used to filter the text.

9.5 Examples and applications
This section puts together many of the concepts and techniques developed earlier in the chapter
to solve several nontrivial applied problems. The first example creates a function to generate
random strings, mirroring the syntax of the built-in random number functions. People who work
with large strings, such as those in genomic research, often partition their strings into small
blocks and then perform some analysis on those substrings. We develop functions for partition-
ing strings as well as several examples for analyzing sequences of genetic code. An additional
example covers checksums, which are used to verify stored and transmitted data. Finally, a word
game is included in which we create blanagrams, a variant of anagrams.

Random strings
A blasphemous sect suggested … that all men should juggle letters and symbols until they constructed, by an
improbable gift of chance, these canonical books.

— Jorge L. Borges, The Library of Babel

Those who work with genomic data often need to test their algorithms on strings. While it may
be sensible to test against real data – for example, using genes on the human genome – random
data might be more appropriate to quickly test and measure the efficiency of an algorithm.
Although Mathematica has a variety of functions for creating random numbers, random variates,
and so on, it does not have a function to create random sequences of strings. In this section we
will create one.

To start, we will choose the characters A, C, T, and G – representing the nucleotide, or DNA,
bases – as our alphabet, that is, the letters in the random strings we will create.

9. 343

In[1]:= chars = 8"A", "C", "T", "G"<;

The key observation is that we want to choose one character at random from this list. Since we
need to repeat this n times, we need to randomly choose with replacement. That is the purpose of
RandomChoice.

In[2]:= RandomChoice@chars, 10D

Out[2]= 8C, A, C, G, G, G, C, G, A, T<

This expression is a list of strings.

In[3]:= FullForm@%D
Out[3]//FullForm=

List@"C", "A", "C", "G", "G", "G", "C", "G", "A", "T"D

Finally, we concatenate the strings.

In[4]:= StringJoin@%D êê FullForm
Out[4]//FullForm=

"CACGGGCGAT"

So a first attempt at putting these pieces together would look like this. Note the use of a default
value of 1 for the optional argument n (see Section 6.1 for a discussion of default values for argu-
ments to functions).

In[5]:= RandomString@chars_List, n_Integer: 1D :=

StringJoin@RandomChoice@chars, nDD

In[6]:= RandomString@8"A", "C", "T", "G"<, 500D

Out[6]= TACTGACCCTTCGACTAAGGTACCAACCCGGGCACTCTCCACAGGCAGAACGTTTACCGCCCCTCCTGGCÖ

AACTGGCGGAACCATACTGGTTATACGCGTCGGCCACGCGATACCTATATAAGCAAACGCCCGACCÖ

GATGTAAGATGTTATTTAAGGTCGCTGATGATTGACTCGACGGGCACACCACGATGTCGCTGATCAÖ

CCTACATTAAACCTACGCGCATTCCCGGGCCCTCTATATTGGAGAGGGTAAGTGGTTGAGAAACTTÖ

ATGGCAACTATTCTAGCTTACAAACTCACACACAAGGTCACCTAATGCCAACAACGGAGAGACGTCÖ

CCCTGCGTACCATCAGACCGACAAGATCGAATGGGCTTGAGGCACTTGGCTAATAGCTATGCGTAGÖ

TACTGGCGGTAGGATCGTGAAGACTATCGACGCCAATGCGAGGGCTGGATAAGAACACTGCACCGAÖ

GGTATACAGTCTGCGAAAGGCGCCTCAATGCACT

The default value of the second argument gives one choice.

In[7]:= RandomString@8"A", "C", "T", "G"<D

Out[7]= G

We can make the arguments a bit more general using structured patterns. The first argument
in this next version must be a list consisting of a sequence of one or more strings.

In[8]:= Clear@RandomStringD

344 Strings

In[9]:= RandomString@8ch__String<, n_Integer: 1D :=

StringJoin@RandomChoice@8ch<, nDD

In[10]:= RandomString@8"a", "b", "d"<, 12D

Out[10]= dbbdbaaabdbd

Here is a ten-character password generator.

In[11]:= RandomString@
CharacterRange@"A", "z"D ‹ CharacterRange@"0", "9"D, 10D

Out[11]= 9SZ1zkMPDI

It is not hard to extend this function to create n random strings of a given length. We essentially
pass that argument structure to RandomChoice.

In[12]:= RandomString@8ch__String<, 8n_Integer, len_Integer<D :=

Map@StringJoin, RandomChoice@8ch<, 8n, len<DD

In[13]:= RandomString@8"A", "C", "T", "G"<, 84, 12<D

Out[13]= 8TCCAACTAACTC, GTACTACCCTGG, GGTAAGCTATTT, GCACTCTCGCTT<

In[14]:= RandomString@8"A", "C", "T", "G"<, 850, 1<D

Out[14]= 8G, T, C, A, A, C, G, A, A, T, G, G, G, A, A, T,
G, G, T, G, G, G, T, G, A, T, T, C, G, G, G, A, G,
A, C, G, C, A, C, A, A, T, T, G, C, G, C, T, C, T<

The exercises at the end of this section include a problem that asks you to add an option that
provides a mechanism to weight the individual characters in the random string.

Partitioning strings
Some string analysis requires strings to be broken up into blocks of a certain size and then
computations are performed on those blocks. Although there is no built-in function for partition-
ing strings, we can easily create one, taking advantage of the syntax and speed of the built-in
Partition function.

The Partition function requires a list as its first argument. To start, we will give it a list of
the characters in a prototype string, a gene on the human genome.

In[15]:= GenomeData@"IGHVII671", "Name"D

Out[15]= immunoglobulin heavy variable HIIL-67-1

9.5 Examples and applications 345

In[16]:= str = GenomeData@"IGHVII671"D

Out[16]= ATGTCCTATTCAGGAGCAGCTACAGCAGTCATGCCTAGGTGTGAAGATCACACACTGACÖ
CTCACCCATGCTGTCTCTGGCCACTTCATCACAACCAATGCTTAATATTGGACGTGÖ
GATCTGCCAGTCCCCGGGGAATGGGTTGAATGGAT

In[17]:= Characters@strD

Out[17]= 8A, T, G, T, C, C, T, A, T, T, C, A, G, G, A, G, C, A, G, C, T, A, C, A, G, C,

A, G, T, C, A, T, G, C, C, T, A, G, G, T, G, T, G, A, A, G, A, T, C, A, C,

A, C, A, C, T, G, A, C, C, T, C, A, C, C, C, A, T, G, C, T, G, T, C, T, C,

T, G, G, C, C, A, C, T, T, C, A, T, C, A, C, A, A, C, C, A, A, T, G, C, T,

T, A, A, T, A, T, T, G, G, A, C, G, T, G, G, A, T, C, T, G, C, C, A, G, T,

C, C, C, C, G, G, G, G, A, A, T, G, G, G, T, T, G, A, A, T, G, G, A, T<

Now, partition this list of characters into lists of length 4 with offset 1.

In[18]:= Partition@Characters@strD, 4, 4, 1D

Out[18]= 88A, T, G, T<, 8C, C, T, A<, 8T, T, C, A<, 8G, G, A, G<,
8C, A, G, C<, 8T, A, C, A<, 8G, C, A, G<, 8T, C, A, T<,
8G, C, C, T<, 8A, G, G, T<, 8G, T, G, A<, 8A, G, A, T<, 8C, A, C, A<,
8C, A, C, T<, 8G, A, C, C<, 8T, C, A, C<, 8C, C, A, T<, 8G, C, T, G<,
8T, C, T, C<, 8T, G, G, C<, 8C, A, C, T<, 8T, C, A, T<, 8C, A, C, A<,
8A, C, C, A<, 8A, T, G, C<, 8T, T, A, A<, 8T, A, T, T<, 8G, G, A, C<,
8G, T, G, G<, 8A, T, C, T<, 8G, C, C, A<, 8G, T, C, C<, 8C, C, G, G<,
8G, G, A, A<, 8T, G, G, G<, 8T, T, G, A<, 8A, T, G, G<, 8A, T, A, T<<

Because the number of characters in str is not a multiple of 4, this use of Partition has
padded the last sublist with the first two characters from the original string; in other words, this
has treated the list cyclically; not quite what we want here.

In[19]:= Mod@StringLength@strD, 4D ã 0

Out[19]= False

A slightly different syntax for Partition gives an uneven subset at the end. We will need to use
this form so as not to lose or introduce any spurious information.

In[20]:= parts = Partition@Characters@strD, 4, 4, 1, 8<D

Out[20]= 88A, T, G, T<, 8C, C, T, A<, 8T, T, C, A<, 8G, G, A, G<,
8C, A, G, C<, 8T, A, C, A<, 8G, C, A, G<, 8T, C, A, T<,
8G, C, C, T<, 8A, G, G, T<, 8G, T, G, A<, 8A, G, A, T<, 8C, A, C, A<,
8C, A, C, T<, 8G, A, C, C<, 8T, C, A, C<, 8C, C, A, T<, 8G, C, T, G<,
8T, C, T, C<, 8T, G, G, C<, 8C, A, C, T<, 8T, C, A, T<, 8C, A, C, A<,
8A, C, C, A<, 8A, T, G, C<, 8T, T, A, A<, 8T, A, T, T<, 8G, G, A, C<,
8G, T, G, G<, 8A, T, C, T<, 8G, C, C, A<, 8G, T, C, C<, 8C, C, G, G<,
8G, G, A, A<, 8T, G, G, G<, 8T, T, G, A<, 8A, T, G, G<, 8A, T<<

346 Strings

Finally, convert each sublist into a contiguous string.

In[21]:= Map@StringJoin, partsD

Out[21]= 8ATGT, CCTA, TTCA, GGAG, CAGC, TACA, GCAG, TCAT,

GCCT, AGGT, GTGA, AGAT, CACA, CACT, GACC, TCAC, CCAT, GCTG,

TCTC, TGGC, CACT, TCAT, CACA, ACCA, ATGC, TTAA, TATT, GGAC,

GTGG, ATCT, GCCA, GTCC, CCGG, GGAA, TGGG, TTGA, ATGG, AT<

This puts everything together in a function.

In[22]:= StringPartition@str_String, blocksize_D := Map@StringJoin,
Partition@Characters@strD, blocksize, blocksize, 1, 8<DD

This partitions the string into nonoverlapping blocks of length 12.

In[23]:= StringPartition@str, 12D

Out[23]= 8ATGTCCTATTCA, GGAGCAGCTACA, GCAGTCATGCCT, AGGTGTGAAGAT,

CACACACTGACC, TCACCCATGCTG, TCTCTGGCCACT, TCATCACAACCA,

ATGCTTAATATT, GGACGTGGATCT, GCCAGTCCCCGG, GGAATGGGTTGA, ATGGAT<

This function operates on large strings fairly fast. Here we partition a random string of length ten
million into nonoverlapping blocks of length ten.

In[24]:= data = RandomStringA8"A", "T", "C", "G"<, 107E;

In[25]:= Timing@StringPartition@data, 10D;D

Out[25]= 82.91544, Null<

Adler checksum
Checksums, or hashes, are commonly used to check the integrity of data when that data are
either stored or transmitted. A checksum might be created, for example, when some data are
stored on a disk. To check the integrity of that data, the checksum can be recomputed and if it
differs from the stored value, there is a very high probability that the data was tampered with.
Hash functions are used to create hash tables which are used for record lookup in large arrays of
data. As an example of the use of character codes, we will implement a basic checksum algo-
rithm, the Adler checksum.

Mathematica has a built-in function, Hash , that can be used to create hash codes, or checksums.

In[26]:= Hash@"Mathematica"D

Out[26]= 1089499110

If the string is changed, its checksum changes accordingly.

In[27]:= Hash@"mathematica"D

Out[27]= 1007196870

9.5 Examples and applications 347

We will implement a basic hash code, known as the Adler-32 checksum algorithm. Given a
string c1 c2 �cn consisting of concatenated characters ci, we form two 16-bit sums m and n as
follows:

m = 1 + cc1 + cc2 +�+ ccn mod 65 521,

n = H1 + cc1L+ H1 + cc1 + cc2L+�+ H1 + cc1 + cc2 +�+ ccnL mod 65 521,

where cci is the character code for the character ci. The number 65521 is chosen as it is the largest
prime smaller than 216. Choosing primes for this tasks seems to reduce the probability that an
interchange of two bytes will not be detected. Finally, the Adler checksum is given by

m + 65 536 n

Let us take Mathematica as our test word. We start by getting the Ascii character codes for each
character.

In[28]:= str = "Mathematica";
codes = ToCharacterCode@strD

Out[29]= 877, 97, 116, 104, 101, 109, 97, 116, 105, 99, 97<

The number m above is given by the cumulative sums of the character codes, with 1 prepended to
that list. (This step could also be done using FoldList.)

In[30]:= mList = Accumulate@Join@81<, codesDD

Out[30]= 81, 78, 175, 291, 395, 496, 605, 702, 818, 923, 1022, 1119<

In[31]:= m = Last@mListD

Out[31]= 1119

The number n is given by the cumulative sums from this last list, omitting the 1 at the beginning
as it is already part of the cumulative sums.

In[32]:= nList = Accumulate@Rest@mListDD

Out[32]= 878, 253, 544, 939, 1435, 2040, 2742, 3560, 4483, 5505, 6624<

In[33]:= n = Last@nListD

Out[33]= 6624

In[34]:= m + 65536 n

Out[34]= 434111583

We can check our result against the algorithm implemented in the Hash function.

In[35]:= Hash@"Mathematica", "Adler32"D

Out[35]= 434111583

348 Strings

Finally, this puts these steps together in a reusable function. Our prototype worked with small
numbers and so the need to work mod 65521 was not necessary. For general inputs, the arith-
metic will be done using this modulus.

In[36]:= AdlerChecksum@str_StringD := Module@8codes, n, m<,
codes = ToCharacterCode@strD;
m = Mod@Accumulate@Join@81<, codesDD, 65 521D;
n = Mod@Accumulate@Rest@mDD, 65 521D;
Last@mD + Last@nD 65536

D

In[37]:= AdlerChecksum@"Mathematica"D

Out[37]= 434111583

As an aside, here is its hash code in hexadecimal.

In[38]:= IntegerString@%, 16D

Out[38]= 19e0045f

And here is a lengthier example.

In[39]:= AdlerChecksum@
"Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Fusce ultrices ornare odio. Proin adipiscing,
mi non pharetra eleifend, nibh libero laoreet
metus, at imperdiet urna ante in lectus."D

Out[39]= 3747169622

Search for substrings
As we have seen in this chapter, string patterns provide a powerful and compact mechanism for
operating on text data. In this example, we will create a function that searches the dictionary for
words containing a specified substring.

If our test substring is cite, here is how we would find all words that end in cite. Note the triple
blank pattern to match any sequence of zero or more characters.

In[40]:= DictionaryLookup@___ ~~ "cite"D

Out[40]= 8anthracite, calcite, cite, excite,
incite, Lucite, overexcite, plebiscite, recite<

Here are all words that begin with cite.

In[41]:= DictionaryLookup@"cite" ~~ ___D

Out[41]= 8cite, cited, cites<

9.5 Examples and applications 349

And this gives all words that have cite somewhere in them, at the beginning, middle, or end.

In[42]:= DictionaryLookup@___ ~~ "cite" ~~ ___D

Out[42]= 8anthracite, calcite, cite, cited, cites, elicited, excite,

excited, excitedly, excitement, excitements, exciter, exciters,

excites, incite, incited, incitement, incitements, inciter,

inciters, incites, Lucite, Lucites, overexcite, overexcited,

overexcites, plebiscite, plebiscites, recite, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<

Using the double blank gives words that have cite in them but not beginning or ending with cite.

In[43]:= DictionaryLookup@__ ~~ "cite" ~~ __D

Out[43]= 8elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,

incites, Lucites, overexcited, overexcites, plebiscites, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<

Let us put these pieces together in a reusable function FindWordsContaining. We will
include one option, WordPosition that identifies where in the word the substring is expected
to occur.

In[44]:= Options@FindWordsContainingD = 8WordPosition Ø "Start"<;

Depending upon the value of the option WordPosition, Which directs which expression will
be evaluated.

In[45]:= FindWordsContaining@str_String, OptionsPattern@DD :=

Module@8wp = OptionValue@WordPositionD<,
Which@
wp == "Start", DictionaryLookup@str ~~ ___D,
wp == "Middle", DictionaryLookup@__ ~~ str ~~ __D,
wp == "End", DictionaryLookup@___ ~~ strD,
wp ã "Anywhere", DictionaryLookup@___ ~~ str ~~ ___D

DD

Using the default value for WordPosition, this finds all words in the dictionary that start with
the string cite.

In[46]:= FindWordsContaining@"cite"D

Out[46]= 8cite, cited, cites<

And this finds all words that have cite anywhere in the word.

350 Strings

In[47]:= FindWordsContaining@"cite", WordPosition Ø "Anywhere"D

Out[47]= 8anthracite, calcite, cite, cited, cites, elicited, excite,

excited, excitedly, excitement, excitements, exciter, exciters,

excites, incite, incited, incitement, incitements, inciter,

inciters, incites, Lucite, Lucites, overexcite, overexcited,

overexcites, plebiscite, plebiscites, recite, recited,

reciter, reciters, recites, solicited, unexcited, unsolicited<

Finally, here is a dynamic interface that includes a text field in which you can enter an input
string; tabs are used to specify in which part of the word you expect the string to occur.

In[48]:= Framed@Labeled@Manipulate@
FindWordsContaining@ToStringüstring, WordPosition Ø posD,
8string, bobs<, 88pos, "Anywhere", "Position"<,
8"Start", "Middle", "End", "Anywhere"<<,

ContentSize Ø 8300, 80<, SaveDefinitions Ø TrueD,
"Find words containing a string", TopD,

Background Ø LightGrayD

Out[48]=

Find words containing a string

string bobs

Position Start Middle End Anywhere

8bobs, bobsled, bobsledded, bobsledder,
bobsledders, bobsledding, bobsleds,
bobsleigh, bobsleighs, kabobs, nabobs,
skibobs, thingamabobs, thingumabobs<

For more on the creation of these sorts of dynamic interfaces, see Chapter 11.

DNA sequence analysis
DNA molecules are composed of sequences of the nitrogenous bases guanine, cytosine, thymine,
and adenine. Guanine and cytosine bond with three hydrogen bonds and thymine and adenine
bond with two. Research has indicated that high GC content (guanine and cytosine) DNA is
more stable than that with lower GC. The exact reasons for this are not completely understood
and determining the GC content of various DNA materials is an active area of biomolecular
research. GC content is often described as a percentage of the guanine and cytosine nucleotides
compared to the entire nucleotide content (Cristianini and Hahn 2007). In this section we will
create a function to compute the ratio of GC in any given DNA sequence or fragment.

9.5 Examples and applications 351

We will start by importing a FASTA file consisting of human mitochondrial DNA, displaying
some information about the contents of this file.

In[49]:= hsMito = Import@"ExampleDataêmitochondrion.fa.gz"D;

In[50]:= Import@"ExampleDataêmitochondrion.fa.gz",
8"FASTA", "Header"<D

Out[50]= 8gi»17981852»ref»NC_001807.4»
Homo sapiens mitochondrion, complete genome<

In[51]:= StringLength@hsMitoD

Out[51]= 816571<

In[52]:= StringTake@hsMito, 500D

Out[52]= 8GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGGÖ
GGTGTGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTÖ

TTGATTCCTGCCTCATTCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTAÖ

CTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATAACAATTGAATGTCTGCACAGCÖ

CGCTTTCCACACAGACATCATAACAAAAAATTTCCACCAAACCCCCCCCTCCCCCCGCTTCTGGÖ

CCACAGCACTTAAACACATCTCTGCCAAACCCCAAAAACAAAGAACCCTAACACCAGCCTAACCÖ

AGATTTCAAATTTTATCTTTAGGCGGTATGCACTTTTAACAGTCACCCCCCAACTAACACATTAÖ

TTTTCCCCTCCCACTCCCATACTACTAATCTCATCAATACAACCCCC<

We use StringCount to count the number of occurrences of G or C in this sequence.

In[53]:= gc = StringCount@hsMito, "G" "C"D

Out[53]= 87372<

And here is the number of occurrences of A or T.

In[54]:= at = StringCount@hsMito, "A" "T"D

Out[54]= 89199<

The GC percentage is given by the following ratio.

In[55]:= NB
gc

gc + at
F

Out[55]= 80.444874<

Here then is an auxiliary function we will use in what follows.

In[56]:= gcRatio@ls_StringD := Module@8gc, at<,
gc = StringCount@ls, "G" "C"D;
at = StringCount@ls, "A" "T"D;
N@gc ê Hgc + atLD

D

352 Strings

Note that gcRatio expects a string as an argument, but this fails with hsMito, imported from
an external source.

In[57]:= Short@gcRatio@hsMitoD, 8D
Out[57]//Short=

gcRatio@
8GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTCGTCTGGGÖ

GGGTGTGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCÖ

TGTCTTTGATTCCTGCCTCATTCTATTATTTATCGCACCTACGTTCAATATTACAGGCGAÖ

ACATACCTACTAAAGTGTGTTAATT …

TCTCGTCCCCATGGATGACCCCCCTCAGATAGGGGTCCCTTGACCACCATCCTCCGTGAAATCAATÖ

ATCCCGCACAAGAGTGCTACTCTCCTCGCTCCGGGCCCATAACACTTGGGGGTAGCTAAAÖ

GTGAACTGTATCCGACATCTGGTTCCTACTTCAGGGCCATAAAGCCTAAATAGCCCACACÖ

GTTCCCCTTAAATAAGACATCACGATG<D

It fails because Import returns a list consisting of a string, not a raw string. We can remedy this
by writing a rule to deal with this argument structure and then call the first rule.

In[58]:= gcRatio@8str_String<D := gcRatio@strD

In[59]:= gcRatio@hsMitoD

Out[59]= 0.444874

Typically, researchers are interested in studying the GC ratio on particular fragments of DNA
and comparing it with similar fragments on another molecule. One common way of doing this is
to compute the GC ratio for blocks of nucleotides of some given length. We will use the function
StringPartition, developed earlier to partition the sequence into blocks of a given size. We
will work with a small random sequence to prototype.

In[60]:= blocksize = 10;
str = RandomString@8"A", "C", "T", "G"<, 125D;
lis = StringPartition@str, blocksizeD

Out[62]= 8GAGCTCTGAA, GTCCGCCCAG, TAAGGCCCCT, AATGCTGTGA,

TACCGCAGGG, ACACATGGAA, TACAAGAAGC, CCTAGCATTG,

TGATCTCCGC, CGGTAGCTTT, AGAGGGTCAG, GCTTAAGGCT, CTAGG<

Here are the GC ratios for each of the blocks given by lis.

In[63]:= Map@gcRatio, lisD

Out[63]= 80.5, 0.8, 0.6, 0.4, 0.7, 0.4, 0.4, 0.5, 0.6, 0.5, 0.6, 0.5, 0.6<

Finally, it is helpful to be able to identify each block by its starting position. So we first create a list
of the starting positions for each block and then transpose that with the ratios.

In[64]:= Table@i, 8i, 1, StringLength@strD, blocksize<D

Out[64]= 81, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121<

9.5 Examples and applications 353

In[65]:= Transpose@8Table@i, 8i, 1, StringLength@strD, blocksize<D,
Map@gcRatio, lisD<D

Out[65]= 881, 0.5<, 811, 0.8<, 821, 0.6<, 831, 0.4<,
841, 0.7<, 851, 0.4<, 861, 0.4<, 871, 0.5<, 881, 0.6<,
891, 0.5<, 8101, 0.6<, 8111, 0.5<, 8121, 0.6<<

Here are all the pieces in one function, GCRatio.

In[66]:= GCRatio@str_String, blocksize_IntegerD :=

Module@8lis, blocks<,
lis = StringPartition@str, blocksizeD;
blocks = Table@i, 8i, 1, StringLength@strD, blocksize<D;
Transpose@8blocks, Map@gcRatio, lisD<D

D

And again, a second rule in case the string is wrapped in a list.

In[67]:= GCRatio@8str_String<, blocksize_IntegerD :=

GCRatio@str, blocksizeD

Let us try it out first on our prototype sequence.

In[68]:= GCRatio@str, 10D

Out[68]= 881, 0.5<, 811, 0.8<, 821, 0.6<, 831, 0.4<,
841, 0.7<, 851, 0.4<, 861, 0.4<, 871, 0.5<, 881, 0.6<,
891, 0.5<, 8101, 0.6<, 8111, 0.5<, 8121, 0.6<<

And then on the human mitochondrial DNA with block size 1000.

In[69]:= gcdata = GCRatio@hsMito, 1000D

Out[69]= 881, 0.46<, 81001, 0.441<, 82001, 0.43<, 83001, 0.478<,
84001, 0.427<, 85001, 0.439<, 86001, 0.474<, 87001, 0.438<,
88001, 0.434<, 89001, 0.461<, 810001, 0.396<,
811001, 0.448<, 812001, 0.429<, 813001, 0.471<,
814001, 0.435<, 815001, 0.446<, 816001, 0.464098<<

Various types of analysis can then be performed on these blocks. For example, using Select,
this quickly finds regions of high GC content.

In[70]:= Select@gcdata, Last@ÒD > 0.47 &D

Out[70]= 883001, 0.478<, 86001, 0.474<, 813 001, 0.471<<

354 Strings

Here is a quick visualization of the GC content across the blocks.

In[71]:= ListLinePlot@gcdata, Mesh Ø AllD

Out[71]=

5000 10 000 15 000

0.40

0.42

0.44

0.46

0.48

Numerous comparative studies have been done looking at the GC content for different organ-
isms. One much-studied organism is Thermoplasma volcanium, a bacterium-like organism that
exists in very high-acid and high-temperature environments. To accommodate the extreme
conditions, organisms in such environments often have high GC content which has a higher
thermal stability. The following sequence is in the public domain and was obtained courtesy of
the National Center for Biotechnology Information (NCBI Nucleotide Database).

In[73]:= thermoVolc =
Import@"638154522.tar.gz", "638154522ê638154522.fna"D;

StringTake@thermoVolc, 250D

Out[74]= 8TTTGTATAAGAAAAAATAGGAAAGGTTAATATCCATGCTCATATGGCTGTCCGAAAAAÖ
ATCAATAACGAATATTAACCACGATAAAATAAGGTAAGGAAAGAATCCTGCATGÖ
AGCACAATAGAAGAACGCATTAAGGAAATAGAAGACGAAATCAAGAGAACTCAGÖ
TACAATAAAGCCACTGAACACCACATCGGGCTTCTAAAAGCCAAGATTGCAAGGÖ
CTCCAGATGGAGGCTAGAGCCCATAAAGGA<

In[75]:= StringLength@FirstüthermoVolcD

Out[75]= 1584804

Here is the GC ratio for the entire sequence.

In[76]:= gcRatio@thermoVolcD

Out[76]= 0.399185

9.5 Examples and applications 355

And here are the ratios for block sizes of 100 000.

In[77]:= tVratios = GCRatioAthermoVolc, 105E

Out[77]= 881, 0.4094<, 8100001, 0.39122<, 8200001, 0.39003<,
8300001, 0.40184<, 8400001, 0.40104<, 8500001, 0.40368<,
8600001, 0.39334<, 8700001, 0.39086<, 8800001, 0.41034<,
8900001, 0.37086<, 81000001, 0.40323<, 81100001, 0.39508<,
81200001, 0.39598<, 81300001, 0.40744<,
81400001, 0.40825<, 81500001, 0.417091<<

In[78]:= BarChart@Map@Last, tVratiosD, BarSpacing Ø Medium,
ChartElementFunction Ø "GlassRectangle", ChartLabels Ø
Placed@Map@Last, tVratiosD, Top, HRotate@Ò, 90 DegreeD &LDD

Out[78]=

Displaying DNA sequences
DNA sequences are typically long strings of nucleotides that are difficult to visualize simply by
looking at the string of characters. Various visualization tools have been used to work with these
sequences and in this section we will look at a common way of viewing them in a formatted
table.

As before, we will prototype with a short random string consisting of nucleotide characters G,
C, A, and T.

In[79]:= str = RandomString@8"G", "C", "A", "T"<, 125D

Out[79]= TGGACCACTGAAATCTTTGACCTGGTTAAACAAATTATTTAGCTAGTCTGTAGGCACAGACAÖ

GTCCAACGGGTGTCCAGGAACGTTACCATGTCAAACTCGTTGCTCCGCCTCGGCCTTAAÖ

GGCG

Using StringPartition developed earlier in this chapter, we split the string into blocks of a
desired size.

356 Strings

In[80]:= str1 = StringPartition@str, 10D

Out[80]= 8TGGACCACTG, AAATCTTTGA, CCTGGTTAAA, CAAATTATTT,

AGCTAGTCTG, TAGGCACAGA, CAGTCCAACG, GGTGTCCAGG,

AACGTTACCA, TGTCAAACTC, GTTGCTCCGC, CTCGGCCTTA, AGGCG<

We have 13 blocks here, but for readability purposes, we will put five blocks on each line of
output. We use the blank string " " to pad out any string shorter than the blocksize, in this case
10).

In[81]:= str2 = Partition@str1, 5, 5, 1, " "D

Out[81]= 88TGGACCACTG, AAATCTTTGA, CCTGGTTAAA, CAAATTATTT, AGCTAGTCTG<,
8TAGGCACAGA, CAGTCCAACG, GGTGTCCAGG, AACGTTACCA, TGTCAAACTC<,
8GTTGCTCCGC, CTCGGCCTTA, AGGCG, , <<

The following code gives the starting positions for each line once we have set the block length
and row length.

In[82]:= blocklength = 10;
rowlength = 5;
ind = Select@Range@StringLength@strDD,

Mod@Ò, rowlength * blocklengthD ã 1 &D

Out[84]= 81, 51, 101<

We prepend the starting position of each row at the head of the row. Recall, the second argument
to Prepend is the expression you wish to put in front (the indices) of your target expression (the
rows)

In[85]:= MapThread@Prepend@Ò1, Ò2D &, 8str2, ind<D

Out[85]= 881, TGGACCACTG, AAATCTTTGA, CCTGGTTAAA, CAAATTATTT, AGCTAGTCTG<,
851, TAGGCACAGA, CAGTCCAACG, GGTGTCCAGG, AACGTTACCA,

TGTCAAACTC<, 8101, GTTGCTCCGC, CTCGGCCTTA, AGGCG, , <<

This is what the formatted output should look like.

In[86]:= Grid@%, Alignment Ø 88Right, 8Left<<, Automatic<D

Out[86]=

1 TGGACCACTG AAATCTTTGA CCTGGTTAAA CAAATTATTT AGCTAGTCTG
51 TAGGCACAGA CAGTCCAACG GGTGTCCAGG AACGTTACCA TGTCAAACTC

101 GTTGCTCCGC CTCGGCCTTA AGGCG

Finally, let us put this all together, setting up an option, BlockSize that is combined with the
inherited options from Grid .

9.5 Examples and applications 357

In[87]:= Options@SequenceTableD = Join@8BlockSize Ø 10<, Options@GridDD

Out[87]= 8BlockSize Ø 10, Alignment Ø 8Center, Baseline<,
AllowedDimensions Ø Automatic, AllowScriptLevelChange Ø True,

AutoDelete Ø False, Background Ø None,

BaselinePosition Ø Automatic, BaseStyle Ø 8<,
DefaultBaseStyle Ø Grid, DefaultElement Ø Ñ,

DeleteWithContents Ø True, Dividers Ø None, Editable Ø Automatic,

Frame Ø None, FrameStyle Ø Automatic, ItemSize Ø Automatic,

ItemStyle Ø None, Selectable Ø Automatic, Spacings Ø Automatic<

In[88]:= SequenceTable@lis_String, opts : OptionsPattern@DD :=

Module@8n = OptionValue@BlockSizeD,
len = StringLength@lisD, rowlength = 5, str, blocks, ind<,

str = StringPartition@lis, nD;
blocks = Partition@str, 5, 5, 1, " "D;
ind = Select@Range@lenD, Mod@Ò, rowlength * nD ã 1 &D;
Grid@MapThread@Prepend@Ò1, Ò2D &, 8blocks, ind<D,
FilterRules@8opts<, Options@GridDD,
Alignment Ø 88Right, 8Left<<, Automatic<,
Frame Ø True, Dividers Ø 88True, False<, All<D

D

In[89]:= str = RandomString@8"C", "A", "T", "G"<, 178D

Out[89]= GTCACGTTTGACTGTCAGGAAGGATTCACGCTGATGAATCCGGGGCTGTAAGCCCATCTGCAÖ

AAGACATGAGGAGGGCTCGGGAGTCGAGAGATATTTCGTGCCCACGTTTAGACCTGCATÖ

ACAACCAAAGATCCTCGGTGCATACTACACGTCGCCTTCCTCGACCAGTAAGTGCGG

In[90]:= SequenceTable@strD

Out[90]=

1 GTCACGTTTG ACTGTCAGGA AGGATTCACG CTGATGAATC CGGGGCTGTA
51 AGCCCATCTG CAAAGACATG AGGAGGGCTC GGGAGTCGAG AGATATTTCG

101 TGCCCACGTT TAGACCTGCA TACAACCAAA GATCCTCGGT GCATACTACA
151 CGTCGCCTTC CTCGACCAGT AAGTGCGG

Let us exercise some of the options.

In[91]:= SequenceTable@str, BlockSize Ø 12,
Background Ø LightYellow, BaseStyle Ø Directive@FontSize Ø 8DD

Out[91]=
1 GTCACGTTTGAC TGTCAGGAAGGA TTCACGCTGATG AATCCGGGGCTG TAAGCCCATCTG

61 CAAAGACATGAG GAGGGCTCGGGA GTCGAGAGATAT TTCGTGCCCACG TTTAGACCTGCA
121 TACAACCAAAGA TCCTCGGTGCAT ACTACACGTCGC CTTCCTCGACCA GTAAGTGCGG

358 Strings

Blanagrams
A blanagram is an anagram for another word except for the substitution of one letter. Think of
Scrabble with a blank square (blank + anagram = blanagram). For example, phyla is a blanagram
of glyph: replace the g with an a and find anagrams. In this section we will create a function that
finds all blanagrams of a given word.

We will prototype with a simple word, glyph.

In[92]:= Characters@"glyph"D

Out[92]= 8g, l, y, p, h<

Start by replacing the first letter in glyph with an a and then finding all anagrams (using
Anagrams from Section 9.2). The third argument to StringReplacePart is a list of begin-
ning and ending positions for the replacement.

In[93]:= StringReplacePart@"glyph", "a", 81, 1<D

Out[93]= alyph

In[94]:= Anagrams@%D

Out[94]= 8phyla, haply<

Now do the same for each character position in the word.

In[95]:= Map@StringReplacePart@"glyph", "a", 8Ò, Ò<D &,
Range@StringLength@"glyph"DDD

Out[95]= 8alyph, gayph, glaph, glyah, glypa<

Running Anagrams on each of these strings, only two appear as words in the dictionary.

In[96]:= Flatten@Map@Anagrams, %DD

Out[96]= 8phyla, haply<

Having done this for the letter a, we now repeat for all other single characters.

In[97]:= CharacterRange@"a", "z"D

Out[97]= 8a, b, c, d, e, f, g, h, i, j, k,
l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

9.5 Examples and applications 359

In[98]:= blana = Table@
Map@StringReplacePart@"glyph", ch, 8Ò, Ò<D &,
Range@StringLength@"glyph"DDD,

8ch, CharacterRange@"a", "z"D<D
Out[98]= 88alyph, gayph, glaph, glyah, glypa<, 8blyph, gbyph, glbph, glybh, glypb<,

8clyph, gcyph, glcph, glych, glypc<, 8dlyph, gdyph, gldph, glydh, glypd<,
8elyph, geyph, gleph, glyeh, glype<, 8flyph, gfyph, glfph, glyfh, glypf<,
8glyph, ggyph, glgph, glygh, glypg<, 8hlyph, ghyph, glhph, glyhh, glyph<,
8ilyph, giyph, gliph, glyih, glypi<, 8jlyph, gjyph, gljph, glyjh, glypj<,
8klyph, gkyph, glkph, glykh, glypk<, 8llyph, glyph, gllph, glylh, glypl<,
8mlyph, gmyph, glmph, glymh, glypm<, 8nlyph, gnyph, glnph, glynh, glypn<,
8olyph, goyph, gloph, glyoh, glypo<, 8plyph, gpyph, glpph, glyph, glypp<,
8qlyph, gqyph, glqph, glyqh, glypq<, 8rlyph, gryph, glrph, glyrh, glypr<,
8slyph, gsyph, glsph, glysh, glyps<, 8tlyph, gtyph, gltph, glyth, glypt<,
8ulyph, guyph, gluph, glyuh, glypu<, 8vlyph, gvyph, glvph, glyvh, glypv<,
8wlyph, gwyph, glwph, glywh, glypw<, 8xlyph, gxyph, glxph, glyxh, glypx<,
8ylyph, gyyph, glyph, glyyh, glypy<, 8zlyph, gzyph, glzph, glyzh, glypz<<

Because of the extra nesting (Table@Map@…DD) we need to flatten the output at a deeper level;
and delete duplicates.

In[99]:= Flatten@Map@Anagrams, blana, 82<DD êê DeleteDuplicates

Out[99]= 8phyla, haply, glyph, lymph, sylph<

Finally, put all the pieces together to create the function Blanagrams.

In[100]:= Blanagrams@word_StringD := Module@8blana<,
blana = Table@

Map@StringReplacePart@word, ch, 8Ò, Ò<D &,
Range@StringLength@wordDDD,

8ch, CharacterRange@"a", "z"D<D;
DeleteDuplicates@Flatten@Map@Anagrams, blana, 82<DDD

D

This turns out to be fairly quick for small words, but it bogs down for larger words.

In[101]:= Blanagrams@"glyph"D êê Timing

Out[101]= 81.09503, 8phyla, haply, glyph, lymph, sylph<<

In[102]:= Blanagrams@"zydeco"D êê Timing

Out[102]= 87.82883, 8zydeco, cloyed, comedy, decoys<<

We will wait until Section 12.3 to optimize this code by profiling (identifying slow computa-
tional chunks) and taking advantage of parallel processing built into Mathematica.

360 Strings

Exercises
1. Generalize the RandomString function to allow for a Weights option so that you can provide a

weight for each character in the generated string. Include a rule to generate a message if the number
of weights does not match the number of characters. For example:

In[1]:= RandomString@8"A", "T", "C", "G"<, 30, Weights Ø 8.1, .2, .3, .4<D

Out[1]= GCGTCGTCGGGTCAGGTCCTCGTGTGGGCG

In[2]:= RandomString@8"A", "T", "C", "G"<, 85, 10<, Weights Ø 8.1, .4, .4, .1<D

Out[2]= 8TTCACTTCCC, ACAACTGGCC, GATTCTTTTC, TGTCCTTTGA, TTCCTGCTGT<

In[3]:= RandomString@8"A", "T", "C", "G"<, 85, 10<, Weights Ø 8.1, .4<D
RandomString::badwt :

The length of the list of weights must be the same as the length of the list of characters.

2. Write the function Anagrams developed in Section 9.2 without resorting to the use of
Permutations. Consider using the Sort function to sort the characters. Note the difference in
speed of the two approaches: one involving string functions and the other list functions that operate
on lists of characters. Increase the efficiency of your search by only searching for words of the same
length as your source word.

3. Rewrite the function FindWordsContaining using regular expressions instead of the patterns
used in this section.

4. Using the text from several different sources, compute and then compare the number of punctua-
tion characters per 1000 characters of text. ExampleData@"Text"D gives a listing of many
different texts that you can use.

5. The function StringPartition was developed specifically to deal with genomic data where one
often needs uniformly-sized blocks to work with. Generalize StringPartition to fully accept
the same argument structure as the built-in Partition .

6. Rewrite the text encoding example from Section 9.2 using StringReplace and regular expres-
sions. First create an auxiliary function to encode a single character based on a key list of the form
99pt

1
, ct1=, …= where pti is a plaintext character and cti is its ciphertext encoding. For example, the

pair 8z, a< would indicate the character z in the plaintext will be encoded as an a in the ciphertext.
Then create an encoding function encodeAstr, keyE using regular expressions to encode any string

str using the key consisting of the plaintext/ciphertext character pairs.

9.5 Examples and applications 361

10

Graphics and visualization
Structure of graphics · Primitives and directives · Options · Structure of built-in graphics

functions · Bézier curves · Hypocycloids · Efficient structures · Multi-objects · GraphicsComplex ·
Numeric vs. symbolic expressions · Sounds of mathematics · Sound primitives and directives ·
Space-filling plots · Plotting lines in space · Visualizing standard deviations · Simple closed

paths · Points in a polygon · Root plotting · Trend plots · Brownian music

Visualization is a means to organize, represent, and make sense of information. The visual
representation may involve functions, numerical or abstract data, text, and many other objects of
study. Sometimes the representation is fixed spatially as in much scientific visualization; other
times, as with information visualization, a spatial representation is not given and must be cre-
ated. In either domain, the idea is to find a representation that best conveys the information and
relationships under study.

Mathematica contains a rich set of tools for visualizing functions, data, and many kinds of
expressions. Generally the built-in graphics functions provide what you need for your visualiza-
tions, but, like the rest of the Mathematica programming language, you will periodically find
yourself needing to create your own customized visualizations. Sometimes it is most efficient to
build upon existing visualization functions, modifying them as needed.

In[1]:= ProteinDotPlot@p1_, p2_, 8name1_String, name2_String<D :=

ArrayPlot@
Outer@Boole@Ò1 == Ò2D &, Characters@p1D, Characters@p2DD,
Frame Ø True, FrameLabel Ø 8name1, name2<D

In[2]:= seq1 = ProteinData@"SCNN1A"D;
seq2 = FirstüImport@"NP_001030.2.fasta", "FASTA"D;

In[4]:= ProteinDotPlot@seq1, seq2, 8"SCNN1A", "SCNN1G"<D

Out[4]=

SCNN1G

SC
N

N
1A

Other times you will find it best to create such visualizations from scratch, using the graphics
building blocks.

In[5]:= pts = RandomInteger@8-100, 100<, 824, 3<D;
Graphics3D@8

8Opacity@.3D, Line@Subsets@pts, 82<DD<,
8Red, Point@ptsD<<, PlotLabel Ø
StringForm@"`1` vertices, `2` edges", Length@ptsD,
Binomial@Length@ptsD, 2DDD

Out[6]=

In this chapter we will discuss how to construct functions for visualizing many different kinds
of data and objects. We will start with the basic building blocks of graphical expressions in
Mathematica – primitives, directives, and options. We then discuss ways to make your graphics
more efficient by looking at the internal representation of graphics objects as well as using multi-
objects and a different representation that results in a compressed graphics object,
GraphicsComplex. Finally, we will develop several different programs for visualizing func-
tions, data, and other objects: space-filling plots for representing proteins and other chemical
structures; a plotting function for displaying points in 3-space that is particularly useful for
visualizing phenomena such as random walks; a geometric computation that finds and displays
simple closed paths for a set of points in the plane; a standard computational geometry problem,
determining if a point is inside a polygon, convex or nonconvex; creating a visualization that

364 Graphics and visualization

finds and displays the roots of a function; creation of trend plots for visualizing trends in time-
series data such as financial data; and finally we develop a set of functions for creating and explor-
ing random music compositions.

Throughout this chapter we will use and build upon the different constructs and program-
ming paradigms developed earlier. For many of the functions that are developed here we also
include usage messages, an options structure, and error checking, issuing appropriate warnings
when something goes wrong or an incorrect input is supplied as an argument. Although the code
for these examples starts to become a bit lengthier, we try to break down the major concepts to
make it easier for you to parse these programs.

10.1 Structure of graphics

A line is a dot that went for a walk.

— Paul Klee

Cultivate your curves… they may be dangerous but they won’t be avoided.

— Mae West

All Mathematica graphics are constructed from objects called graphics primitives such as Point,
Line , Polygon , Circle. Primitives are the basic building blocks of all graphics in Mathematica.
They are used by built-in functions such as Plot to create graphics. You too can create graphics
scenes from scratch using these building blocks by putting them together according to the rules
governing the structure of the language and the nature of the problem at hand. This section
introduces the building blocks of graphics programming and discusses how to put them together
to make graphical objects.

The three graphics elements we will discuss are primitives, directives, and options. The two-
dimensional graphics primitives include the following: Point, Line , Polygon , Disk ,
Circle, Rectangle, BezierCurve , Arrow, Text (see Table 10.1 or consult the documenta-
tion for a complete listing).

For example, here is a circle centered at the origin of radius 1. Evaluating this input simply
returns the primitive circle object.

In[1]:= Circle@80, 0<, 1D

Out[1]= Circle@80, 0<, 1D

To display two-dimensional graphics primitives, wrap them in Graphics.

10. 365

In[2]:= Graphics@Circle@80, 0<, 1DD

Out[2]=

To display more than one graphics primitive, put them in a list.

In[3]:= Graphics@8Circle@80, 0<, 1D, Circle@81, 0<, 1D<D

Out[3]=

Graphics directives are used to modify primitives. For example, in the following input the first
circle is modified with the Thick directive and the second circle with the Dashed directive.
Note the use of lists to scope the directive with the primitive element it is modifying.

In[4]:= Graphics@8
8Thick, Circle@80, 0<, 1D<,
8Dashed, Circle@81, 0<, 1D<

<D

Out[4]=

Entire graphics are customized through the use of options. Options to Graphics should
follow any elements or list of elements given as arguments to Graphics. For example, this adds
axes and a frame around the graphic. Axes and Frame are options to the Graphics function.

366 Graphics and visualization

In[5]:= Graphics@8
8Thick, Circle@80, 0<, 1D<,
8Dashed, Circle@81, 0<, 1D<

<,
Axes Ø True, Frame Ø TrueD

Out[5]=

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

For three-dimensional graphics, a different wrapper is used to display the primitives,
Graphics3D . In the following, the two sphere primitives are within the scope of the Red
directive and the cylinder is within the scope of the Blue directive. Two options to
Graphics3D are used here: FaceGrids adds a grid to each of the box faces and
ViewVertical is used to change the vertical direction in the image. Note an identical structure
to that for Graphics.

In[6]:= Graphics3D@8
8Red, Sphere@80, 0, 0<D, Sphere@82, 2, 2<D<,
8Blue, Cylinder@880, 0, 0<, 82, 2, 2<<, .2D<

<,
FaceGrids Ø All, ViewVertical Ø 81, 0, 0<D

Out[6]=

This is the basic syntax for creating graphics objects from scratch: directives modify primitives in
their scope and options are used to modify the entire graphic. In the following sections, we will
look at graphics primitives, directives, and options in some detail.

10.1 Structure of graphics 367

Graphics primitives
We will start to explore these graphics elements by constructing a graphic using only primitive
elements. In Section 8.1, we displayed a graphic that demonstrated some of the properties of
complex numbers. Let us show how this graphic was created, using some of Mathematica’s graph-
ics primitives.

Table 10.1 lists some of the two-dimensional graphics primitives that we will use in this exam-
ple in addition to several other two-dimensional elements that are available.

Three-dimensional versions of Point, Line , Polygon , and Text are also available for
constructing three-dimensional graphics. For a full listing of Graphics3D primitives, see the
tutorial Three-Dimensional Graphics Primitives (WMDC).

The graphic we will create will contain the following elements:

Ê points in the plane at a complex number a + b Â and at its conjugate a - b Â;

Ê lines drawn from the origin to each of these points;

Ê an arc, indicating the polar angle of the complex number;

Ê dashed lines indicating the real and imaginary values;

Ê a set of axes in the coordinate plane;

Ê labels for each of the above elements.

Table 10.1. Basic two-dimensional graphics primitives

Graphics primitive Usage
Point@8x, y<D point at position 8x, y<
Line@88x1, y1<,8x2, y1<,…<D line through the points 8xi, yi<
Rectangle@88xmin, ymin<,8xmax, ymax<<D filled rectangle

Polygon@88x1, y1<,8x2, y2<,…<D filled polygon

Circle@8x, y<, r,8q1, q2<D circular arc of radius r

Disk@8x, y<, rD filled disk of radius r

Raster@88x11, x12,…<,8x21, x22,…<,…<D rectangular array of gray levels

Text@expr,8x, y<D text centered at 8x, y<
Arrow@8pt1, pt2<D arrow from pt1 to pt2

First we choose a point in the first quadrant and then construct a line from the origin to this point.

In[7]:= z = 8 + 3 Â;

368 Graphics and visualization

Line@88x1, y1<, 8x2, y2<, …, 8xn, yn<<D is a graphics primitive that creates a polygonal
line from the point whose coordinates are Hx1, y1L to the point Hx2, y2L, etc. The points need not be
collinear.

In[8]:= line1 = Line@880, 0<, 8Re@zD, Im@zD<<D;

Let us also create a point at the coordinates of the complex number.

In[9]:= pt1 = Point@8Re@zD, Im@zD<D;

To display what we have created so far, wrap the Graphics function around the points and lines
to display them as a two-dimensional graphics image.

In[10]:= Graphics@8
line1, pt1

<D

Out[10]=

Graphics directives
The default behavior of graphics primitives is modified by using graphics directives. Graphics
directives work by changing only those objects within their scope. The directive dir will affect
each of the primitives primi occurring within its scope. That scope is delineated using curly braces.

8dir, prim1, prim2, …, primn<

A partial list of the two-dimensional graphics directives, together with usage statements, is
given in Table 10.2. For a complete listing of the three-dimensional directives, see the tutorial
Three-Dimensional Graphics Directives (WMDC).

Use the PointSize graphics primitive to increase the size of the point.

In[11]:= pt1 = 8PointSize@.025D, Point@8Re@zD, Im@zD<D<;

In[12]:= Graphics@8
line1, pt1

<D

Out[12]=

10.1 Structure of graphics 369

Admittedly this is not too exciting, but it is a start. Let us add a line and a point for the conjugate.

In[13]:= cz = Conjugate@zD;
line2 = Line@880, 0<, 8Re@czD, Im@czD<<D;
pt2 = 8PointSize@.025D, Point@8Re@czD, Im@czD<D<;

In[16]:= Graphics@8
line1, pt1, line2, pt2

<D

Out[16]=

Table 10.2. Two-dimensional graphics directives

Graphics directive Usage
AbsoluteDashing@8d1, d2,…<D dashed line segments using absolute units

AbsoluteThickness@dD lines of thickness d measured in absolute units
CMYKColor@8c, m, y,b<D cyan, magenta, yellow, black values between 0 and 1

Dashing@8d1, d2,…<D dashed line segments of lengths d1, d2, …

GrayLevel@gD gray between 0 HblackL and 1 HwhiteL
Hue@h,s,bD hue, saturation, and brightness between 0 and 1

PointSize@rD point of radius r given as a fraction of width of plot

RGBColor@r, g,bD red, green, blue values between 0 and 1

Thickness@dD lines of thickness d given as fraction of width of plot

Graphics options
Whereas directives are used to modify the primitives that are within their scope, options are used
to modify the entire graphic. Options to functions are placed after any required arguments and
are separated by commas. All of Mathematica’s graphics functions have options that allow you to
modify some attribute of the entire graphic. Here is a list of some of those options relevant to
Graphics objects.

370 Graphics and visualization

In[17]:= Options@GraphicsD êê Short
Out[17]//Short=

8AlignmentPoint Ø Center, AspectRatio Ø Automatic,
Axes Ø False, AxesLabel Ø None, AxesOrigin Ø Automatic,
AxesStyle Ø 8<, á28à, PlotRegion Ø Automatic,
RotateLabel Ø True, Ticks Ø Automatic, TicksStyle Ø 8<<

Each option is specified as a rule with its default value given on the right-hand side of the rule. For
example, Axes is one of the options for graphics types; it is set to False by default.

Since Axes is an option to the Graphics function, it is placed after the graphics elements
8line1, pt1, …<. Using the value Automatic for the Axes option lets Mathematica figure
out the best arrangement for the axes placement and labels, given the elements present in the
graphic.

In[18]:= Graphics@8line1, pt1, line2, pt2<, Axes Ø AutomaticD

Out[18]=
2 4 6 8

-3

-2

-1

1

2

3

Combining graphics elements
We have the basic structure of the graphic object so now let us add some additional elements. We
start with dashed lines indicating the real and imaginary components of our complex number.
The Dashing directive with Line gives the desired effect.

In[19]:= hline =
8Dashing@80.04, 0.04<D, Line@880, Im@zD<, 8Re@zD, Im@zD<<D<;

In[20]:= vline =
8Dashing@80.04, 0.04<D, Line@88Re@zD, 0<, 8Re@zD, Im@zD<<D<;

Since we were using this graphic to display an arbitrary complex number, we are not interested in
the units on the axes, so we suppress the default value and add our own with the Ticks option.
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<< places tick marks at Re[z] on the horizon-
tal axis and at Im[z] on the vertical axis and labels them a and b, respectively. In addition, let us
add labels on the axes. And, to make reading the input a bit easier, we will append new elements
as we go.

In[21]:= elements = 8line1, pt1, line2, pt2, hline, vline<;

10.1 Structure of graphics 371

In[22]:= Graphics@elements,
Axes Ø Automatic, AxesLabel Ø 8"Re", "Im"<,
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[22]=

a
Re

b

Im

We next put labels at the two complex numbers and along the line representing the length
Abs@zD. We will use another graphics primitive, Text , to annotate these primitives.
Text@expr, 8x, y<D creates a text object of the expression expr and centers it at (x, y). So, to
create “z = a + bÂ” as a piece of text centered at a point a little bit above and to the left of z, we use:

Text@"z =a+bi", 8Re@zD - 0.5, Im@zD + 0.35<D

Here then are the labels for the complex number and the length given by the absolute value of the
complex number. Defer is needed here to prevent the expression z = a + bÂ from being evalu-
ated and thus overwriting the value of z. You could also use HoldForm for this purpose.

In[23]:= text1 = Text@Defer@z = a + b ÂD, 8Re@zD - .5, Im@zD + .35<D;
text2 = Text@Defer@Abs@zDD, 84.2, 2<D;

In[25]:= Graphics@AppendTo@elements, 8text1, text2<D, Axes Ø Automatic,
AxesLabel Ø 8Re, Im<, Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[25]=

z = a + Â b

†z§

a
Re

b

Im

Lastly, we need to add the arc representing the polar angle and label it. The arc can be gener-
ated with another graphics primitive. CircleA8x, y<, r, 9a, b=E will draw an arc of a circle

centered at (x, y), of radius r, counterclockwise from an angle of a radians to an angle of b radians.
The arc that we are interested in will have a radius smaller than Abs@zD and will be drawn from
the real (horizontal) axis to the line connecting the origin and z. Here is the code for the arc and

372 Graphics and visualization

its label, as well as the graphic containing all the above elements (we also add the text to label the
conjugate).

In[26]:= arc = CircleB80, 0<,
Abs@zD

3
, 80, Arg@zD<F;

text3 = Text@Defer@Arg@zDD, 83.6, .6<D;
text4 = Text@Defer@Conjugate@zD = a - b ÂD,

8Re@czD - .5, Im@czD - .35<D;

In[29]:= Graphics@AppendTo@elements, 8text3, text4, arc<D,
Axes Ø True, AxesLabel Ø 8Re, Im<,
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[29]=

z = a + Â b

†z§

argHzL

z� = a - Â b

a
Re

b

Im

An important point about options to keep in mind is that if you happen to give one option
multiple times, Mathematica will only use the first occurrence and ignore all others.

In[30]:= Graphics@elements,
Axes Ø True,
Axes Ø False,
AxesLabel Ø 8Re, Im<,
Ticks Ø 888Re@zD, "a"<<, 88Im@zD, "b"<<<D

Out[30]=

z = a + Â b

†z§

argHzL

z� = a - Â b

a
Re

b

Im

10.1 Structure of graphics 373

We have made assignments to many different symbols in this section. Before going on, it
would be a good idea to clear the values associated with all these symbols. In Chapter 13 we will
talk about contexts in detail, but for now, you can clear the values associated with all symbols in
the Global` context by evaluating the following.

In[31]:= Clear@"Global`*"D

Structure of built-in graphics functions
Graphics created with functions such as Plot and ListPlot are constructed using the same
syntax as described above for creating graphics from primitive elements: primitives such as lines
connecting points, and options governing the overall display. It is useful to get some insight into
this structure for the built-in functions for those situations where you need to transform or
modify a graphic created with Plot or Plot3D say.

Let us start by looking at the internal representation of a plot of the sine function.

In[32]:= sinplot = Plot@Sin@xD, 8x, 0, 2 p<D

Out[32]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

InputForm displays the expression that could have been entered manually to get the same plot.
Short is used here to display an abbreviated listing of that expression. (Note: The formatted
output from Short will vary slightly depending upon the width of your notebook.)

In[33]:= Short@InputForm@sinplotD, 8D
Out[33]//Short=

GraphicsA

998<, 8<, 9Hue@0.67, 0.6, 0.6D, LineA991.28228 � 10-7, 1.28228 � 10-7=,

80.0019271655319089223, 0.001927164339004283<,
80.0038542028355462695, 0.00385419329326691<, << 426 >>,

8<< 2 >><, 96.283185178951315, -1.28228 � 10-7==E===, 8<< 7 >><E

This graphic consists of a series of coordinates, or points, in the plane connected by lines of a
certain hue. There are several hundred points that are sampled to make this plot, some of which
are explicitly displayed above and the rest implicitly indicated by the notation <<n>>. The follow-
ing shows that there are precisely 431 points in this plot.

374 Graphics and visualization

In[34]:= Cases@InputForm@sinplotD,
Line@coords_ListD ß Length@coordsD, InfinityD

Out[34]= 8431<

Numerous options are used to display this plot. AbsoluteOptions@grD is useful for display-
ing what values were used with which options for any graphic gr.

In[35]:= RandomSample@AbsoluteOptions@sinplotD, 5D

Out[35]= 8LabelStyle Ø 8<, ImageMargins Ø 0.,
FormatType Ø TraditionalForm,
DisplayFunction Ø Identity, BaseStyle Ø 8<<

To see how an understanding of this internal structure can be used to perform some transfor-
mations, here we use a geometric transformation on the coordinates of the lines to essentially
perform a reflection in the line y = x.

In[36]:= Show@8
sinplot,
Graphics@8Dashed, Line@88-1, -1<, 86, 6<<D<D,
sinplot ê. line_Line ß GeometricTransformation@

line, ReflectionTransform@8-1, 1<DD
<, PlotRange Ø All, AspectRatio Ø 1D

Out[36]=

-1 1 2 3 4 5 6
-1

1

2

3

4

5

6

There are three graphical elements present in this plot: the original sinplot, a dashed line, and
the transformed sinplot. For the transformation rule operating on sinplot, the pattern
line_Line will match any expression in sinplot that has head Line . It will be transformed
into a line that is reflected according to ReflectionTransform.

sinplot ê. line_Line ß GeometricTransformation@
line, ReflectionTransform@8-1, 1<DD

10.1 Structure of graphics 375

Example: Bézier curves
The representation and visualization of information is a common task in almost any area of
research or analytic activity. The variety of data that people study can give rise to a vast set of
representations. If the data consist of interrelated objects, their relationships are often repre-
sented in a graph where vertices represent the objects under study and an edge connecting any
two vertices indicates a “relationship” of some kind – interactions amongst proteins, friends in a
group of individuals, or airline routes between a set of hubs.

If you were studying friendship networks, the objects of study would be people: each person
would be represented by a vertex; a relationship between two people would be represented by an
edge between two vertices. For example, in Figure 10.1, which represents a friendship network,
you can see at a glance that Mara has six friends, Luigi has three, and so on.

Figure 10.1. Friendship network for ten people.

The use of graphs to represent such information is convenient from a computational point of
view since you can take advantage of all the built-in functions to measure and query graphs, such
as vertex edge counts (how many friends any given person has), shortest paths (how many
degrees of separation between any two people), or centrality measures (measures of the influence
or importance of a particular individual). Using graphs in Mathematica to represent such data also
gives you immediate access to the formatting and styling functionality of Graph objects.

In this example we will work through the creation of a function to use Bézier curves instead of
lines as the graphical object for edges. Table 10.3 lists the various curve graphics primitives that
can be used for such purposes. Let us start with a simple undirected graph with only three edges
and vertices.

376 Graphics and visualization

In[37]:= Graph@81 � 2, 2 � 3, 3 � 1<D

Out[37]=

The Graph option that controls the edges is called EdgeShapeFunction and it is its value
with which we will work. To begin, there are numerous named styles built in to Mathematica that
can be given (GraphElementData@"Edge"D gives a complete list).

In[38]:= Graph@81 � 2, 2 � 3, 3 � 1<, EdgeShapeFunction Ø "DottedLine"D

Out[38]=

As of the writing of this book, there are no values for EdgeShapeFunction that produce
curves or other objects that are not essentially stylized lines and arrows. So we will create one.

The documentation for EdgeShapeFunction indicates that the function it expects needs to

be of the following form: funA88x1, y1<, 8x2, y2<, …<, vi � vjE. The 8xi, yi< are the

coordinates of the vertices used to create line segments for the edge connecting vertex vi to vertex
vj. In fact, you can see precisely what form this takes using the following. The notation ## is a

sequence of arguments passed to a pure function; in this example, that is a sequence of lists of
vertices and rules as printed here.

10.1 Structure of graphics 377

In[39]:= Graph@81 � 2, 2 � 3, 3 � 1<,
EdgeShapeFunction Ø HHPrint@8ÒÒ<D; Line@Ò1DL &LD

9980.866025, 0.5<, 93.88578 � 10-16, 1.==, 1 � 2=

8880.866025, 0.5<, 80., 0.<<, 1 � 3<

9993.88578 � 10-16, 1.=, 80., 0.<=, 2 � 3=

Out[39]=

We would like to replace Line with BezierCurve , but a Bézier curve with two control points
is just a straight line.

In[40]:= GraphicsüBezierCurve@880.866025, 0.5<, 80., 0.<<D

Out[40]=

We will use a rule to introduce additional points that can be used to create higher-order Bézier
curves. First, we will naively add a random point between any pair of existing points (represented
by the patterns a and b in this code). The function edgeFun expects two arguments: a list of the
coordinates and an edge. Although we do not use the edge information here, we do return a
Bézier curve that uses the control points given on the right-hand side of the delayed rule. The
various curve primitives, including Bézier curves, are listed in Table 10.3.

In[41]:= edgeFun@pts_, e_D := Module@8controlPts<,
controlPts = pts ê. 8a_, b_< ß 8a, RandomReal@80, 1<, 2D, b<;
BezierCurve@controlPtsDD

378 Graphics and visualization

In[42]:= Graph@81 � 2, 2 � 3, 3 � 1<, EdgeShapeFunction Ø edgeFunD

Out[42]=

That works, but rather than use an arbitrary, random coordinate as the additional control point,
we really should get a little more control over the control points. So, instead let us add two new
control points that are dependent upon the positions of a and b.

In[43]:= edgeFun@pts_, e_D := Module@8controlPts<,
controlPts =
pts ê. 8a_, b_< ß 8a, 8a@@1DD + 2 b@@1DD ê 3, a@@2DD<,

8a@@1DD + 2 b@@1DD ê 3, b@@2DD<, b<;
BezierCurve@controlPtsDD

Let us try it out on some different graphs.

In[44]:= CompleteGraph@5, EdgeShapeFunction Ø edgeFunD

Out[44]=

In[45]:= WheelGraph@13, EdgeShapeFunction Ø edgeFunD

Out[45]=

10.1 Structure of graphics 379

Here is a slight variation on the creation of the additional control points from the two points a
and b.

In[46]:= edgeFun@pts_, e_D := Module@8controlPts<,
controlPts = pts ê. 8a_, b_< ß 8a, 8a@@1DD + .1 b@@1DD, a@@2DD<,

8a@@1DD + .1 b@@1DD, b@@2DD<, b<;
BezierCurve@controlPtsDD

In[47]:= RandomGraph@UniformGraphDistribution@30, 50D,
GraphLayout Ø "CircularEmbedding",
EdgeShapeFunction Ø edgeFunD

Out[47]=

In[48]:= TreeGraph@EdgeListüCompleteKaryTree@3, 5D,
GraphLayout Ø "SpringElectricalEmbedding",
EdgeShapeFunction Ø edgeFunD

Out[48]=

Table 10.3. Curve primitives

Graphics primitive Usage
BezierCurve@8pt1, pt2,…<D Bézier curve with control points pti

BSplineCurve@8pt1, pt2,…<D nonuniform B-spline curve with control points pti

JoinedCuve@8segmt1, segmt2,…<D curve with segmt1 followed by segmt2, etc.

FilledCuve@8segmt1, segmt2,…<D filled curve with segmt1 followed by segmt2, etc.

380 Graphics and visualization

Example: hypocycloids
Hypocycloids are curves generated by following a fixed point on a smaller circle rolling around
the inside of a larger circle. In what follows, we will combine graphics primitives and directives
together with a built-in graphics function to create a visualization of hypocycloids.

Figure 10.2. Hypocycloid generated by rolling a smaller circle inside a larger circle.

The formula for a hypocycloid is given parametrically by the following, where r is the radius of
the smaller circle and R is the radius of the larger circle

In[49]:= Hypocycloid@8a_, b_<, q_D :=

:Ha - bL Cos@qD + b CosBq
a - b

b
F, Ha - bL Sin@qD - b SinBq

a - b

b
F>

In[50]:= Hypocycloid@8R, r<, qD êê TraditionalForm
Out[50]//TraditionalForm=

: HqL H - L+
q H - L

, HqL H - L-
q H - L

>

Here is a plot of the curve for various values of the two radii R and r where their ratio R ê r is an
integer.

In[51]:= Table@
ParametricPlot@
Hypocycloid@8R, 1<, qD, 8q, 0, 2 p<, Axes Ø NoneD,

8R, 3, 7, 1<D

Out[51]= : , , , , >

10.1 Structure of graphics 381

And here are some curves for rational, but noninteger values of R ê r.

In[52]:= TableBParametricPlot@Hypocycloid@8R, 1<, qD,

8q, 0, 2 Denominator@RD p<, Axes Ø NoneD,

:R, :
3

2
,
5

3
,
7

2
,
13

5
,
21

13
>>F

Out[52]= : , , , , >

In fact, the curve only “closes up” when the ratio R ê r is an integer or a rational number. Inter-
ested readers should consult Maor (1998) or visit the MathWorld page on hypocycloids (Weisstein
2011).

To start putting the graphics pieces together in our scene, we will fix the two radii for purposes
of developing the code and then make them parameters that can be set by the user when our
code is ready. Here is the outer circle, blue and thick.

In[53]:= With@8R = 3, r = 1<,
Graphics@8

Blue, Thick, Circle@80, 0<, RD
<DD

Out[53]=

To draw the smaller inner circle, we first need to know its center. This will change as the smaller
circle rotates around. In fact it is dependent upon the parameter q. It is given by the following (left
to the reader to verify).

In[54]:= center@q_, R_, r_D := HR - rL 8Cos@qD, Sin@qD<

Here then are the two circles together, with the smaller circle given with a fixed (for now) center
set by the angle q.

382 Graphics and visualization

In[55]:= With@8q = p ê 6, R = 3, r = 1<,
Graphics@8

8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<

<DD

Out[55]=

We know where the center of the smaller circle is so let us draw a large point there together with
a thick line from the center to the hypocycloid. Also we include a red point that shows the fixed
point on the smaller circle that will trace out the hypocycloid as the angle q changes.

In[56]:= WithB:q =
p

6
, R = 3, r = 1>, Graphics@8

8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick, Line@8center@q, R, rD, Hypocycloid@8R, r<, qD<D<,
8Red, PointSize@.02D, Point@Hypocycloid@8R, r<, qDD<

<DF

Out[56]=

Of course we want to include the hypocycloid itself, from 0 to q. We will combine a parametric
plot of the curve with the graphics primitives we have developed so far. Because the plot ranges
are quite different for the ParametricPlot@…D and the Graphics@…D pieces of the code, we
need to add PlotRange Ø All as an option to the entire graphic, that is, as part of Show .

10.1 Structure of graphics 383

In[57]:= With@8q = p ê 6, R = 3, r = 1<,
Show@8

ParametricPlot@Hypocycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@8
8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick,
Line@8center@q, R, rD, Hypocycloid@8R, r<, qD<D<,

8Red, PointSize@.015D, Point@Hypocycloid@8R, r<, qDD<
<D

<, PlotRange Ø All, GridLines Ø AutomaticDD;

Finally, we sketch out the entire curve by having q go from 0 to 2p.

In[58]:= With@8q = 2 p, R = 3, r = 1<,
Show@8

ParametricPlot@Hypocycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@8
8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick,
Line@8center@q, R, rD, Hypocycloid@8R, r<, qD<D<,

8Red, PointSize@.015D, Point@Hypocycloid@8R, r<, qDD<
<D

<, PlotRange Ø All, GridLines Ø AutomaticDD

Out[58]=

In Section 11.1 we will go a bit further and create several dynamic interfaces so that we can see
the curve sketched out in real time while also providing controls to change the radii of each circle.

384 Graphics and visualization

Exercises

1. Create a primitive color wheel by coloring successive sectors of a disk according to the Hue
directive.

2. Create a graphic that contains a circle, a triangle, and a rectangle. Your graphic should include an
identifying label for each object.

3. Create a three-dimensional graphic containing six Cuboid graphics primitives, randomly placed in
the unit cube. Add an opacity directive to make them transparent.

4. Create a graphic consisting of a unit cube together with a rotation of 45° about the vertical axis
through the center of that cube. Then create a dynamically rotating cube using Manipulate.

5. Create a graphic that consists of 500 points randomly distributed about the origin with standard
deviation 1. Then, set the points to have random-size radii between 0.01 and 0.1 units and are
colored randomly according to a Hue function.

6. Create a graphic that represents the solution to the following algebraic problem that appeared in the
Calculus&Mathematica courseware (Porta, Davis, and Uhl 1994). Find the positive numbers r such
that the following system has exactly one solution in x and y.

Hx - 1L2 + H y - 1L2 = 2

Hx + 3L2 + H y - 4L2 = r2

Once you have found the right number r, then plot the resulting circles in true scale on the same
axes, plotting the first circle with solid lines and the two solutions with dashed lines together in one
graphic.

7. Create a graphic of the sine function over the interval (0, 2 p) that displays vertical lines at each
point calculated by the Plot function to produce its plot.

8. Using options to the Plot function, create a plot showing the probability density function (pdf) of
a normal distribution together with vertical lines at the first and second standard deviations. Your
plot should look something like the following for a normal distribution with m = 0 and s = 1:

9. Modify ProteinDotPlot from the introduction to this chapter to accept options from
ArrayPlot .

10.1 Structure of graphics 385

10. Modify the Hypocycloid code to create epicycloids, which are like hypocycloids except the smaller
circle rotates on the outside of the larger circle. Then create an animation showing the epicycloid
being sketched out as the smaller circle rotates around the larger circle. If your animation includes a
way to select different radii for the circles, you will need to deal with the plot range as the size of the
smaller circle changes.

10.2 Efficient structures
The built-in graphics functions are optimized for the tasks for which they are designed. What this
means is that for a broad set of possible arguments, these function construct and display the
graphics scene quickly and efficiently, keeping the size of the resulting graphic manageable.
When creating visualizations of sizable datasets you can find yourself with very large graphical
objects that are not optimal in terms of memory usage, storage on disk, and interactivity. In this
section we will look at several approaches to optimizing graphical expressions introducing multi-
objects and GraphicsComplex as two efficient structures for working with larger objects.
Lastly, we will look at the use of numeric vs. symbolic expressions in the internal representation
of graphical expressions.

Multi-objects
Visualizations that involve many graphics primitives often contain large data structures contain-
ing many instances of a single primitive object. For example, mapping Point across a set of pairs
of coordinates is one way to create a graphic.

In[1]:= data = RandomReal@NormalDistribution@0, 1D, 85, 2<D;
gr1 = Graphics@Map@Point, dataDD;
FullForm@gr1D

Out[3]//FullForm=

Graphics@
List@Point@List@1.3587408177258289`, 1.0129471456926376`DD,
Point@List@-0.7139297202638747`, -0.08647150174959149`DD,
Point@List@1.0899030510218575`, -0.5685559001434687`DD,
Point@List@0.22032467637820483`, 1.1101331398563001`DD,
Point@List@-0.16904296153230453`, 0.22391875152064022`DDDD

Note that Point occurs five times in the above expression, once for each point created. On
the other hand, simply wrapping Point around the entire list of coordinate pairs creates the
same image, but note that Point is only used once in the underlying expression.

386 Graphics and visualization

In[4]:= gr2 = Graphics@Point@dataDD;
FullForm@gr2D

Out[5]//FullForm=

Graphics@
Point@List@List@1.3587408177258289`, 1.0129471456926376`D,

List@-0.7139297202638747`, -0.08647150174959149`D,
List@1.0899030510218575`, -0.5685559001434687`D,
List@0.22032467637820483`, 1.1101331398563001`D,
List@-0.16904296153230453`, 0.22391875152064022`DDDD

The form in this latter case is referred to as a multi-point expression, and is treated differently than
expressions with numerous primitives. The internal representation of multi-element objects is
more compact and the Mathematica front end is able to render these objects much more quickly.
Scaling up the size of the previous examples, this becomes quite apparent.

In[6]:= data = RandomVariate@NormalDistribution@0, 1D, 85000, 3<D;

In[7]:= AbsoluteTiming@
gr1 = Graphics3D@8PointSize@.005D, Map@Point, dataD<DD

Out[7]= :0.003957, >

In[8]:= AbsoluteTiming@
gr2 = Graphics3D@8PointSize@.005D, Point@dataD<DD

Out[8]= :0.000029, >

In[9]:=
First@%%D

First@%D

Out[9]= 1.4 � 102

10.2 Efficient structures 387

Although the differences in kernel timings are impressive (two to three orders of magnitude in
this example), the time it takes the front end to render these two objects is vastly different, with
the first expression taking much much longer.

Since Timing and AbsoluteTiming measure kernel times, you will have to use a different
function, SessionTime , to measure total wall clock time for a computation including the time
it takes the front end to format and render the resulting expression.

In[10]:= t1 = SessionTime@D;
gr1 = Graphics3D@8PointSize@.005D, Map@Point, dataD<D
t2 = SessionTime@D;
Ht2 - t1L Seconds

Out[11]=

Out[13]= 0.391888 Seconds

In[14]:= t1 = SessionTime@D;
gr2 = Graphics3D@8PointSize@.005D, Point@dataD<D
t2 = SessionTime@D;
Ht2 - t1L Seconds

Out[15]=

Out[17]= 0.021632 Seconds

Moreover, the memory needed to represent these objects is also vastly different with that for the
multi-point expression being some 10–12 times smaller.

In[18]:= :ByteCount@gr1D, ByteCount@gr2D, NB
ByteCount@gr1D

ByteCount@gr2D
F>

Out[18]= 81240216, 120392, 10.3015<

Point, Line , Polygon , Arrow are the only graphics primitives that have multi-element
forms. The exercises at the end of this section and several applications at the end of this chapter
explore other examples of multi-objects.

388 Graphics and visualization

GraphicsComplex
Graphical expressions often contain repetitions of the coordinate points used in the graphic. For
example, a coordinate triple 8x, y, z< might have several polygons that share that vertex and so
it would be repeated for each of those polygons. A GraphicsComplex is an expression that
you can use to compress the representation of such objects. It works by specifying each coordi-
nate once, and then only referring to the coordinate by an index, given by its position in the
coordinate list.

Many of the three-dimensional and region plotting functions use GraphicsComplex to
represent the graphical expression that would otherwise be quite a bit larger.

In[19]:= plt = Plot3DB 1 - x2 - y2 , 8x, -1, 1<, 8y, -1, 1<F

Out[19]=

In[20]:= Short@InputForm@pltD, 2D
Out[20]//Short=

Graphics3D@GraphicsComplex@880.00027901781728316324,
-0.9999998571428571, 0.0004559203033409366<,

8-0.42857136734693874, << 2 >><, 8<< 3 >><,
<< 2198 >>, 8-0.4999999285714286, 0.6249999107142856,
0.5979028111234589<<, << 2 >>D, 8<< 6 >><D

GraphicsComplex takes two arguments: a list of coordinate points in 2- or 3-space, followed
by a list of graphics primitives where each point is referenced by its position within the coordi-
nate point list.

GraphicsComplex@8pt1, pt2, …<, primitivesD

For example, here is a simple expression consisting of five points on the unit circle with the first
point repeated at the end to close up the polygon.

In[21]:= vertices@n_D := TableB:CosB
2 p a

n
F, SinB

2 p a

n
F>, 8a, 0, n<F

10.2 Efficient structures 389

In[22]:= coords = vertices@5D

Out[22]= :81, 0<, :
1

4
J-1 + 5 N,

5

8
+

5

8
>, :

1

4
J-1 - 5 N,

5

8
-

5

8
>,

:
1

4
J-1 - 5 N, -

5

8
-

5

8
>, :

1

4
J-1 + 5 N, -

5

8
+

5

8
>, 81, 0<>

The following creates a line connecting the points in order. The explicit coordinates are given as
the first argument. The second argument contains the primitives, in this case, a single Line
object. In the Line primitive, the points are referred to by their position in the list coords.

In[23]:= GraphicsComplex@coords, Line@81, 2, 3, 4, 5, 6<DD

Out[23]= GraphicsComplexB:81, 0<, :
1

4
J-1 + 5 N,

5

8
+

5

8
>,

:
1

4
J-1 - 5 N,

5

8
-

5

8
>, :

1

4
J-1 - 5 N, -

5

8
-

5

8
>,

:
1

4
J-1 + 5 N, -

5

8
+

5

8
>, 81, 0<>, Line@81, 2, 3, 4, 5, 6<DF

Wrapping Graphics (or Graphics3D) around a GraphicsComplex displays the expression.

In[24]:= Graphics@GraphicsComplex@coords, Line@81, 2, 3, 4, 5, 6<DDD

Out[24]=

Changing the indices used in the second argument results in lines connecting the same coordi-
nates but in a different order.

390 Graphics and visualization

In[25]:= Graphics@GraphicsComplex@coords, Line@81, 3, 5, 2, 4, 6<DDD

Out[25]=

If you wanted to add points at each coordinate, do so in the second argument to
GraphicsComplex.

In[26]:= Graphics@GraphicsComplex@coords, 8
Line@81, 3, 5, 2, 4, 6<D,
Blue, PointSize@.05D, Point@81, 2, 3, 4, 5, 6<D

<DD

Out[26]=

Once the list of coordinate points is specified (first argument of GraphicsComplex), the points
can be referenced as many times as needed. In the following example, the same set of points is
referred to in the first line segment as well as in the following two rotated line segments.

In[27]:= Graphics@8
GraphicsComplex@coords, 8

8Line@81, 2, 3, 4, 5, 6<D<,
8Dashed, Rotate@Line@81, 2, 3, 4, 5, 6<D, 30 DegreeD<,
8Thick, Rotate@Line@81, 2, 3, 4, 5, 6<D, 60 DegreeD<

<D
<D

Out[27]=

10.2 Efficient structures 391

Numeric vs. symbolic expressions
One of the great strengths of Mathematica is that you generally do not need to worry about what
type of numbers you are working with when performing many operations. This is true of graphi-
cal work as well as other kinds of computation. You can work with approximate numbers or
symbolic/exact expressions and your graphics will just work. But for large graphical expressions,
you may want to think about the types of numbers used.

For example, here is a graphics primitive – a polygon – generated from a list of exact coordi-
nates.

In[28]:= tri = GraphicsBPolygonB:80, 0<, 81, 0<, :
1

2
,

3

2
>>FF

Out[28]=

The front end, which renders the graphic, converts this list of exact coordinates into a numeric
representation and maintains this in a cached form for purposes of efficiency. You can see this by
converting to the internal box structure.

In[29]:= ToBoxes@triD

Out[29]= GraphicsBoxBPolygonBoxBNCacheB:80, 0<, 81, 0<, :
1

2
,

3

2
>>,

880, 0<, 81, 0<, 80.5, 0.866025<<FFF

The exact coordinates as well as the numeric approximations are both part of this internal repre-
sentation. Although this allows the front end to render the graphic quickly, it comes at a cost.
Here is the size of this little graphic expression.

In[30]:= ByteCount@triD

Out[30]= 872

Turning off this cache results in a simpler internal representation, one in which the symbolic
expression is not stored.

392 Graphics and visualization

In[31]:= tri2 = GraphicsBPolygonB:80, 0<, 81, 0<, :
1

2
,

3

2
>>F,

Method Ø 8"CacheSymbolicGraphics" Ø False<F;

In[32]:= ToBoxes@tri2D

Out[32]= GraphicsBox@PolygonBox@880, 0<, 81, 0<, 80.5, 0.866025<<D,
Method Ø 8CacheSymbolicGraphics Ø False<D

Fortunately, there is an easier way to get around this issue and that is simply to give the coordi-
nates as numeric values rather than symbolic expressions.

In[33]:= ntri = Graphics@Polygon@880, 0<, 81, 0<, 80.5, 0.866<<DD

Out[33]=

In[34]:= ToBoxes@ntriD

Out[34]= GraphicsBox@PolygonBox@880, 0<, 81, 0<, 80.5, 0.866<<DD

The resulting expression is about half the size of the cached version.

In[35]:= ByteCount@ntriD

Out[35]= 472

This becomes more important as the size and complexity of your graphics increases. Here is a
random collection of lines in 3-space, first using symbolic coordinates.

In[36]:= pairs = RandomChoiceB

JoinBRange@8D, :
1

2
,

2

2
,

3

2
,
1

2
J1 - 5 N>F, 82000, 3<F;

10.2 Efficient structures 393

In[37]:= lines3D = Graphics3D@
8Opacity@.2D, Line@Partition@pairs, 2DD<D êê Timing

Out[37]= :0.00233, >

In[38]:= ByteCount@lines3DD

Out[38]= 833624

Here is the same graphic but using numerical coordinates only.

In[39]:= npairs = N@pairsD;
nlines3D = Graphics3D@

8Opacity@.2D, Line@Partition@npairs, 2DD<D êê Timing

Out[40]= :0.000167, >

In[41]:= ByteCount@nlines3DD

Out[41]= 336344

The version using numerical approximations for the coordinates is about 2.5 times smaller in
size. Also, the time to render the graphic is almost an order of magnitude faster from the kernel’s
perspective, and about twice as fast for the front end (you could use a similar approach to that in
the previous section where we used SessionTime). This is mostly a result of not having to
carry around all that extra information. Of course, if your graphical expression is highly depen-
dent upon exact/symbolic expressions, then these suggestions might be moot. In that case, using
either GraphicsComplex and/or multi-objects should make the representation more efficient.

394 Graphics and visualization

Exercises
1. Create a hexagonal grid of polygons like the one below.

First create the grid by performing appropriate translations using either Translate or the geomet-
ric transformation TranslationTransform. Compare this approach with a multi-polygon
approach.

2. Create a graphic consisting of a three-dimensional lattice, that is, lines on the integer coordinates in
3-space. Compare approaches that use multi-lines as opposed to those that do not.

3. A common problem in computational geometry is finding the boundary of a given set of points.
One way to think about this is to imagine the points as nails in a board and then to stretch a rubber
band around all the nails. The stretched rubber band lies on a convex polygon commonly called the
convex hull of the point set. The problem of determining the convex hull of a set of points has
application in computer vision, pattern recognition, image processing, and many other areas. Using
the ConvexHull function defined in the Computational Geometry package, create a function
ConvexHullPlot for visualizing the convex hull together with its point set. The resulting graphic
should include the points labeled with text as well as the convex polygon drawn as a line around the
point set.

In[1]:= pts = RandomReal@1, 820, 2<D;

In[2]:= Needs@"ComputationalGeometry`"D

In[3]:= ConvexHull@ptsD

Out[3]= 812, 19, 2, 1, 9, 6, 4, 10, 7, 8<

10.2 Efficient structures 395

In[4]:= ConvexHullPlot@ptsD

Out[4]=

1 2

3
4

5

6

7 8

9

10

11
12

13

14

15
16

17
18

19

20

4. Extend Exercise 9 from Section 8.4 to random walks on the base n digits of p. For example, in base 3,
a 1 corresponds to an angle of 120° from the current position, 2 corresponds to 240°, and 0 to 360°.
In base 4 the step angles will be multiples of 90° and in general, for base n, the step angles will be
multiples of 360 ° ên. Use GraphicsComplex to visualize the walks. Include a color function that
depends upon the length of the walk. For more on random walks on digits of p in various bases, see
Bailey et al. (2012).

10.3 Sound
Although it might seem odd to include a section on sound in a chapter on graphics, there is much
similarity between these two objects from both an experiential as well as computational and
programmatic points of view. Graphics and sound are both used to visualize phenomena and to
convey information, and both can be used to analyze data.

The syntax of the functions for sound in Mathematica follows that for graphics expressions.
There are top-level functions that provide a basic interface for working with sounds together
with options built in for modifying their default behaviors. And, like graphics, there are lower-
level primitive objects for constructing sounds from scratch.

In this section we will introduce the symbolic sound language in Mathematica and, in Section
10.4, use it to construct several example sound expressions – compositions.

The sound of mathematics
We hear sound when the air around our ears compresses and expands the air near the eardrum.
Depending upon how the eardrum vibrates, different signals are sent to the brain via the auditory
nerves after the cochlea in the inner ear does some signal processing to convert the mechanical
sound waves into electrochemical impulses. These signals are then interpreted in the brain as
various sounds. Musical tones compress and expand the air periodically according to sine waves.
The human ear is able to hear these waves when the frequency is between approximately 20 and
20 000 oscillations per second, or hertz.

396 Graphics and visualization

One oscillation of sinHxL occurs between 0 and 2 p; sin H4 xL oscillates four times in the same
interval.

In[1]:= Plot@8Sin@xD, Sin@4 xD<, 8x, 0, 2 p<D

Out[1]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Mathematica is able to take a function such as sine and sample its amplitudes roughly 8000 times
per second, and then send corresponding voltages to the speaker on your computer to produce
the sound of the sine wave. The function that accomplishes this is Play , which has the same
syntax as the Plot command.

In[2]:= ? Play

PlayA f , 8t, tmin, tmax<E creates an object that plays as a sound whose amplitude

is given by f as a function of time t in seconds between tmin and tmax. �à

The function Sin@256 tD oscillates 256 times each 2 p units, so, if we want to “play” a func-
tion that oscillates 256 times per second, we want Sin@256 t H2 pLD. This plays the function
for one second.

In[3]:= Play@Sin@256 t H2 pLD, 8t, 0, 1<D

Out[3]=

Pressing the play button in the lower-left corner of the generated interface should play a note
close to middle C played for one second. The graphic that Mathematica outputs with the sound
object is a somewhat primitive attempt to display the waveform. You can suppress this graphical
display and only play the sound by using EmitSound. This gives a slight saving in terms of the
expressions that are stored with your notebook.

In[4]:= Play@Sin@256 t H2 pLD, 8t, 0, 1<D êê EmitSound

The Play function encodes the sound amplitudes using eight bits and samples functions at a
rate of about 8000 times per second, or hertz. This is good to keep in mind as anomalies can

10.3 Sound 397

occur when playing a function whose periodicity is very close to the sample rate. Listen to the
quite surprising result that follows (you will have to check the SampleRate on your computer
and adjust the following code accordingly). Try other frequencies that are close to the sample rate
on your computer.

In[5]:= Options@Play, 8SampleDepth, SampleRate<D

Out[5]= 8SampleDepth Ø 8, SampleRate Ø 8000<

In[6]:= Play@Sin@8000 � 2 p tD, 8t, 0, 1<D

Out[6]=

Although you would expect a tone at 8000 hertz, you get something quite different. Play is
sampling the function 8000 times. Since the function itself oscillates 8000 times on this interval,
the samples appear to be about the same and so Play misses the periodic nature of this function.
If Play did adaptive sampling, much like Plot does, then it could avoid this particular problem.
You could, of course, increase the sampling. This is analogous to increasing the value of
PlotPoints in the initial sampling of points in such functions as Plot .

In[7]:= Play@Sin@8000 � 2 p tD, 8t, 0, 1<, SampleRate Ø 44 000D

Out[7]=

In addition to playing continuous functions with Play , you can also play lists of discrete
amplitudes using ListPlay. For example, here are the digits of a rational number.

In[8]:= digits = First[RealDigits[N[1/19, 5000]]];
Take[digits,50]

Out[9]= 85, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2,
1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4,
2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8<

The periodic nature of rational numbers should give a tone when played as a repeating set of
amplitudes and it does. Mathematica scales the amplitudes to fit in a range that ListPlay can
work with and that is audible.

398 Graphics and visualization

In[10]:= ListPlay@digitsD

Out[10]=

Contrast that with a nonperiodic list of digits, the digits of p – white noise.

In[11]:= irratdigits = First@RealDigits@N@p, 5000DDD;
ListPlay@irratdigitsD

Out[12]=

Sound primitives and directives
You can think of Play and ListPlay as audio analogues of Plot and ListPlot. They are
top-level functions that provide a clean and easy-to-use interface for the user. But, as with graph-
ics objects, you can create sound objects from scratch, building them up from primitives (Table
10.4) and styling them with directives.

Table 10.4. Basic sound primitives

Sound primitive Usage
SoundNote@pitchD music-like sound note

SampledSoundFunction@ f, n,rD amplitude levels given by a function

SampledSoundList@8a1, a2,…<, rD amplitude levels given as a list

SoundNote creates a sound primitive. Just as Graphics and Graphics3D are used to display
graphics primitives, Sound is wrapped around sound primitives to play them on your computer.
For example, this generates middle C, played for the default one second.

In[13]:= Sound@SoundNote@"C"DD

Out[13]=

1 s

10.3 Sound 399

Given a numeric value n, SoundNote@nD will generate a note n semitones above middle C. The
parameter n can also take on negative integer values to generate tones below middle C. For exam-
ple, this plays a note five semitones below middle C, that is, G below middle C.

In[14]:= Sound@SoundNote@-5DD êê EmitSound

Set the duration of each sound using a second argument to Sound. For example, this plays the
note for two seconds.

In[15]:= Sound@SoundNote@0D, 2D êê EmitSound

To play several notes simultaneously as a chord, include them in a list as an argument to
SoundNote. Here is an augmented ninth chord (think Jimi Hendrix’s Purple Haze).

In[16]:= Sound@SoundNote@8"E2", "GÒ", "B", "D", "G"<DD êê EmitSound

You can also specify a style which is essentially a midi instrument. Note how this syntax mirrors
that for graphics directives. The style (directive) precedes the primitives which it modifies and is
scoped in a manner similar to graphics.

In[17]:= Sound@8
"GuitarDistorted", SoundNote@8"E2", "GÒ", "B", "D", "G"<D

<D êê EmitSound

In[18]:= Sound@8"GuitarDistorted",
SoundNote@8"E2", "B2", "E2"<D,
SoundNote@8"E3", "GÒ3", "B3", "D3", "G3"<D,
SoundNote@8"E2", "B2", "E2"<D,
SoundNote@8"E3", "GÒ3", "B3", "D3", "G3"<D

<D

Out[18]=

4 s

Alternatively, you can create sounds by sampling amplitude levels given by functions or lists.
For example, this samples the sine function 8000 times per second (sample rate), by applying
Sin to the integers 1 through 4000.

In[19]:= Sound@SampledSoundFunction@Sin@ÒD &, 4000, 8000DD

Out[19]=

400 Graphics and visualization

This creates a middle C tone from a list of amplitudes, sampled at 22 050 times per second, half
the rate used by audio cds.

In[20]:= rate = 22050;
lis = Table@Sin@261.626 � 2 p tD, 8t, 0, 0.5, 1 ê rate<D;
Sound@SampledSoundList@lis, rateDD

Out[22]=

Exercises
1. Evaluate Play@Sin@1000 ê xD, 8x, -2, 2<D. Explain the dynamics of the sound generated

from this function.

2. Experiment with the Play function by creating arithmetic combinations of sine functions. For
example, you might try the following.

In[1]:= PlayB
Sin@440 � 2 p tD

Sin@660 � 2 p tD
, 8t, 0, 1<F

Out[1]=

3. Create a tone that doubles in frequency each second.

4. Create a “composition” using the digits of p as representing notes on the C scale where a digit n is
interpreted as a note n semitones from middle C. For example, the first few digits, 1, 4, 1, 5 would give
the notes one, four, one, and five semitones from middle C.

5. A square wave consists of the addition of sine waves, each an odd multiple of a fundamental fre-
quency, that is, it consists of the sum of sine waves having frequencies f0, 3 f0, 5 f0, 7 f0, etc. Create a
square wave with a fundamental frequency f0 of 440 hertz. The more overtones you include, the
“squarer” the wave.

6. Create a square wave consisting of the sum of sine waves with frequencies f0, 3 f0, 5 f0, 7 f0, etc., and
amplitudes 1, 1/3, 1/5, 1/7, respectively. This is actually a truer square wave than that produced in the
previous exercise.

7. Create a square wave consisting of overtones that are randomly out of phase. How does this wave
differ from the previous two?

10.3 Sound 401

8. A sawtooth wave consists of the sum of both odd- and even-numbered overtones: f0, 2 f0, 3 f0, 4 f0, etc.
with amplitudes in the ratios 1, 1/2, 1/3, 1/4, etc. Create a sawtooth wave and compare its tonal
qualities with the square wave.

9. A wide variety of sounds can be generated using frequency modulation (FM) synthesis. The basic idea of
FM synthesis is to use functions of the form

a sinH2 p Fc, t + mod sinH2 p Fm tLL.

where a is the peak amplitude, Fc is the carrier frequency in hertz, mod is the modulation index, and
Fm is the modulating frequency in hertz.

Determine what effect varying the parameters has on the resulting tones by creating a series of
FM synthesized tones. First, create a function FM@Amp, Fc, mod, Fm, timeD that implements
the above formula and generates a tone using the Play function. Then you should try several
examples to see what effect varying the parameters has on the resulting tones. For example, you can
generate a tone with strong vibrato at a carrier frequency at middle A for one second by evaluating
FM@1, 440, 45, 5, 1D.

10.4 Examples and applications
Up until this point, we have looked at the tools that are available to construct relatively simple
graphics in Mathematica using the graphics building blocks – primitives, directives, and options.
In this section we consider problems that are more involved or whose solution requires geomet-
ric insight as we construct our programs. We will not restrict our programs to those only con-
structed from graphics primitives but will also build upon and modify some of the built-in
functions for our purposes here.

We will begin with four examples whose solutions involve building functions from primitive
graphics elements: creating space-filling plots for proteins and other chemicals, plotting lines
from data in three dimensions, finding simple closed paths through a set of data, and determin-
ing if a point lies inside or outside of a polygon. The next three problems use built-in functions in
order to take advantage of established algorithms for computation and options for formatting
and styling: visualizing the distribution of data including some statistical properties, root plot-
ting, and trend plots. The last example uses sound primitives and directives to construct musical
compositions tied to scaling functions.

Space-filling plots
Our first graphics example uses three-dimensional graphics primitives to construct a visualiza-
tion of molecular structures. The built-in data collection ChemicalData contains a property for
generating these plots – "SpaceFillingMoleculePlot" – but you cannot use this with
other objects such as a protein or any object not in ChemicalData.

402 Graphics and visualization

In[1]:= ChemicalData@"AceticAcid", "SpaceFillingMoleculePlot"D

Out[1]=

The information needed to construct such a plot for any given molecule is:

Ê the list of atoms in the molecule;

Ê the positions in space of each atom;

Ê the radius of each atom;

Ê the color for each atom.

These data can come from a variety of sources. For our purposes, we will use some of the built-in
data collections in Mathematica to gather the data.

The list of atoms for a known chemical is given by the "VertexTypes" property of
ChemicalData.

In[2]:= atoms = ChemicalData@"AceticAcid", "VertexTypes"D

Out[2]= 8O, O, C, C, H, H, H, H<

Their positions in space are given by "AtomPositions".

In[3]:= positions = ChemicalData@"AceticAcid", "AtomPositions"D

Out[3]= 88-140.19, -68.091, -9.3099<, 8-43.767, 87.394, -133.26<,
887.692, 9.1899, 45.963<, 8-36.804, 12.256, -38.892<,
8159.89, 81.044, 7.1474<, 8130.97, -90.809, 43.377<,
862.271, 35.133, 148.73<, 8-220.07, -66.118, -63.757<<

The van der Waals radius of any atom is the radius of an imaginary, circumscribed sphere about
the atom. It has been computed for many atoms (not all) and is also built into Mathematica.

In[4]:= radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD

Out[4]= 8152., 152., 170., 170., 120., 120., 120., 120.<

The units are picometers, where 1 pm = 10
-12 m = 10

-2 � (ångströms). Atoms typically have radii
in the range 60–520 pm, or, 0.6–5.2 �.

10.4 Examples and applications 403

In[5]:= Map@ElementData@"C", "VanDerWaalsRadius", ÒD &,
8"Value", "Units"<D

Out[5]= 8170., Picometers<

A commonly-used color scheme for atoms was developed in the 1950s and 1960s by Corey,
Pauling, and later Koltun, known as the CPK model. It is built into Mathematica via ColorData.

In[6]:= colors = Map@ColorData@"Atoms", ÒD &, atomsD

Out[6]= 8RGBColor@0.800498, 0.201504, 0.192061D,
RGBColor@0.800498, 0.201504, 0.192061D,
RGBColor@0.4, 0.4, 0.4D, RGBColor@0.4, 0.4, 0.4D,
RGBColor@0.65, 0.7, 0.7D, RGBColor@0.65, 0.7, 0.7D,
RGBColor@0.65, 0.7, 0.7D, RGBColor@0.65, 0.7, 0.7D<

9color, SphereAcenter, radiusE= is the graphics expression that we will use for each atom. The

key observation here is that this list needs to be generated for each atom in a given molecule that
we are visualizing. We have three lists: colors, positions, and radii. We want to slot them
into a graphics list of the form 9color, SphereApos, radiusE=. We use MapThread, where #1

pulls an element from the first list, colors; #2 pulls an element from the second list, posiÖ
tions; and #3 pulls an element from the third list, radii.

In[7]:= Graphics3D@8
MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, positions, radii<D

<D

Out[7]=

This is the basic structure we need. We will next add some directives and options to get the effects
in which we are interested. Using the Specularity directive gives control over the reflection of
the lights. Setting the Lighting option to "Neutral" sets the light sources used to illuminate
the object to be white in color.

404 Graphics and visualization

In[8]:= Graphics3D@8Specularity@White, 40D,
MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, positions, radii<D

<, Lighting Ø "Neutral"D

Out[8]=

Putting all these pieces together, here is the function ChemicalSpaceFillingPlot. It is
dependent upon ChemicalData and ElementData for all the atomic data. If you have other
sources that you are drawing from, you will have to modify it accordingly.

In[9]:= ChemicalSpaceFillingPlot@chem_D :=

Module@8elements, pos, radii<,
elements = ChemicalData@chem, "VertexTypes"D;
pos = ChemicalData@chem, "AtomPositions"D;
radii =
Map@ElementData@Ò, "VanDerWaalsRadius"D &, elementsD;

Graphics3D@8Specularity@White, 50D,
MapThread@8ColorData@"Atoms", Ò1D, Sphere@Ò2, Ò3D< &,
8elements, pos, radii<D

<, Lighting Ø "Neutral"DD

Try it out on an amino acid, l-tryptophan.

In[10]:= ChemicalSpaceFillingPlot@"LTryptophan"D

Out[10]=

10.4 Examples and applications 405

Using the legending functionality new to Mathematica 9, you can add a legend for each element.
(Mathematica 9) In[1]:=

ChemicalSpaceFillingPlot@chem_D :=

Module@8elements, pos, radii<,
elements = ChemicalData@chem, "VertexTypes"D;
pos = ChemicalData@chem, "AtomPositions"D;
radii =
Map@ElementData@Ò, "VanDerWaalsRadius"D &, elementsD;

Legended@
Graphics3D@8Specularity@White, 50D,

MapThread@8ColorData@"Atoms", Ò1D, Sphere@Ò2, Ò3D< &,
8elements, pos, radii<D

<, Lighting Ø "Neutral"D,
SwatchLegend@
ColorData@"Atoms", Ò1D & êü DeleteDuplicates@elementsD,
Map@ElementData@Ò, "StandardName"D &,
DeleteDuplicates@elementsDD, LegendFunction Ø "Panel",

LegendMarkers Ø "SphereBubble", LegendMarkerSize Ø 12DDD

(Mathematica 9) In[2]:=

ChemicalSpaceFillingPlot@"LTryptophan"D
(Mathematica 9) Out[2]=

Let us go a few steps further and create a similar function for working with the proteins built
into ProteinData . Whereas ChemicalData uses "VertexTypes" to get a list of the atoms,
we need to use "AtomTypes" for ProteinData . Otherwise the code is similar.

In[11]:= atoms = ProteinData@"A2M", "AtomTypes"D;

In[12]:= colors = Map@ColorData@"Atoms", ÒD &, atomsD;

406 Graphics and visualization

In[13]:= positions = ProteinData@"A2M", "AtomPositions"D;
radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD;
Graphics3D@8Specularity@White, 40D,

MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, positions, radii<D
<, Lighting Ø "Neutral"D

Out[15]=

Here is the bundled code for proteins.

In[16]:= ProteinSpaceFillingPlot@prot_D :=

Module@8atoms, pos, radii, colors<,
atoms = ProteinData@prot, "AtomTypes"D;
colors = Map@ColorData@"Atoms", ÒD &, atomsD;
pos = ProteinData@prot, "AtomPositions"D;
radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD;
Graphics3D@8Specularity@White, 50D,

MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8colors, pos, radii<D
<, Lighting Ø "Neutral"DD

It seems to work fine here on an enzyme involved in the regulation of cell motility and
morphology.

In[17]:= ProteinSpaceFillingPlot@"PAK1"D

Out[17]=

10.4 Examples and applications 407

But it fails when the database we are drawing from (ProteinData) has missing data.

In[18]:= ProteinSpaceFillingPlot@"LOC100132316"D
ColorData::notprop : NotAvailable is not a known property

for ColorData. Use ColorData@"Properties"D for a list of properties. à
MapThread::mptd : Object Missing@ColorData@Atoms, NotAvailableDD at position 82, 1< in

MapThread@8Ò1, Sphere@Ò2, Ò3D< &, 8Missing@ColorData@Atoms, NotAvailableDD, Missing@
NotAvailableD, Missing@ElementData@NotAvailable, VanDerWaalsRadiusDD<D

has only 0 of required 1 dimensions. à

In[19]:= pos = ProteinData@"LOC100132316", "AtomPositions"D

Out[19]= Missing@NotAvailableD

We can pass on the " Missing@…D " output in such cases by adding a conditional that checks
to see if the head Missing is part of the data.

In[20]:= MemberQ@Join@8atoms, pos<D, _MissingD

Out[20]= True

Here is the updated code. We have also set things up so ProteinSpaceFillingPlot inherits
the options from Graphics3D .

In[21]:= Clear@ProteinSpaceFillingPlotD

In[22]:= ProteinSpaceFillingPlot@prot_,
opts : OptionsPattern@Graphics3DDD :=

Module@8atoms, pos, radii<,
atoms = ProteinData@prot, "AtomTypes"D;
pos = ProteinData@prot, "AtomPositions"D;
If@MemberQ@Join@8atoms, pos<D, _MissingD,
Missing@"NotAvailable"D,
radii = Map@ElementData@Ò, "VanDerWaalsRadius"D &, atomsD;
Graphics3D@8Specularity@White, 50D,

MapThread@8ColorData@"Atoms", Ò1D, Sphere@Ò2, Ò3D< &,
8atoms, pos, radii<D

<, opts, Lighting Ø "Neutral"DDD

408 Graphics and visualization

Let us exercise some of the graphics options.

In[23]:= ProteinSpaceFillingPlot@"ABL1IsoformA",
Boxed Ø False, FaceGrids Ø AllD

Out[23]=

And here is what happens for a protein for which data are not available.

In[24]:= ProteinSpaceFillingPlot@"ACR"D

Out[24]= Missing@NotAvailableD

Plotting lines in space
Mathematica has two basic functions for visualizing two-dimensional data: ListPlot and
ListLinePlot. Although there is a function for scatter plots of points in three dimensions,
there is no function for plotting three-dimensional data connected by lines; three-dimensional
random walks are good examples of a phenomenon in need of such a visual tool. In this section
we will create a new function, ListLinePlot3D that you can use to plot datasets consisting of
triples of numbers (that is, coordinates of points in 3-space), connecting successive data points
with lines.

Here are some data that we will use to prototype our function. It consists of twenty triples of
random integers between -10 and 10.

In[25]:= data = RandomInteger@8-10, 10<, 820, 3<D

Out[25]= 882, 7, 8<, 8-2, 3, -7<, 85, -8, -7<, 8-6, -3, -9<, 83, 3, -6<,
82, -3, 1<, 8-3, -7, 8<, 8-3, -4, 1<, 8-6, 9, -1<, 8-10, 10, 7<,
8-2, 4, 4<, 85, 8, -10<, 84, 4, 6<, 8-9, 7, 2<, 8-9, -2, 1<,
8-10, 0, 9<, 88, 0, 1<, 8-8, -7, 9<, 8-3, -5, 0<, 8-9, 0, -2<<

10.4 Examples and applications 409

For a very basic first attempt, we simply connect each coordinate triple with a line.

In[26]:= Graphics3D@Line@dataDD

Out[26]=

We would like to be able to use all the options for Graphics3D in our function, so we start to
set up the options framework.

In[27]:= Options@ListLinePlot3DD = Options@Graphics3DD;

In[28]:= ListLinePlot3D@lis_List, opts : OptionsPattern@DD :=

Graphics3D@Line@lisD, optsD

Let us exercise some of the Graphics3D options with our new function.

In[29]:= ListLinePlot3D@data, Axes Ø TrueD

Out[29]=

-10
-5

0
5

-5
0

5
10

-10

-5

0

5

Our goal is to create a function that behaves much like the two-dimensional ListLinePlot.
Here are the pieces that we will include:

Ê two rules for ListLinePlot3D: one for the case of a single dataset and another rule for
plotting multiple datasets;

Ê the options inherited from Graphics3D ;

Ê additional options that are not Graphics3D options: PlotStyle, Mesh , and
MeshStyle;

Ê a usage message;

Ê a warning message for bad values of the Mesh option.

410 Graphics and visualization

Let us set up the option structure first. As noted above, there are three options we are interested
in using that are not options to Graphics3D .

In[30]:= MemberQ@First êü Options@Graphics3DD,
PlotStyle Mesh MeshStyleD

Out[30]= False

We start by adding these, together with their default values, to the list of Graphics3D options.
In the body of our function, we will need to define the behavior for each of the possible values of
these options.

In[31]:= Remove@ListLinePlot3DD

In[32]:= Options@ListLinePlot3DD = Join@8
Mesh Ø None,
MeshStyle Ø Automatic,
PlotStyle Ø ColorData@1D@1D

<,
Options@Graphics3DDD;

The use of ColorData here warrants a note. Built-in functions such as Plot and ListPlot
choose the default color for the PlotStyle using this construction. ColorData@1D is a color
scheme consisting of a palette of colors. The first color in this list is the familiar dark blue style
you see in plotting a function with Plot or ListPlot.

In[33]:= ColorData@1D

Out[33]= ColorDataFunctionB81, ¶, 1<, F

In[34]:= ColorData@1D@1D

Out[34]= RGBColor@0.2472, 0.24, 0.6D

Here is a first attempt at putting this function together. The first argument, lis, is checked to
make sure it consists of a list of one or more triples; the plot style is picked up from the value of
the PlotStyle option.

In[35]:= ListLinePlot3D@lis : 88_, _, _< ..<,
opts : OptionsPattern@DD :=

Module@8plotStyle = OptionValue@PlotStyleD<,
Graphics3D@8plotStyle, Line@lisD<, optsD

D

10.4 Examples and applications 411

In[36]:= ListLinePlot3D@dataD

Out[36]=

The rule that works with multiple datasets requires us to thread a list of colors over each dataset.

In[37]:= ListLinePlot3D@lis_List, opts : OptionsPattern@DD :=

Module@8colors = ColorData@1D@ÒD & êü Range@Length@lisDD<,
Graphics3D@Thread@8colors, Line êü lis<D, optsDD

This is a very general rule that does no pattern matching on the first argument other than to
check that it has head List . It would be better to give a more specific pattern that will be
matched by lists of lists of the appropriate structure. The pattern 88_, _, _< ..< is matched by
a list of one or more triples. Hence the pattern 888_, _, _< ..< ..< is matched by one or
more lists of lists of one or more triples, that is, multiple sets of three-dimensional data. Below we
give this pattern a name, lis, so that we can refer to that pattern in the body of the function.

In[38]:= ListLinePlot3D@lis : 888_, _, _< ..< ..<,
opts : OptionsPattern@DD :=

Module@8colors = ColorData@1D@ÒD & êü Range@Length@lisDD<,
Graphics3D@Thread@8colors, Line êü lis<D, optsDD

Here are four datasets consisting of fifteen triples of random number each. Four different
colors are automatically chosen from ColorData – one for each set of lines/data.

In[39]:= data = RandomReal@1, 84, 15, 3<D;
ListLinePlot3D@dataD

Out[40]=

412 Graphics and visualization

Next, we add the mesh and mesh style machinery. We will set things up so that the Mesh option
can take only two different values, None or All. So, let us create an error message that will be
issued if a different value is given to the Mesh option. We do this in the rule for a single dataset.

In[41]:= ListLinePlot3D::badmesh =
"The value of the Mesh option should

be either None or All";

We should also create a usage message for this function.

In[42]:= ListLinePlot3D::usage =
"ListLinePlot3D@lisD creates a three-dimensional graphic of

lines connecting the points given in lis which are
assumed to be lists consisting of three coordinates.";

In[43]:= ? ListLinePlot3D

ListLinePlot3D@lisD creates a three-dimensional graphic of lines connecting the
points given in lis which are assumed to be lists consisting of three coordinates.

Here then is our function with all the pieces included.

In[44]:= ListLinePlot3D@lis : 88_, _, _< ..<, opts : OptionsPattern@DD :=

Module@8plotStyle, mesh, meshStyle, gr3DOpts<,
mesh = OptionValue@MeshD;
plotStyle = If@

OptionValue@PlotStyleD === Automatic,
ColorData@1D@1D,
OptionValue@PlotStyleDD;

meshStyle = If@
OptionValue@MeshStyleD === Automatic,
8PointSize@MediumD, ColorData@1D@1D<,
OptionValue@MeshStyleDD;

gr3DOpts = FilterRules@8opts<, Options@Graphics3DDD;
Which@
mesh === All, Graphics3D@8Flattenü8plotStyle, Line@lisD<,

Flattenü8meshStyle, Point@lisD<<, gr3DOptsD,
mesh === None, Graphics3D@Flattenü8plotStyle, Line@lisD<,
gr3DOptsD,

True, Message@ListLinePlot3D::badmeshDDD

10.4 Examples and applications 413

Some comments on the code:

Ê Starting with plotStyle, the If statement will return ColorData@1D@1D if the value of
PlotStyle is Automatic. Otherwise, the user-supplied value is used. The same applies
for meshStyle.

Ê gr3DOpts is used to filter only those options that are specific to Graphics3D and then
those are passed into that function towards the end of the code.

Ê The Which statement determines what value of Mesh to use; if a value other than All or
None is given, the warning message is issued.

Ê Flatten is used (three times) to insure the options are in the scope of the graphics
primitives that they are modifying.

Let us try out the code on a list of triples of numbers generated from a three-dimensional
random walk (the code for the RandomWalk function is developed in Section 13.1).

In[45]:= << PwM`RandomWalks`

In[46]:= RandomWalk@4, Dimension Ø 3, LatticeWalk Ø FalseD

Out[46]= 88-0.331614, 0.7767, -0.535509<, 80.077708, 1.6684, -0.728714<,
80.539855, 0.798301, -0.5574<, 8-0.134958, 1.17306, 0.0783545<<

You could alternatively use any list of triples of numbers.

In[47]:= RandomReal@80, 1<, 84, 3<D

Out[47]= 880.391577, 0.379059, 0.645299<, 80.313523, 0.983738, 0.304593<,
80.302268, 0.75095, 0.624754<, 80.340422, 0.626443, 0.90892<<

First, we generate a plot using the default option values.

In[48]:= walk = RandomWalk@500, Dimension Ø 3, LatticeWalk Ø FalseD;
ListLinePlot3D@walkD

Out[48]=

414 Graphics and visualization

We then try out several options.

In[49]:= ListLinePlot3D@walk, Mesh Ø All,
MeshStyle Ø 8PointSize@SmallD, Gray<,
PlotStyle Ø 8Blue, Thickness@.001D<, FaceGrids Ø AllD

Out[49]=

There is, of course, much more we could add but this should give you a good idea of the kinds of
things that should be included in such a function. In the exercises, you are asked to extend these
ideas to make the function even more robust and useful, including incorporating these various
options into the rule for multiple datasets.

Simple closed paths
Our next example of a graphical programming problem solves a very simplified variation of what
are known as traveling salesman problems. For a given set of points, a closed path is one that travels to
every point and returns to the starting point. The traveling salesman problem asks for the shortest
closed path that connects an arbitrary set of points. The traveling salesman problem is one of
great theoretical, as well as practical, importance. Airline routing and telephone cable wiring over
large regions are examples of problems that could benefit from a solution to the traveling sales-
man problem.

From a theoretical point of view, the traveling salesman problem is part of a large class of
problems that are known as NP-complete problems. These are problems that can be solved in
polynomial time using nondeterministic algorithms. A nondeterministic algorithm has the ability to
“choose” among many options when faced with numerous choices, and then to verify that the
solution is correct. The outstanding problem in computer science at present is known as the
� = � � problem. This equation says that any problem that can be solved by a nondeterministic
algorithm in polynomial time (��) can be solved by a deterministic algorithm in polynomial
time (�). It is widely believed that � � � � and considerable effort has gone into solving this
problem. See Cook (2000), Lawler et al. (1985) or Pemmaraju and Skiena (2003).

Our focus will be on a solvable problem that is a substantial simplification of the traveling
salesman problem. We will find a simple closed path – a closed path that does not intersect itself –

10.4 Examples and applications 415

through a set of n points. For example, Figure 10.3 displays a simple closed path through fifteen
points chosen at random in the plane.

Figure 10.3. A simple closed path for fifteen points.

We will demonstrate a graphical solution to the problem by working with a small number of
points and then generalizing to arbitrary numbers of points. Let us first create a set of ten pairs of
points in the unit square.

In[50]:= SeedRandom@1234D;
coords = RandomReal@1, 810, 2<D

Out[51]= 880.876608, 0.521964<, 80.0862234, 0.377913<,
80.0116446, 0.927266<, 80.543757, 0.479332<,
80.245349, 0.759896<, 80.984993, 0.217045<,
80.459017, 0.884729<, 80.583854, 0.263973<,
80.91956, 0.423835<, 80.98729, 0.587943<<

Next, we visualize the closed path through this set of points using PathPlot, developed in
Section 4.2.

In[52]:= PathPlot@coordsD

Out[52]=

A simple closed path is one that does not cross itself. Simply taking the coordinates in the
order in which they are given is not going to work here. Finding an ordering of the points such
that a simple closed path results is geometric in nature. To develop an algorithm that insures our

416 Graphics and visualization

path does not cross itself for any set of points in the plane, we will first pick a point from our set at
random and call this the base point.

In[53]:= base = RandomChoice@coordsD

Out[53]= 80.0862234, 0.377913<

Figure 10.4. Sorting points by polar angle.

Base

p1

p2

p3

The path problem can be solved by first computing the counterclockwise (polar) angle between a
horizontal line and each of the remaining points, using the base point as the vertex of the angle
(Figure 10.4). Then, sorting the points according to this angle and connecting the points in this
order should produce the desired result.

First we compute the polar angle between two points a and b (you should verify the trigonome-
try necessary to find this angle in the various cases).

In[54]:= angle@a_List, b_ListD := Apply@ArcTan, Hb - aLD

We can use this function to compute the polar angle between our base point and each of the
points in the list coords. We need to make sure that we do not try to compute the angle
between the base point and itself as this will evaluate to ArcTan@0, 0D, which is undefined.
This situation can be avoided by removing the base point from the list of coordinates when
computing the angles.

In[55]:= remain = Complement@coords, 8base<D

Out[55]= 880.0116446, 0.927266<, 80.245349, 0.759896<,
80.459017, 0.884729<, 80.543757, 0.479332<,
80.583854, 0.263973<, 80.876608, 0.521964<,
80.91956, 0.423835<, 80.984993, 0.217045<, 80.98729, 0.587943<<

In[56]:= Map@angle@base, ÒD &, remainD

Out[56]= 81.70573, 1.17608, 0.936601, 0.218137,

-0.225085, 0.180276, 0.0550508, -0.177111, 0.229001<

The angle function gives an ordering on the list of coordinates. SortAlist, orderFunE sorts

list according to the ordering function orderFun, which is a two-argument predicate. We wish to
sort coords according to our ordering function on the angles between each point and the base
point. The following code accomplishes this.

10.4 Examples and applications 417

In[57]:= s = Sort@remain, angle@base, Ò1D § angle@base, Ò2D &D

Out[57]= 880.583854, 0.263973<, 80.984993, 0.217045<,
80.91956, 0.423835<, 80.876608, 0.521964<,
80.543757, 0.479332<, 80.98729, 0.587943<, 80.459017, 0.884729<,
80.245349, 0.759896<, 80.0116446, 0.927266<<

This is our list of coordinates sorted according to the polar angle between each point and the base
point. Put the base point at the beginning of the list and close the path by adding the base point to
the end.

In[58]:= path = Join@8base<, s, 8base<D

Out[58]= 880.0862234, 0.377913<, 80.583854, 0.263973<,
80.984993, 0.217045<, 80.91956, 0.423835<,
80.876608, 0.521964<, 80.543757, 0.479332<,
80.98729, 0.587943<, 80.459017, 0.884729<, 80.245349, 0.759896<,
80.0116446, 0.927266<, 80.0862234, 0.377913<<

In[59]:= PathPlot@pathD

Out[59]=

If we collect the above commands into a program SimpleClosedPath, then we can find such
paths for arbitrary sets of coordinates.

In[60]:= SimpleClosedPath@lis_D := Module@8base, angle, sorted<,
base = RandomChoice@lisD;
angle@a_, b_D := Apply@ArcTan, b - aD;
sorted = Sort@Complement@lis, 8base<D,

angle@base, Ò1D § angle@base, Ò2D &D;
Join@8base<, sorted, 8base<DD

Now we can create large sets of points and find the corresponding simple closed paths.

In[61]:= data = RandomReal@1, 825, 2<D;

418 Graphics and visualization

In[62]:= PathPlot@SimpleClosedPath@dataDD

Out[62]=

In[63]:= data = RandomReal@1, 8100, 2<D;

In[64]:= PathPlot@SimpleClosedPath@dataDD

Out[64]=

Although the algorithm we have developed in this section for computing simple closed paths
seems to work fairly well, there are certain conditions under which it will still fail. The exercises at
the end of this section investigate some of those conditions and walk you through how best to
improve this algorithm.

Points in a polygon
Determining whether a point in the plane lies inside of a polygon is a common task in many
computational areas. It has broad application in robot/computer vision, motion sensing, and
geographic information systems (GIS), and is the basis of many algorithms in computational
geometry. In this section we will solve this problem, first working with an idealized situation
when the polygon is convex. The second implementation will be more general (and more
involved) and solves the problem for nonconvex polygons.

10.4 Examples and applications 419

There are two commonly used algorithms for solving point-in-polygon problems. One, ray
crossing, involves drawing a ray from the point in question horizontally out to infinity and then
asking how many times the ray crosses an edge of the polygon. If the number of crossings is even,
you have entered the polygon as many times as you have exited it and so the point is outside. If
the number of crossings is odd, then the point is inside the polygon. The ray crossing method is
what we will use in the more general nonconvex case below.

Another commonly used algorithm for point-in-polygon problems involves winding num-
bers. This method computes the subtended angle from the point in question to each edge of the
polygon and determines the number of turns the boundary of the polygon makes about the
point. We will not implement this here; the interested reader is directed to O’Rourke (1998) or
Heckbert (1994).

Convex polygons We start with a simplification of this problem, one in which the polygons are
convex. A polygon is convex if any line segment connecting a pair of vertices is completely con-
tained in the polygon; otherwise it is concave.

Figure 10.5. Convex (left) and concave polygons.

To solve the problem, we will need one important fact: given a line determined by two points,
Hx1, y1L, Hx2, y2L, a third point Hx3, y3L is to the left of the other two if the triangle formed by these
three points has positive area, where the signed area of a triangle is given by the following
determinant.

AreaÛ = 1

2

x1 y1 1

x2 y2 1

x3 y3 1

We can check this with a simple example.

In[65]:= pt1 = 80, 0<;
pt2 = 81, 1<;
ptL = 81 ê 2, 1<;
ptR = 81 ê 2, 0<;

420 Graphics and visualization

In[69]:= Graphics@8
Point@8pt1, pt2<D, Line@8pt1, pt2<D,
Red, Point@8ptL, ptR<D

<, Axes Ø AutomaticD

Out[69]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

To construct the correct determinant, we need to embed the points in 3-space by padding them
with 1s.

In[70]:= Map@PadRight@Ò, 3, 1D &, 8pt1, pt2, ptL<D

Out[70]= :80, 0, 1<, 81, 1, 1<, :
1

2
, 1, 1>>

This gives the area of the triangle formed by these three points.

In[71]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=

Det@Map@PadRight@Ò, 3, 1D &, triDD ê 2

In[72]:= TriangleArea@8pt1, pt2, ptL<D

Out[72]=
1

4

Note that this area is positive. Now use ptR instead of ptL.

In[73]:= TriangleArea@8pt1, pt2, ptR<D

Out[73]= -
1

4

This negative quantity indicates that ptR is not to the left of the line formed by pt1 and pt2. The
following predicate returns a value of True if the given point is to the left of the other two.

In[74]:= leftOfQ@line : 88_, _<, 8_, _<<, pt : 8_, _<D :=

TriangleArea@Join@8pt<, lineDD ¥ 0

In[75]:= leftOfQ@8pt1, pt2<, ptLD

Out[75]= True

In[76]:= leftOfQ@8pt1, pt2<, ptRD

Out[76]= False

10.4 Examples and applications 421

Figure 10.6. One point inside and one point outside a polygon.

Now we are ready to answer the question posed at the beginning of this section: given a
convex polygon and a point, how do you determine if that point is inside or outside the polygon?
The basic idea is to take each line segment making up the polygon (its edges) and determine if the
given point is to the left of each segment.

Partitioning that list of vertices of the polygon into pairs will give us the line segments we
need. Note the need to use overlap in the partition so that the last line consists of the last point
paired with the first.

In[77]:= poly = 884, 0<, 87, 0<, 87, 5<, 80, 5<<;
pt1 = 86, 3<; pt2 = 81, 1<;

In[79]:= lines = Partition@poly, 2, 1, 1D

Out[79]= 8884, 0<, 87, 0<<, 887, 0<, 87, 5<<,
887, 5<, 80, 5<<, 880, 5<, 84, 0<<<

Now map leftOfQ with pt2 across these lines.

In[80]:= Map@leftOfQ@Ò, pt2D &, linesD

Out[80]= 8True, True, True, False<

The given point is not to the left of all the lines. In fact, this test fails for the last line, the diagonal
from the upper left to lower right. But the other point, pt1, is to the left of all lines of the poly-
gon. This point is inside.

In[81]:= Map@leftOfQ@Ò, pt1D &, linesD

Out[81]= 8True, True, True, True<

To check that leftOfQ returns True for all lines we take the conjunction of the list of Boolean
values. If one or more are False, logical And will return False.

422 Graphics and visualization

In[82]:= pointInPolygonQ@poly_, pt_D :=

And üü Map@leftOfQ@Ò, ptD &, Partition@poly, 2, 1, 1DD

In[83]:= pointInPolygonQ@poly, pt1D

Out[83]= True

In[84]:= pointInPolygonQ@poly, pt2D

Out[84]= False

Nonconvex polygons The case of nonconvex polygons is a bit more complicated. First, a moment’s
thought should convince you that the algorithm we used for convex polygons will fail for noncon-
vex polygons. The point inside the polygon in Figure 10.7 will give False for at least one of the
edges of the polygon.

This more general scenario can be solved using a ray crossing algorithm. The idea is to draw a
horizontal ray starting at the point in question, extending out to infinity (the restriction of the ray
being horizontal can be relaxed with suitable adjustments to the algorithm). Then the point is in
or out of the polygon if the number of crossings of edges is odd or even, respectively (try it with
the two points and polygon in Figure 10.7).

Figure 10.7. Point-in-polygon problem, nonconvex case.

Below, we give the vertices of the polygon in Figure 10.7 together with the coordinates for the
two points; ptOut is outside and ptIn is inside.

In[85]:= poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<,
82., -1.1<, 82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<<;

ptOut = 84 ê 3, -2 ê 3<; ptIn = 81 ê 3, 1 ê 3<;

10.4 Examples and applications 423

In[87]:= Show@8
Graphicsü8PointSize@.02D, Point@8ptOut, ptIn<D<,
PathPlot@polyD

<, Axes Ø AutomaticD

Out[87]=

-0.5 0.5 1.0 1.5 2.0 2.5

-1.0

-0.5

0.5

1.0

1.5

2.0

As before, here are the edges of the polygon.

In[88]:= edges = Partition@poly, 2, 1, 1D

Out[88]= 888-0.5, 0<, 80.5, -1<<, 880.5, -1<, 81.5, 0<<,
881.5, 0<, 82., -1.1<<, 882., -1.1<, 82.5, 0<<,
882.5, 0<, 81.5, 2<<, 881.5, 2<, 81., 1<<,
881., 1<, 80., 1<<, 880., 1<, 8-0.5, 0<<<

First, we do a little preprocessing. We can omit horizontal edges from consideration as the
imaginary horizontal ray will never cross them.

In[89]:= edges2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D

Out[89]= 888-0.5, 0<, 80.5, -1<<, 880.5, -1<, 81.5, 0<<,
881.5, 0<, 82., -1.1<<, 882., -1.1<, 82.5, 0<<,
882.5, 0<, 81.5, 2<<, 881.5, 2<, 81., 1<<, 880., 1<, 8-0.5, 0<<<

We also delete edges where the edge is entirely above or entirely below the y-coordinate of the
test point 8x, y<.

In[90]:= 8x, y< = ptIn;

edges3 = DeleteCases@edges2, 88x1_, y1_<, 8x2_, y2_<< ê;
HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD

Out[91]= 8882.5, 0<, 81.5, 2<<, 880., 1<, 8-0.5, 0<<<

Next we orient these two line segments so that they extend from smallest y-coordinate to largest.

In[92]:= edges4 = Map@ReverseüSortBy@Ò, LastD &, edges3D

Out[92]= 8881.5, 2<, 82.5, 0<<, 880., 1<, 8-0.5, 0<<<

424 Graphics and visualization

Computing the area of the two triangles formed by these pairs of lines and the target point, we
see that one area is positive and one area is negative.

In[93]:= TriangleArea@Join@Ò, 88x, y<<DD & êü edges4

Out[93]= 8-2., 0.333333<

That is, there are an odd number of positive triangle areas and so we conclude that the target
point is inside the polygon.

In[94]:= Count@%, _?PositiveD

Out[94]= 1

In[95]:= OddQ@Count@
TriangleArea@Join@Ò, 88x, y<<DD & êü edges4, _?PositiveDD

Out[95]= True

Here is a function that puts all these pieces together.

In[96]:= PointInPolygonQ@poly : 88_, _< ..<, pt : 8x_, y_<D :=

Module@8edges, e2, e3, e4<,
edges = Partition@poly, 2, 1, 1D;
e2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D;
e3 = DeleteCases@e2, 88x1_, y1_<, 8x2_, y2_<< ê;

HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD;
e4 = Map@ReverseüSortBy@Ò, LastD &, e3D; OddQ@
Count@TriangleArea@Join@Ò, 8pt<DD & êü e4, _?PositiveDDD

In[97]:= Map@PointInPolygonQ@poly, ÒD &, 8ptIn, ptOut<D

Out[97]= 8True, False<

Let us try this function out with some other examples. First, a set of five points and our con-
cave polygon.

In[98]:= pts = Table@8i, 0<, 8i, -1, 3<D;
Graphics@8PointSize@MediumD, Point@ptsD, LightYellow,

Opacity@.6D, EdgeForm@BlackD, Polygon@polyD<, Axes Ø TrueD

Out[99]=

10.4 Examples and applications 425

The first and last points are outside and the other points are inside the polygon.

In[100]:= Map@PointInPolygonQ@poly, ÒD &, ptsD

Out[100]= 8False, True, True, True, False<

And here is a much larger example, one that will begin to give us a sense of the efficiency of this
algorithm.

In[101]:= pts = RandomReal@8-1, 3<, 87500, 2<D;

In[102]:= Timing@Map@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[102]= 81.16082, Null<

Although this is really quite fast at determining if 7500 points are inside the given polygon, the
computation can be sped up significantly by running in parallel. This is addressed in Section 12.3.

Finally, here is a graphic coloring those points inside the polygon black and those outside light
gray. The key here is to use GatherBy on the set of points, pts. The second argument to
GatherBy is the specification for how points should be gathered. In this case, all those points
that return True for PointInPolygonQ@poly, ÒD & will be in one list returned by
GatherBy and those that fail this test will be in another list. We are calling these two lists in and
out for points that are inside and outside the polygon, respectively.

In[103]:= Graphics@8
8PointSize@TinyD, GatherBy@pts,

PointInPolygonQ@poly, ÒD &D ê. 8in_List, out_List< ß

88Black, Pointüin<, 8LightGray, Pointüout<<<,
Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@MediumD, Point@polyD

<D

Out[103]=

There is one wrinkle in the use of GatherBy to separate all those points that pass the
PointInPolygonQ test from those that do not. If the first point in the list of points checked

426 Graphics and visualization

passes the test, then the first group of points will be gathered by all having passed the test. But if
the first point fails the test, then all such failures will be grouped first and this will incorrectly be
identified as the in list and colored and styled accordingly. Exercise 11 asks you to correct this
problem.

Visualizing standard deviations
In Exercise 8 of Section 10.1, we created a visualization of standard deviation for a parametric
distribution – in that case, a normal distribution. Suppose instead that you have some data and
you are interested in seeing which data points live within one or two standard deviations of the
mean. A box-and-whisker chart gives you an overview of the spread of the data, including the
mean, confidence intervals, the data within various quantiles, and some sense of the outliers, if
any. Figure 10.8 shows a screenshot of a BoxWhiskerChart for some normally distributed data.

In this section we will create a different visualization showing a scatter plot of some two-
dimensional data together with dashed lines bounding the area that is within one (or two) stan-
dard deviations of the mean. The key observation is that we want to separate the data into those
points that are within the range of one or two standard deviations from the mean and format
them accordingly. Points outside the desired range will be formatted differently. In the previous
example, PointInPolygonQ, we used GatherBy to group the two sets of point. We will use a
different approach here; using Pick , we operate on the indices of the points rather than the
coordinates directly.

Figure 10.8. Box-and-whisker chart with descriptive statistics in tooltip.

Let us start with a small dataset as we prototype.

In[104]:= data = RandomVariate@NormalDistribution@0, 1D, 812<D

Out[104]= 80.100989, -0.368311, 0.204546, -1.75602, 0.236539, 0.61813,

-0.301258, 0.250047, 0.015467, -0.917397, 0.558073, 1.3482<

We will use Pick to select the indices of those data points that are within one standard deviation
of the mean. First, here is a list of all indices, from 1 through the length of the data.

10.4 Examples and applications 427

In[105]:= lenrange = Range@Length@dataDD

Out[105]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12<

Here are those indices for which the corresponding data point is within one (n = 1) standard
deviation of the mean. Note that several are outside this threshold.

In[106]:= n = 1;
m = Mean@dataD;
s = StandardDeviation@dataD;
in = Pick@lenrange, Thread@Abs@Hdata - mL ê sD < nDD

Out[109]= 83, 4, 7, 8, 9, 10, 11, 12<

Using Complement , we have the indices of those points that are outside the threshold.

In[110]:= out = Complement@lenrange, inD

Out[110]= 81, 2, 5, 6<

We will use these two sets of indices to create points of the form 9index, value=.

In[111]:= in = Transpose@8in, data@@inDD<D

Out[111]= 883, -0.657262<, 84, -0.767936<,
87, -0.317394<, 88, 0.482023<, 89, -0.415365<,
810, -0.0952418<, 811, 0.436777<, 812, 0.259615<<

In[112]:= out = Transpose@8out, data@@outDD<D

Out[112]= 881, 1.14664<, 82, -0.933961<, 85, -1.03752<, 86, 1.16042<<

Now we use ListPlot to visualize, setting different plot styles for the two sets of data in and
out. We also add horizontal lines at one standard deviation from the mean.

In[113]:= len = Length@dataD;
ListPlot@8in, out<, PlotStyle Ø 8Blue, Pink<, PlotRange Ø All,
Epilog Ø 8Dashed, Line@880, m + n s<, 8len, m + n s<<D,

Line@880, m - n s<, 8len, m - n s<<D<D

Out[114]=
4 6 8 10 12

-1.0

-0.5

0.5

1.0

428 Graphics and visualization

This puts all the pieces together, checking that the data are one-dimensional vectors, inheriting
options from ListPlot, doing some checking to make sure that the partitions of the data are
both nonempty and returning Missing@D if they are.

In[115]:= StandardDeviationPlot@data_?VectorQ,
n_: 1, opts : OptionsPattern@ListPlotDD :=

Module@8in, out, len = Length@dataD, lenrange,
m = Mean@dataD, s = StandardDeviation@dataD<,

lenrange = Range@Length@dataDD;
in = Pick@lenrange, Thread@Abs@Hdata - mL ê sD < nDD;
out = Complement@lenrange, inD;
in = If@Length@inD === 0,

8Missing@D<, Transpose@8in, data@@inDD<DD;
out = If@Length@outD === 0, 8Missing@D<,

Transpose@8out, data@@outDD<DD;
ListPlot@8in, out<,
opts,
PlotStyle Ø 8Blue, Pink<,
PlotRange Ø All,
Epilog Ø 8Dashed,

Line@880, m + n s<, 8len, m + n s<<D,
Line@880, m - n s<, 8len, m - n s<<D<DD

Using a larger dataset with mean 5 and standard deviation 8, here is a plot highlighting all
those points within two standard deviations of the mean.

In[116]:= data = RandomVariate@NormalDistribution@5, 8D, 8600<D;
StandardDeviationPlot@data, 2D

Out[117]=

100 200 300 400 500 600

-20

-10

10

20

30

10.4 Examples and applications 429

Root plotting
In this section we will use our knowledge of built-in graphics functions together with various
programming techniques from previous chapters to write a program that plots a function
together with all its roots in a given interval. Finding all the roots of a real-valued function on a
given interval is made straightforward by NSolve, which can be given bounded regions within
which roots are to be found. A second approach uses the meshing algorithms in Plot to extract
and plot those roots on the horizontal axis.

Let us use a sinc function to prototype our work, as it has numerous roots in the interval below.

In[118]:= Plot@Sinc@xD, 8x, -10, 10<D

Out[118]=

-10 -5 5 10

-0.2

0.2

0.4

0.6

0.8

1.0

The roots are easily computed using NSolve with the domain specification -10 < z < 10 restrict-
ing the solutions to that interval.

In[119]:= soln = NSolve@Sinc@zD ã 0 && -10 < z < 10, zD

Out[119]= 88z Ø -9.42478<, 8z Ø -6.28319<, 8z Ø -3.14159<,
8z Ø 3.14159<, 8z Ø 6.28319<, 8z Ø 9.42478<<

To display these roots as points overlaid on the plot of the original function, we need to create
point objects for each root and then use them in the graphic.

In[120]:= pts = Map@Point@8Ò, 0<D &, z ê. solnD

Out[120]= 8Point@8-9.42478, 0<D, Point@8-6.28319, 0<D,
Point@8-3.14159, 0<D, Point@83.14159, 0<D,
Point@86.28319, 0<D, Point@89.42478, 0<D<

430 Graphics and visualization

In[121]:= Plot@Sinc@zD, 8z, -10, 10<, Epilog Ø 8
Red, PointSize@MediumD, pts<D

Out[121]=

-10 -5 5 10

-0.2

0.2

0.4

0.6

0.8

1.0

Here then is our first implementation, combining the above steps. Note that we have created a
local variable f, which is a pure function that is then used throughout the body of RootPlot.
One other change uses multi-points to give a slightly more efficient graphics structure (see
Section 10.3).

In[122]:= RootPlot@fun_, 8var_, varmin_, varmax_<D :=

Module@8f = Function@z, funD<,
Plot@f@varD, 8var, varmin, varmax<, Epilog Ø 8

Red, PointSize@MediumD, PointüMap@8Ò, 0< &, var ê.
NSolve@f@varD ã 0 && varmin < var < varmax, varDD<DD

In[123]:= RootPlot@Sinc@zD, 8z, -10, 10<D

Out[123]=

-10 -5 5 10

-0.2

0.2

0.4

0.6

0.8

1.0

10.4 Examples and applications 431

Let us try some more ambitious computations.

In[124]:= RootPlotBz SinBz + 2 Sin@zDF, 8z, -5, 10<F

Out[124]=
-4 -2 2 4 6 8 10

-4

-2

2

In[125]:= RootPlotASin@2 xD + SinA3 x1.5E + SinA5 x1.7E, 8x, 0, 22<E

Out[125]=
5 10 15 20

-3

-2

-1

1

2

3

For functions with many roots on the given interval, the large points might obscure other fea-
tures of the graphic as seen in the plot above. Also, in the first example above, the default plotting
range missed several key features of the function. It would be ideal if we could modify these plots
as needed. Before we add options to RootPlot, note that there are two built-in functions here
that can take options, Plot and NSolve. And we could also add some directives and options to
the graphics primitives that are part of the Epilog.

The key to passing the options to the appropriate function inside RootPlot is to use
FilterRules . So first we set up RootPlot to inherit the options of both NSolve and Plot .

In[126]:= ClearAll@RootPlotD

In[127]:= Options@RootPlotD = Join@Options@NSolveD, Options@PlotDD;
RandomSample@Options@RootPlotD, 8D

Out[128]= 8MaxRecursion Ø Automatic, ContentSelectable Ø Automatic,
Filling Ø None, Evaluated Ø Automatic,
PlotRangePadding Ø Automatic, ImageSizeRaw Ø Automatic,
MeshShading Ø None, Ticks Ø Automatic<

432 Graphics and visualization

Next we set up the argument structure to accept options by putting OptionsPattern@D
immediately following the required arguments and giving the set of options a name, opts. Note
the need to put the optional argument placeholder opts before any options that are hard-coded,
in this case, Epilog. That way you can override any hard-coded option as Mathematica only pays
attention to the first of multiple instances of an option.

The syntax for extracting the options for a particular function, say Plot , is given below; but
remember that Plot has the HoldAll attribute and so you need to wrap FilterRules in
Evaluate to force the evaluation here.

This puts all the pieces together.

In[129]:= RootPlot@fun_, 8var_, varmin_, varmax_<,
opts : OptionsPattern@DD := Module@8f = Function@z, funD<,
Plot@f@varD, 8var, varmin, varmax<,
Evaluate@FilterRules@8opts<, Options@PlotDDD,
Epilog Ø 8

Red, PointSize@MediumD, PointüMap@8Ò, 0< &,
var ê. NSolve@f@varD ã 0 && varmin < var < varmax,

var, FilterRules@8opts<, Options@NSolveDDDD
<

D
D

In[130]:= RootPlotBz SinBz + 2 Sin@zDF, 8z, -4, 10<, PlotRange Ø AllF

Out[130]=
-4 -2 2 4 6 8 10

-6

-4

-2

2

4

6

10.4 Examples and applications 433

In[131]:= RootPlotASin@2 xD + SinA3 x3ê2E + SinA5 x3ê2E, 8x, 0, 18<,

WorkingPrecision Ø 24, GridLines Ø AutomaticE

Out[131]=
5 10 15

-2

-1

1

2

There is certainly much more we could do to improve this function, such as providing options
to modify the style of the points. But instead, we will turn to a different approach that takes
advantage of much of the built-in machinery in the plotting functions. Our second implementa-
tion will make use of Mesh and MeshFunctions as these options do a lot of computational
work that we can harness for our purposes here. As a side note, it will also help to avoid problems
with certain analytic functions:

In[132]:= TimeConstrained@
RootPlot@RiemannSiegelZ@zD, 8z, 1000, 1100<D,
15D

Out[132]= $Aborted

The key observation is: setting Mesh to 880.0<< creates only mesh points at height 0.0, that is,
on the horizontal axis. MeshFunctions should have a value that places the mesh points on the
curve.

In[133]:= Plot@Sinc@zD, 8z, -10, 10<, Mesh Ø 880.0<<,
MeshFunctions Ø 8Sinc@xD ê. x Ø Ò &<,
MeshStyle Ø 8Red, PointSize@MediumD<D

Out[133]=

-10 -5 5 10

-0.2

0.2

0.4

0.6

0.8

1.0

434 Graphics and visualization

Here then is our second implementation of RootPlot. First we set the RootPlot options to
inherit all those from Plot .

In[134]:= ClearAll@RootPlotD

In[135]:= Options@RootPlotD = Options@PlotD;

Using OptionsPattern after the required arguments says that the argument structure of
RootPlot may include options following the required arguments. The set of options is given a
name, opts, and used inside of Plot where we want any optional arguments to be. As noted
previously, it is important to put opts before any explicitly given options as Mathematica will
only honor the first occurrence of an option if it occurs more than once.

In[136]:= RootPlot@fun_, 8var_, varmin_, varmax_<,
opts : OptionsPattern@DD := Module@8f = fun<,
Plot@f, 8var, varmin, varmax<,
opts,
Mesh Ø 880<<, MeshFunctions Ø 8f ê. var Ø Ò &<,
MeshStyle Ø 8Red, PointSize@MediumD<DD

Let us now exercise some of the options. Note in this example that the adaptive routines built
into the Plot function are quite efficient, especially compared with the difficulty that NSolve
had with this particular function.

In[137]:= RootPlot@RiemannSiegelZ@zD, 8z, 1000, 1100<,
PlotStyle Ø Gray,
MeshStyle Ø 8Pink, PointSize@.015D<D êê Timing

Out[137]= :0.72826,
1020 1040 1060 1080 1100

-5

5

10

>

10.4 Examples and applications 435

In[138]:= RootPlotBz SinBz + 2 Sin@zDF, 8z, -4, 20<,

PlotRange Ø All,
MeshStyle Ø Directive@Opacity@0.5D, PointSize@MediumDD,

GridLines Ø AutomaticF

Out[138]=

Exercise 9 asks you to use Mesh in a manner similar to how we used it here in RootPlot but
to find and display curves of intersection for two surfaces in 3-space.

Trend plots
Trend plots provide a visual representation of trends in data. They are used throughout the
financial world to give a quick visual indication of the magnitude of growth or loss over a speci-
fied time period. For example, a simple ten-day moving average shows a smoothed trend line.

In[139]:= TradingChart@8"AAPL", DatePlus@-180D<,
8FinancialIndicator@"SimpleMovingAverage", 10D<D

Out[139]=

550

600

650

700

May Jun Jul Aug Sep Oct No

Or you could use a linear regression model for the trend lines where the standard error of the fit
is allowed to vary �5%. In this example the trend line ranges over the past ten time periods (days).

436 Graphics and visualization

In[140]:= TradingChart@8"AAPL", DatePlus@-180D<,
8FinancialIndicator@"LinearRegressionTrendlines", 10D<D

Out[140]=

550

600

650

700

May Jun Jul Aug Sep Oct No

In this section we will develop a different visualization that overlays trend lines on a plot of
time-series data (Figure 10.9). Our trend lines will show user-specified growth rates
8r1, r2, …, rn< measured from some starting value and projecting out for the time period
covered by the data.

Figure 10.9. Trend plot of financial data over 180-day time period.

Augê11 Sepê11 Octê11 Novê11 Decê11 Janê12
320

340

360

380

400

420

440

460

5.%

15.%

-5.%

-15.%

AAPL: past 180 days

In addition to giving the time-series data and the rates to be displayed, the user should have a
mechanism to supply options to adjust the plot range and modify style and formatting informa-
tion. We will use DateListPlot as our base function and modify it accordingly for our needs
in this visualization.

Let us start with some data we can use to start prototyping.

In[141]:= data = FinancialData@"SP500",
8"August 30 2011", "December 30 2011"<D;

10.4 Examples and applications 437

In[142]:= Length@dataD

Out[142]= 86

In[143]:= DateListPlot@dataD

Out[143]=

Sep Oct Nov Dec Jan

1100

1150

1200

1250

To construct the trend lines, we will essentially make lines of a given slope/growth rate starting at
the first point in the dataset.

In[144]:= pt1 = First@dataD

Out[144]= 882011, 8, 30<, 1212.92<

The following rule constructs a line starting at this point with a growth rate of 5%. Note that we
are attaching this new value to the date given by the last point in our dataset. This way we are
keeping our data in a form that can continue to be used by DateListPlot which expects data
of the form 9date, value=.

In[145]:= pt2 = Last@dataD ê.
8date_List, val_?NumberQ< ß 8date, 1.05 pt1@@2DD<

Out[145]= 882011, 12, 30<, 1273.57<

Given a set of time-series data and a growth rate r, here is a utility function to create a line starting
at the first point in the data and growing at a rate r.

In[146]:= tline@data_, r_D := 8Dashed, Gray,

Line@8First@dataD, Last@dataD ê. 8date_List, val_?NumberQ< ß

8date, H1 + r L data@@1, 2DD<<D<

The trend lines at growth rates of ±5%, ±10% are given as part of Epilog to DateListPlot. In
this example, we had to tinker manually with the plot range values in order for the trend lines
and data all to be included in the plot properly. We will try to automate some of that later.

438 Graphics and visualization

In[147]:= DateListPlot@data, Joined Ø True,
Epilog ß 8

tline@data, 0.05D, tline@data, 0.10D,
tline@data, -0.05D, tline@data, -0.10D

<, PlotRange Ø 81080, 1340<D

Out[147]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

We can simplify the tline part of this code by noting that each call to tline uses data and
a different rate. This is a good candidate for Map.

In[148]:= DateListPlot@data, Joined Ø True,
Epilog ß Map@tline@data, ÒD &, 8-0.05, -0.10, 0.05, 0.10<D,
PlotRange Ø 81080, 1340<D

Out[148]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

We now have all the pieces to start putting together our function, TrendPlot. It will inherit
the options from DateListPlot and take two required arguments: the time-series data and a
list of growth rates. We have added the FrameTicks option here with some values that will
suppress ticks on the top and right of the frame. Our plan is to add a custom tick specification to
the right-hand side of the frame giving the rates of the trend lines.

In[149]:= Options@TrendPlotD = Options@DateListPlotD;

10.4 Examples and applications 439

In[150]:= TrendPlot@data_, rates_List, opts : OptionsPattern@DD :=

Module@8tline<,
tline@r_D := 8Dashed, Gray,

Line@8First@dataD, Last@dataD ê.
8d_List, val_?NumberQ< ß 8d, H1 + r L data@@1, 2DD<<D<;

DateListPlot@data, Joined Ø True,
FrameTicks Ø 88Automatic, None<, 8Automatic, None<<,
Epilog ß Map@tline, ratesD, optsDD

In[151]:= TrendPlot@data, 80.05, 0.10, -0.05, -0.10<,
PlotRange Ø 81080, 1340<D

Out[151]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

The tick specification that we will use for the right-hand side of the plot will display the rates next
to their corresponding trend line. The custom tick specification is of the form 9value, label=,

where value gives the location on the vertical axis and label is a string that will display the rate. The
MapThread code below is a bit cryptic, but essentially what it is doing is taking a rate (a number
between -1 and 1) and multiplying by that initial value to get the location. The second argument
is slotted into a string using StringForm .

In[152]:= rates = 80.05, 0.10, -0.05, -0.10<;

In[153]:= init = data@@1, 2DD

Out[153]= 1212.92

In[154]:= MapThread@8H1 + Ò1L init, StringForm@" `1`%", Ò2D< &,
8rates, 100 rates<D

Out[154]= 881273.57, 5.`%<, 81334.21, 10.`%<,
81152.27, -5.%<, 81091.63, -10.%<<

Putting these pieces together, we have this updated version of TrendPlot.

In[155]:= ClearAll@TrendPlotD;

In[156]:= Options@TrendPlotD = Options@DateListPlotD;

440 Graphics and visualization

In[157]:= TrendPlot@data_, rates_List, opts : OptionsPattern@DD :=

Module@8tLine, rtTicks, init = data@@1, 2DD<,

tLine@r_D := 8Dashed, Gray,

Line@8First@dataD, Last@dataD ê.
8d_List, val_?NumberQ< ß 8d, H1 + r L init<<D<;

rtTicks = MapThread@8H1 + ÒL init, StringForm@" `1`%", Ò2D< &,
8rates, 100 rates<D;

DateListPlot@data, Joined Ø True,
Epilog ß Map@tLine, ratesD, opts,
FrameTicks Ø 88Automatic, rtTicks<, 8Automatic, None<<D

D

In[158]:= TrendPlot@data, rates, PlotRange Ø 81080, 1340<D

Out[158]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

5.%

10.%

-5.%

-10.%

Finally, let us add several more features: the option TrendlineStyle gives the user the
chance to modify the style of the trend lines themselves, somewhat similar to PlotStyle for
many visualization functions. Also we add usage messages for the function TrendPlot as well
as its new option TrendlineStyle.

In[159]:= ClearAll@TrendPlotD
TrendPlot::usage =

"TrendPlot@data,8r1,r2,…<D plots data with
trend lines showing growth rates over time.";

In[161]:= TrendlineStyle::usage =
"TrendlineStyle is an option for TrendPlot that

specifies the style of the trend lines.";

In[162]:= Options@TrendPlotD =
Join@8TrendlineStyle Ø Automatic<, Options@DateListPlotDD;

10.4 Examples and applications 441

In[163]:= TrendPlot@data_, rates_List,

opts : OptionsPattern@DD := Module@
8min, max, tlStyle, tLine, rtTicks, init = data@@1, 2DD<,

8min, max< = 8Min@data@@All, 2DDD, Max@data@@All, 2DDD<;

tlStyle = If@OptionValue@TrendlineStyleD === Automatic,
8Dashed, Gray<, OptionValue@TrendlineStyleDD;

tLine@r_D := Flattenü8tlStyle,
Line@8First@dataD, Last@dataD ê.

8d_List, val_?NumberQ< ß 8d, H1 + r L init<<D<;

rtTicks = MapThread@8H1 + ÒL init, StringForm@" `1`%", Ò2D< &,
8rates, 100 rates<D;

DateListPlot@data, Joined Ø True,
Epilog ß Map@tLine, ratesD,
FilterRules@8opts<, Options@DateListPlotDD,
PlotRange Ø 80.97 min, 1.04 max<,
FrameTicks Ø 88Automatic, rtTicks<, 8Automatic, None<<DD

Let us try out the code together with various options, some of which are options to
DateListPlot and one option specific to TrendPlot.

In[164]:= TrendPlot@data, rates,
PlotStyle Ø 8Thick, Blue<,
TrendlineStyle Ø 8Thick, Dashed, LighterüGray<D

Out[164]=

Sep Oct Nov Dec

1100

1150

1200

1250

1300

5.%

10.%

-5.%

-10.%

The above code contains a very primitive attempt at choosing a sensible plot range. The
exercises ask you to make this a bit more rigorous by incorporating the maximum and minimum
values of the data together with the user-specified rates to find a better plot range.

442 Graphics and visualization

Brownian music
Imagine playing an audio sample at different speeds. Normally you would expect the character of
the resulting sound to be quite different than the original. Speeding up a recording of your voice
makes it sound cartoon-like, and if sped up enough, unintelligible. Slowing down a recording of
the first few bars of Gershwin’s Rhapsody in Blue would make the clarinet solo sound like a rumble.

There are some sounds though that sound roughly the same when played at different speeds.
Benoît Mandelbrot described these sounds as “scaling noises” (Mandelbrot 1982). White noise is
probably the most common example of a scaling noise. If you tuned a radio in between stations,
recorded the noise, and then played the recording at different speeds, you would hear roughly the
same sound, although you would have to adjust the volume to get this effect.

Mandelbrot additionally characterized white noise as having zero autocorrelation. This means
that the fluctuations in such a sound at any moment are completely unrelated to any previous
fluctuations. In this section we will implement an algorithm for composing tunes with zero
autocorrelation. We will then see how to generate tunes that have varying degrees of correlation
among the notes.

A simple “melody” with no correlation can be generated by randomly selecting notes from a
scale. First we generate the frequencies of the 12 semitones from a C major scale. This is just a
chromatic scale beginning with middle C.

In[165]:= cmajor = Table@SoundNote@iD, 8i, 0, 11<D

Out[165]= 8SoundNote@0D, SoundNote@1D, SoundNote@2D, SoundNote@3D,
SoundNote@4D, SoundNote@5D, SoundNote@6D, SoundNote@7D,
SoundNote@8D, SoundNote@9D, SoundNote@10D, SoundNote@11D<

This plays the entire scale.

In[166]:= Sound@cmajorD

Out[166]=

12 s

Here is a list of twenty notes randomly selected from the C major scale.

In[167]:= Sound@RandomChoice@cmajor, 20DD

Out[167]=

20 s

10.4 Examples and applications 443

Going a little further, we can add some rests and randomize the durations of each note. The
symbol None is interpreted by Sound as a rest.

In[168]:= notes = Join@8None<, Range@0, 11DD

Out[168]= 8None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<

In[169]:= durations = Range@1 ê 8, 1, 1 ê 8D

Out[169]= :
1

8
,
1

4
,
3

8
,
1

2
,
5

8
,
3

4
,
7

8
, 1>

In[170]:= MapThread@SoundNote@Ò1, Ò2D &,
8RandomChoice@notes, 8D, RandomChoice@durations, 8D<D

Out[170]= :SoundNoteBNone,
7

8
F, SoundNoteB11,

1

4
F,

SoundNoteB11,
3

4
F, SoundNoteB2,

1

4
F, SoundNoteB11,

5

8
F,

SoundNoteB3,
1

8
F, SoundNoteB1,

1

4
F, SoundNote@10, 1D>

In[171]:= Sound@%D

Out[171]=

4.13 s

Let us turn this into a reusable function that takes the number of notes and the instrument as
arguments.

In[172]:= RandomCompose@n_Integer, instrument_: "Piano"D :=

With@8notes = Join@8None<, Range@0, 11DD,
durations = Range@1 ê 8, 1, 1 ê 8D<,

Sound@8instrument,
MapThread@SoundNote@Ò1, Ò2D &,
8RandomChoice@notes, nD, RandomChoice@durations, nD<D<DD

444 Graphics and visualization

In[173]:= RandomCompose@20, "Vibraphone"D

Out[173]=

11.25 s

A listener would be hard pressed to find a pattern or any autocorrelation in this “tune” and the
music is quite uninteresting as a result. Melodies generated using this scaling are referred to as
1 ê f 0, where the 0 loosely refers to the level of correlation.

We leave as an exercise the writing of more sophisticated 1 ê f 0 melodies, where the likelihood
of a note being chosen obeys a certain probability distribution.

We now move in the other direction and generate melodies that are overly correlated. The
randomness will be applied to the distance between notes, essentially performing a “random
walk” through the C major scale. Music generated in such a way is called Brownian because it
behaves much like the movement of particles suspended in liquid – Brownian motion.

Here is our random walk function, essentially borrowed from Section 13.1. We will limit the
“distance” any step can take to the range -4 to 4.

In[174]:= Accumulate@RandomChoice@Range@-4, 4D, 12DD

Out[174]= 80, 3, 1, -1, -1, -3, -2, 1, 4, 2, 5, 1<

This puts all the pieces together, plus one additional piece to create random durations.

In[175]:= BrownianCompose@steps_Integer, instr_: "Vibraphone"D :=

Module@8walk, durs<,
walk@n_D := Accumulate@RandomChoice@Range@-4, 4D, nDD;
durs = RandomChoice@Range@1 ê 16, 1, 1 ê 16D, 8steps<D;
Soundü
MapThread@SoundNote@Ò1, Ò2, instrD &, 8walk@stepsD, durs<DD

In[176]:= BrownianCompose@18, "Marimba"D

Out[176]=

10 s

10.4 Examples and applications 445

This melody has a different character from the 1 ê f 0 melody produced above. In fact, it is quite
overcorrelated and it is often referred to as 1 ê f 2 music as a result of a computed spectral density.
Although different in character from 1 ê f 0 music, it is just as monotonous. The melody mean-
ders up and down the scale aimlessly without any central theme. The exercises contain a discus-
sion of 1 ê f music (or noise), that is, music that is moderately correlated. 1 ê f noise is quite
widespread in nature and is intimately tied to areas of science that study fractal behavior; see
Casti (1992) or Mandelbrot (1982).

Exercises
1. Create a function ComplexListPlot that plots a list of complex numbers in the complex plane

using ListPlot. Set initial options so that the PlotStyle is red, the PointSize is a little larger
than the default, and the horizontal and vertical axes are labeled “Re” and “Im,” respectively. Set it
up so that options to ComplexListPlot are inherited from ListPlot.

2. Create a function ComplexRootPlot that plots the complex solutions to a polynomial in the
plane. Use your implementation of ComplexListPlot that you developed in the previous
exercise.

3. Modify PathPlot so that it inherits options from Graphics as well as having its own option,
PathClosed, that can take on values of True or False and closes the path accordingly by
appending the first point to the end of the list of coordinate points.

4. Extend the code for ListLinePlot3D so that the rule for multiple datasets incorporates the
options that were used for the single dataset rule in the text.

5. Although the program SimpleClosedPath works well, there are conditions under which it will
occasionally fail. Experiment by repeatedly computing SimpleClosedPath for a set of ten points
until you see the failure. Determine the conditions that must be imposed on the selection of the base
point for the program to work consistently.

6. Modify SimpleClosedPath so that the point with the smallest x-coordinate of the list of data is
chosen as the base point; repeat but with the largest y-coordinate.

7. Another way of finding a simple closed path is to start with any closed path and progressively make
it simpler by finding intersections and changing the path to avoid them. Prove that this process
ends, and that it ends with a closed path. Write a program to implement this procedure and then
compare the paths given by your function with those of SimpleClosedPath given in the text.

8. Following on the framework of the RootPlot example in this section, create a function
ShowWalk@walkD that takes the coordinates of a random walk and plots them in one, two, or three
dimensions, depending upon the structure of the argument walk. For example:

In[1]:= << PwM`RandomWalks`

446 Graphics and visualization

In[2]:= ShowWalk@RandomWalk@500, Dimension Ø 1D,
Frame Ø True, GridLines Ø AutomaticD

Out[2]=

0 100 200 300 400 500

-25

-20

-15

-10

-5

0

5

In[3]:= ShowWalk@RandomWalk@500, Dimension Ø 2D,
Mesh Ø All, MeshStyle Ø Directive@Brown, PointSize@SmallDDD

Out[3]=

-5 5 10

-12

-10

-8

-6

-4

-2

2

In[4]:= ShowWalk@RandomWalk@2500, Dimension Ø 3D,
Background Ø LightGray, BoxRatios Ø 81, 1, 1<D

Out[4]=

9. Use Mesh in a manner similar to its use in the RootPlot function to highlight the intersection of
two surfaces, say sinH2 x - cosH yLL and sinHx - cosH2 yLL. You may need to increase the value of

MaxRecursion to get the sampling just right.

10. Rewrite TrendPlot to compute a more robust plot range, one based on the minimum and
maximum values of the data together with the minimum and maximum user-specified rates.

10.4 Examples and applications 447

11. Modify the graphics code at the end of the PointInPolygonQ example so that GatherBy always
orders the two lists so that the list of points that pass occurs before the list of points that fail the test.

12. Write a function pentatonic that generates 1ë f 2 music choosing notes from a five-tone scale. A

pentatonic scale can be played on a piano by beginning with C¤, and then playing only the black
keys: C¤, EŸ, F¤, AŸ, C¤. The pentatonic scale is common to Chinese, Celtic, and Native American
music.

13. Modify the routine for generating 1ë f 0 music so that frequencies are chosen according to a speci-

fied probability distribution. For example, you might use the following distribution that indicates a
note and its probability of being chosen: C – 5%, C¤ – 5%, D – 5%, EŸ – 10%, E – 10%, F – 10%, F¤ –
10%, G – 10%, AŸ – 10%, A – 10%, BŸ – 5%, B – 5%, C – 5%.

14. Modify the routine for generating 1ë f 0 music so that the durations of the notes obey 1ë f 0 scaling.

15. If you read musical notation, take a musical composition such as one of Bach’s Brandenburg Concertos
and write down a list of the frequency intervals x between successive notes. Then find a function
that interpolates the power spectrum of these frequency intervals and determine if this function is
of the form f HxL = c êx for some constant c. (Hint: To get the power spectrum, you will need to square

the magnitude of the Fourier transform: take Abs@Fourier@…DD2 of your data.) Compute the
power spectra of different types of music using this procedure.

448 Graphics and visualization

11

Dynamic expressions
Manipulating expressions · Control objects · Setter bars · Popup menus · Sliders · Locators ·
Input fields · Control · Viewers · Animating the hypocycloid · Visualizing logical operators ·

Structure of dynamic expressions · Dynamic · DynamicModule · Dynamic tips · Examples and
applications · Creating interfaces for visualizing data · File openers · Dynamic random walks ·

Apollonius’ circle

Up to this point, all the programming we have discussed has involved the creation of expressions
that produce static output. Changing the value of a symbol does not change the value of a previ-
ously computed expression. But you can set things up so that Mathematica automatically updates
symbols and expressions throughout your notebooks. This is done through a symbolic dynamic
language. At its heart is the Dynamic construct that is used to update an arbitrary expression
essentially in real time. This primitive dynamic building block, together with numerous control
objects, provides a dynamic language that you can use to construct arbitrary dynamic expres-
sions. And, like the graphics language, high-level functions are available that provide a clean and
simple interface to many of these dynamic features.

We start by giving a brief overview of several top-level functions such as Manipulate and
Animate that are designed to make it easy for you to create and control dynamic processes.
Very little programming is needed to get started with these objects. But to go further, we will look
at the underlying primitive objects, Dynamic and DynamicModule, to get a better understand-
ing of this dynamic language and how you can use it to create your own interactive and dynamic
interfaces.

11.1 Manipulating expressions
The Table function evaluates its argument over the range of values specified by its iterator list; it
returns a static list of values.

In[1]:= TableAi2, 8i, 1, 100, 2<E

Out[1]= 81, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625,
729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025,
2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969,
4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561,
6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801<

Manipulate , using the same syntax as Table, displays its output dynamically.

In[2]:= ManipulateAi2, 8i, 1, 100, 2<E

Out[2]=
i

1

Manipulate automatically creates a user interface to display the output together with controls
such as sliders to dynamically change the value of the parameter i. As you move the slider with
your mouse, the value of i changes as does the value of the output expression i2.
Animate creates a similar interface as Manipulate but provides less control over the details

of the interaction. For example, this animates the function sinc Hb xL as b varies from 1 to 5.

In[3]:= Animate@
Plot@Sinc@b xD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
8b, 1, 5<D

Out[3]=

b

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

In fact, Animate just creates a Manipulate object that displays a running animation when you
evaluate the Animate expression. Both functions provide similar display, layout, and manage-
ment of the output but Manipulate gives a bit more flexibility and control of several details.
For our purposes here, we will mostly use Manipulate for the remainder of this chapter.

To begin expanding the kinds of things you can do with Manipulate , let us first manipulate
multiple parameters. This is done by adding a new parameter list. In the following example, we
have added a new parameter c that essentially gives a phase shift.

450 Dynamic expressions

In[4]:= Manipulate@
Plot@Sinc@b x + cD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
8b, 1, 5<,
8c, -2 p, 2 p<D

Out[4]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

By default, the initial value of the parameter is given by the first value following the parameter
itself in the parameter list. So, for the parameter list 8b, 1, 5<, the value 1 is the starting value
for b; and for the second parameter list, -2 p is the starting value for c.

You can give different starting values by modifying the parameter list. For example, the follow-
ing specifies that b should start at 3 while taking values between 1 and 5. Similarly, c is set to start
at 0 below.

In[5]:= Manipulate@
Plot@Sinc@b x + cD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
88b, 3<, 1, 5<,
88c, 0<, -2 p, 2 p<D

Out[5]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

One more useful variation is to label the control for each parameter using a different expres-
sion than the symbol itself. The syntax for this is: 99param, init, label=, min, max=, where label

typically is a descriptive string, but can be any expression. For example, we have pasted an arbi-
trary graphic for the label for c below.

11.1 Manipulating expressions 451

In[6]:= ManipulateB

Plot@Sinc@b x + cD, 8x, -2 p, 2 p<, PlotRange Ø 1D,
88b, 3, "Frequency"<, 1, 5<,

::c, 0, >, -2 p, 2 p>F

Out[6]=

Frequency

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

The basic idea behind the creation of these dynamic interfaces is to take some static output or
visualization and to make it dynamic by adding a parameter that you can change using an inter-
face element such as a slider. The next three sections introduce different control objects such as
pulldown menus, locators, and viewers. Following that we combine several of the programming
principles developed elsewhere in this book to create two dynamic interfaces: a dynamic Venn
diagram to visualize expressions in propositional logic and also a reworking of the hypocycloid
code developed in Section 10.1 to animate the sketching out of the curve.

Control objects
The objects created above with Animate and Manipulate all used sliders to control the
parameters that were being manipulated. The slider is a convenient and easy-to-use control
object that should be familiar to most computer users. But other controls are commonly used for
various purposes: checkboxes to toggle values on and off, pulldown menus to select from a list of
values, two-dimensional sliders to manipulate two parameters at once, input fields to enter
expressions from the keyboard, and much more. In this section we will introduce some of these
control objects. A complete listing and links to documentation can be found in the guide page on
Control Objects (WMDC).

Setter bars and popup menus In the previous examples the parameters were controlled by a slider.
Moving the slider changed the value of the parameter and any expression dependent upon that
parameter inside the Manipulate . But sometimes you want to choose values for your parame-
ter from a list of discrete values. A setter bar is a convenient control object for this. There are two

452 Dynamic expressions

ways of specifying the setter bar as the controller. One way is to use a different syntax for the
parameter list. Specifically, something of the form 9param, 9val1, val2, …, valn== will cause

Manipulate to automatically use a setter bar instead of a slider.

In[7]:= Manipulate@
Plot@f@xD, 8x, 0, 2 p<D,
8f, 8Sin, Cos, Tan<<D

Out[7]=

f Sin Cos Tan

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Alternatively, you can explicitly set the ControlType inside the parameter list. Here we over-
ride the default specified by the syntax of the parameter list and explicitly specify that a
PopupMenu should be used instead.

In[8]:= Manipulate@
Plot@f@xD, 8x, 0, 2 p<D,
8f, 8Sin, Cos, Tan<, ControlType Ø PopupMenu<D

Out[8]=

f Sin

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Two-dimensional sliders When two different parameters need to be controlled simultaneously, a
two-dimensional slider, Slider2D, can be used. The syntax for this control object is
8param, 8x1, y1<, 8x2, y2<<. where 8x1, y1< are the smallest x and y values that the parame-
ter can take on and 8x2, y2< are the maximum values.

In the following example, the parameter center is controlled by a two-dimensional slider
because the parameter list is of the form that generates a Slider2D control object. The value of
the center parameter is a list of two numbers that are passed dynamically to the first argument,

11.1 Manipulating expressions 453

the center, of the larger, red disk. As you move the slider, the vertical and horizontal values
change as does the location of the red disk in the output.

In[9]:= Manipulate@
Graphics@8Opacity@.5D,

8Red, Disk@center, 1.5D<,
8Blue, Disk@81.5, 0<, 1D<

<, PlotRange Ø 88-3, 3<, 8-3, 2<<D,
8center, 8-1, -1<, 82, 2<<D

Out[9]=

center

The following graphic contains four fixed control points, one dynamic point controlled by the
slider, and a Bézier curve determined by these points. Moving the slider horizontally or vertically
changes the x- or y-coordinate of the dynamic point pt. This parameter has a default starting
value of 8-3, -1<, while it can range over the values 8-3, -3< to 82, 2<.

In[10]:= Manipulate@
Graphics@8

BezierCurve@Join@8pt<, controlPtsDD,
Dashed, Line@Join@8pt<, controlPtsDD,
Red, Point@controlPtsD, PointSize@LargeD,
Blue, Point@ptD<,

PlotRange Ø 3.1, ImageSize Ø SmallD,
88pt, 8-3, -1<<, 8-3, -3<, 82, 2<<,
Initialization ß
8controlPts = 88-2, 1<, 80, -1<, 81, 1<, 82, 0<<<D

454 Dynamic expressions

Out[10]=

pt

We have used an Initialization option to Manipulate in which the controlPts are
defined. This option provides a way for you to include any needed definitions with the interface
itself. This is particularly useful if you send your notebook to a colleague or student and you want
the interface to be self-contained; in other words, the user can work with it without having to
search for and evaluate any dependent definitions, such as controlPts, prior to using the
interface.

Locators In the examples above involving 2D sliders, it would be much more convenient to be
able to grab and manipulate objects in the graphic scene directly rather than using an intermedi-
ary like the Slider2D control object. This is what locators are for – they give you direct control
over some object in the dynamic output.

For example, here is a static graphic: three points wrapped in Polygon , that is, a triangle.

In[11]:= Graphics@8EdgeForm@BlackD,
LightGray, Polygon@880, 0<, 82, 0<, 81, 1<<D<D

Out[11]=

You could make one of the points dynamic with the Slider2D control but instead we will use
the Locator control object to manipulate the point directly. In fact, one of the advantages of
locators is that you can have as many of them as you wish. So let us turn all the vertices of this
polygon into locators.

11.1 Manipulating expressions 455

In[12]:= Manipulate@
Graphics@8EdgeForm@BlackD, LightGray, Polygon@ptsD<D,
88pts, 880, 0<, 82, 0<, 81, 1<<<, Locator<D

Out[12]=

After moving some of the vertices around with your mouse, here is how the graphic might look.

New locators can be added by clicking your mouse; this requires setting the option
LocatorAutoCreate . Wherever you click, a new locator will be created in that position and
added to the list of existing locators.

In[13]:= Manipulate@
Graphics@8EdgeForm@BlackD, LightGray, Polygon@ptsD<D,
88pts, 880, 0<, 82, 0<, 81, 1<<<,
Locator, LocatorAutoCreate Ø True<D

Out[13]=

Returning to the example of the Bézier curve from the previous section, here we turn all the
control points into locators.

456 Dynamic expressions

In[14]:= Manipulate@
Graphics@8

8Thick, BezierCurve@controlPtsD<,
8Dashed, Line@controlPtsD, Point@controlPtsD<

<D,
88controlPts, 88-2, 1<, 80, -1<, 81, 1<, 82, 0<<<, Locator<D

Out[14]=

InputField In all the examples up to this point, the parameter was controlled with a mouse action:
pulldown menus, sliders, locators, and so on. If instead, you need to interact with the dynamic
object through the keyboard, then you need to use the InputField control object.

The following example uses three parameters: f, xmin, and xmax. All are InputField
controls. To change the value of any one, type in the input field and press Enter to evaluate with
the new values.

In[15]:= Manipulate@Plot@f@xD, 8x, xmin, xmax<D,
8f, Sin<, 8xmin, 0<, 8xmax, 2 p<, ControlType Ø InputFieldD

Out[15]=

f Sin

xmin 0

xmax 2 p

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Let us try something a bit more ambitious – a dynamic table of weather information, one in
which a user types in a city name to get the information for that city. Start by creating a static grid
with the meteorological information. We have added several options to Grid to format the
output.

11.1 Manipulating expressions 457

In[16]:= conditions =
8"Elevation", "Humidity", "Pressure", "StationName",
"Temperature", "WindChill", "WindDirection", "WindSpeed"<;

In[17]:= Grid@
Map@8Ò, WeatherData@"Chicago", ÒD

WeatherData@"Chicago", Ò, "Units"D< &, conditionsD ê.
_Missing ß "", Frame Ø All, Alignment Ø Left,

Background Ø LightYellowD

Out[17]=

Elevation 190. Meters

Humidity 0.7

Pressure 1019.64 Millibars

StationName KMDW

Temperature 2. DegreesCelsius

WindChill 14.37 DegreesCelsius

WindDirection Degrees

WindSpeed 0.

Finally, instead of the static value "Chicago" we use a parameter City, giving it an initial value
Copenhagen; also set ControlType Ø InputField.

In[18]:= Manipulate@
Grid@Map@8Ò1, WeatherData@ToString@CityD, ÒD WeatherData@

ToString@CityD, Ò, "Units"D< &, conditionsD ê.
_Missing ß "", Frame Ø All, Alignment Ø Left,

Background Ø LightYellowD, 8City, Copenhagen<,
ControlType Ø InputFieldD

Out[18]=

City Copenhagen

Elevation 5. Meters

Humidity 0.871

Pressure 1008 Millibars

StationName EKCH

Temperature 1. DegreesCelsius

WindChill -3.62 DegreesCelsius

WindDirection 80 Degrees

WindSpeed 17.7 KilometersPerHour

In this particular example, it was not necessary to explicitly specify the ControlType as the
syntax of the parameter list would cause Manipulate to automatically use an input field as the
controller.

458 Dynamic expressions

Control wrapper
The control objects that we have looked at so far were all specified by the parameter syntax or by
explicitly using ControlType . You can get greater control (pardon the pun) over these objects
by using the Control wrapper. Hence, the following two expressions are equivalent.

In[19]:= Manipulate@
Plot@Sin@b Ht - cLD, 8t, -2 p, 2 p<D,
88b, 2<, 1, 8<,
88c, 4<, 1, 8<

D

Out[19]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

In[20]:= Manipulate@
Plot@Sin@b Ht - cLD, 8t, -2 p, 2 p<D,
Control@88b, 2<, 1, 8<D,
Control@88c, 4<, 1, 8<D

D

Out[20]=

b

c

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

The advantage of using the Control wrapper is that it can give you greater flexibility in the
placement and formatting of your dynamic interfaces. For example, the following puts the
controls inside a Grid so that we can arrange them precisely how we want. The labels "freq"
and "phase" make up one row of the grid, while the controls for the parameters b and c make

11.1 Manipulating expressions 459

up the next row of the grid. Within each Control , we have used ControlType to specify a
VerticalSlider rather than the default horizontal slider. Lastly, ControlPlacement is
used to put the controls on the left-hand side of the pane.

In[21]:= Manipulate@Plot@Sin@b Ht - cLD, 8t, -2 p, 2 p<, PlotRange Ø 1D,
Grid@88"freq", "phase"<,

8Control@88b, 2, Null<, 1, 8, VerticalSlider<D,
Control@88c, 4, Null<, 1, 8, VerticalSlider<D<

<D, ControlPlacement Ø LeftD

Out[21]=

freq phase

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Viewers
In addition to Animate and Manipulate many other functions are available for dynamic
interaction using your mouse or other pointing devices to control the changing parameters. In
this section we will look at various viewers that give you the ability to display different output by
clicking a button (or tab).

For example, the following TabView contains a list of three expressions. Clicking the tabs
causes the corresponding expression to be evaluated and displayed in the TabView pane.

In[22]:= TabViewA9231 - 1, PrimeQA231 - 1E, BaseFormA231 - 1, 2E=E

Out[22]=
2147483647

1 2 3

Because TabView does not have any Hold attributes, its arguments are evaluated first, before
being passed up to TabView itself. You can see this by repeatedly clicking any of the tabs below.
The random numbers are generated when the TabView itself is first evaluated.

In[23]:= TabView@8RandomInteger@D, RandomReal@D, RandomComplex@D<D

Out[23]=
0.844099 + 0.756196 Â

1 2 3

460 Dynamic expressions

In[24]:= Attributes@TabViewD

Out[24]= 8Protected, ReadProtected<

A variation of the syntax for TabView gives labels to the tabs that you can customize with a
string or any arbitrary expression. The syntax is:

 9label1 Ø expr1, label2 Ø expr2, …, labeln Ø exprn=.

In[25]:= TabView@8"sinHxL" Ø Plot@Sin@xD, 8x, 0, 2 p<D,
"sinH2xL" Ø Plot@Sin@2 xD, 8x, 0, 2 p<D<D

Out[25]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL sinH2xL

This is another good candidate for Map.

In[26]:= TabView@Map@TraditionalForm@ÒD Ø Plot@Ò, 8x, 0, 2 p<D &,
8Sin@xD, Sin@2 xD, Sin@3 xD<DD

Out[26]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL sinH2 xL sinH3 xL

In addition to TabView , there are several other viewers with similar characteristics. Their
behavior is suggested by their name: FlipView, MenuView, OpenerView , PopupView, and
SlideView. For example, OpenerView provides a convenient interface for hiding and opening

expressions. The syntax is OpenerViewA9label, expr=E.

11.1 Manipulating expressions 461

In[27]:= OpenerView@
8"Info on OpenerView", "OpenerView@8expr1,expr2<D represents

an object which displays as an opener,

together with expr1 if the opener is closed,

and both expr1 and expr2 if it is open."<D

Out[27]= Info on OpenerView

A second argument set to True will display the opener open, that is, with expr visible.

In[28]:= OpenerView@8"Chapter 11", Column@8"\tSection 11.1",
"\tSection 11.2", "\tSection 11.3"<D<, TrueD

Out[28]= Chapter 11

Section 11.1

Section 11.2

Section 11.3

In Section 11.3 we will put together a nontrivial application of OpenerView , an enhancement
of the palette for opening files from a project directory introduced in Section 5.8.

Animating the hypocycloid
The hypocycloid example developed in Section 10.1 is a good candidate for a dynamic visualiza-
tion; the phenomenon it describes involves varying a parameter (the angle q) that causes more
and more of the curve to be sketched out. Below is the static code from that section, incorporated
into one function to generate a plot for given radii and angle q.

Inside the Manipulate interface, we would like a control for each of the two radii. The
syntax of the parameter list 8R, 83, 4, 5, 6, 7, 8<, Setter< specifies R as the parameter
that can take on the values 83, 4, 5, 6, 7, 8< with a control consisting of a setter button to
select the different radii. Also with a little mathematics, you should find that the number of
rotations until the curve closes up is given by 2 p Denominator@HR - rL ê rD, although you
may need to be careful if R ê r is irrational as the curve will never close up in that case!

462 Dynamic expressions

In[29]:= HypocycloidPlot@R_, r_, q_D := ModuleB8hypocycloid, center<,

hypocycloid@8a_, b_<, t_D := :Ha - bL Cos@tD + b CosB
t Ha - bL

b
F,

Ha - bL Sin@tD - b SinB
t Ha - bL

b
F>;

center@th_, R1_, r2_D := HR1 - r2L 8Cos@thD, Sin@thD<;

Show@8ParametricPlot@hypocycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@88Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.02D, Point@center@q, R, rDD<, 8Thick,
Line@8center@q, R, rD, hypocycloid@8R, r<, qD<D<, 8Red,
PointSize@.02D, Point@hypocycloid@8R, r<, qDD<<D<,

PlotRange Ø All, GridLines Ø AutomaticD

F

In[30]:= HypocycloidPlot@3, 1, 2 p - p ê 3D

Out[30]=

11.1 Manipulating expressions 463

In[31]:= Manipulate@
HypocycloidPlot@R, r, qD,
88q, 1<, 0, 2 p Denominator@HR - rL ê rD<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<D

Out[31]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

It might not be obvious, but there is a small problem: at q = 0 the ParametricPlot starts off
ranging from 0 to 0, which returns an error. It might be easiest to have the animation start just a
little past 0, say at 0.01.

In[32]:= Manipulate@
HypocycloidPlot@R, r, qD,
8q, 0 + 0.01, 2 p Denominator@HR - rL ê rD<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<D

Out[32]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

464 Dynamic expressions

We include the definition of HypocycloidPlot by using the SaveDefinitions option so
that the interface becomes self-contained; alternatively, you could include the entire definition of
HypocycloidPlot as part of the Initialization option to Manipulate . Here then is
our final version of this hypocycloid sketcher.

In[33]:= Manipulate@
HypocycloidPlot@R, r, qD,
8q, 0 + 0.01, 2 p Denominator@HR - rL ê rD<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<,
SaveDefinitions Ø TrueD

Out[33]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

There is one issue that will arise when the radius, r, of the “inner” circle is larger than the radius, R,
of the “outer” circle. In this case, the graphic will bounce around a bit as Mathematica computes a
different plot range for these values. In Exercise 7 you are asked to correct this problem. Exercise
8 asks you to create a similar dynamic interface for epicycloids, curves that are generated by
rolling a smaller circle around the outside of a larger circle.

Visualizing logical operators
In this example we will create a dynamic visualization of the basic logical operators And, Or,
Implies and so on, using two-circle Venn diagrams. First we will create a static image for the
And operator, and then extend this to the other operators in the dynamic interface.

Given their centers, this creates two circles A and B (the default radius for Circle is 1).

In[34]:= c1 = 8-1 ê 2, 0<;
c2 = 81 ê 2, 0<;

11.1 Manipulating expressions 465

In[36]:= Graphics@8Circle@c1D, Circle@c2D,
Text@"A", 8-.5, .75<D, Text@"B", 8.5, .75<D<D

Out[36]=

A B

The region representing A Ï B (that is, “A and B”) consists of all those points common to A and
B. We will display this using RegionPlot . First we describe the regions as inequalities that can
be used by RegionPlot .

In[37]:= eqns = ApplyAHÒ1 + xL2 + HÒ2 + yL2 < 1 &, 8c1, c2<, 81<E

Out[37]= : -
1

2
+ x

2

+ y2 < 1,
1

2
+ x

2

+ y2 < 1>

In[38]:= RegionPlot@Apply@And, eqnsD,
8x, -1, 1<, 8y, -1, 1<, Frame Ø FalseD

Out[38]=

Putting the two graphics together, adjusting for plot ranges, and adding some labels, we have the
following:

In[39]:= Show@RegionPlot@Apply@And, eqnsD, 8x, -2, 2<,
8y, -2, 2<, Frame Ø None, PlotLabel Ø A && B,
PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<, AspectRatio Ø Automatic,
MaxRecursion Ø 5D, Graphics@8Circle@c1D, Circle@c2D,
Text@"A", 8-.5, .75<D, Text@"B", 8.5, .75<D<DD

Out[39]=

For the dynamic visualization, we want to be able to use any logical function, not just And. So

466 Dynamic expressions

we replace And everywhere by a parameter, say f, and set the values this parameter can take on
as the list 8And, Or, …<.

In[40]:= Manipulate@Show@
RegionPlot@Apply@f, eqnsD, 8x, -2, 2<,
8y, -2, 2<, Frame Ø None, PlotLabel Ø f@A, BD,
PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<,
AspectRatio Ø Automatic, MaxRecursion Ø 5D,

Graphics@8Circle@8-1 ê 2, 0<D, Circle@81 ê 2, 0<D,
Text@"A", 8-.5, .75<D, Text@"B", 8.5, .75<D<D

D, 88f, Xor, "Logical function"<,
8And, Or, Xor, Implies, Nand, Nor<<D

Out[40]=

Logical function Xor

A B

A � B

See Ruskey and Weston (2005) for an excellent survey of work on Venn diagrams.

Exercises
1. Create a dynamic interface that displays various diagrams and plots of the amino acids. A list of the

amino acids is given by:

In[1]:= ChemicalData@"AminoAcids"D

Out[1]= 8Glycine, LAlanine, LSerine, LProline, LValine, LThreonine,

LCysteine, LIsoleucine, LLeucine, LAsparagine, LAsparticAcid,

LGlutamine, LLysine, LGlutamicAcid, LMethionine, LHistidine,

LPhenylalanine, LArginine, LTyrosine, LTryptophan<

The diagrams and plots that should be included are built into ChemicalData:

In[2]:= StringCases@ChemicalData@"Properties"D,
__ ~~ "Diagram" H__ ~~ "Plot"LD êê Flatten

Out[2]= 8CHColorStructureDiagram, CHStructureDiagram,

ColorStructureDiagram, MoleculePlot,

SpaceFillingMoleculePlot, StructureDiagram<

11.1 Manipulating expressions 467

2. Create a dynamic interface that applies several built-in effects to an image. The effects are given by
ImageEffect and include "Charcoal", "Solarization", "GaussianNoise" and many
others. See the documentation for ImageEffect for a complete list.

3. Modify the dynamic Venn diagram created in this section to display a truth table like that developed
in Exercise 9 from Section 5.8. Include the truth table side-by-side with the Venn diagram, like in the
following:

Logical function Xor

A B A�B

T T F

T F T

F T T

F F F

A B

A � B

4. Create a dynamic interface that displays some sample text using two different fonts from your
system’s list of fonts. Set it up so that you can select which two fonts to compare by using a pull-
down menu. The list of fonts on your system is given by the following:

In[3]:= fonts = FE`Evaluate@FEPrivate`GetPopupList@"MenuListFonts"DD;

In[4]:= RandomSample@fonts, 3D

Out[4]= 8Gurmukhi Sangam MN Ø Gurmukhi Sangam MN, Impact Ø Impact,

DTL Albertina TOT Italic Ø DTL Albertina TOT Italic<

5. Take one of the two-dimensional random walk programs developed elsewhere in this book (for
example, Sections 8.1 and 13.1) and create an animation that displays successive steps of the random
walk.

6. Create a plot of sinHqL side-by-side with a circle and a dynamic point that moves along the curve and
the circle as q varies from 0 to 2p.

q

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

468 Dynamic expressions

7. Modify the Manipulate expression that animates the hypocycloid so that the plot range deals
with the situation when the radius of the inner circle is larger than the radius of the outer circle.

8. An epicycloid is a curve that can be generated by tracing out a fixed point on a circle that rolls around
the outside of a second circle. The formula for an epicycloid is quite similar to that for the hypocy-
cloid. The epicycloid is given parametrically by the following:

x = Ha + bL cosHqL - b cosK a+b
b

qO,

y = Ha + bL sinHqL - b sinK a+b
b

qO.

Create a dynamic interface to animate the epicycloid similar to that for the hypocycloid in this
section.

9. In the 1920s and 1930s the artist Marcel Duchamp created what he termed rotoreliefs, spinning
concentric circles (and variants thereof) giving a three-dimensional illusion of depth (Duchamp
1926). Create you own rotoreliefs by starting with several concentric circles of different radii, then
varying their centers around a path given by another circle, and animating.

10. Create a dynamic table that displays the temperature of several cities around the world. Include a
control (pulldown menu or setter bar) to switch the display between Celsius and Fahrenheit.

11. Looking forward to Chapter 13 where we develop a full application for computing and visualizing
random walks, create a dynamic interface that displays random walks, adding controls to select the
number of steps from a pulldown menu, the dimension from a setter bar, and a checkbox to turn on
and off lattice walks.

12. Create a visualization of two-dimensional vector addition. The interface should include either a 2D
slider for each of two vectors in the plane or locators to change the position of each vector; the
display should show the two vectors as well as their vector sum. Extend the solution to three
dimensions. (The solution of this vector arithmetic interface is due to Harry Calkins of Wolfram
Research.)

red vector

blue vector
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

11.1 Manipulating expressions 469

13. Create a dynamic interface to display information about a word drawn from WordData. The
interface should include an input field for the word and use tabs to display either a definition, the
Porter stem, or synonyms (try other word properties in WordData).

11.2 The structure of dynamic expressions
The interactive tools we have looked at in this chapter, Manipulate , TabView , OpenerView ,
and so on, provide a convenient and relatively easy-to-use interface for generating interactive
expressions in Mathematica. But sometimes you will find that you need finer control over the
expressions you are working with or you simply need to work on a more primitive level. This is
quite similar to the situation with graphics in Mathematica. There are dozens of built-in, higher-
level functions such as Plot , DateListPlot, ArrayPlot, and so on that are designed to
handle a wide set of inputs and to return output that has high fidelity and accuracy, and are also
aesthetically attractive. But, as discussed in Section 10.1, primitive objects are also available to
create graphics using basic building blocks known as graphics primitives.

For dynamic interfaces, the primitive elements that are used to construct the higher-level
functions such as Manipulate are Dynamic and DynamicModule. Similarly to graphics, you
can build dynamic interfaces from these primitive elements directly. That is the subject of this
section.

Before going further we should note that discussing dynamic objects in a static book is a bit
problematic. Dynamic objects, as their name suggests, change dynamically and when updated,
their values change wherever they occur. This is quite different from the situation with static
symbols. For this reason, this section is best “read” by evaluating the examples in order in your
own Mathematica notebooks and observing changes to previous computations as subsequent
expressions are evaluated.

Dynamic
Whenever you make an assignment, you are fixing the value of a symbol at the time the defini-
tion is made. For example, the symbol t is given the value 10 here.

In[1]:= t = 10

Out[1]= 10

Whenever you use t, its (static) value will be automatically substituted.

In[2]:= 4 t - 1

Out[2]= 39

Change the value associated with t and all subsequent evaluations will use the new value.

470 Dynamic expressions

In[3]:= t = 5;
4 t - 1

Out[4]= 19

The outputs of previous computations involving t all retain the history, essentially showing you
the value when the assignment was evaluated. The rule, t = 10, is stored in memory by the kernel.
Close the kernel and that rule is no longer known, that is, you will need to reevaluate the rule in a
new session to give the symbol t that value again.

Another kind of output is possible: a dynamic output which is automatically updated to reflect
the current value of the symbol.

In[5]:= t + 1

Out[5]= 6

In[6]:= Dynamic@t + 1D

Out[6]= 1 + Bobby

Change the value of t and any dynamic outputs will change immediately.

In[7]:= t = Bobby

Out[7]= Bobby

The value of the expression t + 1 above is 6, reflecting that the symbol t in that expression is
static: it gets its value from the last assigned value for t, which in this case was 5. But note that the
expression Dynamic@t + 1D has a different value. The dynamic expression has automatically
updated to reflect the current value of its argument. Even though we evaluated t = Bobby later
in the session, it is that value that is used inside of Dynamic .

It is important to note that Dynamic@exprD displays as expr but internally it is represented as a
dynamic object.

In[8]:= Dynamic@3 + wD

Out[8]= 3 + w

In[9]:= InputForm@%D

Out[9]//InputForm=

Dynamic@3 + wD

Any expression can be dynamic. For example, running ImageConvolve with an appropriate
kernel on this image returns a static object. When it was evaluated immediately following the
evaluation of img, it used that current value to perform the operation.

11.2 The structure of dynamic expressions 471

In[10]:= img = ;

In[11]:= ImageConvolve@img, 88-1, 0, 1<, 8-4, 0, 4<, 8-1, 0, 1<<D

Out[11]=

Change the value of img in a subsequent computation and the above expression does not
change, but any dynamic version does.

In[12]:= img = ;

In[13]:= Dynamic@
ImageConvolve@img, 88-1, 0, 1<, 8-12, 0, 12<, 8-1, 0, 1<<DD

Out[13]=

Let us start to build up interactive expressions using this dynamic building block. First, here is
a slider object; by default it moves between values 0 and 1. You can move the slider with your
mouse, but with no argument, it is not connected to anything.

In[14]:= Slider@D

Out[14]=

472 Dynamic expressions

Let us give it a dynamic variable z, and display the value of z to the right of the slider.

In[15]:= 8Slider@Dynamic@zDD, z<

Out[15]= 9 , 0.=

If you move the above slider, you will see that the value of z displayed to the right of the slider is
not updating, it remains at 0. The reason is that the symbol z is not dynamic so it does not update.
To make it dynamic, wrap it in Dynamic .

In[16]:= 8Slider@Dynamic@zDD, Dynamic@zD<

Out[16]= 9 , 0.502=

Now moving this latest slider causes the value of z to update dynamically. As you move the slider
you will notice that the previous slider also moves! This is because it too has a dynamic z as
argument. The plot below will also automatically update as you change the value of z in the slider
above.

In[17]:= Dynamic@Plot@Sin@x + 4 zD, 8x, 0, 2 p<DD

Out[17]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

When creating dynamic plots, be careful not simply to wrap the variable z in Dynamic as this
will not create a dynamic plot.

In[18]:= Plot@Sin@x + 4 Dynamic@zDD, 8x, 0, 2 p<D

Out[18]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

In fact no curve is generated because Plot needs specific values to create the curve. It is the plot
itself that we want to update dynamically, so Plot should be wrapped in Dynamic .

Putting the slider together with the dynamic plot, you can essentially build up a scene much
like Manipulate . Manipulate uses these very objects to construct its interfaces.

11.2 The structure of dynamic expressions 473

In[19]:= Panel@Column@8
Slider@Dynamic@zDD,
Dynamic@Plot@Sin@x + 4 zD, 8x, 0, 2 p<DD

<D
D

Out[19]=

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This use of Dynamic inside of a slider is entirely general and can be applied to any control object,
not just sliders.

In[20]:= 8InputField@Dynamic@varDD, Dynamic@varD<

Out[20]= : var , var>

Normally, Dynamic@exprD only updates when the value of expr changes. You can force
dynamic expressions to update after a fixed interval by using the option UpdateInterval . For
example, this creates a display of the current date and time, updating every second.

In[21]:= Dynamic@DateString@D, UpdateInterval Ø 1D

Out[21]= Sat 1 Dec 2012 15:45:44

DynamicModule
As noted above, having several dynamic instances of a variable in a notebook will cause all of
them to be updated whenever any of them are. For example, as you move one of the sliders
below, the other moves in sync. This is because both sliders are tied to the same global variable, x.

In[22]:= 8Slider@Dynamic@xDD, Slider@Dynamic@xDD<

Out[22]= 9 , =

This behavior might cause problems if a global symbol interferes with a dynamic version of that
symbol inadvertently. Much like Module is used to localize symbols in functions,
DynamicModule is used to localize variables in dynamic interfaces. For example, assigning the

474 Dynamic expressions

global symbol x the value zero affects the two sliders above. Change its value and the sliders will
update accordingly.

In[23]:= x = 0;

On the other hand, the following expression localizes x and initializes it to 0.5. You can still
move the sliders below but changing this local x will have no affect on any global x such as those
in the sliders above.

In[24]:= DynamicModule@8x = 0.5<,
8Slider@Dynamic@xDD, Slider@Dynamic@xDD<

D

Out[24]= 9 , =

Use additional dynamic modules if you want the two local variables to be independent.

In[25]:= 8DynamicModule@8x = 0.25<, Slider@Dynamic@xDDD,
DynamicModule@8x = 0.75<, Slider@Dynamic@xDDD<

Out[25]= 9 , =

In the following example we build a graphics scene consisting of a tube passing through some
points. A slider is displayed that controls the radius of the tube. In this example we have simply
put the graphic and the slider side-by-side by placing them in a list inside the DynamicModule.

In[26]:= pts = Table@8Sin@tD, Cos@tD, t ê 5<, 8t, 0, 20, .25<D;

In[27]:= DynamicModule@8r = 0.1<, 8
Graphics3D@8EdgeForm@D, Red, Tube@pts, Dynamic@rDD<D,
Slider@Dynamic@rD, 80.05, 1<D

<D

Out[27]= : , >

Going a bit further, this puts the graphic in a panel and places a vertical slider to its left. We have
added an Appearance option to the slider to give it a different “thumb.”

11.2 The structure of dynamic expressions 475

In[28]:= DynamicModule@8r = 0.1<,
Panel@
Graphics3D@8EdgeForm@D, Red, Tube@pts, Dynamic@rDD<D,
VerticalSlider@Dynamic@rD,
80.05, 1<, Appearance Ø "RightArrow"D,

LeftD,
Initialization ß
8pts = Table@8Sin@tD, Cos@tD, t ê 5<, 8t, 0, 20, .25<D<D

Out[28]=

One of the advantages of DynamicModule is that it saves state. What this means is that you
can end your Mathematica session, close the notebook, restart Mathematica and reopen the note-
book and any output created with a DynamicModule will be in the same state as when you
closed the notebook. This is because the output of a DynamicModule includes an expression
embedded in the output that is initialized when it is displayed again. That expression includes
values of the local variables created with DynamicModule. Another way of thinking about this
is that global variables are known to (and in a sense, owned by) the kernel; variables created by
DynamicModule, on the other hand, live in the front end.

Let us recreate some of the objects from earlier in this chapter that used the top-level
Manipulate , but instead, we will put them together using these dynamic building blocks. First,
here is the dynamic triangle from Section 11.1. The variable pts is localized inside
DynamicModule and initialized with three points. LocatorPane@pos, exprD is a low-level
object that creates a pane with locators given at the positions specified by pos and a background
given by the expression expr. So, in this example, Dynamic@ptsD gives the (dynamic) locator
positions and Graphics@…D is displayed in the background.

476 Dynamic expressions

In[29]:= DynamicModule@8pts = 88-1, 0<, 81, 0<, 80, 1<<<,
LocatorPane@Dynamic@ptsD, Graphics@8

LightGray, EdgeForm@BlackD, Dynamic@Polygon@ptsDD<DDD

Out[29]=

As another example of the use of LocatorPane , here is a dynamic Bézier curve as defined by
several control points.

In[30]:= DynamicModule@8pts = 880, 0<, 81, 1<, 82, 1<<<,
LocatorPane@Dynamic@ptsD,
Graphics@DynamicüBezierCurve@ptsDDDD

Out[30]=

One very useful thing that can be done with locators is to constrain them to a defined region.
This is done by giving LocatorPane a third argument that defines the constrained area. For
example, this constrains the locator to the square with lower left vertex at 8-1, -1< and upper
right vertex at 81, 1<. The background consists of an ellipse. There is no interaction between the
background and the locator in this example. We have added a rectangle to identify the area in
which the locator is constrained.

In[31]:= LocatorPane@80, 0<, Graphics@8
Circle@80, 0<, 83, 2<D,
EdgeForm@DashedD,
Opacity@.25D, Rectangle@8-1, -1<, 81, 1<D<D,

88-1, -1<, 81, 1<<D

Out[31]=

11.2 The structure of dynamic expressions 477

Dynamic tips
Because dynamic expressions update frequently, such as whenever you move a locator with the
mouse, they can trigger a lot of evaluation during the updates. This can be the main cause of slow
dynamics. In this section we will look at several things to consider to make your dynamic expres-
sions as efficient as possible.

First, think about where you use Dynamic . You might think that you only need to wrap
variables with it, but this may not produce what you want. Consider the following dynamic
integration. Moving the slider you will see that only the value of a updates, not the value of the
entire integral.

In[32]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 80, 1<D,
Integrate@Exp@Dynamic@aD vD, 8v, 0, 1<D

<D

Out[32]= : ,
-1 + ‰0.

0.
>

It is the integration that you want to be dynamic here. So wrap Integrate in Dynamic .

In[33]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 80, 1<D,
Dynamic@Integrate@Exp@a vD, 8v, 0, 1<DD

<D

Out[33]= 9 , 1.=

Similarly for a dynamic plot label.

In[34]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 81, 5<D,
Plot@Sin@Dynamic@aD vD, 8v, 0, 2 p<,
PlotLabel Ø StringForm@"Frequency = `1`", Dynamic@aDDD

<D

Out[34]= : ,

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0
Frequency = a$$

>

Since both the plot and the plot label need to be updated dynamically, it is probably a bit cleaner
to wrap the entire plot in Dynamic .

478 Dynamic expressions

In[35]:= DynamicModule@8a<, 8
Slider@Dynamic@aD, 81, 5<D,
Dynamic@Plot@Sin@a vD, 8v, 0, 2 p<,

PlotLabel Ø StringForm@"Frequency = `1`", aDDD
<D

Out[35]= : ,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
Frequency = 1.

>

This last example might lead you to conclude that it is generally a good idea to wrap larger and
larger expressions in Dynamic . But this can lead to inefficiencies in that the entire plot will
update frequently. For a simple two-dimensional plot such as the sine function above, this is not
too expensive. But for a three-dimensional, high-resolution surface with transparency this
inefficiency might slow things down to an unacceptable level.

The following three-dimensional plot includes an opacity directive, increased adaptive sam-
pling through MaxRecursion, and a dynamic view point, all of which add up to a computation-
ally intensive object that is a bit slow to manipulate.

In[36]:= DynamicModuleA8q = 0<, 9

DynamicüPlot3DA Ix2 + y2M ExpA1 - x2 - y2E, 8x, -p, p<,

8y, -p, p<, PlotStyle Ø 8Purple, Opacity@0.5D<,
Mesh Ø None, MaxRecursion Ø 5,
SphericalRegion Ø True,

ViewPoint Ø RotationTransform@q, 80, 0, 1<D@83, 0, 3<DE,

Slider@Dynamic@qD, 80, 2 p<D=E

Out[36]= : , >

It is not necessary to redraw the entire plot when the viewpoint changes. By wrapping just the
value of the ViewPoint option in Dynamic , the entire plot is not recomputed every time the
viewpoint changes thus making the manipulation with the mouse much quicker.

11.2 The structure of dynamic expressions 479

In[37]:= DynamicModuleA8q = 0<, 9

Plot3DA Ix2 + y2M ExpA1 - x2 - y2E, 8x, -p, p<,

8y, -p, p<, PlotStyle Ø 8Purple, Opacity@0.5D<,
Mesh Ø None, MaxRecursion Ø 5,
SphericalRegion Ø True,
ViewPoint Ø
Dynamic@RotationTransform@q, 80, 0, 1<D@83, 0, 3<DDE,

Slider@Dynamic@qD, 80, 2 p<D=E

Out[37]= : , >

This is not a hard-and-fast rule. There are some situations where you need to be careful about
wrapping expressions in Dynamic . The following does not work because PlotPoints needs
to pass an explicit numeric value to Plot to generate the graphic. Wrapping Dynamic around
an expression causes that expression to remain unevaluated until the front end receives it, typi-
cally when you display it in your notebook. But the kernel is where Plot lives and the kernel is
unable to do the computation to generate the plot at this point.

In[38]:= DynamicModule@8pp = 5<, 8
Plot@Sin@xD, 8x, 0, 2 p<,
PlotPoints Ø Dynamic@ppD, MaxRecursion Ø 0D,

Slider@Dynamic@ppD, 85, 30<D
<D

Out[38]= :
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

, >

The reason the examples above with ViewPoint worked is that ViewPoint is an option that
does its computations in the front end, which is where Dynamic lives.

480 Dynamic expressions

Exercises

1. Display a random word from the dictionary (DictionaryLookup) that changes every second.

2. Create a dynamic interface consisting of a locator constrained to the unit circle.

3. Create a dynamic interface that controls one sphere rotating about another.

11.3 Examples and applications
Creating interfaces for visualizing data
Analyzing and visualizing large sets of data is made easier by interfaces that allow you to quickly
select the data you are interested in and make comparisons. For example, consider trying to
interpret some data that lists energy used by type (coal, natural gas, nuclear, renewables, etc.)
over the years. One large spreadsheet covering say thirty years of such data can be difficult to
parse. An interface in which you can see a time-series plot for any chosen energy source and
compare it with any other would be a very useful visualization of such a large dataset.

In this section, we will import data from the US National Bureau of Economic Research that
gives industrial production by sector from 1790–1915 (Davis 2004). The industrial sectors for this
historical data are: food, textiles, wood/paper, leather, chemicals/fuels, machinery, and metals.
The data uses 1850 as a benchmark, that is, the index for that year is 100.

Let us start by importing the data from the internet, and displaying the first few rows of the
spreadsheet.

In[1]:= data = Import@
"http:êêwww.nber.orgêdataêindustrial-production-indexêip-

sectors.xls", 8"XLS", "Data", 1<D;
Take@data, 3D

Out[2]= 88Year, Food, Textiles, Wood_Paper,

Leather, Chemicals_Fuels, Machinery, Metals<,
81827., 28.6996, 18.4986, 16.7097, 15.8894, 22.221,
28.5287, 22.6592<, 81828., 29.5944, 15.8334,
20.2374, 16.7859, 21.6499, 29.7857, 21.2395<<

The first row consists of column headers which we can use to label the categories that will be
displayed in our interface.

In[3]:= categories = Restüdata@@1DD

Out[3]= 8Food, Textiles, Wood_Paper,

Leather, Chemicals_Fuels, Machinery, Metals<

Our visualization will use DateListPlot, so we need to transform the data into a form suitable

11. 481

for that function. It expects the time-series data in the form 9date, value=. The first two columns

are the year and food sectors. So let us prototype the transformation with just that subset of data.

In[4]:= food = data@@2 ;; -1, 81, 2<DD ê.
8year_, val_< ß 88Roundüyear<, val<;

In[5]:= Take@food, 8D

Out[5]= 8881827<, 28.6996<, 881828<, 29.5944<,
881829<, 26.2247<, 881830<, 32.7878<, 881831<, 33.6961<,
881832<, 31.9668<, 881833<, 34.8419<, 881834<, 33.6196<<

Let’s do the same for textiles, that is, columns 1 and 3.

In[6]:= textiles = data@@2 ;; -1, 81, 3<DD ê.
8year_, val_< ß 88Roundüyear<, val<;

In[7]:= Take@textiles, 8D

Out[7]= 8881827<, 18.4986<, 881828<, 15.8334<,
881829<, 15.3377<, 881830<, 16.1311<, 881831<, 23.0132<,
881832<, 23.1964<, 881833<, 25.2582<, 881834<, 26.4568<<

With just these two sectors, we can try out the syntax for TabView .

In[8]:= TabView@8
"Food" Ø DateListPlot@foodD,
"Textiles" Ø DateListPlot@textilesD

<D

Out[8]=

1840 1860 1880 1900
0

500

1000

1500

Food Textiles

For the full dataset we need to extend these computations to all columns (sectors). Mapping the
rule above across the range of columns 2 through 8 does this.

In[9]:= ipData = Map@data@@2 ;; -1, 81, Ò<DD ê.
8year_, val_< ß 88Roundüyear<, val< &, Range@2, 8DD;

482 Dynamic expressions

TabView is expecting a list of rules of the form label Ø expression. Our labels will come from the
categories list and the expressions will be the plots. Threading across these two lists puts all the
pieces together. We have also added some options to DateListPlot.

In[10]:= allData = MapThread@
Ò1 Ø DateListPlot@Tooltip@Ò2D, 81827<, Joined Ø True,

Mesh Ø All, ImageSize Ø 220, AspectRatio Ø 1 ê 2D &,
8categories, ipData<D;

Here is the rule for the second sector, the textiles.

In[11]:= allData@@2DD

Out[11]= Textiles Ø

Finally, pass allData to TabView and add a frame and a label for the entire interface.

In[12]:= Framed@Labeled@
TabView@allData,
ControlPlacement Ø Left, Background Ø LightGrayD,

"US Industrial Production by Sector H1790-1915L",
Top, LabelStyle Ø Directive@WhiteDD, Background Ø GrayD

Out[12]=

US Industrial Production by Sector H1790-1915L

Food

Textiles

Wood_Paper

Leather

Chemicals_Fuels

Machinery

Metals

It looks like machine-based manufacturing took off in the later half of the nineteenth century
(due to the Industrial Revolution no doubt) and this is reflected in most of these sectors.

11.3 Examples and applications 48

File openers
In Section 5.8 we created a basic palette consisting of buttons that, when clicked, open a file in a
project directory. Let us take that a few steps further and create a palette that has different sec-
tions that can be opened and closed using OpenerView . For our purposes, we will create one
opener for all notebooks in a given directory and another opener for packages. You can organize
your openers in whatever manner is most sensible for your working environment.

The notebooks (.nb) and packages (.m) are located in the following directory:

In[13]:= dir = FileNameJoin@8$BaseDirectory, "Applications", "PwM"<D

Out[13]= êLibraryêMathematicaêApplicationsêPwM

The buttons on the palette are hyperlinks of the form HyperlinkAlabel, urlE. So we need to

create labels and URLs (uniform resource locators) for each file that will be listed in the palette.
First, here are the full pathnames for each of the files. We only display the packages here.

In[14]:= notebooks = FileNames@"*.nb", dirD;
packages = FileNames@"*.m", dirD

Out[15]= 8êLibraryêMathematicaêApplicationsêPwMêCollatz.m,
êLibraryêMathematicaêApplicationsêPwMêCommon.m,
êLibraryêMathematicaêApplicationsêPwMêPrintPrep.m,
êLibraryêMathematicaêApplicationsêPwMêPWM.m,
êLibraryêMathematicaêApplicationsêPwMêRandomWalks.m<

Second, we create the labels using each file’s base name.

In[16]:= nblabels = Map@FileBaseName, notebooksD;
paclabels = Map@FileBaseName, packagesD

Out[17]= 8Collatz, Common, PrintPrep, PWM, RandomWalks<

As before, we need to thread Hyperlink over these two lists. Clicking on any of the links in the
output opens the corresponding file in the front end.

In[18]:= MapThread@Hyperlink@Ò1, Ò2D &, 8paclabels, packages<D

Out[18]= 9Collatz, Common, PrintPrep, PWM, RandomWalks=

Here are the openers for the packages and notebooks. Note, we wrap the links in Column to get a
vertical list rather than the default horizontal arrangement.

In[19]:= OpenerView@8"Packages", Columnü
MapThread@Hyperlink@Ò1, Ò2D &, 8paclabels, packages<D<D

Out[19]= Packages

484 Dynamic expressions

In[20]:= OpenerView@8"Notebooks", Columnü
MapThread@Hyperlink@Ò1, Ò2D &, 8nblabels, notebooks<D<D

Out[20]= Notebooks

Next we put these two openers inside a column and then wrap that in CreatePalette.

In[21]:= CreatePalette@Column@8

OpenerView@8"Notebooks", ColumnüMapThread@
Hyperlink@Ò1, Ò2D &, 8nblabels, notebooks<D<D,

OpenerView@8"Packages", ColumnüMapThread@
Hyperlink@Ò1, Ò2D &, 8paclabels, packages<D<D

<D
D;

Here is a screenshot of the palette just created after having clicked the Packages opener label.

The default settings for CreatePalette, Column, and Hyperlink create a fairly plain palette
so let us add several options to format it nicely.

In[22]:= openerStyles = 8FontSize Ø 12, FontColor Ø White<;
linkStyles = 8FontSize Ø 9, FontColor Ø Red<;

In[24]:= colOpts = 8Background Ø DarkerüGray, Dividers Ø All<;
linkOpts = 8ImageSize Ø 8Automatic, 15<<;
palOpts = 8WindowTitle Ø "File Palette",

WindowElements Ø "MagnificationPopUp"<;

11.3 Examples and applications 485

Here then is the polished palette.

In[27]:= CreatePalette@
Column@8

OpenerView@8Style@"Notebooks", openerStylesD,
ColumnüMapThread@Hyperlink@Style@Ò1, linkStylesD,

Ò2, linkOptsD &, 8nblabels, notebooks<D<D,
OpenerView@8Style@"Packages", openerStylesD,

ColumnüMapThread@Hyperlink@Style@Ò1, linkStylesD,
Ò2, linkOptsD &, 8paclabels, packages<D<D

<, colOptsD,
palOptsD;

Dynamic random walks
The random walk functions that are developed throughout this book are good candidates for
dynamic interfaces allowing you to watch the evolution of a random walk by varying the number
of steps displayed in a graphic. The PwM`RandomWalks package is fully developed in Section
13.4 so we will simply use the main function, RandomWalk, here by loading the package that
accompanies this book.

In[28]:= << PwM`RandomWalks`

The first interface we will create is a basic animation of a two-dimensional lattice walk. To
prevent the graphics frame from bouncing around as Mathematica recomputes the plot range for
each frame, we precompute the walk and find the minimum and maximum values in both the
horizontal and vertical directions. These are xran and yran used below. The rest of the
Manipulate is straightforward including a nested list as the second argument to Manipulate
to generate a pulldown list for values of n, allowing the user to select the size of the random walk.
We use DynamicModule here to initialize and localize the symbols rw, xran, and yran.

486 Dynamic expressions

In[29]:= Manipulate@DynamicModule@8rw, xran, yran<,
rw = RandomWalk@n, Dimension Ø 2, LatticeWalk Ø TrueD;
8xran, yran< = Map@8Min@ÒD, Max@ÒD< &, Transpose@rwDD;
Animate@Graphics@Line@Take@rw, iDD,

PlotRange Ø 8xran, yran<D, 88i, 100<, 2, n, 1<DD,
88n, 500, "total steps"<, 8100, 500, 1500, 2500<<D

Out[29]=

total steps 100 500 1500 2500

i

Another control that can be incorporated with dynamic interfaces is EventHandler. The
“events” that this function works with are mouse or keyboard events, that is, clicks, drags, use of
the up arrow key, and so on. The first argument to EventHandler is typically a dynamic
expression. The second argument identifies the “event” that will trigger an update and an action
that should be performed when that occurs. So, the following displays a random number to high
precision in a frame; when the mouse is clicked while the cursor hovers over that expression, a
new random number will be generated and displayed. The variable rand is initialized in the
DynamicModule.

In[30]:= DynamicModule@8rand = RandomReal@1, WorkingPrecision Ø 20D<,
EventHandler@Framed@Dynamic@randDD, 8"MouseClicked" ß

Hrand = RandomReal@1, WorkingPrecision Ø 20DL<
DD

Out[30]= 0.25563842007137634608

The action that is triggered by an event can be given by any expression. So let us use
EventHandler to create a graphic that displays a new random walk each time the graphic is
clicked; the right-hand side of the rule with MouseClicked is the event that will be triggered
when the mouse is clicked. That event is a reevaluation of the random walk, rw, for 2500 steps.

11.3 Examples and applications 487

In[31]:= DynamicModule@8rw = RandomWalk@2500, LatticeWalk Ø FalseD<,
EventHandler@
Dynamic@Graphics@88Thin, Line@rwD<<DD,
8"MouseClicked" ß

Hrw = RandomWalk@2500, LatticeWalk Ø FalseDL<DD

Out[31]=

Every time you click on the above graphics, a new 2500-step random walk is generated and
displayed.

To add a setter bar for setting the length of the walk as well as a checkbox for lattice/off-lattice
walks, we put the entire object inside of a Manipulate . Fixing the ContentSize forces
Mathematica to fit the graphic inside of a fixed graphics box.

In[32]:= Manipulate@DynamicModule@
8rw = RandomWalk@len, LatticeWalk Ø lwD<, EventHandler@
Dynamic@Graphics@88Thin, Line@rwD<<DD, 8"MouseClicked" ß

Hrw = RandomWalk@len, LatticeWalk Ø lwDL<DD,
8len, 8100, 1000, 10000, 25 000<<,
88lw, False, "Lattice walk"<, 8True, False<<,
ContentSize Ø 8200, 100<D

Out[32]=

len 100 1000 10 000 25 000

Lattice walk

Apollonius’ circle
Our final dynamic example is a demonstration of an ancient bit of geometry. Circles are typically
defined as the set of points some fixed distance (radius) from a given point (the center). Another

488 Dynamic expressions

definition, due to the Greek astronomer Apollonius of Perga (ca. 262 bc – ca. 190 bc), defines a
circle as the locus of points P, such that the ratio of the distances of two fixed points A and B to
point P is a constant, different from one (Figure 11.1).

Figure 11.1. Circle defined as the locus of points such that PA ê PB is a constant.

P

A B

In this section we will create a graphic including the following dynamic elements: a point P, lines
PA and PB, and a display of the ratio of the two distances. Point P will be a locator restricted to a
circle. This restriction is accomplished by using a second argument to Dynamic . Normalize
takes a vector as input and returns a unit vector, thus restricting point P to the unit circle.

Dynamic@ptP, HptP = Normalize@ÒDL &D

The two lines connecting point P to points A and B are dynamic, as is point P itself. Here then is
our initial interface with point P initialized to start at q = 2 p ê 3.

In[33]:= DynamicModuleB

:ptP = :CosB
2 p

3
F, SinB

2 p

3
F>, ptA = :-

3

2
, 0>, ptB = :-

2

3
, 0>>,

LocatorPane@Dynamic@ptP, HptP = Normalize@ÒDL &D, Graphics@
8Gray, Circle@80, 0<, 1D, Line@88-1.75, 0<, 81.5, 0<<D,
Green, PointSize@0.025D, Point@Dynamic@ptPDD,
Blue, Point@ptAD, Dynamic@Line@8ptA, ptP<DD,
Red, Point@ptBD, Dynamic@Line@8ptB, ptP<DD<,

PlotRange Ø 88-1.75, 1.5<, 8-1.1, 1.1<<DDF

Out[33]=

Let us add some text identifying the two fixed points and also a plot label with a dynamic string

11.3 Examples and applications 489

that shows the ratio PA ê PB of the distances.

In[34]:= DynamicModuleB

:ptP = :CosB
2 p

3
F, SinB

2 p

3
F>, ptA = :-

3

2
, 0>, ptB = :-

2

3
, 0>>,

LocatorPane@Dynamic@ptP, HptP = Normalize@Ò1DL &D, Graphics@
8Gray, Circle@80, 0<, 1D, Line@88-1.75, 0<, 81.5, 0<<D,
Green, PointSize@0.025D, Point@Dynamic@ptPDD,
Blue, Point@ptAD, Dynamic@Line@8ptA, ptP<DD,
Text@"A", ptA, 82, -1<D, Red, Point@ptBD,
Dynamic@Line@8ptB, ptP<DD, Text@"B", ptB, 8-3, -1<D<,

PlotRange Ø 88-1.75, 1.5<, 8-1.1, 1.1<<, PlotLabel Ø
Dynamic@StringForm@"Ratio = `1`", EuclideanDistance@

ptA, ptPD ê EuclideanDistance@ptB, ptPDDDDDF

Out[34]=
A B

Ratio =
3

2

Exercises
1. Here are data on Nobel prizes in the fields of chemistry, medicine, and physics, available from the

National Bureau of Economic Research.

In[1]:= data =

Import@"http:êêwww.nber.orgênobelêJones_Weinberg_2011_PNAS.xlsx",
8"XLSX", "Data", 1<D;

In[2]:= Take@data, 4D

Out[2]= 88name, field, year_birth, year_prize, year_research_mid,

year_death, TheoryOrTheoryAndEmpirical, age_highdegree<,
8Van'T Hoff, Jacobus Henricus, Chemistry, 1852., 1901., 1885.,

1911., 1., 22.<, 8Fischer, Hermann Emil, Chemistry, 1852.,

1902., 1895., 1919., 0., 22.<, 8Arrhenius, Svante August,

Chemistry, 1859., 1903., 1884., 1927., 1., 25.<<

490 Dynamic expressions

Create a TabView visualization showing the age of each prize recipient vs. the year of prize award.
Include one tab for each of the three fields given in the data and also include a plot label that displays
the mean age at award for each field.

2. Using FunctionsWithAttribute developed in Section 5.6, create a paneled interface that
displays all built-in functions with a specified attribute. Include an input field control to allow the
user to type in an attribute. Do likewise for FunctionsWithOption also developed in Section 5.6.

3. Create a dynamic interface that displays twenty random points in the unit square whose locations
are randomized each time you click your mouse on the graphic display of these points. Add a
checkbox to toggle the display of the shortest path (FindShortestTour) through the points.

4. Create a similar dynamic interface to that in the industrial production index problem in this section
but comparing industrial production with unemployment rates with retail sales data over the last
twenty years or some other suitable time period. Annual and historical retail sales data are available
at the US Census Bureau (www.census.gov/retail); unemployment data are available at the US
Bureau of Labor Statistics (www.bls.gov/cps/cpsatabs.htm); industrial production indices are
available at the US Federal Reserve System (www.federalreserve.gov/releases/g17/download.htm).

11.3 Examples and applications 491

12

Optimizing Mathematica
programs

Measuring evaluation time · Memory storage · Low-level vs. high-level functions · Pattern
matching · Reducing size of computation · Symbolic vs. numeric computation · Listability · Pure

functions · Packed arrays · Parallel processing · Distributing definitions across subkernels ·
Profiling · Compiling · Compiling to C

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all
evil.

— Donald E. Knuth (Knuth 1992)

When you are first learning to program in a language your emphasis is usually on correctness,
that is, getting your programs to run and return accurate and error-free results – and rightly so.
There is little point in trying to speed up a program that returns incorrect answers! You develop
your programs, prototyping with simple inputs so that you can see at a glance how things are
progressing. At some point in the development process you start to increase the size or complex-
ity of the inputs to your program and, if all goes well, the program scales well. But commonly,
there are bottlenecks at various stages of the computation that slow things down. Some of these
may be unavoidable, but often you can find optimizations that improve the efficiency and run-
ning time of your programs. This chapter introduces some of the optimization principles to
think about both during the development process and after they are complete and you are
satisfied that they produce the desired output.

There are two measures we will focus on – timing and memory footprint. Sometimes one
plays a more prominent role than the other. But ultimately, squeezing another tenth of a second

out of a computation that is only going to be run once or twice does not make a lot of sense. On
the other hand, if that computation is part of a loop that is going to be evaluated thousands of
times, little things really start to add up. You will be the best judge of where you need to focus
your efforts. We will start by creating some auxiliary functions that can help measure timing. The
rest of the chapter is designed to provide some case studies and tips to guide you in your efforts
to improve your Mathematica programs. It includes an introduction to parallel processing and also
compilation in Mathematica.

12.1 Measuring efficiency
Evaluation time
Two built-in functions, Timing and AbsoluteTiming , are commonly used to measure evalua-
tion time. Both functions give the time to evaluate an expression in the kernel. The main differ-
ence between them is that Timing is a bit system-dependent. On computers with multiple
processors, threads may be dealt with differently from one multi-core system to another;
Timing will include time spent on all threads on one system but ignore some of them on others.
AbsoluteTiming should be more consistent across systems.

One of the problems with measuring timing is that computers are often doing many things
simultaneously: checking mail, running system scripts in the background, and so on. To give an
accurate measure of the time spent on a computational task and to take into account these
background tasks, we will run several trials and then average the results. AverageTiming,
defined below, does this. Note that it is set up to return only the average time; the result itself is
not returned. You should modify the function accordingly if you want both the result and the
timing returned, similar to what Timing and AbsoluteTiming return.

First, we set things up so that AverageTiming has the HoldAll attribute. This way its
argument, the expression to be measured, does not evaluate before it is used inside the body of
the AverageTiming function itself.

In[1]:= SetAttributes@AverageTiming, HoldAllD

In[2]:= AverageTiming@expr_, trials_D :=

Mean@Table@First@AbsoluteTiming@exprDD, 8trials<DD

As a simple test, here we compute the time needed to invert a large matrix.

In[3]:= mat = RandomReal@1, 81000, 1000<D;
AbsoluteTiming@mat.mat;D

Out[4]= 80.146887, Null<

494 Optimizing Mathematica programs

And for five trials, the average time is given by the following.

In[5]:= AverageTiming@mat.mat, 5D

Out[5]= 0.137580

For a compound expression, you could either enclose the subexpressions in a list or separate
them with semicolons.

In[6]:= AverageTiming@8
mat.mat,
Inverse@matD,
Det@matD

<, 3D

Out[6]= 0.436309

In[7]:= AverageTiming@
mat.mat;
Inverse@matD;
Det@matD;,
3D

Out[7]= 0.425944

Memory storage
ByteCount gives the number of bytes needed to store an expression. For example, in Section
10.2, we saw the vast difference in storage of a multi-point graphics object compared with a
graphics object that does not use multi-points.

In[8]:= pts = RandomReal@1, 8100, 2<D;
gr = Graphics@Map@Point, ptsDD;
grMulti = Graphics@Point@ptsDD;

In[11]:= 8ByteCount@grD, ByteCount@grMultiD<

Out[11]= 824088, 1864<

Different computer systems may store expressions differently and so it is possible that
ByteCount could give slightly different results from one system to another.

One additional function we should point out is MemoryInUse . This gives the current amount
of memory used by the kernel. It will change after each computation, but because the internals of
Mathematica’s memory management are fairly complicated, it may not be ideal to use systemati-
cally for our purposes here.

12.1 Measuring efficiency 495

In[12]:= start = MemoryInUse@D

Out[12]= 436963112

In[13]:= vec = RandomRealA1, 9106=E;

In[14]:= end = MemoryInUse@D

Out[14]= 444965728

In[15]:= end - start

Out[15]= 8002616

In[16]:= ByteCount@vecD

Out[16]= 8000168

If you clear the value of vec, the amount of memory in use should go down but it will depend
upon the current state of your session and so is not a simple way to track memory usage.

In[17]:= vec =.

In[18]:= MemoryInUse@D

Out[18]= 444965992

12.2 Efficient programs
Low-level vs. high-level functions
Many computational tasks are first programmed as procedures that loop through an expression,
extracting and operating on various pieces, and then putting the transformed pieces into a
temporary list or array. Typical examples include adding lists of numbers, operating on rows or
columns from a matrix, and so on. This low-level approach to a common task is typical of proce-
dural languages, but a modern language such as Mathematica provides many functions that are
optimized for these tasks. Using such tools can save time and effort in many common tasks, not
just in coding and debugging but in the running of your programs.

As an example, consider the task of reversing pairs of elements in a matrix. The standard
procedural approach starts by setting up a temporary list of the same size as the input. Then,
inside a Do loop, parts are extracted and put in a list in the order we want and assigned to the
appropriate element in the temporary list.

In[1]:= mat = 88a, b<, 8c, d<, 8d, e<<;

496 Optimizing Mathematica programs

In[2]:= temp = Table@0, 8Length@matD<D;
Do@temp@@iDD = 8mat@@i, 2DD, mat@@i, 1DD<,

8i, 1, Length@matD<D;
temp

Out[4]= 88b, a<, 8d, c<, 8e, d<<

Reversing the elements in a list is a fairly common task and a functional construct is available for
just this.

In[5]:= Map@Reverse, matD

Out[5]= 88b, a<, 8d, c<, 8e, d<<

Not only is the code compact and quite readable, but this functional approach is much faster in
practice. Here is a matrix consisting of one million pairs of numbers.

In[6]:= mat = RandomRealA1, 9106, 2=E;

Reversing each pair with a procedural approach takes about two to three seconds whereas the
functional approach speeds this up by over an order of magnitude.

In[7]:= AverageTiming@
temp = Table@0, 8Length@matD<D;
Do@temp@@iDD = 8mat@@i, 2DD, mat@@i, 1DD<,
8i, 1, Length@matD<D,

3D

Out[7]= 2.361527

In[8]:= AbsoluteTiming@Map@Reverse, matD;D

Out[8]= 80.127700, Null<

The point is that although you can program in a procedural manner in Mathematica, there often
are some good reasons not to, the main ones being ease of coding and the efficiency of running
your programs. The built-in Mathematica functions are optimized to be as fast as possible for the
types of input and computations for which they are designed. And with the thousands of func-
tions that are built in, you have at your fingertips a vast set of tools that are designed for many
specialized tasks.

As a second example, consider summing a list of numbers. Several different implementations
are possible.

In[9]:= sumDo@n_D := Module@8i = 0, result = 0<,
Do@result = result + i, 8i, 1.0, n<D;
resultD

12.2 Efficient programs 497

In[10]:= AverageTimingAsumDoA106E, 3E

Out[10]= 0.868591

In[11]:= sumTable@n_D := Module@8result = 0.0<,
Table@result = result + i, 8i, 1.0, n<D;
resultD

In[12]:= AverageTimingAsumTableA106E, 3E

Out[12]= 0.883381

In[13]:= AverageTimingASumAi, 9i, 1.0, 106=E, 3E

Out[13]= 0.313786

In[14]:= sumApply@n_D := Apply@Plus, NüRange@nDD

In[15]:= AverageTimingAsumApplyA106E, 3E

Out[15]= 0.261534

Of all these approaches (and there are many more!), using Total is optimal. It is designed
expressly for the task of adding lists of numbers.

In[16]:= sumTotal@n_D := Total@NüRange@nDD

In[17]:= AverageTimingAsumTotalA106E, 3E

Out[17]= 0.007976

You might wonder why Sum , which is also designed for this task, is slower than both the
functional approach with Apply and the approach with Total. The Sum function contains
hundreds of rules for the various expressions it can handle and also has to keep track of an
iterator i. Although these constructs are necessary for complicated summations, this extra
overhead comes at a cost that is reflected in the timings here.

As an aside, some mathematical knowledge goes a long way in this particular case. The sum of

the integers 1 through n is given by the binomial expression
n + 1

2
.

In[18]:= BinomialA106 + 1, 2E êê Timing

Out[18]= 80.000024, 500000500000<

In[19]:= BinomialA106 + 1, 2E ã TotalARangeA106EE

Out[19]= True

498 Optimizing Mathematica programs

Pattern matching
As we have seen throughout this book, pattern matching is one of the key features of Mathematica
and distinguishes it from many other programming languages. It provides a natural mechanism
to identify classes of expressions that you want to operate on or transform based on some criteria
of interest. But for computations where speed is at a premium, the convenience of pattern match-
ing can be overshadowed by slower overall evaluation. In this section we will look at some larger
examples that highlight this issue and discuss other approaches that you might want to consider.

A fairly common task is counting the number of elements in an expression that meet some
criteria. For example, suppose you want to count the positive numbers in a vector. You could use
Count with the appropriate pattern.

In[20]:= vec = RandomReal@8-1, 1<, 810<D

Out[20]= 8-0.517127, 0.999706, 0.838879, -0.948481, 0.152518,
0.314375, -0.475982, -0.855164, 0.451484, 0.679374<

In[21]:= Count@vec, _?PositiveD

Out[21]= 6

For a more arithmetic approach, you could use Sign which returns -1 for negative numbers and
1 for positive numbers; then add 1 to each element, turning the -1s into 0s and the 1s into 2s.

In[22]:= Sign@vecD

Out[22]= 8-1, 1, 1, -1, 1, 1, -1, -1, 1, 1<

In[23]:= Sign@vecD + 1

Out[23]= 80, 2, 2, 0, 2, 2, 0, 0, 2, 2<

Lastly, add up the numbers and divide by 2.

In[24]:= Total@Sign@vecD + 1D ê 2

Out[24]= 6

The first approach using Count seems much more natural and easier to code and read, while
the second approach involves a lot of steps to get the same result. You might think that the more
natural, compact approach using Count would be faster. But, for large vectors, this is not the
case.

In[25]:= vec = RandomRealA8-1, 1<, 9106=E;

In[26]:= Count@vec, _?PositiveD êê Timing

Out[26]= 80.532912, 500310<

12.2 Efficient programs 499

In[27]:= Total@Sign@vecD + 1D ê 2 êê Timing

Out[27]= 80.017079, 500310<

Why is this? The pattern matcher can work with many different kinds of expressions – numbers,
strings, functions, images, and so on. One of the things it must do in order to maintain this
generality is work with arbitrary arrays of numbers so that it can identify different types that may
be present in that array. Total and Sign , on the other hand, are purely arithmetic functions
and they can and do operate on packed arrays of numbers whenever possible, thus taking advan-
tage of compiled code. You can see that this is the case by turning on the display of a message
that is issued whenever an array is unpacked internally.

In[28]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD

Out[28]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø True<

In[29]:= Count@vec, _?PositiveD

Developer`FromPackedArray::unpack : Unpacking array in call to Count. à

Out[29]= 500310

In[30]:= Total@Sign@vecD + 1D ê 2

Out[30]= 500310

The call to Count caused the packed vector to be unpacked. This was not the case with Total
and Sign . Although not prohibitively expensive here, pattern matching comes at a cost. We will
have more to say about packed arrays later in this section.

Reset the packed array message option to its default value.

In[31]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD

Out[31]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø False<

As another, less trivial, example, we will look at two approaches for generating upper triangu-
lar matrices – matrices with 0s below the diagonal and, in this case, 1s everywhere else. We will
start by using SparseArray . The pattern matcher is invoked to determine the value of the
nonzero elements.

500 Optimizing Mathematica programs

In[32]:= With@8n = 5<,
SparseArray@8i_, j_< ê; i § j Ø 1, 8n, n<D

D êê MatrixForm
Out[32]//MatrixForm=

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

In[33]:= With@8n = 500<,
matSA = SparseArray@8i_, j_< ê; i § j Ø 1, 8n, n<D

D êê Timing

Out[33]= 80.36844, SparseArray@<125 250>, 8500, 500<D<

Using a procedural approach is significantly faster.

In[34]:= With@8n = 5<,
Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D

D êê MatrixForm
Out[34]//MatrixForm=

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

In[35]:= With@8n = 500<,
matT = Table@If@j ¥ i, 1, 0D, 8i, n<, 8j, n<D;

D êê Timing

Out[35]= 80.010477, Null<

That is over thirty times faster using If to determine the nonzero elements. The comparison is a
bit unfair since we are not accounting for the internals of Table compared with SparseArray .
But you could check that, in general, creating sparse array objects is quite fast compared with
using Table for similarly-sized expressions.

In[36]:= matT = TableA0, 9i, 104=, 9j, 104=E; êê Timing

Out[36]= 82.65011, Null<

In[37]:= matSA = SparseArrayA8_, _< Ø 0, 9104, 104=E; êê Timing

Out[37]= 80.000062, Null<

12.2 Efficient programs 501

Only one rule was necessary to create this sparse array of 0s.

In[38]:= ArrayRules@matSAD

Out[38]= 88_, _< Ø 0<

For the upper triangular matrix above, the position index for every element had to be compared
with the pattern to determine its value. The approach using Table had just as many compar-
isons to make but it did not invoke the pattern matcher to do so.

We should check to make sure that the matrices produced by these two approaches are the
same.

In[39]:= matSA ã matT

Out[39]= True

As an aside, the two matrices are not identical as one has the structure of a sparse array and the
other is a list. SameQ (===) tests if they have identical structures and elements.

In[40]:= matSA === matT

Out[40]= False

Reducing size of computation
Although it may seem obvious, you should look to reduce the raw number of computations
performed when trying to optimize your programs. Usually, such inefficiencies are not apparent
on a first look. As an example, consider the following two loops used to add up the first one
million integers.

In[41]:= I

ForAi = 0; result = 0, i § 106, i++, result = result + iE;

result

M êê Timing

Out[41]= 82.25038, 500000500000<

In[42]:= I

result = 0;

DoAresult = result + i, 9i, 1, 106=E;

result

M êê Timing

Out[42]= 80.888957, 500000500000<

Why is the Do loop faster? Think about how many computations are done in each loop. With the
For loop, there is a comparison of i with 10

6, an increment of i, the addition result + i, and

502 Optimizing Mathematica programs

an assignment to result. That is essentially four computations each time through the loop.
Inside the Do loop, there is the addition result + i, the assignment, and the increment of the
iterator i. There are at least 25% fewer raw computations with the Do loop for this computation.

As a more applied example, consider the Sieve of Eratosthenes we implemented in Section 6.3.
For each value of p inside the For loop, the Do loop runs for i = 2 p to i = n in increments of p.
In the code below, we have made a slight modification to Sieve to add a counter that gives the
number of iterations of the inner Do loop.

In[43]:= SieveCnt@n_IntegerD := Module@8ints = Range@nD, p, cnt = 0<,
For@p = 2,
p � 1 && p § Floor@Sqrt@nDD,
p++,
Do@ints@@iDD = 1; cnt++, 8i, 2 p, n, p<DD;

DeleteCases@ints, 1D;
cnt

D

For this computation, 532 988 iterations of the inner Do loop were performed.

In[44]:= SieveCntA105E êê Timing

Out[44]= 81.13214, 532988<

So how could we reduce the overall number of computations? We will use list component
assignment, discussed in Section 3.3. We do this by having the Do loop cross out values (assign a
value of 1) to multiples of p in the list ints, but instead of using the For loop to get those values
of p, use the Part function with the Span shorthand 2 p ;; -1 ;; p indicating that we extract
parts 2 p through the end in steps of p, that is, the multiples of p.

In[45]:= Sieve2@n_IntegerD := ModuleB8ints = Range@nD<,

DoBints@@2 p ;; -1 ;; pDD = 1,

:p, 2, n >F;

DeleteCases@ints, 1DF

First let us do a few basic checks for correctness.

In[46]:= Sieve2@100D

Out[46]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

12.2 Efficient programs 503

In[47]:= Length@Sieve2@1000DD

Out[47]= 168

In[48]:= PrimePi@1000D

Out[48]= 168

Next we check the speed of this function.

In[49]:= Sieve2A105E; êê Timing

Out[49]= 80.02608, Null<

That is almost two orders of magnitude faster! Let us count the number of iterations inside the
Do loop in Sieve2.

In[50]:= Sieve2Cnt@n_IntegerD := ModuleB8ints = Range@nD, cnt = 0<,

DoBints@@2 p ;; -1 ;; pDD = 1;

cnt++,

:p, 2, n >F;

DeleteCases@ints, 1D;
cnt

F

In[51]:= Sieve2CntA105E êê Timing

Out[51]= 80.025143, 315<

Although it appears as if we have reduced the sheer number of computations from over 500 000

to about 300, that is not quite accurate – it is a bit subtle as to why things have in fact been sped
up. For Sieve2, there is an implicit iteration given by intsP2 p ;; -1 ;; pT = 1 that is, in
fact, handled in compiled C code. So what we are seeing is the difference between explicit itera-
tion in Mathematica and implicit iteration that is being done at the level of compiled C code. The
list component assignment transfers that iteration to compiled code and this is what has caused
the significant speedup.

A different example of superfluous computation occurs when you are passing a table to a
function that has one of the Hold attributes. In the following example, the HoldAll attribute of
Plot keeps the Table from being evaluated initially. In fact, the Table is evaluated over and
over as each value of x is used to construct the plot. The first value returned below is the timing,
the second number (45080) is the value of the counter, cnt.

504 Optimizing Mathematica programs

In[52]:= Block@8cnt = 0<,
Plot@Table@cnt++; LegendreP@n, xD, 8n, 1, 10<D, 8x, 0, 1<D;
cntD êê Timing

Out[52]= 80.299285, 45080<

Forcing the evaluation of the Table before it is passed to Plot results in far fewer evaluations
there which is reflected in the speedup as well.

In[53]:= Block@8cnt = 0<,
Plot@Table@cnt++; LegendreP@n, xD, 8n, 1, 10<D,
8x, 0, 1<, Evaluated Ø TrueD;

cntD êê Timing

Out[53]= 80.048092, 10<

Many of the plotting functions have the attribute Evaluated. For those that do not, you can
wrap the function to be plotted in Evaluate to the same effect.

Symbolic vs. numeric computation
Another issue to think about in trying to improve the speed and efficiency of your programs is
the contrast between numeric and symbolic computation. In general, numeric-based computa-
tion can be quite fast as much of it is done on the hardware of your machine rather than in
software (see the discussion in Section 8.2). This is not a hard-and-fast rule; many of the linear
algebra operations take advantage of numeric libraries such as Basic Linear Algebra Subprograms
(Blas) that are optimized for the hardware of your machine. As a result, differences in evaluation
time amongst different computers will inevitably occur.

To get a sense of some of the differences between numeric and symbolic computation, let us
revisit the radius of gyration tensor computation from Section 8.4. Here is the code developed in
that section.

RadiusOfGyrationTensor@lis_D :=

ModuleA8cmx, cmy, xcoords, ycoords, xy<,

8cmx, cmy< = Mean@lisD;
8xcoords, ycoords< = Transpose@lisD;
xy = Hxcoords - cmxL.Hycoords - cmyL ê Length@lisD;
99MeanAHxcoords - cmxL2E, xy=, 9xy, MeanAHycoords - cmyL2E==E

First, let us compute the tensor for an exact matrix (a lattice walk) and also for a matrix consisting
of approximate numbers (off-lattice walk).

In[54]:= << PwM`RandomWalks`

In[55]:= walkLat = RandomWalkA106, LatticeWalk Ø TrueE;

12.2 Efficient programs 505

In[56]:= RadiusOfGyrationTensor@walkLatD êê Timing

Out[56]= :12.8358, ::
3726499413459 191

62500000000
,
2 620 753 801 968 301

125 000 000 000
>,

:
2620753801968301

125000000000
,
5331 861 173 105 511

250 000 000 000
>>>

In[57]:= walkOffLat = RandomWalkA106, LatticeWalk Ø FalseE;

In[58]:= RadiusOfGyrationTensor@walkOffLatD êê Timing

Out[58]= 80.439694, 8830542.9, 16265.8<, 816 265.8, 141 897.<<<

That is almost one-and-a-half orders of magnitude faster compared with the exact input. So what
is causing this difference? We will focus on the three computations at the heart of this function:
computing column means, a transpose operation, and a dot product. This process of profiling
code to isolate the parts in which the most time is spent is something that can be done using
integrated development environments (IDEs) such as Wolfram Workbench. We will adopt a very
basic approach here since our function is fairly simple to deconstruct. Section 12.3 discusses
profiling in more detail.

First, here is the column mean computation for the two walks.

In[59]:= 8cmxL, cmyL< = Mean@walkLatD; êê Timing

Out[59]= 80.012443, Null<

In[60]:= 8cmxOL, cmyOL< = Mean@walkOffLatD; êê Timing

Out[60]= 80.004598, Null<

Second, this is the transpose computation.

In[61]:= 8xcoordsL, ycoordsL< = Transpose@walkLatD; êê Timing

Out[61]= 80.025509, Null<

In[62]:= 8xcoordsOL, ycoordsOL< = Transpose@walkOffLatD; êê Timing

Out[62]= 80.09116, Null<

And finally, this is the dot product step.

In[63]:= HxcoordsL - cmxLL.HycoordsL - cmyLL êê Timing

Out[63]= :4.0323,
2620753801968301

125000
>

In[64]:= HxcoordsOL - cmxOLL.HycoordsOL - cmyOLL êê Timing

Out[64]= 90.054526, 1.62658 � 1010=

506 Optimizing Mathematica programs

The transpose operation is several times faster for symbolic (integer) input but the absolute
time for the transpose operation is small relative to the overall time for the entire computation; a
large difference in timing occurs for the dot product. We can verify these operations by abstract-
ing them out of the context of the radius of gyration computation. First, we compute the dot
product on an exact 1000ä1000 matrix, followed by the same computation on a matrix consist-
ing of floating point numbers.

In[65]:= matInt = RandomInteger@100, 81000, 1000<D;

In[66]:= AbsoluteTiming@matInt.matInt;D

Out[66]= 80.697565, Null<

In[67]:= matRe = RandomReal@100, 81000, 1000<D;

In[68]:= AbsoluteTiming@matRe.matRe;D

Out[68]= 80.159191, Null<

A naive interpretation of this result is that using approximate numbers for the dot product
provides a significant speedup compared with the same operation using integers. But there are
two caveats. First, the linear algebra libraries that are optimized for your computer may contain
slightly slower or faster implementations for integer or floating point computation than those for
another machine. Second, because Mathematica automatically threads such linear algebra compu-
tations over any multiple cores that are available, some of these operations will see significant
speedups on machines with larger numbers of cores.

In fact, the difference in timings for many linear algebra operations scales. Behind the scenes,
so to speak, multi-threading is happening automatically. You can get a hint of this by comparing
Timing and AbsoluteTiming for these operations.

In[69]:= AbsoluteTiming@matRe.matRe;D

Out[69]= 80.158654, Null<

In[70]:= Timing@matRe.matRe;D

Out[70]= 80.301283, Null<

On the machine on which these computations were run, Timing is adding the total time spent
on all threads that were launched to do this computation.

So what can you take away from this discussion? If you have a program that you need to speed
up, profiling is a sensible way to find those computations to optimize. Once you find the bottle-
necks, try to see if you can replace an exact computation with one using approximate numbers.
Of course, if you need an exact result for some reason, then simply switching to approximate
arithmetic is not an option and you will have to consider one of the other approaches discussed
in this chapter.

12.2 Efficient programs 507

Listability
Many Mathematica functions have the Listable attribute. Functions with this attribute automati-
cally thread across lists element-wise. We have seen examples of this in many places in this book,
for example, with vector and matrix operations:

In[71]:= 81, 2, 3, 4< + 810, 20, 30, 40<

Out[71]= 811, 22, 33, 44<

In[72]:= 10 81, 2, 3, 4, 5<

Out[72]= 810, 20, 30, 40, 50<

But there is much more to listable functions. For large inputs, they can automatically take advan-
tage of multi-threading on vector operations for machines whose hardware supports this. Most
of the elementary functions call specialized code that performs this multi-threading behind the
scenes. The way to best take advantage of this behavior is to use these functions directly on the
vectors or matrices with which you are working.

Mapping elementary functions like Sin across a vector is fast, but does not take direct advan-
tage of the listability attribute.

In[73]:= vec = RandomRealA8-100, 100<, 106E;

In[74]:= AbsoluteTiming@Map@Sin, vecD;D

Out[74]= 80.071676, Null<

Simply wrapping Sin around the input vec causes a vectorized version of Sin to be called and
this is the fastest way to perform the computation, essentially working at the speeds of compiled
code.

In[75]:= AbsoluteTiming@Sin@vecD;D

Out[75]= 80.006034, Null<

User-defined functions can inherit the Listable attribute.

In[76]:= SetAttributes@fun, ListableD;
fun@x_D := IfA-1 < x < 1, Exp@xD, x2E

In[78]:= AbsoluteTiming@fun@vecD;D

Out[78]= 81.918452, Null<

You can squeeze even more speed out of this function by defining it as a pure function that is
listable. This is done by giving Function a third argument, Listable.

508 Optimizing Mathematica programs

In[79]:= purefun = FunctionA8x<, IfA-1 < x < 1, Exp@xD, x2E, ListableE;

In[80]:= AbsoluteTiming@purefun@vecD;D

Out[80]= 80.107282, Null<

To generate a list of all built-in functions that have the listable attribute you can use
FunctionsWithAttributes defined in Section 5.6.

In[81]:= lis = FunctionsWithAttribute@ListableD;
Length@lisD

Out[82]= 275

In[83]:= RandomSample@lis, 25D

Out[83]= 8NonPositive, ExtendedGCD, Negative, BesselJ,
SpheroidalS2Prime, Sqrt, Ceiling, MakeExpression,
FactorialPower, ChebyshevT, Log, Log10, BesselK,
InverseGudermannian, BetaRegularized, PolyGamma, QBinomial,
ParabolicCylinderD, BitSet, BitAnd, IntegerLength,
StruveL, NumberFieldRootsOfUnity, Together, Factorial2<

Pure functions
The last example in the previous section raises another efficiency issue: the use of pure functions
vs. formally-defined functions. As a simple example, consider two functions, one defined using
pure functions and a second defined using a formal function assignment.

In[84]:= vec = RandomRealA8-100, 100<, 106E;

In[85]:= fun1 = FunctionA8x<, x2 + 1E;

In[86]:= fun2@x_D := x2 + 1

In[87]:= AbsoluteTiming@Map@fun1, vecD;D

Out[87]= 80.065884, Null<

In[88]:= AbsoluteTiming@Map@fun2, vecD;D

Out[88]= 81.301795, Null<

What accounts for this substantial difference in timing? For expressions above a certain size, Map
will automatically try to compile that expression. Below is a list of the system options that are
involved with internal compilation.

12.2 Efficient programs 509

In[89]:= SystemOptions@"CompileOptions"D

Out[89]= 8CompileOptions Ø 8ApplyCompileLength Ø ¶,

ArrayCompileLength Ø 250, AutoCompileAllowCoercion Ø False,

AutoCompileProtectValues Ø False, AutomaticCompile Ø False,

BinaryTensorArithmetic Ø False, CompileAllowCoercion Ø True,

CompileConfirmInitializedVariables Ø True,

CompiledFunctionArgumentCoercionTolerance Ø 2.10721,

CompiledFunctionMaxFailures Ø 3,

CompileDynamicScoping Ø False, CompileEvaluateConstants Ø

True, CompileOptimizeRegisters Ø False,

CompileReportCoercion Ø False, CompileReportExternal Ø False,

CompileReportFailure Ø False, CompileValuesLast Ø True,

FoldCompileLength Ø 100, InternalCompileMessages Ø False,

ListableFunctionCompileLength Ø 250,

MapCompileLength Ø 100, NestCompileLength Ø 100,

NumericalAllowExternal Ø False, ProductCompileLength Ø 250,

ReuseTensorRegisters Ø True, SumCompileLength Ø 250,

SystemCompileOptimizations Ø All, TableCompileLength Ø 250<<

For expressions whose size is below the threshold of MapCompileLength little absolute differ-
ence in timing results.

In[90]:= vecSmall = RandomReal@8-100, 100<, 899<D;

In[91]:= AbsoluteTiming@Map@fun1, vecSmallD;D

Out[91]= 80.000398, Null<

In[92]:= AbsoluteTiming@Map@fun2, vecSmallD;D

Out[92]= 80.000197, Null<

Turning off the auto-compile feature by setting the threshold to ¶ shows nearly identical timings
for the computations on the large arrays.

In[93]:= SetSystemOptions@"CompileOptions" Ø "MapCompileLength" Ø ¶D;

In[94]:= AbsoluteTiming@Map@fun1, vecD;D

Out[94]= 81.833040, Null<

In[95]:= AbsoluteTiming@Map@fun2, vecD;D

Out[95]= 81.397250, Null<

For programs that call functions within loops in particular, this discussion would suggest that
you will see speed improvements by using pure functions on larger arrays whenever possible.

510 Optimizing Mathematica programs

Reset the system option to its default value.

In[96]:= SetSystemOptions@"CompileOptions" Ø "MapCompileLength" Ø 100D;

Packed arrays
As indicated in Section 8.3, large arrays are operated on very quickly and efficiently when they are
packed. Many functions automatically pack arrays.

In[97]:= Range@1000D êê Developer`PackedArrayQ

Out[97]= True

In[98]:= RandomIntegerA80, 2<, 103E êê Developer`PackedArrayQ

Out[98]= True

In[99]:= FourierARandomIntegerA80, 2<, 103EE êê Developer`PackedArrayQ

Out[99]= True

But some functions do not, and in particular, many expressions created from scratch are not
packed. For example, the compass directions used in the random walk example developed in
Section 13.1, are not packed.

In[100]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;
Developer`PackedArrayQ@NSEWD

Out[101]= False

In[102]:= ByteCount@NSEWD

Out[102]= 488

The walk function using Accumulate and RandomChoice is already quite fast. It only takes
a few seconds to perform a two-dimensional lattice walk of ten million steps.

In[103]:= AccumulateARandomChoiceANSEW, 107EE; êê AbsoluteTiming

Out[103]= 83.385123, Null<

For this function, it is not speed that is a constraint, it is memory use. The output of walk2D is an
array of dimensions 10 000 000ä2. Its memory footprint is quite large, over 1 GB!

In[104]:= AccumulateARandomChoiceANSEW, 107EE êê ByteCount

Out[104]= 1120000040

It turns out that RandomChoice is the culprit. When choosing from a set of alternatives it does
not produce a packed array automatically.

12.2 Efficient programs 511

In[105]:= RandomChoice@NSEW, 1000D êê Developer`PackedArrayQ

Out[105]= False

Because the original array NSEW was not itself packed, RandomChoice did not create a packed
array as output. If we force NSEW to become packed, then RandomChoice will generate a
packed array.

In[106]:= NSEWpacked =
Developer`ToPackedArray@880, 1<, 80, -1<, 81, 0<, 8-1, 0<<D;

RandomChoice@NSEWpacked, 1000D êê Developer`PackedArrayQ

Out[107]= True

With this new definition, the random walk code produces a packed array result. The computa-
tion also runs about four to eight times faster than before and consumes less than one-tenth of
the memory.

In[108]:= packedResult = AccumulateARandomChoiceANSEWpacked, 107EE; êê

AbsoluteTiming

Out[108]= 80.360374, Null<

In[109]:= Developer`PackedArrayQ@packedResultD

Out[109]= True

In[110]:= ByteCount@packedResultD

Out[110]= 80000168

Note that the Accumulate function was given a packed array from RandomChoice and it
produced a result that was also packed. Many Mathematica functions, but not all, will produce
packed results when given packed input. It is not difficult to inadvertently trigger unpacking of
an array, so a useful debugging technique is to ask Mathematica to issue a message whenever an
array is forced to unpack.

In[111]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD

Out[111]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø True<

To see the warning message in action, map a function with no definition over the packed array
returned by RandomChoice.

512 Optimizing Mathematica programs

In[112]:= foo êü RandomChoice@NSEWpacked, 81000<D;
During evaluation of In[112]:=

Developer`FromPackedArray::punpackl1 :

Unpacking array with dimensions 81000, 2< to level 1. à

You probably will not want this message turned on all the time, but it can be quite handy if you
are trying to understand where in your program an array is being unpacked.

In[113]:= SetSystemOptions@
"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD

Out[113]= PackedArrayOptions Ø 8ListableAutoPackLength Ø 250,
PackedArrayMathLinkRead Ø True, PackedArrayPatterns Ø True,
PackedRange Ø True, UnpackMessage Ø False<

Other functions in SystemOptions are worth exploring; for example, note the value of
TableCompileLength, 250. This is the threshold above which Table will automatically pack
its output.

In[114]:= vec = Table@RandomReal@D, 8249<D;
Developer`PackedArrayQ@vecD

Out[115]= False

In[116]:= vec = Table@RandomReal@D, 8250<D;
Developer`PackedArrayQ@vecD

Out[117]= True

Below this threshold, the input is small enough that it can be operated on directly without a
significant loss of speed. A balance is struck between the speed gained from working with packed
arrays and the extra overhead to covert between unpacked and packed expressions.

One last note about manual packing: you can only pack arrays consisting of machine-size
integers, reals, or complex numbers. A machine-real can be tested with MachineNumberQ .

In[118]:= MachineNumberQ@N@1, 100DD

Out[118]= False

For integers, machine numbers are typically in the range [-2
31 + 1, 2

31 - 1].

In[119]:= MapADeveloper`MachineIntegerQ, 9-231, -231 + 1, 231 - 1, 231=E

Out[119]= 8False, True, True, False<

In[120]:= smallInts = RandomIntegerA920, 231=, 8100<E;

In[121]:= Developer`PackedArrayQ@smallIntsD

Out[121]= True

12.2 Efficient programs 513

In[122]:= longInts = RandomIntegerA9231, 263=, 8100<E;

In[123]:= Developer`PackedArrayQ@longIntsD

Out[123]= False

One final point: machine numbers and Mathematica’s support for them are evolving concepts –
as machines become more powerful and the libraries that support them are extended, these
definitions will change. Mathematica 9 (not released when this book went to print) will support
machine numbers on 64-bit machines that are larger than those discussed here and so numbers
in the range [-2

63 + 1, 2
63 - 1] will be considered machine numbers.

(Mathematica 9) In[1]:=

MapADeveloper`MachineIntegerQ, 9-263, -263 + 1, 263 - 1, 263=E
(Mathematica 9) Out[1]=

8False, True, True, False<

Exercises
1. Modify AverageTiming to return both the average time and the result of evaluating its argument,

mirroring the behavior of Timing and AbsoluteTiming .

2. The nth triangular number is defined as the sum of the integers 1 through n. They are so named
because they can be represented visually by arranging rows of dots in a triangular manner (Figure
12.1). Program several different approaches to computing triangular numbers and compare their
efficiency.

Figure 12.1. Pictorial representation of the first five triangular numbers.

3. Several different implementations of the Hamming distance computation were given in Section 5.8;
some run much faster than others. For example, the version with bit operators runs about one-and-
a-half orders of magnitude faster than the version using Count and MapThread . Using some of the
concepts from this section, determine what is causing these differences.

In[1]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD

In[2]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[3]:= sig1 = RandomIntegerA1, 9106=E;

In[4]:= sig2 = RandomIntegerA1, 9106=E;

514 Optimizing Mathematica programs

In[5]:= Timing@HammingDistance1@sig1, sig2DD

Out[5]= 80.459499, 498955<

In[6]:= Timing@HammingDistance2@sig1, sig2DD

Out[6]= 80.00906, 498955<

12.3 Parallel processing
Most modern computers now come with multiple core processors enabling many tasks to be
performed in parallel. Many system operations are automatically distributed across multiple
processors and Mathematica also does some automatic parallelization, particularly for many linear
algebra operations. But there are plenty of computations that can be done in parallel that are not
otherwise automatically threaded or parallelized. In this section we will see how you can use
Mathematica’s parallel processing framework to speed up many kinds of computation.

Depending upon your licensing, Mathematica can be launched and run on each available core
on your computer. In general, it will handle the communication between the master kernel and
the subkernels automatically and when the computation is done, it will also gather the results
from the subprocesses. Although there are tools for getting fine control over many of these
aspects of parallel computation, in this section we will introduce the basic functionality only and
point you at other resources for further study.

Basic examples
Let us start with a straightforward example – factoring a list of large integers. (These integers
were created by multiplying several large prime numbers together, giving numbers that are
generally more difficult to factor than a random integer of the same size.)

In[1]:= ints = 86816621442891306800 904 744 383 119 905 653 635 103 851,
73388383728563244425930 590 337 481 080 121 879 717 077,
52013328811529395666589 446 962 910 372 930 994 642 737,
505513202541467917512 749 204 086 148 326 575 935 117 323<;

Doing the computation on one processor takes about eight seconds.

In[2]:= AbsoluteTiming@Map@FactorInteger, intsDD

Out[2]= 87.460074, 888322901609390 167, 1<, 83 515 118 683 942 573, 1<,
86005635550849761, 1<<, 882 294 373 045 611 351, 1<,
83323461128609971, 1<, 89 624 378 352 212 737, 1<<,

881570432314085519, 1<, 85 086 852 194 050 141, 1<,
86510979192425803, 1<<, 887 415 796 267 244 853, 1<,
87673045464769561, 1<, 88 883 967 089 924 631, 1<<<<

12. 515

The machine on which this computation was performed has two processors on which Mathemat-
ica can run kernels. (Actually, the machine has two physical processors and two virtual ones and
so $ProcessorCount returns 4.)

In[3]:= $ProcessorCount

Out[3]= 4

This launches Mathematica on each of the available processors.

In[4]:= LaunchKernels@D

Out[4]= 8KernelObject@1, localD, KernelObject@2, localD,
KernelObject@3, localD, KernelObject@4, localD<

To do the factorization in parallel, use ParallelMap instead of Map. Mathematica will automati-
cally distribute the computations across the subkernels and return the result of each.

In[5]:= AbsoluteTiming@ParallelMap@FactorInteger, intsDD

Out[5]= 83.935546, 888322901609390 167, 1<, 83 515 118 683 942 573, 1<,
86005635550849761, 1<<, 882 294 373 045 611 351, 1<,
83323461128609971, 1<, 89 624 378 352 212 737, 1<<,

881570432314085519, 1<, 85 086 852 194 050 141, 1<,
86510979192425803, 1<<, 887 415 796 267 244 853, 1<,
87673045464769561, 1<, 88 883 967 089 924 631, 1<<<<

When finished, you can terminate the Mathematica processes on the subkernels by evaluating
CloseKernels.

In[6]:= CloseKernels@D

Out[6]= 8KernelObject@1, local, <defunct>D,
KernelObject@2, local, <defunct>D,
KernelObject@3, local, <defunct>D,
KernelObject@4, local, <defunct>D<

If you prefer, launching and closing kernels can be managed using a graphical user interface by
selecting Parallel Kernel Configuration or Parallel Kernel Status from the Evaluation menu (Figure
12.2). From this interface you can set the properties that you want to monitor as well as set
various configuration parameters for your kernels.

516 Optimizing Mathematica programs

Figure 12.2. Parallel kernel user interface.

Let us look at another example, this time drawn from Section 5.2 where we computed
Mersenne primes.

In[7]:= SelectATableA2Prime@nD - 1, 8n, 1, 1000<E, PrimeQE; êê

AbsoluteTiming

Out[7]= 858.590406, Null<

Although there is a parallel version of Table, we will use another function, Parallelize , that
automatically handles much of the parallelization.

In[8]:= LaunchKernels@D

Out[8]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[9]:= ParallelizeASelectATableA2Prime@nD - 1, 8n, 1, 1000<E,

PrimeQEE; êê AbsoluteTiming

Out[9]= 832.961034, Null<

A Method option is available for Parallelize with which you can set the size of the pieces
that are sent to the kernels to give you some additional control of overhead and load balancing
amongst the kernels. Setting the method to "FinestGrained" breaks ups the computation
into the smallest possible chunks. "CoarsestGrained" on the other hand, breaks up the
computation into as many pieces as there are kernels and is more appropriate when all the
computational chunks take the same amount of time.

In[10]:= ParallelizeASelectATableA2Prime@nD - 1, 8n, 1, 1000<E, PrimeQE,

Method Ø "FinestGrained"E; êê AbsoluteTiming

Out[10]= 834.440888, Null<

Another function for parallel computation is ParallelEvaluate. With it, you can evaluate
any expression on all subkernels or some subset of the subkernels if you wish. The key difference

12.3 Parallel processing 517

between ParallelEvaluate and other functions is that functions such as Parallelize or
ParallelMap distribute the computation across subkernels, whereas ParallelEvaluate
does the same computation on all kernels.

In[11]:= ParallelEvaluate@8$KernelID, $ProcessID, AbsoluteTime@D<D

Out[11]= 995, 11906, 3.548690244467625 � 109=,

96, 11907, 3.548690244467849 � 109=,

97, 11908, 3.548690244468009 � 109=,

98, 11909, 3.548690244468174 � 109==

Of course, some computations do not parallelize neatly. For example, any computation that
depends upon previous values is generally not a good candidate for parallel computation as the
overhead of communicating between subkernels would often erase any gains that might be made
by splitting the computation.

In[12]:= Parallelize@Accumulate@Range@40DDD
Parallelize::nopar1 :

Accumulate@Range@40DD cannot be parallelized; proceeding with sequential evaluation. à

Out[12]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,
153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406,
435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820<

It is important also to note that many of the built-in functions automatically multi-thread, thus
gaining a significant degree of parallelism. What this means is that trying to run some of these
functions using the parallel framework will not give any further speedup as they already are
running in parallel, but behind the scenes so to speak. This is true of the linear algebra functions
in particular.

In[13]:= mat = RandomReal@1, 8500, 500<D;

In[14]:= Do@Inverse@matD, 8100<D êê AbsoluteTiming

Out[14]= 83.325530, Null<

In[15]:= ParallelDo@Inverse@matD, 8100<D êê AbsoluteTiming

Out[15]= 82.947143, Null<

Distributing definitions across subkernels
Let us now apply these ideas to some more substantial computations where the use of parallel
processing provides a real boost.

Recall the functions developed in Section 10.4 for determining if a point is inside or outside of
a polygon.

518 Optimizing Mathematica programs

In[16]:= Needs@"PwM`Chap10Visualization`"D

In[17]:= ? PointInPolygonQ

PointInPolygonQ@poly,ptD returns True if the
point pt is inside the polygon specified by the set of vertices poly.

Given a large list of points and a polygon, it takes some time to determine which points are inside
the polygon.

In[18]:= pts = RandomReal@8-1, 3<, 810 000, 2<D;
poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<, 82., -1.1<,

82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<, 8-0.5, 0<<;

In[20]:= gbPts = GatherBy@pts, PointInPolygonQ@poly, ÒD &D;
Graphics@8

8PointSize@TinyD, If@PointInPolygonQ@poly, gbPts@@1, 1DDD,
gbPts, Reverse@gbPtsDD ê. 8in_List, out_List< ß

88Black, Pointüin<, 8LightGray, Pointüout<<<,
Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@MediumD, Point@polyD<D

Out[21]=

In[22]:= AbsoluteTiming@Map@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[22]= 81.713795, Null<

This is a good candidate for a parallel computation since the large set of points can be distributed
across the subkernels and each checked against the polygon using the PointInPolygonQ code.

In[23]:= AbsoluteTiming@ParallelMap@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[23]= 83.558163, Null<

Using ParallelMap gave us no speedup here. What happened is that the subkernels knew
nothing of PointInPolygonQ nor any of the other code that was given as user-defined func-
tions. In such situations, you will need to distribute these dependent definitions across the subker-
nels before running the parallel computation.

12.3 Parallel processing 519

In[24]:= DistributeDefinitions@
PointInPolygonQ, TriangleArea, pts, polyD

Out[24]= 8PointInPolygonQ, TriangleArea, pts<

Now the speedup is quite pronounced – about four times the serial computation – which is all
that we can expect on a system with four subkernels.

In[25]:= Timing@ParallelMap@PointInPolygonQ@poly, ÒD &, ptsD;D

Out[25]= 80.293113, Null<

In[26]:= CloseKernels@D;

Profiling
When you are developing programs it is not always obvious where speed bottlenecks may live.
Especially with longer programs, there are numerous steps where the evaluation can bog down. If
you are trying to determine which steps will benefit from running in parallel you need to get
some sense of where most of the time is being spent. One way to help locate the computational
bottlenecks is to profile the code. Integrated development environments such as Wolfram Work-
bench have built-in profilers, but here we will create a simple set of profiling steps to determine
where we should focus our efforts in improving the running time of our code.

Recall the Blanagrams function from Section 9.5.

In[27]:= Blanagrams@word_StringD := Module@8blana<,
blana = Table@Map@StringReplacePart@word, ch, 8Ò, Ò<D &,

Range@StringLength@wordDDD,
8ch, CharacterRange@"a", "z"D<D;

DeleteDuplicates@Flatten@Map@Anagrams, blana, 82<DDDD

Although the nested functions might obscure the numerous computations being done here, we
will break things down into three parts:

Ê using Table to create a list of alternate “words” by sequentially replacing each letter in
word with one of the twenty-six letters a through z;

Ê mapping Anagrams across the list produced by Table;

Ê flattening and deleting duplicates.

To do the profiling of the steps in this code, we first create a small auxiliary function that wraps
AbsoluteTiming around an expression and adds a tag to make it easy to identify the various
steps of the computation. The timing function is given the HoldAll attribute to prevent
AbsoluteTiming from evaluating before its argument is passed to it.

520 Optimizing Mathematica programs

In[28]:= timing@expr_, tag_D :=

Print@8NumberForm@FirstüAbsoluteTiming@exprD, 10D, tag<D
SetAttributes@timing, HoldAllD;

For the test word, "string", here are the three steps pulled out of the Blanagrams function.
First, load the package containing the definition of Anagrams.

In[30]:= Needs@"PwM`Chap09Strings`"D

In[31]:= word = "string";
timing@tmp = Table@

Map@StringReplacePart@word, ch, 8Ò, Ò<D &,
Range@StringLength@wordDDD,

8ch, CharacterRange@"a", "z"D<D;, "table"D;

timing@Flatten@tmp2 = Map@Anagrams, tmp, 82<DD;,
"map Anagrams"D;

timing@DeleteDuplicates@Flatten@tmp2DD;,
"flatten and delete duplicates"D

80.001996, table<

87.357115, map Anagrams<

80.000043, flatten and delete duplicates<

Creating the many possible letter combinations is very quick. Similarly, flattening and deleting
duplicates at the end is not too expensive. The greatest part of this computation is spent mapping
Anagrams across the many word combinations. So we can simply try to parallelize that using
ParallelMap .

In[35]:= BlanagramsParallel@word_StringD := Module@8blana<,
blana = Table@

Map@StringReplacePart@word, ch, 8Ò, Ò<D &,
Range@StringLength@wordDDD,

8ch, CharacterRange@"a", "z"D<D;
DeleteDuplicatesü
Flatten@ParallelMap@Anagrams, blana, 82<DD

D

There is no need to distribute BlanagramsParallel across the subkernels as the only parallel
piece in it is ParallelMap . But ParallelMap is mapping Anagrams which is not a built-in
function, so we need to distribute that definition across the subkernels.

12.3 Parallel processing 521

In[36]:= LaunchKernels@D

Out[36]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[37]:= DistributeDefinitions@AnagramsD

Out[37]= 8Anagrams<

In[38]:= BlanagramsParallel@"strands"D êê AbsoluteTiming

Out[38]= 819.959044, 8strands, stander,
sanders, dristan, strains, rostand, tundras<<

For comparison, here is the computation done serially on one kernel.

In[39]:= Blanagrams@"strands"D êê AbsoluteTiming

Out[39]= 833.712342, 8strands, stander,
sanders, dristan, strains, rostand, tundras<<

On the machine on which this computation was run, we are getting almost a 2× speedup. Recall
that each evaluation of Anagrams makes a call to DictionaryLookup to check that the string
is in fact a word appearing in the dictionary. This bit of extra overhead is a further bottleneck in
this particular code. We could next look to Anagrams as another source of code to optimize and
speed up, but we will leave that as an exercise to the interested reader.

Note: There is a mechanism to automatically launch packages on all parallel kernels.
ParallelNeedsA" package` "E evaluates NeedsA" package` "E on each of the available

subkernels.

In[40]:= ParallelNeeds@"PwM`Chap09Strings`"D

You can then see that the package has been added to the context path of each subkernel.

In[41]:= ParallelEvaluate@$ContextPath, Kernels@DD

Out[41]= 88PwM`Chap09Strings`, PacletManager`,
WebServices`, System`, Global`<, 8PwM`Chap09Strings`,
PacletManager`, WebServices`, System`, Global`<,

8PwM`Chap09Strings`, PacletManager`, WebServices`,
System`, Global`<, 8PwM`Chap09Strings`,
PacletManager`, WebServices`, System`, Global`<<

In[42]:= ParallelEvaluate@Anagrams@"float"DD

Out[42]= 88float, aloft<, 8float, aloft<,
8float, aloft<, 8float, aloft<<

In[43]:= CloseKernels@D;

522 Optimizing Mathematica programs

Exercises
1. In the eighteenth century, Leonhard Euler proved that all even perfect numbers must be of the form

2p-1 H2p - 1L for 2p - 1 prime. (No one has yet proved that any odd perfect numbers exist.) Use this
fact to find all even perfect numbers for p < 10

4.

2. The following code can be used to create a plot of the Mandelbrot set. It uses Table to compute the
value for each point in the complex plane on a small grid. We have deliberately chosen a relatively
coarse grid (n = 100) as this is an intensive and time-consuming computation. The last argument to
NestWhileList, 250 here, sets a limit on the number of iterations that can be performed for each
input.

In[1]:= Mandelbrot@c_D :=

Length@NestWhileList@Ò ^2 + c &, 0, Abs@ÒD < 2 &, 1, 250DD

In[2]:= data = WithB8n = 100<, TableBMandelbrot@x + I yD,

:y, -0.5, 0.5,
1

n
>, :x, -1.75, -0.75,

1

n
>FF;

In[3]:= ArrayPlot@data, ColorFunction Ø "GreenPinkTones"D

Out[3]=

Increase the resolution of the graphic by running the computation in parallel.

12.4 Compiling
In addition to the techniques outlined earlier in this chapter, you can also create compiled func-
tions in Mathematica in a variety of ways. Compiled functions are objects that can be executed
quickly by being close to the machine code of your computer. The great advantage of working
with compiled functions is that they are very fast. Part of the reason they are fast is that they do
not need to worry about all the possible kinds of expressions on which they might be called to
operate. For example, the built-in Plus function has to handle any kind of argument it might be
given.

12. 523

In[1]:= 81 ê 3 + 2, 2 - 4 I + 5.1, 2 + 7<

Out[1]= :
7

3
, 7.1 - 4. Â, 9>

This kind of generality comes at a cost: Mathematica needs to keep track of the kinds of numbers
you are passing to arithmetic functions so that the correct internal rule is applied, precision and
accuracy are tracked and maintained, and so on. A compiled function, on the other hand, has its
argument type explicitly specified so that it only operates on arguments of that type.

Compile
Let us start with a simple example, creating a compiled function called cfun. It is expecting an
argument x, that must match the pattern _Real, that is, the argument must have head Real.

In[2]:= cfun = Compile@88x, _Real<<, x^2 + 1D

Out[2]= CompiledFunctionA8x<, x2 + 1, -CompiledCode-E

Mathematica creates a CompiledFunction object using something called the Mathematica
virtual machine. Essentially Mathematica contains a compiler that can be used for this purpose.
The advantage is that it is easy to use and does not require you to have a C compiler installed on
your computer. On the other hand, it is not going to compete in optimized code with a commer-
cial C compiler. We will look at compiling to C in the next section.

You use a compiled function like any other, for example, you can evaluate it at an argument or
plot it, or integrate it.

In[3]:= cfun@2.0D

Out[3]= 5.

In[4]:= Plot@cfun@xD, 8x, -1, 1<D

Out[4]=

-1.0 -0.5 0.5 1.0

1.2

1.4

1.6

1.8

2.0

In[5]:= NIntegrate@cfun@xD, 8x, 0, 1<D

Out[5]= 1.33333

524 Optimizing Mathematica programs

The point of creating and working with compiled functions is that they can speed up computa-
tions. This is most pronounced with expressions that have to be evaluated many times. For
example, let us return to the function created in Section 12.1.

In[6]:= fun@x_D := IfA-1 < x < 1, Exp@xD, x2E

In[7]:= vec = RandomRealA8-100, 100<, 106E;

In[8]:= AbsoluteTiming@Map@fun, vecD;D

Out[8]= 81.948716, Null<

In[9]:= purefun = FunctionA8x<, IfA-1 < x < 1, Exp@xD, x2E, ListableE;

In[10]:= AbsoluteTiming@purefun@vecD;D

Out[10]= 80.107674, Null<

Here is the compiled version.

In[11]:= compfun = CompileA88x, _Real<<, IfA-1 < x < 1, Exp@xD, x2EE

Out[11]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[12]:= AbsoluteTiming@Map@compfun, vecD;D

Out[12]= 80.205933, Null<

Not bad, but we can go a bit further and add a runtime attribute to the compiled function that
makes it listable.

In[13]:= compfunListable = CompileA88x, _Real<<,

IfA-1 < x < 1, Exp@xD, x2E, RuntimeAttributes Ø 8Listable<E

Out[13]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[14]:= AbsoluteTiming@compfunListable@vecD;D

Out[14]= 80.098877, Null<

Another option, Parallelization Ø True, sets the function to run in parallel if run on a
multi-core machine.

12.4 Compiling 525

In[15]:= compfunParallel =

CompileA88x, _Real<<, IfA-1 < x < 1, Exp@xD, x2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[15]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[16]:= AbsoluteTiming@compfunParallel@vecD;D

Out[16]= 80.098661, Null<

An additional option can be specified to optimize for speed: "RuntimeOptions" with the
value "Speed" . The caveat here is that this turns off checks and warning messages that might be
issued if underflow or overflow errors were caught. Use it with caution.

In[17]:= compfunSpeed = CompileA88x, _Real<<,

IfA-1 < x < 1, Exp@xD, x2E, RuntimeAttributes Ø 8Listable<,

Parallelization Ø True, "RuntimeOptions" Ø "Speed"E

Out[17]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

In[18]:= AbsoluteTiming@compfunSpeed@vecD;D

Out[18]= 80.088693, Null<

If you want to see some of the internals of what Compile produces and operates on, use
CompilePrint which is defined in the CompiledFunctionTools package (we only show a short
fragment of the code).

In[19]:= << CompiledFunctionTools`

In[20]:= CompilePrint@compfunSpeedD êê Short
Out[20]//Short=

1 argument
1 Boolean register
2 In … 0

8 R2 = Square@ R0D
9 R4 = R2
10 Return

526 Optimizing Mathematica programs

Compiling to C
If you have a third-party C compiler installed on your computer, you can compile your functions
to C, thus taking advantage of any optimizations inherent in your C compiler. If you are not sure
if your system has a C compiler installed, you can evaluate SystemInformation@D and look
under the section External Compilers � Available C Compilers. Alternatively, you can list any C
compilers that are installed on your computer as follows:

In[21]:= Needs@"CCompilerDriver`"D

In[22]:= CCompilers@D

Out[22]= 88Name Ø GCC,
Compiler Ø CCompilerDriver`GCCCompiler`GCCCompiler,
CompilerInstallation Ø êusrêbin, CompilerName Ø Automatic<<

The syntax to compile to C code is Compile@…, CompilationTarget Ø "C"D. For
example, the following code compiles the function from the last section to C.

In[23]:= compfunC = CompileA88x, _Real<<,

IfA-1 < x < 1, Exp@xD, x2E, CompilationTarget Ø "C"E

Out[23]= CompiledFunctionA8x<,

IfA-1 < x < 1, Exp@xD, x2E, -CompiledCode-E

For this example, the C compiler provides a speedup over using Compile using Mathematica’s
virtual machine as we did in the previous section.

In[24]:= AbsoluteTiming@Map@compfunC, vecD;D

Out[24]= 80.073675, Null<

Finally, let us combine several of the optimization suggestions in this chapter in one nontrivial
computation. We will create a compiled function that computes the points in the Julia set. The
Julia set is the set of points in the complex plane that remain unbounded under iteration of a
function such as z2 + c. For most values of c œ � (the set of complex numbers), this iteration
generates fractals. The basic idea is to fix a value of c in the complex plane and then iterate the
function for points z on a fine grid in the complex plane. Since there are many points and many
iterations for each point, this is very computationally intensive and so it is a good candidate for
some of the techniques we have been discussing in this chapter.

First, here is the compiled version of the Julia set function. Length returns the length of the
list of iterates. We will iterate each point until the iterate is a certain distance from the origin.

12.4 Compiling 527

In[25]:= cJulia = Compile@88z, _Complex<, 8c, _Complex<<,
LengthüFixedPointList@HÒ ^2 + c &L,

z, 100, SameTest Ø HAbs@Ò2D > 2.0 &LD,
CompilationTarget Ø "C", RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, "RuntimeOptions" Ø "Speed"D

Out[25]= CompiledFunctionA8z, c<,

LengthAFixedPointListAÒ12 + c &, z, 100,

SameTest Ø HAbs@Ò2D > 2. &LEE, -CompiledCode-E

The grid of values that the function will evaluate is given by ParallelTable below. The result
is passed to ArrayPlot which colors each point in the grid according to its iteration length as
given by cnt.

In[26]:= LaunchKernels@D

Out[26]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[27]:= DistributeDefinitions@cJuliaD

Out[27]= 8cJulia, z<

Different Julia sets are generated for different complex numbers c. Here is the Julia set for the
complex number, c = -0.8 -0.156 Â.

In[28]:= WithB8res = 250<,

ArrayPlotBParallelTableB-cJulia@x + y Â, -0.8 - 0.156 ÂD,

:y, -1.5, 1.5,
1

res
>, :x, -1.5, 1.5,

1

res
>F,

ColorFunction Ø "Pastel"FF êê AbsoluteTiming

Out[28]= :3.436401, >

Changing c means changing both its real and imaginary parts so this is a good candidate for a
2D slider. Two modifications are needed here: the value of c from the parameter list will be a list

528 Optimizing Mathematica programs

of two numbers that need to be converted into a complex number for the second argument of
cJulia; and we have reduced the resolution of the grid of points used to make quick updating
easier. We also have included a setter bar to select different grid resolutions. The default value for
the resolution is set low so that you can quickly move the 2D slider to find an interesting result
and then click one of the higher-resolution buttons to see it in full fidelity.

In[29]:= ManipulateB

WithB8res1 = res<,

ArrayPlotBTableBcJulia@x + y I, Apply@Ò1 + Ò2 I &, cDD,

:y, -1.5, 1.5,
1

res1
>, :x, -1.5, 1.5,

1

res1
>F,

ColorFunction Ø "Pastel",
PlotLabel Ø Style@StringForm@"c = `1`",

Dynamic@HÒ1 + Ò2 I &L üü cDD, 10DFF,

Row@8
Control@
88c, 8-0.123, 0.745<, "c"<, 8-1.5, -1.5<, 81.5, 1.5<<D,

Spacer@40D,
Control@88res, 20, "resolution"<, 820, 50, 100<<D

<D, Bookmarks Ø 8
"Siegel disk" ß Hc = 8-0.391, -0.587<L,
"Douady's Rabbit" ß Hc = 8-0.123, 0.745<L<,

SaveDefinitions Ø TrueF

Out[29]=

c resolution 20 50 100

c = -0.123+0.745 Â

12.4 Compiling 529

One way to deal with the tug between quick interactivity and high resolution is to use the
function ControlActive@act, normD that returns the value act when the controller is active
(for example, when you are moving a slider) and returns the value norm when the controller is
not active (for example, when you release the slider). In this way, dynamically changing the value
of the parameter will result in quick updates since the low-resolution value will be used during
that update, but the graphic will snap to a high-resolution image soon after you release the
mouse. Which actual values to choose for ControlActive will depend a bit on the speed of
your hardware and some other factors, so you will have to experiment to find appropriate values.

In[30]:= Manipulate@
ArrayPlot@
Table@-cJulia@x + y Â, Apply@Complex, cDD,
8y, -1.5, 1.5, 1 ê ControlActive@30, 1000D<,
8x, -1.5, 1.5, 1 ê ControlActive@30, 1000D<

D, ColorFunction Ø "GreenPinkTones"
D,
88c, 8-0.8, -0.156<<, 8-1, -1<, 81, 1<<

D

Out[30]=

c

As we saw in Section 11.1, it is a bit more convenient to use a locator instead of a 2D slider so
that you can manipulate the point c directly. Below, we also include a different implementation of
the Julia function as part of the initialization as well as a dynamic plot label to display the value of
the parameter c as the locator is moved.

530 Optimizing Mathematica programs

In[31]:= ManipulateB

Graphics@8
PointSize@TinyD, Point@Transpose@8Re@ÒD, Im@ÒD<D &ü

Nest@julia@Apply@Complex, locD, ÒD &, 80.0<, 12DD
<,
PlotLabel Ø StringForm@"c = `1`", Apply@Complex, locDDD,

88loc, 8-0.4, 0.6<<, 8-2, -2<, 82, 2<, Locator<,

Initialization ß :

julia = CompileB88c, _Complex<, 8z, _Complex, 1<<,

FlattenB: z - c , -J z - c N>FF

>,

SaveDefinitions Ø True

F

Out[31]=

c = -0.4+0.6 Â

Exercises
1. Create a compiled function that computes the distance to the origin of a two-dimensional point.

Then compare it to some of the built-in functions such as Norm and EuclideanDistance for a
large set of points. If you have a C compiler installed on your computer, use the Compile option,
CompilationTarget Ø "C" and compare the results.

2. Modify the previous exercise under the assumption that complex numbers are given as input to
your compiled function.

12.4 Compiling 531

3. Many other iteration functions can be used for the Julia set computation. Experiment with some
other functions such as c sinHzL, c ‰z, or Gaston Julia’s original function:

 z4 + z3 ëHz - 1L + z2 ëIz3 + 4 z2 + 5M + c.

For these functions, you will have to adjust the test to determine if a point is unbounded upon
iteration. Try HAbs@Im@ÒDD > 50 &L.

532 Optimizing Mathematica programs

13

Applications and packages
Random walk application · Lattice walks · Off-lattice walks · RandomWalk · Error and usage
messages · Visualization · Animation · Working with packages · Package location · Contexts ·
Package framework · Creating and installing the package · RandomWalks package · Running

the package

When you have developed several programs for some related tasks, you will find it convenient to
group them together and make them available as a cohesive application that can easily be used
and incorporated in your work. Packages and applications are part of the framework in Mathemat-
ica that makes this possible. A package is simply a text file containing Mathematica code. Typically
you put related functions in a package. So there might be a computational geometry package or a
random walks package that includes functions in support of those tasks. An application, in
Mathematica, is a set of packages together with various user-interface elements such as documenta-
tion, palettes, and perhaps stylesheets.

When you develop an application, it is important to think about how your functions work
with each other as well as how well they integrate with the rest of Mathematica. The user’s inter-
face to your programs should be as close as possible to that of the built-in functions in Mathemat-
ica so that users can more easily pick up the syntax and usage. Packages provide the framework to
do this. In this chapter, features such as options, argument checking, messaging, and documenta-
tion are all discussed in the context of a larger application – random walks. We will gather much
of the code fragments from earlier chapters and add an options framework, error and usage
messages, and some new interactive visualization tools as we develop the RandomWalks package
in this chapter.

13.1 Random walk application
Random walks are widely used to represent random processes in nature: physicists use them to
model the transport of molecules, biologists work with models of the locomotion of organisms,
engineers use random walks to model heat conduction, and economists model time behavior of
financial markets with them. This model can be envisioned by thinking of a person taking a
succession of steps that are randomly oriented with respect to one another. It provides a good
application of Mathematica to a problem that involves a diverse set of computational tasks: model-
ing, simulation, statistical analysis, visualization, and interface construction.

In this section, we will gather many of the random walk programs from earlier sections and
exercises in this book and create an application for working with random walks in one, two, and
three dimensions. Our application will include options for setting the dimension and whether
the random walk is on or off the lattice. We will add error and usage messages as well as func-
tions for visualization and animation. Finally, we will introduce contexts and the package frame-
work and pour our application into a package that can be distributed to others and used like any
other Mathematica package. The contents of the RandomWalks package are included with the
materials that accompany this book (see Preface).

Lattice walks
One-dimensional lattice walks The simplest random walk model consists of a number of steps of
equal length, back-and-forth along a line. A step in the direction of the positive horizontal axis
corresponds to a value of 1 and a step in the direction of the negative horizontal axis corresponds
to a value of -1. A list of the successive step directions of a t-step random walk in one dimension
is therefore a list of t randomly selected 1s and -1s. For example, here are five step directions,
randomly selected from the list 8-1, 1<.

In[1]:= dirs = RandomChoice@8-1, 1<, 5D

Out[1]= 8-1, -1, -1, 1, 1<

From these step directions how do we create the random walk? A moment’s thought should
convince you that we can add one step direction to the previous location to generate the “walk”.
Accumulate essentially computes partial sums, which is perhaps clearer with an example using
symbolic input.

In[2]:= Accumulate@8a, b, c, d, e<D

Out[2]= 8a, a + b, a + b + c, a + b + c + d, a + b + c + d + e<

534 Applications and packages

So if we accumulate the list dirs above, this generates a list of the locations of a one-dimen-
sional five-step walk starting at the origin.

In[3]:= Accumulate@dirsD

Out[3]= 8-1, -2, -3, -2, -1<

Here then is a function, walk1D, that generates a list of the step locations of a t-step random walk.

In[4]:= walk1D@t_D := Accumulate@RandomChoice@8-1, 1<, tDD

Here is a small run of the walk1D program for ten steps.

In[5]:= walk1D@10D

Out[5]= 8-1, -2, -1, -2, -1, -2, -1, -2, -3, -4<

To visualize such a random walk quickly we use ListLinePlot. The heights of the graph
represent distances from the starting point and the number of steps is given along the horizontal
axis.

In[6]:= ListLinePlot@walk1D@1000DD

Out[6]=
200 400 600 800 1000

-20

-10

10

Here is a picture of twelve random walks, each of length 1000.

In[7]:= ListLinePlot@Table@walk1D@1000D, 812<DD

Out[7]=
200 400 600 800 1000

-60

-40

-20

20

40

One property that starts to become apparent with these plots is the fact that as the length of
the random walk increases, so does the average distance to the origin, as seen by the vertical
height from the curves to the horizontal axis. A plot comparing walk length with distance to the
origin shows those distances growing ever wider.

13.1 Random walk application 535

In[8]:= ListLinePlot@Table@8len, AbsüLastüwalk1D@lenD<,
8len, 1000, 500000, 1000<D, AspectRatio Ø .3D

Out[8]=

100 000 200 000 300 000 400 000 500 000

500

1000

1500

Before we go further, there is one minor wrinkle in this implementation of walk1D. The use of
Accumulate does not give the origin as the first element in its output. For purposes of analyz-
ing these random walks numerically, it is often convenient to have the list of locations start at the
origin. This can be accomplished by using FoldList instead of Accumulate , joining 0 to the
output of Accumulate .

In[9]:= SeedRandom@0D;
FoldList@Plus, 0, RandomChoice@8-1, 1<, 10DD

Out[10]= 80, 1, 0, 1, 0, -1, 0, 1, 2, 1, 0<

In[11]:= SeedRandom@0D;
Join@80<, walk1D@10DD

Out[12]= 80, 1, 0, 1, 0, -1, 0, 1, 2, 1, 0<

In the next section we will implement a slightly different approach using identity matrices. We
will use the simpler code here in the text to aid in readability but either implementation could be
altered to start at the origin using a construct like Join above.

Two-dimensional lattice walks The random walk model in higher dimensions is a bit more compli-
cated than the random walk in one dimension. In one dimension, each step of the walk is either a
forward step represented by 1 or a backwards step represented by -1. In higher dimensions, a step
can take a range of orientations with respect to previous steps.

Figure 13.1. Two-dimensional rectangular lattice.

-4 -2 2 4

-3

-2

-1

1

2

3

536 Applications and packages

We will consider a random walk on a lattice, appropriately referred to as a lattice walk. Specifi-
cally, we will look at a lattice walk on the two-dimensional rectangular lattice (Figure 13.1).
This walk consists of steps of uniform length, randomly taken in the north, south, east, or west
direction – the compass directions. Essentially, we are working with the following four vectors in the
Cartesian plane. These four points are often referred to as the von Neumann neighborhood of the
central point (Figure 13.2).

In[13]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;

Figure 13.2. A site with its four nearest (von Neumann) neighbors.

A list of t step increments is created by randomly selecting one of the four directions and then
adding that vector to the existing site. For example, this chooses two step directions from NSEW.

In[14]:= RandomChoice@NSEW, 2D

Out[14]= 881, 0<, 80, -1<<

If the current site had coordinates 82, 3<, then adding the first step location to that site gives the
new position.

In[15]:= 82, 3< + 81, 0<

Out[15]= 83, 3<

Adding the second step location to 83, 3< gives the next position.

In[16]:= % + 80, -1<

Out[16]= 83, 2<

Using Accumulate as we did in the case of the one-dimensional random walk, we iterate this
process for an arbitrary number of steps. Here is a program to generate a list of the step locations
of a t-step, two-dimensional lattice walk.

In[17]:= walk2D@t_D := Accumulate@RandomChoice@NSEW, tDD

Try this out on a ten-step walk, that is, for t = 10.

13.1 Random walk application 537

In[18]:= walk2D@10D

Out[18]= 88-1, 0<, 80, 0<, 80, 1<, 80, 2<,
80, 3<, 81, 3<, 82, 3<, 82, 2<, 82, 1<, 82, 2<<

There is more than a little similarity between the two functions walk1D and walk2D. Both
use Accumulate , randomly choosing t elements from some list. In the case of one-dimensional
walks, that list is simply 8-1, 1<; for two-dimensional walks it is the list NSEW. Let us try a
slightly different approach, one that uses these similarities to simplify the lattice walk code.

The key observation is to think about this as a vector problem. In two dimensions, the vectors
that RandomChoice is choosing are essentially the two orthogonal vectors 81, 0< and 80, 1<
together with the opposite of each of these. Both these vectors are given by the identity matrix of
the appropriate dimension.

In[19]:= Join@IdentityMatrix@1D, -IdentityMatrix@1DD

Out[19]= 881<, 8-1<<

In[20]:= Join@IdentityMatrix@2D, -IdentityMatrix@2DD

Out[20]= 881, 0<, 80, 1<, 8-1, 0<, 80, -1<<

In[21]:= Join@IdentityMatrix@3D, -IdentityMatrix@3DD

Out[21]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<,
8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<

This makes the code for the random walks consistent but it also generalizes to n-dimensional
space. We will pursue this approach for the lattice walks.

Before we write the code for the n-dimensional lattice walk, we need to make one adjustment
in the case of one-dimensional walks. IdentityMatrix@1D returns the list 81< so we will
need to flatten that list for this case only.

Here then is the code for an n-dimensional lattice walk.

In[22]:= latticeWalk@steps_, dim_D := Module@8w<,
w = Accumulate@RandomChoice@Join@

IdentityMatrix@dimD, -IdentityMatrix@dimDD, stepsDD;
If@dim ã 1, Flatten@wD, wDD

In[23]:= latticeWalk@5, 2D

Out[23]= 880, -1<, 8-1, -1<, 8-2, -1<, 8-2, -2<, 8-2, -1<<

We visualize the path these steps take in the plane by connecting each of these points with a line.
This displays a 2500-step random walk. We have set the AspectRatio so that our plot has a
more natural ratio of height to width.

538 Applications and packages

In[24]:= ListLinePlot@latticeWalk@2500, 2D, AspectRatio Ø AutomaticD

Out[24]=

10 20 30 40

-40

-30

-20

-10

10

And here is a one-dimensional lattice walk.

In[25]:= ListLinePlot@latticeWalk@2500, 1DD

Out[25]=

500 1000 1500 2000 2500

-30

-20

-10

10

20

30

40

Three-dimensional lattice walks In three dimensions, there are six different directions that can be
taken at any given step (Figure 13.3).

Figure 13.3. A site (cube) with its six nearest neighbors in a three-dimensional rectangular lattice.

We have seen above that steps along the direction given by the nearest neighbors can be
represented by joining the identity matrix with its opposite; this is already built into the latÖ
ticeWalk function.

13.1 Random walk application 539

In[26]:= Join@IdentityMatrix@3D, -IdentityMatrix@3DD

Out[26]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<,
8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<

The visualization of these points in 3-space is straightforward – connect each point with a line
(or tube) and then convert to a graphical object to display.

In[27]:= Graphics3D@Tube@latticeWalk@2500, 3DDD

Out[27]=

As an aside, the latticeWalk function can be used to create n-dimensional walks for any
positive integer n > 0. Although visualizing such objects is difficult, we can still ask questions
about the nature of such walks similar to the discussion in Section 8.4. For example, here are five
steps in a nine-dimensional random walk.

In[28]:= latticeWalk@5, 9D

Out[28]= 880, 0, 1, 0, 0, 0, 0, 0, 0<,
80, 0, 1, 1, 0, 0, 0, 0, 0<, 80, -1, 1, 1, 0, 0, 0, 0, 0<,
80, -1, 1, 1, 1, 0, 0, 0, 0<, 8-1, -1, 1, 1, 1, 0, 0, 0, 0<<

This computes the distance to the origin of the last step in this nine-dimensional walk.

In[29]:= Norm@Last@%DD

Out[29]= 5

Off-lattice walks
Although lattice walks are fairly easy to visualize and program, there are many physical phenom-
ena, such as Brownian motion, for which walks off the lattice are more appropriate models. In
this section, we will create off-lattice versions of the random walk functions from the previous
section. They are similar to the lattice walk code except that the step directions are real numbers
in a certain range instead of integers from the lattice. Once they are developed, we will create a
function, offLatticeWalk, that will call the appropriate function for a given dimension. For
two and three dimensions, we have chosen to use walks in which each step is of unit length. You
are encouraged to modify these programs to allow other step lengths.

540 Applications and packages

One-dimensional off-lattice walk In the one-dimensional case, steps of unit length give the lattice
walk described above. For our off-lattice walk, we will take step directions chosen to be any real
number between -1 and 1. Of course, this means that for this case, steps are not of length 1.

In[30]:= walk1DOffLattice@t_D := Accumulate@RandomReal@8-1, 1<, tDD

In[31]:= walk1DOffLattice@5D

Out[31]= 80.187697, 0.0873112, 0.0752274, -0.906305, -1.896<

Two-dimensional off-lattice walk In the two-dimensional case, we essentially compute polar points
and so the directions are polar angles between 0 and 2 p; the coordinates of the points are given
by the pair Hcos q, sin qL, which gives steps of unit length.

In[32]:= walk2DOffLattice@t_D :=

Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, tDDD

In[33]:= walk2DOffLattice@5D

Out[33]= 88-0.993598, -0.112978<,
8-0.900142, -1.1086<, 8-1.81362, -0.701705<,
8-2.08523, -1.66411<, 8-1.12155, -1.93117<<

Let us quickly check that each step is of length 1.

In[34]:= Partition@%, 2, 1D

Out[34]= 888-0.993598, -0.112978<, 8-0.900142, -1.1086<<,
88-0.900142, -1.1086<, 8-1.81362, -0.701705<<,
88-1.81362, -0.701705<, 8-2.08523, -1.66411<<,
88-2.08523, -1.66411<, 8-1.12155, -1.93117<<<

In[35]:= Apply@EuclideanDistance, %, 1D

Out[35]= 81., 1., 1., 1.<

Three-dimensional off-lattice walk There are several different ways to approach the three-dimen-
sional off-lattice walk. Using a spherical coordinate system, a point uniformly distributed on the
sphere can be obtained from the following equations (Weisstein, Sphere point picking):

x = cosHqL 1 - u2 ,

y = sinHqL 1 - u2 ,
z = u.

We need to produce pairs of random numbers q and u with q in the interval [0, 2 pL and u in the
interval [-1, 1]. Here then is the function to generate t steps of an off-lattice random walk in three
dimensions.

13.1 Random walk application 541

In[36]:= walk3DOffLattice@t_D := AccumulateBTableB

FunctionB8q, u<, :Cos@qD 1 - u2 , Sin@qD 1 - u2 , u>F üü

8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<F

F

In[37]:= walk3DOffLattice@4D

Out[37]= 880.487841, -0.240428, -0.83917<,
81.14515, 0.153194, -1.48183<,
80.686236, 1.00981, -1.24599<, 81.13357, 0.93944, -0.354398<<

Again, check that each step is of unit length.

In[38]:= Apply@EuclideanDistance, Partition@%, 2, 1D, 1D

Out[38]= 81., 1., 1.<

The offLatticeWalk function We now use the common elements to simplify our code, similarly to
what we did earlier with the lattice walk code. The only difference amongst these three cases is
the function that we are accumulating. We will use Which to slot in the appropriate function to
Accumulate , based on the value of the dimension argument, dim.

In[39]:= offLatticeWalk@t_, dim_D := ModuleB8f1, f2, f3<,

f1 = RandomReal@8-1, 1<, tD;
f2 = Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, tDD;

f3 = TableB

FunctionB8q, u<, :Cos@qD 1 - u2 , Sin@qD 1 - u2 , u>F üü

8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<F;

Which@
dim ã 1, Accumulate@f1D,
dim ã 2, Accumulate@f2D,
dim ã 3, Accumulate@f3D

D

F

542 Applications and packages

Try out the code for dimensions one through three.

In[40]:= ListLinePlot@offLatticeWalk@10 000, 1DD

Out[40]=

2000 4000 6000 8000 10 000

20

40

60

80

100

120

In[41]:= ListLinePlot@offLatticeWalk@10 000, 2D,
AspectRatio Ø AutomaticD

Out[41]=
-20 20 40 60

-30

-20

-10

10

20

30

In[42]:= Graphics3D@LineüoffLatticeWalk@10 000, 3DD

Out[42]=

RandomWalk
We have now developed two separate functions, latticeWalk and offLatticeWalk. Our
intention is that these will be auxiliary functions that the user should not have to remember. It is
preferable to have one function, RandomWalk, that has a simple, easy-to-remember interface
that calls the appropriate function when needed. In computer languages, the RandomWalk
function is often called the public function, the user’s interface to the underlying code. The two
auxiliary functions latticeWalk and offLatticeWalk are referred to as private functions

13.1 Random walk application 543

and are kept hidden from the user interface. The developer of such code is then free to change
these underlying private constructs as the need arises and the user does not need to worry about
them as the public interface remains unchanged.

Following on from the discussion of options in Section 5.7, we start by creating two optional
arguments (options) to our RandomWalk function – LatticeWalk and Dimension – and
give their default values. These are the values that will be used whenever explicit options to
RandomWalk are not given. The idea is that if LatticeWalk has a value of True ,
RandomWalk will call the latticeWalk function. Similarly, if the Dimension option has a
value of 3 say, that will be passed to the appropriate function automatically.

In[43]:= Options@RandomWalkD = 8LatticeWalk Ø True, Dimension Ø 2<

Out[43]= 8LatticeWalk Ø True, Dimension Ø 2<

Here is the RandomWalk function with the option structure in place.

In[44]:= RandomWalk@t_, OptionsPattern@DD := Module@8dim, latticeQ<,
8latticeQ, dim< = OptionValue@8LatticeWalk, Dimension<D;
If@latticeQ, latticeWalk@t, dimD, offLatticeWalk@t, dimDD

D

Some comments on this code are in order:

Ê To pass the options into the RandomWalk function, we use OptionsPattern on the left-
hand side of the function definition.

Ê To extract the values from the options, we use OptionValue . We can use the syntax
OptionValue@8LatticeWalk, Dimension<D to extract the values of these options
since, in this case, OptionValue will assume the function to which the options are
referring is the head of the left-hand side of the rule.

Ê We assign the values of the options to local symbols latticeQ and dim inside the body of
the RandomWalk function.

Ê Note the use of If to check the value of the LatticeWalk option and then call the
appropriate auxiliary (private) function. If the LatticeWalk option has been set to True,
then the first branch of the If statement is followed, giving the lattice walk. If
LatticeWalk has any other value (False, for example), then the off-lattice definition is
used.

This will be the user-interface to the random walk machinery we are building. The two func-
tions latticeWalk and offLatticeWalk will be private, meaning the user does not need to
know anything about them to use RandomWalk.

544 Applications and packages

Let us exercise the options and check that each of the six possible walks produces a sensible
result. First, we compute the lattice walks.

In[45]:= RandomWalk@5, Dimension Ø 1D

Out[45]= 8-1, 0, -1, 0, 1<

In[46]:= RandomWalk@5D

Out[46]= 881, 0<, 82, 0<, 83, 0<, 84, 0<, 85, 0<<

In[47]:= RandomWalk@5, Dimension Ø 3D

Out[47]= 880, 0, -1<, 8-1, 0, -1<, 8-1, 0, -2<, 8-1, 0, -1<, 80, 0, -1<<

And here are some off-lattice walks in one, two, and three dimensions.

In[48]:= RandomWalk@5, Dimension Ø 1, LatticeWalk Ø FalseD

Out[48]= 80.197714, 0.337862, -0.32516, -0.80017, 0.0871163<

In[49]:= RandomWalk@5, Dimension Ø 2, LatticeWalk Ø FalseD

Out[49]= 88-0.960645, 0.277779<,
8-1.65285, -0.443924<, 8-2.64838, -0.538359<,
8-1.7695, -0.0613185<, 8-2.62799, 0.451512<<

In[50]:= RandomWalk@5, Dimension Ø 3, LatticeWalk Ø FalseD

Out[50]= 880.715746, -0.465297, -0.520775<,
80.327593, -0.724388, -1.4052<,
80.032606, -0.0297681, -2.06131<,
81.00896, -0.0818691, -2.27113<,
81.79858, -0.658968, -2.47958<<

Error and usage messages
While developing programs, it is a good idea to anticipate how a user of your programs will
interact with them. In particular, it is good programming style to try to catch any errors the user
may make and respond with an appropriate message. It is also a good idea to make your func-
tions, as much as possible, behave like built-in functions in terms of these error and warning
messages. A user that has already become familiar with these elements in Mathematica does not
need to learn new elements and this makes it that much easier for anyone to adopt and use your
code.

One of the conditions we might want to check for with our RandomWalk function is that the
user enters a positive integer as the first argument. Let us first write the warning message.

In[52]:= RandomWalk::rwn = "Argument `1` is not a positive integer.";

13.1 Random walk application 545

And here is a simple trap for this condition that will be placed in the body of RandomWalk:

If@! HIntegerQ@tD && t > 0L, Message@RandomWalk::rwn, tD, …D

If the first argument, t (the number of steps), to RandomWalk passes the test inside this If
statement – if it fails to be an integer or fails to be greater than zero – then a message will be
generated substituting the argument t for `1` in the rwn message above.

In[53]:= Message@RandomWalk::rwn, -42D
RandomWalk::rwn : Argument -42 is not a positive integer.

Let us also create a warning message to be issued if the value of the Dimension option is any-
thing but the integers 1, 2, or 3.

In[54]:= RandomWalk::baddim =
"The value `1` of the option Dimension is

not an integer between 1 and 3.";

In[55]:= Message@RandomWalk::baddim, 0D
RandomWalk::baddim : The value 0 of the option Dimension is not an integer between 1 and 3.

The usage message for RandomWalk begins with a function template.

In[56]:= RandomWalk::usage =
"RandomWalk@tD generates a t-step random walk.

The default behavior gives a two-dimensional
lattice walk with steps in one of the four
compass directions. The option LatticeWalk
takes values True or False. The value of the
option Dimension can be any of 1, 2, or 3.";

Below is the rewritten RandomWalk function with the messaging included. Which is used
here so that if the either of the first two conditions pass, then the corresponding warning mes-
sage is issued. If the two conditions fail – if the argument is a positive integer – then the last
condition, True, passes and the If statement is evaluated generating a lattice or off-lattice walk
depending upon the value of latticeQ. We clear out any previous definitions for
RandomWalk. Clear does not remove messages and options. If you need to remove messages,
attributes, or options, use ClearAll or Remove.

In[57]:= Clear@RandomWalkD

546 Applications and packages

In[58]:= RandomWalk@t_, OptionsPattern@DD := Module@8dim, latticeQ<,
8latticeQ, dim< = OptionValue@8LatticeWalk, Dimension<D;
Which@
! HIntegerQ@tD && t > 0L, Message@RandomWalk::"rwn", tD,
! HIntegerQ@dimD && 1 § dim § 3L,
Message@RandomWalk::baddim, dimD,
True, If@latticeQ, latticeWalk@t, dimD,
offLatticeWalk@t, dimDDDD

If we pass a noninteger or negative argument to RandomWalk, the warning will be triggered.

In[59]:= RandomWalk@-6D
RandomWalk::rwn : Argument -6 is not a positive integer.

If the value of the Dimension option is invalid, another warning is issued.

In[60]:= RandomWalk@12, Dimension Ø 4D
RandomWalk::baddim : The value 4 of the option Dimension is not an integer between 1 and 3.

Visualization
Since our random walks can be represented by points (and possibly lines) in the plane or in 3-
space, we can use built-in visualization functions or graphics primitives that are designed to work
with these objects. There are two advantages to this approach: once implemented, computations
are very fast and the resulting graphics objects are as compact as possible. Both of these facts are
quite important when working with very large graphical objects, objects that can have over a
million components, for example.

We will prototype the visualization functions by first creating simplified functions without
options or messaging. Once that framework is in place, we will then flesh out the full versions by
adding in these other components.

For one-dimensional random walks we simply connect the coordinates with a line using the
built-in function ListLinePlot.

ListLinePlotAcoordsE

If our list of coordinates consists of pairs of numbers, ListLinePlot will plot each pair in the
coordinate plane using the usual association of first coordinate of each pair along the horizontal
axis and the second coordinate of each pair along the vertical axis.

13.1 Random walk application 547

Since there is no provision for ListLinePlot to take coordinate triples, we will have to
manually construct the graphics from primitive elements in the three-dimensional case. Alterna-
tively, you could call ListLinePlot3D developed in Section 10.4.

Graphics3DALineAcoordsEE

Here is the code for ShowWalk. The patterns 88_, _< ..< and 88_, _, _< ..< match the
cases of one or more pairs or triples of coordinates, respectively. In each case, the pattern is given
a name, coords, to be used in the body of each function.

In[61]:= ShowWalk@coords_?VectorQD := ListLinePlot@coordsD

In[62]:= ShowWalk@coords : 88_, _< ..<D :=

ListLinePlot@coords, AspectRatio Ø AutomaticD

In[63]:= ShowWalk@coords : 88_, _, _< ..<D := Graphics3D@Line@coordsDD

This displays a 100 000-step one-dimensional random walk.

In[64]:= ShowWalkARandomWalkA105, Dimension Ø 1EE

Out[64]=

20 000 40 000 60 000 80 000 100 000

-400

-300

-200

-100

Here is a 100 000-step, two-dimensional, off-lattice walk.

In[65]:= ShowWalkARandomWalkA105, Dimension Ø 2, LatticeWalk Ø FalseEE

Out[65]=

50 100 150 200 250 300 350

-50

50

100

150

200

250

548 Applications and packages

And here is a three-dimensional lattice walk.
In[66]:= ShowWalkARandomWalkA104, Dimension Ø 3, LatticeWalk Ø TrueEE

Out[66]=

Next, we want to use the many built-in graphics options with our ShowWalk function but
some options are only valid for ListLinePlot (one and two dimensions) and other options
are specific to Graphics3D . By filtering the appropriate options, we ensure that Graphics3D
options are passed to the Graphics3D function and ListLinePlot options are passed to
ListLinePlot. This is done by using FilterRules . For example, the expression below will
return only those options that are specific to ListLinePlot.

FilterRules@8opts<, Options@ListLinePlotDD

Here are the rewritten rules for ShowWalk, including the options structure.

In[67]:= Clear@ShowWalkD

In[68]:= Options@ShowWalkD =
Join@Options@ListLinePlotD, Options@Graphics3DDD;

In[69]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords,
FilterRules@8opts<, Options@ListLinePlotDDD

In[70]:= ShowWalk@coords : 88_, _< ..<, opts : OptionsPattern@DD :=

ListLinePlot@coords,
Append@FilterRules@8opts<, Options@ListLinePlotDD,
AspectRatio Ø AutomaticDD

In[71]:= ShowWalk@coords : 88_, _, _< ..<, opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD

13.1 Random walk application 549

Alternatively, you could put all the different patterns inside a Switch and choose the appropri-
ate function based on the pattern match inside Switch. That approach may be a bit more
compact, but it comes at the cost of readability and greater difficulty modifying the code later.

Here is a 500-step off-lattice walk in two dimensions for which we have passed options to
ListLinePlot to set the aspect ratio and also to display all coordinates visited as points.

In[72]:= ShowWalk@RandomWalk@500, LatticeWalk Ø FalseD,
Mesh Ø All, AspectRatio Ø AutomaticD

Out[72]=
-15 -10 -5

-5

5

This exercises some of the three-dimensional graphics options for ShowWalk.

In[73]:= ShowWalk@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseD,
FaceGrids Ø 88-1, 0, 0<, 80, 1, 0<, 80, 0, -1<<,
BoxStyle Ø 8Thin, Gray<, AspectRatio Ø AutomaticD

Out[73]=

There are several alternative approaches that could be used to visualize random walks. Other
approaches (for example, one using GraphicsComplex and another using graphs) have their
advantages; we will find that graphics primitives and the built-in ListLinePlot, as we have
done here, is extremely fast and is the most efficient in terms of the size of the objects that we will
be generating. These issues and alternative approaches are explored in some detail in the exer-
cises at the end of this chapter.

Animation
Looking at the visualizations of random walks, it is clear that a lattice walk repeatedly revisits
sites in the course of its meandering. As a result, it is difficult to discern the history of the walk

550 Applications and packages

from a snapshot of the path. The best way to see the entire evolution of the walk in an unob-
scured fashion is to create an animation.

Animations are created by successively displaying graphical expressions, one frame at a time.
This is most easily accomplished with Animate , passing it one additional step in each frame.

You might try to animate a random walk by wrapping Animate around ListLinePlot,
making the length, n, the parameter to be manipulated by Animate .

In[74]:= Animate@
ListLinePlot@RandomWalk@nDD, 8n, 1, 500, 1<D

Out[74]=

n

-5 5 10 15

-15

-10

-5

5

But a moment’s thought should convince you that this is not the correct approach. For each value
of n, the expression ListLinePlot@RandomWalk@…DD is reevaluated and a new walk is
created so there is no correlation between successive “steps.” A second problem is that the
bounding box of each plot is jumping around quite a bit as Mathematica computes a new plot
range for each frame.

To tackle the first problem, we will pregenerate the entire walk and then take successive steps
using TakeAwalk, nE and pass the first n steps of the walk to Graphics@Line@…DD.

In[75]:= walk = RandomWalk@8D

Out[75]= 881, 0<, 81, -1<, 81, -2<,
80, -2<, 80, -1<, 80, 0<, 80, 1<, 81, 1<<

In[76]:= Take@walk, 1D

Out[76]= 881, 0<<

In[77]:= Take@walk, 2D

Out[77]= 881, 0<, 81, -1<<

In[78]:= Take@walk, 3D

Out[78]= 881, 0<, 81, -1<, 81, -2<<

Here is a sample 2000-step random walk that we will use for our animation.

In[79]:= rw = RandomWalk@2000, Dimension Ø 2, LatticeWalk Ø FalseD;

For the second problem, the plot range issue, we need to find the minimum and maximum
values in the horizontal and vertical directions from our walk so that we can pass their values to

13.1 Random walk application 551

the PlotRange option. Otherwise Mathematica would set the plot range for each graphic frame
using a heuristic that only looks at the values of the coordinates for that particular frame and not
the entire set of graphics frames in the animation. This would create a different size frame for
each graphic, causing quite a bit of jumpiness in the animation.

We first transpose the matrix of coordinates from 88x1, y1<, 8x2, y2<, …, 8xn, yn<< to
88x1, x2, …, xn<, 8 y1, y2, …, yn<<; this generalizes to three-dimensional lists as well. Then
we get the minimum and maximum values from each using Map.

In[80]:= Map@8Min@ÒD, Max@ÒD< &, Transpose@rwDD

Out[80]= 88-28.5516, 23.1099<, 8-18.4443, 25.678<<

This output, by design, is precisely of the form needed by PlotRange.
Here is the code to create an animation of the random walk rw. In print, we can only show a

representative snapshot of the animation. We have set DisplayAllSteps to True to override
the default behavior of Animate to skip some of the frames. You will have to balance the need
for speed with the need to see the entire sequence.

In[81]:= Animate@
Graphics@Line@Take@rw, stepsDD,
PlotRange Ø Map@8Min@ÒD, Max@ÒD< &, Transpose@rwDDD,

8steps, 2, Length@rwD, 1<,
DisplayAllSteps Ø TrueD

Out[81]=

steps

Here are the similar computations for the three-dimensional walk.

In[82]:= rw3 = RandomWalk@10000, Dimension Ø 3, LatticeWalk Ø TrueD;

In[83]:= Map@8Min@ÒD, Max@ÒD< &, Transpose@rw3DD

Out[83]= 88-103, 0<, 8-128, 1<, 8-39, 14<<

And this creates the animation using these range of values for x, y, and z as the PlotRange.

552 Applications and packages

In[84]:= Animate@
Graphics3D@Line@Take@rw3, stepsDD,
PlotRange Ø Map@8Min@ÒD, Max@ÒD< &, Transpose@rw3DDD,

8steps, 2, Length@rw3D, 1<D

Out[84]=

steps

The code for two and three dimensions is bundled up in the AnimateWalk function.

In[85]:= AnimateWalk@coords_List, opts : OptionsPattern@AnimateDD :=

Module@8range, dim = Last@Dimensions@coordsDD<,
range = H8Min@ÒD, Max@ÒD< &L êü Transpose@coordsD;
Animate@If@dim ã 2, Graphics, Graphics3DD üü

8Line@Take@coords, stepsDD, PlotRange Ø range<,
8steps, 2, Length@coordsD, 1<, optsDD

In[86]:= rw4 = RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseD;
AnimateWalk@rw4, DisplayAllSteps Ø TrueD

Out[87]=

steps

Some additional user interface elements could include checkboxes to toggle lattice/off-lattice
walks, a pulldown menu to select the size of the walk, other elements such as buttons to let the
user set the dimension, and so on. Section 11.3 discussed several different dynamic interfaces for
random walks including one to generate new walks by simply clicking your mouse on the
graphic (using EventHandler).

13.1 Random walk application 553

Exercises
1. Although all the lattice walks in this chapter were done on the square lattice, we could also imple-

ment the walks on lattices with different geometries. For example, the hexagonal lattice in two
dimensions can be used as the grid on which our random walkers move.

Create a two-dimensional random walk that can move in one of six directions each separated by 60
degrees.

2. Generate random walks where the step length t occurs with a probability proportional to 1ë t2.

These walks are sometimes referred to as Lévy flights.

3. Create a version of ShowWalk that uses GraphicsComplex directly. The first argument to
GraphicsComplex is the coordinate information as given by RandomWalk; the second argument
should be graphics primitives (Line , Point) that indicate how the coordinates should be
displayed.

4. Create a visualization of random walks that takes advantage of the efficiency of Graph to store and
represent large amounts of graphical data. The first argument to Graph can be a list of rules that
represents the connectivity information. For example, 2 � 3 indicates that the second vertex is
connected to the third vertex with a directed edge. Use the option VertexCoordinates to pass
the explicit coordinate information from RandomWalk to Graph. Run some tests to determine the
efficiency (in terms of running time and memory) of this approach as compared to the ShowWalk
function that was developed in this chapter.

5. Create a function that generates random walks with random step length. Advanced: Do the same
but allow for arbitrary distributions.

6. Create a random walk that is bounded by a region in the Cartesian plane, for example, a circle
centered at the origin of radius 2.

7. Create a one-dimensional random walk over the digits of p – if the digit is even, take a step to the
right; if the digit is odd, take a step to the left.

554 Applications and packages

13.2 Overview of packages
When you begin a Mathematica session, the built-in functions are immediately available for you to
use. There are, however, many more functions that you can access that reside in files supplied
with Mathematica. In principle, the only difference between those files and the ones you create is
that those were written by professional programmers. There is another difference: the definitions
in those files are placed in special structures called packages. Indeed, these files themselves are
often called “packages” instead of “files.”

Packages are text files that contain Mathematica commands. They are designed to make it easy
to distribute your programs to others, but they also provide a framework for you to write pro-
grams that integrate with Mathematica in a seamless manner. That framework includes a name
localizing construct, analogous to Module, but for entire files of definitions. The idea is to allow
you, the programmer, to define a collection of functions for export. These exported functions are
for the users of your package to work with and are often referred to as public functions. Other
functions, those that are not for export, are auxiliary, or private functions, and are not intended to be
accessible to users. The package framework, and contexts specifically, provide a convenient way
to declare some functions public and others private. Contexts will be introduced in Section 13.3.
Finally, in Section 13.4, we will put all these ideas together, using the random walk code devel-
oped earlier in this chapter.

Working with packages
Mathematica packages have been written for a great variety of problem domains. Many are pro-
vided with each version of Mathematica and are referred to as the Standard Extra Packages. Their
documentation is available in the Documentation Center (under the Help menu).

For example, one of the packages listed under the Standard Extra Packages is the Computa-
tional Geometry package. It provides functionality for computing and visualizing such things as
Delaunay triangulations, Voronoi diagrams, and convex hulls of lists of points.

Once you know which package you want to use, you load it using either Get or Needs.
Ê << ComputationalGeometry` will read the file and evaluate each expression and

definition as if it had been typed in. Actually, the argument of << is a string, but the
quotation marks can be omitted. << package` is shorthand for GetA" package` "E.

In[1]:= << ComputationalGeometry`

Ê Needs@"ComputationalGeometry`"D will read the package, just like <<, but only if it
has not already been read.

In[2]:= Needs@"ComputationalGeometry`"D

13.2 Overview of packages 555

Once a package has been loaded into the Mathematica kernel, you can access and use the
functions defined in that package just like any built-in function. For example, you can use ? to get
the usage message for any of those functions.

In[3]:= ? ConvexHull

ConvexHullA99x1, y1=, 9x2, y2=, …=E yields the planar convex hull of the points 99x1, y1=, …=,

represented as a list of point indices arranged in counterclockwise order.�à

Using a function from a package is just like using a built-in function. For example, this com-
putes the convex hull of a small set of points in the plane using the ConvexHull function.

In[4]:= ConvexHull@RandomInteger@100, 810, 2<DD

Out[4]= 81, 9, 4, 7, 8, 5<

Here a list of hyperlinks to the documentation for each of the functions defined in this package.

In[5]:= ? ComputationalGeometry`*

ComputationalGeometry`

AllPoints DelaunayTriangulationQ Ray

BoundedDiagram DiagramPlot TileAreas

ConvexHull Hull TriangularSurfacePlot

ConvexHullArea LabelPoints TrimPoints

ConvexHullMedian NearestNeighbor VoronoiDiagram

DelaunayTriangulation PlanarGraphPlot

Clicking any of the above links will display the usage message associated with that function.
You can also display a list of the names defined in the package using Names.

In[6]:= Names@"ComputationalGeometry`*"D

Out[6]= 8AllPoints, BoundedDiagram, ConvexHull,

ConvexHullArea, ConvexHullMedian, DelaunayTriangulation,

DelaunayTriangulationQ, DiagramPlot, Hull, LabelPoints,

NearestNeighbor, PlanarGraphPlot, Ray, TileAreas,

TriangularSurfacePlot, TrimPoints, VoronoiDiagram<

If you forget the name of the package, you can easily browse through the Documentation Center
which lists all packages, names, and usage messages of the functions defined in these packages.
Alternatively, you locate where the directory of packages is stored on your system and browse
through it using your operating system’s interface.

556 Applications and packages

Package location
All the built-in Mathematica packages are located in one of several directories on Mathematica’s
search path. If you put your package in one of these special directories, it will be found quickly
when you try to load it with Get or Needs. This search path is given by $Path. Here we display
only some of these locations.

In[7]:= Take@$Path, 8D êê TableForm
Out[7]//TableForm=

êApplicationsêMathematica.appêSystemFilesêLinks
êUsersêwellinêLibraryêMathematicaêKernel
êUsersêwellinêLibraryêMathematicaêAutoload
êUsersêwellinêLibraryêMathematicaêApplications
êLibraryêMathematicaêKernel
êLibraryêMathematicaêAutoload
êLibraryêMathematicaêApplications
.

Typically, packages are put in one of the Applications directories on that path.

In[8]:= Select@$Path, MatchQ@FileNameTake@ÒD, "Applications"D &D êê
TableForm

Out[8]//TableForm=

êUsersêwellinêLibraryêMathematicaêApplications
êLibraryêMathematicaêApplications
êApplicationsêMathematica.appêAddOnsêApplications

Certain special directories are identified on your system using one of the $ functions below.

In[9]:= $UserBaseDirectory

Out[9]= êUsersêwellinêLibraryêMathematica

In[10]:= $BaseDirectory

Out[10]= êLibraryêMathematica

In[11]:= $InstallationDirectory

Out[11]= êApplicationsêMathematica.app

These directories will be different on different operating systems but putting a package in one of
them will work across systems consistently. For example, the instructions to install the packages
that accompany this book specify that you should put them in one of the directories given by the
following:

In[12]:= FileNameJoin@8$BaseDirectory, "Applications"<D

Out[12]= êLibraryêMathematicaêApplications

13.2 Overview of packages 557

In[13]:= FileNameJoin@8$UserBaseDirectory, "Applications"<D

Out[13]= êUsersêwellinêLibraryêMathematicaêApplications

Alternatively, you could use the Install item in the File menu to be guided through the process
somewhat automatically. This is described for the RandomWalks package in Section 13.4.

If you know the name of your package, you can use FindFile to see precisely where the
package is located. Specifically, using the package name as an argument returns the location of
the Kernel/init.m file. This works whether your package has been loaded or not.

In[14]:= FindFile@"PwM`"D

Out[14]= êLibraryêMathematicaêApplicationsêPwMêKernelêinit.m

13.3 Contexts
Every symbol you use in a computation in Mathematica has a full name consisting of the symbol
preceded by the context in which the name was first mentioned. The context is a means for organiz-
ing symbols. You can think of the context like a namespace – different symbols are in different
contexts just like different files on your computer live in different directories.

When you first start your session, the current context is Global` (note the back quote), and any
symbol you mention now has full name Global`symbol. $Context gives the current context.

In[1]:= $Context

Out[1]= Global`

Here is a function created, by default, in the Global` context.

In[2]:= f@x_D := x + 1

Context@symD gives the context of the symbol sym.

In[3]:= Context@fD

Out[3]= Global`

You can use the function by specifying its full name.

In[4]:= Global`f@3D

Out[4]= 4

But, of course, it is much more convenient to use the regular, short form.

In[5]:= f@3D

Out[5]= 4

Mathematica first searches the current context for definitions associated with any symbols; by
default, this is the Global` context. To see a list of the contexts that Mathematica uses to search

558 Applications and packages

for symbols, use $ContextPath. Note that the ComputationalGeometry` context is
included as we loaded that package in the previous section.

In[6]:= $ContextPath

Out[6]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

As we saw above, any symbols defined when your session begins have context Global`. Built-
in functions have context System`. Symbols defined in packages have their context set by the
package (discussed below).

In[7]:= Map@Context, 8Integrate, f, ConvexHull<D

Out[7]= 8System`, Global`, ComputationalGeometry`<

To use a different context for any new symbols you mention, use the function Begin.

In[8]:= Begin@"ContextA`"D

Out[8]= ContextA`

In[9]:= g@x_D := x + 2

This uses g by specifying its full name.

In[10]:= ContextA`g@3D

Out[10]= 5

Or, since we are currently in the ContextA` context, use the short name. In this new context,
the name g is an abbreviation for ContextA`g.

In[11]:= g@3D

Out[11]= 5

Here is the current context.

In[12]:= $Context

Out[12]= ContextA`

 Note that we can still refer to f, even though it was not defined in this context. This is because
f lives in the Global` context which is searched as part of $ContextPath.

In[13]:= Map@Global`f, 85, 7, 9<D

Out[13]= 86, 8, 10<

In[14]:= Map@f, 85, 7, 9<D

Out[14]= 86, 8, 10<

After exiting the context using End, you may define a different g, having context Global`.

13.3 Contexts 559

In[15]:= End@D

Out[15]= ContextA`

In[16]:= g@x_D := x + 3

In[17]:= g@3D

Out[17]= 6

In[18]:= Context@gD

Out[18]= Global`

We now have two definitions of g: one definition of Global`g and one of ContextA`g.
Since our current context is Global`, when we just say g we get Global`g; but we can still
refer to ContextA`g by its full name.

In[19]:= g@3D

Out[19]= 6

In[20]:= ContextA`g@3D

Out[20]= 5

The question arises: when you enter a symbol sym, how does Mathematica decide which version
of sym to use? And how can you tell which one it has chosen? As we saw above, the function
Context gives the context of a symbol.

In[21]:= Context@MapD

Out[21]= System`

In[22]:= Context@ContextA`gD

Out[22]= ContextA`

You can also use ?.

In[23]:= ?g

Global`g

g@x_D := x + 3

How does Mathematica decide which definition to use? It maintains two variables, $Context and
$ContextPath. $Context contains the current context; $ContextPath contains a list of
contexts. Mathematica looks in $Context first, then in the contexts in $ContextPath in the
order in which they appear there; if it does not find the symbol at all, then it creates it in context
$Context. Of course, none of this applies if you give the symbol’s full name.

560 Applications and packages

In[24]:= $Context

Out[24]= Global`

In[25]:= $ContextPath

Out[25]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

In[26]:= Begin@"ContextA`"D

Out[26]= ContextA`

In[27]:= $Context

Out[27]= ContextA`

In[28]:= $ContextPath

Out[28]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

In[29]:= End@D

Out[29]= ContextA`

In[30]:= $Context

Out[30]= Global`

So the effect of entering a new context using Begin is simply to change the value of $Context;
End@D changes it back. In either case, $ContextPath is not changed.

In[31]:= $ContextPath

Out[31]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

One final point about contexts: contexts can be nested within contexts, that is, you can have
context names like A`B`C`.

In[32]:= Begin@"A`"D H* enter context A` *L

Out[32]= A`

In[33]:= Begin@"`B`"D H* enter context A`B` *L

Out[33]= A`B`

In[34]:= Begin@"`C`"D H* enter context A`B`C` *L

Out[34]= A`B`C`

In[35]:= End@D H* back in context A`B` *L

Out[35]= A`B`C`

13.3 Contexts 561

In[36]:= End@D H* back in context A` *L

Out[36]= A`B`

In[37]:= End@D H* back in context Global` *L

Out[37]= A`

Note the back quote before the context name in the second and third Begin. This is used to
indicate that the new context should be a subcontext of the current context. We could have also
indicated this as follows:

In[38]:= Begin@"A`"D

Out[38]= A`

In[39]:= Begin@"A`B`"D

Out[39]= A`B`

In[40]:= Begin@"A`B`C`"D

Out[40]= A`B`C`

Nested contexts are a way of managing the multiplicity of contexts. In fact, package names are
contexts. When you load a package using Needs or <<, Mathematica translates the package name
directly into a path name in the hierarchical file system on your computer.

For example, you can load the package RandomWalks.m that lives in a directory PwM accord-
ing to the commands given in Table 13.1.

Table 13.1. Commands to load packages on different systems

Operating System Input

Windows << PwM\RandomWalks.m

Unix XêLinux << PwMêRandomWalks.m

Since Mathematica provides a system-independent means of loading packages, you can simply use
Get with the following syntax and Mathematica will automatically translate this into a path name
appropriate for your computer.

<< PwM`RandomWalks`

562 Applications and packages

13.4 Creating packages
Packages provide a framework to organize a collection of related functions. With them, you can
identify private functions and constants that the user, or client, of the package will not ordinarily
see. Usage and warning messages for the public functions, those that the user of your package
will interact with, are also defined in the package. When set up properly using contexts, packages
help to avoid naming collisions, or shadowing, with other definitions of those names.

In this section, we will lay out the package framework that you can use as a template for
developing all your packages. We will briefly show some ways that you can easily deploy your
packages. All of these components are demonstrated using the random walk application devel-
oped earlier in this chapter.

Package framework
Every package uses a framework containing several common elements. Let us start by outlining
each of those pieces that you need to include in your package (Program Listing 13.1). You can
create these in a new Mathematica notebook or use the PackageTemplate.nb notebook that accom-
panies this book’s support materials (see Preface).

Program Listing 13.1. Package template

BeginPackage@"package`"D

H* usage messages *L
package::usage = "usage message here…";

H* options *L
Options@packageD = 8opt1 Ø value1, opt2 Ø value2, …<

H* private context *L
Begin@"`Private`"D

H* function definitions *L
fun@x_D := …

fun2@x_, y_D := …

H* end private context *L
End@D

EndPackage@D

13.4 Creating packages 563

BeginPackage and EndPackage Packages start with a BeginPackage statement and end with an

EndPackage . Evaluating BeginPackageA"package`"E sets $Context to package`, and

$ContextPath to 9package, System`=. EndPackage@D resets both variables to their values

prior to the evaluation of BeginPackage@D, and then prepends package` to $ContextPath.
As an example, suppose you are in a Mathematica session, with current context Global`, and

you read in a file containing the following:

BeginPackage@"package`"D

 f@x_D := …

 g@y_D := …

EndPackage@D

After it is read, the functions f and g, with full names package`f and package`g, will be
defined, and the context package` will be in $ContextPath. If you do not have any other
definitions of f, you can refer to it as just f; if there are other definitions for a symbol f in other
contexts, then use package`f; and similarly for the function g.

In[1]:= $ContextPath

Out[1]= 8ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

In[2]:= BeginPackage@"myPackage`"D

Out[2]= myPackage`

In[3]:= $ContextPath

Out[3]= 8myPackage`, System`<

It is important to realize, too, that Mathematica determines the full name of any symbol when it
reads it in. Thus, if g calls f, then the occurrence of f in the body of g becomes package`f when
package is loaded. g will always call this f, even if there is a different f defined in the context in
which the call to g is made.

The BeginPackage function can be given multiple arguments. The second and subsequent
arguments are the names of other packages that this one uses. They are treated as if they were
arguments to the Needs function, that is, they are loaded if they have not already been. Further-
more, they are included in $ContextPath during the loading of this package, so its functions can
refer to their functions by their short names.
EndPackage@D resets $Context and $ContextPath to their prior values, except that

package` is added to the front of $ContextPath.

564 Applications and packages

In[4]:= EndPackage@D

In[5]:= $ContextPath

Out[5]= 8myPackage`, ComputationalGeometry`,
PacletManager`, WebServices`, System`, Global`<

Usage and warning messages Put usage messages for all public functions immediately after the
BeginPackage. Defining usage messages for the functions in your packages creates symbols
for the functions in the current context. Each of the functions for which you define a usage
message will be exported for public use, that is, those functions are visible and usable immedi-
ately after loading the package. This is in contrast to any functions that are defined in your
package for which you do not have usage messages (or, more precisely, for those functions that
you have not explicitly exported by mentioning that symbol before the Begin statement). Those
functions will be private, unavailable for the user of your package to access.

Making your functions behave much like the built-in functions will make it easier for users of
your packages, since they will expect usage messages and general functionality similar to that of
Mathematica’s functions. It is also a good way for you to document your programs. You might
even consider writing your usage messages before you write the function definitions in Mathemat-
ica. This will help you to understand clearly what it is you want your functions to do.

As discussed earlier (Section 5.7), usage messages have the following syntax:

In[6]:= funName::usage =
"funName@x,yD computes something using x and y.";

In[7]:= ? funName

funName@x,yD computes something using x and y.

The message itself starts with a template for that function. This template is used by Mathematica
to provide a convenient user-interface feature: function templates. For any built-in function, you
can get a template by entering the function name and then selecting Make Template from the Edit

menu, or use the appropriate keyboard shortcut. When you do, this is the kind of thing you will
see:

Plot3DA f , 9 x , xmin , xmax =, 9 y , ymin , ymax =E

By starting your usage message with the template for your function, you automatically inherit
this user interface element.

funNameA x , y E

13.4 Creating packages 565

Options Options for each public function should follow next. Options for private functions
should follow the Begin statement, that is, options for private functions should themselves be
private.

OptionsA functionNameE = 9opt1 Ø value1, opt2 Ø value2=

Begin private context The Begin command changes the current context without affecting the
context path. By starting the argument `Private` with a context mark `, we change to a
subcontext of the current context.

Function definitions Definitions for both public and private functions follow next. Only those
functions that have been declared public (typically via usage messages before the Begin state-
ment) will be available to the user of your package.

End private context The End@D command closes the Begin@D and puts you back in the package
context package`. Any symbols that were defined in the subcontext package`Private` can no
longer be accessed.

EndPackage The EndPackage@D command puts you back in the context you were in prior to the
BeginPackage@D command, typically Global`.

Creating and installing the package
Since a package is simply a text file, you could create and develop it in a text editor if you pre-
ferred. But there are much more convenient environments in which you can do package develop-
ment. One such application is an IDE such as Wolfram Workbench. In these IDEs, you can develop
your code, debug it, profile (look for bottlenecks), and create and deploy documentation. Work-
ing with IDEs is beyond the scope of this book and there are excellent resources available for
learning about them. Instead, we will focus on package development using an environment you
should already be familiar with: the Mathematica notebook interface.

Using a Mathematica notebook as your programming environment provides several useful
tools for package development that we will outline here. In particular, converting your notebook
into a package and installing it in a location that will make it instantly available are both straight-
forward using the front end. Probably the most useful aspect of using Mathematica notebooks as
your programming environment is the fact that you can experiment and try out code snippets or
large-scale programs all in the same environment in which you are used to working.

As you are creating your package, keep each function definition, each option statement, and
so on in a separate cell. This is generally a good practice whether you are developing packages or
not. This way, if a problem arises, an error or warning message will be issued immediately after

566 Applications and packages

the cell that triggers that message. If you had dozens of definitions in one cell, warning messages
would still be issued after that input cell, but you would have a difficult time trying to determine
which part of your code was causing the problem.

Once you have completed the code development in your notebook, select all Input cells
(option-click on Mac OS X or Alt-click on Windows) and then convert them to initialization cells
by selecting Cell Properties � Initialization Cell from the Cell menu. This marks those cells that will
be included in the package. Saving your notebook at this point should trigger a dialog that asks if
you would like to create an autogenerated package from this notebook. Answering yes will cause
a package (a text file with the .m extension instead of .nb) to be saved in the same location as your
notebook. Furthermore, that package will be automatically updated whenever you save any
changes to the corresponding notebook.

Finally, to install the package, select Install from the File menu. This will bring up a dialog in
which you can identify the type of item to install (Package), the source (point to your newly
created and saved notebook containing initialization cells), the install name (typically the name
of your package), and whether the package should be made available to all users of your com-
puter or just you (Figure 13.4).

Figure 13.4. Deploying packages through the File � Install menu item.

RandomWalks package
In this section, we list the RandomWalks package, elements of which were developed in earlier
chapters. We will add several important user interface elements, such as additional usage state-
ments. The full package is included in the PwM archive that accompanies this book (see Preface).

Because we have worked with several RandomWalk implementations in this chapter, it is a
good idea to clear all definitions, attributes, and options in the Global` context before
proceeding.

13.4 Creating packages 567

In[8]:= ClearAll@"Global`"D

BeginPackage The RandomWalks package lives in a directory, PwM, which itself lives inside one
of the Applications directories that are on Mathematica’s path. This is reflected in the argument to
BeginPackage. This expression sets the value of Context`, which causes $ContextPath to
be set to 8PwM`RandomWalks`, System`<.

In[9]:= BeginPackage@"PwM`RandomWalks`"D

Out[9]= PwM`RandomWalks`

As mentioned above, you could import one or more packages by using an optional argument
to BeginPackage. In that case, you would have:

BeginPackageA"PwM`RandomWalks`", 9package1, package2, …=E

Usage statements Usage statements for each of the public functions are given next. We also pro-
vide a usage message for each option to RandomWalk.

In[10]:= RandomWalk::usage =
"RandomWalk@tD generates a t-step random walk.

The default behavior gives a two-dimensional
lattice walk with steps in one of the four
compass directions. The option LatticeWalk
takes values True or False. The value of the
option Dimension can be any of 1, 2, or 3.";

In[11]:= Dimension::usage =
"Dimension is an option to RandomWalk that

determines whether the random walk will
be a one-, two-, or three-dimensional
walk. Possible values are 1, 2, or 3.";

In[12]:= LatticeWalk::usage =
"LatticeWalk is an option to RandomWalk that

determines whether the random walk will
be a lattice walk or an off-lattice walk.
Possible values are True and False.";

568 Applications and packages

In[13]:= ShowWalk::usage =
"ShowWalk@walkD displays a one, two, or three-dimensional

random walk connecting each site with a line.
Graphics options can be passed to ShowWalk.
E.g., ShowWalk@walk, BackgroundØGrayLevel@0DD
to produce a black background.";

Warning messages One message is for a bad value for the argument that specifies the number of
steps, and another message is for a bad value given to the Dimension option.

In[14]:= RandomWalk::rwn = "Argument `1` is not a positive integer.";

In[15]:= RandomWalk::baddim =
"The value `1` of the option Dimension is

not an integer between 1 and 3.";

Options Next we list options for public functions. This declares RandomWalk to have two
options and sets their default values.

In[16]:= Options@RandomWalkD = 8LatticeWalk Ø True, Dimension Ø 2<;

Begin private context The argument `Private` changes the current context to a subcontext of
the current context. This new subcontext is PwM`RandomWalks`Private`.

In[17]:= Begin@"`Private`"D

Out[17]= PwM`RandomWalks`Private`

Function definitions Public and private function definitions are given below. RandomWalk and
ShowWalk are the main public functions in this package. Note that latticeWalk and offLatÖ
ticeWalk are both private. The user has no need to worry about them, let alone be aware of
them.

We have not included all the definitions here that are included in the RandomWalks package.
The full package includes definitions for animating random walks, computing radius of gyration
tensor, and several others.

In[18]:= latticeWalk@steps_, dim_D := Module@8w<,
w = Accumulate@RandomChoice@Join@

IdentityMatrix@dimD, -IdentityMatrix@dimDD, stepsDD;
If@dim ã 1, Flatten@wD, wDD

13.4 Creating packages 569

In[19]:= offLatticeWalk@t_, dim_D := Module@8f1, f2, f3<,
f1 = RandomReal@8-1, 1<, tD;
f2 = Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, tDD;
f3 = Function@8f, q<, 8Sin@fD Cos@qD, Sin@fD Sin@qD,

Cos@fD<D üüü RandomReal@80, 2 p<, 8t, 2<D;
Which@
dim ã 1, Accumulate@f1D,
dim ã 2, Accumulate@f2D,
dim ã 3, Accumulate@f3D

DD

In[20]:= RandomWalk@t_, OptionsPattern@DD := Module@8dim, latticeQ<,
8latticeQ, dim< = OptionValue@8LatticeWalk, Dimension<D;
Which@
! HIntegerQ@tD && t > 0L, Message@RandomWalk::"rwn", tD,
! HIntegerQ@dimD && 1 § dim § 3L,
Message@RandomWalk::baddim, dimD,
True, If@latticeQ, latticeWalk@t, dimD,
offLatticeWalk@t, dimDD

D
D

In[21]:= RandomWalk@x__D ê; Message@RandomWalk::rwn, xD := Null

RandomWalk@D ê; Message@General::argx, RandomWalk, 0D := Null;

In[23]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords,
FilterRules@8opts<, Options@ListLinePlotDDD

In[24]:= ShowWalk@coords : 88_, _< ..<, opts : OptionsPattern@DD :=

ListLinePlot@coords,
Append@FilterRules@8opts<, Options@ListLinePlotDD,
AspectRatio Ø AutomaticDD

In[25]:= ShowWalk@coords : 88_, _, _< ..<, opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD

570 Applications and packages

End private context The End@D command closes the matching Begin@D and returns us to the
context RandomWalks`. Symbols that were defined in PwM`RandomWalks`Private` can
no longer be accessed.

In[26]:= End@D

Out[26]= PwM`RandomWalks`Private`

EndPackage End the package and reset $Context and $ContextPath.

In[27]:= EndPackage@D

Running the package
It is a good idea, when doing package development, to start with a new session before testing out
your package. This way you can avoid some issues with contexts that might arise if you evaluated
some context-changing commands in one context and then loaded a package in another.

In[28]:= Quit@D

Assuming that the RandomWalks package has been installed in a directory/folder where
Mathematica can find it, this loads the package.

In[1]:= << PwM`RandomWalks`

Here is the usage message for the RandomWalk function.

In[2]:= ? RandomWalk

RandomWalk@tD generates a t-step random walk. The default
behavior gives a two-dimensional lattice walk with steps in one of
the four compass directions. The option LatticeWalk takes values True
or False. The value of the option Dimension can be any of 1, 2, or 3.

This gives a random walk of length 10 in two dimensions.

In[3]:= RandomWalk@10, Dimension Ø 2D

Out[3]= 880, -1<, 81, -1<, 82, -1<, 81, -1<, 81, -2<,
82, -2<, 81, -2<, 81, -1<, 80, -1<, 81, -1<<

Check that RandomWalk does the right thing when passed a bad argument or given a value for
the Dimension option that the function is not set up to handle.

In[4]:= RandomWalk@-5D
RandomWalk::rwn : Argument -5 is not a positive integer.

In[5]:= RandomWalk@100, Dimension Ø 5D
RandomWalk::baddim : The value 5 of the option Dimension is not an integer between 1 and 3.

13.4 Creating packages 571

This shows a 2500-step off-lattice random walk using the default of two dimensions.

In[6]:= ShowWalk@RandomWalk@2500, LatticeWalk Ø FalseDD

Out[6]=

-70 -60 -50 -40 -30 -20 -10

-40

-30

-20

-10

Here is a 5000-step two-dimensional random walk with some graphics options.

In[7]:= ShowWalk@RandomWalk@5000D, Frame Ø TrueD

Out[7]=

-10 0 10 20 30 40
-40

-30

-20

-10

0

10

And here is a 2500 step off-lattice random walk in three dimensions followed by an animation.

In[8]:= ShowWalk@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD

Out[8]=

572 Applications and packages

In[9]:= AnimateWalk@
RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD

Out[9]=

Steps

Walk length: 2313

Exercises
1. The following set of exercises will walk you through the creation of a package Collatz, a package

of functions for performing various operations related to the Collatz problem that we investigated
earlier (Exercises 3 and 4 of Section 4.1, Exercise 6 of Section 6.2, and Exercise 4 of Section 7.3).
Recall that the Collatz function, for any integer n, returns 3 n + 1 for odd n, and n ê2 for even n. The
(as yet unproven) Collatz Conjecture is the statement that, for any initial positive integer n, the
iterates of the Collatz function always reach the cycle 4, 2, 1,…. Start by creating an auxiliary
function collatz@nD that returns 3 n + 1 for n odd and n ê2 for n even.

a. Create the function CollatzSequence@nD that lists the iterates of the auxiliary function
collatz@nD. Here is some sample output of the CollatzSequence function.

In[1]:= CollatzSequence@7D

Out[1]= 87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

b. Create a usage message for CollatzSequence and warning messages for each of the following
situations:

notint: the argument to CollatzSequence is not a positive integer

argx: CollatzSequence was called with the wrong number of arguments

c. Modify the definition of CollatzSequence that you created in part a. above so that it does
some error trapping and issues the appropriate warning message that you created in part b.

d. Finally, put all the pieces together and write a package Collatz` that includes the appropriate
BeginPackage and Begin statements, usage messages, warning messages, and function
definitions. Make CollatzSequence a public function and collatz a private function. Put
your package in a directory where Mathematica can find it on its search path and then test it to see
that it returns correct output such as in the examples below.

13.4 Creating packages 573

In[11]:= Quit@D;

In[1]:= << PwM`Collatz`

In[2]:= ? CollatzSequence

CollatzSequence@nD computes the sequence of Collatz iterates starting with
initial value n. The sequence terminates as soon as it reaches the value 1.

Here are various cases in which CollatzSequence is given bad input.

In[3]:= CollatzSequence@-5D
CollatzSequence::notint : First argument, -5, to CollatzSequence must be a positive integer.

In[4]:= CollatzSequence@4, 6D

CollatzSequence::argx : CollatzSequence called with 2 arguments; 1 argument is expected. à

Out[4]= CollatzSequence@4, 6D

And this computes the sequence for starting value 27.

In[5]:= CollatzSequence@27D

Out[5]= 827, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484,

242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,

233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,

445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,

850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079,

3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367,

4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,

866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46,

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<

2. The square end-to-end distance of a two-dimensional walk is defined as Ix f - xiM
2 + I y f - yiM

2, where

8xi, yi< and 9x f , y f = are the initial and final locations of the walk, respectively. Assuming the initial

point is the origin, then this simplifies to x f
2 + y f

2 . Write a function SquareDistance that takes a

two-dimensional walk as an argument and computes the square end-to-end distance. Write a usage
message and include this function as a publicly exported function in the RandomWalks package.

574 Applications and packages

Solutions to exercises
Below we give solutions to many of the exercises in this book. Space does not allow the inclusion of every
solution in print, but all solutions are provided online both as a PDF file and in notebook form at www.cam-
bridge.org .

2 The Mathematica language
2.1 Expressions
1. The expression a Hb + cL is given in full form as Times@a, Plus@b, cDD.

3. There are three elements in the expression, with the term b x being the second.
In[1]:= expr = a x2 + b x + c;

In[2]:= FullForm@exprD
Out[2]//FullForm=

Plus@c, Times@b, xD, Times@a, Power@x, 2DDD

The first element of Times@b, xD is b, so the part specification is 2, 1.

In[3]:= expr@@2DD

Out[3]= b x

In[4]:= expr@@2, 1DD

Out[4]= b

2.2 Definitions
1. This exercise focuses on the difference between immediate and delayed assignments.

a. This will generate a list of n random numbers.

In[1]:= randLis1@n_D := RandomReal@1, 8n<D

In[2]:= randLis1@3D

Out[2]= 80.251941, 0.214991, 0.615347<

b. Since the definition for x is an immediate assignment, its value does not change in the body of
randLis2. But each time randLis2 is called, a new value is assigned to x.

In[3]:= randLis2@n_D := Hx = RandomReal@D; Table@x, 8n<DL

In[4]:= randLis2@3D

Out[4]= 80.225983, 0.225983, 0.225983<

In[5]:= randLis2@3D

Out[5]= 80.817911, 0.817911, 0.817911<

c. Because the definition for x is a delayed assignment, the definition for randLis3 is functionally
equivalent to randLis1.

In[6]:= randLis3@n_D := Hx := RandomReal@D; Table@x, 8n<DL

In[7]:= randLis3@3D

Out[7]= 80.395331, 0.652456, 0.243081<

d. In an immediate assignment, the right-hand side of the definition is evaluated first. But in this case, n
does not have a value, so Table is not able to evaluate properly.

In[8]:= randLis4@n_D = Table@RandomReal@D, 8n<D

Table::iterb : Iterator 8n< does not have appropriate bounds. à

Out[8]= Table@RandomReal@D, 8n<D

In[9]:= Clear@xD

3. The rules for the logarithm function are as follows. Note, there is no need to program the division rule
separately. Do you see why? (Look at FullForm@x ê yD.)

In[10]:= log@a_ * b_D := log@aD + log@bD

In[11]:= log@a_n_D := n log@aD

In[12]:= logAx y2 z3E

Out[12]= log@xD + 2 log@yD + 3 log@zD

In[13]:= log@x ê yD

Out[13]= log@xD - log@yD

2.3 Predicates and Boolean operations
1. There are several ways to define this function, either using the relational operator for less than, or with the

absolute value function.
In[1]:= f@x_D := -1 < x < 1

In[2]:= f@x_D := Abs@xD < 1

In[3]:= f@4D

Out[3]= False

In[4]:= f@-0.35D

Out[4]= True

3. A number n can be considered a natural number if it is both an integer and greater than or equal to zero.
There is some disagreement in the mathematics community about 0, but for our purposes, we will adopt
the convention that 0 is a natural number.
In[5]:= NaturalQ@n_D := IntegerQ@nD && n ¥ 0

In[6]:= NaturalQ@0D

Out[6]= True

576 Solutions to exercises

In[7]:= NaturalQ@-4D

Out[7]= False

5. There are three tests that have to be satisfied: integer, greater than 1, not prime.
In[8]:= CompositeQ@n_D := IntegerQ@nD && n > 1 && Not@PrimeQ@nDD

In[9]:= CompositeQA231 - 1E

Out[9]= False

In[10]:= CompositeQA231 + 1E

Out[10]= True

This is more neatly done using conditional pattern matching. See, for example, Section 4.1 on patterns.

2.4 Attributes
1. First clear any definitions and attributes that might be associated with f.

In[1]:= ClearAll@fD

Then set the HoldAll attribute to prevent initial evaluation of the argument of this function.

In[2]:= SetAttributes@f, HoldAllD

In[3]:= f@x_ + y_D := x2 + y2

In[4]:= f@a + bD

Out[4]= a2 + b2

In[5]:= f@2 + 3D

Out[5]= 13

2. Here is a small list of random numbers to use.
In[6]:= vec = RandomReal@8-1, 1<, 10D

Out[6]= 8-0.847838, -0.241155, 0.318935, 0.711714, 0.427628,

-0.342618, -0.601334, -0.733025, -0.58182, -0.985515<

The function could be set up to take two arguments, the number and the bound.

In[7]:= fun@x_?NumberQ, bound_D := IfB-bound < x < bound, x, x F

Make fun listable.

In[8]:= SetAttributes@fun, ListableD

In[9]:= fun@vec, 0.5D

Out[9]= 80. + 0.920781 Â, -0.241155, 0.318935, 0.843631, 0.427628, -0.342618,

0. + 0.775457 Â, 0. + 0.856169 Â, 0. + 0.762771 Â, 0. + 0.992731 Â<

2 The Mathematica language 577

3 Lists
3.1 Creating and displaying lists
1. You can take every other element in the iterator list, or encode that in the expression 2 j.

In[1]:= Table@j, 8i, 0, 8, 2<, 8j, 0, i, 2<D

Out[1]= 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<<

In[2]:= Table@2 j, 8i, 0, 4<, 8j, 0, i<D

Out[2]= 880<, 80, 2<, 80, 2, 4<, 80, 2, 4, 6<, 80, 2, 4, 6, 8<<

3. Here are three ways to generate the list.
In[3]:= 2 RandomInteger@1, 810<D - 1

Out[3]= 81, -1, 1, -1, -1, 1, -1, 1, -1, -1<

In[4]:= H-1LRandomInteger@1,810<D

Out[4]= 8-1, -1, -1, -1, 1, 1, 1, -1, -1, -1<

The most direct way to do this is to use RandomChoice.

In[5]:= RandomChoice@8-1, 1<, 810<D

Out[5]= 8-1, 1, 1, 1, -1, -1, 1, 1, -1, -1<

5. Some thought is needed to get the iterators right using Table .
In[6]:= xmin = -2; xmax = 2; ymin = -1; ymax = 1;

hlines = Table@88xmin, y<, 8xmax, y<<, 8y, ymin, ymax<D
Out[7]= 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<, 88-2, 1<, 82, 1<<<

In[8]:= vlines = Table@88x, ymin<, 8x, ymax<<, 8x, xmin, xmax<D

Out[8]= 888-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,
880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<

Join the two sets of lines and then flatten to remove one set of braces.

In[9]:= pairs = Flatten@8hlines, vlines<, 1D

Out[9]= 888-2, -1<, 82, -1<<, 88-2, 0<, 82, 0<<,
88-2, 1<, 82, 1<<, 88-2, -1<, 8-2, 1<<, 88-1, -1<, 8-1, 1<<,
880, -1<, 80, 1<<, 881, -1<, 81, 1<<, 882, -1<, 82, 1<<<

In[10]:= Graphics@Line@pairsDD

Out[10]=

Here is a function that puts all this together:

In[11]:= Lattice@8xmin_, xmax_<, 8ymin_, ymax_<D :=

Module@8hlines, vlines, coords<,
hlines = Table@88xmin, y<, 8xmax, y<<, 8y, ymin, ymax<D;
vlines = Table@88x, ymin<, 8x, ymax<<, 8x, xmin, xmax<D;
coords = Flatten@8hlines, vlines<, 1D;
Graphics@Line@coordsDDD

578 Solutions to exercises

In[12]:= Lattice@8-3, 3<, 8-2, 2<D

Out[12]=

3.2 The structure of lists
1. Here is the list of integers to use.

In[1]:= ints = RandomInteger@8-5, 5<, 30D

Out[1]= 82, 0, 0, -3, -3, 0, -1, 3, 0, 0, -4, 0, -3, 2,

1, 5, -2, 4, 5, 1, 0, -5, -4, 4, -3, -4, 1, -3, 1, -3<

Count all elements that match 0.

In[2]:= Count@ints, 0D

Out[2]= 7

Count all integers in ints that do not match 1.

In[3]:= Count@ints, Except@1DD

Out[3]= 26

3. The Position function tells us that the 9s are located in the second sublist, first position, and in the
fourth sublist, third position.
In[4]:= Position@882, 1, 10<, 89, 5, 7<, 82, 10, 4<, 810, 1, 9<, 86, 1, 6<<, 9D

Out[4]= 882, 1<, 84, 3<<

3.3 Working with lists
1. This is a straightforward use of the Transpose function.

In[1]:= Transpose@88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<, 8x5, y5<<D

Out[1]= 88x1, x2, x3, x4, x5<, 8y1, y2, y3, y4, y5<<

2. Here is one way to do it. First create a list representing the directions.
In[2]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;

RandomChoice chooses with replacement.

In[3]:= RandomChoice@NSEW, 810<D

Out[3]= 880, 1<, 8-1, 0<, 8-1, 0<, 80, -1<,
80, -1<, 8-1, 0<, 80, 1<, 8-1, 0<, 80, -1<, 80, -1<<

3. Start by dropping the first element in the list, then create a nested list of every other element in the remain-
ing list, and finally unnest the resulting list.
In[4]:= Rest@8a, b, c, d, e, f, g<D

Out[4]= 8b, c, d, e, f, g<

In[5]:= Partition@%, 1, 2D

Out[5]= 88b<, 8d<, 8f<<

3 Lists 579

In[6]:= Flatten@%D

Out[6]= 8b, d, f<

This can also be done directly in one step using Part with Span. The expression 2 ;; -1 ;; 2 indicates
the range from the second element to the last element in increments of 2.

In[7]:= Part@8a, b, c, d, e, f, g<, 2 ;; -1 ;; 2D

Out[7]= 8b, d, f<

4. The standard procedural approach is to use a temporary variable to do the swapping.
In[8]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[9]//MatrixForm=

6 7 6 5
8 2 7 1
9 4 4 7
4 4 0 7

In[10]:= temp = mat@@1DD;
mat@@1DD = mat@@2DD;
mat@@2DD = temp;

MatrixForm@matD
Out[13]//MatrixForm=

8 2 7 1
6 7 6 5
9 4 4 7
4 4 0 7

But you can use parallel assignments to avoid the temporary variable.

In[14]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[15]//MatrixForm=

2 3 6 9
1 6 8 6
9 9 0 5
3 0 1 6

In[16]:= 8mat@@2DD, mat@@1DD< = 8mat@@1DD, mat@@2DD<;
MatrixForm@matD

Out[17]//MatrixForm=

1 6 8 6
2 3 6 9
9 9 0 5
3 0 1 6

In fact you can make this a bit more compact.

580 Solutions to exercises

In[18]:= mat = RandomInteger@9, 84, 4<D;
MatrixForm@matD

Out[19]//MatrixForm=

8 9 0 6
8 5 9 5
0 5 4 4
8 2 3 5

In[20]:= mat@@82, 1<DD = mat@@81, 2<DD;
MatrixForm@matD

Out[21]//MatrixForm=

8 5 9 5
8 9 0 6
0 5 4 4
8 2 3 5

A key point to notice is that in this exercise, the matrix mat was overwritten in each case; in other words,
these were destructive operations. Section 5.5 discusses how to handle row and column swapping properly
so that the original matrix remains untouched.

5. You need to first transpose the matrix to operate on the columns as rows.
In[22]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[23]//MatrixForm=

0 7 5 1
5 5 4 7
2 6 2 4
7 4 8 3

In[24]:= Transpose@matD

Out[24]= 880, 5, 2, 7<, 87, 5, 6, 4<, 85, 4, 2, 8<, 81, 7, 4, 3<<

Now insert the column vector at the desired position. Then transpose back.

In[25]:= Insert@Transpose@matD, 8a, b, c, d<, 3D êê MatrixForm
Out[25]//MatrixForm=

0 5 2 7
7 5 6 4
a b c d
5 4 2 8
1 7 4 3

In[26]:= TransposeüInsert@Transpose@matD, 8a, b, c, d<, 3D êê MatrixForm
Out[26]//MatrixForm=

0 7 a 5 1
5 5 b 4 7
2 6 c 2 4
7 4 d 8 3

Here then is the function, with some basic argument checking to make sure the number of elements in the
column vector is the same as the number of rows of the matrix.

In[27]:= AddColumn@mat_, col_, pos_D ê; Length@colD ã Length@matD :=

Transpose@Insert@Transpose@matD, col, posDD

3 Lists 581

8. Join expects lists as arguments.
In[28]:= Join@8z<, 8x, y<D

Out[28]= 8z, x, y<

9. Joining the two lists and then using Part with Span is the most direct way to do this.
In[29]:= expr = Join@81, 2, 3, 4<, 8a, b, c, d<D

Out[29]= 81, 2, 3, 4, a, b, c, d<

In[30]:= expr@@2 ;; -1 ;; 2DD

Out[30]= 82, 4, b, d<

11. This is another way of asking for all those elements that are in the union but not the intersection of the two
sets.

In[31]:= A = 8a, b, c, d<;
B = 8a, b, e, f<;

In[33]:= Complement@A ‹ B, A › BD

Out[33]= 8c, d, e, f<

In[34]:= Complement@Union@A, BD, Intersection@A, BDD

Out[34]= 8c, d, e, f<

13. This is a straightforward extension of the previous exercise.
In[35]:= NGrams@text_, n_D := Partition@

StringSplit@text, RegularExpression@"\\W+"DD, n, 1D
In[36]:= sentence = "Use StringSplit to split long strings into words.";

NGrams@sentence, 3D
Out[37]= 88Use, StringSplit, to<, 8StringSplit, to, split<, 8to, split, long<,

8split, long, strings<, 8long, strings, into<, 8strings, into, words<<

4 Patterns and rules
4.1 Patterns
1. Start by creating a list of integers with which to work.

In[1]:= lis = RandomInteger@1000, 820<D

Out[1]= 8775, 422, 36, 680, 264, 470, 794, 174, 619,

584, 342, 345, 104, 997, 988, 576, 808, 958, 336, 551<

IntegerQ is a predicate; it returns True or False , so we need to use the logical OR to separate clauses
here.

In[2]:= Cases@lis, n_ ê; IntegerQ@n ê 2D »» IntegerQ@n ê 3D »» IntegerQ@n ê 5DD

Out[2]= 8775, 422, 36, 680, 264, 470, 794, 174,

584, 342, 345, 104, 988, 576, 808, 958, 336<

This is a bit more compact and direct.

582 Solutions to exercises

In[3]:= Cases@lis, n_ ê; Mod@n, 2D ã 0 »» Mod@n, 3D ã 0 »» Mod@n, 5D ã 0D

Out[3]= 8775, 422, 36, 680, 264, 470, 794, 174,

584, 342, 345, 104, 988, 576, 808, 958, 336<

Once you are familiar with pure functions (Section 5.6), you can also do this with Select .

In[4]:= Select@lis, Mod@Ò, 2D ã 0 »» Mod@Ò, 3D ã 0 »» Mod@Ò, 5D ã 0 &D

Out[4]= 8775, 422, 36, 680, 264, 470, 794, 174,

584, 342, 345, 104, 988, 576, 808, 958, 336<

3. The Collatz function has a direct implementation based on its definition. There is no need to check
explicitly that the argument is an integer since OddQ and EvenQ handle that.
In[5]:= Collatz@n_?OddQD := 3 n + 1

In[6]:= Collatz@n_?EvenQD :=
n

2

Here we iterate the Collatz function fifteen times starting with an initial value of 23.

In[7]:= NestList@Collatz, 23, 15D

Out[7]= 823, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1<

Check for arguments that do not match the patterns above.

In[8]:= Collatz@24.0D

Out[8]= Collatz@24.D

5. Using alternatives, this gives the definition for real, integer, or rational arguments.
In[9]:= abs@x_Real x_Integer x_RationalD := If@x ¥ 0, x, -xD

Here is the definition for complex arguments.

In[10]:= abs@x_ComplexD := Re@xD2 + Im@xD2

Note that these rules are not invoked for symbolic arguments.

In[11]:= MapBabs, :-3, 3 + 4 I,
-4

5
, a>F

Out[11]= :3, 5,
4

5
, abs@aD>

4.2 Transformation rules
1. The problem here is that the pattern is too general and has been matched by the entire expression, which

has the form 8x_, y_<, where x is matched by 8a, b< and y is matched by 8c, d<. To fix this, use
patterns to restrict the expressions that match.
In[1]:= 88a, b<, 8c, d<< ê. 8x_Symbol, y_Symbol< ß 8y, x<

Out[1]= 88b, a<, 8d, c<<

In[2]:= 88a, b<, 8c, d<, 8e, f<< ê. 8x_Symbol, y_Symbol< ß 8y, x<

Out[2]= 88b, a<, 8d, c<, 8f, e<<

3. The cross product is only defined for three dimensions, so first we need to embed the two-dimensional
vectors in 3-space; in this case, in the plane z = 0.

4 Patterns and rules 583

In[3]:= 8x1, y1< ê.8x_, y_< ß 8x, y, 0<

Out[3]= 8x1, y1, 0<

We need to compute the cross product of two vectors that span the triangle.

In[4]:= Cross@8x2, y2< - 8x1, y1< ê.8x_, y_< ß 8x, y, 0<,
8x3, y3< - 8x1, y1< ê.8x_, y_< ß 8x, y, 0<D

Out[4]= 80, 0, -x2 y1 + x3 y1 + x1 y2 - x3 y2 - x1 y3 + x2 y3<

Here are the coordinates for a triangle.

In[5]:= a = 80, 0<;
b = 85, 0<;
c = 83, 2<;

And here is the computation for the cross product.

In[8]:= Cross@b - a ê.8x_, y_< ß 8x, y, 0<, c - a ê.8x_, y_< ß 8x, y, 0<D

Out[8]= 80, 0, 10<

So the given area is then just half the magnitude of the cross product.

In[9]:=
Norm@%D

2
Out[9]= 5

This is done more simply using determinants. Note the change here: each vector (edge of triangle) is
embedded in the plane z = 1.

In[10]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=
1

2
Det@tri ê.8x_, y_< ß 8x, y, 1<D

In[11]:= TriangleArea@8a, b, c<D

Out[11]= 5

In[12]:= Clear@a, b, cD

4. First, get the solutions to this polynomial.
In[13]:= soln = SolveAx9 + 3.4 x6 - 25 x5 - 213 x4 - 477 x3 + 1012 x2 + 111 x - 123 ã 0, xE

Out[13]= 88x Ø -2.80961<, 8x Ø -1.85186 - 2.15082 Â<, 8x Ø -1.85186 + 2.15082 Â<,
8x Ø -0.376453<, 8x Ø 0.323073<, 8x Ø 1.06103 - 3.12709 Â<,
8x Ø 1.06103 + 3.12709 Â<, 8x Ø 1.30533<, 8x Ø 3.13931<<

The pattern needs to match an expression consisting of a list with a rule inside where the value on the
right-hand side of the rule should pass the Negative test.

In[14]:= Cases@soln, 8x_ Ø _?Negative<D

Out[14]= 88x Ø -2.80961<, 8x Ø -0.376453<<

Here are two solutions for the noncomplex roots.

In[15]:= Cases@soln, 8_ Ø _Real<D

Out[15]= 88x Ø -2.80961<, 8x Ø -0.376453<,
8x Ø 0.323073<, 8x Ø 1.30533<, 8x Ø 3.13931<<

584 Solutions to exercises

In[16]:= DeleteCases@soln, 8_ Ø _Complex<D

Out[16]= 88x Ø -2.80961<, 8x Ø -0.376453<,
8x Ø 0.323073<, 8x Ø 1.30533<, 8x Ø 3.13931<<

6. Note the need to put y in a list on the right-hand side of the rule. Also, an immediate rule is required here.
In[17]:= sumList@lis_D := First@lis êê.8x_, y___< Ø x + 8y<D

In[18]:= sumList@81, 5, 8, 3, 9, 3<D

Out[18]= 29

8. For an expression of the form PowerAa, bE, the number of multiplies is b - 1.

In[19]:= Cases@8x^4<, Power@_, exp_D ß exp - 1D

Out[19]= 83<

For an expression of the form TimesAa, b, c, …E, the number of multiplications is given by one less

then the number of arguments.

In[20]:= Cases@8a b c d e<, fac_Times ß Length@facD - 1D

Out[20]= 84<

For a mix of terms of these two cases, we will need to total up the counts from the respective terms. Here is
a function that puts this all together. Use Infinity as a third argument to Cases to make sure the
search goes all the way down the expression tree.

In[21]:= MultiplyCount@expr_?PolynomialQD :=

TotalüCases@8expr<, Power@_, exp_D ß exp - 1, InfinityD +

TotalüCases@8expr<, fac_Times ß Length@facD - 1, InfinityD
In[22]:= MultiplyCountAa b2 c d5E

Out[22]= 8

In[23]:= poly = ExpandAHx + y - zL3E

Out[23]= x3 + 3 x2 y + 3 x y2 + y3 - 3 x2 z - 6 x y z - 3 y2 z + 3 x z2 + 3 y z2 - z3

In[24]:= MultiplyCount@polyD

Out[24]= 28

9. First, we create a grid of the nine locations on the die.
In[25]:= lis = Partition@Range@9D, 3D;

Grid@lisD

Out[26]=

1 2 3
4 5 6
7 8 9

Next, use graphics primitives to indicate if a location on the grid is colored (on) or not (off).

In[27]:= off = 8Red, Disk@D<;
on = 8White, Disk@D<;

Here are the rules for a five.

4 Patterns and rules 585

In[29]:= GraphicsGrid@Map@Graphics,
lis ê. 81 Ø on, 2 Ø off, 3 Ø on,

4 Ø off, 5 Ø on, 6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,
82<D, Background Ø Red, Spacings Ø 10, ImageSize Ø 50D

Out[29]=

The five other rules are straightforward. Here then is a function that wraps up the code. Note the use of the
Background option to GraphicsGrid to pick up the color from the value of off.

In[30]:= Dice@n_D :=

Module@8rules, off = 8DarkerüBlue, Disk@D<, on = 8White, Disk@D<<,
rules = 8

81 Ø off, 2 Ø off, 3 Ø off,

4 Ø off, 5 Ø on, 6 Ø off, 7 Ø off, 8 Ø off, 9 Ø off<,
81 Ø off, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø off,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø off<,
81 Ø off, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø on,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø off<,
81 Ø on, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø off,

6 Ø off, 7 Ø on, 8 Ø off, 9 Ø on<,
81 Ø on, 2 Ø off, 3 Ø on, 4 Ø off, 5 Ø on, 6 Ø off,

7 Ø on, 8 Ø off, 9 Ø on<,
81 Ø on, 2 Ø off, 3 Ø on, 4 Ø on, 5 Ø off, 6 Ø on,

7 Ø on, 8 Ø off, 9 Ø on<
<;

GraphicsGrid@Map@Graphics,
Partition@Range@9D, 3D ê. rules@@nDD,
82<D, Background Ø First@offD, Spacings Ø 10, ImageSize Ø 40D

D
In[31]:= Table@Dice@nD, 8n, 1, 6<D

Out[31]= : , , , , , >

4.3 Examples and applications
1. Here is the function FindSubsequence as given in the text.

In[1]:= FindSubsequence@lis_List, subseq_ListD :=

Module@8p, len = Length@subseqD<,
p = Partition@lis, len, 1D;
Position@p, subseqD ê. 8num_?IntegerQ< ß 8num, num + len - 1<D

This creates another rule associated with FindSubsequence that simply takes each integer argument,
converts it to a list of integer digits, and then passes that off to the rule above.

In[2]:= FindSubsequence@n_Integer, subseq_IntegerD :=

586 Solutions to exercises

Module@8nlist = IntegerDigits@nD, sublist = IntegerDigits@subseqD<,
FindSubsequence@nlist, sublistD

D

Create the list of the first 100 000 digits of p.

In[3]:= pi = FromDigitsARealDigitsANAPi, 105E - 3E@@1DDE;

The subsequence 1415 occurs seven times at the following locations in this digit expansion of p.

In[4]:= FindSubsequence@pi, 1415D

Out[4]= 881, 4<, 86955, 6958<, 829136, 29139<, 845234, 45237<,
879687, 79690<, 885880, 85883<, 888009, 88012<<

2. Here is the plot of the sine function.
In[5]:= splot = Plot@Sin@xD, 8x, -2 p, 2 p<D

Out[5]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

This replacement rule interchanges each ordered pair of numbers. Note the need to modify the plot range
here.

In[6]:= Show@splot ê. 8x_?NumberQ, y_?NumberQ< ß 8y, x<, PlotRange Ø 8-2 p, 2 p<D

Out[6]=
-1.0 -0.5 0.5 1.0

-6

-4

-2

2

4

6

Although this particular example may have worked without the argument checking (_?NumberQ), it is a
good idea to include it so that pairs of arbitrary expressions are not pattern matched here. We only want to
interchange pairs of numbers, not pairs of options or other expressions that might be present in the
underlying expression representing the graphic.

3. We are embedding the two-dimensional data into a three-dimensional array. The embedding function is
written directly as a transformation rule.
In[7]:= data = RandomReal@80, 1<, 88, 2<D

Out[7]= 880.925874, 0.136988<, 80.0928518, 0.895481<,
80.863376, 0.0878501<, 80.15219, 0.773304<, 80.10783, 0.0809593<,
80.374144, 0.880981<, 80.711271, 0.608961<, 80.208222, 0.329782<<

4 Patterns and rules 587

In[8]:= data ê. 8x_, y_< ß 8x, y, Norm@8x, y<D< êê MatrixForm
Out[8]//MatrixForm=

0.925874 0.136988 0.935953
0.0928518 0.895481 0.900282
0.863376 0.0878501 0.867834
0.15219 0.773304 0.788137
0.10783 0.0809593 0.134839
0.374144 0.880981 0.957137
0.711271 0.608961 0.936344
0.208222 0.329782 0.390016

5 Functional programming
5.2 Functions for manipulating expressions
1. First, here is the definition given in Section 4.1.

In[1]:= SquareMatrixQ@mat_?MatrixQD :=

Dimensions@matD@@1DD ã Dimensions@matD@@2DD

For a matrix, Dimensions returns a list of two integers. Applying Equal to the list will return True if
the two dimensions are identical, that is, if the matrix is square.

In[2]:= SquareMatrixQ@mat_?MatrixQD := Apply@Equal, Dimensions@matDD

2. First create a set of points with which to work.
In[3]:= points = RandomReal@1, 8100, 2<D;

The set of all two-element subsets is given by:

In[4]:= pairs = Subsets@points, 82<D;

Apply the distance function to pairs. Note the need to apply EuclideanDistance at level 1.

In[5]:= Apply@EuclideanDistance, pairs, 81<D;

The maximum distance (diameter) is given by Max .

In[6]:= Max@%D

Out[6]= 1.2765

Here is a function that puts it all together.

In[7]:= PointsetDiameter@pts_ListD :=

Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD
In[8]:= PointsetDiameter@pointsD

Out[8]= 1.2765

In fact, this function works on n-dimensional point sets.

588 Solutions to exercises

In[9]:= points3D = RandomReal@1, 85, 3<D

Out[9]= 880.0776908, 0.260979, 0.796066<,
80.707468, 0.453237, 0.155118<, 80.728849, 0.580631, 0.319354<,
80.88149, 0.0464455, 0.0383026<, 80.238723, 0.844875, 0.0790128<<

In[10]:= PointsetDiameter@points3DD

Out[10]= 1.12531

3. Here is a test matrix.
In[11]:= mat = RandomInteger@1, 85, 5<D;

MatrixForm@matD
Out[12]//MatrixForm=

0 0 1 1 0
0 0 0 0 1
1 1 1 0 0
1 1 0 1 1
1 1 0 0 1

A bit of thought should convince you that adding the matrix to its transpose and then totaling all the 1s in
each row will give the correct count.

In[13]:= Map@Total, mat + Transpose@matDD

Out[13]= 85, 4, 5, 6, 6<

Using graphs you can accomplish the same thing.

In[14]:= gr = AdjacencyGraph@mat, VertexLabels Ø "Name"D

Out[14]=

In[15]:= VertexDegree@grD

Out[15]= 85, 4, 5, 6, 6<

4. Applying DirectedEdge at level 1 will do the trick.
In[16]:= ToGraph@lis : 88_, _< ..<D := Apply@DirectedEdge, lis, 81<D

In[17]:= lis = RandomInteger@9, 812, 2<D;
ToGraph@lisD

Out[18]= 80 � 6, 7 � 9, 5 � 3, 8 � 0, 3 � 6,

0 � 5, 9 � 3, 1 � 7, 0 � 2, 2 � 4, 4 � 3, 4 � 5<

This rule fails for the case when the argument is a single flat list of a pair of elements.

In[19]:= ToGraph@83, 6<D

Out[19]= ToGraph@83, 6<D

5 Functional programming 589

A second rule is needed for this case.

In[20]:= ToGraph@lis : 8_, _<D := Apply@DirectedEdge, lisD

In[21]:= ToGraph@83, 6<D

Out[21]= 3 � 6

5. RGBColor takes a sequence of three values between 0 and 1. So you only need to apply RGBColor to this
list.

In[22]:= RandomColor@D := Apply@RGBColor, RandomReal@1, 83<DD

A second rule uses pattern matching to make sure the argument, n, to RandomColor is a positive integer;
then create a list of n triples of random reals before applying RGBColor at level 1.

In[23]:= RandomColor@n_Integer?PositiveD :=

Apply@RGBColor, RandomReal@1, 8n, 3<D, 81<D

6. First, create the random centers and radii.
In[24]:= n = 12;

centers = RandomReal@8-1, 1<, 8n, 2<D
Out[25]= 880.226222, -0.111298<, 80.462016, -0.845492<, 80.840404, 0.558368<,

8-0.989743, 0.633542<, 80.23714, -0.315888<, 80.476561, 0.873451<,
80.65813, -0.916153<, 80.287248, -0.833235<, 8-0.70788, 0.685656<,
80.215158, -0.464512<, 80.65807, -0.925023<, 80.962352, 0.477038<<

In[26]:= radii = RandomReal@1, 8n<D

Out[26]= 80.883751, 0.549666, 0.576343, 0.470191, 0.425309, 0.0544009,

0.553858, 0.0168329, 0.940539, 0.669541, 0.755542, 0.865138<

MapThread is perfect for the task of grabbing one center, one radii, and wrapping Circle around them.

In[27]:= circles = MapThread@Circle, 8centers, radii<D êê Short

Out[27]//Short= 8Circle@80.226222, -0.111298<, 0.883751D,
á10à, Circle@80.962352, á20à<, á19àD<

In[28]:= Graphics@circlesD

Out[28]=

And here is a rule to transform each circle into a scoped list that includes Thick and RandomColor.
Note the need for the delayed rule (ß).

590 Solutions to exercises

In[29]:= Graphics@circles ê. Circle@x__D ß 8Thick, RandomColor@D, Circle@xD<D

Out[29]=

7. Here is the Inner example from the text.
In[30]:= Inner@f, 8a, b, c<, 8d, e, f<, gD

Out[30]= g@f@a, dD, f@b, eD, f@c, fDD

Using MapThread, we zip together the two lists and wrap f around each pair. Then apply g.

In[31]:= MapThread@f, 88a, b, c<, 8d, e, f<<D

Out[31]= 8f@a, dD, f@b, eD, f@c, fD<

In[32]:= Apply@g, %D

Out[32]= g@f@a, dD, f@b, eD, f@c, fDD

9. To get down to the level of the nested lists, you have to use a second argument to Apply .
In[33]:= facs = FactorInteger@3628800D

Out[33]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

In[34]:= Apply@Power, facs, 81<D

Out[34]= 8256, 81, 25, 7<

One more use of Apply is needed to multiply these terms.

In[35]:= Apply@Times, %D

Out[35]= 3628800

Here is a function that puts this all together.

In[36]:= ExpandFactors@lis_D := Apply@Times, Apply@Power, lis, 81<DD

In[37]:= FactorInteger@295232799039604140847618609643520000000D

Out[37]= 882, 32<, 83, 15<, 85, 7<, 87, 4<, 811, 3<,
813, 2<, 817, 2<, 819, 1<, 823, 1<, 829, 1<, 831, 1<<

In[38]:= ExpandFactors@%D

Out[38]= 295232799039604140847618609643520000000

11. First, here is the prime factorization of a test integer:
In[39]:= lis = FactorInteger@10!D

Out[39]= 882, 8<, 83, 4<, 85, 2<, 87, 1<<

Apply Superscript at level 1 to each of the sublists:

In[40]:= Apply@Superscript, lis, 81<D

Out[40]= 928, 34, 52, 71=

Finally, apply CenterDot to this list.

5 Functional programming 591

In[41]:= Apply@CenterDot, %D

Out[41]= 28 ÿ 34 ÿ 52 ÿ 71

Put it all together (using shorthand notation for Apply) and Apply at level 1.

In[42]:= PrimeFactorForm@p_D := CenterDot üü HSuperscript üüü FactorInteger@pDL

In[43]:= PrimeFactorForm@20!D

Out[43]= 218 ÿ 38 ÿ 54 ÿ 72 ÿ 111 ÿ 131 ÿ 171 ÿ 191

Unfortunately, this rule fails for numbers that have only one prime factor.

In[44]:= PrimeFactorForm@9D

Out[44]= CenterDotA32E

A second rule is needed for this special case.

In[45]:= PrimeFactorForm@p_?PrimePowerQD :=

First@Superscript üüü FactorInteger@pDD
In[46]:= PrimeFactorForm@9D

Out[46]= 32

A subtle point is that Mathematica has automatically ordered these two rules, putting the one involving
prime powers first.

In[47]:= ? PrimeFactorForm

Global`PrimeFactorForm

PrimeFactorForm@p_?PrimePowerQD :=

First@Apply@Superscript, FactorInteger@pD, 81<D

PrimeFactorForm@p_D :=

CenterDot üü Apply@Superscript, FactorInteger@pD, 81<D

This reordering (we evaluated the rules in a different order) is essential for this function to work properly.
If the general rule was checked first, it would apply to arguments that happen to be prime powers and it
would give wrong answers.

One final point: the expressions returned by PrimeFactorForm will not evaluate like ordinary expres-
sions due to the use of CenterDot which has no evaluation rules associated with it. You could add an
“interpretation” to such expressions by using InterpretationAdisp, exprE as follows.

In[48]:= PrimeFactorForm@p_IntegerD := With@8fp = FactorInteger@pD<,
Interpretation@
CenterDot üü HSuperscript üüü fpL,
Times üü HPower üüü fpLDD

Now the output of the following expression can be evaluated directly to get an interpreted result.

In[49]:= PrimeFactorForm@12!D

Out[49]= 210 ÿ 35 ÿ 52 ÿ 71 ÿ 111

592 Solutions to exercises

12. This is a straightforward application of the Outer function.
In[50]:= VandermondeMatrix@n_, x_D :=

Outer@Power, Table@xi, 8i, 1, n<D, Range@0, n - 1DD
In[51]:= VandermondeMatrix@4, xD êê MatrixForm

Out[51]//MatrixForm=

1 x1 x1
2 x1

3

1 x2 x2
2 x2

3

1 x3 x3
2 x3

3

1 x4 x4
2 x4

3

14. First create a table of primes and then use that list for values of p in the second table.
In[52]:= primes = Table@Prime@nD, 8n, 1, 50<D

Out[52]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229<

In[53]:= Select@Table@2p - 1, 8p, primes<D, PrimeQD

Out[53]= 83, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727<

Or you could do the same thing more directly.

In[54]:= SelectATableA2Prime@nD - 1, 8n, 1, 50<E, PrimeQE

Out[54]= 83, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111, 162259276829213363391578010288127,

170141183460469231731687303715884105727<

5.3 Iterating functions
1. First generate the step directions.

In[1]:= TableAH-1LRandom@IntegerD, 810<E

Out[1]= 81, 1, -1, 1, -1, 1, -1, -1, -1, 1<

Or the following also works.

In[2]:= steps = 2 RandomInteger@1, 810<D - 1

Out[2]= 8-1, 1, -1, -1, -1, -1, -1, -1, -1, 1<

Then, starting at 0, the fold operation generates the locations.

In[3]:= FoldList@Plus, 0, stepsD

Out[3]= 80, -1, 0, -1, -2, -3, -4, -5, -6, -7, -6<

3. Starting with 1, fold the Times function across the first n integers.
In[4]:= fac@n_D := Fold@Times, 1, Range@nDD

In[5]:= fac@10D

Out[5]= 3628800

5 Functional programming 593

4. First create the vertices of the triangle. Wrapping them in N@…D helps to keep the graphical structures small
(see Section 10.2 for more on this).
In[6]:= vertices = N@880, 0<, 81, 0<, 81 ê 2, 1<<D;

This gives the three different translation vectors.

In[7]:= translateVecs = 0.5 vertices

Out[7]= 880., 0.<, 80.5, 0.<, 80.25, 0.5<<

Here is the set of transformations of the triangle described by vertices, scaled by 0.5, and translated
according to the translation vectors.

In[8]:= tri = Polygon@verticesD;
Graphics@8

Blue, Translate@Scale@tri, 0.5, 80., 0.<D, translateVecsD
<D

Out[9]=

Finally, iterate the transformations by wrapping them in Nest.

In[10]:= Graphics@
8Blue, Nest@8Blue, Translate@Scale@Ò, 0.5, 80., 0.<D, translateVecsD< &,

Polygon@verticesD, 3D<D

Out[10]=

Once you have been through the rest of this chapter, you should be able to turn this into a reusable
function, scoping local variables, using pure functions, and adding options.

In[11]:= SierpinskiTriangle@iter_, opts : OptionsPattern@GraphicsDD :=

Module@8vertices, vecs<,
vertices = N@880, 0<, 81, 0<, 81 ê 2, 1<<D;
vecs = 0.5 vertices;

Graphics@
8Blue, Nest@8Blue, Translate@Scale@Ò, 0.5, 80., 0.<D, vecsD< &,

Polygon@verticesD, iterD<, optsDD

594 Solutions to exercises

In[12]:= SierpinskiTriangle@8, ImageSize Ø TinyD

Out[12]=

5.4 Programs as functions
1. Generate the list of integers 1 through n, then total that list.

In[1]:= sumInts@n_D := Total@Range@nDD

In[2]:= sumInts@100D

Out[2]= 5050

In[3]:= sumInts@1000D

Out[3]= 500500

We have not been careful to check that the arguments are positive integers here. See Section 5.6 for a
proper definition to check arguments.

2. Use MemberQ to check if any elements of the list pass the OddQ test. If they do, True is returned and so we
take the Boolean negation of that. In other words, if the list contains an odd number, False is returned,
indicating that the list does not consist of even numbers exclusively.
In[4]:= listEvenQ2@lis_D := Not@MemberQ@lis, _?OddQDD

In[5]:= listEvenQ2@82, 4, 6, 4, 8<D

Out[5]= True

In[6]:= listEvenQ2@82, 4, 6, 5, 8<D

Out[6]= False

Alternatively, you could have FreeQ check to see if the list is free of numbers that are equal to 1 mod 2.

In[7]:= listEvenQ3@lis_D := FreeQ@lis, p_ ê; Mod@p, 2D ã 1D

In[8]:= listEvenQ3@82, 4, 6, 4, 8<D

Out[8]= True

In[9]:= listEvenQ3@82, 4, 6, 5, 8<D

Out[9]= False

3. Some simple experiments iterating the shuffle function shows that the number of shuffles to return the
deck to its original state is dependent upon the number of cards in the deck. For a deck of 52 cards, eight
such perfect (Faro) shuffles will return the deck to its original state.

In[10]:= shuffle@lis_D := Module@8len = Ceiling@Length@lisD ê 2D<,
Apply@Riffle, Partition@lis, len, len, 1, 8<DDD

5 Functional programming 595

In[11]:= Nest@shuffle, Range@52D, 8D

Out[11]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52<

4. The obvious way to do this is to take the list and simply pick out elements at random locations. The right-
most location in the list is given by Length@lisD, using Part and RandomInteger .

In[12]:= randomChoice@lis_, n_D := lisPRandomInteger@81, Length@lisD<, 8n<DT

In[13]:= randomChoice@8a, b, c, d, e, f, g, h<, 12D

Out[13]= 8c, a, g, h, g, f, e, g, a, c, c, d<

6. Here is our user-defined stringInsert.
In[14]:= stringInsert@str1_, str2_, pos_D := StringJoinüJoin@

Take@Characters@str1D, pos - 1D,
Characters@str2D,
Drop@Characters@str1D, pos - 1D

D
In[15]:= stringInsert@"Joy world", "to the ", 5D

Out[15]= Joy to the world

In[16]:= stringDrop@str_, pos_D := StringJoin@Drop@Characters@strD, posDD

In[17]:= stringDrop@"ABCDEF", -2D

Out[17]= ABCD

The idea in these two examples is to convert a string to a list of characters, operate on that list using list
manipulation functions like Join, Take, and Drop, then convert back to a string. More efficient
approaches use string manipulation functions directly (see Chapter 9).

8. First, here is how we might write our own StringJoin.
In[18]:= FromCharacterCode@Join@

ToCharacterCode@"To be, "D, ToCharacterCode@"or not to be"D
DD

Out[18]= To be, or not to be

And here is a how we might implement a StringReverse.

In[19]:= FromCharacterCode@Reverse@ToCharacterCode@%DDD

Out[19]= eb ot ton ro ,eb oT

5.5 Scoping constructs
1. In the first definition, we only use one auxiliary function inside the Module .

In[1]:= latticeWalk2D@n_D := Module@8NSEW = 881, 0<, 8-1, 0<, 80, 1<, 80, -1<<<,
Accumulate@RandomChoice@NSEW, nDDD

In[2]:= latticeWalk2D@10D

Out[2]= 88-1, 0<, 80, 0<, 80, 1<, 80, 2<,
80, 3<, 80, 2<, 8-1, 2<, 80, 2<, 80, 1<, 8-1, 1<<

596 Solutions to exercises

2. The following function creates a local function perfectQ using the Module construct. It then checks
every other number between n and m by using a third argument to the Range function.
In[3]:= PerfectSearch@n_, m_D := Module@8perfectQ<,

perfectQ@j_D := Total@Divisors@jDD ã 2 j;

Select@Range@n, m, 2D, perfectQDD
In[4]:= PerfectSearch@2, 10000D

Out[4]= 86, 28, 496, 8128<

This function does not guard against the user supplying “bad” inputs. For example, if the user starts with
an odd number, then this version of PerfectSearch will check every other odd number, and, since it is
known that there are no odd perfect numbers below at least 10

300, none is reported.

In[5]:= PerfectSearch@1, 10000D

Out[5]= 8<

You can fix this situation by using the (as yet unproved) assumption that there are no odd perfect numbers.
This next version first checks that the first argument is an even number.

In[6]:= Clear@PerfectSearchD

In[7]:= PerfectSearch@n_?EvenQ, m_D := Module@8perfectQ<,
perfectQ@j_D := Total@Divisors@jDD ã 2 j;

Select@Range@n, m, 2D, perfectQDD

Now, the function only works if the first argument is even.

In[8]:= PerfectSearch@2, 10000D

Out[8]= 86, 28, 496, 8128<

In[9]:= PerfectSearch@1, 1000D

Out[9]= PerfectSearch@1, 1000D

3. This function requires a third argument.
In[10]:= Clear@PerfectSearchD;

PerfectSearch@n_, m_, k_D := Module@8perfectQ<,
perfectQ@j_D := Total@Divisors@jDD ã k j;

Select@Range@n, mD, perfectQDD

The following computation can be quite time consuming and requires a fair amount of memory to run to
completion. If your computer’s resources are limited, you should split up the search intervals into smaller
units or try running this in parallel. See Section 12.3 for a discussion on how to set up parallel computation.

In[12]:= PerfectSearch@1, 2200000, 4D êê AbsoluteTiming

Out[12]= 831.730753, 830240, 32760, 2178540<<

We also give a speed boost by using DivisorSigma@1, jD which gives the sum of the divisors of j.

In[13]:= PerfectSearchParallel@n_, m_, k_D :=

Module@8perfectQ<, perfectQ@j_D := DivisorSigma@1, jD ã k j;

Distribute@perfectQD;
Parallelize@Select@Range@n, m, 2D, perfectQDDD

5 Functional programming 597

In[14]:= PerfectSearchParallel@2, 2200000, 4D êê AbsoluteTiming

Out[14]= 84.435988, 830240, 32760, 2178540<<

4. Many implementations are possible for convertToDate. The task is made easier by observing that
DateList handles this task directly if its argument is a string.

In[15]:= DateList@"20120515"D

Out[15]= 82012, 5, 15, 0, 0, 0.<

The string is necessary otherwise DateList will interpret the integer as an absolute time (from Jan 1

1900).

In[16]:= DateList@20120515D

Out[16]= 81900, 8, 21, 21, 1, 55.<

So we need to convert the integer to a string first,

In[17]:= DateList@ToString@20120515DD

Out[17]= 82012, 5, 15, 0, 0, 0.<

and then take the first three elements.

In[18]:= Take@%, 3D

Out[18]= 82012, 5, 15<

Here is the function that puts these steps together.

In[19]:= convertToDate@n_IntegerD := Take@DateList@ToString@nDD, 3D

In[20]:= convertToDate@20120515D

Out[20]= 82012, 5, 15<

With a bit more manual work, you could also do this with StringTake .

In[21]:= convertToDate2@n_Integer ê; Length@IntegerDigits@nDD ã 8D :=

Module@8str = ToString@nD<,
8StringTake@str, 4D, StringTake@str, 85, 6<D, StringTake@str, -2D<D

In[22]:= convertToDate2@20120515D

Out[22]= 82012, 05, 15<

You could avoid working with strings by making use of FromDigits . This uses With to create a local
constant d, as this expression never changes throughout the body of the function.

In[23]:= convertToDate3@num_D := With@8d = IntegerDigits@numD<,
8FromDigits@Take@d, 4DD,
FromDigits@Take@d, 85, 6<DD,
FromDigits@Take@d, 87, 8<DD<D

In[24]:= convertToDate3@20120515D

Out[24]= 82012, 5, 15<

5. The computation of zeroing out one or more columns of a matrix can be handled with list component
assignment. We need to use a local variable here to avoid changing the original matrix.

598 Solutions to exercises

In[25]:= mat = RandomReal@1, 85, 5<D;
MatrixForm@matD

Out[26]//MatrixForm=

0.199196 0.763633 0.916951 0.254458 0.670371
0.831198 0.82132 0.351393 0.933563 0.431222
0.0868469 0.457891 0.299765 0.362697 0.462591
0.715115 0.780563 0.264595 0.445087 0.639657
0.306235 0.960085 0.151313 0.110208 0.809649

Here is a rule for zeroing out one column:

In[27]:= zeroColumns@mat_, n_IntegerD := Module@8lmat = mat<,
lmat@@All, nDD = 0;

lmatD

This next rule is for zeroing out a range of columns:

In[28]:= zeroColumns@mat_, Span@m_, n_DD := Module@8lmat = mat<,
lmat@@All, m ;; nDD = 0;

lmatD

We also need a final rule for zeroing out a discrete set of columns whose positions are given by a list.

In[29]:= zeroColumns@mat_, lis : 8__<D := Module@8lmat = mat<,
lmat@@All, lisDD = 0;

lmatD
In[30]:= zeroColumns@mat, 3D êê MatrixForm

Out[30]//MatrixForm=

0.199196 0.763633 0 0.254458 0.670371
0.831198 0.82132 0 0.933563 0.431222
0.0868469 0.457891 0 0.362697 0.462591
0.715115 0.780563 0 0.445087 0.639657
0.306235 0.960085 0 0.110208 0.809649

In[31]:= zeroColumns@mat, 1 ;; 2D êê MatrixForm
Out[31]//MatrixForm=

0 0 0.916951 0.254458 0.670371
0 0 0.351393 0.933563 0.431222
0 0 0.299765 0.362697 0.462591
0 0 0.264595 0.445087 0.639657
0 0 0.151313 0.110208 0.809649

In[32]:= zeroColumns@mat, 81, 3, 5<D êê MatrixForm
Out[32]//MatrixForm=

0 0.763633 0 0.254458 0
0 0.82132 0 0.933563 0
0 0.457891 0 0.362697 0
0 0.780563 0 0.445087 0
0 0.960085 0 0.110208 0

5 Functional programming 599

5.6 Pure functions
1. This function adds the squares of the elements in a list.

In[1]:= elementsSquared@lis_D := TotalAlis2E

In[2]:= elementsSquared@81, 3, 5, 7, 9<D

Out[2]= 165

Using a pure function, this becomes:

In[3]:= FunctionAlis, TotalAlis2EE@81, 3, 5, 7, 9<D

Out[3]= 165

or simply,

In[4]:= TotalAÒ2E &@81, 3, 5, 7, 9<D

Out[4]= 165

2. To compute the distance between two points, use either EuclideanDistance or Norm.
In[5]:= pts = RandomReal@1, 84, 2<D

Out[5]= 880.197291, 0.772739<, 80.125458, 0.9729<,
80.674665, 0.105554<, 80.679087, 0.196272<<

In[6]:= Norm@pts@@1DD - pts@@2DDD

Out[6]= 0.21266

In[7]:= EuclideanDistance@pts@@1DD, pts@@2DDD

Out[7]= 0.21266

Now we need the distance between every pair of points. So we first create the set of pairs.

In[8]:= pairs = Subsets@pts, 82<D

Out[8]= 8880.197291, 0.772739<, 80.125458, 0.9729<<,
880.197291, 0.772739<, 80.674665, 0.105554<<,
880.197291, 0.772739<, 80.679087, 0.196272<<,
880.125458, 0.9729<, 80.674665, 0.105554<<,
880.125458, 0.9729<, 80.679087, 0.196272<<,
880.674665, 0.105554<, 80.679087, 0.196272<<<

Then we compute the distance between each pair and take the Max .

In[9]:= Apply@Norm@Ò1 - Ò2D &, pairs, 81<D

Out[9]= 80.21266, 0.820379, 0.751294, 1.02661, 0.953759, 0.0908256<

In[10]:= Max@%D

Out[10]= 1.02661

Or, use Outer on the set of points directly, but not the need to get the level correct.

In[11]:= MaxüOuter@Norm@Ò1 - Ò2D &, pts, pts, 1D

Out[11]= 1.02661

Now put it all together using a pure function in place of the distance function. The diameter function
operates on lists of pairs of numbers, so we need to specify them in our pure function as Ò1 and Ò2.

600 Solutions to exercises

In[12]:= diameter@lis_D := Max@Apply@Norm@Ò1 - Ò2D &, Subsets@lis, 82<D, 81<DD

In[13]:= diameter@ptsD

Out[13]= 1.02661

EuclideanDistance is a bit faster here, but for large datasets, the difference is more pronounced.

In[14]:= Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD

Out[14]= 1.02661

In[15]:= pts = RandomReal@1, 81500, 2<D;
Max@Apply@Norm@Ò1 - Ò2D &, Subsets@pts, 82<D, 81<DD êê Timing

Out[16]= 86.50623, 1.36706<

In[17]:= Max@Apply@EuclideanDistance, Subsets@pts, 82<D, 81<DD êê Timing

Out[17]= 81.60753, 1.36706<

3. Pure functions are needed to replace both addOne and CompositeQ:
In[18]:= nextPrime@n_Integer ê; n > 1D := NestWhile@Ò + 1 &, n, Not@PrimeQ@ÒDD &D

Here is a quick check for correctness.

In[19]:= nextPrimeA2123E ã NextPrimeA2123E

Out[19]= True

Compare timing with the built-in function.

In[20]:= TimingAnextPrimeA22500E;E

Out[20]= 80.336794, Null<

In[21]:= TimingANextPrimeA22500E;E

Out[21]= 80.312704, Null<

5. Here are some sample data taken from a normal distribution.
In[22]:= data = RandomVariate@NormalDistribution@0, 1D, 8500<D;

Quickly visualize the data together with dashed lines drawn one standard deviation from the mean.

In[23]:= mean = Mean@dataD;
sd = StandardDeviation@dataD;
len = Length@dataD;
ListPlot@data,
Epilog Ø 8Dashed, Red,

Line@880, mean + sd<, 8len, mean + sd<<D,
Line@880, mean - sd<, 8len, mean - sd<<D<

D

Out[26]=
100 200 300 400 500

-2

-1

1

2

3

Select those data elements whose distance to the mean is less than one standard deviation.

5 Functional programming 601

In[27]:= filtered = Select@data, HAbs@HÒ - meanLD < sd &LD;

Here is a quick check that we get about the value we might expect (we would expect about 68% for
normally distributed data).

In[28]:= NB
Length@filteredD

Length@dataD
F

Out[28]= 0.686

In[29]:= ListPlot@filtered, PlotRange Ø All,

Epilog Ø 8Dashed, Red,

Line@880, mean + sd<, 8len, mean + sd<<D,
Line@880, mean - sd<, 8len, mean - sd<<D<

D

Out[29]=
50 100 150 200 250 300 350

-1.0

-0.5

0.5

1.0

8. Using Fold, this pure function requires two arguments. The key is to start with an initial value of 0.
In[30]:= Horner@list_List, var_D := Fold@var Ò1 + Ò2 &, 0, listD

In[31]:= Horner@8a, b, c, d, e<, xD

Out[31]= e + x Hd + x Hc + x Hb + a xLLL

In[32]:= Expand@%D

Out[32]= e + d x + c x2 + b x3 + a x4

9. Here is the prototype graph we will work with:
In[33]:= SeedRandom@16D;

gr = RandomGraph@810, 15<, VertexLabels Ø "Name"D

Out[34]=

And here are its edges and its vertices:

In[35]:= EdgeList@grD

Out[35]= 82 � 10, 2 � 3, 3 � 5, 4 � 5, 4 � 1, 4 � 7, 4 � 3,

5 � 7, 5 � 8, 6 � 5, 9 � 8, 9 � 6, 10 � 9, 10 � 8, 10 � 4<

In[36]:= VertexList@grD

Out[36]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

602 Solutions to exercises

Below are those edges from vertex 3 to any other vertex. In other words, this gives the adjacency list for
vertex 3.

In[37]:= With@8u = 3<,
Select@VertexList@grD, HEdgeQ@gr, UndirectedEdge@u, ÒDD &LD

D
Out[37]= 82, 4, 5<

The case for directed graphs is similar. Here then is a function that returns the adjacency list for a given
vertex u in graph gr.

In[38]:= adjacencyList@gr_, u_D := If@DirectedGraphQ@grD,
Select@VertexList@grD, EdgeQ@gr, DirectedEdge@u, ÒDD &D,
Select@VertexList@grD, EdgeQ@gr, UndirectedEdge@u, ÒDD &D

D

The adjacency structure is then given by mapping the above function across the vertex list.

In[39]:= AdjacencyStructure@gr_GraphD :=

Map@8Ò, adjacencyList@gr, ÒD< &, VertexList@grDD
In[40]:= AdjacencyStructure@grD

Out[40]= 881, 84<<, 82, 83, 10<<, 83, 82, 4, 5<<,
84, 81, 3, 5, 7, 10<<, 85, 83, 4, 6, 7, 8<<, 86, 85, 9<<,
87, 84, 5<<, 88, 85, 9, 10<<, 89, 86, 8, 10<<, 810, 82, 4, 8, 9<<<

Check that it works for a directed graph also.

In[41]:= gr2 = Graph@81 � 2, 2 � 1, 3 � 1, 3 � 2, 4 � 1, 4 � 2, 4 � 4<,
VertexLabels Ø "Name"D

Out[41]=

In[42]:= AdjacencyStructure@gr2D

Out[42]= 881, 82<<, 82, 81<<, 83, 81, 2<<, 84, 81, 2, 4<<<

11. A first, naive implementation will use the fact that the factors are all less than 6. Here are the factors for a
single integer.

In[43]:= facs = FactorInteger@126D

Out[43]= 882, 1<, 83, 2<, 87, 1<<

This extracts only the prime factors.

In[44]:= Map@First, facsD

Out[44]= 82, 3, 7<

In this case, they are not all less than 6.

5 Functional programming 603

In[45]:= Max@%D < 6

Out[45]= False

Putting these pieces together, here are the Hamming numbers less than 1000.

In[46]:= Select@Range@1000D, Max@Map@First, FactorInteger@ÒDDD < 6 &D
Out[46]= 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,

50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150,
160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320,
324, 360, 375, 384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600,
625, 640, 648, 675, 720, 729, 750, 768, 800, 810, 864, 900, 960, 972, 1000<

Factoring is slow for large integers and so this implementation does not scale well. This finds the 507
Hamming numbers less than 10

6.

In[47]:= WithA9n = 106=,

Select@Range@nD, Max@Map@First, FactorInteger@ÒDDD < 6 &D
E; êê Timing

Out[47]= 87.83722, Null<

See Dijkstra (1981) for a different implementation that starts with h = 81<, then builds lists 2 h, 3 h, 5 h,
merges these lists, and iterates.

In[48]:= HammingNumberList@n_D := ModuleB8lim<,

lim = IfBn < 100, Ceiling@Log2@nDD, CeilingBLog2B
n

2 � 3 � 5
F Log2@nDFF;

Join@81<, Take@Union üü NestList@
Union üü Outer@Times, 82, 3, 5<, ÒD &, 82, 3, 5<, limD, n - 1D

DF

In[49]:= HammingNumber@n_D := Part@HammingNumberList@nD, nD

In[50]:= HammingNumberList@20D

Out[50]= 81, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36<

In[51]:= HammingNumber@1691D êê Timing

Out[51]= 80.122587, 2125764000<

This gives the one-millionth Hamming number.

In[52]:= HammingNumberA106E êê Timing

Out[52]= 814.88,
519312780448388736089589843750000000000000000000000000000000 Ö

000000000000000000000000<

5.7 Options and messages
1. The message will slot in the values of the row indices being passed to the function switchRows, as well as

the length of the matrix, that is, the number of matrix rows.
In[1]:= switchRows::badargs =

"The absolute value of the row indices `1` and `2`

604 Solutions to exercises

in switchRows@mat,`1`,`2`D must be between

1 and `3`, the size of the matrix.";

The message is issued if either of the row indices have absolute value greater than the length of the matrix
or if either of these indices is equal to 0.

In[2]:= switchRows@mat_, 8r1_Integer, r2_Integer<D :=

Module@8lmat = mat, len = Length@matD<,
If@Abs@r1D > len »» Abs@r2D > len »» r1 r2 ã 0,

Message@switchRows::badargs, r1, r2, lenD,
lmat@@8r1, r2<DD = lmat@@8r2, r1<DDD;

lmatD
In[3]:= mat = RandomInteger@9, 84, 4<D;

MatrixForm@matD
Out[4]//MatrixForm=

0 0 8 5
4 6 9 9
0 0 0 3
2 7 0 8

In[5]:= switchRows@mat, 80, 4<D

switchRows::badargs : The absolute value of the row indices
0 and 4 in switchRows@mat,0,4D must be between 1 and 4, the size of the matrix.

Out[5]= 880, 0, 8, 5<, 84, 6, 9, 9<, 80, 0, 0, 3<, 82, 7, 0, 8<<

In[6]:= switchRows@mat, 82, 8<D

switchRows::badargs : The absolute value of the row indices
2 and 8 in switchRows@mat,2,8D must be between 1 and 4, the size of the matrix.

Out[6]= 880, 0, 8, 5<, 84, 6, 9, 9<, 80, 0, 0, 3<, 82, 7, 0, 8<<

2. If the first argument is not a list containing numbers, then issue a message.
In[7]:= MatchQ@81, 2, a<, 8__?NumericQ<D

Out[7]= False

Here is the message:

In[8]:= StemPlot::badarg =

"The first argument to StemPlot must be a list of numbers.";

In[9]:= Options@StemPlotD = Options@ListPlotD;

In[10]:= StemPlot@lis_, opts : OptionsPattern@DD :=

If@MatchQ@lis, 8__?NumericQ<D,
ListPlot@lis, opts, Filling Ø AxisD,
Message@StemPlot::badargD

D
In[11]:= StemPlot@4D

StemPlot::badarg : The first argument to StemPlot must be a list of numbers.

In[12]:= StemPlot@81, 2, c<D

StemPlot::badarg : The first argument to StemPlot must be a list of numbers.

5 Functional programming 605

In[13]:= StemPlot@81, 2, 3, 4, 5<D

Out[13]=

5.8 Examples and applications
1. Here are two sample lists.

In[1]:= l1 = 81, 0, 0, 1, 1<;
l2 = 80, 1, 0, 1, 0<;

First, pair them.

In[3]:= ll = Transpose@8l1, l2<D

Out[3]= 881, 0<, 80, 1<, 80, 0<, 81, 1<, 81, 0<<

Here is the conditional pattern that matches any pair where the two elements are not identical. The
Hamming distance is the number of such nonidentical pairs.

In[4]:= Count@ll, 8p_, q_< ê; p � qD

Out[4]= 3

Finally, here is a function that puts this all together.

In[5]:= HammingDistance3@lis1_List, lis2_ListD :=

Count@Transpose@8lis1, lis2<D, 8p_, q_< ê; p � qD
In[6]:= HammingDistance3@l1, l2D

Out[6]= 3

The running times of this version of HammingDistance are quite a bit slower than those where we used
bit operators. This is due to additional computation (Transpose, Length) and the use of pattern
matching and comparisons at every step.

In[7]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[8]:= data1 = RandomIntegerA1, 9106=E;

In[9]:= data2 = RandomIntegerA1, 9106=E;

In[10]:= Timing@HammingDistance2@data1, data2DD

Out[10]= 80.00861, 501049<

In[11]:= Timing@HammingDistance3@data1, data2DD

Out[11]= 80.766642, 501049<

2. Using Total , which simply gives the sum of the elements in a list, Hamming distance can be computed as
follows:

In[12]:= HammingDistance4@lis1_, lis2_D := Total@Mod@lis1 + lis2, 2DD

606 Solutions to exercises

Timing tests show that the implementation with Total is quite a bit more efficient than the previous
versions, although still slower than the version that uses bit operators.

In[13]:= sig1 = RandomIntegerA1, 9106=E;

In[14]:= sig2 = RandomIntegerA1, 9106=E;

In[15]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[16]:= Map@8Ò, Timing@Ò@sig1, sig2DD< &, 8HammingDistance1,

HammingDistance2, HammingDistance3, HammingDistance4<D êê Grid

Out[16]=

HammingDistance1 80.48052, 499991<
HammingDistance2 80.006952, 499991<
HammingDistance3 80.764652, 499991<
HammingDistance4 80.023833, 499991<

3. Just one change is needed here: add a second argument to RotateLeft that specifies the number of
positions to rotate. We have used NestList to display the intermediate steps.

In[17]:= survivor@n_, m_D := NestList@Rest@RotateLeft@Ò, m - 1DD &, Range@nD, n - 1D

In[18]:= survivor@11, 3D

Out[18]= 881, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11<, 84, 5, 6, 7, 8, 9, 10, 11, 1, 2<,
87, 8, 9, 10, 11, 1, 2, 4, 5<, 810, 11, 1, 2, 4, 5, 7, 8<,
82, 4, 5, 7, 8, 10, 11<, 87, 8, 10, 11, 2, 4<,
811, 2, 4, 7, 8<, 87, 8, 11, 2<, 82, 7, 8<, 82, 7<, 87<<

4. The median of a list containing an odd number of elements is the middle element of the sorted list.
In[19]:= median@lis_List ê; OddQ@Length@lisDDD :=

Part@Sort@lisD, Ceiling@Length@lisD ê 2DD

When the list has an even number of elements, take the mean of the middle two.

In[20]:= median@lis_List ê; EvenQ@Length@lisDDD :=

Module@8len = Length@lisD ê 2<,
Mean@Part@Sort@lisD, len ;; len + 1DD

D

Check the two cases – an even number of elements, and an odd number of elements. Then compare with
the built-in Median .

In[21]:= dataE = RandomInteger@10000, 100000D;

In[22]:= dataO = RandomInteger@10000, 100001D;

In[23]:= median@dataED êê Timing

Out[23]= 80.020506, 4977<

In[24]:= Median@dataED êê Timing

Out[24]= 80.020093, 4977<

In[25]:= median@dataOD êê Timing

Out[25]= 80.018505, 4962<

In[26]:= Median@dataOD êê Timing

Out[26]= 80.020531, 4962<

5 Functional programming 607

The two rules given here should be more careful about the input, using pattern matching to insure that
these rules only apply to one-dimensional lists. The following modifications handle that more robustly.

In[27]:= Clear@medianD

In[28]:= median@lis : 8__< ê; OddQ@Length@lisDDD :=

Part@Sort@lisD, Ceiling@Length@lisD ê 2DD
In[29]:= median@lis : 8__< ê; EvenQ@Length@lisDDD :=

Module@8len = Length@lisD ê 2<,
Mean@Part@Sort@lisD, len ;; len + 1DDD

6. Here is a list of coins (modify for other currencies).
In[30]:= coins = 8p, p, q, n, d, d, p, q, q, p<;

First count the occurrences of each.

In[31]:= Map@Count@coins, ÒD &, 8p, n, d, q<D

Out[31]= 84, 1, 2, 3<

Then a dot product of this count vector with a value vector does the trick.

In[32]:= %.8.01, .05, .10, .25<

Out[32]= 1.04

In[33]:= CountChange@lis_D :=

Dot@Map@Count@lis, ÒD &, 8p, n, d, q<D, 8.01, .05, .10, .25<D
In[34]:= CountChange@coinsD

Out[34]= 1.04

In[35]:= CountChange2@lis_D :=

Inner@Times,
Map@Count@lis, ÒD &, 8p, n, d, q<D, 8.01, .05, .10, .25<, PlusD

In[36]:= CountChange2@coinsD

Out[36]= 1.04

And here is a rule-based approach.

In[37]:= Tally@coinsD ê. 8d Ø .10, n Ø .05, p Ø .01, q Ø .25<

Out[37]= 880.01, 4<, 80.25, 3<, 80.05, 1<, 80.1, 2<<

In[38]:= Total@Apply@Times, %, 81<DD

Out[38]= 1.04

In[39]:= CountChange3@lis_D := Module@8freq<,
freq = Tally@lisD ê. 8p Ø .01, n Ø .05, d Ø .10, q Ø .25<;
Total@Apply@Times, freq, 81<DDD

In[40]:= CountChange3@coinsD

Out[40]= 1.04

7. The two-dimensional implementation insures steps of unit length by mapping the pure function
8Cos@ÒD, Sin@ÒD< & over the angles.

In[41]:= walk1DOffLattice@steps_D := Accumulate@RandomReal@8-1, 1<, stepsDD

608 Solutions to exercises

In[42]:= walk2DOffLattice@steps_D :=

Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, RandomReal@80, 2 p<, stepsDDD

The three-dimensional walk requires two angles, q in the interval @0, 2 pL and f in the interval [-1, 1]. See
Section 13.1 for a discussion of the three-dimensional off-lattice walk.

In[43]:= walk3DOffLattice@t_D := AccumulateB

TableBFunctionB8q, f<, :Cos@qD 1 - f2 , Sin@qD 1 - f2 , f>F üü

8RandomReal@80, 2 p<D, RandomReal@8-1, 1<D<, 8t<FF

With the one-dimensional walk, the vertical axis gives displacement from the origin and the horizontal
axis shows the number of steps.

In[44]:= ListLinePlot@walk1DOffLattice@1000DD

Out[44]=

200 400 600 800 1000

-30

-25

-20

-15

-10

-5

In[45]:= ListLinePlot@walk2DOffLattice@5000DD

Out[45]=

-80 -60 -40 -20

-50

-40

-30

-20

-10

In[46]:= Graphics3D@Line@walk3DOffLattice@5000DDD

Out[46]=

5 Functional programming 609

8. Column 4 of this matrix contains several different nonnumeric values.
In[47]:= mat3 = 880.796495, "NêA", 0.070125, "nan", 0.806554<,

8"nn", -0.100365, 0.992736, -0.320560, -0.0805351<,
80.473571, 0.460741, 0.030060, -0.412400, 0.788522<,
80.614974, -0.503201, 0.615744, 0.966053, -0.011776<,
8-0.828415, 0.035514, 0.8911617, "NêA", -0.453926<<;

MatrixForm@col4 = mat3@@All, 4DDD
Out[48]//MatrixForm=

nan
-0.32056
-0.4124
0.966053

NêA

To pattern match on either "NêA" or "nan", use Alternatives (»).

In[49]:= col4 ê. "NêA" "nan" Ø Mean@Cases@mat3@@All, 4DD, _?NumberQDD êê
MatrixForm

Out[49]//MatrixForm=

0.0776977
-0.32056
-0.4124
0.966053
0.0776977

Convert the list of strings to a set of alternatives.

In[50]:= Apply@Alternatives, 8"NêA", "nan", "nn"<D

Out[50]= NêA nan nn

Here is a third set of definitions, including a new rule for ReplaceElement where the second argument
is a list of strings. And another rule for ReplaceElement accommodates the new argument structure of
colMean.

In[51]:= colMean@col_, 8strings___String<D :=

col ê. Apply@Alternatives, 8strings<D Ø Mean@Cases@col, _?NumberQDD
In[52]:= ReplaceElement@mat_, 8strings__<D :=

Transpose@Map@colMean@Ò, 8strings<D &, Transpose@matDDD
In[53]:= ReplaceElement@mat3, 8"NêA", "nan", "nn"<D êê MatrixForm

Out[53]//MatrixForm=

0.796495 -0.0268277 0.070125 0.0776977 0.806554
0.264156 -0.100365 0.992736 -0.32056 -0.0805351
0.473571 0.460741 0.03006 -0.4124 0.788522
0.614974 -0.503201 0.615744 0.966053 -0.011776
-0.828415 0.035514 0.891162 0.0776977 -0.453926

9. Start with a prototype logical expression.
In[54]:= Clear@A, BD

In[55]:= expr = HA »» BL � C;

In[56]:= vars = 8A, B, C<;

610 Solutions to exercises

List all the possible truth value assignments for the variables.

In[57]:= tuples = Tuples@8True, False<, Length@varsDD

Out[57]= 88True, True, True<, 8True, True, False<,
8True, False, True<, 8True, False, False<, 8False, True, True<,
8False, True, False<, 8False, False, True<, 8False, False, False<<

Next, create a list of rules, associating each of the triples of truth values with a triple of variables.

In[58]:= rules = Map@Thread@vars Ø ÒD &, tuplesD

Out[58]= 88A Ø True, B Ø True, C Ø True<, 8A Ø True, B Ø True, C Ø False<,
8A Ø True, B Ø False, C Ø True<, 8A Ø True, B Ø False, C Ø False<,
8A Ø False, B Ø True, C Ø True<, 8A Ø False, B Ø True, C Ø False<,
8A Ø False, B Ø False, C Ø True<, 8A Ø False, B Ø False, C Ø False<<

Replace the logical expression with each set of rules.

In[59]:= expr ê. rules

Out[59]= 8True, False, True, False, True, False, True, True<

Put these last values at the end of each “row” of the tuples.

In[60]:= table = TransposeüJoin@Transpose@tuplesD, 8expr ê. rules<D

Out[60]= 88True, True, True, True<, 8True, True, False, False<,
8True, False, True, True<, 8True, False, False, False<,
8False, True, True, True<, 8False, True, False, False<,
8False, False, True, True<, 8False, False, False, True<<

Create a header for table.

In[61]:= head = Append@vars, TraditionalForm@exprDD

Out[61]= 8A, B, C, A Í B � C<

Prepend head to table.

In[62]:= Prepend@table, headD

Out[62]= 88A, B, C, A Í B � C<, 8True, True, True, True<, 8True, True, False, False<,
8True, False, True, True<, 8True, False, False, False<,
8False, True, True, True<, 8False, True, False, False<,
8False, False, True, True<, 8False, False, False, True<<

5 Functional programming 611

Pour into a grid.

In[63]:= Grid@Prepend@table, headDD

Out[63]=

A B C A Í B � C

True True True True
True True False False
True False True True
True False False False
False True True True
False True False False
False False True True
False False False True

Replace True with "T" and False with "F".

In[64]:= Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headDD

Out[64]=

A B C A Í B � C

T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

Add formatting via options to Grid.

In[65]:= Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø Black, -1 Ø Black, -2 Ø LightGray<,

81 Ø Black, 2 Ø LightGray, -1 Ø Black<<,
BaseStyle Ø 8FontFamily Ø "Times"<D

Out[65]=

A B C A � B� C

T T T T

T T F F

T F T T

T F F F

F T T T

F T F F

F F T T

F F F T

612 Solutions to exercises

Put the pieces together.

In[66]:= TruthTable@expr_, vars_D :=

Module@8len = Length@varsD, tuples, rules, table, head<,
tuples = Tuples@8True, False<, lenD;
rules = Thread@vars Ø Ò1D & êü tuples;
table = TransposeüJoin@Transpose@tuplesD, 8expr ê. rules<D;
head = Append@vars, TraditionalForm@exprDD;
Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD,
Dividers Ø 881 Ø 8Thin, Black<,

-1 Ø 8Thin, Black<, -2 Ø 8Thin, LightGray<<,
81 Ø 8Thin, Black<, 2 Ø 8Thin, LightGray<, -1 Ø 8Thin, Black<<<,

BaseStyle Ø 8FontFamily Ø "Times"<DD
In[67]:= TruthTable@AÏ B � Ÿ C, 8A, B, C<D

Out[67]=

A B C A � B� � C
T T T F

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F T

10. PositionAlis, elemE returns a list of positions at which elem occurs in lis. ExtractAlis, posE returns

those elements whose positions are specified by Position .
In[68]:= NearTo@lis_List, elem_, n_D :=

Module@8pos = Position@lis, elemD<, Extract@lis, 8pos - n, pos + n<DD
In[69]:= NearTo@lis_List, elem_, 8n_<D := Module@

8pos = Position@lis, elemD<, Extract@lis, Range@pos - n, pos + nDDD
In[70]:= chars = CharacterRange@"a", "z"D;

In[71]:= NearTo@chars, "q", 3D

Out[71]= 88n<, 8t<<

In[72]:= NearTo@chars, "q", 84<D

Out[72]= 88m, n, o, p, q, r, s, t, u<<

The key to writing the distance function is to observe that it must be a function of two variables and return
a numeric value (the distance metric). We are finding the difference of the positions of a target element in
the list with the element in question, y and x, respectively in the pure function. The use of @@1, 1DD is to
strip off extra braces returned by Position .

In[73]:= NearToN@lis_, elem_, n_D :=

Nearest@lis, elem, 82 n + 1, n<, DistanceFunction Ø

Function@8x, y<, Abs@HPosition@lis, yD - Position@lis, xDLP1, 1TDDD

5 Functional programming 613

In[74]:= NearToN@chars, "q", 4D

Out[74]= 8q, p, r, o, s, n, t, m, u<

6 Procedural programming

6.1 Loops and iteration
1. To compute the square root of a number r, iterate the following expression.

In[1]:= fun@x_D := x2 - r;

SimplifyBx -
fun@xD

fun'@xD
F

Out[2]=
r + x2

2 x

This can be written as a pure function, with a second argument giving the initial guess. Here we iterate ten
times, starting with a high-precision initial value, 2.0 to 30-digit precision.

In[3]:= nestSqrt@r_, init_D := NestB
r + Ò2

2 Ò
&, init, 10F

In[4]:= nestSqrt@2, N@2, 30DD

Out[4]= 1.41421356237309504880168872

2. Here is a first basic attempt to replace the Do loop with Table .
In[5]:= f@x_D := x2 - 2

In[6]:= a = 2;

TableBa = NBa -
f@aD

f£@aD
F, 810<F

Out[7]= 81.5, 1.41667, 1.41422, 1.41421, 1.41421,

1.41421, 1.41421, 1.41421, 1.41421, 1.41421<

In[8]:= findRoot@fun_Symbol, 8var_, init_<, iter_ : 10D := ModuleB8xi = init<,

TableBxi = NBxi -
fun@xiD

fun£@xiD
F, 8iter<F;

8var Ø xi<F

In[9]:= findRoot@f, 8x, 2<D

Out[9]= 8x Ø 1.41421<

This runs the iteration only three times.

In[10]:= findRoot@f, 8x, 2<, 3D

Out[10]= 8x Ø 1.41422<

3. Note that this version of the Fibonacci function is much more efficient than the simple recursive version
given in Chapter 7, and is closer to the version there that uses dynamic programming.

614 Solutions to exercises

In[11]:= fib@n_D := Module@8prev = 0, this = 1, next<,
Do@next = prev + this;

prev = this;

this = next,

8n<D;
prevD

In[12]:= Table@fib@iD, 8i, 1, 10<D

Out[12]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

Actually, this code can be simplified a bit by using parallel assignments.

In[13]:= fib2@n_D := Module@8f1 = 0, f2 = 1<,
Do@8f1, f2< = 8f2, f1 + f2<,
8n - 1<D;

f2D
In[14]:= Table@fib2@iD, 8i, 1, 10<D

Out[14]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

Both of these implementations are quite fast and avoid the deep recursion of the classical definition.

In[15]:= 8Timing@fib@100000D;D, Timing@fib2@100000D;D<

Out[15]= 880.22523, Null<, 80.183665, Null<<

5. The variable b is the current approximation, and the variable a is the previous approximation.

In[16]:= findRoot@fun_, 8var_, init_<, e_D := ModuleB8a = init, b = fun@initD<,

WhileBAbs@b - aD > e,

a = b;

b = NBb -
fun@bD

fun£@bD
FF;

8var Ø b<F

In[17]:= f@x_D := x2 - 50

In[18]:= findRoot@f, 8x, 10<, 0.0001D

Out[18]= 8x Ø 7.07107<

7. Based on a previous version of findRoot, the following adds multiple initial values.

In[19]:= findRootList@fun_, inits_List, e_D := ModuleB8a = inits<,

WhileBMin@Abs@Map@fun, aDDD > e,

a = MapBNBÒ -
fun@ÒD

fun£@ÒD
F &, aFF;

Select@a, Min@Abs@Map@fun, aDDD == Abs@fun@ÒDD &DF

In[20]:= findRootListAIÒ2 - 50M &, 8-10, 1, 10<, .001E

Out[20]= 8-7.07108, 7.07108<

8. A bit of variable swapping is needed here depending on whether or not a sign change occurs.

6 Procedural programming 615

In[21]:= bisect@f_, 8var_, a_, b_<, e_D :=

ModuleB:midpt = NB
a + b

2
F, low = a, high = b>,

WhileBAbs@f@midptDD > e,

If@Sign@f@lowDD ã Sign@f@midptDD, low = midpt, high = midptD;

midpt =
low + high

2
F;

8var Ø midpt<F

In[22]:= f@x_D := x2 - 2

bisect@f, 8x, 0, 2<, .0001D
Out[23]= 8x Ø 1.41418<

9. This is a direct implementation of the Euclidean algorithm.
In[24]:= gcd@m_, n_D := Module@8a = m, b = n, tmpa<,

While@b > 0,

tmpa = a;

a = b;

b = Mod@tmpa, bDD;
aD

In[25]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[25]= 11

You can avoid the need for the temporary variable tmpa by performing a parallel assignment as in the
following function. In addition, some argument checking insures that m and n are integers.

In[26]:= gcd@m_Integer, n_IntegerD := Module@8a = m, b = n<,
While@b > 0,

8a, b< = 8b, Mod@a, bD<D;
aD

In[27]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[27]= 11

6.2 Flow control
1. If, for element ai j, i is bigger than j, then we are below the diagonal and should insert a 0, otherwise insert a

1.
In[1]:= UpperTriangularMatrix@8m_, n_<D := Table@If@i ¥ j, 0, 1D, 8i, m<, 8j, n<D

A default value can be given for an optional argument that specifies the elements above the diagonal.

In[2]:= UpperTriangularMatrix@8m_, n_<, val_: 1D :=

Table@If@i ¥ j, 0, valD, 8i, m<, 8j, n<D

616 Solutions to exercises

In[3]:= UpperTriangularMatrix@85, 5<, aD êê MatrixForm
Out[3]//MatrixForm=

0 a a a a
0 0 a a a
0 0 0 a a
0 0 0 0 a
0 0 0 0 0

3. The test as the first argument of If on the right-hand side checks to see if x is an element of the domain of

complex numbers and, if it is, then reHxL2 + imHxL2 is computed. If x is not complex, nothing is done, but

then the other definitions for abs will be checked.
In[4]:= Clear@absD;

abs@x_D := SqrtARe@xD2 + Im@xD2E ê; x œ Complexes;

abs@x_D := x ê; x ¥ 0

abs@x_D := -x ê; x < 0

In[8]:= abs@3 + 4 ID

Out[8]= 5

In[9]:= abs@-3D

Out[9]= 3

The condition itself can appear on the left-hand side of the function definition, as part of the pattern
match. Here is a slight variation on the abs definition.

In[10]:= Clear@absD
abs@x_D := If@x ¥ 0, x, -xD
abs@x_ ê; x œ ComplexesD := SqrtARe@xD2 + Im@xD2E

In[13]:= abs@3 + 4 ID

Out[13]= 5

In[14]:= abs@-3D

Out[14]= 3

5. This is a straightforward conversion from the two rules given in Exercise 4 in Section 5.8 to an If
statement.

In[15]:= medianP@lis : 8__<D := Module@8len = Length@lisD<,
If@OddQ@lenD,
Part@Sort@lisD, Ceiling@len ê 2DD,
MeanüPart@Sort@lisD, len ê 2 ;; len ê 2 + 1D

DD
In[16]:= dataO = RandomInteger@10000, 100001D;

dataE = RandomInteger@10000, 100000D;
In[18]:= medianP@dataOD êê Timing

Out[18]= 80.01935, 5005<

In[19]:= Median@dataOD êê Timing

Out[19]= 80.018673, 5005<

6 Procedural programming 617

In[20]:= medianP@dataED êê Timing

Out[20]= :0.019162,
10019

2
>

In[21]:= Median@dataED êê Timing

Out[21]= :0.019867,
10019

2
>

6. First, define the auxiliary function using conditional statements.

In[22]:= collatz@n_D :=
n

2
ê; EvenQ@nD

In[23]:= collatz@n_D := 3 n + 1 ê; OddQ@nD

Alternatively, use If.

In[24]:= collatz@n_Integer?PositiveD := If@EvenQ@nD, n ê 2, 3 n + 1D

Then iterate Collatz, starting with n, and continue while n is not equal to 1.

In[25]:= CollatzSequence@n_D := NestWhileList@collatz, n, Ò � 1 &D

In[26]:= CollatzSequence@17D

Out[26]= 817, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

6.3 Examples and applications
1. Here is the gcd function implemented using an If structure.

In[1]:= Clear@gcdD

In[2]:= gcd@m_Integer, n_IntegerD := If@m > 0, gcd@Mod@n, mD, mD, gcd@m, nD = nD

In[3]:= With@8m = 12782, n = 5531207<,
gcd@m, nDD

Out[3]= 11

2. Given an integer, this totals the list of its digits.
In[4]:= Total@IntegerDigits@7763DD

Out[4]= 23

To repeat this process until the resulting integer has only one digit, use While .

In[5]:= digitRoot@n_Integer?PositiveD := Module@8locn = n, lis<,
While@
Length@lis = IntegerDigitsülocnD > 1,

locn = Total@lisDD;
locnD

In[6]:= digitRoot@7763D

Out[6]= 5

This can also be accomplished without iteration as follows:

In[7]:= digitRoot2@n_Integer?PositiveD := If@Mod@n, 9D ã 0, 9, Mod@n, 9DD

618 Solutions to exercises

In[8]:= digitRoot2@1000!D

Out[8]= 9

4. The alternatives we need to check for are 0 0.0 for both x and y.
In[9]:= quadrant@80 0.0, 0 0.0<D := 0

quadrant@8x_, 0 0.0<D := -1

quadrant@80 0.0, y_<D := -2

quadrant@8x_, y_<D := If@x < 0, 2, 1D ê; y > 0

quadrant@8x_, y_<D := If@x < 0, 3, 4D
In[14]:= quadrant@80.0, 0<D

Out[14]= 0

In[15]:= quadrant@81, 0<D

Out[15]= -1

6. Start with a small list of odd numbers.
In[16]:= ints = Range@1, 100, 2D

Out[16]= 81, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,

37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,

69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99<

On the first iteration, drop every third number, that is, drop 5, 11, 17, and so on.

In[17]:= p = ints@@2DD;
ints = Drop@ints, p ;; -1 ;; pD

Out[18]= 81, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49,

51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99<

Get the next number, 7, in the list ints; then drop every seventh number.

In[19]:= p = ints@@3DD;
ints = Drop@ints, p ;; -1 ;; pD

Out[20]= 81, 3, 7, 9, 13, 15, 21, 25, 27, 31, 33, 37, 43, 45, 49,

51, 55, 57, 63, 67, 69, 73, 75, 79, 85, 87, 91, 93, 97, 99<

Iterate. You will need to be careful about the upper limit of the iterator i.

In[21]:= ints = Range@1, 1000, 2D;
Do@
p = ints@@iDD;
ints = Drop@ints, p ;; -1 ;; pD,
8i, 2, 32<D

ints
Out[23]= 81, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93,

99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195,
201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297,
303, 307, 319, 321, 327, 331, 339, 349, 357, 361, 367, 385, 391, 393, 399, 409, 415,
421, 427, 429, 433, 451, 463, 475, 477, 483, 487, 489, 495, 511, 517, 519, 529,
535, 537, 541, 553, 559, 577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639,
643, 645, 651, 655, 673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741,
745, 769, 777, 781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885,
895, 897, 903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997<

6 Procedural programming 619

It would be more efficient if you did not need to manually determine the upper limit of the iteration. A
While loop is better for this task. The test checks that the value of the iterator has not gone past the length
of the successively shortened lists.

In[24]:= LuckyNumbers@n_Integer?PositiveD :=

Module@8p, i = 2, ints = Range@1, n, 2D<,
While@ints@@iDD < Length@intsD,
p = ints@@iDD;
ints = Drop@ints, p ;; -1 ;; pD;
i++D;

intsD
In[25]:= LuckyNumbers@1000D

Out[25]= 81, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93,
99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195,
201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297,
303, 307, 319, 321, 327, 331, 339, 349, 357, 361, 367, 385, 391, 393, 399, 409, 415,
421, 427, 429, 433, 451, 463, 475, 477, 483, 487, 489, 495, 511, 517, 519, 529,
535, 537, 541, 553, 559, 577, 579, 583, 591, 601, 613, 615, 619, 621, 631, 639,
643, 645, 651, 655, 673, 679, 685, 693, 699, 717, 723, 727, 729, 735, 739, 741,
745, 769, 777, 781, 787, 801, 805, 819, 823, 831, 841, 855, 867, 873, 883, 885,
895, 897, 903, 925, 927, 931, 933, 937, 957, 961, 975, 979, 981, 991, 993, 997<

This latter approach is also reasonably fast. Here is the time it takes to compute all lucky numbers less than
one million; there are 71918 of them.

In[26]:= LengthALuckyNumbersA106EE êê Timing

Out[26]= 80.313757, 71918<

7. Use the same constructs as were used in the text for selection sort.
In[27]:= bubbleSortList@lis_D :=

Module@8slist = lis, len = Length@lisD, tmp = 8<<,
For@i = len, i > 0, i--,

AppendTo@tmp, slistD;
For@j = 2, j § i, j++,

If@slistPj - 1T > slistPjT,
slistP8j - 1, j<T = slistP8j, j - 1<TDDD;

tmpD
In[28]:= data = RandomReal@1, 500D;

sort = bubbleSortList@dataD;
ListAnimate@ListPlot êü sortD;

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

100200300400500

0.2
0.4
0.6
0.8
1.0

620 Solutions to exercises

7 Recursion

7.1 Fibonacci numbers
1. The key here is to get the stopping conditions right in each case.

a. This is a straightforward recursion, multiplying the previous two values to get the next.

In[1]:= a@1D := 2

a@2D := 3

a@i_D := a@i - 1D a@i - 2D
In[4]:= Table@a@iD, 8i, 1, 8<D

Out[4]= 82, 3, 6, 18, 108, 1944, 209952, 408146688<

b. The sequence is obtained by taking the difference of the previous two values.

In[5]:= b@1D := 0

b@2D := 1

b@i_D := b@i - 2D - b@i - 1D
In[8]:= Table@b@iD, 8i, 1, 9<D

Out[8]= 80, 1, -1, 2, -3, 5, -8, 13, -21<

c. Here we add the previous three values.

In[9]:= c@1D := 0

c@2D := 1

c@3D := 2

c@i_D := c@i - 3D + c@i - 2D + c@i - 1D
In[13]:= Table@c@iD, 8i, 1, 9<D

Out[13]= 80, 1, 2, 3, 6, 11, 20, 37, 68<

2. It is important to get the two base cases right here.
In[14]:= FA@1D := 0

FA@2D := 0

FA@i_D := FA@i - 2D + FA@i - 1D + 1

In[17]:= Map@FA, Range@9DD

Out[17]= 80, 0, 1, 2, 4, 7, 12, 20, 33<

It is interesting to note that the number of additions needed to compute the nth Fibonacci number is one
less than the nth Fibonacci number itself. As the Fibonacci numbers grow, so too does the computation!

In[18]:= Fibonacci êü Range@9D

Out[18]= 81, 1, 2, 3, 5, 8, 13, 21, 34<

3. This is a direct implementation of the traditional mathematical notation given in the exercise. Avoiding
the double recursion of the naive implementation reduces the memory required and speeds things up
significantly, although it is still too slow for large numbers.

In[19]:= Clear@fib, fD;
fib@0D = 0;

fib@1D = 1;

7 Recursion 621

In[22]:= fib@n_Integer?PositiveD := With@8k = IntegerPart@n ê 2D<,
Which@
EvenQ@nD, fib@kD Hfib@kD + 2 fib@k - 1DL,
Mod@n, 4D ã 1, H2 fib@kD + fib@k - 1DL H2 fib@kD - fib@k - 1DL + 2,

True, H2 fib@kD + fib@k - 1DL H2 fib@kD - fib@k - 1DL - 2

DD
In[23]:= TimingüTable@fib@iD, 8i, 1, 40<D

Out[23]= 80.024248, 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,

1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393,

196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887,

9227465, 14930352, 24157817, 39088169, 63245986, 102334155<<

4. You can use your earlier definition of the Fibonacci numbers, or use the built-in Fibonacci.
In[24]:= f@n_Integer?NonPositiveD := H-1Ln-1 Fibonacci@-nD

In[25]:= f@0D = 0;

f@-1D = 1;

In[27]:= Table@f@iD, 8i, 0, -8, -1<D

Out[27]= 8f@iD, f@iD, f@iD, f@iD, f@iD, f@iD, f@iD, f@iD, f@iD<

7.2 Thinking recursively
1. This is similar to the length function in the text – recursion is on the tail. The base case is a list consisting

of a single element.
In[1]:= reverse@8x_, y__<D := Join@reverse@8y<D, 8x<D

In[2]:= reverse@8x_<D := 8x<

In[3]:= reverse@81, b, 3 ê 4, "practice makes perfect"<D

Out[3]= :practice makes perfect,
3

4
, b, 1>

3. Recursion is on the tail.
In[4]:= sumOddElements@8<D := 0

sumOddElements@8x_, r___<D := x + sumOddElements@8r<D ê; OddQ@xD
sumOddElements@8x_, r___<D := sumOddElements@8r<D

In[7]:= sumOddElements@82, 3, 5, 6, 7, 9, 12, 13<D

Out[7]= 37

4. Again, recursion is on the tail.
In[8]:= sumEveryOtherElement@8<D := 0

sumEveryOtherElement@8x_<D := x

sumEveryOtherElement@8x_, y_, r___<D := x + sumEveryOtherElement@8r<D
In[11]:= sumEveryOtherElement@81, 2, 3, 4, 5, 6, 7, 8, 9<D

Out[11]= 25

5. This is a direct extension of the addPairs function discussed in this section.
In[12]:= addTriples@8<, 8<, 8<D := 8<

addTriples@8x1_, y1___<, 8x2_, y2___<, 8x3_, y3___<D :=

622 Solutions to exercises

Join@8x1 + x2 + x3<, addTriples@8y1<, 8y2<, 8y3<DD
In[14]:= addTriples@8w1, x1, y1, z1<, 8w2, x2, y2, z2<, 8w3, x3, y3, z3<D

Out[14]= 8w1 + w2 + w3, x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3<

7. Recursion is on the tails of each of the two lists.
In[15]:= maxPairs@8<, 8<D := 8<

maxPairs@8x_, r___<, 8y_, s___<D :=

Join@8Max@x, yD<, maxPairs@8r<, 8s<DD
In[17]:= maxPairs@81, 2, 4<, 82, 7, 2<D

Out[17]= 82, 7, 4<

8. Again, we do recursion on the tails of the two lists.
In[18]:= riffle@8<, 8<D := 8<

riffle@8x_, r___<, 8y_, s___<D := Join@8x, y<, riffle@8r<, 8s<DD
In[20]:= riffle@8a, b, c<, 8x, y, z<D

Out[20]= 8a, x, b, y, c, z<

Here is the built-in function that does this.

In[21]:= Riffle@8a, b, c<, 8x, y, z<D

Out[21]= 8a, x, b, y, c, z<

9. Here is maxima using an auxiliary function.
In[22]:= maxima@8<D := 8<

maxima@8x_, r___<D := maxima@x, 8r<D
In[24]:= maxima@x_, 8<D := 8x<

maxima@x_, 8y_, r___<D := maxima@x, 8r<D ê; x ¥ y

maxima@x_, 8y_, r___<D := Join@8x<, maxima@y, 8r<DD

7.3 Dynamic programming
1. Here are the rules translated directly from the formulas given in the exercise.

In[1]:= EulerianNumber@0, k_D = 0;

EulerianNumber@n_Integer, 0D = 1;

EulerianNumber@n_Integer, k_IntegerD ê; k ¥ n = 0;

In[4]:= EulerianNumber@n_Integer, k_IntegerD :=

Hk + 1L EulerianNumber@n - 1, kD + Hn - kL EulerianNumber@n - 1, k - 1D
In[5]:= Table@EulerianNumber@n, kD, 8n, 0, 7<, 8k, 0, 7<D êê TableForm

Out[5]//TableForm=

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
1 11 11 1 0 0 0 0
1 26 66 26 1 0 0 0
1 57 302 302 57 1 0 0
1 120 1191 2416 1191 120 1 0

7 Recursion 623

Because of the triple recursion, computing larger values is not only time and memory intensive but also
bumps up against the built-in recursion limit.

In[6]:= EulerianNumber@25, 15D êê Timing

Out[6]= 818.7849, 531714261368950897339996<

This is a good candidate for dynamic programming. In the following implementation we have temporarily
reset the value of $RecursionLimit using Block .

In[7]:= Clear@EulerianNumberD;

In[8]:= EulerianNumber@0, k_D = 0;

EulerianNumber@n_Integer, 0D = 1;

EulerianNumber@n_Integer, k_IntegerD ê; k ¥ n = 0;

In[11]:= EulerianNumber@n_Integer, k_IntegerD :=

Block@8$RecursionLimit = Infinity<,
EulerianNumber@n, kD =

Hk + 1L EulerianNumber@n - 1, kD + Hn - kL EulerianNumber@n - 1, k - 1DD
In[12]:= EulerianNumber@25, 15D êê Timing

Out[12]= 80.002171, 531714261368950897339996<

In[13]:= EulerianNumber@600, 65D; êê Timing

Out[13]= 80.411056, Null<

In[14]:= N@EulerianNumber@600, 65DD

Out[14]= 4.998147102049161 � 101091

2. This implementation uses the identities given in the exercise together with some pattern matching for the
even and odd cases.

In[15]:= F@1D := 1

F@2D := 1

In[17]:= F@n_?EvenQD := 2 FB
n

2
- 1F FB

n

2
F + FB

n

2
F
2

F@n_?OddQD := FB
n - 1

2
+ 1F

2
+ FB

n - 1

2
F
2

In[19]:= Map@F, Range@10DD

Out[19]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

In[20]:= TimingAFA104E;E

Out[20]= 80.410249, Null<

3. The use of dynamic programming speeds up the computation by several orders of magnitude.
In[21]:= FF@1D := 1

FF@2D := 1

In[23]:= FF@n_?EvenQD := FF@nD = 2 FFB
n

2
- 1F FFB

n

2
F + FFB

n

2
F
2

FF@n_?OddQD := FF@nD = FFB
n - 1

2
+ 1F

2
+ FFB

n - 1

2
F
2

624 Solutions to exercises

In[25]:= Map@FF, Range@10DD

Out[25]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

In[26]:= TimingAFFA105E;E

Out[26]= 80.00133, Null<

This is fairly fast, even compared with the built-in Fibonacci which uses a method based on the binary
digits of n.

In[27]:= TimingAFibonacciA105E;E

Out[27]= 80.002, Null<

7.4 Classical examples
1. Perhaps the most straightforward way to do this is to write an auxiliary function that takes the output from

runEncode and produces output such as Split would generate.
In[1]:= runEncode@8<D := 8<

runEncode@8x_<D := 88x, 1<<
In[3]:= runEncode@8x_, res___<D := Module@8R = runEncode@8res<D, p<,

p = First@RD;
If@x ã First@pD,
Join@88x, pP2T + 1<<, Rest@RDD,
Join@88x, 1<<, RDDD

Then our split simply operates on the output of runEncode. The iterator for the Table is the second
element in each sublist, that is, the frequency.

In[4]:= sp@lis_D := Map@Table@Ò@@1DD, 8Ò@@2DD<D &, lisD

In[5]:= sp@883, 2<, 84, 1<, 82, 5<<D

Out[5]= 883, 3<, 84<, 82, 2, 2, 2, 2<<

In[6]:= split@lis_D := sp@runEncode@lisDD

In[7]:= split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[7]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

Check against the built-in function.

In[8]:= Split@89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<D

Out[8]= 889, 9, 9, 9, 9<, 84<, 83, 3, 3, 3<, 85, 5, 5, 5, 5, 5<<

2. The order of this list of rules is the order in which the Mathematica evaluator will search for a pattern match.
In[9]:= runEncode@8<D := 8<

runEncode@8x_, r___<D := runEncode@x, 1, 8r<D
runEncode@x_, k_, 8<D := 88x, k<<
runEncode@x_, k_, 8x_, r___<D := runEncode@x, k + 1, 8r<D
runEncode@x_, k_, 8y_, r___<D := Join@88x, k<<, runEncode@y, 1, 8r<DD

3. Recursion is on the tail.
In[14]:= runDecode@8<D := 8<

runDecode@88x_, k_<, r___<D := Join@Table@x, 8k<D, runDecode@8r<DD

7 Recursion 625

In[16]:= runDecode@889, 5<, 84, 1<, 83, 4<, 85, 6<<D

Out[16]= 89, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5<

8 Numerics
8.1 Numbers
1. This function gives the polar form as a list consisting of the magnitude and the polar angle.

In[1]:= complexToPolar@z_D := 8Abs@zD, Arg@zD<

In[2]:= complexToPolar@3 + 3 ÂD

Out[2]= :3 2 ,
p

4
>

In[3]:= complexToPolarB‰
p Â

3 F

Out[3]= :1,
p

3
>

2. This function uses a default value of 2 for the base. (Try replacing Fold with FoldList to see more
clearly what this function is doing.)
In[4]:= convert@digits_List, base_ : 2D := Fold@Hbase Ò1 + Ò2L &, 0, digitsD

Here are the digits for 9 in base 2:

In[5]:= IntegerDigits@9, 2D

Out[5]= 81, 0, 0, 1<

This converts them back to the base 10 representation.

In[6]:= convert@%D

Out[6]= 9

Note, this functionality is built into the function FromDigitsAlis, baseE.

In[7]:= FromDigits@81, 0, 0, 1<, 2D

Out[7]= 9

This function is essentially an implementation of Horner’s method for fast polynomial multiplication.

In[8]:= convert@8a, b, c, d, e<, xD

Out[8]= e + x Hd + x Hc + x Hb + a xLLL

In[9]:= Expand@%D

Out[9]= e + d x + c x2 + b x3 + a x4

3. One rule can cover both parts of this exercise, using a default value of 10 for the base.
In[10]:= DigitSum@n_, base_: 10D := Total@IntegerDigits@n, baseDD

In[11]:= DigitSum@10!D

Out[11]= 27

626 Solutions to exercises

The Hamming weight of a number is the number of 1s in its binary representation.

In[12]:= DigitSumA231 - 1, 2E

Out[12]= 31

Here is a comparison with a built-in function:

In[13]:= DigitCountA231 - 1, 2, 1E

Out[13]= 31

8. Mapping Dice (from Exercise 9 in Section 4.2) over a list of two random integers between 1 and 6 simu-
lates a roll of a pair of dice.

In[14]:= Map@Dice, RandomInteger@81, 6<, 82<DD

Out[14]= : , >

Here is a function to do that.

In[15]:= RollDice@D := GraphicsRow@Map@Dice, RandomInteger@81, 6<, 82<DDD

In[16]:= RollDice@D

Out[16]=

And here is the rule for rolling the pair of dice n times.

In[17]:= RollDice@n_D := Table@RollDice@D, 8n<D

In[18]:= RollDice@4D

Out[18]= : , , , >

9. Using the hint in the exercise, here are the directions for the two- and three-dimensional cases.
In[19]:= NSEW = 880, 1<, 80, -1<, 81, 0<, 8-1, 0<<;

In[20]:= NSEW3 = 881, 0, 0<, 80, 1, 0<, 80, 0, 1<, 8-1, 0, 0<, 80, -1, 0<, 80, 0, -1<<;

The walk functions follow directly from the one-dimensional case given in the text.

In[21]:= walk2D@t_D := Accumulate@RandomChoice@NSEW, tDD

In[22]:= walk3D@t_D := Accumulate@RandomChoice@NSEW3, tDD

Exercise the functions and visualize.

8 Numerics 627

In[23]:= ListLinePlot@walk2D@1500D, AspectRatio Ø AutomaticD

Out[23]=

-30 -20 -10

-40

-30

-20

-10

In[24]:= Graphics3D@Line@walk3D@2500DDD

Out[24]=

For a more complete discussion of these functions, see Section 13.1.

10. Here is the linear congruential generator.
In[25]:= linearCongruential@x_, mod_, mult_, incr_D := Mod@mult x + incr, modD

With modulus 100 and multiplier 15, this generator quickly gets into a cycle.

In[26]:= NestList@linearCongruential@Ò, 100, 15, 1D &, 5, 10D

Out[26]= 85, 76, 41, 16, 41, 16, 41, 16, 41, 16, 41<

With a larger modulus and multiplier, it appears as if this generator is doing better.

Here are the first 60 terms starting with a seed of 0.

In[27]:= data = NestList@linearCongruential@Ò, 381, 15, 1D &, 0, 5000D;
Take@data, 60D

Out[28]= 80, 1, 16, 241, 187, 139, 181, 49, 355, 373, 262, 121, 292, 190, 184, 94,

268, 211, 118, 247, 277, 346, 238, 142, 226, 343, 193, 229, 7, 106,

67, 244, 232, 52, 19, 286, 100, 358, 37, 175, 340, 148, 316, 169, 250,

322, 259, 76, 379, 352, 328, 349, 283, 55, 64, 199, 319, 214, 163, 160<

Sometimes it is hard to see if your generator is doing a poor job. Graphical analysis can help by allowing
you to see patterns over larger domains. Here is a ListPlot of this sequence taken out to 5000 terms.

628 Solutions to exercises

In[29]:= ListPlot@data, PlotStyle Ø PointSize@.005DD

Out[29]=

1000 2000 3000 4000 5000

50
100
150
200
250
300
350

It appears as if certain numbers are repeating. Looking at the plot of the Fourier data shows peaks at
certain frequencies, indicating a periodic nature to the data.

In[30]:= ListPlot@Abs@Fourier@dataDD, PlotStyle Ø PointSize@.005DD

Out[30]=

1000 2000 3000 4000 5000

10

20

30

40

50

Using a much larger modulus and multiplier and an increment of zero (actually, these are the default
values for Mathematica’s built-in "Congruential" method for SeedRandom), you can keep your
generator from getting in such short loops.

In[31]:= ListPlot@data = NestList@linearCongruential@Ò1, 2305843009213693951,

1283839219676404755, 0D &, 1, 5000D, PlotStyle Ø PointSize@.005DD

Out[31]=

10002000300040005000

5.0�1017

1.0�1018

1.5�1018

2.0�1018

In[32]:= ListPlot@Abs@Fourier@dataDD, PlotStyle Ø PointSize@.005DD

Out[32]=

10002000300040005000

5.0�1017

1.0�1018

1.5�1018

12. Here is a simple implementation of the middle square method. It assumes a ten-digit seed. To work with
arbitrary-length seeds, modify the number of middle digits that are extracted with the Part function.

In[33]:= middleSquareGenerator@n_, seed_: 1234567890D :=

Module@8tmp = 8seed<, s2, len, s = seed<,
Do@
s2 = IntegerDigits@s^2D;
len = Length@s2D;
s = FromDigits@If@len < 20, PadLeft@s2, 20, 0D, s2D@@6 ;; 15DDD;
AppendTo@tmp, sD,
8n<D;

tmp

D

8 Numerics 629

In[34]:= middleSquareGenerator@3D

Out[34]= 81234567890, 1578750190, 4521624250, 858581880<

In[35]:= data = middleSquareGenerator@1000D;
Take@data, 12D

Out[36]= 81234567890, 1578750190, 4521624250, 858581880,

1628446643, 8384690979, 428133239, 2980703366,

5925560837, 2712329881, 7333833654, 1160645429<

13. Run 10 000 trials with a range of probabilities from 0 to 1 in increments of .001.
In[37]:= incr = 0.001;

trials = 10000;

lis = Table@
RandomVariate@BernoulliDistribution@pD, trialsD, 8p, 0, 1, incr<D;

Pair up the probabilities with the entropies (in base 2) for each trial.

In[40]:= info = Transpose@8Range@0, 1, incrD, Map@Entropy@2, ÒD &, lisD<D;

Make a plot.

In[41]:= ListPlot@info, AspectRatio Ø 1,

GridLines Ø Automatic, PlotStyle Ø PointSize@SmallDD

Out[41]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8.2 Working with numbers
1. The number 1.23 has machine precision.

In[1]:= Precision@1.23D

Out[1]= MachinePrecision

Asking Mathematica to generate 100 digits of precision from a number that only contains about 16 digits of
precision would require it to produce 84 digits without any information about where those digits should
come from.

2. This generates a table showing the number of digits of precision needed in the input compared with the
accuracy of the result.

630 Solutions to exercises

In[2]:= TableB:x, AccuracyBNB 2 , xF
200

- J 2 N
200

F>, 8x, 100, 140, 5<F êê

TableForm
Out[2]//TableForm=

100 67.596
105 72.596
110 77.596
115 82.596
120 87.596
125 92.596
130 97.596
135 102.596
140 107.596

8.3 Arrays of numbers
1. Note the need for a delayed rule in this function.

In[1]:= RandomSparseArray@n_IntegerD :=

SparseArray@8Band@81, 1<D ß RandomReal@D<, 8n, n<D
In[2]:= Normal@RandomSparseArray@5DD êê MatrixForm

Out[2]//MatrixForm=

0.778393 0 0 0 0
0 0.685614 0 0 0
0 0 0.639995 0 0
0 0 0 0.79101 0
0 0 0 0 0.427544

2. Here is the definition of TridiagonalMatrix.
In[3]:= TridiagonalMatrix@n_, p_, q_D := SparseArray@

8Band@81, 1<D Ø p, Band@81, 2<D Ø q, Band@82, 1<D Ø q<, 8n, n<D
In[4]:= TridiagonalMatrix@5, a, bD

Out[4]= SparseArray@<13>, 85, 5<D

In[5]:= Normal@%D êê MatrixForm
Out[5]//MatrixForm=

a b 0 0 0
b a b 0 0
0 b a b 0
0 0 b a b
0 0 0 b a

3. First we create the packed array vector.
In[6]:= vec = RandomVariateANormalDistribution@1, 3D, 9105=E;

In[7]:= Developer`PackedArrayQ@vecD

Out[7]= True

Replacing the first element in vec with a 1 gives an expression that is not packed.

In[8]:= newvec = ReplacePart@vec, 1, 1D;

In[9]:= Developer`PackedArrayQ@newvecD

Out[9]= False

8 Numerics 631

The size of the unpacked object is about four times larger than the packed array.

In[10]:= Map@ByteCount, 8vec, newvec<D

Out[10]= 8800168, 3200040<

Sorting the packed object is about three times faster than sorting the unpacked object.

In[11]:= Timing@Do@Sort@vecD, 85<DD

Out[11]= 80.094712, Null<

In[12]:= Timing@Do@Sort@newvecD, 85<DD

Out[12]= 80.243469, Null<

Finding the minimum element is about one order of magnitude faster with the packed array.

In[13]:= Timing@Min@vecD;D

Out[13]= 80.000213, Null<

In[14]:= Timing@Min@newvecD;D

Out[14]= 80.002076, Null<

4. Since the definition involving determinants only makes sense for n > 2, we include a condition on the left-
hand side of that definition and also specific rules for the cases n = 1, 2.

In[15]:= fibMat@n_ ê; n > 2D := DetüSparseArray@
8Band@81, 1<D Ø 1, Band@82, 1<D Ø Â, Band@81, 2<D Ø Â<, 8n - 1, n - 1<D

In[16]:= fibMat@1D = fibMat@2D = 1;

In[17]:= Table@fibMat@iD, 8i, 1, 20<D

Out[17]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

144, 233, 377, 610, 987, 1597, 2584, 4181, 6765<

The computation of determinants using decomposition methods is on the order of OIn3M computational

complexity. So this computation tends to slow down considerably for large n.

In[18]:= TimingAfibMatA103EE
Out[18]= 86.7663,

43466557686937456435688527675040625802564660517371780402481729089536 Ö
555417949051890403879840079255169295922593080322634775209689623239873 Ö
322471161642996440906533187938298969649928516003704476137795166849228 Ö
875<

In[19]:= FibonacciA103E ã fibMatA103E

Out[19]= True

5. The sparse array needs only one rule 82, 2< Ø 0 together with a third argument that specifies the default
values should be set to 1. Then pick off the nth Fibonacci number in the first row, second column.

In[20]:= fibMat2@n_D := Module@8mat<,
mat = SparseArray@882, 2< Ø 0<, 82, 2<, 1D;
MatrixPower@mat, nD@@1, 2DD

D

Quick check of the first few numbers.

632 Solutions to exercises

In[21]:= Table@fibMat2@nD, 8n, 1, 10<D

Out[21]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

The time to compute a large number is quite fast.

In[22]:= TimingAfibMat2A103EE
Out[22]= 80.000216,

43466557686937456435688527675040625802564660517371780402481729089536 Ö
555417949051890403879840079255169295922593080322634775209689623239873 Ö
322471161642996440906533187938298969649928516003704476137795166849228 Ö
875<

Check correctness against the built-in function, using a large random integer n.

In[23]:= WithA9n = RandomIntegerA106E=,

fibMat2@nD ã Fibonacci@nD
E

Out[23]= True

8.4 Examples and applications
1. We will overload findRoot to invoke the secant method when given a list of two numbers as the second

argument.
In[1]:= Options@findRootD = 8

MaxIterations ß $RecursionLimit,

PrecisionGoal Ø Automatic,

WorkingPrecision Ø Automatic

<;
In[2]:= findRoot@fun_, 8var_, x1_?NumericQ, x2_?NumericQ<, OptionsPattern@DD :=

ModuleB8maxIterations, precisionGoal,

workingPrecision, initx, df, next, result<,
8maxIterations, precisionGoal, workingPrecision< =

OptionValue@8MaxIterations, PrecisionGoal, WorkingPrecision<D;
If@precisionGoal === Automatic,

precisionGoal = Min@8Precision@x1D, Precision@x2D<DD;
If@workingPrecision === Automatic,

workingPrecision = precisionGoal + 10D;
initx = SetPrecision@8x1, x2<, workingPrecisionD;
df@a_, b_D := Hfun@bD - fun@aDL ê Hb - aL;

next@8a_, b_<D := :a, b -
fun@bD

df@a, bD
>;

result = SetPrecision@
FixedPoint@next, initx, maxIterationsD@@2DD, precisionGoalD;

8var Ø result<F

In[3]:= f@x_D := x2 - 2

8 Numerics 633

In[4]:= findRoot@f, 8x, 1., 2.<D

Out[4]= 8x Ø 1.41421<

In[5]:= findRoot@f, 8x, 1.0`60, 2.0`50<D

Out[5]= 8x Ø 1.4142135623730950488016887242096980785696740946953<

In[6]:= Precision@%D

Out[6]= 50.

5. Here is a three-dimensional vector.
In[7]:= vec = 81, -3, 2<;

This computes the l¶ norm of the vector.

In[8]:= norm@v_?VectorQ, l_: InfinityD := Max@Abs@vDD

In[9]:= norm@vecD

Out[9]= 3

Compare this with the built-in Norm function.

In[10]:= Norm@vec, InfinityD

Out[10]= 3

Here is a 3�3 matrix.

In[11]:= mat = 881, 2, 3<, 81, 0, 2<, 82, -3, 2<<;

Here, then, is the matrix norm.

In[12]:= norm@m_?MatrixQ, l_: InfinityD :=

norm@Total@Abs@Transpose@mDDD, InfinityD
In[13]:= norm@matD

Out[13]= 7

Again, here is a comparison with the built-in Norm function.

In[14]:= Norm@mat, InfinityD

Out[14]= 7

Notice how we overloaded the definition of the function norm so that it would act differently depending
upon what type of argument it was given. This is a particularly powerful feature of Mathematica. The
expression _?MatrixQ on the left-hand side of the definition causes the function norm to use the
definition on the right-hand side only if the argument is in fact a matrix (if it passes the MatrixQ test). If
that argument is a vector (if it passes the VectorQ test), then the previous definition is used.

6. Here is the function to compute the condition number of a matrix (using the l2 norm).
In[15]:= conditionNumber@m_?MatrixQD := Norm@m, 2D Norm@Inverse@mD, 2D

In[16]:= conditionNumber@HilbertMatrix@3DD êê N

Out[16]= 524.057

Compare this with the condition number of a random matrix.

634 Solutions to exercises

In[17]:= mat = RandomInteger@5, 83, 3<D;
conditionNumber@matD êê N

Out[18]= 2.31709

An alternative definition for the condition number of a matrix is the ratio of largest to smallest singular
value.

In[19]:= NüSingularValueList@matD

Out[19]= 86.37231, 4.22261, 2.75013<

In[20]:= First@%D ê Last@%D

Out[20]= 2.31709

In[21]:= conditionNumber2@mat_?MatrixQD :=

Module@8sv = SingularValueList@matD<,
First@svD ê Last@svDD

In[22]:= conditionNumber2@matD êê N

Out[22]= 2.31709

7. Pairing up values with preceding values is accomplished by transposing the appropriate lists.

TransposeA9DropAdata, lagE, DropAdata, - lagE=E

Here then is the code for LagPlot.

In[23]:= LagPlot@data_, lag_ : 1, opts : OptionsPattern@ListPlotDD :=

ListPlot@Transpose@8Drop@data, lagD, Drop@data, -lagD<D, optsD

Trying it out on a sequence of “random” numbers generated using a linear congruential generator shows
patterns that indicate a very low likelihood of randomness in the sequence.

In[24]:= data = BlockRandom@SeedRandom@1, Method Ø 8"Congruential",
"Multiplier" Ø 11, "Increment" Ø 0, "Modulus" Ø 17<D;

RandomReal@1, 81000<DD;
In[25]:= Table@LagPlot@data, i, ImageSize Ø SmallD, 8i, 1, 4<D

Out[25]= :

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

>

NIST describes the data in lew.dat as originating “from an underlying single-cycle sinusoidal model.”

In[26]:= lewdata = Import@
FileNameJoin@8NotebookDirectory@D, "Data", "lew.dat"<D, "List"D;

8 Numerics 635

In[27]:= LagPlot@lewdata, 1, ImageSize Ø SmallD

Out[27]=
-400 -200 200

-400

-200

200

8. First, set the options for Correlogram, giving a default value for Coefficient of 0.05.
In[28]:= Options@CorrelogramD = Join@8Coefficient Ø 0.05<, Options@ListPlotDD;

In[29]:= Correlogram@data_,
8lagmin_, lagmax_, incr_: 1<, opts : OptionsPattern@DD :=

Module@8rh, corrs<,
rh = OptionValue@CoefficientD;
corrs = Table@8lag, AutoCorrelation@data, lagD<,

8lag, lagmin, lagmax, incr<D;
ListPlot@corrs,
FilterRules@8opts<, Options@ListPlotDD, AspectRatio Ø .4,

Frame Ø True, Axes Ø False, PlotRange Ø Automatic,

FrameTicks Ø 88Automatic, False<, 8Automatic, False<<,
Epilog Ø 8Thin, Dashed,

Line@880, rh<, 8Hlagmax - lagmin + 1L ê incr, rh<<D,
Line@880, -rh<, 8Hlagmax - lagmin + 1L ê incr, -rh<<D<D

D
In[30]:= AutoCorrelation@data_, lag_: 1D :=

Correlation@Drop@data, lagD, Drop@data, -lagDD

Try out the function on some sinusoidal data with some noise added.

In[31]:= data = Table@RandomReal@8-2, 2<D
Sin@x + RandomReal@8-.25, .25<DD, 8x, 0, 10 p, .05<D;

Exercise some of the options.

In[32]:= Correlogram@data, 81, 100<, Coefficient Ø 0.1,

Filling Ø Axis, PlotRange Ø 8-0.2, 0.2<,
FrameLabel Ø 88"Auto-correlation coeff.", None<, 8"Lags", None<<D

Out[32]=

9. Here are the binary digits of p. First is used to get only the digits from RealDigits .

636 Solutions to exercises

In[33]:= First@RealDigits@N@Pi, 12D, 2DD

Out[33]= 81, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0,

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0<

Convert 0s to -1s.

In[34]:= 2 % - 1

Out[34]= 81, 1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1,

-1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1<

Here then is a plot for the first fifty thousand digits.

In[35]:= ListLinePlot@
With@8digits = 50000<,
Accumulate@2 First@RealDigits@N@Pi, digitsD, 2DD - 1D

DD

Out[35]=

50 000 100 000 150 000
-100

100

200

300

400

For the two-dimensional case, use Partition to pair up the binary digits, then a transformation rule to
convert them to compass directions.

In[36]:= With@8digs = First@RealDigits@N@Pi, 50000D, 2DD<,
ListLinePlot@Accumulate@

Partition@digs, 2, 2D ê. 880, 0< Ø 8-1, 0<, 81, 1< Ø 80, -1<<D,
AspectRatio Ø AutomaticDD

Out[36]=

-50 50 100

-300

-200

-100

8 Numerics 637

9 Strings
9.1 Structure and syntax
1. Here is a test string we will use for this exercise.

In[1]:= str = "this is a test string"

Out[1]= this is a test string

This extracts the first character from str.

In[2]:= StringTake@str, 1D

Out[2]= t

Here is its character code.

In[3]:= ToCharacterCode@%D

Out[3]= 8116<

For each lowercase letter of the English alphabet, subtracting 32 gives the corresponding uppercase
character.

In[4]:= % - 32

Out[4]= 884<

Convert back to a character.

In[5]:= FromCharacterCode@%D

Out[5]= T

Take the original string minus its first character.

In[6]:= StringDrop@str, 1D

Out[6]= his is a test string

Finally, join the previous string with the capital T.

In[7]:= StringJoin@%%, %D

Out[7]= This is a test string

You can do this more efficiently using ToUpperCase and StringTake . This approach is more general
in that it does not assume that the first character in your string is lower case.

In[8]:= ToUpperCase@StringTake@str, 1DD

Out[8]= T

In[9]:= StringTake@str, 2 ;; -1D

Out[9]= his is a test string

In[10]:= ToUpperCase@StringTake@str, 1DD <> StringTake@str, 2 ;; -1D

Out[10]= This is a test string

3. Start by extracting the individual characters in a string.
In[11]:= str = "Mississippi";

Characters@strD
Out[12]= 8M, i, s, s, i, s, s, i, p, p, i<

638 Solutions to exercises

This gives the set of unique characters in this string.

In[13]:= Union@Characters@strDD

Out[13]= 8i, M, p, s<

Union sorts the list whereas DeleteDuplicates does not.

In[14]:= DeleteDuplicates@Characters@strDD

Out[14]= 8M, i, s, p<

Here then is the function.

In[15]:= UniqueCharacters@str_StringD := DeleteDuplicates@Characters@strDD

Try it out on a more interesting example.

In[16]:= protein = ProteinData@"PP2672"D
Out[16]= MKSSEELQCLKQMEEELLFLKAGQGSQRARLTPPLPRALQGNFGAPALCGIWFAEHLHPAVGMPPNYNSSMLSLSPERÖ

TILSGGWSGKQTQQPVPPLRTLLLRSPFSLHKSSQPGSPKASQRIHPLFHSIPRSQLHSVLLGLPLLFIQTRPSÖ
PPAQYGAQMPLRYICFGPNIFWGSKKPQKE

In[17]:= UniqueCharacters@proteinD

Out[17]= 8M, K, S, E, L, Q, C, F, A, G, R, T, P, N, I, W, H, V, Y<

It even works in the degenerate case.

In[18]:= UniqueCharacters@""D

Out[18]= 8<

9.2 Operating with strings
1. Here is the function that checks if a string is a palindrome.

In[1]:= PalindromeQ@str_StringD := StringReverse@strD == str

In[2]:= PalindromeQ@"mood"D

Out[2]= False

In[3]:= PalindromeQ@"PoP"D

Out[3]= True

An argument that is a number is converted to a string and then the previous rule is called.

In[4]:= PalindromeQ@num_IntegerD := PalindromeQ@ToString@numDD

In[5]:= PalindromeQ@12522521D

Out[5]= True

Get all words in the dictionary that comes with Mathematica.

In[6]:= words = DictionaryLookup@D;

Select those that pass the PalindromeQ test.

9 Strings 639

In[7]:= Select@words, PalindromeQD
Out[7]= 8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,

eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,
MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,
pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,
shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<

2. Use the argument structure of RotateLeft .
In[8]:= StringRotateLeft@str_, n_: 1D :=

StringJoin@RotateLeft@Characters@strD, nDD
In[9]:= StringRotateLeft@"squeamish ossifrage", 5D

Out[9]= mish ossifragesquea

4. First, using StringJoin , put n spaces at the end of the string.
In[10]:= StringPad@str_String, 8n_<D := StringJoin@str, Table@" ", 8n<DD

In[11]:= StringPad@"ciao", 85<D êê FullForm
Out[11]//FullForm=

"ciao "

For the second rule, first create a message that will be issued if the string is longer than n.

In[12]:= StringPad::badlen =

"Pad length `1` must be greater than the length of string `2`.";

In[13]:= StringPad@str_String, n_D := With@8len = StringLength@strD<, If@len > n,

Message@StringPad::badlen, n, strD, StringPad@str, 8n - len<DDD
In[14]:= StringPad@"ciao", 8D êê FullForm

Out[14]//FullForm=

"ciao "

In[15]:= StringPad@"ciao", 3D

StringPad::badlen : Pad length 3 must be greater than the length of string ciao.

Finally, here is a rule for padding at the beginning and end of the string.

In[16]:= StringPad@str_String, n_, m_D :=

StringJoin@Table@" ", 8n<D, str, Table@" ", 8m<DD
In[17]:= StringPad@"ciao", 3, 8D êê FullForm

Out[17]//FullForm=

" ciao "

Note, StringInsert could also be used.

In[18]:= StringInsert@"ciao", " ", 81, -1<D êê FullForm
Out[18]//FullForm=

" ciao "

In[19]:= StringPad2@str_String, n_, m_D :=

StringInsert@str, " ", Join@Table@1, 8n<D, Table@-1, 8m<DDD
In[20]:= StringPad2@"ciao", 3, 8D êê FullForm

Out[20]//FullForm=

" ciao "

640 Solutions to exercises

5. This is a simple modification of the code given in the text. But first we add the space character to the
alphabet.

In[21]:= ToCharacterCode@" "D

Out[21]= 832<

In[22]:= alphabet = Join@8FromCharacterCode@32D<, CharacterRange@"a", "z"DD

Out[22]= 8 , a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

In[23]:= coderules = Thread@alphabet Ø RotateRight@alphabet, 5DD

Out[23]= 8 Ø v, a Ø w, b Ø x, c Ø y, d Ø z, e Ø , f Ø a, g Ø b, h Ø c,

i Ø d, j Ø e, k Ø f, l Ø g, m Ø h, n Ø i, o Ø j, p Ø k, q Ø l,

r Ø m, s Ø n, t Ø o, u Ø p, v Ø q, w Ø r, x Ø s, y Ø t, z Ø u<

In[24]:= decoderules = Map@Reverse, coderulesD

Out[24]= 8v Ø , w Ø a, x Ø b, y Ø c, z Ø d, Ø e, a Ø f, b Ø g, c Ø h,

d Ø i, e Ø j, f Ø k, g Ø l, h Ø m, i Ø n, j Ø o, k Ø p, l Ø q,

m Ø r, n Ø s, o Ø t, p Ø u, q Ø v, r Ø w, s Ø x, t Ø y, u Ø z<

In[25]:= code@str_StringD := Apply@StringJoin, Characters@strD ê. coderulesD

In[26]:= decode@str_StringD := Apply@StringJoin, Characters@strD ê. decoderulesD

In[27]:= code@"squeamish ossifrage"D

Out[27]= nlp whdncvjnndamwb

In[28]:= decode@%D

Out[28]= squeamish ossifrage

6. First, here is the list of characters from the plaintext alphabet.
In[29]:= PlainAlphabet = CharacterRange@"a", "z"D

Out[29]= 8a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

Here is our key, django:

In[30]:= key = "django"

Out[30]= django

And here is the cipher text alphabet, prepending the key:

In[31]:= StringJoin@Charactersükey, Complement@PlainAlphabet, CharactersükeyDD

Out[31]= djangobcefhiklmpqrstuvwxyz

Make a reusable function.

In[32]:= CipherAlphabet@key_StringD := With@8k = Characters@keyD<,
StringJoin@k, Complement@CharacterRange@"a", "z"D, kDDD

Generate the coding rules:

In[33]:= codeRules = Thread@PlainAlphabet Ø CharactersüCipherAlphabet@"django"DD

Out[33]= 8a Ø d, b Ø j, c Ø a, d Ø n, e Ø g, f Ø o, g Ø b, h Ø c,

i Ø e, j Ø f, k Ø h, l Ø i, m Ø k, n Ø l, o Ø m, p Ø p, q Ø q,

r Ø r, s Ø s, t Ø t, u Ø u, v Ø v, w Ø w, x Ø x, y Ø y, z Ø z<

The encoding function follows that in the text of this section.

9 Strings 641

In[34]:= encode@str_StringD := StringJoin@Characters@strD ê. codeRulesD

In[35]:= encode@"the sheik of araby"D

Out[35]= tcg scgeh mo drdjy

Omit spaces and punctuation and output in blocks of length 5 (using StringPartition from Section
9.5).

In[36]:= StringPartition@str_String, seq__D :=

Map@StringJoin, Partition@Characters@strD, seqDD
In[37]:= StringSplit@encode@"the sheik of araby"D, RegularExpression@"\\W+"DD

Out[37]= 8tcg, scgeh, mo, drdjy<

In[38]:= StringJoin@Riffle@StringPartition@StringJoin@%D, 5, 5, 1, ""D, " "DD

Out[38]= tcgsc gehmo drdjy

Finally, this puts all these pieces together.

In[39]:= Clear@encodeD;
encode@str_String, key_String, blocksize_: 5D :=

Module@8CipherAlphabet, codeRules, s1, s2, s3<,
CipherAlphabet@k_D :=

StringJoin@Characters@kD,
Complement@CharacterRange@"a", "z"D, Characters@kDDD;

codeRules =

Thread@CharacterRange@"a", "z"D Ø CharactersüCipherAlphabet@keyDD;

s1 = StringJoin@Characters@strD ê. codeRulesD;
s2 = StringSplit@s1, RegularExpression@"\\W+"DD;
s3 = StringPartition@StringJoin@s2D, blocksize, blocksize, 1, ""D;
StringJoin@Riffle@s3, " "DDD

In[41]:= encode@"the sheik of araby", "django", 3D

Out[41]= tcg scg ehm odr djy

9.3 String patterns
1. First, recall the predicate created in Section 9.1.

In[1]:= OrderedWordQ@word_StringD := OrderedQ@ToCharacterCode@wordDD

DictionaryLookup can be given a pattern as its argument and it will return only those words that
match the pattern. Using StringJoin , test the first character with LowerCaseQ ; the remainder of the
word (zero or more characters) has no conditions.

In[2]:= words = DictionaryLookup@f_?LowerCaseQ ~~ r___D;
Short@words, 4D

Out[3]//Short= 8a, aah, aardvark, aardvarks, abaci, aback, abacus,

á81804à, zwieback, zydeco, zygote, zygotes, zygotic, zymurgy<

642 Solutions to exercises

In[4]:= Select@words, OrderedWordQD;
RandomSample@%, 20D

Out[5]= 8now, coop, ills, firs, chops, ass, chin, ells, go, clops,

lox, sty, beep, alp, dims, befit, any, accost, aims, amp<

2. We will work with a small sample of words from the dictionary.
In[9]:= words = DictionaryLookup@D;

sample = RandomSample@words, 12D
Out[10]= 8habitually, aborting, remote, bean, dinned, clothes,

sine, quail, resolutely, hiya, dreamers, hearings<

StringReplace operates on any words that match the pattern and leave those that do not match
unchanged.

In[11]:= StringReplace@sample, f_?UpperCaseQ ~~ r___ ß ToLowerCase@fD ~~ rD

Out[11]= 8habitually, aborting, remote, bean, dinned, clothes,

sine, quail, resolutely, hiya, dreamers, hearings<

3. You can do a dictionary lookup with a pattern that tests whether the word is palindromic. Then find all
palindromic words of a given length. Note the need for BlankSequence (__) as the simple pattern _
would only find words consisting of one character.

In[12]:= Palindromes@len_IntegerD := DictionaryLookup@
w__ ê; Hw == StringReverse@wD && StringLength@wD ã lenLD

We also add a rule to return all palindromes of any length.

In[13]:= Palindromes@D := DictionaryLookup@w__ ê; Hw == StringReverse@wD LD

In[14]:= Palindromes@7D

Out[14]= 8deified, repaper, reviver<

In[15]:= Palindromes@D

Out[15]= 8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did,

dud, DVD, eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook,

level, ma'am, madam, mam, MGM, minim, mom, mum, nan, non, noon,

nun, oho, pap, peep, pep, pip, poop, pop, pup, radar, redder, refer,

repaper, reviver, rotor, sagas, sees, seres, sexes, shahs, sis,

solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<

4. First import some sample text.
In[16]:= text = ExampleData@8"Text", "AliceInWonderland"<D;

To split into words, use a similar construction to that in this section.

In[17]:= words = StringSplit@text, Characters@":;\"',.?ê\-` *"D ..D;
Short@words, 4D

Out[18]//Short= 8I, DOWN, THE, RABBIT, HOLE, Alice, was, beginning,

á9955à, might, what, a, wonderful, dream, it, had, been<

Get the total number of (nonunique) words.

In[19]:= Length@wordsD

Out[19]= 9971

9 Strings 643

Convert uppercase to lowercase.

In[20]:= lcwords = ToLowerCase@wordsD;
Short@lcwords, 4D

Out[21]//Short= 8i, down, the, rabbit, hole, alice, was, beginning,

á9955à, might, what, a, wonderful, dream, it, had, been<

Finally, count the number of unique words.

In[22]:= DeleteDuplicates@lcwordsD êê Length

Out[22]= 1643

In fact, splitting words using a list of characters as we have done here is not terribly robust. A better
approach uses regular expressions (introduced in Section 9.4):

In[23]:= words = StringSplit@text, RegularExpression@"\\W+"DD;
Length@wordsD

Out[24]= 9970

In[25]:= lcwords = StringReplace@words,
RegularExpression@"H@A-ZDL"D ß ToLowerCase@"$1"DD;

DeleteDuplicates@lcwordsD êê Length

Out[26]= 1528

9.4 Regular expressions
1. The pattern used earlier in the chapter was "AA" ~~ _ ~~ "T". In a regular expression, we want the

character A repeated exactly once. Use the expression "A82,2<" for this. The regular expression "."
stands for any character.
In[1]:= gene = GenomeData@"IGHV357"D;

In[2]:= StringCases@gene, RegularExpression@"A82,2<.T"DD

Out[2]= 8AAGT, AAGT, AAAT, AAGT, AAAT, AAAT<

2. First, read in the web page.
In[3]:= webpage =

Import@"http:êêwww.wolfram.comêcompanyêcontact.cgi", "HTML"D;

In the original example in Section 9.3, we used the pattern NumberString, to represent arbitrary strings
of numbers. The regular expression "\\d+" accomplishes a similar thing but it will also match strings of
numbers that may not be in a phone number format (try it!). Instead, use "\\d83<" to match a list of
exactly three digits, and so on.

In[4]:= StringCases@webpage,
RegularExpression@"\\d83<.\\d83<.\\d84<"DD êê DeleteDuplicates

Out[4]= 8217-398-0700, 217-398-0747, 617-764-0094<

3. First, here is the function using regular expressions. H.L will be matched by any single character; the
parentheses are used to refer to this expression on the right-hand side of the rule as "$1". Similarly,
parentheses surround @a - zD + which is matched by any sequence of lowercase characters; this expres-
sion is referred to on the right as "$2".

644 Solutions to exercises

In[5]:= UcLc@word_StringD := StringReplace@word,
RegularExpression@"H.LH@a-zD+L"D ß ToUpperCase@"$1"D ~~ "$2"D

In[6]:= UcLc@"hello"D

Out[6]= Hello

You can also do this with string patterns.

In[7]:= UcLc@word_StringD := StringReplace@word,
WordBoundary ~~ x_ ~~ y__ ß ToUpperCase@xD ~~ ToLowerCase@yDD

In[8]:= UcLc@"ciao"D

Out[8]= Ciao

4. The first solution uses regular expressions. The second uses string patterns and alternatives.
In[9]:= DictionaryLookup@RegularExpression@"@aeiouyD+"D, IgnoreCase Ø TrueD

Out[9]= 8a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you<

In[10]:= DictionaryLookup@H"a" "e" "i" "o" "u" "y"L .., IgnoreCase Ø TrueD

Out[10]= 8a, aye, eye, I, IOU, oi, ya, ye, yea, yo, you<

5. Here is the short list of words with which we will work.
In[11]:= words = 8"building", "finch", "fix", "ratio",

"envy", "boy", "baby", "faculty", "honorarium"<;

Using regular expressions, these rules encapsulate those given in the exercise.

In[12]:= rules = 8
HRegularExpression@"H\\w+Lx"D ß "$1" ~~ "x" ~~ "es"L,
HRegularExpression@"H\\w+LHchL"D ß "$1" ~~ "$2" ~~ "es"L,
HRegularExpression@"H\\w+LH@aeiouDLHyL"D ß

"$1" ~~ "$2" ~~ "$3" ~~ "s"L,
HRegularExpression@"H\\w+LHyL"D ß "$1" ~~ "ies"L,
HRegularExpression@"H\\w+LHiLum"D ß "$1" ~~ "$2" ~~ "a"L,
HRegularExpression@"H\\w+LH.L"D ß "$1" ~~ "$2" ~~ "s"L

<;
In[13]:= StringReplace@words, rulesD

Out[13]= 8buildings, finches, fixes, ratios,

envies, boys, babies, faculties, honoraria<

Of course, lots of exceptions exist:

In[14]:= StringReplace@8"man", "cattle"<, rulesD

Out[14]= 8mans, cattles<

7. Start by importing a somewhat lengthy text, Charles Darwin’s On the Origin of Species.
In[16]:= text = ExampleData@8"Text", "OriginOfSpecies"<D;

There are numerous instances of “Mr.” and “Dr.”, words that end in a period that would trigger a sentence-
ending detector such as StringSplit .

In[17]:= StringCount@text, "Mr." "Dr."D

Out[17]= 119

9 Strings 645

To keep our sentence count accurate, we will replace such words (and a few others in this particular text)
with words that will not cause errors in our sentence count. This step of cleaning text based on identified
issues is a common one in textual analysis.

In[18]:= cleanText =

StringReplace@text, 8"Mr." Ø "Mr", "Dr." Ø "Dr", "H.M.S." Ø "HMS"<D;
In[19]:= t = StringTake@cleanText, 200D

Out[19]= INTRODUCTION. When on board HMS 'Beagle,' as naturalist, I was much

struck with certain facts in the distribution of the inhabitants

of South America, and in the geological relations of the present to

Now split on a small set of delimiters.

In[20]:= s = StringSplit@cleanText, Characters@".!?"D ..D;
Short@s, 5D

Out[21]//Short= 8INTRODUCTION, á4225à,

There is grandeur in this view of life, with

its several powers, hav … s most beautiful and

most wonderful have been, and are being, evolved<

The same thing can be accomplished with a regular expression.

In[22]:= s = StringSplit@cleanText, RegularExpression@"@.!?D+"DD;

Using a regular expression, this counts the number of words in each sentence.

In[23]:= sentenceLens = StringCount@s, RegularExpression@"\\w+"DD;

Finally, here is a histogram displaying the distribution of sentence lengths.

In[24]:= Histogram@sentenceLensD

Out[24]=

It looks like there are some very long sentences!

646 Solutions to exercises

In[25]:= Select@s, StringCount@Ò, RegularExpression@"\\w+"DD > 200 &D
Out[25]= 8 I have attempted to show that the geological record is extremely imperfect; that only a small portion

of the globe has been geologically explored with care; that only certain classes of organic

beings have been largely preserved in a fossil state; that the number both of specimens and

of species, preserved in our museums, is absolutely as nothing compared with the incalculable

number of generations which must have passed away even during a single formation; that, owing

to subsidence being necessary for the accumulation of fossiliferous deposits thick enough to

resist future degradation, enormous intervals of time have elapsed between the successive

formations; that there has probably been more extinction during the periods of subsidence, and

more variation during the periods of elevation, and during the latter the record will have been

least perfectly kept; that each single formation has not been continuously deposited; that the

duration of each formation is, perhaps, short compared with the average duration of specific

forms; that migration has played an important part in the first appearance of new forms in

any one area and formation; that widely ranging species are those which have varied most, and

have oftenest given rise to new species; and that varieties have at first often been local<

8. First read in some sample phrases.
In[25]:= searchPhrases = 8"Find my favorite phone",

"How deep is the ocean?", "What is the meaning of life?"<;

There are several ways to approach this problem. We will break it up into two steps: first eliminating
punctuation, then a sample set of stop words.

In[26]:= tmp = StringSplit@"How deep is the ocean?", Characters@":,;.!? "D ..D

Out[26]= 8How, deep, is, the, ocean<

In[27]:= stopwords = 8"how", "the", "is", "an"<;

In[28]:= Apply@Alternatives, stopwordsD

Out[28]= how the is an

Note the need for WordBoundary in what follows; otherwise, ocean would be split leaving oce because an
is a stop word.

In[29]:= StringSplit@tmp, WordBoundary ~~ Apply@Alternatives, stopwordsD ~~

WordBoundary, IgnoreCase Ø TrueD êê Flatten

Out[29]= 8deep, ocean<

In[30]:= FilterText@str_String, stopwords_ListD := Module@8tmp<,
tmp = StringSplit@str, Characters@":,;.!? "D ..D;
FlattenüStringSplit@tmp, WordBoundary ~~

Apply@Alternatives, stopwordsD ~~ WordBoundary, IgnoreCase Ø TrueD
D

In[31]:= stopwords = RestüImport@"StopWords.dat", "List"D;

In[32]:= FilterText@"What is the meaning of life?", stopwordsD

Out[32]= 8meaning, life<

9.5 Examples and applications
1. One rule is needed for one-dimensional output and another for multi-dimensional output.

In[1]:= ClearAll@RandomStringD

In[2]:= Options@RandomStringD = 8Weights Ø 8<<;

In[3]:= RandomString::badwt =

"The length of the list of weights must be the same

9 Strings 647

as the length of the list of characters.";

In[4]:= RandomString@8c__String<, n_Integer: 1, OptionsPattern@DD :=

Module@8wts = OptionValue@WeightsD<,
Which@
Length@wtsD ã 0, StringJoin@RandomChoice@8c<, nDD,
Length@wtsD ã Length@8c<D,
StringJoin@RandomChoice@wts Ø 8c<, nDD,
True, Message@RandomString::badwtD

DD
In[5]:= RandomString@8c__String<, 8n_Integer, len_Integer<,

OptionsPattern@DD := Module@8wts = OptionValue@WeightsD<,
Which@
Length@wtsD ã 0, Map@StringJoin, RandomChoice@8c<, 8n, len<DD,
Length@wtsD ã Length@8c<D,
Map@StringJoin, RandomChoice@wts Ø 8c<, 8n, len<DD,
True, Message@RandomString::badwtD

DD
In[6]:= RandomString@8"A", "C", "T"<D

Out[6]= A

In[7]:= RandomString@8"A", "C", "T"<, 10D

Out[7]= TCCTCACCCC

In[8]:= RandomString@8"A", "C", "T"<, 84, 10<D

Out[8]= 8ACATCTCATC, TCCCACTATC, AAACCCTCTC, CAATATAATC<

In[9]:= RandomString@8"A", "C", "T"<, 84, 10<, Weights Ø 8.2, .7, .1<D

Out[9]= 8CAAAACCCCC, CCCCACCCTC, CACCCCCACC, CAACCCCCCT<

In[10]:= RandomString@8"A", "C", "T"<, 84, 10<, Weights Ø 8.2, .7<D

RandomString::badwt : The length of the list of weights must be the same as the length of the list of characters.

2. Two words are anagrams if they contain the same letters but in a different order. This function is fairly
slow as it sorts and compares every word in the dictionary with the sorted characters of the input word.

In[11]:= Anagrams2@word_StringD := Module@8chars = Sort@Characters@wordDD<,
DictionaryLookup@x__ ê; Sort@Characters@xDD ã charsDD

In[12]:= Anagrams2@"parsley"D êê Timing

Out[12]= 82.1535, 8parleys, parsley, players, replays, sparely<<

You can speed things up a bit by only working with those words in the dictionary of the same length as the
source word.

In[13]:= Anagrams3@word_StringD := Module@8len = StringLength@wordD, words<,
words = DictionaryLookup@w__ ê; StringLength@wD ã lenD;
Select@words, Sort@Characters@ÒDD ã Sort@Characters@wordDD &D

D

648 Solutions to exercises

In[14]:= Anagrams3@"parsley"D êê Timing

Out[14]= 80.890161, 8parleys, parsley, players, replays, sparely<<

In fact, you can speed this up a bit further by using regular expressions even though the construction of
the regular expression in this case is a bit clumsy looking. The lesson here is that conditional string
patterns tend to be slower.

In[15]:= Anagrams4@word_StringD := Module@8len = StringLength@wordD, words<,
words =

DictionaryLookup@RegularExpression@"\\w8" <> ToString@lenD <> "<"DD;
Select@words, Sort@Characters@ÒDD ã Sort@Characters@wordDD &D

D
In[16]:= Anagrams4@"parsley"D êê Timing

Out[16]= 80.098408, 8parleys, parsley, players, replays, sparely<<

3. The pattern "\\bcite.*\\b" matches any string starting with a word boundary followed by the string
cite, followed by characters repeated one or more times, followed by a word boundary.

In[17]:= DictionaryLookup@RegularExpression@"\\bcite.*\\b"DD

Out[17]= 8cite, cited, cites<

With suitable modifications to the above for the target string occurring in the middle, end, or anywhere,
here is the rewritten function. Note the need for StringJoin here to properly pass the argument str, as
a string, into the body of the regular expression.

In[18]:= Options@FindWordsContainingD = 8WordPosition Ø "Start"<;

In[19]:= FindWordsContaining@str_String, OptionsPattern@DD :=

Module@8wp = OptionValue@WordPositionD<,
Which@
wp == "Start", DictionaryLookup@
RegularExpression@StringJoin@"\\b", str, ".*\\b"DDD,

wp == "Middle", DictionaryLookup@
RegularExpression@StringJoin@"\\b.+", str, ".+\\b"DDD,

wp == "End", DictionaryLookup@RegularExpression@
StringJoin@"\\b.*", str, "\\b"DDD,

wp ã "Anywhere", DictionaryLookup@
RegularExpression@StringJoin@"\\b.*", str, ".*\\b"DDD

DD
In[20]:= FindWordsContaining@"cite"D

Out[20]= 8cite, cited, cites<

In[21]:= FindWordsContaining@"cite", WordPosition Ø "End"D
Out[21]= 8anthracite, calcite, cite, excite,

incite, Lucite, overexcite, plebiscite, recite<

In[22]:= FindWordsContaining@"cite", WordPosition Ø "Middle"D
Out[22]= 8elicited, excited, excitedly, excitement, excitements, exciter,

exciters, excites, incited, incitement, incitements, inciter, inciters,
incites, Lucites, overexcited, overexcites, plebiscites, recited,
reciter, reciters, recites, solicited, unexcited, unsolicited<

9 Strings 649

In[23]:= FindWordsContaining@"cite", WordPosition Ø "Anywhere"D
Out[23]= 8anthracite, calcite, cite, cited, cites, elicited, excite, excited, excitedly,

excitement, excitements, exciter, exciters, excites, incite, incited,
incitement, incitements, inciter, inciters, incites, Lucite, Lucites,
overexcite, overexcited, overexcites, plebiscite, plebiscites, recite,
recited, reciter, reciters, recites, solicited, unexcited, unsolicited<

5. Here is the function as developed in the text.
In[24]:= StringPartition@str_String, blocksize_D := Map@StringJoin,

Partition@Characters@strD, blocksize, blocksize, 1, 8<DD

This passes the argument structure directly to Partition.

In[25]:= Clear@StringPartitionD

In[26]:= StringPartition@str_String, seq__D :=

Map@StringJoin, Partition@Characters@strD, seqDD
In[27]:= str = RandomString@8"A", "C", "G", "T"<, 20D

Out[27]= ATCTGTTCCAAGGTACGATT

Try out some of the argument structures commonly used with Partition. For example, this partitions
the string into blocks of length 3 with offset 1, with no padding

In[28]:= StringPartition@str, 3, 3, 1, 8<D

Out[28]= 8ATC, TGT, TCC, AAG, GTA, CGA, TT<

6. Start by creating a substitution cipher by simply shifting the alphabet three characters to the left.
In[29]:= keyRL3 = Transpose@

8CharacterRange@"a", "z"D, RotateLeft@CharacterRange@"a", "z"D, 3D<D
Out[29]= 88a, d<, 8b, e<, 8c, f<, 8d, g<, 8e, h<, 8f, i<, 8g, j<, 8h, k<, 8i, l<,

8j, m<, 8k, n<, 8l, o<, 8m, p<, 8n, q<, 8o, r<, 8p, s<, 8q, t<,
8r, u<, 8s, v<, 8t, w<, 8u, x<, 8v, y<, 8w, z<, 8x, a<, 8y, b<, 8z, c<<

Next, encode a single character using a designated key.

In[30]:= encodeChar@char_String, key_ListD :=

FirstüCases@key, 8char, next_< ß nextD
In[31]:= encodeChar@"z", keyRL3D

Out[31]= c

Finally, here is the encoding function. Recall the "$1" on the right-hand side of the rule refers to the first
(and only in this case) regular expression on the left that is enclosed in parentheses.

In[32]:= encode@str_String, key_ListD := StringReplace@str,
RegularExpression@"H@a-zDL"D ß encodeChar@"$1", keyDD

The decoding uses the same key, but reverses the pairs.

In[33]:= decode@str_String, key_ListD := encode@str, Map@Reverse, keyDD

In[34]:= encode@"squeamish ossifrage", keyRL3D

Out[34]= vtxhdplvk rvvliudjh

In[35]:= decode@%, keyRL3D

Out[35]= squeamish ossifrage

650 Solutions to exercises

You might want to modify the encoding rule to deal with uppercase letters. One solution is simply to
convert them to lowercase.

In[36]:= encode@str_String, key_ListD := StringReplace@ToLowerCase@strD,
RegularExpression@"H@a-zDL"D ß encodeChar@"$1", keyDD

In[37]:= encode@"Squeamish Ossifrage", keyRL3D

Out[37]= vtxhdplvk rvvliudjh

10 Graphics and visualization
10.1 Structure of graphics
1. The color wheel can be generated by mapping the Hue directive over successive sectors of a disk. Note that

the argument to Hue must be scaled so that it falls within the range 0 to 1.
In[1]:= colorWheel@n_D :=

Graphics@H8Hue@Rescale@Ò, 80, 2 p<DD, Disk@80, 0<, 1, 8Ò, Ò + n<D< &L êü
Range@0, 2 p, nDD

Here is a color wheel created from 256 separate sectors (hues).

In[2]:= colorWheelB
p

256
F

Out[2]=

3. Cuboid takes a list of three numbers as the coordinates of its lower-left corner. This maps the object
across two such lists.
In[3]:= Map@Cuboid, RandomReal@1, 82, 3<DD

Out[3]= 8Cuboid@80.989389, 0.262121, 0.446654<D,
Cuboid@80.712346, 0.910876, 0.329548<D<

Below is a list of six cuboids and the resulting graphic. Notice the large amount of overlap of the cubes.
You can reduce the large overlap by specifying minimum and maximum values of the cuboid.

In[4]:= cubes = Map@Cuboid, RandomReal@1, 86, 3<DD;

In[5]:= Graphics3D@8Opacity@.5D, cubes<D

Out[5]=

4. Start by creating a unit cube centered on the origin. An opacity directive adds transparency.

Graphics and visualization 651

In[6]:= Graphics3D@8Opacity@.25D, Cuboid@8-0.5, -0.5, -0.5<D<,
Boxed Ø False, Axes Ø AutomaticD

Out[6]=

Next rotate 45°. Note the third argument of Rotate used to specify the axis about which the rotation
should occur.

In[7]:= Graphics3D@8Opacity@.25D, Cuboid@8-.5, -.5, -.5<D,
Rotate@Cuboid@8-.5, -.5, -.5<D, 45 °, 80, 0, 1<D<D

Out[7]=

Here is the dynamic version. The angle q is the parameter that is manipulated here.

In[8]:= Manipulate@
Graphics3D@
Rotate@Cuboid@8-.5, -.5, -.5<D, q, 80, 0, 1<D, PlotRange Ø 1D,

8q, 0, 2 p<D

Out[8]=

q

5. First we create the Point graphics primitives using a normal distribution with mean 0 and standard
deviation 1.
In[9]:= randomcoords := Point@RandomVariate@NormalDistribution@0, 1D, 81, 2<DD

This creates the point sizes according to the specification given in the statement of the problem.

In[10]:= randomsize := PointSize@RandomReal@8.01, .1<DD

This will assign a random color to each primitive. The four-argument form of Hue specifies hue, satura-
tion, brightness, opacity.

In[11]:= randomcolor := Hue@RandomReal@D, 1, 1, .4D

652 Solutions to exercises

Here then are 500 points. (You may find it instructive to look at just one of these points.)

In[12]:= pts = Table@8randomcolor, randomsize, randomcoords<, 8500<D;

And here is the graphic.

In[13]:= Graphics@ptsD

Out[13]=

6. The algebraic solution is given by the following steps. First solve the equations for x and y.

In[14]:= Clear@x, y, rD

In[15]:= soln = SolveA9Hx - 1L2 + Hy - 1L2 ã 2, Hx + 3L2 + Hy - 4L2 ã r2=, 8x, y<E

Out[15]= ::x Ø
1

50
-58 + 4 r2 - 3 -529 + 54 r2 - r4 , y Ø

1

50
131 - 3 r2 - 4 -529 + 54 r2 - r4 >,

:x Ø
1

50
-58 + 4 r2 + 3 -529 + 54 r2 - r4 , y Ø

1

50
131 - 3 r2 + 4 -529 + 54 r2 - r4 >>

Then find those values of r for which the x and y coordinates are identical.

In[16]:= Solve@8
Hx ê. solnP1TL ã Hx ê. solnP2TL,
Hy ê. solnP1TL ã Hy ê. solnP2TL<,

rD

Out[16]= ::r Ø -5 - 2 >, :r Ø 5 - 2 >, :r Ø -5 + 2 >, :r Ø 5 + 2 >>

Here then are those values of r that are positive.

In[17]:= Cases@%, 8r Ø _?Positive<D

Out[17]= ::r Ø 5 - 2 >, :r Ø 5 + 2 >>

To display the solution, we will plot the first circle with solid lines and the two solutions with dashed lines
together in one graphic. Here is the first circle centered at (1, 1).

In[18]:= circ = CircleB81, 1<, 2 F;

Here are the circles that represent the solution to the problem.

In[19]:= r1 = 5 - 2 ;

r2 = 5 + 2 ;

10 Graphics and visualization 653

In[21]:= Graphics@8circ, Circle@8-3, 4<, r1D, Circle@8-3, 4<, r2D<,
Axes Ø AutomaticD

Out[21]=

-8 -6 -4 -2 2
-2

2

4

6

8

10

We wanted to display the solutions (two circles) using dashed lines. The graphics directive
Dashing@8x, y<D directs all subsequent lines to be plotted as dashed, alternating the dash x units and
the space y units. We use it as a graphics directive on the two circles c1 and c2. The circles inherit only
those directives in whose scope they appear.

In[22]:= dashc1 = 8Dashing@8.025, .025<D, Circle@8-3, 4<, r1D<;
dashc2 = 8Dashing@8.05, .05<D, Circle@8-3, 4<, r2D<;

In[24]:= Graphics@8circ, dashc1, dashc2<, Axes Ø AutomaticD

Out[24]=

-8 -6 -4 -2 2
-2

2

4

6

8

10

7. Here is a plot of the sine function.
In[25]:= sinplot = Plot@Sin@xD, 8x, 0, 2 p<D

Out[25]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Using pattern matching, here are the coordinates.

In[26]:= Short@coords = Cases@sinplot, Line@8x__<D ß x, InfinityD, 2D

Out[26]//Short= 991.28228 � 10-7, 1.28228 � 10-7=, á429à, 8á1à<=

Create vertical lines from each coordinate.

In[27]:= Short@lines = Map@Line@88Ò@@1DD, 0<, Ò<D &, coordsD, 2D

Out[27]//Short= 9LineA991.28228 � 10-7, 0=, 8á23à, á23à<=E, á430à=

654 Solutions to exercises

Here then is the final graphic.

In[28]:= Show@sinplot, Graphics@8Thickness@.001D, lines<DD

Out[28]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

8. First set the distribution and compute the mean and standard deviation.
In[29]:= � = NormalDistribution@0, 1D;

s = StandardDeviation@�D;
m = Mean@�D;

Next we manually construct four vertical lines at the standard deviations going from the horizontal axis to
the pdf curve.

In[32]:= PlotAPDF@�, xD, 8x, -4, 4<, Filling Ø Axis,

Epilog Ø 8White, Line@888m + s, 0<, 8m + s, PDF@�, m + sD<<, 88m - s, 0<,
8m - s, PDF@�, m - sD<<, 88m + 2 s, 0<, 8m + 2 s, PDF@�, m + 2 sD<<,

88m - 2 s, 0<, 8m - 2 s, PDF@�, m - 2 sD<<<D<, AxesOrigin Ø 8-4, 0<,
Ticks Ø 888-2 s, "-2s"<, 8-s, "-s"<, 8m, "m"<, 8s, "s"<, 82 s, "2s"<<,

Automatic<, AspectRatio Ø 0.4,

PlotLabel Ø StringFormA"Normal distribution: m=`1`, s=`2` ", m, sEE

Out[32]=

And here is a little utility function to make the code a bit more readable and easier to use.

In[33]:= sdLine@�_, m_, s_D := Line@888m + s, 0<, 8s + m, PDF@�, m + sD<<,
88m - s, 0<, 8-s + m, PDF@�, m - sD<<<D

In[34]:= PlotAPDF@�, xD, 8x, -4, 4<, Filling Ø Axis,

Epilog Ø 8White, Thickness@.0035D, sdLine@�, m, sD, sdLine@�, m, 2 sD<,
AxesOrigin Ø 8-4, 0<,
Ticks Ø 888-2 s, "-2s"<, 8-s, "-s"<, 8m, "m"<, 8s, "s"<, 82 s, "2s"<<,

Automatic<, AspectRatio Ø 0.4,

PlotLabel Ø StringFormA"Normal distribution: m=`1`, s=`2` ", m, sEE

Out[34]=

10 Graphics and visualization 655

9. Following the discussion of options in Section 5.7, we use OptionsPattern to inherit options from
ArrayPlot.

In[35]:= ProteinDotPlot@p1_, p2_, opts : OptionsPattern@ArrayPlotDD :=

ArrayPlot@Outer@Boole@Ò1 == Ò2D &, Characters@p1D, Characters@p2DD,
opts, Frame Ø TrueD

In[36]:= seq1 = ProteinData@"SCNN1A"D;
seq2 = ProteinData@"SCNN1G"D;

In[38]:= ProteinDotPlot@seq1, seq2,

FrameLabel Ø 8"SCNN1A", "SCNN1G"<,
LabelStyle Ø 8FontFamily Ø "Times", 11<D

Out[38]=

SCNN1G

SC
N
N
1A

10.2 Efficient structures
1. Here is the implementation using TranslationTransform .

In[1]:= vertices@n_D := TableB:CosB
2 p a

n
F, SinB

2 p a

n
F>, 8a, 0, n<F

In[2]:= hexagon = Polygon@vertices@6DD;
Graphics@8EdgeForm@GrayD, LightGray, hexagon<D

Out[2]=

In[3]:= GraphicsB:

EdgeForm@GrayD, LightGray,

TableBGeometricTransformationBhexagon,

TranslationTransformB:3 i +
3

4
IH-1Lj + 1M,

3 j

2
>F

F, 8i, 5<, 8j, 8<F

>F

Out[3]=

656 Solutions to exercises

Or use Translate directly.

In[4]:= gr1 = GraphicsB:

EdgeForm@GrayD, LightGray,

TableB

TranslateBhexagon, :3 i +
3

4
IH-1Lj + 1M,

3 j

2
>F, 8i, 5<, 8j, 8<F

>F

Out[4]=

This implementation contains one Polygon per hexagon.

In[5]:= Count@gr1, _Polygon, InfinityD

Out[5]= 40

Now use multi-polygons. The following version of hexagon is defined so that it can take a pair of transla-
tion coordinates. Note also the need to flatten the table of vertices so that Polygon can be applied to the
correct list structure.

In[6]:= Clear@hexagonD;

hexagon@8x_, y_<D := TableB:CosB
2 p i

6
F + x, SinB

2 p i

6
F + y>, 8i, 1, 6<F

In[8]:= gr2 = GraphicsB:EdgeForm@GrayD, LightGray, PolygonBFlattenB

TableBhexagonB:3 i +
3

4
IH-1Lj + 1M,

3 j

2
>F, 8i, 5<, 8j, 8<F, 1FF

>F

Out[8]=

In[9]:= Count@gr2, _Polygon, InfinityD

Out[9]= 1

2. One approach to creating the lattice is to manually specify the coordinates for the lines and then map the
Line primitive across these coordinates. We will work with a small lattice.

In[10]:= xmin = 0; xmax = 3;

ymin = 0; ymax = 3;

zmin = 0; zmax = 3;

Table@88x, ymin, zmin<, 8x, ymax, zmin<<, 8x, xmin, xmax<D
Out[13]= 8880, 0, 0<, 80, 3, 0<<, 881, 0, 0<, 81, 3, 0<<,

882, 0, 0<, 82, 3, 0<<, 883, 0, 0<, 83, 3, 0<<<

10 Graphics and visualization 657

Here are the three grids.

In[14]:= gridX =

Table@88xmin, y, z<, 8xmax, y, z<<, 8y, ymin, ymax<, 8z, zmin, zmax<D;
gridY = Table@88x, ymin, z<, 8x, ymax, z<<,

8x, xmin, xmax<, 8z, zmin, zmax<D;
gridZ = Table@88x, y, zmin<, 8x, y, zmax<<,

8x, xmin, xmax<, 8y, ymin, ymax<D;

Finally, map Line across these grids and display as a Graphics3D object.

In[17]:= gr1 = Graphics3D@8
Map@Line, gridX, 82<D,
Map@Line, gridY, 82<D,
Map@Line, gridZ, 82<D

<, Boxed Ø FalseD

Out[17]=

In[18]:= Count@gr1, _Line, InfinityD

Out[18]= 48

Using multi-lines reduces the number of Line objects substantially.

In[19]:= gr2 = Graphics3D@8
Map@Line, gridXD,
Map@Line, gridYD,
Map@Line, gridZD

<, Boxed Ø FalseD

Out[19]=

In[20]:= Count@gr2, _Line, InfinityD

Out[20]= 12

3. The Computational Geometry package contains a function for computing the convex hull.
ConvexHull@ptsD returns a list of the indices of the points on the convex hull.

In[21]:= Needs@"ComputationalGeometry`"D

658 Solutions to exercises

In[22]:= pts = RandomReal@1, 812, 2<D;
ch = ConvexHull@ptsD

Out[23]= 810, 1, 2, 9, 11, 7, 8<

Use those indices as the positions in pts through which we wish to pass a line. Note the need to close up
the polygon, connecting the last point with the first.

In[24]:= Graphics@GraphicsComplex@pts, Line@ch ê. 8a_, b__< ß 8a, b, a<DDD

Out[24]=

Now add the text.

In[25]:= ran = Range@Length@ptsDD;
Graphics@GraphicsComplex@pts,

8Line@ch ê. 8a_, b__< ß 8a, b, a<D, PointSize@.015D, Point@ranD,
Map@Text@StringForm@"`1`", ÒD, pts@@ÒDD, 8-1.25, -1.25<D &, ranD<DD

Out[26]=

1

2
3

4

5

6

7

8

9

10

11

12

Putting everything together, note that because Module is a scoping construct, you need to give full
context names for any function that is defined in a package loaded inside Module .

In[27]:= Clear@ConvexHullPlotD

In[28]:= ConvexHullPlot@pts_, opts : OptionsPattern@GraphicsDD :=

Module@8ch, ran = Range@Length@ptsDD<,
Needs@"ComputationalGeometry`"D;
ch = ComputationalGeometry`ConvexHull@ptsD;
Graphics@8GraphicsComplex@

pts,

8Line@ch ê. 8a_, b__< ß 8a, b, a<D,
PointSize@.015D, Point@ranD,
Map@
Text@StringForm@"`1`", ÒD, pts@@ÒDD, 8-1.25, -1.25<D &, ranD

<
D<, optsDD

10 Graphics and visualization 659

In[29]:= ConvexHullPlot@ptsD

Out[29]=

1

2
3

4

5

6

7

8

9

10

11

12

4. Here is the random walk on the digits of p in bases given by the second argument.
In[30]:= RandomWalkPi@d_, base_ ê; base > 2D := Module@8digits, angles, rules<,

digits = First@RealDigits@N@p, dD, baseDD;
angles = RestüRange@0., 2 p, 2 p ê HbaseLD;
rules = MapThread@Ò1 Ø Ò2 &, 8Range@0, base - 1D, angles<D;
Accumulate@Map@8Cos@ÒD, Sin@ÒD< &, digits ê. rulesDD

D

Using ListPlot , here is a quick visualization on base 5 digits:

In[31]:= ListLinePlot@RandomWalkPi@10000, 5D, AspectRatio Ø AutomaticD

Out[31]=

-100 -50
-20

20

40

60

80

100

120

Here is the GraphicsComplex .

In[32]:= walk = RandomWalkPi@10000, 5D;
len = Length@walkD;

In[34]:= Graphics@GraphicsComplex@walk,
8AbsoluteThickness@.2D, Line@Range@lenDD<D, AspectRatio Ø AutomaticD

Out[34]=

And here it is with color mapped to the distance from the origin.

660 Solutions to exercises

In[35]:= GraphicsBGraphicsComplexBwalk,

MapB:HueB
ÒP1T

len
F, AbsoluteThickness@.25D, Line@ÒD> &,

Partition@Range@2, lenD, 2, 1DFF, AspectRatio Ø AutomaticF

Out[35]=

10.3 Sound
1. When x is close to -2, the frequency is quite low. As x increases, the fraction 1000 êx increases, making the

frequency of the sine function bigger. This in turn makes the tone much higher in pitch. As x approaches 0,
the function is oscillating more and more, and at 0, the function can be thought of as oscillating infinitely
often. In fact, it is oscillating so much that the sampling routine is not able to compute amplitudes effec-
tively and, hence, we hear noise near x = 0.

In[1]:= PlayBSinB
1000

x
F, 8x, -2, 2<F

3. To generate a tone whose rate increases one octave per second, you need the sine of a function whose
derivative doubles each second (frequency is a rate). That function is 2t. You need to carefully choose
values for t that generates tones in a reasonable range.
In[2]:= PlayASinA2tE, 8t, 10, 14<E êê EmitSound

4. First generate 100 digits for a 100-note “composition”.
In[3]:= digs = First@RealDigits@N@p, 100DDD;

Fix note duration at 0.5 seconds.

In[4]:= Sound@SoundNote@Ò, 0.5D & êü digsD êê EmitSound

Change the duration to be dependent upon the digit. Also change the midi instrument.

In[5]:= Sound@SoundNote@Ò, 1 ê HÒ + 1L, "Vibraphone"D & êü digsD êê EmitSound

Go a bit further, expanding the range of notes that will be played.

In[6]:= Sound@SoundNote@1 + 2 Ò, 1 ê HÒ + 1L, "Vibraphone"D & êü digsD êê EmitSound

5. Here is a function that creates a square wave with decreasing amplitudes for higher overtones.

In[7]:= squareWave@freq_, n_D := SumB
Sin@freq i 2 p tD

i
, 8i, 1, n, 2<F

10 Graphics and visualization 661

In[8]:= Plot@squareWave@440, 17D, 8t, 0, .01<D

Out[8]=
0.002 0.004 0.006 0.008 0.010

-0.5

0.5

Here then, is an example of playing a square wave.

In[9]:= Play@squareWave@440, 17D, 8t, 0, .5<D êê EmitSound

8. This function creates a sawtooth wave. The user specifies the fundamental frequency and the number of
terms in the approximation.

In[10]:= sawtoothWave@freq_, n_D := SumB
Sin@freq i 2 p tD

i
, 8i, 1, n<F

In[11]:= Plot@sawtoothWave@440, 17D, 8t, 0, .01<D

Out[11]=
0.002 0.004 0.006 0.008 0.010

-1.5
-1.0
-0.5

0.5
1.0
1.5

This plays the wave for a half-second duration.

In[12]:= Play@sawtoothWave@440, 17D, 8t, 0, .5<D êê EmitSound

10.4 Examples and applications
1. The function ComplexListPlot plots a list of numbers in the complex plane – the real part is identified

with the horizontal axis and the imaginary part is identified with the vertical axis. Start by setting the

options for ComplexListPlot to inherit those for ListPlot .
In[1]:= Options@ComplexListPlotD = Options@ListPlotD;

In[2]:= ComplexListPlot@points_, opts : OptionsPattern@DD :=

ListPlot@Map@8Re@ÒD, Im@ÒD< &, pointsD,
opts, PlotStyle Ø 8Red, PointSize@.025D<,
AxesLabel Ø 8Style@"Re", 10D, Style@"Im", 10D<,
LabelStyle Ø Directive@"Menu", 7DD

This plots four complex numbers in the plane and uses some options, inherited from ListPlot .

In[3]:= ComplexListPlot@8-1 + I, 2 + I, 1 - 2 I, 0, 1<,
PlotStyle Ø 8Blue, PointSize@MediumD<D

Out[3]= -1.0 -0.5 0.5 1.0 1.5 2.0
Re

-2.0

-1.5

-1.0

-0.5

0.5

1.0

Im

662 Solutions to exercises

2. The function ComplexRootPlot takes a polynomial, solves for its roots, and then uses
ComplexListPlot from the previous exercise to plot these roots in the complex plane.
In[4]:= ComplexRootPlot@poly_, z_, opts : OptionsPattern@DD := ComplexListPlot@

z ê. NSolve@poly == 0, zD, opts, AspectRatio Ø AutomaticD
In[5]:= ComplexRootPlot@Cyclotomic@17, zD, z, GridLines Ø AutomaticD

Out[5]=

-1.0 -0.5 0.5
Re

-1.0

-0.5

0.5

1.0

Im

3. First, set up the options structure.
In[6]:= Options@PathPlotD = Join@8ClosedPath Ø True<, Options@GraphicsDD;

Make two changes to the original PathPlot: add an If statement that checks the value of ClosedPath
and if True, appends the first point to the end of the list; if False, it leaves the coordinate list as is. The
second change is to filter those options that are specific to Graphics and insert them in the appropriate
place.

In[7]:= PathPlot@lis_List, opts : OptionsPattern@DD := Module@8coords = lis<,
If@OptionValue@ClosedPathD, coords = coords ê. 8a_, b__< ß 8a, b, a<D;
Graphics@8Line@coordsD, PointSize@MediumD, Red, Point@coordsD<,
FilterRules@8opts<, Options@GraphicsDDDD

In[8]:= SeedRandom@424D;
coords = RandomReal@1, 810, 2<D;

In[10]:= PathPlot@coords, ClosedPath Ø True, GridLines Ø AutomaticD

Out[10]=

5. Choosing a base point randomly and then sorting according to the arc tangent could cause a number of

things to go wrong with the algorithm. The default branch cut for ArcTan gives values between -p ê2 and

p ê2. (You are encouraged to think about why this could occasionally cause the algorithm in the text to

fail.) By choosing the base point so that it lies at some extreme of the diameter of the set of points, the polar

angle algorithm given in the text will work consistently. If you choose the base point so that it is lowest and

left-most, then all the angles will be in the range (0, p].
In[11]:= SimpleClosedPath1@lis_ListD := Module@8base, angle, sorted<,

base = First@SortBy@lis, LastDD;
angle@a_, b_D := ArcTan üü Hb - aL;
sorted = Sort@Complement@lis, 8base<D,

angle@base, Ò1D § angle@base, Ò2D &D; Join@8base<, sorted, 8base<DD

10 Graphics and visualization 663

In[12]:= pts = RandomReal@1, 820, 2<D;

In[13]:= PathPlot@coords_ListD :=

Show@Graphics@8Line@coordsD, PointSize@MediumD,
RGBColor@1, 0, 0D, Point êü coords<DD

In[14]:= PathPlot@SimpleClosedPath1@ptsDD

Out[14]=

8. Create three rules, one for each of the three dimensions of random walk that will be passed to ShowWalk.
Some pattern matching will help to identify the rule to use for the one-, two-, and three-dimensional cases.

In[15]:= MatchQ@81, 2, 3<, _?VectorQD

Out[15]= True

In[16]:= MatchQ@881, 1<, 81, 2<, 80, 2<<, 88_, _< ..<D

Out[16]= True

In[17]:= MatchQ@881, 1, 0<, 81, 2, 0<, 80, 2, 0<<, 88_, _, _< ..<D

Out[17]= True

The first rule uses a pattern that will be matched by a one-dimensional vector.

In[18]:= ShowWalk@coords_?VectorQ, opts : OptionsPattern@DD :=

ListLinePlot@coords, FilterRules@8opts<, Options@ListLinePlotDDD

The second rule uses a pattern that will be matched by a list of one or more pairs of numbers.

In[19]:= ShowWalk@coords : 88_?NumberQ, _?NumberQ< ..<,
opts : OptionsPattern@DD :=

ListLinePlot@coords, Append@FilterRules@8opts<,
Options@ListLinePlotDD, AspectRatio Ø AutomaticDD

The third rule uses a pattern that will be matched by one or more triples of numbers.

In[20]:= ShowWalk@coords : 88_?NumberQ, _?NumberQ, _?NumberQ< ..<,
opts : OptionsPattern@DD :=

Graphics3D@Line@coordsD,
FilterRules@8opts<, Options@Graphics3DDDD

9. Use PlotStyle to highlight the two different surfaces and MeshStyle and Mesh to highlight their
intersection.

In[21]:= f@x_, y_D := Sin@2 x - Cos@yDD;
g@x_, y_D := Sin@x - Cos@2 yDD;

664 Solutions to exercises

In[23]:= Plot3D@8f@x, yD, g@x, yD<, 8x, -p, p<, 8y, -p, p<, Mesh Ø 880.<<,
MaxRecursion Ø 4, MeshFunctions Ø Hf@Ò1, Ò2D - g@Ò1, Ò2D &L,
MeshStyle Ø 8Thick, Red<, PlotStyle Ø 8Cyan, Yellow<D

Out[23]=

11. If the first point returned by GatherBy fails the PointInPolygonQ test, then reverse the two lists (out
and in), otherwise, leave it alone.

In[24]:= poly = 88-0.5, 0<, 80.5, -1<, 81.5, 0<,
82., -1.1<, 82.5, 0<, 81.5, 2<, 81., 1<, 80., 1<<;

pts = RandomReal@8-1, 3<, 87500, 2<D;
In[26]:= TriangleArea@tri : 8v1_, v2_, v3_<D :=

Det@Map@PadRight@Ò, 3, 1D &, triDD ê 2
In[27]:= PointInPolygonQ@poly : 88_, _< ..<, pt : 8x_, y_<D :=

Module@8edges, e2, e3, e4<,
edges = Partition@poly ê. 8a_, b__< ß 8a, b, a<, 2, 1D;
e2 = DeleteCases@edges, 88x1_, y1_<, 8x2_, y2_<< ê; y1 ã y2D;
e3 = DeleteCases@e2,

88x1_, y1_<, 8x2_, y2_<< ê; HMin@y1, y2D ¥ y »» Max@y1, y2D < yLD;
e4 = Map@ReverseüSortBy@Ò, LastD &, e3D;
OddQ@Count@TriangleArea@Join@Ò, 8pt<DD & êü e4, _?PositiveDD

D
In[28]:= gbPts = GatherBy@pts, PointInPolygonQ@poly, ÒD &D;

Graphics@8
8PointSize@SmallD,
If@PointInPolygonQ@poly, gbPts@@1, 1DDD, gbPts, Reverse@gbPtsDD ê.
8in_List, out_List< ß 88Black, Pointüin<, 8LightGray, Pointüout<<<,

Thick, Line@poly ê. 8a_, b__< ß 8a, b, a<D,
PointSize@LargeD, Point@polyD

<D

Out[29]=

10 Graphics and visualization 665

14. First set up the options structure.
In[30]:= Options@BrownianComposeD = 8Weights Ø Automatic<;

In[31]:= BrownianCompose@steps_Integer, instr_: "Vibraphone",

OptionsPattern@DD := Module@8walk, durs, weights<,
weights = If@OptionValue@WeightsD === Automatic,

Table@1 ê 9, 89<D, OptionValue@WeightsDD;
walk@n_D := Accumulate@RandomChoice@weights Ø Range@-4, 4D, nDD;
durs = RandomChoice@Range@1 ê 16, 1, 1 ê 16D, 8steps<D;
SoundüMapThread@SoundNote@Ò1, Ò2, instrD &, 8walk@stepsD, durs<D

D
In[32]:= BrownianCompose@18, "Marimba"D êê EmitSound

In[33]:= BrownianCompose@18, "Marimba",

Weights Ø AbsüRandomVariate@NormalDistribution@0, 4D, 9DD êê EmitSound

11 Dynamic expressions
11.1 Manipulating expressions
1. We will put this together in two parts: first create a function to display any amino acid using one of the

various diagrams; then pour it into a Manipulate . Note, this function is dependent upon
ChemicalData to create the displays. You could modify it to use you own visualizations, such as the
space-filling plots in Section 10.4.
In[1]:= AminoAcidPlot@aa_String, diagram_: "ColorStructureDiagram"D :=

Labeled@Framed@ChemicalData@aa, diagramD, ImageSize Ø AllD,
ChemicalData@aa, "Name"D, LabelStyle Ø Directive@"Menu", 9DD

In[2]:= AminoAcidPlot@"Glycine"D

Out[2]=

N

O

O

N
H

N
H

O
H

glycine

666 Solutions to exercises

In[3]:= Manipulate@
AminoAcidPlot@aminoacid, diagramD,
88aminoacid, "LAlanine", "Amino acid"<, aa<,
8diagram, 8"StructureDiagram", "CHColorStructureDiagram",

"CHStructureDiagram", "ColorStructureDiagram",

"MoleculePlot", "SpaceFillingMoleculePlot"<<,
Initialization ß 8aa = ChemicalData@"AminoAcids"D<D

Out[3]=

Amino acid LAlanine

diagram CHColorStructureDiagram

O

C

O
H

O

CN
H

N

H

C

N

C

C

C

C

C

H

CH C

H

C H

L-alanine

2. This is a straightforward use of Manipulate . The lengthy parameter list forces a pulldown menu to be
used as the control.

In[4]:= ManipulateB

ImageEffectB , effectF,

8effect, 8"Charcoal", "Embossing", "OilPainting",

"Posterization", "Solarization", "MotionBlur", "Noise",

"GaussianNoise", "SaltPepperNoise", "PoissonNoise"<<F

Out[4]=

effect Charcoal

3. Here is the code for the TruthTable function from Exercise 9 in Section 5.8:

11 Dynamic expressions 667

In[5]:= TruthTable@expr_, vars_D :=

Module@8len = Length@varsD, tuples, rules, table, head<,
tuples = Tuples@8True, False<, lenD;
rules = HThread@vars Ø Ò1D &L êü tuples;
table = Transpose@Join@Transpose@tuplesD, 8expr ê. rules<DD;
head = Append@vars, TraditionalForm@exprDD;
Grid@Prepend@table ê. 8True Ø "T", False Ø "F"<, headD, Dividers Ø

881 Ø 8Thin, Black<, -1 Ø 8Thin, Black<, -2 Ø 8Thin, LightGray<<,
81 Ø 8Thin, Black<, 2 Ø 8Thin, LightGray<, -1 Ø 8Thin, Black<<<DD

This puts the truth table together with the Venn diagram using Row .

In[6]:= ManipulateBRow@8TruthTable@f@A, BD, 8A, B<D,

Show@RegionPlot@f üü eqns, 8x, -2, 2<, 8y, -2, 2<, Frame Ø None,

PlotLabel Ø f@A, BD, PlotRange Ø 88-2, 2<, 8-1.2, 1.2<<,
AspectRatio Ø Automatic, MaxRecursion Ø 5D, Graphics@8Circle@c1D,
Circle@c2D, Text@Style@"A", FontSlant Ø "Italic"D, 8-.5, .8<D,
Text@Style@"B", FontSlant Ø "Italic"D, 8.5, .8<D<D,

ImageSize Ø SmallD<D, 88f, Xor, "Logical function"<,
8And, Or, Xor, Implies, Nand, Nor<<,

Initialization ß :c1 = :-
1

2
, 0>; c2 = :

1

2
, 0>;

eqns = ApplyAHÒ1 + xL2 + HÒ2 + yL2 < 1 &, 8c1, c2<, 81<E>,

SaveDefinitions Ø TrueF

Out[6]=

Logical function Xor

A B A�B

T T F
T F T
F T T
F F F

5. First load the package that contains the random walk code. You could use you own implementation as well.
In[7]:= << PwM`RandomWalks`

Create a 1000-step, two-dimensional, lattice walk.

In[8]:= rw = RandomWalk@1000, Dimension Ø 2, LatticeWalk Ø TrueD;

668 Solutions to exercises

This is a basic start. Take is used to display successive increments. Note the need for the 1 in the parameter
list to insure that steps only take on integer values.

In[9]:= Animate@
Graphics@Line@Take@rw, nDDD,
8n, 2, Length@rwD, 1<D

Out[9]=

n

The output above suffers from the fact that the display jumps around a lot as Mathematica tries to figure out
a sensible plot range for each frame. Instead, we should fix the plot range for all frames to avoid this
jumpiness. This is done in the definitions for xran and yran in the Initialization below.

In[10]:= Manipulate@
Graphics@Line@Take@rw, nDD, PlotRange Ø 8xran, yran<D,
8n, 2, Length@rwD, 1<,
Initialization ß 8

rw = RandomWalk@1000, Dimension Ø 2, LatticeWalk Ø TrueD;
8xran, yran< = Map@8Min@Ò1D, Max@Ò1D< &, Transpose@rwDD<D

Out[10]=

n

6. Putting the two graphics pieces (Graphics@…D and Plot@…D) in a grid gives you finer control over their
placement and formatting.

11 Dynamic expressions 669

In[12]:= Manipulate@Grid@
88Graphics@8Circle@D, Blue, PointSize@.04D, Point@8Cos@qD, Sin@qD<D<,

Axes Ø TrueD, Plot@Sin@xD, 8x, 0, 2 p<, ImageSize Ø 300,

Epilog Ø 8Blue, Line@88q, 0<, 8q, Sin@qD<<D, PointSize@.025D,
Point@8q, Sin@qD<D<D<<, Frame Ø AllD, 8q, 0, 2 p<D

Out[12]=

q

-1.0-0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

8. Just a few modifications to the code for the hypocycloid are needed: use the formula for the epicycloid;
change the center of the rotating circle so that its radius is R + r, not R - r; and modify the plot range.

In[12]:= EpicycloidPlot@R_, r_, q_D := ModuleB8epicycloid, center<,

epicycloid@8a_, b_<, t_D :=

:Ha + bL Cos@tD - b CosBt
a + b

b
F, Ha + bL Sin@tD + b SinBt

a + b

b
F>;

center@th_, R1_, r2_D := HR1 + r2L 8Cos@thD, Sin@thD<;
Show@8

ParametricPlot@epicycloid@8R, r<, tD,
8t, 0, q<, PlotStyle Ø Red, Axes Ø NoneD,

Graphics@8
8Blue, Thick, Circle@80, 0<, RD<,
8Circle@center@q, R, rD, rD<,
8PointSize@.015D, Point@center@q, R, rDD<,
8Thick, Line@8center@q, R, rD, epicycloid@8R, r<, qD<D<,
8Red, PointSize@.015D, Point@epicycloid@8R, r<, qDD<

<D<, PlotRange Ø 1.5 HR + rL, GridLines Ø AutomaticDF

First, create a static image.

In[13]:= EpicycloidPlot@3, 1, 2 pD

Out[13]=

670 Solutions to exercises

And here is the dynamic version.

In[14]:= Manipulate@EpicycloidPlot@R, r, qD,
8q, 0 + 0.01, 2 Denominator@HR - rL ê rD p<,
8R, 83, 4, 5, 6, 7, 8<, Setter<,
8r, 81, 2, 3, 4, 5<, Setter<, SaveDefinitions Ø TrueD

Out[14]=

q

R 3 4 5 6 7 8

r 1 2 3 4 5

9. Modify the radii and the centers to get different effects. Try using transparent disks instead of circles.
In[15]:= Manipulate@

Graphics@
Table@Circle@r ê 4 8Cos@tD, Sin@tD<, 1.1 - rD, 8r, .2, 1, .05<D,
PlotRange Ø 1D,

8t, 0, 2 p, .1<,
TrackedSymbols ß 8t<D

Out[15]=

t

11. Using the programs developed in Section 13.1, here is the code, including a pulldown menu for the steps
parameter, a setter bar for the dimension parameter, and a checkbox for the lattice parameter.

11 Dynamic expressions 671

In[16]:= Manipulate@
ShowWalküRandomWalk@steps, Dimension Ø dim, LatticeWalk Ø latticeQD,
8steps, 8100, 250, 500, 750, 1000, 10000<<,
88dim, 1, "Dimension"<, 81, 2, 3<<,
88latticeQ, True, "Lattice walk"<, 8True, False<<,
Initialization ß Needs@"PWM`RandomWalks`"D, SaveDefinitions Ø TrueD

Out[16]=

steps 100

Dimension 1 2 3

Lattice walk

20 40 60 80 100

2
4
6
8

10
12

12. Here is the solution using Slider2D . Using Locator instead is left for the reader.
In[17]:= Manipulate@

Graphics@8
Red, Arrow@880, 0<, pt1<D,
Blue, Arrow@880, 0<, pt2<D,
Green, Arrow@880, 0<, pt1 + pt2<D,
Dashed, Orange, Line@8pt1, pt1 + pt2, pt2<D<,

PlotRange Ø 6, Axes Ø True, GridLines Ø AutomaticD,
88pt1, 81, 4<, "Red vector"<, 8-5, -5<, 85, 5<<,
88pt2, 83, 1<, "Blue vector"<, 8-5, -5<, 85, 5<<,
ControlPlacement Ø LeftD

Out[17]=

Red vector

Blue vector
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

672 Solutions to exercises

11.2 The structure of dynamic expressions
1. Use the UpdateInterval option to Dynamic.

In[1]:= Dynamic@RandomChoice@DictionaryLookup@DD, UpdateInterval Ø 5D

Out[1]= goners

2. Normalize takes a vector as input and returns a unit vector.
In[2]:= DynamicModule@8pt = 81, 0<<, Graphics@8

Circle@D,
Locator@Dynamic@pt, Hpt = Normalize@ÒDL &DD

<DD

Out[2]=

11.3 Examples and applications
1. Import the data only; the first four columns give name, field, birth year, award year.

In[1]:= data =

Import@"http:êêwww.nber.orgênobelêJones_Weinberg_2011_PNAS.xlsx",
8"XLSX", "Data", 1, All, 81, 2, 3, 4<<D;

In[2]:= data@@81, -1<DD

Out[2]= 88name, field, year_birth, year_prize<,
8Nambu, Yoichiro, Physics, 1921., 2008.<<

In[3]:= data@@-1DD ê.
8a__String, birth_Real, award_Real< ß 8a, birth, award, award - birth<

Out[3]= 8Nambu, Yoichiro, Physics, 1921., 2008., 87.<

In[4]:= nobelData = data@@2 ;; -1DD ê. 8a__String, birth_Real, award_Real< ß

8a, birth, award, award - birth<;
In[5]:= chem = Cases@nobelData, 8name_String, "Chemistry", rest__<D;

med = Cases@nobelData, 8name_String, "Medicine", rest__<D;
physics = Cases@nobelData, 8name_String, "Physics", rest__<D;

In[8]:= timeChem = chem@@All, 84, 5<DD;
timeMed = med@@All, 84, 5<DD;
timePhysics = physics@@All, 84, 5<DD;

11 Dynamic expressions 673

In[9]:= DateListPlot@Tooltip@timeChem ê. 8a_, b_< ß 88Roundüa<, b<D,
Joined Ø True, Mesh Ø All,

PlotLabel Ø StringForm@"Average age for chemistry Nobel award = `1`",

Mean@timeChem@@All, 2DDDDD

Out[9]=

In[10]:= TabView@
MapThread@Ò1 Ø DateListPlot@

Tooltip@Ò2 ê. 8a_, b_< ß 88Roundüa<, b<D, Joined Ø True, Mesh Ø All,

PlotLabel Ø StringForm@"Average age for `1` Nobel award = `2`",

Ò1, Mean@Ò2@@All, 2DDDDD &,

88"Chemistry", "Medicine", "Physics"<,
8timeChem, timeMed, timePhysics<<DD

Out[10]=

Chemistry Medicine Physics

3. Create a static version of the problem; we use GraphicsComplex to display the points and the tour.
In[13]:= pts = RandomReal@1, 820, 2<D;

In[14]:= Graphics@GraphicsComplex@pts, PointüRange@Length@ptsDDD,
Axes Ø AutomaticD

Out[14]=

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

674 Solutions to exercises

In[15]:= tour = Last@FindShortestTour@ptsDD;
Graphics@GraphicsComplex@pts,

8Line@tourD, Red, PointSize@.015D, Point@tourD<D, Axes Ø AutomaticD

Out[16]=

0.2 0.4 0.6 0.8

0.4

0.6

0.8

1.0

Here is the dynamic interface using EventHandler to choose a new set of random points with each
mouse click.

In[17]:= Manipulate@
DynamicModule@8pts = RandomReal@1, 820, 2<D, tour<,
tour = Dynamic@Last@FindShortestTour@ptsDDD;
EventHandler@
Dynamic@Graphics@GraphicsComplex@pts,

If@Not@showtourD, PointüRange@Length@ptsDD, 8Line@tourD, Red,

PointSize@MediumD, Point@tourD<DD, Axes Ø AutomaticDD,
8"MouseClicked" ß Hpts = RandomReal@1, 820, 2<DL<

DD,
88showtour, False, "Show tour"<, 8True, False<<,
ContentSize Ø 8220, 140<D

Out[17]=

Show tour

0.2 0.4 0.6 0.8

0.4

0.6

0.8

A suggested addition would be to add a control to change the number of points that are used. But be
careful: traveling salesman type problems are notoriously hard; in fact they are known to be NP-hard,
meaning they cannot be computed in polynomial time. See Lawler et al. (1985) for more on traveling
salesman problems.

11 Dynamic expressions 675

12 Optimizing Mathematica programs
12.2 Efficient programs
1. Collect the results of the Table and pull out the parts needed – the timings and the result.

In[1]:= SetAttributes@AverageTiming, HoldAllD

In[2]:= AverageTiming@expr_, trials_D := Module@8lis<,
lis = Table@AbsoluteTiming@exprD, 8trials<D;
8Mean@lis@@All, 1DDD, lis@@1, 2DD<

D
In[3]:= AverageTiming@FactorInteger@50! + 1D, 5D

Out[3]= 81.311202, 88149, 1<, 83989, 1<, 874195127103, 1<,
86854870037011, 1<, 8100612041036938568804690996722352077, 1<<<

2. The first implementation essentially performs a transpose of the two lists, wrapping SameQ around each
corresponding pair of numbers. It then does a pattern match (Count) to determine which expressions of
the form SameQAexpr

1
, expr

2
E return False .

In[4]:= HammingDistance1@lis1_, lis2_D :=

Count@MapThread@SameQ, 8lis1, lis2<D, FalseD
In[5]:= HammingDistance2@lis1_, lis2_D := Total@BitXor@lis1, lis2DD

In[6]:= sig1 = RandomIntegerA1, 9106=E;

In[7]:= sig2 = RandomIntegerA1, 9106=E;

In this case, it is the threading that is expensive rather than the pattern matching with Count .

In[8]:= res = MapThread@SameQ, 8sig1, sig2<D; êê Timing

Out[8]= 80.469637, Null<

In[9]:= Count@res, FalseD êê Timing

Out[9]= 80.049376, 499582<

The reason the threading is expensive can be seen by turning on the packing message as discussed in this
section.

In[10]:= SetSystemOptions@"PackedArrayOptions" Ø "UnpackMessage" Ø TrueD

Out[10]= PackedArrayOptions Ø

8ListableAutoPackLength Ø 250, PackedArrayMathLinkRead Ø True,

PackedArrayPatterns Ø True, PackedRange Ø True, UnpackMessage Ø True<

In[11]:= res = MapThread@SameQ, 8sig1, sig2<D;

Developer`FromPackedArray::punpack1 : Unpacking array with dimensions 81000000<. à

The other factors contributing to the significant timing differences have to do with the fact that BitXor
has the Listable attribute. MapThread does not. And so, BitXor can take advantage of specialized
(compiled) codes internally to speed up its computations.

In[12]:= Attributes@BitXorD

Out[12]= 8Flat, Listable, OneIdentity, Orderless, Protected<

676 Solutions to exercises

In[13]:= Attributes@MapThreadD

Out[13]= 8Protected<

In[14]:= Timing@temp = BitXor@sig1, sig2D;D

Out[14]= 80.00373, Null<

And finally, compute the number of 1s using Total which is extremely fast at adding lists of numbers.

In[15]:= Timing@Total@tempD;D

Out[15]= 80.003227, Null<

Return the packed array messaging to its default value.

In[16]:= SetSystemOptions@"PackedArrayOptions" Ø "UnpackMessage" Ø FalseD;

3. A first attempt, using a brute force approach, is to total the list 81, 2, …, n< for each n.
In[17]:= TriangularNumber@n_D := Total@Range@nDD

In[18]:= Table@TriangularNumber@iD, 8i, 1, 100<D
Out[18]= 81, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210,

231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630,
666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225,
1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 1891, 1953,
2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775, 2850,
2926, 3003, 3081, 3160, 3240, 3321, 3403, 3486, 3570, 3655, 3741, 3828, 3916,
4005, 4095, 4186, 4278, 4371, 4465, 4560, 4656, 4753, 4851, 4950, 5050<

In[19]:= TimingATriangularNumberA107EE

Out[19]= 83.86688, 50000005000000<

A second approach uses iteration. As might be expected, this is the slowest of the approaches here.

In[20]:= TriangularNumber2@n_D := Fold@Ò1 + Ò2 &, 0, Range@nDD

In[21]:= TimingATriangularNumber2A107EE

Out[21]= 87.34643, 50000005000000<

This is a situation where some mathematical knowledge is useful. The nth triangular numbers is just the

(n + 1)th binomial coefficient
n + 1

2

 .

In[22]:= TriangularNumber3@n_D := Binomial@n + 1, 2D

In[23]:= TimingATriangularNumber3A107EE

Out[23]= 80.000045, 50000005000000<

12.3 Parallel processing
1. First we find those values of p for which 2p - 1 is prime. This first step is quite compute-intensive; fortu-

nately, it parallelizes well.
In[1]:= LaunchKernels@D

Out[1]= 8KernelObject@1, localD, KernelObject@2, localD,
KernelObject@3, localD, KernelObject@4, localD<

12 Optimizing Mathematica programs 677

In[2]:= primes = ParallelizeASelectARange@10000D, PrimeQA2Ò - 1E &EE

Out[2]= 82, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521,

607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941<

So for each of the above values of the list primes, 2p-1 H2p - 1L will be perfect (thanks to Euler).

In[3]:= perfectLis = MapA2Ò-1 I2Ò - 1M &, primesE;

And finally, a check.

In[4]:= perfectQ@j_D := Total@Divisors@jDD ã 2 j;

In[5]:= Map@perfectQ, perfectLisD

Out[5]= 8True, True, True, True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True, True, True, True<

In[6]:= CloseKernels@D;

These are very large numbers indeed.

In[7]:= 2Ò-1 I2Ò - 1M &@9941D êê N

Out[7]= 5.988854963873362 � 105984

2. Only two changes are required to run this in parallel – distribute the definition for Mandelbrot and

change Table to ParallelTable . Of course, to increase the resolution, the grid now has many more

divisions in each direction (n = 500).
In[8]:= Mandelbrot@c_D :=

Length@NestWhileList@Ò ^2 + c &, 0, Abs@ÒD < 2 &, 1, 250DD
In[9]:= LaunchKernels@D

Out[9]= 8KernelObject@5, localD, KernelObject@6, localD,
KernelObject@7, localD, KernelObject@8, localD<

In[10]:= DistributeDefinitions@MandelbrotD

Out[10]= 8Mandelbrot<

In[11]:= data = WithB8n = 500<, ParallelTableB

Mandelbrot@x + Â yD, :y, -0.5, 0.5,
1

n
>, :x, -1.75, -0.75,

1

n
>FF;

In[12]:= ArrayPlot@data, ColorFunction Ø "CMYKColors"D

Out[12]=

12.4 Compiling
1. First, create a test point with which to work.

678 Solutions to exercises

In[1]:= pt = RandomReal@1, 82<D

Out[1]= 80.333881, 0.135321<

The following does not quite work because the default pattern is expected to be a flat expression.

In[2]:= distReal = CompileA88p, _Real<<, SqrtAFirst@pD2 + Last@pD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Compile::part : Part specification pP1T cannot be compiled since the argument
is not a tensor of sufficient rank. Evaluation will use the uncompiled function. à

Out[2]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

Give a third argument to the pattern specification to deal with this: 8p, _Real, 1<.

In[3]:= ArrayDepth@ptD

Out[3]= 1

In[4]:= distReal = CompileA88p, _Real, 1<<, SqrtAFirst@pD2 + Last@pD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[4]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

In[5]:= distReal@ptD

Out[5]= 0.360261

Check it against the built-in function:

In[6]:= Norm@ptD

Out[6]= 0.360261

Check that it threads properly over a list of points.

In[7]:= pts = RandomReal@1, 83, 2<D

Out[7]= 880.223743, 0.810299<, 80.873595, 0.72168<, 80.951892, 0.547475<<

In[8]:= distReal@ptsD

Out[8]= 80.840622, 1.13313, 1.0981<

Norm does not have the Listable attribute so it must be mapped over the list.

In[9]:= Map@Norm, ptsD

Out[9]= 80.840622, 1.13313, 1.0981<

In[10]:= distReal@ptsD == Map@Norm, ptsD

Out[10]= True

Now scale up the size of the list of points and check efficiency.

In[11]:= pts = RandomRealA1, 9106, 2=E;

In[12]:= AbsoluteTiming@distReal@ptsD;D

Out[12]= 80.109824, Null<

12 Optimizing Mathematica programs 679

In[13]:= AbsoluteTiming@Map@Norm, ptsD;D

Out[13]= 80.113652, Null<

In[14]:= distReal@ptsD ã Map@Norm, ptsD

Out[14]= True

Compiling to C (assuming you have a C compiler installed), speeds things up even more.

In[15]:= distReal = CompileA88p, _Real, 1<<,

SqrtAFirst@pD2 + Last@pD2E, RuntimeAttributes Ø 8Listable<,

Parallelization Ø True, CompilationTarget Ø "C"E

Out[15]= CompiledFunctionB8p<, First@pD2 + Last@pD2 , -CompiledCode-F

You can squeeze a little more speed out of these functions by using Part instead of First and Last.

In[16]:= distReal2 = CompileA88p, _Real, 1<<,

SqrtAp@@1DD2 + p@@2DD2E, RuntimeAttributes Ø 8Listable<,

Parallelization Ø True, CompilationTarget Ø "C"E

Out[16]= CompiledFunctionB8p<, pP1T2 + pP2T2 , -CompiledCode-F

In[17]:= AbsoluteTiming@distReal2@ptsD;D

Out[17]= 80.059632, Null<

As an aside, the mean distance to the origin for random points in the unit square approaches the follow-
ing, asymptotically.

In[18]:= NIntegrateB x2 + y2 , 8x, 0, 1<, 8y, 0, 1<F

Out[18]= 0.765196

In[19]:= MeanüdistReal@ptsD

Out[19]= 0.765452

2. We need to make just three slight modifications to the code from the previous exercise: remove the rank
specification; specify Complex as the type; extract the real and imaginary parts to do the norm
computation.

In[20]:= Clear@distComplexD;
distComplex = CompileA88z, _Complex<<, SqrtARe@zD2 + Im@zD2E,

RuntimeAttributes Ø 8Listable<, Parallelization Ø TrueE

Out[21]= CompiledFunctionB8z<, Re@zD2 + Im@zD2 , -CompiledCode-F

In[22]:= pts = RandomComplex@1, 83<D

Out[22]= 80.349519 + 0. Â, 0.506776 + 0. Â, 0.153516 + 0. Â<

In[23]:= distComplex@ptsD

Out[23]= 80.349519, 0.506776, 0.153516<

In[24]:= distComplex@ptsD == Map@Norm, ptsD

Out[24]= True

680 Solutions to exercises

3. Here is the computation for the iteration function c sinHzL using c = 1 + 0.4 Â.
In[25]:= cJulia2 = Compile@88z, _Complex<, 8c, _Complex<<, Module@8cnt = 1<,

FixedPoint@Hcnt++; c Sin@ÒDL &,

z, 100, SameTest Ø HAbs@Im@Ò2DD > 50 &LD; cntD,
CompilationTarget Ø "C", RuntimeAttributes Ø 8Listable<,
Parallelization Ø True, "RuntimeOptions" Ø "Speed"D

Out[25]= CompiledFunction@8z, c<,
Module@8cnt = 1<, FixedPoint@Hcnt++; c Sin@Ò1DL &, z, 100,

SameTest Ø HAbs@Im@Ò2DD > 50 &LD; cntD, -CompiledCode-D

In[26]:= WithB8res = 100<,

ArrayPlotBParallelTableB-cJulia2@x + y I, 1 + 0.4 ID, :y, -2 p, 2 p,
1

res
>,

:x, -2 p, 2 p,
1

res
>F, ColorFunction Ø ColorData@"CMYKColors"DFF

Out[26]=

13 Applications and packages
13.1 Random walk application
3. Here is the usage message for GraphicsComplex ,

In[1]:= ? GraphicsComplex

GraphicsComplexA8pt1, pt2, …<, dataE represents a graphics complex in which

coordinates given as integers i in graphics primitives in data are taken to be pti. �à

The first argument to GraphicsComplex is a list of coordinate points, such as the output from
RandomWalk. The second argument is a set of graphics primitives indexed by the positions of the points
in the list of coordinates. Here are two examples, one in two dimensions and the other in three.

In[2]:= Needs@"PWM`RandomWalks`"D

12 Applications and packages 681

In[3]:= Graphics@GraphicsComplex@
RandomWalk@500, LatticeWalk Ø FalseD, Line@Range@500DDDD

Out[3]=

In[4]:= Graphics3D@GraphicsComplex@RandomWalk@500,
Dimension Ø 3, LatticeWalk Ø FalseD, Line@Range@500DDDD

Out[4]=

We can quickly modify the code for ShowWalk developed in the chapter to use GraphicsComplex
instead.

In[5]:= ShowWalkGC@walk_D :=

Module@8dim = Dimensions@walkD, ran = Range@Length@walkDD<,
If@Length@dimD ã 1 »» dimP2T ã 2,

Graphics@GraphicsComplex@walk, Line@ranDDD,
Graphics3D@GraphicsComplex@walk, Line@ranDDDDD

In[6]:= ShowWalkGC@RandomWalk@2500DD

Out[10]=

In[7]:= ShowWalkGC@RandomWalk@2500, Dimension Ø 3, LatticeWalk Ø FalseDD

Out[7]=

Here are some comparisons of running times for this approach and the ShowWalk function developed in
the chapter.

In[8]:= rw = RandomWalk@1000000, Dimension Ø 3, LatticeWalk Ø FalseD;

In[9]:= Timing@gc = ShowWalkGC@rwD;D

Out[9]= 80.003836, Null<

In[10]:= Timing@sw = ShowWalk@rwD;D

Out[10]= 80.12881, Null<

682 Solutions to exercises

4. Start by creating a list of rules that indicate the first point is connected to the second, the second point is
connected to the third, and so on. If you have ten points, partition them as follows.

In[11]:= Partition@Range@10D, 2, 1D

Out[11]= 881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 89, 10<<

The graph rules are created by applying DirectedEdge at level 1.

In[12]:= Apply@DirectedEdge, %, 81<D

Out[12]= 81 � 2, 2 � 3, 3 � 4, 4 � 5, 5 � 6, 6 � 7, 7 � 8, 8 � 9, 9 � 10<

Here is a little function that puts these pieces together.

In[13]:= Clear@bondsD;
bonds@n_D := Apply@DirectedEdge, Partition@Range@nD, 2, 1D, 81<D

The bond information is the first argument to Graph ; the coordinates given by RandomWalk are the
value of the option VertexCoordinates.

In[15]:= << PWM`RandomWalks`

In[16]:= With@8steps = 1500<, Graph@bonds@stepsD,
VertexCoordinates Ø RandomWalk@steps, LatticeWalk Ø TrueDDD

Out[16]=

One of the advantages of representing these random walks as graphs is that you have all the graph
formatting and styling functions available to quickly modify your graph.

In[17]:= With@8steps = 1500<,
Graph@bonds@stepsD, DirectedEdges Ø False, EdgeStyle Ø Gray,

VertexSize Ø 81 Ø 8"Scaled", .025<, steps Ø 8"Scaled", .025<<,
VertexStyle Ø 81 Ø 8Opacity@0.4D, Green<, steps Ø 8Opacity@0.4D, Red<<,
VertexCoordinates Ø RandomWalk@steps, LatticeWalk Ø FalseDDD

Out[17]=

The disadvantage of this approach is that it is limited to two-dimensional walks. Graph does not support
three-dimensional objects and it does not make much sense in one dimension.

13 Applications and packages 683

13.4 Creating packages
1. Here are the definitions for the auxiliary collatz function.

In[1]:= collatz@n_?EvenQD := n ê 2

In[2]:= collatz@n_?OddQD := 3 n + 1

a. This is essentially the definition given in the solution to Exercise 5 from Section 6.2.

In[3]:= CollatzSequence@n_D := NestWhileList@collatz, n, Ò � 1 &D

In[4]:= CollatzSequence@7D

Out[4]= 87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

b. First we write the usage message for CollatzSequence, our public function. Notice that we write no
usage message for the private collatz function.

In[5]:= CollatzSequence::usage =

"CollatzSequence@nD computes the sequence of Collatz

iterates starting with initial value n. The sequence

terminates as soon as it reaches the value 1.";

Here is the warning message that will be issued whenever CollatzSequence is passed an argument that
is not a positive integer.

In[6]:= CollatzSequence::notint =

"First argument, `1`, to CollatzSequence must

be a positive integer.";

c. Here is the modified definition which now issues the warning message created above whenever the
argument n is not a positive integer.

In[7]:= CollatzSequence@n_D :=

If@IntegerQ@nD && n ¥ 0, NestWhileList@collatz, n, Ò � 1 &D,
Message@CollatzSequence::notint, nDD

The following case covers the situation when CollatzSequence is passed two or more arguments. Note
that it uses the built-in argx message, which is issued whenever built-in functions are passed the wrong
number of arguments.

In[8]:= CollatzSequence@_, args__D ê; Message@CollatzSequence::argx,
CollatzSequence, Length@8args<D + 1D := Null

d. The package begins by giving usage messages for every exported function. The functions to be exported
are mentioned here – before the subcontext Private` is entered – so that the symbol
CollatzSequence has context Collatz`. Notice that collatz is not mentioned here and hence
will not be accessible to the user of this package.

In[9]:= Quit@D

In[1]:= BeginPackage@"PwM`Collatz`"D;

In[2]:= CollatzSequence::usage =

"CollatzSequence@nD computes the sequence of Collatz

iterates starting with initial value n. The sequence

terminates as soon as it reaches the value 1.";

In[3]:= CollatzSequence::notint =

684 Solutions to exercises

"First argument, `1`, to CollatzSequence must

be a positive integer.";

A new context PwM`Collatz`Private` is then begun within PwM`Collatz. All the definitions of this
package are given within this new context. The context PwM`Collatz`CollatzSequence is defined
within the System` context. The context of collatz, on the other hand, is PwM`Collatz`Private`.

In[4]:= Begin@"`Private`"D;

In[5]:= collatz@n_?EvenQD := n ê 2

In[6]:= collatz@n_?OddQD := 3 n + 1

In[7]:= CollatzSequence@n_D :=

If@IntegerQ@nD && n ¥ 0, NestWhileList@collatz, n, Ò � 1 &D,
Message@CollatzSequence::notint, nDD

In[8]:= CollatzSequence@_, args__D ê; Message@CollatzSequence::argx,
CollatzSequence, Length@8args<D + 1D := Null

In[9]:= End@D;

In[10]:= EndPackage@D

After the End@D and EndPackage@D functions are evaluated, $Context and $ContextPath revert to
whatever they were before, except that PwM`Collatz` is added to $ContextPath. Users can refer to
CollatzSequence using its short name, but they can only refer to the auxiliary function collatz by
its full name. The intent is to discourage clients from using collatz at all, and doing so should definitely
be avoided, since the author of the package may change or remove auxiliary definitions at a later time.

13 Applications and packages 685

Bibliography
In addition to those items explicitly tied to the material in the book’s chapters, tutorials and other reference materials
from the Mathematica documentation are listed here. These are available both in Mathematica proper through the
Documentation Center under the Help menu and also online. References in the text to the documentation are labeled
WMDC, for Wolfram Documentation Center. Some general references on the topics in this book are also listed here.
As the list of Mathematica titles is an ever-expanding one, this listing is, by nature, incomplete.

1. Introduction
Callaway, Duncan S., Mark E.J. Newman, Steven H. Strogatz, and Duncan J. Watts. 2000. Network robust-
ness and fragility: percolation on random graphs. Physical Review Letters, 5, 355–360.

Grimmett, Geoffrey. 1999. Percolation, second edition. Springer.

Moore, Cristopher and Mark E.J. Newman. 2000. Exact solution of bond percolation on small-world networks.
Physical Review E, 62, 7059–7064.

National Elevation Dataset. US Geological Survey, http://ned.usgs.gov/downloads.asp.

Padmanabhan, Thanu. 1998. After the First Three Minutes: The Story of our Universe. Cambridge University Press.

Stauffer, Dietrich and Ammon Aharony. 1994. Introduction to Percolation Theory, second edition. Taylor & Francis.

Tutorials and guides
C/C++ Language Interface. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathemati-
ca/guide/CLanguageInterface.html.

Database Connectivity. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathemati-
ca/guide/DatabaseConnectivity.html.

Entering Two-Dimensional Input. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/-
mathematica/tutorial/EnteringTwoDimensionalInput.html.

J/Link User Guide. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/JLink/tu-
torial/Overview.html.

.NET/Link User Guide. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathemati-
ca/NETLink/tutorial/Overview.html.

Two-Dimensional Expression Input. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/-
mathematica/tutorial/TwoDimensionalExpressionInputOverview.html.

Using a Notebook Interface. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathe-
matica/tutorial/UsingANotebookInterface.html.

Working with Cells. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tuto-
rial/WorkingWithCells.html.

2. The Mathematica language
Enderton, Herbert B. 1972. A Mathematical Introduction to Logic. Academic Press.

Maeder, Roman E. 1992. The design of the Mathematica programming language. Dr. Dobb’s Journal, 17(4), 86.

Maeder, Roman E. 1997. Programming in Mathematica, third edition. Addison-Wesley.

Maeder, Roman E. 2000. Computer Science with Mathematica: Theory and Practice for Science, Mathematics, and Engineering.
Cambridge University Press.

Tutorials and guides
Attributes. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tutorial/At-
tributes.html.

Evaluation of Expressions. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathemati-
ca/tutorial/EvaluationOfExpressionsOverview.html.

Evaluation: The Standard Evaluation Sequence. Wolfram Mathematica Documentation Center, http://reference.-
wolfram.com/mathematica/tutorial/Evaluation.html.

Operator Input Forms. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tu-
torial/OperatorInputForms.html.

3. Lists
Davis, Timothy A. and Yifan Hu. 2011. The University of Florida sparse matrix collection. ACM Transactions on
Mathematical Software, 38(1), 1–25.

Duff, Iain S., Roger G. Grimes, and John G. Lewis. 1989. Sparse matrix test problems. ACM Transactions on Mathemati-
cal Software, 15(1), 1–14. doi.acm.org/10.1145/62038.62043.

Watts, Duncan J. and Steven H. Strogatz. 1998. Collective dynamics of small-world networks. Nature, 393,

440–442.

4. Patterns and rules
Lagarias, Jeffrey. 1985. The 3x + 1 problem. American Mathematical Monthly, 92, 3–23.

Maeder, Roman E. 1994. Animated algorithms. The Mathematica Journal, 4(4), 86, www.mathematica-journal.com/is-
sue/v4i4/columns/maeder.

Sedgewick, Robert and Kevin Wayne. 2011. Algorithms, fourth edition. Addison-Wesley.

Wagon, Stan. 1999. Mathematica in Action, second edition. TELOS/Springer-Verlag.

5. Functional programming
Brent, Richard P. 1980. An improved Monte Carlo factorization algorithm. BIT, 20(2), 176–184, http://maths-
people.anu.edu.au/~brent/pd/rpb051a.pdf.

688 Bibliography

Crandall, Richard E. and Carl Pomerance. 2005. Prime Numbers: A Computational Perspective, second edition.
Springer.

Diaconis, Persi and Dave Bayer. 1992. Trailing the dovetail shuffle to its lair. Annals of Applied Probability, 2(2),

294–313, http://projecteuclid.org/euclid.aoap/1177005705.

Diaconis, Persi, Ron L. Graham, and William M. Kantor. 1983. The mathematics of perfect shuffles. Advances in
Applied Mathematics, 4(2), 175–196, www-stat.stanford.edu/~cgates/PERSI/papers/83_ 05_shuffles.pdf.

Dijkstra, Edsger W. 1981. Hamming’s exercise in SASL. Report EWD792, www.cs.utexas.edu/user-
s/EWD/ewd07xx/EWD792.PDF.

Floyd, Robert W. 1962. Algorithm 97: shortest path. Communications of the ACM, 5(6).

Graham, Ronald, Donald E. Knuth, and Oren Patashnik. 1994. Concrete Mathematics: A Foundation for Computer
Science, second edition. Addison-Wesley.

Hamming, Richard W. 1950. Error detecting and error correcting codes. Bell System Technical Journal, 29(2), 147–160.

Herstein, Israel N. and Irving Kaplansky. 1978. Matters Mathematical. AMS Chelsea Publishing.

Hoffman, Paul. 1998. The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical Truth.
Hyperion.

Knuth, Donald E. 1993. The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press.

Meringer, Markus and Eric W. Weisstein. Regular graph. MathWorld, http://mathworld.wolfram.com/Regular-
Graph.html.

De Las Rivas, J. and C. Fontanillo. 2010. Protein–protein interactions essentials: key concepts to building and
analyzing interactome networks. PLoS Computational Biology, 6(6): e1000807. doi:10.1371/journal.pcbi.1000807.

Sedgewick, Robert and Kevin Wayne. 2011. Algorithms, fourth edition. Addison-Wesley.

Worm interactome database. Center for Cancer Systems Biology, http://interactome.dfci.harvard.edu/C_elegans.

6. Procedural programming
Knuth, Donald E. 1998. The Art of Computer Programming, Volume 3: Sorting and Searching, second edition. Addison-
Wesley.

Lagarias, Jeffrey C., Victor S. Miller, and Andrew M. Odlyzko. 1985. Computing pHxL: the Meissel–Lehmer
method. Mathematics of Computation, 44, 537–560.

Lagarias, Jeffrey C. and Andrew M. Odlyzko. 1987. Computing pHxL: an analytic method. Journal of Algorithms, 8,

173–191.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007. Numerical Recipes: The
Art of Scientific Computing, third edition. Cambridge University Press.

Rust, Bert W. and Walter R. Burrus. 1972. Mathematical Programming and the Numerical Solution of Linear Equations.
American Elsevier.

Weisstein, Eric W. Lucky number. MathWorld, http://mathworld.wolfram.com/LuckyNumber.html.

Bibliography 689

7. Recursion
Graham, Ronald, Donald E. Knuth, and Oren Patashnik. 1994. Concrete Mathematics: A Foundation for Computer
Science, second edition. Addison-Wesley.

HaskellWiki. The Fibonacci sequence. The Haskell Programming Language, www.haskell.org/haskellwiki/The_Fibonac-
ci_sequence.

Knuth, Donald E. 1997. The Art of Computer Programming, Volume 1: Fundamental Algorithms, third edition. Addison-
Wesley.

Knuth, Donald E. 2001. Textbook examples of recursion, in Selected Papers on Analysis of Algorithms. Center for the
Study of Language and Information, http://arxiv.org/abs/cs/9301113.

Pemmaraju, Sriram V. and Steven S. Skiena. 2003. Computational Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Cambridge University Press.

8. Numerics
Bailey, David H., Jonathan M. Borwein, Cristian S. Calude, et al. 2012. Normality and the digits of p, www.david-
hbailey.com/dhbpapers/normality-digits-pi.pdf.

Box, George E.P., Gwilym M. Jenkins, and Gregory C. Reinsel. 2008. Time Series Analysis: Forecasting and Control,
fourth edition. John Wiley & Sons.

Burden, Richard L. and J. Douglas Faires. 2001. Numerical Analysis, seventh edition. Brooks/Cole.

Chatfield, Christopher. 2004. The Analysis of Time Series: An Introduction, fourth edition. Chapman & Hall/CRC Press.

Costa, Luciano da Fontoura and Roberto Marcondes Cesar. 2001. Shape Analysis and Classification: Theory and
Practice. CRC Press.

Cover, Thomas M. and Joy A. Thomas. 2006. Elements of Information Theory, second edition. Wiley Interscience.

Goldberg, David. 1991. What every computer scientist should know about floating-point arithmetic. ACM Computing
Surveys, 23(1), 5–47. Reprint available online at www.validlab.com/goldberg/paper.pdf.

Hayes, Allan. 1992. Sum of cubes of digits, driven to abstraction. Mathematica in Education, 1(4), 3–11.

Kenny, Charmaine. Random number generators: an evaluation and comparison of random.org and some commonly
used generators. Management Science and Information Systems Studies, Trinity College Dublin, www.random.org/-
analysis/Analysis2005.pdf.

Knapp, Rob. 2001. Numerical Mathematica. 2001 International Mathematica Symposium, http://library.wolfram.com/info-
center/Conferences/4044.

Knuth, Donald E. 1997. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, third edition. Addison-
Wesley.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT
Press.

Muller, Jean-Michel, Nicolas Brisebarre, Florent de Dinechin, et al. 2010. Handbook of Floating-Point Arithmetic.
Birkhäuser.

National Institute of Standards and Technology. Nist/Sematech e-handbook of statistical methods, www.itl.nist.gov/-
div898/handbook.

690 Bibliography

National Institute of Standards and Technology. Sparse matrix collection, http://math.nist.gov/MatrixMarket/col-
lections/hb.html.

Rudnick, Joseph and George Gaspari. 2004. Elements of the Random Walk: An Introduction for Advanced Students and
Researchers. Cambridge University Press.

Rukhin, Andrew, Juan Soto, James Nechvatal, et al. 2010. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications. National Institute of Standards and Technology. Special publication
800–22, Rev. 1a.

Shannon, Claude E. 1948. A mathematical theory of computation. Bell System Technical Journal, 27, 379–423 and
623–656. Reprint available online at http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.

Skeel, Robert D. and Jerry B. Keiper. 1993. Elementary Numerical Computing with Mathematica. McGraw-Hill.

Soto, Juan. Statistical testing of random number generators. National Institute of Standards and Technology,
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf.

9. Strings
Borges, Jorge Luis. 1983. The Library of Babel, in Labyrinths: Selected Short Stories & Other Writings. Modern Library.

British Academic Spoken English (Base) and Base Plus Collections. Centre for Applied Linguistics, University of
Warwick. www2.warwick.ac.uk/fac/soc/al/research/collect/base.

Chomsky, Noam. 2002. Syntactic Structures, second edition. Mouton de Gruyter.

Cristianini, Nello and Matthew W. Hahn. 2007. Introduction to Computational Genomics: A Case Studies Approach.
Cambridge University Press.

DNA Data Bank of Japan. Center for Information Biology, National Institute of Genetics, www.ddbj.nig.ac.jp.

Friedl, Jeffrey E.F. 2006. Mastering Regular Expressions, third edition. O’Reilly Media.

Genome Composition Database. Research Organization of Information and Systems, National Institute of Genetics,
http://esper.lab.nig.ac.jp/study/genome.

Joyce, James. 1939. Finnegans Wake. Viking Penguin Inc.

Jurafsky, Daniel and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, second edition. Pearson Prentice Hall.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. The MIT
Press.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval.
Cambridge University Press.

Nucleotide Database. National Center for Biotechnology Information, www.ncbi.nlm.nih.gov/nuccore.

Paar, Christof and Jan Pelzl. 2010. Understanding Cryptography: A Textbook for Students and Practitioners. Springer.

Project Gutenberg. www.gutenberg.org.

Schwartz, Randal L., brian d foy, and Tom Phoenix. 2011. Learning Perl, sixth edition. O’Reilly & Associates.

Sinkov, Abraham. 1966. Elementary Cryptanalysis: A Mathematical Approach. The Mathematical Association of America.

Teetor, Paul. 2011. R Cookbook. O’Reilly Media.

Bibliography 691

Unicode 6.1 Character Code Charts. The Unicode Consortium. www.unicode.org/charts.

University of Chicago Press. 2010. The Chicago Manual of Style, sixteenth edition. University of Chicago Press.

Wall, Larry, Tom Christiansen, and Jon Orwant. 2000. Programming Perl, third edition. O’Reilly Media.

Wikibooks. Python programming/strings, www.wikibooks.org/wiki/Python_Programming/Strings.

Tutorials and guides
Regular Expressions. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/tuto-
rial/RegularExpressions.html.

Working with String Patterns. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/math-
ematica/tutorial/WorkingWithStringPatternsOverview.html.

10. Visualization
Abbott, Paul. 1998. Finding roots in an interval. The Mathematica Journal, 7(2), 108–112.

Bailey, David H., Jonathan M. Borwein, Cristian S. Calude, et al. 2012. Normality and the digits of p, www.david-
hbailey.com/dhbpapers/normality-digits-pi.pdf.

Bowerman, Bruce L., Richard T. O’Connell, and Anne B. Koehler. 2005. Forecasting, Time Series, and Regression: An
Applied Approach. Thomson Brooks/Cole.

Casti, John L. 1992. Reality Rules I, Picturing the World in Mathematics – The Fundamentals. John Wiley & Sons.

Cook, Stephen A. 2000. The P versus NP Problem. Manuscript prepared for the Clay Mathematics Institute for the
Millennium Prize Problems, www.claymath.org/millennium/P_vs_NP.

Gardner, Martin. 1992. Fractal Music, Hypercards, and More…Mathematical Recreations from Scientific American Magazine.
W.H. Freeman.

Goldreich, Oded. 2010. P, NP, and NP-Completeness: The Basics of Computational Complexity. Cambridge University Press.

Golin, Mordecai and Robert Sedgewick. 1988. Analysis of a simple yet efficient convex hull algorithm. Proceedings of
the Fourth Annual Symposium on Computational Geometry, 153–163, ACM.

Graham, Ronald. 1994. An efficient algorithm for determining the convex hull of a finite planar set. Information
Processing Letters, 1, 1972.

Heckbert, Paul S., ed. 1994. Graphics Gems IV. Academic Press.

Jarvis, Ray A. 1973. On the identification of the convex hull of a finite set of points in the plane. Information Processing
Letters, 2, 18–21.

Lawler, Eugene L., Jan Karel Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. 1985. The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization. John Wiley & Sons.

Lima, Manuel. 2011. Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press.

Lin, Shen 1965. Computer solutions of the traveling salesman problem. Bell System Technical Journal, 44, 2245–2269.

Mandelbrot, Benoît. 1982. The Fractal Geometry of Nature. W.H. Freeman.

Maor, Eli. 1998. Trigonometric Delights. Princeton University Press.

Mathews, Max V., Joan E. Miller, F. Richard Moore, et al. 1969. The Technology of Computer Music. The MIT Press.

692 Bibliography

O’Rourke, Joseph. 1998. Computational Geometry in C, second edition. Cambridge University Press.

Pemmaraju, Sriram V. and Steven S. Skiena. 2003. Computational Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Cambridge University Press.

Pierce, John R. 1983. The Science of Musical Sound. W.H. Freeman.

Platzman, Loren K. and John J. Bartholdi iii. 1989. Spacefilling curves and the planar traveling salesman problem.
Journal of the ACM, 36, 719–737.

Porta, Horacio, William Davis, and Jerry Uhl. 1994. Calculus&Mathematica. Addison-Wesley.

Preparata, Franco P. and Michael Ian Shamos. 1985. Computational Geometry: An Introduction. Springer-Verlag.

Rosenkrantz, Daniel J., Richard E. Stearns, and Philip M. Lewis. 1977. An analysis of several heuristics for the
traveling salesman problem. SIAM Journal of Computing, 6(3), 563–581, http://dx.doi.org/10.1137/0206041.

Rossing, Thomas D. 1990. The Science of Sound, second edition. Addison-Wesley.

Shamos, Michael I. and Dan Hoey. 1975. Closest-point problems. In 16th Annual Symposium on Foundations of Computer
Science. IEEE.

Shepard, Roger. 1962. The analysis of proximities: multidimensional scaling with an unknown distance factor.
Psychometrika, 27, 125–140.

Thomsen, Dietrich E. 1980. Making music – fractally. Science News, 117, 187.

Voss, Richard F. and John Clarke. 1978. 1ë f noise in music and speech. Journal of the Acoustical Society of America, 63,

258–263.

Weisstein, Eric W. Hypocycloid. MathWorld, http://mathworld.wolfram.com/Hypocycloid.html.

Tutorials and guides
Three-Dimensional Graphics Directives (tutorial). Wolfram Mathematica Documentation Center, http://reference.-
wolfram.com/mathematica/tutorial/ThreeDimensionalGraphicsDirectives.html.

Three-Dimensional Graphics Primitives (tutorial). Wolfram Mathematica Documentation Center, http://reference.-
wolfram.com/mathematica/tutorial/ThreeDimensionalGraphicsPrimitives.html.

11. Dynamic expressions
Boyer, Carl B. 1985. A History of Mathematics. Princeton University Press.

Davis, Joseph, H. 2004. An annual index of US industrial production, 1790–1915. Quarterly Journal of Economics, 119(4):

1177–1215. Data available online at www.nber.org/data/industrial-production-index/.

Duchamp, Marcel. 1926. Anémic Cinéma. Video available online at www.ubu.com/film/duchamp_anemic.html.

Grünbaum, Branko. 1984. On Venn diagrams and the counting of regions. The College Mathematics Journal, 15, 433–435.

Lawler, Eugene L., Jan Karel Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. 1985. The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization. John Wiley & Sons.

Ruskey, Frank and Mark Weston. 2005. A survey of Venn diagrams. The Electronic Journal of Combinatorics, DDS5,
www.combinatorics.org/files/Surveys/ds5/VennEJC.html.

Bibliography 693

Tutorials and guides
Advanced Dynamic Functionality. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/-
mathematica/tutorial/AdvancedDynamicFunctionality.html.

Control Objects. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathematica/guide/-
ControlObjects.html.

Introduction to Dynamic. Wolfram Mathematica Documentation Center, http://reference.wolfram.com/mathemati-
ca/tutorial/IntroductionToDynamic.html.

12. Optimizing Mathematica programs
Bourke, Paul. 2001. Julia Set Fractal (2D), www.paulbourke.net/fractals/juliaset.

Knuth, Donald E. 1992. Literate Programming. Center for the Study of Language and Information.

Peitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. 1992. Chaos and Fractals: New Frontiers of Science.
Springer-Verlag.

13. Applications and packages
Barber, Michael N. and Barry W. Ninham. 1970. Random and Restricted Walks: Theory and Applications. Gordon and
Breach.

Feller, William. 1968. An Introduction to Probability Theory and its Applications, Volume 1, third edition. John Wiley &
Sons.

Gaylord, Richard J. and Paul R. Wellin. 1995. Computer Simulations with Mathematica, Explorations in Complex Physical
and Biological Systems. TELOS/Springer-Verlag.

Madras, Neal and Gordon Slade. 1996. The Self-Avoiding Walk. Birkhäuser.

Pearson, Karl. 1905. The problem of the random walk, Nature, 72, 294.

Weiss, George H. 1983. Random walks and their applications. American Scientist, 71, 65–71.

Weiss, George H. 1994. Aspects and Applications of the Random Walk. North-Holland.

Weisstein, Eric W. Sphere point picking. MathWorld, http://mathworld.wolfram.com/SpherePointPicking.html.

Wolfram Workbench. Mathematica development user guide, http://reference.wolfram.com/workbench.

General reference
Crandall, Richard E. 1994. Projects in Scientific Computation. TELOS/Springer-Verlag.

Crandall, Richard E. 1996. Topics in Advanced Scientific Computation. TELOS/Springer-Verlag.

Floyd, Robert W. 1979. The paradigms of programming. Communications of the ACM, 22(8).

Mangano, Salvatore. 2010. Mathematica Cookbook. O’Reilly Media.

The Mathematica Journal. Wolfram Media, www.mathematica-journal.com.

Trott, Michael. 2004. The Mathematica Guidebook for Programming. Springer-Verlag.

Trott, Michael. 2004. The Mathematica Guidebook for Graphics. Springer-Verlag.

Wickham-Jones, Tom. 1994. Computer Graphics with Mathematica. TELOS/Springer-Verlag.

694 Bibliography

Index
|, Alternatives, 97

&&, And, 50

@@, Apply, 120

@@@, Apply at level one, 121

_, Blank, 86

___, BlankNullSequence, 111

__, BlankSequence, 86

;, CompoundExpression, 21

/;, Condition, 92, 211

==, Equal, 170, 255

<<, Get, 555

?, Information, 25–26

/@, Map, 118

||, Or, 51

.., Repeated, 98, 412, 548–549

..., RepeatedNull, 98

//., ReplaceRepeated, 104

===, SameQ, 170

=, Set, 42

:=, SetDelayed, 43

#, Slot, 154

##, SlotSequence, 377–378

~~, StringExpression, 325

<>, StringJoin, 317

`, (context mark), 558

`, (number mark), 268

Aborting calculations, 24

AbsoluteOptions, 375

AbsoluteTiming, 494

Accumulate, 136

Accuracy, 265, 276

AccuracyGoal, 278

Adelston, Larry, xvii
Adjacency matrices, 130

Adjacency structures, 163

AdjacencyGraph, 64, 130

Adler checksum, 347

Alternative input syntax, 21–22

Alternatives (|), 97

in string patterns, 329

Amino acids
residues of, 6–7

visualization of, 402–409

Anagrams, 322, 359, 361

And (&&), 50

Animate, 450

Animations
Animate, 450, 553

displaying all steps, 553

random walk, 469, 552–553

sorting algorithms, 228–230

Annuity, present value, 4
Appearance, 475–476

Append, 75

Apply (@@), 120

ArcTan, 417

Area of triangles, 108, 421

Arguments to functions, 217

Array, 64

ArrayDepth, 69

ArrayPlot, 64

ArrayRules, 284

Arrays, 282

constant, ConstantArray, 65, 78

creating, 64–65

of random numbers, 260

operations on, 182

packed, 286

random sparse, 290

sparse, SparseArray, 32, 65, 282

Ascii characters, 311–312

Assignments, 40

compared with transformation rules, 102

delayed, 43

immediate, 42

to list components, 76, 153

Assumptions, in simplification, 3
Atoms, 30

testing for, AtomQ, 49

Attributes, 53

clearing, ClearAll, 55

clearing, ClearAttributes, 55, 124, 546

finding functions with, 160

Flat, 53–54

Listable, 56, 123, 208

OneIdentity, 54

Orderless, 54

Protected, 54

setting for a function, 55

Autocorrelation, 304

of white noise, 446

Band, 285

BaseForm, 258–259

Begin, 559

Bernoulli trials, 129

BernoulliGraphDistribution, 129

Bézier curves, 6–7

as edges in graphs, 376–380

with dynamic control points, 454–455

BezierCurve, 378

Bigrams, 81–82

Binary shifts, computations with, 264

Binding energy, of isotopes, 6

Binomial, 127, 498

Bit operators, 52–53, 171

BitOr, 52

BitXor, 52, 171

Blanagrams, 359, 520

Blank (_), 86

BlankNullSequence (___), 86, 111

BlankSequence (__), 86

Blas routines, 505

Block, 147

BlockRandom, 300–301

Bond percolation, 12–14

Boole, 65

Boolean expressions
truth tables, 50, 188

visualizing with Venn diagrams, 468

Boolean operators, 50

Borges, Jorge L., 343

BoxWhiskerChart, 427

Brackets
cell, 16

for lists, 20

Bubble sort, 112, 229

ByteCount, 495

C language

compilers, 527

number representation, 269

numerical limits of, 270, 272

pointers, 77

Caenorhabditis elegans, 177

Caesar, Julius, 319, 384

Calculations, interrupting or aborting, 24

Calkins, Harry, xvii, 469

Cards, creating deck of, 140

Cartesian products, using transformation rules, 108

Cases

basic examples, 87, 183–184

level specification of, 92

Cell brackets, 16

Center of mass, 295

CharacterRange, 310

Characters, in other languages, 313

Characters, 317

696 Index

Checksums, 347

Adler, 348

ChemicalData, 402–403

Chemicals
positions of atoms, 403

radius of atoms, VanDerWaalsRadius, 403

visualization of, 402

ChiSquareDistribution, 262

Church, Alonzo, 115

Ciphers
Caesar, 319, 324

permutation, 320, 324

Circles, graphics primitive, Circle, 365

ClearAll, 55, 567–568

ClearAttributes, 55, 124

Clearing
all symbols in Global` context, 374

attributes, ClearAll, 55

attributes, messages, or options, ClearAll, 546

values, 42

Closed paths, example of transformation rules, 105

CloseKernels, 516

Collatz sequences, 101, 219

defined recursively, 243

package for, 573

Color functions, CPK model for atoms, 404

Color wheel, 385

ColorData, 411

Column, 182

options for, 485–486

Comments, 23

CompilationTarget, 527

Compile, 524

Compiled functions, 524

making listable, 525

parallelization of, 525

run-time options of, 526

CompiledFunction, 524

CompiledFunctionTools, 526

CompilePrint, 526

Compiling, 523

autocompile, 509

to C, 527

Complement, 79

Complex numbers, 35, 212, 255

length of, Abs, 256

pattern matching with, 256

phase angle, Arg, 256

plotting in the plane, 257

visualization of, 256, 446

Composite numbers, 53, 95

Compound expressions, 21

Compression, encoding used in, 246

Computation
fixed-precision, 148, 274

symbolic vs. numeric, 505

threading, 518

Computational complexity, of sort algorithms, 112,
228

Computational geometry
convex hull, 105, 395

point in polygon, 419, 518

ray crossing algorithms, 420, 423

Condition number of matrices, 307

Conditional functions
If, 208

Piecewise, 212

Switch, 215

Which, 214

Conditions, in patterns, Condition (/;), 92, 211

Connected components, of graphs, 13

ConnectedGraphQ, 49

ConstantArray, 65, 78

Constants
attributes of, 258

mathematical, 257

ContentSize, 488

Contexts, 558

current, $Context, 558

exiting current, End, 559–560

nested, 562

of symbols, Context, 560

path for, $ContextPath, 561

private, 563, 569

starting new, Begin, 559

Control, 459

Control objects, 452

inputting text, InputField, 457

LocatorPane, 476–477

locators, 455

popup menus, 453

setter bars, 453

Index 697

Control objects (continued)
sliders, 472

two-dimensional slider, Slider2D, 453–454,
529

viewers, 460

wrappers for, 459

ControlActive, 530

ControlType, 453

Convex hulls
ConvexHull, 395

in computing closed paths, 105

Convex polygons, 420

Coordinates, spherical, 541

Correlation, 304

Correlograms, 305

Count, 68, 100

Counting
coins, using transformation rules, 104

number of multiplies, MultiplyCount, 108

steps inside looping constructs, 201, 503

CPK model, for coloring atoms, 404

CreatePalette, 485

CycleGraph, 176–177

Cylinder, 367

Darwin, Charles, 330

Dashing, 371

Data
adding headers to tabular, 79

autocorrelation of, 304

displaying tabular, Grid, 62–63

dynamic tables of, 457–458

dynamic visualization of, 481

filtering, 114

finding convex hull for, 395–396

fitting with linear model, 7, 113, 228

handling missing, 408–409

importing, 7, 282

industrial production, 483

linear regression trendlines, 440

mean, 97, 429

measuring extent of, 294

Nobel prizes, 490

nonnumeric values in, 183

scraping from web pages, 327, 342

standard deviation of, 429

stem plots of, 166

time series, 438

trends in, 436

visualizing, ArrayPlot, 63

visualizing autocorrelation of, 305

Date conversion, 153

DateListPlot, 481, 483

Defaults for function arguments, 204

Defer, 40

Definitions
for functions, 41

multiple, 45

of variables, 41

recursive, 232

Delayed assignments, SetDelayed (:=), 43

Delayed rules, RuleDelayed (:>), 103

Delete, 72

DeleteCases, 100

DeleteDuplicates, 79

Detecting edges in images, 8
Diameter of pointsets, 130, 164

Dice
rolling of, 264

visualization using transformation rules, 109

DictionaryLookup, 162, 314, 349

dynamic lookups, 481

Differential equations
precision of solutions, 252

visualizing solutions of, 3
Digit sums, 263

Digital roots, 230

DigitCharacter, 326

Dimensions, 68

DisplayAllSteps, 552

DistanceFunction, 188

DistributeDefinitions, 518

DistributionFitTest, 298

Divergence of vector field, 131–132

DNA
bases used in random strings, 343

computing GC ratios, 351

displaying sequences of, 356

sequence analysis, 351

Do

counting steps inside loop, 503–504

syntax of, 194

698 Index

Documentation Center, 26

Dot product, Dot, 125–126

Duchamp, Marcel, rotoreliefs, 469

Dynamic, 472

Dynamic expressions, 470

Animate, 450

constraining movement of, 477

direct manipulation, Locator, 455

efficiency, 479

finding substrings with, 349

formatting of, 459

issues with updating, 474, 479

limiting evaluation while active, 531

locators, 11, 455

Manipulate, 450

modifying appearance, 476

mouse events used in, 487–488

OpenerView, 462

reducing computation within, 479

saving state, 476

scoping of, DynamicModule, 474

setting control type, ControlType, 453

TabView, 10, 460

update intervals, UpdateInterval, 474

viewers, 460

Dynamic programming, 239

DynamicModule, 474

Edge detection, EdgeDetect, 8, 472

EdgeShapeFunction, 377

Eigenvectors, visualization of, 297–298

Elements of lists, 59

Elevation data, reconstructing surface from, 8
EmitSound, 397

Encoding
in compression algorithms, 246

text, 318

End, 559–560

Entropy, 265

Epicycloids, 386, 469

Equal (ã), 170, 255

Equality, testing for, SameQ vs. Equal, 170, 255

Eratosthenes, sieving, 224, 503

Error function, complementary, Erfc, 300

Errors, syntax coloring of, 23

Euler, Leonhard, 523

Eulerian numbers, 242

Evaluate, 39, 505

Evaluated, 505

Evaluation
deferring, Defer, 40

of input, 17

overriding held, 39–40

preventing with HoldForm, 39

EvaluationMonitor, 201, 280

EventHandler, 487

ExponentialMovingAverage, 163

Exponentiation, notation, 19

Expressions, 29

atomic, 30

entering traditional, 18–19

head of, 30

internal form of, 33

mapping functions over, 118

normal, 33

number of elements in, 33

parts of, 35

selecting parts, 35, 37

structure of, 33

threading functions over, 122

visualizing with TreeForm, 36

FaceGrids, 367

Factorial, by iteration, 137

Factoring
large integers, 515

numbers, 132

polynomials, 2
Fibonacci numbers

computed iteratively, 205

computed using determinants, 290

definition, 95

matrix computation, 290

negative integer indices, 234

recursive implementation, 232

speeding up computation of, 234

using dynamic programming, 240

File browsers, dynamic using OpenerView, 484

Index 699

Filtering data, 96, 100, 114, 126

FilterRules, 432–433, 549

FinancialData, 96, 437

FindFile, 558

FindRoot, 191

displaying intermediate values, 201, 205

options for, 279

FindShortestTour, 491

First, 72

Fitting data, 7–8

LinearModelFit, 113, 228

Fixed range tests, 301

Fixed-precision computations, 148, 274

FixedPoint, 134

Flat, 53–54

Flatten, 76, 141

Fold, 136, 239

FoldList, 136, 239

Fonts, displaying lists of, 468

For, syntax of, 195

FreeQ, 68

Frequency modulation (FM) synthesis, 402

Frequency tests, 299

Friendship network, 376

FromCharacterCode, 312

Front end, 24

FullForm, 33

of strings, 311

Function, 153, 156

Functions
alternate syntax for, 21

applying, Apply, 120

argument checking, 217

compound, 143

conditional, 208

definitions for, 41

indexed, MapIndexed, 158

information about, 25–26

inheriting options, 166, 175

iterated, Nest, 132

making listable, 123

mapping of, 118

multiple definitions for, 45

nesting of, 137

options for built-in, 164

piecewise-defined, 4, 48, 212

predicate, 48, 126

pure, Function, 153, 156

setting attributes, 55

templates for, 565

threading, Thread, 122

GatherBy, 426

GC ratios, 329, 351

GenomeData, 345

GenomeLookup, 109

Geometric transformations, 375

translations, 395

Get (<<), 555

Glosemeyer, Darren, xvii
Golden ratio, as fixed point, 134

Graphics
box representation, 392

cached values, 392

color wheels, 385

defining new objects, 12

directives, 366, 369

displaying, 365–366

efficient representation of, 386

lighting of three-dimensional, 404

lines in, Line, 369, 409

multi-objects, 386

numeric vs. symbolic values, 392

options, 366, 370

points in, 369

primitives, 365, 368

reflection of lights, Specularity, 404

reflection transforms, 375

representation with GraphicsComplex, 389

rotating, 133

space-filling plots, 402

structure of built-in, 374

text in, Text, 372

three-dimensional, 367

tick marks and labels, 371

translation of, 134

visualization of trends in data, 436

visualizing roots of functions, 430

Graphics, 365

700 Index

Graphics3D, 367

GraphicsComplex, 389

Graphs
adjacency, 64, 130

adjacency structures, 163

bond percolation, 12–14

connected components, 13

counting edges incident to vertex,
VertexDegree, 178

deleting self-loops, 180

function for edges, 377

power grid as, 63

random, 127

regular, 176

representing networks, 376

testing for connected, ConnectedGraphQ, 49

Greatest common divisor, 206, 230

Grid, 62

displaying DNA sequences, 357

inheriting options from, 358

Hamiltonian cycle, 13

Hamming distance, 170, 187

efficiency issues, 514

Hamming (regular) numbers, 163

Hamming weight, 263

Hash tables, 347

Hendrix, Jimi, 400

Hexagonal lattice, 395

HoldAll, 433, 504

used to measure timing, 494

HoldForm, 39

Horner’s method, for polynomial multiplication,
162

Hyperlink, 181

Hyperlinks
styles for, 485

syntax for, 484

Hypocycloids, 381

animation of, 462

HypothesisTestData, 299

IdentityMatrix, 538

If, 208

nested structures, 210

Image processing
edge detection, 8, 472

effects, ImageEffect, 468

resizing, 209

segmentation, 11

Immediate assignment, 42

Importing
data, 7
images, 8

Indexed functions, MapIndexed, 157

Industrial production data, 483

Inequalities, visualizing systems of, 466

Infix notation, 22

Information, about built-in functions, 25–26

Information retrieval, 332

Information theory, 265

Initialization, 454–455

Inner products, Inner, 125

Input
alternative syntax for, 21

entering, 17

evaluation of, 17

InputField, 457

InputForm

of plots, 374

of strings, 311

Insert, 75

Integer lattice, 67

IntegerDigits, 258

Interactomes, 177

Interleaving lists, Riffle, 142, 239

Interrupting calculations, 24

Intersection of lists, Intersection, 79

Intervals, testing for membership,
IntervalMemberQ, 49

InverseCDF, 301

Isotopes, binding energies, 6
Iteration

counting steps, 201

fixed point, FixedPoint, 134

functions of two arguments, Fold, 136

intermediate values, EvaluationMonitor,
201, 280

intermediate values, Reap and Sow, 281

of functions, 132

setting with built-in functions,
MaxIterations, 279

Sierpinski triangle, 137

with conditions, NestWhile, 135

Index 701

 Johnson, Bob, xvii
Join, 78

Josephus problem, 172, 264

Joyce, James, 331

Julia, Gaston, 532

Julia sets, 527

Kelly, Michael, xvii
Kernel, 24

Klee, Paul, 365

Kuzniarek, Andre, xvii

Lag plots, 308

Lags in time series, 304

Languages
C, 269

Lisp, xi, 115

Last, 72

Lattices
hexagonal, 395

three-dimensional, 395

visualizing integer, 67

LaunchKernels, 516

Length of
expressions, Length, 33

lists, 68

LetterCharacter, 326

LetterQ, 311

Lévy flights, 554

Lighting, 404

Linear congruential method, for generating
random numbers, 264, 301

Linear systems of equations, solution of, 3
LinearModelFit, 113, 228

Lines
connecting 3D data with, 409

dashed, 371

in two-dimensional graphics, 369

Lisp programming language, xi, 115

Listability, 508

of compiled functions, 525

setting attribute, 56, 123, 208

Listable, 123

ListPlay, 398–399

ListQ, 49

Lists
complement of, 79

component assignment, 76, 150

constructing, 59

counting frequency of elements in, 68

creating nested, 61

deleting duplicates, 79

depth of, 69

displaying, 62

elements of, 59

extracting elements from, 70

flattening, 76

interleaving, Riffle, 142, 239

internal representation, 58

intersection of, 79

joining, 78

measuring, 68

merging, 244

partitioning, 74, 174

permutations of, 196

position of elements in, 67–68

removing elements, 72

replacing parts of, 76

reversing order of, 74

rotating, 74

sorting, 73, 111

syntax of, 20, 58

taking sublists, 70–71

testing for, ListQ, 49

testing for membership in, 68

transposing, 75

union of, 78

visual representation, TreeForm, 69

Localization of
constants, With, 148, 176

names, Module, 146

values, Block, 147

Locator, 455

LocatorAutoCreate, 456

LocatorPane, 477

Logical operators, 50

visualizing expressions with, 466

Logistic maps, loss of precision with, 274

Lookahead/lookbehind constructs, 336

702 Index

Loops
Do, 194

Do vs. Table, 205

efficiency issues, 502

For, 195

NestWhile, 204

While, 199

Lorentz factor, 1
LowerCaseQ, 311

Lucky numbers, 230

Machine numbers, 266

MachineIntegerQ, 270, 513

MachineNumberQ, 513

MachinePrecision, 266, 277

Mandelbrot, Benoît, 446

Mandelbrot set, 523

Manipulate

basic syntax, 450

example with conditional functions, 210

initial values for parameters, 451

initializing, Initialization, 454–455

labels for parameters, 451

multiple parameters, 450–451

saving definitions, 465

size of content area, 488

Map (/@), 118

at different levels, 121

MapIndexed, 157

Mapping over expressions, automatically,
Listable, 124

MapThread, 122, 170, 175, 181, 185

MatchQ, 86

Mathematical constants, 257

Mathematical expressions, linear syntax, 18

Matrices
adding columns and rows, 81

adjacency, 130

column means, 188

displaying with MatrixForm, 62

identity, 538

ill-conditioned, 307

multiplication, 131

norm, 307

predicate for square, 93, 130

swapping rows and columns, 81, 150

testing for symmetry, SymmetricMatrixQ,
49, 283

tridiagonal, 290

upper triangular, 149, 218

Vandermonde, 131

visualizing, MatrixPlot, 63

MatrixForm, 62

and sparse arrays, 284

MatrixPlot, 63

MaxIterations, 279

Mean of data, 97

Median, 187, 219

MemberQ, 68, 161

MemoryInUse, 495–496

Merge sort, 113, 244

Mersenne prime numbers, 126, 132

computing in parallel, 517

Mesh, 415, 434

MeshFunctions, 434

Messages, 167

creating error, 546

for built-in functions, 167

framework for, 169

issuing, Message, 169

multiple, 169

usage, 546, 565, 568, 571

midi instruments, 400

Missing, 408

Modular design, 183

Module, 146

compared to With, 149–150

Most, 73

MouseClicked, 487–488

Moving averages, exponential, 163

Multi-objects, 386

Multi-threaded computation, 518

Multiplication, syntax for, 18

Musical scales
pentatonic, 448

random walk across, 445

Named patterns, 99

Names, 161, 556

Natural language processing
n-grams, 81

Index 703

Natural language processing (continued)
stop words, 342–343

word length in corpora, 329

word stemming, 336

Nearest, 188

Needs, 555

Nest, 132

Nested function call, 137

Nested functions, pure, 158

NestList, 132, 239

NestWhile, 135, 204

Networks
friendship, 376

protein-protein interaction, 177

represented as graphs, 376

Newton’s method
accelerating for slow convergence, 307

controlling precision of, 291

derivative undefined, 293

for root finding, 192

numerical derivatives, 293

tolerance for, 199

NIntegrate, 278

Nobel prizes, 491

Norm
of matrices, 307

used to compute distance in Euclidean space, 162

Normal, 284

Normal expressions, 33

NormalDistribution, 261

Normalize, 489

Notebooks, working with, 15

NP-complete problems, 415

NSolve, 430

Number mark (`), 268

NumberQ, 49, 258

Numbers, 251

accuracy of, Accuracy, 265

approximate, 266

bases of, 258

complex, Complex, 35, 212, 255

composite, 53, 95

computation with mixed types, 275

converting between bases, 263

display of approximate, 267

Eulerian, 242

exact vs. approximate, 269

extracting digits of, 258

factoring, 131

Fibonacci, 95, 205, 232

floating-point, Real, 255

Hamming (regular), 163

high precision vs. machine precision, 271

IEEE floating-point, 266

internal representation, FullForm, 254

lucky, 230

machine, 266

Mathematica compared to C, 269

mathematical constants, 257

Mersenne, 126

Mersenne prime, 132, 517

natural, 53

perfect, 11, 152, 523

polar representation, 263

precision of, 265

random, RandomReal, 260

rational, Rational, 254

rep units, 162

scale of approximate, 267

size limits, 271

test for composite, 53

testing for, NumericQ, 48

testing for explicit, NumberQ, 258

triangular, 514

type of, Head, 254

NumberString, 326

NumericQ, 48

OneIdentity, 54

OpenerView, 462

for file browsers, 485

Operators
bit, 52

infix notation for, 24

logical, 50

postfix notation for, 22

prefix notation for, 21

relational, 50

Options, 164

argument structure, OptionsPattern, 165

defaults, 204

704 Index

extracting values of, OptionValue, 165

filtering, FilterRules, 432–433, 549

finding functions with, 160

for built-in functions, 165

for graphics, 367, 370

for three-dimensional graphics, 415

for two-dimensional graphics, 370

framework for, 164

inheriting from built-in functions, 166, 175

multiple instances of, 373

obtaining for graphics expressions, 375

use of Automatic in, 414

OptionsPattern, 165, 433

OptionValue, 165

Or (||), 51

OrderedQ, 315

Outer products, Outer, 125, 141

Output, referring to previous, 17

OutputForm, of strings, 87, 310

� = � �, 415

P-values, for statistical tests, 298

Packages, 558

beginning, BeginPackage, 564

built-in, 555

developing, 563

ending, EndPackage, 564

getting names in, 556

installing, 567

loading, 555, 562

location of, 557

template for, 563

Packed arrays, 286

converting expressions to, ToPackedArray,
512

functions that autopack, 512

size of, 287

testing for, PackedArrayQ, 287

turning on messages associated with, 512

unpacking, 500

Palettes
creation of, CreatePalette, 181–182, 485

customizing styles for, 182

Palindromes, 324, 332

Parallel computation
basic examples, 515

closing kernels, CloseKernels, 516

computations that do not parallelize, 518

distributing definitions, 518

graphical user interface for, 517

launching kernels, LaunchKernels, 516

loading packages on subkernels, 522

with compiled functions, 526

$ProcessorCount, 516

ParallelEvaluate, 518

Parallelize, 517

ParallelMap, 516

ParallelNeeds, 522

ParallelTable, 528

ParametricPlot, 383

Part, 35, 70

shorthand notation, [[…]], 70

Partition, 74, 143

Partitioning
lists, 74, 174

lists of digits, 110

lists of vertices, 422

strings, 345

Parts of expressions, Part, 35, 70

Pascoletti Adriano, xvii
Password generator, 345

PathPlot, 106

Pattern matching, efficiency issues, 499

Patterns, 85

alternatives in (|), 97

conditions on, Condition (/;), 92

finding expressions that match (Cases), 87

function arguments as structured, 344

in function definitions, 41, 88

matching (MatchQ), 86

matching sequence of expressions, 90

matching types of expressions, 87

named, 99

regular expressions, 332

repeated, 97–98, 549

structured, 88

syntactic vs. semantic matching, 89

Pentatonic scales, 448

Percolation, bond, 14

Perfect numbers, 152, 523

searching for, 11

Index 705

Permutations, 323

Permutations of lists, 196

Pi (p)
finding sequence of digits in, 110, 328

playing digits of, 401

random walks on digits of, 308, 396

Pick, 127–128, 179, 428

Piecewise, 212

Piecewise functions, 4, 48

Play, 397

Plot, structure of, 374

Points
in polygons, 419, 519

in two-dimensional graphics, Point, 369

multi-objects, 386

PointSize, 369

Polar representation of numbers, 263

Polygons
finding points in convex, 420

finding points in nonconvex, 423, 519

interactive, 456, 477

regular, 12, 173

used to create hexagonal lattice, 395

Polynomials
fast multiplication with Horner’s method, 163

plotting complex solutions of, 446

testing for, PolynomialQ, 49

Pooh, Charles, xvii
PopupMenu, 453

Porter’s stemming algorithm, 340

Position, 67–68, 100

Postfix operators, 22

Power grid, as graph, 63–64

Precision
exact vs. approximate numbers, 269

fixed, 148, 274

high vs. machine, 271

of approximate numbers, Precision, 265

of internal algorithms, 278

setting, SetPrecision, 273

PrecisionGoal, 278

Predicates, 48

as pure functions, 157

Prefix operators, 21

Prepend, 75

Previous output, 17

Prime numbers, sieving, 224, 503

PrimePi, 225

PrimeQ, 48

Print, 201, 280

Private, 569

Procedures, 189

Profiling, 506, 520

Programs
choosing efficient approach, 496

functional, 115

measuring efficiency of, 494

memory used in, 495

parallel, 515

profiling, 506, 520

Protected attribute, Protected, 54

ProteinData, 406

Proteins
conformation of backbone, 6–7

dot plot, 363, 385

interaction networks, 177

visualization of, 406

Pure functions, 153

as predicates, 157

efficiency issues, 509

listable, 508–509

nested, 158

sequence of arguments, (##), 377–378

Quadrants, in Cartesian plane, 219

Quadratic congruential method, for generating
random numbers, 264

Radius of gyration tensor, 294

symbolic vs. numeric input, 505

visualization of, 295

Random sparse arrays, 290

Random numbers
from distributions, RandomVariate, 261

linear congruential generator, 264, 301

localizing generators, BlockRandom, 301

quadratic congruential generator, 264

seeding generators for, SeedRandom, 301

testing sequences of, 299

weighting choices, 263

706 Index

Random sampling
with replacement, RandomChoice, 145, 262

without replacement, RandomSample, 262, 315

Random strings, 343, 361

Random walks
across C major scale, 445

animation of, 469, 553

applications of, 534

as graphs, 554

bounded, 554

dynamic interfaces for, 469, 488

lattice walks, 264, 534

Lévy flights, 554

off-lattice, 187, 540

on digits of p, 308, 396, 554

on hexagonal lattice, 554

one-dimensional, 67, 137, 262

shape of, 294

square end-to-end distance, 574

three-dimensional, 539, 541

two-dimensional lattice, 80, 137, 152, 162, 536

using GraphicsComplex, 554

visualization of, 98–99, 446, 547

RandomChoice, 145, 262

used to construct random strings, 345

RandomColor, 131

RandomComplex, 260

RandomInteger, 260

RandomReal, 260

RandomSample, 145, 197, 262

RandomVariate, 261

Range, 59

Rational numbers, 254

Ray crossing algorithm, for point in polygon
problems, 420, 423

Real numbers, 254

RealDigits, 258

Reap, 281

Recursive definitions, 232

used to define higher-order functions, 238

with multiple arguments, 235

ReflectionTransform, 375

RegionPlot, 466

Regression models, 436

Regular expressions, 332

classes of characters in, 333

lookahead/lookbehind, 336

mixing with string patterns, 334

named patterns with, 334

referring to patterns in, 335

RegularExpression, 332

Regular polygons, 12, 173

Relational operators, 50

Remove, 546

Rep units, 162

Repeated (..), 98, 412, 548–549

RepeatedNull (...), 98

Replacement rules, ReplaceAll (/.), 102

ReplacePart, 76, 104, 287

ReplaceRepeated (//.), 104

Rest, 72

Reverse, 74, 119

Riffle, 142, 239

Rolling dice, 264

Root finding
bisection method, 206

Newton’s method, 192

secant method, 293

Root mean square distance, 294

Root plots, 430

Rotate, 133

RotateLeft, 74, 175

RotateRight, 74

Rotoreliefs, 469

Rules
delayed, RuleDelayed (:>), 103

getting information for, 44

rewrite, 44

user-defined, 44

Run-length encoding, 246

Runs tests, 302

SameQ (===), 170, 255

SampleDepth, 398

SampledSoundFunction, 399

SampleRate, 398

SaveDefinitions, 465

Sawtooth waves, 402

Scale, of numbers, 267

Scaling noises, 446

Index 707

Scoping, 146

localization of constants, With, 148, 176

localization of names, Module, 146

localization of values, Block, 147

tracing, 147

Secant method
for Newton root-finding, 293

for root finding, 306

SeedRandom, 301

Select, 126, 179, 315

using pure functions with, 156

Selection sort, 225–229

Selectors, 37

Semantics, definition of, 29

Sequences, 90

subsequence search within, 109, 114, 328

SessionTime, 388

Set (=), 42

SetAttributes, 55, 208

SetDelayed (:=), 43

SetPrecision, 273

SetSystemOptions, 500

Shannon, Claude, 265

Sherlock, Tom, xvii
Short, 374

Shortest path problems, 415

Shorthand notation
&&, And, 50

@@, Apply, 120

/;, Condition, 92, 211

&, Function, 154

/@, Map, 119

||, Or, 51

/., ReplaceAll, 102

//., ReplaceRepeated, 104

;;, Span, 70

~~, StringExpression, 325

<>, StringJoin, 317

@@@, applying at level one, 121

[[…]], Part, 70

Shuffling cards, 141

Sierpinski triangle, 137

Sieve of Eratosthenes, 224

improving efficiency of, 503

Sign function, Sign, 218, 499

Signal processing, Hamming distance, 170, 187, 514

Simple closed paths, 415, 446

Simplification
of trigonometric expressions, 3
using assumptions, 3

Sin, dynamic visualization of, 468

Slider, 472

Slider2D, 453–454, 529

SlotSequence (##), 377–378

Solving equations
differential, 3
increasing precision for, 253

van der Pol, 252

Solving linear systems, 3
Sort, 73, 119

SortBy, 74, 179, 424

Sorting, 225

animation of, 228–230

basic algorithm for lists, 111

bubble sort, 112, 229

computational complexity of, 112, 228

lists, 73

merge sort, 113, 244

points by base angles, 417

selection sort, 226

strings, 314

symbols, 112

Sound, 396

chords, 400

of functions, Play, 397

of rational numbers, 398

physics of, 396

playing, EmitSound, 397

playing discrete amplitude levels, ListPlay,
399

primitives, SoundNote, 399

sample depth, SampleDepth, 398

sample rate, SampleRate, 398

sampling amplitude levels, 400

scaling, 445

setting duration of, 400

using midi instruments, 400

SoundNote, 399

Sow, 281

Space-filling plots, 402

Span, (;;), 70

708 Index

Sparse arrays, 32, 65, 282

converting to lists, Normal, 284

efficiency issues, 500–502

rules for, ArrayRules, 284

testing for symmetry of, 283

visualization of, ArrayPlot, 283

SparseArray, 65, 282

Specularity, 404

Speed of light, 1
Sphere, 367

Split, 247

Square waves, 401

Standard deviation, 162, 385

visualization of, 427

Starting Mathematica, 15

Statistical tests, 298

autocorrelation, 304

fixed range, 301

frequency test, 299

NIST test suite, 303

runs test, 302

Stem plots, 166

Stemming words, 336

Stop words, 342–343

Stream plots, 5
StringCount, 317

StringDrop, 146, 317

StringExpression (~~), 325

StringInsert, 148, 317

StringJoin (< >), 146, 317

StringMatchQ, 325

StringPosition, 317

StringReplace, 317

StringReverse, 146, 317

Strings, 309

alternatives in patterns, 329

and Unicode, 313

changing case, 313

character codes, 312

concatenating, StringJoin, 146, 317

converting to Ascii, ToCharacterCode, 312

converting to symbols, 321

creating random, 343

encoding, 319

finding substrings, 349

in output, 310

length of, StringLength, 311

operations compared to lists, 318

operations on, 316

padding, 324

partitioning, 345

patterns for, 325

random, 343, 361

regular expressions for, 332

sorting characters in, 314

tests on, 311

trimming, 317

StringSplit, 81, 328

alternative patterns with, 330

StringTake, 316

StringTrim, 317

Structured patterns, 88, 344

Subsets, testing for, 53

Surfaces
reconstructing, 8–9

visualizing intersection of, 447

Switch, 215

Switch vs. Which, 216

Symbol, 321

Symbolic computation
basic, 2
compared with numeric, 392

Symbols, converting from strings, 321

SymmetricMatrixQ, 49, 283

Syntax
alternative forms, 22

coloring for errors, 23

definition of, 29

for multiplication, 18–19

of functions, 19

SystemOptions, 288–299, 500, 513

Table, 59

creating nested lists with, 61

TableForm, 62

TabView, 10, 460, 482

Tafjord, Oyvind, xvii
Take, 71

Term rewriting, 44

Index 709

Testing equality, SameQ vs. Equal, 170, 255

Tests for randomness, 299

Text, 372

Text analysis
cleaning transcribed audio, 342

distribution of sentence lengths, 342

distribution of word lengths, 329–331

punctuation counts in, 361

stemming words, 336

stop words, 342–343

Textures, for graphics, 5
Thermoplasma volcanium, GC content of, 355

Thread, 122, 179

Ticks, 371

Time series
lags in data, 304

serial dependence in data, 308

statistical tests for, 304

visualization of, Correlogram, 305

visualization of trends in, 436

Time value, of annuities, 4
Timing, 494

ToBoxes, 392

ToExpression, 321

ToPackedArray, 512

ToUpperCase, 313, 317

TracePrint, 173, 240

Transformation rules, 102

Cartesian product example, 108

closed paths example, 105

compared with assignments, 102

counting change example, 104

dice visualization example, 109

finding maxima example, 107

syntax of, 102

Translate, 134, 395

TranslationTransform, 395

Transposing
expressions, Thread, 123

lists, Transpose, 75, 428

matrices, 152

Traveling salesman problems, 415

TreeForm, 36

Trend plots, 436

Triangles
area of, 108, 421

dynamic with locators, 455

Triangular numbers, 514

Tridiagonal matrices, 290

Truth tables, 50, 188

Tryptophan, 405

Tube, 7, 475

Unicode, 313

Union, 78

Unique, 321

UpdateInterval, 474

Upper triangular matrices, 149, 218

efficiently generating, 502

Usage messages, 413, 568

van der Pol equations, 252

van der Waals radius, 403

Vandermonde matrix, 131

Variables, definitions for, 41

Vector field, stream plot, 5
Vectors

divergence, 131–132

dot product, 125–126

normalizing, 489

of random numbers, 260

visualization of arithmetic for, 469

Venn diagrams, 465, 468

VertexDegree, 178

ViewPoint, 479

ViewVertical, 367

von Neumann, John, 265

von Neumann neighborhood, 537

Warning messages, 167, 413

WeatherData, 457–458, 469

Web pages, scraping data from, 327, 342

Weights, for random number generation, 263

West, Mae, 365

Whepley, Faisal, xvii
Which, 214

While, syntax of, 199

With, 148, 176

compared to Module, 149–150

710 Index

Word games
anagrams, 322, 361

blanagrams, 359, 520

Word stemming, 336

lemmatization, 341

Porter’s algorithm, 340

WordData, 315

displaying information from, 470

Words
pluralizing, 342

singularizing, 340

stemming, 336

stop, 342–343

WorkingPrecision, 278

Xor, (�), 52

$BaseDirectory, 557

$Context, 558

$ContextPath, 559

$InstallationDirectory, 557

$KernelID, 518

$MachinePrecision, 266, 271

$MaxMachineNumber, 271

$MaxPrecision, 274

$MinMachineNumber, 271

$MinPrecision, 274

$Path, 557

$ProcessID, 518

$ProcessorCount, 516

$RecursionLimit, 245

$UserBaseDirectory, 557

Index 711

	Contents
	Preface
	1 An introduction to Mathematica
	1.1 Overview of basic operations
	1.2 Getting started
	1.3 Getting help

	2 The Mathematica language
	2.1 Expressions
	2.2 Definitions
	2.3 Predicates and Boolean operations
	2.4 Attributes

	3 Lists
	3.1 Creating and displaying lists
	3.2 The structure of lists
	3.3 Operations on lists

	4 Patterns and rules
	4.1 Patterns
	4.2 Transformation rules
	4.3 Examples and applications

	5 Functional programming
	5.1 Introduction
	5.2 Functions for manipulating expressions
	5.3 Iterating functions
	5.4 Programs as functions
	5.5 Scoping constructs
	5.6 Pure functions
	5.7 Options and messages
	5.8 Examples and applications

	6 Procedural programming
	6.1 Loops and iteration
	6.2 Flow control
	6.3 Examples and applications

	7 Recursion
	7.1 Fibonacci numbers
	7.2 Thinking recursively
	7.3 Dynamic programming
	7.4 Classical examples ·

	8 Numerics
	8.1 Numbers in Mathematica
	8.2 Numerical computation
	8.3 Arrays of numbers
	8.4 Examples and applications

	9 Strings
	9.1 Structure and syntax
	9.2 Operations on strings
	9.3 String patterns ·
	9.4 Regular expressions
	9.5 Examples and applications

	10 Graphics and visualization
	10.1 Structure of graphics
	10.2 Efficient structures
	10.3 Sound
	10.4 Examples and applications

	11 Dynamic expressions
	11.1 Manipulating expressions
	11.2 The structure of dynamic expressions
	11.3 Examples and applications

	12 Optimizing Mathematica programs
	12.1 Measuring efficiency
	12.2 Efficient programs
	12.3 Parallel processing
	12.4 Compiling

	13 Applications and packages
	13.1 Random walk application
	13.2 Overview of packages
	13.3 Contexts
	13.4 Creating packages

	Solutions to exercises
	2 The Mathematica language
	3 Lists
	4 Patterns and rules
	5 Functional programming
	6 Procedural programming
	7 Recursion
	8 Numerics
	9 Strings
	10 Graphics and visualization
	11 Dynamic expressions
	12 Optimizing Mathematica programs
	13 Applications and packages

	Bibliography
	Index

