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1 An introduction to Mathematica

Mathematica  is  a  very  large  and  seemingly  complex  system.  It  contains  hundreds  of
functions  for  performing  various  tasks  in  science,  mathematics,  and  engineering,
including  computing,  programming,  data  analysis,  knowledge  representation,  and
visualization of information. In this introductory chapter, we introduce the elementary
operations  in Mathematica  and  give  a  sense  of  its  computational  and  programming
breadth and depth. In addition, we give some basic information that users of Mathemat-
ica need to know, such as how to start Mathematica,  how to get out of it, how to enter
simple inputs and get answers, and finally how to use Mathematica’s documentation to
get answers to questions about the system.

1.1 A brief overview of Mathematica

Numerical computations

Mathematica  has  been aptly  described as  a  sophisticated  calculator.  With it  you can enter
mathematical expressions and compute their values.

In[1]:= Sin .86 Log 1
.08

12

12

Out[1]= 0.481899

You can store values in memory.

In[2]:= rent 350

Out[2]= 350

In[3]:= food 175

Out[3]= 175

In[4]:= heat 83

Out[4]= 83



In[5]:= rent food heat

Out[5]= 608

Yet Mathematica  differs  from  calculators  and  simple  computer  programs  in  its  ability  to
calculate exact results and to compute to an arbitrary degree of precision.

In[6]:=
1

15

1

35

1

63

Out[6]=
1
9

In[7]:= 2500

Out[7]= 3273390607896141870013189696827599152216642046043064789483291

368096133796404674554883270092325904157150886684127560071009

217256545885393053328527589376

In[8]:= N , 500

Out[8]= 3.14159265358979323846264338327950288419716939937510582097494

459230781640628620899862803482534211706798214808651328230664

709384460955058223172535940812848111745028410270193852110555

964462294895493038196442881097566593344612847564823378678316

527120190914564856692346034861045432664821339360726024914127

372458700660631558817488152092096282925409171536436789259036

001133053054882046652138414695194151160943305727036575959195

309218611738193261179310511854807446237996274956735188575272

48912279381830119491

Symbolic computations

One of the more powerful features of Mathematica is its ability to manipulate and compute
with symbolic expressions. For example, you can factor polynomials and simplify trigono-
metric expressions.

In[9]:= Factor x5 1

Out[9]= 1 x 1 x x2 x3 x4

In[10]:= TrigReduce Sin 3

Out[10]=
1
4

3 Sin Sin 3
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You can simplify expressions using assumptions about variables contained in those expres-
sions. For example, if k is assumed to be an integer, sin 2 k x  simplifies to sin x .

In[11]:= Simplify Sin 2 k x , k Integers

Out[11]= Sin x

This  computes  the  conditions  for  which  a  general  quadratic  polynomial  will  have  both
roots equal to each other.

In[12]:= Reduce x,a x2 b x c 0 y,a y2 b y c 0 x y , a, b, c

Out[12]= a 0 && b 0 a 0 && b c 0 a 0 && c
b2

4 a

You can create functions that are defined piecewise.

In[13]:= Piecewise 1, x 0 , Sin x x

Out[13]=
1 x 0
Sin x

x
True

The knowledge base of Mathematica includes algorithms for solving polynomial equations,
and computing integrals.

In[14]:= Solve x3 a x 1 0, x

Out[14]= x
2
3

1 3
a

9 3 27 4 a3
1 3

9 3 27 4 a3
1 3

21 3 32 3
,

x
1 3 a

22 3 31 3 9 3 27 4 a3
1 3

1 3 9 3 27 4 a3
1 3

2 21 3 32 3
,

x
1 3 a

22 3 31 3 9 3 27 4 a3
1 3

1 3 9 3 27 4 a3
1 3

2 21 3 32 3

In[15]:=
1

1 x4
x

Out[15]=
1

4 2
2 ArcTan 1 2 x 2 ArcTan 1 2 x

Log 1 2 x x2 Log 1 2 x x2
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Graphics

The ability  to  visualize functions  or  sets  of  data  often allows us greater insight into  their
structure  and  properties. Mathematica  provides  a  wide  range  of  graphing  capabilities.
These  include  two-  and  three-dimensional  plots  of  functions  or  data  sets,  contour  and
density  plots  of  functions  of  two  variables,  bar  charts,  histograms  and  pie  charts  of  data
sets, and many packages designed for specific graphical purposes. In addition, the Mathemat-
ica programming language allows you to construct graphical images “from the ground up”
using primitive elements, as we will see in Chapter 9.

Here is a simple two-dimensional plot of the function sin x 2 sin x2 .

In[16]:= Plot Sin x 2 Sin x2 , x, ,

3 2 1 1 2 3

1

0.5

0.5

1

Out[16]= Graphics

You  can  combine  two  or  more  plots  in  a  single  graphic  by  enclosing  them  inside  curly
braces.

In[17]:= Plot Sin x , Sin 2 x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1
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Here is a plot of the sinc function, given in the previous section.

In[18]:= Plot Piecewise 1, x 0 , Sin x x , x, 2 , 2 ;

6 4 2 2 4 6

0.2

0.2

0.4

0.6

0.8

1

Here  is  a  surface  of  constant  negative  curvature,  represented  parametrically  by  the  three
functions , , and . This surface is often referred to as Dini’s surface.

In[19]:= Cos Sin ;

Sin Sin ;

0.2 Cos Log Tan
2

;

In[22]:= ParametricPlot3D , , , , 0, 4 , , .05, 1 , Axes False,

Boxed False, PlotPoints 30, AspectRatio 1.75 ;
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Working with data

The ability to plot  and visualize data is extremely important in engineering and all  of the
social,  natural,  and physical  sciences. Mathematica  can import  and export  data  from other
applications, plot the data in a variety of forms, and be used to perform numerical analysis
on the data.

The  file dataset.m  contains  pairs  of  data  points,  in  this  case  representing  body
mass  vs. heat  production  for  13  different  animals.  The data  are  given as  (m,  r),  where m
represents the mass of the animal and r  the heat production in kcal per day. First we set up
a platform independent path to the file and then import that file.

In[23]:= datafile ToFileName $BaseDirectory,

"Applications", "IPM3", "DataFiles" , "dataset.m"

Out[23]= C:\Documents and Settings\All Users\Application Data\

Mathematica\Applications\IPM3\DataFiles\dataset.m

In[24]:= data Import datafile, "Table"

Out[24]= 0.06099, 6.95099 , 0.403, 28.189 ,

0.62199, 41.1 , 2.50999, 120.799 ,

2.95999, 147.9 , 3.33, 182.8 , 8.19999, 368.8 ,

28.1999, 981.299 , 57.4, 1303.29 , 72.2999, 1512.5 ,

340.199, 7100.29 , 711, 10101.1 , 5000., 29894.9

You can immediately plot the data using the ListPlot function.

In[25]:= ListPlot data, PlotStyle PointSize .02 ;

200 400 600 800

2500

5000

7500

10000

12500

15000

17500
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This plots the data on log–log axes.

In[26]:= logplot ListPlot Log data , PlotStyle PointSize .02 ;

2 2 4 6 8

4

6

8

10

You can then fit  a straight line to the log-data by performing a linear least squares fit.  In
this example, we are fitting to the model a m x,  where a and m  are the parameters to be
determined in the model with variable x.

In[27]:= f FindFit Log data , a m x, a, m , x

Out[27]= a 4.15437, m 0.761465

Here is a plot of the linear fit function.

In[28]:= fplot Plot a m x . f, x, 3, 9 ;

2 2 4 6 8

4

6

8

10
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Finally,  you can see how well the fitted function approximates  the log plot by combining
these last two graphics.

In[29]:= Show fplot, logplot ;

2 2 4 6 8

4

6

8

10

Programming

With a copy of The Mathematica Book  (Wolfram 2003)  or one of the many tutorial  books
(see, for example,  Glynn and Gray 1999) describing the vast  array of  computational  tasks
that  can  be  performed  with Mathematica,  it  would  seem  you  can  compute  just  about
anything you might want. But that impression is mistaken. There are simply more kinds of
calculations  than could  possibly  be included in a  single program. Whether you are inter-
ested in computing bowling scores or finding the mean square distance of a random walk
on a torus, Mathematica does not have a built-in function to do everything that a user could
possibly want. What it does have – and what really makes it the amazingly useful tool it is –
is the capability for users to define their own functions. This is called programming, and it
is what this book is all about.

Sometimes,  the programs you create will be succinct  and focused  on a very specific
task. Mathematica  possesses  a  rich  set  of  tools  that  enable  you  to  quickly  and  naturally
translate the statement of a problem into a program. For example, the following program
defines  a  test  for  perfect  numbers,  numbers  that  are  equal  to  the  sum  of  their  proper
divisors.

In[30]:= PerfectQ n_ : Apply Plus, Divisors n 2 n

We then define another function that selects those numbers from a range of integers that
pass this PerfectQ test.

In[31]:= PerfectSearch n_ : Select Range n , PerfectQ
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This then finds all perfect numbers less than 1,000,000.

In[32]:= PerfectSearch 106

Out[32]= 6, 28, 496, 8128

Here  are  two  functions  for  representing  regular  polygons.  The  first  defines  the
vertices of a regular n-gon, while the second uses those vertices to create a polygon graph-
ics object that can then be displayed with the built-in Show function.

In[33]:= vertices n_Integer, r_: 1 :

Table r Cos
2

n
, r Sin

2

n
, , 0, n 1

In[34]:= RegularPolygon n_ :

Graphics Line vertices n . a_, b__ a, b, a ,

AspectRatio Automatic

In[35]:= Show RegularPolygon 5

Out[35]= Graphics

As  another  example  of  a  succinct  program,  here is  an  iterative  function  that  imple-
ments the well-known Newton method for root finding.

In[36]:= NewtonZero f_, xi_ : NestWhile #
f #

f' #
&, xi, Unequal, 2

In[37]:= g x_ : x3 2 x2 1

In[38]:= NewtonZero g, 2.0

Out[38]= 1.61803

Of course, sometimes the task at hand requires a more involved program, stretching
across several lines (or even pages) of code. For example, here is a slightly longer program
to  compute  the score of  a  game of  bowling,  given a  list  of  the number of  pins  scored by
each ball.
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In[39]:= BowlingScore pins_ :

Module score , score x_, y_, z_ : x y z;

score 10, y_, z_, r___ : 10 y z score y, z, r ;

score x_, y_, z_, r___ :

x y z score z, r ; x y 10;

score x_, y_, r___ : x y score r ; x y 10;

score If pins 2 pins 1 10, pins, Append pins, 0

Here is the computation for a “perfect” game – 12 strikes in a row.

In[40]:= BowlingScore 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

Out[40]= 300

These  examples  use  a  variety  of  programming  styles:  functional  programming,
rule-based  programming,  the  use  of  anonymous  functions,  and  more.  We do  not  expect
you  to  understand  the  examples  in  this  section  at  this  point  –  that  is  why  we  wrote  this
book!  What you should understand is that in many ways Mathematica  is designed to be as
broadly useful as possible and that there are many calculations for which Mathematica does
not  have a  built-in  function,  so,  to  make full  use  of  its  many capabilities,  you  will  some-
times need to program. The main purpose of this book is to show you how.

Another purpose is to teach you the basic principles of programming. These princi-
ples – making assignments, defining rules, using conditionals, recursion, and iteration – are
applicable (with great differences in detail, to be sure) to all other programming languages.

Symbolic and interactive documents

In addition to the computational tools that Mathematica provides for what many profession-
als associate with technical computing, it also contains tools for creating and modifying the
user interface to such tasks. These tools include hyperlinks for jumping to other locations
within  a  document  or  across  files,  buttons  to  perform  tasks  that  you  might  normally
associate  with a  command-line interface, and tools  to modify  and manipulate  the appear-
ance and functionality of your Mathematica  notebooks directly. In this section we will give
a few short examples of what is possible, waiting until Chapter 10 for a methodical look at
how to program these elements.

The first  example takes  the code necessary to  display  a  polyhedron and puts  it  in  a
button.  The two lines of code that could be evaluated normally in a notebook first load a
package and then display an icosahedron in the notebook.

In[41]:= Needs "Graphics`Polyhedra`"
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In[42]:= Show Stellate Polyhedron Icosahedron

Out[42]= Graphics3D

Here is a short program that creates a button containing the above two expressions.

Cell[BoxData[
   ButtonBox[

 RowBox[{"Stellate", " ", "Icosahedron"}],
 ButtonFunction:>CompoundExpression[ 

  Needs[ "Graphics`Polyhedra`"],
  Show[Stellate[Polyhedron[Icosahedron]]]
  ],

 ButtonEvaluator->Automatic],
"Input",
Active->True]

The  formatted  version  of  the  above  cell  can  be  displayed  by  choosing Show  Expression

from the Format menu. When you do that, it will look like the following:

Stellate Icosahedron

Clicking  the  button  will  cause  the Mathematica  code  in  the ButtonFunction  to  be
immediately evaluated and the following graphics will then be displayed in your notebook.

Functions are available to jump around to different parts of a Mathematica  notebook
and  perform  various  actions.  Here  is  a  short  piece  of  code  that  creates  a  button  which,
upon being clicked, moves the selection to the next cell and then evaluates that cell.
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Cell[TextData[{
Cell[BoxData[

 ButtonBox["EVALUATE",
   ButtonFunction:>FrontEndExecute[ {

 FrontEnd`SelectionMove[ 
   ButtonNotebook[ ], All, ButtonCell], 
 FrontEnd`SelectionMove[ 
   ButtonNotebook[ ], Next, Cell], 
 FrontEnd`SelectionEvaluate[ 
   ButtonNotebook[ ]]}],

   Active->True]]],
 StyleBox[" MATHEMATICA INPUT"]
}], "Text"]

The  formatted  version  of  the  above  cell  can  be  displayed  by  choosing Show  Expression

from  the Format  menu.  When  you  do  that,  it  will  look  somewhat  like  the  following
(although we have removed some of the text formatting above to improve readability of the
code).  Clicking the EVALUATE  button  will  cause  the input  cell immediately following to
be selected and then evaluated.

EVALUATE MATHEMATICA INPUT

In[43]:= 3 4 5

Out[43]= 27

The  following  example  demonstrates  how  you  can  use Mathematica  functions  to
perform  some  of  the  user  interface  actions  that  you  would  normally  associate  with  key-
board and mouse events. By using such techniques, you can create a specific set of actions
that will follow certain evaluations. For example, if you were creating an electronic quiz for
your  students,  you  could  include  “hint”  buttons  within  your  class  notebooks  that  would
open a new notebook with hints and suggestions upon clicking.

This creates a new notebook that contains three cells – a Section cell, a Text cell,
and an Input cell. Upon evaluation, the NotebookPut command below will cause a new
notebook  to  appear,  containing  the  three  specified  cells.  The  screen  shots  below  show
what appears in the user interface after evaluating each of the preceding inputs.
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In[44]:= nb NotebookPut

Notebook

Cell "Symbolic and Interactive Documents", "Section" ,

Cell "Cells and notebooks are Mathematica expressions.",

"Text" ,

Cell "Integrate Sin x Cos x ,x ", "Input"

Out[44]= NotebookObject Untitled 1

This moves the selection bar past the last cell in the above notebook.

In[45]:= SelectionMove nb, Next, Cell, 4
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We then select the most previous cell.

In[46]:= SelectionMove nb, Previous, Cell

Finally, we evaluate the selected cell.

In[47]:= SelectionEvaluate nb

In Chapter 10 we will give a detailed discussion of how to modify and manipulate the
user interface through the use of the symbolic programming techniques that are discussed
throughout this book.
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1.2 Using Mathematica
Before  you  can  do  any  serious  work,  you  will  need  to  know  how  to  get  a Mathematica
session started, how to stop it, and how to get out of trouble when you get into it. These
procedures depend somewhat on the system you are using. You should read the system-spe-
cific information that came with your copy of Mathematica; and you may need to consult a
local Mathematica guru if our advice here is not applicable to your system.

Getting into and out of Mathematica

The most  commonly  used  interface is  often referred to  as  a  notebook  interface in  which
the  user  creates  and  works  in  interactive  documents.  Personal  computers  running  Win-
dows,  Macintosh  operating  systems,  Linux,  and  most  flavors  of  Unix  all  support  this
graphical  user  interface,  which  normally  starts  up  automatically  when  you  begin  your
Mathematica session.

There  are  some  situations  where  you  may  want  to  start  up Mathematica  from  a
command  prompt  and  issue  commands  directly  through  that  interface,  bypassing  the
notebook interface entirely. For example, you may have a very long computation that you
need to run in batch mode. Typically, Mathematica is started up on these systems by typing
math  at a command prompt. We will not discuss  using Mathematica  through a command
prompt any further. If you are interested in this mode you should consult the documenta-
tion that came with your copy of Mathematica.

Starting Mathematica and first computations
To start Mathematica  you will have to find and then double-click on the Mathematica icon
on your computer, which will look something like this:

The  computer  will  then  load  parts  of Mathematica  into  its  memory  and  soon  a  blank
window  will  appear  on  the  screen.  This  window  is  the  visual  interface  to  a Mathematica
notebook and it has many features that are useful to the user.

Notebooks  allow you to  write text,  perform computations,  write and run programs,
and  create  graphics  all  in  one  document.  Notebooks  also  have  many  of  the  features  of
common word  processors,  so  those  familiar  with  word  processing  will  find  the  notebook
interface  easy  to  learn.  In addition,  the notebook  provides  features for  outlining  material
which you may find useful for giving talks and demonstrations.
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When a blank notebook first appears on the screen (either from just starting Mathe-
matica  or  from  selecting New  in  the File  menu),  you  can  start  typing  immediately.  For
example, if  you type N[Pi,200]  press  (hold down the Shift key while pressing
the Enter key) to evaluate an expression. Mathematica will evaluate the result and print the
200-decimal digit approximation to  on the screen.

Notice that when you evaluate an expression in a notebook, Mathematica  adds input
and  output  prompts.  In  the  example  notebook  above,  these  are  denoted In[1]:=  and
Out[1]=.  These  prompts  can  be  thought  of  as  markers  (or  labels)  that  you  can refer to
during your Mathematica session. 
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You  should  also  note  that  when you started  typing Mathematica  placed a bracket  on
the far right side of the window that enclosed the cell that you were working in. These cell
brackets  are  helpful  for  organizational  purposes  within  the  notebook.  Double-clicking  on
cell  brackets  will  open  any  collapsed  cells,  or  close  any  open  cells  as  can  be  seen  in  the
previous screen shot.

Double-clicking on the cell bracket containing the 1.1 A Brief Overview of Mathe-
matica cell will open the cell to display its contents:

Using  cell  brackets  in  this  manner  allows  you  to  organize  your  work  in  an  orderly
manner,  as  well  as  to  outline  material.  For  a  complete  description  of  cell  brackets  and
many other interface features, you should consult the documentation that came with your
version of Mathematica.

For  information  on  other  features  such  as  saving,  printing,  and  editing  notebooks,
consult the manuals that came with your version of Mathematica.

Entering input
New input can be entered whenever there is a horizontal line that runs across the width of
the notebook. If one is not present where you wish to place an input cell, move the cursor
up and down until it changes to a horizontal bar and then click the mouse once. A horizon-
tal  line  should  now  appear  across  the  width  of  the  window.  You  can  immediately  start
typing and an input cell will be created.
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Input can be entered exactly as it appears in this book. To get Mathematica to evalu-
ate an expression that you have entered, press - ;  that is,  hold down the Shift key
and then press the Enter key.

You  can  enter  mathematical  expressions  in  a  traditional  looking  two-dimensional
format  using  either  palettes  for  quick  entry  of  template  expressions,  or  keyboard  equiva-
lents.  For  example,  the  following  expression  can  be  entered  by  using  the  Basic  Input
palette,  or  through  a  series  of  keystrokes.  For  details  of  inputting  mathematical  expres-
sions,  read  your  user  documentation  or  read  the  section  on 2D  Expression  Input  in  the
Help Browser.

In[1]:=
1

1 x3
x

Out[1]=
ArcTan 1 2 x

3

3

1
3
Log 1 x

1
6
Log 1 x x2

As  noted  previously, Mathematica  enters  the In  and Out  prompts  for  you.  You  do
not type these prompts. You will see them after you evaluate your input.

You can refer to the result of the previous calculation using the symbol %.

In[2]:= 264

Out[2]= 18446744073709551616

In[3]:= % 1

Out[3]= 18446744073709551617

You can also  refer to  the result  of  any  earlier calculation  using its Out[i]  label or,
equivalently, %i.

In[4]:= Out 1

Out[4]=
ArcTan 1 2 x

3

3

1
3
Log 1 x

1
6
Log 1 x x2

In[5]:= %2

Out[5]= 18446744073709551616

Ending a Mathematica session
To end your Mathematica  session, choose Exit  from the File  menu. You will be prompted
to save any unsaved open notebooks.
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Getting out of trouble
From time to  time, you  will  type  an  input  which will  cause Mathematica  to  misbehave in
some way, perhaps by just going silent for a long time (if, for example, you have inadvert-
ently asked it to do something very difficult) or perhaps by printing out screen after screen
of  not terribly useful  information. In this  case, you can try to “interrupt” the calculation.
How you do this depends on your computer’s operating system:

• Macintosh: type .  (the Command key and the period) and then type a

• Windows 95/98/NT/2000/XP: type .  (the Alt key and the period)

• Unix: type - .  and then type a and then

These attempts to stop the computation will sometimes fail. If after waiting a reason-
able amount of time (say, a few minutes), Mathematica still seems to be stuck, you will have
to “kill the kernel.” (Before attempting to kill the kernel, try to convince yourself that the
computation  is  really  in  a  loop  from  which  it  will  not  return  and  that  it  is  not  just  an
intensive  computation  that  requires  a  lot  of  time.)  Killing  the  kernel  is  accomplished  by
selecting Quit  Kernel  from  the Kernel  menu.  The  kernel  can  then  be  restarted  without
killing the front end by first selecting Start Kernel  Local  under the Kernel  menu, or you
can  simply  evaluate  a  command  in  a  notebook  and  a  new  kernel  should  start  up
automatically.

The syntax of inputs

You  can  enter  mathematical  expressions  in  a  linear  syntax  using  arithmetic  operators
common to almost all computer languages.

In[6]:= 39 13

Out[6]= 3

Alternately, you can enter this expression in the traditional form by typing 39, / , then
13.

In[7]:=
39

13

Out[7]= 3

The caret (^) is used for exponentiation.

In[8]:= 2^5

Out[8]= 32
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You  can  enter this  expression in a  more traditional  typeset  form by typing 2,  ^ ,  and
then 5.

In[9]:= 25

Out[9]= 32

Mathematica  includes  several  different  ways  of  entering  typeset  expressions,  either
directly  from the  keyboard  as  we did  above,  or  via  palettes  available from the File  menu.
Below is  a  brief  table showing some of  the more commonly  used typeset  expressions and
how  they  are  entered  through  the  keyboard.  You  should  read  your  documentation  and
become comfortable using these input  interfaces so that  you can easily enter the kinds of
expressions in this book.

Expression FullForm Keyboard shortcut

x2 SuperscriptBox x, 2 x 6 , 2
xi SubscriptBox x, i x , i
x
y FractionBox x, y x , y

x SqrtBox x 2 , x
x y GreaterEqual x, y x , y

Table 1.1: Entering typeset expressions

You can indicate multiplication by simply putting a space between the two factors, as
in mathematics. You can also use the asterisk (*) for that purpose, as is traditional in most
computer languages.

In[10]:= 2 5

Out[10]= 10

In[11]:= 2 5

Out[11]= 10

Mathematica also gives operations the same precedence as in mathematics. In particu-
lar, multiplication and division have a higher precedence than addition and subtraction, so
that 3 + 4 * 5 equals 23 and not 35.

In[12]:= 3 4 5

Out[12]= 23
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Functions  are  also  written  as  they  are  in  mathematics  books,  except  that  function
names are capitalized and their arguments are enclosed in square brackets.

In[13]:= Factor x5 1

Out[13]= 1 x 1 x x2 x3 x4

Almost  all  of  the  built-in  functions  are spelled  out  in full,  as  in  the above  example.
The  exceptions  to  this  rule  are  well-known  abbreviations  such  as D  for  differentiation,
Sqrt  for  square  roots, Log  for  logarithms,  and Det  for  the  determinant  of  a  matrix.
Spelling out the name of a function in full is quite useful when you are not sure whether a
function  exists  to  perform  a  particular  task.  For  example,  if  we  wanted  to  compute  the
conjugate of a complex number, an educated guess would be:

In[14]:= Conjugate 3 4

Out[14]= 3 4

Whereas  square  brackets [  and ]  are  used  to  enclose  the  arguments  to  functions,
curly braces { and } are used to indicate a list or range of values. Lists are a basic data type
in Mathematica  and are used to represent vectors and matrices (and tensors of any dimen-
sion), as well as additional arguments to functions such as in Plot and Integrate.

In[15]:= a, b, c . x, y, z

Out[15]= a x b y c z

In[16]:= Plot Sin x 2 Sin x , x, 2 , 2 ;

6 4 2 2 4 6

1

0.5

0.5

1

In[17]:= Integrate[Cos[x], {x, a, b}]

Out[17]= Sin a Sin b

In  the Plot  example,  the  list {x,-2 ,2 }  indicates  that  the  function
sin x 2 sin x  is  to  be  plotted  over  an  interval  as x  takes  on  values  from 2  to 2 .
The Integrate  expression  above  is  equivalent  to  the  mathematical  expression

a
b
cos x x. 
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Mathematica  has very powerful list-manipulating capabilities  that  will be explored in
detail in Chapter 3.

When you  end an  expression  with  a  semicolon  (;), Mathematica  computes  its  value
but does not display it. This is very helpful when the result of the expression would be very
long and you do not  need to  see it.  In the following example, we first  create a list  of  the
integers from 1 to 10,000, suppressing their display with the semicolon, and then compute
their sum and average.

In[18]:= nums Range 10000 ;

In[19]:= Apply[Plus, nums]

Out[19]= 50005000

In[20]:=
%

Length nums

Out[20]=
10001
2

An expression can be entered on multiple lines, but only if Mathematica  can tell that
it is not finished after the first line. For example, you can enter 3* on one line and 4 on the
next.

In[21]:= 3 *

4

Out[21]= 12

But you cannot enter 3 on the first line and *4 on the second.

In[22]:= 3

*4

Out[22]= 3

If you use parentheses, you can avoid this problem.

In[23]:= (3

 *4)

Out[23]= 12

With the notebook interface, you can input as many lines as you like within an input
cell; Mathematica  will  evaluate  them  all  when  you  enter  still  obeying  the  rules
stated above for any incomplete lines.
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Finally,  you can enter a comment  –  some words that are not evaluated  – by entering
the words between (* and *).

In[24]:= D[Sin[x],  (* differentiate Sin[x]   *)

   {x, 1}]  (* with respect to x once *) 

Out[24]= Cos x

Alternate input syntax

There  are  several  different  ways  to  write  expressions  in Mathematica.  Usually,  you  will
simply  use  the  traditional  notation, fun[x],  for  example.  But  you  should  be  aware  of
several alternatives to this syntax that are widely used.

Here is an example using the standard function notation for writing a function with
one argument.

In[25]:= N

Out[25]= 3.14159

This uses a prefix operator.

In[26]:= N

Out[26]= 3.14159

Here is a postfix operator notation.

In[27]:= N

Out[27]= 3.14159

For  functions  with  two  arguments,  you  can  use  an  infix  notation.  The  following
expression is identical to N[ ,30].

In[28]:= N 30

Out[28]= 3.14159265358979323846264338328

Finally,  many  people  prefer  to  use  a  more  traditional  syntax  when  entering  and
working  with  mathematical  expressions.  You  can  compute  an  integral  using  standard
Mathematica syntax.

In[29]:= Integrate 1 Sin x , x

Out[29]= Log Cos
x
2

Log Sin
x
2
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The same integral, represented in a more traditional manner, can be entered from palettes
or keyboard shortcuts.

In[30]:=
1

Sin x
x

Out[30]= Log Cos
x
2

Log Sin
x
2

Many  mathematical  functions  have  traditional  symbols  associated  with  their  opera-
tions  and  when  available  these  can  be  used  instead  of  the  fully  spelled-out  names.  For
example, you can compute the intersection of two sets using the Intersection function.

In[31]:= Intersection a, b, c, d, e , b, f, a, z

Out[31]= a, b

Or you can do the same computation using more traditional notation.

In[32]:= a, b, c, d, e b, f, a, z

Out[32]= a, b

To  learn  how  to  enter  these  and  other  notations  quickly,  either  from  palettes  or
directly from the keyboard using shortcuts, refer to the 2D Expression Input section in the
Front End category of the Help Browser.

The front end and the kernel

When  you  work  in Mathematica  you  are  actually  working  with  two  separate  programs.
They are referred to as the front end and the kernel. The front end is the user interface. It
consists of the notebooks that you work in together with the menu system, palettes (which
are really just notebooks), and any element that accepts input from the keyboard or mouse.
The  kernel is  the program that  does  the calculations.  So a  typical  operation between the
user  (you)  and Mathematica  consists  of  the  following  steps,  where  the  program  that  is
invoked in each step is indicated in parentheses:

• enter input in the notebook (front end)

• send input to the kernel to be evaluated by pressing -  (front end)

• kernel does the computation and sends it back to the front end (kernel)

• result is displayed in the notebook (front end)

There  is  one  remaining  piece  that  we  have  not  yet  mentioned;  that  is MathLink.
Since  the  kernel  and  front  end are  two  separate  programs,  a  means  of  communication  is
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necessary for these two programs to “talk” to each other. That communication protocol is
called MathLink  and  it  comes  bundled  with Mathematica.  It  operates  behind  the  scenes,
completely transparent to the user.

MathLink is a very general communications protocol that is not limited to communi-
cation between the front end and the kernel, but can also be used to set up communication
between the front  end and other programs on your  computer,  programs like compiled  C
and Fortran code. It  can also be used to connect a kernel to a word processor  or spread-
sheet or many other programs.

MathLink  programming is  beyond the scope  of  this  book,  but  if  you  are interested,
there  are  several  books  and  articles  that  discuss  it  (see  the  References  at  the  end  of  this
book).

Errors

In the course of using and programming in Mathematica,  you will encounter various sorts
of  errors,  some obvious,  some very subtle,  some easily rectified, and others not.  We have
already mentioned that it is possible to send Mathematica into an infinite loop from which
it cannot return. In this section, we discuss those situations where Mathematica does finish
the computation, but without giving you the answer you expected.

Perhaps the most frequent error you will make is misspelling the name of a function.
Here is an illustration of the kind of thing that will usually happen in this case.

In[33]:= Sine 1.5

General::spell :

Possible spelling error: new symbol name "Sine" is

similar to existing symbols Line, Sin, Sinh . More…

Out[33]= Sine 1.5

Whenever you type a name that is close  to an existing name, Mathematica  will print a
warning message like the one above. You may often use such names intentionally, in which
case these messages can be annoying. In that case, it is best to turn off the warnings.

In[34]:= Off General::spell

Now, Mathematica  will  not  report  that  function  names  might  be  misspelled;  and,
when it cannot find a definition associated with a misspelled function, it returns your input
unevaluated.

In[35]:= Intergate x2, x

Out[35]= Intergate x2, x
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 You can turn these spell warnings back on by evaluating On[General::spell].

In[36]:= On General::spell

Having  your  original  expression  returned  unevaluated  –  as  if  this  were  perfectly
normal – is a problem you will often run into. Aside from misspelling a function name, or
simply using a function that does not exist, another case where this occurs is when you give
the  wrong number of  arguments  to  a  function,  especially  to  a  user-defined function.  For
example, the BowlingScore function takes a single list argument; if we accidentally leave
out the list braces, then we are actually giving BowlingScore 12 arguments.

In[37]:= BowlingScore 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

Out[37]= BowlingScore 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

Of  course,  some  kinds  of  inputs  cause  genuine  error  messages.  Syntax  errors,  as
shown above, are one example. The built-in functions are designed to usually warn you of
such errors in input. In the first example below, we have supplied the Log function with an
incorrect  number  of  arguments  (it  expects  one  or  two  arguments  only).  In  the  second
example, FactorInteger  operates  on  integers  only  and  so  the  real  number  argument
causes the error condition.

In[38]:= Log 2, 16, 3

Log::argt : Log called with 3

arguments; 1 or 2 arguments are expected. More…

Out[38]= Log 2, 16, 3

In[39]:= FactorInteger 12.5

FactorInteger::facn : Argument 12.5` in

FactorInteger 12.5 is not an exact number. More…

Out[39]= FactorInteger 12.5

Getting help

Mathematica  contains  a  vast  array  of  documentation  that  you  can  access  in  a  variety  of
ways. It is also designed so that you can create new documentation for your own functions
and  program in such  a  way that  users  of  your  programs can get  help in exactly  the same
way as they would for Mathematica’s built-in functions.

If you are aware of the name of a function but are unsure of its syntax or what it does,
the  easiest  way  to  find  out  about  it  is  to  evaluate ?function.  For  example,  here  is  the
usage message for ParametricPlot.
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In[40]:= ?ParametricPlot

ParametricPlot fx, fy , u, umin, umax produces a parametric

plot of a curve with x and y coordinates fx and fy generated

as a function of t. ParametricPlot fx, fy , gx, gy , ... ,

u, umin, umax plots several parametric curves. More…

Also, if you were not sure of the spelling of a command (Integrate, for example),
you could type the following to display all built-in functions that start with Integ.

In[41]:= ?Integ*

System`

Integer IntegerExponent IntegerQ Integrate

IntegerDigits IntegerPart Integers

Clicking  on  one  of  these  links  will  produce  a  short  usage  statement  about  that
function. For example, if you were to click on the Integrate link, here is what would be
displayed in your notebook.

Integrate f, x gives the indefinite integral of f with respect

to x. Integrate f, x, xmin, xmax gives the definite

integral of f with respect to x from xmin to xmax. Integrate

f, x, xmin, xmax , y, ymin, ymax gives a multiple

definite integral of f with respect to x and y. More…

Clicking the More…  hyperlink would take you directly to the Help Browser where a
much more detailed explanation of this function can be found.

You can also get help by highlighting any Mathematica  function and pressing the F1

key on your keyboard. This will take you directly into the documentation for that function
in the Help Browser.

The Help Browser

Mathematica  contains  a  very  useful  addition  to  the  help  system  called  the  Help  Browser.
The  Help  Browser  allows  you  to  search  for  functions  easily  and  it  provides  extensive
documentation and examples.

To start the Help Browser, select Help Browser… under the Help menu. You should
quickly see something like the following:
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Notice the eight category tabs near the top of the Help Browser window. Choosing
the  Add-ons  & Links  tab  will  give you  access  to  all  of  the packages  that  come with each
implementation  of Mathematica.  Similarly,  choosing  The Mathematica  Book  tab  will  give
you  access  to  the  entire Mathematica  book  that  ships  with  each  professional  version  of
Mathematica.

Suppose  you  were  looking  for  information  about  three-dimensional  parametric
graphics. First click the Built-in Functions tab, then select Graphics and Sound on the left,
then 3D Plots and finally ParametricPlot3D. The Help Browser should look like this:

Notice that in the main window, the Help Browser has displayed information about
the ParametricPlot3D  function. This is identical to the usage message you would get
if you entered ?ParametricPlot3D.
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Alternatively, you could have clicked the Master Index tab and searched for “Paramet-
ricPlot3D” or even simply “parametric” and then browsed through the index to find what
you were looking for.

Many  additional  features  are  available  in  the  Help  Browser  and  you  are  advised  to
consult your documentation for a complete list and description.

1 An introduction to Mathematica 29





2 The Mathematica language

Expressions  are  the  basic  building  blocks  from  which  everything  is  built.  Their
structure,  internal  representation,  and how they  are  evaluated are  essential  to under-
standing Mathematica.  In  this  chapter  we  focus  on  the Mathematica  language  with
particular  emphasis  on  the  structure  and  syntax  of  expressions.  We  will  also  look  at
how to define and name new expressions,  how to combine them using logical opera-
tors, and how to control properties of your expressions through the use of attributes.

2.1 Expressions

Introduction

Although it may appear different at first, everything that you will work with in Mathematica
has  a  similar  underlying  structure.  This  means  things  like  a  simple  computation,  a  data
object,  a  graphic,  the  cells  in  your Mathematica  notebook,  even  your  notebook  itself,  all
have  a  similar  structure  – they  are  all expressions,  and  an  understanding  of  expressions  is
essential to mastering Mathematica.

Internal forms of expressions

When doing a simple arithmetic operation such as 3 4 5, you are usually not concerned
with exactly how a system such as Mathematica actually performs the additions or multiplica-
tions.  Yet you will find it extremely useful to be able to see the internal representation of
such  expressions  as  this  will  allow  you  to  manipulate  them  in  a  consistent  and  powerful
manner.

Internally, Mathematica  groups  the  objects  that  it  operates  on  into  different  types:
integers are distinct from real numbers; lists are distinct from numbers. One of the reasons
that  it  is  useful  to  identify  these  different data  types  is  that  specialized  algorithms  can  be
used on certain classes of objects that will help to speed up the computations involved.



The Head  function  can  be  used  to  identify  types  of  objects.  For  numbers,  it  will
report  whether the number is  an integer, a rational  number, a real number, or a complex
number.

In[1]:= Head 7 , Head
1

7
, Head 7.0 , Head 7 2

Out[1]= Integer, Rational, Real, Complex

In fact, every Mathematica  expression has a Head  that gives some information about
that type of expression.

In[2]:= Head a b

Out[2]= Plus

In[3]:= Head 1, 2, 3, 4, 5

Out[3]= List

Atoms

The three basic building blocks of Mathematica  – the atoms – from which every expression
is ultimately constructed are, symbols, numbers, and strings.

A symbol  consists  of  a  letter followed without  interruption  by  letters  and numbers.
For example, both f and the built-in Integrate are symbols.

In[4]:= Head f

Out[4]= Symbol

In[5]:= Head Integrate

Out[5]= Symbol

In Mathematica, built-in constants all are Symbols.

In[6]:= Head , Head , Head EulerGamma

Out[6]= Symbol, Symbol, Symbol

Symbols can consist  of one or more concatenated characters so long as they do not begin
with a number.

In[7]:= Head myfunc

Out[7]= Symbol
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The four kinds of numbers –  integers, real numbers, complex numbers and rational
numbers – are shown in the list below.

In[8]:= Head 4 , Head
5

7
, Head 5.201 , Head 3 4

Out[8]= Integer, Rational, Real, Complex

A string is composed of characters and is enclosed in quotes. They will be discussed
in detail in Section 3.5.

In[9]:= Head "Mathematica"

Out[9]= String

The structure of expressions

As  mentioned  earlier,  everything  in Mathematica  is  an  expression.  Expressions  are  either
atomic,  as  described  in  the  previous  section,  or  they  are normal  expressions,  which  have  a
head  and  contain  zero  or  more  elements.  Normal  expressions  are  of  the  following form,
where h is the head of the expression and the ei  are the elements which may themselves be
atomic or normal expressions.

h e1, e2, …, en

Although  we  indicated  that  you  can  use Head  to  determine  the  type  of  atomic
expressions, this is entirely general. For normal expressions, Head simply gives the head of
that expression.

In[10]:= Head a b c

Out[10]= Plus

To see the full internal representation of an expression, use FullForm.

In[11]:= FullForm a b c

Out[11]//FullForm=

Plus a, b, c

In[12]:= FullForm a, b, c

Out[12]//FullForm=

List a, b, c

The important thing to notice is that both of these objects (the sum and the list) have
very  similar  internal  representations.  Each  is  made  up  of  a  function  (Plus  and List,
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respectively),  each encloses  its  arguments  in  square  brackets,  and  each separates  its  argu-
ments with commas.

Regardless of how an atomic or normal expression may appear in your notebook, its
structure  is  uniquely  determined  by  its  head  and  parts  as  seen using FullForm.  This  is
important for understanding the Mathematica evaluation mechanism which depends on the
matching of patterns based on their FullForm representation, a subject we will turn to in
detail in Chapter 6.

The number of elements in any expression is given by its length.

In[13]:= Length a b c

Out[13]= 3

Here is a more complicated expression.

In[14]:= expr Sin x a x2 b x c

Out[14]= c b x a x2 Sin x

Its  head  is Times  because  it  is  composed  of  the  product  of Sin[x]  and  the  quadratic
polynomial.

In[15]:= Head expr

Out[15]= Times

Its length is 2 since it only contains two factors.

In[16]:= Length expr

Out[16]= 2

Although the FullForm  of this expression is a little harder to decipher, if you look
carefully  you should  see that  it  is  composed of  the product  of Plus[c,Times[b,x],
Times[a,Power[x,2]]] and Sin[x].

In[17]:= FullForm expr

Out[17]//FullForm=

Times Plus c, Times b, x , Times a, Power x, 2 , Sin x

There  are  several  important  differences between atomic  expressions  and  nonatomic
expressions.  While the heads  of  all  expressions  are extracted in the same way –  using the
Head function – the head of an atom provides different information than the head of other
expressions. For example, the head of a symbol or string is the kind of atom that it is.

In[18]:= Head Integrate

Out[18]= Symbol
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In[19]:= Head "hello"

Out[19]= String

The head of a number is the specific kind of number that it is, its data type.

In[20]:= Head 2

Out[20]= Integer

In[21]:= Head 5.21

Out[21]= Real

The FullForm of an atom (except a complex or rational number) is the atom itself.

In[22]:= FullForm f

Out[22]//FullForm=

f

In[23]:= FullForm
5

7

Out[23]//FullForm=

Rational 5, 7

Atoms  have  no  parts  (which  of  course  is  why  they  are  called  atoms).  In  contrast,
nonatomic  expressions  do  have  parts.  To extract  different parts  of  an  expression,  use  the
Part function. For example, the first part of the expression a+b is a.

In[24]:= Part a b, 1

Out[24]= a

The second part is b.

In[25]:= Part a b, 2

Out[25]= b

This should be clearer from looking at the internal representation of this expression.

In[26]:= FullForm a b

Out[26]//FullForm=

Plus a, b

So Part[a+b,1]  is another way of asking for the first element of Plus[a,b], which is
just a. In general Part[expr,n] gives the nth element of expr.

2 The Mathematica language 35



It is worth noting that the 0th part is the Head of the expression.

In[27]:= Part a b, 0

Out[27]= Plus

As we stated above, atomic expressions have no parts.

In[28]:= Part "read my lips", 1

Part::partd : Part specification

read my lips 1 is longer than depth of object. More…

Out[28]= read my lips 1

This error message indicates that the string "read my lips" has no first part, since it is
atomic. The expression expr[[1]] is shorthand for Part[expr,1].

Similarly, complex numbers are atomic and hence have no parts.

In[29]:= 3 4 1

Part::partd : Part specification

3 4 1 is longer than depth of object. More…

Out[29]= 3 4 1

Because everything in Mathematica has the common structure of an expression, most
of the built-in functions that are used for list manipulation, such as Part, can also be used
to manipulate the arguments of any other kind of expression (except atoms).

In[30]:= Append w x y, z

Out[30]= w x y z

This  result  can  best  be  understood  by  looking  at  the FullForm  of  the  following  two
expressions.

In[31]:= FullForm w x y

Out[31]//FullForm=

Plus w, Times x, y

In[32]:= FullForm w x y z

Out[32]//FullForm=

Plus w, Times x, y , z

Appending z  to w+x y  is  equivalent  to  adding z  as  an  argument  to  the Plus  function.
More generally:

In[33]:= Append f a, b , c

Out[33]= f a, b, c
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Finally,  for  more  complicated  expressions,  you  might  find  it  useful  to  display  the
internal representation with the TreeForm  function, which shows the “tree structure” of
an  expression.  In  the  following  example,  the  root  node  of  the  tree  is Plus,  which  then
branches three times at c, bx, and at ax2, the latter two branching further.

In[34]:= TreeForm a x2 b x c

Out[34]//TreeForm=

Plus c,

Times b, x

,

Times a,
Power x, 2

Exercises

1. Give the full (internal) form of the expression a(b+c).

2. What is the traditional representation of Times[a,Power[Plus[b,c],-1]].

3. What do you expect to be the result of the following operations? Use the FullForm
of the expressions to understand what is going on.
a. ((x^2 + y) z/w) [[2, 1, 2]]

b. (a/b)[[2, 2]]

4. What is the part specification of the b in the expression a x^2 + b x + c?

2.2 Definitions

Defining variables and functions

One of  the  most  common tasks  in any  programming environment is  to  define functions,
constants,  and  procedures  to  perform various  tasks.  Sometimes  a  particular  function  that
you need is not part of the built-in set of functions. Other times, you may need to use an
expression  over  and  over  again  and  so  it  would  be  useful  to  define  it  once  and  have  it
available  for  future  reference.  Because  you  want  your  newly  defined  expressions  to  work
with  all  the  built-in  functions  seamlessly,  by  defining  your  own  functions  and  constants
you essentially expand the range of Mathematica’s capabilities.
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For example, you might define a constant a to have a certain numeric value.

In[1]:= a N 2

Out[1]= 6.28319

Then,  whenever a  is  used  in  a  subsequent  computation, Mathematica  will  find  a  rule
associated with a and will substitute that value wherever a occurs.

In[2]:= Cos a

Out[2]= 1.

To check what definitions are associated with a, use ?a.

In[3]:= ?a

Global`a

a 6.28319

To define a rule for a function f, enclose its arguments in square brackets and use x_
to indicate the variable that will be substituted for x on the right-hand side.

In[4]:= f x_
1

1 x

Out[4]=
1

1 x

The expression f[x_] on the left side of this assignment is a pattern. It indicates the class
of  expressions  for  which  this  definition  should  be  used.  We will  have much  more to  say
about  patterns  and  pattern matching  in Mathematica  in  Chapter  6,  but,  for  now,  it  is
enough to say that the pattern f[x_] matches f[any expression].

You can evaluate f  at different values by replacing x with the value you wish to use.
These values can be numeric, exact, or symbolic.

In[5]:= f .1

Out[5]= 0.909091

In[6]:= f 1

Out[6]=
1
2

In[7]:= f 2

Out[7]=
1

1 2
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We clear the symbols that are no longer needed.

In[8]:= Clear a, f

Immediate vs. delayed assignments

When you make an assignment to a variable, you are only interested in giving that variable
a  specific  value  and  then  using  the  variable  name  to  represent  that  value  in  subsequent
computations.  But  oftentimes,  when you  set  up  definitions  for  functions,  those  functions
may depend upon the values of previously defined functions or constants. In such instances
it  us  useful  to  delay  the  assignment  until  the  function  is  actually  used  in  a  computation.
This is the basic difference between immediate and delayed assignments.

An immediate assignment is written Set[lhs,rhs] or, more commonly:

lhs = rhs

where lhs is an abbreviation for “left-hand side” and rhs abbreviates “right-hand side”.
As an example, consider defining rand1  to be an immediate assignment that gener-

ates a uniformly distributed random number between 0 and 1.

In[9]:= rand1 Random

Out[9]= 0.668693

Notice that the output of this assignment is the value of the right-hand side and that
Mathematica evaluates the right-hand side immediately; that is, when the assignment is made.

A delayed assignment is set up with the SetDelayed  function and is written Set

Delayed[lhs,rhs] or, in its standard input form:

lhs := rhs

As an example, consider rand2 to be defined similarly to rand1, but with a delayed
assignment.

In[10]:= rand2 : Random

Notice  that  the delayed  assignment does  not  return a  value when the assignment is
made. In fact, the right-hand side will not be evaluated until the function rand2 is called.
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Let us call the function rand1 five times.

In[11]:= Table rand1, 5

Out[11]= 0.668693, 0.668693, 0.668693, 0.668693, 0.668693

Because the right-hand side of rand1 was evaluated when the definition was made, rand1
was assigned the value 0.668693. Each subsequent call to rand1 returns that value.

In[12]:= ?rand1

Global`rand1

rand1 0.668693

On the other hand, creating a table of values using rand2 produces a very different result.

In[13]:= Table rand2, 5

Out[13]= 0.8312, 0.781807, 0.124634, 0.934537, 0.600252

Each of the five times that rand2  is called in the Table, Mathematica  looks up the
definition of rand2 (which does not have a numeric value), and sees that it should evaluate
Random[]. It does this each time it is called, generating a new random number each time.

In[14]:= ?rand2

Global`rand2

rand2 : Random

When a SetDelayed  function is  entered, nothing is  returned. When a Set  func-
tion  is  entered,  the  value  resulting  from evaluating  the  right-hand  side  is  returned.  This
difference in output  is indicative of a more fundamental difference in what happens when
the two kinds  of  functions  are entered and rewrite rules  are thereby created.  To see this,
we need to look at the global rule base, wherein reside rewrite rules.

The global rule base

The  global  rule  base  is  composed  of  two  kinds  of  rewrite  rules:  the  built-in  functions,
which are part of every Mathematica  session, and the user-defined rewrite rules, which are
entered during a particular session.

We can get information about both kinds of rules in the global rule base by entering
?name.  In  the  case  of  a  built-in  function,  the  resulting  usage  message  gives  information
about the syntax for using the function and a brief statement explaining what the function
does.
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In[15]:= ? Apply

Apply f, expr or f expr replaces the head

of expr by f. Apply f, expr, levelspec replaces

heads in parts of expr specified by levelspec. More…

In  the  case  of  a  user-defined  rewrite  rule,  the  rule  itself  is  printed.  For  the  simple
examples  above,  the  crucial  difference  between  rewrite  rules  created  with  the SetDe

layed  and Set  functions  becomes  apparent  by  querying  the  rule  base  for  the  rewrite
rules associated with the symbols rand1 and rand2.

In[16]:= ?rand1

Global`rand1

rand1 0.668693

A  rewrite  rule  created  using  the Set  function  has  the  same  left-hand  side  as  the
function that created it but the right-hand side of the rule may differ from the right-hand
side  of  the  function.  This  is  because  the right-hand side  of  the  rule  was  evaluated  at  the
moment the rule was first evaluated.

In[17]:= ?rand2

Global`rand2

rand2 : Random

Comparing this  with the original SetDelayed  function, we see that  a rewrite rule
created  using  the SetDelayed  function  looks  exactly  like  the  function  that  created  it.
This is because both the left-hand side and right-hand side of a SetDelayed function are
placed in the rule base without being evaluated.

In view of this difference between the SetDelayed and Set functions, the question
is when should you use one or the other function to create a rewrite rule?

When you define a function, you usually do not want either the left-hand side or the
right-hand side to be evaluated; you just want to make it available for use when the appro-
priate function call is made. This is precisely what occurs when a SetDelayed function is
entered, so the SetDelayed function is commonly used in writing function definitions.

When you make a value declaration, you do not want the left-hand side to be evalu-
ated; you just want to make it a nickname to serve as a shorthand for a value. This is what
happens  when  a Set  function  is  entered  and  so  the Set  function  is  commonly  used  to
make value declarations, such as assigning a numeric value to a constant or variable.

A new rewrite rule overwrites, or replaces, an older rule with the same left-hand side.
However,  keep  in  mind  that  if  two  left-hand  sides  are  the  same  except  for  the  names  of
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their pattern variables, they are considered different by Mathematica. Clear[name] can be
used to remove a rewrite rule from the global rule base.

Piecewise-defined functions

You can set up several definitions for a function and Mathematica  will apply the definition
that applies. In the following example we give a piecewise-defined function g, whose values
depend upon whether x  is less than 0, between 0 and 1, or greater than 1. We specify the
conditions on x by means of the /; symbol.

In[18]:= g x_ : x3 ; x 0

In[19]:= g x_ : x ; 0 x 1

In[20]:= g x_ : Sin x ; x 1

In[21]:= Plot g x , x, 2, 3 ;

2 1 1 2 3

1.5

1

0.5

0.5

1

Defining the function above is  more  easily accomplished  using  the new (in  Version
5.1) Piecewise function as follows.

In[22]:= Piecewise x3, x 0 , x, 0 x 1 , Sin x , x 1

Out[22]=

x3 x 0
x 0 x 1

Sin x x 1

You  could  plot  this  expression  directly  or  define  a  function  with  this Piecewise
object on the right-hand side of your definition and then use that function like any other.
We will look at further uses of piecewise-defined objects in later chapters, in particular in
the chapter on procedural programming.
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Functions with multiple definitions

When you make an assignment, the symbol associated with the evaluation rule is called an
assignment  tag.  Assignment  tags  are  used  to  specify  the  structure  of  expressions.  So,  for
example, the expression {a,b,c}  is  represented internally by List[a,b,c].  Its assign-
ment tag  is List.  List  does not  really do anything except serve as a wrapper to specify
the structure of this expression. Similarly, the expression 1+2  is represented internally by
Plus[1,2]; its assignment tag is Plus.

Occasionally  you will  encounter  the Tag  expression when you try  to  evaluate some
incorrect input.

In[23]:= 1 2 4

Set::write : Tag Plus in 1 2 is Protected. More…

Out[23]= 4

For  user-defined functions,  the tag  basically  refers to  the name of  the function.  So,
for example, the following assignment associates the rule 1 x x2 with the tag f.

In[24]:= f x_ : 1 x x2

There  can  be  many evaluation  rules  associated  with  one  tag.  The  following assign-
ments all associate rules with the symbol f.

In[25]:= f x_, y_ : x y

In[26]:= f x_, y_, z_ :
1

x y z

To view all of the rules associated with f, use ?f.

In[27]:= ?f

Global`f

f x_ : 1 x x2

f x_, y_ : x y

f x_, y_, z_ : 1
x y z

The  advantages  of  this  structure  is  that  you  can  use  one  name  for  a  function  that  will
behave  differently  depending  upon  the  number  or  form  of  arguments  you  give  to  that
function. Using a different symbol for each of these tasks would require you and those who
use  your  programs  to  have  to  remember  multiple  function  names  when  one  might  be
sufficient.
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Let us clear symbols that are no longer needed.

In[28]:= Clear f, g

Exercises

1. What rewrite rules do each of the following functions create? Check your predictions 
by entering them and then querying the rule base.
a. randLis1[n_]:= Table[Random[], {n}]

b. randLis2[n_]:= (x=Random[]; Table[x, {n}])

c. randLis3[n_]:= (x:=Random[]; Table[x, {n}])

d. randLis4[n_] = Table[Random[], {n}]

2. Consider the two functions f and g, which are identical except that one is written
using an immediate assignment and the other using a delayed assignment.

In[1]:= f n_ Sum 1 x j, j, 1, n

Out[1]=
1 x 1 1 x n

x

In[2]:= g n_ : Sum 1 x j, j, 1, n

Explain why the output of these two functions look so different. Are they in fact 

different?

In[3]:= f 2

Out[3]=
1 x 1 1 x 2

x

In[4]:= g 2

Out[4]= 1 x 1 x 2

3. Create a piecewise-defined function g x  based on the following and then plot the
function from 2 to 0.

g x
1 x 2 2 2 x 1

1 x2 x 0
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2.3 Predicates and Boolean operations

Predicates

When working with data sets, you are often presented with the problem of extracting those
data points that meet certain criteria. Similarly, when you write programs, oftentimes what
to do next at any particular point in your program will depend upon some test or condition
being  met.  Every  programming  language  has  constructs  for  testing  data  or  conditions.
Some of the most useful such constructs are called predicates. A predicate is a function that
returns  a  value  of  true  or  false  depending  upon  whether  its  argument  passes  a  test.  For
example, the predicate PrimeQ tests for the primality of its argument.

In[1]:= PrimeQ 144

Out[1]= False

Other predicates are available for testing numbers to see whether they are even, odd,
integral, and so on.

In[2]:= OddQ[21]

Out[2]= True

In[3]:= EvenQ[21]

Out[3]= False

In[4]:= IntegerQ[5/9]

Out[4]= False

The NumericQ  predicate  tests  whether its  argument  is  a  numeric quantity.  Essen-
tially, NumericQ[x] gives True whenever N[x] evaluates to an explicit number.

In[5]:= NumericQ

Out[5]= True

In[6]:= NumericQ

Out[6]= False

This is  distinct  from a related function, NumberQ,  which evaluates to True  whenever its
argument  is  an  explicit  number  (that  is,  has  head  one  of Integer,  Rational,  Real,
Complex).
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In[7]:= NumberQ 3.2

Out[7]= True

In[8]:= NumberQ

Out[8]= False

Many  other  predicates  are  available  for  testing  if  an  expression  is  an  atom,  a  list,  a
matrix, a polynomial, and much more.

In[9]:= AtomQ "string"

Out[9]= True

In[10]:= ListQ a, b, c

Out[10]= True

In[11]:= MatrixQ

1 0 0
0 1 0
0 0 1

Out[11]= True

In[12]:= PolynomialQ
1

x

1

x2

1

x3
, x

Out[12]= False

In[13]:= IntervalMemberQ Interval 3, 4 ,

Out[13]= True

Relational and logical operators

Another type of predicate that is commonly used in programming are relational operators.
These are used to compare two or more expressions and return a value of True or False.
The  relational  operators  in Mathematica  are Equal  ( ), Unequal  ( ), Greater  (>),
Less  (<), GreaterEqual( ), and LessEqual  ( ). They can be used to compare num-
bers or arbitrary expressions.

In[14]:= 7 5

Out[14]= False
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In[15]:= Equal 3, 7 4,
6

2

Out[15]= True

In[16]:= x2 1
x4 1

x2 1
Simplify

Out[16]= True

Note that  the relational operators  have lower precedence than arithmetic operators.
The  second  example  above  is  interpreted  as 3 (7-4)  and  not  as (3 7)-4.  Table  2.1
lists the relational operators and their various input forms.

StandardForm Functional form Meaning
x y Equal x, y equal
x y Unequal x, y unequal
x y Greater x, y greater than
x y Less x, y less than
x y GreaterEqual x, y greater than or equal
x y LessEqual x, y less than or equal

Table 2.1: Relational operators

The logical  operators  (sometimes known as Boolean operators)  determine the truth
of  an  expression  based  on  Boolean  arithmetic.  For  example,  the  conjunction  of  two  true
statements is always true.

In[17]:= 4 5 && 8 1

Out[17]= True

The Boolean operation “and” is represented in Mathematica  by And, with shorthand
notation &&  or .  Here is  a  table  that  gives  all  the  possible  values  for  the And  operator.
(The function TruthTable is developed in Chapter 10.)

In[18]:= TruthTable A B, A, B

Out[18]//DisplayForm=

A B A B

T T T
T F F
F T F

F F F
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The logical “or” operator, represented by Or and with shorthand notation || (or ),
is true when either of its arguments is true.

In[19]:= 4 3 3
6

2

Out[19]= True

In[20]:= 0 0.0001
22

7

Out[20]= False

Note  the  difference  between  this  Boolean  “or”  and  the  common  notion  of  “or.”  A
phrase such as,  “It  is  cold or it  is  hot,” uses the word “or” in an exclusive  sense; that  is, it
excludes the possibility that it is both  cold and hot. The logical Or is inclusive in the sense
that if A and B are both true, then A||B is also true.

In[21]:= True True

Out[21]= True

Mathematica also contains an operator for the exclusive or, Xor.

In[22]:= Xor True, True

Out[22]= False

In[23]:= Xor True, False

Out[23]= True

Table 2.2 shows the logical operators and their input forms.

StandardForm Functional form Meaning
x Not x not

x y Unequal x, y unequal
x && y And x, y and
x y Or x, y or
x y && x && y Xor x, y exclusive or

Table 2.2: Logical operators

Introduced  in  Version  4  of Mathematica  are  the bitwise  logical operators.  These  func-
tions operate on integers as binary bits. For example, BitOr[x,y] gives the integer whose
binary  representation has  1s  wherever the binary  representation of x  or y  has  1s.  Here is
the bitwise OR of 21 and 19, given in binary form.
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In[24]:= BaseForm BitOr 2^^10101, 2^^10011 , 2

Out[24]//BaseForm=

101112

Similarly, BitXor[x,y]  gives  the  integer  with  1s  at  positions  where  either x  or y
have 1s, but not both.

In[25]:= BaseForm BitXor 2^^10101, 2^^10011 , 2

Out[25]//BaseForm=

1102

Functional form Meaning

BitAnd x, y bitwise AND of x and y

BitOr x, y bitwise OR of x and y

BitNot x bitwise NOT of x

BitXor x, y bitwise XOR of x and y

Table 2.3: Bitwise operators

In  Chapter  4  we  will  look  at  an  application  of  bitwise  operators  to  an  example
involving error-correcting codes: the computation of Hamming distance.

Exercises

1. Create a predicate function that returns a value of True if its argument is between
1 and 1.

2. Write a predicate function NaturalQ[n] that returns a value of True if n is a
natural number and False otherwise; that is, NaturalQ[n] is True if n is among
0, 1, 2, 3, ….

3. Create a predicate function SubsetQ[lis1, lis2] that returns a value of True if lis1 is 
a subset of lis2. Remember: the empty set {}, is a subset of every set.
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2.4 Attributes
All functions in Mathematica  have certain properties, called attributes. These attributes can
make a function commutative or associative, or they may give the function the ability to be
threaded  over  a  list.  The attributes  of  any  function  are  displayed  with  the Attributes

function.

In[1]:= Attributes Plus

Out[1]= Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected

The Flat  attribute  indicates  that this  function (Plus)  is  associative.  That is,  given
three elements to add, it does not matter which two are added first. In mathematics, this is
known as associativity  and is written as a b c a b c. In Mathematica  this could be
indicated  by  saying  that  the  two  expressions Plus[a,  Plus[b,  c]]  and Plus[

Plus[a, b], c] are equivalent to the flattened form Plus[a, b, c]. When Mathe-
matica knows that a function has the attribute Flat, it writes it in flattened form.

In[2]:= Plus Plus a, b , c

Out[2]= a b c

The Orderless  attribute  indicates  that  the  function  is  commutative;  that  is,
a b b a. This allows Mathematica to write such an expression in an order that is useful
for computation. It does this by sorting the elements into a canonical order. For expressions
consisting of letters and words, this ordering is alphabetic.

In[3]:= t h i n

Out[3]= h i n t

Sometimes a canonical order is readily apparent.

In[4]:= x3 x5 x4 x2 1 x

Out[4]= 1 x x2 x3 x4 x5

Other times, it is not so apparent.

In[5]:= x3 y2 y7 x5 y x4 y9 x2 1 x

Out[5]= 1 x x4 y x3 y2 x5 y7 x2 y9

When a symbol has the attribute Protected, the user is prevented from modifying
the function in any significant way. All built-in operations have this attribute.

Functions with the attribute OneIdentity have the property that repeated applica-
tion of the function to the same argument will have no effect. For example, the expression
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Plus[Plus[a,  b]]  is  equivalent  to Plus[a,  b],  hence  only  one  addition  is
performed.

In[6]:= FullForm Plus Plus a b

Out[6]//FullForm=

Plus a, b

The other  attributes  for  the Plus  function,  (Listable  and NumericFunction)
will be discussed in later chapters. Consult the manual (Wolfram 2003) for a complete list
of the Attributes that symbols can have.

Although it is unusual to want to alter the attributes of a built-in function, it is fairly
common to change the default attributes of a user-defined function. For example, suppose
you  had  a  function  which  you  wanted  to  inherit  the Orderless  attribute.  Without
explicitly setting that attribute, the function does not reorder its arguments.

In[7]:= f x, a, m

Out[7]= f x, a, m

The SetAttributes  function  is  used  to  change the attributes  of  a  function.  Explicitly
setting f to have the Orderless attribute causes its arguments to be automatically sorted.

In[8]:= SetAttributes f, Orderless

In[9]:= f x, a, m

Out[9]= f a, m, x

We will see a practical use of SetAttributes in Section 5.3.
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3 Lists

The  list  is  the  fundamental  data  structure  used  in Mathematica  to  group  objects
together.  A  very  extensive  set  of  built-in  functions  is  provided  by Mathematica  to
manipulate lists  in a variety of ways, ranging from simple operations, such as moving
list elements around, to more sophisticated operations, such as applying a function to a
list.  We  also  discuss  working  with  strings,  as  their  structure  and  manipulation  is  so
similar to lists.

3.1 Introduction
Many  computations  involve  working  with  a  collection  of  objects.  For  example,  abstract
mathematics  deals  with  operations  on  arbitrary  sets,  represented  notationally,  but  also
conceptually, as lists.

In[1]:= a, b, c c, d, e

Out[1]= a, b, c, d, e

In[2]:= a, b, c c, d, e

Out[2]= c

Data,  in Mathematica,  is  represented  using  lists.  A  large  collection  of  functions  is
available for manipulating and analyzing lists of data. For example, you can sort any set of
data.

In[3]:= Sort 4, 16, 1, 77, 23

Out[3]= 1, 4, 16, 23, 77

You  can  extract  elements  of  a  dataset  based  on  some criteria.  Here we select  those
numbers from a list that are greater than 0.

In[4]:= Select 4.9239, 1.24441, 0.80388, 3.27761 , Positive

Out[4]= 4.9239, 3.27761

Working  with  such  collections  of  objects  requires  that  the  objects  (also  called data
objects) be gathered together in some way. There are a variety of structures that can be used



to store data objects in a computer. The most often used data structure in Mathematica  is
the list. This is created using the built-in List function which has the standard input form
of a sequence of arguments separated by commas and enclosed in braces.

arg1, arg2, …, argn

Lists  are  used  throughout Mathematica,  not  only  to  represent  a  collection  of  data
elements, but also to delineate a range of values for some variable or iterator. For example,
the second argument to the Table function is a list that specifies the iterator variable and
the values that it should range over.

In[5]:= Table i2, i, 1, 5

Out[5]= 1, 4, 9, 16, 25

Similarly,  the  plotting  functions  use  lists  to  specify  the  range over  which a  variable
should be evaluated.

In[6]:= Plot Sin x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1

Internally, lists are stored in the functional form using the List function with some
arbitrary number of arguments.

List arg1, arg2, …, argn

For  example,  using FullForm  we  can  view  the  internal  representation  of  the  list
{a,b,c}.

In[7]:= FullForm a, b, c

Out[7]//FullForm=

List a, b, c

54 An Introduction to Programming with Mathematica



The arguments of the List function (the list elements) can be any type of expression,
including numbers, symbols, functions, character strings, and even other lists.

In[8]:= 2.4, f, Sin, "ossifrage", 5, 3 , ,

Out[8]= 2.4, f, Sin, ossifrage, 5, 3 , ,

Elements  in  lists  can  be  rearranged,  sorted,  removed,  new  elements  added,  and
operations  performed  on  select  elements  or  on  the  list  as  a  whole.  In  fact,  lists  are  such
general objects in Mathematica that they can be used to represent a vast array of objects.

In  this  chapter,  we  will  demonstrate  the  use  of  built-in Mathematica  functions  to
manipulate  lists  in  various  ways.  In  cases  where  the  operation  of  a  function  is  relatively
straightforward, we will simply demonstrate its  use without explanation (the on-line Help
system  and  the The  Mathematica  Book  (Wolfram  2003)  should  be  consulted  for  more
detailed explanations of all of the built-in functions). The underlying message here is that
almost  anything  you  might  wish  to  do  to  a  list  can  be  accomplished  using  built-in  func-
tions. It is important to have as firm a handle on these functions as possible, since a key to
good,  efficient  programming  in Mathematica  is  to  use  the  built-in  functions  whenever
possible to manipulate list structures.

3.2 Creating and measuring lists

List construction

In addition to using the List  function to collect  data  objects, you can also generate lists
from scratch by creating the objects and then placing them in a list.

Range[imin,imax,  di]  generates  a  list  of  ordered  numbers  starting  from imin  and
going up to, but not exceeding, imax in increments of di.

In[1]:= Range 4, 7, 3

Out[1]= 4, 1, 2, 5

If di is not specified, a value of one is used.

In[2]:= Range 4, 8

Out[2]= 4, 5, 6, 7, 8
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If neither imin nor di is specified, then both are given the value of 1.

In[3]:= Range 4

Out[3]= 1, 2, 3, 4

It is not necessary for imin, imax, or di to be integers.

In[4]:= Range 1.5, 6.3, .75

Out[4]= 1.5, 2.25, 3., 3.75, 4.5, 5.25, 6.

Table[expr,{i,imin,imax,di}]  generates  a  list  by  evaluating expr  a  number  of
times.

In[5]:= Table 3 k, k, 1, 10, 2

Out[5]= 3, 9, 15, 21, 27

The first argument, 3k in the above example, is the expression that is evaluated to produce
the elements in the list. The second argument to the Table function, {i,imin,imax,di},
is called the iterator. It is a list that specifies the number of times the expression is evaluated
and hence the number of elements in the list. The iterator variable may or may not appear
in the expression being evaluated. The value imin is the value of i used in the expression to
create the first list element. The value di is the incremental increase in the value of i used in
the expression to create additional list elements. The value imax is the maximum value of i
used  in the expression to create the last  list  element (if  incrementing i  by di  gives a value
greater than imax, that value is not used).

In[6]:= Table i, i, 1.5, 6.3, .75

Out[6]= 1.5, 2.25, 3., 3.75, 4.5, 5.25, 6.

Table[i,{i,imin,imax,di}]  is  equivalent  to Range[imin,imax,di].  As  with  the
Range function, the arguments to Table can be simplified when the iterator increment is
one.

In[7]:= Table 3 i, i, 2, 5

Out[7]= 6, 9, 12, 15

Similarly, both imin and di can be omitted and are then assumed to be 1.

In[8]:= Table i2, i, 4

Out[8]= 1, 4, 9, 16
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If the iterator variable does not appear in the expression being evaluated, it may be omitted
as well. The expression will then simply be evaluated that many times.

In[9]:= Table Random , 3

Out[9]= 0.155408, 0.0408563, 0.62081

The  expression  that  the Table  function  evaluates  can  be  completely  arbitrary.  In  the
following computation, it is used to create tables of formulas.

In[10]:= Table Expand 1 i , i, 1, 3

Out[10]= 1 , 1 2 2, 1 3 3 2 3

Table  can be used  to create a nested  list;  that  is,  a  list  containing other  lists  as  ele-
ments. This can be done by using additional iterators.

In[11]:= Table i j, j, 1, 4 , i, 1, 3

Out[11]= 2, 3, 4 , 3, 4, 5 , 4, 5, 6 , 5, 6, 7

When there is more than one iterator, their order of appearance is important, because the
value of the outer iterator is varied for each value of the inner iterator In the above exam-
ple, for each value of j (the inner iterator), i was varied from 1 to 3, producing a three-ele-
ment list for each of the four values of j. If you reverse the iterator order, you will get an
entirely different list.

In[12]:= Table i j, i, 1, 3 , j, 1, 4

Out[12]= 2, 3, 4, 5 , 3, 4, 5, 6 , 4, 5, 6, 7

You will often find it useful to display nested lists in a matrix or tabular form.

In[13]:= Table i j, i, 1, 4 , j, 1, 3 TableForm

Out[13]//TableForm=
2 3 4

3 4 5
4 5 6
5 6 7

In[14]:= Table i j, i, 1, 4 , j, 1, 3 MatrixForm

Out[14]//MatrixForm=
2 3 4
3 4 5
4 5 6
5 6 7
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The value of  the outer  iterator may depend on the value of  the inner iterator, which can
result in a nonrectangular list.

In[15]:= Table i j, i, 1, 3 , j, 1, i

Out[15]= 2 , 3, 4 , 4, 5, 6

In[16]:= TableForm %

Out[16]//TableForm=
2
3 4
4 5 6

However, the inner iterator may not depend on the outer iterator because, as we have seen,
the inner iterator is fixed as the outer one varies.

In[17]:= Table i j, i, 1, j , j, 1, 3

Table::iterb :

Iterator i, 1, j does not have appropriate bounds. More…

Out[17]= Table i j, i, 1, j , j, 1, 3

Measuring lists

Recall from Chapter 2 that Length[expr] is used to give the number of elements in expr.
For a simple unnested (linear) list, the Length function tells us how many elements are in
the list.

In[18]:= Length a, b, c, d, e, f

Out[18]= 6

In a nested list, each inner list is an element of the outer list. Therefore, the Length
of a nested list indicates the number of inner lists, and not their sizes.

In[19]:= Length 1, 2 , 3, 4 , 5, 6 , a, b , c, d , e, f

Out[19]= 2

To find out more about the inner lists, use the Dimensions function.

In[20]:= Dimensions 1, 2 , 3, 4 , 5, 6 , a, b , c, d , e, f

Out[20]= 2, 3, 2

This  indicates  that  there  are  two  inner  lists,  that  each  inner  list  contains  three  lists,  and
that the innermost lists each have two elements. MatrixForm  may help to see the struc-
ture better.
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In[21]:= MatrixForm 1, 2 , 3, 4 , 5, 6 , a, b , c, d , e, f

Out[21]//MatrixForm=
1
2

3
4

5

6

a
b

c
d

e
f

The number of dimensions of a (possibly nested) list, is given by ArrayDepth.

In[22]:= ArrayDepth 1, 2 , 3, 4 , 5, 6 , a, b , c, d , e, f

Out[22]= 3

This is identical to the number of levels in that expression, as displayed by TreeForm.

In[23]:= TreeForm a, b, c

Out[23]//TreeForm=

List a,

List b,

List c

Exercises

1. Generate the list {{0},{0,2},{0,2,4},{0,2,4,6},{0,2,4,6,8}} in two 
different ways using the Table function.

2. A table containing ten random 1s and 0s can easily be created using Table[
Random[Integer],{10}]. Create a ten-element list of random 1s, 0s and 1s.

3. Create a ten-element list of random 1s and 1s. This table can be viewed as a list of 
the steps taken in a random walk along the x-axis, where a step can be taken in either
the positive x direction (corresponding to 1) or the negative x direction
(corresponding to 1) with equal likelihood. 
The random walk in one, two, three (and even higher) dimensions is used in science
and engineering to represent phenomena that are probabilistic in nature. We will use
a variety of random walk models throughout this book to illustrate specific program-
ming points. 

4. From a mathematical point of view, a list can be viewed as a vector and a nested list 
containing inner lists of equal length can be viewed as a matrix (or an array). Mathe-
matica has another built-in function Array which creates lists. We can use an
undefined function f to see how Array works.
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In[1]:= Array f, 5

Out[1]= f 1 , f 2 , f 3 , f 4 , f 5

In[2]:= Array f, 3, 4

Out[2]= f 1, 1 , f 1, 2 , f 1, 3 , f 1, 4 ,

f 2, 1 , f 2, 2 , f 2, 3 , f 2, 4 ,

f 3, 1 , f 3, 2 , f 3, 3 , f 3, 4

Generate both of these lists using the Table function.

5. Predict the dimensions of the list {{{1,a},{4,d}},{{2,b},{3,c}}}. Use the
Dimensions function to check your answer.

3.3 Manipulating lists

Testing a list

The  locations  of  specific  elements  in  a  list  can  be  determined  using  the Position

function.

In[1]:= Position 5, 7, 5, 2, 1, 4 , 5

Out[1]= 1 , 3

This  result  indicates  that  the number 5  occurs  in  the first  and  third  positions  in  the list.
The extra braces are used to avoid confusion with the case when elements are nested within
a list.

In[2]:= Position a, b, c , d, e, f , f

Out[2]= 2, 3

The expression f occurs once, in the third position within the second inner list.
There is also a function that picks out the elements in a list that return True when a

predicate is applied to them. For example, this finds all of the even numbers in a list.

In[3]:= Select 1, 4, 1, 5, 9, 2 , EvenQ

Out[3]= 4, 2

Other functions exist to select or count the number of elements in a list that match a
certain pattern. We will look at these in detail in Chapter 6.
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Extracting elements

Elements can easily be extracted from a specific location in a list. For example, this extracts
the third element in the list vec.

In[4]:= vec 2, 3, 7, 8, 1, 4 ;

In[5]:= Part vec, 3

Out[5]= 7

The Part function can be abbreviated using a standard input form.

In[6]:= vec 3

Out[6]= 7

If  you  are  interested  in  the  elements  from more than  one  location,  you  can  extract
them using a list. For example, this picks out the second and fourth elements of vec.

In[7]:= vec 2, 4

Out[7]= 3, 8

For multi-dimensional  lists,  you have to specify both the sublist  and the position of
the element in that sublist that you are interested in.

 Here is a sample 3 3 matrix that we will work with.

In[8]:= mat Table ai,j, i, 3 , j, 3 MatrixForm

Out[8]//MatrixForm=
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

This picks out the first part of the second sublist.

In[9]:= mat 2, 1

Out[9]= a2,1

For multi-dimensional lists, several options are available to extract subsections of the
list. A common operation involves extracting rows or columns from a matrix.

This extracts the entire second column of mat.

In[10]:= mat All, 2 MatrixForm

Out[10]//MatrixForm=
a1,2
a2,2
a3,2
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And here is the third row of this matrix.

In[11]:= mat 3, All

Out[11]= a3,1, a3,2, a3,3

If you only specify one argument, the second is assumed to be All.

In[12]:= mat 3

Out[12]= a3,1, a3,2, a3,3

In addition to being able to extract elements from specific locations in a list, you can
extract consecutively placed elements within the list. You can take elements from either the
front or the back of a list.

In[13]:= Take 1, 4, 1, 5, 9, 2 , 2

Out[13]= 1, 4

In[14]:= Take 1, 4, 1, 5, 9, 2 , 2

Out[14]= 9, 2

If  you  take  consecutive  elements  from a list  other than from the front  and the back,  you
need  to  remember  that  the  numbering  of  positions  is  different  front-to-back  and
back-to-front.

In[15]:= Take 1, 4, 1, 5, 9, 2 , 2, 4

Out[15]= 4, 1, 5

In[16]:= Take 1, 4, 1, 5, 9, 2 , 5, 3

Out[16]= 4, 1, 5

You can mix both positive and negative indices.

In[17]:= Take 1, 4, 1, 5, 9, 2 , 5, 4

Out[17]= 4, 1, 5

You  can  also  take  elements  in  steps.  This  takes  the  first  through  sixth  element  in  incre-
ments of 2; that is, it takes every other element.

In[18]:= Take 1, 4, 1, 5, 9, 2 , 1, 6, 2

Out[18]= 1, 1, 9
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You  can  discard  elements  from  a  list,  keeping  the  rest.  Elements  can  be  removed
from either end of the list or from consecutive locations.

In[19]:= Drop 1, 4, 1, 5, 9, 2 , 2

Out[19]= 1, 5, 9, 2

In[20]:= Drop 1, 4, 1, 5, 9, 2 , 1

Out[20]= 1, 4, 1, 5, 9

In[21]:= Drop 1, 4, 1, 5, 9, 2 , 3, 5

Out[21]= 1, 4, 2

You can remove elements at specific locations as well.

In[22]:= Delete 1, 4, 1, 5, 9, 2 , 1

Out[22]= 4, 1, 5, 9, 2

In[23]:= Delete 1, 4, 1, 5, 9, 2 , 3 , 4

Out[23]= 1, 4, 9, 2

Certain extractions are used so often that they are given their own functions.

In[24]:= First 1, 4, 1, 5, 9, 2

Out[24]= 1

In[25]:= Last 1, 4, 1, 5, 9, 2

Out[25]= 2

In[26]:= Rest 1, 4, 1, 5, 9, 2

Out[26]= 4, 1, 5, 9, 2

Rearranging lists

Every list can be sorted into a canonical order. For lists of numbers or letters, this ordering
is usually obvious.

In[27]:= Sort 3, 1.7, , 4,
22

7

Out[27]= 4, 1.7, 3,
22
7

,

Mathematica uses the following canonical orderings: numbers are ordered by numeri-
cal  value,  with  complex  numbers  first  ordered  by  real  part  and then by  absolute  value  of
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the  imaginary  part;  symbols  and  strings  are  ordered  alphabetically,  powers  and  products
are  ordered  in  a  manner  corresponding  to  the  terms  in  a  polynomial;  expressions  are
ordered depth-first with shorter expressions coming first.

You can also sort lists according to an ordering function that you can specify.

In[28]:= Sort 3, 1.7, , 4,
22

7
, Greater

Out[28]=
22
7

, , 3, 1.7, 4

When applied to a nested list, Sort  will use the first  element of each nested list  to
determine the order.

In[29]:= Sort 2, c , 7, 9 , e, f, g , 1, 4.5 , x, y, z

Out[29]= 1, 4.5 , 2, c , 7, 9 , e, f, g , x, y, z

The order of the elements in a list can be reversed.

In[30]:= Reverse 1, 2, 3, 4, 5

Out[30]= 5, 4, 3, 2, 1

All of the elements can be rotated a specified number of positions to the right or the
left.  By default RotateLeft  (and RotateRight)  shifts  the list  one position  to the left
(right).

In[31]:= RotateLeft 1, 2, 3, 4, 5

Out[31]= 2, 3, 4, 5, 1

This rotates every element two positions to the right.

In[32]:= RotateRight 1, 2, 3, 4, 5 , 2

Out[32]= 4, 5, 1, 2, 3

Partition  rearranges  list  elements  to  form  a  nested  list.  It  may  use  all  of  the
elements and simply divvy up a list. Here we partition the list into nonoverlapping sublists
of length two.

In[33]:= Partition 1, 4, 1, 5, 9, 2 , 2

Out[33]= 1, 4 , 1, 5 , 9, 2

You might be interested in only using some of the elements from a list. For example,
this  takes  one-element  sublists,  with  an  offset  of  two;  that  is,  every  other  one-element
sublist.

64 An Introduction to Programming with Mathematica



In[34]:= Partition 1, 4, 1, 5, 9, 2 , 1, 2

Out[34]= 1 , 1 , 9

You can also create overlapping inner lists, consisting of ordered pairs (two-element
sublists) whose second element is the first element of the next ordered pair.

In[35]:= Partition 1, 4, 1, 5, 9, 2 , 2, 1

Out[35]= 1, 4 , 4, 1 , 1, 5 , 5, 9 , 9, 2

The Transpose function pairs off the corresponding elements of the inner lists. Its
argument is a single list consisting of nested lists.

In[36]:= Transpose 1, 2, 3, 4 , a, b, c, d

Out[36]= 1, a , 2, b , 3, c , 4, d

In[37]:= Transpose 1, 2, 3, 4 , a, b, c, d , i, ii, iii, iv

Out[37]= 1, a, i , 2, b, ii , 3, c, iii , 4, d, iv

For  rectangular  lists,  you  might  think  of Transpose  as  exchanging  the  rows  and
columns of the corresponding matrix.

Elements can be added to the front, the back, or to any specified position in a given
list.

In[38]:= Append 1, 2, 3, 4 , 5

Out[38]= 1, 2, 3, 4, 5

In[39]:= Prepend 1, 2, 3, 4 , 5

Out[39]= 5, 1, 2, 3, 4

In[40]:= Insert 1, 2, 3, 4 , 5, 3

Out[40]= 1, 2, 5, 3, 4

Elements at  specific locations  in a list  can be replaced with other elements. Here, 5
replaces the element in the second position of the list.

In[41]:= ReplacePart a, b, c, d, e , 5, 2

Out[41]= a, 5, c, d, e

You  can  flatten  a  nested  list  to  various  extents.  You  can  remove  all  of  the  inner
braces, creating a linear list of elements.

In[42]:= Flatten 3, 1 , 2, 4 , 5, 3 , 7, 4

Out[42]= 3, 1, 2, 4, 5, 3, 7, 4
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You  can  limit  the  degree  of  flattening,  removing  only  some  of  the  inner  lists.  For
example, two inner lists, each having two ordered pairs, can be turned into a single list of
four ordered pairs by only flattening down one level deep.

In[43]:= Flatten 3, 1 , 2, 4 , 5, 3 , 7, 4 , 1

Out[43]= 3, 1 , 2, 4 , 5, 3 , 7, 4

List component assignment

The capability  to alter elements of lists  merits detailed consideration.  The general syntax
for modifying a list is:

name[[integer-valued-expression]] = expr

The name must be the name of a list. The integer-valued-expression  must evaluate to a
legal subscript, that is a number whose absolute value is less than or equal to the length of
the list.  The assignment returns the value of expr  (as  assignments always  do),  but  has the
effect of changing the list to which name is bound.

Here is a list with five elements.

In[44]:= L 0, 1, 2, 3, 4

Out[44]= 0, 1, 2, 3, 4

This replaces the value of the first element of L with the value 10.

In[45]:= L 1 10

Out[45]= 10

We see now that L has changed.

In[46]:= L

Out[46]= 10, 1, 2, 3, 4

Components of nested lists can be modified as well.

name expr1, expr2]] = expr

expr1  and expr2  are expressions that  must evaluate to integers. expr1  chooses the sublist  of
name, and expr2 the element of that sublist.
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Here is a 2 3 nested list.

In[47]:= A 1, 2, 3 , 4, 5, 6

Out[47]= 1, 2, 3 , 4, 5, 6

This assigns the third element in the second sublist the value 20.

In[48]:= A 2, 3 20

Out[48]= 20

In[49]:= A

Out[49]= 1, 2, 3 , 4, 5, 20

However,  note  that  assigning  one  array  name  to  another  one  makes  a  copy  of  the
first. In this way, component assignments to either one will not affect the other.

In[50]:= B A

Out[50]= 1, 2, 3 , 4, 5, 20

In[51]:= B 1, 2 30

Out[51]= 30

In[52]:= B

Out[52]= 1, 30, 3 , 4, 5, 20

In[53]:= A

Out[53]= 1, 2, 3 , 4, 5, 20

In[54]:= A 2, 1 40

Out[54]= 40

In[55]:= B

Out[55]= 1, 30, 3 , 4, 5, 20

This  behavior  is  in distinction  to  languages  such as  C where aliasing can  allow one
list  to point  to another; with pointers, changing one array will have an affect on any array
that points to it.
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Exercises

1. Predict where the 9s are located in the following list.

2, 1, 10 , 9, 5, 7 , 2, 10, 4 , 10, 1, 9 , 6, 1, 6

Confirm your prediction using Position.

2. Given a list of x, y  data points

x1, y1 , x2, y2 , x3, y3 , x4, y4 , x5, y5

separate the x and y components to get:

x1, x2, x3, x4, x5 , y1, y2, y3, y4, y5

3. Consider a two-dimensional random walk on a square lattice. (A square lattice can be
envisioned as a two-dimensional grid, just like the lines on graph paper.) Each step
can be in one of four directions: 1, 0 , 0, 1 , 1, 0 , 0, 1 , corresponding to
steps in the east, north, west and south directions, respectively. Use the list 
{{1,0},{0,1},{-1,0},{0,-1}} to create a list of the steps of a ten-step
random walk.

4. In three steps, make a list of the elements in even-numbered locations in the list 
{a,b,c,d,e,f,g}.

5. Suppose you are given a list S of length n, and a list P containing n different numbers 
between 1 and n (that is, P is a permutation of Range[n]). Compute the list T such 
that for all k between 1 and n, T[[k]]=S[[P[[k]]]]. For example, if
S={a,b,c,d} and P={3,2,4,1}, then T={c,b,d,a}.

6. Given the lists S and P in the previous exercise, compute the list U such that for all k
between 1 and n, U[[P[[k]]]] = S[[k]] (that is, S[[i]] takes the value from
position P[[i]] in U). Thus, for S={a,b,c,d} and P={3,2,4,1}, 
U={d,b,a,c}. Think of it as moving S[[1]] to position P[[1]], S[[2]] to
position P[[2]], and so on. Hint: Start by pairing the elements of P with the
elements of S.
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3.4 Working with several lists
A  number  of  the  functions  described  earlier  in  this  chapter,  such  as Transpose,  work
with several  lists  if  they are inside a nested list  structure.  We can also  work directly with
multiple lists.

Join concatenates two lists.

In[1]:= Join 2, 5, 7, 3 , d, a, e, j

Out[1]= 2, 5, 7, 3, d, a, e, j

Here is the union of these two lists.

In[2]:= 4, 1, 2 5, 1, 2

Out[2]= 1, 2, 4, 5

In[3]:= Union 4, 1, 2 , 5, 1, 2

Out[3]= 1, 2, 4, 5

When the Union function is used either on a single list or a number of lists, a list is
formed consisting  of  the original  elements  in  canonical  order  with all  duplicate  elements
removed. The Complement  function gives all those elements in the first list that are not
in the other list  or lists. Intersection[list1, list2,…]  finds  all  those  elements common
to  the listi.  Complement  and Intersection  also  remove  duplicates  and  sort  the  ele-
ments that remain.

In[4]:= 4, 1, 2 5, 1, 2

Out[4]= 1, 2

In[5]:= Complement 4, 1, 2 , 5, 1, 2

Out[5]= 4

These  last  three  functions, Union,  Complement,  and Intersection,  treat  lists
somewhat like sets in that there are no duplicates  and the order of elements in the lists is
not respected.

Exercises

1. How would you perform the same task as Prepend[{x,y},z] using the Join
function?

2. Starting with the lists {1,2,3,4} and {a,b,c,d}, create the list {2,4,b,d}.
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3. Given two lists, find all those elements that are not common to the two lists. For 
example, starting with the lists, {a,b,c,d} and {a,b,e,f}, your answer would 
return the list {c,d,e,f}.

3.5 Strings and characters
Characters  are  the  objects  that  appear  on  the  computer  screen  like  “a”,  “3”,  or  “!”.
Uppercase  and  lowercase  letters,  numbers,  punctuation  marks,  and  spaces  form the basic
set of characters. A sequence of characters enclosed in double quotes is called a string.

In[1]:= Head "The magic words are squeamish ossifrage."

Out[1]= String

When Mathematica prints out a string, it appears without the quotes.

In[2]:= "The magic words are squeamish ossifrage."

Out[2]= The magic words are squeamish ossifrage.

You can use the InputForm function to see these quotes.

In[3]:= InputForm "The magic words are squeamish ossifrage."

Out[3]//InputForm=

"The magic words are squeamish ossifrage."

A string is a value and, like other values (such as numbers and lists), there are built-in
functions  available  to  manipulate  strings,  similar  to  those  for  lists.  Their  operations  are
indicated by their names.

In[4]:= StringLength "The magic words are squeamish ossifrage."

Out[4]= 40

In[5]:= StringReverse "abcde"

Out[5]= edcba

In[6]:= StringTake "abcde", 3

Out[6]= abc

In[7]:= StringDrop "abcde", 1

Out[7]= abcd
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In[8]:= StringPosition "abcde", "bc"

Out[8]= 2, 3

In[9]:= StringInsert "abcde", "t", 3

Out[9]= abtcde

In[10]:= StringReplace "abcde", "cd" "uv"

Out[10]= abuve

New  in  Version  5.1,  you  can  use  regular  expressions  in  the  functions  you  use  to
manipulate strings.

In[11]:= StringMatchQ "all in good time", RegularExpression "a. "

Out[11]= True

In[12]:= StringCases "abc1, abd2, bcd3", RegularExpression "a. ?\\d"

Out[12]= abc1, abd2

In  addition  to  using  built-in  functions  to  manipulate  a  string,  you  can  convert  a
string to a list of characters with the built-in Characters function.

In[13]:= Characters "abcde"

Out[13]= a, b, c, d, e

You can then use the list manipulating functions to alter the list or extract elements
from the list.

In[14]:= Take %, 2, 3

Out[14]= b, c

Finally, you can change the resulting list back into a string using the built-in String

Join function.

In[15]:= StringJoin %

Out[15]= bc

Another  way  to  manipulate  a  string  is  to  convert  it  to  a  list  of  character  codes  and
then  operate  on  the  codes  using  mathematical  functions.  Each  character  in  a  computer’s
character  set  is  assigned  a  number,  called  its character  code.  Moreover,  by  general  agree-
ment,  almost  all  computers  use  the  same  character  codes,  called  the ASCII  codes.  In  this
code,  the uppercase  letters A,  B,  …, Z  are  assigned  the numbers  65,  66,  …,  90 while  the
lowercase letters a, b, …, z have the numbers 97, 98, …, 122 (note that the number of an
uppercase letter is 32 less than its lowercase version). The numbers 0, 1, …, 9 are coded as
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48, 49, …, 57 while the punctuation marks period, comma, and exclamation point have the
codes  46,  44,  and  33,  respectively.  The  space  character  is  represented  by  the  code  32.
Table 3.1 shows the characters and their codes.

Characters ASCII codes
A, B, …, Z 65, 66, …, 90

a, b, …, z 97, 98, …, 122

0, 1, …, 9 48, 49, …, 57

. period 46

, comma 44

exclamation 33

space 32

Table 3.1: ASCII character codes

Using the character code representation of characters, the following series of compu-
tations changes a word from lowercase to uppercase.

In[16]:= ToCharacterCode "darwin"

Out[16]= 100, 97, 114, 119, 105, 110

In[17]:= % 32

Out[17]= 68, 65, 82, 87, 73, 78

In[18]:= FromCharacterCode %

Out[18]= DARWIN

This can be accomplished more succinctly using StringReplace.

In[19]:= StringReplace "darwin", x_ ToUpperCase x

Out[19]= DARWIN

Or simply:

In[20]:= ToUpperCase "darwin"

Out[20]= DARWIN
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Exercises

1. Convert the first character in a string (which you may assume to be a lowercase
letter) to uppercase.

2. Given a string containing two digits, convert it to its integer value; so the string 
"73" produces the number 73.

3. Given a string containing two digits, convert it to its value as an integer in base 8; for
example, the string "73" will produce the number 59.

4. Given a string of digits of arbitrary length, convert it to its integer value. (Hint: You
may find that the Dot function is helpful.)

5. Create a Boolean function OrderedWordQ that returns True or False depending
upon whether its argument is in alphabetic order. So OrderedWordQ["best"]
would return True but OrderedWordQ["brag"] would return False. Then find
all those words in the file dictionary.dat that are ordered according to this 
function.
Here is a platform-independent path to the dictionary file.

In[1]:= wordfile ToFileName $InstallationDirectory, "Documentation",

"English", "Demos", "DataFiles" , "dictionary.dat"

Out[1]= C:\Program Files\Wolfram Research\Mathematica\5.1\

Documentation\English\Demos\DataFiles\dictionary.dat

This reads in the file using ReadList, specifying the type of data being read in as a 
Word.

In[2]:= words ReadList wordfile, Word ;

6. Create a function PalindromeQ[str] that returns a value of True if its argument
str is a palindrome; that is, if the string str is the same forward and backward. For 
example, “refer” is a palindrome.
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4 Functional programming

Programming in Mathematica  is essentially  a matter of writing user-defined functions
that  work  like  mathematical  functions;  when  applied to  specific  values,  they  perform
computations  producing  results.  In  fact,  these  functions  can  operate  on  arbitrary
expressions,  including  other  functions.  This functional  style  of  programming  distin-
guishes Mathematica  from more traditional  procedural  languages  like  C and Fortran,
and  a  facility  at  functional  programming  is  essential  for  taking  full  advantage  of
Mathematica’s powerful language to solve your computational tasks.

4.1 Introduction
Functions  are objects  that  operate on expressions and output  unique expressions for each
input.  We can think of functions  as mathematicians  do.  For example,  here is  a definition
for a function of two variables.

In[1]:= f x_, y_ : Cos x Sin y

You can evaluate the function for numeric or symbolic values.

In[2]:= f , 1.6

Out[2]= 0.000426397

In[3]:= f ,

Out[3]= Cos Sin

Functions  can  be  significantly  more  complicated  objects.  Below  is  a  function  that
operates on functions. Like the function f above it takes two arguments, but, in this case,
its arguments are a function or expression, and a list containing the variable of integration
and the integration limits.

In[4]:= Integrate Exp I x , x, a, b

Out[4]=
a b



This particular function can be also be called with a function and a variable.

In[5]:= Integrate Exp I x , x

Out[5]=
x

Here  is  a  function  that  also  takes  two  arguments  and  operates  on  functions,  but  it
returns a graphical object as its value.

In[6]:= Plot Sin x 2 Sin x , x, 0, 2

1 2 3 4 5 6

1

0.5

0.5

1

Out[6]= Graphics

Programming involves writing a set of instructions to be applied for some appropri-
ate  input.  Whereas  procedural  programs  provide  a  step-by-step  set  of  instructions,  func-
tional programming involves the application of functions to their arguments. For example,
here is a traditional procedural approach to switching the elements in a list of pairs.

In[7]:= lis , 1 , , 2 , , 3

Out[7]= , 1 , , 2 , , 3

In[8]:= temp lis;

Do temp i, 1 , temp i, 2 lis i, 2 , lis i, 1 ,

i, 1, Length lis ;

temp

Out[10]= 1, , 2, , 3,

We first allocate an empty array temp, of the same size as lis; then we put elements into
temp one by one as we loop over lis; finally we return the value of temp.

Here is a simpler procedure using a structured iteration.

In[11]:= Table lis i, 2 , lis i, 1 , i, 1, 3

Out[11]= 1, , 2, , 3,
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And here is a functional approach to solving the same problem.

In[12]:= Map Reverse, lis

Out[12]= 1, , 2, , 3,

This  simple  example  illustrates  several  of  the  key  features  of  functional  program-
ming. A functional approach often allows for a more direct implementation of the solution
to many problems, especially when list manipulations are involved. Notice that the proce-
dural approach required setting up a list structure and then looping over the list as i takes
on  successive  values,  whereas the functional  approach  simply  applied  the Reverse  func-
tion to the list directly.

Up to this point, we have described fairly simple functions and stayed focused on the
built-in functions present in Mathematica.  In this chapter we will first take a look at some
of  the  most  powerful  and  useful  functional  programming  constructs  in Mathematica  and
then discuss the creation of our own functions, using many of the list and string manipulat-
ing  functions  discussed  earlier.  It  is  well  worthwhile  to  spend  time  familiarizing  yourself
with  these  functions  by  playing  around  with  them;  for  example,  create  various  lists  and
apply built-in functions to them. Having a larger vocabulary of built-in functions will not
only make it easier to follow the programs and do the exercises here, but will enhance your
own programming skills as well.

4.2 Functions for manipulating expressions
Three  of  the  most  powerful  and  commonly  used  functions  by  experienced Mathematica
programmers  are Map,  Apply,  and Thread.  They  provide  very  sophisticated  ways  of
manipulating  expressions  in Mathematica.  Becoming  familiar  with  them  is  essential  to
functional  programming  in Mathematica.  In  this  section  we  will  discuss  their  syntax  and
look at some simple examples of their use. We will also briefly look at some related func-
tions  (Inner  and Outer),  which will  prove  useful  in manipulating  the structure  of  your
expressions. These higher-order functions will be used throughout the rest of this book.
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Map

Map applies a function to each element in a list.

In[1]:= Map Head, 3,
22

7
,

Out[1]= Integer, Rational, Symbol

This is illustrated using an undefined function f  and a simple linear list.

In[2]:= Map f, a, b, c

Out[2]= f a , f b , f c

More  generally,  mapping  a  function f  over  the  expression g[a,b,c]  essentially
wraps the function f around each of the elements of g.

In[3]:= Map f, g a, b, c

Out[3]= g f a , f b , f c

So this general computation is identical to Map[f,{a,b,c}], except in that example g is
replaced with List (remember that FullForm[{a,b,c}] is List[a,b,c]).

The  real  power  of  the Map  function  is  that  you  can  map any  function  across  any
expression  for  which that  function  makes  sense.  Using  the Reverse  function  with Map,
you can reverse the order of elements in each list of a nested list.

In[4]:= Map Reverse, a, b , c, d , e, f

Out[4]= b, a , d, c , f, e

The elements in each of the inner lists in a nested list can be sorted.

In[5]:= Map Sort, 2, 6, 3, 5 , 7, 4, 1, 3

Out[5]= 2, 3, 5, 6 , 1, 3, 4, 7

Often, you will need to define your  own function to perform some computation on
every element of a list. This is the sort of computation that Map is expressly designed for.
Here is a list of three elements.

In[6]:= vec 2, , ;

If  we wished to square each element and add 1, we could first define a function that per-
forms this computation on its arguments.

In[7]:= f x_ : x2 1
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Mapping this function over vec,  will then wrap f  around each element and evaluate f of
those elements.

In[8]:= Map f, vec

Out[8]= 5, 1 2, 1 2

Later  in  this  chapter  we  will  look  at  even  simpler  ways  of  performing  such
computations.

Thread and MapThread

The Thread function exchanges operations with arguments that are lists.

In[9]:= Thread g a, b, c , x, y, z

Out[9]= g a, x , g b, y , g c, z

You  can  accomplish  something  quite  similar  with MapThread.  It  differs  from
Thread  in that it  takes  two arguments  – the function that  you are mapping and a list  of
two (or  more) lists  as  arguments  of the function. It  creates a new list  in which the corre-
sponding elements of the old lists are paired (or zipped together).

In[10]:= MapThread g, a, b, c , x, y, z

Out[10]= g a, x , g b, y , g c, z

With Thread,  you  can  fundamentally  change  the  structure  of  the  expressions  you
are working with. For example, this threads the Equal function over the two lists given as
its arguments.

In[11]:= Thread Equal a, b, c , x, y, z

Out[11]= a x, b y, c z

In[12]:= Map FullForm, %

Out[12]= Equal a, x , Equal b, y , Equal c, z

Here is  another example of the use of Thread.  We start  off  with a list  of  variables
and a list of values.

In[13]:= vars x1, x2, x3, x4, x5 ;

In[14]:= values 1.2, 2.5, 5.7, 8.21, 6.66 ;

From these two lists, we create a list of rules.

In[15]:= Thread Rule vars, values

Out[15]= x1 1.2, x2 2.5, x3 5.7, x4 8.21, x5 6.66
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Notice how we started with a rule of lists and Thread  produced a list of rules. In this way,
you might think of Thread as a generalization of Transpose.

Here are a few more examples of MapThread.  This raises each element in the first
list to the power given by the corresponding element in the second list.

In[16]:= MapThread Power, 2, 6, 3 , 5, 1, 2

Out[16]= 32, 6, 9

Using Trace,  you can view some of the intermediate steps that Mathematica  performs in
doing this calculation.

In[17]:= MapThread Power, 2, 6, 3 , 5, 1, 2 Trace

Out[17]= MapThread Power, 2, 6, 3 , 5, 1, 2 ,

25, 61, 32 , 25, 32 , 61, 6 , 32, 9 , 32, 6, 9

Using the List function, the corresponding elements in the three lists are placed in a list
structure (note that Transpose would do the same thing).

In[18]:= MapThread List, 5, 3, 2 , 6, 4, 9 , 4, 1, 4

Out[18]= 5, 6, 4 , 3, 4, 1 , 2, 9, 4

The Listable attribute

Many of the built-in functions that take a single argument have the property that, when a
list is the argument, the function is automatically applied to all of the elements in the list.
In  other  words,  these  functions  are  automatically  mapped  on  to  the  elements  of  the  list.
For example, the Log function has this attribute.

In[19]:= Log a, E, 1

Out[19]= Log a , 1, 0

This is the same result you get using the Map function.

In[20]:= Map Log, a, E, 1

Out[20]= Log a , 1, 0

Many of  the  built-in  functions  that  take  two  or  more  arguments  have  the  property
that,  when multiple lists  are the arguments, the function is automatically  applied to all of
the  corresponding  elements  in  the  list.  In  other  words,  these  functions  are  automatically
threaded on to the elements of the list.

In[21]:= 4, 6, 3 5, 1, 2

Out[21]= 9, 7, 5
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This gives the same result as using the Plus function with MapThread.

In[22]:= MapThread Plus, 4, 6, 3 , 5, 1, 2

Out[22]= 9, 7, 5

Functions that are either automatically mapped or threaded on to the elements of list
arguments  are  said  to  be Listable.  Many  of Mathematica’s  built-in  functions  have  this
Attribute. 

In[23]:= Attributes Log

Out[23]= Listable, NumericFunction, Protected

In[24]:= Attributes Plus

Out[24]= Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected

By default, functions that you define do not have any attributes associated with them. So,
for example, if you define a function g, say, it will not automatically be threaded over a list.

In[25]:= g a, b , c, d

Out[25]= g a, b , c, d

If  you  want  your  function  to  have  the  ability  to  thread  over  lists,  give  it  the Listable

attribute using SetAttributes.

In[26]:= SetAttributes g, Listable

In[27]:= g a, b , c, d

Out[27]= g a , g b , g c , g d

Note  that  clearing  a  symbol  only  clears  values  associated  with  that  symbol.  It  does  not
clear any attributes associated with the symbol.

In[28]:= Clear g

In[29]:= ?g

Global`g

Attributes g Listable

To clear attributes, you need to use Remove.

In[30]:= Remove g
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Now there is no remaining information associated with g.

In[31]:= ?g

Information::notfound : Symbol g not found. More…

Apply

Whereas Map  is  used  to  perform  the  same  operation  on  each  element  of  an  expression,
Apply is used to change the structure of an expression.

In[32]:= Apply h, g a, b, c

Out[32]= h a, b, c

The function h was applied to the expression g[a,b,c] and Apply replaced the head of
g[a,b,c] with h.
If  the  second  argument  is  a  list,  applying h  to  that  expression  simply  replaces  its  head
(List) with h.

In[33]:= Apply h, a, b, c

Out[33]= h a, b, c

The following computation shows the same thing, except we are using the internal represen
tation of the list {a,b,c} here to better see how the structure is changed.

In[34]:= Apply h, List a, b, c

Out[34]= h a, b, c

We  see  that  the  elements  of List  are  now  the  arguments  of h.  Essentially,  you  should
think of Apply[h,expr] as replacing the head of expr with h. 

In[35]:= Apply Plus, 1, 2, 3, 4

Out[35]= 10

Here, List[1,2,3,4]  has  been  changed  to Plus[1,2,3,4]  or,  in  other  words,  the
head List has been replaced by Plus. 

Plus[a,b,c,d]  is  the  internal  representation  of  the  sum  of  these  four  symbols
that you would normally write a+b+c+d.

In[36]:= Plus a, b, c, d

Out[36]= a b c d
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This list conversion can be applied to an entire list.

In[37]:= Apply h, 1, 2, 3 , 5, 6, 7

Out[37]= h 1, 2, 3 , 5, 6, 7

This is just vector addition.

In[38]:= Apply Plus, 1, 2, 3 , 5, 6, 7

Out[38]= 6, 8, 10

One  important  distinction  between Map  and Apply  that  you  should  be  aware  of
concerns  the  level  of  the  expression  at  which  each  operate.  By  default, Map  operates  at
level 1. That is, in Map[h, expr], h will be applied to each element at the top level of expr.
So, for example, if expr consists of a nested list, h will be applied to each of the sublists, but
not deeper, by default.

In[39]:= Map h, a, b , c, d

Out[39]= h a, b , h c, d

If  you  wish  to  apply h  at  a  deeper  level,  then  you  have  to  specify  that  explicitly  using  a
third argument to Map.

In[40]:= Map h, a, b , c, d , 2

Out[40]= h a , h b , h c , h d

Apply,  on the other hand, operates at  level 0. That is,  in Apply[h, expr],  Apply
looks at the part 0 of expr (that is, its Head) and replaces it with h.

In[41]:= Apply f, a, b , c, d

Out[41]= f a, b , c, d

Again, if you wish to apply h at a different level, then you have to specify that explic-
itly using a third argument to Apply.

In[42]:= Apply h, a, b , c, d , 1

Out[42]= h a, b , h c, d

For example, to apply Plus to each of the inner lists, you need to specify that Apply will
operate at level 1.

In[43]:= Apply Plus, 1, 2, 3 , 5, 6, 7 , 1

Out[43]= 6, 18
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If  you  are  a  little  unsure  of  what  has  just  happened,  consider  the following example and,
instead of h, think of Plus.

In[44]:= Apply h, 1, 2, 3 , 5, 6, 7 , 1

Out[44]= h 1, 2, 3 , h 5, 6, 7

Inner and Outer

The Outer  function  applies  a  function  to  all  of  the  combinations  of  the  elements  in
several lists. This is a generalization of the mathematical outer product.

In[45]:= Outer f, a, b , 2, 3, 4

Out[45]= f a, 2 , f a, 3 , f a, 4 , f b, 2 , f b, 3 , f b, 4

Using the List  function as an argument,  you can create lists  of  ordered pairs  that  com-
bine the elements of several lists.

In[46]:= Outer List, a, b , 2, 3, 4

Out[46]= a, 2 , a, 3 , a, 4 , b, 2 , b, 3 , b, 4

Using Inner,  you can thread a function on to several lists  and then use the result as  the
argument to another function.

In[47]:= Inner f, a, b, c , d, e, f , g

Out[47]= g f a, d , f b, e , f c, f

This function lets you carry out some interesting operations.

In[48]:= Inner Times, x1, y1, z1 , x2, y2, z2 , Plus

Out[48]= x1 x2 y1 y2 z1 z2

In[49]:= Inner List, a, b, c , d, e, f , Plus

Out[49]= a b c, d e f

Looking  at  these  two  examples,  you  can  see  that Inner  is  really  a  generalization of  the
mathematical dot product.

In[50]:= Dot x1, y1, z1 , x2, y2, z2

Out[50]= x1 x2 y1 y2 z1 z2
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Exercises

1. Write a function addPair[{x,y}] that adds the elements in a pair. Then use your 
addPair function to sum each pair from the following.

data 1, 2 , 2, 3 , 3, 4 , 4, 5 , 5, 6 ;

Your output should look like {3,5,7,9,11}.

2. Use Apply to add the elements in each pair from a list of pairs of numbers such as in
the previous exercise.

3. A matrix can be rotated by performing a number of successive operations. Rotate the
matrix {{1,2,3},{4,5,6}} clockwise by 90 degrees, obtaining 
{{4,1},{5,2},{6,3}}, in two steps. Use TableForm to display the results.

4. While matrices can easily be added using Plus, matrix multiplication is more
complicated. The Dot function, written as a single period, can be used.

In[1]:= 1, 2 , 3, 4 . x, y

Out[1]= x 2 y, 3 x 4 y

Perform matrix multiplication on {{1,2},{3,4}} and {x,y} without using Dot. 
(This can be done in two or three steps.)

5. FactorInteger[n] returns a nested list of prime factors and their exponents for
the number n.

In[2]:= FactorInteger 3628800

Out[2]= 2, 8 , 3, 4 , 5, 2 , 7, 1

Use Apply to reconstruct the number from this nested list.

6. Repeat the above exercise but instead use Inner to construct the original number n
from the factorization given by FactorInteger[n].

7. Using Inner, write a function div[vecs,vars] that computes the divergence of an
n-dimensional vector field vecs e1, e2, …, en  dependent upon n variables
vars v1, v2, …, vn . The divergence is given by the sum of the pairwise partial 
derivatives.

e1

v1

e2

v2
…

en

vn
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4.3 Iterating functions
A commonly performed task in computer science and mathematics is to repeatedly apply a
function to some expression. Iterating functions has a long and rich tradition in the history
of  computing.  Perhaps  the  most  famous  example  is  Newton’s  method  for  root  finding.
Chaos theory rests on studying how iterated functions behave under small perturbations of
their  initial  conditions  or  starting  values.  In  this  section,  we  will  introduce  several  func-
tions  available in Mathematica  for  function iteration.  In later  chapters  we will apply  these
and  other  programming  constructs  to  look  at  some  applications  of  iteration,  including
Newton’s method.

The Nest  function is  used to iterate functions. Here, g  is iterated (or applied to a)
four times.

In[1]:= Nest g, a, 4

Out[1]= g g g g a

The NestList function displays all of the intermediate values of the Nest operation.

In[2]:= NestList g, a, 4

Out[2]= a, g a , g g a , g g g a , g g g g a

Using a starting value of 0.85, this generates a list of ten iterates of the Cos function.

In[3]:= NestList Cos, 0.85, 10

Out[3]= 0.85, 0.659983, 0.790003, 0.703843, 0.76236, 0.723208,

0.749687, 0.731902, 0.743904, 0.73583, 0.741274

The list elements above are the values of 0.85, Cos[0.85], Cos[Cos[0.85]], and so
on.

In[4]:= 0.85, Cos 0.85 , Cos Cos 0.85 , Cos Cos Cos 0.85

Out[4]= 0.85, 0.659983, 0.790003, 0.703843

In  fact,  the  iterates  of  the  cosine  function  tend  towards  a  fixed  point  which  can  be
obtained  with FixedPoint.  This  function  is  particularly  useful  when you  do  not  know
how many iterations to perform on a function whose iterations eventually settle down.

In[5]:= FixedPoint Cos, 0.85

Out[5]= 0.739085

Whereas Nest  and NestList  operate  on  functions  of  one  variable, Fold  and
FoldList generalize this notion by iterating a function of two arguments. In the follow-
ing example, the function f is first applied to a starting value x and the first element from a
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list,  then  this  result  is  used  as  the  first  argument  of  the  next  iteration,  with  the  second
argument coming from the second element in the list, and so on.

In[6]:= Fold f, x, a, b, c

Out[6]= f f f x, a , b , c

If FoldList  is  used,  then  you  will  see  all  of  the  intermediate  results  of  the Fold

operation.

In[7]:= FoldList f, x, a, b, c

Out[7]= x, f x, a , f f x, a , b , f f f x, a , b , c

It  is easy to see what is going on with the FoldList  function by working with an arith-
metic operator. This generates “running sums.”

In[8]:= FoldList Plus, 0, a, b, c, d

Out[8]= 0, a, a b, a b c, a b c d

In[9]:= FoldList Plus, 0, 1, 2, 3, 4, 5

Out[9]= 0, 1, 3, 6, 10, 15

Exercises

1. Determine the locations after each step of a ten-step one-dimensional random walk.
(Recall that you have already generated the step directions in Exercise 3 at the end of 
Section 3.2.)

2. Create a list of the step locations of a ten-step random walk on a square lattice.

3. Using Fold, create a function fac[n] that takes in an integer n as argument and
returns the factorial of n; that is, n n 1 n 2 3 2 1.
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4.4 Programs as functions
A  computer  program  is  a  set  of  instructions  (a  recipe)  for  carrying  out  a  computation.
When a program is evaluated with appropriate  inputs,  the computation  is  performed and
the result is returned. In this sense, a program is a mathematical function and the inputs to
a program are the arguments of the function. Executing a program is equivalent to apply-
ing a function to its arguments or, as it is often referred, making a function call.

User-defined functions

While there are a great  many built-in  functions  in Mathematica  that  can be used to carry
out  computations,  we  invariably  find  ourselves  needing  customized  functions.  For  exam-
ple,  once we have written a  program to  compute  some values  for  some particular  inputs,
we  might  want  to  perform  the  same  set  of  operations  on  different  inputs.  We  would
therefore like to create our own user-defined functions that we could then apply in the same
way as we call  a built-in  function  – by entering the function name and specific  argument
values.  We will start with the proper syntax (or grammar) to use when writing a function
definition.

The  function  definition  looks  very  much  like  a  mathematical  equation:  a  left-hand
side and a right-hand side separated by a colon-equal sign.

name[arg1 _,arg2 _,…,argn _]:= body

The  left-hand  side  starts  with  a  symbol.  This  symbol  is  referred  to  as  the function
name  (or sometimes just  as  the function, as  in “the sine function”).  The function name is
followed by a set of square brackets, inside of which are a sequence of symbols ending with
blanks.  These  symbols  are  referred  to  as  the function  argument  names,  or  just  the function
arguments.

The  right-hand  side  of  a  user-defined  function  definition  is  called  the body  of  the
function. The body can be either a single expression (a one-liner), or a series of expressions
(a compound function), both of which will be discussed in detail shortly. Argument names
from the left-hand side appear on the right-hand side without blanks. Basically, the right-
hand  side  is  a  formula  stating  what  computations  are  to  be  done  when  the  function  is
called with specific values of the arguments.

When a user-defined function is  defined with a delayed assignment (:=),  nothing is
returned.  Thereafter,  calling  the  function  by  entering  the  left-hand  side  of  the  function
definition  with  specific  values  of  the  arguments  causes  the  body  of  the  function  to  be
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computed with the specific argument values substituted where the argument names occur.
In other words, when using delayed assignments, the body of your function is only evalu-
ated when the function is called, not when it is first defined.

A simple example of a user-defined function is square which squares a value (it is a
good idea to use a function name that indicates the purpose of the function).

In[1]:= square x_ : x2

After  entering  a  function  definition,  you  call  the  function  in  the  same  way  that  a
built-in function is applied to an argument.

In[2]:= square 5

Out[2]= 25

Building up programs

The ability to use the output of one function as the input of another is one of the keys to
functional  programming. A mathematician would  call  this  “composition  of  functions.”  In
Mathematica,  this  sequential  application  of  several  functions  is  known  as  a nested  function
call. Nested function calls are not limited to using a single function repeatedly, such as with
the built-in Nest and Fold functions.

In[3]:= Cos Sin Tan 4.0

Out[3]= 0.609053

To see the above computation more clearly, we can step through the computation.

In[4]:= Tan 4.0

Out[4]= 1.15782

In[5]:= Sin %

Out[5]= 0.915931

In[6]:= Cos %

Out[6]= 0.609053

Wrapping the Trace  function around the computation lets us see all of the intermediate
expressions that are used in this evaluation.

In[7]:= Trace Cos Sin Tan 4.0

Out[7]= Tan 4. , 1.15782 , Sin 1.15782 , 0.915931 ,

Cos 0.915931 , 0.609053
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You can read nested functions  in much the same way that  they are created, starting
with the innermost functions and working towards the outermost functions. For example,
the following expression determines whether all of the elements in a list are even numbers.

In[8]:= Apply And, Map EvenQ, 2, 4, 6, 7, 8

Out[8]= False

Let us step through the computation  much the same as Mathematica does, from the
inside out.

1. Map the predicate EvenQ to every element in the list {2,4,6,7,8}.

In[9]:= Map EvenQ, 2, 4, 6, 7, 8

Out[9]= True, True, True, False, True

2. Apply the logical function And to the result of the previous step.

In[10]:= Apply And, %

Out[10]= False

Finally, here is a definition that can be used on arbitrary lists.

In[11]:= setEvenQ lis_ : Apply And, Map EvenQ, lis

In[12]:= setEvenQ 11, 5, 1, 18, 16, 6, 17, 6

Out[12]= False

Another,  more complicated,  example returns the elements in a list  of  positive num-
bers that are bigger than all of the preceding numbers in the list.

In[13]:= Union Rest FoldList Max, 0, 3, 1, 6, 5, 4, 8, 7

Out[13]= 3, 6, 8

The Trace of the function call shows the intermediate steps of the computation.

In[14]:= Trace Union Rest FoldList Max, 0, 3, 1, 6, 5, 4, 8, 7

Out[14]= FoldList Max, 0, 3, 1, 6, 5, 4, 8, 7 ,

Max 0, 3 , 3 , Max 3, 1 , Max 1, 3 , 3 ,

Max 3, 6 , 6 , Max 6, 5 , Max 5, 6 , 6 ,

Max 6, 4 , Max 4, 6 , 6 , Max 6, 8 , 8 ,

Max 8, 7 , Max 7, 8 , 8 , 0, 3, 3, 6, 6, 6, 8, 8 ,

Rest 0, 3, 3, 6, 6, 6, 8, 8 , 3, 3, 6, 6, 6, 8, 8 ,

Union 3, 3, 6, 6, 6, 8, 8 , 3, 6, 8
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This computation can be described as follows:

• The FoldList  function  is  first  applied  to  the  function Max,  0,  and  the  list
{3,1,6,5,4,8,7}  (look  at  the Trace  of  this  computation  to  see  what Fold
List is doing here).

In[15]:= FoldList Max, 0, 3, 1, 6, 5, 4, 8, 7

Out[15]= 0, 3, 3, 6, 6, 6, 8, 8

• The Rest function is then applied to the result of the previous step to remove the
first element of the list.

In[16]:= Rest %

Out[16]= 3, 3, 6, 6, 6, 8, 8

• Finally,  the Union  function is  applied to the result  of the previous step to remove
duplicates.

In[17]:= Union %

Out[17]= 3, 6, 8

Here is the function definition.

In[18]:= maxima x_ : Union Rest FoldList Max, 0, x

Applying maxima  to a list  of  numbers produces  a list  of  all  those  numbers that are
larger than any number that comes before it.

In[19]:= maxima 4, 2, 7, 3, 4, 9, 14, 11, 17

Out[19]= 4, 7, 9, 14, 17

Notice that in each of the nested functions described here, the argument of the first
function  was  explicitly  referred  to,  but  the  expressions  that  were  manipulated  in  the
succeeding function calls were not identified other than as the results of the previous steps
(that is, as the results of the preceding function applications).

Here is  an interesting application of building up a program with nested functions  –
the creation of a deck of cards. (Hint: The suit icons are entered by typing in \[ClubSuit
], \[DiamondSuit], etc.)
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In[20]:= cardDeck Flatten

Outer List, , , , , Join Range 2, 10 , J, Q, K, A , 1

Out[20]= , 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 , , 9 , , 10 ,
, J , , Q , , K , , A , , 2 , , 3 , , 4 , , 5 , , 6 ,

, 7 , , 8 , , 9 , , 10 , , J , , Q , , K , , A , , 2 ,
, 3 , , 4 , , 5 , , 6 , , 7 , , 8 , , 9 , , 10 ,
, J , , Q , , K , , A , , 2 , , 3 , , 4 , , 5 , , 6 ,

, 7 , , 8 , , 9 , , 10 , , J , , Q , , K , , A

You might think of cardDeck  as a name for the expression given on the right-hand side
of the immediate definition, or you might think of cardDeck as defining a function with
zero arguments.

To  understand  what  is  going  on  here,  we  will  build  up  this  program from scratch.
First we form a list of the number and face cards in a suit by combining a list of the num-
bers  2 through 10, Range[2,10],  with a four-element list  representing the jack,  queen,
king, and ace, {J,Q,K,A}.

In[21]:= Join Range 2, 10 , J, Q, K, A

Out[21]= 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Now we pair each of the 13 elements in this list with each of the four elements in the list
representing the card suits { , , , }. This produces a list of 52 ordered pairs represent-
ing the cards in a deck, where the king of clubs, for example, is represented by { ,K}).

In[22]:= Outer List, , , , , %

Out[22]= , 2 , , 3 , , 4 , , 5 , , 6 , , 7 ,
, 8 , , 9 , , 10 , , J , , Q , , K , , A ,
, 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 ,

, 9 , , 10 , , J , , Q , , K , , A ,
, 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 ,
, 9 , , 10 , , J , , Q , , K , , A ,

, 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 ,
, 9 , , 10 , , J , , Q , , K , , A

While we now have all  of  the cards in the deck, they are grouped by suit  in a nested list.
We therefore un-nest the list:

In[23]:= Flatten %, 1

Out[23]= , 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 , , 9 , , 10 ,

, J , , Q , , K , , A , , 2 , , 3 , , 4 , , 5 , , 6 ,
, 7 , , 8 , , 9 , , 10 , , J , , Q , , K , , A , , 2 ,
, 3 , , 4 , , 5 , , 6 , , 7 , , 8 , , 9 , , 10 ,
, J , , Q , , K , , A , , 2 , , 3 , , 4 , , 5 , , 6 ,

, 7 , , 8 , , 9 , , 10 , , J , , Q , , K , , A

Voila!
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The  step-by-step  construction  that  we  used  here,  applying  one  function  at  a  time,
checking each function call separately, is a very efficient way to prototype your programs in
Mathematica. We will use this technique again in the next example.

We will perform what is called a perfect shuffle, consisting of cutting the deck in half
and  then interleaving the  cards  from the  two  halves.  Rather  than  working  with  the large
list of 52 ordered pairs during the prototyping, we will use a short made-up list. A short list
of an even number of ordered integers is a good choice for the task.

In[24]:= d Range 6

Out[24]= 1, 2, 3, 4, 5, 6

We first divide the list into two equal-sized lists.

In[25]:= Partition d, Length d 2

Out[25]= 1, 2, 3 , 4, 5, 6

We now want to interleave these two lists to form {1,4,2,5,3,6}.  The first step is to
pair the corresponding elements in each of the two lists above. This can be done using the
Transpose function.

In[26]:= Transpose %

Out[26]= 1, 4 , 2, 5 , 3, 6

We  now  un-nest  the  interior  lists  using  the Flatten  function.  We  could  flatten  our
simple list using Flatten[…], but, since we know that ultimately we will be dealing with
ordered pairs  rather than integers, we will use Flatten[…,1]  as  we did in creating the
card deck.

In[27]:= Flatten %, 1

Out[27]= 1, 4, 2, 5, 3, 6

That  does  the  job.  Given  this  prototype,  it  is  easy  to  write  the  actual  function  to
perform a perfect shuffle on a deck of cards. Notice we have generalized this shuffle to lists
of arbitrary length.

In[28]:= shuffle lis_ :

Flatten Transpose Partition lis, Length lis 2 , 1

In[29]:= shuffle cardDeck

Out[29]= , 2 , , 2 , , 3 , , 3 , , 4 , , 4 , , 5 , , 5 , , 6 ,

, 6 , , 7 , , 7 , , 8 , , 8 , , 9 , , 9 , , 10 ,
, 10 , , J , , J , , Q , , Q , , K , , K , , A , , A ,
, 2 , , 2 , , 3 , , 3 , , 4 , , 4 , , 5 , , 5 , , 6 ,

, 6 , , 7 , , 7 , , 8 , , 8 , , 9 , , 9 , , 10 ,
, 10 , , J , , J , , Q , , Q , , K , , K , , A , , A
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Let  us  take  this  example  one  step  further  and  construct  a  function  that  deals  cards
from a card deck. We will construct this function in stages using the prototyping method
we showed earlier.
First we need to define a function that removes a single element from a randomly chosen
position in a list.

In[30]:= removeRand lis_ :

Delete lis, Random Integer, 1, Length lis

The function removeRand first uses the Random function to randomly choose an integer
k  between 1 and the length of the list, and then uses the Delete  function to remove the
kth element of the list. For example, if a list has 10 elements, an integer between 1 and 10,
say  6,  is  randomly  determined  and  the  element  in  the  sixth  position  in  the  list  is  then
removed from the list.

In[31]:= lis 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ;

removeRand lis

Out[32]= 2, 3, 4, 5, 6, 7, 8, 9, 10

Now  we  want  to  make  a  function  call  that  applies  the removeRand  function  to  the
cardDeck  list,  then applies  the removeRand  function to  the resulting list,  then applies
the removeRand  function to the resulting list, and so on, a total  of n  times. The way to
carry out this operation is with the Nest function.

Nest[removeRand, cardDeck, n]

Lastly, we want the cards that are removed from cardDeck rather than those that remain.

Complement[cardDeck, Nest[removeRand, cardDeck, n]]

Now, we write this up formally into the user-defined deal function.

In[33]:= deal n_ : Complement cardDeck, Nest removeRand, cardDeck, n

Let us try it out.

In[34]:= deal 5

Out[34]= , 3 , , K , , 2 , , K , , J

Not a bad hand!
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Exercises

1. One of the games in the Illinois State Lottery is based on choosing n numbers, each
between 0 and 9, with duplicates allowed; in practice, a selection is made from
containers of numbered ping pong balls. We can model this game using a simple
user-defined function, which we will call pick (after the official lottery names of Pick 
3 and Pick 4).

In[1]:= pick n_ : Table Random Integer, 0, 9 , n

In[2]:= pick 4

Out[2]= 0, 9, 0, 4

This program can be generalized to perform random sampling with replacement on any 
list. Write a function chooseWithReplacement[lis,n], where lis is the list, n is 
the number of elements being chosen and the following is a typical result.

In[3]:= chooseWithReplacement a, b, c, d, e, f, g, h , 3

Out[3]= h, b, f

2. Write your own user-defined functions using the ToCharacterCode and From
CharacterCode functions to perform the same operations as StringInsert and
StringDrop.

3. Create a function distance[a,b] that finds the distance between two points a and 
b in the plane.

4. Write a user-defined function interleave2 that interleaves the elements of two 
lists of unequal length. (You have already seen how to interleave lists of equal length
using Partition earlier in this section.) Your function should take the lists 
{1,2,3} and {a,b,c,d} as inputs and return {1,a,2,b,3,c,d}.

5. Write a nested function call that creates a deck of cards and performs a perfect
shuffle on it.

6. Write nested function calls using the ToCharacterCode and FromCharacter
Code functions to perform the same operations as the built-in StringJoin and 
StringReverse functions.
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4.5 Auxiliary functions
There are several major drawbacks to the deal function created in the previous section. In
order  to  use deal,  the  definition of removeRand  and  the  value of cardDeck  must  be
entered before calling deal.  It  would  be much more convenient if  we could  incorporate
these functions within the deal function definition itself. In the next section, we will show
how this can be done.

Compound functions

The left-hand side of a compound function is  the same as that of any user-defined function.
The  right-hand  side  consists  of  consecutive  expressions  enclosed  in  parentheses  and
separated by semicolons.

name arg1 _, arg2 _, …, argn _ : expr1; expr2; …; exprm

The  expressions  can  be  user-defined  functions  (also  known  as auxiliary  functions),
value  declarations,  and  function  calls.  When  a  compound  function  is  evaluated  with
particular  argument  values,  these  expressions  are evaluated  in  order and  the result  of  the
evaluation of the last expression is returned (by adding a semicolon after exprn, the display
of the final evaluation result can also be suppressed).

We  will  work  with  the deal  function  to  illustrate  how  a  compound  function  is
created. We need the following three expressions.

In[1]:= cardDeck Flatten Outer List,

, , , , Join Range 2, 10 , J, Q, K, A , 1 ;

In[2]:= removeRand lis_ :

Delete lis, Random Integer, 1, Length lis

In[3]:= deal n_ : Complement cardDeck, Nest removeRand, cardDeck, n

The  conversion  to  a  compound  function  is  easily  done.  We  will  first  remove  the  old
definitions.

In[4]:= Clear deal, cardDeck, removeRand
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Now we can create and enter the new definition.

In[5]:= deal n_ :

cardDeck Flatten Outer List,

, , , , Join Range 2, 10 , J, Q, K, A , 1 ;

removeRand lis_ : Delete lis,

Random Integer, 1, Length lis ;

Complement cardDeck, Nest removeRand, cardDeck, n

Let us check that this works.

In[6]:= deal 5

Out[6]= , 3 , , 2 , , 3 , , 4 , , Q

A couple  of things  should  be pointed  out  about  the right-hand side of a compound
function  definition.  Since  the  expressions  on  the  right-hand  side  are  evaluated  in  order,
value  declarations  and  auxiliary  function  definitions  should  be  given before  they  are  used
and the argument  names used on the left-hand side of  auxiliary  function definitions must
differ from the argument names used by the compound function itself.

Finally, when we enter a compound function definition, we are entering not only the
function but also the auxiliary functions and the value declarations. If we then remove the
function  definition using Clear,  the auxiliary  function definitions  and value declarations
remain. This can cause a problem if we subsequently try to use the names of these auxiliary
functions and values elsewhere.

So  how  does  the  global  rule  base  treat  compound  functions?  When  a  compound
function  definition  is  entered,  a  rewrite  rule  corresponding  to  the  entire  definition  is
created. Each time the compound function is subsequently called, rewrite rules are created
from  the  auxiliary  function  definitions  and  value  declarations  within  the  compound
function.

In[7]:= ?cardDeck

Global`cardDeck

cardDeck , 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 ,
, 9 , , 10 , , J , , Q , , K , , A , , 2 , , 3 , , 4 ,

, 5 , , 6 , , 7 , , 8 , , 9 , , 10 , , J , , Q , , K ,
, A , , 2 , , 3 , , 4 , , 5 , , 6 , , 7 , , 8 , , 9 ,
, 10 , , J , , Q , , K , , A , , 2 , , 3 , , 4 , , 5 ,

, 6 , , 7 , , 8 , , 9 , , 10 , , J , , Q , , K , , A

It is considered bad programming practice to leave auxiliary definitions in the global
rule  base  that  are  not  explicitly  needed  by  the  user  of  your  function.  In  fact,  it  could
interfere with a user’s workspace and cause unintended problems.
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To prevent these additional  rewrite rules  from being placed in the global  rule base,
you  can  localize  their  names  by  using  the Module  construct  in  the  compound  function
definition. This is what we discuss next.

Localizing names: Module

When a user-defined function is written, it is generally a good idea to isolate the names of
values  and  functions  defined  on  the  right-hand  side  from  the  outside  world  in  order  to
avoid any conflict with the use of a name elsewhere in the session (for example, cardDeck
might be used elsewhere to represent a pinochle deck). This can be done by wrapping the
right-hand side of the function definition in the built-in Module function.

name arg
1
_, arg

2
_, …, argn _ : Module name1, name2 value, … ,

expr

The first argument of the Module function is a list of the names we want to localize. If we
wish, we can assign values to these names, as is shown with name2 above (the assigned value
is  only  an  initial  value  and  can  be  changed  subsequently).  The  list  is  separated  from the
right-hand  side  by  a  comma  and  so  the  parentheses  enclosing  the  right-hand  side  of  a
compound function are not needed.

We can demonstrate the use of Module with the deal function.

In[8]:= Clear deal

In[9]:= deal n_ : Module cardDeck, removeRand ,

cardDeck Flatten Outer List,

, , , , Join Range 2, 10 , J, Q, K, A , 1 ;

removeRand lis_ : Delete lis,

Random Integer, 1, Length lis ;

Complement cardDeck, Nest removeRand, cardDeck, n

Briefly,  when Module  is  encountered,  the symbols  that  are being localized  (card
Deck  and removeRand  in  the  above  example)  are  temporarily  given  new  and  unique
names,  and  all  occurrences  of  those  symbols  in  the  body  of  the Module  are  given those
new names as well. In this way, these unique and temporary names, which are local to the
function, will not interfere with any functions outside of the Module.
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It  is  generally  a  good  idea  to  wrap  the  right-hand  side  of  all  compound  function
definitions in the Module function. Another way to avoid conflicts in the use of names of
auxiliary function definitions is to use a function that can be applied without being given a
name. Such functions are called pure functions, which we discuss in Section 4.6.

Localizing values: Block

Occasionally,  you will need to localize a value  associated with a symbol without localizing
the symbol name itself.  For example, you may have a recursive computation that requires
you  to  temporarily  reset  the  system  variable $RecursionLimit.  You  can  do  this  with
Block,  thereby  only  localizing  the value  of $RecursionLimit  during  the  evaluation
inside the Block.

In[10]:= Block $RecursionLimit 20 ,

x g x

$RecursionLimit::reclim :

Recursion depth of 20 exceeded. More…

Out[10]= g g

g g g g g g g g g g g g g g g g Hold g x

Notice the global value of $RecursionLimit is unchanged.

In[11]:= $RecursionLimit

Out[11]= 256

This construct is similar to what is done for the iterators in Table, Do, Sum, and Prod

uct. 
Module,  on  the  other  hand,  would  create  an  entirely  new symbol, $Recursion

Limit$nn  that  would  have  nothing  to  do  with  the global  variable $RecursionLimit,
and so Module would be inappropriate for this particular task.

Localizing constants: With

Another  scoping  construct  is  available  when you  simply  need to  localize  constants.  If,  in
the  body  of  your  function,  you  use  a  variable  that  is  assigned  a  constant  once  and  never
changes, then With is the preferred means to localize that constant.

This sets the global variable y to have the value 5.

In[12]:= y 5;
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Here is a simple function that initializes y as a local constant.

In[13]:= f x_ : With y x 1 ,

y

We see the global  symbol  is unchanged and it  does not interfere with the local  symbol y
inside the With.

In[14]:= y

Out[14]= 5

In[15]:= f 2

Out[15]= 3

Using With,  you  can  initialize  local  constants  with  the  values  of  global  symbols.  For
example:

In[16]:= With y y ,

g x_ : x y

This shows that the global value for y was inserted inside g.

In[17]:= ?g

Global`g

g x$_ : x$ 5

Resetting the global value of y has no effect on the localized y inside the With.

In[18]:= y 1;

In[19]:= g 5

Out[19]= 10

Exercises

1. Write a compound function definition for the location of steps taken in an n-step
random walk on a square lattice. Hint: Use the definition for the step increments of 
the walk as an auxiliary function.

2. The PerfectSearch function defined in Section 1.1 is impractical for checking
large numbers because it has to check all numbers from 1 through n. If you already
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know the perfect numbers below 500, say, it is inefficient to check all numbers from
1 to 1,000 if you are only looking for perfect numbers in the range 500 to 1,000.
Modify searchPerfect so that it accepts two numbers as input and computes all
perfect numbers between the inputs. For example, PerfectSearch[a,b] will
produce a list of all perfect numbers in the range from a to b.

3. Overload the PerfectSearch function to compute all 3-perfect numbers. A 3-per-
fect number is such that the sum of its divisors equals three times the number. For 
example, 120 is 3-perfect since it is equal to three times the sum of its divisors.

In[1]:= Apply Plus, Divisors 120

Out[1]= 360

Find the only other 3-perfect number under 1,000.
You can overload PerfectSearch as defined in Exercise 2 above by defining a
three-argument version PerfectSearch[a,b,3].

4. Overload PerfectSearch to find the three 4-perfect numbers less than 2,200,000.

5. Redefine PerfectSearch so that it accepts as input a number k, and two numbers 
a and b, and computes all k-perfect numbers in the range from a to b. For example,
PerfectSearch[1,30,2] would compute all 2-perfect numbers in the range
from 1 to 30 and, hence, would output {6,28}.

6. If n  is defined to be the sum of the divisors of n, then n is called superperfect if
n 2 n. Write a function SuperPerfectSearch[a,b] that finds all super-

perfect numbers in the range from a to b.

7. Often in processing files you will be presented with expressions that need to be
converted into a format that can be more easily manipulated inside Mathematica. For
example, a file may contain dates in the form 20030515 to represent May 15, 2003.
Mathematica represents its dates as a list {year,month,day,hour,minutes,seconds}. 
Write a function convertToDate[n] to convert a number consisting of eight
digits such as 20030515 into a list of the form {2003,5,15}.

In[2]:= convertToDate 20030515

Out[2]= 2003, 5, 15
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4.6 Pure functions
A pure function is a function that does not have a name and that can be used “on the spot”;
that  is,  at  the moment  it  is  created.  This  is  often convenient, especially  if  the function is
only  going  to  be  used  once  or  as  an  argument  to  a  higher-order  function,  such  as Map,
Fold, or Nest. The built-in function Function is used to create a pure function.

The basic form of a pure function is Function[x,body] for a pure function with a
single  variable x  (any  symbol  can  be  used  for  the  variable),  and
Function[{x,y,…},body]  for  a  pure  function  with  more  than  one  variable.  The body
looks like the right-hand side of a user-defined function definition, with the variables x, y,
…, where argument names would be.

As  an  example,  the square  function  we  created  earlier  can  be  written  as  a  pure
function.

In[1]:= Function z, z2

Out[1]= Function z, z2

There  is  also  a  standard  input  form that  can  be used  in  writing a  pure function which is
easier  to  write than  the Function  notation  but  can  be  a  bit  cryptic  to  read.  The right-
hand  side  of  the  function  definition  is  rewritten  by  replacing  the  variable  by  the  pound
symbol (#) and ending the expression with the ampersand symbol (&) to indicate that this
is a pure function.

#2 &

If there is more than one variable, #1, #2, and so on are used.
A  pure  function  can  be  used  exactly  like  more  conventional  looking  functions,  by

following the function with the argument values enclosed in square brackets. First we show
the pure function using Function.

In[2]:= Function z, z2 6

Out[2]= 36

Here is the same thing, but using the more cryptic shorthand notation (the parentheses in
the following example are purely for readability and can be omitted if you wish).

In[3]:= #2 & 6

Out[3]= 36

We can, if we wish, give a pure function a name and then use that name to call the function
later. This has the same effect as defining the function in the more traditional manner.

In[4]:= squared #2 &;
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In[5]:= squared 6

Out[5]= 36

Pure  functions  are  very  commonly  used  with  higher-order  functions  like Map  and
Apply,  so,  before  going  further,  let  us  first  look  at  a  few simple  examples  of  the  use  of
pure functions.

Here is a list of numbers.

In[6]:= lis 2, 5, 6.1 ;

Now suppose  we wished to square  each number and then add 1 to it.  The pure function
that does this is: #2 1 &. So that is what we need to map across this list.

In[7]:= Map #2 1 &, lis

Out[7]= 5, 26, 38.21

In the next example we will create a set of data and then use the Select function to
filter out outliers.

In[8]:= data 24.39001, 29.669, 9.321, 20.8856,

23.4736, 22.1488, 24.7434, 22.1619, 21.1039,

24.8177, 27.1331, 25.8705, 39.7676, 24.7762

Out[8]= 24.39, 29.669, 9.321, 20.8856, 23.4736, 22.1488, 24.7434,

22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 39.7676, 24.7762

A plot of the data shows there are two outliers.

In[9]:= ListPlot data, PlotStyle PointSize .02 ;
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The Select  function takes two arguments – the first is the expression from which it will
select elements, and the second argument is  a function that must return True  or False.
Select[expr,test] will then select those elements from expr that return True when test is
applied to them.
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Suppose  we  wish  to  exclude  all  data  points  that  lie  outside  of  the  range  20  to  30.
Then we need a function that returns True if its argument is in that range.

In[10]:= Select data, 20 # 30 &

Out[10]= 24.39, 29.669, 20.8856, 23.4736, 22.1488, 24.7434,

22.1619, 21.1039, 24.8177, 27.1331, 25.8705, 24.7762

A good way to become comfortable with pure functions  is to see them in action, so
we will convert some of the functions we defined earlier into pure functions, showing both
the (…#…)& and the Function forms so that you can decide which you prefer to use.

This function tests whether all the elements of a list are even.

In[11]:= areEltsEven lis_ : Apply And, Map EvenQ, lis

In[12]:= areEltsEven 2, 4, 5, 8

Out[12]= False

Here it is written using pure functions.

In[13]:= Function lis, Apply And, Map EvenQ, lis 2, 4, 5, 8

Out[13]= False

In[14]:= Apply And, Map EvenQ, #1 & 2, 4, 5, 8

Out[14]= False

This function returns each element in the list greater than all previous elements.

In[15]:= maxima[x_] := Union[Rest[FoldList[Max, 0, x]]]

In[16]:= maxima 2, 6, 3, 7, 9, 2

Out[16]= 2, 6, 7, 9

Here it is written using pure functions.

In[17]:= Function x, Union Rest FoldList Max, 0, x 2, 6, 3, 7, 9, 2

Out[17]= 2, 6, 7, 9

In[18]:= Union Rest FoldList Max, 0, # & 2, 6, 3, 7, 9, 2

Out[18]= 2, 6, 7, 9

We can also create nested pure functions. For example, this maps the pure squaring
function over the three-element list {3,2,7}.

In[19]:= Map #2 &, 3, 2, 7

Out[19]= 9, 4, 49
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When  dealing  with  nested  pure  functions,  the  shorthand  notation  can  be  used  for
each  of  the  pure  functions  but  care  needs  to  be  taken  to  avoid  confusion  as  to  which #

variable  belongs  to  which pure  function.  This  can  be  avoided  by  using Function,  in
which case different variable names can be used.

In[20]:= Function y, Map Function x, x2 , y 3, 2, 7

Out[20]= 9, 4, 49

Exercises

1. Write a function to sum the squares of the elements of a numeric list.

2. Write a function to sum the digits of any integer. You will need the IntegerDig
its function (use ?IntegerDigits, or look up IntegerDigits in the Help
Browser to find out about this function).

3. Using the definition of the distance function from Exercise 3 of Section 4.4, write
a new function diameter[pts] that, given a set of points in the plane, finds the
maximum distance between all pairs of points. Try to incorporate the distance
function into diameter without naming it explicitly; that is, use it as a pure func-
tion. Consider using Distribute to get the set of all pairs of points.

In[1]:= pts p1, p2, p3 ;

In[2]:= Distribute pts, pts , List

Out[2]= p1, p1 , p1, p2 , p1, p3 , p2, p1 ,

p2, p2 , p2, p3 , p3, p1 , p3, p2 , p3, p3

4. Take the removeRand function defined in Section 4.4 and rewrite it as a pure
function.

In[3]:= removeRand[lis_] := 

Delete[lis, Random[Integer, {1, Length[lis]}]]

5. Convert the deal function developed earlier into one that uses pure functions. Use
the pure function version of the removeRand function from the previous exercise in
your new deal function definition.

6. Create a function RepUnit[n] that generates integers of length n consisting
entirely of 1s. For example RepUnit[7] should produce 1111111.
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7. Create a function chooseWithoutReplacement[lis,n] that is a generalization
of the deal function in that it will work with any list.

8. Write a pure function that moves a random walker from one location on a square 
lattice to one of the four adjoining locations with equal probability. For example,
starting at {0,0}, the function should return either {0,1}, {0,-1}, {1,0} or 
{-1,0} with equal likelihood. Now, use this pure function with NestList to
generate the list of step locations for an n-step random walk starting at {0,0}.

9. Create a function WordsStartingWith[lis,char] that outputs all those words in
lis that begin with the character char. As a sample list, you can use the dictionary.dat
file that comes with Mathematica.
Here is a platform-independent path to the dictionary file.

In[4]:= wordfile ToFileName $InstallationDirectory, "Documentation",

"English", "Demos", "DataFiles" , "dictionary.dat"

Out[4]= C:\Program Files\Wolfram Research\Mathematica\5.1\

Documentation\English\Demos\DataFiles\dictionary.dat

This reads in the file using ReadList, specifying the type of data we are reading in
as a Word.

In[5]:= words ReadList wordfile, Word ;

10. Modify Exercise 9 above so that WordsStartingWith accepts a string of arbitrary 
length as its second argument.

11. A naive approach to polynomial arithmetic would require three additions and six
multiplies to carry out the arithmetic in the expression a x3 b x2 c x d. Using
Horner’s method for fast polynomial multiplication, this expression can be repre-
sented as d x c x b a x , where there are now half as many multiplies. In general,
the number of multiplies for an n-degree polynomial is given by:

In[6]:= Binomial n 1, 2

Out[6]=
1
2
n 1 n

This, of course, grows quadratically with n, whereas Horner’s method grows linearly.
Create a function Horner[lis,var] that implements Horner’s method for polyno-

mial multiplication. Here is some sample input and the corresponding output that 
your function should generate.

106 An Introduction to Programming with Mathematica



In[7]:= Horner a, b, c, d , x

Out[7]= d x c x b a x

In[8]:= Expand %

Out[8]= d c x b x2 a x3

4.7 One-liners
In  the  simplest  version  of  a  user-defined  function,  there  are  no  value  declarations  or
auxiliary  function  definitions;  the  right-hand  side  is  a  single  nested  function  call  whose
arguments are the names of the arguments on the left-hand side, without the blanks. These
“one-liners”  are  fantastically  useful  and  so  we  will  discuss  them  in  the  context  of  three
examples,  one  from  electrical  engineering  (computing  Hamming  distance),  one  from
ancient  history  (the  Josephus  problem),  and  the  last  a  simple  and  practical  problem
(counting change).

Hamming distance

When a code is transmitted over a channel in the presence of noise, errors will often occur.
The task of channel coding is to represent the source information in a manner that mini-
mizes  the  error  probability  in  decoding. Hamming  distance  is  used  in  source  coding  to
represent  an  information  source  with  the  minimum number  of  symbols.  For  two  lists  of
binary symbols, the Hamming distance is defined as the number of nonmatching elements
and so gives a measure of the how well these two lists match up.

Let us first think about how we might determine if two binary symbols are identical.
SameQ[x,y] will return True if x and y are identical.

In[1]:= SameQ 0, 0 , SameQ 1, 0 , SameQ 1, 1

Out[1]= True, False, True

So we need to thread SameQ over the two lists of binary numbers

In[2]:= MapThread SameQ, 1, 0, 0, 1, 1 , 0, 1, 0, 1, 0

Out[2]= False, False, True, True, False
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and then count up the occurrences of False.

In[3]:= Count %, False

Out[3]= 3

So  a  first  definition  of HammingDistance  could  be  accomplished  by  putting  these  last
two pieces together.

In[4]:= HammingDistance lis1_, lis2_ :

Count MapThread SameQ, lis1, lis2 , False

In[5]:= HammingDistance 1, 0, 0, 1, 1 , 0, 1, 0, 1, 0

Out[5]= 3

We might try to solve this problem by a more direct approach. Since we are dealing
with  binary  information,  we  could  use  some  of  the  logical  binary  operators  built  into
Mathematica.

Here is our transposed list again.

In[6]:= lis Transpose 1, 0, 0, 1, 1 , 0, 1, 0, 1, 0

Out[6]= 1, 0 , 0, 1 , 0, 0 , 1, 1 , 1, 0

BitXor[x,y] returns the bitwise XOR of x and y. So if x and y can only be among
the  binary  integers  0  or  1, BitXor  will  return  0  whenever  they  are  the  same  and  will
return 1 whenever they are different.

In[7]:= Apply BitXor, 0, 0 , 1, 0 , 1, 1 , 1

Out[7]= 0, 1, 0

Here then is BitXor applied to lis.

In[8]:= Apply BitXor, lis, 1

Out[8]= 1, 1, 0, 0, 1

And here are the number of 1s that occur in that list.

In[9]:= Apply Plus, %

Out[9]= 3

Summing  up,  our  function HammingDistance2  first  pairs  up  the  lists  (Transpose),
then determines which pairs contain different elements (apply BitXor), and finally counts
up the number of 1s (Apply[Plus,…]).

In[10]:= HammingDistance2 lis1_, lis2_ : Apply Plus,

Apply BitXor, Transpose lis1, lis2 , 1
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In[11]:= HammingDistance2 1, 0, 0, 1, 1 , 0, 1, 0, 1, 0

Out[11]= 3

Let us compare the running times of these implementations using a large data set, in
this case two lists consisting of one million 0s and 1s.

In[12]:= data1 Table Random Integer , 106 ;

In[13]:= data2 Table Random Integer , 106 ;

In[14]:= Timing HammingDistance data1, data2

Out[14]= 1.162 Second, 499801

In[15]:= Timing HammingDistance2 data1, data2

Out[15]= 1.392 Second, 499801

Although these times do not  look too  bad,  they are in fact  too slow for any serious
work with signal processing. The exercises ask you to write an implementation of Hamming
Distance that runs about two orders of magnitude faster than those presented here.

As  an  aside,  the  above  computations  are  not  a  bad  check  on  the  built-in  random
number  generator  –  we  would  expect  that  about  one  half  of  the  paired  up  lists  would
contain different elements.

The Josephus problem

Flavius Josephus was a Jewish historian during the Roman–Jewish war of the first century
AD. Through his writings comes the following story:

The Romans had chased a group of ten Jews into a cave and were about to attack. Rather than

die at the hands of their enemy, the group chose to commit suicide one by one. Legend has it 

though, that they decided to go around their circle of ten individuals and eliminate every other 

person until only one was left.

Who  was  the  last  to  survive?  Although  a  bit  macabre,  this  problem  has  a  definite
mathematical interpretation that lends itself well to a functional style of programming. We
will  start  by  changing  the  problem  a  bit  (the  importance  of  rewording  a  problem  can
hardly be overstated; the key to most problem-solving resides in turning something we can
not work with into something we can work with). We will restate the problem as follows: n
people are lined up. The first person is moved to the end of the line, the second person is
removed from the line,  the third person  is  moved to the end of  the line,  and so  on until
only one person remains in the line.
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The statement  of  the  problem  indicates  that  there is  a  repetitive  action,  performed
over and over again. It involves the use of the RotateLeft function (move the person at
the  front  of  the  line  to  the  back  of  the  line)  followed  by  the  use  of  the Rest  function
(remove the next person from the line).

In[16]:= Rest RotateLeft # & a, b, c, d

Out[16]= c, d, a

At this point it is already pretty clear where this computation is headed. We want to take a
list  and,  using  the Nest  function,  perform  the pure  function  call  (Rest[Rotate
Left[#])& on the list until only one element remains. A list of n elements will need n 1
calls. So we can now write the function, to which we give the apt name survivor.

In[17]:= survivor lis_ :

Nest Rest RotateLeft # &, lis, Length lis 1

Trying out  the survivor  function on a list  of  ten,  we see that  the fifth position will be
the position of the survivor.

In[18]:= survivor Range 10

Out[18]= 5

Tracing the applications of RotateLeft in this example gives a very clear picture of what
is  going  on.  The  following  form of TracePrint  shows  only  the  results  of  the  applica-
tions  of RotateLeft  that  occur  during  evaluation  of  the  expression survivor[

Range[6]].

In[19]:= TracePrint survivor Range 6 , RotateLeft

RotateLeft

2, 3, 4, 5, 6, 1

RotateLeft

4, 5, 6, 1, 3

RotateLeft

6, 1, 3, 5

RotateLeft

3, 5, 1

RotateLeft

1, 5

Out[19]= 5
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Pocket change

As another example, we will write a program to perform an operation most of us do every
day:  calculating how much change we have in our pocket.  Suppose we have the following
collection of coins.

In[20]:= coins p, p, q, n, d, d, p, q, q, p

Out[20]= p, p, q, n, d, d, p, q, q, p

Assume p,  n,  d,  and q  represent pennies,  nickels,  dimes, and quarters,  respectively. Let  us
start by using the Count function to determine the number of pennies we have.

In[21]:= Count coins, p

Out[21]= 4

This works. So let us do the same thing for all of the coin types.

In[22]:= Count coins, p , Count coins, n ,

Count coins, d , Count coins, q

Out[22]= 4, 1, 2, 3

Looking  at  this  list,  it  is  apparent  that  there  ought  to  be  a  more  compact  way  of
writing  the  list.  If  we Map  a  pure  function  involving Count  and coins  on  to  the  list
{p,n,d,q}, it should do the job.

In[23]:= Map Count coins, #1 & , p, n, d, q

Out[23]= 4, 1, 2, 3

Now that we know how many coins of each type we have, we want to calculate how much
change we have. We first do the calculation manually  to see what we get for an answer (so
we will know when our program works).

In[24]:= 4 1 1 5 2 10 3 25

Out[24]= 104

From  the  above  computation  we  see  that  the  lists {4,1,2,3}  and {1,5,10,25}  are
first multiplied together element-wise and then the elements of the result are added. This
suggests a few possibilities.

In[25]:= Apply Plus, 4, 1, 2, 3 1, 5, 10, 25

Out[25]= 104

In[26]:= 4, 1, 2, 3 . 1, 5, 10, 25

Out[26]= 104
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Either of these operations  are suitable  for the job (to coin a phrase, “there’s not a penny,
nickel, quarter, or dime’s worth of difference”). We will write the one-liner using the first
method.

In[27]:= pocketChange x_ :

Apply Plus, Map Count x, # & , p, n, d, q 1, 5, 10, 25

In[28]:= pocketChange coins

Out[28]= 104

Exercises

1. Write a function to compute the Hamming distance of two binary lists (assumed to 
be of equal length), using Select and an appropriate predicate function.

2. All of the implementations of Hamming distance discussed so far are a bit slow for
large datasets. You can get a significant speedup in running times by using functions
that are optimized for working with numbers (a topic we discuss in detail in Chapter 
8). Write an implementation of Hamming distance using the Total function and 
then compare running times with the other versions discussed in this chapter.

3. One of the best ways to learn how to write programs is to practice reading code. We
list below a number of one-liner function definitions along with a very brief explana-
tion of what these user-defined functions do and a typical input and output. Decon-
struct these programs to see what they do and then reconstruct them as compound
functions without any pure functions.
a. Determine the frequencies with which distinct elements appear in a list.

In[1]:= frequencies lis_ : Map #, Count lis, # &, Union lis

In[2]:= frequencies a, a, b, b, b, a, c, c

Out[2]= a, 3 , b, 3 , c, 2

b. Divide up a list into parts each of whose lengths are given by the second
argument.

In[3]:= split1 lis_, parts_ :

Inner Take lis, #1, #2 &, Drop #1, 1 1,

Rest #1 , List & FoldList Plus, 0, parts
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In[4]:= split1 Range 10 , 2, 5, 0, 3

Out[4]= 1, 2 , 3, 4, 5, 6, 7 , , 8, 9, 10

This is the same as the previous program, done in a different way.

In[5]:= split2[lis_, parts_] :=

  Map[(Take[lis, # + {1, 0}])&,

  Partition[FoldList[Plus, 0, parts], 2, 1]]

c. Another game in the Illinois State Lottery is based on choosing n numbers, each
between 0 and s with no duplicates allowed. Write a user-defined function called 
lotto (after the official lottery names of Little Lotto and Big Lotto) to perform
sampling without replacement on an arbitrary list. (Note: The difference between
this function and the function chooseWithoutReplacement is that the order
of selection is needed here.)

In[6]:= lotto1 lis_, n_ : Flatten

Rest MapThread Complement, RotateRight # , # , 1 &

NestList Delete #, Random Integer, 1, Length # &,

lis, n

In[7]:= lotto1 Range 10 , 5

Out[7]= 10, 3, 2, 7, 6

This is the same as the previous program, done in a different way.

In[8]:= lotto2 lis_, n_ : Take Transpose Sort

Transpose Table Random , Length lis , lis 2 , n

As the split and lotto programs illustrate, user-defined functions can be written
in several ways. The choice as to which version of a program to use has to be based 
on efficiency. A program whose development time was shorter and which runs faster
is better than a program which took more time to develop and which runs more
slowly. Although concise Mathematica programs tend to run fastest, when execution 

speed is a primary concern (when dealing with very large lists) it is a good idea to 
take various programming approaches and perform Timing tests to determine the
fastest program.

4. Use the Timing function to determine when (in terms of the relative sizes of the list 
and the number of elements being chosen) it is preferable to use the different ver-
sions of the lotto function.

5. Rewrite the pocketChange function in two different ways – one, using Dot, and
the other using Inner.
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6. Make change with quarters, dimes, nickels, and pennies using the fewest coins.

In[9]:= makeChange 119

Out[9]= 4, 1, 1, 4

7. Write a one-liner to create a list of the step locations of a two-dimensional random
walk that is not restricted to a lattice. Hint: Each step length must be the same, so the
sum of the squares of the x- and y-components of each step should be equal to 1.

8. Write a one-liner version of convertToDate as described in Exercise 7 from
Section 4.5. Consider the built-in function FromDigits.
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5 Procedural programming

Conventional programming languages like C and Fortran embody a style of program-
ming that  has  roots in  the  early days of  computing when resource  constraints  forced
programmers to write their code in a step-by-step manner. These procedures, as they
came  to  be  known,  typically  involved  certain  basic  elements:  looping  over  an  array,
conditional statements that controlled the flow of execution, logical constructs to build
up  tests,  and  functions  to  jump  around  from  one  place  in  a  program  to  another.
Although  newer  languages  have  introduced  many  new  programming  paradigms,
procedural  programming  continues  to  be  used  and  remains  an  appropriate  style  for
certain  kinds  of  problems.  In  this  chapter  we  will  look  at  how  procedural  program-
ming is used in Mathematica, discuss what types of problems it is most appropriate for,
and compare Mathematica’s implementation with other languages.

5.1 Introduction
A procedure  is  a series of instructions  that  are evaluated in a definite order. The following
program is a procedure.

In[1]:= mat a, b, c , d, e, f , g, h, k ;

newmat mat;

Do newmat i, j mat j, i ,

i, Length mat , j, Length mat ;

newmat

Out[4]= a, d, g , b, e, h , c, f, k

In[5]:= MatrixForm %

Out[5]//MatrixForm=
a d g
b e h
c f k

We could look at this procedure as a compound expression consisting of a sequence
of  four  expressions:  the  first  assigns  the  symbolic 3 3  matrix  to  the  symbol mat;  the
second  is  also  an  assignment  copying  the  matrix  to  another  symbol, newmat;  the  third
expression loops  through the matrix, interchanging columns and rows of the original and



putting them into the new matrix – essentially performing a transpose operation; the final
expression simply outputs the new matrix.

Procedural programs also typically involve some flow control. What this means is that,
depending  upon  a  certain  condition,  different  steps  in  the  procedure  will  be  followed.
Perhaps the simplest example of this is an If statement.

In[6]:= f x_ : If 20 x 30, x,

Print "The number ", x, " is outside the range."

In[7]:= f 23

Out[7]= 23

In[8]:= f 66

The number 66 is outside the range.

The value  of  the  first  argument  of  the If  function  determines  the direction  of  the
rest of the evaluation. This is a control structure.

These  are  typical  components  of  procedural  programs  –  a  series  of  expressions  to
evaluate in some order and functions  to control  the flow of execution. In this  chapter we
will  explore  these topics  in addition  to conditional  definitions  which are another form of
flow control. All of these features will greatly expand what we can do with Mathematica and
we  will  find  many  applications  of  these  techniques  in  later  chapters  on  recursion  and
numerics.

5.2 Loops and iteration

Newton’s method

One of  the  most  famous  of  all  numerical  algorithms  is  Newton’s method  for  finding the
roots of a function. Even though Mathematica includes a built-in function, FindRoot, that
implements  this  method,  this  is  a  classic  use  of  iteration  and  so  central  to  numerical
analysis that it is well worth your time learning how to implement it.

Throughout  this  section  we  will  use  the  function x2 50,  whose  root  is,  of  course,
the square root of 50. Here is the computation using the built-in FindRoot.

In[1]:= FindRoot x2 50 0, x, 50

Out[1]= x 7.07107

The number 50 in {x,50} is the initial guess of the root.
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So why should you learn to program a root-finder yourself? As we stated above, it is a
classical  algorithm  and  the  basis  of  many  more  advanced  root-finding  techniques  in
numerical analysis. But also, with many numerical problems, the built-in operations do not
always give you optimal results. This is because the built-in functions are designed to work
for  the broadest  possible  set  of  situations,  but  might have occasional  trouble with certain
exceptional cases. An example is the function f x x1 3.

In[2]:= FindRoot x1 3 0, x, 0.1

FindRoot::lstol :

The line search decreased the step size to within tolerance

specified by AccuracyGoal and PrecisionGoal but was

unable to find a sufficient decrease in the merit

function. You may need more than MachinePrecision digits

of working precision to meet these tolerances. More…

Out[2]= x 0.000405502 2.29415 10 15

Although  this  particular  function’s  root  can  be  better  approximated  using  an  option
(DampingFactor)  to FindRoot,  we  will  find  it  very  instructive  to  program  our  own
root-finding  functions  that  can  solve  this  problem  and,  in  the  process,  learn  about  the
structure of iterative programming.

In[3]:= FindRoot x1 3 0, x, 0.1 , DampingFactor 2

Out[3]= x 8.93553 10 17

Do loops

Suppose  we  are  given  a  function f  and  can  compute  its  derivative, f .  Then  Newton’s
algorithm works as follows:

• give an initial estimate of the root, say x0

• keep  generating  better  estimates, x1,  x2,  …,  using  the  following  rule  until  you  are
done (we will discuss this later):

xi 1 xi
f xi
f xi

The method is illustrated in Figure 5.1. Under the favorable circumstances pictured there
the estimates get closer and closer to the root.
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f x0

x0x1

Figure 5.1: Illustration of Newton’s method

We will discuss in a moment when to stop, but first let us look at an example. For the
function f x x2 50,  the  derivative is f x 2 x.  This  specific  case  is  shown in  Figure
5.2, with 50 itself as the initial estimate. Let us see what happens after five iterations of this
procedure.

In[4]:= f x_ : x2 50

In[5]:= x0 50;

In[6]:= x1 N x0
f x0

f x0

Out[6]= 25.5

In[7]:= x2 N x1
f x1

f x1

Out[7]= 13.7304

In[8]:= x3 N x2
f x2

f x2

Out[8]= 8.68597

In[9]:= x4 N x3
f x3

f x3

Out[9]= 7.22119

In[10]:= x5 N x4
f x4

f x4

Out[10]= 7.07263
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f 50

5025.513.78.7

Figure 5.2: Newton’s method for f x x2 50

As  you  can  see,  these  values  are  getting  closer  and  closer  to  the  real  square  root  of  50,
which is approximately 7.07107.

We  need  to  discuss  how  to  decide  when  we  are  satisfied  with  the  answer  we  have
computed.  First,  though,  note  one  thing:  Wherever  we  decide  to  stop,  say  at  the  fifth
iteration, all the previous values we computed are of no interest. So we could have avoided
introducing those new names by instead just writing the following:

In[11]:= a 50;

In[12]:= a N a
f a

f a

Out[12]= 25.5

In[13]:= a N a
f a

f a

Out[13]= 13.7304

In[14]:= a N a
f a

f a

Out[14]= 8.68597

In[15]:= a N a
f a

f a

Out[15]= 7.22119

In[16]:= a N a
f a

f a

Out[16]= 7.07263
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To return to the question of when to terminate the computation, one simple answer
is: repeat it ten times.

In[17]:= Do a N a f a f' a , 10

In general, Do[expr,{n}],  evaluates expr n  times. So, in this case, we can initialize a and
perform the ten evaluations as follows:

In[18]:= a 50;

Do a N a
f a

f a
, 10

In[20]:= a

Out[20]= 7.07107

Note  that  the Do  loop  itself  yields  no  value  (or  rather,  it  yields  the  special  value Null,
which is a symbol Mathematica  uses when there is no result from an evaluation; nothing is
printed). But the important thing is that the Do loop assigns a value to a that is very close
to the square root of 50.

The  arguments  of Do  are  the  same  as  those  of Table  (see  Section  3.2;  see  also
Exercise 3 at the end of this section).

Do[expr,{i,imin,imax,di}]

This form repeats expr with variable i having values imin, imin di, and so on, as long
as  the value of imax  is  not  exceeded. The loop  is  repeated a  total  of imax imin di
times. Furthermore, if di is omitted, it is assumed to be 1; and if only i and imax are given,
both imin and di are assumed to be 1. For example, if we wanted to print each approxima-
tion and label it with a number, we could do that by using a compound expression inside
the body of the Do loop, in this case, adding a Print statement.

In[21]:= a 50;

Do a N a f a f' a ;

Print "approximation ", i, ": ", a , i, 1, 6

approximation 1: 25.5

approximation 2: 13.7304

approximation 3: 8.68597

approximation 4: 7.22119

approximation 5: 7.07263

approximation 6: 7.07107
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Example: Random permutations

Let  us  look  at  another  example  of  a Do  loop.  We  will  create  a  function random

Permutation[lis]  that will take a list as  an argument and generate a random permuta-
tion of its elements.

To build this function up step by step, we first start with a small list of ten elements.

In[23]:= lis Range 10

Out[23]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The idea will be to choose a position within the list at random and remove the element in
that position and put it into a new list res.

In[24]:= rand : Random Integer, 1, Length lis

In[25]:= x Part lis, rand

Out[25]= 1

In[26]:= res ;

res Append res, x

Out[27]= 1

We then repeat the above process on the remaining elements of the list.

In[28]:= lis Complement lis, x

Out[28]= 2, 3, 4, 5, 6, 7, 8, 9, 10

In[29]:= x lis rand

res Append res, x

lis Complement lis, x

Out[29]= 8

Out[30]= 1, 8

Out[31]= 2, 3, 4, 5, 6, 7, 9, 10

In this example we know explicitly how many iterations to perform in our Do loop: n
times, where n is the length of the list that is being worked on.

First we clear some symbols.

In[32]:= Clear lis, res, x, rand ;
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Now we just put the pieces of the previous computations together in  one input.

In[33]:= lis Range 10 ;

res ;

Do

x Part lis, Random Integer, 1, Length lis ;

res Append res, x ;

lis Complement lis, x ,

i, 1, 10

When we are done, the result is left in the new list res.

In[36]:= res

Out[36]= 7, 1, 2, 5, 8, 10, 4, 3, 9, 6

Here  then  is  our  function randomPermutation  that  takes  a  list  as  an  argument
and generates a random permutation of that list’s elements.

In[37]:= Clear res, rand, x, lis

In[38]:= randomPermutation lis_ : Module res , x, l2 lis ,

Do

x Part l2, Random Integer, 1, Length l2 ;

res Append res, x ;

l2 Complement l2, x ,

i, 1, Length lis ;

res

Here is a permutation of the list consisting of the first 20 integers.

In[39]:= randomPermutation Range 20

Out[39]= 7, 20, 16, 8, 19, 10, 15, 17,

13, 3, 5, 12, 1, 11, 2, 4, 6, 18, 9, 14

And here is a random permutation of the lowercase letters of the English alphabet.

In[40]:= alphabet Map FromCharacterCode , Range 97, 122

Out[40]= a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

In[41]:= randomPermutation alphabet

Out[41]= i, l, c, s, t, d, j, q, y, f, e,

k, x, a, h, r, o, g, u, z, v, n, p, w, b, m
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While loops

Let  us  return  to  Newton’s  method  for  finding  roots  and  see  how  we can  use  a  different
control  structure  for  the  iteration.  In  the  previous  section  on Do  loops,  we  explicitly
stopped the iteration after ten times through the loop. Ten times is okay for f x x2 50,
but not always. Consider the function x sin x .

In[42]:= g x_ : x Sin x

It has a root at 0.

In[43]:= g 0

Out[43]= 0

However, ten iterations of Newton’s algorithm does not get us very close to it.

In[44]:= xi 1.0;

Do xi N xi
g xi

g xi
, 10

In[46]:= xi

Out[46]= 0.0168228

Twenty-five iterations does a bit better.

In[47]:= xi 1.0;

Do xi N xi
g xi

g xi
, 25

In[49]:= xi

Out[49]= 0.0000384172

In truth, no fixed number of iterations is going to do the trick for all functions. We
need to iterate repeatedly until our estimate is close enough to stop. When is that? There
are a  number of  ways to  answer that  question,  none always  best,  but  here is  an easy one:
when f xi  is very close to zero. So, choose  to be a very small number, and iterate until

f xi .
But how can we write a loop that will test some condition and stop when the condi-

tion  is  no longer met? The looping  construct Do  iterates  a  number of  times  that  is  fixed
when the loop is begun. We need a new kind of iterative function. It is While, and it has
the following form.

While[test,expr]

5 Procedural programming 123



The first  argument is  the test  or condition,  the second the body.  It  works like this:  evaluate
the test; if it is true then evaluate the body and then the test again. If it is true again, then
again evaluate the body and the test. Continue this way until the test evaluates to False.
Note that the body may not be evaluated at all (if the test is false the first time), or it may
be evaluated once, or a thousand times.

This  is  just  what  we  want:  if  the  estimate  is  not  yet  close  enough,  compute  a  new
estimate and try again.

In[50]:= f x_ : x2 50

In[51]:= .0001;

xi 50;

While Abs f xi ,

xi N xi
f xi

f xi

In[54]:= xi

Out[54]= 7.07107

To wrap things up, let us put this all into a function.

In[55]:= findRoot fun_, init_, _ : Module xi init ,

While Abs fun xi ,

xi N xi
fun xi

fun xi
;

xi

In[56]:= findRoot f, 50, .0001

Out[56]= 7.07107

Instead  of  setting  a  global  variable  to  the  final  estimate,  this  function  returns  that
estimate  as  its  value. (For  an explanation of  why we introduced  the local  variable xi,  see
the end of this subsection.)

Let  us  work  with  this  example  a  little  more.  Suppose  we  would  like  to  know  how
many  iterations  were  needed  to  find  the  answer.  One  possibility  is  to  insert  a Print  to
show the value of xi each time through the loop.

In[57]:= findRoot fun_, init_, _ : Module xi init ,

While Abs fun xi ,

Print "x ", xi ;

xi N xi
fun xi

fun xi
;

xi
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In[58]:= findRoot f, 50, 0.001

x 50

x 25.5

x 13.7304

x 8.68597

x 7.22119

x 7.07263

Out[58]= 7.07107

Counting  the  lines  shows  that  the  function  converged  after  six  iterations  (note  that  we
were seeing the value of xi  at the beginning  of  each execution of the body).  A better idea
would be to have the function actually count the number of iterations and return it as part
of its answer.

In[59]:= findRoot fun_, init_, _ :

Module xi init, count 0 , While Abs fun xi ,

count count 1;

xi N xi
fun xi

fun xi
;

xi, count

In[60]:= findRoot f, 50, 0.001

Out[60]= 7.07107, 6

Here  is  another  question:  in  all  these  versions  of findRoot,  f[xi]  is  computed
two times at each iteration, once in the condition and once in the body. In many circum-
stances, calls to f are very time consuming, and should be minimized. Can we arrange that
f[xi] only be computed once in each iteration?

The solution  to this  is  to create a new local  variable, funxi,  which always  contains
the value of fun[xi] for the current value of xi. We can ensure that it does so by recom-
puting it whenever xi is reassigned.

In[61]:= findRoot fun_, init_, _ :

Module xi init, funxi fun init ,

While Abs funxi ,

xi N xi
funxi

fun xi
;

funxi fun xi ;

xi
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In  all  our  examples,  we  used Module  to  introduce  a  local  variable  to  which  we
assigned values in the body of the While. We did this to avoid a common error in the use
of iteration: attempting to assign to a function’s argument. For example, the following version
of findRoot does not work.

In[62]:= findRoot fun_, x_, _ :

While Abs fun x ,

x N x
fun x

fun x
;

x

In[63]:= findRoot Sin, .1, .01

Set::setraw : Cannot assign to raw object 0.1`. More…

General::stop : Further output of Set::setraw will

be suppressed during this calculation. More…

Out[63]= $Aborted

What  happened  can  be  seen  from the  trace  (of  which  we  have  only  shown  some)  of  the
output.

In[64]:= TracePrint findRoot Sin, .1, .01 , findRoot

findRoot

While Abs Sin 0.1 0.01, 0.1 N 0.1
Sin 0.1
Sin 0.1

; 0.1

Set::setraw : Cannot assign to raw object 0.1`. More…

General::stop : Further output of Set::setraw will

be suppressed during this calculation. More…

Out[64]= $Aborted

The x  in  the  body  of findRoot  is  replaced  by  the  argument .1,  which  is  perfectly
normal, leaving an expression of the form 0.1 = something, which is not possible. There
is  a  way  around  this,  using  the HoldFirst  attribute,  but  introducing  local  variables  is
much better style. It  is  very disconcerting,  after all,  to call  a function and find, when it  is
done, that your global variables have changed values.
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NestWhile and NestWhileList

Let us look again at the last version of the findRoot function we just created.

In[65]:= findRoot fun_, init_, _ :

Module xi init, funxi fun init ,

While Abs funxi ,

xi N xi
funxi

fun' xi
;

funxi fun xi ;

xi

The While  loop evaluates the body of this function (the two assignments, one to xi and
the other to funxi) until the test fails. There is another function we could use to simplify
this calculation – it is NestWhile. 

NestWhile[f,init,test]

This function iterates f  with initial value init, while test continues to be true.
Let us rewrite findRoot using NestWhile. The first argument is the function we

are iterating. Here we will use a pure function that  represents the Newton iteration. The
second argument is the initial guess, the initial value for the iteration. The third argument
to NestWhile  is  the  test  that  will  be  performed  each  time  through  the  loop  until  it
returns False. In this case, we are setting an explicit value for  of 0.001 and so our test is

f x .001.

In[66]:= f x_ : x2 50

In[67]:= findRoot fun_, init_ :

NestWhile #
fun #

fun' #
&, N init , Abs fun # .001 &

This computes the square root of 50 with an initial guess of 10.

In[68]:= findRoot f, 10

Out[68]= 7.07108

We  can  easily  write  a  function findRootList  based  on NestWhileList  that  will
output all the intermediate computed values.

In[69]:= findRootList fun_, init_ :

NestWhileList #
fun #

fun' #
&, N init , Abs fun # .001 &
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In[70]:= findRootList f, 10

Out[70]= 10., 7.5, 7.08333, 7.07108

Note: the functions introduced in this section are rather simplistic implementations of
Newton’s  algorithm.  At  this  stage,  we  are  only  interested  in  learning  about  how  to  use
some  of Mathematica’s  procedural  functions  to  implement  the  iterations  here.  In  their
current form, they have some serious limitations regarding accuracy and precision that we
will address in Chapter 8, where we will discuss numerical issues in detail. The exercises at
the  end  of  this  section  also  walk  the  reader  through  several  improvements  to  these
functions.

Exercises

1. Compute the square roots of 50 and 60 simultaneously, that is, with a single Do loop.

2. Compare the use of a Do loop with using the function Nest (see Section 4.3). In 
particular, compute the square root of 50 using Nest.

3. Do is closely related to Table, the main difference being that Do does not return any 
value, whereas Table does. Use Table instead of Do in your solution to Exercise 1.
What do you get?

4. Compute Fibonacci numbers iteratively. You will need to have two variables, say 
this and prev, giving the two most recent Fibonacci numbers, so that after the ith 
iteration, this and prev have the values Fi and Fi 1, respectively.

5. One additional improvement can be made to the findRoot program developed in
this section. Notice that the derivative of the function fun is computed each time
through the loop. This is quite inefficient. Rewrite findRoot so that the derivative
is computed only once and that result is used in the body of the loop.

6. Another termination criterion for root-finding is to stop when xi xi 1 ; that
is, when two successive estimates are very close. The idea is that if we are not getting
much improvement, we must be very near the root. The difficulty in programming
this is that we need to remember the two most recent estimates computed. (It is 
similar to computing Fibonacci numbers iteratively, as in Exercise 4.) Program
findRoot this way.

7. The built-in FindRoot function is set up so that you can monitor intermediate
computations using the option EvaluationMonitor.
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In[1]:= xintermed ;

FindRoot x2 50, x, 50 ,

EvaluationMonitor AppendTo xintermed, x ;

In[3]:= xintermed

Out[3]= 50., 25.5, 13.7304, 8.68597,

7.22119, 7.07263, 7.07107, 7.07107

Modify each of the versions of findRoot presented in the text that use a Do or 
While loop to produce a list of all the estimates computed.

f x_ : x2 50;

findRootList f, 50, 0.001

50, 25.5, 13.7304, 8.68597, 7.22119, 7.07263, 7.07107, 7.07107

8. To guard against starting with a poor choice of initial value, modify findRootList
to take, as an argument, a list of initial values, and simultaneously compute approxima-
tions for each until one converges; then return that one.

9. The bisection method is quite useful for finding roots of functions. If a continuous
function f x  is such that f a 0 and f b 0 for two real numbers a and b, then, as a 
consequence of the Intermediate Value Theorem of calculus, a root of f  must occur
between a and b. If f  is now evaluated at the midpoint of a and b, and if
f a b 2 0, then the root must occur between a b 2 and b; if not, then it 
occurs between a and a b 2. This bisection can be repeated until a root is found
to any specified tolerance.
Define bisect[f ,{a,b, }] to compute a root of f , within , using the bisection
method. You should give it two initial values a and b and assume that f a f b 0;
that is, one of f a  and f b  is positive and the other is negative.

10. Using a While loop, write a function gcd[m,n] that computes the greatest com-
mon divisor of m and n. The Euclidean algorithm for computing the gcd of two 
numbers m and n, assumed to be positive integers, sets m n, and n m mod n. It
iterates this process until n 0, at which point the gcd of m and n is left in the value
of m.

11. Create a procedural definition for each of the following functions, first by creating a 
new list and filling in the elements. For each function, create a definition using a Do
loop and another using Table. For example, the following function first creates an
array of the same dimension as mat, but consisting of 0s. Then inside the Do loop it 
assigns the element in position {j,i} in mat to position {i,j} in matA, effectively
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performing a transpose operation. Finally, it returns matA, since the Do loop itself
does not return a value.

In[4]:= transpose mat_ :

Module matA Table Table 0, n Length mat ,

m Length mat 1 , Do matA i, j mat j, i ,

i, 1, m ,

j, 1, n ;

matA

In[5]:= mat1 a, b, c , d, e, f , h, k, l ;

In[6]:= MatrixForm mat1

Out[6]//MatrixForm=
a b c
d e f
h k l

In[7]:= MatrixForm transpose mat1

Out[7]//MatrixForm=
a d h
b e k
c f l

Note this same computation could be performed with what is referred to as a struc-
tured iteration using Table.

In[8]:= transposeStruc mat_ :

Module

matA Table 0, n Length mat , m Length mat 1 ,

Table matA i, j mat j, i , i, m , j, n

In[9]:= transposeStruc mat1 MatrixForm

Out[9]//MatrixForm=
a d h
b e k

c f l

a. Create the function reverse[vec], which reverses the elements in the list vec.

b. Create a function rotateRight[vec,n], where vec is a vector and n is a
(positive or negative) integer.
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c. Create a procedural implementation of rotateRows, which could be defined in
this functional way:

In[10]:= rotateRows[mat_] := Map[(rotateRight[mat[[#]], #-1])&,

  Range[1, Length[mat]]]

That is, it rotates the ith row of mat i 1 places to the right.
d. Create a procedural function rotateRowsByS, which could be defined in this 

functional way:

In[11]:= rotateRowsByS mat_, S_ ; Length mat Length S :

Map rotateRight mat #1 , S #1 & , Range 1, Length mat

That is, it rotates the ith row of matA by the amount S[[i]].
e. Create a function compress[lisA, lisB], where lisA and lisB are lists of equal 

length, and lisB contains only Boolean values (False and True), selects out of 
lisA those elements corresponding to True in lisB. For example, the result of 
compress[{a,b,c,d,e},{True,True,False,False,True}] should
be {a,b,e}. To know what size list to create, you will first need to count the
occurrences of True in lisB.

5.3 Flow control

Conditional functions

In this section we will look at functions that control the flow of execution of an evaluation.
Perhaps the simplest  and easiest  to understand of these class  of functions  is  the If  state-
ment. Here is a rather simplistic implementation of the absolute value function, using If.

In[1]:= abs x_ : If x 0, x, x

In[2]:= abs 4

Out[2]= 4

The If  function  takes  three  arguments:  the  first  is  a  test;  if  the  test  evaluates  to
True, then the second argument is evaluated; if the test evaluates to False, then the third
argument of the If is evaluated.
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If  can  also  be  used  in  conjunction  with  the  higher-order  functions  discussed  in
Chapter 4 to achieve greater flexibility. For example, abs can now be mapped over a list of
numbers.

In[3]:= Map abs, 2, 1, 0, 1, 2

Out[3]= 2, 1, 0, 1, 2

By default, this function will not automatically map across lists.

In[4]:= abs 2, 1, 0, 1, 2

Out[4]= If 2, 1, 0, 1, 2 0, 2, 1, 0, 1, 2 , 2, 1, 0, 1, 2

If  you  want abs  to  behave  like  many  of  the  built-in  functions  and  automatically  map
across  lists  when they  are  given as  the argument  to abs,  you  need to  make  the function
Listable as described in Sections 2.4 and 4.2.

In[5]:= SetAttributes abs, Listable

In[6]:= abs 2, 1, 0, 1, 2

Out[6]= 2, 1, 0, 1, 2

Here  are  some  additional  examples  using If.  Given  a  list,  the  following  function
adds 1 to all the numeric quantities occurring in it.

In[7]:= incrementNumbers lis_ : Map If NumericQ #1 , # 1, # &, lis

In[8]:= incrementNumbers 4, f, 6.1 I,

Out[8]= 5, f, 7.1 , 1

Here is a function that divides 100 by every number in a numerical list, except 0s.

In[9]:= divide100By lis_ : Map If # 0, #,
100

#
&, lis

In[10]:= divide100By 5, , 0

Out[10]= 20,
100

, 0

Here is a function to remove consecutive occurrences of the same value.

In[11]:= removeRepetitions lis_ :

Fold If #2 Last #1 , #1, Append #1, #2 &,

First lis , Rest lis

In[12]:= removeRepetitions 0, 1, 1, 2, 2, 2, 1, 1

Out[12]= 0, 1, 2, 1
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As a final example of If, the function applyChar  takes a list as an argument. This
list  must  contain,  first,  a  character,  which  must  be  one  of "+",  "-",  "*",  or "/";  that
character must be followed by all numbers. applyChar applies the function named by the
character to the elements of the rest of the list.

In[13]:= applyChar lis_ : Module op First lis , nums Rest lis ,

If op " ", Apply Plus, nums ,

If op " ", Apply Subtract, nums ,

If op " ", Apply Times, nums ,

If op " ", Apply Divide, nums ,

Print "Bad argument to applyChar"

In[14]:= applyChar " ", 1, 2, 3, 4

Out[14]= 10

(Recall the Module function, which permits us to introduce local variables. In this case, it
saves us from having to write First[lis] and Rest[lis] several times each.)
Even though the argument list in applyChar must contain one of the four operators as its
first  element,  it  is  still  best  to  check  for  it  explicitly;  otherwise,  if  the  condition  is  ever
violated,  the  results  may  be  very  mysterious.  We  have  used  the Print  function,  which
prints  all  of  its  arguments  (of which it  can have an arbitrary number) and then skips  to a
new line.

In[15]:= applyChar "^", 2, 5, 10

Bad argument to applyChar

Notice  that  what  we  have  in  this  code  is  several  nested Ifs,  each  occurring  in  the
false part of the previous one. Thus, the structure of the computation is a sequence of tests
of predicates until one is found to be true, at which point a result can be computed. Such a
sequence  of cascading If  statements  can  get  quite  long,  and  the  indentation  can  become
unmanageable, so it  is  conventional  to violate the usual  rule for indenting If  expressions
and indent this type of structure as follows:

If cond1, result1,
If cond2, result2,

   If condn, resultn,
resultn 1] …]]

Conditional  definitions  can  be  written  using  another  construct  in Mathematica,  the
Condition  operator, /;.  For  example,  the abs  function  can  be  entered  (using  several
definitions) as follows:
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In[16]:= Clear abs

In[17]:= abs x_ : x ; x 0

In[18]:= abs x_ : x ; x 0

The first definition should be interpreted as “abs[x] is equal to x whenever (or under the
condition  that) x  is  greater  than  or  equal  to  0”  and the  second definition  as  “abs[x]  is
equal to the opposite of x whenever x is less than 0.”

The  conditions  on  the  right-hand  side  of  the  rules  can,  in  fact,  be  entered  on  the
left-hand side of these definitions as follows:

In[19]:= abs x_ ; x 0 : x

In[20]:= abs x_ ; x 0 : x

This  last  notation  has  the  advantage  of  preventing the  right-hand side  of  our  definitions
from being evaluated whenever the pattern on the left does not match.

In[21]:= abs 4

Out[21]= 4

In[22]:= abs z

Out[22]= abs z

This  use  of  multiple  rules  associated  with  the  symbol abs  is  a  very  useful  and  powerful
means  of  associating  rules  with  symbols  under  user-defined conditions  and  we  turn  to  it
next.

Multiclause definitions

The abs function defined above is fine for integers and real number arguments, but, since
the  complex  numbers  cannot  be  ordered,  the  initial  test  comparing  a  complex  number
argument with 0 will fail.

In[23]:= abs 3 4 I

GreaterEqual::nord :

Invalid comparison with 3 4 attempted. More…

Less::nord : Invalid comparison with 3 4 attempted. More…

Out[23]= abs 3 4
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We can solve this problem by providing an additional definition for abs.

In[24]:= Clear abs ;

abs x_ : Sqrt Re x 2 Im x 2 ; x Complexes;

abs x_ : x ; x 0

abs x_ : x ; x 0

The test  as  the first  argument of If  on the right-hand side checks  to see if x  is  an

element  of  the  domain  of  complex  numbers  and,  if  it  is,  then re x 2 im x 2  is  com-
puted. If x  is  not complex, nothing is done, but then the other definition for abs  will be
invoked.

In[28]:= abs 3 4 I

Out[28]= 5

In[29]:= abs 3

Out[29]= 3

The  condition  itself  can  appear  on  the  left-hand  side  of  the  function  definition,  as
part of the pattern match. Here is a slight variation on the abs definition.

In[30]:= Clear abs

abs x_ : If x 0, x, x

abs x_ ; x Complexes : Sqrt Re x 2 Im x 2

In[33]:= abs 3 4 I

Out[33]= 5

In[34]:= abs 3

Out[34]= 3

We may want to add an additional rule for symbols.

In[35]:= abs x_ ; Head x Symbol : x

In[36]:= abs z

Out[36]= z

Such a definition is called a multiclause definition. In this case we have associated three
rules  with abs;  two  are  rather  specific  and  will  only  be  applied  if  the  argument  to abs

passes  the  conditions  specified.  If  neither  of  those  conditions  are  met,  then  the  most
general rule (the one with no conditions on x) will be used.
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Which and Switch

Recall the earlier definition of applyChar defined using cascading Ifs.

In[37]:= applyChar lis_ : Module op First lis , nums Rest lis ,

If op " ", Apply Plus, nums ,

If op " ", Apply Subtract, nums ,

If op " ", Apply Times, nums ,

If op " ", Apply Divide, nums ,

Print "Bad argument to applyChar"

Needless to say, this is a little difficult to read and figure out which clause goes with
which If.  Fortunately,  cascaded Ifs  are  so  common  that Mathematica  provides  a  more
direct way of writing them, using the function Which.

Which cond1, result1,
cond2, result2,

condn, resultn,
 True, resultn 1]

This  has  exactly  the  same  effect  as  the  cascaded If  expression  above:  it  tests  each
condition  in  turn,  and,  when  it  finds  an i  such  that condi  is  true,  it  returns resulti  as  the
result of the Which expression itself. If none of the conditions turns out to be true, then it
will test the final “condition,” namely the expression True, which always evaluates to true,
and it will then return resultn 1.

applyChar can now be written more neatly.

In[38]:= applyChar lis_ : Module op First lis , nums Rest lis ,

Which op " ", Apply Plus, nums ,

op " ", Apply Subtract, nums ,

op " ", Apply Times, nums ,

op " ", Apply Divide, nums ,

True, Print "Bad argument to applyChar"

One  last  form  deserves  mention.  Our  use  of  the Which  command  is  still  quite
special,  in  that  it  consists  of  a  simple  sequence  of  comparisons  between a  variable  and  a
constant.  Since this is also a common form, Mathematica  again provides a special function
for it, called Switch.
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Switch[expr, 
pattern1, result1,
pattern2, result2,

patternn, resultn,
   _, resultn 1

   ]

This  evaluates expr  and  then  checks  each  pattern,  in  order,  to  see  whether expr
matches; as soon as expr  matches one, say patterni, it returns the value of resulti. Of course,
if none of the patterns pattern1, …, patternn matches, the _ certainly will.

If all the patterns happen to be constants, the Switch expression is equivalent to the
following Which expression.

Which[expr == pattern1, result1,
expr == pattern2, result2,

expr == patternn, resultn,
 True, resultn 1

 ]

Here, then, is our final version of applyChar.

In[39]:= applyChar lis_ : Module op First lis , nums Rest lis ,

Switch op,

" ", Apply Plus, nums ,

" ", Apply Subtract, nums ,

" ", Apply Times, nums ,

" ", Apply Divide, nums ,

_, Print "Bad argument to ApplyChar"

Notice that Switch  uses the blank character, _,  for the final, or default  case, just as
Which  uses  the  always-true  expression True.  We  will  have  much  more  to  say  about
patterns and pattern matching in Chapter 6.
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Piecewise

Several of the functions we created in previous sections could be caste as piecewise-defined
functions.  Although technically  not  a  procedural  construct, Piecewise  (new in Version
5.1)  is  designed  specifically  for  such  problems.  The  syntax  is
Piecewise e1, c1 , …, en, cn  which outputs e1 if c1 is true, e2 if c2 is true, … , en  if cn  is
true, and 0 otherwise (the default).

So,  for  example,  here  is  the  definition  for  the  absolute  value  function  given  as  a
piecewise object.

In[40]:= abspw x_ : Piecewise x, x 0 , x, x 0

Piecewise objects display as you would expect in traditional mathematical notation.

In[41]:= abspw x

Out[41]=
x x 0
x x 0

Furthermore, Piecewise  is  fully  integrated  with  the  algebraic,  symbolic,  and  graphical
functions in Mathematica and so is preferable to other approaches.

In[42]:= Integrate abspw x , x, 1, 1

Out[42]= 1

In[43]:= D abspw x , x

Out[43]=

1 x 0
1 x 0

Indeterminate True

In[44]:= Plot abspw x , x, 2, 2 ;

2 1 1 2

0.5

1

1.5

2

Notice that the definition of the absolute value function given in terms of condition-
als is not fully supported by many of the built-in functions.

In[45]:= Clear abs

In[46]:= abs x_ : x ; x 0
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In[47]:= abs x_ : x ; x 0

In[48]:= Integrate abs x , x, 1, 1

Out[48]=
1

1

abs x x

In[49]:= D abs x , x

Out[49]= abs x

Argument checking

Often, when we write functions, we know ahead of time that the definitions we give them
are  valid  only  for  certain  kinds  of  inputs.  For  example,  the  following  definition  for  the
factorial function only makes sense for positive integers.

In[50]:= fact 0 1;

fact n_ : n fact n 1

In[52]:= fact 5

Out[52]= 120

If  we were to give fact  an argument that was not a positive integer, the recursion could
run away from us.

In[53]:= fact 3.4

$RecursionLimit::reclim :

Recursion depth of 256 exceeded. More…

Out[53]= 2.729671867921455 10494 Hold fact 250.6 1

Conditionals  are  a  convenient way of  checking that  the arguments  to  our  functions
pass  some  criteria.  For  example,  there  are  several  ways  that  we  could  make  the fact

function valid only under the condition that its argument is a positive integer. Here is how
we might approach it using the If construct to test that n passes the appropriate criteria.

In[54]:= Clear fact

In[55]:= fact 0 1;

In[56]:= fact n_ : If IntegerQ n && n 0, n fact n 1

In[57]:= fact 5 , fact 3 , fact 2.4

Out[57]= 120, Null, Null
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We  see  that  the  function  works  fine  for  positive  integers,  but  since  we  did  not  give  an
alternative condition to the If function, nothing is returned (technically Null is returned)
when the test condition fails.

Let  us  define a  message  that  will  be  output  in  the case  that  the  argument  to fact

fails the positive integer test.

In[58]:= fact::noint "Argument `1` is not a positive integer.";

We then use Message as the third argument to our If, so that when the condition
fails  the  message  will  be  triggered.  Essentially Message messname, e1, e2, …  prints
using StringForm messg, e1, e2, … ,  where messg  is  the  value  of  the  message  name
and the ei  are substituted in for any expressions of the form `i`. In the above example, the
message  name is noint  and  its  value  is  the  string  beginning with "Argument...".  In
this example, the value of n will be substituted into the string where the `1` occurs.

In[59]:= fact n_ : If IntegerQ n && n 0,

n fact n 1 ,

Message fact::noint, n

In[60]:= fact 3

fact::noint : Argument 3 is not a positive integer.

Of course, there are a variety of ways of using conditionals to do argument checking.
Here are three more implementations, without the messaging.

In[61]:= fact1 0 1;

fact1 n_ : n fact1 n 1 ; IntegerQ n && n 0

In[63]:= fact1 5 , fact1 2.4

Out[63]= 120, fact1 2.4

In[64]:= fact2 0 1;

fact2 n_ ; IntegerQ n && n 0 : n fact2 n 1

In[66]:= fact2 5 , fact2 2.4

Out[66]= 120, fact2 2.4

In[67]:= fact3 0 1;

fact3 n_?IntegerQ ; n 0 : n fact3 n 1

In[69]:= fact3 5 , fact3 2.4

Out[69]= 120, fact3 2.4
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Summary

When writing a function whose result must be computed differently, depending upon the
values of its arguments, you have a choice:

1. Use a multiclause definition, where the conditions are optional, and may appear
after the right-hand sides.

f pattern1 _  /; cond1 := rhs1

f patternn _  /; condn := rhsn

2. Use a single-clause definition with a conditional expression.

f[x_] := If cond1, rhs1,

If condn, rhsn,

rhsn 1 ]

In the latter case, if n  is  greater than two, use the equivalent Which  expression; and if all
conditions have the form x == consti, for a given variable x and some constants consti, use
the Switch function.

The  next  section  contains  several  applications  that  use  various  combinations  of  the
procedural constructs we have learned in this chapter.

Exercises

1. Write the function signum[x] which, when applied to an integer x, returns 1, 0,
or 1, according as x is less than, equal to, or greater than, 0. Write it in three ways:
using three clauses, using a single clause with If, and using a single clause with
Which.

2. Extend signum from Exercise 1 to apply to both integers and reals; again, write it in
three ways (though you may use more than three clauses for the multiclause version).

3. Write applyChar in multiclause form, using pattern matching on the first element
of its argument.
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4. Use If in conjunction with Map or Fold to define the following functions:
a. In a list of numbers, double all the positive numbers, but leave the negative

numbers alone.

b. remove3Repetitions is like removeRepetitions except that it only alters
three or more consecutive occurrences, changing them to two occurrences; if
there are only two occurrences to begin with, they are left alone. For example,
remove3Repetitions[{0,1,1,2,2,2,1}] will return {0,1,1,2,2,1}.

c. Add the elements of a list in consecutive order, but never let the sum go below 0.

In[1]:= positiveSum 5, 3, 13, 7, 3, 2

Out[1]= 6

Since the 13 caused the sum to go below 0, it was instead put back to 0 and the
summation continued from there.

5. Using NestWhileList, write a function CollatzSequence[n] that produces
the Collatz sequence for any positive integer n. The Collatz sequence is generated as 
follows: starting with a number n, if it is even, then output n

2 ; if n is odd, then output
3 n 1. Iterate this process while n 1.

5.4 Examples

Sieve of Eratosthenes

One  of  the  oldest  algorithms  in  the  history  of  computing  is  the  Sieve  of  Eratosthenes.
Named  after  the  famous  Greek  astronomer  Eratosthenes  (ca.  276  – ca.  194  BC),  this
method  is  used  to  find  all  prime numbers  below a  given number n.  The great  feature of
this  algorithm is  that  it  finds  prime numbers  without  doing  any  divisions  –  an  operation
that  took  considerable  skill  and  concentration  before  the  introduction  of  the  Arabic
numeral system. In fact, its only operations are addition and component assignment.

The algorithm can be summarized as follows: to find all the prime numbers less than
an integer n:

• create a list of the integers 1 through n

• starting with p 2, cross out all multiples of p
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• increment p (that is, add 1 to p) and cross out all multiples of p

• repeat the previous two steps until p n .

You should convince yourself that the numbers that are left after all the crossings out
are  in  fact  the  primes  less  than n.  This  algorithm  lends  itself  very  well  to  a  procedural
approach, so let us walk through the steps.

We  will  use  a For  structure  for  this  problem.  The  syntax  is For[start, test, incr,
body], where start  will first be evaluated (initializing values), and then incr and body will be
repeatedly evaluated until test fails.

1. Let lis be a list containing all the integers between 1 and n.

In[1]:= n 20;

lis Range n

Out[2]= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20

2. Let p 2. Repeat the following two steps:

• Starting at position 2p, “cross out” every pth value in lis. We will assign 1 to
lis at positions 2p, 3p, and the 1 will represent a crossed out value.

In[3]:= p 2;

Do lis i 1, i, 2 p, n, p

In[5]:= lis

Out[5]= 1, 2, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, 1

• While p n , increment p by 1, until lis[[p]] is not 1, or until p n 1.

In[6]:= n 20;

lis Range n ;

For p 2,

p 1 && p Floor Sqrt n ,

p ,

Do lis i 1, i, 2 p, n, p

3. The non-1s in lis are all the prime numbers less than or equal to n.

In[9]:= DeleteCases lis, 1

Out[9]= 2, 3, 5, 7, 11, 13, 17, 19
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Let us put these steps together in our function Sieve. 

In[10]:= Clear n, p, lis

In[11]:= Sieve n_Integer : Module lis Range n , p ,

For p 2,

p 1 && p Floor Sqrt n ,

p ,

Do lis i 1, i, 2 p, n, p ;

DeleteCases lis, 1

Here are  a  few simple tests  to  check the correctness  of  our  function.  First  we check that
Sieve produces the correct number of primes less than a large integer.

In[12]:= Length Sieve 105

Out[12]= 9592

The built-in PrimePi[x] gives the number of primes x  less than or equal to x. 

In[13]:= PrimePi 105

Out[13]= 9592

Next we do some simple timing tests to check the efficiency of this algorithm against the
built-in functions that are optimized for this task.

In[14]:= Sieve 106 ; Timing

Out[14]= 13.62 Second, Null

In[15]:= Timing Table Prime i , i, 106 ;

Out[15]= 5.648 Second, Null

In[16]:= Timing Map Prime, Range 106 ;

Out[16]= 5.628 Second, Null

For numbers in this range (less than about 106), sieving is fairly efficient – its speed is
within  an  order  of  magnitude  of  the  built-in  algorithms.  But,  beyond  this  range,  it  does
tend to bog down and it would be best to consider specialized algorithms that are asymptoti
cally  fast  (for  large  integers, PrimePi  uses  an  algorithm  due  to  Lagarias,  Miller,  and
Odlyzko that is based on estimates of the density of primes).
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Classifying points

Quadrants  in  the  Euclidean  plane  are  conventionally  numbered  counterclockwise  from
quadrant  1 (x  and y  positive) to quadrant 4 (x  positive, y  negative). The function point

Loc[{x,y}] will compute the classification of point x, y , according to Table 5.1.

Point Classification
0, 0 0

y 0 on the x axis 1

x 0 on the y axis 2

Quadrant 1 1

Quadrant 2 2

Quadrant 3 3

Quadrant 4 4

Table 5.1: Quadrant classification

We will use this problem to illustrate the features covered in this chapter, by giving a
number  of  different  solutions,  using  multiclause  function  definitions  with  predicates,
single-clause definitions with If and its relatives, and combinations of the two.

Perhaps the first solution that suggests itself is one that uses a clause for each of the
cases above.

In[17]:= pointLoc 0, 0 : 0

pointLoc x_, 0 : 1

pointLoc 0, y_ : 2

pointLoc x_, y_ : 1 ; x 0 && y 0

pointLoc x_, y_ : 2 ; x 0 && y 0

pointLoc x_, y_ : 3 ; x 0 && y 0

pointLoc x_, y_ : 4 ; x 0 && y 0

It  is a good idea to include the last condition as a comment, rather than as a condi-
tion in the code, because Mathematica would not realize that the condition has to be true at
that point and would check it anyway.

We will use the following list of points as our test cases.

In[24]:= pts

0, 0 , 4, 0 , 0, 1.3 , 2, 4 , 2, 4 , 2, 4 , 2, 4 ;

In[25]:= Map pointLoc, pts

Out[25]= 0, 1, 2, 1, 2, 3, 4
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Translated directly to a one-clause definition using If, this becomes:

In[26]:= pointLoc x_, y_ :

If x 0 && y 0, 0,

If y 0, 1,

If x 0, 2,

If x 0 && y 0, 1,

If x 0 && y 0, 2,

If x 0 && y 0, 3, 4

In[27]:= Map pointLoc, pts

Out[27]= 0, 1, 2, 1, 2, 3, 4

Actually, a more likely solution here uses Which.

In[28]:= pointLoc x_, y_ : Which

x 0 && y 0, 0,

y 0, 1,

x 0, 2,

x 0 && y 0, 1,

x 0 && y 0, 2,

x 0 && y 0, 3,

True x 0&&y 0 , 4

In[29]:= Map pointLoc, pts

Out[29]= 0, 1, 2, 1, 2, 3, 4

In[30]:= pointLoc 5, 9

Out[30]= 3

All  of  our  solutions  so  far  suffer  from  a  certain  degree  of  inefficiency,  because  of
repeated  comparisons  of  a  single  value with  0.  Take  the last  solution  as  an example,  and
suppose  the argument is  ( 5, 9).  It  will require five comparisons  of 5 with 0 and three
comparisons of 9 with 0 to obtain this result. Specifically:

1. evaluate x==0; since it is false, the associated y== 0 will not be evaluated, and
we next

2. evaluate y==0 on the following line; since it is false,

3. evaluate x==0 on the third line; since it is false,

4. evaluate x>0 on next line; since it is false, the associated y> 0 will not be evalu-
ated, and we next,

5. evaluate x<0 on the next line; since it is true, we do,
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6. the y>0 comparison, which is false, so we next,

7. evaluate x<0 on the next line; since it is true, we then evaluate y< 0, which is 
also true, so we return the answer 3.

How  can  we  improve  this?  By  nesting  conditional  expressions  inside  other  condi-
tional expressions. In particular, as soon as we discover that x is less than, greater than, or
equal to 0, we should make maximum use of that fact without rechecking it. That is what
the following pointLoc function does.

In[31]:= pointLoc x_, y_ :

Which x 0, If y 0, 0, 2 ,

x 0, Which y 0, 1,

y 0, 4,

True y 0 , 1 ,

True, x 0

Which y 0, 3,

y 0, 2,

True y 0 , 1

Let us count up the comparisons for 5, 9  this time: (i) evaluate x ==0; since it is
false, we next, (ii) evaluate x> 0; since it is false, we go to the third branch of the Which,
evaluate True,  which  is,  of  course,  true;  then,  (iii)  evaluate y<0,  which  is  true,  and  we
return 3. Thus, we made only three comparisons – a substantial improvement.

When  pattern  matching  is  used,  as  in  our  first,  multiclause  solution,  efficiency
calculations  are  more  difficult.  It  would  be  inaccurate  to  say  that Mathematica  has  to
compare x and y to 0 to tell whether the first clause applies; what actually happens is more
complex. What is true, however, is that it will do the comparisons indicated in the last four
clauses. So, even if we discount the first three clauses with argument 5, 9 , some extra
comparisons are done. Specifically: (i) the comparison x> 0 is done; then, (ii) x <0 and (iii)
y >0;  then, (iv)  x <0  and (v)  y< 0.  This  can be avoided by using conditional  expressions
within clauses.

In[32]:= pointLoc 0, 0 : 0

pointLoc x_, 0 : 1

pointLoc 0, y_ : 2

pointLoc x_, y_ : If x 0, 2, 1 ; y 0

pointLoc x_, y_ : If x 0, 3, 4 ; y 0

Now, no redundant comparisons are done. For 5, 9 , since y >0 fails, the fourth
clause is not used, so the x> 0 comparison in it is not done. Only the single x <0 compari-
son in the final clause is done, for a total of two comparisons.
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Having  done  all  these  versions  of pointLoc,  we  would  be  remiss  if  we  did  not
remind the reader of a basic  fact of life in programming: your time is more valuable than
your computer’s time. You should not be worrying about how slow a function is until there
is  a  demonstrated  need to  worry.  Far  more important  is  the  clarity  and  simplicity  of  the
code,  since this will determine how much time you (or another programmer) will have to
spend when it comes time to modify it. In the case of pointLoc, we would argue that we
got  lucky  and found a  version (the final  one)  that  wins on both  counts  (if  only program-
ming were always like that!).

Finally,  a  technical,  but  potentially  important,  point:  Not  all  of  the  versions  of
pointLoc  work  exactly  the  same.  The  integer 0,  as  a  pattern,  does  not  match  the  real
number 0.0,  since they have different heads. Thus,  using the last  version as  an example,
pointLoc[{0.0,0.0}] returns 4.

In[37]:= pointLoc 0.0, 0.0

Out[37]= 4

See  Section  6.2  for  a  discussion  of  alternatives,  which  allows  us  to  efficiently  deal
with these various cases.

Exercises

1. Using an If function, write a function gcd[m,n] that implements the Euclidean 
algorithm (see Exercise 10 of Section 5.2) for finding the greatest common divisor of 
m and n.

2. Use Piecewise to define the pointLoc function given in this section.

3. Extend pointLoc to three dimensions, following this rule: for point (x, y, z), if
z 0, then give the same classification as (x, y), with the exception that zero is treated 
as a positive number (so the only classifications are 1, 2, 3, and 4); if z 0, add 4 to
the classification of (x, y) (with the same exception). For example, (1, 0, 1) is in octant 
1, and (0, 3, 3) is in octant 8. pointLoc should work for points in two or three
dimensions.
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6 Rule-based programming

The use of rules to transform expressions from one form to another is one of the most
powerful  and  useful  tools  available  in  the Mathematica  programming  language.  The
thousands  of  rules  built  in  to Mathematica  can  be  expanded  limitlessly  through  the
creation of user-defined rules. Rules can be created to change the form of expressions,
to  filter  data  based  on  some  criteria,  and  can  be  set  up  to  apply  to  broad  classes  of
expressions  or  limited  to  certain  narrow  domains  through  the  use  of  appropriate
pattern  matching  techniques.  These  rules  can  perform  many  of  the  tasks  normally
associated with more traditional programming constructs, such as we have discussed in
the  chapters  on  procedural  and  functional  programming.  In  this  chapter  we  will
discuss the structure and application of rules to common programming tasks and look
at their application in some concrete examples.

6.1 Introduction
Users  of Mathematica  typically  first  encounter  rules  as  the  output  to  many built-in  func-
tions. For example, the Solve function returns its solutions as a list of rules.

In[1]:= soln Solve a x2 b x c 0, x

Out[1]= x
b b2 4 a c

2 a
, x

b b2 4 a c
2 a

They are also used to specify options for functions and replacement rules in many kinds of
computations.

In[2]:= FactorInteger 5, GaussianIntegers True

Out[2]= , 1 , 1 2 , 1 , 2 , 1

In[3]:= StringReplace "acgttttccctgagcataaaaacccagcaatacg",

"ca" "CA", "tt" "TT"

Out[3]= acgTTTTccctgagCAtaaaaaccCAgCAatacg

When you define a function via an assignment such as the function f below, you are
defining a rule that says whenever f  is given an argument, it should be replaced with that



argument  squared.  This  rule  will  be  applied  automatically  whenever  you  evaluate
f[anything].

In[4]:= f x_ : x2

In[5]:= f bob

Out[5]= bob2

On  the  other  hand,  you  can  set  up  rules  to  be  applied  on  demand  by  using  the
replacement operator ReplaceAll, written in shorthand notation as /. . These rules can
then be used to transform one expression into another. For example, the following rule is
used  to  extract  the  real  and  imaginary  parts  of  a  complex  number  and  convert  it  to  an
ordered pair.

In[6]:= 3 4 . Complex a_, b_ a, b

Out[6]= 3, 4

This rule reverses the elements in each ordered pair.

In[7]:= , 1 , , 2 , , 3 . x_, y_ y, x

Out[7]= 1, , 2, , 3,

And here is a rule that turns each of the superscripts in the polynomial below into a
subscript.

In[8]:= poly Factor 1 x11

Out[8]= 1 x 1 x x2 x3 x4 x5 x6 x7 x8 x9 x10

In[9]:= ToBoxes poly . SuperscriptBox SubscriptBox DisplayForm

Out[9]//DisplayForm=

1 x 1 x x2 x3 x4 x5 x6 x7 x8 x9 x10

Rule-based  programming  is  such  a  useful  construct  for  manipulating  lists  and  arbi-
trary  expressions  that  no  user  of Mathematica  should  be  without  a  working knowledge of
this  paradigm.  This  chapter  gives  a  thorough  introduction  to  pattern  matching and  then
proceeds  to rule-based programs, many of  which were introduced earlier as  functional  or
procedural programs.
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6.2 Patterns

Blanks

When you make an assignment to a symbol, like x=4, you are making a rule that should be
applied to the literal expression x. Loosely speaking, the rule says, replace x with the value
4 whenever x  is  encountered. We have seen that  you can also  define functions  of  one or
more arguments that allow you to substitute arbitrary expressions for those arguments.

In[1]:= f x_ : x 1

The left-hand  side  of  the  above  assignment is  a  pattern.  It  contains  a  blank  (underscore)
which can stand for any expression, not just the literal expression x. 

In[2]:= f

Out[2]= 1

In[3]:= f bob

Out[3]= 1 bob

While  any  specific  expression  can  be  pattern  matched  (because  any  object  must
match itself), we usually  want to be able to pattern match large classes of expressions (for
example, a sequence of expressions or expressions having Integer  as  the head). For this
purpose, patterns  are  defined  as  expressions  that  may  contain blanks.  That  is  to  say,  a
pattern may contain one of the following: a single (_) blank, a double (__) blank, or a triple
(___) blank.

We will find it  useful to identify the pattern to which an expression is matched (for
example,  on  the  left-hand  side  of  a  function  definition)  so  that  it  can  be  referred  to  by
name elsewhere (for example, on the right-hand side of the function definition). A pattern
can be labeled by name_,  or name__,  or name___  (which can be read as “a pattern called
name”)  and  the  labeled  pattern  will  be  matched  by  the  same  expression  that  matches  its
unlabeled  counterpart.  The  matching  expression  is  given  the  name  used  in  the  labeled
pattern.

You can see what  class  of  expressions  match a  given pattern  by using MatchQ.  For
example,  this  tests  whether  the  symbol bob  matches  any  expression  because  the  single
underscore can stand for any Mathematica expression.

In[4]:= MatchQ bob, _

Out[4]= True

6 Rule-based programming 151



This tests whether the number 3.14 matches any expression with head Real.

In[5]:= MatchQ 3.14, _Real

Out[5]= True

Of course 3.14 does not match any expression with head Integer.

In[6]:= MatchQ 3.14, _Integer

Out[6]= False

If  you  want  to  look  at  a  list  of  expressions  and  see  which  ones  match  a  particular
pattern, you can use Cases. Cases[expr, patt] outputs those elements of expr that match
the  pattern patt.  For  example,  the  only  two  elements  of  the  list  below  that  have  head
Integer are 3 and 17. Notice the fourth element is a string.

In[7]:= Cases 3, 3.14, 17, "3", 4 5 I , _Integer

Out[7]= 3, 17

In[8]:= Cases 3, 3.14, 17, "3", 4 5 I , _String

Out[8]= 3

Remember that the OutputForm  of  strings is to display without the quote characters. If
you want to check the structure of this last output, use FullForm or check its Head.

In[9]:= FullForm %

Out[9]//FullForm=

List "3"

Here are some additional  examples of pattern matching. This next example matches
all those expressions with head g.

In[10]:= Cases g x , f x , g h x , g a, 0 , _g

Out[10]= g x , g h x , g a, 0

In the following example, the pattern {p_,q_} matches any list with two elements.

In[11]:= Cases a, b , , 1, 0 , c, d, 3 , p_, q_

Out[11]= a, b , 1, 0

Let us clear symbols we no longer need.

In[12]:= Clear f
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Sequence pattern matching

A sequence  consists  of  a  number  of  expressions  separated  by  commas.  For  example,  the
arguments of expressions are written as sequences.

A  double  blank  (BlankSequence)  represents  a  sequence  of  one  or  more  expres-
sions and __h represents a sequence of one or more expressions, each of which has head h.
An expression that matches a blank will also match a double blank.

A  triple  blank  (BlankNullSequence)  represents  a  sequence  of  zero  or  more
expressions and ___h represents a sequence of zero or more expressions, each of which has
head h.  An expression that  matches  a blank  will also  match a  triple  blank and a sequence
that matches a double blank pattern will also match a triple blank pattern.
The  pattern {p__},  using  two _  characters,  matches  any  list  containing  one  or  more
elements.

In[13]:= Cases a, b , , 1, 0 , c, d, 3 , p__

Out[13]= a, b , 1, 0 , c, d, 3

The pattern {p___},  using three _  characters, matches  any list  containing zero or  more
elements.

In[14]:= Cases a, b , , 1, 0 , c, d, 3 , p___

Out[14]= a, b , , 1, 0 , c, d, 3

A list {a,b,c} is matched by the pattern _ (using Blank), as well as by List[__]
(using BlankSequence)  and List[___]  (with BlankNullSequence).  However, the
list {a,b,c} is not matched by the pattern List[_] (a list of one expression) because for
the purposes of pattern matching, a sequence is not an expression.

In[15]:= MatchQ a, b, c , _

Out[15]= True

In[16]:= MatchQ a, b, c , _

Out[16]= False

Here are some other examples of successful pattern matches.

In[17]:= MatchQ a, b, c , __

Out[17]= True

In[18]:= MatchQ a, b, c , ___

Out[18]= True
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In[19]:= MatchQ a, b, c , x__

Out[19]= True

In[20]:= MatchQ a, b, c , x___

Out[20]= True

In the last two examples above, the labels on the blanks do not affect the success or
failure of the pattern match.

In[21]:= MatchQ a, b, c , __

Out[21]= True

The  labels  simply  serve  to  identify  different  parts  of  the  expression.  For  example,  in
MatchQ[{a,b,c},x_],  x  names  the  list {a,b,c},  but  in Match

Q[{a,b,c},{x___}],  x  names  the sequence a,b,c  which  is  quite  different.  This  is
illustrated further in the section on conditional pattern matching.

Finally, note that the discussion about lists here applies equally to any function. For
example, the following returns True, with x naming the sequence a,b,c.

In[22]:= MatchQ Plus a, b, c , Plus x__

Out[22]= True

Example: Finding subsequences

As an example of sequence pattern matching, consider the problem of finding a particular
subsequence  within  a  sequence  of  numbers.  To  simplify  this  problem,  consider  both  the
sequence and the subsequence to be given as lists  of numbers. As a concrete example, we
will find the positions at which the subsequence 3238 occurs in the digits of .

Here  are  the  digits  of .  Initially,  we  will  look  at  only  50  digits  so  we  can  easily
inspect the progress of our program.

In[23]:= pidigs First RealDigits N , 50 3

Out[23]= 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3,

2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0,

2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1

Here is our subsequence, given as a list of digits.

In[24]:= subseq 3, 2, 3, 8 ;
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One approach to this problem is to partition the list of digits in pidigs into lists of
the same length as the list subseq,  with overlapping sublists of offset 1. This means that
we will examine all length 4 sublists from pidigs.

In[25]:= p Partition pidigs, Length subseq , 1

Out[25]= 1, 4, 1, 5 , 4, 1, 5, 9 , 1, 5, 9, 2 ,

5, 9, 2, 6 , 9, 2, 6, 5 , 2, 6, 5, 3 ,

6, 5, 3, 5 , 5, 3, 5, 8 , 3, 5, 8, 9 , 5, 8, 9, 7 ,

8, 9, 7, 9 , 9, 7, 9, 3 , 7, 9, 3, 2 , 9, 3, 2, 3 ,

3, 2, 3, 8 , 2, 3, 8, 4 , 3, 8, 4, 6 , 8, 4, 6, 2 ,

4, 6, 2, 6 , 6, 2, 6, 4 , 2, 6, 4, 3 , 6, 4, 3, 3 ,

4, 3, 3, 8 , 3, 3, 8, 3 , 3, 8, 3, 2 , 8, 3, 2, 7 ,

3, 2, 7, 9 , 2, 7, 9, 5 , 7, 9, 5, 0 , 9, 5, 0, 2 ,

5, 0, 2, 8 , 0, 2, 8, 8 , 2, 8, 8, 4 , 8, 8, 4, 1 ,

8, 4, 1, 9 , 4, 1, 9, 7 , 1, 9, 7, 1 , 9, 7, 1, 6 ,

7, 1, 6, 9 , 1, 6, 9, 3 , 6, 9, 3, 9 , 9, 3, 9, 9 ,

3, 9, 9, 3 , 9, 9, 3, 7 , 9, 3, 7, 5 , 3, 7, 5, 1

Now we are ready for the pattern match. From the list p  above, we are looking for
the  positions  of  any  sublist  that  matches {3,2,3,8}.  The Position  function  takes  as
its  first  argument,  the  expression  from  which  we  are  trying  to  match.  The  second  argu-
ment is the pattern to match. We will use BlankNullSequence  (___) on either side of
our subsequence because zero or one or two expressions may occur before or after it in p. 

In[26]:= Position p, Flatten ___, subseq, ___

Out[26]= 15

So  the  subsequence  3238  occurs  starting  at  the  15th  digit  in  the  sequence  given  by
pidigs.

Finally,  let  us  turn  this  into  a  function  and  test  it  on  a  much  larger example.  Note
that  we use the pattern _List  on both arguments so that FindSubsequence  will only
match  arguments  that  have head List.  (In Exercise  5 at  the end of  this  section,  you are
asked to create a version of FindSubsequence  that takes  numbers instead of lists as its
arguments.)

In[27]:= FindSubsequence lis_List, subseq_List : Module p ,

p Partition lis, Length subseq , 1 ;

Position p, Flatten ___, subseq, ___

We store the first 100,000 digits of  in the symbol pidigs.

In[28]:= pidigs First RealDigits N , 105 3 ;
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We find that the subsequence {3,2,3,8} occurs at the following nine different positions
in the first 100,000 digits of .

In[29]:= FindSubsequence pidigs, 3, 2, 3, 8

Out[29]= 15 , 8990 , 20522 , 20756 ,

28130 , 41865 , 57208 , 86505 , 91936

The  subsequence  31415  occurs  once  in  the  first  100,000  digits  of  –  starting  at  the
88,008th digit.

In[30]:= FindSubsequence pidigs, 3, 1, 4, 1, 5

Out[30]= 88008

Conditional pattern matching

Attaching a predicate
In addition to specifying the head of an expression, you can also match expressions against
predicate functions. If the blanks of a pattern are followed with ?test, where test is a predi-
cate,  then  a  match  is  only  possible  if test  returns True  when  applied  to  the  entire
expression.

So, to match a class of expressions that have head h, you use _h. To match a class of
expressions that evaluate to True when the predicate pred is applied, use _?pred.

In[31]:= MatchQ 1, 2, 3 , _?ListQ

Out[31]= True

In[32]:= MatchQ 1, 2, 3 , _?NumberQ

Out[32]= False

Note  that  in  the  above  example,  even  though  the  list {1,2,3}  consists  of  numbers,  it
does not match ?NumberQ because its head (List) does not pass the NumberQ test.

The  pattern _?Negative  matches  any  expression  that  passes  the Negative  test;
that is, it returns true when Negative is applied to it.

In[33]:= Cases 2, 7, 1.2, 0, 5 2 I , _?Negative

Out[33]= 2, 1.2

The  following  examples  use  a  pure  predicate  function.  In  the  first  example,  we are
asking if {a,b,c} has head List and if the length of {a,b,c} is greater than 2. Since it
passes both of these conditions, MatchQ returns True.
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In[34]:= MatchQ a, b, c , _List? Length # 2 &

Out[34]= True

Even  though  the  head  of {a,b,c}  is List,  the  condition  below  fails  since  the  list  has
length less than 4.

In[35]:= MatchQ a, b, c , _List? Length # 4 &

Out[35]= False

Note that when using a pure function in ?test, because of the precedence Mathemat-
ica  gives  to  evaluating  various  quantities,  it  is  necessary  to  enclose  the  entire  function,
including  the &,  in  parentheses.  We  have  used test  to  place  a  constraint  on  the  entire
expression.

Here is a simple application of attaching a predicate. This definition of the Fibonacci
function tests its argument to see that it is an integer (specifically, this tests that the head of
n is Integer).

In[36]:= f 1 f 2 1;

In[37]:= f n_?IntegerQ : f n 1 f n 2

Because of the predicate, f will not evaluate for noninteger arguments.

In[38]:= f 1.2

Out[38]= f 1.2

In[39]:= f 5 , f 10 , f 15

Out[39]= 5, 55, 610

We could also check that the arguments to f are both integral and positive.

In[40]:= Clear f

In[41]:= f 1 f 2 1;

In[42]:= f n_? IntegerQ && Positive : f n 1 f n 2

In[43]:= f 3

Out[43]= f 3
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Attaching a condition
If  part  of  a  labeled  pattern  is  followed  with  an  expression  such  as /;condition,  where
condition contains  labels appearing in the pattern, then a match is possible  only if condition
returns True. We use condition to place a constraint on the labeled parts of an expression.
The use of labels in condition is useful for narrowing the scope of a pattern match.

In[44]:= MatchQ[x^2, _^y_ /; EvenQ[y]]

Out[44]= True

In[45]:= MatchQ[x^2, _^y_ /; OddQ[y]]

Out[45]= False

We  mentioned  above  that  matching  a  list  like {a,b,c}  with  the  pattern x_  is
different from matching it with x___ because of the various expressions that are associated
with x.

In[46]:= MatchQ 4, 6, 8 , x_ ; Length x 4

Out[46]= False

In[47]:= MatchQ 4, 6, 8 , x___ ; Length x 4

Length::argx : Length called with

3 arguments; 1 argument is expected. More…

Out[47]= False

In[48]:= MatchQ 4, 6, 8 , x___ ; Plus x 10

Out[48]= True

In  the  first  example, x  was  associated  with  the  entire  list {4,6,8};  since
Length[{4,6,8}]  is  not  greater  than  4,  the  match  failed.  In  the  second  example, x
became the sequence 4,6,8 so that the condition was Length[4,6,8]>4; but Length
can only have one argument, hence the error. In the last  example, x  was again associated
with 4,6,8,  but now the condition was Plus[4,6,8]>10,  which is perfectly legal, and
true.

In the following example, the pattern matches all those expressions that are between
2 and 5.

In[49]:= Cases 1, 2, 3, 4, 5, 6, 7, 8 , x_ ; 2 x 5

Out[49]= 3, 4
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Let  us  try  to  recast  the  Fibonacci  function  example  from  the  previous  section  in
terms of a conditional.

In[50]:= Clear f

In[51]:= f 1 f 2 1;

In[52]:= f n_ : f n 1 f n 2 ; IntegerQ n

Because of the predicate, f does not evaluate for noninteger arguments.

In[53]:= f 1.2

Out[53]= f 1.2

In[54]:= f 5 , f 10 , f 15

Out[54]= 5, 55, 610

Similarly, we can check that the arguments to f are both integral and positive.

In[55]:= Clear f

In[56]:= f 1 f 2 1;

In[57]:= f n_ : f n 1 f n 2 ; IntegerQ n && Positive n

In[58]:= f 3 , f 10

Out[58]= f 3 , 55

Note  that  you  can  alternatively  put  the  condition  inside  the  left-hand  side  of  your
definition.

In[59]:= Clear f

In[60]:= f 1 f 2 1;

In[61]:= f n_ ; IntegerQ n && Positive n : f n 1 f n 2

In[62]:= f 15 , f 1.4 , f 4

Out[62]= 610, f 1.4 , f 4

Alternatives

A final type of pattern uses alternatives. Alternatives are denoted p1 p2 … pn  where the pi

are independent patterns. This pattern will match an expression whenever any one of those
independent patterns match it.
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In the following example, x^2  matches “an expression which is  either the symbol x
raised to a real number or the symbol x raised to an integer.”

In[63]:= MatchQ[x^2, x^_Real | x^_Integer]

Out[63]= True

In this example, x^2 matches “x raised to an expression which is either a real num-
ber or an integer.”

In[64]:= MatchQ[x^2, x^(_Real | _Integer)]

Out[64]= True

Here the  pattern matches  any  expression that  has  head Integer  or Rational  or
Real.

In[65]:= Cases 1, 3.1,
2

3
, x, 3 4 I, "Hello" ,

_Integer _Rational _Real

Out[65]= 1, 3.1,
2
3

As a final example, recall the function pointLoc from Section 5.4.

In[66]:= pointLoc 0, 0 : 0

pointLoc x_, 0 : 1

pointLoc 0, y_ : 2

pointLoc x_, y_ : If x 0, 2, 1 ; y 0

pointLoc x_, y_ : If x 0, 3, 4

The integer 0, as a pattern, does not match the real number 0.0, since they have different
heads. 

In[71]:= Head 0 , Head 0.0

Out[71]= Integer, Real

Thus,  using the above version of pointLoc,  {0.0,0.0}  returns 4, which is, of  course,
wrong.

In[72]:= pointLoc 0.0, 0.0

Out[72]= 4

On  the  other  hand,  the  single-clause  versions  using If  and Which  returned 0,  because
0.0== 0  is  true.  How  can  we  fix  this?  There  are  a  number  of  possibilities.  Perhaps  the
simplest way is to change the rules involving zeroes by means of alternatives.

In[73]:= Clear pointLoc
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In[74]:= pointLoc 0 0.0, 0 0.0 : 0

pointLoc x_, 0 0.0 : 1

pointLoc 0 0.0, y_ : 2

pointLoc x_, y_ : If x 0, 2, 1 ; y 0

pointLoc x_, y_ : If x 0, 3, 4

Now  the  several  cases  that  led  to  inconsistencies  in  the  previous  versions  are  dealt  with
properly.

In[79]:= pointLoc 0, 0.0

Out[79]= 0

In[80]:= pointLoc 1, 0

Out[80]= 1

String patterns

All of the pattern matching discussed in the previous sections extends to strings in a
very  powerful  manner.  You  might  find  it  helpful  to  think  of  strings  as  a  sequence  of
characters  and  use  the  same  general  principles  on  these  expressions  as  you  do  with  lists.
Let us look at a few examples to try and make this concrete.

The expression {a,b,c,c,d,e}  matches the pattern {__,s_,s_,__}  because it
is  a  list  that  starts  with  a  sequence  of  one  or  more  elements,  it  contains  an  element
repeated once, and then ends with a sequence of one or more elements.

In[81]:= MatchQ a, b, b, c, d, e , __, s_, s_, __

Out[81]= True

If we now use a string instead of a list and StringMatchQ  instead of MatchQ,  we
get  a  similar  result  using  the  shorthand  notation ~~  for StringExpression,  which
essentially concatenates strings.

In[82]:= StringMatchQ "abbcde", __ s_ s_ __

Out[82]= True

In[83]:= "a" "b"

Out[83]= ab

In[84]:= FullForm HoldForm "a" "b"

Out[84]//FullForm=

HoldForm StringExpression "a", "b"
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StringExpression  is  quite similar to StringJoin  (both can be used to concatenate
strings) except that with StringExpression, you can concatenate nonstrings.

The  next  example  also  shows  the  similarity  between  the  pattern  matching  that  we
explored  earlier  and  string  patterns.  Using Cases,  we  return  all  those  expressions  that
match the pattern _Symbol; that is, we pick out all those symbols from the list.

In[85]:= Cases 1, f, g, 6, x, t, 2, 5 , _Symbol

Out[85]= f, g, x, t

With  the  string "1fg6xt25"  we  can  use StringCases  whose  second  argument  is  a
pattern  that  represents  a  class  of  characters  to  match.  For  example, LetterCharacter
matches a single letter.

In[86]:= StringCases "1fg6xt25", LetterCharacter

Out[86]= f, g, x, t

You can match single digits with DigitCharacter.

In[87]:= StringCases "1fg6xt25", DigitCharacter

Out[87]= 1, 6, 2, 5

Starting  in  Version  5.1,  you  can  use  regular  expressions  to  match  string  patterns.
Regular expressions in Mathematica follow a syntax very close to that of the Perl program-
ming  language.  This  syntax  is  quite  compact  and  powerful  but  it  comes  at  the  cost  of
readability  –  regular  expressions  tend  to  be  quite  cryptic  to  humans.  As  a  result,  we  will
only cover a few examples of their use here and refer the interested reader to the Mathemat-
ica documentation on string patterns.

The regular expression 1.*  will  be matched by any string starting with 1, followed
by any character repeated zero or more times.

In[88]:= StringMatchQ "1a2b3c4d", RegularExpression "1. "

Out[88]= True

The regular expression \\d represents any digit 0 through 9.

In[89]:= StringCases "1a2b3c4d", RegularExpression "\\d"

Out[89]= 1, 2, 3, 4

In the following example, we use a regular expression to look for the pattern consist-
ing  of  the  character "a"  repeated  one  or  more  times,  followed  by  the  character "c",
followed  by  any  character.  The StringReplace  function  then  replaces  any  expression
matching this pattern with a large, bold formatted expression. The "$0" is used to refer to
the matched pattern.
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In[90]:= StringReplace "acgttttccctgagcataaaaacccagcaatacg",

RegularExpression "a..c." "\ \ \ StyleBox

\"$0\",FontSize 14,FontWeight \"Bold\" \ "

Out[90]= acgttttccctgagcataaaaacccagcaatacg

Exercises

1. Find as many patterns as possible that match the expression x^3 + y z.

2. Find as many pattern matches as possible for the following expression.

{5, erina, {}, "give me a break"}

3. Using both forms (predicate and condition), write down five conditional patterns 
that match the expression {4,{a,b},"g"}.

4. In Exercise 10 of Section 5.2, we developed a procedural implementation of the
Euclidean algorithm for finding the greatest common divisor of two numbers. The
function given in the solutions does no argument checking and hence can give
erroneous output for arguments that are not integers. Rewrite the gcd function 
given there so that it uses pattern matching to check that each of its two arguments
are integers.

5. The function FindSubsequence defined in this section suffers from the limitation
that the arguments lis and subseq must both be lists of numbers. Write another
definition of FindSubsequence that takes integers as its two arguments. So for
example, the following should work:

In[1]:= pi FromDigits RealDigits N Pi, 105 3 1 ;

In[2]:= FindSubsequence pi, 1415

Out[2]= 1 , 6955 , 29136 , 45234 , 79687 , 85880 , 88009

6. Write a function Collatz that takes an integer n as an argument and returns 3 n 1 
if n is an odd integer and returns n

2  if n is even. Your function Collatz should 
attach a predicate to its argument to check whether it is even or odd.

7. Write the Collatz function from the above exercise, but this time attach a condi-
tion instead of a predicate. In addition, your condition should also check that the
argument to Collatz is positive.
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8. Use alternatives to write a function abs[x] that, whenever x is an integer or a
rational, returns x if x 0, and x if x 0. Whenever x is complex, abs[x] should

return re x 2 im x 2 .

9. Create a function swapTwo[lis_List] that returns lis with its first two ele-
ments interchanged; for example, swapTwo[{a,b,c,d,e}] is {b,a,c,d,e}. If 
lis has fewer than two elements, swapTwo just returns it. Write swapTwo using 
three clauses: one for the empty list, one for one-element lists, and one for all other
lists. Then write it using two clauses: one for lists of length zero or one and another
for all longer lists.

10. Convert this definition to one that has no conditional parts (/;), but instead uses
pattern matching in the argument list:

f x_, y_ : x y ; IntegerQ x

f x_, y_ :

x 1 y ; Head x List && IntegerQ First x && y 1

11. Write a version of the HammingDistance function (described in Section 4.7) that 
uses Cases instead of Select.

6.3 Transformation rules
Transformation rules are ubiquitous  in Mathematica. They are used to represent solutions
to equations, as a means to specify options for functions, and they form the basis of most of
the  algebraic  manipulation  in Mathematica.  In  this  section  we  will  look  at  how  to  use
pattern matching together with replacement rules to transform expressions based on these
rules.

A  replacement  rule  is  of  the  form pattern replacement  or pattern replacement.  Just
like  traditional  function  definitions,  the  left-hand  side  of  each  of  these  rules  matches  an
expression and the right-hand side describes the transformation of that expression.

One of the most common uses for rules is in making substitutions of the form expr/.
rule.  Any part  of expr  that  matches  the pattern in rule  will  be rewritten according to  that
rule.

In[1]:= x y . y

Out[1]= x
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A similar rule but using assignments would look like this:

In[2]:= f x_, y_ x y;

In[3]:= f x,

Out[3]= x

The  main  difference  between  the  replacement  rule  and  the  assignment  is  that  the
assignment  will  automatically  be  used  whenever  there  is  an  appropriate  pattern  match
during  evaluation.  The  expression f[x, ]  matched  the  rule  for f  and  the  substitution
was performed automatically.

If  you  wish  to  restrict  the  use  of  a  rule  to  a  specific  expression,  you  can  use  the
ReplaceAll  function (shorthand notation /.)  with the expression as the first argument
and a user-defined Rule or RuleDelayed  function as the second argument. In standard
input  form,  the  transformation  rule  (or  local  rewrite  rule)  appears  immediately  after  the
expression, as the second argument to ReplaceAll.

In[4]:= x y . y

Out[4]= x

Here is the standard input form of the above.

In[5]:= ReplaceAll x y, Rule y,

Out[5]= x

When  the Rule  function  is  used  with  an  expression,  the  expression  itself  is  first
evaluated. Then both the left-hand side and right-hand side of the rule are evaluated, except
for  those  parts  of  the  right-hand  side  that  are  held  unevaluated  by  the Hold  attribute.
Finally,  everywhere that  the  evaluated  left-hand  side  of  the  rule  appears  in  the  evaluated
expression, it is replaced by the evaluated right-hand side of the rule.

In[6]:= a, a . a Random

Out[6]= 0.474439, 0.474439

Using Trace,  we can see the way the transformation rule works. Note in particular, that
the right-hand side of the rule is evaluated first.

In[7]:= Trace a, a . a Random

Out[7]= Random , 0.0883691 , a 0.0883691, a 0.0883691 ,

a, a . a 0.0883691, 0.0883691, 0.0883691

Just as in the case of assignments, there are immediate rules and delayed rules. In an
immediate  rule  (pattern replacement,  with  standard  input  form Rule[pattern, replace-
ment]), the replacement will be evaluated immediately. For delayed rules (pattern replace-
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ment,  with standard input form RuleDelayed[pattern, replacement]), the replacement is
only evaluated after the substitution is made.

In[8]:= a, a . a Random

Out[8]= 0.672823, 0.703154

Using Trace, we can see the way this transformation rule works.

In[9]:= Trace a, a . a Random

Out[9]= a Random , a Random , a, a . a Random ,

Random , Random , Random , 0.174287 ,

Random , 0.722288 , 0.174287, 0.722288

Transformation rules can be written using symbols.

In[10]:= a, b, c . List Plus

Out[10]= a b c

Transformation rules can also be written using labeled patterns.

In[11]:= 3, 4 , 7, 2 , 1, 5 . x_, y_ y, x

Out[11]= 4, 3 , 2, 7 , 5, 1

We can use multiple rules with an expression by enclosing them in a list.

In[12]:= a, b, c . c b, b a

Out[12]= a, a, b

A transformation rule is applied only once to each part of an expression (in contrast
to  a  rewrite  rule)  and  multiple  transformation  rules  are  used  in  parallel.  Hence,  in  the
above example, the symbol c is transformed into b but it is not further changed into a. In
order  to  apply  one  or  more  transformation  rules  repeatedly  to  an  expression  until  the
expression no longer changes, the ReplaceRepeated function is used.

For  example,  the product  of x  and y  is  replaced by  the sum of x  and y,  but  this  is
only done for the first such occurrence that matches.

In[13]:= a b c d . x_ y_ x y

Out[13]= a b c d

Using ReplaceRepeated,  the  rule  is  applied  repeatedly  until  the  expression no  longer
changes.

In[14]:= a b c d . x_ y_ x y

Out[14]= a b c d
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Let us  now look  at  a  few examples of  problems that  we solved earlier using a func-
tional style of programming but now solve them using a rule-based approach.

Example: Counting coins

Recall  the  pocket  change  example  from  Chapter  4  where a  list  of  coins  was  given and  a
function was constructed to count the value of the set of coins. Let us try to do the same
thing, but with a rule that gives the values of the coins.

In[15]:= coins p, p, q, n, d, d, p, q, q, p

Out[15]= p, p, q, n, d, d, p, q, q, p

Here are the values, given by a list of rules.

In[16]:= values p 1, n 5, d 10, q 25 ;

This replaces each coin by its value.

In[17]:= coins . values

Out[17]= 1, 1, 25, 5, 10, 10, 1, 25, 25, 1

And here is the value of the set of coins.

In[18]:= Apply Plus, coins . values

Out[18]= 104

Finally, here is a function that wraps up all these steps.

In[19]:= CountChange coins_List : Module values ,

values p 1, n 5, d 10, q 25 ;

Apply Plus, coins . values

In[20]:= CountChange p, q, q, n, d, d, p, q, q, d, d

Out[20]= 147

Example: Finding maxima

Our  last  example  employs  a  sophisticated  rewrite  rule  which  demonstrates  most  of  the
things  discussed  in  this  section:  the  repeated  use  of  a  transformation  rule  with  delayed
evaluation, sequence patterns, and conditional pattern matching.

Recall  the maxima  function  that  we  defined  in  Chapter  4,  which  returns  the  ele-
ments in a list of positive numbers that are bigger than all of the preceding numbers in the
list. 
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In[21]:= maxima x_List : Union Rest FoldList Max, 0, x

In[22]:= maxima 3, 5, 2, 6, 1, 8, 4, 9, 7

Out[22]= 3, 5, 6, 8, 9

We can also write this function using a pattern matching transformation rule.

In[23]:= maximaR x_List :

x . a___, b_, c___, d_, e___ ; d b a, b, c, e

Basically, the transformation rule repeatedly looks through the list for two elements
(b  and d  here),  separated  by  a  sequence  of  zero  or  more  elements,  such  that  the  second
selected element is no greater than the first selected element. It then eliminates the second
element.  The  process  stops  when there are  no  two  elements  such  that  the  second  is  less
than or equal to the first.

In[24]:= maximaR 3, 5, 2, 6, 1, 8, 4, 9, 7

Out[24]= 3, 5, 6, 8, 9

Exercises

1. Using Trace on maxima and maximaR, explain why the functional version is much
faster than the pattern matching version of the maxima function.

2. The following compound expression returns a value of 14.

In[1]:= z 11;

a 9;

z 3 . z a

Out[3]= 14

Describe the evaluation sequence that was followed. Use the Trace function to
check your answer.

3. Use the Hold function in the compound expression in the previous exercise to
obtain a value of 12.

4. The function definition f[x_Plus]:= Apply[Times,x] works as follows:

In[4]:= Clear f, a, b, c

In[5]:= f x_Plus : Apply Times, x

168 An Introduction to Programming with Mathematica



In[6]:= f a b c

Out[6]= a b c

The rewrite rule g[x_]:= x /.Plus[z___] Times[z] does not work. Use
Trace to see why and then modify this rule so that it performs the same operation as 
the function f above.

5. Create a rewrite rule that uses a repeated replacement to “unnest” the nested lists 
within a list.

In[7]:= unNest a, a, a , a , b, b, b , b, b , a, a

Out[7]= a, a, a , a , b, b, b , b, b , a, a

6. Define a function using pattern matching and repeated replacement to sum the
elements of a list.

7. Using the built-in function ReplaceList, write a function cartesianProduct
that takes two lists as input and returns the Cartesian product of these lists.

In[8]:= cartesianProduct x1, x2, x3 , y1, y2

Out[8]= x1, y1 , x1, y2 , x2, y1 , x2, y2 , x3, y1 , x3, y2

8. The function CellularAutomaton[rule, init, t] creates a list of the evolution
of a cellular automaton. For example, this generates five iterations of the cellular
automaton rule number 30 starting with the initial condition of a single 1 surrounded
by 0s.

In[9]:= CellularAutomaton 30, 1 , 0 , 5

Out[9]= 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ,

0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0 , 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0 ,

0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0 , 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1

Write a function CAGraphics[lis] that takes as argument, a list generated by 

CellularAutomaton and produces a Graphics object that can then be displayed
directly with Show. Your function should use RasterArray and also a set of rules
to transform each 0 and 1 into different color directives such as Hue[.2]. 

In[10]:= ca30 CellularAutomaton 30, 1 , 0 , 500 ;

6 Rule-based programming 169



In[11]:= Show CAGraphics ca30

Out[11]= Graphics

6.4 Examples
This  section  focuses  on  two  classical  problems  in  computer  science:  encryption  and
sorting.  Even  though  we  will  only  scratch  the  surface  of  these  two  very  deep  problems,
they  are  so  important  and  ubiquitous  in  modern  computing  that  it  is  well  worth  while
learning  about  them.  As  it  turns  out,  these  problems  are  well  suited  to  a  rule-based
approach,  at  least  at  an  introductory  level.  We  encourage  you  to  investigate  further  the
theory  and  implementation  of  modern  cipher  and  sorting  algorithms.  See,  for  example,
(Sedgewick, 1988) and (Wagon, 1999) for details.

Encoding text

In  this  example,  we  will  develop  functions  for  coding  and  decoding  strings  of  text.  The
particular coding that we will do is quite simplistic compared with contemporary commer-
cial-grade ciphers, but it will give us a chance to see how to combine string manipulation,
the  use  of  functional  programming constructs,  and  rule-based  programming all  in a  very
practical example that should be accessible to anyone.

The problem in encryption is to develop an algorithm that can be used to encode a
string of text and then a dual algorithm that can be used to decode the encrypted message.
At first we will just limit ourselves to the 26 lowercase letters of the alphabet.

In[1]:= alphabet Map FromCharacterCode , Range 97, 122

Out[1]= a, b, c, d, e, f, g, h, i, j, k,

l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

One of the simplest encryption schemes is attributed to Julius Caesar who is said to
have used this  cipher to encode communications  with his generals. The scheme is  simply
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to shift each letter of the alphabet some fixed number of places to the left. Using Thread,
we can set up rules that implement this shift.

In[2]:= CaesarCodeRules Thread alphabet RotateLeft alphabet

Out[2]= a b, b c, c d, d e, e f, f g, g h, h i,

i j, j k, k l, l m, m n, n o, o p, p q, q r,

r s, s t, t u, u v, v w, w x, x y, y z, z a

The decoding rules are simply to shift back in the other direction.

In[3]:= CaesarDecodeRules Thread alphabet RotateRight alphabet

Out[3]= a z, b a, c b, d c, e d, f e, g f, h g,

i h, j i, k j, l k, m l, n m, o n, p o, q p,

r q, s r, t s, u t, v u, w v, x w, y x, z y

To code a string, we will decompose the string into individual characters, apply the
code rules, and then join up the resulting characters in a “word.”

In[4]:= Characters "hello"

Out[4]= h, e, l, l, o

In[5]:= % . CaesarCodeRules

Out[5]= i, f, m, m, p

In[6]:= Apply StringJoin, %

Out[6]= ifmmp

Here is the function to accomplish this.

In[7]:= encode str_String, coderules_ :

Apply StringJoin, Characters str . coderules

Similarly, here is the decoding function.

In[8]:= decode str_String, decoderules_ :

Apply StringJoin, Characters str . decoderules

Let us try it out on a phrase.

In[9]:= encode "squeamish ossifrage", CaesarCodeRules

Out[9]= trvfbnjti pttjgsbhf

In[10]:= decode %, CaesarDecodeRules

Out[10]= squeamish ossifrage
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Other ciphers can be created using permutations  on the letters of the alphabet. We
will need the randomPermutation  function we created in Section 5.2 of the chapter on
procedural programming.

In[11]:= randomPermutation lis_ : Module x, res , l2 lis ,

Do

x Part l2, Random Integer, 1, Length l2 ;

res Append res, x ;

l2 Complement l2, x ,

i, 1, Length lis ;

res

First we create a random permutation of the letters of the alphabet.

In[12]:= p randomPermutation alphabet

Out[12]= y, g, r, e, j, h, f, b, t, p, a,

k, i, m, o, c, u, z, w, d, v, q, s, n, x, l

Then,  using Thread,  we  create  a  rule  for  each  letter  paired  up  with  the  corresponding
letter from the permutation p.

In[13]:= PermutationCodeRules Thread alphabet p

Out[13]= a y, b g, c r, d e, e j, f h, g f, h b,

i t, j p, k a, l k, m i, n m, o o, p c, q u,

r z, s w, t d, u v, v q, w s, x n, y x, z l

The decoding rules are obtained by simply reversing the above rules.

In[14]:= PermutationDecodeRules Thread p alphabet

Out[14]= y a, g b, r c, e d, j e, h f, f g, b h,

t i, p j, a k, k l, i m, m n, o o, c p, u q,

z r, w s, d t, v u, q v, s w, n x, x y, l z

In[15]:= encode "squeamish ossifrage", PermutationCodeRules

Out[15]= wuvjyitwb owwthzyfj

In[16]:= decode %, PermutationDecodeRules

Out[16]= squeamish ossifrage

Sorting a list

This  next  example  also  incorporates  several  of  the  concepts  discussed  in  this  chapter.  It
uses a delayed rule, contains a conditional, and has several types of pattern matching.
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We will  create a  rule  named listsort  that,  upon  repeated application,  will  put  a
list of numbers into numerical order. To account for the first and last elements in the list,
we use BlankNullSequence (___).

In[17]:= listsort

x___, a_?NumericQ, b_?NumericQ, y___ x, b, a, y ; b a

Out[17]= x___, a_?NumericQ, b_?NumericQ, y___ x, b, a, y ; b a

The  pattern  that  has  to  match {x___,a_,b_,y___}  is  a  list  of  at  least  two  ele-
ments  since x___  and y___  will  match  zero  or  more  elements.  The  condition  on  the
right-hand side of the rule says that whenever b is less than a, switch the order of a and b

in the original list to output {x,b,a,y}.
Here is a list of ten real numbers between 0 and 1.

In[18]:= nums Table Random , 10

Out[18]= 0.237736, 0.182151, 0.822792, 0.264693, 0.968603,

0.599673, 0.602053, 0.101958, 0.219543, 0.539043

In[19]:= nums //. listsort

Out[19]= 0.101958, 0.182151, 0.219543, 0.237736, 0.264693,

0.539043, 0.599673, 0.602053, 0.822792, 0.968603

Notice  that  because  we used ?NumericQ  as  part  of  the pattern match, listsort
will  work  on  expressions  that  may  not  be  explicit  numbers,  but  are  numerical  in  nature;
that is, expressions that return explicit numbers when N is applied to them.

In[20]:= , , EulerGamma, GoldenRatio . listsort

Out[20]= EulerGamma, GoldenRatio, ,

This  algorithm is  far  less  efficient than many classical  sorting algorithms,  especially
those that employ a divide-and-conquer strategy.

In[21]:= nums Table Random , 100 ;

In[22]:= Timing nums . listsort ;

Out[22]= 0.942 Second, Null

The built-in Sort  function uses a classical algorithm called “merge sort” (discussed
in Section 7.5), which starts by dividing the list into two parts of approximately equal size.
It then sorts each part recursively and finally merges the two sorted sublists.

In[23]:= Timing Sort nums ;

Out[23]= 0. Second, Null

6 Rule-based programming 173



The above implementation of listsort  only  works for numerical arguments. We
can  overload listsort  to  work  on  characters  of  strings  by  making  only  two  small
changes.  First,  we  pattern  match a  and b  with  head String  instead  of ?NumericQ.
Second, instead of comparing a<b, we need to compare their character codes.

In[24]:= ToCharacterCode "z" 1

Out[24]= 122

Here then is the definition of listsort that operates on lists of string characters.

In[25]:= listsort x___, a_String, b_String, y___ x, b, a, y ;

Part ToCharacterCode b , 1 Part ToCharacterCode a , 1 ;

Out[25]= x___, a_String, b_String, y___

x, b, a, y ; ToCharacterCode b 1 ToCharacterCode a 1

Here are ten random characters.

In[26]:= chars

Table FromCharacterCode Random Integer, 97, 122 , 10

Out[26]= c, x, z, e, c, i, d, c, a, l

Here they are sorted.

In[27]:= chars . listsort

Out[27]= a, c, c, c, d, e, i, l, x, z

Exercises

1. Modify the Caesar cipher so that it encodes by shifting five places to the right.

2. Modify the alphabet permutation cipher so that instead of being based on single
letters, it is instead based on adjacent pairs of letters. Whereas the single letter cipher
will have 26 403291461126605635584000000 permutations, the adjacent pairs 
cipher will have 262  permutations – a very large number.

In[1]:= N 262

Out[1]= 1.883707684133810 101621

3. You can quickly create a graphics function to plot binary data (0s and 1s) using 
Raster. For example:
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In[2]:= data Table Random Integer , 5 , 5

Out[2]= 1, 1, 0, 0, 1 , 1, 0, 1, 1, 0 ,

0, 1, 1, 1, 1 , 0, 1, 0, 1, 1 , 0, 1, 1, 1, 0

In[3]:= Show Graphics Raster Reverse data , AspectRatio Automatic

Out[3]= Graphics

If you wanted to color the squares with color directives such as RGBColor or Hue or 
GrayLevel, then you need to use RasterArray instead. Create a function 
matrixPlot[mat,rules] that takes a matrix mat as its first argument and a list of 

rules as the second argument. The list of rules should specify what color directive
each of the values in mat should be mapped to. Finally, compare your function with
ArrayPlot (new in Version 5.1).

In[4]:= ArrayPlot data, ColorRules 0 Black, 1 White ;

4. Plot the function sin x  over the interval [ 2 , 2 ] and then reverse the x- and
y-coordinates of each point by means of a transformation rule.

5. Plot the function sin x y  with x and y taking on values from 0 to 3 2. Then use a
transformation rule to perform a shear by shifting the graphic in the x-direction by a 
factor of four.
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6. Create a function rotatePlot[gr, ] that takes a plot gr and rotates it about the
origin by an angle . For example, to rotate a plot of the sine function, first create the
plot:

In[5]:= plot1 Plot Sin x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1

Then perform the rotation of  radians.

In[6]:= rotatePlot plot1, ;

6 5 4 3 2 1

1

0.5

0.5

1

7. Create a function rotatePlot3D[gr, , , ] that will rotate a Graphics3D
object gr about the origin by the angles , , and  in the x, y, and z directions,
respectively.
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7 Recursion

Some very important and classical problems in mathematics and computer science are
defined, or have solutions in terms of recursive definitions. A function is defined using
recursion  if  in  its  definition,  it  makes  calls  to  itself.  This  programming  paradigm is
easily implemented in Mathematica in a manner that is both natural and quite efficient.
In fact, many of the built-in operations of Mathematica  could be written in Mathemat-
ica  itself  using recursion. In this  chapter, we will  present many examples of recursion
and explain how recursive functions are written.

7.1 Fibonacci numbers
Recursive  definitions  of  mathematical  quantities  were used  by  mathematicians  for  centu-
ries  before  computers  even  existed.  One  famous  example  is  the  definition  of  a  special
sequence  of  numbers  first  studied  by  the  thirteenth-century  Italian  mathematician
Leonardo  Fibonacci.  The Fibonacci  numbers  have  since  been  studied  extensively,  finding
application in many areas; see (Knuth 1997) for a detailed discussion.

The  Fibonacci  numbers  are  obtained  as  follows:  write  down  two  1s,  then  continue
writing numbers computed by adding the last two numbers you have written down.

1 1 2 3 5 8 13 21 …
F1 F2 F3 F4 F5 F6 F7 F8 …

The simplest way to define these numbers is with recursion.

F1 1
F2 1
Fn Fn 2 Fn 1, for n 2



If  we  think  of  this  sequence  as  a  function,  we  would  just  change  this  to  a  functional
definition.

F 1 1
F 2 1
F n F n 2 F n 1 , for n 2

In this form, we can translate the definition directly into Mathematica.

In[1]:= F 1 1;

F 2 1;

F n_ : F n 2 F n 1 ; n 2

As it  turns  out,  the condition /;n> 2 is  unnecessary because Mathematica  looks  up
specific rules such as F[1]=1 before more general rules like that for F[n]. 
Here is a table of the first ten Fibonacci numbers.

In[4]:= Table F i , i, 1, 10

Out[4]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

It is somewhat amazing that this works, but note that whenever we want to compute
F[n] for some n 2, we only apply F to numbers smaller than n. Tracing the evaluation of
F[4] makes the point well.

In[5]:= TracePrint F 4 , F _Integer F _ F _

F 4

F 4 2 F 4 1

F 2

F 3

F 3 2 F 3 1

F 1

F 2

Out[5]= 3

The  first  two  lines  indicate  that F[4]  is  rewritten  to F[4-2]+F[4-1],  and  the
lines that are indented one space show the calls of F[2] and F[3]. The lines showing calls
to F[1]  and F[2]  do  not  have  any  indented  lines  under  them,  since  those  values  are
computed directly by a single rewrite rule, without making any recursive calls (for a fuller
explanation of this use of TracePrint, see Appendix B.
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The key thing to understand about recursion is this: you can always apply a function
within  its  own definition,  so  long  as  you  apply  it  only  to smaller  values.  We will  see this
principle used repeatedly in this chapter.

There is one other key point as well: we can apply the function to smaller and smaller
values, but we must eventually reach a value that can be computed without recursion. In the
case of the Fibonacci numbers, the numbers that can be computed without recursion – the
base cases – are F 1  and F 2 .

We will return to the Fibonacci numbers later in this chapter, in Section 7.6, where
we will see what can be done about a serious inefficiency in our implementation of F (also,
see Exercise 2 below).

Exercises
Before doing the exercises in this chapter, you may want to take a look at Appendix 
B, which discusses some common programming errors, and how to debug recursive
functions.

1. For each of the following sequences of numbers, see if you can deduce the pattern
and write a Mathematica function to compute the ith value.

a.
2, 3, 6, 18, 108, 1944, 209952, …
A1 A2 A3 A4 A5 A6 A7 …

b.
0, 1, 1, 2, 3, 5, 8, 13, 21, …
B1 B2 B3 B4 B5 B6 B7 B8 B9 …

c.
0, 1, 2, 3, 6, 11, 20, 37, 68, …
C1 C2 C3 C4 C5 C6 C7 C8 C9 …

2. The numbers FAn represent the number of additions that are done in the course of 
evaluating F[n].

0 0 1 2 4 7 12 20 33 …
FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 …

Write a function FA such that FA[n] = FAn.
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7.2 List functions
In  Chapter 4, we looked at  functional  implementations of some list-oriented functions  in
Mathematica.  Although  some  of  these  functions  have  more  efficient  implementations  in
terms of functional constructs, they provide a nice vehicle for discussing recursion, and so
in  this  section  we  will  use  them  to  introduce  some  of  the  basic  concepts  of  recursive
programming.

We noted in our  discussion  of Fibonacci  numbers  that recursion works if  the argu-
ments of recursive calls are smaller than the original argument. The same principle applies
to  functions  on lists.  One common case  is  when the argument in the recursive call  is  the
“tail”  (that  is, Rest)  of  the  original  argument.  An  example  is length,  our  recursively
defined  version  of  the  built-in  function Length.  The  idea  is  that  the  length  of  a  list  is
always one greater than the length of its tail.

In[1]:= length lis_ : length Rest lis 1

Applying length to a list, however, leads to trouble.

In[2]:= length a, b, c

Rest::norest :

Cannot take Rest of expression with length zero. More…

Rest::argx :

Rest called with 0 arguments; 1 argument is expected. More…

General::stop : Further output of Rest::norest will

be suppressed during this calculation. More…

General::stop :

Further output of $RecursionLimit::reclim will

be suppressed during this calculation. More…

Out[2]= 255 Hold Hold length Rest Rest Rest

Well, perhaps it is already obvious,  but what we are experiencing is one of the most
common errors in defining functions recursively – we forgot the base cases. For length,
there is just one base case, the empty list.

In[3]:= length : 0

Now length works as we had intended it to.

In[4]:= length a, b, c

Out[4]= 3
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Here  is  another  simple  example  (for  which  we  again  have  better  solutions  using
built-in operations): adding the elements of a list. We know several ways to do this, using
functional constructs for example.

In[5]:= sumElements lis_ : Apply Plus, lis

In[6]:= sumElements lis_ : Fold Plus, 0, lis

But  for  now  we  are  just  trying  to  get  some  practice  with  recursion.  Here  is  the  most
obvious recursive solution.

In[7]:= sumElements : 0

sumElements x_, r___ : x sumElements r

In[9]:= sumElements a, b, c

Out[9]= a b c

A trace of this computation shows the evaluation procedure in detail.

In[10]:= Trace sumElements a, b, c

Out[10]= sumElements a, b, c , a sumElements b, c ,

sumElements b, c , b sumElements c ,

sumElements c , c sumElements ,

sumElements , 0 , c 0, c , b c , a b c , a b c

We  can  use  recursion  for  functions  with  multiple  arguments  as  well. add

Pairs[lis1,lis2] is given two lists of numbers of equal length and returns a list containing
the pairwise sums.

Here, the idea is to apply addPairs recursively to the tails of both lists.

In[11]:= addPairs , :

addPairs x1_, r1___ , x2_, r2___ :

Join x1 x2 , addPairs r1 , r2

In[13]:= addPairs 1, 2, 3 , 4, 5, 6

Out[13]= 5, 7, 9

In[14]:= addPairs x1, y1, z1 , x2, y2, z2

Out[14]= x1 x2, y1 y2, z1 z2

The recursive calls do not always have to be on the tail of the original argument. Any
smaller  list  will  do.  The  function multPairwise  multiplies  together  every  pair  of
elements in a list. The trick is to make the recursive call on the tail of the tail.

In[15]:= multPairwise :

multPairwise x_, y_, r___ : Join x y , multPairwise r
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In[17]:= multPairwise 3, 9, 17, 2, 6, 60

Out[17]= 27, 34, 360

As  a  last  simple  example,  consider  the  function deal  defined  in  Chapter  4.  The
function deal[n] produces a list of n playing cards randomly chosen from a 52-card deck
(stored  as  the  value  of cardDeck,  a  52-element  list).  Here  is  how  we  might  write  this
function recursively.

First, dealing zero cards is easy.

In[18]:= deal 0 :

Now, suppose we have dealt n 1 cards; how do we deal n? Just randomly deal a card
from  the  remaining 52 n 1 53 n.  To  do  this,  randomly  choose  an  integer r
between 1 and 53 n, remove the rth card, and add it to the list of cards already dealt.

In[19]:= deal n_ : Module dealt deal n 1 , Append dealt,

Complement cardDeck, dealt Random Integer, 1, 53 n

Here again is the cardDeck function defined earlier in Chapter 4.

In[20]:= cardDeck Flatten Outer List,

, , , , Join Range 2, 10 , J, Q, K, A , 1 ;

And here is the recursive deal.

In[21]:= deal 5

Out[21]= , 7 , , 5 , , J , , 2 , , A

Exercises

1. Write a recursive function sumOddElements[lis] that adds up only the elements
of the list lis that are odd integers. lis may contain even integers and nonintegers.
(Use IntegerQ to determine if a given element is an integer.)

2. Write a recursive function sumEveryOtherElement[lis] that adds up
lis[[1]], lis[[3]], lis[[5]], etc. Each of these elements is a number. lis may
have any number of elements.

3. Write a function addTriples[lis1,lis2,lis3] that is like addPairs in that it adds
up the corresponding elements of the three equal-length lists of numbers.
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4. Write a function multAllPairs[lis] that multiplies every consecutive pair of 
integers in the numerical list lis.

In[1]:= multAllPairs 3, 9, 17, 2, 6, 60

Out[1]= 27, 153, 34, 12, 360

5. Write the function maxPairs[lis1,lis2] which, for numerical lists of equal length,
returns a list of the greater value in each corresponding pair.

6. The function interleave[lis1,lis2], which merges two lists of equal length, can 
be defined as follows:

In[2]:= interleave lis1_, lis2_ : Flatten Transpose lis1, lis2

In[3]:= interleave a, b, c , x, y, z

Out[3]= a, x, b, y, c, z

Rewrite interleave using recursion.

7.3 Thinking recursively: examples
The  manner  in  which  expressions  are  rewritten  during Mathematica’s  evaluation  process
completely  explains  how  recursion  works,  and  it  can  be  seen  using Trace  or Trace

Print,  as  we  did  above.  But  that  knowledge  is  of  only  limited  usefulness  in  writing
recursive functions.

Indeed,  the  real  trick  is  to forget  the  evaluation  process  and  simply assume  that  the
function  you  are  defining  will  return  the  correct  answer  when  applied  to  smaller  values.
Suspend disbelief – you will begin to see how simple recursion really is.

Finding maxima

Recall  the  function maxima  (from Section  4.4  of  the  Functional  Programming chapter),
which, given a list of numbers, produces a list of those numbers greater than all those that
precede them.

In[1]:= maxima 9, 2, 10, 3, 14, 9

Out[1]= 9, 10, 14
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We again start by assuming that we can easily compute maxima[Rest[lis]] for any
list lis, and then ask ourselves: how can we compute maxima[lis] starting from maxima[

Rest[lis]]? 

In[2]:= maxima Rest 9, 2, 10, 3, 14, 9

Out[2]= 2, 10, 14

The answer is to remove any values not greater than First[lis], then put First[lis] at
the beginning of the result.

In[3]:= Select %, # 9 &

Out[3]= 10, 14

In[4]:= Join 9 , %

Out[4]= 9, 10, 14

Again, the base case needs to be accounted for, and we end up with the following:

In[5]:= maxima :

In[6]:= maxima x_, r___ : Join x , Select maxima r , # x &

In[7]:= maxima 3, 6, 2, 1, 8, 7, 12

Out[7]= 3, 6, 8, 12

The lesson of this section (and it is an important one) is not to worry about how the
recursive cases are computed – assume that they work, and just think about how to compute
the value you want from the result of the recursive call.

Subsets

The second problem we will tackle is  to generate a list  of k-element subsets  of any given
set. Our sets will be represented by lists in Mathematica, so this amounts to a recursion on
the elements of this list. The syntax of our function will be subsets[lis, k], so if k 2,
for example, this would generate all 2-element subsets of lis.

Let  us  apply  the  basic  principle  we  have  just  learned.  Given lis,  we assume  that
subsets[Rest[lis],k-1]  will give the correct result, and call that result res. How can
we then compute subsets[lis]?

A  possible  approach  to  defining subsets  is  to  take subsets[Rest[lis],k]
together  with  the  result  of  joining {First[lis]}  to  all  the  elements  in subsets[

Rest[lis],k 1].
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We  need  to  first  define  the  base  cases:  subsets  of  length  0  and  the  subsets  of  an
empty set.

In[8]:= subsets lis_, 0 :

subsets , k_ :

Here then is the recursion.

In[10]:= subsets lis_, k_ :

Module res subsets Rest lis , k 1 , Join

Map Join First lis , # & , res , subsets Rest lis , k

Here are a few tests.

In[11]:= subsets Range 5 , 1

Out[11]= 1 , 2 , 3 , 4 , 5

In[12]:= subsets Range 5 , 2

Out[12]= 1, 2 , 1, 3 , 1, 4 , 1, 5 ,

2, 3 , 2, 4 , 2, 5 , 3, 4 , 3, 5 , 4, 5

In[13]:= subsets Range 5 , 4

Out[13]= 1, 2, 3, 4 , 1, 2, 3, 5 ,

1, 2, 4, 5 , 1, 3, 4, 5 , 2, 3, 4, 5

The recursion is fairly deep, so this function is not terribly efficient for large values.
This computes all of the 5-element subsets from the 30-element set given by Range[30].

In[14]:= Timing xx subsets Range 30 , 5 ;

Out[14]= 6.189 Second, Null

There are
30
5

142,506 of them.

In[15]:= Length xx

Out[15]= 142506

We should check that our function at least produced the correct number of subsets.

In[16]:= Binomial 30, 5

Out[16]= 142506
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Comparing our subsets with the built-in Subsets, we can see that the built-in function
is clearly superior in terms of speed, being more than two orders of magnitude faster.

In[17]:= Timing yy Subsets Range 30 , 5 ;

Out[17]= 0.03 Second, Null

In[18]:= Length yy

Out[18]= 142506

The exercises  at  the  end of  this  section include a  problem to  modify  the subsets

function  so  that  it  behaves  more  like  the  built-in Subsets,  which  allows  you  to  also
generate subsets of all lengths up to a given size.

Run-length encoding

We  now  turn  to  another,  somewhat  more  involved  example  –  programming  run-length
encoding. runEncode  implements a method commonly used to compress large amounts
of  data  in those  cases  where the data  are likely  to  contain  long sequences  (“runs”)  of  the
same value. A good example is the representation of video images in a computer as collec-
tions of color values for the individual dots, or “pixels,” in the image. Since video pictures
often contain large areas of a single color, this representation may lead to lists of hundreds,
or  even  thousands  of  occurrences  of  the  identical  color  value,  one  after  another.  Such  a
sequence  can be represented very compactly  using  just  two numbers,  the color  value and
the length of the run.

runEncode  compresses  a  list  by  dividing  it  into  runs  of  occurrences  of  a  single
element, and returns  a  list  of  the runs, each represented as a  pair containing the element
and the length of its run. So the following list,

9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

should produce the following runs once encoded.
9, 5 , 4, 1 , 3, 4 , 5, 6

Given  list lis,  we  just  assume  that runEncode[Rest[lis]]  gives  the  compressed
form of the tail of lis (call it res), and ask ourselves: given the list lis and the list res, how can
we compute runEncode[lis]? Let x be lis[[1]], and consider the cases:

1. First we define what runEncode should do in the two base cases: when the list is 
empty and when the list consists of only one element.

In[19]:= runEncode[{}] := {}

runEncode[{x_}] := {{x, 1}}
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2. res might be {}, if lis has one element. In this case, lis ={x} and run
Encode[lis]} = {x,1}.

3. If the length of lis is greater than 1, res has the form {{y,k},…}, and there
are two cases:

• y x: runEncode[lis] ={{y,k 1},…}

• y x: runEncode[lis]= {{x,1},{y,k},…}

In[21]:= runEncode x_, res___ : Module R runEncode res , p ,

p First R ;

If x First p ,

Join x, p 2 1 , Rest R ,

Join x, 1 , R

In[22]:= runEncode 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

Out[22]= 9, 5 , 4, 1 , 3, 4 , 5, 6

This can be made a lot clearer by replacing the last clause above with a transformation rule.

In[23]:= runEncodeT x_, res__ : runEncodeT res .

y_, k_ , s___ If x y, x, k 1 , s , x, 1 , y, k , s

In[24]:= runEncodeT[{}] := {}

runEncodeT[{x_}] := {{x, 1}}

In[26]:= runEncodeT 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

Out[26]= 9, 5 , 4, 1 , 3, 4 , 5, 6

Incidentally, a program for this problem, due to Frank Zizza of Willamette College,
won an honorable mention in the programming contest  at the 1990 Mathematica  Confer-
ence. It uses no recursion, just repeated substitution.

In[27]:= runEncodeZ lis_ : Map #, 1 &, lis .

x___, y_, i_ , y_, j_ , z___ x, y, i j , z

In[28]:= runEncodeZ 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

Out[28]= 9, 5 , 4, 1 , 3, 4 , 5, 6

Impressively  clever,  and  quite  similar  conceptually  to  the listsort  function  we
created in Section 6.4, but our recursive version is much more efficient on most examples.
Mathematica  contains  a  function Split  which  effectively  does  run  length  encoding,
although it represents the output slightly different from our runEncode functions.
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In[29]:= Split 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

Out[29]= 9, 9, 9, 9, 9 , 4 , 3, 3, 3, 3 , 5, 5, 5, 5, 5, 5

You could easily convert the output of Split to that produced by our runEncode
functions by mapping the appropriate pure function.

In[30]:= Map First # , Length # &, %

Out[30]= 9, 5 , 4, 1 , 3, 4 , 5, 6

We leave it as an exercise to go in the other direction – that is, convert the output of
our runEncode function to that produced by Split.

Finally,  we should mention some efficiency issues.  Each of the run-length encoding
implementations  presented  in  this  section  are  reasonably  fast  for  relatively  small  inputs,
vectors of length less than a few hundred. But for larger vectors and for certain cases, they
get quite bogged down, mostly due to the deep recursion needed in these cases. This can
be seen quite plainly as follows:

In[31]:= data Range 300 ;

In[32]:= runEncode data

$RecursionLimit::reclim :

Recursion depth of 256 exceeded. More…

General::stop :

Further output of $RecursionLimit::reclim will

be suppressed during this calculation. More…

Join::heads : Heads List and If at positions

1 and 2 are expected to be the same. More…

General::stop : Further output of Join::heads will

be suppressed during this calculation. More…

Out[32]= If 1 2, 1 , Join 1, p$178481 2 1 , Rest R$178481 ,

Join 1, 1 , R$178481

A possible  solution  would  be  to  recognize  that  there is  quite  a  deep  recursion here
and hence to increase the built in recursion limit; and this seems to work.

In[33]:= Block $RecursionLimit ,

Timing runEncode data ;

Out[33]= 0.01 Second, Null
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But  trying  a  larger  example  shows  that  the  underlying  algorithm,  although  mostly
linear in the size of the input, is quite slow for input as small as about 10,000 in length.

In[34]:= Block $RecursionLimit ,

Table Timing runEncode Range 2k 103 ; 1 , k, 0, 3

Out[34]= 0.07 Second, 0.18 Second, 0.671 Second, 2.413 Second

In such cases it is best to rethink your algorithm and either try to refine it or find a
different  and  better  implementation.  In  the  case  of  run-length  encoding,  a  more  direct,
functional  approach  proves  to be much more efficient. Although the following code does
not use recursion, we present it here anyway so the reader can compare it with the recur-
sive functions and perform some efficiency tests on the various implementations.

Here is an example list we will use to develop the prototype code.

In[35]:= vec 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5 ;

We first take overlapping pairs from vec.

In[36]:= Partition vec, 2, 1

Out[36]= 9, 9 , 9, 9 , 9, 9 , 9, 9 , 9, 4 , 4, 3 , 3, 3 , 3, 3 ,

3, 3 , 3, 5 , 5, 5 , 5, 5 , 5, 5 , 5, 5 , 5, 5

Each run ends at  the position at  which a pair  from the above partition  contains  different
elements.

In[37]:= end Flatten Position %, a_, b_ ; a b

Out[37]= 5, 6, 10

We have to add the positions at the beginning and end of the list.

In[38]:= end Join 0 , end, Length vec

Out[38]= 0, 5, 6, 10, 16

Creating pairs again shows the ending position paired up with the next ending position for
each run.

In[39]:= Partition end, 2, 1

Out[39]= 0, 5 , 5, 6 , 6, 10 , 10, 16

To indicate where the run starts, not where the previous run ended, we add 1 to each first
coordinate.

In[40]:= runs Map Plus #, 1, 0 &, %

Out[40]= 1, 5 , 6, 6 , 7, 10 , 11, 16
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Now each pair from runs consists of the starting position and the run length. We can use
these pairs as the second argument to Take as in the following example.

In[41]:= Take a, b, c, d, e , 3, 5

Out[41]= c, d, e

So, finally, here is the list of runs.

In[42]:= Map Take vec, # &, runs

Out[42]= 9, 9, 9, 9, 9 , 4 , 3, 3, 3, 3 , 5, 5, 5, 5, 5, 5

Here  then  is  the  function split  that  produces  output  identical  to  the  built-in
Split.

In[43]:= split lis_ : Module end, t, runs ,

end

Flatten Position Partition lis, 2, 1 , a_, b_ ; a b ;

t Partition Join 0 , end, Length lis , 2, 1 ;

runs Map Plus #, 1, 0 &, t ;

Map Take lis, # &, runs

In[44]:= split vec

Out[44]= 9, 9, 9, 9, 9 , 4 , 3, 3, 3, 3 , 5, 5, 5, 5, 5, 5

This implementation is extremely efficient.

In[45]:= data Range 105 ;

In[46]:= Timing split data ; 1

Out[46]= 0.641 Second

In[47]:= data Table Random Integer , 105 ;

In[48]:= Timing split data ; 1

Out[48]= 0.591 Second

By comparison, we see that our split  is only about one order of magnitude slower
than the built-in function, which is optimized for such tasks.

In[49]:= Timing Split data ; 1

Out[49]= 0.04 Second
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Exercises

1. Write the function prefixMatch[lis1,lis2] that finds the starting segments of lis1
and lis2 that match.

In[1]:= prefixMatch 1, 2, 3, 4 , 1, 2, 5

Out[1]= 1, 2

2. Modify runEncode so that it leaves single elements as they are.

In[2]:= runEncode2 9, 9, 9, 4, 3, 3, 5

Out[2]= 9, 3 , 4, 3, 2 , 5

For this version, you need to assume that the argument is a list of atoms, otherwise
the output would be ambiguous.

3. Modify one of the runEncode functions so that it produces output in the same
form as the built-in Split function.

In[3]:= Split 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

Out[3]= 9, 9, 9, 9, 9 , 4 , 3, 3, 3, 3 , 5, 5, 5, 5, 5, 5

4. A slightly more efficient version of runEncode uses a three-argument auxiliary 
function.

runEncode[{}] := {}

runEncode[{x_, r___}] := runEncode[x, 1, {r}]

runEncode[x,k,{r}] computes the compressed version of x, x, x, …, x, r , 
where the xs are given k times. Define this three-argument function. (Note that it is 
legal to have a function be defined for different numbers of arguments; rules in which
runEncode appears on the left-hand side with two arguments will only be applied 
when runEncode is called with two arguments, and likewise for the three-argument
version.) Using the Timing function, compare the efficiency of this version with our 
earlier version; be sure to try a variety of examples, including lists that have many
short runs and ones that have fewer, but longer runs. You will need to use Table to
generate lists long enough to see any difference in speed.

5. maxima can also be computed more efficiently with an auxiliary function.

maxima :

maxima x_, r___ : maxima x, r
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The two-argument version has this meaning: maxima[x,lis] gives the maxima of 
the list Join[{x},lis]. Define it. (Hint: the key point about this is that 
maxima[x,lis] is equal to maxima[x,Rest[lis]] if x  First[lis].) Compare its 
efficiency with the version in the text.

6. Write the function runDecode, which takes an encoded list produced by runEn
code and returns its unencoded form.

In[4]:= runDecode 9, 5 , 4, 1 , 3, 4 , 5, 6

Out[4]= 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

7. The code we developed to compute the k-element subsets of any given list differs
from the built-in Subsets function in that the latter has a mechanism for generat-
ing all subsets of length less than or equal to k.

In[5]:= A a, b, c, d ;

Subsets A, 2

Out[6]= , a , b , c , d , a, b ,

a, c , a, d , b, c , b, d , c, d

If you want to get only two-element subsets you use a slightly different form.

In[7]:= Subsets A, 2

Out[7]= a, b , a, c , a, d , b, c , b, d , c, d

Modify the function subsets developed in this section to take either form:
subsets[lis,k] or subsets[lis,{k}] so that it mimics the behavior of the

built-in Subsets.

7.4 Recursion and symbolic computations
Chapters 2 and 6 emphasized the idea that expressions and data are really the same things
in Mathematica.  All  that  distinguishes  an  expression  like 2 3  from  one  like x y  is  that
Mathematica has rules for rewriting 2 3 but not for x y.

Symbolic  computations  are  those  that  transform expressions  into  other expressions.
Programming symbolic computations  is no different from any other type of computation:
you write rewrite rules, and use local transformations, built-in operations, and recursion.

We will illustrate symbolic computation with what may be the most famous recursive
definition  of  them  all:  the  differential  calculus.  Every  elementary  calculus  book  includes
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rules for finding derivatives of functions. Generally, they assume that there are expressions
u containing the variable x and they show how to find the derivative of u with respect to x,

u
x , by giving rules like the following.

c
x 0, for c a constant

xn

x n xn 1

u v
x

u
x

v
x

If  we  think  of u x  as  a  function x  being applied  to  an  expression u,  then these
rules would be written in the following notation.

x c 0, for c a constant

x xn n xn 1

x u v x u x v

In this form, it is clear that x  is just a recursively defined function from expression
to expression, and we can render this function in Mathematica directly.

In[1]:= ddx c_ : 0

ddx xn_ : n xn 1

ddx u_ v_ : ddx u ddx v

In[4]:= ddx x2 x3

Out[4]= 2 x 3 x2

So far, so good, but there are two problems with this, one big and the other bigger.
The bigger one is that this function gives completely wrong answers for many expressions.

In[5]:= ddx 5 x3

Out[5]= 0

We  have  not  been  careful  enough  about  our  base  cases.  Specifically,  the  first  rule
handles all  expressions not specifically treated elsewhere, instead of just those for which it
was intended: constants. This is easily remedied, by replacing that rule with one that makes
sure its argument is a number.

First we remove the original definition we gave above for the derivative of a constant.

In[6]:= ddx c_ .

In[7]:= ddx c_?NumericQ : 0

7 Recursion 193



Now, ddx always gives an answer that is correct, but it still misses a lot of cases.

In[8]:= ddx 5 x3

Out[8]= ddx 5 x3

At this point, we need to take a close look at the cases we want to cover; that is, the
precise  set  of  expressions  we  want ddx  to  differentiate.  We  can  define  this  set  using
recursion.

An expression (that ddx can differentiate) is one of the following:

• a number

• the variable x

• a sum u v, where u and v are expressions

• a difference u v of two expressions

• a product u v of two expressions

• a quotient u v of two expressions

• a power un of an expression and a number

Now, let us start from scratch, dealing systematically with all the cases.

In[9]:= Clear ddx

ddx c_?NumericQ : 0

ddx x : 1

ddx u_ v_ : ddx u ddx v

ddx u_ v_ : ddx u ddx v

ddx u_ v_ : u ddx v v ddx u

ddx
u_

v_
:

v ddx u u ddx v

v2

ddx u_c_?NumericQ : c uc 1 ddx u

In[17]:= ddx 5 x3

Out[17]= 15 x2

Note the use of NumericQ  (as opposed  to NumberQ). NumberQ  returns a value of
True  only  if  its  argument  is  explicitly  a  number.  It  returns False  for  symbols  that  are
numeric though.
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In[18]:= NumberQ

Out[18]= False

NumericQ,  on the other hand, returns true for any expression that is  numeric, including
symbols such as , , and .

In[19]:= ddx

Out[19]= 0

One interesting point to note here is  that one of the cases from our first  definition,
xn,  does not appear here in that  form. Still,  this  case is  handled correctly, as  we have just
seen. A Trace makes it clear why.

In[20]:= Trace ddx x3 , ddx

Out[20]= ddx x3 , 3 x3 1 ddx x , ddx x , 1

In other words, it is handled as part of a more general case, namely un  for arbitrary u.
Our new rule works in additional cases.

In[21]:= ddx x 2 x2
4

Out[21]= 4 1 4 x x 2 x2
3

It is very common to make the mistake of covering cases in more ways than one. For
example, many calculus books include both the case c xn  and, separately, the cases for c, x,
un,  and u v,  which  together  can  handle  expressions  of  the  form c xn.  It  is  harmless,  but  a
more systematic treatment of the cases avoids giving extra rules, while also ensuring that all
cases are covered.

Finally,  we  might  want  to  make  use  of  simple  algebraic  identities  to  simplify  this
code.  For example, the rule for quotients  is already covered by the rules for products and
powers, since u

v u v 1. Similarly, u v u 1 v.

In[22]:= ddx u_ v_ : ddx u v

ddx
u_

v_
: ddx

u

v

Trying these new definitions out on an example still fails.

In[24]:= ddx
x2

x 1

$IterationLimit::itlim :

Iteration limit of 4096 exceeded. More…

Out[24]= Hold ddx
x2

1 x
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In other words, this computation was going on forever. Alas, here Mathematica’s own
simplification rules defeated us, as we can see by looking at the rules for ddx.

In[25]:= ?ddx

Global`ddx

ddx x : 1

ddx c_?NumericQ : 0

ddx u_ v_ : ddx u v

ddx u_ v_ : ddx u ddx v

ddx u_
v_

: ddx u
v

ddx u_ v_ : u ddx v v ddx u

ddx u_c_?NumericQ : c uc 1 ddx u

When we entered  the  new rules, Mathematica rewrote  the  right-hand sides,  so  that
the rules just say, in effect, “rewrite ddx[u-v] to ddx[u-v]” and “rewrite ddx[u/v] to
ddx[u/v].”  This fails  to satisfy  our rule that  recursive calls  can only be made to smaller
values.

On the other hand, let us try just deleting those rules entirely and see what happens.

In[26]:= ddx u_ v_ .

ddx
u_

v_
.

In[28]:= Simplify ddx
x

x 1

Out[28]=
1

1 x 2

Again, we need to take into account what Mathematica  is doing with the expressions
we  enter.  It  turns  out  that  it  actually  reads  expressions  of  the  form u v  as u v 1  and
expressions of the form u v as u 1 v. 

In[29]:= FullForm
u

v

Out[29]//FullForm=

Times u, Power v, 1
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In[30]:= FullForm u v

Out[30]//FullForm=

Plus u, Times 1, v

When  we  entered ddx[x/(x-1)],  Mathematica  read  it  as ddx x x 1 1 .  In
this form, the existing rules apply.

In[31]:= FullForm Hold ddx
x

x 1

Out[31]//FullForm=

Hold ddx Times x, Power Plus x, 1 , 1

Exercises

1. Add rules to ddx for the trigonometric functions sine, cosine, and tangent.

2. When variables other than x are present in an expression, the rules for differentiation
with respect to x actually do not change. That is, expressions that have no occur-
rences of x are treated like constants. So there should be a rule that says ddx[u]=0, 
if x does not occur anywhere in u. Define the function nox[e] to return True if x
does not occur within e, then add the new rule for those expressions. You will need to 
use the comparison function =!=, called UnsameQ, which tests whether two symbols
are unequal; the usual Unequal comparison (!=) cannot be used to compare
symbols.

3. Define a two-argument version of ddx whose second argument is the variable with
respect to which the derivative of the expression is to be computed. Thus, ddx[u,x]
will be the same as our current ddx[u]. You will need to determine when an expres-
sion has no occurrences of a variable; you can use the built-in function FreeQ.
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7.5 Classical examples

Merge sort

Sorting  the  elements  of  a  list  is  one  of  the  most  important  tasks  in  computer  science.
There  are  quite  a  few  well-studied  algorithms  that  have  been  developed  for  performing
various  types  of  sorting.  These  include  selection  sort,  insertion  sort,  bubble  sort,  quick
sort, heap sort, merge sort, and many others. We have already looked at a rather primitive
list  sorting  algorithm  in  Section  6.4.  In  this  section,  we  will  develop  an  algorithm  for
merge sort, which is a classical divide-and-conquer algorithm.

The procedure for merge sort consists of three basic steps:

• first, split the original list into two parts of roughly equal size

• sort each part recursively

• finally, merge the two sorted sublists

We will start with the last step first – creating a function merge that takes two lists,
each assumed to be sorted, and produces a single merged, sorted list. Using pattern match-
ing we can set this up as a recursion. First we deal with the cases of when either of the two
lists is empty.

In[1]:= merge lis_List, : lis

merge , lis_List : lis

The recursion then is  on the tail  of  the sublists.  We use the triple-blank to pattern
match ra and rb here so that they can represent zero, one, or more arguments.

In[3]:= merge a_, ra___ , b_, rb___ :

If a b,

Join a , merge b , ra, rb ,

Join b , merge a, ra , rb

Here are several test cases.

In[4]:= merge 1, 4, 7 , 2, 6, 9, 14

Out[4]= 1, 2, 4, 6, 7, 9, 14

In[5]:= merge 14 , 2, 5, 7, 8

Out[5]= 2, 5, 7, 8, 14
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Now  we  turn  to  the  sorting  function.  This  too  will  be  defined  recursively  by  first
dividing  the  list  into  two  sublists,  performing  the  sort  on  each  sublist  and  then  merging
these two sorted sublists using the above merge function.

Here are the two base cases; the empty list and a list with a single element in it.

In[6]:= MergeSort : ;

MergeSort x_ : x ;

Here is the recursion.

In[8]:= MergeSort lis_List : Module div Floor
Length lis

2
,

merge

MergeSort Take lis, div , MergeSort Drop lis, div

Let us look at a few test cases to get a sense of the efficiency of our program.

In[9]:= dataInt Table Random Integer, 1, 100 , 20

Out[9]= 84, 83, 58, 8, 30, 99, 72, 29, 77,

95, 63, 67, 47, 40, 95, 71, 14, 57, 57, 24

In[10]:= MergeSort dataInt

Out[10]= 8, 14, 29, 30, 58, 72, 77, 83, 84,

95, 24, 40, 47, 57, 63, 67, 57, 71, 95, 99

In[11]:= dataReal Table Random , 1000 ;

In[12]:= Timing

Block $RecursionLimit , MergeSort dataReal ;

Out[12]= 0.16 Second, Null

Notice the need to increase the built-in recursion limit for larger computations. This
limitation  in our  current definitions  is  due to the fact  that both merge  and MergeSort

use recursion and that MergeSort has a double recursive call in it.
In  comparison,  the  built-in Sort  function,  which  uses  a  modified  merge  sort,  is

optimized for dealing with large arrays of numbers and is much, much faster.

In[13]:= Timing Sort dataReal ;

Out[13]= 0. Second, Null

Here we see that Sort can perform this computation in about the same time it took
our MergeSort to sort a dataset that was two orders of magnitude smaller.

In[14]:= Timing Sort Table Random , 105 ;

Out[14]= 0.08 Second, Null
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The  exercises  will  give  you  a  chance  to  refine  the MergeSort  and  improve  its
efficiency.

Gaussian elimination

An extremely common problem in mathematical computation is to solve a linear system S
of the following form.

E1 : a11 x1 a12 x2 a1 n xn b1

E2 : a21 x1 a22 x2 a2 n xn b2

En : an1 x1 an2 x2 ann xn bn

The values  of  the variables x1, …, xn  are  called  the unknowns,  and the aij  and bi  are
constants.

Mathematica  has a built-in function LinearSolve  that will usually give the correct
answer. For example, here is a simple 2 2 system, two equations in two unknowns.

x1 2 x2 3
4 x1 5 x2 6

With  a  little  work,  you  can see that  the solution  is x1 1, x2 2.  Here is  how to
solve this system using the built-in LinearSolve.

In[15]:= m
1 2
4 5

;

b 3, 6 ;

In[17]:= LinearSolve m, b

Out[17]= 1, 2

So  why  learn  to  program  it  yourself?  Because LinearSolve,  like  any  algorithm,
may  run  into  trouble  on  certain  kinds  of  input,  and  when  confronted  with  a  system  for
which it fails, your only recourse will be to write your own program.

The  Hilbert  matrices,  containing  elements hij 1 i j 1 ,  cause  problems  for
LinearSolve.

In[18]:= HilbertMatrix n_ : Table
1

i j 1
, i, n , j, n

Here is a random 1 10 vector.

In[19]:= b Table Random , 10 ;
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In[20]:= xsoln LinearSolve HilbertMatrix 10 , b

LinearSolve::luc :

Result for LinearSolve of badly conditioned

matrix 1., 0.5, 6 , 0.111111, 0.1 ,

8 , 0.1, 8 , 20 may

contain significant numerical errors. More…

Out[20]= 1.56074 106, 1.28819 108, 2.64644 109,

2.33592 1010, 1.08702 1011, 2.92604 1011,

4.71438 1011, 4.48426 1011, 2.32154 1011, 5.04243 1010

Using this last result in the original system should give all 0s, but it does not.

In[21]:= HilbertMatrix 10 .xsoln b

Out[21]= 0.0000109427, 3.52143 10 6, 0.0000175983,

8.07756 10 6, 9.30083 10 6, 6.04337 10 6, 1.22291 10 6,

1.89195 10 6, 8.85718 10 6, 7.31392 10 6

In  this  section,  we  will  show  how  to  program  a  simple  and  classic  method,  called
Gaussian  elimination,  to  solve  linear  systems.  Our  method,  unfortunately,  will  also  fail  on
the Hilbert matrix, but we will revisit the problem in Chapter 8 and show how a variant of
this method can solve it.

For now, consider  that  we have the system shown above. By the principle of recur-
sion,  we can assume the ability  to solve  any smaller system – in particular,  any system of
n 1 equations in n 1 unknowns, and ask our usual question: How can the ability to solve
smaller systems be used to solve this system?

The idea  behind Gaussian  elimination is  to eliminate  all  occurrences  of x1  from the
equations E2, …, En. For example, here is how to eliminate x1 from E2:

1. Multiply the first equation E1 by a21 a11.

a21
a11

a11 x1 a21 x2 a1 n xn
a21
a11

b1

This simplifies to:

a21 x1
a21
a11

a12 x2
a21
a11

a1 n xn
a21
a11

b1

2. Subtract this modified equation from E2.

a21 x1 a22 x2 a2 n xn b2

a21 x1
a21
a11

a12 x2
a21
a11

a1 n xn
a21
a11

b1

a22
a21
a11

a12 x2 a2 n
a21
a11

a1 n xn b2
a21
a11

b1
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We  have  obtained  an  equation  having  only n 1  variables.  Now  do  this  for  every
equation:  Transform Ei,  for  all 2 i n,  to Ei

' Ei
ai1
a11

E1.  Call  this  new  system  of
equations S'.

We are almost there. We can (recursively) find the solution to the system S', obtain-
ing the values of x2, …, xn. Then x1 is found by computing the following.

x1
b1 a12 x2 a1 n xn

a11

In programming this procedure, the system will be represented by the n n matrix of
coefficients, together with the vector of the bi.  In fact,  it is  somewhat more convenient to
represent the entire system as an n 1 n matrix (called the augmented matrix), with the bi

included as the last column. We will define solve[s], where s is such an n 1 n matrix,
to  return a  list  of  the values  of  the n  unknowns x1, …, xn.  Once we understand  the algo-
rithm, the programming is simply a lot of list manipulation.

In[22]:= solve s_ : Module E1 First s , x2toxn solve elimx1 s ,

Join

Last E1 Drop Rest E1 , 1 .x2toxn First E1 , x2toxn

We need to define elimx1[s],  which produces the smaller system. But first,  let us
not forget the base case, n 1 (that is, a11 x1 b1), which is trivial to solve.

In[23]:= solve a11_, b1_ :
b1

a11

Again the elimination phase takes each row ai1, ai2, …, ain, bi  and transforms it to the
following.

ai2
ai1
a11

a12, …, ain
ai1
a11

a1n, bi
ai1
a11

b1

Here then is the code that implements these steps.

In[24]:= elimx1 s_ : Map subtractE1 s 1 , # &, Rest s

In[25]:= subtractE1 E1_, Ei_ : Rest Ei
Ei 1

E1 1
Rest E1

Finally,  we  will  overload  this  version  of solve  so  that  it  works  like  the  built-in
LinearSolve;  that  is,  it  accepts  a  matrix  of  coefficients  and  a  column  vector  as  argu-
ments. This will avoid having to compute the transposition manually.

In[26]:= solve A_, b_ : solve Transpose Join Transpose A , b

In[27]:= solve 1, 2 , 4, 5 , 3, 6

Out[27]= 1, 2
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Trees

Mathematica  expressions  can  be  visualized  as upside-down  trees;  for  example, f[x,y+1]
could be expressed using TreeForm.

In[28]:= TreeForm f x, y 1

Out[28]//TreeForm=

f x,
Plus 1, y

A common visualization of such an expression is by means of a picture like this.

f

x

y 1

Such  structures  are  called trees,  drawn  upside-down,  and  they  have  many  uses  in
programming.  In this  section,  we will  discuss  a  way of  representing trees in Mathematica,
develop some basic functions on trees, and, in the next section, give a well-known applica-
tion, Huffman encoding.

First,  some terminology: Trees consist  of nodes,  which have labels  (the symbols f,  x,
+,  y,  and 1  in  the  example  above)  and  some  number  of children,  which  are  themselves
nodes (that is, the nodes labeled x and + are the children of the node labeled f). If a node
has no children, it is called a leaf; otherwise, it is an interior node. The node at the top of the
tree  is  called  the root  of  the  tree.  In  the  example  above,  the  interior  nodes  are  the  ones
labeled f and +, and the root is the node labeled f.

More  specifically,  we  will  be  discussing binary  trees  –  trees  in  which  every  interior
node has two children, called the left child and right child.

fig

date

kumquat papaya

mango

We will be interested in trees whose labels are data values like numbers and strings.
The  simplest  way  to  represent  them  in Mathematica  is  to  use  lists:  an  interior  node  is
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represented by a three-element list containing the node’s label and its two children; a leaf
node by a one-element list containing the label. For example, the tree above is represented
as follows:

{"fig", {"date", {"kumquat"}, {"papaya"}}, {"mango"}}

Many –  in  fact,  most  –  algorithms  that  operate  on  trees  are  recursive.  It  is  natural,
because simply “visiting” every node in a tree is a recursive process. For example, suppose
we have a  tree  of  strings  like the  fruit  tree  above,  and  we want to  find the alphabetically
smallest string in the tree; that is, the first string in the lexicographic ordering of strings.

In[29]:= fruittree

"fig", "date", "kumquat" , "papaya" , "mango" ;

As usual,  we should try  not to  think about  exactly how the function works,  but  just
ask this question: given the minimum strings in the children of a node, how can we find the
minimum for the entire tree? Just pick the minimum among the label of this node and the
minima (recursively computed)  of its  children. The easiest way to find the minimum of a
collection of strings is to sort them and take the first element.

In[30]:= minInTree lab_ : lab

minInTree lab_, lc_, rc_ :

Sort lab, minInTree lc , minInTree rc 1

In[32]:= minInTree fruittree

Out[32]= date

It will be useful to have a function that determines the height of a tree, given by the
distance from the root to the farthest leaf node.

In[33]:= height lab_ : 0

height lab_, lc_, rc_ : 1 Max height lc , height rc

It  would be nice to have a better way to display trees than as lists. In Chapter 9, we
will discuss the graphical display of trees, but for now we can at least print them in a nicely
indented  style.  To  do  so,  we  need  an  auxiliary  function: printTree[t,k]  prints t  in
indented form, with the entire tree moved over k  units. To put it another way, it prints t,
assuming  it  occurs k  levels  down. We have chosen,  arbitrarily,  to  indent  three spaces  for
each level in the tree.

In[35]:= printTree t_ : printTree t, 0
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In[36]:= printTree lab_ , k_ : printIndented lab, 3 k

printTree lab_, lc_, rc_ , k_ :

printIndented lab, 3 k ;

Map printTree #, k 1 &, lc, rc ;

printIndented x_, spaces_ :

Print Apply StringJoin, Table " ", spaces , x

In[39]:= printTree fruittree

fig

date

kumquat

papaya

mango

Huffman encoding

Computers represent textual information such as lists of characters, as bit strings, which are
sequences of 0s and 1s. Especially in the transmission of large amounts of data, it is impor-
tant to minimize the number of bits used to encode the text.

ASCII Codes

Character Decimal 8 Bit Binary
A 65 01000001

B 66 01000010

E 69 01000101

H 72 01001000

N 78 01001110

O 79 01001111

S 83 01010011

T 84 01010100

space 32 00100000

For  simplicity,  most  of  the  time  strings  are  represented  using fixed-length  codes,
those in which each character is  represented by a bit string of the same length. The most
common  such  code,  as  discussed  in  Section  3.5,  is  ASCII.  Each  character  has  a  number
that can be represented in 8 bits, as given in the ASCII codes table.
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For  example,  the  string  “HONEST  ABE”  is  represented  as  the  following  binary
code:

0100100001001111010011100100010101010011

0101010000100000010000010100001001000101

However,  this  representation is  far  from being optimally  compact.  Better  codes  are
variable-length codes,  using  shorter  bit  strings  for  more common characters  (just  as  Morse
code  uses  the  shortest  code  –  a  single  dot  –  for  the  most  common  letter  in  English, e.
Given  a  list  of  characters  and  their  relative  frequencies,  the  most  compact  encoding  of
strings  that  respect  those  frequencies  is  called  the Huffman  encoding.  David  Huffman
showed  how  to  construct  this  code  and  represent  it  using  a  tree  (see  Knuth  1997  or
Sedgewick 1988 for more information). We will define what Huffman encoding trees are
and show how to use them to encode and decode strings, and then show how to construct
them.

Simply put, a Huffman encoding tree is a binary tree with characters labeling the leaf
nodes. An example is shown in Figure 7.1. Note that the space (B) appears in the tree as an
ordinary character, just as it does in the ASCII code.

b

T A E

O N H B

S

Figure 7.1: A Huffman encoding tree

To use the tree to find the code for a character, look for the character in the tree and
record the sequence of branches going from the root to the character. For example, for H,
the  trip  is:  right  branch,  then  right,  then  left,  and  left  again.  Recording  a 1  for  a  right
branch and a 0 for a left, this gives the code for H: 1100. Here, then, are the codes for all
the characters given in this tree.
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Character Code Character Code Character Code

b 00 E 100 O 1010

A 011 H 1100 S 111

B 1101 N 1011 T 010

Note  how the  most  common characters  have shorter  codes;  for  example,  the space,
which occurs very often, uses only two bits. Of course, if we included the entire alphabet,
our tree would be much bigger, and many letters would have longer codes.

With this code, the string “HONEST ABE” is represented by:

110010101011100111010000111101100

We need to put some more information in our tree. To allow for efficiently finding
where a  character occurs  in the tree, we need to label every interior node with the set  of
characters labeling leaves below it, as shown in Figure 7.2. Now we can give two programs:
one to encode character strings, and one to decode bit strings. The programs we write will
assume that Htree contains the tree in Figure 7.2.

In[40]:= Htree = {" ABEHONST", {" AT", {" "}, {"AT", {"T"}, {"A"}}},

 {"BEHONS", {"EON", {"E"}, {"ON", {"O"}, {"N"}}},

 {"BHS", {"BH", {"H"}, {"B"}}, {"S"}}}}

Out[40]= ABEHONST, AT, , AT, T , A ,

BEHONS, EON, E , ON, O , N , BHS, BH, H , B , S

bABEHONST

bAT

b AT

T A

BEHONS

EON

E ON

O N

BHS

BH

H B

S

Figure 7.2: A Huffman encoding tree, with interior labels

7 Recursion 207



We consider encoding character strings first. What we really need is the function to
give  the bit-string  encoding  of  a  single  character.  Given that  function –  call  it encode
Char – we can easily encode an entire string.

In[41]:= encodeString str_ : Flatten Map encodeChar, Characters str

In[42]:= encodeString "HONEST ABE"

Out[42]= encodeChar H , encodeChar O , encodeChar N ,

encodeChar E , encodeChar S , encodeChar T ,

encodeChar , encodeChar A , encodeChar B , encodeChar E

So  how  do  we  encode  a  single  character?  The  method  is  essentially  recursive:  find
whether  the  character  occurs  in  the  left  or  the  right  subtree,  recursively  find  its  code  in
that  subtree,  and  then  prepend  a  0  if  it  was  in  the  left  or  a  1  if  it  was  in  the  right.  For
example,  consider H  again:  we  can  tell  from Htree  that H  occurs  in  the  right  subtree;
within  that  subtree,  its  code  is 100  (right,  left,  left);  since  it  was  in the right subtree,  we
prepend a 1, to get 1100. To do this we give encodeChar two arguments, the character
and the Huffman tree.

In[43]:= encodeChar c_, _, lc_, rc_ : If stringMemberQ First lc , c ,

Join 0 , encodeChar c, lc , Join 1 , encodeChar c, rc

Here is the auxiliary function stringMemberQ.

In[44]:= stringMemberQ str_, char_ :

Length StringPosition str, char 1

In[45]:= stringMemberQ "ABE", "B"

Out[45]= True

The base case is when we reach a leaf; of course, if the character is in the tree at all –
which we are assuming – then it must be the label on this leaf, so we do not have to check.

In[46]:= encodeChar _, _ :

Finally, we can give a one-argument version of encodeChar that uses Htree.

In[47]:= encodeChar c_ : encodeChar c, Htree

Decoding of messages works similarly. We use the list of bits to guide our path down
the  tree,  and  when  we  get  to  a  leaf  we  “emit”  that  character  and  start  over  at  the  root.
Again, we will use a function with two arguments: the list of  bits,  and the tree. There are
two cases: when we are at  a leaf, we have reached the end of the encoding of a character;
otherwise, we choose the left or right subtree, depending upon the next bit in the code.
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In[48]:= decode code_, ch_ : StringJoin ch, decode code, Htree

decode 0, r___ , _, lc_, _ : decode r , lc

decode 1, r___ , _, _, rc_ : decode r , rc

decode , _ : ""

As usual, we can then give the desired one-argument form.

In[52]:= decode code_ : decode code, Htree

There is an important point to notice here: in Huffman codes, we always know when
a character’s code ends. But how? The decode  function breaks up the code into charac-
ters in some way, but how do we know it is the only possible way?

In  fact,  a  bit  of  thought  will  convince  you  that  it  must  be,  because  Huffman codes
have an interesting property: no character’s code can be extended to be the code of another
character.  For  example,  no  character’s  code  begins  with  00,  which  is  the  code  for  space,
except  space  itself;  and none begins with 100 except  letter Es. This property implies that
our decoding algorithm finds the unique decoding of a string of bits.

Finally, we discuss how Huffman trees are constructed. This is actually very simple –
and not really recursive – so we will describe the method and leave the programming as an
exercise.

Keep in mind that the code for a character should be based on a set of frequencies  of
the  characters,  given  at  the  outset.  For  example,  these  might  be  the  frequencies  of  the
characters  in  our  example,  based  on  their  occurrences  in a  large body  of  English  writing
(not just our sample phrase).

Characters Frequency

space 6

E 5

S, T , A 3

H, O, N 2

B 1

So now suppose we are given the list of characters along with their frequencies. For
purposes of the algorithm, it is better for us to think that what we have obtained is a list of
trees, each of which has only a single node, which is labeled by a letter and its frequency.

{ {{{b}, 6}}, {{{A}, 3}}, {{{B}, 1}}, {{{E}, 5}}, ...}
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Still  thinking  of  this  as  a  list  of  trees,  the  frequency  of  each  character  is  called  the
weight  of  the  node  containing  that  character.  What  we  want  to  do  is  to  combine  these
single-node  trees  into  larger  trees,  and  keep  doing  it  until  they have all  been joined into
one big tree. So repeatedly perform the following operation on the list of trees:

• Suppose t1={{cl1,w1},…}  and t2 = {{cl2,w2},…}  are the trees in the list
with the lowest weights (that is, w1 and w2 are as small as possible)

• Remove  them  from  the  list,  and  replace  them  by  the  single  tree t={{
Join[cl1,cl2],w1+w2},t1,t2}

This operation always reduces the number of trees in the list by one. When there is
only one tree in the list, that is the Huffman encoding tree for these characters. Or rather
it is a  Huffman encoding tree. The algorithm does not specify how to choose when there
are  more  than  two  trees  of  minimal  weight,  nor  in  which  order  to  place  those  two  trees
once they are chosen, so there are actually many trees that might result.  Huffman proved
that they all give equally compact representations of bit strings.

Let us see how this  works for our example. To make it  easier to read, we will draw
the trees instead of writing them in Mathematica list notation:

1. Start with

b,6 A,3 B,1 E,5 H,2 N,2 O,2 S,3 T,3

2. Pick H and B (we could have picked N or O instead of H, but we picked H).
b,6 A,3 BH,3

H B

E,5 N,2 O,2 S,3 T,3

We have dropped the weights from the H  and B  nodes, since they will not contribute any
more to the algorithm.

3. Now we have to choose N and O (although we can put them in either order).
b,6 A,3 BH,3

H B

E,5 NO,4

O N

S,3 T,3

4. We have four trees of weight 3. We (arbitrarily) choose T and A.
b,6 BH,3

H B

E,5 NO,4

O N

S,3 AT,6

T A

210 An Introduction to Programming with Mathematica



5. Now we join the BH tree with the S tree.
b,6 BHS,6

BH

H B

S

E,5 NO,4

O N

AT,6

T A

6. Join E with NO.
b,6 BHS,6

BH

H B

S

ENO,9

E NO

O N

AT,6

T A

7. And b with AT.
bAT,12

b AT

T A

BHS,6

BH

H B

S

ENO,9

E NO

O N

8. BHS with ENO.
bAT,12

b AT

T A

BEHNOS,15

ENO

E NO

O N

BHS

BH

H B

S

Finally, we join the last two trees, yielding the tree shown in Figure 7.2.

Exercises

1. The Gaussian elimination procedure can fail for a variety of reasons. We have
already mentioned that it will not give good results for the Hilbert matrix, but the
reason for this is quite subtle and we will postpone our explanation to Section 8.5.
Another reason it can fail is that there may be no unique solution at all; consider, for
example, the following system.

x1 x2 0
2 x1 2 x2 0
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Here, the two equations are essentially the same, so we do not have enough informa-
tion to determine x1 and x2 uniquely. This problem is inherent in this system and
cannot be solved, no matter how sophisticated an algorithm we devise.
There is, however, another kind of problem that we should be able to overcome. It is 
illustrated by the following system.

x1 x2 x3 1
x1 x2 2 x3 2

x1 2 x2 2 x3 1

Our elimination procedure will produce the smaller system corresponding to the call 
solve[{{0,1,1},{1,1,0}}].

x3 1
x2 x3 0

This system obviously does have a solution, but solve will fail because, in attempt-
ing to eliminate x2, it will compute the new coefficient of x3 as 1 1

0 , which involves
a division by 0.
The solution to this problem is easily found by observing that in any system of 
equations, changing the order of the equations does not change the solution. Thus, 
the above system is equivalent to:

x2 x3 0
x3 1

solve has no difficulty with this system at all.
Modify solve such that it reorders the rows of its argument to ensure that a11 is 
non-0. (If every row has 0 as its first element, the system cannot be solved.) This 
process of reordering the equations is called pivoting.

2. In Exercise 1 above, suppose A is known to be upper triangular, meaning it has 0s 
below the diagonal (formally, aij 0 for all i j). Define solveUpper, having the
same arguments as solve, but under the assumption that A is upper triangular.
(This is much simpler than solve, since it requires no elimination.) Then define
solveLower, with the same arguments, but for the case where A is lower triangular
(has 0s above the diagonal). solveLower should work by manipulating A so as to 
make it upper triangular, and then calling solveUpper.
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3. Suppose we could find lower triangular and upper triangular matrices, L and U, such 
that A L U . Then for any vector B, we could easily compute solve[A,B] by 
computing solveUpper[U,solveLower[L,B]]. (Note that a vector X  is a 
solution to the original system when A X B. But this implies that L U X B, which
implies that there is a vector Y  such that L Y B and U X Y ; solveLower[L,B]
is Y , and solveUpper[U,Y] is X .)
So, given a square matrix A, if we can find such a decomposition of A, then we can 
efficiently solve A X B for any given B. In fact, finding this so-called LU-decomposi-
tion of A is very similar to doing Gaussian elimination. Specifically, suppose that A  is 
the smaller matrix produced by the elimination process (that is, the coefficients in the
system S ), and suppose further that A L U , where L  is lower triangular and U  is 
upper triangular (so L  and U  can be computed recursively). Then consider the
following two matrices U  and L.

• U  is U  with  the  first  row  of  coefficients  of A  added  as  the  top  row,  and  0s
added as the left column:

U

a11 a12 … a1 n

0

U
0

U is, of course, upper triangular.

• L is L  with the following changes: add the row 1, 0, 0, …, 0  as the top row.
For  the left  column,  add  the multipliers  computed  in the elimination process;
that is, the quotients ai1 a11:

L

1 0 … 0
a21
a11

L
an1

It can be shown that, when this construction works, as it does in the same situations
in which solve works, L U A.
Program two versions of LU-decomposition:
a. LUdecomp1[A] returns two matrices L and U , as just described. That is, it

returns a list containing these two matrices.
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b. LUdecomp2[A] returns one matrix which contains both L and U , specifically,
the matrix L I U , where I is the identity matrix. In other words, forget the
diagonal elements of L (which are all 1s) and just place the elements of L below
the diagonal and the elements of U at or above the diagonal in a single matrix.

4. Suppose you have a tree all of whose labels are numbers. Write a function to sum all
the labels.

In[1]:= numbertree 4, 5 , 6, 7 , 9, 10 , 11 ;

In[2]:= sumNodes numbertree

Out[2]= 52

5. Assume now that your tree’s labels are all strings. Write a function to concatenate 
the strings in depth-first order. This is the order you get by following the leftmost 
children of any node as far as possible before visiting their siblings on the right.

In[3]:= fruittree

"fig", "date", "kumquat" , "papaya" , "mango" ;

In[4]:= catNodes fruittree

Out[4]= figdatekumquatpapayamango

6. A tree is said to be balanced if, for every node, the heights of its children differ from
one another by no more than 1; that is, the difference in height between the taller
child and the shorter is 0 or 1. (fruittree is balanced, but numbertree from
Exercise 4 is not.) Note that the condition must hold at all nodes, not just the root. 
Here is a function to test whether a tree is balanced.

In[5]:= balanced _ : True

balanced _, lc_, rc_ :

balanced lc && balanced rc && Abs height lc height rc 1

This is very expensive due to the computing of heights of subtrees. For example, it 
first checks the height of the two children of the root (which involves visiting every
node in the tree except the root itself), and then it calls balanced on those two
children, which then computes the height of their children for the second time.

To avoid this extra cost, define a function balancedHeight[t] that returns a list 
of two elements: the first is the height of t, and the second is a Boolean value saying 
whether t is balanced. Then you can define balanced by

In[7]:= balanced t_ : balancedHeight t 2
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7. Write a function listLevel[tr,n] which gives a list of all the labels in tree tr at 
level n, where the root is at level 0, its children are at level 1, its grandchildren at level
2, and so on.

In[8]:= listLevel numbertree, 2

Out[8]= 7, 9

8. In trees of arbitrary degree, one node can have any (finite) number of children.
Represent such a tree by a list containing the label of the root and its children. For
example, consider the following tree:

World

Asia Europe America Africa

North South

It can be represented as a list:

{World, {Asia}, {Europe}, {America, {North}, {South}}, {Africa}}

Write functions minInTree, height, and printTree for trees of any degree.

9. Program the function that constructs a Huffman encoding tree, as shown in the last 
part of this section.

10. Write a more efficient version of encodeString that creates a table of all the
encodings of all the characters in a given tree, then applies the table to the list of 
characters. This table can be represented as a list of rewrite rules, like "a"
{0,1,1}, which can then be applied to the list of characters using ReplaceAll
(/.).

11. The MergeSort function defined in this section becomes quite slow for moderately
sized lists. Perform some experiments to determine if the bottleneck is caused mostly
by the auxiliary merge function or the double recursion inside MergeSort itself.
Once you have identified the cause of the problem, try to rewrite MergeSort to 
overcome the bottleneck issues.
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7.6 Dynamic programming
Term  rewriting  can  be  used  to  dynamically  create  rewrite  rules during  evaluation.  In  a
process known as dynamic programming, a SetDelayed  function whose right-hand side is
a Set function of the same name is defined.

f[x_] := f[x] = right-hand side

When an expression is pattern matched to this rewrite rule, term rewriting creates a
Set  function  with  the  specific  argument  value  which,  upon  evaluation  of  the  right-hand
side,  becomes a rewrite rule. Since the global rule base is always consulted during evalua-
tion,  storing  results  as  rewrite  rules  can  cut  down  on  computation  time,  especially  in
recursive computations.

In this way, “dynamic programming” can be described as a method in which rewrite
rules are added to the global rule base dynamically; that is, during the running of a program.
A well-known application of this is to speed up the computation of Fibonacci numbers.

The function F defined in Section 7.1 is simple, but quite “expensive” to execute. For
example,  here  is  a  table  giving  the  number  of  additions  needed  to  compute F[n]  for
various values of n (these are the values FAn from Exercise 2 in Section 7.1).

n 5 10 15 20 25
F n 5 55 610 6765 75025

number of additions 7 88 986 10945 121392

Here  is  some  code  to  count  the  number  of  additions  in  the  computation  of  the
Fibonacci function. First, define the Fibonacci function.

In[1]:= fib 1 fib 2 1;

fib n_ : fib n 1 fib n 2

The following code initializes a counter (PlusCount), and then traces the computa-
tion  of fib[10]  incrementing  the  counter  whenever  the  pattern Plus[__fib]  is
encountered; in other words, the counter is incremented for each computation of the form
fib[x]+fib[y]. 

In[3]:= Module PlusCount 0 ,

TraceScan PlusCount &, fib 10 , Plus __fib ; PlusCount

Out[3]= 54
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The reason for this excessive cost is easy to see – in the course of computing F[n],
there are numbers m n for which F[m] is computed many times. For instance, F[n 2]
is  computed  twice (it  is  called from F[n]  and also  from F[n 1],  F[n 3]  three times,
and F[n 4] five times. This continual recalculation can be eliminated easily by memoriz-
ing these values as they are computed – that is, by dynamic programming.

The following definition of function FF  is just like the definition of F,  but it adds a
rule FF[n]= Fn  to the global rule base the first time the value is computed. Since Mathe-
matica  always  chooses  the  most  specific  rule  to  apply  when  rewriting,  whenever a  future
request  for FF[n]  is  made, the new rule will be used instead of  the more general rule in
the program. Thus, for every n, FF[n] will be computed  just once; after that, its value will
be found in the rule base.

In[4]:= FF 1 : 1; FF 2 : 1

FF n_ : FF n FF n 2 FF n 1

We can see the change in the trace of FF[4]  as  compared with that  in Section 7.1
Specifically, there is only one evaluation of FF[2] now, since the second evaluation of it is
just a use of a global rewrite rule.

In[7]:= TracePrint FF 4 , FF _Integer FF _ FF _ FF _

FF 4

FF 4 FF 4 2 FF 4 1

FF 2

FF 3

FF 3 FF 3 2 FF 3 1

FF 1

FF 2

FF 3

FF 4

Out[7]= 3
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Another  way to  understand  what  is  going on is  to look  at  the global  rule base after
evaluating FF[4].

In[8]:= ?FF

Global`FF

FF 1 : 1

FF 2 : 1

FF 3 2

FF 4 3

FF n_ : FF n FF n 2 FF n 1

The cost of executing this version of F is dramatically lower.

n 5 10 15 20 25

number of additions of FF n 4 9 14 19 24

Furthermore,  these  costs  are  only  for  the  first  time FF[n]  is  computed;  in  the
future, we can find FF[n] for free, or rather, for the cost of looking it up in the global rule
base.

Dynamic programming can be a useful technique, but needs to be used with care. It
will  entail  some increased cost  in memory, as  the global  rule base  is  expanded to  include
the new rules.

Exercises

1. Using dynamic programming is one way to speed up the computation of the
Fibonacci numbers, but another is to use a different algorithm. A much more effi-
cient algorithm than F can be designed, based on the following identities.

F2 n 2 Fn 1 Fn Fn
2, for n 1

F2 n 1 Fn 1
2 Fn

2, for n 1

Program F using these identities.

2. You can still speed up the code for generating Fibonacci numbers by using dynamic
programming. Do so, and construct tables, like those in this section, giving the
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number of additions performed for various n by the two programs you have just 
written.

3. Calculation of the Collatz numbers, as described in Exercise 5 from Section 5.3, can
be implemented using recursion and sped up by using dynamic programming. Using
recursion and dynamic programming, create the function collatz[n,i], which
computes the ith iterate of the Collatz sequence starting with integer n. Compare its 
speed with that of your original solution.

7.7 Higher-order functions and recursion
As a final  wrap-up on recursion,  we note that  many of the built-in functions  discussed in
Chapter 4 could be written as user-defined functions using recursion. Although they may
not be as efficient as the built-in functions, creating them will give you good practice with
recursion and should also give you some insight into how these functions operate.

Our first example of programming some built-in functions in a recursive style is Map.
We will call our version map. map[f ,lis] applies f  to each element of the list lis. This is a
simple  recursion  on  the  tail  of lis:  if  we  assume  that map[f,  Rest[lis]]  works,
map[f ,lis] is easily obtained from it by joining f[First[lis]] to the beginning.

In[1]:= map f_, :

map f_, x_, y___ : Join f x , map f, y

We can quickly check that our map does what it was intended to.

In[3]:= map f, 1, 2, 3

Out[3]= f 1 , f 2 , f 3

Like many of the functions in Chapter 4, this function has a function as an argument.
This is the first time we have seen user-defined higher-order functions.

We  will  give  one  more  example  of  a  built-in  function  that  can  be  defined  using
recursion, and leave the rest as exercises.

Nest[f ,x,n] applies f  to x, n times. The recursion is, obviously, on n.

In[4]:= nest f_, x_, 0 : x

nest f_, x_, n_ : f nest f, x, n 1

Here is an example of the use of this function.

In[6]:= nest Sin, , 4

Out[6]= Sin Sin Sin Sin
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Before  leaving  this  topic,  we  note  that,  beyond  a  basic  exercise  in  recursion,  it  is
sometimes  quite  useful  to  write  your  own  higher-order  functions.  Given  a  function f
whose  argument  must  be  an  integer  in  the  range 1, …, 1000,  and  whose  result  is  also  in
that  range,  answer the following question:  on average, for  a  number n1,  how many times
can f  be  applied  before  it  repeats  itself?  That  is,  on  average,  if  we  form  the  sequence
n1, n2 f n1 , n3 f n2 , …, what is the smallest i such that ni nj  for some j i? Assume
f  is so “expensive” to compute that we prefer to approximate this average by just checking
ten randomly chosen numbers. This technique, known as random sampling, is used in many
areas where statistical analysis of data is required.

If  we  had  a  function repeatCount[n]  to  answer  this  question  for  a  particular n,
then we might answer the question in this way:

Sum repeatCount Random Integer, 1,1000 , 10
10

So how do we write repeatCount? We will define our own higher-order function.

In[7]:= repeat f_, lis_, pred_ : lis ; pred Drop lis, 1 , Last lis

In[8]:= repeat f_, lis_, pred_ :

repeat f, Append lis, f Last lis , pred

repeat  takes  an  argument  list lis,  and  repeatedly  applies f  to  its  last  element,  and
adds  that  new  value  to  the  end,  until  the  predicate pred  returns True.  repeatCount
becomes:

In[9]:= repeatCount f_, n_ : repeat f, n , MemberQ

In[10]:= plus4mod20 x_ : Mod x 4, 20

In[11]:= repeatCount plus4mod20, 0

Out[11]= 0, 4, 8, 12, 16, 0

Exercises

1. Write recursive definitions for Fold, FoldList, and NestList.

2. Recall the notion of a random walk on a two-dimensional lattice from Chapter 3.
Use repeat to define a special kind of random walk, one which continues until it 
steps on to a location it had previously visited. That is, define landMineWalk as a 
function of no arguments which produces the list of the locations visited in such a
random walk, starting from location (0, 0).
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8 Numerics

Of the many data types that are available in Mathematica  – numbers, strings, symbols,
lists – numbers are perhaps the most familiar. You can work with all kinds of numbers
in Mathematica, but, most importantly, what distinguishes it from traditional program-
ming  languages  and  other  computational  systems  is  that  with  it  you  can  operate  on
numbers  of  any  size  and  to  any  degree  of  precision.  In  this  chapter  we  will  explore
some of the issues related to working with numerical quantities and show how you can
incorporate  some  of  these  ideas  into  any  programs  that  involve  numerical
computations.

8.1 Introduction
One of  the first  things  that  users  of Mathematica  notice  when they begin to use it  is  how
different is  its  treatment of  numbers from other systems including calculators,  traditional
programming  languages,  and  other  technical  computing  systems.  In  most  traditional
programming languages,  you must  declare the type of number your functions  can take as
an argument. Although Mathematica  automatically  handles such details for you, an under-
standing  of  the  different  number  types  and  how they  invoke  different  algorithms  will  be
helpful  for  taking  full  advantage  of Mathematica’s  capabilities  and  writing  efficient
programs.

Although  you  can  work  with  both  exact  and  approximate  numbers, Mathematica
operates differently depending upon the type of input you give it.

In[1]:= Sin
4

Out[1]=
1

2

In[2]:= Sin
4.0

Out[2]= 0.707107

It  is important to understand that not only are different kinds of output returned in
such cases, but Mathematica  uses entirely different algorithms for these two computations.



In the first case, Mathematica looks up identities involving the sin function and multiples of
4  and  applies  the  appropriate  transformation  rule  to  give  an  algebraic  result.  In  the

second  example,  because  a  floating  point  number  is  involved  in  the  input,  a  numerical
routine  (a series expansion for  sin) is  used and the computation  is  carried out  to insure a
result with the same precision as the input.

Another feature that is important to understand involves computations with high-pre-
cision  numbers.  By  default, Mathematica  operates  on  approximate  numbers  using  a  fixed
precision that is determined by the machine on which you are working.

In[3]:= N Precision

Out[3]= MachinePrecision

The number of decimal digits of precision for machine numbers is approximately 16
(we will discuss precision in detail in Section 8.3).

In[4]:= $MachinePrecision

Out[4]= 15.9546

When you need to,  you can raise the number of  digits  of  precision of  the numbers
you are working with. For example, this computes  to 200 digit precision.

In[5]:= N , 200

Out[5]= 3.14159265358979323846264338327950288419716939937510582097494

459230781640628620899862803482534211706798214808651328230664

709384460955058223172535940812848111745028410270193852110555

96446229489549303820

You  can  extend  such  arbitrary-precision  computations  to Mathematica’s  built-in
functions.  As  a  simple,  but  illuminating  example,  consider  the  numerical  solution  of  the
van der Pol equation x t 1

5 1 x2 t x t x t 0 with the given initial conditions.

In[6]:= soln NDSolve x t
1

5
1 x t 2 x t x t 0,

x 0 1, x 0 0 , x, t, 0, 30

Out[6]= x InterpolatingFunction 0., 30. ,

The solution is represented as an interpolating function, one that passes through the
solution over the range for t from 0 to 30. Here is a plot of the original function evaluated
at  this numerical  solution,  essentially giving a visual  picture of the error in the numerical
solution.
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In[7]:= Plot Evaluate x t
1

5
1 x t 2 x t x t . soln ,

t, 0, 30 , PlotRange 10 5, 10 5 ;

5 10 15 20 25 30

0.00001

5 10 6

5 10 6

0.00001

By  increasing the  precision  of  the  internal  algorithms  used  to  solve  this  differential
equation, we can get a more precise solution.

In[8]:= soln24 NDSolve

x t
1

5
1 x t 2 x t x t 0, x 0 1, x 0 0 ,

x, t, 0, 30 , WorkingPrecision 27, PrecisionGoal 24

Out[8]= x InterpolatingFunction

0, 30.0000000000000000000000000 ,

The plot  of  the  original  function  evaluated  at  this  higher  precision  solution  clearly
shows the higher degree of precision obtained with soln24.

In[9]:= Plot Evaluate x t
1

5
1 x t 2 x t x t . soln24 ,

t, 0, 30 , PlotRange 10 7, 10 7 ;

5 10 15 20 25 30

1 10 7

7.5 10 8

5 10 8

2.5 10 8

2.5 10 8

5 10 8

7.5 10 8

1 10 7

Working  with numbers  and understanding issues  of  precision and accuracy  and the
interplay between your machine’s hardware and the software are essential to working with
any  computational  system  or  programming  language.  In  this  chapter  we  will  discuss  all
these issues and look at how to make your numeric computations as efficient as possible.
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8.2 Numbers

Types of numbers

There are four  kinds of numbers represented in Mathematica  –  integer, rational,  real, and
complex.  In  addition,  mathematical  constants  like  and  are treated as  a  special  type of
number. Integers are considered to be exact and are represented without a decimal point;
rational numbers are quotients of integers and are also considered to be exact.

As mentioned in Chapter 2, numbers are atomic expressions, meaning they cannot be
broken down into smaller parts. Use the Head function to identify the type of number you
are working with.

In[1]:= Map Head, 3,
3

9
, 0.33333, 4 3.1 I,

Out[1]= Integer, Rational, Real, Complex, Symbol

Using FullForm we can see how Mathematica represents these objects internally.

In[2]:= Map FullForm, 3,
3

9
, 0.33333, 4 3.1 I,

Out[2]= 3, Rational 1, 3 , 0.33333`, Complex 4, 3.1` , Pi

As  can  be  seen  in  the  above  example, Mathematica  simplifies  rational  numbers  to
lowest  terms  and  leaves  them  as  exact  numbers.  (We  will  have  more  to  say  about  the
seemingly  strange  internal  form of  real  numbers  when we discuss  their  representation in
Section 8.3.)

This  representation of rational  (and complex)  numbers as  a pair of integers has one
more  consequence.  If  you  need  to  pattern  match  with  rational  numbers,  you  should  be
aware  of  their  internal  representation. For  example,  trying to  pattern match  with x_/y_

will not work.

In[3]:=
3

4
.

x_

y_
x, y

Out[3]=
3
4

But pattern matching instead with Rational works fine.

In[4]:=
3

4
. Rational x_, y_ x, y

Out[4]= 3, 4

Any number containing a decimal point is classified as a real number in Mathematica.
These  numbers  are  not  considered  exact  and  are  hence  often  referred  to  as approximate
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numbers.  This  often leads to confusion for new users of Mathematica. You may know that
the number 6.0 is  identical  to the number 6, from a mathematical perspective,  but  from the
perspective of the floating point unit (FPU) of your computer and as we saw in the exam-
ple above, they are quite different both in terms of their representation and in terms of the
algorithms that are used to do arithmetic with them. We will have much more to say about
this in Section 8.3.

Complex  numbers  are of  the form a bi,  where a  and b  are any  numbers –  integer,
rational, or real. Mathematica represents 1  by the symbol I or .

Mathematica views complex numbers as a distinct data type, different from integers or
real numbers.

In[5]:= z 3 4

Out[5]= 3 4

In[6]:= Head z

Out[6]= Complex

You can add and subtract complex numbers.

In[7]:= z 2

Out[7]= 5 3

You can find the real and imaginary parts of any complex number.

In[8]:= Re z , Im z

Out[8]= 3, 4

The conjugate  and absolute  value can also  be computed.  The absolute  value of  any
number is its distance to the origin in the complex plane. The conjugate can be thought of
as the reflection of the complex number in the real axis of the complex plane.

In[9]:= Conjugate z , Abs z

Out[9]= 3 4 , 5

The phase angle is given by the argument.

In[10]:= Arg 4

Out[10]=
2
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Each of these properties of complex numbers can be visualized geometrically, as shown in
Figure 8.1.

a
Re

b

Im

z a b

Abs z

Conjugate z a b

Arg z

Figure 8.1: Geometric representation of complex numbers in the plane

For  purposes  of  pattern  matching,  complex  numbers  are  quite  similar  to  rational
numbers. x+ Iy  will  not  match  with  complex  numbers.  A complex  number z a b  is
treated  as  a  single  object  for  many  operations,  and  is  stored  as Complex[a,b].  So  to
match  a  complex  number z,  use Complex[x_,y_]  (or z_Complex  and Re[z]  and
Im[z]) on the right-hand side of any rule you define.

Built-in  constants  such  as ,  ,  ,  and Degree  are  not  treated  as  real  numbers  by
Mathematica.

In[11]:= Head , NumberQ

Out[11]= Symbol, False

Although Mathematica  does not consider constants  like  and  like real numbers, it
does  recognize  that  they  are  numerical  in  nature  and  thus  you  can  use  them  more  like
ordinary numbers.

In[12]:= Random Real, ,

Out[12]= 2.77033

In[13]:= Rationalize , .0001

Out[13]=
333
106

Mathematical  constants  have an  attribute, NumericQ,  that  essentially  alerts Mathe-
matica to the fact that they are numeric in nature.

In[14]:= Map NumericQ, , , EulerGamma, ,

Out[14]= True, True, True, False, True
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All  mathematical  constants  and  any  expressions  which  are  explicit  numbers  are
considered  numeric and will  return a  value of True  when NumericQ  is  applied  to  them
(note in particular that the symbol  is not numeric). When Mathematica recognizes that a
quantity has this attribute, it converts the symbol to a real number, using what it perceives
to be necessary precision.

In[15]:=

Out[15]= True

In[16]:= NumericQ

Out[16]= True

If  you  have  to  distinguish  between  explicit  numbers  and  symbols  that  represent
numbers, then use NumberQ.

In[17]:= Map NumberQ, 3.14,

Out[17]= True, False

Digits and number bases

A list  of  the digits  of  a  number can be  obtained  with the functions IntegerDigits  or
RealDigits.

In[18]:= IntegerDigits[1293]

Out[18]= 1, 2, 9, 3

In[19]:= RealDigits N EulerGamma

Out[19]= 5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 9 , 0

Numbers  in  base  10  can  be  displayed  in  other  bases  by  means  of  the BaseForm

function. For example, the following displays 18 in base 2.

In[20]:= BaseForm[18, 2]

Out[20]//BaseForm=

100102

The operator b^^n takes the number n in base b and converts it to base 10.

In[21]:= 2^^10010

Out[21]= 18
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The letters of the alphabet are used for numbers in bases larger than 10. For exam-
ple, here are the numbers 1 through 20 in base 16.

In[22]:= Table BaseForm j, 16 , j, 1, 20

Out[22]= 116, 216, 316, 416, 516, 616, 716, 816, 916, a16,

b16, c16, d16, e16, f16, 1016, 1116, 1216, 1316, 1416

Numbers other than integers can be represented in bases different from 10. Here are
the first few digits of  in base 2.

In[23]:= BaseForm N , 5 , 2

Out[23]//BaseForm=

11.001001000100002

Recall  that Mathematica  is  only  displaying  six  significant decimal  digits  while storing
quite a few more. In the exercises you are asked to convert the base 2 representation back
to  base  10.  You  will  need  the  digits  from  the  base  2  representation,  which  are  obtained
with the RealDigits function.

In[24]:= RealDigits N , 2

Out[24]= 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,

1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0 , 2

The 2 in this last result indicates where the binary point is placed and can be stripped
off  this  list  by  wrapping  the First  function  around  the  expression RealDigits[

N[ ],2].
Here are the first 16 decimal digits of  given in base 2.

In[25]:= BaseForm N , 2

Out[25]//BaseForm=

11.001001000011111112

You  are  not  restricted  to  integral  bases  such  as  in  the previous  examples.  The base
can be any real number greater than 1. For example:

In[26]:= RealDigits N , N GoldenRatio

Out[26]= 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,

0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 , 3
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Random numbers

Statistical  work  and  numerical  experimentation  often  require  random  numbers  to  test
hypotheses. You use the Random function to generate random numbers in various ranges,
domains, and distributions.

Using Random without any arguments will generate a uniformly distributed random
real number between 0 and 1.

In[27]:= Random

Out[27]= 0.0691989

Random  takes  two  optional  arguments.  The  first  indicates  the  type  of  number  to
generate  and  the  second  argument  specifies  the  range.  For  example,  this  generates  a
random integer in the range 0 to 100.

In[28]:= Random Integer, 0, 100

Out[28]= 69

A good random number generator will distribute random numbers evenly over many
trials. For example, this generates a list of 1,000 integers between 0 and 9.

In[29]:= numbers Table Random Integer, 0, 9 , 1000 ;

Here is a plot of the frequency with which each of the digits 0 through 9 occur. We
first load the packages containing the definitions for Frequencies and BarChart.

In[30]:= Needs["Statistics`DataManipulation`"]

In[31]:= Needs["Graphics`Graphics`"]

In[32]:= BarChart Frequencies numbers ;

0 1 2 3 4 5 6 7 8 9

20

40

60

80

100

We see each of the numbers 0 through 9 occur roughly  1/10 of the time. You would
not want these numbers to occur exactly 1/10 of the time, as there would be no randomness
in  this.  In  fact,  for  a  uniform  distribution  of  the  numbers  0  through  9,  any  sequence  of
1,000 digits is equally as likely to occur as any other sequence of 1,000 digits. A sequence
of  1,000  numbers  that  contains  exactly  100  occurrences  of  the  digit  0  followed  by  100
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occurrences  of  the  digit  1,  followed  by  100  occurrences  of  the  digit  2,  etc.,  is  no  more
likely than the sequence that contains 1000 7s, for example.

In  addition to working with uniformly distributed  random numbers  (the default  for
Random),  you can also work with any of  the built-in distributions  that  are defined in the
Add-ons packages, or even your own user-defined distribution.  For example, suppose you
wished  to  work  with  the  chi-square  distribution  (normal  random variable  with  unit  vari-
ance and mean about 0).

First we load the package in which this distribution is defined.

In[33]:= <<Statistics`ContinuousDistributions`

Here is a chi-square distribution with four degrees of freedom.

In[34]:= ChiSquareDistribution 4

Out[34]= ChiSquareDistribution 4

This generates an array of ten random numbers distributed according to this distribution.

In[35]:= RandomArray ChiSquareDistribution 4 , 10

Out[35]= 9.12669, 3.97231, 3.59231, 8.40731, 0.901804,

7.79067, 9.37819, 8.14669, 4.44091, 3.01975

Suppose  instead  of  using  one  of  the  built-in  distributions,  you  wish  to  generate
random numbers for a continuous distribution based on a small sample of that distribution.

For  example,  suppose  this  is  the sample  from a distribution  from which you  would
like to generate a quantile function.

In[36]:= sample 192, 155, 154, 152, 107, 149, 128, 111, 139,

108, 127, 130, 189, 119, 200, 178, 116, 180, 108, 129 ;

To  construct  a  quantile  function  consistent  with  this  sample,  we  need  to  generate  some
probability  points, one for each sample point and then pair them up with the sample data
points.

To generate a discrete quantile function that is consistent with the above sample, we
will  first  generate  some  probability  values  interpolated  between  the  sample  points,  and
then pair them up with the sample points.

In[37]:= probvals N Range 0, 1,
1

Length sample 1

Out[37]= 0., 0.0526316, 0.105263, 0.157895, 0.210526,

0.263158, 0.315789, 0.368421, 0.421053, 0.473684,

0.526316, 0.578947, 0.631579, 0.684211, 0.736842,

0.789474, 0.842105, 0.894737, 0.947368, 1.
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In[38]:= quantilepts Transpose probvals, Sort sample

Out[38]= 0., 107 , 0.0526316, 108 , 0.105263, 108 , 0.157895, 111 ,

0.210526, 116 , 0.263158, 119 , 0.315789, 127 ,

0.368421, 128 , 0.421053, 129 , 0.473684, 130 ,

0.526316, 139 , 0.578947, 149 , 0.631579, 152 ,

0.684211, 154 , 0.736842, 155 , 0.789474, 178 ,

0.842105, 180 , 0.894737, 189 , 0.947368, 192 , 1., 200

To generate a continuous quantile function, we need to interpolate through these points.

In[39]:= continuousQuantile Interpolation quantilepts

Out[39]= InterpolatingFunction 0., 1. ,

Here is a plot of this continuous quantile function.

In[40]:= Plot continuousQuantile x , x, 0, 1 ;

0.2 0.4 0.6 0.8 1

140

160

180

200

Finally, we generate 20 random numbers that are consistent with the sample.

In[41]:= Table continuousQuantile Random , 20

Out[41]= 117.556, 118.491, 112.166, 127.481, 120.256, 107.959, 138.437,

107.926, 120.28, 117.019, 137.763, 118.467, 109.176,

152.131, 198.151, 199.112, 178., 133.012, 149.839, 179.577

Exercises

1. Define a function complexToPolar that converts complex numbers to their polar
representations. Then, convert the numbers 3 3  and 3  to polar form.

2. Using the built-in Fold function, write a function convert[lis,b] that accepts a 
list of digits in any base b (less than 20) and converts it to a base 10 number. For 
example, 11012 is 13 in base 10, so your function should handle this as follows:

In[1]:= convert 1, 1, 0, 1 , 2

Out[1]= 13
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3. Write a function sumsOfCubes[n] that takes a positive integer argument n and
computes the sums of cubes of the digits of n. This exercise and the next three
exercises are excerpted from an article in The Mathematica Journal, Sums of cubes of 
digits, driven to abstraction (Hayes 1992).

4. Use NestList to iterate this process of summing cubes of digits; that is, generate a 
list starting with an initial integer, say 4, of the successive sums of cubes of digits. For
example, starting with 4, the list should look like: {4,64,280,520,133,…}. Note,
64 43, 280 63 43, etc. Extend the list for at least 15 values and make an observa-
tion about any patterns you notice. Experiment with other starting values.

5. Prove the following statements:
a. If n has more than four digits, then sumsOfCubes[n] has fewer digits than n.

b. If n has four digits or less, then sumsOfCubes[n] has four digits or less.

c. If n has four digits or less, then sumsOfCubes[n]  4 93.

d. If n is less than 2,916, then sumsOfCubes[n] is less than 2,916.

6. Write a function sumsOfPowers[n,p] that computes the sums of pth powers of n.

7. Binary shifts arise in the study of computer algorithms because they often allow you
to speed up calculations by operating in base 2 or in bases that are powers of 2. Try 
to discover what a binary shift does by performing the following shift on 24 (base 10).
First get the integer digits of 24 in base 2.

In[2]:= IntegerDigits 24, 2

Out[2]= 1, 1, 0, 0, 0

Then, do a binary shift, one place to the right.

In[3]:= RotateRight %

Out[3]= 0, 1, 1, 0, 0

Finally, convert back to base 10.

In[4]:= 2^^01100

Out[4]= 12

Experiment with other numbers (including both odd and even integers) and make
some conjectures.
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8. The survivor[n] function from Chapter 4 can be programmed using binary 
shifts. This can be done by rotating the base 2 digits of the number n by one unit to 
the left and then converting this rotated list back to base 10. For example, if n 10,
the base 2 representation is 10102; the binary shift gives 01012; converting this
number back to base 10 gives 5, which is the output to survivor[5]. Program a 
new survivor function using the binary shift.

9. Simulate the throwing of two dice by defining a function rollEm that, when evalu-
ated, displays two integers between 1 and 6.

10. Experiment with creating random two-dimensional images using ListDensity
Plot.

11. A surprisingly simple pseudorandom number algorithm is the linear congruential
method. It is quite easy to implement and has been studied extensively. Sequences of 
random numbers are generated by a formula such as the following:

xn 1 xn b 1 mod m

The starting value x0 is the seed, b is the multiplier, and m is the modulus. Recall that
7 mod 5 is the remainder upon dividing 7 by 5. This is represented in Mathematica as

In[5]:= Mod 7, 5

Out[5]= 2

Implement the linear congruential method and test it with a variety of numbers m
and b. If you find that the generator gets in a loop easily, try a large value for the
modulus m. (See Knuth 1997 for a full treatment of random number generating
algorithms.)

12. Write a function quadCong a, b, c, m, x0  that implements a quadratic congruential
method, where a, b, and c are the parameters, m is the modulus, and x0 is the starting 
value. The iteration is given by:

xn 1 a xn
2 b xn c mod m

13. Numerous tests are available for determining the effective “randomness” of a 
sequence. One of the more fundamental tests is known as the 2 (chi-square) test. It
tests to see how evenly spread out the numbers appear in the sequence and uses their
frequency of occurrence. If n is the upper bound of a sequence of m positive num-
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bers, then, in a well-distributed random sequence, we would expect about m n copies
of each number. To take into account the actual frequency with which each number
occurs, the 2 test is implemented by the formula below where the function fi is the
number of copies of i in the sequence. If the 2 statistic is close to n, then the
numbers are reasonably random. In particular, we will consider the sequence suffi-
ciently random if the statistic is within 2 n  of n.

2 1 i n
fi m n 2

m n

Write a function chiSquare[lis] that takes a list of numbers and returns the 2

statistic. You will find the built-in Count function helpful for calculating the
frequencies.

14. Determine the 2 statistic for a sequence of 1000 integers generated with the linear
congruential method with m 381, b 15, and a starting value of 0.

15. John von Neumann, considered by many to be the “father of computer science,”
suggested a random number generator known as the middle-square method. Starting 
with a ten-digit integer, square the initial integer and then extract its middle ten
digits to get the next number in the sequence. For example, starting with
1234567890, squaring it produces 1524157875019052100. The middle digits are
1578750190, so the sequence starts out 1234567890, 1578750190, 4521624250, ….
Implement a middle square random number generator and then test it on a 1,000-
number sequence using the 2 test. Was the “father of computer science” a good
random number generator?

8.3 Working with numbers

Precision and accuracy

When you  work with  real  numbers  in  any  programming language,  you are working with
inexact,  or approximate quantities.  In Mathematica,  any number which contains  a decimal
point is considered to be an approximate number. You can specify an approximate number
explicitly, such as 1.57, or you can get approximations to exact quantities using N.

In[1]:= e N

Out[1]= 2.71828
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Precision  of  an  approximate  number  is  defined as  the  number  of  significant  decimal
digits in that number. You should think of precision as giving a measure of the relative size
of  the  uncertainty  in  the  value  of  a  number. Accuracy  is  defined  as  the  number  of  these
digits  to  the  right  of  the  decimal  point.  Accuracy  can  be  thought  of  as  a  measure  of  the
absolute size of the uncertainty in the value of a number.

In[2]:= Precision e , Accuracy e

Out[2]= MachinePrecision, 15.5203

The symbol MachinePrecision (new in Version 5) is used to indicate a machine-
precision  number.  To  see  the  effective  precision  of  any  machine  number  on  your  com-
puter, evaluate $MachinePrecision. 

In[3]:= $MachinePrecision

Out[3]= 15.9546

The numbers that can be operated with on the hardware (on the floating point unit,
or  FPU) of  your  computer  are called machine  numbers.  Typically,  64  binary digits  (IEEE
double floats) are needed to specify a machine number: 1 for the sign, 11 for the exponent,
and 52 for the mantissa (actually 53, since the leading one is implicitly taken as 0). A typical
value  of $MachinePrecision  is 64 11 log10 2,  giving  machine  numbers  about  16
decimal digits.

In[4]:= 53 Log 10, 2 N

Out[4]= 15.9546

To  say  that  a  real  number x  has  some uncertainty  associated  with  its  value,  can  be
formalized by saying that the value of x lies somewhere inside of an interval x 2  to x 2
for  some  uncertainty .  A  number  with  precision p  is  then  defined  to  have  uncertainty

x 10 p.

In[5]:= p . Solve Abs x 10 p, p

Solve::ifun :

Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce

for complete solution information. More…

Out[5]=
Log

Abs x

Log 10

In  other  words,  the  precision  of  a  real  number x  is  given  by log10 x  for  some
uncertainty .  So  we  could  manually  compute  the  precision  of e  above  using  an  uncer-
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tainty  of 10 15,  which  is  approximately  what Mathematica  assumes  for  machine-precision
numbers.

In[6]:= Log 10,
10 15

Abs e

Out[6]= 15.4343

On  the  other  hand,  a  number  with  accuracy a  will  have  uncertainty 10 a  and
hence accuracy can be expressed as log10 .

Before discussing accuracy and precision of non-machine numbers, let us first look at
a few examples.

InputForm can be used to see how you would have to input the full number as it is
represented  internally  in Mathematica.  The Accuracy  indicates  there  are  approximately
16 decimal digits to the right of the decimal point. The Precision indicates that this is a
machine-precision number.

In[7]:= x N EulerGamma ;

InputForm x , Accuracy x , Precision x

Out[8]= 0.5772156649015329, 16.1933, MachinePrecision

The  number  123.456  is  a  machine-precision  number,  but  its  accuracy  is  reduced
because it has three digits to the left of the decimal point.

In[9]:= x 123.456;

InputForm x , Accuracy x , Precision x

Out[10]= 123.456, 13.8631, MachinePrecision

You  can  see  more clearly  how Mathematica  computes Accuracy  by  looking  at  the
following example.

In[11]:= Accuracy 1.23 , Accuracy 12.3 , Accuracy 123.

Out[11]= 15.8647, 14.8647, 13.8647

Each addition of a digit to the left of the decimal point has the effect of reducing the
number of significant digits to the right of the decimal point by 1.

Representation of approximate numbers

Usually, when Mathematica  displays numbers, it does so in a form that is as close to tradi-
tional mathematics as possible, printing six digits for example.

In[12]:= pi N

Out[12]= 3.14159
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Do not assume that typing in what is displayed will result in the same value.

In[13]:= pi

Out[13]= 3.14159

In[14]:= pi 3.14159

Out[14]= 2.65359 10 6

This  seemingly  strange  behavior  –  the  fact  that pi  does  not  appear  to  be  equal  to
3.14159 – can be explained by looking at the internal representation of pi.

In[15]:= FullForm pi

Out[15]//FullForm=

3.141592653589793`

The  command N[ ]  causes Mathematica  to  first  convert  to  a  machine-precision
number,  and  then  to  display  only  six  digits.  Any  computations  with  this  number  occur
using the machine precision.

Note  that  a  number mark `  was  printed  at  the end of  the above number.  This  is  a
machine-independent  mark  used  to  indicate  that  this  is  a  machine-precision  number.
When you work with numbers that are not at machine precision, this will be indicated by a
number following the number mark. For example, here is a high-precision number.

In[16]:= N , 35

Out[16]= 3.1415926535897932384626433832795029

The following shows the full  internal representation of  this  number with the preci-
sion indicated by the 35 following the number mark.

In[17]:= FullForm %

Out[17]//FullForm=

3.141592653589793238462643383279502884197169399375`35.

Finally,  note that Mathematica,  in a sense, treats  all machine real numbers as  having
the same precision.

In[18]:= Precision 1.23

Out[18]= MachinePrecision

Although this last result may seem odd at first, it is a consequence of how Mathemat-
ica  represents  real  numbers  internally.  A Precision  of  16  (on  a  computer  with $Ma

chinePrecision of 16) indicates that the number 1.23 is viewed as a machine-precision
real number which will allow Mathematica to perform arithmetic with it using the efficient
machine-precision  arithmetic  routines. Mathematica  views the number 1.23 as  a machine-
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precision real by effectively padding with 0s out to 16 significant digits. If you are uncer-
tain  about  the  precision  of  the  numbers  you  are  working  with,  it  is  best  to  check  with
Precision.

Exact vs. approximate numbers

As stated earlier, all integers and rational numbers are considered exact. You can see this by
examining the Precision of any integer or rational number.

In[19]:= Precision 7 , Precision
1

9

Out[19]= ,

Mathematica  represents  complex  numbers  similarly  to  rational  numbers.  If  both  the
real and imaginary parts are exact, then the complex number is treated as exact.

In[20]:= Precision 3 4 I

Out[20]=

Exact  numbers  have  more  precision  than  any  approximate  number.  Representing  a
number with infinite precision is another way of saying that it is exact.

In[21]:= Map Precision, 4,
1

9
, 3 4 I

Out[21]= , ,

As we saw in the example at the beginning of this chapter, this allows Mathematica to
operate on such a number differently than if the number were only approximate.

In[22]:= Cos
4

, Cos
4.0

Out[22]=
1

2
, 0.707107

But,  in  fact,  more  is  true.  As  far  as Mathematica  is  concerned,  all  integers  are  not
created equal.

In  stark  contrast  to  programming  languages,  such  as  C  or  Pascal  that  typically
restrict  computations  with integers to 16 or 32 bits (this  restricts integers to a magnitude
of 216 in the case of 16-bit integers, or to a magnitude of 232 in the case of 32-bit integers),
Mathematica allows you to compute with integers and rational numbers of arbitrary size.

If  two numbers are to be added, 3 6 for example, Mathematica  checks to see if the
numbers  can be  added as machine  integers.  A  machine integer is  an integer whose  magni-
tude is small enough to fit into your machine’s natural word size, and to be operated on by
the  machine’s  instructions,  generally  on its  floating point  processor. Word size  means the
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number of bits used to represent integers. On many computer systems, the most common
word size is 64 bits.

Arithmetic  operations  on  integers  within  this  range  can  be  performed  using  the
machine’s  own  instructions  (that  is,  on  the  that  machine’s  floating  point  unit),  whereas
operations  on  integers  out  of  that  range  must  be  done  by  programs,  which  can  be  less
efficient.

If the two numbers to be added are machine integers and Mathematica can determine
that their sum is a machine integer, then the addition is performed at this low level.

If, on the other hand, the two integers to be added are large and either the integers
themselves  or  their  sum  is  larger  than  the  size  of  a  machine  integer,  then Mathematica
performs  the arithmetic  using special  algorithms.  Integers in this  range are referred to as
extended-precision integers. For example, the following computation, although impossible to
execute  on  most  machine  floating  point  units,  is  handled  by Mathematica’s  arithmetic
algorithms for operating on extended-precision integers.

In[23]:= 2256 21024

Out[23]= 1797693134862315907729305190789024733617976978942306572734300

811577326758055009631327084773224075360211201138798713933576

587897688144166224928474306394741243777678934248654852763022

196012460941194530829520850057688381506823424628815897051997

781434325869214956932742060932172306041202803442929403375373

53777152

Rational numbers are treated somewhat similarly to integers in Mathematica since the
rational number a b can be thought of as a pair of integers, and, in fact, as we saw earlier,
it  is represented as Rational[a,b]. In this way, algorithms for exact rational arithmetic
will use integer arithmetic (either machine or extended) to perform many of the necessary
computations.

High precision vs. machine precision

Real numbers (often referred to as “floating point numbers”) contain decimal points, and,
as mentioned above, although they can contain any number of digits, they are not consid-
ered exact.

In[24]:= Head 1.61803 , Precision 1.61803

Out[24]= Real, MachinePrecision
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In[25]:= Head 1.4987349873487454511 ,

Precision 1.4987349873487454511

Out[25]= Real, 19.1757

In  a  manner  similar  to  how integers  are  treated Mathematica  uses  different  internal
algorithms to do arithmetic on real numbers, depending upon whether you are using very
high precision reals or not. Whenever possible arithmetic operations on real numbers are
performed  using  machine-precision  (fixed)  reals.  Real  numbers  that  can  be  computed  at
the  hardware  level  of  the  machine  are  referred  to  as fixed  precision  reals,  and,  as  stated
above,  the  number  of  digits  that  each  machine  uses  for  fixed-precision  real  numbers  is
given by the system variable $MachinePrecision.

In[26]:= $MachinePrecision

Out[26]= 15.9546

One fact to keep in mind when working with machine-precision numbers is that any
computations  of  expressions  containing  machine-precision  numbers  will  be  done  at  the
machine precision level.

In[27]:= 2.0100

Out[27]= 1.26765 1030

In[28]:= Precision %

Out[28]= MachinePrecision

So, if a machine-precision number is added to a high-precision number, Mathematica
will perform the computation at the lower, machine precision.

In[29]:= Precision 2.1 3.1111111111111111111111

Out[29]= MachinePrecision

Here are the limits on the size of machine numbers that you can work with.

In[30]:= $MaxMachineNumber, $MinMachineNumber

Out[30]= 1.79769 10308, 2.22507 10 308

To get  a  sense of  the limit  given by $MaxMachineNumber,  note  that  this  limit  is
essentially given by 21023 1.1111 …11 (53 total  binary digits), a number just  smaller than
21024. The number 53 comes from the number of binary digits that are used to specify the
mantissa for any floating point number.

In[31]:= N 21024

Out[31]= 1.797693134862316 10308
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In[32]:= 1.1111111111111111111111111111111111111111111111111111 2^1023

Out[32]= 9.987184082568421709607251059939026297877649883012814 10307

In[33]:= $MaxMachineNumber

Out[33]= 1.79769 10308

Although there is a limit to the magnitude of the machine-precision numbers on any
given computer,  you can still  compute with numbers outside  of this  range. Real numbers
larger than machine-precision reals are referred to as multiple precision reals  and arithmetic
on  such  numbers  is  called multiple  precision  arithmetic  or variable  precision  floating  point
arithmetic.  So,  for  example,  on  a  machine  whose $MachinePrecision  is  16  decimal
digits,  computations  involving real numbers with greater than 16 significant digits will be
performed using multiple-precision algorithms.

When doing exact arithmetic – multiplying two integers, for example –  Mathematica
first  checks  that  both  numbers  are  in  fact  integers  (actually, machine  integers).  If  they  are
small  and  do  not  overflow  the  machine’s  arithmetic  registers,  then  it  goes  ahead  and
multiplies them at the hardware level. If they are large (on most machines, integers are 32
bits  long),  then Mathematica  goes  to  its  extended-precision  algorithms  and  multiplies  the
integers there. In either case, all work done is exact.

When doing computations on inexact numbers, Mathematica uses two different types
of  arithmetic,  depending  upon  the  precision  of  the  numbers  involved. Fixed  precision
floating  point  arithmetic  is  used  whenever the  numbers  can  be  handled  in  the  machine’s
hardware routines. Sometimes, this arithmetic is referred to as machine precision arithmetic.
In the previous section, we gave the following example.

In[34]:= Precision 1.23 , Accuracy 1.23

Out[34]= MachinePrecision, 15.8647

Mathematica  has  converted  1.23  to  a  machine  floating  point  number  and  will  use
machine  arithmetic  on  it  whenever possible.  The Accuracy  of  16  in  this  example  indi-
cates  that  there  are  implicit  trailing  0s  in  this  number.  In  the  following  example, n  has
smaller accuracy due to the fact that there are an explicit number of numbers to the right
of the decimal point and roughly speaking, for machine-precision numbers, the number of
digits to the right of the decimal plus the number of digits to the left of the decimal should
add up to the number of decimal digits given by $MachinePrecision.

In[35]:= n 12345.6789101112

Out[35]= 12345.7
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In[36]:= Precision n , Accuracy n

Out[36]= MachinePrecision, 11.8631

You can adjust the precision of numbers with SetPrecision, although you should
note that this function will not make an inexact number more exact. Consider the follow-
ing example.

In[37]:= a SetPrecision
1

3
, 30

Out[37]= 0.333333333333333333333333333333

When SetPrecision  is  used  with  exact  numbers,  such  as  integers  and  rational
numbers, it creates a few more bits than were asked for, 30 in this case. You can see this by
trying to increase the precision.

In[38]:= b SetPrecision a, 50

Out[38]= 0.33333333333333333333333333333333333333333333333311

When  the  number a  was  first  created,  the  extended-precision  number  was  repre-
sented as a finite number of binary bits,  followed by infinitely many (implicit) trailing 0s.
Increasing the precision of this number uncovered the decimal digits which are not 0s. We
can see this by converting 1/3 to a binary representation and then taking a finite number of
the binary digits to convert back to base 10.

In[39]:= RealDigits N
1

3
, 2

Out[39]= 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 , 1

In[40]:= 2^^.01010101 FullForm

Out[40]//FullForm=

0.33203125`

Let us clear unneeded symbols.

In[41]:= Clear a, b, n, x

Roundoff errors

Precision and accuracy  are  affected by  performing computations  with inexact numbers  in
ways that can be quite surprising. One such situation concerns a magnification of error due
to roundoff. This can be seen with a simple example.
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Here is a machine-precision approximation to 2  raised to a large power.

In[42]:= N 2
200

Out[42]= 1.26765 1030

Working  with  approximations  necessarily  introduces  some  error.  Comparing  the
machine-precision  result  with  the  exact  result  gives  a  measure  of  how  the  error  is
magnified.

In[43]:= % 2
200

Out[43]= 1.74514 1016

That  is  an  error  of  over  17  thousand  trillion!  This  loss  of  accuracy  is  typically
referred to as roundoff error.  You can see how this loss gets progressively worse by repeat-
ing the above example for larger and larger exponents.

In[44]:= Table N 2
j

2
j
, j, 100, 1000, 100

Out[44]= 7.75, 1.74514 1016, 2.9156 1031,

4.38879 1046, 6.18671 1061, 8.36779 1076, 1.1 1092,

1.4105 10107, 1.78821 10122, 2.23866 10137

In[45]:= Map Accuracy, %

Out[45]= 15.0653, 0.287242, 15.5101, 30.6878, 45.8369,

60.968, 76.0868, 91.1948, 106.298, 121.395

Recall that Accuracy[x]  gives the number of  significant  digits  to  the right of the
decimal point in x. The negative values indicate that the significant digits are to the left of
the decimal point.

Of  course,  if  you  need  to  work  with  such  numbers,  you  can  increase  the  precision
with either N  or SetPrecision.  Since almost  all  of  the digits  in this  particular number
are to the right of the decimal point, this effectively increases its accuracy.

In[46]:= N 2 , 100
200

Out[46]= 1.26765060022822940149670320537600000000000000000000000000000

00000000000000000000000000000000000000 1030

Now the result has much greater accuracy.

In[47]:= 2
200

%

Out[47]= 0. 10 68
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In[48]:= Accuracy %

Out[48]= 67.596

Computing with different number types

When doing computations with numbers, Mathematica tries to work with the most general
type  of  number  in  the  expression  at  hand. For  example,  when adding  two  rational  num-
bers, the sum is a rational number, unless of course it can be reduced to an integer.

In[49]:=
34

21

2

11

Out[49]=
416
231

In[50]:=
3

4

9

4

Out[50]= 3

But,  if  one  of  the  terms  is  a  real  number,  then  all  computations  are  done  using
real-number arithmetic – Mathematica works at the lowest precision of the numbers in the
expression.

In[51]:= Precision 10100 1.3

Out[51]= MachinePrecision

One point  to keep in mind is  that  when a symbol  is  present in the expression to be
computed, Mathematica does not convert the symbol to a machine number. This ability to
perform symbolic  computations is an extremely important feature that separates Mathemat-
ica from most other computer languages.

In[52]:= Simplify Sin n , n Integers

Out[52]= 0

In[53]:= Simplify Sin n N , n Integers

Out[53]= Sin 3.14159 n

When two extended-precision approximate numbers are multiplied, the precision of
the result will be the minimum of the precision of the two factors.

In[54]:= Precision N 2 , 50 N 3 , 80

Out[54]= 50.
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In  fact,  whenever  two  numbers  are  multiplied,  the  precision  of  the  product  will  be
the minimum of the precision of the factors, even if one factor is a machine precision real
number and the other factor is a high precision real number.

In[55]:= a N 2 ;

In[56]:= b N 299, 30 ;

In[57]:= Precision a , Precision b , Precision a b

Out[57]= MachinePrecision, 30., MachinePrecision

For addition of real numbers, it is their accuracy that counts most. Recall, Accuracy
gives  the  number  of  significant  digits  to  the  right  of  the  decimal  point.  In  essence,
Accuracy[x] measures the absolute error in the number x.

In[58]:= Accuracy 1.23 , Accuracy 12.5

Out[58]= 15.8647, 14.8577

For  machine-precision  numbers,  adding  a  digit  to  the  left  of  the  decimal  point
essentially  removes one digit  from the right  of  the  decimal  point.  These numbers  have a
fixed number of digits. This is not the case though for extended-precision numbers, where
all the digits to the right of the decimal can be considered significant.

In[59]:= Accuracy 123.4444444444444444444444444444

Out[59]= 28.

In[60]:= Accuracy 12321.4444444444444444444444444444

Out[60]= 28.

In  an  analogous  manner to  the  use  of Precision  with  multiplication,  the Accu

racy of an addition will be the minimum of the accuracies of the summands.

In[61]:= Accuracy 1.23 12.3

Out[61]= 14.8233

In[62]:= Accuracy 12.3

Out[62]= 14.8647

This last point can lead to some unexpected results if you are not careful.

In[63]:= 1.0 10 25

Out[63]= 1.
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In[64]:= Accuracy %

Out[64]= 15.9546

The  number  1.0  is  a  machine  number,  so  this  computation  was  performed  using
machine accuracy, hence the 1 in the 25th decimal place to the right in the number 10 25

was  lost  when  this  computation  was  performed  in  machine  arithmetic.  You  can  avoid
machine  arithmetic  and  get  the  intended  result  by  extending  the  precision  of  1.0  to  25
digits.

In[65]:= 1.0`25 10 25 FullForm

Out[65]//FullForm=

1.0000000000000000000000001`25.

In[66]:= Accuracy %

Out[66]= 25.

Exercises

1. Explain why Mathematica is unable to produce a number with 100 digits of precision
in the following example.

In[1]:= N 1.23, 100

Out[1]= 1.23

In[2]:= Precision %

Out[2]= MachinePrecision

2. Determine what level of precision is necessary when computing N 2 , prec
200

 to
produce accuracy in the output of at least 100 digits.

3. Explain why the following computation produces an unexpected result (that is, why
the value 0.000000000001 is not returned).

In[3]:= 1.0 0.999999999999

Out[3]= 9.99978 10 13

4. How close is the number 163  to an integer? Use N, but be careful about the
precision of your computations.
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8.4 Working with arrays of numbers
Scientists, engineers, and anyone who works with numbers typically do so in the context of
arrays  of  data.  In  many applications  these  arrays  can  become quite  large  and  hence pose
special  problems  when computing  with  them. Mathematica  uses  two  special  data  types  to
make computations with arrays faster and more efficient – sparse arrays and packed arrays.
In this section we will introduce each of these data types and see how a working knowledge
of them can help you work with very large sets of data.

Sparse arrays

In  many  applications,  particularly  solving  ordinary  and  partial  differential  equations,
optimization  problems,  and  solving  large  systems  of  equations,  it  is  not  uncommon  to
work with very large matrices that have mostly 0s as elements. Such matrices or arrays are
referred to as sparse and many optimized algorithms have been developed for working with
such objects. These algorithms allow you to work with arrays that are often several orders
of  magnitude  larger  than  dense  arrays  and  generally  at  speeds  that  are  several  orders  of
magnitude faster.

Sparse  arrays  are  created  with  the SparseArray  function.  The  first  argument  to
SparseArray  specifies the rules to be used to create the non-0 elements and the second
argument specifies the dimensions of the array.

For  example,  this  creates  a 5 5  sparse  array  object  with  elements  on  the  diagonal
equal to 1.

In[1]:= spmat SparseArray i_, i_ 1, 5, 5

Out[1]= SparseArray 5 , 5, 5

Wrapping Normal  around a sparse array object converts it into a list of lists, which
can then be displayed in a traditional form with MatrixForm.

In[2]:= Normal spmat MatrixForm

Out[2]//MatrixForm=
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Here are the rules associated with this sparse array object. Notice that in addition to
the  explicit  rules  we  specified, Mathematica  uses  the  rule {_,_} 0  for  the  default  cases;
that is, any element not explicitly specified by a rule should be set to 0.
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In[3]:= ArrayRules spmat

Out[3]= 1, 1 1, 2, 2 1, 3, 3 1,

4, 4 1, 5, 5 1, _, _ 0

Using a third argument to SparseArray, you can specify that the implicit elements
are other than 0.

In[4]:= spmat2 SparseArray i_, i_ 1, 5, 5 , 13

Out[4]= SparseArray 5 , 5, 5 , 13

In[5]:= Normal spmat2 MatrixForm

Out[5]//MatrixForm=
1 13 13 13 13
13 1 13 13 13
13 13 1 13 13

13 13 13 1 13
13 13 13 13 1

Here  is  a  slightly  more  complicated  specification  for  the  rules  associated  with  a
sparse array. In this example, the diagonal elements are 1, and the elements whose vertical
and horizontal positions differ by 1 will be 2.

In[6]:= spmat3 SparseArray

i_, i_ 1, i_, j_ ; Abs i j 1 2 , 5, 5

Out[6]= SparseArray 13 , 5, 5

In[7]:= MatrixForm Normal spmat3

Out[7]//MatrixForm=
1 2 0 0 0
2 1 2 0 0
0 2 1 2 0
0 0 2 1 2
0 0 0 2 1
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Here is a simple pictorial representation of a sparse array using ArrayPlot. 

In[8]:= ArrayPlot spmat3 ;

Using a larger array, you can clearly see the nature of the “sparseness” of values.

In[9]:= ArrayPlot SparseArray i_, j_ ; Abs i j 2 1, 100, 100 ;

Let  us  take  a  look  at  some  computations  with  sparse  arrays  to  see  how  speed  and
memory  issues  are  affected.  First  we  create  a 100000 100000  sparse  array  with  random
numbers on and just off the diagonal, and 0s everywhere else.

In[10]:= mat SparseArray

i_, j_ ; Abs i j 2 Random , 105, 105

Out[10]= SparseArray 499994 , 100000, 100000

Here is a vector consisting of 100,000 random numbers.

In[11]:= b Table Random , 105 ;

First,  note  the  difference  in  size  of  this  sparse  array  compared  with  a  dense  array.
The sparse array takes up approximately six megabytes.

In[12]:= sparseMemory N ByteCount mat Byte

Out[12]= 6.4003 106 Byte
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The corresponding dense array would require 80 gigabytes to store.

In[13]:= N 105 105 8 Byte

Out[13]= 8. 1010 Byte

Computations involving this sparse linear system are extremely fast.

In[14]:= Timing LinearSolve mat, b ;

Out[14]= 0.802 Second, Null

In[15]:= Timing mat.mat;

Out[15]= 0.09 Second, Null

Packed arrays

One of the great advantages of the Mathematica programming language is that it seamlessly
handles the administrative tasks of dealing with a wide variety of data types. So for exam-
ple, when you perform computations with floating point numbers, Mathematica determines
the type of numbers you are working with and then chooses  to perform the computation
either on your machine’s floating point processor (if working with numbers that fit there)
or  does  the  computation  using  extended-precision  software  routines.  Similarly  computa-
tions involving integers will be done in hardware or using special software routines depend-
ing upon the size of the integers relative to your machine’s hardware constraints.

But all this comes at a cost, and the cost involves the administrative overhead neces-
sary  to  determine  the  appropriate  routine  and  whether  to  perform  the  computation  in
hardware  or  software.  For  small  computations,  this  overhead  is  not  noticeable,  but  for
large computations  involving tens of thousands of rows and columns of a matrix, say, this
overhead could start to slow things down.

Fortunately, there is a way to bypass some of this overhead and get significant speed
improvements together with a smaller memory footprint. The technology that does this is
referred  to  as packed  arrays  and  they  are  fairly  simple  to  understand.  Whenever  possible
Mathematica  will  represent  a  list  of  a  single  type  of  machine  numbers  (integer,  real,  or
complex)  as  an array, in fact,  a packed array object. So a matrix  consisting of  all  machine
real numbers will be represented internally as a packed array. This internal representation
is transparent to the user.

Here is a 1000 1000 array consisting of random real numbers.

In[16]:= mat Table Random , 1000 , 1000 ;
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Mathematica recognizes that this array consists entirely of machine numbers and so it
packs the array automatically.

In[17]:= Developer`PackedArrayQ mat

Out[17]= True

Let us also create an array that is not packed. We can do this by replacing one of the
elements  in mat  with  a  number  that  is  not  a  machine  floating  point  number.  Here  we
replace the element in the first row, second column of mat with a 1.

In[18]:= mat2 ReplacePart mat, 1, 1, 2 ;

In[19]:= Developer`PackedArrayQ mat2

Out[19]= False

The first thing to notice is the memory savings obtained by using packed arrays.

In[20]:= Map ByteCount, mat, mat2

Out[20]= 8000060, 20036032

In  this  example,  it  takes  60%  less  memory  to  store  the  packed  array  over  the  similar
unpacked array.

In[21]:=
20036032 8000060

20036032
N

Out[21]= 0.600716

The time to compute the minimum value is  roughly an order of magnitude faster for the
packed array.

In[22]:= Map Timing Min # ; &, mat, mat2

Out[22]= 0.01 Second, Null , 0.15 Second, Null

Simple arithmetic on such objects is also significantly sped up with packed arrays.

In[23]:= Timing Do mat mat, 100 ;

Out[23]= 3.816 Second, Null

In[24]:= Timing Do mat2 mat2, 100 ;

Out[24]= 59.685 Second, Null

When packed arrays are used in Mathematica, the compiler is invoked, thus generally
improving the time it takes  for the computation  to take place. Many of the built-in func-
tions  are  designed  to  take  advantage  of  the  packed  array  technology.  But  they  do not
invoke the compiler whenever the time it takes to compile is close to the running time of

8 Numerics 251



the  computation  itself.  There  are  length  limits  on  many  common Mathematica  functions
that determine whether the compiler will be used or not. For example, the length limit for
Table is 250.

In[25]:= m1 Table Random , 249 ;

Developer`PackedArrayQ m1

Out[26]= False

In[27]:= m2 Table Random , 250 ;

Developer`PackedArrayQ m2

Out[28]= True

For NestList,  it  is  100  (remember  that NestList[f,init,n]  produces  a  list  of
n 1 elements because it prepends the initial value to the list of iterates).

In[29]:= n1 NestList Sin, .5, 98 ;

Developer`PackedArrayQ n1

Out[30]= False

In[31]:= n2 NestList Sin, .5, 99 ;

Developer`PackedArrayQ n2

Out[32]= True

These length limits are all system parameters that can be set with SystemOptions.

In[33]:= Developer`SystemOptions "CompileOptions"

Out[33]= CompileOptions ApplyCompileLength ,

ArrayCompileLength 250, AutoCompileAllowCoercion False,

AutoCompileProtectValues False,

AutomaticCompile False, CompileAllowCoercion True,

CompileConfirmInitializedVariables True,

CompiledFunctionArgumentCoercionTolerance 2.10721,

CompileEvaluateConstants True,

CompileReportCoercion False,

CompileReportExternal False, CompileReportFailure False,

CompileValuesLast True, FoldCompileLength 100,

InternalCompileMessages False, MapCompileLength 100,

NestCompileLength 100, NumericalAllowExternal True,

SystemCompileOptimizations All, TableCompileLength 250

So how do you best take advantage of packed arrays when you write your code? First,
it  is important that you insure that your lists and arrays consist of machine numbers all of
the same type  – integer, real, or complex. In addition, whenever possible, try to operate on
lists and arrays all at once instead of looping through your arrays. Listable operations with
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packed  array  input  will  use  the  compiler  and  will  produce  packed  array  output.  Fortu-
nately, many of the commonly used functions have this attribute.

In[34]:= names Select Names "System` " ,

MemberQ Attributes # , Listable & ;

Here we display a representative sample of the symbols that have this attribute.

In[35]:= Take names, 1, Length names , 10

Out[35]= Abs, ArcCsc, Attributes, BitNot, Conjugate, Csch, EllipticPi,

ExpIntegralE, Fibonacci, Hypergeometric0F1, IntegerDigits,

LegendreQ, MathieuCharacteristicExponent, NonNegative,

PolyLog, Quotient, Sign, StringLength, ToUpperCase

Exercises

1. Create a function RandomSparseArray[n] that generates an n n sparse array
with random numbers along the diagonal.

2. Create a function tridiagonalMatrix[n,p,q] that creates an n n matrix with
the integer p on the diagonal, the integer q on the upper and lower subdiagonals, and 
0s everywhere else.

3. Create a vector vec consisting of 100,000 random real numbers between 0 and 1.
Check that it is indeed a packed array by using Developer`PackedArrayQ. Then
replace one element in vec with an integer. Check that this new vector is not a
packed array. Finally, perform some memory and timing tests on these two vectors.

8.5 Numerical computations
Mathematica’s built-in numerical functions are designed to guarantee the accuracy of their
results as much as possible and they are optimized to minimize the work done to generate
those results. Functions such as N, FindRoot, NDSolve, NMinimize, and NIntegrate
use  options  to  allow  you  to  adjust  their  behavior  and  get  finer  control  over  precision,
accuracy, and other internal aspects of the underlying numerical routines.

In this section we will first look at how to use these options to control the precision
and accuracy  of  your  results.  We will  then discuss  how to  incorporate  these options  into
your own numerical functions. Finally, we will look at a numerical problem that is mathe-
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matical  in nature,  Gaussian elimination, and see how adjusting the underlying algorithms
can help avoid roundoff and division-by-0 errors.

Working with precision and accuracy

When you  do  computations  with Mathematica’s  numerical  functions,  results  are  returned
at the default machine precision.

In[1]:= NIntegrate Sin x2 , x, 0,

Out[1]= 0.894831

In[2]:= Precision %

Out[2]= MachinePrecision

When  you  need  results  with  higher  precision  you  will  need  to  change  the  option
PrecisionGoal,  which  essentially  sets  the  desired  precision  of  the  result  (similarly  for
accuracy, with AccuracyGoal).

Here is  the same computation  as  above,  but  asking for  30 digits  of  precision in the
result.

In[3]:= NIntegrate Sin x2 , x, 0, , PrecisionGoal 30

NIntegrate::tmap :

NIntegrate is unable to achieve the tolerances specified

by the PrecisionGoal and AccuracyGoal options

because the working precision is insufficient. Try

increasing the setting of the WorkingPrecision option.

Out[3]= 0.894831

Mathematica  is  complaining  that  it  is  unable  to  produce  a  result  with  the  requested
precision. If  you look at the default value of WorkingPrecision,  you will see that it is
set  to MachinePrecision.  This  means  that  the  internal  algorithms  will  work  at
machine precision. But,  in this  example, that was not sufficient to guarantee a result  with
much higher precision.

In[4]:= Options NIntegrate

Out[4]= AccuracyGoal , Compiled True,

EvaluationMonitor None, GaussPoints Automatic,

MaxPoints Automatic, MaxRecursion 6, Method Automatic,

MinRecursion 0, PrecisionGoal Automatic,

SingularityDepth 4, WorkingPrecision MachinePrecision
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To insure that the PrecisionGoal is met, we need to increase the WorkingPre
cision a bit above the PrecisionGoal. 

In[5]:= NIntegrate Sin x2 , x, 0, ,

PrecisionGoal 30, WorkingPrecision 36

Out[5]= 0.894831469484144958801022013417

In[6]:= Precision %

Out[6]= 30.3742

How much to increase the value of WorkingPrecision above that of Precision
Goal is a bit dependent upon the problem at hand, but a good rule of thumb is to start by
setting WorkingPrecision about 10–15% higher than your PrecisionGoal.

Another option to numerical functions that is important to understand is MaxItera
tions. As its name implies, this is the maximum number of iterations that a given iterative
function will perform in doing its computation. For example, the default value of MaxIter
ations in FindRoot is 100.

In[7]:= Options FindRoot

Out[7]= AccuracyGoal Automatic, Compiled True,

DampingFactor 1, EvaluationMonitor None,

Jacobian Automatic, MaxIterations 100,

Method Automatic, PrecisionGoal Automatic,

StepMonitor None, WorkingPrecision MachinePrecision

For many computations, this limit will be sufficient. But with root finding for exam-
ple,  a  function  that  is  very flat  near the desired zero may need a higher number of itera-
tions to find that zero. For example, the function x11  has a root at 0 of course, but Find
Root  has difficulty locating it and is unable to guarantee its precision and accuracy using
the default settings.

In[8]:= FindRoot x11, x, 0.5

FindRoot::cvmit :

Failed to converge to the requested accuracy

or precision within 100 iterations. More…

Out[8]= x 0.0000362829

If you increase the value of MaxIterations, you will get a more accurate result.

In[9]:= FindRoot x11, x, 0.5 , MaxIterations 1000

Out[9]= x 9.84816 10 8
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To get even more accuracy, try increasing AccuracyGoal. As discussed above, you
should increase the value of the WorkingPrecision option as well.

In[10]:= FindRoot x11, x, 0.5 , AccuracyGoal 30,

WorkingPrecision 36, MaxIterations 1000

Out[10]= x 9.38526423859658090604961544893338306 10 30

One final option to Mathematica’s numerical functions that we will explore is Evalua
tionMonitor. This option can be used to evaluate an expression during the computation
of the function for which it is an option. For example, suppose you would like to see all of
the intermediate values that FindRoot comes up with during its computation.

You could simply print the values that x takes on throughout the computation using
a Print statement.

In[11]:= FindRoot Sin x , x, 2.0 , EvaluationMonitor Print x

2.

4.18504

2.46789

3.26619

3.14094

3.14159

3.14159

Out[11]= x 3.14159

This  approach  suffers  from the fact  that  the Print  expression  produces  no output
and so there is no direct way to access these intermediate values. A better approach would
be  to  append  the  intermediate  values  to  a  list.  In  the  following  example  we  initialize  an
empty  list xtemp  and  use EvaluationMonitor  to  append  values  of x  to  that  list
throughout the course of the root-finding computation.

In[12]:= xtemp ;

FindRoot Sin x , x, 2.0 ,

EvaluationMonitor AppendTo xtemp, x

Out[13]= x 3.14159

The intermediate values are now stored in xtemp.

In[14]:= xtemp

Out[14]= 2., 4.18504, 2.46789, 3.26619, 3.14094, 3.14159, 3.14159
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Note  the  use  of  the  delayed  rule  above  with EvaluationMonitor.  This  ensures
that  the  right-hand  side  of  the  rule  is  not  evaluated  before FindRoot  starts  its
computation.

Newton’s method revisited

In  Section  5.2  we  wrote  a  program to  implement  Newton’s  method  for  finding  roots  of
equations.

In[15]:= findRoot fun_, init_, _ :

Module xi init, funxi fun init , df fun' ,

While Abs funxi ,

xi N xi
funxi

df xi
;

funxi fun xi ;

xi

One of the limitations of this  implementation is  that the user has little control  over
the precision or accuracy of the results. In addition, although the loop will continue until
values  are  within  of  the  root,  there  is  no  mechanism  for  automatically  adjusting  this
tolerance, nor for controlling the number of iterations that are performed. In this section
we  will  rewrite  this  root-finding  function  to  take  advantage  of  the  options  for  numerical
functions that control precision and accuracy.

First  we  will  change  the  iterative  structure  from  a While  loop  to  a  fixed  point
iteration. The first argument to FixedPoint is the function that we are iterating, so that
will be the same as the function above, namely, xi

f xi
f xi

. The second argument to Fixed

Point is the initial value for the iteration. The third argument is the number of iterations.
So, using a pure function for the first argument, the Newton iteration will look like this:

FixedPoint # fun #
fun' #

&, initx, maxIterations

Let  us  set  up  the  needed  options  with  some  default  values.  We  will  call  our  new
program newton.

In[16]:= Options newton

MaxIterations $RecursionLimit,

PrecisionGoal Automatic,

WorkingPrecision Automatic

;
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We  have  set  the  default  value  of MaxIterations  to  be $RecursionLimit

(normally 256) using a delayed rule so that $RecursionLimit is not evaluated until the
option  is  called. PrecisionGoal  and WorkingPrecision  are  set  to Automatic,
which, at the moment, has no value associated with it. In the body of our function, we will
take a value of Automatic for PrecisionGoal to mean a precision that is equal to the
precision of the initial value passed to newton.

If[precisionGoal===Automatic, precisionGoal = Precision[init]];

As we saw in the previous section, we will need to bump up the value of Working
Precision  to something a little bigger than PrecisionGoal.  We will set it to be ten
more digits than the precision goal.

If[workingPrecision === Automatic,
workingPrecision = precisionGoal + 10];
initx = SetPrecision[init, workingPrecision];

Here then is the definition of newton with these added pieces.

In[17]:= newton fun_, init_?NumericQ, opts___?OptionQ :

Module maxIterations, precisionGoal,

workingPrecision, initx, df fun' ,

maxIterations, precisionGoal, workingPrecision

MaxIterations, PrecisionGoal, WorkingPrecision .

Flatten opts . Options newton ;

If precisionGoal Automatic,

precisionGoal Precision init ;

If workingPrecision Automatic,

workingPrecision precisionGoal 10 ;

initx SetPrecision init, workingPrecision ;

SetPrecision

FixedPoint #
fun #

df #
&, initx, maxIterations ,

precisionGoal

Let us use newton to find the roots of various functions.

In[18]:= f x_ : x2 2

In[19]:= newton f, 1.0

Out[19]= 1.41421
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The precision of this result is the same as the precision of the initial guess.

In[20]:= Precision %

Out[20]= MachinePrecision

Setting PrecisionGoal higher generates a high-precision result.

In[21]:= newton Sin,
14

10
, PrecisionGoal 40

Out[21]= 3.141592653589793238462643383279502884197

In[22]:= %

Out[22]= 0. 10 40

There  are  still  a  number  of  problems  that  can  arise  with  our  implementation  of
Newton’s method. First is the possibility that the derivative of the function we are working
with  might  be  equal  to  0.  This  will  produce  a  division-by-0  error.  Another type  of  diffi-
culty that can arise in root finding occurs when the derivative of the function in question is
either difficult or impossible to compute. As a very simple example, consider the function

x 3 , which has a root at x 3. Both the built-in function FindRoot and our user-de-
fined newton will fail with this function since a symbolic derivative cannot be computed.

In[23]:= D Abs x 3 , x

Out[23]= Abs 3 x

One  way  around  such  problems  is  to  use  a  numerical  derivative  (as  opposed  to  an
analytic derivative). The secant method approximates f xk  using the difference quotient:

f xk f xk 1
xk xk 1

Although  this  will  require  two  initial  values  to  start,  it  has  the  advantage  of  not
having to compute  symbolic  derivatives. Here is  a simple implementation using a While

loop.

In[24]:= secant f_, a_, b_ :

Module x1 a, x2 b, df , While Abs f x2
1

1010
,

df
f x2 f x1

x2 x1
;

x1, x2 x2, x2
f x2

df
;

x2
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In[25]:= f x_ : Abs x 3

In[26]:= secant f, 3.1, 1.8

Out[26]= 3.

In  the  exercises,  the  reader  is  asked  to  refine  this  program by  writing  it  in  a  func-
tional style and including mechanisms to gain finer control over precision and accuracy in
a manner similar to what we did with the newton function earlier in this section.

Gaussian elimination revisited

When solving the linear system A x b by numerical techniques, several types of problems
may arise. One problem, roundoff  error, sometimes occurs  when using machine numbers
as opposed to exact numbers. For many matrices A, there is little propagation of roundoff
error. But for some matrices the error tends to magnify in a startling way and can lead to
highly  inaccurate  results.  Such  matrices  are  called ill-conditioned,  and,  in  this  section,  we
will  identify  ill-conditioned  matrices  and  discuss  what  to  do  about  them  when  doing
numerical linear algebra.

Another type of problem that can occur was first mentioned in Section 7.5 where we
used  Gaussian  elimination to  solve  the system A x b.  In the exercises at  the end of  that
section,  we gave a  very brief  discussion  of  the conditions  under which the method might
fail,  namely,  division  by  0.  In  this  section  we  will  give  a  more  detailed  treatment  of  the
potential pitfalls with Gaussian elimination.

Since  the  method  of  Gaussian  elimination  is  essentially  list  manipulation  involving
additions,  subtractions,  multiplications,  and divisions,  clearly one avenue of  failure would
be if we were to divide by 0. We formed what are commonly called multipliers ( Ei 1

E1 1 , in
the example below) as follows:

subtractE1 E1_, Ei_ : Rest Ei Ei 1
E1 1

Rest E1

If  the  element E1[[1]]  were  ever  equal  to  0,  the  method  would  fail.  Recall  the
example from the exercises at the end of Section 7.5.

In[27]:= m 0, 3 , 3, 0 ;

b 5, 6 ;

260 An Introduction to Programming with Mathematica



This simple linear system m.x b has solution vector x 2, 5
3 .

In[29]:= m. 2,
5

3

Out[29]= 5, 6

Unfortunately,  the solve  command  we developed earlier in  Section  7.5  will  fail  on this
linear system.

In[30]:= solve[m, b]

Power::infy : Infinite expression
1
0

encountered. More…

::indet :

Indeterminate expression 0 ComplexInfinity encountered. More…

Power::infy : Infinite expression
1
0

encountered. More…

Out[30]= Indeterminate, Indeterminate

It is pretty clear that our solve command has not been written to take this situation
into account.  The problem can be remedied as suggested in Exercise 1 in Section 7.5, by
interchanging  rows  (equations)  so  that  the  0  element  is  not  in  this  pivoting  position.
Interchanging rows is  equivalent to  swapping equations,  so this  will not  change the solu-
tion of the system in any way.

However,  there  is  another  problem  that  can  arise  when  solving  systems  containing
finite precision coefficients. The imprecision of the coefficients tends to become magnified
in performing the necessary arithmetic. We can see this more clearly with an example.

Suppose we were using six-digit rounded arithmetic on the following system.

0.000001 1.0
1.0 1.0

x
y

1.0
2.0

The augmented matrix would look like the following.

0.000001 1.0 1.0
1.0 1.0 2.0

Gaussian  elimination  would  start  solving  this  system  by  multiplying  the  first  row by 106

(which contains  seven digits)  and subtracting  from the second row. But  six-digit rounded
arithmetic would then produce:
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0.0000001 1.0 1.0
0.0 1000000. 1000000

Dividing the second row by 1000000. gives the solution for y.

0.000001 1.0 1.0
0.0 1. 1.

The  second  part  of  the  back  substitution  gives  the  solution  for x;  that  is,
1. 1.0 0.000001.

1.00000 0.0 0.0
0.0 1. 1.

This  “solution” x, y 0, 1 ,  is  in  fact,  not  the  least  bit  close  to  the  correct  answer.  A
much  more  accurate  solution  is  given  by  the  ordered  pair
x, y 1.000001000001, 0.999998999999 .

What  has  gone  wrong?  In  general,  accuracy  is  lost  when  the  magnitude  of  the
pivoting position is small compared with the remaining coefficients in that column. Pivot-
ing  can  be  used  to  avoid  two  situations.  First,  it  is  used  to  avoid  a  0  element,  when  the
matrix is nonsingular. A square matrix A is said to be nonsingular if it has an inverse; that is,
if there exists a matrix B such that A B I.

Pivoting  is  also  used  to  minimize  the  potential  for  roundoff  errors.  It  does  this  by
selecting the element from the remaining rows (equations) that is the maximum in absolute
value.  This  will  make  the  multiplier  small  and  will  have  the  effect  of  reducing  possible
roundoff errors. The following code selects this pivot and reorders the rows of the system
accordingly.

In[31]:= pivot S_ : Module p, ST1 ,

ST1 Abs Transpose S 1 ;

p Position ST1, Max ST1 1, 1 ;

Join S p , Delete S, p

Now the original solve  function can be  rewritten to  pivot  on this  non-0 element.
The new function is called solvePP (for “partial pivot”).

In[32]:= subtractE1 E1_, Ei_ : Rest Ei
Ei 1 Rest E1

E1 1
;

In[33]:= elimx1 T_ : Map subtractE1 T 1 , #1 &, Rest T ;
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In[34]:= solvep a11_, b1_ :
b1

a11
;

In[35]:= solvep S_ : Module S1 pivot S , E1, a12toa1n, x2toxn ,

x2toxn solvep elimx1 S1 ;

E1 First S1 ;

a12toa1n Drop Rest E1 , 1 ;

Join
Last E1 a12toa1n.x2toxn

First E1
, x2toxn ;

In[36]:= solvePP mat_, b_ :

solvep Transpose Append Transpose mat , b

As we did in Section 7.5, we set things up so that the user can simply pass the matrix
mat  and column vector b  as arguments, and solvePP  will form the augmented matrix in
the call to solvep on the last line above.

We  can  quickly  see  how  partial  pivoting  solves  our  first  problem  of  division  by  0.
Solving the system given earlier with this new function now gives the correct result.

In[37]:= m 0, 3 , 3, 0 ;

b 5, 6 ;

In[39]:= solvePP m, b

Out[39]= 2,
5
3

The  problem  with  roundoff  error  can  best  be  seen  by  constructing  a  matrix  that
would  tend  to  produce  quite  large  intermediate  results  relative  to  its  original  elements.
One  such  class  of  matrices  are  referred  to  as ill-conditioned  matrices,  a  complete  study  of
which  is  outside  the  scope  of  this  book.  The  reader  is  encouraged  to  consult  Skeel  and
Keiper 1993 or Burden and Faires 2000 for a comprehensive discussion of ill-conditioning.

A  set  of  classically  ill-conditioned  matrices  are  the Hilbert  matrices  which  arise  in
numerical  analysis  in  the  solution  of  what  are  known  as orthogonal  polynomials.  Recall  the
definition of the nth degree Hilbert matrix that we gave in Section 7.5.

In[40]:= HilbertMatrix n_ : Table
1

i j 1
, i, n , j, n

In[41]:= HilbertMatrix 3 MatrixForm

Out[41]//MatrixForm=

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5
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We will  use  the Hilbert  matrices,  but,  instead of  working with exact arithmetic,  we
will work with floating point numbers.

In[42]:= N HilbertMatrix 3 MatrixForm

Out[42]//MatrixForm=
1. 0.5 0.333333
0.5 0.333333 0.25
0.333333 0.25 0.2

To compare the simple solver solve and the partial pivoting solver solvePP along
with the built-in LinearSolve  we first construct  a 25 25 Hilbert matrix and a random
25 1 column vector (and, of course, suppress the display of the 625 elements of the matrix
and 25 elements of the column vector).

In[43]:= h25 N HilbertMatrix 25 ;

In[44]:= b25 Table Random , 25 ;

Now  let  us  use  each  of  these  three  methods  to  find  the  solution  vector x  of  the
system h25.x = b25. We also give a measure of the total error involved in each case by
computing the difference between h25.x and b25.

LinearSolve fails on this linear system.

In[45]:= xLS LinearSolve h25, b25 ;

LinearSolve::luc :

Result for LinearSolve of badly conditioned

matrix 1., 0.5, 0.333333, 0.25, 0.2, 20 ,

0.142857, 0.125, 0.111111, 0.1, 15 , 10

may contain significant numerical errors. More…

The solve  function  (without  pivoting)  solves  the  system  and  produces  a  total  error  of
about 161 (this result will vary depending upon the random vector b25).

In[46]:= xGE solve h25, b25 ;

In[47]:= totalerrorGE Total Abs h25.xGE b25

Out[47]= 161.552

Here we compute the solution to this system using partial pivoting.

In[48]:= xPP solvePP h25, b25 ;

In[49]:= totalerrorPP Total Abs h25.xPP b25

Out[49]= 12.8731

It is no surprise that our initial implementation of Gaussian elimination, solve, had
a greater total error than solvepp. As we mentioned above, the Hilbert matrices are very
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ill-conditioned  and  so  we  would  expect  that  roundoff  error  would  be  more  significant
without  pivoting.  (As  noted  above,  results  will  vary  from  machine  to  machine  and  from
session  to  session  since  each  evaluation  of b25  above  will  produce  a  different  column
vector.)

The importance of  these numbers  is  that  they tell  us  that  there can be a significant
increase  in  error  in  using  Gaussian  elimination  without  pivoting.  We  have  to  be  a  bit
careful  in  reading too  much into  that  though.  Quite  a  bit  of  roundoff  error is  present in
these results.  You should check that  this  is  in fact  the case by running the examples with
smaller  Hilbert  matrices.  The  exercises  outline  a  method  to  help  reduce  such  potential
roundoff error.

Exercises

1. The newton function developed in this section suffers from several inefficiencies.
One of them is that if the precision goal is no more than machine precision, all
intermediate computations should be done at the more efficient machine precision as
well. Modify newton so that it will operate at machine precision if the precision goal 
is at most machine precision.

2. In the newton program, we added SetPrecision[result,precisionGoal]
at the very end to return the final result at the precision goal, but we have done no 
test to insure that the result meets the required precision. Add a test to the end of the
newton function so that, if this condition is not met, an error message is generated
and the current result is output.

3. Some functions tend to cause root-finding methods to converge rather slowly. For 
example, the function f x sin x x requires over ten iterations of Newton’s
method with an initial guess of x0 0.1 to get three-place accuracy. Implement the
following acceleration of Newton’s method and determine how many iterations of 
the function f x sin x x, starting with x0 0.1, are necessary for six-place
accuracy.

accelNewton x f x f x
f x 2 f x f x

This accelerated method is particularly useful for functions with multiple roots.

4. Write a functional implementation of the secant method. Your function should 
accept as arguments the name of a function and two initial guesses. It should main-
tain the precision of the inputs and it should output the root at the precision of the
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initial guess, and the number of iterations required to compute the root. Consider 
using the built-in functions FixedPoint or Nest.

5. The norm of a matrix gives some measure of the size of that matrix. The norm of a 
matrix A is indicated by A . There are numerous matrix norms, but all share certain
properties. For n n matrices A and B:
(i) A 0
(ii) A 0 if and only if A is the zero matrix
(iii) c A c A  for any scalar c
(iv) A B A B
(v) A B A B
One particularly useful norm is the l  norm, sometimes referred to as the max norm. 
For a vector, this is defined as

x max1 i n xi

The corresponding matrix norm is defined similarly. Hence, for a matrix A aij, we
have

A max1 i n j 1
n aij

This computes the sum of the absolute values of the elements in each row, and then
takes the maximum of these sums. That is, the l  matrix norm is the max of the l
norms of the rows.
Write a function norm[mat,Infinity], which takes a square matrix as an argu-
ment and outputs its  norm. Compare your function with the built-in Norm
function.

6. If a matrix A is nonsingular (that is, is invertible), then its condition number c A  is 
defined as A A 1 . A matrix is called well-conditioned if its condition number is 
close to 1 (the condition number of the identity matrix). A matrix is called ill-condi-
tioned if its condition number is significantly larger than 1.
Write a function conditionNumber[mat] that uses the norm you defined in the
previous exercise as an auxiliary function, and outputs the condition number of mat. 
Use conditionNumber to compute the condition number of the first ten Hilbert
matrices.

7. An additional technique for solving linear systems of equations is known as scaled
pivoting. Assuming that no column of a matrix mat contains all 0s (in which case there
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would be no unique solution), then, for each row, a scale factor is determined by 
selecting the element that is the largest in absolute value; that is, in row i, the scale
factor is defined as si max1 j n aij . Now a row interchange is determined by 
finding the first integer k such that:

aki
sk

maxj 1,2,…,n
aji
sj

Once such a k is found, then the ith row and the kth row are interchanged. The
scaling itself is only done for comparison purposes so no additional roundoff error is 
introduced by the scaling factor.
Write a function solveSPP that implements scaled partial pivoting using the above
description.
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9 Graphics programming

Mathematica  contains  a  rich  set  of  tools  for  visualizing  functions  and data. Generally
the built-in graphics functions will provide what you need, but, just like the rest of the
Mathematica  programming language, you will periodically find yourself with the need
to create your own plotting and visualization routines. In this  chapter we will discuss
how to construct graphical images using Mathematica, and how to write programs that
solve problems that are graphical in nature.

9.1 Structure of graphics
All Mathematica  graphics  are  constructed  from  objects  called graphics  primitives.  These
primitive elements (Point, Line, Polygon, Circle, etc.) are used by built-in functions
such as Plot to create graphics. Although it is quite straightforward to create images using
Mathematica’s  built-in  functions,  you  will  frequently  find  yourself  having  to  create  a
graphic image for which no Mathematica function exists. This is analogous to the situation
in programming where you often have to write a specialized procedure to solve a particular
problem.  We use the basic  building  blocks  and put  them together according to the rules
governing  the  structure  of  the  language  and  the  nature  of  the  problem  at  hand.  In  this
section  we  will  look  at  the  building  blocks  of  graphics  programming  and  at  how we  put
them together to make graphics.

Primitives, directives, and options

Graphics  created  with  functions  such  as Plot  and ListPlot  are  constructed  of  lines
connecting points,  with options  governing the display.  We can get some insight into this
process by looking at the internal representation of a plot. 



Here is a plot of the sin function.

In[1]:= sinplot Plot Sin x , x, 0, 2

1 2 3 4 5 6

1

0.5

0.5

1

Out[1]= Graphics

Mathematica  constructs  plots  by  piecing  together  various  graphics  elements.  The
InputForm  function displays  the expression that  we could have entered manually  to get
the  same  plot.  We use Short  to  display  an  abbreviated  listing  of  that  expression.  (Note:
The  formatted  output  from Short  will  vary  slightly  depending  upon  the  width  of  your
notebook.)

In[2]:= Short InputForm sinplot , 10

Out[2]//Short= Graphics Line 2.617993877991494*^-7,

2.6179938779914644*^-7 , 0.25488992540742256,

0.25213889196341294 , 0.5328694051959508,

0.5080069997492929 , 0.7939393140028285,

0.7131204212611485 , 1.04500937601917, 0.864929243756943 ,

1.1741328775392965, 0.9223551787683757 ,

1.2459531215560486, 0.9477007807106171 ,

1.3122595300248905, 0.9667651045914426 , 2 ,

69 , 5.756221700231303, 0.5029111934098898 ,

6.016521477574974, 0.2635146543573849 ,

6.266821408128109, 0.016363168748098372 ,

6.283185045380199, 2.6179938774695577*^-7 , 25

This graphic consists of a series of coordinates, or points, in the plane connected by
lines of a certain thickness. There are 82 points that are sampled to make this plot – the 13
displayed here together with 69 more indicated by the notation <<69>>. 

In[3]:= Count InputForm sinplot ,

p_?NumericQ, q_?NumericQ , Infinity

Out[3]= 82

The <<25>>  on  the  bottom  indicates  options  (omitted  from  this  display),  such  as
PlotRange Automatic.  Below  we  can  see  that  some  of  these  options  are  immediate
rules and some are delayed.
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In[4]:= Count InputForm sinplot , p_Symbol q_, Infinity

Out[4]= 21

In[5]:= Count InputForm sinplot , p_Symbol q_, Infinity

Out[5]= 4

We will examine these graphics elements by constructing a graphic using only primi-
tive elements. In a later section we will look into how the built-in functions such as Plot
construct graphics out of the primitive elements.

In  Section  8.1  in  the  numerics  chapter,  we  displayed  a  graphic  that  demonstrated
some  of  the  properties  of  complex  numbers.  Let  us  show  how  this  graphic  was  created,
using Mathematica’s primitive elements.

The  following  table  lists  the  graphics  primitives  that  we  will  use  in  this  example
(Point, Line, Circle, and Text) in addition to several other two-dimensional elements
that  are available.  Note that  three-dimensional versions  of Point,  Line,  Polygon,  and
Text are also available for constructing three-dimensional graphics.

Graphics elements Usage

Point x, y a point at position x, y

Line x1, y1 , x2, y2 , … a line through the points xi, yi

Rectangle xmin, ymin , xmax, ymax a filled rectangle

Polygon x1, y1 , x2, y2 , … a filled polygon

Circle x, y , r, 2, 2 a circular arc of radius r

Disk x, y , r a filled disk of radius r

Raster x11, x12, … , x21, x22, … , … a rectangulararray of gray levels

Text expr, x, y text centered at x, y

Table 9.1: Graphics primitives

The graphic we will create will contain the following elements:

• points in the plane at a complex number a b  and its conjugate a b

• lines drawn from the origin to each of these points

• an arc, indicating the polar angle of the complex number

• dashed lines indicating the real and imaginary values

• a set of axes in the coordinate plane
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• labels for each of the above elements

First we choose a point in the first quadrant and then construct a line from the origin
to this point.

In[6]:= z 8 3 ;

Line[{{x1,y1},{x2,y2},…,{xn,yn}}]  is  a  graphics  primitive  that  creates  a  line
from the point whose coordinates are x1, y1  to the point x2, y2 , etc..

In[7]:= line1 Line 0, 0 , Re z , Im z ;

Let us also create a point in the plane.

In[8]:= point1 PointSize .02 , Point Re z , Im z ;

We have added the graphics directive PointSize  here so that our displayed point
will be reasonably large. A graphics directive works by changing only those objects within its
scope. In this case, that scope is delineated by the curly braces. The form for directives is
{directive, primitive}. Additional primitives can also be placed in the scope of any directive.

dir, prim1, prim2, …, primn

The directive dir  will  affect  each  of  the  primitives primi  occurring  within its  scope.
You can place as many primitives as you like within the scope of each directive.

A  complete  list  of  the  two-dimensional  graphics  directives,  together  with  usage
statements, is given in Table 9.2.

To display what we have created so far, we first wrap the Graphics function around
the  points  and  lines to  turn  them into graphics  objects.  Then we display  the list  of  objects
with the Show function.

In[9]:= Show Graphics line1, point1

Out[9]= Graphics
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Admittedly  not  too  exciting,  but  it  is  a  start.  We  can  add  additional  graphics  ele-
ments indicating the conjugate and a set of axes.

In[10]:= cz Conjugate z ;

line2 Line 0, 0 , Re cz , Im cz ;

point2 PointSize .02 , Point Re cz , Im cz ;

In[13]:= Show Graphics line1, point1, line2, point2

Out[13]= Graphics

Directive Usage

AbsoluteDashing d1, d2, … dashed line segments using absoluteunits

AbsoluteThickness d lines of thickness d measured in absolute units

CMYKColor c, m, y, b cyan, magenta, yellow, and black of four
color process

Dashing d1, d2, … dashed line segments of length d1, d2, …

GrayLevel d gray between 0 black and 1 white

Hue h, s, b color with hue, saturation, and brightness
between 0 and 1

PointSize r points of radius r given as a fraction of the width
of the entire plot

RGBColor r, g, b color with red, green, and blue components
between 0 and 1

Thickness d lines of thickness d given as a fraction of the width
of the entire plot

Table 9.2: Mathematica graphics directives

At this point it would be useful to have axes displayed in our graphic. All of Mathemat-
ica’s graphics functions have options that allow you to modify some attribute of the entire
graphic.  We  can  get  a  complete  list  of  those  options  relevant  to Graphics  objects  by
evaluating the following.
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In[14]:= Options Graphics

Out[14]= AspectRatio
1

GoldenRatio
, Axes False, AxesLabel None,

AxesOrigin Automatic, AxesStyle Automatic,

Background Automatic, ColorOutput Automatic,

DefaultColor Automatic, DefaultFont $DefaultFont,

DisplayFunction $DisplayFunction, Epilog ,

FormatType $FormatType, Frame False, FrameLabel None,

FrameStyle Automatic, FrameTicks Automatic,

GridLines None, ImageSize Automatic, PlotLabel None,

PlotRange Automatic, PlotRegion Automatic, Prolog ,

RotateLabel True, TextStyle $TextStyle, Ticks Automatic

Notice  that  each option  is  specified as  a  rule with the default  value for each option
given on the right-hand side of the rule. In particular, note that Axes is one of the options
for Graphics types and that it is set to False by default.

Options  differ from directives in that they affect the entire graphic. Options to func-
tions are placed after any required arguments and are separated by commas. Since Axes is
an  option  to  the Graphics  function,  it  is  placed  after  the  graphics  elements {line1,
point1,…}. Using the value Automatic for the Axes option is how we ask Mathematica to
figure  out  the  best  arrangement  for  the  axes  placement  and  labels,  given  the  elements
present in the graphic.

In[15]:= Show Graphics line1, point1, line2, point2 , Axes Automatic

2 4 6 8
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2

1

1
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3

Out[15]= Graphics

Next, let us create dashed lines indicating the real and imaginary components of our
complex number. We use the Dashing directive with Line to get the desired effect.

In[16]:= hline

Dashing 0.04, 0.04 , Line 0, Im z , Re z , Im z ;

vline Dashing 0.04, 0.04 ,

Line Re z , 0 , Re z , Im z ;

Since we were using this graphic to display an arbitrary complex number, we are not
interested in the units on the axes, so we suppress the default value and add our own with
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the Ticks  option. Ticks {{{Re[z],"a"}},{{Im[z],"b"}}}  places  tick  marks  at
Re[z]  on the horizontal axis and at Im[z]  on the vertical axis and labels them a  and b,
respectively. In addition, let us add labels on the axes.

In[18]:= Show Graphics line1, point1, line2, point2, hline, vline ,

Axes Automatic, AxesLabel Re, Im ,

Ticks Re z , "a" , Im z , "b" ;

a
Re

b

Im

Mathematica  tries  to  fit  the  plot  into  a  region that  is  similar  in  shape  to  your  com-
puter  screen and  uses  a  ratio  of  height  to  width  that  is  known to  be  pleasing  to  the eye.
This  height to  width ratio  is  known as  the AspectRatio  and  has  a  default  value of 1 ,

where  is  the  golden  ratio.  By  setting AspectRatio  to Automatic,  we  will  force
Mathematica to use a ratio that is determined from the actual coordinates in the plot.

In[19]:= Show Graphics line1, line2, point2, hline, vline ,

Axes Automatic, AxesLabel Re, Im , Ticks

Re z , "a" , Im z , "b" , AspectRatio Automatic ;

a
Re

b

Im

We now wish to put labels at the two complex numbers and along the line represent-
ing the length Abs[z]. We will use another graphics primitive, Text, to place text where
we need it.
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Text[expr,{x,y}] will create a text object of the expression expr and center it at (x,
y).  So, to create “z a b ” as a piece of text  centered at  a point a little bit  above and to
the left of z, we use:

Text["z = a + b i", {Re[z]-0.75, Im[z]+0.35}]

We are going to add one further element to this graphic object. We would like this
text to use a different font and a different size than the default of Courier, 10 points. Using
StyleForm  we can specify any available font and size. In this example we use the Times
font family and set the font size at 9 points. (Names of fonts will vary on different comput-
ers. Users should check their Mathematica documentation for font-naming conventions.)

Text[StyleForm["z = a + b i", FontFamily "Times", FontSize 9]],
{Re[z] - 0.75, Im[z] + 0.35}]

Here then are the labels for the complex number and the length given by the abso-
lute value of the complex number.

In[20]:= text1 Text StyleForm "z a b ",

FontFamily "Times", FontSize 9 ,

Re z .75, Im z .35 ;

In[21]:= text2 Text StyleForm "Abs z ",

FontFamily "Times", FontSize 9 ,

4.2, 2 ;

In[22]:= Show Graphics line1, line2, point1, point2, hline, vline,

text1, text2 , Axes Automatic, AxesLabel Re, Im ,

Ticks Re z , "a" , Im z , "b" ,

AspectRatio Automatic ;

a
Re

b

Im

z a b

Abs z
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Lastly, we need to add the arc representing the polar angle and label it. The arc can
be generated with another graphic primitive. Circle[{x,y},r,{a,b}]  will draw an arc
of a circle centered at (x, y), of radius r, counterclockwise from an angle of a radians to an
angle of b radians. The arc that we are interested in will have a radius smaller than Abs[z]

and will  be  drawn from the real  (horizontal)  axis  to the line connecting the origin and z.
Here is the code for the arc and its label, as well as the graphic containing all of the above
elements (we also add the text to label the conjugate).

In[23]:= arc Circle 0, 0 ,
Abs z

3
, 0, Arg z ;

In[24]:= text3 Text StyleForm "Conjugate z a b ",

FontFamily "Times", FontSize 9 ,

Re cz 1.4, Im cz .35 ;

In[25]:= text4 Text StyleForm "Arg z ",

FontFamily "Times", FontSize 9 , 3.5, .5 ;

In[26]:= Show Graphics line1, line2, point1, point2,

hline, vline, text1, text2, text3, text4, arc ,

Axes True, AxesLabel Re, Im , Ticks

Re z , "a" , Im z , "b" , AspectRatio Automatic ;

a
Re

b

Im

z a b

Abs z

Conjugate z a b

Arg z

We have made assignments  to many different symbols  in this  section.  Before going
on,  it  would  be  a  good  idea  to  clear  the  values  associated  with  all  of  these  symbols.  In
Chapter  12  we  will  talk  about  contexts  in  detail,  but,  for  now,  you  can  clear  the  values
associated with all symbols in the Global` context by evaluating the following.

In[27]:= ClearAll "Global` "
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Exercises

1. Create a primitive color wheel by coloring successive sectors of a Disk according to
the Hue directive.

2. Create a graphic that contains one each of a circle, a triangle, and a rectangle. Your 
graphic should include an identifying label for each object.

3. Create a three-dimensional graphic containing six Cuboid graphics primitives,
randomly placed in the unit cube.

4. Create a graphic that consists of 500 points placed randomly in the unit square. The
points should be of random radii between .01 and 0.1 units, and colored randomly 
according to a Hue function. 

5. Create a graphic that represents the solution to the following algebraic problem that 
appeared in Porta, Davis and Uhl, 1994. Find the positive numbers r such that the
following system has exactly one solution in x and y.

x 1 2 y 1 2 2

x 3 2 y 4 2 r2

Once you have found the right number r, then plot the resulting circles in true scale 
on the same axes, plotting the first circle with solid lines and the two solutions with
dashed lines together in one graphic.

6. Load the package Graphics`Polyhedra` and then display each of the solids 
defined in the package, including Tetrahedron, Octahedron, Icosahedron, 
Cuboid, and the Dodecahedron. 

7. Create a graphic of the sin function over the interval (0, 2 ) that displays vertical
lines at each point calculated by the Plot function to produce its plot.
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9.2 Graphics programming
Up  until  this  point,  we  have  looked  at  the  tools  that  are  available  to  construct  relatively
simple graphics in Mathematica. This has allowed us to create images by using the graphics
building blocks – primitives, directives, and options.  In this section we consider problems
that  are  more involved  or  whose  solution  requires  geometric  insight  as  we construct  our
programs. We will begin with two examples that create specialized plotting functions, the
first for plotting roots on a given interval and the second for plotting data. The second of
these will give a good introduction to incorporating error messages and options into your
functions.  The  last  two  examples  are  more  mathematical  in  nature.  The  first  is  a  purely
geometric  problem  on  simple  closed  paths.  The  last  example  shows  how  to  construct
graphics from programming work we did in Chapter 7, the display of binary trees.

Root plotting

In  this  section  we  will  use  our  knowledge  of  built-in  graphics  functions  together  with
various  programming  techniques  from  previous  chapters  to  write  a  program that  plots  a
function together with all  of  its  roots  in a given interval. The basic  idea, using Cases  to
extract the points in a plot and Split to identify sign changes, is due to Paul Abbott from
his article in The Mathematica Journal (Abbott 1998).

In Exercise 7 of Section 9.1, we used Cases to extract coordinate pairs from the data
in sinplot. In this section, we will use a function with a few more roots in the specified
interval to work through the details of the problem.

In[1]:= sinplot Plot Sin 2 x , x, 1, 7 ;

2 4 6

1

0.5

0.5

1

This  finds  all  those Line  expressions  from sinplot  and  extracts  only  their  argu-
ments,  the point  coordinates. Note the need for  as a third argument to Cases  so that
the pattern matching goes down to the deepest nested expression in sinplot.

In[2]:= pts Cases sinplot, Line x__ x, ;
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In[3]:= Shallow pts

Out[3]//Shallow= 1., 0.909298 , 0.960965, 0.938983 ,

0.924601, 0.961495 , 0.884699, 0.980344 ,

0.862349, 0.98818 , 0.842015, 0.993596 ,

0.831653, 0.995724 , 0.820668, 0.997513 ,

0.81129, 0.99866 , 0.800961, 0.999516 , 147

From the above list  of  points,  we select  each pair  that  exhibits  a  sign change in the
y-coordinate (Last[…]).

In[4]:= Select Split pts, Sign Last #2 Sign Last #1 & ,

Length #1 2 &

Out[4]= 0.00256681, 0.0051336 , 0.17505, 0.342993 ,

1.32279, 0.475915 , 1.65979, 0.177051 ,

3.0015, 0.276542 , 3.34379, 0.39347 ,

4.65091, 0.12264 , 4.82866, 0.230455 ,

6.01028, 0.519114 , 6.34258, 0.118509

A  sign  change  occurs  between  each  of  the  first  and  second  points,  the  third  and
fourth, the fifth and sixth. FindRoot will use the bisection method if we pass it two initial
values,  so using the first two x-coordinates in each of these three pairs should give us the
roots we are after.

In[5]:= Map First, %, 2

Out[5]= 0.00256681, 0.17505 , 1.32279, 1.65979 ,

3.0015, 3.34379 , 4.65091, 4.82866 , 6.01028, 6.34258

In[6]:= Map FindRoot Sin 2 x 0, x, # 1 , # 2 &, %

Out[6]= x 4.12702 10 19 , x 1.5708 ,

x 3.14159 , x 4.71239 , x 6.28319

Now  we  can  turn  these  roots  into  graphics  objects  and  combine  them  with  the
original plot.

In[7]:= roots x . %

Out[7]= 4.12702 10 19, 1.5708, 3.14159, 4.71239, 6.28319

In[8]:= pts Map Point #, 0 &, roots

Out[8]= Point 4.12702 10 19, 0 , Point 1.5708, 0 ,

Point 3.14159, 0 , Point 4.71239, 0 , Point 6.28319, 0
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In[9]:= Show sinplot,

Epilog RGBColor 0, 0, 1 , PointSize .02 , pts ;

2 4 6

1

0.5

0.5

1

Here then is a function that combines all of these steps.

In[10]:= RootPlot fun_, x_, xmin_, xmax_ :

Module z, fplot, pts, spts, roots,

points, f Function x, Evaluate fun ,

fplot Plot f x , x, xmin, xmax ,

DisplayFunction Identity ;

pts Cases fplot, Line z__ z, ;

spts Map First,

Select Split pts, Sign Last #2 Sign Last #1 & ,

Length #1 2 & , 2 ;

roots Map FindRoot f x 0, x, # 1 , # 2 &, spts ;

points Map Point #, 0 &, x . roots ;

Show fplot, DisplayFunction $DisplayFunction,

Epilog RGBColor 0, 0, 1 , PointSize .02 , points ;

roots

In[11]:= RootPlot Sin z 2 Sin z , z, , 3

2 2 4 6 8

1

0.5

0.5

1

Out[11]= z 1.75004 , z 4.21345 10 24 , z 1.75004 ,

z 3.14159 , z 4.53315 , z 6.28319 , z 8.03322
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In[12]:= Chop %

Out[12]= z 1.75004 , z 0 , z 1.75004 , z 3.14159 ,

z 4.53315 , z 6.28319 , z 8.03322

The exercises at the end of this section contain suggestions for passing options from
RootPlot to the auxiliary fplot by means of Utilities`FilterOptions`.

Plotting data

In  this section we will create a function from graphics primitives that  overcomes a minor
inconvenience of ListPlot. ListPlot normally plots a vector or matrix of data, display-
ing each piece of data as a Point  object. When the option PlotJoined  is set to True,
the  data  points  are  connected  by Line  primitives,  but  the  original Point  primitives are
not displayed. For example, here are ten points in the plane.

In[13]:= data2D 0.043, 0.575 ,

0.151, 0.120 , 0.234, 0.001 , 0.283, 0.930 ,

0.343, 0.569 , 0.416, 0.768 , 0.465, 0.675 ,

0.539, 0.528 , 0.786, 0.856 , 0.914, 0.794 ;

Here is a plot of the points in the plane. We make the points a little larger with the
PlotStyle option.

In[14]:= ListPlot data2D, PlotStyle PointSize .02 ;

0.4 0.6 0.8
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When given the PlotJoined  option, ListPlot  simply  connects  the points  with
lines, but the points themselves are omitted.

In[15]:= ListPlot data2D, PlotJoined True ;

0.4 0.6 0.8

0.2

0.4

0.6

0.8
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A simplistic first approach would be to make a function that grabs the data and then
stuffs  them into Point  primitives. Note the use of conditional  definitions so that Show
Points  handles  both  one-  and  two-dimensional  data  sets.  In  the  case  of  a  one-dimen-
sional  data  vector,  each  point  is  “indexed”  by  its  position  in  the  vector.  In  the  case  of
two-dimensional data input, we assume that each data point maps to its coordinates in the
plane.

In[16]:= ShowPoints data_, s_: 0.02 : PointSize s ,

MapIndexed Point #2 1 , #1 &, data ; VectorQ data ;

In[17]:= ShowPoints data_, s_: 0.02 :

PointSize s , Map Point, data ; Dimensions data 2 2;

Here, Epilog is used to add the points after the data have been plotted.

In[18]:= ListPlot data2D, PlotJoined True,

Epilog ShowPoints data2D ;

0.4 0.6 0.8
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Here is a one-dimensional example of the use of ShowPoints.

In[19]:= data1D Table Random Integer, 1, 10 , 8

Out[19]= 8, 7, 5, 9, 1, 8, 9, 2

In[20]:= ListPlot data1D, PlotJoined True,

Epilog ShowPoints data1D ;

2 3 4 5 6 7 8

4

6

8

There  are  several  disadvantages  to  this  approach. Epilog  is  not  a  commonly  used
method of modifying graphics and so users might not expect that this would be the way to
display  the  points.  Secondly,  it  is  difficult  to  modify  the style  of  the Point  objects  with
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this  approach  –  you  would  have  to  make PlotStyle PointSize[…]  an  available
option  to ShowPoints  and  that  makes  things  too  complicated  for  the  user  who  would
have to think about options to options.

A better approach, more consistent with established Mathematica programming style,
would  be  to  create  a  function  that  plots  the  data  much  like ListPlot,  has  a Plot

Joined option, but does not omit the Point graphics objects from the plot. Although a
function  already  exists  that  does  much  of  this  (see  the  Standard  Add-ons  package
Graphics`MultipleListPlot`),  it  is  instructive  to  create  such  a  function  from
scratch in order to demonstrate how to use graphics primitives, options,  and error-check-
ing in writing functions.

First, let us deal with the shape of the data. If the data are given as a two-dimensional
list we will assume that each data point, consisting of a pair of numbers, gives the horizon-
tal  and  vertical  coordinates  directly.  In  this  case,  the  data  can  be  passed  directly  to  the
graphics primitives.

If  the data  are  given as  a  one-dimensional  list,  we will  put  them into  a  two-dimen-
sional form by indexing each data point.

In[21]:= data1D Table Random Integer, 1, 10 , 8

Out[21]= 3, 5, 7, 7, 10, 6, 10, 10

In[22]:= pts MapIndexed #2 1 , #1 &, data1D

Out[22]= 1, 3 , 2, 5 , 3, 7 , 4, 7 , 5, 10 , 6, 6 , 7, 10 , 8, 10

The plot  will  be  constructed  of  graphics  primitives  directly.  For  example  to  simply
plot the points, we could do the following.

In[23]:= Show Graphics PointSize .02 , Map Point, pts ,

Axes Automatic
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Out[23]= Graphics

284 An Introduction to Programming with Mathematica



Our  function  will  be  named DataPlot.  We  start  by  giving  it  the  same  options  as
those of ListPlot.

In[24]:= Options DataPlot Options ListPlot

Out[24]= AspectRatio
1

GoldenRatio
, Axes Automatic, AxesLabel None,

AxesOrigin Automatic, AxesStyle Automatic,

Background Automatic, ColorOutput Automatic,

DefaultColor Automatic, DefaultFont $DefaultFont,

DisplayFunction $DisplayFunction, Epilog ,

FormatType $FormatType, Frame False, FrameLabel None,

FrameStyle Automatic, FrameTicks Automatic,

GridLines None, ImageSize Automatic, PlotJoined False,

PlotLabel None, PlotRange Automatic, PlotRegion Automatic,

PlotStyle Automatic, Prolog , RotateLabel True,

TextStyle $TextStyle, Ticks Automatic

Next, we need a way of passing the option PlotJoined  to the DataPlot. This is
accomplished by the following construction.

pjQ = PlotJoined /. Flatten[{opts, Options[DataPlot]}]

Read from right to left, first the options that are passed to DataPlot are combined
in  a  list  with  the  options  defined  for DataPlot  above.  Then  that  list  is  flattened  to
remove  any  nested  lists  of  options.  Then  the  value  for  the  rule PlotJoined val  is
extracted  and  assigned  to  the  symbol pjQ.  So,  for  example,  if  the  user  evaluates Data
Plot[data,PlotJoined True],  then  inside  the  body  of DataPlot,  pjQ  will  be
assigned the value True.

Finally,  here are  all  the pieces  put  together in  our  first  construction  of DataPlot.
Note the use of the package Utilities`FilterOptions`. This allows us to pass the
options  for Graphics  directly  into  our  function DataPlot  inside Show.  FilterOp
tions will insure that only valid Graphics options are passed.

In[25]:= Needs "Utilities`FilterOptions "̀

In[26]:= Options DataPlot Options ListPlot ;

9 Graphics programming 285



In[27]:= DataPlot data_, opts___ : Module pjQ, pts ,

pjQ PlotJoined . Flatten opts, Options DataPlot ;

pts Which

VectorQ data , MapIndexed #2 1 , #1 &, data ,

Dimensions data 2 2, data ;

If pjQ,

Show Graphics PointSize .02 , Point pts, Line pts ,

FilterOptions Graphics, opts , Axes Automatic ,

Show Graphics PointSize .02 , Point pts ,

FilterOptions Graphics, opts , Axes Automatic

In[28]:= data2D 0.043, 0.575 , 0.151, 0.120 , 0.234, 0.001 ,

0.283, 0.930 , 0.343, 0.569 , 0.416, 0.768 ,

0.465, 0.675 , 0.539, 0.528 , 0.786, 0.856 ,

0.914, 0.794 ;

In[29]:= DataPlot data2D, PlotJoined True ;
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In[30]:= data1D Table Random Integer, 1, 10 , 8

Out[30]= 2, 7, 7, 7, 3, 3, 6, 1

In[31]:= DataPlot data1D ;

2 3 4 5 6 7 8

2

3

4

5

6

7

The  exercises  contain  several  examples  of  modifications  and  improvements  to
DataPlot.
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Simple closed paths

Our  next  example  of  a  programming  problem  that  involves  the  use  of  graphics  solves  a
very  simplified  variation  of  what  are  known  as traveling  salesman  problems.  A closed  path  is
one  that  travels  to  every  point  and  returns  to  the  original  point.  The  traveling  salesman
problem asks for the shortest closed path that connects an arbitrary set of points.

The  traveling  salesman  problem  is  one  of  great  theoretical,  as  well  as  practical,
importance. Airline routing and telephone cable wiring over large regions are examples of
problems that could benefit from a solution to the traveling salesman problem.

From  a  theoretical  point  of  view,  the  traveling  salesman  problem  is  part  of  a  large
class of problems that are known as NP-complete problems. These are problems that can be
solved  in  polynomial  time using  nondeterministic  algorithms.  A nondeterministic  algorithm
has  the ability  to  “choose”  among many options  when faced with numerous  choices,  and
then to verify that the solution is correct. The outstanding problem in computer science at
present is known as the  problem. This equation says that any problem that can be
solved  by  a  nondeterministic  algorithm  in  polynomial  time  ( )  can  be  solved  by  a
deterministic  algorithm  in  polynomial  time  ( ).  It  is  widely  believed  that  and
considerable  effort  has  gone  into  solving  this  problem.  (The  interested  reader  should
consult Lawler et al 1985 or Pemmaraju and Skiena 2003.)

Our  focus  will  be  on  a  solvable  problem  that  is  a  substantial  simplification  of  the
traveling salesman problem. We will find a simple closed path  – a closed path that does not
intersect itself – through a set of n points. 

We  will  demonstrate  a  graphical  solution  to  the  problem  by  working  with  a  small
value of n and then generalizing to arbitrary values of n. Let us first create a set of ten pairs
of points (n 10) in the unit square.

In[32]:= coords Table Random , 10 , 2

Out[32]= 0.429717, 0.94548 , 0.154498, 0.333952 ,

0.829465, 0.187126 , 0.185409, 0.208253 ,

0.253829, 0.432073 , 0.36397, 0.603652 ,

0.0593643, 0.774766 , 0.804412, 0.766921 ,

0.898828, 0.920331 , 0.858976, 0.829739
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Here we have created a table of ten pairs of numbers (the coordinates of our points in
the plane), and then created graphics primitives by mapping Point over each pair.

In[33]:= points Map Point, coords

Out[33]= Point 0.429717, 0.94548 , Point 0.154498, 0.333952 ,

Point 0.829465, 0.187126 , Point 0.185409, 0.208253 ,

Point 0.253829, 0.432073 , Point 0.36397, 0.603652 ,

Point 0.0593643, 0.774766 , Point 0.804412, 0.766921 ,

Point 0.898828, 0.920331 , Point 0.858976, 0.829739

We can show the points alone.

In[34]:= Show Graphics PointSize .02 , points

Out[34]= Graphics

Or we can show the points connected by lines.

In[35]:= lines Line coords

Out[35]= Line 0.429717, 0.94548 , 0.154498, 0.333952 ,

0.829465, 0.187126 , 0.185409, 0.208253 ,

0.253829, 0.432073 , 0.36397, 0.603652 ,

0.0593643, 0.774766 , 0.804412, 0.766921 ,

0.898828, 0.920331 , 0.858976, 0.829739

In[36]:= Show Graphics PointSize .02 , points, lines

Out[36]= Graphics
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Let us create a utility function for plotting a set of points in the plane together with
lines connecting them in order.

In[37]:= PointPlot coords_List :

Show Graphics

Line coords ,

PointSize .02 , RGBColor 1, 0, 0 , Map Point, coords

In[38]:= PointPlot coords ;

At this stage, it is apparent that there are two problems. First, the path is not closed;
that is, the last point visited is not the point we started from. The Line primitive connects
the first point to the second, the second to the third, etc., in the sequence that the points
are presented to it. So we need to connect the last point to the first point to close the path.
This can be accomplished by appending the first point to the end of the list of coordinates.

In[39]:= path coords . a_, b__ a, b, a ;

In[40]:= PointPlot path ;

The second problem – the fact that our path is not simple – is geometric in nature.
To find an algorithm that will insure that our path does not cross itself for any set of points
in the plane, we will first pick a point from our set at random and call this the base point.

In[41]:= base coords Random Integer, 1, Length coords

Out[41]= 0.253829, 0.432073
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The  path  problem  can  be  solved  by  first  computing  the  counterclockwise  (polar)
angle between a horizontal line and each of the remaining points,  using the base point as
the vertex of the angle. Then, sorting the points according to this angle and connecting the
points in this order will produce the desired result.

Base

p1

p2

p3

First  we  compute  the  angle  between  two  points a  and b.  (You  should  verify  the
trigonometric  analysis  necessary  to  find  this  angle  in  the  various  cases.  Note  that  we are
computing the polar angle between two points and, hence, we need the ArcTan function.)

In[42]:= angle a_List, b_List : Apply ArcTan, b a

We can use this  function to compute the angle between our base point and each of
the points  in the list coords.  We need to make sure that  we do not try to compute the
angle  between  the  base  point  and  itself  as  this  will  evaluate  to ArcTan[0,0],  which  is
undefined.  This  situation  can  be  avoided  by  removing  the  base  point  from  our  list  of
coordinates when computing the angles.

In[43]:= remain Complement coords, base ;

In[44]:= Map angle base, # &, remain

Out[44]= 2.08695, 2.36232, 1.86747, 1.00012,

1.24074, 0.546405, 0.402315, 0.581378, 0.64796

Instead of computing the angles explicitly, we will just use the angle function as an
ordering  function  on  our  list  of  coordinates. Sort[list,rule]  will  sort list  according  to
rule, which is a two-argument predicate. We wish to sort coords according to our order-
ing  function  on  the  angles  between each point  and  the base  point.  The  following code
accomplishes this.

In[45]:= s Sort remain, angle base, #1 angle base, #2 &

Out[45]= 0.154498, 0.333952 ,

0.185409, 0.208253 , 0.829465, 0.187126 ,

0.804412, 0.766921 , 0.858976, 0.829739 ,

0.898828, 0.920331 , 0.36397, 0.603652 ,

0.429717, 0.94548 , 0.0593643, 0.774766
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This is our list of coordinates sorted according to the polar angle between each point
and the base point. In order to start and end with the base point, we Join  three separate
lists and then display the graphic.

In[46]:= path Join base , s, base

Out[46]= 0.253829, 0.432073 , 0.154498, 0.333952 ,

0.185409, 0.208253 , 0.829465, 0.187126 ,

0.804412, 0.766921 , 0.858976, 0.829739 ,

0.898828, 0.920331 , 0.36397, 0.603652 , 0.429717, 0.94548 ,

0.0593643, 0.774766 , 0.253829, 0.432073

In[47]:= PointPlot path ;

If  we  collect  the  above  commands  into  a  program simpleClosedPath,  then  we
can find such paths for arbitrary sets of coordinates.

In[48]:= simpleClosedPath lis_ : Module base, angle, sorted ,

base lis Random Integer, 1, Length lis ;

angle a_, b_ : Apply ArcTan, b a ;

sorted Sort Complement lis, base ,

angle base, #1 angle base, #2 & ;

Join base , sorted, base

Now we can create large sets of points and find the corresponding simple closed path
readily.

In[49]:= data Table Random , 25 , 2 ;

In[50]:= PointPlot simpleClosedPath data ;
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In[51]:= data Table Random , 100 , 2 ;

In[52]:= PointPlot simpleClosedPath data ;

Although  the  algorithm  we  have  developed  in  this  section  for  computing  simple
closed paths seems to work fairly well, there are certain conditions under which it will still
fail. The exercises at the end of this section investigate some of those conditions and walk
you through how best to work around them.

Drawing trees

The trees drawn in Chapter 7 were drawn using a Mathematica program. We will develop a
simpler  version  of  the  program here;  the full  version is  developed in  the  exercises. Here,
trees  are  drawn  without  their  labels  –  with  just  a  disk  at  each  node  –  and,  more  impor-
tantly,  the  placement  of  nodes  is  not  as  good  (aesthetically  speaking).  Still,  it  is  a  good
example of using recursion to create a line drawing.

When drawing trees, the central question is: How far should the children of a given
node be separated? For example, in Figure 9.1, the separation of the children of node 2 is
much  greater  than  that  of  the  children  of  node  1.  That  is  because  the total  width  of  the
trees below node 2 is so great that they require such a separation; or, rather, the total width
of  the  right  side  of  the  left  subtree  and  the  left  side  of  the  right  subtree  requires  that
separation.

1 2

Figure 9.1: A tree with different separations
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To illustrate this point, consider the trees in Figures 9.2(a) and 9.2(b). The subtrees
of  the  root  are  the  same,  but  in  a  different  order;  the  result  is  that  in  Figure  9.2(a),  the
children of the root must be separated much more.

a b

Figure 9.2: Trees whose children have different separations

Thus,  to  properly  place subtrees,  we need to  know, for  each one,  its  total  width to
the  left  and  to  the  right  of  its  root.  Then,  the  two  trees  will  be  separated  by  an  amount
equal  to  the  right  width  of  the  left  subtree  plus  the  left  width  of  the  right  subtree,  plus
some arbitrary  additional  separation.  This  is  illustrated  in Figure 9.3. lw1  represents the
left  width  of  the  left  subtree, rw1  the  right  width  of  the  left  subtree,  and lw2  and rw2

represent the corresponding widths for the right subtree. minsep is the additional separa-
tion  always  added  between  subtrees,  and sep  is  the  separation  eventually  computed  for
these two subtrees.

sep

lw1 rw1 minsep lw2 rw2

Figure 9.3: Calculation of the separation between children

The function placeTree  is  given a binary tree (represented as in Section 7.5) and
returns a list of three things:

1. A separation tree: a tree having the same shape as the argument, labelled at each
interior node with a number, the separation of that node’s children.

2. The left width of the tree: the distance it extends to the left from its root.

3. The right width of the tree.
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Now, computing placeTree[{lab},lc,rc}] is accomplished in these steps:

• Recursively  compute placeTree[lc]  and placeTree[rc];  suppose  the
results are {st1,lw1,rw1} and {st2,lw2,rw2}, respectively.

• The separation of lc  and rc  is equal  to the right width of lc  (rw1)  plus the left
width of rc  (lw2), plus the additional  separation. Call the total separation thus
computed sep.

• The left width of the total tree is sep/2 +lw1, and its right width is sep/2
+ rw2.

This leads to the following code.

In[53]:= placeTree _ : , 0, 0

placeTree _, lc_, rc_ : Module left placeTree lc ,

right placeTree rc , minsep 1.0, sep ,

sep left 3 right 2 minsep;

sep, left 1 , right 1 , left 2
sep

2
, right 3

sep

2

Given  a  list {st,lw,rw}  produced  by placeTree,  we  no  longer  need lw  or rw  to
draw the tree: the separation tree st suffices. Transforming st into a drawing is straightfor-
ward (the Disk primitive draws a filled circle with given center and radius).

In[55]:= drawSepTree , lev_, xaxis_ :

Disk xaxis, lev , 0.1

drawSepTree sep_, lc_, rc_ , lev_, xaxis_ :

Join Disk xaxis, lev , 0.1 ,

Line xaxis, lev , xaxis sep, lev 1 ,

Line xaxis, lev , xaxis sep, lev 1 ,

drawSepTree lc, lev 1, xaxis sep ,

drawSepTree rc, lev 1, xaxis sep

Thus, to draw a tree tree, enter:

placeTree[tree];
drawSepTree[%[[1]], 0, 0];
Show[Graphics[%]]

Alternately, we can create a function to automate this process.

In[57]:= showTree tree_, opts___ :

Show Graphics drawSepTree placeTree tree 1 , 0, 0 , opts
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Here is a simple example.

In[58]:= tree1 a, b , a, c, e, g , f , d , b ;

In[59]:= showTree tree1, AspectRatio Automatic ;

Exercises

1. Create a function ComplexListPlot that plots a list of complex numbers using 
the ListPlot function. Set initial options so that the PlotStyle is red, the
PointSize is a little larger than the default, and the horizontal and vertical axes are
labeled “Re” and “Im,” respectively. Set it up so that options to ComplexListPlot
are passed to ListPlot. 

2. Create a function RootPlot that plots the complex solutions to a polynomial in the
plane. Use your implementation of ComplexListPlot that you developed in the
previous exercise.

3. Modify the function RootPlot so that you can pass the options from Plot to the
auxiliary function fplot. You will need to use the Utilities`FilterOp
tions` package to pass these options.

4. Add some error checking to DataPlot so that a message is returned if the data that 
are passed are not a one- or two-dimensional list. Your message should be of the
following form:

In[1]:= DataPlot::baddim "The data used by DataPlot must be

in the form of a one or two dimensional list.";

Then modify the Which statement inside DataPlot so that it continues to do the
right thing if the data that are passed are a one- or two-dimensional list, but, if not,
the baddim message above is returned. For example, something like the following
will work.
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In[2]:= pts Which

VectorQ data , MapIndexed #2 1 , #1 &, data ,

Dimensions data 2 2, data,

True, Message DataPlot::baddim ; $Failed ;

5. Although the program simpleClosedPath works well, there are conditions under
which it will occasionally fail. Experiment by repeatedly computing simpleClosed
Path for a set of ten points until you see the failure. Determine the conditions that
must be imposed on the selection of the base point for the program to work 
consistently.

6. Modify simpleClosedPath so that the point with the smallest x-coordinate of the
list of data is chosen as the base point.

7. Modify simpleClosedPath so that the point that has the largest y-coordinate is 
chosen as the base point.

8. Write a function triangleArea that computes the area of any triangle in the plane
given a list of the three coordinate points that describe that triangle.

9. Write a function pointInPolygonQ that tests whether a given point is inside a 
specified polygon. For example, the origin is inside the polygon formed by joining
the four unit vectors:

pointInPolygonQ 1, 0 , 0, 1 , 1, 0 , 0, 1 , 0, 0

True

10. A polygon is called convex if a line connecting any two points inside the polygon lies
completely inside the polygon. Most of the simple closed polygons we computed in
this section are nonconvex. For a given set of n points, find those points which form a 
convex polygon that is a boundary for the entire point set. (The smallest such bound-
ary is called the convex hull of the set of points.) That is, given a set of points in the
plane
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write a function convex that outputs a graph such as the following.

11. Another way of finding a simple closed path is to start with any closed path and 
progressively make it simpler by finding intersections and changing the path to avoid 
them. Prove that this process ends, and that it ends with a closed path. Write a 
program to implement this procedure and then compare the paths given by your 
function with those of simpleClosedPath given in the text.

12. The tree-drawing code we have presented is not the same code we used in drawing
the trees in Chapter 7. The two trees drawn in Figure 9.4 show the difference:
drawing (a) is the one produced by placeTree, and (b) is the one produced by the
algorithm used in Chapter 7. That algorithm is due to Reingold and Tilford (1981),
and basically what it does is just this: instead of basing the separation of subtrees on 
their total width, it does a level-by-level comparison, and separates them only as far
as needed at any particular level.

a b

Figure 9.4: Results from different tree-drawing algorithms

Program this tree-drawing algorithm. There is one tricky part to it, which we will
leave you to discover for yourself, except to say this: your program should draw the
tree shown in Figure 9.5 roughly as you see it here.
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Figure 9.5: A tricky tree to draw

13. Another difference between the tree-drawing code we have shown here and the code 
that was used in Chapter 7 is that the algorithm there was able to draw trees with
labels at the nodes. Extend your algorithm from Exercise 13 to add labels; your trees
should have strings as their labels. You need to take the width of the labels into 
account when computing the separation tree (this is a change to placeTree), and
make sure the lines do not intersect the labels (this is a change to drawSepTree).
Unfortunately, there is no way to compute the exact width of a text string as it will
appear in a Mathematica graphic; just approximate using the number of characters in
the label.

9.3 Sound

The sound of mathematics

We  hear  sound  when  the  air  around  our  ears  compresses  and  expands  the  air  near  the
eardrum. Depending upon how the eardrum vibrates, different signals are sent to the brain
via the auditory nerves in the inner ear. These signals are then interpreted in the brain as
various  sounds.  Musical  tones  compress  and expand the air periodically  according to sine
waves.  The human ear is  able to  hear these waves when the frequency is  between 20 and
20,000 oscillations per second, or hertz.
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Recall that one oscillation of sin x  occurs between 0 and 2 .

In[1]:= Plot Sin x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1

The function sin 4 x  oscillates four times in the same interval.

In[2]:= Plot Sin 4 x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1

Mathematica  is able to take a function such as sin and sample its amplitudes roughly
8000  times  per  second,  and  then  send  corresponding  voltages  to  the  speaker  on  your
computer,  if it has one, to produce the sound of the sine wave. The function that accom-
plishes this is Play, which has the same syntax as the Plot command.

In[3]:= ?Play

Play f, t, tmin, tmax plays a sound

whose amplitude is given by f as a function of

time t in seconds between tmin and tmax. More…

The function Sin[256t] oscillates 256 times each 2  units, so, if we want to “play”
a function that oscillates 256 times per second, we want Sin[256 t (2 )]. This plays
the function for two seconds.
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In[4]:= Play Sin 256 t 2 , t, 0, 2

Out[4]= Sound

If  your  computer  has  sound  capabilities,  you  should  hear  a  C,  one  octave  below
middle C, played for two seconds. The graphic that Mathematica  outputs  with the Sound
object is a somewhat primitive attempt to display the waveform. Since it does not contain
very useful information, we will occasionally omit it from the display.

The Play  function  samples functions  at  a rate of  about  8,000 times per second,  or
hertz. This is good to keep in mind as anomalies can occur when playing a function whose
periodicity is very close to the sample rate. Listen to the quite surprising result that follows
(users  will  have  to  check  the SampleRate  on  their  computers  and  adjust  the  following
code accordingly).

In[5]:= Options Play, SampleRate

Out[5]= SampleRate 8000

In[6]:= Play Sin 8000 2 t , t, 0, 1

Out[6]= Sound

Although  we would  expect  a  tone  at  8,000 hertz,  we  get  something  quite  different.
You  are  encouraged  to  try  other  frequencies  that  are  close  to  the  sample  rate  on  your
computer. Play  is  sampling  the  function sin 8000 2 t  8,000  times.  Since  the  function
oscillates  8,000  times  on  this  interval,  the  samples  appear  to  be  about  the  same  and  so
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Play misses the periodic nature of this function. If Play did adaptive sampling, much like
Plot does, then it would avoid this particular problem.

Sounds  that  are generally  thought  to  be  pleasant  to  the human ear  are modeled  by
periodic functions. Noise consists of random amplitudes. We can use these notions to find
periodicity in sequences of numbers.

For  example,  recall  that  a  rational  number can be  expressed as  a  finite or  repeating
decimal,  whereas an irrational number cannot be so represented. If we were to “play” the
digits  of  a  rational  number,  its  periodic  nature  should  be  apparent  as  a  discernible  tone.
Playing the digits of an irrational number should result in noise.

The following displays the first 20 digits of the decimal expansion of 1
19 .

In[7]:= RealDigits N
1

19
, 20

Out[7]= 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 3 , 1

The 1 at the end of the above list indicates the number of places to the left of the
decimal point where the first non-0 digit occurs. Since the first digit of this real number is
one place to the right of the decimal point, this is indicated with a negative number.

The  periodic  nature  of  this  number  is  not  apparent  from such  a  short  list.  We can
lengthen the list and pull off only the decimal digits as follows. We suppress the display of
the output using the semicolon.

In[8]:= digits = First[RealDigits[N[1/19, 1000]]];

Now we can  play  this  list  of  digits. ListPlay  will  play  a  sound  where the ampli-
tudes  are  given by  the  numbers  in  our  list. (Mathematica  scales  the  amplitudes  to  fit  in  a
range that ListPlay can work with, and that is audible.)

In[9]:= ListPlay digits

Out[9]= Sound

Clearly (from listening to  the resulting tone), this  sequence is  periodic,  whereas the
following sequence of digits is not.

In[10]:= irratdigits First RealDigits N , 1000 ;

In[11]:= ListPlay irratdigits

Out[11]= Sound

As  the  reader  is  probably  well  aware at  this  point, Play  and ListPlay  are  audio
analogues of Plot and ListPlot. This analogy will allow us to do “audio programming”
in much the same way as we approached graphics programming earlier in this chapter. The
next section contains a discussion of some ideas in sound synthesis.
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White noise, white music

Imagine  playing  a  recording  of  a  certain  sound  at  different  speeds.  Normally  you  would
expect the character of the resulting sound to be quite different than the original. Speeding
up  a  recording  of  your  voice  makes  it  sound  cartoon-like,  and  if  sped  up  fast  enough,
unintelligible.  Slowing  down  a  recording  of  the  first  few  bars  of  Gershwin’s Rhapsody  in
Blue would make the clarinet solo sound like a rumble.

There are some sounds though that sound roughly the same when played at different
speeds.  Benôit  Mandelbrot  of  the  IBM  Thomas  J.  Watson  Research  Center  described
these sounds  as “scaling noises.” White noise is  probably the most  common example of a
scaling  noise.  If  you  tuned  your  radio  in  between  stations,  recorded  the  noise,  and  then
played the recording at different speeds, you would hear roughly the same sound, although
you would have to adjust the volume to get this effect.

Mandelbrot  additionally  characterized  white  noise  as  having  zero auto-correlation.
This means that the fluctuations in such a sound at any moment are completely unrelated
to any previous fluctuations.

In  his  book, Fractal  Music,  Hypercards,  and  More  …  Martin  Gardner  describes  an
algorithm for generating “white tunes,” those having no correlation between notes (Gard-
ner  1992).  In  this  section  we will  implement his  algorithms  in Mathematica  and compose
such  tunes.  We will then see how to generate tunes that  have varying degrees of correla-
tion among the notes.

A simple “melody” with no correlation can be generated by randomly selecting notes
from a scale. First we generate the frequencies of the 12 semitones from an equal-tempered
C major scale. This is just a chromatic scale beginning with middle C.

In[12]:= Cmajor Table N 261.62558 2j 12 , j, 0, 11

Out[12]= 261.626, 277.183, 293.665, 311.127, 329.628, 349.228,

369.994, 391.995, 415.305, 440., 466.164, 493.883

This plays the entire scale.

In[13]:= Timing Do Play Sin Cmajor j 2 t , t, 0, 1 ,

j, 1, Length Cmajor

Out[13]= 1.622 Second, Null

The  reader  who  executes  the  above  code  will  certainly  notice  that  it  is  a  bit  slow.
Since we will be generating many sounds below, we will need to speed up the execution of
multiple sounds. The reason for the slowness has to do with how Play handles the func-
tions  on  which it  operates.  Normally, Play  will  compile  the  function  that  appears  as  its
argument,  but  it  does  not  do  this  if  what  appears  is  only  the  name of  a  function  defined
elsewhere. Cmajor  was  defined elsewhere, so  it  is  not  compiled.  The following function
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PlayTones will speed the evaluation immensely. Note the time for execution of the same
scale  as  compared  with  the Do  loop  above.  (We  have  made  the PlayTones  function
Listable  so  that  it  will  automatically  map  across  lists  of  frequencies.  Otherwise,  we
would have to manually Map it across such lists.)

In[14]:= SetAttributes PlayTones, Listable

In[15]:= PlayTones freq_, time_: 0.5 :

Play Sin 2 t freq , t, 0, time

In[16]:= Timing PlayTones Cmajor, 1 ;

Out[16]= 0.21 Second, Null

Now we can  quickly  generate the tune.  First,  we randomly  generate 20 frequencies
from the list Cmajor (we have suppressed the display of the graphics images).

In[17]:= randomnotes =

Table[Cmajor[[Random[Integer, {1,12}]]], {20}]

Out[17]= 466.164, 311.127, 391.995, 440., 277.183, 293.665, 293.665,

440., 391.995, 391.995, 329.628, 440., 311.127, 311.127,

493.883, 369.994, 369.994, 311.127, 261.626, 349.228

This plays the list of frequencies for half-second intervals each.

In[18]:= PlayTones randomnotes, 0.5

Out[18]= Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound

A  listener  would  be  hard-pressed  to  find  a  pattern  or  any  autocorrelation  in  this
“tune”  and  the  music  is  quite  uninteresting  as  a  result.  Melodies  generated  using  this
scaling are referred to as 1 f 0, where the 0 loosely refers to the level of correlation.

We leave as an exercise the writing of more sophisticated white melodies – one where
the  duration  of  each  note  varies  randomly,  and  another  where  the  likelihood  of  a  note
being chosen obeys a certain probability distribution.

Brownian music

We now move in the other direction and generate melodies that are overly correlated. We
will  essentially  perform a  “random  walk”  through  the C major  scale.  Music  generated in
such  a  way  is  called Brownian  because  it  behaves  much  like  the  movement  of  particles
suspended in liquid – Brownian motion. 
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Our melody will be constructed as follows: each note will be generated by randomly
moving up or down a few semitones from the previous note. When a sequence gets to one
end of the scale, we will simplify matters by having it wrap around to the other end.

We first create a function step  that will randomly choose an integer from 2 to 2.
These steps will determine how many semitones to move up or down.

In[19]:= step : Random Integer, 2, 2

Instead  of  alternating  between  choosing  a  step  size  and  moving  up  and  down  the
scale, we will first create a list of the steps in entirety. We will choose 20 steps correspond-
ing to 20 notes.

In[20]:= SeedRandom 0 ;

s20 Table step, 20

Out[21]= 1, 1, 1, 2, 0, 0, 2, 2, 1, 0, 2, 1, 1, 0, 1, 2, 2, 2, 1, 1

This list will correspond to first moving one step up, then two steps down, then two
steps  up,  etc.  So,  starting  (arbitrarily)  with  the  sixth  element  of  the  list Cmajor,  the
following gives the positions of the notes to play.

In[22]:= FoldList Plus, 6, s20

Out[22]= 6, 7, 6, 7, 5, 5, 5, 3, 5, 4, 4, 6, 7, 6, 6, 7, 5, 3, 5, 6, 5

There  is  one  problem  with  this  approach.  If  we  get  to  the  end  of  the  list  (12th
position), and have to add two steps say, we would be stuck.

In[23]:= Cmajor 14

Part::partw :

Part 14 of 261.626, 277.183, 293.665, 6 , 440., 2

does not exist. More…

Out[23]= 261.626, 277.183, 293.665, 311.127, 329.628, 349.228,

369.994, 391.995, 415.305, 440., 466.164, 493.883 14

The way around this is to use modular arithmetic. This will have the effect of wrap-
ping  around  to  the opposite  end of  the list  whenever you reach one boundary.  Since the
list Cmajor is 12 elements long, we will use mod 11 and add 1. This will give us positions
1 through 12, as opposed to 0 through 11 if we used mod 12 alone. (Recall that Part[list,
0] gives the Head of list.)

In[24]:= pos Mod FoldList Plus, 4, s20 , 11 1

Out[24]= 5, 6, 5, 6, 4, 4, 4, 2, 4, 3, 3, 5, 6, 5, 5, 6, 4, 2, 4, 5, 4
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Finally,  we create a list  of those frequencies from Cmajor  at  the positions given by
the above list pos.

In[25]:= brown Cmajor pos

Out[25]= 329.628, 349.228, 329.628, 349.228, 311.127, 311.127, 311.127,

277.183, 311.127, 293.665, 293.665, 329.628, 349.228, 329.628,

329.628, 349.228, 311.127, 277.183, 311.127, 329.628, 311.127

Here, then, is a function for generating the tones from a Brownian walk across the C
major scale. This function is set up so that the default range of steps is 2 to 2 (r_:2).

In[26]:= BrownMusic n_Integer, r_ : 2 : Module cmajor, steps ,

cmajor Table N 261.62558 2j 12 , j, 0, 11 ;

steps Table Random Integer, r, r , n ;

cmajor Mod FoldList Plus, 4, steps , 11 1

This plays the tones with half-second intervals.

In[27]:= PlayTones BrownMusic 20 , 0.5

Out[27]= Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound , Sound

This melody has a different character from the 1 f 0 melody produced above. In fact,
it  is so over-correlated that it is often referred to as 1 f 2  music as a result of a computed
spectral  density  of 1 f 2.  Although  different  in  character  from 1 f 0  music,  it  is  just  as
monotonous.  The melody meanders up  and down the scale aimlessly without any central
theme.  The  exercises  contain  a  discussion  of 1 f  music  (or  noise);  that  is,  music  that  is
moderately  correlated. 1 f  noise  is  quite  widespread  in  nature  and  is  intimately  tied  to
areas of science that study fractal behavior. John Casti, in his book Reality Rules: I, Picturing
the World in Mathematics gives the following characterization of 1 f  noise: “If an electrical
engineer  were  to  compute  the  power  spectrum  (the  squared  magnitude  of  the  Fourier
transform) f x  of  the  relative  frequency  intervals x  between  successive  notes  in  Bach’s
Brandenburg Concerto, it would be found that over a large range f x c x, where c is some
constant. Thus Bach’s music is characterized by the kind of ‘noise’ that engineers call 1 f
noise.” (The interested reader should consult Casti 1992 or Mandelbrot 1982.)
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Exercises

1. Evaluate Play[Sin[1000/x],{x,-2,2}]. Explain the dynamics of the sound
generated from this function.

2. Experiment with the Play function by creating arithmetic combinations of sin
functions. For example, you might try the following.

In[1]:= Play
Sin 440 2 t

Sin 660 2 t
, t, 0, 1

Out[1]= Sound

3. Create a tone that doubles in frequency each second.

4. A square wave consists of the addition of sine waves, each an odd multiple of a funda-
mental frequency; that is, it consists of the sum of sine waves having frequencies f0, 
3 f0, 5 f0, 7 f0, etc. Create a square wave with a fundamental frequency of 440 hertz.
The more overtones you include, the “squarer” the wave.

5. Create a square wave consisting of the sum of sine waves with frequencies f0, 3 f0, 
5 f0, 7 f0, etc., and amplitudes 1, 1

3 , 1
5 , 1

7 , etc. This is actually a truer square wave
than that produced in the previous exercise.

6. Create a square wave consisting of overtones that are randomly out of phase. How
does this wave differ from the previous two?

7. A sawtooth wave consists of the sum of both odd- and even-numbered overtones ( f0, 
2 f0, 3 f0, 4 f0, etc. with amplitudes in the ratios 1, 1

2 , 1
3 , 1

4 , etc.) Create a sawtooth
wave and compare its tonal qualities with the square wave.

8. A wide variety of sounds can be generated using FM (frequency modulation) synthesis. 
The basic idea of FM synthesis is to use functions of the form

a sin 2 Fc, t mod sin 2 Fm t

where a is the peak amplitude, Fc is the carrier frequency in hertz, mod is the modula-
tion index, and Fm is the modulating frequency in hertz.
Determine what effect varying the parameters has on the resulting tones by creating
a series of FM synthesized tones. First, create a function FM[Amp,Fc,mod,
Fm,time] that implements the above formula and generates a tone using the Play
function. Then you should try several examples to see what effect varying the parame-
ters has on the resulting tones. For example, you can generate a tone with strong 
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vibrato at a carrier frequency at middle A for one second by evaluating
FM[1,440,45,5,1]. 

9. Write a function pentatonic that generates 1 f 2 music choosing notes from a 
five-tone scale. A pentatonic scale can be played on a piano by beginning with C , 
and then playing only the black keys: C , E , F , A , C . The pentatonic scale is 
common to Chinese, Celtic, and Native American music.

10. Modify the routine for generating 1 f 0 music so that frequencies are chosen accord-
ing to a specified probability distribution. For example, you might use the following
distribution that indicates a note and its probability of being chosen: C – 5%, C  – 
5%, D – 5%, E  – 10%, E – 10%, F – 10%, F  – 10%, G – 10%, A  – 10%, A – 10%,
B  – 5%, B – 5%, C – 5%. (Hint: Try the Which function.)

11. Modify the routine for generating 1 f 0 music so that the durations of the notes obey
1 f 0 scaling. Write a function tonesAndTimes that creates a two-dimensional list
of frequencies and time durations. Consider using the function MapThread.

12. If you read musical notation, take a musical composition such as one of Bach’s 
Brandenburg Concertos and write down a list of the frequency intervals x between
successive notes. Then find a function that interpolates the power spectrum of these
frequency intervals and determine if this function is of the form f x c x for some 
constant c. (Hint: To get the power spectrum, you will need to square the magnitude 
of the Fourier transform: take Abs[Fourier[…]]^2 of your data.) Compute the
power spectra of different types of music using this procedure.

13. Modify the routine for generating 1 f 2 music so that the durations of the notes obey
1 f 2 scaling.

14. The following series of exercises are designed to create 1 f  music – music that is 
mildly correlated.
a. Write a function Cmajor16 that extends Cmajor to 16 consecutive semitones.

b. Write three functions red, green, and blue that simulate rolling 3 six-sided
dice. The first note from cmajor16 is picked by rolling the dice and choosing 
the note in the position given by the sum (mod 16) + 1.

c. To generate the next eight notes, think of the numbers 0 through 7 in binary. Let 
red correspond to the 1s digit, green to the 2s digit, and blue to the 4s digit.
Starting from 0, and going to 1, only the 1s digit changes. So only the red die is 
retossed, the blue and green are left alone. This new sum (mod 16) of the red,
green and blue is the next position from the list Cmajor16. The third roll is 
obtained by noticing that in going from 1 to 2, both the 1s digit and the 2s digit 
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change. Hence, reroll the red and green die, leaving the blue alone. The new
sum of the three dice is the position of the next note. Continue in this fashion,
rolling only those dice that correspond to digit changes when moving through 
the numbers 0–7, base 2. Finally, generate the tones corresponding to these
frequencies.

d. Extend the above algorithm to include four dice to produce 16 notes from a
21-tone scale. If you have a sufficiently powerful computer with lots of memory
and disk space, try ten dice to produce 1,024 notes from a 55-tone scale.
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10 Front end programming

In this chapter we extend the programming concepts we have covered thus far to the
objects  that  comprise  the  user  interface,  or  front  end.  Because  the  objects  that  the
Mathematica  user  interacts  with  are  themselves Mathematica  expressions,  all  of  the
tools that you use to do computations can also be used to create, manipulate, and alter
cells and notebooks themselves. We will first look at the underlying structure of these
objects and then discuss ways of manipulating them directly from within Mathematica.

10.1 Introduction
Up until  this  point,  we have been primarily concerned with learning about  programming
constructs  and styles so that we can write programs to manipulate data or solve problems
from  science,  engineering, or  mathematics.  We have  taken  for  granted  that  the  space  in
which we do our experimenting, prototyping,  and documenting has been the Mathematica
notebook, an interface that has some similarities to a word processor document.

It  is  not  uncommon  now  to  add  interactive  elements  to  your  documents  to  make
them more useful for yourself or the intended reader of your documents. With programs,
documentation,  and  papers  all  being  created  and  used  in  electronic  format, Mathematica
provides a seamless and well-integrated interface to these elements.

Another  tool  that  is  useful,  especially  for  educators,  are  buttons  that  allow  you  to
hide your program code behind a familiar and easy-to-use interface element – the button.
The  user  clicks  on  a  button  and  an  action  happens  that  is  determined by  the  underlying
code.  For example, you might want to have calculus students quickly plot Taylor polyno-
mial  approximations  to  a  function  together  with  the  original  function  but  do  not  want
them  to  spend  time  learning  the  syntax  of  such  commands  in Mathematica.  You  could
easily program an interface that would only require them to fill in a few parameters before
clicking a button to produce the desired plot.

In this chapter we will discuss the structure of cell and notebook expressions, look at
a  few  basic  functions  for  manipulating  these  expressions,  and  then  create  several  simple
examples  that  give  a  flavor  of  the  kind  of  things  that  can  be  done  with  front  end
programming.



Before we begin we should mention that  this  chapter is  not intended as  a complete
discussion  of  front  end  programming.  An  entire  book  could  certainly  be  written  on  this
topic  alone.  This  book  is  intended  to  give  you  an  introduction  to  the  many  aspects  of
programming  with Mathematica  and  front  end  programming  is  certainly  an  appropriate
topic for that introduction. But there are several areas that cannot be included here, either
because  of  space  limitations  or  because  they  do  not  fit  under  the  introductory  nature  of
this book. These topics include front end options and front end tokens. An understanding
of each of these topics is quite important for more advanced front end programming. The
interested reader can delve further into this subject by looking in the Front End category
of  the  Help  Browser  or  by  searching  the Mathematica  Information  Center  online  at
library.wolfram.com/infocenter.

10.2 The structure of cells and notebooks
We have spent a lot of time in this book focusing on the structure of Mathematica  expres-
sions. In Chapter 2 we indicated that Mathematica expressions are of the form h[e1,e2,…]

where h is the head of the expression and the ei  are the elements which may themselves be
Mathematica  expressions.  We even went so far  as  to say  that  everything in Mathematica  is
an expression. In this  section we will  learn that  this  statement  extends to  elements of  the
front end, specifically to notebooks and cells.

Notebook expressions

Notebooks are ASCII files, meaning that you can open them in a text editor and view their
contents directly. If you were to do that, you would see that the underlying expression is a
Mathematica function called a Notebook. The notebook would look like this:

Notebook[{

   Cell[string,style,options],
   Cell[string,style,options],
   …
   },

options]

In other words, the Notebook  is a function whose first argument is a list of one or
more Cell  objects,  followed  by  some  options.  The Mathematica  kernel  does  not  do
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anything  with  this  practically.  It  is  the Mathematica  front  end  that  knows  how to  render
this expression as the familiar notebook.

For example, here is a very simple notebook that you could write in a text editor (of
course there is no reason to do that). 

Notebook[{
   Cell["Demo notebook", "Section"],
   Cell["This is a text cell.","Text"],
   Cell["1+2+3", "Input"]
   }]

The Mathematica front end renders this expression in the familiar manner, a window.

Let  us  create  the  notebook  from scratch  using  a  kernel  command, NotebookPut.
NotebookPut[expr]  will  create  a  notebook  corresponding  to expr  in  the front  end and
make it the currently selected notebook.

In[1]:= nb NotebookPut

Notebook

Cell "Demo notebook", "Section" ,

Cell "This is a text cell", "Text" ,

Cell "1 2 3", "Input"

Out[1]= NotebookObject Untitled 1
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Here is the notebook as viewed in the front end.

There is actually quite a lot going on behind the scenes here in terms of the interac-
tion between the kernel and the front end. As stated in Chapter 1, the kernel and the front
end  are  two  separate  programs  that  communicate  with  each  other  through  a  protocol
called MathLink. For purposes of efficiency, MathLink itself does not store the notebook in
memory  but  instead  refers  to  it  by  means  of  a handle.  These  handles  are  called notebook
objects  and are given as NotebookObject[fe,id],  where fe is  an object that refers to the
entire  front  end and id  is  an  integer  that  is  a  unique  identifier  for  that  notebook.  In  the
example  above,  looking  at  the InputForm  displays  this  information  stored  with  the
notebook object.

In[2]:= InputForm nb

Out[2]//InputForm=

NotebookObject[FrontEndObject[LinkObject["3v8_shm",
  1, 1]], 28]

Since we have assigned a  symbol, nb,  to  this  object,  we can  refer to  it  through this
symbol. NotebookGet  gets  the  expression  corresponding  to  this  notebook  and  reads  it
into the kernel. You should think of it as analogous to Get for packages.

In[3]:= NotebookGet nb

Out[3]= Notebook

Cell CellGroupData Cell Demo notebook, Section , Cell

This is a text cell, Text , Cell 1 2 3, Input , Open ,

FrontEndVersion 5.0 for Microsoft Windows,

ScreenRectangle 0., 1024. , 0., 681.

Notice that the front end has added two options to this notebook: FrontEndVer
sion and ScreenRectangle. It has also added some grouping information for the cells.
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These are default behaviors of the front end and may vary from one front end to another.
They are also user-settable.

Manipulating notebooks

NotebookPut  and NotebookGet  are  general  functions  for  dealing  with  entire  note-
books  at  once.  There  are  a  host  of  additional  functions  for  manipulating  parts  of  note-
books.  You  might  first  think  that  we  can  simply  use  functions  like Part  to  extract  a
particular part of a notebook we are interested in. There are several reasons why this is not
generally  practical.  First,  because  a  notebook  can  contain  many,  many  cells,  it  is  often
quite difficult to determine precisely which part you want to work on. Secondly, since the
notebook resides in the front end, not the kernel, it is often not very efficient to manipu-
late the notebook directly by the kernel (although, if the notebook is small enough, this is
certainly possible).

As  it  turns  out,  there  is  a  way  around  these  issues  and  that  is  through  something
referred  to  as  the  “current  selection,”  which  is  essentially  a  reference  to  the  notebook
object.  You  could  then  think  of  the  notebook  manipulation  functions  as  operating  on
streams.

To see a list of the open notebooks, use Notebooks[].

In[4]:= Notebooks

Out[4]= NotebookObject Untitled 1 ,

NotebookObject 10FEProgramming.nb ,

NotebookObject Messages

Again, using InputForm, you can see the actual handles to each of the notebooks.

In[5]:= Notebooks InputForm

Out[5]//InputForm=

{NotebookObject[FrontEndObject[LinkObject["3v8_shm", 
   1, 1]], 28], NotebookObject[
 FrontEndObject[LinkObject["3v8_shm", 1, 1]], 27], 
 NotebookObject[FrontEndObject[LinkObject["3v8_shm", 
   1, 1]], 7]}

Let  us  walk  through  some  of  the  most  common  notebook  operations  you  should
learn about. The first is NotebookCreate. As its name implies, this function will create a
new untitled notebook in the front end. We assign nb to be the handle to this notebook.
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In[6]:= nb NotebookCreate

Out[6]= NotebookObject Untitled 2

Now let us  write to the notebook. NotebookWrite  takes  two arguments:  the first
argument  is  the notebook  object  that  we are  writing to;  the second argument is  what  we
are writing. We will create a few different examples below.

A Cell  is  an expression with two arguments. The first  argument is  the contents of
the cell; the second argument is the cell style, a listing of which is under the Format Style

menu in the front end.

In[7]:= NotebookWrite nb, Cell "Here is some text.", "Text"
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Adding options to Cell  allows us to change some of the properties of the cell. For
example, here are several of the options that you can add.

In[8]:= Take Options Cell , 10, 15

Out[8]= Deletable True, PageWidth WindowWidth, Visible True,

CellFrame False, CellDingbat None, ShowCellBracket True

In[9]:= NotebookWrite nb,

Cell "Here is some more text.", "Text",

CellFrame True, CellDingbat

If we simply give a string as the second argument to NotebookWrite, Mathematica
will use the default cell type, Input.

In[10]:= NotebookWrite nb, "Here is some text."
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Now suppose we wanted to insert an input cell with the expression 2100 in it.

In[11]:= 2100

Out[11]= 1267650600228229401496703205376

If you were to look at the underlying expression of the above cell (under the Format

menu, choose Show Expression), it would look like this:

Cell[BoxData[
   SuperscriptBox["2", "100"]], "Input"]

We will talk about BoxData in just a moment, but we should be able to insert a cell
like  this  directly  into  our  notebook  object.  Before  we  do  this,  notice  that  the  insertion
point has been left inside the Input cell after the last NotebookWrite. To move the cell
insertion bar after the current cell, we will use SelectionMove  which takes  three argu-
ments: the notebook we are operating on, the direction to move, and the unit by which we
should move. The direction can be any of Next, Previous, After, Before, All. The
units  are things  like Word,  Cell,  CellGroup,  Notebook  (see the Help Browser under
SelectionMove for a complete description).

So, in our example, we want to move the selection just after the present cell.

In[12]:= SelectionMove nb, After, Cell
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Now we can write the input cell to the notebook.

In[13]:= NotebookWrite nb,

Cell BoxData SuperscriptBox "2", "100" , "Input"

Notice  that  at  the  end of  each NotebookWrite,  the  cell  insertion  bar  was  placed
just after the cell that was written, except in the case of writing input cells. Oftentimes, you
will need to move around within the notebook or select a particular cell (or other expres-
sion) and perform some operation on it. For example, suppose we would like to select the
previous cell (the one containing the 2100)  in nb  and evaluate it.  We can do this with the
SelectionMove function.

In[14]:= SelectionMove nb, Previous, Cell
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To evaluate the currently selected expression, use SelectionEvaluate. 

In[15]:= SelectionEvaluate nb

Let us put a few of these pieces together and create a function that will evaluate the
next input cell. In Section 10.5 we will turn this code into a button.

For  this  example  we  will  operate  in  the  current  notebook.  We  can  refer  to  the
notebook  in  which  these  commands  are  being  evaluated  by EvaluationNotebook[].
First we select the current unit; that is, the cell in which the following code lives.

SelectionMove[EvaluationNotebook[],All,Cell]

Then we move the selection insertion to the next cell (at the moment, this code will only
work if it is immediately followed by an input cell).

SelectionMove[EvaluationNotebook[],Next,Cell]

Finally, we evaluate the currently selected input.

SelectionEvaluate[EvaluationNotebook[]]
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Here we bundle this code up into the function EvaluateNext.

In[16]:= EvaluateNext :

SelectionMove EvaluationNotebook , All, Cell ;

SelectionMove EvaluationNotebook , Next, Cell ;

SelectionEvaluate EvaluationNotebook ;

Evaluating the cell containing EvaluateNext causes the immediately following cell to be
evaluated.

In[17]:= EvaluateNext

In[18]:= 2 2

Out[18]= 4

Exercises

1. Using NotebookPut, create a notebook with one Title cell, one Section cell, one
Text cell and two Input cells.

2. Use NotebookGet to read the notebook you created in Exercise 1 into the kernel.
Then programmatically change the Section cells to Subsection cells either using 
Cases or an appropriate rule.

3. Take either of the notebooks you created in the above exercises and use Selection
Move and SelectionEvaluate to evaluate all of the Input cells in the notebook.

10.3 Cell data types
The cells in your notebooks often contain different kinds of data. Sometimes they will only
contain text. Other times they may contain formatted mathematical expressions, or possi-
bly a graphical object. Since the Cell data object has to handle each one of these kinds of
data, there is a mechanism that enables the front end to deal with these objects in a consis-
tent manner – cell data types. We will look at a few of the most important and useful cell
data types in the next few sections.
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TextData

Let us first look at a text cell that contains no special formatting.

Cell["Here is some text.", "Text"]

The formatted version of this cell looks like this:

Here is some text.

Adding some formatting to this cell causes a TextData wrapper to be added.

Cell[TextData[{
 "Here is some ", StyleBox["italicized", FontSlant->"Italic"],
 " text."
}], "Text"]

The formatted version of this cell looks like this:

Here is some italicized text.

Cells  with TextData  can  contain  a  number  of  other  data  objects  embedded  in  the  cell.
For example, here is a text cell that contains a ValueBox.  ValueBoxes provide a means
of embedding evaluations inside of your text cells.

Cell[TextData[{
 "The current version is: ", ValueBox["$Version"]
}], "Text"]

The formatted version of this cell looks like this:

The current version is: 5.1 for Microsoft Windows

A  listing  of  all  of  the  possible ValueBox  names  that  can  be  used  can  be  found
choosing Create  Value  Display  Object  from  the Input  menu.  Looking  under  the  list  of
global  variables  that  can  be  used  as  the  argument  to ValueBox,  you  will  see Date,  for
example.
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Cell[TextData[{
 "The current date is: ",
ValueBox["DateLong"]

}], "Text"]

The formatted version of this cell looks like this:

The current date is: Friday, October 8, 2004

BoxData

Many  of  your  cells  in Mathematica  will  contain  formatted  mathematical  expressions.
Whenever  you  work  with  these  two-dimensional  typeset  objects,  a  different  editor  is
invoked, called the math editor. This is indicated in the front end by a pink background in
Text  cell  style  on  the  typeset  expression  (you  can  enter  a  math  typeset  expression  by
pressing Control-9). This is also indicated in the underlying cell structure by means of the
BoxData  wrapper.  For  example,  consider  the  following  cell  containing  a  superscript
expression.

Cell[BoxData[
   RowBox[{

 SuperscriptBox["x", "2"], "+", "y"}]], "Input"]

The formatted version of this cell looks like this:

x2 y

There  are  several  things  to  note  here.  First,  we see  that Mathematica  has  automati-
cally placed the elements x2, + and y all in something called a RowBox. This is how Mathe-
matica represents box objects or a series of strings.

Secondly,  the x2  object  is  represented  internally  as  another  box  object,  specifically
SuperscriptBox[x,2]. You  can  use DisplayForm  to  print  box  expressions  in  an
explicit two-dimensional form.

In[1]:= SuperscriptBox x, 2 DisplayForm

Out[1]//DisplayForm=

x2
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There are many different box objects in Mathematica. Below are just a few commonly
used box objects.

Cell[BoxData[
   SqrtBox["2"]], "Input"]

The formatted version of this cell looks like this:

2

Cell[BoxData[
   FractionBox["x", "y"]], "Input"]

The formatted version of this cell looks like this:
x

y

Cell[BoxData[
   RowBox[{

 SubsuperscriptBox[" ", "a", "b"], 
 RowBox[{"x", " ", 
   RowBox[{" ", "x"}]
 }]

   }]
 ], "Input"]

The formatted version of this cell looks like this:

a

b

x x

GraphicsData

Another type of data wrapper that you will encounter is GraphicsData, used to indicate
a  graphical  object  in  the  cell.  For  example,  creating  a  graphics  object  in  the  front  end
displays a plot.
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In[2]:= Plot Sin x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1

If you unformat the graphics cell, the first few lines would look like the following:

Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .61803 
MathPictureStart
...

Normally  you  will  not  create  graphics  objects  from  scratch  so  it  would  seem  as  if
there is  not too much you could do with GraphicsData  objects manually.  But suppose
you were interested in displaying your graphics to a notebook other than the one in which
you evaluate the graphics input. For example, we could use NotebookPut  to write out a
new notebook containing a graphics cell object as follows:

In[3]:= MyDisplayChannel gr_ :

NotebookPut Notebook Cell GraphicsData

"PostScript", DisplayString gr , "Graphics"

This  is  now used  by  giving MyDisplayChannel  as  the  value  of DisplayFunc
tion for any plot you create.

In[4]:= Plot3D Sin x y , x, 0, 2 , y, 0, 2 ,

DisplayFunction MyDisplayChannel

Out[4]= NotebookObject Untitled 5

Evaluating the above expression will cause a new notebook window to be created in
your  front  end  containing  just  the  output  of  the Plot3D  command,  a  graphic  of  the
surface sin x y .
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Exercises

1. Using NotebookPut, create a notebook with several Text cells each containing a
ValueBox such as $Version, $OperatingSystem, and $UserName.

2. Using NotebookPut, create a notebook with an Input cell containing the integral
1

1 x3 x. Then evaluate the integral using SelectionMove and SelectionEval
uate.

10.4 GridBoxes

ShowTable

Whenever  you  create  a  two-dimensional  expression  consisting  of  some  number  of  rows
and columns, Mathematica represents that expression as a GridBox object. For example, if
you used the BasicInput palette to create a 2 2 matrix, it would be represented as follows:

Cell[BoxData[GridBox[{
   {"a", "b"},
   {"c", "d"}
   }]], "Input"]

The formatted version of this cell looks like this:

a b
c d

Looking at the GridBox  object, you should see that it is identical (structurally) to a
matrix in Mathematica, which is really just a list of lists.

In[1]:= FullForm
a b
c d

Out[1]//FullForm=

List List a, b , List c, d

In[2]:= a, b , c, d MatrixForm

Out[2]//MatrixForm=
a b
c d
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Using GridBoxes, let us create a function for displaying arrays of data in a format-
ted table. First we create some sample data.

In[3]:= data " ", " ", " " ,

1.234, 2.3451, 3.4567801 , SqrtBox " " , "
x

y
", " n " ;

We can put this data into a GridBox and immediately print it in a two-dimensional
grid using DisplayForm.

In[4]:= GridBox data DisplayForm

Out[4]//DisplayForm=

1.234 2.3451 3.4567801
x
y

n

GridBox can be given several options that control its appearance.

In[5]:= Options GridBox

Out[5]= GridBaseline Axis, RowSpacings 1., ColumnSpacings 0.8,

ColumnWidths Automatic, RowAlignments Baseline,

ColumnAlignments Center , GridFrame False,

GridFrameMargins 0.4, 0.4 , 0.5, 0.5 ,

RowLines False, ColumnLines False, RowMinHeight 1.,

RowsEqual False, ColumnsEqual False,

AutoDelete True, AllowScriptLevelChange True,

MultilineFunction None, GridDefaultElement

Let us add a frame, make the margins around each grid element a bit larger than the
default, and add some lines between the rows and columns. Usually you will set the values
for GridFrame,  RowLines,  and ColumnLines  to either True  or False  to  enable or
disable  these  elements.  Giving  an  explicit  number  as  the  value  of  each  of  these  options
gives the thickness of the line that is drawn for that object.

In[6]:= GridBox data,

GridFrame 1.2, GridFrameMargins 1, 1 , 1, 1 ,

RowLines 1, ColumnLines 1 DisplayForm

Out[6]//DisplayForm=

1.234 2.3451 3.4567801
x
y

n

Now we can bundle up this code and turn all of it into a function, ShowTable. If we
wish, we can add some formatting, but to do so we have to wrap the GridBox in a Style
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Box.  FontSize,  FontFamily,  Background,  and SingleLetterItalics  are  all
options to StyleBox. 

In[7]:= ShowTable data_ : DisplayForm StyleBox

GridBox data,

GridFrame 1.2, GridFrameMargins 1, 1 , 1, 1 ,

RowLines 1, ColumnLines 1 ,

FontFamily "Times",

Background GrayLevel .8 , SingleLetterItalics True

In[8]:= ShowTable data

Out[8]//DisplayForm=

1.234 2.3451 3.4567801
x
y n

Sometimes  the  data  you  work  with  will  need  to  be  manipulated  in  some  way  to
display it. The following is another example of the use of ShowTable, but one for which
we  first  need  to  think  about  the  dimensions  of  our  data.  Consider  displaying  a  table  of
reciprocals of rep units, numbers consisting entirely of 1s.

In[9]:= RepUnit n_?Positive : Nest 10 #1 1 &, 1, n 1

In[10]:= expr Map
1

RepUnit #
&, Range 12

Out[10]= 1,
1
11

,
1
111

,
1

1111
,

1
11111

,
1

111111
,

1
1111111

,
1

11111111
,

1
111111111

,
1

1111111111
,

1
11111111111

,
1

111111111111

Since the above output  contains  12 expressions,  we need to  explicitly partition  it  to
be rectangular. First we partition the data into rows of three elements (columns) each.

In[11]:= ShowTable Partition expr, 3

Out[11]//DisplayForm=

1 1
11

1
111

1
1111

1
11111

1
111111

1
1111111

1
11111111

1
111111111

1
1111111111

1
11111111111

1
111111111111
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Here we partition the data into rows of four elements each.

In[12]:= ShowTable Partition expr, 4

Out[12]//DisplayForm=

1 1
11

1
111

1
1111

1
11111

1
111111

1
1111111

1
11111111

1
111111111

1
1111111111

1
11111111111

1
111111111111

In the above tables, we are manually partitioning the rows and columns into sublists
that  will be rectangular when they are put into the table. It  would be good programming
style to take that task from the user and do it automatically. We leave this as an exercise.

TriangleForm

In  this  section  we  will  use GridBox  to  develop  a  function  for  displaying  an  array  in  a
triangular  format.  Such  a  function  is  quite  useful  for  displaying  the  elements  of  Pascal’s
triangle in the familiar triangular array.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

First let us create a function for generating the first n rows of Pascal’s triangle.

In[13]:= PascalTable rows_ :

Table Binomial n, m , n, 0, rows , m, 0, n

Here are the first four rows (including the 0th row).

In[14]:= expr PascalTable 3

Out[14]= 1 , 1, 1 , 1, 2, 1 , 1, 3, 3, 1
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If  we  put  empty  strings  around  the  elements  in  the  appropriate  places  we  can  see
what the grid should look like.

In[15]:= GridBox

"", "", 1, "", "" ,

"", 1, "", 1, "" ,

1, "", 2, "", 1

DisplayForm

Out[15]//DisplayForm=
1

1 1
1 2 1

So we need to develop a function to insert these empty strings between each element
in each row and we also need to pad out each row to the length of the longest row in the
entire table. First we write the function to pad each row.

In[16]:= pad lis_ : PadLeft lis, 2 Length expr 1,

"", Round 2 Length expr 1 Length lis 2

In[17]:= pad expr 1

Out[17]= , , , 1, , ,

In[18]:= pad expr 2

Out[18]= , , , 1, 1, ,

Now to insert the appropriate number of empty strings between elements, let us first
manually insert space in a few rows.

In[19]:= Insert expr 2 , "", 2

Out[19]= 1, , 1

In[20]:= Insert expr 3 , "", 2 , 3

Out[20]= 1, , 2, , 1

In[21]:= Insert expr 4 , "", 2 , 3 , 4

Out[21]= 1, , 3, , 3, , 1

Here is the function to create the third argument for Insert.

In[22]:= Map List, Rest Range Length 1, 3, 3, 1

Out[22]= 2 , 3 , 4
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Here  is  the  function  to  add  the  appropriate  amount  of  space  between  elements  in
each row.

In[23]:= addspace lis_ :

Insert lis, "", Map List, Rest Range Length lis

In[24]:= addspace expr 3

Out[24]= 1, , 2, , 1

In[25]:= addspace expr 1

Out[25]= 1

This maps the addspace function across each row of the Pascal table.

In[26]:= expr Map addspace, PascalTable 3

Out[26]= 1 , 1, , 1 , 1, , 2, , 1 , 1, , 3, , 3, , 1

Then we pad out each row using our pad function developed above.

In[27]:= Map pad, expr

Out[27]= , , , 1, , , , , , 1, , 1, , ,

, 1, , 2, , 1, , 1, , 3, , 3, , 1

Finally we put this expression into a GridBox and display it.

In[28]:= GridBox % DisplayForm

Out[28]//DisplayForm=
1

1 1
1 2 1

1 3 3 1

Here is the TriangleForm function then consisting of the above pieces.

In[29]:= TriangleForm lis_List :

Module addspace, expr, len Length lis ,

addspace l_ :

Insert l, "", Map List, Rest Range Length l ;

expr Map addspace, lis ;

DisplayForm GridBox Map PadLeft #, 2 len 1,

"", Round
1

2
2 len 1 Length # &, expr
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In[30]:= PascalTable 5 TriangleForm

Out[30]//DisplayForm=
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

Exercises

1. Modify ShowTable so that it can display a user-specified heading in the first row of 
the grid. Include formatting to set the style of the strings in the heading to be differ-
ent than the rest of the elements displayed by ShowTable.

2. Modify ShowTable so that it automatically partitions the list it is passed to be
rectangular, with the number of rows and columns as close to each other as possible.

3. Create a function TruthTable[expr,vars] that displays the logical expression expr
together with all the possible truth values for the variables in the list vars. For exam-
ple, here is the truth table for the expression A B C.

In[1]:= TruthTable Implies A B, C , A, B, C

Out[1]//DisplayForm=

A B C A B C

T T T T
T T F F
T F T T
T F F F
F T T T

F T F F
F F T T
F F F T

You will first need to create a list of all possible truth value assignments for the
variables, A, B, C in this case. One approach would be to use Distribute. So,
essentially, this is the left-hand side, or first three columns of the above table (not
counting the first row containing the table headings).
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In[2]:= vars A, B, C ;

len Length vars ; ins

Distribute Table True, False , len , List, List, List

Out[3]= True, True, True , True, True, False , True, False, True ,

True, False, False , False, True, True , False, True, False ,

False, False, True , False, False, False

You can then create a list of rules associating each of these triples of truth values with
a triple of variables.

In[4]:= Map Thread vars #1 &, ins

Out[4]= A True, B True, C True ,

A True, B True, C False , A True, B False, C True ,

A True, B False, C False , A False, B True, C True ,

A False, B True, C False , A False, B False, C True ,

A False, B False, C False

Substituting these rules into the logical expression produces a truth value for each of 
the above rows.

In[5]:= Implies A B, C . Map Thread vars #1 &, ins

Out[5]= True, False, True, False, True, False, True, True

Your task is to put all these pieces together in a GridBox with appropriate
formatting.

10.5 Buttons
Buttons are very user-friendly objects whose functionality is familiar to any computer user.
From the programmer’s point of view, they allow you to hide your code behind a graphical
element, the button. Instead of writing a function and evaluating it by pressing Shift-Enter
from the keyboard, you pass the mouse cursor over the button and simply click. Whatever
code is hidden underneath the button is then evaluated.

In  this  section  we  will  first  look  at  the  structure  of ButtonBoxes  and  then  create
some examples to demonstrate the variety of tasks that can be accomplished with buttons.
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Making buttons the easy way

The  simplest  way  to  create  buttons  is  to  select  an  expression  in  your Mathematica  note-
book,  choose Create  Button  from  the Input  menu,  and  then  activate  your  button.  Let  us
walk through these steps to create a button that pastes an expression into your notebook.

Suppose  you  were  writing  a  paper  in  which  you  are  discussing  sequences  and  you
need  to  use  an  expression  such  as  the  following  repeatedly  in  your  notebook:
a1, a2, …, an . To create a button that would allow you to paste this expression into your

notebook  by simply clicking that button,  we first  write down the expression we will work
with below in a regular input cell.

a1, a2, …, an

Now select  the  entire expression  and choose Create  Button   Paste  from the Input

menu.

a1, a2, …, an

Finally, to activate the button so that you can click it to have an action occur, select
the cell in which the button occurs and then choose Cell Properties  Cell Active from the
Cell menu.

a1, a2, …, an

Clicking  the  above  button  will  paste  the  following  at  the  insertion  point:
a1, a2, …, an .

If you wished, you could create a free-standing palette from this button by choosing
Generate Palette from Selection from the File menu.

Although the above procedure for creating buttons is quite straightforward, it is only
convenient for fairly simple buttons. For more complicated buttons you will find that you
need a good understanding of the structure of buttons and the various options that control
their actions and display. We turn to those topics in the next few sections.

The structure of buttons

Buttons are created with the ButtonBox function in Mathematica. ButtonBox takes one
argument and by default, that argument is pasted at the current selection point.

In  the examples  that  follow, we will use DisplayForm  to  display the button as  an
interactive  element.  If  you  were  to  unformat  your  button  (Show  Expression  from  the
Format menu), you would see essentially all that precedes the DisplayForm below.
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In[1]:= ButtonBox "some text", Active True DisplayForm

Out[1]//DisplayForm=

some text

Note  that  we  have  added  the  option Active True.  This  makes  the  resulting
button  uneditable,  one that is  clickable. You will need to add this  option to all  your but-
tons to activate them. Clicking this button causes the following to be pasted at the current
selection point.

some text

Let us create a button that can serve as a template for a definite integral.

In[2]:= ButtonBox["Integrate[fun,{x,xmin,xmax}]", Active->True]  

//DisplayForm

Out[2]//DisplayForm=

Integrate fun, x, xmin, xmax

Clicking the button causes the following to be pasted in.

Integrate fun, x, xmin, xmax

We can use placeholders in our template button so that the user can move from one
placeholder  to  the  next  by  pressing  the  Tab  key.  The  placeholder  character  can  be
entered  either  from  the  Complete  Characters  palette  (look  under  Letter-like  Forms  and
then  Keyboard  Forms),  or  directly  from the  keyboard  by  typing -sp-  (pressing  the
Escape key, then the characters s and then p, and finally the closing Escape key).

In[3]:= ButtonBox["Integrate[ ,{ , , }]", Active->True]  

//DisplayForm

Out[3]//DisplayForm=

Integrate , , ,

Clicking on this button causes the following expression to be pasted. You can move
from one placeholder to another by pressing the Tab key.

Integrate , , ,
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ButtonStyle

Although having buttons  that paste their contents  at  the current selection point  is useful,
there is  much more that  buttons  can do.  For example,  they can wrap the contents  of  the
ButtonBox  around  a  selected  expression  and  then  evaluate  that  expression.  To  change
the  default  behavior  of  buttons  from  simply  pasting  their  contents  to  other  actions,  we
have  to  use  the ButtonStyle  option. ButtonStyle  is  used  to  control  both  the  style
and the actions associated with your buttons. In the following example, ButtonStyle  is
set to CopyEvaluateCell. 

In[4]:= ButtonBox "Integrate ,x ", Active True,

ButtonStyle "CopyEvaluateCell" DisplayForm

The  character  is  entered  either  from  palettes  or  directly  from  the  keyboard  by
typing -spl- . Evaluating the above input produces the cell below. Selecting the input
cell  containing Cos x2 x5  and  then  clicking  the  button  causes  the  template  to  be
wrapped around the selected expression and then it is evaluated.

Out[4]//DisplayForm=

Integrate , x

In[5]:= Cos x2 x5

In[6]:= Integrate Cos x2 x5, x

Out[6]=
x6

6 2
FresnelC

2
x

If  you  were  to  use ButtonStyle EvaluateCell  instead  of CopyEvaluate
Cell,  the  button  action  would  erase  the selection  and replace it  with the new input  and
the result.

Another  very  useful ButtonStyle  is Hyperlink.  Making  a  hyperlink  is  accom-
plished by creating a button out of some expression and setting the ButtonStyle option
to Hyperlink and adding the ButtonData option.

Cell[TextData[{
 "Search for button on ",
ButtonBox["Google",

   ButtonData:>{
 URL[ "http://www.google.com"], None},

   ButtonStyle->"Hyperlink"]
}], "Text"]
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The formatted version of this cell looks like this:

Search for button on Google

Setting ButtonStyle  to Hyperlink  sets  the  button  action  to  jump  to  some
location. That location is specified as the value of the option ButtonData. In this exam-
ple, that is set to URL["http://www.google.com"]. ButtonData set to a URL will
cause your web browser to be launched and opened to the location given as the argument
to the URL – in this case http://www.google.com.

A list of all the possible ButtonStyle values is displayed in Table 10.1.

ButtonStyle values Action

Paste pastes the contents default

Evaluate pastes, then evaluates in place

EvaluateCell paste, then evaluate entire cell

CopyEvaluate copy current selection into new cell,
then paste and evaluate

CopyEvaluateCell copy current selection into new cell,
then paste and evaluate cell

Hyperlink jump to different location

Table 10.1: Possible ButtonStyles and associated actions

ButtonFunction

Whenever you need to put some Mathematica code inside your button, you will need to do
so  as  the value  of  the  option ButtonFunction.  You will  also  need to  explicitly  set  the
option ButtonEvaluator  which  is  set  to None  by  default.  The ButtonEvaluator

option  tells  the front  end what  program it  should  communicate  with to  process  the con-
tents  of  the button  function.  Setting  it  to None  tells  the front  end to  communicate  with
itself which is fine for operations like copying and pasting. But for operations that need to
communicate with a kernel, you will have to specify that explicitly. A value of Automatic
sends the code to the default kernel for the current notebook. If you had other kernels set
up, you could direct the button function at one of those.
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In[7]:= ButtonBox "Compute 5 ",

Active True,

ButtonFunction Factorial 5 ,

ButtonEvaluator Automatic DisplayForm

Out[7]//DisplayForm=

Compute 5

Clicking this button will not cause any output to be displayed. This is because these
buttons  are not  evaluated in the kernel in the usual  way as  part  of  the main loop.  In this
case, you can use Print to see the side effect of this computation.

In[8]:= ButtonBox "Compute 5 ",

Active True,

ButtonFunction Print Factorial 5 ,

ButtonEvaluator Automatic DisplayForm

Out[8]//DisplayForm=

Compute 5

120

You  can use  any Mathematica  function  you wish  as  the  value of  the ButtonFunc

tion  option.  But,  in  addition  to  the  above  issue  with  displaying  output,  you  should  be
aware  of  another  important  issue.  As  it  turns  out,  the  front  end  does  not  know  how  to
parse the special shorthand notation we often use for arithmetic and other operations. You
will  be  forced  to  use  the FullForm  of  such  expressions  inside  of  your ButtonFunc

tion.  So  instead  of 2+2,  use Plus[2,2];  instead  of {<<Graphics`;LogPlot[

Exp[x],{x,1,2}]}  use CompoundExpression[Get["Graphics`", LogPlot[

Exp[x],{x,1,2}]].  Fortunately, the parser for the front end can recognize the short-
hand  notation  for List,  Rule,  and RuleDelayed,  so  you  can use  the shorthand nota-
tions {}, , and , respectively.

As a final example, we will create a button that loads a package and then performs a
computation  with  some  functions  from  that  package.  Here  is  the  code  that  we  want  to
encapsulate in our button.

In[9]:= Needs "Graphics`Polyhedra`"
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In[10]:= Show Graphics3D Stellate Icosahedron ;

Here is the button code. Note that we have also added an option to ButtonBox  to
set the background and set the entire cell to use the Times font family.

Cell[BoxData[
   ButtonBox[RowBox[{"Stellate"," ","Icosahedron"}],

 ButtonFunction->
   CompoundExpression[Needs["Graphics`Polyhedra`"],

  Show[Graphics3D[Stellate[Icosahedron[]]]]],
 ButtonEvaluator->Automatic,
 Background->GrayLevel[.5]]],
 "Input",Active->True,
 FontFamily->"Times",
 FontColor->GrayLevel[1]]

And here is the button with a result of clicking it just below.

In[11]:= Stellate Icosahedron
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Example: an evaluate button

At  the  end  of  Section  10.2  we  created  a  function EvaluateNext,  which  evaluated  the
immediately following input  cell. In this section we will turn the code from that function
into a button.

Here was the code we developed in that section.

EvaluateNext:=(
   SelectionMove[EvaluationNotebook[],All,Cell];
   SelectionMove[EvaluationNotebook[],Next,Cell];
   SelectionEvaluate[EvaluationNotebook[]];
   )

To put this code inside a button, we need to make a few modifications. First, remem-
ber that the front end does not know how to parse shorthand notation such as ;.  Instead
we need to use CompoundExpression. Second, instead of EvaluationNotebook, we
will  use ButtonNotebook,  which gives the notebook  in which the current button  lives.
Finally,  we  need  to  use ButtonCell  to  refer  to  the  cell  containing  the  button  itself.
Putting all these pieces together, here is the ButtonFunction.

In[13]:= ButtonFunction CompoundExpression

SelectionMove ButtonNotebook , All, ButtonCell ,

SelectionMove ButtonNotebook , Next, Cell ,

SelectionEvaluate ButtonNotebook ;

Here then is the code to generate our evaluate button.

Cell[TextData[{
Cell[BoxData[

 ButtonBox["EVALUATE",
   ButtonFunction:>CompoundExpression[ {

 SelectionMove[ 
   ButtonNotebook[ ], All, ButtonCell], 
 SelectionMove[ 
   ButtonNotebook[ ], Next, Cell], 
 SelectionEvaluate[ 
   ButtonNotebook[ ]]}],

   Active->True]]],
 " MATHEMATICA INPUT"
}], "Text"]
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And  here is  the  formatted  button.  Clicking  the  Evaluate  button  causes  the  cell  just
below the button cell to be evaluated.

EVALUATE  MATHEMATICA INPUT

In[14]:= 2 2

Out[14]= 4

Finally, let us add some formatting to make this cell a little nicer looking.

Cell[TextData[{
Cell[BoxData[

 ButtonBox[
   StyleBox["EVALUATE",

  FontFamily->"Helvetica",
  FontSize->10,
  FontWeight->"Bold"],

   ButtonFunction:>CompoundExpression[ {
 SelectionMove[ 
   ButtonNotebook[ ], All, ButtonCell], 
 SelectionMove[ 
   ButtonNotebook[ ], Next, Cell], 
 SelectionEvaluate[ 
   ButtonNotebook[ ]]}],

   Active->True,
   Background->GrayLevel[0.500008]]]],

 StyleBox[" MATHEMATICA INPUT",
   FontFamily->"Helvetica",
   FontSize->10,
   FontWeight->"Bold",
   FontSlant->"Italic",
   FontColor->GrayLevel[1]]
}], "Text",
Background->GrayLevel[0.500008]]

Here is the formatted version of this code with the result of clicking the button.

EVALUATE  MATHEMATICA INPUT

In[15]:= 2 5

Out[15]= 7

There is a little inefficiency in our code as we are calling the kernel several times (two
instances  of SelectionMove  and  one  of SelectionEvaluate)  for  what  are  essen-
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tially  front  end operations,  moving and selecting. You can send  these sorts  of  commands
directly  to  the  front  end  by  wrapping  them  in FrontEndExecute.  To  distinguish
between  the  kernel  command  and  the  front  end  command  you  also  need  to  append  the
FrontEnd`  context  to  the  function.  So,  for  example,  instead  of  using Selection

Move[…] in the kernel, you can send it directly to the front end with the following.

FrontEndExecute[FrontEnd`SelectionMove[…]]

With this  in mind,  the EVALUATE button  can be  rewritten by  only  changing the
ButtonFunction.

ButtonFunction:>FrontEndExecute[ {
FrontEnd`SelectionMove[

ButtonNotebook[ ], All, ButtonCell], 
FrontEnd`SelectionMove[

ButtonNotebook[ ], Next, Cell],
FrontEnd`SelectionEvaluate[

ButtonNotebook[ ]]}]

Another  method  of  directly  accessing  front  end  commands  is  via  front  end  tokens.
These tokens allow you to perform any menu command directly from the kernel. We will
not discuss them here, but for a detailed discussion of front end tokens, see the Front End
category of the Help Browser.

Exercises

1. Create a button that will serve as a template for the Plot3D function.

2. Create a button that will wrap Expand[] around any selected expression and 
evaluate that expression.

3. Using GridBox, create a palette of buttons that operate on polynomials like that in
Exercise 2. Include in your palette a button for each of Expand, Factor, Apart, 
and Together.
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11 Examples and applications

The development  of  larger-scale Mathematica  programming projects is  discussed  and
illustrated in this chapter. Each of the examples in this chapter contain numerous tasks
that  need  to  work  together  and  also  integrate  well  with Mathematica.  When  you
develop such applications, it is important to think about how your functions work with
each other as well as how well they integrate with the rest of Mathematica. The user's
interface  to  your programs should be  as  close as  possible  to  the  built-in  functions  of
Mathematica  so that users can more easily learn the syntax and usage. Features such as
options,  argument  checking,  messaging,  and  documentation  are  all  discussed  in  the
context  of  larger  applications  that  are  developed  using  all  of  the  tools  that  were
developed in earlier chapters.

11.1 Manipulating data files

Introduction

One of the most common tasks for scientists and engineers is working with data sets that
have been generated by some external process  or collector. If  they are lucky, the data  are
stored in a file that has a standard format and can then be read into other programs such as
Mathematica  with ease using that program’s importing functionality. Oftentimes, however,
data are stored in files with nonstandard formats and reading that file into a program such
as Mathematica requires some manual processing of that file to extract the required parts.

In this section we will walk through the steps of reading, manipulating, and visualiz-
ing a dataset that consists of solar radiation data collected by the Renewable Resource Data
Center,  an  organization  that  is  managed  by  the  US  Department  of  Energy  (interested
readers  should  visit rredc.nrel.gov).  A  copy  of  one  such  dataset  has  been  placed  in  the
IPM3 files that are available for this book (see the Preface for details).



Getting the data into Mathematica

Our  first  task  is  to  read  the  data  into Mathematica.  There  are  several  functions  that  are
useful for getting data into Mathematica. One of them is Import, which is a good function
to try if you know your data are in one of the standard file formats supported by Import.
In this example, we will take a more general approach, one that can be used for somewhat
arbitrary file formats, with appropriate modifications.

When  working  with  files  that  you  need  to  read  into Mathematica,  you  have  several
options for how to deal with file locations. One option is to put your data file anywhere on
your  system and  then point  to  it  in  your Mathematica.  For  example,  suppose  you  place a
data file testdata.txt in the following directory:

C:\Work\Project42\DataFiles\

In your notebook you could then create a path to this file as follows. (Note, this does
not read the file into Mathematica, it simply creates a path to the file.)

In[1]:= file ToFileName

"C:", "Work", "Project42", "DataFiles" , "testdata.txt"

Out[1]= C:\Work\Project42\DataFiles\testdata.txt

Any cells, such as the above, that you need to evaluate before doing any other work
in  a  notebook,  can  be  turned  into  initialization  cells  by  selecting  those  cell  brackets  and
then selecting Cell Properties Initialization Cell from the Cell menu.

Another strategy for setting up your work environment would be to put any Mathe-
matica commands such as that above in an init.m file that will then be read into the kernel
whenever  the  kernel  is  first  started  up.  For  more  information  on  this  approach,  see  the
subsection “Creating Help Browser documentation” in Section 11.2.

It  is  a  common  convention  to  put  user  applications  and  packages  in  one  of  several
Applications  subdirectories.  The  two  places  to  consider  are  given  by  the  following.  (Al-
though  the  input  will  be  the  same  on  all  operating  systems,  the  output  will  reflect  the
directory structure of your operating system.)

In[2]:= ToFileName $BaseDirectory, "Applications"

Out[2]= C:\Documents and Settings\All Users\

Application Data\Mathematica\Applications\
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In[3]:= ToFileName $UserBaseDirectory, "Applications"

Out[3]= C:\Documents and Settings\Paul Wellin\

Application Data\Mathematica\Applications\

$BaseDirectory  is  only  writable  by  users  who  have  administrative  privileges.
Typically you put your applications there if you want to make them available to all users of
your computer. $UserBaseDirectory  is  only writable by the currently logged-in user
of  you  computer.  This  is  the  place  to  put  your  files  if  you  do  not  have  administrative
privileges or if you simply wish to keep your files accessible only to yourself.

The full list of the directories on Mathematica’s search path is given by $Path.

In[4]:= $Path TableForm

Out[4]//TableForm=
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\JLink
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\NETLink
C:\Documents and Settings\Paul Wellin\Application Data\Mathematica\Kernel
C:\Documents and Settings\Paul Wellin\Application Data\Mathematica\Autoload
C:\Documents and Settings\Paul Wellin\Application Data\Mathematica\Applications
C:\Documents and Settings\All Users\Application Data\Mathematica\Kernel
C:\Documents and Settings\All Users\Application Data\Mathematica\Autoload
C:\Documents and Settings\All Users\Application Data\Mathematica\Applications
.

C:\Documents and Settings\Paul Wellin
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\StandardPackages
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\StandardPackages\StartUp
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\Autoload
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\Applications
C:\Program Files\Wolfram Research\Mathematica\5.0\AddOns\ExtraPackages
C:\Program Files\Wolfram Research\Mathematica\5.0\SystemFiles\Graphics\Packages
C:\Program Files\Wolfram Research\Mathematica\5.0\Configuration\Kernel

The files  associated  with this  book  are all  stored in a directory  IPM3 which should
live  in  the  Applications  directory  in  either $BaseDirectory  or $UserBaseDirec

tory. Since both are on the path, the following designation sets up a system-independent
file name that is relative to the path given by $Path.

In[5]:= datafile ToFileName "IPM3", "DataFiles" , "23232.txt"

Out[5]= IPM3\DataFiles\23232.txt

Now suppose you have looked at this text file 23232.txt in a text editor (see display of
the first few lines of this file below) and noted that it contains strings and numbers and that
elements are separated by commas.
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"City:  ","SACRAMENTO      "
"State:   ","CA"
"WBAN No: ", 23232
"Lat(N):  ", 38.52
"Long(W): ",121.50
"Elev(m): ",    8
"Pres(mb):",  1015
"Stn Type:","Secondary"
"MONTHLY SOLAR RADIATION (kWh/m2/day)"
"COLUMN A: Year"
"COLUMN B: Month"
"COLUMN C: Flat-Plate Collector Facing South at Fixed Tilt=0"
"COLUMN D: Flat-Plate Collector Facing South at Fixed Tilt=Lat-15"

Program Listing 11.1: Display of first few lines of file 23232.txt

Back in Mathematica, you can use ReadList to read the file using some assumptions
about the data in the file.

In[6]:= rawdata ReadList datafile, Word,

WordSeparators ",",

RecordLists True,

RecordSeparators "\r\n", "\n", "\r" ;

ReadList takes two arguments: the first argument is the file that we are reading, in
this case, datafile; the second argument specifies the type of objects that are contained
in the file. Since we have a mix of strings and numbers in this file, we will simply assume
each entry is of type Word and manipulate the entries afterwards.

In  addition  to  the  two  arguments  to ReadList,  we  have also  used  several  options
that state some assumptions about the form of the data and file. WordSeparators ","

indicates  that  elements  in  the  file  are  assumed  to  be  separated  by  commas. Record
Lists True  indicates  that  each  line  of  data  from  the  file  should  be  put  in  a  separate
sublist in Mathematica. RecordSeparators {"\r\n","\n","\r"}  specifies that any
of the three ways to end lines in text files (Windows, Unix, and Macintosh Classic) should
be  considered.  This  is  particularly  useful  if  you  do  not  know the  origin  of  the  operating
system on which your file was created or if you are unsure of how it has been transported
between operating systems.
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Examining the data file

Now that we have read the data file into Mathematica, let us try to get a sense of its shape
and its contents so that we can start to determine in which parts we will be most interested.

Here is  an abbreviated view showing the first  few lines, an indication that  377 lines
are not displayed, and then the last few lines.

In[7]:= Short rawdata, 10

Out[7]//Short= "City: ", "SACRAMENTO " ,

"State: ", "CA" , "WBAN No: ", 23232 ,
"Lat N : ", 38.52 , "Long W : ", 121.50 ,

377 , 90, 9, 5.9, 7.0, 7.1, 6.8, 4.6, 8.7,
9.6, 9.7, 9.5, 9.7, 5.6, 6.9, 7.7, 7.7 ,

90, 10, 4.3, 5.8, 6.3, 6.4, 5.2, 6.5, 7.6,

7.9, 8.0, 8.1, 4.8, 4.9, 6.1, 6.2 ,
90, 11, 2.9, 4.2, 4.8, 5.1, 4.5, 4.2, 5.3,

5.7, 5.9, 6.0, 3.7, 2.9, 4.2, 4.4 ,

90, 12, 2.2, 3.5, 4.1, 4.5, 4.2, 3.3, 4.3,
4.8, 5.1, 5.2, 3.3, 2.3, 3.5, 3.8

Note that the data set contains 386 records, or lines. In Mathematica, we should think
of these records as sublists since ReadList reads each record in as a list.

In[8]:= Dimensions rawdata

Out[8]= 386

Here are the first nine lines of the data  set. They give information about where the
solar data were collected. Note that these lines are strings of text.

In[9]:= Take rawdata, 9 TableForm

Out[9]//TableForm=

"City: " "SACRAMENTO
"State: " "CA"

"WBAN No: " 23232
"Lat N : " 38.52
"Long W : " 121.50

"Elev m : " 8
"Pres mb :" 1015
"Stn Type:" "Secondary"

"MONTHLY SOLAR RADIATION kWh m2 day "

The next several lines contain information about each of the columns later in the file
that  contain  the  actual  data.  Again,  these  lines  are  strings.  Although  lines  10  through  25
contain this metadata about the columns, here we only display the first several.
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In[10]:= Take rawdata, 10, 16 TableForm

Out[10]//TableForm=
"COLUMN A: Year"
"COLUMN B: Month"

"COLUMN C: Flat Plate Collector Facing South at Fixed Tilt 0"
"COLUMN D: Flat Plate Collector Facing South at Fixed Tilt Lat 15"
"COLUMN E: Flat Plate Collector Facing South at Fixed Tilt Lat"
"COLUMN F: Flat Plate Collector Facing South at Fixed Tilt Lat 15"
"COLUMN G: Flat Plate Collector Facing South at Fixed Tilt 90"

The 26th record of this file is simply a column identifier for the data that follows.

In[11]:= Take rawdata, 26

Out[11]= "COL A", "COL B", "COL C", "COL D", "COL E",

"COL F", "COL G", "COL H", "COL I", "COL J", "COL K",

"COL L", "COL M", "COL N", "COL O", "COL P"

Starting at row 27, we have our actual data – first the year, then the month, and then
several  columns  with numbers  that  represent solar radiation  collected by different collec-
tors, measured in kilowatt hours per square meter per day.

In[12]:= Take rawdata, 27, 29

Out[12]= 61, 1, 1.6, 1.9, 2.0, 2.0, 1.6, 1.7,

2.0, 2.0, 2.1, 2.1, 0.7, 0.5, 0.8, 0.8 ,

61, 2, 3.0, 4.0, 4.3, 4.4, 3.7, 4.2, 4.9,

5.2, 5.3, 5.3, 2.8, 2.6, 3.4, 3.5 ,

61, 3, 4.3, 5.1, 5.2, 5.1, 3.7, 5.8, 6.4,

6.6, 6.5, 6.6, 3.2, 3.6, 4.2, 4.2

The  data  in  these  rows  are  still  strings  as  a  result  of  using  the Word  data  type  in
ReadList when we read in the file.

In[13]:= Map Head, Take rawdata, 27 , 2

Out[13]= String, String, String, String,

String, String, String, String, String, String,

String, String, String, String, String, String

To  convert  each  of  these  elements  to  numbers,  we  need  to  map ToExpression

across each element.

In[14]:= Map ToExpression, Take rawdata, 27 , 2

Out[14]= 61, 1, 1.6, 1.9, 2., 2., 1.6,

1.7, 2., 2., 2.1, 2.1, 0.7, 0.5, 0.8, 0.8

346 An Introduction to Programming with Mathematica



In[15]:= Map Head, %, 2

Out[15]= Integer, Integer, Real, Real, Real, Real, Real,

Real, Real, Real, Real, Real, Real, Real, Real, Real

Extracting and converting data

We  only  wish  to  work  with  the  actual  data  that  represent  the  solar  radiation  values  col-
lected  on  various  dates.  To  extract  only  those  rows  that  contain  these  numbers,  we  will
select those rows from rawdata that do not begin with a quote character.

In[16]:= data Select rawdata, StringTake # 1 , 1 "\"" & ;

Now  we  can  turn  each  of  the  elements  in data  into  a  number  using
ToExpression.

In[17]:= cleandata Map ToExpression, data, 2 ;

Here we  can  see  the  results  of  these  operations  by  looking  at  the  first  two  rows  of
cleandata.

In[18]:= Take cleandata, 1, 2

Out[18]= 61, 1, 1.6, 1.9, 2., 2., 1.6, 1.7, 2., 2., 2.1,

2.1, 0.7, 0.5, 0.8, 0.8 , 61, 2, 3., 4., 4.3, 4.4,

3.7, 4.2, 4.9, 5.2, 5.3, 5.3, 2.8, 2.6, 3.4, 3.5

In[19]:= Map Head, cleandata 1

Out[19]= Integer, Integer, Real, Real, Real, Real, Real,

Real, Real, Real, Real, Real, Real, Real, Real, Real

Each  of  these  rows  in cleandata  represent  a  year,  a  month,  and  a  set  of  solar
radiation  values  collected  during  that  month.  We  can  use Select  to  pick  out  the  row
whose first element (year) is 61 and whose second element (month) is 2; in other words, to
get the data corresponding to February 1961.

In[20]:= Select cleandata, # 1 61 && # 2 2 &

Out[20]= 61, 2, 3., 4., 4.3, 4.4, 3.7,

4.2, 4.9, 5.2, 5.3, 5.3, 2.8, 2.6, 3.4, 3.5
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Here is how we would pick out all records between August 1961 and January 1962.

In[21]:= Select cleandata,

# 1 61 && # 2 8 # 1 62 && # 2 1 &

Out[21]= 61, 8, 6.7, 7.1, 6.8, 6.2, 3.5, 9.5, 9.9, 9.7,

9.3, 9.9, 5.4, 7.2, 7.3, 7.6 , 61, 9, 5.8, 6.8, 7.,

6.8, 4.6, 8.6, 9.4, 9.6, 9.4, 9.6, 5.4, 6.8, 7.5, 7.5 ,

61, 10, 4.1, 5.4, 5.8, 5.9, 4.7, 6., 6.9, 7.3, 7.3,

7.4, 4.3, 4.3, 5.4, 5.5 , 61, 11, 2.5, 3.6, 4., 4.2,

3.7, 3.5, 4.3, 4.7, 4.8, 4.9, 2.9, 2.3, 3.2, 3.4 ,

61, 12, 1.6, 2.1, 2.3, 2.3, 2.1, 1.9, 2.3, 2.5, 2.5,

2.6, 1.2, 0.8, 1.3, 1.4 , 62, 1, 2.3, 3.3, 3.8,

4., 3.6, 3.2, 4., 4.3, 4.6, 4.6, 2.8, 2., 3., 3.2

It will be useful to have a more natural interface for selecting data based on this date
criteria. Here then is a function that we can use to easily select those records between two
dates, each given by a month and year.

In[22]:= GetData dat_, m1_, y1_ , m2_, y2_ : Select dat,

# 1 y1 && # 2 m1 # 1 y2 && # 2 m2 &

Using GetData, this picks out the data from August 1970 through January 1971.

In[23]:= GetData cleandata, 8, 70 , 1, 71

Out[23]= 70, 8, 7.4, 7.9, 7.6, 6.9, 3.7, 10.8, 11.2, 11.1,

10.6, 11.3, 6.6, 8.8, 8.9, 9.2 , 70, 9, 6.1, 7.2, 7.3,

7.1, 4.8, 9., 9.9, 10., 9.8, 10., 5.8, 7.2, 8., 8. ,

70, 10, 4.1, 5.4, 5.8, 5.9, 4.7, 6., 6.9, 7.3, 7.3,

7.3, 4.3, 4.4, 5.4, 5.5 , 70, 11, 2.2, 2.9, 3.2, 3.3,

2.8, 2.8, 3.4, 3.6, 3.7, 3.7, 1.9, 1.5, 2.1, 2.2 ,

70, 12, 1.4, 1.8, 1.9, 1.9, 1.6, 1.6, 1.9, 2., 2.,

2., 0.7, 0.5, 0.8, 0.9 , 71, 1, 2.1, 2.9, 3.3, 3.5,

3.1, 2.8, 3.4, 3.7, 3.9, 3.9, 2.2, 1.6, 2.3, 2.5

Visualizing the data

The  third  through  16th  columns  of rawdata  contain  solar  radiation  values  that  come
from different collectors, or perhaps one collector set at a different angle to the sun. Let us
take a look at just one of these.

In[24]:= Take rawdata, 15

Out[24]= "COLUMN F: Flat Plate

Collector Facing South at Fixed Tilt Lat 15"
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Using GetData we can extract all those values for this particular collector (the sixth
column, referred to as "COL F") taken from January 1980 through December 1980,

In[25]:= d1 Part GetData cleandata, 1, 80 , 12, 80 , All, 6

Out[25]= 2.7, 3.6, 5.9, 5.7, 5.9, 5.9, 6.1, 6.7, 6.8, 6., 4.7, 3.1

and similarly for 1981.

In[26]:= d2 Part GetData cleandata, 1, 81 , 12, 81 , All, 6

Out[26]= 2.4, 4.3, 4.7, 6.2, 6.2, 6.2, 6.3, 6.8, 6.8, 5.8, 3.7, 2.2

Using MultipleListPlot  (defined  in Graphics`MultipleListPlot`),  we
can quickly view these two datasets together.

In[27]:= Graphics`MultipleListPlot`

In[28]:= MultipleListPlot d1, d2, PlotJoined True,

AspectRatio Automatic, AxesLabel None, "kWh m2 day" ;
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It would be easy to modify this plot in a variety of ways. For example, we could give
explicit month text for the horizontal axis tick marks.

In[29]:= months 1, "Jan" , 2, "Feb" , 3, "Mar" , 4, "Apr" ,

5, "May" , 6, "Jun" , 7, "Jul" , 8, "Aug" ,

9, "Sep" , 10, "Oct" , 11, "Nov" , 12, "Dec" ;

In[30]:= MultipleListPlot d1, d2, PlotJoined True,

AspectRatio Automatic, Ticks months, Automatic ,

AxesLabel None, "kWh m2 day" ;

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4

5

6

kWh m2 day

11 Examples and applications 349



Of course lots of additional information could be added to the plot. 

In[31]:= MultipleListPlot d1, d2, PlotJoined True,

AspectRatio Automatic, Ticks months, Automatic ,

AxesLabel None, "kWh m2 day" ,

PlotLegend "1980", "1981" , LegendTextSpace 5,

LegendLabel "Lat N : 38.52, \nLong W : 121.50" ;
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The  exercises  ask  you  to  bundle  up  the  code  developed  in  this  section  into  several
functions and also to modify the graphical content and display it in several useful ways.

Exercises

1. Create a function ReadSolarData[file,opts] that reads in a solar data file such as 
23232.txt using ReadList, strips out any line beginning with a quote character, and 
returns the remaining lines with each element converted to a number. You should set 
explicit options to ReadSolarData that borrow from ReadList.

2. Create a function that computes the total solar radiation for a given year from one
collector (your choice) from the data file 23232.txt. Make a plot comparing these
yearly radiation values for the history of the dataset.

3. Create a function PlotSolarData[dat1,dat2,opts] that uses MultipleList
Plot as in the previous section to plot datasets dat1 and dat2. Your function should 
include customized tick information, axes labels, and a legend that displays the
latitude and longitude of the collector in the LegendLabel. In addition, you
function should be able to accept options similar to MultipleListPlot and pass 
them directly to MultipleListPlot.

4. Overload PlotSolarData so that when evaluated as PlotSolar
Data[month,opts], and month is one of January, February,…, December, it will
produce a plot comparing the solar radiation for that month across all years of the
dataset.
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11.2 Random walks

Introduction

Random walks  are widely used to represent random processes  in nature; physicists  model
the transport of molecules, biologists model the locomotion of organisms, engineers model
heat conduction, and economists model the time behavior of financial markets, all with the
random  walk  model.  This  model  can  be  envisioned  by  thinking  of  a  person  taking  a
succession of steps, which are randomly oriented with respect to one another. It is a good
application of Mathematica to a problem that involves a diverse set of computing tasks.

In this section, we will develop a program for executing a random walk. Then we will
run the program and create a visualization of the walk that is created. In the course of our
application  development,  we  discuss  options,  defaults,  messaging,  and  documentation
issues.

The one-dimensional random walk

The simplest random walk model consists of n steps of equal length, back-and-forth along
a line. A step increment (or step) in the positive x direction corresponds to a value of 1 and
a  step  increment  in  the  negative x  direction  corresponds  to  a  value  of 1.  A  list  of  the
successive step increments of an n-step random walk in one dimension is therefore a list of
n  randomly  selected  1s  and 1s.  This  list  can  be  generated  in  many  ways.  Here  is  one
straightforward implementation, generating a list of ten steps.

In[1]:= Table 1 Random Integer , 10

Out[1]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Using FoldList, we can generate a list of the n 1 locations of a one-dimensional
n-step walk, which starts at the origin.

In[2]:= FoldList Plus, 0, %

Out[2]= 0, 1, 2, 1, 0, 1, 0, 1, 2, 3, 4

We can now write the program walk1D to generate a list of the step locations of an
n-step random walk, originating at the origin.

In[3]:= walk1D n_ : FoldList Plus, 0, Table 1 Random Integer , n

Here is a ten-step one-dimensional random walk using this walk1D program.

In[4]:= walk1D 10

Out[4]= 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2
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A list  of  the  step  locations  can  also  be  generated without  first  creating a  list  of  the
step increments, using the nesting operation.

In[5]:= walk1D2 n_ : NestList # 1 Random Integer &, 0, n

This is just slightly faster than the previous approach.

In[6]:= n 106;

Timing walk1D n ; , Timing walk1D2 n ;

Out[7]= 0.461 Second, Null , 0.31 Second, Null

Finally, we can plot the random walk using ListPlot.

In[8]:= ListPlot walk1D 1000 , PlotJoined True ;
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The two-dimensional random walk

The random walk model in two or more dimensions is more complicated than the random
walk  in  one  dimension.  Although  each  step  of  a  one-dimensional  walk  is  at  0  degrees
(forward) or 180 degrees (backward)  with respect to the preceding step, in higher dimen-
sions each step can take a range of orientations with respect to the previous step.

We will first consider a random walk on a lattice. Specifically, we will look at a lattice
walk on the two-dimensional square lattice. This walk consists of steps of uniform length,
randomly taken in the North, East, South, or West direction. The list of the possible step
increments in this walk is given by the compass directions.

In[9]:= NSEW 0, 1 , 1, 0 , 0, 1 , 1, 0

Out[9]= 0, 1 , 1, 0 , 0, 1 , 1, 0

Here is a list of five step increments.

In[10]:= n 5;

NSEW Table Random Integer, 1, 4 , n

Out[11]= 0, 1 , 0, 1 , 1, 0 , 0, 1 , 1, 0
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Here then is a program, called walk2D  that  generates a list of  the step locations of
an n-step lattice walk starting at the origin {0, 0}.

In[12]:= walk2D n_ :

Module NSEW 0, 1 , 1, 0 , 0, 1 , 1, 0 ,

FoldList Plus, 0, 0 ,

NSEW Table Random Integer, 1, 4 , n

Here is a ten-step lattice walk in two dimensions.

In[13]:= walk2D 10

Out[13]= 0, 0 , 1, 0 , 0, 0 , 0, 1 , 1, 1 ,

0, 1 , 1, 1 , 1, 2 , 2, 2 , 2, 1 , 2, 2

Finally,  here  is  a  short  function  to  generate  a  two-dimensional  off-lattice  walk.  A
random angle, , is chosen between 0 and 2  and then a pair consisting of {cos , sin } is
generated. FoldList then iterates the process of adding one pair to the previous as above.

In[14]:= walk2DOffLattice n_ :

FoldList Plus, 0, 0 ,

Map Cos # , Sin # &, Table Random Real, 0, 2 , n

Visualizing the random walk

We  will  create  a  snapshot  of  the  path  of  the  two-dimensional  walk  using  the  graphics
primitive Line to draw lines between successive points in the walk.

In[15]:= ShowWalk2D coords_, opts___ :

Show Graphics Line coords , opts, AspectRatio Automatic

Here  we  have  set  the  value  of  the AspectRatio  option  to Automatic  so  that
steps in the x and y directions will appear to have equal lengths in the plot. This option can
be  overwritten by  specifying a  different value in  the  list  of  options  given by opts.  Note
the  use  of  the  triple  blank  in  the  definition  of ShowWalk2D.  The  pattern opts___

matches any sequence (possibly empty) of rules which are used here to govern the display
of the graphic by changing certain options to the Graphics function. It is important that
opts  appears before  the  option AspectRatio.  This  will  allow  you  to  override  this  (or
any) option value. If Mathematica sees an option listed more than once in a list of options,
it  will  only  use  the  first  such  option.  If opts  had  come  at  the  end of  this  function,  you
would not be able to change the value for AspectRatio.
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Here is a 125-step off-lattice walk.

In[16]:= ShowWalk2D walk2DOffLattice 125 , Axes Automatic ;
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And here is a 25-step two-dimensional lattice walk.

In[17]:= ShowWalk2D walk2D 25 ;

A lattice walk repeatedly revisits sites that have been previously visited in the course
of  its meandering. As a result, it is difficult, and usually impossible, to discern the history
of the walk from a snapshot of the path. The best way to see the entire evolution process of
the walk in an unobstructed fashion is to create an animation.

Creating an animation of a random walk in Mathematica  is straightforward. This can
be explained using a short lattice walk as an example.

In[18]:= walk walk2D 10

Out[18]= 0, 0 , 1, 0 , 1, 1 , 1, 2 , 0, 2 ,

0, 1 , 0, 0 , 1, 0 , 1, 1 , 2, 1 , 1, 1

The animation consists  of a sequence of graphics cells where the first cell shows the
first step of the walk (consisting of a line drawn between the first two elements in walk for
example) and each succeeding cell shows one more step than the previous cell. In general
then, the mth cell is drawn using the Line function and the first m 1 elements in walk.
All of the graphics cells are drawn by mapping Show across the walk list.

Map[(Show[Graphics[Line[Take[walk, #]]]])&, 
   Range[2, Length[walk] ]]

In general, objects in a graphics cell are scaled to fill the monitor screen. Therefore,
if we simply create cells, each containing a different number of steps of the walk using the

354 An Introduction to Programming with Mathematica



above graphics command, steps in one cell will appear to be of a different length than the
same steps in other cells. This will result in a jerky looking animation.

We can make all of the step lengths in all of the graphics cells uniform by using the
PlotRange  option  with  the  ordered  pair  of  the  minimum  and  maximum  values  of  the
components  of  the random walk in each direction, {{xmin,xmax},{ymin,ymax}}.  This
quantity  can  be  determined  by  separating  the x  and y  components  of  the  walk  using
Transpose and then mapping an anonymous function containing Min and Max on to it.

In[19]:= Map Min # , Max # &, Transpose walk

Out[19]= 2, 0 , 0, 2

Here then, is the overall program for creating the animation.

In[20]:= AnimateWalk2D coords_, opts___ :

Map

Show Graphics

Line Take coords, # ,

opts, AspectRatio Automatic,

PlotRange

Map Min # 1, Max # 1 &, Transpose coords &,

Range 2, Length coords

Note:  We  have  added  1  to  the  maximum x  and y  values  and  subtracted  1  from the
minimum x  and y  values  in  order  to  enhance  the  display  by  making  the  graphics  a  little
smaller  inside  its  bounding  box.  You  might  also  wish  to  replace Map[Show[…]]  with
Scan[Show[…]]. Scan is quite similar to Map but its main difference is that it does not
return an expression, so the Show is essentially a side effect of this computation.

While we can not see the random walk animation run in a book, we can look at the
graphics cells in the animation by creating a graphics array.

In[21]:= Show GraphicsArray Partition

AnimateWalk2D walk, DisplayFunction Identity , 5 ;

The option DisplayFunction Identity  is  used to suppress  the display  of the
individual  graphics  cells  created  by  the AnimateWalk  function  (the GraphicsArray

has its own DisplayFunction function option whose default value is $DisplayFunc
tion) and the Partition function is used to specify the number of graphics in each row
of the GraphicsArray picture.
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The three-dimensional random walk

For  a  three-dimensional  random  lattice  walk,  we  will  use  the  vertices  of  a  cube  as  our
directional  vectors.  We  could  input  them  manually,  but  they  are  defined  in  the
Graphics`Polyhedra` package so we may as well use those.

In[22]:= <<Graphics`Polyhedra`

In[23]:= NSEW3 Vertices Cube
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Here then is the lattice walk in three dimensions.

In[24]:= walk3D n_ : FoldList Plus, 0, 0, 0 ,

NSEW3 Table Random Integer, 1, 8 , n

In[25]:= walk3D 5

Out[25]= 0, 0, 0 ,
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We can visualize this with only a slight modification to the ShowWalk2D function.

In[26]:= ShowWalk3D coords_, opts___ :

Show Graphics3D Line coords , opts, AspectRatio Automatic

In[27]:= ShowWalk3D walk3D 1200 ;
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Finally, we create an off-lattice walk in three dimensions.

In[28]:= walk3DOffLattice n_ :

FoldList Plus, 0, 0, 0 , Map Cos # , Sin # ,
#

2
&,

Table Random Real, 2 , 2 , n

In[29]:= ShowWalk3D walk3DOffLattice 1000 ;

Adding options and defaults

When writing your  own programs,  it  is  often difficult  to  predict  how a user  will want to
use  your  functions.  Programmers  usually  try  to  provide  a  variety  of  ways  to  use  their
functions  (allowing  for  different  types  of  input,  for  example),  or  sometimes  they  write
separate functions to handle special cases. The problem with having a separate function for
each special case is that the user can soon become overloaded with the variety of functions
to learn.

In  this  section,  we  will  show  how  to  write  options  for  your  functions  so  that  they
behave like the built-in options in Mathematica. (In Chapter 12 we will add some error-trap-
ping  and  messaging  and  we  will  see  how  to  incorporate  the  use  of  options  into  a  full-
fledged package.) 

The use of options and defaults in your programs allows you to minimize the use of
many parameters and function names for the user to remember. For example, the built-in
function FactorInteger  has  an  option GaussianIntegers,  which,  when  set  to
True, will factor a number over the Gaussian integers.

In[30]:= FactorInteger 5, GaussianIntegers True

Out[30]= , 1 , 1 2 , 1 , 2 , 1

11 Examples and applications 357



The alternative to such an option would be to have a separate function, say Factor
GaussianInteger,  that  the  user  would  have  to  use.  Since  the  main  process  here  is
factorization of numbers, it makes sense to have one function that covers various situations
allowing for factorization over different domains by specifying different options.

On  the  other  hand,  polynomial  factorization  is  a  fundamentally  different  operation
from integer factorization, and so a different function is used for that.

In[31]:= Factor 27 x5 81 x4 y 9 x3 y2 73 x2 y3 32 x y4 4 y5

Out[31]= 3 x y 3 x 2 y 2

In  the  previous  sections  we  developed  five  separate  functions, walk1D,  walk2D,
walk2DOffLattice,  walk3D,  and walk3DOffLattice  that  each  generated random
walks, the only differences being in the dimension of the walk or whether the walk was on
the lattice or not. It is not practical to expect the user to remember five different function
names  for  what  is  essentially  the  same  process.  It  would  be  far  easier  to  create  only  one
function RandomWalk and set the dimension or lattice walk through the use of options.

We will define two options to RandomWalk, Dimension and LatticeWalk. The
LatticeWalk  option will be specified as a rule and when set to True,  it will generate a
lattice walk; when set to False, it will generate an off-lattice walk. The following defini-
tion both defines options for the RandomWalk function and specifies their default values.

In[32]:= Options RandomWalk LatticeWalk True, Dimension 2

Out[32]= LatticeWalk True, Dimension 2

If you were now to ask for information about the RandomWalk function, you would
see these new options listed.

In[33]:= ?RandomWalk

Global`RandomWalk

Options RandomWalk LatticeWalk True, Dimension 2

As  far  as  the LatticeWalk  option  is  concerned,  we  will  use  this  option  in  the
RandomWalk function by branching to either a lattice walk or an off-lattice walk, depend-
ing  upon  the  value  of  this  new  option.  We  will  need  to  extract  the  value  of  this  option
inside the RandomWalk function, which we do as follows:

latticeQ = LatticeWalk/.Flatten[{opts,Options[RandomWalk]}];
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From  right  to  left,  the  values  of  the  options  to RandomWalk  are  substituted  into
opts; then these (rules) are substituted to extract the value of LatticeWalk. This value
is then assigned to the symbol latticeQ. 

Similarly, we will extract the value of the option Dimension. But we want to use the
definitions  given  in  the  previous  sections  to  branch  appropriately,  depending  upon  the
value of Dimension;  that is, depending upon whether we wish a 1D, 2D, or 3D random
walk. The Which function is perfect for this task. 

Which[

dim == 1, use walk1D definition,
dim == 2, use walk2D definition,
dim == 3, use walk3D definition]

Here then is the full function RandomWalk, using this option structure.

In[34]:= <<Graphics`Polyhedra`

In[35]:= RandomWalk n_Integer, opts___?OptionQ :

Module dim, latticeQ ,

latticeQ, dim LatticeWalk, Dimension .

Flatten opts, Options RandomWalk ;

Which

dim 1, walk1D n ,

dim 2, If latticeQ, walk2D n , walk2DOffLattice n ,

dim 3, If latticeQ, walk3D n , walk3DOffLattice n

Notice that if the LatticeWalk option has been set to True, then the first branch
of  the If  statement  is  followed,  giving  the  lattice  walk.  If LatticeWalk  has  any  other
value (False for example), then the off-lattice definition is used.

This  uses  the default  value of LatticeWalk  and the default  value of Dimension
to create five steps of a two-dimensional lattice walk.

In[36]:= RandomWalk 5

Out[36]= 0, 0 , 0, 1 , 1, 1 , 1, 0 , 0, 0 , 0, 1

This creates an off-lattice walk.

In[37]:= RandomWalk 4, LatticeWalk False

Out[37]= 0, 0 , 0.282568, 0.959247 , 0.584254, 0.460629 ,

1.13491, 0.374105 , 1.82222, 1.10047
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Here is a three-dimensional lattice walk.

In[38]:= RandomWalk 4, Dimension 3

Out[38]= 0, 0, 0 ,
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, 2 , 2 , 0 ,
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2
2 ,
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2
2 ,

1

2
, 2 , 0, 0

And here is a three-dimensional off-lattice walk.

In[39]:= RandomWalk 4, LatticeWalk False, Dimension 3

Out[39]= 0, 0, 0 , 0.895264, 0.445536, 0.426506 ,

1.53545, 1.21375, 0.212921 ,

1.47703, 2.21204, 0.0277754 ,

2.30801, 2.76835, 0.566116

Just as we have combined our various random walks into one function, so should we
combine the functions to visualize these walks, using Which to determine which branch to
take.

In[40]:= ShowWalk coords_, opts___ : Which

Dimensions coords 2 2,

Show Graphics Line coords , opts, AspectRatio Automatic ,

Dimensions coords 2 3, Show

Graphics3D Line coords , opts, AspectRatio Automatic

Here then are several examples of these functions.

In[41]:= ShowWalk RandomWalk 104, Dimension 2, LatticeWalk False ;
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In[42]:= ShowWalk RandomWalk 103, Dimension 3, LatticeWalk True ;

In[43]:= ShowWalk RandomWalk 104, Dimension 2 ,

Frame True, Background GrayLevel 0.9 ;
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In the next chapter we will see how to bundle up all of these functions into a self-con-
tained package with various implementation details hidden from the user.

Error-trapping and messaging

In addition to error-trapping, messaging, and usage messages, another (even more impor-
tant)  way  to  make  user-defined  functions  behave  like  built-in  functions  is  to  check  the
arguments to each function carefully and issue error messages when appropriate.

Good  programming  practice  dictates  that  we  try  to  anticipate  how  a  user  of  our
programs  will  interact  with  them.  In  particular,  it  is  good  programming  style  to  try  and
catch any errors the user may make and respond with an appropriate message. For exam-
ple, the built-in Sin  function will report an error and give you a warning message if you
give it the wrong number of arguments.

In[44]:= Sin 1.2, 3.4

Sin::argx :

Sin called with 2 arguments; 1 argument is expected. More…

Out[44]= Sin 1.2, 3.4

One of the conditions we might want to check for with our RandomWalk function is
that  the user  enters a positive  integer as its  first  argument.  Let  us first  write the warning
message.
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In[45]:= RandomWalk::rwn "Argument `1` is not a positive integer.";

We can put a simple trap for the condition in the body of RandomWalk:

If[Not[IntegerQ[n]&&n>0], Message[RandomWalk::rwn,n],…]

If the first argument to RandomWalk passes the test in this If statement (that is, if it
fails to be an integer or fails to be greater than 0), then a message will be generated substi-
tuting the argument n for `1` in the rwn message above.

Here is the rewritten RandomWalk function with the error trap included.

In[46]:= Clear RandomWalk

In[47]:= Options RandomWalk LatticeWalk True, Dimension 2 ;

In[48]:= <<Graphics`Polyhedra`

In[49]:= RandomWalk n_, opts___?OptionQ : Module dim, latticeQ ,

If Not IntegerQ n && n 0 , Message RandomWalk::rwn, n ,

latticeQ, dim LatticeWalk, Dimension .

Flatten opts, Options RandomWalk ;

Which

dim 1, walk1D n ,

dim 2, If latticeQ, walk2D n , walk2DOffLattice n ,

dim 3, If latticeQ, walk3D n , walk3DOffLattice n

Now if we pass a noninteger or negative argument to RandomWalk, the warning will
be triggered.

In[50]:= RandomWalk 6

RandomWalk::rwn : Argument 6 is not a positive integer.

In[51]:= RandomWalk 10.5

RandomWalk::rwn : Argument 10.5` is not a positive integer.
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Creating Help Browser documentation

Whenever you distribute any Mathematica  applications,  users will appreciate the inclusion
of a set of help files that describe your application in some detail. You can incorporate this
documentation  into Mathematica’s  Help Browser so that  users access  your documentation
in the same manner as they access the documentation that comes with Mathematica. In this
section we will describe how to go about doing that.

The directory  and file structure  of your  application  is  referred to as its layout.  Your
documentation,  which  will  consist  of Mathematica  notebooks,  can  be  viewed  in  the  Help
Browser by creating some specific directories and placing certain files in these directories.

The  top-level  directory  name  we  will  use  for  our  random  walk  application  will  be
RandomWalks.  Let  us  first  identify  the  directory  on  your  computer  system  where  you
should  place  this  RandomWalks  directory.  It  is  common  convention  to  put  user-defined
applications in one of several Applications directories. The full path to these directories on
your computer can be given as follows:

In[52]:= ToFileName $BaseDirectory, "Applications"

Out[52]= C:\Documents and Settings\All Users\

Application Data\Mathematica\Applications\

In[53]:= ToFileName $UserBaseDirectory, "Applications"

Out[53]= C:\Documents and Settings\Paul Wellin\

Application Data\Mathematica\Applications\

$BaseDirectory  is  writable  by  anyone  with  administrative  privileges  on  your
computer and is readable by everyone on your computer. $UserBaseDirectory is only
writable and readable by the currently logged in user of your computer. For our purposes
here we will use $BaseDirectory, but either location is fine.

Inside  the  base  directory  there  should  be  an  Applications  directory.  If  it  does  not
already  exist  you  will  have  to  create  it.  Then  the  following  directories  for  our  random
walks application should be created inside the applications directory.

RandomWalks
Documentation

English
FrontEnd

Palettes
StyleSheets

Kernel
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So the directory StyleSheets should be created inside the FrontEnd directory which
should  be  a  subdirectory  of  RandomWalks.  Any  style  sheets  that  you  define  for  your
application  should  go  in  the  FrontEnd/StyleSheets  directory.  Similarly  for  any  palettes
that you want to be associated with your application. The kernel directory can contain an
init.m file that may have some Mathematica commands that you want to be evaluated every
time your application is loaded.

All of the notebooks that you want to appear in the Help Browser need to be placed
in  the  Documentation/English  directory.  For  example,  in  our  random  walks  application,
we  have  placed  the  notebook  RandomWalks.nb  inside  of  the  directory  RandomWalks/-
Documentation/English.

Finally,  you  must  create  the  text  file  BrowserCategories.m  in  the  directory
Documentation/English.  This  file  will  identify  precisely  how  your  documentation  will
appear  in  the  Help  Browser.  Here  is  a  very  simple  BrowserCategories.m  file  from  the
RandomWalks example.

BrowserCategory["Random Walks", None, {
Item["Introduction", "RandomWalks.nb", CopyTag->"rw:1"],
Item["The One-Dimensional Random Walk", "RandomWalks.nb",

CopyTag->"rw:2"],
Item["The Two-Dimensional Random Walk", "RandomWalks.nb",

CopyTag->"rw:3"],
Item["Visualizing the Random Walk", "RandomWalks.nb", CopyTag->"rw:4"],
Item["The Three-Dimensional Random Walk", "RandomWalks.nb",

CopyTag->"rw:5"],
Item["Adding Options and Defaults", "RandomWalks.nb", CopyTag->"rw:6"],
Item["Error-Trapping and Messaging", "RandomWalks.nb",

CopyTag->"rw:6"],
Item["Creating Help Browser Documentation", "RandomWalks.nb",

CopyTag->"rw:7"]
}]

The  opening BrowserCategory  takes  three  arguments.  The  first  is  the  name of
the category as it will appear at the top level in the Help Browser. The second argument is
the name of the subdirectory  in which your notebook source files live. If it is the same as
the directory in which the BrowserCategories.m lives (which is typically where it is), then
use None as the name. Finally, the third argument is a list of Item commands. The Item
function  takes  the following form: Item[name, filename, options].  The name  gives the
subcategory  name  (typically  section  or  subsection  names  in  your  source  notebook),  the
filename  is  the  file  in  which  the  documentation  is  found,  and  the options  typically  are
tagging commands.
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In  our  example  BrowserCategories.m  file  we  have  used CopyTag  to  identify  the
specific  set  of  cells  within  the  RandomWalks.nb  notebook  that  are  associated  with  a
particular Item. In the notebook itself, you will have to tag the corresponding cells using
the Add/Remove Cell Tags command in the Find menu or using a tool such as AuthorTools
(an application itself that comes with Mathematica) to assist you with doing this somewhat
automatically.

Once your BrowserCategories.m file is created and placed in the Documentation/En-
glish  directory  of  your  application,  you  will  need  to  rebuild  the  Help  index  of  the  Help
Browser by choosing that item under the Help menu. The documentation for your applica-
tion should then appear in the Help Browser under the Add-ons & Links category.

You  should  feel  free  to  modify  the  RandomWalk  example  application  that  comes
with the IPM3 materials by editing the BrowserCategories.m file or using it as a template
for your own applications.

Exercises

1. The version of RandomWalk developed in this section generates one-dimensional
walks of unit step. Modify RandomWalk so that the step size is a uniformly distrib-
uted random number between 1 and 1.

2. Modify ShowWalk so that it produces a ListPlot when passed something of the
form RandomWalk[n,Dimension 1].

3. The RandomWalk program developed in this section is not set up properly to take 
unit steps in three dimensions on the off-lattice walk. The following formulas can be
used to represent a point parametrically on the unit sphere.

x , cos 1 cos2

y , sin 1 cos2

z cos

Use these formulas to rewrite walk3DOffLattice so that off-lattice three-dimen-
sional walks take unit steps.

4. The square end-to-end distance of a two-dimensional walk is defined as 
xf xi

2 yf yi
2, where xi, yi  and xf , yf  are the initial and final locations of the

walk, respectively. Assuming the initial point is the origin, then this simplifies to
xf

2 yf
2. Write a function SquareDistance that takes a two-dimensional walk as an
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argument and computes the square end-to-end distance. Write a usage message and 
include this function as a publicly exported function in the RandomWalks.m package.

5. Create a function AnimateWalk that takes RandomWalk[n,Dimension 2] as 
an argument and produces a series of graphics that can be animated by displaying in
quick succession. Include in your graphics a red disk that moves to the “current
position” in the walk. The viewer will then see this red disk moving along on the
random walk as the animation is played.

6. Modify AnimateWalk from the previous exercise so that it can also accept the
output from RandomWalk[n,Dimension 3].

11.3 The Game of Life
A cellular automaton is a system of discrete lattice sites, each of which has a value (usually
an integer) associated with it. The values of the sites change simultaneously, in a succession
of discrete time steps, by applying rules that depend on the values of a site and the sites in
its vicinity.

Cellular  automata  have  been  used  to  model  various  physical,  chemical,  biological,
and  social  phenomena  (Gaylord  and  Wellin  1995).  In  principle,  any  process  that  can  be
described by an algorithm or program can be modeled by a cellular automaton.

The Game of  Life, created by the British mathematician John Conway,  is  the most
well-known  cellular  automaton.  It  is  the  forerunner  of  so-called artificial  life  (or a-life)
systems  and it  was  the first  program run on the first  parallel  processing computer.  It  has
been  estimated  that  more  computer  time  has  been  spent  (or  wasted,  depending  on  your
point of view) running the Game of Life program than any other program.

We will  show how to  program the Game of  Life in Mathematica,  so  that  it  is  opti-
mized for efficiency (run speed). This is a good application to work on at this point as its
implementation covers many of the topics from earlier chapters of the book: functional vs.
procedural programming, rule-based programming, setting attributes, and many more.

The Game of Life is played on a two-dimensional square Boolean lattice where sites
have values of either 0 or 1. A site with value 1 is said to be alive  and a site with value 0 is
said to be dead.  To illustrate the computations involved in the Game of Life program, we
will use the following small lattice system.
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In[1]:= GameBoard Table Random Integer , 4 , 4 ;

TableForm GameBoard

Out[2]//TableForm=
1 0 0 0

1 0 0 1
0 0 1 1
0 0 1 1

In  order  to  update  a  site  of GameBoard,  the  sum  of  the  values  of  the  sites  in  its
neighborhood must be determined.

The neighborhood of a site in GameBoard consists of the site and the eight nearest
neighbor  sites  lying  North,  Northeast,  East,  Southeast,  South,  Southwest,  West,  and
Northwest of the site.

The  neighborhood  of  a  site  located  in  the  interior  of  the  lattice  is  obvious.  For
example, the nearest neighbor sites to the {2,3}  site (which lies in the second row, third
column of GameBoard) are the {1,3}, {1,4}, {2,4}, {3,4}, {3,3}, {3,2}, {2,2},
and {1,2} sites.

The neighborhood of a site lying on one of the borders of the lattice is less apparent.
Employing what are known as periodic boundary conditions, some of the nearest neighbor
sites are taken from the opposing borders. A non-corner site located in the first or last row
(column)  of  the  board  has  the  corresponding  site  in  the  last  or  first  row  (column)  as  a
nearest  neighbor  site,  respectively,  and  a  corner  site  has  the  two  sites  in  the  opposing
corner as two of  its  nearest neighbor sites.  For example, the nearest neighbor sites to the
{2,4}  site  (which  lies  in  the  second  row,  last  column  of GameBoard)  are  the {1,4},
{1,1}, {2,1}, {3,1}, {3,4}, {3,3}, {2,3}, and {1,3} sites.

The 16 neighborhoods of the sites in the lattice system can be generated in two steps.
An expanded matrix is created by first copying the first element in each row on to the

end of  the row and copying the last  element in each row on to the front of the row, and
then copying the first row on to the end of the list of rows and copying the last row on to
the  front  of  the  list  of  rows.  The following anonymous  function  can  be  used  to  perform
this operation.

In[3]:= wrap Join Last #1 , #1, First #1 &;
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The application of the wrap function to GameBoard is shown below.

In[4]:= wrap Map wrap, GameBoard TableForm

Out[4]//TableForm=
1 0 0 1 1 0
0 1 0 0 0 1
1 1 0 0 1 1

1 0 0 1 1 0
1 0 0 1 1 0
0 1 0 0 0 1

The  expanded  matrix  created  by  applying  the wrap  function  to  the  lattice  can  be
partitioned into overlapping three-by-three matrices to create a list  of the neighborhoods
of the sites in the lattice.

In[5]:= Neighborhoods Partition

wrap Map wrap, GameBoard , 3, 3 , 1, 1 TableForm

Out[5]//TableForm=
1 0 0
0 1 0
1 1 0

0 0 1
1 0 0
1 0 0

0 1 1
0 0 0
0 0 1

1 1 0
0 0 1
0 1 1

0 1 0
1 1 0
1 0 0

1 0 0
1 0 0
0 0 1

0 0 0
0 0 1
0 1 1

0 0 1
0 1 1
1 1 0

1 1 0
1 0 0
1 0 0

1 0 0
0 0 1
0 0 1

0 0 1
0 1 1
0 1 1

0 1 1
1 1 0
1 1 0

1 0 0
1 0 0
0 1 0

0 0 1
0 0 1
1 0 0

0 1 1
0 1 1
0 0 0

1 1 0
1 1 0
0 0 1

Given the neighborhoods of the sites on the lattice, we can determine whether a site
is  alive  or  dead  and  how many  of  its  nearest  neighbor  sites  are  alive.  These  are  the  two
quantities which appear in the rules used to update a site.

The three “life and death” rules for updating a site in the lattice are:

1. A living site (a site with value 1) with exactly two living nearest neighbor sites 
remains alive (its value is updated to 1).

2. Any site (a site with value 0 or 1) with three living nearest neighbor sites stays
alive or is born (its value is updated to 1).

3. Any other site (a site with value 0 or 1) remains dead or dies (its value is updated
to 0).
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A conditional function which, given the neighborhood of a site, applies the appropri-
ate rule is given below.

In[6]:= LiveOrDie lis_ : Module neighbors ,

neighbors Count lis, 1, 2 ;

If lis 2, 2 1 && neighbors 4 neighbors 3, 1, 0

Applying the LiveOrDie  function to the neighborhoods of GameBoard  yields the
updated GameBoard.

In[7]:= Map LiveOrDie, Neighborhoods, 2 TableForm

Out[7]//TableForm=
1 1 1 0
1 1 1 0
0 1 0 0

1 1 1 0

Finally,  the  evolution  of  the  lattice  over t  time  steps,  or  until  it  stops  changing,  is
carried out using FixedPointList. 

FixedPointList[Map[LiveOrDie,
 Partition[wrap[Map[wrap,#]],{3,3},{1,1}],{2}]&,GameBoard,t]

The  code  fragments  developed  above  can  be  used  to  construct  a  program  for  the
Game  of  Life.  However,  while  this  program  will  work,  it  is  unduly  slow.  A  much  more
efficient  (faster  running)  program  for  the  Game  of  Life  can  be  developed  by  following
some general Mathematica programming guidelines.

The  most  efficient  way  to  program  in Mathematica  is  to  utilize  the  following
approaches as much as possible: 

• avoid looping

• minimize conditional branching

• manipulate data structures in their entirety

• employ built-in Mathematica functions

• use anonymous functions, higher-order functions, and nested function calls

• create look-up tables
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The use  of  these  principles  is  well  illustrated  in  the Game of  Life program we will
now develop.

A  matrix  whose  elements  are  the  number  of  living,  nearest  neighbor  sites  to  the
corresponding sites in the Game of Life lattice can be computed directly from the lattice
without  having  to  first  create  the  neighborhoods  of  the  lattice,  using  the  following
function.

In[8]:= liveNeighbors mat_ :

Apply Plus, Map RotateRight mat, # &, 1, 1 , 1, 0 ,

1, 1 , 0, 1 , 0, 1 , 1, 1 , 1, 0 , 1, 1

The liveNeighbors  function makes use of the fact that Mathematica  adds lists by
vector  addition,  adding  the corresponding  elements of  the lists.  Applying the function to
the GameBoard example, we get

In[9]:= liveNeighbors[GameBoard]//TableForm

Out[9]//TableForm=
3 3 3 5
3 3 3 4

4 3 4 5
3 3 3 4

Comparing this output with the Neighborhoods matrix created earlier, we can see
that  each  element  in liveNeighbors[GameBoard]  is  the  number  of  living  nearest
neighbor sites to the corresponding site in GameBoard.

We can write down site update rules, whose two arguments are the value of a site and
the sum of the values of the nearest neighbor sites in its neighborhood. These rules are a
direct translation of the life and death rules from words to code.

In[10]:= update 1, 2 : 1

update _, 3 : 1

update _, _ : 0

SetAttributes update, Listable ;

The update rule is given the Listable  attribute, so, when it is applied to a matrix
of site values and also to a matrix of the number of living neighbors to these sites, a matrix
is created whose elements are obtained by applying the update function to the correspond-
ing  elements  of  the  two  matrices.  This  behavior  can  be  demonstrated  using  a  general
function, g, with the GameBoard and liveNeighbors[GameBoard] matrices.

In[14]:= SetAttributes g, Listable ;
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In[15]:= g GameBoard, liveNeighbors GameBoard

Out[15]= g 1, 3 , g 0, 3 , g 0, 3 , g 0, 5 ,

g 1, 3 , g 0, 3 , g 0, 3 , g 1, 4 ,

g 0, 4 , g 0, 3 , g 1, 4 , g 1, 5 ,

g 0, 3 , g 0, 3 , g 1, 3 , g 1, 4

Using the update  rules with the GameBoard  and liveNeighbors  matrices, and
comparing the result obtained earlier by applying the LiveOrDie function to the Neigh
borhoods of GameBoard, we see that each site in the board has been correctly updated.

In[16]:= update GameBoard, liveNeighbors GameBoard TableForm

Out[16]//TableForm=
1 1 1 0
1 1 1 0
0 1 0 0
1 1 1 0

Note: While the three update rules overlap with one another, there is no confusion as
to  when  each  rule  is  used  because Mathematica  applies  more  specific  rules  before  more
general rules. Thus, while a site with value 1 and 2 nearest neighbor sites with value 1 will
satisfy  both  the  first  and  third  rules,  the  first  rule  is  used  because  it  is  the  most  specific
applicable rule. Similarly, while a site having three nearest neighbor sites with value 1 will
satisfy  both  the  second  and  third  rules,  the  second  rule  is  used  because  it  is  the  most
specific applicable rule. The third rule is more general than the other two rules and hence
is only used if neither of the other rules can be used.

The evolution of the lattice over t time steps can be carried out using an anonymous
function, where # represents the lattice configuration in FixedPointList.

update[#, liveNghbrs[#]]&

Using the GameBoard example and three time steps to illustrate this, gives

In[17]:= FixedPointList update #, liveNeighbors # &, GameBoard, 3

Out[17]= 1, 0, 0, 0 , 1, 0, 0, 1 , 0, 0, 1, 1 , 0, 0, 1, 1 ,

1, 1, 1, 0 , 1, 1, 1, 0 , 0, 1, 0, 0 , 1, 1, 1, 0 ,

0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 ,

0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0
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Let us take the Transpose  of this result in order to interchange rows and columns
and facilitate a comparison with our previous results.

In[18]:= Map Transpose, %

Out[18]= 1, 1, 0, 0 , 0, 0, 0, 0 , 0, 0, 1, 1 , 0, 1, 1, 1 ,

1, 1, 0, 1 , 1, 1, 1, 1 , 1, 1, 0, 1 , 0, 0, 0, 0 ,

0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 ,

0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0

The code fragments given above are combined into the Game of Life program.

In[19]:= LifeGame n_Integer?Positive, steps_ :

Module gameboard, liveNeighbors, update ,

gameboard Table Random Integer , n , n ;

liveNeighbors mat_ :

Apply Plus, Map RotateRight mat, # &,

1, 1 , 1, 0 , 1, 1 , 0, 1 ,

0, 1 , 1, 1 , 1, 0 , 1, 1 ;

update 1, 2 : 1;

update _, 3 : 1;

update _, _ : 0;

SetAttributes update, Listable ;

FixedPointList

update #, liveNeighbors # &, gameboard, steps

The  input  parameters, n  and steps,  are,  respectively,  the  linear  size  of  the  lattice
and the maximum number of time steps carried out.

Finally, the focus in playing the Game of Life is on identifying various patterns of 1s
amongst the 0s, and observing their behaviors. This is best done using a graphical, rather
than numerical, display.

First we generate a Game of Life on a 100 100 board, and run it for 150 generations.

In[20]:= g LifeGame 100, 150 ;
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ArrayPlot is well-suited for taking arrays of numbers and making plots, explicitly
specifying how to color alive and dead sites. This shows only the last frame from the game.

In[21]:= ArrayPlot Last g , ColorRules 0 Black, 1 Red ;

Below is the code to generate an array showing only every 25th iteration.

In[22]:= garray Map

ArrayPlot #, ColorRules 0 Black, 1 Red ,

DisplayFunction Identity &,

Table g i , i, 1, 150, 25

Out[22]= Graphics , Graphics , Graphics ,

Graphics , Graphics , Graphics

In[23]:= Show GraphicsArray garray

Out[23]= GraphicsArray

The  following  generates  an  animation  consisting  of  100  iterations  of  the  Game  of
Life on an initial 75 75 gameboard. We can not show the animation in a printed book, of
course, so we just indicate the input to evaluate.

In[24]:= AnimateLife lis_List :

Scan ArrayPlot #, ColorRules 0 Black, 1 Red &, lis

In[25]:= AnimateLife LifeGame 75, 100 ;
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Exercises

1. Define a new graphics function LifeGraphics that creates a raster array of color 
values. Set it up so that it takes an option Colors defined to have default values for
1 and 0 and such that you can give it your own coloring scheme. Then you will
display Life games with Show[LifeGraphics[LifeGame[n,steps]]].

2. The Game of Life is most interesting to watch when persistent patterns, known as 
life-forms, occur during the evolution process. One pattern that has been extensively
studied is known as the glider, which is defined by

glider x_, y_ :

x, y , x 1, y , x 2, y , x 2, y 1 , x 1, y 2

Modify the program for the Game of Life so that the lattice can be seeded with life
forms and observe the behavior of a glider (it should appear, disappear, and then
reappear in a shifted position every fifth generation). To better understand the use of 
the periodic boundary conditions, note what happens when a glider pattern moves
beyond a border of the game board. 

11.4 Implementing languages

Introduction to PDL

The Mathematica  programming  language  is  just  one  example  of  a  computer  language.
There are many, many others, including C and Fortran for general-purpose programming,
SQL for database queries, TEX and PostScript for typesetting, and on and on. The process-
ing of these languages shares some basic methods, which we will illustrate in this section by
implementing a mini Picture-Description Language, PDL.

PDL will be used to describe pictures consisting of simple shapes either contained in
or  next  to  one  another.  An  example  of  such  a  picture  is  shown  in  Figure  11.1;  it  is
described by the following picture specification.
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square (5)
 containing n/n (clear rectangle (5, 2)

 containing w/w (circle (2))
 containing c/c (circle (2))
 containing e/e (circle (2)))

 containing c/n (oval (3, 1)
   connecting sw/ne (square (1))
   connecting se/nw (square (1))
   connecting s/c (circle (1)))

The picture  in Figure 11.1 contains  one large and two small  squares,  one rectangle
(but  it  is  “clear;” that is,  invisible), four circles and an oval. The rectangle is  contained in
the square,  and in turn contains  three circles;  the oval is  contained in the square and has
the  two  small  squares  and  a  circle  connected  to  it.  The  numbers  in  parentheses  give the
sizes  of the shapes, and the odd-looking notations  like n/n  and se/nw  indicate how two
shapes are connected.

Figure 11.1: A picture produced by PDL

For  example,  the n/n  notation  on the  second line  says  that  the top  (or  “north”)  of
the rectangle is positioned next to the top of the square that contains it; the se/nw  nota-
tion  on  the  second  to  last  line  indicates  that  the  upper-left  (“northwest”)  point  of  the
square is placed next to the lower-right (“southeast”) point of the oval; on the last line, the
south point of the oval connects to the center of the circle.

We will write a function PDL that will take such a description (as a character string)
and convert it into Mathematica graphics primitives for display.
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Syntax

The  first  property  all  modern  computer  languages  share  is  that  their  syntax  can  be  for-
mally defined. The formal definition guides the implementation in a direct and simple way.
The  formal  definition  is  given  as  a context-free  grammar,  in  which  a  set  of  rules,  called
productions,  are  used  to  define  both  the  allowable  picture  specifications  and  the  syntactic
structure of those specifications. The formal syntax of PDL is given in Table 11.1.

In the PDL grammar, the names given in slanted or italic font are called variables. The
variables  generate sets  of  strings;  the legal  picture  specifications  are all  the strings gener-
ated  by  the  variable picture.  The  items  written  in typewriter  font  appear  literally  in
specifications.  Aside  from integer  (which,  by  definition,  generates  all  the  integers)  and
direction  (which,  by  definition,  generates  the  strings n,  e,  s,  w,  c,  ne,  se,  sw,  nw),  the
variables  generate  strings  in  the  following  way:  starting  with  a  variable,  replace  it  by  the
right-hand  side  of  any  rule  in  which  it  appears  on  the  left-hand  side;  then  continue  to
replace  variables  by  the  right-hand  sides  of  rules  for  those  variables  (or,  in  the  case  of
integer and direction, by any integer or direction) until a string without variables is obtained.
(When production 2 or 8 is applied, the variable just disappears.)

1. picture shape associations
2. associations
3. associations connection associations
4. associations containment associations
5. connection connecting direction direction picture
6. containment containing direction direction picture
7. shape color primitive size
8. color
9. color clear

10. primitive square

11. primitive circle

12. primitive oval

13. primitive rectangle

14. size integer size2
15. size2
16. size2 , integer

Table 11.1: Formal syntax of PDL
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Consider the picture specification which produces the picture shown in Figure 11.2.

square (20) containing c/w (oval (9, 18))

Figure 11.2: A simpler picture produced by PDL.

It  is  generated from picture  in this  way (where we have indicated the number of the
production being used in each case).

picture 1 shape associations

7 color primitive size associations

8 primitive size associations

10 square size associations

14 square integer size2 associations
square 20 size2 associations

15 square 20 associations

4 square 20 containment associations
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Parsing

A crucial observation is that the derivation of a string from a variable can be represented as
a tree, called a parse tree. The derivation above corresponds to the following tree.

picture 1

shape 7 associations 4

color 8 primitive 10 size 14 containment associations

square integer size2 15

20

Figure 11.3: A parse tree

Notice  that  there  is  no  need  to  include  the  variable  at  each  node;  the  production
number immediately determines the variable.

We  will  use  the  tree  representation of  the  input  –  or  a  very similar  representation,
omitting  uninteresting  things  like  parentheses  –  extensively.  The  goal  of parsing  is  to
transform the sequence of characters in the input into a parse tree. Given that form, we can
do  the  real  work:  finding  the  location  of  each  shape  and  generating  the Mathematica
graphics primitives to draw the picture.

The  parsing  phase  is  divided  into  two  steps, lexical  analysis  and parsing,  and  the
remainder  of  the  processing  is  also  divided  into  two  steps,  computing  information about
each  shape  in  the  picture  (especially,  its  location)  and  converting  this  information  into
graphics primitives. Thus, the function PDL is given by

In[1]:= IPM3`PDL`

In[2]:= ShowPicture p_ : Show Graphics p , AspectRatio Automatic

In[3]:= PDL input_ :

ShowPicture ConvertShapes ComputeShapes Parse Lex input
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For example, the following produces the graphic in Figure11.2.

In[4]:= PDL "square 20 containing c w oval 9, 18 " ;

Before  delving  into  programming  details,  we  will  finish  our  brief  “user’s  guide”
begun earlier. As we have seen, shapes can be clear, in which case they are not  drawn, or
regular,  in  which  case  they  are  drawn  in  black.  Each  shape  has  a  size  (one  integer  for
squares and circles, two for ovals and rectangles) with these meanings:

square : length of a side
circle : diameter
oval : horizontal and vertical diameters
rectangle : width and height

A  shape  can  contain  or  be  connected  to  any  number  of  other  shapes.  (Since  every
shape  has  an  explicit  size,  a  “contained”  shape  is  not  necessarily  completely  contained.)
The most  complicated aspect  of the language is  determining where shapes go, depending
upon the points  at  which they are connected. Each shape has a center and eight compass
points.  These are shown for each shape in Figure 11.4. When a shape is  connected to or
contained  in  another  shape,  the  two  directions  given  in  the  connecting  or  containing
phrase  match  up.  For  example,  Figure 11.5 shows the picture specified by square (4)

connected se/n (circle (2)).

11 Examples and applications 379



center

north

south

eastwest

northeast

southeastsouthwest

northwest

center

north

south

eastwest

northeast

southeastsouthwest

northwest

center

north

south

eastwest

northeast

southeastsouthwest

northwest

center

north

south

eastwest

northeast

southeastsouthwest

northwest

Figure 11.4: Compass points for the four types of shapes

In[5]:= PDL "square 4 connecting se n circle 2 " ;

The  top  (north)  of  the  circle  is  next  to  the  lower-right  (southeast)  corner  of  the
square. Similarly, Figure 11.6 shows an oval containing a rectangle.

In[6]:= PDL "oval 10,7 containing n n rectangle 1,3 " ;

The top of the oval touches the top of the rectangle. However, in both cases, the two
figures do not exactly touch; rather, a gap of size 0.1 is left between them. The difference
between connecting and containing is simply the direction of the gap.
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picture1 connecting d1 d2 picture2

In the above code, direction d2  of picture2  is placed at a point determined by finding
the d1  direction of picture1  and then moving 0.1 units away  from the center of picture1.  If
connecting is replaced by containing, the correction is 0.1 units toward the center of
picture1.

Finally,  the  rules  about  correcting  by  0.1  do  not  apply  if  either  direction  is c,  for
center. If the connecting directions are d/c or c/d, whatever d  is, it is not adjusted by 0.1
in either direction. (Thus, in this case it does not matter whether picture2 is connected or
contained.)  The  reader  is  urged  to  try  some  examples  using  the  code  provided  in  the
IPM3`PDL` package before continuing.

Lexical analysis

To return to the programming of the PDL language processor, we will start with a discus-
sion of the syntactic analysis phase, consisting of lexical analysis (or lexing) and parsing. This
division is conventional and appears in virtually all language processors.

Lexing  is  the  process  of  dividing  up  the  input  (a  character  string)  into  significant
syntactic  units,  called tokens.  (Think  of  the  entire  picture  specification  as  a  sentence,  the
characters of the input as the letters, and the tokens as the words; lexing groups the letters
into words, and parsing determines the syntactic  structure of the sentence.) The function
Lex is given a string and produces a list of symbols and numbers.

In[7]:= example "square 20 containing c w oval 9, 18 ";

In[8]:= Lex example

Out[8]= square, lparen, 20, rparen, containing, center, slash, west,

lparen, oval, lparen, 9, comma, 18, rparen, rparen, eof

In[9]:= Map Head, %

Out[9]= Symbol, Symbol, Integer, Symbol, Symbol,

Symbol, Symbol, Symbol, Symbol, Symbol, Symbol,

Integer, Symbol, Integer, Symbol, Symbol, Symbol

In  the  lexed  output,  we  have  also  replaced  special  characters  like  parentheses  by
symbols and we have added a final symbol, eof (a traditional name meaning “end of file”).

Symbols are a little more convenient than strings for what we want to do. However,
their  use  requires  that  we introduce  a  new operator  for  comparing  symbols  that  we have
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not needed until now, ===. The equality operator == works fine for numbers and strings,
and for lists of same, but not for symbols.

In[10]:= a, b a, b

Out[10]= True

In[11]:= a, b a, c

Out[11]= a, b a, c

Equal  (==)  can  tell  when two lists  of  symbols  are  identical,  but  not  when they are
different. SameQ (===) compares symbols for identity.

In[12]:= a, b a, b

Out[12]= True

In[13]:= a, b a, c

Out[13]= False

All the code used by Lex is shown in the following Program Listing 11.1. The basic
process is: find the first sequence of characters that form a token, say t, recursively lex the
remaining  characters,  and  join t  to  the  result.  Technicalities  arise  with  the  treatment  of
numbers and the desire to ignore blanks.

Needs["IPM3`BaseConvert`"]
(* LEXICAL ANALYSIS *)
mainRules = {
 {"(", y___} -> {lparen, y},
 {")", y___} -> {rparen, y},
 {",", y___} -> {comma, y},
 {"/", y___} -> {slash, y},
 {"c", "o", "n", "n", "e", "c", "t", "i", "n", "g", y___}
  -> {connecting, y},
 {"c", "o", "n", "t", "a", "i", "n", "i", "n", "g", y___}
  -> {containing, y},
 {"s", "q", "u", "a", "r", "e", y___} -> {square, y},
 {"c", "i", "r", "c", "l", "e", y___} -> {circle, y},
 {"o", "v", "a", "l", y___} -> {oval, y},
 {"r", "e", "c", "t", "a", "n", "g", "l", "e", y___}
  -> {rectangle, y},
 {"c", "l", "e", "a", "r", y___} -> {clear, y},
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 {"n", "e", y___} -> {northeast, y},
 {"s", "e", y___} -> {southeast, y},
 {"s", "w", y___} -> {southwest, y},
 {"n", "w", y___} -> {northwest, y},
 {"n", y___} -> {north, y},
 {"e", y___} -> {east, y},
 {"s", y___} -> {south, y},
 {"w", y___} -> {west, y},
 {"c", y___} -> {center, y}
};

convertDigits[L_]:= Map[If[DigitQ[#], StringToInteger[#], #]&, L]
numberRule = 
 {{m_?NumberQ, n_?NumberQ, y___} -> {10m+n, y}};
removeBlanks = { {" ", y___} -> {y} };Lex[input_]:=
 Module[{inp=FromCharacterCode/@ToCharacterCode[input]},
Lexaux[Join[convertDigits[inp],{eof}]//.removeBlanks]]

Lexaux[{eof}]:= {eof}
Lexaux[input_]:=
 Module[{lexed = If[NumberQ[First[input]],

   input //. numberRule, input /. mainRules]},
    Join[{First[lexed]}, Lexaux[Rest[lexed] //. removeBlanks]]]

Program Listing 11.2: Code for lexing PDL

The first  thing Lex  does is  “explode” the input string into a list of  character codes.
As  we  saw in  Section  7.5  in  the  chapter  on  recursion,  we can  do  whatever we  want  with
that  list;  however,  this  would  involve  looking  up  a  lot  of  character  codes,  so  a  simpler
approach is to convert each character code back to a string containing just that character.
So, in Lex, inp is a list containing each of the characters in input. convertDigits  is
applied to change all digit characters to numbers (for example, the string "4" becomes the
number 4), using StringToInteger  from the BaseConvert package. eof is added to
the  end  of  the  list.  As  final  preparation  before  calling Lexaux,  the  transformation  rule
removeBlanks  is  applied  repeatedly  (//.)  to  remove  all  leading  blanks.  Thus,  the
argument  to Lexaux  is  a  list  of  one-character strings,  numbers, and a final eof  symbol,
with the first element nonblank. Lexaux  repeatedly looks for characters that constitute a
token at the start of the list and replaces those characters by the token; it does this either
by a single use of a rule in mainRules or by repeated use of numberRule. It recursively
lexes  the  rest  of  the  list  and  returns  its  result.  We have  already  shown the  result  for  our
running example.
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Parse  takes  the  list  of  tokens  and,  if  it  is  a  legal  picture  specification,  returns  its
parse tree. The parser is the most interesting part of our language processor, as it shows a
strong link between the grammar specification (see the section above on PDL  syntax) and
the program.

Our method here is called top-down, or recursive descent, parsing. The idea is to build
the  parse  tree  by  starting  with  a  variable  and  letting  the  input  string  guide  us  in  adding
nodes  to  the tree by  telling us  which production  is  applicable.  For  example,  consider  the
following list of tokens.

{square, lparen, 20, rparen, containing, center, slash, west,
 lparen, oval, lparen, 9, comma, 18, rparen, rparen, eof}

Suppose  we wish to create a parse tree for this  string from the variable picture.  The
only  production  from picture  is  production  1,  so  we could  just  add  it  to  the tree without
even  looking  at  the  input.  However,  we would  also  like  to  report  any  syntactic  errors  as
soon as possible, so we will look at the first token in the input and see if it is legal at this
point.  It  so  happens  that  every  string  derivable  from picture  must  begin  with  one  of  the
words square,  circle,  oval,  rectangle,  or clear.  If  the first  token  is  not  one  of
these, we can report an error; if it is, we add shape and associations to the tree. We continue
by trying to use the variable shape  to match part of the list of tokens. Again, there is only
one production for shape (production 7), and, after checking, that square can be the first
token in a string derivable from shape, we add production 7 to the tree. The first part of the
right-hand side of production  7 is the variable color.  We have a choice now, production 8
or  9,  and  we  have  to  choose  correctly.  However,  it  is  clear  that square  is  not  the  first
token in a string derived using production 9, so it must be production 8 and we fill that in.
The  next  unfinished  part  of  the  tree  is  the  node  containing  the  variable primitive,  which
has four productions.

A  look  at  the  input  makes  it  immediately  clear  that  only  production  10  will  work
here,  so  we  fill  it  in.  Continuing  in  this  way, we eventually get  the  tree shown in  Figure
11.3 and use up all the input. The top-down parsing process is illustrated in the following
series of parsing tree figures.

picture

Figure 11.5: Input: {square, lparen, 20, rparen,…}
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picture

shape associations

Figure 11.6: Input: {square, lparen, 20, rparen,…}

picture

shape associations

color primitive size

Figure 11.7: Input: {square, lparen, 20, rparen,…}

picture

shape associations

color primitive size

Figure 11.8: Input: {square, lparen, 20, rparen,…}

picture

shape associations

color primitive size

square

Figure 11.9: Input: {lparen, 20, rparen,…}

picture

shape associations

color primitive size

square integer size2

Figure 11.10: Input: {20, rparen,…}
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picture

shape associations

color primitive size

square integer size2

20

Figure 11.11: Input: {rparen,…}

Parse trees are represented as terms, using function symbols Prod1,  Prod2,  and so
on.  Only  significant  parts  of  the  tree  are  retained,  so  that,  for  example, Prod5  has  only
three arguments, the two directions and the tree corresponding to the picture. Here is the
parse tree for our running example; compare it with the tree in Figure 11.3.

In[14]:= Parse Lex example

Out[14]= Prod1 Prod7 Prod8 , Prod10 , Prod14 20, Prod15 ,

Prod4 Prod6 center, west, Prod1 Prod7 Prod8 , Prod12 ,

Prod14 9, Prod16 18 , Prod2 , Prod2

The Parse function comes in three forms:

• Parse[tokens_]  returns the parse  tree corresponding to  the list  of  tokens.  This  is
the form we just used.

• Parse[pns_, tokens_],  where pns  is a list of production  numbers, derives a string
matching  part  of  the tokens  using  one  of  the  productions  in pns.  It  returns  a  pair
containing the parse tree and the suffix of tokens not derived from the production.

• Parse[pn_, tokens_], where pn is a production number, derives a prefix of tokens
from production pn  and, like the previous form, returns a parse tree and a suffix of
tokens.

For the tokens in our example, we have:

In[15]:= Parse 7, Lex example

Out[15]= Prod7 Prod8 , Prod10 , Prod14 20, Prod15 ,

containing, center, slash, west, lparen,

oval, lparen, 9, comma, 18, rparen, rparen, eof

In other words, the first four tokens were derived using production 7; the parse tree
for production 7 and the remaining tokens are returned.
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Parsing is quite simple. We are trying to generate a prefix of the input tokens from a
given variable. We call the second form of Parse, passing a list of all the productions for
that variable (the function prodsFor, shown in Figure 11.3, gives us the list), and it looks
at  each one to  see which might be usable  given the first  token (matches,  also  in Figure
11.3, tells whether a given production might apply for a given token). When it has found
the  correct  production,  it  calls  the  third  form  of Parse,  which  uses  that  production  to
derive a prefix of the list of tokens.

In our example, Parse[1, Lex[ex]]  first calls Parse[{7}, Lex[ex]],  since
7 is  the only  production  for shape,  which in turn  calls Parse[7, Lex[ex]],  returning
the  pair  shown  above.  It  then  calls Parse[2,3,4,  {containing,  center,

slash,…}],  2,  3,  and  4  being  all  the  productions  from associations,  and containing,

center, slash,… being the tokens not matched by shape.
The  first  form of Parse,  with  one argument,  is  the  one used  by PDL.  It  starts  the

parsing off by attempting to derive the list of tokens from picture;  if successful,  it discards
the {eof} and returns just the parse tree. The code for the three forms of Parse is given
in the program listing below.

(* PARSING *)

prodsFor[picture] := {1}
prodsFor[associations] := {2, 3, 4}
prodsFor[connection] := {5}
prodsFor[containment] := {6}
prodsFor[shape] := {7}
prodsFor[color] := {8, 9}
prodsFor[primitive] := {10, 11, 12, 13}
prodsFor[size] := {14}
prodsFor[size2] := {15, 16}

matches[1, t_] := MemberQ[{clear, square, circle, oval,
rectangle}, t]
matches[2, t_] := Not[MemberQ[{connecting, containing}, t]]
matches[3, t_] := MemberQ[{connecting}, t]
matches[4, t_] := MemberQ[{containing}, t]
matches[5, t_] := MemberQ[{connecting}, t]
matches[6, t_] := MemberQ[{containing}, t]
matches[7, t_] := 
 MemberQ[{clear, square, circle, oval, rectangle}, t]
matches[8, t_] := MemberQ[{square, circle, oval, rectangle}, t]

Program Listing 11.3: Code for prodsFor, matches, and Parse
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matches[9, t_] := MemberQ[{clear}, t]
matches[10, t_] := MemberQ[{square}, t]matches[11, t_] :=
 MemberQ[{circle}, t]
matches[12, t_] := MemberQ[{oval}, t]matches[13, t_] :=
MemberQ[{rectangle}, t]
matches[14, t_] := MemberQ[{lparen}, t]
matches[15, t_] := MemberQ[{rparen}, t]
matches[16, t_] := MemberQ[{comma}, t]

Parse[tokens_]:= First[Parse[prodsFor[picture], tokens]]

Parse[{}, x_]:=
   (Print["Syntax error:  remaining input is ",

   Take[x, Min[Length[x], 10]], " ..."];
    Abort[])
Parse[{pn_, pns___}, tokens_]:=
   If[matches[pn, First[tokens]],  (* if pn applies *)

  Parse[pn, tokens],  (* parse using it *)
  Parse[{pns}, tokens]]  (* else try other prod's *)

Parse[1, tokens_] := 
Module[{part1 = Parse[prodsFor[shape], tokens], part2},
  part2 = Parse[prodsFor[associations], part1[[2]]]; 
  {Prod1[part1[[1]], part2[[1]]], part2[[2]]}]

Parse[2, tokens_]:= {Prod2[], tokens}

Parse[3, tokens_] := Module[{
part1 = Parse[prodsFor[connection], tokens], part2},

   part2 = Parse[prodsFor[associations], part1[[2]]]; 
  {Prod3[part1[[1]], part2[[1]]], part2[[2]]}]

Parse[4, tokens_] := 
Module[{part1 = Parse[prodsFor[containment], tokens], 

part2}, 
part2 = Parse[prodsFor[associations], part1[[2]]]; 
{Prod4[part1[[1]], part2[[1]]], part2[[2]]}]

Parse[5, tokens_] := 
Module[{part1 = Parse[prodsFor[picture], Drop[tokens, 5]]}, 

{Prod5[tokens[[2]], tokens[[4]], part1[[1]]], 
Rest[part1[[2]]]}]

Program Listing 11.4: Code for Parse
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Parse[6, tokens_]:=
Module[{part1 = Parse[prodsFor[picture], Drop[tokens, 5]]},

{Prod6[tokens[[2]], tokens[[4]], part1[[1]]], 
Rest[part1[[2]]]}]

Parse[7, tokens_] :=
Module[{part1 = Parse[prodsFor[color], tokens], part2, part3},

part2 = Parse[prodsFor[primitive], part1[[2]]]; 
part3 = Parse[prodsFor[size], part2[[2]]]; 
{Prod7[part1[[1]], part2[[1]], part3[[1]]], part3[[2]]}]

Parse[8, tokens_]:= {Prod8[], tokens}
Parse[9, tokens_]:= {Prod9[], Rest[tokens]}
Parse[10, tokens_]:= {Prod10[], Rest[tokens]}
Parse[11, tokens_]:= {Prod11[], Rest[tokens]}
Parse[12, tokens_]:= {Prod12[], Rest[tokens]}
Parse[13, tokens_]:= {Prod13[], Rest[tokens]}
Parse[14, tokens_]:=
   Module[{part1 = Parse[prodsFor[size2], Drop[tokens, 2]]},

 {Prod14[tokens[[2]], part1[[1]]], part1[[2]]}]
Parse[15, tokens_]:= {Prod15[], Rest[tokens]}
Parse[16, tokens_]:= {Prod16[tokens[[2]]], Drop[tokens, 3]}

Program Listing 11.5: Code for Parse (cont.)

Computing shapes

With  the  parse  tree  in  hand,  the  remaining  processing  is  a  fairly  routine  matter  of  tree
traversal, such as we used in Section 7.5. By computing the characteristics of each shape –
its  center, size,  and  compass  points  –  we can compute  the characteristics  of  the shapes  it
contains  or  is  connected  to.  The  coding  has  its  occasional  tricky  moments,  but  is  not
basically very difficult.

Recall that there are two functions, ComputeShapes and ConvertShapes, in this
part  of  the  program. ComputeShapes  does  the  tree  traversal; ConvertShapes  just
converts the list of shapes to a list of Mathematica graphics. We take them in order.

ComputeShapes  traverses  the  parse  tree  and produces  a  list  of  “shapes.”  The key
point here is exactly what we mean by “shape.” That is, how do we store the information
about  shapes  that  we  mentioned  above  (center,  size,  compass  points)?  The  structure  is
shown in the code at the top of Figure 11.3. A shape is represented by a seven-element list:
its  center  (a  pair  of  numbers),  the  primitive  shape  (a  symbol),  the  color  (a  production,
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either Prod8 for a normal shape or Prod9 for a clear one), the distance from the center to
the east compass point, the distance from the center to the north compass point, the angle
of the northeast compass point (in radians), and the distance from the center to the north-
east  compass  point.  We  have  defined  functions center,  primitive,  color,  east,
north, neangle, and nedist to extract these components from a shape.

center[{c_, ___}] := c
primitive[{_, p_, ___}] := p
color[{_, _, c_, ___}] := c
east[{_, _, _, e_, ___}] := e

north[{_, _, _, _, n_, ___}] := n
neangle[{_, _, _, _, _, a_, ___}] := a
nedist[{_, _, _, _, _, _, d_}] := d
angle[s_, north] := Pi/2
angle[s_, south] := -Pi/2
angle[s_, east] := 0
angle[s_, west] := Pi
angle[s_, northeast] := neangle[s]
angle[s_, southeast] := -neangle[s]
angle[s_, southwest] := Pi+neangle[s]
angle[s_, northwest] := Pi-neangle[s]
dist[s_, north] := north[s]
dist[s_, south] := north[s]
dist[s_, east] := east[s]
dist[s_, west] := east[s]
dist[s_, northeast] := nedist[s]
dist[s_, southeast] := nedist[s]
dist[s_, southwest] := nedist[s]
dist[s_, northwest] := nedist[s]

pointOf[s_, d_, delta_] :=
 center[s] + vector[angle[s, d], dist[s, d] + delta]
computeCenter[s_, p_, center] := p
computeCenter[s_, p_, d_] :=
 p + vector[Pi+angle[s, d], dist[s, d]]
vector[theta_, r_] := {r Cos[theta], r Sin[theta]}

Program Listing 11.6: Code for dealing with shapes and points

We  will  need  to  compute  points  using  angles  and  distances  from  the  center  of  a
shape. It is convenient to define the following functions, given above in the program listing.

390 An Introduction to Programming with Mathematica



1. angle[shape, direction] computes the angle from the center of shape to the given
compass point. East is always 0, north always 2, and so on, but the intermediate
points depend upon the dimensions of the shape (at least for ovals and rectangles).

2. dist[shape, direction] computes the distance from the center of a shape to the
given compass point. Distances for intermediate points are all the same as the
northeast distance.

3. pointOf[shape,direction,delta] computes the compass point given by direction
for shape, adjusted by delta. A positive delta moves the point away from the center
of the shape, a negative delta towards it.

4. computeCenter[shape,point,direction], where shape does not yet have a center,
though it has all its other information, computes its center, given that the com-
pass point named by direction is to be at point. For example, if s is a square with
sides of length 10, computeCenter[s,{4, 2},north] will return {4,-3}; 
if the square is centered at {4,-3}, its north point will be at {4,2}.

The  tree  traversal  is  initiated  by  a  call  to  the  one-argument  form  of Compute

Shapes, which is called with a Prod1 tree. It calls the three-argument form of Compute
Shapes,  which  returns  a  list  of  shapes. N  is  applied  to  the  list  to  evaluate  all  numerical
formulas and all the “clear” shapes (Prod9) are removed. For our running example (Figure
11.2), we see the result in this session:

In[16]:= ComputeShapes Parse Lex example

Out[16]= 0., 0. , square, Prod8 , 10., 10., 0.785398, 14.1421 ,

4.5, 0. , oval, Prod8 , 4.5, 9., 1.10715, 7.11512

The  main  shape,  centered  at 0, 0 ,  is  a 20 20  square  (the  10s  being  the  distance
from the center to the side and the top). The 9 18 oval is centered at 4.5, 0 .

The  three-argument  form  of ComputeShapes  takes  a  tree  given  in  the  form
Prod1[shape,  associations]  and  computes  the  shape  of shape  and  all  the  shapes  in
associations, returning a list. The second and third arguments are a point p and a direction d.
First, shape  is drawn with direction d  at point p.  This is done by calling computeShape;
shapeInfo  computes  all  the location-independent  information,  which is  everything but
the center, and the latter is filled in by a call to computeCenter, discussed above. Then
the  shapes  in associations  are  drawn  in  positions  computed  with  respect  to shape.  This  is
accomplished  by  calling computeAssociatedShapes,  passing associations  as  the  first
argument  and  the  shape  computed  for shape  as  the  second.  The associations  parse  tree
(Prod2,  Prod3,  or Prod4)  is  traversed,  and  the  shapes  it  contains  are  computed  with
respect  to  that  second  argument.  The  auxiliary  function compute
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Point[shape,dir1,dir2,relation]  computes  the  meeting  point  of shape  with  whatever
shape  it  contains  or  connects  to,  given that dir1  of shape  is  to  meet dir2  of  the  contained
shape. The computation also depends upon whether the shape is contained or connected,
as given by relation.

separation = .1;

ComputeShapes[tree_]:= 
 Select[N[computeShapes[tree, {0, 0}, center]],
    (color[#] =!= Prod9[])&]

computeShapes[Prod1[sh_, assoc_], p_, d_]:=
Module[{s = computeShape[sh, p, d], as},

as = computeAssociatedShapes[assoc, s];
Join[{s}, as]]

computeAssociatedShapes[Prod2[], _]:= {}
computeAssociatedShapes[Prod3[Prod5[d1_,d2_,pic_],assoc_],s_]:=
Module[{p = computePoint[s, d1, d2, connecting], ss},

ss = computeShapes[pic, p, d2]; 
Join[ss, computeAssociatedShapes[assoc, s]]]

computeAssociatedShapes[Prod4[Prod6[d1_,d2_,pic_],assoc_],s_]:=
Module[{p = computePoint[s, d1, d2, containing], ss},

ss = computeShapes[pic, p, d2]; 
Join[ss, computeAssociatedShapes[assoc, s]]]

computePoint[s_, d1_, d2_, relation_]:=
 Which[d1===center, center[s],
    d2===center, pointOf[s, d1, 0],
    relation===connecting, pointOf[s, d1, separation],
    True, pointOf[s, d1, -separation]]

computeShape[s_, p_, d_]:= Module[{si = shapeInfo[s]},
  Join[{computeCenter[si, p, d]}, Rest[si]]]  

shapeInfo[Prod7[color_, Prod10[], Prod14[i_, _]]]:=
 {0, square, color, i/2, i/2, Pi/4, i/Sqrt[2]}

shapeInfo[Prod7[color_, Prod11[], Prod14[i_, _]]]:=
 {0, circle, color, i/2, i/2, Pi/4, i/2}
ovalNE[a_, b_, theta_]:=
 a b Sqrt[(1 + Tan[theta]^2)/(a^2 + b^2 Tan[theta]^2)]
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shapeInfo[Prod7[color_, Prod12[], Prod14[l_, Prod16[h_]]]] :=
 {0, oval, color, l/2, h/2, ArcTan[h/l],
 ovalNE[h/2, l/2, ArcTan[h/l]]}

shapeInfo[Prod7[color_, Prod13[], Prod14[l_, Prod16[h_]]]] :=
 {0, rectangle, color, l/2, h/2, ArcTan[h/l], Sqrt[h^2 + l^2]/2}

Program Listing 11.7: Computing shapes

Finally,  the list  of  shapes  is  converted to  a  list  of Mathematica  graphics  by  mapping
convertShape  over  the  list.  The Mathematica  graphics  primitives  are  well  matched  to
our  representation  of  shapes,  making convertShape  easy  to  write.  Here  is  the  final
output of our example.

In[17]:= ConvertShapes ComputeShapes Parse Lex example

Out[17]= Line 10., 10. , 10., 10. , 10., 10. , 10., 10. ,

10., 10. , Circle 4.5, 0. , 4.5, 9.

In[18]:= Show Graphics % ;

makeRectangle[p_, l_, h_] :=
 Line[{p, p+{0,h}, p+{l,h}, p+{l,0}, p}]
convertShape[s_] /; MemberQ[{square, rectangle}, s[[2]]] :=
  makeRectangle[pointOf[s, southwest, 0], 2 east[s], 2 north[s]]
convertShape[s_] /; MemberQ[{circle, rectangle}, s[[2]]] :=
  Circle[center[s], north[s]]
convertShape[s_] /; s[[2]] === oval :=
  Circle[center[s], {east[s], north[s]}]
ConvertShapes[ss_] := Map[convertShape, ss]

Program Listing 11.8: Converting shapes to Mathematica graphics objects
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12 Writing packages

Packages  are  text  files  that  contain Mathematica  commands.  They  are  designed  to
make it easy to distribute your programs to others, but they also provide a mechanism
for  you  to  write  programs  that  integrate  with Mathematica  in  a  seamless  manner.  In
this  chapter  we  will  discuss  the  organization  and  creation  of  packages  including  a
discussion of contexts, which are a mechanism for organizing new names and symbols
in your Mathematica sessions.

12.1 Introduction
When you begin a Mathematica session, the built-in functions are immediately available for
you  to  use.  There  are,  however,  many  more  functions  that  you  can  access  that  reside  in
files  supplied  with Mathematica.  In  principle,  the  only  difference  between those  files  and
the  ones  you  create  is  that  those  were  written  by  professional  programmers.  There  is
another  difference:  the  definitions  in  those  files  are  placed  in  special  structures  called
packages. Indeed, these files themselves are often called “packages” instead of “files.”

Packages are a name localizing construct, analogous to Module, but for entire files of
definitions.  Their  purpose  is  to  allow the programmer to  define a  collection of  functions
for export. These exported functions are for the users of the package to work with and are
often  referred  to  as  public  functions.  Other  functions,  those  that  are not  for  export,  are
auxiliary, or private functions, and are not intended to be accessible to users.

In this chapter, you will learn how to write your own packages. Much of the chapter
is devoted to an explanation of a more primitive notion, that of contexts, which is a prerequi-
site  to  understanding  packages.  We  then  describe  packages  and  give  a  simple  example,
showing  the  standard  and  accepted  style  for  writing  them.  We  will  also  distinguish
between functions  for  export  and auxiliary  functions  that  users  of  your  package  need not
be concerned with.



12.2 Using packages
Mathematica packages have been written for a great variety of problem domains. Many are
provided  with  each version  of Mathematica  and  are  referred to  as  the  Standard  Packages.
Their  documentation  is  available  in  the  Help  Browser.  Below,  we  list  some  examples  of
some  of  the  standard Mathematica  packages.  Note  that  package  names  always  end with  a
back  quote  (`),  and  often  have  back  quotes  within  them  as  well.  We  will  discuss  the
meaning of this back quote shortly.

• Calculus`VectorAnalysis`:  This  package provides  a  variety of  variables  and
functions  for  doing  calculus  in  various  three-dimensional  coordinate  systems;  for
example, SetCoordinates  to  set  the  coordinate  system  (Cartesian,  polar,  etc.);
CrossProduct to compute cross products; Curl to give the curl of a vector field.

• Graphics`MultipleListPlot`:  Provides  functions  for  superimposing  several
plots  on  the  same  graphic. MultipleListPlot  is  the  main  function  in  this
package.  It  plots  lists  of  data  as  separate  plots  on  the  same  axes.  Also  provided  is
MakeSymbol  which  creates  symbols  to  use  in  labeling  the  separate  plots,  plus  a
number of functions for specifying symbols.

Loading packages

Once you know which package you want to use,  you  can load  it  in one of  two ways. For
example, to load the package Calculus`VectorAnalysis`, you can use either Get or
Needs.

• <<Calculus`VectorAnalysis`  will read the file and evaluate each expression
and definition as if it had been typed in. Actually, the argument of << is a string, but
the quotation marks can be omitted. <<package` is shorthand for Get["package`"].

• Needs["Calculus`VectorAnalysis`"]  will  read  the  package,  just  like <<,
but only if it has not already been read.

Here is an example of using the Calculus`VectorAnalysis` package.

In[1]:= Needs "Calculus`VectorAnalysis "̀
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Here is the usage message for one of the functions defined in the package.

In[2]:= ?CrossProduct

CrossProduct v1, v2 gives the cross product

sometimes called vector product of the two vectors v1,

v2 in three space in the default coordinate system.

CrossProduct v1, v2, coordsys gives the cross product

of v1 and v2 in the coordinate system coordsys. More…

This computes the cross product of two symbolic vectors using the CrossProduct
function defined in Calculus`VectorAnalysis`.

In[3]:= CrossProduct x1, y1, z1 , x2, y2, z2

Out[3]= y2 z1 y1 z2, x2 z1 x1 z2, x2 y1 x1 y2

Finding out what is in a package

To use the Mathematica  packages, you need to know what they provide. In fact, program-
mers find that even remembering what is in their own packages is not easy, if they have not
looked  at  them for a  while. If  you  know the name of  the package  and you want to  know
what it defines, first load it, using <<package` or Needs["package`"]. 

In[4]:= Needs "DiscreteMath`ComputationalGeometry "̀

Now  you  can  get  a  list  of  hyperlinks  of  the  functions  defined  in  this  package  as
follows.

In[5]:= ?DiscreteMath`ComputationalGeometry`*

DiscreteMath`ComputationalGeometry`

AllPoints NearestNeighbor
BoundedDiagram PlanarGraphPlot
ConvexHull Ray

DelaunayTriangulation TileAreas

DelaunayTriangulationQ TriangularSurfacePlot
DiagramPlot TrimPoints
Hull VoronoiDiagram
LabelPoints

Clicking  any  of  the  above  links  will  display  the  usage  message  associated  with  that
function.

12 Writing packages 397



You can also display a list of the names defined in the package using Names.

In[6]:= Names "DiscreteMath`ComputationalGeometry` "

Out[6]= AllPoints, BoundedDiagram, ConvexHull, DelaunayTriangulation,

DelaunayTriangulationQ, DiagramPlot, Hull, LabelPoints,

NearestNeighbor, PlanarGraphPlot, Ray, TileAreas,

TriangularSurfacePlot, TrimPoints, VoronoiDiagram

Once you have loaded the package you can use ? to get the usage message for any of
those names.

In[7]:= ?DelaunayTriangulation

DelaunayTriangulation x1,y1 , x2,y2 ,..., xn,

yn yields the planar Delaunay triangulation

of the points. The triangulation is represented as

a vertex adjacency list, one entry for each unique

point in the original coordinate list indicating the

adjacent vertices in counterclockwise order. More…

If,  on  the  other  hand,  you  forget  the  name  of  the  package,  you  can  easily  browse
through  the  Help  Browser  which  lists  all  packages,  names,  and  usage  messages  of  any
functions defined in these packages. Alternatively, you can find out where the directory of
packages is stored on your system, and browse through it in your file system.

Avoiding name collisions

Sometimes,  you  will  read  in  a  package  that  defines  a  function f  whose  name  you  have
already  mentioned  in  your  current  session.  It  is  very  common,  for  example,  to  forget  to
load  a  package  before  calling  one  of  its  functions.  By  simply  mentioning  the  function’s
name  you  create  a  symbol  in  the  current  context.  Then,  if  you  try  to  make  a  call  to f,
Mathematica will assume you are talking about the f in the current context rather than the
one defined in the package.

For  example,  suppose  we  attempted  to  use  a  function RandomPermutation  that
we mistakenly believed was a built-in function.

In[8]:= RandomPermutation 4

Out[8]= RandomPermutation 4

After a little searching in the Help Browser we discover that RandomPermutation
is not a built-in function, but is in fact, defined in the package DiscreteMath`Combina
torica`. So let us try to load the package.
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In[9]:= DiscreteMath`Combinatorica`

RandomPermutation::shdw :

Symbol RandomPermutation appears in multiple contexts

DiscreteMath`Combinatorica ,̀ Global` ; definitions

in context DiscreteMath`Combinatorica` may

shadow or be shadowed by other definitions. More…

If  you  try  to  use  the RandomPermutation  function  defined  in  the Discrete

Math`Combinatorica`  package,  you  will  not  be  able  to  do  so  in  the usual  way  as  its
definition  is  “shadowed”  by  the RandomPermutation  function  that  was  placed  in  the
Global` context when we first tried to use it.

In[10]:= RandomPermutation 4

Out[10]= RandomPermutation 4

You  can  still  use  the RandomPermutation  function  from  the Combinatorica

package but you have to explicitly use its full context.

In[11]:= DiscreteMath`Combinatorica`RandomPermutation 3

Out[11]= 2, 1, 3

If,  however, you  want to  be able  to  call DiscreteMath`Combinatorica`Ran
domPermutation by its short name, and forget the RandomPermutation you defined
in the Global` context, use the function Remove.

In[12]:= Remove RandomPermutation

This will make it seem that you had never mentioned the name Global`Random

Permutation  at  all  as  it  completely  removes  the  symbol RandomPermutation  from
the Global`  context.  Now you  can  use  the  short  name for  the RandomPermutation

function from the DiscreteMath`Combinatorica` package.

In[13]:= RandomPermutation 3

Out[13]= 3, 1, 2

Note  that  evaluating Clear[RandomPermutation]  is  not  enough;  that  would
clear  values  associated  with  any  assignments  attached  to RandomPermutation,  but  it
would not “un-mention” the symbol  itself; in other words, Clear[symbol]  clears out the
right-hand side of any definition associated with symbol, but it does not remove symbol from
the context within which it was first created.

There is a way to minimize this problem, if you have certain packages that you often
use. 
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DeclarePackage["package`", {"name1", "name2", …}]

DeclarePackage tells Mathematica that whenever you use one of the names name1,
name2,…, it should load package (if it has not already been loaded). It is a good practice to
make a file containing a DeclarePackage for each package you frequently use, listing all
the  names  of  functions  you  use  from  that  package.  For  example,  if  that  file  is  called
mypackage.m  then,  whenever  you  start  a Mathematica  session,  enter <<mypackage.m
as your first input. Alternatively, you could put mypackage.m in one of the init.m files
and Mathematica  will automatically  load it whenever you start a session. There are several
locations where kernel init.m files can be found:

In[14]:= Map ToFileName,

$BaseDirectory, "Autoload", "_", "Kernel", "init.m" ,

$UserBaseDirectory, "Autoload", "_", "Kernel", "init.m" ,

$InstallationDirectory,

"Configuration", "Kernel", "init.m" ,

$InstallationDirectory, "AddOns",

"Autoload", "_", "Kernel", "init.m"

Out[14]= C:\Documents and Settings\All Users\Application

Data\Mathematica\Autoload\ \Kernel\init.m\,

C:\Documents and Settings\Paul Wellin\Application

Data\Mathematica\Autoload\ \Kernel\init.m\,

C:\Program Files\Wolfram Research\Mathematica

\5.1\Configuration\Kernel\init.m\,

C:\Program Files\Wolfram Research\Mathematica

\5.1\AddOns\Autoload\ \Kernel\init.m\

The  first  two  locations  given  above  are  the  preferred  directories  to  place  your
init.m files. The last two are dependent upon the version of Mathematica and hence will
need to be updated or moved when you upgrade to a newer version of Mathematica. 

Lastly, you can also put your init.m in a Kernel directory in a package directory in
any of the Applications directories. For example, if you have a directory named MathApps
that  lives  inside  one  of  the  Applications  directories,  then  put  a  Kernel  directory  inside
MathApps  and  an init.m  inside  that  Kernel  directory.  Your  packages  will  live  inside
MathApps.  So  loading  a  package  (<<MathApps`mypackage`)  will  automatically  load
the init.m inside the MathApps/Kernel directory.
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12.3 Contexts
Every  symbol  you  use  in  a  computation  in Mathematica  has  a full  name  consisting  of  the
symbol  preceded by  the context  in  which the  name was  first  mentioned.  The  context  is  a
means  for  organizing  symbols.  You can  think of  the context  like a  namespace –  different
symbols are in different contexts just like different files on your computer live in different
directories.

When you first start your session, the current context is Global` (again note the back
quote), and any symbol symbol  you mention now has full name Global`symbol. A symbol
can be given with its full name or in its regular, short form.

Here is a function created in the Global` context.

In[1]:= f x_ : x 1

In[2]:= Context f

Out[2]= Global`

We can use the function with its full name.

In[3]:= Global`f 3

Out[3]= 4

But, of course, it is much more convenient to use the regular, short form.

In[4]:= f 3

Out[4]= 4

Mathematica  first  searches  the  current  context  for  definitions  associated  with  any
symbols; by default, this is the Global` context. To see a list of the contexts that Mathe-
matica uses to search for symbols, use $ContextPath.

In[5]:= $ContextPath

Out[5]= Global`, System`

As  we  saw above,  symbols  you  define when your  session  begins  have  context Glo
bal`. Built-in functions have context System`.

In[6]:= Map Context, Integrate, Plot, , List

Out[6]= System`, System`, System`, System`
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You can tell Mathematica to use a different context for any new symbols you mention
by using the function Begin.

In[7]:= Begin "ContextA`"

Out[7]= ContextA`

In[8]:= g x_ : x 2

We can use the full name for g:

In[9]:= ContextA`g 3

Out[9]= 5

Or, since we are currently in the ContextA` context, we can use the short name.

In[10]:= g 3

Out[10]= 5

Here is the current context.

In[11]:= $Context

Out[11]= ContextA`

In this new context, the name g is an abbreviation for ContextA`g.

In[12]:= Map g, 5, 7, 9

Out[12]= 7, 9, 11

 Note that we can still refer to f, even though it was not defined in this context.

In[13]:= Map Global`f, 5, 7, 9

Out[13]= 6, 8, 10

In[14]:= Map f, 5, 7, 9

Out[14]= 6, 8, 10

After exiting the context using the End function, we may define a different g, having
context Global`.

In[15]:= End

Out[15]= ContextA`

In[16]:= g x_ : x 3

In[17]:= g 3

Out[17]= 6
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We now have two definitions of g,  or, rather, one definition of Global`g  and one
of ContextA`g.  Since  our  current  context  is Global`,  when  we  just  say g  we  get
Global`g; but we can still refer to ContextA`g by its full name.

In[18]:= g 3

Out[18]= 6

In[19]:= ContextA`g 3

Out[19]= 5

The question  arises: when you enter a symbol symbol,  how does Mathematica  decide
which version of symbol to use? And how can you tell which one it has chosen?

To  answer  the  second  question  first:  the  function Context  gives  the  context  of  a
symbol.

In[20]:= Context g

Out[20]= Global`

In[21]:= Context Map

Out[21]= System`

In[22]:= Context ContextA`g

Out[22]= ContextA`

You can also use ?.

In[23]:= ?g

Global`g

g x_ : x 3

How,  then,  does Mathematica  decide  which  definition  to  use?  It  maintains  two
variables, $Context and $ContextPath. $Context contains a context (that is, a string
giving the name of a context), which is the current context, and $ContextPath  contains
a list of contexts. Mathematica looks in $Context first, then in the contexts in $Context
Path in the order in which they appear there; if it does not find the symbol at all, then it
creates  it  in  context $Context.  Of  course,  none  of  this  applies  if  you  give the  symbol’s
full name.

In[24]:= $Context

Out[24]= Global`
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In[25]:= $ContextPath

Out[25]= Global`, System`

In[26]:= Begin "ContextA`"

Out[26]= ContextA`

In[27]:= $Context

Out[27]= ContextA`

In[28]:= $ContextPath

Out[28]= Global`, System`

In[29]:= End

Out[29]= ContextA`

In[30]:= $Context, $ContextPath

Out[30]= Global`, Global`, System`

So the effect of entering a new context using Begin is simply to change the value of
$Context; End[] changes it back. In either case, $ContextPath is not changed.

One final point about contexts:  contexts can be nested within contexts.  That is, you
can have context names like A`B`C`. To enter contexts like this, do the following.

In[31]:= Begin["A`"]    (* enter context A` *)

Out[31]= A`

In[32]:= Begin["`B`"]   (* enter context A`B` *)

Out[32]= A`B`

In[33]:= Begin["`C`"]   (* enter context A`B`C` *)

Out[33]= A`B`C`

In[34]:= End[]   (* back in context A`B` *)

Out[34]= A`B`C`

In[35]:= End[]   (* back in context A` *)

Out[35]= A`B`
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In[36]:= End[]   (* back in context Global` *)

Out[36]= A`

Note the back quote before the context name in the second and third Begin. This is
used to indicate that the new context should be a sub-context  of the current context. We
could have also indicated this as follows:

In[37]:= Begin "A`"

Out[37]= A`

In[38]:= Begin "A`B`"

Out[38]= A`B`

In[39]:= Begin "A`B`C`"

Out[39]= A`B`C`

Nested  contexts  are  a  way  of  managing  the  multiplicity  of  contexts.  You  will  have
noticed how the names of the standard packages we discussed earlier look just like nested
contexts. In fact, package names are contexts. Mathematica organizes the standard packages
into  about  ten  major  contexts  (for  example, Calculus`  and Graphics`),  each  with
about  ten  nested  contexts;  it  is  just  a  way  of  keeping things  organized.  Most  readers  will
recognize this as the idea behind hierarchical file systems. In fact, when you load a package
using Needs or <<, Mathematica  translates the package name directly into a path name in
the hierarchical file system on your computer.

For  example,  you  can  load  the  package mypackage.m  that  lives  in  a  directory
MathApps as follows:

Windows <<MathApps\mypackage.m
Unix/Linux/OS X <<MathApps/mypackage.m
Macintosh Classic <<MathApps:mypackage.m

But  since Mathematica  provides  a  system-independent  means  of  loading  packages,
you  can  simply  use Get  with  the  following  syntax  and Mathematica  will  automatically
translate this into a path name appropriate for your computer.

MathApps`mypackage`
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Summary

• Any name mentioned in a Mathematica session has a full name, containing a context
and the short name.

• When using a name, you may give its full name. If you choose not to (as is custom-
ary), Mathematica  will decide what the full  name is;  that is,  what the context  of the
name is.

• Here is how Mathematica decides on the context:

– First, it looks in the context given by the variable $Context.

– Next,  it  looks  in  all  the  contexts  given in  the  variable $ContextPath,  in  the
order in which they appear there.

– If those searches do not succeed, Mathematica assumes this is the first mention of
the name, and so gives it the context $Context.

• Begin["context`"]  and End[]  alter  the  value  of $Context  (but  do  not  affect
$ContextPath).  Specifically, Begin["context`"]  sets $Context  to context`,  and
End[] restores it to its prior value before the Begin.

As of now, these functions are the only ways we know to alter the contents of these
two  variables.  In  the next  section,  we will  see  two other  functions  that  change them in  a
subtly, but crucially different way.

12.4 The elements of packages
Packages  allow  you  to  create  an  organized  collection  of  function  definitions  and  values,
while  avoiding  collisions  with  any  other  definitions  of  those  names.  For  example,  if  you
load a package that defines functions f and g, and the definition of g contains a call to f,
then g  should always  work –  that  is,  call  the f  defined in the package –  even if  you have
defined f separately in your session (in the Global` context). Furthermore, packages can
define  their  own  auxiliary  (or  private)  functions  and  constants  that  the  user,  or  client,  of
the package will not ordinarily see at all.

406 An Introduction to Programming with Mathematica



All this is achieved using contexts, with two new functions:

• BeginPackage["package`"] sets $Context  to package`, and $ContextPath  to
{package`, System`}.

• EndPackage[]  resets  both  variables  to  their  values  prior  to  the  evaluation  of
BeginPackage[], and then prepends package` to $ContextPath.

Thus,  if  you  are  in  a Mathematica  session,  with  current  context Global`,  and  you
read in a file containing:

BeginPackage["P`"]
 f[x_] := …
 g[y_] := …
EndPackage[]

then after it is read, the functions f and g, with full names P`f and P`g, will be defined,
and the context P` will be in $ContextPath. If you do not have any other definitions of
f, you can refer to it as just f; if you do, then use P`f; and similarly for the function g.

The  precise  definition  of BeginPackage[package`]  is  important  as  it  changes
$ContextPath  to {package`,System`}.  Thus,  all  the  names  defined  in  the  package
will  have  context package`.  In  our  example  above,  the f  and g  in  the  package  can  be
referred  to  as P`f  and P`g,  regardless  of  any  other  definitions  you  may  have  given  for
them.

It is important to realize, too, that Mathematica determines the full name of any name
when  it  reads it  in.  Thus,  if g  calls f,  then the occurrence of f  in the body of g  becomes
P`f  when  the  package  is  loaded. g  will  always  call  this f,  even  if  there  is  a  different f
defined in the context in which the call to g is made.

The BeginPackage  function  can  be  given  multiple  arguments.  The  second  and
subsequent arguments are the names of other packages that this one uses. They are treated
as if they were arguments to the Needs  function; that is, they are loaded if they have not
already been. Furthermore, they are included in $ContextPath during the loading of this
package, so its functions can refer to their functions by their short names.

Summary

• BeginPackage["package`"]  sets $Context  to package`,  and $ContextPath

to {package`, System`},  so that  any names subsequently  mentioned, other than
the names of built-in functions and constants, are defined in context package`.
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• EndPackage[]  resets $Context  and $ContextPath  to  their  prior  values,
except that package` is added to the front of $ContextPath.

12.5 Writing your own packages

The RandomWalks package

In  this  section,  we list  the full RandomWalks.m  package,  elements of  which were devel-
oped  in  earlier  chapters.  We  will  add  several  important  user  interface  elements,  such  as
expressions  for  options  and  usage  statements.  The  full  package  is  included  in  the  IPM3
archive as indicated in the Preface.

BeginPackage
First, we set the value of Context`, which causes $ContextPath to be set to {IPM3`

RandomWalks`, System`}.

In[1]:= BeginPackage "IPM3`RandomWalks`"

Out[1]= IPM3`RandomWalks`

Importing other packages
You  could  import  a  package  by  using  an  optional  argument  to BeginPackage.  In  that
case,  you  would  have BeginPackage["IPM3`RandomWalks`",{Graphics`Arg

Colors`,Graphics`Polyhedra`"}]  above.  The  argument  against  this  approach  is
that  the  two  packages Graphics`ArgColors`  and Graphics`Polyhedra`  will  be
left on the search path after the RandomWalks`  package is read in. It is considered poor
programming style to alter the user’s environment by simply reading in a package – at least
you should try to alter it as little as possible. There is another method of loading a package
within  a  package,  and  that  is  to  call Needs after  the call  to BeginPackage.  Using  this
mechanism,  the Graphics`ArgColors`  context  will  not  remain  on  the  context  path
after the RandomWalks package is read in.

In[2]:= Needs "Graphics`ArgColors`"

In[3]:= Needs "Graphics`Polyhedra`"
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Usage statements
Defining usage messages for the functions  in your packages  creates symbols for the func-
tions  in the current  context.  Each of  the functions  for  which you define a usage message
will then be exported for public use; that is, those functions are visible and usable immedi-
ately  after loading the package.  This  is  in distinction  to any functions  that  are defined in
your package for which you do not have usage messages (or, more precisely, for which you
have  not  explicitly  exported  by  mentioning  that  symbol  before  the Begin  statement).
Those functions will be private, unavailable for the user of your package to access. 

Making your functions behave much like the built-in functions will make it easier for
users  of  your  packages,  since  they  will  expect  usage  messages  and  general  functionality
similar to that of Mathematica’s functions. It is also a good way for you to document your
programs. We would go so far as to suggest that you consider writing your usage messages
before  you  write  the  function  definitions  in Mathematica.  This  will  help  you  to  clearly
understand what it is you want your functions to do.

In[4]:= RandomWalk::"usage"

"RandomWalk n generates an n step walk in two dimensions.

The default behavior gives a lattice walk with steps

in one of the four compass directions. The option

LatticeWalk takes values True or False. The value

of the option Dimensions can be any of 1, 2, or 3.";

In[5]:= LatticeWalk::"usage"

"LatticeWalk val is an option to RandomWalk

that determines whether the random walk will

be a lattice walk or an off lattice walk.

Possible values are True and False.";

In[6]:= ShowWalk::"usage"

"ShowWalk walk displays a one, two, or three dimensional

random walk connecting each site with a line. Graphics

options can be passed to ShowWalk. E.g., ShowWalk walk,

Background GrayLevel 0 to produce a black background.";

In[7]:= AnimateWalk::"usage"

"AnimateWalk walk, opts creates an animation

of a two dimensional random walk. A red ball

will be seen to move to the current position in

the walk to aid in visualizing the animation.";
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Warning messages

In[8]:= RandomWalk::rwn "Argument `1` is not a positive integer.";

Options

In[9]:= Options RandomWalk LatticeWalk True, Dimension 2

Out[9]= LatticeWalk True, Dimension 2

Begin private context
The Begin  command changes the current context without affecting the context path. By
starting  the  argument `Private`  with  a  context  mark `,  we  change to  a  subcontext  of
the current context. This new subcontext is IPM3`RandomWalks`Private`. 

In[10]:= Begin "`Private`"

Out[10]= IPM3`RandomWalks`Private`

The function definitions

In[11]:= walk1D n_ : NestList # 1 Random Integer &, 0, n

In[12]:= walk1DOffLattice n_ :

FoldList Plus, 0, Table Random Real, 1, 1 , n

In[13]:= walk2D n_ :

Module NSEW 0, 1 , 1, 0 , 0, 1 , 1, 0 ,

FoldList Plus, 0, 0 ,

NSEW Table Random Integer, 1, 4 , n

In[14]:= walk2DOffLattice n_ :

FoldList Plus, 0, 0 ,

Map Cos # , Sin # &, Table Random Real, 0, 2 , n

In[15]:= walk3D n_ : Module NSEW3 2 Vertices Cube , FoldList

Plus, 0, 0, 0 , NSEW3 Table Random Integer, 1, 8 , n

In[16]:= walk3DOffLattice n_ :

FoldList Plus, 0, 0, 0 , Map Cos # , Sin # ,
#

2
&,

Table Random Real, 2 , 2 , n
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In[17]:= RandomWalk n_, opts___?OptionQ : Module dim, latticeQ ,

If Not IntegerQ n && n 0 , Message RandomWalk::rwn, n ,

latticeQ, dim LatticeWalk, Dimension .

Flatten opts, Options RandomWalk ;

Which

dim 1, If latticeQ, walk1D n , walk1DOffLattice n ,

dim 2, If latticeQ, walk2D n , walk2DOffLattice n ,

dim 3, If latticeQ, walk3D n , walk3DOffLattice n

In[18]:= ShowWalk coords_, opts___ :

Which

Length Dimensions coords 1,

ListPlot coords, opts, PlotJoined True ,

Dimensions coords 2 2,

Show Graphics Line coords , opts,

AspectRatio Automatic , Dimensions coords 2 3,

Show Graphics3D Line coords , opts,

AspectRatio Automatic

In[19]:= AnimateWalk coords_, opts___ :

Scan Show Graphics RGBColor 1, 0, 0 , PointSize 0.025 ,

Point coords #1 , Line Take coords, #1 ,

opts, AspectRatio Automatic, PlotRange

Min #1 0.2, Max #1 0.2 & Transpose coords &,

Range 2, Length coords

End private context
The End[]  command  closes  the Begin[]  and  puts  us  back  in  the  context Random
Walks`.  Any symbols  that  were defined in  the  subcontext IPM3`RandomWalks`Pri
vate` can no longer be accessed.

In[20]:= End

Out[20]= IPM3`RandomWalks`Private`

EndPackage
The EndPackage[]  command  puts  us  back  in  the  context  we  were  in  prior  to  the
BeginPackage[] command.

In[21]:= EndPackage
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Examples
Starting  with  a  new  session,  and  making  sure  that  the RandomWalks  package  is  in  a
directory/folder where Mathematica can find it, this loads the package.

In[22]:= Quit

In[1]:= IPM3`RandomWalks`

Here is the usage message for the RandomWalk function.

In[2]:= ?RandomWalk

RandomWalk n generates an n step walk in two

dimensions. The default behavior gives a lattice walk

with steps in one of the four compass directions. The

option LatticeWalk takes values True or False. The

value of the option Dimensions can be any of 1, 2, or 3.

This gives a random walk of length 10 in two dimensions.

In[3]:= RandomWalk 10, Dimension 2

Out[3]= 0, 0 , 0, 1 , 0, 0 , 0, 1 , 0, 2 ,

1, 2 , 1, 1 , 1, 0 , 1, 1 , 0, 1 , 0, 2

This shows a 250-step off-lattice random walk using the default of two dimensions.

In[4]:= ShowWalk RandomWalk 250, LatticeWalk False ;

A 500-step two-dimensional random walk with some graphics options.

In[5]:= ShowWalk RandomWalk 500 , Frame True ;

20 15 10 5 0 5
10

5

0

5

10
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A 100 step off-lattice random walk in three dimensions.

In[6]:= walk3

ShowWalk RandomWalk 103, Dimension 3, LatticeWalk False ;

Using a  transformation rule,  it  is  straightforward to  change the coordinates  of  each
line to a gray point.

In[7]:= Show walk3 . Line x_ : GrayLevel .5 , Map Point, x ;

Finally, we should check that RandomWalk  does the right thing when passed a bad
argument.

In[8]:= RandomWalk 5

RandomWalk::rwn : Argument 5 is not a positive integer.

Although we have omitted them here, several additional functions are available in the
package IPM3`RandomWalks` for performing numerical analysis on random walks.
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Exercises

1. This series of exercises will walk you through the creation of a package Collatz.m, 
a package of functions for performing various operations related to the Collatz
problem that we investigated earlier (Exercise 5 of Section 5.3, Exercises 6 and 7 of 
Section 6.2, and Exercise 3 of Section 7.6). Recall that the Collatz function, for any 
integer n, returns 3 n 1 for odd n, and n

2  for even n. The (as yet unproven) Collatz
Conjecture is the statement that, for any initial positive integer n, the iterates of the
Collatz function always reach the cycle 4, 2, 1,… . Start by creating an auxiliary 
function collatz[n] that returns 3 n 1 for n odd and n 2 for n even.

2. Create the function CollatzSequence[n] that returns a list of the iterates of the
auxiliary function collatz[n] from the previous exercise. Here is some sample 
output of the CollatzSequence function.

In[1]:= CollatzSequence 7

Out[1]= 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

In[2]:= CollatzSequence 111

Out[2]= 111, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425,

1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,

1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102,

2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866,

433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46,

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

3. Create a usage message for CollatzSequence and warning messages for each of 
the following situations.
a. notint: the argument to CollatzSequence is not a positive integer

b. argx: CollatzSequence was called with the wrong number of arguments

4. Modify the definition of CollatzSequence that you created in Exercise 2 above 
so that it does some error trapping and issues the appropriate warning message that 
you created in Exercise 3.
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5. Finally, put all the pieces together and write a package CollatzSequence.m that 
includes the appropriate BeginPackage and Begin statements, usage messages,
warning messages, and function definitions. Put your package in a directory where
Mathematica can find it on its search path and then test it to see that it returns correct 
output such as the examples below.

In[1]:= IPM3`Collatz`

In[2]:= ?CollatzSequence

CollatzSequence n computes the sequence of

Collatz iterates starting with initial value n. The

sequence terminates as soon as it reaches the value 1.

In[3]:= CollatzSequence 37

Out[3]= 37, 112, 56, 28, 14, 7, 22, 11, 34,

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Here are various cases in which CollatzSequence is given bad input.

In[4]:= CollatzSequence 5

CollatzSequence::notint : First argument, 5,

to CollatzSequence must be a positive integer.

In[5]:= CollatzSequence 4, 6

CollatzSequence::argx :

CollatzSequence called with 2 arguments;

1 argument is expected. More…

Out[5]= CollatzSequence 4, 6
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Appendix A How expressions are
evaluated

Evaluation of expressions

Evaluation  takes  place  whenever  an  expression  is  entered.  Here  is  the  general  procedure
followed by Mathematica when evaluating an expression (with a few exceptions):

1. If the expression is a number or a string, it is left unchanged.

In[1]:= 4.58425

Out[1]= 4.58425

2. If the expression is a symbol, it is rewritten if there is an applicable rewrite rule in
the global rule base; otherwise, it is unchanged.

In[2]:= expr

Out[2]= expr

In[3]:= mysymbol

Out[3]= mysymbol

3. If the expression is not a number, string or symbol, its parts are evaluated in a 
specific order:

• The head of the expression is evaluated.

• The arguments of the expression are evaluated in order, except when the head
is a symbol with a Hold  attribute. In this case, some of its arguments are left
in their unevaluated forms.

4. After the head and arguments of an expression are each completely evaluated, the
expression consisting of the evaluated head and arguments is rewritten (after
making any necessary changes to the arguments based on the Attributes of 
the head) if there is an applicable rewrite rule in the global rule base.



5. After carrying out the previous steps, the resulting expression is evaluated in the
same way and then the result of that evaluation is evaluated, and so on until there
are no more applicable rewrite rules.

The term rewriting process done in steps 2 and 4 above can be described as follows:

• pattern match parts of an expression and the left-hand side of a rewrite rule

• substitute  the values which match labeled blanks in the pattern into the right-hand
side of the rewrite rule and evaluate it

• replace the matched part of the expression with the evaluated result

Both built-in and user-defined rewrite rules are available for use in evaluation. When
more than one rewrite rule is found to match an expression, the rule used for term rewrit-
ing is selected based on the following priority:

• user-defined rules are used before built-in rules

• more specific rules are used before more general rules

• one rule is more specific than another if its left-hand side matches fewer expressions;
for  example,  the  rule f[0]:=…  is  more  specific  than f[_]:=….  This  is  discussed
further in Section 5.3.

The evaluation process can be illustrated with a simple case. We first enter a simple
rewrite rule into the global rule base.

In[4]:= square x_ : x2

If we now evaluate the following expression, the number 9 is returned as the result.

In[5]:= square 3

Out[5]= 9

We can step through the details of the evaluation process that took place above.

1. The head, square, was evaluated first. The global rule base was searched for a 
rewrite rule whose left-hand side was the symbol square. No matching rewrite
rule was found and so the symbol was left unchanged.

2. The argument 3 was evaluated. Since 3 is a number, it was left unchanged.

3. The expression square[3] was evaluated. The global rule base was searched for
a rewrite rule whose left-hand side pattern matched square[3]. The pattern 
square[3] was found to match square[x_] and so the value of 3 was substi-
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tuted for x in the right-hand side of the rewrite rule, Power[x,2], to give
Power[3,2].

4. Power[3,2] was then evaluated (by the same general procedure) to give 9.

5. The value 9 was evaluated. Since 9 is a number, it was left unchanged.

6. Since there were no more rules to use, the final value 9 was returned.
These steps can be seen in detail by using Trace with the TraceOriginal option

set to True.

In[6]:= Trace square 3 , TraceOriginal True

Out[6]= square 3 , square , 3 ,

square 3 , 32, Power , 3 , 2 , 32, 9
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Appendix B Debugging

Whenever you write programs, much of your time will be spent in debugging – figuring out
why your program does not work. In this appendix, we offer a few tips on debugging, and
also give some examples of common programming errors.

Tracing evaluation

In  any  programming  language,  the  programmer  will,  at  some  point,  be  faced  with  an
unexpected,  and  perhaps,  mysterious  result.  You  might  be  expecting  one  output,  but  an
entirely different one is generated. Or your program may not run to completion and only
give error or  warning messages  that  are difficult  to decipher.  In such situations,  you  may
find it helpful to take a peek at Mathematica’s evaluation process. This is most easily done
with Trace  and  related  functions.  For  example,  using Trace  on  a  simple  arithmetic
operation,  you  can  see  that Mathematica’s  evaluator  works  from the  inside  out,  following
the order of operations for arithmetic.

In[1]:= Trace 2 3 4 5 6

Out[1]= 5 6, 11 , 4 11, 44 , 3 44, 47 , 2 47, 94

Similarly, tracing the evaluation of an If  statement shows that only the first argument to
the If  function  is  evaluated  initially;  the If  function  itself  returns  no  value,  hence  the
Null at the end of the trace.

In[2]:= Trace If 4 9, Print "true" , Print "false"

false

Out[2]= 4 9, False , If False, Print true , Print false ,

Print false , MakeBoxes false, StandardForm , "false" , Null

Trace and TracePrint can be especially useful when you know how to use their second
argument. If the second argument is just a symbol, then only those parts of the trace that
use rewrite rules for that symbol are shown. If it is a pattern, only those lines of the trace
that  match  the pattern  will  be  printed;  an example  of  this  was  seen in Section 7.1. If  the
second  argument  is  a  transformation  rule,  then,  when  the  pattern  matches  a  line  of  the
trace, the rule is applied before printing it.



For example, first we trace the evaluation of the Fibonacci function showing all
expressions used in the evaluation.

In[3]:= fib 0 : 0

fib 1 : 1

fib n_ : fib n 2 fib n 1

In[6]:= Trace fib 3

Out[6]= fib 3 , fib 3 2 fib 3 1 , 3 2, 1 , fib 1 , 1 ,

3 1, 2 , fib 2 , fib 2 2 fib 2 1 , 2 2, 0 , fib 0 , 0 ,

2 1, 1 , fib 1 , 1 , 0 1, 1 , 1 1, 2

Most of this, you will agree, is not very interesting. We can confine it to only those
parts that involve the applications of a fib rule by giving fib as the second argument to
Trace.

In[7]:= Trace fib 3 , fib

Out[7]= fib 3 , fib 3 2 fib 3 1 , fib 1 , 1 ,

fib 2 , fib 2 2 fib 2 1 , fib 0 , 0 , fib 1 , 1

Perhaps more useful here would be the pattern fib[_], which includes all lines in
the original trace of the form fib[expr].

In[8]:= TracePrint fib 3 , fib _

fib 3

fib 3 2

fib 1

fib 3 1

fib 2

fib 2 2

fib 0

fib 2 1

fib 1

Out[8]= 2
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Using a transformation rule, we can show just the arguments of the various calls that
are either fib applied to an integer, or the right-hand side of the recursive rule.

In[9]:= TracePrint fib 3 , fib n_Integer n

3

1

2

0

1

Out[9]= 2

Printing variables

The classic debugging method, used in all programming languages, is to insert Print
statements in the body of a program to show where evaluation is occurring and what the
values of variables are at that point. Keep in mind that if expr is any expression, the com-
pound expression (Print[…]; expr) has the same value as expr, so it is easy to insert
Print statements without changing how the program works.

The most common use of Print is to show the values of a function’s arguments. A
rule f[x_] := expr can be changed to f[x_] := (Print[x]; expr) and it will print
the value of the argument in each call.

In[10]:= F n_ : Print n ; F n 2 F n 1 ; n 1

In[11]:= F 4

4

2

3

2

Out[11]= 2 F 0 3 F 1

Reap and Sow

Another way of viewing intermediate results in a computation is to use Reap and Sow.
The arguments to Sow will be collected by the nearest Reap.
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For example, recall the simple procedural program we created in Chapter 5 for
implementing Newton’s method for root finding.

In[12]:= f x_ : x2 50

In[13]:= a 50;

Do a N a
f a

f a
, 7

At the end of the Do loop, the approximation to the root is in the symbol a.

In[15]:= a

Out[15]= 7.07107

If we Sow a, and then Reap all the values that a took on during the loop, we can see
the intermediate values.

In[16]:= a 50;

Reap

Do Sow a N a
f a

f a
, 7

2

Out[17]= 25.5, 13.7304, 8.68597, 7.22119, 7.07263, 7.07107, 7.07107

Common errors

Many of the errors you will see when programming are obvious. Here is one of the most
common ones.

In[18]:= Part x, y, z , 4

Part::partw : Part 4 of x, y, z does not exist. More…

Out[18]= x, y, z 4

Here, you are attempting to extract a part of an expression that does not have that
part; that is, trying to extract the fourth element of a list with only three elements.

Another thing you will often see is an entire expression returned instead of a value –
sometimes the exact same expression you entered.

In[19]:= y n : Table i, i, n, n

In[20]:= y 10

Out[20]= y 10
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What is the problem? The n in the argument list for y is missing the blank. Mathemat-
ica sees the left-hand side as a pattern that matches the expression y[n] and nothing else –
in particular, not y[10]. Of course, when there are no rules to apply to an expression,
Mathematica is done – it does not even know there is an error!

Another very common case where this occurs is when you fail to supply enough
arguments to a function.

In[21]:= Clear f, x, y, r

In[22]:= f x_, r___ , y_ : If x 0, y, f r , f r

In[23]:= f , _ :

In[24]:= f 5, 4, 17 , 1

Out[24]= 1, f 4, 17

Similarly, this error occurs when you supply too few arguments.

In[25]:= Clear g

In[26]:= g x_, r___ , y_ : If x 0, y, g r, y , g r, y

In[27]:= g , _ :

In[28]:= g 5, 4, 17, 12, 21 , 1

Out[28]= 1, g 4, 17, 12, 21, 1

In the first example, the recursive call to f had just one argument, and there were no
rules for this case. In the second, we forgot to put the r in list braces in the recursive call,
so g was called with all the elements of r as arguments, giving it too many arguments.

Another very common error is to get your program in a loop where it seems to go on
forever. If this happens when you are working with recursive definitions, the chances are
that your function is continually making recursive calls and not finishing them. In this case,
you will reach Mathematica’s limit on the number of recursive calls it allows, which is
stored in the variable $RecursionLimit.

In[29]:= h x_ : h x 1 h x 1

In[30]:= h 0 : 0
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In[31]:= h 1

$RecursionLimit::reclim :

Recursion depth of 256 exceeded. More…

General::stop :

Further output of $RecursionLimit::reclim will

be suppressed during this calculation. More…

Out[31]= $Aborted

Another possibility is to get the same message, but for $IterationLimit, as we
saw in Section 7.4.

In either case, Mathematica may not stop the computation, but instead continue to
give this message. If this occurs, you will have to terminate the program from the key-
board, as described in Section 1.2. There are times when you may want to increase the
recursion limit, which you can do by assigning a larger integer to $RecursionLimit,
but usually if you exceed it you are in a loop.

When solving problems using iteration, you may go into a loop without doing
recursive calls, in which case the program will just go on forever without printing any error
messages, or may print an error message indicating that $IterationLimit is exceeded.
One option is to terminate the program from the keyboard. You can increase the value of
$IterationLimit, but only do that if you are sure there is no error.
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Solutions to exercises

2 The Mathematica language

2.1 Expressions

1. The expression a(b+c) is given in full form as Times[a,Plus[b,c]].

2. This is simply a
b c  as can be seen by evaluating the full form expression.

In[1]:= Times a, Power Plus b, c , 1

Out[1]=
a

b c

3. Looking at the internal representation of this expression with FullForm helps to unwind the 
part specification.

In[2]:= FullForm x^2 y z w

Out[2]//FullForm=

Times Power w, 1 , Plus Power x, 2 , y , z

In[3]:= x^2 y z w 2, 1, 2

Out[3]= 2

4. There are three terms in the expression, with the term b x being the second.

In[4]:= expr a x2 b x c;

In[5]:= FullForm expr

Out[5]//FullForm=

Plus c, Times b, x , Times a, Power x, 2

The b is the first element of Times[b,x], so the part specification is 2,1.

In[6]:= expr 2

Out[6]= b x

In[7]:= expr 2, 1

Out[7]= b



2.2 Definitions

1. This exercise focuses on the difference between immediate and delayed assignments.

a. This will generate a list of n random numbers.

In[1]:= randLis1 n_ : Table Random , n

In[2]:= ?randLis1

Global`randLis1

randLis1 n_ : Table Random , n

In[3]:= randLis1 3

Out[3]= 0.0405431, 0.043554, 0.699358

b. Since the definition for x is an immediate assignment, its value does not change in the body
of randLis2. But each time randLis2 is called, a new value is assigned to x.

In[4]:= randLis2 n_ : x Random ; Table x, n

In[5]:= ?randLis2

Global`randLis2

randLis2 n_ : x Random ; Table x, n

In[6]:= randLis2 3

Out[6]= 0.651026, 0.651026, 0.651026

c. Because the definition for x is a delayed assignment, the definition for randLis3 is
functionally equivalent to randLis1.

In[7]:= randLis3 n_ : x : Random ; Table x, n

In[8]:= ?randLis3

Global`randLis3

randLis3 n_ : x : Random ; Table x, n

In[9]:= randLis3 3

Out[9]= 0.304574, 0.184163, 0.744351

d. Recall that in an immediate assignment, the right-hand side of the definition is evaluated
first. But in this case, n does not have a value, so Table is not able to evaluate properly.
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In[10]:= randLis4 n_ Table Random , n

Table::iterb : Iterator n does not have appropriate bounds. More…

Out[10]= Table Random , n

In[11]:= ?randLis4

Global`randLis4

randLis4 n_ Table Random , n

2.3  Predicates and Boolean operations

1. There are several ways to define this function, using either the relational operator for less than,
or with the absolute value function.

In[1]:= f x_ : 1 x 1

In[2]:= f x_ : Abs x 1

In[3]:= f 4

Out[3]= False

In[4]:= f 0.35

Out[4]= True

2. A number n can be considered a natural number if it is an integer and greater than or equal to
zero.

In[5]:= Positive 0

Out[5]= False

In[6]:= NaturalQ n_ : IntegerQ n && n 0

In[7]:= NaturalQ 0

Out[7]= True

In[8]:= NaturalQ 4

Out[8]= False

3. The empty set is a subset of every set. So first we need a definition to cover this case.

In[9]:= SubsetQ , lis2_ : True
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The intersection of lis1 and lis2 will be identical to lis1 whenever lis1 is a subset of

lis2.

In[10]:= SubsetQ lis1_, lis2_ : Intersection lis1, lis2 lis1

In[11]:= A a, b, c ;

B a, b, c, d, e ;

In[13]:= SubsetQ A, B

Out[13]= True

We can also give a definition in terms of the subset character  which can be entered by typing 

-sub-  or by using one of the palettes.

In[14]:= lis1_ lis2_ : Intersection lis1, lis2 lis1

In[15]:= A B

Out[15]= True

3 Lists

3.2  Creating and measuring lists

1. You can take every other element in the iterator list, or encode that in the function 2j.

In[1]:= Table j, i, 0, 8, 2 , j, 0, i, 2

Out[1]= 0 , 0, 2 , 0, 2, 4 , 0, 2, 4, 6 , 0, 2, 4, 6, 8

In[2]:= Table 2 j, i, 0, 4 , j, 0, i

Out[2]= 0 , 0, 2 , 0, 2, 4 , 0, 2, 4, 6 , 0, 2, 4, 6, 8

2. This is probably the simplest way to generate random 1s, 0s, and 1s.

In[3]:= Table Random Integer, 1, 1 , 10

Out[3]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

3. Here are three ways to generate the list.

In[4]:= Table 2 Random Integer 1, 10

Out[4]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
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In[5]:= Table 1 Random Integer , 10

Out[5]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

The following solution will become clearer in the next section after we have discussed the 

Part function in some detail.

In[6]:= 1, 1 Table Random Integer, 1, 2 , 10

Out[6]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

4. These lists can be generated with Table, using two iterators in the second example.

In[7]:= Table f i , i, 5

Out[7]= f 1 , f 2 , f 3 , f 4 , f 5

In[8]:= Table f i, j , i, 3 , j, 4

Out[8]= f 1, 1 , f 1, 2 , f 1, 3 , f 1, 4 ,

f 2, 1 , f 2, 2 , f 2, 3 , f 2, 4 , f 3, 1 , f 3, 2 , f 3, 3 , f 3, 4

5. From the top level, there are two lists, each consisting of two sublists, each sublist consisting of 
two elements.

In[9]:= Dimensions 1, a , 4, d , 2, b , 3, c

Out[9]= 2, 2, 2

3.3  Manipulating lists

1. The Position function tells us that the 9s are located in the second sublist, first position, and
in the fourth sublist, third position.

In[1]:= Position 2, 1, 10 , 9, 5, 7 , 2, 10, 4 , 10, 1, 9 , 6, 1, 6 , 9

Out[1]= 2, 1 , 4, 3

2. This is a straightforward use of the Transpose function.

In[2]:= Transpose x1, y1 , x2, y2 , x3, y3 , x4, y4 , x5, y5

Out[2]= x1, x2, x3, x4, x5 , y1, y2, y3, y4, y5

3. Here is one way to do it. First create a list representing the directions.

In[3]:= NSEW 0, 1 , 0, 1 , 1, 0 , 1, 0 ;
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In[4]:= Table NSEW Random Integer, 1, 4 , 10

Out[4]= 1, 0 , 0, 1 , 0, 1 , 0, 1 ,
1, 0 , 1, 0 , 0, 1 , 1, 0 , 0, 1 , 1, 0

4. We first drop the first element in the list, then create a nested list of every other element in 
the remaining list, and finally unnest the resulting list.

In[5]:= Rest a, b, c, d, e, f, g

Out[5]= b, c, d, e, f, g

In[6]:= Partition %, 1, 2

Out[6]= b , d , f

In[7]:= Flatten %

Out[7]= b, d, f

5.

In[8]:= a, b, c, d 3, 2, 4, 1

Out[8]= c, b, d, a

6.

In[9]:= Transpose 3, 2, 4, 1 , a, b, c, d

Out[9]= 3, a , 2, b , 4, c , 1, d

In[10]:= Sort %

Out[10]= 1, d , 2, b , 3, a , 4, c

In[11]:= Transpose %

Out[11]= 1, 2, 3, 4 , d, b, a, c

In[12]:= % 2

Out[12]= d, b, a, c

3.4  Working with several lists

1. Join expects lists as arguments.

In[1]:= Join z , x, y

Out[1]= z, x, y
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2. The trick here is partitioning the joined list so that you get every other element.

In[2]:= expr Join 1, 2, 3, 4 , a, b, c, d

Out[2]= 1, 2, 3, 4, a, b, c, d

In[3]:= Rest expr

Out[3]= 2, 3, 4, a, b, c, d

In[4]:= Partition %, 1, 2

Out[4]= 2 , 4 , b , d

In[5]:= Flatten %

Out[5]= 2, 4, b, d

This can also be done using the Take function.

In[6]:= Take expr, 2, Length expr , 2

Out[6]= 2, 4, b, d

3. This is another way of asking for all those elements that are in the union but not the intersec-
tion of the two sets.

In[7]:= A a, b, c, d ;

B a, b, e, f ;

In[9]:= Complement A B, A B

Out[9]= c, d, e, f

In[10]:= Complement Union A, B , Intersection A, B

Out[10]= c, d, e, f

3.5  Strings and characters

1. Here is a test string we will use for this exercise.

In[1]:= str "this is a test string"

Out[1]= this is a test string

This extracts the first character from str.

In[2]:= StringTake str, 1

Out[2]= t
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Here is its character code.

In[3]:= ToCharacterCode %

Out[3]= 116

For each lowercase letter of the English alphabet, subtracting 32 gives the corresponding

uppercase character.

In[4]:= % 32

Out[4]= 84

Convert back to a character.

In[5]:= FromCharacterCode %

Out[5]= T

Take the original string minus its first character.

In[6]:= StringDrop str, 1

Out[6]= his is a test string

Finally, join the previous string with the capital T.

In[7]:= StringJoin %%, %

Out[7]= This is a test string

2. We first need to extract the character codes from this string.

In[8]:= numstr "73"

Out[8]= 73

In[9]:= ToCharacterCode numstr 1

Out[9]= 55

In[10]:= 10 % 48

Out[10]= 70

In[11]:= ToCharacterCode numstr 2

Out[11]= 51

In[12]:= % 48

Out[12]= 3
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In[13]:= % %%%

Out[13]= 73

Here it is all put together in one line.

In[14]:= 10 ToCharacterCode numstr 1 48 ToCharacterCode numstr 2 48

Out[14]= 73

There is a built-in function for this task, ToExpression. See the next exercise for details.

3.

In[15]:= numb ToCharacterCode "73"

Out[15]= 55, 51

In[16]:= numb 48

Out[16]= 7, 3

In[17]:= 8 Part %, 1 Part %, 2

Out[17]= 59

Here is another approach that converts the single characters into regular expressions and then

operates on those directly.

In[18]:= ToExpression Characters "73"

Out[18]= 7, 3

In[19]:= 8 First % Last %

Out[19]= 59

4. One approach converts the string to character codes.

In[20]:= ToCharacterCode "10495"

Out[20]= 49, 48, 52, 57, 53

In[21]:= % 48

Out[21]= 1, 0, 4, 9, 5

In[22]:= Reverse Table 10j, j, 0, 4

Out[22]= 10000, 1000, 100, 10, 1
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In[23]:= %.%%

Out[23]= 10495

A direct approach uses ToExpression.

In[24]:= ToExpression "10495"

Out[24]= 10495

5. First, consider the character code of a string.

In[25]:= ToCharacterCode "best"

Out[25]= 98, 101, 115, 116

Then we need only know if this list of codes is in order.

In[26]:= OrderedQ %

Out[26]= True

So here is our Boolean function OrderedWordQ.

In[27]:= OrderedWordQ w_String : OrderedQ ToCharacterCode w

Now we will find all the words in the dictionary file that comes with Mathematica that are

ordered in this way. First we generate a platform-independent path to the dictionary file.

In[28]:= wordfile ToFileName $InstallationDirectory, "Documentation",

"English", "Demos", "DataFiles" , "dictionary.dat"

Out[28]= C:\Program Files\Wolfram Research\Mathematica\5
.1\Documentation\English\Demos\DataFiles\dictionary.dat

Then we read the file using ReadList, specifying the type of data we are reading in as a

Word.

In[29]:= words ReadList wordfile, Word ;

Finally, we select those elements from the list words that pass the OrderedWordQ test.

In[30]:= Select words, OrderedWordQ Shallow

Out[30]//Shallow=

a, AAA, AAAS, abbe, abbey, abbot, Abbott, abc, Abe, Abel, 565

6. Here is the function that checks if a string is a palindrome.

In[31]:= PalindromeQ str_String : StringReverse str str
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In[32]:= PalindromeQ "mood"

Out[32]= False

In[33]:= PalindromeQ "PoP"

Out[33]= True

In[34]:= PalindromeQ num_Integer : PalindromeQ ToString num

In[35]:= PalindromeQ 12522521

Out[35]= True

Create a path to the file dictionary.dat.

In[36]:= dictfile ToFileName $BaseDirectory,

"Applications", "IPM3", "DataFiles" , "dictionary.dat"

Out[36]= C:\Documents and Settings\All Users\Application Data\
Mathematica\Applications\IPM3\DataFiles\dictionary.dat

Import the file.

In[37]:= words Import dictfile, "Words" ;

In[38]:= Select words, PalindromeQ

Out[38]= a, AAA, ABA, ala, AMA, ana, b, bib, bob, bub, c, CDC, civic, d, dad, deed,
did, DOD, dud, e, eke, ere, eve, ewe, eye, f, g, gag, gig, gog, h, huh, i,
ii, iii, j, k, l, level, m, madam, minim, mum, n, non, noon, nun, o, p, pap,

PDP, peep, pep, pip, poop, pop, pup, q, r, radar, refer, rever, rotor, s,
sis, s's, t, tat, teet, tenet, tit, TNT, toot, tot, u, v, w, wow, x, y, z

4 Functional programming

4.2  Functions for manipulating expressions

1. Here is a sample set of pairs of numbers.

In[1]:= data 1, 2 , 2, 3 , 3, 4 , 4, 5 , 5, 6 ;

The pairSum function can be written simply as:

In[2]:= addPair x_, y_ : x y
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Finally we map pairSum across data.

In[3]:= Map addPair, data

Out[3]= 3, 5, 7, 9, 11

2. Here is a sample set of pairs of numbers.

In[4]:= data 1, 2 , 2, 3 , 3, 4 , 4, 5 , 5, 6 ;

Since Apply normally works at level 0, we need to give it a third argument to get it to apply

Plus at level 1.

In[5]:= Apply Plus, data, 1

Out[5]= 3, 5, 7, 9, 11

3. First you need to transpose the matrix and then reverse the pairs.

In[6]:= lis 1, 2, 3 , 4, 5, 6

Out[6]= 1, 2, 3 , 4, 5, 6

In[7]:= Transpose lis

Out[7]= 1, 4 , 2, 5 , 3, 6

In[8]:= Map Reverse, %

Out[8]= 4, 1 , 5, 2 , 6, 3

This can also be accomplished using Thread.

In[9]:= Map Reverse, Thread lis

Out[9]= 4, 1 , 5, 2 , 6, 3

4. This can be done either in two steps, or by using the Inner function.

In[10]:= Transpose 1, 2 , 3, 4 x, y

Out[10]= x, 3 x , 2 y, 4 y

In[11]:= Apply Plus, %

Out[11]= x 2 y, 3 x 4 y

In[12]:= Inner Times, 1, 2 , 3, 4 , x, y , Plus

Out[12]= x 2 y, 3 x 4 y
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5. To get down to the second level of nested lists, you have to use a second argument to Apply.

In[13]:= facs FactorInteger 3628800

Out[13]= 2, 8 , 3, 4 , 5, 2 , 7, 1

In[14]:= Apply Power, facs, 2

Out[14]= 256, 81, 25, 7

One more use of Apply is needed to multiply these terms.

In[15]:= Apply Times, %

Out[15]= 3628800

Here is a function that puts this all together.

In[16]:= ExpandFactors lis_ : Apply Times, Apply Power, lis, 2

In[17]:= FactorInteger 295232799039604140847618609643520000000

Out[17]= 2, 32 , 3, 15 , 5, 7 , 7, 4 , 11, 3 ,
13, 2 , 17, 2 , 19, 1 , 23, 1 , 29, 1 , 31, 1

In[18]:= ExpandFactors %

Out[18]= 295232799039604140847618609643520000000

Another approach would be to use Transpose to separate the bases from their exponents, 

then use MapThread to raise each base to the corresponding exponent.

In[19]:= Transpose facs

Out[19]= 2, 3, 5, 7 , 8, 4, 2, 1

In[20]:= MapThread Power, %

Out[20]= 256, 81, 25, 7

Finally, apply Times to the list.

In[21]:= Apply Times, %

Out[21]= 3628800

In[22]:= ExpandFactors2 lis_ : Apply Times, MapThread Power, Transpose lis

6. Here is a factorization we can use to work through this problem.

In[23]:= facs FactorInteger 10

Out[23]= 2, 8 , 3, 4 , 5, 2 , 7, 1
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First we extract the prime bases and their exponents.

In[24]:= bases Transpose facs 1

Out[24]= 2, 3, 5, 7

In[25]:= exponents Transpose facs 2

Out[25]= 8, 4, 2, 1

Here then is the inner product, threading Power over the lists and then multiplying the 

resulting terms with Times.

In[26]:= Inner Power, bases, exponents, Times

Out[26]= 3628800

Here is a function that combines these steps.

In[27]:= ExpandFactors3 lis_ : Module facs Transpose lis ,

Inner Power, facs 1 , facs 2 , Times

In[28]:= ExpandFactors3 facs

Out[28]= 3628800

7. If we first look at a symbolic result, we should be able to see how to construct our function. For
three vectors and three variables, here is the divergence (think of d as the derivative operator).

In[29]:= Inner d, e1, e2, e3 , v1, v2, v3 , Plus

Out[29]= d e1, v1 d e2, v2 d e3, v3

So for arbitrary-length vectors and variables, we have:

In[30]:= div vecs_, vars_ : Inner D, vecs, vars, Plus

As a check, we can compute the divergence of the standard gravitational or electric force field,

which should be 0.

In[31]:= div x, y, z x2 y2 z2
3 2

, x, y, z

Out[31]=
3 x2

x2 y2 z2 5 2

3 y2

x2 y2 z2 5 2

3 z2

x2 y2 z2 5 2

3

x2 y2 z2 3 2

In[32]:= Simplify %

Out[32]= 0

Finally, we should note that this definition of divergence is a bit delicate as we are doing no

argument checking at this point. For example, it would be sensible to insure that the length of 

the vector list is the same as the length of the variable list before starting the computation. The 
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reader should refer to Chapter 6 for a discussion of how to use pattern matching to deal with

this issue.

4.3  Iterating functions

1. First we generate the step directions.

In[1]:= Table 1 Random Integer , 10

Out[1]= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Then, starting at 0, the fold operation generates the locations.

In[2]:= FoldList Plus, 0, %

Out[2]= 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 2

2. We can use the method of generating a list of step locations that was shown in an earlier 
exercise.

In[3]:= 1, 0 , 1, 0 , 0, 1 , 0, 1 Table Random Integer, 1, 4 , 10

Out[3]= 0, 1 , 1, 0 , 0, 1 , 0, 1 ,
0, 1 , 0, 1 , 0, 1 , 0, 1 , 1, 0 , 1, 0

In[4]:= FoldList Plus, 0, 0 , %

Out[4]= 0, 0 , 0, 1 , 1, 1 , 1, 0 , 1, 1 ,
1, 0 , 1, 1 , 1, 2 , 1, 1 , 0, 1 , 1, 1

3. Starting with 1, we want to fold the Times functions across the first n integers.

In[5]:= fac n_ : Fold Times, 1, Range n

In[6]:= fac 10

Out[6]= 3628800

4.4  Programs as functions

1. The obvious way to do this is to take the list and simply pick out elements at random locations.
Note: the right-most location in the list is given by Length[lis], using the built-in Part and
Random functions.

In[1]:= chooseWithReplacement lis_, n_ :

lis Table Random Integer, 1, Length lis , n

In[2]:= chooseWithReplacement a, b, c, d, e, f, g, h , 3

Out[2]= f, e, c
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2. Here is our user-defined stringInsert.

In[3]:= stringInsert str1_, str2_, pos_ :

FromCharacterCode Join Take ToCharacterCode str1 , pos 1 ,

ToCharacterCode str2 , Drop ToCharacterCode str1 , pos 1

In[4]:= stringInsert "Joy world", "to the ", 5

Out[4]= Joy to the world

In[5]:= stringDrop str_, pos_ :

FromCharacterCode Drop ToCharacterCode str , pos

3. There are many ways of defining this function. Here we take advantage of the fact that if p and
q are each lists of two numbers, then p-q will subtract element-wise.

In[6]:= distance pt1_, pt2_ : Apply Plus, pt1 pt2 2

In[7]:= distance 2, 5 , 6, 8

Out[7]= 5

4. We assume that lis1 is longer than lis2 and pair off the corresponding elements in the lists
and then tack on the leftover elements from lis1.

In[8]:= interLeave2 lis1_, lis2_ :

Flatten Join Transpose lis2, Take lis1, Length lis2 ,

Take lis1, Length lis2 Length lis1

In[9]:= interLeave2 a, b, c, d , 1, 2, 3

Out[9]= 1, a, 2, b, 3, c, d

5. After creating the card deck, we cut it in half and interleave the two halves.

In[10]:= cardDeck

Flatten Outer List, , , , , Join Range 2, 10 , J, Q, K, A , 1 ;

In[11]:= Flatten Transpose Partition cardDeck, 26 , 1

Out[11]= , 2 , , 2 , , 3 , , 3 , , 4 , , 4 , , 5 , , 5 , , 6 ,
, 6 , , 7 , , 7 , , 8 , , 8 , , 9 , , 9 , , 10 ,

, 10 , , J , , J , , Q , , Q , , K , , K , , A , , A ,
, 2 , , 2 , , 3 , , 3 , , 4 , , 4 , , 5 , , 5 , , 6 ,
, 6 , , 7 , , 7 , , 8 , , 8 , , 9 , , 9 , , 10 ,

, 10 , , J , , J , , Q , , Q , , K , , K , , A , , A
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6. First, here is how we might write our own StringJoin.

In[12]:= FromCharacterCode

Join ToCharacterCode "To be, " , ToCharacterCode "or not to be"

Out[12]= To be, or not to be

And here is a how we might implement a StringReverse.

In[13]:= FromCharacterCode Reverse ToCharacterCode %

Out[13]= eb ot ton ro ,eb oT

4.5  Auxiliary functions

1. In the first definition, we only use one auxiliary function inside the Module.

In[1]:= latticeWalk1 n_ : Module steps ,

steps m_ : 1, 0 , 1, 0 , 0, 1 , 0, 1

Table Random Integer, 1, 4 , m ; FoldList Plus, 0, 0 , steps n

In[2]:= latticeWalk1 10

Out[2]= 0, 0 , 0, 1 , 0, 0 , 1, 0 , 1, 1 ,

0, 1 , 1, 1 , 2, 1 , 1, 1 , 0, 1 , 0, 0

Here we use two auxiliary functions, making the code a bit easier to read.

In[3]:= latticeWalk2 n_ :

Module choices, steps , choices 1, 0 , 1, 0 , 0, 1 , 0, 1 ;

steps m_ : choices Table Random Integer, 1, 4 , m ;

FoldList Plus, 0, 0 , steps n

In[4]:= latticeWalk2 10

Out[4]= 0, 0 , 0, 1 , 1, 1 , 2, 1 , 3, 1 ,
4, 1 , 5, 1 , 4, 1 , 5, 1 , 5, 2 , 4, 2

2. The following function creates a local function perfectQ using the Module construct. It
then checks every other number between n and m by using a third argument to the Range
function. 

In[5]:= PerfectSearch n_, m_ : Module perfectQ ,

perfectQ j_ : Apply Plus, Divisors j 2 j;

Select Range n, m, 2 , perfectQ

In[6]:= PerfectSearch 2, 1000

Out[6]= 6, 28, 496
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This function does not guard against the user supplying “bad” inputs. For example, if the user

starts with an odd number, then this version of PerfectSearch will check every other odd

number, and, since it is known that there are no odd numbers below at least 10300, none is

reported.

In[7]:= PerfectSearch[1, 1000]

Out[7]=

You can fix this situation by using the (as yet unproved) assumption that there are no odd

perfect numbers. This next version first checks that the first argument is an even number.

In[8]:= Clear PerfectSearch

In[9]:= PerfectSearch n_?EvenQ, m_ : Module perfectQ ,

perfectQ j_ : Apply Plus, Divisors j 2 j;

Select Range n, m, 2 , perfectQ

Now, the function only works if the first argument is even.

In[10]:= PerfectSearch 2, 1000

Out[10]= 6, 28, 496

In[11]:= PerfectSearch 1, 1000

Out[11]= PerfectSearch 1, 1000

3. This only requires a slight change to the code from the PerfectSearch function from the
previous exercise.

In[12]:= PerfectSearch n_, m_, 3 : Module perfectQ ,

perfectQ j_ : Apply Plus, Divisors j 3 j;

Select Range n, m , perfectQ

It appears as if there are only three 3-perfect numbers below 106.

In[13]:= PerfectSearch 1, 106, 3

Out[13]= 120, 672, 523776

4. Again, this function only requires a slight modification from that for the PerfectSearch
function above.

In[14]:= PerfectSearch n_, m_, 4 : Module perfectQ ,

perfectQ j_ : Apply Plus, Divisors j 4 j;

Select Range n, m , perfectQ

The following computation can be quite time consuming and requires a fair amount of 

memory to run to completion. If your computer’s resources are limited, you should split up the 

search intervals into smaller units.
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In[15]:= PerfectSearch 1, 2200000, 4 Timing

Out[15]= 54.769 Second, 30240, 32760, 2178540

5. This function requires a third argument.

In[16]:= Clear PerfectSearch ;

PerfectSearch n_, m_, k_ : Module perfectQ ,

perfectQ j_ : Apply Plus, Divisors j k j;

Select Range n, m , perfectQ

In[18]:= PerfectSearch 1, 100, 2

Out[18]= 6, 28

6. This function will require two auxiliary functions, the function  and a predicate to determine 
whether a number is super-perfect.

In[19]:= SuperPerfectSearch a_, b_ : Module sigma, superQ ,

sigma n_ : Apply Plus, Divisors n ;

superQ n_ : Nest sigma, n, 2 2 n;

Select Range a, b , superQ

Here, then, are all super-perfect numbers less than 100,000.

In[20]:= SuperPerfectSearch 1, 100000

Out[20]= 2, 4, 16, 64, 4096, 65536

7. Many implementations are possible for convertToDate. We show here a version that uses
string manipulation. First we extract the digits from the 8-digit number.

In[21]:= d IntegerDigits 20030515

Out[21]= 2, 0, 0, 3, 0, 5, 1, 5

The first four digits give us the year.

In[22]:= d Range 4

Out[22]= 2, 0, 0, 3

Here is a function that takes a list of digits, converts them to strings, concatenates them into

one string, and then converts that into a number.

In[23]:= convert str_ : ToExpression StringJoin Map ToString, str

In[24]:= convert d Range 4

Out[24]= 2003
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In[25]:= Head %

Out[25]= Integer

Using convert, here are the auxiliary functions to extract the year, month, and day as

numbers.

In[26]:= year str_ : convert str Range 4

In[27]:= year d

Out[27]= 2003

In[28]:= month str_ : convert str 5, 6

In[29]:= month d

Out[29]= 5

In[30]:= day str_ : convert str 7, 8

In[31]:= day d

Out[31]= 15

And here are all the pieces put together in the function convertToDate.

In[32]:= convertToDate n_ : Module d, convert, year, month, day ,

d IntegerDigits n ;

convert st_ : ToExpression StringJoin Map ToString, st ;

year st_ : convert st Range 4 ;

month st_ : convert st 5, 6 ;

day st_ : convert st 7, 8 ;

year d , month d , day d

In[33]:= convertToDate 20030515

Out[33]= 2003, 5, 15

4.6  Pure functions

1. This function adds the squares of the elements in lis.

In[1]:= elementsSquared lis_ : Apply Plus, lis2

In[2]:= elementsSquared 3, 29, 2, 17

Out[2]= 1143
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Using a pure function, this becomes:

In[3]:= Function lis, Apply Plus, lis2 3, 29, 2, 17

Out[3]= 1143

or simply,

In[4]:= Apply Plus, #2 & 3, 29, 2, 17

Out[4]= 1143

2. Here is the function that sums the digits of any integer.

In[5]:= sumdigits x_Integer : Apply Plus, IntegerDigits x

In[6]:= sumdigits 629

Out[6]= 17

Using a pure function, this becomes:

In[7]:= Function x, Apply Plus, IntegerDigits x 629

Out[7]= 17

In[8]:= Apply Plus, IntegerDigits # & 629

Out[8]= 17

3. First, here is the distance function.

In[9]:= distance pt1_, pt2_ : Apply Plus, pt1 pt2 2

Here are some sample points.

In[10]:= points Table Random , 5 , 2

Out[10]= 0.408123, 0.110529 , 0.640705, 0.227085 ,

0.605818, 0.074615 , 0.868053, 0.302804 , 0.381267, 0.66605

Just as a check, this computes the distance between the first and second points in our list.

In[11]:= distance points 1 , points 2

Out[11]= 0.260153

Now we need the distance between every pair of points. So we first create the set of pairs.

In[12]:= pairs Distribute points, points , List ;
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Then we apply the distance function and take the Max.

In[13]:= Max Apply distance, pairs, 1

Out[13]= 0.632628

This puts it all together using a pure function in place of the distance function. Since the 

diameter function operates on lists of pairs of numbers, we need to specify them in our pure

function by means of #1 and #2.

In[14]:= diameter lis_ :

Max Apply Sqrt Apply Plus, #1 #2 ^2 &,

Distribute lis, lis , List , 1

In[15]:= diameter points

Out[15]= 0.632628

As a final note, this function is not as efficient as it could be since it computes the distance

from every point to itself, as well as computing both the distance from point a to point b and

from point b to point a, for every pair of points a and b. In other words, for n points, we are

computing n2 distances when we only need to compute
n
2

 distances, highly sub-optimal. We 

leave the optimization of this function as an exercise to the reader.

4. Using pure functions, removeRand becomes:

In[16]:= Function lis, Delete lis, Random Integer, 1, Length lis

a, b, c, d, e

Out[16]= a, b, c, e

In[17]:= Delete #1, Random Integer, 1, Length # & a, b, c, d, e

Out[17]= a, c, d, e

5. Here is the deal function written using a pure function in place of removeRand.

In[18]:= deal n_ : Module cardDeck , cardDeck

Flatten Outer List, , , , , Join Range 2, 10 , J, Q, K, A , 1 ;

Complement cardDeck,

Nest Delete #1, Random Integer, 1, Length #1 &, cardDeck, n

In[19]:= deal 5

Out[19]= , A , , 2 , , 9 , , 2 , , 5

6. This function is ideally written as an iteration.

In[20]:= RepUnit n_ : Nest 10 # 1 &, 1, n 1
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In[21]:= RepUnit 7

Out[21]= 1111111

In[22]:= Map RepUnit # &, Range 12

Out[22]= 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111,

111111111, 1111111111, 11111111111, 111111111111

7. Notice that it is not necessary to use the Module function here because the only expressions 
on the right-hand side of the function definition are pure functions, built-in functions, and the
names of the arguments of the function.

In[23]:= chooseWithoutReplacement lis_, n_ : Complement lis,

Nest Delete #1, Random Integer, 1, Length #1 &, lis, n

In[24]:= chooseWithoutReplacement a, b, c, d, e , 4

Out[24]= a, c, d, e

8. Using the list of the step increments in the north, south, east, and west directions, this ten-step 
walk starts at the origin.

In[25]:= NestList #1 1, 0 , 1, 0 , 0, 1 , 0, 1 Random Integer, 1, 4 &,

0, 0 , 10

Out[25]= 0, 0 , 1, 0 , 1, 1 , 1, 0 , 0, 0 ,
1, 0 , 2, 0 , 3, 0 , 4, 0 , 4, 1 , 4, 2

9. Here is the path to the dictionary file.

In[26]:= dictfile ToFileName $InstallationDirectory, "Documentation",

"English", "Demos", "DataFiles" , "dictionary.dat"

Out[26]= C:\Program Files\Wolfram Research\Mathematica\5
.1\Documentation\English\Demos\DataFiles\dictionary.dat

This reads in the file using ReadList specifying the type of data we are reading in as a Word.

In[27]:= words ReadList dictfile, Word ;

Here are three words from the dictionary.

In[28]:= words 5, 55, 555

Out[28]= Aaron, abolish, alder

First we need to create a function that takes a string as an argument and returns True if its 

first character is char. As a first step, here is a pure function that checks if the first character

of the argument being passed to it ("abolish") starts with the letter "a".
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In[29]:= StringTake #, 1 "a" & "abolish"

Out[29]= True

Now we can use this pure function as the test to select all those words in lis that pass this

particular test.

In[30]:= WordsStartingWith lis_, char_ :

Select lis, StringTake #, 1 char &

Finally we can check all the words in the dictionary file that start with the letter "z" say.

In[31]:= WordsStartingWith words, "z"

Out[31]= z, zag, zagging, zap, zazen, zeal, zealot, zealous, zebra, zenith, zero,

zeroes, zeroth, zest, zesty, zeta, zig, zigging, zigzag, zigzagging,
zilch, zinc, zing, zip, zircon, zirconium, zloty, zodiac, zodiacal,
zombie, zone, zoo, zoology, zoom, zounds, z's, zucchini, zygote

This can also be accomplished using the new (in Version 5.1) StringMatchQ together with a

wildcard character.

In[32]:= Select words, StringMatchQ #, "z " &

Out[32]= z, zag, zagging, zap, zazen, zeal, zealot, zealous, zebra, zenith, zero,
zeroes, zeroth, zest, zesty, zeta, zig, zigging, zigzag, zigzagging,
zilch, zinc, zing, zip, zircon, zirconium, zloty, zodiac, zodiacal,

zombie, zone, zoo, zoology, zoom, zounds, z's, zucchini, zygote

Or you can get all those words that start with either “z” or “Z” by using the IgnoreCase

option to StringMatchQ.

In[33]:= Select words, StringMatchQ #, "z ", IgnoreCase True &

Out[33]= z, Zachary, zag, zagging, Zagreb, Zaire, Zambia, Zan, Zanzibar,

zap, zazen, zeal, Zealand, zealot, zealous, zebra, Zeiss,
Zellerbach, Zen, zenith, zero, zeroes, zeroth, zest, zesty,
zeta, Zeus, Ziegler, zig, zigging, zigzag, zigzagging, zilch,

Zimmerman, zinc, zing, Zion, zip, zircon, zirconium, zloty, zodiac,
zodiacal, Zoe, Zomba, zombie, zone, zoo, zoology, zoom, Zorn,
Zoroaster, Zoroastrian, zounds, z's, zucchini, Zurich, zygote

Or, using the new (in Version 5.1) Pick function:

In[34]:= Pick words, StringMatchQ words, "z" __

Out[34]= zag, zagging, zap, zazen, zeal, zealot, zealous, zebra, zenith, zero,

zeroes, zeroth, zest, zesty, zeta, zig, zigging, zigzag, zigzagging,
zilch, zinc, zing, zip, zircon, zirconium, zloty, zodiac, zodiacal,
zombie, zone, zoo, zoology, zoom, zounds, z's, zucchini, zygote
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10. Several modifications to the solution to Exercise 9 are needed. First, we must choose only 
those words with string length greater than or equal to the string length of the second argu-
ment to WordsStartingWith. Secondly, from this modified list, we choose those words
whose first several characters match the string we are working with.

In[35]:= Clear WordsStartingWith

In[36]:= WordsStartingWith lis_, str_ : Module lis2 ,

lis2 Select lis, StringLength # StringLength str & ;

Select lis2, StringTake #, StringLength str str &

In[37]:= WordsStartingWith words, "zoo"

Out[37]= zoo, zoology, zoom

Or, using StringMatchQ from Version 5.1, you have to join the string with the wildcard

character using ~~.

In[38]:= Clear WordsStartingWith

In[39]:= WordsStartingWith lis_List, str_String :

Select lis, StringMatchQ #, str " " &

In[40]:= WordsStartingWith words, "zoo"

Out[40]= zoo, zoology, zoom

Or, using the new (in Version 5.1) Pick function (note the need for the triple-blank here):

In[41]:= Pick words, StringMatchQ words, "zoo" ___

Out[41]= zoo, zoology, zoom

11. Using Fold, this pure function requires two arguments. The key is to start with initial value 0.

In[42]:= Horner list_List, base_ : Fold base #1 #2 &, 0, list ;

In[43]:= Horner a, b, c, d, e , x

Out[43]= e x d x c x b a x

In[44]:= Expand %

Out[44]= e d x c x2 b x3 a x4
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4.7  One-liners

1. If we map the Mod function with base 2 over a list, it will return 1 for every odd element and 0
for every even element.

In[1]:= Map Mod #, 2 & , 1, 1, 0, 2, 1

Out[1]= 1, 1, 0, 0, 1

Taking two lists, if we add them element-wise, we then need to select those that pass the mod

test above.

In[2]:= l1 1, 0, 0, 1, 1 ;

l2 0, 1, 0, 1, 0 ;

In[4]:= lis l1 l2

Out[4]= 1, 1, 0, 2, 1

In[5]:= Select lis, Mod #, 2 1 &

Out[5]= 1, 1, 1

And finally, we need to know how many elements are in this last list.

In[6]:= Length %

Out[6]= 3

In[7]:= HammingDistance3 lis1_, lis2_ :

Length Select lis1 lis2, Mod #, 2 1 &

Actually this could have been done more cleanly by using the predicate OddQ.

In[8]:= HammingDistance4 lis1_, lis2_ :

Length Select lis1 lis2, OddQ

2. Using Total, which simply gives the sum of the elements in a list, Hamming distance can be
computed as follows:

In[9]:= HammingDistance5 lis1_, lis2_ : Total Mod lis1 lis2, 2

In[10]:= HammingDistance5 l1, l2

Out[10]= 3

Some timing tests show that the implementation with Total is quite a bit more efficient than 

the previous versions.

In[11]:= data1 Table Random Integer , 106 ;
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In[12]:= data2 Table Random Integer , 106 ;

In[13]:= Timing HammingDistance5 data1, data2

Out[13]= 0.06 Second, 499016

In[14]:= Timing HammingDistance4 data1, data2

Out[14]= 0.691 Second, 499016

In[15]:= Timing HammingDistance3 data1, data2

Out[15]= 2.514 Second, 499016

3. a.

In[16]:= frequencies lis_ : Module pair ,

pair x_ : x, Count lis, x ;

Map pair, Union lis

In[17]:= frequencies a, a, b, b, b, a, c, c

Out[17]= a, 3 , b, 3 , c, 2

b.

In[18]:= split1 lis_, parts_ : Module lis1, lis2 ,

lis1 y_, z_ : Take lis, y, z ;

lis2 x_ : Inner lis1, Drop x, 1 1, Rest x , List ;

lis2 FoldList Plus, 0, parts

In[19]:= split1 Range 10 , 2, 5, 0, 3

Out[19]= 1, 2 , 3, 4, 5, 6, 7 , , 8, 9, 10

In[20]:= split2 lis_, parts_ : Module lis1 ,

lis1 x_ : Take lis, x 1, 0 ;

Map lis1, Partition FoldList Plus, 0, parts , 2, 1

In[21]:= split2 Range 10 , 2, 5, 0, 3

Out[21]= 1, 2 , 3, 4, 5, 6, 7 , , 8, 9, 10

c.

In[22]:= lotto1 lis_, n_ : Module lis1, lis2, lis3 , lis1 x_ :

Flatten Rest MapThread Complement, RotateRight x , x , 1 ;

lis2 y_ : Delete y, Random Integer, 1, Length y ;

lis3 z_ : NestList lis2, z, n ;

lis1 lis3 lis
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In[23]:= lotto1 Range 10 , 5

Out[23]= 2, 5, 4, 6, 8

In[24]:= lotto2 lis_, n_ : Take Transpose

Sort Transpose Table Random , Length lis , lis 2 , n

In[25]:= lotto2 Range 10 , 5

Out[25]= 2, 5, 1, 8, 7

4.

In[26]:= Timing lotto1 Range 50000 , 3 ; , Timing lotto2 Range 50000 , 3 ;

Out[26]= 0.09 Second, Null , 0.421 Second, Null

In[27]:= Timing lotto1 Range 50000 , 60 ; , Timing lotto2 Range 50000 , 60 ;

Out[27]= 1.362 Second, Null , 0.42 Second, Null

5. Here are the list of coins.

In[28]:= coins p, p, q, n, d, d, p, q, q, p

Out[28]= p, p, q, n, d, d, p, q, q, p

In[29]:= pocketChange2 x_ :

Dot Map Count x, # & , p, n, d, q , 1, 5, 10, 25

In[30]:= pocketChange2 coins

Out[30]= 104

In[31]:= pocketChange3 x_ :

Inner Times, Map Count x, # & , p, n, d, q , 1, 5, 10, 25 , Plus

In[32]:= pocketChange3 coins

Out[32]= 104

6.

In[33]:= makeChange x_ : Module coins 25, 10, 5, 1 ,

Quotient FoldList Mod, x, Drop coins, 1 , coins

In[34]:= makeChange 119

Out[34]= 4, 1, 1, 4
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7.

In[35]:= offLattice n_ :

Map Sin # , Cos # & , Table Random Real, 0, 2 , n

In[36]:= offLattice n_ : Module step ,

step x_ : Sin x , Cos x ;

Map step, Table Random Real, 0, 2 , n

In[37]:= offLattice 3

Out[37]= 0.194181, 0.980966 , 0.956556, 0.291548 , 0.431374, 0.902173

8. First, notice what FromDigits does.

In[38]:= ?FromDigits

FromDigits list constructs an integer
from the list of its decimal digits. FromDigits

list, b takes the digits to be given in base b. More…

We use With to create a local constant d, as this expression never changes throughout the

body of the function.

In[39]:= convertToDate2 num_ : With d IntegerDigits num ,

FromDigits Take d, 4 ,

FromDigits Take d, 5, 6 ,

FromDigits Take d, 7, 8

In[40]:= convertToDate2 20030515

Out[40]= 2003, 5, 15

5 Procedural programming

5.2  Loops and iteration

1. Using a compound expression inside the Do function, this computes the next approximations
of both square roots each time through the loop.

In[1]:= next fun_, x_ : N x
fun x

fun x
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In[2]:= a 50;

b 60;

Do

a next #2 50 &, a ;

b next #2 60 &, b ,

10

In[5]:= a, b

Out[5]= 7.07107, 7.74597

2. Notice that to compute the square root of a number r, we need to iterate the following
expression.

In[6]:= fun x_ : x2 r;

Simplify x
fun x

fun' x

Out[7]=
r x2

2 x

This can be written as a pure function, with a second argument giving the initial guess. Here 

we iterate ten times.

In[8]:= nestSqrt r_, init_ : Nest
r #2

2 #
&, N init , 10

In[9]:= nestSqrt 50, 10

Out[9]= 7.07107

3. We need to place the two expressions that were in the body of the Do into a list. Try copying
the body of the Do exactly as above and see what happens.

In[10]:= next fun_, x_ : N x
fun x

fun x

In[11]:= a 50;

b 60;

Table

a next #2 50 &, a ,

b next #2 60 &, b ,

10

Out[13]= 25.5, 30.5 , 13.7304, 16.2336 , 8.68597, 9.96482 , 7.22119, 7.993 ,

7.07263, 7.74978 , 7.07107, 7.74597 , 7.07107, 7.74597 ,
7.07107, 7.74597 , 7.07107, 7.74597 , 7.07107, 7.74597
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To mimic the solution to this problem obtained with the Do loop, we need to extract the last 

set of values obtained.

In[14]:= Last %

Out[14]= 7.07107, 7.74597

4. Note that this version of the Fibonacci function is much more efficient than the simple 
recursive version, and is closer to the version that uses dynamic programming.

In[15]:= fib n_ : Module prev 0, this 1, next ,

Do next prev this;

prev this;

this next,

n ;

prev

In[16]:= Table fib i , i, 1, 10

Out[16]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Actually, this code can be simplified a bit by using parallel assignments.

In[17]:= fib2 n_ : Module f1 0, f2 1 ,

Do f1, f2 f2, f1 f2 ,

n 1 ;

f2

In[18]:= Table fib2 i , i, 1, 10

Out[18]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Both of these implementations are quite fast and avoid the deep recursion of the classical

definition.

In[19]:= Timing fib 100000 ; , Timing fib2 100000 ;

Out[19]= 0.781 Second, Null , 0.631 Second, Null

5. We compute the derivative df inside the Module and then use that throughout the body of 
the function.

In[20]:= Clear findRoot

In[21]:= findRoot fun_, init_, _ :

Module xi init, funxi fun init , df fun' , While Abs funxi ,

xi N xi
funxi

df xi
;

funxi fun xi ;

xi
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In[22]:= findRoot f, 50, 0.0001

Out[22]= 50

6. The variable b is the current approximation, and the variable a is the previous approximation.

In[23]:= findRoot fun_, init_, _ : Module a init, b fun init ,

While Abs b a ,

a b;

b N b
fun b

fun b
;

b

In[24]:= f x_ : x2 50

In[25]:= findRoot f, 10, .001

Out[25]= 7.07107

7. This solution is based on the solution to Exercise 5 above.

In[26]:= findRootList fun_, init_, _ : Module a init, b, solns init ,

b N a
fun a

fun a
;

While Abs b a ,

a b;

b N b
fun b

fun b
;

solns Join solns, a ;

Join solns, b

In[27]:= f x_ : x2 50

In[28]:= findRootList f, 50, 10 6

Out[28]= 50, 25.5, 13.7304, 8.68597, 7.22119, 7.07263, 7.07107, 7.07107

8. We go back to a previous version of findRoot and add multiple initial values.

In[29]:= findRootList fun_, inits_, _ : Module a inits ,

While Min Abs Map fun, a ,

a Map N #
fun #

fun #
&, a ;

Select a, Min Abs Map fun, a Abs fun # &

In[30]:= findRootList #2 50 &, 25, 50, 75, 100 , .001

Out[30]= 7.07107

462 An Introduction to Programming with Mathematica



9.

In[31]:= bisect f_, a_, b_, _ : Module

low Min a, b , high Max a, b , mid N
a b

2
, fofMid N f

a b

2
,

While Abs fofMid ,

If fofMid 0, low mid, high mid ;

mid N
low high

2
;

fofMid N f mid ;

mid

In[32]:= f x_ : x2 2

bisect f, 0, 2, .001

Out[33]= 1.41406

10. Here is a direct implementation of the Euclidean algorithm.

In[34]:= gcd m_, n_ : Module a m, b n, tmpa ,

While b 0,

tmpa a;

a b;

b Mod tmpa, b ;

a

In[35]:= m 12782;

n 5531207;

gcd m, n

Out[37]= 11

We can avoid the need for the temporary variable tmpa by performing a parallel assignment as

in the following function. This results in a much cleaner implementation.

In[38]:= gcd m_, n_ : Module a m, b n ,

While b 0, a, b b, Mod a, b ;

a

In[39]:= m 12782;

n 5531207;

gcd m, n

Out[41]= 11

11.

a. Create a list rvec of 0s, then use a Do loop to set rvec[[i]] to vec[[n i]], where n is 
the length of vec.
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In[42]:= Clear reverse, a, b, c, d, e

In[43]:= reverse vec_ : Module vecA Table 0, Length vec ,

Do vecA i vec Length vec i 1 ,

i, 1, Length vec ;

vecA

In[44]:= reverse a, b, c, d, e

Out[44]= e, d, c, b, a

In[45]:= reverseStruc vec_ : Module vecA Table 0, len Length vec ,

Table vecA i vec len i 1 , i, len

In[46]:= reverseStruc a, b, c, d, e

Out[46]= e, d, c, b, a

b. The key to this problem is to use the Mod operator to compute the target address for any
item from vec. That is, the element vec[i] must move to, roughly speaking, position n i
mod Length[vec]. The “roughly speaking” is due to the fact that the Mod operator returns 
values in the range 0, …, Length vec 1, whereas vectors are indexed by values 
1, …, Length vec . This causes a little trickiness in this problem.

In[47]:= rotateRight vec_, n_ : Module vecA Table 0, Length vec ,

Do vecA 1 Mod n i 1, Length vec vec i , i, 1, Length vec ;

vecA

In[48]:= rotateRight a, b, c, d, e , 2

Out[48]= d, e, a, b, c

In[49]:= rotateRightStruc vec_, n_ :

Module vecA Table 0, len Length vec ,

Table vecA 1 Mod n i 1, len vec i , i, len ;

vecA

In[50]:= rotateRightStruc a, b, c, d, e , 3

Out[50]= c, d, e, a, b

c. Iterate over the rows of mat, setting row i to the result of calling rotateRight.

In[51]:= rotateRows mat_ : Module matA Table 0, len Length mat ,

Do matA i rotateRight mat i , i ,

i, 1, len ;

matA
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In[52]:= rotateRows a, b, c , d, e, f , g, h, k

Out[52]= c, a, b , e, f, d , g, h, k

d.

In[53]:= rotateRowsByS mat_, S_ : Module matA Table 0, Length mat ,

Do matA i rotateRight mat i , S i ,

i, 1, Length mat ;

matA

In[54]:= rotateRowsByS a, b, c , d, e, f , g, h, k , 1, 2, 3

Out[54]= c, a, b , e, f, d , g, h, k

e. Create a list lisC of correct length, then iterate over lisA and lisB, moving lisA[[i]]
to lisC whenever lisB[[i]] is True. The position in lisC that receives this value is
not necessarily i; we use the variable last to keep track of the next position in lisC that 
will receive a value from lisA.

In[55]:= compress lisA_, lisB_ :

Module lisC Table 0, Count lisB, True , last 1 ,

Do If lisB i , lisC last lisA i ;

last last 1,

Null ,

i, 1, Length lisB ;

lisC

In[56]:= compress a, b, c, d, e , True, True, False, False, True

Out[56]= a, b, e

5.3  Flow control

1. Here are the conditional definitions.

In[1]:= signum1 x_ ; x 0 : 1

signum1 x_ ; x 0 : 1

signum1 0 : 0

In[4]:= Map signum1, 2, 0, 1

Out[4]= 1, 0, 1

Here is the signum function defined using If.

In[5]:= signum2 x_ : If x 0, 1, If x 0, 0, 1
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In[6]:= Map signum2, 2, 0, 1

Out[6]= 1, 0, 1

Here is the signum function defined using Which.

In[7]:= signum3 x_ : Which x 0, 1, x 0, 0, True, 1

In[8]:= Map signum3, 2, 0, 1

Out[8]= 1, 0, 1

Finally, here is the signum function defined using Piecewise.

In[9]:= Piecewise 1, x 0 , 1, x 0 , 0, x 0

Out[9]=
1 x 0

1 x 0

2.

In[10]:= signum1 x_ ; x 0 : 1

signum1 x_ ; x 0 : 1

signum1 0 : 0

signum1 0.0 : 0

In[14]:= Map signum1, 2, 0, 2

Out[14]= 1, 0, 1

In[15]:= signum2 x_ : If x 0, 1, If x 0, 1, 0

In[16]:= Map signum2, 2, 0, 2

Out[16]= 1, 0, 1

In[17]:= signum3 x_ : Which x 0, 1, x 0, 1, True, 0

In[18]:= Map signum3, 2, 0, 2

Out[18]= 1, 0, 1

3.

In[19]:= applyChar[{"+", nums__}] := Apply[Plus, {nums}]

applyChar[{"-", nums__}] := Apply[Minus, {nums}]

applyChar[{"*", nums__}] := Apply[Times, {nums}]

applyChar[{"/", nums__}] := Apply[Divide, {nums}]

applyChar[_] := Print["Bad argument to applyChar"];

466 An Introduction to Programming with Mathematica



4.

a.

In[24]:= doublePos lis_ : Map If # 0, 2 #, # &, lis

b.

In[25]:= remove3Repetitions lis_ : Fold

If Length #1 2 && #2 #1 1 #1 2 , #1, Join #1, #2 &, , lis

c.

In[26]:= positiveSum L_ : Fold If #1 #2 0, 0, #1 #2 &, 0, L

5. First we define the auxiliary function using conditional statements.

In[27]:= collatz n_ :
n

2
; EvenQ n

In[28]:= collatz n_ : 3 n 1 ; OddQ n

Then iterate Collatz, starting with n, and continue while n is not equal to 1.

In[29]:= CollatzSequence n_ : NestWhileList collatz, n, # 1 &

In[30]:= CollatzSequence 13

Out[30]= 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

5.4  Examples

1. Here is the gcd function implemented using an If structure.

In[1]:= Clear gcd

In[2]:= gcd m_Integer, n_Integer : If m 0, gcd Mod n, m , m , gcd m, n n

In[3]:= m 12782;

n 5531207;

gcd m, n

Out[5]= 11
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2. This is a direct implementation using Piecewise.

In[6]:= Piecewise 0, x 0 && y 0 , 1, y 0 , 2, x 0 ,

1, x 0 && y 0 , 2, x 0 && y 0 , 3, x 0 && y 0 , 4

Out[6]=

0 x 0 && y 0
1 y 0
2 x 0

1 x 0 && y 0
2 x 0 && y 0
3 x 0 && y 0
4 True

In[7]:= pointLocPW x_, y_ :

Piecewise 0, x 0 && y 0 , 1, y 0 , 2, x 0 ,

1, x 0 && y 0 , 2, x 0 && y 0 , 3, x 0 && y 0 , 4

In[8]:= Map pointLocPW, 0, 0 , 4, 0 , 0, 1.3 ,

2, 4 , 2, 4 , 2, 4 , 2, 4 , 2, 0 , 3, 4

Out[8]= 0, 1, 2, 1, 2, 3, 4, 1, 4

3.

In[9]:= pointLoc 0, 0 : 0

pointLoc x_, 0 : 1

pointLoc 0, y_ : 2

pointLoc x_, y_ : If x 0, 2, 1 ; y 0

pointLoc x_, y_ : If x 0, 3, 4

pointLoc x_, y_, z_ : If x 0, 2, 1 ; y 0 && z 0

pointLoc x_, y_, z_ : If x 0, 3, 4 ; y 0 && z 0

pointLoc x_, y_, z_ : If x 0, 6, 5 ; y 0 && z 0

pointLoc x_, y_, z_ : If x 0, 7, 8 ; y 0 && z 0

In[18]:= Map pointLoc, 2, 0 , 3, 4

Out[18]= 1, 4

6 Rule-based programming

6.2  Patterns

1. Using the FullForm of the expression, we can find many pattern matches.

In[1]:= FullForm x3 y z

Out[1]//FullForm=

Plus Power x, 3 , Times y, z
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In[2]:= MatchQ x3 y z, _Plus

Out[2]= True

In[3]:= MatchQ x3 y z, _Power _Times

Out[3]= True

There are many more possible matches, including the trivial one.

In[4]:= MatchQ x3 y z, _

Out[4]= True

2. First look at the FullForm of this expression.

In[5]:= FullForm 5, erina, "give me a break"

Out[5]//FullForm=

List 5, erina, "give me a break"

In[6]:= MatchQ 5, erina, "give me a break" , _List

Out[6]= True

In[7]:= MatchQ 5, erina, "give me a break" , _Integer, _Symbol, _String

Out[7]= True

3. Again, the FullForm should help to guide you.

In[8]:= FullForm 4, a, b , "g"

Out[8]//FullForm=

List 4, List a, b , "g"

In[9]:= MatchQ 4, a, b , "g" , x_List ; Length x 3

Out[9]= True

In[10]:= MatchQ 4, a, b , "g" , _List? Length #1 3 &

Out[10]= True

In[11]:= MatchQ 4, a, b , "g" , _, y_, _ ; y 0 List

Out[11]= True

In[12]:= MatchQ 4, a, b , "g" , x_, y_, z_ ; AtomQ z

Out[12]= True
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In[13]:= MatchQ 4, a, b , "g" , x_, _, _ ; EvenQ x

Out[13]= True

4. Here is the original solution as from Chapter 5, but, in this case, we check that both m and n
have head Integer.

In[14]:= gcd m_Integer, n_Integer : Module a m, b n ,

While b 0, a, b b, Mod a, b ;

a

In[15]:= gcd 39874, 2868878

Out[15]= 2

5. Here is the function FindSubsequence as given in the text.

In[16]:= FindSubsequence lis_List, subseq_List : Module p ,

p Partition lis, Length subseq , 1 ;

Position p, Flatten ___, subseq, ___

This creates another rule associated with FindSubsequence that simply takes each integer

argument, converts them to lists of integer digits, and then passes that off to the rule above.

In[17]:= FindSubsequence n_Integer, subseq_Integer :

Module nlist IntegerDigits n , sublist IntegerDigits subseq ,

FindSubsequence nlist, sublist

We create the list of the first 100,000 digits of .

In[18]:= pi FromDigits RealDigits N Pi, 105 3 1 ;

This show that the subsequence 1415 occurs seven times at the following locations in the digit 

expansion of .

In[19]:= FindSubsequence pi, 1415

Out[19]= 1 , 6955 , 29136 , 45234 , 79687 , 85880 , 88009

6. The Collatz function has a direct implementation based on its definition.

In[20]:= Collatz n_?OddQ : 3 n 1

In[21]:= Collatz n_?EvenQ :
n

2

In[22]:= Collatz 4.3

Out[22]= Collatz 4.3
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Here we iterate the Collatz function 111 times starting with an initial value of 27.

In[23]:= NestList Collatz, 27, 111

Out[23]= 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,

121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700,
350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668,
334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638,

319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288,
3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308,
1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

7. Here again is the Collatz function, but this time using a condition on the right-hand side of
the definition.

In[24]:= Clear Collatz

In[25]:= Collatz n_ : 3 n 1 ; OddQ n && Positive n

In[26]:= Collatz n_ :
n

2
; EvenQ n && Positive n

In[27]:= Collatz 4.3

Out[27]= Collatz 4.3

In[28]:= Collatz 3

Out[28]= Collatz 3

In[29]:= NestList Collatz, 27, 111

Out[29]= 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,

121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700,
350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668,
334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638,

319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288,
3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308,
1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

8. Using alternatives, this gives the definition for real, integer, or rational arguments.

In[30]:= abs x_Real x_Integer x_Rational : If x 0, x, x

Here is the definition for complex arguments.

In[31]:= abs x_Complex : Re x 2 Im x 2

It is probably a good idea to also add a definition for symbolic arguments.

In[32]:= abs x_Symbol : Abs x
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In[33]:= Map abs, 3, 3 4 I,
4

5
, a

Out[33]= 3, 5,
4
5
, Abs a

9. We first have to consider the base cases. Given a list with no elements, swapTwo should
return the empty list. And, given a list with one element, swapping should give that one 
element back.

In[34]:= swapTwo :

swapTwo x_ : x

Now, we use the triple-blank to indicate that r could be a sequence of 0 or more elements. 

In[36]:= swapTwo x_, y_, r___ : y, x, r

In[37]:= Map swapTwo, , a , a, b, c, d

Out[37]= , a , b, a, c, d

Notice in this second definition for swapTwo that the second clause covers both the situation

where the argument is the empty list and when it contains only one element.

In[38]:= swapTwo2 x_, y_, r___ : y, x, r

swapTwo2 x_ : x

In[40]:= Map swapTwo2, , a , a, b, c, d

Out[40]= , a , b, a, c, d

10. This one requires the triple blank.

In[41]:= f x1_Integer, ___ , 1 : x1 1

f x_Integer, y_ : x y

11. Here are two sample lists.

In[43]:= l1 1, 0, 0, 1, 1 ;

l2 0, 1, 0, 1, 0 ;

First we pair them up.

In[45]:= ll Transpose l1, l2

Out[45]= 1, 0 , 0, 1 , 0, 0 , 1, 1 , 1, 0

Here is the conditional pattern that matches any pair where the two elements are not identical.

In[46]:= Cases ll, p_, q_ ; p q

Out[46]= 1, 0 , 0, 1 , 1, 0
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The Hamming distance is the number of such non-identical pairs.

In[47]:= Length %

Out[47]= 3

Finally, here is a function that puts this all together.

In[48]:= HammingDistance lis1_List, lis2_List :

Length Cases Transpose lis1, lis2 , p_, q_ ; p q

In[49]:= HammingDistance l1, l2

Out[49]= 3

The running times of this version of HammingDistance are comparable with those from

Chapter 4, where we used bit operators.

In[50]:= HammingDistance2 lis1_, lis2_ : Apply Plus,

Apply BitXor, Transpose lis1, lis2 , 1

In[51]:= data1 Table Random Integer , 106 ;

In[52]:= data2 Table Random Integer , 106 ;

In[53]:= Timing HammingDistance data1, data2

Out[53]= 2.905 Second, 500168

In[54]:= Timing HammingDistance2 data1, data2

Out[54]= 1.592 Second, 500168

6.3  Transformation rules

1. The pattern matched function is slower because it repeatedly applies transformation rules.

In[1]:= maxima x_ : Union Rest FoldList Max, , x

In[2]:= maximaR x_List : x . a___, b_, c___, d_, e___ ; d b a, b, c, e
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In[3]:= Trace maxima 3, 5, 2, 6, 1, 8, 4, 9, 7

Out[3]= maxima 3, 5, 2, 6, 1, 8, 4, 9, 7 ,
Union Rest FoldList Max, , 3, 5, 2, 6, 1, 8, 4, 9, 7 ,

, , , , FoldList Max, , 3, 5, 2, 6, 1, 8, 4, 9, 7 ,
Max , 3 , Max 3, , 3 , Max 3, 5 , 5 ,
Max 5, 2 , Max 2, 5 , 5 , Max 5, 6 , 6 , Max 6, 1 , Max 1, 6 , 6 ,

Max 6, 8 , 8 , Max 8, 4 , Max 4, 8 , 8 , Max 8, 9 , 9 ,
Max 9, 7 , Max 7, 9 , 9 , , 3, 5, 5, 6, 6, 8, 8, 9, 9 ,

Rest , 3, 5, 5, 6, 6, 8, 8, 9, 9 , 3, 5, 5, 6, 6, 8, 8, 9, 9 ,

Union 3, 5, 5, 6, 6, 8, 8, 9, 9 , 3, 5, 6, 8, 9

In[4]:= Trace maximaR 3, 5, 2, 6, 1, 8, 4, 9, 7

Out[4]= maximaR 3, 5, 2, 6, 1, 8, 4, 9, 7 , 3, 5, 2, 6, 1, 8, 4, 9, 7 .

a___, b_, c___, d_, e___ ; d b a, b, c, e ,
a___, b_, c___, d_, e___ ; d b a, b, c, e ,
a___, b_, c___, d_, e___ ; d b a, b, c, e ,

3, 5, 2, 6, 1, 8, 4, 9, 7 .
a___, b_, c___, d_, e___ ; d b a, b, c, e , 5 3, False ,
2 3, True , 5 3, False , 6 3, False , 6 5, False ,

1 3, True , 5 3, False , 6 3, False , 6 5, False ,
8 3, False , 8 5, False , 8 6, False , 4 3, False , 4 5, True ,
5 3, False , 6 3, False , 6 5, False , 8 3, False ,
8 5, False , 8 6, False , 9 3, False , 9 5, False ,

9 6, False , 9 8, False , 7 3, False , 7 5, False ,
7 6, False , 7 8, True , 5 3, False , 6 3, False , 6 5, False ,
8 3, False , 8 5, False , 8 6, False , 9 3, False ,

9 5, False , 9 6, False , 9 8, False , 3, 5, 6, 8, 9

2. The evaluation sequence can be seen directly from the Trace of this compound expression.

In[5]:= Trace y 11; a 9; y 3 . y a

Out[5]= y 11; a 9; y 3 . y a, y 11, 11 , a 9, 9 , y, 11 , 11 3, 14 ,

y, 11 , a, 9 , 11 9, 11 9 , 14 . 11 9, 14 , 14

3. First make sure that a and y have no values associated with them.

In[6]:= Clear a, y

In[7]:= Hold y 11 ;

a 9;

y 3 . y a

Out[9]= 12
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4. You need to maintain the left-hand side of the transformation rule unevaluated for purposes of
pattern matching and the right-hand side of the rule unevaluated until the rule is used.

In[10]:= Trace g x_ x . z___ Times z

Out[10]= z___, z___ , Times z , z , z___ z, z___ z , x . z___ z, x ,

g x_ x, x

In[11]:= Clear a, g

In[12]:= g x_ : x . Literal z___ Times z

In[13]:= g a b c

Out[13]= a b c

5. The transformation rule unnests lists within a list.

In[14]:= unNest lis_ : Map # . x__List x & , lis

In[15]:= unNest a, a, a , a , b, b, b , b, b , a, a

Out[15]= a, a, a , a , b, b, b , b, b , a, a

6.

In[16]:= sumList lis_ : First lis . x_, y___ x y

In[17]:= sumList 1, 5, 8, 3, 9, 3

Out[17]= 29

7. The triple blank is required both before and after the variables x and y.

In[18]:= cartesianProduct lis1_, lis2_ :

ReplaceList lis1, lis2 , ___, x_, ___ , ___, y_, ___ x, y

We should also have a rule for the base case.

In[19]:= cartesianProduct :

In[20]:= Clear x, y, z, a, b, c

In[21]:= cartesianProduct a, b, c , x, y, z

Out[21]= a, x , a, y , a, z , b, x , b, y , b, z , c, x , c, y , c, z

In[22]:= cartesianProduct

Out[22]=
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8. Note that RasterArray and Raster both display an array of values from bottom to top,
hence the need to reverse the argument lis. 

In[23]:= CAGraphics lis_List : Module colors ,

colors 1 Hue .2 , 0 Hue .8 ;

Graphics RasterArray Reverse lis . colors

Here is a larger example of rule 30.

In[1]:= ca30 CellularAutomaton 30, 1 , 0 , 400 ;

In[25]:= Show CAGraphics ca30 ;

Note that this can also be accomplished much more cleanly using ArrayPlot (new in 

Version 5.1).

In[26]:= ArrayPlot ca30, ColorRules 1 Hue .2 , 0 Hue .8 ;

6.4  Examples

1. This is a simple modification of the code given in the text.

In[1]:= alphabet Map FromCharacterCode, Range 97, 122

Out[1]= a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

In[2]:= coderules Thread alphabet RotateRight alphabet, 5

Out[2]= a v, b w, c x, d y, e z, f a, g b, h c,
i d, j e, k f, l g, m h, n i, o j, p k, q l,

r m, s n, t o, u p, v q, w r, x s, y t, z u
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In[3]:= decoderules Thread alphabet RotateLeft alphabet, 5

Out[3]= a f, b g, c h, d i, e j, f k, g l, h m,
i n, j o, k p, l q, m r, n s, o t, p u, q v,

r w, s x, t y, u z, v a, w b, x c, y d, z e

In[4]:= code str_String : Apply StringJoin, Characters str . coderules

In[5]:= decode str_String : Apply StringJoin, Characters str . decoderules

In[6]:= code "squeamish ossifrage"

Out[6]= nlpzvhdnc jnndamvbz

In[7]:= decode %

Out[7]= squeamish ossifrage

3. This version of matrixPlot requires a list of rules as the second argument.

In[8]:= matrixPlot mat_List, rules_ :

Show Graphics RasterArray Reverse mat . rules ,

AspectRatio Automatic

In[9]:= dat Table Random Integer , 50 , 50 ;

In[10]:= matrixPlot dat, 0 GrayLevel .2 , 1 GrayLevel .6

Out[10]= Graphics

You can plot any rectangular array of values with matrixPlot so long as you specify the rules 

for coloring the various elements. For example, the following example generates 100 steps in 

the evolution of the rule 30 cellular automaton, starting with a single 1 cell and surrounded by

0s.

In[11]:= ca30 CellularAutomaton 30, 1 , 0 , 100 ;
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In[12]:= matrixPlot ca30, 1 Hue .2 , 0 Hue .6 ;

To get matrixPlot to produce similar output to the new ArrayPlot, you need to make a

few changes to the Frame and FrameTicks options.

In[13]:= matrixPlot mat_List, rules_ :

Show Graphics RasterArray Reverse mat . rules ,

AspectRatio Automatic, Frame True, FrameTicks False

In[14]:= matrixPlot ca30, 1 Hue .2 , 0 Hue .6 ;

In[15]:= ArrayPlot ca30, ColorRules 1 Hue .2 , 0 Hue .6 ;

4. Here is the plot of the sine function.

In[13]:= splot Plot Sin x , x, 2 , 2 ;

6 4 2 2 4 6

1

0.5

0.5

1

This replacement rule interchanges each ordered pair of numbers.
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In[14]:= Show splot . x_?NumberQ, y_?NumberQ y, x ;

1 0.5 0.5 1

6

4

2

2

4

6

Although this particular example may have worked without the argument checking (_?Num

berQ), it is a good idea to include it so that pairs of arbitrary expressions are not pattern

matched here. We only want to interchange pairs of numbers, not pairs of options or other 

expressions that might be present in the underlying expression representing the graphic.

6. Using the standard rotation matrix, each point is taken to its image under the rotation transfor-
mation. Notice that this function first checks that its first argument is in fact a graphics object
via pattern matching.

In[15]:= rotatePlot p_Graphics, theta_ : Show p . x_?NumberQ, y_?NumberQ

x, y . Cos theta , Sin theta , Sin theta , Cos theta

In[16]:= plot1 Plot Sin x , x, 0, 2 ;

1 2 3 4 5 6

1

0.5

0.5

1

In[17]:= rotatePlot[plot1, Pi];

6 5 4 3 2 1

1

0.5

0.5

1
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7 Recursion

7.1  Fibonacci numbers

1.

a. This is a straightforward recursion, multiplying the previous two values to get the next.

In[1]:= a 1 : 2

a 2 : 3

a i_ : a i 1 a i 2

In[4]:= Table a i , i, 1, 8

Out[4]= 2, 3, 6, 18, 108, 1944, 209952, 408146688

b. The sequence is obtained by taking the difference of the previous two values.

In[5]:= b 1 : 0

b 2 : 1

b i_ : b i 2 b i 1

In[8]:= Table b i , i, 1, 9

Out[8]= 0, 1, 1, 2, 3, 5, 8, 13, 21

c. Here we add the previous three values.

In[9]:= c 1 : 0

c 2 : 1

c 3 : 2

c i_ : c i 3 c i 2 c i 1

In[13]:= Table c i , i, 1, 9

Out[13]= 0, 1, 2, 3, 6, 11, 20, 37, 68

2. It is important to get the two base cases right here.

In[14]:= FA 1 : 0

FA 2 : 0

FA i_ : FA i 2 FA i 1 1

In[17]:= Map FA, Range 8

Out[17]= 0, 0, 1, 2, 4, 7, 12, 20
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7.2  List functions

1.

In[1]:= sumOddElements : 0

sumOddElements x_, y___ :

x sumOddElements y ; IntegerQ x && OddQ x

sumOddElements x_, y___ : sumOddElements y

In[4]:= sumOddElements 2, 3, 5, 6, 7, 9, 12, 13

Out[4]= 37

2.

In[5]:= sumEveryOtherElement : 0

sumEveryOtherElement x_ : x

sumEveryOtherElement x_, y_, r___ : x sumEveryOtherElement r

In[8]:= sumEveryOtherElement 1, 2, 3, 4, 5, 6, 7, 8, 9

Out[8]= 25

3.

In[9]:= addTriples , , :

addTriples x1_, y1___ , x2_, y2___ , x3_, y3___ :

Join x1 x2 x3 , addTriples y1 , y2 , y3

In[11]:= addTriples w1, x1, y1, z1 , w2, x2, y2, z2 , w3, x3, y3, z3

Out[11]= w1 w2 w3, x1 x2 x3, y1 y2 y3, z1 z2 z3

4.

In[12]:= multAllPairs :

multAllPairs _ :

multAllPairs x_, y_, r___ : Join x y , multAllPairs y, r

In[15]:= multAllPairs 3, 9, 17, 2, 6, 60

Out[15]= 27, 153, 34, 12, 360

5.

In[16]:= maxPairs , :

maxPairs x_, r___ , y_, s___ : Join Max x, y , maxPairs r , s

In[18]:= maxPairs 1, 2, 4 , 2, 7, 2

Out[18]= 2, 7, 4
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6.

In[19]:= interleave , :

interleave x_, r___ , y_, s___ : Join x, y , interleave r , s

In[21]:= interleave a, b, c , x, y, z

Out[21]= a, x, b, y, c, z

7.3  Thinking recursively: examples

1.

In[1]:= prefixMatch L_, :

prefixMatch , M_ :

prefixMatch x_, r___ , x_, s___ : Join x , prefixMatch r , s

prefixMatch x_, r___ , y_, s___ :

2.

In[5]:= runEncode2 :

runEncode2 x_ : x

runEncode2 x_, r__ : runEncode2 r .

y_, k_ , s___ If x y, x, k 1 , s , x, y, k , s ,

y_, s___ If x y, x, 2 , s , x, y, s

3. Perhaps the most straightforward way to do this is to write an auxiliary function that takes the 
output from runEncode and produces output such as Split would generate.

In[8]:= runEncode[{}] := {}

runEncode[{x_}] := {{x, 1}}

In[10]:= runEncode x_, res___ : Module R runEncode res , p ,

p First R ;

If x First p ,

Join x, p 2 1 , Rest R ,

Join x, 1 , R

Then our split (named to mimic the built-in Split) simply operates on the output of

runEncode.

In[11]:= sp lis_ : Map Table # 1 , # 2 &, lis

In[12]:= sp 3, 2 , 4, 1 , 2, 5

Out[12]= 3, 3 , 4 , 2, 2, 2, 2, 2

In[13]:= split lis_ : sp runEncode lis
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In[14]:= split 9, 9, 9, 9, 9, 4, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5

Out[14]= 9, 9, 9, 9, 9 , 4 , 3, 3, 3, 3 , 5, 5, 5, 5, 5, 5

4.

In[15]:= runEncode :

runEncode x_, r___ : runEncode x, 1, r

runEncode x_, k_, : x, k

runEncode x_, k_, x_, r___ : runEncode x, k 1, r

runEncode x_, k_, y_, r___ : Join x, k , runEncode y, 1, r

5.

In[20]:= maxima :

maxima x_, r___ : maxima x, r

In[22]:= maxima x_, : x

maxima x_, y_, r___ : maxima x, r ; x y

maxima x_, y_, r___ : Join x , maxima y, r

6.

In[25]:= runDecode :

runDecode x_, k_ , r___ : Join Table x, k , runDecode r

7. We will need two sets of rules for the subsets function.

In[27]:= Clear subsets ;

subsets lis_, 0 :

subsets , k_ :

In[30]:= subsets lis_, k_ : Module ksubs subsets Rest lis , k 1 ,

Join Map Join First lis , # & , ksubs , subsets Rest lis , k

In[31]:= subsets Range 5 , 2

Out[31]= 1, 2 , 1, 3 , 1, 4 , 1, 5 , 2, 3 , 2, 4 , 2, 5 , 3, 4 , 3, 5 , 4, 5

The second form simply calls the first.

In[32]:= subsets lis_, k_ : Flatten Map subsets lis, # &, Range 0, k , 1

The second form simply calls the first. This gives all subsets up to length 3.

In[33]:= subsets Range 5 , 3

Out[33]= , 1 , 2 , 3 , 4 , 5 , 1, 2 , 1, 3 , 1, 4 , 1, 5 , 2, 3 ,
2, 4 , 2, 5 , 3, 4 , 3, 5 , 4, 5 , 1, 2, 3 , 1, 2, 4 , 1, 2, 5 ,
1, 3, 4 , 1, 3, 5 , 1, 4, 5 , 2, 3, 4 , 2, 3, 5 , 2, 4, 5 , 3, 4, 5
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A comparison with the built-in Subsets functions.

In[34]:= Subsets Range 5 , 3

Out[34]= , 1 , 2 , 3 , 4 , 5 , 1, 2 , 1, 3 , 1, 4 , 1, 5 , 2, 3 ,

2, 4 , 2, 5 , 3, 4 , 3, 5 , 4, 5 , 1, 2, 3 , 1, 2, 4 , 1, 2, 5 ,
1, 3, 4 , 1, 3, 5 , 1, 4, 5 , 2, 3, 4 , 2, 3, 5 , 2, 4, 5 , 3, 4, 5

The recursion in this definition of subsets can get quite deep.

In[35]:= Timing subsets Range 1000 , 2 ;

$RecursionLimit::reclim : Recursion depth of 256 exceeded. More…

General::stop : Further output of $RecursionLimit::reclim will
be suppressed during this calculation. More…

You can temporarily increase the value of $RecursionLimit to let this computation run to

the end.

In[36]:= Timing

Block $RecursionLimit ,

subsets Range 1000 , 2 ;

Out[36]= 44.855 Second, Null

But we can see pretty clearly just how inefficient our recursive approach to this problem is for

large computations by comparing with the built-in Subsets function which is more than two

orders of magnitude faster for sets of this size.

In[37]:= Timing Subsets Range 1000 , 2 ;

Out[37]= 0.14 Second, Null

7.4  Recursion and symbolic computations

1.

In[1]:= ddx c_?NumericQ : 0

ddx x : 1

ddx u_ v_ : ddx u ddx v

ddx u_ v_ : ddx u ddx v

ddx u_ v_ : u ddx v v ddx u

ddx
u_

v_
:

v ddx u u ddx v

v2

ddx u_c_?NumericQ : c uc 1 ddx u
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In[8]:= ddx Sin u_ : Cos u ddx u

ddx Cos u_ : Sin u ddx u

ddx Tan u_ :
1

Cos u 2
ddx u

In[11]:= ddx Sin 2 x Cos 3 x

Out[11]= 2 Cos 2 x 3 Sin 3 x

In[12]:= ddx Tan 3 x5

Out[12]= 15 x4 Sec 3 x5
2

2.

In[13]:= Clear ddx

In[14]:= ddx c_?NumericQ : 0

ddx x : 1

ddx u_ v_ : ddx u ddx v

ddx u_ v_ : ddx u ddx v

ddx u_ v_ : u ddx v v ddx u

ddx
u_

v_
:

v ddx u u ddx v

v2

ddx u_c_?NumericQ : c uc 1 ddx u

In[21]:= ddx u_ : 0 ; nox u

In[22]:= nox c_?NumericQ : True

nox x : False

nox y_ : True ; Head y Symbol&& y x

nox u_ v_ : nox u && nox v

nox u_ v_ : nox u && nox v

nox u_ v_ : u nox v && v nox u

nox
u_

v_
: nox u && nox v

nox u_c_?NumericQ : nox u

3.

In[30]:= Clear ddx ;

ddx c_?NumericQ, y_ : 0

ddx x_, x_ : 1

ddx y_, x_ : 0 ; FreeQ y, x

ddx u_ v_, x_ : ddx u, x ddx v, x

ddx u_ v_, x_ : ddx u, x ddx v, x

ddx u_ v_, x_ : u ddx v, x v ddx u, x

ddx
u_

v_
, x_ :

v ddx u, x u ddx v, x

v2

ddx u_c_?NumericQ, x_ : c uc 1 ddx u, x
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In[39]:= ddx 3 2 ,

Out[39]= 2 3 2

In[40]:= ddx
1 3

,

Out[40]=
1 2 3

1 3 2

7.5  Classical examples

1. The solution to this problem also appears in Section 8.5. We will call our new function 
solvep (for pivoting).

In[1]:= Clear solve

In[2]:= solvep S_ : Module

S1 pivot S , E1, a12toa1n, x2toxn , x2toxn solvep elimx1 S1 ;

E1 First S1 ;

a12toa1n Drop Rest E1 , 1 ;

Join
Last E1 a12toa1n.x2toxn

First E1
, x2toxn ;

In[3]:= solvep a11_, b1_ :
b1

a11

In[4]:= elimx1 S_ : Map subtractE1 S 1 , # &, Rest S

In[5]:= subtractE1 E1_, Ei_ : Rest Ei
Ei 1

E1 1
Rest E1

In[6]:= pivot Q_ : Module p, ST1, pivotrow , ST1 Transpose Q 1 ;

p Position ST1, x_ ; x 0 ;

If p ,

Print "Matrix is singular" ; Q,

pivotrow p 1 1 ; Join Q pivotrow , Delete Q, pivotrow

In[7]:= solve A_, B_ : solvep Transpose Join Transpose A , B

Here are some test examples.

In[8]:= mat Table Random , 4 , 4

Out[8]= 0.554127, 0.426593, 0.861278, 0.492521 ,
0.572684, 0.477244, 0.690375, 0.88366 ,
0.401935, 0.648486, 0.818292, 0.516009 ,

0.129603, 0.562562, 0.116779, 0.699194
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In[9]:= b Table Random , 4

Out[9]= 0.564681, 0.489887, 0.542515, 0.264061

In[10]:= x solve mat, b

Out[10]= 1.59998, 0.96497, 0.502052, 0.611457

In[11]:= mat.x b

Out[11]= 1.11022 10 16, 1.66533 10 16, 1.11022 10 16, 4.44089 10 16

In[12]:= Chop %

Out[12]= 0, 0, 0, 0

2. To compute solveUpper[A,B], first recursively compute solveUpper[A ,B ], where A
is the lower-right square submatrix of A, and B  is the Rest of B. This solution gives the values 
of x2, …, xn. B[[1]] is equal to the dot product of the top row of A (that is, A[[1]]) and the 
vector x1, …, xn (that is, B[[1]]) is equal to A[[1]]*x1 + ... + A[[n]]*xn. It is easy to
compute x1 from this formula.

In[13]:= solveUpper ann_ , bn_ :
bn

ann

In[14]:= solveUpper A1_, rA__ , b1_, rB__ :

Module subsoln solveUpper Rest rA , rB ,

Join
b1 Rest A1 .subsoln

First A1
, subsoln

It is easy to show that if you rotate a matrix by 90 degrees, and turn the vector B upside down,

the solution to the resulting system is the same as the solution to the original system, but

turned upside down.

In[15]:= rotateMatrix A_ : Reverse Map Reverse, A

In[16]:= solveLower A_, B_ : Reverse solveUpper rotateMatrix A , Reverse B

3.

In[17]:= LUdecomp1 S_ : Module mults multipliers S 1, 1 , Rest S , Module

Sprime elimx1 mults, Rest S , Module LU LUdecomp1 Sprime ,

expandL mults, LU 1 , expandU First S , LU 2

In[18]:= LUdecomp1 a11_ : 1 , a11

In[19]:= expandU S1_, U_ : Join S1 , Join 0 , #1 & U

In[20]:= expandL mults_, L_ : Transpose expandU Join 1 , mults , Transpose L
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In[21]:= elimx1 mults_, subS_ :

Table subS i 1 mults i subS 1 , i, 1, Length mults

In[22]:= multipliers S11_, restS_ : Map
#

S11
&, Transpose restS 1

In[23]:= LUdecomp2 S_ : Module soln LUdecomp1 S ,

soln 1 IdentityMatrix Length S soln 2

4.

In[24]:= sumNodes lab_ : lab

sumNodes lab_, lc_, rc_ : lab sumNodes lc sumNodes rc

5.

In[26]:= catNodes lab_ : lab

catNodes lab_, lc_, rc_ :

StringJoin lab, catNodes lc , catNodes rc

6.

In[28]:= balanced t_ : balancedHeight t 2

balancedHeight lab_ : 0, True

In[30]:= balancedHeight lab_, lc_, rc_ :

Module lbh, rbh , lbh balancedHeight lc ;

If lbh 2 , rbh balancedHeight rc ; If rbh 2 && Abs lbh 1 rbh 1 1,

Max lbh 1 , rbh 1 1, True , 0, False , 0, False

7.

In[31]:= listLevel 0, t_ : t 1

listLevel lab_ , n_ :

In[33]:= listLevel lab_, lc_, rc_ , n_ :

Join listLevel lc, n 1 , listLevel rc, n 1

8.

In[34]:= minInTree lab_ : lab

minInTree lab_, subtrees__ :

Sort Join lab , Map minInTree, subtrees 1

In[36]:= height lab_ : 0

height lab_, subtrees__ : 1 Apply Max, Map height, subtrees

In[38]:= printTree t_ : printTree t, 0

In[39]:= printTree lab_ , k_ : printIndented lab, 3 k

printTree lab_, subtrees__ , k_ :

printIndented lab, 3 k ; Map printTree #, k 1 &, subtrees ;
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In[41]:= printIndented x_, spaces_ :

Print Apply StringJoin, Table " ", spaces , x

9. We have used a slightly different representation for the list of trees than the one shown in the 
chapter. Instead of a node’s label containing a list of characters and a number, it contains a
string and a number. The only reason for this is that it makes the result come out looking like
the tree called Htree (shown in Figure 7.1). Note that the algorithm may give different results 
depending upon how it is programmed, since there are arbitrary choices made at each step.
The result of applying our function constructHTree to the initial list of trees shown at the
end of the last section (which we have included here as testlist) is different from Htree.

In our solution, we solve the problem of finding the two trees of smallest weight by keeping 

the list of trees sorted by weight; then we simply always pick the first two.

In[42]:= HTreeSort trees_ : Sort trees, #1 1, 2 #2 1, 2 &

In[43]:= joinHTrees cl_, wt_ , kids___ : cl, kids

joinHTrees cl1_, wt1_ , kids1___ ,

cl2_, wt2_ , kids2___ , trees___ : joinHTrees

HTreeSort cl1 cl2, wt1 wt2 , cl1, kids1 , cl2, kids2 , trees

In[45]:= constructHTree t_ : joinHTrees HTreeSort t

In[46]:= htnode a_, b_ : a, b

In[47]:= testlist Join htnode " ", 6 , htnode "A", 3 ,

htnode "B", 1 , htnode "E", 5 , htnode "H", 2 ,

htnode "N", 2 , htnode "O", 2 , htnode "S", 3 , htnode "T", 3

Out[47]= , 6 , A, 3 , B, 1 , E, 5 ,
H, 2 , N, 2 , O, 2 , S, 3 , T, 3

10. To make the results here comparable to those in the book, we will use Htree from the book
as our sample tree. makeTreeTable[tree] produces a list of rules as described in the 
problem. encodeString[str, rules] decodes the string according to those rules.

In[48]:= Htree " ABEHONST", " AT", " " , "AT", "T" , "A" ,

"BEHONS", "EON", "E" , "ON", "O" , "N" ,

"BHS", "BH", "H" , "B" , "S" ;

In[49]:= makeTreeTable prefix_, ch_ ch prefix ;

In[50]:= makeTreeTable prefix_, _, left_, right_ :

Join makeTreeTable Join prefix, 0 , left ,

makeTreeTable Join prefix, 1 , right

In[51]:= makeTreeTable tree_ : makeTreeTable , tree
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In[52]:= HtreeRules makeTreeTable Htree

Out[52]= 0, 0 , T 0, 1, 0 , A 0, 1, 1 , E 1, 0, 0 , O 1, 0, 1, 0 ,
N 1, 0, 1, 1 , H 1, 1, 0, 0 , B 1, 1, 0, 1 , S 1, 1, 1

In[53]:= encodeString str_, rules_ : Flatten Characters str . rules

In[54]:= encodeString str_ : encodeString str, HtreeRules

7.6  Dynamic programming

1. This implementation uses the identities given in the exercise together with some pattern
matching

In[1]:= F 1 : 1

F 2 : 1

In[3]:= F n_ ; EvenQ n : 2 F
n

2
1 F

n

2
F

n

2

2

F n_ ; OddQ n : F
n 1

2
1

2

F
n 1

2

2

In[5]:= Map F, Range 10

Out[5]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

2.

In[6]:= FF 1 : 1

FF 2 : 1

In[8]:= FF n_?EvenQ : FF n 2 FF
n

2
1 FF

n

2
FF

n

2

2

FF n_?OddQ : FF n FF
n 1

2
1

2

FF
n 1

2

2

In[10]:= Map FF, Range 12

Out[10]= 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

3.

In[11]:= Clear collatz

In[12]:= collatz n_, 0 : n

In[13]:= collatz n_, i_ :

collatz n, i
collatz n, i 1

2
; EvenQ collatz n, i 1
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In[14]:= collatz n_, i_ :

collatz n, i 3 collatz n, i 1 1 ; OddQ collatz n, i 1

Here is the fifth iterate of the Collatz sequence for 27.

In[15]:= collatz 27, 5

Out[15]= 31

Here is the Collatz sequence for 27. You can see that it takes a long time for this sequence to

settle down to the cycle 4, 2, 1.

In[16]:= Table collatz 27, i , i, 0, 116

Out[16]= 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121,

364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350,
175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334,
167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958,

479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822,
911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577,
1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23,
70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2

7.7  Higher-order functions and recursion

1. First, here is the definition for our user-defined fold.

In[1]:= fold f_, x_, : x

fold f_, x_, a_, r___ : fold f, f x, a , r

In[3]:= fold Plus, 0, a, b, c, d, e

Out[3]= a b c d e

In[4]:= foldList f_, x_, : x

foldList f_, x_, a_, r___ : Join x , foldList f, f x, a , r

In[6]:= foldList Times, 1, Range 6

Out[6]= 1, 1, 2, 6, 24, 120, 720

And here is nestList.

In[7]:= nestList f_, x_, 0 : x

nestList f_, x_, n_ : Join x , nestList f, f x , n 1

In[9]:= nestList Sin, , 3

Out[9]= , Sin , Sin Sin , Sin Sin Sin
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2. First, here is the recursive repeat function from this section.

In[10]:= repeat f_, lis_, pred_ : lis ; pred Drop lis, 1 , Last lis

In[11]:= repeat f_, lis_, pred_ : repeat f, Append lis, f Last lis , pred

Then the MemberQ function is used to test whether the currently computed point is a member

of the existing list of points.

In[12]:= landMineWalk :

repeat #1 0, 1 , 0, 1 , 1, 0 , 1, 0 Random Integer, 1, 4 &,

0, 0 , MemberQ #1, #2 &

Here is a test. On average, these walks will not be terribly long.

In[13]:= landMineWalk

Out[13]= 0, 0 , 1, 0 , 2, 0 , 1, 0

8 Numerics

8.2  Numbers

1. This function gives the polar form as a list consisting of the magnitude and the polar angle.

In[1]:= complexToPolar z_ : Abs z , Arg z

Here are the computations for the examples in the text.

In[2]:= complexToPolar 3 3

Out[2]= 3 2 ,
4

In[3]:= complexToPolar 3

Out[3]= 1,
3

2. This function uses a default value of 2 for the base. (Try replacing Fold with FoldList to
more clearly see what this function is doing.)

In[4]:= convert digits_List, base_ : 2 : Fold base #1 #2 &, 0, digits

Here are the digits for 9 in base 2:

In[5]:= IntegerDigits 9, 2

Out[5]= 1, 0, 0, 1
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This converts them back to the base 10 representation.

In[6]:= convert %

Out[6]= 9

This does the same for the number 129 in base 16.

In[7]:= IntegerDigits 129, 16

Out[7]= 8, 1

In[8]:= convert %, 16

Out[8]= 129

This function is essentially an implementation of Horner’s method for fast polynomial

multiplication.

In[9]:= Clear a, b, c, d, e, x

In[10]:= convert a, b, c, d, e , x

Out[10]= e x d x c x b a x

In[11]:= Expand %

Out[11]= e d x c x2 b x3 a x4

4. Here is the sumsOfCubes function.

In[12]:= sumsOfCubes n_Integer : Apply Plus, IntegerDigits n 3

Here is the function that performs the iteration.

In[13]:= sumsOfSums n_Integer, iter_ : NestList sumsOfCubes, n, iter

We see that the number 4 enters into a cycle.

In[14]:= sumsOfSums 4, 12

Out[14]= 4, 64, 280, 520, 133, 55, 250, 133, 55, 250, 133, 55, 250

In fact, it appears as if many initial values enter cycles.

In[15]:= sumsOfSums 32, 12

Out[15]= 32, 35, 152, 134, 92, 737, 713, 371, 371, 371, 371, 371, 371

In[16]:= sumsOfSums 7, 12

Out[16]= 7, 343, 118, 514, 190, 730, 370, 370, 370, 370, 370, 370, 370
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In[17]:= sumsOfSums 372, 12

Out[17]= 372, 378, 882, 1032, 36, 243, 99, 1458, 702, 351, 153, 153, 153

6. The function sumsOfPowers is a straightforward generalization of the previous cases.

In[18]:= sumsOfPowers n_, p_ : Apply Plus, IntegerDigits n p

In[19]:= sumsOfPowers 123, 5

Out[19]= 276

8. Using the number 100 as an example, let us first put it in base 2.

In[20]:= BaseForm 100, 2

Out[20]//BaseForm=

11001002

Here is the list of its digits.

In[21]:= IntegerDigits 100, 2

Out[21]= 1, 1, 0, 0, 1, 0, 0

This performs a binary shift of one unit (actually, the 1 in RotateLeft is not needed here as

this is the default value to shift by).

In[22]:= l RotateLeft IntegerDigits 100, 2 , 1

Out[22]= 1, 0, 0, 1, 0, 0, 1

This converts back from base 2 to base 10 (using the convert function from Exercise 2).

In[23]:= convert l, 2

Out[23]= 73

Now we can put all of this code together to make the survivor function.

In[24]:= survivor n_ :

Module p , p RotateLeft IntegerDigits n, 2 ; Fold 2 #1 #2 &, 0, p

In[25]:= survivor 100

Out[25]= 73

You could of course do the same thing without the symbol p, but it is just a bit less readable.

In[26]:= survivor2 n_Integer :

Fold 2 #1 #2 &, 0, RotateLeft IntegerDigits n, 2
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In[27]:= survivor2 100

Out[27]= 73

9. This function has a straightforward implementation. Each die can be viewed as a random
integer between 1 and 6.

In[28]:= rollEm : Random Integer, 1, 6 , Random Integer, 1, 6

In[29]:= rollEm

Out[29]= 3, 2

Here are five rolls in a row.

In[30]:= Table rollEm, 5

Out[30]= 6, 4 , 2, 3 , 5, 3 , 4, 3 , 4, 5

10. First generate a vector of 100 random real numbers on the interval 0 to 1.

In[31]:= data Table Random , 100 ;

You could rotate once to the left for each successive row.

In[32]:= ListDensityPlot NestList RotateLeft, data, Length data ;
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Here are a few other things you can try.

In[33]:= ListDensityPlot NestList #.75 &, data, Length data ;
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60

80

100
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In[34]:= ListDensityPlot NestList
#1

1 #1
&, data, Length data , Mesh False ;
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11. Here is the linear congruential generator.

In[35]:= linearCongruential[x_,m_,b_] := Mod[b x + 1, m]

With modulus 100 and multiplier 15, this generator quickly gets into a cycle.

In[36]:= NestList linearCongruential #, 100, 15 &, 5, 10

Out[36]= 5, 76, 41, 16, 41, 16, 41, 16, 41, 16, 41

With a larger modulus and multiplier, it appears as if this generator is doing better.

Here are the first 60 terms starting with a seed of 0.

In[37]:= data NestList linearCongruential #, 381, 15 &, 0, 60

Out[37]= 0, 1, 16, 241, 187, 139, 181, 49, 355, 373, 262, 121, 292, 190, 184, 94,

268, 211, 118, 247, 277, 346, 238, 142, 226, 343, 193, 229, 7, 106, 67,
244, 232, 52, 19, 286, 100, 358, 37, 175, 340, 148, 316, 169, 250, 322,
259, 76, 379, 352, 328, 349, 283, 55, 64, 199, 319, 214, 163, 160, 115

Sometimes it is hard to see if your generator is getting into a rut. Graphical analysis can help 

by allowing you to see patterns over larger domains. Here is a ListPlot of this sequence

taken out to 5,000 terms.

In[38]:= ListPlot NestList linearCongruential #, 381, 15 &, 0.0, 5000 ;
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It appears as if certain numbers are repeating. Looking at the plot of the Fourier data shows 

peaks at certain frequencies, indicating a periodic nature to the data.

In[39]:= ListPlot[Abs[Fourier[

NestList[linearCongruential[#,381,15]&,0.0,5000]]]];
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Using a much larger modulus and multiplier (chosen carefully), you can keep your generator

from getting in such short loops.

In[40]:= ListPlot

data NestList linearCongruential #, 216, 27421 &, 0.0, 5000 ;
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In[41]:= ListPlot Abs Fourier data ;
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13. First we implement the chi-square test and then use it to run tests on some data in the next 
exercise.

In[42]:= chiSquare lis_List : Module m Length lis , n Max lis ,

i 1

n
Count lis, i m

n

2

m

n

14. Here are some data generated using the linear congruential generator with small modulus and
multiplier.
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In[43]:= data NestList linearCongruential #, 381, 15 &, 0, 1000 ;

In[44]:= chiSquare data

Out[44]=
5018521
1001

In[45]:= N %

Out[45]= 5013.51

Notice that the statistic is quite far from 2 n  of n. This is a particularly pathological

sequence. You can see a cycle of length 63 within the first 100 iterates.

In[46]:= NestList linearCongruential #1, 381, 15 &, 0, 100

Out[46]= 0, 1, 16, 241, 187, 139, 181, 49, 355, 373, 262, 121, 292, 190, 184,
94, 268, 211, 118, 247, 277, 346, 238, 142, 226, 343, 193, 229, 7,
106, 67, 244, 232, 52, 19, 286, 100, 358, 37, 175, 340, 148, 316, 169,

250, 322, 259, 76, 379, 352, 328, 349, 283, 55, 64, 199, 319, 214,
163, 160, 115, 202, 364, 127, 1, 16, 241, 187, 139, 181, 49, 355,
373, 262, 121, 292, 190, 184, 94, 268, 211, 118, 247, 277, 346, 238,

142, 226, 343, 193, 229, 7, 106, 67, 244, 232, 52, 19, 286, 100, 358

Here are those positions that contain the number 1.

In[47]:= Position %, 1

Out[47]= 2 , 65

8.3  Working with numbers

1. The number 1.23 has machine precision.

In[1]:= Precision 1.23

Out[1]= MachinePrecision

Asking Mathematica to generate 100 digits of precision from a number that only contains about

16 digits of precision would require it to produce 84 digits without any information about

where those digits should come from.
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2. You could simply produce a table showing the number of digits of precision needed in the
input compared with the accuracy of the result.

In[2]:= Table x, Accuracy N 2 , x
200

2
200

, x, 100, 140, 5 TableForm

Out[2]//TableForm=
100 67.596
105 72.596
110 77.596
115 82.596
120 87.596
125 92.596
130 97.596
135 102.596
140 107.596

8.4  Working with arrays of numbers

1. Note the need for a delayed rule in this function.

In[1]:= RandomSparseArray n_Integer : SparseArray i_, i_ Random , n, n

In[2]:= Normal RandomSparseArray 5 MatrixForm

Out[2]//MatrixForm=
0.197227 0 0 0 0
0 0.509405 0 0 0
0 0 0.965962 0 0
0 0 0 0.873469 0
0 0 0 0 0.959528

2. Here is the definition of tridiagonalMatrix.

In[3]:= tridiagonalMatrix n_, p_, q_ :

SparseArray i_, i_ p, i_, j_ ; Abs i j 1 q , n, n

In[4]:= tridiagonalMatrix 5, ,

Out[4]= SparseArray 13 , 5, 5

In[5]:= Normal % MatrixForm

Out[5]//MatrixForm=
0 0 0

0 0
0 0
0 0
0 0 0
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3. First we create the packed array vector.

In[6]:= vec Table Random , 106 ;

In[7]:= Developer`PackedArrayQ vec

Out[7]= True

Replacing the first element in vec with a 1 gives us an expression which is not packed.

In[8]:= newvec ReplacePart vec, 1, 1 ;

In[9]:= Developer`PackedArrayQ newvec

Out[9]= False

The size of the unpacked object is about two and a half times larger than the packed array.

In[10]:= Map ByteCount, vec, newvec

Out[10]= 8000056, 20000032

In[11]:= % 2 % 1 N

Out[11]= 2.49999

Sorting the packed object is about four or five times faster than sorting the unpacked object.

In[12]:= Timing Do Sort vec , 5

Out[12]= 4.406 Second, Null

In[13]:= Timing Do Sort newvec , 5

Out[13]= 18.777 Second, Null

Finding the minimum element is about one order of magnitude faster with the packed array.

In[14]:= Timing Min vec ;

Out[14]= 0.01 Second, Null

In[15]:= Timing Min newvec ;

Out[15]= 0.131 Second, Null
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8.5  Numerical computations

1. We will overload newton to invoke the secant method when given a list of two numbers as
the second argument.

In[1]:= Options newton

MaxIterations $RecursionLimit,

PrecisionGoal Automatic,

WorkingPrecision Automatic

;

In[2]:= newton fun_, x1_?NumericQ, x2_?NumericQ , opts___?OptionQ :

Module maxIterations, precisionGoal,

workingPrecision, initx, df, next, result ,

maxIterations, precisionGoal, workingPrecision

MaxIterations, PrecisionGoal, WorkingPrecision . Flatten opts .

Options newton ;

If precisionGoal Automatic, precisionGoal

Min Precision x1 , Precision x2 ;

If workingPrecision Automatic,

workingPrecision precisionGoal 10 ;

initx SetPrecision x1, x2 , workingPrecision ;

df a_, b_ : fun b fun a b a ;

next a_, b_ : a, b
fun b

df a, b
;

result FixedPoint next, initx, maxIterations 2 ;

SetPrecision result, precisionGoal

In[3]:= f x_ : x2 2

In[4]:= newton f, 1., 2.

Out[4]= 1.41421

In[5]:= newton f, 1.0`60, 2.0`50

Out[5]= 1.4142135623730950488016887242096980785696740946953

In[6]:= Precision %

Out[6]= 50.

5. Here is a three-dimensional vector.

In[7]:= vec 1, 3, 2 ;

This computes the l  norm of the vector.

In[8]:= norm v_?VectorQ, l_: Infinity : Max Abs v

Solutions to exercises 501



In[9]:= norm vec

Out[9]= 3

You can compare this with the built-in Norm function.

In[10]:= Norm vec, Infinity

Out[10]= 3

Here is a 3 3 matrix.

In[11]:= mat 1, 2, 3 , 1, 0, 2 , 2, 3, 2

Out[11]= 1, 2, 3 , 1, 0, 2 , 2, 3, 2

Here, then, is the matrix norm.

In[12]:= norm m_?MatrixQ, l_: Infinity :

norm Apply Plus, Abs Transpose m , Infinity

In[13]:= norm mat

Out[13]= 7

Again, a comparison with the built-in Norm function.

In[14]:= Norm mat, Infinity

Out[14]= 7

Notice how we overloaded the definition of the function norm so that it would act differently

depending upon what type of argument it was given. This is a particularly powerful feature of 

Mathematica. The expression _?MatrixQ on the left-hand side of the definition causes the 

function norm to use the definition on the right-hand side only if the argument is in fact a

matrix (if it passes the MatrixQ test). If that argument is a vector (if it passes the VectorQ

test), then the previous definition is used.

6. Here is the function to compute the condition number of a matrix (using the l  norm).

In[15]:= conditionNumber m_?MatrixQ :

norm m, Infinity norm Inverse m , Infinity

In[16]:= HilbertMatrix n_ : Table
1

i j 1
, i, n , j, n

In[17]:= conditionNumber HilbertMatrix 3

Out[17]= 748
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Compare this with the condition number of a random matrix.

In[18]:= conditionNumber Table Random , 3 , 3

Out[18]= 18.7428

Here are the condition numbers of the first ten Hilbert matrices.

In[19]:= Map conditionNumber HilbertMatrix # &, Range 10

Out[19]= 1, 27, 748, 28375, 943656, 29070279,
1970389773

2
,

33872791095,
2199309082685

2
, 35357439251992

In[20]:= N %

Out[20]= 1., 27., 748., 28375., 943656., 2.90703 107,

9.85195 108, 3.38728 1010, 1.09965 1012, 3.53574 1013

9 Graphics programming

9.1  Structure of graphics

1. The color wheel can be obtained by mapping the Hue directive over successive sectors of a
disk. Note that the argument to Hue must be scaled so that it falls within the range 0 to 1.

In[1]:= colorWheel n_ :

Show Graphics Map Hue
#

2 n
, Disk 0, 0 , 1, #, # n &,

Range 0, 2 n, n , AspectRatio Automatic

Here is a color wheel created from 256 separate sectors (hues).

In[2]:= colorWheel
256

;
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2. Here is the circle graphic primitive together with a text label.

In[3]:= circ Circle 0, 0 , 1 ;

In[4]:= ctext Text StyleForm "Circle",

FontFamily "Times", FontSlant "Italic", FontSize 12 ,

Cos
5

4
.25, Sin

5

4
;

This generates the graphics primitive for the triangle and its text label.

In[5]:= tri Line 1, 0 , 0, 1 , 1, 0 , 1, 0 ;

In[6]:= ttext Text StyleForm "Triangle", FontFamily "Times",

FontSlant "Italic", FontSize 12 , 0, 0 .05 ;

Here is the rectangle and label.

In[7]:= rect Line 1, 1 , 1, 1 , 2, 1 , 2, 1 , 1, 1 ;

In[8]:= rtext Text StyleForm "Rectangle", FontFamily "Times",

FontSlant "Italic", FontSize 12 , 1.5, 1 .05 ;

Finally, this displays each of these graphics elements all together. 

In[9]:= Show Graphics circ, tri, rect, ctext, ttext, rtext ,

AspectRatio Automatic ;

Circle

Triangle

Rectangle

3. First, we need to create the cuboid graphic object. Cuboid takes a list of three numbers as the 
coordinates of its lower-left corner. This maps the object across two such lists.

In[10]:= Map Cuboid # &, Table Random , 2 , 3

Out[10]= Cuboid 0.177395, 0.551966, 0.857107 ,
Cuboid 0.545712, 0.76829, 0.48344

Here is a list of six cuboids and the resulting graphic. Notice the large amount of overlap of the

cubes. You can reduce the large overlap by specifying minimum and maximum values of the

cuboid.

In[11]:= cubes Map Cuboid #1 &, Table Random , 6 , 3 ;
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In[12]:= Show Graphics3D cubes ;

4. First we create the Point graphics primitives randomly placed in the unit square.

In[13]:= randomcoords : Point Random , Random ;

This creates the point sizes according to the specification given in the statement of the 

problem.

In[14]:= randomsize : PointSize Random Real, .01, .1

This will assign a random color to each primitive.

In[15]:= randomcolor : Hue Random

Here then are 500 points. (You may find it instructive to look at just one of these points.)

In[16]:= pts Table randomcolor, randomsize, randomcoords , 500 ;

And here is the graphic.

In[17]:= Show Graphics pts, PlotRange All

Out[17]= Graphics
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5. The algebraic solution is given by the following steps. First solve the equations for x and y.

In[18]:= Clear x, y, r

In[19]:= soln Solve x 1 2 y 1 2 2, x 3 2 y 4 2 r2 , x, y

Out[19]= x
1
50

58 4 r2 3 529 54 r2 r4 ,

y
1
50

131 3 r2 4 529 54 r2 r4 ,

x
1
50

58 4 r2 3 529 54 r2 r4 ,

y
1
50

131 3 r2 4 529 54 r2 r4

Then find those values of r for which the x and y coordinates are identical.

In[20]:= Solve x . soln 1 x . soln 2 ,

y . soln 1 y . soln 2 , r

Out[20]= r 5 2 , r 5 2 , r 5 2 , r 5 2

Here then are those values of r that are positive.

In[21]:= Cases %, r _?Positive

Out[21]= r 5 2 , r 5 2

To display the solution, we will plot the first circle with solid lines and the two solutions with

dashed lines together in one graphic. Here is the first circle centered at (1, 1).

In[22]:= circ Circle 1, 1 , 2 ;

In[23]:= Show Graphics circ, Axes Automatic, AspectRatio Automatic ;

0.5 1 1.5 2

0.5

1

1.5

2

Notice that we have used the Axes and AspectRatio options because we want these

commands to apply to the entire graphic.
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Here are the circles that represent the solution to the problem.

In[24]:= r1 5 2 ;

r2 5 2 ;

In[26]:= Show Graphics circ, Circle 3, 4 , r1 , Circle 3, 4 , r2 ,

Axes Automatic, AspectRatio Automatic ;

8 6 4 2 2

2

2

4

6

8

10

We wanted to display the solutions (two circles) using dashed lines. The graphics directive

Dashing[{x,y}] directs all subsequent lines to be plotted as dashed, alternating the dash x

units and the space y units. We use it as a graphics directive on the two circles c1 and c2. The 

important point to note here is that each of the circles inherits only those directives in whose 

scope they appear.

In[27]:= dashc1 Dashing .025, .025 , Circle 3, 4 , r1 ;

dashc2 Dashing .05, .05 , Circle 3, 4 , r2 ;

In[29]:= Show Graphics circ, dashc1, dashc2 ,

Axes Automatic, AspectRatio Automatic ;

8 6 4 2 2

2

2

4

6

8

10

6. This loads the package containing the definitions for the polyhedra.

In[30]:= Needs "Graphics`Polyhedra "̀
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It is often helpful to get a list of the functions defined in a recently loaded package.

In[31]:= Names "Graphics`Polyhedra` "

Out[31]= Geodesate, GreatDodecahedron, GreatIcosahedron,

GreatStellatedDodecahedron, OpenTruncate, Polyhedra,
Polyhedron, SmallStellatedDodecahedron, Stellate, Truncate

First the polyhedra are turned into Graphics3D objects.

In[32]:= solids Map Graphics3D, Cube , Dodecahedron , GreatDodecahedron ,

GreatIcosahedron , GreatStellatedDodecahedron , Icosahedron ,

Octahedron , Tetrahedron , SmallStellatedDodecahedron ;

We then use Partition to split the list of nine solids into three sublists and then display the 

nine polyhedra with GraphicsArray and Show.

In[33]:= Show GraphicsArray Partition solids, 3

Out[33]= GraphicsArray

7. Here is a plot of the sine function.

In[34]:= sinplot Plot Sin x , x, 0, 2

1 2 3 4 5 6

1

0.5

0.5

1

Out[34]= Graphics

This solution is essentially that given in Exploring Mathematics with Mathematica (Gray and

Glynn 1991). Extracting the points from which Mathematica constructs the plot is accom-

plished by the Nest statement. The Line primitive is then mapped across those points in 
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such a way as to create lines from the points on the graph to points on the x-axis with the same

x-coordinate.

In[35]:= Show[sinplot, 

  Graphics[

  {Thickness[.001],

  Map[Line[{{#[[1]], 0}, #}]&,

  Nest[First, sinplot, 4]]}]]

1 2 3 4 5 6

1

0.5

0.5

1

Out[35]= Graphics

You could also construct this using pattern matching. Here are the coordinates.

In[36]:= coords Cases sinplot, p_?NumericQ, q_?NumericQ , Infinity Short

Out[36]//Short=

2.61799 10 7, 2.61799 10 7 , 80 , 6.28319, 23

Here is what we use to create vertical lines from each coordinate.

In[37]:= lines Map Line # 1 , 0 , # &, coords Short

Out[37]//Short=

Line 2.61799 10 7, 0 , 2.61799 10 7, 23 , 80 , Line 1

Here then is the final graphic.

In[38]:= Show sinplot, Graphics

Map Line # 1 , 0 , # &,

Cases sinplot, p_?NumericQ, q_?NumericQ , Infinity

;

1 2 3 4 5 6

1

0.5

0.5

1
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9.2  Graphics programming

1. The function ComplexListPlot plots a list of complex numbers in the complex plane, with
the real part identified with the horizontal axis and the imaginary part identified with the 
vertical axis. The appropriate options are extracted from ComplexListPlot using Filter
Options, given the name complexOpts, and then passed to ListPlot.

In[1]:= Utilities`FilterOptions`

In[2]:= ComplexListPlot points_, opts___ :

Module complexOpts FilterOptions ListPlot, opts ,

ListPlot Map Re #1 , Im #1 &, points , complexOpts, PlotStyle

RGBColor 1, 0, 0 , PointSize .025 , AxesLabel "Re", "Im"

This plots four complex numbers in the plane.

In[3]:= ComplexListPlot 1 I, 2 I, 1 2 I, 0, 1 ;

1 0.5 0.5 1 1.5 2
Re

2

1.5

1

0.5

0.5

1

Im

2. The function RootPlot, takes a polynomial, solves for its roots, and then uses ComplexList-
Plot from Exercise 1 to plot these roots in the complex plane.

In[4]:= RootPlot poly_, z_, opts___ :

ComplexListPlot z . NSolve poly 0, z , opts

In[5]:= RootPlot 1 z 2 z2 3 z3 5 z4 8 z5 13 z6, z, AspectRatio Automatic ;

0.6 0.4 0.2 0.2 0.4
Re

0.6

0.4

0.2

0.2

0.4

0.6

Im
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3.

In[6]:= Clear RootPlot

In[7]:= Utilities`FilterOptions`

In[8]:= RootPlot fun_, x_, xmin_, xmax_ , opts___ : Module

z, fplot, pts, spts, roots, points, f Function x, Evaluate fun ,

fplot Plot f x , x, xmin, xmax , DisplayFunction Identity,

Evaluate FilterOptions Plot, opts ;

pts Cases fplot, Line z__ z, ;

spts Map First, Select Split pts, Sign Last #2 Sign Last #1 & ,

Length #1 2 & , 2 ;

roots Map FindRoot f x 0, x, # 1 , # 2 &, spts ;

points Map Point #, 0 &, x . roots ;

Show fplot, DisplayFunction $DisplayFunction,

Epilog RGBColor 0, 0, 1 , PointSize .02 , points ;

roots

In[9]:= RootPlot Sin x 2 Sin x , x, , 4 , PlotStyle Dashing .02, .02 ;

2.5 2.5 5 7.5 10 12.5

1

0.5

0.5

1

4. Here is the new code for DataPlot.

In[10]:= Clear DataPlot

In[11]:= Needs "Utilities`FilterOptions "̀

In[12]:= Options DataPlot Options ListPlot ;

In[13]:= DataPlot::baddim "The data used by DataPlot must

be in the form of a one or two dimensional list.";

In[14]:= DataPlot data_, opts___ : Module pjQ, pts, lines ,

pjQ PlotJoined . Flatten opts, Options DataPlot ;

pts Which

VectorQ data , MapIndexed #2 1 , #1 &, data ,

Dimensions data 2 2, data,

True, Message DataPlot::baddim ; $Failed ;

If pts $Failed,

Show Graphics PointSize .02 ,

Point pts, If pjQ, lines Line pts , lines ,

FilterOptions Graphics, opts , Axes Automatic
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Here is some sample two-dimensional data.

In[15]:= data2D 0.043, 0.575 , 0.151, 0.120 ,

0.234, 0.001 , 0.283, 0.930 , 0.343, 0.569 , 0.416, 0.768 ,

0.465, 0.675 , 0.539, 0.528 , 0.786, 0.856 , 0.914, 0.794 ;

And here is some sample one-dimensional data.

In[16]:= data1D Table Random Integer, 1, 10 , 8

Out[16]= 2, 5, 7, 5, 9, 9, 10, 6

In[17]:= DataPlot data1D, PlotJoined True

2 4 6 8

4

6

8

10

Out[17]= Graphics

In[18]:= DataPlot data2D, PlotJoined True

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Out[18]= Graphics

Here is some data that DataPlot is not designed to deal with.

In[19]:= DataPlot 1, 2, 3 , 2, 3, 4 , 4, 5, 6

DataPlot::baddim : The data used by DataPlot
must be in the form of a one or two dimensional list.

5. There are a number of things that could go wrong with the algorithm by just choosing a base
point randomly and then sorting according to the arctangent. The default branch cut for
ArcTan gives values between 2 and 2. (The reader is encouraged to think about why 
this could occasionally cause the algorithm in the text to fail.) By choosing the base point so
that it lies at some extreme of the diameter of the set of points, the polar angle algorithm given 
in the text will work consistently. If you choose the base point so that it is lowest and left-most,
then all the angles will be in the range (0, ].
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In[20]:= simpleClosedPath1 lis_List : Module base, angle, sorted ,

base Last Sort lis, #2 2 #1 2 & ;

angle a_, b_ : Apply ArcTan, b a ;

sorted

Sort Complement lis, base , angle base, #1 angle base, #2 & ;

Join base , sorted, base

In[21]:= pts Table Random , 20 , 2 ;

In[22]:= PointPlot coords_List :

Show Graphics

Line coords ,

PointSize .02 , RGBColor 1, 0, 0 , Map Point, coords

In[23]:= PointPlot simpleClosedPath1 pts ;

7. A simple change to the program simpleClosedPath given in Exercise 5 chooses the base
point with the largest y-coordinate.

In[24]:= simpleClosedPath3 lis_ :

Module base, angle, sorted , base Last Sort lis, #2 2 #1 2 & ;

angle a_, b_ : ArcTan b a ; sorted Sort Complement lis, base ,

angle base, #1 angle base, #2 & ; Join base , sorted, base

In[25]:= pts Table Random , 20 , 2 ;

In[26]:= PointPlot simpleClosedPath3 pts ;

8. The area of a triangle is one-half the base times the altitude. For arbitrary points, the altitude
requires a bit of computation that does not generalize.
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The magnitude of the cross product of two vectors gives the area of the parallelogram that 

they determine. Since the vectors we are working with are in two-dimensional space, we 

embed them in three-dimensional space in the plane z 0 so that we can compute the cross

product which, for the purposes of this problem, only makes sense in three dimensions.

In[27]:= "Calculus`VectorAnalysis "̀

In[28]:= CrossProduct x2, y2 x1, y1 , x3, y3 x1, y1 . x_, y_ x, y, 0

Out[28]= 0, 0, x2 y1 x3 y1 x1 y2 x3 y2 x1 y3 x2 y3

Here are the coordinates for a triangle.

In[29]:= a 0, 0 ;

b 5, 0 ;

c 3, 2 ;

And here is the computation for the cross product.

In[32]:= CrossProduct b a, c a . x_, y_ x, y, 0

Out[32]= 0, 0, 10

So the given area is then just half the magnitude of the cross product.

In[33]:=
Apply Plus, %

2

Out[33]= 5

Here is a function that computes the area of any triangle using the cross product.

In[34]:= triangleArea v_List :
1

2
Apply Plus,

CrossProduct v 2 v 1 , v 3 v 1 . x_, y_ x, y, 0

This is done more simply using determinants and this method generalizes more easily to

higher dimensions.

In[35]:= triangleArea v1_, v2_, v3_ :
1

2
Det v1, v2, v3 . x_, y_ x, y, 1

In[36]:= triangleArea a, b, c

Out[36]= 5

9. The key observation is that in computing the area of a triangle using the determinant formula-
tion as in Exercise 9, the area will be a positive quantity if the points are given in counter-clock-
wise order, and will be negative if in clockwise order. So, for a given point p not on a line ab, 
the area of abp will be positive (computed using determinants), if p is to the left of ab. 
Similarly, for each of the lines in a polygon, relative to the given point p. So, to perform the 
computation, we first partition the polygon into pairs of points, and then map the triangle area
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function with the given point across each pair. If all such areas are greater than or equal to
zero, then a value of True is returned.

In[37]:= pointInPolygonQ poly_, p_ : Module area ,

area v1_, v2_, v3_ :
1

2
Det v1, v2, v3 . x_, y_ x, y, 1 0;

Apply And, Map area Join p , # &,

Partition poly . a_, b__ a, b, a , 2, 1

Here are the coordinates for a quadrilateral and two distinct points.

In[38]:= quad 1, 0 , 0, 1 , 1, 0 , 0, 1 ;

In[39]:= p1 0, 0 ;

p2 1, 1 ;

In[41]:= Show Graphics Line quad . a_, b__ a, b, a ,

PointSize .025 , Point p1 , Point p2 , AspectRatio Automatic ;

Finally, here are the computations for these points and polygon.

In[42]:= pointInPolygonQ quad, p1

Out[42]= True

In[43]:= pointInPolygonQ quad, p2

Out[43]= False

12. RT (for Reingold–Tilford), replaces the placeTree function. In placeTree, the result was a
separation tree plus two numbers: width of the left side of the tree and width of the right side 
of the tree. In RT, the result is instead a separation tree plus two lists, the first giving the width 
of the left side of each level of the tree, the second giving the corresponding widths on the 
right side. sep is calculated by adding the right widths of the left subtree to the left widths of 
the right subtree at each level, and taking the maximum separation. drawSepTree is 
unchanged.

In[44]:= IPM3`Trees`
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In[45]:= RT _ : , ,

In[46]:= RT _, lc_, rc_ :

With left RT lc , right RT rc , minsep 2.0 , With sep

1

2
Max 0, Max Plus #1 & zip left 3 , right 2 minsep ,

With newtree sep, left 1 , right 1 ,

leftedge Join sep , extend left 2 , right 2 , sep ,

rightedge Join sep , extend right 3 , left 3 , sep ,

newtree, leftedge, rightedge

In[47]:= placeTree _ : , 0, 0

placeTree _, lc_, rc_ :

Module left placeTree lc , right placeTree rc , minsep 1.0, sep ,

sep left 3 right 2 minsep;

sep, left 1 , right 1 , left 2
sep

2
, right 3

sep

2

In[49]:= drawSepTree , lev_, xaxis_ : Disk xaxis, lev , 0.1

drawSepTree sep_, lc_, rc_ , lev_, xaxis_ :

Join Disk xaxis, lev , 0.1 , Line xaxis, lev , xaxis sep, lev 1 ,

Line xaxis, lev , xaxis sep, lev 1 ,

drawSepTree lc, lev 1, xaxis sep , drawSepTree rc, lev 1, xaxis sep

In[51]:= drawTree t_ : drawSepTree RT t 1 , 0, 0

The auxiliary functions are zip and extend. Given the left widths of each level of the right

subtree, and the right widths of each level of the left subtree, the separation of the two subtrees 

is determined by adding those numbers at each level and taking the maximum. zip is used to

join those two lists into a list of pairs; it facilitates this process.

In[52]:= zip , _ :

zip _, :

zip x1_, y1___ , x2_, y2___ : Join x1, x2 , zip y1 , y2

When the separation of a tree’s subtrees is determined, the lists of left and right widths of the 

combined tree are computed from the corresponding lists for the subtrees. This is simple 

enough for the most part: the left widths of the tree are obtained mainly by taking the left

widths of the left subtree and shifting them left; and similarly for the right widths. There is an

exception, though: if the right subtree is taller than the left subtree, the left widths of the 

bottom part of the tree are obtained from the left widths of the bottom part of the right

subtree. Combining the left widths of the two subtrees to create the list of left widths of the 

combined tree is done by extend.

In[55]:= extend edges1_, edges2_, sep_ : Join edges1 sep,

Take edges2, Min 0, Length edges1 Length edges2 sep

The same reasoning applies to computing the right widths, and extend is also used for that.
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Here is the “tricky” tree drawn in Figure 9.5.

In[56]:= Clear a, b, c, d, e, f, g

In[57]:= t1 a, b , a, c, e, g , f , d , b ;

In[58]:= Show Graphics drawTree t1 , AspectRatio Automatic ;

13. RT is modified so that the left widths and right widths of each row take into account the width 
of the labels.

In[59]:= RT x_ : ,
width x

2
,

width x

2
RT x_, lc_, rc_ :

With left RT lc , right RT rc , minsep 0.5 , With sep

1

2
Max 0, Max Plus #1 & zip left 3 , right 2 minsep ,

With newtree sep, left 1 , right 1 ,

leftedge Join
width x

2
, extend left 2 , right 2 , sep ,

rightedge Join
width x

2
, extend right 3 , left 3 , sep ,

newtree, leftedge, rightedge

width t_ : StringLength t

Drawing the following tree using the new RT and the old drawSepTree will show the

difference in the layout of the trees. However, since drawSepTree above only prints disks at

each node, a new version of it is required.

In[62]:= t1 "a", "abcdef" , "", "abcdefghij" , "abc" ;

The new version of drawSepTree draws the labels at each node instead of a disk. A complicat-

ing factor is that we can no longer just draw the lines from the center of the disk, since this

would collide with the text. So the lines are now drawn in such a way as to leave a gap between

the text and the line.

In[63]:= settext lab_ : FontForm lab, "Helvetica", 9
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In[64]:= drawSepTree lab_ , , lev_, xaxis_ : Text settext lab , xaxis, lev

In[65]:= drawSepTree lab_, lc_, rc_ , sep_, ls_, rs_ , lev_, xaxis_ :

With h1 If lab "", 0, .3 , h2 If lc 1 "", 0, .3 ,

h3 If rc 1 "", 0, .3 , Join Text settext lab , xaxis, lev ,

Line xaxis
sep h1

2
, lev

h1

2
, xaxis sep

sep h2

2
, lev 1

h2

2
,

Line xaxis
sep h1

2
, lev

h1

2
,

xaxis sep
sep h3

2
, lev 1

h3

2
, drawSepTree lc, ls,

lev 1, xaxis sep , drawSepTree rc, rs, lev 1, xaxis sep

In[66]:= drawTree t_ : drawSepTree t, RT t 1 , 0, 0

In[67]:= Show Graphics drawTree t1 , PlotRange All ;

a

abcdef

abcdefghij abc

9.3  Sound

1. When x is close to 2, the frequency is quite low. As x increases, the fraction 1000 x gets 
larger, making the frequency of the sine function bigger. This in turn makes the tone much
higher in pitch. As x approaches 0, the function is oscillating more and more, and at 0, the 
function can be thought of as oscillating infinitely often. In fact, it is oscillating so much that 
the sampling routine is not able to effectively compute amplitudes and, hence, we hear noise in 
this region.

In[1]:= Play Sin
1000

x
, x, 2, 2

Power::infy : Infinite expression
1
0.

encountered. More…

Out[1]= Sound
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3. To generate a tone whose rate increases one octave per second, you need the sine of a function 
whose derivative doubles each second (frequency is a rate). That function is 2t, so here is the 
command to produce the tone. You need to carefully choose a range for t that generates tones 
in a reasonable range.

In[2]:= Play Sin 2t , t, 10, 14

Out[2]= Sound

5. Here is a function that creates a square wave with decreasing amplitudes for higher overtones.

In[3]:= SquareWave freq_, n_ : Sum
Sin freq i 2 t

i
, i, 1, n, 2

In[4]:= Plot SquareWave 440, 17 , t, 0, .01 ;

0.002 0.004 0.006 0.008 0.01
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0.25

0.5

0.75

Here then, is an example of playing a square wave.

In[6]:= Play SquareWave 440, 17 , t, 0, .5

Out[6]= Sound

7. This function creates a saw-tooth wave. The user specifies the fundamental frequency and the
number of terms in the approximation.

In[7]:= SawtoothWave freq_, n_ : Sum
Sin freq i 2 t

i
, i, 1, n

In[8]:= Plot SawtoothWave 440, 17 , t, 0, .01 ;

0.002 0.004 0.006 0.008 0.01

1.5

1

0.5

0.5

1

1.5
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This plays the wave for a half-second duration.

In[9]:= Play SawtoothWave 440, 17 , t, 0, .5

Out[9]= Sound

Here are definitions for true sawtooth and square waves.

In[10]:= Fractional x_ : x Floor x

In[11]:= SawtoothWave[x_]:= Fractional[-x]

In[12]:= SquareWave x_ :
1

2
Sign SawtoothWave x

1

2
1

Here are plots at the fundamental frequency of 440.

In[13]:= Plot SawtoothWave 440 t , t, 0,
3

440
;
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0.2
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1

In[14]:= Plot SquareWave 440 t , t, 0,
3

440
;

0.001 0.002 0.003 0.004 0.005 0.006

0.6

0.8

1.2

1.4

9. Here is a function that picks out frequencies from the pentatonic scale, using essentially
brownian motion 1 f 2 to select notes.

In[15]:= pentatonic n_Integer, r_ : 2 : Module pscale, steps ,

pscale 277.183, 311.13, 369.99, 415.30, 466.16, 554.37 ;

steps Table Random Integer, r, r , n ;

pscale Mod FoldList Plus, 3, steps , 4 1

You could play a pentatonic “melody” as follows:

In[16]:= SetAttributes PlayTones, Listable
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In[17]:= PlayTones freq_, time_: 0.5 : Play Sin 2 t freq , t, 0, time

In[18]:= PlayTones pentatonic 24

Out[18]= Sound , Sound , Sound , Sound , Sound , Sound , Sound ,
Sound , Sound , Sound , Sound , Sound , Sound ,
Sound , Sound , Sound , Sound , Sound , Sound ,

Sound , Sound , Sound , Sound , Sound , Sound

11. In this function, the notes are randomly chosen from the C major scale 1 f 0 and the durations
are randomly chosen from the list that represents eighth notes, quarter notes, half notes, and
whole notes (also 1 f 0). PlayTones accepts two arguments, so MapThread threads corre-
sponding notes and durations through PlayTones.

In[19]:= tonesAndTimes n_ : Module cmajor, notes, durs ,

cmajor Table N 261.62558 2j 12 , j, 0, 11 ;

notes : Table cmajor Random Integer, 1, 12 , n ;

durs : Table
1

2Random Integer, 0,3
, n ;

MapThread PlayTones, notes, durs

13. Following the implementation in the text, we first create ten steps between 2 and 2 (you can
alter the range of step movements). These steps will determine how to move up or down the
list of tone durations (1/8, 1/4, 1/2, 1).

In[20]:= d10 Table Random Integer, 2, 2 , 10

Out[20]= 0, 0, 2, 1, 2, 1, 2, 2, 2, 2

In[21]:= Mod FoldList Plus, 0, d10 , 4 1

Out[21]= 1, 1, 1, 3, 2, 4, 1, 3, 1, 3, 1

In[22]:= durs
1

8
,

1

4
,

1

2
, 1 %

Out[22]=
1
8
,

1
8
,

1
8
,

1
2
,

1
4
, 1,

1
8
,

1
2
,

1
8
,

1
2
,

1
8

Here are some 1 f 2 tones.

In[23]:= s10 Table Random Integer, 2, 2 , 10

Out[23]= 2, 2, 1, 2, 1, 1, 2, 2, 1, 1

In[24]:= pos Mod FoldList Plus, 0, s10 , 13 1

Out[24]= 1, 12, 10, 9, 7, 6, 7, 5, 7, 6, 7
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In[25]:= Cmajor Table N 261.62558 2j 12 , j, 0, 12

Out[25]= 261.626, 277.183, 293.665, 311.127, 329.628, 349.228,
369.994, 391.995, 415.305, 440., 466.164, 493.883, 523.251

In[26]:= Length Cmajor

Out[26]= 13

In[27]:= tones Cmajor pos

Out[27]= 261.626, 493.883, 440., 415.305, 369.994,
349.228, 369.994, 329.628, 369.994, 349.228, 369.994

In[28]:= MapThread PlayTones, tones, durs ;

And finally, here is one function that puts this all together.

In[29]:= tonesAndTimes2 n_ : Module cmajor, tones, durs, d, t ,

cmajor Table N 261.62558 2j 12 , j, 0, 12 ;

d Table Random Integer, 2, 2 , n ;

durs
1

8
,

1

4
,

1

2
, 1 Mod FoldList Plus, 0, d , 4 1 ;

t Table Random Integer, 2, 2 , n ;

tones cmajor Mod FoldList Plus, 0, t , 13 1 ;

MapThread PlayTones, tones, durs

In[30]:= tonesAndTimes2 12 ;

10 Front end programming

10.2  The structure of cells and notebooks

1. Here is the expression to create the notebook.

In[1]:= nb NotebookPut

Notebook

Cell "Demo Notebook", "Title" ,

Cell "Section 1: Sample Cells", "Section" ,

Cell "This is a text cell", "Text" ,

Cell "2 3 5 ", "Input" ,

Cell "1 2 3", "Input"

Out[1]= NotebookObject Untitled 3
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2. First we read the notebook from Exercise 1 into the kernel with NotebookGet.

In[2]:= nbkernel NotebookGet nb

Out[2]= Notebook
Cell CellGroupData Cell Demo Notebook, Title , Cell CellGroupData

Cell Section 1: Sample Cells, Section , Cell This is a text cell,
Text , Cell 2 3 5 , Input , Cell 1 2 3, Input , Open ,

Open , FrontEndVersion 5.1 for Microsoft Windows,

ScreenRectangle 0., 1024. , 0., 681.

Then we do a substitution on cells that contain "Section" as their second argument (their

style) and finally use NotebookPut to display the resulting notebook in the front end.

In[3]:= NotebookPut nbkernel . Cell str_, "Section" Cell str, "Subsection"

Out[3]= NotebookObject Untitled 4

10.3  Cell data types

1. Here is the notebook object with three ValueBoxes.

In[1]:= nb NotebookPut

Notebook

Cell TextData

"The current version is ", ValueBox "$Version" , "Text" ,

Cell TextData "The operating system is ",

ValueBox "$OperatingSystem" , "Text" ,

Cell TextData "Current user is ", ValueBox "$UserName" , "Text"

Out[1]= NotebookObject Untitled 5

10.4  GridBoxes

1. There are several ways of approaching this problem. One way is to create a function that 
contains the formatting rules for the heading.

In[1]:= headstyle str_ :

StyleBox MakeBoxes #, StandardForm & str , FontFamily "Helvetica",

FontWeight "Bold", FontColor RGBColor 0, 0, 1 , FontSize 10 ;

Here are some sample strings for the heading.

In[2]:= headings "first", "second", "third" ;

In[3]:= data " ", " ", " " ,

1.234, 2.3451, 3.4567801 , SqrtBox " " , "
x

y
", " n " ;
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We now need to create a list of the headings together with their styles and prepend it to the 

original data. This way the headings will be the first row of the new data set.

In[4]:= Prepend data, Map headstyle, headings

Out[4]= StyleBox "first", FontFamily Helvetica,

FontWeight Bold, FontColor RGBColor 0, 0, 1 , FontSize 10 ,

StyleBox "second", FontFamily Helvetica, FontWeight Bold,
FontColor RGBColor 0, 0, 1 , FontSize 10 ,
StyleBox "third", FontFamily Helvetica, FontWeight Bold,

FontColor RGBColor 0, 0, 1 , FontSize 10 ,

, , , 1.234, 2.3451, 3.45678 , SqrtBox ,
x
y
, n

In[5]:= ShowTable data_, headings_List : DisplayForm StyleBox

GridBox Prepend data, Map headstyle, headings ,

GridFrame 2, GridFrameMargins 1, 1 , 1, 1 ,

RowLines 1, ColumnLines 1 ,

FontFamily "Times",

Background GrayLevel .8 , SingleLetterItalics True

In[6]:= ShowTable data, "first", "second", "third"

Out[6]//DisplayForm=

first second third

1.234 2.3451 3.4567801
x
y

n

A cleaner approach would be to set up the headings as an option to ShowTable. In addition,

the header formatting should be incorporated into ShowTable. Here is one approach.

In[7]:= Options ShowTable Headings ;

In[8]:= ShowTable data_, opts___?OptionQ : Module headstyle, headings ,

headstyle str_ :

StyleBox MakeBoxes #, StandardForm & str, FontFamily "Helvetica",

FontWeight "Bold", FontColor RGBColor 0, 0, 1 , FontSize 10 ;

headings Headings . Flatten opts . Options ShowTable ;

DisplayForm StyleBox

GridBox Prepend data, Map headstyle, headings ,

GridFrame 2, GridFrameMargins 1, 1 , 1, 1 ,

RowLines 1, ColumnLines 1 ,

FontFamily "Times",

Background GrayLevel .8 , SingleLetterItalics True
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In[9]:= ShowTable data, Headings "premier", "deuxieme", "troisieme"

Out[9]//DisplayForm=

premier deuxieme troisieme

1.234 2.3451 3.4567801
x
y

n

3. First, here is the table of all possible truth values for three variables. We will generalize this
below.

In[10]:= ins Distribute Table True, False , 3 , List, List, List

Out[10]= True, True, True , True, True, False ,

True, False, True , True, False, False , False, True, True ,
False, True, False , False, False, True , False, False, False

Here is the logical expression.

In[11]:= expr Implies Or A, B , C

Out[11]= Implies A B, C

This creates a set of rules for all possible truth value combinations.

In[12]:= vars A, B, C ;

Map Thread vars # &, ins

Out[13]= A True, B True, C True , A True, B True, C False ,
A True, B False, C True , A True, B False, C False ,
A False, B True, C True , A False, B True, C False ,

A False, B False, C True , A False, B False, C False

And here we substitute these rules into the logical expression we are working with.

In[14]:= expr . %

Out[14]= True, False, True, False, True, False, True, True

Here then is the TruthTable function.

In[15]:= TruthTable expr_, vars_ : Module len Length vars , n ,

ins Distribute Table True, False , len , List, List, List ;

res expr . Thread vars #1 & ins;

DisplayForm GridBox Prepend Transpose Append Transpose ins ,

If MemberQ True, False , #1 , " ", #1 & res .

True "T", False "F" , Append vars,

TraditionalForm expr , GridFrame True,

RowLines Prepend Table 0, Length res 1 , 2 ,

ColumnLines Append Table 0, Length vars 1 , 2
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In[16]:= TruthTable Implies A B, C , A, B, C

Out[16]//DisplayForm=

A B C A B C

T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T

10.5  Buttons

1. Here is the code for the Plot3D template button.

In[1]:= ButtonBox "Plot3D fun, x,xmin,xmax , y,ymin,ymax ", Active True

DisplayForm

Out[1]//DisplayForm=

Plot3D fun, x, xmin, xmax , y, ymin, ymax

Alternately, you can use placeholders.

In[2]:= ButtonBox "Plot3D , , , , , , ", Active True DisplayForm

Out[2]//DisplayForm=

Plot3D , , , , , ,

2. Here is the code to create the Expand button.

In[3]:= ButtonBox "Expand ", Active True,

ButtonStyle "CopyEvaluateCell" DisplayForm

Out[3]//DisplayForm=

Expand

Selecting the expression below and then clicking the Expand button will cause a new input

cell to be created with Expand wrapped around the selected expression; then that cell will be

evaluated to produce the expanded polynomial below.

In[4]:= 5

In[5]:= Expand 5

Out[5]= 5 5 4 10 3 2 10 2 3 5 4 5 5 4 20 3

30 2 2 20 3 5 4 10 3 2 30 2 2 30 2 2

10 3 2 10 2 3 20 3 10 2 3 5 4 5 4 5
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3. Here is the code for the palette.

Cell[BoxData[GridBox[{
{
ButtonBox[
 RowBox[{"Expand", "[", " ", "]"}],
ButtonStyle->"CopyEvaluateCell",
 Active->True, ButtonEvaluator->Automatic]},

{
ButtonBox[
 RowBox[{"Factor", "[", " ", "]"}],
ButtonStyle->"CopyEvaluateCell",
 Active->True, ButtonEvaluator->Automatic]},

{
ButtonBox[
 RowBox[{"Apart", "[", " ", "]"}],
ButtonStyle->"CopyEvaluateCell",
 Active->True, ButtonEvaluator->Automatic]},

{
ButtonBox[
 RowBox[{"Together", "[", " ", "]"}],
ButtonStyle->"CopyEvaluateCell",
 Active->True, ButtonEvaluator->Automatic]}

},
RowSpacings->0,
 ColumnSpacings->0]], "Input"]

Here is how the palette looks when the above expression is formatted.

In[6]:=

Expand

Factor

Apart

Together

If you wanted to turn this into a free-standing palette, select the above cell and choose Gener-

ate Palette from Selection from the File menu.

Notice that in the code for the palette, each of the buttons used the same three options,

ButtonStyle, Active, and ButtonEvaluator, with identical values. Using ButtonBox

Options, we can set each value once at the GridBox level and each of the buttons will 

inherit the option, This cleans up the code considerably.
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Cell[BoxData[GridBox[{
{
ButtonBox[
 RowBox[{"Expand", "[", " ", "]"}]]},

{
ButtonBox[
 RowBox[{"Factor", "[", " ", "]"}]]},

{
ButtonBox[
 RowBox[{"Apart", "[", " ", "]"}]]},

{
ButtonBox[
 RowBox[{"Together", "[", " ", "]"}]]}

},
RowSpacings->0,
 ColumnSpacings->0]], "Input",
ButtonBoxOptions->{ButtonStyle->"CopyEvaluateCell",

 Active->True, ButtonEvaluator->Automatic}
]

Finally, here is the formatted palette with an input cell and the result of selecting that input

cell and clicking the Together[ ] button.

In[7]:=

Expand

Factor

Apart

Together

In[8]:=
1

x

1

y

In[9]:= Together
1

x

1

y

Out[9]=
x y
x y
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11 Examples and applications

11.1  Manipulating data files

1. We first borrow the options from ReadList that we wish to pass into ReadSolarData.

In[1]:= Options ReadSolarData

WordSeparators ",",

RecordLists True,

RecordSeparators "\r\n", "\n", "\r"

;

In[2]:= ReadSolarData file_, opts___?OptionQ : Module ws, rl, rs, raw, data ,

ws, rl, rs WordSeparators, RecordLists, RecordSeparators .

Flatten opts . Options ReadSolarData ;

raw ReadList file, Word, RecordLists rl,

RecordSeparators rs, WordSeparators ws ;

data Select raw, StringTake # 1 , 1 "\"" & ;

Map ToExpression, data, 2

In[3]:= datafile ToFileName "IPM3", "DataFiles" , "23232.txt"

Out[3]= IPM3\DataFiles\23232.txt

In[4]:= data ReadSolarData datafile ;

Now we can use the GetData function developed in Section 11.1 to select those records that 

fall between certain dates.

In[5]:= GetData dat_, m1_, y1_ , m2_, y2_ :

Select dat, # 1 y1 && # 2 m1 # 1 y2 && # 2 m2 &

For example, here are the records between November 1976 and March 1977.

In[6]:= GetData data, 11, 76 , 3, 77

Out[6]= 76, 11, 2.5, 3.5, 3.9, 4.1, 3.6, 3.5, 4.3,
4.6, 4.8, 4.8, 2.7, 2.2, 3.1, 3.2 , 76, 12, 2.3, 3.7, 4.4,
4.7, 4.4, 3.5, 4.6, 5.1, 5.4, 5.5, 3.6, 2.5, 3.8, 4.1 ,

77, 1, 1.9, 2.5, 2.7, 2.8, 2.4, 2.3, 2.8, 3., 3.1, 3.1, 1.5, 1.1, 1.6, 1.7 ,
77, 2, 3.3, 4.5, 4.9, 5.1, 4.3, 4.7,
5.6, 5.9, 6.1, 6.1, 3.4, 3.1, 4.1, 4.2 ,
77, 3, 4.8, 5.8, 6.1, 6., 4.4, 6.8, 7.6, 7.8, 7.7, 7.8, 4.2, 4.8, 5.6, 5.6

2. First we need to read the data using the function created in the previous exercise.

In[7]:= datafile ToFileName "IPM3", "DataFiles" , "23232.txt"

Out[7]= IPM3\DataFiles\23232.txt
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In[8]:= data ReadSolarData datafile ;

Here is the first row of the extracted data.

In[9]:= data 1

Out[9]= 61, 1, 1.6, 1.9, 2., 2., 1.6, 1.7, 2., 2., 2.1, 2.1, 0.7, 0.5, 0.8, 0.8

For 1961, we want to extract the elements in the sixth column and add them; then repeat for

each of the successive years. For example, this function selects all those rows that start with 61,

then pulls off all sixth column elements. 

In[10]:= Part Select data, # 1 61 & , All, 6

Out[10]= 2., 4.4, 5.1, 6.4, 5.7, 6., 6.3, 6.2, 6.8, 5.9, 4.2, 2.3

In[11]:= Length %

Out[11]= 12

The total solar radiation for 1961 is the sum of these values.

In[12]:= Apply Plus, Part Select data, # 1 61 & , All, 6

Out[12]= 61.3

Here are the minimum and maximum years (from the first column).

In[13]:= ymin, ymax Map Min # , Max # &, Part data, All, 1 , 0

Out[13]= 61, 90

In[14]:= yearlydata Table

Apply Plus, Part Select data, # 1 y & , All, 6 , y, ymin, ymax

Out[14]= 61.3, 63.1, 56.9, 63.9, 61.2, 63.6, 61.1, 60.7, 63.2,
62.4, 63.5, 61., 60.7, 63.4, 63.6, 66.6, 62.9, 62.2, 63.4,

63.1, 61.6, 58.8, 55.7, 63.1, 62., 63., 64.5, 65.3, 64.5, 67.4

In[15]:= Graphics`MultipleListPlot`

In[16]:= MultipleListPlot yearlydata, SymbolShape Stem ;
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3. We first load the necessary packages.

In[17]:= Graphics`MultipleListPlot`

In[18]:= << Utilities`FilterOptions`

In[19]:= PlotSolarData dat1_, dat2_, opts___?OptionQ : Module months ,

months 1, "Jan" , 2, "Feb" , 3, "Mar" ,

4, "Apr" , 5, "May" , 6, "Jun" , 7, "Jul" , 8, "Aug" ,

9, "Sep" , 10, "Oct" , 11, "Nov" , 12, "Dec" ;

MultipleListPlot dat1, dat2, FilterOptions MultipleListPlot, opts ,

PlotJoined True, AspectRatio Automatic,

Ticks months, Automatic , AxesLabel None, "kWh m2 day" ;

Read in the file.

In[20]:= datafile ToFileName "IPM3", "DataFiles" , "23232.txt"

Out[20]= IPM3\DataFiles\23232.txt

Use ReadSolarData from the previous exercise to strip out all lines that start with a quote

character and insure each element is a number.

In[21]:= data ReadSolarData datafile ;

Using GetData developed in Section 11.1, we extract the sixth column for all dates between 

January 1980 and December 1980.

In[22]:= d1 Part GetData data, 1, 80 , 12, 80 , All, 6

Out[22]= 2.7, 3.6, 5.9, 5.7, 5.9, 5.9, 6.1, 6.7, 6.8, 6., 4.7, 3.1

Similarly for data collected in 1981.

In[23]:= d2 Part GetData data, 1, 81 , 12, 81 , All, 6

Out[23]= 2.4, 4.3, 4.7, 6.2, 6.2, 6.2, 6.3, 6.8, 6.8, 5.8, 3.7, 2.2

Finally, here is the plot.

In[24]:= PlotSolarData d1, d2

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4

5

6

kWh m2 day

Out[24]= Graphics
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11.2  Random walks

1. First defining walk1DOffLattice and then inserting an If statement immediately follow-
ing dim==1 will do the trick.

In[1]:= walk1DOffLattice n_ :

FoldList Plus, 0, Table Random Real, 1, 1 , n

In[2]:= walk1D n_ : NestList # 1 Random Integer &, 0, n

In[3]:= walk2D n_ :

Module NSEW 0, 1 , 1, 0 , 0, 1 , 1, 0 ,

FoldList Plus, 0, 0 ,

NSEW Table Random Integer, 1, 4 , n

In[4]:= walk2DOffLattice n_ :

FoldList Plus, 0, 0 ,

Map Cos # , Sin # &, Table Random Real, 0, 2 , n

In[5]:= walk3D n_ : Module NSEW3 2 Vertices Cube ,

FoldList Plus, 0, 0, 0 , NSEW3 Table Random Integer, 1, 8 , n

In[6]:= walk3DOffLattice n_ : FoldList Plus, 0, 0, 0 ,

Map Cos # , Sin # ,
#

2
&, Table Random Real, 2 , 2 , n

In[7]:= Options RandomWalk LatticeWalk True, Dimension 2

Out[7]= LatticeWalk True, Dimension 2

In[8]:= RandomWalk n_, opts___?OptionQ : Module dim, latticeQ ,

If Not IntegerQ n && n 0 ,

Message RandomWalk::rwn, n , latticeQ, dim

LatticeWalk, Dimension . Flatten opts, Options RandomWalk ;

Which

dim 1, If latticeQ, walk1D n , walk1DOffLattice n ,

dim 2, If latticeQ, walk2D n , walk2DOffLattice n ,

dim 3, If latticeQ, walk3D n , walk3DOffLattice n

2. The output from RandomWalk with the option Dimension set to 1 is a one-dimensional list 
of integers. 

In[9]:= RandomWalk 10, Dimension 1

Out[9]= 0, 1, 2, 1, 2, 3, 2, 1, 0, 1, 0
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This list can be passed directly to ListPlot.

In[10]:= ShowWalk coords_, opts___ : Which

Length Dimensions coords 1,

ListPlot coords, opts, PlotJoined True ,

Dimensions coords 2 2,

Show Graphics Line coords , opts, AspectRatio Automatic ,

Dimensions coords 2 3,

Show Graphics3D Line coords , opts, AspectRatio Automatic

In[11]:= ShowWalk RandomWalk 1000, Dimension 1 ;
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3. First we write down the formulas for representing a point on the unit sphere.

In[12]:= x _, _ : 1 Cos 2 Cos ;

y _, _ : 1 Cos 2 Sin ;

z _ : Cos ;

This checks that the formulas are correct:

In[15]:= Simplify x , 2 y , 2 z 2

Out[15]= 1

The next step is to create a pair of angles between 0 and 2 .

In[16]:= ran Table Random Real, 0, 2 , 2

Out[16]= 3.65812, 1.45235

This applies the functions x, y, and z to this pair of angles.

In[17]:= Apply x #1, #2 , y #1, #2 , z #1 &, ran

Out[17]= 0.0583615, 0.490403, 0.869539
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Starting at the origin and folding Plus across this function gives the following.

In[18]:= n 3;

FoldList Plus, 0, 0, 0 , Apply x #1, #2 , y #1, #2 , z #1 &,

Table Random Real, 0, 2 , n , 2 , 1

Out[19]= 0, 0, 0 , 0.0583035, 0.166546, 0.984308 ,
0.86393, 0.535037, 1.10136 , 0.64296, 0.540758, 0.126093

Here then is the rewritten walk3DOffLattice with this code inserted.

In[20]:= <<Graphics`Polyhedra`

In[21]:= walk3DOffLattice n_ : Module x, y, z ,

x _, _ : 1 Cos 2 Cos ;

y _, _ : 1 Cos 2 Sin ;

z _ : Cos ;

FoldList Plus, 0, 0, 0 , Apply x #1, #2 , y #1, #2 , z #1 &,

Table Random Real, 0, 2 , n , 2 , 1

In[22]:= ShowWalk

RandomWalk 2500, Dimension 3, LatticeWalk False ;

5.

In[23]:= AnimateWalk coords_, opts___ : Scan

Show Graphics RGBColor 1, 0, 0 , PointSize .02 , Point coords #1 ,

Line Take coords, #1 , opts, AspectRatio Automatic,

PlotRange Map Min #1 .2, Max #1 .2 &, Transpose coords &,

Range 2, Length coords

In[24]:= AnimateWalk RandomWalk 50, LatticeWalk False ;
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11.3  The Game of Life

1.

In[1]:= Options LifeGraphics

Colors 1 RGBColor 1, 0, 0 , 0 RGBColor 0, 0, 0 ;

In[2]:= LifeGraphics lis_, opts___?OptionQ : Module colors ,

colors Colors . Flatten opts, Options LifeGraphics ;

Map

Graphics RasterArray

Reverse # . colors ,

AspectRatio Automatic &, lis

In[3]:= Options LifeGraphics

Out[3]= Colors 1 RGBColor 1, 0, 0 , 0 RGBColor 0, 0, 0

In[4]:= LifeGame n_Integer?Positive, steps_ :

Module gameboard, liveNeighbors, update ,

gameboard Table Random Integer , n , n ;

liveNeighbors mat_ : Apply Plus, Map RotateRight mat, # &,

1, 1 , 1, 0 , 1, 1 ,

0, 1 , 0, 1 , 1, 1 , 1, 0 , 1, 1 ;

update 1, 2 : 1;

update _, 3 : 1;

update _, _ : 0;

SetAttributes update, Listable ;

FixedPointList update #, liveNeighbors # &, gameboard, steps

In[5]:= Show Last LifeGraphics LifeGame 10, 5 ;

In[6]:= Graphics`Colors`
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In[7]:= Show Last LifeGraphics LifeGame 10, 5 ,

Colors 0 Blue, 1 Green

Out[7]= Graphics

In[8]:= Utilities`FilterOptions`

In[9]:= Options LifeGraphics

Colors 1 RGBColor 1, 0, 0 , 0 RGBColor 0, 0, 0 ;

In[10]:= AnimateLife lis_, opts___?OptionQ :

Scan Show, LifeGraphics lis, FilterOptions LifeGraphics, opts

2. We will use essentially the same function as before, but we will “overload” the function by
providing a definition for the case when a third argument is provided.

In[11]:= LifeGame n_, steps_, lifeform_List :

Module init Table 0, n , n , gameboard, liveNeighbors, update ,

gameboard ReplacePart init, 1, lifeform ;

liveNeighbors mat_ : Apply Plus, Map RotateRight mat, # &, 1, 1 ,

1, 0 , 1, 1 , 0, 1 , 0, 1 , 1, 1 , 1, 0 , 1, 1 ;

update 1, 2 : 1;

update _, 3 : 1;

update _, _ : 0;

Attributes update Listable;

FixedPointList update #, liveNeighbors # &, gameboard, steps

If LifeGame is called with two arguments, then the definition given earlier will be applied

(random initial game board). If LifeGame is called with three arguments, then this definition

above will be matched.

Here is a game played on a 50 50 board, starting with a glider object initially at lattice site 

(20, 20), and played for ten generations.

In[12]:= glider x_, y_ : x, y , x 1, y , x 2, y , x 2, y 1 , x 1, y 2

In[13]:= lg50 LifeGame 50, 10, glider 20, 20 ;

This game could then be animated by evaluating AnimateLife[lg50].
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12 Writing packages

12.5  Writing your own packages

1. Here are the definitions for the auxiliary collatz function.

In[1]:= collatz n_?EvenQ : n 2

In[2]:= collatz n_?OddQ : 3 n 1

2. This is essentially the definition given in the solution to Exercise 5 from Section 5.3.

In[3]:= CollatzSequence n_ : NestWhileList collatz, n, # 1 &

In[4]:= CollatzSequence 7

Out[4]= 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

3. First we write the usage message for CollatzSequence, our public function. Notice that we
write no usage message for the private collatz function.

In[5]:= CollatzSequence::usage

"CollatzSequence n computes the sequence of Collatz iterates

starting with initial value n. The sequence terminates

as soon as it reaches the value 1.";

Here is the warning message that will be issued whenever CollatzSequence is passed an

argument that is not a positive integer.

In[6]:= CollatzSequence::notint

"First argument, `1`, to CollatzSequence must be a positive integer.";

4. Here is the modified definition which now issues the warning message created in Exercise 3
whenever the argument n is not a positive integer.

In[7]:= CollatzSequence n_ :

If IntegerQ n && n 0,

NestWhileList collatz, n, # 1 & ,

Message CollatzSequence::notint, n

The following case covers the situation when CollatzSequence is passed two or more argu-

ments. Note that it uses the built-in argx message, which is issued whenever built-in func-

tions are passed the wrong number of arguments.

In[8]:= CollatzSequence _, args__ ; Message

CollatzSequence::argx, CollatzSequence, Length args 1 : Null
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5. The package begins by giving usage messages for every exported function. The functions to be
exported are mentioned here – before the subcontext Private` is entered – so that name
CollatzSequence has context Collatz`. Notice that collatz is not mentioned here and
hence will not be accessible to the user of this package.

In[9]:= Quit

In[1]:= BeginPackage "IPM3`Collatz "̀ ;

In[2]:= CollatzSequence::usage

"CollatzSequence n computes the sequence of Collatz iterates

starting with initial value n. The sequence terminates

as soon as it reaches the value 1.";

In[3]:= CollatzSequence::notint

"First argument, `1`, to CollatzSequence must be a positive integer.";

A new context IPM3`Collatz`Private` is then begun within IPM3`Collatz. All of the

definitions of this package are given within this new context. The context IPM3`Collatz`

CollatzSequence is defined within the System` context. The context of collatz, on

the other hand, is IPM3`Collatz`Private`.

In[4]:= Begin "`Private`" ;

In[5]:= collatz n_?EvenQ : n 2

In[6]:= collatz n_?OddQ : 3 n 1

In[7]:= CollatzSequence n_ :

If IntegerQ n && n 0,

NestWhileList collatz, n, # 1 & ,

Message CollatzSequence::notint, n

In[8]:= CollatzSequence _, args__ ; Message

CollatzSequence::argx, CollatzSequence, Length args 1 : Null

In[9]:= End ;

In[10]:= EndPackage

After the End[] and EndPackage[] functions are evaluated, $Context and $Context

Path revert to whatever they were before, except that IPM3`Collatz` is added to $Con

textPath. Users can refer to CollatzSequence using its short name, but they can only

refer to the auxiliary function collatz by its full name. The intent is to discourage clients

from using collatz at all, and doing so should definitely be avoided, since the author of the 

package may change or remove auxiliary definitions at a later time.
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Bowling program, 10
BoxData, 321
Boxes



FractionBox, 322
SqrtBox, 322
SubsuperscriptBox, 322
superscripts, 321

Brownian motion, 303
Browser categories, 364
ButtonBox, 332
ButtonCell, 338
ButtonData, 334
ButtonEvaluator, 335
ButtonFunction, 335
ButtonNotebook, 338
Buttons

actions, 334
activating, 333
as templates, 333
creating from menus, 332
embedding code, 335
evaluation options, 335
front end parsing, 336
hyperlinks, 334
placeholders, 333
structure, 332
using front end commands, 340

ButtonStyle, 334

Caesar cipher, 171
Calkins, Harry, xx
Cartesian products, 169
Cascading Ifs, (Which), 136
Cases, 152, 279
Cell, 314
Cell brackets, 17
Cell expressions, 314
BoxData, 321
embedding evaluations, 320
GraphicsData, 322
options, 315
TextData, 320

Cellular automata
evolution of, 169
visualizing, CAGraphics, 169

Character (ASCII) codes, 72
Characters, 71
Chi-square test, 234
Ciphers, 170
Circle, 271
Clearing values, (Clear), 81
Closed paths, 287
CMYKColor, 273
Codes

fixed-length, 205
variable-length, 205

Collatz numbers, 163, 219
Collatz sequences, 142
Color wheel, 278
Combining plots, 8
Complement, 69
Complex numbers, 225

conjugate, 225
internal representation, 226
magnitude, 225
phase angle, 225
plotting, 295
real and imaginary parts, 225

Compound functions, 96
CompoundExpression (;), 22
Compressing lists, 131
Computations

aborting, 19
interrupting, 19
numeric, 1
symbolic, 2

Condition (/;), 133
Condition number of a matrix, 266
Conditional definitions, 133
Conditional functions, (If), 131
Conditional pattern matching, 156
Conditions, in patterns, 158
Conjugate, 225
Context, current, 403
Context, 403
Context-free grammars, 376
Contexts, 401
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exiting subcontexts, 402
Global`, 401
of a symbol, 403
search path, 401
starting new, 404

Converting date formats, 101
Convex hull, 296
Convex polygons, 296
Counting change, 111, 167

DampingFactor, 117
Dashing, 273
Data

converting to different formats, 347
determining structure, 345
extracting parts, 347
fitting to a model, 7
importing, 6, 342
plotting, 6, 282
plotting log-log, 7
removing outliers, 103
selecting based on criteria, 348
solar radiation, 341
visualizing, 348

Date, 320
Dealing cards, 94
Debugging, 420
DeclarePackage, 400
Decoding, run-length (runDecode), 192
Default values, 357
Definitions, multiple associated with a symbol, 134
Delete, 63
Derivatives, programming symbolic, 193
Diameter of point set, 105
DigitCharacter, 162
Digits of numbers, 227
Dimensions, 58
Directives, 272
Disk, 271
Display channels, 323
DisplayForm, 325
Distance function, 95, 105

Distribute, 105
Divergence (div), 85
Do loops, (Do), 117

return values, 120
Documentation

creating for applications, 363
directory structure, 363

Dot product, (Dot), 84
Drop, 63
Dynamic programming, 215
D’Andria, Lou, xx

Efficiency issues
programs, 125
recursion, 188

Encoding
characters, 207
run-length, 186
run-length (user-defined split), 190
run-length (with Split), 187
strings, 207

Encoding text, 170
Encryption schemes, 170
End, 402
EndPackage, 407
Entering input, 18

fractions, 19
superscripts, 20

Epilog, 283
Eratosthenes, sieving, 142
Error checking, using Message, 295
Error-trapping, 361
Errors, 423

arguments to functions, 26
mispelling, 25
syntax, 26

Euclidean algorithm, 129
Evaluating input, 16
Evaluation, order of, 417
EvaluationMonitor, 128, 256
EvaluationNotebook, 318
Exact numbers, 238
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Expressions
displaying structure, (TreeForm), 59
evaluation of, 417

Factor, 2
Fibonacci, Leonardo, 177
Fibonacci numbers, 128, 177
FilterOptions, 282, 510
FindFit, 7
FindRoot, 116
First, 63
Fitting data to a model, 7
Fixed point iteration, (FixedPoint), 86
Fixed precision numbers, 240
Flatten, 65
Floating point numbers, 225
Fold, 87
FoldList, 87
FontFamily, 276
FontSize, 276
For, 143
FractionBox, 322
Frequency modulation (FM) synthesis, 306
FromCharacterCode, 72
Front end, 24
Front end tokens, 340
FrontEndExecute, 340
Function, 102
Functional programming, features, 77
Functions

adding options, 357
anonymous, 102
arguments, 88
assignments, 89
auxiliary, 96
checking arguments, 139
compound, 96
iteration, 86
listening to, 299
localizing constants, (With), 99
localizing names, (Module), 98
localizing values, (Block), 99

nested calls, 89
overloading, 174, 502
piecewise, 138
pure, 102
syntax, 88
user-defined, 88

Game of Life, 366
animating, 373
gliders, 374
visualizing, 372

Gardner, Martin, 302
Gaussian elimination, 200, 260
Global context, 401
Golden ratio, 275
Graphics

directives, 272
displaying to new window, 323
options, 273
primitives, 270
programming, 269
structure of, 269
styles in text, 276
text in, 276

Graphics, 272
GraphicsData, 322
GrayLevel, 273
Greatest common divisor, Euclidean algorithm, 129
GridBoxes

displaying, 325
formatting, 325
options, 325
structure, 324

Hamming distance, 107
Handles, 312
Hayes, Allan, 232
Help Browser, 27

browser categories, 364
documentation, 363

Hilbert matrices, 200, 263
Horner’s method, 106
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Hue, 273
Huffman encoding, 204
Hunt, Andy, xx
Hyperlinks, creating, 334

If, 131
IgnoreCase, 454
Ill-conditioned matrices, 260, 263
Im, 225
Import, 6, 342
In prompt, 18
Infix operator, 23
Inner products, generalized, Inner, 84
Input

entering, 18
evaluating, 18
infix operator, 23
postfix operator, 23
prefix operator, 23
syntax, 23
traditional representations, 24

Inputs, syntax, 19
Insert, 65
IntegerDigits, 227
Integers

extended precision, 239
machine, 239
word size, 239

Integrate, 3
Interleaving lists, 183
Intermediate Value Theorem, 129
Interrupting computations, 19
Intersection, 24, 69
IPM3 packages

how to install, xviii
how to load, xix
where to find, xviii

Irrational numbers, listening to, 301
Iteration

fixed point, (FixedPoint), 86
functions, 86
functions with two arguments, (Fold), 87

Join, 69
Josephus problem, 109, 233

Kernel, 24
killing, 19

Knapp, Rob, xx

Last, 63
Length, 58
LetterCharacter, 162
Level specifications, Map and Apply, 83
Lexical analysis, 378
Lichtblau, Dan, xx
Line, 271
Linear congruential method, 233
Linear systems, solving by Gaussian elimination, 200
LinearSolve, 200
List, 54
Listable attribute, 81
ListPlot, 6
Lists

combining, (Union), 69
component assignment, 66
concatenating, (Join), 69
creating, 55
discarding elements, 63
displaying, 57
elements, 55
extracting elements, 61
flattening, (Flatten), 65
interleaving, 183
internal form, 54
intersection, (Intersection), 69
locating elements, 60
measuring, 58
notation, 21
partitioning, (Partition), 64
replacing elements, (ReplacePart), 65
reversing order, (Reverse), 64
rotating, 64
sorting, 63, 172
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transposing, (Transpose), 65
Localizing constants, (With), 99
Localizing names, (Module), 98
Localizing values, (Block), 99
Log-log plots, 7
Loops
Do, 117
While, 123

Lower triangular matrices, 211

Machine numbers, 235
MachinePrecision, 235
Maeder, Roman, xv, xx
Mandelbrot, Benôit, 302
Map, 78

level specification, 83
MapThread, 79
MatchQ, 151
Mathematica

evaluating input, 16
features, xi
front end, 24
getting help, 26
Help Browser, 27
kernel, 24
notebooks, 15
quitting session, 18
starting up, 15

Mathematica Information Center, xix
Mathematica newsgroup, xix
Mathematical expressions, traditional representations,

24
MathLink, 25
Matrices

condition number, 266
Hilbert, 200, 263
ill-conditioned, 260, 263
lower triangular, 211
multiplication, (Dot), 84
nonsingular, 262
norms, 266
upper triangular, 211
visualizing, (matrixPlot), 175

MatrixForm, 57
Max norm, 266
MaxIterations, 255
Merge sort, 198
Merging lists, 198
Message, 140
Messaging, 361
Module, 98
Monitoring evaluations, 256
Morse code, 205
Multiclause definitions, 134
Multiple precision numbers, 241
MultipleListPlot, 349
Musical scales

equal tempered C major, 302
pentatonic, 307

N, 234
Name collisions, 398
Named patterns, 151
Names, 398
Nest, 86
NestList, 86
NestWhile, 127
NestWhileList, 127
Newton’s method, 9, 116

accelerating, 265
controlling precision and accuracy, 257

Noise, 301
white, 302

Nondeterministic algorithms, 287
Nonsingular matrices, 262
Norms

definition, 266
l , 266
matrix, 266
max, 266
vector, 266

Notebook, 12, 310
Notebook expressions

as objects, 312
creating, 311
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evaluating selections, 318
listing open, 313
manipulating, 313
moving around within, 316
options, 313
reading into kernel, 312
structure, 310

NotebookCreate, 313
NotebookGet, 312
NotebookPut, 12, 311
Notebooks, 15
Notebooks, 313
NotebookWrite, 314
Novak, John, xx

–complete problems, 287
Number mark (`), 237
NumberQ, 227
Numbers

approximate, 225, 234
arrays of, 247
attributes, 226
bases of, 227
complex, 225
digits of, 227
exact vs. approximate, 238
Fibonacci, 177
fixed precision, 240
machine, 235
multiple precision, 241
random, 229
real, 225
representation of approximate, 236
roundoff error, 242
setting precision, 242
size limits on machine, 240
types, 224
variable precision, 241

Numerical computations, 1
NumericQ, 194, 226

Off, 25
On, 26

Options
adding to functions, 357
extracting values, 359
filtering, 282
graphics, 273
inheriting, 285

OrderedWordQ, 73
Orthogonal polynomials, 263
Out prompt, 18
Outer products, generalized, Outer, 84
Outliers, removing from datasets, 103
OutputForm, 152
Overloading function definitions, 502
Overloading functions, 174

, 287
Packages, 395

automatic loading, 400
BaseConvert package, 414
contexts, 401
determining contents, 397
displaying names, 398
exporting functions for public use, 409
importing other packages, 408
loading, 396
localizing names, 395
manipulating contexts, 406
name collisions, 398
notation, 396
removing names, 399
shadowing errors, 398
usage statements, 409

Packed arrays, 250
identifying, 251
memory savings, 251
speed improvements, 251
working with built-in functions, 252

PackedArrayQ, 251
Palindromes, 73
Parametric functions, plotting, 5
ParametricPlot3D, 5
Parse trees, 378, 386
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Part, 61
Partial pivoting, 262
Partition, 64
Pascal’s triangle, displaying traditionally, 327
Patterns
alternatives, 156
attaching a condition, 158
defining, 151
matching, (Cases), 152
matching, (MatchQ), 151
matching sequences, 153
named, 151
string, 161

Perfect numbers, searching for, 101
Perfect shuffle, 93
PerfectQ, 8
PerfectSearch, 8
Permutations, random, (randomPermutation), 172
Pick, 454
Picture-Description Language (PDL), 374
Piecewise, 138
Pivoting, 262
in solving linear systems, 210
scaled, 267

Play, 299
Plot, 4
Plots, combining, 8
Plotting
complex roots, 295
data, 282
functions of one variable, 4
functions represented parametrically, 5

Point, 271
Points, classifying in plane, 145
PointSize, 273
Polygon, 271
Polygons
convex, 296
regular, 9

Polyhedra, 278
Polynomials
multiplication using Horner’s method, 106

orthogonal, 263
Position, 60, 155
Postfix input operator, 23
Precedence, arithmetic operators, 20
Precision, 235
PrecisionGoal, 254
Predicates, used in pattern matching, 156
Prefix input operator, 23
Prepend, 65
Prime numbers, computing with Sieve of

Eratosthenes, 142
PrimePi, 144
Printing values, (Print), 120
Printing variables, 422
Procedures, 115
Programming
buttons, 10
efficiency issues, 125
symbolic documents, 10

Programs
abs, 131
addPairs, 181
addTriples, 182
applyChar, 133
areEltsEven, 104
balanced, 213
bisect, 129
CAGraphics, 169
cardDeck, 92, 182
cartesianProduct, 169
chooseWithoutReplacement, 106
coins, 167
Collatz, 163
ComplexListPlot, 295
ComplexRootPlot, 295
complexToPolar, 231
compress, 131
conditionNumber, 266
convertToDate, 101, 114
CountChange, 167
DataPlot, 285
deal, 94, 97, 182
decode, 171
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diameter, 105
distance, 95, 105
div, 85
drawSepTree, 294
encode, 171
encodeChar, 207
encodeString, 207
findRoot, 124, 127
findRootList, 127
FindSubsequence, 155
fold (defined using recursion), 220
gcd, 129, 148
HammingDistance, 108
HilbertMatrix, 200, 263
incrementNumbers, 132
interleave, 183
interleave (recursive definition), 183
LifeGame, 372
listsort, 172
LUdecomp1, 212
LUdecomp2, 212
map (defined using recursion), 219
matrixPlot, 175
maxima, 91, 167
maxima (recursive definition), 183
maxPairs, 183
merge, 198
MergeSort, 199
multAllPairs, 183
multPairwise, 181
nest (defined using recursion), 219
newton, 258
numbertree, 213
PalindromeQ, 73
PascalTable, 327
PerfectSearch, 101
PlayTones, 303
PlotSolarData, 350
pocketChange, 112
pointInPolygonQ, 296
pointLoc, 145
PointPlot, 289

prefixMatch, 191
randomPermutation, 121, 172
RandomSparseArray, 253
RandomWalk, 358
ReadSolarData, 350
removeRepetitions, 132
RepUnit, 105, 326
reverse, 130
RootPlot, 281
rotatePlot, 176
rotatePlot3D, 176
rotateRight, 130
rotateRows, 131
runDecode, 192
runEncode, 186
ShowPoints, 283
showTree, 294
ShowWalk, 360
shuffle, 93
Sieve, 144
signum, 141
simpleClosedPath, 291
solvePP, 262
split, 190
stringMemberQ, 207
subsets, 184, 192
sumElements, 181
sumEveryOtherElement, 182
sumOddElements, 182
sumsOfCubes, 232
survivor (to Josephus problem), 110, 233
transpose, 130
TriangleForm, 329
tridiagonalMatrix, 253
TruthTable, 330

Pure functions, 102

Quadrants, 145
Quadratic congruential method, 233
Quantile functions, 230
Quitting Mathematica session, 18
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Random, 229
Random number generators
linear congruential, 233
middle-square, 234
quadratic congruential, 233
testing, 234

Random numbers, 229
alternate distributions, 230

Random permutations, 121, 172
Random sampling, 220
Random walks
animation, 354
off-lattice, 353
one-dimensional, 351
three-dimensional, 356
two-dimensional, 352
visualizing, 353, 360

Range, 55
Raster, 271
Rational numbers
internal representation, 224
representation, 239
sound of, 301

Re, 225
ReadList, 343
RealDigits, 227
Reap, 422
RecordLists, 344
RecordSeparators, 344
Rectangle, 271
Recursion
base cases, 179
caching values, 215
counting operations, 216
defining functions, 177
dynamic programming, 215
efficiency issues, 188
list functions, 180
remembering values, 215
symbolic computations, 192
tail, (using Rest), 180

Reduce, 3

Regular polygons, 9
RegularExpression, 71, 162
Remove, 399
Removing symbols, (Remove), 81
Rep units, 326
Repeating units, (RepUnit), 105
ReplaceAll (/;), 150, 164
Replacement rules, 164
ReplacePart, 65
ReplaceRepeated (//.), 166
Rest, 63
Reverse, 64
RGBColor, 273
Root finding
FindRoot, 116
Newton’s method, 9
visualizing, 279

RotateLeft, 64
RotateRight, 64
Roundoff errors, 242
Rule (->), 165
RuleDelayed (:>), 165, 166
Rules
as options to functions, 149
as output to built-in functions, 149
delayed, 166
immediate, 166
repeated application, 166
transformation, 164

Run-length encoding, 186

SampleRate, 300
Sawtooth waves, 306
Scaled pivoting, 267
Scaling noise, 302
Scott, Dana, xx
Select, 60, 103
SelectionEvaluate, 14, 318
SelectionMove, 13, 316
Separation tree, 293
SetAttributes, 81
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SetPrecision, 242
Shadowing errors, 398
Sieve of Eratosthenes, 142
Simple closed paths, 287
Simplify, 3
Simplifying algebraic expressions, 3
Solve, 3
Solving equations

and symbolic derivatives, 259
Newton’s method, 257
secant method, 259

Solving linear systems
Gaussian elimination, 200, 260
lower triangular (solveLower), 211
LU-decomposition, 212
pivoting, 210, 262
upper triangular (solveUpper), 211

Sort, 63
Sorting

comparing schemes, 173
lists, 63
listsort, 172
merge sort, 198
points in plane by polar angle, 290
strings, 174

Sound
1 f , 305
auto-correlation, 302
Brownian music, 303
periodic functions, 301
physics of, 298
sampling rates, 300
sawtooth wave, 306
square wave, 306

Sow, 422
Sparse arrays, 247

memory savings, 249
representation, 247
rules, 247
speed improvements, 250
visualizing, 249

SparseArray, 247

Split, 187, 280
SqrtBox, 322
Square waves, 306
StringCases, 71
StringDrop, 70
StringExpression, 161
StringInsert, 71
StringJoin, 71
StringLength, 70
StringMatchQ, 161
StringPosition, 71
StringReplace, 71
StringReverse, 70
Strings

concatenating, 71
converting from ASCII codes, 72
converting to ASCII code, 72
converting to characters, 71
data type, 70
extracting characters, 70
ignoring case of, 454
InputForm of, 70
inserting characters, 71
length, 70
locating characters, 71
regular expressions, 71, 162
replacing characters, 71
reversing, 70
sorting, 174

StringTake, 70
StyleForm, 276
Subsequences, finding in a sequence, 154
Subsets, 184, 192
Subsets, 484
Substitution, ReplaceAll, 150
SubsuperscriptBox, 322
SuperscriptBox, 321
Sutner, Klaus, xx
Switch, 136
Symbolic computations, 2
Symbolic documents, programming, 10
Symbols
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clearing values, (Clear), 81
removing, (Remove), 81

System parameters, setting, 252
SystemOptions, 252

Table, 56
TableForm, 57
Tail recursion, 180
Take, 62
Text, 271, 276
TextData, 320
The Mathematica Journal, xix
Thickness, 273
Thread, 79, 171
Timing, 109
ToCharacterCode, 72
ToExpression, 347
ToFileName, 6
Tokens, 381
Trace, 80
TracePrint, 178, 421
Tracing evaluation, 420
Tracing evaluations, (Trace), 80
Transformation rules, 164
Transformations, affine, 175
Transpose, 65
Traveling salesman problems, 287
TreeForm, 59
Trees

balanced, 213
binary, 202
depth-first ordering, 213
drawing, 292
finding width, 292
height of, 203
Huffman encoding, 204
labels, 202
nodes, 202
printing, 203
separation, 293
visualizing, 202
weight of node, 209

TrigReduce, 2
Truth tables,  constructing, 330
Typeset expressions, entering from keyboard, 20

Union, 69
Upper triangular matrices, 211
Usage messages, 409
User-defined functions, 88

ValueBox, 320
van der Pol equations, 222
Variable precision numbers, 241
Villegas, Robby, xx
von Neumann, John, 234

Which, 136, 359
While loops, (While), 123
White noise, 302
With, 99
Withoff, Dave, xx
WordSeparators, 344
WorkingPrecision, 223, 254

Zizza, Frank, 187

$BaseDirectory, 342, 363
$Context, 403
$ContextPath, 401
$MachinePrecision, 235
$MaxMachineNumber, 240
$MinMachineNumber, 240
$Path, 342
$RecursionLimit, 188, 257
$UserBaseDirectory, 343, 363
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