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Preface

About Mathematica
Mathematica has become phenomenally popular in the last few years for its sophisti
cated numeric and symbolic mathematical capabilities. A lesser-known feature of 
Mathematica is its very elegant programming language. This language allows virtually 
unlimited extension of the system’s capabilities to solve problems in special areas of 
interest. In fact, hundreds of Mathematica packages, embodying applications ranging 
from airfoil design to Z transforms, are available from public Internet sites.

Mathematica offers a combination of features that is unmatched by traditional pro
gram development systems such as C, Fortran, and Lisp, including:

• An interpretive environment for fast prototyping
• Compilation for speed
• An API (applications programming interface) for communicating with external pro

grams written in compiled languages
• Functional and rule-based programming styles
• Abstract data typing and modularity
• Typeset mathematical input and output (version 3.0)
• Seamless integration with the computational and graphical capabilities of Mathema

tica (a partial list: exact or arbitrary-precision arithmetic (real or complex); linear 
algebra; symbolic and/or numerical evaluation of derivatives, integrals, and differen
tial equations; hundreds of built-in functions from number theory, combinatorics, 
probability, statistics, and physics; 2-D and 3-D line, contour, surface, and vector 
plots).

Why 1 Wrote This Book
There are scores of Mathematica books available today; why bring yet another one into 
the world? I wrote this book to give Mathematica users a comprehensive source for 
learning how to program in Mathematica. There are two parts of this statement that I 
want to stress: comprehensive and learning how to program.

Regarding learning how to program: The majority of existing books about Mathema
tica are example-based texts in a particular area of application. Some appear to be pro
gramming books, but typically the author covers just enough about Mathematica 
programming to get to “the good stuff’ — that is, applying Mathematica to his or her



area of specialization. I, on the other hand, am a computer scientist, not a mathemati
cian, physicist, or engineer. To me, the programming is the good stuff. This book is a 
reflection of how a computer scientist sees Mathematica — a viewpoint that is, in my 
opinion, sorely under-represented in the existing literature.

Regarding comprehensiveness: Certain topics, such as debugging, performance tun
ing, and MathLink, are almost always given short shrift in the existing literature — and 
there is no single source that discusses all of them.1 This book devotes an entire chapter 
to each of those topics. Furthermore, many of the advanced Mathematica programming 
techniques found here have not appeared in any other book. I have spent the last two 
years scouring many sources for this information, including Wolfram Research techni
cal reports, conference papers, journal articles, packages, and Internet discussion 
groups. I also have discussed many issues directly with Mathematica's developers.

As a result, I believe that this book makes a needed contribution to the Mathematica 
literature. Almost any Mathematica user, at any level of expertise, should find things in 
this book that she does not already know. At the same time, the book does not skip over 
the fundamentals, so it is accessible to persons who are just getting their feet wet in 
Mathematica programming.

Why You Need This Book
The audience for this book consists of Mathematica users who want to start writing 
programs, or who simply have a nagging feeling that the ways they solve their prob
lems could be improved. In addition, Mathematica programmers who want to write sig
nificant extensions to the system will find this book valuable.

Subtleties of the Mathematica programming language

There are three programming paradigms that Mathematica supports: procedural, 
which is Fortran- or C-like; functional, with which you might have some experience if 
you've every programmed in Lisp; and rule-based, which is typified by Prolog. Most 
scientists and engineers, who are Mathematica's principal user base, have no experi
ence with any but the first of these paradigms.

Because Mathematica provides procedural programming constructs, a programmer 
with a traditional background is likely to fall into the trap of programming the same 
way he always has. Unfortunately,

• Different ways of performing an equivalent computation can vary dramatically in 
speed.

• The best way of doing something is almost never the procedural way, and thus is not 
obvious to someone who is used to traditional programming languages.

1. Says one restaurant patron to another: “The food at this restaurant is terrible!” 
Replies his companion: “Yes, and the portions are so small!'’



• Pitfalls exist, of which a programmer used to other languages will not be aware.

There is near-universal agreement among the Mathematica cognoscenti that proce
dural programming is “bad” and that the functional and rule-based paradigms are to be 
preferred. I tend to agree. However, I also am of the opinion that procedural program
ming in Mathematica is an important steppingstone to the less familiar techniques. 
Therefore, this book devotes a chapter to procedural programming very early on, rather 
than leaving it as an afterthought or omitting the topic entirely. In a further attempt to 
ease the transition as much as possible, analogies with other programming languages 
are drawn whenever appropriate.

The expanding universe of Mathematics literature

Another problem that the aspiring Mathematica programmer faces is information 
overload. There simply is too much information available about Mathematica. Even if 
you never stray from the documentation that comes with the program, you are faced 
with Stephen Wolfram’s 900-page treatise (1400 pages in version 3.0!), the 450-page 
Guide to Standard Packages, and the User’s Guide that describes the notebook inter
face.

Add 50+ books, three periodicals, an Internet newsgroup and MathSource, and it 
becomes overwhelming. You don’t have time to keep up with all of it because Mathe
matica is just a tool that you use for your real job. But keeping up with the Mathema
tica information glut is my job. You will find many specific references to the rest of the 
Mathematica literature throughout this book — not simply an exhaustive list of all 
known books on the subject at the very end.

New features of Mathematica

This book is current as of version 3.0 of Mathematica. Techniques or examples that 
are specific to version 3.0 are highlighted by the icon appearing to the left of this para
graph. Nearly everything else applies equally to version 2.2 or version 3.0.

Version 3.0 contains so many new features that it would have been impossible to dis
cuss them all in a book of this size. Therefore, my editors and I decided that there will 
be a follow-on volume to this book. The volume you are holding covers only the 
Mathematica kernel, whereas the next volume will cover the Mathematica user inter
face. There are sound reasons for splitting the material along these lines. Since the 
design of the kernel is so mature, most of what is contained in this book also applies to 
earlier versions of Mathematica. On the other hand, the new features of the Mathema
tica user interface are so extensive — typeset input and output, new notebook file for
mats, programmable user-interface elements, etc. — that the second volume will be 
version 3.0-specific. There is one topic that has been split across the two volumes, and 
that is MathLink, Wolfram Research’s interprogram communication API. This is 
because MathLink has two fundamentally different uses: to allow the kernel to call



functions written in compiled languages such as C (discussed in this volume), and to 
provide an alternative interface to the kernel (to be discussed in the next volume).

How to Use This Book 

Road map

This book is designed to be read in a linear fashion; it does not consist of a series of 
stand-alone examples like some other books. Nevertheless, many people are going to 
want to pick and choose from the available material. Section 1.3, “Where to Go Next,” 
gives a broad overview of the book.

Before going any further

If you don’t already own a copy of The Mathematica Book ([Wolfram 91] for ver
sions prior to 3.0, [Wolfram 96] for version 3.0 and later), go out right now and buy 
one. You can’t put it off forever, and it can save you untold amounts of frustration in 
certain circumstances. It is the final authority on Mathematica.

This book uses the generic term “The Mathematica Book” to refer to either 
[Wolfram 91] or [Wolfram 96], whichever is appropriate to the version of Mathematica 
that you are using. For those cases in which the location of a reference differs between 
the two books, a more specific citation of the form “[Wolfram 91] §A.B or 
[Wolfram 96] §X.Y” will be used instead.

Pedagogical notes

Here are a few notes to give you some idea of what to expect as you read this book. 
For the most part, the presentation style is based on what I have found to be pedagogi
cally effective during my five years as a university professor.

• In contrast to some authors’ preferences for presenting a completely developed piece 
of code and then explaining it, I prefer to integrate the development of the code into 
the presentation. This mirrors the way persons typically develop code in an interac
tive programming environment such as Mathematica. Presenting the development 
step by step, rather than as an a posteriori discussion, also makes it less likely that 
explanations of crucial steps are omitted.

• In those cases in which showing the final version of the code under development 
would be too repetitive, the “finished product” can be found on the supplemental dis
kette.

• During the development of an example, I often show the “dead ends” that other 
authors leave out. I believe that these dead ends, when properly explained, are valu
able examples in and of themselves. Besides, except in the most trivial cases no one 
writes a perfect program on the very first try, and it’s unrealistic to give the reader the 
impression that he should be able to do so.



• Many of the smaller examples are presented several times throughout the book, each 
time using the technique being discussed at that point. (This is especially true of the 
chapters in Part 2, “Programming Techniques.”) Therefore, if you are an experienced 
Mathematica programmer, try not to be dismayed by the relative unsophistication of 
some of the earlier examples; delay your judgment of my programming abilities until 
you have seen the entire story!

• Nontrivial examples will be found interspersed with the rest of material, rather than 
being segregated into their own chapters. This is because these examples have been 
chosen to illustrate the techniques being discussed at that point. (The Huffman cod
ing example in Chapter 5, which occupies close to 10 pages, is a good example of 
this.)

• There are copious exercises throughout the book. In most cases the exercises imme
diately follow the material to which they relate, rather than being grouped together at 
the end of a chapter. This makes the book suitable for use as a workbook. I recom
mend that you work through the exercises as you read the book, rather than separat
ing the two activities.

Please note that this book does not teach you how to program; instead, it teaches you 
how programming in Mathematica is different from programming in other languages. It 
is conceivable that a programmer with no Mathematica experience whatsoever might 
want to use this book as a programming language guide. This should be possible, as I 
have made every attempt to make the book self-contained; but bear in mind that the 
scope of this book is restricted to Mathematica's programming features, and so it omits 
most mathematics-specific topics (e.g., symbolic algebra and calculus) and graphics.

The names of user-interface elements, such as keys on the keyboard, menus, menu 
items, and dialog-box button names, appear in boldface. Directory and file names2 
appear in italic type.

Annotated Mathematica dialogues are interspersed throughout the body of the text as 
shown below.

A nonindented body paragraph (like this one) that follows an example is logically part 
of the example or the paragraph that precedes the example.

Note that I do not follow the practice of showing Mathematica's ln[]:= and Out[]= 
annotations in front of the inputs and outputs. In my experience, the line numbers in the

2. Users of the DOS or Windows versions of Mathematica should realize that the file
names on their systems may be abbreviations of the names shown here.

Typographic conventions

Lucid, insightful comments 
appear here.

This is input to Mathematica
This is output from Mathematica



user’s session get out of sync with those in the text almost immediately, so they are not 
worth the space they take up on the page.

Within body text, Mathematica expressions always appear in the in p u t typeface. 
User-supplied input to Mathematica expressions appear in the slanted input type
face. Pay special attention to the typeface of quotation marks: "th in g  1" means that 
the quotation marks are part of the expression, whereas “th in g 2 ” means that they are 
not. The latter form is used when there exists some possibility of confusion in distin
guishing between the expression text and the surrounding body text. This typically is 
the case only when the expression text contains punctuation characters, such as “x . . ”.3 
Square brackets are never added to function names unless the meaning being conveyed 
is that a function call is taking place (e.g., the Random function can be used to generate 
a uniformly distributed pseudorandom number like this: Random []).

Points of special note will be indicated by the following icons:

• Common mistakes and especially dangerous traps are indicated by the “be alert” 
icon shown to the left of this paragraph.

• Particularly useful techniques and tricks are indicated by the “idea” icon shown to 
the left of this paragraph.

• Material that appears in the enclosed electronic supplement is indicated by the dis
kette icon shown to the left of this paragraph. Although not explicitly indicated, 
answers to most of the exercises appear in the supplement as well.

• Techniques and examples that are specific to version 2.2 or earlier of Mathematica 
are flagged by the icon shown to the left of this paragraph.

• Techniques and examples that are specific to version 3.0 or later of Mathematica are 
flagged by the icon shown to the left of this paragraph.

Electronic supplement

The electronic supplement contains four major components: answers to most of the 
exercises, source code for the MathLink programs in Chapter 11, data files for the 
examples in Chapter 12, and packages that are developed throughout the book.

Since there is a new notebook file format in version 3.0 that is not backward compat
ible with version 2.2, all of the notebook files on the diskette are in the version 2.2 for
mat. You can open these notebooks using either version 2.2 or version 3.0 of the

3. Furthermore, the standard typographic convention of placing a sentence-ending 
period within quotation marks has to be broken in this particular example, or else 
the purpose of the quotation marks is defeated.



Mathematica front end. Furthermore, although the notebooks were created using the 
MacOS version of Mathematica, the diskette itself is in MS-DOS format, so that it can 
be used on the widest possible range of computer systems.4

Contacting the Author
I would greatly appreciate hearing your comments about any of the material in this 
book. This includes corrections, requests for clarification, and requests for additional 
topics that you would like to see in a future edition. Please address all correspondence 
to the author via the Internet at:

dbwagner@princon.com
And while you’re on-line, don’t forget to check out Principia C o n su ltin g ’s World

Wide Web site at:

http: //ww. princon. com/princon
Corrections to the book and the electronic supplement, and answers to frequently-asked 
questions, will be posted there as they are discovered. I ask that you please check that 
site before contacting me with a bug report or a question.

Colophon
This book was produced on a Power Macintosh using versions 2.2.2 and 3.0|3l of 
Mathematica, and version 4.0.4 of FrameMaker. The Mathematica notebooks were 
translated into Maker Interchange Format files using a proprietary filter developed by 
me. The body text face is Times, the section head and side head face is Optima, the 
chapter number face is Avant Garde, and the face used for computer voice is a semicon
densed version of Prestige Elite with a few modifications (made using the font-editing 
program FontMonger).
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1

Introduction

Different people have different ideas of what it means to program in Mathematica. 
To some, programming in Mathematica means using the myriad of powerful built-in 
functions to create “one-liners” that perform nontrivial calculations with a minimum of 
effort. To others, it means defining new functions that extend the capabilities of the sys
tem in some way. More advanced users want to place their function definitions in sepa
rate files, called packages, that encapsulate the details of the implementation.

This book is intended to be a comprehensive reference to programming in Mathema
tica. In addition to all of the above, we attempt to assemble under a single cover many 
advanced techniques that either are scattered around the existing literature or can’t be 
found at all. These techniques, which we group under the moniker power programming, 
deal with issues such as: overriding built-in functions; making user-defined functions 
behave as much like the built-in ones as possible; adding new abstract data types; 
changing the global behavior of the system; tuning Mathematica code for performance; 
and using the MathLink interprogram communication protocol. We also devote an 
entire chapter to the much-neglected topic of debugging Mathematica programs.

This introduction takes you on a tour through ever increasingly advanced program
ming examples, beginning with the simplest imaginable and concluding with a demon
stration of some of the more sophisticated programs developed in this book. In the 
course of doing so, the author hopes to provide the reader with a better idea of what 
power programming is all about, and how this book differs from existing ones.

If your experience with Mathematica is very limited, you may wish to review the 
basic syntax of the language in the next chapter before continuing with this one.



1.1 Programming in Mathematica
Mathematica is an interactive system for doing mathematical calculations by computer. 
Mathematica can also be considered a programming language. Because Mathematica is 
interactive, however, it’s often unclear what constitutes “programming” and what does 
not. For example, is

2 + 3
5

a program? Technically speaking, yes, but most users would not consider it so. How 
about:

a = 2; 
b = 3; 
a + b
5

There are three separate “statements” here; assignments are made to “variables” and 
then those “variables” are used in further calculations. Nevertheless, most Mathematica 
users probably would be too modest to consider this to be a program either. Then how 
about this:

f  [x_] := x  + 3 
f [2 ]
5

Surely, this is a program: A function of a single argument is declared and then called.

As the Mathematica user gains expertise, her programs become more involved and, 
hopefully, more sophisticated as well. For example, the naive Mathematica program
mer might write the following code to compute the moving average of a list of num
bers:

The fcth moving average of a 
list of numbers averages 
every group of k + 1 contig
uous numbers in the list.



This is an example of a procedural style of programming; it is analogous to how one 
might perform this computation in a language such as C or Fortran. A more experienced 
Mathematica programmer might accomplish the same thing this way:

MovingAverage2[z_, k_] :=
Plus @@ Partition[z. Length[z] - k, l]/(k + 1)

This is an example of a functional style of programming (Chapter 5), which may be 
familiar to Lisp programmers. The functional program is more elegant and more effi
cient as well (see Section 1.2.6, “Program performance,” for a performance comparison 
of these two functions). Furthermore, the author had to tweak the procedural version to 
get a bug or two out of it; the functional version worked the first time (this is true!). 
While this is of course merely anecdotal evidence for the superiority of the functional 
approach, it is consistent with the author’s experience.

As another example, here is a procedural program to effect a transformation on the y 
values of a list of (jc, y) data points:

But a more “Mathematica-Mke” way to do this would be to use pattern matching and 
rule substitution (Chapter 6):

To many Mathematica users, what has just been demonstrated is, in a nutshell, what 
programming in Mathematica is all about. These techniques don’t need to be applied to 
large, complex programs to be useful. On the contrary, their real value is measured in 
terms of how much more productive they enable one to be during almost any interac
tive Mathematica session; the skilled programmer uses one-liners like those just dem
onstrated to avoid a lot of wasted time and effort. This book, like others on the topic, 
covers these techniques in some detail (specifically in Part 2, “Programming Tech
niques”).

But this is a very limited notion of what it means to program in Mathematica. It is 
analogous to programming in C without ever learning about the run-time library, sepa
rately compiled modules, input/output, command-line argument processing, and so on. 
Or, to draw another analogy, it is like writing nothing but text-based programs for a sys
tem with a graphical user interface library.

As extensive as it is, Mathematica can’t be all things to all people “right out of the 
box.” The designers of Mathematica addressed this problem by providing building



blocks for constructing packages, which are separate files containing (hopefully) reus
able function definitions. A package can be loaded into a Mathematica session at any 
point, and the functions defined therein become available, just as though they were built 
into the system.

For example, there is a MovingAverage function defined in one of the standard 
packages that come with Mathematica [WRI 93b]. To use it, one simply loads the pack
age as shown below:

N e e d s [" S ta t is t ic s 'M o v in g A v e r a g e '"]
M ovingA verage[num s. 1]

{ | .  3 , 6 . 12}

There's even a usage mes
sage, just as there should be 
for a built-in function.

?MovingAverage
MovingAverage[list,n] returns a list of the n-th 

moving averages of list.
It’s easy to imagine how to write such a package — simply place the definition of the 
function in a separate file. However, there are certain conventions that packages should 
follow; these conventions are discussed in Chapter 8.

But the functionality of many of the standard packages seems to involve a leap 
beyond the capabilities of most Mathematica users, even those who fancy themselves 
“programmers.” As a simple example, consider the standard package that provides sta
tistical hypothesis-testing functions.

This tests the hypothesis that 
the mean of nums is equal to 
2 .

MeanTest can take certain 
options, just like many built- 
in functions.

Default options can be 
changed, too.

A diagnostic is issued when 
an error is encountered.

The last example is particularly interesting. Note that MeanTest somehow managed to 
issue a diagnostic message without actually evaluating!

The types of behaviors just illustrated — usage messages, optional parameters, 
default options, diagnostic messages, and so on — are what make a function look



“built-in.” The techniques for creating behaviors like these will be discussed in 
Chapter 9, “Details, Details.”

Here is one last example of the kinds of qualitatively harder things that the standard 
packages often do: overriding built-in functions. The built-in function Random, for 
example, is limited to generating uniformly distributed pseudorandom numbers.1 How
ever, a side effect of loading the HypothesisTests.m package is the loading of the Norm- 
alDistribution.m package, which defines the normal, chi-square, and Student’s t 
distributions. The latter package also overrides the built-in Random function so that it 
can generate random variates having any of those distributions:

This generates 500 standard 
normal random variates.

To create a histogram, we 
need to load a couple more 
standard packages.

norms = T able[R andom [N orm alD istribution[0, 1 ] ] ,  {500}];

N e e d s[" S ta tis t ic s 'D a ta M a n ip u la tio n '"]
N eed s["Graphic s ' Graphic s '" ]
BarChart[BinCounts[norm s, { - 2 . 7 5 ,  2 . 7 5 ,  . 5 } ] / 5 0 0 .

B arL ab els-> T ab le[i, { i , - 2 . 5 ,  2 . 5 ,  . 5 } ] ,  
D efa u ltF o n t-> {" H elv etica " , 7 } ] ;

Techniques for overriding built-in functions will be discussed in Chapter 6 and 
Chapter 9; the former is concerned solely with the mechanics of doing so, whereas the 
latter is concerned more with stylistic considerations.

1.2 Power Programming Examples
There is nothing magical about the standard packages; you don’t have to work at Wol
fram Research or know any secret handshakes to write programs like, them. As proof of 
this, we will now demonstrate some of the more sophisticated programs that will be 
developed later in this book. If you’re the kind of person who hates “spoilers,” you 
might want to skip this section. On the other hand, if you are the kind of person who 
can’t resist sneaking a peek at the last page of a mystery novel, or if you simply want a 
better idea of where we’re heading, you’ll want to read this first.

1. From this point on, the author will take the liberty of dropping the prefix “pseudo” 
from the term “pseudorandom.”



Before proceeding, however, a warning: You are strongly urged to resist the tempta
tion of skipping ahead to see how any of the programs here is implemented. If you do 
so, you will miss all of the material leading up to the development of that program. 
Thus, even though you may think you understand how a particular program works, at 
most you will have learned how to implement that particular program; whereas by 
reading the book linearly you will have learned the fundamental concepts that are trans
ferable to programs of your own design.2 To paraphrase an old proverb: The intent of 
this book is not to give you a fish (or two or three), rather, the intent is to teach you how 
to fish.

1.2.1 Optimal dot-product evaluation
The number of scalar multiplications required to evaluate the dot product of a chain of 
rectangular matrices can vary dramatically, depending on the order in which the sub
products are evaluated. The built-in Dot function does not take this into account. For 
example,

In Section 6.4, “Dynamic Programming,” we will write a function that calculates the 
optimal matrix-chain multiplication order. Both the type of algorithm (dynamic pro
gramming) and the technique used to implement it (recursion with result caching) are 
interesting in their own right. Later in that chapter (Section 6.5, “Overriding Built-in 
Functions”) we will learn how to override the built-in Dot function so that it uses our 
function whenever the arguments to Dot consist of three or more matrices. Finally, after 
learning about packages in Section 8.2, “Package Mechanics,” we will be able to 
encapsulate this code inside of a package: ■

N e e d s [ " O p t im a lD o t '" ]

N ow  Dot uses the optimal 
order.

2. And in anticipation of your next question: No, not all of the concepts embodied in a 
program are necessarily contained in a single chapter. Some programs draw on con
cepts learned in earlier chapters as well.

Here are three matrices; we 
wish to compute bl .b2.b3.

The default multiplication 
order takes this long ...

but multiplying in the opti
mal order (for this chain) 
takes only 1/20th the time!



The extra execution time relative to the explicit specification of the optimal order is 
needed to figure out what the optimal order is. Since this may be a waste of t im e  (e.g., if 
all of the matrices in the chain are square), the package adds an option called O p ti
mize to Dot. The setting O ptim ize->False can be used to prevent the search for the 
optimal order.

1.2.2 A default thickness for Plot
Another example of overriding a built-in function is the modification of the P lo t func
tion to give curves a default thickness when none is specified explicitly (Section 6.5.3, 
“Application: A default thickness for Plot”). Here is an example:

Needs["DefaultThickness'"]

The default thickness is 
added to the style of the gray 
curve, but the manifest 
thickness directive for the 
dashed curve is not overrid
den.

Naturally, the program also respects a Thickness directive specified by a default 
P lo tS ty le  option, if one exists.

1.2.3 Finding symbol dependencies
In a very large program it can be difficult to anticipate the consequences of changing a 
small part of the code on the rest of the program. Many conventional languages have 
tools — such as call-graph analyzers and class browsers — that help the programmer 
understand the “big picture” structure of a program. In Section 7.3.7, “Application: 
Dependency analysis,” we will develop a function called dependson that provides a 
first step in this direction for Mathematica programs.



The purpose of dependson is to take a symbol as an argument and return a list of all 
nonlocal symbols upon which that symbol depends. For example, given the following 
function definition,

f[x_] := Function[y, (y + z l) /  (x + z2)]

the symbol f  depends on the symbols z l and z2 (as well as various arithmetic opera
tors):

dependson[f]
{Plus, Power, Times, zl, z2}

Note that the symbol x is local to f  and the symbol y is local to the Function, so those 
symbols do not appear in the list returned by dependson [f  ]. The dependson func
tion is smart enough to recognize the difference between symbols appearing inside and 
outside of constructs such as Function. In the next example, the symbol y appearing 
outside of the Function refers to a nonlocal symbol y, not the y that appears as a for
mal parameter inside of the Function.

g[x_] := y + Function[y, x + y] 
dependson[g]
[Plus, y)

Effecting behavior such as this relies on knowledge of the structure of expressions and 
techniques for manipulating expressions without allowing them to evaluate.

The dependson function developed in Section 7.3.7 works on only a limited class 
of expressions, and furthermore it finds only direct, not indirect, dependencies. (For 
example, if f  depends on g and g depends on h, then f  depends, indirectly, on h.) It is 
left as exercises for the reader to add features to dependson. The solutions to these 
exercises, and many more features, are integrated into a package called Dependency- 
Analysis.ma that is included on the supplementary diskette.

1.2.4 A package that prevents shadowing
Every Mathematica user has, at one time or another, made a mistake like the following:

You inadvertently refer to a 
package symbol before 
loading the package.

You then load the package. 
Strange error messages 
appear.



context Graphics'Polyhedra'
may shadow or be shadowed by other definitions. 

Dodecahedron::shdw:
Warning: Symbol Dodecahedron 

appears in multiple contexts
(Graphics'Polyhedra', Global'}; definitions in 
context Graphics'Polyhedra'
may shadow or be shadowed by other definitions. 

Show[Polyhedron[Dodecahedron]]
Show::gtype: Polyhedron is not a type of graphics.
Show[Polyhedron[Dodecahedron]]

This problem, which is called shadowing, results from the fact that the initial use of the 
symbol Polyhedron (and Dodecahedron) created a different symbol with the same 
name — i.e., there are now two symbols named Polyhedron — and the one being 
referred to by the name Polyhedron is the wrong one.3

In Section 8.4, “Advanced Topic: Shadowing,” we will create a package called Anti
Shadow, m that “watches” for shadowing while other packages are loading. Anti- 
Shadow.m will automatically remove shadowing symbols from the G lobal' context, 
but only if those symbols have no definitions of any kind. To illustrate this, suppose that 
we had loaded AntiShadow.m before executing any of the above.4

Needs["AntiShadow'"]

Furthermore, suppose that one of the symbols used above actually had been given a 
value before we loaded the G rap h ics 'P o ly h ed ra ' package.

Polyhedron = "a 3-D analogue of a polygon";
Needs["Graphics'Polyhedra'"]
Polyhedron: :shdw:

Warning: Symbol Polyhedron 
appears in multiple contexts
{Graphics'Polyhedra', Global'}; definitions in 
context Graphics'Polyhedra'
may shadow or be shadowed by other definitions.

Dodecahedron::noshdw:
Warning: the symbol Global'Dodecahedron

has been removed from the global context to 
prevent shadowing.

3. Although this is probably very confusing to you at this point, you will learn about 
the mechanism that causes this behavior in Chapter 8.

4. If you are following along in your own Mathematica session as you read this, termi
nate the kernel and restart it before proceeding.

W hen the package is 
loaded, Polyhedron cannot 
be removed because it has a 
value.

O n the other hand, Dodeca
hedron has no values, so it 
is removed automatically.

It appears that Mathematics 
still doesn't know about 
these symbols.



There are still two defini
tions of Polyhedron...

...but only one definition of 
Dodecahedron —  the right 
one!

? *'Polyhedron
Polyhedron
Graphics'Polyhedra'Polyhedron 
? *'Dodecahedron
Dodecahedron is a kind of polyhedron, for use with 

the Polyhedron function.

1.2.5 A new data type: Prime factorizations
In Section 9.6, “Application: Defining a New Data Type,” we will create a package that 
defines a new data type called a F a c to riz a tio n .

Needs["Factorization'"]

?Factorization
Factorization[{nl, pi}, (n2, p2), ...] represents the 

number nlApl * n2Ap2 * ...

Factorization has a spe
cial print format.

Factorization[{3, 2}]
2

The package overrides the 
built-in Factorlnteger 
function so that it returns a 
Factorization.

Factorlnteger[9]
2

The package overrides all of the arithmetic operators (and quite a few other numeri
cal functions) so that they “do the right thing” when given one or more F a c to r iz a 
tio n s  as arguments. Here are some examples:



The package-defined ExpandFactorization [%]
function ExpandFactor- ^
ization turns a Factor- ---------
i z a t io n  back into a 1 350
number.

Sometimes an operation turns a F a c to r iz a t io n  into an irrational number. Never
theless, the number remains in factored form until converted by E xpandFactoriza
tio n .

irr = Sqrt[Factorlnteger[ - 3 ] ]
_1i/2  31/2

ExpandFactorization ExpandFactorization [irr]
maintains the number in an T c
exact form. 1  S<l r t t 3 ]

The salient features of this example are the special output formatting and the large 
number of overridden functions. Special care has been taken to ensure that all of the 
new definitions work together smoothly, and that the new data type looks as much as 
possible as though it is built-in. For example, here is a detail that would have been easy 
to overlook:

A F a c to r iz a t io n  can be N [ i r r ]
evaluated numerically with  ̂ 7 3 2 05  I
the N operator.

1.2.6 Program performance
Many programmers assail Mathematica for its inefficiency relative to compiled lan
guages such as C and Fortran. To be sure, there is a price to be paid for the power and 
flexibility of Mathematica’s interpreted execution and symbolic manipulation capabili
ties. What the critics do not realize, however, is that much of the perceived inefficiency 
of Mathematica is due to the use of ineffectual programming idioms from other lan
guages; alternative techniques exist that are a better match for Mathematica.

As an example, consider the two moving average functions that were given as exam
ples of programming style in Section 1.1. The first function, which has a decidedly pro
cedural flavor to it (i.e., it smacks of C and Fortran), is terribly inefficient:

It takes over 30 seconds for nums =  Range [ 1 . ,  1 0 0 0 . 1 . ] ;
M ovingA veragel to com
pute 900 different 100-num - T im in g  [ M o v in g A v e ra g e l [nums , 1 0 0 ] ;  ]
ber averages! { 3 4 .6 3 3 3  S e c o n d . N u l l }

There are many reasons for the inefficiency of MovingAveragel; in fact, that func
tion is something of a “straw man” in that it represents just about the poorest possible 
way of coding this algorithm in Mathematica. The fact that this happens to coincide 
with the way that is most likely to come first to the mind of the C or Fortran program
mer is unfortunate; the author is convinced that this unhappy coincidence is the source



of a great deal of ill will toward programming in Mathematica. Instead of cursing the 
darkness, however, a much more productive thing to do is to shed some light on the 
subject, which we’ll do in Chapter 10, “Performance Tuning.” Armed with that knowl
edge, any Mathematica programmer can write functions that are orders of magnitude 
more efficient than their procedural counterparts. MovingAverage2 provides an excel
lent example of this:

Timing[ MovingAverage2[nums, 100]; ]
(2.56667 Second. Null)

Another way to speed up a Mathematica function is to use the built-in compiler to 
translate the function into a special pseudo-code representation that can be executed 
very efficiently. Below we show a compiled version of MovingAverage 1. The code 
contains several subtleties that will be explained in Section 10.5, “Compiled Func
tions.”

MovingAverage3 = Compile[{{z, _Real, 1}, {k, _Integer}}, 
Module[{zav ={0.1, i = 0 ,  j = 0 ,  temp},

Do[ temp = 0.;
Do[temp += z[[i + j]], { j , 0, k}];
AppendTo[zav, temp/(k +1)],
{i, 1, Length[z] - k}

] :
Drop[zav, 1]

]
]

Timing[ MovingAverage3[nums. 100]; ]
{4.8 Second, Null)

While not quite as fast as MovingAverage2, MovingAverage3 is nevertheless an 
order of magnitude faster than MovingAveragel, without requiring any substantive 
changes in programming style.

But even the most efficient Mathematica function is not going to be as fast as an 
equivalent function written in a compiled language such as C or Fortran. For the ulti
mate in speed, the MathLink protocol for communicating with externally compiled 
functions can be used. Here is an example of using MathLink to communicate with a 
moving average function very similar to MovingAveragel, except that this particular 
function has been coded in C and compiled externally:

The I n s t a l l  command l i n k  =  Install ["Moving Average"] ;
launches the M athLink pro
gram.

The externally compiled Timing [ MLMovingAverage [nums, 100]; ]
function can now be used as {0.133333 Second, Null)though it were built in.
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The result of the Timing command is misleading; it is the amount of time, used by the 
Mathematica kernel, not the time used by the external function. The total elapsed timp. 
of the above operation was about 0.9 seconds. In this data-intensive example, the 
majority of the time is spent shuttling data back and forth between the kernel and the 
MathLink program. Functions with a higher ratio of computation to communication 
will of course enjoy an even larger relative improvement from external compilation.

MathLink also can be used to call the kernel from other programs — in fact, this is 
how the Mathematica front end communicates with the kernel! A discussion of Math
Link is the topic of Chapter 11.

Uninstall causes the M ath- Uninstall [link] ;
Link  program to terminate.

1.3 Where to Go Next
The remaining chapters in Part 1 cover the basic syntax and use of Mathematica. If you 
have a nontrivial amount of experience using Mathematica, you may find that you can 
skip this material. Be forewarned, however, that there are important concepts presented 
here that won’t be mentioned explicitly again. You should probably at least skim the 
remainder of Part 1, and keep a lookout for the icons in the margin (described in the 
Preface). This will provide a reality check for you, to see if your self-assessment of 
your abilities is accurate. If you have used Mathematica to do numerical mathematics 
but not any programming, then you should still be sure to read Chapter 3, “Lists and 
Strings.”

Part 2, “Programming Techniques,” introduces the three fundamental programming 
paradigms supported by Mathematica: procedural (Chapter 4), functional (Chapter 5), 
and rule-based (Chapter 6). Needless to say, these chapters are a prerequisite for the 
remainder of the book and should be read, in the order presented, by all but the most 
expert Mathematica programmers. Unless you really are an expert, you will find the 
rest of the book to be very heavy sledding if you skip any of these chapters! Chapter 7, 
“Expression Evaluation,” presents the author’s version of a Grand Unified Theory of 
Mathematica — that is, an attempt to explain all of the diverse behaviors observed in 
earlier chapters in terms of a minimal collection of concepts. This chapter can be 
skipped on a first reading.

Part 3, “Extending the System,” makes the quantum jump from writing small, stand
alone functions to writing integrated collections of functions and grouping them into 
packages. It also covers many techniques for making user-defined functions behave as 
the built-in ones do.

Part 4, “Programming for Performance,” and Part 5, “Miscellanea,” cover topics 
such as improving the performance of Mathematica code, the MathLink interprocess 
communication protocol, input/output, and debugging. Readers with a particular inter
est in any of those topics may skip directly there after completing Chapter 6.
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2
Language Fundamentals

Mathematica is a term-rewriting system. Given an expression — which we will 
define in a precise manner below — as input, the fundamental operation performed by 
the Mathematica kernel is to recognize terms within the expression that it knows how 
to replace with other, hopefully simpler terms. For example, in the expression a*a + 
D [aA3 , a ] , Mathematica rewrites a*a as a A2 (A is the exponentiation operator); 
then it rewrites D [aA3 , a] as 3 aA2 (D is the derivative operator); and it then recog
nizes that a A2 + 3 a A2 can be rewritten as 4 a A2. It thus mimics the way that a human 
being does mathematics, although it does so in a completely algorithmic manner.

It turns out that expressions are the only type of object in Mathematica — they are 
used to represent both code and data. Furthermore, expressions have a recursive struc
ture: Bigger expressions are composed of smaller expressions, which are in turn con
structed of even smaller expressions, continuing in this manner until the subexpressions 
can be broken down no further — the atoms of the language. When Mathematica per
forms term rewriting, it always replaces one expression by another expression. This 
consistency of representation and operation is the key to the remarkable power of the 
Mathematica programming language.

2.1 Expressions

2.1.1 Normal expressions
Everything in Mathematica is an expression. There are fundamentally two types of 
expressions: normal expressions, which are of the form

head[parti, part2, ...]

where each of head, p a r t i ,  p a rt2 , etc. is another expression; and atoms, which can 
be symbols, numbers, or character strings. (Atoms will be discussed in the next sec-



tion.) Thus, Sin [Log [2.5,  7] ] is a normal expression having a single part; the head 
is an atom (the symbol Sin), and the single part is another normal expression, namely, 
Log [2.5,  7]. The latter expression has another symbol as its head (Log) and two 
parts: the real number 2.5 (which is interpreted as the base of the logarithm) and the 
integer 7.

The syntax of expressions is designed to resemble the function call construct in lan
guages such as C and Fortran. Associating symbolic heads such as Sin and Log with 
functions seems like a natural thing to do, and we will often refer to the head of an 
expression as a function and the parts of an expression as arguments of the function 
call. But not every normal expression can be thought of as a function call — an expres
sion can also represent data. For example, RGBColor [1, 0, 0] is & graphics directive 
that tells Mathematica that the graphics primitives with which it is associated (which 
are themselves expressions) should be rendered in red. There is no “function” associ
ated with the symbol RGBColor, and the expression RGBColor [1, 0, 0] cannot be 
rewritten in any way.

We assert here that every Mathematica expression can be constructed using only 
three syntactic building blocks: atoms, square brackets, and commas. If you have used 
Mathematica before, this may seem hard to believe because of the variety of syntax in 
the language. As a simple example, what about the expression given in the introduction 
to this chapter:

In fact, this expression could also have been entered as

Mathematica'?, parser converts input such as a*a into Times [a, a], a A3 into
Power [ a , 3], and so forth. Syntactic forms such as *, A, and + are called special input 
forms. Without such forms, entering even moderately complex expressions would be 
unbearably tedious. We’ll describe some of the most common special input forms in 
Section 2.3; additional forms will be introduced as needed throughout the book.

Note that not only do expressions with head P lus, Times, Power, etc. have special 
input forms, they also have special output forms. That is why the result of evaluating 
the above expression was printed in standard mathematical notation. You can force 
Mathematica to print the internal form of an expression by wrapping the head F u ll-  
Form around it:



2.1.2 Atoms
An atom is a Mathematica expression that cannot be broken down into smaller Mathe
matica expressions. There are three broad classes of atoms: symbols, numbers, and 
character strings.

Symbols

A symbol is a sequence of letters, digits, and the character $ that does not begin with 
a digit. Examples of symbols are a, abc, a2, a2b, $a, and a$. Though it may be tempt
ing to think of symbols as being similar to variables in programming languages such as 
C or Fortran, you should try not to do so. Symbols are much more powerful because 
symbols do not need to have any value assigned to them in order to be used in computa
tions. That is, a symbol can stand for itself; it is not merely a proxy for data.

Here is an example of a a  +  b -  2a
symbolic computation. The _a  +  ^
result is mathematically true 
for arbitrary values.

All system-defined symbols begin with capital letters or the $ character (e.g., P lus, 
D, FullForm, $Version), so it’s a good idea to begin user-defined symbols with low
ercase letters to avoid confusion.

Numbers

There are four types of numbers in Mathematica: integers, which consist of a 
sequence of decimal digits dddddd\ real numbers, which are of the form ddd.ddd; 
rational numbers of the form in te g e r l / in te g e r 2 ;  and complex numbers of the form 
a + b I, where a and b can be any of the other three types.

This is an integer. 1 2 3 4 5 6 7 8 9 0

1 2 3 4 5 6 7 8 9 0

This is a real number. 1 2 3 4 5 .6 7 8 9 0

1 2 3 4 5 .6 7 8 9

This is a rational number. 2 /3

2
3

This is a complex number. 2 /3  +  4 .5 1

3 + 4 . 5 1

Any of the numeric types can have a virtually unlimited number of digits.

This is 5 raised to the power 
73.

5 A73

1 0 5 8 7 9 1 1 8 4 0 6 7 8 7 5 4 2 3 8 3 5 4 0 3 1 2 5 8 4 9 5 5 2 4 5 2 5 6 4 2 3 9 5 0 1 9 5 3 1 2 5



The above calculation is an example of exact arithmetic: Mathematica assumes that the 
input 5 means “the exact integer 5” and it uses as many digits as are necessary to get an 
exact answer. Compare that with the following:

5 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A73

1 .0 5 8 7 9 1 1 8 4 0 6 7 8 7 5 4 2 3 8 3 5 4  1 0 5 1

The presence of a decimal point in the input is taken to mean that the input is approxi
mate and is known only to as many digits as have been explicitly entered. Therefore, 
Mathematica performs the computation using arbitrary-precision arithmetic, keeping 
track of how many digits in the answer are justified by the number of significant figures 
in the input and the operations that are being performed. In the present example, the 
two least-significant digits have been lost:

The P re c is io n  function P r e c is io n  [5 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
returns the number of signif- 2 5
icant digits in an approxi-

P r e c is i o n [5 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 7 3 ]

23

The precision of an exact P r e c is io n  [5 ]
number is, by definition, Infinity
infinite.

In version 3.0 you can specify the precision of an approximate number explicitly by 
using the syntax num ber"precision. For example:

5 . O' 25 A 73

1 .0 5 8 7 9 1 1 8 4 0 6 7 8 7 5 4 2 3 8 3 5 4  1 0 5 1#
As an optimization, approximate numbers that are input with no more digits than are 

supported by the computer’s floating-point hardware are stored in native double-preci
sion floating-point format, and all arithmetic operations on such numbers are performed 
in hardware. Numbers such as this are termed machine-precision numbers. The read
only system variable $M achinePrecision specifies the precision of “native” floating
point numbers, which may vary on different processor architectures.

This is the native floating- $ M a c h in e P r e c is io n
point precision supported ^
by a PowerPC 601 proces-

1. Caveat: The result of P rec is io n  sometimes does not match the number of digits 
that is displayed. The reason for this is that numerical precision actually is tracked 
in terms of binary digits, and is converted to the nearest number of decimal digits by 
P recision .



MachineNumberQ [num] can be used to determine if an approximate number is a 
machine number.

This input has too many dig- MachineNumberQ [5 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
its to be a machine number. False

This input implicitly has MachineNumberQ [ 5 .0]
$MachinePrecision signif- True
icant digits.

This computation is done in 5 . 0 A73
the floating-point hardware.

1 .0 5 8 7 9  10

Like a pocket calculator, Mathematica displays only the first few digits of a
machine-precision number, unless specifically asked for more. One way to see all of the
digits is to use FullForm, but this would print the internal form of everything else in an 
expression as well. Alternatively, you can use InputEorm, which asks Mathematica to 
display what would have to be typed as input to equal the given expression. In the fol
lowing calculation, % is a special input form that stands for “the previous result.”

Users of version 2.2  w ill see In p u tF o rm  [%]
the notation *1 0 A51 in 1 . 0 5 8 7 9 1 1 8 4 0 6 7 8 7 6 *A51
place of * A51.

Note that the least-significant digit in this result is incorrect (compare it to earlier 
results in this section). Since the computation is being done in the computer’s hardware 
floating-point unit, Mathematica cannot keep track of the true precision of the result. As 
far as it’s concerned, the result still has $M achinePrecision significant digits:

Precision[%]
16

It is important to note that while the precision of a machine number is always 
$M achinePrecision, the converse is not necessarily true: If the result of an arbitrary- 
precision calculation happens to have $M achinePrecision or fewer significant dig
its, it is still stored internally as an arbitrary-precision number. Use MachineNumberQ 
to be certain.

Also note that an input containing a decimal point is always considered to be an 
approximate number, even when you “know” it isn’t. For Mathematica to assume oth
erwise would be incorrect.

This result is only approxi- 3 / 4  -  0 .7 5
m ately  zero (note the deci- q
mal point).

If what was really meant in this case was “exactly three-fourths,” then that is what 
should have been entered.

Hr



To summarize, there are two broad classes of numbers: exact (which includes not 
only integers but also rational numbers and complex numbers with exact coefficients) 
and approximate (whose members always contain a decimal point). The approximate 
numbers are further divided into two subclasses: machine precision and arbitrary preci
sion.

Mathematica has an unusual convention for handling exact numbers. By default, 
Mathematica will never perform any numeric operation that would turn an exact 
expression into an approximate one. For example:

S q rt is the built-in square S q r t  [3 ]
root function. Sqrt [3 ]

Mathematica does not rewrite the exact expression S q rt [3] as a number because 
attempting to do so would require an approximation — there is no finite-length decimal 
representation of the square root of 3. On the other hand, Mathematica will evaluate the 
following:

S q r t  [ 3 . ]

1 .7 3 2 0 5

The argument 3 . is considered to be approximate by virtue of its decimal point. Since 
the number is already approximate, Mathematica has no qualms about computing its 
square root.

You can ask Mathematica to numerically evaluate any exact expression by using the 
N function.

N [ S q r t  [ 3 ] ]

1 .7 3 2 0 5

By default, the result is a In p u tF o rm  [%]
machine number. 1 .7 3 2 0 5 0 8 0 7 5 6 8 8 7 7

An optional second argu- N [ S q r t [ 3 ] ,  90 ]

ment to N specifies the 1 . 7 3 2 0 5 0 8 0 7 5 6 8 8 7 7 2 9 3 5 2 7 4 4 6 3 4 1 5 0 5 8 7 2 3 6 6 9 4 2 8 0 5 2 5 3 8 1 0 3 8 0 \
desired precision of the
resu|t  K 6 2 8 0 5 5 8 0 6 9 7 9 4 5 1 9 3 3 0 1 6 9 0 8 8 0 0 0 3 7 0 8 1 1 4 6 1 8 7

In general, if any of the arguments passed to a built-in numeric function are approxi
mate, the function will evaluate, converting those arguments to approximate numbers 
with the highest precision that can be justified. For example,

This result is a machine 1 +  2 .5
number. 2  5

This result is an arbitrary 1 +  2 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
precision number. 3 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



The foregoing discussion should not be interpreted to mean that Mathematica won’t 
ever rewrite a numeric function of exact arguments. In fact, Mathematica includes 
rewrite rules for most special cases of the built-in numeric functions.

Sqrt [8]
2 Sqrt [2]

This rewriting has produced another exact answer; however, there is nothing more that 
can be done with the result that does not require an approximation.

Exact numeric expressions can be partitioned into two categories: those that are 
numbers and those that would become numbers if N were applied to them. The latter 
category includes not only expressions such as S q rt [3] but also the built-in numeric 
constants C atalan, Degree, E, EulerGamma, GoldenRatio, and Pi. Although these 
are symbols, in certain circumstances they are treated as exact numbers. For example:

P i is an exact representation N [ P i ]
of the irrational number n. ^ ^ 4 1 5 9

Therefore, this evaluation is Sin [Pi/3]
exact. Sqrt [3]

2

Here's an example using E. E A (a  L o g [ x ] )

a

You can think of numeric constants as symbols for which a large number of special- 
case rules are built into the system. They are not manifest numbers:

NumberQ[Pi]
False

— but they become numbers when N is applied to them.

Numeric constants are treated slightly differently in version 3.0 — they have become 
more “number-like.” For example, in version 2.2 the following expressions would not 
be rewritten unless N were applied to them:

180. Degree 
3.14159

Round[Pi]
3

EulerGamma + Catalan < GoldenRatio
True



A new function, NumericQ, can determine whether an expression represents a 
numeric quantity:

NumericQ[Pi]
True

The numeric property prop- NumericQ [Sin [Pi] A (1/E) ]
agates through complicated True
expressions.

You can think of NumericQ as determining whether or not an expression would 
become numeric if N were applied to it. (The same information can be obtained in ver
sion 2.2 with NumberQ [N [expr] ], but this construct is considerably less efficient.)

An extensive discussion of numeric types and numerical precision can be found in 
§3.1 of The Mathematica Book.

Character strings

A character string, or simply string, is any sequence of characters enclosed in a pair 
of double quotes.

This is a string. Note that " h e l l o  w o r ld "
Mathem atica  does not print , , ,.i . u * hello worldthe quotes when it prints a
string.

You can verify that the out- InputForm [%]
put is a string by requesting „h e l l o  w o r ld „
its InputForm.

Within a string, the sequence of characters \ "  stands for the single character ", 
Hence, the following is a valid string also.

The inner quotes are printed " F o r  example. V ' h e l l o  w o r l d V  is a string."
because they are just like „  n , ,  , ,
any other characters in the For examPle- "hell° w o r ld " 18 a string,
string.

Any 8-bit character can be entered directly into a string by using your system’s spe
cial keyboard combination for that character. Alternatively, 8- and 16-bit characters can 
be entered by using various sequences of 7-bit ASCII characters; see §A.2.1 of The 
Mathematica Book for the exact syntax.

There are many built-in operations on character strings, such as finding their length, 
concatenating them, case-shifting them, and searching for and replacing substrings 
(including wildcards). These operations will be discussed in Section 3.6, “Character 
Strings.”



Exercise
1. Determine how Mathematica stores complex numbers by using FullForm on sev

eral examples. Be sure to try symbolic as well as numeric coefficients.

2.2 Evaluation of Expressions
The basic evaluation process is very simple: The kernel continues to rewrite terms until 
there is nothing left that it knows how to rewrite in another form. Since term rewriting 
replaces one expression by another, whatever is left after this process terminates must 
be a valid expression, which implies that the set of all expressions is closed under eval
uation. This allows any expression to be nested inside of any other (although the result 
of doing so may not make any sense!). By analogy with function call in other lan
guages, we often will call the result of evaluating an expression the return value of the 
expression.

You can obtain a post mortem description of the evaluation of any expression by 
wrapping the expression inside the head Trace. The results may be slightly different, 
depending on the version of Mathematica that is being used.

Trace[Sin [Log[2.5, 7]]]

I I L ° s [ 2 ' 5 ’ 71 ■ S l O I -

{(Log[2.5], 0.916291], — \ 6 2 g i . 1-09136},
(Log[7.], 1.94591}, 1.09136 1.94591, 2.12368},

Sin[2.12368], 0.851013}

Trace[Sin[Log [2.5, 7]]]
{{Log [2.5, 7], ^ [ 2 5 ]  ■ {Log [7 . ] , 1.94591},

1 94591{Log [2.5], 0.916291}, ----, 2.12368},
0.916291

Sin[2.12368] , 0.851013}

The curly braces indicate the depth of the subexpressions being evaluated. The steps 
involved in this evaluation in version 3.0 are:

1. Log [2.5, 7] is rewritten as Log [7. ] /Log [2.5],
2. Log [7. ] is evaluated numerically, yielding 1.94591....
3. Log [2.5] is evaluated numerically, yielding 0.916291....
4. The quotient of the two previous results is evaluated numerically.
5. The S in of the quotient is evaluated numerically.
6. The result is an atom (a real number), which cannot be rewritten, hence the process 

terminates.



(In version 2.2, the two logarithms are evaluated in the reverse order and the division 
operation is replaced by a reciprocal and a multiplication.)

This example demonstrates an important point about the evaluation process: In gen
eral, the parts of a normal expression are evaluated before the entire expression is. This 
is called standard evaluation. (The arguments to certain Mathematica functions are not 
evaluated before the function is called; this is called nonstandard evaluation, an exam
ple of which will be encountered shortly.) In computer science terms, an expression is a 
tree, and standard evaluation is performed depth first. Figure 2-1 shows a tree represen
tation of the evaluation performed above. Note that the nesting of the curly braces in the 
trace output (above) increases as the evaluation process moves deeper into the tree, and 
decreases as the evaluation process works its way back up.

Sin Sin Sin1 Sin
1Log 1 ̂ Times 1 ̂ Times 1. Times

/ \ * / \ / \ * / \.5 7 Log Power 1.95 Power 1.95 Power
1 / \ / \ / \7 Log -1 Log -1 .916 -11

2.5 2.5 /
'  1

.851 Sin
2.12

Sin1Times
/ \  1.95 1.09

Figure 2-1 Tree representation of evaluation of the expression Sin [Log [2 .5 , 7]. The 
process is streamlined somewhat in version 3.0 (as indicated by the dashed arrow).

Mathematica has a built-in function called TreeForm that attempts to print an 
expression in the form of a tree, subject to the limitations of ASCII output. Here is an 
example:

TreeForm[x + Cos[y]*Log[z]]
Plus[x, I ]

Times[| , | ]
Cos [y] Log [z]

The output of TreeForm is not very appealing to look at, especially when the expres
sion being formatted is so large that the output wraps across multiple lines. It is usually 
better just to examine the FullForm  carefully.

Incidentally, look at what happens if we try to print the TreeForm of the example in 
Figure 2-1:



TreeForm[Sin[Log[2.5, 7 ]]]
0.851013

What happened is that the argument to TreeForm evaluated to a real number before 
TreeForm itself was evaluated. (The same problem would have happened with F u ll-  
Form or InputForm.) In order to see the internal structure of such expressions, it is 
necessary to prevent them from evaluating. You can accomplish this by wrapping the 
expression inside of a head that does not allow its arguments to be evaluated. One such 
head is Hold:

H o ld  prevents the evalua
tion of its arguments, allow
ing us to see the structure of 
expressions without evalu
ating them.

This is an example of nonstandard evaluation. You can tell that a symbolic head pre
vents the evaluation of its parts by examining its attributes:

The HoldAll attribute indi- A ttr ib u tes [Hold]
cates that none of the parte {Hold A ll, Protected}
enclosed by the head Hold  
will be evaluated.

We will cover HoldAll and related attributes in Section 4.4, “Parameter-Passing 
Semantics,” and we will discuss techniques for operating on held expressions in 
Section 7.2, “Nonstandard Evaluation.”

The head of an expression, too, can be an expression, and it is evaluated before any 
of the parts. Consider the following:

This input creates a rewrite f[0 ]  = Sin  
rule for the expression f  [0], gin

This expression has a non- Trace [ f  [0] [P i/2] ]
atomic head. -i i p j p j p j

{ ( f  [0] , S in ), {(± j ) ,  — . S i n [ | i ] ,  1}

The trace shows that the head of this expression, f  [0], evaluated to the symbol Sin 
before any parts were evaluated. The parts were then evaluated, and finally the overall 
expression (S in [P i/2 ] ) was evaluated.

The trace is curious in that it contains what appear to be several trivial evaluations 
(1/2 => 1/2, P i/2  => P i/2 ). In fact, these expressions are being rewritten from one 
internal form to another, which we can verify by looking at the FullForm of the trace 
output:

FullForm[%]
L ist[L ist[H oldForm [f [0 ]] . HcldForm[Sin]] ,

L ist[List[H oldForm [Power[2 ,  -1]]  ,

TreeForm[Hold[S in[Log[2 .5,  7 ] ] ] ]
Hold [ | ]

S i n [ | ]
Log[2.5,  7]



HoldForm[Rational[1, 2 ] ] ] ,
HoldForm[Times[Pi, R at io n a l [ l ,  2 ] ] ] ,
HoldForm[Times[Rational[1, 2 ] , P i ] ] ] ,

HoldForm[Sin[Times[Rational[1, 2 ] , P i ] ] ] ,
HoldForm[l]]

We can see from this output that the first instance of 1/2 was the normal expression 
Power [2, -1 ], whereas the second instance was the number R a tio n a l [1, 2]. 
Since both of those expressions have the same output form, it appeared as though no 
rewriting was taking place. Similarly, the first instance of P i / 2 was expressed inter
nally as Times [P i , R a tio n a l [1, 2] ] (the R a tio n a l being the result of the previ
ous rewrite). This expression was rewritten as Times [R ational [1, 2 ] , Pi] 
because the arguments to a commutative operator like Times are sorted into canonical 
order before that operator is evaluated. (This makes algebraic simplification easier.)

Another curious feature of the trace output is the presence of the HoldForm head 
wrapped around every intermediate expression. HoldForm, like Hold, has the attribute 
HoldAll, which prevents the evaluation of its parts, but it differs from Hold in that in 
standard output form the head does not appear. The HoldAll attribute prevents the 
multiplication in HoldForm [Times [R ational [1, 2 ] , P i] ]  from being carried
out, for example. As stated at the very beginning of this section, the evaluation process 
continues until there is nothing left that can be rewritten in another form. If not for the 
existence of heads like Hold and HoldForm, there would be no way for an expression 
to return a partially evaluated result such as a component of a trace.

At the beginning of this section we asserted that every expression returns another
expression as its value. There are cases in which this seems to be untrue, however. An
example is the SetDelayed operator, which doesn’t seem to return a value:

The : = operator is described s3 := Sqrt[3]
in detail in Section 2.3.4.

The above example seems to imply that there is no return value from SetDelayed. In 
fact, SetDelayed returns the special symbol N ull, which normally doesn’t appear in 
the output. N ull will appear if it is part of a larger expression, however:

1 + %
1 + Null

SetDelayed is one example of a function that operates by producing a side effect; 
i.e., the intended result of executing the function is not its return value, but rather some 
change that it makes to the state of the Mathematica session (or to the computer in gen
eral — for example, writing data to a file). In this case, the side effect is that a rewrite 
rule for the symbol s3 has been created:

s3 is rewritten as Sqrt [3]. s3A2
3



Other common side effects include the rendering of graphics and file input/output.

There is one last point that needs to be made before we leave this topic. An implicit 
assumption in the evaluation process is that the system is designed so that the set of all 
expressions is partially ordered with respect to evaluation, or equivalently, that there are 
no cyclic dependencies in the evaluation process. It is all too easy to construct an exam
ple for which this assumption is violated:

y in  := yang 
yang := y in

These statements instruct the kernel that y in  can be rewritten as yang and that yang 
can be rewritten as y in . Obviously, this is a recipe for disaster! Fortunately, the kernel 
has a built-in “circuit breaker” known as the iteration limit:

y in
$IterationLimit::itlim:

Iteration limit of 4096 exceeded.
Hold[yin]

After 4096 rewritings have taken place, the kernel wraps the current result in Hold 
(which prevents any further evaluation) and returns it. The fact that the final result is the 
same as the original expression is a quirk of the definitions used. We can examine this 
process in detail using Trace, but first we had better reduce the iteration limit to keep 
the output manageable:

$ Ite r a tio n L im it = 20
20

T race[y in ]
$IterationLimit::itlim:

Iteration limit of 20 exceeded.
(yin, yang, yin, yang, yin, yang, yin, yang, yin, 
yang, yin, yang, yin, yang, yin, yang, yin, yang, 
yin, yang, yin, {Message[$IterationLimit::itlim,

20], {$IterationLimit::itlim,
Iteration limit of '1' exceeded.}, Null],

Hold[yin])

The trace shows that a game of “rewrite Ping-Pong” is being played between the sym
bols y in  and yang. The Message function, which is invoked directly by the kernel and 
is not part of the original expression or any of its intermediate forms, is what causes the 
error message to appear. Message also can be called directly; its use is discussed in 
Section 9.1, “Diagnostic Messages.”

Before we continue, it $ I te r a tio n L im it  = 4096;
would be a good idea to 
restore the default value of 
$IterationLim it.

The iteration lim it can be 
changed by assigning to the 
global variable $ I t e r a -  
tionLimit.



This is all you need to know about the evaluation process for now; any further details 
would serve to confuse rather than to illuminate. We will return to the evaluation pro
cess in Chapter 7, “Expression Evaluation,” after we have gained some programming 
experience.

Exercise

1. Failure to understand the evaluation process is the source of many common errors. 
For example, why doesn’t Mathematica return a high-precision result from the fol
lowing numerical computation?

N[Sqrt[3 . ] .  90]
1.732050807568877

(The correct way to perform this computation was demonstrated in Section 2.1.2 on 
page 22.)

Now that we understand the basic structure of expressions and how they are evaluated, 
we turn our attention to the rich syntax that is available for entering expressions. Much 
of the syntax is evocative of other programming languages; the C language probably 
had the strongest influence on the syntax of Mathematica. However, identical syntax 
does not necessarily imply identical semantics, and we will take pains to point out per
tinent differences as we go along.

We will not attempt to describe every special input form here, only the most common 
and elementary ones (see [Wolfram 91] §A.2.3 or [Wolfram 96] §A.2.7 for an exhaus
tive list). We will encounter additional special input forms throughout the remainder of 
the book.

The arithmetic operators are + (addition), - (subtraction), * (multiplication), /  (divi
sion), and A (exponentiation). Addition and subtraction have a lower precedence than 
multiplication and division, which in turn have a lower precedence than exponentiation.

2.3 Special Input Forms

2.3.1 Arithmetic operators

This is 3 + 8 . 3 + 2 * 4
11

This is 3 * 16. 3 * 2 A 4
48

W hen in doubt, you can 
substitute symbolic argu-

FullForm[Hold[a * b A c ] ]
Hold[Times[a, Power[b, c] ] ]ments and look at the Full - 

Form of the expression.



You can use ordinary parentheses to override the precedence of operations; this is the 
only thing that parentheses are used for in Mathematica.

This is 6A4. (3  * 2 ) A4

1296

Additive and multiplicative operators are left-associative, whereas exponentiation is 
right-associative.

Since multiplication and 3 / 5 * 7
division are left-associative, 2 1
the factor of 7 is in the 
numerator rather than in the 
denominator.

5

Since exponentiation is 2 A 3 A 0
right-associative, 3A0 is 2
evaluated first.

Multiplication is sometimes inferred even when no asterisk is present, as in 2a. 
However, see Section 2.3.11, “Syntax traps for the unwary,” for some caveats.

Note that although there are built-in functions called S u b tra c t and D ivide, these 
operations are converted immediately to additive and multiplicative inverses. For 
example,

FullForm[a - b]
Plus[a. Times[-1, b]]

Also note that P lus and Times are re-ary operators, i.e., they can take any number of 
arguments.

FullForm[a + b + c + d]
Plus[a, b, c, d]

One other common special input form that we will mention here is n I, which is 
equivalent to F a c to r ia l  [n ]. The factorial operator has a higher precedence than any 
of the arithmetic operators.

Exercise
1. Try to guess the internal forms of b /c  and c/b . Verify your answer using F u l l 

Form.

2.3.2 Relational and boolean operators
Mathematical relational and boolean operators are the same as C’s, with one excep
tion: there is no exclusive-or operator (but there is an Xor function). Here are some 
examples.



> is Greater; !=  is 7 > 4 && 2 !=  3
Unequal; && is And. True

<= is LessEqual; | | is Or; 7 <=  4 | | 2 =  3
=  *  E qual. F a ls e

The boolean operators And and Or are n-ary.

As in C, the boolean operators “short circuit” once their outcome has been deter
mined. For example, in the following expression the first argument to And evaluates to 
F alse , so the second argument is never evaluated:

1 / 0  normally would gener- 1 < 0  && 1 / 0
ate an error message. False

A bit of thinking leads us to the conclusion that And (and Or) must undergo nonstand
ard evaluation — its arguments are evaluated under the control of the function, rather 
than before the function is called. (Verify this by checking its A ttr ib u te s .)

There are a couple of differences in the usage of the relational operators from the 
way they are used in C. First of all, you can “chain” them.

This expression is the same 5 > 4 > 3 
as 5 > 4 && 4 > 3. True

IT Second, and more important, the arguments to a relational operator need not evaluate 
to numbers, in which case it’s possible that the relational operator will not evaluate.2

This may not be what you a  =  b
had in mind. ,a == b

When comparing two symbolic expressions, you may want to test them for “sameness.” 
This is accomplished by using the SameQ function, abbreviated === (triple equal sign).

Since a and b are not mani- a --------b
festly identical, SameQ „
returns F a ls e . i a i s e

Mathematica knows about a  +  b = =  b +  a
properties such as the asso
ciativity of addition.

True

The logical negation of SameQ is called UnsameQ, abbreviated =! =. Remember, SameQ 
and UnsameQ always evaluate to either True or F alse ; Equal and Unequal may not.

2. In version 3.0, relational operators evaluate as long as both of their arguments are 
numeric (refer to the discussion of numeric expressions on page 24).



2.3.3 Reusing results
The % character stands for the result of the most recent evaluation. For example:

Here is an evaluation. Sin[Pi/3]
Sqrt [3]

2

% here refers to S q rt  [3] /2 ,  
the result of the last evalua
tion.

ArcSin[%]
Pi
3

(Incidentally, this example shows the benefit of working with exact quantities: Had 
either of the last two evaluations been done numerically, the eventual result would have 
been only an approximation to Jl/3.)

More generally, a sequence of n percent signs refers to the nth previous result.

You can also use %n or Out [n] to refer to output number n. However, this is a danger
ous tactic, because if you save your notebook and reopen it during another Mathema
tica session, chances are extremely remote that these references will be correct. A much 
better strategy is to assign the results of computations to symbols, which we will see 
how to do in the next section.

Bear in mind that % always refers to the most recent output in the order o f evaluation. 
Because the notebook interface allows you to move the insertion point around and to 
cut/copy/paste cells, the most recent output is not necessarily the same output cell that 
textually precedes the current input cell! Fortunately, the front end provides commands 
that copy the contents of the preceding input or output cell into the current input cell. 
These commands can be found in the Prepare Input submenu of the Action menu.

The operators = (which is called S e t3) and : = (which is called SetDelayed) perform a 
role in Mathematica that is similar to that of assignment in other languages. Either of 
the expressions J As = rh s  or lh s  := rh s  creates a rewrite rule for Ih s . The differ
ence between Set and SetDelayed is their treatment of rhs\ this difference is subtle 
and will be illustrated by an example.

3. Set is a verb, not a noun. The Set operation has nothing to do with sets in the 
mathematical sense. Furthermore, mathematicians have to get used to the idea that 
= does not mean equivalent, =  is used for that (see Section 2.3.2).

ArcCos[%%] 
Pi
6

2.3.4 Assignment statements



The expression sym = expr  defines the value of the symbol sym to be the value of 
the expression expr. This action is a side effect; the return value of sym = expr  is 
simply the value of expr.

z = x + y
x + y

N ow  z evaluates to x  +  y. z  /  2

x + y
2

The process of expression evaluation is iterative; after a substitution has been made, 
further substitutions may be performed on the new expression. For example, suppose 
that we give x the value 3.

x = 3
3

Then after z evaluates to x + y, x will evaluate to 3: 

z /  2
3 + y

2

Tracing the computation Trace [z /  2]
shows the sequence of eval- , , _ „
uationsexplicitly. {{z,  x + y, {x. 3},  3 + y) , { - ,  - } ,  —

The value of z is still x + y. We can verify this by looking at a trace like the one 
above, or we can inspect the definition of z directly using ? z:

Global' will be explained ?z
in Section 8.1, "Contexts." G lobal' z

z = x + y

The implication of this is that if the value of either x or y were to change, so would the 
result of evaluating z:

x = Sqrt [3]
Sqrt [3]

z /  2
Sqrt [3] + y

2

Things would be different if we had created the definition for z after assigning a 
value to x or y. First we’ll remove the existing definition for z, using C lear [z] (it’s
always a good idea to clear definitions that you don’t need any longer):



Clear returns Null. C lear [z]

z has no value after being ?z

cleared- Global'z

Now we Set z to x + y once again:

Sqrt [3] comes from evalu- z  =  x  +  y

atin§x- Sqrt [3] + y

The value of z is now ?z
Sqrt [3] +  y. G l o b a l ' z

z = Sqrt [3] + y

The crucial observation here is that the right-hand side of a Set is evaluated before any 
value is assigned to the left-hand side. Thus, the kernel substituted S q rt [3] for x, per
formed the arithmetic, and the result, S q rt [3] + y, became the new value of z.

It is quite commonly the case that one wishes to prevent this sort of thing from hap
pening. That can be accomplished by making the assignment using SetDelayed rather 
than Set.

Clear [z] 
z := x + y

The first thing we notice is that SetDelayed returns N ull. This is because the expres
sion on the right-hand side has not been evaluated. The value of z is the literal expres
sion x + y, in spite of the fact that x has the value S q rt [3 ].

?z
Global'z 
z := x + y

An important consequence of this is that subsequent changes to x or y will change how 
z evaluates.

Change the definition of x . x  =  2 P i

2 P i

z evaluates to x  +  y, which z
in turn evaluates 2 P i  + y. 2 P i  +  y

The example just given is a sort of “poor person’s function definition.” A much bet
ter way to do this is to declare z as a function of two parameters, x and y. We will dem
onstrate this in the next section.

C programmers will be glad to know that Mathematica has borrowed a few “hybrid” 
arithmetic/assignment operators from C. An expression like x += y is equivalent to



x = x + y. Analogous operators exist for subtraction (-=), multiplication (*=), and 
division (/=). There is no corresponding operator for exponentiation because the syntax 
A= is used for something entirely different.4 Similarly, there are pre- and post-increment 
(++) and decrement (--)  operators. ++x is equivalent to x += 1: It adds 1 to x, stores 
the new value in x, and returns the new value. x++ is similar except that it returns the 
old va lue  of x. (If you have to ask why, then obviously you’ve never programmed 
in C.5)

Be sure to clear x and z Clear [ x ,  z ]
before continuing.

Exercises

1. After setting x to 3 in your own Mathematica session, use T race to trace the evalu
ation of the expressions z : = x + y and z = x  + y.

2. Given the following definitions (use ? Random to find out what the Random function 
does, if you haven’t already guessed):

x = Random [] 
y := Random []

What is the result of evaluating the expressions x  - x and y - y? To make certain 
you really understand what is going on, evaluate these expressions more than once.

2.3.5 Function call
As noted earlier, the syntax head [ p a r t s . . .  ] for constructing expressions can be 
thought of as a function call, and the resemblance to function call in other languages is 
no coincidence. Note that you must use square brackets, not parentheses, to indicate a 
function call. In fact, using parentheses is such a common mistake that the parser will 
even warn you about it:

This expression is equivalent S q r t  (3 )
to S q rt  * 3, which is mean- g y n t a x . .  b k t w m .

ing ess. Warning: "Sqrt(3)" should probably be "Sqrt [3]".
3 Sqrt

Believe it or not, there actually are three special input forms for function call — two 
for functions of a single argument and one for functions of two arguments. The first two

4. A description of which would be completely incomprehensible at this point. Wait 
until Section 6.5.2, “Upvalues.”

5. The historic reason for these operators’ presence in C is that they corresponded to 
assembly-language addressing modes on the DEC PDP-8. C programmers love 
them because they allow one to create the infamous one-line string copy function. 
The only explanation for their appearance in Mathematica is that they are the pro
gramming language equivalent of an inherited defect.



forms allow the function name to precede (prefix function application) or follow 
(postfix function application) the argument to the function. The third form allows the 
name of the function to appear in between its two arguments (infix function 
application).

Prefix function application is accomplished with the following syntax:

f @ x 
f[x]

Prefix function application is popular among some users6 because it eliminates the need 
for bracket matching, which can be quite a chore in a heavily nested expression. Of 
course, it works only for functions of a single argument. Prefix function application 
associates the way you would expect, that is, to the right.

f @ g @ h @ x
f [g[h [x] ] ]

Note that prefix function f  @ x  !
application has a very high f  r -i .
precedence. '

Postfix function application is accomplished by using the following syntax:

x // f
f[x]

Postfix function application commonly is used to apply a function that is peripherally 
related to the computation, and which might distract the reader from the main point if it 
appeared elsewhere. Examples of such uses are algebraic simplification, numerical 
approximation, and output formatting. Here’s a simple example:

This is equivalent to S q r t  [3 ]  I I  N
N [S q r t  [3] ] but is less dis-  ̂ 7 3 2 0 5
trading.

Postfix function application is left-associative and has a very low precedence.

x // f // g 
g[f [x]]

a + b // f
f[a + b]

Infix function application is accomplished via the following syntax:

x ~ f ~ y
f[x. y]

6. But not with this author. You will rarely, if ever, see this syntax again in this book.



This notation is supposed to mimic the way the other binary operators (e.g., +) are used. 
For example, there is no special input form for logical exclusive or, but there is an Xor 
function:

True ~Xor~ False 
True

The precedence of infix function application is just below that of prefix function appli
cation.

g @ x  ~  f ~ y ! 

f [g[x] , y] !

2.3.6 Function definition
Mathematica allows you to define your own functions.

This defines z as a function z [ x _ ,  y _ ]  : =  x  +  y  
of two parameters, x  and y.

The expression on the left-hand side of the assignment is called the declaration of the 
function, and the expression on the right-hand side is called the body of the function. 
Whenever you use the function in an expression, the function is said to be called, and 
the value computed by the function (the return value) is substituted for the function 
call. When this function is called, for example, by evaluating

z [Sqrt [3] , 2 Pi]
Sqrt[3] + 2 Pi

the values S q rt [3] and 2 P i are substituted for x and y, respectively, everywhere that 
x and y occur in the body of the function. In computer science lingo, x and y are called 
formal parameters, and the values S q rt [3] and 2 P i are called actual parameters or 
arguments.

Note that the values of the formal parameters x and y do not depend on the values of 
the global symbols x and y:

x  :=  1 

y := Log[2] 
z [Sqrt [3] , 2 Pi]
Sqrt[3] + 2 Pi

or vice versa:

x  +  y

1 + Log[2]



Also note that we used SetDelayed to define the function. Had we used Set, the 
right-hand side would have been evaluated immediately, resulting in the substitution of 
any extant values for x or y into the body of the function. You should verify this.

The underscores in the left-hand side of the function definition are important: They 
indicate that x and y are formal parameters, as opposed to literal values (see 
Exercise 2.3.6.2). The underscore is called Blank, which is meant to suggest “fill in the 
blank.” Note that the blanks appear only on the left-hand side of a function definition, 
never on the right-hand side.

Function definition is discussed in much greater detail in Part 2. For now, keep in 
mind that SetDelayed is almost always the right choice for defining a function, and 
that each formal parameter should be followed by a Blank.

Exercises

1. The importance of using SetD elayed. Clear z (but not x or y) and evaluate the fol
lowing expressions (note the use of Set rather than SetDelayed in the function 
definition):

z [x_, y_] = x + y 
z [Sqrt [3] , 2 Pi]

2. The significance of Blank. Define a function (incorrectly) as follows:

C l e a r [ f ]  
f [ a ]  :=  a A2

Now evaluate the expressions f  [a] and f  [b ]. Do you understand the significance 
of the Blank now? Clear f  and redefine it correctly. Test it to make sure!

3. Write a function that computes the area of a circle given its radius. (Use the built-in 
numeric constant P i in your answer.)

Clear these symbols before C le a r  [ f ,  x ,  y ,  z ]  
continuing.

2.3.7 Compound expressions
Multiple expressions can be placed anywhere a single expression could go by separat
ing them with semicolons.

a = 1; b = 2; a + b
3

Note that the output of every expression that is followed by a semicolon is suppressed. 
This is quite handy for suppressing the output of trivial operations, or of expressions 
that evaluate to enormous messes.



An input such as the one above is actually a single expression; each of the individual 
“statements” is a part of an expression having the head CompoundExpression. This 
head is fairly elusive, in that you can’t see it by wrapping it in FullForm:

FullForm[a = l ; b = 2 ; a + b ]
3

The reason for this is — you should know this by now — the CompoundExpression 
evaluates before FullForm does. A way around this problem is to prevent the evalua
tion of the CompoundExpression by wrapping it in Hold (see the discussion of non
standard evaluation in Section 2.2).

Hold prevents the Com- FullForm [Hold [a =1; b = 2; a + b] ]
poundExpression from Hold [CompoundExpression [Set [a, 1], Set[b, 2],
evaluat,n8' Plus [a, b]]]

Since CompoundExpression is a single expression, a sequence of expressions sep
arated by semicolons can be placed anywhere a single expression could be used. The 
obvious utility of this is that it allows one to program in a style that is reminiscent of 
procedural languages such as C and Fortran. For example, a function that consists of 
more than one “line of code” can be written like this:

f [x_] : = (
f i r s tL in e ; 
secondLine;

lastL ine
)

Take note of the parentheses surrounding the body of the function above. They are nec
essary because ; has the lowest precedence of any Mathematica special input form. 
Without the parentheses, only f i r s tL i n e  would be part of the function definition. 
Also note the absence of a semicolon after la s tL in e .  A multiline function returns the 
value of the last expression evaluated by the function. If a semicolon appeared at the 
end of the last line, the function would return N ull.

There are unobvious applications of compound expressions as well. For example, the 
FindRoot function searches for the root of an expression, given an initial “guess.”

The form of the return value E in d R o o t  [S in  [x ]  -  Cos [x ]  , [ x ,  . 5 } ]
in this example w ill be {x  _> 0 . 7 8 5 3 9 8 ]
explained in Section 2.3.9.

The answer gives no indication as to how FindRoot “got there.” However, the 
sequence of iterates that are generated by FindRoot’s internal algorithm can be printed 
using the following technique:



The expression whose FindRoot [Print [x] ; Sin [x] -Cos [x] , {x. .5}]
root is being sought is
Print [x] ; Sin [x] - x

Cos [x].Thus, each time o ' 793408
FindRoot evaluates this 0 785398
expression, the current n ' 7 p „ Q „
value of x  is printed.

{ x  ->  0.785398}

Clear a and b before con- C le a r  [ a , b ]
tinuing.

Exercises

1. What is the internal representation of the following expression? (You will need to 
use the Hold trick to see it.)

z =  1 ;

2. Mathematica’s two-dimensional plotting commands use an interesting adaptive 
sampling algorithm (see [Smith & Blachman 94c] or [Wickham-Jones 94] for an 
explanation of the algorithm). You can find out which points were sampled by exam
ining the internal form of the G raphics object generated by the plotting command, 
e.g.,

Plot[Sin[x], {x, Pi/4, Pi/2}] // InputForm 
(* large output omitted *)

However, you can’t determine the order in which the points were sampled from the 
G raphics object because the points are sorted before the object is returned. Use the 
same trick that we used in the FindRoot example to observe the sequence of sam
ple points as the algorithm executes.

2.3.8 Lists
Lists are the basic data structure in Mathematica. A list is used to group expressions in a 
particular order. Curly braces delimit a list:

This is a list of three expres- { 1 , x ,  i  +  j }  
sions.

( 1 . x ,  i  +  j ]  

The internal form of a list is F u l lF o r m  [%]
quite straightforward. List[l, x, Plus[i, j]]

The head L is t  doesn’t cause any evaluation to take place; it simply has appealing spe
cial input and output forms.

Many of the built-in functions require that certain parameters be grouped into lists. 
For example, in the expression Plot3D [Sin [x y ]  , {x, 0, P i} , { y ,  0, P i} ], 
the lists are used to group each independent variable with its desired plot range.



There is another set of delimiters that one encounters frequently when working with 
lists: double square brackets, which are used to extract the parts of a list.

This returns the third part of % [ [3 ]  ]
the list given above. i  +  j

IT
Lists are therefore analogous to arrays in procedural programming languages such as C 
and Fortran. However, note that lists always use 1-based indexing, as in Fortran. (C 
programmers take note!)

Since lists are expressions, they can be nested arbitrarily. By convention, rectangular 
nested lists are used to represent matrices, with each row of the matrix stored as a sub
list.

s is a nested list that repre- s =  { { a ,  b } , { c ,  d}  , ( e ,  f } } ;  
sents a 3 x  2 matrix.

The elements of s also are s [ [1 ]  ]
lists; this represents a row of j a
the matrix.

Thesublistscanofcoursebe % [ [2 ]  ]
indexed as well; this repre- ^
sents an element of the 
matrix.

All of the above can be s [ [ l ,  2 ] ]
accomplished in a single ^
step.

Lists are pervasive in Mathematica; in fact, there are so many built-in functions for 
operating on them that we will devote nearly all of Chapter 3 and a good part of 
Chapter 5 to them.

Exercise
1. What subscript is needed to extract the element c from the following list? How 

about e?

{ a .  { b ,  { c ,  d } .  e } .  f }

2.3.9 Rules
The special input form a - > b is called a rule. By itself, a rule is little more than a con
tainer for a pair of expressions (with a special input/output form), but there are several 
functions that expect rules as arguments. The most common such function is called 
R eplaceA ll. R ep laceA ll[ex p r, a -> b] replaces every occurrence of a in expr  
by b:



R eplaceA ll[x + x A2, x -> w]
. 2 w + w

R eplaceA ll is so common that there is a special input form for it: expr  / .  ru l e 
is equivalent to R eplaceA ll [expr, ru l  e ] .

x  +  x A2  / .  x  - >  w

. 2 w +  w

R eplaceA ll can replace an arbitrary expression by another arbitrary expression. 
Note, however, that rule substitution is purely syntactic, not algebraic:

R e p la c e A ll does not x A2 +  x A4 / .  x A2 ->  w +  1
attempt to substitute forxA4, ,
only for x A2 . 1 +  w +  x

Here are some other properties of ReplaceA ll:

The second argument to x A2 +  x A4 / .  { x A2 - >  w +  1 ,  x A4 - >  (w +  1 ) A2}
R e p la c e A ll can be a list of „
rules. 1 +  w +  ( 1  +  w)

The " /." o p e ra to r  is left- x  +  x A2 / .  x  ->  wA2 / .  wA2 ->  z
associative. 4

w +  z

Another common use for rules is for specifying options to a function, which are 
named arguments of the form name->val ue. (This is in contrast to ordinary positional 
arguments, whose names are inferred from their position in the sequence of arguments 
to the function.) Since options carry their names with them, they don’t have to appear in 
any particular order — in fact, they don’t have to appear at all. Options are thus useful 
for functions that take a lot of parameters (such as the graphics functions), or for param
eters that are used infrequently. Options are always given after all positional arguments.

You can get a list of the options for a function (and their default values) by using 
O p tio n s[symbol].

These are the options for the O p t io n s  [ F a c to r  I n t e g e r ]
built-in function F a c to r -  T
In te g e r  (F a c to rC o m p le te  - >  T r u e ,  G a u s s ia n ln te g e r s  ->  F a ls e )

397 cannot be factored over F a c t o r l n t e g e r  [ 39 7 ]
the ordinary integers. { { 3 9 7  1 } }

But it can be factored over F a c t o r l n t e g e r  [ 3 9 7 .  G a u s s ia n ln te g e r s  ->  T ru e ]
the Gaussian integers. { { _ I f  1 K  {fi +  i g  ^  1}> { i g  +  g ^  1 } )

If you make a lot of calls to a function with the same option specifications, you may 
find it advantageous to change the default options for the function. You can do this with 
SetO ptions:



SetOptions returns the 
new set of default options.

N ow  Eactorlnteger 
behaves as though 
Gaussianlntegers -> 
True were specified on 
every call.

SetOptions[Factorlnteger, Gaussianlntegers -> True]
{FactorComplete -> True, Gaussianlntegers -> True)

Factorlnteger[397] 
{ { - I ,  1 ) ,  ( 6  +  19 I , 1 } ,  ( 1 9  + 6  1 ,  1 ) }

2.3.10 Control flow
Although Mathematica contains functions for conditional execution such as I f  and 
Switch, and loop-control functions such as Do, While, and For, there is no special 
syntax for any of these. The reason for this is that they aren’t used all that frequently. 
We’ll discuss these functions in Chapter 4, “Procedural Programming.”

2.3.11 Syntax traps for the unwary
There are a couple of features of the Mathematica parser that are intended to make 

f l y  input more natural for users, but can result in unintended consequences if you are not 
aware of them.

First of all, a space may be used instead of an asterisk to signify multiplication. This 
looks much like standard mathematical notation when symbols are being multiplied 
together:

a b
a b

In very special cases, even the space is unnecessary. The author knows of only two such 
cases. The first is when a number is followed by a nonnumeric character:

Since symbol names cannot 2 a
begin with a digit, this is ^ a
interpreted as multiplica
tion.

The second is when two symbols are separated by a delimiter such as a parenthesis or a 
list brace:7

The parenthesis between the a (b  +  c )
symbols a and b implies
multiplication.

7. This works for either left or right parentheses and list braces. It also works for sin
gle and double square brackets, but only on the right, of course, since a [b] is a 
function call and a [ [b] ] is a subscripting operation.



Note that Mathematical output always shows a space between symbols that are con
sidered distinct, even if you leave the space out of the input. Conversely, if you don’t 
see a space, Mathematica doesn’t consider them to be distinct symbols.

This is a frequent source of errors. As a general rule, it’s a good idea to use spaces (or 
parentheses) even when it’s not strictly necessary; this improves readability in addition 
to avoiding errors.

The second feature that can entrap users, which is specific to the notebook interface, 
is the ability to enter multiple expressions in a single input cell. The problem is that if 
you have an expression that doesn’t all fit on a single input line, Mathematica may try 
to interpret it as multiple expressions.

The way to avoid this problem is to make sure that you never end an intermediate line 
of input in any way that might allow Mathematica to construe that linp. as a complete 
expression (unless it really is, of course).

If there are unmatched delimiters (parentheses, square brackets, or list braces) at the 
end of a line, Mathematica will not consider the expression to be complete.

Attempting to end an input cell with some delimiters unmatched will, of course, 
result in an error message.

Mathematica  interpreted the 
tw o characters as a single 
symbol called ab.

ab
ab

Here's proof. {a b / a, ab / a}

This is interpreted as two 
separate inputs. The second 
line causes a parse error.

3 * 4  + 5 
*  2

17

Syntax::sntxb: Expression cannot begin with "* 2".
If you are really unlucky, 
you might not even get an 
error message. Here, the

3 * 4 
+ 5 * 2
12leading +  is interpreted as a 

unary operator.
10

Here is how to fix the exam
ple shown above.

3 * 4  + 
5 * 2
22

Sqrt [3 * 4 
+ 5 * 2 ]
Sqrt[22]



Sqrt[3 * 4
Syntax::sntxi: Incomplete expression.

Exercises
1. How does Mathematica interpret each of the following expressions, and why?

aAbc
aA2bc

2. What is the result of evaluating the following input in a single input cell?

{2 + 3.
4 + 5 
6 + 7

}

Do you understand what happened?

2.3.12 Symbol information
Inform ation about any symbol can be obtained with the syntax ?name.

Here's some information ? Factorlnteger
about the Factorlnteger Factorlnteger [n] gives a list of the prime factors of
function. integer n, together with their exponents.

You can get even more ? ?FactorInteger
detail using tlname. Factorlnteger [n] gives a list of the prime factors of

the integer n, together with their exponents.
Attributes[Factorlnteger] = {Listable, Protected}
Options[Factorlnteger] =

{FactorComplete -> True, Gaussianlntegers -> False}

You can get information ?Gaussianlntegers
about any symbol notjust Gaussianlntegers is an option for Factorlnteger,
function names. PrimeQ, Factor and related functions which

specifies whether factorization should be done over 
Gaussian integers.

The asterisk can be used to do wildcard searches for symbol names.

Here are the names of all ?‘Solve*
functions that contain the DSolve NDSolve SolveAlways
word Solve. (Not all of DSolveConstants NSolve SolveDelayed
these appear in version 2.2.) LinearSolve Solve $DSolveIntegrals

MainSolve

Note that in version 3.0, Iname and 11 name are expressions that return N ull (the 
information that appears on the screen is printed, rather than being returned as a value).



However, in version 2.2 ?name and ? 7 name are not expressions, and the ? character 
will cause an error unless it is the first character on an input line.

?FactorInteger
Syntax::sntxf:

" " cannot be followed by "?FactorInteger".

The Mathematica Book calls this type of syntax special input. Other special input 
sequences are I command (executes an external command8) and ! ! f i l e  (displays the 
contents of a file). These last two must appear at the beginning of a line, even in version 
3.0, or else the exclamation character is interpreted as the logical negation function 
Not. You might think of special input as being analogous to the # in C or the continua
tion character in Fortran.

Exercises

1. Find all system-defined symbols containing the word P lo t.
2. If you have version 3.0, determine the internal representation of the expressions 

Iname and ? 7name. (Users of version 2.2 should skip this exercise.)

8. This feature is operating-system-dependent.
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3
Lists and Strings

Lists are the basic data structure used in Mathematica programs. In addition to 
extracting parts of a list, you can Append, Prepend, I n s e r t ,  or D ele te  parts to/from 
a list; Take or Drop an arbitrary number of parts from the front, back, or middle; 
R o ta te  it left or right; S o rt it; R everse it; “wrap a function around” every part in it 
(Map); Count parts that match a specification; and more. Operations on multiple lists 
include Jo in  (concatenation), Union, In te r s e c tio n ,  and Complement. In this chap
ter we will cover the basic repertoire of list operations; even more sophisticated opera
tions on lists will be discussed in Chapter 5, “Functional Programming.”

We conclude this chapter with a brief discussion of string operations, because they 
are in many ways analogous to list operations.

3.1 List Basics

3.1.1 List input and output
A list is composed of a sequence of expressions, separated by commas and enclosed in 
curly braces.

Here is a list of three expres- listl =  { a ,  N [ P i ]  , Sqrt[3]}
SIOnS' {a, 3.14159, Sqrt [3]}

Since each part of a list is an expression, as is an entire list, lists can contain other lists.

Here is a nested list whose l i s t 2  =  { l i s t l ,  { d .  { e .  f } } }
parts are also lists. The sec- , ,  0
ond part of the second sub- { { a ’ 3 - 1 4 1 5 9 > S q r t  [ 3 ] } .  { d .  { e .  f } } ]
list is also a list.



The TableForm output for- TableForm [list2]
mat prints a list in tabular a 3 . 1 4 1 5 9  Sqrt [3]
form. '

d f

Rectangular nested lists (i.e., lists in which the sublists at any given level of nesting 
have the same length) are used to represent matrices (in row-major form).

mat = {{all, al2, al3}, {a21, a22, a23}};

The MatrixForm output for- MatrixEorm [mat] 
mat prints a list as a matrix, a l 2  a i 3
when possible. a 2 2  ^

Note that a rectangular nested list could be formatted using either MatrixForm or 
TableForm. The difference between the two is that MatrixForm pads the columns of 
the output so that they have equal width, whereas TableForm does not.

TableForm[{list1, {d, e, f}}]
a 3.14159 Sqrt[3]
d e f
MatrixForm[{list1, {d, e, f}}] 
a 3.14159 Sqrt[3]

Both formatting commands accept options that control item alignment, row and column 
spacing, table headings, and so forth. See [Wolfram 91] §2.7.6 or [Wolfram 96] §2.8.8 
for specifics.

3.1.2 Extracting parts of lists
To extract a part from a list, use double square brackets. The parts are numbered start
ing with 1. The time required to extract any part is independent of the part being 
accessed.

listl [ [3]]
Sqrt [3]

You can extract multiple parts at a time by using a list of indices. The result is a list 
of items, in an order corresponding to the indices.

listl[[{3, 2}]]
{Sqrt[3], 3.14159)

Extracting a part from a nested list can be accomplished by using a comma-separated 
sequence of indices inside the double square brackets.



This expression is equivalent 
to l i s t 2 [ [ 1 ] ] [ [ 2 ] ] .

Since matrices are stored by 
rows, index i  extracts the 
i th  row.

You can transpose the rows 
and columns of a matrix.

To get the i th  column, 
extract the i th  row of the 
transpose.

To extract a submatrix con
sisting of rows r l ,  r2,  ... 
and columns c l ,  c2 , ..., 
use an index of the form 
[ [ I r l .  r 2 ,  . . . } ,
I d .  c2.  . . . } ] ] .

The internal form of the expression s [ [ i , j , . . .  ] ] is P a r t [s , i .  j ,  . . . ] . A 
difficulty arises when one has a list of integers that one wants to use as a single, multi
dimensional index. As demonstrated above, passing a list of integers to P a r t  is not the 
same as passing the integers themselves — a list of integers is interpreted as multiple, 
one-dimensional indices. For example,

This extracts part 2 followed subs =  1 2 ,  1 } ;
by part 1 from mat. mat  [ [s u b s ] ]

U a 2 1 ,  a 2 2 , a 2 3 ) ,  { a l l .  a l 2 ,  a l 3 }}

In version 2.2 there are several ways around this problem that involve the use of 
some fairly sophisticated programming techniques (see page 197). In version 3.0, how
ever, there is a new function, E x tra c t, that is tailor-made for this problem. E x tra c t is 
similar to P a r t  except that the indices are specified in a list:

E x t r a c t [ m a t , subs]
a 2 1

Furthermore, E x tra c t allows you to specify multiple, multidimensional indices.

There is no way to do this E x t r a c t  [m a t , { { 1 ,  2 } .  { 2 .  1 } } ]
using a single P a r t  com- [a.12 a l l )
mand. ’

E x tra c t has additional features that we will explore in Section 7.3.2, “Part extrac
tion and replacement.”

Iist2 [[1 , 2 ]]
3.14159

mat [[2 ]]
{a21, a22, a23)

Transpose[mat] // MatrixForm
all a21  

al2 a2 2  

al3 a23

Transpose[mat][[2]]
{al2 , a2 2 }

mat[[{l, 2}, {1, 3}]] // MatrixForm
all al3 
a21 a23



Exercises
1. What happens if the list passed to MatrixForm is not rectangular?
2. Extract the symbol xyz from the list {a, {b, c} , {{x, {xyz, y} , z}}}using 

indexing.
3. Given a permutation of the integers 1 through n as a list, e.g., {2, 1 , 3, 5, 4}, 

show how to permute any other list of length n into this order. In other words, turn 
{a, b , c , d, e} in to{b , a , c , e , d}.

3.2 Generating Lists
Entering a list directly is fine for small lists, but for large lists some kind of automation 
is a necessity. There are three general-purpose automated list generators:1 Range, 
Array, and Table. In addition, there are a few special-purpose generators for matrices.

3.2.1 Range
Range can be used to generate a list of numbers in an arithmetic progression.

In its simplest form,
Range [n] generates a 
sequence of the positive 
integers that are less than 
or equal to n.

If you pass two arguments to 
Range, they are taken as the 
starti ng and end i ng poi nts of 
the sequence.

A third argument specifies 
the step size.

Note that the range specifi
cations do not have to be 
integers.

Range[5]
(1, 2, 3, 4, 5)

Range[4, 12]
{4, 5, 6 . 7, 8 , 9. 10, 11, 1 2 )

Range[4,
(4, 6 , £

1 2 , 2]
, 1 0 , 1 2 )

Range[2/3, 5.5, 9/11]
,2 49 76 103 130 157
3' 33’ 33’ 33 ’ 33 ’ 33

3.2.2 Array
A rray [ f ,  n] or A rray [ f ,  [n } ] , where f  is a function of a single variable, creates 
the list { f [ l ]  , . . . .  f [ n \ } .

1. In addition to the operations discussed in this section, you can also read data from a 
file directly into a list using the ReadList function (see Section 12.4, “High-Level 
Input”).



Here is a table of the first 10 A r r a y [ P r im e ,  10]
prime numbers. (2> 3> 5> n >  1 3 _ lg >  2 3   ̂ 2 g )

Given a function of multiple arguments and multiple bounds, A rray will generate a 
matrix. In this case the list braces around the second argument are not optional.

Array [Less, {3, 4}]
{{False, True, True, True),

{False, False, True, True),
{False, False, False, True})

It is easier to understand Array[f, { 3 ,  4 } ]

symbol i c°hea^ t h a t d o e s n ^  ^
evaluate. (f [2- ^  ■ f t2- 2] ■ f t2’ 3 >̂ f [2, 4]}.

If [3 , 1] , f [3, 2 ] , f [3, 3] , f [3, 4] }}

An optional third argument to Array specifies the base for the index (or indices). Com
pare the next input to the previous one to see why multiple indices must be enclosed in 
list braces.

Array[f, 3, 4]
{f [4] , f [5] . f [6 ] }

3.2.3 Table
Table is the most general of the iterators. It takes a m inim nm  of two arguments: an 
expression to be iterated and one or more range specifications of the form W ar, 
s t a r t ,  end, s te p } . The result is a list of the expression iterated over the given 
range(s).

Here's another way to gen- Table [Prime [i] , {i, 1 ,  1 0 , 1 } ]
erate the table of primes. {2> 3> 5 _ n >  1 3 _ 1?> ig >  2 3 _ 2g}

A range specification with T a b le  [ x A2 -  4 x ,  { x ,  3 ,  7 } ]
only three parts is inter- j _ 3  q 5  1 2  2 ^ ,
preted as I v a r ,  s t a r t ,  . . .  .
end, 1 }.

Note that the first argument to Table is an expression that depends on an explicit itera
tion variable, which is specified in the second argument. Contrast this with Array, in 
which the iteration variable is implicit.

If there is more than one iterator, the resulting list is multidimensional. The last iter
ator varies most quickly.

A range specification with T a b l e [ a [ i ,  j ]  , { i ,  2 } ,  { j  , 2 ,  4 } ]
only two parts is interpreted { { a [  2]  a [  3]  a [  4]  ,
as Ivar, 1 , end, 1 }.  , r , P ,  r , ,{a [2 , 2] . a [2 , 3] , a[2, 4] )}



The range specification can T a b le  [R andom [] , {3  } ]
even om itthe variable name { 0 . 3 1 2 4 5 1 ,  0 . 0 5 5 4 5 3 3 ,  0 . 7 6 7 9 9 5 )
in cases where the name 
does not appear inside the 
expression to be iterated.

3.2.4 Generating matrices
In addition to the general-purpose list-generating commands just presented, there are
two special generators just for matrices:

IdentityMatrix[4 ]

{{1, 0, 0, 0), {0, 1, 0, 0), {0, 0, 1, 0), {0, 0, 0, 1}}

DiagonalMatrix[{a, b, c, d}]
{ { a ,  0 , 0 , 0), ( 0 , b ,  0 , 0}, {0, 0, c ,  0), {0, 0, 0, d}}

Exercises
1. Generate a list of (a) the first 10 integers, (b) all integers between 30 and 40, (c) all 

of the odd integers between 30 and 40.
2. Generate a list of values of the B esse lJ  [0, x] function at the points 1, 1 .5 ,  2, 

2 .5 ,  . . . .  10.

3. Create a 2-D list of values Binomial [ i  + j  , i ]  for integer values of i  and j  run
ning from 0 (not 1) up to some integer. Display this list using TableForm.

4. Modify the answer to the previous exercise so that the table takes on an upper-trian
gular form. (Hint: You can make the upper limit for j  depend on i.) Do you see a 
well-known pattern?

3.3 Listable Functions
Virtually all of the built-in numerical functions (and a few symbolic ones as well) can 
take lists as arguments, which they operate upon element by element. This feature is 
called listability. For example, the following expression takes the square root of each 
element of the list.

Sqrt[{a, b, c}]
{ S q r t [ a ] ,  S q r t [ b ] , S q r t [ c ] )

Contrast the above with S q rt [ a , b , c ] , which would generate an error message.

If the function takes multiple arguments, then zero or more of the arguments can be 
lists, so long as all of the list arguments are the same length.

Here the first argument to { a ,  b ,  c }  A d
Power is a list. d d d

{a  , b , c }



Here the second argument a  A { d ,  e ,  f }
is a list. j  _p, d e x

la , a , a }

And here both arguments { a ,  b ,  c }  A { d ,  e .  f }
are lists. The function is d e f
applied element by ele- (a  , b , c }
ment.

This fails because the lists { a ,  b ,  c }  A { d ,  e }
are not the same length. T h re & d . . t d l e n .

(d ,  e}
O b je c ts  o f  u n e q u a l le n g t h  I n  { a ,  b .  c }  

c a n n o t b e  c o m b in e d .

, , , { d ,  e )
( a .  b,  c}

Listability makes it possible to do computations on entire lists as easily as on single 
elements (i.e., vector arithmetic). Note that although lists can be thought of as vectors, 
multiplying two lists results in an element by element multiplication rather than a dot 
product. To do otherwise would not be consistent with the way the other arithmetic 
operators work on lists.

This is element-wise multi- { a ,  b ,  c }  { d ,  e ,  f }

P,ication- ( a  d,  b e.  c f )

Use the operator if you { a ,  b ,  c }  . { d ,  e .  f }
w ant a dot product. a d  +  b e  +  c f

Listable functions also work on matrices, albeit in a two-step process that normally 
is invisible. We can expose the inner workings of this process using Trace:

First the P lu s  operation is T r a c e [ { { x l l ,  x l 2 } ,  { x 2 1 ,  x 2 2 } }  +  y ]
''pushed inside" the matrix ( { {  x l 2 }  { x 2 2 ) }
to operate on each row; '
then it is "pushed inside" { { x l l ,  x l 2 ) +  y ,  { x 2 1 , x 2 2 ) +  y ) ,
each row, eventually operat- { { x l l ,  x l 2 ) +  y ,  { x l l  +  y ,  x l 2 +  y l ) ,
ing on each element of each { { x 2 1 , x 2 2 } +  y ,  { x 2 1  +  y ,  x 2 2  +  y } ) ,
row- { { x l l  +  y ,  x l 2  +  y } , { x 2 1  +  y ,  x 2 2  +  y } ) }

The same mechanism allows one matrix to be added to another (having the same 
dimensions, of course); you should trace a small example to see it at work.

Even assignment is listable, which is very handy indeed:

This assigns 1 to x  and 2 { x . y> = { 1 , 2 }
to y.

{ 1 , 2 }

Here is a one-liner that { x . y }  = t y .  x } ;
swaps the values of x  and y. { x . y>

{ 2 , 1 }



To find out if a function is listable, check its attributes.

S q rt is a listable function. A t t r i b u t e s  [ S q r t ]

{Listable, NumericFunction, Protected}

You can make your own functions listable simply by adding this attribute to them.

Dr

This function is not listable. g r e a t e r 2  [x _ ]  :=  x  > 2
greater2[{l, 2, 31]
( 1 .  2 ,  3 }  > 2

Now the greater2 function SetA ttrib utes [greater2 , L istab le]
will work on list arguments. g r e a te r 2 [{ l, 2, 3}]

{False, False, True} }

Just be certain that it makes sense to do so. For example, when the first argument to 
P lo t  is a list, the function produces a single plot with several curves on it, not several 
individual plots. If the P lo t function were L is ta b le , it could never “see” a list argu
ment and this behavior would be impossible.

Caveat: C lear [f] removes definitions for f , but does not remove attributes. Use 
C le a rA ll[f]  to do both.

All of the built-in numerical functions (e.g., P lus, Sin, Gamma), predicates (e.g., 
IntegerQ , PrimeQ), and some symbolic functions (e.g., Together, ToExpression) 
are listable. An inventory of Mathematica’s listable functions can be found in Table 3-1 
on page 67. See Exercise 5.2.1.3 to learn how that table was generated.

Exercises

1. Generate a list of the square roots of all the odd integers between 1 and 20 without 
using Table or Array.

2. Given a list of coefficients of a polynomial (from low order to high order, including 
explicit zeros), generate that polynomial using Table and Dot.

3.4 Getting Information about Lists
There are several functions for querying the structure or contents of a list.

You can find the length of a L ength[{a, b, c}]
list. 3

You can obtain the dimen- Dimensions [ { Ca, b, c } ,  {d, e , f} } ]
sions of a matrix. The length 
of this list is 2 .

{ 2 ,  3 }



The MemberQ function tests 
a list for membership of a 
given expression.

The Count function returns 
the number of expressions 
in the list that match a test 
expression.

The P o s it io n  function 
returns the positions of the 
matches.2

{MemberQ[{a, b, c}, a], MemberQ[{1, 2, 3}, a]}
{True, False)

{Count[{a, b, a, c}, a], Count[{a, b, a, c}, d]}
( 2 , 0 }

Position[{a, b, {a, c}}, a]
{ { 1 } ,  { 3 ,  1 } }

A predicate is a function that tests an expression for some property and always 
returns either True or F a lse  (for example, MemberQ). Mathematica contains many 
built-in predicates. Most functions ending in the letter Q are predicates, and vice versa. 
(The exceptions to this rule are EllipticNomeQ, HypergeometricPFQ, In v erse - 
EllipticNomeQ, LegendreQ, and P a rtitio n sQ , which are not predicates.)

This displays the names of 
all functions that end in the 
letter Q. Nearly all of these 
are predicates. (Some of 
these appear only in version 
3.0 or later.)

?*Q
ArgumentCountQ MatrixQ
AtomQ MemberQ
DigitQ NameQ
EllipticNomeQ NumberQ
EvenQ NumericQ
ExactNumberQ OddQ
FreeQ OptionQ
HypergeometricPFQ OrderedQ
InexactNumberQ PartitionsQ
IntegerQ PolynomialQ
IntervalMemberQ PrimeQ
InverseEllipticNomeQ SameQ
LegendreQ StringMatchQ
LetterQ StringQ
LinkConnectedQ SyntaxQ
LinkReadyQ TrueQ '
ListQ UnsameQ
LowerCaseQ UpperCaseQ
MachineNumberQ ValueQ
MatchLocalNameQ VectorQ
MatchQ

Mathematica contains several functions that allow you to test the expressions in a list 
with some predicate.

S e le c t  picks out expres
sions in a list that satisfy a 
predicate.

Select[{a, 3, b, 2.7, 5}, IntegerQ]
( 3 ,  5 )

2. Note that the form of the return value of P o sitio n  is suitable for input to some 
other functions, such as E xtract (Section 3.1.2) and ReplacePart 
(Section 3.5.1).



V ectorQ  tests a list to see if 
it is a vector (i.e., a one
dimensional list).

{VectorQ[{a, b, c}], VectorQ[{a, {b, c}}]} 
(True, False)

An optional second argu
ment to V ectorQ  is a predi
cate that every element of 
the vector must satisfy.

{VectorQ[{a, b, c}, IntegerQ], 
VectorQ[{1, 2, 3}, IntegerQ]}

(False, True)

M a tr ix Q  is the analog of 
V ectorQ  for matrices.

{MatrixQ[{{a, b}, {c, d}}],
MatrixQ[{{a, b}, {c, {d, e}}}]}

(True, False)

Incidentally, there are four more functions that test their argument for a property but 
are not, strictly speaking, predicates: P o s itiv e , N onPositive, N egative and Non
N egative. These are not true predicates because if their argument is nonnumeric, they 
simply do not evaluate.

1. What happens when Dimensions is applied to a list that is not a matrix?
2. Write a one-line expression that tests a list to see if all of its entries are odd integers.
3. Write a one-line expression that tests a list to see if it is a matrix of negative num

bers.
4. Write a one-line expression that tests a list to see if all of its parts are identical. 

(Hint: Find the number of parts in the list that are identical to the first one.)

All of the operations discussed in this section modify a copy of the original list and 
return the copy, leaving the original list unchanged. Only two operations (AppendTo 
and PrependTo) overwrite the original list with the new list. This means you can 
experiment almost endlessly on a data set without worrying about overwriting it; on the
other hand, it also means that the memory used by your Mathematica session will grow 
by leaps and bounds unless you take care to release the memory (by using C lear) used 
by lists that you don’t need anymore.3

You can add expressions to a list at its beginning, end, or anywhere in between.

3. In version 3.0, the global variable $HistoryLength can be used to limit the num
ber of inputs and outputs that Mathematica keeps track of in a session.

Positive[a]
Positive[a]

Exercises

3.5 Manipulating Lists

3.5.1 Operations on a single list



l i s t 3  = la, b ,  c ,  d , e } ;

Note that the original list has 
not been modified.

Append[list3, 42]
( a ,  b ,  c ,  d , e ,  4 2 }

Prepend[%, {x, y}]
t ( x ,  y } , a ,  b ,  c ,  d ,  e ,  42}

Insert[%, N[Pi]. 4]
{ ( x ,  y } , a ,  b ,  3 . 1 4 1 5 9 ,  c ,  d .  e ,  42}

list3
{ a ,  b ,  c ,  d ,  e}

The functions AppendTo and PrependTo work just as their counterparts Append 
and Prepend do, except that they modify their first argument. In other words, 
AppendTo [ l i s t , elem ] is equivalent to l i s t  = Append [ l i s t , e lem \.

M ake a copy of l i s t 3 .

The return value of 
AppendTo is the same as 
that of Append.

However, the original list 
has been modified.

I i s t 4  =  l i s t 3

{ a ,  b ,  c ,  d , e }

A p p e n d T o [ l is t 4 ,  4 2 ]

{ a ,  b ,  c ,  d , e ,  4 2 }

l i s t 4

{ a ,  b ,  c ,  d , e ,  4 2 }

You can replace any part of a list by another expression using R eplacePart:

R e p l a c e P a r t [ l i s t 3 , n ew , 2]

{ a , n e w , c , d , e }

R e p la c e P a rt does not 
modify the original list.

You can specify a multidi
mensional index inside list 
braces.

You can specify several 
independent indices using a 
nested list.

I i s t 3

( a ,  b , c ,  d ,  e }

R e p la c e P a r t [ m a t ,  n ew , 1 2 ,  3 } ]

{ { a l l ,  a l 2 , a l 3 } . { a 2 1 , a 2 2 , new} }

R e p la c e P a r t [ m a t , n ew , { { 1 } ,  1 2 .  3 } } ]

{n ew , { a 2 1 , a 2 2 , new} }

Starting with version 3.0, R ep laceP art has been enhanced so that you also can 
specify which part of the new expression to use as a replacement. For example,

ReplacePart[{( a l , a2, a3}, {bl, b2, b3}},
{{cl, c2}, {dl. d2}}. {{1}, 12, 2}}, {1, 2}]

{c2, {bl, c2, b3}}



There are more advanced uses of this technique that we will discuss in Section 7.3.2.

To extract contiguous items from a list, use Take or Drop. There are three forms of 
each function.

This takes the first 2 parts 
from the list.

This takes the last 2 parts 
from the list.

This takes parts 2 through 4  
from the list.

Drop is used the same way 
as Take, but it extracts the 
complement of what Take 
does.

T a k e [ l i s t 3 , 2]

{ a ,  b )

T a k e [ l i s t 3 ,  - 2 ]

i d ,  e l

T a k e [ l i s t 3 ,  1 2 ,  4 } ]

{b , c ,  d}

{ D r o p [ l i s t 3 , 2 ] ,  D r o p [ l i s t 3 ,  - 2 ] ,  D r o p [ l i s t 3 ,  { 2 ,  4 } ] }

( { c , d ,  e } , { a ,  b ,  c ) , { a ,  e ) )

You can rearrange the parts of a list by rotating, reversing, or sorting the list.

You can rotate in either 
direction.

Here is a list of five random 
integers between 1 and 1 0 0 .

{ R o t a t e L e f t [ l i s t 3 , 1 ] ,  R o t a t e R i g h t [ l i s t 3 , 2]}
{{b, c,  d,  e,  a ) ,  (d,  e,  a,  b,  c })

R e v e r s e [ l i s t 3 ]

{e, d, c,  b,  a}

T a b le [R a n d o m [ In te g e r ,  { 1 ,  1 0 0 } ] ,  { 5 } ]

{83, 77, 90, 9, 60}

S o r t  [%]

{9, 60, 77, 83, 90}

You can flatten a list, which removes extraneous braces. This is useful when built-in 
functions such as Solve return an unnecessarily deeply nested result.

F l a t t e n [ { { { a }  , b } , {c, { d ,  { e .  f } } } } ]

{a, b,  c,  d,  e,  f )

You can restrict the amount 
of flattening with an 
optional second argument.

Flatten[{{{a}, b}, {c. {d, {e, f}}}}, 1]
{{a}, b,  c,  {d, ( e ,  f }}}

Flatten[{{{a}, b}, {c, {d, {e, f)}}}, 2]
{a, b,  c,  d, ( e ,  f }}

3.5.2 Operations on multiple lists
You can concatenate one list onto another.



J o i n [ { a ,  b ,  c } , { d ,  e ,  f } ]

( a ,  b ,  c ,  d , e ,  f }

Lists can also be treated as sets in the mathematical sense using the functions Union, 
In te r s e c tio n , and Complement. Note that all of these functions return a list that is 
sorted and has no duplicates.

U n io n [ t b ,  c ,  a ,  d } , { e ,  b ,  d } ]

( a ,  b ,  c ,  d , e )

I n t e r s e c t i o n [ { b ,  c ,  a ,  d } , { e ,  b ,  d } ]

tb ,  d )

C o m p le m e n t[ ( b , c ,  a ,  d } , { e ,  b ,  d } ]

( a ,  c }

Incidentally, calling any of these functions with a single list argument sorts the list 
and removes duplicate elements from it.

Exercises

1. Use Jo in  to write functions that behave like Append and Prepend.
2. Write a function called SubsetQ that determines if its first argument is a subset of 

its second argument and returns True or F alse .

Sometimes you want to apply a function to each part of a list. If it is a built-in, listable 
function, this is no problem; for example,

Odd Q[ { 1 ,  2 ,  3 } ]

{ T r u e ,  F a ls e ,  T r u e )

However, if the function is user-defined, this simple approach won’t work. For exam
ple, suppose you would like to test each expression in a list to see if it is greater than 2.

One way to create the desired result would be to give g rea te r2  the L is ta b le  
attribute, as discussed in Section 3.3. This isn’t always desirable, however, as we’ll see 
below. Another strategy would be to use Table to construct each individual result:

T a b l e [ { 1 ,  2 ,  3}[[i]] > 2 .  { i ,  3}]
{ F a ls e ,  F a ls e ,  T r u e )

3.5.3 Mapping functions onto lists

First define an appropriate 
predicate.

C l e a r A l l [ g r e a t e r 2 ]  
g r e a t e r 2 [x _ ]  :=  x  > 2

Passing the entire list to the 
predicate doesn't work.

g r e a t e r 2 [ { l ,  2 ,  3 } ]

{ 1 ,  2 ,  3}  > 2



This solution is inelegant and inefficient, however. This kind of operation is so common 
that there is a built-in function, Map, that does it. Map simply wraps a given function 
around each part of a list.4

M a p [ f ,  { a ,  b ,  c } ]

{ f  [a ]  , f  [b ] , f  [ c ] }

In the current example, the function we want to map is g rea te r2 :

Map [ g r e a t e r 2 , { 1 ,  2 ,  3 } ]

{ F a ls e ,  F a ls e ,  T ru e }

There also are many built-in functions that aren’t listable. There’s a simple reason for 
this: Any function that expects a list as an argument can’t be listable, or it wouldn’t 
work correctly. For example, consider the F i r s t  function, which returns the first part 
of a list. If F i r s t  were listable, then an expression like F i r s t  [ {1, 2, 3 } ] (which 
should return 1) would be converted to { F ir s t  [1] , F i r s t  [2] , F i r s t  [3]}, which 
is nonsense.

Why might you want to map a function like F i r s t  onto a list? If the list had sublists, 
of course! Since a matrix is stored as a list of lists, in which each sublist is a row of the 
matrix, then extracting the first part from each sublist (row) is equivalent to extracting 
the first column of the matrix:

Here is a 2 x  2 matrix. A r r a y  [ a .  { 2 ,  2 } ]

{{a  [1 , 1] , a [1, 2 ] }, {a  [ 2  , 1] , a [ 2 , 2 ] ]}

And here is its first row. F i r s t  [%]

{a  [ 1 , 1 ] , a [ 1 , 2 ] )

O n the other hand, here is Map [ F i r s t . %%]
its first column.  { a [ 1 >  x]  _ a [ 2 >  1 ] }

Because Map is so useful, there is a special input form for it that is fairly common.

g rea te r2 /@ {1, 2, 3}
{ F a ls e ,  F a ls e ,  T r u e )

Exercises
1. Use Map and the built-in function L ast to extract the last column of a matrix.
2. Use Map to extract the second column of a matrix. Hint: First define a function that 

takes a list as an argument and returns the second part of the list.

4. Note that this is not quite the same thing as making the function L istable,
because it works only for functions of a single argument. A more general operation, 
MapThread, is discussed in Section 5.2.1.



3.5.4 Modifying lists in place
All of the operations we have seen so far (with the exception of AppendTo and 
PrependTo) are side effect-free. That is, they do not change the original list; instead, 
they make a copy of it and modify the copy, which is returned. When you are working 
with a very large list, however, it may save a lot of memory to modify the original list. 
Indexing can be used on the left side of an assignment operator for this purpose.

Note that the assignment 
operator returns the value 
being assigned, not the new 
list.

The original list has been 
modified.

I i s t 5  =  { 1 ,  2 ,  S q r t  [ 3 ] }  
l i s t 5 [ [ 2 ] ]  =  L o g [7]

{ 1 ,  2 ,  S q r t [ 3 ] }

Log  [7]  

l i s t 5

{ 1 ,  L o g [ 7 ] ,  S q r t [ 3 ] }

Hr
Working with large lists in this way can lead to some unexpected performance penal

ties. We’ll deal with this problem in Section 10.2, “Procedural Perils.”

3.6 Character Strings
Although character strings are not lists, we discuss them in this chapter because most of 
the operations on them are so similar to the operations defined for lists. Furthermore, it 
is a simple matter to convert a character string into a list of individual characters (and 
back again), so that any list operation can be applied to them.

3.6.1 Getting information about strings
StringL ength  and S tr in g P o s it io n  are analogous to the Length and P o s itio n  
operations on lists.

Here's a string consisting of 
the first 1 0  letters of the 
alphabet.

S tr in g L e n g th  is analogous 
to Length.

You can find all the posi
tions of a given substring 
within a string. The return 
value is a list o f { s t a r t ,  
end} pairs.

s =  " a b c d e f g h i j"

a b c d e fg h i j

S t r in g L e n g t h [ s ]

10

S t r i n g P o s i t i o n [ s ,  " c d " ]

{ { 3 ,  4 } ]

S t r i n g P o s i t i o n [ " h e l l o  t h e r e " ,  " h e " ]  

{ ( 1 .  2 ) ,  { 8 , 9 } }



S tr in g P o s it io n  takes an 
option, IgnoreC ase, that 
defaults to F a ls e .

S t r in g P o s i t i o n [ " A d a " ,

{ { 3 ,  3 1 )

S t r in g P o s i t i o n [ " A d a " ,

{ { 1 ,  1 ) ,  ( 3 ,  3 } }

"a " ]

" a " ,  Ig n o r e C a s e -> T r u e ]

Several predicates are defined for strings.

s is a string. S t r in g Q  [s ]

T ru e

All characters in s are let
ters.

All characters in this string 
are digits.

These two should be self- 
explanatory.

Finally, you can test a string 
to see if it matches a string 
pattern, which is another 
string that optionally con
tains wildcard characters.

L e t t e r Q [ s ]

T ru e

D ig i t Q [ " 1 2 3 4 " ]

T ru e

{L o w e rC a s e Q [s ] , U p p e rC a s e Q [s ]}

{ T r u e ,  F a ls e }

S t r in g M a tc h Q [" th e  r a i n  i n  S p a in " ,  " * r a i n * " ]

T ru e

3.6.2 Operations on strings
As with lists, you can take or 
drop a given number of 
characters from the begin
ning, middle, or end of a 
string.

You can also insert a string 
at an arbitrary position 
within another string.

As with lists, negative 
indices count backward 
from the end.

StringTake[s, 3]
abc

StringTake[s,-3] 
h i j

StringTake[s, {4. 7}]
defg

StringDrop[s, {4, 7}]
abchij

Stringlnsert[s, "012345", 3]
abO12345cdefghij

Stringlnsert[s, "012345", -2]
abcdefghiO12345j



You can join strings to pro- StringJoin["Four", " ", "score", " and 7 years ago"]
duce a larger string. (This F o u r  s c o r e  and  7 a
also works on a list of j o

strings.)

A handy infix notation for "Four" <> " " <> "score" <> " and 7 years ago"
StringJoin is <>. Four score and 7 years ago

You can reverse a string. StringReverse [s]
jihgfedcba

One list operation that has no counterpart for strings is S o rt — presumably, the order 
of the characters in a string is significant, and you shouldn’t want to sort them.5

The analogy with lists breaks down slightly when we come to the replacement func
tion. Whereas in a list you replace parts based on their position (e.g., s [ [n] ] = . . . ) ,  
S tringR ep lace replaces based on content. The replacements are specified as rules of 
the form oldstr-> new str.

StringReplace[s, {"cd"->"X", "h"->"YY"}]
abXefgYYij

S tringR ep lace also accepts the IgnoreCase option demonstrated in the previous 
section.

The following functions have no analogues with respect to lists.

ToUpperCase[s]
ABCDEFGHIJ

ToLowerCase[%]
abcdefghij

Exercises
1. Implement a S tringC ount function that behaves as shown:

StringCount["abacab", "a"]
3

StringCount["abacab", "ab"]
2

2. Write a function that takes a string and constructs from it a palindrome (a string that 
reads the same in both directions).

5. Although you could easily write a function to do so (see the exercises in the next 
section).



3.6.3 Converting strings to/from other forms
You can break a string down into a list of characters. 

Characters[s]
(a, b, c , d. e , f ,  g , h, i ,  j}  

Note that each character is InputForm [%]
actually a string of length 1. [11 a” "b" Hc H "d" 11 e" 11 g” "h” "i" Mj M}

Thus, StringJoin reverses StringJoin  [%]
this process. abcdefghij

Alternatively, you can convert a string to a list of ASCII codes using ToC haracter- 
Code, and you can go in the reverse direction using FromCharacterCode.

ToCharacterCode[s]
(97,  98, 99, 100, 101, 102, 103, 104, 105, 106}

FromCharacterCode[%]
abcdefghij

You can convert Mathematica expressions to strings, and vice versa.

ToString[a + b + c]
a + b + c

Is that really a string? InputForm [%]
"a + b + c"

This one is a little unusual. ToString [a/b]
a
b

\n represents a newline InputForm [%]
character. This is unsuitable 
for a linear representation. "a\n—\nb"

You can specify an output ToString [InputForm[a/b] ]
format when converting to a
string.

For more information about output formats, see Section 12.3.2, “Writing to a stream,” 
or refer to [Wolfram 91] §2.7 or [Wolfram 96] §2.8.

Convert strings to Mathematica expressions using ToExpression.

ToExpression["a + b"] 
a + b



ToE xpression  w ill fail if 
the string is not syntactically 
valid Mathematica  input.

To avoid error messages, 
you can check whether or 
not a string is syntactically 
valid before attempting to 
do the conversion.

W hen you convert a string 
to an expression, Mathem a
tica attempts to evaluate it 
immediately.

You can prevent this behav
ior using T oH eld- 
E xp ress ion .

The held expression can be 
evaluated at a later time.

Exercises
1. Write a function that sorts the characters in a string.
2. Write functions to encrypt and decrypt a string by adding a constant to the character 

code for each character in the string.

3.7 Appendix: Listable Functions
Table 3-1 shows all of the functions with the L is ta b le  attribute in version 3.0 of 
Mathematica. Functions marked with an asterisk (*) do not exist in earlier versions; 
functions marked with a dagger (f) exist but do not have the L is ta b le  attribute in ear
lier versions. Functions with extremely long names appear at the end of the table.

Table 3-1 Listable functions in version 3.0.

Abs AiryAi AiryAiPrime AiryBi
AiryBiPrime Apart^ ArcCos ArcCosh
ArcCot ArcCoth ArcCsc ArcCsch
ArcSec ArcSech ArcSin ArcSinh
ArcTan ArcTanh Arg Attributes
Bessell BesselJ BesselK BesselY
Beta BetaRegularized Binomial Cancel

FullForm[%]
Plus [a, b]

ToExpression["2 +"]
ToExpression::sntxi:

Incomplete expression; more input is needed.
$Failed

{SyntaxQ["2 +"], SyntaxQ["2 + 3"]}
{False. True}

ToExpression["2 + 3"]
5

ToHeldExpression ["2 + 3"]
Hold [2 + 3]

ReleaseHold[%]
5



Table 3-1 (Continued) Listable functions in version 3.0.

Ceiling Characters ChebyshevT ChebyshevU
Coefficient^ Conjugate Cos Cosh
Coshlntegral Coslntegral Cot Coth
Csc Csch Denominator^ Divide
Divisors DivisorSigma EllipticE EllipticF
EllipticK EllipticPi EllipticTheta Erf
Erfc Erfi EulerPhi EvenQ
Exp ExpIntegralE ExpIntegralEi Exponent
Factor^ Factorial Factorial2 Factorlnteger
FactorSquareFree^ Floor FractionalPart^ FresnelC
FresnelS Gamma GammaRegularized GCD
GegenbauerC HermiteH HypergeometricOFl HypergeometriclFl
Hypergeometric2Fl HypergeometricU Im In
InString IntegerDigits IntegerPart* IntervalMemberQ^
JacobiP JacobiSymbol JacobiZeta LaguerreL
LCM LegendreP LegendreQ LerchPhi
Limit Log LogGamma Loglntegral
MantissaExponent MathieuC* MathieuCPrime* MathieuS*
MathieuSPrime MessageList Minus Mod
MoebiusMu^ Multinomial^ Negative NonNegative
NonPositive Numerator^ OddQ Out
PartitionsP^ PartitionsQ^ Plus Pochhammer
PolyGamma PolyLog PolynomialGCD PolynomialLCM
Positive Power PowerMod Prime
PrimePi* PrimeQ ProductLog* Quotient
Range Re RealDigits Resultant
RiemannSiegelZ Round Sec Sech
SetAccuracy SetPrecision Sign Sin
Sinh Sinhlntegral Sinlntegral Sqrt
StirlingSl1' StirlingS2^ Subtract Tan
Tanh Times ToExpression Together
ToHeldExpression
Zeta

ToLowerCase^
$NumberBits

ToUpperCase^ TrigFactor*

ArithmeticGeometricMean
HypergeometricOFlRegularized
Hypergeometric2FlRegularized
MathieuCharacteristicB*
RiemannSiegelTheta

EllipticThetaPrime
HypergeometriclFlRegularized
MathieuCharacteristicA*
MathieuCharacterlsticExponent*
SphericalHarmonicY
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4
Procedural Programming

In this chapter we present those features of Mathematica that correspond most 
closely to the features of procedural programming languages such as C, C++, Fortran, 
aiid Pascal. Procedural programming is a style of programming that is characterized by 
lots of small steps and pervasive use of side effects (e.g., assignments to variables) to 
convey information between those steps. It also relies on iteration (e.g., loops) to pro
cess collections of data. Generally speaking, if you see assignment statements and 
loops, the style is procedural.

While most Mathematica cognoscenti discourage the use of procedural program
ming, it can be a useful stepping-stone into Mathematica programming for program
mers whose experience lies mainly with the languages mentioned above. Bear in mind 
that most of the techniques illustrated in this chapter are but “tips of icebergs”; that is, 
they are simple manifestations of very powerful concepts that we will explore in greater 
detail in the chapters to come.

4.1 Functions
A Mathematica Junction is a programming construct that allows you to reuse pieces of 
code over and over in a convenient manner. Hundreds of functions, such as I n t e 
g ra te , Table, and P lo t, are built into Mathematica. But Mathematica also makes it 
easy for you to define your own functions, which can be just as sophisticated as the 
functions provided by the system.

4.1.1 Function definition
Here is the definition of a function that computes the area of a circle of radius r: 

area[] := Pi rA2



The expression on the left-hand side of the assignment is called the declaration of the 
function, and the expression on the right-hand side is called the body of the function. 
Whenever you use the function in an expression, the function is said to be called, and 
the value computed by the function (the return value) is substituted for the function 
call.

a r e a  []

The square brackets are a r e a
important; without them the a r e a
function won't be called.

You can see the definition of a function by asking for help on the name of the func
tion, just as you would for a built-in function.

This shows the definition w e ? a re a
have made for the symbol Q lo b a l . a r e a
area.

a r e a [ ]  : =  P i * r A2

Note, however, that the function name will not appear in the front end’s function 
browser unless you put the function in a package. We’ll discuss how you can create 
your own packages in Chapter 8, “Writing Packages.”

4.1.2 Parameters
The expression returned by the a re a  function involves a symbol called r. If this sym
bol has a value assigned to it, that value will be substituted into the body of the function 
when the function is called.

r  =  2 ; 
a r e a  []

4 P i

This is a cumbersome and error-prone way of getting values into a function; a better 
way is to use the mechanism of parameters.

Here is a redefinition1 of C le a r  [ a r e a ]
a re a  that uses a parameter a r e a [ r _ ]  :=  P i  r A2
instead of a global symbol.

The symbol r  is the parameter The underscore (_) is called Blank, which is intended to 
convey the idea “fill in the blank.” When you call this function, for example, by evalu
ating

1. F or reasons that w ill become much clearer (no pun intended) later, it ’s good practice 
to always C le a r  a function before m aking changes to its definition.



a r e a  [3 ]

9 P i

the value 3 is substituted for r  everywhere that r  occurs in the body of the function. In 
computer science lingo, r  is called the formal parameter, and the value 3 is called the 
actual parameter or argument. Note that the value returned by a re a  no longer depends 
on the value of the global symbol r  (which was set to 2 above). The global symbol r  
and the parameter r  are two completely different entities.

The blank following the formal parameter in the declaration of a function is very 
important — it indicates that the parameter is indeed a formal parameter rather than a 
literal value.

If the underscore had been C le a r  [ a r e a , r ]
omitted, as in ... a r e a [ r ]  :=  P i  r A2

then a re a  would evaluate a r e a  [ r ]
only when the actual 
parameter is literally r, P i  r 2

but not for any other actual a r e a  [ 2  ]

Parameter area [2]

I 3r
Note that when the way a function is called does not match its definition, nothing 

happens! A very common source of errors is to forget the blanks! These errors can be 
notoriously hard to track down, since you don’t get any kind of warning message, just a 
function call that “does nothing.”

Here’s a slightly more interesting example: a function with three parameters.

This function returns one q u a d [a _ ,  b _ .  c _ ] :=  ( - b  +  S q r t [ b A2 -  4 a  c ] ) /  (2  a )
root of the quadratic equa
tion ax2 + bx +  c =  0  .

One nice thing about symbolic computation is that it’s very easy to see if a function 
returns the intended result: simply call it with symbolic arguments. However, you 
should try to get in the habit of using arguments whose names are different than the 
names of the parameters, for the reason explained above.

This is a poor test of the quad  [ a , b , c ]
quad function. „

-b  +  S q r t [ b  -  4 a  c]
2  a

This is a much better test; it quad  [ d , e , f  ]
demonstrates that parameter „
substitution really is taking - e  +  S q r t  [e  -  4 d f ]
place.

Here we substitute the result d x A2 +  e  x  +  f  / .  x -> %  / /  Expand
of quad into a quadratic q
equation.



Exercises
1. The law of cosines states that if a, b, and c  are the sides of a triangle, then 

a2 = b2 + c2-  labcosQ , where 0 is the angle between sides b and c. Write a func
tion that returns the length of a when given b, c, and 0.

2. Write a function that takes a list as a parameter and returns the middle element of 
the list.

3. Write a function that takes as parameters a function of some independent variable 
and the independent variable itself, and returns a list of rules giving all critical 
points of that function (values of the independent variable where the first derivative 
is 0), e.g.,

c r it p t s [x A2 - 1, x]
{{x -> 0}]

c r it p t s [y A3 + 10 yA2 + 5 , y]

U y  -> -(§^ 1 . (y -> 0 }}

4. Write a function that takes three numerical parameters and returns True if they are 
in sorted order, F a lse  otherwise.

4.1.3 Type checking
Most procedural programming languages allow (or require!) a programmer to specify 
that the arguments to a function must be of a certain type such as integer or real. In 
Mathematica, every expression has a head that can be considered to be its “type.”

The head of any expression Map[Head, {3, 3/ 2 ,  3 + 2 1 ,  {3,  2},  a}]
can be found using (Integer, Rational, Complex, List, Symbol)Head [expr].

It is possible to specify that an argument to a function must have a certain head by 
using a formal parameter of the form name_head in the definition of the function. For 
example, the factorial function is defined only for integer arguments, so we might write 
it like this:

fact[n _In teger] := Product[i, {i, n}]

fact will evaluate for inte- fa c t  [4]
ger arguments... 24

but not for any other type. fa c t  [3.5]
fact [3.5]

Similarly, a function requiring a list as an argument could be defined as 
fu n c [ s _ L i s t ] .



Dr The kind of type checking afforded by the construct name_head is syntactic, rather 
than semantic, in nature. In other words, even though every integer is a real number and 
every real number is also complex, you can’t pass an integer to a function that is 
declared to take a real argument, or a real number to a function that is declared to taVp a 
complex argument. There is no automatic type promotion of arguments as there is in 
some other languages. This should be considered advantageous, as it gives the pro
grammer tighter control over how a function can be called. It is still possible to write a 
type-checked function that takes more than one type of argument. One way to do this is 
shown below:

The vertical bar operator is squ areA n yN um ber [ n _ In t e g e r  | n _ R e a l |
called A l te r n a t iv e s .  n _ R a t io n a l  | n _C o m p le x ] :=  n A2

The function operates on Map [s q u a re A n y N u m b e r, { 3 .  4 . 5 ,  2 / 3 ,  3 +  4 1 ,  x } ]
any type of numerical ^
argument. ( 9 ,  2 0 . 2 5 ,  —, - 7  +  24  I ,  squ areA n yN um ber [ x ] }

Furthermore, you can use Head to test the type of an argument, and react accord
ingly. Here is an example of a factorial function that is extended to the entire complex 
plane.2

The I f  function w ill be e x t e n d e d f a c t o r ia l  [ n _ In t e g e r  | n _ R e a l |
covered in detail in n _ R a t io n a l  | n _C o m p lex ] : =
Section 4 .2 .1 . I f  [H ead  [n ] =  I n t e g e r ,

( * t h e n * )  P r o d u c t [ i ,  { i ,  n } ] ,
( * e l s e  e v a lu a t e  a  p ow er s e r ie s  f o r  Gamma[ n + 1 ] * )

]

A more elegant way to accomplish the same thing is to create multiple definitions of the 
e x te n d e d fa c to r ia l  function, each one taking different types of arguments:

C l e a r [ e x t e n d e d f a c t o r i a l ] ;
e x t e n d e d f a c t o r ia l [ n _ I n t e g e r ]  :=  P r o d u c t [ i ,  { i ,  n } ]  
e x t e n d e d f a c t o r ia l [ n _ R e a l  | n _ R a t io n a l  | n _C o m p lex] :=

( *  p o w er s e r i e s  f o r  Gam m a[n+1] * )

When the argument to e x te n d e d fa c to r ia l  has head In teg e r, the first definition 
will be used; when the head is Real, R a tio n a l, or Complex, the second definition 
will be used. This is analogous to Junction-name overloading in languages such as C++ 
[Stroustrup 91]. In Mathematica, however, it is a simple use of a much more general 
mechanism, pattern matching, that we will discuss in Chapter 6.

Exercise

1. Define a function of two integers, n and r, that computes the binomial coefficient 
n ! / ( r ! ( n  - r ) !).

2. The built-in factorial function is extended in this sense.



4.1.4 Local variables
Suppose we want to modify the quad function introduced in Section 4.1.2 to return a 
list containing both roots of the quadratic equation. Since the value of the radical is 
used twice (once for each root), it would be sensible to compute it only once and store it 
in a variable. Here is how that could be done:

C le a r [q u a d ]  
q u a d [a _ ,  b _ ,  c _ ] :=  (

d =  S q r t [ b A2 -  4 a  c ] ;
{ - b  +  d ,  -b  -  d}  /  ( 2  a )

)
Here are both roots of q u a d [ l ,  - 3 ,  2]
xA2 - 3 x + 2 =  0. { 2 , 1 }

Hr

The quad function now consists of a CompoundExpression having two subexpres
sions (Section 2.3.7); these subexpressions correspond to statements in procedural pro
gramming languages. The entire CompoundExpression must be surrounded by 
parentheses, or else the parser would assume that the function ended after the first semi
colon it encountered. Note that there is no semicolon following the final subexpression 
in the function — if there were, the function would return N ull.

There’s a potentially serious problem with this definition of quad: It produces a side 
effect in the global name space. In other words, if we already had defined a symbol 
named d, its value would be trashed whenever quad was called!

d has been overwritten by d =  0 ;
the value of the discrimi- q u a d [ l ,  1 , 1 ]
nant. d

j - 1  +  I  S q r t  [3 ]  -1  -  I  S q r t  [3 ]  ^

I  S q r t  [3 ]

To avoid this problem, a symbol like d in the quad function should be made local to that 
function. This can be done by enclosing the body of the function in a Module. The syn
tax of a Module is Module [d e c la ra tio n s , body], where d e c la ra tio n s  contains 
a list of the symbols in body that are to be considered local.

Note that parentheses are C le a r  [qu ad ]
no longer necessary q u a d [a _ ,  b _ ,  c _ ] : =
because the square brackets M o d u le  [ {d }  ,
of the Module serve to =  s q r t [ b A2 -  4 a  c ] ;
delim it the body of the func- { -b  +  d .  -b  -  d } /  ( 2  a )
tion.



The value of the global sym
bol d no longer is affected 
by the call to quad.

d = 0 ;
quad[1 , 1 , 1] 
d
-1 + I Sqrt 

2
Sqrt [3] -1 - I Sqrt [3]

2

0

The d e c la ra tio n s  argument to Module allows you to specify multiple local sym
bols and, optionally, initial values for any of those symbols.

Module[{d = Sqrt[bA2 - 4 a c] , e = 2 a}, 
{-b + d, -b - d} / e

]

quad[l, 0 , -16]
(4, -4}

However, initial values should depend only on global symbols and parameters to the 
function, not on other local symbols.

An alternative to Module, for use in cases in which you need to assign a value to a 
local symbol only once, is the With function. With declares local constants, rather than 
local variables; it is similar to the l e t  function of Lisp. The example shown above 
could have been written this way:

Note that you cannot assign to d or e inside the body of the With. This is because the 
mechanism used by With is fundamentally different from that of Module: You can 
think of With [ {name = exp r} , body] as textually substituting the value of the 
expression expr  everywhere for name in body. There really is no symbol named name, 
so no assignment is possible.

On the other hand, because With doesn’t create any new symbols, it is slightly faster 
than Module. Furthermore, it is good coding style to use With instead of Module in 
cases where With will do, because it alerts someone who is trying to understand your 
code that the symbols declared therein are constants. It should come as no surprise that 
these arguments are exactly the same as the ones for using #def in e  declarations in C 
or co n st declarations in C++.

In order to make some local symbols variables and others constants, it is necessary to 
nest a Module within a With or vice versa.

This Module declares two 
local symbols and initializes 
them.

Clear[quad] 
quad[a_, b_, c_] :=

quad[a_, b_, c_] :=
With[{d = Sqrt[bA2 - 4 a c], e = 2 a}, 

{-b + d. -b - d} / e



Exercise
1. The curvature K(t) of the parametric arc s(t) = y(t), z(t)) is defined as

m  = T \t)
|v(r)l

where v(r) = s'it) and T(t) = v(f)/|v(0l • Write a function that takes a parametric 
arc (in the form of a fist of three functions) and an independent variable and returns 
K(t). Make the velocity and its magnitude local symbols. You can check your 
answer by showing that the curvature of the circular helix ( cost, sin?, t) is 1/2 
(independent of t).

4.1.5 Set versus SetDelayed
In the examples given so far we have used SetD elayed ( : =) to define functions. The 
difference between SetDelayed and S et (=) is that the right-hand side (RHS) of a Set 
is evaluated immediately, whereas the RHS of a SetDelayed is not. SetDelayed is 
almost always what you want to use to define a function, and here’s why:

Using Set, the current value a  =  3 ;
of a (3) is substituted into f o o [ a _ ]  =  a A3
the RHS of the function def- ^
inition.

The function always returns f o o [ 2 ]

2 7  27

This is another source of hard-to-find bugs. Fortunately, checking the definition of your 
function by using ?name shows this type of error immediately.

? fo o

G lo b a l ' f o o  

f o o [ a _] = 27

However, there are occasions on which Set is exactly what you need. Suppose you 
have some expression resulting from another calculation, and you want to create a func
tion that returns that expression. The following will not work:

The intention here is for N o rm a l [ S e r ie s  [B e s s e lJ  [ 0 ,  x ]  , { x ,  0 ,  3 } ] ]
g [x ]  to evaluate to the first 2 4
three terms in the Taylor _ x ___x
series approximation for 4 ”  64
B esse lJ  [0 , x ] .

g [x _ ]  : =  %



W hat happened? (* ... more calculation... *)
L o g [ 1 7 . 5 ]  :
g [ z ]

2.8622
Looking at the definition of 
g provides a clue:

Hr
?g
Global'g 
g [xj : = %

The literal % operator appears in the definition of g. In other words, every rime, g is 
called, you are reevaluating whatever result immediately preceded the call — in this 
case, Log[17.5].

The correct thing to do in this case is to use Set, so that the RHS is evaluated at the 
point of function definition.

The value returned is the 
RHS of the function defini
tion —  i.e., the % has been 
expanded.

Clear[g]
Normal[Series[BesselJ[0, x], {x. 0, 3}]] 
g[x_] = %

1 . 5_ + 5_4 64
N ow  g works as expected. Log[17.5] ; 

g[z]
2 4

1 -  —  +  —4 64

Another case in which you might want to use Set for function definition is when the 
RHS can be simplified symbolically, even before the substitution of any parameters. If 
the simplification saves a significant amount of computation, you probably want it to be 
done in advance. For example, the following symbolic integration is fairly slow:

The error message occurs 
only in version 3.0.

By using S et, the integral is 
evaluated before the assign
ment to f .

f[a_, b_] := Integrate[BesselJ[0, x] , {x, a, b}]
Timing[Table[f[0, c], {c, 1, 3}];]
Integrate::gener: Unable to check convergence 
(4.51667 Second. Null}

Clear[f]
f[a_. b_] = Integrate[BesselJ[0, x] , {x, a, b}]
Integrate::gener: Unable to check convergence

j -- - 2 -(a HypergeometricPFQ[{-; u . f , T » -



A large speedup is achieved. T im in g  [T a b le  [ f  [ 0 ,  c ] , { c ,  1 ,  3 } ] ; ]

(0.183333 Second, Null}

In the second definition of f  the integration was performed only once, when the func
tion was defined. This results in a 10-fold speedup in evaluation, which would be really 
appreciable if f  were to be evaluated many times, for example, when plotting.3

Exercises
1. Here is another common mistake:

Normal[Series[BesselJ[0, x], {x, 0, 3}]];
Clear[g] 
g[x_] = %

Execute this code and explain what went wrong.
2. Write a function that evaluates the derivative of the B esse lJ  [0, x] function for 

any x (including numerical values). Why is this easier to do using S et than using 
SetDelayed?

4.1.6 Return values
Functions should always return their values using the normal function return mecha
nism [i.e., the last expression evaluated by the function, or the argument to an explicit 
call to R eturn (Section 4.3.4), is the return value of the function].

It is considered the poorest of style to print results using P r in t  rather than to return 
them, because printed results are a computational dead-end — they cannot be used as 
input to other commands. Even if a function returns highly formatted data, it is better to 
return the raw data (in a nested list, if necessary) and allow the caller to format it as 
desired. Better yet, write a second function that formats the data returned by the first 
function.

4.2 Conditional Execution
Sometimes your code needs to take different actions depending on the value of some 
expression. Mathematica provides three conditional execution primitives: I f ,  Switch, 
and Which. Unlike procedural languages, however, these primitives are themselves 
function calls, rather than syntactic keywords.4

3. Of course, if the original intent were to plot the values of the integral, it would have
been speedier still to define f  [a_, b_] := NIntegrate [B esselJ [0, x] ,
{x , a, b}].  In this case the use of Set would cause an error (why?).

4. This is a reflection of the fact that, underneath the procedural veneer, Mathematica 
is actually a functional programming language — the topic of the next chapter.



4.2.1 If
The I f  function takes three arguments: the test, the if  branch, and the else branch.

This function calculates the a b s v a l [x _ ]  :=  I f [ x  > 0 ,  x ,  - x ]
absolute value of its argu- T a b le  [ a b s v a l  [ i ]  . { i ,  - 3 ,  3 } ]

m6nt‘ ( 3 ,  2 ,  1 , 0 ,  1 , 2 ,  3 )

Each of the arguments can be a list of expressions separated by semicolons, so
Mathematica’s I f  is just as powerful as any syntactic i f  statement. For example,

The (* th e n » ) and 
( • e ls e * )  are merely com
ments. The statements 
between them constitute a 
single argument to the I f  
function.

Note that I f  returns the result of the last expression evaluated within its body.5 As 
always, this can be suppressed with a semicolon.

Since one or more of the arguments to a boolean operation could be symbolic, it is 
quite possible that the operation cannot be evaluated. If this happens, I f  will be unable 
to choose either alternative. For example,

Clear [a, b]
If[a < b, a, b]
I f [ a  < b, a, b]

To handle cases such as this, I f  takes an optional fourth parameter:

If[a < b, a, b, "I give up"]
I give up

Sometimes you want to execute the else part even if the test expression can’t be eval
uated. Rather than using a four-parameter I f  with identical third and fourth parameters, 
wrap the first argument inside the TrueQ function.

5. Thus, the Mathematica expression x = I f  [a, b, c] is analogous to the C state
ment x = a ? b : c. Note, however, that the roles of semicolons and commas are 
reversed relative to C, e.g., Mathematical x = I f  [a, b l; b2, c l; c2] corre
sponds to C’sx  = a ? b l, b2 : c l .  c2.

a = 5; b = 2;
I f [a < b, 
(*then*)

little = a; 
big = b, 

(*else*)
little = b; 
big = a

{little, big}
( 2 ,  5}



TrueQ returns true if its 
argument is manifestly true, 
and returns false otherwise.

If[TrueQ[a], "a is true", "a is not true"]
a  i s  n o t  t r u e

Note that “a is not true” is not the same as “a is false.” In this particular case, a is nei
ther true nor false.

1. Modify the b inom ial function of Exercise 4.1.3.1 so that it returns 0 if either 
parameter is negative.

2. Write a function that takes three numbers a, b, and c and returns True if the three 
numbers could represent the lengths of the sides of a right triangle, F a lse  other
wise.

3. Write a function that takes three numerical parameters and returns true if they are in 
sorted order, false otherwise.

The Switch function is used to test the value of an expression against several different 
alternatives. It is similar to the C statement of the same name. The first argument to 
Switch is an expression to be tested; subsequent arguments, which must come in pairs, 
consist of alternative values for the tested expression and the actions to be taken for 
each possible value.

If[a, "a is true", "a is false", "a is neither"]
a  i s  n e i t h e r

Exercises

4.2.2 Switch

This example does one of 
three things, depending on 
whether the remainder of x  
after division by 3 is 0 , 1 ,  
or 2 .

x = 88;
Switch [Mod [x, 3] .

0, "remainder is 0",
1, "remainder is 1",
2, "remainder is 2"

re m a in d e r  i s  1

If the expression does not 
match any of the available 
cases, the S w itch  remains 
unevaluated.

Switch[Mod[x, 5],
0, "remainder is 0", 
2, "remainder is 2", 
4, "remainder is 4"

S w itc h [M o d [x , 5 ] ,  0 ,  re m a in d e r  i s  0 ,  2 ,  
re m a in d e r  i s  2 ,  4 ,  re m a in d e r  i s  4]

A  default case can be speci
fied using a B lank (J .

Switch [Mod [x, 5] ,
0, "remainder is 0", 
2, "remainder is 2", 
4, "remainder is 4",



"remainder is odd"
]
remainder is odd

Exercise

1. Write a function called daysInMonth [month, year] that returns the number of 
days in the given month of the given year. (Hint: A default case will dramatically 
reduce the number of cases you have to program explicitly.) Don’t forget about leap 
years!

4.2.3 Which
The Which statement is an alternative to a sequence of i f - e l s e i f - e l s e i f - . . . - e l s e  
statements. It is similar to the cond statement of Lisp.

Which[x < 0, "negative", 
x =  0 , "zero", 
x > 0 , "positive"]

positive

In this example, the three cases cover all possibilities. As with Switch, it sometimes is 
desirable to have a default case. Such a case can be implemented by specifying a final 
condition of True.

Which[x < 0, "negative", 
x =  0 , "zero",
True, "positive"]

positive

Exercise

1. Which is useful for defining piecewise functions. Write a function of a single vari
able x that is equal to Sqr t  [-x - 1] when x <= -1, to Sqrt  [x - 1] when 
x >= 1, and to 1 - xA2 when x is between -1 and 1. Plot this function from 
x = -2 to 2.

4.3 Iteration
Mathematica contains three looping constructs that are found in other procedural pro
gramming languages: Do, While, and For. However, as with conditional execution, 
these primitives are all functions; there is no built-in syntax to support loops.

Do, While, and For all share an unusual trait (for Mathematica functions, that is): 
They don’t return any values.6 To get any useful results out of them requires the use of

6. To be pedantic, they return Null.



side effects — assignments to variables, P r in t  statements, or graphics-generating 
commands such as Plot .

As we’ll see throughout this book, there almost always are superior alternatives to 
the looping functions, but they require a different kind of programming style. We’ll 
cover those other programming styles in the next two chapters.

4.3.1 Do
The Do function is a concise way to iterate over an index variable that takes on values in 
an arithmetic progression. It takes the same arguments as Table and Sum; unlike those 
functions, however, Do returns N ull. Compare the following:

Table returns a list of the T a b le  [ k ,  { k ,  3 ,  9 ,  2 } ]
first argument evaluated at ^  5 7 9 }
each value in the range of ' ’ ’
the index variable.

Do does all the work, but D o [ k ,  { k ,  3 ,  9 ,  2 } ]
returns nothing; this was a 
waste of processor time!

In order to do any useful work, the code inside of a Do must create some kind of side 
effect. Examples of side effects are: creating, removing, or changing the values of sym
bols; output to a file; or the rendering of graphics on the screen.

Here's one example of using s =  { } ;
side effects to get results out Do [A ppendTo [ s , k ]  , { k , 3 , 9 ,  2 }  ]
of a Do loop.

To result has been stored s
in s. 13 , 5 ,  7 ,  9 )

Sum returns the sum of the S u m [k , { k ,  3 ,  9 ,  2 } ]
first argument evaluated at 2 4
each value in the range of 
the index variable.

Here is how to get the s =  0 ;
equivalent effect with Do. D o [ s  + =  k ,  { k ,  3 ,  9 ,  2 } ]

s
24

Here is a particularly useful trick for generating a sequence of animation frames. The 
output is not shown because it would take up several pages.

D o [ P l o t [ S i n [ x  -  y ] ,  { x ,  0 ,  2 P i } ] . { y ,  0 ,  1 5 P i / 8 ,  P i / 8 } ]  

(* many graphics omitted *)

T .ikp. the Table command, Do can accept multiple index variables and ranges. This 
feature allows you to write nested loops in a very concise manner:



Note that the first index var- D o [ P r i n t [ { x ,  y } ]  , { x ,  2 } ,  { y ,  3 } ]
ies most slowly. q  -y j

t l !  2 }
( 1 ,  3}
( 2 , 1 }
( 2 . 2 )
( 2 ,  3 )

The iteration variable in a Do loop (or Table, Sum, and similar commands) is rather 
unusual. Consider the following example carefully:

fo o  behaves as if the global C le a r  [ k ,  fo o ]
symbol k  were being modi- f 0 o :=  k  +  1

fied inside the Do. Do [ P r i n t  [ fo o ]  , { k ,  0 ,  1 } ]

1
2

Curiously, though, k  is k
unchanged by the execution ^
of the Do loop.

We’ll explore this phenomenon in greater detail in Section 4.5.

Exercises
1. Write a function that performs matrix multiplication using a multivariable Do loop. 

You may use the Sum function to compute the individual elements of the result. Note 
that you have to create an empty result matrix (using Table [0. {nrows}, 
{ncols}  ]) before you can assign to its elements. Check your answer using the 
built-in matrix multiplication function Dot.

2. Now show how you can write the matrix multiplication function using only Table 
and Sum.

4.3.2 For
For implements a C-stylefor  loop. Like its C counterpart, For takes four arguments: 
the initializer, the test, the increment, and the body. Here is how you would implement 
the summation example from the previous section using For:

Like Do, For returns Null; s = 0;
you have to evaluates to get F o r [ i  =  3 , i  <=  9 , i  + =  2 , s + =  i ]  ;
the result of the computa- s
tion. 2 4

For is more general than Do because the initializer, test, and increment can be arbi
trary Mathematica expressions. For the same reason, a For loop is slower than an 
equivalent Do loop, not to mention harder to parse by the human eye, so Do should be 
given preference whenever circumstances permit. Also note that to implement an itera
tion over more than one variable, For commands must be nested explicitly (i.e., there is 
no multivariable form of For as there is for Do).



A common mistake for C programmers is to use semicolons to separate the argu- 
i W  ments to Eor. Remember, function arguments are separated by commas; semicolons are 

used only to construct compound statements. In fact, Mathematica’s use of commas 
and semicolons within a For command’s first three arguments is exactly the opposite of 
C’s.

Exercises
1. Write a function that finds the smallest element in a list of numbers.
2. Write a function that finds the smallest element in a 2-D matrix of numbers.
3. Use your daysInMonth function (Exercise 4.2.2.1) to write a function that returns 

the Julian date of a {month, day, year} date. [The Julian date is the number of days 
elapsed since the beginning of the year. For example, January 1 has Julian date 1 
and December 31 has Julian date 365 (366 in leap years).]

4. Implement the extended definition of the binomial coefficients, valid for all real 
numbers n and all integers r, as follows:

n ( n -  1) -  ( n - r + 1)—----- ~r— tt---- :----- - r a positive integerr ( r -  1) — 1
1 r = 0
0 r a negative integer

0 -

4.3.3 While
Another looping construct borrowed from C is While, which takes two arguments, a 
test and a body. Here is the same summation example, this time using While:

Since the W h ile  loop does i  =  3 ;  s =  0 ;
not return a value, s must be W h i le  [ i  < = 9 ,  s 4 =  i ;  i  + =  2 ] ;
returned explicitly. s

24

What appears at first to be a third argument to While ( i  += 2) actually is a continua
tion of the second argument: This is evidenced by the fact that the two expressions are 
separated by a semicolon, not a comma. This syntax may take a while (no pun intended) 
for C programmers to get used to.

It should be noted that For and While are equally powerful; i.e., any While loop 
can be rewritten as a For loop and vice versa. Which one to use is a matter of stylistic 
preference.

While loops typically are used to loop for an unknown number of times, such as 
during an iterative approximation. Here is a function that approximates the square root



of a number x using the iterative formula an + 1 = -  ( an + x / a n) :

In a symbolic system like 
Mathematica, it is important 
to numerically evaluate all 
inputs to an iterative 
approximation procedure or 
else it may never converge!

Exercises
1. Write functions to compute n\ using (a) For, (b) While, and (c) Product. Test the 

speed of your functions against that of the built-in factorial function.
2. Write a function that converts an integer into a list of its digits, using the following 

procedure: (a) Find the quotient and remainder upon division by 10, (b) digit = 
remainder, (c) new number = quotient. Repeat this procedure until the quotient is 0. 
(When you are done, the digits will be in reverse order; you can use the Reverse 
function to fix this.)
Now generalize this function to work for any number base ft < 10. The base b should 
be an additional argument to the function.

3. A simple method for finding the root of a continuous function/is called bisection. 
This approach begins with an interval (a, b) for which/(a) and/(ft) have opposite 
signs. (Since /  is continuous, there is guaranteed to be at least one root within the 
interval.) The interval is bisected, say, at point c. Now iff(a) and/(c) have the same 
sign, change the interval to (c, ft). Otherwise [/(ft) and/(c) have the same sign], 
change the interval to (a, c). Repeat this process until the interval is sufficiently 
small.
Write a function to perform the bisection method. Test your function on 
f{x) = x2 - 2 ,  using an initial interval (0, 2). Hints: The Sign function is a quick 
way to determine the sign of a number. Be sure you do real arithmetic (as opposed 
to symbolic), or it will never converge! Also, the Chop function is mighty handy 
when you are testing for convergence.

4.3.4 Miscellaneous control flow
There are functions called Break, Continue, Return, Goto, and Label that are iden
tical to the C statements of the same name. Continue [] skips the remainder of the cur
rent iteration of a loop, whereas Break [] exits the loop entirely. R eturn [val] exits a

squareroot[x_] :=
Module[{approx = nx = N[x]},

While[ Abs[nx - approxA2] > 10A-5,
approx = (approx + nx/approx) / 2

] ;
approx

]

squareroot[5]
2 . 2 3 6 0 7

%A2



function and causes the function to return val. Goto and Label probably require no 
introduction; you should avoid using go-to statements in any computer language, as 
they make your code hard to understand. See The Mathematica Book §2.5.9 for some 
restrictions on the use of Break, Continue, and Goto.

A bort [] causes an entire computation to halt and return the value $Aborted. It is 
possible to intercept aborts using the CheckAbort function; refer to The Mathematica 
Book for the details. A more refined alternative to Abort and CheckAbort is Throw 
and Catch, which implements a form of exception handling. Throw and Catch will be 
discussed in Section 5.3.4.

Exercises

1. Write a function that takes an expression, t a r g e t ,  and a list of expressions, can
d ida tes ,  and returns the position of the first occurrence of t a r g e t  within ca n d i 
d a tes . The function should return an impossible value, such as -1, if no match is 
found.

2. Write a function a l lodd  [x] that takes a list as a parameter and returns True if and 
only if all of the elements in the list are odd integers. (The built-in function OddQ 
can be used to test a number for “oddness.”) For example,

allodd[{1, 2, 3, 4}]
False

allodd[{1, 3, 5, 7}]
True

Your code should stop testing as soon as it finds a number that is not odd.

4.4 Parameter-Passing Semantics

4.4.1 Parameters are not local variables
It will come as a surprise to programmers who are used to other programming lan
guages that you cannot modify a parameter o f a function inside the body o f the function. 
For example:

This function tries to use its 
parameter as a loop counter.

Not only do we get this 
strange error message, but 
also we have to abort the 
computation.

sumdown [n_] := Module[{s =0},
While[n > 0, s += n; n--];
5

sumdown [3]
Decrement::rvalue: 3 has not been assigned a value. 
$Aborted



The reason for this lies in the way in which Mathematica passes arguments to func
tions. The arguments to a function are evaluated at the point of call, and then the results 
of those evaluations are textually substituted for the formal parameters within the body 
of the function. It is as though we had entered the following:

It should be clear now why W h i le  [3 > 0 ;  s + =  3 ;  3 - - ]

itwas necessary to abort the D e c re m e n t:  : r v a lu e :  3 h as  n o t  b e e n  a s s ig n e d  a v a lu e .

$ A b o rte d
computation.

This mechanism may seem similar to a macro substitution, but in fact it is different 
because of the evaluation of the arguments before the substitution is performed. For 
example, if we pass as the argument to sumdown a symbol that has the value 3, the 
same error will occur.

p is evaluated before being p =  3 ;
passed into sumdown. sumdown [p]

D e c re m e n t : : r v a l u e : 3 h as  n o t  b e e n  a s s ig n e d  a v a lu e .

$ A b o rte d

Another way of looking at this is that the semantics of parameter passing are identi
cal to the semantics of the With command introduced in Section 4.1.4. Recall that 
With [{name = exp r}, body] evaluates expr  and then substitutes that value for 
name everywhere within body.

4.4.2 Call by value
The solution to the problem demonstrated in the previous section is, of course, to use a 
local variable as a proxy for the parameter.

Although you can't modify C le a r  [sumdown]
n, you certainly can sumdown [n _ ] : =
m odifyx. M o d u le [ { x  =  n ,  s =  0 } ,

W h i le [ x  > 0 ,  s + =  x ;  x - - ] ;
s

]
sum down[3 ]

6

This effectively simulates call by value parameter-passing semantics, which is the 
semantic model used for all parameters in C [Kemighan & Ritchie 78] and for non-var 
parameters in Pascal [Jensen & Wirth 74].

4.4.3 Call by name
Call by name is a fairly esoteric semantic model for parameter passing that was intro
duced by Algol-60 [Naur 63]. The semantics of call by name are that a function should



behave as though it were expanded inline at the point of call (e.g., as if it were a macro), 
with the actual parameters textually substituted for the formal parameters. Although 
call by name seems painfully straightforward, in fact it is fraught with subtleties and 
booby traps.

Mathematica contains a mechanism that provides call by name semantics, namely, 
held arguments. Recall that some of the built-in functions do not evaluate their argu
ments in the normal way (e.g., Set does not evaluate its first argument, and Set-  
Delayed does not evaluate either of its arguments). You can prevent any of the 
arguments to a function from being evaluated by giving the function the attribute 
HoldAll.7

Here is an example of a S e t A t t r i b u t e s  [ i n c , H o ld A l l ]
function with a held argu- in c  [x _ ]  :=  x  =  x  +  1
ment.

In itia lizep  to 3. p =  3 ;

This call is equivalent to in c  [p ] ;
p = p + 1.
p is now 4. p

4

Incidentally, Clear  clears only the definition of a symbol, not its attributes. When 
you start fooling around with attributes, it is best to get in the habit of using C learA ll 
instead of C lear. C learA ll clears values, attributes, default values, and other infor
mation about a symbol.

The effect of call by name is that a parameter is reevaluated every time it is used 
within the body of the function. This can lead to problems that will be familiar to users 
of the C language’s macro preprocessor:

This function is trivially cor- S e t A t t r i b u t e s  [ d o u b le , H o l d F i r s t ]
rect. O r is it? d o u b le  [x _ ]  : =  x  +  x

No problems here ... d o u b le  [p ]

8

But if you were expecting 10 d o u b le  [ in c  [p ] ]
from this call, guess againl

The expression Inc [p] was evaluated twice during execution of double. Behavior 
such as this probably is a bug. You can fix it by copying the parameter into a local vari
able at the beginning of the function; then it is evaluated just once.

7. Similarly, the attribute H oldFirst prevents just the first argument to a function 
from being evaluated, and the attribute HoldRest prevents all but the first argument 
from being evaluated.



One function’s bug is another one’s feature: Jensen’s device [MacLennan 83] is a 
trick that exploits the behavior just demonstrated to implement iteration functions like 
Sum, Product, Table, and Do.

Because mysum has the 
H o ld A ll  attribute, sum
mand w ill be evaluated each 
tim e it is used.

Here's an example. To 
understand why this works, 
perform a textual replace
ment of the parameters in 
the body of the function.

An unfortunate side effect is 
that j  has been altered. This 
w ill be fixed in the exer
cises.

SetAttributes[mysum, HoldAll]
mysum[stnnmand_, variable_, low_, high_] :=
Module[{thesum = 0},

For[variable = low, variable <= high, variable++, 
thesum 4= summand

]:
thesum

]

j = 0 ;
mysum[Sin[j], j, 1. 5]
Sin[l] + Sin [2] + Sin [3] + Sin [4] + Sin [5]

Hr Call by name is powerful and dangerous. Legitimate uses do exist in a symbolic 
algebra system such as Mathematica'. Sometimes you need to operate on a symbolic 
expression rather than on the value to which the expression would evaluate (the mysum 
function is an example). Quite often, however, there are alternatives that are safer. 
Unless you are writing functions that truly need this capability, you are better off stay
ing away from it.

As a final warning to the skeptics, consider the infamous call by name swap func
tion:

This function is designed to 
swap its arguments.

It seems to work just fine.

Since p is 1 , this swaps 
t [ [ 1 ] ]  and p.

SetAttributes[swap, HoldAll] 
swap[a_, b_] :=
Module[{temp}, 

temp = a; 
a = b ; 
b = temp;

]
{p. q} = {1 . 2 }; 
swap [p, q]
{p. q}
(2 , 1 }

p = 1; t = {3, 2. 4};
swap [t [ [p] ] , p]
{p, t}
(3, {1, 2, 4}}



W hen you can figure out p =  1 ; t  =  { 3 ,  2 , 4 }  ;
w hat this does, you w ill be swap [ p , t  [ [p ] ] ]
ready to use call by name. {p  f

( 3 ,  ( 3 ,  2 ,  1 ) }

Before you try to “fix” swap, it seems only fair to inform you that it has been shown 
(see [Fleck 76]) that it is theoretically impossible to write a call by name swap function 
that works for all possible parameters. '

Exercises

1. Explain why functions such as Set and C lear have to hold their first argument.
2. Fix mysum so that the global loop index variable is not modified by the execution of 

the function.
3. What happens if you call mysum [Sin [j] , j ,  1, in c  [p] ]? Fix this.
4. What happens if you call swap [3 , 4] ?
5. Write a function that takes the same arguments as While but mimics the semantics 

of the do ... w h ile  construct of C (or the re p e a t ... u n t i l  construct of Pascal). 
That is, the body of the loop should always execute at least once. You will need to 
give the function the attribute HoldAll (why?).

4.4.4 Call by reference
Call by reference is a semantic model for parameter passing that allows changes made 
to a parameter inside of a function to be visible outside the function. This is the model 
used by all Fortran parameters, by C++ reference parameters [Stroustrup 91], and by 
Pascal var parameters. It typically is used by functions that need to return more than a 
single value, although it is preferable in such cases to return a list of values.

Mathematical call by name semantics can be used to simulate call by reference 
behavior in a “safe” fashion. The trick [Maeder 94a] is to give the function one of the 
Hold- attributes and to specify that the arguments to be modified be symbols rather 
than arbitrary expressions. The latter can be effected by using a formal parameter of the 
form flame_Symbol. For example:

S e tA t t r ib u te s [ n e w s w a p , H o ld A l l ]

Since you cannot pass arbi- n ew s w a p [a _ S y m b o l, b _S y m b o l] : =
trary expressions to new- M o d u le  [ { te m p } ,
swap, it is safer than swap. tem p  =  a ;

a  =  b ;  
b =  tem p ;

]

{ p ,  q )  =  { 1 , 2 } ;  
n e w s w a p [p , q]

{p. q>
{2 , 1}



Note that this isn’t really call by reference, because there is no such thing as a 
pointer in Mathematica. If, for example, you pass a subscripted list to newswap, noth
ing will happen because the list subscripting expression doesn’t have the head Symbol:

On the bright side, this same feature prevents errors when calls such as this are 
attempted:

The scope of a symbol is the region of a program within which the name of the symbol 
actually refers to that symbol, as opposed to some other symbol having the same name. 
For example, the scope of a formal parameter in a function is the body of the function; 
outside the body of the function, the same name refers to a different symbol.

We’ve already seen three scoping constructs: function declaration, Module, and 
With. All three of these constructs scope a symbol in space, that is, in a particular 
region of the program. This is called lexical scoping. In contrast, the often-misunder
stood scoping construct Block scopes a symbol in time; this is called dynamic scoping. 
In Section 4.5.1 we compare Block to Module. Finally, in Section 4.5.2 we explain 
how lexical scoping constructs behave when they are nested inside of other lexical 
scoping constructs.

The Module command scopes symbols in a way that computer scientists call lexical 
scoping [MacLennan 83]. What this means is that the actual symbol that is bound to a 
name can be inferred completely from the textual context in which the name is used. 
Here is an example that hopefully will clarify this explanation:

newswap [p, t [ [p] ] ]
newswap [p , t [ [p] ] ]

newswap [3, 4]
newswap[3. 4]

4.5 Advanced Topic: Scoping

4.5.1 Lexical versus dynamic scoping

W ith  this definition, the 
value of f  oo depends on the 
value of the global symbol x.

foo := x;

Changing x  affects the eval
uation of foo .

x = 1 ; foo 
1

x = 2 ; foo
2

But foo  is unaffected by the M o d u le  [ { x  =  3 } ,  fo o ]
local symbol named x. ~



Note that foo ignores the local symbol x and evaluates to the value of the global 
symbol x. In other words, regardless of where foo is evaluated, when lexical scoping is 
in effect, fo o  always refers to the global symbol x. Lexical scoping arguably makes 
programs easier to understand, since the names chosen for local symbols do not affect 
the execution of the program.

In contrast, when dynamic scoping is in effect the symbol x referred to by foo will 
be the most recently defined symbol named x. Dynamic scoping is achieved by using 
the Block command:

fo o  refers to the symbol x  B lo c k  [ { x  =  3 ) ,  fo o ]
defined by B lock. ^

Note that the value of the x
global symbol x  has not ^
been changed.

Put another way, when dynamic scoping is in effect, the symbol x referred to by foo 
depends on where foo is evaluated, rather than where it was defined. This may make 
programs harder to understand.

What Module [ {x}, . . .  ] does is create a temporary symbol x that is distinct from 
the global symbol (and any other temporary symbols) having the same name.

Every time this command is M o d u le  [ { x }  , x ]
executed a unique variable 
name is generated.

As you can see, unlike other procedural programming languages, it is possible to pass 
these “local” symbols outside of the scope in which they are created, although there’s 
usually no good reason for doing so. The converse is not true: There is no way to refer 
directly to the global symbol x within the scope of this Module. The global symbol is 
shadowed by the local symbol.

On the other hand, the Block statement shown above is equivalent to the following:

savex = x;
x = 3;
fo o
x = savex;
3

In other words, Block creates a temporary value for an existing symbol, whereas Mod
u le  creates temporary symbols that are distinct from all existing symbols. Block is 
thus not really suitable as a mechanism for declaring local symbols, because it can 
affect the binding of names even for symbols that are used outside of the Block.8 It is

8. The reason for the ubiquity of Block in existing Mathematica code is a legacy of 
the fact that Module did not even exist until version 2.0.



most useful for overriding the value of some system-defined global variable for the 
duration of a particular piece of code — hence we say that Block scopes in time rather 
than in space. For example,

B lo ck  changes the default B lo c k [ { $ D e f a u l t F o n t = { " T im e s " , 1 7 } } ,
font used by these plotting P l o t  [ . . . ] ;
functions —  and all func- P lo t3 D  [ . . .  ]
tions called by them —  until ]
B lo ck  finishes executing.

One argument for using Block rather than Module or With is that Block is more 
efficient. However, the difference in execution time is negligible except for functions 
that get called an extremely large number of times. If you must use Block for this rea
son, just be sure that you do not inadvertently change the values of any global symbols 
that are used by other functions involved in the computation. Overriding global sym
bols used internally by system-defined functions sometimes is a necessary evil. How
ever, in the author’s opinion, it is egregious programming style to use Block to 
override global symbols used by your own functions — that’s what parameters are for!

As an aside, note that the semantics of iteration variables in functions such as Table, 
Sum, etc. are identical to the semantics of Block variables. This is desirable, since oth
erwise computations such as the following wouldn’t work as expected:

e x p r  :=  j A2 ;

j = 2;
T a b le [ e x p r ,  { j , 1 ,  4 } ]

t l ,  4 ,  9 ,  16}

Exercise
1. Explain the discrepancy between the results of the following two Table commands:

C l e a r [ a ,  i ] ;
a  =  i ;  i  =  4 ;

T a b l e [ a ,  { i ,  1 . 2 } ]

{ 1 , 2 }

M o d u l e [ { i } ,  T a b l e [ a ,  t i .  1 ,  2 } ] ]

( 4 ,  4}

4.5.2 Nested scoping constructs
When lexical scoping constructs with possibly conflicting name declarations are nested, 
the innermost construct that declares a given name is the one that determines the sym
bol to which the name refers. For example,

Two different x's are being W i t h [ { x  =  a } ,  W i t h [ { x  =  b }  , x ]  +  2 x ]
used to compute the result. ? *  +  h



This corresponds to the way in which local variables behave in a block-structured 
language such as C or Pascal.9 The general rule is that outer scoping constructs 
“respect” declarations made in inner scoping constructs.

The previous example M o d u le  [ { x  =  a } ,  W i t h [ { x  =  b }  , x ]  +  2 x ]
works the same way no mat- ~ . ,
* u ■ w j t 2 a  +  bter how you mix Module
and With.

Here is a different kind of name conflict.

You may be wondering why W i t h [ { x  =  a } ,  W i t h [ { a  =  b }  . a  +  2 x ]  ]
the answer is not 3b. n . ,2 a  +  b

W hat happened is that the W i t h [ { x  =  a } ,  H o ld  [W ith  [ { a  =  b }  , a  +  2 x ]  ] ]
inner a was renamed to „  t  n  * , n n
avoid the conflict. H o ld  [W lth  [ {a $  = b > • a$  +  2  a ] ]

This example illustrates another general principle of Mathematica’s lexical scoping 
constructs: The result should be independent of the names of any temporary variables. 
In other words, the given example is semantically equivalent to this:

W i t h [ { x  =  a } ,  W i t h [ { z  =  b } , z  +  2 x ]  ]

2 a +  b

Note that scoping applies only to the second argument of a scoping construct, and 
not to other declarations within the first argument:

The x  in y  =  x  refers to the W i t h [ { x  =  a } ,  W i t h [ { x  =  b ,  y  =  x }  , y ]
outer x, not the inner one. a

Function declaration, too, is a lexical scoping construct. In the following example, 
even thought the right-hand side of the S e t  command evaluates inside of the With, the 
local constant y in the With does not affect the formal parameter y.

The formal parameter is W i t h [ { x  =  5 ,  y  =  6 } ,  g [y _ ]  =  x  +  y ]
renamed y$ to avoid a name , *
conflict. 5 +  y$

Once again, the explanation is that the result should be the same no matter what name is 
chosen for the formal parameter to a function.

Scoping issues are covered at great length in §2.6 of The Mathematica Book.

9. Note: Do not confuse the Mathematica function Block with the term block as it is 
used in regard to block-structured languages (e.g., in C, a sequence of statements 
surrounded by curly braces; in Pascal, a sequence of statements delimited by 
b eg in .. .end). It is an unfortunate accident of the nomenclature that Module is the 
Mathematica construct that corresponds to a block in block-structured languages.



5
Functional Programming

Chapter 4 illustrated how one can program in a procedural style using Mathematica. 
However, procedural programming constructs in Mathematica really are just a facade; 
deep down inside, Mathematica is afunctional programming language.

In the functional programming paradigm there is no distinction between functions 
and data. Functions can be manipulated just as any other data, including being passed 
as arguments to and returned as results from other functions. You can, for example, 
write a program that writes other programs and executes them. This is why functional 
programming is so popular in the field of artificial intelligence: It enables the creation 
of programs that have the ability to change their behavior as they run.

Furthermore, in functional programs there are no assignment statements and no 
loops.1 In place of assignments to variables, data are moved strictly through function 
call and return (by nesting function calls, sometimes quite deeply). In place of loops, 
there are higher-order functions that apply other functions to collections of data, or 
recursion is used. Because functional programming is so different from procedural pro
gramming, it does require some effort to master, but the payback is its ability to pro
duce programs that are elegant, concise, and powerful.

In the early parts of this chapter we restrict our attention to performing functional 
operations on lists. In the last part of the chapter we show how these operations general
ize to arbitrary expressions.

The most well-known functional programming language undoubtedly is Lisp 
[Steele 84]. Throughout this chapter we shall remark on the similarities and differences 
between Mathematica and Lisp; a summary of these observations is given in 
Section 5.7.

1. Although these seem like drastic restrictions, their virtue is that they allow func
tional programming to be placed on a sound mathematical footing.



5.1 Basic Functional Programming

5.1.1 Map and Apply
Map and Apply are two of the most fundamental functional programming operations.

Map wraps a given function around each element of a list and returns a list of the 
results.2 It is similar to the Lisp function mapcar.

M a p [ f , { a ,  b ,  c } ]

( f  [a ]  , f  [b ] , f  [c ]  }

Map has a special input f  /@ { a .  b ,  c }

form - I f  [ a ] ,  f [ b ] ,  f  [ c]  }

Apply, on the other hand, wraps a function around all o f the elements o f a list at 
once (not the list itself):

Apply[f, {a, b, c}]
f [ a ,  b ,  c]

Apply, too, has a special f  @@ { a ,  b ,  c }
input form. f [ a >  b> c]

For example, suppose we wanted to sum all of the elements of a list. We could do 
this with some kind of iterator, but it’s much more elegant (and efficient) to use Apply:

The internal form of the P lu s  @@ { a ,  b ,  c )
result is P lu s  [a , b , c ] .  a  +  b +  c

In contrast, mapping P lus onto a list has no apparent effect:

M a p [P lu s ,  { a ,  b ,  c } ]

( a ,  b ,  c )

A trace of the evaluation shows why.

Each application of P lus  is T r a c e  [Map [ P l u s . { a ,  b .  c } ] ]
interpreted as unary plus, {p lu g  /@ { b c )  { p i u s [ a ] p P lu s  [b ] . P lu s  [ c ] } ,
which is an identity opera- , r , r , r ,

{ P l u s [ a ] ,  a } ,  { P l u s [ b ] ,  b } ,  { P l u s [ c ] ,  c } ,  { a ,  b .  c l )

We can use Apply to create the following concise function that computes the arith
metic mean of a list. Note that this function works on lists of any length because P lus 
is an n-ary operator (Section 2.3.1).

tion.

2. Map was introduced in Section 3.5.3. You may wish to go back and review that 
material, as well as other coverage of lists in Chapter 3, before proceeding.



amean[s_List] := (Plus @@ s) / Length[s]

amean[{a, b, c}]
a + b + c

Now suppose that we want to sum each of the rows of a matrix. Recall that each row 
of a matrix is stored in a sublist, hence we need to sum each of the sublists of the 
matrix.

Here's a matrix.

First define a function that 
sums the elements of a list.

Simply map sumT.ist onto 
the matrix to sum each sub
list (i.e., row).

mat = Array[a, {3, 3}]
{(a [1. 1] , a [1, 2] , a [1, 3] }, 

{a[2, 1] , a [2, 2] , a[2. 3] ), 
{a[3 , 1] , a [3, 2] , a[3. 3] )}

sumList [s_] := Plus @@ s

sumList[{a, b, c}] 
a + b + c

Map[sumList, mat]
{a[1, 1] + a[l, 2] + a[l, 3] , 
a [2, 1] + a[2, 2] + a[2, 3] , 
a [3, 1] + a[3, 2] + a [3, 3]}

As another example, suppose that we had the prime factorization of an integer in the 
form returned by F a c to rln te g e r , and that we wanted to “reconstitute” the original 
integer from it.

Here is the prime factoriza
tion o f 283500  = 
2 2*3 4*5 3*7 1.

First define a function that 
exponentiates the first ele
ment of a list by the second 
element of that list.

factors = Factorlnteger[283500]
{ { 2 ,  2 } ,  { 3 ,  4 } .  { 5 ,  3 } ,  ( 7 ,  1 } )

applyPower[s_] := Power @@ s 

applyPower[{a, b}]

Now  Map this function onto 
the factorization.

Finally, multiply the powers 
together.

Map[applyPower, factors]
{ 4 ,  8 1 ,  1 2 5 ,  7}

Apply[Times, %]
2 8 3 5 0 0

Here is a function that performs these steps. Note the use of a Module to prevent the 
auxiliary function from cluttering up the global name space. Auxiliary functions such as 
applyPower (and sum List in the previous example) are an annoyance that will be 
dealt with in the next section.



ExpandFactorization[f_] :=
Module[{ap},

ap[x_] := Power @@ x;
Times @@ ap /@ f

]

The @@ and /@ operators have equal precedence and are right-associative, so the 
expression Times @@ ap /@ f  is interpreted as Times @@ (ap /@ f )  or equiva
lently, Apply [Times, Map[ap, f]  ]. This is an example in which the default group
ing of operators corresponds to what is intended; however, as we shall see in the next 
section, one is not always so lucky. When in doubt, consult the table of special input 
forms in Appendix A of The Mathematica Book, or better yet, use parentheses to settle 
the matter unambiguously.

Exercises

1. Write a function that computes the largest element in each row of a matrix.
2. Using only Apply, Length, and built-in numerical functions, define functions to 

compute the following operations on lists of arbitrary lengths. Remember that all of 
the arithmetic functions are listable, e.g., {a, b} + {c, d} == {a + c, 
b + d } ; l / { a ,  b} == {1 /a , l/b} ,e tc .
The geometric mean:

gmean[{a, b, c}]

The harmonic mean:

hmean[{a, b, c)]
1

The dot product:

dotprod[{a, b}, {c. d}]
a  c +  b d

A function that sums the columns of a matrix:

colsumttta,  b} ,  {c,  d>}]
(a  +  c ,  b +  d )

Euclidean distance between two points in n-dimensional space: 

euclid[{xl, yl}, {x2. y2}]
Sqrt[(xl - x2)^ + (yl - y2)^]



3. Compare the speed of summing a list by using the iteration functions Eor, While,
and Sum to summing it by using Apply.

5.1.2 Pure functions
At this point, we will postpone the introduction of any new functional programming 
operations to talk about a feature of Mathematica that makes all of these operations 
more convenient to use, namely, pure functions.

As savvy Mathematica programmers, we are well aware of the fact that there is no 
real distinction between code and data — everything is an expression. Whether or not 
an expression is a function is simply a matter of interpretation by the kernel. There are 
basically only two things that distinguish the body of the function definition f  [x_] : = 
xA (1/3) from the “naked” expression xA( l /3 ) .  First of all, in the former case the 
body expression is not evaluated until the function is used. Second, the function decla
ration alerts the kernel that the symbol x  in the expression is actually a parameter, and 
not a global symbol called x.

It would be nice if we could take an arbitrary expression and say to the kernel, 
“Please treat this as a function just for a moment,” without actually having to define a 
function in the normal way. It turns out that there is a special head that does exactly 
that. It is called — what else? — Function. The first argument to Function is the 
name of the formal parameter, and the second argument is the expression that we wish 
to use as a function. Here is an example of using Function  to create a function that 
applies Power to its argument:

Function[ x .  Power @@ x ]

Function[x, Apply[Power, x ] ]

Passing a list to this function % [ { a ,  b } ] 
applies Power to the list. ^

a

Note that there is no Blank appended to the formal parameter as there is in a normal 
function definition. Also note that Function  is a lexical scoping construct 
(Section 4.5.1); therefore, the name chosen for the formal parameter does not affect the 
computation.

Function[ x ,  Power @@ x ] [ { 1  + x ,  1 / x } ]

An expression with head Function  is called a pure function. Note that Function is 
simply a “container” that provides the twin essentials for interpreting the expression 
within it as a function: It does not evaluate the expression (it has the HoldAll attri
bute), and it specifies which symbols in the body of the function are parameters.



Also note that Function doesn’t create any global definitions. Because they have no 
names, pure functions sometimes are called anonymous functions. (In Lisp they are 
called lambda expressions.) If you want to use a pure function more than once, you can 
assign it to a symbol, just as you would any other expression.

Clear[applyPower]
applyPower = Function[x. Power @@ x]:
applyPower[{a, b}]
ba

Now the point of all this is that a Function is an expression, so it can be nested 
inside of any other expression. So, for example, to apply Power to every sublist in a 
list, we could write:

Map[Function[x. Power @@ x], {{a, b}, {c, d}}]
/ b d !{a , c }

Creating a “one time only” function at its point of use not only is convenient for the 
programmer, but also can make the code easier to understand, because all of the infor
mation needed to understand what an expression does is manifested in the expression.

Recall the E xpandF ac to rization  function from the previous section. It could be 
rewritten more elegandy as follows (the Map operation has been changed to its long 
form for clarity):

ExpandFactorization[f_] :=
Times @@ Map[Function[x. Power @@ x], f]

There is a special input form for pure functions that makes them very economical to 
enter. In this syntax, the parameter to the function has no name either; it is referred to as 
# (pronounced slot). The entire expression that is to be turned into a pure function is 
terminated by the & operator. Using this notation, the definition of the applyPower 
function would be Power @@ # &. Here’s an example of its use:

Map[Power @@ # &, {{a, b}. {c, d}}]
f b(a , c }

The basic idea is, apply Power to something — where something is supplied later (in 
this case, by the action of Map). Very concise, very elegant, and also very impossible to 
understand if you haven’t seen it before.

Here is the E xpandF ac to riza tion  function yet again, this time using the special 
input form for the anonymous function.

ExpandFactorization[f_] :=
Times @@ Map[Power @@ # &, f]



Note that if we had used the /@ form of the Map function, it would have been neces
sary to surround the entire anonymous function including the & with parentheses, as 
shown below:

Times @@ (Power @@ # &) /@ factors
2 8 3 5 0 0

The reason for this is that the & operator has a very low precedence. If the parentheses 
were omitted, the expression would be interpreted as shown below:

HoldForm prevents the HoldForm [Times @@ Power @@ # & /@ factors]
expression from evaluating. (T im e s  @@ pQwer @@ # 1  & } /@  f a c tQ r g

which is not at all what was intended.3 One way to think of the action of & is that it col
lects into the body of the anonymous function the largest complete expression it can 
find to its left, stopping only when it hits one of the following: a comma, a semicolon, 
an unmatched left delimiter (parenthesis, square bracket, or curly brace), a I I  operator, 
or any assignment operator (e.g., = and :=).

To define a pure function with more than one parameter, simply use a list of formal 
parameters as the first argument to Function.

proportion = Function[{x, y}, x/(x + y)]; 
proportion[1, 2]
1
3

Pure functions can have more than one anonymous argument; in this case the argu
ments are referred to as #1, #2, and so on.

This pure function works # 1 / ( # 1  +  # 2 ) & [ a ,  b ]
just like the p ro p o rtio n
function defined above. ---------—

a +  b

As an aside, note that this section has provided us with our first uncontrived exam
ples of expressions whose heads are themselves normal expressions (rather than sym
bols).

Exercises

1. Use a pure function to add 1 to every element of a list. Try it using both the long and 
short input forms for the pure function.

2. Use P a r t i t io n ,  Map, and Apply to implement a function that computes a moving 
average of a list of numbers, i.e.,

3. Another common mistake is to surround the body of the pure function with paren
theses but not the &, as in Times @@ (Power @@ #)& l@ fa c to rs . Although 
this looks like it ought to work, it doesn’t (try it).



m o v e A v g [{a , b ,  c ,  d , e } , 2 ]

a  +  b b +  c c +  d d +  e .
1 2 ’ 2 ’ 2 ’ 2

m o v e A v g [{a , b ,  c ,  d , e } , 3 ]

. a  +  b +  c b +  c +  d c +  d +  e .
3 ' 3 ' 3

3. Given a string, create a histogram of the frequencies of all characters appearing in 
the string. Hints: Map an anonymous function that counts how many times its argu
ment appears in the string over the list of unique characters in the string. You can
break up a string into a list of individual characters using C harac ters . The Union 
function eliminates duplicates from a list. Count [ l i s t ,  expr] returns the num
ber of times expr  occurs as an element of l i s t .  Finally, you can plot the histogram 
using the BarChart function from the standard package G raph ics ' G raphics '.

5.1.3 Level specifications
The level of an element in an expression is the number of subscripts that are necessary 
to identify its position within the expression. Level [ l i s t , le v ]  returns a list of all 
elements of l i s t  that are at level lev. For example,

a l i s t  =  { { a ,  b } , { c ,  { d ,  e } } } ;

The sublists {a . b } and L e v e l [ a l i s t ,  { 1 } ]
{ c ,  {d , e } }  are at level 1 . { { a ,  b ) , ( c ,  { d ,  e > } }

a, b, c, and the sub-sublist L e v e l  [ a l i s t ,  { 2 } ]
{ d,  e} are at level 2 . { a ,  b ,  c ,  {d , e )

d and e are at level 3. L e v e l  [ a l i s t ,  { 3 } ]

{ d ,  e}

By default, Map operates only at level 1, and Apply operates only at level 0 (the 
entire expression). However, both take an optional third argument, called a level speci
fication, that controls the levels at which they operate. There are several forms of level 
specifications, similar to the forms of the index range in functions such as Take and 
Drop.

A level specification of the form {n} specifies level n only. Compare the following 
results carefully:

The default behavior of Map M a p [ f ,  a l i s t ]
is to operate at level 1 only. { f [ { a >  b } ]  _ f [ { c >  { d _ e } } ] }

Here w e Map at level 2. M a p [ f ,  a l i s t ,  { 2 } ]

{ { f  [a]  . f [ b ] l ,  ( f  [ c]  , f  [ { d , e } ] }}



And here w e A pp ly  at A p p l y [ f ,  a l i s t ,  { 1 } ]

le v e l1 ’ { f [ a ,  b ] ,  f [ c .  ( d ,  e } ] }

Note in particular the rather subtle difference between mapping a function at level 1 
(the default) and applying the function at level 1. In fact, Apply [ f , l i s t , {1} ] is 
equivalent to Map [ f  @@ #  &, l i s t ], which makes applying a function at level 1 one 
of the more common uses of level specifications. For example, here is the ExpandFac
to r i z a t i o n  function one last time:

Compare this to the defini- E x p a n d F a c t o r iz a t io n  [ f _ ]  : =
tion of E x p a n d F a c to r iza - T im e s  @@ A p p ly  [P o w e r , f ,  { 1 } ]
t io n  on page 1 0 2 .

(See the exercises for more examples of this technique.) Another common use of level 
specifications is mapping at level 2, which can be used to map a function onto every 
element of a matrix. We’ll see several examples of this in Section 5.2.2.

There are two other forms of level specifications. A level specification of the form n 
(without the braces) applies to levels 1 through n inclusive. (Exception: A level specifi
cation of 0 doesn’t do anything.)

M a p [ f ,  a l i s t ,  2 ]

t f  [ { f  [a ]  , f  [b ] } ] . f  [ { f  [c ]  , f [ { d ,  e} ] 1 ] }

You can use I n f i n i t y  to M a p [ f ,  a l i s t ,  I n f i n i t y ]

mean all levels greater ( f [ { f [ a ] ,  f [ b ] } ] ,  f [ { f [ c ]  , f [ { f [ d ] ,  f  [e ]  }]  } ] }
than 0 .

A level specification of the form In , m} applies to levels n through m inclusive: 

M a p [ f ,  a l i s t ,  { 2 ,  3 } ]

{ { f  [a ]  , f [ b ] } ,  f f [ c ] ,  f  [ { f  [d]  . f [ e ] } ] } }

The function MapAll is equivalent to Map with a level specification of {0, I n f in 
ity }  : It wraps a function around every part of the list, including the entire list itself.

M a p A l l [ f ,  a l i s t ]

f  [ { f  [ 1 f  [a ]  , f  [b ] } ] . f  [ { f  [c ]  , f [ { f [ d ] ,  f  [ e]  1 ] ) ] 1 ]

Note that when a function is mapped or applied at several (or all) levels, the process 
is carried out in a depth-first fashion. That is, the operation is done at lower levels 
before it is done at higher ones.

The elements are printed in Map [ ( P r i n t  [# ]  ; f  [ # ] ) & ,  a l i s t ,  { 1 ,  2 } ] ;
the order that they are "vis- 
ited"byM ap. k

( f  [a ]  , f  [b ] )

{ d .  e )
{ f [ c ]  , f  [ { d , e } ]  }



Level numbers also can be negative. As you might expect, negative levels are 
counted “up from the bottom,” but the concept of “bottom” is probably not what you 
expect.

All atoms are at level - 1 .

Counting up from the bot
tom corresponds to includ
ing larger and larger 
sublists.

Note that in an unbalanced list structure, the elements at level -n may come from many 
different (positive) levels. If you think of a nested list as a tree in which the entire list is 
the root and the atoms are the leaves, then positive levels are counted downward from 
the root whereas negative levels are counted upward from the leaves. This is illustrated 
in Figure 5-1.

Level[alist, {-1}]
{a, b, c, d, e)

Level[alist, {-2}]
{{a, b), {d, e}}

Level[alist, {-3}]
{{c, {d, e]})

Level0 { { a , b l , { c ,  { d . e } } }

Level 1 { a .b } { c , { d . e } }

/ \ / \
Level 2 a b c {d .e }

/ \
Level 3 d e

(a)

££a, b}  , { c ,  { d . e } } }  L eve l-4 

£c, { d . e } }  Level-3

{ d . e }  L eve l-2

/ \  
c d e L eve l-1

(b)
Figure 5-1 (a) Levels in a nested list, (b) Negative levels in the same list.

Table 5-1 lists all of the functions that accept level specifications. Table 5-2 lists 
additional functions that allow level specification in nonstandard ways (look at some of 
the usage messages for examples). All of the functions in these tables are covered in 
this chapter, Chapter 3, “Lists and Strings,” or Chapter 6, “Rule-Based Programming.”

Table 5-1 Functions that accept standard level specifications.

Apply Cases Count DeleteCases
FreeQ Level Map Maplndexed
MemberQ Position Scan

Table 5-2 Functions that use nonstandard level specifications.

Dimension Flatten MapThread Operate
Outer Partition RotateLeft RotateRight
Transpose TreeForm



Exercises

1. Using only Apply and Plus, write a function that sums the rows of a matrix.

rowsum[{{a, b } . {c , d}}]
{a + b, c + d}

2. Rewrite Exercise 5.1.2.2 without using Map.

5.1.4 MapAt
Contrast the use of Map with level specifications to the function MapAt, which allows 
you to target the application of a function to a particular element within an expression 
rather than to an entire level. For example,

b is at position {1, 2). P o sitio n  [ a l i s t ,  b]
({1, 2)}

Therefore, this wraps f  only MapAt [ f ,  a l i s t ,  {1. 2}]
around b. {{a, f [ b ] }, {c, {d, e}}:

Multiple specifications can MapAt[f, a l i s t ,  {{1,  2},  {2, 2, 1}}]
be enclosed within another ({a> f[b]}> ^  {f  [d] _ e} ) )

We’ll see some sophisticated uses of MapAt in Section 5.5.3.

There is no corresponding function ApplyAt; however, it’s not hard to build one 
using MapAt.

Exercise

1. Write an ApplyAt function. It should behave as follows:

ApplyAt[f,  a l i s t ,  {{1} ,  {2, 2}}]
{f  [a, b] , (c,  f  [d, e] }}

5.2 Variations on a Theme
Map has quite a few less-familiar relatives that are useful in particular circumstances.

5.2.1 MapThread and Thread
MapThread is a generalization of Map to functions that take more than one argument. 
The first argument to MapThread is the function to be mapped, and the second argu
ment is a matrix.



MapThread[f, {{al, a2}, {bl, b2}, {cl, c2}}] 
{f[al, bl, cl], f[a2 , b2 , c2 ]}

In other words, MapThread applies the function to each column of the matrix. (This 
could also be achieved using Transpose followed by Apply, but MapThread is much 
more efficient.)

The equivalent effect can be achieved with Thread, but first the function to be 
threaded has to be applied to the arguments to be threaded over.

Thread[f[{al. a2}, {bl, b21, {cl, c2}]]
{f[al, bl, cl], f[a2 , b2 , c2 ]}

MapThread is somewhat limited by the restriction that the second argument must be 
a matrix. Here’s what happens if it is not:

MapThread[f, {{al, a21, {bl, b2}, c}]
MapThread::mptd:

Object c at position {2, 3) in 
MapThread[f, {{al, a2), {bl, b2), c}] has only 0 
of required 1 dimensions.

MapThread[f, {{al, a2}, {bl, b2}, c}]

Thread is more flexible — it allows any of the arguments to be scalars.

Thread[f[{al, a2}, {bl, b2}, c]]
{f[al, bl, c], f[a2 , b2 , c]]

In fact, Thread is the mechanism that underlies listability (Section 3.3):

?Listable
Listable is an attribute that can be assigned to a 

symbol f to indicate that the function f should 
automatically be threaded over lists that appear as 
its arguments.

Suppose that you have a list of values that you want to turn into rules so that they 
may be substituted into an equation.

Here's one way a list of val
ues could arise.

LinearSolve[Table[Random[], {3}, {3}], 
Table[Random[], {3}] ]

{0.857971, -0.191116, -0.01025)

R u le  is not listable. {xl, x2, x3} -> % •
{xl, x2, x3) -> {0.857971, -0.191116, -0.01025}

But it can be "persuaded" by 
using Thread.

Thread[%]
{xl -> 0.857971. x2 -> -0.191116, x3 -> -0.01025}



There is one important caveat about using Thread, however: It evaluates its argu
ment before doing the threading. Here’s an example showing the consequences of this 
Suppose you want to perform a pairwise equality test on two lists.

E q u a l is not L is ta b le ;  it { 1 ,  2 ,  3 }  = =  { 1 ,  2 ,  4 }
compares the two lists in „  ,
their entirety.

MapThread works fine. MapThread [Equal, {{1, 2, 3}, {1, 2, 4}}]
{True, True, False)

Thread does not. Thread [Equal [{1, 2, 3}, {1, 2, 4}]]
Thread::normal:

Normal expression expected at position 1 in 
Thread[False].

Thread[False]

What happened here is that Equal [{1, 2, 3}, {1, 2, 4}] evaluated to F a lse  
before Thread was even called.

Here’s a trick for getting around this type of problem (which occurs in many circum
stances) that every Mathematica programmer should know about. U nevaluated can 
be wrapped around any argument to a function to pass the unevaluated form of the 
argument to the function:

Thread[Unevaluated[Equal[{1, 2, 3}, {1 , 2, 4}]]]
{True, True, False}

U nevaluated is analogous to the Lisp special form quote. We will discuss U nevalu
a te d  in detail in Section 7.2.4.

Exercises

1. Use Thread and Apply to write a function called myMapThread that works even if 
some of the elements in the second argument to MapThread are scalars, i.e.,

myMapThread[Power, {{a, b, c}, 3}]
r 3 w 3 3 ,(a , b , c }

2. Does your myMapThread function work in the following case?

myMapThread[Equal, { { 1 ,  2, 3}, { 1 ,  2 ,  4 } } ]

{True, True, False}

3. You can generate a list of all listable functions as follows. First, generate a list of the 
names of all system-defined symbols using Names ["System ' *"] (this list will be 
very large). Next, note that A ttr ib u te s  ["symname”] , returns the list of attributes 
for the symbol symname. Thus, MemberQ [A ttr ib u te s  ["symname"] , 
L is ta b le ]  returns True if the symbol symname is listable. Now you can extract



the names of the listable symbols from the list of all system-defined symbol names 
by using S e le c t with an appropriate pure function.

5.2.2 Maplndexed

Sometimes the function you want to map onto a list needs to know the position of the 
element it is operating upon. For example, you may want to compare every element in 
the list to its neighbor(s), compute a moving average of data, or check a matrix to see if 
it has any special structure. You might think that you have to resort to an explicit loop to 
do this (so that the function has access to the loop index), but in fact there are alterna
tives. The Maplndexed function is one such alternative.

Maplndexed applies a given function to each element of a list, but passes an addi
tional argument to the function indicating the position of the list element. Here’s a sim
ple example:

The second argument Maplndexed[ f ,  {a, b ,  c l ]
passed to the function con- { f [  { 1 } ]  , f [ b >  { 2 j ] f f [ c> { 3 } ] )
tains the position of the cur
rent element.

Of course, the actual function being mapped had better expect this additional argument.

The position argument is wrapped in list braces so that Maplndexed can work at 
deeper levels of the list in a consistent manner:

The level specification maps Maplndexed [ f ,  {{a. b ,  c }  , {d. e}}. { 2 } ]
f a t  level 2 of this list. Thus { { f [  {1> 1 } ]  _ f [ b >  {1> 2 } ]  _ f [ c >  {1> 3 } ] ) >

fnTegeP" IS 'St { ftd ’ (2 ' ^  • f te ’ (2’

One practical use of Maplndexed is to check a matrix for certain properties. For 
example, suppose we wanted to check a matrix to see if it is diagonal. For any element
x at position {i , j } in the matrix, either x must be zero or i  must equal j . The latter
condition can be checked easily by using Equal @@ { i, j }. Therefore all we need to 
do is to use Maplndexed to map the pure function Function  [{x, index}, x =  0 

| Equal @@ index] onto the matrix at level 2:

This matrix is diagonal. m l =  { { 1 ,  0 } ,  { 0 ,  1 } } ;

M a p ln d e x e d [
F u n c t i o n [ { x ,  in d e x } ,  x  = =  0 | | E q u a l @@ i n d e x ] , 
m l ,  { 2 } ]

({True, True}, (True, True})

This matrix has a nonzero m2 =  { { 1 ,  1 } ,  { 0 ,  1 } } ;
entry off the diagonal at 
position { 1 , 2 ) .



Here w e use the special 
input syntax for the pure 
function.

Maplndexed[#1 =
{{True, False},

= 0 || Equal @@ #2 &, m2. {2}]
{True, True}}

It’s hard to imagine a more elegant way of doing this. Note that a procedural solution 
would require a nested loop!

We’re not quite finished: We’ve produced a matrix of boolean values, but what we 
really want is a single value, True or F alse . Applying the And function to the booleans 
seems to be the obvious course of action:

First F la t t e n  the matrix 
into a list.

N o w  apply And.

Here is our new predicate, 
DiagonalQ.

Flatten[%]
{True, False, True, True}

And @@ %
False

DiagonalQ[m_] :=
And @@ Flatten[ 

Maplndexed[#1
]

=  0 || Equal @@ #2 &. m, {2}]

The function being mapped can also use the information in the second argument to 
do things like access neighboring elements. Here’s an example in which we average 
each element with its neighbor(s) to the right.

This function computes the
average of s [ [ i ] ] .............
s [ [ i  +  w id th  -  1 ] ] .

Note that the list has to be 
passed to a v g r t  explicitly; 
Maplndexed doesn't pass it 
for you.

avgrt[s_. x_, index_, width_] :=
With[{i = index[[l]]J,

If[ i + width - 1 <= Length[s],
(Plus @@ Takets, {i, i + width - 1}]) / width, 
x]

z = {a, b, c , d, e, f};
Maplndexed[avgrt[z, #1, #2. 2]&, z]
ra + b b + c c + d d + e e + f f}

It must be pointed out that for moving averages, there may be superior alternatives to 
Maplndexed. (See Exercise 5.1.2.2 for one such alternative.)

Exercises

1. Use Maplndexed to write a function that takes a matrix and a scalar value as argu
ments, and returns a new matrix that is identical to the original one except that all of 
its diagonal elements are set to the given scalar, e.g.,

setdiag[{{a, b, c}, {d, e, f}, {g, h, i}}, 0 ]
{{0 , b, c), {d, 0 , f}, {g, h, 0 }}



2. Use Maplndexed to write predicates called TriDiagonalQ , LowerTriangularQ, 
and UpperTriangularQ  that test a matrix for the corresponding properties.

3. The notion of “diagonality” is easy to extend to higher dimensions. Rewrite Diago - 
nalQ so that it works on matrices of any dimension. Hint: Map the anonymous 
function at level -1.

4. A Toeplitz matrix is an n x  n matrix (a^) such that atJ =  a ^ j  for i and j  in the range 
2 ...n. Write a predicate to check for this property.

5.2.3 Through

Through is complementary to Thread: Rather than applying a single function to argu
ments that are lists, Through applies a list o f functions to scalar arguments. Compare 
the following to see the difference:

Thread[f[{al, bl, cl}, {a2, b2, c2}]]
(f[al, a2 ] , f[bl, b2 ], f[cl, c2 ]}

Through[{f, g, h}[a, b, c]]
{f[a, b, c], g[a, b, c], h[a, b, c]}

Through is rather uncommon; we’ll see just a few examples of its use in this book.

5.2.4 Scan

Scan is not a true functional primitive. It is like Map in that it applies a function to a list 
of arguments, but it does not return a list of the results. By default, Scan returns N ull, 
which means that it can act only through side effects:

Scan[Print, {a, b}]
a
b

An example of a useful side effect would be to increment a counter, perhaps to create 
a histogram of the values in a list. For example,

Here are some data.

Initialize a histogram with 5 
bins.

Since the data are real num
bers between 0  and 1 , 
C e i l in g  [5#] is a number 
between 1 and 5.

Here's the result.

data = Table[Random[], {100}] ; 

hist = Table[0, {5}]:

Scan[hist[[Ceiling[5#]]]++ &, data]

hist
{ 1 7 ,  2 3 ,  2 1 ,  13 ,  26 }



Scan is made more useful by the fact that if the function being applied returns a 
value explicitly (using Return), Scan will terminate and return that value.4 This 
behavior makes Scan more efficient than Map for such tasks as determining if all ele
ments of a list satisfy a predicate. Compare the following:

This function leaves an 
"audit trail" as it tests for 
oddness.

The function is applied to 
every element of the list. A 
procedural version of this 
would probably Halt after 
encountering the 2 .

The function being scanned 
executes a R etu rn , causing 
Scan to terminate early.

Using Scan correctly is slightly tricky, however, since if no R eturn statements are 
encountered, Scan returns Null:

Scan[If[myOddQ[#], Null, Return[False]]&, {1, 3, 5}]
{1, True}
{3, True i 
{5, T rue )

We would like to return True under such circumstances. This will be fixed in the exer
cises.

Exercises

1. Use Scan to write a function called a l l t r u e  that takes a predicate and a list as 
arguments and returns True if all elements of the list satisfy the predicate, F a lse  
otherwise. Be sure to fix the problem noted in the last example.

2. Use Scan to write a function called an y tru e  that takes the same arguments as 
a l l t r u e  but tests to see if any element in the list satisfies the predicate.

4. In contrast, virtually every other system-defined function is unaffected by Return. 
For an example of the consequences, see Section 5.3.4.

myOddQ[x_] := (Print[{x, OddQ[x]}]; OddQ[x])

And @@ myOddQ /@ {1, 2. 3, 4. 5}
{1, True}
{2, False}
{3, True}
{4, False}
{5, True}
False

Scan[If[myOddQ[#], Null, Return[False]]&, 
{1, 2, 3. 4, 5}]

{1. True}
{2, False)
False



5.3 Iterating Functions
Mathematica provides three functions for iterating other functions, either for a given 
number of times or until some convergence criterion is satisfied. These functions fre
quently can be used in place of procedural looping constructs.

5.3.1 Nest
The N est function composes a function with itself a given number of times, starting 
from a specified value.

Nest[f, a, 4]
f [f [f [f [a]]]]

Here is an example of using N est to compute a continued fraction.

Nest[l/(1 + #) &. x, 3]

1 +
1 + 1

1 +  x

It might be easier to understand what’s going on if we could see the intermediate 
expressions that are used to build up the final expression. That is what N es tL is t is for.

NestList[1/(1 + #) &. x. 3]
1 1  1 ,

{ x ,

1 + x ' i + d - ’ i + 1 +  X 1 + 1 + X

Exercise
1. Use N es tL is t to calculate a random walk5 on the integers. That is, starting from 

some initial value, repeatedly move up or down by 1 with a 50-50 (or some other) 
chance. You can plot the result using L is tP lo t.

5.3.2 FixedPoint
The function F ixedP o in t is like N est except that it continues to compose the given 
function until the returned values converge or until an optional iteration limit is 
reached. This is useful for performing iterative numerical procedures. Here is an exam-

5. Random walks often are used to model gambling games. The initial value is the 
amount of money with which the gambler begins. The problem of determining how 
long, on average, until this value reaches 0 is called the Gambler’s Ruin problem.



’Sr

pie in which we use F ixedP oin t to implement a well-known iterative computation for 
approximating the square root of 2:

F ix e d P o in t [ ( #  +  2 / # ) / 2  &,  1 . ]

1 . 4 1 4 2 1

Note the decimal point in the second argument; this is very important, for reasons 
explained below.

As with N estL is t, there’s an analogous function called F ix ed P o in tL is t that 
shows all of the intermediate results.

This computation converges F ix e d P o in t L is t  [ ( # +  2 / # ) / 2 & ,  1 . ]
quite rapidly. { 1 >  1 5 >  1 _4 1667> 1 . 4 1 4 2 2 . 1 . 4 1 4 2 1 ,  1 . 4 1 4 2 1 ,  1 . 4 1 4 2 1 }

As noted above, using an approximate number in at least one of the arguments is 
crucial. It prevents symbolic expansion of the computation, which would be a mess — 
and wouldn’t converge either. The third argument to F ix ed P o in tL is t in the follow
ing example specifies an iteration limit. Without it, this computation would continue 
until Mathematica had run out of memory.

FixedPointList[(# + 2/#)/2&, 1, 5]
3 17 5 77  6 6 5 8 5 7  8 8 6 7 3 1 0 8 8 8 9 7

’ 2 ’ 1 2 ’ 4 0 8 ’ 4 7 0 8 3 2 ’ 6 2 7 0 1 3 5 6 6 0 4 8

The reason that this computation would fail to terminate without the iteration limit is 
that the default test for convergence is syntactic, not semantic. Even though the numer
ical values of the rationals are converging, the rationals themselves remain syntacti
cally distinct.

The SameTest option can be used to specify a different convergence test, which 
should be a function of two arguments that returns True or F alse . This is particularly  

useful if the iterates are not approximate numbers (e.g., they may be vectors or sym
bolic quantities). For example, suppose we were interested in a rational approximation 
to the square root of 2 to within a given tolerance. We could proceed this way:

This computation converges F ix e d P o in t L i s t  [ ( #  +  2 / # ) / 2 & ,  1 ,  2 0 ,
before the iteration lim it is S a m e T e s t-> (Abs [ N [ # l  -  # 2 ] ]  < 1 0 A- 1 2 & ) ]

3 17 577  6 6 5 8 5 7  8 8 6 7 3 1 0 8 8 8 9 7
reached.

{1,
2 ’ 1 2 ’ 4 0 8 ’ 4 7 0 8 3 2 ’ 6 2 7 0 1 3 5 6 6 0 4 8 ’ 

1 5 7 2 5 8 4 0 4 8 0 3 2 9 1 8 6 3 3 3 5 3 2 1 7 ,
1 1 1 1 9 8 4 8 4 4 3 4 9 8 6 8 1 3 7 9 3 8 1 1 2

It is always prudent to specify an iteration limit to prevent infinite looping in case the 
function being iterated does not converge. Even when you “know” the computation 
converges, it is still all too easy to make a typographic error (such as leaving out a dec-



imfll point) that prevents convergence. If this should happen, you can usually abort the 
computation without killing the kernel.6

Exercise
1. Newton discovered that for any “well-behaved” function/, a root of the equation 

/(je) = 0 can be approximated by the following iterative formula:

/<*■)
*"+1 *" /'(* „ )

Implement Newton’s method using F ixedPoin t. (It would be prudent to specify an 
iteration limit.) Use it to find a root of the B esse lJ  [0, x] function. Try different 
starting points and see what happens.

5.3.3 Fold
The function Fold is somewhat like Nest, except that its first argument is a function of 
two arguments. It is sim ilar to the reduce function of Lisp. Here is the analogous func
tion F o ldL ist, which makes the operation of Fold easier to understand:

The list of second arguments F o l d L i s t  [ f ,  a ,  { b ,  c ,  d } 3
to f  gets "folded in" as the { f [  b ] f [ f [ a >  b]  > c]  _ f [ f [ f [ a> b ] , c ] , d ] }
computation proceeds.

Although this seems like a curiosity, it’s actually very useful. For example, if f  is the 
P lus function, F o ld L is t will compute all cumulative partial sums of the elements of 
a list:

cumulsuia[l_] := FoldList[Plus, First[l], Rest[l]] 
cumulsum[{a, b, c, d}]
{ a ,  a + b ,  a + b + c ,  a + b + c + d }

This technique will work for any left-associative operator.

Another practical use of Fold is to implement Homer’s rule for evaluating a poly
nomial. The basic motivation behind Homer’s rule is that it significantly reduces the 
number of multiplications used to evaluate the polynomial. For example, Homer’s rule 
would compute the polynomial a0 + axx  + a^x1 + ay>? as a0 + x(al + x(a2 + xa3)). This 
can be accomplished very elegantly using Fold:

Fold[(#l*x + #2)&, a3, {a2, al, a0}]
aO +  x  ( a l  +  x  ( a2  +  a3 x ) )

In Section 5.3.5 we will use Fold to implement a finite state machine.

6. Press Command-, (period) on the MacOS, Alt-, on Windows, or Control-C on 
UNIX. Consult the User’s Guide for your specific system if you are unsure.



Exercises

1. Homer’s rule is exactly the right tool for converting numbers from arbitrary bases 
into base 10. For example,

101102 =  1 ■ 24 +  0 • 23 +  1 • 22 +  1 • 21 +  0 • 2°

= ( ( ( ( 1- 2 + 0) -2 + 1) -2 + 1) -2 + 0)

= 2210

Write a function that takes a list of digits and a base (<10) as arguments and returns 
the equivalent base 10 number.7

2. Write a function pdf2cdf that takes a discrete probability density of the form 
{{xl, p ro b tx l]} , {x2, prob [x2] } , . . . }  and returns the cumulative distri
bution function {{ x l, p ro b [x l]} , {x2, p ro b [x l] + p rob[x2]} ,
Hint: Use Transpose.

5.3.4 Throw and Catch
Throw and Catch provide a mechanism for altering the flow of execution of any 
Mathematica computation. Recall from Section 4.3.4 that Mathematica contains func
tions such as Break, Continue, and R eturn for altering or terminating the execution 
of loops and procedures. Unfortunately, these functions cannot be used to exit from any 
of the functional iteration constructs discussed in this section. For example, when the 
function f , defined below, is passed to N estL is t, the R eturn  expression within f  has 
no apparent effect on the computation:

f [x_] := ( I f [ x  > 5, Return[x + 1] ] ;  2x)
N e s t L i s t [ f ,  1, 6]
{ 1 ,  2 ,  4 ,  8 ,  9 ,  1 0 , 11}

The reason for this behavior is that the R eturn causes f, not N estL ist, to return. It 
would be useful if there were some way to return from more than one function at a time. 
This is exactly what Throw and Catch are for.

The expression Catch [expr] normally returns the value of expr. However, if a 
Throw [val] is encountered during the evaluation of expr, the evaluation stops and 
Catch [expr] returns val instead. Here is a concrete example:

Redefine f  to use Throw C le a r  [ f  ]
rather than Return. f [ x_] := ( I f [ x  > 5,  Throw [x + 1 ] ] ;  2x)

In this case, the Throw is not C a tc h  [ N e s t L is t  [ f ,  1 ,  3 ] ]

7. This operation is so frequently requested that version 3.0 introduced a new function, 
FromDigits, that performs it.



Here,Throw[ 8 + 1] isexe- Catch [NestList [f, 1, 6 ]] 
cuted. g

Throw and Catch are completely general; there is no limit to how “far” (i.e., in terms 
of the number of nested function returns) a value can be thrown.

In version 3.0, Throw takes an optional second argument called a tag, and 
Throw [vai , tag] is caught only by Catch [expr, form ], where form  matches 
tag .8 This allows you to use Throw and Catch to implement exception handling with 
named exceptions. See [Wolfram 96] §2.5.9 for more information.

Exercise
1. The FindRoot function takes optional arguments that specify bounds on the range 

of acceptable values for a solution; if the iterates ever leave this range, FindRoot 
terminates early. Use Throw and Catch to add this functionality to the Newton’s 
method function that you implemented in Exercise 5.3.2.1.

5.3.5 Application: Huffman coding
In this section we apply functional programming techniques to the problem of con
structing and using Huffman codes (described below). This application provides many 
excellent examples of the use of high-level functional programming operations, such as 
F ixedP o in t and Fold, and the treatment of functions as data. It also demonstrates 
how Mathematica lists can be used to represent graph-theoretic trees. This section is 
quite long but should reward the reader by crystallizing many important concepts.

Character codes

A character code is a mapping from characters to binary integers. Character codes 
come in two basic “flavors,” fixed-length and variable-length. The advantage of vari- 
able-length codes is that they typically can encode a particular message in fewer bits 
than a fixed-length code. A Huffman code is a particular type of variable-length charac
ter code that has several desirable properties. Before getting into the details of Huffman 
codes, however, we will give an example to motivate their development. Here’s an 
example message that we wish to encode:

msg = "she sells sea shells by the sea shore";

In preparation for constructing a code we have to find the alphabet of the message, 
i.e., the set of all unique characters that appear in the message.

8. The form  argument can be a constant expression or it can be a pattern 
(Section 6.1).



First, break up the message 
into characters.

U n ion  eliminates dupli
cates.

c h a r s  =  C h a r a c te r s [m s g ]

{ s ,  h ,  e ,  , s ,  e ,  1 ,  1 ,  s ,  , s ,  e ,  a ,  
1 ,  1 ,  s ,  , b ,  y ,  , t ,  h ,  e ,  , s ,  e ,
o , r ,  e )

, s ,  h ,  e ,  
a ,  , s ,  h .

a lp h a b e t  =  U n io n [c h a r s ]

{ , a ,  b ,  e ,  h ,  1 ,  o , r ,  s ,  t , yl

We can create a fixed-length character code as follows:

Here are all 4 -b it binary 
integers between 1 and 11.

Convert the codes to a set of 
rules.

fc o d e s  =  T a b l e [ I n t e g e r D i g i t s [ i ,  2 ,  4 ] ,  { i ,  1 1 } ]

{ { 0 ,  0 ,  0 ,  1)  , { 0 ,  0 ,  1 ,  0 ]  , { 0 ,  0 ,  1 ,  1}  ,
{ 0 , 1 , 0 , 0 ) ,  { 0 , 1 , 0 , 1 ) ,  ( 0 , 1 , 1 , 0 ) .

{ 0 ,  1 ,  1 ,  1 ) ,  ( 1 ,  0 ,  0 ,  0 ) ,  { 1 ,  0 ,  0 ,  1}  .
( 1 ,  0 ,  1 ,  0 ) ,  ( 1 ,  0 ,  1 ,  1 ) }

In p u t F o r m [ f r u le s  =  T h r e a d [ a lp h a b e t - > f c o d e s ] ]

{" " -> {0, 0, 0, 0}, '
"b "  ->  { 0 ,  0 ,  1 , 0 ) ,
"h "  ->  { 0 ,  1 ,  0 ,  0 ) ,
"o "  ->  ( 0 ,  1 ,  1 ,  0 ) ,
"s "  ->  ( 1 ,  0 ,  0 ,  0 ) ,
" y "  ->  { 1 ,  0 ,  1 ,  0 } }

a"
II qH

> (0, 0, 0, 1) , 
e" -> {0, 0 ,  1 ,  1} ,

" 1 "  ->  { 0 ,  1 , 0 ,  1} ,
" r "  ->  { 0 ,  1 , 1 ,  1 } ,
" t "  ->  { 1 ,  0 ,  0 ,  1 } ,

Embed the rules in a func
tion called fixedC ode.

Here is the entire fixed 
code.

f i x e d C o d e [ c _ S t r in g ]  :=  c / .  f r u l e s

T a b le F o r m [ { In p u t F o r m [ # ] ,  { f ix e d C o d e [ # ] } } &  /@ a lp h a b e t ]
n n 0 0 0 0

"a" 0 0 0 1

"b" 0 0 1 0

"e" 0 0 1 1

"h" 0 1 0 0
Hjll 0 1 0 1

"o" 0 1 1 0
II £ II 0 1 1 1

"s" 1 0 0 0
II II 1 0 0 1
llyll 1 0 1 0

Here’s a general-purpose encoding function that will work with any character code 
function such as fixedCode:

e n c o d e [c o d e _ , m sg_] :=
F la t t e n [ c o d e  /@ C h a r a c te r s [m s g ] ]

Encode the message using 
fixedC ode .

e n c o d e [ f ix e d C o d e ,  msg] / /  S h o r t

{ 1 ,  0 ,  0 ,  0 ,  0 ,  1 , 0 ,  0 ,  0 ,  « 1 3 5 » , 0 .  0 .  1 .  1}



There are Length  [msg] *4  L e n g th  [%]
bits in the encoded mes
sage.

At this point a real encoding function would pack the bits into bytes to save space. This 
is quite a chore to do in Mathematica (see the exercises). It’s much easier to do this sort 
of “bit bashing” in a lower-level language like C; we will do exactly that in Chapter 11.

Contrast the fixed-length code with the following variable-length code:

The v a ria b le C o d e  function T a b le F o rm [
w ill be developed later in { In p u tF o r m [# ]  . { v a r ia b le C o d e  [ # ] }  }& /@ a lp h a b e t ]
this section. I N 1 1 0

'a" 0 0 0 1
’b" 1 0 1 0 0
e" 1 1 1

'h" 0 0 1
’I " 1 0 0
'o" 1 0 1 0 1
1 jr. 1! 1 0 1 1 0
's" 0 1

t " 1 0 1 1 1

y " 0 0 0 0

This variable-length code is an example of a Huffman code. Note that the most com
mon character in the message, "s", has a 2-bit code, whereas the least common charac
ters have 5-bit codes. It can be shown that a Huffman code is optimal for a given body 
o f text in the sense that no other character code, fixed- or variable-length, can encode 
the given text in fewer bits. For this particular message the Huffman code requires 
about 23 percent less space to encode the message than does the fixed-length code.

Short[encodedText = encode[variableCode, msg]]
{0 , 1 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , « 101» ,  0 , 1 , 1 , 1 )

Length[encodedText]
114

Constructing a Huffman code

The algorithm used to construct a Huffman code can be found in many books on
computer algorithms and/or coding theory; one such source is [Cormen et al. 90]. We
illustrate this algorithm next.

First, each character in the alphabet, along with the number of times it appears in the 
message, is placed in a “pool.”

pool = {Count[chars, #], #}& /@ alphabet
{{7, }, (2, a), {1, b), {7, e), {4, h}, {4, 1},

{1 , o), {1 , r), {8 , s), {1 . t}, [1 , y}]



Now we need to do the following repeatedly: Find the two elements in the pool hav
ing the smallest counts, combine them, and return the combined element to the pool.

Sort the pool.

Here are the two elements 
with the smallest counts.

Separate the counts from the 
characters.

N ow  apply P lu s  to the sub
list containing the counts.

Remove the two original 
elements from the pool and 
return the combined ele
ment. Note that Union sorts 
its result.

pool = Sort [pool];

Take[pool, 2]
{ { 1 ,  b ) ,  { 1 ,  o H

Transpose[%]
{ { 1 ,  1 } ,  ( b ,  o ) }

MapAt[Plus d 
( 2 ,  {b, o ) }

{1}]

Union[Drop[pool, 2 ] ,  {%}]
{{1, r}, (1, t}, {1, y), (2, a). {2, {b, o}}, {4. h), 

{4, 1}, {7, }. (7, e}, (8 . s}}

Putting it all together, we have the following function for replacing the two elements 
in the pool having the smallest counts with a combined element whose count is the sum 
of the original two counts:

combine[x_] :=
If[ Length[x] < 2, x.

Union[Drop[x, 2],
{MapAt[Plus @@ # &,

Transpose[Take[x, 2]],
{1}]}

]
]

b and o are combined.

r  and t  are combined.

y and a are combined.

{2 ,  {b , o } )  and {2 ,
[ r ,  t } }  are combined to 
form {4 , { { b .  o} .
{ r ,  t ] } } .

pool = combine[pool]
{ ( 1 ,  r ) , { 1 ,  t ) ,  ( 1 ,  y ) , { 2 ,  a ) ,  ( 2 ,  { b ,  o}  

{ 4 ,  1 } ,  ( 7 ,  ) ,  ( 7 ,  e ) ,  ( 8 .  s } }
{ 4 .  h ) .

pool = combine [pool]
{ { 1 ,  y ) , { 2 ,  a ) ,  ( 2 ,  { b ,  o ) i ,  { 2 ,  { r ,  t } } ,  { 4 ,  h ) , 

{ 4 ,  1 } ,  { 7 ,  } ,  ( 7 ,  e l ,  ( 8 ,  s }}

pool = combine[pool]
{ { 2 ,  { b ,  o } } ,  { 2 ,  { r ,  t ) } ,  { 3 ,  ( y ,  a } } ,  ( 4 ,  h ) ,

( 4 ,  1 ) ,  { 7 ,  } ,  ( 7 ,  e) , { 8 ,  s ) }

pool = combine[pool]
{{3, { y , a } } ,  { 4 ,  h i , { 4 ,  1 } ,  ( 4 ,  Ub, ol, { r ,  till,

( 7 ,  1,  ( 7 ,  e ) ,  { 8 ,  s } }



We think of{{b, o}, { r. t} } a s a  binary tree whose left subtree is a tree with 
leaves b and o and whose right subtree is a tree with leaves r  and t .  The integer in the 
first position of the structure is the total number of occurrences in the message of any of 
the leaves in the tree — the weight of the tree. The algorithm is thus combining trees 
with smaller weights into trees with larger weights. We can continue this process to its 
conclusion using FixedPoint. (Note that the process terminates because combine 
returns its argument unchanged when the argument is a single-element list.) The result 
is a single tree whose total weight is the number of characters in the entire message:

FixedPoint[combine, pool]
U37. {{{{y, a}, h} . s}.

{{1 . {{b, o}, {r. t }}}, { , e})}})

tree = %[[1 , 2]]
{{{{y , a}, h]. s), {{1 , {{b , o}, {r, t}}}, { , e})}

A graphical representation of this tree is shown in Figure 5-2. Note that it is a full 
binary tree (i.e., every internal node has exactly two children), and that the more com
mon characters are higher in the tree than the less common ones.

The tree so constructed is used to generate a code as follows. Each branch in the tree 
is labeled with a 0 if it is the left branch out of its parent node and with a 1 if it is the 
right branch. The concatenation of the branch labels along the path from the root of the 
tree to any leaf is used as the code for that leaf. For example, to get to leaf h, we go left, 
left again, and then right. Hence, the code for h is {0, 0, 1}. It can be shown (see 
[Cormen et al. 90]) that the code produced by this construction is optimal.

These codes can be extracted from the tree automatically. First, note that the position 
of any leaf in the tree is a list consisting of only l ’s and 2’s, since each subexpression in 
the tree has two parts.

Position[tree, "h"]
{{1, 1, 2})

If we subtract 1 from each index, we get the code for that leaf.



%[[i]] - l
(0, 0, 1}

This observation leads to the following definition of the variab leC ode function used 
earlier.

variableCode[c_String] := Position[tree, c][[l]] - 1

Decoding a coded message

Finding the character corresponding to a binary character code is a simple matter of 
using the code to index into the code tree.9

First add 1 to each bit. { 1 ,  0 ,  1 ,  0 ,  0 }  +  1

(2, 1, 2, 1, 1}

Extract[tree, %]
b

Here's a function that com- code2char [t_List, c_List] := Extract [t, c + 1]
bines these steps. c o d e 2 c h a r  [ t r e e ,  { 1 ,  0 ,  1 ,  0 ,  0 } ]

b

There’s only one problem: Since the code is variable-length, we don’t know where in 
the list of binary digits the individual character codes begin and end. Fortunately, Huff
man codes have another useful property: They are prefix-free. Prefix-free means that no 
valid code is a prefix of any other valid code.10 Therefore, we need to “walk” through 
the code tree as the encoded message is scanned, branching to the left or right according 
to whether the next bit is a 0 or a 1. When we reach a leaf of the tree, we output the cor
responding character and start again at the root of the tree. We can think of this as the 
operation of a finite state machine in which the code tree is a sort of transition table and 
the current position within the tree is the state of the machine.

Think about how a finite state machine works: There is a transition function tr a n s  
that takes two arguments, the current state and the next input, and returns the next state. 
This new state is then passed to the t r a n s  function again, along with the next input. In 
other words, we can use Fold [ t r a n s , i n i t i a l S t a t e , l i s tO f  Inpu ts] to “turn 
the crank” of a finite state machine. For our purposes, a state is a list of collected but as- 
yet-undecoded bits, the initial state of the machine is an empty list, the inputs are the 
bits in the encoded message, and the state transition function can be defined as follows:

9. Versions of Mathematica earlier than 3.0 do not have the Extract function used 
here. Users of these versions can make the definition Extract [ l is t_ ,
{indices__}] := list[[indices]].

10. The reason for this is simple: Since all characters are leaves in the code-generating 
tree, no character can be on the path to any other character.



trans[state_List, input_Integer] :=
With[{newstate = Append[state, input]}.

If[StringQ[code2char[tree. newstate]], 
decoded = decoded <>

code2char[tree, newstate]:
{},

(* else *) 
newstate

]
]

Each time tr a n s  is called, the in p u t (the next binary digit in the encoded list) is 
appended to s t a t e  to form new state . If new sta te  represents a complete code for a 
character, the corresponding character is appended to a string named decoded and 
tr a n s  returns an empty list as the new state. Otherwise, t r a n s  returns new state .

To better understand the process, the following example uses F o ld L is t to view the 
states that the finite state machine travels through while decoding (0 , 1, 0, 0, 1,
1, 1, 1, 1}. {0, 1} is the code for "s"; {0. 0, 1} is the code for "h"; {1, 1, 
1} is the code for "e"; and the final 1 is the beginning of an incomplete character code.

decoded =
FoldList[trans, {}, {0, 1, 0, 0, 1, 1, 1, 1. 1}]
{{}, {0}, {}. {0}, {0, 0), {}, (1), {1, 1), {}, {1}}

The third element of this result (an empty list) is the state after the bits {0, 1} have 
been read. Since {0, 1} is a valid code (code2char [{0, 1}] => 11 s"), the new state 
is reset to the initial state, which is the empty list. Each of the succeeding empty lists 
has a similar explanation.

After the execution of the state machine the decoded text is contained in the global 
symbol decoded.

InputForm[decoded]
" s h e "

Here is the entire message decoded.

The value returned by Fold decoded = " ";
is the final state of the finite F o ld  [ t r a n s ,  { }  . e n c o d e d T e x t]

{}state machine.

The result of interest is in the InputForm [decoded]
global variable decoded. "s h e  s e l l s  s e a  s h e l l s  b y  t h e  s e a  s h o re "

This solution is not ideal because it uses a global variable (decoded) to accumulate 
the result. It would be “more functional” if the decoded message itself were returned by 
the call to Fold. We can accomplish this by changing the notion of a state to the form



{s t r i n g , l i s t }, where s t r in g  is the so-far-decoded text and l i s t  is the list of col
lected but as-yet-undecoded bits.

Clear[trans]
trans[state_List, input_Integer] :=
With[{str = state[[l]],

newpos = Append[state[[2]], input]}.
If[StringQ[code2char[tree, newpos]],

{str <> code2char[tree, newpos], {}},
{str, newpos}

]
]

The initial state will now be { " " , {}}. Here’s how it works:

Displaying the result in FoldList [trans, {}},
InputForm makes the {0, 1, 0, 0, 1, 1, 1, 1, 1}] I I InputForm
empty strings explicit. {}}, {0 }}, {"s", {}}, {"s", (0 )},

{"s", (0 , 0 }}, {"sh", {}}, {"sh", {1 }),
{"sh", {1 , 1 }), {"she". {)}, {"she", {1 }]}

Once again, the entire mes- Fold [trans,  {"", {}} ,  encodedText]
sage is decoded. (she sells sea shells by the sea shore, { } }

Of course, we have to extract the first element of the result for the final answer. The 
complete decoding routine is shown below:

The purpose of the Block huffmanDecode[tr_List, input_List] : =
w ill be explained below. Block[{tree = tr} ,

Fold[trans, {}}, input][[1]]
]

huffmanDecode[tree, encodedText]
she sells sea shells by the sea shore

Note the use of the Block command (Section 4.5.1) to override the value of the glo
bal symbol t r e e ,  which is used by the t r a n s  function. This is an example of “some
thing you should never do,” but trying to write t r a n s  without using any global 
variables is not easy. We’ll present an elegant solution to this problem next.

Embedding the code tree in the transition function

There are at least two solutions to the problem of t r a n s  using the global symbol 
tr e e .  The first one is to add the code tree to the notion of a state. The state would then 
be of the form { tre e ,  s t r in g ,  l i s t } ,  and the initial state would be { tre e ,  "" , 
{}}. This is inelegant and inefficient, since the code tree (which could be a large 
expression) never changes throughout any particular call to huffmanDecode.

A better alternative is to construct a customized tr a n s  function for any given code 
tree. We can accomplish this by having t r a n s  [tre e ]  return a pure-function state tran-



sition function that has the code tree embedded within it. Then the finite state machine. 
can be implemented as N est [ tra n s  [ tre e ]  , {}}, l i s tO f B i t s ] . This is
both more elegant and more efficient than the previous suggestion, and as a bonus, it 
requires only a small change to the definition of tra n s :

Clear[trans] 
trans[tr_List] :=
Function[{state, input},

With[{str = state[[1]],
newpos = Append[state[[2]], input]},

If[StringQ[code2char[tr, newpos]],
{str <> code2char[tr, newpos], {}},
{str, newpos}

]
]

]

The actual state transition function used in the example is thus: 

tran s[tree ]
F u n c t io n [ { s t a t e $ , i n p u t $ } ,

W i t h [ ( s t r $  = s t a t e $ [ [ l ] ] .
new pos$ = A p p e n d [ s t a t e $ [ [ 2 ] ] , i n p u t $ ] ] ,

I f [ S t r i n g Q [ c o d e 2 c h a r [ { { { ( y ,  a } ,  h ) , s } ,
( { 1 ,  { { b , o } , ( r ,  t } } }  , { , e ) } } ,  n e w p o s $ ] ] ,

{ s t r $ O c o d e 2 c h a r  [ { { { { y , a } ,  h } , s}  .
{{1 , { { b ,  o } ,  { r ,  t } } } . ( , e } } } ,  n e w p o s $ ] ,

{ } } ,  { s t r $ ,  n e w p o s $ } ] ] ]

Note that the entire code tree is textually embedded into the returned function. Also 
note that tr a n s  [ tre e ]  is evaluated only once, so the substitution is performed only 
once — in contrast to passing the entire tree along with the state, which would resubsti
tute the tree into the body of the t r a n s  function on every call to tra n s .

Finally, the huffmanDecode function needs to be updated to use the new tra n s :

Clear[huffmanDecode]
huffmanDecode[tr_List, input_List] :=

Fold[trans[tr], {"", {}}, input][[1]]

Here's proof that t ra n s  no s o m e O th e rT re e  =  t r e e ;
longer depends upon the C le a r  [ t r e e ]
global symbol tree. huffmanDecode [someOtherTree, encodedText]

she  s e l l s  s e a  s h e l l s  b y  t h e  s e a  s h o re

Exercises

1. Write a function that packs a list of binary digits into a list of byte codes (8-bit inte
gers). You can use the P a r t i t io n  function to break up the list of binary digits into 
sublists of length 8, and then map Homer’s rule (Exercise 5.3.3.1) onto each sublist



to convert it to a byte code. For the ultimate in compactness you can use From- 
CharacterCode to convert the list of byte codes into a string.
Note that if the number of binary digits in the list is not an integral multiple of 8, 
you will lose the “leftovers” when the list is partitioned. Therefore, you will need to 
pad the list out to a length that is an integral multiple of 8 before partitioning. How
ever, padding could introduce garbage into the message when it is decoded, so you 
also will need to store the number of bits with the packed representation so that it 
can be unpacked correctly.

2. Write a function that unpacks the byte-code representation that you created in the 
previous exercise. In te g e rD ig its  [i n t , 2] can be used to convert an integer 
i n t  into a list of binary digits. Caveat: Simply mapping In te g e rD ig its  [#, 2] & 
onto the list of byte codes and flattening the result do not give the correct answer!

3. The current implementation of t r a n s  is inefficient: Every time code2char is 
called, the encoding tree is subscripted from the root down to the current position. 
Rather than use a list of subscripts to represent the current state of the finite state 
machine, we could use a subtree of the encoding tree. The initial state would be the 
entire tree. As bits are read, the subtree becomes smaller and smaller until it 
becomes a leaf; at that point, a character is recognized and the state is reset to the 
entire tree. Now only one level of subscripting is performed for each bit read. Imple
ment a version of t r a n s  that uses this approach. Don’t forget to make the corre
sponding changes to h u f fmanDecode.

5.4 Recursion
Divide and conquer is an algorithmic strategy whereby problems are solved by break
ing them down into one or more smaller problems of the same type. This procedure 
continues until the problems being considered are so small that their solutions are triv
ial. The subsolutions are then combined to form the solution to the original problem.

Recursion is the act of a function calling itself. Programming languages that support 
recursion (a class that includes nearly all modem languages) make the implementation 
of divide-and-conquer algorithms straightforward. This is because the mechanism of 
recursion handles the combination of the subsolutions automatically.

5.4.1 The basics
Without a doubt, the most famous example of a recursive function is the factorial:

fact[n_Integer] := If[n =  0, 1, n fact[n - 1]]
Array[fact, 5]
(1, 2 , 6 . 24, 120}

As you can see, the f a c t  function calls itself. There’s nothing wrong with doing this, 
so long as “the buck stops” somewhere (in this case, when n becomes 0).



It is instructive to trace the evaluation of f a c t  for a small argument.

T r a c e [ f a c t  [ 3 ] ]

{ f a c t [ 3 ] ,  I f [3 == 0 ,  1 ,  3 f a c t [3 -  1 ] ] ,  
n =  0?No. {3 == o, F a l s e ) ,  3 f a c t  [3 - 1],
C a l l fa c t [2 ]  { { 3  _ l f  - i  +  3> 2 J . f a c t  [ 2 ] ,

"  -  0 ? N ° :  I f  [2  ==  0 ,  1 ,  2 f a c t  [2  -  1 ] ] ,  ( 2  ==  0 ,  F a l s e ) ,

=  0?N 2 f a c t [ 2  " 1 ] - { { 2  -  1-  - 1  +  2 .  1 ) ,  f a c t  [1 ]  ,

Call f a c t  [0] I f [ 1  ==  ° '  1 ‘ 1 f a c t [ 1  ‘  (1 ==  ° -  F a l s e >-
n =  o?Yes! Return 1. 1 f a c t [ !  " H  > U 1  -  1 .  -1  +  1 .  0 } ,  f a c t [ 0 ] ,
1*1= 1̂, 2 *1=>2,3 *2=^6 lf[0 == 0, 1, 0 fact [0 - 1]], {0 == 0, True), 1)\

, 1 1 ,  1 1 , 2 1 , 1 2 ,  2 1 , 3 2 , 2 3 ,  6)

To solve a problem recursively, you have to think about two cases:

1. For nontrivial cases, how do I reduce the problem to a smaller one (or several
smaller ones)? In the f a c t  example this is obvious.

2. What is the base case? There has to be a way to halt the recursion.

Note that if you forget the base case (or if your function ever calls itself without
changing the arguments), the recursion will not terminate. In Mathematica, you’ll get a 
“soft landing.” Don’t try this in other programming languages!

Lack of a base case prevents b a d f a c t [ n _ I n t e g e r ]  :=  n * b a d f a c t [ n  -  1]
the recursion from terminat- b a d f a c t  [5 ]
ing. The computation was . T . . , .
aborted manually. $ R e c u r s io n L u m t :  : r e c l im :

R e c u r s io n  d e p th  o f  256  e x c e e d e d .

$ A b o rte d

5.4.2 Recursion on lists
The principal data structure in the functional programming paradigm is the list. Since 
lists have basically the same structure no matter what size they are, recursion is a natu
ral choice for implementing many operations on lists. Here is a recursive function that 
reverses the elements in a list:

r e v [ s _ L i s t ]  :=
I f [  s = { } ,  { } .

A p p e n d [ r e v [ R e s t [ s ] ] ,  F i r s t [ s ] ]
]

r e v [ { l .  2 .  3 } ]

( 3 ,  2 ,  1}

The strategy of rev  is this:

1. If the list is empty (the base case), the result is another empty list. Otherwise...
2. Form a sublist consisting of the original list minus the first element.



3. Reverse the sublist.
4. Append what used to be the first element to the end of the reversed sublist.

We can see what’s going on by using the Trace function.

This shows all o fthe  calls to t r  =  T r a c e [ r e v [ { l ,  2 ,  3 } ] ,  A ppend]

Append that occur during {A ppend [ r e v  [R e s t  [ { 1 .  2 ,  3 ] ] ] .  F i r s t  [ { 1 ,  2 .  3 } ] ] .
the evaluation of rev [11, rr , r r ,, rr „,,,
2 { A p p e n d [ r e v [ R e s t [ { 2 ,  3 ) ] ] .  F i r s t  [ { 2 ,  3 } ] J ,

{ A p p e n d [ r e v [ R e s t [ { 3 } ] ] , F i r s t  [ { 3 } ] ] ,
A p p e n d [ { } ,  3 ] ,  { 3 } } ,  A p p e n d [ { 3 } ,  2 ] ,  { 3 ,  2 } ) .

A p p e n d [ { 3 , 2 ) .  1 ] , ( 3 .  2 ,  1 } }

The trace shows that rev  [ {1, 2, 3} ] evaluates to Append [rev  [Rest [ {1, 2, 
3 } ] ] , F i r s t  [ {1, 2, 3 } ] ]. Since the arguments to a function are evaluated before 
the function is evaluated, the first argument evaluates to rev  [{2, 3} ], which in turn 
produces (after the evaluation of F i r s t  and Rest) Append [rev  [ {3} ] , 2]. Like
wise, rev  [ { 3} ] evaluates to Append [ rev  [ {J ] . 3 ], and rev  [ {} ] evaluates to {} 
(the empty list). Now that the base case has been reached (i.e., there is no further recur
sive call), the entire process “unwinds.” Since rev[{}] has evaluated to {}, 
Append [rev  [{}] , 3] evaluates to Append [{}, 3] => {3}, so this is the value of 
r e v  [{3}]. Now Append [rev  [{3}] , 2] => Append [{3} , 2] =>{3, 2}, so this 
is the value of rev  [ {2, 3} ]. Finally the 1 is appended to this, creating the final result, 
{3. 2. 1}.

The great thing about recursion is that all of this mess is kept track of by the normal 
function-call m echanism . Recursion allows us to reason about divide-and-conquer 
problems at a very high level, and the details take care of themselves.

As another simple example, here's a function that finds the minimum value in a list. 
Basically, the function looks at the first two elements in the list and drops the smaller of 
the two before recursing. When there is only one element left, it must be the minimum, 
so it is returned.

W e use the Which statement minimum [s_List] : =
(Section 4.2.3) to avoid a W h ic h  [ s =  {}, Infinity,
sequence of nested If 's . L e n g th  [s ]  =  1 .  s [ [ l ] ] ,

s [ [1]] > s[[2]], minimum[Drop[s, {1}]].
True, minimum [Drop[s, {2}]]

]

minimum[{3. 5, 2, 6 , 4}]
2

The s == {} case is executed only if minimum [ {} ] is called directly by the user. If 
you are at all unclear about how minimum works, you should trace the example compu
tation.



A more interesting example of recursion is the mergesort algorithm for sorting a list. 
The strategy of mergesort is:

1. Split the list into two more or less equally sized pieces.
2. Sort each piece recursively.
3. Merge the sorted pieces.

Mergesort reduces the problem of sorting a list, which is relatively difficult, to the prob
lem of merging two sorted lists, which is considerably easier. The base case is sorting a 
list of 0 or 1 element, which is trivial. Assuming for the moment the existence of a suit
able merge function, here is a mergesort function:

Switch was introduced in mergesort [s_List] : =
Section 4.2.2. Switch [ Length[s],

0, {},
1 , s,

With[{half = Quotient[Length[s], 2]}, 
merge[mergesort[Take[s, half]], 

mergesort[Drop[s. half]]]
]

]

The merge function is not difficult to write either, since by assumption both of its 
arguments are already sorted. If either list is empty, return the other list. If neither is 
empty, compare their first elements. Remove the smaller of the two, merge what’s left, 
and prepend the element that was removed.

merge[a_List, b_List] :=
Which[

a == {}. b,
b == {}, a,
a [ [1] ] < b[[l]].

Prepend[merge[Rest[a], b], a[[l]]].
True, Prepend[merge[Rest[b], a], b [[1]]]

]

merge[{1. 3, 5, 6 , 12}, {2, 5, 10}]
{ 1 ,  2 ,  3 .  5 .  5 ,  6 . 1 0 ,  12}

Here is mergesort in Table[Random[Integer, {1, 100}], {12}]
aCtl° n' ( 6 0 .  7 6 ,  5 4 ,  9 2 ,  5 4 ,  9 9 ,  9 2 ,  5 7 ,  8 , 8 0 ,  9 7 ,  10}

' mergesort[%]
{ 8 , 1 0 ,  5 4 ,  5 4 ,  5 7 ,  6 0 ,  7 6 ,  8 0 ,  9 2 ,  9 2 ,  9 7 ,  99}

A trace of m erg eso rt’s execution would be quite lengthy; you might want to trace a 
very small m ergesort of, say, two elements in each list.



Exercises
1. Write a recursive function that adds 1 to every element of a list.
2. Write a recursive function that computes the length of a list.
3. Another approach to finding the minimum of a list is sometimes called a tournament 

algorithm. The basic idea is:
(a) Split the list into two more or less equally sized pieces.
(b) Find the minimum of each piece recursively.
(c) Return the smaller of the two minima.
Implement a toumament-style minimum function.

4. Write a recursive version of Map.

5.5 Manipulating Normal Expressions
Up to this point we have restricted our application of functional programming opera
tions to lists. Now we take into consideration the structure of general Mathematica 
expressions — of which lists are merely a special case — and show how functional 
operations can be used on them.

Recall that expressions can be either atomic (symbols, numbers, strings) or non- 
atomic. The general structure of a nonatomic, or normal, expression is head [ p a r t i , 
. . . .  p a r tn ], where the head and each of the parts are other expressions. We can use 
the FullForm function to explore the internal representation of various expressions. 
For example,

FullForm[a + b]
Plus[a, b]

A list is just a normal expression with the head L is t:

FullForm[{a, b}]
List[a, b]

Since lists are represented internally just as any other expressions are, and since there 
are many functions for operating on lists, you might suspect that you can use these 
functions on more general expressions as well. In fact, almost anything you can do to a 
list you also can do to an arbitrary expression, which is a very powerful capability. In 
the remainder of this section we will highlight this capability.

5.5.1 Subscripting expressions
One particular list operation that can be applied to any expression is subscripting. This 
concept is important enough that it deserves special treatment.



You may have already seen the use of subscripting to pick out the right-hand side of 
a rule:

The second element of a (a  - >  b )  [ [ 2 ] ]
rule is its right-hand side. ^

This is because of the way F u l lF o r m  [a -> b ]
rules are represented inter- R u le  \a. b l
nally. u  8

If the head of this expression had been L is t  rather than Rule, we would naturally have 
expected the second part to be b.

Here is a slightly more interesting example of subscripting:

( a / b )  [ [ 2 .  1 ] ]  

b

The reason for this result is that the internal form of a /b  is Times [a, Power [b , 
-1 ] ]. In other words, part 2 of this expression is the expression Power [b , -1 ], and 
part 1 of that expression is b. If this doesn’t make sense to you, then try the following 
experiment:

Convert all heads in the ( a / b )  / .  { T im e s - > L is t ,  P o w e r - > L is t }
expression to L is t .  ^

This list has the same structure as the original expression, and quite obviously part 
{2, 1} isb.

Recall that list subscripting always starts with 1. This is true of all normal expres
sions: The first argument to a function is always part 1, and so on.

( a / b )  [ [ 1 ] ]  

a

( a / b )  [ [ 2 ] ]

1
b

However, part 0 is defined to be the head of the expression:

( a / b ) [ [ 0 ] ]

T im es

Alternatively, you can use H ead  [ a /b ]
the built-in function Head. „ .l im e s

Note that if the head of an expression is a normal expression, you can subscript inside 
of the head also. For example,



Part 0 of this expression is 
f  [0 ,  l ] ,  and part 2 o f that 
expression is 1.

P o s i t i o n  [ f  [ 0 ,  1] [x ]  , 1]

{(0, 2}}

Subscripting does not work on atoms, however. Although atoms have heads (which 
can be accessed using either Head [a] or a [ [0] ] ), they have no parts. Witness:

This output format is mis
leading.

Rationals have heads...

but no parts.

F u l lF o r m [ 1 /2 ]

R a t i o n a l [1 ,  2]

(1/2) [[0]]
R a t io n a l

(1/2) [[1]]
P a r t : : p a r t d :

1
P a r t  s p e c i f i c a t i o n  (—) [ [ 1 ] ]

2
i s  lo n g e r  th a n  d e p th  o f  o b j e c t ,  

( f ) [[1]]

The contents of an atom are raw data that cannot be accessed using subscripting. Corre
sponding to every type of atom are special functions that allow you to access the data 
inside the atom. These functions are listed in Table 5-3.

Table 5-3 Special access functions for atoms of various types.

Type of Atom Special Access Functions

I n t e g e r I n t e g e r D i g i t s

R e a l R e a lD ig i t s
M a n t is s a E x p o n e n t
$ N u m b e rB its a

R a t io n a l N u m e ra to r
D e n o m in a to r

C om plex Re
Im

S t r i n g C h a r a c te r s
T o C h a ra c te rC o d e

a. This function is undocumented in The Mathematica 
Book, although there is an on-line usage message for 
it. Its return value is machine-dependent.



As with lists, the P o s itio n  function searches an expression for instances of some 
sub-expression and returns the sequence of subscripts necessary to extract that part of 
the expression. For example,

Note the double braces. P o s i t io n  [ a / b , b ]

{{2, 1}}

The extra braces are neces- P o s i t io n  [ a / ( 1 + L o g [ a ] ) ,  a ]
sary because the sub
expression might occur 
more than once.

11}, (2, 1, 2, 1))

The form returned by P o s itio n  can be passed to a variety of other functions that oper
ate on expressions; this allows for “pinpoint” modification of expressions. We’ll see an 
example of this in the next section.

Exercise

1. Try to extract the symbol x from each of the following expressions. Use FullForm  
if you need help, and use P o s itio n  only to check your answers.

a  +  b * x

a  +  b * x [ c ]

a  +  b * x [ [ c ] ]  ( *  d o n ’ t  w o r r y  a b o u t  t h e  e r r o r  m essage * )  

x / y

y / x  ( *  n o t  as  e a s y  a s  i t  lo o k s  * )

2 A2 Ax  

x [ a ,  b]  [c]

5.5.2 Levels in expressions
Levels in arbitrary expressions are counted just as they are in lists, of course. However, 
there are some finer points about levels that we have neglected until now because they 
aren’t very interesting when all of the heads in an expression are L is t .  In particular, we 
need to discuss how heads are treated with regard to level specification.

You might have noticed by now that heads seem to be ignored by level specifica
tions! For example, here are “all” of the subexpressions in the expression a/b :

W here are the symbols L e v e l  [ a / b ,  { 0 ,  I n f i n i t y } ]
Times and Power? ,

Every function that takes a level specification (see Table 5-1 on page 106) also has an 
option called Heads. The default value of this option for most of these functions is



F alse , which causes heads to be ignored.11 We can, of course, override this behavior. 

Level[a/b, {0, Infinity}, Heads->True]
{Times, a. Power, b, -1, b b

Recall that in Section 5.1.3 we defined the level of a subexpression within an expres
sion to be the number of subscripts needed to extract that subexpression from the over
all expression. This definition also is correct for heads; for example,

It takes two subscripts to 
reach the head Power.

Sure enough, the symbol 
Power is at level 2.

Position[a/b, Power]
{{2 , o n

Level[a/b, {2}, Heads->True] 
(Power, b, -1)

Here is a more interesting example in which the one of the heads is itself a normal 
expression.

All o f the atoms in this 
expression are at level 2.

Note, however, th a tT re e -  
Formdoes not print them all 
at the same depth. T re e -  
Form makes no attempt to 
format compound heads.

Level[f[0, l][g[x, y]], {2}, Heads->True] 

{f, 0 , 1 , g, x, y)

TreeForm[f[0, l][g[x, y]]]
f[0 , 1][| ] 

g[x, y]

5.5.3 Functional operations on expressions
Here are some examples of applying functional operations to arbitrary expressions. 
We’ll begin with Map.

This wraps f  around each 
argument to g.

Level specifications work in 
the usual way.

H eads->True directs Map 
(and its ilk) to operate on the 
head of an expression as 
well as its parts.

The Heads options can be 
combined with a level spec
ification.

Map[f, g[a, h[b]]]
g[f [a] , f [h[b]]]

Map [f, g [a, h [b] ] ,
gta, h[f[b]]]

{2}]

Map[f, g[a, h[b]], Heads->True] 
f [g] [f [a] , f [h[b]]]

Map[f, g[a, h[b]]
g[a, f[h] [f[b]]]

{2}, Heads->True]

11. One exception to this rale is Position, for which the default is Heads->True. 
Thus, Position will find a subexpression anywhere within an expression.



In contrast, Operate maps a Operate [f, g[a, b]]
function onto only  the head. ^  j

As an aside, applications requiring the use of functional operations on heads of 
expressions are fairly esoteric; it’s very difficult to find an example that isn’t contrived.

Apply [f, expr] simply changes the head of expr to f .

Apply[f, g[a, h[b]]]
f[a, h[b] ]

Apply [ f . g [a, h[b] ] , {1}]
g[a, f  [b] ]

Recall that in Section 5.5.1 we used the following technique to visualize the struc
ture of an expression:

(a/b) /. {Times->List, Fower->List}
(a, {b, -1 ) 1

The problem with this technique is that it’s hard to generalize; it requires that all of the 
heads in the expression be specified explicitly. What we really would like to do is 
change all of the heads in an expression to L is t ,  no matter what they are. Changing the 
head of an expression is exactly what Apply does; a level specification of {0. I n f in 
ity }  will cause Apply to work on every subexpression within the expression:

Apply[List, a/b, {0, Infinity}]
{a, (b, -1 }}

The technique is completely Apply[List, g [a  + b, h [ c / d ] ] ,  {0, Infinity}]
genera!. { { a>  b ) >  { { c>  {d> _ i } } }  >

MapAt (Section 5.1.4) allows functions to be targeted to particular points within an 
expression:

MapAt[f, a + b, {2}] 
a + f[b]

MapAt[f, a / b ,  {{1}, {2, 1}}]
f[a] 
f [b]

This is essential for those cases in which the built-in algebraic simplification commands 
refuse to do what you want them to do.

Getting Mathematica to expr = Sqrt[u - l]/Sqrt[uA2 - 1] ;
simplify this expression can 
be an exercise in frustration.



Even using PowerExpand 
doesn't help.

Solution: First factor the rad
ical in the denominator ...

Simplify[expr]
Sqrt [-1 + u]
Sqrt[-1 + u2]

PowerExpand[expr]
Sqrt [-1 + u]
Sqrt [-1 + u2]

MapAt[Factor, expr, Position[expr, uA2 - 1]]
_____Sqrt [-1 + u]_____
Sqrt[(-1 + u) (1 + u)]

and then use PowerExpand. PowerExpand [%]
1

Sqrt [1 + u]

Note that the third parameter to MapAt is of the same form as the result produced by 
the P o s itio n  function — thus they work well as a team. There are several other func
tions that accept a positional specification of this form, including In s e r t ,  D elete , and 
R eplacePart.

u]/Sqrt[l - uA2]. Sqrt]

Exercise

1. Explain what is going on here.

Position[Sqrt[1
{}

5.5.4 Miscellaneous list operations
As mentioned at the beginning of this section, nearly any list operation can be applied 
to arbitrary expressions, as long as it makes sense to do so from a structural point of 
view. Here are some examples.

The only difference between 
this expression and the list 
{a ,  b ,  c , d j is its head 
(Plus versus List).
Thus you can use almost any 
list operation on it.

FullForm[a + b + c + d]
Plus[a, b, c, d]

Drop[%, 1]
b + c + d

Append[%, e]
b + c + d + e

Take[%, {2. 3}] 
c + d



You can reorder the parts of 
any expression whose head 
does not have the attribute 
O rd e rle s s .12

Reverse[f[a, b, c]]
f[c, b, a]

RotateLeft[f[a. b, c]] 
f[b, c, a]

Any two expressions can be 
Jo ined  if they have identi
cal heads.

Join[a*b, c*d]
a b e d

Exercises
1. Given that

Reverse[aAb] 
bE

then why doesn’t Reverse [a/b] reciprocate the fraction?
2. Explain what is going on here. (Hint: Try using a list instead of a sum.)

Partition[a + b + c + d ,  2, 1]
a + 2 b + 2 c + d

Examples of functional programming can be found in many of the standard packages. 
In particular, S t a t i s t i c s ' D ataM anipulation and LinearA lgebra'M atrixM a- 
n ip u la tio n  rely heavily on these techniques.

[Wagon 91] is notable for its many elegant applications of functional programming 
using Mathematica.

Readers interested in the theoretical aspects of functional programming may consult 
[Henderson 80].

12. Orderless (i.e., commutative) functions automatically sort their arguments. Thus 
Reverse [Plus [a, b]] =>Plus[b, a] => Plus [a, b].

5.6 Additional Resources

5.6.1 Standard packages

5.6.2 Publications



5.7 Appendix: Lisp-Mathematica Dictionary
For the benefit of experienced Lisp programmers, Table 5-4 draws analogies between 
some common operations in Lisp and their closest Mathematica equivalents.

Table 5-4 Lisp-Mathematica Dictionary

Lisp Mathematica Comments/Special Input Forms

(a b c ...) {a, b, c, ... } a is not a function
(f a b .. .) f[a, b, ...] f is a function
apply Apply @@
catch Catch
cond Which
lambda Function #. &
let With
mapcar Map /@
quote Unevaluated
reduce Fold
setq SetDelayed : =

throw Throw

Lisp programmers should note that lists in Mathematica are implemented using 
arrays, not linked lists. Thus, some algorithms that might be efficient in Lisp are 
extremely inefficient in Mathematica. We’ll discuss performance issues in detail in 
Chapter 10, “Performance Tuning.”
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6
Rule-Based Programming

The programming paradigms that we have studied so far can all be categorized as 
imperative programming, in which it is the programmer’s job to state, step by step, how 
to carry out the solution to the problem. Rule-based programming is fundamentally dif
ferent from this. In the rule-based paradigm, the programmer simply writes down a set 
of rules that specify what transformations should be applied to any expression that is 
encountered during the course of solving the problem. The programmer need not 
specify the order in which these rules are to be executed; the underlying program m ing  

system figures that out.

Rule-based programming is a very natural way to implement mathematical computa
tion, since symbolic mathematics essentially consists of applying transformation rules 
to expressions (e.g., differentiation rules, tables of integrals). Mathematical versatile 
pattern-matching capability, which we have only begun to explore, often makes rule- 
based programming the paradigm of choice for Mathematica programmers.

6.1 Patterns

6.1.1 What is a pattern?
A pattern is a Mathematica expression that represents an entire class of expressions. 
The simplest example of a pattern is a single Blank, _, which represents any expres
sion. Another example is _ f , which represents any expression having f  as its head. We 
have already used patterns like these as formal parameters in function definitions. We’ll 
explore this use in greater detail in Section 6.2.

Patterns also can be used by a variety of built-in functions to alter the structure of 
expressions. For example, a replacement rule can have a pattern on its left-hand side.



This rule squares every real 3 a  +  4 .5  b A2 / .  x _ R e a l - >  x A2
number in an expression. 2

3 a  +  2 0 . 2 5  b

This rule squares every inte- 3 a  +  4 .5  b A2 / .  x _ I n t e g e r  - >  x A2
ger in an expression. Note 4
the exponent of b. 9 a +  4 .5  b

Be careful what you wish for 3 a  +  4 .5  b A2 / .  x _ S ym b o l ->  x A2
—  you just might get it! 9 9 9

(P lu s  ) [ (T im e s  ) [ 3 ,  a ] ,

( T i m e s 2 ) [ 4 . 5 , ( P o we r 2 ) [ b 2 , 2 ] ] ]

The preceding example shows that a pattern can match any parts of an expression, even 
heads.

Patterns themselves are expressions, and almost any part of a pattern can be given a 
temporary name, which allows a rule to extract and manipulate the parts of an expres
sion. These temporary names are called pattern variables. Here are three examples:

In this case the pattern vari
able x  refers to any expres
sion with head f ;  it matches 
f  [a] and f  [a ,  b ] .

In this case, however, the 
pattern matches only those 
expressions having head f  
and a single argument, 
which is referred to as x.

O n  the other hand, this pat
tern matches only those 
expressions with head f  that 
have exactly two arguments, ( a  +  b )
referred to as x  and y.

Note that in none of the previous three cases was the subexpression g [b] affected, 
because it does not have the correct head.

Keep in mind that patterns match expressions based on the internal forms of those 
expressions. This can cause a great deal of confusion when you are trying to modify an 
expression whose internal form is quite different from what appears on the screen. For 
example:

expr = x / Exp[y]
x

(f [a] + g[b])/f[a, b] /. x_f -> xA2
f  [a ]  2 + g[b]

f  [a , b ] 2

(f[a] + g[b] )/f [a, b] /. f [x_] -> xA2
a 2  + g[b]

f  [a , b]

(f [a] + g[b])/f[a, b] /. A.1A

f  [a ] + g[b]



This is bewildering ... e x p r  / .  Exp [ z __] ->  z

- ( x  y )

until one examines the F u l lF o r m  /@ { x  /  Exp [y ]  , Exp [z _ ]  }

iT m t fT a - 7116 Pattem {T lm e s  [E , T im e s  [ - 1 , y ]  ] . x ]  .changed the expression _ . „ f  ri  ' ,
EA( - y ) t 0 - y  Pow er [E , P a t t e r n  [ z ,  B l a n k f ] ] ] )

6.1.2 Destructuring
A pattem can be constructed from any expression merely by substituting Blanks for 
various subexpressions. (The name Blank is meant to connote the idea, “Fill in the 
blank.”) Furthermore, any Blank can be given a name and used as a pattem variable.

The pattern variable x  f [ a ]  +  g [ b ]  / .  x _ [ _ ]  - >  x
matches the head of any 
expression having a single 
part.

f  +  g

N ow  x  matches the head of f [ a ]  +  g [ b ]  / .  x _ [ _ ,  _ ]  - >  x
any expression having P lu s
exactly two parts: In this
particular example, that is
Plus [a, b].

The technique of extracting parts of patterns using pattem variables is sometimes 
called destructuring. Destructuring combined with rule replacement is a very powerful 
capability.

This extreme example illus- f [ a ]  +  g [b ]  / .  x _ [ y _ ]  ->  y [ x ]
trates that it's possible to do a r f l  + h r o l
just about anything with ®
destructuring.

Practically speaking, destructuring and rule replacement are often easier than using 
MapAt (see Section 5.1.4) to modify a subexpression, and it is almost always easier to 
understand at a glance what a destructuring operation is doing, as opposed to what part 
of an expression is referred to by a long sequence of subscripts. The only time you 
would have to use subscripting instead of destructuring is when an expression contains 
multiple subexpressions with the exact same structure, only one of which you wish to 
extract or modify.

Suppose we have a list of {x. y} data points that we wish to plot as a logplot.1 A 
functional way to transform the data would be as follows:

d a t a  =  { { x l ,  y l } ,  { x 2 ,  y 2 } ,  { x 3 , y 3 } , { x 4 ,  y 4 } } ;

1. For educative purposes, let us agree to ignore the fact that the Graphic s ' Graph - 
ic s ' package contains a function to do logplots.



Separate the x  and y  values. T ra n s p o s e  [d a ta ]

( { x l ,  x 2 ,  x 3 ,  x 4 ) , { y l ,  y 2 , y 3 , y 4 } }

Use MapAt to transform the M apA t [L o g , %, {2  } ]
y  values This operation { { x l  x2  ^  x 4 )  (L o g [y l ] L o g [y 2 ]  , L o g [y 3 ]  ,
relies on the fact that Log is t  .  , l n
L is t a b le  (Section 3.3). L o 8 ^  > }

Recombine the x  values and T ra n s p o s e  [%]
transformed yvalues. { { x l >  L o g [y l ] )> {x2> L o g [ y 2 ] } ,  ( x 3 ,  L o g [ y 3 ] } .

( x 4 ,  L o g [ y 4 ] ) }

On the other hand, this type of data transformation is trivial to do by using pattern 
matching:

The y  values are trans- d a t a  / .  { x _ ,  y _ }  ->  { x ,  L o g [ y ] }

formed in place. { { x l ,  L o g [ y l ] } ,  ( x 2 ,  L o g [ y 2 ] ) ,  { x 3 ,  L o g [ y 3 ] ) ,

{ x 4 ,  L o g [ y 4 ] } )

Exercise
1. What happens in the following case?

{ { x l ,  y l } ,  { x 2 , y 2 } } / .  { x _ ,  y _ }  - >  { x ,  L o g [ y ] }

6.1.3 Testing patterns
There are two functions for testing patterns to see what kinds of expressions they will 
match: MatchQ and Cases.

The MatchQ predicate simply tests to see if a pattern matches an expression:

M a tc h Q [a  +  b +  c ,  _ P lu s ]

True

A more sophisticated function is Cases, which picks out all expressions in a list that 
match a given pattern. Cases is very useful for “debugging” your patterns.

If you don't understand why C ases  [ { a ,  a  +  b ,  a  +  a }  , x _  +  y _ ]
the pattern fails to match { a  +  b }
a+a, look at its F u llFo rm .

The second argument to Cases can be a rule, in which case the rule is applied to 
each of the matched expressions before returning.

C a s e s [ { a ,  a  +  b ,  a + a } ,  x _  +  y _  - >  y]

( bl

The head of the first argument to Cases need not be L is t .  By default, Cases 
searches only at level 1.



The only integer at level 1 in C ases [5 (a  +  b ) A6 ,  _ In t e g e r ]
Tim es [5 ,  (a  +  b ) A6] is 5.

Cases takes a level specification (Section 5.1.3) as an optional third argument, 
which tells it which levels to search for matches.

This finds integers at all lev- C ases  [5 (a  +  b ) A6 ,  _ I n t e g e r ,  I n f i n i t y ]

els' { 5 ,  6}

By default, Cases does not C ases  [5 (a  +  b ) A6 ,  _ S y m b o l, I n f i n i t y ]
search heads.  ̂a ^  j

You can override this by set- C ases  [5 (a  +  b ) A6 ,  _ S y m b o l, I n f i n i t y ,  H e a d s -> T ru e ]
ting H eads->True. {T±m eSi pQwer> p lu s  _ a> b }

Exercises

1. Use S e le c t and MatchQ to implement your own version of Cases. Don’t worry 
about level specifications.

2. Why doesn’t the pattern x_ + y_ match the expression a + a?
3. Create a pattern that matches a symbol raised to an integer power. The pattern 

should match expressions such as x A3 or yA2, but should not match x A (2/3) or 
(x + y ) A2.

4. Does the pattern from the previous exercise match xA 1? Why not? (Note: You don’t 
yet have the tools to fix this problem, so don’t attempt to do so.)

6.1.4 The role of attributes

Mathematica can be surprisingly intelligent about destructuring. Consider this 
example:

Even though this expression L e n g th  /@  {a  +  b +  c ,  x _  +  y _ }  
and this pattern have differ
ent structures ...

{ 3 ,  2 )

the pattern nevertheless a + b + c / .  x_ + y _  -> {x, y }
matches. / _ ■u _ il a ,  d +  c )

The reason that the pattern matched is that Mathematica knows that P lus is an asso
ciative operator, i.e., a + b + c =  a +  (b + c ). This knowledge is encoded into 
the attributes of the P lus function:

The F la t  attribute means A ttribu tes [Plus]
that P lu s  is associative. { F l a t ,  L i s t a b l e ,  N u m e r ic F u n c t io n , O n e ld e n t i t y .

O r d e r le s s ,  P r o t e c te d }

We’ve already seen L is ta b le . F la t  means that P lus is associative, as we saw above. 
O n e ld en tity  means that P lus [x] =  x. O rderless  means that P lus is commuta



tive, i.e., P lus [a. b] = P l u s [ b ,  a ] . P ro te c te d  means that you can’t define new 
rules for P lus without first U nprotecting it.2

The significance of the C a s e s [ { a  +  b * c ,  a *b  +  c }  , x _  +  y _ * z _ ]
Orderless attribute is that i a + h r a h + r t
this pattern matches either 
of these expressions.

This sort of behavior allows some fairly sophisticated transformations with a mini
mum of effort. For example, the following rule will expand a product of any number of 
factors, as long as any of them contain at least two additive terms:

e x p a n d r u le  =  x _  (y _  +  z _ )  - >  x  y  +  x  z ;  

y _  +  z_ matchesb +  c and a  (b  +  c )  (d  +  e +  f )  / .  e x p a n d r u le
x_matches everything else,
because Times is Flat and 
Orderless.

a b  (d  +  e +  f )  +  a c  (d  +  e +  f )

% /. expandrule
a b d  +  a c d  +  a b  (e  +  f )  +  a c  (e  +  f )

% /. expandrule
a b d  +  a c d  +  a b e  +  a c e  +  a b f  +  a c f

Rather than applying a rule such as this over and over, we can use F ixedP oin t to 
apply the rule to the expression repeatedly until the expression stops changing.

FixedPoint[# /. expandrule &, a (b + c) ( d + e + f ) ]
a b d  +  a c d  +  a b e  +  a c e  +  a b f  +  a c f

This is a common enough kind of operation that a function exists expressly for this pur
pose. It is called ReplaceRepeated, and it has the special input form “/ / .  ”:

a (b + c) ( d + e + f )  //. expandrule
a b d  +  a c d  +  a b e  +  a c e  +  a b f  +  a c f

6.1.5 Functions that use patterns
We have already used some functions that can take patterns as arguments, although we 
didn’t know it at the time. The second argument to the Count and P o s itio n  functions 
is actually a pattem. So, for example,

Count[{a, a + b, a + b + c ,  a + a } ( x _ +  y_]
2

Position[{a, a + b ,  a + b + c .  a + a } ,  x _ +  y_]
{ { 2 } ,  ( 3 ) }

2. See Section 6.5, “Overriding Built-in Functions.”



Like so many other functions that accept patterns, Count and P o s itio n  can also be 
given level specifications to target their search.

There also is a function called D eleteC ases that, as you might expect, returns the 
complement of what Cases returns. Like Cases, D eleteC ases can operate on 
expressions having any head, and it also takes a level specification as an optional argu
ment.

D e le t e C a s e s [ { a ,  a  +  b ,  a + a } ,  x _  +  y _ ]

{ a ,  2 a)

D e le te C a s e s  [5 (a  +  b ) A6 ,  _ I n t e g e r ]

(a  +  b ) 6

D e le te C a s e s  [5 (a  +  b ) A6 ,  _ I n t e g e r ,  { 2 } ]

5 ( a  +  b)

6.2 Rules and Functions
We’ll see in this section that there is an intimate connection between rules and func
tions. Before proceeding, however, we need to introduce a new type of rule.

6.2.1 Delayed rules
Just as there are two types of assignment operations, Set and SetDelayed, so there 
are two types of rules: Rule and RuleDelayed. The difference between the two forms 
is that the right-hand side of a RuleDelayed is not evaluated until after the
pattern variables have been substituted. Delayed rules can be specified using the
syntax a : > b.

As an example of when you would need this behavior, consider once again the prob
lem of trying to cancel S q rt [u - 1] from the following expression:

e x p r  =  S q r t [ u  -  l ] / S q r t [ u A2 -  1 ] ;

We solved this problem in Section 5.5.3 by using MapAt to F ac to r the expression
inside the radical. As an alternative, we might use the following rule:

All that remains to do is to e x p r  / .  u A2 -  1 ->  (u  -  1 ) (u  +  1 )
apply PowerExpand to this S q r t [ - 1  +  u]

r8SÛ ‘ Sqrt[(-1 + u) (1 + u)]

This rule is fine for this simple case, but in a more complicated case it would be a 
burden to have to supply the factored form of the polynomial. In that case we might try 
a rule of the following form:



expr /. 1/Sqrt[y_] -> 1/Sqrt[Factor[y]]
Sqrt [-1 + u]
Sqrt[-1 + u2]

The problem is that F ac to r [y] evaluates immediately to just plain y, and so the effect 
of the rule is to replace y_ with y — no change at all! Preventing the right-hand side of 
the rule from being evaluated before substitution is the solution to problems like this
one:

In this case, F a c to r  [y] is 
not evaluated until y  has 
been replaced by the argu
ment of S q rt.

Finally, PowerExpand the 
result to effect cancellation.

e x p r  / .  1 / S q r t [ y _ ]  :>  1 / S q r t [ F a c t o r [ y ] ]

_____Sqrt[-1 + u]_____
Sqrt[(-1 + u) (1 + u) ]

P o w e rE x p a n d [%]

1
Sqrt[l + u]

Exercises
1. Use a rule to numerically evaluate (i.e., apply the N function to) the Log term in the 

following expression, but not the Sin term. Compare the effects of using Rule and 
RuleDelayed.

Log [3] + Sin [3]

2. Why did we use 1 /S q rt [y_] to match the denominator of the example expression 
in this section, i.e., why doesn’t the simpler pattern S q rt [y_] work?

6.2.2 Function definitions are rules
When you define a function in Mathematica, you actually are defining a rule. The 
rule(s) for a function f  can be displayed using DownValues [ f  ]:

fact[n_Integer] := Times @@ Range[n]
DownValues[fact]
{HoldPattern[fact[n_Integer]] :> Times @@ Range[n]}

As you can see, this definition has created a delayed rule that represents what should 
happen to expressions that match the pattern H o ldP attern  [ fa c t [n_In teger] ]. 
H o ldP atte rn  is a head that, like Hold, keeps its argument from evaluating.3 Unlike 
Hold, however, H o ldP atte rn  is ignored for pattern-matching purposes. Hold
P a tte rn  will be discussed in greater detail in Section 7.2.5.

3. Prior to version 3.0, HoldPattern was known as Literal. Users of those ver
sions will see Literal everywhere this book shows HoldPattern.



The difference between a rule created by a function definition and an ordinary rule is 
that the former is globally applied, whereas the latter is applied only within a Replace- 
type operator (e.g., “/ .  ”). Whenever the Mathematica kernel matches an expression to 
a global rule, it will replace it with the right-hand side of the rule. In fact, you can think 
of the way that the kernel evaluates an expression (in a somewhat oversimplified way)

expression //. { a l l  g lo b a l  r u l e s )

In other words, global rules continue to be applied until the expression stops changing. 
It is for this reason that the Mathematica kernel’s main evaluation routine is sometimes 
called an infinite evaluation system. It also explains why it is so difficult to evaluate an 
expression only partway (see Section 7.3, “Working with Held Expressions”).

According to Roman Maeder, one of the designers of the Mathematica programming 
language, pattem matching and rule substitution are “the underlying mechanism for 
implementing all other programming constructs” in Mathematica [Maeder 94a]. This 
remarkable fact, together with the uniform representation of everything as expressions, 
is what gives Mathematica its great power and flexibility.

6.2.3 Multiple definitions for the same symbol
Mathematica allows you to write multiple function definitions for the same symbol, to 
cover (presumably) different cases; these definitions become separate mles. Here is a 
recursive definition of f a c t  in which we have defined the base case as a separate rule:

Clear [fact] 
fact[0 ] = 1 ;
fact[n_Integer] := n*fact[n - 1]

There are now two rules for DownValues [fact]
fact- {HoldPattern[fact[0]] :> 1,

HoldPattern[fact[n_Integer]] :> n fact[n - 1]}

Having multiple definitions for the same function might seem analogous to over
loading in languages such as C++ [Stroustrup 91], but in fact it is much more powerful. 
First of all, Mathematica patterns can test for much more than just the “type” of an 
argument; we’ll discuss the full generality of patterns in Section 6.3.

Less obvious, but perhaps more important, is that the different alternatives do not 
have to be disjoint: Note that zero is an integer, yet when the argument to the f a c t  
function is zero, the rule for f a c t  [0] is used rather than f a c t  [_ In te g e r] . This illus
trates a general strategy of Mathematica’s pattern-matching engine: It always tries to 
apply more specific rules before more general rules. DownValues [f] displays the 
rules for f  in the order in which the kernel tries to apply them. You can also see the 
order in which the rules for a symbol are applied by using Isym.



?fact
Global'fact 
fact[0 ] = 1

fact[n_Integer] := n*fact[n - 1]
In cases where it is not obvious which rule is more specific, Mathematica keeps the 

rules in the order in which they were entered. In the f a c t  example, the internal order
ing would be the same no matter which rule was entered first, since the pattern 0 is 
more specific than the pattern _ In te g e r (see Exercise 6.2.3.1, below). In other cases 
Mathematica won’t always be able to figure out the correct order for the rules.4 In such 
cases you can reorder the DownValues for a symbol explicitly. (There is an example of 
doing so in Section 6.5.3.)

Finally, note that we could have used either = (Set) or := (SetDelayed) to define 
the base case for fa c t ,  since its right-hand side is a constant.

Exercises

1. Clear the definition of f a c t  and redefine it, but this time specify the rule for 
f a c t  [0] last. Now examine the rule set for fa c t .

2. Implement a function that has the same functionality as Take, using a different rule 
for each possible form of the subscript specification.

6.2.4 Advantages of rule-based function definition
There are many advantages to implementing a function as a collection of rules rather 
than as one monolithic piece of code.

First, rule-based functions usually are faster than all-in-one function definitions, 
because in many cases Mathematical pattern-matching engine can evaluate alterna
tives faster than explicit conditional statements (e.g., I f ,  Switch) can.

Second, using multiple rules to define functions is very natural for mathematicians. 
For example, here is a definition of the absolute value function that parallels the way 
the definition would be presented in a mathematics textbook:

a b s v a l [ x _ ]  :=  x  / ;  x  >=  0
a b s v a l [ x _ ]  :=  - x  / ;  x  < 0

(The “/ ;  ” construct will be discussed in Section 6.3.1, “Pattern constraints.”)

4. Unlike logic programming languages such as Prolog [Clocksin & Mellish 84], 
Mathematica does not implement backtracking. This means that although the ker
nel tries to guess the best order in which to apply rules, if it turns out to have made 
a wrong choice, it makes no attempt to try some other order. Maeder develops a 
Prolog-style backtracking interpreter in Mathematica in [Maeder 94b].



Third, much of mathematics simply involves rewriting expressions according to rec
ognized patterns (e.g., differentiation and integration). When you do mathematical sim
plification by hand, you are doing the pattern matching in your head. Thus, rule-based 
programming often produces clear, elegant solutions to mathematical problems. We 
will see examples of this throughout the remainder of the book.

Fourth, we don’t need to limit our thinking to regarding global rules as functions in 
the algorithmic sense. The ability to create arbitrarily many definitions for 
f  [c o n s ta n t] allows us to think of global rules as a way of storing knowledge — a 
rule base. The standard packages M isce llan eo u s 'C ity D a ta ' and M isc e lla 
neous" ChemicalElement s '  are excellent examples of this way of thinking about 
global rules.

Here is an example of the 
kind of knowledge con
tained in the Chem ical - 
Elem ents package.

Needs["Miscellaneous'ChemicalElements'"]
Through[{AtomicWeight, MeltingPoint, BoilingPoint, 

HeatOfFusion, Density, 
ThermalConductivity)[Cesium]]

{132.9054, 301.55 Kelvin, 951.6 Kelvin,
2.09 Joule Kilo 1873. Kilogram 35.9 Watt ,

Mole Meter" Kelvin Meter

Fifth, a Mathematica function can augment its own rule base as it executes, allowing 
time-consuming computations to be cached. We will explore this idea in greater detail 
in Section 6.4, “Dynamic Programming.”

6.2.5 Clearing definitions selectively
Sometimes when you are developing a new function, you make a mistake and need to 
redefine the function. Rather than doing a C lear [ f  ], which requires starting all over, 
you can selectively clear a single definition using “f  [p a tt]  This operation is 
called Unset.

Here's a botched attempt to 
extend the definition of fac
torial to the real numbers 
( fa c t [n _ ]  should evaluate 
to Gamma [n + 1 ]).

W e attempt to redefine the 
bad rule, but it seems to 
have no effect.

The reason is that the old 
rule for f a c t  [n_] is still 
there, and it comes before 
the new rule for f a c t  [m _].

fact[n_] := Gamma[n]

fact /@ {3.99, 4, 4.01} 
(5.92519, 24, 6.07593}

fact[m_] := Gamma[m + 1]

fact /@ {3.99, 4, 4.01}
{5.92519, 24, 6.07593)

Tfact
Global'fact
fact[0] = 1 
fact[n_Integer] := Apply[Times, Range[n]]



fact[n ] := Gamma[n]
fact [m_] := Gamma [m + 1]

As you can see, Mathematica considers two structurally identical patterns to be dif
ferent if the names of the pattem variables are not identical! This can result in 
extremely perplexing behavior. Unset is the “magic bullet” that can fix this situation:

This clears the bad rule f  a c t  [n _ ] = .
without touching any of the
others.

N ow  the f a c t  function f a c t  /@ { 3 . 9 9 ,  4 ,  4 . 0 1 }
works as intended. ( 2 3 . 6 4 1 5 ,  2 4 ,  2 4 . 3 6 4 5 )

If you ever botch something so badly that you can’t seem to get the rules straight, 
and reentering them all would be unacceptable, you can always directly modify the 
function’s DownValues by assigning to DownValues [ f  ], e.g.,

DownValues[f] := Drop[DownValues[f] , {i}] 

where i  is the subscript of the rule you want to get rid of.

6.2.6 "Pure" rule-based programming
Rather than writing rules as function definitions, you can apply the rules to expressions 
locally using ReplaceRepeated, essentially mimicking the operation of the kernel. 
For example, here’s an alternative way to compute the factorial. Note that you must 
specify the rules in the order shown, or else the rule for f  [0] will never be used!

R eplaceR epeated contin- f  [5 ] / / .  { f [ 0 ]  : >  1 ,  f [ n _ ]  :>  n * f [ n  - 1 ] }
ues to apply rules from the 
given rule set until the 
expression stops changing.

In contrast to recursion, this technique does not build up a large evaluation stack, and 
hence is not constrained by the $R ecursionL im it “safety net.”

T a b l e [ D e p t h [ T r a c e [ f a c t [ i ] ] ] , { i ,  1 0 } ]

{ 6 ,  7 ,  8 ,  9 ,  10 ,  1 1 ,  1 2 ,  13 ,  1 4 ,  15}

T a b le [ D e p t h [ T r a c e [
f [ i ]  / / .  { f [ 0]  : >  1 ,  f [ n _ ]  :>  n * f [ n  -  1 ] } ] ] ,

{i. 10}]
{ 9 ,  9 ,  9 ,  9 ,  9 ,  9 ,  9 .  9 ,  9 ,  9}

This may be seen as an advantage or a disadvantage, depending on the circumstances.

ReplaceRepeated and its relatives scan lists of rules sequentially for pattem 
matches. For long lists of rules, Replace-type operations may be sped up by using the



D ispatch  function to generate a dispatch table for the list of rules. See §2.4.2 of The 
Mathematica Book for details.

6.3 Pattern Building Blocks
Mathematica provides a rich set of building blocks for constructing patterns. We cannot 
do more than provide a few examples of each here. You will come to really appreciate 
what patterns can do as you read the remainder of this book and other Mathematica lit
erature.

6.3.1 Pattern constraints
There are three constructs that can be used to constrain patterns. Two of them constrain 
the values of individual Blanks, while the third one can be used to specify relationships 
between different pattern variables.

head

As we saw in Section 4.1.3, “Type checking,” a Blank can be constrained to match 
only those expressions with a particular head by appending the head to the Blank.

This pattern matches only C ases  [ { 1 ,  S q r t  [ 2 ] ,  b }  , _ In t e g e r ]
integers. { y )

_?test

A Blank also can be constrained using the form J l t e s t ,  where t e s t  can be any 
function of a single argument. If the application of t e s t  to the expression that matches 
the Blank returns True, then the pattern matches.

Here's another way to write C a s e s [ { l ,  S q r t [ 2 ] ,  b }  , _ ? In te g e r Q ]
a pattern that matches only
integers.

Note that, given the choice, it’s more efficient to match the head structurally using 
_ In te g e r  than to use _? IntegerQ , so you probably wouldn’t use a test function in 
this simple case. However, many predicates exist (see Section 3.4) that can test for 
more complicated conditions, such as whether or not an expression is an atom (AtomQ) 
or a number (NumberQ). And in addition to using the system-defined predicates, you 
can of course define your own.

Here's a pattern that between [x_] := 1 <= x  <= 10
matches an expression only Cases [Table [Random [Real, {1, 100}], {20}], _?between]
if it is a number between 1 . 9 1 9 9 1  9  1 5 8 7 1 }
and 1 0 .

You also can combine head matching with a test function.



This pattern matches only C a s e s [ { - 1 ,  0 ,  1 ,  1 . 5 } ,  _ In te g e r ? N o n N e g a t iv e ]
nonnegative integers. j q  ̂j

pattern /; condition

A condition consisting of “/ ;  ” followed by any expression involving pattem vari
ables may be attached to almost any part of a pattem. For example, any of the following 
rales could be used to define the recursive case of a f a c t o r i a l  function:

factorial[n_Integer?NonNegative] := b o d y  
factorial[n_Integer /; NonNegative[n] ] := b o d y  
factorial[n_Integer] /; NonNegative[n] := b o d y  
factorial[n_Integer] := b o d y  /; NonNegative[n] 
factorial[n_] := b o d y  /; IntegerQ[n] && NonNegative[n]

Conditions are handy because they obviate the need to write a separate test function, 
e.g., the function between from the previous example.

This function accepts argu- f[n_ /; 1 <= n < =  10 ] :=  . .  .
ments that are between 1 
and 1 0  only.

Conditions also are more flexible than the ? t e s t  construct because they can involve 
multiple pattem variables.

This function w ill be called f[x_, y _ ]  / ;  x < y  :=  . . .
only if the first argument is 
less than the second.

Note that in this particular case, you must not place the condition within the square 
brackets (e.g., f  [x_, y_ / ;  x < y ]); if you do so, Mathematica will assume that 
you want to test the pattem variable y against a global symbol called x, which is proba
bly not what you had intended.

Thus, the only constraint on a condition is that if it involves multiple pattem vari
ables, then it should appear outside of the smallest expression containing all of those 
variables. For both readability and efficiency reasons it’s a good idea to place a condi
tion as near as possible to the variable(s) it involves. The author prefers using the first 
of the four condition forms shown in the f a c t o r i a l  example whenever possible. 
However, some people prefer the third form because it is reminiscent of the way func
tions are defined in mathematics books (cf. the definition of the absv a l function on 
page 150).

Exercises

1. Redefine f  as follows:

Clear[f, x, y ]  
f[x_, y _  /; x < y ]  := True 
f[_, _] := False



Now evaluate f  using various arguments. What happens? Finally, evaluate the fol
lowing:

x  =  2 ; 
f  [ 9 9 ,  3]

2. Modify the minimum function from Section 5.4.2 so that it will not evaluate unless 
its argument is a list of numbers. (Hint: Use L istQ  and NumberQ.)

3. Write a function to compute binomial coefficients called binom ial [n, r] that 
evaluates only if n is greater than or equal to r  and r  is greater than or equal to 0.

6.3.2 Patterns with default values
A default value can be defined for a pattern by using the p a t t e r n : value  construct. 
This is a useful technique for providing optional arguments to functions.

This function uses Horner's t o l n t e g e r  [ d i g i t s _ L i s t , b _ : 2 ]  : =  
rule (Section 5.3.3) to con- F o ld [ b  # 1  +  # 2  &. 0 ,  d i g i t s ]
vert base-b digits into a 
base- 1 0  integer.

By default, the digits are t o l n t e g e r  [ { 1 ,  0 ,  0 ,  1 } ]
treated as base 2 . g

O ther bases can be used by t o l n t e g e r  [ { 1 ,  0 ,  0 ,  1 } ,  3 ]
supplying a second argu- 28
ment.

Note that when there is more than one pattern variable with a default value and there 
are not enough parts in the expression to fill them all, Mathematica will fill them in left- 
to-right order. Using the Cases function with a rule as the second argument, we can see 
what is being assigned to a pattern variable under different circumstances:

b gets a value before c does. C le a r  [ f ,  a ,  b ,  c ]
C a s e s [ { f [ x ,  y ,  z ]  , f [ x ,  y ] , f [ x ] } ,

f[a_, b_:2, c_:3] -> {a, b, c}]
{ { x ,  y ,  z ) ,  ( x ,  y ,  3 } ,  { x ,  2 , 3 } )

Some functions have predefined default values for certain arguments. These pre
defined defaults can be specified with a pattern of the form . ”. For example, the 
default value for an argument to the P lus function is 0. Therefore, the pattern 
“a_ + b _ . ” matches any of the following:

Cases[{x, x + y}, a_ + b_. -> {a, b}]
{ { x ,  0 } ,  { y ,  x } }

You can see what the default values for a function are by evaluating Def au ltV a l - 
ues [name] :



DefaultValu.es [Times]
{HoldPattern[Default[Times]] :> 1)

The preceding explains why C ases [ { x ,  x  * y } , a _  * b _ .  - >  { a ,  b } ]
this pattern matches both of j  ̂j , x j j
the given cases. ’ ’ ’

Exercises

1. Modify your binomial coefficient function from Exercise 6.3.1.3 so that if r  is omit
ted, the function returns n.

2. Clear to ln te g e r  and redefine it so that it checks that each of the digits in its first 
argument is a valid base-b digit. Hint: Write a condition clause that uses VectorQ 
and an appropriate pure function.

3. What values are assigned to the pattern variables a, x, and b by the pattern 
“a _ . * x_ + b _ . ” when it is applied to expressions such as x, x + y, w * x, 
w * (x + y),w  * x + y, andw * x + z * y?

4. Examine the default values for the Power function. Use this information to write a 
pattern that matches both xAy and x.

6.3.3 Example: Writing a derivative function
Although Mathematica has a built-in differentiation function, writing one is a good way 
to illustrate the use of destructuring, conditions, and default values, and also to show 
how rule-based programming allows easy incremental enhancements to a function.

We will make heavy use of the FreeQ predicate. FreeQ [expr, form ] returns 
True if no subexpression in expr  matches form  (which can be a pattern). Mathemati
cally speaking, FreeQ [expr, var] means that expr  does not depend on the variable 
var.

Here are the basic rules for differentiation. The first two embody the fact that differ
entiation is a linear operator:

d i f f [ c _  * f _ ,  x_] / ;  FreeQ[c, x] := c * d i f f [ f ,  x] 
d i f f [ f _  + g_,  x_] := d i f f [ f ,  x] + d i f f [ g ,  x]

Using no more than these two rules, d i f f  can rewrite derivatives of linear expressions
in terms of the derivatives of the parts that involve the variable x.

d i f f [3 x A2 - 2 x  + 1, x]

diff[l, x] -  2 diff[x, x] +  3 diff[x2, x]

We continue to add rules for d i f f ,  with each new rule building upon and enhancing 
the functionality of the previous ones. The derivative of a constant is 0:

d i f f [ c _ ,  x_] / ;  FreeQ[c, x] := 0



That got rid of the constant d i f f [ 3  x A2 -  2 x  +  1 ,  x ]
term  in the previous result. 2

-2 d i f f [ x ,  x] + 3 d i f f [ x  , x]

The derivative of x* is njt"-1. Note that the use of “n _ . ” for the exponent means that 
the first parameter also matches the expression x:

d if f [x _ An _ ., x_] / ;  FreeQ[n, x] := n xA(n - 1)

So far so good ... d i f f  [3  x A2 - 2 x +  1. x]
-2 + 6 x

but d if f  doesn't work on d i f f  [ ( x  +  1 ) A2 , x ]
expressions of this form. 2

d i f f [ ( l  + x) , x]

We need to implement the chain rule. Below, fx  is a mnemonic for “function of x.”

d if f [ f x _ An_, x_] / ;  FreeQ[n, x] && !FreeQ[fx, x] := 
n * fx A(n - 1) * d i f f [ f x ,  x]

d i f f [ (x + 1 )A2, x]
2 (1 + x)

d if f  [ ( x A2  +  2  x  +  1) A3 , x ]

3 (2 + 2 x) (1 + 2 x + x 2) 2

Chain mle seems to eliminate the need for the power rule, so we might try to UnSet 
the latter:

Note that to UnSet a rule, d if f [x _ An _ .,  x_] / ;  FreeQ[n, x] =.
the left-hand side must be
typed verbatim, including 7 d i f f

G lo b a l 'd i f f

d i f f [ (c_)* ( f _ ) . x_] / ;  FreeQ[c, x] := c * d i f f [ f ,  x]

d i f f [ ( f _ )  + ( g _ ) , x_] := d i f f [ f ,  x] + d i f f [ g ,  x]

d i f f [ c _ ,  x_] / ;  FreeQ[c, x] := 0

d i f f [ ( f x _ ) A(n_), x_] / ;
FreeQ[n, x] && !FreeQ[fx, x] := 

n *fxA(n - l ) * d i f f [ f x ,  x]

Unfortunately, our rules now leave out one important case: d i f f  [x, x ] .

d i f f [ ( x A2  +  2  x  +  1 ) A3 , x ]

3 (1 +  2 x  +  x 2) 2 (2 d i f f [ x ,  x] +  2 x  d i f f [ x ,  x ] )

This is easily fixed by the following simple rule:

conditions.



Note that this rule fires only d i f f [ x _ ,  x _ ]  :=  1
if the two parameters are
identical. d i f f [ ( x A2 + 2 x  + 1 )A3, x]

3 ( 2 + 2  x) ( l + 2 x + x ^ ) 2

The beauty of the rule-based approach is that the functionality of d i f f  can be 
extended at any time by adding new rules, without (hopefully) having to modify the 
existing rules. Some examples will be explored in the exercises.

Exercises

1. To fix the lack of a rule for d i f f  [x , x ] , why didn’t we just modify the first param
eter for the chain rule so that its exponent was of the form “n _ . ”?

2. Add product rule to d i f f :  ^-f(x)g(x) = f(x)-^-g(x) + g(x)-^-f(x).
ax ax ax

3. Do you need a separate rule to implement the quotient rule?
4. Add rules for exponentials and logarithms to d i f f .
5. Add rules for trigonometric functions to d if f .

6.3.4 Patterns that match more than one expression
There are two patterns that can be used to match sequences of expressions:__ (a double
Blank, called BlankSequence) and ___ (triple Blank, called BlankNullSe-
quence). The double Blank matches a sequence (comma-separated) of one or more 
expressions, and the triple Blank matches a sequence of zero or more expressions. (A 
sequence of zero length is equivalent to Null.)

The triple Blank matches Clear [f]
everything the double C a s e s [ { f [ ] ,  f  [1] , f  [1. 2 ] } ,  f  \ 11
Blank does, plus Null. Cases [ t f [ ] ,  f  [1] . f [ l ,  2 ] } .  f [ ____]]

{f [1] , f [1. 2] }

(f[] . f[l]. f[l. 2]}

When qualified with a head test or predicate test, all of the expressions in a sequence 
must satisfy the test in order for the pattern to match.

__Integer matches a Cases [ { f [ l ,  2 , 3 ] ,  f [ l ,  a , 3 ] } ,  f [ __In te g e r ] ]
sequence of one or more {f[l 2 3]}
integers, but not a mixture of ’
integers and other types.

Probably the most common use for Blank sequences is destructuring lists of 
unknown lengths. This capability makes functions and rules that operate on lists much 
more compact and easy to write. For example, here’s a reimplementation of the rev  
function of Section 5.4.2 that uses destructuring:



Note that a sequence is not 
a list; w e must enclose r  in 
list braces before w e make 
the recursive call.

W e could also have written 
it like this.

C l e a r [ r e v ]
r e v [ { f _ ,  r ____} ]
r e v  [ { } ] =  O ;

r e v [ { 1 , 2 , 3 } ]

( 3 ,  2 .  1}

:=  A p p e n d [ r e v [ { r } ] , f ]

C l e a r [ r e v ]  
r e v [ { f ____, 1 _ } ]  :=  P r e p e n d [ r e v [ { f } ] , 1 ]

And here is the minimum function from Section 5.4.2 rewritten to use destructuring.

The comparison for the run
ning minimum is now  
implemented by pattern 
matching. Also note that the 
list argument passed to the 
recursive call is "restruc
tured" from the constituents 
of the original list.

Clear[minimum] 
minimum[{}] = {}; 
minimum[{a_}] = {a};
minimum[{a_, b_, c_} /; a <= b] := minimum[{a, c}]
minimum[{a_, b_, c_________ J] := minimum[{b, c}]

minimum[{3, 5, 2, 6 , 4}]
{2}

One of the more elegant examples of what can be accomplished by pattern matching 
and destructuring is the following function for sorting the elements of a list:

The second rule is a "catch
all" that fires only after the 
first rule no longer applies.

s o r t e r [ { a ____, b _ ,  c _ ,  d____ } / ;  b  > c ] :=
s o r t e r [ { a ,  c ,  b ,  d ) ] 

s o r t e r [ x _ ]  :=  x

s o r t e r [ { 3 ,  5 ,  2 ,  6 , 4 } ]

{ 2 ,  3 ,  4 ,  5 ,  6 }

s o r te r  works because Mathematica tries to match the pattern variables b and c to 
every consecutive pair of elements in the input. Each time a pair of elements is 
swapped, pattern matching begins again at the left end of the list. Note, however, that 
this is quite inefficient: The number of comparisons increases as the square of the num
ber of elements. By printing the pattern variables as a side effect of testing the condi
tion, we can see all of the pattern-matching attempts, even those that fail.5

C l e a r [ s o r t e r ]
s o r t e r [ { a ____, b_

( P r i n t [ { { a } , 
s o r t e r [ x _ ]  :=  x

, c _ , 
{ b } ,

d _
{ c }

_}] : = 
, {d}.

s o r t e r [ { a ,  
b > c } ]  ; b

c ,  b ,  
> c )

dj] / ;

Students of computer sci
ence will recognize this as 
bubblesort, a classic exam
ple of how not to sort.

s o r t e r [ { 3 ,  5 ,  2 ,  6 , 4 } ]

t o ,
{ ( 3 )
U ),
({},
{(2)

( 3 )  , {5 }  , ( 2 ,  6 , 4 ] ,  F a ls e )  
, ( 5 ) ,  { 2 ] ,  ( 6 , 4 ) ,  T ru e }

{3 }  , { 2 } ,  { 5 .  6 , 4 } ,  T ru e }  
{2 }  . { 3 } ,  ( 5 ,  6 , 4 } ,  F a ls e }  

, { 3 }  , 15} , { 6 , 4 } ,  F a ls e }

5. Alternatively, we could trace the computation, but the trace is harder to read.



{ { 2 .  3 } .  { 5 } ,  { 6 } ,  ( 4 ) ,  F a ls e }
{ 1 2 ,  3 ,  5 ) ,  { 6 } ,  { 4 } ,  { } ,  T ru e )
{ { } ,  { 2 } ,  { 3 } ,  { 5 ,  4 ,  6 } ,  F a ls e }
{ { 2 } ,  { 3 } ,  { 5 } ,  { 4 ,  6 } ,  F a ls e }
{ { 2 ,  3 } ,  ( 5 ) ,  { 4 } ,  { 6 } ,  T r u e }
( { } ,  { 2 } ,  { 3 } ,  { 4 ,  5 ,  6 } ,  F a ls e }
( { 2 } ,  { 3 } ,  { 4 } ,  { 5 ,  6 } ,  F a ls e }
{ ( 2 ,  3 } ,  { 4}  , ( 5 ) ,  { 6 } ,  F a ls e }
{ { 2 ,  3 ,  4 } .  ( 5 ) ,  { 6 } ,  { } ,  F a ls e }

{ 2 ,  3 ,  4 ,  5 ,  6 }

Another use for sequence-matching patterns is to implement functions that takp a 
variable number of arguments. For example, in Section 5.1.1 we saw how to use Apply
to define a function that computes the arithmetic mean of a list. Here is a function that
computes the arithmetic mean of a sequence, rather than a list, of numbers:

amean[args__] := Plus[args]/Length[{args}]
amean[l, 2, 3, 4, 5]
3

There are two noteworthy techniques in this example. First, the sequence of argu- 
y?  ments can be directly “plugged into” the head of your choice (in this case, Plus), and 

second, the number of expressions in a sequence can be found by wrapping it in list 
braces and passing the resulting list to Length. Furthermore, by using destructuring it 
is trivial to extend this version of amean to work on lists as well.

amean[{args__}] := amean[args]
amean [ {1 , 2, 3}]
3

Exercises

1. Use sequence-matching patterns to write one-liners that mimic the functionality of 
(a) F i r s t ,  (b) L ast, (c) R est, (d) Apply.

2. Use sequence matching to write recursive functions that mimic the functionality of
(a) Map, (b) Nest, (c) Fold.

3. Redo Exercise 2 using the “pure” rule-based approach of Section 6.2.6.
4. Rewrite the m ergesort function from Section 5.4.2 using the techniques of this 

section. Compare its performance to s o r te r  for a wide range of list sizes, and 
graph the results.

5. Write a recursive function that creates a perfect shuffle of two lists, i.e.,

shuffle[{1, 2. 3}, {x, y, z}]
{ 1 ,  x ,  2 ,  y ,  3 ,  z }

Be careful to handle cases in which the two lists have different lengths!



6.3.5 Application: Functions with options

A very common reason to have a variable number of arguments in a Mathematica func
tion is to implement options. Options are named arguments of the form name->value 
or name: >value  that follow the positional arguments in a function call.

The predicate OptionQ is available to test an expression to see if it is an option or a 
list of options. Since there may be zero or more options in a function call, the pattern
___? OptionQ is exactly the right tool for the job. For example, here is how one could
declare a function that has one positional parameter and an arbitrary number of options:

f[argl_, opts___?OptionQ] := ...

Here are the kinds of expressions that are matched by the pattern variable opts:

Cases[{f[x], f[x, a->b], f[x, a:>b, c->d] , 
f[x, {a->b, c->d}, e->f]}, 

f[argl_, opts___?OptionQ]->{opts}]
{{}, {a -> b), (a :> b, c -> d).

{{a -> b, c -> d), e -> f)}

The use of rules for specifying options makes it quite easy to extract the values car
ried by the options. The sequence of options is wrapped in a list and then used on the 
right-hand side of a R eplaceA ll operator (“/ .  ”). However, a bit of care must be exer
cised because of the possible presence of nested lists in {opts}. For example,

The last value of {opts} in {a, c, e} /. Last[%]
the previous example can't RepiaceAll: : rmlx:
be used directly. Elements of {{a -> b, c -> d). e -> f}

are a mixture of lists and non-lists.
(a, c, e) /. {{a -> b, c -> d}. e -> f]

Simply Flatten [{opts}] {a, c, e} /. Flatten [Last [%%] ]
before passing it to 
R e p la c e A ll. The values of 
the options are extracted.

{b, d, f)

Another possible fly in the ointment arises in the case of missing options — options 
are, after all, optional! To handle this possibility, simply follow the initial replacement 
with another set of options that carry the default values for each possible optional 
parameter. For example,

The user specifies only one {namel, name2} / .  {namel->valuel}
of two possible options. {valu e l . name2}

The default value for the % / .  {namel->defaultl, name2->default2}
unspecified option is substi- { v a i u e i , d e f au lt2 }
tuted afterward.



The two R e p la c e A ll opera- {n a m e l. nam e2} / .  { n a m e l - > v a lu e l }  / .
tions can be combined into { n a m e l - > d e f a u l t l , nam e2 - > d e f a u l t 2 }
one input b e c a u s e i s  , .. , , _ .
left-associative. ( v a l u e l .  d e f a u l t 2 )

The techniques just illustrated work for any number of options, no matter how few or 
how many are supplied by the caller of the function.

Here is another version of the to ln te g e r  function introduced in Section 6.3.2. This 

version uses an option called Base, rather than a positional parameter, to specify the 
number base.

tolnteger[digits_List, opts___?OptionQ] :=
With[{b = Base /. Flatten[{opts}] /. {Base->2}},

Fold [b #1 + #2 &. 0, digits]
]

The base defaults to 2. t o l n t e g e r  [ { 1 ,  0 ,  0 ,  1 } ]

9

A different base can be t o l n t e g e r  [ { 1 ,  0 ,  0 ,  1 } ,  B a s e -> 3 ]
specified using B a s e -> i. 2 g

By convention, default options for a function f  can be inspected by using  

O ptions [ f  ] and modified by using SetO ptions [ f , o p t io n l , o p tio n 2 , . .  . ]. 
This and other fine points of option handling will be discussed in Section 9.2, 
“Options.”

Exercise

1. Add an option called W eights to the amean function given at the end of 
Section 6.3.4. The function should behave as follows:

amean[{a, b, c}, Weights->{1, 2, 3}]
a + 2 b + 3 c

The default value for W eights should be a list of all Is.

amean[{a, b, c, d}]
a + b + c + d

4

6.3.6 Assigning names to entire patterns

The construct n : p assigns the name n to the entire pattern p. What makes this different 
from a construct such as n_ is that p  can be an arbitrarily complicated pattern. For
example, the pattern n :{ ___In teg e r}  matches the same class of expressions as
n_ / ;  VectorQ [n, IntegerQ ] or n_? (VectorQ [#, IntegerQ ] &) — namely, a 
list of zero or more integers — but is faster and easier to understand.



We will illustrate the use of this construct by reimplementing the merge function 
from Section 5.4.2.

This rule fires if a l  < b l .  
Note the use of the pattern 
variable b to represent the 
entire second argument.

This rule handles the sym
metric case. Note the use of 
the pattern variable a to rep
resent the entire first argu
ment.

Finally, there are two base 
cases.

merge[{al_, arest___}, b:{bl_,
Prepend[merge[{arest}, b], al]

_}] /; al <= bl :=

merge[a:{__}, {bl_, brest___}] :=
Prepend[merge[a, {brest}], bl]

merge[a_List, {}] := a 
merge[{}, b_List] := b

No comparison for a l  > b l  is necessary in the second rule because that rule isn’t 
checked until after the first rule fails to match. At that point, a l  > b l is the only possi
bility. That being the case, however, the astute reader may be wondering why the sim
pler pattem merge [a_, {b l_ , b r e s t___}] wasn’t used instead. The answer will be
revealed in the exercises.

Exercises
1. Compare the speed of the following implementation of merge with the one given in 

this section:

Clear[merge]
merge[{al_, arest___}, b:{bl_, ___}] /; al <= bl :=

Prepend[merge[{arest}, b], al]
merge[a_. {bl_, brest___}] :=

Prepend[merge[a, {brest}], bl] 
merge[a_List, {}] := a 
merge [{}, b_List] := b

Do you understand why this implementation is slower than the first one? Hint: Run 
the following benchmark under each implementation:

$RecursionLimit = 600;
Table[Timing[merge[{}, Range[i]];], {i, 100, 500, 100}]

2. Rewrite merge to use ReplaceRepeated instead of recursion.

6.3.7 Repeated patterns

The construct “p . .  ” indicates one or more repetitions of the pattem p. The construct 
“p . . .  ” indicates 0 or more repetitions of p. We’ll illustrate the use of the former with a 
function that performs a form of data compression known as run-length encoding.



Run-length encoding is a method for compressing data that has long runs of identical 
values — a bitmap image is a good example. A string of n repetitions of a number x  is 
turned into [x, n }. For example, the run-length encoding of the data {1, 0. 0, 1, 
1, 1. 2, 2, 1} would be

ru n E n c o d e [ { 1 ,  0 ,  0 ,  1 ,  1 ,  1 ,  2 ,  2 ,  1 } ]

{{1, 1}, {0, 2), (1, 3), {2, 2), {1, 1}}

Here is Stephen Wolfram’s solution to the run-length encoding problem 
([Wolfram 91] page 13), which exploits repeated patterns:

The pattern named same Clear [runEncode]
counts the number o f con- ru n E n c o d e  [ { r e s t ___ I n t e g e r ,  same: ( x _ In t e g e r )  . . } ]  : =
secutivex's. A p p e n d [ r u n E n c o d e [ { r e s t ) ]  , { x ,  L e n g th  [ {s a m e } ]  } ]

ru n E n c o d e [ { } ]  =  { } ;

Exercise

1. What is the difference between the patterns “ (x _ In te g e r ) . and
“x__In te g e r”? Is there any difference between “ (_ In teg e r) . and
“__In te g e r”?

6.3.8 Alternative patterns

You can specify a pattern that matches one or more alternatives by separating the alter
natives with the vertical bar “ | ”:

Here's a pattern that { a ,  b ,  c l  / .  a  | b  - >  d
matches either a or b. j ^ ^ c j

If the rule’s right-hand side contains a pattern variable, it must appear on both sides 
of the vertical bar.

{ L o g [ 2 ] , 4 . 5 ,  2 + 3 1 }  / .  x _ In t e g e r  | x _ R e a l - >  S q r t [ x ]  

(LoS [2], 2.12132, 2 + 3 1 }

You can see that if the same pattern variable did not occur in both alternatives in the 
second example, there would be no way to write the right-hand side of the rule cor
rectly.

Alternatives and repeated patterns can be combined to write a pattern that matches a 
sequence of any number of elements, each of which matches one of a set of alterna
tives. For example, here is how one could write a pattern that matches a list con taining  

only integers or symbols:

C ases  [ { { 1 ,  2 } ,  { 3 ,  a } ,  { b .  4 ,  c } , { d ,  2 . 5 } } ,
{(_Integer | _Symbol)...}]

{{1, 2}, {3, al, {b, 4, cl}



Note, however, that the following syntax, while appealing, is not interpreted correctly:

Cases [Ul. 2}, {3, a}, {b. 4, c}, {d, 2.5}},
{_(Integer | Symbol)...}]

0

Here's why. FullForm [_(Integer | Symbol)]
Times[Alternatives[Integer, Symbol], Blank[]]

6.4 Dynamic Programming
Certain problems have recursive solutions that are very natural but also are very ineffi
cient. The reason for this inefficiency is that many identical recursive calls are made 
during any given computation. This property, called overlapping subproblems, is char
acteristic of many important problems. The most well-known examples are discrete 
optimization problems such as the 0-1 knapsack problem, optimal matrix-chain multi
plication, finding the longest common subsequence of two sequences, and the Floyd- 
Warshall algorithm for finding shortest paths in a graph (see [Cormen et al. 90]). Other, 
non-optimization examples include convolution and multiple-class mean value analysis 
of queuing networks (see [Jain 91]).

Problems having the overlapping-subproblems property almost always are solved 
using dynamic programming [Cormen et al. 90], a catch-all term for any algorithm in 
which the definition of a function is extended as the computation proceeds. This is gen
erally accomplished by constructing a solution “bottom up” (e.g., progressing from 
simpler to more complex cases), the goal being to solve each subproblem before it is 
needed by any other subproblem. The main disadvantage of dynamic programming is 
that it is often nontrivial to write code that evaluates the subproblems in the most effi
cient order.

However, there is an elegant dynamic programming technique that does not require 
the programmer to establish the evaluation order: recursion with result caching [some
times called memoization (sic) in the computer science literature]. By caching the 
results of all recursive calls, the second and subsequent evaluations of any subproblem 
become constant-time operations, reducing the overall running time considerably. The 
ability to add rules to a function as the function executes makes result caching very 
easy to implement in Mathematica.

In this section we will solve two problems having the overlapping-subproblems 
property. The first of these, the computation of Fibonacci numbers, is a “toy” problem 
that we use merely to illustrate the concepts. The second problem we will consider is 
finding the optimal multiplication order for a chain of matrix multiplications, a problem 
having considerable practical significance. For an example of using this technique to 
implement multiple-class mean value analysis see [Wagner 95].



6.4.1 Fibonacci numbers

Consider the following function that generates the well-known Fibonacci numbers:

Here are the first eight 
Fibonacci numbers.

fib[n_] := fib[n - 1 ] + fib[n -  2 ] 
fib [0 ] = fib [1] = 1 :
Array[fib, 8 ]
{ 1 .  2 ,  3 ,  5 ,  8 , 13, 21, 34}

Unfortunately, the time required to calculate f  ib  [n] is exponential in n: 

t = Table[Timing[fib[n]][[1. 1]], {n, 1, 16}];
ListPlot[t. PlotJoined->True,

PlotLabel->"Timings for fib[n]", 
Frame->True, FrameLabel->{"n". "Seconds"}. 
FrameTicks->{Range[0, 16, 2], Automatic}, 
DefaultFont->{"Times", 9}

];
Timings for fib[n]

ra
TJao
v
<DCO

A look at the execution trace of f ib  reveals the source of the inefficiency:

The second argument to 
T ra c e  tells it to print only 
those intermediate expres
sions that match the pattern 
f i b  [ _ ] .

Trace [fib [4] , fib [_] ]
{fib [4], {fib [3], {fib [2], {fib[l]}> {fib[0]}}> 

{fib [1] }}, (fib [2], {fib [1] }, {fib [0] }}}

In this small example, f ib  [3] is evaluated once, f ib  [2] is evaluated twice (once dur
ing the call to f ib  [4] and once during the call to f ib  [3]), f ib  [1] is evaluated three 
times, and f ib  [0] is evaluated twice. In fact, the number of times f ib  [1] is called 
during the evaluation of f ib  [n] is equal to f ib  [n -1]:

This counts the number of 
times f i b  [ 1 ] occurs in the 
list returned by T ra c e .5

Table[Count[Flatten[Trace[fib[i], fib[_]]]. 
HoldForm[fib[1]]],

{i, 1 , 1 2 }
]
{1, 1, 2, 3, 5. 8 , 13, 21, 34, 55, 89, 144}



This is a classic example of the overlapping-subproblems property.

One way to solve this problem efficiently, which is quite straightforward in this sim
ple case, is to perform the computation “bottom-up,” i.e., use results for smaller argu
ments to calculate results for larger arguments in a monotonically increasing fashion:

The pure function takes b u f ib  [n_] : =
{fib [n - 2 ] , fib [ n - 1 ] } as Nest [ { # [  [2] ] , Plus@@#}&, {0. 1 } ,  n][[2]]
an argument and returns Table [bufib [n ] , {n, 0 , 1 1 } ]
{fib [n - 1 ] ,  fib [n] }. r{1. 1, 2, 3, 5, 8 , 13, 21, 34, 55, 89, 144)

A more general and (in the author’s opinion) elegant solution, which is the topic of 
the present section, is to cache the results of earlier computations.

In Mathematica, result C le a r  [ f i b ]
caching is accomplished by fib[n_] :=  fib[n] =  fib[n -  1 ] +  fib[n -  2]
a very modest change to the fib[0] = fib[l] = 1;
definition of a function.

Comparing this definition of f ib  to the first one given, we see that the only difference 
is the prepending of f ib [n ]=  to the right-hand side of the definition. Before we 
explain how this modification works, we give an example of its consequences.

? f i b

Global'fib
fib [0 ] = 1 

fib [1] = 1
fib[n_] := fib [n] = fib [n - 1] + fib [n - 2 ]
f i b [3 ]

3

? f i b

Global'fib
fib[0 ] = 1 
fib [1] = 1 
fib [2 ] = 2 
fib[3] = 3
fib[n_] := fib [n] = fib [n - 1] + fib [n - 2]

What is really going on here? When f ib  [n_] is matched with a particular value for 
the pattern variable n — say, nO — Mathematica evaluates the right-hand side of the 
definition. But the right-hand side is itself a call to Set, which results in the assignment 
of a value to the expression f ib  [nO]. From this time forward, whenever the value of 
f ib  [nO] is required, no recursive call is made.

6. It is necessary to wrap HoldForm around the pattern f ib  [1] because every ele
ment in the list returned by Trace is wrapped in HoldForm.

Here is the rule set for f i b  
before any evaluations are 
done.

After evaluating f i b  [3] ...

there are more rules for f i b  
than before!



The new f i b  function is sig
nificantly faster.

Timing[fib[16]]
{0.0333333 Second, 1597}

Using the old definition of 
f i b ,  this computation 
would, for all intents and 
purposes,7 never finish.

Timing[fib [100]]
{0.133333 Second, 573147844013817084101}

Because the value of 
f i b  [ 1 0 0 ] has been cached, 
this call takes no time at all!

Timing[fib[100]]
{0. Second, 573147844013817084101}

Of course, result caching is a tradeoff of memory for time — there are now 102 rules 
defined for the symbol f ib . If you evaluate a cached function for extremely large val
ues of its arguments, you may run out of memory. And since the basis of the technique 
is recursion, it is not difficult to exceed $R ecursionL im it on large input values.

A more subtle problem, which is likely to be encountered when solving optimization 
problems, is that the cached values created for one set of inputs are probably not correct 
for a different set of inputs (the next problem we consider is an example of this). Thus, 
the Mathematica programmer must provide an easy way for the user to reinitialize the
cached functions. Finally, it must be pointed out that during the course of debugging 
such a function, care must be taken to always C lear the cached values and define the 
function from scratch whenever any change is made to the function.

Exercises
1. C lear the definition of f ib  (to remove any cached results) and reinitialize it. Now 

Trace the evaluation of f ib  for successively larger arguments (start small!) to see 
memoization in action. (Try using the expression Trace [ f ib  [n] , _ = _].)

2. Try to evaluate f ib  [ 10000]. Can you program your way around this problem?

The matrix-chain multiplication problem can be stated as follows: Given a chain (i.e., a 
sequence) of matrices whose dot product we wish to compute, parenthesize the chain so 
as to force the pairwise dot products to occur in an order that minimizes the number of 
scalar multiplications performed. Our presentation of this problem is modeled after 
[Cormen et al. 90] Section 16.1, and we quote results freely from that source. Readers 
interested in all of the details should consult [Cormen et al. 90].

The total number of scalar multiplications necessary to carry out a matrix-chain 
product can vary dramatically based on the parenthesization of the chain. Here’s an 
example that shows how important the choice of parenthesization can be:

7. “For all intents and purposes” means about 108 years, give or take an order of
magnitude.

6.4.2 Application: Matrix-chain multiplication



Here are three matrices; w e b l  =  T a b le  [R andom []  , { 3 0 0 } ,  { 1 0 } ]
wish to c o m p u te b l.b 2 .b 3 . b 2  =  T a b le [R a n d o m  [ ] .  { 1 0 } ,  { 3 0 0 } ]

b3 =  T a b le [R a n d o m [ ] ,  { 3 0 0 } ,  { 1 0 } ]

There are two mathematically equivalent ways to compute b l  . b2 . b3: as 
( (b l  . b2) . b3) or as (b l . (b2 . b 3 )). In terms of computational effort, 
however, they are anything but equivalent. Note that the number of scalar multiplica
tions required to compute the dot product of a p xq  matrix with a qxr  matrix is pqr. If 
the matrix product in this example were computed as ( (b l . b2) . b 3 ), the total 
number of multiplications would be:

30 0  * 10 * 3 0 0  +  3 0 0  *  30 0  *  10

1800000

But ifthe product were computed as (b l . (b2 . b 3 )), the number of scalar multi
plications would be reduced by a factor of 30:

10 * 30 0  * 10 +  3 0 0  *  10 *  10

6 0 0 0 0

Now observe that Mathematica's built-in function Dot is not smart enough to evaluate 
this product in the optimal order.

Here is how long it takes b l  . b 2  . b 3 ;  I I  T im in g
Dot to compute the exam- ( 2  5 5  Second> N u l l )
pie product.

Note the dramatic speedup D o t f b l ,  D o t [ b 2 ,  b 3 ] ] ; / /  T im in g
if w e force multiplication in { Q _1 5  Second N u l l )
the optimal order.

This example motivates the need for an algorithm to determine the optimal matrix- 
chain multiplication order.

Suppose that the matrix chain to be multiplied is Aj —An, where At has dimensions pt 
x p i+1. The problem we will solve is to (a) find the cost of multiplying out the matrix 
chain using an optimal parenthesization, and (b) produce a nested list of the indices
1, ..., n that indicates an optimal parenthesization, given the list of matrix dimensions
p = (P i............Pn+i} • In the example given above, the list of dimensions is {300,
10, 300, 10}, the cost of an optimal evaluation is 60000, and an optimal parenthe
sization (the only one, in this case) is {1, {2, 3}}.

A brute-force approach to this problem, which consists of computing the cost of 
every possible parenthesization of the matrix chain, would take time that is exponential

8. It is necessary to use explicit calls to Dot, rather than parentheses, to effect the opti
mal multiplication order because the parser converts b l . (b2 . b3) into 
Dot [b l , b2, b 3 ].



in the length of the chain (more precisely, it is at least as bad as 4”/n3/2). This is compu
tationally infeasible for all but the smallest values of n.

As a starting point in the search for a better solution, we note that the matrix-chain 
multiplication problem satisfies the optimal substructure property. Optimal substructure 
means that the optimal solution to the problem is built from the optimal solutions of 
smaller problems having the same structure as the original. For example, to find the 
optimal multiplication order for the matrix chain A1A2A3A4A5, we must consider four 
alternative ways to split the original problem: AI(A2A3A4A5), (A1A2)(A3A4A5), 
(A1A2A3)(A4A5), and (A1A2A3A4)A5. (There are only n - 1  such splits in a chain of 
length n since matrix multiplication is noncommutative.) The optimal solution given a 
particular split must consist of optimal solutions to each of the two subproblems. 
Therefore, the subproblems have the same structure as the original one, but on a smaller 
scale.

This observation suggests a recursive formulation of the solution. If we denote by 
m(i, j ) the cost of optimally multiplying the matrix chain A, - -A;-, then a recursive defini
tion for m(i, f) is:

This equation says that for any choice of where to “split” the chain (given by the index 
k), the total cost is equal to the cost of the optimal multiplication of all matrices to the 
left of the split (m(i, k)), plus the cost of the optimal multiplication of all matrices to the 
right (m(k + 1, j)), plus the cost of multiplying together these two intermediate results 
(PiPk+i Pj+1)- The optimal cost, then, is the minimum cost over all of the j  -  i possible 
choices for k.

It is clear that the matrix-chain multiplication problem suffers from overlapping sub
problems as well. For example, each of the subproblems AjA2A3A4 and A2A3A4A5 
requires the solution to the subproblem A2A3A4. Likewise, A2A3A4A5 requires the solu
tion to A3A4A5, which is already being computed as part of (A1A2)(A3A4A5). The entire 
problem can be viewed as a pyramid-shaped directed graph in which the complete 
chain is at the apex and the individual pairings are at the base (Figure 6-1). The number 
of paths from the apex to any intermediate node in the graph is the number of times the 
solution to that subproblem will be required. [Cormen et al. 90] shows that the naive 
recursive approach has a computational time complexity that is at least 2".

The dynamic programming approach to solving this problem is to compute the bot
tom row of the pyramid, m(i, i + 1) for i = 1...... n - 1 ;  then compute the second row
from the bottom, m(i, i + 2) for i = 1 ,..., n -  2; and so on, until finally the apex m(l, n) 
is computed. The computational time complexity of this approach is only proportional 
ton3.



Figure 6-1 Computational structure of the matrix-chain multiplication problem.

In contrast to the bottom-up approach to dynamic programming, here is a “top- 
down” result-caching implementation of the recurrence equation for m(i,j). Note that 
the form of the solution is a direct translation into a Mathematica expression of the
recursive definition given in Equation (1). (The m[__] case is used whenever an
expression such as m [ i , i ]  is evaluated.)

m [i_, j j  / ;  i  < j := m[i,  j]  =
Min[Table[m[i, k] + m[k + 1, j ]  +

p [ [1] ] p [ [k + 1] ] p [ [ j  + 1] ] .
{k, i ,  j - 1}]

]
m[__] := 0

The result-caching implementation computes subproblems as shown in Figure 6-2 (the 
reader should attempt to verify this). For example, when the subproblem A2A3A4 needs 
the solution to the subproblem A3A4, no work is done because the latter subproblem has 
been solved already by A3A4A5.

Figure 6-2 Result-cached computation of the matrix-chain multiplication problem.



Here are the dimensions of 
the matrices in the chain.

A c a llto m [l,  6 ] returnsthe 
minimum number of scalar 
multiplications required for 
this chain.

Here are all the intermedi
ate results.

Below, we solve an example problem from [Cormen et al. 90]. 

p = {30. 35, 15, 5, 10, 20, 25};

m[l, 6]
15125

TableForm[Array[m, {5, 6 }], 
TableHeadings->Automatic, 
TableAlignments-MCenter, Right}

]
1 2 3 4 5 6

1 0 15750 7875 9375 11875 15125
2 0 0 2625 4375 7125 10500
3 0 0 0 750 2500 5375
4 0 0 0 0 1 0 0 0 3500
5 0 0 0 0 0 5000

The given algorithm just tells us the cost of the optimal multiplication order, but not 
what that order actually is. To construct the full solution, the m function needs to leave a 
“trail of bread crumbs” as it works. The modified version of m shown below stores the 
table of alternative costs in a local variable called cho ices. Then the index of the min
imum cost (the optimal split) is stored in a global variable s [ i , j  ]. Although purists 
may recoil at this use of side effects, it is defensible in this case for two reasons. First, 
the most obvious alternatives (having m return a list consisting of { c o s t, p o s itio n } , 
or passing s as a by-reference parameter to m) make the code more complicated and less 
efficient. Second, if this code is encapsulated inside of a package (Chapter 8), s can be 
hidden inside of a private context, so these side effects will not be visible to the user.

Here w e store the table of 
costs in a local variable 
called cho ices . Then the 
index of the minimum cost 
(the optimal split) is stored 
in s [ i ,  j ] .

j := m[i, 
best},

j] =
Clear[m]
m[i_, j_] /; i <
Module[{choices, 

choices =
Table[m[i, k] + m[k + 

p [ [i] ] p[[k + 
{k, i, j - 1 }]; 

best = Min[choices];
j] = Position[choices,

1 . j] + 
1]] P[[j + 1]]

s [i, 
best

best] [ [1 , 1 ] ] + i - 1 ;

]
m[_ J  := 0

Here is the entire s table.
(The rule for s [__] has been
added for convenience.)

m[l, 6]
15125

s [ _ ]  := 0



TableForm[
Array[s, {5, 6 }],
TableHeadings->Automatic,
TableAlignments->{Center, Right}

]
1 2 3 4 5 6

1 0  1 1 3  3 3
2 0 0 2 3 3 3
3 0 0 0 3 3 3
4 0 0 0 0 4 5
5 0 0 0 0 0 5

The s table shows that the optimal split for the main problem is between the third 
and fourth matrix (s [1, 6] = 3). The optimal split for the subproblem AlA2A3 is 
between matrices 1 and 2 (s [1, 3] = 1), and the optimal split for the subproblem 
A4A5A6 is between matrices 5 and 6 (s [4, 6] = 5). We can use this information to 
generate a nested list of indices indicating the optimal parenthesization:

{1 , 6 } //. {i_Integer, j_Integer} /; i < j :>
{{i, s[i, j]}, {s[i, j] + 1 , j}}

{{{1, 1}, {{2, 2), (3, 3}}),
{{{4, 4}, {5, 5}}, {6 . 6 )}}

multorder = % /. {i_, i_} -> i
{(1, {2, 3}}, {(4, 5), 6 }}

Now that we have this list, how do we use it? First, suppose that we have a list of 
matrices of the given sizes:

A = Table[Random[], {i, 6 }, {p[[i]]}. {p[[i+ 1]]}];

We need to turn the parenthesized list of indices, m ultorder, into an expression of the 
following form:9

Dot[Dot[A[[1]], Dot[A[[2]], A[[3]] ] ].
Dot [Dot [A[ [4] ] , A [ [5] ] ] , A[ [6] ] ]]

This transformation ought to be easy but it turns out to be slightly tricky. The obvi
ous thing to do first is to change all of the heads in m ulto rder from L is t  into Dot. 
Unfortunately, that destroys the nested structure (which we worked so hard to concoct 
in the first place!) because Dot is F la t:

multorder /. List->Dot II FullForm
Dot [1, 2, 3, 4, 5, 6]

9. Note that we could not simply have had m compute the matrix product as it went 
along, because this would waste a lot of memory and time as nonoptimal multipli
cations (e.g., A [ [1] ] . A[[2]]) would get done along the way.



On the other hand, we can’t substitute the matrices before changing L is t  to Dot 
because the matrices themselves are nested lists!

We can get out of this “Catch-22” by changing the L is t  heads in m ulto rder to 
something else before substituting the matrices; afterward, we can go back and change 
the temporary heads to Dot. We’ll use the symbol naDot (for “nonassociative Dot”) as 
the temporary head.

m u lt o r d e r  / . L is t - > n a D o t

naDot[naDot[1, naDot[2, 3]], naDot[naDot[4, 5], 6 ]]

Next, we turn each index i  into A[ [i]  ] using a straightforward delayed-rule substitu
tion:

The output is suppressed c h a in  =  % / .  i _ I n t e g e r  :>  A [ [ i ]  ] ;
because this expression is S h o r t  [ c h a in ,  2]

huge- naDot [naDot [(« 3 0 » }, naDot [{«35»} . {«15»}]],
naDot [<<2>>]]

Now simply change naDot to Dot to evaluate the “parenthesized” chain. Since Dot 
is evaluated in the standard way, more deeply nested dot products will be evaluated 
before less deeply nested ones, thus preserving the “parenthesization.”

Here is the time required for fo o  =  c h a in  / .  n a D o t ->  D o t ;  / /  T im in g
the optimally parenthesized { 0 . 0666667 Second, Null)
matrix-chain product.

For this example it is only T im in g  [b a r  =  D o t @@ A ; ]
slightly faster than passing {0.0833333 Second, Null}
the entire chain to Dot.

Sanity check. fo o  =  b a r

True

Techniques for evaluating this expression that do not require the use of a temporary 
head will be presented in Sections 7.3.6 and 7.3.8.

Exercises
1. Combine the results from this section to write a matrix-chain multiplication function 

that takes a sequence of matrices as an input and produces their product (in an opti
mal way, of course) as output. Note that you can find the sizes of the matrices by 
using Dimensions.

2. The longest common subsequence (LCS) problem is another problem that has a 
dynamic programming solution [Cormen et al. 90]. For purposes of this problem we 
will consider sequences to be lists of integers, although obviously the same 
approach generalizes to lists of any type of elements or even character strings.10

10. A character string can be converted to a list of integer codes by using the ToChar- 
acterCode function.



The basic reasoning is: First, look at the last element in each sequence. If it is the 
same, then that element is part of the LCS and the problem reduces to finding an 
LCS for the pair of sequences minus their last elements. Otherwise, find the LCS of 
(i) the first sequence minus its last element and the second sequence, and (ii) the 
second sequence minus its last element and the first sequence. Whichever of these is 
longer is the LCS of the two original sequences.
Let x={x1, . . . .  Xjjj) and y={y!, . . . .  yn} be sequences. Denote by c [ i , j  ] 
the length of the LCS of the sequences {x2, . . . , x±} and {y1# . . . .  y^}. Then 
a recursive definition for c [ i , j  ] is given by:

0 (i = 0) v (j = 0)
c [ i -  1,7 - 1] +1 (i,;>0) a (* [ [ /] ]  = y [ [ ; ] ] )
max(c [i,  j - l \ , c  [ i -  1, j ]) (i, j  > 0) a ( x  [ [i] ] * y  [[;']])

Once you have computed the c [ i ,  j ]  values, you then have to reconstruct the 
actual LCS. The procedure for doing so is, not surprisingly, recursive. Start by look
ing at ^  and yn. If they are equal, then append that element to the LCS of 
Cxj...........Xm.j} and {yx...............y ^ } .  Otherwise, there are two cases to con
sider: If c [m - 1, n] > c[m, n - 1], then return the LCS of {xa...........x ^ }
and y; else return the LCS of x and {y: ........... yn_i}.

6.5 Overriding Built-in Functions

6.5.1 Protected symbols
Sometimes you want to override the behavior of one of the built-in functions. For 
example, suppose you have defined your own logarithm function, and you want it to 
have the property that lo g  [a b] factors to log  [a] + log  [b ]. If you try to modify 
the F ac to r function, you’re in for a rude surprise.

Factor[log[x_ y_]] := log[x] + log[y]
SetDelayed::write:

Tag Factor in Factor[log[(x_) (y_)]] is Protected. 
$Failed

Most of the built-in symbols, such as F acto r, have the attribute P ro tec ted , which 
prevents them from being modified inadvertently.

Attributes[Factor]
{Listable, Protected}

However, if you are resolute in your desire to add this rule to F a c to r’s repertoire, you 
can remove the P ro te c te d  attribute and press onward.



U n p r o t e c t [ F a c t o r ]  :
F a c t o r [ l o g [ x _ * y _ ] ] :=  l o g [ x ]  +  lo g [ y ]
P r o t e c t [ F a c t o r ] ;

A downvalue has been ere- D o w nV alu es  [F a c to r ]
ated for F ac to r. { H o ld P a t t e r n  [F a c to r  [ lo g  [ ( x _ )  (y _ )  ] ] ] :>

lo g  [x ]  +  lo g  [y ]  }

M ore importantly, it actually F a c t o r  [ l o g [ ( x  +  1 ) (2  x  -  5 ) ] ]

w or^S- l o g [ l  +  x ]  +  l o g [ - 5  +  2 x ]

Here’s a situation in which our rule isn’t applied:

F a c t o r  [1 +  l o g [ ( x  +  1 ) ( 2  x  -  5 ) ] ]

1 +  l o g [ ( l  +  x )  ( - 5  +  2 x ) ]

The reason is that the full form of this expression is F ac to r [P lus [ . . . ] ] ,  which 
doesn’t match our rule. This behavior is similar to that of the built-in F ac to r function, 
which doesn’t “descend” into expressions looking for subexpressions to factor.

F a c t o r  [1  +  L o g [2  x A2 -  3 x  -  5 ] ]
2

1 +  L o g [ - 5  -  3 x  +  2 x  ]

To factor lower-level expressions, you have to use either MapAt to target F ac to r to 
a particular subexpression, or MapAll to map F ac to r at every level of the expression.

M a p A l l [ F a c t o r , 1 +  l o g [ ( x  +  1 ) ( 2  x  -  5 ) ] ]

1 +  l o g [ l  +  x ]  +  l o g [ - 5  +  2 x ]

As a bonus, this technique also works in cases like the following:

M a p A l l [ F a c t o r , 1 +  lo g [ 2  x A2 -  3 x  -  5 ] ]

1 +  l o g [ l  +  x ]  +  l o g [ - 5  +  2 x ]

The reason this works is that MapAll operates “bottom up.” Thus, F ac to r is applied to 
the polynomial before it is applied to the log of the polynomial.

Exercises
1. Create another rule for F ac to r so that an expression such as lo g  [ (x + 1) A3] 

factors to 3 lo g [x  + 1].
2. Modify the Dot function so that when it is called with more than two arguments, it 

computes the optimal matrix-chain multiplication of the arguments (Section 6.4.2).



6.5.2 Upvalues
As an alternative to modifying a protected symbol, you can associate a rule for that 
symbol with certain other symbols that appear in the rule definition.

Before continuing, w e have U n p r o te c t  [F a c to r ]  ;
to remove any definitions C le a r  [F a c to r ]
w e have added to the Fac- P r o t e c t  [F a c to r ]  ;
t o r  symbol.

This rule for factoring a log F a c t o r  [ lo g  [x _ * y _ ]  ] A : = l o g [ x ]  + l o g [ y ]
is not associated with F ac

t o r - D o w nV a lu es  [F a c to r ]

{}

Rather, it is associated with ? lo g
the symbol lo g . G l o b a l ' l o g

Factor[log[(x_)*(y_)]] A:= log[x] + log[y]

The funny assignment operator A: = is called UpSetDelayed.11 The example rule is 
not a downvalue for log, it is a new kind of rule called an upvalue:

{DownValues[log], Upvalues[log]}
{{}, {HoldPattern[Factor[log[(x_) (y_)]]] :> 

log[x] + log[y])}

The names are meant to reflect where in the definition a symbol is. If it’s the head of the 
expression, it is “looking down” into the expression; if it’s nested within the expression, 
it’s “looking up” out of the expression.

The new definition works F a c t o r  [ lo g  [ (x  +  2 )  ( x  -  5 ) ] ]
just like a DownValue for 1 r } x r }
Factor. & 5 J

Another way to define an upvalue is to use the TagSetDelayed12 ( / :  ... : =) opera
tor:

This is equivalent to the lo g  / :  F a c t o r  [ lo g  [x _ * y _ ]  ] :=  lo g  [x ]  +  lo g [ y ]
above use of U pS et
D elayed .

11. Naturally, there is a corresponding operator UpSet (A=) that evaluates the right- 
hand side of the definition before performing the assignment. Except for that differ
ence, everything we have to say about one applies to the other. To keep things sim
ple, we’ll use UpSet as a generic term.

12. Likewise, there is a TagSet ( / : ... =) operator; similar comments apply as for 
UpSet.



TagSet is more precise than UpSet in the following sense: UpSet creates an 
upvalue for every symbol that is at level 1 or is the head of an expression at level 1 in 
the rule definition.

Using UpSet, this rule f [ g [ x _ ] ,  h [ y _ ,  z _ ]  , i ]  A : =  . . .
creates Upvalues for g, h, 
and  i .

TagSet, on the other hand, allows you to specify the symbol for which the upvalue will 
be created:

Using TagSet, this rule ere- h  / :  f [ g [ x _ ] ,  h [ y _ ,  z _ ]  , i ]  :=  . . .
ates an upvalue for h only.

Some people also prefer the “look” of a TagSet to the “look” of an UpSet; the former 
stands out better than the latter.

The motivation for using an upvalue is twofold. First, in the overwhelming majority 
of cases F ac to r will be called with arguments that do not involve the log  function. In 
these cases the existence of the rule for F ac to r [log [ . .  ] ] will not be checked, and so 
will not slow down the evaluation of Factor. (Imagine the overhead if a common 
function like F ac to r had to look at every rule for factoring every type of expression.)

Second, associating special rules for an individual function with that function helps 
to “localize the damage.” It makes it easier to find all such rules when you need to work 
on the function some more at a future time. This argument is similar in spirit to the 
argument for programming in an object-oriented style. In fact, you can think of an 
Upvalue as a kind of virtual function [Stroustrup 91]. This analogy seems especially 
appropriate since the kernel checks an expression for upvalues before checking it for 
downvalues, so that the former always override the latter.

H aving said all that, we need to point out a limitation of upvalues: They can be asso
ciated only with symbols that are at level 1 or are the heads of expressions at level 1 in 
the rule definition. In other words, we can’t make the following rule an upvalue for 
log:

log /: Factor[a_. + log[b_*c_]] := 
a + log[b] + log[c]

TagSetDelayed::tagpos:
Tag log In Factor [log [ (b_) (c_)] + « 1 » ]

is too deep for an assigned rule to be found.
$Failed

The problem is that lo g  is the head of an expression at level 2 in the rule definition. 
This limitation is necessary to keep expression evaluation relatively efficient: Without 
it, the kernel would have to check every symbol at all levels of an expression in order to 
decide how to evaluate the expression. In the given example, you have a choice of 
defining a downvalue for F ac to r or an upvalue for Plus. The former seems like the



logical choice, since F ac to r is much less common than P lus. Either way, you have to 
modify a protected symbol.

Finally, we need to mention one type of symbol that you can’t modify, no matter how 
hard you try: Any symbol that has the attribute Locked in addition to the attribute Pro - 
te c te d  can’t be modified. Only those symbols that are absolutely fundamental to the 
operation of Mathematica are Locked. An example of such a symbol is L is t.

Attributes[List]
{Locked, Protected)

Exercises

1. Define upvalues or downvalues to effect the following behaviors:

Factor[log[aAn]] 
n log [a]

Expand[%]
log [a11]

Expand[log[x] + log[y]]
log[x y]

2. Find all system symbols that are Locked. (Hints: The expression Names ["Sys
tem ' *"] will return a list of the names (e.g., character strings) of all system sym
bols. Use S e le c t with an appropriately defined predicate. The A ttr ib u te s  
function works on names of symbols.)

6.5.3 Application: A default thickness for Plot
A question arose in the Internet newsgroup com p.soft-sys.m ath .m athem atica 
concerning how one could change the default thickness of the lines used by the P lo t 
command. One might suppose that the answer is simply to set the default option for 
P lo tS ty le  using SetO ptions [P lo tS ty le , P lo tS ty le  -> Thickness [n] ]. 
Unfortunately, this will not work if the user specifies an explicit P lo tS ty le  option in a 
call to P lo t, even if that P lo tS ty le  does not specify a Thickness (e.g., 
P lo t [ f [ x ] ,  {x, a , b } , P lo tS ty le  -> RGBColor[l, 0, 0]). No specific 
option for plot thickness exists, and no global variable exists for this purpose either 
(e.g., as $Def a u ltF o n t does for plot fonts).

It’s possible to solve this problem by adding a few new rules to the P lo t command, 
but getting it right is tricky. One must realize that:

(a) P lo tS ty le  may be a single graphics directive, or it may be a list.
(b) If P lo tS ty le  is a list, its elements may themselves be either single graphics 

directives or lists of such.



(c) P lo tS ty le  may be omitted entirely.
(d) The default should defer to Thickness directives specified by the user.
(e) The default should continue to work even if the default P lo tS ty le  option is 

changed with SetO ptions.

First and foremost, we should plan ahead: The default thickness should be easy to 
change. This can be accomplished by defining a new global variable, $ D efau lt
Thickness, that we use in our new rules.

Now we are ready to enter the new rules for P lo t. Dealing with the case in which 
P lo tS ty le  is a single graphics directive is easy:

The use of BlankNullSequence patterns (triple underscore) at the beginning and end 
of the parameter list makes this rule work no matter where the P lo tS ty le  option 
appears. IListQ  [s ty le ]  checks that s ty le  is a single graphics directive. 
FreeQ [ s ty l e , Thickness] ensures that we do not override a manifest Thickness 
directive (point d above). It will appear, in some form, in nearly all of the rules that we 
define. This rule replaces s ty le  with { { s ty le , T hickness[$D efaultT hick- 
ness] }}. Here is an example:

$DefaultThickness = .004;

Second, we must U nprotect the P lo t command: 

Unprotect[Plot];

Plot[heads___, PlotStyle->style_, tails___] /;
!ListQ[style] && FreeQ[style, Thickness] :=
Plot[heads,

PlotStyle->{{style,
Thickness[$DefaultThickness]}},

tails]

PlotStyle->gray 
is changed to 
PlotStyle->{{gray, 
Thickness[.01]}}.

gray = GrayLevel[.5]; dashed = Dashing[{.04, .03}]; 
$DefaultThickness = .01:
Plot[Sin[x], {x, -1, 1}, PlotStyle->gray];



Dealing with the case in which P lo tS ty le  is a list is only slightly more difficult:

Plot[heads__ . PlotStyle->{h___ , style_, t___ }.
tails__ ] /; FreeQ[style, Thickness] :=

Plot[heads,
PlotStyle->

{h, Flatten[{style,
Thickness[$DefaultThickness]}],

t} , 
tails]

Destructuring does most of the work. First of all, this rule cannot match unless P lo t 
S ty le  is a list. When this is the case, each element of the list is a style or list of styles 
for one particular curve. This rule matches each individual curve style in turn with the 
pattem variable s ty le ;  if s ty le  does not contain a Thickness directive 
(FreeQ [ s ty l e , T h ickness]), one is added. F la t te n  is used so that it is irrelevant 
whether s ty le  is a single graphics directive or a list of them.

In this example some of the 
plot styles are single direc
tives and others are lists of 
directives. In either case, 
those styles for which no 
Thickness is specified are 
given a thickness value of 
$DefaultThickness; the 
others are left as they are.

$DefaultThickness = .005;
Plot[{Sin[x], Sin[2 x], Sin[3 x], Sin[4 x]}, {x, -2, 21, 

PlotStyle->{gray,
{gray, dashed}.
Thickness[.01],
{gray. Thickness[.02]}},

Frame->True
]

Now we must take care of the case in which the user changes the default P lo tS ty le  
option. The easiest way to do this is to add a rule that inserts the default P lo tS ty le  
option when no such option is present. (The default value of the option can be found 
using the expression P lo tS ty le  / .  O ptions [P lo t] .) Subsequently, one of the 
rules defined earlier will fire if the inserted P lo tS ty le  has no Thickness primitive.

Evaluate is necessary Plot [args__] /; FreeQ[{args} , PlotStyle] : =
because Plot has the Plot [args,
attribute HoldAll. Evaluate [PlotStyle-> (PlotStyle /. Options [Plot]) ]

]



This seems to work.

But look at what happens if 
the default PlotStyle is 
Automatic.

SetOptions[Plot, PlotStyle->{{gray, dashed}}] 
$DefaultThickness = .01;
Plot[Sin[x], {x, -1, 1}];

0.75
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0.25

s '
s

s
s

ss* . . .\LOo1vH1 0.5 1
^6^25

^  ̂  -0.5
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SetOptions[Plot, PlotStyle->Automatic] 
Plot[Sin[x], {x, -1, 1}];

Graphics;:gprim:
Unknown Graphics primitive Automatic encountered.

What went wrong? Our last rule inserted the P lo tS ty le-> A utom atic  option in 
this plot command, and since the right-hand-side of this rule does not contain Thick
ness, another one of our rules appended the Thickness directive to Automatic. The 
net result was P lo tS ty le ->  {Autom atic, Thickness [. 01] }, which gave rise to 
the error message. What we need is for the Thickness directive to replace the word 
Automatic. It should be easy to fix:

This rule traps the problem
atic case.

Plot [heads___, PlotStyle->Automatic, tails___] : =
Plot[heads,

PlotStyle->Thickness[$DefaultThickness], tails]



Now what?! Plot[Sin[x], {x, -1,
0.75
0.5

0.25

1}] :
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y r . 2 5

-0.5
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Graphics::gprim:
Unknown Graphics primitive Automatic encountered.

In a case such as this, one should suspect that the rules for the function are not in the 
correct order. This is easily checked:

We show only the left-hand 
side of each downvalue for 
the sake of brevity.

First /@ DownValues[Plot]
{HoldPattern[Plot[heads___, PlotStyle -> style_,

tails___] / ;
!ListQ[style] && FreeQ[style, Thickness]],

HoldPattern[Plot[heads___,
PlotStyle -> {h___, style_, t___ }, tails___] /;

FreeQ[{style}, Thickness]],
HoldPattern[Plot[args__] /; FreeQ[{args), PlotStyle]],
HoldPattern[Plot[heads___, PlotStyle -> Automatic,

tails___] ] }

Confirmed: The rule for P lo tS ty le  matching a generic single item gets checked 
before the rule for matching the keyword Automatic. We need to reorder the rules 
manually.

We can reorder the rules 
correctly by rotating Down
Values [Plot] to the right 
one place, which will make 
the last rule we added "rise 
to the top."

DownValues[Plot] = RotateRight[DownValues[Plot]];
First /@ DownValues[Plot]
{HoldPattern[Plot[heads___, PlotStyle -> Automatic,

tails___]], HoldPattern[Plot[heads___,
PlotStyle -> style_, tails___] /;
IListQ[style] && FreeQ[style, Thickness]],

HoldPattern[Plot[heads___,
PlotStyle -> (h___, style_, t___ }, tails___] /;

FreeQ[{style}, Thickness]],
HoldPattern[Plot[args__] /; FreeQ[{args}, PlotStyle]])



That eliminated the error 
message.

Finally, reprotect the P lo t command.

Protect [Plot]
{Plot)

Exercise

1. Add a default PointSize to the ListPlot function.

6.6 Additional Resources
Almost every book about Mathematica is replete with programming examples, and 
some books are dedicated entirely to the subject. Two that stand out for their technical 
depth are by Maeder ([Maeder 91], [Maeder 94a]). Neither one is recommended for 
beginners, although readers of this book ought to be able to tackle them after finishing 
this chapter.

Another book devoted entirely to Mathematica programming, but at the level of an 
introductory text, is [Gaylord et al. 93].

[Gray 94] contains several nontrivial examples of using rule-based programming to 
implement knowledge bases.



7
Expression Evaluation

The most important function of the Mathematica kernel is to evaluate expressions to 
produce new expressions. We already know what expressions are, but what, exactly, 
does it mean to evaluate an expression? Until now we have been content with the some
what vague and definitely oversimplified description, “The kernel applies rules to the 
expression until the expression stops changing.” However, the evaluation process is 
much deeper than this. Aside from the fact that there are six different kinds of rules, 
there also are a number of attributes that affect the evaluation process, as well as an 
assortment of symbols that receive special treatment. A thorough comprehension of 
expression evaluation will greatly increase your abilities as a Mathematica program
mer, and furthermore will enable you to understand the occasional unexpected result 
that most Mathematica users find inscrutable.

Section 7.1, “The Evaluation Process,” is a description of the evaluation process in 
all its generality. Toward the end of that section some special cases that are not widely 
understood will be examined in greater detail. Section 7.2, “Nonstandard Evaluation,” 
focuses on the aspects of the evaluation process that are exceptions to the general rule 
of evaluating all parts of an expression completely. Section 7.3, “Working with Held 
Expressions,” puts the knowledge gained in Section 7.2 to practical use.

7.1 The Evaluation Process

7.1.1 Rules are associated with symbols
Every value or function definition entered into a Mathematica session is stored as a glo
bal rule, that is, a rule that is matched against every expression encountered by the ker
nel. For example, a definition like this one:

a  :=  b +  c



is stored as a type of rule called an ownvalue:

OwnValues[a]
(HoldPattern[a] :> b + c}

This rule simply says that anytime the kernel encounters the symbol a, it can be rewrit
ten as the expression b + c. (The H oldP attern  symbol in the left-hand side of the 
rule will be explained in Section 7.2.5. Users of version 2.2 and earlier will see the 
symbol L i te r a l  instead of H oldPattern .)

To take another example, a “function definition” such as the one shown below is also 
stored as a rule; in this case, the rule is called a downvalue:

f [x_] := xA2

DownValues[f]
(HoldPattern[f[x_]] ?> x }

This rule says that anytime the kernel encounters an expression that matches the pattem 
f  [x_] (x_ is a pattem that represents any expression), the entire expression can be 
replaced by the new expression x A2 (where x denotes not the literal symbol x, but 
rather a placeholder for the matched subexpression).

Every global rule is associated with some symbol, which is called the rule’s tag. In 
the first example above, the tag is the symbol a, and in the second example it is the 
symbol f . All told, there are six different kinds of rules that can be associated with a 
tag; they are listed in Table 7-1. Any of the six kinds of rules can be stored as Mathema
tica expressions, or they can be defined in code internal to the kernel. Note that some 
system-defined symbols are implemented partially or entirely by external rules

Table 7-1 The Six Types of Rules for a Symbol

Type of Rule For Evaluation of: Example Definition

OwnValues [sym] sym sym : =
DownValues[sym] sym[. . .] sym[...] :=
Upvalues[sym] h e a d[..., sym, ...] or 

h e a d [ . . . , _sym, ...]
h e a d [ . . . ,  sym, ...] A:= or 
sym /: h e a d [ . . . ,  sym, ...]

SubValues[sym] sym[...] [. . .] sym[...][...] := . ..
NValues[sym] N[sym, precision] or 

N [sym [...], p r e c is io n ]
N[sym[...], p r e c is io n ] :=

FormatValues[sym] fo r m a t[sym[...]]a Format[sym[...], form at] :=
a. fo rm at can be any print-formatting function such as TeXForm, CForm, etc.; it 

defaults to OutputForm.



(although it usually is necessary to remove the symbol’s R eadProtected  attribute in 
order to see these rules). The external rules always take precedence over the internal 
ones, as we shall see shortly.

An upvalue is used to associate a rule with a symbol that is not the head of the 
expression to which the rule is matched. The most common use for upvalues is to add 
special cases to built-in functions. For example, let omega denote an exact solution to 
the transcendental equation omega == Exp [omega]. Then the following definition, 
which is an example of an UpSet operation (see Section 6.5.2, “Upvalues”), could be 
created to represent this fact:

E xp [o m e g a ] A :=  omega

E xp [o m eg a]

omega

The Exp function has not been modified; instead, this rule is stored as an upvalue for 
the symbol omega:

U p v a lu e s [o m e g a ]

{HoldPattern[Exp[omega]] :> omega)

In cases in which an expression matches both an upvalue and a downvalue, the 
upvalue always takes precedence.

Nvalues can be used to specify what should happen to an expression when the N 
(numerical evaluation) operator is applied to it. An appropriate use for an Nvalue in the 
present context would be to define a numerical conversion rule for the omega symbol:

N [o m e g a , p _ : $ M a c h in e P r e c is io n ]  :=
F in d R o o t [ x  =  E x p [ x ] , { x ,  1 +  1 } ,

A c c u r a c y G o a l-> p ,
W o r k in g P r e c is io n -> p  +  1 0 ] [ [ 1 ,  2 ] ]

Although this looks rather like a downvalue for N, the tag for this rule is, in fact, omega:

N V a lu e s [o m e g a ]

{H o ld P a t te r n [N [o m e g a ,  p_: 1 6 ] ]  :>
F ln d R o o t [ x  ==  E x p [ x ] , { x ,  1 +  I } ,

A c c u ra c y G o a l ->  p ,
W o r k in g P r e c is io n  - >  p +  10 ] [ [ 1 ,  2 ] ] }

We have now succeeded in defining an exact representation of a transcendental num
ber that behaves much as built-in transcendental constants such as E and P i do, in that it 
simplifies symbolically when possible and evaluates numerically only when forced to:

omega -  E xp [o m eg a]

0



N[omega, 20] - Exp[N[omega, 20]]

The interplay between the numerical evaluation operator N and other definitions is 
quite involved; a full discussion is deferred to Section 9.3, “Numerical Evaluation.”

Format values are used to change the way the kernel prints certain expressions. For 
example, here is a traditional-looking output format for the B esse lJ  function.

Format values will be discussed in greater detail in Section 9.4, “Custom Output 
Formats.”

Subvalues are rather obscure and will not be discussed beyond the coverage in this 
section and the next. Subvalues are so uncommon that they are not even documented in 
The Mathematica Book. The purpose of subvalues seems to be to define functions that 
return other functions. In fact, the built-in function called Function, which is used to 
define pure functions, is a perfect example of this.

By itself, the expression Function  [x , xA2] is a completely evaluated expression. It 
is only when this expression is used as the head of another expression that it causes any 
term rewriting to take place.

Some other built-in functions that have predefined subvalues are I n te r p o la t in g - 
Function, InverseF unction , and D eriv a tiv e , although, like Function, their 
subvalues are implemented internally and cannot be inspected.

External rules can be inspected and changed by the programmer using normal 
Mathematica list manipulation mechanisms. For example,

Unprotect[BesselJ] :
Format[BesselJ [n_, x_]] := Subscripted[J[n]] [x] 
Protect[BesselJ];

BesselJ[l, Pi/2]

Function[x, xA2][y + z]

(y + z ) 2

Create two downvalues 
for f .

Clear[f]
f[x_?EvenQ] := "even" 
f[x_?OddQ] := "odd" 
Array[f, 6 ]
{odd, even, odd, even, odd, even}



DownValues[f ]
(HoldPattern[f[(x_)?EvenQ]] :> even, 
HoldPattern[f[(x_)?OddQ]] :> odd}

You can modify Down
values [f] directly.

DownValues[f ] = Drop[DownValues[f], -1]
{HoldPattern[f[(x_)?EvenQ]] :> even}

The rule for f  [x_?OddQ] is 
gone.

Array[f, 6 ]
{f [1 ], even, f[3], even, f [5]. even}

The order in which the rules are stored within, e.g., DownValues [ f  ] determines the 
order in which the kernel tries to apply them. Usually the kernel is smart enough to 
store rules in the intended order; often, however, when functions have lots of rules, or 
several rules of equal complexity, it’s just not possible for the kernel to guess the pro
grammer’s intentions. (A nontrivial example of this was seen in Section 6.5.3.)

For example, the function defined below has two rules with identical structures.

As a result, the kernel stores those rules in the order in which they are entered. On the 
other hand, the first rule, which the kernel recognizes as being more general than the 

‘other two, is moved to the end of DownValues [ f  ] so that it is tried last.

You can change the order in which rules are applied by rearranging Down
v a lu es  [f] manually.

Clear[f] 
f [n_] := n
f[n_] := n/3 /; Mod[n, 3] == 0 
f[n_] := n / 2  /; Mod[n, 2 ] =  0

Note that the kernel has 
reordered the rules.

DownValues[f ]
{HoldPattern[f[n_]] :> ^ /; Mod[n, 3] == 0.

HoldPattern[f[n_]] :> ^ /; Mod[n, 2] == 0, 
HoldPattern[f[n_]] :> n)

f  [6 ] evaluates to 2 rather 
than 3 because of the order 
of the rules.

Array[f, 10]
{1, 1, 1. 2, 5, 2, 7, 4, 3, 5}

This expression permutes 
DownValues [f].

DownValuee[f] = DownValues[f][[{2, 1, 3}]] 
{HoldPattern[f[n_]] :> j  /; Mod[n, 2] == 0.

HoldPattern[f[n_]] :> j /; Mod[n, 3] == 0, 
HoldPattern[f[n_]] :> n}



N ow  f [ 6 ] evaluates to 3 A r r a y  [ f ,  10]
rather than 2. { lj  ^  ^  5> 3> 4> 5)

This technique is especially useful when you need to override the behavior of a built- 
in function that has externally defined rules. By suitably reordering the DownValues 
for the function, you can ensure that your rules are tried first.

7.1.2 Properties that affect the evaluation process
The evaluation process is affected in certain ways by properties that are associated with 
symbols. The properties that can affect the evaluation of an expression with head sym 
are A ttr ib u te s  [sym] and D efaultV alues [sym]. Default values (Section 6.3.2) 
are used in pattern matching, and will not be discussed here. The different kinds of 
attributes are listed in Table 7-2. Many of these will be discussed throughout this 
chapter.

Table 7-2 Attributes

Attribute Meaning Example Symbols

Constant All derivatives are 0 E, GoldenRatio, Pi
Flat Associativity And, Dot, Join, Max, Plus
HoldAll All arguments are unevaluated And, Clear, If, Plot, While, 

Protect, SetDelayed
HoldAllComplete No modification of any kind to any 

argument
BoxForm, HoldComplete, 
Unevaluated

HoldFirst First argument is unevaluated AppendTo, Increment, Set
HoldRest All but first argument are unevaluated RuleDelayed, Save
Listable Automatically threaded over lists All numerical functions
Locked Attributes cannot be changed $Aborted, I, List, Symbol, 

True, False
NHoldAlla Arguments are unaffected by N Root
NHoldFirst® First argument is unaffected by N EllipticTheta, PolyGamma
NHoldResta All but first argument are unaffected 

by N
None

NumericFunction f [__?NumericQ] is numeric All numerical functions
Oneldentity f [a], f [f [a] ], etc. are equivalent to 

a for purposes of pattern matching
And, Dot, Join, Max, Plus

Orderless Commutativity And, Max, Plus



Table 7-2 (Continued) Attributes

Attribute Meaning Example Symbols

Protected Values cannot be changed Most system symbols
ReadProtected Values cannot be read Coslntegral, FullOptions, 

PowerExpand
SequenceHold Arguments with head Sequence are 

not flattened
Rule, Set, Timing

Stub Needs is called automatically when 
the symbol is used

Symbols defined in master 
packages

Temporary Local variable Symbols defined in modules
a. Although NHoldAll, NHoldFirst, and NHoldRest are new to version 3.0, identi

cal functionality was available in version 2 .2 through the undocumented attributes 
NProtectedAll, NProtectedFirst, and NProtectedRest (although none of the 
built-in functions used them). Programmers who like to live on the edge, take note:
These undocumented functions have been dropped in version 3.0.

There are two other kinds of properties that can be associated with symbols, but they 
do not affect the evaluation process. These are Options [sym], which returns a list of 
all options for a symbol, and Messages [sym], which returns a list of all messages of 
the form sym : -.msgname. Although it may seem as though options affect the evaluation 
process, we need to draw a distinction between what is done by the kernel and what is 
done by the code defined for a symbol. Options are ignored by the kernel; it is up to the 
programmer of a function to see to it that the options are used by that function. We 
illustrated the use of options in Section 6.3.5; we shall go into greater detail about the 
proper way to use options and messages in Chapter 9, “Details, Details.”

Exercise
1. Find all system-defined functions that are F la t  but not O rderless . (Hint: Use 

Names [" System' * " ] to get a list of names of all system symbols, and use S e le c t 
on the resulting list.)

7.1.3 The main evaluation loop
The main evaluation loop executed by the Mathematica kernel is summarized below. 
Most of this information is from [Withoff 93], with some explanatory comments and 
version 3.0-specific features added by the author. Although this summary is rather 
dry, the entire remainder of this chapter is devoted to explaining the nuances of the 
algorithm.

The first few steps of the evaluation process deal with atomic expressions:



1. If the expression is a string or a number, return it. (Strings and numbers evaluate to 
themselves.)

2. If the expression is a symbol that has no ownvalue, return it.
3. If the expression is a symbol that has an ownvalue, replace it with the ownvalue 

and start over with the new expression. (In general, if the expression being evalu
ated changes at any step, then the process begins again with the new expression.)

At this point the expression being evaluated must be a normal expression, i.e., an 
expression of the form A [part1, p a r t2, . . .  ]:

4. If no part of the expression has changed since the last evaluation of it, return the 
expression. This is an optimization that prevents unnecessary reevaluation of large 
expressions.1

5. Call the evaluation routine recursively on A. This is necessary because A itself 
could evaluate to something else. For example, A might be a symbol that evaluates 
to a pure function; A could even be another normal expression (e.g., in the expres
sion D eriv a tiv e  [2] [f] [x ], the head is D e riv a tiv e  [2] [ f ] , which may eval
uate to a pure function for certain values of f).

At this point the head A has been determined. (Note that A may be a symbol or a nor
mal expression.) Now various actions that depend on the attributes of A are taken:

6. If A has the HoldAllComplete attribute, skip to step 14.

7. For each p a r ti ,
(a) If p a r t1 is of the form E valua te  [ex p r], remove the E valua te  head and 

call the evaluation routine recursively on expr. Continue with step 7.
(b) If p a r t1 is of the form U nevaluated [ex p r], replace p a r t± by expr  and 

make a note that this was done (see step 16). Continue with step 7.
(c) If A is a symbol having the HoldAll attribute, continue with step 7.
(d) If i  =  1 and A is a symbol having the H o ld F irs t attribute, continue with 

step 7.
(e) If i  > 1 and A is a symbol having the HoldRest attribute, continue with 

step 7.
(f) Call the evaluation routine recursively on p a r t±.

In other words, parts having the head E valua te  are always evaluated, and parts 
having the head U nevaluated are never evaluated. Evaluation of other parts is con
trolled by the Hold- attributes, with the default being that parts are evaluated.

1. There exist pathological cases in which this optimization may prevent an expression 
from reevaluating when, in fact, that expression depends on symbols that have 
changed. You can force such changes to propagate using the Update function; see 
§2.5.12 of The Mathematica Book.



8. If A is F la t,  then splice the elements of any part with head h into the sequence of 
parts, e.g., f  [ a , f [ b ,  c] , d] => f  [a, b,  c , d ] . Associative operators such as 
P lus, Times, and Dot have the F la t  attribute.

9. If h does not have the attribute SequenceHold, then splice the elements of any 
part with head Sequence into the sequence of parts, e.g., f  [a, Sequence [b, 
c] , d] => f  [ a , b , c , d ] . All of the assignment operators have the Sequence
Hold attribute (version 3.0 only).

10. If h is L is ta b le , then thread h over any of the p a r ti that are lists, e.g., 
f  [{a, b } , c, {d, e j ] => i f  [a, c,  d] . f [ b ,  c,  e ] }. All numerical 
functions, predicates, and selected symbolic functions have the L is ta b le  attribute 
(see Table 3-1 on page 67).

11. If h is O rderless , then sort the p a r t±, e.g., f [ c ,  b,  a] => f [ a ,  b,  c ] . Com
mutative operators such as P lus and Times have the O rderless  attribute.

The head and the parts of the expression all have been evaluated by now (to the 
extent allowed by the attributes of h). Actual rule application begins here:

12. Apply external upvalues attached to the symbolic heads of the p a r t±. The symbolic 
head of an expression is the expression itself, if the expression is a symbol; the 
head of the expression, if the head is a symbol; the head of the head, etc. For exam
ple, the symbolic head of D e riv a tiv e  [2] [f] [x] is D eriv a tiv e .

13. Same as step 12, using internally defined upvalues.
14. If A is a symbol, apply user-defined downvalues. If h is not a symbol, apply user- 

defined subvalues.
15. Same as step 14, using internally defined downvalues or subvalues.

Finally, there’s a bit of tidying up to do:

16. If no applicable rules were found and any of the p a r t± had the head Unevalu
a ted , restore that head.

17. Discard the head Return, if present.

7.1.4 Observations
A solid understanding of the evaluation process is one of the crucial characteristics that 
separates casual Mathematica programmers from power programmers. This under
standing, combined with judicious use of Trace (discussed in detail in Chapter 13, 
“Debugging), FullForm, Hold, and related functions, makes it possible to figure out 
about 99.99 percent of the mystifying results that the kernel occasionally produces.2

In this section we’ll give some examples of less obvious consequences of the algo
rithm outlined in the previous section. Along the way, it is hoped that you will have an

2. For the remaining 0.01 percent, contact WRI technical support. You may have found 
a bug!



occasional “light bulb” experience, as you suddenly come to understand something that 
previously was a mystery to you.

One thing we won’t discuss much in this section is nonstandard evaluation; this topic 
is rich enough and important enough to merit two main sections of its own, coming up 
after this one.

Evaluation of heads

The first observation we shall make is that the head of an expression evaluates before 
any of its parts. Moreover, the head evaluates completely — in other words, the evalua
tion loop is called recursively on the head before continuing. Consider the following 
example:

Here are some test func- C le a r  [ f , g , h ]
tions. f  [x _ ]

g [x _ ]
2 x
3 x
4 xh [x _ ]

N o w se tu p o w n v a lu e s fo rf f  =  g ;
and g. g =  h ;

f  evaluates to g, which then C le a r  [a ]
evaluates to h, before the T r a c e  [ f  [2 a  -  a ] ]
argument is evaluated. {{f, g, h ) , {2 a - a. -a + 2 a, a), h[a], 4 a}

The braces in the trace are telling: { f , g , h} is one complete subevaluation. In con
trast, if the evaluation loop were not recursive, then after f  was replaced by g it could 
be the case that the rule for g [x_] would fire — which clearly does not happen. The 
consequence of the recursive evaluation of heads is that the only th in g  tha t  matters for 
the rest of the evaluation process is the final value of the head. In particular, if f  or g 
had attributes, those attributes would have had no effect on the computation.

Here, f  is given the O rd e r- A t t r i b u t e s  [ f ]  =  { O r d e r l e s s } ;
le s s  attribute.

The arguments are not reor- f [ 5 ,  4 ,  3 ,  2 ,  1]
dered because the attributes
of h are the only ones that 
matter.

h [5, 4, 3, 2, 1]

O n the other hand, if the f  = .
ownvalue for f  is removed, f [ 5 , 4 , 3 , 2 , 1 ]
O rd e rle s s  "does its thing." f[l, 2, 3, 4, 5]

Evaluation of pure functions

While we are on the topic of heads and attributes, we should mention a related phe
nomenon that has to do with pure functions. When a pure function is assigned to a sym-



bol, the behavior of that symbol is not quite the same as if an equivalent downvalue 
were attached to the symbol. First of all, no pattern matching is done on a pure function.

Define two similar func
tions: one as a rule, the 
other as a pure function.

O n the surface, they appear 
to behave identically.

But p f  w ill evaluate no mat
ter w hat gets passed to it.

ClearAll[f]
f[x_] := xA2

pf = Function[x, xA2]

{f [a] . pf [a] }
(a , a )

{f [a. b] ,
{f[a, b], a“ }

pf[a, b]}
2,

Note that there is no rule for f  that matches the expression f  [ a , b ] . so that expression 
does not evaluate. On the other hand, p f  [a , b] evaluates with # interpreted as #1, 
thus squaring the first of the two arguments.

Pattern matching is not performed on pure functions because the evaluation of a pure 
function is fundamentally different than the evaluation of a “normal” function. Exam
ine the following trace:

Trace[pf[a]]
2 2 2 {{pf, Function[x, x ]), Function[x, x ] [a] , a )

The symbol p f  is replaced by its ownvalue, yielding the intermediate form Func
t io n  [x, xA2] [a ] . Thus, the symbol p f  is completely out of the picture before the 
function evaluation takes place. The transformation from the intermediate form to the 
final answer, a A2, is effected by built-in subvalues for the symbol Function, not by 
downvalues for p f  (in fact, p f  has no downvalues).

The previous example may make the following, more subtle difference between 
ordinary and pure functions easier to understand.

f and pf now take two argu
ments; both symbols are 
given the attribute Order
less.

The attribute has no effect 
on pf!

Here's why: pf evaluates to 
the pure function (which has 
no attributes) before 
attributes are checked.

Clear[f, pf]
Attributes[f] = Attributes[pf] = {Orderless};
f[x_, y_] := {x, y}
pf = Function[{x. y}, {x, y}];

{f [2 , 1], pf [ 2 , 1]}
{(1 , 2 }, {2 , 1 }}

Trace[pf[2, 1]]
({pf, Function[{x, y}, (x, y }] },
Function[{x, y}, (x, y}][2, 1], {2, 1)}

Thus we must distinguish between the attributes of a symbol — which matter only 
when that symbol is the fully evaluated form of an expression’s head — and the



attributes of a pure function. A mechanism does exist for giving attributes to a pure 
function: An attribute (or a list of attributes) can be specified as an optional parameter 
to Function. (Note that there’s no special input form for this feature, i.e., it cannot be 
used with the #-& style of pure functions.)

This syntax gives the pure C l e a r A l l  [ p f  ]
function the Orderless pf = Function[{x, y )  , {x, y }  , Orderless];
attribute.

Afterthe evaluation of the T ra c e  [ p f  [ 2 ,  1 ] ]
symbol p f ,  the arguments to { (  f  F u n c t i o n [ { x , }> {x> }> orderless]).
the pure function are sorted. ^ r J y ,  JFunctlonLtx, y ) , {x, y ) , Orderless][2, 1 ] ,

Function[{x, y ) , {x, y ) , Orderless][ 1 , 2], ( 1 ,  2))

Sequences

Sequence is an interesting object. It is the head of expressions that match patterns 
like__(double blank) and _ _  (triple blank).

C l e a r A l l [ f ,  g]
f [ a ,  b ,  c]  / .  f [ x __ ] - >  x

Sequence[a, b, c]

You seldom see the head Sequence because it disappears as soon as it is wrapped in 
any other expression. This is called sequence splicing:

g [ x ,  %, y ]

g[x, a, b, c, y]

Note that sequence splicing happens even when the Sequence is inside of a head 
having the H o ld F irs t, HoldRest, or HoldAll attribute. This behavior is implied by 
step 9 of the main evaluation loop.

H o ld [S e q u e n c e [a ,  b ,  c ,  d ] ]

Hold[a, b, c, d]

But a careful study of the evaluation algorithm suggests that the following construct 
can prevent sequence splicing from taking place:

H o ld [ f [ S e q u e n c e [ a ,  b ,  c ,  d ] ] ]

Hold[f[Sequence[a, b, c, d]]]

Since the subexpression with head f  is not evaluated, the Sequence is not spliced.

(Version 2.2 users note: The previous example does not work in versions of Mathe
matica prior to 3.0. However, the following alternative does work:

T r a c e [ H o l d [ f [ g [ a ,  b ,  c ,  d ] ] ]  / .  g -> S e q u e n c e ]

(Hold[f[g[a, b, c, d]]] /. g -> Sequence,
Hold[f[Sequence[a, b, c, d]]])



The most plausible explanation for this behavior is that the parser splices the Sequence 
before the main evaluation loop even gets a look at the input.)

All very unusual, but what is the practical use of Sequence? For one thing, applying 
Sequence to a nested expression is an easy way to obliterate the head of that expres
sion. For example, suppose we were given a list of integers that we wanted to use as a 
single, multidimensional subscript into a nested list (see the Huffman coding example 
of Section 5.3.5 for a practical application). Simply passing the list of integers to P a r t 
would not have the desired effect:

Each element of subs is A = Array [a, {3, 3 } ] ;
used as a separate subscript. subs = {2, 1};

A[ [subs]]
{{a [2, 1] , a [2, 2] , a [2 ,  3] } ,

{a [1, 1] , a [1, 2] , a [1, 3] }}

We need to turn an expression like A [ [ {2, 1} ] ] into A [ [ 2, 1 ] ], Version 3.0 defines 
a new function, E x trac t, that solves this problem. In versions prior to 3.0, one could 
define E x tra c t like this:

E x t r a c t [ l i s t _ ,  { in d ic e s__}] := l i s t [ [ i n d i c e s ] ]
E xtract[A , 12, 1}] 
a [2, 1]

It is surprisingly difficult to achieve this effect without the use of an auxiliary func
tion. Here is a solution using pure functions:

##  represents all of the argu- A [ [# # ]  ] & @@ subs
ments to a pure function. i ]

The crux of what we are trying to accomplish is the removal of a L is t  head from a 
nested subexpression. Therefore, Sequence is the right tool for the job:

A[[Sequence @@ subs]]
a [2, 1]

Another application of Sequence lies in passing options from one function to 
another, since many functions that accept options expect a sequence of them, rather 
than a list. The standard package U t i l i t i e s 'F i l t e r O p t i o n s ' defines a function 
that takes one sequence of options as an argument and returns another sequence of 
options. We’ll see how to use this function in Section 9.2.3, “Filtering options.”

7.2 Nonstandard Evaluation
Normally, the head and the parts of an expression are evaluated before any mles are 
applied to that expression; this is called standard, evaluation. However, certain 
attributes and heads affect this process by preventing or forcing the evaluation of cer



tain parts of an expression. This is collectively termed nonstandard evaluation. A good 
understanding of nonstandard evaluation is a prerequisite for doing any nontrivial 
manipulation of symbolic expressions.

The basic idea of nonstandard evaluation is not hard to understand; what makes non
standard evaluation difficult is the myriad of special cases. Aside from the Hold- fam ily  

of attributes and the E valua te  head, there are the heads Hold, HoldComplete,3 
HoldForm, H oldPattern ,4 and U nevaluated, which seem sim ilar yet are subtly dif
ferent.

We’ll begin our study of nonstandard evaluation by reviewing the Hold- attributes. 
Then we’ll go through the laundry list of special heads from the preceding paragraph. 
Finally, in Section 7.3 we’ll concentrate on how to use these heads to operate on held 
expressions, i.e., to manipulate the structure of expressions without allowing them to 
evaluate.

7.2.1 The Hold- attributes
The attributes H o ldF irst, HoldRest, and HoldAll were first introduced in 
Section 4.4, “Parameter-Passing Semantics.” Basically, these attributes prevent the 
evaluation of the first, all but the first, or all of the arguments to a function. For exam
ple, here is how you could write a function that increments the value stored in a symbol:

S e t A t t r i b u t e s [ i n c , H o l d F i r s t ] ; 
in c [x _ S y m b o l]  :=  x  =  x  +  1

y  =  7 ;  
in c  [y ]  ;

y
8

Note that if in c  didn’t hold its argument, y would evaluate to 7 before the evaluation of 
the function, resulting in the nonsensical expression 7 = 7 + 1.

One might well wonder how it is possible for an expression like x = x + 1 to turn 
into y = y + 1 without evaluating x and, in the process of doing so, y. This brings up 
a subtle point that is worth stressing: Pattern variables like x do not evaluate, in the 
technical sense, to the values matched by them. When a rule is matched (and as we saw 
in Section 7.1.1, a function definition is just a special kind of rule), Mathematica textu
ally substitutes the values that are matched by the pattern variables into the correspond
ing placeholder symbols (i.e., x  in the example above) in the body of the rule. If a 
function evaluates its arguments, the arguments evaluate before the substitution is per

3. Version 3.0 only.
4. In versions prior to 3.0, HoldPattern was called L itera l. Note that L itera l is 

still supported in version 3.0 as well.

This call is equivalent to 
y = y + 1.



formed; otherwise they do not. (Review the evaluation algorithm in Section 7.1.3.) As a 
simple example of this process, consider:

SetAttributes[f, HoldAll] 
f[x_] := g[x]
Trace [f [2 + 2] ]
(f [2 + 2] , g [2 + 2] , {2 + 2, 4} . g [4] }

Note that the unevaluated sum 2 + 2 is substituted for x in g [x] , The sum subse
quently evaluates (because g does not hold its argument), but the crucial point is that 
the evaluation does not occur until after the sum is deposited inside the g head. Had g 
been a function that held its argument, g would have “seen” the sum in its unevaluated 
form.

As another example of using Hold- attributes, the built-in looping constructs all 
hold their arguments, to prevent the loop “body” from evaluating until the loop condi
tion can be checked.

Attributes[While]
(HoldAll, Protected}

Suppose that we wanted to implement a looping construct that had the semantics of 
the do . . .w h ile  loop of C or the r e p e a t . . . u n t i l  loop of Pascal (i.e., the loop con
dition is evaluated at the end of each loop iteration, rather than at the beginning). Here 
is one way to do it:

Attributes[doWhile] = {HoldAll}; 
doWhile[body_, test_] := ( 

body;
While[test, body]

)

Here is an illustration of the x = 0;
operation of doWhile. doWhile [Print ["body (", x, ")"]; x++.

Print["test (", x, ")"]; x < 2]
body (0 ) 
test (1 ) 
body (1 ) 
test (2 )

Note that the arguments to doWhile are passed into While without being evaluated. 
The call to doWhile shown above evaluates to the following intermediate form:

Print["body (", x, ")"]; x++;
While[Print["test (", x, ")"]; x < 2,

Print["body (", x, ")"]; x++]



All of the built-in functions with Hold- attributes appear in Tables 7-3,7-4, and 7-5 
at the end of this chapter. Let’s examine a few of these functions and see what the ratio
nale is behind the choice of attribute.

Set (=) is an example of a function with the H o ld F irs t attribute. Thus, in an 
expression like y = z (the internal form of which is Set [y , z ] ), z is evaluated but y
is not. It’s easy to see why the first argument to Set shouldn’t be evaluated: The pur
pose of Set is to assign a value to y, not to what y might evaluate to. For example,

This assignment is equiva- y  =  2 ;  z  =  3 ;
lent to y  =  3. y  =  Z ;

y
3

If y had been evaluated, the expression y = z would have turned into 2 = 3, which is 
nonsense.

In contrast to Set, SetDelayed (: =) has the HoldAll attribute. SetDelayed most 
commonly is used to define functions so as to prevent the evaluation of any symbols in 
the body of the function that already have values. The differences between Set and 
SetDelayed, and when to use each, have already been discussed in detail 
(Section 4.1.5, “Set versus SetDelayed”).

RuleDelayed (: >) is an example of the rare breed of functions that have the Hold - 
R est attribute. All rules evaluate their first part (the left-hand side of the rule), since 
they almost always are applied to fully evaluated expressions. However, it sometimes is 
necessary to prevent the evaluation of the right-hand side of a rule, for all of the same 
reasons that one might wish to prevent the evaluation of the right-hand side of a func
tion definition. RuleDelayed solves this problem by evaluating its first part but not 
evaluating its second part. Thus, it needs the HoldRest attribute.

We will have a bit more to say about Set, SetDelayed, Rule, and RuleDelayed 
when we discuss H o ldP attern  in Section 7.2.5.

I)
Version 3.0 adds a few new Hold- type attributes: SequenceHold and Hold- 

AllComplete. As its name implies, SequenceHold prevents sequence splicing.

Note that SequenceHold S e t A t t r i b u t e s  [s h , S e q u e n c e H o ld ]
does not prevent any parts s h [w . S eq uen ce  [ x ,  y ]  , z ]
from evaluating. gh[w> S e q u e n c e [2 >  3] _ 3]

HoldAllComplete, on the other hand, prevents any modification or evaluation of 
the parts of an expression, even when those parts have special heads such as Sequence 
or E valua te  (discussed next). Such a heavy-handed approach is necessary only in 
very unusual circumstances, such as trying to define formatting rules for expressions 
involving special heads. We’ll see examples that make use of HoldAllComplete in 
Sections 7.3.3 and 7.3.7.



7.2.2 Evaluate
E v alu a te  is a head that can be used to force an argument to a function to evaluate, 
even if that argument is in a held position. It frequently is applied to arguments of 
numeric functions that normally hold their arguments, to allow useful symbolic simpli
fications to take place prior to numerical evaluation.

For example, the P lo t command does not evaluate its arguments. This is done under 
the assumption that evaluating the arguments symbolically might not be a correct thing 
to do (for example, if the argument to be plotted contained conditional execution con
structs such as If). Instead, the expression to be plotted is evaluated numerically for 
each plot point chosen by P lo t. Sometimes this strategy backfires, however: It is easy 
to construct cases in which it is more efficient to evaluate the expression before plot
ting, rather than every time a value is plugged in. Here’s an example of the time taken 
to compute, but not render, a plot of the function given by the first 20 terms of the expo
nential expansion:

The computation can be sped up tremendously by telling the kernel that the first 
argument should be evaluated.

Plot[Evaluate[Sum[xAk / k !, {k, 1, 20}]], {x, 0, 1}, 
DisplayFunction->Identity] II Timing

{0.0666667 Second, -Graphics-}

In the first case, the Sum expression evaluates t o l  + x + xA2/2 + . . .  every time 
P lo t attempts to numerically evaluate it. In the second case, the symbolic transforma
tion occurs only once, before P lo t begins its work.

Another common use of E valua te  with P lo t involves plotting a table of functions. 
That example is covered by many different authors (including The Mathematica Book, 
§1.9.1) and so it will not be repeated here.

For a rather unorthodox use of E valuate , we can force the left-hand side of a Set 
operation to evaluate to simulate “pointer dereferencing”:

Don’t try to carry this analogy too far, though! It’s very difficult to implement true 
pointer semantics in Mathematica because we can’t make expressions evaluate only 
part of the way. A slight modification to the previous example demonstrates the diffi
culty:

The D is p la y F u n c tio n ->  
I d e n t i t y  option sup
presses rendering of the 
image.

P lo t [ S u m [ x Ak / k ! .  { k ,  1 ,  2 0 } ] ,  { x ,  0 .  1 } ,  
D is p la y F u n c t i o n - > I d e n t i t y ]  I I  T im in g

{1. Second, -Graphics-}

a behaves as a "pointer" 
to b.

Clear[a, b]
a = b ; Evaluate[a] = 2;
{OwnValues[a], OwnValues[b]}
{{HoldPattern[a] :> b}, (HoldPattern[b] :> 2}}



There's no way to setb using Clear [a, b, c]
this technique, because a a = b; b = c; Evaluate [a] = 2;
evaluates all the way to c  ̂ {OwnValues [a] , OwnValues [b] , OwnValues [c] }

((HoldPattern[a] :> b }, {HoldPattern[b] :> c} 
(HoldPattern[c] :> 2)}

before the S et is performed.

Finally, note that in order for E valuate  to have an effect, the expression of which it 
is a part must be evaluated. In the next example, since the subexpression with head f  is 
not evaluated, f ’s arguments are not checked; E valua te  goes unnoticed.

Hold[f[Evaluate[1 + 1]]]
Hold[f [Evaluate[1 + 1]]]

7.2.3 Hold, HoldForm, and HoldComplete
Hold and HoldForm are wrappers that prevent expressions from evaluating. There’s 
nothing very special about them; they simply are symbols that have the HoldAll 
attribute. The only difference between them is that, in standard output format, the head 
HoldForm does not appear.

The HoldForm head "van- { H o l d [ l  +  1 ] ,  H o ld F o rm  [1 +  1 ] }
ishes," leaving an impossi- { l d [  j ,
ble-looking result.

The head is still there, how- In p u tF o r m  [%]

ever- (Hold [1 + 1], HoldForm [1 + 1])

HoldForm is used by the Trace function, for example, in order to return partially 
evaluated expressions without undesirable visual clutter. Every element of a trace is 
wrapped in HoldForm:

Trace[1 + 2 * 3 ]  // InputForm
{(HoldForm[2 * 3], HoldForm[6]}, HoldForm[l + 6].
HoldForm[7]}

Note that arguments to Hold or HoldForm that have the head E valuate  will still 
get evaluated. Not so with HoldComplete, which is analogous to Hold except that it 
has the HoldAllComplete attribute:

HoldComplete[Evaluate[1 + 1], Sequence[a, b]] 
HoldComplete[Evaluate[1 + 1], Sequence[a, b]]

There are sneaky ways to cause evaluation of the parts of an expression with a Hold 
or HoldForm head (or any head having the HoldAll, H o ld F irs t, or HoldRest 
attribute). Like any other expression, these expressions are checked not only for down
values, but also for upvalues! That makes bizarre behavior like the following possible:



f  and g are given some C l e a r A l l  [ f , g]
unusual upvalues, and f  H o l d [ f ]  A :=  " w h a t"
evaluates to g. H o ld [g ]  A :=  " t h e  h e c k ? "

f  =  g :

Since f  does not evaluate, H o ld  [ f  ]
the upvalue for H o ld  [ f ]  is wh a t
used.

In this case, f  evaluates to g, H o ld  [E v a lu a t e  [ f  ] ]
and then the upvalue for , hock?Hold [g] is used! the heck/

Note that the behavior just illustrated cannot occur with HoldComplete, because 
HoldComplete prevents a search for upvalues. However, if you define downvalues for 
HoldComplete (after unprotecting it first), those downvalues will be applied.

7.2.4 Unevaluated
U nevaluated is a special head that can be wrapped around an argument to any func
tion to prevent the evaluation of that argument before the function is called. The beauty 
of U nevaluated is that it is invisible to the function being called — it makes the func
tion temporarily behave as though it had one of the Hold- attributes.

x  is a symbol that evaluates x  =  7 ;

Head does not hold its argu- H ead  [x ]  
ment, so Head [x] returns 
Head [ 7] .

Integer

U n eva lu ated  allows us to H ead  [U n e v a lu a te d  [x ]  ]
get the head of x. Sym bol

U nevaluated may seem similar to Hold, but there is an important difference: Hold 
(or HoldForm) is visible to the function being called.

H e a d [ H o l d [ x ] ]

H o ld

As we can see from steps 7 and 16 of the main evaluation loop (Section 7.1.3), the 
special behavior of U nevaluated is accomplished by removing the head Unevalu
a ted  from an expression before rules for the surrounding expression are applied, and 
restoring the head to the expression afterward if no applicable rules were found.

This function returns its C l e a r A l l  [ f ]
argument, if the argument is f [ y _ I n t e g e r ]  :=  y
an integer.



x  evaluates to 7 before pat
tern matching, so the rule 
applies.

Here, x  does not evaluate, 
the rule does not apply, and 
the head U n eva lu ated  is 
restored.

T r a c e [ f [ x ] ]

{{x, 7}, f [7], 7}

T r a c e [ f [ U n e v a lu a t e d [ x ] ] ]

( f [x], f [ U n e v a lu a t e d [x]] ]

There is one particular case in which the treatment of U nevaluated is particularly 
perplexing:

W hy is U n eva lu ated  still F u l lF o r m  [U n e v a lu a te d  [x ]  ]

there? U n e v a lu a te d  [x ]

The explanation for this behavior is that FullForm  doesn’t do anything with its argu
ment, and the output you see shouldn’t be considered its “return value.” Rather, F u ll-  
Form is simply a wrapper that alerts the output routines that the expression inside it 
should be formatted in a special way. Since output formatting happens after the evalua
tion process is over, the head U nevaluated already has been restored.

In fact, the head FullForm  is still wrapped around the output, but it doesn’t print. 
We can verify this as follows:

H e a d [ F u l lF o r m [U n e v a lu a t e d [ x ] ] ]

F u l lF o r m

We’ll have more to say about output formatting in Section 9.4, “Custom Output For
mats.”

7.2.5 HoldPattern (a.k.a. Literal)
H oldP attern  (which was known as L i te r a l  in versions prior to 3.0) is another sym
bol with the HoldAll attribute, but unlike Hold or HoldAll, and like E valuate  or 
U nevaluated, it gets special treatment by the kernel. You might have noted, however, 
that nowhere does this head appear in the description of the main evaluation loop in 
Section 7.1.3. That is because H oldP attern  is recognized by the pattern matcher.

We have run across H o ldP atte rn  several times so far, generally when we have 
inspected the rules associated with a symbol. For example,

ClearAll[f] 
f[x_] := xA2 
DownValues[f]
(HoldPattern[f[x_]] :> x^}

The purpose of the head H oldP attern  is to keep the expression f  [x_] on the left- 
hand side of the downvalue from evaluating to (x_) A2. However, unlike other heads



that hold their contents, H o ldP attern  does not affect pattem matching. Thus, the rules 
in Downvalues [ f  ] can be used as they are, without any special processing.

Occasionally you may need to use an explicit H o ldP atte rn  on the left-hand side of 
a Rule or RuleDelayed. This typically is necessary only when the expression you are 
trying to match is inside of a held expression. For example, the following doesn’t work 
as expected because the left-hand side of the rule evaluates before R eplaceA ll tries to 
use the rule.

This behavior is surprising only the first time you see it — after all, p_ is simply an 
expression (P a tte rn  [p , Blank [] ]), and any expression times itself is equal to the 
expression squared. To get around this difficulty, simply enclose the left-hand side of 
the rule in H oldPattern :

In a sense, then, H o ldP atte rn  [lhs] -> rh s  is complementary to lh s  :> rhs  
(the former holds the left-hand side of the rule but evaluates the right-hand side). And, 
of course, H o ldP atte rn  [lhs] : > rh s  does not evaluate the expressions on either 
side of the rule.

A very rare use for H o ldP attern  is to prevent the evaluation of individual parts of 
the left-hand side of a rule or function definition. Recall that in Section 7.2.1 we dis
cussed the rationale for the choice of attributes of functions like Set, SetDelayed, 
Rule, and RuleDelayed. To summarize, the Rule- functions generally are applied 
expressions that already have evaluated, hence their left-hand sides are evaluated; the 
S et- functions, in contrast, are used to create rules for expressions that have not yet 
evaluated, hence their left-hand sides are held. This is a slight oversimplification, how
ever. The real truth is, the parts of the expression on the left-hand side of a S e t- func
tion are evaluated, because pattem matching is done after the parts of an expression 
have been evaluated. For example:

H o ld [3  * 3 ] / .  p _  *  p _  - >  p A2

H o ld  [3 3]

A trace shows that p _*p_  
evaluates to (p_ ) A2 before 
pattern matching occurs.

T r a c e [ H o ld [3  * 3 ] / .  p _  * p _  ->  p A2]

{ { ( ( p _ )  ( p j .  ( p _ ) 2 ) ,  (P_ ) 2  - >  P2 - (P_ ) 2 - >  P2 ) -  

H o ld [3 3 ] / .  ( (p _ ) 2 - >  p ) ,  H o ld [3 3 ] }

H o ld [3  *  3 ] / .  H o ld P a t t e r n [ p _  * p _ ] - >  p A2

H o ld  [ 3 2 ]

A  definition like this ... C l e a r A l l [ a ,  b ,  f .  g] 
{ a ,  b ,  f }  =  { 1 , 2 , g } ;  
f [ a ,  b ] :=  " s t r a n g e "

does not create a rule for 
f [ a ,  b] .

D o w n V a lu e s [ f ]

{}



Rather, it creates a rule for D o w nV alu es  [g ]

‘ (HoldPattern[g[1, 2]] :> strange}

In those rare cases in which you want some of the parts on the left-hand side of a 
S e t- function to evaluate but not others, you can wrap the individual parts that you 
don’t want evaluated in H oldPattern .

This creates a rule for C le a r  [g ]
g [a .  2 ] .  f [ H o l d P a t t e r n [ a ] , b ] :=  " s t r a n g e r "

D o w n V a lu e s [g ]

{HoldPattern[g[HoldPattern[a], 2]] :> stranger)

Note that if g had been given the H o ld F irs t attribute before this definition were made, 
then no H oldP attern  would have been required.

C le a r [ g ]
S e t A t t r i b u t e s [ g ,  H o l d F i r s t ] ;  
f [ a ,  b ] :=  " s t r a n g e s t "
D o w n V a lu e s [g ]

{HoldPattern[g[a, 2]] :> strangest}

The general rule when making definitions is this: any part at level 1 of a definition 
that is matched by a held argument is not evaluated, and all other parts at level 1 
(including the head) are evaluated. However, rules associated with the head of the defi
nition are not applied. This may sound complicated, but it meshes perfectly with the 
way that expressions are evaluated, as the following example demonstrates:

You should trace this evalu- f  [ a , b ] 
ation if you don't under- r a n s e s t
stand it completely. ^

7.2.6 Verbatim
Verbatim, which is new to version 3.0, is a “quoting” mechanism for patterns. Like 
H oldP attern , it is recognized by the pattern matcher. However, Verbatim  has a dif
ferent purpose: It specifies that the expression it contains must be matched exactly, 
without any special interpretation by the pattern matcher. For example, ordinarily a pat
tern like x_matches any expression. When wrapped in Verbatim, however, it matches
only the expression x_:

C l e a r [ x ,  y ]
{ x ,  x _ ,  y ,  y _ }  / .  V e r b a t im [ x _ ]  ->  m a tc h e d

{x, matched, y, y_}

Suppose that we wanted to write a pattern that could match any pattern variable in an 
expression, rather than a specific pattern variable such as x_. The canonical internal 
representation of any pattern variable is P a tte rn  [var, e x p r] :



FullForm[{x_, y__, z:j[_Integer]}]
List[Pattern[x, Blank[]],

Pattern[y, BlankSequence[]],
Pattern[z, j [Blank[Integer]]]]

One way to accomplish this task is as follows:

{x, x_, y, y_} /. p_Pattern :> q[p[[l]]]
{x, q [x] , y, q [y] )

But now suppose that we want to destructure the pattern variable with the rule, i.e., 
we want to match a pattern of the form P a tte rn  [va r_ , _] directly rather than hav
ing to pick out the individual pieces using part extraction. Specifying a pattern like 
P a tte rn  [var_. _] will result in an error:

(x, x_, y, y_} /. Pattern[var_, _] -> q[var]
Pattern::patsym:

First element in pattern Pattern[var_, _] 
is not a symbol.

(x, x_, y , y_}

The problem is that the pattern matcher sees a P a tte rn  object and assumes that it rep
resents an ordinary pattern variable, which must have a plain symbol as its first part. 
The solution to this problem is to use Verbatim  to prevent the P a tte rn  object from 
being recognized as such by the pattern matcher.

{x, x_, y, y_} /. Verbatim[Pattern][var_, _] -> q[var]
{x, q[x] , y, q [y] )

Note that H o ld P a tte rn  would also do the job in this case, but conceptually, Hold
P a tte rn  is the wrong tool — the objective is not to prevent evaluation, but rather to 
prevent the special interpretation of the symbol P a tte rn .

7.2.7 Magic cookies
The symbols E valuate , Unevaluated, and Sequence are magic cookies. This is a 
whimsical term used by computer scientists to refer to any type of value that has special 
significance to the software system of which it is a part. The behavior of these symbols 
is not a result of any values or attributes that they possess; rather, it is “wired into” the 
kernel. This implies that these behaviors simply can’t be altered, nor can they be dupli
cated.

For example, there is no way to give any other symbol the special properties of these 
symbols:

z = Evaluate;
Hold[z[2 + 2]]
Hold[z[2 + 2]]



z = Unevaluated;
Head [z [2 + 2]]
Unevaluated

z = Sequence;
Hold[a, z[b. c], d]
Hold [a, z [b, c] , d]

Likewise, there is no way to take away their special properties:

Block[{Evaluate = this is futile}.
Hold[Evaluate[2 + 2]]

]
Hold [4]

Block[{Unevaluated = another futile gesture},
Head[Unevaluated[2 + 2]]

]
Plus

(,Don’t try this at home: For reasons that are much too involved to explain here, 
never try to assign a value to Sequence. Doing so may cause the link between the 
front-end and the kernel to break, thus terminating the kernel!)

All of these mysterious results can be explained by studying the main evaluation 
loop algorithm. The point of this note is that one should not think of these magic cook
ies as ordinary symbols; they cannot be forged, nor can their special properties be deac
tivated.

7.3 Working with Held Expressions
It may seem strange to discuss the topic of working with held expressions in a chapter 
entitled “Expression Evaluation,” since this topic is all about expression nonevaluation! 
However, this material logically belongs here since a thorough understanding of the 
evaluation process — which you of course possess at this point — is a prerequisite for 
working with held expressions.

7.3.1 How do held expressions arise?
It is anticipated that you may well be wondering how held expressions arise in practice. 
After all, the examples in the previous section all seem very contrived. Before proceed
ing, then, we will motivate the discussion.

The most common source of held expressions is an argument passed to a function 
with a Hold- attribute. Up until now, all of our examples of such functions have imme
diately “passed the buck” to system-defined functions — for example, the in c  and



doWhile functions in Section 7.2.1 simply pass their arguments to Set and While, 
respectively, which do the real work. If you want to write any nontrivial Hold-type 
functions, you have to learn to deal with held expressions. And whether or not you want 
to write such a function is largely irrelevant — for example, if you need to override a 
built-in function that holds its arguments, your definitions will need to hold the argu
ments in the same way.

Another source of held expressions is input in the form of character strings, whether 
from the user (the In p u tS tr in g  function prompts the user for a string), the kernel (the 
Names function is a prime example — see Section 7.3.5), or a file (see Chapter 12, 
“Input/Output”). The function ToHeldExpression converts a character string into an 
expression that is immediately wrapped in Hold.

ToHeldExpression["1/0"]
Hold [i]

(Note that in version 3.0, ToExpression takes an optional parameter that consists of 
an arbitrary head to wrap around the converted expression, thus making ToHeld
E xpression  obsolete.)

Still other sources of held expressions are the own-, down-, and upvalues of sym
bols. Later in this chapter we will write a function that examines these expressions to 
determine the dependencies that exist between various symbols.

Finally, functions such as Trace return values that are chock-full of held expres
sions. In fact, T race has a relative, TraceScan (Section 13.2.4), that allows you to 
supply a function that is applied to every element of a trace as the evaluation unfolds. 
Obviously, the argument to such a function must not be allowed to evaluate.

Once you have a held expression, what can you do with it? Quite a bit, as it turns out. 
The next few sections will cover the various functions and techniques that can be used 
on held expressions and some practical examples that exploit those techniques.

7.3.2 Part extraction and replacement
The most important thing to realize about held expressions is that they are, first and 
foremost, expressions. Their parts and levels are numbered just as any other expres
sion’s are, and you can extract and replace those parts.

a  =  3 ;  b =  4 ;

Note that U neva lu ated  P o s i t io n  [H o ld  [a  +  b ] , H o ld P a t t e r n  [b ] ]
would also work here in { { 1 2 ) 1
place of H o ld P a tte rn . ’

Most likely, a part extracted from a held expression may be something that shouldn’t 
be allowed to evaluate, as the following example shows:



b evaluates as soon as it is 
outside of the Hold.

Trace[Hold[a + b] [[1, 2]]]
(Hold[a + b][[1, 2]], b, 4)

You can prevent this from happening by using H eldPart instead of P a rt, which wraps 
the extracted part in Hold before returning it. The arguments to H eldPart are the same 
as the arguments to P a r t  (but unlike P a rt, H eldPart has no special input form).

HeldPart[Hold[a + b], 1. 2]
Hold[b]

The E x tra c t function, which is new to version 3.0, provides a more general mecha
nism for extracting parts of expressions. E x tra c t [expr , s u b s c r i p t l i s t , head] 
extracts the part of expr  specified by s u b s c r i p t l i s t  and wraps the result in head. 
So the previous result could also be obtained this way:

Extract[Hold[a + b], {1, 2}, Hold]
Hold [b]

Like P a r t and H eldPart, E x tra c t will extract more than one part of an expression 
at a time if its second argument is a list of part specifications. But E x tra c t is more 
flexible than H eldP art because the head of the result doesn’t have to be Hold. Fur
thermore, the third argument to E x tra c t can be omitted, so E x tra c t subsumes the 
functionality of P a r t  as well (refer to the discussion of Sequence in Section 7.1.4 for 
an example).

You also can replace parts of a held expression with other held expressions. 
R eplaceH eldPart takes the same arguments as R eplacePart, except that if its sec
ond argument has the head Hold or HoldForm, the head is stripped off (but the con
tents are not evaluated) before the new expression is inserted.

ReplaceHeldPart[Hold[a + b]
Hold[a + Sqrt[b]]

Hold[Sqrt [b]], {1. 2}]

In version 3.0, R ep laceP art has been enhanced to subsume the functionality of 
R eplaceH eldPart (although the latter is still supported). This is accomplished by an 
optional fourth parameter to R ep laceP art that specifies which part of the new expres
sion to use as the replacement. The following example replaces part {1, 2} of
Hold [a + b] with part 1 of Hold [S qrt [b] ].

ReplacePart[Hold[a + b]
Hold[a + Sqrt [b]]

Hold [Sqrt[b]], {1, 2}, 1]

The advantage of using R ep laceP art rather than R eplaceH eldPart is that the head 
of the second argument doesn’t have to the head Hold or HoldForm, and the part of the 
second argument that is used as a replacement need not be part 1.

When you have massaged the held expression into exactly the form you want, you 
can evaluate it using ReleaseHold:



R e le a s e H o ld [%]

5

7.3.3 Application: Modifying large lists
Although procedural programming is discouraged in Mathematica, sometimes there is 
no practical alternative. Functional programming primitives modify copies of their 
arguments; when arguments are large data structures and memory is tight, this simply is 
not feasible. In situations like this, there may be no alternative but to operate on the 
original data directly, modifying it in place.

Unfortunately, in-place modification of large lists is extremely inefficient in Mathe
matica. As an example, consider the following two ways of computing the first moving 
average of a list of numbers:

Here the result is computed s =  R ange [ 1 0 0 0 ] ;
in place (i.e., it overwrites Do [s [ [ i ]  ] =  (s  [ [ i ]  ] +  s [ [ i  +  1 ] ] ) / 2 ,
the original data). { i p L e n g th [s ]  -  1 } ] ;  / /  T im in g

(3.01667 Second, Null}

Here the result is stored in a s =  R ange [ 1 0 0 0 ] ;
different list than the origi- ( t  =  T a b l e [ 0 ,  { 1 0 0 0 } ] :
nal data. The creation of the D o [ t [ [ i ] ]  =  (s  [ [ i ]  ] +  s [ [ i  +  1] ] ) / 2 ,
destination list is included { i>  L e n g t h [ s ]  -  1 } ] ; )  / /  T im in g

inthe,lnninS' [0 .6 3 3 3 3 3  S e c o n d , N u l l )

What could possibly explain such a great disparity in execution time? The answer is 
that each time an expression like s [ [i]  ] is evaluated, the list s is evaluated. During 
the evaluation of s the kernel has to attempt to evaluate each element of s and check to
see if there are upvalues defined for L is t  [___ , e l  ement, ____] .  Even if it turns out
that none of the elements of the list need to be evaluated, the process of ascertaining 
this fact takes an amount of time that is proportional to the length of the list. Ordinarily 
the kernel avoids this overhead by keeping track of whether or not the entire expression 
has changed since the last time it underwent a full evaluation (see step 4 of the main 
evaluation loop in Section 7.1.3). In the second algorithm, since s never changes, the 
kernel never has to fully evaluate s. In the first algorithm, however, every time an ele
ment of s is modified, s is marked as modified. Thus, s undergoes a full evaluation on 
each loop iteration, which makes the running time of the first algorithm quadratic in the 
length of the list, rather than linear.

We can prevent this overhead by changing the head of s to HoldComplete. As dis
cussed at the end of Section 7.2.3, the parts of a HoldComplete object (or any expres
sion whose head has the HoldAllComplete attribute) are completely ignored — there 
isn’t even a scan for upvalues. Nevertheless, we still are able to index into a HoldCom
p le te  object as we would any other expression.



s = HoldComplete @@ Range [1000];
Do [s [ [i]] = (s [ [i]] + s[[i + l]])/2,

{i, Length[s] - 1}]; II Timing
(0 .6 3 3 3 3 3  S e c o n d , N u l l )

This simple change brings the performance of the in-place algorithm up to the level of 
the data-copying algorithm, without requiring any extra memory!

Unfortunately this trick does not work if Hold is used instead of HoldComplete 
(see the exercise), which would seem to leave version 2.2 and earlier users out in the 
cold. However, David Withoff has suggested the following solution to this problem 
[Gayley 94a]: Wrap the entire list in Hold (as opposed to applying Hold) and then dou
ble-index the resulting expression. Because the argument to Hold (the original list) is 
not evaluated, there is no scan through the list elements and thus the time for each 
indexing operation is independent of the length of the list.

Note the extra index in each s = Hold [Evaluate [Range [1000] ]] ;
indexing operation, s [ [ l ]  ] D o [ s [ [ l ,  i ]  ] =  ( s [ [ l .  i ]  ] +  s [ [ l .  i  +  l ] ] ) / 2 .
is the original list. {i> Length[s [ [1] ] ] - 1}]; // Timing

( 0 .6 5  S e c o n d , N u l l )

This technique may be slightly slower than the HoldComplete technique because of 
the extra subscript in each indexing operation.

Exercise

1. Try using the Hold instead of HoldComplete in the single-indexing algorithm. 
Time the computation. How does it compare to the other methods, and what conclu
sions can you draw? (If you don’t understand the result, review the pathological 
examples given at the end of Section 7.2.3 for some clues.)

7.3.4 Functional operations

You can also use functional operations on a held expression. Here we use MapAt to 
accomplish the same transformation for which we used part replacement in 
Section 7.3.2.

M a p A t [S q r t ,  H o ld [ a  +  b ] , { 1 ,  2 } ]

H o ld [a +  S q r t  [ b ] ]

One very useful functional operation on held expressions is plain old Apply (@@). 
Apply allows you to “hand off’ a held expression to another function that operates on 
held expressions, without allowing the parts of the held expression to evaluate. For 
example, suppose we wanted to use the contents of the held expression above on the 
left-hand side of a rule. We could do this easily by applying H oldP attern , which 
replaces the head Hold:



N ow  this expression can be H o ld P a t t e r n  @@ %
used for pattern matching. H o ld P a t t e r n  [a  +  S q r t  [b ] ]

Another example of using Apply to hand off a held expression from one function to 
another is the following. Suppose we have a large list, and we want to see if all of the 
elements in the list satisfy some predicate. For example, here we test a list of integers to 
see if all of them are positive:

z = Range[10000];
And @@ Positive /@ z // Timing
( 0 . 5  S e co n d , F a ls e )

Testing to see if all the elements are negative takes the same amount of time, even 
though the result could be inferred merely by testing the first element.

And @@ Negative /@ z // Timing
{ 0 .4 6 6 6 6 7  S e co n d , F a ls e )

The problem is that N egative /@ z is evaluating to a list of 10,000 F a lse  symbols 
Y T lp r  before And checks any of them. And has the HoldAll attribute, so we should be able to 

y P  optimize this case by postponing the evaluation of the 10,000 calls to N egative until
after And has been wrapped around them. We can do that as shown below:

And @@ Negative /@ Hold @@ z // Timing
{ 0 .2 1 6 6 6 7  S e c o n d , F a ls e )

N egative /@ Hold @@ z creates an expression of the form Hold [Nega
t i v e  [1] , N egative [ 2 ] ........... N egative [10000] ]. When And is applied to this
expression, the individual parts are evaluated under the control of And, which bails out 
as soon as any of them evaluate to F alse . The following trace shows this explicitly:

Trace[And @@ Negative /@ Hold @@ Range[-2, 10000], 
Negative[_]]

{ { N e g a t iv e [ - 2 ] ) ,  { N e g a t iv e [ - 1 ] ) ,  { N e g a t iv e [ 0 ] ) )

(Naturally, doing the test this way slows down the first case, i.e., when all of the ele
ments of the list satisfy the predicate. However, the penalty is minimal compared to the 
saving just illustrated.)

Mapping or applying pure functions to held expressions can be tricky. To illustrate 
the difficulty, consider the problem of determining the head of the expression inside of 
a held expression:

SinceHead does not hold its T ra c e  [H ead  @@ H o ld  [a  +  b ] ]
argument, a + b evaluates {H ead  ^  H o ld [ a  +  b ] , He a d [a  +  b ] ,
t o an integer. { (a >  ^  {b> 4 )  _ 3  +  4 _ 7}>  He a d [ 7 ] ,  I n t e g e r )

One might expect that this problem could be circumvented by using a pure function 
of the following form:



Head[Unevaluated[#]]& @@ Hold[a + b]
Integer

The problem is that Apply doesn’t literally wrap the pure function around the contents 
of the held expression, as in Head [U nevaluated [a + b] ]. Instead, the intermediate 
form Head [U nevaluated [#] ] & [a + b] is created, and the argument a + b evalu
ates before the pure function does. As we saw in Section 7.1.4, the solution to this prob
lem is to specify a Hold- attribute as the third argument to Function  (note that there 
is no shorthand syntax for this):

This pure function has the Function [x, Head [Unevaluated [x] ] , HoldFirst] @@
HoldFirst attribute. Hold [a + b]

Plus

Another useful functional operation on held expressions is Thread, which can be 
used to “push” the Hold head one level down in the expression. For example:

The second argument to Thread [Hold [a + b] , Plus]
Thread specifies the head to Hold[a] + ld[b] 
be threaded over.

Best of all, Thread can be used to reverse the process as well!

Thread[%, Hold]
Hold[a + b]

Exercise

1. Implement your own version of E x tra c t by using P a rt, Sequence, and Apply. 
Your function should be able to wrap an arbitrary head around the extracted subex
pression before that subexpression evaluates (see the E x tra c t example in 
Section 7.3.2).

7.3.5 Application: Filtering symbols
Finding all symbols having certain properties is a good example of using functional 
operations on held expressions. Names ["s tr in g p a tte rn " ]  returns a list of the 
names of all symbols that match the given string pattern — e.g., a string containing 
wildcard characters like (matches zero or more characters) or (matches one or 
more characters, excluding uppercase letters). For example,

There are over 1500 names n  =  Names [" S y s te m ' * " ]  : 
defined by the version 3 .0  S h o r t  [n ]
kernel! (Abort, AbortProtect, <<1524>>, $VersionNumber)

The output of Names is a list of strings, not symbols (you can verify this using 
InputForm), because symbols might evaluate. Now we could, for example, select the 
names of all symbols in such a list that have a certain attribute by using a predicate like



MemberQ [A ttr ib u te s  [#] , a t t r i b ] &. For example, here are the names of all sys
tem-defined symbols that have the HoldRest attribute:

Select[n, MemberQ[Attributes[#], HoldRest]&]
(If, PatternTest, RuleDelayed, Save}

This technique was used to generate Tables 7-3, 7-4, and 7-5 at the end of this chapter, 
as well as Table 3-1 on page 67.

This strategy is fine for testing attributes, because A ttr ib u te s  accepts a string as 
an argument. However, functions such as O ptions, MessageName (“ : OwnVal
ues, etc., are not so accommodating — they require actual symbols as arguments. Con
verting all of the names to symbols using ToExpression is problematic, because some 
symbols might evaluate, rendering them unavailable for further analysis:

Note that ToExpression is ToExpression [n] ;
Listable. Take[%, {1510, 1520}]

{{Graphics, Graphics3D, ContourGraphics,
DensityGraphics, SurfaceGraphics, GraphicsArray, 
Sound}, $SyntaxHandler, Power Macintosh,

MacintoshRoman, PowerMac, MathTemp., {},
Gracilis:Math:Mathematica 3.0:, None, None}

The solution is to use ToHeldExpression instead:

hn = ToHeldExpression[n];
Take[hn, {1510. 1520}]
{Hold[$SuppressInputFormHeads], Hold[$SyntaxHandler], 
Hold[$System], Hold[$SystemCharacterEncoding].
Hold[$SystemID], Hold[$TemporaryPrefix],
Hold[$TextStyle], Hold[$TimeUnit],
Hold[$TopDirectory], Hold[$Trace0ff] ,
Hold[$Trace0n]}

All of those Hold heads are going to get in the way. It would be nice to get rid of 
them, but then we have the same problem with uncontrolled evaluation as before! Obvi
ously, we must hold the entire list before attempting to remove the Hold heads from the 
individual symbols.

hhn = Hold @@ hn;
Short[hhn]
Hold [Hold [Abort] , <<1525», Hold [$VersionNumber] ]

Now we can exploit the fact that F la t te n  can flatten nested expressions having any 
head, not just lists:



The extra arguments to hsyms = Flatten [hhn. 1, Hold]
Flatten are a level specifi- Short [hsyms] ;
cation and the head to flat- TT ..r>, ,ten Hold[Abort, A<<9>>ct, <<1524>>, $VerslonNumber]

The elements of hsyms are symbols, not just names of symbols. The fact that the head 
of the expression is Hold rather than L i s t  does not prevent us from using Map, 
S e le c t, or any other functional operation on it.

Now suppose that we want to select those symbols that have the option Heads. This 
is equivalent to testing if the pattern Heads->_ is a member of O ptions [sym] . Since 
O ptions does not hold its argument, the form we need to use is O ptions [Unevalu
a te d  [sym] ]. Also note that we need to make the pure function hold its argument (try 
doing this without the attribute, to see the difference).

This technique was used to Select [hsyms, 
generate candidates for Function [x.
Table 5-1 on page 106. MemberQ [Options [Unevaluated [x] ] , Heads->_] ,

HoldFirst]
]
Hold[Apply, Cases, Count, DeleteCases, FreeQ, Level,

Map, MapAll, MapAt, Maplndexed, MapThread, MemberQ, 
Position, Scan]

Here is a slightly more complicated example that finds all system-defined symbols 
with the word p a t te rn  in their usage message. Note that not all system-defined sym
bols have usage messages, so S tr in g Q [x :: usage] is used to check for the existence 
of a usage message before attempting to use StringMatchQ.

This technique was used to Select [hsyms, 
generate candidates for Function [x,
Table 5-2 on page 106 This StringQ [x: :usage] &&
evaluation may take a long StringMatchQ [x: :usage, "*pattern*"],
time' HoldFirst

]
]
Hold[Alternatives. Blank, BlankNullSequence, 

BlankSequence, Cases, Clear, Condition, Count,
Default, DeleteCases, ExcludedForms, Expand,
ExpandAll, ExpandDenominator, ExpandNumerator 
FileNames, Flat, LinkPatterns, ThisLink,
$CurrentLink]

Exercises

1. The Thread trick from Section 7.3.4 is almost the right tool for converting hn to 
hsyms. The problem is that the result is an expression of the form 
Hold [ {sym , . . . } ] rather than Hold [sym , . . . ] . Use Apply and Sequence to 
obliterate the extra level in this expression.



2. Find all system-defined symbols that have format values.
3. Find all system-defined symbols that have anything to do with graphics.

7.3.6 Rule substitution
You can use rule substitution on held expressions, although frequently when you do so, 
it is necessary to wrap part or all of the left-hand side of the rule in H oldPattern , as 
explained in Section 7.2.5. For example, here is yet another way to turn Hold [a + b] 
into Hold [a + S q rt[b ]] :

Hold[a + b] /. HoldPattern[b] :> Sqrt[b]
Hold[a + Sqrt[b]]

H oldP atte rn  keeps the left-hand side of the rule from evaluating, and RuleDelayed 
keeps the right-hand side from evaluating.

One of the most powerful uses of pattem matching in Mathematica is destructuring, 
which is the process of using patterns to take apart expressions. Here’s an alternative 
way to solve the problem, posed in the last section, of finding all built-in symbols hav
ing the Heads option:

n = Names["System'*"];
Cases[ToHeldExpression[n], Hold[sym_] /;

MemberQ[Options[Unevaluated[sym]], Heads->_]]
{Hold[Apply], Hold[Cases], Hold[Count],
Hold[DeleteCases], Hold[FreeQ], Hold[Level],
Hold[Map], Hold[MapAll], Hold[MapAt],
Hold[Maplndexed], Hold[MapThread], Hold[MemberQ],
Hold[Position], Hold[Scan]}

This technique — extracting part of a held expression and plugging it directly into 
another expression — is arguably more straightforward than using S e le c t with a pure 
function with a Hold- attribute. The output is a bit more awkward than before, but that 
is easily fixed by using the Thread trick:

Thread[%, Hold]
Hold[{Apply, Cases, Count, DeleteCases, FreeQ, Level, 

Map, MapAll, MapAt, Maplndexed, MapThread,
MemberQ, Position, Scan}]

For our final example of using rule substitution on held expressions, we return to the 
optimal matrix-chain multiplication problem of Section 6.4.2. Recall that we had con
structed the following expression (page 173):

multorder = {{1, {2, 3}}, {(4, 5), 6 }};

which we needed to transmogrify into the following form (A was the list of matrices to 
be multiplied):



Dot [Dot [A[ [1] ] , Dot [A[ [2] ] , A[ [3] ] ] ] .
Dot [Dot [A[ [4] ] , A[ [5] ] ] , A[ [6] ] ] ]

The problem, you may recall, was that a transformation like m ulto rder / .  L is t->
Dot would destroy the nesting of m ultorder, since Dot is F la t .  On the other hand,
substituting in the matrices before changing the L is t  heads to Dot would be disas
trous, because the matrices themselves are nested lists! The solution we adopted at that 
time was to change the L is t  heads in m u lto rd er to some new head; then we were 
able to replace this new head with Dot after the matrices had been inserted.

However, by holding m u lto rder we can operate directly with Dot and avoid the 
need to introduce a temporary head.

Hold[Evaluate[multorder]] /. List->Dot 
Hold [1 . 2 . 3 . 4 . 5 . 6]

Although it looks as though the Dot operators have flattened out, in fact that is simply 
how the output routine prints them. We can verify that the structure is still there by 
examining the FullForm of this expression:

FullForm[%]
Hold[Dot[Dot [1, Dot [2, 3]], Dot [Dot [4, 5], 6 ]]]

Next, we turn each index i  into A [ [i] ] using a straightforward delayed-rule substitu
tion:

% /. i_Integer :> A [[i]] II FullForm
Hold[Dot[Dot[Part[A, 1],

Dot[Part[A, 2], Part[A, 3]]],
Dot[Dot[Part[A, 4], Part[A, 5]], Part[A, 6 ]]]]

All that remains is to apply ReleaseH old to this “parenthesized” chain to evaluate all 
of the Dot operators. Because evaluation proceeds depth-first (i.e., more deeply nested 
dot products will be evaluated before less deeply nested ones) the parenthesization will 
be observed.

7.3.7 Application: Dependency analysis
Suppose that we want to analyze an expression to find all of the symbols upon which it 
depends. Let us take as an initial example the expression Function  [{x, y } , 
x + y] [{u, v } ] . Note that a prerequisite for success is that this expression not be 
allowed to evaluate while it is being analyzed.



As a first step toward our goal, we might use Cases to find all of the symbols in the 
expression:

Cases[Unevaluated[Function[{x, y}, x + y][u, v]], 
s_Symbol -> HoldForm[s], {-1}, Heads->True]

{Function, List, x, y, Plus, x, y, u, v)

syms = Union[%]
{Function, List, Plus, u, v, x, y}

Here, U nevaluated prevents the expression from evaluating before Cases can exam
ine it; the rule extracts each symbol and stuffs it into a HoldForm head to prevent the 
symbol from evaluating; the level specification of -1 restricts Cases to searching only 
the lowest level of the expression (since symbols have no parts, they must be at the low
est level); and the Heads->True option directs Cases to search the heads of expres
sions as well as their parts.

This is a good start, but it is overly conservative: It includes the symbols x and y, 
which are local to the pure function and have no relationship to any “global” symbols 
named x and y. We might try solving this problem in the following way. First, we use 
Cases to obtain a list of all of the parameters to the pure function:

Cases[Unevaluated[Function[{x, y}, x + y][u, v]],
HoldPattern[Function[{vars__}, __]] :>

Sequence @@ Thread[HoldForm[{vars}]],
Heads->True

]
{x. y)

A few points worth noting about this code: First, we used H o ldP atte rn  to prevent 
Function from issuing an error message about the form of its first argument. Second, 
we used the Thread trick to push the HoldForm head inside the list vars . Third, the 
list that results was turned into a Sequence so that it spliced itself into the list that is 
returned by Cases.

Now that we have the list of parameters to the pure function, we can remove those 
symbols from the list of all symbols found in the expression.

syms = Complement[syms, %]
{Function, List, Plus, u, v}

Unfortunately, the technique shown above is rather ad hoc, and it’s quite easy to 
malce. it fail. For example, if the expression had been x + F unction  [{x, y } , 
x + y] [u , v ] , this technique could not distinguish the x outside of the pure function, 
which is a global symbol upon which this expression depends, from the x inside the 
body of the pure function, which is merely a placeholder. Or consider 
Function [ {x} . x] + F unction  [ {y} , x + y ] , for which this technique would be 
unable to determine that the symbol x in x + y is nonlocal.



Furthermore, scoping constructs, such as Module and With, and certain types of 
rules also introduce temporary symbols that are distinct from global symbols. Consider
ing that these constructs can be nested arbitrarily, it’s clear that a more methodical 
approach is required.

The solution to this problem is to write a parser for Mathematica expressions. This 
is not as difficult as it sounds, because the recursive structure of expressions lends itself 
to being analyzed by a very simple parsing method known as recursive descent [Aho & 
Ullman 77].

A recursive descent parser parses an expression in a depth-first order. For example, 
to parse head [ p a r t i , p a r t2 ,  . . . ] ,  it first parses head, then p a r t i ,  etc. Each of 
these expressions may also have a head and parts, and they are parsed in the same way. 
By traversing the expression in this order (the same order in which the kernel does it, 
incidentally), a recursive descent parser can deal with arbitrarily nested expressions 
without getting confused. For example, to parse Function  [x, body], a rule is writ
ten that removes x  from the list of global symbols returned from parsing body. It's irrel
evant what's in body, the correctness of this strategy is argued inductively.

Quite obviously, the parsing routine needs to hold its argument. We choose the 
HoldAllComplete attribute because there is no conceivable case in which we would 
want any part of an expression to evaluate before being parsed.5

SetA ttribu tes[parse, HoldAllComplete];

The parser will be structured as a collection of Mathematica rules, which allows us 
to add functionality incrementally. The most general rule simply parses the head and 
each of the parts recursively:

parse[hd_[parts__ ]] :=
Union[Flatten[parse /@ Unevaluated[{hd, parts} ]]]

When a symbol is encountered, it is returned wrapped in HoldForm:

parse[s_Symbol] := HoldForm[s]

Everything else is ignored at this early stage of development.

p a rse [_] := {}

At this point we have implemented the functionality of the first Cases statement in 
this section:

parse[Function[{x, y}, x + y][u, v ]]
{Function, L is t, Plus, u, v, x, y}

5. Users of versions prior to 3.0 should choose the HoldFirst or HoldAll attribute. 
Certain features of parse, pointed out below, will not be available.



The following trace shows the order in which the expression is traversed.

T r a c e [ p a r s e [ F u n c t io n [ { x ,  y } , x  +  y ] [ u ,  v ] ] , p a r s e [__ ] ]

{ p a r s e [ F u n c t io n [ { x ,  y } , x  +  y ] [ u ,  v ] ] ,
{ { { p a r s e [ F u n c t io n [ { x ,  y ) , x  +  y ] ] ,

{ { { p a r s e [ F u n c t io n ] } ,
{ p a r s e [ { x ,  y } ] ,

{ { { p a r s e [ L i s t ] ) , ( p a r s e [ x ] } ,  { p a r s e [ y ] } ) } } , 
{ p a r s e [ x  +  y ] ,

{ { { p a r s e [ P l u s ] } , { p a r s e [ x ] } ,  { p a r s e [ y ] ) } } ) } } } \  

, { p a r s e [ u ] } ,  { p a r s e [ v ] } } ) }

The HoldAllComplete attribute allows the parser to work even on expressions that 
contain magic cookies (version 3.0 only):

Now we will write a rule that handles pure functions. As mentioned above, all this 
rule needs to do is to remove the list of parameters to the pure function from the list of 
symbols found by parsing the body of the pure function. There are no techniques being 
used here that we haven’t already seen several times.

parse[Function[{syms__}, body_]] :=
Complement[parse[body], Thread[HoldForm[{syms}]]]

It really is that easy! One more simple rule is needed to handle the special case of func
tions of a single argument:

Below are some examples of increasing complexity that demonstrate the adaptability 
of this approach.

parse[Function[{x, y}, x + y] [u, v] ]
{Plus, u, v}
parse[x + Function[{x, y}, x + y][u, v]]
{Plus, u, v, x}
parse[Function[x, x + y + Function[y, x + y + z]]]
{Plus, y, z}

There are many more special cases that need to be taken into account in order to have 
a completely general, recursive-descent symbol dependency analyzer (see the exer
cises), but the foregoing discussion should be enough to give you a good idea of how it 
is done.

parse[Evaluate[{a, Sequence[b, c] , d}]]
{a, b, c, d, Evaluate, List, Sequence}

Reduce to a previously 
solved case.

parse [Function[sym_, body_]] : = 
parse[Function[{sym} , body]]



Given the existence of such a function, it is not difficult to write another function that 
takes a symbol as an argument and returns a list of all global symbols upon which it
depends. Basically, all that’s necessary is to parse the right-hand side of every rule for
which the given symbol is the tag and to eliminate any formal parameters from each 
result. Here are some example rules for a symbol f :

f has two downvalues and ClearAll [f, g]
one upvalue. f[x_] := x + y

f [x_, y_] : = x + y + z
g[f[x_, y_, z_]] A:= Sqrt[xA2 + yA2 + zA2]

A list of all types of values for a symbol can be constructed using Through, which 
takes a list of functions and applies each of them to an argument:

rules =
Through[{OwnValues, DownValues, Upvalues, SubValues, 

NValues, FormatValues}[Unevaluated[f]]
] // Flatten

{HoldPattern[f[x_]] :> x + y,
HoldPattern[f[x_, y_]] :> x + y + z,
HoldPattern[g[f[x_, y_, z_]]] :> Sqrt[x2 + y2 + z2]} 

Next, parse the right-hand side of each rule.

globals = Cases[rules, (_ :> rhs_) :> parse[rhs]]
{{Plus, x, y), (Plus, x, y, z),

{Plus, Power, Sqrt, x, y, z}}

We’re not done; we need to remove any formal parameters that appear in the left- 
hand sides of rule definitions from the corresponding right-hand sides. Formal parame
ters are represented as pattern variables, and we saw in Section 7.2.6 that the pattern 
Verbatim  [P a tte rn ] [x_, _] can be used to match any pattern variable. Therefore, 
the following function extracts all of the pattern variables from an expression:

fpv stands for "find pattern fpv [expr_] : = 
variables." Cases [{expr},

Verbatim[Pattern][x_, _] :> HoldForm[x], 
Infinity, Heads->True]

Now apply this function to the left-hand side of each rule in turn:

params = Cases[rules, (lhs_ :> _) :> fpv[lhs]]
{{x} , {x, y}, {x, y, z}}

Next, complement each element of g lo b a ls  by the corresponding element of params:

MapThread[Complement, {globals, params}]
{{Plus, y}, {Plus, z}, {Plus, Power, Sqrt}}



All of these steps can be consolidated into a single Cases statement, eliminating the 
need for the MapThread.

Cases[rules, (lhs_ :> rhs_) :>
Complement[parse[rhs], fpv[lhs]]]

{{Plus, y}, {Plus, z), {Plus, Power, Sqrt}}

Finally, remove duplicates from the result by applying Union to it.

Union @@ %
{Plus, Power, Sqrt, y, z}

Here is the fruit of our labors: a function called dependson that, given a symbol as 
an argument, returns a list of all global symbols upon which that symbol depends.

SetAttributes[dependson, HoldFirst]; 
dependson[sym_] :=
With [

{rules = Flatten[Through[
{OwnValues, DownValues, Upvalues, SubValues. 
NValues, FormatValues}[Unevaluated[sym]]]]}, 

Union @@
Cases[rules, (lhs_ :> rhs_) :>

Complement[parse[rhs], fpv[lhs]]]
]

dependson[f]
{Plus, Power, Sqrt, y, z)

Exercises
1. Change dependson so that in a definition like f  [g [x_] ] := rhs, g will appear in 

the result. (Hint: Parse the left-hand side of the definition.) However, f  should not 
appear unless it is present on the right-hand side of the definition as well; otherwise 
there would be no way to distinguish recursive functions from nonrecursive ones.

The next two exercises are quite difficult, and it is not expected that every reader 
should be able to solve them. (Their solutions, along with other material, were the basis 
for a journal article [Wagner 96a]. The supplementary diskette contains the package 
DependencyAnalysis. m.)

2. Write a rule or rules to parse lexical scoping constructs such as Module (all com
ments here also apply to With). Your rules should work for arbitrarily nested 
expressions. For example, the following expression depends only on the symbols a 
and z, because x and y are local symbols:

Module[{x = W ith[{y  = a } , y + z ] } ,  x A2]

, s 2(a + z)

The output of p a rse  applied to this expression should therefore be:



parse[Module[ {x = With[{y = a} , y + z] } , xA2]]
{a, Plus, Power, z}

Note that the symbols on the left-hand sides of local variable initializations (e.g., y) 
do not appear in the output, but symbols on the right-hand sides of those initializa
tions (e.g., a) do appear. Also note that there are three forms of local variable decla
rations that you have to handle: sym, sym = expr, and sym : = expr.
As another example, the following expression does depend on x.

Module[{x = With[£y = a}, y + x]}, xA2]
(a + x ) 2

The reason for this is that the x inside the body of the With is a global x. Therefore, 
x should appear in the result of parse:

parse[Module[{x = With[{y = a}, y + x]}, xA2]]
{a, Plus, Power, x}

It is recommended that you go through the above examples by hand before writing 
any code.

3. If we think of dependson as a relation in the mathematical sense, then dependson 
is transitive: If a dependson b and b dependson c, then a dependson c. We can 
define the transitive closure of the dependson relation, dependtrans, as follows: 
a dependtrans c if either a dependson c or there is some symbol b for which 
a dependtrans b and b dependtrans c.
One way to compute the transitive closure of a relation is to iterate that relation on 
itself until a fixed point is reached. Write a function to compute dependtrans in 
this way. (Hint: Represent the relation as a list of rules of the form 
{HoldForm[syml] -> dependson[sym l], HoldForm[sym2] -> depend
son [sym2] , . . . This form makes it very easy to iterate the relation with a
R eplaceA ll operator. Use F ixedP o in t to carry the iteration to its conclusion.)

7.3.8 The Block trick
The construct Block [ {sym l, sym2 . . . . } , expr] effectively gives the kernel a
case of temporary amnesia, preventing it from applying any rules associated with any 
of the symbols syml, sym2, etc. until after expr  has been constructed and returned 
from the Block. This technique was first made known to the author by Allan Hayes.

The Block trick is very useful for constructing expressions that are meant to evalu
ate eventually, but only after they have been fully constructed. For example,

a and b do not evaluate until B l o c k [ { a ,  b }  ,
the B lo ck  returns. a  +  b / .  b  - >  S q r t [ b ]

]
5



No evaluations except those involving the specified symbols are affected by the Block, 
which makes the use of this technique exceptionally straightforward.

In the context of the matrix-chain multiplication problem, here is how the Block 
trick could be used (do not attempt to evaluate this expression unless A has been prop
erly initialized):

Block[{Dot},
multorder /. {List->Dot, i_Integer:>A[[i]]}

];
Within the Block, Dot behaves as a symbol with no values. When Block returns, all of 
the Dot operations inside of the returned expression evaluate in the proper order.

Note that the Block trick suffers from a serious limitation: It is necessary to know in 
advance which symbols need to be held in order to use it.

7.4 Additional Resources
Chapter 10 of [Maeder 94a] contains many examples of applying functions to held lists 
of symbols.

Recursive descent parsing ([Aho & Ullman77]) originally was developed as a 
method of parsing computer programming languages. It has the advantage of being 
easy to code by hand. Nowadays, however, more sophisticated parsers are generated by 
special computer programs called parser generators, so recursive descent usually is 
used only as an educational example in most texts.

Algorithms for computing the transitive closure of a relation (or equivalently, a 
graph) can be found in any text on algorithms and data structures. See, for example, 
[Cormen et al. 90].

A complete treatment of the symbol dependency analysis problem can be found in 
[Wagner 96a].

7.5 Appendix: Functions with Hold- Attributes
Tables 7-3, 7-4, and 7-5 on the next page show all of the functions in version 3.0 of 
Mathematica that have the H o ld F irs t, HoldRest, and HoldAll attributes, respec
tively. Functions marked with an asterisk (*) do not exist in earlier versions; functions 
marked with a dagger (t) exist but do not have the given attribute in earlier versions. In 
Table 7-5, certain functions with extremely long names appear at the end of the table.



Tkble 7-3 Functions w ith  the H o l d F i r s t  attribute in  version 3.0.

AddTo AppendTo Catchf ClearAttributes^
Context Debug Decrement DivideBy
Increment Message MessageName Pattern
PreDecrement Preincrement PrependTo RuleCondition
Set SetAttributes^ Stack SubtractFrom
TimesBy ToBoxForm* Unset UpSet

Table 7-4 Function with the HoldRest attribute in version 3.0.
Iff PatternTest RuleDelayed Save

Table 7-5 Functions with the HoldAll attribute in version 3.0.
AbortProtect Alias And Attributes
Block Check CheckAbort CheckAll*
Clear ClearAll Compile CompiledFunction^
Condition ConsoleMessage^ ConsolePrint* ContourPlot
DefaultValues Definition DensityPlot Dialog
Do DownValues FindMinimum FindRoot
For FormatValues FullDefinition Function
Hold HoldForm HoldPattern* Information
Literal MatchLocalNameQ MemoryConstrained Messages
Module NIntegrate NProduct NSum
NValues Off On Or
OwnValues ParametricPlot ParametricPlot3D Play
Plot Plot3D Product Protect
Remove SetDelayed StackBegin StackComplete
Stacklnhibit SubValues Sum Switch
Table TagSet TagSetDelayed TagUnset
TimeConst rained Timing Trace TraceDialog
TracePrint TraceScan UnAlias Unprotect
UpSetDelayed Upvalues ValueQ Which
While With $ConditionHold $Failed
CompoundExpression SampledSoundFunction
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8
Writing Packages

A package is basically a text file containing function definitions written in the 
Mathematica programming language. The purpose of a package is not to perform a par
ticular computation, but rather to extend the system by defining new functions. In fact, 
Mathematica ships with over 100 packages, called the standard packages [WRI 93b]. 
This strategy gives users who need a particular functionality easy access to it, without 
forcing users who don’t need it to pay the price for it (in terms of kernel memory 
requirements and loading time).

There is nothing magical about the standard packages; any Mathematica program
mer can write packages of his or her own. There are, however, several conventions that 
packages must observe regarding the naming and visibility of symbols, proper docu
mentation, and related issues, that are the main topic of this chapter. At the end of the 
chapter we also discuss the symbol shadowing problem, an advanced topic that may be 
skipped on a first reading.

8.1 Contexts
A properly designed package should not modify the definitions of any symbols that are 
in existence at the time the package is loaded — with the possible exception of system- 
defined symbols that are enhanced by the package. Obviously, the author of a package 
can't possibly anticipate what symbol names will be in use already. Therefore, multiple 
distinct symbols with the same name need to be able to coexist. Contexts are the mech
anism used to manage such symbol names in a Mathematica session.

Contexts also provide modularity: They hide implementation details from users. 
Proper use of contexts in a package encourages users to access the package’s data struc
tures through a well-defined interface; this makes the package more reliable.

For these reasons, learning about contexts is a prerequisite to learning to write pack
ages.



8.1,1 Contexts are containers for symbols
Every symbol in a Mathematica session belongs to some context.

Sy stem-def i ned symbol s C o nt e x t  [ P lu g  ]
such as Plus are in the _ ,
S y s t ^ '  context, Sy f l t e a

(The grave accent, or backquote 'follow ing a context name is called a context mark.)

Upon the first use of a new symbol name, a symbol with that name is created in 
whatever context happens to be the current contact* The current context is kept in the 
system variable $ Context.

(C o n te x t

Global1

Most of the time the current context is G lo b a l ', so the vast majority of symbols that 
are defined by a user in the course of a Mathematica session fall into that context. The 
input shown below creates a symbol at in the G lo b a l' context:

x  =  5 :

C o n t e n t [x j

Global'

Note that it is not necessary to assign a value to a symbol in order to create it; the 
mere utterance of a symbol name (metaphorically speaking, of course) causes its cre
ation.

y  is created simply by C o n te x t  [y j
mentioning it. G lo b a l '

Symbol names are unique within any one context, but the same symbol name 
appearing in different contexts refers to different symbols. How can these different 
symbols be specified unambiguously? Every symbol has a long name and a short name; 
the long nil me is of the form contextnam e' shortname.

Norm ally you need lo  use {at, y }
only the short name of a .
symbol, and symbols print * "
as short names.

The 7 operator shows the 7 x
long name of a symbol. G1 o b a l '  it

x  -  5

The following input creates a context called temp, as well as a symbol x. within that 
context. Note that this symbol is distinct from the symbo! G lobal' x.



te m p 'x  =  6 ;

You can refer to a symbol in 
another context by using its 
long name.

{ x ,  t e m p 'x }

{ 5 ,  6 )

Or, you can change the 
current context to that 
co n tex t...

B e g in [ " t e m p '" ]

te m p '

and use the symbol's short 
name. The short name x  
now refers to tem p 'x .

{ x ,  G l o b a l 'x }

{ 6 , 5 }

This leaves the tem p' con
text.

End []

te m p '

The short name x  once 
again refers to G lo b a l'x .

?x

G l o b a l 'x  

x  = 5

Note that Begin returns the name of the context that is entered, and End returns the 
name of the context that was exited. You should always use Begin and End rather than 
manipulating the value of $Context directly.

There is one important caveat regarding the use of Begin: Always place it on its own 
input line. The reason for this is that no part of an input line is evaluated until the entire 
line has been parsed; however, the parser uses the value of $Context at the time the 
input is read to decide how to resolve the names in the input strings to symbols. To 
make this more concrete, consider the following example:

Since the entire input line is evaluated at one time, the current context does not become 
tem p' until after the parsing is completed. Therefore, the parser resolves the name x to 
the symbol G lo b a l'x , because G lo b a l' is the current context. Placing the 
Begin [" tem p '"] command on a separate input line gives the behavior one m ight 

expect.

Contexts can be nested. For example, this input creates a symbol x in a subcontext foo 
of the context temp.

B e g in [ " t e m p '" ] ;  P r i n t [ { x ,  G l o b a l 'x ,  t e m p 'x } ] ;  E n d [ ] ;  

{ 5 ,  5 ,  6 }

B e g in [ " t e m p '" ] ;
P r i n t [ { x ,  G l o b a l 'x ,  t e m p 'x } ]  
End [ ]  ;

( 6 , 5 ,  6 }

8.1.2 Nested contexts



temp'foo'x
temp'foo'x

Here we evaluate x in three different contexts: G lobal' (the current context), 
temp' , and temp' f  oo':

x
5

Begin["temp'"]
temp' ■

x
6

Begin["'foo'"] 
temp'foo'

x
x

The End command undoes the action of the most recent Begin, thus it exits 
tem p' fo o ' and returns to the context tem p '.

End []
temp'foo'

$Context
temp'

Note that the specification of the subcontext name 'f o o ' begins with a context 
mark. If the leading context mark is omitted, that Begin command creates and enters a 
new top-level context called f o o '.

Begin["foo'"]
foo'

z

z

? z

foo' z
The current context is now fo o ',  not te m p 'fo o '. The function C o n te x ts [], 

which returns a list of all existing contexts, shows that fo o ' and tem p' fo o ' are differ
ent contexts. (The other contexts in this menagerie were created as part of the kernel’s 
initialization procedure.)



Contexts[]
{Algebra'Algebraics'Private', BoxForm', Chase',
Conversion', DSolve', EllipFunctionsDump', Factor'.
FE', foo', Format', Global', Graphics'Animation' , 
HypergeometricLogDump', Integrate',
Integrate'Elliptic', Limit', NPDSolve', OscNInt', 
Series', Simplify', Solve'. SymbolicProduct', 
SymbolicSum', System', System'ComplexExpand',
System'CrossDump', System'Dump',
System'Dump'ArgumentCount', System'FactorDump',
System'Private', temp', temp'foo')

Note that although fo o ' is not nested within tem p ', an End command returns to the 
context tem p ', since that was the current context when Begin [temp' ] was executed.

End []
foo'

$Context
temp'

A second End command is necessary to return to the G lobal' context.

End[]
temp'

$Context
Global'

There is a strong analogy between contexts and directories in a hierarchical file sys
tem. The context mark corresponds to the directory pathname separator ( / in UNIX, 
\  in DOS, : in MacOS), symbol names correspond to filenames, and the current con
text corresponds to the working directory.

However, unlike UNIX and DOS (but like the MacOS), a context mark at the begin
ning of a context name (as in '  f o o ') does not correspond to a “root” context. When the 
name of a context stands alone, it is an absolute name; but when it is preceded by a con
text mark, it is relative to the current context.

Begin and End do not correspond precisely to the UNIX cd or the DOS chdir, 
since they keep track of the order in which contexts are entered and left. Begin and 
End are more closely analogous to the UNIX shell commands pushd and popd.

8.1.3 The context search path
To allow you to use symbols from multiple contexts conveniently, Mathematica main
tains a context search path, which is simply a list of context names in the order in which

This list w ill be somewhat 
different in versions prior 
to 3.0.



they will be searched when symbols are encountered.1 The current context is always 
searched first. Continuing the analogy with file system directories, the context search 
path is analogous to the PATH environment variable of UNIX and DOS systems, while 
the current context is analogous to the working directory.

The context search path is $ C o n te x tP a th
kept in the system variable { G l o b a l ' , S y s te m '}$ContextPath.

This shows that contexts will be searched in the following order: the current context, 
the G lobal' context, and finally the System' context.

For example, when the symbol I  is used, and the current context is G lo b a l ', the 
system does not find a symbol called G lobal' I  so it uses the symbol System' I.

? I

1 r e p r e s e n ts  t h e  im a g in a r y  u n i t  S q r t [ - 1 ] .

If we were to define a symbol in the G lobal' context named I, then we would no 
longer be able to access System' I  by its short name.

G l o b a l ' I  =  2

I : : s h d w :  Sym bol I  a p p e a rs  i n  m u l t i p l e  c o n te x ts
{ G l o b a l ' , S y s te m '} ; d e f i n i t i o n s  i n  c o n t e x t  G lo b a l '  
may shadow  o r  b e  shadow ed b y  o t h e r  d e f i n i t i o n s .

2

The warning message says that this definition has shadowed another symbol having the 
same name, that is, it has made that symbol inaccessible by its short name. (We’ll dis
cuss shadowing in detail in Section 8.4.)

There are now two distinct ? * ' I
symbols named I .  j  S y s te m 'I

Because the current context I A2
is G lo b a l ',  an unqualified ,
I  refers to G lo b a l' I .

You can always refer to the S y s te m ' I A2
"real" I  (the imaginary unit) 
by using its long name.

-1

If you were to set the current B e g in  [ " S y s t e m '" ]
context to System ' ... S y s te m '

then I  refers to System ' I .  I A2

-1

1. Do not confuse the context search path $ContextPath with the directory search 
path $Path, which contains the list of directories that the kernel searches when 
attempting to locate a file.



This leaves the System ' End []

context‘ S y s te m '

We really should get rid of the bogus definition of I. However, C lear will not do it, 
as it removes only the values of a symbol, and not the symbol itself.

C l e a r [ I ]
C o n t e x t [ I ]

G lo b a l '

The correct function for this job is Remove:

Remove [ I ]
C o n t e x t [ I ]

S y s te m '

8.2 Package Mechanics
Now that you understand contexts, you have almost all of the tools necessary to write a 
package. There are two other context-related functions, BeginPackage and EndPack- 
age, that make context management for a package much easier. After discussing these, 
we will develop a complete example package.

8.2.1 BeginPackage and EndPackage
The first thing that every package must do is to call BeginPackage, which creates a 
new context and changes the context search path to consist of only the newly defined 
context and the System' context:

The current context is B e g in P a c k a g e  [ " e x a m p le '" ]
changed to e x a m p le '. e x a m p le '

And the context search path $ C o n te x tP a th
is changed as shown. { e x a m p le ',  S y s te m '}

BeginPackage temporarily removes all other contexts except System' from the con
text search path, which guarantees that symbols defined by the package will be distinct 
from symbols defined by other packages or by the user.2 The System' context is left on 
the context search path so that the package can use built-in functions.3

Here are some symbols created in the package context:

2. This assumes, of course, that the user does not load two different packages that 
define the same context. Thus, the problem has not been “solved,” but merely 
pushed to a higher level. In practice, however, this is all that’s necessary.

3. If a package needs the services of other packages, a mechanism exists for allowing 
this; see Section 8.2.3.



f  =  " a  p a c k a g e  s y m b o l" ;
g =  " a n o th e r  p a c k a g e  s y m b o l" ;

It’s considered good programming practice to place all definitions that are not meant 
to be seen by the user into a private subcontext of the package context. By convention, 
this context is called packagecon tex t '  P r i v a t e ' .

The context mark preceding B e g in  [ " ' P r i v a t e '  " ]
this context name indicates e x a m p le ' P r i v a t e '
that it is nested within the r
current context. . , , ,  „

a  =  " a  v e r y  s h y  s y m b o l" ;

Exit from the private sub- End []

context- e x a m p le 'P r iv a t e '

Because the subcontext was entered using Begin, it was not added to the context 
search path. Thus, a user will not inadvertently see or alter any of the data structures 
declared inside of this subcontext. (Of course, a user could deliberately subvert this 
protection by referring explicitly to exam ple' P r iv a te ' a, but that’s not the program
mer’s concern.)

EndPackage restores the value of $Context to its previous value and sets 
$ContextPath to its previous value with the name of the new context prepended to it.

E n d P a c k a g e []

e x a m p le '

$C o n te x t

G lo b a l '

$ C o n te x tP a th

( e x a m p le ' , G l o b a l ' , S y s te m ')

Prepending the new context name to the context path means that symbols defined in 
the package context can be referred to by their short names:

? f

e x a m p le ' f

f  = "a  p a c k a g e  sy m b o l"

Since the private subcontext is not on the context search path, symbols in that con
text are “hidden” from the user.

?a

In f o r m a t io n : in o t f o u n d :  Sym bol a  n o t  fo u n d .

Note that since the private subcontext is a subcontext of the package context, it is 
distinct from the private subcontext of any other package that follows the canonical 
package structure outlined here.



8.2.2 An example package
The example package developed in this section generates pseudorandom numbers using 
the linear congruential generator xn +1 = 75xnmod(231 -  1) ([Jain 91] example 26.3).

The first thing that the package needs to do is to call BeginPackage:

B e g in P a c k a g e ["L C G R a n d o m '" ]

LCGRandom'

The next thing to do is to create any symbols that will be exported, i.e., visible out
side of the package. This is conventionally done by defining usage messages for these 
symbols. These are the messages that will be printed when the user evaluates 
Isymbolname.

The package exports two L C G S e tS e e d :: u s a g e  =  "L C G S etS eed  [x ]  s e ts  t h e  LCG \
functions. random  num ber g e n e r a t o r ’ s s e e d  t o  t h e  in t e g e r  x . " ;

LCG Random :: u s a g e  =  "LCGRandom []  g e n e ra te s  a \  
u n i f o r m ly  d i s t r i b u t e d  random  num ber i n  t h e  r a n g e \  

u s in g  a  l i n e a r  c o n g r u e n t ia l  g e n e r a t o r . " ;

Here's an example of a ?LCGRandom

usage message at work. LCGRandom [] g e n e r a te s  a  u n i f o r m ly  d i s t r i b u t e d  random
(This code is not part of the num bgr ±n  t h e  ra n g e  { 0 . , 1 . }  u s in g  a l i n e a r
package.) c o n g r u e n t ia l  g e n e r a t o r .

The implementation of the exported functions is done inside of a private subcontext.

B e g i n [ " 'P r i v a t e ' " ]

L C G R a n d o m 'P r iv a te '

Private data are defined first. To speed up the generator, we precompute the constant 
231 -  1 and store it in a symbol called modulus. The symbol seed is used to keep track 
of the most recent value returned by the generator.

m o d u lu s  =  2 A31 -  1 ;
s e e d  =  1 ;

This is also the place to define any error messages for the functions defined in the 
package. We will defer a discussion of error messages to Section 9.1, “Diagnostic Mes
sages.”

Now for the actual implementation of the two functions exported by the package:

The seed must lie between 1 LC G S etS eed  [ x _ In t e g e r  / ;  1 <=  s e e d  < m o d u lu s ] : =
and modulus - 1. seed = x
LCGRandom takes no param- LCGRandom [] :=  (
eters; it uses the package's s e ed =  M o d [7 A5 * s e e d ,  m o d u lu s ] ;
internal state. N [s e e d /m o d u lu s ]

)



Now that the implementation is finished, leave the P r iv a te  context.

End []

L C G R a n d o m 'P r iv a te '

W e  are now back in the $ C o n te x t
package context. (This code LCGRandom'
is not part of the package.)

Next, protect the functions that have been defined.

P r o te c t [L C G S e tS e e d , LCGRandom]

{L C G S etS eed , LCGRandom}

Finally, end the package with EndPackage.

E n d P a c k a g e []  ;

EndPackage restores the current context and the context search path to whatever they 
were before the call to BeginPackage. However, the context LCGRandom' is left at 
the front of the context path. This means that users can refer to the symbols that the 
package exports by their short names.

{ { C o n t e x t ,  $ C o n te x tP a th }

{ G l o b a l ' ,  {LC G R andom ', e x a m p le ' ,  G l o b a l ' ,  S y s te m '} )

?LC G Random '*

LCGRandom LC G S etS eed

Let’s test the package:

This generates 1000 L C G S etS eed  [4 4 4 6 2 9 0 ]  :
pseudorandom numbers t e s t  =  T a b le  [LCGRandom[] , { 1 0 0 0 } ] ;
between 0  and 1 . S h o r t  [ t e s t ]

{ 0 .7 9 8 3 0 7 ,  0 .1 5 2 0 4 3 ,  0 .3 8 8 0 2 3 ,  « 9 9 6 » ,  0 .4 5 5 0 6 2 }

The mean of these 1000 P lu s  @@ t e s t  /  L e n g th  [ t e s t ]
numbers is close to 1/ 2 . 0 .5 0 6 4 0 7

Everything works just as a ?LCGRandom
built-in function. LCGRandom[] g e n e r a te s  a u n i f o r m ly  d i s t r i b u t e d  random  

num ber i n  t h e  ra n g e  { 0 . , 1 . }  u s in g  a l i n e a r  
c o n g r u e n t ia l  g e n e r a t o r .

Users cannot modify the C le a r  [LCGRandom]
definitions of LCGRandom C l e a r : :w rsym : Sym bol LCGRandom i s  P r o t e c te d ,  and LCGSetSeed. J J

? m o d ulus

I n f o r m a t i o n : : n o t f o u n d : Sym bol m o d u lus  n o t  fo u n d .

The symbols in the LCGRan- ?m odulus  
d o m 'P r iv a te ' context are 
not accessible.



The full definition of the package’s functions can be viewed using the ? ? operator. If 
this is not desired, give these functions the attribute R eadProtected.

??LC G SetS eed

L C G S e tS e e d [x ] s e ts  t h e  LCG random  num ber g e n e r a t o r ' s 
seed  t o  t h e  in t e g e r  x .

A t t r ib u te s [L C G S e tS e e d ]  = { P r o te c t e d )

L C G S e tS e e d [L C G R a n d o m 'P riv a te ' x _ In t e g e r  / ;
I n e q u a l i t y [1 ,  L e s s E q u a l , L C G R a n d o m 'P r iv a te 's e e d , 

L e s s , L C G R a n d o m 'P r iv a te 'm o d u lu s ] ] :=
L C G R a n d o m 'P r iv a te 's e e d  = L C G R a n d o m 'P r iv a te 'x

The last thing to do, of course, is to put these definitions into a file called LCGRan- 
dom.m and place this file in a directory that Mathematica will search when it looks for 
packages.4 You don’t have to put the file in the standard Packages directory, but if you 
don’t, you have to tell Mathematica where to look for it. The search path for files is kept 
in the system variable $Path. You can modify this variable to make Mathematica look 
in other directories.

(These are Macintosh path- $ P a th

{ . ,  S a r t o r i u s : M a th e m a tic a  3 . 0 ,
S a r t o r i u s :M a th e m a tic a  3 , 0 : P a c k a g e s :A p p l ic a t io n s ,  
S a r t o r i u s :M a th e m a tic a  3 . 0 : P a c k a g e s : S ta n d a rd ,
S a r t o r i u s :M a th e m a tic a  3 . 0 : C o n f ig u r a t io n : K e r n e l , 
S a r t o r iu s : M a t h e m a t ic a \

3 . 0 : S y s t e m F i le s : G r a p h ic s : T e x tR e s o u r c e s )

The package can then be loaded using the command Needs ["LCGRandom'"] or 
Get ["LCGRandom' "]. The advantage of using Needs rather than Get is that Needs 
checks the system variable $Packages to ensure that the package has not already been 
loaded, and then adds the package name to $Packages. This is important since most 
packages are not designed to be loaded more than once in the same Mathematica ses
sion; doing so usually causes a barrage of error messages.

Both Needs and Get translate context names to filenames using the function Con- 
textToFilenam e. The translation is done in a way that is suitable for the particular 
operating system that is being used. For example, C ontextT oFile- 
Name [ " a a a 'b b b '"] returns the string "aaa/bbb.m " on a UNIX system; 
"aaaYbbb .m" on a DOS-based system; and "aaa:bbb .m" on a MacOS system. If you 
create a package whose context name is more than eight characters long for use on a 
DOS-based system, you may wish to add a new rule for ContextToEilename to do 
the translation correctly, e.g.,

U n p r o t e c t [ C o n te x t T o E i le n a m e ] ;
C o n te x tT o F i le n a m e [" v e r y lo n g n a m e '" ]  :=  " v e r y lo n g .m "

4. In version 3.0, you also can use the DumpSave command to save the definition of a 
package in a binary format. See Section 12.2.3, “Save and DumpSave,” for details.

Note that the private sym
bols print as long names, 
since the context LCGRan- 
dom'Private' is not on the 
context search path.



This definition should be placed in the package user’s init.m file so that it is available in 
every session. Alternatively, the user can load the package using this syntax:

The second argument tells Needs ["verylongname'" , "verylong.m"]
Needs the name of the file in 
which the requested context 
is defined.

Exercises
1. Create a package file for LCGRandom', set $Path appropriately, and verify that you 

can load the package using Needs. Note that if you have been following the devel
opment of the package in your own Mathematica session, you will need to restart 
the kernel to wipe out the existing definitions of the LCGRandom' context.

2. Write a package that extends the functionality of the built-in Dot function so that it 
always multiplies chains of matrices in the optimal order (see Section 6.4.2, “Appli
cation: Matrix-chain multiplication”). A bonus of wrapping this algorithm inside a 
package is that it prevents the G lobal' context from being polluted by all of the 
cached results created by the algorithm.

8.2.3 Using other packages
If a package depends on some other package, there are two ways to ensure that the other 
package is available at the time the package is loaded: normal import and hidden 
import.

To import packages in the normal way, add the context names of those packages to 
the BeginPackage call. For example, the following BeginPackage statement loads 
the context NeededPackage' (if necessary) and places it on the context path right 
after MyPackage':

BeginPackage["MyPackage'", "NeededPackage'"]

Now MyPackage' can use any symbols defined in NeededPackage'.

One possible drawback to this method is that it “pollutes” the context path with extra 
contexts. The user may stumble across a symbol that is defined in a subsidiary package, 
which she or he isn’t even aware has been loaded. This has the potential to cause some 
confusion.

To avoid this problem, the subsidiary contexts can be loaded, using Needs, after the 
call to BeginPackage; this is called hidden import [Maeder 91]. Now the package can 
still use all of the symbols defined in the other packages, but after the EndPackage 
statement is executed, the other packages will not appear on the context path (but they 
will appear in $Packages).



8.3 Stylistic Considerations
There are quite a few stylistic considerations to which you should pay heed when you 
write a package.

8.3.1 Naming conventions
The general naming convention for symbols used in Mathematica is that names should 
be capitalized English words or concatenations of such words. Names should be 
descriptive and fully spelled out. Abbreviations should not be used unless they are in 
widespread use (e.g., Det instead of D eterm inant).

Function names should be unique whenever possible; however, if you define a func
tion whose purpose is similar to a built-in function, its name should be similar to that of 
the built-in function. Avoid adding definitions to built-in functions unless absolutely 
necessary, as this may lead to unexpected results in some cases and may slow down the 
evaluation of a wide class of expressions. Also, try to avoid defining two different func
tions when a single function with an option would do.

Package filenames should be unique within the first eight characters in order to avoid 
problems on DOS-based file systems.

8.3.2 Export a minimal interface
As discussed earlier in this chapter, a package should encapsulate the details of its 
implementation inside of a private subcontext. Moreover, even the names of functions 
and symbols that are not of immediate utility to the user should be hidden; this avoids 
confusion on the user’s part. A good rule to follow is that only those symbols that have 

yp  usage messages should be visible outside of the package. Any auxiliary functions 
and/or temporary variables (such as modulus and seed in the LCGRandom' example) 
should be created inside of a private subcontext.

The package EscapingSymbols.m (MathSource item #0204-961-0022) can help you 
to identify symbols defined by a package that “escape” from it without usage messages.

N e e d s [" E s c a p in g S y m b o ls '" ,
" M a th S o u r c e : E n h a n c e m e n ts : L a n g u a g e :0 2 0 4 -9 6 1 ;
D e v e lo p e r  T o o ls  f o r  A :E s c a p in g S y m b o ls .m " ]

? E s c a p in g S y m b o ls

E s c a p in g S y m b o ls [e x p r ]  r e t u r n s  a  l i s t  o f  sym bols  
e s c a p in g  fro m  t h e  e x e c u t io n  o f  e x p r  ( i . e . ,  new  
sym b o ls  v i s i b l e  t o  t h e  u s e r  b u t  la c k in g  u sa g e  
m e s s a g e s ) .

The file exam ple. m contains a simple package that we will use to demonstrate the 
action of EscapingSymbols.



The syntax ! !file displays 
the contents of file with
out evaluating them.

Now the package is loaded.

! ! e x a m p le .m

B e g in P a c k a g e [" e x a m p le '" ] ;
g o o d : : u s a g e  = " I ’ m a  good s y m b o l" ;  
b ad  = " I ’ m a b ad  s y m b o l" ;
B e g i n [ " ' P r i v a t e ' " ] ;

i r r e l e v a n t  = " I  d o n ’ t  m a t t e r " ;  
End [] ;

E n d P a c k a g e [ ] :

E s c a p in g S y m b o ls  [ « e x a m p le  .m]

(b a d )

The symbol bad is flagged since it is visible but has no usage message. The symbol 
i r r e le v a n t  is exactly that, because it is in a private context that isn’t visible to the 
user.

8.3.3 Usage message conventions
Every usage message should begin with a syntax declaration. This is because some ver
sions of the front end have a command called Make Template that pastes generic argu
ments for a function into the notebook following the name of the function (see your 
User’s Guide for details). This is very handy for functions that take several arguments, 
the order of which is uncertain to the user. The template mechanism looks at only the 
beginning of a usage message for a template, hence the first thing in the usage message 
should be a usable template. Compare the following two examples:

This is a good usage mes- L C G S e tS e e d :: u s a g e  =  "L C G S etS eed  [x ]  s e ts  t h e  LCG
sage. random  num ber g e n e r a t o r ’ s seed  t o  t h e  in t e g e r  x . " ;

This is a bad usage message. L C G S etS eed : : u s a g e  =  "L C G S etS eed  i s  u sed  t o  s e t  t h e
s e e d  f o r  t h e  LCG random  num ber g e n e r a t o r .
L C G S e tS e e d [x ] s e ts  t h e  s e e d  t o  x . " ;

8.3.4 Diagnostic messages
Never use P r in t  to issue diagnostics; use Message instead. There are several good 
reasons for this, which we’ll discuss in detail in Section 9.1, “Diagnostic Messages.”

8.3.5 Package documentation
If you look inside any of the standard packages, you will see many comments at the 
beginning of the file that have the following general format:

( *  :Nam e: C a l c u l u s 'L i m i t '  * )

( *  :A u th o r :  V i c t o r  S . A d a m c h ik , Summer 1991  * )

( *  : Summ ary:



T h is  p ac k a g e  p r o v id e s  an  en h an cem en t t o  t h e  
b u i l t - i n  L i m i t .  I t  a l lo w s  one t o  f i n d  t h e  l i m i t s  o f  
e x p r e s s io n s  c o n t a in in g  e le m e n ts  o f  a  w id e  c la s s  o f  
e le m e n ta r y  and  s p e c ia l  f u n c t io n s .

*)
Comments with this special structure are called annotations. The words or phrases sur
rounded by colons are called keywords. Typical keywords that you might find in a stan
dard package are Name (or Context), Author, V ersion, H isto ry , L im ita tio n s, 
and Warnings. Standard keywords are described in [WRI 93d].

Keywords and annotations can be extracted from a package using the A nnotation 
function defined in the standard package U t i l i t i e s '  P ackage '. All packages should 
include annotations so that users can get information about them by using these utili
ties. For example:

N e e d s [ " U t i l i t i e s 'P a c k a g e ' " ]

F in d P a c k a g e s [$ P a th ,  " * L i m i t * " ]

{ { } ,  { } ,  { } ,  { C a l c u l u s 'L i m i t ' ,
N u m e r ic a lM a t h 'N L im i t ' } ,  { } ,  { ) ]

A n n o t a t i o n [ " C a l c u l u s 'L i m i t ' " ]

{Nam e, A u th o r ,  M a th e m a tic a  V e r s io n ,  C o n te x t .
K e y w o rd s , C o p y r ig h t ,  Summ ary, R e q u ire m e n ts ,
L i m i t a t i o n s }

A n n o t a t i o n [ " C a l c u l u s 'L i m i t ' " .  " A u th o r" ]  / /  In p u tF o rm

{ " ( *  : A u th o r :  V i c t o r  S . A d a m c h ik , Summer 1991  * ) " }

Like the other standard packages, U t i l i t i e s 'P a c k a g e ' is documented in 
[WRI 93b].

8.4 Advanced Topic: Shadowing
Shadowing occurs when more than one context on the context search path contains a 
symbol of a given name. The most common cause of shadowing, which will be illus
trated in Section 8.4.1, is attempting to use a symbol from a package before loading that 
package.

Several techniques and tools exist for preventing or at least minimizing the shadow
ing problem. Some of these are aimed at package developers (Sections 8.4.2 and 8.4.3). 
In Section 8.4.4 we demonstrate a package called Unshadow.m, available from Math- 
Source, that provides a tool for removing symbols that shadow other symbols. Finally, 
in Section 8.4.5 we develop a new package that avoids shadowing automatically.

This function searches a 
specified path (or list of 
paths) for packages match
ing a search string.

This finds all of the anno- 
tative keywords in the 
package.



Digression: CleanSlate

Since we will be doing a lot of experimentation with context creation, it will be con
venient to have a mechanism for removing entire contexts from a kernel session with
out having to quit and restart the kernel. The C leanS la te  package [Gayley93a] 

yp  provides this functionality. If you intend to work through the examples in the remainder 
of this chapter, you are advised to load this package. Otherwise, you will find it neces
sary to quit and restart the kernel several times in order to wipe out certain contexts.

The C leanS late  function is able to remove only those symbols and contexts that 
are created after its package is loaded. Therefore, we terminate the current kernel ses
sion at this point; the following command is the first command in a new kernel session.

N e e d s [ " C le a n S la t e '" ,
"M a th S o u rc e :E n h a n c e m e n ts : S y s te m :0 2 0 4 -3 1 0 :
C le a n S la t e  P a c k a g e : C le a n S l a t e . m "]

’ C le a n S la t e

C l e a n S l a t e [] p u rg e s  a l l  sym b o ls  and  t h e i r  v a lu e s  i n  
a l l  c o n te x ts  t h a t  h a v e  b e e n  added  t o  t h e  c o n te x t  
s e a rc h  p a th  ( $ C o n t e x t P a t h ) , s in c e  t h e  C le a n S la t e  
p a c k a g e  was re a d  i n .  T h is  in c lu d e s  u s e r - d e f in e d  
sym b o ls  ( i n  t h e  G lo b a l '  c o n t e x t )  as  w e l l  as any  
p a c k a g e s  t h a t  may h a v e  b e e n  re a d  i n .  I t  a ls o  
rem oves  m o s t, b u t  p o s s ib ly  n o t  a l l ,  o f  t h e  
a d d i t i o n a l  r u le s  f o r  S ys tem  sym b o ls  t h a t  th e s e  
p a c k a g e s  may h a v e  d e f in e d .  I t  a ls o  c le a r s  t h e  I n [ ]  
and  O u t [ ]  v a lu e s ,  and r e s e t s  t h e  $ L in e  n u m b er, so 
new  in p u t  b e g in s  as I n [ l ] .
C l e a n S l a t e [ " C o n t e x t l ' " , " C o n t e x t 2 '" ] p u rg e s  o n ly  t h e  
l i s t e d  c o n t e x t s .

This option suppresses cer- S e tO p t io n s  [ C le a n S la t e ,  V e r b o s e -> F a ls e ]
tain status information.

The author highly recommends the C leanS la te  package. Remember, C leanS late  
can remove only those symbols that are created after C leanS late  is loaded. Therefore, 
it is best to insert a command to load the package in your init.m file, where it will be 
executed automatically each time the kernel starts up.

8.4.1 The shadowing problem
Every Mathematica user has, at one time or another, made a mistake like the following: 

A package symbol is Show [P o ly h e d r o n  [D o d e c a h e d ro n ] ]

a e ^ fo a d e d 0̂1 0̂ 1 '18 ^aC^" S h o w ::g ty p e :  P o ly h e d ro n  i s  n o t  a t y p e  o f  g r a p h ic s .
S h o w [P o ly h e d ro n [D o d e c a h e d ro n ] ]



N e e d s [ " G r a p h ic s 'P o ly h e d r a '" ]

P o ly h e d ro n : :s h d w :
Sym bol P o ly h e d ro n  a p p e a rs  i n  m u l t i p l e  c o n te x ts  

{ G r a p h ic s 'P o ly h e d r a ' ,  G l o b a l ' ) ;  d e f i n i t i o n s  i n  
c o n t e x t  G r a p h ic s 'P o ly h e d r a '
may shadow  o r  b e  shadow ed b y  o t h e r  d e f i n i t i o n s .

D o d e c a h e d ro n ::s h d w :
Sym bol D o d e c a h e d ro n  a p p e a rs  i n  m u l t i p l e  c o n te x ts  

{ G r a p h ic s 'P o ly h e d r a ' ,  G l o b a l ' } ;  d e f i n i t i o n s  in  
c o n t e x t  G r a p h ic s 'P o ly h e d r a '
may shadow  o r  b e  shadow ed b y  o t h e r  d e f i n i t i o n s .

S h o w [P o ly h e d ro n [D o d e c a h e d ro n ]]

S h o w ::g ty p e :  P o ly h e d ro n  i s  n o t  a  t y p e  o f  g r a p h ic s .

S h o w [P o ly h e d ro n [D o d e c a h e d ro n ]]

This problem, which is called shadowing, results from the fact that the initial use of the 
symbol Polyhedron (and Dodecahedron) created a symbol of that name in the Glo
b a l '  context.

? * ' P o ly h e d ro n

P o ly h e d ro n
G r a p h ic s 'P o ly h e d r a 'P o ly h e d r o n

Since the G lobal' context is the current context, it is searched before Graph
ic s 'P o ly h e d ra ' , so the package’s definition of Polyhedron is not found.

Experienced users know that to remedy this situation, all that is necessary is to elim
inate the offending symbols by using the Remove function:

R e m o v e [P o ly h e d ro n , D o d e c a h e d ro n ]

S h o w [P o ly h e d r o n [D o d e c a h e d r o n ]]

-G r a p h ic s 3 D -

Shadowing can be a major annoyance if very many symbols afe involved. Further
more, judging from the frequency with which questions about this topic appear in the

The package is loaded and 
strange warning messages 
appear.

It appears that Mathem atica  
still doesn't know about 
these symbols.



Mathematica Internet discussion group (com p.soft-sys.m ath .m athem atica), 
shadowing is a common and frustrating problem for inexperienced Mathematica users.

"Clean house" before con- C le a n S la t e  []  ;
tinuing.

8.4.2 Designing packages to prevent shadowing
Package designers can spare users of their packages the frustration of shadowing by 
using one of the following tricks. Unfortunately, each of these techniques has draw
backs as well.

Roman Maeder [Maeder 91] suggests including the G lobal' context in the B egin- 
Package command:

B e g in P a c k a g e [" M y P a c k a g e '" ,  " G l o b a l '"  . . ]

This adds the G lobal' context to the context search path at the time the package is 
loaded. Any symbol created by the package that does not already exist in the G lobal' 
context will be created in the MyPackage' context. If such a symbol already exists in 
the G lobal' context (because a user tried to use it too soon), then that symbol — in the 
G lo b al' context — will be redefined by the package. Hence, there will be only one 
symbol with the given name, and no shadowing will occur.

Of course, Maeder’s trick is a calculated risk, since the user may have deliberately 
associated a definition with one of the conflicting symbol names, and the package might 
wipe out that definition. To get around this problem, Nancy Blachman [Blachman 92] 
recommends starting a package with the following code:

B e g in P a c k a g e [" M y P a c k a g e '" ]
E n d P a c k a g e []

The purpose of this device is to prepend MyPackage' to the context search path. Now 
continue with the rest of the package; all symbols will be created in the context in 
which Needs was called, which probably is G lo b a l '. (Be sure to declare the pack
age’s private subcontext as M yPackage'P rivate ' rather than just 'P r iv a t e ' ,  to 
ensure that the package’s private symbols do not end up in a context called Glo
b a l 'P r iv a te '. )

It may seem as though this method has the same potential for problems as Maeder’s. 
The difference is that if a sophisticated user wishes to create the package’s symbols in a 
different context — which cannot be done using Maeder’s method — he or she can 
always do this:

B e g in P a c k a g e [" N e w C o n te x t '" ]
N e e d s [" M y P a c k a g e '" ]
E n d P a c k a g e []



This prepends NewContext' to the context search path and causes all nonprivate sym
bols defined by MyPackage to be created in that context. Thus, the user’s definitions of 
any conflicting symbols will be preserved (although they will still shadow the defini
tions from the package.)

Exercise
1. Rewrite the LCGRandom' package using each of the techniques of this section. Exe

cute the commands in the package one at a time, inspecting the values of $Context 
and $ContextPath each time a context-related command is executed. Note that 
you will have to start a fresh kernel before each reload of the package (or use the 
C leanS la te  function).

8.4.3 Predeclaring package symbols
Every standard package directory (e.g., Graphics) contains a file called Master.m, 
which contains declarations for each package contained in that directory (e.g., Graph- 
ic s 'G ra p h ic s ',  G raphics 'G raphics3D ', etc.). These declarations have the fol
lowing general form:

D e c la r e P a c k a g e [ " G r a p h ic s ' P o ly h e d r a '" ,
{ " P o ly h e d r o n " ,  " D o d e c a h e d r o n " } ] ;

This declaration doesn’t actually load the G rap h ics 'P o ly h ed ra ' package; it simply 
tells the kernel that the symbols Polyhedron and Dodecahedron can be found there. 
The symbols are created in the package context and given the Stub attribute:

?P o ly h e d ro n

G r a p h ic s 'P o ly h e d r a 'P o ly h e d r o n  

A t t r ib u t e s [ P o ly h e d r o n ]  = (S tu b )

P o ly h e d ro n  = ""

The Stub attribute signifies that the package that defines a symbol has not yet been 
loaded. Upon the first use of any symbol having this attribute, the kernel will automati
cally load the package that defines that symbol.

Using the symbol P o lyh e - P o ly h e d ro n
dron causes the G raph- P o ly h e d ro n
i c s '  P o ly h e d ra ' package
to load. t , ,?P o ly h e d ro n

P o ly h e d ro n [n a m e ] g iv e s  a  G ra p h ic s 3 D  o b je c t
r e p r e s e n t in g  t h e  s p e c i f i e d  s o l i d  c e n te r e d  a t  t h e  
o r i g i n  and w i t h  u n i t  d is t a n c e  t o  t h e  m id p o in ts  o f  
t h e  e d g e s . P o ly h e d ro n [n a m e , c e n t e r ,  s i z e ]  u se s  t h e  
g iv e n  c e n t e r  and  s i z e .  The p o s s ib le  nam es a r e  i n  
t h e  l i s t  P o ly h e d r a .

If there are certain standard packages that you use on occasion but which would 
occupy too much memory if they were all loaded simultaneously, you can avoid any



possibility of shadowing problems with those packages by loading their master pack
ages at the beginning of each Mathematica session. You can automate this procedure by 
putting the statements to load the master packages into your init.m file; see the docu
mentation for your version of Mathematica for the location of this file.

If you are a Mathematica developer and you are writing a particularly large package 
that uses a lot of memory, or a set of interrelated packages, you may want to create a 
master package as a convenience for your users. A master package should be structured 
as follows, with one D eclarePackage statement for each component package:

B e g in P a c k a g e [" M y P a c k a g e 'M a s te r '" ] ;
E n d P a c k a g e [ ] ;
D e c la r e P a c k a g e [ " P a c k a g e l" , { s y m b o l l ,  s y m b o l2 , . . . } ] ;
D e c la r e P a c k a g e [" P a c k a g e 2 " , {s y m b o l3 , s y m b o l4 , . . . } ] ;

This and other techniques for organizing a large set of interrelated packages are 
exemplified by the standard S t a t i s t i c s '  packages.

Of course, the master package can prevent shadowing of package symbols only if it 
has been loaded beforehand! Users who have shadowing problems because they forget 
to load a standard package often forget to load the master package as well.

Exercise

1. Write and test a master package for the LCGRandom' package.

8.4.4 Removing shadows after the fact
Shadowing happens would make a perfect bumper sticker for a Mathematica user. The 
fact is, the vast majority of packages — standard packages included — do not take any 
of the steps described in Section 8.4.2 for avoiding the shadowing problem. Each of the 
standard package directories does provide a master package; however, it’s often the 
case that users forget to load them.

In response to this situation, Ulrich Jentschura has written a package called 
Unshadow.m (MathSource item #0204-815), which defines a function called Unshadow 
that seeks out and destroys all global symbols that are shadowing other symbols. This is 
especially useful in cases where the user has shadowed so many symbols that the error 
message mechanism suppresses some of the sym :: shdw messages! Here is a demon
stration of using Unshadow to rectify the situation illustrated in Section 8.4.1.

First, remove the Graph- C le a n S la t e  [ " G r a p h ic s 'P o ly h e d r a '" ]  ;
ic s 'P o ly h e d r a ' context 
from the current session.

Now  make the same mis- g =  P o ly h e d ro n  [D o d e c a h e d ro n ] ;
take as before. S how [g]

S h o w ::g ty p e :  P o ly h e d ro n  i s  n o t  a  t y p e  o f  g r a p h ic s .

S h o w [P o ly h e d ro n [D o d e c a h e d ro n ]]



The full text of these mes- N eeds [ " G r a p h ic s ' P o ly h e d r a '" ]
sages has been edited out Pol y h e d ro n : : shdw: . . .
for brevity.

D o d e c a h e d ro n :: shdw: . . .

Load the Unshadow pack- N eeds ["U n sh ad o w ' " , " M a th S o u rc e :E n h a n c e m e n ts : S ys tem : \
age. 0 2 0 4 -8 1 5 ;  Unshadow  P a c k a g e :U n s h a d o w .m "]

Unshadow  P a c k a g e , V e r s io n  o f  A p r i l ,  1993
F o r  in f o r m a t io n ,  t y p e  ?Unshadow

Unshadow returns a list of Unshadow  []
the symbols that have been f o l lo w in g  sym b o ls  a p p e a re d  b o th  i n  t h e  g lo b a l  and
removed. i n  a n o th e r  con t e x t .

T h e y  h a v e  b e e n  rem oved  i n  t h e  g lo b a l  c o n t e x t  
t o  p r e v e n t  s h a d o w in g .

{D o d e c a h e d ro n , P o ly h e d ro n }

Indeed, the shadowing sym- C o n te x t  /@ {P o ly h e d r o n ,  D o d e c a h e d ro n }

bols are gone. { G r a p h ic s 'P o ly h e d r a ' , G r a p h ic s 'P o ly h e d r a '}

8.4.5 "Smart" shadow removal
Unshadow does not make any attempt to distinguish between symbols that the user 
might or might not need. One obvious way to do this would be simply to return the list 
of shadowing symbols without removing them; the user could then verify that none of 
the symbols are important and execute the command Remove @@ %. Alternatively, 
Unshadow could prompt the user for confirmation (using the Inpu t function) before 
removing each symbol. Better yet, it could give the user the best of both worlds by pro
viding an option that controls its behavior in this regard.

On the other hand, there is something to be said for making the process as automatic 
as possible. A more sophisticated approach that subscribes to this philosophy would be 
to determine whether or not the shadowing symbol has any values; if it does not, then it 
probably is not important and can be removed automatically. This is the approach that 
we shall take next. Our efforts will culminate in a new package, AntiShadow, that 
removes shadows during the package-loading process, taking care never to remove a 
symbol that has any values.

Determining if a symbol has values

A symbol can have many different kinds of values. For example, this assignment 
creates an ownvalue:

t e s t  :=  1 / 0

OwnValues [sj'm] lists the O w nV alu es  [ t e s t ]
ownvalue of a symbol.

{ H o l d P a t t e r n [ t e s t ]  :>



There are five other kinds of rules (described in Table 7-1, “The Six Types of Rules 
for a Symbol,” on page 186) that can be attached to a symbol: downvalues, upvalues, 
subvalues, format values, and Nvalues. In addition to these, we will check for the exist
ence of attributes, options, and messages.

If a symbol has the R eadProtected attribute, OwnValues and friends will cause an 
error message to be printed. Therefore, we must check for attributes before checking 
any of the other types of values. Furthermore, O ptions does not hold its argument; 
therefore, we can check for options only after determining that the symbol has no rule 
values. Here is a function that does all of this:

S e t A t t r i b u t e s [ h a s v a lu e s , H o l d F i r s t ] ;
h a s v a lu e s [s _ S y m b o l]  :=

A t t r i b u t e s [ s ]  = 1 =  { }
O w n V a lu e s [s ] = ! =  { }
U p v a lu e s [s ]  = ! =  { }  |
D o w n V a lu e s [s ] = ! =  { }
S u b V a lu e s [s ]  = ! =  { }  |
N V a lu e s [s ]  = ! =  { }  |
F o r m a tV a lu e s [s ]  = ! =  { }  |
O p t io n s [s ]  = ! =  { }  |
M e s s a g e s [s ] = ! =  { }

The hasvalues function is given the H o ld F irs t attribute so that its argument will 
not evaluate. Here is an example:

h a s v a lu e s [ t e s t ]

T ru e

The Unshadow package could easily be enhanced to remove only those symbols for 
which hasvalues returns F alse . Experimentation with the Unshadow package is left 
to the exercises. Rather than modify that package, we will develop an entirely new 
package called AntiShadow.

Like the Unshadow package, the AntiShadow package will be working with sym
bol names in string form, for reasons that will become clear later. Unfortunately, Own
Values and the like do not accept strings as arguments.

O w n V a lu e s [" te s t " ]

O w n V a lu e s : : sym:
A rg u m en t t e s t  a t  p o s i t i o n  1 

i s  e x p e c te d  t o  b e  a s y m b o l.

O w n V a lu e s [ te s t ]

We could convert the string to an expression using ToExpression, but that would 
result in an evaluation of the symbol.



T o E x p r e s s io n [ " t e s t " ]

1

P o w e r : : in f y :  I n f i n i t e  e x p r e s s io n  -  e n c o u n te r e d .
0

C o m p le x ln f in i t y

The solution to this problem is to use ToHeldExpression to convert the string to 
an expression and wrap Hold around it at the same time:

T o H e ld E x p r e s s io n [ " t e s t " ]

H o ld  [ t e s t ]

The ownvalues of the symbol can then be found by using Apply to replace the head 
Hold with the head OwnValues.

O w nV alues  @@ %

( H o l d P a t t e r n [ t e s t ]  :>

The h asvalues function can be made to work on symbol names by using the exact 
same technique.

h a s v a lu e s  @@ T o H e ld E x p r e s s io n [ " t e s t " ]

T ru e

There still remains another, more subtle problem. Even if a symbol has no values, 
removing it can have adverse consequences on other symbols, such as the symbol g 
defined in the last section:

g still is a function of the g
removed symbols. Removed [P o ly h e d r o n ]  [Removed [D o d e ca h e d ro n ] ]

The expressions of the form Removed [name] aren’t normal expressions; in fact, 
they are a pathological output format for symbols that have been marked internally for 
removal:

F u l lF o r m [  g [ [ 1 ] ]  ]

R e m o v e d ["D o d e c a h e d ro n " ]

H ead  [%]

Sym bol

This means that the pattern Removed [x_] will not match the removed symbols.

g / .  R e m o v e d [x _ ] :>  T o E x p r e s s io n [x ]

R e m o v e d [P o ly h e d ro n ][R e m o v e d [D o d e c a h e d ro n ]]

But we can extract the removed symbols from g using the pattern _Symbol, and then 
we can use the extracted symbols as the left-hand sides of replacement rules:



C a s e s [g , _ S y m b o l, I n f i n i t y ,  H eads ->  T ru e ]

(R e m o v e d [P o ly h e d ro n ] , R e m o v e d [D o d e c a h e d ro n ]}

T h r e a d [ R u le [%, { P o ly h e d r o n ,  D o d e c a h e d ro n } ]]

(R e m o v e d [P o ly h e d ro n ] ->  P o ly h e d ro n ,
R em o v e d [D o d e c a h e d ro n ] - >  D o d e c a h e d ro n }

g / •  %

-G r a p h ic s 3 D -

It is even possible to prevent the removal of symbols upon which other symbols 
depend by using the dependson function developed in Section 7.3.7. dependson 
could be applied to every symbol in the G lobal' context to create a list of all symbols 
upon which any global symbol depends, and the resulting symbols could be eliminated 
from the list of candidates for removal. The drawback of this approach is that, in a 
Mathematica session with a lot of symbols, it could slow down the shadow removal 
process quite dramatically. We will not pursue this idea any further here; it is left as an 
exercise for the interested reader.

The next call to C leanS la te  removes only the G rap h ics 'P o ly h ed ra ' context 
(because we still need the definition of hasvalues).

C le a n S la t e [ " G r a p h ic s 'P o ly h e d r a '" ] ;

Avoiding shadowing dynamically

To make the process of eliminating shadowing symbols as automatic as possible, we 
would like to remove the offending symbols without requiring any action on the part of 
the user. The observation that makes this possible is that, whenever a symbol is defined 
that might shadow some other symbol, the message G enera l: : shdw is generated:

G e n e r a l : : shdw

Sym bol ' 1 '  a p p e a rs  i n  m u l t ip l e  c o n te x ts  ' 2 ' ; \  
d e f i n i t i o n s  i n  c o n t e x t  ' 3 '  may shadow  o r  b e \  
shadow ed b y  o t h e r  d e f i n i t i o n s .

Therefore, our next course of action will be to intercept calls to Mes
sage [ sym_:: shdw, ___].

From the text of the G eneral: :shdw message we deduce that Message will be 
called with four arguments: the name of the message plus the three string substitution 
arguments. The following rule for Message allows us to see the full form of each of 
these arguments:

U n p r o t e c t [ M e s s a g e ] ;
M e s s a g e [a rg O _ , a r g l _ ,  a r g 2 _ ,  a rg 3 _ ]  :=  (

P r i n t [ F u l l F o r m [ # ] ] &  /@ {a rg O , a r g l ,  a r g 2 ,  a r g 3 } ;  
P r i n t [ " " ]

)



Next, we recreate the problematic global symbols and load the package.

Show[Polyhedron[Dodecahedron]] ;
Show::gtype: Polyhedron is not a type of graphics.
Needs["Graphics'Polyhedra'"]
MessageName[Polyhedron, "shdw"]
HoldForm["Polyhedron"]
HoldForm[List["Graphics'Polyhedra'", "Global'"]]
HoldForm["Graphics'Polyhedra' "]
MessageName[Dodecahedron, "shdw"]
HoldForm["Dodecahedron"]
HoldForm[List["Graphics'Polyhedra'", "Global'"]] 
HoldForm["Graphics'Polyhedra'"]

The first argument is a MessageName object. Since MessageName has the Hold- 
F i r s t  attribute, the symbol inside of it does not evaluate. The rest of the arguments, 
which are substituted for ' 1 ',  '  2 ',  etc., are strings wrapped in HoldForm. Let’s refine 
our definition for Message to use destructuring to extract the symbol, symbol name, 
and context names. We will, of course, keep the symbol itself wrapped in HoldForm to 
prevent its evaluation.

Clear[Message]
Message[sym_::shdw, HoldForm[symName_],

HoldForm[cxNames_], HoldForm[newcxName_]] :=
( Print["sym=", HoldForm[sym]];

Print["symName=", InputForm[symName] ] ;
Print["cxNames=". InputForm[cxNames] ]:
Print["newcxName=", InputForm[newcxName] , "\n"];

)

CleanSlate["Graphics'Polyhedra'"];
Needs["Graphics'Polyhedra'"]
sym=Polyhedron 
symName="Polyhedron"
cxNames=("Graphics'Polyhedra'", "Global1"} 
newcxName="Gr aphi cs'Polyhedra'"

sym=Dodecahedron
symName="Dodecahedron"
cxNames={"Graphics'Polyhedra'", "Global'"} 
newcxName="Graphics'Polyhedra'"

One might think that we could use hasvalues  [sym] to check if the shadowing 
symbol has any definitions in the G lo b a l' context. However, this will not work, 
because at the time that h asv a lu es  is called, the current context will be the new pack
age’s context, not G lobal' .  Instead, we must construct the long name "G lobal' " <> 
symName explicitly and use h asv a lu es  @@ ToHeldExpression [#] &on it.



We also can use the symName argument to generate our own warning messages to 
the user whenever we remove a symbol to avoid a shadow. Here is the text of the mes
sage that will be generated:

General::noshdw =
"Warning: the symbol '1' has been removed from 
the global context to prevent shadowing.":

Here, then, is the definition of Message that will do the trick.

Clear[Message]
Message[sym_::shdw, HoldForm[symName_],

HoldForm[cxNames_], HoldForm[newcxName_]] /; 
MemberQ[cxNames, "Global'"] &&
!hasvalues@@ToHeldExpression["Global' "OsymName] : = 

With[{globalsym = "Global'"OsymName} ,
Message[sym::noshdw, globalsym] ;
Remove[globalsym]

]

If G lobal' is one of the contexts containing the symbol named symName (Mem- 
berQ[cxNames, "G lo b a l'" ]) , and Global'symName has no values ( lh a sv a l-  
ues @@ ToHeldExpression ["G lo b a l'"  <> symName]), the warning message is 
printed and G lobal' symName is removed.

Here is a demonstration. We create the symbols Polyhedron and Dodecahedron 
in the G lo b a l' context, and we give the latter a value.

Polyhedron[Dodecahedron];
Dodecahedron = "I have a value!";

Our rule intercepts the call CleanSlate ["Graphics'Polyhedra'"] ;
to Message [Polyhedron: : Needs ["Graphics' Polyhedra' "]

Polyhedron::noshdw:
Warning: the symbol Global'Polyhedron

has been removed from the global context to 
prevent shadowing.

Dodecahedron::shdw:
Warning: Symbol Dodecahedron 

appears in multiple contexts
{Graphics'Polyhedra', Global'}; definitions in 
context Graphics'Polyhedra'
may shadow or be shadowed by other definitions, 

G lobal' Polyhedron has been removed automatically.

? *'Polyhedron
Polyhedron[name] gives a Graphics3D object

representing the specified solid centered at the 
origin and with unit distance to the midpoints of 
the edges. Polyhedron[name, center, size] uses the 
given center and size. The possible names are in 
the list Polyhedra.

shdw].



On the other hand, G lobal'D odecahedron has not been removed, since the existence 
of values for it implies that removing it might not be what the user wants. In the given 
scenario, it’s up to the user to decide whether or not to remove G lobal'D odecahe
dron.

? *'Dodecahedron
Dodecahedron
Graphics'Polyhedra'Dodecahedron

Now that we’re satisfied with the new behavior of Message, we should reprotect it.

Protect[Message];

You will use the definitions developed in this section in one of the exercises to con
struct the AntiShadow package. Since the new rule for Message can perform its func
tion only if it already exists at the time that a package is loaded, AntiShadow will be 
most effective if it is loaded automatically at the beginning of every Mathematica ses
sion by init.m.

Exercises
1. Create a package to encapsulate the definitions developed in this section. Note that 

the package doesn’t export any new symbols. Nevertheless, you should use Begin
Package and EndPackage so that the package name appears in $Packages.

2. There’s a subtle point about the new rule for Message: If the user ever deliberately 
creates a symbol in the G lobal' context that would shadow a symbol in some other 
context, she or he won’t be allowed to!

Global'GreatStellatedDodecahedron
GreatStellatedDodecahedron::noshdw:

Warning: the symbol 
Global'GreatStellatedDodecahedron 
has been removed from the global context to 
prevent shadowing.

Removed[GreatStellatedDodecahedron]

The return value is a reference to the symbol just created and subsequently 
removed. This is either a bug or a feature, depending on one’s point of view. If you 
take the former view, it is quite easy to fix: Simply add another condition to the new 
rule for Message that checks to see if newcxName is not equal to "G lobal'" .  
More generally, delete newcxName from the list of contexts cxNames in which the 
symbol appears; if the result still contains the string " G lo b a l '", then it’s okay to 
go ahead and remove Global' sym. Implement and test this bug-fix.

3. Obtain the package Unshadow.m and implement some of the suggested improve
ments.



4. (Nontrivial project!) To be even more cautious about which symbols are removed, 
you could check to see that not only does a symbol have no values, but that in addi
tion no other symbol depends upon this symbol.
The rule for Message will need to check the values of every symbol in the global 
context for occurrences of sym. (You can get a list of the names of all global sym
bols using Names [G lobal' *].) You will want to use the dependson function that 
we developed in Section 7.3.7 as a starting point. Your rule can stop checking as 
soon as it finds any global symbol that depends on the symbol sym.

8.5 Additional Resources

8.5.1 Packages about packages
A skeleton package that you can fill in with your own code is in the file Skeleton.m, 
located in the Programming Examples subdirectory of the main Packages directory (file 
and directory names may vary on different platforms).

The collection of files entitled “Developer Tools for Applications Package Testing” 
(MathSource item #0204-961) contains documentation and packages that deal with the 
design and testing of other packages. This collection contains the package Escaping- 
Symbols.m (discussed in Section 8.3.2), among other things.

8.5.2 Publications
[Maeder 91] contains a lucid discussion of contexts and packages.

Most of the information in Section 8.3 has been adapted from [WRI 93d] and 
[Gayley 94d], each of which contains many useful coding tricks and package style 
guidelines. Both are available from MathSource and are highly recommended. 
[WRI 93d] is one of the components of WRI’s “Developer Tools for Applications Pack
age Testing” (see above).

Packages also can be distributed as notebook files; style guidelines for these types of 
packages can be found in [WRI 93d], and portability issues are discussed in 
[Novak 94], The Factorization.ma and DependencyAnalysis.ma packages on the sup
plementary diskette are written in this format. See Section 7.3.7, “Application: Depen
dency analysis,” and Section 9.6, “Application: Defining a New Data Type,” for 
descriptions of these packages.



9
Details, Details

When you create a quick-and-dirty function for your own immediate use, it doesn’t 
really matter how you write it. On the other hand, if you write a function that is going to 
be used by other people, it should behave as much like a built-in function as possible. 
This chapter covers a potpourri of implementation techniques that are not widely 
known or used outside of the built-in functions and standard packages.

Section 9.1 discusses the proper use of diagnostic messages, and why it’s a good idea 
to use the Message function for this purpose. Section 9.2 covers some advanced tech
niques for working with options. Section 9.3 explains the much-misunderstood numeri
cal evaluation mechanisms of Mathematica and how to control them. Section 9.4 shows 
how to change the output formatting of expressions by attaching format values to sym
bols. Section 9.5 points out recommended precautions to take when you make defini
tions that affect the global state of a Mathematica session. Finally, Section 9.6 unifies a 
number of the techniques presented in this and earlier chapters with a case study.

This chapter is concerned mainly with minutiae. “Big picture” style guidelines, e.g., 
for entire packages, were discussed in Section 8.3.

9.1 Diagnostic Messages
Diagnostics should be generated using Message, not P r in t.  In a nutshell, here is how 
the Message mechanism is used:

Define a message of the foo::bar = "This is a message with parameters '1' and
form symbol:: tag. ' 2 ' . " ;

Note that Message returns Message [foo:: bar, "this", "that"]
Null. foo::bar: This is a message with parameters this and

that.



(Usage messages, and the issues specific to them, were discussed in Sections 8.3.2 
and 8.3.3.)

9.1.1 Why use Message?
You can’t pass a string as the first argument to the Message function — you must take 
the extra step of defining a message of the form sym bol:: ta g  and passing that object 
instead. Although this seems like unnecessary work, there are at least five good reasons 
for going to the trouble.

First of all, from a code maintenance standpoint, it is easier to find all of the mes
sages that can be generated by a package if they are declared all in one place, as 
opposed to having strings scattered throughout the code of the entire package. Further
more, users can get a list of all messages associated with a symbol by using Mes
sages [symbol].

Messages[foo]
{HoldPattern[foo::bar] :>

This is a message with parameters '1' and "2',}

Second, the Message mechanism allows a user to enable or suppress messages on an 
individual basis using On [symbol: : ta g ] and Off [symbol: : ta g ] .

Off[foo::bar];
Message[foo::bar, "ain’t gonna", "happen"]

On[foo::bar];
Message[foo::bar, "I’m", "baaaack!"]
foo::bar: This is a message with parameters I’m and 

baaaack!.

The third reason to use the Message mechanism is that the system-defined variable 
$Messages contains a list of output streams (Section 12.3, “Low-Level Output”) to 
which messages are written. (The default value of this variable is the list { " s td o u t"  }.) 
The user can thus redirect all Message output by modifying this variable. For example, 
messages could be echoed to a file like this:

W e  use B lock to alter the m s g lo g  =  O p e n W rite  [" m s g lo g " ]  ;
value of $Messages tempo- B lo c k  [ { {M e s s a g e s  =  Append [ {M e s s a g e s , m s g lo g ] } ,

Message[foo::bar, "echoed to", "file msglog"];
Close[msglog];
foo::bar: This is a message with parameters echoed to 

and file msglog.
! !  f i l e  prints the contents ! Im s g lo g
of a file to the screen. -  , „  . . . , , ,foo::bar: This is a message with parameters echoed to

and file msgdemo.



Fourth, the user can control message parameter formatting by assigning a function to 
the global variable $M essagePrePrint.

M e s s a g e [ f o o : : b a r , R a n g e [ 1 0 0 0 ] ,  " t h a t  w a s n ’ t  so b a d " ]

f o o : : b a r :  T h is  i s  a  m essage  w i t h  p a r a m e te rs

The default for $Message- 
P r e P r in t  is S hort.

Here, message parameters 
are printed in TeXForm.

( 1 ,  2 ,  3 ,  4 ,  5 ,  6 , 7 ,  « 9 9 0 » , 9 9 8 , 9 9 9 , 1 0 0 0 )  
and t h a t  w a s n ’ t  so b a d .

B lo c k [ { $ M e s s a g e P r e P r in t  =  T e X F o rm },
M e s s a g e [ fo o : : b a r , a A2 / b A2 ,  S i n [ t h e t a ] ]

]
f o o : : b a r :  T h is  i s  a  m essage w i t h  p a r a m e te rs

( { { a A2 ) } \ o v e r  U b A2 } ) )  and \ s i n  ( \ t h e t a  ) .

Fifth, message generation can be detected, allowing for enhanced diagnostics or 
error recovery. Check [expr, fa i l e x p r ] returns expr  if no messages are generated 
during the execution of expr, otherwise it returns fa i le x p r .  (Additional arguments to 
Check can be used to give the names of specific messages to intercept.)

This code returns the sym
bol $ F a ile d  if a message is 
generated.

In this instance the integral 
is evaluated successfully.

In this instance the integral 
blows up. Since a message 
is generated, Check returns 
its second argument.

e x a m p le [ fu n c _ ]  :=
C h e c k [ In t e g r a t e [ f u n c ,  { x ,  1 ,  I n f i n i t y } ] ,  $ F a i le d ]

e x a m p le [ l / x A2 ] 

1

e x a m p le [ 1 / x ]

I n t e g r a t e : : i d i v :  
1

I n t e g r a l  o f  — d oes  n o t  c o n v e rg e  on { 1 ,  I n f i n i t y ] ,  
x

$ F a i le d

A real program might attempt to take some sort of corrective action that depends 
upon the message that was generated. The global variable $M essageList contains a 
list of all messages generated during the current evaluation.

Each message in $Message- 
L is t  is wrapped in H o ld -  
Form.

C h e c k [ I n t e g r a t e [ 1 /x ,  { x ,  1 ,  I n f i n i t y } ] .
I f [M e m b e r Q [$ M e s s a g e L is t , H o ld F o r m [ In t e g r a t e : : i d i v ] ] , 

" t h e  i n t e g r a l  d oes  n o t  c o n v e r g e " , 
t r y S o m e t h in g E ls e ] ]

I n t e g r a t e : : i d i v :
1

I n t e g r a l  o f  — d oes  n o t  c o n v e rg e  on { 1 ,  I n f i n i t y ) ,  
x

t h e  i n t e g r a l  does n o t  c o n v e rg e

After evaluation is completed, the $M essageList resulting from evaluating In  [n] 
is saved in M essageList [n ]. Therefore, errors in earlier evaluations can be detected 
using an expression like the following:



$ L in e  contains the current M e s s a g e L is t  [ $ L i n e - l ]
In /O u t  number. Thus, this , T ^ ■ j  • i
returns a list of the messages n e Sr a  G - - 1  l v
generated by the previous 
evaluation.

9.1.2 General messages
Message [sym bol:: tag] works by first searching Messages [symbol] for a mes
sage with tag tag. If found, that string is used.

M e s s a g e s [fo o ]

{ H o ld P a t t e r n [ f o o : :b a r ]  :>
T h is  i s  a  m essage w i t h  p a ra m e te rs  ' 1 '  and ' 2 ' . )

If no such message is found, Message tries to use the message G en era l:: tag. This 
allows functions to share message definitions. For example,

G e n e r a l : : a rg b u

' 1 '  c a l l e d  w i t h  1 a rg u m e n t;  b e tw e e n  ' 2 ' and  ' 3 ' \  
a rg u m e n ts  a r e  e x p e c te d .

M e s s a g e [ f o o : : a r g b u , " f o o " ,  3 ,  4 ]

f o o : : a rg b u :
fo o  c a l l e d  w i t h  1 a rg u m e n t;  b e tw e e n  3 and  4 

a rg u m e n ts  a r e  e x p e c te d .

Use G eneral messages, rather than defining new ones, whenever possible. You can 
get a list of all General messages by evaluating Messages [G eneral]. Each of these 
messages is documented in [WRI 91].

The argument count message shown above is one of several that deal with that type 
of error. We should have used these system-defined messages in the LCGRandom exam
ple of Section 8.2.2. For example:

The actual number of argu- LCGRandom [] :=  " a  random  n um ber"
ments supplied is obtained LCGRandom [x ] : =
using Length. M essag e[L C G R and om :: a r g r x ,  "LCGRandom".

L e n g t h [ { x } ] , 0]

LC G R andom [a, b ]

LC G R andom :: a r g r x :
LCGRandom c a l l e d  w i t h  2 a rg u m e n ts ; 0 

a rg u m e n ts  a r e  e x p e c te d .

9.1.3 Issuing diagnostics without evaluating
There is one more stylistic point regarding diagnostic messages: Built-in functions 
return without evaluating when they are called incorrectly. If you have ever tried in



frustration to return an unevaluated expression from a function, you may be wondering 
how this can be done. In fact, it’s quite easy once you know the trick: Put the Message 
command in a condition clause (/ :)• Since Message returns N ull, the condition fails 
and the body of the rule can’t execute. The message is generated, and if no other rule 
matches the function call does not evaluate. (This trick won’t work if a function con
tains a catchall rule, because that rule will always end up matching.)

Get rid of the old definition 
of LCGRandom [x ] first.

Notice the form of this defi
nition. The body can never 
execute.

The message is printed and 
the function does not evalu
ate.

LCGRandom [x__ ] = .

LCGRandom [x__ ] :=  " n e v e r  h a p p e n s "  / ;
M essag e[L C G R and om :: a r g r x ,  "LCG Random ". 

L e n g t h [ { x } ] , 0]

LC G R andom [a, b ]

LCG Random :: a r g r x :
LCGRandom c a l l e d  w i t h  2 a rg u m e n ts ; 0 

a rg u m e n ts  a r e  e x p e c te d .

LC G Random [a, b ]

The flexibility of this approach is enhanced by the use of boolean combinations of 
the error-checking code and a call to Message in the rule condition. Make sure Mes
sage is the last part of the boolean operator. For example, the following rule for LCG
Random handles both the correct behavior and the erroneous behavior:

The triple B lank  matches 
zero or more arguments.

L en g th  [ { x } ]  is 0, Message 
does not execute, and the 
rule matches.

L en g th  [ { x } ]  is 1, Message 
executes, and the rule does 
not match.

=  " a  random  n um ber" / ;

"LCGRandom ".

C lear[L C G R an d o m ]
LCGRandom [x___ ]

L e n g t h [ { x } ]  = =  0 | |
M essag e[L C G R an d o m :: a r g r x  

L e n g t h [ { x } ] , 0]

LCGRandom[]

a  random  num ber

LCGRandom[3 ]

LC G R andom :: a r g r x :
LCGRandom c a l l e d  w i t h  1 a rg u m e n ts ; 0 

a rg u m e n ts  a r e  e x p e c te d .

LCGRandom[3 ]

If Length [ {x} ] is 0 (i.e., no arguments), the second half of the rule condition does 
not execute, so no message is generated. On the other hand, if Length [ {x} ] is not 0, 
the Message function is called, which generates the message and causes the rule condi
tion to fail.

Since any expression can be used inside of a condition clause, this trick allows you 
to check for arbitrarily complicated error conditions before generating a message.



Exercise

1. Create definitions for the LCGSetSeed function of Section 8.2.2 that check not only 
for the correct number of arguments (one), but also for the following error condi
tion:

This message is generated if L C G S etS eed : :b a d v a lu e  =  " ' 1 '  i s  n o t  a  v a l i d \  
the argument is not an inte- s e e d  v a lu e :  i n t e g e r  b e tw e e n  ' 2 '  and  ' 3 '  e x p e c t e d ." ;
ger between 1 and LCGRan
dom' P r iv a te 'm o d u lu s  -1.

9.2 Options
As a general rule, use options, rather than global variables, to control the way a function 
works. We discussed the basics of options in Section 6.3.5. Here is a recap of what was 
covered in that section; if any of this seems unfamiliar, you may wish to review that 
section before proceeding with this one.

1. Options to a function are specified as Rule or RuleDelayed objects. Options, if 
present, always follow nonoptional arguments.

2. The correct pattem for matching any sequence of options i s ___?OptionQ.
3. Option values are extracted using R eplaceA ll ( / .) .  In order to have user-specified 

option values override default option values, value extraction is done thus:

{ o p t io n N a m e l, o p tio n N a m e 2 , . . . }  / .
F la t t e n [ { u s e r S p e c i f i e d O p t i o n s } ]  / .  { d e f a u l t O p t io n s }

A concrete example of this technique will be given below.

9.2.1 Default option values
A function f  that supports options should allow the user to change the default option 
values using S e tO p t io n s . This is accomplished by storing default option values in 
O p t io n s  [f ] and evaluating O p t io n s  [f ] each time f  is called.

C le a r A l l  clears values, C l e a r A l l  [ f  ]
options, and attributes.Then O p t io n s  [ f ]  =  { o p t l - > l ,  o p t 2 - > 2 } ;
set the default options for 
the function f .

This is the canonical way to f [ a r g l _ ,  o p ts ___? O p tio n Q ] : =
handle options with default M o d u le  [ { o p t l v a l , o p t 2 v a l } ,
values. { o p t l v a l ,  o p t 2 v a l }  =

{ o p t l , o p t2 }  / .  F l a t t e n [ { o p t s } ]  / .  O p t io n s [ f ] ; 
{ a r g l ,  o p t l v a l ,  o p t 2 v a l }

]

For illustrative purposes, f  returns a list consisting of its argument and the values it 
intends to use for each option. Here are some examples:



By defau It, the option val ues f  [x ]
are 1 and 2 . { x ,  1 . 2 )

A manifest option overrides f  [ x ,  o p t 2 -> y ]
the default value. j x   ̂ y j

S e tO ption s  returns the S e tO p t io n s  [ f ,  o p t 2 -> y ]
new list of defaults. { o p t l  _> ^  o p t 2  _> y }

The default for o p t2 is f  [x ]

n o w y- ( x ,  1 .  y )

The default can still be over- f [ x ,  o p t 2 -> z ]
ridden. { x ,  1 , z ]

9.2.2 Checking options for validity
Built-in functions print the G enera l: : op tx  message when passed an option that they 
don’t understand.

G e n e r a l : : o p tx

Unknown option '1 ' i n  ' 2 ' .

This needn’t be a fatal error, but the user should be informed in case he or she simply 
spelled one of the options incorrectly. Finding invalid options is easy:

Suppose that this sequence o p ts  =  S eq uen ce  [o p t  l - > w ,  o p t 2 - > y ,  o p t 3 - > z ,  o p t4 -> 4 2 ]
of options is passed to the S eq uen ce  [ o p t l  - >  w , o p t2  - >  y ,  o p t3  ->  z ,  o p t4  - >  42 ]
function f . J r  r

Here are the names of all v a l i d  =  F i r s t  /@ O p t io n s  [ f ]
valid options for f .  { o p t l>  o p t2 }

Simply check that the left- Mem berQ [ v a l i d . F i r s t [ # ] ] &  /@ { o p t s } ]
hand side of each rule in { T r u e ,  T r u e ,  F a ls e ,  F a ls e }
opts  is a member of v a l id .

Below, we integrate this code into the body of f . We use Scan to apply to the list of 
supplied option names a pure function that checks for option validity. If an option is 
invalid, the message f : : optx  (not G en era l: : optx) is generated.

C l e a r [ f ]

f c a l l : f [ a r g l _ ,  o p ts ____? O p tio n Q ] :=
M o d u le [ { o p t l v a l ,  o p t 2 v a l ,

v a l i d  =  F i r s t  /@ O p t i o n s [ f ] } ,
S c a n [ I f [ ! M e m b e r Q [v a lid .  F i r s t [ # ] ] .

M e s s a g e [ f : : o p t x ,  T o S t r i n g [ F i r s t [ # ] ] ,
T o S t r in g [ U n e v a l u a t e d [ f c a l l ] ] ] ] & , 

F l a t t e n [ { o p t s } ]

];



{optlval, opt2val} =
{optl, opt2} /. Flatten[{opts}] /. Options[f]; 

{argl, optlval, opt2val}
]

Note the use of the pattern variable f c a l l  to capture the entire expression matched by 
y p  the rule (see Section 6.3.6, “Assigning names to entire patterns”). This allows 

T oS tring  [Unevaluated [ f c a l l ]  ] to be passed as the third argument to Message, 
making the diagnostic as meaningful as possible.

f[x, optl->w, opt2->y, opt3->z, opt4->42]
f::optx: Unknown option opt3 in

f[x, opt2 -> y, opt3 -> z, opt4 -> 42]. 
f::optx: Unknown option opt4 in

f[x, opt2 -> y, opt3 -> z, opt4 -> 42] .
(x, w, y}

9.2.3 Filtering options
Sometimes a function needs to call other functions that take options of their own. In 
such cases the calling function must be sure to pass to those functions only the options 
that they understand, or else error messages will be generated. The package U t i l i -  
t i e s 'F i l t e r O p t i o n s ' defines a function F ilte rO p tio n s  [ f ,  o p ts ] that returns 
a sequence of the options in o p ts  that are valid for f .

Load the package. Needs ["Utilities'FilterOptions'"]
Recall the phony options We used in the last example.

opts
Sequence[optl -> w, opt2 -> y, opt3 -> z, opt4 -> 42]

If we filter this sequence of options with respect to f, the invalid options opt3 and 
opt4 are removed.

Note that FilterOptions okay Opts = FilterOptions [f, opts]
returns another Sequence. Sequence [optl -> w, opt2 -> y]

Sequence was discussed in detail in Section 7.1, but a brief refresher is appropriate 
here. Sequence is the head of expressions that match patterns like x__ or x___ . When
ever a Sequence appears inside of another expression, its head is stripped off and the 
elements of the Sequence are “spliced” into the enclosing expression. F ilte rO p 
t io n s  takes a sequence of options, such as might be matched b y ___?OptionQ, and
returns a new sequence of options. Because the return value of F ilte rO p tio n s  is a 
Sequence, it can be inserted into a function call and the effect is the same as inserting 
the individual options.

f[x. okayOf>ts]
{x, w, y)



As a nontrivial example of a function that uses F ilte rO p tio n s , we will write a 
function called f  i t P l o t  that takes a list of data points, fits a least-squares polynomial 
to them, and then plots both the data points and the polynomial on the same graph. The 
degree of the polynomial will be specified by an option. In te rp o la tio n O rd e r  is an 
option to the built-in function In te rp o la tio n , so it would be consistent to use it here 
as well.

Options[fitPlot] = {Interpolation0rder->3};

In addition to In te rp o la t io n  order, users may pass to f i t P l o t  any options that 
are accepted by P lo t, L is tP lo t ,  or G raphics (the latter are passed to Show to com
bine the outputs of P lo t and L is tP lo t) . F ilte rO p tio n s  is used to select the appro
priate options in each case.

fitPlot[data_?MatrixQ, opts___?OptionQ] :=
Module[{order, plotOpts, listplotOpts, gfxOpts, 

f, p, lp, x, n},

Get In te rp o la t io n O rd e r .  

Filter the options.

The options are printed for 
illustrative purposes.

Plot the data.

Fit a curve.
Plot the curve-fit.

Combine the plots.

]

order = InterpolationOrder /.
{opts} /. Options[fitPlot]; 

plotOpts = FilterOptions[Plot, opts]; 
listplotOpts = FilterOptions[ListPlot, opts]; 
gfxOpts = FilterOptions[Graphics, opts];
Print[{order, {plotOpts},

{listplotOpts}, {gfxOpts}}];

lp = ListPlot[data, DisplayFunction->Identity, 
listplotOpts]; 

f = Fit[data, Table[xAn, {n, 0, order}], x]; 
p = Plot[f.

Evaluate[{x, data[[1,1]], Last[data][[1]]}] 
DisplayFunction->Identity,
Evaluate[plotOpts]

] ;

Show[p, lp, DisplayFunction->$DisplayFunction, 
gfxOpts];

Here are some test data.

This fits and plots a fourth- 
degree fit to the data. Note 
the different options that are 
passed to each function.

pts = Table[{i, Sin[2i] + (Random[]-.5)/5},
{i, 0, 3, .1}];

fitPlot [pts, InterpolationOrder->4, 
PlotPoints->20, Fraffle->True, 
PlotStyle->PointSize [.03]]

(4, (PlotPoints -> 20, Frame -> True.
PlotStyle -> PointSize[0.03]},
(Frame -> True, PlotStyle -> PointSize [0.03] 
(Frame -> True}}
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Exercise

1. Add code to f  i t P l o t  to check for invalid options.

9.3 Numerical Evaluation
There are many nuances of numerical evaluation, particularly in regard to the interac
tion between user-defined functions and the numerical evaluation operator N. There are 
several mechanisms available to make user-defined functions behave numerically as the 
built-in ones:

1. The arguments to a function can be tested to see whether they are exact or approxi
mate, and different rules can be written for each case.

2. The arguments to a function can be shielded from numerical evaluation.
3. The behavior of N [expr] can be overridden.
4. Upvalues can be defined for S e r ie s  [expr , . . .  ].

9.3.1 Numerical arguments
Many important functions can be evaluated only approximately except for certain spe
cial cases — transcendental and special functions are good examples of this. The built- 
in numerical functions all observe the convention of never returning an approximate 
result given exact inputs unless the user specifically requests it (using N). Your func
tions should observe this convention as well. If the arguments are exact and no special 
rule exists for those particular values, a function should return unevaluated, or perhaps 
rewritten in terms of other exact expressions. However, if the user supplies an approxi
mate argument, or if the user calls N [f [arg] ], a function should return an approxi
mate numerical answer.

Mathematica provides several predicates and other functions for testing the numeri
cal properties of an expression. The simplest of these, NumberQ, returns True if its 
argument is a manifest number, i.e., has the head In teg e r, R atio n a l, Real, or 
Complex.



NumberQ /@ {2, 2/5, 2.5, 2 + 5  I, 2. + 5  I, 2A(l/5)}
{True, True, True, True, True, False)

Note that NumberQ[2A(1 /5 )] returns F alse , because 2A(l/5 )  has the head 
Power. When the intent is to determine if an expression represents a numeric, as 
opposed to symbolic, quantity, this behavior is undesirable. To remedy this situation, 
version 3.0 contains a new predicate called NumericQ.

NumericQ /@ {2.5, 2A(l/5), EA (2 + 5 I)}
{True, True, True)

NumericQ essentially answers the question, If N were applied to this expression, would 
the result be a number? This question can be answered in version 2.2 and earlier with a 
test like NumberQ [N [expr] ]. However, NumericQ is more efficient because it is able 
to make this determination without numerically evaluating the expression (see the exer
cises).

Version 3.0 also adds two more new predicates, ExactNumberQ and InexactNum- 
berQ. Like NumberQ, they return True only if their argument is a manifest number.

ExactNumberQ /@
{2, 2/5, 2.5, 2 + 5 I, 2. + 5 I, 2A(l/5)}

{True, True, False, True, False, False)

InexactNumberQ /@
{2, 2/5, 2.5, 2 + 5 I, 2. + 5 I, 2A(l/5)}

{False, False, True, False, True, False)

Users of versions prior to 3.0 can mimic the behavior of ExactNumberQ and Inex 
actNumberQ using (NumberQ [#] && P re c is io n  [#] =  I n f in i ty  &) and
(NumberQ [#] && P re c is io n  [#] < I n f in i t y  &), respectively.

Suppose we wanted to implement Erlang’s loss formula (sometimes called Erlang’s 
B function), which gives the probability that a customer arriving at an M/M/c/c queuing 
system is refused service [Jain 91]. In telephony systems analysis, ErlangB [c , a] is 
used to estimate the probability that a telephone system with c lines is unable to provide 
an open line to a user wishing to place a call, where a is the average load placed on the 
system by the (Poisson) arrival of telephone users. The formula is:

The general case. ErlangB [c_Integer?Positive,
a_?(NumberQ[#] && Positive[#]&)] :=

(aAc/c!) / Sum[aAk/k!, {k, 0, cj]

A few boundary conditions. ErlangB[_Integer?NonNegative, 0] = 0;
ErlangB[0, _?Positive] = 1;
ErlangB[Infinity, _?NonNegative] = 0:

Note that in the general case we have specified that c (the number of servers) must 
be a positive integer and that a (the load) must be a positive number. Each of these con



ditions evaluates to F a lse  unless the corresponding argument is a manifest number.1 
For example,

ErlangB[3, #]& /@ {a, 2. 2.. Sqrt [2]}
{ E r la n g B [ 3 ,  a ] ,  0 .2 1 0 5 2 6 ,  E r la n g B  [ 3 ,  S q r t  [ 2 ] ] }

While it’s certainly possible to return a symbolic result for symbolic arguments, there is 
litde point to doing so, as it just complicates the algebraic mess with which the user 
probably is dealing. Furthermore, doing so would allow the user to substitute “impossi
ble” values for c and a into the symbolic formula later on without any consistency 
checking.

Nevertheless, there may be times when users would like to see a symbolic expansion 
of the ErlangB function. We can let them “have their cake and eat it too” by making 
the following definition:

This is an upvalue for Expand [ErlangB [ c _ ,  a_] ] A: =
ErlangB . ( a Ac /  c l )  /  S um [aAk  /  k ! , { k ,  0 ,  c } ]

Symbolic expansions of Expand [ErlangB [3 , Sqrt [2 ]  ] ]
Erlang's formula can now be „ t r9 l
obtained on demand. --------------^ ^

3 (J  +  4 _ § a £ t M ,

While there’s nothing incorrect about the definition of ErlangB so far, there is a 
more efficient way to evaluate ErlangB numerically. The truncated exponential expan
sion in the denominator of Erlang’s formula is equivalent to2

S u m [aAk  /  k l , { k ,  0 ,  c } ]

(1  +  c ) E& Gamma[1 +  c ,  a ]
Gamma [2  +  c]

Evaluating this expression is more efficient than computing the explicit sum if c is 
large. However, Gamma [1 + c , a] does not evaluate if both c and a are exact, so we 
will use this method only when a is inexact (since c is constrained to be an integer). 
Here is the new definition:

First U nset the old rule. E r la n g B  [c _ In te g e r ?  P o s i t i v e ,
a_?(NumberQ[#] && Positive[#]&)] =.

1. Although it may seem as though P o s i t iv e  [#] makes NumberQ [#] redundant, 
such is not the case. For example, P o s it iv e  [Sqrt [2] ] returns True but Num
berQ [Sqrt [2] ] returns F a lse .

2. Users of versions prior to 3.0 will have to load the standard package A lge
bra' SymbolicSum' in order to simplify this sum, and the result will be a slightly
different, but equivalent, expression.



These two rules replace the E r la n g B [ c _ In t e g e r ? P o s i t i v e ,
previous one. a_? (E x a c tN u m b e rQ [# ] && P o s i t i v e [ # ] & ) ]  : =

( a Ac /  c ! )  /  S um [aAk  /  k ! , { k ,  0 ,  c } ]
E r la n g B [ c _ In t e g e r ? P o s i t i v e ,

a_ ? ( In e x a c tN u m b e rQ [# ]  && P o s i t i v e [ # ] & ) ] :=
( a Ac /  c ! )  Gamma[2  +  c ] /

( ( 1  +  c )  E Aa  G am m a[l +  c ,  a ] )

E r la n g B [3 ,  2 .5 ]

0 .2 8 2 1 6 7

Compare to the exact result, E r la n g B  [ 3 ,  5 /2 ]
which uses the explicit sum- ^ 5
mation formula. 7 —

443

N [%]

0 .2 8 2 1 6 7

Exercises
1. The NumericQ predicate works by checking a function attribute called Numeric- 

Function, which all of the built-in numeric functions in version 3.0 possess. The 
algorithm for NumericQ is simply this: Numbers are numeric, and numeric 
functions of numeric quantities are numeric. Implement a recursive version of 
NumericQ.

2. Implement the following diagnostic message for the ErlangB function:

E r la n g B [ 3 . ,  5 / 2 ]

ErlangB::nserv:
Number of servers is expected to be a positive 

integer; found 3. instead.
ErlangB[3., |]

9.3.2 Shielding arguments from numerical evaluation
In most cases, handling N [futic [arg] ] is automatic, because of the way that N works. 
The argument to N is evaluated first in the normal way; if the result is nonnumeric, then 
the N function is applied recursively to all parts of the result (including the head, if the 
result is a normal expression). Finally, the N function is applied to the overall result.

Here is a simple example that illustrates the operation of N:

This function rounds inexact C le a r  [ f  ]
numbers. f [ x _ ]  / ;  P r e c is io n  [x ]  < I n f i n i t y  :=  Round [x ]

The options to T race  are T r a c e  [N [ f  [3 ]  ] , T r a c e In t e r n a l - > T r u e , T r a c e O f f - > f  ]
explained in Section 13.1. { N [ f [ 3 ] ]  ( f [ 3  ] 3 )  3 }



Since N does not hold its arguments, f  [ 3 ]  is evaluated. In this example, f  [ 3 ]  evaluates 
to a normal expression (itself), so N goes to work. First, the head and argument of f  [3] 
are evaluated numerically, yielding f  [ 3 . ] . This expression evaluates according to the 
rule given above to produce 3 (an exact integer). The result is evaluated numerically 
again, giving 3 . (a real number) as the final answer. This strategy is designed to pro
duce a numerical result if at all possible.

Returning to the ErlangB function, we see that there’s a slight problem: When 
ErlangB is evaluated numerically, the first argument becomes a real number, which 
prevents any of the rules from matching.

N[ErlangB[3, Sqrt[2]]]
E r la n g B [ 3 . ,  1 .4 1 4 2 1 ]

Because of the upvalue for ErlangB defined on page 268, applying Expand to this 
expression yields a numerical answer. But that is very \m-Mathematica-\\k& behavior
— N [any th in g ] should return a numerical answer if at all possible!

One way to solve this problem would be to allow approximate values as the first 
argument to ErlangB. However, from a physical standpoint this makes no sense (the 
first argument is the number of servers in a queuing system, which must be an integer). 
The rules could be written so that the value of the first argument to ErlangB has to be 
within some small tolerance of the nearest integer, but that is an inelegant solution.

The best solution to the problem is to prevent numerical evaluation of the first argu
ment to ErlangB in the first place. There is an attribute called N H oldFirst that does 
exactly that.3

SetAttributes[ErlangB, NHoldFirst]

The first argument to T r a c e  [N [E r la n g B  [3 , S q r t  [2 ]  ] ] ,
ErlangB is now unaffected TraceInternal->True, TraceOff->ErlangB]
byN ' { { ( S q r t  [ 2 ] ,  S q r t  [ 2 ] } ,  E r la n g B  [3 ,  S q r t  [2 ]  ] } .

N [ E r la n g B [3 ,  S q r t  [ 2 ] ] ]  ,
{ E r la n g B [ 3 ,  1 . 4 1 4 2 1 ] ,  0 . 1 2 1 3 2 } ,  0 .1 2 1 3 2 }

N H oldFirst has siblings called NHoldRest and NHoldAll. Their relationships are 
the same as for the H o ld F irs t, HoldRest, HoldAll family of attributes.

Before leaving the ErlangB example, we note that NumericQ doesn't work correctly 
with it:

NumericQ[ErlangB[3, Sqrt[2]]]
F a ls e

3. NHoldFirst is new in version 3.0. In version 2.2, use the (undocumented) attribute 
N ProtectedFirst instead.



If we give ErlangB the NumericFunction attribute, then the above expression will 
return True.

Unfortunately, this will also cause an expression such as NumericQ [ErlangB [3. , 
S q rt [2] ] ] to return True, even though N [ErlangB [3. , S q rt [2] ] ] does not eval
uate to a number. Technically speaking, then, ErlangB is not a true numeric function, 
and perhaps it shouldn’t be given this attribute. A mitigating factor in this case is that if 
you did Exercise 9.3.1.2, the expression ErlangB [3 . , S q rt [2] ] will cause a diag
nostic message, so the user will know that something is wrong.

There are rare cases in which it is desirable to evaluate N [ f  [arg ] ] differently than 
f  [N [arg] ]. An example is provided by the In te g ra te  function, which attempts to do 
symbolic integration even if some of its arguments are inexact. If an expression like 
In te g ra te  [ fu n c , range] cannot be evaluated, then N [ In te g ra te  [ fu n c , 
range] ] calls N In teg ra te  [ fu n c , range] , which is a completely different function 
that uses completely different algorithms than In te g ra te . Here is proof:

{N[Integrate[— —-- , {x, 0, 1}]],
EX + x

{NIntegrate[— ----, {x, 0, 11,
EX + x

WorkingPrecision -> 16, AccuracyGoal -> Infinity. 
PrecisionGoal -> 6 ], 0.203039), 0.203039}

This kind of behavior can be effected for any function f  by defining a rule of the 
form “N [ f  [ . . .  ] ] : = . .  . ” or “N [ f  [. . . ] , prec is io n _ ]  : = . . . ”, This kind of
rule is stored with f , not N, but it is not an upvalue: It is a type of rule called an Nvalue 
(Section 7.1.1).

For purposes of exposition only, suppose we were to add the following rule for the 
function f  defined in the last section:

SetAttributes[ErlangB, NumericFunction] 
NumericQ[ErlangB[3, Sqrt[2]]]
True

9.3.3 Overriding N[expr]

Integrate cannot do this 
integral. A trace reveals that 
N[Integrate [ . . . ]  ] calls 
NIntegrate[...].

Trace[N[Integrate[ x / ( x  +  E x p [ x ] ) ,  { x ,  0, 1 } ] ] ,  
N [__] | NIntegrate[__],
TraceInternal->True, TraceForward->True]

N[f[x_], prec_:$MachinePrecision] :=
StringForm["precision requested prec]



IT

Now observe the difference in behavior between the following two evaluations:

N [ f  [3 ] , 20 ]

precision requested = 2 0 .

N [ f  [ 3 . ]  , 20 ]

3 .

Note that N [f  [3. ] , 20] uses the downvalue for f , not the Nvalue! The reason is that 
N evaluates its arguments before checking for Nvalues, and f  [3. ] evaluates to the inte
ger 3. This behavior is not a bug, however; it is perfectly consistent with that of the 
built-in functions:

This does not give a 45-digit N [ S i n [ 2 . ] p 4 5 ]

result 0 .9 0 9 2 9 7 4 2 6 8 2 5 6 8 2

This does, because an inter- N [ S in [ 2 ]  , 4 5 ]

nal Nvalueis used. 0 .9 0 9 2 9 7 4 2 6 8 2 5 6 8 1 6 9 5 3 9 6 0 1 9 8 6 5 9 1 1 7 4 4 8 4 2 7 0 2 2 5 4 9 7 1

The error in each case is the user’s, not the system’s. If you want a high-precision result 
from a numerical function, you have to pass in high-precision arguments!

It’s difficult to come up with an uncontrived example of using Nvalues for a function 
that isn’t already built into Mathematica. In addition to the In te g ra te -N In te g ra te  
duo, there are Roots and NRoots; Solve and NSolve; DSolve and NDSolve; Sum 
and NSum; and Product and NProduct. Note that all of these examples are, functionals 
(functions that operate on other functions). For functions of numeric arguments, you 
can almost always effect the desired behavior simply by using different rules for exact 
and approximate arguments (as we did in the ErlangB example). In the example using 
the function f  above, if there were no Nvalue for f , the expression N [f [3] , 20]
would be converted to f  [N [3 , 20] ], so f  could determine the precision requested
simply by checking the precision of the argument.

Dr Remember: The purpose of Nvalues is not to distinguish between exact and approxi
mate arguments to a function; it is to distinguish between N [ f  [arg] ] and f  [N [arg ] ].

Another use of Nvalues is to define mathematical constants such as E, P i, and so 
forth. Once again, all of the most useful constants are built into the system, or can be 
expressed in terms of the built-in constants, so it’s difficult to come up with an example 
that isn’t contrived.

The following example was used in Section 7.1.1 to illustrate Nvalues: Let omega 
denote an exact solution to the transcendental equation omega == Exp [omega]. We 
created two rules for omega: an upvalue for simplifying the expression Exp [omega] 
and an Nvalue for evaluating omega numerically:

Exp[omega] A:= omega



N[omega, p_:$MachinePrecision] :=
FindRoot[x  == Exp [ x ] , { x ,  1 + I}, 

AccuracyGoal->p,
WorkingPrecision->p + 10] [[1,2]]

Omega is thus an exact representation of a transcendental number that behaves much 
as built-in transcendental constants such as E and Pi, in that it simplifies symbolically 
when possible and evaluates numerically only when forced to:

Finally, a few words on power series and functions that are defined by them. When a 
request is made for a numerical evaluation of such a function, it is up to the implemen
tation of the function to figure out how many terms in the series need to be used to 
achieve the desired precision. For series that are “well behaved,” a good strategy is to 
use enough terms so that the first unused term is smaller than the allowable error. For an 
example of coding this technique, look at the implementation of the StruveH function 
in the package ProgrammingExamples '  S tru v e '. This package is described in detail 
in [Maeder 91].

If the convergence rate of the series is harder to check, you can let the built-in func
tion NSum do the hard part for you. NSum takes options called T a rg e tP re c is io n  and 
W orkingPrecision that allow you to set goals for the numerical properties of the 
result, albeit indirectly. It is important to use the correct method of convergence check
ing (there are two). A discussion of them is beyond the scope of this book; see 
[Keiper 93a] for more information.

If you wish to define an upvalue for S e rie s  [f  [x] , . . .  ], you should be aware
that you can take any expression and turn it into a S eriesD ata  object simply by add
ing a term of the form 0 [x] An. For example,

omega - Exp[omega]

N[omega, 20] - Exp[N[omega, 20]]

9.3.4 Functions defined by power series

This is an upvalue associ
ated with the symbol e.

e /: S e r ie s [ e [x_], {x_, 0, n_}] :=
Sum[xAk /  k ! , {k, 0, n}] + 0 [ x ] A(n + 1)

Series[e[z], {z, 0, 5}]
7 3 4 5

Head [%]
SeriesData



9.4 Custom Output Formats

9.4.1 Format values
Mathematica allows you to define custom output formats for expressions by creating 
format values. A format value is defined using the Format function:

It is important to keep in mind that formatting functions such as S u b scrip ted  are 
just “wrappers” that affect only the displayed form of an expression, and not its internal 
value:

Format value rules are attached to the symbol for which they are defined, not to the 
Format function (much like Nvalues); that is why it was necessary to unprotect the 
B esse lJ  function before defining the format value above. The format values for a 
symbol can be listed using FormatValues [sym] :

S u b scrip ted  is one of a number of formatting wrappers that produce two-dimen
sional output, but all of the others take sequences of individual expressions. Some 
examples of these functions are S u b scrip t, S u p e rsc rip t, O v e rsc rip t (version 3.0 
only), U n d ersc rip t (version 3.0 only), and S u b su p ersc rip t (version 3.0 only). For 
example,

W jHpr The way that S u b sc rip t and S u p e rsc r ip t work has been changed in version 3.0.
In earlier versions, the arguments to these functions were considered to be all subscripts 
or all superscripts, and the way to produce a superscripted variable, for example, was to

This rule is attached to the 
B esse lJ  symbol.

Unprotect[BesselJ];
Format[BesselJ[n_, x_] ] := Subscripted[J[n]] [x] 
Protect[BesselJ];

B esse lJ  functions now B e s s e lJ  [ 1 ,  P i / 2 ]
print in a traditional format.

The expression still is a call 
to B esse lJ .

FullForm[%]
BesselJ[n, x]

Users of versions prior to 3.0  
w ill see only the second of 
these rules.

FormatValues[BesselJ] // InputForm
{HoldPattern[
MakeBoxes[BesselJ[n_, x_], FormatType_]] :> 
ToBoxes[Subscripted[J[n]] [x], FormatType], 

HoldPattern[BesselJ[n_, x_]] :>
Subscripted[J[n]] [x]}

Overscript[x, "_"]
x



combine the variable and a S u p e rsc r ip t object using the SequenceForm wrapper 
(which displays it arguments in a horizontal row without intervening spaces):

SequenceForm[a, Superscript[b, c]]
bea

In version 3.0, if there is more than one argument to S u p e rsc rip t, the first argument 
is considered to be the base of the superscripted form:

SequenceForm[a, Superscript[b, c]]
ab°

This change in behavior is intended to make S u b sc rip t and S u p e rsc rip t consistent 
with the new formatting wrappers O v erscrip t, U nderscrip t, and Subsuper
s c r ip t .  Note that their behavior is unchanged if they have a single argument, so that 
code like the following does the same thing in either version of Mathematica:

SequenceForm[a, Superscript[b]] 
ba

Another very useful two-dimensional formatting wrapper is ColumnForm, which 
displays its arguments in a vertical stack. SequenceForm and ColumnForm can be 
combined with other formatting forms to create complicated two-dimensional output.

Note that the arguments to SequenceForm [a, Subscript [ColumnForm [ {b, . c} ] ] ]
ColuamForm are in a list.

ab
c

A formatting wrapper of a different kind is StringForm, which takes a control 
string and a sequence of arguments and substitutes those arguments into the control 
string at specified points. It is similar to the p r i n t f  function of C or the FORMAT state
ment of Fortran. For example,

The substitution points in s h o w m e [e x p r_ , fo rm _ ] : =
the control string are indi- StringForm ["The '1' of '2' is '3'.",
catedby'/i'. form, expr, form[expr]]

showme[Sin[x]A2, TeXForm]
2The TeXForm of Sin[x] is {{\sin (x))A21.

showme[Sin[x]A2, FortranForm]
2The FortranForm of Sin[x] is Sin(x)**2.

Note that, like other formatting wrappers, StringForm  doesn’t change the underly
ing expression. In particular, StringForm  does not produce a string as its output, 
which is what you might expect:



FullForm [%]
Str±ngForm["The '1' of '2' is '3'.", FortranForm,

Power[Sin[x], 2], FortranForm[Power[Sin[x], 2]]]

If you want to get a string representation of the displayed form, use ToString. Note, 
however, that the string so obtained is a linear representation of the output that may be 
completely useless, except as fodder for some output device:

The \n is a newline charac- ToString [%] / /  FullForm
ter‘ " 2\nThe FortranForm of\

Sin[x] is Sin(x)**2."

Practical examples

The following two examples were created in response to questions that arose on the 
comp. s o f t- s y s  .m ath.m athem atica Internet newsgroup.

The first question involved how to force exponentials with negative powers to appear 
in the numerator, rather than the denominator, of formatted output. The questioner 
objected to the excessive vertical dimensions of expressions like the following:

x Ay  E x p [ - ( x  - a)A2 / sA2]

, .2 .  2 (-a + x) /sih

It turns out to be not at all difficult to solve this problem. Note, however, that the 
problem arises only when the exponential is a term in a product, as opposed to standing 
alone. Therefore a format value for Times is necessary:

Unprotect[Times];
Format[a_ * E x p [e:(b_?Negative*c___)]] : =

StringForm["'1' Exp['2']", a, e]
Protect[Times];

xAy Exp[-(x - a)A2 / sA2]
y „ r , (-a + x)2ux-7 Exp [ - (---------)]

s

The second question concerned giving the result of Factorlnteger an intuitively 
appealing output form. Factorlnteger returns the prime factorization of an integer as 
a nested list:

This result is interpreted as factors = Factorlnteger [238500]
22‘32*53*53i. {(2> 2)> {3< 2}> {5> 3}> {53j 1)}



The easiest way to achieve the desired end is to create a new function of two argu
ments that displays its arguments as a base raised to a power, and to wrap this head 
around each of the sublists in the factorization.

F o r m a t [ In te g e r P o w e r [ x _ ,  y _ ] ] :=
S e q u e n c e F o rm [x , S u p e r s c r i p t [ y ] ]

In t e g e r P o w e r [ a , b ]

b
a

A p p ly [ In t e g e r P o w e r , f a c t o r s .  { 1 } ]

2 2 3 1{2 . 3 , 5 . 53 }

Now if we apply Times to this list, we’ll get something that appears to be a product 
of powers:

f a c t z n  =  T im e s  @@ %

2 2 3 12 3 5 53

But in reality it’s a product of IntegerPow er objects, which is why it doesn’t evaluate 
to a number.

In p u tF o r m [%]

T im e s [ In te g e r P o w e r [2, 2], In t e g e r P o w e r [3, 2], 
In t e g e r P o w e r [5, 3], In t e g e r P o w e r [53, 1]]

The exponent 1 is a cosmetic problem that is easy to fix:

F o r m a t [ In te g e r P o w e r [ x _ ,  1 ] ]  :=  x

f a c t z n

2 2 32 3 5 53

9.4.2 Output formats

There are many different available output formats, such as InputForm, OutputForm 
(the default for version 2.2), StandardForm (the default for version 3.0), T ra d i t io n - 
alForm (a new format in version 3.0 that mimics traditional mathematical notation), 
TeXForm, CForm, and FortranForm . StandardForm and T rad itiona lF orm  are 
based on a completely new box representation of two-dimensional input and output 
(see the first of the two rules for FormatValues [B esselJ] on page 274). The advan
tage of the box representation is that it can be used for two-dimensional input as well as 
output (cf. the string representation on page 276, which is useless as input). A discus
sion of these forms would require a discussion of box representation, which is outside 
the scope of the current volume. This topic will be addressed in a future companion vol
ume on the Mathematica user interface.



The syntax Format [expr, fo rm a t] : = expr2 can be used to create a formatting 
rule for a specific output format. For example, suppose we want to improve upon the 
way Power is formatted in CForm:

a Ab / /  CForm

P o w e r(a , b )

At the very least, this expression ought to print as pow(a, b ) , because pow is the stan
dard C library function for exponentiation. This is easy to implement:

U n p r o t e c t [ P o w e r ] ;
F o r m a t [x _ Ay _ ,  CForm] :=  p o w [x , y ]

a Ab / /  CForm

p o w (a , b )

Note that CForm is applied to the value returned by our format rule (as evidenced by the 
parentheses replacing the square brackets in pow[x, y]). Unfortunately, this feature 
can be a nuisance, as illustrated next.

The above output format for Power is a big improvement, but still not ideal: Many C 
compilers will produce error messages or, worse, incorrect code if a and b are not dou
ble-precision real numbers (C type double). What we’d really like to do is to produce 
an output of the form pow( (double) a , (d o u b le )b ). The straightforward approach 
doesn’t quite work, however.

F o r m a t [x _ Ay _ ,  CForm] :=
S tr in g F o r m [" p o w (  (d o u b le )  "  , ( d o u b l e ) " ) " ,  x ,  y ]

a Ab II  CForm

S tr in g F o r m (" p o w (  ( d o u b le ) "  , ( d o u b l e ) " ) " ,  a ,  b )

CForm is applied to the return value of the format rule, and CForm treats StringForm  
as just another C function! We might attempt to fix this problem by converting the out
put of StringForm  to a string:

F o r m a t [x _ Ay _ ,  CForm] :=
T o S t r in g [

S t r in g F o r m  ["p o w ( (d o u b le )  "  , ( d o u b l e ) " ) " ,  x ,  y ]  ] 

a Ab  / /  CForm

"p o w ( ( d o u b le ) a ,  ( d o u b le ) b ) "

Unfortunately, now CForm insists on putting quotes around the string! Experimenting 
with other output format wrappers proves to be futile; the way out of this dilemma is to 
define the format rule to return another call to Format that uses the OutputForm out
put format:



In OutputForm , strings are F o rm a t [x _ Ay _ ,  CForm] :=  1
displayed without quotes. F o rm a t [S t r in g F o r m [" p o w (  ( d o u b le ) ' ' ,  (d o u b le )  " ) " ,

C F o r m [x ] , C F o r m [y ] ] ,
O u tp u tF o rm ]  

a Ab / /  CForm

p o w ( (d o u b le ) a ,  (d o u b le )b )

Note that the parameters x and y are wrapped in CForm before being formatted by 
StringForm. This allows expressions like the following to format correctly:

a Ab Ac I I  CForm

p o w ( (d o u b le ) a ,  ( d o u b le ) p o w ( (d o u b le ) b , ( d o u b le ) c ) )

9.5 Respect Existing Definitions
You should never modify the state of the user’s session unnecessarily. There are many 
aspects of global state, including external rules for built-in functions, the protected sta
tus of functions, and system variables that may have been given specific values by the 
user.

9.5.1 Preserve existing definitions

Some “built-in” functions are actually implemented, wholly or in part, outside of the 
kernel! Members of the Expand family are good examples of this. The definition for 
ExpandNumerator in version 2.2 basically applies Expand to the Numerator of the 
input and divides the result by the Denominator of the input:

D o w n V a lu e s [E x p a n d N u m e ra to r ]

{ H o ld P a t t e r n [E x p a n d N u m e r a t o r [ S y s te m 'P r iv a te ' in p u t_ ,
S y s t e m 'P r iv a t e 'o p t io n s ____] ] :>

I f [ H e a d [ S y s t e m 'P r i v a t e ' i n p u t ]  === P lu s ,  
(E x p a n d N u m e ra to r [# 1 ,

S y s t e m 'P r iv a t e 'o p t io n s ]  & ) l@
S y s t e m 'P r i v a t e ' i n p u t ,

E x p a n d [N u m e r a to r [S y s te m 'P r iv a te '  in p u t ]  .
S y s t e m 'P r iv a t e 'o p t io n s ]  /

D e n o m in a t o r [ S y s t e m 'P r iv a t e ' in p u t ] ] }

(In version 3.0, the external downvalue for ExpandNumerator does some preprocess
ing of options and then calls the hidden function System'Dump' expandNumerator, 
which has an external downvalue that looks a lot like the one shown above.)

The point of this example is that you should never C lear a built-in function, because 
f l y  you might break it!



Nevertheless, it is inevitable that you will at some point find yourself in the position 
of having to clear one or more of your own rules for a built-in function. In such situa
tions it is advisable to use Unset (Section 6.2.5, “Clearing definitions selectively”) to 
surgically remove specific rules. Better yet, plan ahead by saving the predefined Down- 
V alues for a system symbol in a variable before defining any rules for that symbol, 
e.g.,

s a v e d v  =  D o w n V a lu e s [sys tem sym ] ;

Then you can use the command DownValues [systemsym] = savedv, rather than 
C lear [systemsym ], to start over.

9.5.2 Proper use of Protect and Unprotect

It is quite often the case that you want to override the behavior of a built-in function. 
The preferred way to do this is by using upvalues. Sometimes, however, there is no 
choice but to add downvalues to a built-in function, which requires unprotecting the 
function. A common mistake is to then reprotect the function without regard to what its 
state was before the new definitions were made.

For example, suppose you have written a package that modifies the built-in function 
F, and suppose that a user had unprotected F and then loaded your package. If your 
package outline is

U n p r o t e c t [ F ] ;
( *  d e f in e  new  v a lu e s  f o r  F  * )
P r o t e c t [ F ] ;

then after loading your package, the user will find that F is once again protected! While 
this is at most a minor annoyance in an interactive session, think about what would hap
pen if your package were loaded inside of another package that modified F:

B e g in [ " o t h e r p a c k a g e '" ]  ;
U n p r o t e c t [ F ] ;

Protects F. N eeds [ " y o u r 'p a c k a g e '" ]  ;

Causes an error! F [ . .  ] : =  . . .
P r o t e c t [ F ] ;
E n d P a c k a g e [ ] ;

This package will fail to load properly because its attempted creation of a downvalue 
for F will fail.

The P ro te c t  and U nprotect functions have a feature that, if used conscientiously 
by all parties, avoids this problem. U nprotect returns a list of the symbols passed to it 
that were in fact protected before the call. For example:

O nly  one of these symbols is x ;  y ;  P r o t e c t  [x ]  ;
protected.



U npro tec t returns only the U n p ro te c t  [x , y]
symbol that was protected. ^x j

Roman Maeder suggests the following idiom for protecting and unprotecting preex
isting symbols that are modified by a package [Maeder 91]:

It is necessary to E v a lu a te  B e g in P a c k a g e  [" m y P a c k a g e '" ]  ;
the argument to P r o te c t  B e g in  [ " ' P r i v a t e '  " ]  ;
because P ro te c t  has the p r o t e c t e d  =  U n p r o te c t  [ s y m l, sym2 , . . . ] ;
H o ld A ll attribute. ( *  im p le m e n ta t io n  * )

P r o t e c t [ E v a l u a t e [ p r o t e c t e d ] ] ;
End []
E n d P a c k a g e []

When this package is finished loading, the protected state of each (preexisting) symbol 
modified by the package will be unchanged.

9.5.3 Preserving global variables

There are many global variables that affect the state of the system as a whole. These 
variables all begin with the $ character. Of particular interest here are those variables 
that contain functions that are applied at various stages in the evaluation process:

$PreRead — applied to every input string before it is parsed.
$Pre — applied to every input after it has been parsed, but before it is passed to the 
main evaluation loop (Section 7.1.3).
$Post — applied to every expression after it is evaluated but before the result is 
assigned to Out [u ].
$ P reP rin t — applied to every expression after it has been assigned to Out [n], 
but before it is printed.

Judicious use of these functions can give the user a lot of control over the behavior of 
Mathematica. For example, one could use the following value for $ P reP rin t in order 
to make Mathematica print all approximate numbers in scientific notation:

$ P r e P r in t  =  S c ie n t i f i c F o r m ;

Here's an example of the 3 7 3 .4
effect of the definition. 2

3 .7 3 4  10

As a developer, you may want to define a value for one of the $ g loba l functions, 
but in doing so you should not wipe out any value that has been defined by the user! For 
example, suppose that the user had defined:

$ P r e P r in t  =  S h o r t ;

S h o rt is now applied to R ange [1 0 0 ,  1 2 0 , .1 ]
every result before printing. {10Q< 1 0 0 - i i 1 0 0 .2 ,  1 0 0 .3 .  « 1 9 5 » ,  1 1 9 .9 .  1 2 0 . )



If you were to simply set $ P re p rin t = S c ie n t i f  icEorm, then the user would get 
a nasty surprise the next time he executed Range [100, 200, . 1]! In order to respect 
the user’s definition of $P re P r in t ,  your code should be written thus:

The purpose of the private B e g in  [ " ' P r i v a t e ' " ]  ;
subcontext is to hide the o ld P r e P r in t  =  I f  [ V a lu e Q [ $ P r e P r in t ]  ,
symbol o ld P r e P r in t  from $ P r e P r i n t ,  I d e n t i t y ] ;
the user. $ P r e P r in t  =

S c i e n t i f i c F o r m [ o l d P r e P r i n t [ # ] ]  &;
End [ ]  ;

Now both your definition and the user’s definition will be applied.

R a n g e [1 0 0 ,  1 2 0 , .1 ]

{ 1 0 0 ,  1 .0 0 1  1 0 2 , 1 .0 0 2  1 0 2 , « 1 9 7 » , 1 .2  1 0 2 }

Unfortunately, if the user decides to redefine $ P reP rin t, your definition of it will 
be lost.

$ P r e P r in t  =  S h o r t [ # ,  2 ]& ;

R a n g e [1 0 0 ,  2 0 0 , .1 ]

{ 1 0 0 ,  1 0 0 .1 ,  1 0 0 .2 ,  1 0 0 .3 ,  1 0 0 .4 ,  1 0 0 .5 ,  1 0 0 .6 ,
« 9 9 0 » , 1 9 9 .7 ,  1 9 9 .8 ,  1 9 9 .9 ,  2 0 0 .}

You can prevent this from happening by assigning to $Pre a function that evaluates the 
user’s input and then resets $ P reP rin t to your version of it. Getting it right is quite 
tricky; an example of this technique can be found in the standard package U t i l i 
t i e s '  ShowTime', which overrides $Pre in order to time each evaluation automati
cally. This package is described in detail in [Maeder 91].

Another approach to this problem is taken by Jason Harris in his package Aliases.m 
(MathSource item #0206-851). This package allows a user to define aliases, or textual 
abbreviations. For example, if you load Aliases.m and evaluate the expression 
A lia s  [ s t r in g l , s tr in g 2 ], then from that point on, s tr in g l  is replaced by 
s tr in g 2  anywhere that the former occurs in the input. Harris uses $PreRead to 
accomplish this, but what is really novel is how he allows the user to continue to use 
$PreRead. The package defines a new symbol, $NewPreRead, that provides the same 
functionality as $PreRead, and the package aliases "$PreRead" to "$NewPreRead". 
Thus, for example, if the user evaluates $PreRead = func, what really happens is 
$NewPreRead = func. The package’s definition of $PreRead remains undisturbed, 
but the effect the user sees is the same as if the assignment to $PreRead actually had 
taken place!



9.6 Application: Defining a New Data Type
In this section we will take on one of the most challenging problems that any program
mer can face: defining a completely new data type and making it look as though it is 
built in. The data type that we will define is an integer prime factorization, inspired by 
one of the examples discussed in Section 9.4.1. This exercise will bring together many 
of the techniques that have been developed in this and earlier chapters.

9.6.1 Design issues

We could define a factorization data type as a product of the IntegerPow er objects 
introduced in Section 9.4.1, but there’s a problem with this approach. The problem is 
that some factorizations would have the head Times, while others (those with a single 
prim p, factor) would have the head IntegerPow er. Having two possible representa
tions for a factorization would complicate the logic for every rule we have to write. Fur
thermore, it would be nontrivial to figure out if a given expression with head Times 
represented a factorization or not. A less obvious, and even more troublesome, problem 
is that there is no way, short of fully parsing an expression, to determine whether or not 
an IntegerPow er object is part of a larger factorization. This is important, for exam
ple, in order to be able to create a rule that turns a solitary IntegerPow er [p , 1] into 
the integer p (which would be an incorrect thing to do if the IntegerPow er were part 
of a larger factorization). Therefore, we consider this approach to be fundamentally 
flawed. Instead, the data type that we develop here will have a unique head, F a c to r 
iz a tio n .

A  factorization w ill havethis f a c t z n  =  F a c t o r i z a t i o n  @@ F a c t o r l n t e g e r  [2 3 8 5 0 0 ]

simple representation. F a c t o r i z a t i o n  [ 12 , 2 } ,  { 3 ,  2 ) ,  { 5 ,  3 } ,  ( 5 3 ,  1 } ]

9.6.2 Formatting

We will construct a formatting rule for F a c to r iz a t io n  objects from low-level for
matting primitives. Each pair {a , b} in the F a c to r iz a t io n  object will be formatted 
as ab, and each pair {a , 1} will be formatted simply as a. Also, we will want a space 
character between every pair of factors. Therefore, we will apply the following two 
rules to a F a c to r iz a t io n  object:

f o r m a t r u le s  =  t
{ a _ ,  1 } - >  S e q u e n c e F o rm [a , " " ] ,
{ a _ ,  b _ }  ->  S e q u e n c e F o rm [a , S u p e r s c r i p t [ b ] , " " ]

};

F a c t o r i z a t i o n [ { a ,  b } , [ c ,  d } ]  / .  f o r m a t r u le s

„  . • r b d iF a c t o r i z a t i o n  La , c J

Note the blank character 
after each superscript.



The individual parts of this object have head SequenceForm; therefore, if we apply 
SequenceForm and then flatten the result, we will end up with one big Sequence
Form object:

F la t te n [S e q u e n c e F o r m  @@ %] / /  F u l lF o r m

S e q u e n c e F o rm [a , S u p e r s c r i p t [ b ] , " " ,  c .
S u p e r s c r i p t [ d ] , "  " ]

Now the trailing blank character can be removed with Drop. Here, then, is the for
mat value definition for F a c to riz a tio n :

F o r m a t [ x _ F a c t o r iz a t io n ]  :=
A p p ly [S e q u e n c e F o rm , x  / .  f o r m a t r u le s  
] / /  F l a t t e n  / /  D r o p [# ,  - 1 ] &

F a c to r iz a t io n s  now print f a c t z n
in the format we have 9 9 3
defined. 2 3 5 53

9.6.3 Overriding Factorlnteger

As the next step toward integrating the F a c to r iz a t io n  data type into the system, we 
will override F a c to r ln te g e r  to produce a F a c to r iz a t io n  directly. First, we unpro
tect F a c to rln te g e r , being careful to save its protected status.

w a s P ro te c te d  =  U n p r o t e c t [ F a c t o r ln t e g e r ]

( F a c t o r l n t e g e r )

Overriding F a c to r ln te g e r  brings up an interesting issue, namely that our defini
tion for F a c to r ln te g e r  has to call the “real” F a c to r ln te g e r  to factor the integer in 
the first place! Without a bit of care, we could easily wind up in an infinite recursion. 
The uninspired way out of this dilemma would be to define a function having a different 
name, but we want our new data type to be integrated as seamlessly as possible into the 
system. Therefore, we will create a new rule for F a c to rln te g e r , but we must some
how ensure that our rule is not matched when we make the recursive call.

The following technique is due to Robby Villegas. A global variable,4 in te rc e p t ,  
is used inside of a rule condition to control whether or not the rule matches. When the 
rule does match, the rule immediately uses Block to set in te r c e p t  to F a lse  for the 
duration of its execution. Thus, any nested calls to F a c to r ln te g e r  will not match this 
rule, because the rule condition will fail. When the rule is through executing, Block 
automatically restores the previous value of in te rc e p t .  A hidden advantage of using 
Block for this purpose is that, even if the user aborts the computation, in te r c e p t  will 
still be reset correctly.

4. Naturally, when we put these definitions into a package, this variable will be hidden 
inside of the package’s private subcontext (Section 8.2.1).



i n t e r c e p t  =  T ru e ;
F a c t o r l n t e g e r [ x _ I n t e g e r ]  / ;  i n t e r c e p t  :=

B l o c k [ { i n t e r c e p t  =  F a l s e } ,  ( *  p r e v e n t  r e c u r s io n  * )  
F a c t o r i z a t i o n  @@ F a c t o r l n t e g e r [x ]

]

D on't forget to reprotect P r o t e c t  @@ w a s P ro te c te d
Factorlnteger. { F a c t o r ln t e g e r ]

5Here’s a demonstration of the new and improved F a c to rln te g e r .

t  =  F a c t o r l n t e g e r  /@ T a b l e [ i ,  { i ,  0 ,  1 0 } ]

{ 0 ,  1 , 2 ,  3 ,  2 2 , 5 ,  2 3 .  7 ,  2 3 , 3 2 , 2 5 }

All o f these expressions H ead  /@ t
have the head F a c to r iz a ~  { F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ,

t l o n " F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ,
F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ,  
F a c t o r i z a t i o n ,  F a c t o r i z a t i o n ]

It would seem reasonable for expressions of the form F a c to r iz a t io n  [ [p . 1} ] to 
simplify to p. This is trivial to accomplish:

F a c t o r i z a t i o n [ { p _ ,  1 } ]  :=  p 

H ead  /@ t

{ I n t e g e r ,  I n t e g e r ,  I n t e g e r ,  I n t e g e r ,  F a c t o r i z a t i o n ,  
I n t e g e r ,  F a c t o r i z a t i o n ,  I n t e g e r ,  F a c t o r i z a t i o n ,  

F a c t o r i z a t i o n ,  F a c t o r i z a t i o n )

9.6.4 Expanding Factorizations

So far, so good! Now we need to create a function that turns a F a c to r iz a t io n  back 
into an integer. We already developed such a function, back in Section 5.1.3:

E x p a n d F a c t o r iz a t io n [ x _ F a c t o r i z a t io n ]  ;=
T im e s  @@ A p p ly [P o w e r ,  x ,  { 1 } ]

E x p a n d F a c t o r iz a t io n [ x _ ]  :=  x

E x p a n d F a c t o r iz a t io n  /@ t

{ 0 ,  1 ,  2 ,  3 ,  4 ,  5 ,  6 .  7 ,  8 ,  9 ,  10}

Note that E x p andF ac to riza tion  will not do anything unless its top-level argu
ment is a F a c to r iz a t io n . If the F a c to r iz a t io n  is an element at some lower level, 
nothing will happen:

5. Users o f  version 2 .2  and earlier take note: P rior to version 3.0, F a c t o r ln t e g e r
acted as an identity operator on the integers - 1 , 0 , and 1 , w hich leads to an error 
message. You can fix  this by making special-case definitions fo r these inputs.



E x p a n d F a c t o r iz a t io n [ f a c t z n  +  a ]

2 2 3
a  +  2 3 5 53

By analogy with the algebraic functions Expand and ExpandAll, we define a func
tion called E xpandA llF acto rization  that expands factorizations wherever they 
may be in an expression. Surprisingly, this is trivial to write:

E x p a n d A l lF a c t o r i z a t io n [ x _ ]  :=
M a p A l l [ E x p a n d F a c t o r iz a t io n ,  x ]

E x p a n d A l l F a c t o r i z a t i o n [ f a c t z n  +  a ]

2 3 8 5 0 0  +  a

9.6.5 Multiplication rules

The product of two factorizations should be another factorization. The way things are 
now, however, factorizations do not combine automatically:

f 2 4  =  F a c t o r l n t e g e r [2 4 ]  ;
f l 8  =  F a c t o r l n t e g e r [ 1 8 ] ;
f 2 4  *  f 18

2 3
2 3 2 3

As a first step toward simplifying expressions of this type, here is an upvalue for 
F a c to r iz a t io n  with respect to Times that turns a product of two factorizations into a 
single factorization:

J o in  works on any expres- F a c t o r i z a t i o n  / :
sions that have the same x _ F a c t o r i z a t i o n  *  y _ F a c t o r i z a t i o n  :=  J o i n [ x ,  y ]
head.

In p u t F o r m [ f2 4  * f l 8 ]

F a c t o r i z a t i o n [ { 2 ,  1 } ,  { 3 ,  2 1 ,  { 2 ,  3 } ,  { 3 ,  1 } ]

Obviously, we have more work to do. Now we need a rule that combines matching 
prime factors inside of a factorization. This rule will be easier to write and more effi
cient if we give F a c to r iz a t io n  the O rd erless  attribute.

S e t A t t r i b u t e s [ F a c t o r i z a t i o n ,  O r d e r le s s ]

A step in the right direction. In p u t F o r m [ f2 4  * f l 8 ]

F a c t o r i z a t i o n [ { 2 ,  1 } ,  { 2 ,  3 ) ,  ( 3 ,  1 ) ,  { 3 ,  2 } ]

Because of the O rd erle ss  attribute, we know that any two matching prime factors
must be consecutive, which makes combining them quite easy:

F a c t o r i z a t i o n [ h ______, { a _ ,  b _ } , { a _ ,  c _ } , t ____ ] :=
F a c t o r i z a t i o n [ h ,  { a ,  b +  c } , t ]



f 2 4  *  f 18

The O rderless  attribute does give rise to a slight formatting quirk, however:

Although internally the In p u tF o rm  [ f  2 4 ]
power of 2 precedes the F a c t o r i z a t i o n ! ( 2 ,  3 } ,  { 3 ,  1 } ]
power of 3 ...

when formatted, the 3 f 2 4
comes first. o

3 2

Depending on your point of view, this is either a bug or a feature. If you subscribe to the 
former view, take heart; you’ll have a chance to rectify this situation in the exercises.

Now we are going to assume that if a user is calculating with a prime factorization, 
then she is going to want any integers that come into contact with the factorization to be 
factored as well. (It would be rather strange to want some integers in a product to be 
factored but not others, for example.) Therefore, we want to write a rule that turns the 
product of an integer and a factorization into a factorization. Because of the last rule we 
wrote, it suffices to factor the integer; then the product of the factorizations will com
bine automatically.

F a c t o r i z a t i o n  / :
T im e s [ x _ F a c t o r i z a t io n ,  y _ In t e g e r ]  :=  

x  * F a c t o r l n t e g e r [ y ]

f 2 4  * 18

However, this rule has introduced a serious bug. This bug is particularly insidious 
because it involves two different functions calling each other, causing an infinite recur
sion. Anytime a factorization is multiplied by a prime number, say p, the prime will be 
converted first to F a c to r iz a t io n  [{p. 1}], which immediately simplifies to the
integer p. The process then begins again, leading to the infinite recursion.

$ I te r a t io n L im i t  is tern- B lo c k  [ { $ I t e r a t i o n L i m i t  =  2 0 } .
porarily reduced to avoid T r a c e  [3 *  F a c t o r l n t e g e r  [4 ]  , T im e s  [__ ] ] ]
thousands of lines of output. $ i t e r a t i o n L i m i t : : i t l i m :

I t e r a t i o n  l i m i t  o f  20 e x c e e d e d .

{3  2 2 , 2 2  F a c t o r l n t e g e r [ 3 ] ,  2 2 3 ,  3 2 2 ,

2 2  F a c t o r l n t e g e r [ 3 ] ,  2 3 ,  3 2 ,

2 2  F a c t o r l n t e g e r [ 3 ] ,  2 2 3 ,  3 2 2 ,

. . . many identical lines removed ...



2 2 22 Factorlnteger[3], 2 3, 3 2 ,
22 Factorlnteger[3]}

The correct thing to do when a F a c to r iz a t io n  is multiplied by a prime p  is to put 
a factor of [p , 1} inside the F a c to r iz a t io n  object directly, bypassing Times. How
ever, there are still three more exceptional cases: -1 ,0 , and 1. All of these have a fac
torization (as returned by the built-in F a c to rln te g e r)  of the form {{x, 1}}, yet 
none of them is prime. This is starting to seem too complicated; perhaps it would be 
best to start fresh.

Factorization /: Times[x__Factorization, y_Integer] =.

The following rule treats every integer (except 0) in a uniform way:

Factorization /:
Times[xJFactorization, y_Integer /; y != 0] := 

Factorization @@ Joint 
List @@ x.
Block[{intercept = False}, Factorlnteger[y]]

The way this rule works is as follows: First, it uses the built-in F a c to r ln te g e r  func
tion (note the use of Block) to factor the integer y. The result is a list, not a F a c to r 
iz a tio n . Then it converts the F a c to r iz a t io n  x to a L is t ,  and it passes both lists to 
Jo in . The combined list is then converted back to a F a c to r iz a tio n , and the internal 
simplification rule for F a c to r iz a t io n  takes it the rest of the way.

This trace shows the Join 
step explicitly.

TracePrint[ 18 * f24, Join[__List]]
Join [ { { 2, 3 ) ,  { 3 ,  1 } } ,  {{2, 1 } ,  { 3 ,  2}}]

24 33

Here is an example in which 
the multiplicative term is 
prime.

TracePrint[ 3 * f24, Joint__List]]
Join[{(2, 3}. {3. 1}}. {{3, 1}}]
3 22 3

The case when the multiplier is 0 is handled differently. In this case, the rule does not 
match, and Times rewrites f  * 0 as 0.

TracePrint[0 * f24. Unequal[_]]
0 ! =  0

0

Exercises

1. Fix the following problem:



Factorlnteger[-3] * Factorlnteger[-4]
2 23 -1 2

Be sure your fix works for any number of powers of -1.
2. Change the Format rule for F a c to r iz a t io n  so that the order in which the factors 

print mirrors the order in which they are stored internally.

9.6.6 Rules for powers
Despite our rules for multiplication, quotients of factorizations do not simplify: 

f24 / f 18

3 23
2 32

The reason for this behavior is that the denominator is a multiplicative term of the form 
P o w e r  [F a c to r iz a t io n [. . , -1 ], which prevents it from combining with the
F a c to r iz a t io n  in the numerator.

FullForm[%]
Times[Power[Factorization[List[2, 1], List[3, 2]],

-1], Factorization[List [2 ,  3], List[3, 1]]]

Likewise, powers of F a c to r iz a tio n s  do not simplify, and furthermore they look 
terrible:

The apparent exponent of f 24 A 2
32 actually is the textual 22
concatenation of the expo- 3 2
nents 3 and 2.

It’s quite easy to write a rule to take care of these problems.

Factorization /:
Power[a_Factorization, b_Integer | b_Rational] := 

a /. {x_. y_) -> (x, y b}

{ f24 / f18, f24 A 2, Sqrt[f24]}
( 2 2 3 ’ 1 . 26 32 , 23 «  3 1 / 2 )

l / %

13 2 ' 2 , 2‘ 6 3’ 2 . 2 - <3/2) 3 - ( i / 2 > )

Incidentally, the parentheses in the exponents of the last two results were inserted 
automatically by the output formatter, because the precedence of unary minus is greater 
than the precedence of multiplication. For a complete discussion of how precedence



affects formatting see PrecedenceForm in [Wolfram 91] §2.7.8 or [Wolfram 96] 
§2.8.16.

There are still a few glitches left, which will be fixed in the next exercise.

Exercise

1. Fix the following problems:

{ f 2 4  /  3 ,  f 2 4  * 2 / 3 .  r  =  2 / 3 ;  f 2 4  *  r  )

3 3 3
3 2 2 3 2 2 3 2

3 ’ 3 ’ 3

{ f l 8  /  f 2 4 A2 ,  t  =  l / f 2 4 ;  f 2 4  * t  }

( 2 - 5  3 ° ,  2 °  3 ° }

9.6.7 Addition rules
Finally, here are some rules for addition of factorizations. The straightforward way to 
implement addition would be with a rule like this:

Plus[a_Factorization, b_Factorization] :=
Factorlnteger[

ExpandF actorizatlon[a] + ExpandFactorization[b]
]

This rule relies on the Flatness of P lu s to handle longer sums. However, this rule 
would be very inefficient for sums of many terms, because of all the conversions back 
and forth between factored and unfactored forms. Instead, we would like to write a rule 
that will handle a sum of any number of factorizations all in “one fell swoop.”

Toward this end it will prove convenient to add a rule to E xpandF ac to riza tion  
that takes a Sequence of factorizations as an argument and returns a Sequence of 
integers as a result.

ExpandFactorization[x_Factorization] :=
Sequence @@ ExpandFactorization /@ {x}

Here's what this rule does. E x p a n d F a c t o r iz a t io n  [ f 2 4 ,  f l 8 ]

S e q u e n c e [2 4 ,  18]

And here's what we'll do Plus [%]
with the result. ^

Now it should be quite clear how to write a rule for P lus that handles any number of 
factorization arguments at once:

Factorization /:
Plus[a__Factorization] :=

Factorlnteger[Plus[ExpandFactorization[a]]]



Now the sum of two factor- f 2 4  +  f l 8
izations is another factoriza- 2 3 7
tion.

While we’re at it, we ought to define a rule for the sum of an integer and an arbitrary 
number of factorizations. (It is not necessary to handle multiple integer arguments, 
since P lus will combine those on its own.) Note how we exploit the “sequenceability” 
of E xpandF ac to rization  by passing all of the F a c to r iz a t io n  arguments to it at 
once.

Factorization /:
Plus[a_Integer, b__Factorization] :=

Factorlnteger[Plus[a, ExpandFactorization[b] ] ]

f24 + 1 0 + fl8 + 3
5 11

Exercise
1. Add rules for Log, Q uotient, Mod, the relational operators, and anything else you 

can think of to make them work with factorizations as arguments. Try not to expand 
the factorizations unless it would lead to simplification of the expression.

9.6.8 Nvalues
Factorization provides an uncontrived illustration of the use of Nvalues. When N is 
applied to a Factorization, the result should be a number, but it’s not:

N[Factorlnteger[8 ] ]
2 .3 '

To recast the discussion of Section 9.3.3 into the present context: Since F a c to r iz a 
t io n  [ {2, 3}] does not evaluate to a numeric quantity, N applies itself to all parts of 
that expression, which results in the intermediate form F a c to r iz a t io n  [ {2. , 3 .} ]. 
N then attempts to evaluate this new expression, which still evaluates to itself.

We can solve this problem by defining an Nvalue that expands a factorization into a 
product of powers when N is applied. After expansion, N applies itself again, resulting 
in a numerical answer.

N[a_Factorization, _] := ExpandFactorization[a]

N[Factorlnteger[8 ]]
8.

Note that we can ignore the precision argument because the second application of N 
does all the numerical work.



1 / Factorlnteger[9]
3 2

N[%, 30]
0 .1111111111111111111111111111111

The Nvalue allows us to pass factorizations to any function that numerically evalu
ates its arguments, such as FindRoot or any of the plotting functions.

f[x_] = xA2 - Factorlnteger [56]
2 3

x  +  -1  7 2

FindRoot[f[x] = 0 ,  {x, 1)]
tx  ->  7 .4 8 3 3 1 }

9.6.9 Modifying $Pre
Suppose we want to set things up so that anytime the user entered a manifest prime 
raised to a manifest integer exponent, the expression would be converted to a F a c to r
iz a tio n . We could effect this behavior by applying a rule of the form 
Power[a_?PrimeQ, b_ In teg e r] -> F a c to r iz a t io n [{a, b}] to every user 
input before it evaluates.

Here is the function that we will use. Note that the function must hold its argument, 
or else the powers would simplify before it had a chance to act on them.

SetAttributes[AutoFactor, HoldFirst]
AutoFactor[command_] :=

Unevaluated[command] /.
a_?PrimeQ A b_Integer -> Factorization[{a, b}]

AutoFactor[g[2A3, 3A2 + 1]]
g [ 2 3 , 2 5]

The question is, How do we apply A utoFactor to every user input? We accomplish 
this by assigning A utoFactor to the global variable $Pre (Section 9.5.3).

Before assigning to $Pre ... g [ 2 A3 ,  3 A2 +  1]

g [ 8 . 1 0 ]

$Pre = AutoFactor;

and after. g [ 2 A3 ,  3 A2 +  1 ]

g [ 2 3 , 2 5 ]

Naturally, production-quality code would save the user’s value of $Pre before mak
ing this assignment.



Exercise
1. Create a package called Factorization.m that implements the F a c to r iz a t io n  data 

type.

9.7 Additional Resources
Mark Sofroniou has written a package called FormaLm that provides a totally rewritten 
set of formatting primitives for C, Fortran, TeX, and Maple. This package is available 
from MathSource as item #0205-254.
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10
Performance Tuning

For many users the principal drawback of Mathematica is its lack of speed relative to 
other programming tools. Being an interpreted language, Mathematica is of course 
slower than compiled languages such as C or Fortran. The very features that make 
Mathematica so powerful — dynamically typed data, pattern matching, and the very 
general way in which expressions are evaluated (Chapter 7, “Expression Evaluation”)
— also exact a toll on performance.

Most of the time, however, what is perceived to be a problem with Mathematica 
actually is a problem with the way that the code is written; a different solution in 
Mathematica may be many times faster, and certain built-in functions rival the speed of 
compiled languages. In this chapter we examine the intricate details of performance- 
tuning Mathematica code.

There are several general rules of thumb. Some of them are obvious, such as using 
special-purpose built-in functions whenever possible; others are quite unobvious, such 
as avoiding in-place modification of large lists. The what of most of them can be 
arrived at through experimentation, but the why sometimes requires a deep understand
ing of how Mathematica evaluates expressions.

Some of the techniques for tuning Mathematica code basically are “tweaks” that 
speed up a computation by a constant factor; others can result in qualitatively different 
time, complexities — for example, reducing a computation’s time complexity from qua
dratic in the problem size to linear. Simply incorporating a few new programming idi
oms into the code may be all that is necessary.

Another method for speeding up a program is to use the internal compilation facility. 
The speedup gained through compilation can be substantial, and the technique is quite 
easy to use (modulo a few “gotchas,” of course). Unfortunately, the compiler can han
dle only a limited set of Mathematica expressions in version 2.2; the capabilities of the 
compiler are greatly expanded in version 3.0.



Finally, when every last second counts, the MathLink protocol [WRI 93c] can be 
used to communicate with external programs written in compiled languages such as C 
or Fortran. This may seem like a lot of trouble, but in practice it is often just the oppo
site, as it may be the case that the C or Fortran code to solve the problem already has 
been written. MathLink is important enough (and involved enough!) to merit its own 
chapter (Chapter 11).

10.1 Rules of Thumb
There are many general strategies, or “rules of thumb,” of which one needs to be aware. 
Most of these rules can be arrived at through experimentation, but to really understand 
them requires an understanding of the evaluation process (Chapter 7). In this section 
we’ll list the rules and give examples to motivate them. In later sections we’ll examine 
techniques for avoiding some of the pitfalls pointed out here.

Incidentally, the rules here are not necessarily presented in order of their impact on 
performance, but rather in the order that makes the presentation as coherent as possible.

10.1.1 Rule 1: Use built-in functions
This rule is not surprising, since built-in functions are (with a few exceptions) imple
mented in the kernel, which is written in C. There are various overheads involved in 
evaluating general expressions (see Chapter 7) that are not a factor inside of an internal 
function. In general, pick the method that moves as much of the computation as possi
ble into the internal code.

As a simple example, suppose we wish to sum the squares of the first 5000 integers. 
This could be done quite easily using any of the looping constructs.

{s, i} = {0 , 1 };
While[i <= 5000, s += iA2; i++] // Timing 
s
{3.26667 Second, Null}

41679167500 

s = 0 ;
For[i =1, i <= 5000, i++, s += iA2] // Timing
{2.98333 Second, Null)

s = 0 ;
Do[s ■+= iA2, {i, 5000}] // Timing
{2. Second, Null)

Sum[iA2, {i, 5000}] II Timing
{0.933333 Second, 41679167500}

For no obvious reason, a 
For loop is a bit faster than 
an equivalent W hile loop.

A Do loop is quite a bit faster 
than either of those.

None can match the speed 
of a special-purpose func
tion like Sum, however.



These examples reinforce the reasoning given above: The reason the Do loop is faster 
than the other two types of loops is probably due to the fact that all of the index variable 
computation is handled internally. Sim is faster still, since not only the index variable 
computation but also the addition operations are implicit rather than explicit.

10.1.2 Rule 2: Program functionally
The basic goal when using functional programming techniques to improve performance 
is this: Try to apply operations to as much of the data at one time as possible. (This rule 
is just another facet of the general strategy of trying to push as much of the computation 
as possible into the kernel’s internal routines.) This strategy is facilitated by the fact that 
all numerical functions are listable (Section 3.3), and for those functions that aren’t, 
Map, Apply, etc. can be used.

Therefore, a good general approach to the example introduced in the previous sec
tion is to generate a list of all of the summands, and then apply P lus to it. There are 
several different ways to generate the list of summands, and a little experimentation 
shows their relative speeds.

Using T a b le  to generate the P lu s  @@ T a b l e [ i A2 ,  { i ,  5 0 0 0 } ]  / /  T im in g
list of squares is probably {Q _9 Second> 4 1 6 7 9 1 6 7 5 0 0 }
the most obvious method.

The effect of squaring the Plus @@ (Table[i, {i, 5 0 0 0 } ] A2) / /  Timing
entire list at once is quite {0 .6 3 3 3 3 3  Second, 41679167500}
noticeable.

A further improvement P lu s  @@ (Range [5000] A2) II T im in g
comes from replacing {Q 55 Second) 4 i 679167500}
Table with Range.

Note again that the more specific operator (Range) is more efficient than the more gen
eral operator (Table) because more of the computation is done inside of the kernel.

Of course, the strategy suggested here is trading memory for time. When there is not 
enough memory available to hold all of the intermediate results at one time, a proce
dural solution may be a better alternative. Furthermore, other factors such as the use of 
virtual memory can affect the performance of functional programming algorithms sig
nificantly.

10.1.3 Rule 3: Use machine-precision arithmetic
When the eventual answer is going to be an approximate number, and machine-preci- 
sion arithmetic does not pose numerical problems, convert numbers to machine preci
sion as early as possible in the computation.

Let us change the example problem so that instead of summing squares, we sum 
square roots. A sum of 5000 symbolic square roots is of dubious value; we almost cer-



tainly want a numerical answer. The worst possible way to do it would be something 
like this:

This would be even slower 
had we used a loop.

N[Plus @@ Sqrt[Range[5000]]] // Timing
{13.3167 Second, 235737. )

Here is a smaller example that demonstrates why this computation is so slow:

This builds up a large list of 
integers and symbolic 
square roots.

Many of these terms cannot 
be combined by Plus.

After each term is approxi
mated numerically, Plus 
executes a second time.

Sqrt[Range[ 1 0 ]]
{1 , Sqrt[2], Sqrt[ 3 ] ,  2, Sqrt[5], Sqrt[6], Sqrt[7]

2 Sqrt[2], 3, Sqrt[ 1 0 ]f

Plus @@ %
6 + 3 Sqrt [2] + Sqrt [3] + Sqrt [5] + Sqrt [6 ] +

Sqrt[7] + Sqrt[10]

N [%]
22.4683

Improving this code is as easy as falling off of the proverbial log. Here are some 
examples:

A small but noticeable 
improvement is effected by 
applying N to the list of 
square roots before passing 
it to Plus.

Observe the dramatic 
improvement when the list 
of integers is evaluated 
numerically before square 
roots are taken.

Machine-precision Range 
bounds obviate the need for 
N altogether!

Another small improvement 
comes from specifying the 
increment in machine preci
sion as well.

Plus @@ N[Sqrt[Range[5000]]] // Timing
{11.9833 Second, 235737.}

Plus @@ Sqrt[N[Range[5000]]] // Timing
(1.01667 Second, 235737.}

Plus @@ Sqrt[Range[1., 5000.]] // Timing
{1. Second, 235737.)

Plus @@ Sqrt[Range[1., 5000., 1.]] II Timing
{0.933333 Second, 235737.}

Explicit loops can be sped up in exactly the same ways.

10.1.4 Rule 4: Evaluate when possible
Functions such as For, Sum, and P lo t evaluate their first argument numerically at sev
eral values of an independent variable. Such arguments are always held (that is, not 
evaluated before the function is called):



H o ld A ll indicates that none 
of the arguments to Sum are 
evaluated.

Attributes[Sum]
{HoldAll, Protected, ReadProtected}

This is done under the assumption that symbolic evaluation of the expression may be 
incorrect until numeric values of the independent variable are substituted (e.g., if the 
expression contains conditional operations such as If).

Sometimes, however, evaluating the first argument before the call can result in an 
algebraic simplification that makes subsequent evaluations more efficient. Here is an 
example in which a seemingly trivial expression actually is far from optimal:

Sum[l/iA2, {i, 1., 5000., 1.}] // Timing
{1.11667 Second, 1.64473}}

What is going on here? The parser converts the input l/iA2 to this expression: 

FullForm[Hold[l/iA2]]
Hold[Times[1, Power[Power[i, 2], -1]]]

Clearly, this is a very inefficient way to evaluate l / i A2! If this expression is forced to 
evaluate, however, it assumes a much more compact and efficient form:

FullForm[l/iA2]
Power[i, -2]

It should be pointed out that for this particular sum, NSum is the fastest method by a 
wide margin:1

NSum[iA(-2), {i, 5000}] // Timing
{0.366667 Second, 1.64473}

This is because NSum checks the first few partial sums for evidence of convergence, and 
if it determines that the sum is converging, NSum estimates the value of the tail of the 
series rather than computing it explicitly.2 The estimation methods used by NSum are 
discussed in [Keiper 93a].

1. Caveat: The first time NSum is called, it may be quite slow, as the kernel loads the 
code that implements it. Subsequent calls to this function are much faster.

2. Because of this fact, NSum can even be used to sum infinite series.

Clear[i]
Slim[Evaluate[l/iA2], {i, 1., 5000., 1.}] II Timing
{0.7 Second, 1.64473}



10.1.5 Rule 5: Compile when possible
Another technique that NSum uses is to compile the summand into pseudocode before 
evaluating the sum.3 The pseudocode is basically an assembly language program for an 
idealized register machine that is implemented by the kernel. This pseudocode can be 
evaluated much more quickly than the equivalent normal expression.

Compilation is directly available to the programmer as well. Note the speed increase 
achieved by compiling a simple expression like ( i  - l ) / ( i  + 1):

Sum[(i - l . ) / ( i +  1 .) , { i, 1 ., 5000., 1.}] II  Timing
{ 1 .2 3 3 3 3  S eco nd , 4 9 8 3 .8 1 }

The syntax for Compile is c f  =  C o m p i le [ { x } ,  ( x  -  l . ) / ( x  +  1 . ) ]
similar to the syntax for x  -  1
F u n ctio n . C o m p lle d F u n c t lo n [ { x } , — +  ' , -C o m p ile d C o d e -]

Sum [cf[i], {i, 1 ., 5000., 1.}] / /  Timing
[0 .9 1 6 6 6 7  S e c o n d , 4 9 8 3 .8 1 }

The speedup can be even more dramatic when the compiled function is less trivial. Not 
all Mathematica expressions can be compiled, unfortunately. We’ll discuss the subtle
ties of compilation in Section 10.5.

10.1.6 Rule 6: Avoid Append and Prepend
This is one of the most important rules. Append, Prepend, and their ilk, when they
appear inside of a loop, are like a death sentence for performance purposes. Consider
the following two methods for generating a list of 1000 numbers:

T able[i, {i. 1000}]; / /  Timing
{0 .0 3 3 3 3 3 3  S e c o n d , N u l l )

s =  { } ;
Do[AppendTo[s, i ] , {i, 1000}]; / /  Timing 
{ 2 .1 1 6 6 7  S e c o n d , N u l l )

This is an example in which the blame could mistakenly be placed on the looping 
construct. In fact, the loop itself is quite speedy:

Do[x = i ,  {i, 1000}]; II  Timing
{ 0 .0 5  S eco n d , N u l l )

3. Many other functions (e.g., P lot) also compile some of their arguments. You can 
find out which ones do so by searching for functions having the Compiled option 
(using the techniques of Section 7.3.5).



The real problem is that functions like AppendTo that change the length of a list have 
to copy the list. In the example given, the list is copied 1000 times. When you build up 
a list of length n using Append or AppendTo, the number of items copied is approxi
mately n2/2.

This same phenomenon can make recursive functions that build up their result one 
element at a time very slow. This often puzzles Lisp programmers, who are taught to 
program that way because it is efficient in Lisp.

There are several solutions to this problem, which we will discuss in Sections 10.2.1 
and 10.3.1.

10.1.7 Rule 7: Do not modify large lists in place
In-place modification of large lists is extremely inefficient in Mathematica. As an 
example, consider the following two ways of computing the first moving average of a 
list of numbers:

Here the result is computed s =  Range [1 0 0 0 ];
in place (i.e., it replaces the D o [ s [ [ i ] ]  = (s [ [i] ] + s [ [ i  + l ] ] ) / 2 ,
original data). { i t Length[s] - 1}];  II  Timing

( 3 .0 1 6 6 7  S e c o n d , N u l l )

Here the result is stored in a s =  Range [1 0 0 0 ];
different list than the origi- ( t  =  T a b le [0 ,  { 1 0 0 0 } ] ;
nal data. The creation of the D o [ t [ [ i ] ]  = ( s [ [ i ] ]  + s [ [ i  + 1] ] ) / 2 ,
destination list is included { i>  L e n g th [ s ] -  i } ] ; ) / /  T id in g
in the timing. , „ „ ,

(0 .6 3 3 3 3 3  S e c o n d , N u l l )

In Section 7.3.3 we explained that this disparity is due to the way that the kernel 
evaluates an expression like s [ [ i]  ] if s has been modified since its last access. The 
evaluation process requires a scan of each element of s to check for upvalues, which 
takes time proportional to the length of s (review Section 7.3.3 for a more in-depth 
explanation). Thus, in the first algorithm s undergoes a scan on each loop iteration, 
which makes the running time quadratic in the length of the list, rather than linear.

Unfortunately, there are three possible drawbacks to the second approach: First, the 
length of the result may not be known in advance; second, it may result in a lot of 
unnecessary data movement; and third, the list may be just too large to copy. There are 
other solutions to this problem, and they will be discussed in Section 10.2.2.

10.1.8 Rule 8: Beware of inefficient patterns
Pattern matching and rule replacement often provide some of the most elegant solutions 
to a particular problem. However, incorrect use of these techniques can drastically 
impair performance.



For example, the following algorithm for run-length encoding a list of data (due to 
Frank Zizza) is unquestionably elegant — in fact, it won an award in a programming 
contest at a 1990 Mathematica conference.

runEncode[s_List] :=
Map[{#, 1 }&, s] I I .

{h___, {x_, n_}, {x_, m_}, t___} :>
{h, {x, n + m}, t}

runEncode[{1, 0, 0, 1. 1, 1}]
{{1, 1). {0, 2), {1, 3}}

The Map statement converts { s l , s2 ,  . . . } t o { { s l ,  1}. {s2, 1}, subse
quently, the pattem combines adjacent sublists that have the same first element, adding 
their repetition counts together. Unfortunately, the running time of this algorithm 
appears to be a quadratic function of the input size:

Each doubling of the input 
size causes the run time to 
quadruple (at least).

data = Table[Random[Integer, {0, 1}], {256}];
{#, Timing[runEncode[Take[data,#]]][[1,1] ] }& l@ 

{32, 64, 128, 256}
{ { 3 2 ,  0 .0 1 6 6 6 6 7 ) ,  { 6 4 ,  0 .0 8 3 3 3 3 3 ) ,  {1 2 8 , 0 .4 3 3 3 3 3 }  

{ 2 5 6 ,  2 .3 1 6 6 7 ) }

The problem with this approach has to do with the way the kernel performs pattem 
matching. We can see pattem matching in action by “instrumenting” the replacement 
rule with a condition clause that prints each attempted pattem match:

We use the condition clause 
to check x  =  y (rather than 
specifying x_ twice in the 
pattern) to force the kernel 
to show us every match that 
it tries.

{ { 1 , 1} .  { 0 , 1} ,  { 0 , 1} ,  { 1 , 1} ,  { 1 . 1} ,  { 1 , 1} }  / / .
{h___, {x_, n_}, {y_, m_}, t___} /;

(Print[{h, {{x, n}, {y, m}}, t}]: x =  y) :> 
{h, {x, n + m}, t}
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Two important facts can be gleaned from this example. First, the kernel attempts to
match sequence patterns (e.g., “__”, “___ ”, “ . .  or “ . . .  ”) from left to right. Second,
after the kernel finds a successful match for the pattem, on the next iteration it starts its 
search back at the left end of the input, which for this particular algorithm is guaranteed 
to be a waste of time. It would be much more efficient if pattem matching could pick up 
“where it left off” on the previous iteration. A rule-based technique with exactly this 
behavior will be discussed in Section 10.4.



10.1.9 Rule 9: Use #, &-style pure functions
This is completely unobvious, but a pure function defined using # and & is faster than a 
“normal” function.4 Surprisingly, however, a definition using Function is about as 
slow as a normal function. Here is an example:

func1 [x_] := xA- 2

func2 = Function[{x}, xA-2];
func3 = #A-2 &;
z = Range[5000.]; 
fund /@ z; // Timing
(2.01667 Second, Null)

func2 /@ z; I I Timing
{2.08333 Second, Null]

func3 /@ z: 11 Timing
{1.25 Second, Null)

There are several things that might explain why the #, & form is faster than the nor
mal function: no pattern matching is taking place, there is no search for upvalues or 
attributes, etc. However, the relative slowness of the Function [params, body] 
form is a mystery.

10.2 Procedural Perils
A handful of terribly inefficient procedural programming techniques are what give pro
cedural programming in Mathematica a bad reputation. A handful of new procedural 
programming idioms are all that the programmer needs to avoid these problems.

10.2.1 Building up large lists
The problem with building up lists an element at a time is that Mathematica lists are 
implemented as arrays. The advantage of this implementation is that a list can be ran
domly indexed in time that is independent of the length of the list; the disadvantage is 
that every time, an element is added to or taken away from a list, the list has to be copied 

f l y  into a new list — leading to a quadratic time complexity for algorithms that build up 
large lists one element at a time.

Consider the problem of writing a function that merges two sorted lists, which is an 
essential component of a mergesort algorithm (Section 5.4.2). Here is a (bad) proce
dural algorithm for doing this:

4. Allan Hayes first pointed this out to the author.



The first W h ile  does the 
merging, after which the 
second and third W hile's  
check for "leftovers" in one 
list or the other.

Some test data.

pm ergel is quite slow.

pmergel[listl_List, list2_List] :=
Module[{ il = 1, i2 = 1, temp = {} },

While[il <= Length[listl] && i2 <= Length[list2] 
If[listl[[il]] < Iist2[[i2]],

AppendTo[temp, listl[[il]]]; il++, 
AppendTo[temp, list2[[i2]]]; i2++

]
];
While[il <= Length[listl],

AppendTo[temp, listl[[il] ]]; il++ ];
While[i2 <= Length[list2],

AppendTo[temp, list2 [ [i2]]]; i2++ ];
temp

]
odds = Range[1, 1999, 2]; 
evens = Range[2, 2000, 2];
Short[pmergel[odds, evens]] // Timing 
(8.5 Second, (1, 2, 3, 4, 5, 6 , 7, «1990»,

1998, 1999, 2000})

Below, we discuss several ways to speed up this function.

Preallocate the result

The simplest solution to the problem is to preallocate a list of the appropriate size 
and then fill it in:

In this algorithm, the result 
is stored in temp.The length 
of temp never changes.

pmerge2 is over five times 
faster than pm ergel on the 
test data.

pmerge2[listl_List, list2_List] :=
Module[{ il = 1, i2 = 1, temp }.

temp = Table[0, {Length[listl] + Length[list2]}] 
While[il <= Length[listl] && i2 <= Length[list2] 

If[listl[[il]] < Iist2[[i2]]p
temp[[il + i2 - 1]] = listl[[il]]; il++, 
temp[[il + i2 - 1]] = list2 [[i2 ]]; i2++

]

]
];
While[il <= Length[listl], 

temp[[il + i2 - 1] ] = 
While[i2 <= Length[list2], 

temp[[il + i2 - 1]] =
temp

listl [ [il] ] ; il-H- ] 

list2 [[i2 ]]; i2++ ]

Short[pmerge2[odds, evens]] II Timing 
{1.75 Second, (1, 2, 3, 4, 5, 6 , 7, «1990», 

1998, 1999, 2000}}

An increase in speed of a factor of 5 is impressive enough, but the real story here is 
that the two algorithms have different computational complexities; that is, their timing



behavior is qualitatively different as the size of the problem increases. Shown below are 
some timings of the pmerge functions on inputs of various sizes.

The strange-looking time 
values are a result of averag
ing several runs of each test 
case.

pmtimesl =
{ { 5 0 ,  0 .0 9 1 6 6 6 7 } ,  

{ 2 0 0 ,  0 .5 0 8 3 3 3 } ,  
{ 5 0 0 ,  2 . 3 5 8 3 3 } ,  
{ 8 0 0 ,  5 .6 1 6 6 7 } ,

{ 1 0 0 ,  0 .1 9 1 6 6 7 } ,  { 1 5 0 ,  0 . 3 5 } ,  
{ 3 0 0 ,  0 . 9 7 5 } ,  { 4 0 0 .  1 .5 9 1 6 7 } ,  

{ 6 0 0 ,  3 . 2 9 1 6 7 } .  { 7 0 0 ,  4 . 4 2 5 } .  
{ 9 0 0 ,  7 . } .  { 1 0 0 0 ,  8 . 4 7 5 } } ;

pmtimes2 =
{ { 5 0 ,  0 .0 9 1 6 6 6 7 } ,  { 1 0 0 ,  0 .1 6 6 6 6 7 } .  { 1 5 0 ,  0 .2 4 1 6 6 7 } ,  

{ 2 0 0 ,  0 . 3 4 1 6 6 7 } , { 3 0 0 ,  0 .5 0 8 3 3 3 } .  { 4 0 0 ,  0 .6 8 3 3 3 3 } ,
{ 5 0 0 ,  0 . 8 5 } .  { 6 0 0 ,  1 . 0 2 5 } .  { 7 0 0 ,  1 .1 9 1 6 7 } .
{ 8 0 0 .  1 . 3 7 5 } ,  { 9 0 0 .  1 . 5 5 } ,  { 1 0 0 0 .  1 .7 4 1 6 7 } } ;

The standard package G ra p h ic s 'M u ltip le L is tP lo t ' is nice for plotting several 
sets of discrete data.

The Symbol Shape option is 
new to version 3.0; users of 
earlier versions can omit this 
option. The code to create 
the legend is not shown.

Needs["Graphics'MultipleListPlot'"]

pmlp = MultipleListPlot[pmtimesl, pmtimes2, 
SymbolShape->{PlotSymbol[Box],

PlotSymbol[Triangle] }, 
PlotRange->All];

200 400 600 800 1000

Next, we fit some least-squares polynomials to the data sets. We do not specify a 
constant in the list of basis functions, because in theory, each algorithm should take 0 
time on an input of length 0. Note the relative strengths of the linear and quadratic 
terms in the two fitting functions (keep in mind that the x values are in the range 102 
to 103).

Clear[x]
pmfitl[x_] = Fit[pmtimesl, {x, xA2}, {x}]

-6 2
0 .0 0 1 0 4 1 6 6  x  +  7 .4 5 9 3 6  10 x

pmfit2[x_] = Fit[pmtimes2, {x, xA2}, {x}]
_ 8 2

0 .0 0 1 6 6 5 0 3  x  +  6 .9 5 1 2  10 x



The following graph shows that the quadratic component of pm ergel’s running time 
is the dominant one, whereas in the case of pmerge2 the quadratic component probably 
is nonexistent.

S h o w [p m lp ,
P l o t [ { p m f i t l [ x ] , p m f i t 2 [ x ] } ,  { x ,  5 0 ,  1 0 0 0 } ,  

D i s p l a y F u n c t i o n - > I d e n t i t y ] , 
D is p la y F u n c t io n - > $ D is p la y F u n c t io n ,
P lo tR a n g e - >A11

20 0  400  600  800  1000

■ pmergel 
A pmerge2

Use linked lists

The preallocation strategy may be fine when the size of the result is known in 
advance, but what about cases in which it is not? In such cases, list nesting can be used 
to implement a linked-list data structure. Here is the basic idea:

s = {};
Do[s = {s, x}, {x, 1, 5}]; s
{ ( { { { { } ,  1 ) .  2 ) ,  3 } ,  4 ) ,  5}

What we have here is a list whose second element is the number 5 and whose first ele
ment is another list. The second list also contains two elements, the number 4 and 
another list, and so on. No list’s size is ever changed during this process. A new list (of 
two elements) is created at each step,5 but since that is a constant-time operation, the 
entire cost is linear in the number of iterations. At the end of this process, the nested list 
can be turned into a one-level list by flattening it, which is another linear-time opera
tion:

F l a t t e n [%]

{ 1 ,  2 ,  3 .  4 ,  5 )

Here is a procedural merge function that builds up its result as a linked list:

5. Lisp programmers will recognize this as a cons operation.



pm erge3 [ l i s t l _ L i s t ,  l i s t 2 _ L i s t ]  : =
M o d u le [ {  i l  =  1 ,  i 2  =  1 , tem p  =  { }  } ,

W h i l e [ i l  <=  L e n g t h [ l i s t l ]  && i 2  <=  L e n g t h [ l i s t 2 ] ,
I f [ l i s t l [ [ i l ] ] < l i s t 2 [ [ i 2 ] ] ,

tem p  =  { te m p , l i s t l [ [ i l ] ] } :  i l + + ,  
tem p  =  { te m p , l i s t 2 [ [ 1 2 ] ] } ;  i 2 + +

]
] ;
W h i l e [ i l  <=  L e n g t h [ l i s t l ] ,

tem p  =  { te m p , l i s t l [ [ i l ] ] } ;  i l + +  ] ;
W h i le [ i 2  < =  L e n g t h [ l i s t 2 ]  ,

tem p  =  { te m p , l i s t 2 [ [ i 2 ] ] } :  i 2 + +  ] ;
F la t t e n [ t e m p ]

]
p m e r g e 3 [ { l ,  3 ,  4 } ,  { 2 ,  5 } ]

( 1 ,  2 ,  3 ,  4 ,  5 }

Figure 10-1 graphically compares the running time of pmerge3 with that of 
pmergel and pmerge2. (The code for generating this and all subsequent graphics has 
been omitted to save space. The size of the input is on the horizontal axis, and the run
ning time, in seconds is on the vertical axis.) As promised, pmerge3 has linear time 
complexity, and in addition it turns out to be faster than pmerge2. This probably is due 
to the index calculations required in pmerge2.

temp[ [ i l  + i2  - 1 ]] = 
l i s t l [ [ i l ] ]  has been 
replaced by temp = {temp , 
l i s t  [ [ i l ] ] } ,  etc.

■ pmergel 
*■ pmerge2 

* pmerge3

Figure 10-1

The only fly in this ointment is that the elements of the list that is being built up may 
themselves be lists. In such a case, flattening the list would flatten the sublists as well. 
The solution to this problem is shown below.

Use some arbitrary head, 
rather than List, to build up 
the linked data structure.

s =  h [ ]  ;
D o [s  =  h [ s ,  { i ,  - i } ] , { i ,  4 } ] ;  s 

h [ h [ h [ h [ h [ ] ,  { 1 , - 1 } ] .  1 2 , - 2 } ] , { 3 ,  - 3 } ; , { 4 ,  - 4 } ]



A third argument to F lat- F la tte n  [ s . I n f in i t y ,  h]

S h S S d t e f f l S .  h [ l 1 ’ - 1 1 ' l 2 ' - 2 K  l 3 - - 3 I - “ • - 41)
( I n f i n i t y  is a level specifi
cation.)

Finally, change the outer- % / .  h - > L i s t
most head from h to L is t .  { { 1> _ 1] > (2> _2} > {3< _3 ] j  { 4  _4 } )

Merging two lists has a very natural recursive implementation, and we’ll return to 
this problem when we discuss methods for speeding up recursion in Section 10.3.

10.2.2 Modifying lists in place
In Section 10.1.7 we pointed out that algorithms that read and write each element of a 
list have time complexity that is quadratic in the length of the list, rather than linear as 
might be expected. Writing all results to a second list provides a way around this prob
lem, at the cost of extra memory. Figure 10-2 contains a graphical comparison of the 
running times of the two moving-average algorithms given in Section 10.1.7, as a func
tion of list size. The upper, quadratic curve represents the algorithm that modifies the 
list in place; the lower, linear curve represents the algorithm that writes results to a sec
ond list.

Figure 10-2

For simple computations on lists that are small enough to copy, writing results to a 
second list works well. However, not all computations are so simple. An excellent 
example of such a computation is the sorting algorithm known as quicksort [Cormen 
et al. 90]. Quicksort is essentially an extremely sophisticated “shell game” that per
mutes data into sorted order by swapping strategically chosen pairs of data elements. 
Quicksort is performed in stages (the actual number of stages depends on the data, 
although the expected number is close to logn), and the number of data elements that 
move at each stage typically is less than n. Because of this, quicksort usually moves 
around many fewer data elements than other sorting algorithms, enabling it to outper-



form them. If all n elements of the data had to be copied to a new list at each stage, 
quicksort’s speed advantage would be negated.

Even for simple computations such as the moving average, it is certainly conceivable 
that the amount of data being operated upon is so large that there just isn’t enough 
memory to make a copy.

For these reasons, it behooves us to explore other methods for modifying large 
amounts of data without making copies of the data. We will continue to use the moving- 
average computation as an example, since it is easy to understand.

Attack 1: Indexed variables

Rather than using a list to hold the data, we can use downvalues. This is a technique 
that The Mathematica Book refers to as indexed variables.

Prepare the data. C le a r  [s ]
Do[s[i] = i, {i, 6 }]

DownValues[s]
(HoldPattern[s[1]] :> 1, HoldPattern[s[ 2 ] ] :> 2 .  
HoldPattern[s[3]] :> 3, HoldPattern[s[4]] :> 4, 
HoldPattern[s[5]] :> 5, HoldPattern[s[6]] :> 6)

The only change to the in-place moving-average algorithm is the replacement of all 
double square brackets with single ones:

Do [s [i] = (s [i] + s [i + 1 ]) /2.
{i. Length[DownValues[s]] - 1}];

DownValues[s]
3 5(HoldPattern[s[1]] :> HoldPattern[s[2]] :>
7 9HoldPattern[s[3]] :> HoldPattern[s[4]] :>

HoldPattern[s [5] ] :> HoldPattern[s [6 ] ] :> 6 )

Although it’s not obvious that using downvalues should be any more efficient than 
using a list, it turns out to be so, because the kernel uses hashing [Cormen et al. 90] to 
implement near-constant-time lookups of downvalues such as s [3]. Figure 10-3 on 
page 312 shows that the running time of the downvalues technique is linear in the size 
of the data, although it is not quite as efficient as the list-copying technique.

The use of downvalues rather than lists compromises memory efficiency, because 
downvalues take up a lot more memory than list elements. We need to find a way to 
operate directly on lists without taking the performance “hit” associated with them.



Figure 10-3

Attack 2: HoldComplete

The source of the inefficiency of the in-place list-modifying algorithm is the kernel’s 
insistence on attempting to evaluate the elements of the list each time it is subscripted. 
We can prevent this overhead by changing the head of the list to HoldComplete,6 as 
explained in Section 7.3.3. The code for the actual computation doesn’t change at all; 
only the head of the data structure changes.

s = HoldComplete @@ Range[1000];
Do [s [ [i] ] = (s [ [i] ] + s [ [i + l]])/2,

{i, Length[s]-1}]; II Timing
{0.633333 Second, Null}

Short [s]
HoldComplete[3 5

2’ 2 ’ 2' 2
7 9 1999-■ « 9 9 4 » . 1000]

Figure 10-4 shows a graphical comparison of the HoldComplete-based moving- 
average algorithm against the others. It is plain to see that the performance of the 
HoldComplete algorithm is identical to that of the list-copying algorithm, without 
requiring any extra memory!

From the foregoing discussion it would be easy to draw the conclusion that the 
HoldComplete approach is the automatic choice for procedural operations on large 
lists. It does have the advantage that it requires only a very small change to the code and 
yields a qualitative improvement in running time. Nevertheless, the downvalues 
approach should not be discounted entirely: When the size of the result is not known in 
advance, it may be the paradigm of choice, since it solves not only the list modification 
problem but also the Append problem discussed in Section 10.2.1.

6 . U sing H o ld  instead o f H o ld C o m p le te  does not achieve the desired effect. See 

Section 7.3 .3  fo r an explanation o f why, as w e ll as a description o f an alternative to 

the H o ld C o m p le te  technique for use w ith  older versions o f Mathematica.
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Figure 10-4

Side note: Functional solutions

The techniques discussed in this section are designed for operating on data in place, 
under the assumption that memory is precious. Freed from this restriction, it is instruc
tive to observe how much faster the moving-average problem can be solved by using 
functional programming techniques.

Keeping in mind the twin objectives of using built-in functions whenever possible 
(rule of thumb 1) and operating on as much of the data at one time as possible (rule of 
thumb 2), we arrive at the following functional solution, which is demonstrated on a list 
of the first five integers:

Use Partition to break up 
the list into smaller lists that 
are to be averaged.
Sum each of the sublists by 
applying Plus at level 1.

Finally, divide by 2.

Partition[Range[5]. 2, 1]
( ( 1 ,  2 ) ,  { 2 ,  3 } , ( 3 ,  4 } , { 4 , 5}}

Apply[Plus, %, {1}]
(3, 5, 7, 9)

%/2

iK  5- ,  l . - i2 2 2 2

Figure 10-5 on page 314 shows that the functional solution is much faster than even 
the fastest linear-time procedural solution.

Incidentally, note how simple it is to generalize this idea to moving averages of arbi
trary width (generalizing any of the procedural algorithms in this way requires the 
introduction of a nested loop, which makes the code even slower):
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T a b le [ A p p ly [ P lu s ,
P a r t i t i o n [ { a ,  b ,  c ,  d , e } , k ,  1 ] ,  { 1 } ] ]  /  k ,  

t k ,  2 ,  5 } ]

, ra  +  b b + c  c + d  d + e ,
2 ’ 2 ’ 2 ’ 2 ’

. a + b + c  b + c + d  c + d + e .
3 ’ 3 ' 3

a +  b +  c +  d b +  c +  d +  e.  . a  +  b +  c +  d +  e , ,
4 ’ 4 J ’ 1 5 11

So what’s the catch? Memory efficiency. The functional solution is extravagantly 
wasteful of memory, because the memory size of the partitioned list is a linear function 
of the moving-average width k.

This characteristic precludes the use of the functional technique when both the list size 
and the width of the moving average are large (as might occur in time-series analysis of 
large data sets).

Exercise

1. Write a procedural algorithm to perform Gaussian elimination. Compare the perfor
mance of your implementation with and without the HoldComplete technique.

Recursion is a very elegant programming strategy, but there are two problems with 
using it in Mathematica: First, it often doesn’t seem to be as fast as other solutions, and 
second, it can’t be applied to very large problems because of evaluation stack size limi
tations. In this section we’ll show that both of these problems can be overcome.

T a b le [ B y t e C o u n t [ P a r t i t io n [ R a n g e [ 1 0 0 0 ] ,  k ,  1 ] ] ,  { k ,  1 0 } ]

{4 4 0 2 4 , 5 9 9 6 8 , 8 3 8 5 6 , 9 9 7 2 8 , 1 2 3 5 2 8 , 1 3 9 3 2 8 , 1 6 3 0 4 0 ,  
1 7 8 7 6 8 , 2 0 2 3 9 2 , 2 1 8 0 4 8 }

10.3 Recursion Risks and Rewards



10.3.1 Building up list results
Here is a recursive version of the merge function that we coded procedurally in 
Section 10.2.1.

rm ergel[a_List, b_List] :=
Which[

a = { }  | | b =  t } , Join [a, b] .
F irs t[a ]  <= F irst[b ] ,

Prepend[rmergel[Rest[a], b ] , F ir s t  [a]] ,
True,

Prepend[rmergel[a, R est[b]] , F i r s t [b]]
]

rm ergel[{l, 5, 8}, {2, 3, 4, 7}]
(1. 2, 3, 4, 5, 7, 8}

Because deep recursion can crash the kernel, we test this function on small bench
marks, computing averages over several runs to smooth out timing fluctuations. 
Figure 10-6 contains a graph of the results, along with a quadratic curve fit. Clearly, the 
tim e complexity of this algorithm is quadratic.

Figure 10-6

The reason for the quadratic complexity of rm ergel is the same as in the procedural 
case: building up lists one element at a time (in this case, using Prepend). We can use 
linked lists to solve that problem here as well. Here is a recursive merge function that 
builds up a linked list of results as the recursion “unwinds.”

rmerge2[a_List, b_List] :=
Which[a =  {} | |  b =  {}, Join[a, b ] ,

F irs t[a ] <= F ir s t [b ] ,
{ F irs t[a ] , rmerge2[Rest[a], b ]} .

True,
{F irst [b ], rmerge2[a, Rest [b]]}

]



The result of rm erge2 is a r m e r g e 2 [ { l ,  5 ,  8 } ,  { 2 ,  3 ,  4 ,  7 } ]
linked list, as promised. (1> (2> {3> {4> { 5 _ { ? _ { 8 } } ) ) ) } }

Flatten this structure to get Flatten [%]
the final answer. , - „ „ , _ _ 0 .

11,  2 ,  3 ,  4 ,  5 ,  7 ,  8 }

Figure 10-7 shows a graphical comparison of rm ergel and rmerge2, with qua
dratic functions fitted to each. rmerge2 has a quadratic component, but it is much 
smaller than before.

Figure 10-7

Where is that quadratic component coming from? The R est function is the culprit. 
Every time a recursive call is made, R est copies n - 1 elements of an ^-element list. 
This is yet another consequence of the fact that Mathematica lists are implemented as 
arrays rather than as linked lists. But this explanation suggests immediately how we can 
fix the problem: We should use linked-list data structures for the inputs to the function 
as well as for its output. The beauty of this approach is that, assuming the inputs to the 
recursive merge function are in the form of Lisp-style linked lists (e.g., { e l , {e2, 
{ . . .{}}}} ,  the function needs only a slight modification:

The only change from 
rmerge2 is that Rest [x] 
has been replaced by 
*[[2]].

Note that the output and the 
input have the same struc
ture—  very handy!

rmerge3[a_List, bJList] :=
Which[

a =  {} | | b =  {} , Join [a, b] , 
First[a] <= First[b],

{First [a] , nnerge3 [a [ [2] ] , b] } , 
True,

{First[b], rmerge3[a, b [ [2]]]}
]

merge3[{l.{5,{8.{}}}}. {2,{3,{4,{7,{}}}}}]
(1, {2, {3, {4, {5, {7, (8 , {)}})}}})



In order to use this function conveniently, we need another function that converts a 
Mathematica-style linear list into a linked list. We can write such a function using Fold 
(Section 5.3.3).

toLinkedList[s_List] :=
Fold[{#2, #1} &, {}. Reverse[s]]

toLinkedList[{2, 3, 4, 7}]
{2, (3, {4, (7, [}}})}

Flatten[
rmerge3[toLinkedList[{1. 5, 8 }],

toLinkedList[{2, 3, 4, 7}]
] ]
{1, 2, 3. 4, 5, 7, 8 }

Although the conversion to and from linked lists seems like a lot of extra work, 
rtnerge3 turns out to be more efficient than rmerge2 for all but the smallest input 
sizes (see Figure 10-8). This is because the conversion of the inputs to linked lists is a 
linear-time operation, as is the flattening of the output; the entire process now consists 
of a small number of linear-time operations. Hence, superiority is ensured once the 
problem size is large enough.

Here is a merge from start to 
finish.

□ rmergel 
A rmerge2 
0 rmerge3

Figure 10-8

10.3.2 Tail recursion
Recursion uses lots of memory for stack space. $RecursionLim it can be increased 
somewhat, but increasing it too much can easily crash the kernel. Is there some way to 
get the elegance of recursion without running into $RecursionLim it?

The answer to this question turns out to be a qualified “yes.” Consider the following 
two functions for computing the length of a list:

This is the straightforward l e n l  [x _ ]  :=  I f [ x = { } ,  0 ,  1 +  l e n l  [R e s t  [x ]  ] ]
recursive length function.



lenl[{a, b, c}]
3

This length function is quite len2 [x_] :=len2[0, x]
tricky- len2 [n_, x j  : =

If[x={}, n, len2 [n + 1, Rest [x] ] ]

len2 [{a, b, c}]
3

In le n l  the result of the recursive call is added to 1. In len2 the result of the recursive 
call is returned as the result of the calling function. Ien2 works by counting the number 
of recursive calls as the calls are made. When the recursion bottoms out, the result is 
right there, waiting to be returned.

A function such as len2 is called tail-recursive, which simply means that the recur
sive call is the last thing the function does before returning. Since the result of the entire 
recursive computation is ready and waiting as soon as the final recursive call completes, 
it can be returned directly as the result of the original call! Certain recursive languages, 
Mathematica included, optimize this situation by not keeping track of tail-recursive 
calls on the recursion stack. Not only does this avoid bumping into $Recursion- 
L im it, it also speeds up the evaluation (for nontrivial functions)!

Let us verify the above claims.

$RecursionLimit = 300;
lenl[Table[0, {$RecursionLimit + 1}]]
$RecursionLlmit::recl±m:

Recursion depth of 300 exceeded.
298 + If[Hold[{0, 0, 0) == {}]. 0,

1 + lenl[Rest[{0, 0, 0}]]]

len2[Table[0, {$RecursionLimit + 1}]]
301

Timing[lenl[Table[0, {$RecursionLimit - 10}]]]
(0.216667 Second, 290)

Timing[len2[Table[0, {$RecursionLimit - 10}]]]
(0.216667 Second, 290)

Why isn’t len2 faster than l e n l?  In theory it should be, but in practice it takes 
longer to pattem-match each call to len2, because there are two rules rather than one 
and because each call has two arguments rather than one. For a function having a larger 
amount of computation per recursive call (coming up!) we should see a speed advan
tage to tail recursion.

As expected, lenl cannot 
deal with a I ist whose length 
exceeds $Recursion- 
Limit.

But len2 has no problem 
with it.

Timewise, the two functions 
are very similar.



This is all very interesting, but is it practical? Clearly the le n g th  function is a spe
cial case; perhaps less-contrived functions cannot be structured so that they are tail- 
recursive. The m ergesort algorithm (Section 5.4.2), in which the results of two recur
sive calls to m ergesort have to be merged before the parent instance of m ergesort 
can return, comes immediately to mind. The author knows of no tail-recursive algo
rithm for m ergesort. However, necessity often proves to be the mother of invention, 
and it turns out that the merge function can be implemented tail-recursively. This effec
tively solves the problem with m ergesort, since m ergesort itself does not give rise 
to very deep recursion (logn recursive calls on an input of length n), whereas merge 
does so (n recursive calls on an input of length n).

Here is a tail-recursive version of the rmerge3 function (the version that uses linked 
lists as both inputs and outputs):

trm ergel[a_L ist, b_List] := trm ergel[a, b, {}]
trm ergel[a_L ist, b_List, c_List] :=

Which[
a =  {} | |  b =  {}, { c ,  a, b ) ,
F i r s t [a] <= F ir s t [ b ] ,

trm ergel[a[[2] ] , b. (c, F irs t[a ]} ] ,
True,

trm ergel[a, b [ [2]] , tc, F ir s t  [b]}]
]

trm erg e l carries around an extra parameter with it, which is the cumulative result of 
the merge process. When the recursion bottoms out, the entire merged list (in the form 
of a linked list) is returned directly. Note that the expression {c , a , b } won’t be a 
well-formed linked list; we are taking advantage of the fact that the return value is des
tined to be flattened. The following example shows the form of the return value from 
trm ergel.

trm ergel[toLinkedL ist[{1, 5, 8}],
toL inkedList[{2, 3, 4, 7}]

]
({({({{{}, 1), 2], 3}, 4),  5),  7), (8, {}}, ()}

F la t te n [%]
{1, 2, 3, 4, 5, 7, 8}

Figure 10-9 on page 320 clearly shows that the tail-recursive merge is a linear-time 
algorithm, and it works on inputs of arbitrary size without exceeding $Recursion- 
L im it. Furthermore, as alluded to earlier, trm erg e l is slightly faster than its non-tail- 
recursive counterpart, rmerge3, because there is less evaluation stack overhead (see 
Figure 10-10 on page 320).



Figure 10-9

□ rmergel
A rmerge2
O rmerge3
* trmergel

□ rmergel
A rmerge2
0 rmerge3
☆ trmergel

Figure 10-10 Detail view of Figure 10-9.

10.4 Rewrite Rules
We can avoid $R ecursionL im it by using rewrite rules instead of recursion. In prepa
ration for that, let’s convert rmerge3 into a rule-based recursive function. As before, 
we’ll use the linked-list “tricks” to achieve a linear running time.

rbmergeO[a_List, {}] := a 
rbmergeO[{}, b_List] := b 
rbmergeO[{al_, arest_}, b:{bl_, _}] :=

{al, rbmergeO[arest, b]} /; al <= bl 
rbmergeO[a:{al_, , {bl_, brest_}] :=

{bl, rbmergeO[a, brest]}
rbmergeO[toLinkedList [{1, 5, 8 }],

toLinkedList[{2, 3, 4, 7}]] // Flatten
{1, 2, 3, 4, 5. 7, 8 )



Figure 10-11 shows that rbmergeO is faster than rmerge3, the function upon which 
rbmergeO is based, and trm erg e l, the tail-recursive merge function. This is because 
using the pattem matcher to discriminate between the various cases is faster than using 
the Which function. However, since rbmergeO is recursive, it suffers from the same 
limitations on input size as does rmerge3.
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Figure 10-11

Now let’s transmogrify rbmergeO into a set of stand-alone rules:

We use a new head mrg to 
identify the part of the 
expression that is still to be 
merged.

mergerulesl = {
mrg[a_List, {}] : > a , 
mrg[{}, b_List] :> bi

mrg[{al_, arest_}, b:tbl_, _}] /; al <= bl :> 
{al, mrg[arest, b]}, 

mrg[a:{al_, . {bl_, brest_}] :>
{bl, mrg[a, brest]}

Below is a small example of how these rules operate.

Set up the initial expression.

We can watch the rule 
replacements one at a time.

l i s t l  =  T a k e [o d d s , 5 ] ;  
l i s t 2  =  T a k e [e v e n s ,  5 ] ;
m r g [ t o L i n k e d L i s t [ l i s t l ] , t o L i n k e d L i s t [ l i s t 2 ] ]

mrg[{l, ( 3 ,  (5, { 7 ,  (9, { ) ) ) ) } } ,
12 ,  { 4 ,  { 6 ,  { 8 ,  { 1 0 ,  I ) ) } } } } ]

% / .  m e r g e r u le s l

{1, mrg[{3, (5, { 7 ,  {9, {)}})},
12, { 4 ,  { 6 ,  { 8 ,  ( 1 0 ,  { } } ) } } } ] )

% / .  m e r g e r u le s l

{ 1 ,  [ 2 ,  mrg [ { 3 , {5, { 7 ,  (9, {)}}}).
{ 4 ,  { 6 ,  { 8 ,  { 1 0 ,  { } ) } ) } ] ) }



When we're satisfied that it % / / .  m ergerulesl
w ork^ w e let it n jn to com- ^  { 2 _ ^  ^  ^  ^  ^  ^  ^

Flatten[%]
( 1 ,  2 ,  3 ,  4 ,  5 ,  6 , 7 ,  8 , 9 ,  10}

The following version of rbmerge wraps the special mrg head around a pair of 
linked lists, uses R eplaceA ll to apply the rules in m erg eru lesl until the expression 
stops changing, and then flattens the result.

rbmergel[a_List, b_List] :=
Flatten[mrg[toLinkedList[a], toLinkedList[b]] II .  

mergerulesl]
rbmergel[list2 , listl]
( 1 ,  2 ,  3 ,  4 ,  5 ,  6 , 7 .  8 , 9 ,  10}

Surprisingly, rbm ergel has quadratic time complexity (Figure 10-12). It is so slow 
that it is limited to very small problem sizes.

X rbmergel
0 rmerge3
☆ trmergel
o rbmerge0

Figure 10-12

Why is rbm ergel so excruciatingly slow? Intuitively, we would expect it to be 
faster than a recursive approach because there is no need to keep track of the evaluation 

1 W  Stack. The answer is that the pattern matcher spends a great deal of time trying to match
f l y  the pattern to parts of the data structure that already have been transformed. To put it

another way, the mrg head (which is what the pattern matcher is searching for) is get
ting buried deeper and deeper within the expression as the replacements occur (refer to 
the example given above). It’s not hard to argue that this results in quadratic time com
plexity.

Is the R eplaceA ll approach a failure? Not necessarily! If the data structure is set up 
so that the mrg pattern is always the first thing the pattern matcher finds, it will be much 
faster. The data structure we will use will segregate the “finished” part from the “in 
progress” part, as shown below:



mrg[inputl, input2, sortedOutput]

All three components of this data structure will be linked lists. The rules now look like 
this:

mergerules2 = {
mrg[a_List, {}, s_] :> {s, a}, 
mrg[{}, b_List, s_] :> {s, b},
mrg[{al_, arest_}, b:{bl_, _}, s_] /; al <= bl :> 

mrg[arest, b, {s, al}], 
mrg[a:{al_. _}, fbl_. brest_}, s_] :> 

mrg[a, brest, {s, bl}]

Note the similarity between this set of rules and the tail-recursive function trm ergel 
in the previous section.

Here is an illustration of the operation of the new set of rules. Note the growth of the 
third list as the other two shrink.

m r g [toLinkedList[listl], toLinkedList[list2], {}]
mrg[(1, {3, (5, {7, {9, {}}}}}},

{2. {4, {6 , {8 , {10, {})))}}, {)]

% /. mergerules2

mrg[{3, (5, {7, {9, {}})}).
{2, {4, {6 , {8 , {10, {})})}}, {{}. 1)]

% /. mergerules2

mrg[{3. {5, {7, {9, {}}))}, {4, {6 , {8 , {10, {}}}}},
{{{), 1 ), 2 }]

The function rbmerge2 is almost identical to rbmergel. The obvious difference is 
the use of the new set of rules; a more subtle difference is the extra, empty list in the ini
tial data structure.

rbmerge2[a_List, b_List] :- 
Flatten[

mrg[toLinkedList[a], toLinkedList[b], {}] //. 
mergerules2 ]

rbmerge2 [list2 , listl]
{1, 2, 3, 4, 5, 6 , 7, 8 , 9, 10}

};

The base cases get rid of the 
empty lists, leaving only the 
result.

% //. mergerules2

{{{{{{{{{{(I, 1). 2}, 3}, 4}, 5}, 6 }, 7), 81, 9}. 
{10, {}}}

Flatten[%]
{1, 2, 3, 4, 5, 6 . 7, 8 . 9, 10}



Figure 10-13 compares rbmerge2 with some of the other linear-time algorithms. 
Note that it is slightly faster than even rbmergeO, the previous champ. Furthermore,

0 rmerge3
☆ trmergel
O rbmergeO
H rbmerge2

Figure 10-13

rbmerge2 is immune to $RecursionLimit (see Figure 10-14). It is nearly twice as 
fast as trm ergel (the tail-recursive algorithm) over the entire range of tested input 
sizes, and it’s even faster than pmerge3 (the fastest procedural algorithm) by a com
fortable margin.

* trmergel
* pmerge3 
81 rbmerge2

Figure 10-14

Exercise

1. Use the technique developed in this section to speed up the run-length encoding 
algorithm given in Section 10.1.8. Analyze the running times of the original version 
and your improved version.



10.5 Compiled Functions
Mathematica has a built-in compilation facility that can be used to speed up certain 
types of computations. The compiler doesn’t translate Mathematica code into actual 
machine-level instructions, because that would not be portable to versions of Mathema
tica running on other machine architectures. Instead, the code is translated into a simple 
register-based assembly language for a virtual machine that is interpreted by the kernel. 
Even though this code is interpreted, it still executes much faster than Mathematica 
expressions do because it avoids the main evaluation loop.

10.5.1 An example
Here’s a simple example of a compiled function. It takes two arguments and computes 
the ratio of their logarithms. We also define an uncompiled version of it for comparison.

The output of Compile is a CompiledFunction, which you should think of as being 
analogous to a F unction  (e.g., pure function). A CompiledFunction object contains 
the parameters to the function, the Mathematica version of the code, and a list of 
pseudocode instructions that print as -CompiledCode- in standard output form. You 
can inspect these instructions using, e.g., InputForm, which we’ll do shortly.

The compiled function is used in the same way as the uncompiled function. Note, 
however, that the arguments to a compiled function and all of the arithmetic in the func
tion are assumed to be real.

fl[x_, y j  := Log[x]/Log[y]
cfl = Compile[{x, y}, Log[x]/Log[y]]

CompiledCode-]

The integer arguments to 
c f l  are evaluated numeri
cally before the compiled 
function begins executing.

{f1[3, 4], cfl[3. 4]}
{L o g [3 ] 0 7 9 248 1 ), 0.792481)

The compiled function is dramatically faster than the uncompiled function.

Here is a list of pairs of real 
numbers.

data = Partition[
Table[Random[Real, {2., 100.}], {3000}],
2];

Short[data]
({90.8874, 5.70024), «1498>>, {78.5354, 4.13602))

The compiled function is 
about 4 times faster than the 
uncompiled function.

Timing[Apply[fl, data, {1}];]
{0.766667 Second, Null)

Timing[Apply[cfl, data, {1}];]
{0.133333 Second, Null)



Why is the compiled function so much faster? After all, it is interpreted code. The rea
son is that the compiler can make a lot of assumptions that the main evaluation loop 
cannot — e.g., that all inputs and outputs are real, and that all computation can be done 
using machine arithmetic. This obviates the need to check for such things as variable- 
precision arguments, upvalues, nonstandard evaluation, and so forth, which really 
speeds things up.

The parameters to a compiled function are limited in version 2.2 to the types integer, 
real, complex, or boolean. Version 3.0 adds support for a fifth type, tensor, which we 
will discuss in Section 10.5.5. The default type is real; we’ll see how to specify the 
other parameter types in Section 10.5.3.

Compiled evaluation will fail if the actual argument types are incorrect and cannot 
be coerced into the correct type (i.e., integer to real as in the above example). When this 
happens, the compiled function uses the original Mathematica code to perform the 
evaluation.

cfl[T rue, 1 + I]
CompiledFunction::cfr:

Cannot use compiled code; Argument True at
position 1 should be a machine-size real number.

Log[True]
Log[1 + I]

This sort of behavior should be avoided if possible, since this is slower than evaluating 
the Mathematica code in the first place. Another, more subtle limitation is that the 
results of all computations are assumed to be real; the compiled evaluation will fail if 
they are not.

c f l [-2. -3]
CompiledFunction::cfn:

Numerical error encountered at instruction 4; 
proceeding with uncompiled evaluation.

I Pi + Log[2]
I Pi + Log [3]

Both of these problems will be dealt with shortly; but first, let’s take a look at the 
internal form of a compiled function.

10.5.2 Compiled code
We can use InputForm to inspect the actual pseudocode contained in a Compiled
Function.



InputForm[cf1]
CompiledFunction[{_Real, _Real), {0, 0, 6 , 0, 0),

{{1, 2}, {4, 1, 0}, {4, 2, 1}, {54, 0, 2},
[54, 1, 3}, (45, 3, 4), {38, 2, 4, 5), {9, 5}}. 

Function[{x, y), Log[x]/Log[y]]]

InputForm reveals that the internal form of a CompiledFunction is quite different 
from its OutputForm. There actually are four parts to a CompiledFunction. The first 
part is a list of the types of the arguments. (The arguments are unnamed because they 
are referred to by number within the compiled code.) The second part is a list of the 
number of registers of each type that the code uses, in the format {nboolean , n i n t , 
n r e a l , ncom plex, n te n so r} (the final element in this list is absent in versions 
prior to 3.0). This particular compiled function uses six real registers. The third part is a 
list of pseudocode instructions, and the final part is a pure function that is used in case 
the compiled evaluation fails.

Let’s go through the pseudocode instructions7 for c f  1. The first instruction, {1, 2}, 
asserts that the version of the instruction set that was used to generate this code is ver
sion 2. The next two instructions load the parameters into registers; each instruction is 
of the form {4, paramH, rea lreg#}. The next two instructions are logarithms: 
{54, r l , r2] takes the Log of the contents of real register r l  and places the result in 
real register r 2. (This is the instruction that failed in the preceding example.) Opcode 
45 is a real reciprocal, hence {45 , 3 , 4 }  places 1 /lo g  [paraml ] into real register 4. 
Opcode 38 is retd multiplication; the product of real registers 2 and 4 is placed in real 
register 5. Finally, opcode 9 returns the contents of a real register, in this case register 5.

10.5.3 Specifying types
The general form of the parameter list to Compile is { {nam el, t y p e l} , {name2, 
type2  } , . . .} .  The types are specified as _ In teg e r, _Real, _Complex, and True | 
F a lse  for boolean. (We defer discussion of the tensor type to Section 10.5.5.) Note that 
types are not specified the way they are for ordinary function declarations, e.g., 
c_Complex, and that each {name, ty p e } pair must be in its own sublist, even if there 
is only a single parameter.

For example, here is a function that takes a boolean and a complex number as argu
ments; if the boolean is True, the function returns the conjugate of the complex num
ber, otherwise it returns the original number.

7. Note that some of these instructions will be different in versions prior to 3.0. A list
ing of all pseudocode instructions for version 2.2 can be found in [Keiper 93a], At 
the time of this writing there is no official source for the pseudocodes in version 3.0, 
although one will surely appear on MathSource before long.



cf2 = Compile[{{b, True | False}, (c, _Complex}},
If[b, Conjugate[c], c]]

CompiledFunction[{b. c), If[b, Conjugate [c], c] , 
-CompiledCode-]

cf2[#, 3 + 41]& /@ {True. False}
{3. - 4. I, 3. + 4. I)

As mentioned earlier, in the absence of type declarations the compiler assumes that 
arguments are real and that the results of all computations will be real as well. How
ever, if an argument is declared as complex, then the compiler will assume that all func
tions of that argument are complex. Here’s an example.

The parameter x is assumed InputForm [cf 3 = Compile [ {x} , Log [x] ] ]
to be of type Real. CompiledFunction[{_Real), {0, 0, 2. 0, 0),

({1, 2), {4, 1, 0), {54, 0, 1), (9, 1)).
Function[{x}, Log[x]]]

The parameterx is explicitly InputForm [cf4 = Compile [{{x, _Complex}}, Log [x] ] ]
declared to be of type Com- CompiledFunction[{_Complex}, (0, 0, 0, 2, 0},
P {{1, 2), {5, 1, 0}, {6 8 , 0. 1), {10, 1}},

Function[{x}, Log[x]]]

Aside from the fact that cf3 uses real registers and cf4  uses complex registers, note 
that the opcode used to compute the logarithm is different in the two functions. Opcode 
54 computes the log of a real register and puts the result in a real register, whereas 
opcode 68 computes the log of a complex register and puts the result in a complex reg
ister. Thus, cf4  will work even for negative arguments.

cf3[-2]
CompiledFunction::cfn:

Numerical error encountered at instruction 3; 
proceeding with uncompiled evaluation.

I Pi + Log[2]

cf4[-2]
0.693147 + 3.14159 I

10.5.4 Uncompilable expressions
Now that we have discussed argument types, it’s time to explain what the compiler can 
and cannot do. The compiler’s repertoire is limited to arithmetic and logical operations, 
elementary functions, and procedural constructs such as I f ,  Do, Module, etc. (The ver
sion 3.0 compiler also can compile most list operations; see Section 10.5.5.) Whenever 
the expression to be compiled contains any unknown functions — and this includes 
many built-in functions as well as all user-defined functions — the compiler generates 
instructions that evaluate those functions using the standard evaluation process. Here’s 
an example:



f5[z_] := z + Loglntegral[z]
InputForm[cf5 = Compile[{z}, z + Loglntegral[z] ] ]
CompiledFunction[{_Real}, {0. 0, 3, 0, 0},

{{1, 2}, {4, 1. 0}.
{31, Function[{z}, Loglntegral[z]], 3. 0, 1).
{34, 0, 1, 2}, {9, 2}) ,

Function[{z}, z + Loglntegral [z]]]

The instruction {31, expr, ty p e , rank, reg}  evaluates expr  using the nor
mal evaluation process. The typ e  element encodes the expected type of the result as an 
integer from 1 to 4, corresponding to logical, integer, real, and complex types.8 The 
rank element is used for tensor operations. In the example function, since there is no 
opcode for the L o g ln te g ra l function, an opcode 31 instruction is constructed for the 
expression Function  [ {z} , L o g ln teg ra l [z] ]. This will slow down the execution 
of the compiled function a great deal:

newdata = Range[2., 1000.];
Short[newdata]
{2., 3., 4., 5., 6 ., « 9 9 1 » , 998.. 999., 1000.}

Timing[f5 /@ newdata;]
{6.48333 Second. Null)

Timing[cf5 /@ newdata;]
{6.75 Second, Null)

Furthermore, since the argument to L o g ln teg ra l is real, the compiler expects the 
result to be real as well. This can cause problems, because L o g ln teg ra l is not a real
valued function for negative real arguments:

cf5[-2 .5]
CompiledFunction::ccr:

Expression -0.00285625 + 3.88437 I 
should be a machine-size real number.

CompiledFunction::cfex:
External evaluation error at instruction 3; 

proceeding with uncompiled evaluation.
-2.50286 + 3.88437 I

One way around this problem is to declare the parameter z as complex, but that would 
cause all of the compiled operations on z to be done with complex registers, which 
could take about twice as long as with real registers (the compiler uses C doubles for 
real numbers internally, and a pair of C doubles for complex numbers). As an alterna
tive, you can tell the compiler to expect certain functions to return certain types using

8. In versions prior to 3.0, there is a different opcode for each possible type of the 
result; e.g., opcode 24 evaluates an expression to get a real result, opcode 25 does 
the same thing for complex results, etc.

The uncompiled function 
takes this long.

The compiled evaluation is 
slower!

There is no pseudocode 
instruction for the Loglnte
gral function.



an optional third argument to Compile of the form { { p a t te r n l , 
{p a tte r n 2 , ty p e 2 } , . . . }:

t y p e l},

The third argument tells 
Compile to expect Logln- 
te g ra l  to return a complex 
value.

Now there is no error.

cf6 = Compile[{z}, z + Loglntegral[z],
{{Loglntegral[_], _Complex}}]

CompiledFunction[[z], z + Loglntegral[z]. 
-CompiledCode-]

cf6 [-2.5]
-2.50286 + 3.88437 I

Examining the pseudocode for cf6 reveals that it stores the result of evaluating 
L o g ln teg ra l [z] in a complex (type 4) register rather than a real one. It then coerces
z (which is in real register 0) into a complex number by storing z + 0. I in complex
register 2, and the arithmetic from that point on is complex.

InputForm[cf6 ]
CompiledFunction[{_Real}, {0, 0, 2, 3, 0},

{{1, 2}. {4, 1. 0),
{31, Function[{z), Loglntegral[z]], 4, 0, 0},
{15, 0., 1), {25, 0, 1, 1), {35, 1, 0. 2},
{10, 2}], Function[{z], z + Loglntegral[z]]]

Uncompilable expressions inside of a compiled function can render compilation use
less or even counterproductive, as we saw above. There are some particularly treacher
ous cases for which it’s not obvious that compilation won’t work. One such case is the 
use of global variables. Every global variable in a compiled expression will go through 
standard evaluation each time it is used; this can virtually cripple the compiled function 
if the variable is something like a loop index. Consider the following examples:

f7[lim_] := (s = 0; Do[s += i, {i, 1, lim}]; s)
cf7 = Compile[{{lim, _Integer}},

s = 0; Do[s += i, {i. 1, lim}]; s];

The compiled function is 
nearly 8 times slowerl

Here's why: A pure function 
is being evaluated for every 
expression involving either 
s or i .

Timing[f7[5000]]
{0.766667 Second,

Timing[cf7[5000]]

12502500)

{6.05 Second, 1.25025 10 )

Cases[cf7, Function[__ ], Infinity]
{Function[{lim), s], Function[{lim), s = 0],
Function[{lim), s], Function[{lim), s = s + i], 
Function[{lim), s],
Function[{lim), s = 0; Do[s += i, {i, 1, 5000)]; s]

You can get around this problem by making sure that symbols such as s and i  are 
declared locally in the body of the compiled function.



cf8 = Compile[{{lim, _Integer}},
Module[{i, s = 0}.

Do[s += i, {i, 1, lim}]; s
]

]
CompiledFunction[{lim}.
Module[{i, s = 0), Do[s += i, {i, 1, lim}]; s]. 
-CompiledCode-]

Quite a difference! Timing [cf8 [5000] ]
{0.0833333 Second, 12502500}

Incidentally, the compiler infers the type of a local variable from the first assignment 
to that variable that it comes across. Thus you may sometimes see strange warning mes
sages such as the following:

cf9 = Compile[{{lim, _Integer}},
Module[{i, s = 0},

Do[s 4= Sqrt[i], {i, 1, lim}]; s
]

]
Compile::cset:

Warning: Variable s of type _Integer
encountered in assignment of type _Real.

CompiledFunction[{lim},
Module[{i, s = 0}, Do[s += Sqrt[i], {i , 1, lim}]; 

s], -CompiledCode-]

The problem here is that s was initially assigned the integer 0, so the compiler assumed 
that s was an integer and loaded it into an integer register. Subsequently, the compiler is 
unable to figure out how to compile s += S q rt [i]  since s is an integer, but the com
piler th in ks  that S q rt should return a real. If you try to execute this function, the com
piled evaluation will fail, resulting in a very inefficient standard evaluation:

cf9 [10]
CompiledFunction::ccint:

Expression 1 + Sqrt[2]
should be a machine-size integer.

CompiledFunction::cfex:
External evaluation error at instruction 31; 

proceeding with uncompiled evaluation.
6 + 3 Sqrt [2] + Sqrt [3] + Sqrt [5] + Sqrt [6 ] +

Sqrt [7] + Sqrt [10]

The way to get around this problem is to make sure that the initial assignment to s is 
a real number, as shown below. Then the compiler will infer that s is a real variable.



cflO = Compile[{{lim, _Integer}},
Module[{i, s = 0.},

Do[s += Sqrt[i], {i, 1, lim}]; s
]

];

Timing[cflO[5000]]
(0.0833333 Second, 235737.)

The resulting compiled function is an order of magnitude faster than even a fast func
tional implementation of this computation (Section 10.1.3):

Plus @@ Sqrt[Range[1., 5000., 1.]] // Timing
(0.933333 Second, 235737.}

10.5.5 The tensor type
In version 3.0 the compiler supports an additional type, the tensor. A tensor is a gener
alized vector; in Mathematica, a tensor is a nested list in which every element at the 
same level has the same number of subelements. The number of levels in a tensor is 
called its rank. For example, a list is a rank-1 tensor, and a matrix is a rank-2 tensor.

In order to be used by the compiler, all elements of a tensor must be one of the three 
numeric types supported by the compiler (integer, real, or complex), and all of the ele
ments within a given tensor must be of the same type. Furthermore, the compiler needs 
to know the rank of a tensor at compile time in order to generate code for operations on 
it. Thus, tensor parameters have one extra element in their declaration, namely, the rank 
of the tensor. For example, the following compiled function sums the elements of a list 
that is passed as a parameter:

s is a rank-1 tensor with real csuml = Compile [{{s, _Real, 1}}, 
elements. Module [{i =  0, sum =0.},

For[i =1, i <= Length[s], i++. sum += s [[i]]]; 
sum

]
] :

Sum a list of 100,000 real z = Range [1., 100000];
numbers. Timing [csuml [z] ]

(1.36667 Second, 5.00005 109 } 

csuml is much faster than sum = 0 ;
an uncompiled For loop. Timing [For [i = 1, i <= Length [z] , i++, sum 4= z [ [i] ] ] ]

(50.8667 Second, Null}

It is even faster than the Timing [Sum[z [ [i] ] , {i, Length[z]}]]
built-in Sian function. n

(9.83333 Second, 5.00005 10 }



However, a functional solu- Timing [Plus @@ z]
tion is still faster. q

{0.983333 Second, 5.00005 10 )

The compiler can generate code for virtually all of the built-in list operations, such as 
Append, Prepend, Drop, Take, Sort, P a r t i t io n ,  R o ta teL eft, Jo in , and so forth. 
It can even generate code for higher-level functional operations such as Map, Apply, 
Nest, and Fold. Here is a compiled version of the last computation demonstrated 
above.

csum2 = Com pile[{{s, _Real, 1 }}, Plus @@ s ] ;

It is even faster than the Timing [csum2 [z] ]
built-in Apply. q

{0.283333 Second, 5.00005 10 }

Since the code generated by the compiler for tensor operands depends on the rank of 
a tensor, it is an error to change the rank of a tensor during the execution of a compiled 
function; attempting to do so will cause the execution to proceed with the uncompiled 
code. Thus, for example, it is not possible to use the compiler to operate on linked lists 
of the type introduced in Section 10.3.1.

As is the case for the other types, in order to use a local variable as a tensor, the first 
assignment to that variable must be a tensor of the appropriate type and rank, fo r exam
ple, here is a compiled function for computing the moving average of a list of real num
bers. (The second argument gives the width of the average.) Note the form of the initial 
assignment to the local variable t:

cma = C om pile[{{s, _Real, 1}. {k, _ In teg er}} ,
Module[{t = T a b le [0 ., {Length[s] - k + 1}] ,  

n = Length[s] - k + 1},
Do[t[[i]] = Sum[s[[i + j]], {j , 0, k - l}]/k,

{ i ,  n } ] ;
t

]
];

Compiled code using tensor operations is not always faster than the corresponding 
uncompiled code. Since the internal representation used by the compiler for tensors is 
different than the representation used by the kernel for nested lists, there is some over
head involved in converting from one to the other. Furthermore, the internal representa
tion used by the compiler is inherently less efficient for tensors of high rank (i.e., deeply 
nested lists). Trial and error seems to be the only way to find out which approach is 
more efficient.

Although the author has not yet discovered any hard-and-fast rules about the new 
tensor type, in general it seems that computations involving lots of numerical opera
tions are sped up a great deal by compilation, whereas computations that involve lots of 
data movement but very little computation (such as merging two lists) do not benefit 
very much.



10.6 Additional Resources
Two recent articles in the Mathematica Journal ([Gayley 94a], [Hayes 95]) deal with a 
number of techniques for writing efficient programs.

A good description of internal compilation can be found in [Keiper 93a]. A list of 
opcodes for version 2.2 of the compiler can be found on MathSource in item #0201
889, “The Mathematica Compiler.”



11
MathLink

MathLink is a cross-platform communication protocol defined by Wolfram Research, 
Inc. There is a C-library interface to MathLink as well as a Mathematica command- 
based interface. MathLink typically is used to communicate between a Mathematica 
kernel and a program written in a compiled language such as C, although it can also be 
used for kernel-to-kernel communication or even C program-to-C program communi
cation (without any Mathematica involvement whatsoever).

There are two typical uses for MathLink. The first of these is to allow the kernel to 
call functions written in another programming language. These functions may be part 
of a pre-existing scientific application library, or they may have been written specifi
cally for the purpose of performing some computation that is inefficient in Mathema
tica.

The other common use for MathLink is to allow a C program to exploit the computa
tional power of the Mathematica kernel, or to provide a nicer interface to it. In fact, the 
front end communicates with the kernel using MathLink, which should give you some 
appreciation of the protocol’s versatility. An example of an alternative front end is the 
MathLink for Excel and Mathematica program that is distributed by WRI, which allows 
users to enter arbitrary Mathematica expressions into spreadsheet cells.

In the present context of performance enhancement, we are concerned mainly with 
the first use of MathLink, that is, calling other programs from Mathematica. We will, 
however, discuss how such programs can send Mathematica expressions back to the 
kernel for evaluation, which lays the foundation for constructing programs of the sec
ond type. We also will discuss using MathLink for kernel-to-kemel communication, 
which can be used to implement large-grained parallel processing.

At the time of this writing the only compiled language supported directly by Math
Link is C. However, this does not exclude the use of other languages (e.g., Fortran),



since on most systems it is possible to link C code with code written in other languages, 
and the amount of code that absolutely has to be written in C is very minimal.

11.1 MathLink Fundamentals
In this section we will discuss the most basic aspects of the MathLink C language inter
face. Although it may seem as though there is a lot of drudgery involved, fear not! 
There are some excellent higher-level tools provided with the MathLink distribution 
that simplify the construction of MathLink programs enormously. We’ll begin introduc
ing these tools in the next section. However, as with all things involving computers and 
especially programming, some knowledge of the fundamentals can go a long way 
toward figuring out what to do when the “canned” solutions don’t work.

11.1.1 Hello world
We begin with the de rigueur demonstration of any programming language or para
digm: the “hello world” program. Do not be dismayed by the apparent complexity of 
the code shown below — over 90 percent of it (everything but the call to MLPut- 
S trin g ) is “boilerplate” initialization and cleanup code that can be used in any Math
Link program.1

This header file must be 
included in all MathLink 
programs.

These data types are defined 
in mathlink.h.

#include "mathlink.h"

main(int argc, char **argv) 
{ MLEnvironment mlenv; 

MLINK mlink:

Initialize the MathLink run
time environment and open 
a link.2

Send a string to the other 
side.

Wait until the other side of 
the link is closed.

Close the link and clean up 
before exiting.

mlenv = MLInitialize((MLParametersPointer)0) 
mlink = MLOpenArgv(argc, argv);

MLPutString(mlink, "Hello world!");

MLGetNext(mlink);

MLClose(mlink);
MLDeinitialize(mlenv); 
return 0;

1. N.B.: If you are using the MacOS operating system, your program must initialize 
the Macintosh toolbox before using any MathLink calls, or else the program may 
crash. See the documentation that comes with the MathLink distribution for MacOS 
if you don’t know how to do this.

2. Prior to version 3.0, MLOpenArgv was called MLOpen.



After this code is compiled, it must be linked together with the MathLink library; see 
the documentation that comes with the MathLink distribution for your computer for the 
details. Let us assume that we have successfully compiled and linked this program into 
an executable file called hello. Here is how the hello program would be called from 
Mathematica'.

l in k  = LinkLaunch["hello"]
LinkObject[hello, 2, 2]

LinkR ead[link]
Hello world!

L in k C lose[lin k ]

The LinkLaunch3 command launches and opens a link to the hello program, which for 
the purposes of this example is located in the same directory as the Mathematica kernel. 
(If the file resided elsewhere, we would have had to specify its full pathname.) 
LinkRead reads a data item from the link, which in this case is the string sent by hello. 
Finally, LinkClose closes the link; at that point, the MLGetNext call in hello returns 
an error status, which causes that program to clean up things on its end and terminate.

11.1.2 Two-way communication

Our next example is a function that sets a given bit in an integer. This is a task for which 
Mathematica is not well suited; it would be necessary to break the integer up into 
binary digits using In te g e rD ig its  [num, 2], manipulate the resulting list of Os and 
Is, and then reconstitute the answer as another integer using Homer’s rule 
(Section 5.3.3, “Fold”). Although this is certainly doable, it’s ugly and inefficient. On 
the other hand, this kind of “bit bashing” is easy to do in a low-level language like C.

The external program shown below expects the kernel to send it two arguments, the 
integer and a bit number, and the program returns the result of setting the given bit 
number in the given integer. The boilerplate from the hello example can be used 
unchanged; merely declare the following variables at the beginning of main:

in t  n; 
in t  b ;

and replace the call to M LPutString with the three calls shown below:

Uiame passes name as a by- M LGetlnteger (m lin k , &n) ;
reference parameter. M LGetlnteger (m link, &b) ;
<< is left-shiftand I is logical M LPutlnteger (m link, n | l<<b) ;
OR.

3. L in k L a u n c h  is new to version 3.0. Users o f earlier versions should use L in k O p e n  

instead.



As you can see, the input counterpart to MLPuttype is MLGettype. There are 
MLPuttype and MLGettype functions for nearly all of the basic C types. Note that the 
second argument to each MLGettype call is passed by reference.

Here’s how this external program is used from Mathematica:

link = LinkLaunch["setbit"];

Set bit 5 in the integer LinkWrite[link, 1];
0000012. LinkWrite [link, 5];

LinkRead[link]
33

LinkClose[link];

There are a few points worth noting about this example. First of all, in Mathematica 
only two functions — LinkRead and LinkW rite — suffice for reading and writing 
data of any type to or from a link. On the other hand, in the C interface there is a differ
ent function for putting and getting each basic C type. This is required since C is a stat
ically typed language, that is, the compiler needs to know the type of every parameter 
that is passed to a function. A consequence of this is that it’s possible for a MathLink 
program to try to get a type of data from the link that doesn’t match the datum that’s 
actually waiting on the link! When this happens, an error condition is raised on the link 
which, if not dealt with, causes subsequent input operations from that link to return 
without reading anything.

For example, if the first expression written to the link by the kernel had been a sym
bol, string, floating-point number, extended-precision integer, or any nonatomic expres
sion, both MLGettype calls would have failed, and the program would have written 
garbage to the link. Error handling is one of the trickiest aspects of writing MathLink 
programs. Fortunately, the tools that we will discuss in Section 11.2 write most of this 
code for you.

Exercises

1. Write a MathLink program that takes two integers n and b, where 0 < < 31, and
returns bit b of n.

2. Write a MathLink program that takes a string and two integers nx and n2 as argu
ments and returns the substring that begins at position and ends at position n2. 
(You will need to use the MathLink library function MLGetString.)

11.1.3 A MathLink server program
The program of the preceding section, in addition to not being very robust, is rather 
inefficient and user-unfriendly. First of all, it would be nice if the program would con
tinue to execute after answering a request from the kernel, so that it could be launched 
once but used repeatedly. This is quite easy to fix:



while(MLGetlnteger(mlink, &n) &&
MLGetlnteger(mlink, &b))

MLPutlnteger (mlink, n | l«b) ;
The While loop checks the return values of the MLGettype calls, which are either non
zero on success or zero on failure. In this way, the program will continue to execute for 
as long as the kernel keeps the link open, barring any errors, of course. When the kernel 
closes the linlr, the MLGettype  calls will fail, causing the program to exit from the 
While loop and terminate. (Note that the call to MLGetNext, from the original boiler
plate, is no longer necessary to keep the program from terminating prematurely.) Thus 
we have constructed a simple server program.

On the kernel side, the server program can be made easier to use by hiding the Math
Link details inside of a function definition like the following:

This definition assumes that 
an active link to the server 
program is contained in 
link.

SetBit[n_, b_] :=
( LinkWrite[link, 

LinkWrite[link, 
LinkRead[link]

)

n]
b]

Furthermore, there’s no reason why the same server program can’t provide more 
than one service, as long as the kernel prefaces the data it sends with some indication of 
the service it is requesting. Here is a C code fragment that provides two services to the 
kernel, setting a bit and clearing a bit:

char *func;

The new  argument, func, is 
the name of the service 
being requested.

while (MLGetString(mlink, &func) && 
MLGetlnteger(mlink, &n) && 
MLGetlnteger(mlink, &b))

{ if (!strcmp(func, "setbit"))
MLPutlnteger(mlink, setbit(n, 

else if (!strcmp(func, 
MLPutlnteger(mlink,

else
MLPutSymbol(mlink,

b)); 
'clearbit")) 
clearbit(n, b))

’$Eailed");

MLDisownString is a mem
ory management operation; 
see Section 11.4.3.

MLDisownString(mlink, func);

This program expects three arguments from the kernel: a string called func, indicating 
the name, of the service that is being requested, and the two arguments from the previ
ous example. (Naturally, if different services required different arguments, then the pro
gram’s logic would be slightly more complex.) Note that if func is not one of the 
strings " s e tb i t "  or " c le a rb i t" ,  the program returns the symbol $Failed .4

4. The Symbol type, like String, is represented in C as a character array. The differ
ence lies in how the characters are interpreted by the kernel.



The code that actually sets and clears bits has been separated from the main routine 
to emphasize the distinction between communication and computation. Here are the 
definitions of s e t b i t  and c le a rb i t :

int setbit(int n, int b)
{ return n | l<<b; }

int clearbit(int n, int b)
{ return n & ~(l<<b); }

Here is the new Mathematica definition for S e tB it;5 the definition for C learB it is 
analogous.

SetBit[n_, b_] :=
( LinkWrite[link, "setbit"];

LinkWrite[link, n];
LinkWrite[link, b];
LinkRead[link]

)

Below we demonstrate the features of this program.

The server can be invoked 
multiple times on the same 
launch.

If the name of the function is 
n o t" s e tb it"  o r " c le a r 
b i t " ,  the symbol $F a iled  
is returned.

The program continues to 
operate, however.

When the link is closed, the 
server program terminates.

This is about as far as we will go into writing MathLink programs from scratch. The 
next section introduces some tools that can generate most or all of the communication 
code for a MathLink server program from a high-level description of the services that 
the program provides. However, from time to time we will need to use MathLink calls

5. To avoid confusion, we use lowercase names for C functions and capitalized names 
for the corresponding Mathematica functions.

link = LinkLaunch["setbit"];

SetBit[1, 5]
33

ClearBit[%, 0]
32

LinkWrite[link, "unknown function"]; 
LinkWrite[link, 0];
LinkWrite[link, 0];
LinkRead[link]
$Failed

SetBit[3, 7]
131

LinkClose[link];



like the ones demonstrated in this section to deal with situations that are outside the 
purview of the tools.

Exercises
1. Add a function called g e tb i t  to the server program that gets the value of a particu

lar bit in an integer.
2. Write a Mathematica function called su b s tr in g  that provides a nicer interface to 

the substring extraction MathLink function that you created in Exercise 11.1.2.2.
3. Modify the substring extraction program so that it remains acti ve in between calls to 

SubString.

11.2 Template-Based MathLink Programs
In the last section we developed, from the ground up, a simple MathLink server pro
gram and a Mathematica interface corresponding to it. This is such a common use of 
MathLink that some tools exist for automating a large part of this process. The basic 
idea behind these tools is that you provide C source code for functions that you would 
like to be able to call from Mathematica, and a high-level description — a template — 
of the interface to these functions. The tools then generate all of the communication- 
related code for you and combine it with your function definitions to produce a com
plete server program. The C functions that have been encapsulated in this way are 
called installable functions for reasons that will become clear later.

The tools that accomplish this feat are called mprep and mcc.6 mprep reads a file 
called a template file that specifies, for each installable function, such things as the 
name of the function, the types of parameters it expects, and the name that the kernel 
should use to refer to the function, mprep translates this information into a set of C lan
guage functions that handles all of the communication details for the MathLink pro
gram and makes ordinary C language function calls to the installable functions. Then an 
appropriate C compiler or integrated development environment is used to compile and 
link the mprep-g en era ted code with the file(s) containing the installable functions and 
the MathLink library. In the simplest cases no changes to the functions’ code are 
required, and a very minimal amount of interface code needs to be written.

6. mprep is the name of a program that is invoked from the command line on UNIX 
and DOS/Windows systems, and mcc is a UNIX shell script that invokes mprep. 
The MathLink distribution for MacOS includes both an MPW-shell version of 
mprep and a double-clickable application file called SAmprep (for “stand-alone 
mprep").



11.2.1 Making setbit and clearbit installable
For our first example of a template-based program, we will turn the C functions s e t 
b i t  and c l e a r b i t  from the last section into installable functions. Here is all of the C 
code that we need to write:

#include "mathlink.h"

A single line of "glue code" i n t  main ( i n t  a rg c ,  c h a r  **argv)
has to be written to interface { r e tu r n  M LM ain(argc, a rg v ) ;
with the mprep-generated 
code. }

The functions being int setbit (int n, int b )
installed require no modifi- { return n I (l«b) ; 
cations in this example. j  ’

int clearbit(int n, int b)
{ return n & ~ ( l « b ) ;
}

It is the programmer’s responsibility to write the main routine, but the only require
ment for main is that it call the function MLMain (which is written by mprep), passing 
to it the command-line arguments that it receives from the operating system.7 MLMain 
opens the link and then enters a loop, translating MathLink messages from the kernel 
into ordinary function calls to s e tb i t  and c le a r b i t ,  and translating their return val
ues into MathLink replies. Finally, when the kernel closes the link, MLMain returns and
the programmer’s main function resumes control. By structuring the control flow in
this way the programmer has an opportunity to perform whatever initialization is neces
sary before relinquishing control to MLMain, and an opportunity to clean up after 
MLMain returns.

The only other code that we must write is a set of template descriptions for the func
tions being installed. The templates for s e t b i t  and c le a r b i t  are shown below:

:Begin:
:Function: setbit
:Pattern: SetBit[n_, b_]
:Arguments: (n, b}
:ArgumentTypes:{Integer, Integer}
:ReturnType: Integer
:End:

7. Command-line arguments are another UNIX/DOS-specific feature. If you are pro
gramming under MacOS, your development environment should have a compatibil
ity library that allows a program to receive these arguments. The library typically 
puts up a dialog box when the program begins running that prompts the user for the 
arguments.



:Begin:
:Function: clearbit
:Pattern: ClearBit[n_, b_]
:Arguments: {n, b]
:ArgumentTypes:[Integer, Integer}
:ReturnType: Integer
:End:

Each template is delimited by : Begin: and :End: statements. The :F unction: state
ment specifies the C language name of the installable function. The : P a tte rn : state
ment gives a pattem that the kernel will use to create a Mathematica definition for the 
installable function. The :Arguments: statement tells the kernel what expressions to 
send to the external program when the corresponding function is called. (In this simple 
case, the arguments are just the pattern variables in the : P a t t e r n : statements, but in 
general they can be any Mathematica expressions.)

The :ArgumentTypes: and :ReturnType: statements are necessary because, as 
noted earlier, there is a different MLGettype (or MLPuttype) call for each of the basic 
C types and mprep needs to know which ones to use. This information also is needed in 
order to generate C function calls that will link correctly to the s e t b i t  and c l e a r b i t  
functions. Note that the type specifications are special keywords, not C language types; 
there is a predefined correspondence from one to the other that the programmer must 
observe. For example, the keyword In te g e r  corresponds to a C in t ,  Real corre
sponds to a C double, and S tr in g  corresponds to a C character pointer (char*). 
There are additional keyword-type correspondences, which we’ll introduce as needed 
throughout this chapter.

By convention the template commands are stored in a file whose name ends with .tm, 
and the C language file produced by mprep ends in .tm.c (.c on DOS/Windows sys
tems). The exact use of mprep is system-specific and the documentation that comes 
with the MathLink distribution for your system should be consulted for the details. 
Once the .tm.c file has been generated, it is compiled and linked with the file(s) contain
ing the installable function, the glue code, and the MathLink library to produce an 
executable file. Once again, the details of the compilation and link step are system- 
dependent and can be found in the documentation that comes with your MathLink 
distribution.8

After the executable file has been created, the functions in it can be installed into the 
kernel using the Mathematica function I n s t a l l .  There are several ways to call 
I n s t a l l ,  but the simplest way is to supply it with the name of the executable file (or its 
pathname, if it is located in a different directoiy than Mathematical current working

8. On UNIX systems, the shell script mcc handles these details for you.



directory9). The kernel will start the MathLink program and initiate communication 
with it. If it is successful, it returns a LinkOb j  ec t.

link = Install["SetBit"]
LinkObject[SetBit, 5, 2]

You can find out what patterns are defined for a link using L in k P a tte rn s  [ l in k ] . 
The pattem information is transmitted to the kernel by the mprep-generated code during 
the installation process (which we’ll analyze in Section 11.3.2).

These patterns were defined LinkPatterns [link]
in the template file. (SetB. t [n__ b J  _ clearMt [n__ b J  ,

S e tB it and C learB it can be used just as any Mathematica functions.

SetBit[l, 5]
33

ClearBit[%, 0]
32

Here is the Mathematica definition of the symbol SetB it:

?SetBit
Global'SetBit 
SetBit[n_, b_] :=
ExternalCall[LinkObject["SetBit", 5, 2],
CallPacket[0, {n, b}]]

E x te rn a lC a ll sends an expression using LinkW rite and waits for a reply. The 
above definition says that whenever the pattem S e tB it [x_, y_] is matched, a mes
sage of the form C allP acket [0, {n, b}] will be sent on the link to the S e tB it 
program. (The details of how normal expressions are received by a C program using the 
MathLink library will be discussed in Section 11.4.)

C learB it is similar:

?ClearBit
Global'ClearBit 
ClearBit[n_, b_] :=
ExternalCall[LinkObject["SetBit", 5, 2 ],
CallPacket[1, (n, b } ] ]

9. In the MacOS version of MathLink, if the executable file cannot be found in the 
working directory, the user is prompted to locate the file using an “open file” dialog 
box. On DOS/Windows systems, be sure to use double backslashes \ \  to inrKratp. a 
directory separator, since certain two-character sequences that begin with a back
slash (e.g., \n) are interpreted as single characters inside of Mathematica strings.



In this case, the message sent to the server program is of the form C allP acket [1, 
{n, b} ] . This is very similar to the protocol used by our manually constructed server 
program: The kernel sends an indication of the service being requested (in this case, 0 
or 1), followed by the arguments required for that service.

Note that no type checking is done by the kernel. Rather, the code generated by 
mprep checks each MLGet type  call for failure to obtain an argument of the correct type 
from the link. It returns the symbol $E’a iled  in such cases, without calling either of the 
installed functions.

SetBit[a, b]
$Failed

This behavior can be rather startling — most Mathematica functions simply do not 
evaluate if they are called incorrectly. To avoid this outcome, do as much type checking 
as possible in the link pattern. In this example, it would have been better to use a pattern 
like S e tB it [n _ In te g e r , b _ In te g e r] . Note, however, that the call still would fail 
if either n or b were too large to fit into a C integer. Going even further, we could use a 
pattern of the form S e tB it [n_ In tege r / ;  -2 A31 <= n < 2A31, . . . ] , b u t
bounds checks such as this may not be portable across processor architectures. The fact 
is that some types of errors can be detected only by the installed function; we’ll discuss 
error handling in detail in Section 11.7.

When you are finished using an installed function, it’s a good idea to uninstall it to 
recover system resources. Not surprisingly, this is done using a function called Unin
s t a l l .  The argument to U n in s ta l l  is the LinkOb j  e c t  returned by I n s ta l l .  If you 
forgot to save this object, you can retrieve it by using the Links [] function, which 
returns a list of all active LinkOb j  ects.

The first link in the list is the L in k s  []
link from the kernel to the ,T . , . . r. ,  . ,  . .  . ,
frontend (LinkOb j ect [.Mathematics, 1, 1],

LinkObject[SetBit, 5, 2]}

Uninstall[%[[2]]]
SetBit

U n in s ta l l  closes the link and removes the definitions of the installed functions from 
the Mathematica session. Back in the MathLink program, MLMain returns and, after 
executing any code that the programmer may have put after the call to MLMain, the pro
gram terminates.

Incidentally, in version 3.0, if the name passed to I n s t a l l  ["name"] is the name of 
a directory rather than a file, then the kernel will look for an executable file called 
name/$SystemID/name instead ($SystemID is a global symbol containing the type of 
system that is being used). This allows binary files for different types of machine archi
tectures to be stored on the same computer system (e.g., a file server with heteroge
neous clients), yet be referred to by a consistent name.



Exercises

1. Add the g e tb i t  function of Exercise 11.1.3.1 to the installable program developed 
in this section.

2. Use mprep to create an installable version of the su b s tr in g  function of 
Exercise 11.1.3.2. The template file data type S tr in g  corresponds to the C type 
char* (pointer to character).

11.2.2 Using lists as arguments
Suppose now that we want to enhance S e tB it and C learB it so that they can set or 
clear more than one bit at a time. Writing a C function to take a variable number of 
arguments is extremely tricky and sometimes system-dependent; furthermore, mprep 
can’t deal with it. However, an installable function can take a list of In teg e rs  or 
Reals as an argument, which correspond to C arrays of in ts  or doubles, respectively. 
The MathLink type keywords used for this purpose are In te g e rL is t  and R ealL ist.

Here is the template for the new version of S e tB it; the template for C learB it is 
analogous:

setbit is declared to take : Begin:
an IntegerList as its sec- :Function: setbit
ond argument. Note how ~ ..the pattern checks for this :Pattern: SetBit [n_Integer, b : {_Integer}]
type, :Arguments: {n, b }

:ArgumentTypes:{Integer, IntegerList}
:ReturnType: Integer
:End:

The C code for the new s e t b i t  function is straightforward, except that certain 
parameter-passing conventions must be observed.

The second and third int setbit(int n, int bits[], long nbits)
parameters correspond to { j_nt . ’

for (i = 0 ; i < nbits: i++) 
n |= (l«bits[i]); 

return n;
}

the IntegerList type key
word.

The first parameter to s e t b i t  corresponds to the first In te g e r  argument, as before. 
However, two parameters are required to receive an In te g e rL is t  argument: an inte
ger array of unspecified size, and a long integer that gives the size of the foregoing 
array.10 This parameter layout is mandatory, as it corresponds to the way that the 
m/>rep-generated code will call the function.

10. Similarly, the template type keyword R ea lL is t corresponds to a pair of C argu
ments having types pointer-to-double and long.



The C definition of the new c l e a r b i t  function is analogous to the new s e tb i t .  
The glue code is the same as before and is not repeated here.

Here is an example of using this new MathLink program:

l i n k  =  I n s t a l l [ " S e t B i t 2 " ]

L in k O b je c t [ S e tB it 2 , 4 , 2]

This sets bits 0 through 9. S e tB it [0 , Range [0 , 9]]
1023

This clears bits 0, 2, and 4. C le a r B i t [ 6 3 ,  { 0 ,  2 , 4 } ]

42

Unfortunately, using a single integer as the second argument to the new functions no 
longer works, because it doesn’t match any of the link’s patterns.

S e t B i t [3 2 , 0]

S e t B i t [3 2 , 0]

L in k P a t t e r n s [ l in k ]

( S e t B i t [ n _ In t e g e r , b : { __ I n t e g e r } ] ,
C le a r B i t [ n _ In t e g e r , b : (__ I n t e g e r } ] }

It’s somewhat of a disappointment that we have “broken” S e tB it (and C learB it) in 
the sense that calling them the old way no longer works. Clearly, we would like to be 
able to associate additional patterns with these functions. There’s a mechanism for 
doing this automatically each time the link is opened, as we’ll see next.

Don't forget to U ninstall. U n in s ta ll  [ lin k ]
S e tB it2

11.2.3 Including Mathematica code in a template file
We would like to fix the problem observed at the end of the last section by allowing 
S e tB it to be called as either S e tB it [num, b i t ] or S e tB it [num. { b i t s } ]. An 
obvious way to achieve this end would be to create a Mathematica definition like the 
following:

S e t B i t [ n _ In t e g e r , b _ In te g e r ]  :=  S e t B i t [ n ,  {b } ]

We want this definition to be created automatically when the external program is 
installed. This can be accomplished using the : E v a lu a te : template statement.

The : E v a lu a t e :  tem plate statement allow s you to specify an arbitrary Mathema
tica expression that is sent to the kernel, verbatim , during the installation process. You  
can use any num ber o f  : E v a l u a t e :  statements in a tem plate file . In  the fo llo w in g  

exam ple w e use : E v a lu a t e :  statements to create usage messages fo r S e t B i t  and



C learB it, and also to define a rule for each function that changes a single bit number 
into a list containing that number.

:Begin:
(... template for SetBit as before ...)
:End:

A single :E v a lu a te :  state
ment can span multiple 
lines, as long as each line 
after the first begins with a 
space or a tab and there are 
no blank lines in the middle.

:Evaluate: SetBit[n_Integer, b_Integer] :=
SetBit[n, {b}]

:Evaluate: SetBit::usage =
"SetBit[n, b] sets the b'th bit in the 
machine-sized integer n to 1 .
SetBit[n, {bl, b2, ...}] sets bits 
bl, b2 , ..

:Begin:
(... template for ClearBit as before ...) 
:End:

:E v a lu a te :  statements can 
be interspersed with func
tion templates; their order 
within the template file is 
the order in which the ker
nel w ill evaluate them.

:Evaluate:

:Evaluate:

ClearBit[n_Integer, b_ 
ClearBit[n, {b}]

Integer] :=

ClearBit::usage =
"ClearBit[n, b] sets the b'th bit in the 
machine-sized integer n to 0 .
ClearBit[n, {bl, b2, ...}] clears bits 
bl, b2 , ..

If we build the program as before (without making any changes at all to the C code 
portion of it), this is the result:

link = Install["SetBit3"]
LinkObj ect[SetBit3, 6 , 2]

S e tB it  now has a usage 
message and two defini
tions: one from the function 
template and another from 
the :E v a lu a te : statement.

??SetBit
SetBit[n, b] 

integer
sets 
to 1 
b2,bits bl 

SetBit[n_Integer 
SetBit[n_Integer

the b 'th bit in the 
. SetBit[n, {bl. b2,

machine-sized 
. . .} ] sets

b_Integer] := SetBit[n, {b) ]
b:(__Integer}] :=

ExternalCall[LinkObject["SetBit3", 6 , 2], 
CallPacket[0, (n, b)]]

As before, w e can set (or S e t B i t [ 0 ,  R ange [ 0 ,  2 ] ]
clear) a set of bits. ^

But now w e also can set and C le a r B i t [ % ,  1]
clear individual bits. c



SetBit[%. 5]
37

Always U ninstall when U n in s ta ll  [ lin k ]
finished. S etB it2

The general lesson to be learned here is the following: Play to the strengths of each 
of your development tools. Bit operations are easier in C than in Mathematica, so all of 
that code is written in C. On the other hand, error checking is easier is Mathematica 
than in C, so it is done as much as possible using the patterns defined in the template 
file. Furthermore, the :E valua te : statement is a powerful tool that should be 
exploited as much as possible: If some of the work can be done in Mathematica code 
without compromising performance, don’t hesitate to include as much Mathematica 
code in the template file as you need to get the job done with the least amount of effort.

Exercise
1. Add another definition to the su b s tr in g  MathLink program so that s u b s tr in g  

can be called with either one or two indices: su b s tr in g  [ s , n] should have the 
same effect as su b s tr in g  [ s , n , n ] . While you’re at it, add a usage message.

11.3 Debugging MathLink Programs
All of the examples of link connection that we have seen in this chapter so far have 
used what is called a parent-child connection, in which the Mathematica kernel plays 
the role of the parent process and the MathLink program is the child process.11 You 
can’t debug an external program using this type of connection, since there’s no way for 
a debugger to gain control of the child process. However, there is another type of con
nection, called a peer-to-peer connection, that allows both ends of the connection to be 
run independently — for example, one or both processes can be run from within a 
debugger. Peer-to-peer connections also can be used to interpose a third MathLink pro
cess between the parent and the child, which can be used to monitor and/or filter the 
messages that are sent between them.

11.3.1 Peer-to-peer connections
In order for a peer-to-peer connection to be made, each MathLink program must be told 
the name of a link to open. Using the TCP network protocol, a link name is an integer; 
using the local communication protocols on MacOS or Windows, a link name can be an 
arbitrary string. One side opens the link in create12 mode, after which the other side

11. It is also possible for the kernel to play the role of the child process; in fact, this is 
exactly what happens when the kernel is started from the front end.

12. Prior to version 3.0, create mode was called listen mode.



opens it in connect mode. It doesn’t matter which side does which, because after the 
link is established, there is no distinction made between the parties.

In C, the link name and mode are specified by the arguments to MLOpenArgv or, in 
an installable program, MLMain. You could hard-code that information into the function 
call, but the convention of passing the program’s command-line arguments to MLOpen
Argv or MLMain (as we have been doing) makes this unnecessary. For example, on a 
UNIX or DOS system you could run an installable MathLink program like this:13

setbit -linkname 2500 -linkcreate

and the C strings "-linknam e", "2500", and " - l in k c re a te "  will be passed to 
MLMain. MLMain will then pass these arguments to MLOpen, which will listen for a 
MathLink connection on port 2500.

Un MacOS, you merely run me MathLink program by double-clicking it; a dialog 
box will prompt you for the name of a port to create. On Windows, you can use either 
the command-line arguments method (by using the Program Manager's Run command 
in the File menu) or the dialog box method.

In Mathematica you can connect to an existing link using the LinkConnect func
tion. The LinkOb j  e c t  returned from this call is then passed to I n s t a l l . 14

Install[LinkConnect["2500"]]

Note that even though the port name is an integer, it must specified as a string The link 
is now “open for business” and can be used in the normal way.

To debug a MathLink program, all that is necessary is to run the program inside of 
your system’s debugger, using the appropriate method (command-line arguments or 
dialog box) to set up a peer-to-peer connection. You can then set breakpoints in the pro
gram and inspect variables as you would with any other program. Consult the docu
mentation for your debugger for details.

Exercise

1. Use your system’s debugger to step through the execution of any MathLink pro
gram.

13. Programs created w ith  older versions o f M athL ink  should be given the arguments 
- l in k m o d e  l i s t e n  (tw o separate arguments) instead o f - l i n k c r e a t e .

14. In  versions p rio r to 3 .0  replace L in k C o n n e c t  [nam e] by L in k O p e n  [nam e , 
L in k M o d e -> C o n n e c t ] . A lternatively, you can pass the L in k M o d e -> C o n n e c t  
option d irectly to I n s t a l l ,  w hich  w ill call L in k O p e n  for you.



11.3.2 Monitoring traffic on a link
Another way to use peer-to-peer connections is to interpose a third MathLink-aware 
program between the two parties whose interaction is of interest. This third program 
simply opens a link to each of the other two parties and copies data back and forth 
between them, as shown in Figure 11-1. Each party thinks that it is connected directly 
to the other.

Kernel
■'N

J snoop
^ _____

“client” “server”
r-------------►

r

v
MathLink
program

Figure 11-1 Monitoring MathLink traffic using a “snoop” program.

You can use such a program to generate a log of the traffic on a link in real time. This is 
a great way to gain an understanding of the workings of higher-level protocols (such as 
the one used by I n s t a l l  and mprep, or the one used by the front end and the kernel).

Although it would be possible to write the “snoop” program in C, it’s much easier to 
use another Mathematica kernel for this purpose, because the kernel gives us such a 
high-level interface to a link. (Of course, we pay a price in terms of memory usage by 
doing this.)

To begin, start another Mathematica kernel15 (which we will refer to as the snooping 
kernel) and evaluate the following definition:

Evaluate this definition in snoop [linkl_LinkOb j ect, link2_Link0b j ect] : =
the new (snooping) kernel. Module [{msg} ,

LlnkConnect /@ {linkl, link2};
While[LinkConnectedQ[linkl] &&

LinkConnectedQ[link2],
If[LinkConnectedQ[linkl] && LinkReadyQ[linkl], 

msg = LinkReadHeld[linkl];
If [msg = =  $Failed, Break[]];
Print["--> ", HoldForm @@ msg];
If[LinkConnectedQ[link2],

LinkWriteHeld[link2, msg]];

If[LinkConnectedQ[link2] && LinkReadyQ[link2], 
msg = LinkReadHeld[link2];
If [msg = =  $Failed, Break []];
Print["<-- ", HoldForm @@ msg];

15. Note that you can run two kernels from the same front end, and have each one take 
input from a different window. If memory is really tight, try running each kernel 
directly, without using the front end.



If[LinkConnectedQ[linkl],
LinkWriteHeld[linkl, msg]];

];
]

]

This function may look complicated, but the overall gist of it is actually quite simple, 
l in k l  and lin k 2  are links to the communicating parties, established as described in 
Section 11.3.1. Each time through the While loop, the snoop function checks to see if 
there is any input on l in k l ;  if so, it is read from the link, printed, and written to 
link2 . The converse of this procedure is then performed on link2 . The loop continues 
to execute as long as both links remain active.

The devil is in the details, as the saying goes, so here they are. LinkConnectedQ is 
a predicate that checks to see if there is another party at the other end of a link. How
ever, right after a link is opened, LinkConnectedQ will return F a lse  until some other 
operation is performed on the link, such as a LinkRead or LinkW rite. The purpose of 
the call to LinkConnect at the beginning of the function is to verify the existence of 
the other parties without sending or receiving any data on the links, so that subsequent 
calls to LinkConnectedQ will return True (assuming, of course, that the links are in 
fact connected to the other parties).

LinkReadyQ polls a link and returns True if there are data waiting to be read from 
it. It is necessary to call LinkReadyQ before each LinkRead to prevent the snoop 
function from blocking on an empty link. LinkReadHeld is like LinkRead except that 
it wraps the expression received from the link in Hold before returning it. S im ilarly  

LinkW riteHeld takes an expression wrapped in Hold and writes it to a link sans the 
Hold head.

Here is how the snoop function is used. First, open a connection (parent-child or 
peer-to-peer) to the MathLink program and open a peer-to-peer connection to the origi
nal kernel. Note that we use LinkLaunch, not I n s t a l l ,  to connect to the MathLink 
program, because we do not wish to install any functions into this kernel.

Evaluate these expression in server = LinkLaunch ["SetBit2"] ;
the snooping kernel.

client = LinkCreate["impostor"] ;

Next, in your original kernel, which we will refer to as the client kernel, connect to 
the link named "im postor" using I n s ta l l :

Evaluate this expression in link = Install [LinkConnect ["impostor"] ] :the client (original) kernel.

At this point you will notice that the client kernel seems to be stuck. This behavior is 
expected, since I n s t a l l  is waiting for information from the server program. The situ
ation at this moment is analogous to an open electric circuit; the circuit is “closed” 
using the snoop function (back in the snooping kernel):



snoop[client, server]

<-- DefineExternal[SetBit[n_Integer, b:{_Integer}],
{n, b}, 0 ]

<-- SetBit[n_Integer, b_Integer] := SetBit[n, (b}]
<-- SetBit::usage = "SetBit[n, b] sets the b'th bit\ 

in the machine-sized integer n to 1 . \
SetBit[n, {bl, b2, . ..}] sets bits bl, b2,

<-- DefineExternal[ClearBit[n_Integer,\
b:{__Integer}], {n, bl, 1]

<-- ClearBit[n_Integer, b_Integer] := ClearBit[n, (b)]
<-- ClearBit::usage = "ClearBit [n, b] sets the b'th\ 

bit in the machine-sized integer n to 0 . \
ClearBit[n, {bl, b2, ...}] clears bits bl, b2,

<-- End

A number of things happen: First, several messages are printed by snoop; second, the 
I n s t a l l  function in the client kernel returns; and third, now the snooping kernel is the 
one that seems to be stuck. The snooping kernel will remain in this state until one of the 
other two parties closes its link.

Now let’s analyze the messages printed above. The description that follows is based 
on an inspection of the code generated by mprep and the code for I n s ta l l .  (The latter 
is implemented entirely external to the kernel, and hence its definition can be viewed 
using ?? I n s ta l l . )  The mprep-generated code does the following: For each :E valu
a te  : statement in the template file, it sends the contents of that statement, verbatim, as 
a string; and for each function template, it sends an expression of the form D efin e
E x te rn a l [p a t t e r n , argum ents, in d e x ], where p a tte rn  and arguments are 
taken directly from the template. On the other end of the connection, I n s t a l l  is in a 
loop, reading expressions from the link until the symbol End is encountered. If the 
expression is a string, it is converted to a normal expression using ToExpression, 
which then evaluates.

The in d e x  in each DefineExternal expression is an integer that is used internally 
by the mprep-generated code to identify the installed function that corresponds to the 
given pattern. The result of DefineExternal is a Mathematica function definition of 
the type we have already seen:

SetBit[n_Integer, b:{__Integer}] :=
ExternalCall[LinkObject["impostor", 11, 3],
CallPacket[0, {n, b}]]

E x te rn a lC a ll simply writes the given C allP acket to the link and reads back the 
result. Note that the integer in the C allP acket that is sent from the kernel to the server 
is the same as the one that was sent from the server to the kernel in the Def in eE x te r - 
n a l expression.

Now here are some examples of what is sent across the link when an installed func
tion is called:

Evaluate this expression in 
the snooping kernel.

These messages are being 
sent from the M athLink  
server program to the client 
kernel.



Evaluate this in the client S e t B i t [ 0 ,  { 1 ,  3 ,  5 } ]
kernel's window.

These messages appear in - - >  C a l lP a c k e t  [ 0 , { 0 ,  i l ,  3 ,  5 } ) ]
the snooping kernel's w in
dow.

This result appears in the 42
client kernel's window.

Client kernel input. C le a r B i t [ % ,  3 ]

Snooping kernel output. - - >  C a l lP a c k e t  [1 ,  { 4 2 ,  ( 3 ) } ]

< - -  34

Client kernel result. 3 4

When you are done experimenting, clean things up by uninstalling the link in the cli
ent kernel:

Client kernel input. U n i n s t a l l  [ l i n k ]

im p o s to r

Back in the snooping kernel, the snoop function returns and the following message 
may appear:

L in k O b j e c t : : l i n k d :
L in k O b je c t [ im p o s t o r , 1 1 , 3 ]

i s  c lo s e d ;  t h e  c o n n e c t io n  i s  d e a d .

You still need to close the snooping kernel’s link to the server program manually. 

Snooping kernel input. L in k C lo s e  [ s e r v e r ]

The server program will then terminate.

Exercises

1. Use the snoop function to monitor the traffic between the kernel and your substring 
extraction program.

2. The technique illustrated in this section can also be used, with some slight modifica
tions, to monitor the interaction between the Mathematica front end and the kernel. 
When a Mathematica kernel is being run from a front end, the kernel is said to be in 
MathLink mode, and the global variable $ParentL ink contains the link that con
nects the kernel to the front end:

$ P a r e n tL in k

L in k O b j e c t [ M a t h e m a t ic a , 1 , 1 ]

As long as $ParentL ink contains the name of a connected link, the kernel will 
“take orders” from the program at the other end of that link. If $ParentL ink is



N ull, however, the kernel interacts directly with the user through its own input/out
put window. Try the following experiment:

After you type this, your front-end window will “hang.” If you pay close attention, 
you will notice that a new window has appeared on the screen: the kernel’s 
input/output window. You can reestablish MathLink mode by typing the following 
in that window:

The kernel’s window will now “hang” and the following output will appear in the 
original front-end window (note that the output number will not match the input 
number):

By assigning a different link to $ParentL ink, you can make the kernel think that 
any other program is its front end. In particular, if $ParentL ink is a link to a ker
nel running the snoop program, you can monitor the traffic between the kernel and 
the front end. Here are the details.
First, start a kernel from the front end and evaluate the definition of the snoop func
tion in that kernel. We will refer to this kernel as the “snooping” kernel. Next, eval
uate the following16 in the kernel you wish to monitor (which we will henceforth 
refer to as the “child” kernel):

The child kernel’s window will hang. Evaluate the following in the snooping kernel:

From this point on, anything typed into the snooping kernel’s front-end window is 
sent to the child kernel without being interpreted by the snooping kernel (as you’ll 
note by examining the In /O ut numbers). In between each input and its correspond-

16. In versions prior to 3.0, use LinkOpen [name, LinkMode->Listen] instead of 
LinkCreate[name].

$ParentLink = Null

$ParentLink = First [Links[]]

LinkObject[Mathematica, 1, 1]

$ParentLink = LinkCreate["child"]

Adopt-a-kernel. The snoop
ing kernel is now the child 
kernel's "parent."

kernel = LinkConnect["child"]
LinkObject[child, 2, 2]

At this point the snooping 
kernel should have two 
open links. The first is the 
link to its own front end.

Links []
{LinkObject[Mathematica, 1, 1]. 
LinkObject[child, 2, 2])

Short-circuit the two links snoop @@ Links []
using snoop.



ing output, however, snoop prints all of the packets that are transmitted. This is an 
excellent way to learn about the protocol used by the front end and the kernel.
Try entering calculations that produce printed output, error messages, or graphics. 
Try using I n te r ru p t  [] and Inpu t []. If you are using a version of the front end 
that has a function browser, try using it to look up some definitions. Experiment! 
When you are done with this exercise and you want to salvage your original session, 
evaluate the following to disconnect the child kernel from the snooping kernel:

This is typed into the snoop- $ P aren tL in k  = N u ll;
ing kernel's front-end w in 
dow, but is evaluated by the 
child kernel.

Alternatively, if your child kernel was originally started by the front end, you can re
connect it to its front-end window by evaluating

$FarentLink = First[Links[]];

After evaluating either of these expressions, the snooping kernel’s front-end win
dow will hang, because that kernel is still stuck inside the snoop routine. To get 
snoop to terminate, you must switch to the child kernel’s window and close the link 
back to the snooping kernel.

C h ild  kernel input. LinkClose [kernel] ;

You will see the usual error message and then an input prompt from the snooping 
kernel.

11.4 Manual Data Handling
In many common situations, you can rely on mprep to handle all of the details of com
municating with the kernel. Up to this point we have seen examples of (or at least heard 
mention of) the types In teg e r , Real, S trin g , Symbol, In te g e rL is t,  and Real- 
L is t .  In addition, mprep supports — this is an undocumented feature! — the types 
S h o rtln te g e r , Longlnteger, F lo a t, Double, and LongDouble, with the obvious 
correspondence to C types.17 Version 3.0 introduces several more types (see 
Section 11.9.3) that are used for 16-bit character data. You can use any of these types 
for function arguments, and any of the scalar numeric types, S trin g , or Symbol for 
function return values.

17. [Wolfram 96] §A. 11 states that MLPutReal and MLGetReal are “normally equiva
lent” to MLPutDouble and MLGetDouble, whatever that means. Furthermore, the 
MathLink Reference Guide [WRI 93c] coyly points out that this equivalence is not 
guaranteed in future versions of MathLink!



However, there are many situations that can’t be handled by mprep. For example, 
mprep doesn’t allow an installable function to return an In te g e rL is t  or R ealL ist, 
because these types are passed as two values — a pointer to data and a length — and C 
functions can return only a single value. Hence, such functions have to bypass the 
mprep-generated code and return their results directly to the kernel. Section 11.4.1 
shows how to do this. Then in Section 11.4.2 we extend the technique to returning arbi
trary Mathematica expressions. Finally, in Section 11.4.3 we address the inverse prob
lem, i.e., accepting arbitrary expressions as arguments to an installable function.

11.4.1 Returning lists
Suppose that we want to create functions that pack and unpack a list of binary values 
into an arbitrary-length bit vector. (Such functions would have been very handy to have 
when we developed the Huffman coding example of Section 5.3.5.) The inputs and out
puts to these functions will be lists of integers. However, the only return types for 
which mprep can generate code are scalars and character strings. In order to return an 
array of integers (or doubles), the programmer must bypass the mprep-generated code 
and make calls to low-level MathLink functions directly.

For every type supported by MathLink there are C library functions called MLPut- 
typ e  and MLGettype. For example, to send an In te g e r  to the kernel, you could call 
M LPutlnteger. In most cases this is handled by the mprep-generated code — for 
example, if your template file declares the return type of a function as In teg e r, then 
the mprep code will store the return value from the function in a C in t  and pass this 
integer to M LPutlnteger for you. However, when you need to return a type that mprep 
doesn’t support, you have to make these calls yourself. If you make an explicit MLPut- 
typ e  call to return a value, your function should not return any value to the mprep 
code. Therefore, the C function is declared void.

In the present example we wish to return an IntegerList to the kernel, which is 
done in C with the MLPutlntegerList library function.

Here is the C code that implements p ack b its . The format of a bit vector is a list of 
integers, where the first integer in the list indicates the total number of valid bits. Bits 
are packed a maximum of 8 per integer. While this is not the most compact representa
tion possible, the kernel could easily convert these “byte codes” to a character string18 
using FromCharacterCode; the result could be written to a file using W riteS trin g  
or the functions in U t i l i t i e s 'B i n a r y F i l e s ' .

int bitsPerWord = 8 ;

^0

18. The reason for not using character strings in the first place is that a 0 byte in the 
middle of a C string would be interpreted as the end of the string. See 
Section 11.9.3, “String and symbol types,” for two ways around this problem.



The function returns no 
value. The two arguments 
constitute an In te g e rL is t.

Allocate storage for the 
return value.

First word is the number of 
valid bits.

Pack the bits.

Send the return value to the 
kernel.

Free the storage.

void packbits(int bits[], long nbits)
{ long nints = (nbits + bitsPerWord - 1) / 

bitsPerWord + 1; 
int ‘bitvec = (int*) calloc(nints, sizeof(int)); 
int i;

bitvec[0 ] = nbits;

for (i = 0 ; i < nbits; i++) {
bitvec[i / bitsPerWord +1] |= (bits[i] «  

(bitsPerWord - 1 - i % bitsPerWord));
}

MLPutIntegerList(stdlink. bitvec. nints); 

free(bitvec);

IT

The salient features of this code are as follows. First, p a c k b its  is declared void, 
i.e., it does not return a value to the mprep code. Second, M L PutIntegerL ist is used 
to send the result directly to the kernel, bypassing the mprep code. Third, note that it is 
the programmer’s responsibility to free any dynamically allocated storage.

The first argument to M L Putln tegerL ist is a link descriptor. The mprep code 
stores the descriptor for the link to the kernel in a global variable called s td lin k . The 
remaining two arguments to M L Putln tegerL ist are a pointer to the data and the size 
of the In te g e rL is t  — the type correspondence is the same for return values as it is 
for function arguments.

It is vitally important to free any dynamically allocated storage after you are finished 
using it; MLPuttype will not do it for you! Remember that the MathLink program is 
initialized only once, when the link is opened, and continues to run for as long as the 
link is open. Therefore, if you forget to release dynamically allocated storage, then the 
program will have a “memory leak” — i.e., it will lose some amount of memory every 
time the installed function is used. Eventually the MathLink program will run out of 
memory and chaos will ensue.

In the template file, you must declare the return type as Manual so that the mprep 
code will not expect your C function to return a value to it. Here are the template file 
statements for the function p ack b its .

This predicate is used for 
type-checking the pattern 
below.

:Evaluate: BinaryQ[x_] := x =  0 II x =  1

:Evaluate: PackBits::usage = "PackBits[list] packs
a list of binary digits into a list of byte codes."

:Begin:
:Function: packbits



The return type is Manual.

:Pattern: PackBits[bitlist_] /;
VectorQ[bitlist, BinaryQ] 

:Arguments: {bitlist}
:ArgumentTypes:{IntegerList}
:ReturnType: Manual
:End:

Next, we need to write a function called unpackb its  that reverses the action of 
p ack b its . The C code for u npackb its  follows the same general paradigm as that for 
p ack b its : Allocate storage for the return value, do the “bit bashing,” call MLPutlnt- 
eg e rL is t, and free the temporary storage.

void unpackbits(int bitvec[], long nints)
{ int nbits = bitvec[0 ];

int *bits = (int*)malloc(nbits*sizeof(int)); 
int i;

for(i = 0 ; i < nbits; i++)
bits[i] = (bitvec[i / bitsPerWord + 1] »

(bitsPerWord - 1 - i % bitsPerWord)) & 1;

MLPutIntegerList(stdlink, bits, nbits);

free(bits);
}

M ore type-checking predi 
cates.

Here are the template file statements for unpackbits: 

:Evaluate:

;Evaluate:

:Evaluate:

ByteCodeQ[x_] :=
IntegerQ[x] && 0 <= x < 256 

BitVectorQ[{f_Integer,
r_?ByteCodeQ}] := True /;

8 *(Length[{r}]-1) < f <= 8 *Length[{r}] 
BitVectorQ[___] := False

The rest of the template is 
nearly identical to that for 
p a c k b its .

:Evaluate: UnpackBits::usage =
"UnpackBits[bitvec] extracts the 
individual binary digits from a bit vector."

:Begin:
:Function: unpackbits
:Pattern: UnpackBits[bitvec_?BitVectorQ]
:Arguments: {bitvec}
:ArgumentTypes:{IntegerList}
:ReturnType: Manual
:End:

Note how thoroughly the argument to u npackb its  is checked for validity. This is done 
to avoid having to do error checking in the C code. It isn’t the error checking per se



that’s so much harder; the difficulty lies in trying to return a meaningful result when an 
error is discovered. (We’ll deal with this problem in Section 11.7.)

Here is an example of using this MathLink program:

The usage message works as 
expected.

Here are some test data.

PackBits returns a list of 
integers. The first integer is 
the number of valid bits.

U npackB its  returns the 
original data.

Exercise

link = Install["bitvec"]
LinkObject[bitvec, 6 , 2]

?PackBits
PackBits[list] packs a list of binary digits into a 

list of byte codes.
bits = Table[Random[Integer], {18}]
( 0 , 1 , 0 , 1 , 1 . 1 , 0 , 1 , 0 . 0 , 1 , 0 , 0, 0, 0, 0, 0, 1)

bv = PackBits[bits]
{18, 93, 32, 64)

UnpackBits[bv]
( 0 , 1 , 0 , 1 , 1 , 1 , 0 , 1 . 0 . 0 , 1 , 0 , 0 , 0 . 0 . 0 . 0 , 1 }

1. Write a MathLink function that complements a specified range of bits in a bit vector. 
If no range argument is supplied, the function should complement the entire bit 
vector.

11.4.2 Returning arbitrary normal expressions
In the previous section we learned how to send a list of integers manually to the kernel. 
Because this is such a common thing to want to do, there is a special MathLink library 
call, M LPutlntegerL ist, for doing it. (Likewise, there is a corresponding library call 
for putting a R ealL ist.) In general, however, in order to send a normal expression to 
the kernel, you have to put it one part at a time.

As mentioned earlier, there are MLPut typ e  functions for atomic types such as 
In teg e r, Real, S trin g , and Symbol. But in order to send a normal expression, you 
need to use the MLPutFunction call to inform the kernel that what is being sent is the 
head of a normal expression. MLPutFunction takes two arguments in addition to a 
link: a character string, which is interpreted as the symbolic head of the expression, and 
a long integer, which tells the kernel how many parts the expression will have.19 If you 
specify a part count of n, for example, then you must follow the call to MLPut
Function with n calls to other MLPut type functions.

19. To send expressions whose heads are not symbols (e.g., Derivative [2] [f ] [x]) 
you need to use the MLPutNext and MLPutArgCount functions. See [Wolfram 96] 
§2.12.12 or the MathLink Reference Guide [WRI 93c] for details.



For example, suppose that you need to send a list of mixed types to the kernel. There 
is no function provided for this, so you have to construct the list from lower-level calls. 
You could do it as follows:

This sends the list {"one", MLPutFunction(stdlink, "List", 4);
2. 3., Pi} to the kernel. MLPutString(stdlink, "one");

MLPutInteger{stdlink, 2);
MLPutReal(stdlink, 3.0);
MLPutSymbol(stdlink, "Pi");

Of course, expressions can be nested, and so can calls to MLPutFunction. Here is 
how you could send the expression N [expr / .  x ->2.5 ] to the kernel:

The indentation of the code MLPutFunction (stdlink, "N" , 1);
is intended to convey the MLPutFunction (stdlink, "ReplaceAll", 2);
nesting of the subexpres- MLPutSymbol (stdlink, "expr");sions within the overall . , ,.. . .MLPutFunction(stdlink, "Rule", 2);

MLPutSymbol(stdlink, "x");
MLPutDouble(stdlink, 2.5);

expression.

This code puts onto the link the expression N [ReplaceA ll [ex p r, R ule[x , 
2.5] ] ] ,  which is the internal form of N[ expr / .  x -> 2 .5 ].

An alternative to putting every part of a large expression separately is to format the 
entire expression as a string, and put the expression ToExpression [s t r in g ] instead. 
Used in combination with C’s s p r in t f  library function, this is a very easy way to con
struct and send complicated expressions to the kernel:

c h a r  s  [1 0 0 ];
char *expr = "BesselJ[0, x] / (xA2 + 1)";
char *var = "x";
double value = 2.5;
sprintf(s, "N[%s /. %s->%f]", expr, var, value):
MLPutFunction(stdlink, "ToExpression", 1);
MLPutString(stdlink, s);

As an application of manual return values, we will modify the p ack b its  function so 
that instead of returning a flat list it returns an “abstract data type” of the form BitVec - 
t o r  [ n b i ts , {b y te c o d e l, b y teco d e2 , . . . } ] .  The purpose of this is to give bit 
vectors their own head so that they may be more easily recognized by other Mathema
tica code.

The template file statements (except for the usage message) are identical to those for 
the previous version of p ack b its , because both versions take the same arguments and 
return their results manually. The C code is also identical except that the call to 
M L Putln tegerL ist is replaced by the following sequence of calls:

head + 2 parts MLPutFunction (stdlink, "BitVector", 2);
first part MLPutlnteger (stdlink, nbits):
second part M L P u t ln t e g e r L i s t ( s td l i n k ,  d a t a ,  n w o rd s ) ;



Note that the second part of the B itV ecto r is another normal expression, namely, a list 
of integers. Rather than send the list part by part, however, we simply use MLPut- 
In te g e rL is t.  Here is a demonstration of the new version of pack b its :

link = Install["bitvec2", LinkMode->Connect]
LinkObject[bltvec2, 7, 2]

bv = PackBits[bits]
BitV ector[18, {93, 32, 641]

Obviously, unpackb its  is going to have to be modified to take a B itV ecto r as an 
argument. However, this is much easier than you might suspect: Simply destructure the 
argument in the : P a tte rn : statement and specify the extracted parts as the :Argu
ments :. The advantage of doing things this way is that the C code for this version of 
unpackb its  is identical to that of the previous version! Here are the relevant template 
file statements:

:Evaluate: BitVectorQ[BitVector[f_Integer,
{r__?ByteCodeQ}]] := True /;

8 *(Length[{r}]- 1 )  < f <= 8 *Length[{r}]
:Evaluate: BitVectorQ[___] := False

:Begin:
:Function: unpackbits
:Pattern: UnpackBits[b:BitVector[nbits_, data_]]

/; BitVectorQ[b]
:Arguments: {Prepend[data, nbits]}
:ArgumentTypes:{Integer, IntegerList}
:ReturnType: Manual
:End:

This is an excellent example of the reason for the : Arguments: field: There are three 
pattern variables in the pattern (b, n b its ,  and data), but only two of these are passed 
to the MathLink function.

The new u n p ac k b its  works U n p a c k B its  [ B i t V e c t o r  [ 1 8 ,  { 9 3 ,  3 2 ,  6 4 } ] ]
on B itV ec to r objects. ^  0> ^  ^  0> 1> 0< 0> Q  ^ 1}

When finished, uninstall. Uninstall [link]
bitvec2

Exercises

1. Create an installable function called S tringT okenize that breaks up a string into 
tokens (substrings that are separated by one or more characters from a set of token 
delimiters). For example,



The second argument is a S t r in g T o k e n iz e  ["A  o n e , and  a  t w o . " ,  " , . " ]
string containing the token {"A", "o n e" , "an d " , " a " , "two"}
delimiters. ’ ’ ’ ’

You can use the C library function s tr to k . Add S tringT okenize to your sub
string extraction program.

2. Define additional patterns for S tringT okenize in the template file so that the sec
ond argument can be specified as a list of individual characters.

11.4.3 Manual arguments
Just as an installable function can manually send Mathematica expressions to the ker
nel, so can it also manually receive them as arguments. This may be necessary if the 
type of argument to the function is not supported by mprep. For each MLPuttype func
tion there is a corresponding MLGet typ e  function, the only significant difference being 
that the data parameters to an MLGettype are passed by reference (e.g., MLGetlnte
ger takes a pointer to a C integer as its second argument).

Suppose that we want to write a version of unpackb its  that could accept a 
B itV ector as an argument directly (i.e., without being destructured first). Here are the 
relevant template file entries:

: B e g in :
: F u n c t io n :  u n p a c k b its

The argument is not destruc- : P a t t e r n : U n p a c k B its  [ b i t v e c _ ? B itV e c t o r Q ]
tured. :A rg u m e n ts : { b i t v e c }
Note that the argument type : A r  g u m e n tT y p e s : {M a n u a l}
is now Manual. : R e tu r n T y p e : M a n u a l

:E n d :

You might well wonder, if the argument type is Manual, why does the :Argu- 
m ents: statement still specify an argument? The : Arguments: statement (along with 
the :P a tte rn : statement) is used to construct the Mathematica definition for 
UnpackBits. In other words, it tells the kernel what data to send across the link. The 
kernel doesn’t know or care what is done with those data on the other end of the link. 
The : ArgumentTypes: statement, on the other hand, is used by mprep to construct the 
code that receives the data from the kernel. If the keyword in this statement is Manual, 
mprep simply doesn’t write that code. Note, however, that if you want to send mani
festly typed arguments as well as manual arguments to the same MathLink function, the 
Manual keyword must be the last element of the '.ArgumentTypes: statement. Other
wise, mprep would have no way of telling which arguments to generate code for and 
which ones to ignore.

Here is the C code for the new u npackb its . The main difference from the previous 
version is, of course, the explicit calls to various MLGet type functions. There also is an 
important extra bit of cleanup: a call to M LDisownlntegerList (explained below).



There are no arguments to 
unpackbits.

void unpackbits( /* Manual */ ) 
{ long count, nbits, nwords; 

int *data, *bits;

These are just like MLPut- 
type calls except the data 
parameters are passed by 
reference.

MLCheckFunction(stdlink, "BitVector", &count); 
MLGetLonglnteger(stdlink, &nbits); 
MLGetIntegerList(stdlink, &data, &nwords);

bits = (int*)malloc(nbits * sizeof(int)); 
/* ...bit bashing - same as before... */

Important extra cleanup 
step!

MLDisownlntegerList(stdlink, data, nwords);

MLPutlntegerList(stdlink, bits, nbits); 
free(bits);

}

- s r

MLCheckFunction (l i n k , fu n c , knargs) checks the link to see that the head of 
the expression on the link is func, and if so, it sets nargs  to be the number of argu
ments to that function. MLCheckFunction is useful in functions like unpackb its , in 
which the expression on the link always has a certain head. (If we did not know what 
head to expect, we could have used MLGetFunction( l in k ,  Sifunc, knargs) to 
get both the name of the function and the number of arguments to it. However, MLGet - 
F unction  requires an extra cleanup step, as explained next.)

When you read a fixed-size data type such as an integer from a link, you pass a 
pointer to an integer to MLGetlnteger. However, when you read a variable-sized data 
type such as an integer list, you pass a pointer to an integer pointer to M LGetlnteger- 
L is t .  The crucial difference is that in the first case, all of the storage needed by the 
integer (4 bytes) already exists. However, in the second case, the only storage that has 
been allocated is for the pointer to the first integer in the array, but not the array itself. 
The MathLink library allocates this storage and sets the integer pointer that you pass to 
M LG etlntegerL ist to point at it. You should not try to deallocate this storage your
self (as was done with the b i t s  array); in fact, the MathLink documentation discour
ages programs from even writing into this storage. Instead, you must inform MathLink 
that it’s okay to deallocate the storage by using M LDisownlntegerList. Note that 
when you declare an argument of type In te g e rL is t  in a template file, mprep gener
ates the code that calls M LDisownlntegerList. But since the argument in this case is 
declared as Manual, you need to make this call before your installable function returns.

Returning to MLCheckFunction and MLGetFunction for a moment: After calling 
MLGetFunction ( l i n k , Scfunc, Smargs), you are required to free the memory 
being used by func  by calling MLDisownSymbol ( l i n k , fu n c ) . The advantage of 
MLCheckFunction is that it obviates the need to disown any storage.

Forgetting to call MLDis own ty p e  when required is another possible source of mem
ory leaks!



Remember to exploit the strengths of each development tool at your disposal! If you 
find yourself putting and getting a lot of expressions manually, then you need to ask 
yourself why. Chances are you’re doing symbolic processing in C that you should be 
doing in Mathematica template code.

11.5 Integrating Installable Functions and Packages
It is easy to imagine circumstances in which one would like to include installable func
tions in a package. Todd Gayley [Gayley 94c] points out that there are two completely 
different ways of doing this, each with its own strengths and weaknesses. One way is to 
use :E valuate : statements to embed the entire package inside of the template file; 
there are examples of this in the MathLink documentation. The other way, which Gay
ley advocates, is to call I n s t a l l  from within an ordinary Mathematica package file. In 
the following two sections we will discuss each of these methods.

11.5.1 Embedding a package in a template file
Suppose that we want to extend the s e t b i t  and c le a r b i t  functions of Section 11.2.1 
to work on bit vectors. One way to do this would be to modify the code for these func
tions to handle the B itV ector type as an argument and as a return value. However, 
there really is no need to do so: Given the number of the bit to be modified, it is quite 
easy to figure out which element of the bit vector data structure contains the relevant 
bit. By passing only this single integer we not only simplify the C code (the original 
definitions of s e t b i t  and c l e a r b i t  from Section 11.2.1 can be used), we also cut 
down on the amount of data passed between the kernel and the installed function — 
dramatically so in the case of very large bit vectors.

We can define the following “wrapper” function for s e t b i t  (the wrapper function 
for c l e a r b i t  is analogous):

S etB i-t extracts the relevant S e t B i t [ b : B i t V e c t o r [ n b i t s _ ,  d a ta _ ]  , n _ In t e g e r ]  / ;  
byte code and calls s e tb i t .  B i t V e c to r Q  [b ] && 1 <=  n  <= n b i t s  : =
The return value is passed to W i t h [ { p  =  Q u o t ie n t  [n  -  1 , 8 ] + 2 } ,
ReplacePart to update the BitVector [nbits ,
B itV e c to r 's  list of bits. R e p la c e P a r t  [ d a t a ,

s e t b i t [ d a t a [ [ p ] ] , M od [n  -  1 , 8 ] + 1 ] ,  

p]
]

Now we have a situation in which one function implements a public interface to 
another function — a situation that cries out for a package structure. We can use 
:E valuate : statements to embed within the template file all of the necessary calls 
(Section 8.2.1) to BeginPackage, EndPackage, and so forth, as well as the wrapper 
functions themselves! Here is the overall structure of the template file:



Create the package context. :Evaluate: BeginPackage["BitVector'"];

Usage messages for 
exported symbols.

Private subcontext starts 
here.

(These predicates could be 
made public or private.)

Template statements for 
installable functions are 
inside the private context.

:Evaluate: 
:Evaluate: 
:Evaluate: 
:Evaluate: 
:Evaluate:

:Evaluate:

:Evaluate: 
:Evaluate: 
:Evaluate: 
:Evaluate:

:Begin:
:Function:

:End:

BitVector::usage = ...
PackBits::usage = ...
UnpackBits::usage = ...
SetBit::usage = ...
ClearBit::usage = ...

Begin["'Private'"];

BinaryQ[x_] := x =  0 || x =  1 
ByteCodeQ[x_] := ...
BitVectorQ[BitVector[...]] := .. 
BitVectorQ[___] := False

packbits

:Function: 

:Function: 

:Function:

unpackbits

setbit

clearbit

The exported function S e t-  
B i t  calls the private func
tion s e tb i t .

:Evaluate: SetBit[b:BitVector[nbits_, data_],
n_Integer] /;

BitVectorQ[b] && 1 <= n <= nbits := 
With[{p = Quotient[n - 1, 8 ] +1}, 

BitVector[nbits,
ReplacePart[data,

setbit[data[[p]], Mod[n-1,8 ]+1],
Pi

]
]

C le a r B it  is analogous to 
S e tB it .

End of private subcontext. 
Protect exported symbols.

End of package.

:Evaluate: ClearBit[....] := ....

:Evaluate: End[];
:Evaluate: Protect[{BitVector, PackBits,

UnpackBits, SetBit, ClearBit}]; 
:Evaluate: EndPackage[];

Starting with a fresh kernel, here is how the installation of this MathLink program 
affects the state of the user’s session:



Tabula rasa...

Install the M athLink pro
gram.

The on ly  global sym bol is 
the link itself.

These five sym bols have 
been exported from the 
package.

The rest of the package 's 
sym bols —  in particular, the 
installed functions setbit 
and clearbit —  are pri
vate.

Unfortunately, there are 
som e problem s uninstalling, 
since w e  have protected two 
sym bols defined in link pat
terns.

?Global'*
Information::nomatch:

No symbol matching Global'* found.

link = Install["bitvec4"]
LinkObject[bitvec4, 4, 2]

?Global'*
Global'link
link = LinkObject["bitvec4", 4, 2] 

?BitVector'*
BitVector ClearBit PackBits SetBit UnpackBits

?BitVector'Private'*
BitVector'
BitVector'
BitVector'
BitVector'
BitVector'
BitVector'
BitVector'
BitVector'
BitVector'
BitVector'
BitVector"
BitVector'
BitVector'
BitVector'
BitVector'

Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private

b
BinaryQ 
bitlist 
'bitvec 
BitVectorQ 
ByteCodeQ 
‘ clearbit 
' data 
'n
‘nbits 
'newbit 
'P 
'p$
'setbit

Uninstall[link]
Unset::write: Tag PackBits in TooBig is Protected.
Unset::write:

Tag UnpaekBits in UnpackBits[<<!>>] is Protected.
bitvec4

The error messages triggered by U n in s ta l l  would have been prevented if we had cre
ated wrapper functions for all of the installed functions and protected only the wrapper 
functions.

The advantage to integrating installable functions and packages in this way is that 
there are fewer files to keep track of. In fact, you can even embed the C code for the 
installable functions in the template file; mprep simply passes C code through to the 
.tm.c file. Of course, this also complicates the development process, as any change to 
the package code, the C code, or the templates forces a recompilation of the entire 
MathLink program! It may be advantageous to keep the various components separate 
during the development process, and combine them only for purposes of distribution.



But the main disadvantage of this technique is that it requires that users learn a new 
paradigm for loading a package — namely, calling I n s t a l l  instead of Needs.

11.5.2 Calling Install from within a package
The second way to integrate installable functions and packages is to call I n s t a l l  from 
within an ordinary Mathematica package. Although this may seem like the most obvi
ous thing to do, there are a number of subtle difficulties involved.

Here is an illustration of what happens when I n s t a l l  is used within a package 
(note: the following example was created using a “fresh” kernel session):

B e g in P a c k a g e [ " t e s t '" ]

t e s t '

l i n k  =  I n s t a l l [ " b i t a n d " ]

L i n k O b j e c t [ b i t a n d , 2 ,  2]

C o n te x t [B i tA n d ]

B i t A n d : : shdw:
W a rn in g :  Sym bol B itA n d

a p p e a rs  i n  m u l t i p l e  c o n te x ts  { t e s t ' . G l o b a l ' ) ; 
d e f i n i t i o n s  i n  c o n t e x t  t e s t '
may shadow  o r  b e  shadow ed b y  o th e r  d e f i n i t i o n s .

t e s t '

?G lo b a l 'B i tA n d

G lo b a l 'B i tA n d

G l o b a l 'B i t A n d [ G lo b a l 'x _ .  G lo b a l 'y _ ]  :=
E x t e r n a l C a l l [ L i n k O b j e c t [ " b i t a n d " , 2 ,  2 ] ,

C a l l P a c k e t [ 0 ,  { G l o b a l 'x ,  G l o b a l ' y ) ] ]

E n d P a c k a g e [ ] ;

U n i n s t a l l [ t e s t ' l i n k ]  

b i t a n d

The problem demonstrated above is a consequence of the fact that every installed 
function is created in the G lobal' context, no matter where I n s t a l l  is called from. 
This happens because I n s t a l l  explicitly overrides the value of $Context. Thus, in 
order to embed an installable function in a package such as the following,

B e g in P a c k a g e [ " pkgnam e ' " ]
. . .  ( o t h e r  p a c k a g e  s t u f f )  . . .
I n s t a l l [ " e x t e r n a l p r o g " ] :
. . .  ( o t h e r  p a c k a g e  s t u f f )  . . .

E n d P a c k a g e []

Start a package.

Install a MathLink  program.

The symbol B itA nd  refer
enced in this statement is 
not the one created by 
I n s t a l l .

The B itA nd  function was 
installed in the G lo b a l' 
context.

Exit the package context.

The symbol l i n k  was cre
ated in the package context.



the corresponding template file must enter and leave the package’s context using 
Begin...End:

:Evaluate; Begin["pkgname'"];
... (other template statements)...
:Evaluate: End[];

Forearmed with this knowledge, it is possible to embed calls to I n s t a l l  within a 
package, which the user can then load in the familiar way. However, the main disadvan
tage to this approach is that it requires the distribution and installation of (at least) two 
files rather than one. The user has to place the MathLink program in a directory where it 
will be found by I n s t a l l ,  or else he may have to edit the call to I n s t a l l  within the 
package file to reflect the MathLink program’s location on his particular system.

This problem can be mitigated in version 3.0 by using the following technique: If the 
argument to I n s t a l l  is of the form "nam e'", the kernel will search all of the directo
ries in $Path for a file named name. This allows one to place both of the files (the 
package file and the MathLink program file) in any directory in $Path and everything 
will work transparently.

11.6 Callbacks to the Kernel
Sometimes during the course of execution of an installed function the function needs to 
have the Mathematica kernel evaluate an expression. This is accomplished by calling 
the function MLEvaluate (which is generated by mprep). MLEvaluate takes a string 
as an argument, which it sends to the kernel for evaluation. The value returned by the 
kernel is retrieved using MLGet typ e  calls, just as would be done for manual arguments 
(Section 11.4.3).

As an example we will create a MathLink function that finds a root of a continuous 
function of a single variable (henceforth referred to as the subject function) on a speci
fied interval using bisection. The bisection logic will be implemented in C, but each 
time the subject function needs to be evaluated, a request will be made to the kernel to 
do so. In this way, the subject function can depend on other symbols and functions in 
the Mathematica session that the installed function doesn’t know about.

The pattern for the installed function will be B ise c t [expr_ , {x_Symbol, x0_, 
xl_>] (by analogy with the built-in function FindRoot). It is expected that the end
points of the interval xO and x l are numerical, that expr evaluated at each endpoint is 
numerical, and that expr has opposite signs at the two endpoints. All of this is checked 
by Mathematica code attached to the pattern as a condition. Before this code calls the 
installed function, it converts expr to a string in order to obviate the need for the 
installed function to accept an arbitrary normal expression as an argument.

:Begin:
:Function: bisect



Before passing the argu
ments, expr is converted to 
a string and xO and x l  are 
evaluated numerically.

rPattern: Bisect[expr_, {x_Symbol, x0_, xl_}] /;
NumericQ[xO] && NumericQ[xl] &&
With[{y0 = N[expr /. x->x0], yl = N[expr /. x->xl]}, 
NumberQ[yO] && NumberQ[yl] && Sign[yO]Sign[yl] == -1

]
:Arguments: {ToString[InputForm[expr]],

x, N[x0 ] , N[xl] }
:ArgumentTypes:{String, Symbol, Real, Real}
:ReturnType: Real
:End:

Now for the C code. Here is the code for the main b is e c t  routine, which depends 
on another routine, evaluate_expr, to evaluate the Mathematica expression.

b u f  is used by 
e v a lu a te _ e x p r.

expr is evaluated at each 
endpoint.

The midpoint is calculated, 
and the expression is evalu
ated there.

The bisection step.

double bisect(char *expr, char *x, 
double xO, double xl)

{ double xmid, yO, yl, ymid;
char *buf = malloc(strlen(expr) + strlen(x) + 1 0 0 )

yO = evaluate_expr(buf, expr, x, xO); 
yl = evaluate_expr(buf, expr, x, xl);

while (fabs(xl - xO) > .000001)
{ xmid = (xO + xl)/2.0;

ymid = evaluate_expr(buf, expr, x, xmid);

if (sign(ymid) =  sign(yO)) 
xO = xmid, yO = ymid;

else
xl = xmid, yl = ymid;

Free buf. free(buf);

Return whichever endpoint 
is closer to the root. }

return (fabs(yO) < fabs(yl)) ? xO : xl;

Here is the code for evaluate_expr. It uses the C library function s p r in t f  to con
struct the string "N[expr / .  x->xval] " and sends it to the kernel for evaluation 
using MLEvaluate. It then retrieves the result using MLGetReal.

double evaluate_expr(char *buf, char *expr,
char *x, double xval)

{ double result;
sprintf(buf, "N[%s/.%s->%f]", expr, x, xval); 
MLEvaluate(stdlink, buf);
MLNextPacket(stdlink);
MLGetReal(stdlink, &result); 
return result;

}



The MLNextPacket call requires some explanation. Data are sent on a MathLink 
link in the form of packets, which are simply Mathematica expressions having special 
heads. The packet heads alert the receiver to the type of data that is arriving. For exam
ple, the kernel sends a C allP acket to a MathLink program to request that an installed 
function be called. MLEvaluate sends an E valuatePacket to the kernel, which 
informs the kernel that the packet is not the return value from the installed function, but 
rather a request for an evaluation. The MLNextPacket function simply advances to the 
next packet on the link and returns the type of that packet. We are taking it on faith that 
the next packet will be a reply to our evaluation request (a ReturnPacket), and that 
the expression contained within it is a real number — neither of which are necessarily 
the case if an error occurs during the evaluation. We’ll address that possibility in the 
next section.

Here is a demonstration of b is e c t :

lin k  = In s ta l l[ " b is e c t" ] ;

??Bisect
Bisect[expr, {x, xO, xl}] searches for a root of expr 

in the interval xO<x<xl. expr must have opposite 
signs at the endpoints of the interval.

Bisect[expr_, {x_Symbol, x0_, xl_l] /:
NumericQ[xO] && NumericQ[xl] &&
With[{yO = N[expr /. x -> xO], 

yl = N[expr /. x -> xl] } ,
NumberQ[yO] && NumberQ[yl] &&
Sign[yO]*Sign[yl] == -1] :=

ExternalCall[LinkObject["bisect", 9, 2],
CallPacket[0, (ToString[InputForm[expr]]. x,
N[x0 ] , N[xl] }]]

Bisect[xA2 - 2, {x, 1, 2}]
1.41421

Bisect[xA2 - 2, {x, 2, 3}]
Bisect[-2 + x^, {x, 2, 31]

Bisect[Sin[Pi x], {x, 1/2, 5/4}] 
1.

Note that as an alternative to constructing a C string and passing it to MLEvaluate, 
you can send an expression to be evaluated using a sequence of MLPut typ e  calls 
(Section 11.4.2). If you decide to go this route, you must wrap the entire expression in 
the special head E valuateP acket so the kernel doesn’t think the expression it is

This call calculates an 
approximation to Sqrt [ 2 ] .

The pattern check prevents 
calls like this from being 
made (the expression has 
the same sign at both end
points).

The expression can depend 
on other symbols since the 
kernel, not the MathLink 
program, is evaluating it.



receiving is the return value from the installed function! Here is the requisite sequence 
of MLPuttype calls for the current example:

M L P u t F u n c t io n ( s t d l in k ,  " E v a lu a t e P a c k e t " , 1 ) ;  
M L P u t F u n c t io n ( s t d l in k ,  " N " , 1 ) ;

M L P u t F u n c t io n ( s t d l in k ,  " R e p la c e A l l " ,  2 ) ;  
M L P u t F u n c t io n ( s t d l in k ,  " T o E x p r e s s io n " ,  1 ) ;

M L P u t S t r in g ( s t d l in k ,  e x p r ) ;
M L P u t F u n c t io n ( s t d l in k ,  " R u le " ,  2 ) ;

M L P u tS y m b o l( s t d l i n k ,  x ) ;
M L P u t D o u b le ( s td l in k ,  x v a l ) ;

This code puts the expression E valuatePacket [N[ReplaceAll [ToExpres
sio n  [expr] , Rule [x , xval] ] ] ] onto the link. Note the trick of wrapping expr, 
which is a string, inside ToExpression. About the only reason to go to all this trouble 
is if the expression you are sending to the kernel is being built as it is being sent. Other
wise, using s p r in t f  and MLEvaluate seems like the easier course of action.

Exercise

1. Use the snoop function of Section 11.3.2 to observe the exchange of packets during 
a call to B isec t.

11.7 Error Checking
There is a limit to how “bulletproof’ we can make MathLink, functions through type 
checking in the link patterns. There are some cases in which error conditions will arise 
during the execution of the function no matter how carefully (within reason) the argu
ments are checked. Here’s an example of such an error occurring during the execution 
o fb is e c t:

B i s e c t [ 1 / x .  { x ,  - 1 ,  1 } ]

1
P o w e r : : in f y :  I n f i n i t e  e x p r e s s io n  —  e n c o u n te r e d .

0.
$ F a i le d

U n i n s t a l l [ l i n k ] ;

The error message shown above was generated by the kernel during the evaluation of 
1 /x  / .  x->0. The kernel returned a packet containing the expression D ire c te d ln -  
f i n i t y [ ]  in response. What happened next is that ev a lu a te_ ex p ressio n  tried to 
get a real number out of the packet, which caused an error. The value of the variable 
r e s u l t  was thus unchanged by the call to MLGetDouble (s td l i n k , & re su lt) , and 
the value returned by ev a lua te_exp r was the value of an uninitialized local variable! 
The bisection process continued, albeit to an incorrect conclusion (b is e c t attempted 
to return 1).



Hr The reason the symbol $F ailed  was returned is a bit more complicated. It turns out 
that after an error occurs on a link, all subsequent calls using that link continue to fail 
until the error condition is cleared explicitly. The error condition wasn’t noticed until 
b is e c t  returned to the mprep-generated code. That code (a) cleared the error condition 
and (b) returned the symbol $Failed .

In other words, we were just lucky that something reasonable happened. Since 
b is e c t  sanguinely ignores link errors, every call to ev a lu a te_ ex p r after the first bad 
one returned garbage, too — it seems almost miraculous that b is e c t  terminated at all! 
In general we won’t be so lucky; the MathLink function might return a nonsensical 
result, loop forever, or turn into a pillar of digital salt (i.e., crash).

11.7.1 General error checking
The least we should do in a situation like the one above is to print a reasonable error 
message and return the symbol $ F a iled  immediately. In order to return a value other 
than a real number, however, we will have to put the return value manually. We already 
know how to do that: Simply change the :ReturnType: Real statement to
: ReturnType: Manual in the template file, and use MLPuttype functions to return 
values from b is e c t .  Here is the new b is e c t :

No return value.

e v a lu a te _ e x p r now 
returns a status code.

If it fails, return $ F a ile d .

If e v a lu a te _ e x p r fails, bail 
out.

void bisect(char *expr, char *x, double xO, double xl)
{ double xmid, yO, yl. ymid;

char *buf = malloc(strlen(expr) + strlen(x) + 1 0 0 );

if (evaluate_expr(buf, expr, x, xO, &y0) || 
evaluate_expr(buf, expr, x, xl, &yl)) {

------ MLPutSymbol (stdlink, " $Failed");
return;

}

while (fabs(xl - xO) > .000001)
{ xmid = (xO + xl)/2.0;

if (evaluate_expr(buf, expr, x, xmid. &ymid))
{ MLPutSymbol(stdlink, "$Failed"): 

return;
}
/*** bisect step — as before ***/

}
free(buf);

Normal termination: Use 
MLPutReal to return the 
answer.

MLPutReal(stdlink, 
(fabs(yO) < fabs(yl)) ? xO : xl);

}

Now for the error checking itself. As the saying goes, it’s a dirty job, but 
code is rather subtle and we’ll go through it step by step below.

... This



N o w  the return value is a int evaluate_expr (char *buf, char *expr, char *x,
double xval, double ‘result)

int p, err;

sprintf(buf, "N[%s/.%s->%f]", expr, x, xval); 
MLEvaluate(stdlink, buf); 
while ((p = MLNextPacket(stdlink)) &&

(p != RETURNPKT))
MLNewPacket(stdlink);

MLGetReal(stdlink, result);

if (err = MLError(stdlink)) { 
sprintf(buf,

"Message[Bisect::linkerror \"%.70s\"] ", 
MLErrorMessage(stdlink));

MLClearError(stdlink);
MLNewPacket(stdlink);
MLEvaluateString(stdlink, buf);

)

return err;
)

The w h ile  loop after the call to MLEvaluate keeps throwing away packets until 
either a RETURNPKT is received or an error occurs (in which case MLNextPacket 
returns 0). This is a robust way to wait for a result from the kernel. The MLNewPacket 
function throws away the remainder of the current packet without getting any more data 
out of it. In the code above we call MLNewPacket each time we want to ignore a 
packet.

If an error occurs while waiting for the RETURNPKT, the MLGetReal call following 
the w hile loop faces certain failure. However, there is no need to check for errors until 
after the call to MLGetReal, as explained next.

The i f  statement following the call to MLGetReal checks for the occurrence of a 
low-level MathLink error. This type of error usually indicates that the parties on either 
side of the link have somehow gotten “out of step” with each other — e.g., attempting 
to get a Real out of a packet containing a normal expression. However, there are many 
other sources of low-level errors and, in general, any MathLink library call can return 
an error status.20 Checking the status of every library call results in hard-to-read nested 
i f  statements, liberal use of goto, or other strange contrivances (inspect any .tm.c file 
for examples). None of this is really necessary, however, since low-level MathLink

20. To be precise, most MathLink library calls return 0 to indicate that an error 
occurred. The exact nature of the error can be determined by calling MLError.

status code and the result of 
the evaluation is a by-refer
ence parameter.

Request evaluation as 
before.

Throw  away packets until a 
RETURNPKT is received.

Attempt to read a R e a l.

MathLink error?

Construct an error message.

Clear the link status. 

D iscard  the current packet. 

Send the error message and 
ignore the reply.



errors disable the link until they are cleared with MLClearError. Thus, error checks 
need to be made only at certain strategic points in the program, because once an error 
occurs, additional library calls can do no further damage.

One such strategic point is just before evalua te_exp r returns. If any MathLink call 
up to this point failed, MLError will indicate the reason for it. eva lua te_exp r then 
assumes that the result of the kernel evaluation is garbage and constructs an error mes
sage. The message B is e c t : : l in k e r ro r  is defined in the template file as "Low- 
le v e l  MathLink e r ro r :  '  1 '" .  The library function MLErrorMessage returns a
string describing the most recent error on the link. The link status is cleared using 
MLClearError, and finally an attempt is made to deliver the error message to the ker
nel. Here, M LEvaluateString is used, which is like MLEvaluate except that it 
ignores the kernel’s reply.21 No attempt is made to see if the evaluation of the Message 
succeeds, since there would be little that could be done if it failed.

Note that MLClearError is called after the error message is constructed but before 
the error message is sent. This is the only correct way to do it: After MLClearError 
has been called, you can no longer find out what the error was; conversely, before 
MLClearError has been called, you can’t send the error message because the link will 
ignore you.

Here is an example of the behavior of the new and improved b is e c t .

B i s e c t[1/x, {x, -1, 1}]
This message is generated 1
by the kernel. P o w e r: : i n f y :  I n f i n i t e  e x p r e s s io n  —  e n c o u n te r e d .

0.

This message is generated B i s e c t : :  l i n k e r r o r :
by evaluate_expr. L o w - le v e l  M a th L in k  e r r o r :  MLGet? o u t  o f  se q u e n c e

This return value is sent by $ F a i le d
bisect.

While it may seem that all that has been accomplished is the generation of a cryptic 
error message, the real point of this modification is that b is e c t  returns $F ailed  
immediately after detecting an error. Recall that in the previous version, b is e c t  con
tinued to labor toward an incorrect answer, and it was only after b is e c t  returned that 
the mprcp-generated code noticed the link error and returned $Failed.

11.7.2 Checking the types of packets and expressions
The code given in the previous section will handle any conceivable error situation, but 
it leaves something to be desired with regard to user-friendliness! For the b is e c t  func

21. M LEvaluateString is new in version 3.0. Users of earlier versions should use 
MLEvaluate, followed by a loop that “eats” everything up to and including the 
next RETURNPKT.



tion it would be nice to check specifically for the type of error we have been encounter
ing since it is likely to occur occasionally.

We can use MLGetType to find out what type of expression is in a packet before 
attempting any MLGettype call(s) on that packet. If the RETURNPKT does not contain a 
real number, we will issue a more specific error message. Here, then, is the entire solu
tion for evaluate_expr:

int evaluate_expr(char *buf, char *expr, char *x, 
double xval, double ‘result)

{ int p, err;

Request evaluation as sprintf(buf, "N[%s/. %s->%f] " , expr, x, xval);
before. MLEvaluate (stdlink, buf) ;

Wait for a RETURNPKT. while ((p = MLNextPacket(stdlink)) && 
(p != RETURNPKT))

MLNewPacket(stdlink);

If the packet contains a 
Real, get it.

Otherwise, it's an error. 
Throw away the packet.

if (p == RETURNPKT) {
if (MLGetType(stdlink) =  MLTKREAL) 

MLGetReal(stdlink, result); 
else {

MLNewPacket(stdlink);

Issue the infamous p ln r  
error message (see below).

Ignore the reply.
Return an error status.

sprintf(buf,
"Message[Bisect::plnr, %s, %s, %f]", 
expr, x, xval);

MLEvaluateString(stdlink, buf);
if (IMLError(stdlink)) return MLEUSER;

}

Check for low-level Math
Link errors. This code is the 
same as before.

if (err = MLError(stdlink)) { 
sprintf(buf,

"Message[Bisect::mlink, \"%.70s\"]", 
MLErrorMessage(stdlink)); 

MLClearError(stdlink);
MLNewPacket(stdlink);
MLEvaluateString(stdlink, buf);

}

return err;
}

When the returned expression is not a real number, the code constructs and evaluates 
a call to Mathematica’s built-in Message function that issues a p ln r  error. Users of 
Mathematica’s plotting functions probably will recognize this error:



Message[Bisect::plnr, "1/x", "x", 0.]
B i s e c t : : p l n r :

1
— i s  n o t  a m a c h in e - s iz e  r e a l  num ber a t  x  = 0 . .  
x

The code then returns the predefined constant MLEUSER, which is an error number that 
is guaranteed to be higher than any of MathLink’s own error numbers. You can define as 
many of your own error codes as you like using MLEUSER, MLEUSER + 1, etc.

Note that if any other kind of MathLink error occurs, it will be caught by the same 
error-checking code that we used in our previous version of evaluate_expr. So, for 
example, if something dreadful goes wrong during the attempt to issue the 
B is e c t : : p ln r  message, a more general (and probably cryptic) MathLink error mes
sage will be issued.

Finally, the fruit of our labors:

Bisect[1/x, [x, -1. 1}]
This message is generated 1
by the kernel. P o w er: : i n f y :  I n f i n i t e  e x p r e s s io n  —  e n c o u n te r e d .

0.

This message is generated B i s e c t : : p l n r :
by e v a lu a te _ e x p r. 1

— i s  n o t  a  m a c h in e - s iz e  r e a l  num ber a t  x  = 0 . .
x

This return value is sent by $ F a i le d
b is e c t .

11.8 Making Installed Functions Abortable
Any installable function that performs a nontrivial amount of computation should be 
maHp abortable, particularly if the function involves any kind of iteration. What makes 
this possible is a global variable called MLAbort in the MathLink program that is set to 
1 asynchronously22 by the mprep code if the kernel sends an interrupt packet (which it 
does in response to the user typing the keyboard combination that requests an abort). 
Therefore, any time-consuming loop should be structured as follows:

while(test && IMLAbort) {
/* loop body */

}

22. This is strictly true only on operating systems that have preemptive multitasking, 
such as UNIX, OS/2, and Windows 95. MacOS System 7jc and Windows 3 .x pro
grammers need to take some extra precautions, discussed in [Gayley 94c].



Note that your function continues to execute even after MLAbort has been set; it is 
your responsibility to do something about it. If you don’t, then when your function 
eventually returns (if it ever does, that is), the mprep code will ignore its return value 
and return the symbol $Aborted instead. [Gayley 94c] points out that this probably 
should not be allowed to happen: If the user makes a call like f  [ in s ta l le d - 
fu n c  [args] ] then the result of aborting the computation will be f  [$A borted], 
rather than $Aborted (which is what a computation that does not involve any installed 
functions would return). He recommends instead that installable functions return the 
normal expression Abort [] when an abort request occurs, which causes a computation 
to abort all the way to the top level. Compare the following two alternatives:

f[$Aborted]
f[$Aborted]

f [Abort [] ]
$Aborted

This behavior can be achieved by giving installable functions the Manual return type 
and structuring their C code as shown below:

func(args)
{

while (test && !MLAbort) {
/* loop body */

}

if (MLAbort)
A head with no parts MLPutFunction(stdlink, "Abort", 0);
(Abort []). else

MLPuttype(stdlink, the_answer):
}

11.9 Miscellaneous MathLink Data Types
Mathematica can handle some types of data for which there are no counterparts in C. 
Two immediate examples are exact integers and arbitrary-precision numbers, which 
can have far more digits than can be represented by any of the numeric types in C. 
MathLink solves this problem by allowing programs to put and get numbers in textual, 
rather than binary, form. This technique will be discussed in Section 11.9.1.

Version 2.2 added the ability to put and get multidimensional arrays of numbers with 
a single library call. The array types will be discussed in Section 11.9.2.

Finally, version 3.0 adds a few new types for dealing with 16-bit character data, 
which will be discussed in Section 11.9.3.



11.9.1 Numbers as text
As mentioned at the beginning of Section 11.4, there are MathLink functions for putting 
and getting sh o rt or long in ts , f lo a ts ,  doubles, and long doubles. These func
tions have names like M LPutShortlnteger, MLGetFloat, etc.

Conspicuously absent from this list are functions for putting and getting unsigned 
integer types. This really is a problem only for the type unsigned long, since any 
smaller unsigned integers can be put or gotten using a larger signed integer type. A gen
eral mechanism for getting around this problem is to put or get numbers in textual, 
rather than binary, form. This technique can be used to get and put numbers that have 
many more digits than can be represented by native C types (although it’s not at all 
clear what you would do with such numbers inside of a C program).

For example, MLGetLonglnteger will fail if the integer on the link is greater than 
231-1. But MLGetString will succeed, returning the integer as a string (e.g., 
"1234567890"). If the integer is within the range of an unsigned long (0..2 '2-l), 
then it can be extracted from the string using the standard C library function s sc a n f . 
The following C code fragment illustrates these steps:

char *s;
unsigned long x;
if(MLGetNext(stdlink) == MLTKINT) {

MLGetString(stdlink, &s); 
sscanf(s, "%lu", &x);
MLDisownString(stdlink, s);

J
else {

/* error - do something about it */
}

MLGetNext returns a constant indicating the type of data on the link (MLTKINT signi
fies an integer, MLTKREAL signifies a real number, and so on). However, the fact that 
there is an integer on the link does not mean that it can fit into any C  integer type. Pro- 
duction-quality code would, of course, check for this. (Don’t assume that sscanf does 
so!)

Conversely, an integer can be put as a string as shown below:23

char s2 [2 0 ]; 
sprintf(s2 , "%lu", x);
MLPutNext(stdlink, MLTKINT);
MLPutString(stdlink, s2);

23. This particular technique does not work in earlier versions of MathLink. The textual 
interface functions, MLPutData and MLGetData, can be used to send and receive 
any type of data in textual form. However, those functions are now obsolete, and 
their use is strongly discouraged.



In this case, you must use MLPutNext to tell the MathLink library what type of data is 
contained in the string.

11.9.2 Array types
Beginning in version 2.2, MathLink provides functions for putting and getting multidi
mensional arrays of any of the scalar numeric types. In addition to an argument that 
specifies a pointer to the data, these functions take an array of dimensions, rather than a 
scalar length; an array of strings giving the heads to use in each dimension; and the 
number of dimensions. For example, the following C code fragment sends a 2x3  
matrix of short integers to the kernel:

short int data[2, 3] = {{1, 2, 3}, {4. 5, 6 }};
long ndims = 2 ;
long dims[2] = {2. 3};
MLPutShortlntegerArray(

stdlink, data, dims, NULL, ndims);
The fourth parameter to MLPut type A rray is a list of character strings that specify the 
names of the heads to use in each dimension of the array. Passing a NULL pointer causes 
the head L is t  to be used for all dimensions of the array.

The following C code fragment shows how to use the MLGettypeArray functions, 
using MLGetLongDoubleArray as a specific example:

long double *data; 
long ‘dims; 
char **heads; 
long ndims;
MLGetLongDoubleArray(

stdlink, &data, &dims. &heads. &ndims);
/* ...use the data... */
MLDisownLongDoubleArray(

stdlink, data, dims, heads, ndims);
Note that all of the arguments (except the link) are passed by reference, and that the 
MLGettypeArray function allocates the necessary storage for each of the C arrays 
(data, dims, and heads). When you are finished using the array, you should be sure to 
call the matching MLDisowntypeArray function to allow the MathLink library to 
reclaim that storage.

Finally, note that in order to use the array data you must calculate your own indices, 
because the dimensions of the array were unknown when the code was compiled. For 
example, the (2, 3) element of a 10 x 10 array x would be accessed asx[2 * 10 + 3].



11.9.3 String and symbol types
Mathematica strings may contain 16-bit characters. The MathLink S tr in g  type 
encodes all characters outside of a certain range — including some 8-bit characters — 
using multibyte sequences. In version 2.2, MathLink programs must manipulate such 
Hata with explicit translation functions (see the note at the end of this section). Version
3.0 introduces several new data types and functions for dealing with 16-bit character 
data in a more direct fashion.

The following string contains some special characters.

s = "Q\\s\n~ii7t"
Q \s
~ii7T

\ \  is a Mathematica escape sequence for the backslash character. The \n  escape 
sequence represents a newline character, ii is a standard character in every Macintosh 
font; methods for entering such characters may vary from system to system, k can be 
entered in a system-independent way in version 3.0 using the escape sequence \  [P i] .

Here is the kernel's internal T o C h a ra c te rC o d e  [s ]
representation of s. { gl> g2> 1 1 5 _ 13> 126, 252,  960}

In order to gain some insight into the MathLink representation of strings, we will use 
the following installable function that takes a string, as passed to it by mprep code, and 
returns a list of all of the 8-bit integers it finds in that string. (You should write the 
mprep template file for this function as an exercise; note that it puts its result manually.)

^ 0
void stringpeek(char *s)
{ long len = strlen(s);

int ‘charcodes = (int*) calloc(len, sizeof(int)); 
int i;

for (i = 0 ; i < len; i++) 
charcodes[i] = s[i]:

MLPutlntegerList(stdlink, charcodes, len); 
free(charcodes);

}

Below, s tr in g p e e k  is installed into the kernel under the name StringPeek, and is 
then used on the string s defined earlier.

Install stringpeek. link = Install ["string"] ;

Here are the character S t r in g P e e k  [s ]
codes passed by MathLink. {gl >  g2> g2> n 5 >  g 2 _ 48> 49 i  5 3 , 126> 92t  51> 55< 5 2 .
Users of version 2.2 will see .
a different result. 9 2 - 5 8 ’ 4 8 > 5 1 - 67 ■ 481



And here are the individual FromCharacterCode /@ % // InputForm
characters corresponding to { nQ,T M\ \ M ll\ \ f' Ms" H\ \ H " 0 H h^h »~n
tho^p codps
uiuot M\ \ H 113 ” ?’7 I!, ”4 ” , ” \ \ ,f, u 0 11 113 ” , f,C "  f,0 ” }

Comparing this result to the original string shows that printable ASCII characters 
such as Q, s, and ~ are represented as themselves. There is only one exception to this 
rule: A backslash is represented as a double backslash (each \ \  in the result of From- 
CharacterCode is a single backslash formatted in InputForm). The newline charac
ter is represented by the four-character sequence \015; the number following the 
backslash is the octal (base-8) representation of the code for a newline (15s =  1310). 
Similarly, \374 represents character code 25210. Finally, the 16-bit n character is repre
sented using the hexadecimal escape sequence \ : 03C0. These escape sequences, which 
also can be used to input special characters in a platform-independent way, are docu
mented in [Wolfram 96] §2.7.7. Once again, note that versions of MathLink earlier than
3.0 used a different method of string encoding.

mprep uses MLGetString to obtain S tr in g  arguments to installable functions, so 
the observations that follow apply to any MathLink program that uses MLGetString or 
MLPutString, whether template-based or not.

If the only strings that a MathLink program sends to the kernel are constructed from 
printable ASCII characters (except for backslash) and/or strings received from the ker
nel (the b is e c t  function of Section 11.7.1 is an example of such a program), then the 
program does not need to worry about string encodings.

W l v  On the other hand, problems can arise if a MathLink program compares strings 
received from the kernel to C strings, or if the program sends C strings to the kernel. 
Even a simple call like MLPutString ( s td l in k ,  " \n ") will not work as intended. 
Caveat programmer!

For the common case in which all of the characters in the string are 8-bit quantities, 
you can request that MathLink send or receive an unencoded string using the functions 
M LPutByteString( MLINK l i n k ,  unsigned char *s, long le n  ) and 
M LGetByteString( MLINK l i n k ,  unsigned char **s, long * len , long 
spec  ). The le n  argument gives the length of the byte string explicitly, since a 0 byte 
may be data, rather than an indication of the end of the string. The spec  argument 
(MLGetByteString only) is a character code that will be substituted for any 16-bit 
characters that are received.

The corresponding mprep type keyword is B y teS tring . The C parameters corre
sponding to a B y teS trin g  argument are unsigned char* and long.24 B y teS tring  
cannot be used as a return type because the length of the string has to be passed in addi

24. The spec parameter is an input to MLGetByteString rather than an output, so it is 
not passed to the installable function. The value of spec used by mprep is 1 \0 '; 
this can be changed by editing the .tm.c file.



tion to the data. An installable function that returns a B y teS trin g  must specify 
: ReturnType: Manual in the template file and call M LPutByteString directly.

The following variation on the s tr in g p e e k  function is declared in the template file 
to take a B y teS tring  argument; other than that, and the fact that the length of the 
string is received as a parameter, its implementation is identical to that of s trin g p eek .

void bstringpeek(unsigned char *s, long len)
{ int *charcodes = (int*) calloc(len, sizeof(int));

/* rest of function is identical to stringpeek */
}

ByteStringPeek[s]
{ 8 1 ,  9 2 ,  1 1 5 , 1 3 , 1 2 6 . 2 5 2 , 0 }

Each 8-bit character in the string is represented by its Mathematica character code; the 
16-bit character is replaced with the value of the spec  argument to MLGet- 
B yteS tring .

For functions that work directly on 16-bit character strings, there is yet another string 
type, TTn-inndaSi-ring- and corresponding MathLink calls for getting and putting it. 
T .ike. B yteS tring , the length of a U nicodeS tring  is passed separately from the data, 
so U nicodeS tring can be used as an mprep argument type but not as a return type. 
When it is used as an argument, the corresponding C parameters are unsigned 
sho rt*  and long. Here is the s tr in g p e e k  function once again, this time with a 
U nicodeS tring argument.

All characters are passed to U n ic o d e S tr in g P e e k  [s ]
the MathLink program with- {81> 92> U 5 >  13> 1 2 6 _ 252j  960)
out any encoding.

Don't forget to uninstall the Uninstall [link] ;
string functions.

Bear in mind that when a B y teS tring  or U nicodeS tring is used as a Manual 
argument (Section 11.4.3), the storage used by the string must be released using 
MLDisownByteString or MLDisownUnicodeString, respectively.

Note that symbol names in version 3.0 also may contain 16-bit characters. There are 
six more new functions, MLGetByteSymbol, MLPutByteSymbol, MLDisownByte- 
Symbol, MLGetUnicodeSymbol, MLPutUnicodeSymbol, and MLDisownUnicode- 
Symbol, that are analogous to their S tr in g  counterparts.

The preceding discussion applies only to version 3.0. Users of version 2.2 must pass 
all strings as the S tr in g  type. Note that the encoding of strings in version 2.2 is differ
ent than it is in version 3.0. For compatibility, version 2.2 programs should use the 
MLPutCharToString function to encode 16-bit characters for transmission to Mathe
matica, and use a combination of the M LforString macro and the MLStringChar 
function to decode strings received from Mathematica. These functions did not appear



until version 2.2, so they will not be found in the MathLink Reference Manual 
[WRI 93c]. Examples of their use are included in the string.c file on the supplementary 
diskette (which also contains all of the functions developed in this section).

Exercise
1. Modify any of the b i tv e c to r  programs from Section 11.4 so that the packed bits 

are sent across the link in the form of a U nicodeString, 16 bits per character.

11.10 Additional Resources
In this chapter we have concentrated mainly on using MathLink to install externally 
compiled functions into the Mathematica kernel. MathLink also can be used by an 
external program to control a Mathematica kernel in a master-slave relationship — the 
Mathematica front end uses MathLink in this way. This topic will be fully explored in a 
future companion volume to this book. The protocol used by the Mathematica front end 
to control the kernel is investigated thoroughly in [Wagner 96b].

The official documentation for MathLink version 3.0 appears in [Wolfram 96] §2.12. 
Documentation for earlier versions is scattered all over the place. The official, albeit 
somewhat dated, documentation for version 2 is the MathLink Reference Guide 
[WRI 93c]. Another source, usually overlooked, is the WRI technical report entitled 
Major New Features in Mathematica Version 2.2 [WRI 93a], which marks the first 
appearance of non-ASCII string manipulation (Section 11.9.3), array functions 
(Section 11.9.2), and other features such as new packet types, yield functions, and loop
back links (not discussed here). The documentation for version 3.0 subsumes all of this 
material, of course.

Todd Gayley of WRI has written a tutorial guide to MathLink [Gayley 94c] that is in 
some ways superior to the official sources (but you will still need [WRI 93c] as a refer
ence). Although it predates version 3.0, this tutorial is highly recommended for readers 
seeking an alternative presentation. Gayley’s article describing his MathLink program 
for accessing binary files [Gayley 94b] also contains quite a bit of tutorial material 
about MathLink.

Some things about MathLink can be learned only by examining the many sample 
programs that come with the MathLink distribution. Particularly useful examples in this 
regard are factorinteger2.c and factorinteger3.c, which show how to read arbitrary 
expressions from a link.

Finally, always read the release notes that come with the MathLink distribution that 
you are using! In addition to containing platform-specific and compiler-specific infor
mation, they are the source of many useful tidbits about new experimental functions, 
alternatives to obsolete functions, and so forth.



Part 5 
Miscellanea



Power Programming with Mathematica: The Kernel by David B. Wagner 
The McGraw-Hill Companies, Inc. Copyright 1996.



12
Input/Output

12.1 File and Directory Management
Before we begin doing input and output to files, we ought to make sure that we are 
using those files that we intend to! Mathematica provides several functions for query
ing and changing the program’s working directory.

Directory [] returns the working directory that a Mathematica session is using.1

Directory[] // InputForm
"Sartorius:Mathematica 3.0"

The current working directory is the one containing the Mathematica program files. We 
probably don’t want to be writing a bunch of files into this directory, as we might over
write something important, so we should change the working directory.

S e tD ire c to r y  changes the S e t D i r e c t o r y  [ " V a s t u s : te m p " ]
working directory. V a s t u s : tem p

Mathematica keeps track of D i r e c t o r y S t a c k  []
the directories that have {Sartorius: Mathematica 3.0}
been visited.

1. The pathname shown is a MacOS-style pathname, which uses : as the directory 
separator. On DOS/Windows systems the directory separator character is \, and on 
UNIX it is /. Pathnames cannot contain spaces on either of those systems.

2. On the MacOS version of the front end, one can use the Action/Prepare 
Input/Paste File Pathname menu command to locate the desired directory using 
the standard open file dialog box. This doesn’t actually change directories; it merely 
pastes a pathname at the notebook’s current insertion point — e.g., inside a SetDi
rectory command.



IT
It would be a good idea to change your working directory to some scratch directory 

before proceeding. You can always return to the most recent directory using the 
R ese tD irec to ry  [] command.

12.2 High-Level Output

12.2.1 Put and Get
Put [expr, " filen a m e"] , which can be abbreviated expr »  filenam e, writes an 
expression to a file.

This puts the result of the E xp and  [ ( 1  +  x ) A6 ] >> tmp
Expand into the file tmp.

You can view the contents of a file using the ! ! operator. Note, however, that this is 
not a Mathematica function — it prints the contents of the file as a side effect and does 
not return a value.

! Itm p

1 +  6 * x  +  1 5 * x A2 +  2 0 * x A3 +  1 5 * x A4 +  6 * x A5 +  x A6

Put overwrites whatever is already in the file, if anything. If you want to append an
expression to a file, used PutAppend (» > )  instead.

The output of this command E x p a n d [ ( l  +  x ) A4] » >  tmp
is appended to tmp. 11 tm p

1 +  6 * x  +  1 5 * x A2 +  2 0 * x A3 +  1 5 * x A4 +  6 * x A5 +  x A6
1 +  4 * x  +  6*x a2 +  4 * x A3 +  x A4

You can read a file of Mathematica expressions that you created with Put by using 
Get [" filen a m e"] , which can be abbreviated « fi le n a m e .  Get attempts to evaluate 
every line in the file as Mathematica input; it returns the value of the last expression 
read from the file.

« t m p

2 3 4
1 +  4 x  +  6  x  +  4 x  +  x

You can use Get to read in any file containing Mathematica input, including pack
ages. However, it is better to use Needs to read a package, since it prevents the same 
package from being loaded more than once (Section 8.2.2).

12.2.2 Exporting data using special output formats
The advent of the notebook interface has made using Put and Get to save and restore 
Mathematica expressions pretty much unnecessary, if not obsolete. In this section we 
explore how to save data in other formats.



You may on occasion need to export data generated by Mathematica to some other 
application, for example, to do some number crunching or to create special types of 
charts that Mathematica doesn’t support. It is worthwhile to think about how to export 
data in formats such as comma- or tab-delimited text. It’s much more difficult than you 
might expect!

Suppose we have a table of data that we wish to export, one line per row of the table.

Here are the data to be d a t a  =  T a b le  [ { x , E xp  [x ]  } , { x , 1 . ,  5 .  } ]

exported. { { 1 - >  2 . 7 1 8 2 8 } .  { 2 . ,  7 .3 8 9 0 6 ) ,  { 3 . ,  2 0 .0 8 5 5 ) ,

{4., 54.5982), {5., 148.413)}

Unfortunately, Put is designed to write Mathematica expressions in a form that 
allows them to be reread as input to Mathematica-.

T a b le F o r m [d a ta ]  »  tm p  
! !tm p

TableForm[{{1., 2.718281828459045),
{2., 7.389056098930651), {3., 20.08553692318767),
{4., 54.59815003314424), {5., 148.4131591025766))]

The solution to this problem is to explicitly convert the table to OutputForm and 
then Put it.

It looks pretty good, except O u tp u tF o rm  [T a b le F o rm  [d a ta ]  ] »  tmp
for those blank lines. ! ! tm p

1. 2.71828

2. 7.38906

3. 20.0855

4. 54.5982

5. 148.413

W e can eliminate the blank O u tp u tF o rm  [T a b le F o rm  [ d a t a ,  T a b le S p a c in g - > { 0 } ]  ] »  tm p
lines with an option to the ! ! tm p
TableForm  command.  ̂ 2 7 1 8 2 8

2. 7.38906
3. 20.0855
4. 54.5982
5. 148.413

Problem solved, right? Wrong! If there are numbers in scientific notation in the data, 
the m antissas and exponents will wind up on separate lines — and there is no easy way 
to associate them with each other. This makes the exported data useless:



e d a ta  =  T a b l e [ { x ,  E x p [ x ] } ,  { x ,  1 2 . ,  1 7 . } ] ;
O u tp u tF o r m [T a b le F o rm [e d a ta ,  T a b le S p a c in g - > { 0 } ] ] »  tmp  
! !tm p

1 2 . 1 6 2 7 5 5 .
1 3 . 4 4 2 4 1 3 .

6
1 4 . 1 .2 0 2 6  10

6
1 5 . 3 .2 6 9 0 2  10

6
1 6 . 8 .8 8 6 1 1  1 0

7
1 7 . 2 .4 1 5 5  10

Hap[FortranForm, edata ,  {2}]
( { 1 2 . ,  162754.7914190039] ,  {13 . ,  442413.3920089206) ,  

{1 4 . ,  1 . 202604284164777e6},
{1 5 . ,  3 . 269017372472111e6},
{1 6 . ,  8 . 88611052050787e6} ,
{1 7 . ,  2 . 41549527535753 e 7 }}

]
] »  edatafile 
!!edatafile
1 2 . 1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9
1 3 . 4 4 2 4 1 3 .3 9 2 0 0 8 9 2 0 6
1 4 . 1 . 2 0 2 6 0 4 2 8 4 1 6 4 7 7 7 e 6
1 5 . 3 . 2 6 9 0 1 7 3 7 2 4 7 2 1 l l e 6
1 6 . 8 . 8 8 6 1 1 0 5 2 0 5 0 7 8 7 e 6
1 7 . 2 . 4 1 5 4 9 5 2 7 5 3 5 7 5 3 e7

It would probably be handy to encapsulate this logic into a new function:

We will demonstrate a few more special output formats in the next section. A full 
discussion of them is presented in [Wolfram 91] §2.7 or [Wolfram 96] §2.8.

The solution to this problem is to convert the numbers to FortranForm  (or CForm) 
before outputting them. In this form, numbers in scientific notation print as 
###.###e## (where each # is a base-10 digit).

Here is the complete solu
tion to the problem.

OutputForm [
TableForm[

Map[FortranForm, edata, {2J], 
TableSpacing->{0}

Note that the pattern used 
allows the rows of the table 
to have different numbers of 
elements.

Clear[SpaceDelimitedForm]
SpaceDelimitedForm[x:{{__}..}] :=

OutputForm[TableForm[Map[FortranForm, x, £2}], 
TableSpacing->{0}]]



Exercises
1. What would happen if  the level specification were omitted from the Map function 

call in SpaceD elim itedF orm ?
2. Suppose you had a program that required comma-delimited text as input. Write a 

rule that takes a table of the form accepted by SpaceDelimitedForm that inserts 
the string " ,"  between every pair of expressions in the table. Then create a new 
function called CommaDelimitedForm that produces comma-delimited output.
Are you satisfied with the way the output looks? All of those extra spaces might 
confuse some programs. Use TableSpacing to eliminate the extra spaces.

3. Now suppose you have another program that requires tafo-delimited text as input. 
This is getting tedious, isn’t it? Create a new function called DelimitedForm that 
takes an option of the form D e lim ite r ->string . The default value for the Delim
i t e r  option should be a single space. Naturally, a user should be able to change the 
default delimiter using SetO ptions (Section 9.2.1).
Note: A tab can be embedded in a string using the meta-character \ t .  See 
[Wolfram 91] §2.8.1-2.8.2 or [Wolfram 96] §2.7.5-2.7.8 for a discussion of how to 
enter other special characters, including those from foreign-language character sets.

12.2.3 Save and DumpSave

Sometimes you want to save the definition of a symbol (or group of symbols) to a file, 
in a form that can be used to “reconstitute” the symbol at a later time. The Save func
tion writes the definition of one or more symbols, along with the definitions of all the 
symbols they depend upon, into a file.

a = 5 ; 
b :=  a ;

Save doesn't save just the 
values of symbols, it saves 
their literal definitions.

Save is most useful when you want to save the definitions of a large number of sym
bols at once. You can specify a list of symbols, a string pattem (e.g., "*foo*"), or a 
context name as the second argument to Save.

Starting with version 3.0, you also can save symbol definitions in a binary format 
using DumpSave. By convention, such files have the suffix .mx. (Regardless of the suf
fix, Get automatically figures out if a file being read is in the binary format.) The 
advantage of DumpSave over Save is that the binary data are much quicker to load into 
the kernel than the InputForm that is written by Save.

Furthermore, DumpSave can save the definition of an entire package using the syntax 
DumpSave [ f i l e ,  " c o n te x t '  " ]. Loading a binary package created by DumpSave

S a v e [" tm p " , b] 
! !tmp

b := a 
a = 5



has an effect that is identical to reading in a .m package file — for example, the context 
name is added to $Packages and is prepended to $ContextPath. (See Section 8.2 for 
a full discussion of how packages affect the state of a Mathematica session.) 
Save [ f i l e ,  "c o n te x t '" ]  does not have the same effect: It saves the definitions of 
every symbol in the context, but reading those definitions back in recreates only the 
individual symbols, not the context itself.

The disadvantage of DumpSave is that the binary format is different on each of the 
various computer systems that Mathematica supports. However, if Get [name] discov
ers that name is the name of a directory rather than a file, then Get looks for a file called 
name/$SystemID/name.mx ($SystemID is a global symbol containing the type of sys
tem that is being used). This allows binary packages for different types of marhinp. 

architectures to be stored on the same computer system (e.g., a file server with hetero
geneous clients), yet be referred to by a consistent name.

12.3 Low-Level Output
In some cases you may need more control over the format of the output than Put 
affords. The functions described in this section give you that control.

12.3.1 Streams

In Mathematica, a stream is a source of input or output. Streams can be files, pipes (on 
some operating systems), or even character strings.3 Before a stream can be used, it 
must be opened, and when it is no longer needed, it should be closed.

Here's a file with some data 
in it.

"Hello there" »  tmp 
! !tmp
"Hello there"

OpenWrite associates an 
output stream with a file.

OpenWrite wipes out what
ever data were in the file.

s = OpenWrite["tmp"] 
OutputStream[tmp, 8 ]

! !tmp

OpenAppend is similar to OpenWrite, with the obvious difference.

The value returned by OpenWrite or OpenAppend is passed as an argument to the 
functions that actually write the data to, and close, the stream. You can get a list of all 
open streams using the Stream s command.

3. This is similar to string streams in C++ ([Stroustrup 91] §10.5.2). Associating a 
stream with a character string in Mathematica is done with the StringToStream  
function ([Wolfram 91] §2.10.8 or [Wolfram 96] §2.11.9).



The first two streams in the Streams [] II InputForm
result were opened auto- (OutputStream["stdout" , 1], OutputStream["stderr" , 2],
matically at start-up. OutputStream["tmp" , 8 ])

When you are finished with a stream, be sure to close it.

Close[s];

12.3.2 Writing to a stream

Once you have opened a stream for writing or appending, you can write data to it. There 
are two functions for this: W rite, which writes Mathematica expressions, and W rite- 
S tr in g , which writes character strings.

W rite [ s , e x p r l , . . .  ] writes the given expression(s) to the stream s, followed 
by a newline character. W rite leaves no spaces or other delimiters between the expres
sions.

s = OpenWrite["tmp"];
Clear[a, b]
Write[s, (a + b)A2, " expands to Expand[(a + b)A2]]
! !tmp
(a + b)A2 " expands to "aA2 + 2 *a*b + bA2

Note the quirky string output in the above example. This is because, by default, 
W rite writes its arguments using the InputForm format, and strings in InputForm 
show their double quotes. You can override the format for each argument on an individ
ual basis:

Subsequent Write com- Write [s, (a + b)A2, OutputForm [" expands to "] .
m ands append to the file . Expand [(a + b)A2]]

! !tmp
(a + b)A2 " expands to "aA2 + 2 *a*b + bA2 
(a + b ) A2 expands to aA2 + 2 *a*b + bA2

The default format is InputForm because, as the next example shows, OutputForm 
is unsuitable for subsequent input whenever exponents or fractions are involved.4

The expo nen t is written on a Write [s. OutputForm ["The OutputForm of "] .
different line of the output (a + b ) A2,
than everything else. OutputEorm[" is: "] ,

OutputForm[(a + b)A2]
]

4. In version 3.0, the formats StandardForm and TraditionalForm  behave as 
OutputForm unless the stream being written to is a front-end window.



Closets];
! !tmp
(a + b)A2 " expands to "aA2 + 2 *a*b + bA2 
(a + b ) A2 expands to aA2 + 2 *a*b + bA2

2
The OutputForm of (a + b)A2 is: (a + b)

You can change the default output format used by a stream at the time the stream is 
opened. Here is an example of opening a stream with the default format set to TeX- 
Form:

Options[OpenWrite]
{DOSTextFormat -> True, FormatType -> OutputForm, 
PageWidth -> 54, PageHeight -> 22,
TotalWidth -> Infinity, TotalHeight -> Infinity, 
CharacterEncoding :> $CharacterEncoding, 
NumberMarks :> $NumberMarks}

You can see what the options values are for a particular stream by using 
O ptions [stream ]. The interested reader should refer to [Wolfram 91] §2.10.3 or 
[Wolfram 96] §2.11.3 for a description of these options.

W riteS trin g  gives you even more control over the output than W rite, since (a) 
you can construct strings that would not be syntactically valid Mathematica expres
sions, and (b) it does not automatically write a newline after every call. Strings are writ
ten without their surrounding quotes. Arguments that are not strings are evaluated, 
converted to strings, and then written.

a  =  5 ;  b =  7 ;  
s =  O p e n W r i t e [" tm p " ] ;
W r i t e S t r i n g [ s , a ,  , b ,  , a + b ,  " \ n " ]  
C l o s e t s ] ;
! !tm p

5+7=12

An alternative to passing an OutputStream  object to W rite or W riteS trin g  is to 
pass the name of a stream, e.g., W rite ["tmp", e x p r l , If there is no open
stream with that name, the function will attempt to open one. The stream remains open 
for writing until you explicitly close it. Thus, unless you want to open a file in append 
mode or change any of the default output stream options, you don’t need to open file 
streams explicitly.

The contents of this file are 
suitable for input to the TeX 
typesetting system.

s = OpenWrite["tmp", FormatType->TeXForm]; 
Write[s, Sin[a/(b + c)]]
Close[s];
! !tmp
\sin ({a\over (b + c}))

There are quite a few options that can be set for a stream.



The first argument to W rite or W riteS trin g  also can be a list of output streams (or 
names of streams), which is called a channel. There are system-defined variables that 
contain the channels used for various types of output, such as $Output (evaluations 
and P r in t  output), $Messages (Message output), and $D isplay (graphics output, 
discussed next). You can modify these variables to change where the kernel sends the 
output; an example of modifying $Messages was given in Section 9.1.1.

Exercises
1. It’s a bad idea to try to use W riteS trin g  to write expressions in OutputForm. 

Open a stream s, execute the following, and explain what happened. Don’t forget to 
C lose [s] when you’re done.

Clear[a, b]
WriteString[s, "The OutputForm of a/b is ",

OutputForm[a/b]. "\n"]

2. Write a function called PutDelimitedForm that essentially does what 
D elim itedForm [expr] »  filen a m e  does (see Exercise 12.2.2.3), but uses 
low-level I/O primitives. Rather than using the strategy discussed in that section for 
formatting the table of values, use a series of W rite or W riteS trin g  statements to 
output the table.
If you want to be really ambitious, you can remove the option Delimiter and add 
two new ones: ItemDelimiter and RecordDelimiter. The defaults for these 
should be " " (space) and " \n "  (newline), respectively. This flexibility allows you 
to output extremely long records, for example, using ItemDelimiter->"\n" and 
RecordDelimiter->"\n\n". This format is intelligible to programs such as 
UNIX’s awk.

12.3.3 Display
D isp lay  [ s , g] writes the Mathematica graphics object g to the stream s  in Post
Script format. If s  refers to a notebook window, the graphic is rendered in the notebook. 
In general, however, you can use D isp lay  to write the PostScript to any stream, such 
as a file or pipe.

Like the other output commands, the first argument to D isp lay  can be a list of 
streams or strings. Note that if any of these strings is the name of a file that is not 
already open, D isp lay  opens the file, write the graphics data to it, and then closes it.

When you create a Mathematica graphic using any of the plotting commands, the 
return value from the function is a graphics object. The picture that you see on your 
screen is actually a side effect that is caused by passing the graphics object to the func
tion specified by the D isp layF unction  option.

Options[Plot, DisplayFunction]
{DisplayFunction :> $DisplayFunction}



$ D is p la y F u n c t io n  

D is p la y [ $ D is p la y ,  # 1 ]  &

The system variable $D isplay contains a channel (a stream or list of streams) to 
which the PostScript form of graphics objects should be written. The notebook front 
end initializes $D isplay to "s td o u t" . Thus, in a roundabout way, the default value of 
the D isp layFunction  option is D isp lay  [ " s td o u t" , #] &.

The upshot of all this is that you can make a plotting command send the PostScript to 
a file instead of to the front end in any of the following three ways:

By setting the D is p la y -  P l o t  [ . . . . D is p la y F u n c t io n - > D is p la y  [ " f i le n a m e "  , # ]  &]
E u n c tio n  option.

By changing $ D is p la y -  B lo c k  [ { $ D is p la y F u n c t io n  =  D is p la y  [ " f i le n a m e "  , # ] & } .
F u n c tio n . p l o t  [ . . . ] ]

By changing $ D isp lay . B lo c k  [ { $ D is p la y  =  " f i l e n a m e " } .  P l o t  [ . . . ] ]

The return value of D isp lay  is the same graphics object that is passed to it. This is 
important because all of the graphics commands that take the D isp layFunction  
option actually return the value returned by D isplay. If you override D isplayFunc
t io n  or change the value of $D isplayFunction, you must ensure that the last thing 
your function does is to return the graphics object.

In version 3.0, D isp lay  takes an optional third argument that specifies a format for 
the graphics output. "MPS" (Mathematica PostScript) is the default, but other possible 
values include "EPS" (encapsulated PostScript), "GIF", "TIFF", "XBitmap" (X-Win
dows), "M etaFile" (Microsoft Windows), and "PICT" (MacOS). (See the entry for 
D isp lay  in [Wolfram 96] §A.10 for a complete list of supported formats.) So, for 
example, if you want to write a GIF version of every graphic in a Mathematica session 
to a separate file, as well as seeing each graphic on the screen, you could do something 
like the following:

n  =  1 ;
$ D is p la y F u n c t io n  =  F u n c t io n [ g ,

D i s p la y [ $ D is p la y ,  g ] ;
D is p la y  [ " G I F f i l e " O T o S t r i n g  [n + + ] } , g , " G IF " ]  ]

Note that the return value of this function is the original graphics object, because the 
last thing the function does is to call D isplay.

12.4 High-Level Input
The most common input operation in Mathematica is to read a file of regularly format
ted data into some kind of list structure. The R eadL ist function accomplishes this with 
a minimum of fuss.



12.4.1 Data types and templates
R eadL ist takes two arguments: a filename and an optional template. The template is 
an expression containing type keywords such as Byte, C haracter, Expression, 
Number, Real, Record, S trin g , or Word. The template informs R eadList how the 
data are to be interpreted. For example:

I ! i n t d a t a

967 682  130  
375  963 64  
525  839  941  
144  969  891  
206  325  23 4

This interprets the data in 
the file  as numbers.

N ow  the data are inter
preted as real numbers.

Character reads each char
acter separately. " \n "  is an 
ASCII newline character.

Byte interprets each charac
ter in the file as an 8 -bit 
integer.

Word breaks up the file into 
wh ite-space-del im ited 
strings.

S t r in g  breaks the input 
only at newlines.

Expression interprets 
each line as a Mathematica 
expression.

n gn ” 6 " , ir -j ii 11 116 " ,  " 8 " , ’ 2 " , " 11 II 1 " .

" 0 " , " \n " it 3  ii 11711 f| 5  n 11 11 11911 " 6 " , 113
" 6 " , " V  f " \n " n ̂  11 " 2 " , 115 ” 11 n " 8 ” , "3
n ii n 9  ti 11411 ii 11 " W . 11 « ” 4 ” , n^ii n

" 6 " , 11 n " 8 " , 11911 11 11 " \ n ’\ 112 ” , ”0
ii it " 3 " , " 2 " , 115 n 11 n " 2 " , H 3  II ” 411 " \ n

R e a d L is t  [ " i n t d a t a " , Num ber]

{ 9 6 7 ,  6 8 2 , 1 3 0 , 3 7 5 , 9 6 3 , 6 4 ,  5 2 5 , 8 3 9 ,  9 4 1 , 1 4 4 ,  
9 6 9 , 8 9 1 , 2 0 6 , 3 2 5 , 2 3 4 )

R e a d L i s t [ " i n t d a t a " . R e a l ]

{ 9 6 7 . ,  6 8 2 . ,  1 3 0 . ,  3 7 5 . ,  9 6 3 . ,  6 4 . ,  5 2 5 . ,  8 3 9 . ,  9 4 1 .
1 4 4 . ,  9 6 9 . ,  8 9 1 . ,  2 0 6 . .  3 2 5 . ,  2 3 4 .}

R e a d L i s t [ " i n t d a t a " .  C h a r a c te r ]  / /  In p u tF o rm

9 " .  
9 " .  
6 " .

R e a d L i s t [ " i n t d a t a " , B y te ]

{ 5 7 ,  5 4 ,  5 5 ,  3 2 ,  5 4 ,  5 6 .  5 0 ,  3 2 , 4 9 , 5 1 ,  4 8 ,  1 3 , 5 1 ,
5 5 ,  5 3 ,  3 2 ,  5 7 , 5 4 , 5 1 ,  3 2 , 5 4 ,  5 2 ,  1 3 , 5 3 , 5 0 ,  5 3 ,
3 2 .  5 6 ,  5 1 .  5 7 ,  3 2 ,  5 7 ,  5 2 ,  4 9 ,  1 3 , 4 9 ,  5 2 ,  5 2 ,  3 2 ,
5 7 ,  5 4 ,  5 7 ,  3 2 ,  5 6 ,  5 7 ,  4 9 ,  1 3 , 5 0 ,  4 8 ,  5 4 ,  3 2 ,  5 1 ,
5 0 .  5 3 ,  3 2 ,  5 0 ,  5 1 ,  5 2 ,  13 }

R e a d L i s t [ " i n t d a t a " , W ord] / /  In p u tF o r m

{ " 9 6 7 " ,  " 6 8 2 " ,  " 1 3 0 " ,  " 3 7 5 " ,  " 9 6 3 " ,  " 6 4 " ,  " 5 2 5 " ,  " 8 3 9 " ,  
" 9 4 1 " ,  " 1 4 4 " ,  " 9 6 9 " ,  " 8 9 1 " ,  " 2 0 6 " ,  " 3 2 5 " ,  " 2 3 4 " }

R e a d L i s t [ " i n t d a t a " ,  S t r i n g ]  / /  In p u tF o r m

{ " 9 6 7  68 2  1 3 0 " ,  "3 7 5  963 6 4 " ,  "5 2 5  839  9 4 1 " ,
" 1 4 4  969  8 9 1 " ,  "2 0 6  325  2 3 4 " }

R e a d L i s t [ " i n t d a t a " , E x p re s s io n ]

{ 8 5 7 3 4 2 2 0 , 2 3 1 1 2 0 0 0 , 4 1 4 4 8 6 9 7 5 , 1 2 4 3 2 6 5 7 6 , 1 5 6 6 6 3 0 0 }



Note that in the last example, each line was interpreted as the product of three inte
gers; these expressions evaluated immediately when R eadList returned them. You can 
prevent this from happening by using a template of the form Hold [E xpression ]:

R e a d L i s t [ " i n t d a t a " , H o ld [ E x p r e s s io n ] ] / /  In p u tF o rm

{ H o ld [9 6 7 * 6 8 2 * 1 3 0 ]  , H o l d [ 3 7 5 * 9 6 3 * 6 4 ] ,
H o ld [ 5 2 5 * 8 3 9 * 9 4 1 ] ,  H o l d [ 1 4 4 * 9 6 9 * 8 9 1 ] ,
H o ld  [ 2 0 6 * 3 2 5 * 2 3 4 ] }

In fact, the template can be almost any Mathematica expression containing type key
words for its parts. Here are some examples:

R e a d L i s t [ " i n t d a t a " , {N u m b e r, S t r i n g } ]  I I  In p u tF o rm

{ { 9 6 7 ,  " 682  1 3 0 " ) ,  {3 7 5 ,  " 963 6 4 " ) ,
{5 2 5 ,  " 839  9 4 1 " ) ,  { 1 4 4 ,  " 969  8 9 1 " ) .
{2 0 6 ,  " 325 2 3 4 " ) }

R e a d L i s t [ " i n t d a t a " , T a b le [N u m b e r , { 5 } ] ]

{ { 9 6 7 ,  6 8 2 , 1 3 0 , 3 7 5 , 9 6 3 ) ,  { 6 4 ,  5 2 5 , 8 3 9 . 9 4 1 , 1 4 4 ) ,  
( 9 6 9 ,  8 9 1 , 2 0 6 , 3 2 5 ,  2 3 4 ) }

R e a d L i s t [ " i n t d a t a " ,
{ f [N u m b e r ,  H o ld F o rm [N u m b e r +  N u m b e r ] ] } ]

{ { f [9 6 7 ,  682 +  1 3 0 ] } ,  { f [3 7 5 , 963 +  6 4 ] } ,
{ f [5 2 5 ,  839  +  9 4 1 ] } ,  { f [ 1 4 4 ,  969  +  8 9 1 ] } ,
{ f  [2 0 6 ,  325  +  2 3 4 ] }}

R eadList [" filen a m e" , tem p la te , n] reads at most n objects that match the 
specified template from a file.

R e a d L i s t [ " i n t d a t a " , N u m b er, 5 ]

{ 9 6 7 ,  6 8 2 ,  1 3 0 , 3 7 5 , 9 6 3 )

Note, however, that every call to R eadL ist [" f i J ename" . . .  . ] starts reading at the 
beginning of the file. If the first argument to R eadList is an input stream rather than a 
character string, the position of the last read is remembered, so that different parts of the 
file can be interpreted differently. This is particularly useful when the first few lines of a 
file are descriptive data, column labels, etc. We’ll cover input streams in Section 12.5.

12.4.2 Reading numbers
R eadL ist is terrific when the input data consist of numerical values separated by 
white-space. The simplest way to read such data is to read each number separately, as 
illustrated earlier:

R e a d L i s t [ " i n t d a t a " , Num ber]

{ 9 6 7 ,  6 8 2 , 1 3 0 , 3 7 5 , 9 6 3 , 6 4 ,  5 2 5 , 8 3 9 , 9 4 1 , 1 4 4 ,
9 6 9 , 8 9 1 , 2 0 6 , 3 2 5 , 2 3 4 }

String reads everything 
from the current position to 
the end of the line.

The template argument is 
evaluated before ReadList 
is called.

The possibilities are limit
less.



You can specify that each line should be a separate sublist (thus maintaining the tab
ular form of the input) using the R ecordL ists  option.

ReadList["intdata", Number, RecordLists->True]
{ { 9 6 7 ,  6 8 2 , 1 3 0 } ,  {3 7 5 ,  9 6 3 , 6 4 ) ,  { 5 2 5 , 8 3 9 , 9 4 1 ) ,

{1 4 4 ,  9 6 9 , 8 9 1 ) ,  {2 0 6 ,  3 2 5 , 2 3 4 } )

Alternatively, you can group the numbers any way you wish by using template expres
sions.

There weren't enough data ReadList ["intdata" . {Number, Number}]
to fill the final record, so { { 9 6 7 ,  6 8 2 ) ,  {1 3 0 ,  3 7 5 ) ,  { 9 6 3 ,  6 4 ) ,  { 5 2 5 ,  8 3 9 ) ,
R e a d L i s t  returned EndOf-  ̂ (9 5 9  ̂ 8 9 1 ) ,  { 2 0 6 ,  3 2 5 ) ,  {2 3 4 ,  EndOfFile))
File.

The Number format will adjust to integers or decimal numbers automatically. Speci
fying R eal instead of Number will cause all numerical inputs to be treated as approxi
mate, even if they contain no decimal point (see the example in the previous section). 
Both R eal and Number formats can interpret Fortran-style scientific notation.

ISedatafile
1 2 . 1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9
1 3 . 4 4 2 4 1 3 .3 9 2 0 0 8 9 2 0 6
1 4 . 1 . 2 0 2 6 0 4 2 8 4 1 6 4 7 7 7 e 6
1 5 . 3 .  2 6 9 0 1 7 3 7 2 4 7 2 1 1 1 e 6
1 6 . 8 .8 8 6 1 1 0 5 2 0 5 0 7 8 7 e6
1 7 . 2 . 4 1 5 4 9 5 2 7 5 3 5 7 5 3e7

ReadList["edatafile", Number]
{ 1 2 . ,  1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9 ,  1 3 . ,  4 4 2 4 1 3 .3 9 2 0 0 8 9 2 0 6 . 1 4 . .

1 .2 0 2 6  1 0 6 , 1 5 . ,  3 .2 6 9 0 2  1 0 6 , 1 6 . ,  8 .8 8 6 1 1  1 0 6 ,

1 7 . ,  2 .4 1 5 5  1 0 7 }

12.4.3 Reading strings
There are three different ways to read strings from a file, using the S trin g , Word, and 
Record type keywords. S tr in g  is the simplest of these:

!Iworddata
The quick, brown, fox jumps 
over the lazy dog.

Objects of type String are ReadList ["worddata" , String] II InputForm
delimited by newlines. {"The quick, brown, fox jumps", "over the lazy dog.")

If you want more control over how the input is broken up, you can read objects of 
type Record and specify a list of R ecordSeparators (which defaults to newline).

This file was created in 
Section 12.2.2.



R e a d L is t [ " w o r d d a t a " , R e c o r d , R e c o r d S e p a r a t o r s -> { " , " }
] / /  In p u tF o rm

("The quick", " brown",
" fox jumps\nover the lazy dog.\n")

Record separators do not R e a d L is t  [" w o rd d a ta "  , R e c o r d ,
have to be single characters. R e c o r d S e p a r a t o r s - ^ { " f o x " , " t h e " }

] / /  In p u tF o rm

{"The quick, brown, ", " jumpsNnover ",
" lazy dog.\n")

Alternatively, you can tell ReadList that you want it to break up the input into 
Words, which by default are white-space-delimited character strings.

R e a d L is t [ " w o r d d a t a " , W ord] / /  In p u tF o rm

{"The", "quick,", "brown,", "fox", "jumps",
"over", "the", "lazy", "dog."}

You can specify a list of Word delimiters using the W ordSeparators option (the 
default is space and tab). In that case, what is considered to be a Word by ReadList 
may not be a “word” in the conventional sense.

R e a d L is t [ " w o r d d a t a " , W o rd , W o r d S e p a r a to r s - > { " , " }
] / /  In p u tF o rm

{"The quick", " brown", " fox jumps".
"over the lazy dog."}

Words are broken at both word and record separators, which is why words do not 
normally cross line boundaries. You can change this behavior by specifying a different 
value for the R ecordSeparators option.

The fifth and eighth "words" R e a d L is t  [" w o rd d a ta "  , W o rd , R e c o r d S e p a r a to r s -> { }
span line boundaries. ] / / I n p u t F o r m

{"The", "quick,", "brown,", "fox",
"jumps\nover", "the", "lazy", "dog.\n")

12.4.4 Application: Reading comma-delimited data
Okay, now for the bad news: R eadList gives only minimal support for this common 
case. The file csv contains the data that we used in our export example, except that it is 
in “comma-separated values” format.

! ! c s v

12. ,162754.7914190039
13..442413.3920089206
14..1.202604284164777e6
15..3.269017372472111e6
16. ,8.88611052050787e6
17..2.41549527535753e7



If you simply want to read each number into a flat list, there is no problem: Starting 
with version 2.2 you can specify custom record separators when reading numbers.

R e a d L is t [ " c s v " , N um ber, R e c o r d S e p a r a t o r s - > { " . " } ]

{ 1 2 . ,  1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9 , 1 3 . ,  4 4 2 4 1 3 .3 9 2 0 0 8 9 2 0 6 ,  1 4 . ,

1 .2 0 2 6  1 0 6 , 1 5 . ,  3 .2 6 9 0 2  1 0 6 , 1 6 . ,  8 .8 8 6 1 1  1 0 6 ,

1 7 . ,  2 .4 1 5 5  1 0 7 }

However, you cannot read structured data in this way.

R e a d L i s t  got stuck when it R e a d L is t  [ " c s v "  , {N u m b er, N u m b e r} ,
hit the first comma, because R e c o r d S e p a ra to r s  ->  { " , "  } ]
it was looking for the second R ea<i; ; r e adn :
number. S y n ta x  e r r o r  r e a d in g  a r e a l  num ber fro m  c s v .

{ { 1 2 . ,  $ F a i l e d ) )

One way around this problem is to impose a structure on the list of numbers after 
reading it.

P a r t i t i o n [%%, 2]

{ { 1 2 . ,  1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9 ) ,  { 1 3 . ,  4 4 2 4 1 3 .3 9 2 0 0 8 9 2 0 6 ) .

{ 1 4 . ,  1 .2 0 2 6  1 0 6 ) ,  { 1 5 . ,  3 .2 6 9 0 2  1 0 6 } ,

{ 1 6 . ,  8 .8 8 6 1 1  1 0 6 ) ,  { 1 7 . ,  2 .4 1 5 5  1 0 ? }}

Note two problems with this approach: First, the structure must be regular, i.e., there 
must be the same number of data items on each line of the file. The second, more seri
ous problem is that some programs (notably spreadsheets) will output multiple delimit
ers in a row when there are empty cells in the range of cells being exported:

! Im u ltic o m m a

1 . . 2 4 . 1 3 . . 8  
2 , 1 2 ____ 16
3 . 7 . 1 7 . . 2 0 ,

The approach outlined above is hopeless here. The only alternative seems to be to 
read the file as Words, specifying a comma as the delimiter — but even this is not 
straightforward.

By default, ReadList w ill R e a d L is t  ["m u lt ic o m m a "  , W o rd , W o r d S e p a r a to rs -> "  , "  .
i g n o r e  multiple delimiters in R e c o r d L is ts - > T r u e ]  / /  In p u tF o rm
a row. The original structure { { " i "  " 2 4 " ,  " 1 3 " ,  " 8 " ) ,  { " 2 " ,  " 1 2 " ,  " 1 6 " ) .
of the data has been lost. { " 3 " " 7 " " 1 7 "  " 2 0 " } }

5 . N o te  that in  version 2 .2 , R e a d L is t  erroneously returns { { 1 2 . 

instead o f { { 1 2 .  , $ F a i l e d }  } .

E n d O f F i le } }



The solution is to specify 
NullWords->True. Miss
ing items are now repre
sented explicitly by empty 
strings.

ReadList["multicomma", Word, WordSeparators->{","}, 
RecordLists->True, NullWords->True] // InputForm 

{ { " i n ,  mi ( "2 4"  1113" 11,1 "8 "
{ ” 2 11, M12 11 1111 11H 1111 n16 ” }
 ̂ ” 3 ti  ̂ i i y  ii 1117" nn 2 0 ,f} }

Finally, convert the strings to 
integers. You can easily 
replace the N u lls  with Os if 
desired.

Map[ToExpression, %, {2}]
{{1, Null, 24, 13, Null, 8 ),

{2. 12, Null, Null, Null, 16), (3, 7. 17. Null. 20))

There’s still a problem with this approach, which the following exercise will fix.

1. Try reading the csv data using the approach developed in this section. Be sure to 
look at the internal form of the result. Can you fix this problem? (Hint: A normal 
pattern won’t do the job. You need to solve the problem before converting the 
strings to expressions. Try using S tringR eplace.) Write a function that wraps up 
all of these steps. Be sure to handle empty values by replacing them with Os.

2. Override the definition of R eadL ist so that R eadList [ " f i l  ename" , CSV] calls 
the function you just defined. You should do this using an upvalue for the symbol 
CSV rather than a downvalue for ReadList (see Section 6.5.2, “Upvalues).

Corresponding to the low-level output primitives, there are low-level input primitives 
that can be used to read just about any kind of data, if you are willing to work hard 
enough at it.

OpenRead is analogous to OpenWrite. It returns an InputS tream  rather than an 
OutputStream:

As in the case of output streams, you should close an input stream after you are done 
with it.

Exercises

12.5 Low-Level Input

12.5.1 OpenRead

s = OpenRead["tmp"]
InputStream[tmp, 21]

Close [s];



12.5.2 Reading from a stream
Read allows you to read an object from a stream, where “object” is any of the types 
supported by ReadList.

Here w e read a number and 
a word.

Next, three strings. The first 
string read is the end of the 
current line.

s  =  O p e n R e a d [ " e d a t a f i l e " ] ;

R e a d [s , {N u m b er, W o rd }] / /  In p u tF o r m

{ 1 2 . ,  " 1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9 " }

R e a d [s ,  T a b le  [ S t r i n g ,  { 3 } ] ]  / /  In p u tF o r m  

{ " " ,  " 1 3 .  4 4 2 4 1 3 .3 9 2 0 0 8 9 2 0 6 " ,
" 1 4 .  1 . 2 0 2 6 0 4 2 8 4 1 6 4 7 7 7 e 6 " )

Read keeps track of your position within the stream. You can get the current position 
using the S t r  e a m P o  s i t  ion  function, and you can set the position using SetStreani 
P o s itio n .

Save the current position. 

Read four numbers.

p =  S t r e a m P o s i t io n [ s ] ;

R e a d [ s , T a b le [N u m b e r , { 4 } ] ]

{ 1 5 . ,  3 .2 6 9 0 2  1 0 6 , 1 6 . ,  8 .8 8 6 1 1  1 0 6 }

Return to the saved position. S e t S t r e a m P o s i t io n [ s , p ] ;

Read four strings instead. 
Note the E n d O fF ile  indica
tion.

R e a d [s , T a b l e [ S t r i n g ,  { 4 } ] ]  / /  In p u tF o rm  

{ " 1 5 .  3 . 2 6 9 0 1 7 3 7 2 4 7 2 1 1 1 e 6 " , " 1 6 .  8 . 8 8 6 1 1 0 5 2 0 5 0 7 8 7 e 6 " , 
" 1 7 .  2 .4 1 5 4 9 5 2 7 5 3 5 7 5 3 e 7 " . E n d O fF i le }

At any point during the course of reading from an input stream, you can use 
R eadList to read everything from the current position to the end of the stream.

S e t S t r e a m P o s i t io n [s ,  p ] :
R e a d L is t [ s ,  S t r in g ]  / /  In p u tF o r m

{ " 1 5 .  3 .2 6 9 0 1 7 3 7 2 4 7 2 1 1 l e 6 " , " 1 6 .  8 . 8 8 6 1 1 0 5 2 0 5 0 7 8 7 e 6 " , 
" 1 7 .  2 .4 1 5 4 9 5 2 7 5 3 5 7 5 3 e 7 " )

Alternatively, you can use R eadL ist [ s , te m p la te , n] to read at most n objects of 
the specified template from the stream s. Streams allow you to mix calls to Read and 
R eadL ist without losing your position.

Don't forget to close the C lo s e  [s ]
stream.



If you try to read an incorrect type of object, Read will return the special symbol 
$F ailed .6

This file contains comma- 
separated numbers.

The next character in the file 
is a comma.

You can use S k ip  to skip 
over items that you don't 
w ant to read.

s = OpenRead["csv"]:
Read [s, Number]
1 2 .

Read[s, Number]
Read::readn:

Syntax error reading a real number from csv. 
$Failed

Skip[s, Character]

Read[s. Number]
1 6 2 7 5 4 .7 9 1 4 1 9 0 0 3 9

Close[s];

Skip takes an optional third argument that specifies how many items to skip. A par
ticularly useful application of this is to use Skip [ s , S t r in g , n] to skip n lines of 
the stream s.

Exercise

1. Use the low-level input functions to write a routine that reads a file of comma-sepa
rated values.

12.6 Additional Resources
[Shaw & Tigg 94] contains many practical examples of reading data from files.

6. Note that in versions 2.2 and earlier, Read erroneously returns EndOfFile under 
these circumstances. This does not prevent you from continuing to read the file, 
however.



13
Debugging

Most of the time the interactive nature of Mathematica makes debugging easy. There 
are occasions, however, on which executing a function step by step in search of a bug is 
unacceptably tedious. In earlier chapters we saw a few uses of the Trace command to 
enable postmortem examination of the evaluation of Mathematica expressions, but 
until now we have ignored the details of this technique. Trace has many options that 
we will explore in Section 13.1.

There are some additional, more interactive, debugging tools in Mathematica that 
few users know about and even fewer use. These tools, which are the topic of 
Section 13.2, are quite unlike the interactive debuggers that users of compiled lan
guages are familiar with.

13.1 Tracing Evaluations
The Trace function (and its relatives) can be used to trace the evaluation of an expres
sion. We have already seen uses of Trace scattered throughout the earlier chapters. In 
this section we present a comprehensive discussion of Trace.

All of the T race outputs in this chapter were generated using Mathematica version 
3.0, which in certain instances gives different output than version 2.2. Mostly, this dif
ference consists of certain trivial evaluations that appear in version 2.2 traces that do 
not appear in version 3.0 traces. Less commonly, the version 3.0 traces contain expres
sions that version 2.2 omits.

13.1.1 Trace basics
Trace [expr] returns a list of all intermediate forms encountered during the evaluation 
of expr.



Trace [2 - 3 * 4]
{{-(3 4), -12), 2 - 12, -10)

This trace shows that - 3 * 4  evaluated to -12. Then 2 - 1 2  was evaluated, yielding 
the final answer, -10.

The list returned by Trace is nested so that the evaluation of every subexpression 
appears within its own sublist. Each such sublist is called an evaluation chain. Thus 
{-(3  4 ) , -12} is the complete evaluation of Times; this list is nested within the 
outer list because its result is one of the arguments to Plus. The outer pair of list braces 
corresponds to everything within the Plus.

Note that every expression in the return value of Trace is wrapped in HoldForm, 
which keeps its argument from evaluating (but is invisible when formatted in O utput
Form).

InputForm[%]
{{HoldForm[-(3*4)], HoldForm[-12]}, HoldForm[2 - 12], 
HoldForm[-10]}

Here is an example involving a head with an OwnValue. The Trace shows that the 
head is evaluated first, and then the arguments in the order in which they appear. The 
evaluation chain for the head is placed in its own sublist, just like the evaluation chain 
for each argument:1

f = #1 = = # 2  &;
x = 7; y = 7;
Trace [f[x, y]]
Uf, #1 === #2 & }, {x, 7), {y. 7).

(#1 === #2 & )[7. 7], 7 === 7. True)

Here’s an example of Hold- attributes.

Attributes[g] = HoldFirst:
g[a_, b_] := a === b
Trace[g[x. y]]
{{y, 7). g[x, 7], x === 7, {x, 7), 7 === 7. True)

Note that even though x is passed into g unevaluated, it gets evaluated when it is 
passed to SameQ (“===”). To prevent that, use Unevaluated:

Attributes[h] = HoldFirst;
h[a_, b_] := Unevaluated[a] =  b

1. This actually makes a lot of sense, since the head is a part (in the technical sense) of 
a normal expression just like any other part. The head just happens to be part 0.



Trace[h[x, y]]
{{y, 7), h[x, 7], Unevaluated[x] === 7, x === 7,
False}

Here is an example of how tracing can give us some insight into the operation of the 
kernel’s main evaluation loop. The O rd erless  attribute tells the kernel that a function 
is commutative. The kernel sorts the arguments to an orderless function into some well- 
defined canonical order before calling the function; this simplifies the logic of many 
algebraic s im p lif ication  routines. For example, the terms in a polynomial are ordered by 
their exponents, making operations such as comparison for equality much simpler.

Trace[Expand[(1 + z)A2] =  zA2 + 2 z + 1]
2 2 {{Expand[(1 +z) ], l + 2 z + z  },

2 2 {z + 2 z + 1 , 1 + 2 z + z },
2 2 l + 2 z + z  = = l + 2 z + z ,  True}

However, attributes like O rd erle ss  (this include F la t)  have another effect. If a 
rule does not match after the argument ordering is done, the pattern matcher will try 
other argument orders to see if the rule can be made to match.2 This behavior is 
exploited by the following function that merges two sorted lists:

SetAttributes[merge, Orderless]
merge[a:{al_, arest___}, b:{bl_, brest___}] :=

Prepend[merge[{arest}, b], al] /; al <= bl 
merge[{}, b_List] := b

Giving merge the O rd erless  attribute eliminates the need for “mirror image” rules 
that are identical to the two already given but with the order of the arguments reversed 
(cf. the implementation of merge in Section 6.3.6).

Here is a simple trace of m erge[{1, 3 ) , {2}]. Note that the arguments are
reversed immp.diafe.ly because the canonical order dictates that shorter lists precede 
longer ones. However, after the conditional test (a l <= b l) fails, the rule is tried again 
with the arguments in the other (original) order, resulting in a recursive call to 
merge[{3}, {2}]:

Trace[merge[{1, 3}, {2}]]
{merge[{1, 3}, (2)], merge[{2}, {1, 3}].

{{2 <= 1, False}, RuleCondition[Prepend[merge[{},
{1, 3}], 2], False], Fail},

{{1 <= 2, True), RuleCondition[Prepend[merge[{3},
{2}], 1], True], Prepend[merge[{3}, {2}], 1]}, 

Prepend[merge[{3}, {2}], 1],
{merge[{3}, {2}], merge[{2}, {3}],
{{2 <= 3, True}, RuleCondition[Prepend[merge[{}.

2. In  the case o f  F l a t ,  the pattern matcher tries different pattern groupings.



{ 3 } ] ,  2 ] ,  T r u e ] ,  P r e p e n d [m e r g e [ { ) ,  ( 3 ) ] ,  2 ] } ,  
P r e p e n d [m e r g e [ { } ,  { 3 } ] ,  2 ] ,  { m e r g e [ ( } ,  ( 3 } ] ,  { 3 } ) ,  
P r e p e n d [ { 3 } ,  2 ] ,  { 2 ,  3 } } ,  P re p e n d [ { 2 ,  3 1 ,  1 ] ,

{ 1 ,  2 , 3 ) }

merge [{3}, {2}] is then reordered to merge [{2}, {3}] before checking the condi
tion, which turns out to be the right thing to do.

The output of Trace can be quite voluminous. If you are using the notebook front 
end, it may be helpful to keep the definition of the function being traced and the actual 
traces in separate windows; this eliminates a lot of scrolling up and down.

13.1.2 Restricting the trace
We saw in the previous section that the output of T race can be large even when tracing 
trivial computations; it typically is enormous when tracing nontrivial ones. For exam
ple, it would be quite difficult to understand the trace of the merge function on any 
realistically sized inputs. To alleviate this problem, Trace takes a second argument that 
can be used to restrict the information in the trace. There are two forms for this argu
ment.

One form of the argument is called a tag. A tag is a symbol with which a particular 
transformation rule is associated. It is usually the head of an expression, but it also may 
be a symbol at level 1 for which an Upvalue has been defined (refer to Sections 6.5.2 
and 7.1.1).

For example, here we trace all subexpressions in the evaluation of merge [ {1, 3. 
5}, {2, 4}] that are tagged with the symbol merge:

This is much more digestible T r a c e  [m erg e  [ { 1 ,  3 ,  5 } ,  { 2 .  4 } ] ,  m erg e ]

than a full trace. {m erg e  [ { 1 , 3 , 5 ) ,  { 2 , 4 } ] ,  m e r g e [ { 2 , 4 } ,  ( 1 , 3 , 5 } ] ,

P re p e n d [m e r g e [ { 3 ,  5 ) ,  ( 2 ,  4 } ] ,  1 ] ,
{m e rg e [ { 3 ,  5 ) ,  { 2 ,  4 } ] ,  m e r g e [ { 2 ,  4 ) ,  { 3 ,  5 } ] ,
P re p e n d [m e r g e [ { 4 1 ,  { 3 ,  5 } ] ,  2 ] ,
{ m e r g e [ { 4 } ,  { 3 ,  5 1 ] ,  P r e p e n d [m e r g e [ { 5 ) ,  ( 4 ) ] ,  3 ] ,  

{m e rg e [ { 5 } ,  { 4 1 ] ,  m e r g e [ { 4 } ,  { 5 1 ] ,
P r e p e n d [m e r g e [ { } ,  { 5 } ] ,  4 ] ,
{m e rg e [ { } ,  { 5 } ] ,  { 5 ) } } } ) }

The reordering of the arguments is quite explicit here. Also note that it is quite easy to 
see the recursive structure of the computation.

When a tag is used as the second argument to Trace, Trace includes not only the 
expressions that match rules associated with this tag, but also the results of evaluating 
those rules (in the case of the tag merge, a call to Prepend). We can restrict the trace 
even further by specifying a pattem as the second argument to Trace. Trace will then 
include only those intermediate expressions that match the pattem in the returned trace.



Trace[merge[{1, 3, 5}, {2, 4}], merge[_, _]]
{merge[{1, 3, 5 ) , .{2, 4}], merge[{2, 4}, {1, 3, 5J], 

{merge[{3, 5), {2, 4)] , merge[{2, 4}, {3, 51],
{merge[{4), {3, 5}],

{merge[{5}, {4}], merge[{4}, {5}],
{merge[{}, {5}]}})}}

Exercise
1. Reproduce the last trace in this section by creating a full trace and filtering it with 

Cases. Hint: Use a level specification (Section 5.1.3) of In f in i ty .

13.1.3 Looking forward or backward
Note that the traces in the previous section did not reveal what the eventual outcome of 
each traced expression was. We can obtain this information using the TraceForward 
option:

Trace[merge[{1, 3, 5}, {2, 4}], merge[_, _ ] , 
TraceForward->True]

{merge[{1, 3, 5}, {2, 4)],  merge[{2, 41, {1, 3, 5}], 
{merge[{3, 5), {2, 4)] ,  merge[{2, 4}, {3, 5)].
{merge[(4), {3, 5)],

{merge[{5}, {4}], merge[{4}, {5}],
{merge[{}, {5}]. {5)1, {4, 5}), {3, 4, 5)}.

{2, 3, 4, 5}] , {1. 2. 3, 4, 5}}

TraceForward->True shows the final expression in each evaluation chain that is 
traced. Now we can see, for example, that merge [ {}, {5} ] evaluated to {5 } and that 
merge [{5}, {4}] evaluated to {4, 5}.

A similar option, TraceForward->A11, shows all intermediate results in the evalu
ation chain from the traced form until the end of the chain. Because of the volume of 
output this produces, the next example restricts the traced forms to those calls to merge 
that have {5} as their second argument.

Trace[merge[{1, 3, 5}, {2, 4}], merge[_, {5}], 
TraceForward->A11]

{{{{merge[{4}, {5}], Prepend[merge[{), {5}], 4],
{merge[{}. {5}], {5)1, Prepend[{55, 4], {4, 5})}}

)

Often, however, what is desired is to find out where a particular subexpression came 
from. For example, suppose we want to see what evaluation gave rise to the intermedi
ate result {3, 4, 5 }. This can be done with the TraceBackward option.



Trace[merge[{1, 3, 5}, {2, 4}]. {3, 4. 5}.
Trac eBackward->True]

{ { ( m e r g e [ { 4 } ,  { 3 ,  5 ) ] ,  { 3 ,  4 ,  5 ) } ) ]

TraceBackward->True shows the first expression in each evaluation chain that 
matches the traced form. In a fashion analogous to the operation of TraceForward, 
TraceBackward->All shows all intermediate results between the beginning of the 
chain and the traced form.

Trace[merge[{1, 3, 5}, {2, 4}], {3, 4, 5}. 
TraceBackward->All]

{ { { m e r g e [ { 4 } , ( 3 ,  5 ) ] ,  P re p e n d [m e rg e  { 5 ) ,  { 4 } ] .  3 ] ,  

P r e p e n d [ { 4 ,  5 ) ,  3 ] ,  { 3 ,  4 ,  5 ) } } }

Sometimes the information you need is contained not in the evaluation chain for the 
traced form, but in the chain that contains that chain. An example of this occurs when 
the form being traced is generated by a side effect. Here is a ridiculously simple exam
ple of some code that causes an error message to be generated:

isZero[n_] :=
If[n = 0, True, False]

isZero[3]
S e t : : s e t r a w :  C a n n o t a s s ig n  t o  ra w  o b je c t  3 .

I f [ 0 ,  T r u e ,  F a ls e ]

To find the bug, we attempt to find out what caused the call to the Message function: 

The expression that trig- Trace [isZero [3] , Message,
gered the call to Message is T r a c e F o r w a r d - > A l l , T ra c e B a c k w a r d -> A ll ]
not in this evaluation chain.

S e t : : s e t r a w :  C a n n o t a s s ig n  t o  ra w  o b je c t  3 .  

{ { { M e s s a g e [ S e t : : s e t r a w ,  3 ] ,  N u l l ) ) }

It is in the chain above this T ra c e  [ is Z e r o  [3 ]  , M e s s a g e , T ra c e A b o v e -> T r u e ]

one' S e t : : s e t r a w :  C a n n o t a s s ig n  t o  ra w  o b je c t  3 .

{ i s Z e r o [ 3 ] ,  {3  = 0 ,  (M e s s a g e [S e t : : s e t r a w , 3 ] ,  N u l l } .
0 } ,  l f [ 0 ,  T r u e ,  F a ls e ] }

By tracing the chain above the one containing Message, we see that the message was 
generated because the “test” inside the I f  actually was an assignment.

13.1.4 TraceOn, TraceOff
The TraceOn and TraceO ff options control which parts of a computation are traced. 
For example, suppose we already had debugged the merge function, and now we want 
to debug m ergeso rt (Section 5.4.2):



mergesort[s:{_} | s:{}] := s 
mergesort[s_List] :=

With[{half = Quotient[Length[s], 2]}, 
merge[mergesort[Take[s, half]], 

mergesort[Drop[s, half]]]
]

There is no reason to trace within calls to merge, since we presume that we are con
fident that merge works. We can use the TraceO ff option to prevent calls to merge 
from being traced during the tracing of m ergesort.

Trace[mergesort[{5, 3, 2}],
TraceOff->merge[__] | Quotient[__] | Length[_]]

{mergesort[{5, 3, 2}],
With[{half$ = Quotient[Length[{5, 3, 2}], 2]}, 
merge[mergesort[Take[{5, 3, 2}, half$]], 
mergesort [Drop [{5, 3, 2}, half$]]]],

{{Length[{5, 3, 2}], 3 }. Quotient[3, 2], 1}, 
merge[mergesort[Take[{5, 3, 2}, 1]], 
mergesort[Drop[{5, 3, 2), 1]]], {2, 3, 5})

Conversely, TraceOn can be used to turn tracing on only within certain forms.

Trace[mergesort[{5, 3, 2}],
TraceOn->merge[{_}, {_)]]

{{merge[{31, (2)], merge[{2}, (3)],
{{2 <= 3, True}, RuleCondition[Prepend[merge[{},

(3)], 2], True], Prepend[merge[{}, {3}], 2]}, 
Prepend[merge[{}, {3}], 2], {merge[{}, {3}], {3}}, 
Prepend[{31, 2], [2, 3}},
{merge[{3}, {5}], {{3 <= 5, True},
RuleCondition[Prepend[merge[{}, {5}], 3], True], 
Prepend[merge[{}, {5}], 3]}.

Prepend[merge[{}, {5}], 3], {merge[{}, {5}], {5}}, 
Prepend[{5}, 3], {3, 5}}}

13.1.5 TraceDepth
TraceDepth is another option that limits the amount of information present in a trace. 
It simply eliminates all information below a certain depth in the trace.

Trace[mergesort[{5, 3, 2}], TraceDepth->l]
{mergesort[(5, 3, 2}],
With[{half$ = Quotient[Length[{5, 3, 2}], 2]}, 
merge[mergesort[Take[{5, 3, 2}, half$]], 
mergesort[Drop[{5, 3, 2}, half$]]]], 

merge[mergesort[Take[{5, 3, 2}, 1]], 
mergesort[Drop (5, 3, 2}, 1]]],

By setting Tra c e D e p th  to 1 
in this example, we do not 
see a trace of any of the 
lower-level recursive calls.

This call traces only calls to 
merge, and only those for 
which both arguments are 
single-element lists.

This call traces everything 
except calls to merge, Quo
tient, and Length.



m e rg e [ { 5 1 ,  [ 2 ,  3 ) ] ,  P re p e n d [m e r g e [ { 3 ) ,  { 5 } ] ,  2 ] ,  

P r e p e n d [ { 3 ,  5 ] ,  2 ] ,  { 2 ,  3 ,  5 } }

13.1.6 MatchLocalNames
The names of all local symbols declared in a Module command are made unique by 
appending a $ followed by the current value of $ModuleNumber (Section 4.1.4). By 
default, Trace will match names like x$nn to the pattern x_, which is very convenient. 
Consider the following recursive function that calculates the length of a list:

l e n [ { a _ ,  b ____} ]  :=  M o d u le [ { s  =  { b } } ,  1 +  l e n [ s ] ]
l e n [ { } ]  =  0 ;

l e n [ { 1 ,  2 ,  3 } ]

3

We can trace all assignments to the local symbol s using the following command:

The name of the local sym- T r a c e  [ l e n  [ { 1 ,  2 .  3 } ] ,  s =  _]
bol s is different in each { ( g $ 4  = {2> 3} } > { { { g $ 5  _ { 3 } } j  ( { { s $ 6  = { } } } ) } } }
recursive call, but Trace  
matches them all to the pat
tern s_.

In certain cases this behavior may not be desirable: for example, when there are mul
tiple Modules having the same local variable name, or if there is a global variable of 
the same name that is the true subject of interest. In such cases you can disable this fea
ture with the MatchLocalNames->False option setting.

In case you want to trace only certain local variables with a given name, you can, 
with a bit of effort, figure out what the unique variable name will be (using $Module- 
Number) and use that in the trace pattern.

$M oduleN um ber

7

The nesting of the result T ra c e  [ le n  [ { 1 ,  2 ,  3 ,  4 ,  5 ,  6 } ] ,  s$10 = _ ]
reflects the structure of the { { , { { { { {s$10 = {5 > 6 ) } } j }}  j j }
entire computation.

13.1.7 TraceOriginal
T raceO rig inal-> T rue is an option to Trace and related functions that allows you to 
see expressions before their parts have been evaluated. Compare the following two 
examples to see the effect of this option:

T r a c e [C o s [ . 7 ]  +  S q r t [ 2 . 5 ] ,  P lu s [ __ ] ]

{ 0 .7 6 4 8 4 2  +  1 .5 8 1 1 4 }



Trace[Cos[.7] + Sqrt[2.5], Plus[__],
TraceOriginal->True]

{C o s [ 0 .7 ]  +  S q r t [ 2 . 5 ] , 0 .7 6 4 8 4 2  +  1 .5 8 1 1 4 )

13.2 Interactive Debugging
The tracing techniques that we examined in the last section all have one thing in com
mon: All they provide is postmortem information. Debugging using them is a process 
of successive refinement, as we repeatedly trace a computation with different options, 
trying to “zero in” on the problem. Sometimes this is not practical — a computation 
that fails to terminate is an obvious example — and in such cases the only alternative is 
to interact with the computation as it executes. This mode of debugging probably is 
fa m il ia r  to programmers of other programming languages.

T rac eP rin t prints the trace, one expression per line, as the computation proceeds. It is 
interactive in die sense that it can be used to monitor a badly behaving computation and 
then abort the computation from the keyboard as soon as it’s clear what is going wrong.

Since the output of T rac eP rin t is so verbose, we return to tracing a very simple 
example.

2
- ( 3  4 )  

T im es  
-1
3
4 
-12

2 -  12  
-10  

-10

As usual, you can limit the trace using a tag or pattern as a second argument.

The most powerful interactive debugging command is TraceD ialog. TraceDia- 
log  [expr, form , op tions]  enters a dialog each time form  occurs during the eval
uation of expr. A dialog is a subsidiary Mathematica session in the midst of some other 
evaluation during which your interactive commands have the full attention of the ker
nel. A dialog can be initiated at any time by calling the function Dialog. While inside a

13.2.1 TracePrint

Note that the expressions 
are indented according to 
their level in the trace.

TracePrint[ 2 - 3 * 4 ]
2 - 3 4

P lu s

13.2.2 TraceDialog



dialog, the in/out prompts (shown below on the left) are different to remind you of this 
fact.

In[1]:=  3 +  D ia lo g  [2 ]

O ut[2]=  2

Note that the line number of the output is not 1, but rather 2; this is because the ker
nel has implicitly assigned the argument of D ialog to In  [2], and the result of evaluat
ing that argument to Out [2]. Thus, you can refer to that value using %:

(Dialog) In[3]:=  %A2

(Dialog) O ut[3]=  4

You can perform any calculation you wish within the dialog (including additional 
calls to Dialog). To exit from a Dialog, use the R eturn  function. By default, D ia
lo g  [ e x p r ]  returns e x p r ,  but if you provide an argument to Return, that argument 
becomes the value of the call to D ialog. For example, the following R eturn statement 
causes the call to D ialog [2] to evaluate to 4:

(Dialog) ln[4]:=  R e tu r n  [%]

Now a strange thing happens if you are using the notebook interface: The output cor
responding to the above input does not print here; it prints higher up in the notebook, 
immediately below the original call to D ialog. Furthermore, the line number is reset so 
that the output created logically corresponds to the original input. What you will see in 
the notebook is something like this:

ln[1]:=  3 +  D ia lo g  [2 ]

O ut[2]=  2

O ut[1]=  1

In the remainder of this section we will not show line numbers, but you should be 
aware that line numbering and output placement in the notebook will be nonmonotonic. 
You may find it is easier to follow what is going on by doing the dialog calculations in a 
different notebook than the original call to TraceD ialog.

We’ll demonstrate the use of TraceD ialog on the following function, which itera
tively calculates a rational approximation to the square root of its argument.

i t e r S q r t [ x _ ]  :=
M o d u l e [ { i ,  j ,  x n  =  1 } ,

W h i le [A b s [x n A2 -  x ]  > 1 0 A- 6 ,
i  =  x  /  x n ;  
j  =  x n  +  i ;  
x n  =  j  /  2

];
xn

]



iterSqrt[2]
665857
470832

As discussed in 
Section 13.1.6 , T ra c e  will 
match the pattern xn_ to all 
local variables constructed 
from that name.

N [%]
1.41421

Trace[iterSqrt[2], xn = _]
17,{{xn$14 =1}. {{{xn$14 = -}}, {{xn$14 = — }}

665857
470832 }}}}

Suppose now that we want to stop each time that xn is about to be assigned a value, 
presumably so that we could inspect or alter the state of the computation. This is done 
with TraceDialog:

TraceDialog[iterSqrt[2 ], xn = _]
TraceDialog::dgbgn:

Entering Dialog: use Return[ ] to exit.
xn$15 = 1

The expression matching 
the pattern is passed into the 
dialog, wrapped in H o ld 
Form to prevent evaluation.

W e exit the dialog by evalu
ating R e tu rn  [ ] .

The dialog is entered again 
when the assignment to xn  
at the bottom of the loop is 
encountered.

FullForm[%]
HoldForm[Set[xn$15, 1]]

Return[]
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog; use Return[ ] to exit.
*n«15 - I p

Note that the arguments to S et have not yet been evaluated. This would allow us to 
change the expression on the right-hand side and thus affect the assignment to xn if we 
so desired. We can see what the value will be by evaluating the right-hand side manu
ally:

j$15/2
3
2



Resume evaluation again. A 
new dialog is entered after 
the right-hand side of the set 
is evaluated.

Return []
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog; use Return[ ] to exit.
3xn$15 = —

Seeing every assignment statement twice is rather tedious. We can change this 
behavior by changing the pattern that Trace is searching for, even in the midst of a 
traced evaluation! This pattern is stored in the global variable $T raceP attern . Note 
that in general we can’t look at the value of $ T raceP atte rn  directly, because it might 
immediately evaluate to something else. But we can look at it indirectly, by inspecting 
its OwnValues:

The RuleDelayed prevents 
xn = _ from being evalu
ated.

OwnValues[$TracePattern]
{HoldPattern[$TracePattern] :> (xn = _)}

Suppose that we want to see only those assignments in which the right-hand side is 
already evaluated. Getting the pattern right is slightiy tricky.

Set $TracePattern  to a 
pattern that matches only 
numbers.

Why didn't it work?

$TracePattern := xn = _?NumberQ

Return []
TraceDialog::dgend: Exiting Dialog. 
TraceDialog::dgbgn:

Entering Dialog; use Return[ ] to exit.
xn$15 =

The problem is that j$15  
evaluates when it is passed 
to NumberQ.

The solution is to use the 
usual trick of wrapping the 
argument in Unevaluated.

This doesn't prove anything 
since this is the very next 
assignment to xn.

NumberQ[j$15/2 ]
True

$TracePattern := xn = y_ /; NumberQ[Unevaluated[y]]

Return []
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog; use Return[ ] to exit. 

x = n



Let's try one more time. The 
intermediate form of the 
assignment has been 
skipped, exactly as prom
ised!

Return []
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog: use Return[ ] to exit. 
577

xn$15 = 408

We can modify any values that we desire while in the dialog. Let’s go to the next step 
after the assignment to xn, and then set xn to something else.

This is about the closest 
thing to "single-stepping" a 
computation that we can get 
in Mathematica.

The next two steps are a 
continuation of the evalua
tion of the Set command.

Eventually, TraceD ialog  
stops at the next "statement" 
in the function.

$TracePattern =

Return[]
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog: use Return[ ] to exit.
577
408

Return []
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog: use Return[ ] to exit.
577
408

Return []
TraceDialog::dgend: Exiting Dialog.
TraceDialog::dgbgn:

Entering Dialog; use Return[ ] to exit.
Abs[xn$15 2 ] > 10

-6

Now let’s change xn to a machine-precision number. This should cause all subse
quent calculations to be done using machine-precision arithmetic.

xn$15 = 1.75
1.75
$TracePattern := xn = y_ /: NumberQ[Unevaluated[y]]
Return [] 
xn$15 = 1.44643

Return [] 
xn$15 = 1.41457

Reset $TracePattern.

We omit the TraceDialog 
messages for brevity.



R e tu r n  []

x n $ 1 5  = 1 .4 1 4 2 1

The computation seems to be proceeding perfectly well; let’s get out of T raceD ia
lo g  mode. The easiest way to do this is to set $ T raceP atte rn  to something that will 
never be encountered.

The computation finishes $ T r a c e P a t t e r n  =  " a  b lu e  m o o n ";
w ithout further interruption.

R e tu r n  []

T r a c e D ia lo g : : d g e n d :  E x i t i n g  D ia lo g .  

1 .4 1 4 2 1

Note that although you can return a value from a Dialog, that value is ignored by 
TraceDialog. In particular, there’s no direct way to abort a computation in progress. 
However, you can usually do it indirectly:

In this example w e trace T r a c e D ia lo g  [ i t e r S q r t  [2 ]  , j  =  _ ]
assignments to j .  T r a c e D ia lo g :  :d g b g n :

E n t e r in g  D ia lo g :  u s e  R e t u r n [ ] t o  e x i t .  

j $ 1 6  = x n $ 1 6  +  i$ 1 6

The computation aborts as x n $ 1 6  :=  A b o r t  []
soon as xn  is evaluated. R e tu r n  []

T r a c e D ia lo g : : d g e n d :  E x i t i n g  D ia lo g .

$ A b o rte d

You can specify your own function to be called each time the trace stops by using the 
TraceA ction option. The default value for TraceA ction is shown below.

O p t io n s [ T r a c e D ia lo g , T r a c e A c t io n ]

( T r a c e A c t io n  ->
( S t a c k ln h ib i t [ M e s s a g e [ T r a c e D ia lo g : : d g b g n ] ;

D i a l o g [ # 1 ] ; M e s s a g e [T r a c e D ia lo g : :d g e n d ] ] & ) }

As you can see, the TraceD ialog messages are generated here; if you find them par
ticularly bothersome, you can eliminate them by specifying T raceA ction->Stack- 
I n h ib i t  [D ialog [#] ] &. The S ta c k ln h ib i t  function will be discussed in the next 
section.

13.2.3 The evaluation stack
Mathematica records computations in progress on the evaluation stack, which can be 
viewed at any time using the S tack function. It is quite useful in combination with 
TraceD ialog, as it shows how the computation came to be at its current point.



S tack  []  prints the tags that 
are associated with all rules 
whose evaluations are in 
progress.

TraceDialog[iterSqrt[2] , j = _]
TraceDialog::dgbgn:

Entering Dialog: use Return[ ] to exit.
j$17 = xn$17 + i$17 

Stack []
{TraceDialog, Module, CompoundExpression, While, 
CompoundExpression}

An argument to Stack, if present, is a tag or pattern that constrains what is included 
in the stack dump.

This stack dump shows all 
CompoundExpression 
objects on the stack.

Stack[CompoundExpression]
{While[Abs[xn$17^ - 2] > 10-6

i$!7 = ^jryy: J $17 = xn$17 + i$17; xn$17 = ;

xn$17, i$17 = 

xn$17 = I f 1 )

xn$17' j$17 = xn$17 + i$17;

This stackdumpshows only 
the CompoundExpression
whose first part is a S et.

Stack[CompoundExpression[_Set,
2

J ]

{i$17 xn$17’ j$17 = xn$17 + i$17; xn$17 j $ 1 7 ,

As you can see, you can get quite a bit of detail in this way. You can view everything on 
the stack using Stack [_], which we will not do here in the interest of saving trees.

Abort the computation. xn$17 := Abort[]
R eturn[]
TraceDialog::dgend: Exiting Dialog.
$Aborted

There are three functions that control what is placed on the evaluation stack.

• StackBegin [expr] starts a fresh stack to evaluate expr, so that calls to S tack 
within expr  will not show any expressions that began evaluating before the call to 
StackBegin.

• S ta c k ln h ib i t  [expr] evaluates expr  without modifying the stack. This is a con
venient way to keep the stack from becoming cluttered with evaluations that aren’t 
germane to the computation being examined, such as those that are done within a 
dialog. (This explains why the default value for T raceA ction is wrapped in 
S ta c k ln h ib it.)

• StackComplete [expr] keeps earlier forms of expressions (which normally would 
be discarded) on the evaluation stack. During this call, the contents of the stack cor
respond to a trace with the options TraceBackward->All and TraceAbove-> 
True.



S tack B eg in /S tack ln h ib it can be used as “delimiters” for what appears on the 
stack. Here is an example that demonstrates quite concisely what StackBegin and 
S ta c k ln h ib it  do:

f [ S t a c k B e g i n [ g [ S t a c k l n h i b i t [ h [ P r i n t [ S t a c k [ ] ] ] ] ] ] ] ; 

lg )

13.2.4 TraceScan
TraceScan [ f , expr] applies the function f  to every intermediate expression in a 
trace before expr  is evaluated. As usual, you can restrict the action of TraceScan by 
specifying a tag or pattem as an additional argument.

You can use TraceScan to cause some side effect such as keeping track of some sta
tistics about a computation. For example, let’s count the number of assignments to xn 
during the evaluation of i t e r S q r t  [2]:

Note that the pure function c =  0 :
completely ignores its argu- T ra c e S c a n  [c-H- & , i t e r S q r t  [2 ]  ,
ment. x n  =  y _  / ;  NumberQ [U n e v a lu a te d  [y ]  ]

]
6 6 5 85 7
4 7 0 8 3 2

The count includes the c
assignment at the beginning ^
of the Module.

Another possible application would be to abort a computation (by calling A bort [] 
from within f)  if some criterion is true, such as exceeding a given amount of time, 
memory, iterations, etc.3

TraceScan applies f  before the parts of the matched expression are evaluated. 
TraceScan takes an optional fourth argument, which is a function that is to be applied 
to the matched expression after the parts of the expression (but not the expression 
itself) have been evaluated.

Exercises
1. Use TraceScan to implement your own version of TraceDialog.
2. Implement a function that prompts the user every time a message is generated, ask

ing whether or not to abort the computation. (Use the Inpu t function to prompt the 
user.)

3. Note that there are built-in mechanisms for imposing each of these constraints that 
may be easier to use in many cases: the functions MemoryConstrained and 
TimeConstrained, and the global variables $RecursionLimit and $Itera-  
tionLimit.



13.3 Additional Resources
For a novel application of Trace, see [Gayley 95], which describes an execution pro
filer for Mathematica programs. An execution profiler is a run-time tool that breaks 
down the execution time of a program into the parts that are attributable to particular 
statements or functions within the program. It is useful for locating performance bottle
necks.

[Smith 93] discusses the use of T raceD ialog in some detail.

Christopher R. Stover has written a package called t r a c e U ti l  that uses T race- 
Scan to give the user detailed control over what parts of a trace are printed. It is avail
able as MathSource item #0207-920.
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