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PREFACE

TO THE STUDENT

Up to this point in your career you have been asked to use mathematics to solve
rather elementary problems in the physical sciences. However, when you graduate
and become a working scientist or engineer you will often be confronted with
complex real-world problems. Understanding the material in this book is a first
step toward developing the mathematical tools that you will need to solve such
problems.

Much of the work detailed in the following chapters requires standard pencil-
Ž .and-paper i.e., analytical methods. These methods include solution techniques

for the partial differential equations of mathematical physics such as Poisson’s
equation, the wave equation, and Schrodinger’s equation, Fourier series and¨
transforms, and elementary probability theory and statistical methods. These
methods are taught from the standpoint of a working scientist, not a mathemati-
cian. This means that in many cases, important theorems will be stated, not proved
Ž .although the ideas behind the proofs will usually be discussed . Physical intuition
will be called upon more often than mathematical rigor.

Mastery of analytical techniques has always been and probably always will be of
fundamental importance to a student’s scientific education. However, of increasing
importance in today’s world are numerical methods. The numerical methods
taught in this book will allow you to solve problems that cannot be solved
analytically, and will also allow you to inspect the solutions to your problems using
plots, animations, and even sounds, gaining intuition that is sometimes difficult to
extract from dry algebra.

In an attempt to present these numerical methods in the most straightforward
manner possible, this book employs the software package Mathematica. There are
many other computational environments that we could have used instead�for
example, software packages such as Matlab or Maple have similar graphical and
numerical capabilities to Mathematica. Once the principles of one such package

xiii
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are learned, it is relatively easy to master the other packages. I chose Mathematica
for this book because, in my opinion, it is the most flexible and sophisticated of
such packages.

Another approach to learning numerical methods might be to write your own
programs from scratch, using a language such as C or Fortran. This is an excellent
way to learn the elements of numerical analysis, and eventually in your scientific
careers you will probably be required to program in one or another of these
languages. However, Mathematica provides us with a computational environment
where it is much easier to quickly learn the ideas behind the various numerical
methods, without the additional baggage of learning an operating system, mathe-
matical and graphical libraries, or the complexities of the computer language itself.

An important feature of Mathematica is its ability to perform analytical calcula-
tions, such as the analytical solution of linear and nonlinear equations, integrals
and derivatives, and Fourier transforms. You will find that these features can help
to free you from the tedium of performing complicated algebra by hand, just as
your calculator has freed you from having to do long division.

However, as with everything else in life, using Mathematica presents us with
certain trade-offs. For instance, in part because it has been developed to provide a
straightforward interface to the user, Mathematica is not suited for truly large-scale
computations such as large molecular dynamics simulations with 1000 particles
or more, or inversions of 100,000-by-100,000 matrices, for example. Such appli-
cations require a stripped-down precompiled code, running on a mainframe
computer. Nevertheless, for the sort of introductory numerical problems covered
in this book, the speed of Mathematica on a PC platform is more than sufficient.
Once these numerical techniques have been learned using Mathematica, it
should be relatively easy to transfer your new skills to a mainframe computing
environment.

I should note here that this limitation does not affect the usefulness of
Mathematica in the solution of the sort of small to intermediate-scale problems
that working scientists often confront from day to day. In my own experience,
hardly a day goes by when I do not fire up Mathematica to evaluate an integral or
plot a function. For more than a decade now I have found this program to be truly

Žuseful, and I hope and expect that you will as well. No, I am not receiving any
.kickbacks from Stephen Wolfram!

There is another limitation to Mathematica. You will find that although Mathe-
matica knows a lot of tricks, it is still a dumb program in the sense that it requires
precise input from the user. A missing bracket or semicolon often will result in
long paroxysms of error statements and less often will result in a dangerous lack of

Žerror messages and a subsequent incorrect answer. It is still true for this or for any
.other software package that garbage insgarbage out. Science fiction movies

involving intelligent computers aside, this aphorism will probably hold for the
foreseeable future. This means that, at least at first, you will spend a good fraction
of your time cursing the computer screen. My advice is to get used to it�this is a
process that you will go through over and over again as you use computers in your
career. I guarantee that you will find it very satisfying when, after a long debugging
session, you finally get the output you wanted. Eventually, with practice, you will
become Mathematica masters.
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I developed this book from course notes for two junior-level classes in mathe-
matical methods that I have taught at UCSD for several years. The book is
oriented toward students in the physical sciences and in engineering, at either the

Ž .advanced undergraduate junior or senior or graduate level. It assumes an
understanding of introductory calculus and ordinary differential equations. Chap-
ters 1�8 also require a basic working knowledge of Mathematica. Chapter 9,
included only in electronic form on the CD that accompanies this book, presents
an introduction to the software’s capabilities. I recommend that Mathematica
novices read this chapter first, and do the exercises.

Some of the material in the book is rather advanced, and will be of more
interest to graduate students or professionals. This material can obviously be
skipped when the book is used in an undergraduate course. In order to reduce
printing costs, four advanced topics appear only in the electronic chapters on the
CD: Section 5.3 on wave action; Section 6.3 on numerically determined eigen-
modes; Section 7.3 on the particle-in-cell method; and Section 8.3 on the
Rosenbluth�Teller�Metropolis Monte Carlo method. These extra sections are
highlighted in red in the electronic version.

Aside from these differences, the text and equations in the electronic and
printed versions are, in theory, identical. However, I take sole responsibility for any
inadvertent discrepancies, as the good people at Wiley were not involved in
typesetting the electronic textbook.

The electronic version of this book has several features that are not available in
printed textbooks:

1. Hyperlinks. There are hyperlinks in the text that can be used to view
material from the web. Also, when the text refers to an equation, the
equation number itself is a hyperlink that will take you to that equation.
Furthermore, all items in the index and contents are linked to the corre-

Žsponding material in the book, For these features to work properly, all
.chapters must be located in the same directory on your computer. You can

return to the original reference using the Go Back command, located in the
main menu under Find.

2. Mathematica Code. Certain portions of the book are Mathematica calcula-
tions that you can use to graph functions, solve differential equations, etc.
These calculations can be modified at the reader’s pleasure, and run in situ.

3. Animations and Interacti©e 3D Renderings. Some of the displayed figures are
interactive three-dimensional renderings of curves or surfaces, which can be
viewed from different angles using the mouse. An example is Fig. 1.13, the
strange attractor for the Lorenz system. Also, some of the other figures are
actually animations. Creating animations and interactive 3D plots is covered
in Sections 9.6.7 and 9.6.6, respectively.

4. Searchable text. Using the commands in the Find menu, you can search
through the text for words or phrases.

Equations or text may sometimes be typeset in a font that is too small to be read
Ž .easily at the current magnification. You can increase or decrease the magnifica-
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Žtion of the notebook under the Format entry of the main menu choose Magnifi-
.cation , or by choosing a magnification setting from the small window at the

bottom left side of the notebook.
A number of individuals made important contributions to this project: Professor

Tom O’Neil, who originally suggested that the electronic version should be written
in Mathematica notebook format; Professor C. Fred Driscoll, who invented some
of the problems on sound and hearing; Jo Ann Christina, who helped with the
proofreading and indexing; and Dr. Jay Albert, who actually waded through the
entire manuscript, found many errors and typos, and helped clear up fuzzy
thinking in several places. Finally, to the many students who have passed through
my computational physics classes here at UCSD: You have been subjected to two
experiments�a Mathematica-based course that combines analytical and computa-
tional methods; and a book that allows the reader to interactively explore varia-

Žtions in the examples. Although you were beset by many vicissitudes crashing
.computers, balky code, debugging sessions stretching into the wee hours your

Ž .interest, energy, and good humor were unflagging for the most part! and a
constant source of inspiration. Thank you.

DANIEL DUBIN

La Jolla, California
March, 2003



CHAPTER 1

ORDINARY DIFFERENTIAL EQUATIONS
IN THE PHYSICAL SCIENCES

1.1 INTRODUCTION

1.1.1 Definitions

Differential Equations, Unknown Functions, and Initial Conditions Three
centuries ago, the great British mathematician, scientist, and curmudgeon Sir Isaac
Newton and the German mathematician Gottfried von Liebniz independently
introduced the world to calculus, and in so doing ushered in the modern scientific
era. It has since been established in countless experiments that natural phenomena
of all kinds can be described, often in exquisite detail, by the solutions to
differential equations.

Differential equations involve derivatives of an unknown function or functions,
whose form we try to determine through solution of the equations. For example,

Ž .consider the motion in one dimension of a point particle of mass m under the
Ž . Ž .action of a prescribed time-dependent force F t . The particle’s velocity ® t

satisfies Newton’s second law

d®
m sF t . 1.1.1Ž . Ž .dt

Ž .This is a differential equation for the unknown function ® t .
Ž .Equation 1.1.1 is probably the simplest differential equation that one can write

down. It can be solved by applying the fundamental theorem of calculus: for any
Ž . w xfunction f t whose derivative exists and is integrable on the interval a, b ,

b df
dts f b y f a . 1.1.2Ž . Ž . Ž .H dta

1

Numerical and Analytical Methods for Scientists and Engineers, Using Mathematica. Daniel Dubin
Copyright  2003 John Wiley & Sons, Inc. ISBN: 0-471-26610-8



ORDINARY DIFFERENTIAL EQUATIONS IN THE PHYSICAL SCIENCES2

Ž .Integrating both sides of Eq. 1.1.1 from an initial time ts0 to time t and using
Ž .Eq. 1.1.2 yields

t td® 1
dts® t y® 0 s F t dt. 1.1.3Ž . Ž . Ž . Ž .H Hdt m0 0

Ž .Therefore, the solution of Eq. 1.1.1 for the velocity at time t is given by the
integral over time of the force, a known function, and an initial condition, the
velocity at time ts0. This initial condition can be thought of mathematically as a

Ž .constant of integration that appears when the integral is applied to Eq. 1.1.1 .
Physically, the requirement that we need to know the initial velocity in order to
find the velocity at later times is intuitively obvious. However, it also implies that

Ž .the differential equation 1.1.1 by itself is not enough to completely determine a
Ž .solution for ® t ; the initial velocity must also be provided. This is a general

feature of differential equations:

Extra conditions beyond the equation itself must be supplied in order to
completely determine a solution of a differential equation.

Ž .If the initial condition is not known, so that ® 0 is an undetermined constant in
Ž . Ž .Eq. 1.1.3 , then we call Eq. 1.1.3 a general solution to the differential equation,

because different choices of the undetermined constant allow the solution to
satisfy different initial conditions.

As a second example of a differential equation, let’s now assume that the force
Ž . Ž .in Eq. 1.1.1 depends on the position x t of the particle according to Hooke’s

law:

F t sykx t , 1.1.4Ž . Ž . Ž .

Ž .where k is a constant the spring constant . Then, using the definition of velocity
as the rate of change of position,

dx®s . 1.1.5Ž .dt

Ž . Ž .Eq. 1.1.1 becomes a differential equation for the unknown function x t :

d2 x ksy x t . 1.1.6Ž . Ž .2 mdt

This familiar differential equation, the harmonic oscillator equation, has a
general solution in terms of the trigonometric functions sin x and cos x, and two
undetermined constants C and C :1 2

x t sC cos � t qC sin � t , 1.1.7Ž . Ž . Ž . Ž .1 0 2 0

'where � s krm is the natural frequency of the oscillation. The two constants0
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can be determined by two initial conditions, on the initial position and velocity:

x 0 sx , ® 0 s® . 1.1.8Ž . Ž . Ž .0 0

Ž . Ž . Ž . Ž .Since Eq. 1.1.7 implies that x 0 sC and x� 0 s® 0 s� C , the solution can1 0 2
be written directly in terms of the initial conditions as

®0x t sx cos � t q sin � t . 1.1.9Ž . Ž . Ž . Ž .0 0 0�0

We can easily verify that this solution satisfies the differential equation by
Ž .substituting it into Eq. 1.1.6 :

Cell 1.1

x[t_____] = x0 Cos[� t] + v0/� Sin[ � t];0 0 0

Simplify[x"[t] == -� ^̂̂̂̂2 x[t]]0

True

We can also verify that the solution matches the initial conditions:

Cell 1.2

x[0]

x0

Cell 1.3

x'''''[0]

v0

Order of a Differential Equation The order of a differential equation is the
order of the highest derivative of the unknown function that appears in the

Ž . Ž .equation. Since only a first derivative of ® t appears in Eq. 1.1.1 , the equation is
Ž . Ž .a first-order differential equation for ® t . On the other hand, Equation 1.1.6 is a

second-order differential equation.
Ž . Ž .Note that the general solution 1.1.3 of the first-order equation 1.1.1 involved

one undetermined constant, but for the second-order equation, two undetermined
Ž .constants were required in Eq. 1.1.7 . It’s easy to see why this must be so�an

Nth-order differential equation involves the Nth derivative of the unknown
function. To determine this function one needs to integrate the equation N times,
giving N constants of integration.

The number of undetermined constants that enter the general solution of an
ordinary differential equation equals the order of the equation.
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Partial Differential Equations This statement applies only to ordinary differen-
Ž .tial equations ODEs , which are differential equations for which derivatives of the

unknown function are taken with respect to only a single variable. However, this
Ž .book will also consider partial differential equations PDEs , which involve deriva-

tives of the unknown functions with respect to se®eral variables. One example of a
Ž .PDE is Poisson’s equation, relating the electrostatic potential � x, y, z to the

Ž .charge density � x, y, z of a distribution of charges:

� x , y , zŽ .2� � x , y , z sy . 1.1.10Ž . Ž .�0

ŽHere � is a constant the dielectric permittivity of free space, given by � s0 0
y12 . 28.85 . . . �10 Frm , and � is the Laplacian operator,

� 2 � 2 � 2
2� s q q . 1.1.11Ž .2 2 2� x � y � z

We will find that �2 appears frequently in the equations of mathematical physics.
Like ODEs, PDEs must be supplemented with extra conditions in order to

obtain a specific solution. However, the form of these conditions become more
complex than for ODEs. In the case of Poisson’s equation, boundary conditions
must be specified over one or more surfaces that bound the volume within which

Ž .the solution for � x, y, z is determined.
A discussion of solutions to Poisson’s equation and other PDEs of mathematical

physics can be found in Chapter 3 and later chapters. For now we will confine
ourselves to ODEs. Many of the techniques used to solve ODEs can also be
applied to PDEs.

An ODE involves derivatives of the unknown function with respect to only a
single variable. A PDE involves derivatives of the unknown function with
respect to more than one variable.

Initial-Value and Boundary-Value Problems Even if we limit discussion to
ODEs, there is still an important distinction to be made, between initial-®alue
problems and boundary-®alue problems. In initial-value problems, the unknown
function is required in some time domain t�0 and all conditions to specify the

Ž . Ž .solution are given at one end of this domain, at ts0. Equations 1.1.3 and 1.1.9
are solutions of initial-value problems.

However, in boundary-value problems, conditions that specify the solution are
given at different times or places. Examples of boundary-value problems in ODEs

Žmay be found in Sec. 1.5. Problems involving PDEs are often boundary-value
Ž .problems; Poisson’s equation 1.1.10 is an example. In Chapter 3 we will find that

some PDEs involving both time and space derivatives are solved as both boundary-
.and initial-value problems.
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For now, we will stick to a discussion of ODE initial-value problems.

In initial-value problems, all conditions to specify a solution are given at one
point in time or space, and are termed initial conditions. In boundary-value
problems, the conditions are given at several points in time or space, and are
termed boundary conditions. For ODEs, the boundary conditions are usually
given at two points, between which the solution to the ODE must be
determined.

EXERCISES FOR SEC. 1.1

( ) Ž . Ž .1 Is Eq. 1.1.1 still a differential equation if the velocity ® t is given and the
Ž .force F t is the unknown function?

( )2 Determine by substitution whether the following functions satisfy the given
differential equation, and if so, state whether the functions are a general
solution to the equation:

d2 x yt( ) Ž . Ž .a sx t , x t sC sinh tqC e .1 22dt
dx 2 at1 2 2( ) Ž . Ž . Ž .b sx t , x t s a q t y .4ž /dt 2

d4 x d3 x d2 x dx 2 t 2
2 3 t y2 t( ) Ž .c y3 y7 q15 q18 xs12 t , x t sa e tqb e q4 3 2 dt 3dt dt dt

10 t 13y q .9 9
( )3 Prove by substitution that the following functions are general solutions to the

given differential equations, and find values for the undetermined constants in
order to match the boundary or initial conditions. Plot the solutions:

dx 5t( ) Ž . Ž . Ž .a s5x t y3, x 0 s1; x t sC e q3r5.dt

d2 x dx y2 t y2 t( ) Ž . Ž . Ž . Ž .b q4 q4 x t s0, x 0 s0, x� 1 sy3; x t sC e qC t e .1 22 dtdt

d3 x dx 2( ) Ž . Ž . Ž . Ž .c q s t, x 0 s0, x� 0 s1, x	 
 s0; x t s t r2qC sin tq13 dtdt
C cos tqC .2 3

1.2 GRAPHICAL SOLUTION OF INITIAL-VALUE PROBLEMS

1.2.1 Direction Fields; Existence and Uniqueness of Solutions

In an initial-value problem, how do we know when the initial conditions specify a
unique solution to an ODE? And how do we know that the solution will even exist?
These fundamental questions are addressed by the following theorem:
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Theorem 1.1 Consider a general initial-value problem involving an Nth-order
ODE of the form

d N x dx d2 x d Ny1 xs f t , x , , , . . . , 1.2.1Ž .N 2 Ny1ž /dtdt dt dt

for some function f. The ODE is supplemented by N initial conditions on x and
its derivatives of order Ny1 and lower:

dx d2 x d Ny1

x 0 sx , s® , sa , . . . , su .Ž . 0 0 0 02 Ny1dt dt dt

Then, if the derivative of f in each of its arguments is continuous over some
domain encompassing this initial condition, the solution to this problem exists and
is unique for some length of time around the initial time.

ŽNow, we are not going to give the proof to this theorem. See, for instance,
.Boyce and Diprima for an accessible discussion of the proof. But trying to

understand it qualitatively is useful. To do so, let’s consider a simple example of
Ž .Eq. 1.2.1 : the first-order ODE

d® s f t , ® . 1.2.2Ž . Ž .dt

This equation can be thought of as Newton’s second law for motion in one
dimension due to a force that depends on both velocity and time.

Ž . Ž .Let’s consider a graphical depiction of Eq. 1.2.2 in the t, ® plane. At every
Ž . Ž . Ž .point t, ® , the function f t, ® specifies the slope d®rdt of the solution ® t . An

example of one such solution is given in Fig. 1.1. At each point along the curve, the
Ž . Ž .slope d®rdt is determined through Eq. 1.2.2 by f t, ® . This slope is, geometri-

cally speaking, an infinitesimal vector that is tangent to the curve at each of its
points. A schematic representation of three of these infinitesimal vectors is shown
in the figure.

The components of these vectors are

d®
dt , d® sdt 1, sdt 1, f t , ® . 1.2.3Ž . Ž . Ž .Ž .ž /dt

Ž Ž .. ŽThe vectors dt 1, f t, ® form a type of ®ector field a set of vectors, each member
.of which is associated with a separate point in some spatial domain called a

direction field. This field specifies the direction of the solutions at all points in the

Ž .Fig. 1.1 A solution to d®rdts f t, ® .
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Fig. 1.2 Direction field for d®rdts ty®, along with four solutions.

Ž . Ž .t, ® plane: every solution to Eq. 1.2.2 for every initial condition must be a curve
that runs tangent to the direction field. Individual vectors in the direction field are
called tangent ®ectors.

Ž . ŽBy drawing these tangent vectors at a grid of points in the t, ® plane not
infinitesimal vectors, of course; we will take dt to be finite so that we can see the

.vectors , we get an overall qualitative picture of solutions to the ODE. An example
is shown in Figure 1.2. This direction field is drawn for the particular case of an
acceleration given by

f t , ® s ty®. 1.2.4Ž . Ž .

Ž .Along with the direction field, four solutions of Eq. 1.2.2 with different initial ®’s
are shown. One can see that the direction field is tangent to each solution.

Figure 1.2 was created using a graphics function, available in Mathematica’s
graphical add-on packages, that is made for plotting two-dimensional vector fields:
PlotVectorField. The syntax for this function is given below:

PlotVectorField[{vx[x,y],vy[x,y]}, {x,xmin,xmax},{y,ymin,ymax},options].

The vector field in Fig. 1.2 was drawn with the following Mathematica commands:

Cell 1.4

� Graphics‘
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Cell 1.5

f[t_____, v_____] = -v + t;
PlotVectorField[{1, f[t, v]}, {t, 0, 4}, {v, -3, 3},
Axes™True, ScaleFunction™(1 &&&&&), AxesLabel™{"t", "v"}]

The option ScaleFunction->>>>>(1&&&&&) makes all the vectors the same length. The
plot shows that you don’t really need the four superimposed solutions in order to
see the qualitative behavior of solutions for different initial conditions�you can
trace them by eye just by following the arrows.

Ž .However, for completeness we give the general solution of Eqs. 1.2.2 and
Ž .1.2.4 below:

® t sC eyt q ty1, 1.2.5Ž . Ž .

which can be verified by substitution. In Fig. 1.2, the solutions traced out by the
w x Žsolid lines are for Cs 4, 2, 1y2 . These solutions were plotted with the Plot

.function and then superimposed on the vector field using the Show command.
One can see that for t��, the different solutions never cross. Thus, specifying an
initial condition leads to a unique solution of the differential equation. There are
no places in the direction field where one sees convergence of two different
solutions, except perhaps as t™�. This is guaranteed by the differentiability of
the function f in each of its arguments.

A simple example of what can happen when the function f is nondifferentiable
at some point or points is given below. Consider the case

f t , ® s®rt. 1.2.6Ž . Ž .

Fig. 1.3 Direction field for d®rdts®rt, along with two solutions, both with initial
Ž .condition ® 0 s0.
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Ž .This function is not differentiable at ts0. The general solution to Eqs. 1.2.2 and
Ž .1.2.6 is

® t sCt , 1.2.7Ž . Ž .

as can be seen by direct substitution. This implies that all solutions to the ODE
Ž .emanate from the point ® 0 s0. Therefore, the solution with initial condition

Ž .® 0 s0 is not unique. This can easily be seen in a plot of the direction field,
Ž . Ž .Fig. 1.3. Furthermore, Eq. 1.2.7 shows that solutions with ® 0 �0 do not exist.

When f is differentiable, this kind of singular behavior in the direction field can-
not occur, and as a result the solution for a given initial condition exists and is
unique.

1.2.2 Direction Fields for Second-Order ODEs: Phase-Space Portraits

Phase-Space We have seen that the direction field provides a global picture of
all solutions to a first-order ODE. The direction field is also a useful visualization
tool for higher-order ODEs, although the field becomes difficult to view in three
or more dimensions. A nontrivial case that can be easily visualized is the direction
field for second-order ODEs of the form

d2 x dxs f x , . 1.2.8Ž .2 ž /dtdt

Ž . Ž .Equation 1.2.8 is a special case of Eq. 1.2.1 for which the function f is
time-independent and the ODE is second-order. Equations like this often appear in
mechanics problems. One simple example is the harmonic oscillator with a fric-
tional damping force added, so that the acceleration depends linearly on both
oscillator position x and velocity ®sdxrdt:

f x , ® sy� 2 xy� ®, 1.2.9Ž . Ž .0

where � is the oscillator frequency and � is a frictional damping rate.0
The direction field consists of a set of vectors tangent to the solution curves of

Ž .this ODE in t, x, ® space. Consider a given solution curve, as shown schematically
in Fig. 1.4. In a time interval dt the solution changes by dx and d® in the x and ®
directions respectively. The tangent to this curve is the vector

dx d®
dt , dx , d® sdt 1, , sdt 1, ®, f x , ® . 1.2.10Ž . Ž . Ž .Ž .ž /dt dt

Ž .Fig. 1.4 A solution curve to Eq. 1.2.8 , a tangent vector, and
Ž .the projection onto the x, ® plane.



ORDINARY DIFFERENTIAL EQUATIONS IN THE PHYSICAL SCIENCES10

Note that this tangent vector is independent of time. The direction field is the
same in every time slice, so the trajectory of the particle can be understood by

Ž . Ž .projecting solutions onto the x, ® plane as shown in Fig. 1.4. The x, ® plane is
Ž .often referred to as phase-space, and the plot of a solution curve in the x, ® plane

is called a phase-space portrait.
Often, momentum psm® is used as a phase-space coordinate rather than ®, so

Ž . Ž .that the phase-space portrait is in the x, p plane rather than the x, ® plane.
ŽThis sometimes simplifies things especially for motion in magnetic fields, where

.the relation between p and ® is more complicated than just psm® , but for now
Ž .we will stick with plots in the x, ® plane.

The projection of the direction field onto phase-space, created as usual with the
PlotVectorField function, provides us with a global picture of the solution for

Ž .all initial conditions x , ® . This projection is shown in Cell 1.6 for the case of a0 0
Ž .damped oscillator with acceleration given by Eq. 1.2.9 , taking � s�s1. One0

can see from this plot that all solutions spiral into the origin, which is expected,
since the oscillator loses energy through frictional damping and eventually comes
to rest.

Vectors in the direction field point toward the origin, in a manner reminiscent
Ž .of the singularity in Fig. 1.3, even though f x, ® is differentiable. However,

particles actually require an infinite amount of time to reach the origin, and if
Ž .placed at the origin will not move from it the origin is an attracting fixed point , so

this field does not violate Theorem 1.1, and all initial conditions result in unique
trajectories.

Cell 1.6

<<<<<<<<<<Graphics ;`
f[x_____, v_____] = -x - v;
PlotVectorField[{v, f[x, v]}, {x, -1, 1}, {v, -1, 1},
Axes™True, ScaleFunction™(1&&&&&), AxesLabel™{"x", "v"}];
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Fig. 1.5 Flow of a set of initial conditions
Ž .for f x, ® syxy®.

Conservation of Phase-Space Area The solutions of the damped oscillator
ODE do not conserve phase-space area. By this we mean the following: consider
an area of phase-space, say a square, whose boundary is mapped out by a collec-
tion of initial conditions. As these points evolve in time according to the ODE, the
square changes shape. The area of the square shrinks as all points are attracted

Ž .toward the origin. See Fig. 1.5.
Dissipative systems�systems that lose energy�have the property that phase-

space area shrinks over time. On the other hand, nondissipative systems, which
conserve energy, can be shown to conserve phase-space area. Consider, for

Ž .example, the direction field associated with motion in a potential V x . Newton’s
equation of motion is m d2 xrdt2sy� Vr� x, or in terms of phase-space coordi-

Ž .nates x, ® ,

dx s®,dt
1.2.11Ž .

d® 1 � Vsy .dt m � x

Ž . Ž .According to Eq. 1.2.10 , the projection of the direction field onto the x, ®
Ž Ž . .plane has components ®,y 1rm � Vr� x . One can prove that this flow is area-

conserving by showing that it is di®ergence-free. It is easiest at first to discuss such
Ž . Ž . Ž .flows in the x, y plane, rather than the x, ® plane. A flow in the x, y plane,

Ž . Ž Ž . Ž ..described by a vector field v x, y s ® x, y , ® x, y , is divergence-free if thex y
flow satisfies

� ®� ® yx�v x , y s q s0, 1.2.12Ž . Ž .� x � yy x

where we have explicitly shown what is held fixed in the derivatives. The connec-
tion between this divergence and the area of the flow can be understood by



ORDINARY DIFFERENTIAL EQUATIONS IN THE PHYSICAL SCIENCES12

Fig. 1.6 Surface S moving by dr in time dt.

examining Fig. 1.6, which depicts an area S moving with the flow. The differential
change dS in the area as the boundary C moves by dr is dSsE dr n dl, where dlˆC
is a line element along C, and n is the unit vector normal to the edge, pointing outˆ
from the surface. Dividing by dt, using vsdrrdt, and applying the di®ergence
theorem, we obtain

dS 2s v n dls �v d r. 1.2.13Ž .ˆE Hdt C S

Thus, the rate of change of the area dSrdt equals zero if �vs0, proving that
divergence-free flows are area-conserving.

Ž .Returning to the flow of the direction field in the x, ® plane given by Eqs.
Ž .1.2.11 , the x-component of the flow field is ®, and the ®-component is
Ž . Ž .y 1rm � Vr� x. The divergence of this flow is, by analogy to Eq. 1.2.12 ,

� ® � 1 � Vq y s0. 1.2.14Ž .ž /� x � ® m � x® x

Therefore, the flow is area-conserving.
Why should we care whether a flow is area-conserving? Because the direction

field for area-conserving flows looks very different than that for a non-area-con-
serving flow such as the damped harmonic oscillator. In area-conserving flows,
there are no attracting fixed points toward which orbits fall; rather, the orbits tend
to circulate indefinitely. This property is epitomized by the phase-space flow for
the undamped harmonic oscillator, shown in Fig. 1.7.

Ž .Hamiltonian Systems Equations 1.2.11 are a specific example of a more
general class of area-conserving flows called Hamiltonian flows. These flows have
equations of motion of the form

� H x , p , tdx Ž .s ,dt � p
1.2.15Ž .

� H x , p , tdp Ž .sy ,dt � x

Ž .where p is the momentum associated with the ®ariable x. The function H x, p, t is
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Fig. 1.7 Phase-space flow and constant-H curves for the undamped harmonic oscillator,
Ž .f x, ® syx.

the Hamiltonian of the system. These flows are area-conserving, because their
phase-space divergence is zero:

� 2H x , p , t � 2H x , p , t� dx � dp Ž . Ž .q s y s0. 1.2.16Ž .� x dt � p dt � x � p � x � p

Ž .For Eqs. 1.2.11 , the momentum is psm®, and the Hamiltonian is the total
energy of the system, given by the sum of kinetic and potential energies:

m®2 p2

Hs qV x s qV x . 1.2.17Ž . Ž . Ž .2 2m

If the Hamiltonian is time-independent, it can easily be seen that the direction
field is everywhere tangent to surfaces of constant H. Consider the change dH in
the value of H as a particle follows along the flow for a time dt. This change is
given by

� H � H � H dx � H dp
dHsdx qdp sdt q .ž /� x � p � x dt � p dt

Using the equations of motion, we have

� H � H � H � H
dHsdt q y s0. 1.2.18Ž .ž /� x � p � p � x

In other words energy is conserved, so that the flow is along constant-H surfaces.
Some of these constant-H surfaces are shown in Fig. 1.7 for the harmonic
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Ž .oscillator. As usual, we plot the direction field in the x, ® plane rather than in the
Ž .x, p plane.

Ž .For a time-independent Hamiltonian H x, p , curves of constant H are nested
curves in phase space, which describe the orbits. Even for very complicated

ŽHamiltonian functions, these constant-H curves must be nested think of contours
.of constant altitude on a topographic map . The resulting orbits must always

remain on a given constant-H contour in a given region of phase space. Different
regions of phase-space are isolated from one another by these contours. Such
motion is said to be integrable.

However, this situation can change if the Hamiltonian depends explicitly on
time so that energy is not conserved, or if phase-space has four or more dimen-

wsions as, for example, can occur for two coupled oscillators, which have phase-space
Ž .xx , ® , x , ® . Now energy surfaces no longer necessarily isolate different regions1 1 2 2
of phase-space. In these situations, it is possible for particles to explore large
regions of phase space. The study of such systems is a burgeoning area of
mathematical physics called chaos theory. A comprehensive examination of the
properties of chaotic systems would take too far afield, but we will consider a few
basic properties of chaotic systems in Sec. 1.4.

EXERCISES FOR SEC. 1.2

( ) Ž 2 2 .3 Ž . Ž . Ž .1 Find, by hand, three valid solutions to d xrdt s tx t , x 0 sx� 0 s0.
Ž n .Hint: Try solutions of the form at for some constants a and n.

( )2 Plot the direction field for the following differential equations in the given
ranges, and discuss the qualitative behavior of solutions for initial conditions in
the given ranges of y:

d® 2'( )a s t y , 0� t�4, y2�y�2.dt
dy( ) Ž .b ssin tqy , 0� t�15, y8� t�8.dt

ŽHint: You can increase the resolution of the vector field using the Plot-
.Points option, as in PlotPoints™25.

( ) Ž .3 For a Hamiltonian H x, ®, t that depends explicitly on time, show that rate of
change of energy dHrdt along a particular trajectory in phase space is given by

dH � Hs . 1.2.19Ž .dt � t x , ®

( ) Ž . Ž . Ž .4 A simple pendulum follows the differential equation � 	 t sy grl sin � t ,
where � is the angle the pendulum makes with the vertical, gs9.8 mrs2 is the

Ž .acceleration of gravity, and l is the length of the pendulum. See Fig. 1.8. Plot
Ž .the direction field for this equation projected into the phase space � , � � , in

the ranges y
���
 and y4 sy1 �� ��4 sy1, assuming a length l of 10 m.
( )a Discuss the qualitative features of the solutions. Do all phase-space

trajectories circle the origin? If not, why not? What do these trajectories
correspond to physically?
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Fig. 1.8 Simple pendulum.

( )b Find the energy H for this motion in terms of � and � �. Plot several
curves of constant H on top of your direction field, to verify that the field
is tangent to them.

( )5 Find an expression for the momentum p associated with the variable � , so�

that one can write the equations of motion for the pendulum in Hamiltonian
form,

� H � , p , tŽ .d� �s ,dt � p�

dp � H � , p , tŽ .� �sy .dt ��

( )6 The Van der Pol oscillator ODE models some properties of excitable systems,
such as heart muscle or certain electronic circuits. The ODE is

x	 q x 2y1 x�qxs0. 1.2.20Ž . Ž .

The restoring force is a simple Hooke’s law, but the ‘‘drag force’’ is more
� � Žcomplicated, actually accelerating ‘‘particles’’ with x �1. Here, x could

actually mean the oscillation amplitude of a chunk of muscle, or the current in
.a nonlinear electrical circuit. At low amplitudes the oscillations build up, but

at large amplitudes they decay.
( ) Ž .a Draw the direction field projected into the phase space x, x� for y2�x

�2, y2�x��2. Discuss the qualitative behavior of solutions that begin
Ž . Ž .i near the origin, ii far from the origin.

( ) Ž .b Does this system conserve phase-space area, where x, x� is the phase-
space?

( ) Ž .7 A particle orbiting around a stationary mass M the sun, for example follows
Ž .the following differential equation for radius as a function of time, r t where r

is the distance measured from the stationary mass:

d2 r L2 GMs y . 1.2.21Ž .2 3 2dt r r

Here, G is the gravitational constant, and L is a constant of the motion�the
specific angular momentum of the particle, determined by radius r and
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˙angular velocity � as

2˙Ls r � . 1.2.22Ž .

( )a Assuming that L is nonzero, find a transformation of time and spatial
scales, rs rra, ts trt , that puts this equation into the dimensionless0
form

2d r 1 1s y . 1.2.23Ž .2 3 2dt r r

( )b Plot the projection of the direction field for this equation into the phase
Ž .space r, r � in the range 0.1� r�4, y0.7� r ��0.7.

( ) Ž . Ž .i What is the physical significance of the point r, r � s 1, 0 ?
( )ii What happens to particles that start with large radial velocities at

large radii, r�1?
( )iii What happens to particles with zero radial velocities at small radius,

r�1? Explain this in physical terms.
( ) Ž .iv For particles that start with velocities close to the point r, r � s

Ž .1, 0 , the closed trajectories correspond to elliptical orbits, with the
two points where r �s0 corresponding to distance of closest ap-

Ž . Ž .proach r perihelion and farthest distance r aphelion from the0 1
Ž .fixed mass. Therefore, one closed orbit in the r, r � plane corre-

sponds to a whole set of actual orbits with different scale parame-
ters a and t but the same elliptical shape. How do the periods of0

Žthis set of orbits scale with the size of the orbit? This scaling is
.sometimes referred to as Kepler’s third law.

( ) Ž .c Find the Hamiltonian H r, r � associated with the motion described
above. Plot a few curves of constant H on top of the direction field,
verifying that the field is everywhere tangent to the flow.

( )8 Magnetic and electric fields are often visualized by drawing the field lines
associated with these fields. These field lines are the trajectories through space
that are everywhere tangent to the given field. Thus, they are analogous to the
trajectories followed by particles as they propagate tangent to the direction
field. Consider a field line that passes through the point rsr . We parametrize0
this field line by the displacement s measured along the field line from the

Ž .point r . Thus, the field line is given by a curve through space, rsr s , where0
Ž .r 0 sr . A displacement dr along the field line with magnitude ds is in the0

Ž . � Ž . �direction of the local field: drsds E r r E r . Dividing by ds yields the
following differential equation for the field line:

E rd Ž .
r s s . 1.2.24Ž . Ž .ds � �E rŽ .

Ž .Equation 1.2.24 is a set of coupled first-order ODEs for the components of
Ž . Ž .r s , with initial condition r 0 sr .0
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( ) Ž . Ž .a Using PlotVectorField, plot the electric field E x, y sy�� x, y
Ž .that arises from the following electrostatic potential � x, y :

� x , y sx 2yy2 .Ž .
Ž 2 .This field satisfies Laplace’s equation, � �s0. Make the plot in the
ranges y2�x�2, y2�y�2.

( ) Ž .b Show that for this potential, Eq. 1.2.24 implies that dyrdxsyyrx along
a field line. Solve this ODE analytically to obtain the general solution for
Ž . Ž .y x , and plot the resulting field lines in the x, y plane for initial

Ž . Ž . Žconditions x , y s m, n where msy1, 0, 1 and nsy1, 0, 1 nine0 0
.plots in all . Then superimpose these plots on the previous plot of the

wfield. Hint 1: Make a table of plots; then use a single Show command to
Ž . Ž . xsuperimpose them. Hint 2: dxrds r dyrds sdxrdy.

1.3 ANALYTIC SOLUTION OF INITIAL-VALUE PROBLEMS VIA DSOLVE

1.3.1 DSolve

Ž .The solution to some but not all ODEs can be determined analytically. This
section will discuss how to use Mathematica’s analytic differential equation solver
DSolve in order to find these analytic solutions.

Consider a simple differential equation with an analytic solution, such as the
harmonic oscillator equation

d2 x 2sy� x . 1.3.1Ž .02dt

DSolve can provide the general solution to this second-order ODE. The syntax is
as follows:

w xDSolve ODE, unknown function, independent ®ariable .

The ODE is written as a logical expression, x"(t)==-�2 x(t). Note that in the0
Ž .ODE you must refer to x[t], not merely x as we did in Eq. 1.3.1 . The unknown

Ž .function is x t in this example. Then we specify the independent variable t, and
evaluate the cell:

Cell 1.7

DSolve[x"[t]== -� ^̂̂̂̂2 x[t], x[t], t]0

{{x[t]™C[2] Cos[t� ] + C[1] Sin[t� ]}}0 0

Ž .The result is a list of solutions in this case there is only one solution , written in
terms of two undetermined constants, C[1] and C[2]. As we know, these
constants are set by specifying initial conditions.

It is possible to obtain a unique solution to the ODE by specifying particular
initial conditions in DSolve. Now the syntax is

� 4DSolve ODE, initial conditions , unknown function, independent ®ariable .

Just as with the ODE, the initial conditions are specified by logical expressions,
not assignments, for example, x[0]==x0, v[0]==v0:
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Cell 1.8

DSolve[ {x"[t]== -� ^̂̂̂̂2 x[t],0

x[0] == x0, x'''''[0] == v0}, x[t], t]

v0 Sin[t� ]0{{x[t]™x0 Cos[t � ] + }}0 �0

Ž .As expected, the result matches our previous solution, Eq. 1.1.9 .
DSolve can also be used to provide solutions to systems of coupled ODEs.

Now, one provides a list of ODEs in the first argument, along with a list of the
unknown functions in the second argument. For instance, consider the following
coupled ODEs, which describe a set of two coupled harmonic oscillators with
positions x1[t] and x2[t], and with given initial conditions:

Cell 1.9

DSolve[{x1"[t] == -x1[t] + 2 (x2[t] - x1[t]),
x2"[t] == -x2[t] + 2 (x1[t] - x2[t]),

x1[0] == 0, x1'''''[0] == 0, x2[0] == 1, x2'''''[0] == 0},
{x1[t], x2[t]}, t]

1 ' ' ' '-i t-i 5 it i 5 2it+i 5 it+2i 5t t t t{{x1[t]™- e (e - e - e + e ),
4

1 ' ' ' '-i t-i 5 it i 5 2it+i 5 it-2 i 5t t t tx2[t]™ e (e + e + e + e )}}
4

Mathematica found the solution, although it is not in the simplest possible form.
For example, x1[t] can be simplified by applying FullSimplify:

Cell 1.10

FullSimplify[x1[t]/. %%%%%[[1]]]

1 '(Cos[t] - Cos[ 5 t])
2

Mathematica knows how to solve a large number of quite complex ODEs
analytically. For example, it can find the solution to a harmonic oscillator ODE
where the square of natural frequency � is time-dependent, decreasing linearly0
with time: � 2syt. This ODE is called the Airy equation:0

x	 t s tx t . 1.3.2Ž . Ž . Ž .

The general solution to this equation is

Cell 1.11

DSolve[x"[t] - tx[t] == 0, x[t], t]

{{x[t]™AiryAi[t] C[1] + AiryBi[t] C[2]}}

The two independent solutions to the ODE are special functions called Airy
Ž . Ž .functions, Ai x and Bi x . These are called special functions in order to distin-

guish them from the elementary functions such as sin x or log x that appear on
your calculator. Mathematica refers to these functions as AiryAi[x] and
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AiryBi[x]. These are only two of the huge number of special functions that
Mathematica knows. Just as for the elementary functions, one can plot these
special functions, as shown in Cell 1.12.

Cell 1.12

`<<<<<<<<<<Graphics ;
Plot [{AiryAi[x], AiryBi[x]}, {x, -10, 3},

PlotStyle™{Red, Green},
PlotLabel™TableForm[{{StyleForm["Ai[x]",
FontColor™RGBColor [1, 0, 0]], ", ", StyleForm["Bi[x]",
FontColor™Green]}}, TableSpacing™0]];

On the other hand, there are many seemingly straightforward ODEs that have
no solution in terms of either special functions or elementary functions. Here is an
example:

Cell 1.13

DSolve[x'''''[t] == t/(x[t] + t)^̂̂̂̂2, x[t], t]

t
DSolve [x�[t] == , x[t], t]

2(t+x[t])

Mathematica could not find an analytic solution for this simple first-order ODE,
although if we wished we could plot the direction field to find the qualitative form
of the solutions. Of course, that doesn’t mean that there is no analytic solution in
terms of predefined functions�after all, Mathematica is not omniscient. However,
as far as I know there really is no such solution to this equation.

You may wonder why a reasonably simple first-order ODE has no analytic solu-
tion, but a second-order ODE like the Airy equation does have an analytic
solution. The reason in this instance is mainly historical, not mathematical. The
solutions of the Airy equation are of physical interest, and were explored originally
by the British mathematician George B. Airy. The equation is important in the



ORDINARY DIFFERENTIAL EQUATIONS IN THE PHYSICAL SCIENCES20

Table 1.1. DSolve

DSolve[eqn,x[t], t] Solve a differential equation for x[t]
DSolve[{eqn1, eqn2, . . .},{x1[t], x2[t], . . .},t] Solve coupled differential equations

study of wave propagation through inhomogeneous media, and in the quantum
theory of tunneling, as we will see in Chapter 5. Many of the special functions that
we will encounter in this course�Bessel functions, Mathieu functions, Legendre
functions, etc.�have a similar history: they were originally studied because of
their importance to some area of science or mathematics.

Ž .Our simple first-order ODE, above, has no analytic solution as far as I know
simply because no one has ever felt the need to define one. Perhaps some day the
need will arise, and the solutions will then be detailed and named.

However, there are many ODEs for which no exact analytic solution can be
written down. These ODEs have chaotic solutions that are so complex that they
cannot be predicted on the basis of analytic formulae. Over long times, the

Žsolutions cannot even be predicted numerically with any accuracy as we will see in
.the next section .

The syntax for DSolve is summarized in Table 1.1.

EXERCISES FOR SEC. 1.3

( )1 In the process of radioactive decay, an atom spontaneously changes form by
emitting particles from the nucleus. The rate ® at which this decay happens
is defined as the fraction of nuclei that decay per unit of time in a sample of
material. Write down and solve a differential equation for the mass of radio-

Ž .active material remaining at time t, m t , given an amount m at ts0. How0
long does it take for half the material to decay?

( ) 2 Ž2 A spaceship undergoing constant acceleration gs9.8 mrs as felt by the
. Ž .passengers will follow Newton’s second law, with the addition by Einstein

that the apparent mass of the ship as seen from a stationary observer will
2 2Ž . 'increase with velocity ® t in proportion to the factor 1r 1y® rc . This

implies that the velocity satisfies the following first order ODE:

d ® sg .ž /dt 2 2'1y® rc

( )a Find the general solution, using pencil and paper, for the position as a
function of time.

( )b After 100 earth years of acceleration, starting from rest, how far has the
Ž 15 .ship gone in light-years one light-years9.45�10 m ?

( )c Thanks to relativistic time dilation, the amount of time � that has passed
onboard the ship is considerably shorter than 100 years, and is given by the

2 2 Ž .'solution to the differential equation d�rdts 1y® t rc , � 0 s0.Ž .
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Ž . Ž .Solve this ODE, using DSolve and the solution for ® t from part b ,
above, to find the amount of time that has gone by for passengers on the

Ž .ship. Note: The nearest star is only about 4.3 light years from earth.
What was the average speed of the ship over the course of the trip, in
units of c, as far as the passengers are concerned?

( ) Ž .3 The charge Q t on the capacitor in an LRC electrical circuit obeys a
second-order differential equation,

LQ	 qRQ�qQrCsV t . 1.3.3Ž . Ž .

( ) Ž .a Find the general solution to the equation, taking V t s0.
( ) Ž . y5 Ž .b Plot this solution for the case Q 0 s10 coulomb, Q� 0 s0, taking

Rs104 ohms, Cs10y5 farad, Ls0.1 henry. What is the frequency of
Ž .the oscillation being plotted in radians per second ? What is the rate of

Ž .decay of the envelope in inverse seconds ?

( ) Ž .4 A man throws a pebble straight up. Its height y t satisfies the differential
equation y	 q� y�syg, where g is the acceleration of gravity and � is the
damping rate due to frictional drag with the air.
( )a Find the general solution to this ODE.
( ) Ž .b Find the solution y t for the case where the initial speed is 6 mrs,

Ž . y1y 0 s0, and �s0.2 s . Plot this solution vs. time.
( ) Žc Find the time when the pebble returns to the ground this may require a

.numerical solution of an algebraic equation .

( ) Ž . Ž .5 Atomic hydrogen H recombines into molecular hydrogen H according to2
the simple chemical reaction HqH|H . The rate of the forward recombina-2

Ž . 2tion reaction number of reactions per unit time per unit volume is ® n ,1 H
Ž .where n is the number density in atoms per cubic meter of atomicH

Žhydrogen, and ® is a constant. The rate of the reverse reaction spontaneous1
.decomposition into atomic hydrogen is ® n , where n is the number2 H H2 2

density of molecular hydrogen.
( )a Write down two coupled first-order ODEs for the densities of molecular

and atomic hydrogen as a function of time.
( )b Solve these equations for general initial densities.
( )c Show that the solution to these equations satisfy n q2n sconst. TakeH H 2

Žthe constant equal to n the total number density of hydrogen atoms in0
.the system, counting those that are combined into molecules , and find the

ratio of densities in equilibrium.
( )d Plot the densities as a function of time for the initial condition n s1,H 2

n s0, ® s3, and ® s1.H 1 2

( )6 A charged particle, of mass m and charge q, moves in uniform magnetic and
Ž . Ž .electric fields Bs 0, 0, B , Es E , 0, E . The particle satisfies the nonrela-0 H z

tivistic equations of motion,

dv
m sq Eqv�B . 1.3.4Ž . Ž .dt
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( )a Find, using DSolve, the general solution of these coupled first-order
Ž . Ž Ž . Ž . Ž ..ODEs for the velocity v t s ® t , ® t , ® t .x y z

( )b Note that in general there is a net constant velocity perpendicular to B, on
which there is superimposed circular motion. The constant velocity is
called an E�B drift. The circular motion is called a cyclotron orbit. What
is the frequency of the cyclotron orbit? What are the magnitude and
direction of the E�B drift?

( ) Ž . Ž . Ž .c Find v t for the case for an electron with r 0 sv 0 s0, E s0, E sz H
Ž5000 Vrm, and B s0.005 tesla these are the proper units for the0
. Ž . Ž .equation of motion as written above . Plot ® t and ® t vs. t for a timex y

of 10y7 s.
( ) Ž . Ž . Ž .d Use the results of part b to obtain x t and y t . Plot x vs. y using a

parametric plot to look at the trajectory of the electron. Plot the trajectory
again in a frame moving at the E�B drift speed. The radius of the circle

Žis called the cyclotron radius. What is the magnitude of the radius in
.meters for this example?

( ) Ž .7 The trajectory r � of a particle orbiting a fixed mass M at the origin of the
Ž .r,� plane satisfies the following differential equation:

L d L dr L2 GMy sy , 1.3.5Ž .2 2 3 2ž /d� d�r r r r

Ž .where L is the specific angular momentum, as in Eq. 1.2.22 .
( )a Introduce a scaled radius rs rra to show that with proper choice of a this

equation can be written in dimensionless form as

1 d 1 dr 1 1y sy .2 2 3 2ž /d� d�r r r r

( )b Find the general solution for the trajectory, and show that Mathematica’s
Ž . Ž 2 . w Žexpression is equivalent to the expression 1rr � s GMrL e cos �y

. x� q1 , where e is the eccentricity and � is the angular position of0 0
w Ž . Ž . xperihelion. See Eq. 1.2.21 and Exercise 3 of Sec. 9.6 .

( )8 Consider the electric field from a unit point dipole at the origin. This field is
Ž . Ž .given by Esy�� �, z in cylindrical coordinates �, � , z , where �s

Ž 2 2 .3r2 Ž .zr � qz . In cylindrical coordinates the field lines equation, Eq. 1.2.24 ,
has components

E rŽ .d� �s ,ds � �E rŽ .

E rŽ .d� �� s , 1.3.6Ž .ds � �E rŽ .

E rŽ .dz zs .ds � �E rŽ .



1.4 NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS 23

( )a Use DSolve to determine the field lines for the dipole that pass through
Ž . Ž .the following points: � , z s 1, 0.5n , where ns1, 2, 3, 4. Make a table0 0

Ž .of ParametricPlot graphics images of these field lines in the �, z
plane for y10�s�10, and superimpose them all with a Show command

Žto visualize the field lines from this dipole. Hint: Create a vector function
Ž . � Ž . Ž .4r s, z s � s, z , z s, z using the DSolve solution, for initial condi-0 0 0

Ž . Ž .tion � 0 s� s1, z 0 sz . Then plot that vector function for the given0 0
.values of z .0

( )b A simple analytic form for the field lines from a dipole can be found in
Ž . Ž . Ž Ž . Ž . Ž ..spherical coordinates r, � , � . In these coordinates r s s r s , � s , � s

Ž .and Eq. 1.2.24 becomes

E rŽ .dr rs ,ds � �E rŽ .

E rŽ .d� �r s , 1.3.7Ž .ds � �E rŽ .

E rŽ .d� �
r sin � s .ds � �E rŽ .

2 2'Also, since rs � qz and zs r cos � , the dipole potential has the form
Ž . Ž .� r, � s cos � rr. An equation for the variation of r with � along a field

line can be obtained as follows:

E r , �Ž .1 dr drrds rs s .r d� r d�rds E r , �Ž .�

Ž . Ž .Solve this differential equation for r � with initial condition r � s r to0 0
show that the equation for the field lines of a point dipole in spherical
coordinates is

sin2 �
r � s r . 1.3.8Ž . Ž .0 2sin �0

Ž .Superimpose plots of r � for r s1, 2, 3, 4 and � s
r2.0 0

1.4 NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS

1.4.1 NDSolve

Mathematica can solve ODE initial-value problems numerically via the intrinsic
function NDSolve. The syntax for NDSolve is almost identical to that for
DSolve:

NDSolve[{ODE, initial conditions}, x[t],{t,tmin,tmax}]
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Three things must be remembered when using NDSolve.

Ž .1 Initial conditions must always be specified.
Ž .2 No nonnumerical constants can appear in the list of ODEs or the initial

conditions.
Ž . Ž .3 A finite interval of time must be provided, over which the solution for x t is

to be determined.

As an example, we will solve the problem from the previous section that had no
Ž .analytic solution, for the specific initial condition x 0 s1:

Cell 1.14

NDSolve[{x'''''[t] == t/(x[t] + t) ^̂̂̂̂2, x[0] == 1}, x[t],
{t, 0, 10}]

{{x[t]™InterpolatingFunction [{{0., 10.}}, <>][t]}}

Ž .The result is a list of possible substitutions for x t , just as when using DSolve.
Ž .However, the function x t is now determined numerically via an Interpolat-

ingFunction. These InterpolatingFunctions are also used for interpolat-
Ž .ing lists of data see Sec. 9.11 . The reason why an InterpolatingFunction

is used by NDSolve will become clear in the next section, but can be briefly stated
Ž .as follows: When NDSolve numerically solves an ODE, it finds values for x t only

at specific values of t between tmin and tmax, and then uses an Interpolating-
Function to interpolate between these values of t.

As discussed in Sec. 9.11, the InterpolatingFunction can be evaluated at
any point in its range of validity from tmin to tmax. For example, we can plot the
solution by first extracting the function from the list of possible solutions,

Cell 1.15

x[t]/. %%%%%[[1]]

InterpolatingFunction[{{0., 10.}}, <>] [t]

and then plotting the result as shown in Cell 1.16.

Cell 1.16

Plot[%%%%%, {t,0,10}];
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Now we come to an important question: how do we know that the answer
provided by NDSolve is correct? The numerical solution clearly matches the initial

Ž .condition, x 0 s1. How do we tell if it also solves the ODE? One way to tell this
is to plug the solution back into the ODE to see if the ODE is satisfied. We can do
this just as we have done with previous analytic solutions, except that the answer
will now evaluate to a numerical function of time, which must then be plotted to

Ž .see how much it differs from zero see Cell 1.17 .

Cell 1.17

x[t_____] = %%%%%%%%%%;
error[t_____] = x'''''[t] - t/(x[t] + t) ^̂̂̂̂2;
Plot[error[t], {t, 0, 10}];

The plot shows that the error in the solution is small, but nonzero.
In order to further investigate the accuracy of NDSolve, we will solve a problem

with an analytic solution: the harmonic oscillator with frequency � s1 and with0
Ž . Ž . Ž .initial condition x 0 s1, x� 0 s0. The exact solution is x t scos t. NDSolve

provides a numerical solution that can be compared with the exact solution, in
Cell 1.20.

Cell 1.18

Clear[x];

NDSolve[{x"[t] == -x[t], x[0] == 1, x'''''[0] == 0}, x[t],
{t, 0, 30}]

{{x[t]™InterpolatingFunction [{{0., 30.}}, <>][t]}}

Cell 1.19

x[t]/.%%%%%[[1]]

InterpolatingFunction[{{0., 30.}}, <>][t]
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Cell 1.20

Plot[%%%%% - Cos[t], {t, 0, 30}];

The difference between NDSolve’s solution and cos t is finite, and is growing
with time. This is typical behavior for numerical solutions of initial-value problems:
the errors tend to accumulate over time. If this level of error is too large, the error
can be reduced by using two options for NDSolve: AccuracyGoal and Preci-
sionGoal. The default values of these options is Automatic, meaning that
Mathematica decides what the accuracy of the solution will be. We can intercede,
however, choosing our own number of significant figures for the accuracy. It is best
to set both AccuracyGoal and PrecisionGoal to about the same number, and

Žto have this number smaller than $$$$$MachinePrecision otherwise the requested
.accuracy cannot be achieved, due to numerical roundoff error . Good values for

Ž .my computer with $$$$$MachinePrecision of 16 are AccuracyGoal™13,
PrecisionGoal™13:

Cell 1.21

xsol[t_____] = x[t]/. NDSolve[{x"[t] == -x[t], x[0] == 1,
x'''''[0] == 0}, x[t], {t, 0, 30}, AccuracyGoal™13,
PrecisionGoal™13] [[1]];

The results are shown in Cell 1.22. The error in the solution has now been
Žconsiderably reduced. Note that I have saved a little space by directly defining the

.solution of NDSolve to be the function xsol[t], all in one line of code.

Cell 1.22

Plot[xsol[t] - Cos [t], {t, 0, 30}];
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1.4.2 Error in Chaotic Systems

A Chaotic System: The Driven Pendulum The problem of error accumulation
in numerical solutions of ODEs is radically worse when the solutions display
chaotic behavior. Consider the following equation of motion for a pendulum of

Ž .length l see Fig. 1.8 :

l� 	 t syg sin �y f sin �y� t . 1.4.1Ž . Ž . Ž .

The first term on the right-hand side is the usual acceleration due to gravity, and
the second term is an added time-dependent force that can drive the pendulum
into chaotic motion. This term can arise if one rotates the pivot of the pendulum in

Ž .a small circle, at frequency �. Think of a noisemaker on New Year’s Eve.
We can numerically integrate this equation of motion using NDSolve. In Fig.

Ž .1.9 we show � t for 0� t�200, taking lsgs fs1 and �s2, and initial
Ž . Ž . Ž .conditions � 0 sy0.5, � � 0 s0. One can see that � t increases with time in a

rather complicated manner as the pendulum rotates about the pivot, and some-
Žtimes doesn’t quite make it over the top. Values of � larger than 2
 mean that

.the pendulum has undergone one or more rotations about the pivot.

Fig. 1.9 Two trajectories starting from the same initial conditions. The upper trajectory is
integrated with higher accuracy than the lower trajectory.
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Fig. 1.10 Difference between the trajectories of Fig. 1.9.

If we repeat this trajectory, but increase the accuracy by setting Accuracy-
Goal->>>>>13 and PrecisionGoal->>>>>13, the results for the two trajectories at late

Ž .times bear little or no resemblance to one-another Fig. 1.9 .
Ž .The difference �� between the two � t results is shown in Fig. 1.10. The error

is exploding with time, as opposed to the relatively gentle increase observed in our
previous examples. The explosive growth of accumulated error is a general feature
of chaotic systems. In fact, one can show that if one compares a given trajectory
with groups of nearby trajectories, on average the difference between these

� � Ž .trajectories increases exponentially with time: �� �exp �t . The rate of exponen-
tiation of error, �, is called the Lyapuno® exponent.

This rapid error accumulation is the signature of a chaotic system. It makes it
impossible to determine trajectories accurately over times long compared to 1r�.
One can easily see why this is so: a fast computer working at double�double

Ž . Ž 32 .precision 32-digit accuracy can integrate for times up to roughly ln 10 r��
70r� before roundoff error in the 32nd digit causes order-unity deviation from the
exact trajectory. To integrate accurately up to 7000r�, the accuracy would have to
be increased by a factor of e100 s2.6�1043!

For chaotic systems, small errors in computing the trajectory, or in the initial
conditions, lead to exponentially large errors at later times, making the
trajectory unpredictable.

Chaotic trajectories are not an isolated feature of only a few unusual dynamical
systems. Rather, chaos is the norm. It has been shown that almost all dynamical
systems are chaotic. Integrable systems such as the harmonic oscillator are the
truly unusual cases, even though such cases are emphasized in elementary books

Ž .on mechanics because they are analytically tractable .
Since almost all systems are chaotic, and since chaotic systems are unpre-

dictable, one might question the usefulness of Newton’s formulation of dynamics,
wherein a given initial condition, together with the force law, is supposed to
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provide all the information necessary to predict future behavior. For chaotic
systems this predictive power is lost.

Fortunately, even chaotic systems have features that can be predicted and
reproducibly observed. Although specific particle trajectories cannot be predicted
over long times, average values based on many particle trajectories are repro-
ducible. We will examine this statistical approach to complex dynamical systems in
Chapter 8.

The Lyapunov Exponent One example of a reproducible average quantity for a
chaotic system is the Lyapunov exponent itself. In order to define the Lyapunov

Ž .exponent, note that since error accumulates on average as exp �t , the logarithm
of the error should increase linearly with t, with a slope equal to �.

Ž .Therefore, � is defined as follows: Consider a given initial condition z s x , ® .0 0 0
Ž . Ž Ž . Ž ..For this choice, the phase-space trajectory is z t, z s x t, x , ® , ® t, x , ® .0 0 0 0 0

Ž .Now consider a small displacement d s � x , �® to a nearby initial condition0 0 0
z qd . The Lyapunov exponent is defined as0 0

� �z t , z qd yz t , zŽ . Ž .1 0 0 0� z s lim ln , 1.4.2Ž . Ž .0 ¦ ;ž /t � �d� �t™� , d ™0 00

² :where the stands for an average over many infinitesimal initial displacements
� �d in different directions, and z corresponds to a vector magnitude in the phase0

wspace. Units are unimportant in this vector magnitude: both position and momen-
tum can be regarded as dimensionless, so that z can be thought of as a dimension-

Ž . xless vector for the purposes of Eq. 1.4.2 .
We can numerically evaluate the Lyapunov exponent by averaging over a

� �number of orbits nearby to a given initial condition, all with small d . Then by0
Ž .plotting the right-hand side of Eq. 1.4.2 as a function of time for 0� t�50, we

can observe that this function asymptotes to a constant value, equal to �.
We will do this for our previous example of pendulum motion using the

following Mathematica statements. In keeping with the notation of this subsection,
Ž . Ž .we use the notation x, ® for the pendulum phase space, rather than � , � � .

Ž . Ž .First, we create a test trajectory z t, z using the initial conditions, x 0 s0
Ž .y0.5, ® 0 s0:

Cell 1.23

z =
{x[t], v[t]}/. NDSolve[{x'''''[t] == v[t],
v'''''[t] == -Sin [x[t]] - Sin [x[t] - 2t], x[0] == -0.5,

v[0] == 0}, {x[t], v[t]}, {t, 0, 50}][[1]];

This trajectory is the same as the lower trajectory shown in Fig. 1.9. Next, we
Ž . Ž .create 40 nearby initial conditions by choosing values of x 0 and ® 0 scattered

Ž .randomly around the point y0.5, 0 :

Cell 1.24

z0 = Table [{-0.5 + 10 ^̂̂̂̂-5 (2 Random[] - 1),
10 ^̂̂̂̂-5 (2 Random[] -1) }, {m, 1, 40}];
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Then, we integrate these initial conditions forward in time using NDSolve, and
evaluate the vector displacement between the resulting trajectories and the test
trajectory z:

Cell 1.25

�z[t_____] = Table[Sqrt[({x[t], v[t]} - z).({x[t], v[t]} - z)]/.
NDSolve[{x'''''[t] == v[t], v'''''[t] == -Sin[x[t]] - Sin[x[t] - 2t],
x[0] == z0 [[m, 1]], v[0] == z0[[m, 2]]}, {x[t], v[t]},
{t, 0, 50}][[1]], {m, 1, 40}];

w Ž . Ž .xFinally, we evaluate ln � z t r� z 0 rt, averaged over the 40 trajectories, and plot
the result in Cell 1.26.

Cell 1.26

�[t_____] = 1/40 Sum[Log[�z[t][[n]]/�z[0][[n]]], {n, 1, 40}]/t;
Plot[�[t], {t, 0, 50}, PlotRange™{0, 0.5},

AxesLabel™{"t", "�(t)"}];

The Lyapunov exponent can be seen to asymptote to a fairly constant value of
about 0.3 at large times. Fluctuations in the result can be reduced by keeping more
trajectories in the average. Thus, over a time ts50, nearby orbits diverge in phase
space by a factor of e0.3�50 s3.�106, on average. Over a time ts500, initially
nearby orbits diverge by the huge factor of 1065. Even a tiny initial error gets blown
up to a massive deviation over this length of time, leading to complete loss of
predictability.

Note that the choice of d in the above numerical work is a rather tricky0
business. It must be larger than the intrinsic error of the numerical method;
otherwise the effect of d on the trajectory is swamped by numerical error. But on0
the other hand, d must not be so large that orbits diverge by a large amount over0
the plotted time interval; otherwise we are not properly evaluating the difference

� � �tbetween infinitesimally nearby trajectories; that is, we require d e �1. As a0
result of these trade-offs, this method for determining � is not particularly

Ž .accurate, but it will do for our purposes. More accurate and complicated



1.4 NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS 31

methods exist for determining a Lyapunov exponent: see, for example, Lichtenberg
Ž .and Lieberman 1992, p. 315 .

1.4.3 Euler’s Method

In this section, we will create our own ODE solver by first considering a simple
Ž .and crude numerical method called Euler ’s method. Most ODE solvers are at
their core merely more complex and accurate versions of Euler’s method, so we
will begin by examining this simplest of numerical ODE solvers. We will then
consider more complicated numerical methods.

Euler’s method applies to the simple first-order ODE discussed in Sec. 1.2:

d® s f t , ® , ® 0 s® . 1.4.3Ž . Ž . Ž .0dt

Later, we will see how to modify Euler’s method to apply to more general ODEs.
Ž .To apply Euler’s method to Eq. 1.4.3 , we first discretize the time variable,

defining evenly spaced discrete timesteps

t sn � t , ns0, 1, 2, 3, . . . . 1.4.4Ž .n

ŽThe quantity � t is called step size. Confusingly, some authors also refer to � t as
. Ž .the timestep. We will evaluate the solution ® t only at the discrete timesteps
Ž . Ž .given in Eq. 1.4.4 . Later, we will interpolate to find ® t at times between the

timesteps.
Ž .Next, we integrate both sides of Eq. 1.4.3 , and apply the fundamental theorem

of calculus:

t td®n ndts® t y® t s f t , ® t dt. 1.4.5Ž . Ž . Ž . Ž .Ž .H Hn ny1dtt tny1 ny1

Ž .Note that we must take account of the time variation of ® t in the integral over f
on the right-hand side.

So far, no approximation has been made. However, we will now approximate
the integral over f , assuming that � t is so small that f does not vary appreciably
over the range of integration:

tn 2f t , ® t dtf� t f t , ® t qO � t . 1.4.6Ž . Ž . Ž . Ž .Ž . Ž .H ny1 ny1
tny1

2 Ž .The error in this approximation scales as � t see the exercises , and we use the
Ž 2 .notation O � t to indicate this fact. The same notation is, used in power series

expansions, and indicates that if � t is reduced by a factor of 2, the error in
Ž . Ž .Eq. 1.4.6 is reduced by a factor of 4 for small � t .

Ž .Equation 1.4.6 is a very crude approximation to the integral, but it has the
Ž .distinct advantage that, when used in Eq. 1.4.5 , the result is a simple recursion

Ž .relation for ® t :n

® t s® t q� t f t , ® t qO � t 2 . 1.4.7Ž . Ž . Ž . Ž . Ž .Ž .n ny1 ny1 ny1
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Ž .Equation 1.4.7 is Euler’s method. It is called a recursion relation because the
value of ® at the nth step is determined by quantities from the ny1st step, which
were themselves determined in terms of variables at the ny2nd step, and so on
back to the initial condition at ts0. Recursion relations like this are at the heart
of most numerical ODE solvers. Their differences lie mainly in the degree of

Ž .approximation to the integral in Eq. 1.4.6 .
To see how Euler’s method works, we will write a program that can be used to

Ž .solve any ODE of the form of Eq. 1.4.3 . In our code, we will employ the following
simple notation for the velocity at timestep n: a function v[n], defined for integer
arguments. We will employ the same notation for the time t defining a functionn
t[n]=n�t. Then Euler’s method can be written in Mathematica as

Cell 1.27

t[n_____] := n �t;
v[n_____] := v[n-1] + �t f[t[n-1], v[n-1]];
v[0] := v0

Ž .The first defines the time at step n, the second is Eq. 1.4.7 , and the third is the
initial condition. Note that delayed evaluation is used for all three lines, since we
have not yet specified a step size � t, an initial condition ® , or the function f.0
However, even if these quantities are already specified, delayed evaluation must be
used in the second line, since it is a recursion relation: v[n] is determined in
terms of previous values of v, and can therefore only be evaluated for a given
specific integer value of n.

Note that it is somewhat dangerous to write the code in the form given in Cell
1.27, because it is up to us to ask only for nonnegative integer values of n. If, for
example, we ask for v[0.5], the second line will evaluate this in terms of
v[-0.5], which is then evaluated in terms of v[-1.5], etc., leading to an infinite
recursion:

Cell 1.28

v[0.5]

$RecursionLimit :: reclim : Recursion depth of 256 exceeded.

$RecursionLimit :: reclim : Recursion depth of 256 exceeded.

$RecursionLimit :: reclim : Recursion depth of 256 exceeded.

General :: stop : Further output of
$RecursionLimit :: reclim will be suppressed during this
calculation.

In such errors, the kernel will often grind away fruitlessly for many minutes trying
to evaluate the recursive tree, and the only way to stop the process is to quit the
kernel. We can improve the code by adding conditions to the definition of v[n]
that require n to be a positive integer:

Cell 1.29

Clear[v]
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Cell 1.30

t[n_____] := n�t;
v[n_____] := v[n-1] + �t f[t[n-1], v[n-1]]/;

n>>>>>0 &&&&&&&&&& ngIntegers;
v[0] := v0

Here we have used the statement ngggggIntegers, which stands for the logical
statement ‘‘n is an element of the integers,’’ evaluating to a result of either True
or False. The symbol g stands for the intrinsic function Element and is

Žavailable on the BasicInput palette. Don’t confuse g with the Greek letter
.epsilon, � .

If we now ask for v[0.5], there is no error because we have only defined v[n]
for positive integer argument:

Cell 1.31

v[0.5]

v[0.5]

In principle, we could now run this code simply by asking for any value of v[n] for
ngggggIntegers and n>>>>>0. Mathematica will then evaluate v[n-1] in terms of
v[n-2], and so on until it reaches v[0]=v0. The code stops here because the
definition v[0]=v0 takes precedence over the recursion relation.

However, there are a few pitfalls that should be avoided. First, it would not be a
good idea to begin evaluating the code right now. We have not yet defined the
function f , the step size � t, or the initial condition ® . Although Mathematica will0
return perfectly valid results if we ask for, say, v[2], the result will be a
complicated algebraic expression without much value. If we ask for v[100], the
result will be so long and complicated that we will probably have to abort the
evaluation. Numerical methods are really made for solving specific numerical
instances of the ODE in question.

Therefore, let us solve the following specific problem, which we encountered in
Sec. 1.2.1:

f t , ® s ty®, ® 0 s0. 1.4.8Ž . Ž . Ž .

Ž . Ž .The general solution was given in Eq. 1.2.5 , and for ® 0 s0 is

® t s tqeyt y1. 1.4.9Ž . Ž .

Before we solve this problem using Euler’s method, there is another pitfall that
can be avoided by making a small change in the code. As it stands, the code will
work, but it will be very slow, particularly if we ask for v[n] with n�1. The
reason is that every time we ask for v[n], it evaluates the recursion relations all
the way back to v[0], even if it has previously evaluated the values of v[n-1],
v[n-2], etc. This wastes time. It is better to make Mathematica remember values
of the function v[n] that it has evaluated previously. This can be done as follows:
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in the second line of the code, which specifies v[n], write two equal signs:

Cell 1.32

v[n_____] := ( v[n] = v[n-1] + �t f[t[n-1], v[n-1]])/;
n>>>>>0 &&&&&&&&&& ngggggIntegers;

The second equal sign causes Mathematica to remember any value of v[n] that is
evaluated by adding this value to the definition of v; then, if this value is asked for
again, Mathematica uses this result rather than reevaluating the equation. Note
that we have placed parentheses around part of the right-hand side of the
equation. These parentheses must be included when the equation has conditions;
otherwise the condition statement will not evaluate properly, because it will attach
itself only to the second equality, not the first.

The modified Euler code is as follows:

Cell 1.33

t[n_____] := n �t;
v[n_____] := (v[n] =

v[n-1] + �t f[t[n-1], v[n-1]])/;
n >>>>>0 &&&&&&&&&& ngggggIntegers;

v[0] := v0

Let’s now evaluate a solution numerically, from 0� t�4. To do so, first specify the
step size, the function f , and the initial condition:

Cell 1.34

�t = 0.2;
f[t_____, v_____] = t-v;
v0 = 0;

Next, make a list of data points {t[n],v[n]}, calling this result our numerical
solution:

Cell 1.35

solution = Table[ {t[n], v[n]}, {n, 0, 4/�t}]

{{0, 0}, {0.2, 0}, {0.4, 0.04}, {0.6, 0.112}, {0.8, 0.2096},
{1., 0.32768}, {1.2, 0.462144}, {1.4, 0.609715},
{1.6, 0.767772}, {1.8, 0.934218}, {2., 1.10737},
{2.2, 1.2859}, {2.4, 1.46872}, {2.6, 1.65498},
{2.8, 1.84398}, {3., 2.03518}, {3.2, 2.22815},
{3.4, 2.42252}, {3.6, 2.61801}, {3.8, 2.81441},
{4., 3.01153}}

Finally, plot these points with a ListPlot, and compare this Euler solution with
Ž .the analytic solution of Eq. 1.4.9 , by overlaying the two solutions in Cell 1.36. The

Euler solution, shown by the dots, is quite close to the exact solution, shown by the
solid line.
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Cell 1.36

a =
ListPlot[solution, PlotStyle™PointSize [0.015],
DisplayFunction™Identity];

b = Plot[E ^̂̂̂̂-t + t -1, {t, 0, 4},
DisplayFunction™Identity];

Show[a, b, DisplayFunction™$$$$$DisplayFunction];

We have used an option in the Plot functions to turn off intermediate plots
and thereby save space. The option DisplayFunction™Identity creates a
plot, but does not display the result. After the plots are overlaid with the Show
command, the display option was turned on again using DisplayFunction™
$$$$$DisplayFunction.

If we wish to obtain the numerical solution at times between the timesteps,
we can apply an interpolation to the data and define a numerical function
vEuler[t]:

Cell 1.37

vEuler[t_____] = Interpolation[solution][t]
InterpolatingFunction [{{0., 4.}}, <>][t]

One thing that we can do with this function is plot the difference between the
numerical solution and the exact solution to see the error in the numerical method
Ž .see Cell 1.38 .

Cell 1.38

vExact[t_____] = E ^̂̂̂̂ -t + t - 1;
pl = Plot[vEuler[t] - vExact[t], {t, 0, 4}];
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The error can be reduced by reducing the step size. To do this, we must go back
and run the Table command again after setting the step size to a smaller value,
and after applying the Clear[v] command. We must Clear[v] before running the
Table command again; otherwise the ®alues of v[1],v[2], . . . , stored in the

Ž .kernel’s memory as a result of our using two equal signs in Eq. 1.4.10 , will supersede
the new e®aluations. After clearing v, we must then reevaluate the definition of v in
Cell 2.33.

All of these reevaluations are starting to seem like work. There is a way to avoid
having to reevaluate groups of cells over and over again. We can create a Module,
which is a method of grouping a number of commands together to create a
Mathematica function. Modules are the Mathematica version of Cq modules or
Fortran subroutines, and have the following syntax:

w� 4 xModule internal ®ariables , statements creates a module in Mathematica

The list of internal variables defines variables that are used only within the
module. The definitions of these variables will not be remembered outside of the
module.

Here is a version of the Euler solution that is written as a module, and assigned
to a function Eulersol[v0, time, �t]. This function finds the approximate
solution vEuler[t] for 0� t� time, with step size � t. To use the module, all we

Ž .need to do is specify the function f t, ® that enters the differential equation:

Cell 1.39

Eulersol[v0_____, time_____, �t_____] := Module[{t, v, solution},
t[n_____] := n �t;
v[n_____]:= (v[n] =

v[n-1] + �t f[t[n-1], v[n-1]])/;
n>>>>>0 &&&&&&&&&& ngggggIntegers;

v[0] := v0;
solution = Table[{t[n], v[n]}, {n, 0, time/�t}];
vEuler[t_____] = Interpolation[solution][t];]



1.4 NUMERICAL SOLUTION OF INITIAL-VALUE PROBLEMS 37

Note that we did not have to add a Clear[v] statement to the list of
commands, because v is an internal variable that is not remembered outside the
module, and is also not remembered from one application of the module to the
next. Also, note that we don’t really need the condition statements in the definition
of v[n] anymore, since we only evaluate v[n] at positive integers, and the
definition does not exist outside the Module.

Below we show a plot of the error vs. time as � t is reduced to 0.1 and then to
0.05. The plot was made simply by running the Eulersol function at these two
values of � t and plotting the resulting error, then superimposing the results along
with the original error plot at � ts0.2. As � t decreases by factors of 2, the error
can be seen to decrease roughly by factors of 2 as well. The error in the solution
scales linearly with � t: Error A� t. In other words, the error is first order in � t.
ŽThe same language is used in the discussion of power series expansions; see Sec.

.9.9.2. Euler’s method is called a first-order method.

Cell 1.40

Eulersol[0, 4, 0.1];
p2 = Plot[vEuler[t]-vExact [t], {t, 0, 4},

DisplayFunction™Identity];
Eulersol[0, 4, 0.05];
p3 = Plot[vEuler[t]-vExact[t], {t, 0, 4},

DisplayFunction™Identity];
Show [p1, p2, p3, DisplayFunction™$$$$$DisplayFunction,

PlotLabel™"Error for �t = 0.2,0.1,0.05"];

Ž . Ž .One can see why the error in this method is O � t from Eq. 1.4.7 : the error in
a single step is of order � t 2. To integrate the solution over a fixed time interval T ,
N steps must be taken, with NsTr� t increasing as � t decreases. The total error
is the sum of all individual errors, and therefore scales as N� t 2sT � t.

Euler’s method is too crude to be of much practical use today. Clearly it would
be a great improvement in efficiency if we could somehow modify Euler’s method
so that it is second-order, or even nth-order, with error scaling like � t n. Then, by
reducing the step size by only a factor of 2, the error would be reduced by a factor
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of 2 n. In the next section we will see how to easily modify Euler’s method to make
it second order.

The error of a numerical solution to an ODE is controlled by the step size � t.
Reducing the step size increases the accuracy of the solution, but also increases
the number of steps required to find the solution over a fixed interval T. For a
method with error that is of order n, the error in the solution, found over a

nŽ .fixed time interval T , scales like � t .

1.4.4 The Predictor–Corrector Method of Order 2

The error in Euler’s method arose from the crude approximation to the integral in
Ž .Eq. 1.4.6 . To improve the approximation, we need a more accurate value for this

Ž Ž . .integral. Now, the required integral is just the area under the function f ® t , t ,
Ž . Ž .shown schematically in Fig. 1.11 a . Equation 1.4.6 approximates this area by the

Ž .gray rectangle in Fig. 1.11 a , which is clearly a rather poor approximation to the
area under the curve, if the function varies much over the step size � t. A better
approximation would be to use the average value of the function at the initial and
final points in determining the area:

f t , ® t q f t , ® tt Ž . Ž .Ž . Ž .n ny1 ny1 n n 3f t , ® t dtf� t qO � t . 1.4.10Ž . Ž . Ž .Ž .H 2tny1

This approximation would be exactly right if the shaded area above the curve in
Ž . Ž Ž . .Fig. 1.11 b equaled the unshaded area below the curve. If f ® t , t were a linear

function of t over this range, that would be true, and there would be no error. For
Ž Ž . .� t sufficiently small, f ® t , t will be nearly linear in t if it is a smooth function of

t, so for small � t the error is small. In fact, one can easily show that the error in
3 Žthis approximation to the integral is of order � t see the exercises at the end of

. 2this section , as opposed to the order-� t error made in a single step of the Euler’s
w Ž .xmethod see Eq. 1.4.6 . Therefore, this modification to Euler’s method should

improve the accuracy of the code to order � t 3 in a single step.

Ž .Fig. 1.11 Different numerical approximations to the area under f : a Euler’s method,
Ž . Ž . Ž .Eq. 1.4.6 ; b modified Euler’s method, Eq. 1.4.10 .
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Ž . Ž .If we now use Eq. 1.4.10 in Eq. 1.4.5 , we obtain the following result:

f t , ® t q f t , ® tŽ . Ž .Ž . Ž .ny1 ny1 n n 3® t s® t q� t qO � t . 1.4.11Ž . Ž . Ž . Ž .n ny1 2
3 Ž .Since the error of the method is order � t in a single step, Eq. 1.4.11 is a distinct
Ž .improvement over Euler’s method, Eq. 1.4.7 . However, there is a catch. Now

Ž .® t appears on the right-hand side of the recursion relation, so we can’t use thisn
Ž . wequation as it stands to solve for ® t . We might try to solve this equation forn

Ž .® t , but for general f that is nontrivial. Such methods are called implicit methods,n
xand will be discussed in Chapter 6.

Ž .What we need is some way to replace ® t on the right-hand side: we need an
Ž . Ž .prediction for the value of ® t , which we will then use in Eq. 1.4.11 to get an

better value. Fortunately, we have such a prediction available: Euler’s method,
Ž . Ž . 2Eq. 1.4.7 , provides an approximation to ® t , good to order � t . This is sufficientn

Ž . Ž 2 . Ž . Ž .for Eq. 1.4.11 , since the O � t error in ® t is multiplied in Eq. 1.4.11 byn
Ž 3.another factor of � t, making this error O � t ; but the right-hand side of

Ž . Ž 3.Eq. 1.4.11 is already accurate only to O � t .
The resulting recursion relation is called a predictor�corrector method of order 2.

The method is second-order accurate, because over a fixed time interval T the
Ž . 3 2number of steps taken is Tr� t and the total error scales as Tr� t � t sT � t .

The method consists of the following two lines: an initial prediction for ® at the
nth step, which we assign to a variable ® , and the improved correction step, given1

Ž .by Eq. 1.4.11 , making use of the prediction:

® s® t q� t f t , ® t ,Ž . Ž .Ž .1 ny1 ny1 ny1

1.4.12Ž .f t , ® t q f t , ®Ž . Ž .Ž .ny1 ny1 n 1® t s® t q� t .Ž . Ž .n ny1 2

The following module, named PCsol, implements the predictor�corrector
method in Mathematica:

Cell 1.41

PCsol[v0_____, time_____, �t_____] := Module[{t, v, f0, v1, solution},
t[n_____] = n�t;
v[0] = v0;
f0 := f[t[n-1], v[n-1]];
v1 := v[n-1] + �t f0;
v[n_____] := v[n] = v[n-1] + �t (f0 + f[t[n], v1])/2;
solution = Table[{t[n], v[n]}, {n, 0, time/�t}];
vPC[t_____] = Interpolation[solution][t];]

There is one extra trick that we have implemented in this module. We have
Žassigned the value of f at the n-1st step to the variable f0 using delayed

.evaluation so that it is evaluated only when needed . The reason for doing so is
Ž .that we used this value for f twice in Eq. 1.4.12 . Rather than evaluating the

function twice at the same point, we instead save its value in the variable f0. This
does not save much time for simple functions, but can be a real time-saver if f is
very complicated.
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Also, note that we have paid a price in going to a second-order method. The
code is more complicated, and we now need to evaluate the function at two points,
instead of only one as we did in Euler’s method.

But we have also gained something�accuracy. This relatively simple
predictor�corrector method is much more accurate than Euler’s method, as we can

� 4see by again evaluating the solution for three step sizes � ts 0.2, 0.1, 0.05 , and
plotting the error. We again choose our previous example:

Cell 1.42

f[t_____, v_____] = t - v;
vExact[t_____] = E ^̂̂̂̂ -t + t - 1;

The resulting error is shown in Cell 1.43. Not only is the error much smaller than
in Euler’s method for the same step size, but the error also decreases much more
rapidly as � t is decreased. The maximum error goes from roughly 0.0029 to 0.0007
to 0.00017 as � t goes from 0.2 to 0.1 to 0.05. In other words, the maximum error is
reduced by roughly a factor of 4 every time � t is reduced by a factor of 2. This is

Ž 2 .exactly what we expect for error that is O � t .

Cell 1.43

PCsol[0, 4, 0.2];
pl = Plot[vPC[t]-vExact [t], {t, 0, 4},

DisplayFunction™Identity];
PCsol[0, 4, 0.1];
p2 = Plot[vPC[t]-vExact [t], {t, 0, 4},

DisplayFunction™Identity];
PCsol[0, 4, 0.05];
p3 = Plot[vPC[t]-vExact [t], {t, 0, 4},

DisplayFunction™Identity];
Show[p1, p2, p3, DisplayFunction™$$$$$DisplayFunction,

PlotLabel™"Error for �t = 0.2,0.1,0.05"];

There are many higher-order methods that are even more accurate than this.
Two of the more popular methods are the fourth-order Runge�Kutta method and
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the Bulirsch�Stoer method. These methods will not be discussed here, but the
Ž .codes can be found in many other textbooks. See, for instance, Press et al. 1986 .

Ž .Also, there are several second-order and higher-order methods that require
only one force evaluation per timestep. These algorithms can be more efficient
when the force evaluation is time-consuming. Three such methods are considered
in the exercises: the leapfrog method and a centered-difference method for
problems in Newtonian mechanics, and the Adams�Bashforth method for more
general problems.

1.4.5 Euler’s Method for Systems of ODEs

Consider the general second-order ODE

d2 x dx dxs f t , x , , x 0 sx , 0 s® . 1.4.13Ž . Ž . Ž .0 02 ž /dt dtdt

Since the ODE is second-order, Euler’s method cannot be used to solve it
numerically. However, we can modify the equation so that Euler’s method can be

Ž . Ž .used. By introducing a new variable ® t sdxrdt, Eq. 1.4.13 can be written as the
following system of first-order differential equations:

dx d®s® t , s f t , x , ® , x 0 sx , ® 0 s® . 1.4.14Ž . Ž . Ž . Ž . Ž .0 0dt dt

Euler’s method still does not apply, because it was written originally for a single
Ž . � Ž . Ž .4first-order ODE. However, let us define a vector z t s x t , ® t . Then Eqs.

Ž .1.4.14 can be written as a ®ector ODE:

dz s f t , z , z 0 sz , 1.4.15Ž . Ž . Ž .0dt

� 4 Ž .where z s x , ® , and the vector function f t, z is defined as0 0 0

f t , z s ® t , f t , x , ® . 1.4.16� 4Ž . Ž . Ž . Ž .

We can now apply Euler’s method to this vector ODE, simply by reinterpreting the
Ž .scalar quantities that appeared in Eq. 1.4.7 as vectors:

z t sz t q� t f t , z t . 1.4.17Ž . Ž . Ž . Ž .Ž .n ny1 ny1 ny1

Ž . Ž .In fact, there is nothing about Eqs. 1.4.15 and 1.4.17 that limits them to
two-dimensional vectors. An Nth-order ODE of the general form given by Eq.
Ž . Ž .1.2.1 can also be written in the form of Eq. 1.4.15 by defining a series of new
variables

dx d2 x d Ny1 x® t s , a t s , . . . , u t s , 1.4.18Ž . Ž . Ž . Ž .2 Ny1dt dt dt
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a vector

z t s x t , ® t , a t , . . . , u t , 1.4.19� 4Ž . Ž . Ž . Ž . Ž . Ž .

and a force

f t , z s ®, a, . . . , u , f t , x , ®, a, . . . , u . 1.4.20� 4Ž . Ž . Ž .

Ž .Thus, Euler’s method in vector form, Eq. 1.4.17 , can be applied to a general
Nth-order ODE. Below, we provide the simple changes to the previous module
Eulersol that allow it to work for a general ODE of order N:

Cell 1.44

Clear["Global‘*****"]

Cell 1.45

Eulersol[z0_____, time_____, �t_____] := Module[ {t, z, sol},
t[n_____] := n �t;
z[n_____] := z[n] = z[n-1] + �t f[t[n-1], z[n-1]];
z[0] := z0;
sol = Table[Table[{t[n], z[n][[m]]}, {n, 0, time/�t}],

{m, 1, Length[z0]}];
zEuler = Table[Interpolation[sol[[m]]],

{m, 1, Length[z0]}];]

Thanks to the ease with which Mathematica handles vector arithmetic, the module
is nearly identical to the previous scalar version of the Euler method. In fact,
except for renaming some variables, the first four lines are identical. Only the lines
involving creation of the interpolating functions differ. This is because the solution
list sol is created as a table of lists, each of which is a dataset of the form
{t[n],z [n]}. Each element of zEuler is an interpolation of a component of z.m

Ž .To use this module, we must first define a force ®ector f t, z . Let’s take the case
Ž .of the 1D harmonic oscillator problem as an example. In this case zs x, ® and

Ž . Ž .fs ®,yx i.e. dxrdts®, d®rdtsyx :

Cell 1.46

f[t_____, z_____] := {v, -x}/.{x™z[[1]], v™z[[2]]}

A delayed equality must be used in defining f; otherwise Mathematica will attempt
to find the two elements of z when making the substitution, and this will lead to an
error, since z has not been defined as a list yet.

Ž . Ž .Taking the initial condition z s 1, 0 i.e., x s1, ® s0 , in Cell 1.47 we run0 0 0
Ž .the Euler code and in Cell 1.48 plot the solution for x t , which is the first element

of zEuler.

Cell 1.47

Eulersol[{1, 0}, 10, .02]
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Cell 1.48

Plot[zEuler[[1]][t], {t, 0, 10}];

The code clearly works, but a keen eye can see that the expected cosine oscilla-
tions are actually growing slowly with time, even at the relatively small step size of
0.02. As already discussed, the Euler method is only first-order accurate. Neverthe-
less, the general methods discussed in this section also work for higher-order
methods, such as the predictor�corrector code of the previous section. Examples
may be found in the exercises at the end of the section.

1.4.6 The Numerical N-Body Problem: An Introduction to
Molecular Dynamics

One way that systems of ODEs arise in the physical sciences is in the description
of the motion of N interacting classical particles. Newton solved this problem for

Ž .the case of two particles the two-body problem interacting via a central force.
However, for three or more particles there is no general analytic solution, and
numerical techniques are of great importance in understanding the motion.

In the numerical method known as molecular dynamics, the coupled equations
of motion for the N particles are simply integrated forward in time using Newton’s
second law for each particle. There is nothing subtle about this�the numerical
techniques learned in the previous sections are simply applied on a larger scale.
The subtleties only arise when details such as error accumulation, code efficiency,
and the like must be considered.

Below, we show how to use Mathematica’s intrinsic function NDSolve to
numerically solve the following N-body problem: For particles at positions
Ž . Ž . Ž .r t , r t , . . . , r t , the equations of motion are1 2 N

N2d rim s F r yr , 1.4.21Ž . Ž .Ýi i j i j2dt js1
j�i

where F is the force between particles i and j, and m is the mass of particle i.i j i
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To complete the problem, we must also specify initial conditions on position and
velocity:

drir 0 sr , sv , is1, . . . , n. 1.4.22Ž . Ž .i i0 i0dt

The following module MDsol solves this problem numerically:

Cell 1.49

Clear["Global‘*****"]

Cell 1.50

MDsol[z0_____, time_____] := Module[{},
npart = Length[z0]/6;
r[i_____, t_____] = {x[i][t], y[i][t], z[i][t]};
v[i_____, t_____] = {vx[i][t], vy[i][t], vz[i][t]};
Z[t_____] = Flatten[Table[{r[i, t], v[i, t]}, {i, 1, npart}]];
f[t_____] = Flatten[Table[{v[i, t],

(Sum[F[i, j, r[i, t]-r[j, t]], {j, 1, i-1}] +
Sum[F[i, j, r[i, t]-r[j, t]],

{j, i + 1, npart}]}/mass[[i]]},
{i, 1, npart}]];

ODEs = Flatten[Table[Z'''''[t][[n]] == f[t][[n]],
{n, 1, 6 ***** npart}]];

ics = Table[Z[0][[n]] == z0[[n]], {n, 1, 6 npart}];*****
eqns = Join[ODEs, ics] ;
NDSolve[eqns, Z[t], {t, 0, time}, MaxSteps™10 ^̂̂̂̂5]]

To understand what this module does, look at the last line. Here we see that
NDSolve is used to integrate a list of equations called eqns, that the equations
involve a vector of unknown functions Z[t], and that the equations are integrated
from t=0 to t=time. The definition of Z[t] can be found a few lines higher in
the module: it is a list of variables, {r[i,t],v[i,t]}. The ith particle position
vector r[i,t] is defined in the second line as having components
{x[i][t],y[i][t],z[i][t]}, and the velocity vector v[i,t] has compo-
nents {vx[i][t],vy[i][t],vz[i][t]}. These functions use a notation we
haven’t seen before: the notation x[i][t] means the same thing as x[i,t]. The
reason we use the former and not the latter notation is due to a vagary of
NDSolve: NDSolve likes to work on functions of one variable; otherwise it gets
confused and thinks it is solving a PDE. The notation x[i][t] fools NDSolve
into thinking of x as a function of a single argument, the time t.

The Flatten function is used in the definition of Z[t] because NDSolve
works only on a simple list of unknown functions, without sublists.

The list eqns can be seen to be a concatenation of a list of ODEs called ODEs
and a list of initial conditions called ics. The initial conditions are given as an
argument to the module, in terms of a list z of positions and velocities for each0
particle of the form

� 4z sFlatten[ r , v , r , v , . . . ].0 10 10 20 20
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The Flatten command is included explicitly here to ensure that z is a simple0
list, not an array.

Ž .The acceleration function f t is defined as

° ¶N N1 1~ •f t s v , F r yr , v , F r yr , . . . , 1.4.23Ž . Ž . Ž . Ž .Ý Ý1 1 j 1 j 2 2 j 2 j2m¢ ßm1 js2 js1
j�2

and the result is flattened in order for each element to correspond to the proper
element in Z. The fact that the sum over individual forces must neglect the
self-force term js i requires us to write the sum as two pieces, one from js1 to
iy1, and the other from js iq1 to N.

ŽThe value of N, called npart in the module because N is a reserved function
.name , is determined in terms of the length of the initial condition vector z0 in the

first line of the code.
ŽFinally, the module itself is given no internal variables the internal-variable list

� 4.is the null set , so that we can examine each variable if we wish.
Ž .In order to use this code, we must first define a force function F r . Let’si j

consider the gravitational N-body problem, where the force obeys Newton’s law of
gravitation:

F r syGm m rrr 3 , 1.4.24Ž . Ž .i j i j

where Gs6.67�10y11 m3rkg s2. We can define this force using the command

Cell 1.51

F[i_____, j_____, r_____] := -mass[[i]] mass[[j]] r/(r.r) ^̂̂̂̂(3/2)

Here mass is a length-N list of the masses of all particles, and we have set the
gravitational force constant Gs1 for simplicity.

Let’s apply this molecular dynamics code to the simple problem of two gravitat-
ing bodies orbiting around one another. For initial conditions we will choose

Ž . Ž .r sv s0, and r s 1, 0, 0 , v s 0, 0.5, 0 . Thus, the list of initial conditions is1 1 2 2

Cell 1.52

z0 = Flatten[{{0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0.5, 0}}]

{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0.5, 0}

Also, we must not forget to assign masses to the two particles. Let’s take one
mass 3 times the other:

Cell 1.53

mass = {3, 1}

{3, 1}
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Now we run the code for 0� t�4:

Cell 1.54

S = MDsol[z0, 4]

{{x[1][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
y[1][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
z[1][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
vx[1][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
vy[1][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
vz[1][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
x[2][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
y[2][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
z[2][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
vx[2][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
vy[2][t]™InterpolatingFunction[{{0., 4.}}, <>][t],
vz[2][t]™InterpolatingFunction[{{0., 4.}}, <>][t]}}

The result is a list of interpolating functions for each component of position and
velocity of the two particles. We can do whatever we wish with these�perform

Žmore analysis, make plots, etc. One thing that is fun to do but is difficult to show
.in a textbook is to make an animation of the motion. An example is displayed in

Ž .the electronic version of the book, plotting the xy positions of the two masses at
Ža series of separate times. The animation can be viewed by selecting the plot cells

.and choosing Animate Selected Graphics from the Format menu. Only the
command that creates the animation is given in the hard copy, in Cell 1.55.

Cell 1.55

Table[ListPlot[Table[{x[n][t], y[n][t]}/.%%%%%[[1]],
{n, 1, npart}],

PlotStyle™PointSize[0.015], AspectRatio™1,
PlotRange™{{- .1, 1.2}, {-.1, 1.2}}], {t, 0, 4, .1}];

Ž .Another thing one can do that can be shown in a textbook! is plot the orbits of
the particles in the x-y plane. The parametric plots in Cell 1.56 do this, using the
usual trick of turning off intermediate plot displays in order to save space. The
mass-1 particle can be seen to move considerably farther in the x-direction than
the mass-3 particle, as expected from conservation of momentum. Both particles
drift in the y-direction, because the mass-1 particle had an initial y-velocity, which
imparts momentum to the center of mass.

Cell 1.56

p1 = ParametericPlot[{x[1][t], y[1][t]}/.S[[1]],
{t, 0, 4}, DisplayFunction™Identity];

p2 = ParametericPlot[{x[2][t], y[2][t]}/.S[[1]], {t, 0, 4},
DisplayFunction™Identity,

PlotStyle™Dashing[{0.015, 0.015}]];
Show[p1, p2, DisplayFunction™$$$$$DisplayFunction,

PlotRange->>>>> {{0, 1}, {0, 1}}, AspectRatio™1];
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These orbits look a bit more complicated than one might have expected�aren’t
these two bodies simply supposed to perform elliptical orbits around the center of
mass? The answer is yes, but the orbits look different depending on one’s frame of
reference. In a frame moving with the center of mass, the orbits do look like closed

Ž .ellipses see the exercises .
Of course, the orbits of two gravitating particles can be determined analytically,

so there is really no need for molecular dynamics. However, for three or more
bodies, no general analytic solution is available, and molecular dynamics is crucial
for understanding the motion.

Take, for example, the solar system. Table 1.2 provides the positions and
velocities of the major bodies in the solar system, with respect to the solar system
center of mass, on January 1, 2001. We can use the information in this table as
initial conditions to determine the subsequent motion of these planetary bodies.

Table 1.2. Positions and Velocities of Sun and Planetsa

Ž . Ž . Ž . Ž . Ž . Ž . Ž .Body Mass kg x m y m z m ® mrs ® mrs ® mrsx y z

30 8 8 7Sun 1.9891� 10 y7.0299 � 10 y7.5415 � 10 2.38988 � 10 14.1931 y6.9255 y0.31676
23 10 10 9Mercury 3.302� 10 2.60517 � 10 y6.1102 � 10 y7.3616 � 10 34796. 22185.2 y1379.78

24 10 10 9Venus 4.8685� 10 7.2129 � 10 7.9106 � 10 y3.0885 � 10 y25968.7 23441.6 1819.92
24 10 11 7Earth 5.9736� 10 y2.91204 � 10 1.43576 � 10 2.39614 � 10 y29699.8 y5883.3 0.050215
23 11 10 9Mars 6.4185� 10 y2.47064 � 10 y1.03161 � 10 5.8788 � 10 1862.73 y22150.6 y509.6
27 11 11 9Jupiter 1.8986� 10 2.67553 � 10 7.0482 � 10 y8.911 � 10 y12376.3 5259.2 255.192
26 11 12 10Saturn 5.9846� 10 6.999 � 10 1.16781 � 10 y4.817 � 10 y8792.6 4944.9 263.754
26 12 12 10Uranus 1.0243� 10 2.65363 � 10 y3.6396 � 10 1.37957 � 10 4356.6 3233.3 y166.986
25 12 12 10Neptune 8.6832� 10 2.2993 � 10 y1.90411 � 10 y3.6864 � 10 4293.6 4928.1 y37.32

22 12 12 11Pluto 1.27� 10 y1.31126 � 10 y4.2646 � 10 8.3563 � 10 5316.6 y2484.6 y1271.99

a12 noon GMT, January 1, 2001, with respect to the solar system center of mass. Data adapted from the
Horizon system at JPL.
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This data is also summarized in the following list, which makes it easy to use. Each
element in the list corresponds to a column entry in the table:

Cell 1.57

sun = {1.9891***** ^̂̂̂̂30, -7.0299***** ^̂̂̂̂8,
-7.5415***** ^̂̂̂̂8, 2.38988***** ^̂̂̂̂7, 14.1931, -6.9255, -0.31676};

mercury = {3.302***** ^̂̂̂̂23, 2.60517***** ^̂̂̂̂10, -6.1102***** ^̂̂̂̂10,
-7.3616***** ^̂̂̂̂9, 34796., 22185.2, -1379.78};

venus = {4.8685***** ^̂̂̂̂24, 7.2129***** ^̂̂̂̂10, 7.9106***** ^̂̂̂̂10, -3.0885***** ^̂̂̂̂9,
-25968.7, 23441.6, 1219.92};

earth = {5.9736***** ^̂̂̂̂24, -2.91204***** ^̂̂̂̂10, 1.43576***** ^̂̂̂̂11,
2.39614***** ^̂̂̂̂7, -29699.8, -5883.3, 0.050215};

mars = {6.4185***** ^̂̂̂̂23, -2.47064***** ^̂̂̂̂11, -1.03161***** ^̂̂̂̂10,
5.8788***** ^̂̂̂̂9, 1862.73, -22150.6, -509.6};

jupiter = {1.8986***** ^̂̂̂̂27, 2.67553***** ^̂̂̂̂11, 7.0482***** ^̂̂̂̂11,
-8.911***** ^̂̂̂̂9, -12376.3, 5259.2, 255.192};

saturn = {5.9846***** ^̂̂̂̂26, 6.999***** ^̂̂̂̂11, 1.16781***** ^̂̂̂̂12,
-4.817***** ^̂̂̂̂10, -8792.6, 4944.9, 263.754};

neptune = {8.6832***** ^̂̂̂̂25, 2.2993***** ^̂̂̂̂12, -1.90411***** ^̂̂̂̂12,
-3.6864***** ^̂̂̂̂10, 4293.6, 4928.1, -37.32};

uranus = {1.0243***** ^̂̂̂̂26, 2.65363***** ^̂̂̂̂12, -3.6396***** ^̂̂̂̂12,
1.37957***** ^̂̂̂̂10, 4356.6, 3233.3, -166.986};

pluto = {1.27***** ^̂̂̂̂22, -1.31126***** ^̂̂̂̂12, -4.2646***** ^̂̂̂̂12,
8.3563***** ^̂̂̂̂11, 5316.6, -2484.6, -1271.99};

Cell 1.58

solarsys =
{sun, mercury, venus, earth, mars, jupiter, saturn, uranus,
neptune, pluto};

Let’s use this data to try to answer the following important question: is the solar
system stable? How do we know that planetary orbits do not have a nonzero
Lyapunov exponent, so that they may eventually fly off their present courses,
possibly colliding with one another or with the sun?

There has naturally been a considerable amount of very advanced work on this
fundamental problem of celestial mechanics. Here, we will simply use our molecu-
lar dynamics algorithm to solve for the orbits of the planets, proving the system is
stable over the next three hundred years. This is not very long compared to the age
of the solar system, but it is about the best we can do using Mathematica unless we
are willing to wait for long times for the code to complete. More advanced
numerical integrators, run on mainframe computers, have evaluated the orbits over
much longer time periods.

Because the inner planets are small and rotate rapidly about the sun, we will
ignore Mercury, Venus, and Earth in order to speed up the numerical integration.

First we input the data for the sun and the outer planets into the mass list:
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Cell 1.59

mass = Join[{sun[[1]]}, Table[solarsys[[n]][[1]],
{n, 5, Length[solarsys]}]]

{1.9891�1030, 6.4185�1023, 1.8986�1027,
5.9846�1026, 1.0243�1026, 8.6832�1025, 1.27�1022}

Next, we create a list of initial conditions:

Cell 1.60

z0 = Flatten[Join[Table[sun[[j]], {j, 2, 7}],
Table[Table[solarsys[[n]][[j]], {j, 2, 7}],
{n, 5, Length[solarsys]}]]];

Finally, we define the force, this time keeping the correct magnitude for G:

Cell 1.61

G = 6.67 10 ^̂̂̂̂ -11;
F[i_____, j_____, r_____] := -G mass[[i]] mass[[j]] r/(r.r) ^̂̂̂̂(3/2)

We now run the molecular dynamics code for the planet positions forward in time
for 300 years:

Cell 1.62

solution1 = MDsol[z0, 300*****365*****24*****3600];

This takes quite some time to run, even on a fast machine. In Cell 1.65 we plot the
orbits in 3D with a parametric plot.

Cell 1.63

Table[{x[n][t], y[n][t], z[n][t]}/.solution[[1]], {n, 1, 7}];

Cell 1.64

orbits = Table[ParametricPlot3D[%%%%%[[n]],
{t, 0, 3 10 ^̂̂̂̂2 365 24 3600},
PlotPoints™5000, DisplayFunction™Identity], {n, 1, 7}];

Cell 1.65

Show[orbits, DisplayFunction™$$$$$DisplayFunction,
PlotLabel™"Orbits of the outer planets for 300 years",
PlotRange™All];
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ŽEvidently, the outer planets are stable, at least for the next 300 years! If
nothing else, this plot shows the huge scale of the outer planet’s orbits compared to
Mars, the innermost orbit in the plot. Earth’s orbit would barely even show up as a

.spot at the center. Distances are in meters.

EXERCISES FOR SEC. 1.4

( )1 The drag force F on a blunt object moving through air is not linear in the
velocity ® except at very low speeds. A somewhat more realistic model for the
drag in the regime where the wake is turbulent is Fsyc®3, where c is a
constant proportional to the cross-sectional area of the object and the mass
density of air. If we use this model for the drag force in the problem of a man

w Ž .xthrowing a pebble vertically cf. Sec. 1.3, Exercise 4 , the equation for the
height is now nonlinear:

32d y c dyq syg .2 ž /m dtdt

( )a Solve this equation numerically using NDSolve, and plot the solution.
2 Ž . Ž .Take ms1 kg, cs1 kg srm , y 0 s0, and ® 0 s6 mrs.

( )b Numerically determine the maximum height, and the time required for
Ž .the rock to fall back to y 0 .

( ) Ž . Ž .2 Use NDSolve to find the trajectories x t and x� t for the Van der Pol
Ž . Ž . Ž .oscillator, which satisfies Eq. 1.2.20 , for initial conditions x, x� s 1, 1 ,

Ž . Ž .0.1, 0.3 , and 3, 2 and 0� t�20. Use a parametric plot to plot the trajecto-
Ž .ries in phase space x, x� . Note how the trajectories converge onto a single

w Ž .curve, called a limit cycle. See Sec. 1.2, Exercise 6 , for the direction field
xassociated with this oscillator.

( ) Ž3 Ming the Merciless drops Flash Gordon out the back of his spaceship in a
.spacesuit, fortunately . The evil Ming has contrived to leave Flash initially
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motionless with respect to the earth, whose surface is 5,000 km below. Use
Newton’s 1rr 2 force law and NDSolve to determine how long Flash has to be

Žrescued before he makes a lovely display in the evening sky. Hint: M searth
5.98�1024 kg. The radius of the earth is roughly 6,370 km, and the height of
the atmosphere is about 100 km. The gravitational constant is Gs6.67�
10y11 N mrkg2. Remember that the 1rr 2 force is measured with respect to

.the center of the earth.

( )4 Einstein’s general theory of relativity generalizes Newton’s theory of gravita-
tion to encompass the situation where masses have large kinetic andror

Ž .potential energies on the order of or larger than their rest masses . Even at
low energies, the theory predicts a small correction to Newton’s 1rr 2 force
law:

1 3L2

f r syGM q ,Ž . 2 2 4ž /r c r

Ž .where L is the specific angular momentum�see Eq. 1.2.22 . This force per
unit mass replaces that which appears on the right-hand side of the orbit

Ž .equation 1.3.5 .
( ) Ž .a Use NDSolve to determine the new orbit r � predicted by this equa-

tion, and plot it for 0���4
 , taking orbital parameters for the planet
Ž . 6 Ž . Ž .Mercury: r 0 s46.00�10 km perihelion distance , r � 0 s0, Ls

2.713�1015 m2rs. The mass of the sun is 1.9891�1030 kg.
( )b Show numerically that the orbit no longer closes, and that each successive

perihelion precesses by an amount �� . Find a numerical value for �� .
Be careful: the numerical integration must be performed very accurately.
ŽThe precession of Mercury’s perihelion has been measured, and after
successive refinements, removing extraneous effects, it was found to be in

.reasonable agreement with this result.

( )5 A cubic cavity has perfectly conducting walls of unit length, and supports
Želectromagnetic standing waves. The magnetic field in the modes assumed to

.be TE modes is

B x , y , zŽ .lm n

lsB y sin l
 x cos m
 y cos n� z ,Ž . Ž . Ž .0 ½ 2 2l qm

my cos l
 x sin m
 y cos n
 z , cos l
 x cos m
 y sin n
 z .Ž . Ž . Ž . Ž . Ž . Ž . 52 2l qm

Ž . Ž . Ž .For l, m, n s 1, 1, 1 solve Eqs. 1.2.24 numerically for the field lines
Ž . � 4r s, r for y2�s�2 and initial conditions r s 0.25i, 0.25 j, 0.25k , i, j, k,s0 0

w1, 2, 3. Use ParametricPlot3D to plot and superimpose the solutions. The
Ž . Ž . xsolution is shown in Fig. 1.12 for the mode with l, m, n s 1, 2, 1 .

( )6 Repeat the calculation of the Lyapunov exponent done in the text, but for an
integrable system, the one-dimensional undamped harmonic oscillator with
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Ž .Fig. 1.12 Magnetic field lines in a TE 1, 2, 1 cavity
mode.

Ž 2 2 .dimensionless Hamiltonian Hs ® qx r2, taking the initial condition xs0,
Ž . Ž .®s1. What happens to � t , the right-hand side of Eq. 1.4.2 , at large times?

( )7 Not all trajectories of a chaotic system have positive Lyapunov exponents.
Certain regions of phase space can still be integrable, containing nested
curves upon which the orbits lie. Take, for example, our chaotic system

Ž .described by Eq. 1.4.1 with the same parameter values as discussed before
Ž . Ž .V sV sk sk sms1, �s2 , but a different initial condition, x 0 s3,0 1 0 1
Ž .® 0 s3. Repeat the evaluation of the Lyapunov exponent for this trajectory,

� � y5again taking 40 adjacent trajectories with d �10 and 0� t�50.0

( )8 Hamiltonian systems are not the only systems that exhibit chaotic motion.
Systems that have dissipation can also exhibit chaos. The fact that these
systems no longer conserve phase-space volume implies that orbits can
collapse onto weirdly shaped surfaces called strange attractors. Although
motion becomes confined to this attracting surface, motion within the surface
can be chaotic, exhibiting a positive Lyapunov exponent. The Lorenz system
of ODEs is an example of a dissipative chaotic system with a strange
attractor. This system models an unstable thermally convecting fluid, heated
from below. The equations for the system are three coupled ODEs for

Ž . Ž . Ž . Žfunctions x t , y t , and z t which are a normalized amplitude of convec-
tion, a temperature difference between ascending and descending fluid, and a

.distortion of the vertical temperature profile from a linear law, respectively :

dx s� yyx ,Ž .dt

dy s rxyyyxz , 1.4.25Ž .dt

dz sxyybz ,dt

where � , b, and r are constants. For sufficiently large r, this system exhibits
chaos.
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Fig. 1.13 Strange attractor for the Lorenz system.

8( )a Taking characteristic values of �s10, bs , and rs28, integrate the3

Lorenz equations for 0� t�100. Take as an initial condition xs1,
ys15, zs10. Use the function ParametricPlot3D to plot the
Ž Ž . Ž . Ž ..x t , y t , z t orbit. This orbit will exhibit the strange attractor for this

Ždissipative dynamical system. Hints: To integrate for the required length
of time you will need to increase the MaxSteps option in NDSolve to
around 10,000 or so. Also, after plotting the strange attractor, it is fun to
rotate it and view it at different angles. See the discussion of real-time
3D graphics in Chapter 9. You will need to increase the number of plot

.points used in the parametric plot, to PlotPoints->>>>>5000 or more.
( ) Ž .b Repeat part a using higher accuracy, by taking AccuracyGoal and

PrecisionGoal in NDSolve to their highest possible values for your
computer system. Plot the displacement between the two trajectories as a
function of time. Does this system exhibit the explosive growth in error
characteristic of chaos?

( )c Calculate the Lyapunov exponent for this trajectory by plotting the right
Ž . w Ž . Ž . xhand side of Eq. 1.4.2 for 0� t�15. Now zs x, y, z in Eq. 1.4.2 .

� � y5Average over 20 nearby trajectories with d �10 . The solution of0
Ž .part a is shown in Fig. 1.13.

( )9 Magnetic and electric field lines can also display chaotic behavior. For
example, consider the following simple field:

r 3
ˆB r , � , z s2 rr sin 2�q� q2 r cos 2� qz.Ž . ˆ ˆ0 ž /4

wOne can easily show that this field satisfies �Bs0. It consists of a uniform
solenoidal field superimposed on a quadrupole field created by external

Ž . 2 xcurrents and the field from a current density j r A r z. For this field is itˆ
useful to consider field line ODEs of the form

B r , � , z B r , � , zŽ . Ž .dr drrds d� r d�rdsr �s s and r s s .dz dzrds dz dzrdsB r , � , z B r , � , zŽ . Ž .z z

w Ž .xsee Eqs. 1.3.6 .
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Ž .Ž .Fig. 1.14 Solution to Exercise 8 b : Field lines for the magnetic field B , projected into0
Ž .the x, y plane.

( ) Ž . Ž .a Solve these coupled ODEs for r z and � z using NDSolve, and plot
Ž .the resulting field line in x, y, z via ParametricPlot3D for 0�z�20

and for initial conditions � s
r2, and r sy5q2n, ns0, 1, 2, 3, 4.0 0
w Ž . Ž . Ž . Ž . Ž . Ž . xHint: Along the field line, x z s r z cos � z , y z s r z sin � z .

( ) Ž .b Although the result from part a appears to be very complicated, these
field lines are not chaotic. One way to see this is to project the field lines

Ž .into the x, y plane, since the field is independent of z. Do so, and show
Ž . Žthat the field lines created in part a fall on nested closed curves. The

solution is shown in Fig 1.14. Note the appearance of two magnetic
.islands, around which the field lines spiral.

( )c A chaotic magnetic field can be created by adding another magnetic field
ˆŽ . Ž . w Ž . Ž .xto B , writing B r, � , z sB r, � , z q� r r sin �yz q� 2 r cos �yz .ˆ0 s 0

1Ž .This field also satisfies �Bs0. For �s replot the field lines for this3
Ž . Ž .field in x, y, z , using the same initial conditions as in part a . The field

Ž .lines now become a ‘‘tangle of spaghetti.’’ Project them into the x, y
plane. You will see that some of the field lines wrap around one magnetic
island for a time, then get captured by the adjoining island. This compli-
cated competition between the islands is responsible for the chaotic
trajectory followed by the lines.

( )d One way to test visually whether some of the field lines are chaotic is to
Ž .note that the magnetic field B r, � , z is periodic in z with period 2
 . Ifs

B were not chaotic, it would create field lines that fell on closed surfaces,s
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Ž .Ž . Ž .Fig. 1.15 Solution to Execicse 8 d : Poincare plot in the x, y plane for the magnetic´
1field B for �s .s 4

and the surfaces would also have to be periodic in z. Therefore, if you
Ž Ž . Ž .. Ž .plot values of r z , � z for z s2
 n in either the r, � plane or then n n

Ž .x, y plane, the resulting points must form closed curves for a non-
chaotic field. This is called a Poincare plot. However, for a chaotic field´
the lines are not on closed surfaces; rather, they fill space. A Poincaré
plot will now show a chaotic collection of points filling a region in the
Ž . w Ž . xr, � plane or the x, y plane . For the same initial conditions as in part

1Ž .a , use NDSolve to evaluate the field lines for the field B for �s ands 3
Ž .0FzF400
 . Increase MaxSteps to about 200,000. Make a table of

Ž Ž . Ž ..values of r z , � z for z s2
 n. Use ListPlot to plot these valuesn n n
1Ž . Ž .in the x, y plane. The solution is shown in Fig. 1.15 for �s .4

( )10 Use Euler’s method to
( )a solve the following ODEs with initial conditions over the given range of

time, and for the given step size. Then,
( )b plot the solution;
( ) Ž .c solve the ODE analytically, and plot the error in x t ;
( ) Ž .d in each case, using the results of c , predict how small a step size is

necessary for the error to be smaller than 10y4 over the course of the
run.

dx( ) Ž .i ssin tyx, x 0 sx , 0� t�5, � ts0.1.0dt
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dx d2 x( ) Ž . Ž .ii 4 xq q s0, x 0 s2, x� 0 s1, 0� t�10, � ts0.01.2dt dt
( ) Ž . Ž . Ž .iii x�q2 x	 qx�q2 xscos t, x 0 sx� 0 sx	 0 s0,

0� t�20, � ts0.02.

( )11 Use Euler’s method to solve the following nonlinear ODE initial-value
problems, and answer the questions concerning the solutions. By looking at
solutions as you vary the step size, ensure that each answer is accurate to at
least 10y4.
( ) Ž . Ž .2 Ž . Ž .a x� t s tr xq t , x 0 s3. What is x 10 ?
( ) Ž . Ž . Ž . Ž .b x	 t scos t cos x, x 0 sy1, x� 0 s0. What is x 20 ?

8( ) Ž .c Eqs. 1.4.25 , �s10, bs , and rs28; xs1, ys1, zs1. What is3
Ž .x 40 ?

( ) Ž . Ž 2 . Ž12 Prove that the error in the integral of Eq. 1.4.6 is O � t . Hint: Taylor-
.expand f about the initial time.

( ) Ž . Ž 3.13 Prove that the error in the integral of Eq. 1.4.10 is O � t .

( )14 Modify our second-order predictor�corrector algorithm so that it can handle
differential equations of order higher than one, or systems of coupled
equations. Use the modified method to repeat
( ) Ž .Ž .a Exercise 10 ii ,
( ) Ž .Ž .b Exercise 10 iii ,
( ) Ž .Ž .c Exercise 11 b ,
( ) Ž .Ž .d Exercise 11 c .

( )15 Centered-difference method. The following discretization method can be used
2 2 Ž .to solve a second-order differential equation of the form d xrdt s f x, t ,

Ž . Ž .with initial condition x 0 sx , x� 0 s® . The method requires only one0 0
force evaluation per timestep. First, discretize time in the usual way, with
t sn � t. Approximate the second derivative asn

2 x t y2 x t qx tŽ . Ž . Ž .d x nq1 n ny1t s . 1.4.26Ž . Ž .n2 2dt � t

This approximation is referred to as a centered-difference form for the
Žderivative, since the expression is symmetric about timestep t . See then

.Appendix and Sec. 2.4.5. The differential equation then becomes the recur-
sion relation

x y2 x qx s� t 2 f x , t , n�1. 1.4.27Ž . Ž .nq1 n ny1 n n

Note that in order to determine the first step, x , given the initial condition1
Ž .x , Eq. 1.4.27 requires x , which is not defined. Therefore, we need a0 y1

different equation to obtain x . Use1

� t 2

x sx q� t ® q f x , t , 1.4.28Ž . Ž .1 0 0 0 02

which is the formula for position change due to constant acceleration.



EXERCISES FOR SEC. 1.4 57

( )a Write a module that implements this scheme.
( )b Use this module to solve the problem of a harmonic oscillator, with

fsyx, taking x s1, and ® s0 on the interval 0� t�20, and taking0 0
� ts0.1. Plot the error in your solution, compared to the analytic
solution cos t.

( ) Ž .c Repeat b with � ts0.02. By what factor has the error been reduced?
What is the order of this method?

( )16 The leapfrog method. The following discretization method can also be used to
2 2 Ž .solve a second-order differential equation of the form d xrdt s f x , with

Ž . Ž .initial conditions x 0 sx , x� 0 s® . This method requires only one force0 0
evaluation per timestep. We first write this equation in terms of two first-order
equations for position and velocity:

dx d®s® t , s f x .Ž . Ž .dt dt

Ž . Ž .We then discretize x t on a grid t sn � t. But we discretize the velocity ® tn
1Ž .on the grid t s nq � t. In each case we use centered-differencenq1r2 2

forms for the discretized first derivative:

® y®nq1r2 ny1r2 s f x ,Ž .n� t
x yxnq1 n s® .nq1r2� t

In the first equation, the derivative of ® is evaluated at timestep n using a
d® Ž . Ž .centered-difference form for t . See the Appendix and Sec. 2.4.5. In thendt

1second equation, the derivative of x is evaluated at timestep nq , using the2

same centered-difference form. The method is started using a predictor�cor-
rector step in order to obtain ® from x and ® :1r2 0 0

x sx q® � tr2,1r2 0 0

1® s® q f x q f x � tr2.Ž . Ž .1r2 0 0 1r22

( )a Write a module that implements this scheme.
( ) Ž .Ž . Ž .b Use the module to solve the same problem as in Exercise 15 b and c .

What is the order of this method?

( )17 The Adams�Bashforth method. Consider the following general first-order
Ž . Ž . Ž .ODE or system of ODEs : d®rdts f ®, t , with initial condition ® 0 s® .0

Ž .We wish to obtain a second-order or even higher-order method for solving
this problem, using only one force evaluation per step. First, we replace Eq.
Ž .1.4.11 by

® t s® t q� t f t , ® t qO � t 3 .Ž . Ž . Ž .Ž .Ž .n ny1 ny1r2 ny1r2

This formula is exact if f is a linear function of time, as is clear from Fig.
1.11.
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( ) 3a Show that the error in one step is in fact of order � t .
( )b To obtain the force at the intermediate time t , we extrapolate fromny1r2

previous force evaluations. If at timestep t we call the force f , then byn n
using a linear fit through f and f show thatny1 ny2

3 f y fny1 ny2f s .ny1r2 2

( )c The code arising from this approach is called the second-order
Adams�Bashforth method. It is

3 f y fny1 ny2® t s® t q� t . 1.4.29Ž . Ž . Ž .n ny1 2

This algorithm is an example of a multistep method, where force evalua-
tions from previous steps are kept in memory and used to make the next
step. One way to save previous force evaluations is to use the double-
equal-sign trick: define a function force[n_____] := force[n]s
Ž Ž .. Ž .f t , ® t , and use this function in Eq. 1.4.29 . Write a module for thisn n

algorithm. To take the first step, use the second-order predictor�correc-
tor method. Use your module to solve the coupled system

dx dysyyyx , s2 xy3 yqsin tdt dt

Ž . Ž .for 0� t�10, taking � ts0.1, with initial conditions x 0 s0, y 0 s1.
Ž .Compare y t with the exact solution found using DSolve, and verify

that the method is second-order accurate by evaluating the error taking
half the step size, then reducing by half again.

( )18 For force laws that are derivable from a potential, such as the gravitational
Ž .force, the equations 1.4.21 are Hamiltonian in form, with conserved energy

N N N2m ®i iHs q V r yr , 1.4.30Ž . Ž .Ý Ý Ý i j i j2
is1 is1 jsiq1

where V is the potential energy of interaction between particles i and j.i j
Evaluating the energy in molecular dynamics calculations provides a useful
check of the accuracy of the numerics. This Hamiltonian also conserves total
linear momentum,

N

Ps m v . 1.4.31Ž .Ý i i
is1

For central-force problems where the potential energy depends only on the
Ž .distance between bodies again, gravity is an example , the total angular

Ž .momentum Ls L , L , L is also conserved, and provides three morex y z
useful checks on the numerical accuracy of a code:

N

Ls m r �v . 1.4.32Ž .Ý i i i
is1
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( ) Ž .a Run the example problem on two gravitating bodies see Cell 1.56 . Use
the results to calculate and plot the energy, the total momentum, and the
z-component of angular momentum as a function of time.

( ) Ž .b Repeat a , setting AccuracyGoal and PrecisionGoal to their high-
est possible values for your computer system.

( ) Nc The center-of-mass velocity is defined as V sPrÝ m . Plot the orbitscm is1 i
of the two planets as seen in a frame moving at the constant speed V .cm
What do they look like in this frame of reference?

( )19 A classical model of a helium atom consists of a massive nucleus with mass
Ž .roughly 4m m being the proton mass and charge 2 e, and two electronsp p

with mass m and charges ye. In this model the electrons are equidistante
from the nucleus, on opposite sides, and the electrons move in circular orbits.
The charges interact via Coulomb’s law, written below for charges q and qi j
separated by displacement r:

q q ri j
E r s . 1.4.33Ž . Ž .i j 34
� r0

( ) Ž .a Analytically solve for an equilibrium distance d ® of each electron from
the nucleus, as a function of the orbital speed ®. The orbital period of
this motion is Ts2
 dr®.

( )b We will numerically examine the stability of this equilibrium. Choose any
value of the orbital speed ® that you wish. Move the electrons a small

Ž .distance, 0.05d ® , in a random direction from the equilibrium deter-
Ž .mined in part a . Numerically evaluate the resulting motion for a time

Ž .5T , and make a movie of the x, y motion, plotting every 0.1T. Is this
Ž .motion stable i.e., do the electrons remain near the equilibrium orbit ?

( ) Ž .c Repeat for a displacement from equilibrium of 0.3d ® .
( ) Ž . Ž . Ž .d Repeat a , b , and c for lithium, nuclear charge 3e, nuclear mass 7m .p

The equilibrium now consists of three electrons arranged in an equilat-
eral triangle around the nucleus.

( )20 The great mass of the sun compared to that of the planets is essential to the
long-term stability of the solar system. By integrating the solar system
equations four times for 1000 years, keeping the initial positions of the outer
planets the same in each case, but taking larger masses for the planets by
factors of 10 in each consecutive run, determine roughly how massive the sun
must be, as a multiple of that of Jupiter, in order to provide a stable
equilibrium for outer-planet orbits over 103 years. Perform the integration

Žonly for the outer planets, from Jupiter on out. Take care to check whether
.NDSolve is giving accurate results over this long time period.

( )21 An astronomer discovers that a minor asteroid has been kicked through a
collision into an unusual orbit. The asteroid is initially located somewhere
between Mars and Jupiter, and is heading at rather high speed into the inner
solar system. As of January 1, 2001, at 12 noon, the asteroid has velocity
Ž . Ž 11 1111,060,y9817,y744 mrs and position -5.206�10 , 3.124�10 , 6.142�

10 . Ž .10 m with respect to the solar system center of mass . Using the data of
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Table 1.2 and the molecular dynamics code, determine which planet this
Ž .asteroid is going to strike by making a movie of the x, y positions of all solar

system bodies in Table 1.2 over a 2-year period, including the asteroid.

( )( )22 a Modify the molecular dynamics code to allow for a drag force, so that
equations of motion are of the form

N2d r dri im s F r yr ym � .Ž .Ýi i j i j i2 dtdt js1
j�i

( )b The Lenard-Jones potential is often used to model interatomic interac-
tions classically. The form of the potential energy is

1 2
V r s� y ,Ž . 12 6ž /rra rraŽ . Ž .

where a is a distance scale and � is an energy scale. We are going to use
molecular dynamics to determine the form of molecules that interact via
the Leonard-Jones potential. To do so, start with N atoms distributed
randomly in a cube with sides of length N 1r3. Take asms�s1.

Ž .Initially the atoms have zero velocities. Add some small damping to the
motion of the atoms, and follow their motion until they fall into a
minimum-energy state.

( )i Construct the energy function. Then, taking �s0.05, and for Ns
3, 4, 5, 6,

( )ii follow the motion for 0� t�100.
( )iii Evaluate and plot the energy vs. time. Does it appear that an energy

minimum has been achieved? For each N-value, what is the mini-
mum energy in units of �?

( )iv Use ParametricPlot3D to plot the positions of the atoms. Can
you describe the structure in words?

( )v If a minimum has not yet been achieved, repeat the process using
the final state of the previous simulation as the new initial condition.

( )vi The larger the molecule, the more local minimum-energy states
there are. For Ns5 and 6, repeat your simulation for five different
random initial conditions to see if you can find any other minimum-
energy states. How many did you find?

( )23 Modify the molecular dynamics code to be able to handle applied magnetic
Ž . Ž .and electric fields B r, t and E r, t , and a damping force: The equations of

motion are now

N2d r dzi is F r yr qq E r , t qv �B r , t qm � z .Ž . Ž . Ž . ˆÝ i j i j i i i i i2 dtdt js1
j�i

Ž .The damping is allowed to work only on the z-motion.
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( )a Check that your new molecular dynamics code works by solving numeri-
cally for the motion of a single particle in a uniform electric and magnetic

Ž . Ž .field Es 1, 0, 0 , Bs 0, 0, 1 , taking msqs1, �s0, and rsvs0 at
ts0. Compare the numerical result from 0� t�10 with the analytic

Ž .result of Sec. 1.3, Exercise 6 .
( )b A Penning trap is a trap for charged particles, which can hold the

particles in vacuum, away from solid walls, using only static electric and
magnetic fields. The trap works for particles that all have the same sign
of charge. We will take all the charges to have charge 1 and mass 1, so

Ž .that their interaction potential is V r s1rr. The trap has the following
applied electric and magnetic fields:

Bs 0, 0, 5 , Es xr2, yr2,yz .Ž . Ž .

Consider four ions given random initial x, y, and z velocities in the
1Ž . Ž . Ž . Ž .ranges y0.1 to 0.1, and positions 0, 0, , 1, 0, 0 , y1, 0, 0 , 0, 1, 0 .4

Ž . ŽTheir z-motion is damped using lasers with rate �s0.1. Only the
z-motion is damped; otherwise the ions would be lost from the trap

.because of the applied torque from the damping. Numerically integrate
the motion of these ions until they settle into an equilibrium configura-

w Ž .tion. What is this configuration? Hint: make x, y images of the ion
positions. The equilibrium will actually rotate at a constant rate around

w Ž .xthe origin due to the E�B drift Sec. 1.3, Exercise 6 .

( )24 Consider a model of an elastic rod as a system of masses and springs. The
equilibrium of such a system, is examined using an analytic model in Sec. 1.5,

Ž .Exercise 1 . Here we will examine the dynamics of this elastic rod, using the
molecular dynamics method. We will consider a system of Ms41 masses. In
the absence of gravity, the masses are arranged in equilibrium positions R ,i

Ž .which are the same as in the statics problem of Sec. 9.10, Exercise 5 :

Cell 1.66

p = a {1/2, 0}; q = a {0, Sqrt[3]/2};

R[i_____] = (i-1) p + Mod[i, 2] q;

As before nearest neighbor masses i and j interact via the isotropic force

Cell 1.67
F[i_____, j_____, r_____Y] := -k[i, j] (r - a r/Sqrt[r.r])

The total force on mass i is given by interactions with its four nearest
neighbors, assuming that the mass is not at the ends of the rod:

Cell 1.68

Ftot[i_____] :=
{0, -mg} + F[i, i-2, r[i, t] - r[i - 2, t]] +

F[i, i-1, r[i, t]-r[i-1, t]] +
F[i, i + 1, r[i, t]-r[i + 1, t]] +

F[i, i + 2, r[i, t]-r[i + 2, t]]
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Ž .where r t is the position of the ith mass. The end masses are fixed to thei
walls:

Cell 1.69

r[1, t_____] = R[1];
r[2, t_____] = R[2];
r[M, t_____] = R[M];
r[M-1, t_____] = R[M-1];

Modify the molecular dynamics code to handle this type of nearest neighbor
Ž . Ž .force, and solve the following problem: r ts0 sR , and v ts0 s0, fori i j

wms1, gs0.5, k s160, over the time range 0� t�24. An analytic ap-i j
Ž . xproach to a similar problem can be found in Sec. 4.2, Exercise 7 .

( )25 Use the molecular dynamics code and the data in Table 1.2 to plot the xyy
Ž Ž . Ž ..velocities of the sun, ® t , ® t , as a parametric plot over the time rangex y

0� t�30 years. What is the magnitude of the maximum speed attained by
the sun? This oscillatory motion has been discerned in distant stars through
tiny oscillatory Doppler shifts in the starlight, providing indirect evidence for

wthe existence of planetary systems beyond our own solar system Marcy and
Ž .xButler 1998 .

1.5 BOUNDARY-VALUE PROBLEMS

1.5.1 Introduction

In order to determine a unique solution to an initial-value problem for an
Nth-order ODE, we have seen that N initial conditions must be specified. The N
initial conditions are all given at the same point in time.

Boundary-value problems differ from initial-value problems in that the N
conditions on the problem are provided at more than one point. Typically they are
given at starting and finishing points�at, say, ts0 and tsT.

As a simple example of a boundary-value problem, consider trying to hit a
moving object with an arrow. To further simplify the problem, let’s assume that the
arrow moves in a single dimension, vertically, under the influence only of
gravity�no air drag or other forces will be kept. Then the position of the arrow,
Ž .y t , satisfies

d2 y syg , 1.5.1Ž .2dt

where gs9.8 mrs2 is the acceleration of gravity. The arrow starts at ys0 at time
ts0, and must be at ysH at tsT in order to hit an object that passes overhead
at that instant. Therefore, the boundary conditions on the problem are

y 0 s0, y T sH . 1.5.2Ž . Ž . Ž .
Ž .In order to solve this problem, consider the general solution of Eq. 1.5.1 ,

determined by integrating the ODE twice:

gt 2

y t sC qC ty . 1.5.3Ž . Ž .1 2 2
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Ž .We determine the constants C and C using the boundary conditions 1.5.2 .1 2
Ž . Ž . Ž .Since y 0 s0, Eq. 1.5.3 evaluated at ts0 implies that C s0. Since y T sH,1

Ž . Ž .we find that C s HrTygTr2 , yielding the following solution for y t :2

H gT gt 2

y t s y ty . 1.5.4Ž . Ž .ž /T 2 2

Finding the solution of this boundary-value problem seems to be no different
than finding the solution of an initial-value problem. However, there is a funda-
mental difference between these two types of problems: unlike solutions to
initial-value problems that satisfy the conditions of Theorem 1.1,

The solutions to boundary-value problems need not exist, and if they exist they
need not be unique.

It is easy to find examples of boundary-value problems for which there is no
solution. Consider the motion of a harmonic oscillator, whose position satisfies

d2 x 2sy� x . 1.5.5Ž .02dt

ŽLet’s again try to hit a passing object with this oscillator an arrow attached to a
.spring? . The object is assumed to pass through the point x at a time ts
r� .0 0

Starting the oscillator from the origin at ts0, the boundary conditions are

x 0 s0, x 
r� sx . 1.5.6Ž . Ž . Ž .0 0

Ž .Using the first boundary condition in the general solution, given by Eq. 1.1.7 ,
Ž . Ž .implies that C s0 and x t sC sin � t . Now it seems like a simple task to find1 2 0

the value of C using the second boundary condition, as we did in the previous2
example. Unfortunately, however, we are faced with a dilemma: at the requested
time 
r� ,0

x 
r� sC sin 
s0 1.5.7Ž . Ž .0 2

for all values of C , so it is impossible to satisfy the second boundary condition.2
Therefore, there is no solution to this boundary-value problem.

It is also easy to find boundary-value problems for which the solution is not
unique. Consider again the previous harmonic oscillator problem, but this time
take boundary conditions

x 0 s0, x T s0 1.5.8Ž . Ž . Ž .

for some given time T : that is, we want the oscillator to pass back through the
origin at time T. Now, for most values of T , there is only one solution to this

Ž .problem: the trivial solution x t s0, where the oscillator is stationary at the origin
for all time. However, for special values of T there are other solutions. If
Tsn
r� for some integer n, the solution0

x t sC sin � t 1.5.9Ž . Ž . Ž .2 0
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matches the boundary conditions for any ®alue of C . Therefore, for these special2
values of T , the solution is not unique�in fact, there are an infinite number
of solutions, corresponding to sine oscillations with arbitrary amplitude given by

Ž .Eq. 1.5.9 .
Another way to do this problem is to hold the time T fixed and instead allow

Ž .the parameter � to vary. For most values of � , the boundary conditions 1.5.80 0
Ž .are satisfied only for the trivial solution x t s0. But at values of � given by0

� sn
rT , 1.5.10Ž .0

Ž .the solution again is of the form of Eq. 1.5.9 with arbitrary amplitude C .2

Ž .The problem of determining the values of a parameter such as � for which0
Ž .nontrivial i.e., nonzero solutions of a boundary-value problem exist is referred

to as an eigen®alue problem.

These problems are called eigenvalue problems because as we will see, they are
Ž .often equivalent to finding the eigenvalues of a matrix. See Sec. 6.3. Eigenvalue

problems turn out to be very important in the solution of linear PDEs, so we will
return to a discussion of their solution in later chapters.

1.5.2 Numerical Solution of Boundary-Value Problems:
The Shooting Method

For the simple cases discussed above, general analytic solutions to the ODEs could
Žbe found, and the boundary-value problem could be solved analytically when the

.solution existed . However, we have already seen that there are many ODEs for
which no general analytic solution can be found. In these cases numerical methods
must be employed. This section will consider one method that can be used to find
a numerical solution to a boundary-value problem: the shooting method.

As an example of the shooting method, consider a general second-order ODE
of the form

d2 y dys f t , y , 1.5.11Ž .2 ž /dtdt

and with boundary conditions

y t sy , y t sy . 1.5.12Ž . Ž . Ž .0 0 1 1

Ž .We require the solution for y t between the initial time t and the final time t .0 1
An example of such a problem would be our previous archery problem, but with an
acceleration determined by the function f.

In attempting to solve this problem numerically, we run into an immediate
difficulty. All of the numerical methods that have been described so far in this
book have dealt with initial value problems, where for gi®en initial conditions, we
take steps forward in time until the final time is reached. Here we don’t know all of
the required initial conditions, so we can’t step forward in time. Although we are
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Ž . Ž .given y t , we don’t know y� t . NDSolve, Euler’s method, and the predictor�0 0
corrector method all require the initial position and velocity in order to integrate
this problem forward in time.

The shooting method proposes the following solution to this difficulty: if you
don’t know all of the initial conditions, have a guess. Using the guess, integrate the
solution forward and see if it matches the second boundary condition. If it misses,
adjust the guess and try again, iterating until the guess gives a solution that does
match the second boundary condition.

You can see immediately why this is called the shooting method: we are
shooting an arrow, refining our guesses for the initial velocity until we make a hit
at the required instant.

To do this problem in Mathematica, we will first define a function Sol[v0],
Ž .which solves the initial-value problem taking y� t s® :0 0

Cell 1.70

Sol[v0_____] :=
NDSolve[{y"[t] == f[t, y[t], y'''''[t]], y[t0] == y0,
y'''''[t0] == v0}, y, {t, t0, t1}]

The result of evaluating this cell is an InterpolatingFunction that gives a
solution for the chosen initial velocity v0. In the second argument NDSolve, we

Ž .have specified that the unknown function is y rather than y t , so that the output
will be in terms of a pure function. We will see that this slightly simplifies the code
for the shooting method.

To see an example, we must first define the function f and choose an initial
time and position. Let us take for our example the problem of an arrow shot in the
vertical direction, adding a drag force due to air on the motion of the arrow. The
acceleration of the arrow is taken as

Cell 1.71

f[t_____, y_____, v_____] := -g-� v;
g = 9.8; � = 0.1;

We are working in units of meters and seconds. The added acceleration due to air
Ž .drag is assumed to be a linear function of the velocity, y� ® t , and we have taken

the drag coefficient � to equal 0.1 sy1. Also, to complete the problem we must
choose initial and final times, and initial and final positions:

Cell 1.72

t0 = 0; y0 = 0;
t1 = 1; y1 =20;

Then for a given initial velocity of, say, 30 mrs, the arrow’s position vs. time is

Cell 1.73

Sol[30]

{{y™InterpolatingFunction [{{0., 1.}}, <>]}}
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In Cell 1.74 we plot this InterpolatingFunction to see how close it comes to
the required solution. The plot shows that we have overshot the mark, reaching
somewhat higher than 20 m at ts1 s. We need to lower the initial velocity a bit.
Of course, we could do this by hand, and by making several attempts eventually we
would obtain the required boundary conditions. However, it is easier to automate
this process.

Cell 1.74

Plot[y[t]/.%%%%%[[1]], {t, 0, t1}];

Let us define a function yend[v0], the solution at the final time t :1

Cell 1.75

yend[v0_____] := y[t1]/.Sol[v0][[1]]

We can test whether this function is working by trying it out for the case of v0s
30 mrs:

Cell 1.76

yend[30]

23.8081

This value appears to agree with the trajectory plotted above.
Now we can apply the FindRoot function to solve the equation yend[v0] ==

y1. To do so, we will need to provide FindRoot with two initial guesses for v0,
since the function ysol[v0] is not analytically differentiable. Since v0 = 30
almost worked, we’ll try two guesses near that:

Cell 1.77

FindRoot[yend[v0] == y1, {v0, 30, 29}]

{v0™25.9983}
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Thus, a throw of about 26 mrs will hit the mark at 20-m height after one second.
The trajectory is displayed in Cell 1.78 by evaluating Sol at this velocity and
plotting the resulting function.

Cell 1.78

ysol = y/.Sol[v0/.%%%%%][[1]];
Plot[ysol[t], {t, 0, t1}];

In this example of the shooting method, we found one solution to the
boundary-value problem. How do we know that there are no other solutions? We
don’t. There could be other solutions that would be found if we made different

Žchoices for the initial velocity. Actually, in this particular problem, one can show
analytically that the above solution is unique, but for other problems this is not the

.case; see the exercises.
This points out a major weakness in the shooting method:

The shooting method only finds one solution at a time. To find a solution,
reasonably accurate initial guesses must be made. Thus, it is possible to miss
valid solutions to a boundary-value problem when using the shooting method.

EXERCISES FOR SEC. 1.5

( )1 A thin rod of length L and mass � per unit length is clamped between two
vertical walls at xs0 and xsL. In the absence of gravity, the rod would be
horizontal, but in gravity the rod sags with a vertical displacement given by the

Ž .function y x . According to the theory of elasticity, the shape of the rod
satisfies the following boundary-value problem, assuming that the sag is small:
Ž 4 4. Ž .D � r� x y x sy� g, where g is the acceleration of gravity and D depends

on Young’s modulus E and the cross-sectional area a of the rod according to
Ds�Ea2, and where � is a dimensionless constant that depends on the shape
of the cross section of the rod. The boundary conditions for a rod clamped at

Ž . Ž . Ž . Ž .both ends are y 0 sy� 0 sy L sy� L s0. Solve this problem analytically,
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Ž .and determine the shape y x of the rod. How does the maximum sag scale
with the length L of the rod, holding everything else fixed?

( )2 A neutral plasma is a gas of freely moving charged particles, with equal
amounts of positive and negative charge. If the plasma encounters a conductor
to which a positive voltage is applied, negative plasma charges will be attracted
to the conductor and positive charges will be repelled. As a result, an excess
negative charge will surround a positively charged conductor. If the applied

Ž .voltage is not too large, the plasma’s net charge density � r will satisfy a linear
law:

� r syA� r , 1.5.13Ž . Ž . Ž .

where � is the electrostatic potential in the plasma at position r, and A is a
positive constant that depends on the plasma density and temperature. The

Ž . Ž .potential satisfies Poisson’s equation 1.1.10 , so Eq. 1.5.13 implies a linear
PDE for the potential must be solved:

A2� �s � . 1.5.14Ž .�0

( )a Consider a plasma confined by conducting plates at xs0 and xsL. The
plate at xs0 is biased to potential V, and the plate at xsL is grounded.

Ž . Ž 2 2 . Ž .Solve analytically the 1D version of Eq. 1.5.14 , � r� x �s Ar� �,0
Ž .to obtain � x between the plates.

( )b Repeat this solution numerically using the shooting method. Take Ls2
Ž .and Ar� s1. Plot the analytic and numerical results for � x .0

( ) Ž . Ž .3 An artillery sergeant is asked to hit a fixed object at position x, y s d, 0
with respect to his cannon. The muzzle velocity of the field piece is fixed at ® ,0
but the angle � of the muzzle with respect to the horizontal can be varied.
( )a Solve this boundary-value problem analytically for � . Show that there are

two solutions for � if the distance to the object is not too great, but that
Žthere is no solution if d exceeds a distance d , and find d . Note thatmax max

.the time of impact is unimportant in this problem.
( )b Create a module that will perform this solution using the shooting method,

for given d. Use it to solve the problem where ® s1000 mrs, ds1 km,0
and there is linear damping of the shell’s velocity, with rate �s0.3. Plot

Ž .the x, y trajectory of the shell. By choosing a different initial guess, have
the method converge to other solutions, if any; and plot all on the same
graph of y vs. x.

( ) ( ) Ž . Ž4 a A jet aircraft follows a straight trajectory given by R t s ® tqjet jet
.x , y , z , where ® s250 mrs, x sy500 m, y s800 m, and z s50000 0 0 jet 0 0 0

m. An antiaircraft gun at rs0 is trying to shoot the plane down. The
muzzle velocity of the gun is ® s600 mrs. If the gun fires a shell at ts0,0

Ž .where should it aim i.e., what is the direction of the initial shell velocity ?
ŽSolve the problem analytically using Mathematica to help with the alge-

.bra; the final equation needs to be solved numerically using FindRoot ,
keeping only the force of gravity on the shell. Plot the trajectory of the
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Ž .Fig. 1.16 Spherical polar angles � , � describing the direction of
a vector v with respect to fixed axes.

shell and the plane using a three-dimensional parametric plot
Ž .ParametricPlot3D up to the instant of impact. Is there more than one

w Ž .solution? Hint: It is useful to introduce spherical polar angles � , � to
describe the direction of the initial shell velocity: v s ®0 0
Ž .sin � cos �, sin � sin �, cos � . See Fig. 1.16.

( )b Repeat the procedure using the shooting method, but now add a frictional
deceleration of the form y� ®, where �s0.075 sy1.

( )5 James Bond, mass 85 kg, needs to jump off an overpass onto the bed of a
passing truck 12 m below. He is attached to a bungee cord to break his fall,
with a nonlinear spring force of y1.1 y3 newtons, where y is the displacement
of Bond from the overpass measured in meters. A positive displacement
corresponds to moving down. By eye he quickly calculates that the truck will
be beneath him in 2.1 seconds. He immediately jumps.
( )a Use the shooting method to numerically determine what vertical velocity

he must give himself, neglecting friction with the air, so that he lands on
Žthe truck at just the right instant. A positive velocity corresponds to

. Ž .jumping down. Plot Bond’s trajectory y t .
( )b Can you find other, less appealing solutions for Bond’s initial velocity that

involve multiple oscillations at rather high speed?

( )6 On January 1, 2001, at 12 noon GMT, a spacecraft is located 500 km above the
earth’s surface, on the night side, along the line directly connecting the earth

Ž .to the sun. The computer controlling the spacecraft a HAL9000, of course
has been asked to ensure that the ship will be at the future location of Jupiter

Žexactly three years from this instant. To be precise, the location is to be
.100,000 km on the inboard side of Jupiter on a line toward the sun. Use a

shooting method and the information in Table 1.2 to determine the HAL9000’s
solution for the required initial velocity of the spacecraft, and plot the

Žtrajectory of the craft through the solar system. Hint: To speed up the orbit
integration, keep only the orbits of the earth, Mars, and Jupiter in the
simulation. Use the molecular dynamics code developed in Sec. 2.4 to deter-

.mine the orbits. The solution is shown graphically in Fig. 1.17 as a plot of the
Žorbits. The plot can be viewed from different angles by dragging on it with the
.mouse.

( ) 2 2 Ž .4 Ž7 The temperature of a thin rod of unit length satisfies d Trdx sT x in
. w 4suitably scaled units . The T term represents heat loss due to radiation, and

2 2 xthe d Trdx term arises from thermal conduction: see Chapter 3. Find and
Ž . Ž . Ž .plot T x assuming the ends are held at fixed temperature: T 0 sT 1 s1.
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Ž .Fig. 1.17 Solution to Exercise 6 .

1.6 LINEAR ODES

1.6.1 The Principle of Superposition

Linear ODEs of Order N A linear ODE is distinguished by the following
property: the equation is linear in the unknown function; that is, only the first
power of this function or its derivatives appear. An Nth-order linear ODE has the
form

d N x d Ny1 x dxqu t q qu t qu t xs f t . 1.6.1Ž . Ž . Ž . Ž . Ž .Ny1 1 0N Ny1 dtdt dt

We have already seen several examples of linear differential equations, such as
Ž . Ž . Ž . Ž .Eq. 1.1.1 linear in ® , or Eq. 1.1.6 linear in x . Another example is the driven

damped harmonic oscillator

d2 x dx 2q� y� xs f t , 1.6.2Ž . Ž .02 dtdt

where � and � 2 are time-independent nonnegative constants. This equation0
describes damped harmonic motion with natural frequency � and damping rate0

Ž . Ž .� , driven by an external force mf t where m is the oscillator’s mass .
There are many, many other linear ODEs that have physical significance.

Linear differential equations play a special role in the physical sciences, appearing
in literally every discipline. As a consequence, the properties of these equations
and their solutions have received considerable attention.

Linear Differential Operators An operator is simply a rule that transforms one
function into another. An integral is an operator, and so is a square root.
Differential operators are combinations of derivatives that act on a given function,

ˆ d fr dttransforming it into another function. For example, Lfse defines a differen-
ˆ d fr dtŽ . Ž .tial operator L i.e., a rule that takes the function f t to the function e .

Let us define a linear differential operator of Nth-order as

d N d Ny1 d
L̂s qu t q qu t qu t . 1.6.3Ž . Ž . Ž . Ž .Ny1 1 0N Ny1 dtdt dt
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For the moment, think of this as merely a convenience, so that we can write Eq.
ˆŽ .1.6.1 in the compact form Lxs f. Linear operators have the following two

properties:

ˆ ˆ ˆŽ . Ž . Ž . Ž .1 For any two functions f t and g t , L fqg sLfqLg.
ˆ ˆŽ . Ž . Ž .2 For any function f t and any constant C, L Cf sCLf.

Ž .It is easy to see that the operator in Eq. 1.6.3 satisfies these properties, and so it
is a linear operator. It is also easy to see that the integral of a function is another

Ž .linear operator a linear integral operator . However, the operator defined by
ˆ d fr dtLfse does not satisfy either property. It is a nonlinear differential operator.
For the most part, we will concentrate on the properties of linear operators in this
book. Some examples of nonlinear operators with relevance to physics can be
found in Chapter 7.

The Superposition Principle One important property of linear ODEs is called
Ž .the principle of superposition. Consider the general solution of Eq. 1.6.1 , assuming

ˆ Ž .that the forcing function ®anishes: Lxs f t s0. In this case the equation is termed
homogeneous.

Now, the general solution of the ODE involves N undetermined constants, as
discussed in Sec. 1.1. Let us arbitrarily choose any two different sets of values for
these constants, and thereby obtain two different possible solutions to the homoge-

Ž . Ž . Žneous equation, x t and x t corresponding to different initial or boundary1 2
.conditions . Then the principle of superposition states that the linear combination

C x t qC x t 1.6.4Ž . Ž . Ž .1 1 2 1

Žis also a solution of the homogeneous ODE corresponding to some other initial or
.boundary conditions . This follows directly from the linear nature of the differen-

tial equation, as we will now show.
ˆ ˆŽ . Ž .By construction, the functions x t and x t have the property that Lx sLx1 2 1 2

Ž . Ž .s0. If we now substitute Eq. 1.6.4 into Eq. 1.6.1 , we obtain

ˆ ˆ ˆ ˆ ˆL C x qC x sL C x qL C x sC Lx qC Lx s0, 1.6.5Ž . Ž . Ž . Ž .1 1 2 2 1 1 2 2 1 1 2 2

Ž .verifying our contention that Eq. 1.6.4 satisfies the homogeneous ODE, and
proving the principle of superposition.

Ž . Ž .The Principle of Superposition If x t and x t both satisfy the homogeneous1 2
ˆ Ž . Ž .linear ODE Lxs0, then the linear combination C x t qC x t also satisfies1 1 2 2

this ODE for any value of the constants C and C .1 2

1.6.2 The General Solution to the Homogeneous Equation

Ž .Introduction Let us return now to the discussion surrounding Eq. 1.6.3 regard-
ˆing the general solution of the homogeneous equation Lxs0. Rather than

choosing only two sets of values for the N undetermined constants, let us choose



ORDINARY DIFFERENTIAL EQUATIONS IN THE PHYSICAL SCIENCES72

N different sets of values, so that we obtain N different functions,
Ž . Ž . Ž .x t , x t , . . . , x t . This means that no one function can be obtained merely as a1 2 N

linear superposition of the others. The functions are linearly independent of one
another. Then it should be clear that the function obtained by superimposing these
functions,

x t sC x t qC x t q qC x t 1.6.6Ž . Ž . Ž . Ž . Ž .1 1 2 2 N N

is a form of the general solution of the homogeneous ODE. Recall that the general
solution has N undetermined constants that can be used to satisfy any particular

Ž . Ž . Ž .initial condition. The fact that the functions x t , x t , . . . , x t are linearly1 2 N
Ž .independent means that Eq. 1.6.6 and its derivatives, evaluated at the initial time,

span the space of possible initial conditions. By this I mean that any given initial
Žcondition can be met by appropriate choice of the constants. Note the use of the

term span, from linear algebra, denoting a set of vectors that can be made to sum
to any other vector in a given vector space. As we have already mentioned, the
connection between linear ODEs and linear algebra will be made clear in the next

.section.
Ž . Ž .We have already seen an example of Eq. 1.6.6 : Eq. 1.1.7 shows that the

solution of the harmonic oscillator equation is a sum of the linearly independent
Ž .solutions cos t and sin t. Equation 1.6.6 shows that the general solution of a

homogeneous linear ODE can always be written in this way, as a sum of N
independent functions each of which satisfies the ODE.

ˆThe general solution of a homogeneous linear ODE Lxs0 can be written as a
linear combination of N independent solutions to the ODE.

Let’s consider possible analytic forms for these N independent solutions in the
Ž . Ž .case that the functions u t appearing in Eq. 1.6.1 are time-independentn

constants:

d N x d Ny1 dx
L̂xs qu q qu qu xs f t . 1.6.7Ž . Ž .Ny1 1 0N Ny1 dtdt dt

This important special case occurs, for example, in the driven damped harmonic
Ž . Ž . stoscillator, Eq. 1.6.2 . We will guess the form x t se for some constant s. Using

the fact that

dn
st n ste ss e , 1.6.8Ž .ndt

ˆthe ODE Lxs0 becomes a polynomial in s:

s Nqu s Ny1 qu s Ny2 q qu squ e sts0. 1.6.9Ž .Ž .Ny1 Ny2 1 0

The bracket must be zero, so we are faced with finding the roots of this Nth-order
polynomial in s. Although a general analytic solution cannot be found for N�4, it

Ž . � 4is well known that there are always N roots which may be complex , s , s , . . . , s .1 2 N
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These N roots supply us with out N independent functions,

x t se sn t , ns1, 2, . . . , N , 1.6.10Ž . Ž .n

pro®ided that none of the roots are the same. If two of the roots are the same, the
roots are said to be degenerate. In this case only Ny1 of the solutions have the

Ž .form of Eq. 1.6.10 . The Nth solution remains to be determined.
Ž .Let’s assume that s ss . Then consider any one of the constants in Eq. 1.6.91 2

to be a variable; take the constant u , for example, and replace it with a variable u.0
Now the roots all become functions of u, and in particular so do our two

Ž . Ž . Ž . Ž .degenerate roots, s ss u and s ss u . Furthermore, s u ss u , but in1 1 2 2 1 0 2 0
Ž . Ž .general, for u�u , s u �s u . Now let us write usu q� , and take the limit of0 1 2 0

the following superposition as � vanishes:

1 s Ž�qu . t s Ž�qu . t1 0 2 0lim e ye . 1.6.11Ž . Ž .��™0

According to the superposition principle, this sum is also a perfectly good solution
to the equation. Mathematica can easily find the limit, obtaining a finite result:

Cell 1.79

s2[u0] = s1[u0] = s1;
Factor[Normal[Series[� ^̂̂̂̂-1 (E ^̂̂̂̂(s1[u0 + �] t)-E ^̂̂̂̂(s2[u0 + �] t)),

{�, 0, 0} ] ] ]

eslt t (s1’[u0]-s2’[u0])

s1 t Ž .The result, t e neglecting the unimportant multiplicative constant , provides us
with the new function necessary to complete the set of N independent solutions.
The case of three or more degenerate roots, and the case where the multiplicative
constant vanishes, can all be handled easily using similar methods to those detailed
here, and will be left for the exercises.

Different Functional Forms for the General Solution Often it happens that the
Ž .exponential form of the solutions in Eq. 1.6.10 is not the most convenient form.

Ž .For example, for the undamped harmonic oscillator 1.1.6 , the functions obtained
Ž .via Eq. 1.6.10 are

x t se i� 0 t , x t seyi � 0 t . 1.6.12Ž . Ž . Ž .1 2

Ž .For the damped harmonic oscillator 1.6.2 , s satisfies a quadratic equation

s2q� sq� 2s0, 1.6.13Ž .0

which has solutions

2� �2s sy q i � y ,(1 02 4
1.6.14Ž .

2� �2s sy y i � y .(2 02 4
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Ž .These solutions are complex when � ��r2 , and this can be an inconvenience in0
certain applications. Fortunately, the superposition principle says that we can

Ž . Ž .replace the functions x t and x t with any linear combination of them. For1 2
example, the new functions

1x t s x t qx tŽ . Ž . Ž .1 1 22
1.6.15Ž .

1x t s x t yx tŽ . Ž . Ž .2 1 22 i

form a useful set of independent solutions for damped or undamped oscillator
problems, since standard trigonometric identities can be used show that these
functions are real. For example, for the undamped harmonic oscillator, Eqs.
Ž . Ž .1.6.12 and 1.6.15 yield

x t scos � t ,Ž .1 0
1.6.16Ž .

x t ssin � t ,Ž .2 0

which may be recognized as the usual real form for the independent solutions. We
Ž .can then drop the overbars in Eq. 1.6.16 and treat these functions as our new

independent solutions. Similarly, the real solutions to the damped harmonic
oscillator equation are

2�y� tr2 2x t se cos � y t ,(Ž .1 0ž /4
1.6.17Ž .

2�y� tr2 2x t se sin � y t .(Ž .2 0ž /4

These solutions are real, assuming that � ��r2. The solutions decay with time,0
and oscillate at a frequency less than � due to the drag force on the oscillator.0

1.6.3 Linear Differential Operators and Linear Algebra

Consider the following homogeneous linear initial-value problem for the unknown
Ž .function x t :

L̂xs0, x t sx , x� t s® , . . . , 1.6.18Ž . Ž . Ž .0 0 0 0

ˆwhere L is some linear differential operator. In this section we will show that the
ˆŽ .function x t can be thought of as a vector, and the operator L can be thought of

as a matrix that acts on this vector. We can then apply what we know about linear
algebra to understand the behavior of solutions to linear ODEs.

Ž .To directly see the connection of Eq. 1.6.18 to linear algebra, consider trying
to find a numerical solution to this ODE using Euler’s method. We then discretize

Ž .time, writing t s t qn � t. The function x t is replaced by a set of valuesn 0
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� Ž . Ž . Ž . 4x t , x t , x t , . . . , which can be thought of as a ®ector x:0 1 2

xs x t , x t , x t , . . . .� 4Ž . Ž . Ž .0 1 2

ˆSimilarly, the ODE Lxs0 becomes a series of linear equations for the compo-
ˆnents of x, and therefore the operator L becomes a matrix L that acts on the

vector x. To see how this works in detail, consider the case of a simple first-order
linear homogeneous ODE:

dx
L̂xs qu t xs0, x t sx . 1.6.19Ž . Ž . Ž .0 0 0dt

Ž .Solving this ODE numerically via Euler’s method, we replace Eq. 1.6.19 by

x t sx ,Ž .0 0

x t yx t q� t u t x t s0,Ž . Ž . Ž . Ž .1 0 0 0 0

x t yx t q� t u t x t s0,Ž . Ž . Ž . Ž .2 1 0 1 1

1.6.20Ž .

...

These linear equations can be replaced by the matrix equation

1 0 0 0  x t xŽ .0 0

y1qu t � t 1 0 0  x t 0Ž . Ž .0 0 1

0 y1qu t � t 1 0  x t 0Ž . Ž .0 1 2 s .
0 0 y1qu t � t 1  x t 0Ž . Ž .0 2 3� 0 � 0 � 0. . . . . ... . . . . . ... . . . . .

1.6.21Ž .

The above matrix is a realization of the matrix L for this simple first-order ODE.
All elements above the main diagonal are zero because the recursion relation
determines the nth element of x in terms of earlier steps only. The right-hand side

Ž .of Eq. 1.6.21 is a vector containing information about the initial condition. We
� 4will call this vector x s x , 0, 0, . . . .0 0

We can easily write the matrix L in terms of a special function called a
Kronecker delta function, � . This function takes two integer arguments, n andnm
m, and is defined as

1, nsm ,
� s 1.6.22Ž .nm ½ 0, n�m.

Ž .The Kronecker delta function can be thought of as the n, m element of a matrix
whose elements are all zero except along the diagonal nsm, where the elements
are equal to one. This is the unit matrix unit, discussed in Sec. 9.5.2. In Mathemat-
ica, the function � is called KroneckerDelta[n,m].nm
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Using the Kronecker delta function, the components L of L can be expressedm n
as

L s� y� 1y� t u t . 1.6.23Ž . Ž .nm nm ny1 , m 0 m

The matrix can then be created with a Table command:

Cell 1.80

L = Table[KroneckerDelta[n, m]-KroneckerDelta[n-1, m]
(1-�t u[m]), {n, 0, 3}, {m, 0, 3}];

MatrixForm[L]
1 0 0 0

-1+�t u[0] 1 0 0

0 -1+�t u[1] 1 0� 0
0 0 -1+�t u[2] 1

Here we have only constructed four rows of the matrix, for ease of viewing.
Ž .Of course, the matrix and vectors of Eq. 1.6.21 are formally infinite-dimen-

sional, but if we content ourselves with determining the solution only up to a finite
time t sM � tq t , we can make the matrices and vectors Mq1-dimensional.f 0

Ž .Note that Eq. 1.6.21 is only one of many different possible forms for the matrix
equation. Recall that there are many different schemes for solving an ODE: the

Ž .Euler method embodied by Eq. 1.6.21 is one, but the predictor�corrector
Ž .method, for example, would lead to a different matrix L see the exercises . This

uncertainty shouldn’t bother us, since the solution of the matrix equation always
Ž .leads to an approximate solution of Eq. 1.6.19 that converges to the right solution

as � t™0, independent of the particular method used in obtaining the matrix
equation.

Ž .We can write Eq. 1.6.21 in a more compact form using vector notation:

L xsx . 1.6.24Ž .0

This matrix equation is a discretized form of the ODE and initial condition, Eq.
Ž . Ž .1.6.19 . It can be shown that the more general ODE of Eq. 1.6.18 can also be put

Žin this form, although this takes more work. Some examples can be found in the
.exercises. A solution for x then follows simply by inverting the matrix:

xsLy1 x . 1.6.25Ž .0

Recall that it is not always possible to find the inverse of a matrix. However,
according to Theorem 1.1, the solution to an initial-value problem always exists
and is unique, at least for problems that satisfy the strictures of the theorem. For
linear problems of this type, the matrix inverse can be taken, and the unique

Ž .solution given by Eq. 1.6.25 can be found.
We can perform this matrix inversion numerically in Mathematica. But to do so,

we must be more specific about the problem we are going to solve. Let’s take the
Ž .case t s0, x s1, and u t s1, a constant damping rate. The equation we solve0 0 0
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Ž . Ž .is then dxrdtsyx, x 0 s1. Then the analytic solution to Eq. 1.6.19 is a simple
Ž . Ž .exponential decay: x t sexp yt .

To do the problem using matrix inversion, we choose a step size, say � ts0.05,
and solve the problem only up to a finite time t s2. This implies that thef

Ždimension M of the vector x is 2r0.05q1s41 the ‘‘q1’’ is necessary because0
.ts0 corresponds to the first element of x , and the matrix L is 41 by 41. The0

following Mathematica statements set up the vector x and the matrix L:0

Cell 1.81

�t = 0.05; u[n_____] = 1; M = 40;

x0 = Table[0, {0, M}];
x0[[1]] = 1;

L = Table[KroneckerDelta[n, m]-KroneckerDelta[n-1, m]
(1-�t u[m]), {n, 0, M}, {m, 0, M}];

Ž .We then solve for x using Eq. 1.6.25 , and create a data list sol consisting of
� 4times and positions t , x :n n

Cell 1.82

x = Inverse[L].x0;

sol = Table[{n �t, x[[n + 1]]}, {n, 0, M}];

Ž . Ž .This solution can be plotted and compared with exp yt see Cell 1.83 , showing
Žgood agreement which could be further improved by taking a smaller step size and

.increasing the dimension M of the system .

Cell 1.83

a = ListPlot[sol, PlotStyle™PointSize[0.012],
DisplayFunction™Identity];

b = Plot[E ^̂̂̂̂-t, {t, 0, 2}, DisplayFunction™Identity};
Show[a, b, DisplayFunction ->>>>> $$$$$Displayfunction,

PlotLabel™"Matrix Inversion compared to E ^̂̂̂̂ -t",
AxesLabel™{"t", " "}];
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Note that the matrix-inverse method of solution, outlined above, is equivalent to
Ž .the recursive solution of Eq. 1.6.20 . In fact, performing the recursion in Eq.

Ž .1.6.20 can be thought of as just a way of performing the operations of taking the
matrix inverse and applying the inverse to x , so little is gained in any practical0

Ž . Ž .sense from using Eq. 1.6.25 rather than Eq. 1.6.20 .
The matrix inverse method is really most useful in solving linear boundary-®alue

problems, because matrix inversion solves the problem in a single step. This com-
Žpares favorably with the shooting method for boundary-value problems discussed

.in Sec. 1.5.2 , which is an iterative process that requires several steps and an initial
guess to find the solution.

Finally, we note the following: we have seen that a matrix L can be connected to
ˆ y1any linear differential operator L, and the inverse of the matrix, L , is useful in

ˆfinding a solution to ODEs involving L. Therefore, it may be useful to think about
ˆy1the in®erse of the operator itself, which we might write as L . In fact, we will see

in Chapter 2 that the inverse of a linear differential operator can be defined, that
its discretized form is Ly1, and that this operator inverse is connected to the idea
of a Green’s function.

1.6.4 Inhomogeneous Linear ODEs

Homogeneous and Particular Solutions In the preceding sections, we dis-
Ž .cussed solutions x t to the homogeneous linear ODE for some linear differential

ˆoperator L. Let us now consider the case of an inhomogeneous linear ODE,

L̂xs f . 1.6.26Ž .

We will examine the general solution of this problem, so that we do not have to
specify boundary or initial conditions. Using the superposition principle, we write
the general solution as a linear combination of two functions:

x t sx t qx t , 1.6.27Ž . Ž . Ž . Ž .h p

Ž .where x t is the general solution to the homogeneous problem, satisfyingh

L̂x s0, 1.6.28Ž .h

Ž .and where x t is any solution to the inhomogeneous problem, satisfyingp

L̂x s f . 1.6.29Ž .p

The function x is called the homogeneous solution, and the function x is called ah p
particular solution.

ˆŽ . Ž . Ž .Acting on Eq. 1.6.27 with L, it is clear that x t satisfies Eq. 1.6.26 . It is also
Ž . Ž . Ž .clear that Eq. 1.6.28 is the general solution of Eq. 1.6.26 , since x t contains allh

of the undetermined constants necessary to satisfy any given set of boundary or
initial conditions.

Ž .We have already discussed how to find the homogeneous solution x t , in Sec.h
Ž .1.6.2. The problem then comes down to finding a particular solution x t to thep
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inhomogeneous problem. This is actually rather nontrivial, and a complete and
general answer will not be obtained until the end of Chapter 2. We will take the
problem in steps of increasing difficulty.

Method of Undetermined Coefficients As a first step to finding a particular
solution, we will consider the case where the ODE has constant coefficients; i.e.,

Ž . Ž .the functions u T appearing in Eq. 1.6.1 are time-independent constants, son
Ž .that the Nth-order ODE takes the form of Eq. 1.6.7 . Also, we will assume that

Ž .the forcing function f t is of a very simple analytic form. With these assumptions,
Ž .an analytic solution for x t can be found simply by guessing a form for thep

solution. This is called the ‘‘method of undetermined coefficients’’ in elementary
texts on ODEs.

Take, for example, the simple case of a linearly increasing force,

f t saqbt . 1.6.30Ž . Ž .

For the response to this force, let’s try the same form back again:

x t sAqBt , 1.6.31Ž . Ž .p

ˆwhere A and B are undetermined coefficients. Acting on this guess with L yields

L̂x su AqBt qu B , 1.6.32Ž . Ž .p 0 1

which is of the same form as f , provided that we now choose values for A and B
Ž .correctly so as to satisfy Eq. 1.6.7 :

u Aqu Bsa, u Bsb. 1.6.33Ž .0 1 0

Ž .According to Eq. 1.6.31 , one way that the system can respond to a linearly
increasing force is for the amplitude to increase linearly as well: as you push
harder on a spring, it stretches further. But this is only one possible solution; the
spring could also oscillate. In fact, we know that the general solution to this
problem is

x t sx t qAqBt . 1.6.34Ž . Ž . Ž .h

Ž .The oscillations are contained in the homogeneous solution x t , and theirh
amplitude is set by the initial or boundary conditions.

Response to Sinusoidal Forcing There are many other analytically tractable
forcing functions that we could consider. Of course, Mathematica could find such
solutions for us, using DSolve. However, there is one more case that we will solve
in detail by hand, because it will turn out to be of great importance to our future
work: the case of an oscillating force of the form

f t s f cos � t . 1.6.35Ž . Ž .0
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A particular solution for this type of force can be found using the guess

x t sA cos � tqB sin � t , 1.6.36Ž . Ž .p

where the constants A and B remain to be determined. In other words, the system
responds to the oscillatory forcing with an oscillation of the same frequency. If we

Ž .substitute this into Eq. 1.6.7 we obtain, after some work,

Nr2
n n2 2L̂x s cos � t Au y� qB� u y�Ž . Ž . Ž .Ýp 2 n 2 nq1

ns0

Nr2
n n2 2q sin � t Bu y� yA� u y� . 1.6.37Ž . Ž . Ž . Ž .Ý 2 n 2 nq1

ns0

This equation can be solved by choosing A and B so that the coefficient of sin � t
vanishes and the coefficient of cos � t equals f .0

A simpler alternative method of solution for this problem employs complex
Ž .notation. We replace Eq. 1.6.35 by

f t sRe f eyi � t , 1.6.38Ž . Ž .0

and we now try the form

x t sRe C eyi � t , 1.6.39Ž . Ž .p

� � i� � �where Cs C e is a complex number. The magnitude C is the amplitude of the
oscillation, and the argument � is the phase of the oscillation with respect to the

Ž .applied forcing. Using amplitude and phase notation, Eq. 1.6.39 can be written as

� � � � � �x t s C cos � ty� s C cos � cos � tq C sin � sin � t . 1.6.40Ž . Ž . Ž .p

Ž . Ž .By comparing Eq. 1.6.40 to Eq. 1.6.36 we can make the identifications As
� � � �C cos � and Bs C sin �.

Ž . Ž .The solution for x t can again be found by substituting Eq. 1.6.39 intop
Ž .Eq. 1.6.7 :

ˆ ˆ yi � t yi � tLx sRe CL e sRe f e , 1.6.41Ž .p 0

Ž .where we have assumed that the coefficients u in Eq. 1.6.7 are real in order ton
ˆtake the operation Re through L. Now, rather than solving only for the real part,

Žwe will solve the full complex equation. If the full complex equation is satisfied,
.the real part will also be satisfied. Also, we will use the fact that

dn
nyi � t yi � te s yi� e , 1.6.42Ž . Ž .ndt

Ž .so that Eq. 1.6.41 becomes

N
nyi � t yi � tC e yi� u s f e . 1.6.43Ž . Ž .Ý n 0

ns0
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Ž . Ž .Dividing through by the sum and using Eq. 1.6.39 allows us to write x t in thep
following elegant form:

f0 yi � tx t sRe e . 1.6.44Ž . Ž .np Nž /Ý yi� uŽ .ns0 n

In future chapters we will find that complex notation often simplifies algebraic
expressions involving trigonometric functions.

Ž .Let us use Eq. 1.6.44 to explore the particular solution for the forced damped
Ž .oscillator, Eq. 1.6.2 . For the choice of u ’s corresponding to this ODE,n

Ž .Eq. 1.6.44 becomes

f0 yi � tx t sRe e . 1.6.45Ž . Ž .p 2 2ž /y� y i��q�0

This particular solution oscillates at constant amplitude, and with the same
wfrequency as the forcing. Since the homogeneous solutions decay with time see

Ž .x Ž .Eq. 1.6.17 , Eq. 1.6.45 represents the form of the solution at times large
compared to 1r� . At such large times, the oscillator has ‘‘forgotten’’ its initial

Ž .conditions; every initial condition approaches Eq. 1.6.45 . The convergence of
different solutions can be seen directly in Fig. 1.18, which displays the time
evolution of three different initial conditions. All three solutions converge to Eq.
Ž .1.6.45 .

The loss of memory of initial conditions at long times is a general feature of
linear driven damped systems. Nonlinear driven damped systems, such as the Van

w Ž .xder Pol oscillator Eq. 1.2.20 with a driving term added, also display loss of
memory of initial conditions; but initial conditions do not necessarily collapse onto
a single trajectory as in Fig. 1.18. For instance, orbits can collapse onto a strange
attractor, and subsequently wander chaotically across the surface of this attractor.
A detailed analysis of the complex chaotic behavior of nonlinear driven damped

Ž .systems is beyond the scope of this introductory text; see Ott 1993 for a
discussion of this subject.

Fig. 1.18 Three solutions to the driven damped oscillator equation x	 qx�q2 xscos 3t.
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Ž . Ž .Fig. 1.19 Magnitude thick line and phase thin line of the amplitude of the particular
Ž . Ž .solution to the driven damped oscillator: a heavy damping, �r� s0.7; b light damping,0

2 2 Ž'�r� s0.1. Also shown is the location of the peak amplitude, �s � y� r2 dashed0 0
.line .

Resonance The particular solution to the driven damped oscillator equation has
an amplitude that depends on the frequency � at which the system is driven.

Ž . Ž 2 2 .According to Eq. 1.6.45 , this complex amplitude is Cs f r y� y i��q� .0 0
Plots of the magnitude and phase of Crf are shown in Fig. 1.19 as a function of0
�. These plots show that a resonance occurs when the driving frequency � is close
to the natural frequency � : the amplitude of oscillation has a maximum near � ,0 0

Žand the phase of the oscillation changes from a value near zero the oscillation is
. Žin phase with the driving force to one near 
 the oscillation has the opposite sign

.to the driving force . The resonance becomes sharper as the damping � becomes
weaker. The frequency at which the amplitude is maximized can be easily shown

2 2 Ž .'to be equal to � y� r2 see the exercises . Note that this is not the same as0
2 2 w'the frequency of unforced oscillations in a damped oscillator, � y� r4 see0

Ž .xEq. 1.6.17 .
When the damping equals zero exactly, the undamped oscillator exhibits an

exact resonance when driven at �s� . Here the amplitude C becomes infinite,0
Ž .and therefore the form of the solution, Eq. 1.6.45 , is no longer valid.

One way to find the solution at an exact resonance is to use DSolve:

Cell 1.84

Clear[x];

Expand[
FullSimplify[x[t] /. DSolve[x"[t] + � ^̂̂̂̂2x[t] == f Cos[� t],0 0 0

x[t], t][[1]]]]

Cos[t� ] f t Sin[t � ] f0 0 0 0C[2] Cos[t � ] + C[1] Sin[t � ] + +0 0 2 2 �02 �0

In addition to the usual cosine and sine terms, there is a new term proportional to
t sin � t. This term is an oscillation that grows in amplitude over time. At an exact0
undamped resonance, the force is always in phase with the oscillation, adding
energy to the motion in every cycle. Since this energy is not dissipated by damping,
the oscillation increases without bound. Of course, in any real oscillator, some
form of damping or nonlinearity will eventually come into play, stopping the
growth of the oscillation.
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In later chapters we will run across examples of other linear ODEs that exhibit
exact resonance when driven at a natural frequency of the system. In each case,
the response grows with time, and therefore must be treated as a special case for

Ž .which Eq. 1.6.44 does not apply. The simplest approach is to apply DSolve or
the method of undetermined coefficients for the case of resonance, and to use

Ž .Eq. 1.6.44 otherwise.
Nevertheless, it is useful to understand mathematically how this resonant

behavior arises. Consider an undamped oscillator driven at a frequency just off
Ž . wŽ . xresonance, with forcing f t s f cos � y� t . Then the particular solution is0 0

Ž .given by Eq. 1.6.45 with �s0:
f cos � y� tŽ .0 0x t s . 1.6.46Ž . Ž .p 22� �y�0

This oscillation has very large amplitude, approaching infinity as �™0. However,
consider a different particular solution, one that is chosen to be zero initially. Such
a solution can be obtained by adding in a homogeneous solution to the oscillator
equation. One choice for the homogeneous solution is simply A cos � t, with the0
appropriate choice of the constant A so that the solution is zero at ts0:

f0x t s cos � y� t ycos � t . 1.6.47� 4Ž . Ž . Ž .p 0 022� �y�0

The two cosine functions are at nearly the same frequency, and therefore exhibit
the phenomenon of beats, as shown in Cell 1.85 for the case �s0.1 and � s1.0
Oscillations grow for a time, then decay due to the interference between the two
cosine functions. The smaller the frequency difference between the two cosine

Žoscillations, the longer the beats become. Try changing the frequency difference �
.in Cell 1.85. Finally, in the limit as the difference �™0, the length of time

between beats goes to infinity, and the initial linear growth in amplitude of the
oscillation continues indefinitely; the oscillation grows without bound. To see this

Ž . Ž .from Eq. 1.6.47 mathematically, we can take a limit see Cell 1.86 .

Cell 1.85

� = 0.1;
Plot [Cos[ (1 - �) t] - Cos[t], {t, 0, 200}];
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Cell 1.86

f0Limit[ (Cos[(� -�) t]-Cos[� t]), �™0]0 02
2� � - �0

t Sin[t � ] f0 0

2 �0

This limit reproduces the linear amplitude growth observed in the general solution
of the undamped oscillator found previously using DSolve.

The examples we have seen so far in this section have all involved simple forcing
Ž .functions. In the next chapter we will learn how to deal with general f t , and in

the process develop an understanding of Fourier series and integrals.

EXERCISES FOR SEC. 1.6

ˆ( )1 In the introduction to Sec. 1.6.1, we presented an operator L defined by
ˆ d fr dtLfse , as an example of a nonlinear operator. On the other hand,

ˆ dr dtconsider the operator defined by Lfse f. Here,

2 3d 1 d 1 ddr dte s1q q q q ž / ž /dt 2! dt 3! dt

Is this operator linear or nonlinear? Find and plot the action of both
Ž . Žoperators on f t ssin t, for 0� t�2
 . Hint: The infinite series can be

.summed analytically.

( )2 Find, by hand, a complete set of independent solutions to the following linear
Žhomogeneous ODEs you may check your results using Mathematica, of

.course :
( )a x		 q2 x�q3 x	 q2 x�q2 xs0.
( )b x		 q6 x�q38 x	 q112 x�q104 xs0.
( )c x�y3 x	 q3 x�yxs0.
( ) Ž . Ž .d x	 s2 yyx yx�, y	 s2 xyy yy�.

( )3 Use the matrix inversion technique to solve the following ODE numerically:

d®
L̂®s q t® t s0, ® 0 s1.Ž . Ž .dt

Ž .Use the Euler method form, Eq. 1.6.23 , for the finite-differenced version of
ˆthe operator L on the range 0� t�3, with � ts0.05. Plot the solution on

this time interval, and compare it with the exact solution found with Mathe-
matica.

( )4 A finite-difference method for second-order ODEs was discussed in Sec. 1.4;
Ž . Ž .see Eqs. 1.4.27 and 1.4.28 . Using this method, finite-difference Airy’s

equation

d2 x sytx tŽ .2dt
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Ž . Ž .with initial conditions x y1 s1, x� y1 s0. Write the ODE and initial
Ž .conditions as a matrix equation of the form 1.6.24 . Solve the ODE by matrix

inversion, taking � ts0.1, for y1� t�5, and plot the result along with the
analytic result found from Mathematica using DSolve.

( ) ( )5 a For the following general first-order linear ODE, find the matrix L that
corresponds to the second-order predictor�corrector method, and write
out the first four rows of L:

dx qu t xs0.Ž .0dt

Ž . Ž 2 .Use this matrix to solve the initial value problem where u t s tr 1q t0
Ž . Ž .and x 0 s1, for 0� t�5, taking � ts0.1. Plot x t and, on the same

plot, compare it with the exact solution found using DSolve.

( )6 Add the following forcing functions to the right-hand sides of the problems
Ž .listed in Exercise 2 , and solve for a particular solution by hand using the

Žmethod of undetermined coefficients you can use Mathematica to help with
.the algebra, and to check your answers :

( ) Ž . Ž .Ž . Ž .a f t ssin t to Exercise 2 a and b .
( ) Ž . 3 Ž .Ž .b f t s t to Exercise 2 c .
( ) Ž . Ž .c x	 s2 yyx yx�, y	 s2 xyy qcos 2t.

( ) ( ) Ž .7 a Find the potential � x between two parallel conducting plates located
at xs0 and at xsL. The potential on the left plate is V , and that on1
the right plate is V . There is a charge density between the plates of the2
form �s� cos kx. The potential satisfies d2�rdx2sy�r� .0 0

( ) Ž .b Discuss the behavior of the answer from part a for the case of constant
charge density, ks0.

( ) Ž .8 Consider an LRC circuit driven by an oscillating voltage V t sV cos � t.0
Ž .The charge on the capacitor satisfies Eq. 1.3.2 . The homogeneous solution

Ž .was found in Sect. 1.3, Exercise 3 .
( )a Find a particular solution using the method of complex exponentials,

Ž . Ž yi � t.x t sRe Ce .p

( ) y3b For V s1 volt, Rs2 ohms, Cs100 picofarads and Ls2�10 henry,0
� �find the resonant frequency of the circuit. Plot the amplitude C and

phase � of the particular solution vs. � over a range of � from zero to
twice the resonant frequency.

( )9 A damped linear oscillator has mass m and has a Hooke’s-law force constant
Ž .k and a linear damping force of the form F sm� ® t . The oscillator isd

Ž .driven by an external periodic force of the form F t sF sin � t.ext 0

( ) Ž .a Find a particular solution in complex exponential form, x t sp
Ž yi � t.Re Ce

( )b The rate of work done by the external force on the mass is dW rdtsext
Ž . Ž . Ž . Ž . ŽF t ® t . Using the particular solution ® t from part a , find a time-ext p

. Ž .independent expression for dW rdt , the average rate of work done onext
Žthe mass, averaged over an oscillation period 2
r�. Hint: Be careful!



ORDINARY DIFFERENTIAL EQUATIONS IN THE PHYSICAL SCIENCES86

Ž .When evaluating the work the real solution for ® t must be used. Usep
Mathematica to help do the required time integration over a period of the

.oscillation.
( ) Ž .c According to part b , work is being done on the mass by the external

Ž .force, but according to part a its amplitude of oscillation is not increas-
ing. Where is the energy going?

( )d Work is done by the damping force F on the mass m at the rated
Ž . Ž .dW rdtsF t ® t . The work is negative, indicating that energy flowsd d

from the mass into the damper. What happens to this energy? Using
Ž . Ž .the particular solution from part a for ® t , show that dW rdtqd

dW rdts0.ext

( ) wŽ . x10 Find the length of time between beats in the function cos � y� t ycos � t0 0
Ž .i.e., the time between maxima in the envelope of the oscillation . Show that

Žthis time goes to infinity as �™0. Hint: Write this combination as the real
.part of complex exponential functions, and go on from there.

( )11 Show that the response of a damped oscillator to a harmonic driving force at
Ž .frequency �, Eq. 1.6.45 , has a maximum amplitude of oscillation when �

2 2's � y� r2 .0
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CHAPTER 2

FOURIER SERIES AND TRANSFORMS

2.1 FOURIER REPRESENTATION OF PERIODIC FUNCTIONS

2.1.1 Introduction

Ž .A function f t is periodic with period T when, for any value of t,

f t s f tqT . 2.1.1Ž . Ž . Ž .

An example of a periodic function is shown in Fig. 2.1. We have already encoun-
tered simple examples of periodic functions: the functions sin t, cos t, and tan t are
periodic with periods 2� , 2� , and � respectively.

Functions that have period T are also periodic over longer time intervals
Ž .2T , 3T , 4T , . . . . This follows directly from Eq. 2.1.1 :

f t s f tqT s f tq2T s f tq3T s ��� . 2.1.2Ž . Ž . Ž . Ž . Ž .

For example, sin t has period 2� , but also has period 4� , 6� , . . . . We can define
the fundamental period of a periodic functions as the smallest period T for which

Ž .Eq. 2.1.1 holds. So the fundamental period of sin t is 2� , and that of tan t is � .
When we speak of the period of a function, we usually mean its fundamental
period. We will also have occasion to discuss the fundamental frequency ��s2�rT
of the function.

Why should we care about periodic functions? They play an important role in
our quest to determine the particular solution to an ODE due to arbitrary forcing.
In Sec. 1.6, we found the response of an oscillator to a simple periodic sine or
cosine forcing. However, this response will clearly be more complicated for
periodic forcing of the type shown in Fig. 2.1. We can determine this response by
first writing the periodic forcing function as a sum of simple sine and cosine
functions. This superposition is called a Fourier series, after the French mathemati-
cian Jean Fourier, who first showed how such a series can be constructed. Once we
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Fig. 2.1 A periodic function with period Ts1.

have this series for the forcing function, we can use the superposition principle to
write the response of the oscillator as a sum of the individual responses to the
individual cosine and sine terms in the series.

ŽLater, we will find that Fourier series representation of periodic functions and
.generalizations to the representation of nonperiodic functions are also very useful

in a number of other applications, such as the solution to certain common partial
differential equations.

Ž .In order to expand a given periodic function f t as a sum of sines and cosine
Ž .functions, we must choose sines and cosines with the same periodicity as f t itself.

Ž .Since f t has period T , we will therefore choose the functions
sin 2� trT , sin 4� trT , sin 6� trT . . . and 1, cos 2� trT , cos 4� trT , cos 6� trT , . . . .
These functions have fundamental periods Trn for integers ns0, 1, 2, 3, . . . , and

Ž .therefore by Eq. 2.1.2 are also periodic with period T. Note that the constant
function 1, with undefined period, is included. A few of these functions are shown
in Cells 2.1 and 2.2.

Cell 2.1

<<<<<<<<<< Graphics‘;
T = 1; Plot[{Sin[2Pit/], Sin[4Pi t/T], Sin[6Pi t/T]},
{t, 0, T}, PlotStyle™{Red, Blue, Purple}];
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Cell 2.2

T = 1; Plot[{1, Cos[2 Pi t/T], Cos[4 Pi t/T]},
{t, 0, T}, PlotStyle™{Red, Blue, Purple}];

One can see that both cos 2� ntrT and sin 2� ntrT become more and more
rapidly varying as n increases. The more rapidly varying functions will be useful in

Ž .helping describe rapid variation in f t .
A general linear combination of these sines and cosines constitute a Fourier

series, and has the form
� 2� nt 2� nt

a q a cos qb sin ,Ý0 n nž /T T
ns1

where the constants a and b are called Fourier coefficients. The functionsn n
cos 2� ntrT and sin 2� ntrT are often referred to as Fourier modes.

It is easy to see that the above Fourier series has the correct period T. If we
w Ž . xevaluate the series at time tqT , the nth cosine term is cos 2� n tqT rT s

Ž .cos 2� ntrTq2� n scos 2� ntrT , where in the last step we have used the fact
that cosine functions have period 2� . Thus, the cosine series at time tqT returns
to the form it had at time t. A similar argument shows that the sine series
evaluated at time tqT also returns to its form at time t. Therefore, according to

Ž .Eq. 2.1.1 the series is periodic with period T.
The fact that Fourier coefficients can be found that allow this series to equal a

Ž .given periodic function f t is a consequence of the following theorem:

Ž .Theorem 2.1 If a periodic function f t is continuous, and its derivative is
nowhere infinite and is sectionally continuous, then it is possible to construct a

Ž .Fourier series that equals f t for all t.

A sectionally continuous periodic function is one that is continuous in finite-size
sections, with either no discontinuities at all or at most a finite number of
discontinuities in one period of the function. Figure 2.1 is an example of a
sectionally continuous periodic function. We will see later in this section what

Ž . Ž .happens to the Fourier representation of f t when f t violates the restrictions
Ž .placed on it by Theorem 2.1. For now, we assume that the function f t satisfies
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the requirements of the theorem, in which case Fourier coefficients can be found
such that

� 2� nt 2� nt
f t sa q a cos qb sin for all t . 2.1.3Ž . Ž .Ý0 n nž /T T

ns1

2.1.2 Fourier Coefficients and Orthogonality Relations

We are now ready to find the Fourier coefficients a and b that enter into then n
Ž .Fourier series representation of a given periodic function f t . These coefficients

can be found by using an important property of the sine and cosine functions that
Ž . Ž .appear in Eq. 2.1.3 : the property of orthogonality. Two real functions g t and

Ž . w xh t are said to be orthogonal on the inter®al a, b if they satisfy

b
g t h t dts0. 2.1.4Ž . Ž . Ž .H

a

Ž .The sine and cosine Fourier modes in Eq. 2.1.3 have this property of orthogonal-
w xity on the interval t , t qT for any choice of t . That is, for integers m and n0 0 0

the Fourier modes satisfy

t qT t qT2� nt 2� mt 2� nt 2� mt0 0sin sin dts cos cos dts0, m�n ,H HT T T Tt t0 0

2.1.5Ž .
t qT 2� nt 2� mt0 sin cos dts0.H T Tt0

In the first equations, the restriction m�n was applied, because a real function
Ž .cannot be orthogonal with itself: for any real function g t that is nonzero on a

w x b 2Ž .finite range within a, b , H g t dt must be greater than zero. This follows simplya
2Ž . 2Ž .because g t G0, so there is a finite positive area under the g t curve. For this

Ž .reason, when msn in Eq. 2.1.5 , the first and last integrals return a positive
result:

t qT t qT2� nt 2� nt T0 02 2sin dts cos dts , n�0, 2.1.6Ž .H HT T 2t t0 0

t qT 2� 0 t0 2cos dtsT . 2.1.7Ž .H Tt0

The last equation follows because cos 0s1. The analogous equation for the sine
functions,

t qT 2� 0 t0 2sin dts0,H Tt0

is not required, since sin 0s0 is a trivial function that plays no role in our Fourier
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Ž . Ž .series. Equations 2.1.5 and 2.1.6 can be proven using Mathematica:

Cell 2.3

g = {Sin, Cos};
Table [Table[

FullSimplify [Integrate[g[[i]][2Pin t/T] g[[j]][2Pim t/T],
{t, t0, t0 + T}],
n�m &&&&&&&&&& ngggggIntegers&&&&&&&&&&mgggggIntegers], {j, i, 2}], {i, 1, 2}]

{{0, 0}, {0}}

Cell 2.4

Table[FullSimplify[
Integrate[g[[i]][2Pin t/T] ^̂̂̂̂2, {t, t0, t0 + T}],
ngIntegers], {i, 1, 2}]

T T
,½ 52 2

Note that in the last two integrals, we did not specify that n�0, yet Mathematica
gave us results assuming that n�0. This is a case where Mathematica has not been

Ž . Ž .sufficiently careful. We also need to be careful: as we can see in Eqs. 2.1.5 � 2.1.7 ,

The ns0 Fourier cosine mode is a special case that must be dealt with
separately from the other modes.

These orthogonality relations can be used to extract the Fourier coefficients
Ž . Ž .from Eq. 2.1.3 . For a given periodic function f t , we can determine the

Ž .coefficient a by multiplying both sides of Eq. 2.1.3 by cos 2� mtrT and integrat-m
ing over one period, from t to t qT for some choice of t :0 0 0

�
t qT t qT2� mt 2� nt 2� mt0 0f t cos dts a cos cos dtŽ . ÝH HnT T Tt t0 0ns0

�
t qT 2� nt 2� mt0q b sin cos dt. 2.1.8Ž .Ý Hn T Tt0ns1

Ž .The orthogonality of the sine and cosine Fourier modes, as shown by Eq. 2.1.5 ,
implies that every term in the sum involving b vanishes. In the first sum, only then
nsm term provides a nonzero integral, equal to Tr2 for m�0 and T for ms0

Ž .according to Eq. 2.1.6 . Dividing through by these constants, we arrive at

t qT1 0a s f t dt ,Ž .H0 T t0

2.1.9Ž .
t qT2 2� mt0a s f t cos dt , m�0.Ž .Hm T Tt0
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Ž .Similarly, the b ’s are determined by multiplying both sides of Eq. 2.1.3 byn
sin 2� mtrT and integrating from t to t qT for some choice of t . Now0 0 0
orthogonality causes all terms involving the a ’s to vanish, and only the termn
proportional to b survives. The result ism

t qT2 2� mt0b s f t sin dt , m�0. 2.1.10Ž . Ž .Hm T Tt0

2.1.3 Triangle Wave

Ž . Ž . Ž .Equations 2.1.3 , 2.1.9 , and 2.1.10 provide us with everything we need to
Ž .determine a Fourier series for a given periodic function f t . Let’s use these

equations to construct Fourier series representations for some example functions.
Our first example will be a triangle wave of period T. This function can be created
from the following Mathematica commands, and is shown in Cell 2.5 for the case
of Ts1:

Cell 2.5

f[t_____] := 2t/T /; 0 F t <<<<< T/2;

f[t_____] := 2 - 2t/T /; T/2 F t <<<<< T;

T = 1; Plot[f[t], {t, 0, T}];

This is only one period of the wave. To create a periodic function, we need to
Ž .define f for the rest of the real line. This can be done using Eq. 2.1.1 , the

definition of a periodic function, as a recursion relation for f :

Cell 2.6

f[t_____] := f[t - T] /; t >>>>> T;
f[t_____] := f[t + T] /; t <<<<< 0

Now we can plot the wave over several periods as shown in Cell 2.7.
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Cell 2.7

Plot[f[t], {t, -3T, 3T}];

This function is continuous, and its derivative is sectionally continuous and not
singular, so according to Theorem 2.1 the Fourier series representation of f
should work. To test this conclusion, we first need to determine the Fourier

Ž .coefficients. The a ’s are evaluated according to Eq. 2.1.9 . We will perform thisn
integral in Mathematica analytically, by choosing t s0 and breaking the integral0

Ž .over f t into two pieces:

Cell 2.8

Clear[T];
a[n_____] = FullSimplify[(2/T) Integrate[Cos[2Pin t/T] 2t/T,
{t, 0, T/2}] +
(2/T) Integrate[Cos[2Pin t/T] (2 - 2t/T), {t, T/2, T}],
ngIntegers]

2 (-1)n (-1+ (-1)n)
-

2 2n �

Cell 2.9

a[0] = Simplify[(1/T) Integrate[2t/T, {t, 0, T/2}] +
(1/T) Integrate[(2 - 2t/T), {t, T/2, T}]]

1
2

A list of a -values can now be constructed:n

Cell 2.10

Table[a[n], {n, 0, 10}]

1 4 4 4 4 4
, - , 0,- , 0, - , 0, - , 0, - , 0½ 52 2 2 2 22 � 9� 25� 49� 81�
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For future reference, we reproduce these results for our triangle wave below:

4
a sy , n odd,n 2 2n � 2.1.11Ž .

1a s .0 2

Similarly, we can work out the b ’s by replacing the cosine functions in the aboven
integrals with sine functions. However, we can save ourselves some work by

Ž .noticing that f t is an even function of t:

f yt s f t . 2.1.12Ž . Ž . Ž .

Ž .Since sine functions are odd in t, that is, sin y� t sysin � t, the Fourier sum
involving the sines is also an odd function of t, and therefore cannot enter into the
representation of the even function f. This can be proven rigorously if we choose

Ž .t syTr2 in Eq. 2.1.10 . The integrand is an odd function multiplied by an even0
function, and is therefore odd. Integrating this odd function from yTr2 to Tr2
must yield zero, so therefore b s0.n

Ž .For an even function f t , the Fourier representation involves only Fourier
cosine modes; for an odd function it involves only Fourier sine modes.

Thus, our triangle wave can be represented by a Fourier cosine series. We can
construct this series in Mathematica provided that we keep only a finite number of
terms; otherwise the evaluation of the series takes an infinitely long time. Let’s

Ž .keep only M terms in the series, and call the resulting function f t, M :approx

Cell 2.11

f [t_____, M_____] := Sum[a[n] Cos[2 Pi n t / T], {n, 0, M}]approx

For a given period T we can plot this function for increasing M and watch how the
series converges to the triangle wave: see Cell 2.12. One can see that as M
increases, the series approximation to f is converging quite nicely. This is to be

Ž .expected: according to Eq. 2.1.11 , the Fourier coefficients a fall off withn
increasing n like 1rn2, so coefficients with large n make a negligible contribution
to the series.

Cell 2.12

T =1; Table[Plot[f [t, M], {t, 0, 2}, PlotRange™approx

{-.2, 1.2},
PlotLabel™"M ="<<<<<>>>>>ToString[M]], {M, 1, 11, 2}];
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Although the series converges, convergence is more rapid in some places than
others. The error in the series is greatest near the sharp points in the triangle
wave. This should come as no surprise, since a sharp point introduces rapid
variation that is difficult to reproduce by smoothly varying cosine Fourier modes.
Functions with rapid variation must be described by rapid varying cosine and sine
functions, which means that n�1 terms must be kept in the Fourier series.

Functions that vary smoothly can be well described by a finite Fourier series
keeping a small number of terms. Functions with more rapid variation need
more terms in the series.

Ž .Perhaps it is now starting to become clear as to why the restrictions on f t are
Ž .necessary in Theorem 2.1. If f t has a discontinuity or its derivative is singular, it

cannot be represented properly by sine and cosine functions, because these functions do
not ha®e discontinuities or singularities.

2.1.4 Square Wave

Our next example is a good illustration of what happens when a function violates
the restrictions of Theorem 2.1. Consider a square wa®e with period T , defined by
the following Mathematica commands:

Cell 2.13

Clear[f];
f[t_____] := 1 /; 0 F t <<<<< T/2;
f[t_____] := -1 /; -T/2 F t <<<<< 0
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The definition of f is extended over the entire real line using the same recursive
technique as for the triangle wave, as shown in Cell 2.14. Our square wave has
been defined as an odd function, satisfying

f yt syf t , 2.1.13Ž . Ž . Ž .
Cell 2.14

f[t_____] := f[t + T] /; t<<<<<-T/2;
f[t_____] := f[t - T] /; t>>>>>T/2;

T = 1; Plot[f[t], {t, -3, 3}];

and therefore its Fourier representation will be as a sine series. The Fourier
Ž .coefficients b follow from Eq. 2.1.10 , and can be determined using Mathematican

as follows:

Cell 2.15

b[n_____] = FullSimplify[2/T (-Integrate[Sin[2Pin t/T],
{t, -T/2, 0}] + Integrate[Sin[2Pin t/T],
{t, 0, T/2}]), ngIntegers]

2 - 2 Cos[n�]
n�

Thus, this Fourier series has the simple form
M4 1 2� nt

f t , M s sin . 2.1.14Ž . Ž .Ýapprox � n T
Ž .ns1 n odd

The Fourier coefficients fall off rather slowly as n increases, like 1rn. The
2 w Ž .xcoefficients for the triangle wave fell off more rapidly, as 1rn see Eq. 2.1.11 .

This makes some sense, since the square wave is discontinuous and the triangle
wave continuous, so the high-n terms in the square wave series have more weight.
However, this is also a problem: because the high-n terms are so important, our
finite approximation to the series will not converge the same way as for the

Ž .triangle wave. Let’s construct a finite series, f t, M , and view its convergenceapprox
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with a table of plots as we did previously for the triangle wave. This is done in Cell
2.16. The series is clearly not converging as well as for the triangle wave. The
discontinuity in the square wave is difficult to represent using a superposition of
smoothly varying Fourier modes.

Cell 2.16

f [t_____, M_____] := Sum[b[n] Sin[2Pi n t/T], {n, 1, M}];approx

T = 1; Table[Plot[f [t, M], {t, -1, 1}, PlotRange™{-1.5,approx

1.5}, PlotLabel™"M = " <<<<<>>>>>ToString[M]], {M, 4, 20, 4}];

2.1.5 Uniform and Nonuniform Convergence

It is useful to consider the difference between the series approximation and the
exact square wave as M increases. This difference is evaluated and plotted in Cell
2.17. The error has a maximum value of �1 at the discontinuity points tsmTr2,
independent of M. This maximum error is easy to understand: the square wave
takes on the values �1 at these points, but the Fourier series is zero there because

Ž .at tsmTr2 the nth term in the series is proportional to sin nm� s0.

Cell 2.17

errorplot[M_____] :=
(a = f [t, M]; Plot[a - f[t], {t, -0.5, 0.5},approx

PlotRange™{-1, 1}, PlotPoints™100 M,
PlotLabel™"Error, M = " <<<<<>>>>>ToString[M]]);

Table[errorplot[M], {M, 10, 50, 10}];
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Furthermore, each successive peak in the error has a value that is independent
of M: the first peak on the right side of the origin is at about 0.2, the next is at
about 0.1, and so on, independent of M. In fact, in the next subsection we will
show that the maximum size of error of the first peak is 0.1789 . . . , that of the
second is 0.0662 . . . , independent of M. The constancy of these maximum errors as
M increases is most easily observed by animating the above set of graphs. What
you can see from the animation, however, is that while the height of the peaks is
independent of M, the width of the peaks shrinks as M increases, and the peaks
crowd in toward the origin. This strange behavior is called the Gibbs phenomenon.

As a result of the Gibbs phenomenon, for any finite value of M, no matter how
large, there is always a small region around the discontinuity points where the
magnitude of the error is independent of M. Although this region shrinks in size as
M increases, the fact that the error is independent of M within this region
distinguishes the behavior of this Fourier series from that of a function that
satisfies the restrictions of Theorem 2.1, such as the triangle wave studied previ-
ously. There, the error in the series decreased uniformly as M increased. By this

� Ž . Ž . �we mean that, as M increases, f t, M y f t ™0 for all t. This is calledapprox
uniform con®ergence of error, and it is necessary in order for us to state that the

Ž .left-hand and right-hand sides of Eq. 2.1.3 are strictly equal to one another for
every t.

More precisely, as M increases, a uniformly convergent series satisfies

� �f t , M y f t �� M , 2.1.15Ž . Ž . Ž . Ž .approx

Ž .where � M is some small number that is independent of t and that approaches
Ž .zero as M™�. Thus, the error in the series is bounded by � M , and this error

goes to zero as M increases, independent of the particular value of t.



2.1 FOURIER REPRESENTATION OF PERIODIC FUNCTIONS 99

On the other hand, the behavior of the error in the series representation of the
Ž .square wave is an example of nonuniform con®ergence. Here Eq. 2.1.15 is not

satisfied for every value of t: we can find a small range of t-values around the
discontinuities for which the error is not small, no matter how large we take M.

Functions that satisfy the restrictions of Theorem 2.1 ha®e Fourier series representa-
tions that con®erge uniformly. But even for nonuniformly convergent series, the
previous analysis of the square wave series show that the series can still provide a
reasonably accurate representation of the function, provided that we stay away
from the discontinuity points. Thus, Fourier series are often used to approximately
describe functions that have discontinuities, and even singularities. The description
is not exact for all t, but the error can be concentrated into small regions around
the discontinuities and singularities by taking M large. This is often sufficient for
many purposes in scientific applications, particularly in that there are no real
discontinuities or singularities in nature; such discontinuities and singularities are
always the result of an idealization, and therefore we usually need not be too
concerned if the series representation of such functions does not quite describe the
singular behavior.

2.1.6 Gibbs Phenomenon for the Square Wave

The fact that the width of the oscillations in the error decreases as M increases
suggests that we attempt to understand the Gibbs phenomenon by applying a scale
transformation to the time: let �sMtrT. For constant � the actual time t
approaches zero as M increases. The hope is that in these scaled time units, the
compression of the error toward the origin observed in the above animation will
disappear, so that on this time scale the series will become independent of M as
M increases.

Ž .In these scaled dimensionless time units, the series Eq. 2.1.14 takes the form

M4 1 2� n�
f � , M s sin . 2.1.16Ž . Ž .Ýapprox � n M

Ž .ns1 n odd

There is still M-dependence in this function, so we will perform another scale
Ž .transformation, defining ssMn. Substituting this transformation into Eq. 2.1.16

yields

14 1
f � , M s sin 2� s� . 2.1.17Ž . Ž .Ýapprox � M s

ss1rM , 3rM , 5rM , . . .

Ž .The function sin 2� s� rs is independent of M and is well behaved as s varies on
w x0, 1 , taking the value 2�� at ss0. Furthermore, the interval � ss2rM between
successive s-values decreases to zero as M increases, so we can replace the sum by
an integral over s from 0 to 1:

1
11 1

lim � s sin 2� s� s sin 2� s� ds. 2.1.18Ž .Ý Hs sž /� s™0 0ss� sr2 , 3 � sr2 , 5 � sr2 , . . .
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Ž .Substituting this integral into Eq. 2.1.17 yields the following result for f :approx

12 1
f � , M s sin 2� s� ds. 2.1.19Ž . Ž .Happrox � s0

As we hoped, f is now independent of M when written in terms of the scaledapprox
time � . It can be evaluated in terms of a special function called a sine integral:

Cell 2.18

f [�_____] = Simplify[2/Pi Integrate[Sin[2Pis �]/s,approx

{s, 0, 1}], Im[�] == 0]

2 SinIntegral[2��]
�

Ž .A plot of this function vs. scaled time � Cell 2.19 reveals the characteristic
oscillations of the Gibbs phenomenon that we observed previously. The largest

Ž .error in the function occurs at the first extremum see Cell 2.20 .

Cell 2.19

Plot[f [�], {� , -3, 3}];approx

Cell 2.20

D[f [�], �]approx

2 Sin[2 ��]
��

1This derivative vanishes at �snr2, n�0. The plot of f shows that �s isapprox 2

the location of the first extremum. The maximum value of f is thereforeapprox

Cell 2.21

f [1/2]approx

2 SinIntegral[�]
�
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Cell 2.22

%%%%% // N

1.17898

Thus, the maximum overshoot of the oscillation above 1 is 0.17898 . . . . The next
3maximum in f occurs at �s , with an overshoot above 1 ofapprox 2

Cell 2.23

f [3/2] - 1 // Napprox

0.0661865

If we return to regular time units and plot f vs. t for different values of M,approx
we can reproduce the manner in which the oscillations crowd toward the origin as

Ž .M increases see Cell 2.24 . Near the time origin, the result looks identical to the
behavior of the square wave Fourier series plotted in Cell 2.16, except that now
f is no longer periodic in t. The periodic nature of f has been lost,approx approx

Ž .because our integral approximation in Eq. 2.1.18 is correct only for t close to
w Ž . xzero. Equation 2.1.18 assumes � remains finite as M™�, so t™0.

Cell 2.24

T = 1; Table [Plot[f [Mt], {t, -1, 1}, PlotRange™approx

{-1.5, 1.5},
PlotLabel™"M = " <<<<<>>>>>ToString[M]], {M, 4, 20, 4}];
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2.1.7 Exponential Notation for Fourier Series

In Sec. 1.6 we found that it could be useful to write a real periodic oscillation
w Ž .xa cos � tqb sin � t in the more compact complex notation, Re C exp yi� t , where

C is a complex number. We can do the same thing for a Fourier series representa-
tion of a real periodic function of period T :

� �

f t sa q a cos n �� t q b sin n �� t . 2.1.20Ž . Ž . Ž . Ž .Ý Ý0 n n
ns1 ns1

Here we have written the series in terms of the quantity ��s2�rT , which is the
Ž .fundamental frequency of the periodic function see Sec. 2.1.1 .

In order to write this series in complex form, we will use the trigonometric
identities

e i xqeyi x e i xyeyi x

cos xs , sin xs . 2.1.21Ž .2 2 i

Ž .When these identities are employed in Eq. 2.1.20 , and we combine the common
terms involving e in � � t and eyi n � � t, we obtain

� �a q ib a y ibn n n nyi n � � t in � � tf t sa q e q e . 2.1.22Ž . Ž .Ý Ý0 2 2
ns1 ns1

Note that, for real a and b , the second sum is the complex conjugate of the firstn n
sum. Using the fact that zqz*s2 Re z for any complex number z, we see that

Ž .Eq. 2.1.22 can be expressed as

�
yi n � � tf t sa qRe a q ib e . 2.1.23Ž . Ž . Ž .Ý0 n n

ns1

If we now introduce complex Fourier coefficients C , defined asn

C sa ,0 0
2.1.24Ž .

C sa q ib , n�0,n n n

Ž .we can write Eq. 2.1.22 in the following compact form:

�
yi n � � tf t sRe C e . 2.1.25Ž . Ž .Ý n

ns0

Ž .Equation 2.1.25 is one form for an exponential Fourier series, valid for real
Ž . Ž .functions f t . Another form that can also be useful follows from Eq. 2.1.22 by
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defining a different set of complex Fourier coefficients c :n

c sa ,0 0

a q ibn nc s , n�0, 2.1.26Ž .n 2

a y ibyn ync s , n�0.n 2

The definition of these coefficients is extended to n�0 for the following reason:
Ž . � in � � tthis extension allows us to express the second sum in Eq. 2.1.22 as Ý c e .ns1 yn

Then by taking n™yn in this sum, and noting that this inversion changes the
range of the sum to y� to y1, we can combine the two sums and obtain

�
yi n � � tf t s c e . 2.1.27Ž . Ž .Ý n

nsy�

Ž .Equation 2.1.27 is a second form for the exponential Fourier series. It differs
from the first form in that the real part is not taken, and instead the sum runs over
both negative and positive n, from y� to q�. Also, note that we did not assume

Ž . Ž .that a and b are real, so Eq. 2.1.27 works for complex periodic functions f tn n
Ž .as well as for real periodic functions. For this reason, Eq. 2.1.27 is somewhat

Ž .more general than Eq. 2.1.25 , which applies only to real functions.
We are now left with the question of how to determine the complex Fourier

coefficients. Of course, we could determine the real coefficients a and b andn n
Ž . Ž .then use use either Eqs. 2.1.24 or Eqs. 2.1.26 , but it would be better if we could

Ž .determine the complex coefficients c or C directly without reference to then n
real coefficients. This can be done by using a new set of orthogonality relations,
valid for complex exponential functions.

Before we can consider these orthogonality relations, we must first extend the
Ž .notion of orthogonality, Eq. 2.1.4 , to cover complex functions. Two complex

Ž . Ž . w xfunctions g t and h t are said to be orthogonal on the interval a, b if they
satisfy

b
g t h t * dts0. 2.1.28Ž . Ž . Ž .H

a

The complex conjugation is added to the definition so that we can again say that a
b Ž . Ž . b � Ž . � 2function cannot be orthogonal with itself: H g t g t * dtsH g t dtG0, witha a

equality only for a function that equals zero across the interval. Of course, we
could equally well have the complex conjugate of g rather than h in this definition,

b Ž . Ž .H g t *h t dts0.a
yi n � � t Ž .The complex exponential Fourier modes, e with ��s2�rT , satisfy

the following orthogonality relations on the interval t to t qT , for any choice0 0
of t :0

t qT0 yi n � � t yi m � � te e * dts0, m�n. 2.1.29Ž . Ž .H
t0
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This can easily be proven using a couple of lines of algebra:

t qT0 yi n � � t yi m � � te e * dtŽ .H
t0

t qT T0 y2 � iŽnym . trT y2 � iŽnym .Ž t qT .rT y2 � iŽnym . t rT0 0w xs e dts e yeH y2� i nymŽ .t0

T y2 � iŽnym . t rT y2 � iŽnym .0 w xs e e y1 s0. 2.1.30Ž .y2� i nymŽ .
The case where msn is even simpler:

t qT t yT0 0yi n � � t yi n � � t yi 0e e * dts e dtsT . 2.1.31Ž . Ž .H H
t t0 0

Ž . Ž .Equations 2.1.29 and 2.1.30 can now be used to determine the Fourier coeffi-
Ž .cients c for a given function f t . To do so, we multiply both sides of the equationn

Ž yi m � � t.by e *, and integrate over one period:
�

t qT t qT0 0yi m � � t yi m � � t yi n � � te *f t dts c e * e dt. 2.1.32Ž . Ž . Ž . Ž .ÝH Hn
t t0 0nsy�

Ž .Then, according to Eq. 2.1.29 , all terms in the sum vanish, except for the nsm
Ž .term, which, after applying Eq. 2.1.31 , equals c T. Thus, we findm

t qT1 0 yi m � � tc s e *f t dt. 2.1.33Ž . Ž . Ž .Hm T t0

Ž . Ž . Ž .Equations 2.1.33 and 2.1.27 allow us to write any periodic function f t as an
exponential Fourier series. Of course, the function must satisfy the requirements
of Theorem 2.1 in order for the series to converge uniformly to f.

Ž .For real f we can also write the series in the form of Eq. 2.1.25 by using Eq.
Ž .2.1.33 along with the relations

C sc ,0 0 2.1.34Ž .
C s2c , n�0,n n

Ž . Ž .which follow from comparing Eqs. 2.1.24 and 2.1.26 .

ŽTwo representations of an exponential Fourier series the first is valid only for
Ž ..real f t :

� yi n � � tŽ . Ž . w x1 f t sRe Ý C e ,ns0 n
� yi n � � tŽ . Ž .2 f t sÝ c e ,nsy� n

where

C sc ,0 0

C s2c , n�0,n n

and
1 t qT yi n � � t0 Ž . Ž .c s H e *f t dt for all n.n tT 0
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2.1.8 Response of a Damped Oscillator to Periodic Forcing

Armed with the knowledge we have gained in previous sections, we can now return
to the question put forward at the beginning of the chapter: what is the response

Ž .of a damped oscillator to general periodic forcing f t ?
Ž . Ž .We will find a particular solution x t to the oscillator equation 1.6.2 in thep

form of an exponential Fourier series:

�
yi n � � tx t s x e , 2.1.35Ž . Ž .Ýp n

nsy�

Ž .where x is the complex Fourier coefficient of x t , ��s2�rT is the funda-n p
mental frequency of the given periodic forcing function, and T is the fundamental

Ž . Ž .period of the forcing. If we substitute Eq. 2.1.35 into Eq. 1.6.2 , we obtain

�
2 2 yi n � � tx y n �� y i	 n ��q� e s f t . 2.1.36Ž . Ž . Ž .Ý n 0

nsy�

Finally, we can extract the Fourier coefficient x by multiplying both sides byn
Ž yi n� � t.e *, integrating over a period of the force, and using the orthogonality

Ž . Ž .relations Eq. 2.1.29 and 2.1.31 . The result is

cnx s , 2.1.37Ž .n 2 2y n �� y i	 n ��q�Ž . 0

where c is the nth Fourier coefficient of the forcing function, given by Eq.n
Ž .2.1.33 .

This simple expression contains a considerable amount of physics. First, note
that each Fourier mode in the force drives a single Fourier mode in the oscillator

Ž . Ž .response. For the case of a strictly sinusoidal force, Eqs. 2.1.37 and 2.1.25
Ž .reduce to Eq. 1.6.45 .

Second, the principle of superposition is implicitly coming into play: according
Ž .to Eq. 2.1.35 , the total oscillator response is a linear superposition of the

responses from the individual Fourier modes. However, each mode is indepen-
dently excited, and has no effect on other modes.

Third, note that for high-n Fourier modes, the response is roughly x �n
Ž .2yc r n �� , which approaches zero more rapidly with increasing n than do then

forcing coefficients c . Basically, this is an effect due to inertia of the oscillator: an
very high-frequency forcing causes almost no effect on an oscillator, because the
oscillator’s inertia doesn’t allow it to respond before the force changes sign.

Ž .2 2Fourth, for very low-frequency forcing, such that n �� �� for all Fourier0
modes entering the force, the response is x �c r� 2. We can then re-sum then n 0

Ž . Ž .series according to Eq. 2.1.35 and 2.1.27 , to find that the oscillator amplitude
Ž . Ž . 2tracks the forcing as x t � f t r� . This makes sense intuitively: according top 0

Hooke’s law, when you slowly change the force on a spring, it responds by changing
its length in proportion to the applied force.

Finally, note that some Fourier modes are excited to higher levels than other
Ž .2 2modes. For Fourier modes that satisfy n �� ,� , the denominator in Eq.0

Ž .2.1.37 is close to zero if 	 is small, and the system response exhibits the
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resonance phenomenon discussed in Sec. 1.6.4. These resonant modes are driven
Ž .to large amplitude. For the case of an undamped oscillator 	s0 and exact

Ž . Ž .resonance n ��s� for some value of n , Eq. 2.1.37 does not apply. The0
resonant response is no longer described by a Fourier mode, but rather by a
growing oscillation. The form of this oscillation can be found using the methods for
exact resonance discussed in Sec. 1.6.4.

Resonance phenomena are of great importance in a number of systems, includ-
ing the system to be discussed in the next section.

2.1.9 Fourier Analysis, Sound, and Hearing

The sound that a sinusoidal oscillation makes is a pure tone. Mathematica can play
such sounds with the intrinsic function Play. For example, the sound of the pure
note middle A is a sinusoid with frequency �s2��440 sy1 ; the command and
visible response are shown in Cell 2.25. Play assumes that the time t is given in
seconds, so this command causes a pure middle-A tone to play for 1 second. The
tone can be repeated by double-clicking on the upper corner of the inner cell box.

Cell 2.25

Play[Sin[2Pi 440t], {t, 0, 1}]

Ž .We can also play other sounds. For example Cell 2.26 , we can play the sound
of a triangle wave, which has a distinctive buzzing quality. The visible response of
Play is suppressed in order to save space. Here we have used the Fourier series

Ž .for a triangle wave, with coefficients as listed in Eq. 2.1.11 , keeping 30 coeffi-
Žcients, and neglecting the ns0 term since it merely produces a constant offset, of

.no importance to the sound . We have also added an option PlayRange, which is
analogous to PlotRange for a plot, setting the range of amplitude levels to be
included; it can be used to adjust the volume of the sound.
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Cell 2.26

T = 1/440; a[n_____] = -4/(n ^̂̂̂̂2Pi ^̂̂̂̂2);
f [t_____, 30] = Sum[a[n] Cos[2Pi n t/T], {n, 1, 30, 2}];approx

Play[f [t, 30], {t, 0, 1}, PlayRange™{-0.6, 0.6)]approx

The harsh buzzing sound of the triangle wave compared to a pure sine wave is
caused by the high harmonics of the fundamental middle-A tone that are kept in
this series.

Let’s now consider the following question: what happens to the sound of the
triangle wave if we randomize the phases of the different Fourier modes with

Ž . w Ž .xrespect to one another? That is, let’s replace cos 2� ntrT with cos 2� ntrTq
 ,n
where 
 is a random number between 0 and 2� . The resulting series can ben
written in terms of a sine and cosine series by using the trigonometric identity

cos 2� ntrTq
 scos 
 cos 2� ntrTysin 
 sin 2� ntrT .Ž .n n n

If we plot the series, it certainly no longer looks like a triangle wave, although it
remains periodic with period T , as shown in Cell 2.27. The waveform looks very
different than a triangle wave, so there is no reason to expect that it would sound

Žthe same. However, if we play this waveform using the same PlayRange as
.before, as shown in Cell 2.28 , the sound is indistinguishable from that of the

Ž .triangle wave. Again, the visible output of Play is suppressed to save space. This
is surprising, given the difference between the shapes of these two waveforms. One
can verify that this is not an accident. By reevaluating the random waveform one

Ž .gets a different shape each time; but in each case the sound is identical. Try it.

Cell 2.27

T = 1/440; a[n_____] = -4/(n ^̂̂̂̂2Pi ^̂̂̂̂2);

f [t_____, 30] = Sum[a[n] Cos[2Pi (n t/T + Random[])],approx

{n, 1, 30, 2}];

Plot[f [t, 30], {t, 0, 3T}];approx
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Ž .Fig. 2.2 Simplified diagram of the middle and inner ear not to scale .

Cell 2.28

Play[f [t, 30], {t, 0, 1}, PlayRange™{-0.6, 0.6)]approx

Why do different-shaped waveforms make the same sound? The reason has to
do with how we perceive sound. Sound is perceived by the brain through the
electrical signals sent by nerve cells that line the inner ear. Each nerve cell is
attached to a hair that is sandwiched between two membranes�the basilar

Ž .membrane and the tectorial membrane see Fig. 2.2 . As sound waves move
through the fluid in the inner ear, these membranes, immersed in the fluid, move
relative to one another in response. The basilar membrane is thicker and stiffer in
some places than in others, so different parts of the membrane are resonant to
different frequencies of sound. Therefore, a given sound frequency excites motion

Žonly in certain places on the membrane. This correspondence between frequency
.and location is called a tonotopic map. The motion excites the hairs at these

locations, which in turn cause their respective neurons to fire at a rate that
depends on the amplitude of the motion, sending signals to the brain that are
interpreted as a sound of a given frequency and loudness.

If you think this system sounds complicated, you’re right. After all, it is the
product of millions of years of evolutionary trial and error. But one can think of it
very roughly as just a system of oscillators having a range of resonant frequencies.
Crudely speaking, the ear is doing a Fourier analysis of the incoming sound: the
different frequency components of the sound resonantly excite different hairs,
which through the tonotopic map are perceived as different frequencies. The
amplitude of a hair’s motion is translated into the amplitude of the sound at that
frequency. The phase of the motion of the hairs relative to one another is

Žapparently not important in what we perceive as the quality of the sound as we
have seen, the ‘‘sound’’of the sound is unchanged by phase modulation of different

.frequency components .
However, as always seems to be the case in biological systems, things are really

more complicated than this crude picture. The phase of the motion of the hairs is
not completely ignored by the auditory system, at least for sounds with frequencies
less than around 1�1.4 kHz. For this range, neurons are thought to be able to
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‘‘phase lock’’ their firing to the phase of the sound�for instance, the neuron might
Žfire only at the peak of the sine wave. At higher frequencies, the neuron’s firing

.rate apparently cannot keep up with the sound oscillation. Experiments have
shown that this phase information is used by the brain’s auditory system to help
locate the source of the sound, by comparing the phase in the right ear with that in

Ž .the left. See the exercises.
Also, the auditory system is not passive. It has recently been shown that the

resonant response of the hairs to a sound impulse is actually amplified by
molecular motors in the membranes of the hair cells. This amplification allows the
response of the system to be considerably more sharply peaked about the resonant
frequency than would be the case for a purely passive system with the same
damping rate. In fact, the molecular motors cause the hairs to vibrate continuously
at a low level, and the sound this motion creates can be picked up by sensitive
microphones outside the ear. The ear is not just a passive receiver: it also transmits
Ž .albeit at a level below our conscious perception .

In summary, two periodic waveforms will look different if their Fourier
components have different relative phases, but they will still sound alike if their
Fourier amplitudes are the same.

EXERCISES FOR SEC. 2.1

( ) Ž .1 Prove that for a periodic function f t of period T , the following is true:
T Ž . Tqx Ž .H f t dtsH f t dt for any x.0 x

( ) ( )2 a Do the following periodic functions meet the conditions of Theorem 2.1?
3 1 1( ) Ž . � � Ž . Ž .i f t s t on y � t� ; f t s f tq1 .2 2

( ) Ž . Ž . Ž .ii f x s3 x on 0�x�2; f x s f xq2 .
( ) Ž . Ž . Ž . Ž .iii f t sexp yt on 0� t�3; f t s f tq3 .

( )b Find the Fourier series coefficients A and B for the periodic functionsn n
Ž .of part a .

( )c Plot the resulting series for different numbers of coefficients M, 1�M�
10, and observe the convergence. Compare with the exact functions. Are
the series converging?

( )d Plot the difference between the series and the actual functions as M
Ž .increases, and determine using Eq. 2.1.15 whether the series are exhibit-

ing uniform convergence.
( ) Ž .e For the series of function ii , evaluate the derivative of the series with

respect to x, term by term. Compare it with the derivative of 3 x on
0�x�2 by plotting the result for Ms10, and Ms50. Does the

Ž .derivative of the series give a good representation of f � x ?

( ) ( )3 a Theorem 2.1 provides sufficient conditions for convergence of a Fourier
series. These conditions are not necessary, however. Functions that have
singularities or singular derivatives can sometimes also have well-behaved
convergent Fourier series. For example, use Mathematica to evaluate the



FOURIER SERIES AND TRANSFORMS110

Fourier sine-cosine series of the periodic function

'f x s x 1yx on 0FxF1, f xq1 s f x ,Ž . Ž . Ž . Ž .

and plot the result for Ms4, 8, 12, 16, 20. Does this series appear to be
Ž . Žconverging to f x as M increases? Hint: Don’t be afraid of any special

functions that Mathematica might spit out when evaluating Fourier
Žcoefficients. You don’t need to know what they are although you can

.look up their definitions in the Mathematica book if you want . Just use
xthem in the series, stand back, and let Mathematica plot out the result.

( )b At what value of x is the maximum error in the series occurring?
Evaluate this maximum error for Ms10, 30, 60, 90. According to Eq.
Ž .2.1.15 , is this series converging uniformly?

( ) Ž .Ž . Ž .4 Repeat Exercise 2 b and c using exponential Fourier series.

( ) Ž .5 A damped harmonic oscillator satisfies the equation x qx�q4 xs f t . The
Ž . 2 Ž . Ž .forcing function is given by f t s t , y1F tF1; f tq2 s f t .

( ) Ž .a Find a particular solution x t to the forcing in terms of an exponentialp
Fourier series.

( )b Find a homogeneous solution to add to your particular solution from part
Ž . Ž . Ž .a so as to satisfy the ODE with initial conditions x 0 s1, x� 0 s0.
Plot the solution for 0� t�20.

( ) Ž .6 An undamped harmonic oscillator satisfies the equation x qxs f t . The
1 1Ž . Ž .forcing function is a square wave of period : f t s1, 0� t� ; f t s0,2 4

1 1 1Ž . Ž .� t� ; f tq s f t .4 2 2

( ) Ža Find a particular solution to this problem. Be careful�there is an exact
.resonance.

( )b Find a homogeneous solution to add to the particular solution so as to
Ž . Ž .satisfy the ODE with initial conditions x 0 s0, x� 0 s0. Plot the

solution for 0� t�20.

( ) Ž .7 An RC circuit a resistor and capacitor in series is driven by a periodic
Ž . w x Ž .sawtooth voltage, with period T , of the form V t sV Mod trT , 1 . Plot V t0

for Ts0.002, V s1 over a time range 0F t�4T.0

( ) Ž . Ž .a The charge Q t on the capacitor satisfies the ODE RQ�qQrCsV t .
Ž . ŽFind a particular solution for Q t in the form of an exponential Fourier

.series . Add a homogeneous solution to match the initial condition
Ž . Ž .Q 0 s0. Plot Q t for Ms5, 10, 20 for the case Rs500 �, Cs2�F,

Ž .V s1 V, Ts0.002 s. Compare the shape of Q t for a few periods to the0
original voltage function.

( ) Ž . Ž .b Play the sawtooth sound V t , and play the resulting Q t as a sound.
Ž .Play Q t again, for Rs5000 �, all else the same. Would you character-

ize this circuit as one that filters out high frequencies or low frequencies?

( ) ( ) Ž .8 a Rewrite the exponential series of the previous problem for Q t as a
cos�sin series. For Ms20 compare with the exponential series by
plotting both, showing they are identical.
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( ) Ž .b Randomize the phases of the Fourier modes in part a by replacing
Ž . Ž . Ž . wcos n� �� t and sin n� �� t with cos n� �� tq
 and sin n� �� tn
x Ž .q
 , where 
 and 
 are random phases in the range 0, 2� ,n n n

different for each mode, and generated using 2�Random[]. Listen to
the randomized series to see if you can tell the difference. Also plot the
randomized series for a few periods to verify that the function looks

Ž .completely different than Q t .

( )9 Find a particular solution to the following set of coupled ODEs using
exponential Fourier series:

x t sy xy2 y yx�q f t ,Ž . Ž . Ž .1

y t sy yyx q f t ,Ž . Ž . Ž .2

2 'Ž . Ž w x. Ž . w xwhere f t s Mod t, 1 and f t s2 Mod t, 2 are two sawtooth oscilla-1 2
Ž .tions with incommensurate periods . Plot the particular solution for 0� t�

10. Keep as many terms in the series as you feel are necessary to achieve
good convergence.

( )10 When a signal propagates from a source that is not directly in front of an
observer, there is a time difference between when the signal arrives at the left
and right ears. The human auditory system can use this time delay to help
determine the direction from which the sound is coming. A phase difference
between the left and right ears of even 1�2 degrees is detectable as a change
in the apparent location of the sound source. This can be tested using Play.
Play can take as its argument two sound waveforms, for left and right chan-
nels of a set of stereo headphones. For example, Play[{Sin[440 2 � t],
Sin[440 2 � t + �(t)]},{t,0,10}]plays a sine tone for 10 seconds in

Ž .each ear, but with a phase advance 
 t in the right ear.
Using a pair of stereo headphones with the above sound, see if you can

Ž . Ž . Ž .determine an apparent location of a sound source. Try a 
 t s0.2 t, b
Ž . Ž . Ž . w
 t sy0.2 t; c 
 t s0. Can you tell the difference? See Hartmann

Ž . x Ž1999 . Warning! The stereo effect in Play may not work on all platforms.
Test it out by trying Play[{0,Sin[440 2� t]},(t,0,1}]: this should
produce a tone only in the right ear. Repeat for the left ear. Also, make sure
the volume is on a low setting, or else crosstalk between your ears may

.impede the directional effect.

2.2 FOURIER REPRESENTATION OF FUNCTIONS DEFINED ON
A FINITE INTERVAL

2.2.1 Periodic Extension of a Function

In the previous sections, Fourier series methods were applied to represent periodic
Ž .functions. Here, we will apply Fourier methods to functions f t defined only on

an interval, aF tFb. Such functions often appear in boundary-value problems,
where the solution of the differential equation is needed only between boundary
points a and b.
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Ž .Fig. 2.3 Periodic extension of a function f t defined on the interval aF tFb, with
asy1 and bs2.

Functions defined only on an interval are not periodic, since they are not
Ž .defined outside the interval in question and therefore do not satisfy Eq. 2.1.1 for
Ž .all t. However, a Fourier representation can still be obtained by replacing f t with

Ž p.Ž .a periodic function f t , defined on the entire real line y�� t��.
There are several different choices for this periodic function. One choice

Ž p.Ž . Ž .requires f t to equal f t on aF tFb, and to have period Tsbya:

f Ž p. t s f t , a� t�b ,Ž . Ž .
2.2.1Ž .

f Ž p. tqT s f Ž p. t .Ž . Ž .

Ž p.Ž . Ž .The function f t is called a periodic extension of f t . The type of periodic
Ž .extension given by Eq. 2.2.1 is depicted in Fig. 2.3

Since f Ž p. is periodic with period T , it can be represented by a Fourier series,

�
Ž p. yi n � � tf t s c e , 2.2.2Ž . Ž .Ý n

nsy�

Ž .where ��s2�rT. The Fourier coefficients c can be found using Eq. 2.1.33 :n

b1 yi n � � tc s f t e dt. 2.2.3Ž . Ž .Hn T a

The function could also be represented by a Fourier sine�cosine series,

� �
Ž p.f t s a cos n �� t q b sin n �� t ,Ž . Ž . Ž .Ý Ýn n

ns0 ns1

but usually the exponential form of the series is more convenient.
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Ž . 2For example, say that f t s t on 0� t�1. The Fourier coefficients are then

Cell 2.29

c[n_____] = Simplify[Integrate[t^̂̂̂̂2 Exp[I 2Pi n t], {t, 0, 1}],
ngIntegers]

1-in�
2 22n �

Cell 2.30

c[0] = Integrate[t^̂̂̂̂2, {t, 0, 1}]

1
3

The M-term approximant to the Fourier series for f can then be constructed and
plotted as in Cell 2.31. This Ms50 approximation to the complete exhibits the by
now familiar Gibbs phenomenon, due to the discontinuity in the periodic extension

Ž . Ž .of f t . For this reason, the series does not converge to f t very rapidly;
Ž .f �yir 2n� for large n, which implies many terms in the series must be kept ton

achieve reasonable convergence.

Cell 2.31

f [x_____, M_____] := Sum[c[n] Exp[-I 2Pi n t], {n, -M, M}];approx

func = f [t, 50];approx

Plot[func, {t, -2, 2}, PlotRange™{-0.2, 1.2},
PlotLabel™f(p)(t) for f(t) = t2 on 0�t�1"];

f(p) (t) for f (t) = t2 on 0�t�1

2.2.2 Even Periodic Extension

The problem of poor convergence can be avoided by using a different periodic
Ž . Ž e.Ž .extension of f t . Consider an e®en periodic extension of f , f t , with period 2T
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Ž .Fig. 2.4 Even periodic extension of a function f t defined on the interval y1� t�2.

rather than T. This extension obeys

f t , a� t�aqT ,Ž .Ž e.f t sŽ . ½ f 2 ay t , ayT� t�a,Ž . 2.2.4Ž .

f Ž e. tq2T s f Ž e. t .Ž . Ž .

The even periodic extension of a function is depicted in Fig. 2.4. It is an even
function of t about the point tsa, and for this reason no longer has a discontinu-
ity. Therefore, we expect that the series for f Ž e. will converge more rapidly than
that for f Ž p., and will no longer display the Gibbs phenomenon with nonuniform
convergence.

Since the function is even around the point tsa, the series is of cosine form
when time is evaluated with respect to an origin at a:

�
Ž e.f t s a cos n �� tya r2 . 2.2.5Ž . Ž . Ž .Ý n

ns0

Note that the period is now 2T rather than T , so the fundamental frequency is
��r2.

In order to determine the Fourier coefficients for f Ž e., we must now integrate
over an interval of 2T. A good choice is the interval ayT� t�aqT , so that the
Fourier coefficients have the form

aqT1 Ž e.a s f t cos n �� tya r2 dt , n�0,Ž . Ž .Hn T ayT
2.2.6Ž .

aqT1 Ž e.a s f t dt.Ž .H0 2T ayT

Let’s break the integrals up into two pieces, running from ayT to a and from
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Ž .a to aqTsb, and use Eq. 2.2.4 :

a1
a s f 2 ay t cos n �� tya r2 dtŽ . Ž .Hn T ayT

b
q f t cos n �� tya r2 dt , n�0, 2.2.7Ž . Ž . Ž .H

a

a b1 1
a s f 2 ay t dtq f t dt.Ž . Ž .H H0 2T 2TayT a

Then, performing a change of variables in the first integral from t to 2 ay t, and
Ž .using the fact that cos yt scos t for any t, we obtain

b2
a s f t cos n �� tya r2 dt , n�0,Ž . Ž .Hn T a

2.2.8Ž .
b1

a s f t dt.Ž .H0 T a

Ž . Ž .Equations 2.2.5 and 2.2.8 allow us to construct an even Fourier series of a
w xfunction on the interval a, b , with no discontinuities. As an example, we will

Ž e. Ž . 2 w xconstruct f for the previous case of f t s t on 0, 1 :

Cell 2.32

T = 1;

a[n_____] = 2/T Simplify[Integrate[t^̂̂̂̂2 Cos[2Pi n t/(2T)],

{t, 0, T}], ngIntegers]

4 (-1)n

2 2n �

Cell 2.33

a[0] = 1/T Integrate[t^̂̂̂̂2, {t, 0, 1}]

1
3

Terms in the series are now falling off like 1rn2 rather than 1rn, so the series
converges more rapidly than the previous series did. This can be seen directly from
the plot in Cell 2.34. Note that we have only kept 10 terms in the series, but it still
works quite well. There is no longer a Gibbs phenomenon; the series converges

2 w xuniformly and rapidly to t on the interval 0, 1 .

Cell 2.34

f [x_____, M_____] := Sum[a[n] Cos[2Pi n t/(2T)], {n, 0, M}];approx

func = f [t, 10];approx

Plot[func, {t, -2, 2}, PlotRange™{-0.2, 1.2},
PlotLabel ™"f(e) (t) for f(t)=t2 on 0�t�1"];
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2.2.3 Odd Periodic Extension

Ž .It is also possible to define an odd periodic extension to a function f t , defined on
w x Žo.Ž .the interval a, b . This extension, f t , is odd around the point tsa, and is

defined by

f t , a� t�aqT ,Ž .Žo.f t sŽ . ½yf 2 ay t , ayT� t�a,Ž . 2.2.9Ž .

f Žo. tq2T s f Žo. t .Ž . Ž .

Ž .This type of periodic extension is useful when one considers functions f t for
Ž . Ž .which f a s f b s0. Although the periodic extension and the even periodic

extension of such functions are both continuous at tsa and b, the odd periodic
extension also exhibits a continuous first derivative at the boundary points, as can
be seen in Fig. 2.5. This makes the series converge even faster than the other types

Ž . Ž .of periodic extension. However, if either f a or f b is unequal to zero, the
convergence will be hampered by discontinuities in the odd periodic extension.

Like the even periodic extension, the odd periodic extension also has period 2T.
However, since it is odd about the point tsa, it can be written as a Fourier sine
series with time measured with respect to an origin at tsa:

�
Žo.f t s b sin n �� tya r2 . 2.2.10Ž . Ž . Ž .Ý n

ns1

The Fourier coefficients b can be determined by following an argument analo-n
Ž .gous to that which led to Eq. 2.2.8 :

b2
b s f t sin n �� tya r2 dt. 2.2.11Ž . Ž . Ž .Hn T a
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Ž .Fig. 2.5 Odd periodic extension of a function f t defined on the interval 1� t�3.

Ž 2 .As an example, let’s construct the odd periodic extension of the function t 1y t
w xon the interval 0, 1 . This function is zero at both ts0 and ts1, and so meets the

conditions necessary for rapid convergence of the odd periodic extension.
The Fourier coefficients are given by

Cell 2.35

T = 1; b[n_____] =
2/T Simplify[Integrate[t (1 - t ^̂̂̂̂2) Sin[2Pi n t/(2T)],

{t, 0, T}], ngIntegers]

12 (-1)n
-

3 3n �

These coefficients fall off as 1rn3, which is faster than either the coefficients of the
even periodic extension,

Cell 2.36

T = 1; a[n_____] =
2/T Simplify[Integrate[t (1-t ^̂̂̂̂2) Cos[2 Pi n t / (2T)],

{t, 0, T}], ngIntegers]

2 (6 (-1 + (-1)n) - (1 + 2 (-1)n) n2�2)
4 4n �

or the regular periodic extension,

Cell 2.37

T = 1; c[n_____] =
1/T Simplify[Integrate[t (1 - t ^̂̂̂̂2) Exp[I 2Pi n t/T],

{t, 0, T}], ngIntegers]

3 (i +n�)
-

3 34 n �

both of which can be seen to fall off as 1rn2 for large n.
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Ž .A plot Cell 2.38 of the resulting series for the odd periodic extension, keeping
only five terms, illustrates the accuracy of the result when compared to the exact
function.

Cell 2.38

f [x_____, M_____] := Sum[b[n] Sin[2Pi n t/(2T)], {n, 1, M}];approx

func = f [t, 5];approx

p1 = Plot[t (1 - t ^̂̂̂̂2), {t, 0, 1},
PlotStyle™{RGBColor[1, 0, 0], Thickness[0.012]},
DisplayFunction™Identity];

p2 = Plot[func, {t, -1, 2}, DisplayFunction™Identity];
Show[p1, p2, DisplayFunction™$$$$$DisplayFunction,

PlotLabel™ "f(o)(t) for f(t)=t(1- t2) on 0�t�1"];

2.2.4 Solution of Boundary-Value Problems Using Fourier Series

In linear boundary-value problems, we are asked to solve for an unknown function
Ž . Ž
 x on a given interval a�x�b. Here we consider a boundary-value problem in

.space rather than in time. The general form of the linear ordinary differential
equation is

L̂
s� , 2.2.12Ž .
ˆŽ .where � x is a given function of x, and L is some linear differential operator.

This equation is supplemented by boundary conditions on 
 andror its derivatives
at a and b.

Fourier series methods are useful in finding a particular solution 
 to thisp
ˆinhomogeneous ODE, provided that L is a differential operator with constant

Ž .coefficients, of the form given in Eq. 2.6.7 .
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For example, consider the problem of determining the electrostatic potential
between two parallel conducting plates at positions xsa and xsb, between

Ž .which there is some given distribution of charge, � x . The potential satisfies the
Ž .Poisson equation 1.1.10 , which in one spatial dimension takes the form

2 � xd 
 Ž .sy , 
 a sV , 
 b sV , 2.2.13Ž . Ž . Ž .1 22 �dx 0

and where V and V are the voltages applied to the two plates.1 2
This problem could be solved by the direct integration technique used to solve
Ž .Eq. 1.1.1 . Here, however, we will use Fourier techniques, since such techniques

can also be applied to more complex problems that are not amenable to direct
integration. We will run across many more problems of this type in future sections.

To solve this problem using Fourier techniques, we follow the procedure
discussed in Sec. 1.6, and break 
 into a homogeneous and a particular solution:


s
 q
 , 2.2.14Ž .h p

Ž .where the particular solution 
 is any solution that satisfies Eq. 2.2.13 :p

d2
 � xŽ .p sy . 2.2.15Ž .2 �dx 0

After we have found a particular solution, we then solve for a homogeneous
solution that satisfies the proper boundary conditions:

d2
h s0, 
 a sV y
 a , 
 b sV y
 b . 2.2.16Ž . Ž . Ž . Ž . Ž .h 1 p h 2 p2dx

In this way, the particular solution takes care of the inhomogeneity, and the
Ž .homogeneous solution takes care of the boundary conditions. Adding Eqs. 2.2.15

Ž . Ž .and 2.2.16 , one can easily see that the total potential, Eq. 2.2.15 , satisfies both
Ž .ODE and boundary conditions in Eq. 2.2.13 .

Ž .For this simple ODE, the general homogeneous solution is 
 x sC qC x.h 1 2
To find the particular solution using Fourier methods, we replace 
 by itsp
periodic extension and employ an exponential Fourier series,

�
i2� n xrL
 x s 
 e , 2.2.17Ž . Ž .Ýp n

nsy�

where Lsbya is the length of the interval.
Note the change in sign of the exponential compared to the previous section

Ž .involving Fourier time series, Eq. 2.1.27 . For spatial Fourier series, the above
sign is conventional; for Fourier series in time, the opposite sign is used. Of course,
either sign can be used as long as one is consistent throughout the calculation, but
we will stick with convention and use different signs for time and space series.
ŽAlthough these different conventions may seem arbitrary and confusing at first,
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there is a good reason for them, having to do with the form of traveling waves. See
.Sec. 5.1.1.

Ž .The Fourier coefficients 
 can then be found by substitution of Eq. 2.2.17n
into the ODE and taking the derivative of the resulting series term by term:

2 � 2d 
 � xi2� n Ž .p i2� n xrLs 
 e sy . 2.2.18Ž .Ý n2 ž /L �dx 0nsy�

Ž i2� n xr l.If we now multiply both sides of the equation by e *, integrate from a to b,
Ž .and use the orthogonality relations 2.1.29 , the result is

2 �L n
 s , n�0, 2.2.19Ž .n ž /2� n �0

Ž .where � is the nth Fourier coefficient of � x , given byn

b1 yi 2� n xrL� s � x e dx. 2.2.20Ž . Ž .Hn L a

Ž .However, for the ns0 term, the coefficient in front of 
 in Eq. 2.2.18 vanishes,n
so a finite solution for 
 cannot be found. This is a case of an exact resonance,0
discussed in Sec. 1.6. For this special resonant term, the solution does not have the

Ž .form of a Fourier mode. Rather, the right-hand side of Eq. 2.2.18 is a constant,
and we must find a particular solution to the equation

d2
 �p0 0sy , 2.2.21Ž .2 �dx 0

Ž .where � is the ns0 Fourier coefficient of � x . A particular solution, found by0
Ž .direct integration of Eq. 2.2.21 , is


 x sy� x 2r2� , 2.2.22Ž . Ž .p0 0 0

which exhibits the secular growth typical of exact resonance. Thus, a particular
Ž .solution to Eq. 2.2.13 is

�
i2� n xrL
 x s 
 e q
 x , 2.2.23Ž . Ž . Ž .Ýp n p0

nsy�
n�0

Ž . Ž . Ž .with 
 given by Eq. 2.2.19 and 
 x given by Eq. 2.2.22 .n p0
In order to complete the problem, we must add in the homogeneous solution
Ž .
 x sC qC x, with C and C chosen to satisfy the boundary conditions ash 1 2 1 2

Ž .described by Eq. 2.2.16 . The result is

xya

 x sV y
 a q V y
 b yV q
 a q
 x . 2.2.24Ž . Ž . Ž . Ž . Ž . Ž .1 p 2 p 1 p pL



EXERCISES FOR SEC. 2.2 121

Ž . Ž .Equation 2.2.24 is our solution to the boundary-value problem 2.2.13 . Of
course, this particular boundary-value problem is easy to solve using simple
techniques such as direct integration. Applying Fourier methods to this problem is
akin to using a jackhammer to crack an egg: it gets the job done, but the result is
messier than necessary. However, in future sections we will find many situations
for which the powerful machinery of Fourier series is essential to finding the
solution.

EXERCISES FOR SEC. 2.2

( ) Ž . Ž .1 If f t is continuous on 0� t�T , under what circumstances is a its periodic
Ž . Ž .extension continuous? b its even periodic extension continuous? c its odd

periodic extension continuous?

( )2 Use the periodic extension for the following functions on the given intervals to
determine an exponential Fourier series. In each case plot the resulting series,
keeping Ms20 terms:
( ) Ž . ta f t se sin 4 t, 0F tF�r2.
( ) Ž . 4b f x sx , y1FxF1.

12( ) Ž .c f t s t y , 0� t�1.2

( ) Ž . Ž3 For each case in Exercise 2 , state which type of periodic extension even or
.odd will improve convergence the most. Evaluate the series for the chosen

periodic extension with Ms20, and plot the result.

( ) Ž4 The charge density between two grounded conducting plates 
s0 at xsyL
. Ž . 2and xsL is given by � x sAx . The electrostatic potential 
 satisfies

d2
rdx2sy�r� .0

( )a Find 
 between the plates using an exponential Fourier series running
Ž .from yM to M. Taking Ms10, plot the shape of 
 x taking Ar� s10

and Ls1.
( )b Compare the approximate Fourier solution with the exact solution, found

in any way you wish.

( ) Ž .5 Exercise 4 can also be solved using the trigonometric eigenfunctions of the
operator d2rdx 2 that satisfy �s0 at xs�L. These eigenfunctions are

w Ž . x Ž .sin n� xyL r2 L , ns1, 2, 3, . . . . Repeat Exercise 4 using these eigenfunc-
tions.

( ) Ž .6 Exercise 4 can also be solved using the trigonometric eigenfunctions of the
operator d2rdx 2 that satisfy � �s0 at xs�L. These eigenfunctions are

w Ž . x Ž .cos n� xyL r2 L , ns0, 1, 2,3 . . . . Repeat Exercise 4 using these eigen-
functions.

( ) ( )7 a Find particular solutions to the following boundary-value problems using
Fourier methods.

( )b Plot the particular solutions.
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( )c Find homogeneous solutions to match the boundary conditions and solve
the full problem. Plot the full solution.

d2
( ) Ž . Ž .i y
sx sin 2 x, 
 y� s0, 
 � s0.2dx
d2
 1( ) Ž . Ž . Žii q4
s , 
� � s2, 
 2� s0. Caution: there may be an2 xdx

.exact resonance.
d2
 d
 yx( ) Ž . Ž .iii q8 q
sx e , 
� 0 s0, 
� 2 s0.2 dxdx
d2
 d
 x( ) Ž . Ž .iv q2 s , 
 0 s0, 
� 1 s2.2 2dxdx 1qx
d3
 d2
 d
 2( ) Ž . Ž . Ž .v y2 q y2
sx cos x, 
 0 s0, 
� 0 s2, 
 3 s0.3 2 dxdx dx

2.3 FOURIER TRANSFORMS

2.3.1 Fourier Representation of Functions on the Real Line

In Section 2.2, we learned how to create a Fourier series representation of a
Ž .general function f t , defined on the interval aF tFb. In this section, we will

extend this representation to general functions defined on the entire real line,
y�� t��.

Ž .As one might expect, this can be accomplished by taking a limit carefully of
the previous series expressions as a™y� and b™�. In this limit the period
Tsbya of the function’s periodic extension approaches infinity, and the funda-
mental frequency ��s2�rT approaches zero.

In the limit as ��™0, let us consider the expression for an exponential Fourier
Ž . Ž .series of f t , Eq. 2.1.27 :

� cn yi n � � tf t s lim � �� e . 2.3.1Ž . Ž .Ý � ����™0 nsy�

Here we have multiplied and divided the right-hand side by � ��, where � is a
constant that we will choose in due course. The reason for doing so is that we can

Ž .then convert the sum into an integral. Recall that for a function g � , the integral
of g can be expressed as a Riemann sum,

��

g � d�s lim �� g n �� . 2.3.2Ž . Ž . Ž .ÝH
��™0y� nsy�

Ž .Applying this result to Eq. 2.3.1 yields
�

yi � t˜f t s� f � e d� , 2.3.3Ž . Ž . Ž .H
y�

˜ ˜Ž . Ž . Ž .where the function f � is defined by f n �� �c r � �� . An expression forn
this function can be obtained using our previous result for the Fourier coefficient

Ž .c , Eq. 2.1.33 , and taking the limits a™y� and b™�:n

b1 in � � tf̃ n �� s lim f t e dt . 2.3.4Ž . Ž . Ž .H� �� Ta™y� a
b™�
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Substituting ��s2�rT yields

�1 i� tf̃ � s f t e dt . 2.3.5Ž . Ž . Ž .H2�� y�

Ž . Ž . Ž .Equation 2.3.5 is called a Fourier transform of the function f t . Equation 2.3.3
Ž̃ .is called an in®erse Fourier transform, because it transforms the function f � back

Ž .to f t .
Ž .The Fourier transform transforms a function of time, f t , to a function of

Ž̃ .frequency, f � . This complex function of frequency, often called the frequency
Ž .spectrum of f t , provides the complex amplitude of each Fourier mode making up

˜Ž . Ž . Ž .f t . Since f t is not periodic, f � is nonzero for a continuous range of
frequencies, as opposed to the discrete values of � that enter a Fourier series.

Ž . Ž .Equations 2.3.3 and 2.3.5 are valid for any choice of the constant ��0.
Different textbooks often choose different values for � . In the physical sciences,

Ž .�s1r 2� is almost a universal convention, and is the choice we will adopt in this
book.

Before we go on to evaluate some examples of Fourier transforms, we should
mention one other convention in the physical sciences. Recall that for spatial

w Ž .xFourier series we reversed the sign in the exponentials see Eq. 2.2.17 . The same
is done for spatial Fourier transforms. Also, it is conventional to replace the
frequency argument � of the Fourier transform function with the wa®enumber k,
with units of 1rlength. These differing conventions for time and space transforms
may seem confusing at first, but we will see in Chapter 5 when we discuss wave
propagation that there are good reasons for adopting them. The table below
provides a summary of our Fourier transform conventions.

To obtain a Fourier transform of a given function, we must evaluate the integral
given in Table 2.1. For many functions, this integration can be performed analyti-
cally. For example, consider the Fourier transform of

1
f t s . 2.3.6Ž . Ž .2 21qs t

Using Mathematica to perform the integration,

Table 2.1. Fourier Transform Conventions

Time:
�

i� tŽ̃ . Ž .f � s f t e dt Fourier transformH
y�

� d�yi� t˜Ž . Ž .f t s f � e Inverse Fourier transformH 2�y�

Space:
�

yik xŽ̃ . Ž .f k s f x e dx Fourier transformH
y�

� dkik x˜Ž . Ž .f x s f k e Inverse Fourier transformH 2�y�
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Cell 2.39

Integrate[Exp[I� t] 1/(1 + s ^̂̂̂̂2t ^̂̂̂̂2), {t, -Infinity,

Infinity}]

-�sign[�]

s2' it��e � e2If[Im[�] == 0 && Arg[s ] ��, , dt]H 2 22 1 + s t' -�s

and noting that both inequalities in the output cell are satisfied, we obtain

˜ y � �r s � � �f � s� e r s .Ž .

Ž̃ . Ž .By taking the inverse transform of f � , we should return to f t as given by Eq.
˜Ž . Ž .2.3.6 . However, because of the absolute value in f � , it is best to break the

integral up into two pieces, 0���� and y����0:

Cell 2.40

Simplify[Integrate[Exp[-I � t] � Exp[-�/s]/s,
{�, 0, Infinity}]/(2Pi) +
Integrate[Exp[-I � t] � Exp[� / s] / s,
{�, -Infinity, 0}]/( Pi), s >>>>> 0 &&&&&&&&&& Im[t] == 0]

1
2 21 + s t

Ž .As expected, the inverse transformation returns us to Eq. 2.3.6 .
Mathematica has two intrinsic functions, FourierTransform and Inverse-

FourierTransform. These two functions perform the integration needed for the
transform and the inverse transform. However, the conventions adopted by these

Ž .functions differ from those listed in Table 2.1: the value of � chosen in Eqs. 2.3.3
'Ž .and 2.3.5 is 1r 2� , and the transform functions use the time convention, not the

space convention. To obtain our result for a time transform, the following syntax
must be employed:

Sqrt[2Pi] FourierTransform[f[t],t,�].

For example,

Cell 2.41

Simplify[Sqrt[2Pi] FourierTransform[1/(1 + s ^̂̂̂̂2t ^̂̂̂̂2), t, �]]

� Sign[�]
-e �s2'

2's
'For the inverse transform, we must divide Mathematica’s function by 2� . The

notation is

InverseFourierTransform[f[�],�,t]/Sqrt[2Pi].
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For our example problem, we obtain the correct result by applying this function:

Cell 2.42

InverseFourierTransform[�Exp[-Abs[�]/s]/
s, �, t]/Sqrt[2Pi]

1
2 21 + s t

For spatial Fourier transforms, we must reverse the sign of the transform variable
to match the sign convention for spatial transforms used in Table 2.1. The
following table summarizes the proper usage of the intrinsic Mathematica func-
tions so as to match our conventions.

Time:

'2� FourierTransform[f[t],t,�]

'InverseFourierTransform[f[�],�,t]/ 2�

Space:

'2� FourierTransform[f[x],x,-k]

'InverseFourierTransform[f[k],k,-x]/ 2�

In following sections we will deal with time Fourier transforms unless otherwise
indicated.

Fourier transforms have many important applications. One is in signal process-
ing. For example, a digital bit may look like a square pulse, as shown in Cell 2.43.

Cell 2.43

f[t_____] = UnitStep[t - 1] UnitStep [2 - t];
Plot[f[t], {t, 0, 3}, PlotStyle™Thickness[0.008],

AxesLabel™{"t", "f(t)"}];
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This signal has the following Fourier transform:

Cell 2.44

f̃[�_____] = Integrate[Exp[I� t], {t, 1, 2}]

iei� ie2i�

-
� �

This Fourier transform has both real and imaginary parts, as shown in Cell 2.45.

Cell 2.45

˜ ˜Plot[Re[f[�]], {�, -50, 50}, AxesLabel™{"�", "Re[f(�)]"},
PlotRange ™All];

˜ ˜Plot[Im[f[�]], {�, -50 50}, AxesLabel™{"�", "Im[f(�)]"},
PlotRange™All];

Ž̃ .The real part of the transform f � is an even function of �, and the imaginary
Ž .part an odd function. This follows from the fact that our function f t was real. In
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Ž .general, for real f t ,

˜ ˜f y� s f � *. 2.3.7Ž . Ž . Ž .

Also note that the Fourier transform has nonnegligible high-frequency compo-
Ž .nents. This is expected, because the function f t has sharp jumps that require

high-frequency Fourier modes.
However, the medium carrying the signal is often such that only frequencies

within some range �� can propagate. This range is called the bandwidth of the

Fig. 2.6 The digital signal consisting of bits 1 0 1, for three different bandwidths ��. As
�� decreases, the width � t of the pulses increases, until they begin to overlap and it is no
longer possible to distinguish the bits.
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Ž .medium. If, in our example, frequencies beyond 10 in our dimensionless units
cannot propagate, then these components are cut out of the spectrum and the
inverse transform of this signal is

Cell 2.46

˜f [t_____] = Integrate[Exp[-I � t] f[�], {�, -10, 10}]/(2Pi);1

This signal looks degraded and broadened due to the loss of the high-frequency
components, as shown in Cell 2.47. If these pulses become so broad that they begin
to overlap with neighboring pulses in the signal, then the signal will be garbled.
For example, in order to distinguish a 0-bit traveling between two 1-bits, the length
in time of each bit, T , must be larger than roughly half the width � t of the

Ž .degraded bits: 2TR� t see Fig. 2.6 .

Cell 2.47

Plot[f [t], {t, 0, 3}, AxesLabel™{"t", " "},1

PlotLabel™"Signal degraded by finite bandwidth"];

Also, Fig. 2.6 indicates that there is a connection between the degraded pulse
width � t and the bandwidth �� : as �� decreases, � t increases. In fact, in Sec.

Ž .2.3.3 we will show that � tA1r�� : See Eq. 2.3.24 . This implies that the
minimum time between distinguishable pulses, T , is proportional to 1r��. Themin
maximum rate ® at which pulses can be sent is ® s1rT , so we find thatmax max min

® A�� . 2.3.8Ž .max

This important result shows that the maximum number of bits per second that can
be sent through a medium is proportional to the bandwidth of the medium. For
example, a telephone line has a bandwidth �� of roughly 4000 Hz, which limits
the rate at which digital signals can be sent, as any modem user knows. However,
an optical fiber has a bandwidth on the order of the frequency of light, around 1015
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Hz, which is why optical fibers can transmit much more information than phone
Žlines. Actually, the bandwidth quoted above for optical fiber is a theoretical

bandwidth, applicable only to short fibers; in long fibers dispersion begins to limit
the effective bandwidth. Dispersion will be discussed in Chapter 5. Also, the

.bandwidth of the receiver and the transmitter must be taken into account.

2.3.2 Fourier Sine and Cosine Transforms

Ž .Sometimes one must Fourier-transform a function f t that is defined only on a
portion of the real line, aF tF�. For such functions, one can extend the
definition of f to the range y�� t�a in any way that one wishes, and then
employ the usual transformation of Table 2.1 over the entire real line.

Ž .One simple choice is f t s0 for t�a. In this case the Fourier transform is

�
i� tf̃ � s f t e dt , 2.3.9Ž . Ž . Ž .H

a

and the inverse transformation remains unchanged.
Ž .For example, we may use Eq. 2.3.9 to take the Fourier transform of the

Ž . Ž . Ž .function f t sexp yt , t�0. The integration in Eq. 2.3.9 can then be done by
hand:

� 1i� tytf̃ � s e dts .Ž . H 1y i�0

Ž .The inverse transformation should then return us to the original function f t .
Mathematica’s intrinsic function can perform this task:

Cell 2.48

InverseFourierTransform[1/(1 - I �), �, t]/Sqrt [2Pi]

e-t UnitStep[t]

The function UnitStep, also called the Heaviside step function, has been encoun-
Ž .tered previously, and is defined by Eq. 9.8.1 . Since this function is zero for t�0

Ž .and unity for t�0, the inverse transform has reproduced f t , including the
extension to t�0.

It is sometimes useful to create an even or odd extension of the function, rather
than setting the function equal to zero for t�a. In this case, the exponential
transform is replaced by a Fourier sine or cosine transform.

Ž . Ž .For an odd extension of the function, we require that f ay t syf aq t for
any t. The formulae for the Fourier sine transform then follow from a limiting
procedure analogous to that done for the exponential transform, but instead
applied to the Fourier sine series discussed in Sec. 2.2.3. Now one takes b™� but
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leaves a fixed. It is then an exercise to show that the result for the Fourier sine
transform and the inverse sine transform is

�

f̃ � s f t sin � tya dt ,Ž . Ž . Ž .H
a

2.3.10Ž .
�

˜f t s f � sin � tya d�r� .Ž . Ž . Ž .H
y�

Ž . Ž .On the other hand, if we wish to use an even function, such that f ay t s f aq t
for any t, we can employ a cosine transform of the form

�

f̃ � s f t cos � tya dt ,Ž . Ž . Ž .H
a

2.3.11Ž .
�

˜f t s f � cos � tya d�r� .Ž . Ž . Ž .H
y�

The definitions for spatial sine and cosine transforms are identical, except for the
convention of replacing � by k and t by x.

Ž . Ž .As an example of a sine transform, we can again take f t sexp yt for t�0.
The sine transform is then given by

Cell 2.49

Simplify[Integrate[Exp[-t] Sin[� t], {t, 0, Infinity}],
Im[ �] == 0]

�
21 + �

The inverse sine transform is

Cell 2.50

Simplify[Integrate[%%%%% Sin[� t], {�, -Infinity, Infinity}]/Pi,
Im[t] == 0]

e-t Sign[t] Sign[t]

Ž .which returns us to f t , but with an odd extension into the range t�0. For an
even extension of the same function, the cosine transform is

Cell 2.51

Simplify[Integrate[Exp[-t] Cos[� t], {t, 0, Infinity]},
Im[� ] == 0]

1
21 + �
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and the inverse cosine transform returns the correct even function:

Cell 2.52

Simplify[Integrate[%%%%% Cos[� t], {�, -Infinity, Infinity}]/Pi,
Im[t] == 0]

e-t sign[t]

2.3.3 Some Properties of Fourier Transforms

Fourier Transforms as Linear Integral Operators When one takes the Fourier
˜Ž . Ž .transform of a function f t , the result is a new function f � . This is reminiscent

ˆof the manner in which a linear differential operator L transforms a function f to
ˆa different function Lf by taking derivatives of f. In fact, a Fourier transform can

ˆalso be thought of as a linear operator F, defined by its operation on a given
function f :

�
i� tF̂fs e f t dt . 2.3.12Ž . Ž .H

y�

ˆ ˜The result of the operation of F on a function f is a new function f , that is,

ˆ ˜Ffs f . 2.3.13Ž .

ˆ � i� t Ž̂ .The operator FsH e dt is a linear operator, since it satisfies F Cfqg sy�
ˆ ˆCFfqFg for any functions f and g and any constant C. However, this linear

operator is an integral operator rather than a differential operator.
ŷ1The inverse Fourier transform can also be thought of as an operator, F . This

Ž̃ . Ž .operator is defined by its action on a function f � , producing a function f t
according to

�
y1 yi � tˆ ˜ ˜fsF fs e f � d�r2� . 2.3.14Ž . Ž .H

y�

The inverse transform has the property required of any inverse: for any function f ,

ŷ1 ˆ ˆ ŷ1F FfsFF fs f . 2.3.15Ž .

This follows directly from the definition of the inverse Fourier transform.

Fourier Transforms of Derivatives and Integrals The Fourier transform of the
derivative of a function is related to the Fourier transform of the function itself.
Consider

�df dfi� tF̂ s e dt . 2.3.16Ž .Hdt dty�

Ž . ŽAn integration by parts, together with the assumption that f �� s0 required for
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.the convergence of the Fourier integral , implies

� �df d i� t i� tˆ ˜F sy f t e dtsyi� f t e dtsyi� f � , 2.3.17Ž . Ž . Ž . Ž .H Hdt dty� y�

˜ ˆwhere fsFf is the Fourier transform of f.
Ž .We can immediately generalize Eq. 2.3.17 to the transform of derivatives of

any order:

d n f nˆ ˜F s yi� f � . 2.3.18Ž . Ž . Ž .ndt

This simple result is of great importance in the analysis of particular solutions to
linear differential equations with constant coefficients, as we will see in Sec. 2.3.6.

Ž .Also, it follows from Eq. 2.3.17 that the Fourier transform of the indefinite
integral of a function is given by

˜t f �Ž .
F̂ f t dts . 2.3.19Ž . Ž .H yi�

Ž . Ž . Ž .Convolution Theorem The con®olution h t of two functions, f t and g t , is
defined by the following integral:

� �

h t s f t g ty t dt s f ty t g t dt . 2.3.20Ž . Ž . Ž . Ž . Ž . Ž .H H1 1 1 2 2 2
y� y�

Either integral is a valid form for the convolution. The second form follows from a
change of the integration variable from t to t s ty t .1 2 1

Convolutions often appear in the physical sciences, as when we deal with
w Ž .xGreen’s functions see Eq. 2.3.73 . The convolution theorem is a simple relation

Ž . Ž . Ž .between the Fourier transforms of h t , f t , and g t :

˜ ˜h � s f � g � . 2.3.21Ž . Ž . Ž . Ž .˜

Ž .To prove this result, we take the Fourier transform of h t :

� �
i� th̃ � s dt e f t g ty t dt .Ž . Ž . Ž .H H 1 1 1

y� y�

Changing the integration variable in the t-integral to t s ty t yields2 1

� �
i� Ž t qt .2 1h̃ � s dt e f t g t dt .Ž . Ž . Ž .H H2 1 2 1

y� y�

In this change of variables from t to t , t is held fixed, so dtsdt and the range2 1 2
of integration still runs from y� to q�. We can now break the exponential into a
product of exponentials, e i� Ž t2qt 1.se i� t2 e i� t1, and break the two integrals up into
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a product of Fourier transforms:
� �

i� t i� t2 1ˆ ˜h � s dt e g t e f t dt sg � f � ,Ž . Ž . Ž . Ž . Ž .˜H H2 2 1 1
y� y�

proving the theorem.

The Uncertainty Principle of Fourier Analysis Consider a dimensionless func-
Ž . � �tion f � that approaches zero when � R1. An example of such a function is

Ž � � . Ž 2 .exp y � ; another is 1r 1q� . A third example is the set of data bits plotted in
Ž̃ .Fig. 2.6. The Fourier transform of this function, f � , will typically approach zero

� �for large � , because only frequencies up to some value are necessary to describe
the function. Let us define the width of this transform function as �, that is,
Ž̃ . � � Žf � ™0 for � R�. Here � is a dimensionless number, on the order of unity for

.the three examples given above.
Now consider a scale transformation of � to a new time ts�t � . When written

Ž . Ž .in terms of the new time, the function f � becomes a new function g t , defined
Ž . Ž . � �by g t s f tr� t . This function approaches zero for times t �� t. Therefore, � t

Ž .is a measure of the width in time of the function g t .
Ž .An example of the function g t is shown in Fig. 2.7 for different choices of � t,

Ž . Ž 2 .taking f � sexp y� . As � t increases, the width of g increases. One can see
that varying � t defines a class of functions, all of the same shape, but with
different widths.

Ž .Now consider the Fourier transform of g t :
�

i� tg � s dt e f tr� t . 2.3.22Ž . Ž . Ž .˜ H
y�

We will now relate the width �� of the Fourier transform g to the width � t of g.˜
This relation follows from a simple change of the integration variable in Eq.
Ž .2.3.22 back to �s tr� t:

�
i� � t � ˜g � s� t d� e f � s� tf � � t . 2.3.23Ž . Ž . Ž . Ž .˜ H

y�

Ž . yŽ tr� t .2
Fig. 2.7 The function g t se for three choices of � t.
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˜ Ž .Now, since the width of f is �, Eq. 2.3.23 shows that the width �� of g is˜
��s�r� t, or in other words,

�� � ts� , 2.3.24Ž .

where the constant � is a dimensionless number. This constant differs for different
functions. However, if one defines the width of a function in a particular way, as

w Ž .xthe rms width see Exercise 13 , then one can show that �G1r2, with equality
Ž . ya t 2

only for Gaussian functions of the form f t s f e .0
1Ž .Equation 2.3.24 , along with the condition �G , is the uncertainty principle of2

Fourier analysis. It is called an uncertainty principle because it is the mathematical
principle at the heart of Heisenberg’s uncertainty principle in quantum mechanics.
It shows that as a function becomes wider in time, its Fourier transform becomes
narrower. This is sensible, because wider functions vary more slowly, and so
require fewer Fourier modes to describe their variation. Alternatively, we see that
very narrow, sharply peaked functions of time require a broad spectrum of Fourier
modes in order to describe their variation.

As an example of the uncertainty principle, consider the Fourier transform of
Ž . w Ž .2 xthe function g t sexp y tr� t . This function is plotted in Fig. 2.7. The Fourier

transform is

Cell 2.53

FourierTransform[Exp[-(t / �t) ^̂̂̂̂2], t, �] Sqrt [2Pi]
�t2 �21- 2'4 'e � �t

This function is plotted in Fig. 2.8 for the same values of � t as those in Fig. 2.7.
One can see that as � t increases, the transform function narrows.

An important application of the uncertainty principle is related to the data bit
function of width � t, plotted in Cell 2.43. We saw there that when a finite

Fig. 2.8 The Fourier transform of g.
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bandwidth �� cuts off the Fourier spectrum of a signal pulse, the width of the
Ž .pulse in time, � t, grows larger see Fig. 2.6 . We now see that this is a consequence

of the uncertainty principle. This principle says that as the bandwidth �� of a
medium decreases, the signal pulses must become broader in time according to Eq.
Ž .2.3.24 , and hence the distance in time between pulses must be increased in order
for the pulses to be distinguishable.

In turn, this implies that the maximum rate ® at which signals can bemax
Ž .propagated is proportional to the bandwidth of the medium: see Eq. 2.3.8 .

2.3.4 The Dirac �-Function

Ž . Ž .Introduction The function g t s f tr� t plotted in Fig. 2.7 increases in width
as � t increases. The area under the function also clearly increases with increasing

Ž .� t. One might expect that the area under the Fourier transform of g t should
decrease as the transform becomes narrower: see Fig. 2.8. However, we will now

Ž .show that the area under g � is actually independent of � t.˜
This surprising result follows from the following property of the inverse trans-

form:

� �
yi � 0g ts0 s g � e d�r2�s g � d�r2� . 2.3.25Ž . Ž . Ž . Ž .˜ ˜H H

y� y�

Ž . Ž . Ž .The area under g � equals 2� g 0 s2� f 0 , independent of � t.˜
Why is this important? Consider the limit as � t™�. In this limit, the width of

Ž . Ž .g � vanishes, but the area under the function remains constant, equaling 2� f 0 .˜
Ž .One can see from Fig. 2.8 that this can happen because the height of g �˜

approaches infinity as the width vanishes.
Ž .This strange curve is called a Dirac �-function � � . To be precise,

g �Ž .˜
� � s lim . 2.3.26Ž . Ž .2� g 0Ž .� t™�

This function is normalized so as to have unit area under the curve. However,
since its width is vanishingly small, the function also has the properties that

0, ��0,
� � s 2.3.27Ž . Ž .½ �, �s0.

Therefore, the area integral need not involve the entire real line, because the
Ž .�-function is zero everywhere except at the origin. The integral over � � equals

unity for any range of integration that includes the origin, no matter how small:

�

lim � � d�s1. 2.3.28Ž . Ž .H
�™0 y�

Dirac �-functions often appear in the physical sciences. These functions have
many useful properties, which are detailed in the following sections.
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Ž . Ž .Integral of a �-Function Equations 2.3.27 and 2.3.28 lead to the following
Ž .useful result: for any function h t that is continuous at ts0, the following

integral can be evaluated analytically:

� �b
h t � t dts lim h t � t dtsh 0 lim � t dtsh 0 . 2.3.29Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H H

�™0 �™0ya y� y�

Ž .In the first step, we used the fact that � t equals zero everywhere except at ts0
in order to shrink the range of integration down to an infinitesimal range that

Ž .includes the origin. Next, we used the assumption that h t is continuous at ts0,
Ž .and finally, we employed Eq. 2.3.28 .

�-Function of More Complicated Arguments We will often have occasion to
consider integrals over Dirac �-function of the form

b
g t � f t dt , 2.3.30Ž . Ž . Ž .Ž .H

a

Ž .where f t equals zero at one or more values of t in the interval a� t�b. Take,
Ž .for example, the case f t sct for some constant c, with a�0�b. The integration

Ž .in Eq. 2.3.30 can then be performed by making a change of variables: let usct.
Ž . Ž . cb Ž . Ž .Then Eq. 2.3.30 becomes 1rc H g urc � u dt.ca

Ž . Ž .Now, if c�0, the result according to Eq. 2.3.29 is g 0 rc, but if c�0, the
Ž .result is yg 0 rc, because the range of integration is from a positive quantity ca to

a negative quantity, cb. Therefore, we find

b g 0Ž .
g t � ct dts , assuming a�0�b. 2.3.31Ž . Ž . Ž .H � �ca

Ž .Equation 2.3.31 can be used to determine more general integrals. Let’s assume
Ž .that f t passes through zero at M points in the range a� t�b, and let us label

these points ts t , ns1, 2, 3, . . . , M. The integral can then be broken up inton
contributions from each one of these zeros:

M
b t q�ng t � f t dts g t � f t dt . 2.3.32Ž . Ž . Ž . Ž . Ž .Ž . Ž .ÝH H

a t y�nns1

Other regions of integration do not contribute, because the �-function is only
nonzero within the regions kept. Focusing on one of the zeros, ts t , we note thatn
only values of t near t are needed, and so we make a change of variables from tn
to � ts ty t :n

�t q�n g t � f t dts g t q� t � f t q� t d� t .Ž . Ž . Ž . Ž .Ž . Ž .H H n n
t y� y�n

Ž . Ž .Taylor-expanding f t for small � t, noting that f t s0, and assuming thatn
Ž .f � t �0, we haven

� g tt q� Ž .n ng t � f t dts g t q� t � f � t � t d� ts ,Ž . Ž . Ž . Ž .Ž . Ž .H H n n � �f � tŽ .t y� y� nn
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Ž . Ž .where we used Eq. 2.3.31 in the last step. Therefore Eq. 2.3.32 becomes

M g tb Ž .ng t � f t dts . 2.3.33Ž . Ž . Ž .Ž . ÝH � �f � tŽ .a nns1

Generalized Fourier Integrals The previous considerations lead us to a startling
Ž .observation. Consider the Fourier transform of � t itself:

�
i� t i� 0� t e dtse s1, 2.3.34Ž . Ž .H

y�

Ž . Ž .where we have used Eq. 2.3.29 . This result, that the Fourier transform of � t
Ž .equals one, is expected on one level: after all, since � t is infinitely narrow, the

uncertainty principle implies its transform must be infinitely broad.
However, if we write down the inverse Fourier transform of unity, which should

Ž .return us to � t , we arrive at the strange result

�
yi � t� t s e d�r2� . 2.3.35Ž . Ž .H

y�

This integral is not convergent; the integrand does not decay to zero at large �.
But, somehow, it equals a �-function!

We can try to understand this strange result by writing the inverse transform as

�� yi � t� t s lim 1 e d�r2� .Ž . H
��™� y� �

This integral can be evaluated analytically. The result is

sin �� tŽ .
� t s lim . 2.3.36Ž . Ž .� t��™�

Ž .For a fixed value of t, and as �� increases, the function sin �� t r� t simply
oscillates between the values �1r� t. Since this oscillation continues indefinitely
as ��™�, the limit is not well defined. How can this limit equal a �-function?

The limit equals a �-function in the following a®erage sense. Consider an
Ž .integral over this function multiplied by any continuous function f t :

b sin �� tŽ .
lim f t dt . 2.3.37Ž . Ž .H � t��™� ya

If we now make the change of variables to �s�� t, the integral becomes

�� b sin �
lim f �r�� d� . 2.3.38Ž . Ž .H ����™� y� � a

Ž .However, the function sin � r�� is peaked at the origin, with an area under the
curve equal to unity:

� sin �
dts1. 2.3.39Ž .H ��y�
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Since this integral is convergent, we can replace the limits of integration in Eq.
Ž . Ž .2.3.38 by ��. Furthermore, in the limit that ��™�, we can replace f �r��

Ž . Ž .™ f 0 . Therefore, using Eq. 2.3.39 we find that

b sin �� tŽ .
lim f t dts f 0 , 2.3.40Ž . Ž . Ž .H � t��™� ya

w Ž .Thus, the function lim sin �� t r� t has the most important property of a� � ™�

Ž . Ž .�-function: it satisfies Eq. 2.3.29 . If we take f t s1, we can immediately see that
Ž .the function also satisfies Eq. 2.3.28 . On the other hand, it does not satisfy Eq.

Ž .2.3.27 : it is not equal to zero for t�0; rather it is undefined, oscillating rapidly
between �1r� t. Actually, ‘‘rapidly’’ is an understatement. In the limit as ��™�,
the oscillations in the function become infinitely rapid. Fortunately, the nature of
this variation allows us to call this function a �-function. When evaluating an
integral with respect to t over this function, the oscillations a®erage to zero unless
the origin is included in the range of integration. This can be seen in Cell 2.54,
which displays the behavior of this function over a range of t as �� increases.

Cell 2.54

Table[Plot[Sin[�� t]/(Pi t), {t, 1, 2}, PlotRange ™
{-1, 1}], {��, 10, 100, 10}];

This sequence of plots shows that, if the origin is not included in the plots, the
w Ž xamplitude of the oscillations in sin �� t r� t does not change as �� increases;

Žonly the frequency increases until in the limit the function is zero on a®erage. Try
.changing the limits of the plot, and the range of ��, to test this.
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However, if the origin is included, the amplitude of the peak at ts0 increases
w Ž .xas �� becomes larger, since by l’Hospital’s rule, lim sin �� t r� ts��r� .t™ 0

This is what allows the area under the function to remain unity in the limit as ��
becomes large.

Ž .Thus, Eq. 2.3.35 is a �-function in an a®erage sense: integrals over this
Ž .function have the correct property given by Eq. 2.3.29 . However, the function

itself contains infinitely rapid oscillations.
Ž .Fourier integrals such as Eq. 2.3.35 are called generalized Fourier integrals:

they do not converge in the usual sense to the term. Rather, the resulting functions
contain infinitely rapid oscillations. We neglect these oscillations because all we
use in applications are integrals over these functions, which average out the
oscillations.

Derivatives of a �-Function Several other generalized Fourier integrals are also
Ž . Ž .of use. Consider, for example, the deri®ati®e of a �-function, � � t sd� t rdt.

Ž .According to Eq. 2.3.35 , this derivative can be written as a generalized Fourier
integral,

� �d yi � t yi � t� � t s e d�r2�s yi� e d�r2� . 2.3.41Ž . Ž . Ž .H Hdt y� y�

Ž .The integrand in Eq. 2.3.41 exhibits even worse convergence properties than Eq.
Ž .2.3.35 . The resulting function has infinitely rapid oscillations of infinite magni-
tude. Nevertheless, integrals over this function are well behaved. We therefore may

Ž .say, with a straight face, that the Fourier transform of a � � t is yi�, and
compute the inverse transform of this function. In fact, Mathematica’s Fourier-
Transform function knows all about generalized Fourier integrals. For instance,

Cell 2.55

InverseFourierTransform[1,�, t]/Sqrt [2Pi]

DiracDelta[t]

The intrinsic function DiracDelta[t] is the Dirac �-function. Also,

Cell 2.56

InverseFourierTransform[-I �, �, t]/Sqrt[2 Pi]

DiracDelta'[t]

Of course, we can’t plot these functions, because they are singular, but we know
what they look like. The �-function has a single positive spike at the origin. Since
Ž . Ž .� � t is the slope of � t , it has a positive spike just to the left of zero, and a

negative spike just to the right.
Ž .The derivative of a �-function has a useful property: for any function f t that is

differentiable at ts0, the following integral that includes the origin can be
evaluated analytically via an integration by parts:

b b
f t � � t dtsy f � t � t dtsyf � 0 . 2.3.42Ž . Ž . Ž . Ž . Ž . Ž .H H

ya ya
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Similarly, the nth derivative of a �-function has the property that

b n nd � t d fŽ . n
f t dts y1 0 . 2.3.43Ž . Ž . Ž . Ž .H n ndt dtya

n Ž . nThe Fourier integral representation of d � t rdt becomes progressively less
convergent as n increases:

n �d � tŽ . n yi � ts yi� e d�r2� . 2.3.44Ž . Ž .Hndt y�

These generalized Fourier integrals allow us to do things that we couldn’t do
before. For instance, we can now compute the value of a nonconvergent integral,
such as

� 2t
cos � t dt .H 21q ty�

Normally, we would throw up our hands and declare that the integral does not
exist. This is technically correct so far as it goes, but we still can compute its value
as a generalized Fourier integral:

� 2 � 2t 1q t y1 i� tcos � t dtsRe e dtH H2 21q t 1q ty� y�

� � 1i� t i� tsRe e dtyRe e dt .H H 21q ty� y�

The first integral is proportional to a �-function, while the second integral is
convergent, equaling y� ey � � � . Thus, we obtain

� 2t y � � �cos � t dts2�� � q� e .Ž .H 21q ty�

However, we must always remember that the equality is correct only in the average
sense discussed above; the right-hand side neglects infinitely rapid oscillations.

Heaviside Step Function Before we move on to other topics, there is one more
generalized Fourier integral of interest. Consider the integral of a �-function,

t
h t s � t dt . 2.3.45Ž . Ž . Ž .H 1 1

y�

This function equals zero if t�0, but for t�0 the range of integration includes
Ž . Ž . Ž .the origin, and so, according to Eq. 2.3.28 , h t s1. Therefore, h t is nothing

other than the Heaviside step function UnitStep[t], encountered previously in
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Ž .Cell 2.48. For convenience, we reproduce the definition of h t below:

0, t�0,h t s 2.3.46Ž . Ž .½ 1, t�0.

Ž .We can find the Fourier integral of h t by directly applying the transform:

� �
i� t i� th̃ � s e h t dts e dt .Ž . Ž .H H

y� 0

Now, this is not a convergent integral; rather, it is a generalized Fourier integral,
and it provides an instructive example of some of the methods used to evaluate
such integrals.

Breaking the integrand into real and imaginary parts via e i� tscos � tq i sin � t,
we can write the result as

� �

h̃ � s cos � t dtq i sin � t dt .Ž . H H
0 0

In the first integral, note that cos � t is an even function of t, so we can double the
1range of integration to y�� t��, and divide by . Expressing the second integral2

as a limit, we can write

� � t1 i� th̃ � s Re e dtq i lim sin � t dt .Ž . H H2 � t™�y� 0

Ž .The first integral yields a �-function via Eq. 2.3.34 , and the second integral can
be evaluated analytically:

cos � � t1 Ž .
h̃ � s�� � y y i lim . 2.3.47Ž . Ž . Ž .i� �� t™�

As usual, we neglect the infinite oscillations. Mathematica can also deliver the
same result:

Cell 2.57

Expand[FourierTransform[UnitStep[t], t, �] Sqrt[2Pi]]

i
+ � DiracDelta[�]

�

Connection of Fourier Transforms to Fourier Series Since Fourier transforms
can be used to represent any function as an integral over Fourier modes, they can
be used to represent periodic functions as a special case. It is a useful exercise to
see how this representation connects back to Fourier series.

As a first step, we will consider the Fourier series for a simple periodic function,
ŽP .Ž .the periodic �-function of period T , � t . This function is a periodic extension
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of a Dirac �-function, and can be written as

�
ŽP .� t s � tymT . 2.3.48Ž . Ž . Ž .Ý

msy�

Since this is a periodic function, it has a Fourier series representation of the form

�
ŽP . yi 2� ntrT� t s c e .Ž . Ý n

nsy�

ŽP .Ž .The Fourier coefficients are given by an integral over one period of � t , which
contains a single �-function:

Tr2 i2� ntrTc s � t e dts1.Ž .Hn
yTr2

Thus, the periodic �-function of period T has a Fourier series of the form

� �
ŽP . yi 2� ntrT� t s � tymT s e . 2.3.49Ž . Ž . Ž .Ý Ý

msy� nsy�

Ž .It is easy to see why Eq. 2.3.49 is a periodic �-function. If tsmT for any integer
m, then eyi 2� ntrTseyi 2� nms1 for all n, and the series sums to �. At these
instants of time, each Fourier mode is in phase. However, it t�mT , the sum over
eyi 2� ntrT evaluates to a series of complex numbers, each with magnitude of unity,
but with different phases. Adding together these complex numbers, there is
destructi®e interference between the modes, causing the sum to equal zero. Thus, we
get a function that is infinite for tsmT , and zero for t�mT.

However, the easiest way to see that this creates a periodic �-function is to
examine the series as a function of time using Mathematica. The following
evaluation creates a periodic �-function by keeping 300 terms in the Fourier series

1Ž .of Eq. 2.3.49 . We choose a period of , and note that the sum over n can be5

written in terms of cosines, since the sine functions are odd in n and cancel:

Cell 2.58

1 + 2 Sum[ Cos[2 Pi n 5 t], {n, 1, 300}];

Ž .We could plot this function, but it is more fun to Play it Cell 2.59 . It is necessary
to keep several hundred terms in the series, because our ears can pick up
frequencies of up to several thousand hertz. Since the fundamental frequency is 5
Hz, keeping 300 terms in the series keeps frequencies up to 1500 Hz. It would be
even better to keep more terms; the sound of the ‘‘pops’’ then becomes higher
pitched. However, keeping more terms makes the evaluation of the series rather
slow.

Cell 2.59

Play [%%%%%, {t, -1.5, .5}, PlayRange™All[;
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The periodic �-function is useful in understanding the connection between
Ž .Fourier transforms and Fourier series. Consider an arbitrary periodic function f t

Ž̃ .with period T. This function has a Fourier transform f � , given by

�
i� tf̃ � s f t e dt .Ž . Ž .H

y�

Ž .Using the periodic nature of f t , we can break the Fourier integral into a sum
over separate periods:

�
t ynTqT0 i� tf̃ � s f t e dt ,Ž . Ž .Ý H

t ynT0nsy�

where t is an arbitrary time. Now we may change variables in the integral to0
Ž .t s tqnT , and use Eq. 2.1.1 to obtain1

�
t qT0i� nT i� t1f̃ � s e f t e dt . 2.3.50Ž . Ž . Ž .Ý H 1 1

t0nsy�

Ž . � i� nT ŽP .Ž 2 . Ž .However, Eq. 2.3.49 implies that Ý e s� �T r2� . Then Eq. 2.3.50nsy�

becomes

� 2 t qT�T 0 i� t1f̃ � s � ymT f t e dtŽ . Ž .Ý H 1 1ž /2� t0msy�

�
t qT2� m 1 0 i� t1s 2�� �y f t e dt , 2.3.51Ž . Ž .Ý H 1 1ž /T T t0msy�

Ž . Ž .where we have used Eqs. 2.3.48 and 2.3.33 . Furthermore, note that the integral
Ž . Ž .in Eq. 2.3.51 is the expression for the mth Fourier coefficient, c , Eq. 2.1.33 .m
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Therefore, we can write

� 2� m
f̃ � s 2�� �y c . 2.3.52Ž . Ž .Ý mž /T

msy�

Ž .This equation connects the Fourier integral of a periodic function f t to the
function’s exponential Fourier coefficients c . We see that in frequency space am
periodic function consists of a sum of �-functions at all harmonics of the funda-
mental frequency ��s2�rT.

Ž .Finally, applying the inverse transform to Eq. 2.3.52 , the integral over each
�-function in the sum can be evaluated, and we return to our previous expression

Ž .for f t as a Fourier series:

�
yi m � � tf t s c e .Ž . Ý m

msy�

2.3.5 Fast Fourier Transforms

Discrete Fourier Transforms In this section we consider methods for perform-
� 4ing numerical Fourier transforms. The idea is that one is given a set of data fn

measured at N evenly spaced discrete times t sn � t, ns0, 1,2, . . . , Ny1. Fromn
this data, one wishes to determine a numerical frequency spectrum.

This sort of problem arises in experimental physics as well as in numerical
simulation methods, and in many other fields of science, including economics,
engineering, signal processing, and acoustics.

One way to attack this problem is simply to discretize the integrals in the
Fourier transform and the inverse transform. If we consider a discretized version

Ž .of a Fourier transform, Eq. 2.3.12 , with the time variable replaced by closely
spaced discrete timesteps t sn � t, and the frequency replaced by closely spacedn
discrete frequencies � sm ��, one can immediately see that the operation ofm

ˆFourier transformation, Ff , is equivalent to the dot product of a vector with a
matrix:

�

˜ ˆ ˜f � sFf t ™ f s F f , 2.3.53Ž . Ž . Ž .Ým m n n
nsy�

˜ ˜Ž . Ž .where f s f n � t and f s f m �� , and the matrix F has componentsn m m n

F s� t e im n � t � � . 2.3.54Ž .m n

ˆThis matrix is a discretized form of the Fourier transform operator F. Equation
Ž .2.3.54 shows directly that there is an analogy between the linear integral operator
F̂ acting on functions and a matrix F acting on vectors. Previously, we saw that
there was a similar analogy between linear differential operators and matrices.

ŷ1When the inverse transform operator F is discretized, it also becomes a
matrix, with components

Fy1 s�� eyi m n � t � �r2� . 2.3.55Ž . Ž .m n

˜This matrix can be applied to discretized functions of frequency f in order to
reconstruct the corresponding discretized function of time, according to the matrix
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equation
y1 ˜F � fs f. 2.3.56Ž .

� 4So, in order to take a numerical Fourier transform of a data set f , it appearsn
that all we need do is apply the matrix F to the vector f with components f ,n

˜Ž .according to Eq. 2.3.53 . To turn the resulting discretized spectral function f back
y1 Ž .into the time data, all we need do is apply the matrix F , defined by Eq. 2.3.55 .

This is fine so far as it goes, but there are several problems hiding in this
procedure. First, the matrices F and Fy1 are formally infinite-dimensional. We can
try to get around this problem by cutting off the Fourier integrals. Since the data

Ž .runs from 0F tF Ny1 � t, we can cut off the time integral in the Fourier
transform beyond this range of times. For the frequency integral in the inverse
transform, we can also impose a frequency cutoff, keeping only frequencies in the
range yM ��F�FM �� for some large integer value of M. The hope is that
the frequency spectrum goes to zero for sufficiently large �, so that this cutoff
does not neglect anything important.

There is a second problem: although � t is determined by the dataset, what
should our choice for �� be? Apparently we can choose anything we want, so long
as �� is ‘‘small.’’ This is technically correct�if �� is small compared to the scale
of variation of the frequency spectrum, then the discretized integral in the Fourier

Ž .transform is well represented by the Riemann sum given by Eq. 2.3.56 . However,
we also must keep enough terms so that M �� is a large frequency�large enough
to encompass the bulk of the frequency spectrum.

For very smooth time data with only low-frequency spectral components, this
Ž .prescription works see the exercises . However, for real data, which may have

high-frequency spectral components and rapid variation in the spectrum, the above
method becomes impractical, because we must take M very large. Also, the
matrices Fy1 and F are only approximately the inverses of one another, because of
the errors introduced by discretizing the Fourier and inverse Fourier integrals.

One way to improve matters is to recognize that the time data, extending only
Ž .over a finite time range 0F tF Ny1 � t, can be replaced by a periodic extension

w Ž . xwith period TsN� t. We take this time as the period rather than, say, Ny1 � t
so that the first data point beyond this interval, at time N� t, has value f . This0

Ž .way, the data can be seen to repeat with period TsN� t see Fig. 2.9 .

Fig. 2.9 A dataset with 10 elements, periodically replicated.
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Since the periodic extension has period T , the data can be represented by a
Fourier series rather than a transform, with a fundamental frequency ��s2�rT.
This is the smallest frequency that can be represented by this data, and so is a
good choice for our frequency discretization. Hearkening back to our equation for

Ž .Fourier series, Eq. 2.2.2 , we would like to write

�
Ž p. yi m � � t˜f t s f e , 2.3.57Ž . Ž .Ý m

msy�

Ž p.Ž . Žwhere f t is a periodic function of time that represents the discrete data we
˜.will see what this function of continuous time looks like in a moment , and the f ’sm

are the Fourier coefficients in the series. As in all Fourier series, the sum runs over
all integers, and of course this is a problem in numerical applications. However, we
will see momentarily that this problem can be solved in a natural way.

˜The Fourier components f are determined by the integral:m

N� t1 im � � tf̃ s f t e dt 2.3.58Ž . Ž .Hm N� t 0

w Ž .xsee Eq. 2.2.3 . However, since the time data is discrete, we replace this integral
Ž .by the Riemann sum just as in Eq. 2.3.53 :

Ny1 Ny11 1im � � n � t i2� m nrNf̃ s � t f e s f e , 2.3.59Ž .Ý Ým n nN� t N
ns0 ns0

where in the second step we have used ��s2�rT.
These Fourier components have an important property: they are themselves

˜ ˜periodic, satisfying f s f . The proof is simple:mqN m

Ny1 Ny11 1i2� ŽmqN .nrN i2� m nrNqi 2� n˜ ˜f s f e s f e s f . 2.3.60Ž .Ý ÝmqN n n mN N
ns0 ns0

˜ ˜Now, since f repeats periodically, we can rewrite the infinite sum over these f ’sm m
Ž .in Eq. 2.3.57 as sums over repeating intervals of size N:

Ny1qNp� � Ny1
Ž p. yi m � � t yi N p � � t yi m � � t˜ ˜f t s f e s e f e .Ž . Ý Ý Ý Ým m

psy� psy�msNp ms0

However, the sum over p can be written as a periodic �-function using Eq.
Ž .2.3.49 :

� Ny1
Ž p. yi m � � t˜f t s� t � tyn � t f e . 2.3.61Ž . Ž . Ž .Ý Ý m

nsy� ms0

This equation represents our discrete data as a sum of �-functions at the discrete
times n � t, periodically extended to the entire real line. This is not a bad way to
think about the data, since the �-functions provide a natural way of modeling the
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discrete data in continuous time. Also, we implicitly used this representation when
Ž . Ž .we wrote the Riemann sum in Eq. 2.3.59 . That is, if we define a function f t for

Ž .use in Eq. 2.3.58 according to

Ny1

f t s� t f � tyn � t , 2.3.62Ž . Ž . Ž .Ý n
ns0

Ž . Ž p.Ž . Ž .we directly obtain Eq. 2.3.59 . The function f t in Eq. 2.3.61 is merely the
Ž .periodic extension of f t .

Ž . Ž .Furthermore, comparing Eq. 2.3.61 to 2.3.62 we see that the time data f cann
˜be written directly in terms of the Fourier coefficients f :m

Ny1 Ny1
yi m � � n � t yi 2� m nrN˜ ˜f s f e s f e . 2.3.63Ž .Ý Ýn m m

ms0 ms0

Ž . Ž .Equations 2.3.59 and 2.3.63 are called a discrete Fourier transform and a
discrete inverse Fourier transform respectively. These two equations provide a
method for taking a set of discrete time data f at times n � t, 0FnFNy1, andn

˜obtaining a frequency spectrum f at frequencies m ��, 0FmFNy1, wherem
Ž .��s2�r N� t is the fundamental frequency of the periodic extension of the

data.

� 4Discrete Fourier transform of time data f :n

Ny11 i2� m nrNf̃ s f e .Ým nN
ns0

˜� 4Discrete inverse transform of frequency data f :m

Ny1
yi 2� m nrN˜f s f e .Ýn m

ms0

˜Ž . Ž .Equations 2.3.59 and 2.3.63 can be written as matrix equations, fsF� f and
y1 ˜ y1fsF � f. The N-by-N matrices F and F have components

1 i2� m nrNF s e ,m n N 2.3.64Ž .
Fy1 seyi 2� m nrN .Ž . m n

These matrices are similar to the discretized forms for the Fourier transform
Ž . Ž . Ž .operators, Eqs. 2.3.54 and 2.3.55 . However, according to Eqs. 2.3.59 and

Ž . Ž .2.3.63 , the matrices in Eq. 2.3.64 are exact inverses of one another, unlike the
finite-dimensional versions of the discretized Fourier and inverse Fourier trans-

Ž . Ž .forms, Eqs. 2.3.54 and 2.3.55 . Therefore, these matrices are much more useful
than the discretized Fourier transform operators.
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After constructing these matrices, we can use them to take the discretized
Fourier transform of a set of data. The matrices themselves are easy to create
using a Table command. For instance, here are 100-by-100 versions:

Cell 2.60

nn = 100; F = Table[Exp[I 2. Pi m n/nn]/nn,
{m, 0, nn - 1}, {n, 0, nn - 1}];

F1 = Table[Exp[I 2. Pi m n/nn], {m, 0, nn - 1},
{n, 0, nn - 1}];

Note the use of approximate numerical mathematics, rather than exact mathemat-
ics, in creating the matrices. When dealing with such large matrices, exact mathe-
matical operations take too long.

We can use these matrices to Fourier analyze data. Let’s create some artificial
time data:

Cell 2.61

f = Table[N[Sin[40 Pi n/100] + (Random[] - 1/2)],
{n, 100}];

Ž .This data is a single sine wave, sin 40� t , sampled at time t snr100, with somen
noise added, as shown in Cell 2.62.

Cell 2.62

ListPlot[f, PlotJoined™True]

The frequency spectrum for this data is obtained by applying the Fourier matrix F
to it:

Cell 2.63

f̃ = F.f;
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˜Again, we will use a ListPlot to look at the spectrum. However, since f is
complex, we will plot the real and imaginary parts of the spectrum separately, in
Cells 2.64 and 2.65. Evidently, the two peaks in the real and imaginary parts of the
spectrum correspond to the two Fourier components of sin 40� tse40� i ty
y40 � i t.e r2 i. These components have frequencies of �40� . Since the frequency is

Ž .discretized in units of ��s2�r N� t s2� , the frequency 40� corresponds to
˜ Ž .the 21st element of f sine �s0 corresponds to the first element . This agrees

with the plots, which show a peak at the 21st element.

Cell 2.64

˜ListPlot[Re[f], PlotJoined™True, PlotRange™All];

Cell 2.65

˜ListPlot[Im[f], PlotJoined™True, PlotRange™All];

What about the other peak, which is supposed to occur at y40� ? There are no
Ž .negative frequencies in our spectrum. Rather, frequencies run from 0 to Ny1 ��
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Fig. 2.10 The fastest sinusoidal oscillation that can be unambiguously identified in a set of
Ž .data has the Nyquist frequency � and period 2 � t black curve . Higher-frequencymax

Ž .oscillations dashed curve can be translated back to lower frequency.

˜ win units of ��s2� . Recall, however, that f is periodic with period N see Eq.
Ž .x2.3.60 . In particular, it repeats over the negative frequency range. So we can

˜think of the second peak in the plots, at element 80 of f, as actually being at a
˜ ˜ ˜ ˜negative frequency. Since f s f , then f s f , corresponding to the spectral100 0 80 y20

component with frequency y20 ��sy40� .
Thus, the upper half of the frequency spectrum should be thought of as

corresponding to negative frequencies. This implies that as we count upwards
through the elements of our frequency spectrum, starting with the first element,
the frequency increases like m �� until we get the center of the spectrum. At this
point the frequency jumps to negative values and approaches zero from the
negative side. Therefore, the maximum frequency magntiude kept in our spectrum
is

� sN��r2s�r� t . 2.3.65Ž .max

The frequency � is called the Nyquist frequency for the data. The physicalmax
reason why this is the maximum frequency in a set of data can be understood from
Fig. 2.10, which displays some time data. The highest-frequency sinusoidal wave
that we can interpolate through these data points has a half period equal to � t:
one needs at least two points to determine a sine wave, one at a minimum and one
at a neighboring maximum. Thus, the minimum full wavelength defined by the
data is 2 � t, and the maximum frequency is given by the Nyquist frequency

Ž . Ž .� s2�r 2 � t , Eq. 2.3.65 .max
Ž .More rapid oscillations, with frequency � qpN��s 2 pq1 � , for anymax max

integer p can also be made to go through these points as well�see the dashed
curve in Fig. 2.10, which corresponds to ps1. However, since these higher-
frequency oscillations can always be referred back to the frequency � , we usemax
� to describe them�there is nothing in the data to distinguish them from anmax
oscillation at � . The identification of higher frequencies with a lower frequencymax
is called aliasing. This identification arises from the discreteness of the data�there
are no data points in between the given data points that can determine the
locations of the peaks and troughs in the dashed curve.
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There is something else that one can see in the real and imaginary parts of the
˜plotted spectrum. Because the input data f was real, the spectral components f

˜ 	̃ Ž .have the property that f s f . This is analogous to Eq. 2.3.7 for continuousym m
Ž .Fourier transforms, and follows directly from Eq. 2.3.59 for any real set of time

data f . We can also see this symmetry in the previous plots if one remembers thatn
˜ ˜ ˜the periodicity of f implies that f s f . Thus, for real data, the discretem ym Nym

Fourier transform has the property that

˜ ˜ 	̃f s f s f . 2.3.66Ž .ym Nym m

Fast Fourier Transforms Although the discrete Fourier transforms given by Eqs.
Ž . Ž .2.3.59 and 2.3.63 work, they are not very useful in practice. The reason is that
they are too slow. To evaluate the spectrum for a data set of N elements, a sum
over the data set must be done for each frequency in the spectrum. Since there are
N elements in the sum and N frequencies in the spectrum, determining every
frequency component of a dataset requires of order N 2 operations. For Ns100

Ž . 6this is not a problem as we saw above , but for Ns10 it is out of the question.
Datasets of this size are routinely created in all sorts of applications.

Fortunately, a method was developed that allows one to perform the discrete
transform and inverse transform with far fewer than N 2 operations. The method is

Ž .called the method of fast Fourier-transforms FFT for short . Invented by several
individuals working independently as far back as the 1940s, it later became well
known through the work of Cooley and Tukey at IBM Research Center in the
mid-1960s.

The method relies on symmetries of the discrete Fourier transform that allow
one to divide the problem into a hierarchy of smaller problems, each of which can

Ž .be done quickly the di®ide-and-conquer approach . We will not examine the nuts
and bolts of the procedure in detail. But it is worthwhile to briefly discuss the idea
behind the method.

Given a discrete Fourier transform of a data set with N elements, N assumed
e®en, one can break this transform up into two discrete transforms with Nr2
elements each. One transform is formed from the even-numbered data points, the
other from the odd-numbered data points:

Ny1
i2� m nrNf̃ s f eÝm n

ns0

Nr2y1 Nr2y1
i2� m2 nrN i2� mŽ2 nq1.rNs f e q f eÝ Ý2 n 2 nq1

ns0 ns0

Nr2y1 Nr2y1
i2� m nrŽ Nr2. i2� mrN i2� mrŽ Nr2.s f e qe f eÝ Ý2 n 2 nq1

ns0 ns0

Ž̃ e. i2� mrN Ž̃o.s f qe f . 2.3.67Ž .m m

Ž̃ e.In the last line, f denotes the discrete Fourier transform over the Nr2 evenm
Ž̃o.elements of f , and f denotes the discrete Fourier transform over Nr2 oddn m

elements of the data.
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At this point it appears that we have gained nothing. The two separate
transforms each require of order Nr2 operations, and there are still N separate

˜ 2frequencies f to be calculated, for a total of N operations again. However,m
Ž̃ e. Ž̃o.Ž .according to Eq. 2.3.60 , both f and f are periodic with period Nr2.m m

Therefore, we really only need to calculate the components ms1, 2, . . . , Nr2 for
each transform.

In this single step, we have saved ourselves a factor of 2. Now, we apply this
procedure again, assuming that Nr2 is an even number, saving another factor of 2,
and so on, repeating until there is only one element in each series. This assumes
that Ns2 P for some integer P. In fact, Ns2 P are the only values allowed in the

Ž Psimplest implementations of the FFT method. If N�2 for some integer P, one
P .typically pads the data with zeros until it reaches a length of 2 for some P.

It appears from the above argument that we have taken the original N 2 steps
and reduced their number by a factor of 2 PsN, resulting in a code that scales
linearly with N. However, a more careful accounting shows that the resulting
recursive algorithm actually scales as N log N, because the number of steps in the2
recursion equals Ps log N. Nevertheless, this is a huge saving over the original2
N 2 operations required for the discrete Fourier transform.

Writing an efficient FFT code based on the above ideas is not entirely straight-
wforward, and will not be pursued here. An implementation of the code can be

Ž . xfound in Press et al. 1986 ; see the references at the end of Chapter 1.
Fortunately, Mathematica has done the job for us, with the intrinsic functions

� 4Fourier and InverseFourier. Fourier acts on a list of data fs f ton
˜ ˜� 4produce a frequency spectrum fs f . The syntax is Fourier[f] and Inverse-m

˜Fourier[f]. However, just as with continuous Fourier transforms, many differ-
ent conventions exist for the definitions of the discrete transform. The default
convention used by Fourier and InverseFourier differs from that used in

Ž . Ž .Eqs. 2.3.59 and 2.3.63 . For a dataset of length N our convention corresponds to

˜ 'f=Fourier[f]/ N ,
2.3.68Ž .

˜'f= N InverseFourier[f].

Of course, any convention can be used, provided that one is consistent in its
Ž .application. We will stick to the convention of Eq. 2.3.68 , since it corresponds to

our previous discussion.
The length of the data sets taken as arguments in Fourier and Inverse-

Fourier need not be 2 P. For example, in Cell 2.66 we apply them to the original
data of 100 elements created in the previous section. Comparing these plots with
those generated in Cells 2.64 and 2.65 using the discrete Fourier transform
method, one can see that they are identical.

Cell 2.66

˜nn = 100; f = Fourier[f]/Sqrt[nn];
˜ListPlot[Re[f], PlotJoined™True, PlotRange™All];
˜ListPlot[Im[f], PlotJoined™True, PlotRange™All];
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Let’s apply Fourier analysis to a real data signal. Mathematica has the ability to
read various types of audio files, such as AIFF format, �-law encoding, or
Microsoft WAV format. These sound files can be read using the intrinsic function
Import. To read the following sound file of my voice, named ah.AIFF, first
determine the current working directory on the hard disk with the command

Cell 2.67

Directory[]

/Users/dubin

Then either copy the file into this directory from the cd on which this book came,
or if that is not possible, set the working directory to another hard disk location
using the SetDirectory command. Once the file is in the current working
directory, the file can be read:

Cell 2.68

snd = Import["ah.AIFF", "AIFF"]

- Sound -
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As with any other sound in Mathematica, this sound can be played using the Show
Ž .command Cell 2.69 .

Cell 2.69

Show[snd];

Let’s take a look at what is contained in snd by looking at the internal form of the
data:

Cell 2.70

Shallow[InputForm[snd]]

Sound[SampledSoundList[<<2>>]]

This data contains a SampledSoundList, which is a set of sound data in the
�� 4 4 � 4form f , f , f , . . . , samplerate . The data f , f , f , . . . provide a list of sound0 1 2 0 1 2

Žlevels, which are played consecutively at a rate given by samplerate. We applied
the command Shallow so that we didn’t have to print out the full data list, just

.the higher levels of the data structure. We can extract the sample rate using

Cell 2.71

samplerate = InputForm[snd][[1]][[1]][[2]]

22050.

which means the sample rate is 22,050 hertz, a common value used in digitized
recordings. The time between samples, � t, is just the reciprocal of the sample rate:

Cell 2.72

�t = 1/samplerate

0.0000453515
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The data itself can be extracted using

Cell 2.73

f = InputForm[snd][[1]][[1]][[1]];

The length of this data list is

Cell 2.74

nn = Length[f]

36864

Let’s look at some of this data over a region where something is happening.

Cell 2.75

Table[f[[n]], {n, 25000, 25000 + 40}]

{0.03125, 0.015625, 0.0078125, 0, 0, 0, -0.0078125,
-0.0078125, -0.0078125, 0, 0, 0, 0.0078125, 0.015625,
0.0234375, 0.03125, 0.03125, 0.0390625, 0.03125,
0.0234375, 0.0234375, 0.015625, 0.015625, 0.0234375,
0.0234375, 0.0234375, 0.0234375, 0.0234375, 0.0234375,
0.0234375, 0.0234375, 0.03125, 0.0390625, 0.046875,
0.046875, 0.046875, 0.0390625, 0.03125, 0.015625,
0.0078125, 0}

The numbers giving the sound levels are discretized in units of 0.0078125. This is
because the sound has been digitized, so that amplitude levels are given by discrete
levels rather than by continuous real numbers. Note that 1r0.0078125s128s27.

ŽThis corresponds to 8-bit digitization: the other bit is the sign of the data, �. In
base two, integers running from 0 to 127 require seven base-two digits, or bits, for

.their representation. Because there are only 128 different possible sound levels in
this data file, the sound is not very high quality, as you can tell from the playback
above. There is quite a bit of high-frequency hiss, due at least in part to the rather
large steps between amplitude levels that create high frequencies in the sound.

We can see this in the Fourier transform of the data:

Cell 2.76

f̃ = Fourier[f] / Sqrt[nn];

Ž .A plot of this Fourier transform Cell 2.77 shows considerable structure at low
frequencies, along with a low-level high-frequency background. It is easier to
comprehend this data if we plot it in terms of actual frequencies rather than just

˜the order of the elements of f, so we will replot the data. The separation ��
Ž .between adjacent Fourier modes is 2�r N� t , in radians per second. In hertz, the

Ž . Ž .separation is � fs1r N� t see Cell 2.78 .

Cell 2.77

˜ListPlot[Abs[f], PlotRange™All];
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Cell 2.78

�f = 1/(nn �t)

General : : spell1 : Possible spelling error:
new symbol name "�f" is similar to existing symbol "�t".

0.598145

˜� 4We therefore create a data list, n � f , f , ns0, 1, 2, . . . , nny1:n

Cell 2.79

˜fdata = Table[{n �f, f[[n + 1]]}, {n, 0, nn - 1}];

and in Cell 2.80 we plot this list over a range of low frequencies, up to 3000 hertz.
A series of peaks are evident in the spectrum, which represent harmonics that are
important to the ‘‘ahhh’’ sound. There is also a broad spectrum of low-level noise
in the data, evident up to quite large frequencies. We can reduce this noise by
applying a high-frequency filter to the frequency data. We will simply multiply all
the data by an exponential factor that reduces the amplitude of the high frequen-

Ž .cies Cell 2.81 .

Cell 2.80

ListPlot[Abs[fdata], PlotRange™{{0, 3000}, All},
˜� �AxesLabel™{"freq. (hz)", " f "}];
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Cell 2.81

˜lowerhalf = Table[f[[n]] Exp[-n/600.], {n, 1, nn/2}];

We only run this filter over half of the data because the upper half of the spectrum
corresponds to negative frequencies. To add in the negative-frequency half of the

Ž .spectrum, it is easiest to simply use Eq. 2.3.66 , which is just a statement that the
upper half of the spectrum is the complex conjugate of the lower half, written in
reverse order:

Cell 2.82

upperhalf = Reverse[Conjugate[lowerhalf]];

However, the lower half includes the zero-frequency point, while the upper half
w Ž . xexcludes this point. Frequencies run from 0 to Ny1 ��. This zero-frequency

point is the last point in the upper half, at position n = Length[upper-last

half]:

Cell 2.83

n = Length[upperhalf]; upperhalf = Delete[upperhalf, n ];last last

We now join these two lists together to get our new spectrum:

Cell 2.84

f̃ = Join[lowerhalf, upperhalf];new

Since the length N of the original data was even, the new data has one less point,
because in the above cut-and-paste process we have neglected the center point in
the spectrum at the Nyquist frequency. This makes a negligible difference to the
sound.

Cell 2.85

˜Length[f ]new

36863

After inverse Fourier-transforming, we can play this resulting sound data using
the ListPlay command, choosing to play at the original sample rate of 22050

Ž . Žhertz Cell 2.86 . Apart from the change in volume level which can be adjusted
.using the PlayRange option the main difference one can hear is that some high

frequencies have been removed from this sound sample, as we expected. The audio
filtering that we have applied here using an FFT is a crude example of the sort of
operations that are employed in modern signal-processing applications. Some
other examples of the use of FFTs may be found in the exercises, and in Secs. 6.2.2
and 7.3.

Cell 2.86

˜ffiltered = InverseFourier[f ];new

ListPlay[ffiltered, SampleRate™samplerate];



FOURIER SERIES AND TRANSFORMS158

2.3.6 Response of a Damped Oscillator to General Forcing.
Green’s Function for the Oscillator

We are now ready to use Fourier transforms to solve a physics problem: the
Ž .response of a damped harmonic oscillator to a general forcing function f t .

Ž .Previously, only simple analytic forcing functions Sec. 1.6 or periodic functions
Ž .Sec. 2.1 were considered. Using Fourier transforms, we can now deal with any
form of forcing.

Ž .In order to obtain a particular solution x t to the forced damped oscillatorp
Ž .equation, Eq. 1.6.2 , we act on the right and left-hand sides of the equation with a

ˆFourier transform F:

ˆ 2 ˆF x q	 x�q� x sFf . 2.3.69Ž .Ž .0

˜ ˆDefining the Fourier transform of the forcing function as fsFf , and that of the
ˆ Ž .particular solution as x sFx , Eq. 2.3.69 is transformed from an ODE to a˜p p

simple algebraic equation:

2 2 ˜y� y i�	q� x � s f � . 2.3.70Ž . Ž . Ž .˜Ž .0 p

Ž .Here, we have applied Eq. 2.3.18 to the derivatives of x . We may then divide byp
the bracket, assuming that the bracket is not zero, to obtain

f̃ �Ž .
x � s . 2.3.71Ž . Ž .˜p 2 2y� y i�	q�0

Ž . Ž .Equation 2.3.71 provides the amplitude x � of all Fourier coefficients in the˜p
oscillator’s response to the forcing. This equation shows that each Fourier mode in
the response is excited only by its corresponding mode in the forcing. This is very

Ž .similar in form to the response to periodic forcing, Eq. 2.1.37 , except that now
the frequency varies continuously rather than in discrete steps.
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In order to determine the response in the time domain, an inverse transforma-
Ž .tion must be applied to Eq. 2.3.71 :

� yi � t ˜e f � d�Ž .
x t s . 2.3.72Ž . Ž .Hp 2 2 2�y� y i�	q�y� 0

This is as far as we can go in general. Without knowing the form of the forcing
Ž .function, we cannot evaluate the frequency integral required in Eq. 2.3.72 .

However, we can convert the frequency integral to a time integral by using the
Ž .convolution theorem. Equation 2.3.71 can be seen to be a product of Fourier

˜ 2 2Ž . Ž . Ž .transforms; one transform is f � , and the other is 1r y� y i�	q� �g � .˜0
˜Ž . Ž . Ž .Since x � s f � g � , the convolution theorem implies that˜ ˜p

�

x t s f t g ty t dt , 2.3.73Ž . Ž . Ž . Ž .Hp 0 0 0
y�

ŷ1Ž . Ž .where g t sF g � is the inverse transform of g.˜ ˜
Ž .Although the time integral in Eq. 2.3.73 is not necessarily easier to evaluate

Ž . Ž .than the frequency integral in Eq. 2.3.72 , Eq. 2.3.73 has some conceptual and
Ž .practical advantages. From a practical point of view, Eq. 2.3.73 deals only with

Ž . Ž . Ž .f t , whereas Eq. 2.3.72 involves the Fourier transform of f t , which must be
Ž .calculated separately. Thus, Eq. 2.3.73 saves us some work. Conceptually, the

Ž .original differential equation is written in the time domain, and so is Eq. 2.3.73 ;
so now there is no need to consider the frequency domain at all.

Ž .However, we do need to calculate the function g ty t . But we need do so only0
Ž .once, after which we can apply Eq. 2.3.73 to determine the response to any

forcing function.
Ž .The function g ty t is called the Green’s function for the oscillator. We will0

soon see that Green’s functions play a very important role in determining the
particular solution to both ODE and PDEs.

The Green’s function has a simple physical interpretation. If we take the forcing
Ž . Ž . Ž . Ž .function in Eq. 2.3.73 to be a Dirac �-function, f t s� t , then Eq. 2.3.730 0

yields

x t sg t .Ž . Ž .p

Ž .In other words, the Green’s function g t is a response of the oscillator to a
Ž .�-function force at time ts0. The total impulse i.e. momentum change imparted

� Ž .by the force is proportional to H � t dt s1, so this force causes a finite changey� 0 0
in the velocity of the oscillator. To understand this physically, think of a tuning
fork. At ts0, we tap the tuning fork with an instantaneous force that causes it to
oscillate. The Green’s function is this response. For this reason, Green’s functions
are often referred to as response functions.

Of course, the tuning fork could already be oscillating when it is tapped, and
that would correspond to a different particular solution to the problem. In general,
then, there are many different possible Green’s functions, each corresponding to

Ž .different initial or boundary conditions. We will see that when Fourier trans-
forms are used to determine the Green’s function for the damped oscillator, this
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method picks out the particular solution where the oscillator is at rest before the
force is applied.

Before we proceed, it is enlightening to step back for a moment and contem-
Ž .plate Eq. 2.3.73 . This equation is nothing more than another application of the

Ž .superposition principle. We are decomposing the forcing function f t into a sum
of �-function forces, each occurring at separate times ts t . Each force produces0

Ž .its own response g ty t , which is superimposed on the other responses to0
Ž .produce the total response x t .p

Ž .Previously, we decomposed the function f t into individual Fourier modes.
Ž . Ž .Equations 2.3.72 and 2.3.73 show that the response to the force can be thought

of either as a linear superposition of sinusoidal oscillations in response to each
separate Fourier mode in the force, or as a superposition of the responses to a
series of separate �-function forces. Fourier decomposition into modes, and
decomposition into �-function responses, are both useful ways to think about the
response of a system to forcing. Both rely on the principle of superposition.

We can determine the Green’s function for the damped oscillator analytically by
applying the inverse Fourier transform to the resonance function g :̃

� yi � te d�
g t s . 2.3.74Ž . Ž .H 2 2 2�y� y i�	q�y� 0

To evaluate this integral, we must first simplify the integrand, noting that the
2 2 Ž .Ž .denominator y� y i�	q� can be written as i� qs i�qs , where s and0 1 1 2 1

Ž .s are the roots of the homogeneous polynomial equation discussed in Sec. 2.6.2 ,2
Ž . Ž .and given by Eqs. 1.6.14 . Then we may write Eq. 2.3.74 as

�1 1 1 d�yi � tg t s e y , 2.3.75Ž . Ž .H ž /s ys i�qs i�qs 2�2 1 1 2y�

where we have separated the resonance function into its two components. It is best
Ž .to perform each integral in Eq. 2.3.75 separately, and then combine the results.

Integrals of this sort can be evaluated using InverseFourierTransform:

Cell 2.87

FullSimplify[
InverseFourierTransform[1/(I �-a), �, t,
Assumptions ->>>>> Re[a] G 0]/Sqrt [2 Pi]]

1 -at- e (1 + Sign[t])
2

w Ž .x Ž .Noting that 1qSign t r2sh t , the Heaviside step function, and taking asys1
in the above integral, we then have

1y1 t s1F̂ sye h t , Re s F0, 2.3.76Ž . Ž .1i�qs1

Ž .with a similar result for the inverse transform involving s . Since Eq. 1.6.142
implies that the real parts of s and s are identical, equaling the nonpositive1 2
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Fig. 2.11 Green’s function for the linear oscillator: response to a �-function force. Here
� s2 and 	s1.0

Ž . Ž .quantity y	r2, we can apply Eq. 2.3.76 to Eq. 2.3.75 , yielding

s t s t -	 tr2 21 2e ye e 	2g t sh t sh t sin � y t , 2.3.77(Ž . Ž . Ž . Ž .0ž /s ys 42 21 2 '� y	 r40

Ž .where we have used Eq. 1.6.14 . A plot of this Green’s function for particular
choices of 	 and � is shown in Fig. 2.11. This Green’s function displays just the0
sort of behavior one would expect from an oscillator excited by a �-function
impulse. For t�0, nothing is happening. Suddenly, at ts0, the oscillator begins
to display decaying oscillations. Note that for t�0 this oscillation is simply a

Ž .homogeneous solution to the ODE, as given by Eq. 1.6.17 . This is expected, since
for t�0 the forcing has vanished, and the oscillator’s motion decays freely
according to the homogeneous ODE.

ŽOne can see that the oscillator is stationary just before ts0 referred to as
y. qts0 , but begins moving with a finite velocity directly after the forcing, at ts0 .

What determines the initial velocity of the oscillator?
Since the oscillator is responding to a �-function force, the Green’s function

satisfies the differential equation

g  q	 g �q� 2 gs� t . 2.3.78Ž . Ž .0

We can determine the initial velocity by integrating this equation from ts0y to
ts0q:

0q 0q2g  q	 g �q� g dts � t dts1. 2.3.79Ž . Ž .Ž .H H0y y0 0

Applying the fundamental theorem of calculus to the derivatives on the left-hand
side, we have

q0q y q y 2g � 0 yg � 0 q	 g 0 yg 0 q� g dts1. 2.3.80Ž . Ž . Ž . Ž . Ž .H0 y0
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Ž . Ž y.Since g t is continuous and g � 0 s0, the only term that is nonzero on the
Ž q.left-hand side is g � 0 , yielding the result for the initial slope of the Green’s

function,

g � 0q s1. 2.3.81Ž . Ž .

Ž . qIn fact, if we take the limit of the derivative of Eq. 2.3.77 as t™0 , we can
Ž .obtain Eq. 2.3.81 directly from the Green’s function itself.

Recalling our description of the Green’s function as the response of a tuning
fork to an impulse, we can now listen to the sound of this Green’s function. In

Ž .Cell 2.88 we take the frequency to be a high C 2093 Hz , with a damping rate of
	s4 Hz.

Cell 2.88

Play[UnitStep[t] Exp[-2 t] Sin[2 Pi 2093 t], {t, -1, 4},
PlayRange™{-1, 1}];

The Green’s function technique can also be employed to solve for the particular
solution of the general Nth-order linear ODE with constant coefficients, Eq.
Ž .1.6.7 . Acting with a Fourier transform on this equation yields

˜x � yi�ys yi�ys ��� yi�ys s f � , 2.3.82Ž . Ž . Ž . Ž . Ž . Ž .˜p 1 2 N

where s , . . . s are the roots of the characteristic polynomial for the homogeneous1 N
Ž .ODE, described in Sec. 1.6.2. Solving for x � , taking the inverse transform, and˜p

Ž .using the convolution theorem, we are again led to Eq. 2.3.73 . Now, however, the
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Green’s function is given by the following inverse transform:

1y1ˆg t sF . 2.3.83Ž . Ž .yi�ys yi�ys ��� yi�ysŽ . Ž . Ž .1 2 N

This inverse transformation can be performed by separating the resonance func-
Ž . Ž .tion in Eq. 2.3.83 into individual resonances as in Eq. 2.3.75 , assuming no

Ž .degeneracies occur i.e., s �s for all i� j :i j

N 1 1y1ˆg t sy F . 2.3.84Ž . Ž .Ý Ni�ys Ł s ysŽ .i js1 , j� i i jis1

If we further assume that none of the system’s modes are unstable, so that
Ž .Re s �0 for all i, we can apply Eq. 2.3.76 to obtain the Green’s functioni

N s tie
g t sh t . 2.3.85Ž . Ž . Ž .Ý NŁ s ysŽ .js1 , j� i i jis1

The case of a system exhibiting unstable oscillations, or the case of degeneracy, can
also be easily handled using similar techniques, and is left to the exercises.

We have finally solved the problem, posed back in Sec. 1.6, of determining the
Žresponse of an oscillator or, more generally, a linear ODE of Nth-order with

. Ž .constant coefficients to a forcing function f t with arbitrary time dependence.
Ž .Equation 2.3.85 shows that the response to a �-function force at time ts0 is a

sum of the solution e si t to the homogeneous equation. This response, the Green’s
function for the system, can be employed to determine the response to an arbitrary

Ž .force by applying Eq. 2.3.73 .
Ž .As a simple example, say the forcing f t grows linearly with time, starting at

Ž . Ž . Ž .ts0: f t s th t . Then Eq. 2.3.73 implies that a particular solution to this
forcing is given by

�

x t s t h t g ty t dt . 2.3.86Ž . Ž . Ž . Ž .Hp 0 0 0 0
y�

Ž . Ž .Substituting Eq. 2.3.85 into Eq. 2.3.86 , we find that a series of integrals of the
� Ž . Ž . siŽ tyt 0 .form H t h t h ty t e dt must be performed. The step functions in they� 0 0 0 0

integrand limit the range of integration to 0� t � t, so each integral results in0

e si ty 1qs tt Ž .is Ž tyt .i 0t e dt s .H 0 0 2s0 i

Finally, the total response is the sum of these individual terms:

N s tie y 1qs tŽ .ix t s , t�0. 2.3.87Ž . Ž .Ýp 2 Ns Ł s ysŽ .i js1 , j� i i jis1



FOURIER SERIES AND TRANSFORMS164

We see that part of the response increases linearly with time, tracking the
increasing applied force as one might expect. However, another part of the
response is proportional to a sum of decaying homogeneous solution, e si t. The

Ž .particular solution given by Eq. 2.3.87 is the one for which the system is at rest
before the forcing begins.

EXERCISES FOR SEC. 2.3

( )1 Find the Fourier transform for the following functions. Use time transform
conventions for functions of t, and space transform conventions for functions

Žof x. Except where indicated, do the required integral by hand. You may
.check your results using Mathematica.

( ) Ž . Ž . ya t Ž .a f t sh t e Sin � t, a�0, where h t is the Heaviside step function0

( ) Ž .b f t s t for ya� t�a, and zero otherwise
( ) Ž .c f t scos � t for ya� t�a, and zero otherwise0

( ) Ž . Ž 2 . Žd f x sxr 1qx . You may use Mathematica to help with the required
.integral.

( ) Ž . yx 2 Že f x se . You may use Mathematica to help with the required inte-
.gral.

˜( ) Ž .2 Verify by hand that inverse transformation of the functions f � found in
Ž . wExercise 1 returns the listed functions. You may use Mathematica to help

Ž . xcheck integrals, and you may also use Eq. 2.3.76 without proving it by hand.

˜( ) � Ž . � Ž .Ž .3 Plot the Fourier transform f � arising from Exercise 1 c , taking � s30
Ž̃ .and as10, 20, 30. Comment on the result. What will f � converge to in the

limit as a™�?

( ) Ž .4 Starting with a Fourier sine series, Eq. 2.2.10 , prove the relations for a
Ž .Fourier transform, Eqs. 2.3.10 .

( ) Ž .Ž .5 Repeat Exercise 1 a using a cosine transform on 0�x��.

( ) Ž .Ž .6 Repeat Exercise 1 d using a sine transform on 0�x��. Use Mathematica
to help with the integral.

( ) Ž . Ž . Ž . Ž .7 Let �r i®q� ®�0 be the Fourier transform of f � t . Find f t by hand.

( ) � y® � t0 � Ž .8 Find the value of the integral H e cos � ty t dt using the convolu-y� 0 0 0
tion theorem. Use paper and pencil methods to do all required transforms
and inverse transforms.

( )9 Show that the following functions approach Dirac �-functions andror their
derivatives, and find the coefficients of these �-functions:
( ) Ž . � Ž . Ž .4 3a f t s lim t h ty� t yh ty� t r� t .� t™ 0

( ) Ž . w Ž 2 3 4. 2 x � �b f t s lim exp y 9y12 ty2 t q4 t q t r� t r � t .� t™ 0

( ) Ž . w Ž . Ž .x 2c f t s lim �� t cos �� t ysin �� t rt .� � ™�

Ž t0q� Ž . Ž .Hint: In each case, consider the integral H f t g t dt for some functiont y�0
Ž . .g t . Also, it is useful to plot the functions to see what they look like.
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( )10 Evaluate the following integrals by hand:
( ) 0 5 Ž 3 .a H t � t q8 dt.y10

( ) � Ž . 2b H � cos t rt dt.y�

( ) � Ž 2 . 2c H � sin t rt dt.3

( )11 Evaluate the following generalized Fourier and inverse Fourier integrals by
hand:
( ) �a H cos � t d�r� .0

( ) � w Ž . i� t Ž .b H tr iaq t e dt a real, a�0 .y�

( ) � yi � tc H y i� e d�r2� .y�

( ) � Ž . i� t Ž .d H th t e dt, where h t is the Heaviside step function.y�

( ) � Ž .e H tanh �T sin � t d�r� T�0 .0

( ) Ž .12 Prove Parse®al’s theorem: for any function f t with a Fourier transform
Ž̃ .f � ,

� �
2 2˜� � � �f t dts f � d�r2� . 2.3.88Ž . Ž . Ž .H H

y� y�

( ) Ž .13 The uncertainty principle of Fourier analysis, Eq. 2.3.24 , can be made more
Ž .precise by defining the width of a real function f t as follows. Let the square

2 2 2Ž . 2Ž . Žof the width of the function be � t sHt f t dtrHf t dt. We square the
.function because it may be negative in some regions. Thus, � t is the root

Ž . 2mean square rms width of f .
Ž̃ .Now define the rms width �� of the Fourier transform function, f � , in

2 2 ˜ 2 ˜ 2Ž � Ž . � . Ž � Ž . � . Žthe same manner: �� sH� f � d�rH f � d�. We take the abso-
˜ .lute value of f because it may be complex.

( ) 2 Ž .2 2Ž . w Ž . xa Show that �� sH dfrdt dtrHf t dt. Hint: Use Eq. 2.3.88 .
( ) Ž . Ž . 2Ž . Ž 2b Consider the function u t s tf t q� dfrdt. Show that Hu t dts � t q

2 2 . 2Ž . w Ž . 2 x� �� y� Hf t dt. Hint: f dfrdts 1r2 df rdt.
( ) 2Ž .c Using the fact that Hu t dtG0 for all real �, prove that

��� tG1r2. 2.3.89Ž .

w Ž . xHint: The quadratic function of � in part b cannot have distinct real roots.
Ž .Equation 2.3.89 is an improved version of the uncertainty principle, and is

directly analogous to Heisenberg’s uncertainty principle �E� tG�r2, where
E is the energy.
( ) Ž .d Show that equality in Eq. 2.3.89 is achieved only for Gaussian functions,

Ž . Ž 2 .f t s f exp yat , a�0. Thus, Gaussians exhibit the ‘‘minimum uncer-0
wtainty’’ in that the product �� � t is minimized. Hint: Show that �� � t

Ž . Ž . xs1r2 only if u t s0, and use this equation to solve for f t .

( )14 One can perform discrete Fourier transformations and inverse transforma-
tions on smooth data simply by discretizing the Fourier and inverse Fourier
integrals.
( ) yt 2
a Take a numerical Fourier transform of the smooth function e in the

Ž . Ž .range y3F tF3 by using Eqs. 2.3.53 and 2.3.54 , taking � ts0.1 and
��s0.4, with � in the range y6F�F6. Compare the result with the
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( )Table 2.2. Data for Exercise 14

Cell 2.89

f = {3.42637, 2.26963, -1.70619, -2.65432, 0.24655, 1.40931,
0.470959, -0.162041, -0.336245, -0.225337, -0.112631, 0.447789,
-0.667762, -1.21989, 0.269703, 2.32636, 2.01974, -2.38678,
-3.75246, 0.298622, 3.86088, 2.27861, -1.77577, -2.46912,
0.134509, 1.02331, 0.715012, -0.339313, 0.0948633, -0.0859965,
0.0371488, 0.347241, -0.353479, -1.47499, -0.15022, 2.68935,
1.88084, -2.08172, -3.83105, 0.0629925, 3.87223, 2.13169,
-1.64515, -2.42553, -0.288646,1.4674, 0.315207, -0.480925,
-0.216251, 0.144092, -0.00670936, 0.382902, -0.495702, -1.38424,
0.256142, 2.22556, 2.02433, -2.33588, -3.60477, -0.163791,
3.55462, 2.17247, -1.94027, -2.41668, -0.0176065, 1.05511,
0.489467, -0.515668, -0.122057, -0.112292, -0.0326432, 0.489771,
-0.690393, -1.27071, 0.274066, 2.29677, 1.97186, -2.3131,
-3.99321, -0.228793, 3.95866, 1.84941, -1.95499, -2.2549,
0.104038, 1.29127, 0.769865, -0.362732, -0.271452, -0.0638439,
0.0734938, 0.0774499, -0.333983, -1.56588, -0.193863, 2.37758,
1.92296, -2.12179, -3.87906, -0.21919, 3.96223, 2.01793,
-2.05241, -2.7803, -0.296432, 1.18286, 0.687172, -0.449909,
-0.193565, 0.191591, 0.310403, 0.437337, -0.706701, -1.35889,
-0.0630913, 2.54978, 1.79384, -2.21964, -3.88036, -0.127792, 3.882,
2.32878, -1.56785, -2.6985, 0.219771, 1.32518, 0.669142, -0.44272,
0.123107, -0.15768, 0.375066, -0.0682963, -0.467915, -1.3636,
-0.235336, 2.28427, 1.80534, -1.83133, -3.58337, 0.0344805,
3.42263, 2.21493, -1.86957, -2.62763, -0.159368, 1.50048,
0.48287, -0.453638, -0.172236, -0.124694};

exact Fourier transform, found analytically, by plotting both on the same
Žgraph vs. frequency. This requires you to determine the frequency

.associated with the position of a given element in the transformed data.
( ) Ž .b Take the inverse transform of the data found in part a using Eqs.

Ž . Ž .2.3.55 and 2.3.56 . Does the result return to the original function? Plot
the difference between the original function and this result.

( ) Ž . Ž .c Repeat a and b , but take the range of � to be y3F�F3.

( ) Ž15 Using a discrete Fourier transform that you create yourself not a fast Fourier
.transform , analyze the noisy data in Table 2.2 and determine the main

frequencies present, in hertz. The time between samples is � ts0.0005 s.

( ) Ž .16 A Fourier series or transform is a way to decompose a function f t in terms
of complex orthogonal basis functions eyi � t. The method relies on the
orthogonality of these basis functions. A discrete Fourier transform can be
thought of as a way to decompose vectors f of dimension N in terms of N
complex orthogonal basis vectors. The mth basis vector is e Žm. s
� y2 � m irN y4� m irN y2 � m iŽNy1.rN 41, e , e , . . . , e .
( )a Show directly that these basis vectors are orthogonal with respect to the

Ž .following inner product defined for two vectors f and g: f, g s f* �g.
w Ny1 N Ž N . Ž . xHint: Use the following sum: Ý x s 1yx r 1yx .ns0
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( )b Show that the decomposition of a vector f in terms of these basis vectors,
Ny1 ˜ Žm. Ž .fsÝ f e , leads directly to Eq. 2.3.63 .ms0 m

( )c Use the orthogonality of these basis vectors to determine the coefficients
˜ Ž .f , and compare the result with Eq. 2.3.59 .m

( )17 A data file on the disk accompanying this book, entitled aliendata.nb,
Ž . Ž .contains a simulated recording made by a simulated scientist listening for

alien communications from nearby stars. Read in this data file using the
Žcommand <<<<<<<<<<aliendata.txt. A Directory andror SetDirectory
.command may also be necessary. Within this file is a data list of the form

f={ � � � }. Reading in the file defines the data list f. Use ListPlay to play
the data as a sound. Take the sample rate to be 22,050 hertz. As you can
hear, the data is very noisy. By taking a Fourier transform, find a way to
remove this noise by applying an appropriate filter function to the Fourier-
transformed data. What is the aliens’ message? Are they peaceful or warlike?
wCaution: This data file is rather large. When manipulating it, always end

xyour statements with a semicolon to stop any output of the file.

( ) ( ) Ž .18 a A damped harmonic oscillator is driven by a force of the form f t s
Ž . 2 Ž . Ž .h t t exp yt , where h t is a Heaviside step function. The oscillator

satisfies the equation

x q2 x�q4 xs f t .Ž .

Use pencil-and-paper methods involving Fourier transforms and inverse
Ž .transforms to find the response of the oscillator, x t , assuming that

Ž . Ž . Ž .x 0 s0 and x� 0 s1. Plot the solution for x t .
( ) Ž . Ž . Ž .b Repeat the analysis of part a for a force of the form f t sh t t sin 4 t.

Instead of Fourier methods, this time use the Green’s function for this
equation. Plot the solution for 0� t�10.

( )19 Use Fourier transform techniques to find and plot the current in amperes as
a function of time in the circuit of Fig. 2.12 when the switch is closed at time
ts0.

( ) ( )20 a Find the Green’s function for the following ODE:

L̂xsx q2 x�q6 x q5x�q2 x .

Fig. 2.12
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( ) Ž .b Use the Green’s function found from part a to determine the solution
ˆ ytŽ . Ž . Ž . Ž . Ž . Ž .x t to Lxsh t t e cos t, x 0 sx� 0 sx 0 sx� 0 s0. Plot the solu-

tion.

( ) ( )21 a The FFT can be used to solve numerically for particular solutions to
differential equations with constant coefficients. This method is quite
useful and important for solving certain types of PDEs numerically, such

Žas Poisson’s equation under periodic boundary conditions see Chapters 6
.and 7 , but can also be used to solve ODEs. For example, consider the

following ODE:

x qx�qxsh t t eyt sin 3t .Ž .

Find a particular solution on the interval 0F tF4 using an FFT. To do
so, first discretize time as tsn � t, ns0, 1, 2, . . . , Ny1, with Ns41,
taking � ts0.1. Make a table of the forcing function at these times, and
take its FFT. Then, use what you know about Fourier transforms to
determine a discretized form for the transform of x, x. Take the inverse˜
FFT of this data and plot the resulting particular solution vs. time on
0F tF4.

( )b This particular solution is periodic, with period Ts4.1, since the FFT is
equivalent to a Fourier series solution with this periodicity. This solution
is correct only in the first period, from 0� t�T ; the analytic particular
solution is not periodic, but should match the FFT solution in 0� t�T.
To prove this, note that this particular solution satisfies periodic boundary

Ž . Ž . Ž . Ž .conditions x 0 sx T , x� 0 sx� T . Solve the ODE analytically for these
boundary conditions using DSolve, and plot the result on top of the FFT

Ž .result from part a on 0F tFT.

( ) ( ) ŽP .Ž . Ž .22 a The periodic �-function � t with period T given by Eq. 2.3.48 has
Fourier components of equal amplitude over all frequencies, playing
continuously. Do you think that the hairs in your ear responsible for
hearing frequencies at around, say, 500 Hz are being excited continuously
by the 500-Hz frequencies in the �-function, or only when there is a
chirp? Explain your reasoning in several sentences, with diagrams if

Žnecessary. Hint: Hairs respond to a range of frequencies around their
response peak, not just a single frequency. What is the effect on the
amplitude of the hair’s motion of adding together these different fre-
quency components in the forcing? Think about constructive and destruc-

.tive interference.
( ) Žb Find a particular solution for the response of a damped oscillator a

.model of one of the hairs to a periodic �-function using Green’s
2 ŽP .Ž .functions. The oscillator satisfies x q	 x�q� xs� t . Plot the re-0

Ž . Ž .sult over a time of 5T for � Ts60 and for i 	 Ts0.01, ii 	 Ts0.1,0
Ž . Ž .iii 	 Ts1, iv 	 Ts10. Roughly how large must 	 T be for each
response to a �-function kick to be easily distinguishable from others?

1( )c Create and play a periodic �-function with different values of T , from 10
1to s. Determine the smallest value of T for which you can distinguish200
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Ž .the chirps. Use the result of part b along with this result to crudely
estimate a value of 	 for the human auditory system.

( ) ( )23 a Play the following periodic �-function for which the phases have been
randomized:

Cell 2.90

T = 0.2; 1 + 2 Sum[ Cos[2 Pi n t/T +
2 Pi Random[]], {n, 1, 300}];

Does this still sound like a periodic �-function? Previously, we found that
randomizing the phases of the Fourier components in a waveform made
no difference to the sound a waveform makes. Can you explain why there

Ž .is a difference now? Hint: Think about destructive interference.
( )b The modes in a Fourier series or transform have amplitudes that are

constant in time, but somehow the series or transform is able to produce
Ž .sounds whose loudness amplitude varies in time, as in a periodic

Ž .�-function. Given the results of part a , explain in a few words how this
is accomplished.

( ) ŽP .Ž . Ž .c Reduce the period T of � t to a value below that found in part c of
the previous exercise. Does randomizing the phases make as much

Ž .difference to the sound as for part a ? Why or why not?

( ) Ž .24 Three coupled oscillators are initially at rest on a surface at tsy� . Their
equilibrium positions are x s2, x s1, x s0. The oscillators satisfy the10 20 30
equations

x
sy2 x yx y1 yx� ,Ž .1 1 2 1

x
 sy2 x yx q1 yx� y2 x yx y1 ,Ž . Ž .2 2 1 2 2 3

x
 sy2 x yx q1 yx� q f t .Ž . Ž .3 3 2 3

Ž . y4 � t �The third oscillator in the chain is given a bump, f t s6 e . Use Fourier
transform methods to solve for the motion of the oscillators. Plot the motion

Ž .of all three oscillators as an animation by plotting their positions x t as a seti
of ListPlots at times from y1� t�9 in units of 0.2.

2.4 GREEN’S FUNCTIONS

2.4.1 Introduction

Consider a dynamical system described by a general Nth-order inhomogeneous
Ž .linear ODE, such as Eq. 1.6.1 . In operator notation this ODE can be written as

L̂x t s f t . 2.4.1Ž . Ž . Ž .

The Green’s function can be used to find a particular solution to this ODE. The
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Ž .Green’s function is a function of two arguments, gsg t, t . This function satisfies0

L̂g t , t s� ty t . 2.4.2Ž . Ž . Ž .0 0

Ž .According to this equation, g t, t is the response of the system to a �-function0
forcing at time ts t .0

Ž .The Green’s function can be used to obtain a particular solution to Eq. 2.4.1.
by means of the following integral:

�

x t s g t , t f t dt . 2.4.3Ž . Ž . Ž . Ž .Hp 0 0 0
y�

We have already seen a similar equation for the particular solution in terms of a
Ž .Green’s function for an ODE with constant coefficients, Eq. 2.3.73 . There, the

Ž . Ž .Green’s function was written as g ty t rather than g t, t , because when the0 0
ODE has constant coefficients the origin of time can be displaced to any arbitrary
value, so only the time difference between t and t is important in determining the0
response at time t to an impulse at time t .0

ˆŽ . Ž .We can easily show that Eq. 2.4.3 satisfies the ODE, Eq. 2.4.1 . Acting with L
Ž .on Eq. 2.4.3 , we obtain

� �
ˆ ˆLx t s Lg t , t f t dt s � ty t f t dt s f t ,Ž . Ž . Ž . Ž . Ž . Ž .H Hp 0 0 0 0 0 0

y� y�

Ž .where we have used Eq. 2.4.2 .
We have not yet specified initial or boundary conditions that go along with Eq.

Ž .2.4.2 for defining the Green’s function. In initial-value problems, it is convenient
to choose the initial condition that gs0 for t� t , so that the system is at rest0
when the impulse is applied.

For boundary-value problems, other choices are made in order to satisfy
boundary conditions, as we will see in Sec. 2.4.4.

Ž .The time integral in Eq. 2.4.3 runs all the way from y� to �, so it seems that
we need to know everything about both the past and future of the forcing function
to determine x at the present time. However, the choice gs0 for t� t impliesp 0

Ž .that the integral in Eq. 2.4.3 really runs only from y� to t, so only past times are
Žnecessary. Also, in typical problems there is usually an initial time t possibly fari

. Žin the past before which the forcing can be taken equal to zero i.e. the beginning
.of the experiment . For these choices the integral really runs only from t to t:i

t
x t s g t , t f t dt .Ž . Ž . Ž .Hp 0 0 0

ti

Ž .We can see that this particular solution will be zero for t� t , since g t, t s0 fori 0
t� t . Thus, this particular solution is the one for which the system is at rest before0
the forcing begins.

Ž .We will now consider how to construct a solution to Eq. 2.4.2 for the Green’s
function. There are several methods for doing so. We have already seen one
method using Fourier transforms in Sec. 2.3.6, applicable to ODEs with constant
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coefficients. Here, we consider a general analytic method for any linear ODE,
where the Green’s function is written as a sum of homogeneous solutions to the
ODE. We also discuss numerical methods for determining the Green’s function. In
Chapter 4, we will consider another analytic method, applicable only to boundary-
value problems, in which we decompose g in terms of operator eigenmodes,
resulting in the bilinear equation for the Green’s function.

2.4.2 Constructing the Green’s Function from Homogeneous Solutions

Second-Order ODEs In this subsection we will construct the Green’s function
for a linear second-order ODE using homogeneous solutions. We will then discuss
a generalization of the solution that is applicable to higher-order ODEs.

Ž .For a general linear second-order ODE of the form of Eq. 1.6.1 , the Green’s
function satisfies

� 2 �
L̂g t , t � g t , t qu t g t , t qu t g t , t s� ty t . 2.4.4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .0 0 1 0 0 0 02 � t� t

Assuming that we are solving an initial-value problem, we will take the initial
Ž .condition that g t, t s0 for tF t .0 0

ˆ Ž .When t� t , the Green’s function satisfies the homogeneous ODE Lg t, t s0,0 0
and therefore g can be written as a sum of the two independent homogeneous

Ž .solutions to the ODE see Sec. 2.6 :

g t , t sC x t qC x t , t� t . 2.4.5Ž . Ž . Ž . Ž .0 1 1 2 2 0

We are then left with the task of determining the constants C and C . One1 2
equation for these constants can be found by applying the initial condition that the
system is at rest before the impulse is applied, so that gs0 at ts t . Applying this0

Ž .condition to Eq. 2.4.5 yields

g t , t s0sC x t qC x t . 2.4.6Ž . Ž . Ž . Ž .0 0 1 1 0 2 2 0

Ž .To obtain one more equation for the constants C and C , we integrate Eq. 2.4.41 2
from a time just before t , ty, to a time just after t , tq :0 0 0 0

tq 2 tq� �0 0g t , t qu t g t , t qu t g t , t dts � ty t dts1.Ž . Ž . Ž . Ž . Ž . Ž .H H0 1 0 0 0 02ž /� ty y� tt t0 0

Ž . Ž .Assuming that u t and u t are both continuous at ts t , we can replace them0 1 0
by their values at ts t and take them outside the integral. We can then apply the0
fundamental theorem of calculus to the integral of the derivatives, yielding

� �
g t , t y g t , tŽ . Ž .0 0q y� t � ttst tst0 0

qt0q yqu t g t , t yg t , t qu t g t , t dts1.Ž . Ž . Ž .Ž . Ž . H1 0 0 0 0 0 0 0 0yt0
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Since gs0 at tF t , all terms on the left-hand side vanish except for the first0
term, yielding

�
g t , t s1.Ž .0 q� t tst 0

Ž .Substituting for g using Eq. 2.4.5 yields the second equation for C and C ,1 2

C x� t qC x� t s1. 2.4.7Ž . Ž . Ž .1 1 0 2 2 0

Ž . Ž .We may now solve for C and C using Eqs. 2.4.6 and 2.4.7 . The result is1 2

x t x t yx t x tŽ . Ž . Ž . Ž .2 0 1 1 0 2g t , t s , t� t , 2.4.8Ž . Ž .0 0W tŽ .0

Ž . Ž . � Ž . Ž . � Ž . Ž .where the function W t is the Wronskian, defined as W t �x t x t yx t x t .1 2 2 1
Ž .If the Wronskian W t is zero for some value of t , then according to Eq.0 0

Ž . Ž .2.4.8 g is undefined. However, one can show although we will not do so here
that the Wronskian is always nonzero if the homogeneous solutions x and x are1 2
linearly independent. A proof of this statement can be found in many elementary

Ž . Žbooks on ODEs, such as Boyce and DiPrima 1969 see the references at the end
.of Chapter 1 .

For completeness, we also note our initial condition:

g t , t s0, t� t . 2.4.9Ž . Ž .0 0

Ž . Ž .Equations 2.4.8 and 2.4.9 are a solution for the Green’s function for a general
second-order ODE. This solution requires that we already know the independent

Ž . Ž .homogeneous solutions to the ODE, x t and x t . These solutions can often be1 2
found analytically, using DSolve for example, but we could also use numerical
solutions to the homogeneous ODE, with two different sets of initial conditions so

Ž . Ž .as to obtain independent numerical approximations to x t and x t . Examples1 2
of both analytic and numerical methods for finding homogeneous solutions can be
found in the exercises at the end of Sec. 1.6.

Ž . Ž . Ž .Equations 2.4.8 and 2.4.9 can now be used in Eq. 2.4.3 to obtain a
Ž . Ž .particular solution to Eq. 2.4.1 . Since g t, t s0 for t � t, we obtain0 0

t
x t s g t , t f t dtŽ . Ž . Ž .Hp 0 0 0

y�

x t f t x t f tt tŽ . Ž . Ž . Ž .2 0 0 1 0 0sx t dt yx t dt . 2.4.10Ž . Ž . Ž .H H1 0 2 0W t W tŽ . Ž .y� y�0 0

Ž .Equation 2.4.10 is a form for the particular solution to the ODE that can also be
found in elementary textbooks, based on the method of variation of parameters.
Here we have used Green’s-function techniques to obtain the same result. Note

Ž .that one can add to Eq. 2.4.10 any homogeneous solution to the ODE in order to
Ž .obtain other particular solutions. Equation 2.4.10 is the particular solution for

which the system is at rest before the forcing begins.
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Example As an example of the Green’s function technique applied to a second-
order ODE with time-varying coefficients, let us construct the Green’s function for
the operator

L̂xsx ynx�rt , n�y1.

One can verify by substitution that this operator has two independent homoge-
neous solutions

x t s1,Ž .1

x t s t nq1r nq1 .Ž . Ž .2

Then the Wronskian is

W t sx� t x t yx� t x t s0y1t nsyt n ,Ž . Ž . Ž . Ž . Ž .1 2 2 1

Ž .and Eq. 2.4.8 for the Green’s function becomes

n
1 t

g t , t s t y t , t� t .Ž .0 0 0ž /ž /nq1 t0

ˆ Ž . Ž .We can use this Green’s function to obtain a particular solution to Lx t s f t .
Ž . � Ž . Ž .Let’s take the case f t s t h t , where h t is the Heaviside step function. Then

Ž .the particular solution given by Eq. 2.4.3 is

n
t t 1 t� �x t s g t , t t h t dt s t y t t dt ,Ž . Ž . Ž .H Hp 0 0 0 0 0 0 0ž /nq1 t0y� 0

Ž .where on the right-hand side we have assumed that t�0 in order to set h t s1.0
Ž . Ž .If t�0, then h t s0 for the entire range of integration, and x t s0. This is0 p

expected, since the Green’s function has built in the initial condition that the
system is at rest before forcing begins.

For this simple forcing function the integral can be performed analytically,
yielding

1qn t 2q�Ž .
x t s , t�0.Ž .p 2q� 1q�ynŽ . Ž .

Nth-Order ODEs The Green’s function for a general linear ODE of order N can
also be determined in terms of homogeneous solutions. The Green’s function
satisfies

d N x d Ny1 dxqu t q ���qu t qu t xs� ty t . 2.4.11Ž . Ž . Ž . Ž . Ž .Ny1 1 0 0N Ny1 dtdt dt

Ž .For t� t we again apply Eq. 2.4.9 as our initial condition. For t� t the Green’s0 0
function is a sum of the N independent homogeneous solutions,

N

g t , t s C x t , t� t . 2.4.12Ž . Ž . Ž .Ý0 n n 0
ns1
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We now require N equations for the N coefficients C . One such equation isn
obtained by integrating the ODE across the �-function from ty to tq. As with the0 0
case of the second-order ODE, only the highest derivative survives this operation,
with the result

Ny1d
g t , t s1. 2.4.13Ž . Ž .0Ny1 qdt tst 0

Only this derivative exhibits a jump in response to the �-function. All lower
Ž .derivatives are continuous, and therefore equal zero as a result of Eq. 2.4.9 :

nd
g t , t s0, ns1, 2, . . . , Ny2. 2.4.14Ž . Ž .n 0 qdt tst 0

Also, the Green’s function itself is continuous,

g t , t s0. 2.4.15Ž . Ž .0 0

Ž . Ž . Ž .When Eq. 2.4.12 is used in Eqs. 2.4.13 � 2.4.15 , the result is N equations for
the N unknowns C . Solving these coupled linear equations allows us to determinen
the Green’s function in terms of the homogeneous solutions to the ODE. For the

Ž .case of an ODE with constant coefficients, the result returns us to Eq. 2.3.85 .
Knowledge of the Green’s function, in turn, allows us to determine any particular
solution. We leave specific examples of this procedure to the exercises.

2.4.3 Discretized Green’s Function I: Initial-Value Problems by
Matrix Inversion

Ž .Equation 2.4.3 can be thought of as an equation involving a linear integral
ˆy1 Ž .operator L . This operator is defined by its action on any function f t :

�
y1L̂ f� g t , t f t dt . 2.4.16Ž . Ž . Ž .H 0 0 0

y�

We have already encountered other linear integral operators: the Fourier
Ž .transform and its inverse are both integral operators, see Sec. 2.3.3 . The operator

ˆy1 Ž .L appears in the particular solution given in Eq. 2.4.3 , which may be written as

ˆy1x sL f . 2.4.17Ž .p

ˆy1 ˆWe call this operator L because it is the in®erse of the differential operator L.
ˆŽ . Ž .We can see this by operating on Eq. 2.4.16 with L, and using Eq. 2.4.3 :

� �
y1ˆˆ ˆLL fs Lg t , t f t dt s � ty t f t dt s f t .Ž . Ž . Ž . Ž . Ž .H H0 0 0 0 0 0

y� y�

ˆy1 ˆˆy1This shows that L has the correct property for an inverse: LL returns without
change any function to which it is applied.

ˆy1 ˆWe can see that L is the inverse of L in another way. The ODE that xp
ˆ ˆy1 ˆy1 ˆ ˆy1satisfies is Lx s f. If we apply L to both sides, we obtain L Lx sL fsx ,p p p
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ˆy1 ˆŽ .where in the last step we used Eq. 2.4.17 . This shows that L L also returns
without change any function to which it is applied. Since

ˆˆy1 ˆy1 ˆLL x sL Lx sx 2.4.18Ž .p p p

ˆy1 ˆŽ .for a function x t , this again proves that L is the inverse of L.p
Ž .Note, however, that there seems to be something wrong with Eq. 2.4.18 . There

ˆŽ .are functions x t for which Lx s0: the general homogeneous solutions to theh h
ˆy1 ˆODE. For such functions, L Lx s0�x . In fact, one might think that sinceh h

ˆ ˆy1Lx s0, L cannot even exist, since matrices that have a finite null space do noth
ˆŽhave an inverse and we already know that by discretizing time L can be thought

.of as a matrix .
The resolution to this paradox follows by considering the discretized form of the

Green’s function. By discretizing the ODE, we can write it as a matrix equation,
ˆand solve it via matrix inversion. In this approach, the operator L becomes a

ˆy1 y1matrix L, and the operator L is simply the inverse of this matrix L .
We examined this procedure for homogeneous initial-value problems in Sec.

1.6.3. Adding the inhomogeneous term is really a very simple extension of the
previous discussion. As an example, we will solve the first-order ODE

dx
L̂xs qu t xs f t , x 0 sx . 2.4.19Ž . Ž . Ž . Ž .0 0dt

Ž .A discretized version of the ODE can be found using Euler’s method, Eq. 1.4.7 .
Defining t sn � t, Euler’s method impliesn

x 0 sx ,Ž . 0

2.4.20Ž .x t yx tŽ . Ž .n ny1 yu t x t s f t , n�0.Ž . Ž . Ž .0 ny1 ny1 ny1� t

These linear equations can be written as a matrix equation,

L �xs f, 2.4.21Ž .

� Ž . Ž . Ž . 4 w Ž . Ž . 4where the vector xs x 0 , x t , x t , . . . , and the vector fs x , f t , f t , . . .1 2 0 0 1
contains the force and initial condition. The matrix L is a discretized version of the

ˆoperator L:

1 0 0 0 ���° ¶
1 1y qu t 0 0 ���Ž .0 0� t � t

1 1
0 y qu t 0 ���Ž .0 1Ls . 2.4.22Ž .� t � t

1 1
0 0 y qu t ���Ž .0 2� t � t
. . . . .. . . . .¢ ß.. . . .

wA similar matrix was introduced for the homogeneous equation, in Sec. 1.6.3 see
Ž .xEq. 1.6.21 . The only difference here is that we have multiplied by 1r� t
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Ž .everywhere but in the first row, so that Eq. 2.4.21 has the same form as Eq.
Ž .2.4.19 .

Ž .We can solve Eq. 2.4.20 for the unknown vector x by using matrix inversion:

xsLy1 f. 2.4.23Ž .

Ž .Note the resemblance of this equation to Eq. 2.4.17 . The matrix inverse appear-
ˆy1Ž .ing in Eq. 2.4.23 is a discretized version of the inverse operator L .

From a theoretical perspective, it is important to note that both the forcing and
Ž . Ž .the initial condition are included in Eqs. 2.4.21 and 2.4.23 . The initial condition

Ž .x 0 sx is built into the forcing function. If we wish to solve the homogeneous0
equation for a given initial condition, all that we need do is set all elements of f but

Ž . Ž .the first equal to zero. In this case Eq. 2.4.21 returns to the form of Eq. 1.6.21 .
We can see now that there is no difference between finding a solution to the
homogeneous equation and finding a solution to the inhomogeneous equation. After
all, the matrix inversion technique is really just Euler’s method, and Euler’s method
is the same whether or not the ODE is homogeneous.

We have seen how the forcing contains the inhomogeneous initial conditions for
the discretized form of the ODE; but is this also possible for the actual ODE

Ž .itself? The answer is yes. For instance, to define the initial condition x 0 sx in0
the previous first order ODE, we can use a �-function:

dx qu t xs f t qx � t . 2.4.24Ž . Ž . Ž . Ž .0 0dt

y q Ž q. Ž y.If we integrate from 0 to 0 , we obtain x 0 yx 0 sx . Now let us assume0
Ž . wthat x t s0 for t�0. This is the homogeneous initial condition associated with

ˆy1 Ž . xL : see Eq. 2.4.16 , and recall that gs0 for t� t . We then arrive at the proper0
Ž q.initial condition, x 0 sx . Furthermore, for t�0 the ODE returns to its0
Ž . Ž .previous form, Eq. 2.4.19 . By solving Eq. 2.4.24 with a homogeneous initial

Ž .condition, we obtain the same answer as is found from Eq. 2.4.19 .
ˆy1 ˆTherefore, we can think of L as the inverse of L pro®ided that the ODE is

Ž .solved using homogeneous initial conditions, x t s0 for t�0. The equation
ˆ qLxs f specifies both the ODE and the initial conditions at time ts0 . The
inhomogeneous initial conditions are contained in the forcing function f , as in Eq.
Ž .2.4.24 .

With homogeneous initial conditions attached to the ODE, it is no longer true
ˆŽ .that nontrivial solutions x t exist for which Lx s0; the only solution to thish h

ˆequation is x s0. Thus, the null space of L is the empty set, and the operatorh
does have an inverse. This resolves the apparent contradiction discussed in relation

Ž .to Eq. 2.4.18 .
ˆy1 Ž .Furthermore, application of L via Eq. 2.4.16 no longer provides only a

particular solution; it provides the full solution to the problem, including the initial
condition. We can now see that the previous distinction between particular and
homogeneous solutions to the ODE is artificial: both can be obtained from the

Ž .Green’s function via Eq. 2.4.16 . For the above example of a first-order ODE,
Ž .Eq. 2.4.24 implies that the general homogeneous solution for this first-order

Ž . Ž .ODE is the Green’s function itself: x t sx G t, 0 . This should not be surprising,h 0
given that the Green’s function can be constructed from homogeneous solutions, as
we saw in the previous section.
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Ž .Let us now discuss Eq. 2.4.23 as a numerical method for obtaining the solution
Ž . Ž .to the ODE. Now specific examples of the functions f t and u t must be0

chosen, and the solution can be found only over a finite time interval. Let us
Ž . Ž .choose u t s t, f t s1, and find the particular solution for 0� t�3, taking a0

step size � ts0.05 with an initial condition x s0. Then, as discussed in Sec. 1.6.3,0
the operator can be constructed using Kronecker �-functions using the following
Mathematica commands:

Cell 2.91

Clear[u, �t]

�t = 0.05; u[n_____] = �t n; M = 60;
L = Table[KroneckerDelta[n, m] / �t -

KroneckerDelta[n, m + 1] (1 / �t - u[m]), {n, 0, M},
{m, 0, M}];

L[[1, 1]] = 1;

The force initial-condition vector is

Cell 2.92

f = Table [1, {i, 0, M}];
f[[1]] = 0;

Then we can solve for x via

Cell 2.93

x = Inverse[L].f;

Ž .and we can plot the solution by creating a table of t, x data values and using a
ListPlot, as shown in Cell 2.94. The exact solution to this equation with the

w xinitial condition x 0 s0 is in terms of a special function called an error function.

Cell 2.94

Table [{n �t, x[[n + 1]]}, {n, 0, M}];
sol = ListPlot[%%%%%];
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Cell 2.95

Clear[x];

x[t_____] = x[t]/. DSolve[{x'''''[t] + t x[t] == 1, x[0] == 0},
x[t], t][[1]]

2 � t/2-te Erfi'2 '2

In Cell 2.96 we plot this solution and compare it with the numerics. The match is
reasonably good, and could be improved by taking a smaller step size, or by using a
higher-order method to discretize the ODE.

Cell 2.96

Plot[x[t], {t, 0, 3}, DisplayFunction ™ Identity];
Show[%%%%%, sol, DisplayFunction ™ $$$$$DisplayFunction];

Higher-order inhomogeneous ODEs can also be written in the matrix form of
Ž .Eq. 2.4.21 and solved by matrix inversion. Examples can be found in the

exercises, and in Sec. 2.4.5, where boundary-value problems will be considered.

2.4.4 Green’s Function for Boundary-Value Problems

Green’s functions are often used to find particular solutions to inhomogeneous
linear boundary-value problems. For example, Green’s functions play a very
important role in solutions to electrostatics problems. Such problems typically

Ž . Ž .involve solution of Poisson’s equation 1.1.10 for the potential 
 r due to a given
Ž .charge distribution � r , in the presence of conductors that determine the bound-

ary conditions for the potential.
Poisson’s equation is a PDE, so its complete solution via Green’s function

techniques will be left to Chapters 3 and 4. However, it is enlightening to use a
Green’s function for Poisson’s equation in the case where there is only variation in
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one direction. If we call this direction x, then Poisson’s equation is the following
ODE:

L̂
 x s� x , 2.4.25Ž . Ž . Ž .

ˆwhere L is a second-order linear differential operator in x whose form depends
ˆon the geometry of the system. For example, for Cartesian coordinates, Ls

2 2 ˆ 2 2� r� x , whereas for spherical coordinates with xs r, we have Ls� r� x q
Ž .2rx �r� x.

Ž .Assuming that there are conductors at xsa and xsb assuming a�b with
fixed potentials V and V respectively, the boundary conditions area b


 a sV , 
 b sV . 2.4.26Ž . Ž . Ž .a b

Ž . Ž .When solving Eqs. 2.4.25 and 2.4.26 analytically, as usual we break the solution
into a homogeneous and a particular solution: 
s
 q
 . The homogeneoush p
solution 
 satisfies the boundary conditions without the source term:h

L̂
 x s0, 
 a sV , 
 b sV , 2.4.27Ž . Ž . Ž . Ž .h a b

and the particular solution satisfies the inhomogeneous ODE,

L̂
 x s� x , 
 a s
 b s0. 2.4.28Ž . Ž . Ž . Ž . Ž .p p p

The particular boundary conditions chosen here are termed homogeneous bound-
ary conditions. Such boundary conditions have the property that, for the forcing

Ž .function �s0, a solution to Eq. 2.4.28 is 
 s0. We will have much more to sayp
about homogeneous boundary conditions in Chapters 3 and 4.

Ž .The Green’s function g x, x is used to determine the particular solution to0
Ž .Eq. 2.4.28 . The Green’s function is the solution to

L̂g x , x s� xyx , g a, x sg b , x s0. 2.4.29Ž . Ž . Ž . Ž . Ž .0 0 0 0

Ž .Then Eq. 2.4.3 implies that the particular solution is

b

 x s g x , x � x dx . 2.4.30Ž . Ž . Ž . Ž .Hp 0 0 0

a

Ž . Ž . Ž .The boundary conditions 
 a s
 b s0 are satisfied because g a, x sp p 0
Ž .g b, x s0 for all values of x .0 0

We can construct the Green’s function for this problem by using solutions to the
homogeneous ODE in a manner analogous to the method used for initial-value
problems, discussed previously. The only change is that the boundary conditions on
the Green’s function are now different.

Ž .The second-order ODE has two independent homogeneous solutions 
 x and1
Ž .
 x . We construct the Green’s function by choosing two different linear combi-2

nations of these two solutions that match the boundary conditions in different
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regions. For x�x , we choose the linear combination0


 aŽ .1
 x s
 x y 
 x , 2.4.31Ž . Ž . Ž . Ž .1 1 2
 aŽ .2

and for x�x we choose the combination0


 bŽ .1
 x s
 x y 
 x . 2.4.32Ž . Ž . Ž . Ž .2 1 2
 bŽ .2

Ž . Ž .These combinations are chosen so that 
 a s
 b s0. Then the Green’s1 2
function is

C 
 x , x�x ,Ž .1 1 0g x , x s 2.4.33Ž . Ž .0 ½ C 
 x , x�x ,Ž .2 2 0

where the constants C and C must still be determined. This Green’s function1 2
Ž .satisfies the boundary conditions given in Eq. 2.4.29 , and also satisfies the ODE

ˆ Ž .for x�x , since Lg x, x s0 for x�x .0 0 0
To complete the solution, we need values for the constants C and C . These1 2

are determined by the condition that the Green’s function is continuous at xsx ,0
so that

C 
 x sC 
 x . 2.4.34Ž . Ž . Ž .1 1 0 2 2 0

Also, a second equation is provided by the usual jump condition on the first
Ž . y qderivative of g, obtained by integration of Eq. 2.4.29 from x to x ,0 0

� �
g x , x y g x , x s1.Ž . Ž .0 0q y� x � xxsx xsx0 0

Ž .Substitution of Eq. 2.4.33 then yields

� �C 
 x yC 
 x s1. 2.4.35Ž . Ž . Ž .2 2 0 1 1 0

Ž . Ž .Equations 2.4.34 and 2.4.35 can be solved for C and C . The solution is1 2

° 
 x 
 xŽ . Ž .2 0 1y , x�x ,0W xŽ .0~g x , x s 2.4.36Ž . Ž .0

 x 
 xŽ . Ž .1 0 2y , x�x ,0¢ W xŽ .0

� �Ž . Ž . Ž . Ž . Ž .where the Wronskian W x s
 x 
 x y
 x 
 x again makes an appear-1 2 2 1
w Ž .x Ž . Ž .ance see Eq. 2.4.8 . Equation 2.4.36 can be used in Eq. 2.4.30 to determine

Ž .the particular solution for any given charge density � x . An alternate description
Ž .of g in terms of eigenmodes can be found in Chapter 4; see Eq. 4.3.16 .
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2.4.5 Discretized Green’s Functions II: Boundary-Value Problems
by Matrix Inversion

Ž .Theory for Second-Order ODEs Equation 2.4.30 can be thought of as an
operator equation,

ˆy1
 sL � , 2.4.37Ž .p

ˆy1involving the linear integral operator L defined by

by1L̂ �s g x , x � x dx . 2.4.38Ž . Ž . Ž .H 0 0 0
a

This subsection discusses the matrix inverse method that follows from discretiza-
Ž .tion of Eq. 2.4.37 . This method, discussed previously for initial-value problems, is

really most useful for determining the solution to boundary-value problems. We
will apply this method to a general second-order ODE of the form

d2 d
L̂
s 
qu x 
qu x 
s� x 2.4.39Ž . Ž . Ž . Ž .1 02 dxdx

with boundary conditions


 a sV , 
 b sV . 2.4.40Ž . Ž . Ž .a b

We solve this problem numerically on a grid of positions xsx saqn � xn
Ž . Ž .specified by the step size � xs bya rM. Then Eq. 2.4.39 becomes a matrix

equation that can be solved directly by matrix inversion.
First, we need to discretize the differential equation. To do so, we use a

centered-difference scheme. For the first derivative, this involves the approximation


 x q� x y
 x y� x 
 x y
 xŽ . Ž . Ž . Ž .d
 n n nq1 ny1x , s . 2.4.41Ž . Ž .ndx 2 � x 2 � x

In the limit that � x approaches zero, this approximation clearly approaches the
Ž .slope of 
 at xsx . Other schemes could also be used Table 2.3 , such as then

Table 2.3. Different Forms for Finite-Differenced First Derivatives


 x y
 xŽ . Ž .d
 nq1 nŽ .x , Forward differencendx � x


 x y
 xŽ . Ž .d
 n ny1Ž .x , Backward differencendx � x


 x y
 xŽ . Ž .d
 nq1 ny1Ž .x , Centered differencendx 2 � x
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scheme used in Euler’s method. This is called a forward-difference scheme:


 x q� x y
 x 
 x y
 xŽ . Ž . Ž . Ž .d
 n n nq1 nx , s . 2.4.42Ž . Ž .ndx � x � x

One might also choose the backward-difference scheme,


 x y
 x y� x 
 x y
 xŽ . Ž . Ž . Ž .d
 n n n ny1x , s , 2.4.43Ž . Ž .ndx � x � x

Žbut centered-differencing is the most accurate of the three methods see the
.exercises . For the second derivative, we again use a centered difference:

d
 d

x y xŽ . Ž .2 nq1r2 ny1r2 
 x y2
 x q
 xŽ . Ž . Ž .d 
 dx dx nq1 n ny1x , s .Ž .n2 2� xdx � x

2.4.44Ž .

Higher-order derivatives can also be differenced in this fashion. Several of these
derivatives are given in Table 2.4. These difference forms are derived in the
Appendix. However, the first and second derivatives are all that we require here.

Using these centered-difference forms for the first and second derivatives,
Ž . Ž .Eq. 2.4.39 becomes a series of coupled linear equations for 
 x :n


 x y2
 x q
 x 
 x y
 xŽ . Ž . Ž . Ž . Ž .nq1 n ny1 nq1 ny1qu x qu x 
 xŽ . Ž . Ž .1 n 0 n n2 2 � x� x

s� x , 0�n�M . 2.4.45Ž . Ž .n

Table 2.4. Centered-Difference Forms for Some Derivativesa


 x y
 xŽ . Ž .d
 nq1 ny1Ž .x ,ndx 2 � x

2 
 x y2
 x q
 xŽ . Ž . Ž .d 
 nq1 n ny1Ž .x ,n2 2dx � x

3 
 x y2
 x q2
 x y
 xŽ . Ž . Ž . Ž .d 
 nq2 nq1 ny1 ny2Ž .x ,n3 3dx 2 � x

4 
 x y4
 x q6
 x y4
 x q
 xŽ . Ž . Ž . Ž . Ž .d 
 nq2 nq1 n ny1 ny2Ž .x ,n4 4dx � x

5 
 x y4
 x q5
 x y5
 x q4� x y
 xŽ . Ž . Ž . Ž . Ž . Ž .d 
 nq3 nq2 nq1 ny1 ny2 ny3Ž .x ,n5 4dx 2 � x

6 
 x y6
 x q15
 x y20
 x q15
 x y6
 x q
 xŽ . Ž . Ž . Ž . Ž . Ž . Ž .d 
 nq3 nq2 nq1 n ny1 ny2 ny3Ž .x ,n6 4dx � x

aAll forms shown are accurate to order � x2.
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As indicated, this equation is correct only at interior points. At the end points
ns0 and nsM we have the boundary conditions


 x sV , 
 x sV . 2.4.46Ž . Ž . Ž .0 a M b

Ž . Ž .Equations 2.4.45 and 2.4.46 provide Mq1 equations in the Mq1 unknowns
Ž .
 x , ns0, 1, 2, . . . , M. We can write these equations as a matrix equation, andn

solve this equation directly by matrix inversion. When written as a matrix equation,
Ž . Ž .Eqs. 2.4.45 and 2.4.46 take the form

L ��s� , 2.4.47Ž .

where

�s 
 x , 
 x , . . . , 
 x ,� 4Ž . Ž . Ž .0 1 M
2.4.48Ž .

�s V , � x , � x , . . . , � x , V ,� 4Ž . Ž . Ž .a 1 2 My1 b

and the Mq1-by-Mq1 matrix L is determined in terms of Kronecker �-functions
for the interior points as follows:

� y2� q� � y�nq1 , m nm ny1 , m nq1 , m ny1 , mL s qu x q� u x . 2.4.49Ž . Ž . Ž .nm 1 n nm 0 n2 2 � x� x

A 4-by-4 version of the resulting matrix is displayed below:

Cell 2.97

M = 3; L = Table[KroneckerDelta[n, m] (u [n] - 2 / �x ^̂̂̂̂2) +0

KroneckerDelta[n + 1, m] (1 / �x ^̂̂̂̂2 + u [n] / (2 �x)) +1

KroneckerDelta[n - 1, m] (1 / �x ^̂̂̂̂2 - u [n] / (2 �x)),1

{n, 0, M}, {m, 0, M}];
MatrixForm[
L]

u [0]2 1° ¶1- + u [0] + 0 002 2 2�x�x �x
u [1] u [1]1 2 11 1- - + u [1] + 002 2 22�x 2�x�x �x �x

.
u [2] u [2]1 2 11 10 - - + u [2] +02 2 22�x 2�x�x �x �x

u [3]1 210 0 - - + u [3]¢ ß02 22 �x�x �x

While the middle rows are correct, the first and last rows must be changed to
provide the right boundary conditions:

Cell 2.98

L[[1, 1]] = 1; L[[1, 2]] = 0;
L[[M + 1, M + 1]] = 1; L[[M + 1, M]] = 0;
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Now the matrix takes the form

Cell 2.99

MatrixForm[L]

1 0 0 0
u [1] u [1]1 2 11 1- - + u [1] + 002 2 22�x 2�x�x �x �x

u [2] u [2]1 2 11 10 - - + u [2] +02 2 22�x 2�x�x �x �x� 0
0 0 0 1

Ž . Ž .When this matrix is used in Eq. 2.4.47 together with Eq. 2.4.48 , the first and last
Ž Ž .equations now provide the correct boundary conditions, 
 x sV , 
 x sV .0 a M b

These boundary conditions are contained in the discretized forcing function �.
One can also write the boundary conditions directly into the forcing function of the

Ž .undiscretized ODE using �-functions, in analogy to Eq. 2.4.24 :

d2 d

qu x 
qu x 
s� x qV � � xya yV � � xyb , 2.4.50Ž . Ž . Ž . Ž . Ž . Ž .1 0 a b2 dxdx

with homogeneous boundary conditions 
s0 for x�a and x�b. The proof that
Ž . Ž . .this is equivalent to Eqs. 2.4.39 and 2.4.40 is left as a an exercise . The full

solution, satisfying the nonzero boundary conditions, is then determined by apply-
Ž .ing the Green’s function to the new forcing function using Eq. 2.4.30 . Again, we

see that there is no real difference between homogeneous solutions to the ODE
and inhomogeneous solutions: both can be written in terms of the Green’s
function. In fact, a general homogeneous solution can be determined directly in

Ž . Ž .terms of the Green’s function by applying Eqs. 2.4.37 and 2.3.42 to the forcing
Ž .function in Eq. 2.4.50 , taking �s0. The result is

d d

 x syV G x , x qV G x , x . 2.4.51Ž . Ž . Ž . Ž .h a 0 b 0dx dx0 0x sa x sb0 0

One can see now why we have spent so much time discussing the particular
solutions to ODEs as opposed to the homogeneous solutions: there is really no
difference between them. Both types of solutions can be determined using the
Green’s function method. Boundary or initial conditions are just another type of
forcing, concentrated at the edges of the domain. In later chapters we will often use
this idea, or variations of it, to determine homogeneous solutions to boundary- and
initial-value problems.

Now that we have the matrix L, we can solve the boundary-value problem
Ž .2.4.47 in a single step by matrix inversion:

�sLy1 �� . 2.4.52Ž .

Ž .Equation 2.4.52 is a very elegant numerical solution to the general linear
boundary-value problem. It is somewhat analogous to finding the Green’s function

Ž . Ž .and applying Eq. 2.4.37 to � x , obtaining the particular solution that equals zero
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on the boundaries. However, in the Green’s function method one must then add in
a homogeneous solution to include the nonzero boundary conditions; but this is

Ž .not necessary in Eq. 2.4.52 .
Ž . Ž .A closer analytic analogy to Eq. 2.4.52 is the application of Eq. 2.4.37 to the

Ž .forcing function of Eq. 2.4.50 , which also has the nonzero boundary conditions
built into the forcing function.

The matrix-inversion method has several distinct advantages compared to the
Žshooting method discussed in Sec. 1.5, where initial guesses had to be made which

.might be poor and where the ODE had to be solved many times in order to
converge to the correct boundary conditions. However, there are also several
drawbacks to the matrix-inversion technique for boundary-value problems. First,
the method works only for linear boundary-value problems, whereas the shooting
method works for any boundary-value problem. Second, the matrix form of the

ˆoperator L can be quite complicated, particularly for high-order ODEs. Third,
matrix inversion is a computationally time-consuming operation, although very fast
codes that can be run on mainframes do exist. Using Mathematica, the matrix
inverse of a general 700-by-700 matrix takes roughly half a minute on a reasonably

Ž .fast PC as of summer 2001 . This is fast enough for many problems. Furthermore,
there are specialized methods of taking the inverse that rely on the fact that only

Ž .terms near the diagonal of L are nonzero the matrix is sparse . These methods are
already built into Mathematica, and will not be discussed in detail here.

There is another important point to make concerning the matrix-inverse solu-
Ž .tion provided by Eq. 2.4.52 . We know that for reasonable initial-®alue problems

Ž .‘‘reasonable’’ in the sense of Theorem 1.1 a solution always exists and is unique.
On the other hand, we know from Chapter 1 that for boundary-®alue problems the
solution need not exist, and need not be unique. However, we have now seen that
the solutions to both initial-value and boundary-value problems consist of inverting

Ža matrix L and acting on a vector called � for our boundary-value problem, and f
.for the initial-value problem of Sec. 2.4.3 . There seems to be no obvious differ-

ence between the solutions of initial- and boundary-value problems when they are
written in the form of a matrix equation. Why is one case solvable and the other

Ž .not necessarily ? The answer lies in the form of the matrix L for each case. We
will see in the exercises that for boundary-value problems the changes that we have
to make to the first and last few rows of L, required in order to satisfy the

Ž .boundary conditions, can lead for certain parameter choices to the matrix having
Ž .a zero determinant. In this event the matrix inverse does not exist see Sec. 1.5.2 ,

Ž .and the solution, if any, cannot be written in the form of Eq. 2.4.52 . For examples
Ž .Ž . Ž .of how this can happen, see Exercises 10 e and f .

Example As an example of the matrix-inversion method, let’s solve for the
potential between two conducting spheres, with radii as1 m and bs2 m
respectively. The inner sphere is at V s5000 V, and the outer sphere is grounded,a
V s0. Between the spheres is a uniform charge density of � s10y6 Crm3. Theb 0
potential satisfies the 1D Poisson equation

2 �� 2 � 0
q 
sy ,2 r � r �� r 0

Ž . Ž . Ž .so we take u r s2rr and u r s0 in Eq. 2.4.45 .1 0
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The following Mathematica code will solve this problem, taking Ms40 grid
Ž . Ž .points. First, we define the grid r and set up the functions u r and u r on then 0 1

grid:

Cell 2.100

a = 1; b = 2; M = 40;
�x = (b - a)/M;
r[n_____] = a + n �x;
u [n_____] = 0;0

u [n_____] = 2/r[n];1

We then reconstruct the matrix L, now using the full 41-by-41 form:

Cell 2.101

L = Table[KroneckerDelta[n, m] (u [n] - 2 / �x ^̂̂̂̂2) +0

KroneckerDelta[n + 1, m] (1/�x ^̂̂̂̂2 + u [n]/(2 �x))+1

KroneckerDelta[n - 1, m] (1/�x ^̂̂̂̂2 - u [n]/(2 �x)),1

{n, 0, M}, {m, 0, M}];

L[[1, 1]] = 1; L[[1, 2]] = 0;
L[[M + 1, M + 1]] =1; L[[M + 1, M]] = 0;

Next, we set up the vector �:

Cell 2.102

� = 8.85 10 ^̂̂̂̂-12; V = 5000; V = 0; �0 = 10 ^̂̂̂̂-6;0 a b

� = Table [-�0/� , {n, 0, M}];0

�[[1]] = V ;a
�[[M + 1]] = V ;b

Finally, the electrostatic potential is determined by matrix inversion:

Cell 2.103


 = Inverse[L].�;

Ž .It may be easily verified using DSolve, for example that the exact solution for
the potential is given by

7� � r 2�10000 0 0 0
 r sy5000q q y yŽ . r 6� r� 6�0 0 0

Ž .in SI units . We compare the exact result with the numerical solution in Cell
2.104. This numerical method matches the analytic solution to the boundary-value
problem quite nicely. For one-dimensional linear boundary-value problems, matrix
inversion is an excellent numerical method of solution.
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Cell 2.104

sol = Table[{r[n], 
[[n + 1]]}, {n, 0, M}];
p1 = ListPlot[sol, DisplayFunction ™ Identity];

10000 7�0 �0 r2�0

exact[r_____] = -5000 + q - - ;

r 6� r� 6�0 0 0

p2 = Plot[
exact[r], {r, 1, 2}, DisplayFunction ™ Identity];
Show[p1, p2, DisplayFunction ™ $$$$$DisplayFunction;

PlotLabel ™ "electrostatic potential between two charged
spheres",

AxesLabel ™ {"r", " "}];

EXERCISES FOR SEC. 2.4

( ) ( )1 a Find the Green’s function for the following potential problem in terms of
homogeneous solutions:

d2


s� x , 
 0 s0, 
 b s0.Ž . Ž . Ž .2dx

( )b Use the Green’s function to find a particular solution for the case where
Ž . 3� x sx .

( )2 Use the method of Sec. 2.4.2 to solve the following ODEs for the Green’s
function, for the given homogeneous boundary or initial conditions:
( ) Ž . Ž . Ž .a G�q3tG t, t s� ty t , Gs0 for t� t . Plot G t, 0 .0 0 0

( ) Ž . Ž . Ž .b G q4G t, t s� ty t , Gs0 for t� t . Plot G ty t .0 0 0 0

( ) Ž . Ž . Ž .c G q2G�qG t, t s� ty t , Gs0 for t� t . Plot G ty t .0 0 0 0
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( ) Ž . Ž . Žd G q tG t, t s� ty t , Gs0 for t� t . Hint: The solution will be in0 0 0
. Ž .terms of Airy functions. Plot G t, 0 .

( ) Ž . Ž .e G�q2G yG�y2Gs� ty t , Gs0 for t� t . Plot G ty t .0 0 0

( ) 2 Ž . Ž . Žf G q� G x, x s� xy x , Gs0 for xsa and xsb � � 0,0 0 0 0
Ž . .� �n�r bya for any integer n .0

( ) 2 Ž . Ž . Ž .g G y� G x, x s� xyx , Gs0 for xsa and xsb � �0 .0 0 0 0

( ) Ž . Ž .h G qnG� x, x rxs� xyx , Gs0 for xsa�0 and xsb, n�1.0 0

( ) Ž .i G�qG qG�qGs� xyx , GsG�s0 at xs0, Gs0 at xs1.0
Ž .Plot G xyx .0

( ) Ž .3 Use the Green’s functions found from Exercise 2 to help determine solu-
tions to the following problems. Plot the solution in each case.
( ) Ž .a x�q3tx t ssin t, xs0 at ts0.
( ) Ž . Ž . Ž .b x q4 x t scos 2 t, x 0 s0sx� 0 .
( ) Ž . 2 Ž . Ž .c x q2 x�qx t s t , x 0 s1, x� 0 s0.
( ) Ž . Ž . Ž .d x q tx t s t, x 0 s1, x� 0 s0.
( ) yt Ž . Ž . Ž .e x�q2 x yx�y2 xse , x 0 s1, x� 0 sx 0 s0.
( ) Ž . 3 Ž . Ž .f 
 q
 x sx , 
 0 s1, 
 1 s0.
( ) Ž . Ž . Ž .g 
 y
 x ssin x, 
� 0 s0s
 1 .
( ) Ž . Ž .h 
 q3
�rxsx, 
 1 s0, 
� 2 s1.
( ) yxi 
 �q
 q
�q
sx e , 
s
�s0 at xs0, 
y2
�s1 at xs1.

( ) Ž .Ž .4 Discretize the operator in Exercise 3 a using Euler’s method, and solve the
problem by matrix inversion for 0� t�8. Take � ts0.1, and compare with
the exact solution by plotting both in the same plot.

( ) ( ) Ž .Ž .5 a By writing the ODE in Exercise 3 b as a vector ODE in the unknown
Ž . � Ž . Ž .4vector function z t s x t , x� t , discretize the ODE using the vector

Euler’s method, and solve by matrix inversion for 0� t�5. Take � ts
Ž .0.05. Plot the result along with the exact solution. See Sec. 1.4.5.

( ) Ž .Ž .b Repeat for Exercise 3 c .
( ) Ž .Ž .c Repeat for Exercise 3 d .
( ) Ž .Ž . Ž .d Repeat for Exercise 3 e , now taking the vector function as z t s

� Ž . Ž . Ž .4x t , x� t , x t .

( ) ( )6 a for the following general second-order ODE initial-value problem, find a
way of including the initial conditions in the forcing function on the

Ž .right-hand side, in analogy to Eq. 2.4.24 , and state the proper homoge-
neous initial condition for the new ODE:

d2 x dxqu t qu t x t s f t , x t sx , x� t s® .Ž . Ž . Ž . Ž . Ž . Ž .1 0 0 0 0 02 dtdt

( ) Ž . Ž .b Use the result of part a along with Eq. 2.4.3 , write a general homoge-
Ž .neous solution x t to this problem in terms of the Green’s function.h
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( ) Ž .Ž .c Use the Green’s function found in Exercise 2 c and the result from part
Ž .b to solve the following problem:

d2 x dx ytq2 qx t se , x 0 s1, x� 0 s2.Ž . Ž . Ž .2 dtdt

( )7 In this problem we will show that the centered-difference scheme for
taking a numerical derivative is more accurate than either forward- or

Ž .backward-differencing. To do so, we take a smooth function 
 x whose
derivative we will determine numerically at a grid point xsx . Then then

Ž .value of 
 x at xsx can be determined by Taylor expansion:nq1



 
�
� n n2 3
 s
 q� x 
 q� x q� x q ��� ,nq1 n n 2 6

with a similar result for 
 .ny1

( )a Use these Taylor expansions in the forward- and backward-difference
Ž . Ž .methods, Eqs. 2.4.42 and 2.4.43 , to show that the error in these

methods is of order � x.
( )b Use these Taylor expansions in the centered-difference derivative, Eq.

Ž . 22.4.41 , to show that the error in this method is of order � x .
( ) Ž .c Repeat for the centered-difference second derivative, Eq. 2.4.44 , to

show that its error is also of order � x 2.

( ) ( ) Ž .8 a Prove Eq. 2.4.50 .
( ) Ž .b Prove Eq. 2.4.51 .
( ) Ž . Ž .c Test Eq. 2.4.51 directly for the potential problem given in Exercise 1

Ž .Ž .of this section: by applying the Green’s function found in Exercise 1 a
Ž .to Eq. 2.4.51 , show that the correct homogeneous solution to this

potential problem is recovered.

( ) ( )9 a Find a way to include the boundary conditions in the forcing function for
the following second-order boundary-value problem:

d2 d

qu x 
qu x 
s� x , 
� a sV , 
� b sV .Ž . Ž . Ž . Ž . Ž .1 0 a b2 dxdx

What homogeneous boundary conditions must be attached to the new
ODE?

( ) Ž . Ž .b Using the result of part a along with Eq. 2.4.3 , write a general
Ž .homogeneous solution x t to this problem in terms of the Green’sh

function.
( ) Ž . Ž .c Using the results of part a and b , find the appropriate Green’s

function in terms of homogeneous solutions, and solve the following
boundary-value problem:

d2 d

q4 
q
sx , 
� 0 s0, 
� 1 s1.Ž . Ž .2 dxdx
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( )10 Using the centered-difference discretization techniques discussed in Sec.
2.4.5, solve the following problems using matrix inversion, and compare each
to the exact solution. In each case take � xs0.05:
( ) Ž .Ž .a Exercise 3 f .
( ) Ž .Ž . wb Exercise 3 g . Hint: To learn about setting the derivative equal to zero

at the boundary, see Sec. 6.2.1, in the sub-subsection on von Neumann
xand mixed boundary conditions.

( ) Ž .Ž . w Ž .Ž .xc Problem 3 h see the hint for Exercise 10 b .
( ) Ž .Ž . w Ž .Ž .xd Problem 3 i see the hint for Exercise 10 b .
( ) Ž . Ž . Ž . we 
 x s1, 
� 0 s2; 
� 1 s0. Hint: First solve this problem analyti-

cally by direct integration to show that a solution does not exist. Then
solve the problem by finite differencing. Also, see the hint for Exercise
Ž .Ž . x10 b .

( ) Ž . Ž . Ž . Ž . wf 
 x q
 x s0, 
 0 s0s
 � . Hint: Recall that there are an infi-
Ž . xnite number of solutions; see Eq. 1.5.9 . Take � xs0.05 � .
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CHAPTER 3

INTRODUCTION TO LINEAR PARTIAL
DIFFERENTIAL EQUATIONS

In this chapter we derive analytic solutions to some of the common linear partial
Ž .differential equations PDEs of mathematical physics. We first examine PDEs in

one spatial dimension, focusing on the wave equation and the heat equation. We
then solve a PDE in more than one spatial dimension: Laplace’s equation.

For the simple cases discussed in this chapter, we will find that solutions can be
obtained in terms of Fourier series, using the method of separation of ®ariables.

3.1 SEPARATION OF VARIABLES AND FOURIER SERIES METHODS
IN SOLUTIONS OF THE WAVE AND HEAT EQUATIONS

3.1.1 Derivation of the Wave Equation

Introduction The first partial differential equation that we will discuss is the
Ž .wave equation in one dimension. This equation describes among other things the

transverse vibrations of a string under tension, such as a guitar or violin string. In
the next two sub-subsections we will derive the wave equation for a string, from
first principles.

String Equilibrium Consider a string, stretched tight in the x-direction between
Ž .posts at xs0 and xsL. See Fig. 3.1. The tension in the string at point x is

Ž . Ž .T x . Tension is a force, and so has units of newtons. The tension T x at point x
is defined as the force pulling on the piece of string to the left of point x as it is

Ž .acted on by the string to the right of this point see Fig. 3.1 . According to
Newton’s third law, the force acting on the string to the right of point x as it is

Ž .pulled by the string on the left is yT x : the forces of the two sections acting on
one another are equal and opposite. Furthermore, tension always acts in the
direction along the string. We will define positive tension forces as those acting to
the right�in the positive x-direction.

191
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Fig. 3.1 Equilibrium of a string.

Fig. 3.2 Forces acting on a mass element in equilib-
rium.

The string in Fig. 3.1 is in equilibrium. In equilibrium, in the absence of gravity
or other such external forces, the tension in the string is uniform, and the string is
perfectly straight. This can be understood from the following argument. Consider
an element of the string with mass dm and length dx, running from x to xqdx. If
the string is straight, but the tension in the string is a function of position, then the

Ž .tension pulling the element to the right is T xqdx and that pulling the element
Ž . Ž .to the left is yT x see Fig. 3.2 . However, in equilibrium, the total force on dm
Ž . Ž .must vanish, so T xqdx yT x s0, and therefore T must be independent of

position in equilibrium. Also, since we have achieved force balance with a straight
string, we have shown that a straight string is in equilibrium.

However, if an extra force dF, such as gravity, acts on the element dm in the
x-direction, then T is not constant in equilibrium. Equilibrium force balance then

Ž . Ž .yields T xqdx qdFyT x s0. Taylor expansion of this expression implies

dT dFsy . 3.1.1Ž .dx dx

For instance, if gravity points in the yx direction, then dFsydm g. Equation
Ž .3.1.1 then implies that dTrdxs� g, where

� x sdmrdx 3.1.2Ž . Ž .

is the mass per unit length. In this example the tension increases with increasing x,
because more of the string weight must be supported by the remaining string as
one moves up the string against gravity, in the qx direction.

Since all forces have been assumed to act along the x-direction, the string
remains straight. However, if time-independent forces, such as a force of gravity in
the y-direction, act transverse to the string it will no longer remain straight in

Žequilibrium, but will sag under the action of the transverse force. This can be
observed ‘‘experimentally’’ in spring�mass simulations of an elastic string, in Sec.

.9.10. In what follows, we neglect the effect of such forces on the equilibrium of
the string, and assume that the equilibrium is a straight horizontal string along the
x-axis, following the equation ys0. We will examine the effect of a gravitational
force in the y-direction in Sec. 3.1.2.
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Fig. 3.3 Forces acting on a mass element
Žin motion displacement greatly exagger-

.ated for ease of viewing .

String Dynamics: The Wave Equation Now let us consider a string that has
been perturbed away from equilibrium by a small transverse displacement in the
y-direction. The shape of the string is now a curve that changes with time, given by

Ž . Ž .the function y x, t . See Fig. 3.3. Our job is to obtain an equation of motion for
Ž .y x, t . To simplify this task, we will assume that the perturbed string is nearly

� �straight: � yr� x �1.
Ž .The equation of motion for y x, t can be found by applying Newton’s second

law to the motion of an element dm of the string, located between x and xqdx.
The total force dF in the y-direction on this element is determined by they

Ž . Žy-component of the tension T x, t acting on each end of the string assuming thaty
.no forces other than tension act in the y-direction :

�
dF sT xqdx , t yT x , t sdx T x , t . 3.1.3Ž . Ž . Ž . Ž .y y y y� x

By Newton’s second law, this force determines the acceleration of the mass
element in the y-direction:

� 2 �
dm y x , t sdF sdx T x , t . 3.1.4Ž . Ž . Ž .y y2 � x� t

Because tension forces act along the direction of the string, the y-component of
the tension is related to the displacement of the string from equilibrium. Accord-

Ž . Ž . Ž .ing to Fig. 3.3, T x, t sT x, t sin � , where T x, t is the magnitude of the tensiony
in the string at position x and time t, and � is the angle of the element dm with
respect to the horizontal. However, since the displacement from equilibrium is
assumed small, � must also be small, and therefore sin �f� , which implies that

T x , t fT x , t � . 3.1.5Ž . Ž . Ž .y

Furthermore, according to Fig. 3.3, � is related to the displacement of the string
through tan �s� yr� x. For small angles tan �f� , so this implies �f� yr� x.

Ž . Ž . Ž .Combining this result with Eq. 3.1.5 , we obtain T x, t fT x, t � yr� x. How-y
ever, as we are interested only in small-amplitude transverse displacements of the

Ž . Ž .string, we can replace T x, t by the equilibrium tension T x . Therefore, we
obtain

� y
T x , t fT x . 3.1.6Ž . Ž . Ž .y � x
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Ž . Ž .Applying this result to Eq. 4.1.4 , dividing by dm, and using Eq. 3.1.2 yields

� 2 1 � �
y x , t s T x y x , t . 3.1.7Ž . Ž . Ž . Ž .2 ž /� x � x� xŽ .� t

Ž . Ž .Equation 3.1.7 is the wave equation for a string with equilibrium tension T x
Ž .and mass per unit length � x . This equation describes the evolution of small

Ž .transverse displacements y x, t away from equilibrium. The equation is a linear
Ž .partial differential equation in the unknown function y x, t , and is second-order

in time and second-order in space. Since the equation is second-order in space,
two boundary conditions are required: the ends of the string are fixed by the posts
at each end, so ys0 at xs0 and at xsL.

Since the wave equation is second-order in time, two initial conditions are also
needed. The position and transverse velocity of each element of the string must be
specified initially in order to determine its subsequent motion. In other words, we

�Ž . Ž .require knowledge of y x, ts0 and y x, ts0 for all x in the range 0�x�L.� t

Thus, the solution of the wave equation is specified by boundary conditions

y 0, t sy L, t s0 3.1.8Ž . Ž . Ž .

and by initial conditions

y x , 0 sy x ,Ž . Ž .0

3.1.9Ž .� y
x , 0 s® x ,Ž . Ž .0� t

Ž . Ž .for some initial transverse displacement y x and initial transverse velocity ® x .0 0
The wave equation can be simplified in the case that the string tension is

w Ž . x w Ž . xuniform T x sT and the mass density is also uniform � x s� . Then Eq.
Ž .3.1.7 becomes

� 2 � 2
2y x , t sc y x , t . 3.1.10Ž . Ž . Ž .2 2� t � x

The constant c is

'cs Tr� , 3.1.11Ž .

and has units of a velocity. In fact we will see that this quantity is the speed at
which transverse disturbances propagate along the string.

The magnitude of c depends on the mass density and thickness of the string as
well as the tension to which it is subjected. For instance, the high E-string on a
steel string guitar is typically made of steel with a mass density MM of roughly
MMs7.5 grcm3. The radius of this string is rs0.15 mm, giving a mass per unit
length of

�s� r 2 MMs0.0053 grcms6.3�10y4 kgrm. 3.1.12Ž .

Ž .According to Eq. 3.1.11 , a tension of Ts500 N yields a speed of cs970 mrs.
Although we have derived the wave equation for transverse waves on a string,

the same PDE also applies to many other types of wave disturbances traveling in
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one spatial dimension. For example, the equation applies to the small-amplitude
Ž . Ž .waves on the surface of shallow water neglecting surface tension , with y x, t now

w Ž . xthe height of the water surface see Exercise 4 at the end of this section . The
equation also applies to pressure waves propagating through a medium such as air,

Ž .with y x, t now the pressure or density in the medium. The equation applies to
propagation of electromagnetic waves such as visible light or radio waves, with
Ž .y x,t now identified with the electric or magnetic field in the wave. The wave

equation itself is the same in each case, even though the physical processes for
each type of wave are very different. Of course, in each instance, the speed of
propagation c differs. Obviously, for sound waves c is the speed of sound, but for
light waves c is the speed of light.

3.1.2 Solution of the Wave Equation Using Separation of Variables

Solution of the Wave Equation for a Uniform String and Fixed Ends

Separation of Variables for a Uniform String. We will now solve the wave
Ž .equation for a uniform string, Eq. 3.1.10 , with boundary conditions that the ends

Ž .are fixed: ys0 at xs0 and xsL, and initial conditions given by Eq. 3.1.9 . To
solve this problem, we will apply the method of separation of ®ariables. In this
method, we look for a solution to the PDE of the form

y x , t s f t � x , 3.1.13Ž . Ž . Ž . Ž .

Ž . Ž .where f t and � x are some functions that need to be determined in order to
satisfy the PDE and match the boundary and initial conditions. In fact, we will find
that there are many possible solutions of this form, each of which satisfy the PDE
and the boundary conditions. We will create a superposition of these solutions in
order to match the initial conditions.

Ž . Ž .If we substitute Eq. 3.1.13 into the wave equation, Eq. 3.1.10 , and then divide
Ž . Ž .by f t � x , we obtain

1 � 2 f 1 � 2�2sc . 3.1.14Ž .2 2f t � xŽ . Ž .� t � x

This PDE can be separated into two ordinary differential equations by means of
the following argument: the right-hand side of the equation is a function only of

Ž . Ž .position x. Let us call this function h x . Then Eq. 3.1.14 implies that
w Ž .x 2 2 Ž .1rf t � fr� t sh x . However, the left-hand side of this equation is indepen-

Ž . 2dent of x. Therefore, h x must be a constant. Let us call this constant y� , in
Ž .anticipation of the fact that it is a negative quantity. Then Eq. 3.1.14 becomes

two ODEs:

1 � 2 f 2sy� , 3.1.15Ž .2f tŽ . � t

1 � 2�2 2c sy� . 3.1.16Ž .2� xŽ . � x
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These two ODEs must be solved subject to the boundary and initial conditions.
Ž . Ž .First, we consider the boundary conditions. The conditions, y 0, t sy L, t s0

Ž . Ž .imply that � 0 s� L s0. These are homogeneous boundary conditions, intro-
Ž .duced previously in relation to Eq. 2.4.28 . With such boundary conditions, Eq.

Ž .3.1.16 can be recognized as a special kind of boundary-value problem: an
eigen®alue problem.

Ž .The Eigenvalue Problem. An eigenvalue problem such as Eq. 3.1.16 is a linear
boundary-value problem with homogeneous boundary conditions. Also, the differ-
ential equation must depend on a parameter that can be varied. In this case the

Ž . Ž .parameter is �. The homogeneous boundary conditions � 0 s� L s0 imply
Ž .that there is always a trivial solution to the problem, � x s0. However, in

eigenvalue problems, for special values of the parameter, there also exist nontri®ial
solutions for � , called eigenmodes or eigenfunctions. The special values of the

Ž .parameter � are called eigenfrequencies since � has units of a frequency , but
more generally they are called eigen®alues.

To find the nontrivial solutions for � , we match the general solution of the
differential equation to the boundary conditions. The general solution of Eq.
Ž .3.1.16 is

� x � x
� x sC cos qD sin , 3.1.17Ž . Ž .c c

Ž .where C and D are constants. First, the condition � 0 s0, when used in Eq.
Ž . Ž .3.1.17 , implies that C s 0. Next, the condition � L s 0 implies that

Ž .D sin � Lrc s0. This equation can be satisfied in two ways. First, we could take
Ds0, but this would then imply that �s0, which is the trivial and uninteresting

Ž .solution. The second possibility is that sin � Lrc s0. This implies that � Lrcs
n� , n an integer.

Ž .Thus, we find that the nontrivial solutions of Eq. 3.1.16 with boundary
Ž . Ž .conditions � 0 s� L s0 are

n� x
� x sD sin , ns1, 2, 3, . . . 3.1.18Ž . Ž .L

and also,
�s� sn� crL. 3.1.19Ž .n

These are the eigenfunctions and eigenfrequencies for this problem. We do not
require values of n less than zero, because the corresponding eigenmodes are just
opposite in sign to those with n�0.

Recall from Chapter 1 that the solution to a boundary-value problem need not
be unique. In eigenvalue problems, we have an example of this indeterminacy.
When ��� , there is only one solution, �s0, but when �s� , the constant Dn n
can take on any value, including zero, so there are many solutions. Fortunately, the
specific value of this constant is not important in constructing the solutions to the
wave equation, as we will now see.

( )The Solution for y x, t . The time dependence of the solution is described by Eq.
Ž .3.1.15 . The general solution of this equation is

f t sA cos � tqB sin � t ,Ž .
Ž .where A and B are constants. Using Eq. 3.1.19 for the frequency, and Eq.
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Ž . Ž . Ž . Ž .3.1.18 for the eigenmodes, the solution for y x, t s f t � x is
n� x

y x , t s A cos � tqB sin � t sin ,Ž . Ž .n n L

where we have absorbed the constant D into A and B. However, this is not the
full solution to the problem. There are an infinite number of solutions for the
eigenmodes and eigenfrequencies, so we will create a superposition of these
solutions, writing

	 n� x
y x , t s A cos � tqB sin � t sin . 3.1.20Ž . Ž . Ž .Ý n n n n L

ns1

Ž .Equation 3.1.20 is the general solution to the wave equation for a uniform
string with fixed ends. This equation describes a wealth of physics, so it is
worthwhile to pause and study its implications.

Ž .Eigenmodes for a Uniform String. The eigenfunctions sin n� xrL are the nor-
mal modes of oscillation of the string. If only a single normal mode is excited by
the initial condition, then the string executes a sinusoidal oscillation in time, and
this oscillation persists forever. If several different eigenfunctions are excited by
the initial conditions, each mode evolves in time independently from the others,
with its own fixed frequency. Examples of single-mode oscillations are shown in
Cell 3.1 for the first four normal modes, taking csLs1. This figure displays
three key features of the normal modes:

Cell3.1

L = 1; c = 1;
�[n_____] = n Pi c/L;
plt[n_____, t_____] :=

Plot[Cos[�[n] t] Sin[n Pi x], {x, 0, L},
DisplayFunction™Identity, PlotRange™{-1, 1},
PlotLabel™"n = " <<<<<>>>>>ToString[n]];

Table[Show[GraphicsArray[Table[
{{plt[1, t], plt[2, t]}, {plt[3, t], plt[4, t]}}]],

DisplayFunction™$$$$$DisplayFunction], {t, 0, 2, .05}];
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Ž .1 Each single-mode oscillation forms a standing wave on the string, with a set
of stationary nodes. At these nodes the amplitude of the oscillation is zero
for all time.

Ž . Ž .2 The number of nodes equals ny1 excluding the end points . Conse-
quently, modes with large n exhibit rapid spatial variation.

Ž . Ž3 One can plainly see in the animation accompanying the electronic version
.of the text that the modes with higher n oscillate more rapidly in time. For

instance, the ns4 standing wave completes four oscillations for every single
cycle completed by the ns1 mode. This follows from the expression for the

Ž .frequencies of the modes, Eq. 3.1.19 .

Ž .Equation 3.1.19 also shows that as the length of the string is reduced, the
mode frequencies increase. This simple property of the wave equation has many
applications. For instance, it is the principle behind the operation of stringed
musical instruments. In order to increase the frequency of the sound, the musician

Žreduces the effective length of the string, by placing some object such as his or her
.finger against the string, allowing only part of the string to vibrate when plucked.

When the string is plucked, the lowest, fundamental frequency � usually1
predominates in the response, and is primarily responsible for the pitch of the
sound. However, the higher harmonics are also produced at multiples of � , and1
the superposition of these harmonics are, in part, responsible for the characteristic

Žsound of the instrument. The manner in which these string vibrations couple to
sound waves in the surrounding air is also of great importance to the sound

.produced. This coupling is a primary consideration in the design of the instrument.
However, musicians often play tricks to alter the sound a string makes. For

instance, musicians can create a high-frequency sound on an open string by placing
their finger lightly at the location of the first node of the ns2 harmonic, in the
middle of the string. This allows the ns2 mode to vibrate when the string is
plucked, but suppresses the fundamental mode, creating a sound one octave above

Ž .the fundamental i.e., at twice the frequency .
Also, the frequency of the vibration increases as the propagation speed c

increases. Thus, for very thin, high-tension strings such as the high E-string on a
guitar, c is large and the fundamental frequency � of the string is correspondingly1
high. Thicker, more massive strings at lower tension have lower fundamental
frequencies. By varying the tension in the string, a musician can change the
frequency and tune his or her instrument.

Matching the Initial Conditions. Our final task is to determine the values of An
and B in the general solution. These constants are found by matching the generaln

Ž . Ž . Ž .solution to the initial conditions, Eqs. 3.1.9 . At ts0, Eqs. 3.1.20 and 3.1.9
imply

	 n� x
y x , 0 s A sin sy x . 3.1.21Ž . Ž . Ž .Ý n 0L

ns1

This is a Fourier sine series, and we can therefore determine the Fourier
Ž .coefficients A using Eq. 3.2.11 :n

L2 n� x
A s y x sin dx . 3.1.22Ž . Ž .Hn 0L L0



3.1 SEPARATION OF VARIABLES AND FOURIER SERIES METHODS 199

Similarly, the constants B are determined by the second initial condition,n
� Ž . Ž . �� yr� t s® x . Using Eq. 3.1.20 to evaluate � yr� t , we findts0 0 ts0

	 n� x
B � sin s® x . 3.1.23Ž . Ž .Ý n n 0L

ns1

This equation is also a Fourier sine series, so B is given byn

L2 n� x
B � s ® x sin dx . 3.1.24Ž . Ž .Hn n 0L L0

Ž . Ž . Ž . Ž .Equations 3.1.19 , 3.1.20 , 3.1.22 , and 3.1.24 are the solution to the wave
equation on a uniform string with fixed ends, for given initial conditions. We see

Ž . Ž .that the solution matches the boundary conditions that y 0, t sy L, t s0 be-
Ž .cause each Fourier mode sin n� xrL satisfies these conditions. The solution

matches the initial conditions because the Fourier coefficients A and B aren n
Ž . Ž .chosen specifically to do so, via Eqs. 3.1.22 and 3.1.24 .

Examples

Example 1: Plucked String We can use our general solution to determine the
evolution of any given initial condition. For instance, consider the initial condition

ax , 0�x�Lr2,
y x sŽ .0 ½ a Lyx , Lr2�x�L,Ž .

® x s0.Ž .0

This initial condition, plotted in Cell 4.3, is formed by pulling sideways on the
center of the string, and then letting it go. To find the subsequent motion, all we
need do is determine the constant A and B in the general solution. Equationn n
Ž . Ž .3.1.24 implies that B s0, and Eq. 3.1.20 implies thatn

L Lr2 L2 n� x 2 n� x n� x
A s y x sin dxs ax sin dxq a Lyx sin dx .Ž . Ž .H H Hn 0 ½ 5L L L L L0 0 Lr2

These integrals can be evaluated analytically using Mathematica, and the result is
as follows:

Cell 3.2

A[n_____] = Simplify[2/L (Integrate[ a x Sin[n Pi x/L],
{x, 0, L/2}] + Integrate[ a (L - x) Sin[n Pi x/L],
{x, L/2, L}]), ngIntegers]

n�
4 a L Sin

2
2 2n �

Thus, this perturbation evolves according to
	 n� ct n� x

y x , t s A cos sin , 3.1.25Ž . Ž .Ý n L L
ns1
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with A given in Cell 3.2. This sum is a Fourier sine series in space and a cosinen
Ž .series in time. The time dependence implies that y x, t is periodic in time with

fundamental period 2�r� s2 Lrc. By cutting off the sum at some large but finite1
value M, we can observe the evolution of the string. We do so in taking
Lscsas1.

Cell 3.3

M = 30; L = c = a = 1;
y[x_____, t_____] = Sum[A[n] Cos[n Pi c t/L] Sin[n Pi x/L],

{n, 1, M}];
Table[Plot[y[x, t], {x, 0, L}, PlotRange™{{0,1}, {-1, 1}},

PlotLabel™"t = "<<<<<>>>>>ToString[t], AxesLabel™{"x", "y"}],
{t, 0, 1.9, .1}];

This evolution may seem strange. One might have expected that the entire
triangle would simply change its amplitude in time, oscillating back and forth like
the ns1 normal mode shown in Cell 3.1. Instead, a flat area in the middle grows
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with time, and then decreases in size until the initial condition is re-formed. This is
how an ideal undamped string actually behaves, and it is only because it is difficult
to actually see the rapid evolution of a plucked string that this behavior seems
unusual to us.

To better understand this motion, it is useful to look at the time evolution of the
center of the string, superimposed on the evolution of a second point at xsLr4,
as shown in Cell 3.4. The center of the string oscillates back and forth in a triangle

Ž .wave thin line . The point at xsLr4 only starts to move after a certain period of
Ž .time thick line , which is required by the fact that waves have a finite propagation

speed on the string. Recall that our initial condition is formed by pulling on the
center of the string, holding it off axis against the string tension, and then releasing
the string. Once the center has been released, it takes some time for this
information to propagate to points far from the center. We will soon show that the
speed of propagation of this signal is c. Thus, the point at Lr4 does not learn that

Ž .the point at Lr2 has been released until time tsLr 4c has elapsed. Only after
this time does the point at Lr4 begin to move.

Cell 3.4

In[9] := <<<<<<<<<<Graphics‘;
Plot[{y[L/4, t], y[L/2, t]}, {t, 0, 2 c/L},

PlotStyle™{{Blue, Thickness[0.01]}, Red}, AxesLabel™
{"t", TableForm[{{StyleForm["y[L/4, t]", FontColor™Blue,
FontWeight ->>>>> "Bold"], ", ", StyleForm["y[L/2, t]",
FontColor™Red]}}, TableSpacing™0]}];

Example 2: Traveling Disturbance The finite propagation speed of traveling
disturbances can be easily seen directly by considering a different initial condition,
which is localized in the middle of the string:

y x sey50Ž xrLy1r2. 2
,Ž .0

® x s0.Ž .0

Ž .The resulting Fourier series solution will still have the form of Eq. 3.1.25 , but the
coefficients A will be different. Now, it is best to simply solve for thesen
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coefficients numerically:

Cell 3.5

L = 1;
A[n_____] := 2/L ( NIntegrate[ e-50 (x/L-1/2)2 Sin[n Pi x/L],

{x, 0, L}])

ŽIn Cell 3.6, we show the string motion resulting from this initial condition. In
order to reduce the computation time we have used the fact that only odd Fourier

.modes are present in the solution.

Cell 3.6

M = 19; c = 1;
y[x_____, t_____] = Sum[A[n] Cos[n Pi c t/L] Sin[n Pi x/L],

{n, 1, M, 2}];
Table[Plot[y[x, t], {x, 0, L}, PlotRange™{{0, 1}, {-1, 1}},

PlotLabel™"t="<<<<<>>>>>ToString[t], AxesLabel™{"x", "y"}],
{t, 0, 1.95, .05}];
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One can see that this initial condition breaks into two equal pulses, propagating
in opposite directions on the string. This is expected from the left�right symmetry
of the system: there is no reason why propagation of the pulse in one direction
should be favored over the other direction. Also, the pulses do not change their
shape until they reach the ends of the string, where they reflect and propagate
back toward the center again, with opposite sign at time ts1. This means that
each pulse, having covered a distance Ls1 in time ts1, has traveled with speed
cs1.

Ž .In fact, it is easy to see that any function of space and time of the form f xyct
Ž . Ž .or f xqct satisfies the wave equation for a uniform string, Eq. 3.1.10 . This is

because, for such functions, the chain rule implies that � fr� ts�c � fr� x. There-
2 2 2 2 2 Ž .fore, � fr� t sc � fr� x , so f x�ct satisfies the wave equation for any

function f.
In Chapter 5 we will prove that the general solution to the wave equation for a

uniform infinite string can be written as a superposition of two such functions,
traveling in opposite directions:

y x , t s f xyct qg xqct . 3.1.26Ž . Ž . Ž . Ž .

This form of the solution is called d’Alembert’s solution, after its discoverer.
Ž .Disturbances of the form f x�ct travel with speed c without changing shape.

Ž .For example, if f x has a maximum at xs0, then this maximum point moves in
time according to xs�ct. Every other point in the solution moves at the same
speed, so the pulse does not change shape as it propagates. This is what we
observed in Cell 3.6, up to the time that the pulses encountered the string ends.

Static Sources and Inhomogeneous Boundary Conditions

Dirichlet and von Neumann Boundary Conditions and Static Transverse Forces.
Ž . Ž .In the previous wave equation examples, the boundary conditions y 0, t sy L, t

s0 were not of the most general type that can be handled using separation of
variables. The ends of the string need not be fixed at the same height. The
boundary conditions are then

y 0, t sy and y L, t sy .Ž . Ž .1 2

Boundary conditions of this sort, where the value of the unknown function is
specified at the end points, are referred to as Dirichlet boundary conditions, or
boundary conditions of the first kind. We will now consider the solution of the
wave equation for these Dirichlet boundary conditions, assuming that the boundary
conditions are fixed in time; so that y and y are constants. Time-dependent1 2
boundary conditions cannot be handled using the separation-of-variables method
discussed here, and will be left to Chapter 4.

However, other types of static boundary conditions can be treated with separa-
tion-of-variables methods. For instance, the derivative � yr� x, rather than x itself,
can be specified at the ends of the string. This type of boundary condition is called
a ®on Neumann boundary condition. Such boundary conditions do not often occur
for problems involving waves on a string, because the string tension is usually
created by fixing the string ends to posts. Therefore, in this section we will limit
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discussion to Dirichlet boundary conditions. On the other hand, von Neumann
boundary conditions can occur in other physical applications of the wave equation
Ž . Žsee the exercises , and they also occur in applications involving other PDEs see

.Sec. 3.1.3 .
As a second generalization of the wave equation, we note that for any earth-

bound string the force of gravity acts in the vertical direction, causing a horizontal
string to sag under its own weight. This effect of gravity has been neglected so far,

Žbut can be incorporated into the wave equation as a source term provided that the
.sag is small . To allow for gravity or any other transverse external force, it is

necessary to refer back to Fig. 3.3. An extra force of magnitude dF now acts on the
Ž .mass element in the y-direction. For gravity, dFsydm g. This force must be

added to the force acting to accelerate the element, on the right-hand side of
Ž .Equation 3.1.4 , which now reads

� 2 �
dm y x , t sdx T x , t qdF . 3.1.27Ž . Ž . Ž .y2 � x� t

Ž .Dividing through by dm, substituting for the string tension via Eq. 3.1.6 , and
Ž .using Eq. 3.1.2 , we obtain an inhomogeneous wave equation with a source term:

� 2 1 � �
y x , t s T x y x , t qS x , 3.1.28Ž . Ž . Ž . Ž . Ž .2 ž /� x � x� xŽ .� t

Ž .where the source term S x sdFrdm is the acceleration caused by the external
transverse force. We assume that this external source is time-independent; time-
dependent sources are treated in Chapter 4.

The Equilibrium Solution. As a first step to obtaining the full solution to this
Ž .problem, we will first consider a time-independent solution of Eq. 3.1.28 , subject

Ž . Ž .to the boundary conditions y 0, t sy and y L, t sy . This is the equilibrium1 2
Ž .solution for the shape of the string ysy x . This function satisfies the time-inde-eq

pendent wave equation:

1 � �
T x y x , t sS x , y 0 sy , y L sy . 3.1.29Ž . Ž . Ž . Ž . Ž . Ž .eq eq 1 eq 2ž /� x � x� xŽ .

The general solution to this ODE can be obtained by direct integration:

x xx
1 1
y x sy dx
 S x� � x� dx� qC qC dx
 . 3.1.30Ž . Ž . Ž . Ž .H H Heq 1 2ž /T x
 T x
Ž . Ž .0 0 0

The integration constants C and C are determined by the boundary conditions:1 2

L x
1
y yy y dx
 S x� � x� dx�Ž . Ž .H H2 1 ž /T x
Ž .0 0

C sy , C s . 3.1.31Ž .1 1 2 L 1
dx
H T x
Ž .0
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For instance, let us suppose that we are dealing with a gravitational force,
Ž . Ž . Ž .S x syg, that the string is uniform so that � x s�sconstant, and that T x is

Ž . Žalso approximately uniform, T x fTsconstant. The latter will be true if the
.tension in the string is large, so that the sag in the string is small. Then Eq.

Ž .3.1.30 becomes

y yy xŽ .g � 2 1y x sy x Lyx q qy . 3.1.32Ž . Ž . Ž .eq 12T L

This parabolic sag in the string is the small-amplitude limit of the well-known
catenary curve for a hanging cable. For the case of zero gravity, the string merely

Ž .forms a straight line between the end points. Equation 3.1.32 is valid provided
� � 2that the maximum displacement of the string due to gravity, y sg �L r8T , ismax

small compared to L. This requires that the tension satisfy the inequality T�
g �Lr8. For low string tension where this inequality is not satisfied, the sag is large

wand nonlinear terms in the wave equation must be kept. A discussion of the
catenary curve can be found in nearly any book on engineering mathematics. See,

Ž . xfor instance, Zill and Cullen 2000 .

The Deviation from Equilibrium. Having dealt with static source terms and
inhomogeneous boundary conditions, we now allow for time dependence in the full

Ž . Ž .solution by writing y x, t as a sum of the equilibrium solution, y x , and aeq
Ž .deviation from equilibrium, � y x, t :

y x , t sy x q� y x , t . 3.1.33Ž . Ž . Ž . Ž .eq

Ž . Ž .A PDE for � y is obtained by substituting Eq. 3.1.33 into Eq. 3.1.28 . Since
Ž . Ž .y x already satisfies Eq. 3.1.28 , � y satisfies the homogeneous wave equationeq

with homogeneous boundary conditions,

� 2 1 � �
� y x , t s T x � y x , t , 3.1.34Ž . Ž . Ž . Ž .2 ž /� x � x� xŽ .� t

� y 0, t s� y L, t s0. 3.1.35Ž . Ž . Ž .

Ž . Ž .Initial conditions for � y are obtained by substituting Eq. 3.1.33 into Eq. 3.1.9 :

� y x , 0 sy x yy x ,Ž . Ž . Ž .0 eq

3.1.36Ž .�� y
x , 0 s® x .Ž . Ž .0� t

Ž .For the case of a uniform string, we know how to solve for � y x, t by using
separation of variables and a Fourier series. We will deal with a nonuniform string
in Chapter 4.

This analysis shows that the static applied force and the inhomogeneous
boundary conditions have no effect on the string normal modes, which are still

Ž . Ž .given by Eqs. 3.1.18 and 3.1.19 for a uniform string. This is because of the
linearity of the wave equation. Linearity allows the application of the superposition
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principle to the solution, so that we can separate the effect of the static force and
inhomogeneous boundary conditions from the time-dependent response to an
initial condition.

Summary In this subsection we derived the wave equation, and learned how to
apply the method of separation of variables to solve the equation, for the case of a

Ž .uniform string with a static source S x and time-independent Dirichlet boundary
Ž . Ž .conditions, y 0, t sy , y L, t sy .1 2

Ž .First, we determined the equilibrium shape of the string, y x , as the time-in-eq
dependent solution to the PDE. Then, we found that the deviation from equilib-

Ž . Ž .rium � y x, t satisfies the homogeneous wave equation i.e., no sources with
Ž . Ž .homogeneous boundary conditions y 0, t sy L, t s0.

Homogeneity of the equation and the boundary conditions allowed us to apply
separation of variables to the problem. The solution for � y could be written as a
Fourier sine series in x with time-dependent Fourier coefficients. Each Fourier
mode was found to be a normal mode of oscillation�an eigenmode that matched
the homogeneous boundary conditions and that satisfied an associated eigenvalue
problem.

Other linear PDEs with time-independent sources and boundary conditions can
also be solved using the method of separation of variables. In the next section we
consider one such PDE: the heat equation.

3.1.3 Derivation of the Heat Equation

Ž .Heat Flux In a material for which the temperature T measured in kelvins is a
function of position, the second law of thermodynamics requires that heat will flow
from hot to cold regions so as to equalize the temperature. The flow of heat energy

Ž .is described by an energy flux �s  ,  ,  , with units of watts per square meter.x y z
This flux is a vector, with the direction giving the direction of the heat flow. In a
time � t, the amount of heat energy � E flowing through a surface of area A,
oriented transverse to the direction of �, is � EsA� t.

Consider a piece of material in the form of a slab of thickness L and of
Ž .cross-sectional area A, with a temperature T x that varies only in the direction

Ž .across the slab, the x-direction see Fig. 3.4 . It is an experimental fact that this
temperature gradient results in a heat flux in the x-direction that is proportional to
the temperature gradient,

� T
 sy� , 3.1.37Ž .x � x

where � , the constant of proportionality, is the thermal conducti®ity of the material.
This constant is an intrinsic property of the material in question. For example,

Ž .pure water at room temperature and atmospheric pressure has �s0.59 Wr m K ,
but copper conducts heat much more rapidly, having a thermal conductivity of

Ž .�s400 Wr m K . A temperature gradient of 1 Krm in water leads to an energy
flux of 0.59 Wrm2 in the direction opposite to the temperature gradient, but in
copper the flux is 400 Wrm2. Since the energy flows down the gradient, it acts to
equalize the temperature.
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Fig. 3.4 Heat flux  in a slab of material of area A and thicknessx
Ž .L, caused by a temperature T x that varies in the x-direction.

Note that although thermal conductivity varies from one material to the next, it
must be nonnegative; otherwise heat energy would flow up the temperature
gradient from cold to hot regions, in contradiction to the second law of thermody-
namics.

Ž . Ž .Energy Conservation When TsT x , Eq. 3.1.37 implies that the energy flux
 in the x-direction is generally also a function of position. This, in turn, impliesx
that the energy content of the material changes with time as energy builds up in
some locations and is lost to other locations. We will now examine this process in
detail.

Consider the volume element �VsA � x shown in Fig. 3.5. This element,
Ž .located at position x, has a time-varying thermal energy content � x, t �V, where

Ž .� is the energy density of the material energy per unit volume . The heat flux
Ž .leaving this element from the right side has magnitude  xq� x, t , but the fluxx
Ž .entering the element on the left side has magnitude  x, t . The difference inx

w Ž .these fluxes results in energy gained or lost to the element, at a rate A  x, t yx
Ž .x xq� x, t . In addition, extra sources of heat such as chemical or nuclearx

Fig. 3.5 Energy change of an element of material of width
� x due to a source S and due to heat flux  .x
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reactions can be occurring within the slab, adding or removing heat energy from
Ž . Ž .the volume element at the rate �V S x, t , where S x, t represents a given source

Žof heat energy per unit volume, with units of watts per cubic meter i.e., it is the
.power density of the source . In a time dt, the total energy change of the element,

Ž .d � �V , is the sum of these two terms multiplied by dt:

d � �V sdt A  x , t y xq� x , t qdt �V S x , t .Ž . Ž . Ž . Ž .x x

w Ž . Ž .xTaylor expansion of the heat flux implies that dt A  x, t y xq� x, t sx x
ydt A � x �  r� xsydt �V�  r� x. Dividing by the differentials, we obtain thex x
continuity equation for the energy density,

� �� xsy qS x , t . 3.1.38Ž . Ž .� t � x

The Heat and Diffusion Equations. Dirichlet, von Neumann, and Mixed
Ž . Ž .Boundary Conditions When combined with Eq. 3.1.37 , Eq. 3.1.38 yields the

following partial differential equation:

�� � � Ts x qS x , t . 3.1.39Ž . Ž .ž /� t � x � x

This equation can be used to obtain a temperature evolution equation, because we
can connect the energy density to the temperature via the laws of thermodynamics.
A change in the thermal energy density of the material causes a change in the
temperature according to the relation

d�sC dT , 3.1.40Ž .

where C is the specific heat of the material. This constant, with units of joules per
cubic meter per kelvin, is another intrinsic property of the material. Like the
thermal conductivity, the specific heat must be nonnegative. For water at room
temperature and at constant atmospheric pressure, the specific heat is Cs4.2�

6 Ž 3 .10 Jr m K , meaning that 4.2 MJ of heat energy must be added to a cubic meter
wof water in order to raise its temperature by 1 K. A typical hot tub contains a few

cubic meters of water, so one can see that tens of megajoules of energy are
required to heat it by several degrees. Fortunately, 1 MJ of energy costs only a few

Ž . xpennies as of 2002 . The specific heat of copper is not very different from that of
6 Ž 3 .water, Cs3.5�10 Jr m K .

Ž . Ž .When we combine Eqs. 3.1.39 and 3.1.40 , we arrive at the following partial
Ž .differential equation for the temperature T x, t :

� T � � T
C x s � x qS x , t . 3.1.41Ž . Ž . Ž . Ž .ž /� t � x � x

Ž .Equation 3.1.41 is the heat equation in one spatial dimension. In writing it, we
have allowed for spatial variation in the material properties � and C. This can
occur in layered materials, for example. The equation simplifies when � and C are
independent of position:

2 S x , t� T � T Ž .s� q , 3.1.42Ž .2� t C� x
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where � is the thermal diffusi®ity of the material, defined as

�s�rC. 3.1.43Ž .

The thermal diffusivity has units of m2rs. For water, �s1.4�10y7 m2rs, and for
y4 2 Ž .copper, �s1.1�10 m rs. Equation 3.1.42 is sometimes referred to as the

diffusion equation.
The heat equation is a first-order PDE in time and so requires a single initial

condition, specifying the initial temperature in the slab as a function of position:

T x , 0 sT x . 3.1.44Ž . Ž . Ž .0

The equation is second-order in space, and so requires two boundary conditions to
specify the solution. The boundary conditions one employs depend on the circum-
stances. For example, in some experiments one might fix the temperature of the
slab faces to be given functions of time, by putting the faces in good thermal

Ž . Ž .contact with heat reservoirs at given temperatures T t and T t :1 2

T 0, t sT t ,Ž . Ž .1
3.1.45Ž .

T L, t sT t .Ž . Ž .2

These Dirichlet boundary conditions are of the same type as those encountered
previously for the wave equation.

On the other hand, one might also insulate the faces of the slab, so that no heat
Ž . Ž .flux can enter or leave the faces:  0 s L s0. More generally, one mightx x

specify the heat flux entering or leaving the faces to be some function of time.
Ž .Then according to Eq. 3.1.37 , the temperature gradient at the faces is specified:

 tŽ .� T x10, t sy ,Ž .� x �
3.1.46Ž .

 tŽ .� T x 2L, t sy ,Ž .� x �

Ž . Ž .where  t and  t are given functions of time, equaling zero if the faces arex1 x 2
insulated. Boundary conditions where the gradient of the unknown function is
specified are called ®on Neumann boundary conditions, or boundary conditions of
the second kind.

There can also be circumstances where the flux of heat lost or gained from the
slab faces is proportional to the temperature of the faces: for example, the hotter
the face, the faster the heat loss. This leads to mixed boundary conditions at the
faces:

� T
� 0, t sa T 0, t yT t ,Ž . Ž . Ž .1� x

3.1.47Ž .
� T

� L, t syb T L, t yT t ,Ž . Ž . Ž .2� x

Ž . Ž . Ž .where a and b are given nonnegative constants. The functions T t and T t are1 2
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Table 3.1. Possible Boundary Conditions for the Heat Equationa

Ž . Ž .Dirichlet T 0, t sT t1
� T Ž . Ž .von Neumann � 0, t sy tx1� x
� T Ž . w Ž . Ž .xMixed � 0, t sa T 0, t yT t1� x

aAt one end, xs0.

the temperatures of the surroundings: only if the face is hotter than the surround-
ings is there a flux of heat out of the face. If a and b are very large, representing
good thermal contact with the surroundings, then the temperature of the faces is
pinned to that of the surroundings and the boundary conditions are of Dirichlet

Ž .form, Eq. 3.1.45 . On the other hand, if a and b are very small, then the faces are
insulating and obey homogeneous von Neumann conditions, � Tr� xs0 at xs0
and xsL.

Finally, there can be situations where one face has a different type of boundary
condition than the other; for instance, one side of a slab might be insulated, while
on the other side the temperature might be fixed.

These possibilities are summarized in Table 3.1.

3.1.4 Solution of the Heat Equation Using Separation of Variables

Ž .Introduction The heat equation for a uniform medium, Eq. 3.1.41 , can often be
solved using the method of separation of variables. For this method to work, we

Ž .require that an equilibrium solution T x for the temperature exist. A necessaryeq
Ž .but not sufficient requirement for equilibrium is time-independent boundary
conditions and a time-independent source function.

If an equilibrium solution can be found, then this solution can be subtracted
Ž .out, and the deviation from equilibrium, �T x, t , can then be analyzed using

separation of variables, just as for the wave equation. However, if an equilibrium
solution does not exist, then other more general solution methods must be applied.
Such methods will be discussed in Sec. 4.2.

One might have expected that time-independent boundary conditions and a
time-independent source would necessarily imply that an equilibrium solution for
the temperature exists. However, this is not always the case, as we will now show.

Static Boundary Conditions and a Static Source

The Equilibrium Solution. We consider time-independent boundary conditions, of
either the Dirichlet, the von Neumann, or the mixed form, and a static source

Ž . Ž .function, SsS x . We will look for an equilibrium solution T x that satisfieseq
these boundary conditions, as well as the time-independent heat equation,

� T� eq
0s � x qS x , t . 3.1.48Ž . Ž . Ž .ž /� x � x



3.1 SEPARATION OF VARIABLES AND FOURIER SERIES METHODS 211

This equation has a general solution that can be found by direct integration:

x xx
1 1
T x sy dx
 S x� dx� qC qC dx
 . 3.1.49Ž . Ž . Ž .H H Heq 1 2ž /� x
 � x
Ž . Ž .0 0 0

The constants C and C are chosen to match the boundary conditions. For1 2
Ž . Ž .example, for Dirichlet boundary conditions at each end, T 0, t sT and T L, t s1

T , the solution mirrors the equilibrium solution to the wave equation:2

L x
1
T yT q dx
 S x� dx�Ž .H H2 1 � x
Ž .0 0

C sT , C s .1 1 2 L 1
dx
H � x
Ž .0

Similarly, one can also find a unique equilibrium solution for mixed boundary
w Ž . xconditions at each end Eq. 3.1.47 with T and T constants , although we will not1 2

write the solution here. In fact, one can always find a unique equilibrium solution
for every possible combination of static boundary conditions at each end, except
one: von Neumann conditions at each end.

Constraint Condition on the Existence of an Equilibrium for von Neumann
Boundary Conditions. If we specify von Neumann boundary conditions, then

Ž .according to Eq. 3.1.49 the derivative of the equilibrium temperature at each end
must satisfy the following two equations:

� Teq
� 0 0, t sy sC ,Ž . Ž . x1 2� x

3.1.50Ž .
� T Leq

� L L, t sy sC y S x� dx� .Ž . Ž . Ž .Hx 2 2� x 0

wHowever, these are two equations in only one unknown, C . The constant C2 1
Ž . xdisappeared when the derivative of Eq. 3.1.49 was taken. Therefore, a solution

cannot necessarily be found to these equations. This should not be completely
Ž .surprising. After all, Eq. 3.1.48 is being solved as a boundary-value problem, and

we know that a solution to boundary-value problems need not exist.
Ž .Subtracting Eqs. 3.1.50 from one another implies that the equations have a

solution for C only if the external heat fluxes  and  are related to the heat2 x1 x 2
Ž .source S x through

L
 y q S x� dx� s0. 3.1.51Ž . Ž .Hx1 x 2

0

If this equation is not satisfied, there is no equilibrium solution. The equation
follows from the requirement that, in equilibrium, the overall energy content of the
material must not change with time. In a slab with cross-sectional area A, the total
energy content is EsAHL� dx, where � is the energy density. Setting the time0



INTRODUCTION TO LINEAR PARTIAL DIFFERENTIAL EQUATIONS212

derivative of this expression equal to zero yields

� L LdE �� xs0sA x , t dxsA y qS x , t dx ,Ž . Ž .H H ž /dt � t � x0 0

Ž .where the second equality follows from energy conservation, Eq. 3.1.38 . Perform-
ing the integral over the heat flux using the fundamental theorem of calculus then

Ž .leads to Eq. 3.1.51 .
Ž .Equation 3.1.51 is easy to understand intuitively: Take the case of an insulated

slab, with  s s0. Then for a temperature equilibrium to exist, there can bex1 x 2
L Ž .no net heat energy injected into the slab by the source: H S x� dx� s0; otherwise0

the temperature must rise or fall as the overall energy content in the slab varies
with time. Similarly, if  y �0, then we are removing heat through the facesx1 x 2
of the slab; and in equilibrium this energy must be replaced by the heat source
Ž .S x .

For Dirichlet or mixed boundary conditions, where the external heat fluxes x1
and  are not directly specified, the fluxes through the slab faces are free to varyx 2

Ž .until the equilibrium condition of Eq. 3.1.51 is achieved. However, for von
Neumann boundary conditions these fluxes are specified directly, and if they do

Ž . wnot satisfy Eq. 3.1.51 , the energy content of the slab will increase with time if the
Ž . x wleft-hand side of Eq. 3.1.51 is greater than zero or decrease with time if it is

xless than zero , and no equilibrium will exist. Conditions such as this cannot be
treated using separation of variables. A solution to this problem can be found in
Chapter 4.

Separation of Variables for the Deviation from Equilibrium. Let’s assume that the
Ž .static boundary conditions and the source are such that Eq. 3.1.51 is satisfied, so

that an equilibrium solution to the heat equation exists. We can then determine
Ž . Ž . Ž .the evolution of T x, t from a general initial condition, T x, 0 sT x , by0

following the prescription laid out for the wave equation.
We first subtract out the equilibrium and follow the deviation from equilibrium,
Ž .�T x, t , where

T x , t sT x q�T x , t . 3.1.52Ž . Ž . Ž . Ž .eq

Ž .Substitution of this expression into the heat equation 3.1.41 and application of
Ž . Ž .Eq. 3.1.48 implies that �T x, t satisfies the homogeneous heat equation

� �T � � �T
C x s � x 3.1.53Ž . Ž . Ž .ž /� t � x � x

with homogeneous boundary conditions, and initial condition

�T x , 0 sT x yT x . 3.1.54Ž . Ž . Ž . Ž .0 eq

The boundary conditions are of the same type as the original equation, but are
homogeneous. Recall that homogeneous boundary conditions are such that a
trivial solution �Ts0 exists. For instance, if the original equation had von
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w Ž .Neumann conditions at one end and Dirichlet conditions at the other T 0, t s
� xT , � Tr� x sy r� , then �T would satisfy homogeneous conditions of the1 xsL x 2

Ž . �same type, �T 0, t s0, ��Tr� x s0.xsL

The boundary conditions for the temperature deviation �T are of the same type
Žas the original boundary conditions for T , but are homogenous. This was the

.point of subtracting out the equilibrium solution. Separation of variables only
works if we can write down a PDE for �T that is accompanied by homogeneous
boundary conditions.

Ž .The solution of Eq. 3.1.53 for �T can again be obtained using the method of
separation of variables. Here for simplicity we will only consider the case where �

Ž .and C are constants, so that Eq. 3.1.53 becomes the diffusion equation,

��T � 2 �Ts� . 3.1.55Ž .2� t � x

Ž . Ž . Ž .We look for a solution of the form �T x, t s f t � x . Substituting this expres-
Ž . Ž . Ž .sion into Eq. 3.1.55 and dividing by f t � x yields

1 � f � � 2�s , 3.1.56Ž .2� tf t � xŽ . Ž . � x

which can be separated into two ODEs. The left-hand side is independent of x,
Ž .and the right-hand side is independent of t. Therefore, Eq. 3.1.56 can only be

satisfied if each side equals a constant, �:

1 � f s�, 3.1.57Ž .� tf tŽ .

� � 2� s�. 3.1.58Ž .2� xŽ . � x

Ž .The Eigenvalue Problem. The separation constant � and the functions � x are
determined by the homogeneous boundary conditions. Let us assume Dirichlet

Ž . Ž . Ž .boundary conditions, � 0 s� L s0. With these boundary conditions, Eq. 3.1.58
may be recognized as an eigenvalue problem; in fact, it is the identical eigenvalue
problem encountered previously for the wave equation! The solution for the
eigenmodes is, as before,

n� x
� x sD sin 3.1.59Ž . Ž .L

and

2
�s� sy� n�rL , ns1, 2, 3, . . . . 3.1.60Ž . Ž .n

Ž .In addition, the solution of Eq. 3.1.57 ,

f t sA e �t ,Ž .
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provides the time-dependent amplitude for each eigenmode. By forming a linear
superposition of these solutions, we obtain the general solution to the heat
equation for the temperature perturbation away from equilibrium:

	 n� x� tn�T x , t s A e sin . 3.1.61Ž . Ž .Ý n L
ns1

As in the wave equation solution, we have absorbed the constant D into the
Fourier coefficients A . These coefficients are found by matching the initialn

Ž .condition, Eq. 3.1.54 :

	 n� x
�T x , 0 s A sin sT x yT x .Ž . Ž . Ž .Ý n 0 eqL

ns1

This is a Fourier sine series, so the A ’s are determined asn

L2 n� x
A s T x yT x sin dx . 3.1.62Ž . Ž . Ž .Hn 0 eqL L0

Ž . Ž .Equations 3.1.61 and 3.1.62 are the solution for the deviation from equilibrium
for the case of Dirichlet boundary conditions in a uniform slab. The solution is
again made up of a sum of eigenmodes with the same spatial form as those for the
wave equation, shown in Cell 3.1. But now the amplitudes of the modes decay with

� �time with rate � , rather than oscillating. The result is that �T™0. Thus, then
Ž . Ž .full solution for T , Eq. 3.1.48 , approaches the equilibrium solution T x in theeq

long-time limit. The time evolution of several of these eigenmodes is displayed in
Cell 3.7, in the electronic version of the textbook. In the hardcopy, only the
commands that create the animation are given.

Cell 3.7

L = 1; � = 1;
�[n_____] = -� (n Pi/L) ^̂̂̂̂2;
p[n_____, t_____] :=

Plot[Exp[�[n] t] Sin[n Pi x], {x, 0, L},
DisplayFunction™Identity, PlotRange™{-1, 1},
PlotLabel™"n = " <<<<<>>>>>ToString[n]];

Table[Show[GraphicArray[Table [{{p[1, t], p[2, t]},
{p[3, t], p[4, t]}}]],
DisplayFunction™$$$$$DisplayFunction], {t, 0, 0.25, .0125}];

All of the modes approach zero amplitude as time progresses, because the
boundary conditions on the eigenmodes dictate that the temperature equals zero
at the slab faces. Thus, in equilibrium the temperature deviation �T is zero
throughout the slab. The higher-order modes equilibrate more rapidly, because
they have larger gradients and therefore larger heat fluxes according to Eq.
Ž .3.1.37 .

Example In this example, we will assume a point heat source of the form
Ž . Ž .S x s� xyLr2 . We consider a slab of material of unit width, Ls1, with

thermal diffusivity �s1, and �s1 as well. Initially, the slab has a temperature
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Ž . Ž . 3 Ž .distribution T x, 0 sT x sx , and the boundary conditions are T 0, t s0
Ž .0, T 1, t s1.

Ž .Then the equilibrium temperature distribution is given by Eq. 3.1.49 with C1
Ž . Ž .and C chosen to match the boundary conditions, T 0 s0 and T L s1. After2 eq eq

3performing the required integrals, we obtain C s0, C s , and1 2 2

3 x 1 1
T x s y xy h xy , 3.1.63Ž . Ž .eq ž / ž /2 2 2

where h is a Heaviside step function. This equilibrium temperature distribution is
displayed in Cell 3.8.

Cell 3.8

Teq[x_____] = 3 x/2 - (x - 1/2) UnitStep[x - 1/2];
Plot[Teq[x], {x, 0, 1}, AxesLabel™{"x", "Teq[x]"}];

Ž .The solution for the deviation from equilibrium, �T x, t , is given by Eq.
Ž . Ž . 33.1.61 . The constants A are determined by the initial condition, T x sx , vian 0

Ž . Ž .Eqs. 3.1.62 and 3.1.63 . The required integrals are performed using Mathematica
Ž .and the behavior of T x, t is plotted in Cell 3.9 keeping 10 Fourier modes in the

Ž .solution. The temperature rapidly approaches the equilibrium temperature T xeq
as the point heat source raises the internal temperature of the slab.

Cell 3.9

(*****parameters*****)
� = L = 1; M = 20;
(***** define the initial condition *****)

T0[x_____] = x3;
(*****determine the constants A *****)n

A[n_____] := 2/L Integrate[Sin[n� x/L] (T0[x] - Teq[x]),
{x, 0, L}];

(*****Fourier series for �T *****)
�T[x_____, t_____] = Sum[A[n] Exp[- (n Pi/L) ^̂̂̂̂2 � t] Sin[n Pi x/L],

{n, 1, M}];
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(*****The full solution*****)
T[x_____, t_____] = Teq[x] + �T[x, t];
(*****Plot the result*****)
Table[Plot[T[x, t], {x, 0, L}, PlotRange™{{0, L}, {0, 1}},

PlotLabel ™"t = "<<<<<>>>>>ToString[t], AxesLabel™{"x", "T"},
PlotStyle™Thickness[0.01]], {t, 0, 0.4, 0.4/20}];

w Ž .Note the text within the brackets * * , which is ignored by Mathematica. Com-
xments such as these can be useful for documenting code.

Observe that the rate at which the equilibrium is approached is mainly determined
by the lowest eigenmode. This is because the time dependence of the eigenmode
amplitudes is given by the factor ey� Žn� rL.2 t. This factor decays rapidly for the
modes with n�1, so at large times the solution is approximately determined by
the lowest mode:

2 � xy� Ž� rL. tT x , t ,T x qA e sin . 3.1.64Ž . Ž . Ž .eq 1 L

This equation implies that, for this problem, the maximum temperature deviation
Ž .from equilibrium occurs at the center of the slab xsLr2 , and has the time

dependence A ey� Ž� rL.2 t, where A is determined from the initial condition by1 1
Ž .Eq. 3.1.62 . Thus, at long times, the rate at which the slab temperature ap-

Ž .2proaches equilibrium is � �rL . The larger the conductivity, the faster equilib-
rium is achieved. But the thicker the slab, the longer it takes for the heat to diffuse
from the interior to the faces.
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Homogeneous von Neumann Boundary Conditions

Separation-of-Variables Solution. Let us now consider the case of a uniform slab
insulated on both sides, and with no source. These conditions clearly satisfy Eq.
Ž .3.1.51 , so an equilibrium exists�in this case the trivial equilibrium T sconstant.eq
The temperature within the slab now evolves according to

� T � 2Ts� , 3.1.65Ž .2� t � x

with homogeneous von Neumann boundary conditions

� T � T
0, t s L, t s0 3.1.66Ž . Ž . Ž .� x � x

and initial condition

T x , 0 sT x . 3.1.67Ž . Ž . Ž .0

Ž .The solution of Eq. 3.1.65 can again be obtained using the method of
separation of variables. We now have no need to take out an equilibrium solution,
since there is no source and the boundary conditions are already homogeneous.

Ž . Ž . Ž .We look for a solution of the form T x, t s f t � x . Substituting this expression
Ž . Ž . Ž .into Eq. 3.1.65 , and dividing by f t � x , we have

1 � f � � 2�s ,2� tf t � xŽ . Ž . � x

Ž . Ž .which can be separated into two ODEs, Eqs. 3.1.57 and 3.1.58 , just as before.
We repeat these equations below:

1 � f s�, 3.1.68Ž .� tf tŽ .

� � 2� s�. 3.1.69Ž .2� xŽ . � x

Ž .The Eigenvalue Problem. The separation constant � and the functions � x are
Ž .determined by the homogeneous von Neumann boundary conditions that � 
 0 s

Ž .� 
 L s0. These boundary conditions yield another eigenvalue problem: for all
Ž .but a special set of �-values, the only solution to Eq. 3.1.69 that satisfies these

boundary conditions is the trivial solution �s0.
To find the nontrivial solutions, we apply the boundary conditions to the

Ž . Ž . 'general solution of Eq. 3.1.69 , � x sC cos kxqD sin kx, with ks y�r� . To
Ž .match the condition that � 
 0 s0, we require that Ds0, and to match the

Ž . Ž .condition that � 
 L s0, we find that either Cs0 the trivial solution or
k sin kxs0. This equation can be satisfied with the choices ksn�rL, ns
0, 1, 2, . . . , so we find that

n� x
� x sC cos 3.1.70Ž . Ž .L
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and

2
�s� sy� n�rL , ns0, 1, 2, 3, . . . . 3.1.71Ž . Ž .n

Forming a linear superposition of these solutions, we now obtain

	 n� x� tnT x , t s A e cos , 3.1.72Ž . Ž .Ý n L
ns0

where, as before, we absorb the constant C into the Fourier coefficients A . Noten
Ž .that we now keep the ns0 term in the sum, since cos 0� x s1 is a perfectly good

eigenmode.
Just as before, the coefficients A are found by matching the initial condition,n
Ž .Eq. 3.1.67 :

	 n� x
T x , 0 s A cos sT x .Ž . Ž .Ý n 0L

ns0

This is a Fourier cosine series, so the A ’s are determined asn

L2 n� x
A s T x cos dx , n�0,Ž .Hn 0L L0

3.1.73Ž .
L1

A s T x dx .Ž .H0 0L 0

The solution is again made up of a sum of eigenmodes. Although the eigenmodes
differ from the previous case, they still form a set of orthogonal Fourier modes,
which can be used to match to the initial conditions. Note that the ns0
eigenmode has a zero eigenvalue, � s0, so this mode does not decay with time.0
However, all of the higher-order modes do decay away. This has a simple physical
interpretation: over time the initial temperature distribution simply becomes
uniform within the slab, because the temperature equilibrates but heat cannot be
conducted to the surroundings, due to the insulating boundary conditions.

Example Let us assume that an insulated slab of unit width has an initial
Ž . 2 3 4 5temperature equal T x sx r16qx y65x r32qx . This somewhat compli-0

cated initial condition is displayed in the plot in Cell 3.13. It is chosen so as to have
a peak in the center, and zero derivatives at each end point.

Ž .The Fourier coefficients A are determined according to Eqs. 3.1.73 . Then
integrals are performed below, using Mathematica:

Cell 3.10

L = 1;

x2 65x43 5T0[x_____] = + x - + x ;
16 32

A[n_____] = (2/L) Integrate[T0[x] Cos[n Pi x], {x, 0, L}];
A[0] = (1/L) Integrate[T0[x], {x, 0, L}];
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The forms for A and A are0 n

Cell 3.11

A[0]

1
32

Cell 3.12

Simplify[A[n], n g Integers]

3 (-160 (-1 + (-1)n) + (-8 + 23 (-1)n) n2�2)
-

6 62 n �

This solution is shown in Cell 3.13, keeping Ms20 terms in the sum over
eigenmodes, and again taking �s1.

Cell 3.13

(*****parameters*****)
� = 1;
M = 20;
(***** solution *****)
T[x_____, t_____] = Sum[A[n] e-(n Pi/L)^̂̂̂̂2�t Cos[n Pi x], {n, 0, M}];
(*****Plot the result*****)
Table[Plot[T[x, t], {x, 0, L},

PlotRange™{{0, L}, {0, .07}},
PlotLabel™"t = "<<<<<>>>>>ToString[t],
AxesLabel™{"x", "T"}], {t, 0, 0.2, 0.2/20}];
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After a rapid period of relaxation, the n�0 modes in the initial condition decay
away and the solution settles down to a uniform temperature distribution. Again,
in the long-time limit, the higher-order eigenmodes die away and the solution is
approximately

2 � xy� Ž� rL. ty x , t ,A qA e cos .Ž . 0 1 L

Now the maximum deviation from equilibrium occurs at the edges, as the tempera-
ture gradients within the insulated slab equilibrate.

Homogeneous Mixed Boundary Conditions Let us now turn to the case of no
source and homogeneous mixed boundary conditions,

� T
� 0, t saT 0, t ,Ž . Ž .� x

� T
� L, t sybT L, t .Ž . Ž .� x

Ž .If we again apply separation of variables to the heat equation, writing T x, t s
Ž . Ž . Ž . Ž .f t � x , we are again led to Eqs. 3.1.68 and 3.1.69 for the functions f and � .

Ž . Ž . �t Ž .Equation 3.1.68 still has the general solution f t sA e , and Eq. 3.1.69 is still
Ž .an eigenvalue problem, with the general solution � x sA cos kxqB sin kx, where

'ks y�r� . But now the boundary conditions on � are rather complicated:

��
� 0 sa� 0 ,Ž . Ž .� x

��
� L syb� L .Ž . Ž .� x

When these boundary conditions are used in the general solution, we obtain two
coupled homogeneous equations for A and B:

� kBsaA,
3.1.74Ž .

� k yA sin kLqB cos kL syb A cos kLqB sin kL .Ž . Ž .

A nontrivial solution to these coupled equations exists only for values of k that
satisfy

aby� 2 k 2 sin kLsy aqb � k cos kL. 3.1.75Ž . Ž . Ž .

Again, we have an eigenvalue problem for the wavenumbers k. Unfortunately, this
equation cannot be solved analytically for k. However, numerical solutions can be
found for specific values of a and b using numerical techniques developed in

Ž .Chapter 9. For example, if we take asbs2�rL, then Eq. 3.1.75 can be written
Ž 2 .as 4ys sin sq4 s cos ss0, where s�kL.
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The first four solutions for s can be found graphically as shown in Cell 3.14.

Cell 3.14

Plot[Sin[s] (-s ^̂̂̂̂2 + 4) + 4 s Cos[s], {s, 0, 10},
AxesLabel™{"s", ""}];

The plot shows that there are solution at s,1.7, 4, 7, and 9.5. The solution at
ss0 is trivial, and those at s�0 provide modes that are merely opposite in sign to
those with s�0. The corresponding �-values can then be picked out using the
following table of FindRoot commands:

Cell 3.15

� = -Table[s/. FindRoot[Sin[s] (-s ^̂̂̂̂2 + 4) + 4 s Cos[s],
{s, 1.8 + 2.5 n}][[1]], {n, 0, 3}] ^̂̂̂̂2 �/L ^̂̂̂̂2

2.9607 � 16.4634 � 46.9394 � 96.5574 �
- , - , - , -½ 52 2 2 2L L L L

In Cell 3.16, we show the form of the corresponding eigenmodes, taking As1 and
Ž . �n twith B given in terms of A by Eq. 3.1.74 . The time dependence e of the modes

is also displayed in the electronic version of the text.

Cell 3.16

L = 1; � = 1; a = b = 2 �/L;
'k = -� / � ;

A = 1;
B = a A/(� k );

' '�[n_____, x_____] := A Cos[ -�[[n]] /� x] + B[[n]] Sin[ -�[[n]] / � x];

p[n_____, t_____] := Plot[Exp[�[[n]] t] �[n, x], {x, 0, L},
DisplayFunction™Identity,
PlotRange™{-2, 2}, PlotLabel™"n = " <<<<<>>>>>ToString[n]];

Table[Show[GraphicsArray[Table[{{p[1, t], p[2, t]},
{p[3, t], p[4, t]}}]],
DisplayFunction™$$$$$DisplayFunction], {t, 0, 0.2, .01};
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Because of the symmetry of the boundary conditions, the modes are either
symmetric or antisymmetric about the center of the slab. These modes are a cross
between insulating and fixed-temperature conditions: there is a small heat flux out
of the slab faces that depends linearly on the temperature of the faces. In the
long-time limit, the temperature throughout the slab is zero in the absence of a
heat source.

We can still form a general superposition of these different solutions in order to
satisfy the initial conditions:

T x , t s A e �n t� x , 3.1.76Ž . Ž . Ž .Ý n n
n

Ž .where � x is the nth eigenmode, with corresponding eigenvalue � . However,n n
the eigenmodes are now complicated linear combinations of trigonometric func-
tions, with wavenumbers that are no longer evenly spaced multiples of �rL. This
is not a trigonometric Fourier series. How do we go about finding the constants
A in this case?n

Surprisingly, the eigenmodes are still orthogonal with respect to one another:

L
� x � x dxs0 if n�m.Ž . Ž .H m n

0

One can check this numerically:
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Cell 3.17

MatrixForm[Table[NIntegrate[�[n, x] �[m, x], {x, 0, L}],
{n, 1, 4}, {m, 1, 4}]]

1.85103 -5.78329�10-9 1.48091�10-9 -9.09982�10-10

-9 -10 -11-5.78329�10 0.742963 4.253�10 8.84096�10
-9 -10 -101.48091�10 4.253�10 0.585216 -4.03937�10� 0
-10 -11 -10-9.09982�10 8.84096�10 -4.03937�10 0.541426

The off-diagonal elements in this table of integrals are nearly zero, indicating
orthogonality of the eigenmodes within the precision of the numerical integration.

Since the modes are orthogonal, they can still be used to determine the A ’s byn
Ž .matching to the initial conditions. At ts0, Eq. 3.1.76 implies

T x , 0 s A � x sT x .Ž . Ž . Ž .Ý n n 0
n

Ž .Multiplying both sides by � x , and integrating over x from 0 to L, we obtainm

L L
A � x � x dxs � x T x dx .Ž . Ž . Ž . Ž .Ý H Hn m n m 0

0 0n

Orthogonality implies that each term in the sum vanishes except for the nsm
term, so we find that only the nsm term survives, leaving a single equation for

L 2Ž . L Ž . Ž .A : A H � x dxsH � x T x dx, which yieldsm m 0 m 0 m 0

L
� x T x dxŽ . Ž .H m 0

0A s . 3.1.77Ž .m L 2� x dxŽ .H m
0

Ž .Equation 3.1.77 provides the coefficients A for every value of m. When used inm
Ž . Ž .Eq. 3.1.76 , it yields the required solution T x, t for any given initial temperature

Ž .T x .0

Summary In this subsection we found solutions to the heat equation using the
method of separation of variables, the same approach as we employed when
solving the wave equation. Just as for the wave equation, the approach only
worked if we could find an equilibrium solution to the problem that took care of
source terms and inhomogeneous boundary conditions. Then the deviation from
equilibrium was expanded as a series consisting of orthogonal eigenmodes with
time-dependent amplitudes.

This was all completely analogous to the wave equation solution. However, we
allowed for more general boundary conditions such as can often occur in heat
equation problems. Along with the Dirichlet conditions familiar from the wave
equation, we also considered von Neumann and mixed conditions. These new
boundary conditions brought with them several surprises.
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First, we found that with static von Neumann boundary conditions, an equilib-
rium solution for the temperature is not possible unless the temperature gradients

Ž .at the edge of the system satisfy an energy conservation condition, Eq. 3.1.51 .
Second, we found that in the case of mixed boundary conditions the eigenmodes

used in our series solution for �T were not simple trigonometric Fourier modes.
Surprisingly, however, the modes still formed an orthogonal set, which could be
used to find a solution just as in a Fourier series expansion. We will discover the
reason for this amazing ‘‘coincidence’’ in Chapter 4.

EXERCISES FOR SEC. 3.1

( )1 A mass M hangs at the lower end of a vertical string, in equilibrium under
the force of gravity g. The string has constant mass density � per unit length.
The mass is at zs0, and the string is attached to the ceiling at zsL. find

Ž .the tension T z in the string as a function of height z.

( )2 A thin rod of height L is balanced vertically on its end at zs0. The rod has
a nonuniform cross section. It is cylindrical, but has a radius that varies with

Ž .height z as rszr10. That is, the rod is a cone, balanced on its tip. The
mass density of the material making up the cone is MMs1000 kgrm3. Find

Žthe tension force in the rod vs. z more aptly called compression force in this
.instance due to gravity g.

( )3 The following futuristic concept has been proposed for attaining orbit around
a planetary body such as the earth: a very massive satellite, placed in

Ž .geosynchronous orbit above the equator, lowers a thick rope called a tether
all the way down to the ground. The mass of the satellite is assumed here for
simplicity to be much larger than that of the tether. Astronauts, equipment,
etc., simply ride an elevator up the tether until they are in space. Due to the
huge tension forces in the tether, only fantastically strong materials can be
used in the design, such as futuristic materials made of carbon nanotubes.

wHere, we will calculate the tension forces in the tether. See also the article in
the July�August 1997 issue of American Scientist on properties and uses of

Žcarbon nanotubes. The cover of this issue is reproduced in Fig. 3.6 it depicts
.an open-ended tether design . Also, you may want to check out Sir Arthur

Ž . xClarke’s science fiction novel, The Fountains of Paradise 1979 .
( )a Assuming that the mass density � per unit length of the tether is

Ž .constant, show that the tension T r as a function of distance r from the
center of the earth is

T r s�W r qT ,Ž . Ž . 0

Ž . 2 2where W r sGM rrq� r r2 is the potential energy per unit tethere
mass, including potential energy associated with centrifugal force, M ise
the mass of the earth, T is an integration constant that depends on the0

Ž .load tension at the base of the tether, and �s2�r 24 hours . Evaluate
and plot this tension versus r, assuming that �s50 kgrm, that the tether
is carrying no load, and that it is not attached to the earth at its base.
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Fig. 3.6 Artist’s depiction of a tether made of carbon nanotubes. Artist: D. M. Miller.

Ž .What is the maximum value of the tension in newtons , and where does
Žit occur? Hint 1: There are two competing forces at play on a mass

element dm in the tether: the centrifugal force due to the earth’s
rotation, dm � 2 rr, and the gravitational attraction of the tether to theˆ
earth ydm GM rrr 2. Neglect the attraction of the tether to itself and toˆe
the massive satellite. Hint 2: For the massive satellite, recall that for a
point mass m the radius R of geosynchronous orbit is given by theg
solution to the force balance equation GM mrR2sm� 2R , where �se g g

Ž .2�r 24 hours . Here, neglect the effect of the tether mass on the satellite
orbit. Hint 3: Assuming that the tether is attached only to the satellite,
not the earth, the tension force applied to the tether by the satellite must
balance the total integrated centrifugal and gravitational forces on the

.tether.
( )b The previous design is not optimized: the tension in the tether varies

considerably with altitude, but the force F required to break the tether
does not because the tether has uniform cross section. It is better to
design a tether where the ratio of the breaking force to the tension is
constant: FrTsS, where S is the safety factor, taken to be around 2 or 3
in many engineering designs. Now, the breaking force F of the tether is
proportional to its cross-sectional area A, according to the equation

ŽFs� A, where � is the tensile strength of the material in newtons per
.square meter . Also, the density per unit length, �, is given by �sMMA,
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Ž .where MM is the mass density in kilograms per cubic meter . Find the
Ž .cross-sectional area A r such that the safety factor S is constant with

altitude. For a boundary condition, assume that there is a loading tension
ŽT applied at the base of the tether, at rsR R being the radius of thel e e

.earth . Show that

STl Ž MM Sr� .wW Ž r .yW ŽR .xeA r s e .Ž . �

Ž .'Plot the radius of the tether, A r r� in meters , assuming that it isŽ .
Žmade out of the strongest and lightest commercially available material as

. Ž .of the year 2000 , Spectra a high-molecular-weight form of polyethylene ,
with a mass density of MMs970 kgrm3 and a tensile strength of
�s3.5�109 Nrm2. Take as the safety factor Ss2. Take T s10,000 N.l
What is the total mass of this tether?

( ) Ž .c Redo the calculation and plot of part b for a tether made of carbon
nanotubes. Take the same parameters as before, but a tensile strength 40
times greater than that of Spectra.

( )4 Wa®es in shallow water: Waves on the surface of water with long wavelength
compared to the water depth are also described by the wave equation. In this
problem you will derive the equation from first principles using the following
method, analogous to that for a wave on a string. During the wave motion, a
mass of fluid in an element of unit width into the paper, equilibrium height h

Ž .and length � x moves a distance � and assumes a new height hqz x, t and
Ž . Ž .a length 1q��r� x � x, but remains of unit width. See Fig. 3.7.

( ) Ža Using the incompressibility of the fluid the volume of the element
.remains fixed during its motion show that, to lowest approximation,

��
zsyh .

� x

( )b Neglecting surface tension, the net force in the x-direction on the
element face of height hqz arises from the difference in hydrostatic

Fig. 3.7 A wave in shallow water, with motion greatly exaggerated.
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pressure on each face of the element due to elements on the right and
left of different heights. The hydrostatic pressure is a function of distance

w Ž . xy from the bottom: psMM g hqz x, t yy , where MM is the mass
density of the water and g is the acceleration of gravity. Show that the
net force in the x-direction, � F , is given byx

� z
� F syMM gh � x .x � x

( ) Ž . Ž .c Using the results from part a and b , and Newton’s second law for the
mass element, show that shallow water waves satisfy the wave equation
� 2�r� t 2sc2 � 2�r� x 2, or alternatively,

� 2 z � 2 z2sc , 3.1.78Ž .2 2� t � x

where the wave speed c is given by

'cs gh . 3.1.79Ž .

( )d A typical ocean depth is on the order of 4 km. Tidal waves have
wavelengths that are considerably larger than this, and are therefore well
described by the shallow-water wave equation. Calculate the wave speed
Ž .in kilometers per hour for a tidal wave.

( )5 In this problem we consider shallow-water waves, sloshing in the x-direction
in a long channel of width L in the x-direction. Boundary conditions on the

Žwaves are that the horizontal fluid displacement in the x-direction, � de-
. Žfined in the previous problem , equals zero at the channel boundaries at

.xs0 and xsL .
( ) Ž .a Find the eigenmodes and eigenfrequencies for � x, t .
( )b Plot the wave height z vs. x for the first three sloshing modes.

( ) ( )6 a The high E-string of a steel string guitar is about Ls0.7 m long from the
fret to the post. It has a mass per unit length of �s5.3�10y4 kgrm.
Find the tension T required to properly tune the string, given that a high
E has a frequency fs1318.51 hertz.

( )b Assuming that the A-string is under the same tension as the E-string, is
made of the same material, and is about the same length, what is the
ratio of the thickness of this string to that of the E-string? An A-tone has
a frequency of 440 hertz.

( )7 Using an eigenmode expansion, find the solution for the motion of a string
that is governed by the following wave equation:

� 2 � 2

y x , t s y x , t ,Ž . Ž .2 2� t � x
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Ž . Ž .with boundary conditions y 0, t s0sy � , t , and initial conditions
�( ) Ž . Ž . Ž .a y x, 0 sx �yx , y x, 0 s0.
� t

� 2( ) Ž . Ž .b y x, 0 s0, y x, 0 sx sin x.
� t

( )8 Transverse oscillations on a uniform string under uniform tension T and with
mass density � need not be only in the y-direction�the oscillations can
occur in any direction in a plane transverse to the equilibrium string. Call this
plane the x-y plane, and the line of the equilibrium string the z-axis. Then,

Ž . Ž Ž . Ž ..neglecting gravity effects, a displacement vector r z, t s x z, t , y z, t of a
mass element away from equilibrium satisfies the ®ector wave equation,

� 2 � 2
2r z , t sc r z , t . 3.1.80Ž . Ž . Ž .2 2� t � z

( )a Find the spatial eigenmodes of this wave equation for boundary condi-
tions rs0 at zs0 and zsL. Show that there are two independent
plane polarizations for the eigenmodes: an eigenmode involving motion
only in the y-direction, and one only in the x-direction.

( ) Ž . Ž .b Using the eigenmodes of part a , write down a solution r z, t for a
Žrotating mode with no nodes except at the ends think of the motion of a

. Žskipping rope . Hint: the x-motion is �r2 out of phase with the y
.motion. Over one period, make an animation of the motion using

ParametricPlot3D. This is an example of circular polarization.

( )9 A rope that is 2 L s12 meters long is attached to posts at xs�L that are1 2
at the same level, but are only 2 L s10 meters apart. Find and plot the2

Žequilibrium shape of the rope. Hint: the element of length is

2 212 2 ''dss dx qdy sdx 1q dyrdx fdx 1q dyrdx ,Ž . Ž .2

assuming small perturbations away from a straight rope. Use the linear wave
Ž .equation to determine the equilibrium solution for y x . Answer to lowest

Ž . Ž . Ž .Ž 2 2 .order in L y L rL : y x s y g �r2T L y x , where T s1 2 1 2
w Ž .x1r2 .� gL L r6 L yL is the rope tension.2 2 1 2

( )10 A heavy string of length L and mass density � per unit length is spliced to a
light string with equal length L and mass density �r4 per unit length. The
combined string is fixed to posts and placed under tension T. The posts are
both at the same height, so the string would be straight and horizontal if
there were no gravity. Find and plot the shape of the string in the presence of

Ž .gravity assuming small displacement from horizontal . Take Ls1 m, �s0.5
kgrm, and Ts25 N. Plot the shape.

( )11 A mass of ms5 kg is attached to the center of a rope that has a length of
2 L s10 meters. The rope is attached to posts at xs�L that are at the1 2
same level but are only 2 L s7 meters apart. The mass of the rope is Ms52

wkg. Find the shape of the rope and the tension applied to the posts. Use the
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Ž .linear wave equation to determine the equilibrium solution for y x , assum-
� � x w Ž .ing that y �L . Plot the shape. Answer to lowest order in L yL rL :1 1 2 1

Ž . Ž .Ž .Ž . w Ž 2y x sy gr2T L yx mqMq� x , x�0, where Tsg L 3m q3mM2 2
2 . Ž .x1r2qM r24 L yL is the rope tension and �sMr2 L is the mass1 2 1

xdensity.

( ) ( )12 a In the presence of gravity, the vector wave equation for a rope, Eq.
Ž .3.1.80 , is modified to read

� 2 � 2
2r z , t sc r z , t yg y.Ž . Ž . ˆ2 2� t � z

In equilibrium, the rope hangs with a parabolic shape given by Eq.
Ž .3.1.32 . It is possible to oscillate the hanging rope back and forth like a

Ž .pendulum. Think of a footbridge swaying back and forth. Find the
frequency of this swaying motion, assuming that the length of the rope is

ŽL Hint: Apply the principle of superposition to take care of the source
.term, and determine the eigenmodes of the system.

( )b If one assumes that the rope oscillates like a rigid pendulum, show that
2 Ž'the frequency of small oscillations is 10Tr�L . Recall that a rigid

'pendulum has frequency MgrI , where M is the mass and I is the
.moment of inertia about the pivot. Why does this answer differ from the

Ž .result of part a ? Which answer is right?

( ) Ž .13 A quantum particle of mass m, moving in one dimension in a potential V x ,
is described by Schrodinger’s equation,¨

� ˆi� �sH � , 3.1.81Ž .� t

ˆŽ .where � x, t is the particle’s wave function, the Hamiltonian operator H is
given by

�2 � 2

Ĥsy qV x , 3.1.82Ž . Ž .22m � x

and �s1.055�10y34 N m s is Planck’s constant divided by 2� . A quantum
particle moves in a box of width L. Boundary conditions on the wave function
are therefore �s0 at xs0 and xsL. Use separation of variables to solve

Ž . 3Ž .the following initial-value problem: � 0, x sx Lyx . Animate the result
� � 2 2for the probability density � over a time 0� t�20�rmL .

( )14 In a slab with uniform conductivity � , find the equilibrium temperature
Ž .distribution T x under the listed conditions. Show directly that in each caseeq

Ž .Eq. 3.1.51 is satisfied.
( ) Ž . Ž . Ž .a S x sS , T 0 sT , T L sT .0 1 2

� T( ) Ž . Ž . Ž .b S x sx, 0 s0, T L s0.
� x

� T � T( ) Ž . Ž . Ž . Ž . Ž .c S x s�� xyLr3 , 0 sT 0 , L s0.
� x � x
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1( )15 The ceiling of a Scottish castle consists of -meter-thick material with4
Ž .thermal conductivity �s0.5 Wr m K . Most of the heat is lost through the

ceiling. The exterior temperature is, on a average, 0�C, and the interior is
kept at a chilly 15�C. The surface area of the ceiling is 2000 m2. The cost per
kilowatt-hour of heating power is 3 pence. How much does it cost, in pounds,

Ž . Žto heat the castle for one month 30 days ? Note: One British pound equals
.100 Pence.

( )16 Solve the following heat equation problem on 0�x�1, with given boundary
and initial conditions, and plot the solution for 0� t�2 by making a table of
plots at a sequence of 40 times:

� T x , t � 2T x , tŽ . Ž .s qS x .Ž .2� t � x

Boundary conditions, initial conditions, and source:
( ) Ž . Ž . Ž . Ž .a T 0, t s0, T 1, t s3; initial condition T x, 0 s0, S x s0.
( ) Ž . Ž . Ž .b Insulated at xs0, T 1, t s1; initial condition T x, 0 sx, S x s1.
( ) Ž . Ž .c Insulated on both faces, T x, 0 s0, S x ssin 2� x.

( ) ( ) y6 217 a A slab of fat, thickness 2 cm, thermal diffusivity �s10 m rs, and
initially at temperature Ts5�C, is dropped into a pot of hot water at

Ž .Ts60�C. Find T x, t within the slab. Find the time t needed for the0
center of the fat to reach a temperature of 55�C. Animate the solution for
Ž .T x, t up to this time.

( ) Ž .b Over very long times, the behavior of T x, t is dominated by the
eigenmode with the lowest decay rate. Keeping only this mode in the
evolution, use this approximate solution for T to rederive t analytically,0
and compare the result with that found using the exact answer from part
Ž .a .

( ) Ž .18 A cold steak, initially at uniform temperature T x, 0 s8�C, and of thickness
Ž .Ls3 cm, is placed on a griddle at xs0 at temperature Ts250�C. The

steak will be cooked medium rare when its minimum internal temperature
Ž .reaches Ts65�C. How long does this take? Animate the solution for T x, t

Žup to this time. The boundary condition on the upper face of the meat at
xsL can be taken to be approximately insulating. The thermal diffusivity of

y7 2 .meat is about 3�10 m rs.

( )19 A sheet of copper has thickness L, thermal diffusivity � , and specific heat C.
It is heated uniformly with a constant power density Ss j2� due to a current
density j running through the sheet, where � is the resistivity of the copper.

ŽThe faces of the sheet, each with area A and at temperature T to be0
.determined , radiate into free space with a heat flux given by the

Ž . 4Stefan�Boltzmann law for blackbody radiation: s 1y r � T , where �s0
y8 2 4.5.67�10 Wrm K is the Stefan�Boltzmann constant, and r is the

reflectivity of the material, equal to zero for a blackbody and 1 for a perfect
reflector.
( ) Ž .a Find the equilibrium temperature T x in the sheet. What is theeq

maximum temperature T as a function of the current density j?max
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( ) Ž Ž .b If the temperature varies by an amount � T x, t from equilibrium, the
radiated power out of the face at xs0 changes by an amount

4 4 3�s 1y r T q�T 0, t yT ,4 1y r � T �T 0, tŽ . Ž . Ž . Ž .½ 50 0 0

Ž .assuming that T ��T , and similarly for the face at xsL. Thus, the0
boundary condition for small temperature deviations is mixed. Find the
first three eigenmodes, and their rate of decay. Take Ls1 cm, rs0.8,
and Ss103 Wrm3.

( )20 Damped waves on a string of length � in gravity satisfy the wave equation

� 2 y 1 � y � 2 yq s y1, y y�r2, t sy �r2, t s0.Ž . Ž .2 24 � t� t � x

Ž . � � Ž . Ž .For initial conditions y x, 0 s�r2y x , y x, 0 s0, plot y x, t for 0�˙
t�20.

3.2 LAPLACE’S EQUATION IN SOME SEPARABLE GEOMETRIES

Ž .In a region of space that is charge-free, the electrostatic potential � r satisfies
Poisson’s equation without sources:

�2� r s0, 3.2.1Ž . Ž .
Ž . 2where rs x, y, z is the position vector, and the Laplacian operator � is defined

by

d 2 d 2 d 2
2� s q q . 3.2.2Ž .2 2 2dx dy dz

Ž .This PDE is called Laplace’s equation. To solve for � r within a specified volume
ŽV we require boundary conditions to be given on the surface S of the volume see

.Fig. 3.8 . We will consider boundary conditions that fall into three categories:

� Ž . Ž .Dirichlet, where � s� r for some potential � r applied to the surface S;S 0 0

®on Neumann, where the directional derivative of � normal to the surface is
� Ž .determined: n ��� sE r , where n is a unit vector perpendicular to theˆ ˆS 0

surface S, or

Ž .Fig. 3.8 Region V unshaded for solution of Poisson’s
equation. The surface of this region is S.
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Ž . � Ž . Ž . Ž .mixed, where f�qgn ��� su r for some function u r and nonnegativeˆ S 0 0
Ž . Ž .functions f r and g r . The functions f and g cannot both vanish at the

same point on S.

These three boundary conditions are straightforward generalizations of the
conditions of the same name, considered previously for one-dimensional PDEs.
Physically, Dirichlet conditions can occur in the case where the surface S is a set of
one or more conductors that are held at fixed potentials. von Neumann conditions
are less common in electrostatics problems, applying to the case where the normal
component of the electric field is determined at the surface. Mixed conditions
rarely occur in electrostatic problems, but can sometimes be found in applications

wof Poisson’s equation to other areas of physics, such as thermal physics see Eq.
Ž . x3.1.47 , for example .

3.2.1 Existence and Uniqueness of the Solution

For the above boundary conditions, can one always find a solution to Laplace’s
equation? And is this solution unique?

We will answer the second question first. If a solution exists, it is unique for
Dirichlet or mixed boundary conditions. For von Neumann boundary conditions,
the solution is unique only up to an additive constant. This can be proven through
the following argument.

Say that two solutions exist with the same boundary conditions. Call these
solutions � and � . We will prove that these solutions must in fact be the same1 2
Ž .up to an additive constant for von Neumann boundary conditions .

The difference between the solutions, �s� y� , also satisfies the Laplace1 2
equation �2 �s0, and has homogeneous boundary conditions. To find the solution
to �2 �s0 with homogeneous boundary conditions, multiply this equation by �
and integrate over the volume of the domain. Then apply Green’s first identity:

0s � �2 � d 3rs � ���n d 2 ry ����� d 3r .ˆH H H
V S V

Now, for Dirichlet or von Neumann boundary conditions, either �s0 or ���ns0ˆ
� � 2 3on S, so the surface integral vanishes, and we are left with H �� d rs0.V

� � 2Furthermore, since �� is always nonnegative, the only way this integral can be
zero is if ��s0 throughout the domain. Therefore, �sconstant is the only
solution. This implies that �s0 for Dirichlet boundary conditions, because �s0
on S; but for von Neumann conditions, �sconstant satisfies the boundary
conditions.

Ž . �For mixed boundary conditions, � satisfies f �qgn ��� s0. Assuming thatˆ S
Ž . Ž . Ž .f r is nonzero over some part of the surface S call this portion S , and g r is1

Ž c.nonzero over remainder of the surface call it S , Green’s first identity becomes1

g f2 2 2 2 30sy ���n d ry � d ry ����� d r .Ž .ˆH H Hf gcS S V1 1
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Ž .Each integral is nonnegative since both f and g are nonnegative by assumption ,
and therefore, by the same argument as before, the only possible solution is �s0.

Therefore, � and � are equal for Dirichlet or mixed boundary conditions,1 2
and for von Neumann conditions they differ at most by a constant. We have shown
that the solution to the Laplace equation is unique for Dirichlet and mixed
conditions, and unique up to an additive constant for von Neumann conditions.

One can also show that for Dirichlet and mixed boundary conditions, a solution
Ž .can always be found. We will later prove this by construction of the solution. For

Ž .von Neumann boundary conditions, however, a solution for the potential � r only
exists provided that the boundary conditions satisfy the following integral con-
straint:

���n d 2 rs0. 3.2.3Ž .ˆH
S

This constraint on the normal derivative of the potential at the domain surface
follows from Laplace’s equation through an application of the divergence theorem:
0sH �2� d 3rsH ���n d 2 r.ˆV S

Ž .Students with some training in electrostatics will recognize Eq. 3.2.3 as a
special case of Gauss’s law, which states that the integral of the normal component
to the electric field over a closed surface must equal the charge enclosed in the

Ž .surface which in this case is zero .
Ž .If Eq. 3.2.3 is not satisfied, then there is no solution. This only constrains von

Neumann boundary conditions, since only von Neumann conditions directly specify
the normal derivative of �. For Dirichlet and mixed conditions, which do not

Ž .directly specify ���n, one can always find a solution that satisfies Eq. 3.2.3 .ˆ
We now consider several geometries where the solution to Laplace’s equation

can be found analytically, using the method of separation of variables.

3.2.2 Rectangular Geometry

Ž .General Solution In rectangular coordinates x, y , a solution to Laplace’s
Ž .equation for � x, y can be found using separation of variables. Following the by

now familiar argument, we write

� x , y sX x Y y 3.2.4Ž . Ž . Ž . Ž .
Ž .for some functions X and Y. If we substitute Eq. 3.2.4 into the Laplace equation

and divide the result by �, we obtain

1 d 2 X 1 d 2 Yq s0.2 2X x Y yŽ . Ž .dx dy

As usual, this equation can be separated into two ODEs, one for X and the other
for Y:

1 d 2 X s�,2X xŽ . dx
3.2.5Ž .

21 d Y sy�,2Y yŽ . dy
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Fig. 3.9

where � is the separation constant. The general solution to each ODE can be
found easily:

' '� x y � xX x sC e qC e ,Ž . 1 2
3.2.6Ž .

' 'i � y yi � yY y sC e qC e .Ž . 3 4

Example 1: Dirichlet Boundary Conditions The general solution given by Eq.
Ž .3.2.6 is useful for boundary conditions specified on a rectangle, as shown in Fig.
3.9. The potential on the sides of the rectangle is specified by the four functions

Ž . Ž . Ž . Ž .� y , � x , � y , and � x .A B C D
Ž .We first consider the special case where only � y is nonzero. Then theA

Ž .homogeneous boundary conditions on the bottom and the top imply that Y 0 s
Ž . Ž .Y b s0. We again confront an eigenvalue problem for Y y . The condition

'Ž . Ž . Ž .Y 0 s0 implies that C syC in Eq. 3.2.6 , so that Y y s2 iC sin � y. The4 3 3 'Ž . Ž .condition that Y L s0 then implies that either C s0 trivial or � bsn� .3
Thus, we find that

n� y
Y y sD sin , 3.2.7Ž . Ž .b

where

2
�s� s n�rb , ns1, 2, 3, . . . . 3.2.8Ž . Ž .n

Since there are many solutions, we can superimpose them in order to match
boundary conditions on the other two sides:

n� yn� xr b yn� xr b� x , y s C e qC e sin , 3.2.9Ž . Ž .Ž .Ý 1n 2 n b
n

where, as usual, we have absorbed the constant D into the constants C and C .1n 2 n
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Ž .Equation 3.2.9 has an oscillatory form in the y-direction, and an exponential
form in the x-direction. This is because Laplace’s equation implies that � 2�r� x 2s
y� 2�r� y2. Therefore, a solution that oscillates sinusoidally in y, satisfying
� 2�r� y2sy� �, must be exponential in x. By the same token, one can alson
construct a solution that consists of sinusoids in x and exponentials in y. That
solution does not match the given boundary conditions in this problem, but is
required for other boundary conditions such as those for which � s� s0.A C

To find the constants C and C , we now satisfy the remaining two boundary1n 2 n
conditions. The potential is zero along the boundary specified by xs0, which

Ž .requires that we take C syC in Eq. 3.2.9 . We then obtain2 n 1n

n� x n� y
� x , y s A sinh sin , 3.2.10Ž . Ž .Ý n b b

n

Ž .where A s2C . The constants A in Eq. 3.2.10 are determined by then 1n n
Ž . Ž .boundary condition that � a, y s� y :A

	 n� a n� y
� y s A sinh sin . 3.2.11Ž . Ž .ÝA n b b

ns1

Ž . Ž .Equation 3.2.11 is a Fourier sine series for the function � y defined onA
Ž .0�y�b. The Fourier coefficient A sinh n� arb is then determined by Eq.n

Ž .3.2.11 ,

bn� a 2 n� y
A sinh s � y sin dy. 3.2.12Ž . Ž .Hn Ab b b0

Ž . Ž .Equations 3.2.10 and 3.2.12 provide the solution for the potential within a
rectangular enclosure for which the potential is zero on three sides, and equals

Ž .� y on the fourth side.A
Ž . Ž . Ž .For instance, if � y ssin n� yrb , then the solution for � x, y consists ofA

only a single term,

sinh n� xrb n� yŽ .
� x , y s sin .Ž . bsinh n� arbŽ .

This solution is plotted in Cell 3.18 for the case ns3 and asbs1. The reader is
invited to vary the value of n in this solution, as well as the shape of the box.

Cell 3.18

a = b = 1; n = 3;

Sinh[n Pi x/b]
�[x_____, y_____] = Sin [n Pi y/b];

Sinh[n Pi a/b]

Plot3D[�[x, y], {x, 0, a}, {y, 0, b},
PlotLabel™"Potential in a box",
AxesLabel™{"x", "y", ""}, PlotRange™All, PlotPoints™30];
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We can use this solution method to determine the general solution for the case
of arbitrary nonzero potentials specified on all four sides at once by using the
following argument. We can repeat our analysis, taking the case where � s� sA C

Ž .� s0 and only � x is nonzero, next evaluating the case where � s� s� s0D B A B D
Ž .and � y is nonzero, and finally taking the case where � s� s� s0 andC A B C

Ž .� x is nonzero. We can then superimpose the results from these calculations toD
Ž .obtain the potential � x, y for any combination of potentials specified on the

rectangular boundary.

Example 2: von Neumann Boundary Conditions; the Current Density in a Con-
ducting Wire Let’s now study an example with von Neumann boundary conditions
over part of the surface. Consider a current-carrying wire made of electrically

Ž .conductive material, such as copper see Fig. 3.10 . The length of the wire is b, and

Fig. 3.10 Current density in a wire.
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Ž .its width is a. For simplicity, we neglect any z-dependence. The left and right
Ž .sides of the wire are insulated coated with rubber, say . To the top of the wire, a

Ž .voltage V is applied, causing a current I in amperes to run through to the0
Ž .bottom, where it is extracted see the figure . The question is to determine the

distribution of current and the electric field inside the wire.
These two quantities are related: current flows because there is an electric field

ŽEsy�� inside the conductor. The current density j inside the rod in amperes
.per square meter satisfies Ohm’s law, js� E, where � is the electrical conductiv-

Ž . Ž . wity of the material. We wish to determine j x, y and E x, y or equivalently,
Ž .x� x, y .
The boundary conditions on the top and bottom faces of the wire are set by the

applied potentials:

� x , 0 s0,Ž .

� x , b sV .Ž . 0

However, the boundary conditions on the two insulated sides are determined by
the fact that no current flows through these sides, so the current runs parallel to
these faces. Therefore, according to Ohm’s law, j s� E sy� ��r� xs0 alongx x
these faces, so we have von Neumann conditions on these faces:

�� ��
0, y s a, y s0. 3.2.13Ž . Ž . Ž .� x � x

Furthermore, the potential in the interior of the conductor must satisfy Laplace’s
equation. This is because there are no sources or sinks of current in the interior of

w Ž .xthe rod, so �� js0 recall the discussion surrounding Eq. 1.2.12 . Then Ohm’s
law implies

��� Esy� �2�s0.

We can now solve this Laplace’s equation for the potential, using separation of
Ž .variables. Given the boundary conditions of Eq. 3.2.13 , we expect from our

Ž .standard separation-of-variables argument that � x, y will consist of a sum of
Ž . Ž . Ž .terms of the form Y y X x , with X x being an eigenmode of the von Neumann

Ž . Ž . 2form, X x scos n� xra , ns0, 1, 2, . . . . Substitution of this form into � �s0
Ž .then implies that Y y satisfies

2 2d Y n�y Ys0.ž /2 ady

Ž . Ž .For n�0 the solution that is zero at ys0 is Y y sA sinh n� yra . However, wen
must be careful: the ns0 term must also be kept. For ns0 the solution that is

Ž .zero at ys0 is Y y sA y. Therefore, the potential has the form0

	 n� y n� x
� x , y s A sinh cos qA y. 3.2.14Ž . Ž .Ý n 0a a

ns1
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This solution matches the boundary conditions on the bottom and sides. The
constants A are then determined by satisfying the boundary condition on the topn

	 Ž . Ž .face, V sÝ A sinh n� bra cos n� xra qA b. This is simply a Fourier cosine0 ns1 n 0
series in x. The Fourier coefficients are A sV rb and0 0

V b n� y0A s cos dy , n�0.Hn bsinh n� arbŽ . 0

However, the integral over the cosine equals zero, so the only nonzero Fourier
coefficient is A sV rb. Therefore, the solution for the potential interior to the0 0

Ž .wire is simply � x, y sV yrb. The electric field in the wire is uniform, of0
magnitude V rb. The current density runs vertically and uniformly throughout the0
conductor, with magnitude js� V rb.0

3.2.3 2D Cylindrical Geometry

Separation of Variables The general solution to Laplace’s equation can also be
Ž .found in cylindrical geometry r, � , z . The cylindrical radius r and the angle � are

defined by the coordinate transformation xs r cos � and ys r sin � . At first, for
simplicity, we consider the case where the potential is independent of z, so that

Ž .�s� r, � . In these 2D cylindrical coordinates, the method of separation of
variables can again be used to solve Laplace’s equation. We assume that the
potential takes the form

� r , � sR r � � . 3.2.15Ž . Ž . Ž . Ž .

In cylindrical coordinates �2 is given by

1 � � 1 � 2 � 2
2� s r q q . 3.2.16Ž .2 2 2ž /r � r � r r �� � z

2 Ž . Ž . Ž .Applying � to Eq. 3.2.15 and dividing by R r � � yields

1 � � R 1 � 2 �
r q s0. 3.2.17Ž .2 2ž /� r � rrR rŽ . r � � ��Ž .

Following the standard procedure, this equation can be separated into two
w Ž .x 2 2equations for the r and � dependence. The expression 1r� � � �r�� must

Ž . Ž .equal some function of � , which we call f � . Equation 3.2.17 can then be
written as

f �1 � � R Ž .
r q s0. 3.2.18Ž .2ž /� r � rrR rŽ . r

However, as the rest of the equation is independent of � , it can only be satisfied if
Ž . Ž . 2 Žf � is a constant, f � sym where we have anticipated that the constant will

. Ž .be nonpositive . Then the equation for � � is

� 2 � 2sym � � . 3.2.19Ž . Ž .2��
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The boundary conditions on this equation arise from the fact that the variable � is
periodic: the angles �q2� and � are equivalent. This implies that we must

Ž . Ž .require periodic boundary conditions, � �q2� s� � . With these boundary
conditions, we again have an eigenvalue problem, because these boundary condi-

Ž .tions allow only the trivial solution � � s0, except for special values of m. These
Ž .values may be found by examining the general solution to Eq. 3.2.19 ,

� � sA e im�qB eyi m� . 3.2.20Ž . Ž .

For nonzero A and B, the periodic boundary conditions imply that e � im�s
e � imŽ�q2 � ., which requires that e � i2� ms1. This can only be satisfied if m is an
integer. Therefore, we obtain

� � se im� , mgIntegers 3.2.21Ž . Ž .

wAllowing m to run over both positive and negative integers accommodates both
Ž . xindependent solutions in Eq. 3.2.20 .

Ž . 2 Ž .Turning to the radial equation, we find that for f � sym , Eq. 4.2.18
becomes

1 � � R m2

r y R r s0. 3.2.22Ž . Ž .2ž /r � r � r r

This equation has the following general solution:

A r � m � qB rr � m � if m�0,m mR r s 3.2.23Ž . Ž .½ A qB ln r if ms0.0 0

The general solution to the Laplace equation in cylindrical coordinates is a sum of
these independent solutions:

	 Bm� m � im�� r , � sA qB ln rq A r q e . 3.2.24Ž . Ž .Ý0 0 m � m �ž /rmsy	
m�0

Example The general solution to Laplace’s equation in cylindrical coordinates is
useful when boundary conditions are provided on the surface of a cylinder or
cylinders. For instance, say the potential is specified on a cylinder of radius a:

� a, � sV � . 3.2.25Ž . Ž . Ž .a

We require a solution to Laplace’s equation in 0F rFa. This solution is given
Ž .by Eq. 3.2.24 ; we only need to match the boundary conditions to determine the

constants A and B . First, the fact that the potential must be finite at rs0n n
Ž . Ž .implies that B s0 for all n. Next, Eqs. 3.2.24 and 3.2.25 imply thatn

	
� m � im�A a e sV � .Ž .Ý m a

msy	

This is an exponential Fourier series, so the Fourier coefficients can be determined
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Ž .using Eq. 3.2.3 :

2�1� m � yi m�A a s V � e d� . 3.2.26Ž . Ž .Hm a2� 0

The solution for the potential is

	
� m � im�� r , � s A r e .Ž . Ý m

msy	

Ž .For instance, if V � sV sin � , then only the ms�1 terms in the sum con-a 0
tribute to the solution, and the rest are zero. This is because sin � contains only

Ž .ms�1 Fourier components. The solution is then clearly of the form � r, � s
Ar sin � , and the constant A can be determined by matching the boundary

Ž .condition that V a, � sV sin � . The result is0

r
� r , � sV sin � .Ž . 0 a

3.2.4 Spherical Geometry

Separation of Variables We next consider the solution to Laplace’s equation
Ž .written in spherical coordinates r, � , � . These coordinates are defined by the

Ž .transformation xs r sin � cos �, ys r sin � sin �, and zs r cos � see Fig. 3.11 . In
these coordinates Laplace’s equation becomes

1 � � � 1 � � � 1 � 2 �2 2� �s r q sin � q . 3.2.27Ž .2 2 2 2 2ž / ž /� r � r �� ��r r sin � r sin � ��

ŽWe use the symbol � for potential in this section so as not to confuse it with the
.azimuthal angle �. We again employ the method of separation of variables,

writing

� r , � , � sR r � � � � .Ž . Ž . Ž . Ž .

Ž 2 .Then the equation � � r�s0 is

1 � � R 1 � � � 1 � 2 �2r q sin � q s0. 3.2.28Ž .2 2 2 2 2ž / ž /� r � r �� ��r R r sin � � r sin � � ��

Ž .Fig. 3.11 Spherical coordinates r, � , � .
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The separation-of-variables analysis proceeds just as before. One finds that Eq.
Ž .3.2.28 separates into three ODEs for R, �, and �:

� 2 � 2sym � � , 3.2.29Ž . Ž .2��

1 � � � m2

sin � y � � s�� � , 3.2.30Ž . Ž . Ž .2ž /sin � �� �� sin �

1 � � R �2r q R r s0, 3.2.31Ž . Ž .2 2ž /� r � rr r

where we have introduced the separation constants m and �. Just as in cylindrical
coordinates, periodicity of the angle � implies that m must be an integer, so that

Ž .the eigenvalue problem posed by Eq. 3.2.29 has the solution

� � se im� , mgIntegers. 3.2.32Ž . Ž .

Ž .Eigenmodes in � : Associated Legendre Functions Turning to Eq. 3.2.30 , we
make a coordinate transformation to the variable xscos � . Then by the chain
rule,

� � � x � � � � � �2's sysin � sy 1yx .
�� �� � x � x � x

Ž .When written in terms of x, Eq. 3.2.30 becomes

� � � m2
21yx y � x s�� x . 3.2.33Ž . Ž . Ž . Ž .2ž /� x � x 1yx

This ODE has regular singular points at xs�1. Its general solution is in terms of
special functions called hypergeometric functions. In general, these functions are
singular at the end points because of the regular singular points there. However,
for special values of � the solution is finite at both ends. Again, we have an
eigenvalue problem. In this case, the eigenvalues are

� ��syl lq1 for l a positive integer taking on the values lG m . 3.2.34Ž . Ž .

The corresponding eigenmodes are special cases of the hypergeometric functions
called associated Legendre functions,

� � sP m x , xscos � .Ž . Ž .l

mŽ .For ms0 the functions P x are simple polynomials called Legendre polynomi-l
� �als, but for m�0 they have the form of a polynomial of order ly m multiplied

Ž 2 . � m � r2by the factor 1yx . Some of these functions are listed in Table 3.2. The
mŽ .table shows, among other things, that the functional form of P x differs only byl

ym Ž .a constant from P x .l
mŽ .We can see using Mathematica that the associated Legendre functions P xl

Ž .satisfy Eq. 3.2.33 . In Mathematica these functions are called
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Table 3.2. Associated Legendre Functions

mŽ .P xl

l ms2 y1 0 1 2

0 1
1 2 2' '1 1yx x y 1yx2

1 1 1 32 2 2 2 2' 'Ž . Ž .2 1yx x 1yx y q x y3 x 1yx 3 1yx8 2 2 2

LegendreP[l,m,x]. The following cell tests whether each Legendre function
Ž .satisfies Eq. 3.2.33 , up to ls5:

Cell 3.19

�[x_____] = LegendreP[l, m, x];
Table[
Table[Simplify[D[(1-x ^̂̂̂̂2) D[LegendreP[l, m, x], x], x],

-m ^̂̂̂̂2 � [x]/(1 -x ^̂̂̂̂2) ==
-l (l + 1) � [x]], {m, -l, l}], {l, 0, 5}]

{{True}, {True, True, True}, {True, True, True, True, True},
{True, True, True, True, True, True, True},
{True, True, True, True, True, True, True, True, True},
{True, True, True, True, True, True, True, True, True, True,
True}}

Turning to the radial dependence of the potential, we require the solution of
Ž . Ž .Eq. 3.2.31 , with �syl lq1 :

Cell 3.20

FullSimplify[R[r]/. DSolve[
1/r ^̂̂̂̂2 D[ r ^̂̂̂̂2 D[R[r], r], r] -l (l + 1) R[r]/r ^̂̂̂̂2 ==
0, R[r], r][[1]], l >>>>> 0]

r-1-1 C[1] + r1 C[2]

Thus,

R r sArr lq1 qBr l ,Ž .

where A and B are constants.
Since l and m can take on different values, we have actually found an infinite

number of independent solutions to Laplace’s equation. We can sum them to-
gether to obtain the general solution in spherical coordinates:

	 l Alm l im� m� r , � , � s qB r e P cos � . 3.2.35Ž . Ž . Ž .Ý Ý lm llq1ž /rls0 msyl

Finally, we are left with the task of determining the constants A and B inlm lm
terms of the boundary conditions. Say, for example, we know the potential on the

Ž . Ž .surface of a sphere of radius a to be � a, � , � sV � , � . If we require the
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solution within the sphere, we must then set A s0 in order to keep the solutionlm
finite at the origin. At rsa we have

	 l
l im� mB a e P cos � sV � , � . 3.2.36Ž . Ž . Ž .Ý Ý lm l

ls0 msyl

It would be useful if the associated Legendre functions formed an orthogonal set,
so that we could determine the Fourier coefficients by extracting a single term
from the sum. Amazingly, the associated Legendre function do satisfy an orthogo-
nality relation:

� lqm !2 Ž .m mP cos � P cos � sin � d�s � . 3.2.37Ž . Ž . Ž .H l l l , l2 lq1 lym !Ž .0

Ž .Thus, we can determine B by multiplying both sides of Eq. 3.2.36 bylm
yi m� mŽ . Že P cos � , and then integrating over the surface of the sphere i.e., applyingl
� 2� .H sin � d�H d� . This causes all terms in the sum to vanish except one, providing0 0

us with an equation for B :lm

� 2�lqm !2 Ž . l yi m� m2� B a s sin � d� d� e P cos � V � , � , 3.2.38Ž . Ž . Ž .H Hlm l2 lq1 lym !Ž . 0 0

Ž .where on the left-hand side we have used Eq. 3.2.37 .
Again, we observe the surprising fact that the nontrigonometric eigenmodes

mŽ .P cos � form an orthogonal set on the interval 0���� , just like trigonometricl
Ž .Fourier modes, but with respect to the integral given in Eq. 3.2.37 . The reasons

for this will be discussed in Chapter 4.

Spherical Harmonics It is often convenient to combine the associated Legendre
functions with the Fourier modes e im�. It is conventional to normalize the
resulting functions of � and �, creating an orthonormal set called the spherical

Ž .harmonics Y � , � :l, m

lym !2 lq1 Ž . m im�Y � , � s P cos � e . 3.2.39Ž . Ž . Ž .l , m l( 4� lqm !Ž .

Mathematica has already defined these functions, with the intrinsic function
SphericalHarmonicY[l,m,�,�].The spherical harmonics obey the following
orthonormality condition with respect to an integral over the surface of a unit
sphere:

�2� �d� d� sin � Y Y s� � . 3.2.40Ž .H H l , m l , m ll m m
0 0

Ž .We have already seen in Eq. 3.2.38 that spherical harmonics are useful in
Ž .decomposing functions defined on the surface of a sphere, f � , � , such as the

potential on a spherical conductor. The spherical harmonics also enter in many
other problems with spherical symmetry. For instance, they describe some of the
normal modes of oscillation of a rubber ball, and this example provides a useful
method for visualizing the spherical harmonics.
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The plots in Cell 3.21 show the distortion of the ball for the ms0 modes, and
for ls0, . . . , 5. These modes are cylindrically symmetric because they have ms0.
In each case the dashed line is the unperturbed spherical surface of the ball. We
then add to this surface a distortion proportional to the given spherical harmonic.

Cell 3.21

m = 0;
Do[r][�_____, �_____] = 1 + 0.2 Re[SphericalHarmonicY[l, m, �, �]];

a = ParametricPlot[{Sin[�], Cos[�]}, {�, 0, 2 Pi},
DisplayFunction™Identity,
PlotStyle™Dashing[{0.03, 0.03}]];

b = ParametricPlot[r[�, 0] {Sin[�] Cos[0], Cos[�]},
{�, 0, Pi}, DisplayFunction™Identity];

c = ParametricPlot[r[�, Pi] {Sin[�] Cos[Pi], Cos[�]},
{�, 0, Pi}, DisplayFunction™Identity];

d[1] = Show[a, b, c, PlotRange™{{-1.2, 1.2},
{-1.2, 1.2}},
AspectRatio™1, Frame™True,
FrameLabel™"m=0"<<<<<>>>>>ToString[m]<<<<<>>>>>",l=" <<<<<>>>>>ToString[l],
RotateLabel™False, AxesLabel™{"x", "z"}], {l, 0, 5}];

Show[GraphicArray[{{d[0], d[1]}, {d[2], d[3]}, {d[4], d[5]}}],
DisplayFunction™$$$$$DisplayFunction,
PlotLabel™"m=<<<<<>>>>>ToString[m]<<<<<>>>>> Spherical Harmonics"];
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Fig. 3.12 ms1 spherical harmonics.

One can see that the ls0, ms0 harmonic corresponds to a spherically symmetric
Ž .expansion or contraction of the surface; the ls1, ms0 harmonic is a displace-

ment of the sphere along the z-axis; the ls2, ms0 harmonic is an elliptical
distortion of the surface; and higher-order harmonics correspond to more compli-
cated distortions. The higher-order distortions have the appearance of sinusoidal
oscillations along the surface of the sphere. As one travels from pole to pole along
the sphere, the number of times each oscillation passes through zero equals l.

The m�0 spherical harmonics are similar to the ms0 harmonics with the
same l, except that the distortions are tilted away from the z-axis. For a given

� �value of m, a larger l corresponds to a smaller tilt. For ls m , the tilt is 90�, that
is, the maximum distortion is in the x-y plane. In Fig. 3.12 are some pictures of the
real part of the ms1 modes. The reader is invited to modify the commands in
Cell 3.21 and display other modes.

One can see that the ls1, ms�1 distortions correspond to displacements of
the ball in the x-y plane; the ls2, ms�1 modes correspond to a tilted elliptical
distortion. The distortion can be rotated about the z-axis through any angle �0
by multiplying the spherical harmonic by a complex number eyi � 0 before taking
the real part. Three-dimensional visualizations of some of these modes can also be
found in Sec. 4.4.2.

Example Consider a hollow conducting sphere where the upper half is grounded
and the lower half is held at potential V :0

V for 0����r2,0V � , � sŽ . ½ 0 otherwise.

Ž .The potential within the sphere is found by first dropping terms in Eq. 3.2.35
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proportional to 1rr lq1 :

	 l
l� r , � , � s B r Y � , � . 3.2.41Ž . Ž . Ž .Ý Ý lm l , m

ls0 msy1

Ž . 	 l l Ž . Ž .Matching this solution to V � , � , we obtain Ý Ý B a Y � , � sV � , � .ls0 msy1 lm l, m
Multiplying both sides by the complex conjugate of a spherical harmonic and
integrating over the unit sphere, we pick out a single term in the sum according to

Ž .Eq. 3.2.40 :

�2� �lB a s d� sin � d� Y � , � V � , � . 3.2.42Ž . Ž . Ž .H Hlm l , m
0 0

Ž .This result is equivalent to Eq. 3.2.38 but is more compact, thanks to the
orthonormality of the spherical harmonics. Evaluating the integral over � for our
example, we obtain

�r2lB a s2� V � sin � d� Y � , � .Ž .Hlm 0 m0 l , 0
0

Thanks to the cylindrical symmetry of the boundary condition, only ms0 spheri-
cal harmonics enter in the expansion of the potential. The integral over � can be
evaluated analytically by Mathematica for given values of l:

Cell 3.22

vlist = 2 Pi V Table[0

Integrate[Sin[�] SphericalHarmonicY[l, 0, �, �],
{�, 0, Pi/2}], {l, 0, 20}]

1 1 1' ' ' '� � V , 3� V , 0, 0 7� V , 0, 11� V , 0,0 0 0 02 8 16

' '21 23� V 99 3� V5 7 0 0' '- 15� V , 0, 19� V , 0, - , 0, ,0 0128 256 1024 2048

' ' '429 31� V 715 35� V 2431 39� V0 0 00, - , 0, , 0, - , 0}
32768 65536 262144

This list of integrals can then be used to construct the solution for � using Eq.
Ž .3.2.41 , keeping terms up to ls20:

Cell 3.23

�[r_____, �_____, �_____] =
Sum[vlist[[l + 1]] SphericalHarmonicY[1, 0, �, �] (r/a) ^̂̂̂̂l,
{l, 0, 20}];

In Cell 3.24 we plot the solution as a surface plot in the x-z plane, taking V s10
volt:
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Cell 3.24

a = 1;
V = 1;0

ParametricPlot3D[{r Sin[�], r Cos[�], Evaluate[�[r, �, 0]]},
{r, 0, a}, {�, -Pi, Pi}, AxesLabel™{"x", "z", ""},

PlotLabel™"Potential inside a sphere",
PlotPoints™{20, 100}, ViewPoint ->>>>> {2.557, -0.680, 1.414}];

The solution varies smoothly throughout most of the spherical volume. However,
near the surface at rsa there is a Gibbs phenomenon due to the discontinuity in
the boundary conditions. Fortunately this phenomenon vanishes as one moves
inward, away from the surface.

3.2.5 3D Cylindrical Geometry

Introduction Consider a hollow cylindrical tube of length L and radius a, with
closed ends at zs0 and zsL. We will describe the solution in cylindrical

Ž .coordinates r, � , z , where xs r cos � and ys r sin � . The potential on the sides
Ž .of the tube at rsa is specified by a function � � , z :A

� a, � , z s� � , z ,Ž . Ž .A

and the potentials on the bottom and top of the tube are specified by functions
Ž . Ž .� r, � and � r, � respectively:B C

� r , � , 0 s� r , � ,Ž . Ž .B

� r , � , L s� r , � .Ž . Ž .C

In order to solve Laplace’s equation for the potential with the cylinder, it is best to
follow the strategy discussed in the previous section on rectangular geometry, and
break the problem into three separate problems, each of which has a nonzero
potential only on one surface.
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Nonzero Potential on One Cylinder End: Bessel Functions One of these
Ž . Ž .three problems has boundary conditions � r, � , L s� r, � and �s0 on theC

rest of the cylinder. Anticipating that the eigenmodes in � vary as e im�, we look
Ž . Ž . im� Ž . 2for a solution of the form � r, � , z sR r e Z z . Applying � to this form

Ž .using Eq. 3.2.16 , one finds that

�2� 1 � � R m2 1 � 2Zs r y q s0. 3.2.43Ž .2 2ž /� � r � rrR r Z zŽ . Ž .r � z

Ž .Separating variables results in the following equation for Z z :

� 2Z s� z , 3.2.44Ž .2� z

Ž .where � is a separation constant. Thus, the general solution for Z z is

� z y � z' 'Z z sA e qB e 3.2.45Ž . Ž .

Žand can be either exponential or oscillatory, depending on the sign of � . We will
.find that ��0. The boundary condition that �s0 at zs0 is satisfied by taking

'Ž . Ž .BsyA. Thus, the z-solution is Z z s2 A sinh � z .

Ž .Bessel Functions. The separated equation for R r is

1 � � R m2

r y Rq�Rs0. 3.2.46Ž .2ž /r � r � r r

This is a second-order ODE with a regular singular point at the origin. The
boundary conditions on this problem are that Rs0 at rsa, and that R is finite at

Žrs0 the regular singular point at rs0 implies that the solution can blow up
.there. With these boundary conditions, one possible solution is Rs0. Thus, Eq.

Ž .3.2.46 is another eigenvalue problem, where in this case the eigenvalue is � .
The dependence of R on � can be taken into account through a simple change

in variables,

'rs � r , 3.2.47Ž .

yielding

1 � � R m2

r y y1 R r s0. 3.2.48Ž . Ž .2ž / ž /� rr � r r

This ODE is Bessel’s equation. The general solution is in terms of two independent
Ž . Ž .functions, called Bessel functions of the first kind, J r and Y r :m m

R r sAJ r qBY r . 3.2.49Ž . Ž . Ž . Ž .m m

The subscript m on these functions is the order of the Bessel function. The
Ž .functions depend on m through its appearance in Bessel’s equations, Eq. 3.2.48 .

Mathematica calls the Bessel functions BesselJ[m,r] and BesselY[m,r]
respectively. We plot these functions in Cells 3.25 and 3.26 for several integer
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values of m. The reader is invited to reevaluate these plots for different values of
m and over different ranges of r in order to get a feel for the behavior of these
functions.

Cell 3.25

<<<<<<<<<<Graphics‘;

Plot[{BesselJ[0, r], BesselJ[1, r], BesselJ[2, r]},
{r, 0, 10}, PlotStyle™{Red, Blue, Green},
PlotLabel™"J (r) for m=0,1,2", AxesLabel™{"r", " "}];m

Cell 3.26

Plot[{BesselY[0, r], BesselY[1, r], BesselY[2, r]},
{r, 0, 10}, PlotStyle™{Red, Blue, Green},
PlotRange™{-2, 1},
PlotLabel™"Y (r) for m=0,1,2", AxesLabel™{"r", " "}];m

One thing that is immediately apparent is that the Y ’s are all singular at them
origin, due to the regular singular point there. Therefore, we can rule out these
functions for the eigenmodes in our problem, and write

R r sAJ r . 3.2.50Ž . Ž . Ž .m
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Zeros of Bessel Functions. Another feature of Bessel functions also jumps out
from the previous plots: like sines and cosines, these functions oscillate. In fact,

Ž . Ž .one can think of J r and Y r as cylindrical coordinate versions of trigonomet-m m
ric functions. Each function crosses through zero an infinite number of times in the
range 0� r�	. However, unlike trigonometric functions, the location of the zero
crossings of the Bessel functions cannot be written down with any simple formula
Žexcept in certain limiting cases such as the zeros at large r : see the exercises for

.Sec. 5.2 .
Starting with the smallest zero and counting upwards, we can formally refer to

Ž . Ž .the nth zero of J r as j ; that is, J j s0, ns1, 2, 3, . . . . Similarly, them m , n m m , n
Ž . Ž .nth zero of Y r is referred to as y , and satisfies Y y s0.m m , n m m , n

Although these zero crossings cannot be determined analytically, they can be
found numerically. In fact, Mathematica has several intrinsic functions whose
purpose is to evaluate the zeros of Bessel functions. They must be loaded from the
add-on package NumericalMath:

Cell 3.27

<<<<<<<<<<NumericalMath‘;

Ž .To obtain the first 10 consecutive zeros of J r , the syntax is as follows:0

Cell 3.28

j0 = BesselJZeros[0, 10]

{2.40483, 5.52008, 8.65373, 11.7915,
14.9309, 18.0711, 21.2116, 24.3525, 27.4935, 30.6346}

Ž .Thus, the smallest zero of J r , j , takes on the value j s2.40483 . . . , while0 0, 1 0, 1
the next is at j s5.52008 . . . , and so on. Similarly, the first four consecutive0, 2

Ž . � 4zeros of J r , j , j , j , j , are obtained via1 1, 1 1, 2 1, 3 1, 4

Cell 3.29

BesselJZeros[1, 4]

{3.83171, 7.01559, 10.1735, 13.3237}

Although we do not need them here, the first M zeros of the Y Bessel functionm
can also be obtained numerically, with the intrinsic function Bessel-
YZeros[m,M]. For instance,

Cell 3.30

BesselYZeros[2, 6]

{3.38424, 6.79381, 10.0235, 13.21, 16.379, 19.539}

Radial Eigenfunctions and Eigenvalues. The potential is zero on the tube sides
at rsa. We can use our knowledge of the zeros of the Bessel function in order to
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Ž . Ž .match the resulting boundary condition R a s0. According to Eqs. 3.2.50 and
' 'Ž . Ž . Ž . Ž . Ž .3.2.47 , R r sAJ � r . Therefore, R a sAJ � a , so we must specifym m

2
�s j ra , ns1, 2, 3, . . . , 3.2.51Ž . Ž .m , n

where j is the nth zero of the mth Bessel function. This implies that the radialm , n
Ž .eigenfunctions R r are

R r sAJ j rra . 3.2.52Ž . Ž . Ž .m m , n

A few of the ms0 radial eigenmodes are plotted in Cell 3.31. Eigenfunctions
for other values of m can be plotted in the same way. This is left as an exercise for
the reader.

Cell 3.31

Plot[Evaluate[Table[BesselJ[0, j0[[n]] r], {n, 1, 4}]],
{r, 0, 1}, PlotStyle™{Red, Blue, Green, Purple},
PlotLabel™"J (j r/a) for n=1 to 4",0 0,n

AxesLabel™{"r/a", " "}];

The General Solution for �. The full solution for � within the cylinder is
obtained by summing over all radial eigenmodes and all �-eigenmodes:

	 	
im�� r , � , z s A J j rra e sinh j zra , 3.2.53Ž . Ž . Ž . Ž .Ý Ý m n m m , n m , n

msy	ns1

where the Fourier coefficients A remain to be determined. This solutionm n
matches the homogenous boundary conditions on rsa and zs0. To satisfy the

Ž . Ž .inhomogeneous boundary condition at zsL, namely � r, � , L s� r, � , weC
choose the A ’s so thatm n

	 	
im�� r , � s A J j rra e sinh j Lra .Ž . Ž . Ž .Ý ÝC m n m m , n m , n

msy	ns1
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Putting aside the radial dependence for a moment, note that this is a Fourier
series in � . Application of the orthogonality relation for the Fourier modes e im�,

Ž .Eq. 2.1.29 , allows us to extract a single value of m from the sum in the usual way:

	
2�1 yi m�A sinh j Lra J j rra s d� e � r , � . 3.2.54Ž . Ž . Ž . Ž .Ý Hm n m , n m m , n C2� 0ns1

However, this is not enough to determine A . It would be nice if there werem n
some equivalent orthogonality relation that we could apply to the Bessel functions.
Amazingly, such an orthogonality relation exists:

a 2a 2J j rra J j rra r drs� J j , 3.2.55Ž . Ž . Ž .Ž .H m m , n m m , n nn mq1 m , n20

where � is a Kronecker delta function. Thus, for n�n, the different radialnn
eigenmodes are orthogonal with respect to the radial integral Har dr. This result0
can be checked using Mathematica:

Cell 3.32

Simplify[Integrate[BesselJ[m, j r/a]m,n

BesselJ[m, j r/a] r, {r, 0, a}] /.m,n

BesselJ[m, j ]™0]m,n_____

0

Cell 3.33

FullSimplify[Integrate[BesselJ[m, j r/a] ^̂̂̂̂2 r, {r, 0, a}]-m,n

a2
BesselJ[m + 1, j ] ^̂̂̂̂2, BesselJ[m, j ] == 0 ]m,n m,n2

0

Ž .We can use Eq. 3.2.55 to extract a single term from the sum over n in Eq.
Ž . Ž .3.2.55 . Multiplying both sides of the equation by J j rra and applying them m , n
integral Har dr, we find0

	 a
A sinh j Lra r dr J j rra J j rraŽ . Ž .Ž .Ý Hm n m n m m , n m m n

0ns1

a 2�1 yi m�s r dr J j rra d� e � r , � .Ž .Ž .H Hm m , n C2� 0 0

Ž .Substituting for the radial integral on the left-hand side using Eq. 3.2.55 , we see
that only the term with nsn contributes, leaving us with the equation

2 a 2�a 12 yi m�A sinh j Lra J j s r dr J j rra d� e � r , � .Ž .Ž . Ž . Ž .H Hm n m n mq1 m , n m m , n C2 2� 0 0

3.2.56Ž .

This equation provides us with the Fourier coefficients A .m n
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It is really quite surprising that the Bessel functions form an orthogonal set. It
appears that every time we solve an eigenvalue problem, we obtain an orthogonal
set of eigenmodes. The reasons for this will be discussed in Chapter 4.

A trivial extension of the same method used here could also be used to
determine the form of the potential due to the nonzero potential at zs0,
Ž . Ž .� r, � , 0 s� r, � . This part of the problem is left as an exercise.B

Ž .Example Say the potential on the top of the cylinder is fixed at � r, � sV ,C 0
Ž .and the other sides of the cylinder are grounded. Then according to Eq. 3.2.56 ,

only the ms0 Fourier coefficients A are nonzero, and the potential within the0 n
Ž .cylinder is given by Eq. 3.2.56 by a sum over the zeros of a single Bessel function,

J :0
	

� r , � , z s A J j rra sinh j zra . 3.2.57Ž . Ž . Ž . Ž .Ý 0 n 0 0, n 0, n
ns1

As expected from the symmetry of the problem, the potential is cylindrically
Ž .symmetric. The Fourier coefficients are given by Eq. 3.2.56 :

aV0A s r dr J j rra .Ž .H0 n 0 0, n2 2a r2 J j sinh j LraŽ . Ž .Ž . 01 0, n 0, n

The required integral can be performed analytically using Mathematica:

Cell 3.34

V0
A[n_____] =

2a BesselJ[1, j[n]] ^̂̂̂̂2 Sinh[j[n] L/a]
Integrate[r BesselJ[0, j[n] r/a], {r, 0, a}]

L j[n]
V0 Csch

a

BesselJ[1, j[n]] j[n]

Here we have introduced the notation j[n] for the nth zero of the Bessel
function J . For the first 20 zeros, this function can be defined in the following0
way:

Cell 3.35

<<<<<<<<<< NumericalMath‘;

j0 = BesselJZeros[0, 20]; j[n_____] := j0[[n]]

Now the potential can be evaluated numerically, keeping the first 20 terms in the
Ž .sum in Eq. 3.2.57 :

Cell 3.36

�[r_____, z_____] = Sum[A[n] BesselJ[0, j[n] r/a] Sinh[j[n] z/a],
{n, 1, 20}];

This potential is plotted in Cell 3.37 as a contour plot, taking V s1 volt and0
Lras2. There is a Gibbs phenomenon near the top of the cylinder, because of
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the discontinuity in the potential between the top and the grounded sides.
However, this phenomenon dies away rapidly with distance from the top, leaving a
well-behaved solution for the potential in the cylinder.

Cell 3.37

L = 2a; a = 1; V0 = 1;
ContourPlot[�[r, z], {r, 0, a}, {z, 0, L},

AspectRatio™2, PlotPoints™40, FrameLabel™{"r", "z"},
PlotLabel™"�(r,z) in a cylinder \\\\\n with grounded sides"];

Nonzero Potential on the Cylinder Sides: Modified Bessel Functions We
now consider the solution to the Laplace equation for a potential applied only to

Ž . Ž .the sides of a cylinder of finite length L and radius a, � a, � , z s� � , z . On theA
ends of the cylinder at zs0 and zsL, the boundary conditions are �s0.

Ž . im� Ž .This problem is still solved by a sum of terms of the form R r e Z z .
Ž . Ž .Furthermore, separation of variables implies that R r and Z z are still governed

Ž . Ž .by the same ODEs, Eqs. 3.2.43 and 3.2.45 , with the same general solutions, Eqs.
Ž . Ž .3.2.45 and 3.2.49 . However, the boundary conditions dictate that the coeffi-
cients in these general solutions must be chosen differently than in the previous
case.

Ž . Ž .In order to satisfy � r, � , 0 s0, we require that BsyA in Eq. 3.2.45 , and in
Ž .order to satisfy � r, � , L s0, we require that

22� sy n�rL , 3.2.58Ž . Ž .
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Ž . Ž .so that Z z s2 A i sin n� zrL . Now the z-equation has provided us with eigen-
modes and eigenvalues, and they are standard trigonometric Fourier modes.

Ž . Ž .The radial solution R r is still given by Eq. 3.2.49 but with the imaginary
Ž .value of � given Eq. 3.2.58 :

R r sCJ in� rrL qDY in� rrL 3.2.59Ž . Ž . Ž . Ž .m m

Bessel functions of an imaginary argument are called modified Bessel functions, Im
and K . These functions are defined below for integer m:m

I x s iym J ix for integer m ,Ž . Ž . Ž .m m

3.2.60Ž .mq1� i
K x s J ix q iY ix for integer m .Ž . Ž . Ž . Ž .m m m2

The modified Bessel functions bear a similar relation to J and Y to the one them m
hyperbolic functions sinh and cosh bear to the trigonometric functions sin and cos.
In Mathematica, these functions are called BesselI[m,x] and BessellK[m,x].
The first few modified Bessel functions are plotted in Cells 3.38 and 3.39. The I ’sm
are finite at the origin, but become exponentially large at large x. The K ’s arem

Ž .singular at the origin, but approach zero with exponential rapidity at large x.

Cell 3.38

<<<<<<<<<< Graphics‘;
Plot[{BesselI[0, x], BesselI[1, x], BesselI[2, x]},

{x, 0, 4}, PlotStyle™{Red, Green, Blue},
PlotLabel™"I (r) for m=0,1,2", AxesLabel™{"x", ""}];m

Cell 3.39

Plot[{BesselK[0, x], BesselK[1, x], BesselK[2, x]},
{x, 0, 4}, PlotStyle™{Red, Green, Blue},
PlotLabel™"K (r) for m=0,1,2", AxesLabel™["x", ""}];m
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Ž . Ž .The general solultion for R r is, according to Eq. 3.2.59 , a sum of I and K .m m
However, the previous plots show that only the I term should be kept, in orderm
that the solution be finite at rs0. Therefore, we find that the radial function is
Ž . Ž . Ž .R r sI n� rrL , and the full solution for � r, � , z is a linear combination ofm

these functions:

	 	
im�� r , � , z s B I n� rrL e sin n� zrL . 3.2.61Ž . Ž . Ž . Ž .Ý Ý nm m

msy	 ns1

The Fourier coefficients a are determined by matching to the inhomogeneousm n
boundary condition at rsa:

	 	
im�� a, � , z s� � , z s B I n� arL e sin n� zrL .Ž . Ž . Ž . Ž .Ý ÝA nm m

msy	 ns1

Since this sum is a regular Fourier series in both � and z, we can use orthogonality
of the trigonometric functions to find the Fourier coefficients:

2� L1 yi m�B I n� arL s d� e dz sin n� zrL � � , z .Ž . Ž . Ž .H Hnm m A� L 0 0

This completes the problem of determining the potential inside a cylindrical tube
of finite length. More examples of such problems are left to the exercises.

EXERCISES FOR SEC. 3.2

( ) 2 Ž .1 Solve � � x, y s0 for the following boundary conditions. Plot the solutions
using Plot3D.
( ) Ž . Ž . Ž . Ž .a � 0, y s� 2, y s� x, 0 s0; � x, 1 s1.

�� �� �� ��( ) Ž . Ž . Ž . Ž .b 0, y s 1, y s x, 0 s0; x, 1 scos 2� nx, n an integer.
� x � x � y � y
Ž .What happens for ns0?
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Ž .Fig. 3.13 Exercise 2 .

��( ) Ž . Ž . Ž . Ž .c � 0, y s2; � 1, y s� x, 0 s0; x, 1 s1.
� y

�� �� �� ��( ) Ž . Ž . Ž . Ž .d 0, y s 1, y s x, 0 s0, x, 1 s1.
� x � x � y � y

( )2 A battery consists of a cube of side L filled with fluid of conductivity � . The
electrodes in the battery consist of two plates on the base at ys0, one

Ž .grounded and one at potential Vs12 volts see Fig. 3.13 . The other sides of
the battery casing are not conductive. Find the potential � everywhere inside
the battery.

( ) 2 Ž .3 Find the solution to � � r, � s0 inside a 2D cylinder for the following
boundary conditions. Plot the solutions using contour plots.
( ) Ž .a � 1, � scos n� , n an integer.
( ) Ž . Ž .b � 1, � s0 for x�0; � 1, � s1 for x�0.
( ) Ž . Ž . Ž . Žc � 1, � s0, � 2, � sh � find � between the concentric cylinders; h is

.a Heaviside step function, y����� assumed .
��( ) Ž . Ž . Žd 1, � ssin 2� , � 2, � scos � find � between the concentric cylin-
� r

.ders .

( )4 A long conducting cylinder of radius as5 cm has a sector of opening angle
�s20� that is electrically isolated from the rest of the cylinder by small gaps
Ž .see Fig. 3.14 . The sector is placed at potential V s1 volt. Find the potential0
and plot it throughout the cylinder.

Ž .Fig. 3.14 Exercise 4 .
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Ž .Fig. 3.15 Exercise 5 .

( ) ( )5 a The bottom and top of the wedge shown in Fig. 3.15 are grounded, but
the end at rsa is held at Vs5 volts. Find the potential everywhere
inside the wedge by using separation of variables, and plot it as a surface
plot for as30�.

( )b Show that the radial electric field near rs0 is singular near rs0 if
w� � � , and find the form of the singularity. Answer: E Ar

�r�y1 Ž . xr sin ��r� as r™0.

( )6 An electrolytic cell consists of two plastic concentric cylinders of radii a and
b, a�b, and length L. Between the cylinders is an acid with conductivity � .
Two conducting vanes of width bya and length L are placed in the cell
between the cylinders, parallel to the axis of the cell, one along the positive
x-axis and one along the negative x-axis. If the vanes are held at a fixed
potential difference V , find the total current running between the vanes. Plot0

wthe contours of constant potential. Hint: The potential satisfies Laplace’s
equation with von Neumann boundary conditions at the nonconducting

Ž .surfaces and Dirichlet conditions at the conductors: see Exercise 2 above
and Example 2 in Sec. 3.2.2. Be careful to keep all of the radial eigenmodes,

Ž . xincluding the ns0 constant mode.

( ) 2 Ž .7 Find the solution to � � r, � , � s0 inside a sphere with the following
boundary conditions.
( ) Ž . 2a � 1, � , � ssin � .
( ) Ž . 2Ž .b � 1, � , � sV � �y� .0

� �( ) Ž .c 1, � , � ssin 2� cos �.
� r

( ) Ž .8 A conducting sphere of radius as2 cm is cut in the half see Fig. 3.16 . The
left half is grounded, and the right half is at 10 V. Find the electrostatic

Ž .potential � r, � everywhere outside the sphere, assuming that the potential
goes to zero at infinity. Plot the potential for a� r�6 cm.

( ) Ž .9 Two concentric spheres have radii a and b b�a . Each is divided into two
hemispheres by the same horizontal plane. The upper hemisphere of the

Ž .Fig. 3.16 Exercise 8 .
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outer sphere and the lower hemisphere of the inner sphere are maintained at
potential V. The other hemispheres are grounded. Determine the potential in
the region aF rFb in terms of Legendre polynomials. Plot the result for
bs3ar2. Check your result against known solutions in the limiting cases
b™	 and a™0.

( )10 A grounded conducting sphere of radius a is placed with its center at the
origin, in a uniform electric field EsEz that is created by an externalˆ

Ž . Žpotential � syEz. Find the total potential � r outside the sphere. Hint:e
.�s0 at rsa; write � in spherical coordinates.e

( )11 By applying the Taylor expansion function Series to the Bessel functions,
Ž . Ž .investigate the small-x form of J x and Y x . Answer the followingm m

questions:
( ) Ž . Ž .a Find a simple analytic expression for J x m an integer as x ap-m

proaches zero. Does your expression apply for m�0 as well as m�0?
( )b The Y ’s are singular near the origin. Find the form of the singularity form

ms0, 1, 2, . . . .

( ) Ž .12 Repeat the previous exercise for the modified Bessel functions I x andm
Ž . Ž .K x m an integer .m

1( )13 A cylinder has length Ls1 meter and radius as meter. The sides and the2

top of the cylinder are grounded, but the base at zs0 is held at potential
Ž .Vs50 volts. Find the potential � r, z throughout the interior. Plot the

result using ContourPlot.
1( )14 A cylinder of unit height and radius has grounded ends, at zsy and2

1zs . The cylindrical wall at rs1 is split in half lengthwise along the xs02

plane. The half with x�0 is held at 10 volts, and the half for which x�0 is
grounded. Find the potential and obtain the value of the electric field, y��
Ž .magnitude and direction , at the origin. Plot the potential in the zs0 plane
using a surface plot.

( )15 In a Penning-Malmberg trap, used to trap charged particles with static electric
and magnetic fields, potentials are applied to coaxial cylindrical electrodes of
radius a, as shown in Fig. 3.17 in order to provide an axial trapping potential.
( ) Ž .a Find the potential � r, z in the central region around rs0 as a Fourier

series involving the Bessel function I .0

( )b Taylor-expand this expression in r and z to show that the potential near
rs0 has the form

� r , z sAr 2qBz2qC. 3.2.62Ž . Ž .

Ž .Fig. 3.17 Exercise 15 .
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This form of � is simply an even Taylor expansion in r and z, as
required by the symmetry of the system. Find values for A, B, and C
when as5 cm, bs5 cm, and Ls10 cm.

( ) Ž .c By direct substitution of Eq. 3.2.62 into Laplace’s equation, show that
AsyBr2. This implies that the center of the trap is a saddlepoint of the

Ž .potential. Does your solution from part a satisfy this?
( ) Ž .d By carefully taking a limit as L™	, show that your result from part a

can be written as the following Fourier integral:

	 I krŽ .2 dk 0� r , z sV 1y sin kb cos kz .Ž . H0 ž /� k I kaŽ .0 0

wHint: Mathematica can do the following sum analytically:
	 Ž .n Ž . x Ž .Ý y1 r 2nq1 . Use the integral form to plot � 0, z for y2bFzns0

F2b, taking asbr2.

( )16 A cylindrical copper bar of conductivity � has radius a and length L, with
0�z�L. The surface of the bar is insulated, except on the ends at rs0,
where wires are attached. The wire at zs rs0 injects current I, and the wire
at rs0, zsL removes the same current. Therefore, the form of the current

Ž . Ž . w Ž . xdensity at zs0 and L is j r, zs0 s j r, zsL sI � r r2� r z. Find theˆ
Ž .electrostatic potential � r, z throughout the bar, and plot it as a contour

Ž .plot, in suitably normalized coordinates, assuming that � 0, Lr2 s0. Show
a Ž . Ž .that your solution satisfies 2�H r dr j r, z sI, and plot j r, Lr2 vs. r.0 z z

ŽHint: keep all eigenmodes, including one with a zero eigenvalue. See
.Example 2 in Sec. 3.2.2.
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CHAPTER 4

EIGENMODE ANALYSIS

4.1 GENERALIZED FOURIER SERIES

In Chapter 3 we constructed solutions to several linear partial differential equa-
tions using the method of separation of variables. The solutions were written in
terms of an infinite sum of eigenmodes arising from an associated eigenvalue
problem. Sometimes the eigenmodes were trigonometric functions, and the sums
formed a Fourier series. In other examples the eigenmodes were Bessel functions,
or associated Legendre functions. Nevertheless, in every case studied, these
eigenmodes were orthogonal to one another, and it was only for this reason that
they were useful in finding an analytic solution.

Why did the eigenmodes in each of these problems form an orthogonal set? In
this section we answer this important question. In short, the answer is that these
eigenmodes spring from a particular type of eigenvalue problem: a Sturm�Liou®ille
problem. The differential operators in Sturm�Liouville problems have the property
that they are Hermitian, and this property implies that the eigenmodes of the
operators form a complete orthogonal set.

First, however, we need to generalize the idea of a Fourier series. There is
nothing particularly special about trigonometric functions. One can describe a
given function using an infinite series constructed from many orthogonal function
sets, not just trigonometric Fourier modes. These series expansions are called
generalized Fourier series. We will examine the workings of these series, and discuss
a general way to create orthogonal sets of functions for use in these series: the
Gram�Schmidt method.

4.1.1 Inner Products and Orthogonal Functions

Definition of an Inner Product In order to discuss generalized Fourier series,
we must first extend our notion of orthogonality. This requires that we introduce
the concept of an inner product.
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We are all familiar with inner products through their use in linear algebra. The
dot product of two N-dimensional real vectors f and g, f �gsÝN f g , is a type ofis1 i i
inner product. For complex functions, an inner product acts on two functions
defined on a given interval aFxFb, in general returning a complex number. The

Ž .notation that we use for the inner product of the functions f and g is f , g . One
example of an inner product for complex functions f and g is

b
f , g s f * x g x dx . 4.1.1Ž . Ž . Ž . Ž .H

a

In inner product notation, two functions are orthogonal when their inner
Ž .product vanishes: f , g s0. This is like two vectors being perpendicular to one

Ž . Ž .another. Using Eq. 4.1.1 for our inner product, the equation f , g s0 is
equivalent to the definition of orthogonality used in complex exponential Fourier

Ž .series, Eq. 2.1.28 .
It is also possible to write down other inner products. However, all inner

products must satisfy certain rules. First,

f , g s g , f *. 4.1.2Ž . Ž . Ž .

Ž . Ž . Ž .Equation 4.1.2 implies that f , f s f , f *, so the inner product of a function
with itself must be a real number. Another requirement for an inner product is
that

f , f G0 4.1.3Ž . Ž .

with equality only if fs0 on aFxFb. Also, the inner product must be linear in
the second argument, so that

f , gqCh s f , g qC f , h , 4.1.4Ž . Ž . Ž . Ž .

where C is a constant. This implies that the inner product is antilinear in the first
argument:

fqCh , g s g , fqCh *s g , f *qC* g , h *s f , g qC* h , g , 4.1.5Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž .where in the first and last steps we used Eq. 4.1.2 .
Ž .The inner product of Eq. 4.1.1 clearly satisfies these rules. Another inner

product that does so is

b
f , g s f * x g x p x dx , 4.1.6Ž . Ž . Ž . Ž . Ž .H

a

Ž . Ž .for some real function p x that has the property that p x �0 on a�x�b.
Obviously, functions that are orthogonal with respect to the inner product given

Ž .by Eq. 4.1.1 will generally not be orthogonal with respect to the inner product
Ž .given in Eq. 4.1.6 .

Sets of Orthogonal Functions. The Gram–Schmidt Method A set of functions
� Ž .4 Ž .� x forms an orthogonal set with respect to some inner product if � , � s0n n m
for n�m. The trigonometric Fourier modes used in Fourier series are an example
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� i2� n xrŽ bya .4of an orthogonal set: e forms an orthogonal set with respect to the
Ž .inner product of Eq. 4.1.1 .

It is also possible to find completely different nontrigonometric sets of functions
that are orthogonal with respect to some inner product. We have already seen

Ž .several examples of this in Chapter 3. For instance, Eq. 3.2.55 implies that the set
� Ž .4of Bessel functions J j rra form an orthogonal set with respect to the innerm m n

product defined by the integral Har dr.0
For a given inner product, one can in fact find an infinite number of different

orthogonal sets of functions. One way to create such sets is via the Gram�Schmidt
method.

The Gram�Schmidt method allows one to construct a set of orthogonal func-
� Ž .4 � Ž .4tions � x out of a given set of functions ® x , ns0, 1, 2, 3, . . . . There isn n

almost no restriction on the functions chosen for the latter set, except that each
Žfunction must be different than the previous functions. More precisely, they must

be linearly-independent functions; one function cannot be written as a sum of the
� 2 3 4 � 4 .others. Thus, 1, x, x , x , . . . is a good set, but x, 2 x, 3 x, 4 x, . . . is not. Also, the

inner products of these functions with one another must not be singular.
The method is analogous to the method of the same name used to create

orthogonal sets of vectors in linear algebra. We will construct an orthogonal set of
� Ž .4functions, � x , ns0, 1, 2, 3, . . . , by taking sums of the functions ® . To start, wen n
Ž . Ž . Ž . Ž . Ž .choose � x s® x . Next, we choose � x sa ® x q® x , where the constant0 0 1 0 0 1

a is determined by imposing the requirement that � and � be orthogonal with0 0 1
respect to the given inner product:

� , � s0sa ® , ® q ® , ® .Ž . Ž . Ž .0 1 0 0 0 0 1

Ž . Ž . Ž . Ž .This implies that a sy ® , ® r ® , ® . Next, we choose � x sb ® x q0 0 1 0 0 2 0 0
Ž . Ž .b ® x q® x , and we determine the constants b and b by the requirement that1 1 2 0 1

� be orthogonal to both � and � . This gives us two equations in the two2 0 1
unknowns b and b :0 1

� , � s0sb ® , ® qb ® , ® q ® , ® ,Ž . Ž . Ž . Ž .0 2 0 0 0 1 0 1 0 2

� , � s0sa b ® , ® qa b ® , ® qa ® , ®Ž . Ž . Ž . Ž .1 2 0 0 0 0 0 1 0 1 0 0 2

qb ® , ® qb ® , ® q ® , ® .Ž . Ž . Ž .0 1 0 1 1 1 1 2

After solving these coupled linear equations for b and b , we repeat the pro-0 1
Ž . Ž . Ž . Ž . Ž .cedure, defining � x sc ® x qc ® x qc ® x q® x , and so on.3 0 0 1 1 2 2 3

In fact, it is possible to automate this process in Mathematica, constructing any
Žset of orthogonal functions that we wish, for any given inner product. See the

.exercises.
As an example of the Gram�Schmidt method, we will take the following inner

product:

1
f , g s f * x g x dx , 4.1.7Ž . Ž . Ž . Ž .H

y1

� 2 3 4and we will construct an orthogonal set of functions using the set 1, x, x , x , . . .
as our starting point. According to the method outlined previously, we take
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Ž . Ž . Ž .� x s1, and � x sa qx. In order to find a we require that � , � s0,0 1 0 0 1 0
1 1 Ž .which implies that 0sa H dxqH x dx. Therefore, we find a s0, so � x sx.0 y1 y1 0 1

2 Ž . Ž .Next, we set � sb qb xqx . The conditions that � , � s0 and � , � s2 0 1 2 1 2 0
0 lead to two equations for b and b , which can be solved using Mathematica.0 1

Cell 4.1

�[0, x_____] = 1;
�[1, x_____] = x;
�[2, x_____] = b0 + b1 x + x ^̂̂̂̂2;
sol = Solve[{Integrate[�[2, x] �[1, x], {x, -1, 1}] == 0,

Integrate[�[2, x] �[0, x], {x, -1, 1}] == 0},
{b0, b1}][[1]];

�[2, x] = �[2, x]/.sol

1 2- + x
3

12Ž .Thus, � x sx y .2 3

Next, we set � sc qc xqc x 2qc x 3, and solve the three coupled equaitons3 0 1 2 3
Ž . Ž . Ž .� , � s � , � s � , � s0:3 2 3 1 3 0

Cell 4.2

�[3, x_____] = c0 + c1 x + c2 x ^̂̂̂̂2 + x ^̂̂̂̂3;
sol = Solve[Table[Integrate[�[3, x] �[n, x],

{x, -1, 1}] == 0, {n, 0, 2}],
{c0, c1, c2}][[1]];

�[3, x] = �[3, x]/.
sol

3x 3- + x
5

Ž . 3Thus, � x sy3 xr5qx .3

Ž .Fig. 4.1 The first five Legendre polynomials. The odd polynomials n odd are shown with
Ž .dashed lines, the even polynomials n even with solid lines.
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If we continue this process, the set of functions that we construct are propor-
� Ž .4tional to Legendre polynomials P x , ns0, 1, 2, . . . . Mathematica refers to thesen

functions as LegendreP[n,x]. We have already run across these polynomials,
mŽ .which are the ms0 cases of the associated Legendre functions P x discussedl

in connection with solution of the Laplace equation in spherical coordinates. A few
of these polynomials are listed below, and are plotted in Fig. 4.1.

Cell 4.3

Do[Print[Subscript[P, n], "(x) = ", LegendreP[n, x]],
{n, 0, 4}]

P (x) = 10

P (x) = x1

1 3x2
P (x) = - +2 2 2

3x 5x3
P (x) = - +3 2 2

3 15x2 35x4
P (x) = - +4 8 4 8

One can verify that these polynomials form an orthogonal set with respect to
Ž .the inner product of Eq. 4.1.7 . In fact, these polynomials satisfy

2
P x , P x s� , 4.1.8Ž . Ž . Ž .Ž .n m nm 2nq1

Ž .where � , the Kronecker �-function, is defined by Eq. 1.6.22 . The following is anm
matrix of inner products over a set of the first five Legendre polynomials:

Cell 4.4

MatrixForm[Table[
Integrate[LegendreP[n, x] LegendreP[m, x], {x, -1, 1}],
{n, 0, 4}, {m, 0, 4}]]

2 0 0 0 0
20 0 0 03

20 0 0 05

20 0 0 07� 0
20 0 0 0 9

The matrix is diagonal, as expected from orthogonality, and the values on the
Ž .diagonal agree with Eq. 4.1.8 .

Orthogonal polynomials such as the Legendre polynomials are useful because of
their simplicity. One can easily integrate over them, or take their derivatives
analytically.
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Using the Gram�Schmidt method, we can construct other orthogonal sets by
� Ž .4starting with a different set of functions ® x . We will see examples of this in then

exercises.

4.1.2 Series of Orthogonal Functions

� Ž .4Now that we have a set of orthogonal functions � x , we will create a generalizedn
Ž .Fourier series in order to represent some function f x defined on a given interval,

aFxFb. To do so, we write

�

f x s c � x , 4.1.9Ž . Ž . Ž .Ý n n
n

where the c ’s are constant coefficients that need to be determined. Thesen
coefficients are called generalized Fourier coefficients; but to save space we will
usually refer to them as just Fourier coefficients. To find these coefficients, we
take an inner product of any one of the orthogonal functions, � , with respect tom

Ž .both sides of Eq. 4.1.9 :

�

� , f s c � , � . 4.1.10Ž . Ž . Ž .Ým n m n
n

Orthogonality then implies that all terms in the sum are zero except for the term
nsm, so we obtain an equation for the mth coefficient:

� , fŽ .mc s . 4.1.11Ž .m � , �Ž .m m

By calculating the required inner products with respect to each function � in them
Ž .set, Eq. 4.1.11 provides us with all of the Fourier coefficients required to

construct the generalized Fourier series representation of f.
Ž . yxSay, for example, we wish to represent the function f x se sin 3 x on the

interval y1�x�1. We can do so using the Legendre polynomials, since they form
Ž .an orthogonal set on this interval with respect to the inner product of Eq. 4.1.7 .

Ž .First we evaluate the Fourier coefficients c using Eq. 4.1.11 . The requiredn
integrals could be found analytically, but the results are quite complicated. It is
better just to evaluate the integrals numerically:

Cell 4.5

c[n_____] := c[n] = NIntegrate[LegendreP[n, x] Exp[-x] Sin [3 x],
{x, -1, 1}]/
Integrate[LegendreP[n, x] ^̂̂̂̂2, {x, -1, 1}]

Here we have used the trick of applying two sets of equal signs, so as to cause
Mathematica to remember these integrals, evaluating each one only once. Next, we
construct an approximation to the full series, keeping only the first M terms:
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Cell 4.6

f [x_____, M_____] := Sum[c[n] LegendreP[n, x], {n, 0, M}]approx

We can plot this series and compare it with the exact function, keeping increasing
numbers of terms, as shown in Cell 4.7. Only six or so terms are required in order

Ž .to achieve excellent convergence to the exact function shown by the thin line . Of
course, just as with trigonometric series, the more rapidly varying the function is,
the more terms are needed in the series to obtain good convergence.

Cell 4.7

<<<<<<<<<< Graphics ‘;

Table[Plot[{Evaluate[f [x, M]], Sin[3 x] Exp[-x]},approx

{x, -1, 1},
PlotStyle™{Red, Thickness[0.008]}, Blue},
PlotLabel™"M = " <<<<<>>>>>ToString[M]], {M, 2, 8, 2}];

Let’s try the same problem of constructing a generalized Fourier series for the
Ž . yxfunction f x se sin 3 x, but with a different set of orthogonal functions on

w x Ž . Ž .y1, 1 : the set of e®en Legendre polynomials, � x sP x . If we now try ton 2 n
expand the function eyx sin 3 x in this set, the expansion does not work, as seen in
Cell 4.8. Only the even part of the function is properly represented by this set,
because the orthogonal functions used in the series are all even in x. The odd part
of the function cannot be represented by these even polynomials.

Cell 4.8

�[n_____, x_____] = LegendreP[2n, x];

Clear[c]; c[n_____]:= c[n] = NIntegrate[�[n, x] Exp[-x] Sin[3 x],
{x, -1, 1}]/
Integrate[�[n, x] ^̂̂̂̂2, {x, -1, 1}]

f [x_____, M_____] := Sum[c[n] �[n, x], {n, 0, M}]approx
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Table[Plot[{Evaluate[f [x, M]], Sin[3 x] Exp[-x]},approx

{x, -1, 1},
PlotStyle™{Red, Thickness[0.008]}, Blue},
PlotLabel™"M = " <<<<<>>>>>ToString[M]], {M, 2, 6, 2}];

Thus, we cannot choose any set of orthogonal functions that we wish when
making a generalized Fourier series expansion. The set of functions must be
complete. That is, a linear combination of these functions must be able to represent
any given function in the range of interest, a�x�b.

In the next section, we will discuss how to find sets of orthogonal functions that
are guaranteed to be complete. These functions are eigenmodes of the spatial
operators that appear in the linear PDEs we studied in Chapter 3. As such, they
are just the thing for describing solutions to the PDEs in terms of generalized
Fourier series.

4.1.3 Eigenmodes of Hermitian Operators

ˆHermitian Operators and Sturm–Liouville Problems An operator L is defined
to be Hermitian with respect to a given inner product on the interval aFxFb,
and with respect to some set of functions, if, for any two functions f and g taken

ˆfrom this set, L satisfies the following equation:

ˆ ˆf , Lg s Lf , g . 4.1.12Ž .Ž . Ž .
An operator can be Hermitian only with respect to a given set of functions and a
given inner product.

As an example of a Hermitian operator consider the following second-order
linear differential operator:

1 d d
L̂s r x qq x , 4.1.13Ž . Ž . Ž .ž /dx dxp xŽ .

Ž . Ž . Ž .on the interval aFxFb. The functions p x , q x , and r x are assumed to be
Ž . Ž .real, and also p x and r x are required to be positive-definite on the interval
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a�x�b. This operator is called a Sturm�Liouville operator. Second-order opera-
tors of this type crop up regularly in mathematical physics. In fact, this kind of
operator appeared in every eigenvalue problem that we encountered in Chapter 3.
These eigenvalue problems are called Sturm�Liou®ille problems.

The Sturm�Liouville operator is Hermitian with respect to the inner product

b
f , g s f * x g x p x dx , 4.1.14Ž . Ž . Ž . Ž . Ž .H

a

w Ž . Ž .xwhere the weight function p x is the same as that which appears in Eq. 4.1.13
and with respect to functions that satisfy a broad class of homogeneous boundary
conditions. Recall that homogeneous conditions are such that one solution to the

ˆeigenvalue problem L�s�� is �s0.
For a Sturm�Liouville operator to be Hermitian, these homogeneous boundary

conditions can take several forms:

If r�0 at the end points a and b, the boundary conditions on the functions can
be either homogeneous mixed, von Neumann, or Dirichlet. The boundary
conditions can be different types at each end, e.g., Dirichlet at one end and
von Neumann at the other.

If rs0 at one or both ends of the interval, then at these ends the functions and
their first derivatives need merely be finite.

Ž .The functions can also satisfy periodic boundary conditions, provided that r a s
Ž . Ž .r b see the exercises .

For these classes of functions, it is easy to show that the Sturm�Liouville
Ž .operator is Hermitian with respect to the inner product of Eq. 4.1.14 . Starting

ˆŽ .with the inner product f , Lg , two integrations by parts yield

b 1 d dˆf , Lg s f * r x g x qq x g x p x dxŽ . Ž . Ž . Ž . Ž .Ž . H ž /dx dxp xŽ .a

xsb
b� df * dgs r f * g y r qqpf *g dxH ž /� x dx dxxsa a

xsb
b� � d ds r f * gyg f * q g r f * qqpf * dxHž / ž /� x � x dx dxxsa a

xsb
� � ˆs r f * gyg f * q Lf , g . 4.1.15Ž .Ž .ž /� x � x xsa

However, the boundary terms vanish because of the restriction to the sets of
ˆ ˆŽ . Ž .functions that satisfy the listed boundary conditions. Therefore, f , Lg s Lf , g ,

so the Sturm�Liouville operator is Hermitian for these sets of functions and this
inner product.

Many second-order operators that do not appear to be of Sturm�Liouville form
can be put in this form. For instance, the operator for damped harmonic motion,
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ˆ 2 2 2Lsd rdx q®drdxq	 , can be written as0

1 d d® x 2L̂s e q	 . 4.1.16Ž .® x 0ž /dx dxe

Ž . ® xSince this operator is of Sturm�Liouville form with p x se , it is Hermitian with
Ž . b ® xrespect to the inner product f , g sH e f *g dx, and with respect to functionsa

that satisfy any of the homogeneous boundary conditions discussed with respect to
Ž . Ž .Eqs. 4.1.13 and 4.1.14 .

ˆ 2 2 Ž . Ž .More generally, the operator Lsd rdx qu x drdxqu x can also be put1 0
in Sturm�Liouville form:

1 d x dH u Ž y . d y1L̂s e qu x . 4.1.17Ž . Ž .x 0ž /H u Ž y . d y1 dx dxe

Some higher-order operators are also Hermitian. For instance, the operator
ˆ 4 4Lsd rdx can be shown to be Hermitian with respect to the inner product
Ž . bf , g sH f *g dx for functions that vanish, along with their first derivatives, at thea

Ž .ends of the interval. See the exercises. However, other operators are not
ˆ 3 3 2 2Hermitian. One simple example is Lsd rdx . Another is d rdx q®drdxqb for

complex constants ® or b.

Eigenmodes Why should we care that an operator is Hermitian? Because the
eigenmodes of Hermitian operators form an orthogonal set. Also, the eigenvalues

� 4of such operators are real. Consider the set of eigenfunctions � of an operatorn
L̂. Each eigenfunction satisfies the ODE

L̂� s� � 4.1.18Ž .n n n

on the interval aFxFb. Let us assume that this operator is Hermitian with
respect to a set of functions that includes these eigenfunctions, and with respect to
some inner product. Then the following theorem holds:

ˆTheorem 4.1 Any two eigenfunctions � and � of a Hermitian operator L aren m
orthogonal provided that the associated eigenvalues � and � are not equal.n m

ˆFurthermore, all the eigenvalues of L are real.

ˆŽ .The proof is as follows. Consider the inner product � , L� . According to Eq.m n
Ž .4.1.18 we can write this quantity as

ˆ� , L� s � , � � s� � , � , 4.1.19Ž . Ž . Ž .Ž .m n m n n n m n

Ž .where the last step follows from linearity of the inner product, Eq. 4.1.4 .
Ž .However, according to the Hermitian property, Eq. 4.1.12 , we can also write this

quantity as

ˆ ˆ� , L� s � , L� *.Ž . Ž .m n n m
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Ž .If we then apply Eq. 4.1.18 , we obtain

ˆ � �� , L� s � , � � *s� � , � *s� � , � , 4.1.20Ž . Ž . Ž . Ž .Ž .m n n m m m n m m m n

Ž .where in the last step we used Eq. 4.1.2 and in the next to last step we used Eq.
Ž .4.1.4 .

Ž . Ž .Finally, equating Eq. 4.1.19 to Eq. 4.1.20 yields

� y�� � , � s0. 4.1.21Ž . Ž . Ž .n m m n

Ž . Ž � .Ž . Ž .Now, if nsm, then Eq. 4.1.21 becomes � y� � , � s0. But � , � �0n n n n n n
� ˆfor nontrivial � , so we find that � y� s0. Therefore, eigenvalues of L must ben n n

real numbers.
Since the eigenvalues are real, we can drop the complex conjugation from � inm
Ž . Ž .Ž . Ž .Eq. 4.1.21 . Then we have � y� � , � s0. Therefore, � , � s0 if � �n m m n m n m

� , proving that eigenfunctions associated with distinct eigenvalues are orthogonal.n
We have finally solved the mystery encountered in the PDE problems of

Chapter 3, of why the eigenmodes in these problems always formed orthogonal
sets. We can now see that this occurred because in each case, the operators were
of Sturm�Liouville form, so that the operators were Hermitian with respect to the

Ž .inner product of Eq. 4.1.6 , and with respect to functions that satisfied the
homogeneous boundary conditions of the associated eigenvalue problem. In fact,
Hermitian operators, and Sturm�Liouville operators in particular, dominate math-

Ž .ematical physics especially at the introductory level .
� Ž .4For example, the set of Bessel eigenfucntions J j rra , encountered inm m , n

Ž .Sec. 4.2.5, satisfied the Sturm�Liouville problem on 0� r�a given by Eq. 3.2.46 ,

�� 21 � mnr y � y
� s0,n n2ž /r � r � r r

with Dirichlet boundary conditions at rsa. At rs0 the eigenfunctions need only
Ž .be finite. According to Eq. 4.1.14 , these eigenmodes must form an orthogonal set

Ž . a Ž . Ž . Ž . Ž .with respect to the inner product f , g sH f * r g r p r dr, with p r s r. This0
aŽ . Ž . Ž .corresponds to our previous result, Eq. 3.2.55 , that H J j rra J j rra r dr0 m m , n m m , n

s0 for n�n.

ˆCompleteness The fact that the eigenmodes of a Hermitian operator L form an
orthogonal set means that they can be used in the generalized Fourier series

Ž .representation of a function, Eq. 4.1.9 . However, there is still the question
whether these eigenmodes are complete. The answer to this question is that
eigenfunctions of a Hermitian operator do form a complete set, under very general

Žconditions. The proof can be found in Courant and Hilbert 1953, Chapters 2 and
.4 .

To be precise, the following completeness theorem holds for eigenmodes of a
Hermitian operator:

Ž .Theorem 4.2 Given any function f x , described by a generalized Fourier series
of eigenmodes of a Hermitian operator, the error between the function and the
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Ž . Ž . M Ž .generalized Fourier series, E x s f x yÝ c � x , approaches zero as M™M ns0 n n
� in the following average sense:

lim E x , E x s0. 4.1.22Ž . Ž . Ž .Ž .M M
M™�

This is called con®ergence in the mean. If we write out the inner product using Eq.
Ž . Ž .4.1.6 , we see that the error is averaged over x, weighted by the function p x :

b 2lim E x p x dxs0. 4.1.23Ž . Ž . Ž .H M
M™� a

Convergence in the mean is less restrictive than the uniform convergence discussed
previously for Fourier series of functions that satisfy the conditions of Theorem

Ž .2.1. For example, Eq. 4.1.23 still holds for series that exhibit the Gibbs phe-
Ž .nomenon. Also, for series using weight functions p x that are small over certain

wranges of the interval such as for the Laguerre and Hermite polynomials at large
Ž .Ž . Ž .xx; see Exercise 5 a and b , there can be large differences between the series

Ž . Ž .and f x that are not revealed by Eq. 4.1.23 . Nevertheless, this sort of conver-
gence is usually all that is needed in applications.

4.1.4 Eigenmodes of Non-Hermitian Operators

From time to time, one will run into a problem where a linear operator is not
Hermitian with respect to some given inner product andror set of functions. One

ˆ 3 3example that we already mentioned is the operator Ls� r� x on the interval
a�x�b. Eigenfunctions � of this operator do not form an orthogonal set withn

Ž . b Ž . Ž .respect to the inner product defined by f , g sH f *gp x dx, for any p x .a
Nevertheless, we may want to expand some function in terms of these eigenmodes.

ˆ 3 3For instance, we may need to solve a PDE involving L, such as � zr� ts� zr� x .
Fortunately, we can generalize our Fourier expansion techniques to allow series

expansions in terms of eigenfunctions of non-Hermitian operators. To make the
expansion work, we must first introduce the notion of the adjoint of an operator.

ˆ †̂The adjoint of an operator L is another operator L that is defined by the
following equation:

ˆ †̂f , Lg s L f , g 4.1.24Ž .Ž . Ž .
for some given inner product, where f and g are any two functions from some

ˆ 3 3given set of functions. For instance, for Ls� r� x , the adjoint with respect to the
Ž . binner product f , g sH f *g dx, and with respect to functions that satisfy homoge-a

†̂ 3 3neous boundary conditions of various types, is simply L sy� r� x . This follows
Ž .from three applications of integration by parts to Eq. 4.1.24 , dropping the

boundary terms because of the homogeneous boundary conditions.
Ž . Ž .Comparing Eq. 4.1.24 to Eq. 4.1.12 , we see that a Hermitian operator

†̂ ˆsatisfies L sL: a Hermitian operator is its own adjoint. For this reason, Hermi-
tian operators are also referred to as self-adjoint.

Ž . Ž .We will expand a function f x in terms of the eigenmodes � x of then
ˆnon-Hermitian operator L, writing

f x s c � x . 4.1.25Ž . Ž . Ž .Ý n n
n
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These eigenmodes satisfy the usual equation,

L̂� s� � . 4.1.26Ž .n n n

Ž .However, as we have already stated, � , � �0 for m�n, so our previousm n
technique for finding the c ’s does not work. What to do?n

†Ž .Consider the eigenmodes � x of the adjoint operator. These eigenmodesn
satisfy the equation

†̂ † † †L� s� � , 4.1.27Ž .n n n

where �† is the associated eigenvalue. One can then prove the following:n

�† s�� 4.1.28Ž .n n

and

� †, � s0 if �� �� . 4.1.29Ž .Ž .n m n m

The proof is almost identical to that given for Theorem 4.1, and is left to the
exercises.

Since the adjoint eigenmodes form an orthogonal set with respect to the set
� 4 Ž . †� , we now take an inner product of Eq. 4.1.25 with respect to � . This kills alln n
terms in the sum except for the one involving c , and yields the resultn

� †, fŽ .nc s . 4.1.30Ž .n †� , �Ž .n n

Ž † . †However, there is no guarantee that � , � is nonzero, because � �� inn n n n
Ž .general. In fact, if this inner product vanishes for some value s of n, then Eq.

ˆŽ .4.1.30 implies that an expansion of f in terms of eigenmodes of L is not possible,
Ž † .unless � , f also happens to equal zero for these n-values.n

Ž † .Also, even if � , � is nonzero for all n, there is generally no guarantee thatn n
the eigenmodes form a complete set, as there is with Hermitian operators.
Nevertheless, this kind of eigenmode expansion can still be useful for those rare
cases where non-Hermitian operators arise in a problem.

EXERCISES FOR SEC. 4.1

( )1 Perform Gram�Schmidt orthogonalization by hand for the first three orthog-
� n4onal polynomials extracted from the set x , nG0, for the given inner

products:
( ) Ž . � yx Ž .a f , g sH f *g e dx these will be proportional to Laguerre polynomials .0

( ) Ž . � yx 2 Žb f , g sH f *g e dx these will be proportional to Hermite polynomi-y�
.als .

dx1( ) Ž . Žc f , g sH f *g these will be proportional to Chebyshevy1 1r221yxŽ .
.polynomials of the first kind .
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( ) Ž . 1 Ž 2 .1r2 Žd f , g sH f *g 1yx dx these will be proportional to Chebyshevy1
.polynomials of the second kind .

( )2 Perform Gram�Schmidt orthogonalization by hand for the first three orthog-
� yn x4onal functions from the set e , ns0, 1, 2, . . . . Take for the inner product

Ž . � yxf , g sH e f *g dx.0

( )3 Create a Mathematica module called gschmidt[M] that automatically per-
forms Gram�Schmidt orthogonalization for the first M orthogonal functions

Ž .taken from a given set of predefined functions ® n, x and for a given
predefined inner product. Run this Mathematica module for the orthogonal

Ž . Ž .functions of Exercises 1 and 2 , determining the first six orthogonal
functions in each set.

( ) 2 y2 x4 Find a generalized Fourier series representation of x e using the orthog-
Ž .onal functions derived in Exercise 3 . Plot the result along with the exact

function, keeping Ms2, 4, 6 terms.

( )5 Find a generalized Fourier series representation for the following functions
using the given orthogonal polynomials. Plot the resulting series for Ms5,

Ž .10, and 15 along with the functions. In each case, evaluate Eq. 4.1.23 for the
different M-values to see whether convergence in the mean is being achieved.
( ) Ž . Ž 2 .a f x sxr 1qx on 0�x��, using Laguerre polynomials. Plot on

0�x�5.
( ) Ž . Ž .b f x s sin x rx on y��x��, using Hermite polynomials. Plot on

y8�x�8.
( ) Ž .c f t ssin� t on y1F tF1, using Legendre polynomials.
( ) Ž . Ž . Ž .d f t s t 1y t r 2y t on y1F tF1, using Chebyshev polynomials of the

first kind.
yt'( ) Ž .e f t se tq1 on y1F tF1, using Chebyshev polynomials of the sec-

ond kind.
ŽHint 1: These polynomials are already Mathematica intrinsic functions. You
can find their definition and syntax in the help browser. Hint 2: The series

.representation may not converge well in every case.

( ) ( )6 a Prove that the generalized Fourier expansion of a polynomial of order N
in terms of orthogonal polynomials is a finite series, involving only
orthogonal polynomials of order N and lower.

( ) 4b Expand x in terms of Hermite polynomials.
( ) 2c Expand x in terms of Legendre polynomials.
( ) 6d Expand x in terms of Chebyshev polynomials of the second kind.

( ) Ž .7 Prove that the Sturm�Liouville operator 4.1.13 is Hermitian with respect to
Ž .the inner product given by Eq. 4.1.14 and with respect to functions that

satisfy mixed boundary conditions.

( )8 Find an inner product for which the following operators are Hermitian with
respect to functions that satisfy the given conditions:

ˆ 2 2( ) w xa Lsd rdx y2 x drdx, for functions on y�,� that go to � more slowly
than e x 2 r2 as x™�.
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ˆ 2 2( ) Ž . w xb Lsx d rdx q 1yx drdx, for functions on 0,� that go to � more
slowly than e xr2 and that are finite at the origin.
ˆ 2( ) Ž .Ž . w xc Ls drdx 1yx drdx, for functions on y1, 1 that are finite at the
end points.
ˆ 2 2 2( ) w xd Lsd rdx qdrdxqx on y2, 2 , for functions that are zero at xs�2.
ˆ 4 4 2 2( ) w xe Lsd rdx qd rdx q1 on 0, 3 , for functions that satisfy fs0 and
f �s0 at the end points.
ˆ 2 2( ) Ž . w xf Lsd rdx qh x drdx, on y1, 1 for functions that satisfy fs0 at the

Ž .end points, and where h x is the Heaviside step function.

( )9 Show by substitution, using Mathematica, that the first five Hermite polyno-
ˆŽ . Ž .Ž .mials H x are eigenfunctions of the operator L given in Exercise 8 a ,n

with eigenvalues � sy2n.n

( )10 Show by substitution, using Mathematica, that the first five Laguerre polyno-
ˆŽ . Ž .Ž .mials L x are eigenfunctions of the operator L given in Exercise 8 b ,n

with eigenvalues � syn.n

( )11 Show by substitution, using Mathematica, that the first five Legendre polyno-
ˆŽ . Ž .Ž .mials P x are eigenfunctions of the operator L given in Exercise 8 c , withn

Ž .eigenvalues � syn nq1 .n

( ) Ž .12 Prove that the Sturm�Liouville operator 4.1.13 is Hermitian with respect to
Ž . Ž .the inner product given by Eq. 4.1.14 and with respect to functions f x

Ž . Ždefined on aFxFb that satisfy periodic boundary conditions f x s f xqb
. Ž . Ž . Ž .ya , provided that the function r x satisfies r a s r b .

( )13 Find the eigenfunctions and eigenvalues for the following operators. If the
operators are Hermitian with respect to some inner product, show directly
that the eigenfunctions are orthogonal with respect to that inner product.

ˆ 2 2( ) Ž . Ž .a Lsd rdx qdrdxq1 with boundary conditions � y1 s� 1 s0.
ˆ( ) Ž .Ž .b L and boundary conditions given in Exercise 8 e .
ˆ( ) Ž .Ž . Žc L and boundary conditions given in Exercise 8 f . Hint: Match solu-

.tions for x�0 to those for x�0.
ˆ 2 2( ) w x wd Lsd rdx y1 with periodic boundary conditions on 0, 1 . See Exercise
Ž . x12 .

( )14 Use the eigenfunctions obtained from the following operators in order to
Ž .create a generalized Fourier series expansion of the following functions f x

on the given interval. In each case, plot the series and calculate the average
Ž Ž . Ž ..error E x , E x for Ms5, 10, 15, 20:M M

( ) Ž . w x Ž .Ž .a f x sx sin 5x on y1, 1 , using the eigenfunctions from Exercise 13 a .
( ) Ž . yx r3 w xb f x se sin x on 0, 3 , using the eigenfunctions from the operator of

Ž .Ž .Exercise 8 e .
( ) Ž . w xc f x sx on y1, 1 , using the eigenfunctions of the operator of Exercise

Ž .Ž .8 f .

( )15 A quantum particle of mass m is confined in a one-dimensional box with
potential

� �0, x �a,
V x sŽ . ½ � ��, x �a.
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The energy levels E of the particle can be found by solving the time-inde-n
pendent Schrodinger equation¨

Ĥ� sE � , 4.1.31Ž .n n n

ˆ ˆ 2 2 2Ž . Ž .where H is the Hamiltonian operator Hsy� r2m d rdx qV x , and
�s1.055�10y34 J s is Planck’s constant divided by 2� . For this problem the
infinite potential at �a implies that the wave functions vanish at xs�a.
This provides homogeneous boundary conditions for the equation, which can
be seen to be an eigenvalue problem of Sturm�Liouville form. The eigenval-

Ž .ues are the quantum energy levels E and the eigenfunctions � x are then n
quantum wave functions corresponding to each energy level. Solve for the
energy levels and energy eigenfunctions for this potential. Plot the three

Žeigenfunctions with the lowest energies. See problem 13 of Sec. 3.1, which
.solves an initial-value problem using these eigenmodes.

( ) ( )16 a A quantum particle of mass m is confined in a one-dimensional harmonic
potential,

1 2 2V x s m	 x .Ž . 02

Now the boundary conditions are that � ™0 as x™��. Show that then
1Ž .energy levels are given by E s�	 nq , and that the eigenfunctionsn 0 2

are given by

� x seyx 2 r a2
H xra , 4.1.32Ž . Ž . Ž .n n

where H is a Hermite polynomial and as �rm	 is the spatial scale'n 0
w Ž . yx 2 r2 a2 Ž .of the eigenfunctions. Hint: Substitute the form � x se f xran n

Ž .into the eigenmode equation 4.1.31 , and show that f satisfies then
Ž .Ž . Ž . xHermite polynomial ODE; see Exercises 8 a and 9 . Plot the three

eigenfunctions with lowest energies, ns0, 1, and 2.
( ) Ž .b Use the eigenfunctions found in part a to solve the following initial

Ž . y2Ž xy1. 2
value problem: � x, 0 se . Take �sms	 s1 and animate the0

� Ž . � 2 wsolution for � x, t using a table of plots for 0� t�4� . Hint: Recall
that the wavefunction � satisfies the time-dependent Schrodinger equa-¨

Ž . xtion 3.1.81 .

( )17 A quantum particle of mass m moves in a one-dimensional periodic harmonic
potential with period 2 a, given by the following periodic �-function:

� �V x saV � x , x �a,Ž . Ž .0

V xq2 a sV x .Ž . Ž .

ŽFind the energy levels of a particle in this periodic potential a model for the
.interaction of an electron with a periodic lattice of ions . Show that the

modes break into two classes: those that are even in x, and those that are
odd. For the odd modes, show that the energy levels are given by E sn
�2 k 2r2 m, where k sn�ra is the wavenumber, and n is a positive integer.n n
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For the even modes, show that the wavenumbers satisfy the transcendental
equation k a tan k asmVa2r�2, where the energy E is still related to then n n
E s�2 k 2r2 m. For mVa2r�2s1, find the smallest three values of k an n n
numerically and plot the corresponding eigenmodes on ya�x�a.

( )18 A quantum particle is confined to x�0, where x is now the vertical
direction. The particle moves under the influence of a gravitational potential
Ž . ŽV x smgx. Find an equation for the energy levels which must be solved

.numerically and find the corresponding energy eigenfunctions. Plot the
Žlowest three energy eigenfunctions and find numerical values up to the

.unknown constants for their energies. Find the mean height of the particle
above the surface xs0 in each of the three energy levels. The mean height is
given by

� � 2Hx � dx² :x s .2� �H � dx

Ž .Hint: The eigenfunctions will be in terms of Airy functions.

( ) Ž . Ž .19 Prove Eqs. 4.1.28 and 4.1.29 .

ˆ( )20 Find the adjoint operator for the given operator L, inner product, and set of
functions:

ˆ 2 2 b( ) Ž .a Ls� r� x with inner product f , g sH xf *g dx and functions thata
Ž . Ž .obey f a s f b s0.

ˆ b 2( ) Ž .Ž . Ž .b Ls 1rx �r� x x �r� x with inner product f , g sH x f *g dx and func-0
Ž . Ž .tions that obey f b s0, f 0 finite.

ˆ 2 2 b( ) Ž . Ž . Ž . Ž .c Lsp x � r� x qq x �r� xq r x with inner product f , g sH f *g dxa
Ž . Ž .and functions that obey f a s f b s0.

( )21 Find the eigenfunctions and eigenvalues of the adjoint operator for
( ) Ž .Ž .a Exercise 20 a ,
( ) Ž .Ž .b Exercise 20 b .
Show that these eigenfunctions form an orthogonal set with respect to the

ˆeigenmodes of L and the given inner products.

ˆ( )22 Find the first three eigenfunctions and eigenvalues of the operator Ls
3 3 Ž . 1� r� x and its adjoint with respect to the inner product f , g sH f *g dx and0

Ž . Ž . Ž .with respect to functions that satisfy f 0 s f 1 s f  0 s0. Show directly that
ˆthe eigenfunctions of L are orthogonal with respect to the adjoint eigenfunc-

Žtions. Hint: For both the operator and its adjoint, the eigenvalues satisfy a
.transcendental equation that must be solved numerically.

4.2 BEYOND SEPARATION OF VARIABLES: THE GENERAL SOLUTION
OF THE 1D WAVE AND HEAT EQUATIONS

In this section we will obtain general solutions to the 1D wave and heat equations
for arbitrary boundary conditions and arbitrary source functions. The analysis
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involves two steps: first, the PDE is put into standard form, by transforming away
the inhomogeneous boundary, conditions, turning them into an extra source term
in the PDE. The standard-form PDE then has homogeneous boundary conditions,
and the solution to this PDE is obtained in terms of a generalized Fourier series of
eigenmodes.

In later sections we will apply the same methods to other linear PDEs, including
Poisson’s equation and the wave and heat equations in more than one dimension.

4.2.1 Standard Form for the PDE

Let us consider the heat equation in one dimension on the interval 0�x�L,

�T 1 � �Ts 
 x qS x , t , 4.2.1Ž . Ž . Ž .ž /� t � x � xC xŽ .

subject to general, possibly time-dependent boundary conditions of either the
Ž . Ž .Dirichlet, von Neumann, or mixed type, as given by Eqs. 3.1.45 � 3.1.47 . In order

to solve this PDE, we will first put it into standard form with homogeneous
Ž .boundary conditions. To do so, we write the solution for the temperature T x, t as

T x , t su x , t q�T x , t . 4.2.2Ž . Ž . Ž . Ž .

Ž .The function u x, t is chosen to satisfy the inhomogeneous boundary conditions,
but it is otherwise arbitrary. For example, if the boundary conditions are of the

Ž .Dirichlet form 3.1.45 , we choose any function that satisfies

u 0, t sT t ,Ž . Ž .1

u L, t sT t .Ž . Ž .2

One choice might be

u x , t sT t q T t yT t xrL, 4.2.3Ž . Ž . Ž . Ž . Ž .1 2 1

Ž . Ž . w Ž .but many others can also be used. For example, u x, t sT t q T t y1 2
Ž .xŽ .nT t xrL for any n�0 also works. However, we will soon see that it is best to1

choose a function with the slowest possible spatial variation, and especially try to
avoid spatial discontinuities if at all possible.

If, on the other hand, the boundary conditions are of the von Neumann form
Ž . Ž .3.1.46 , we choose some function u x, t that satisfies

� tŽ .� u x10, t sy ,Ž .� x 


� tŽ .�u x 2L, t sy .Ž .� x 


Ž .Similarly, for mixed boundary conditions 3.1.47 , we choose a function u that
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satisfies

� u

 0, t sa u 0, t yT t ,Ž . Ž . Ž .1� x

�u

 L, t syb u L, t yT t .Ž . Ž . Ž .2� x

Ž .The remainder, �T x, t , then satisfies homogeneous boundary conditions that
are either Dirichlet,

�T 0, t s�T L, t s0, 4.2.4Ž . Ž . Ž .

von Neumann,

��T ��T
0, t s L, t s0, 4.2.5Ž . Ž . Ž .� x � x

or mixed,

��T ��T

 0, t ya�T 0, t s
 L, t qb�T L, t s0. 4.2.6Ž . Ž . Ž . Ž . Ž .� x � x

The function �T satisfies an inhomogeneous heat equation PDE that follows
Ž . Ž .from applying Eq. 4.2.2 to Eq. 4.2.1 :

��T 1 � ��Ts 
 qS x , t , 4.2.7Ž . Ž .ž /� t C � x � x

where the new source function S is given by

1 � � u �u
S x , t sS x , t q 
 y . 4.2.8Ž . Ž . Ž .ž /C � x � x � t

Ž . Ž .Equation 4.2.7 , with 4.2.8 and homogeneous boundary conditions, is called the
standard form for the PDE. This approach to the problem bears some resemblence
to the method of subtracting out the equilibrium solution, discussed in Sec. 3.1.2.
Here, however, there need be no equilibrium solution, and we do not necessarily
remove the source term in the equation by this technique. The main point is that
we have made the boundary conditions homogeneous, so as to allow a generalized

Ž .Fourier series expansion of eigenmodes to determine �T x, t .
The same technique can be applied to the general wave equation with arbitrary

boundary conditions and arbitrary time-dependent external transverse forces,

� 2 1 � �
y x , t s T x y x , t qS x , t . 4.2.9Ž . Ž . Ž . Ž . Ž .2 ž /� x � x� xŽ .� t

We write

y x , t s� y x , t qu x , t , 4.2.10Ž . Ž . Ž . Ž .

Ž .where u x, t is any function chosen to satisfy the inhomogeneous boundary
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Ž .conditions, and where � y x, t satisfies

2� 1 � �
� y x , t s T x � y x , t qS x , t 4.2.11Ž . Ž . Ž . Ž . Ž .2 ž /� x � x� xŽ .� t

Ž .with homogeneous boundary conditions, and the new source function S x, t is
given by

21 � � �
S x , t sS x , t q T x u x , t y u x , t . 4.2.12Ž . Ž . Ž . Ž . Ž . Ž .2ž /� x � x� xŽ . � t

By putting the wave and heat equations into standard form, we have once again
shown that inhomogeneous boundary conditions are equivalent to a source term in
the differential equation, just as in discussion of ODE boundary-value problems in
Sec. 1.4.5.

4.2.2 Generalized Fourier Series Expansion for the Solution

General Solution for the Wave Equation The general solutions for the stan-
dard form of the wave or heat equations follow the same route, so we will consider
only the solution to the wave equation. The standard form of this equation, Eq.
Ž .4.2.11 , can be written as

2� ˆ� y x , t sL� yqS x , t . 4.2.13Ž . Ž . Ž .2� t

ˆwhere the operator L is

1 � �
L̂� ys T x � y x , t . 4.2.14Ž . Ž . Ž .ž /� x � x� xŽ .

The eigenmodes � of this operator satisfyn

ˆ 2L� x sy	 � x , 4.2.15Ž . Ž . Ž .n n n

where 	 is the corresponding eigenfrequency. A generalized Fourier seriesn
Ž .solution for � y x, t can then be constructed from these eigenmodes:

�

� y x , t s c t � x . 4.2.16Ž . Ž . Ž . Ž .Ý n n
ns1

ˆŽ . Ž .Since � x G0 and T x G0 on 0�x�L, L is a Sturm�Liouville operator with
eigenmodes that are orthogonal with respect to the inner product

L
f , g s � x f * x g x dx . 4.2.17Ž . Ž . Ž . Ž . Ž .H

0

Ž .Therefore, the time dependence of the Fourier amplitudes, c t , can be easilyn



4.2 BEYOND SEPARATION OF VARIABLES 281

Ž . Ž .determined in the usual way. Substitution of Eq. 4.2.16 into Eq. 4.2.11 yields

� � �2d 2ˆ� x c t s c t L� x qS x , t sy c t 	 � x qS x , t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý Ýn n n n n n n2dtns1 ns1 ns1

4.2.18Ž .

Ž .where in the last step we have applied Eq. 4.2.15 . We then extract a single ODE
Ž . Ž .for c t by taking an inner product of both sides of Eq. 4.2.18 with respect to � .n n

The result is

2 � , S x , tŽ .Ž .d n2c t sy	 c t q . 4.2.19Ž . Ž . Ž .n n n2 � , �Ž .dt n n

The general solution to this equation is

c t sA cos 	 tqB sin 	 tqc t , 4.2.20Ž . Ž . Ž .n n n n n pn

Ž . Ž .where c t is a particular solution to Eq. 4.2.19 .pn
A particular solution can be obtained in terms of the Green’s function for the

equation,

sin 	 t r	 , t�0,Ž .n ng t s 4.2.21Ž . Ž .½ 0, tF0

w Ž .xsee Eq. 2.3.77 . The particular solution is

� x , S x , tt Ž . Ž .Ž .n 0c t s g ty t dt . 4.2.22Ž . Ž . Ž .Hpn 0 0� , �Ž .0 n n

Ž . Ž . Ž . Ž .Combining Eqs. 4.2.16 , 4.2.20 , 4.2.22 , and 4.2.10 , we arrive at the general
solution to the wave equation in one spatial dimension, with arbitrary boundary
and initial conditions and an arbitrary source function:

�

y x , t su x , t q A cos 	 tqB sin 	 tqc t � x . 4.2.23Ž . Ž . Ž . Ž . Ž .Ý n n n n pn n
ns1

Any initial condition can be realized through appropriate choices of the constants
A and B . In order to determine the A ’s, we apply the initial condition thatn n n
Ž . Ž . Ž .y x, 0 sy x for some function y , and we evaluate Eq. 4.2.23 at the initial0 0

time,

�

y x , 0 su x , 0 q A � x sy x , 4.2.24Ž . Ž . Ž . Ž . Ž .Ý n n 0
ns1

Ž . Ž .where we have recognized that c 0 s0 according to Eq. 4.2.22 . The Fourierpn
coefficients are determined in the usual fashion, by taking an inner product of both
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sides of the equation with respect to � and using orthogonality of the eigen-n
modes:

� , y yu x , 0Ž .Ž .n 0A s . 4.2.25Ž .n � , �Ž .n n

The coefficients B can be found in a similar way, using the second initialn
� yŽ . Ž . Ž . Ž .condition on y x, t , that x, 0 s® x . According to Eq. 4.2.23 , the initial time0� t

rate of change of y is given by

�
� y �u �x , 0 s x , 0 q 	 B qc 0 � x s® x . 4.2.26Ž . Ž . Ž . Ž . Ž . Ž .Ý n n pn n 0� t � t

ns1

Taking the inner product with respect to � yieldsn

c� 0Ž .� , ®Ž . pnn 0B s y . 4.2.27Ž .n 		 � , �Ž . nn n n

Ž .Our general solution to the wave equation, Eq. 4.2.23 , satisfies the boundary
Ž .conditions, because u x, t is specifically chosen to satisfy these conditions and the

eigenmodes satisfy homogeneous conditions. The solution also satisfies the initial
conditions, since we have chosen the A ’s and B ’s to create a generalized Fouriern n
series that sums to the correct initial conditions.

Wave Energy There is no dissipation in the wave equation: the system oscillates
forever when excited. Therefore, we expect that energy is a conserved quantity,
provided that there are no time-dependent sources or boundary conditions.

One can separate out static sources or boundary conditions by subtracting out
the equilibrium solution to the string shape. The remaining perturbation satisfies

Ž .the general wave equation 4.2.9 with homogeneous boundary conditions and no
source. In this case energy conservation can be proven using the following

Ž .argument. Multiply both sides of this equation by � x � yr� t, and integrate over
the string length:

L 2 L� y � y � y 1 � � y
dx � x s dx � x T . 4.2.28Ž . Ž . Ž .H H2 ž /� t � t � x � x� xŽ .� t0 0

Ž .The integrals in Eq. 4.2.28 can be written as time derivatives. The left-hand
integral is

22L L �K t� y � y � � y Ž .1dx � x s dx � x s ,Ž . Ž .H H 22 ž /� t � t � t � t� t0 0

1L 2Ž . Ž .Ž .where K t sH dx � x � yr� t is the kinetic energy associated with the vibra-0 2

tions. Similarly, one can cancel the � ’s in the right-hand side and integrate by
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parts, using the homogeneous boundary conditions, to obtain

L L� y 1 � � y � y � � y
dx � x T x sy dx T xŽ . Ž . Ž .H Hž / ž /� t � x � x � x � x � t� xŽ .0 0

2L �U t� � y Ž .sy dx T x sy ,Ž .H ž /� t � x � t0

Ž . L Ž .Ž .2 Ž .where U t sH dx T x � yr� x . Then Eq. 4.2.28 implies that0

�
K t qU t s0, 4.2.29Ž . Ž . Ž .� t

so KqU is a constant of the string motion. Since K is the kinetic energy, we
Ž .identify U t as the potential energy of the system, and the quantity EsKqU as

the total energy.
The energy can also be written in terms of the normal modes of oscillation as

Ž . 2follows. Since y x, t is real, ysy* and we can write y sy*y, and similarly˙ ˙ ˙
Ž .2 Ž .Ž . Ž .� yr� x s � y*r� x � yr� x . If we substitute the Fourier expansion y x, t s
� Ž . Ž .Ý c t � x into the expressions for K and U, we find that E can be written asns1 n n

��� ��L1 1 n m� �Es c t c t � , � q c t c t dx T x ,Ž . Ž . Ž . Ž . Ž . Ž .˙ ˙ÝÝ Hn m n m n mž /2 2 � x � x0n m

where we have written the kinetic energy integral in terms of an inner product,
Ž .using Eq. 4.2.17 . Integrating by parts in the second term, we find that the integral

L � Ž .w Ž . x 2 Ž .can be written as yH dx � �r� x T x �� r� x s	 � , � , where we have0 n m m n m
Ž . Ž . Ž .used Eqs. 4.2.14 , 4.2.15 , and 4.2.17 . Then orthogonality of the eigenmodes

implies that the energy is

2 21 1 2� � � �Es c t q 	 c t � , � . 4.2.30Ž . Ž . Ž . Ž .˙Ý n n n n n2 2
n

Ž .Equation 4.2.30 shows that the total energy E is a sum over the energies E ofn
each normal mode, where

2 21 1 2� � � �E s c t q 	 c t � , � .Ž . Ž . Ž .˙n n n n n n2 2

One can see that E is the energy of a harmonic oscillator of frequency 	 andn n
Ž .effective mass � , � . Therefore, E is also a conserved quantity. This followsn n n

from the fact that each mode amplitude satisfies the harmonic oscillator equation
Ž . Ž .4.2.19 assuming no forcing . Thus, the total energy E is a sum of the energies
E , of each normal mode, each of which is separately conserved.n

Example 1: Temperature Oscillations Consider a slab of material of thickness L,
Ž .and with uniform thermal diffusivity � , initially at uniform temperature, T x, 0 s

Ž .T . The left-hand side of the slab at xs0 has fixed temperature, T 0, t sT ; but0 0
Ž .the right-hand side of the slab at xsL has an oscillating temperature, T L, t s
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T qT sin 	 t. Our task is to determine the evolution of the temperature within0 1 0
Ž .the slab of material, T x, t .

First, we write down the equation for T : it is the diffusion equation

�T � 2Ts� . 4.2.31Ž .2� t � x

The boundary conditions on the equation are of Dirichlet form,

T 0, t sT ,Ž . 0

T L, t sT qT sin 	 t ,Ž . 0 1 0

Ž .and the initial condition is T x, 0 sT . This information provides us with all we0
Ž .need to solve the problem. First, we put Eq. 4.2.31 into standard form by

Ž .choosing a function u x, t that satisfies the boundary conditions. We choose

x
u x , t sT q T sin 	 t . 4.2.32Ž . Ž .0 1 0L

Ž . Ž . Ž . Ž .We next write the solution for T x, t as T x, t su x, t q�T x, t , which implies
Ž .that �T x, t is determined by the PDE

2��T � �Ts� qS x , t , 4.2.33Ž . Ž .2� t � x

Ž . Ž .with homogeneous Dirichlet boundary conditions �T 0, t s�T L, t s0, and
where the source term is

2� u �u x
S x , t s� y sy 	 T cos 	 t . 4.2.34Ž . Ž .0 1 02 � t L� x

Next, we determine the eigenmodes of the spatial operator appearing in Eq.
ˆ 2 2Ž .4.2.33 , Ls� � r� x . These eigenmodes satisfy

� 2

� � x s� � x , 4.2.35Ž . Ž . Ž .n n n2� x

Ž . Ž .with homogeneous Dirichlet boundary conditions � 0 s� L s0. We haven n
already seen this eigenvalue problem several times, in Chapter 3. The eigenmodes
are

n� x
� x ssin , 4.2.36Ž . Ž .n L

and the eigenvalues are

2
� sy� n�rL , ns1, 2, 3, . . . . 4.2.37Ž . Ž .n
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Ž .Next, we construct a generalized Fourier series solution for the function �T x, t :

�T x , t s c t � x . 4.2.38Ž . Ž . Ž . Ž .Ý n n
n

Ž .Equations for each Fourier coefficient c t are determined by substituting Eq.n
Ž . Ž .4.2.38 into Eq. 4.2.33 , then taking an inner product with respect to � . Usingn

Ž . Ž .Eqs. 4.2.34 and 4.2.32 for the source function, we obtain

� , xrLŽ .� nc t s� c t y 	 T cos 	 t . 4.2.39Ž . Ž . Ž .n n n 0 1 0� t � , �Ž .n n

The inner products appearing in this equation can be evaluated analytically. Since
Ž .the medium is uniform, according to Eq. 4.2.15 these inner products are simply

integrals from xs0 to xsL:

Cell 4.9

�[n_____, x_____] = Sin[n Pi x/L];

Integrate[�[n, x] x/L, {x, 0, L}]/Integrate[�[n, x] ^̂̂̂̂2,
{x, 0, L}];

Simplify[%%%%%, ngIntegers]
2 (-1)n

-
n�

Ž .Thus, Eq. 4.2.39 becomes

n
2 y1� Ž .

c t s� c t q 	 T cos 	 t . 4.2.40Ž . Ž . Ž .n n n 0 1 0� t n�

The general solution to this ODE is given by a linear combination of a homoge-
neous and a particular solution.

There are two ways to proceed now. We can either simply apply DSolve to find
Ž .the solution to Eq. 4.2.40 , or we can write the particular solution in integral form

using the Green’s function for this first-order ODE:

n
t2 y1Ž .� t � Ž tyt .m mc t sA e q 	 T e cos 	 t dt .Ž . Hm m 0 1 0n� 0

The integration can be performed using Mathematica:

Cell 4.10

c[n_____, t_____] = A[n] e�[n]t +

n2 (-1) �[n] (t-t)FullSimplify[ 	 T Integrate[e Cos[	 t],0 1 0n�
{t, 0, t}]]

2 (-1)n T 	 (Sin[t	 ] 	 + (et�[n] - Cos[t	 ]) �[n])1 0 0 0 0t�[n]e A[n]+
2 2n�(	 q �[n] )0
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Ž .With this result, the solution for �T is obtained using Eq. 4.2.38 , keeping 20
terms in the sum over the Fourier modes:

Cell 4.11

M = 20;
�T[x_____, t_____] = Sum[c[n, t] �[n, x], {n, 1, M}];

Ž .However, �T x, t still depends on the Fourier coefficients A , which are deter-n
Ž .mined by matching to the initial condition. These initial conditions are �T x, 0 s

Ž . Ž . Ž . Ž .T x, 0 yu x, 0 sT yT s0. Thus, at ts0, we have that �T x, 0 sÝ A � x0 0 n n n
s0, so the solution for the A ’s is simply A s0:n n

Cell 4.12

A[n_____] = 0;

Ž . Ž .By adding the function u x, t to �T x, t , we obtain the full solution for the
temperature evolution:

Cell 4.13

u[x_____, t_____] = T + T Sin[	 t]x/L;0 1 0

T[x_____, t_____] = u[x, t] + �T[x, t];

The resulting function is displayed in Cell 4.14 as a series of plots. To evaluate this
function numerically, we must choose values for L, � , 	 , T , and T . We must0 0 1
also define the eigenvalues � . From these plots we can observe an interestingn
aspect of solutions to the heat equation with oscillatory boundary conditions: the
temperature oscillations at the boundary only penetrate a short distance into the
material, depending on the thermal diffusivity. The larger the diffusivity, the larger

Žthe penetration distance of the oscillations try increasing � by a factor of 4 in the
.above plots .

One can easily understand this intuitively: As the boundary condition oscillates,
heat flows in and out of the slab though the surface. In an oscillation period
�s2�r	 , the heat flows into the material only a certain distance, which grows0

Ž .'larger as � increases. We will see in Chapter 5 that this distance scales as �� .
In one half period, heat flows into the system, and in the next half period heat
flows back out. The net effect is to average out the oscillations, and so produce a
nearly time-independent temperature far from the surface.

Cell 4.14

�[n_____] = -� (n Pi/L)2;

L = 4; � = 1/8; 	 = 1; T = 2; T = 1;0 0 1

Table[Plot[T[x, t], {x, 0, L}, PlotRange™{{0, L}, {0, 3}},
AxesLabel™{"x", ""},
PlotLabel™"T[x, t], t=" <<<<<>>>>>ToString[t]], {t, 0, 15, .25}];
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This is why wine cellars are buried underground. Rock and dirt have a rather
low thermal diffusivity, so the temperature in a wine cellar remains nearly constant
from day to day, although the earth’s surface temperature oscillates considerably
from day to night and from season to season.

Example 2: Cracking the Whip In the previous example, the system was uniform,
so the eigenmodes were simply the usual trigonometric Fourier modes. Let us now
consider a nonuniform system for which the eigenmodes are not trigonometric.
This time we take an example from the wave equation, and consider a hanging
string of uniform mass density �. The string is fixed to the ceiling at zsL, but the
bottom of the string at zs0 can move freely.
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Ž .According to Eq. 3.1.1 the tension in such a string increases with height
Ž .according to T z s� gz. Therefore, transverse perturbations on the string satisfy

Ž .the nonuniform wave equation 3.1.7 :

� 2 � �
y z , t sg z y z , t . 4.2.41Ž . Ž . Ž .2 ž /� z � z� t

There is a regular singular point in this equation at zs0, because the tension
vanishes at the free end of the string. For this reason, as a boundary condition we

Ž .need only specify that y 0, t is finite. The other boundary condition is that the
Ž .string is fixed to the ceiling at zsL, so y L, t s0. These boundary conditions are

homogeneous, so the problem is already in standard form. Therefore, we can take
Ž .us0 and find the evolution of y z, t directly as a generalized Fourier series of

eigenmodes,

y z , t s c t � z . 4.2.42Ž . Ž . Ž . Ž .Ý n n
n

These eigenmodes satisfy

� � 2g z � z sy	 � z , 4.2.43Ž . Ž . Ž .n n nž /� z � z

Ž . Ž .with boundary conditions � L s0 and � 0 finite, where 	 is the eigenfre-n
Ž .quency. The general solution to Eq. 4.2.43 is in terms of Bessel functions:

z z
� z sAJ 2	 qBY 2	 . 4.2.44Ž . Ž .n 0 n 0 n( (ž / ž /g g

This can be verified using Mathematica:

Cell 4.15

DSolve[g D[z D[�[z], z], z] == -	2�[z], �[z], z]

' '2 z 	 2 z 	
{{�[z]™BesselJ[0, ] C[1] + BesselY[0, ] C[2]}}' 'g g

Since the function Y is singular at the origin, it cannot enter into the eigenmode.0
Ž . Ž . Ž .'The boundary condition � L s0 implies that � z sAJ 2	 Lrg s0. There-n 0 n

'fore, 2	 Lrg s j , the nth zero of J , so the eigenfrequencies aren 0, n 0

j g0, n	 s , 4.2.45Ž .'n 2 L

and the eigenfunctions are

'� x sAJ j zrL . 4.2.46Ž . Ž .Ž .n 0 0, n

A few of these eigenmodes are displayed in Cell 4.16.
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Cell 4.16

<<<<<<<<<< NumericalMath‘;
j0 = BesselJZeros[0, 5];
L = 3;

'plts = Table[ParametricPlot[{BesselJ[0, j0[[n]] z / L ], z},
{z, 0, L},

PlotRange™{{-1, 1}, {0, L}}, AspectRatio™L/2,
Axes™False,

DisplayFunction™Identity, PlotStyle™Hue[1/n]],
{n, 1, 5}];

Show[plts, DisplayFunction™$$$$$DisplayFunction]:

The lowest-frequency eigenmode is a sort of pendulum oscillation of the string
from side to side, which can be easily set up in a real piece of string. The
higher-order modes takes more work to view in a real string; one must oscillate the
top of the string at just the right frequency to set up one of these modes. However,
in Mathematica it is easy to see the modes oscillate, using an animation. In Cell
4.17 we show the ns2 mode. To make the display realistic-looking, we must try to
allow for the change in height of the bottom of the string during an oscillation.
This change in height occurs because the length of the string is fixed. When a
mode is present, the length is determined by an integral over length elements

2 2� y 1 � y2 2'dss dy qdz sdz 1q 	dz 1q .( ž / ž /� z 2 � z
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Ž .Thus, the fixed length L of the string determines the height z t of the bottom of0
the string, according to

2L L 1 � y
Ls ds, 1q z , t dzŽ .H H ž /2 � zŽ . Ž .z t z t0 0

2L1 1 � ysLyz t q z , t dz .Ž . Ž .H0 ž /2 2 � zŽ .z t0

For small z , we can replace the lower bound of the last integral by zero, obtaining0

2L1 1 � y
z t s z , t dz .Ž . Ž .H0 ž /2 2 � z0

Ž .The change in height of the string end is a nonlinear effect: z t varies as the0
square of the mode amplitude. Strictly speaking this effect goes beyond our
discussion of the linear wave equation. However, for finite-amplitude modes it can
be important to allow for this effect; otherwise the modes simply don’t look right.

The Mathematica commands in Cell 4.17 determine the height of the bottom of
Ž .the string, z t , for a given mode n with amplitude a. We then animate the mode,0

assuming that the change in height of the bottom of the string corresponds to a
Ž . Ž �wmode on a slightly shortened string, of the form y z, t ,a cos 	 t J j zy0 0, n

Ž .x w Ž .x41r2 . Ž .z t r Lyz t , z t �z�L. Of course, this is just a guess. To do this0 0 0
problem properly, we need to look for solutions to a nonlinear wave equation,
which takes us beyond the bounds of this chapter. Some aspects of nonlinear waves
will be considered in Chapter 7.

Cell 4.17

n = 2; (***** mode number *****)
L = 3; (***** length of string *****)
a = 1/2; (***** mode amplitude *****)

j0 = BesselJZeros[0, n];

z0[t_____] =
1 2 'Integrate[ a Cos[t] ^̂̂̂̂2 D[BesselJ[0, j0[[n]] z / L ], z] ^̂̂̂̂2,2

{z, 0, L};

Table[ParametricPlot[
Evaluate[{a Cos[t] BesselJ[0, j0[[n]]

x 4x'(z - z0[t])/(L - z0[t]) , z ,
{z, z0[t], L}, AspectRatio™L/2,
PlotRange™{{-1, 1}, {0, L}}, PlotStyle™Thickness[0.02],
PlotLabel->>>>>"n = "<<<<<>>>>>ToString[n]], {t, 0, 1.9 Pi, .1 Pi}];
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The reader is invited to reevaluate this cell for different values of the mode
number n.

We can use these modes to determine the evolution of an initial disturbance on
the string. Let’s assume that initially the string has a sharply peaked Gaussian

Ž . Ž . y40Ž zyL r2. 2
pulse shape y 0, t sy x se . We will also choose an initial velocity of0
the string consistent with this pulse traveling down the string. On a uniform string,

Ž . w Ž .xsuch a pulse would have the form ysy zqct see Eq. 3.1.26 , and this implies0
that � yr� tsc � yr� z. We will use this form for the initial condition of the
nonuniform string, taking

� y� y 0z , 0 sc z ,Ž . Ž .� t � z
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Ž . Ž .'where c z s gz is the nonuniform propagation speed on the string. Then we
Ž .know that the solution of Eq. 4.2.41 is

�

y z , t s A cos 	 tqB sin 	 t � z ,Ž . Ž . Ž .Ý n n n n n
ns1

Ž . Ž .with 	 and � given by Eqs. 4.2.45 and 4.2.46 . According to the Sturm�n n
Ž .Liouville form of Eq. 4.2.43 , different modes are orthogonal with respect to the

Ž . Linner product f , g sH f *g dz. Therefore, A and B are given in terms of this0 n n
Ž . Ž .inner product by Eqs. 4.2.25 and 4.2.27 . We evaluate the required inner

products in Cell 4.18 keeping Ms50 terms in the series solution, and we then plot
the result. Here we do not bother to try to allow for the change in height of the
string end during the evolution. The pulse travels toward the free end of the string,

Ž .where a whipcrack occurs. The propagation speed c x of the pulse decreases as it
approaches the free end, due to the decrease in the tension. Thus, the back of the
pulse catches up with the front, and as the pulse compresses, there is a buildup of
the amplitude that causes extremely rapid motion of the string tip.

The speed of the string tip can actually exceed the speed of sound in air
Ž .roughly 700 miles per hour, or 340 mrs , causing a distinctive whipcrack sound as
the string tip breaks the sound barrier. The velocity of the end of the string is
plotted in Cell 4.19 in the vicinity of the first whipcrack. This velocity is in units of
the maximum initial pulse amplitude per second.

Cell 4.18

<<<<<<<<<< NumericalMath‘;
M = 50;
g = 9.8;
L = 3;
j0 = BesselJZeros[0, M];
	[n_____] := j0[[n]] Sqrt[g/L]/2;
	[n_____, z_____] := BesselJ[0, j0[[n]] Sqrt[z/L]];

y0[z_____] = Exp[-(z - L/2) ^̂̂̂̂2 40];

dy0[z_____] = D[y0[z], z];

a = Table[NIntegrate[�[n, z] y0[z], {z, 0, L}]/
Integrate[�[n, z] ^̂̂̂̂2, {z, 0, L}], {n, 1, M}];

b = Table[NIntegrate[�[n, z] Sqrt[g z] dy0[z], {z, 0, L}]/
(Integrate[�[n, z] ^̂̂̂̂2, {z, 0, L}] 	[n]), {n, 1, M}];

y[z_____, t_____] = Sum[(a[[n]] Cos[	[n] t] +
b[[n]] Sin[	[n] t]) �[n, z], {n, 1, M}];

Table[ParametricPlot[Evaluate[{y[z, t], z]], {z, 0, L},
AspectRatio™1/2,
PlotRange™{{-L, L}, {0, L}}, Axes™False, PlotPoints™60,
PlotLabel™"y[z, t], t = "<<<<<>>>>>ToString[t] <<<<<>>>>>" sec"],

{t, 0, 2, .05}];
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Cell 4.19

Plot[Evaluate[D[y[0, t], t]], {t, 0.5, 1.}, PlotRange™All,
PlotLabel->>>>>"string tip velocity",
AxesLabel™{"t (sec)", ""}];

The plot shows that, for our Gaussian initial condition, an initial amplitude of 1
meter would theoretically produce a maximum tip speed that exceeds 300 mrs,
which would break the sound barrier. However, such large-amplitude disturbances
cannot be properly treated with our linear wave equation, which assumes small
pulse amplitudes. We have also neglected many effects of importance in the
motion of real whips, such as the effect of the pulse itself on the tension in the
whip, the elasticity and plasticity of the whip material, and the effect of tapering
the whip to small diameter at the tip end. The physics of whipcracks is, believe it
or not, still an active area of research. Interested readers can find several recent

Ž .references in the very clear paper by Goriely and MacMillan 2002 .
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EXERCISES FOR SEC. 4.2

( ) Ž1 Put the following problems defined on 0�x�1 into standard form if
.necessary and find a solution via a sum of eigenmodes:

�T � 2T �T �T x 4
( ) Ž . Ž . Ž .a s2 , 0, t s0, 1, t s1, T x, 0 s . Animate the solu-2� t � x � x 4� x

tion with a table of plots for 0� t�1.
�T �T � 2T y4 t( ) Ž . Ž . Ž .b s q , T 0, t s t e , T 1, t s0, T x, 0 s0. Animate the2� t � x � x

Žsolution with a table of plots for 0� t�1. Hint: You must put the
.spatial operator in Sturm�Liouville form.

� 2 � �( ) Ž . Ž . Ž . Ž . Ž .c y z, t s z y z , t , y z, 0 s0.25 1yz , y z, 0 s0, y 0, t sŽ . ˙2 ž /� z � z� t
Ž .y 1, t s0. Animate the solution with a table of plots for 0� t�4.

( ) Ž .2 When one cooks using radiant heat under a broiler, for example , there is a
heat flux � due to the radiation, incident on the surface of the food. On ther

Ž .other hand, the food is typically suspended on a grill or spit for example in
such a way that it cannot conduct heat very well to the environment, so that
little heat is reradiated. Under these conditions, find the time required to
raise the internal temperature of a slab of meat of thickness Ls5 cm from

Ž .Ts20�C to Ts90�C. Animate the solution for T x, t up to this time. Take
y7 2 6 Ž 3 .�s3�10 m rs, Cs3�10 Jr m K , and assume that both faces of the

2 Žmeat are subjected to the same flux of heat, equal to 10 kWrm a typical
.value in an oven .

( ) Ž .3 In a microwave oven, the microwave power P in watts is dissipated near the
food surface, in a skin depth � on the order of the wavelength of the
microwaves. The power density in the food falls off as S ey2 xr�, where x is0
the distance from the food’s surface.
( )a Assuming that all microwave power P is dissipated in a slab of meat, that

the meat has surface area A on each side of the slab, and the slab
thickness is everywhere much larger than �, find S in terms of P.0

( )b A slab of cold roast beef, thickness 10 cm and surface area per side
As5000 cm2, with initially uniform temperature Ts10�C, is placed in
the microwave. The microwave is turned on high, with a power Ps5
kW. Taking �s1 cm, and assuming that both faces of the meat are

Ž .heated equally, find T x, t and determine the time required to heat the
Ž .roast to at least Ts50 �C. Animate the solution for T x, t up to this

time. Take �s2�10y7 m2rs, and assume insulating boundary condi-
tions at the faces of the meat.

( )4 A child launches a wave on a skipping rope by flicking one end up and down.
The other end is held fixed by a friend. The speed of waves on the rope is
cs2 mrs, and the rope is 2 m long. The end held by the child moves

Ž . y50Ž ty0.2. 2
according to u xs0, t se , and at ts0 the rope is stationary,

� uŽ . Ž .u x, 0 s x, 0 s0. Solve the wave equation for this problem using eigen-� t

modes, and make an animation of the resulting motion of the rope for
0� t�1.5 s.
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( )5 A child rotates a skipping rope with a frequency of fs1 hertz. She does so
Ž .by applying a displacement to the end of the rope at zs0 of the form

Ž . Ž .r 0, t sa x cos 2� ftqy sin 2� ft , where as0.05 m. The tension in the ropeˆ ˆ
is Ts2 newtons. The mass per unit length is �s0.5 kgrm, and the length is

Ž .Ls3 m. The other end of the rope is tied to a door handle: r L, t s0. Find
Ž . Ž . Žthe solution for r t, z , assuming that initially the rope satisfies r z, 0 sa 1

. Ž . ŽyzrL x, r z, 0 s0, and neglecting gravity. Animate the solution using aˆ ˙
. . Žtable of ParametricPlot3D’s over the time range 0� t�5 s . Careful:

.there is an exact resonance.

( )6 A stiff wooden rod is fixed to the wall at xs0 and is free at the other end, at
ŽxsL. The rod vibrates in the x-direction these are compressional vibrations,

.or sound waves, in the rod . These compressional vibrations satisfy the wave
equation,

� 2 � 2
2� x , t sc � x , t ,Ž . Ž .2 2� t � x

where � is the displacement from equilibrium of an element of the rod in the
wx-direction, and where c is the speed of sound in the rod. This speed is given

Ž .in terms of Young’s modulus E, the mass density per unit length � , and the
2 xcross-sectional area A by c sEAr�. The boundary condition at the free

�� Ž . Ž .end is L, t s0, and at the fixed end it is � 0, t s0. Find the eigenmodes� x

and their frequencies. Plot the first three eigenmodes.

( )7 The horizontal wooden rod of the previous problem also supports transverse
Ž .displacements in the y-direction . However, these transverse displacements

Ž .y x, t satisfy a biharmonic wa®e equation,

� 2 D � 4

y x , t sy y x , t , 4.2.47Ž . Ž . Ž .2 4�� t � x

where Ds� a4Er4 for a cylindrical rod of radius a, and E is Young’s
w Ž . xmodulus. See Landau and Lifshitz 1986, Sec. 25 . The boundary condition

at the fixed end, xs0, is ys� yr� xs0. At the free end, xsL, the correct
boundary condition is

� 2 y � 3 ys s0.2 3� x � x

( )a Find the first three eigenfrequencies of the rod, and plot the correspond-
Žing eigenmodes. Hint: The eigenfrequencies satisfy a transcendental

equation. Solve this equation numerically using FindRoot, after choos-
.ing suitable dimensionless variables.

( )b Show numerically that these three eigenmodes are orthogonal with
respect to the integral HL dx.0

( )c Find and plot the equilibrium shape of the rod if it is subjected to a
uniform gravitational acceleration g in the yy-direction. How does the

wmaximum sag scale with the length L of the rod? You may wish to
Ž . xcompare this result with that obtained in Exercise 6 , Sec. 9.10.
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( )8 Sound waves are compressional waves that satisfy the wave equation

� 2 � 2
2� x , t sc � x , t , 4.2.48Ž . Ž . Ž .2 2� t � x

Ž .where � x, t is the displacement of a fluid element from its equilibrium
Žposition this displacement is in the x-direction, along the direction of the

.wave . In a gas the sound speed is given by the equation

'cs � prMM , 4.2.49Ž .

where p is the pressure of the equilibrium fluid, MM is the mass density, and
5Ž .� is the ratio of specific heats equal to for an ideal gas of point particles .3

( )a Find the speed of sound in an ideal gas consisting of helium atoms at 1
Žatmosphere and a temperature of 300 K. Recall that psnk T , where nB

.is the number density.
( )b A simple gas-filled piston consists of two flat parallel plates. One is fixed

at xsL, and the other oscillates according to xsa sin 	 t. The bound-0
ary conditions are determined by the fact that the gas adjacent to the
plates must move with the plates. Therefore,

� 0, t sa sin 	 t and � L, t s0Ž . Ž .0

Ž .provided that a is small . Solve for the motion of the gas between the
plates, assuming that the gas is initially stationary.

( )c Find the conditions on 	 for which secular growth of the sound wave0
Ž .occurs i.e., determine when there is an exact resonance .

( )9 Water collects in a long straight channel with a sloping bottom and a vertical
Ž .wall at xsa see Fig. 4.2 . The water depth as function of transverse position

Ž .x is h x s� x, 0�x�a, where � is a dimensionless constant giving the
slope of the channel bottom.
( )a Assuming that we can use the shallow-water equations, show that the

Ž . Ž .horizontal fluid displacement � x, t and wave height z x, t are related
by

� h x �Ž .
zsy 4.2.50Ž .� x

Ž .Fig. 4.2 Exercise 9 .
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and are determined by the wave equation

� 2 z x , t � � zŽ . 2s c x , 4.2.51Ž . Ž .2 ž /� x � x� t

Ž . 'where c x s gh x .Ž .
( )b Identify the proper boundary conditions for this problem, determine the

eigenmodes, and show that the frequencies 	 are given by solutions ton

'J 2	 �arg s0.Ž .1 n

1 2Find these frequencies for as10 m, �s , and gs9.8 mrs . Plot the4

wave height and horizontal fluid displacement associated with the first
Žthree eigenmodes of z. Hint: The horizontal fluid displacement does not

vanish at xs0: waves can move up and down the ‘‘beach’’ where the
wave depth vanishes. You can, of course, use Mathematica to help solve
the required differential equation for the spatial dependence of the

.modes.
( )c Find the inner product with respect to which these eigenmodes are

orthogonal, and solve the following initial-value problem, animating the
solution for wave height z for 0� t�3 sec:

z x , 0 s0.3 ey3Ž xy5. 2
, z x , 0 s0.Ž . Ž .˙

( ) ( )10 a Suppose that a tidal estuary extends from rs0 to rsa, where it meets
the open sea. Suppose the floor of the estuary is level, but its width is

Žproportional to a radial distance r a wedge-shaped estuary, like Moray
.Firth in Scotland; see Fig. 4.3 . Then using the same method as that

Ž . Ž .which led to Eq. 3.1.78 , show that the water depth z r, t satisfies the
following wave equation:

� 2 1 � �
zsgh r z ,2 ž /r � r � r� t

where g is the acceleration of gravity and h is the equilibrium depth.
ŽNote that no �-dependence is assumed: the boundary conditions along
the upper and lower sides of the estuary are von Neumann, so this

.�-independent solution is allowed.

Ž .Fig. 4.3 Exercise 10 .
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( )b The tidal motion of the open sea is represented by the following
Dirichlet boundary condition at the end of the estuary:

z a, t shqd cos	 t .Ž .

Find a bounded solution of the PDE that satisfies this boundary condi-
tion, along with the initial conditions

� y
y r , 0 shqd , r , 0 s0.Ž . Ž .� t

Assume that 	�	 , where 	 are the eigenfrequencies of the normaln n
modes.

( ) Ž .c Repeat part b , assuming that 	s	 , the lowest eigenfrequency.0

( ) ( )11 a Find how much energy it takes to pluck a uniform string of mass density
� and tension T , giving it a deformation of the form

ax , 0�x�Lr2,
y x sŽ .0 ½ a Lyx , Lr2�x�L.Ž .

( )b What fraction of the energy goes into each normal mode?

( ) Ž .12 A quantum particle is confined in a harmonic well of the form V x
1 2 2 Ž .s m	 x . Using the results of Eq. 4.1.32 for the eigenfunctions and the02

energy levels of the quantum harmonic oscillator, determine the evolution of
Ž . Ž . Ž .the particle wavefunction � x, t , starting with � x, 0 s� xyx . Animate0

Ž � � .2this evolution with a table of plots of � for 0.01� t�6, taking dimen-
sionless units ms	 s�s1.0

( )13 A thick rope of length L and with mass per unit length � is spliced at xs0
to a thin rope of the same length L with mass per length �. The ropes are
tied to posts at xs�L and subjected to uniform tension T. Analytically find
the form and the frequency of the first three eigenmodes of this composite

Žrope. Plot the eigenmodes, assuming that �s�r4. Hint: Match separate
trigonometric solutions for the modes across the splice. To do so, consider
the mass elements in the two ropes that are adjacent to one another at the
splice. According to Newton’s third law, the forces of each element on the
other must be equal and opposite. What does this say about the angle � each

w Ž . x.element makes with the horizontal? See Fig. 3.3 and Eq. 3.1.5 .

( )14 A nonuniform rope is stretched between posts at xs0 and xsL, and is
subjected to uniform tension T. The mass density of the rope varies as

Ž .4�s� Lrx . Find the eigenmodes and eigenfrequencies for this rope. Plot0
the first three eigenmodes.

( )15 A hanging string is attached to the ceiling at zsL and has uniform mass
density � and nonuniform tension due to the acceleration of gravity g. To the
end of the rope at zs0 is attached a mass m. The string motion is described
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Ž .by the function y z, t as it moves in the y-z plane, and the mass also moves
Ž . Ž .in y with position Y t sy 0, t .

( )a Find the equations of motion of this coupled mass�string system, and
find the eigenmodes of the system. Determine and plot the first three

Žeigenmodes numerically for the case where ms2�L. Hint: The string
eigenmodes satisfy a mixed boundary condition at zs0, obtained by
considering the horizontal acceleration of the mass due to the string

.tension.
( )b Show numerically that the eigenmodes are orthogonal with respect to the

L Ž . Ž . Ž .inner product H � z dz, where � z s�qm� z .0

( )16 An initially straight, horizontal rope of mass M, length 2 L, and tension T
runs from xsyL to xsL. A mass m is placed on the center of the rope at
xs0. The gravitational force causes the rope to sag, and then bounce up and

Ž . Ž .down. Call the vertical position of the mass Y t , and of the rope y x, t . The
point of the problem is to study the motion of this coupled mass�string
system.
( )a Assuming that the rope takes on a triangular shape as it is depressed by

the mass, and neglecting the mass of the rope itself, find the restoring
force on the mass and show that the mass oscillates sinusoidally about an

w'equilibrium position yy at a frequency of 2TrmL . We found y ineq eq
Ž . xExercise 11 of Sec. 3.1.

( )b In fact, the rope does not have a triangular shape during the motion. We
will now do this problem properly, expanding in the eigenmodes of the

Ž . Ž .system. Using symmetry, we expect that y yx, t sy x, t during the
motion, so we solve only for the motion in the range 0�x�L. Show that

Ž . Ž .the string is described by ysy x q� y x, t , where y is the equilib-eq eq
Ž .rium string displacement due to gravity including the effect of the mass ,

and � y is the deviation from equilibrium, described by a superposition
Ž . w Ž . xof eigenmodes of the form � x ssin 	 Lyx rc , where the eigenfre-n n
Ž . Ž .quencies satisfy the equation 	 Lrc tan 	 Lrc sMrm.n n

( )c For Mrms2 find the first 10 eigenmodes numerically, and show that
L Ž .they are orthogonal with respect to the inner product H � x dx, where0

Ž . Ž . Ž� x s�qm� x r2 the factor of two arises because only half the mass
.is supported by the right half of the string .

( ) Ž .d Using these eigenmodes, find and plot Y t for 0� t�20 s, assuming
that the string is initially straight and that the mass starts from rest at
Ys0. Take Ls1 m, msMs0.5 kg, gs0.3 mrs2, and Ts0.25 N.

( )e Sometimes the mass does not quite make it back to Ys0 during its
motion, and sometimes it actually gets to y�0. This is in contrast with

Ž .the sinusoidal oscillation found in part a . Why is the energy of the mass
not conserved?

( )f Write an expression for the total energy as a sum over the eigenmodes
˙Ž . Ž .and the energy of the mass, involving its position Y t and velocity Y t .

Show directly that this energy is conserved in your simulation by evaluat-
ing it as a function of time.
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( )17 In a bow, a bowstring under tension T with length 2 L carries a mass m at its
center. The mass is pulled back a distance d�L, and released, starting from
rest. Use energy conservation to determine the speed of the mass as it leaves
the string, assuming that the string takes on a triangular shape at all times

Žduring its motion. Hint: At some point the mass comes off the string. You
.will need to identify this point.

( )18 Repeat the previous exercise, but do it properly, using the eigenmode
Ž .approach of Exercise 16 . Solve the equations of motion numerically, keep-

Ž .ing 20 modes, using the same parameters in Exercise 16 , and taking ds10
Ž .cm. Compare the final energy of the mass with that obtained in Exercise 17 .

( ) Ž .19 a A sound oscillation in a cubic enclosure of length Ls1m and volume
3 Ž . Ž . Ž .Vs1 m has the form � x, t s� sin � xrL cos 	 t , where 	sc�rL,0

cs340 mrsec, and the maximum displacement � of the air is 0.1 mm.0
Ž . Ž . Ž . 3 2Ž .Find the kinetic energy K t in Joules , where K t sH d r MM� x, t ,˙V

and MM is the mass density of air at atmospheric pressure.
( ) Ž .b Find the potential energy U t in Joules, and find the total energy in this

w Ž . xsound oscillation. Hint: Sound waves satisfy Eq. 4.2.48 .

4.3 POISSON’S EQUATION IN TWO AND THREE DIMENSIONS

4.3.1 Introduction. Uniqueness and Standard Form

Poisson’s equation is the following partial differential equation:

�2�sy�r� . 4.3.1Ž .0

The constant � s8.85 . . . �10y12 Frm is the permittivity of free space. This PDE0
Ž . Ž .determines the electrostatic potential � r measured in volts within a specified

Ž . Ž .volume, given a charge density � r in coulombs per cubic meter and boundary
Ž .conditions on � at the surface S of the volume see Fig. 3.8 . The boundary

Žconditions are either Dirichlet, von Neumann, or mixed see the introduction to
.Sec. 3.2 for a description of these boundary conditions .

Ž .For Dirichlet and mixed boundary conditions, the solution of Eq. 4.3.1 exists
and is unique. The proof of uniqueness is the same as that given for the Laplace
equation in Sec. 3.2.1. Existence will be shown by construction in Sec. 4.3.2.

� Ž .However, for the von Neumann conditions that n ��� sE r , the solution forˆ S 0
Ž .� is unique only up to an additive constant: if � satisfies eq. 4.3.1 with von

Neumann conditions, then �qC also satisfies it. Also, for von Neumann boundary
conditions, a solution only exists if the boundary conditions are consistent with
Gauss’s law,

n ��� d 2 rsyQ r� , 4.3.2Ž .ˆH enc 0
S

where Q sH � d 3r is the charge enclosed by the domain. Gauss’s law is merelyenc V
Ž .the integral form of Eq. 4.3.1 , obtained by applying the divergence theorem to
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wthis equation. An analogous result was obtained for the Laplace equation see Eq.
Ž .x3.2.3 .

Ž .In order to solve Eq. 4.3.1 , we first put the PDE in standard form, by
converting the inhomogeneous boundary conditions to a source function, just as we
did for the wave and heat equations. That is, we write

� r s�� r qu r , 4.3.3Ž . Ž . Ž . Ž .

Ž .where u r is a function chosen to match the boundary conditions. The remainder,
Ž .�� r , then satisfies Poisson’s equation with a new source,

2� ��sy�r� , 4.3.4Ž .0

where

2�s�q� � u. 4.3.5Ž .0

The boundary conditions on �� are homogeneous conditions of either Dirichlet,
von Neumann, or mixed type.

Ž .The choice for u r is arbitrary, but, as always, the simpler the choice, the
better. Sometimes it is convenient to choose u to satisfy Laplace’s equation
�2 us0. As we will see in Sec. 4.3.4, this choice for u is particularly useful if
�s0, or if the inhomogeneous boundary conditions are rapidly varying. Tech-
niques specific to the solution of Laplace’s equation were developed in Sec. 3.2.

4.3.2 Green’s Function

Ž .Equation 4.3.4 can be solved using a Green’s function. The Green’s function
Ž .g r, r satisfies0

�2 g r, r s� ryr , 4.3.6Ž . Ž . Ž .r 0 0

where the subscript r on �2 is placed there to remind us that the derivatives in ther
Laplacian are with respect to r rather than r . The boundary conditions on g are0
the same homogeneous boundary conditions required for ��. The vector �-func-

Ž . Ž .tion in Eq. 4.3.6 � ryr , is a �-function at a point in space, i.e.,0

� ryr s� xyx � yyy � zyz . 4.3.7Ž . Ž . Ž . Ž . Ž .0 0 0 0

Ž .One can see that this Green’s function g r, r is simply the potential at position r0
produced by a point charge at position r with ‘‘charge’’ y� . In free space, with0 0
the boundary condition that the potential equals zero at infinity, we know that this
Green’s function is simply the 1rr Coulomb potential:

1
g r, r sy . 4.3.8Ž . Ž .0 � �4� ryr0

However, when the potential andror its normal derivative is specified on a finite
bounding surface S, the Green’s function is more complicated because of image
charges induced in the surface.
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Ž .Assuming that the Green’s function has been determined, the potential �� r
Ž .can then be obtained using a multidimensional version of Eq. 2.4.30 :

1 3�� r sy g r, r � r d r , 4.3.9Ž . Ž . Ž . Ž .H 0 0 0�0 V

Ž .where the volume integral extends over the volume V. To prove Eq. 4.3.9 , we
2 Ž .simply apply the Laplacian � to each side, and using Eq. 4.3.6 we haver

� r1 1 Ž .2 2 3 3� �� r sy � g r, r � r d r sy � ryr � r d r sy .Ž . Ž . Ž . Ž . Ž .H Hr r 0 0 0 0 0 0� � �0 0 0V V

4.3.10Ž .

Also, the homogeneous boundary conditions for �� are satisfied, because these
same boundary conditions apply to g. For example, if the boundary conditions are

Ž .Dirichlet, then gs0 for any point r on the surface S, and then Eq. 4.3.9 implies
that ��s0 on S as well.

Ž . Ž .Equation 4.3.10 has a simple physical interpretation: since yg r, r r� is the0 0
potential at r due to a unit charge at position r , we can use the superposition0
principle to determine the total potential at r by superimposing the potentials due
to all of the charges. When the charges form a continuous distribution �, this sum

Ž .becomes the integral given in Eq. 4.3.10 . If the charges are discrete, at positions
r , each with charge e , then the charge density � is a sum of �-functions,j j

N

� r s e � ryr ,Ž . Ž .Ý j j
js1

Ž .and Eq. 4.3.9 implies that this collection of discrete charges produces the
following potential:

N ej
�� r sy g r, r . 4.3.11Ž . Ž . Ž .Ý j�0js1

4.3.3 Expansion of g and � in Eigenmodes of the Laplacian Operator

Ž .The Green’s function can be determined as an expansion in eigenmodes � r of�

the Laplacian operator. These eigenmodes are functions of the vector position r,
and are defined by the eigenvalue problem

�2� r s� � r . 4.3.12Ž . Ž . Ž .� � �

This PDE, the Helmholtz equation, is subject to the previously described homoge-
Ž .neous boundary conditions. Each eigenfunction � r has an associated eigenvalue�

� . The subscript � is merely a counter that enumerates all the different modes.�

ŽWe will see presently that this counter can be represented as a list of integers that
.take on different values for the different modes.
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These eigenmodes form a complete orthogonal set with respect to the following
inner product:

f , g s f * r g r d 3r . 4.3.13Ž . Ž . Ž . Ž .H
V

The proof is straightforward, given what we already know about eigenmodes of
Hermitian operators. All we need do is show that the Laplacian operator is
Hermitian with respect to the above inner product and with respect to functions
that satisfy homogeneous boundary conditions. We may then apply Theorems 4.1

Žand 4.2 there is nothing in the proofs of these theorems that limits the operators
.in question to ODE operators, as opposed to PDE operators .

In order to show that �2 is Hermitian, consider the following quantity:

f ,�2 g s f * r �2 g r d3r .Ž . Ž .Ž . H
V

By application of Green’s theorem, this inner product can be written as

2 � 2 3f ,� g sn � f *�gyg�f * q g r � f * r d r .Ž . Ž . Ž .Ž . ˆ HS
V

However, the surface term on the right-hand side vanishes for homogeneous
boundary conditions of the Dirichlet, von Neumann, or mixed type, and the

Ž 2 . 2volume term is g,� f *. This proves that � is Hermitian, and therefore the
eigenmodes of �2 form a complete, orthogonal set with respect to the inner

Ž .product of Eq. 4.3.13 .
We can use the eigenmodes to express the Green’s function as a generalized

Fourier series:

g r, r s c � r . 4.3.14Ž . Ž . Ž .Ý0 � �
�

Ž .The Fourier coefficients c are obtained by substituting Eq. 4.3.14 into Eq.�

Ž .4.3.6 :

c �2� r s� ryr .Ž . Ž .Ý � r � 0
�

If we then take an inner product of the equation with respect to one of the
Ž . Ž .eigenmodes, � r , and apply Eq. 4.3.12 , we obtain�

c � � , � s � r , � ryr s�� r ,Ž . Ž . Ž .Ž . Ž .Ý � � � � � 0 � 0
�

Ž . Ž . Ž .where in the last step we used Eqs. 4.3.7 , 4.3.13 , and 2.3.29 . However,
orthogonality of the eigenmodes implies that the only term in the sum that survives
is the one for which �s� , which allows us to extract a single Fourier coefficient:

�� rŽ .� 0
c s . 4.3.15Ž .� � � , �Ž .� � �
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Ž . Ž .Applying Eq. 4.3.15 to 4.3.14 , we arrive at an eigenmode expansion for the
Green’s function:

�� r � rŽ . Ž .� 0 �g r, r s . 4.3.16Ž . Ž .Ý0 � � , �Ž .� � ��

Ž .Equation 4.3.16 is a general expression for the Green’s function of the Poisson
equation, and is called the bilinear equation. A similar expression can be obtained
for the Green’s function associated with any linear boundary-value problem. This

Ž .equation can be used in Eq. 4.3.9 to determine the potential �� from an
Ž .arbitrary charge distribution � r :

� , �Ž .1 ��� r sy � r , 4.3.17Ž . Ž . Ž .Ý �� � � , �Ž .0 � � ��

where we have converted the volume integral over r to an inner product using Eq.0
Ž .4.3.13 .

Ž .Equation 4.3.17 is a generalized Fourier series for the potential �� due to a
charge density �. It applies to any geometry, with arbitrary homogeneous boundary
conditions. Inhomogeneous boundary conditions can be easily accommodated

Ž . Ž .using Eqs. 4.3.3 and 4.3.5 . The only outstanding issue is the form of the
Ž .eigenmodes � r and their associated eigenvalues � .� �

Ž .It appears from Eq. 4.3.17 that a solution for the potential can always be
constructed. On the other hand, we already know that the solution does not

Ž .necessarily exist; boundary conditions must satisfy Gauss’s law, Eq. 4.3.2 . In fact,
Ž .Eq. 4.3.17 only works if the eigenvalues � are not equal to zero. For Dirichlet�

and mixed boundary conditions, it can be proven that this is actually true: � �0�

for all modes. The proof is simple: if some � s0, then the corresponding�

eigenmode satisfies �2� s0, with homogeneous Dirichlet or mixed boundary�

conditions. However, we proved in Sec. 3.2.1 that this problem only has the trivial
solution � s0. Therefore, the solution to Poisson’s equation with Dirichlet or�

mixed boundary conditions always exists.
On the other hand, for the homogeneous von Neumann boundary conditions

n ��� s0, the following eigenfunction satisfies the boundary conditions: � s1.ˆ � 0
This eigenfunction also satisfies �2� s0, so the corresponding eigenvalue is0
� s0.0

For von Neumann boundary conditions, a solution can only be obtained if the
Ž . Ž .function � satisfies � , � s0, so that the � term in Eq. 4.3.17 can be dropped0 0

3and division by zero can be avoided. This inner product implies H � d rs0. UsingV
Ž .Eq. 4.3.5 and applying the divergence theorem, this equation can be shown to be

the same as our previous condition for the existence of a solution, namely, Gauss’s
Ž .law, Eq. 4.3.2 .

4.3.4 Eigenmodes of � 2 in Separable Geometries

Ž .Introduction In order to apply the generalized Fourier series, Eq. 4.3.17 , for
the potential within a specified domain V due to a given charge density and
boundary condition on the surface of V, we require the eigenmodes of �2 in this
domain. For certain domain geometries, these eigenmodes can be determined
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analytically, using the method of separation of variables. We will consider three
such geometries in the following sections: rectangular, cylindrical, and spherical
domains. These by no means exhaust the possibilities: using separation of vari-

wables, analytic eigenmodes can be found in 11 different coordinate systems. See
Ž . xMorse and Feshbach 1953, Chapter 5 for a full accounting.

Rectangular Geometry

Rectangular Eigenmodes. We first solve for the eigenmodes of �2 in a rectangu-
lar domain, as shown in Fig. 4.4. We will assume that the eigenmodes satisfy

�homogeneous Dirichlet boundary conditions at the surface of the domain, � s0.S
In physical terms, we are considering the z-independent eigenmodes inside a long
grounded conducting tube with rectangular cross section.

Applying the method of separation of variables, we assume that a solution for
Ž .an eigenmode � x, y can be found in the form�

� x , y sX x Y y 4.3.18Ž . Ž . Ž . Ž .�

Ž . Ž .for some functions X and Y. If we substitute Eq. 4.3.18 into Eq. 4.3.12 and
divide the result by � , we obtain�

1 d 2 X 1 d 2 Yq s� . 4.3.19Ž .�2 2X x Y yŽ . Ž .dx dy

Introducing a separation constant yk 2, this equation is separated into the two
ODEs

1 d 2 X 2syk , 4.3.20Ž .2X xŽ . dx

1 d 2 Y 2s� qk . 4.3.21Ž .�2Y yŽ . dy

Boundary conditions for each ODE follow from the Dirichlet condition for each

Fig. 4.4 Domain for eigenmodes in rectangular geometry
with Dirichlet boundary conditions.
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�eigenmode, � s0:� S

X 0 sX a sY 0 sY b s0. 4.3.22Ž . Ž . Ž . Ž . Ž .

Ž . Ž .With these homogeneous boundary conditions, Eqs. 4.3.20 and 4.3.21 can be
Ž .recognized to be separate eigenvalue problems. The solution to Eq. 4.3.20 is

ksn�ra, 4.3.23Ž .
n� x

X x ssin , ns1, 2, 3, . . . , 4.3.24Ž . Ž .a

Ž .and the solution to Eq. 4.3.21 is

m� y
Y y ssin , ms1, 2, 3, . . . , 4.3.25Ž . Ž .b

2 Ž .2 Ž .with eigenvalues given by � qk sy m�rb . Using Eq. 4.3.23 , this implies�

2 2n� m�
� sy y , ms1, 2, 3, . . . , ns1, 2, 3, . . . . 4.3.26Ž .� ž / ž /a b

Ž .Thus, the Dirichlet eigenfunction � x, y in rectangular geometry is a product of�

sine functions:

n� x m� y
� x , y ssin sin , ms1, 2, 3, . . . , ns1, 2, 3, . . . , 4.3.27Ž . Ž .� a b

Ž .with an eigenvalue given by Eq. 4.3.26 . Different eigenfunctions and eigenvalues
are selected by choosing different values for the positive integers m and n.
Therefore, the counter � , which we have used to enumerate the eigenmodes, is

Ž .actually a list: �s m, n .
The eigenmodes clearly form a complete orthogonal set with respect to the

inner product Ha dxH b dy, as a consequence of the known orthogonality and0 0
completeness properties of the sine functions in a Fourier sine series. This is
expected from the general arguments made in Sec. 4.3.3.

Example 1: Solution of Poisson’s Equation with Smooth Boundary Conditions As
an example, consider the case where the charge density �s� , a constant, and the0

Ž .walls of the enclosure are grounded, except for the base at ys0, where � x, 0 s
Ž .� x ayx , where � is a constant.

Ž . Ž .In order to put Poisson’s equation into standard form, Eqs. 4.3.3 and 4.3.4 ,
Ž .Ž .we simply take us� x ayx 1yyrb . This function satisfies the boundary condi-

tions on all four sides of the rectangle.
Ž . Ž .According to Eq. 4.3.17 and 4.3.4 , we require the inner product

a b �2 2� , � r� q� u s dx dy� � r� q� u .Ž . Ž .H Hm n 0 0 m n 0 0
0 0

We can use Mathematica to evaluate this inner product:



4.3 POISSON’S EQUATION IN TWO AND THREE DIMENSIONS 307

Cell 4.20

u[x_____, y_____] = �x(a-x) (1-y/b);

m�y n�x
�[m_____, n_____] = Integrate[Sin[ ] Sin[ ]

b a

(� /� + D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}]),0 0

{x, 0, a}, {y, 0, b}];

�[m_____, n_____] = Simplify[�[m, n], mgIntegers&&&&&&&&&& ngIntegers]

2n� m2 a b Sin (2 � � + (-1 + (-1) )� )0 02
-

2mn� �0

Ž . Ž .Also, the inner product � , � equals abr4. The solution for � x, y , Eqs.� �

Ž . Ž .4.3.17 and 4.3.3 , is plotted in Cell 4.21, taking asbs1 meter, � r� s3�s10 0
Vrm2. This corresponds to a charge density of � s8.85�10y12 Crm3. We keep0
only the first nine terms in each sine series, since each series converges quickly.
The potential matches the boundary conditions, and has a maximum in the interior
of the domain due to the uniform charge density.

Cell 4.21

a = 1; b = 1;
� = � ; � = 1/3;0 0

n� 2 m� 2

�[m_____, n_____] = - - ;ž / ž /a b

n�x m�y
9 9 �[m, n] Sin Sin

a b
�[x_____, y_____] = - + u[x, y];Ý Ý 1�[m, n] a b4m=1 n=1

Plot3D[�[x, y], {x, 0, a}, {y, 0, b},
AxesLabel™{"x", "y", ""},
PlotLabel™"� in a charge-filled square enclosure"];
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Fig. 4.5

Example 2: Solution of Laplace’s Equation with Rapidly Varying Boundary Condi-
tions In this example, we choose a case with no charge density, so that we are
looking for the solution of Laplace’s equation �2�s0. For boundary conditions,
we take �s0 on three sides, but on the right side of the box at xsa, we take
Ž . Ž . Ž . Ž .� a, y s� h yybr3 h 2br3yy , where h y is a Heaviside step function. In0

other words, the center third of the right side of the box wall is at potential � , but0
Ž .the rest of the box is grounded. See Fig. 4.5.

This is a case where it is best to solve the Laplace equation directly using the
methods outlined in Sec. 3.2.2. To see why this is so, let us instead put the problem

Ž .into standard form by choosing some function u x, y that matches the boundary
w Ž .conditions. There are many choices we could make see Exercise 6 at the end of

x Ž .this section ; one simple choice which does not work very well is

b 2b x
u x , y s� h yy h yy . 4.3.28Ž . Ž .0 ž / ž /3 3 a

Ž . Ž .Then, according to Eqs. 4.3.2 and 4.3.17 , the solution to the problem is given by
the following eigenmode expansion:

� 2� ,� uŽ .m n
� x , y su x , y y � x , y , 4.3.29Ž . Ž . Ž . Ž .Ý m n� � , �Ž .m n m n m nm , ns1

Ž . Ž .where the eigenfunctions and eigenvalues are given by Eqs. 4.3.27 and 4.3.26 .
2 .The inner product � ,� u can be evaluated directly, but because u is discontin-m n

uous it is best to do so by first applying two integrations by parts in the y-integral:

a 2 a 2� �b b� u m n2� ,� u s dx dy� s dx dy u . 4.3.30Ž .Ž . H H H Hm n m n 2 2� y � y0 0 0 0

Ž . 2 2In the first step, we used the fact that Eqs. 4.3.28 implies � ur� x s0, and in
the second step we integrated by parts twice, and dropped the boundary terms
because u and its derivatives vanish at ys0 and ysb. The integrals in Eq.
Ž .4.3.30 can then easily be performed using Mathematica:
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Cell 4.22

Clear["Global‘*****"];

u[x_____, y_____] = � UnitStep[y-b/3] UnitStep[2 b/3-y] x/a;0

�[m_____, n_____, x_____, y_____] = Sin[n Pi x/a] Sin[m Pi y/b];
�[m_____, n_____] =

FullSimplify[Integrate[u[x, y] D[�[m, n, x, y], {y, 2}],
{x, 0, a}, {y, 0, b}],

b >>>>> 0&&&&&&&&&&m>>>>> 0&&&&&&&&&& n >>>>> 0&&&&&&&&&& mgIntegers &&&&&&&&&& ngIntegers]

m� 2m�n(-1) a m Cos - Cos �0ž /3 3

b n

In Cell 4.23, we plot the solution for a 1-meter-square box and � s1 volt,0
keeping Ms30 terms in the sums. There is a rather large Gibbs phenomenon

Ž . Ž .caused by the discontinuities in our choice for u x, y , Eq. 4.3.28 . This Gibbs
phenomenon extends all the way into the interior of the box, as can be seen in Cell

14.24 by looking at � along the line xs .2

Cell 4.23

a = b = � = 1;0

M = 30;

n� 2 m� 2

�[m_____, n_____] = - - ;ž / ž /a b

M M �[m, n] �[m, n, x, y]
�[x_____, y_____] = - + u[x, y];Ý Ý 1

m=1 n=1 �[m, n] a b
4

Plot3D[�[x, y], {x, 0, a}, {y, 0, b},
AxesLabel™{"x", "y", ""},
PlotLabel™"� in a square enclosure", PlotRange™All,

PlotPoints™30];
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Cell 4.24

Plot[�[1/2, y], {y, 0, b}];

This is not a very good solution. One can see that the solution is ‘‘trying’’ to be
Ž . wsmooth, but the discontinuities in u x, y are creating problems. A better choice

Ž . xfor u can be found in Exercise 6 at the end of the section.
Let’s now compare this solution with the direct solution of Laplace’s equation

Ž .for this problem, as given by Eq. 3.2.10 :

n� x n� y
� x , y s A sinh sin . 4.3.31Ž . Ž .Ý n b b

n

Ž . Ž .We can already observe one striking difference between Eqs. 4.3.31 and 4.3.29 .
Ž .The eigenmode expansion, Eq. 4.3.29 , involves two sums, one over linearly

independent eigenmodes in x and the other over independent modes in y.
Ž .However, the direct solution of Laplace’s equation, Eq. 4.3.31 , involves only one

Ž . Ž .sum. This is because in the direct solution, the sin n� yrb and sinh n� xrb
functions are not independent; they are connected by the fact that the product of
this pair of functions directly satisfies Laplace’s equation.

Ž . Ž .Although Eqs. 4.3.31 and 4.3.29 are formally identical, the fact that one
Ž .fewer sum is required in Eq. 4.3.31 is often a great practical advantage. Further-

more, for rapidly varying boundary conditions, we have seen that the eigenmode
expansion does not converge well. We will now see that the direct solution works
nicely.

Ž .The Fourier coefficients A in Eq. 4.3.31 are given byn

bn� a 2 b 2b n� y
A sinh s � h yy h yy sin dyHn 0 ž / ž /b b 3 3 b0

2br32 n� ys � sin dy. 4.3.32Ž .H0b bbr3
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In Cell 4.25, we evaluate A using Mathematica and calculate the direct solutionn
Žfor the potential, again taking Ms30 this involves a sum of 30 terms, as opposed

.to the 900 terms in the sums for the previous eigenmode method . This solution is
much better behaved than the previous eigenmode expansion. There is still a
Gibbs phenomenon near the wall due to the discontinuity in the potential there,
but by the time one reaches the middle of the box these oscillations are no longer
apparent, as seen in Cell 4.26.

Cell 4.25

a = b = � = 1;0

M = 30;
A[n_____] =

Simplify[2/b � Integrate[Sin[n Pi y/b], {y, b/3, 2 b/3}],0

n g Integers] Sinh[n Pi a/b];

M

�[x_____, y_____] = A[n] Sinh[n Pi x/b] Sin[n Pi y/b];Ý
n=1

Plot3D[�[x, y], {x, 0, a}, {y, 0, b}, AxesLabel™{"x", "y", ""},
PlotLabel™"� in a square enclosure", PlotRange™All,
PlotPoints™30];

Cell 4.26

Plot[Evaluate[{�[1, y], �[1/2, y]}], {y, 0, 1},
PlotLabel™"Potential along x=1/2 and x=1",
AxesLabel™{"y", ""}];
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In summary, we have found that for potential problems with sharply varying
boundary conditions, choosing an arbitrary function u that satisfies the boundary
conditions and expanding the remainder in eigenmodes does not work very well.
Rather, we found that it is better to use the direct solution of Laplace’s equation,
discussed in Sec. 3.2, to allow for the inhomogeneous boundary conditions.

It is possible to circumvent some of the problems with the eigenmode expansion
w Ž . xmethod by careful choice of u see Exercise 6 at the end of the section .

Nevertheless, we still recommend the direct solution for most applications with
discontinuous boundary conditions, in view of its relative simplicity compared to
the eigenmode expansion method.

On the other hand, for smoothly varying boundary conditions, the eigenmode
expansion technique works quite well, as saw in our first example. When nonzero
charge density � is present, this method has the important advantage that a
separate solution to the Laplace equation need not be generated; rather, an

Ž .arbitrary but smoothly varying function u can be chosen to match the boundary
conditions.

The situation is summarized in Table 4.1.

Cylindrical Geometry

Cylindrical Eigenmodes. Eigenmodes of �2 can also be determined analytically
inside a cylindrical tube. The tube has radius a and length L, and is closed at the

�ends. We again assume Dirichlet boundary conditions for the eigenmodes, � s0.S

Table 4.1. Pros and Cons of Different Choices for u
2Arbitrary Choice of u u Satisfies � us0

Pro No need to solve Laplace equation Always works,
efficient if �s0

Con Does not work well for rapidly If ��0, must solve both
varying boundary conditions unless Laplace equation for u
care is taken in choice of u and Poisson equation for ��
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We look for eigenmodes of the form

� r , � , z sR r � � Z z . 4.3.33Ž . Ž . Ž . Ž . Ž .�

Ž . Ž 2 .Applying Eq. 4.3.33 to the eigenmode equation � � r� s� yields� � �

1 � �R 1 � 2� 1 � 2Z
r q q s� . 4.3.34Ž .�2 2 2ž /� r � rrR r Z zŽ . Ž .r � � �� � zŽ .

This equation can be separated into three ODEs in the usual way, using two
separation constants yk 2 and ym2:

1 � �R m2
2r y qk R r s� R r , 4.3.35Ž . Ž . Ž .�2ž / ž /r � r � r r

� 2� 2sym � � , 4.3.36Ž . Ž .2��

d 2Z 2syk Z z . 4.3.37Ž . Ž .2dz

Each equation provides a separate eigenvalue problem. Starting with the last
Ž . Ž .equation first, the solution with Dirichlet boundary conditions Z 0 sZ L s0 is

our standard trigonometric eigenfunctions

l� z
Z z ssin , ls1, 2, 3, . . . , 4.3.38Ž . Ž .L

with eigenvalues

ks l�rL. 4.3.39Ž .

Next, we consider the �-dependence of the eigenmodes. This is also a familiar
Ž . Ž .problem, given the periodic boundary conditions � �q2� s� � required for a

single-valued solution. This eigenvalue problem has the solution

� � se im� , mgIntegers. 4.3.40Ž . Ž .

Ž .Finally, we turn to Eq. 4.3.35 , which describes the radial dependence of the
eigenmodes. The dependence of the solution on the parameter k 2y� can be�

accommodated by a simple change of variables to

2'rs y� yk r . 4.3.41Ž .�

Ž .In this variable, Eq. 4.3.35 becomes Bessel’s equation,

1 � �R m2

r y y1 R r s0. 4.3.42Ž . Ž .2ž / ž /r � r � r r
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Thus, the general solution for the radial eigenmodes is

2 2' 'R r sAJ y� yk r qBY y� yk r , 4.3.43Ž . Ž .ž / ž /m � m �

where J and Y are the Bessel functions encountered previously in Sec. 3.2.5. Tom m
find the eigenmodes, we match to the boundary conditions. The fact that the
solution must be finite at the origin implies that Bs0, because the Y ’s arem

Ž .singular at the origin. The fact that R a s0 in order to satisfy the Dirichlet
boundary condition at the wall implies that

2'y� yk as j , ns1, 2, 3, . . . , 4.3.44Ž .� m , n

Ž . Ž .where j is the nth zero of J r , satisfying J j s0.m , n m m m , n
Thus, the radial eigenmode takes the form

R r sJ j rra . 4.3.45Ž . Ž . Ž .m m , n

Therefore, the cylindrical geometry Dirichlet eigenmodes of �2 are

� sJ j rra e im� sin l� zrL , 4.3.46Ž . Ž . Ž .� m m , n

Ž . Ž .and the corresponding eigenvalues follow from Eqs. 4.3.44 and 4.3.39 :

2 2j l�m , n� sy y . 4.3.47Ž .� 2 ž /La

Ž .The counter � is now a list of three integers, �s l, m, n , with l�0, n�0, and
m taking on any integer value.

According to our previous general arguments, these eigenmodes form an
Ž .orthogonal set with respect to the inner product given by Eq. 4.3.13 . In fact,

L 2� a Ž .writing out the inner product as H dzH d�H r dr and using Eq. 3.2.55 , we find0 0 0
that the eigenmodes satisfy

� a2L 2� , � s� � � J j . 4.3.48Ž . Ž .Ž .� � l l m m nn mq1 m , n2

Example We now have all that we need to construct generalized Fourier series
solutions to Poisson’s equation inside a cylindrical tube with closed ends, via our

Ž . Ž .general solution, Eqs. 4.3.17 and 4.3.3 . As an example, let’s take the case where
Ž .the charge density inside the tube is linearly increasing with z: � r, � , z sAz.
Ž . wAlso, let’s assume that the base of the container has a potential V r sV 1y0

Ž .2 xrra , but that the other walls are grounded. This boundary condition is continu-
Ž .ous, so we can simply choose an arbitrary function u r, z that matches these
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boundary conditions. A suitable choice is

2r z
u r , z sV 1y 1y . 4.3.49Ž . Ž .0 ž / ž /a L

Ž . Ž .Then according to Eqs. 4.3.4 and 4.3.5 , we require the solution to Poisson’s
equation with homogeneous Dirichlet boundary conditions and a new charge
density,

�s�q� z , 4.3.50Ž .
2 2Ž . Ž .where �sy4V � ra and �sAq4V � r La . The inner product � , � can0 0 0 0 �

then be worked out analytically:

a 2� L l� zyi m�� , � s J j rra r dr e d� �q� z sin dz . 4.3.51Ž . Ž . Ž .Ž . H H H� m m , n L0 0 0

The �-integral implies that we only require the ms0 term. This is because the
charge density is cylindrically-symmetric, so the potential is also cylindrically
symmetric. For ms0, the integrals over r and z can be done by Mathematica:

Cell 4.27

�[l_____, n_____] = Simplify[2 Pi Integrate[BesselJ[0, j0[n] r/a] r,
{r, 0, a}]
Integrate[(�+ � z) Sin[l Pi z/L], {z, 0, L}], lgIntegers]

2 a2 L ((-1 + (-1l)) � + (-1)l L�) BesselJ[1, j0[n]]
-

l j0[n]

Here, we have introduced the function j0[n], the nth zero of the Bessel function
J . It can be defined as follows, up to the 20th zero:0

Cell 4.28

<<<<<<<<<< NumericalMath‘;

zeros = BesselJZeros[0, 20];
j0[n_____] := zeros[[n]];

Finally, the solution can be constructed using the general form for the Fourier
Ž .expansion, Eq. 4.3.17 , along with our defined functions u, �[l, n], and j0[n]:

Cell 4.29

u[r_____, z_____] = V (1-(r/a) ^̂̂̂̂2) (1-z/L);0

j0[n] r l�z
�[l_____, n_____, r_____, z_____] := BesselJ 0, Sin ;

a L

l� 2 j0[n]2
�[l_____, n_____] := - - ;

2ž /L a
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1 2��[l_____, n_____] := �a L BesselJ[1, j0[n]] ^̂̂̂̂2;
2

(***** :the inner product of � with itself; see Eq. (4.3.48) *****)

20 5
1 �[l, n] � [l, n, r, z]

�[r_____, z_____] = u[r, z] - ;Ý Ý� �[l, n] �� [l, n]0 l=1 n=1

Cell 4.30

a = 1; L = 2; A = � ; V =0.3;0 0

� = -4 V � /a2;0 0

� = A + 4V � /(L a2);0 0

ContourPlot[�[r, z], {r, 0, a}, {z, 0, L}, AspectRatio™L/a,
PlotLabel™"� in a charge-filled \\\\\ncylindrical tube",
FrameLabel™{"r", "z"}, PlotPoints™25];

Here, �[l, n, r, z] is the eigenmode for given l and n for ms0, �[l, n] is
Ž .the eigenvalue, and ��[l, n] is the inner product � , � . Only the first five� �

Bessel function zeros and the first 20 axial modes are kept in the sum, because this
wachieves reasonable convergence to within a few percent. This can be verified by

Ž .evaluating � at a few r, z points keeping different numbers of terms in the sum,
xwhich is left as an exercise for the reader. In Cell 4.30 we plot the solution as a

contour plot for the case as1 meter, Ls2 meter, and Ar� s1 Vrm, V s0.30 0
volt.
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The potential is zero on the upper and side walls, as required by the boundary
Ž .conditions. Along the bottom, the potential equals V r .

Spherical Geometry

Spherical Eigenmodes. Eigenmodes of �2 can also be determined analytically in
Ž .spherical coordinates r, � , � . Here, we consider the Dirichlet eigenmodes inside

a grounded spherical conducting shell of radius a. These eigenmodes satisfy the
Ž .boundary condition � a, � , � s0. The eigenmodes are separable in spherical�

coordinates:

� r , � , � sR r � � � � . 4.3.52Ž . Ž . Ž . Ž . Ž .�

The eigenmode equation, �2� r� s� , yields� � �

1 � �R 1 � �� 1 � 2�2r q sin � q s� .�2 2 2 2 2ž / ž /� r � r �� ��r R r r sin � � � r sin � � � ��Ž . Ž . Ž .
4.3.53Ž .

Following the approach of previous sub-subsections, one finds that this equation
separates into three ODEs for R, �, and �:

� 2� 2sym � � , 4.3.54Ž . Ž .2��

1 � �� m2

sin � y � � syl lq1 � � , 4.3.55Ž . Ž . Ž . Ž .2ž /sin � �� �� sin �

l lq11 � �R Ž .2r y R r s� R r . 4.3.56Ž . Ž . Ž .�2 2ž /� r � rr r

Here, we have introduced the separation constants m and l, anticipating the form
of the eigenvalues.

Ž . Ž .As usual, Eqs. 4.3.54 � 4.3.56 are separate eigenvalue problems. The solutions
of the � and � equations were discussed in Sec. 3.2.4:

� �� � � � sY � , � , l , mgIntegers and lG m ,Ž . Ž . Ž .l , m

where

lym !2 lq1 Ž . m im�Y � , � s P cos � eŽ . Ž .l , m l( 4� lqm !Ž .

is a spherical harmonic, and P m is an associated Legendre function, discussed inl
Ž . Ž .relation to Eqs. 3.2.33 and 3.2.34 , and given in Table 3.2.

Spherical Bessel Functions. We now determine the radial eigenmodes defined
Ž . Ž . Ž .by Eq. 4.3.56 with boundary conditions that R a s0 and R 0 is finite. The

Žgeneral solution of the ODE is given by Mathematica we have added a negative
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Table 4.2. Spherical Bessel Functions That Are Finite at the Origin

'Ž .l J r r rlq1r2

2
sin r'�

0 r

2 sin rycos rq' ž /� r
1 r

2 3 cos r 3 sin ry ysin rq' 2ž /� r r
2 r

2 15 cos r 15 sin r 6 sin r
cos ry q y' 2 3ž /� rr r

3 r

.sign to � , anticipating that the eigenvalue will be negative :�

Cell 4.31

DSolve[1/r ^̂̂̂̂2 D[r ^̂̂̂̂2 D[R[r], r], r]-l (l + 1)/r ^̂̂̂̂2
R[r] == - � R[r], R[r], r]�

1BesselJ[ (-1 - 2 l), r � ] C[1]' �2
{{R[r]™ +'r

1BesselJ [ (1 + 2 l), r � ] C[2]' �2 4 4'r

1 1The solution is in terms of Bessel functions of order lq and yly . Since the2 2

ODE has a regular singular point at the origin, one of the two solutions is singular
'Ž .there. The singular solution is J r y� r r . The other solution'yly1r2 �

'Ž .J r y� r r , is well behaved at the origin. These functions are called'lq1r2 �

spherical Bessel functions. Both sets of functions can be written in terms of
trigonometric functions, as shown in Tables 4.2 and 4.3. Examples from both sets
of spherical Bessel functions are plotted in Cells 4.32 and 4.33. Both sets of
functions oscillate and have a similar form to the Bessel functions of integer order
encountered in cylindrical geometry.

Cell 4.32

<<<<<<<<<<Graphics‘;

'Plot[Evaluate[Table[BesselJ[1/2 + l, r]/ r , {l, 0, 2}]],
{r, 0, 15}, PlotStyle™{Red, Blue, Green},

'PlotLabel™"J (r)/ r for l=0,1,2",l+1/2

AxesLabel™{"r", " "}];
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Table 4.3. Spherical Bessel Functions That Are Singular at the Origin

'Ž .l J r r ryly1r2

2
cos r'�

0 r

2 cos ry ysin r' ž /� r
1 r

2 3 cos r 3 sin rycos rq q' 2ž /� rr
2 r

2 15 cos r 6 cos r 15 sin ry q qsin ry' 3 2ž /� rr r
3 r

Cell 4.33

'Plot[Evaluate[Table[BesselJ[-1/2 -l, r]/ r , {l, 0, 2}]],
{r, 0, 15},

'PlotStyle™{Red, Blue, Green}, PlotLabel™"J (r)/ r /-l-1/2

for l=0,1,2",
AxesLabel™{"r", " "}, PlotRange™{-1, 1}];
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Since we require that the potential be finite throughout the spherical domain,
Žwe need not consider the singular spherical Bessel functions further. However,

they are required for problems where the origin is not included in the domain of
.interest. The radial part of the spherical eigenfunction is then

J y� r'ž /lq1r2 �
R r s , ls0, 1, 2, . . . . 4.3.57Ž . Ž .'r

We are finally in a position to determine the eigenvalue � . The eigenvalue is�

determined by the boundary condition that the eigenmode � vanishes at rsa.�

Ž . Ž .Thus, R a s0, and when applied to Eq. 4.3.57 this condition implies that

2
� sy j ra , 4.3.58Ž .Ž .� lq1r2 , n

Ž . Ž .where j is the nth zero of J x , satisfying J j s0. For ls0lq1r2, n lq1r2 lq1r2 lq1r2, n
the zeros can be determined analytically using the trigonometric form of the
spherical Bessel function given in Table 4.2:

j sn� , ns1, 2, 3, . . . . 4.3.59Ž .1r2 , n

However, for ls1 or larger, the zeros must be found numerically. The intrinsic
function BesselJZeros still works to determine lists of these zeros:

Cell 4.34

<<<<<<<<<<NumericalMath‘;
BesselJZeros[3/2, 10]

{4.49341, 7.72525, 10.9041, 14.0662,
17.2208, 20.3713, 23.5195, 26.6661, 29.8116, 32.9564}

For a given value of l these radial eigenfunctions are orthogonal with respect to
the radial inner product:

J j rra J j rraŽ . Ž .R lq1r2 lq1r2 , n lq1r2 lq1r2 , n 2r drs0 if n�n. 4.3.60Ž .H ' 'r r0

Ž .In fact, using Eq. 3.2.55 one can show that

2J j rra J j rraŽ . Ž .R alq1r2 lq1r2 , n lq1r2 lq1r2 , n 2 2r drs� J j .Ž .H nn lq3r2 lq1r2 , n2' 'r r0

4.3.61Ž .
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We can now combine our results for the radial and angular eigenmodes to
Ž .obtain the full spherical eigenmode � r, � , � :�

Y � , � J j rraŽ . Ž .l , m lq1r2 lq1r2 , n
� r , � , � s . 4.3.62Ž . Ž .� 'r

The parameter � , used to enumerate the eigenmodes, can now be seen to be a list
Ž .of three integers, �s l, m, n . The integer l runs from 0 to infinity, determining

the � dependence of the mode, while ylFmF l determines the �-dependence,
and ns1, 2, 3, . . . counts the zeros in the radial mode.

Ž . Ž .According to Eqs. 4.3.61 and 4.2.40 , these spherical eigenmodes are orthogo-
nal with respect to the combined radial and angular inner products:

�R 2�� �2� , � s r dr sin � d� d�� r , � , � � r , � , �Ž . Ž .Ž . H H Hlm n lm n lm n lm n
0 0 0

a2
2s� � � J j . 4.3.63Ž .Ž .l l m m nn lq3r2 lq1r2 , n2

However, this combined inner product is simply the three-dimensional integral
over the volume V interior to the sphere. This is as expected from the general
arguments given in Sec. 4.3.3.

Example We now use the spherical eigenmodes to solve the following potential
problem: the upper half of a hollow sphere of radius a is filled with charge density
� . The sphere is a conducting shell, cut in half at the equator. The upper half is0

Ž .grounded, and the lower half is held at potential V . See Fig. 4.6.0

As in the previous examples, we take account of the inhomogeneous boundary
Ž .condition by using a function u r that matches this boundary condition:

0, 0F�F�r2,
u a, � , � s 4.3.64Ž . Ž .½ V , �r2���� .0

Fig. 4.6
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However, this boundary condition is rapidly varying. Therefore, it is best to choose
Ž .a function u r, � , � that satisfies the Laplace equation with these boundary

conditions, �2 us0.
We considered this part of the problem previously, in Sec. 3.2.4. The solution is

Ž . Ž .a sum of spherical harmonics, given by Eqs. 3.2.41 and 3.2.42 :

� l
lu r , � , � s B r Y � , � , 4.3.65Ž . Ž . Ž .Ý Ý lm l , m

ls0 msyl

where the Fourier coefficients B are determined by matching to the boundarylm
conditions:

� �2� � �lB a sV d� sin � d� Y � , � s� 2�V sin � d� Y � .Ž . Ž .H H Hlm 0 l , m m0 0 l , 0
0 �r2 �r2

4.3.66Ž .

As expected for cylindrically symmetric boundary conditions, only spherical har-
monics with ms0 enter in the expansion for u.

We then write the potential � as �s��qu, and solve for �� using Eq.
2Ž .4.3.17 . The fact that � us0 implies that �s�. Therefore the solution for �� is

� , �Ž .1 ��� r , � , � sy � r , � , � , 4.3.67Ž . Ž . Ž .Ý �� � � , �Ž .0 � � ��

Ž . Ž . Ž .where �s l, m, n , � is given by Eq. 4.3.58 , and � is given by Eq. 4.3.62 . The� �

Ž .inner product � , � is�

a J j rraŽ . 2� �r2lq1r2 lq1r2 , n2� , � s r dr d� sin � d� � Y � , � .Ž . Ž .H H Hlm n 0 l , m'r0 0 0

4.3.68Ž .

The �-integral picks out only the ms0 eigenmodes, since the charge distribution
is cylindrically symmetric. The r and � integrals can be performed analytically,
although the results are rather messy. It is best to simply leave the work to
Mathematica by defining this inner product as a function �[l,n]. It is fastest and
easiest to perform the radial integrals numerically using NIntegrate. This
requires scaling the radius to a so that the radial integral runs from 0 to 1:

Cell 4.35

�[l_____, n_____] := �[l, n] =

� a5/2 NIntegrate[r3/2 BesselJ[l + 1/2, j[l, n] r], {r, 0, 1}] *****0

2� Integrate[Sin[�] SphericalHarmonicY[l, 0, �,�], {� , 0, Pi/2}]

Here, we have also introduced another function, j[l,n], which is j , thelq1r2, n
nth zero of the J . This can be defined as follows:lq1r2
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Cell 4.36

<<<<<<<<<<NumericalMath‘;

zeros = Table[BesselJZeros[l + 1/2, 10], {l, 0, 9}];
j[l_____, n_____] := zeros [[l + 1, n]]

Ž . Ž . Ž .For example, the inner product � , � for �s l, m, n s 3, 0, 4 is given by�

Cell 4.37

�[3, 4]

0.00375939 a5/2 �0

Ž .The solution for �� is given in terms of the spherical eigenmodes by Eq. 4.3.67 .
This generalized Fourier series is evaluated below:

Cell 4.38

(***** define the spherical eigenmodes *****)�[l_____, m_____, n_____, r_____, �_____,�_____] :=
BesselJ[l + 1/2, j[l, n] r/a]/Sqrt[r]
SphericalHarmonicY[l, m, �, �];

(***** define the eigenvalues *****)
�[l_____, n_____] := -j[l, n] ^̂̂̂̂2/a ^̂̂̂̂2;

(***** define the inner product (� , � ) *****)� �

a2
��[l_____, n_____] := BesselJ[l + 3/2, j[l, n]] ^̂̂̂̂2;

2

(***** sum the series to determine the potential, using Eq.
(4.3.67) *****)

��[r_____, �_____] =

1 �[l, n]
- Sum[ �[l, 0, n, r, �, �], {l, 0, 4},
� �[l, n] ��[l, n]0

{n, 1, 5}];

Ž .Now we must add to this the potential u r, � , � arising from the boundary
Ž . Ž .conditions, using Eqs. 4.3.65 and 4.3.66 :

Cell 4.39

b[l_____] =
2 � V Integrate[Sin[�] SphericalHarmonicY[l, 0, �, �],0

{�, Pi/2, Pi}]/al;

u[r_____, �_____] = Sum[b[l] rl SphericalHarmonicY[l, 0, �, �],
{l, 0, 40}];

Finally, we plot in Cell 4.40 the resulting potential on a cut throught the center of
the sphere, along the ys0 plane, taking the potential on the boundary to be
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V s1 volt and a charge density � s3� . In the lower half sphere, z�0, the0 0 0
Ž .potential rises to meet the boundary condition that � a, � , � s1 volt; while in the

upper half the potential on the surface of the sphere is zero. The convex curvature
of the potential in the interior of the sphere reflects the positive charge density �0
in the upper half of the sphere. Note the barely discernible Gibbs phenomenon
near the discontinuities in the potential.

Cell 4.40

(***** parameters *****)
V = 1;0

� = 3 � ;0 0

a = 1;
(***** construct the total potential *****)
�[r_____, �_____] = ��[r, �] + u[r, �];

ParametricPlot3D[{r Sin[�], r Cos[�], �[r, �]},
{r, 0.001, 1}, {�, 0, 2 Pi}, PlotPoints™{20, 80},
BoxRatios™{1, 1, 1/2}, ViewPoint ->>>>> {2.899, 0.307, 1.718},
AxesLabel™{"x", "z", "�"}, PlotLabel™"Potential inside
a sphere"];

EXERCISES FOR SEC. 4.3

( )1 Solve the following potential problems in rectangular geometry. Plot the
solutions using Plot3D.
( ) 2 Ž . Ž . Ž . Ž . Ž .a � � x, y sx, � 0, y s� 1, y s� x, 0 s0, � 1, y ssin 2� y.
( ) 2 Ž . Ž . Ž . Ž . Ž .b � � x, y, z s 10, � x, y, 0 s � x, y, 1 s � 0, y, z s � 1, y, z s

1Ž . Ž . Ž .� x, 0, z s0, � x, 1, z sh xy , where h is a Heaviside step function.2
1Plot the solution in the zs plane.2
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( ) 2 Ž . Ž . Ž . Ž . Ž .c � � x, y syxy, � 0, y s� 2, y s� x, 0 s0, � x, 1 s1.
( ) 2 Ž . Ž . Ž . Ž . Ž .d � � x, y, z s 1, � x, y, 0 s� x, y, 1 s 0, � 0, y, z s� 1, y, z s

1Ž . Ž . Ž .z 1yz , � x, 0, z s� x, 1, z s0. Plot the solution in the zs plane.2
�� �� ��2( ) Ž . Ž . Ž . Ž .e � � x, y s cos n� x, n an integer, 0, y s 1, y s x, 0� x � x � y

�� Ž . Ž .s x, 1 s0. What happens for ns0?� y
��2 xqy( ) Ž . Ž . Ž . Ž . Ž .f � � x, y se , � 0, y s� 1, y s� x, 0 s0, x, 1 s1.� y

( )2 For the problem

�� �� �� �� 12� � x , y s1, 0, y s 1, y s x , 0 s0, x , 1 sah xy ,Ž . Ž . Ž . Ž . Ž . Ž .2� x � x � y � y

where h is a Heaviside step function, find the value of a for which a solution
Ž . wexists, and find the solution for � x, y . Hint: For the function u, choose

Ž . Ž .usu x, y q f x, y , where f is an arbitrary function that satisfies homoge-0
neous von Neumann conditions on all sides except at ys1, and that takes

Ž 2 . 2 xaccount of the charge in the box i.e., H � f dx dys1 , and where � u s0.V 0

( ) ( )3 a Show, using Gauss’s law, that for Poisson’s equation in a square box with
Ž . Ž . Ž .periodic boundary conditions � xqL, y s� x, yqL s� x, y , a solu-

Ž .tion for � x, y exists only if the net charge density in the square is zero:

L L
dx dy � x , y s0.Ž .H H

0 0

( ) Ž .b For a given charge density � x, y find a general form for the solution in
terms of an exponential Fourier series.

( ) Ž .4 Find the Green’s function g r, r as a generalized Fourier series for the0
potential inside a grounded rectangular cube with walls at xs0, xsa, ys0,
ysa, zs0, zsL.

( )5 It is sometimes useful to write the Green’s function for Poisson’s equation in
a different manner than the eigenmode expansion used in the bilinear

Ž .equation. For the rectangular cube of Exercise 4 , now employ only the x
and y eigenmodes, writing

� n� x m� y
g r, r s f z , r sin sin . 4.3.69Ž . Ž . Ž .Ý0 m n 0 a a

m , ns1

( )a Show that f solves the following boundary-value problem:m n

2 n� x m� y� 0 02f y
 f ssin sin � zyz , f s0 at zs0 and L,Ž .m n m n m n 0 m n2 a a� z

2 Ž .2 Ž .2where 
 s m�ra q n�ra .m n
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( )b Solve this boundary-value problem, using the technique discussed in Sec.
3.4.4 to show that

n� x m� y sinh 
 LyzŽ .0 0 m n �f z , r sy4 sin sin sinh 
 z , 4.3.70Ž . Ž .m n 0 m n � 2a a a 
 sinh 
 Lm n m n

Ž .where z is the lesser greater of z and z .� Ž� . 0

( )c By carefully taking the limit L�z, z and z, z �0, show that the0 0
Green’s function in an infinitely long grounded conducting tube of square
cross section is

� y
 � zyz �m n 0n� x m� yn� x m� y e0 0g r, r sy2 sin sin sin sin . 4.3.71Ž . Ž .Ý0 2a a a a a 
m nm ,ns1

Ž x .Hint: As x™�, sinh x	cosh x	e r2.
( )d Find the force in the z-direction on a charge q, located at position

Ž .x , y , z in a rectangular box of length L with square cross section.0 0 0
Ž 2 2 .Plot this force scaled to q r� L vs. z for 0�z �L, y sar2sx , for0 0 0 0

wasLr2. Hint: This force arises from the image charges in the walls of
the grounded box. To determine the force, one needs to calculate the
electric field E at the position r of the charge. However, one cannot0 0

Ž . Ž . � Ž .simply evaluate E s qr� � g r, r using Eq. 4.3.69 , since the0 0 r 0 rsr 0

self-field of the charges is infinite at rsr . This is manifested in Eq.0
Ž . Ž ..4.3.69 and in Eq. 4.3.71 by the fact that the series does not converge

Ž .if rsr . Try it if you like! One must somehow subtract out this0
self-field term, and determine only the effect of the field due to the
images in the walls of the tube. One way to do this is to note that for an
infinite tube, there is no force in the z-direction on the charge, due to

Ž . Ž .symmetry in z. Therefore, we can subtract Eq. 4.3.71 from Eq. 4.3.69
to obtain the effect on g of the tube’s finite length. The resulting series

xconverges when one takes rsr .0

( )6 The following problem relates to the eigenmode expansion of the solution to
Ž .Laplace’s equation, Eq. 4.3.29 .

( )a Use Green’s theorem to show that, for Dirichlet boundary conditions in a
two-dimensional domain,

� ,�2 u s� � , u y un ��� dl ,Ž . ˆŽ . Hnm nm nm nm
S

where the surface integral runs over the boundary S of the domain, dl is
a line element of this boundary, and � and u have the same definitionsnm

Ž .as in Eq. 4.3.29 .
( )b Determine the eigenmode expansion for the solution of Laplace’s equa-

2 Ž . Ž .tion, � �s0, using the result of part a and Eq. 4.3.29 . In particular,
show that

� x , y su x , y q b � x , y , 4.3.72Ž . Ž . Ž . Ž .Ý nm nm
nm



EXERCISES FOR SEC. 4.3 327

w Ž .x Ž . Ž .where b sH un ��� dlr � � , � y � , u r � , � . Noteˆnm S nm nm nm nm nm nm nm
that in the surface integral the function u is uniquely determined by the

Ž . Ž .boundary conditions. Equation 4.3.72 is equivalent to Eq. 4.3.29 , but
avoids taking derivatives of u. This is an advantage when u varies rapidly.

( )c Redo the Laplace equation problem associated with Fig. 4.5, taking
asbs1 and � s1, and using an eigenmode expansion as given by0

Ž .Eq. 4.3.72 . Note that on the boundary u is nonzero only on the right
1 2side, in the range �y� , so the required surface integral becomes3 3

2r3 Ž . Ž .H x ��� 1, y dy. For u x, y use the following function:ˆ1r3 nm

1 1 2 1u x , y sx f yy , 1yx ,y f yy , 1yx ,y ,Ž . Ž . Ž .3 3 3 3

1Ž . w Ž . Ž .x Ž .where f x, y, z s tanh xry y tanh zry . Plot u x, y to convince2

yourself that it matches the boundary conditions. This function is chosen
because it is continuous everywhere except on the right boundary. There-
fore, its generalized Fourier series expansion in terms of � has betterm n

Ž .convergence properties than our previous choice for u, Eq. 4.3.28 . You
Ž .will have to find the inner product � , u via numerical integration.nm

Keep 1FmF6 and 1FnF6. Avoid integrating in y all the way to
ys1, because of the singularity in u; rather, integrate only up to

Ž .ys0.9999. Compare your solution to the solution found via Eq. 4.3.31
1Ž . Ž . Ž .for Ms36 by plotting � 0.9, y and � x, for both solutions. Which2

w Ž . xsolution works better? Answer: Eq. 4.3.31 .
( )d Show that in the limit that an infinite number of terms are kept, Eq.

Ž .4.3.72 becomes

� x , y s c � x , yŽ . Ž .Ý nm nm
nm

Ž .for x, y not on the boundary, where c s H un � �� dlrˆn m S n m
w Ž .x� � , � . This is yet another form for the solution to Laplace’snm nm nm
equation with Dirichlet boundary conditions, valid only in the interior of

Ž .the domain. Repeat the calculation and plots of part b using this series,
Žtaking 1FmF40 and 1FnF40 the coefficients c can be determinednm

.analytically .

( )7 Find the solution to the following potential problems inside a cylinder. Write
the solution in terms of an eigenmode expansion. Put the equation into
standard form, if necessary. Plot the solutions.
( ) 2 Ž . Ž .a � � r, � sx y, � 1, � s0.
( ) 2 Ž . Ž . Ž . Ž .b � � r, � , z sz sin � , � 1, � , z s� r, � , 0 s� r, � , 2 s0. Plot in the

xs0 plane vs. y and z.
( ) 2 Ž . Ž . Ž . Ž . Ž .c � � r, � , z s 1, � 1, � , z s� r, � ,y 1 s� r, � , 1 s 0, � 2, � , z s

Ž . Ž . Žh z h � concentric cylinders, h is a Heaviside step function, y�����
.assumed . Plot in the xs0 plane vs. y and z.

��2( ) Ž . Ž .d � � r, � sy, 1, � ssin � .� r
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Ž .Fig. 4.7 Exercise 8 .

( )8 A wedge, shown in Fig. 4.7, has opening angle � . The wedge is filled with
uniform charge, �r� s1 Vrm2. The walls of the wedge are grounded, at0
zero potential.
( )a Find the eigenmodes for this geometry.
( ) Ž .b Use these eigenmodes to solve for the potential � r, � inside the wedge.

Plot the solution using a contour plot for �s65�.

( )9 A wedge, shown in Fig. 4.8, has opening angle � and radii a and b, b�a.
The edges of the wedge have constant potentials as shown. Find the solution
to Laplace’s equation using separation of variables rather than eigenmodes.
ŽHint: You will still need to determine radial eigenfunctions, and the correct

.radial inner product with respect to which these functions are orthogonal.
1Plot the solution using ParametricPlot3D for �s135�, as1, bs , and10

n� r n��Ž .V s1 volt. Answer: � r, � sÝ A sin log sinh � .Ž . Ž .0 ns1 n log bra a log braŽ . Ž .

Ž .Fig. 4.8 Exercise 9 .

( )10 Find the solution to the following potential problems inside a sphere. Write
the solution in terms of an eigenmode expansion. Convert inhomogeneous
boundary conditions, if any, to a source term.
( ) 2 Ž . Ž .a � � r, � , � sx y z, � 1, � , � s0.
( ) 2 Ž . Ž . 2b � � r, � , � s1, � 1, � , � ssin � .
( ) 2 Ž . Ž . Ž . Ž . Žc � � r, � , � s cos � rr, � 1, � , � s 0, � 2, � , � s 0 concentric

.spheres .
��2 2 2( ) Ž . Ž .d � � r, � , � s1, 1, � , � sa sin � cos �. Find the value of a for� r

which a solution exists, and find the solution.

( )11 A hemispherical shell of radius a has a flat base, forming half of a sphere.
This half sphere is filled with a uniform charge density, �r� s10 Vrm2. The0
surface of the half sphere, including the base, is grounded. Find the potential
inside the shell, and plot it. What and where is the maximum of the
potential?

( )12 In a plasma the potential due to a charge density � satisfies the linearized
Poisson�Boltzmann equation �2�s�r�2y�r� , where � is the Debye0



EXERCISES FOR SEC. 4.3 329

length of the plasma. A spherical charge of radius a, uniform charge density,
and total charge Q is placed in the plasma. Find the potential, assuming that

wit vanishes at infinity. Hint: Solve the radial boundary-value problem directly
in terms of homogeneous solutions, using boundary conditions that �™0 as

Ž 2 . xr™� and E sy��r� rsQr 4�� a at rsa.r 0

( ) ( ) Ž .13 a Repeat the analysis of the Green’s function in Exercise 5 , but for the
inside of a spherical conducting shell of radius a. Now write

� l

g r, r s Y � , � f r , r 4.3.73Ž . Ž . Ž . Ž .Ý Ý0 l , m lm 0
ls0 msyl

Ž .and find an ODE boundary-value problem for f r, r . Solve thislm 0
boundary-value problem to show that

r l r l r l1 � � ��f r , r syY � , � y , 4.3.74Ž . Ž . Ž .lm 0 l , m 0 0 lq1 2 lq12 lq1 ž /r a�

Ž .where r is the lesser greater of r and r . Hint: In spherical� Ž� . 0
Ž .coordinates the �-function � ryr is given by0

� ry r � �y� � �y�Ž . Ž . Ž .0 0 0� ryr s . 4.3.75Ž . Ž .0 2r sin �

( ) Ž . Ž .b In the limit as a™�, Eqs. 4.3.73 and 4.3.74 can be used to represent
Ž .the potential at point r due to an arbitrary charge density � r in free0

space. Assume that this charge density is concentrated near the origin;
that is, it is completely contained inside an imaginary sphere centered at

Ž .the origin and of radius R. See Fig. 4.9. Then, using the Green’s
function, show that the electrostatic potential at locations far from this
charge density is given by

� l Y � , �Ž .1 l , m� r s � , provided that r�R . 4.3.76Ž . Ž .Ý Ý lm lq12 lq1 � r0ls0 msyl

3 Ž . l � Ž .Here, � sH d r � r r Y � , � is the multipole moment of thelm 0 0 0 l, m 0 0
Ž .charge distribution. Equation 4.3.76 is called a multipole expansion of the

potential.

Fig. 4.9 Geometry assumed for the multipole expansion
Ž .of Eq. 4.3.76 .
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( ) ( )14 a The multipole moment � is called the monopole moment of the charge00
distribution. It is proportional to the total charge Q. The potential
produced by the monopole moment is simply that given by Coulomb’s
law, �sQr4�� r. The moment � is called a dipole moment, and �0 1m 2 m

Ž .is called a quadrupole moment. Plot contours of constant � x, y, z in
the x-z plane, assuming that
( )i only � is nonzero;10

( )ii only � is nonzero.20

( )b Show that � and � can be written in Cartesian coordinates as10 20

3 3� s z � r d r ,Ž .( H10 0 0 04�

5 2 2 2 3� s 2 z yx yy � r d r .Ž .( Ž .H20 0 0 0 0 016�

( )c Evaluate the monopole, dipole, and quadrupole moments of two charges
located on the z-axis: one at qz with charge qq, and one at yz with0 0

Ž .charge yq. Plot the potential � z along the z-axis arising from the
dipole and quadrupole terms for 0�z�10 z , and compare it with a plot0

Ž .Ž � � � � .of the exact potential qr� 1r zyz y1r zqz . Where does the0 0 0
multipole expansion work?

( )15 A uniform density ellipsoid of total charge Q has a surface determined by the
equation x 2ra2qy2rb2qz 2rc2s1. Find the quadrupole moments of this
charge distribution, and show that

1 2 2 2� s Q 2c ya yb ,Ž .(20 80�

� s0,21

3 2 2� s Q a yb .Ž .(22 160�

( )16 A second form of multipole expansion is useful when we want to know the
potential at a point near the origin due to charge density that is concentrated

Ž .far from the origin, outside an imaginary sphere of radius R. See Fig. 4.10.

Fig. 4.10 Geometry assumed for the multipole ex-
Ž .pansion of Eq. 4.3.77 .



EXERCISES FOR SEC. 4.3 331

For such a charge density, use the Green’s function to show that

� l Y � , �Ž .1 l , m l� r s � r , provided that r�R , 4.3.77Ž . Ž .Ý Ý lm2 lq1 �0ls0 msyl

�3 lq1Ž . Ž .where � sH d r � r Y � , � rr .lm 0 0 l, m 0 0 0

( )17 Find the electrostatic potential near the origin due to a hemispherical shell of
charge, total charge q, and radius a. The shell is oriented above the origin of
coordinates, with its origin coincident with the origin of coordinates, and its
axis of symmetry along the z-axis. Keep terms up to and including the

Ž .quadrupole moments, and write the resulting potential � r in terms of
Ž .Cartesian coordinates x, y, z .

( ) ( )18 a Consider an object of mass m moving in gravitational free fall around a
fixed mass M. At a given instant, the mass M is located a distance r0

Žalong the z-axis of a coordinate system whose origin is located near or
.within the object. Using the fact that the gravitational potential � alsoG

satisfies Poisson’s equation,

�2� s4�G� , 4.3.78Ž .G

where � is the mass density and G is the gravitational constant, find a
multipole expansion of the gravitational potential due to the mass M that
is valid near the origin within the object. Keep terms in the expansion up
to and including the quadrupole terms, and show that the force in the
z-direction on a mass element dm of the object, dF sydm �� r� z,z G
equals

' 'dF sdm G 2 �r3 � q4 �r5 � z . 4.3.79Ž .Ž .z 10 20

( ) Ž .b If one assumes that the mass M is a point mass, then using Eq. 4.3.79 ,
show that the total force in the z-direction on the object, F sH dF , isz z

F sGMmrr 2 ,z 0

pro®ided that the coordinate system used to determine the multipole moments
has its origin located at the center of mass of the object. The center-of-mass

Ž .position R is defined as R s 1rm Ý dm r , where the sum runscm cm i i i
over all the mass elements dm of the object, each located at position r .i i
w Ž .Hint: You will need to use Eq. 4.3.75 to help determine the multipole

xmoments of the point mass M.
( )c The object in question has a spatial extent in the z-direction that runs

Ž .from yz to z , z � r . Using Eq. 4.3.79 , show that the acceleration of1 1 1 0
the point at qz relative to that at yz is given by1 1

a s4MGz rr 3.t 1 0
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wThis relative acceleration is called tidal acceleration. Hint: Equation
Ž .4.3.75 will be needed to help determine the multipole moments of the

xpoint mass M.
( )d Determine the tidal acceleration caused by the moon, calculated for the

two points on the earth nearest and farthest from the moon. Treat the
moon as a point mass.

( )e Determine the tidal acceleration due to the sun, in the same manner as
Ž .was used for the moon in part d .

( )19 A neutron star has a mass Ms2 M , but a radius of only around 10 km.sun
A rocket ship approaches the star in free fall, to a distance r s3000 km.0

Ž . Ž .Using Eq. 4.3.79 , calculate the tension force the tidal force in a man
floating inside the ship. Assume for simplicity that the mass distribution of
the man is a uniform cylinder of total mass ms70 kg and length Ls2 m,
oriented with the cylinder axis pointing toward the star, and treat the star as a
point mass. The tension force is defined here as the force between the halves
of the man nearest and furthest from the star as they are pulled toward and
away from the star by the tidal acceleration. Evaluate the tension force in

Ž . wpounds 1 pounds4.45 newtons . This problem is inspired by the science
Ž . Ž 3 .xfiction novel Neutron Star, by Larry Niven 1968 . Answer: TsMmGLrr .0

( )20 A deformable incompressible body, in the presence of another gravitating
Ž .body both bodies at fixed positions will deform until it is in equilibrium, in

such a way that its volume remains unchanged. The equilibrium shape of the
deformable body can be determined using the fact that, in equilibrium, the
gravitational potential � at the surface of the body is independent ofG

Ž .position along the surface i.e., the surface of the body is an equipotential .
Take, for example, the earth�moon system. The earth will deform, attempt-

Žing to come to equilibrium with the moon’s gravitational attraction. Actually,
the earth’s oceans deform. The rigidity of the solid part suppresses the

.response to the weak lunar tidal acceleration. This is the basic effect
responsible for the earth’s tides. Assuming that the earth is a deformable
incompressible body of uniform mass density, that the moon is located a
distance r from the earth along the z-axis of a coordinate system used to0

Ž .calculate the deformation see Fig. 4.11 , that the moon can be treated as a
point mass, and that the resulting deformation is small and in equilibrium

Ž .with the moon’s attraction, show that the height h � of the deformation of
the earth’s surface is

4M5� Rmh � s Y � , 4.3.80Ž . Ž . Ž .( 2, 034 M re 0

where M and R are the mass and radius of the earth respectively, and M ise m
the mass of the moon. For the parameters of the earth�moon system, plot
this deformation vs. � , to show that the deformation is largest on the z-axis of
our coordinate system at �s0 and � , stretching the earth along the

wearth�moon axis by an amount equal to roughly 0.5 meter at each end. Hint:
Remember to allow for the effect of the deformation on the earth on its own
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ŽFig. 4.11 Tidal effect in the earth�moon system greatly exagger-
.ated for clarity .

Ž .gravitational potential, using the multipole expansion of Eq. 4.3.76 . Keep
only up to quadrupole terms in the expansions. Along these lines, the results

Ž .given in Exercise 15 may be useful. The total gravitational potential evalu-
Ž . Ž .ated at the earth’s deformed surface r � will be of the form

yGMe� s y�Y � y� Y � ,Ž . Ž .tot 2, 0 2, 0r �Ž .
where small deformation is assumed, � is a constant proportional to the mass
of the earth, and � is a constant proportional to the mass of the moon. The
�-term is caused by the gravitational potential of the deformed earth, and the
�-term is caused by the moon. The surface of the earth is deformed so as to

Ž . Ž .be described by the equation r � sRqh Y � , where h �R is a con-0 2, 0 0
stant to be determined by making sure that � is independent of � . But betot
careful: � is also proportional to h , since � arises from the distortion of the0

xearth.

4.4 THE WAVE AND HEAT EQUATIONS IN TWO AND THREE DIMENSIONS

In a uniform medium, the wave and heat equations in one dimension have the
form � 2 zr� t 2sc2 � 2 zr� x 2 and �Tr� ts� � 2Tr� x 2 respectively. In multiple
spatial dimensions, the obvious generalization of these equations is

� 2 z 2 2sc � z r, t 4.4.1Ž . Ž .2� t
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and

�T 2s� � T r, t , 4.4.2Ž . Ž .� t

where �2 is the Laplacian operator. This generalization allows the evolution of
disturbances without any distinction between different spatial directions: the
equations are isotropic in space.

As in the solution of Poisson’s equation, we now consider solutions of the heat
and wave equations within some specified volume V, which has a surface S.
Boundary conditions of either Dirichlet, von Neumann, or mixed form are speci-
fied on this surface. Initial conditions must also be provided throughout the

Ž .volume. As in the one-dimensional case, two initial conditions on z and � zr� t
are required for the wave equation, but only one initial condition specifying
Ž .T r, ts0 is required for the heat equation.
General solutions for these equations can be found. The form of the solutions is

a generalized Fourier series of eigenmodes of the Laplacian operator, just as for
the one-dimensional case discussed in Sec. 4.2. However, for most boundary
conditions, the eigenmodes cannot be determined analytically. Analytically tractable
solutions can be obtained only for those special geometries in which the eigen-

Žmodes are separable. Numerical solutions can be found using methods to be
.discussed in Chapter 6. In the following sections we consider several analytically

tractable examples.

4.4.1 Oscillations of a Circular Drumhead

General Solution Consider a drum consisting of a 2D membrane stretched
tightly over a circular ring in the x-y plane, of radius a. The membrane is free to

Ž . Ž .vibrate in the transverse z direction, with an amplitude z r, � , t , where r and �
are polar coordinates in the x-y plane. These vibrations satisfy the wave equation
Ž . '4.4.1 . The wave propagation speed is cs Tr� , where T is the tension force per
unit length applied to the edge of the membrane, and � is the mass per unit area
of the membrane. Since the membrane is fixed to the ring at rsa, the boundary
condition on z is

z a, � , t s0. 4.4.3Ž . Ž .

The initial conditions are

z r , � , 0 sz r , � ,Ž . Ž .0

4.4.4Ž .� z
r , � , 0 s® r , �Ž . Ž .0� t

for some initial transverse displacement and velocity, z and ® respectively.0 0
To solve for the evolution of z, we use a generalized Fourier series:

z r , � , t s c t � r , � . 4.4.5Ž . Ž . Ž . Ž .Ý � �
�
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Ž .The functions � r, � are chosen to be eigenmodes of the Laplacian operator,�

�2� r , � s� � r , � , 4.4.6Ž . Ž . Ž .� � �

with boundary conditions identical to those on z,

� a, � s0. 4.4.7Ž . Ž .�

From our study of Poisson’s equation, we already know the form of these
eigenmodes:

� r , � se im� J j rra , 4.4.8Ž . Ž . Ž .� m m , n

where m is any integer, J is a Bessel function, and j is the nth zero of J . Them m , n m
corresponding eigenvalues are

2
� sy j ra . 4.4.9Ž . Ž .� m , n

Also, we know that these eigenmodes are orthogonal with respect to the inner
Ž . Ž . Ž . 2product f , g sH f * r g r d r. We can therefore extract an ODE for the timer � a

Ž .evolution of the Fourier amplitude c t in the usual manner. Substitution of Eq.�

Ž . Ž .4.4.5 into the wave equation, together with Eq. 4.4.6 , implies that

d 2
2� r , � c t sc � c t � r , � . 4.4.10Ž . Ž . Ž . Ž . Ž .Ý Ý� � � � �2dt� �

Then an inner product with respect to � yields the harmonic oscillator equation,�

d 2
2c t sc � c t . 4.4.11Ž . Ž . Ž .� � �2dt

Ž .Using Eq. 4.4.9 we find that the general solution is

c t sA cos 	 tqB sin 	 t , 4.4.12Ž . Ž .� � � � �

where 	 is the frequency associated with a given eigenmode,�

	 s j cra, 4.4.13Ž .� m , n

and A and B are constants determined by the initial conditions. To determine� �

Ž . Ž .A , we evaluate Eq. 4.4.5 at time ts0, and using Eq. 4.4.5 we find�

z r , � , 0 s A � r , � sz r , � . 4.4.14Ž . Ž . Ž . Ž .Ý � � 0
�

The usual inner product argument then yields

� , zŽ .� 0A s . 4.4.15Ž .� � , �Ž .� �
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Similarly, one finds that

� , ®Ž .� 0	 B s . 4.4.16Ž .� � � , �Ž .� �

Thus, the solution takes the form

� �
im�z r , � , t s A cos 	 tqB sin 	 t e J j rra . 4.4.17Ž . Ž . Ž . Ž .Ý Ý m n m n m n m n m m , n

msy� ns1

This completes the solution of the problem. One can see that, aside from the
higher dimensionality of the eigenmodes, the solution procedure is identical to that
for the one-dimensional string.

Although the eigenmodes are complex, the coefficients A and B are alsom n m n
Ž .complex, so that the series sums to a real quantity. In particular, Eqs. 4.4.15 and

Ž . � �4.4.16 imply that the coefficients satisfy A sA and B sB . Also,ym n m n ym n m n
Ž . Ž .Eq. 4.4.13 implies that 	 s	 . If we use these results in Eq. 4.4.17 , weym n m n

can write the solution as a sum only over nonnegative m as

�

z r , � , t s A cos 	 tqB sin 	 t J j rraŽ . Ž . Ž .Ý 0 n 0 n 0 n 0 n 0 0, n
ns1

� �
�im� yi m�q A e qA e cos 	 tŽÝ Ý m n m n m n

ms1 ns1

�im� yi m�q B e qB e sin 	 t J j rra . 4.4.18Ž . Ž ..m n m n m n m m , n

The quantities in the square brackets are real; for example, A e im�qA� eyi m�
m n m n

Ž im� . � � i� A
m n � � i� B

m ns2 Re A e . In fact, if we write A s A e , and B s B e ,m n m n m n m n m n
A B Ž .where � and � are the complex phases of the amplitudes, then Eq. 4.4.18m n m n

becomes

�

z r , � , t s A cos 	 tqB sin 	 t J j rraŽ . Ž . Ž .Ý 0 n 0 n 0 n 0 n 0 0, n
ns1

� �
A� �q2 A cos �q� cos 	 tŽ .Ý Ý m n m n m n

ns1 ms1

B� �q B cos �q� sin 	 t J j rra . 4.4.19Ž . Ž .Ž .m n m n m n m m , n

This result is manifestly real, and shows directly that the complex part of the
Fourier amplitudes merely produces a phase shift in the �-dependence of the
Fourier modes.

Drumhead Eigenmodes The cylindrically symmetric modes of the drumhead
correspond to ms0 and have frequencies 	 s j cra. Unlike the modes of a0 n 0, n
uniform string, these frequencies are not commensurate:

	 s2.40483cra, 	 s5.52008cra, 	 s8.65373cra, . . . .01 02 03
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These ms0 modes have no �-dependence. Like string modes, they are standing
waves with stationary nodes at specific radial locations. In the lowest-order mode,
the entire drumhead oscillates up and down, while in higher order modes different
sections of the drumhead are oscillating 180� out of phase with the center. One of
these modes, the ms0, ns3 mode, is shown in Cell 4.41.

Cell 4.41

<<<<<<<<<<NumericalMath‘;
j0 = BesselJZeros[0, 3];
�[r_____, �_____] := BesselJ[0, j0[[3]] r];

Table[ParametricPlot3D[{r Cos[�], r Sin[�], Cos[t] �[r, �]},
{r, 0, 1}, {�, 0, 2 Pi}, PlotRange™{-1, 1}, PlotPoints™25,
BoxRatios™{1, 1, 1/2}], {t, 0, 1.8 Pi, .2 Pi}];

For m�0, the eigenmodes obviously have �-dependence e im�scos m�q
Ž .i sin m� . As discussed above in relation to Eq. 4.4.19 , the real and imaginary

parts simply correspond to oscillations that are shifted in � by 90�. Just as for the
Ž .cylindrically symmetric ms0 modes, there are radial nodes where the drumhead

is stationary. However, there are also locations in � where nodes occur. This can
be seen in Cell 4.42, which plots the real part of the ms1, ns2 mode. For this

Ž .mode, the line �s�r2 the y-axis is stationary. The reader is invited to plot some
of the other modes in this manner, so as to get a feeling for their behavior.

Cell 4.42

j1 = BesselJZeros[1, 3];
�[r_____, �_____] := BesselJ[1, j1[[2]] r] Cos[�];

Table[ParametricPlot3D[{r Cos[�], r Sin[�], Cos[t] �[r, �]},
{r, 0, 1}, {�, 0, 2 Pi}, PlotRange™{-1, 1}, PlotPoints™

25,
BoxRatios™{1, 1, 1/2}], {t, 0, 1.8 Pi, .2 Pi}];
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Traveling Waves in � We have found that the general solution to the 2D wave
equation is a sum of eigenmodes with oscillatory time dependence, given by

Ž .Eq. 4.4.17 . Each term in the sum has the form

A cos 	 tqB sin 	 t e im�J j rra . 4.4.20Ž . Ž . Ž .m n m n m n m n m m , n

Let’s consider a specific case, where the complex amplitude B equals yiA form n m n
Ž .some given m and n. For this mode, Eq. 4.4.20 can be written as

A cos 	 ty i sin 	 t e im� J j rra sA eyi	m n t e im� J j rraŽ . Ž . Ž .m n m n m n m m , n m n m m , n

sA e iŽm�y	 m n t .J j rra .Ž .m n m m , n

This mode is a tra®eling wa®e in the �-direction. The real part of the mode has a
Ž A .�-variation of the form cos m�y	 tq� , so this wave moves, unlike am n m n

standing wave. For example, at ts0, there is a maximum in the real part of the
wave at m�q� A s0; but as time progresses this maximum moves according tom n

A A Ž .the equation m�y	 t� s0, or �sy� rmq 	 rm t.m n m n m n m n
The angular velocity 	 rm is also called the phase velocity c of this wave.m n �

Since the wave is moving in � , this phase velocity has units of radiansrper second.
In Chapter 6, we will consider traveling waves moving linearly in r. There, the
phase velocity has units of meters per second.

Ž .We could also choose B sqiA in Eq. 4.4.20 . This results in a travelingm n m n
wave proportional to e iŽm�q	 m n t .. This wave travels in the y� direction.

In Cell 4.43 we exhibit a drumhead traveling wave for ms1, ns1, traveling in
the positive �-direction.

Cell 4.43

m = 1; 	 = j1[[1]];

�[r_____, �_____, t_____] := BesselJ[1, j1[[1]] r] Cos[m� - 	 t]/; rF1;
�[r_____, �_____, t_____] := 0/; r>>>>>1;
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Table[ParametricPlot3D[{r Cos[� ], r Sin[�], �[r, �, t]},
{r, 0, 1}, {�, 0, 2 Pi},

PlotPoints™25, BoxRatios™{1, 1, 1/2}],
{t, 0, 1.9 Pi/	, .1 Pi/	}];

Sources and Inhomogeneous Boundary Conditions Traveling waves such as
Žthat shown above are often created by moving disturbances time-dependent

.sources . For example, a boat traveling across the surface of a lake creates a wake
Ž .of traveling waves. Mathematically, these sources enter as a function S r, t on the

Ž .right-hand side of the wave equation 4.4.1 . The response to time-dependent
sources is found using an eigenmode expansion, in a manner that is completely
identical to that used for the one-dimensional wave equation. Problems such as
this will be left to the exercises.

Inhomogeneous boundary conditions on the wave equation can also be handled
in an analogous manner to the methods used for the one-dimensional wave
equation. For example, on a circular drumhead the rim might be warped, with a

Ž .height that is given by some function z � . This implies a Dirichlet boundary0
condition

z a, � sz � . 4.4.21Ž . Ž . Ž .0

The wave equation is then solved by breaking the solution into two pieces,
Ž . Ž . Ž .z r, � , t s� z r, � , t qu r, � . One can now use two approaches to finding the

Ž .solution. In the eigenmode approach, one chooses the function u r, � to be any
Ž . Ž .function that matches the boundary condition, u a, � sz � , and the remainder0

� z then satisfies homogeneous boundary conditions, and also satisfies the wave
equation with a source created by u:

� 2� z � 2 u2 2 2 2sc � � zy qc � u. 4.4.22Ž .2 2� t � t
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However, for this time-independent boundary condition it is easier to use a second
approach, by choosing a form for u which satisfies the Laplace equation, �2 us0.

Ž .The solution for u is the equilibrium shape of the drumhead: zsu r, � is a
Ž .time-independent solution to the wave equation 4.4.1 . The remainder term � z

then satisfies the wave equation without sources, subject to whatever initial
conditions are given in the problem.

The equilibrium solution for the shape of the drumhead can be found using the
Laplace solution methods discussed in Sec. 3.2.3. For instance, if the warp follows

Ž .the equation z a, � sa sin 2� , the solution to Laplace’s equation that matches
Ž . Ž 2 . wthis boundary condition is simply u r, � s r ra sin 2� . This follows from Eq.

Ž . 2 x3.1.24 , and can be verified by direct substitution into � us0. This equilibrium
shape is displayed in Cell 4.44.

Cell 4.44

u[r_____, �_____] = r2 Sin[2 �];

ParametricPlot3D[{r Cos[�], r Sin[�], u[r, �]},
{r, 0, 1}, {�, 0, 2 Pi}, PlotPoints™25
BoxRatios™{1, 1, 1/2},
PlotLabel™"equilibrium of a warped circular drumhead"];

On the other hand, for time-dependent boundary conditions, the eigenmode
approach must be used. Even if we choose u to satisfy the Laplace equation, a

Ž .source function will still appear in Eq. 4.4.16 , because the time-dependent
boundary conditions imply that � 2 ur� t 2 �0. Problems of this sort follow an
identical path to solution as for the one-dimensional wave equation with a source
function, and examples are left to the exercises.
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4.4.2 Large-Scale Ocean Modes

The large-scale waves of the ocean provide an instructive example of waves in
spherical geometry. Here, for simplicity we take the idealized case of a ‘‘water
world,’’ where the ocean completely covers the earth’s surface, with uniform depth
d �R, where R is the radius of the earth. Also, we will neglect the effects of0
earth’s rotation on the wave dynamics.

Ž . ŽAs we saw in Exercise 4 of Sec. 3.1, waves in shallow water for which the
.wavelength �d satisfy a wave equation with speed cs gd , where gs9.8'0 0

mrs2 is the acceleration of gravity. On the spherical surface of the earth, these
waves will also satisfy the wave equation, written in spherical coordinates. That is,

Ž .the depth of the ocean now varies according to dsd qh � , �, t , where h is the0
change in height of the surface due to the waves, at latitude and longitude
specified by the spherical polar angles � and �. The function h satisfies the wave
equation,

2 2 2� h c 1 � �h 1 � h2 2sc � h � , � , t s sin � q , 4.4.23Ž . Ž .2 2 2 2ž /sin � �� ��� t R sin � ��

2 Ž . w Žwhere we have used the spherical form of � , Eq. 3.2.27 see Lamb 1932, pg.
.x301 .

From our work on Poisson’s equation in spherical coordinates, we know that the
Ž .eigenmodes of the operator on the right-hand side of Eq. 4.4.23 are spherical

Ž .harmonics Y � , � . Furthermore, we know that the eigenvalues of this operatorl, m
2 Ž . 2 w Ž .xare yc l lq1 rR see Eq. 4.3.55 . Therefore, the amplitude of each spherical

harmonic oscillates in time at the frequency

'c l lq1Ž .
	 s . 4.4.24Ž .l R

The solution is a sum of these modes,

� l

h � , � , t s A cos 	 tqB sin 	 t Y � , � . 4.4.25Ž . Ž . Ž . Ž .Ý Ý lm l lm l l , m
ls0 msyl

It is entertaining to work out the frequencies and shapes of some of the low-order
modes, for earthlike parameters. Taking an average ocean depth of roughly d s40'km, the wave speed is cs 9.8�4000 mrss198 mrs. The earth’s radius is
approximately Rs6400 km, so the lowest-frequency modes, with ls1, have

y5 y1'frequency 	 s 2 crRs4.4�10 s , corresponding to a period of 2�r	 s1 1
1.4�105 s, or 40 hours. The ls2 modes have a frequency that is larger by the

'factor 3 , giving a period of 23 hours. The ls1 and 2 modes are shown in Cells
4.45 and 4.46 for ms0. In the ls1, ms0 mode, water moves from pole to pole,
with the result that the center of mass of the water oscillates axially. Such motions
could actually only occur if there were a time-dependent force acting to accelerate
the water with respect to the solid portion of the earth, such as an undersea

Ž .earthquake or a meteor impact see the exercises . Of course, such events also
excite other modes.
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The next azimuthally symmetric mode has ls2, and is shown in Cell 4.46. In
this ls2, ms0 mode, water flows from the equator to the poles and back,
producing elliptical perturbations. The reader is invited to explore the behavior of
other modes by reevaluating these animations for different l-values.

Cell 4.45

l = 1; m = 0;
Table[ParametricPlot3D[(1 + .4 Cos[t]
SphericalHarmonicY[l, m, �, �])

{Sin[�] Cos[�], Sin[�], Sin[�], Cos[�]}, {�, 0, Pi},
{�, 0, 2 Pi}, PlotRange™{{-1.2, 1.2}, {-1.2, 1.2},

{-1.2, 1.2}}],
{t, 0, 2 Pi-0.2 Pi, .2 Pi}];

Cell 4.46

l = 2; m = 0;
Table[ParametricPlot3D[1 + .2 Cos[t]
SphericalHarmonicY[l, m, �, �])

{Sin[�] Cos[�], Sin[�], Sin[�], Cos[�]}, {�, 0, Pi},
{�, 0, 2 Pi}, PlotRange™{{-1.2, 1.2}, {-1.2, 1.2},
{-1.2, 1.2}}], {t, 0, 2 Pi - 0.2 Pi, .2 Pi}];
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Oscillations with m�0 are also of great importance. Of particular interest is
the traveling-wave form of the lsms2 perturbation, which is an elliptical
distortion of the ocean surface that travels around the equator. This mode is
actually a linear combination of the ls2, ms�2 spherical harmonics, and can
most easily be expressed in terms of the associated Legendre functions making up

2Ž . iŽ� 2�y	 2 t . wthese harmonics: Y AP cos � e . Here we have used the fact that2,� 2 2
y2 Ž . 2Ž . xP cos � is proportional to P cos � ; see Table 3.2 in Sec. 3.2.4. The resulting2 2

disturbance is shown in Cell 4.47.
This type of elliptical traveling wave can be excited by the gravitational attrac-

tion of the earth to the moon. The moon appears to revolve about the earth daily
in the earth’s rest frame. This revolution, in concert with the earth�moon attrac-
tion, causes an elliptical distortion that follows the moon’s apparent position and is

w Ž .xresponsible for the earth’s tides see Eq. 4.3.80 . It is interesting that the natural
frequency of this mode is 23 hours for the parameters that we chose; this means
that the mode is almost resonant with the gravitational force caused by the moon
Žin our simple model, that is on the real earth, there are many effects neglected
here, not least of which are the continents, which tend to get in the way of this

.mode .

Cell 4.47

l = 2; m =2;
Table[ParametricPlot3D[(1 + .05 LegendreP[l, m, Cos[�]]

Cos[m � -t])
{Sin[�] Cos[�], Sin[�] Sin[�], Cos[�]}, {�, 0, Pi},

{�, 0, 2 Pi}, PlotRange™{{-1.2, 1.2}, {-1.2, 1.2},
{-1.2, 1.2}}], {t, 0, 2 Pi - 0.2 Pi, .2 Pi}];
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4.4.3 The Rate of Cooling of the Earth

We now consider a classic heat equation problem in spherical coordinates, in
which the following question is addressed: a sphere of radius R, with thermal
diffusivity � , is initially at uniform temperature T , and the surroundings are at0
lower temperature T . What is the rate at which the sphere cools to temperature1
T ?1

Since the problem has spherical symmetry, the spherical harmonics are not
Ž .needed, and the temperature T r, t evolves according to the spherically symmetric

diffusion equation,

�T 1 � �T2s� r , 4.4.26Ž .2 ž /� t � r � rr

Ž . Ž .with boundary condition T R, t sT , and initial condition T r, 0 sT .1 0
Ž .As usual, we remove the inhomogeneous boundary condition by writing T r, t

Ž . Ž .s�T r, t qu r , where u is chosen to match the boundary condition. A simple
Ž . Ž .choice is u r sT . Then �T evolves according to Eq. 4.4.26 with boundary1
Ž .condition �T R, t s0 and initial condition

�T r , 0 sT yT . 4.4.27Ž . Ž .0 1

Ž .The solution for �T r, t follows a by now familiar path: we expand �T in the
Ž .spherically symmetric Dirichlet eigenmodes of the spatial operator in Eq. 4.4.26 :

�

�T r , t s c t � r , 4.4.28Ž . Ž . Ž . Ž .Ý n n
ns1
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Ž .then recognize that these eigenmodes are the ls0 spherically symmetric spheri-
cal Bessel functions studied in previous examples:

sin n� rrRŽ .
� r s , 4.4.29Ž . Ž .n r

with eigenvalues
2

� sy� n�rR , ns1, 2, 3, . . . 4.4.30Ž . Ž .n

w Ž . xsee Eq. 4.3.58 and Table 4.2 . These modes are orthogonal with respect to the
Ž . Ž .radial inner product given in Eq. 4.3.61 . The evolution of c t then follows byn

Ž . Ž . Ž .2taking the inner product with � , yielding drdt c t sy� n�rR c , which hasn n n
the solution

c t sA eyŽ n� rR.2 � t . 4.4.31Ž . Ž .n n

Ž .Finally, the constants A are determined by the initial condition 4.4.27 :n

� r , T yTŽ .Ž .n 0 1A s . 4.4.32Ž .n � , �Ž .n n

This completes the formulation of the problem. Before we exhibit the full
Ž .solution, however, it is instructive to examine the behavior of c t for differentn

Ž .mode numbers. Equation 4.4.32 implies that an infinite number of eigenmodes
are excited by the initial condition. However, eigenmodes with large n decay away

Ž .very rapidly according to Eq. 4.4.31 . Therefore, at late times, the evolution is
determined by the ns1 mode alone, with an exponential decay of the form
A eyŽ� rR.2 � t.1

Let’s determine this exponential rate of thermal decay for the earth, a sphere
with radius Rs6400 km. The thermal diffusivity of the earth has been estimated
to be roughly �	2�10y6 m2rs. The rate constant for the ns1 mode is then
Ž .2 y19 y1�rR �	5�10 s . The reciprocal of this rate is the time for the tempera-
ture to drop by a factor of es2.71 . . . , and equals 60 billion years! This is rather
satisfying, since it is much longer than the age of the earth, currently estimated at
around 4 billion years. Thus, we would expect from this argument that the earth’s
core would still be hot, as in fact it is.

Looked at more carefully, however, there is a contradiction. The average
temperature gradient at the surface of the earth has been measured to be about

Ž .0.03Krm or 30 Krkm, measured in mineshafts and boreholes . Below, we plot
Ž .this surface gradient using our solution, Eq. 4.4.28 , and assuming that the initial

temperature of the earth is uniform, and around the melting temperature of rock,
T s2000 K.0

Cell 4.48

A[n_____] = (T - T ) Simplify[Integrate[r^̂̂̂̂2 Sin[n Pi r/R] /r,0 1

{r, 0, R}] /
Integrate[r^̂̂̂̂2 Sin[n Pi r/R] ^̂̂̂̂2/r ^̂̂̂̂2, {r, 0, R}],
ngIntegers]

2 (-1)n R (-T + T )1 0-
n�
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Cell 4.49

T = 2000; T = 300; R = 6.4 ***** 10 ^̂̂̂̂6; � = 2 ***** 10 ^̂̂̂̂-6;0 1

M = 700;
year = 60*****60*****24*****365;
(* the temperature gradient: *)

M
2Sin[n Pi r/R] t-�(n Pi/R)dT[r_____, t_____] = A[n] D[ , r]e ;Ý r

n=1

Plot[dT[R, t 10 ^̂̂̂̂6 year], {t, 1, 50},
AxesLabel™{"t (106 years)","dT/dr||||| (�K/m)"}],r=R

ŽNote the large number of radial modes needed in order to obtain a converged
.solution. From the plot of the temperature gradient, we can see that its magnitude

drops to the present value of 0.03Krm after only 20 million years or so, This is
much too short a time compared to the age of the earth.

The resolution of this paradox lies in the fact that the earth contains trace
amounts of naturally occurring radioactive elements. The radioactive decay of
these elements is a source of heat. The heat flux caused by this source creates a

Ž .temperature gradient at the surface through Fick’s law, Eq. 3.1.37 . It is currently
believed that there is sufficient natural radioactivity in the earth’s interior to
explain the large surface temperature gradient observed in present experiments
w Ž .xGarland 1979 .

EXERCISES FOR SEC. 4.4

( )1 A drumhead has uniform mass density � per unit area, uniform wave speed
c, and a fixed boundary of arbitrary shape. Starting with the equations of

Ž .motion, show that the energy E of transverse perturbations z r, t is a
conserved quantity, where

2 2� � z � c2Es d r q �z ��z . 4.4.33Ž .H ž /2 � t 2
( ) ( )2 a Find the frequencies and spatial form of the normal modes of oscillation

of a rectangular trampoline with length a, width b, and propagation
speed c.

( ) Ž .b Find and plot as a Plot3D graphics object the equilibrium shape of the
trampoline under the action of gravity, gs9.8 mrs2, assuming that
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Ž .Fig. 4.12 Exercise 5 .

asbs3 m and cs3 mrs. What is the maximum displacement of the
trampoline from the horizontal, to three significant figures?

( )c Determine the evoluation of a square trampoline with fixed edges of
length Ls3 m and wave speed cs3 mrs. Neglect gravity. The initial

Ž . Ž . Ž . Ž .condition is z x, y, 0 s t x t y , where t x is a triangular shape,

x , x�Lr2,
t x sŽ . ½ Lyx , x�Lr2.

Animate this evolution for 0� t�2 s using Plot3D.

( )3 One edge of the frame of a square drumhead with unit sides is warped,
1Ž .following z 0, y s sin 2� y. The other edges are straight, satisfying zs0.4

Ž .Find z x, y in equilibrium, and plot it as a surface plot using Plot3D.

( )4 A french fry has a square cross section with sides of length as1 cm and an
overall length Ls5 cm. The fry is initially at a uniform temperature Ts0�C.
It is tossed into boiling fat at Ts150�C. How long does it take for the center
of the fry to reach 100�C? Take �s2�10y7 m2rs.

( )5 A cooling vane on a motor has the shape of a thin square with sides of length
Ž .as0.7 cm with thickness ds0.2 cm see Fig. 4.12 . Initially, the motor is off

and the vane is at uniform temperature Ts300 K. When the motor is turned
on, a constant heat flux �s500 Wrcm2 enters one thin edge of the vane,
and the other five faces are all kept at Ts300 K. The thermal conductivity of
the vane is 
s0.1 Wrcm K, and the specific heat is Cs2 Jrcm3 K.
( )a Find the equilibrium temperature distribution, and determine what is the

maximum temperature in the vane, and where it occurs.
( )b Plot the temperature vs. time as a sequence of contour plots in x and y

at zsdr2 for 0� t�0.5 s.

( )6 Solve for the motion of a circular drumhead with a fixed boundary of radius
as1 and sound speed cs1, subject to the following initial conditions:
( ) Ž . 2Ž .3 Ž .a z r, � , 0 s r 1y r cos 4� , � z r, � , 0 s0. Animate the solution for 0�t

t�2 using Plot3D.
( ) Ž . Ž . Ž .b z r, � , 0 s0, � z r, � , 0 s� r rr. Animate the solution for 0� t�2t

using Plot.



EIGENMODE ANALYSIS348

( ) ( )7 a Assuming that the measured temperature gradient at the earth’s surface,
Ž .0.03 Krm, is due to an equilibrium temperature profile T r , find theeq

² : 3required mean heat source S , in Wrm , averaged over the earth’s
Ž . Ž .interior presumably due to radioactivity . Take 
s2 Wr m K .

( ) Ž .b Plot T r , assuming that the heat source is distributed uniformlyeq
Ž .throughout the earth’s interior, and that 
 is uniform, given in part a .

5 ŽShow that the temperature of the core is of order 10 K. This huge
temperature is 30 times larger than current estimates. Evidently, the
radioactive heat source cannot be uniform, but instead must be concen-
trated mostly near the earth’s surface where the heat can more easily

w Ž . .x .escape Garland, 1976 , p. 356 .

( )8 Solve the following heat equation problems in cylindrical coordinates:
( ) Ž . Ž .a T r, � , 0 s� r rr in an insulated cylinder of radius as1 and thermal

diffusivity �s1. Animate the solution for 0� t�0.5.
( ) Ž .b T r, � , 0 s0, in a cylinder of radius as1, thermal diffusivity �s1, and

thermal conductivity 
s1. There is an incident heat flux �sycos � r.̂

( )9 Damped waves on a circular drumhead, radius a, satisfy the following PDE:

� z r , � , t � 2 z r , � , tŽ . Ž . 2 2 w x� q sc � z r , � , t ,2� t � t
where ��0 is a damping rate.

( )a Find the eigenmodes and eigenfrequencies for this wave equation, assum-
ing that the edge of the drumhead at rsa is fixed.

( ) Ž . Ž . 2b Solve for the motion for the initial conditions z r, � , 0 s 1y r r sin 2� ,
Ž . Ž .z r, � , 0 s0, and boundary condition z 1, � , t s0. Animate the solution˙

for �s0.3, cs1, 0� t�2.

( )10 A can of beer, radius as3 cm and height Ls11 cm, is initially at room
temperature Ts25�C. The beer is placed in a cooler of ice, at 0�C. Solve the
heat equation to determine how long it takes the beer to cool to less than
5�C. Assume that the thermal diffusivity is that of water, �s1.4�10y7

m2rs.

( ) Ž 2 .11 A drumhead has mass � per unit area units kgrm and radius R. The
speed of propagation of transverse waves is c. A force per unit area,
Ž .F r, � , t , is applied to the drumhead in the z-direction. The wave equation

then becomes

� 2 z r , � , t F r , � , tŽ . Ž .2 2sc � z r , � , t q . 4.4.34Ž . Ž .2 �� t

A ring of radius as3 cm and mass ms5 kg is placed in the center of a
circular drumhead of radius Rs1 m. The speed of propagation is cs100
mrs, and �s0.1 kgrm2. Including the effect of gravity on the drumhead

witself, find the equilibrium shape of the drumhead. Hint: The force per unit
Ž . xarea due to the ring is proportional to � rya .

( )12 A marble rolls in a circle of radius a around the center of a drumhead of
radius R, with mass per unit area � and wave propagation speed c. The
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Ž .Fig. 4.13 Exercise 14 .

marble creates a force per unit area FsF ey� wŽ rya .2qŽ �y	 t .2 x, where 	 is0
the angular speed of the marble. Find the response of the drumhead to the
marble, assuming that the drumhead is initially motionless, and neglecting the
effect of gravity on the drumhead itself. Animate this response for two
rotations of the marble using contour plots, as a function of time, taking
F s�sas1, Rs2, cs1, �s20, and0

1( )a 	s ,2

( )b 	s4.
1( )13 The edge of a circular drumhead of radius as2 m and cs mrs is flicked2

Ž . Ž . Ž .up and down, following z a, � , t s t exp yt t in seconds . Find the evolu-
tion of the drumhead, assuming that it is initially at rest at zs0. Animate
Ž .z r, t as a series of plots for 0� t�10.

( )14 A drumhead has the shape of a wedge, shown in Fig. 4.13, with opening angle
� . The edges of the drumhead are fixed at zs0. Find analytic expressions
for the frequencies and spatial forms of the normal modes for this drumhead.
Find the lowest-frequency mode for �s27�, and plot its form as a surface
plot. Plot the frequency of this mode as a function of � for 0���360�.

( )15 A wheel of radius Rs10 cm rotates on a bearing of radius as1 cm, with
angular frequency 	s100 radrs. The surface of the wheel is insulated,
except at the bearing. At time ts0 the wheel has uniform temperature
T s300 K, but due to friction on the bearing it begins to heat. Taking the0
torque due to friction as �s1 newton per meter of length of the bearing, the
heating power per unit length is �	s100 Wrm. Assuming that this power is
dissipated into the metal wheel, with the thermal conductivity and heat

Ž .capacity of copper, find T r, t in the wheel.

( )16 A meteor strikes the north pole of a spherical planet of radius as5000 km,
covered with water of uniform depth d s1 km. The acceleration of gravity0
on the planet is gs10 mrs2. Initially, the perturbed ocean height satisfies
Ž . Ž 2 . Ž .h � , �, 0 sh exp y50� , � h � , �, 0 s0, where h s100 m. Find the evo-0 t 0

Ž .lution h � , �, t of the subsequent tsunami,and animate it vs. time using
Ž .Plot as a function of � only for 0F tF50 hours.

( )17 A hemispherical chunk of fat has radius as2 cm. The flat side of the
hemisphere sits on a stove, at height zs0. At ts0 the temperature of the
fat is T s300 K. At this time, the stove is turned on and the surface at zs00

Ž . Ž .heats according to TsT q T yT tanh tr60 , where T s400 K, and0 1 0 1
times are in seconds. Assuming that the rest of the fat surface exposed to air
has an insulating boundary condition, and that the fat has the thermal

Ž .properties of water, find T r, � , t . Plot the temperature vs. time at the point
farthest from the stove.
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( )18 A copper sphere of radius as10 cm is placed in sunlight, with an incident
2 Žthermal flux of �s1000 Wrm , in the yz direction on the upper side of

.the sphere only . The sphere also radiates away this energy like a blackbody,
Ž .4with a flux �s� T a, � in the radial direction, where � is ther

Stefan�Boltzmann constant.
( )a Assuming that the temperature distribution is spherically symmetric,

what is the temperature of the sphere in equilibrium?
( ) Ž .b Find the actual equilibrium temperature distribution T r, � in theeq

wsphere. Hint: Copper is a very good heat conductor, so the temperature
distribution is nearly spherically symmetric. Therefore, you only need to

Ž .keep two or three terms in the generalized Fourier series for T r, � ,eq
and you can Taylor-expand the Stefan�Boltzmann law around the spheri-

xcally symmetric solution.

( ) ( )19 a The energy levels E for an electron confined in a spherical cavity oflm n
Ž .radius a a quantum dot are described by the time-independent Schrodi-¨

nger equation,

Ĥ� sE � , 4.4.35Ž .lm n lm n lm n

ˆ 2 2Ž . Ž .where Hsy � r2m � qV r is the energy operator, m is the electron
Ž .mass, V is the potential of the cavity Vs0 for r�a, Vs� for rGa ,

Ž .� r, � , � are the associated energy eigenfunctions, and l, m, n arelm n
quantum numbers enumerating the energy levels. Apply separation of
variables to this problem in order to find the energy levels and the energy

Žeigenfunctions. Hint: In this potential, the boundary condition is �s0
.at rsa. What is the lowest energy level in electron volts for a dot of

˚ ˚ y10 y19Ž .radius as5 A? 1As10 m; 1 eVs1.60�10 J.

( ) Ž .20 The electron energy levels in a hydrogen atom also satisfy Eq. 4.4.35 , with
ˆ 2 2 2Ž . Ž .Hamiltonian operator Hsy � r2m � ye r 4�� r , where m is the re-0

duced mass of the system, roughly equaling the electron mass, and e is the
electron charge. Show by substitution of the following solutions into Eq.
Ž .4.4.35 that the energy levels are given by

e2

E s , ns1, 2, 3, . . . , 4.4.36Ž .n 28�� an0

and that the eigenfunctions are

l 2 lq1 yrrŽ na. � �� sY � , � r L 2 rrna e , 0� l�n , m F l , 4.4.37Ž . Ž . Ž .lm n lm nyly1

2 2 � Ž .where as4�� � rme is the Bohr radius, and where L x are generalized0 �

Laguerre polynomials, equal to the ordinary Laguerre polynomials for �s0.
Ž .In Mathematica these polynomials are referred to as LaguerreL[�, � ,x].
In your solution you may use the fact that these polynomials satisfy the ODE

xL ��q �q1yx L �q�L �s0.Ž .� � �

ŽHint: In the Schrodinger equation scale distances to a and energies to¨
2 .e r4�� a.0
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( )21 Rubber supports two types of bulk wave motions: compressional modes and
shear modes. The compressional modes have displacements � r in the direc-
tion of propagation, creating compressions in the rubber. The shear modes
have displacements transverse to the propagation direction, so that ��� rs0,
and therefore no compressions occur in the shear modes. Consider the shear
modes in a spherical rubber ball of radius R. These modes satisfy the
following vector wave equation:

� 2
2 2� rsc � � r,s2� t

w Ž .xwhere c is the speed of shear wave propagation see Love 1944 . Assumings
ˆ Ž . w Ž .that � rs� � r r, � , � i.e., the motion is in the x, y plane, in the �-direc-�

xtion , the boundary condition at the free surface of the sphere, rsR, can be
shown to be

�
R � r s� r .� �� r

( )a By applying separation of variables to this wave equation, show that the
modes have the form

J krŽ . �lq1r2 im� m� r r , � , � s e P cos � ,Ž . Ž .� l��'r

and that the frequency 	 of normal modes satisfy

J kR J kRŽ . Ž .� lq1r2 lq1r2
R s ,
�R ' 'R R

where ks	rc and where J is a Bessel function, P m is an associateds l l
Legendre function, ls0, 1, 2, . . . and msyl,y lq1, . . . , ly1, l. Solve
numerically for the lowest four modes. Plot the dependence of these four
modes on r.

( )b Choose 50 points distributed evenly along the great circle defined by
�s0 and � , rsR, and follow the motion of these points as they are
carried along by the lowest normal mode for one period of oscillation.

( )22 Spherically symmetric compressional waves in a rubber ball of radius R
satisfy the following elastic wave equation:

� 2 � 2 2 � 22� rsc � rq � ry � r ,p2 2 2ž /r � r� t � r r

where � r is the radial position change of a mass element, and c is the speedp
of compressional waves. These waves satisfy the following boundary condition
at the free surface rsR:

� r �2 2 22c y4c qc � rs0,Ž .p s pr � r

where c is the speed of shear waves.s
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( )a Show that the dispersion relation for these waves is

4kRc2 cos kRs 4c2y	 2R2 sin kR , where ks	rc .Ž .s s p

( )b Solve for the lowest three frequencies, and in each case plot the radial
'Ž . Ž . Ž .dependence of � r, for i c sc , ii c sc r 2 , iii c s0.s p s p s

( )23 A child drops a pebble into the center of a shallow pool of water of radius
Ž .as1 m and depth h. The wave height z r, t satisfies the wave equation with

'wave propagation speed cs gh s1 mrs. The initial disturbance has the
Ž . Ž 2 . Ž 2 . Ž . Žform z r, 0 syz exp y30r 1y30 r , � z r, 0 s0, where z s1 cm and0 0

.r is measured in meters . The boundary condition at the pool edge is not
Dirichlet: the water surface at the pool edge can move up and down. To find
the correct boundary condition, we must consider the radial displacement �
of fluid during the wave motion.
( ) Ž .a Using the same techniques as were used in the derivation of Eq. 3.1.78 ,

show that the radial fluid displacement � is related to the wave height z
by

� r�h Ž .
zsy .r � r

( )b The boundary conditions are �s0 at rsa, and � finite at rs0. Find
the eigenmodes and eigenfrequencies, and plot the wave height z vs. r
for the first three eigenmodes.

( )c Solve the initial-value problem stated previously, and animate the solu-
tion using Plot for 0� t�2.

( )24 For bounded pools of shallow water with waves moving in one dimension
only, we saw in the previous problem that it is necessary to consider the
horizontal fluid displacement �. For general wave motion in more than one

Ž .dimension, this displacement is a vector, � r, t . Wave height z is related to
fluid displacement according to zsyh���. Using the same method as that

Ž .which led to Eq. 3.1.78 , one can show that � satisfies the vector equation

� 2
2� r, t sc ���� r, t , 4.4.38Ž . Ž . Ž .2� t

'where cs gh , for a pool with constant equilibrium depth h. The boundary
condition on this equation is n ��s0, where n is a unit vector normal to theˆ ˆ
edge of the pool.
( ) Ž .a Using Eq. 4.4.38 , show that wave height z satisfies a wave equation.
( ) Ž . wb Assume that �s�� r, t . This is called potential flow see Landau and

Ž .xLifshitz 1959 . Show that � also satisfies the wave equation

� 2
2 2�sc � � 4.4.39Ž .2� t
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with von Neumann boundary condition n ���s0. Show that � and z areˆ
related according to zsyh�2�.

( ) ( )25 a A coffee cup has radius a and is filled with coffee of depth h. Assuming
Ž . Ž .potential flow and using Eq. 4.4.39 , with rs r, � , find analytic expres-

sions for frequency and spatial form of the normal modes of the coffee.
ŽWhat is the lowest-frequency mode, and what is its frequency? Hint:

.This mode is not cylindrically symmetric. Plot the spatial form of
Ž .z r, � , t for this mode.

( )b Find the frequency of this lowest mode for a cup of radius as3 cm,
filled to a depth of hs1 cm. See if you can set this mode up in your
coffee. Measure its frequency with your watch, and use a ruler to
determine the depth of the coffee and the cup diameter. Compare to the
theory, and discuss any errors.

( )26 A wave machine excites waves at one end of a shallow square pool of side
Ls1 by injecting and removing water sinusoidally in time along the left edge.

Ž .Along this edge xs0 , the boundary conditions are time-dependent, with
Ž . 2Ž .2fluid being displaced according to � 0, y, t sy 1yy sin 	 t. Along thex 0

other three edges, n ��s0. Assume potential flow.ˆ
( ) Ž .a Solve for the wave height z x, y, t , assuming that �s0 and � �st

2Ž .2	 y 1yy x initially. Create an animation of the wave height using0
Plot3D for the case 	 s1 and cs0.2 for 0� t�6� .0

( )b There are values of 	 for which the wave response becomes large. Find0
these values, and explain their meaning physically.

( )27 Sound waves in a fluid such as air or water satisfy equations of the same form
Ž . Ž .as those for gravity waves on a fluid surface, Eqs. 4.4.38 and 4.4.39 , except

written in three dimensions. Assuming potential flow, the displacement of a
Ž .fluid element in the gas is given by � x, y, z, t s��, where � satisfies Eq.

Ž .4.4.39 , and the sound speed is cs � p rM , where M is the mass density' 0
of the fluid, p is the equilibrium pressure, and � is the ratio of specific0
heats. Also, the perturbed pressure � p in the wave is related to � by

� psyp ���syp �2� . 4.4.40Ž .0 0

( )a A closed tube of length 2 with circular cross section supports normal
modes in the enclosed gas. The tube volume lies in the domain 0� r�1,
0�z�2. Find the frequencies of the cylindrically symmetric normal

Žmodes in this tube and the spatial form of the modes. Hint: First, show
.that the function � satisfies von Neumann boundary conditions.

( ) Ž . Ž . Ž . Ž .b Call the r, z mode numbers the integers l, n , with l, n s 0, 0 denot-
Ž .ing the lowest mode with zero frequency . Plot the displacement field �

Ž . Ž . Ž .for the l, n s 1, 2 mode in the x, z plane using PlotVectorField.
( )c A circular portion of the end of the cylinder at zs0 is a loudspeaker: an

elastic membrane, which is driven by an external force to oscillate as
12Ž . Ž . Ž .� z r, 0, t sz 1y4 r sin 	 t, for r� , and � z r, 0, t s0 otherwise.0 0 2

Ž .Find the response of the pressure � p r, z, t in the gas inside the piston
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was a Fourier series, assuming that � ps0 for all t�0. Hint: The
potential � at zs0 has a discontinuous derivative as a function of r.
Therefore, to put the equation in standard form it is important to find a

Ž .function u r, z, t that matches these boundary conditions but remains
2 Ž .smooth in the interior of the domain. Use the solution of � us� t with

Ž .the appropriate discontinuous boundary conditions, choosing � t so as
to satisfy the Gauss’s law constraint condition on problems with von

xNeumann boundary conditions.
( )d Taking cs1, 	 s10, and keeping 15 normal modes in the r-dimension0

and 6 in the z-dimension, animate � p vs. x and z in the ys0 plane for
0F tF2.

( )28 A solid sphere of radius a is concentric with a larger hollow sphere of radius
R. At ts0, the smaller sphere begins to move up and down along the z-axis,

Ž .according to � z t sz sin 	 t. Assume potential flow, and also assume a0 0
free-slip boundary condition at the surface of the spheres, so that the

� Ž . �boundary condition at rsa is r �� s� z t cos � , and at rsR is r ��ˆ ˆrsa rsR
Žs0. The fluid is allowed to slip along the sphere’s surface, but cannot go

.through the surface. Find the resulting pressure distribution in the cavity
Ž .between the spheres, � p r, � , t , in spherical coordinates by solving for

Ž .� r, � , t with the appropriate von Neumann boundary conditions and apply-
Ž . Ž .ing Eq. 4.4.40 . Plot � p vs. time in the x, z plane for 0� t�4, taking

cs1, as1, Rs3, and 	 s2� , and keeping the first 10 radial eigenmodes.0
Ž .The mode frequencies must be determined numerically using FindRoot.
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CHAPTER 5

PARTIAL DIFFERENTIAL EQUATIONS
IN INFINITE DOMAINS

In Chapters 3 and 4, we found solutions to various partial differential equations in
finite spatial domains. In order to determine the solution, it was necessary to
specify boundary conditions. In this chapter, we explore solutions to PDEs in
infinite spatial domains. One often encounters effectively infinite domains, where
the boundaries are sufficiently far from the region of interest to have negligible
influence on the local behavior of the solution.

Take, for example, a large object, inside which a localized temperature pertur-
Ž . Ž .bation T r, t evolves, far from the edges of the object. See Fig. 5.1. This

perturbation could be expanded as a sum of eigenmodes for the system, but then
boundary conditions would have to be specified, and this ought to be unnecessary.
It should make no difference to the local evolution of the temperature whether
the boundaries are insulated or are conducting, given that they are far from the
perturbation. Also, if the boundary has some complicated shape, it could be diffi-
cult as a practical matter to determine the eigenmodes.

In Sec. 5.1 we will see that problems such as this can be solved using Fourier
transforms, provided that the system in question is uniform in space and time over

Žthe region of interest i.e., the system is without spatial or temporal variation in
.intrinsic parameters such as the wave speed or the thermal conductivity . Recall

that in Chapter 2 Fourier transforms were used to describe arbitrary functions
defined on the entire real line. Thus, they are just what is needed to describe the
evolution of solutions to PDEs in infinite domains. Furthermore, we will see that
these Fourier transform solutions can be determined without imposing specific
boundary conditions.

Ž .In Sec. 5.2 and Sec. 5.3 in the electronic version we consider systems that are
nonuniform but still effectively infinite, in the sense that perturbations are local-
ized far from boundaries, so that boundary conditions need not be specified. Now
parameters such as the sound speed or conductivity vary with position or time in
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Fig. 5.1 Localized temperature perturbation.

the region of interest. We will discuss an analytic approximation technique for
determining the local evolution of the solution, called WKB theory.

5.1 FOURIER TRANSFORM METHODS

5.1.1 The Wave Equation in One Dimension

Traveling Waves We first consider solutions to the wave equation in one
dimension, on an infinite uniform string running from y��x��:

� 2 y � 2 y2sc , 5.1.1Ž .2 2� t � x

subject to the initial conditions

y x , 0 sy x ,Ž . Ž .0

5.1.2Ž .� y
x , 0 s® x .Ž . Ž .0� t

This problem can be solved by applying the spatial Fourier transform operator
ˆ � yi k x Ž .FsH dx e to both sides of Eq. 5.1.1 :y�

� 2 y � 2 y2ˆ ˆF sFc . 5.1.3Ž .2 2� t � x

ˆ 2 2On the left-hand side, we can exchange F with � r� t , writing

� 2 y � 2 � 2
ˆ ˆF s Fys y ,˜2 2 2� t � t � t

Ž . Ž .where y k, t is the spatial Fourier transform of y x, t , given by˜

�
yi k xy k , t s dx e y x , t . 5.1.4Ž . Ž . Ž .˜ H

y�
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ˆ 2 2 2Ž . Ž .On the right-hand side of Eq. 5.1.3 , we use Eq. 2.3.18 to write Fc � yr� x s
2 2 ˆ 2 2 Ž .yc k Fysyc k y. Thus, Eq. 5.1.3 becomes a second-order ODE in time,˜

� 2
2 2y k , t syc k y k , t . 5.1.5Ž . Ž . Ž .˜ ˜2� t

This ODE is merely the harmonic oscillator equation, with an oscillation frequency
that depends on the wavenumber k according to

� k sck . 5.1.6Ž . Ž .

Such a relation between frequency and wavenumber is called a dispersion relation.
Ž .It is convenient to write the general solution to Eq. 5.1.5 in exponential

notation,

y k , t sC k eyi � Žk . tqD k e i� Žk . t , 5.1.7Ž . Ž . Ž . Ž .˜

Ž . Ž .where C k and D k are the two undetermined coefficients that appear in this
second-order ODE. These coefficients can take on different values for different
k ’s and so are written as functions of k. We can then transform the solution back

ŷ1 � ik xŽ .to x-space by applying an inverse Fourier transformation, F sH dkr2� e ,y�

Ž .to Eq. 5.1.7 :

� �dk dky1 iwk xy� Žk . t x iwk xq� Žk . t xˆy x , t sF y k , t s C k e q D k e .Ž . Ž . Ž . Ž .˜ H H2� 2�y� y�

5.1.8Ž .

Ž .Equation 5.1.8 is the general solution to the wave equation on a one-dimensional
infinite uniform string. It looks very similar to the eigenmode expansions encoun-
tered in Chapter 4, except that now we integrate over a continuous spectrum of
modes rather than summing over a countably infinite set. In fact, one can think of

ik x yi k x Ž . 2 2 2the functions e and e in Eq. 5.1.8 as eigenmodes of the operator c � r� x ,
in that this operator returns these functions unchanged except for a multiplicative

Ž 2 2 .constant the eigenvalue, yc k . However, unlike regular eigenvalue problems,
there are no boundary conditions associated with these functions at ��.

Ž .Equation 5.1.8 can be further simplified by substituting the dispersion relation,
Ž .Eq. 5.1.6 :

� �dk dkikŽ xyc t . ikŽ xqc t .y x , t s C k e q D k e . 5.1.9Ž . Ž . Ž . Ž .H H2� 2�y� y�

The functions e ikŽ xqc t . and e ikŽ xyc t . represent tra®eling wa®es, propagating to the
right and left respectively. The real parts of these two functions are shown in Cells

Ž5.1 and 5.2 taking cs1 and ks1. The plots in Cells 5.1 and 5.2 differ only when
.animated, so only the former plot is included in the printed version of the book.

These traveling waves extend over the whole real line, and are periodic in both
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time and space. The spatial period of the waves is the wavelength �, and is related
to the wavenumber k by �s2�rk. The temporal period T is related to the

Ž . Ž .frequency � k by Ts2�r� k .

Cell 5.1

c = 1; k = 1;
Table[Plot[Re[eik (x-ct)], {x, 0, 6 Pi},

PlotLabel™"Re[eik (x-ct)]", AxesLabel™{"x", ""}],
{t, 0, 1.8 Pi, .2 Pi}];

Cell 5.2

c =1; k = 1;
Table[Plot[Re[eik (x+ct)], {x, 0, 6 Pi},

PlotLabel™"Re[eik (x+ct)]", AxesLabel™{"x", ""}],
{t, 0, 1.8 Pi, .2 Pi}];

The speed at which the waves propagate can be seen to equal c, since the waves
can be written as e ikŽ x � ct .. For instance, the motion of a wave maximum in the

Žprevious animations is determined by the condition that the argument of cos k x�
.ct equals 0. Therefore, the location of the maximum satisfies x�cts0, which

implies that the maximum moves with velocity �c.

Ž .General Solution The general solution to the wave equation 5.1.9 is a linear
superposition of these traveling waves, propagating to the left and the right. This
solution can also be written in another, illuminating form. If we define two

Ž . Ž .functions f x and g x according to
� �dk dkik x ik xf x s C k e , g x s D k e , 5.1.10Ž . Ž . Ž . Ž . Ž .H H2� 2�y� y�

Ž .then Eq. 5.1.9 becomes

y x , t s f xyct qg xqct . 5.1.11Ž . Ž . Ž . Ž .
Ž .Equation 5.1.11 is another way to represent the general solution to the wave

equation in one dimension. It is called D’Alembert’s solution. The functions
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Ž . Ž .f xyct and g xqct are arbitrary disturbances traveling to the right and left
respectively with constant speed c, and without changing their shape. We dis-

Ž .cussed this behavior previously; see Eq. 3.1.26 .
In order to determine the connection between these propagating disturbances

Ž .and the initial conditions, we evaluate Eq. 5.1.11 and its time derivative at ts0,
Ž .and use Eq. 5.1.2 :

y x , 0 s f x qg x sy x ,Ž . Ž . Ž . Ž .0

� y � f � g
x , 0 syc x qc x s® x .Ž . Ž . Ž . Ž .0� t � x � x

Ž .Ž .In the second line we have used the chain rule to write � fr� t xyct s
Ž .Ž .yc � fr� x xyct , and similarly for the time derivative of g. These two equations

are sufficient to determine f and g in terms of y and ® . To do so, operate on0 0
Ž .both equations with a Fourier transform. Then, using Eq. 5.1.10 , we obtain

C k qD k sy k ,Ž . Ž . Ž .0̃
5.1.12Ž .

y i� k C k yD k s® k ,Ž . Ž . Ž . Ž .0̃

Ž . Ž .where we have also used Eq. 2.3.18 and 5.1.6 , and where y and ® are the˜ ˜0 0
Fourier transforms of y and ® respectively. Solving these coupled equations for0 0
Ž . Ž .A k and B k yields

® kŽ .˜1 0C k s y k q i ,Ž . Ž .0̃ž /2 � kŽ .
5.1.13Ž .

® kŽ .˜1 0D k s y k y i .Ž . Ž .0̃ž /2 � kŽ .

Ž .The functions f and g then follow from Eq. 5.1.10 .
Ž .For example, if the initial perturbation is stationary, so that ® x s0 but0

Ž . Ž . Ž . Ž . Ž .y x �0, then equations 5.1.13 imply that C k sD k sy k r2. Equations˜0 0
Ž . Ž .5.1.10 and 5.1.11 then yield

y xqct qy xyctŽ . Ž .0 0y x , t s . 5.1.14Ž . Ž .2

The initial perturbation breaks into two equal pulses, traveling in opposite direc-
tions. Recall that this was the behavior observed in Example 2 of Sec. 3.1.2, up to
the time where the pulses encountered the boundaries.

5.1.2 Dispersion; Phase and Group Velocities

The Schrodinger Equation for a Free Particle Moving in One Dimension¨
Let’s now apply the Fourier transform analysis to another wave equation: the

Ž .Schrodinger equation for the evolution of the wave function � x, t of a free¨
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particle of mass m moving in one dimension,

� �2 � 2

i� � x , t sy � x , t . 5.1.15Ž . Ž . Ž .2� t 2m � x

This ODE is first-order in time, and so is supplemented by a single initial
condition on the wave function at ts0:

� x , 0 s� x . 5.1.16Ž . Ž . Ž .0

ˆ � yi k xApplication of the spatial Fourier transformation operator FsH dx e toy�

Ž .both sides of Eq. 5.1.15 yields the following ODE:

� �2 k 2
˜ ˜i� � k , t s � k , t , 5.1.17Ž . Ž . Ž .� t 2m

˜ ˆwhere �sF� is the spatial Fourier transform of � . This first-order ODE has the
general solution

˜ yi � Žk . t� k , t sC k e , 5.1.18Ž . Ž . Ž .
Ž .where C k is the undetermined constant, a function of the wavenumber k, and

Ž .� k is given by

�k 2

� k s . 5.1.19Ž . Ž .2m

Ž .An inverse transformation of Eq. 5.1.18 then yields the general solution for
Ž .� x, t :

� dk iwk xy� Žk . t x� x , t s C k e . 5.1.20Ž . Ž . Ž .H 2�y�

Ž .Equation 5.1.20 implies that the wave function for a free particle can be
written as a superposition of traveling waves, each of the form e iwk xy� Žk . t x. These
waves propagate with a velocity that depends on the wavenumber, termed the

Ž .phase ®elocity ® k . The phase velocity refers to the velocity of a point of given�

Ž .phase � on the wave, where �skxy� k t. For example, the real part of the
wave has a maximum at �s0. The maximum moves according to the equation

Ž .0skxy� k t. Therefore, the speed at which this point moves is given by

® k s� k rk . 5.1.21Ž . Ž . Ž .�

Ž . Ž . Ž .For a string, with dispersion relation � k sck, Eq. 5.1.21 implies that ® k sc,�

so that waves of any wavenumber propagate at the same speed. Here however,
Ž . Ž . Ž .Eqs. 5.1.21 and 5.1.19 imply that ® k s�kr2m, so long waves propagate more�

slowly than short waves. This variation of phase velocity with wavenumber is called
dispersion. Dispersion has important consequences for the behavior of the free-par-
ticle wave function, as we will now see.

The effects of dispersion are most easily addressed with an example. Consider
the evolution of a wave function from the following initial condition:

� x sA eyx 2 r2 a2qi k 0 x . 5.1.22Ž . Ž .0



5.1 FOURIER TRANSFORM METHODS 361

� Ž . � Ž .The functions � x and Re � x are displayed in Cell 5.3. This initial condition0 0
� �is a wave with wavenumber k and varying amplitude that vanishes as x ™�.0

This sort of wave function is often referred to as a wa®e packet. According to the
tenets of quantum theory, the probability of finding the particle in the range from

� Ž . � 2 Ž .x to xqdx is � x dx, so Eq. 5.1.22 describes a particle localized to within a
Ž .distance of roughly a from the origin. The constant A in Eq. 5.1.22 is determined

by the condition that

�
2� �� x dxs1;Ž .H

y�

or in words, there is a unit probability of finding the particle somewhere on the
2'Ž . Ž .real line. For � x given by Eq. 5.1.22 , this implies that As1r 2� a .0

Cell 5.3

2'A = 1/ 2Pi a ;
� [x_____] = A Exp[-x ^̂̂̂̂2/(2 a ^̂̂̂̂2) + I k x]; a = 1/Sqrt[2];0 0

k = 12;0

Plot[{Abs[� [x]], Re[� [x]]}, {x, -4, 4}, PlotRange™All,0 0

PlotLabel™TableForm[{{StyleForm["|||||� (x)|||||", FontColor™0

RGBColor[0, 0, 0]],
",", StyleForm["Re[� [x]]", FontColor™0

RGBColor[1, 0, 1]]}},
'TableSpacing™0], AxesLabel™{"x/ 2 a", ""},

PlotStyle™{RGBColor[0, 0, 0], RGBColor[1, 0, 1]}];

Ž .To find how this initial condition evolves, we can use Eq. 5.1.20 . But we need
Ž . Ž . Ž .the function C k . This function is determined using Eqs. 5.1.20 and 5.1.16 :

� dk ik x� x s C k e . 5.1.23Ž . Ž . Ž .H0 2�y�
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Ž .Thus, C k can be recognized as the Fourier transform of the initial condition:

� 2 21yi k x yx r2 a qi k x0C k s dx e e . 5.1.24Ž . Ž .H 2'y� 2� a

This integral can be evaluated analytically:

Cell 5.4

Clear["Global‘*****"];

1
Integrate Exp[-I k x + I k0 x - x ^̂̂̂̂2/(2a ^̂̂̂̂2)],'2� a

{x, -Infinity, Infinity}, Assumptions™a>>>>> 0

1 22- (k-k0)a2e

Therefore,

C k se - a2Žkyk 0 .
2 r2 . 5.1.25Ž . Ž .

The Fourier transform of the initial condition is another Gaussian, peaked
around the central wavenumber of the packet, k . The width in k of this spectrum0
is of order 1ra. Thus, as the width a of the inital condition increases, the Fourier

Ž .transform 5.1.25 of the packet decreases in width, becoming more sharply peaked
around k . This is expected from the uncertainty principle of Fourier analysis,0
discussed in Chapter 2.

Ž .Equation 5.1.20 implies that the wave function evolves according to

� 1 2 2 2dk Ž .y a kyk iwk xyŽ hk r2 m. t x02� x , t s e e .Ž . H 2�y�

This integral can also be evaluated analytically, although the precise form of the
result is not of importance at this point:

Cell 5.5

�[x_____, t_____] = Integrate[

1 22- (k-k0) 2a2e Exp[I (k x - � k t/(2 m))],
{k, -Infinity, Infinity}]/(2 Pi)

mx2+i a2 k0 (-2m x+k0 t�)
- 2e 2 a m+2 i t�

it�2'2� a +' m

2 ˚y1� �The probability density � is shown in Cell 5.6 for an electron with k s100 A0
˚ ˚ y10Ž .and as700 A, where 1 angstrom A is 10 m.
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Cell 5.6

m = 9.11 10 ^̂̂̂̂-31 ; � = 1.05 10 ^̂̂̂̂-34;
˚ ˚ ˚-1A = 10 ^̂̂̂̂-10; a = 700 A ; k0 = 10 ^̂̂̂̂-2 A ;

Table[
˚ ˚Plot[Abs[�[x, t]] ^̂̂̂̂2, {x, -2000 A, 20000 A},

AxesLabel™{"x (meters)", ""},
PlotLabel™"(|||||�|||||)2, "<<<<<>>>>>ToString[t/10 ^̂̂̂̂-11]<<<<<>>>>>"x10-11sec",
PlotRange™{0, 1/(2 Pi a2)}], {t, 0., 15 10 ^̂̂̂̂-11,
1. 10 ^̂̂̂̂-11}];

Our choice of initial condition leads to an electron that travels to the right with
constant velocity. As the electron propagates, its probability density spreads: the
electron becomes delocalized. First, we will consider what sets the speed of the
wave function as it moves to the right, then we will discuss the spreading of the
wave function.

Group Velocity The previous calculation shows that the electron traveled roughly
10y6 m in 10y10 s, implying a speed of about 104 mrs. What sets this speed? One
might think that the speed is determined by the phase velocity ® of waves with the�

Ž . Ž . Ž .central wavenumber k of the wave packet. Using Eq. 5.1.19 and 5.1.21 , ® k0 � 0
is evaluated as

Cell 5.7

�k0/(2m)
5762.9

This phase velocity, measured in meters per second, is less than the observed
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electron speed by roughly a factor of two. In fact, we will now show that the
electron wave packet travels at the group ®elocity.

Ž .In this wave packet, the spectrum of wavenumbers C k is sharply peaked
Ž .around k . We can then approximate the wavenumber integral in Eq. 5.1.20 by0

Ž .Taylor-expanding � k about ksk :0

� dk ��
� x , t s C k exp i kxy � k q kyk q . . . t .Ž . Ž . Ž . Ž .H 0 0½ 5ž /2� � k ksk 0y�

5.1.26Ž .

If we neglect the higher-order terms in the Taylor expansion, and keep only those
terms shown, then we can write the wave packet as

��� dk ��
� x , t sexp i k y� k t C k exp ik xy t .Ž . Ž . Ž .H0 0ž / ž /� k 2� � kksk ksk0 0y�

5.1.27Ž .

Ž . Ž .The Fourier integral in Eq. 5.1.27 can now be evaluated using Eq. 5.1.23 :

�� ��
� x , t sexp i k y� k t � xy t .Ž . Ž .0 0 0ž / ž /� k � kksk ksk0 0

� � 2Thus, aside from a phase factor that is unimportant in determining � , we see
Ž . �that the initial condition � x simply moves with a velocity equal to ��r� k .0 ksk 0

This is the group velocity of the wave packet:

��® k s . 5.1.28Ž . Ž .g 0 � k ksk 0

Evaluating this derivative using the dispersion relation for a free particle, Eq.
Ž .5.1.19 , yields the following result for the group velocity:

® k s�k rms2® k . 5.1.29Ž . Ž . Ž .g 0 0 � 0

For the parameters of our example, ® ,11,500 mrs, which is in rough agreementg
with the observed speed of the packet.

The fact that the phase velocity of waves at ksk is unequal to the group0
velocity means that waves making up the packet move with respect to the packet

� � 2itself. This cannot be seen when we plot � , but is very clear if we instead plot
Re� , as shown in Cell 5.8. In the animation one can clearly observe the peaks and
troughs falling behind in the packet, which is what we should expect given that the
phase velocity is half the group velocity.

Cell 5.8

˚ ˚Table[Plot[Re[�[x, t]], {x, -2000 A, 20000 A},
PlotRange™{-1, 1}/Sqrt[2 Pi a ^̂̂̂̂2], AxesLabel™
{"x (meters)", ""},

PlotLabel™"Re[�], t=" <<<<<>>>>>ToString[t/10 ^̂̂̂̂-11] <<<<<>>>>>"x10-11sec",
PlotPoints™300], {t, 0., 1.5 10 ^̂̂̂̂-10, .2 10 ^̂̂̂̂-11}];
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Dispersion We now consider the spreading of the wave packet. This spreading is
a consequence of the dispersion in phase velocities of the separate wave making up
this wave function. Each wave, with form e iwk xy� Žk . t x, travels with its own distinct
phase velocity, and as a result, the initial condition disperses as slow waves fall
behind and fast waves outpace the packet.

In order to understand this dispersion, it is necessary to go beyond the
Ž .first-order Taylor expansion in Eq. 5.1.26 , and keep second-order terms as well,

Ž . Ž . Ž . Ž . Ž .2writing � k ,� k q ky k ® k q 	 ky k , where the constant 	0 0 g 0 0
1 Ž . Ž . w Ž .s �r� k ® k . For the free-particle group velocity given by Eq. 5.1.29 , this0 g 02

x Ž .constant is independent of k : 	s�r2m. Then Eq. 5.1.20 becomes0

� 2dk i�k xyw � Žk .qŽ kyk .® Žk .q	 Žkyk . xt40 0 g 0 0� x , t , C k e .Ž . Ž .H 2�y�

The wavenumber integration in this equation cannot be performed analytically
in general, but can be for various special cases, including the Gaussian wave packet

Ž .given by the spectrum of Eq. 5.1.24 . The result for this case is

e iwk 0 xy� Žk 0 . t x eyw xy® gŽk 0 . t x2 rŽ2 a2q4 i	 t .

� x , t , . 5.1.30Ž . Ž .
2'2� a q2 i	 tŽ .

This shows that the envelope of the wave packet remains a Gaussian during its
evolution, but the width of the Gaussian increases with time. This is what we
observed in the previous animations.

Ž .We define the width in the following somewhat arbitrary way. For a Gaussian
yx 2 r2 a2 Žof the form e , the width is defined as a the value of x where the Gaussian

. yx 2 r2Ž Aqi B .falls to 1r2 es0.606 . . . of its maximum . For a Gaussian of the form e ,
the width is defined as the width of the envelope function. Writing the Gaussian as
eyx 2Ž Ayi B .r2Ž A2qB 2 ., the envelope is the nonoscillatory part of the exponential,

2 2 2yx Ar2Ž A qB . 2 2'e . Thus, the width w is ws A qB rA . Applying this definitionŽ .
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Ž .to Eq. 5.1.30 , we find that the width of the wave packet increases with time
according to

2 24	 t2w t s a q . 5.1.31Ž . Ž .( 2a

This result applies to Gaussian wave packet traveling through any dispersive
medium, not just to solutions of Schrodinger’s equation. We will see other¨
examples in the exercises and in future sections. Note that for times t�a2r2 	 ,
no spreading occurs. For these early times we can neglect dispersion and use Eq.
Ž .5.1.27 to describe the wave packet.

The rate of increase in the width is controlled by the parameter 	 . For a
nondispersive system, where ® scsconstant, we have 	s0 and packets do notg
disperse. This is in line with our previous understanding of solutions to the wave
equation on a uniform string.

5.1.3 Waves in Two and Three Dimensions

Schrodinger Equation in Three Dimensions When a free particle of mass m¨
Ž .propagates in three dimensions, the wave function � r, t of the particle is

described by the Schrodinger equation,¨

� �2
2i� � r, t sy 
 � r, t . 5.1.32Ž . Ž . Ž .� t 2m

As in the previous one-dimensional case, this equation is first-order in time, and
must therefore be supplemented with an initial condition,

� r, 0 s� r . 5.1.33Ž . Ž . Ž .0

Ž .The evolution of � r, t from this initial condition can again be obtained using
Fourier transform methods. We apply three separate transforms consecutively, in
x, y, and z, defining

� � �
yi k x yi k y yi k zx y z�̃ k , k , k , t s dx e dy e dz e � x , y , z , t . 5.1.34Ž . Ž .Ž . H H Hx y z

y� y� y�

This Fourier transform can be written more compactly as

˜ 3 yi k �r� k, t s d r e � r, t , 5.1.35Ž . Ž . Ž .H

Ž .where ks k , k , k is called the wa®e ®ector. Then by Fourier transforming Eq.x y z
Ž .5.1.32 in x, y, and z we find that

� �2 k 2
˜ ˜i� � k, t s � k, t , 5.1.36Ž . Ž . Ž .� t 2m
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2 2 2where ks k qk qk is the magnitude of the wave vector. This equation is' x y z

identical to that for propagation in one dimension, and has the solution

˜ yi � Žk . t� k, t sC k e , 5.1.37Ž . Ž . Ž .

Ž .where the constant of integration C k can depend on all three components of the
Ž .wave vector, and where � k depends only on the magnitude of k, and is given by

Ž .Eq. 5.1.19 . Taking an inverse transform in all three dimensions then yields the
Ž .solution for � r, t :

d 3k ik �ryi � Žk . t� r, t s C k e . 5.1.38Ž . Ž . Ž .H 32�Ž .

This is a wave packet consisting of a superposition of traveling waves, each of the
form e ik �ryi � Žk . t. A given phase � of this wave satisfies

�sk �ry� k t . 5.1.39Ž . Ž .

Ž . Ž .The meaning of Eq. 5.1.39 can be understood by defining coordinates x, y, z
Ž . Ž .with the z-axis aligned along k. See Fig. 5.2. Then Eq. 5.1.39 becomes

�skzy� k t , 5.1.40Ž . Ž .

Ž .or in other words, zs�rkq� k trk. But x and y are not determined, and can
Ž .take on any values. This implies that Eq. 5.1.39 defines a plane of constant phase

Ž .that moves with speed � k rk in the direction of k. Therefore, the phase velocity

Fig. 5.2 Location of a plane of constant phase
� at time t.
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of a wave with wave vector k is

� kŽ . ˆv k s k, 5.1.41Ž . Ž .� k

ˆwhere k is a unit vector in the direction of k. This generalizes our previous
Ž .one-dimensional result, Eq. 5.1.21 . On the other hand, a wave packet centered at

wavenumber k will move at the group velocity,

�� �� ��
v k s , , . 5.1.42Ž . Ž .g ž /� k � k � kx y z

This follows from an argument that is analogous to that given previously for the
Ž . Ž .one-dimensional case. One can write Eq. 5.1.42 more compactly as v k s��r� k,g

Ž .where �r� k� �r� k , �r� k , �r� k .x y z

Group Velocity in an Isotropic Medium If a system is isotropic, so that �
depends only on the magnitude of k and not its direction, then the group velocity

Ž .simplifies somewhat. The definition of the group velocity, Equation 5.1.42 ,
implies that

� � k ��
v k s � k s ,Ž . Ž .g � k � k � k

where the second equality follows from the chain rule. However,

kk k� k � � � yx z2 2 2 ˆs , , k qk qk s , , sk,' x y z ž /ž /� k � k � k � k k k kx y z

ˆwhere k is a unit vector in the direction of k. Thus, the group velocity is

��ˆv k sk . 5.1.43Ž . Ž .g � k

In an isotropic system, the group and phase velocities are both along k, although
they are generally of different magnitudes.

The Wave Equation in Three Dimensions

The Initial-Value Problem. Let’s now consider the wave equation for propagation
in two or three dimensions,

� 2
2 2p r, t sc 
 p r, t . 5.1.44Ž . Ž . Ž .2� t

Here we are thinking of p as the pressure in a compressional sound wave, and c as
the speed of sound. However, this same equation applies to the propagation of
light waves, and in two dimensions it applies to waves on a drumhead, or on the

Žsurface of water with a suitable reinterpretation of the meaning of the symbols p
.and c .
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Ž .Equation 5.1.44 must be supplemented by two initial conditions,

p r, 0 sp r ,Ž . Ž .0

5.1.45Ž .� p
r, 0 s® r .Ž . Ž .0� t

The solution for p follows from Fourier transformation with respect to r. The
Ž .Fourier transform of p, p k, t , satisfies the second-order ODE˜

� 2
2 2p k, t syc k p k, t . 5.1.46Ž . Ž . Ž .˜ ˜2� t

Therefore,

d 3k d 3kiwk �ry� Žk . t x iwk �rq� Žk . t xp r, t s C k e q D k e , 5.1.47Ž . Ž . Ž . Ž .H H3 32� 2�Ž . Ž .

Ž . Ž . Ž .where C k and D k are undetermined coefficients, and � k sck is the disper-
sion relation for the waves, k being the magnitude of the wave vector k. The

Ž . Ž .functions C k and D k are found by matching to the two initial conditions
Ž . Ž .5.1.45 . Evaluation of Eq. 5.1.47 and its time derivative at time ts0 yields, after

Ž . Ž .Fourier transformation, two equations for C k and D k . Following the same
approach as in the 1D case studied in Sec. 5.1.1, we obtain

® kŽ .˜1 0C k s p k q i ,Ž . Ž .˜0ž /2 � kŽ .
5.1.48Ž .

® kŽ .˜1 0D k s p k y i ,Ž . Ž .˜0ž /2 � kŽ .

where p and ® are the Fourier transforms of the initial conditions. Equations˜ ˜0 0
Ž . Ž .5.1.47 and 5.1.48 are the solution to the problem.

Ž .However, the form of Eq. 5.1.47 can be inconvenient in some applications, for
the following reason: for given wavenumber k, there are two possible frequencies

Ž . Ž .appearing in Eq. 5.1.47 , �� k . These two choices merely correspond to wave
propagation with and against the direction of k. However, this implies that there
are now two group velocities and two phase velocities for every value of k, each
pair with equal magnitude but opposite direction. This occurs because the wave
equation is second-order in time, so the dispersion relation is a polynomial in � of
order 2, with two solutions. This was not the case for the solution to Schrodinger’s¨

Ž .equation 5.1.38 , because that equation is first-order in time.
ŽIn fact, for more general wave equations such as vector wave equations, or

.scalar wave equations of order 3 or higher in time , there can be multiple roots to
Ž .the dispersion relation, � k , is1, 2, . . . . Each of the roots gets its own Fourieri

Ž .integral in Eq. 5.1.47 . Such equations describe wave propagation through media
such as plasmas or solids. The multiple dispersion relations correspond to physi-
cally different modes of propagation, such as shear and compressional waves in the
case of a solid.
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Ž .However, Eq. 5.1.44 describes only one type of wave, and it should be possible
to simplify the solution to reflect this fact. Indeed, we will now show that Eq.
Ž .5.1.47 can be simplified, because our system is isotropic. Recall that an isotropic
system is one that looks the same in all directions, and in particular, the dispersion

Ž .relation depends only on the magnitude of k, �s� k .
Ž .Because of isotropy, we can write Eq. 5.1.47 in a form where there is only one

Ž .frequency for each value of k. First, we transform the integral involving D k in
Ž .Eq. 5.1.47 , taking k™yk:

d 3k d 3kiwk �ry� Žk . t x iwyk �rq� Žk . t xp r, t s C k e q D yk e . 5.1.49Ž . Ž . Ž . Ž .H H3 32� 2�Ž . Ž .

Ž .Note that the frequency � k remains the same in this transformation, since �
Ž .depends only on the magnitude of k. Next, we observe that Eq. 5.1.48 implies

1Ž . w Ž . Ž . Ž .x Ž . Ž .that D yk s p yk y i® yk r� k . However, the functions p r and ® r˜ ˜0 0 0 02
Ž .are real, so according to Eq. 2.1.7 , their Fourier transforms have the property

Ž . Ž . Ž . Ž . Ž . Ž .that p yk sp k * and ® yk s® k *. Therefore, we find that D yk sC k *,˜ ˜ ˜ ˜0 0 0 0
from which it follows that

3d k iwk �ry� Žk . t x iwk �ry� Žk . t xp r, t s C k e q C k e * .Ž . Ž . Ž .Ž .H 32�Ž .

Since the second term is the complex conjugate of the first, we arrive at

d 3k iwk �ry� Žk . t xp r, t s2 Re C k e . 5.1.50Ž . Ž . Ž .H 32�Ž .

Ž .For a given value of k, the argument of the integral in Eq. 5.1.50 describes a wave
that propagates only in one direction, along k. Furthermore, these waves only have

Ž .positive frequencies. This is as opposed to the solution of Eq. 5.1.47 , where for
given k waves propagate both with and against k, with both positive and negative

Ž .frequencies. Thanks to isotropy, we do not lose anything in Eq. 5.1.50 : a wave
with negative frequency and wave vector k, propagating in the yk direction, can
equally well be described by a wave with positive frequency but with the wave
vector yk.

Ž .How can we match to the two initial conditions of Eq. 5.1.45 when there is
Ž . Ž .only a single function C k in Eq. 5.1.50 , rather than the two functions in Eq.

Ž . Ž .5.1.47 ? The answer is that C k has both a real and an imaginary part, and this
Ž .gives us the two functions we need: see Eq. 5.1.48 . The fact that we take the real

Ž .part in Eq. 5.1.50 allows us latitude in choosing these functions that is absent in
Ž .Eq. 5.1.47 , where the integrals must by themselves provide a real result. In fact,

Ž .one can regard the function D k as merely a way to obtain a real result in Eq.
Ž . Ž .5.1.47 , which is obviated in Eq. 5.1.50 by our directly taking the real part.

Also, it is important to realize that no part of the argument leading to Eq.
Ž .5.1.50 relied on the specific form of the dispersion relation, �sck; rather, only

Ž .the isotropy of the dispersion was required. In fact, Eq. 5.1.50 also applies to
Ž .more general dispersive isotropic systems where �s� k for some general
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Ž .function � k . Examples of such systems include electromagnetic waves propagat-
ing in isotropic dispersive media with an index of refraction that depends on

Ž .frequency, nsn � ; phonons propagating though amorphous materials such as
rubber or glass; waves in unmagnetized plasmas; water waves in deep water; and
sound waves in air. These examples, and others, will be taken up in the exercises.

Ž . Ž .Wave Packets. One advantage of Eq. 5.1.50 over Eq. 5.1.47 , aside from its
compact form, is the ease with which it can be applied to describe the evolution of

Ž .wave packets. If we consider an initial condition for which C k is sharply peaked
Ž .around a wave vector k , then we can Taylor-expand � k about k , obtaining0 0

Ž . Ž . Ž . Ž . Ž .� k ,� k qv k � kyk , where the group velocity v is given by Eq. 5.1.42 .0 g 0 0 g
Ž .Using this approximation in Eq. 5.1.49 allows us to write

d 3kiwk �ry� Žk . t x iŽkyk .�wryv Žk . t x0 0 0 g 0p r, t sRe e 2C k e .Ž . Ž .H 3ž /2�Ž .

Ž .The integral over k results in a function only of ryv k t, which we write asg 0
Ž Ž . . Ž .A ryv k t . Furthermore, since C k is peaked around ksk , the Fourierg 0 0

Ž .components kyk that contribute to A are small, so A r is slowly varying in0
Ž .space. The function A r can be recognized as the slowly varying amplitude

function that is superimposed on the wave train e iwk 0�ry� Žk 0 . t x in order to create a
finite wave packet:

iwk �ry� Žk . t x0 0p r, t sRe A ryv k t e . 5.1.51Ž . Ž . Ž .Ž .g 0

The amplitude function travels with the group velocity of the wave packet, while
planes of constant phase within the packet move with the average phase velocity of
the packet. The packet travels without changing shape, because in deriving Eq.
Ž .5.1.51 we neglected dispersion.

Dispersion and Diffraction. We can take account of dispersion in much the same
manner as was used to analyze the 1D wave equation. Keeping the next-order term

Ž .in the Taylor expansion of � k about the central wave vector k of the wave0
packet, we obtain

1� k s� k qv k � kyk q kyk �� � kyk , 5.1.52Ž . Ž . Ž . Ž . Ž . Ž . Ž .0 g 0 0 0 02

2 �where � is a symmetric tensor, given in component form by � s� �r� k � k .i j i j ksk 0

Here the indices i and j each run over the x, y, and z components of the vector k.
The tensor � describes the spreading of the wave packet. For an isotropic system

Ž .where �s� k , we can write this tensor as

k� � i� s ® k s ® k ,Ž . Ž .i j g gž /i� k � k k kskj j 0ksk 0
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Ž .where we have used Eq. 5.1.43 . Then applying the identities � k r� k s ,i j i j
� kr� k sk rk, and using the chain rule, we obtainj j

® k k k � ® k kŽ .g i j g i j
� s  y q , 5.1.53Ž .i j i j 2 2ž /k � kk k ksk 0

Ž .where  is a Kronecker delta function the component form of the unit tensor .i j
The tensor � has a simple diagonal form when written in components with the

z-axis chosen along the direction of k :0

° ¶® kŽ .g 0
0 0k0

® kŽ .g 0
�s . 5.1.54Ž .0 0k0

� ®g
0 0¢ ß� k0

The zz component of the tensor, � ® r� k , causes dispersion along the direction ofg 0
Ž . Ž .propagation longitudinal dispersion . The xx and yy components, ® k rk , causeg 0 0

Žspreading of the wave packet trans®erse to the direction of propagation trans®erse
.dispersion . The fact that these latter two components are identical implies that

the wave packet spreads isotropically in the transverse directions, as expected for a
homogeneous isotropic medium. However, the transverse dispersion is not the
same as the longitudinal dispersion. Transverse dispersion is also known as
diffraction.

We can work out the dispersion quantitatively for a Gaussian wave packet with
Ž . Ž .central wave vector k z. When Eqs. 5.1.52 and 5.1.54 are employed in Eq.ˆ0

Ž .5.1.50 , the result is

d3kiwk �v Žk .y� Žk .xt0 g 0 0p r, t s2 Re e C kŽ . Ž .H 3½ 2�Ž .

® k � ®Ž . 1g 0 g 22 2�exp ik � ryv k t y i k qk q k yk t .Ž . Ž .Ž .g 0 x y z 0 52k 2 � kž /0 0

Taking a packet with a spectrum of the form

C k sA eyŽ k 2
xqk 2

y .b2 r2 eyŽ k zyk 0 .
2 a2 r2Ž .

allows us to perform the required integrations over k , k and k analytically. Thex y z
1 Ž .result is given below, defining 	s � ® r� k and �s® k r2k :g 0 g 0 02

3r24� A iŽk zy� Žk . t .0 0p r, t s2 Re eŽ .
2 2'b q2 i� t 2 a q4 i	 tŽ .

�

2
2 2 zy® k tŽ .Ž .x qy g 0

exp y y . 5.1.55Ž .2 2ž /2b q4 i� t 2 a q4 i	 t
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This packet has an initial transverse width of b and an initial length of a, but
spreads over time. The rate of longitudinal spreading is the same as for a 1D

1Ž .packet, Eq. 5.1.31 , and is controlled by the same parameter 	s � ® r� k as forg 02

the 1D case.
Ž .However, the transverse spreading diffraction is controlled by the parameter

Ž .�s® k r2k . This parameter is nonzero even if the medium is dispersionless.g 0 0
This implies that diffraction occurs even in vacuum.

Ž .The transverse width w t of the Gaussian wave packet, defined in the same
Ž . Ž . Ž 2 2 2 2 .1r2way as in Eq. 5.1.31 , is w t s b q4� t rb . Thus, the width of the packet

2 2' Ž .increases by a factor 2 in a time t sb r2�sb k r® k . In this time, the2 0 g 0
packet has moved a distance

ds® k t sb2 k . 5.1.56Ž . Ž .g 0 2 0

This distance is called the Rayleigh length. It is the distance over which a Gaussian
'wave packet increases in transverse width from b to 2 b.

This diffraction is simply a consequence of the uncertainty principle of Fourier
analysis. According to the uncertainty principle, any packet with finite transverse
extent must contain a finite range of transverse wavenumbers. This necessarily
implies a range of directions for the phase velocities of the different waves making
up the packet. These waves then propagate off in separate directions, causing the
packet to spread.

Ž .Even tightly focused laser beams must eventually diffract. In fact, Eq. 5.1.56
shows that the narrower the beam, the faster it spreads. However, the higher the
wavenumber k of the beam, the further it can propagate before diffracting0
appreciably.

For example, for a Gaussian light beam with a wavelength in the visible,
˚ Ž .2�rk s5000 A, and an initial radius of bs1 cms0.01 m, Eq. 5.1.56 implies0

2 Ž y10 .that the beam will propagate 0.01 �2�r 5000�10 ms1.2 km before spread-
'ing by a factor of 2 . However, for a 1-cm-radius ultraviolet beam, with a

˚wavelength of 40 A, the beam propagates 160 km before spreading by the same
factor.

Wave-Packet Energy and Momentum. In this section we derive general expres-
sions for the energy and momentum of a wave packet for the wave equation, and
for a more general class of wave equations that we term classical wave equations.
Quantum wave equations, such as Schrodinger’s equation, are considered in the¨
exercises. We begin with the energy conservation relation for the simple nondis-
persive wave equation, � 2 zr� t 2sc2 
2 z. Multiplying both sides of this equation

Ž .Ž 2 2 .by � � zr� t, and differentiating by parts using, for example, � zr� t � zr� t
1 2Ž .Ž .s �r� t � zr� t , we obtain2

�
�q
��s0, 5.1.57Ž .� t

where the energy density � is

2 2� � z �c
�s q 
z �
z , 5.1.58Ž .ž /2 � t 2
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and the energy flux � is

� z2�sy�c 
z . 5.1.59Ž .� t

Ž .Recall that Eq. 5.1.57 also described energy conservation for the heat equation,
Ž .although the form of the energy density and flux differed: see Eq. 3.1.38 . By

Ž .integrating Eq. 5.1.57 over all space, applying the divergence theorem, and
assuming that the energy flux vanishes at infinity, we can regain the integral form
of energy conservation,

d 3� r, t d rs0,Ž .Hdt

w Ž .as previously discussed for 1D or 2D wave propagation see Eqs. 4.2.29 and
Ž .x w4.4.33 . Note: The interpretation of � and � as energy density and energy flux is

Ž .easiest to understand when z is the wave displacement with units of distance .
Then � is mass density, and � is the sum of kinetic and potential energies. If z is

xsome other quantity such as wave pressure or potential, � must be reinterpreted.
Now consider the energy density and energy flux for a wave packet. According

Ž .to Eq. 5.1.51 , such packets can be described as traveling waves with a slowly
varying amplitude A and phase � :

z r, t sA ryv t cos k �ry� tq� ryv t , 5.1.60Ž . Ž .Ž . Ž .g 0 0 g

ˆwhere for our simple wave equation � sck and v sck . We will now substitute0 0 g 0
Ž .this expression into Eq. 5.1.58 , and note that derivatives of the amplitude and

phase are small compared to derivatives of the cosine function, since by assump-
tion the packet has slowly varying amplitude and phase. Then � zr� tf� A0

Ž . Ž .sin k �ry� tq� and 
z,yk A sin k �ry� tq� , and the energy density0 0 0 0 0
and flux become

� 2 2 2 2 2�s � qc k A sin k �ry� tq� ,Ž .Ž .0 0 0 02 5.1.61Ž .
�s�c2� k A2 sin2 k �ry� tq� .Ž .0 0 0 0

The energy density varies in time because energy is traded back and forth between
different parts of the packet as the wave oscillates, and also because the packet
moves at the group velocity. However, if we take a time average over the

12² :oscillations, using sin x s , we arrive at an expression for the average energy2

and flux associated with the packet:

2� 2 ˆ� r, t s � A ryck t ,Ž . Ž .0 02 5.1.62Ž .
ˆ� r, t s� r, t ck ,Ž . Ž . 0

where we have used the dispersion relation � sck . Both energy density and flux0 0
ˆare proportional to amplitude squared, and propagate at the wave velocity ck .0
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Also, we see that the energy flux consists of the energy density transported at
ˆthe wave velocity ck . This is to be expected, since energy is neither created nor0

destroyed in this wave system, but is simply moved from place to place by the
waves. The Poynting flux S for electromagnetic waves traveling in a dispersionless

ˆmedium has the same form, Ss�ck, where � is the wave energy density.
However, for more general wave equations we might expect the average energy

flux to involve the group velocity v . We will now show that this is in fact the case.g
We will also find a simple expression for the energy density in terms of the
dispersion relation for the waves.

Consider a wave equation of the form

� n � n

a zs b z , 5.1.63Ž .Ý Ý Ýn nn n j� t � rjns0 , 2, 4, 6, . . . ns2 , 4, 6, . . . js1 , 2, 3

where r , js1, 2, 3, are the x, y, and z components of r, and a and b arej n n j
constant coefficients. Even more general wave equations could be constructed,
involving cross-derivatives between different components of r and t, but Eq.j
Ž .5.1.63 is sufficient for our purposes. We refer to wave equations of the form of

Ž .Eq. 5.1.63 as classical wa®e equations. Note that wave equations such as Schrodi-¨
nger’s equation, with odd powers of the time derivative, are not included in this
form. Conservation laws for Schrodinger’s equation and its cousins will be consid-¨
ered in the exercises.

The dispersion relation associated with this wave equation takes the form of a
polynomial, found by replacing �r� t by yi� and �r� r by ik . We write thisj j

Ž .dispersion relation in the compact form D k, � s0, where the dispersion function
D is given by

nr2y1 nr2n nD k, � s y1 a � q y1 b k , 5.1.64Ž . Ž . Ž . Ž .Ý Ýn n j j
n nj

and we have used the fact that n is even. For example, for electromagnetic waves
Ž .traveling through a medium with refractive index n � , the dispersion function is

2 2Ž . 2 2 Ž .Ds� n � yc k s0, and we can think of Eq. 5.1.64 as a polynomial expan-
sion of this equation.

Ž .We now construct an energy conservation law for Eq. 5.1.63 by following the
same approach as for the wave equation. We multiply both sides of the equation by
� � zr� t, and differentiate by parts repeatedly. For example,

� z � nz � � z � ny1 z � 2 z � ny1 zs y2 ny1 2 ny1ž /� t � t � t� t � t � t � t

� � z � ny1 z � 2 z � ny2 z � 3z � ny2 zs y q s ���ny1 2 ny2 3 ny2ž /� t � t � t � t � t � t � t

ny1 m nym n� � z � z � z � zmy1 ny1s y1 q y1 .Ž . Ž .Ý m nym n� t � t� t � t � tž /
ms1
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Ž .ny1 Ž . n n Ž . n nHowever, if n is even, y1 � zr� t � zr� t sy � zr� t � zr� t . This
allows us to bring this term over to the left-hand side of the equation, and so
obtain

ny1n m nym� z � z 1 � � z � zmy1s y1 , ns2, 4, 6, . . . . 5.1.65Ž . Ž .Ýn m nym� t 2 � t� t � t � tž /
ms1

For the case ns0, we can simply write

� z 1 � z 2

zs . 5.1.66Ž .� t 2 � t

Ž . n nSimilarly, we require terms of the form � zr� t � zr� r on the right-hand side ofj
the energy equation. These terms can also be rewritten via differentiation by parts:

2nr2n m nymy1 nr2� z � z � � � z � z 1 � � zmy1s y1 y , 5.1.67Ž . Ž .Ýn m nymy1 nr2ž /� t � r � t 2 � t� r � r ž /� r � rjj j j jms1

Ž . Ž .where again we have used the fact that n is even. Combining Eqs. 5.1.65 � 5.1.67 ,
Ž .we obtain the general energy conservation relation in the form of Eq. 5.1.57 , with

2ny1 m nym nr2� � � z � z � zmy12�s a z q a y1 q bŽ .Ý Ý Ým nym0 n n j nr22 2 � t � t ž /� rjns2 , 4, . . . ms1 j

5.1.68Ž .

and

nr2 m nymy1� � z � zmy1
� sy� b y1 . 5.1.69Ž . Ž .Ý Ý mj n j nymy1ž /� t� r � rj jns2 , 4, . . . ms1

In their present form, these expressions for energy density and flux are of such
complexity as to be of limited usefulness. However, when applied to wave packets,

Ž . Ž .the expressions simplify considerably. On substituting Eq. 5.1.60 into Eqs. 5.1.68
Ž .and 5.1.69 , again dropping derivatives of the slowing varying amplitude and

Ž .phase, and averaging over a cycle, each term in the sum over m in Eq. 5.1.68
Ž .nr2y1 n 2yields the same result, y1 � A r2; the same is true for each term in the0

Ž . Ž .nr2 Ž .n 2sum over m in Eq. 5.1.69 , which becomes y1 � k A r2. We then obtain0 0 j
the following expressions for the averaged energy density and flux:

n� nr2y12 n�s A a q y1 a � ny1 q b k ,Ž . Ž . Ž .Ý Ý0 n 0 n j 0 jž /4
ns2 , 4, . . . j

� ny1nr2y1 2� s y1 b A � n k .Ž . Ž .Ýj n j 0 0 j4
ns2 , 4, . . .
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These sums collapse into amazingly simple and general expressions if they are
Ž . Ž .written in terms of the dispersion function D k, � , defined in Eq. 5.1.64 . By

applying differentiation formulae such as �� nr�� sn� ny1 , we obtain0 0 0

D k , �Ž .� � 0 02 2�s A � 5.1.70Ž .04 �� �0 0

and

� �2� sy A � D k , � . 5.1.71Ž . Ž .j 0 0 04 � k0 j

Ž . Ž .Two more simplification can be made. First, since D k , � s0, Eq. 5.1.700 0
can also be written as

� �2�s A � D k , � . 5.1.72Ž . Ž .0 0 04 ��0

Second, we note that the group velocity v can be written asg

�� � Dr� k0 0v s sy .g � k � Dr��0 0

This allows us to write the energy flux in terms of the energy density as

�sv � . 5.1.73Ž .g

Thus, the energy density propagates in the direction of the group velocity, as we
expected.

Ž . Ž .Equations 5.1.72 and 5.1.73 provide simple general expressions for the
energy density and flux associated with a wave-packet. Similar expressions can also
be obtained for the momentum density and momentum flux. Here, the conserva-
tion law is obtained by multiplying the wave equation by � 
z rather than by
� � zr� t, and then applying the same differentiation-by-parts regimen. The result-
ing conservation law is written as follows:

�
pq
�Ts0, 5.1.74Ž .� t

Ž .where p is the momentum density, and T is a tensor the stress tensor , which is
Žthe flux of momentum. Since momentum is a vector, the flux of momentum is a

.tensor. The components of T, T , provide the flux of p in direction j. The unitsi j i
of T are pressure, and in fact T is the pressure created by the waves. For a wave
packet, the expressions for p and T, averaged over a cycle, are

psk �r� 5.1.75Ž .0 0
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and

T sp ® . 5.1.76Ž .i j i g j

Ž . Ž .The proof of Eqs. 5.1.75 and 5.1.76 is left as an exercise.
Thus, just as with energy density, the flux of momentum is given by the

momentum density, transported at the group velocity. The wave momentum itself
Ž .is in the direction of the wave vector k rather than the group velocity , since the0

phase fronts responsible for pushing on an object in the path of the wave travel in
this direction. For waves traveling in the x-direction though a nondispersive
medium, the only nonzero component of T is T s� , indicating that a pressurex x
equal to the wave energy density will be exerted on an absorbing barrier placed in
the path of the wave packet.

Spherically Symmetric Disturbance. We now consider the evolution of waves in
a dispersionless medium, starting from a spherically symmetric initial condition,
Ž . yr 2 r a2 Ž . Ž . Ž .p r s P e , u r s 0. The Fourier transform of p r is p k s˜0 0 0 0

Ž 2 .3r2 ya 2 k 2 r4 Ž . Ž .� a P e . Then according to Eq. 5.1.48 and 5.1.50 , the response to
this initial condition is

d 3k 3r2 d 3k 2 2iŽk �ryc k t . 2 iŽk �ryc k t .ya k r4p r, t s2 Re p k e s � a P Re e .Ž . Ž . Ž .˜H H03 32� 2�Ž . Ž .
5.1.77Ž .

It is best to perform this integration using spherical coordinates in k-space,
Ž .k, � , � . Here � and � are polar angles used to determine the direction of k with
respect to fixed axes. We choose the vector r to be along the k -axis of thisz

� � 3coordinate system, so that k � r s k cos � , where r s r . Also, d k s
2 Ž .k dk sin � d� d�. Equation 5.1.77 then becomes

3r22 � �2�� a P 2 2Ž . 2 ya k r4 ikŽ r cos �yc t .p r, t s Re k dk d� sin � d� e e .Ž . H H H3
0 0 02�Ž .

The �-integral is trivial, and the �-integral can be calculated by changing variables
to xscos � . This implies that dxsysin � d� , and the range of integration runs
from xs1 to xsy1. The result is

3r22 �� a P 2 2 2 sin krŽ . 2 yi k ct ya k r4p r, t s Re k dk e e .Ž . H2 kr02�Ž .

The k-integral can also be calculated analytically, yielding

2 2 2 2P yŽ rqc t . r a yŽ ryc t . r ap r , t s e rqct qe ryct . 5.1.78Ž . Ž . Ž . Ž .2 r

This solution is displayed in Cell 5.9, taking Pscs1, as0.02.
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Cell 5.9
(r+ct)2 (r-ct)2

P - -a2 a2p[r_____, t_____] = (e (r + ct) + e (r - ct))/.
2r

{P™1, a™0.02, c™1};

Table[Plot[p[r, t], {r, 0, .3},
PlotRange™{{0, .3}, {-.5, 1}}, AxesLabel™{"r", "p"},
PlotLabel™"t = "<<<<<>>>>>ToString[t]], {t, 0, .3, .01}];

This spherical wave decreases in amplitude as it expands in r. This is to be
expected, given that the surface area of the pulse is increasing, yet the overall
energy of the pulse is conserved. The general considerations of the previous
section imply that the total wave energy should scale as p2V, where V is the
volume occupied by the pulse. The radial width of the pulse is roughly constant,
but the surface area of the pulse is proportional to r 2. We therefore expect p to be

Ž .proportional to 1rr at the peak of the pulse. This is in fact what Eq. 5.1.78
Žimplies, for large t. Interestingly, there is also a negative section to the pulse a

.pressure rarefaction , trailing the forward peak, even though the initial pulse was
entirely positive. This does not occur in propagation in one dimension along a
string, and is a consequence of the spherical geometry.

Ž .Response to a Source The wave equation with a source S r, t is

� 2
2 2p r, t sc 
 p r, t qS r, t . 5.1.79Ž . Ž . Ž . Ž .2� t

A particular solution for the response to the source can be obtained by Fourier
transformation in both time and space. We denote the time�space Fourier
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Ž . Ž .transform of p r, t as p k, � , where˜

p k, � s dt d 3r p r, t eyi Žk �ry� t . , 5.1.80Ž . Ž . Ž .˜ H H

Ž̃ .and similarly for the time�space transform of the source, S k, � . Note the use of
differing transform conventions for the time and space parts of the transform, as
discussed in Sec. 2.3.1.

Ž .Application of the time�space transform to Eq. 5.1.79 yields the algebraic
equation

2 2 2 ˜y� p k, � syc k p k, � qS k, � ,Ž . Ž . Ž .˜ ˜

˜ 2 2 2Ž . Ž . Ž .which has the solution p k, � s S k, � r c k y � . Taking an inverse˜
time�space transform then yields the particular solution,

3 S̃ k, �d� d k Ž . iŽk �ry� t .p r, t s e . 5.1.81Ž . Ž .H 4 2 2 2c k y�2�Ž .

As an example, let us determine the response to a point source in time and
˜Ž . Ž . Ž . Ž .space, S r, t s r  t . Then S k, � s1. We first perform the inverse frequency

transformation. This is easily done with the InverseFourierTransform func-
tion:

Cell 5.10

FullSimplify[InverseFourierTransform[1/(c ^̂̂̂̂2 k ^̂̂̂̂2 - � ^̂̂̂̂2),
�, t]/Sqrt[2 Pi]]

Sign[t] Sin[c k t]
2 c k

Thus, we obtain

d 3k sin ckt ik �rp r, t sSign t e 5.1.82Ž . Ž . Ž .H 3 2ck2�Ž .

This solution is nonzero for t�0, which is inconvenient. But it is only one
particular solution to the PDE. To obtain a solution that is zero for t�0, we must

Ž .add an appropriate solution to the homogeneous equation: Eq. 5.1.50 , or equiva-
Ž . Ž . Ž . Ž . Ž .lently, Eq. 5.1.47 . By choosing C k s1r 4cki syD k , Eq. 5.1.47 becomes

d 3k sin ckt ik �re .H 3 2ck2�Ž .



5.1 FOURIER TRANSFORM METHODS 381

Ž .Adding this homogeneous solution to Eq. 5.1.82 , we cancel out the solution for
t�0 and are left with

d 3k sin ckt ik �rp r, t sh t e ,Ž . Ž .H 3 ck2�Ž .

Ž . wwhere h t is the Heaviside step function. We could also have obtained this result
Ž .directly from Eq. 5.1.79 by Fourier-transforming only in space, and then using the

Ž . xGreen’s function for the harmonic oscillator equation, Eq. 2.3.77 .
The remaining Fourier integrals are best evaluated in spherical coordinates

Ž . Ž .k, � , � . As in the derivation of Eq. 5.1.78 , we choose r to lie along the z-axis of
the spherical coordinate system. Then e ik �rse ik r cos �, and the � and � integrals
yield

� �h t h tdk dkŽ . Ž .
p r, t s sin ckt sin krs cos k ryct ycos k rqct .Ž . Ž . Ž .H H2 2rc rc2� 4�0 0

5.1.83Ž .

The integral over k can be recognized as a generalized Fourier integral of the type
Ž . w Ž . xw Ž . Ž .xconsidered in Sec. 2.3.4. The result is p r, t s h t r4� cr  ryct y rqct

Ž .see the exercises . However, since rG0 and we only require the solution for t�0
Ž . Ž . Žthanks to the Heaviside function, we can neglect  rqct and drop h t since the

.-function makes it redundant , and so we obtain

1
p r, t s  ryct . 5.1.84Ž . Ž . Ž .4� cr

This solution, the response to a -function impulse at the origin at time ts0, is a
spherical -function wave that moves with speed c, decreasing in amplitude like
1rr as it expands radially. This response function also arises in the theory of the

wretarded potentials for electromagnetic radiation from a point source. See, for
Ž . xexample, Griffiths 1999 .

Ž .Equation 5.1.84 may be compared with the response to an initially localized
w Ž .spherically symmetric perturbation, derived in the previous section see Eq. 5.1.78

xand Cell 5.9 . In that solution, there was a negative portion to the response, trailing
the forward wave. Here, there is no trailing negative response, merely an outward-
propagating -function peak, because here the source function creates an initial

Ž q. Ž .rate of change to the pressure, � p r, ts0 s r ; but the pressure itself ist
Ž q.initially zero: p r, ts0 s0. In electromagnetism, this sort of initial condition is

the most physically relevant: it describes the response to a source in the wave
Ž .equation in electromagnetism, a current or moving charge rather than the

evolution of an initial field distribution.
Ž .Equation 5.1.84 can also be thought of as a Green’s function for the response

Ž .to a general source of the form S r, t . Since any such source can be constructed
from a series of -function sources in space and time, the superposition of the
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response to each of these point sources is

13 � �p r, t s dt d r  ryr yc ty t S r , t . 5.1.85Ž . Ž . Ž . Ž .Ž .H 0 0 0 0 0 0� �4� c ryr0

In this equation, the time t is generally referred to as the retarded time, because it0
is the time at which a source at r must emit a wave in order for the response to0
reach position r at time t.

Wave Propagation in an Anisotropic Medium When waves travel through
some medium that is moving with velocity U with respect to the observer, the
dispersion relation is affected by the motion of the medium. This can be easily
understood by making a Galilean transformation to the frame of reference of the
medium, where the position of some point on the wave is r. The same point
observed in the lab frame has position r, where

rsrqUt . 5.1.86Ž .

ŽHere we consider nonrelativistic wave propagation, such as that of sound or water
.waves. In the moving frame, the medium is stationary, and the waves obey the

Ž . Ž .usual wave equation 5.1.44 . The solution is given by Eq. 5.1.50 with r replaced
Ž .by r. If we now substitute for r using Eq. 5.1.86 , we obtain

3d k iwk �ry� Žk . t xp r, t s2 Re C k eŽ . Ž .H 32�Ž .
3 3d k d kiwk �ryU ty� Žk . t x iwk �ry� Žk . t xs2 Re C k e s2 Re C k e ,Ž . Ž .H H3 32� 2�Ž . Ž .

5.1.87Ž .

Ž . Ž .where � k is the frequency as seen in the lab frame and � k is the wave
Ž .frequency as seen in the frame moving with the medium. According to Eq. 5.1.87

the frequencies in the lab and moving frames are related by the equation

� k s� k qk �U. 5.1.88Ž . Ž . Ž .

The term k �U is the Doppler shift of the frequency, caused by the motion of the
Ž .medium. Equation 5.1.88 is an example of anisotropic dispersion: the frequency

depends on the direction of propagation as well as the magnitude of the wave
vector. As a result, we will now see that the group and phase velocities are no
longer in the same directions.

The phase velocity is

ˆ� k k � kŽ . Ž . ˆ ˆv s s qk �U k, 5.1.89Ž .� ž /k k
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w Ž . xFig. 5.3 Gaussian wave packet in deep water, moving across a current. See Exercise 26 .

ˆwhere k is a unit vector in the direction of k; but the group velocity is

��ˆv s kqU. 5.1.90Ž .g � k

Consequently, the phase fronts within the packet propagate along k, but the packet
itself propagates in any entirely different direction as it is carried along by the
flowing medium.

Waves in a moving medium are a particularly simple example of how anisotropy
can modify the character of wave propagation. In these systems, phase and group
velocities are completely independent of one another; they not only differ in
magnitude, as in an isotropic dispersive medium; they also differ in direction.

An example of the propagation of a wave packet in an anisotropic system is
w Ž .displayed in Fig. 5.3. This wave packet is the solution to Exercise 26 at the end

of this section, on the propagation of deep-water waves in moving water. The
xwater is moving to the right, and carries the packet with it. Note how the
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Ž .wavefronts travel in one direction the y-direction , but the packet as a whole
propagates in a different direction. Also note that the phase velocity is greater
than the group velocity for these waves, and that the wave packet disperses both in
the axial and transverse directions as it propagates.

Heat Equation

General Solution. Consider the heat equation for the evolution of the tempera-
Ž .ture T r, t in an isotropic homogeneous material:

� 2T r, t s� 
 T r, t qS r, t . 5.1.91Ž . Ž . Ž . Ž .� t

Ž . Ž .This equation is supplemented by an initial condition, T r, t sT r .0
Ž .We can solve Eq. 5.1.91 using Fourier transforms. Applying spatial Fourier

Ž .transforms in x, y, and z, Eq. 5.1.91 becomes the following ODE for the
˜Ž .Fourier-transformed temperature T k, t :

� 2˜ ˜ ˜T k, t sy� k T k, t qS k, t ,Ž . Ž . Ž .� t

Ž̃ . Ž .where S k, t is the spatial Fourier transform of S r, t . This inhomogeneous
first-order ODE has the general solution

t2 2y� k t y� k Ž tyt .˜ ˜T k, t sA k e q e S k, t dt . 5.1.92Ž . Ž . Ž . Ž .H
0

˜ ˜Ž . Ž . Ž .The coefficient A k is determined by the initial condition, T k, 0 sT k . This0
˜Ž . Ž . Ž .implies that A k sT k . Taking the inverse Fourier transform of Eq. 5.1.920

then yields the solution,

3 t2 2d k ik �ry� k t � k t˜ ˜T r, t s e T k q e S k, t dt . 5.1.93Ž . Ž . Ž . Ž .H H03 ž /02�Ž .

The exponential that appears in this solution, e ik �ry� k 2 t, looks something like
the traveling waves e iwk �ry� Žk . t x that appear in the solutions of the wave and
Schrodinger equations. In fact, by comparing with that form for traveling waves, we¨
can identify a dispersion relation:

� k syi� k 2 . 5.1.94Ž . Ž .

The ‘‘frequency’’ of these temperature waves is imaginary, indicating that the
waves do not propagate, but rather decay with time.

It is often the case that dispersion relations yield complex frequencies. Waves
on a real string damp as they propagate due to a variety of effects, and a
mathematical description of the motion leads to a dispersion relation with complex
frequencies. Only the real part of the frequency describes propagation. Thus, for
damped waves, the phase velocity is defined as

ˆv s Re � krk , 5.1.95Ž . Ž .�
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and the group velocity is

�
v s Re � . 5.1.96Ž .g � k

For the heat equation, however, the waves do not propagate at all; the phase
and group velocities are zero. However, this does not mean that heat does not
propagate through a material. Rather, it merely implies that heat does not
propagate like a wave, with constant phase and group velocities. Rather, heat
diffuses through a material. This diffusion is described by the general solution to

Ž .the heat equation, Eq. 5.1.93 . To understand this diffusion, it suffices to consider
an example.

Green’s Function for the Heat Equation. Let us take as an example a system that
is initially at zero temperature, T s0, and that is subjected to a -function heat0
source at time t :0

S r, t s ryr  ty t . 5.1.97Ž . Ž . Ž . Ž .0 0

The evolution of the temperature resulting from this heat pulse is given by Eq.
˜Ž . Ž . Ž .5.1.93 . The initial condition T s0 implies that T k s0, and Eq. 5.1.97 implies0 0

yi k �r 0Ž̃ . Ž . Ž .that S k, t se  ty t . Applying these results to Eq. 5.1.93 and performing0
the integration over t yields

° 3
2d k ik �Žryr .y� k Ž tyt .0 0e , t� t ,H 03~ 2�T r, t s Ž .Ž . ¢0, t� t .0

The integral can be evaluated in the usual way, by writing k in spherical coordi-
Ž .nates with the z-axis chosen in the direction of ryr . Then k � ryr sk � r cos � ,0 0

� � 3 2where � rs ryr , and d ksk dk sin � d� d�. The � and � integrals then0
yield

�° sin k � r 2k dk Ž . y� k Ž tyt .02 e , t� t ,H 02 � r~ 0 2�Ž .T r, t sŽ . ¢0, t� t .0

The k-integral can also be evaluated analytically:

Cell 5.11

FullSimplify[

Sin[k �r]2Integrate[2 Exp[-�k (t - t )] k,0 �r
{k, 0, Infinity}]/(2 Pi)2,

�r>>>>> 0 &&&&&&&&&& � (t - t ) >>>>> 0]0

�r2
e
-4t�+4� t0

3/2 3/28 � (�(t - t ))0
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Thus, we find that the temperature pulse is described by

h ty tŽ . 20 y� r r4 � Ž tyt .0T r, t s e , 5.1.98Ž . Ž .3r23r28� � ty tŽ .0

where h is a Heaviside step function. This is a Gaussian pulse that spreads in time.
Initially the width of the pulse is zero because it begins as a -function. In fact, Eq.
Ž .5.1.98 can be regarded as a Green’s function for the heat equation.

Ž .The evolution from any source S r, t can be written as

T r, t s d 3r dt g ryr , ty t S r , t , 5.1.99Ž . Ž . Ž . Ž .H 0 0 0 0 0 0

Ž .where g is given by Eq. 5.1.98 . The proof of this equation is left as an exercise.
However, this is easy to understand physically. Breaking the source S into a
collection of -function sources at different positions and times, the resulting
temperature is a superposition of the responses to all of them. Of course, Eq.
Ž .5.1.99 is only a particular solution, because it does not necessarily satisfy the
initial conditions.

Ž .The width w of the Gaussian heat pulse given by Eq. 5.1.98 , defined in the
Ž .same manner as in Eq. 5.1.31 , increases with time according to

ws 2 � ty t , t� t . 5.1.100' Ž . Ž .0 0

Thus, the heat pulse does not propagate outward with a constant speed as in the
wave equation. Rather, the pulse width increases as the square root of time. This is
a signature of diffusion, a subject to which we will return in Chapter 8.

EXERCISES FOR SEC. 5.1

( )1 Using Fourier transforms, find the solution of the 1D wave equation in an
infinite system with cs1, for the following initial conditions. Animate the
solution for 0� t�2.

� y y � x �( ) Ž . Ž .a x, 0 sx e , y x, 0 s0.
� t

� y( ) Ž . Ž . Ž . Ž .b y x, 0 sh x , x, 0 s0, where h x is a Heaviside step function.
� t

( ) Ž . Ž . ytc y x, 0 s0, with boundary condition y 0, t s t e , and initial condition
Ž . Žthat ys0 for t�0. Solve for y x, t on 0�x��. Hint: Put the

.equation in standard form, and use a Fourier sine integral.

( )2 A quantum particle moving freely in one dimension has an initial wave packet
˜ Ž . � �'given in k-space by � k s �r�k , kyk F�k, and zero otherwise. Find0 0

� � 2the subsequent evolution of the wave packet. Animate the evolution of �
1for �sms1 and k s5, �ks , for 0� t�4. How far does the center of0 2

the wave packet move in this time? Compare the speed of the wave packet
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with the mean group velocity and the mean phase velocity, based on the
central wavenumber k . Which velocity best fits the actual motion of the0
packet?

( )3 Water waves in water of depth h have a dispersion relation given by the
Ž .1r2equation �s gk tanh kh , where g is the acceleration of gravity, gs9.8

2 w Ž . xmrs . See Kundu 1990, pg. 94 . Plot the phase and group velocities of these
waves in meters per second, as a function of kh. Show analytically that in the

Ž .limit that kh�1 deep-water waves the phase velocity is twice the group
velocity.

( )4 Water waves in deep water, including surface tension, have the following
Ž 3.1r2dispersion relation: �s gkq� k , where � is the surface tension coeffi-

cient, equal to 71.4 cm3rs2 for fresh water.
( )a Find the group and phase velocities for a wave packet with central

wavenumber of magnitude k. Plot each as a function of k. Find the
critical value of k, k*, at which the phase and group velocities coincide.
Waves with wavenumbers above k* are dominated by surface tension;
waves below k* are gravity-dominated.

( )b Show that k* also corresponds to a minimum possible phase velocity as a
function of k, and find its value in centimeters per second. As one moves
a stick through water, the speed of the stick must be larger than this
minimum phase velocity in order to excite waves, since the stick only

Žexcites waves which move at the same phase velocity. You can test this
.in your sink or bathtub.

( ) Ž .c Using Eq. 5.1.30 , construct a 1D Gaussian wave packet consisting of
ripples traveling in the positive x-direction, with central wavenumber

y1 Ž . yŽ kyk 0 .
2 r2 � k 2

k s5 cm , and initial shape in k-space C k se with0
�ks1 cmy1. Keeping the effect of dispersion to the lowest possible
nontrivial order, make a movie of the propagation of the real part of this
wave packet for 0� t�1 s, in increments of 0.025 s, as seen in the lab
frame. How many cm does the packet travel in 1 s? Compare the mean
speed of the packet with the group and phase velocities at wavenumber
k .0

( )5 Find the solution to the heat equation with �s1 for the following initial
conditions:
( ) Ž . y � x �a T x, 0 se . Animate the solution on y5�x�5 for 0� t�2.
( ) Ž . Ž . Ž .b T x, 0 sh x , where h x is a Heaviside step function. Animate the

solution on y5�x�5 for 0� t�2.

( )6 The biharmonic wave equation,

� 2 � 4

y x , t sy	 y x , t ,Ž . Ž .2 4� t � x

where 	 is a constant with units of m4rs2, describes transverse waves on a
w Ž .xlong rod see Eq. 4.2.47 .

( )a What is the dispersion relation for waves on this rod?
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( )b Without making approximations, find the evolution of the following
initial perturbation on the rod:

10 x 2 2 � yyx r ay x , 0 s sin e , x , 0 s0.Ž . Ž .ž /a � t

Animate the evolution, taking 	sas1, for 0� t�0.2.

( )7 A laser beam of frequency � and wavenumber k in the z-direction is fired0 0
Ž . iŽk 0 zy� 0 t . Ž .into a vacuum. The form of the beam is p r, z, t se p r . Using the0

Ž . Ž .wave equation, show that p r sAJ k r provided that � �ck , and find0 0 H 0 0
k . Note that, unlike a Gaussian wave packet, this beam does not spread asH
it propagates. This does not violate our expression for the Rayleigh length,
because the Bessel function already has an effectively infinite transverse
extent, falling off slowly with increasing r. This type of beam is called a Bessel
beam.

( ) 58 The starship Enterprise fires its phaser at a Klingon warship 10 km away.
Assuming that the beam is initially 1 m in radius and consists of electromag-

Ž y7 .netic waves that have a frequency centered in the visible �s5�10 m ,
how wide is the beam by the time it strikes the warship?

( ) Ž . Ž .9 Prove Eqs. 5.1.75 and 5.1.76 .

( ) ( ) Ž 2 . 2 Ž10 a Schrodinger’s equation, yi� ��r� tsy � r2m 
 �qV� , V assumed¨
.real , does not fit the pattern of the classical wave equations described by
Ž .Eq. 5.1.63 , because it has a first-order time derivative. Now, the

Ž . � � 2conserved density is the probability density � r, t s � . Prove that �
Ž .satisfies a conservation law of the form of Eq. 5.1.57 , and find the form

of the flux �. Hint: Multiply Schrodinger’s equation by � *, then subtract¨
the result from its complex conjugate.

( ) Ž .b By applying the results of part a to a wave packet of the form
Ž . iŽk �ry� t .�s� ryv t e , show that the flux of probability density is0 g

�s��krm.

( )11 Schrodinger’s equation is just one member of a class of wave equations with¨
odd-order time derivatives, describing the evolution of a complex function
Ž .� r, t :

� n � n

i a �s b � , 5.1.101Ž .Ý Ý Ýn nn n j� t � rjns1 , 3, 5, . . . ns0 , 2, 4, . . . js1 , 2, 3

where a and b are real coefficients. Using the same manipulations asn n j
described in the previous problem, show that a conservation law of the form

Ž . Ž .of Eq. 5.1.57 exists for a generalized probability density N r, t , and that for
Ž .a wave packet N r, t is given by

� D k, �Ž .2� �N r, t s � . 5.1.102Ž . Ž .��

Ž .and the flux of N is �sNv , where D k, � is the dispersion functiong
Ž .associated with Eq. 5.1.101 , and where v is the group velocity.g
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( ) Ž .12 Sunlight creates an energy flux Poynting flux at the earth with intensity
�s1300 Wrm2. Use this result to determine the pressure per unit area on a

Ž . Ž .solar sail in earth orbit, via Eqs. 5.1.73 and 5.1.76 . The sail consists of an
ultrathin Mylar surface oriented normal to the direction of the sun’s rays. For
simplicity, assume the sail absorbs all incoming radiation. For a sail with area
As1 km2 and mass 1000 kg, find the acceleration due to the light pressure.
Ž .It’s not very large, but it lasts 24 hours a day, and it’s free. Neglecting

Ž .gravitational effects, how fast in kilometers per second is the sail moving
after one month of constant acceleration?

( ) Ž . Ž .13 Prove that Eq. 5.1.84 follows from Eq. 5.1.83 by calculating the required
generalized Fourier integral by hand.

( )14 The intensity of sound is measured in a logarithmic scale in units of bels,
x y12 2where x bels is an energy flux of 10 � and � s10 Wrm . A decibel is0 0

0.1 bel. Assume that the sound travels in air at atmospheric pressure and a
temperature of 20�C, the frequency is 440 hz, and the intensity is 20 decibels.
( )a Find the mean energy density in the sound wave, in Joules per cubic

meter.
( ) Ž y6b Find the maximum displacement of the air, in microns 1 microns10

. Ž .m . The displacement � x, t of air in a compressional sound wave
Ž .follows the wave equation, Eq. 4.2.48 .

( )c Find the maximum pressure change due to the wave, in atmospheres.
The pressure change in the air is related to the displacement by Eq.
Ž .4.4.40 .

( )15 A particle of mass m is described initially by a spherically symmetric Gauss-
Ž . y� r 2

ian wave function, � r, ts0 sA e . Find the subsequent evolution in
three dimensions, using Schrodinger’s equation. Animate the solution for¨

2 1� Ž . �� r, t , taking �s , for 0� t�20.10

( )16 In an exploding-wire experiment, a long thin wire is subjected to an extremely
Žlarge current, causing the wire to vaporize and explode. Such explosions are

.used as x-ray sources, and to study the properties of hot dense materials.
Ž .Assuming that the wire creates a pressure source of the form S r, t s

Ž . Ž . Ž . Ž . Ž .sh t  x  y where h t is a Heaviside function, solve Eq. 5.1.79 for the
resulting pressure wave, assuming that ps0 for t�0. Show that

2 2° s ct c t
log q y1 , rFct ,(~ 2 2rž /p r , t sŽ . 2� c r¢

0, r�ct ,

Ž .where r is the cylindrical radial coordinate. Taking csss1, animate p r, t
wfor 0� t�10. Hint: Find the solution for p in terms of an inverse Fourier

Ž . Ž .transform involving ks k , k . Then write k � x, y skr cos � , where � isx y
Ž .the angle between k and rs x, y , and perform the integral over k in polar

Ž .coordinates k, � where k sk cos � , k sk sin � . In these coordinates,x y
2 xd ksk dk d� .
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( )17 Waves in deep water, neglecting surface tension, follow the dispersion rela-
Ž . 'tion � k s gk , where g is the acceleration of gravity.

( )a Show that a wave packet with cylindrical symmetry will evolve according
to

� dkyi � Žk . tz r , t s2 Re kA k J kr e ,Ž . Ž . Ž .H 0 2�0

Ž .where A k is the Fourier amplitude of the packet at time ts0.
( ) Ž . yk 2 r36 Ž . Ž .b Assuming that A k se distances in meters , evaluate z r, t

numerically, and create a sequence of Plot3D graphics objects plotting
2 2Ž .'z x qy , t for y3�x�3, y3�y�3 in steps of 0.1 s for 0� t�3 s.

wHint: These plots would take a long time to evaluate if done directly.
Ž .Therefore, use the following technique. First, define z r, t using

NIntegrate, and do the k-integral only over the range 0�k�15.
Ž .Then, evaluate a table of values of z r , t , and interpolate them viai

the command zint[t_____]:= zint[t] = Interpolation[Table
[{r,z[r,t]},{r,0,5,.2}]]. Using Plot3D the interpolation func-

2 2 x x'tion zint[t][ x +y can now be plotted. The result is shown in Fig.
' '5.4 for the case of shallow-water waves, where �s gh k, taking gh s1

mrs. The reader is encouraged to vary the parameters of the problem,

Fig. 5.4 Evolution of shallow-water waves.



EXERCISES FOR SEC. 5.1 391

Žand to investigate the behavior of other dispersion relations. For exam-
.ple, what happens if surface tension is added?

( ) Ž .18 A general spherically symmetric function z r has a Fourier transform
representation of the form

3ik �r 3z r s z k e d kr 2� .Ž . Ž . Ž .˜H
Ž .By comparing the result written in cylindrical coordinates �, �, z with that

written in terms of the spherical radial coordinate r, prove the following
identity:

2 2� 'sin � qz
i z cos �J � sin � e sin � d�s2 . 5.1.103Ž . Ž .H 0 2 20 '� qz

( ) Ž . Ž . yi � 0 t19 A stationary point sound emits waves of frequency � : S r, t ss  r e .0
Ž .Using Eq. 5.1.85 , show that the pressure response to this source is

s yi � Ž tyr r c.0p r, t s e .Ž . 24� c r

( )20 An explosion occurs at a height zsH above a flat surface. The explosion can
be modeled as a point pressure source in the three-dimensional wave equa-

2 2 2 2 Ž . Ž . Ž . Ž . y� ttion, � pr� t sc 
 pqs x  y  zyH h t t e . At ground level, the
boundary condition is that � pr� zs0. Using either Fourier methods or Eq.
Ž .5.1.85 , determine the evolution of the pressure p in the resulting blast wave.
ŽHint: Show that the boundary condition can be met by adding an appropri-
ate image source below the plane. Then solve for the pressure from a source

.in free space, and add in the image to match the boundary condition. For
Hs5, �s3, csss1, make an animation of surface plots of the evolution of
Ž . Ž .p r, z, t in the x, z plane for 0� t�8.

( )21 Fourier transforms can also be used to solve certain potential problems. Solve
2 Ž .the following problem in the domain z�0: 
 � x, y, z s0 with boundary

Ž . Ž .conditions in the x, y plane that � x, y, 0 sV in a circular patch of radius0
Ž .a, and � x, y, 0 s0 otherwise. Another boundary condition is �™0 as

z™�. Solve this problem by Fourier-transforming in x and y and solving the
˜Ž .resulting ODE for � k , k , z with the appropriate boundary conditions.x y

Show that the result can be written as the following integral:

�
yk zr� r , z sV a J k r J k a e dk .Ž . Ž . Ž .H0 0 r 1 r r

0

Plot the solution for �rV in the ys0 plane as a Plot3D graphics object0
taking as1, for y3�x�3, 0�z�6, by numerically evaluating this inte-
gral.

( )22 A circular speaker sits in the x-y plane, in air with equilibrium pressure p .0
Ž .The speaker is an elastic membrane that moves according to  z r, 0, t s

Ž .z sin � t for r�a, and  z r, 0, t s0 otherwise. The perturbed air pressure0 0
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 p around the speaker satisfies potential flow with fluid displacement
Ž . Ž .� r, z, t s
�, where � satisfies Eq. 4.4.39 and the sound speed is c. Also,

Ž .the perturbed pressure is related to � by Eq. 4.4.40 .
( ) Ž .a Using Fourier cosine transforms, write the solution for � r, z, t as

2 �d kH ik �rH� r , z , t su r , z , t q dk A k , k , t e cos k z ,Ž . Ž . Ž . Ž .H H z H z z2
02�Ž .

Ž .where k sk cos � xqsin � y is the perpendicular component of theˆ ˆH r
Žwavenumber, and u satisfies the boundary conditions. Solve for A k ,H

.k , t to show thatz

2 � �az � p r , z , tŽ . 0 0s dk J k r J k a dkŽ . Ž .H Hr 0 r 1 r zp �0 0 0

�
� sin cktyck sin � t0 0 cos k z ,z2 2 2ck � yc kŽ .0

2 2 w'where ks k qk . Hint: To satisfy the von Neumann boundary condi-r z
tions in the x-y plane, put the wave equation for � in standard form by

Ž .employing a function u r, z, t that matches the boundary conditions, but
2 xthat also satisfies the Laplace equation 
 us0.

( )b Although the integrals in the solution for  p are well defined, they
cannot be evaluated analytically, and are nontrivial to evaluate numeri-

1cally. We will use the following method to evaluate  p in the zs plane2

at ts1, taking asz sp scs1 and � s10. First, define a numerical0 0 0
function

� sin cktyck sin � t1000 0 0f k , z , t s dk cos k z ,Ž . Hr z z2 2 2ck � yc kŽ .0 0

1� Ž .4using NIntegrate. Next, make a table of values of k , f k , , 1 forr r 2
Ž .k s i, is0, 1, 2, . . . , 50. Next, create an interpolating function g k byr r
Ž .interpolating this data. Finally, define a numerical function  p r s

Ž 2 . 50 Ž . Ž . Ž .az p � r� H dk J k r J k a g k , and plot the result for 0� r�20 0 0 0 r 0 r 1 r r
1 wto obtain the pressure field in the zs plane at ts1. The solution for2

Ž . p r, ts1 is shown in Fig. 5.5 for the case of the zs0 plane. Waves of
wavelength 2� cr� s0.63 . . . are being excited. Note the kink at the0
edge of the speaker, at rs1. Also note that the solution vanishes for
r�2, as expected for ts1, since the signal has not yet propagated into

xthis region.

( )23 A jet aircraft moves with constant speed ® in the z-direction. The jet acts as a
point pressure source, and the air pressure responds according to the three-

2 2 2 2 Ž . Ž . Ž .dimensional wave equation, � pr� t sc 
 pqs zy®t  x  y .
( )a Using Fourier transforms, find the particular solution for the wake

Ž .behind this moving source of the form p zy®t, r in cylindrical coordi-
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Ž .Fig. 5.5  p r, ts1 in the zs0 plane.

Ž . Žnates r, � , z , assuming that ®�c. As seen in a frame moving with the
.source, this wake is stationary.

( )b In the moving frame zszy®t, plot contours of constant p in the x-z
Ž . Ž . Ž .plane for i ®s0, ii ®scr2, iii ®s9cr10.

( )c Show that for ®�c, your solution breaks down along lines defined by
2 2Ž . Ž .zrr s ®rc y1. What is the physical significance of these lines?

Ž .Actually, your answer is incorrect if ®�c. See the next exercise.

( )24 Redo the calculation in the previous problem, taking ®�c, and using Eq.
Ž .5.1.85 rather than Fourier methods.
( ) Ž .a Show that the retarded time t in Eq. 5.1.85 satisfies0

2 2 2 2 2'®z� r c y® yz cŽ .
t s ty , where zszy®t,0 2 2c y®

with the added requirement t � t used to determine the choice of the �0
sign, and with no solution if the argument of the square root is negative.

( )b Show that for c�® the requirement that t � t implies that only the q0
sign should be kept.

( )c Show that for c�® the requirement that t � t implies that z�0 and0
that both signs can be kept.

( ) Ž . Ž .d Using Eq. 2.3.33 , show that p r, t can be written as

s 1
p r, t s ,Ž . Ý 2 2 24� c � �t ® yc qc ty®zŽ .0t0

Ž .where the sum is over the solution s for the retarded time.
( )e Using the previous results, show that, for ®�c,

s 1 2 2'p r, t s h yr c y® yzc ,Ž . Ž .2� c 2 2 2 2 2'r c y® qz cŽ .
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where h is a Heaviside function, and for ®�c,

s 1
p r, t s .Ž . 4� c 2 2 2 2 2'r c y® qz cŽ .

Ž .This is the solution to the previous problem. Make a surface plot of
Ž . Ž . Ž . Žp r, z for i ®rcs2, ii ®rcs4. The cone structure visible behind the

source is called a Mach cone. The large amplitude just behind the cone
implies that linear theory breaks down and a nonlinear shock wa®e forms.

.Shocks will be discussed in Chapter 7.

( )25 A long straight wire of radius a and resistivity � is initially at temperature
Ts0�C. The wire is clad with an infinitely thick shell of material, also at
Ts0�C. The cladding is not electrically conductive, but has the same thermal
diffusivity � as the conductor in the wire. At time ts0, the wire begins to

Žcarry a uniform current density j, creating a heating power density Ss� jh a
.y r , where h is a Heaviside function.

( )a Find the evolution of the temperature, and show that in cylindrical
coordinates,

� y� k 2 t1ye
T r , t saS J kr J ka dk .Ž . Ž . Ž .H 0 1 2ž /� k0

( )b Perform the integral to show that the temperature along the axis of the
wire satisfies

2 2a � 0, a r4 t�2 Ž .ya r4 t�T 0, t sS t 1ye q ,Ž . Ž . 4�

Ž .where � n, x is a special function called an incomplete Gamma function.
Plot this result for �sasSs1 and for 0� tF103. Show that at large
times the temperature diverges, and find the form of this divergence.
ŽThe material cannot conduct heat away from the source rapidly enough

.to equilibrate its temperature.

( )26 A Gaussian wave packet of water waves propagates across a river in the qy
Ž . w 2 Ž .2 x Ž .direction. The form of the packet is z x, y, t s2 Re H d kr 2� A k

25 2 2iŽk �ry� Žk. t . y wk qŽy1qk . xx y4Ž .e , where A k s25� e , with distances measured in
Ž .centimeters. Thus, the wave packet is peaked at k s 0, 1 . In still water, the0

Ž . 'dispersion relation for the waves is � k s gk . However, there is a current
in the qx direction, with speed Us10 cmrs. Keeping dispersion in both x

Žand y directions, plot the contours of constant z for 0� t�2 s. Solution:
.See Fig. 5.3.

( )27 Magnetized plasmas carry many different types of waves that have anisotropic
dispersion due to the magnetic field. Assuming a uniform magnetic field in
the z-direction, magnetized electron plasma waves have the following disper-
sion relation:

�s� k rks� cos � ,p z p
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2'where � is the angle between k and the magnetic field, � s e nr� m isp 0
the electron plasma frequency, n is the electron density in the plasma, e is
the electron charge, and m is the electron mass.
( )a Find the group and phase velocities. Show that ® s0 if �s0, and forg

fixed � and k find the angle � that provides the maximum value of ® .p g

( )b A disturbance that is initially spherically symmetric propagates in the qz
Ž . 3 Ž .3 Ž . iwk �ry� Žk. t xdirection according to E r, t s2 Re Hd kr 2� A k e . Show

that this disturbance can be written as a single integral over the magni-
tude of k,

22 2sin k r q kzy� t' Ž .2 pž /k dk
E r, t s8� Re A k ,Ž . Ž .H 3 22 22�Ž . k r q kzy� t' Ž .p

Ž . w Ž . xwhere r, z are cylindrical coordinates. Hint: Use Eq. 5.1.103 . Evalu-
ating this integral numerically over the range 0�k�8, create an anima-

Ž . yk 2 r4tion of a pulse with a spectrum of the form A k se . Plot the pulse
evolution in the r-z plane for 0�� t�20, via a series of Plot3Dp
graphics functions.

( )28 Whistler waves are low-frequency electromagnetic waves that propagate
along the magnetic field in a magnetized plasma. They have the following
dispersion relation:

�s� c2 k 2r� 2 , 5.1.104Ž .c p

where � seBrm is the electron cyclotron frequency, we have assumed thatc
k is parallel to the magnetic field, and we have also assumed that ck���

w Ž . x� . See Stix 1962, pg. 55 .c

( )a A group of whistler waves is created by a lightning flash in the upper
atmosphere. The waves propagate along the earth’s magnetic field in the

dk iwk xy� Žk . t xŽ . Ž .ionospheric plasma, according to E x, t s 2 Re H A k e ,2�

Ž . yk 2 r k 0
2

where x is the distance along the magnetic field. Taking A k se ,
find the evolution of the wave packet analytically, without approximation.
Animate the evolution for the following parameters: k s0.01 my1,0
� s105 sy1, and � s107 sy1, and for 0� t�0.01 s.c p

( )b A radio receiver is 3000 kilometers away from the initial location of the
lightning flash, as measured along the magnetic field. Using the Play
function, play the sound that the whistler waves make as they are picked

Ž .up by the receiver. A good time range is from zero to 5 seconds. Explain
Žqualitatively why you hear a descending tone this is why they are called

. Žwhistler waves . Hint: How does the phase velocity depend on fre-
.quency? To hear the sound of real whistler waves, picked up by the

University of Iowa plasma wave instrument on NASA’s POLAR space
craft, go to the following link:

http:rrwww-pw.physics .uiowa.edurplasma-waver
istprpolarrmagnetosound.html
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( )c For propagation that is not aligned with the magnetic field, the whistler-
Ž 2 2 . 2wave dispersion relation is �s � c k cos � r� , where � is the anglec p

between k and the magnetic field. Show that this dispersion relation
implies that the angle between the group velocity and the magnetic field
is always less than 19.5�. Hence, the earth’s magnetic field guides these
waves.

( )29 Using Fourier transforms find the Green’s function for the following heat
equation with anisotropic diffusion, in 2 dimensions:

� T � 2T � 2T � 2TsA qB qC .2 2� t � x � y� x � y

Show that a bounded solution only exists provided that the diffusion coeffi-
cients A, B, and C satisfy 4 ACyB2 �0. Such anisotropic diffusion can
occur in crystals and in magnetized plasmas, for example.

( ) ( )30 a A semiinfinite slab of material, with thermal diffusivity � , runs from
0�x�� and is initially at uniform temperature T . At time ts0, it is0
put in contact with a heat reservoir, setting the temperature at xs0 to

Ž .be T 0, t sT . Use a Fourier sine transform to show that the subsequent1
evolution of the temperature is given by

'T x , t s T yT erf xr2 �� t qT ,Ž . Ž . Ž .0 1 1

Ž .where erf x is an error function. Plot in the ranges 0�x�2 and
0.0001� t�1, taking �sT s1 and T s0.0 1

( ) � Žb Show that the temperature gradient at xs0 is given by � Tr� x s Txs0 0
y6 2. 'yT r �� t . For T s2000 K, T s300 K and �s2�10 m rs, find1 0 1

the time in years required for the gradient to relax to 0.03 Krm.
Compare to the result obtained for the cooling of the earth in Chapter 4,
Cell 4.49. Explain in a few words why the results are almost identical.

5.2 THE WKB METHOD

5.2.1 WKB Analysis without Dispersion

The Eikonal So far in this chapter we have considered systems that are homoge-
neous in space and time: their intrinsic properties such as wave speed c or
conductivity � do not vary from place to place, or from instant to instant. As a
consequence, Fourier transform techniques work to determine the solution. In this
section we consider systems that are inhomogeneous, but slowly varying, in space
or time. The inhomogeneity is assumed to be slowly varying in space on the scale
of the wavelength of the waves that make up the solution, and slowly varying in
time compared to the frequency of these waves.

For such systems, the technique of WKB analysis allows us to determine
Žanalytic approximations to the solution. WKB stands for G. Wentzel, H. Kramers,

and L. Brillouin, who more or less independently discovered the theory. Several



5.2 THE WKB METHOD 397

other researchers also made important contributions to its development, including
.H. Jeffreys and Lord Rayleigh.

As a simple example, consider a string under uniform tension T , but for which
Ž .the mass per unit length varies, �s� x . Then the wave equation for this system is

Ž .given by Eq. 3.1.7 :

� 2 y � 2 y2sc x , 5.2.1Ž . Ž .2 2� t � x

Ž . 'where c x s Tr� x is the propagation speed. This speed now varies withŽ .
position on the string, so the solution for the string motion can no longer be
written as a superposition of traveling waves of the form e iŽk xy� t .. Rather, we will
look for traveling-wave solutions of the more general form

y x , t seyi � t� x , 5.2.2Ž . Ž . Ž .

Ž .where the function � x provides the spatial dependence in the traveling wave.
Ž . Ž . Ž .Substituting Eq. 5.2.2 into Eq. 5.2.1 provides an ODE for � x :

� 2� 2syk x � x , 5.2.3Ž . Ž . Ž .2� x

Ž . Ž .where k x s�rc x .
Ž . Ž .If k x were constant, then the independent solutions of Eq. 5.2.3 would be

e � ik x and we would refer to k as the wavenumber of the waves. We will continue
Ž .with this nomenclature, and refer to the function k x as the wavenumber, but

now the solution will no longer be of the form e � ik x.
Ž .To find the solution, we introduce the eikonal S x , writing

� x se SŽ x . . 5.2.4Ž . Ž .

The eikonal has real and imaginary parts:

S x s ln A x q i� x . 5.2.5Ž . Ž . Ž . Ž .

Ž . Ž .Here, A x is the amplitude of the wave, and � x is the phase, as may be seen
Ž . Ž . Ž . i� Ž x .when this form is substituted into Eq. 5.2.4 : � x sA x e . Substituting Eq.

Ž . Ž . Ž .5.2.4 into Eq. 5.2.3 yields a nonlinear ODE for S x ,

22� S �S 2q syk x . 5.2.6Ž . Ž .2 ž /� x� x

So far no approximations have been made. However, it doesn’t appear that we
Ž .have made much progress: we have replaced a linear equation, Eq. 5.2.3 , by a

Ž .nonlinear equation, Eq. 5.2.6 . Usually, nonlinear ODEs are much harder to solve
than linear ones. But it turns out to be relatively easy to find an approximate

Ž .solution to Eq. 5.2.6 , by dropping one of the terms in the equation because it is
smaller than the others. To determine the size of the terms, let us define a length
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Ž . Ž .scale L x for the spatial variation of k x :

y1k x d ln k xŽ . Ž .
L x s s . 5.2.7Ž . Ž .ž /dkrdx dx

Ž .We will assume that the wavelength of the wave in question, 2�rk x , is small
Ž . Ž . Ž .compared L x : 1rk x �L x . Let us define a small dimensionless parameter � ,

1
�s �1. 5.2.8Ž .k x L xŽ . Ž .

We will refer to the limit where the � is small as the WKB limit.
Ž .We now determine the relative size of the terms in Eq. 5.2.6 . To do so, divide

2Ž . n n nthe equation by k x , and replace � r� x by 1rL . The result is

� 2Sq� 2S2sy1.

This equation is no longer strictly correct, and must be regarded as only a
qualitative indicator of the relative size of terms. The idea is that �r� x is on the

Ž .order of 1rL. After determining the small term s , we can go back to using the
Ž .correct equation and then drop the small term s to get an approximate solution.

Ž .Which term s are small? Sometimes that is obvious, but not in this case. It
appears that both terms on the left-hand side are small because they are multiplied
by � 2, but it is best not to make any assumptions about the size of S. Instead, we
will systematically assume that each term in the equation is small, drop that term,
solve for S, and then see if our assumption is consistent with the solution for S.
This trial-and-error method is called finding the dominant balance between terms
in the equation.

If we assume that y1 is the small term, and drop y1, then we are left with the
2 wequation S syS, which has the ‘‘solutions’’ Ss0 and Ssy1. These are not the

Ž . Ž .actual solutions for S x , which must follow from Eq. 5.2.6 . Rather, they only
xprovide the order of magnitude of S. However, these solutions aren’t consistent

with dropping y1, because � 2Sq� 2S2 is then small compared to y1.
If we instead assume � 2S2 is the small term, we obtain the equation Ssy1r� 2.

However, this implies that � 2S2s1r� 2, which is even larger than the terms we
kept, so this also is not a consistent approximation.

We are therefore left with � 2S as the small term. Dropping this term, we obtain
� 2S2sy1 which yields Ss�ir� . Then the term we dropped, � 2S, equals �i� ,
which is in fact small compared to either of the other terms that we kept.
Therefore, this is a consistent approximation. We have found the dominant
balance between the terms in the equation: � 2S2 balances y1, and � 2S is a small
correction to this dominant balance.

We have found that the eikonal S is large, scaling as 1r� . This reflects the fact
that in the WKB limit, over a distance of order L there must be many wavelengths
in � . The phase � must vary by a large amount over this distance.

Ž . 2 2Returning now to the equation, Eq. 5.2.6 , we drop the small term � Sr� x to
obtain an approximate solution for S. Let us call the result the zeroth approxima-
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tion for S, SsS , where0

2�S0 2syk x .Ž .ž /� x

This equation has the solution

x
S x sB� i k x dx , 5.2.9Ž . Ž . Ž .H0

Ž .where B is a constant of integration. Comparing with Eq. 5.2.5 , we have found
Ž .that to lowest order in � the amplitude is constant and the phase is � x s

x Ž . Ž .�H k x dx. Since the wavenumber k x now varies with position, phase accumu-
Ž .lates according to Eq. 5.2.9 rather than merely as �kx.

� 2 2 � � � 2We will now confirm that � Sr� x � �Sr� x in the WKB limit. Compar-
2 2 Ž .2 Ž . � � 2 2ing � S r� x and �S r� x using Eq. 5.2.9 , we have �S r� x sk and0 0 0

� 2 2 � � �� S r� x s � kr� x 	krL, so0

22� S �S 1 k0 0 	 s��1,2 2ž /� x L� x k

Ž . Ž .where the inequality follows directly from Eq. 5.2.8 . Therefore, Eq. 5.2.9 is a
Ž .consistent approximate solution to Eq. 5.2.3 in the WKB limit.

Ž . Ž . Ž .Equation 5.2.9 , along with Eq. 5.2.4 , provides us with approximations to the
Ž .two independent solutions to Eq. 5.2.3 , which when superimposed provide an
Ž .approximate general solution for � x :

x x
Ž . Ž .i k x d x yi k x d xH H� x sC e qD e . 5.2.10Ž . Ž .

Ž . Ž . Ž .Using Eq. 5.2.10 in Eq. 5.2.2 , we have for y x, t a left- and a right-propagating
wave,

x x
Ž . Ž .yi � tqi k x d x yi � tyi k x d xH Hy x , t ,C e qD e . 5.2.11Ž . Ž .

These waves are generalizations of traveling waves of the form eyi Ž� t � k x ., encoun-
tered previously in the description of waves in a homogeneous system.

Ž .However, Eq. 5.2.10 is a rather crude approximation to the exact solution of
Ž .Eq. 5.2.3 . We will now improve on the solution by first rewriting the exact

Ž .equation for S, Eq. 5.2.6 , as

2 2�S � S2syk x y� . 5.2.12Ž . Ž .2ž /� x � x

We have placed an ordering parameter � in front of the small term � 2Sr� x 2 in
order to remind us that this term is small, of order � , compared to the other terms.
This allows us to keep track of small terms in the following calculation. We can
even expand our solutions in powers of �, since this is equivalent to expanding in
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powers of � . However, when we are finished, we will set �s1. This is a
bookkeeping device that allows us to identify small terms at a glance, and easily
perform Taylor expansions in powers of � .

Previously, we found S by dropping the �-term altogether. Let us call an0
improvement to this solution SsS . To obtain an equation for S we rewrite1 1

2 2 2 2 2 2 2Ž . 2� � Sr� x as � � Sr� x s� � S r� x q� � SyS r� x . However, in the WKB0 0
2Ž . 2limit we expect that SyS will be small, so that � � SyS r� x is a small0 0

Ž .correction to the small correction, and so we drop this term. Then Eq. 5.2.12
becomes

2 2�S � S1 02syk x y� . 5.2.13Ž . Ž .2ž /� x � x

Ž .Furthermore, since we already know S from Eq. 5.2.9 , this equation can be0
solved for S . The result is1

2x � S� 0S x sB� i k x 1q dx .Ž . Ž .H1 ( 2 2k x � xŽ .

We can simplify the square root by noting that the �-term is small, of order � . A
first-order Taylor expansion in � yields

x x 2� S� 1 0 2S x sB� i k x dx� i dxqO � .Ž . Ž . Ž .H H1 22 k xŽ . � x

Also, we can perform the second integral analytically by substituting for S using0
Ž .Eq. 5.2.9 , yielding

x 2 x� S1 �i � k0 dxs dxs�i log k x .Ž .H H2 � xk x k xŽ . Ž .� x

Therefore, we obtain

x � 2S x sB� i k x dxy log k x qO � . 5.2.14Ž . Ž . Ž . Ž . Ž .H1 2

Ž .Setting �s1, and using this improved approximation for S in 5.2.4 , we find that
1 Ž .the term log k x has the effect of causing the amplitude of the wave to vary with2

position, according to

x
Ž .B � i k x d xHx y1r2 e eŽ . Ž .� i k x d xqBqlog k xH� x se s . 5.2.15Ž . Ž .'k xŽ .
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Therefore, in the WKB limit we have the following traveling-wave solution to Eq.
Ž .5.2.1 :

x xC DŽ . Ž .yi � tqi k x d x yi � tyi k x d xH Hy x , t , e q e . 5.2.16Ž . Ž .' 'k x k xŽ . Ž .

Ž .This is a much better approximation to the exact solution than Eq. 5.2.11 ,
Ž .because it has amplitude variation that is missing in Eq. 5.2.11 .

Ž . Ž .However, Eq. 5.2.16 is also only an approximate solution to Eq. 5.2.1 , valid
only in the WKB limit ��1. One could, if one wished, further improve the
solution. Defining the nth approximation to the solution as S , we replace Eq.n
Ž .5.2.13 by a recursion relation,

2 2�S � Sn ny12syk x y� . 5.2.17Ž . Ž .2ž /� x � x

Ž .For instance, we could obtain S by using S in the right-hand side of Eq. 5.2.15 .2 1
We could then use that form on the right-hand side to obtain S , and so on. The3
hope is that the resulting approximants converge, so that for n large, � 2S r� x 2

ny1
2 2 Ž . Ž .™� S r� x and Eq. 5.2.17 becomes the same as Eq. 5.2.12 , so that we aren

obtaining the exact solution for S in the limit.
At each stage in the recursion, we can Taylor-expand S in � to the appropriaten

order so as to obtain the simplest possible analytic result. In fact, one can
automate this procedure quite easily, since evaluating recursion relations and
performing Taylor expansions are just the sort of things at which Mathematica
excels. We do so below, defining a function Sp[n,x], which is �S r� x. Accordingn

Ž .to Eq. 5.2.17 ,

Cell 5.12

Sp[n_____, x_____] := Sqrt[-k[x] ^̂̂̂̂2 - �D[Sp[n - 1, x], x]];

ŽOne could also choose a negative sign in front of the square root to obtain a
.second solution. For the initial condition in this recursion relation, we take

Cell 5.13

Sp[0, x_____] := Sqrt[-k[x] ^̂̂̂̂2];

Then we can ask for the result at any order. For instance, at second order,

Cell 5.14

Sp[2, x]

2 2 2� k[x] k ’[x] � k ’[x] �k[x] k"[x]
� -2k[x] k ’ [x] + q +

2 3/2 2 2ž /(-k[x] ) ' '-k[x] -k[x]
2-k[x] -

�k[x] k ’[x]2) 2 -k[x] q
2( '-k[x]
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This is very messy, but can be simplified by noting that it is correct only to second
order in �. Therefore, we can Taylor-expand in �:

Cell 5.15

Expand[Simplify[Normal[Series[%%%%%, {�, 0, 2}]], k[x]>>>>>0]]

�k ’[x] 3 i �2k ’[x]2 i �2 k"[x]
i k[x] - q -

3 22 k[x] 8 k[x] 4 k[x]

This is the derivative of the second-order approximant, �S r� x. It contains the2
Ž .contributions from S given by Eq. 5.2.14 as well as two correction terms of order1

�2. It is easy to continue this process and obtain even higher-order corrections.
More often than not, however, the approximants do not converge as n™�;

instead, they converge for a time, and then begin to diverge as n increases past
some value that depends on the size of � . This is typical behavior for asymptotic

wexpansions, of which WKB solutions are an important case. Some examples of this
behavior are considered in the exercises. Readers interested in learning more
about asymptotic expansions are referred to the book by Bender and Orzag
Ž . x1978 . Nevertheless, if � is sufficiently small, the WKB solution S is usually a1
reasonably good approximation. We will not bother with the higher-order approxi-
mants for S here, because they become more and more complicated in form, and

Ž .make only minor corrections to Eq. 5.2.16 .

Example: Waves on a String with Varying Mass Density As a simple example of
traveling-wave solutions in an inhomogeneous system, let us consider the case

Ž . xrL Žwhere the string mass varies as � x s� e i.e., the string gets exponentially0
. Ž . 'heavier as one moves to the right. Then the wave speed obeys c x s Tr� x sŽ .

yx rŽ2 L.c e , where c s Tr� is the wave speed at xs0, and the local wavenum-'0 0 0
Ž . xrŽ2 L.ber varies with position as k x s� e rc . This implies that phase in the wave0

x Ž . Ž � � . xrŽ2 L.accumulates according to H k x dxs 2 � Lrc e and so the traveling wave0
solution is

� �C 2 � L xrŽ2 L.y x , t f exp yi � ty eŽ . xrŽ4 L. ž /ce 0

� �D 2 � L xrŽ2 L.q exp yi � tq e . 5.2.18Ž .xrŽ4 L. ž /ce 0

ŽThe real part of this solution is plotted in Cell 5.16, taking Ds0 i.e., the wave
.propagates to the right and c s�s1 and Ls5. This plot shows that the wave0

decreases in amplitude as it propagates to the right, because the string gets heavier
as one moves in this direction. Also, since the wave slows down as it propagates,
wavefronts pile up, making the wavelength smaller.
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Cell 5.16

1 2�L x/(2L)y[x_____, t_____] = exp[-i(�t- e /. {c ™1, L™5,� ™1};0x/(4L) ce 0

Table[Plot[Re[y[x, t]], {x, -4, 20},
PlotRange™{-1, 1}, AxesLabel™{"x", "y"}],
{t, 0, 1.8 Pi, .2 Pi}];

This solution propagates to the right. As an exercise, reevaluate this cell,
modifying the definition of y so that it is a traveling wave moving to the left. What
does the animation look like now? How does it relate to the one in Cell 5.16?

Another question is: how close is this WKB solution to the exact solution for
Ž .this traveling wave? One can answer this question by solving Eq. 5.2.3 for � using

DSolve:

Cell 5.17
� ^̂̂̂̂2

�[x_____] = �[x]/. DSolve[� "[x] == - Exp[x/L] �[x], �[x], x][[1]]
c ^̂̂̂̂20

x x

L L' 'BesselJ[0, 2 e L�/c ] C[1] + BesselY[0, e L�/c ]C[2]0 0

The result is a superposition of two Bessel functions. In order to compare this
exact solution with our WKB approximation, we must determine the constants

Ž . Ž .C[1] and C[2]. To do so, we will match � x to y x, 0 at xs0, and ��r� x to
�� yr� x at xs0. Therefore, the solutions will match at xs0, but not necessar-ts0

ily at any other x:

Cell 5.18

Solve[
{�[0] == y[0, 0], (D[�[x], x]/. x™0) == (D[y[x, 0],
x]/. x™0)}, {C[1], C[2]}];

�[x_____] = �[x]/. %%%%%[[1]];

yexact[x_____, t_____] = �[x] Exp[-I � t]/. {� ™ 1., L™5., c ™1.};0
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The command for plotting the exact solution is given in Cell 5.19. The result is
almost identical to that shown in Cell 5.16, so the actual plot is not shown in order
to save space. However, there is a small difference with the WKB solution, plotted
in Cell 5.20. This error in the WKB solution grows as the length scale L decreases,
for fixed � and c . This is because the WKB limit depends on L being large. The0
reader is invited to reevaluate these plots for smaller L, in order to investigate the
error in the WKB approach.

Cell 5.19

Plot[Re[yexact[x, 0]], {x, -4, 20}, PlotRange™{-1, 1},
AxesLabel™{"x", "y"}];

Cell 5.20

Plot[Re[yexact[x, 0] -y[x, 0]], {x, -4, 20},
AxesLabel™{"x", "�y"}];

WKB Method for Systems That Vary Slowly in Time: Adiabatic Invariance
Consider a quantum-mechanical system, such as an atom, that is in a particular
energy eigenstate described by some set of quantum numbers. When the system is
put in an external electric or magnetic field that varies rapidly in time, it is well
known that this can cause the system to jump to other energy eigenstates, with
different quantum numbers.

On the other hand, if the external fields vary slowly, it is observed that the
system remains in the original quantum state. For example, hydrogen atoms
remain in the ground state if they are slowly transported from a field-free region to
a region where magnetic or electric fields exist. Thus, the quantum numbers are
constants of the motion when the external fields vary slowly, but not when the fields
vary quickly.

In 1911, at the first Solvay conference, the question was raised as to whether
there is analogous behavior in classical systems. That is, when a classical system is
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placed in slowly varying external fields, is there some quantity that remains
time-independent, in analogy to the quantum numbers of the quantum system?
Albert Einstein, a conference attendee, showed that such a quantity does in fact
exist. It is called an adiabatic invariant, because it is only invariant if the fields vary

Ž .adiabatically slowly .
To illustrate the concept of an adiabatic invariant, Einstein chose the following

model system: a pendulum whose length is varied slowly compared to its oscillation
frequency. A slightly simpler version of this problem is a harmonic oscillator for
which the oscillator frequency varies slowly in time in some prescribed manner,

Ž . Ž .� s� t the pendulum problem is considered in the exercises . The Hamilto-0 0
nian of the oscillator is

1 12 2 2Hs mx q m� t x . 5.2.19Ž . Ž .˙ 02 2

Since H depends explicitly on time, the energy of the system is not a conserved
quantity. To find the adiabatic invariant for this system, one can examine the
equation of motion for the oscillator:

x t sy� 2 t x t . 5.2.20Ž . Ž . Ž . Ž .¨ 0

Ž .This equation has the same form as Eq. 5.2.3 , so we can apply WKB theory to
Ž .find an approximate solution. This solution will be valid only if the frequency � t0

2 wis slowly varying in time. Specifically, the requirement on � is � r� �1 this is˙0 0 0
Ž .x Ž .analogous to Eq. 5.2.8 . Comparing with the WKB solution of Eq. 5.2.3 , we can

Ž .write the WKB solution to Eq. 5.2.20 as

tA
x t s cos � t dtq� , 5.2.21Ž . Ž . Ž .H 0ž /� t' Ž .0

where � is a constant phase factor and A and � are determined by the initial
Ž . Ž .conditions on Eq. 5.2.10 . Equation 5.2.21 shows that when the frequency of the

oscillator increases with time, the amplitude of the oscillations decreases like
1r � t .' Ž .0

Ž .We can see this behavior if we solve Eq. 5.2.20 numerically for a given initial
Ž . Ž . 	 t Ž .condition and a given � t . For example, take � t sy	 tqe , x 0 s1,0 0

Ž . Ž .x� 0 s 0. Then the WKB solution for these initial conditions is x t s
t Ž .cos H � t dtr � t . This is compared with the numerical solution of Eq.' Ž .0 0 0

Ž . Ž .5.2.20 in Cell 5.21. The WKB solution dashed line works reasonably well,
Ž .considering that the time variation of � t is rather rapid. By changing the value0

of 	 , the reader can observe how the error in the WKB solution depends on rate
Ž .of change of � t .0

Cell 5.21

Clear["Global‘*****"];
<<<<<<<<<<Graphics‘;
	 = 1/3;
� [t_____] = -	t + e	t;0
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xWKB[t_____] = Cos[Integrate[� [t1], {t1, 0, t}]]/Sqrt[� [t]];0 0

NDSolve[{x"[t] == -� [t] ^̂̂̂̂2 x[t], x[0] == 1, x'''''[0] == 0},0

x[t], {t, 0, 15}, MaxSteps™5000];
x1[t_____] = x[t]/. %%%%%[[1]];
Plot[{xWKB[t], x1[t]}, {t, 0, 15}, PlotStyle™

{Red, Dashing[{0.01, 0.02}], Thickness[0.006]}, Blue},
AxesLabel™{"t", ""}, PlotLabel™"Oscillator with varying

frequency"];

Can we find a constant of the motion for this problem in the WKB limit, where
� r� 2 �1? We know that energy is not conserved. However, consider the˙0 0
following quantity:

JsE t r� t . 5.2.22Ž . Ž . Ž .0

We will show that the quantity J is constant in the WKB approximation, and is the
Ž .adiabatic invariant we are looking for. To show this, we will substitute Eq. 5.2.21

Ž . Ž .into Eq. 5.2.19 . This requires that we first evaluate x t sdxrdt:˙
� t t˙A 0x t s y cos � t dtq� q� sin � t dtq� .Ž . Ž . Ž .˙ H H0 0 0ž / ž /2�0� t' Ž .0

However, the first term is negligible compared to the second term in the WKB
limit where � r� 2 �1, so we will drop it. Then we have˙0 0

2 t 2 t1 A 1 A2 2 2 2HsE, m � sin � t dtq� q m� cos � t dtq�Ž . Ž .H H0 0 0 0ž / ž /2 2� t � tŽ . Ž .0 0

1 2s mA � t .Ž .02

Ž .This proves that JsEr� t is a constant of the motion in the WKB limit.0
Ž .However, it is only an approximate constant. For example, if we evaluate Er� t0

Ž .using the previous numerical solution, we find Cell 5.22 that this quantity does
vary slightly. Initially, J is not very well conserved. But as time goes by, � r� 2 	˙0 0
ey	 t becomes smaller, we approach the WKB limit, and the adiabatic invariant is
almost a constant of the motion.
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Cell 5.22

J[t_____] = (1/2 x1'''''[t] ^̂̂̂̂2 + 1/2 � [t] ^̂̂̂̂2 x1[t] ^̂̂̂̂2)/� [t];0 0

Plot[J[t], {t, 0, 15}, PlotPoints™2000,
PlotRange™All, PlotLabel™"adiabatic invariant vs time"];

Adiabatic invariants can also be defined for other systems where a degree of
freedom exhibits high-frequency oscillations. These approximate invariants can be
related to action integrals. For in-depth discussions of this important subject, see

Ž . Ž .Goldstein 1980, pg. 431 , and Landau and Lifshitz 1976, pg. 154 .

WKB Wave Packets Let us return now to the problem of waves on an inhomoge-
neous string. General solutions to the wave equation can be constructed out of
superpositions of these traveling waves. In order to see how this is accomplished,

Ž . 2 Ž .perform a temporal Fourier transform of the wave equation 5.2.1 : y� y x, � s˜
2Ž . 2 2 Ž . Ž .c x � yr� x , where y x, � is the Fourier transform in time of y x, t . Dividing˜ ˜

through by c2, we obtain

� 2 ỹ 2sk x , � y x , � , 5.2.23Ž . Ž . Ž .˜2� x
Ž . Ž .where k x, � s�rc x . The general solution to this ODE is of the form

y x , � sA � � x , � qB � � x , � , 5.2.24Ž . Ž . Ž . Ž . Ž . Ž .˜ 1 2

Ž . Ž .where � x, � and � x, � are two independent solutions to this second-order1 2
ODE. Taking the inverse transform, we find that the general solution to Eq.
Ž .5.2.23 may be expressed as

� d� yi � t yi � ty x , t s A � e � x , � qB � e � x , � . 5.2.25Ž . Ž . Ž . Ž . Ž . Ž .H 1 22�y�

Ž . Ž .The functions A � and B � can be used to help match to given initial
Ž .conditions andror boundary conditions if any .
Ž . Ž .We found WKB approximations for � x, � and � x, � previously; see Eq.1 2

Ž .5.2.15 . Assuming that the WKB limit holds, we can use these solutions in Eq.
Ž .5.2.25 :

x x
Ž . Ž .yi � tqi k x , � d x yi � tyi k x , � d xH H� A � e qB � ed� Ž . Ž .

y x , t s . 5.2.26Ž . Ž .H 2� 'k x , �y� Ž .
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Ž . Ž . Ž .For the case of a nonuniform string, where k x, � s�rc x , Eq. 5.2.26 can be
further simplified:

x x� d� Ž .. Ž ..yi � Ž ty d xrc x yi � Ž tq d xrc xH H'y x , t s c x A � e qB � e ,Ž . Ž . Ž . Ž .H 2�y�

5.2.27Ž .

x' ' Ž . Ž .where AsAr � and BsBr � . Let us now define a function � x sH dxrc x ;
wthis is the time required to propagate to point x. It is convenient to leave the

Ž .integral in � x with an indeterminate lower bound, so we have not specified an
Ž . Ž . x 2 Ž .initial position. To be precise, we should say that � x y� x sH dxrc x is2 1 x1xthe time required to propagate from x to x .1 2

Ž . Ž .Using this definition for � x in Eq. 5.2.26 , we can write the solution as

'y x , t s c x f ty� x qg tq� x , 5.2.28Ž . Ž . Ž . Ž . Ž .Ž . Ž .

� i� t � yi � tŽ . Ž . Ž . Ž . Ž . Ž .where f t sH d�r2� A � e and g t sH d�r2� B � e are Fourier-� y�

transforms of A and B. This WKB form of the general solution to the wave
equation for an inhomogeneous medium has much in common with the expression

Ž .for the d’Alembert solution for a homogeneous medium, Eq. 5.1.11 . Like Eq.
Ž . Ž .5.1.11 , Eq. 5.2.28 describes two counterpropagating wave packets. But now the

Ž .time required to propagate to position x is � x rather than xrc, and the shape
and amplitude of the packets vary.

Ž . Ž . yx 2
For example, let us consider an initially Gaussian packet, y x, 0 sy x se ,0

moving to the right. Then we can take gs0, since this part of the solution
Ž .describes a packet moving to the left. Also, f t is determined by the initial

condition,

'y x , 0 s c x f y� x sy x . 5.2.29Ž . Ž . Ž . Ž . Ž .Ž . 0

Ž . Ž .We can solve this equation for f t by inverting the function � x , given that �
Ž .increases monotonically with x. Let X t be the solution for x to the equation

Ž . Ž . Ž . Ž .ts� x , for given t. If we let ts� x in Eq. 5.2.29 , then xsX t , and the
equation becomes

y X tŽ .Ž .0f yt s . 5.2.30Ž . Ž .'c X tŽ .Ž .

Ž . Ž .This equation determines f t , and when used in Eq. 5.2.28 it provides us with
the solution for the motion of the wave packet.

Ž . yx r2 LWe will work out the WKB solution for the case c x sc e discussed0
Ž . x Ž . Ž . xr2 Lpreviously. Then � x sH dxrc x s 2 Lrc e . This shows that it takes expo-0

nentially longer to travel to larger x, because the wave is slowing down as x
Ž . Ž . w Ž .xincreases. The solution for x to the equation � x s t is X t s2 L ln c tr 2 L .0

2yX Ž t .Ž . Ž . 'Then Eq. 5.2.30 implies f yt se tr 2 L . Using this expression in Eq.Ž .
Ž . Ž .5.2.28 , together with our expression for T x , provides us with the required
solution for the propagation of the packet in the WKB approximation. This is
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shown in Cell 5.23, taking Ls2, c s1. As the wave packet propagates into the0
Ž .heavier region of the string where c x decreases, the packet slows and becomes

smaller. It also narrows, because the back of the packet catches up with the front
as the packet slows down.

Cell 5.23

c[x_____] = c e-x/(2L);0

2L x/(2L)�[x_____] = e ;
c0

X[t_____] = 2 L Log[c t/(2L)];0

-X[-t] 2 'f[t_____] = e ^̂̂̂̂ -t/(2L) ;

'y[x_____, t_____] = c[x] f[t - �[x]]/. {c ™1, L™2};0

Table[Plot[y[x, t], {x, -3, 15},
PlotRange™{{-3, 10}, {-0.2, 1}}, AxesLabel™{"x", ""},
PlotLabel™"y[x, t], t =" <<<<<>>>>>ToString[t]], {t, 0, 30, 1}];

We also observed this narrowing of the packet when we analzyed the motion of
a hanging string in Chapter 4, Sec. 4.2. There, however, it was the tension that
varied with position, not the mass. As a result, the amplitude of the packet
increased as the packet slowed and narrowed, rather than decreasing as it does
here. The reason for this difference in behavior between strings with nonuniform
tension and nonuniform mass density will be taken up in the exercises.
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WKB Waves in Two Dimensions: Water Waves Near the Shore Waves in
Ž . Ž .shallow water of varying depth h r , with amplitude z r, t , are described by the

following wave equation:

2� z 2s
� c r 
z , 5.2.31Ž . Ž .2� t

2Ž . Ž . Ž .where c r sgh r , and g is the acceleration of gravity. Equation 5.2.31 is a
Ž . Ž .generalization of Eqs. 3.1.78 and 3.1.79 for varying depth and propagation in

Ž .two dimensions, with rs x, y . This equation follows from the same arguments
Ž .that led to Eq. 3.1.78 . It provides a useful model for a discussion of wave

propagation in inhomogeneous 2D systems.
Ž .For simplicity, we will assume that hsh x only, so that there is no y-depen-

Ž .dence to the water depth. In this case, traveling-wave solutions to Eq. 5.2.31 are
iŽk y yy� t . Ž .of the form zse � x , where k is the y-component of the wavenumber, ay

constant. The function � satisfies the ODE

� 1 �
� x sy� x , 5.2.32Ž . Ž . Ž .2� x � xk x , � , kŽ .x y

where

� 2
2 2k x , � , k s yk 5.2.33Ž .Ž .x y y2c xŽ .

Ž .is the square of the x-component of the wave vector. Equation 5.2.33 can be
rearranged to read

� 2sc2 x k 2qk 2 , 5.2.34Ž . Ž .Ž .x y

which is simply the dispersion relation for these waves. Since � and k arey
Ž . Ž .constants, as c x varies k must also vary in order to satisfy Eq. 5.2.34 .x

Ž . Ž .Equation 5.2.32 is a linear ODE that is similar in form to Eq. 5.2.3 , so WKB
analysis can be used to follow the behavior of these shallow-water waves, provided
that the depth varies little over a wavelength. That is, we require that k L�1,x

� Ž . �where Ls 1r � ln k r� x is the scale length due to the depth variation. If thisx
is so, then we can use the eikonal method discussed in the previous section, first

SŽ x . Ž .writing �se , and then approximating S x in the WKB limit. The result is

x
Ž . xiwk y � k x , � , k d xy� tHy x yz x , y , t sA k x , � , k e , 5.2.35Ž . Ž .Ž .' x y

Ž . Ž .see the exercises . Equation 5.2.35 describes a wave propagating in either the
qx or the yx direction, and at the same time propagating in the y-direction with
wavenumber k .y

Ž .For example, let’s assume that the water depth h x decreases as x increases,
according to

h ar aqx , x�0,Ž .0h x s 5.2.36Ž . Ž .½ h , x�0.0
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Fig. 5.6 Equilibrium water depth as a function of
position.

Ž .In other words, as x increases we approach the shore. See Fig. 5.6. In Cell 5.24,
Ž .we display z x, 0, t for a wave propagating in the positive x and y directions. In

this example we choose � so that k sk s1 my1 for x�0. According to Eq.x y
y1 y1Ž . '5.2.34 this requires �s 2 gh �1 m . Also, for x�0, k s 1q2 xra m' 0 x

Ž . Ž .according to Eqs. 5.2.33 and 3.1.79 .

Cell 5.24

h[x_____] := h0 a/(a + x)/; x >>>>> 0
h[x_____] := h0/; x F 0

'c[x_____] = g h[x] ;

2 2 2'kx[x_____] := � /c[x] - ky ;

'� = 2 g h0 ;
ky = 1;
g = 9.8;
a = 2;
h0 = 2;

'z[x_____, y_____, t_____] := kx[x] Exp[I (ky y +NIntegrate[kx[x1],
{x1, 0, x}] -� t}]

Table[Plot[Re[z[x, 0, t]], {x, -5, 10}, PlotRange™{-3, 3},
AxesLabel™{"x", "z[x, 0, t]"}], {t, 0, 1.8Pi/�, .2Pi/�}];

w Ž .As the waves move toward the beach, they slow down c x decreases as the
xdepth decreases . As the waves slow, the wavefronts pile up, and this results in a
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Ž .shortening of the x-wavelength, 2�rk that is, k increases . However, unlike thex x
waves on a nonuniform string, the amplitude of these water waves increases as the
waves slow. Eventually, if the amplitude becomes sufficiently large, nonlinear
effects become important: the waves break. This will be discussed in Chapter 7.

While k increases as x increases, k remains constant, and this implies thatx y
Ž .the wave vector ks k , k changes direction as the waves propagate, increasinglyx y

pointing in the x-direction as x increases. This is shown in Cell 5.25 using a
contour plot. The waves bend toward the shore. This is because the portion of a
wavefront that is closer to the beach moves more slowly, falling behind. This
behavior is familiar to anyone who has observed waves at the beach. The bending
of the wavefronts is analogous to the refraction of light waves. We discuss this
connection in Sec. 5.2.2.

Cell 5.25

waves = Table[
ContourPlot[Re[z[x, y, t]], {x, -5, 10}, {y, -5, 10},
PlotRange™{-3, 3},
FrameLabel™{"x", "y"}, PlotPoints™100],
{t, 0, 1.8Pi/�, .2Pi/�}];

Ray Trajectories For waves propagating in two dimensions in a medium where
Ž . Ž .csc x , we have seen that the wave’s phase � x, y, t is given in the WKB

approximation by
x

� x , y , t sk yq k dxy� t , 5.2.37Ž . Ž .Hy x

2 2 2 Ž .where k s � rc x yk . This phase appears in the exponent of Eq. 5.2.35 .Ž .'x y

Curves of constant � define the phase fronts that are observed to propagate and
bend in the previous animation.
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Ž .Consider a point on a phase front at position x , y at time ts0. Let’s assume0 0
that this point moves with the wave, and determine the path that it follows. One
might think of this point as a surfer who is allowing the wave to push himrher
along at the local wave speed, in a direction normal to the local wavefront.

The equations of motion for this point of constant phase can be obtained by
Ž .taking a differential of Eq. 5.2.37 and setting d� equal to zero:

d�s0sk dyqk x , � , k dxy� dt ,Ž .y x y

or in other words, dr �ks� dt. Since the direction of motion is the k-direction, we
obtain

dr �ˆ ˆs ksc x k, 5.2.38Ž . Ž .dt k

ˆ ˆŽ .where ksk x is a unit vector in the k-direction, and where we have used Eq.
Ž .5.2.34 in the second step.

ˆŽ . Ž .Thus, the phase point travels with the local phase velocity v x s �rk k,�

which is hardly surprising. This is the same equation for phase velocity as for waves
Ž .in a homogeneous medium, Eq. 5.1.41 , but now the velocity varies with position.

Ž . Ž . Ž .For a given initial condition, r ts0 s x , y , the solution to Eq. 5.2.38 defines0 0
Ž .a curve r t in the x-y plane, which is the trajectory of the point of constant phase

as time progresses. This curve is called a ray trajectory.
Ž .In component form, Eq. 5.2.38 becomes

kdx xsc x ,Ž .dt k
5.2.39Ž .

kdy ysc x .Ž .dt k

Ž .In Cell 5.26, we solve Eq. 5.2.39 for three separate initial conditions, and plot
Ž . Ž .them, using our previous results for k x . The rays are curves y x that arex

normal to each surface of constant phase. These surfaces are nearly identical to
the contours of constant wave height shown in Cell 5.26, since the wave amplitude,

w Ž .xk x , is slowly varying compared to � see Eq. 5.2.35 .' Ž .x

Cell 5.26

Do[x0 = -5 + 2 n; y0 = -5 + 4n;
ray = NDSolve[{x'''''[t] == c[x[t]] kx[x[t]]/
Sqrt[ky ^̂̂̂̂2 + kx[x[t]]^̂̂̂̂2],

y'''''[t] == c[x[t]] ky/Sqrt[ky ^̂̂̂̂2 + kx[x[t]]^̂̂̂̂2],
x[0] == x0, y[0] == y0}, {x[t], y[t]}, {t, 0, 10}];

xray[t_____] = x[t]/. ray[[1]]; yray[t_____] = y[t]/. ray[[1]];
plot[n] = ParametricPlot[{xray[t], yray[t]}, {t, 0, 10},

DisplayFunction™Identity, PlotStyle™RGBColor[1, 0, 0]
];, {n, 0, 2}];

Show[Join[{waves[[1]]}, Table[plot[n], {n, 0, 2}]],
PlotRange™{{-5, 10}, {-5, 10}}, DisplayFunction™
$$$$$DisplayFunction];
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The bending of the rays can also be understood by dividing dyrdt by dxrdt in
Ž .Eq. 5.2.39 :

kdyrdt dy ys s . 5.2.40Ž .dxrdt dx k x , � , kŽ .x y

Ž .This equation has a simple physical interpretation. If we define � x as the angle
Ž . Ž . Ž .the rays make with the horizontal see Fig. 5.7 , Eq. 5.2.40 implies that tan � x

Ž . Ž . Ž .sk rk , or equivalently, sin � x sk rk x sk c x r�, where in the secondy x y y
Ž . Ž .step we have used Eq. 5.2.34 . Dividing through by c x yields

ksin � xŽ . ys sconstant. 5.2.41Ž .�c xŽ .

Ž .Equation 5.2.41 is the famous Snell’s law for the propagation of waves through an
Ž .inhomogeneous medium. As the phase speed c x decreases, Snell’s law implies

Ž .that � x also decreases. In other words, rays bend toward regions of lower phase
speed. This same equation applies to the refraction of light rays as they propagate
through an inhomogeneous medium.

Fig. 5.7 Ray trajectory in a medium with wave speed
Ž .csc x that decreases to the right.
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It is interesting that Snell’s law, derived here for a medium that varies slowly
compared to the wavelength, also applies even for a medium with sharp interfaces,
such as occurs for light propagating from air to glass. What is missing in the WKB
theory of this problem is the reflected wave from the sharp interface. Reflections
do not occur in the WKB approximation, except at turning points where total

Žinternal reflection occurs. Turning points are discussed at the end of the next
.section.

5.2.2 WKB with Dispersion: Geometrical Optics

Wave-Packet Trajectory When light travels through a dispersive medium such
as glass, the phase velocity is given by

® s�rkscrn x , � , 5.2.42Ž . Ž .�

Ž .where c is the speed of light in vacuum and n x, � is the index of refraction of
the medium. The index depends on the frequency of the light; for example, in the
visible region, the index of window glass is an increasing function of frequency. We
would like to describe the behavior of a wave packet traveling through such a
medium, assuming that the refractive index varies little in space over a wavelength
of the light, so that the WKB method is valid.

The previous discussion of WKB theory focused on dispersionless systems
Ž .where the phase velocity �rksc x is independent of frequency �. On the other

Ž .hand, the Fourier-transformed wave equation 5.2.23 could also be applied to
Ž . Ž .dispersive systems where k x, � is a general function of �, given by k x, � s

Ž . Ž .� n x, � rc. Therefore, the WKB solution 5.2.26 applies to dispersive media.
Such media have a general dispersion relation, found by inverting the equation

Ž .ksk x, � in order to obtain the frequency vs. x and k:

�s� x , k . 5.2.43Ž . Ž .

Let us assume for simplicity that we are dealing only with a traveling wave
Ž .packet moving to the right, so that we can take Bs0 in Eq. 5.2.26 . Then one

Ž .possible approach is to assume that A � is sharply peaked around some fre-
Žquency � . That is, we assume that we are dealing with a wave packet that is0

nearly a single wave of frequency � , with an envelope that varies slowly in time0
compared to � . This is analogous to the discussion of wave packet for homoge-0

. Ž .neous systems in Sec. 5.1.2. In this case, we can Taylor-expand k x, � about � ,0
Ž . Ž . Ž . Ž .writing k x, � ,k x, � q �y� � k x, � r�� . Using this expansion in Eq.0 0 0 0

Ž .5.2.26 , we obtain

x x � k
exp i k x , � dxy� x , � dxŽ . Ž .H H0 0 0ž /��0

y x , t sŽ .
k x , �' Ž .0

�
� x � k x , �Ž .d� 0A � exp yi� ty dx .Ž .H Hž /2� ��0y�
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Ž . � Ž . Ž . yi � tIf we now introduce the function f t sH d�r2� A � e , this equationy�

becomes

x
exp i k x , � dxy� � x , �Ž . Ž .H 0 0 0ž /

y x , t s f ty� x , � , 5.2.44Ž . Ž . Ž .Ž .0k x , �' Ž .0

Ž . x Ž . Ž .where � x, � sH � k x, � r�� dx. The function � x, � determines the time0 0 0 0
Ž .for the wave packet to propagate to position x, or more precisely, � x , � y2 0

Ž .� x , � is the time required to propagate from position x to x . This can be1 0 1 2
Ž .seen by noting that the function ksk x, � can be inverted to obtain the

Ž .dispersion relation for the waves, �s� x, k . Then the following identity holds:

� k x , �Ž . �� x , kŽ .0 s1.
�� � k0 Ž .ksk x , � 0

Ž . Ž . Ž .However, this implies that � k x, � r�� s1r® x, � , where ® x, � s0 0 g 0 g 0
Ž . ��� x, k r� k is the local group velocity of a wave packet with centralksk Ž x, � .0

Ž .frequency � , given by Eq. 5.1.28 . Thus, we can write0

x dx
� x , � s , 5.2.45Ž . Ž .H0 ® x , �Ž .g 0

which is clearly the time required to travel to position x for a wave packet of
Ž .constant frequency � traveling with the given group velocity ® x, � .0 g 0

Although the central frequency � of the wave packet is a constant parameter,0
Ž .determined by A � , the central wavenumber is not; the wavenumber varies slowly

Ž .in space according to ksk x, � . It is useful to consider the time variation of k0
Žas one follows along with a wave packet with given central frequency �. We drop

.the subscript on � to simplify the notation in what follows. Taking a time0
Ž . Ž .derivative and using the chain rule, we have dkrdts dxrdt � k x, � r� x. How-

ever, we have seen that the packet moves at the group velocity, so its position
satisfies

�� x , kdx Ž .s , 5.2.46Ž .dt � k

Ž .where � x, k is the wave frequency, determined as a function of x and k by the
Ž .dispersion relation 5.2.43 . Therefore, the central wavenumber of the packet

satisfies

�� x , k � k x , � �� x , kdk Ž . Ž . Ž .s sy , 5.2.47Ž .dt � k � x � x

where the second equality follows from a standard identity for differentials.
Ž . Ž .Equations 5.2.46 and 5.2.47 are coupled first-order ODEs for the evolution of

the central wavenumber and position of a WKB wave packet. If we know x and k
Ž . Ž .at some initial time, these ODEs can be used to find x t and k t for all time.
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These equations are called the equations of geometrical optics. We will see later, in
Sec. 5.3, that the equations can be generalized to wave-packet motion in two or
more dimensions, according to

�� r, kdr Ž .s ,dt � k
5.2.48Ž .

�� r, kdk Ž .sy .dt � r

Ž .If we compare this with Eqs. 1.2.15 , we see that these ODEs have a Hamilto-
Ž .nian form, with k taking the role of the momentum p and the frequency � r, k

Ž .taking the role of the Hamiltonian H r, p . Thus, the fact that the central
frequency � of the wave packet is constant in time during the evolution of the
wave packet corresponds to the fact that energy is conserved for time-independent
Hamiltonians.

Ž . Ž .Also, for wave-packet motion in the x-y plane, if �s� x, k , then Eq. 5.2.48
implies that dk rdts0: the y-component of the central wavenumber for they
packet is a constant of the motion. This is equivalent to the conservation of the
y-component of momentum when the Hamiltonian is y-independent.

The trajectory of a wave packet moving in the x-y plane is given by the ratio of
the x and y components of drrdts��r� k:

� �k ® rk kdyrdt dy y g ys s s , 5.2.49Ž .dxrdt dx � � kk ® rk xx g

where in the second step we assumed that the medium is isotropic, and used Eq.
Ž .5.1.43 for the group velocity. This ODE is identical to the equation for ray

Ž . Žtrajectories, Eq. 5.2.40 . Recall that ray trajectories describe the propagation of
.phase fronts, as opposed to the propagation of the wave packet. Therefore, in an

isotropic medium the trajectory of the center of a wave packet with central
frequency � is identical to the trajectory of a ray with the same initial direction
and the same frequency. This is because the phase and group velocities in an

Ž . Ž .isotropic medium are in the same direction, along k: see Eqs. 5.1.41 and 5.1.43 .
ŽHowever, the time required to propagate to a given point along the trajectory will
generally differ in the two cases, because the magnitude of the phase and group

.velocities need not be the same. Later in the chapter, we will consider anisotropic
media where the ray and wave-packet trajectories are completely different.

ŽRay trajectories trace out the path followed by points of constant phase points
.on phase fronts . Wave-packet trajectories trace out the path followed by wave

packets. For a given frequency and initial propagation direction, in an isotropic
Ž � � .medium for which �s� k , r , the two trajectories are the same.

Of course, a wave packet contains a spread of frequencies, and this leads to
dispersion: different frequency components travel with different phase velocities,
in different directions. We will not consider wave-packet dispersion in an inhomo-
geneous medium in any detail here. For the most part, the qualitative features of
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the dispersion are the same as for a homogeneous medium. Around any given
w Ž .xwave-packet trajectory a solution to Eq. 5.2.48 , the wave packet spreads in both

the transverse and longitudinal directions.
However, there is one novel dispersive effect in an inhomogeneous medium.

Recall that transverse dispersion is weak for a collimated beam that is sufficiently
wbroad compared to its wavelength: the Rayleigh length becomes very large Eq.

Ž .x5.1.56 . In such a beam, different frequency components are all traveling in the
same direction. However, in an inhomogeneous dispersive medium, transverse
dispersion can occur even if all the rays in a packet are initially propagating in the
same direction. This transverse dispersion is responsible for the rainbow spectrum
that occurs when a ray of white light is bent through a prism.

One can see this effect qualitatively by following the ray trajectories for
different-frequency rays as they propagate through an inhomogeneous medium

Ž . Ž .with a frequency-dependent refractive index n x, � . According to Eq. 5.2.49 ,
rays with different frequencies take different paths, even if they start in the same

Ž .direction. This may be seen explicitly by noting that k is constant in Eq. 5.2.49y
2 2 Ž .and k is determined by the equation ks k qk s� n x, � rc. The second'x x y

Ž .equality follows from the dispersion relation for these waves, Eq. 5.2.42 . Solving
�w Ž . x2 241r2this equation for k yields k s � n x � rc yk . Then the ray equationx x y

becomes

dy 1s ,dx 2
� n x , � rck y1' Ž . y

which has the solution

x 1
y x sy 0 q dx . 5.2.50Ž . Ž . Ž .H 20 � n x , � rck y1' Ž . y

Ž . 2For example, if the index of refraction is n x, � s1y� x ra for some constant
a, then we can find the ray trajectory for a given frequency � by evaluating the
above integral. Let us assume that all the rays are initially propagating at 45� with

Ž .respect to the horizontal, so that dyrdxs1 at xs0, where ns1; then Eq. 5.2.50
w Ž .x Ž .2or Eq. 5.2.49 implies that �rck s2, and we havey

Cell 5.27

Clear["Global‘*****"];
n[x_____, �_____] = 1-x2 �/a;

y[x_____, �_____] = Integrate[1/Sqrt[2n[x1, �] ^̂̂̂̂2 - 1], {x1, 0, x}]

2 2 '2a- 2 a2x � 2x � �'i 1- 1- EllipticF i ArcSinh 2 x - ,( ( '' ' ' '2a- 2 a 2a+ 2 a 2a- 2 a 2a+ 2 a
-

22� x �'2 - -1 + 2 1 -( ž /a' '2a- 2 a



5.2 THE WKB METHOD 419

Fig. 5.8 Three ray trajectories in a disper-
2Ž .sive medium where n x, � s1y� x .

This solution is plotted in Fig. 5.8, taking as1 for three rays with �s1, 2, and 3.
Ž .The rays bend toward the region of lower wave speed more negative x as

expected from Snell’s law. Although all three rays start out moving in the same
Ž .direction, the refractive index for the blue ray higher frequency is larger than for

the others, so this ray bends more. A light beam made up of these three
frequencies would spread accordingly, revealing the spectral components of the
beam.

Ž .Note that when dyrdxs� on a given ray, our analytic solution for y x fails.
This is the location of a turning point where the ray trajectory is reflected back
toward yx. At the turning point, k ™0, and we should have switched the sign ofˆ x

Ž .the square root in Eq. 5.2.50 . One can avoid this problem with the analytic form
Ž . Ž .of the ray trajectory by simply integrating Eqs. 5.2.48 numerically to obtain r t .

The appearance of a turning point in the rays is an example of total internal
reflection, wherein rays are reflected back toward the region of higher refractive

Ž .index lower wave speed .
At a planar interface between two homogeneous media with refractive indices

n and n , n �n , one can show that total internal reflection will occur for a ray1 2 1 2
propagating in medium 1 provided that the angle � between the interface and the

y1Ž . Žray is sufficiently small so that ��cos n rn see the exercises at the end of2 1
.the section . We will have more to say about turning points later in the chapter.

As the spectral components of this beam spread, the beam amplitude would be
expected to decrease as the wave energy is distributed over a larger volume. In
fact, the behavior of the wave-packet amplitude near a turning point is rather more
complicated than this simple picture suggests. The dynamics of the wave-packet
amplitude are considered briefly in the sub-subsection entitled Wave-packet Am-
plitude, and in Sec. 5.3.

Hamiltonian Mechanics as the WKB Limit of Quantum Mechanics The
Ž .evolution of the wave function � x, t for a particle of mass m, moving in one

Ž .dimension under the influence of a given potential V x , is determined by
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Schrodinger’s equation,¨

� �2 � 2

i� � x , t sy � x , t qV x � x , t . 5.2.51Ž . Ž . Ž . Ž . Ž .2� t 2m � x

The WKB method is useful for understanding the solution to this equation,
provided that the wave function varies rapidly in space compared with the spatial

Ž . Ž .scale of V x , so that the WKB limit, Eq. 5.2.7 , holds.
Ž .To put Eq. 5.2.51 into a form amenable to WKB analysis, we apply a Fourier

˜Ž .transform in time, defining � x, � to be the temporal Fourier transform of
Ž . Ž .� x, t . Then Eq. 5.2.51 becomes

�2 � 2
˜ ˜ ˜��� x , � sy � x , � qV x � x , � .Ž . Ž . Ž . Ž .22m � x

This equation can be rearranged to read

� 2
2˜ ˜� x , � syk x , � � x , � , 5.2.52Ž . Ž . Ž . Ž .2� x

Ž .where k x, � is the local wavenumber of the wave function, defined by the
equation

2m2k x , � s ��yV x . 5.2.53Ž . Ž . Ž .2�

Let us assume for the moment that the energy of the packet, �� , is greater than0
Ž . Ž . Ž . Ž .V x , so that k x, � is a real number. Then Eq. 5.2.52 is identical to Eq. 5.2.3 ,0

and we already know the WKB solution to this problem. WKB wave packets
Ž .propagating to the left or right are described by Eq. 5.2.26 , and if these packets

are narrow in frequency, a packet traveling to the right with frequency � is given0
Ž .by Eq. 5.2.44 , with an analogous form for a packet traveling to the left.

The center of the packet travels according to the equations of geometrical
Ž . Ž .optics, given by Eqs. 5.2.46 and 5.2.47 . These equations can be written in a

more recognizable form. The group velocity is related to the wavenumber k
through ® s�krmsprm, where ps�k is the particle momentum. Also, theg

Ž .energy Hs�� of the particle can be written in terms of p via Eq. 5.2.53 :
2 2 Ž . 2 Ž . Ž .Hs��s� k r2mqV x sp r2mqV x . Using these two results, Eqs. 5.2.46

Ž .and 5.2.47 can be written as

� H x , pdx pŽ .s s ,dt � p m
5.2.54Ž .

� H x , pdp � VŽ .sy sy .dt � x � x

Ž .Equations 5.2.54 are the Hamiltonian equations of motion for a classical
Ž .particle moving in the potential V x . Thus, the equations of geometrical optics for

the wave packet of a quantum particle lead directly to the equations of classical
mechanics.
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Ž . Ž .Turning Points Equations 5.2.53 and 5.2.54 exhibit a rather unsettling phe-
nomenon from the point of view of WKB theory: there can be positions for which
Ž . Ž .k x, � vanishes. These positions occur where Es��sV x , which is merely the

equation for the classical turning points in the motion of the particle. At these
Ž .points the WKB approximation breaks down. One can see this in two ways: 1 the

Ž .y1 Ž .limit k™0 implies that d ln krdx is no longer small and 2 the amplitude of
Ž .the WKB solution, Eq. 5.2.24 , is singular where k™0.

Ž .In the optics example discussed in relation to Eq. 5.2.48 , an analogous
phenomenon occurred, referred to there as total internal reflection. The behavior
of a wave packet near a turning point in either optics or in quantum theory can be
treated with the same approach.

Near the turning point, we cannot use the WKB method. Instead, we will
Ž .Taylor-expand k x, � around the location of the turning point, xsx . At this0

Ž .point, k x , � s0. Then we may write0

k 2 x , � f	 xyx , 5.2.55Ž . Ž . Ž .0

2Ž .where the constant 	 is the slope of k x, � at xsx . This expansion is valid0
provided that we do not stray too far from x : we need to keep xyx �L, where0 0
L is the scale length for variation in k. Also, we assume here that 	�0.

Let us further assume that 	�0. This implies that the region x�x is the0
region of classically allowed orbits, and x�x is classically disallowed. If we use0

Ž . Ž .Eq. 5.2.55 in Eq. 5.2.52 , and define ysxyx , we obtain the Airy equation:0

� � y s	 y� y . 5.2.56Ž . Ž . Ž .

The general solution is

� y sC Ai 	 1r3 y qC Bi 	 1r3 y , 5.2.57Ž . Ž .Ž . Ž .1 2

Ž . Ž . wwhere Ai x and Bi x are Airy functions see the discussion surrounding Eq.
Ž .x Ž 1r3 .1.3.2 . However, for 	�0, Bi 	 y blows up as y™�, so we must take C s02
in order to obtain a finite wave function. Therefore, the wave function near the
turning point has the form

� x sC Ai 	 1r3 xyx . 5.2.58Ž . Ž . Ž .Ž .1 0

wThis form also turns out to be correct when 	�0, provided that when 	�0 we
1r3 1r3 � � 1r3 xtake the branch of 	 given by 	 sy 	 . The solution is plotted in Cell

Ž .5.28 for 	�0 .

Cell 5.28

Plot[AiryAi[x], {x, -20, 3},
PlotLabel™"Behavior of the wavefunction near a turning
point",

AxesLabel™{"	1/3 (x-x )", ""}];0
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One can see that the amplitude and wavelength of the wave are increasing as
one nears the turning point, as expected from WKB analysis as k™0. However, at
the turning point the solution is not singular; rather, it decays exponentially as one
passes through the turning point to the other side. The exponential decay of the
wave function in the range of x that is classically disallowed is the well-known
phenomenon of quantum tunneling; that is, quantum particles have a small but

Žfinite probability of being found in classically disallowed regions. In optics, the
.exponential decay of a wave in the forbidden region is referred to as e®anescence .

The solution shown above corresponds to a single wave component of frequency
�. If a traveling wave of this frequency impinges on the turning point from the left,
it turns and creates a reflected wave, moving back to the left from whence it came.
The interference between these two traveling waves makes the pattern of nodes
observed in the Airy function plotted in Cell 5.28. Thus, the classical turning point
at xsx , which reflects classical particles, also causes the quantum wave function0
to reflect.

In order to describe the reflection of a wave packet in detail, we would need to
integrate over a range of frequencies in the packet. The turning-point location
differs for the different frequency components and causes dispersion of the wave

Ž .packet, as discussed previously in relation to Eq. 5.2.50 . If we neglect dispersive
spreading, this leads to the equations of geometrical optics for the wave packet,
equivalent to the equations of motion of the classical particle as it is reflected at
the turning point. To keep dispersive effects requires considerably more work, and
will not be discussed further here. In Chapter 6 we will return to the behavior of
wave functions near a turning point, when we examine the energy eigenfunctions
of the Schrodinger equation in the WKB limit.¨

Wave-Packet Amplitude When a wave packet with frequency � propagates
through a nonuniform medium, the amplitude of the packet varies. We saw several
examples of this for one-dimensional systems in previous sections, but here we
discuss the general case of propagation in two or more dimensions.

One can determine the amplitude variation using the law of energy conservation
for wave packets, discussed in Sec. 5.1.3 for classical wave equations with even-order

Žtime derivatives. The following does not apply to Schrodinger’s equation, which is¨
.taken up in the next section. Although this energy conservation law was derived

for uniform systems, it should also be possible to apply it to nonuniform systems,
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Žprovided that the intrinsic parameters in the system wave speed, refractive index,
.etc. remain time-independent. Assuming that this is the case, we write the energy

Ž .conservation law 5.1.57 as

�
� r, t q
� v r � r, t s0, 5.2.59Ž . Ž . Ž . Ž .g� t

where � is the energy density of a packet with wavenumber k and frequency �,
Ž .time-averaged over an oscillation period. Following Eq. 5.1.62 , the energy density

Ž .can be expressed in terms of the wave-packet amplitude A r, t as

� �2�s A � D r, k, � , 5.2.60Ž . Ž .4 ��

where D is the dispersion function. The frequency and wavenumber are related by
Ž .this dispersion function through the equation D r, k, � s0, the solution of which

Ž . Ž .provides the dispersion relation �s� r, k . The group velocity is v r sg
Ž . � Ž .�� r, k r� k , where k r is the local wavenumber of the packet, determinedkskŽ r.

by solution of the equations of geometrical optics. For example, for the optics
Ž . 2 2Ž . 2 2problems considered in the previous section, D r, k, � s� n r, � yc k , where

n is the refractive index.
Ž .Equation 5.2.59 is a first-order PDE that is amenable to the method of

characteristics, to be discussed in Chapter 7. For a given initial energy density in
the wave packet and given initial wavenumber and frequency, the solution for
Ž .� r, t can be found and can then be used to determine the wave-packet amplitude

Ž .A via Eq. 5.2.60 . This is somewhat involved, and we will not go into detail here.
Some examples will be considered in Chapter 7, and in Sec. 5.3.1.

However, the method of characteristics is not needed for the case of a time-in-
dependent beam in a medium that varies only in the x-direction. In this case, Eq.
Ž .5.2.59 reduces to

� ® x � x s0,Ž . Ž .g x� x

Ž . Ž . Ž .which has solution � x sCr® x , where C is a constant. Using Eq. 5.2.60 ,g x
Ž . Ž .we can then obtain the amplitude A x of the beam: A x A

w � Ž . Ž . � x1r21r ® x � D x, k, � r�� . However, recalling that ® s��r� k , and apply-g x g x x
Ž .Ž .ing the identity ��r� k � Dr�� sy� Dr� k , we arrive atx x

1
A x A . 5.2.61Ž . Ž .

� �� D x , k, � r� k' Ž . x

Ž . 2 2Ž .For the optics example discussed previously, where D r, k, � s� n x, � y
2 2 Ž .c k , Eq. 5.2.61 implies that the beam amplitude varies as 1r k x , which is' Ž .x

typical for WKB problems. In fact, this result could also be obtained directly from
w Ž .the WKB solution without consideration of the wave energy see Exercise 9 at the

xend of the section .
Ž . 2 ŽIn this optics example we assumed that n x, � s1yx � see Fig. 6.8 and the

. Ž .surrounding discussion . Then Eq. 5.2.48 implies that dk rdt�0 along thex
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wave-packet trajectory, which is another way to see why the rays bent away from
Ž .positive x in Fig. 6.8. In turn, A x A1r k then implies that the electric field' x

increases as k decreases. However, this result contradicts our previous intuitionx
that the spreading of the rays making up the packet should cause the amplitude of
the packet to decrease as the turning point is approached. In fact, both effects
occur at once as the turning point is approached: the amplitude of a given ray

Žincreases because the x-component of the wave speed is decreasing, so wavefronts
.pile up , but the dispersal of the wave packet of rays works against this effect.

Ž . Ž .However, it is important to remember that Eqs. 5.2.59 � 5.2.61 neglect disper-
Ž . Ž .sion. Recall that Eq. 5.2.59 is based on Eq. 5.1.60 , which does not include

dispersive spreading of the wave packet.
Ž .One can see the limitations of Eq. 5.2.59 in another way: for a wave packet of

Ž .plane waves moving in one dimension through a uniform medium, Eq. 5.2.59
implies that ��r� tqv �
�s0. This equation implies that the wave packet isg

Ž .transmitted without change in the energy density see Sec. 7.1 . However, we know
Ž .that dispersion will cause such a wave packet to spread. Equation 5.2.59 is valid

only for problems where such dispersive effects are negligible.

EXERCISES FOR SEC. 5.2

( )1 Bessel’s equation is the following ODE:

1 � � R m2

r y y1 R r s0.Ž .2ž / ž /r � r � r r

( ) Ž .a Using Eq. 5.2.8 show that WKB analysis can be applied to understand
the solutions to the equation, provided that r�1.

( )b The two independent solutions to Bessel’s equation are the Bessel
Ž . Ž .functions J r and Y r . Show that these functions have the followingm m

form at large r :

J r , Y r 	Ary1r2 cos ry	 , where A and 	 are constants.Ž . Ž . Ž .m m m m

1w Ž .'By other means, it can be shown that As 2r� , 	 s� mr2q form 4
3Ž . xJ , and 	 s� mr2q for Y .m m m4

( ) ( ) Ž .2 a Using Eq. 5.2.8 , show that WKB solutions of the Airy equation,
2 Ž . 2 Ž . � �� y x r� x sxy x , are valid provided that x �1.

4 2 2r3� x3'( ) Ž . Ž .b Show that these solutions are of the form y x A 1r x e for
4 2 2r3� i � x �3'Ž . Ž � � .x�1, and y x A 1r x e for x�y1.

( ) Ž .3 By setting up a recursion relation analogous to Eq. 5.2.17 , show that the
eikonal S for the nth approximation to the solution of the Airy equationn
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Fig. 5.9 Approximations to the eikonal for the Airy equation. Order of the approximant is
shown for the q sign solution. Note the breakdown of convergence for xF1, as expected
for an asymptotic expansion that holds only for x�1.

satisfies

2x � Sny1S x sB� xy� dx for x�1Ž . (Hn 2� x

with S s�2 x 3r2r3. Using Mathematica, solve this recursion relation and0
Ž . Žplot S x for 0s1, 2, . . . , 4 in the range xs0.5�3. Drop the integrationn

. Žconstant B. Hint: At each order n, Taylor-expand the square root to order
n to simplify the integrals. Write a recursion relation for S that includes thisn

.Taylor expansion in the definition. The solution is shown in Fig. 5.9.

( ) ( )4 a Approximants found from recursion relations can also be used to solve
certain nonlinear equations. For example, consider the equation � x 3yx
q1s0, where ��1. A dominant balance exists between x and 1: if we
assume that � x 3 �1 and drop this term, the solution is xs1. Then
� x 3s��1, which is consistent with our assumption. Set up a recursion

3 Žrelation of the form x s1q� x , and solve for x , given x s1. Non ny1 3 0
.need to Taylor-expand the solution. Plot the result for 0���1.

( ) Ž .b The cubic polynomial in part a has three roots, but we only found one
Ž .approximate solution in part a . Evidently there are two other solutions.

Find another dominant balance between two terms in the equation that
yields approximations to these solutions, set up a recursion relation, and

Ž .solve it up to at least x . Again, no Taylor expansion is necessary.3

( ) Ž . Ž .c Plot the asymptotic expressions found in parts a and b together on the
same graph as a function of � for 0���1. Superimpose these results on
the exact solutions of the cubic equation vs. �.
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( ) Ž .5 The general wave equation for a 1D string with mass density � x and
Ž .tension T x is

� 2 1 � �
y x , t s T x y x , t .Ž . Ž . Ž .2 ž /� x � x� xŽ .� t

Show that the WKB solution for traveling waves on this string is

x sC DŽ . Ž .yi � tqi k x d x yi � tqyi k x d xH Hy x , t s e q e ,Ž . 0 01r4 1r4T x � x T x � xŽ . Ž . Ž . Ž .
5.2.62Ž .

Ž . 'where k x s�r T x r� x is the local wavenumber.Ž . Ž .
( ) Ž . Ž .b Use the result of part a to prove that the WKB solution to Eq. 5.2.32

Ž .is Eq. 5.2.35 .

( ) Ž .6 A simple pendulum with varying length l t satisfies the following differential
equation:

d 2 ˙l t � t sygl t � t ,Ž . Ž . Ž . Ž .dt

where gs9.8 mrs2 and ��1 is assumed.
( ) Ž .a Use WKB analysis to determine how � t varies in time, assuming that

˙Ž . Ž . Ž . Ž .l t varies slowly. Plot � t assuming that � 0 s10�, � 0 s0, and
Ž .l t s11y t, for 0� t�10. Compare with the exact motion, found using
NDSolve.

( ) Žb Find an adiabatic invariant for the pendulum motion. Hint: The energy
1 12 2 2˙Ž .of the pendulum is E t s ml � q mgl� , where m is the mass of the2 2

.bob.

( ) Ž .7 For the hanging string of length L described by Eq. 4.2.41 , use WKB
analysis to determine the evolution of a Gaussian wave packet of the initial
form

2y z , 0 sexp y40 zyLr2 ,Ž . Ž .

Ž .moving down the string in the yz-direction, toward the free end at zs0 .
Make an animation taking Ls3, and compare this evolution with the exact
evolution determined in Example 2 of Sec. 4.2.2, for 0� t�0.6 s.

( ) Ž .8 A rod with varying mass density � x supports transverse vibrations that
satisfy the inhomogeneous biharmonic wave equation

� 2 D � 4

y x , t sy y x , t ,Ž . Ž .2 4� xŽ .� t � x

w Ž .xwhere D is a constant see Eq. 4.2.48 . Using WKB theory, analyze the
behavior of traveling waves on this rod, and determine the manner in which

Ž .the wave amplitude varies as � x varies.
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( ) ( ) Ž .9 a A beam of light of frequency � has an electric field E x, t that varies as
Ž . yi � tE x e , and that propagates in the qx direction through a clear

Ž .medium with varying refractive index nsn x . The electric field in the
light wave satisfies

� 2E x , t 2 � 2E x , tcŽ . Ž .s ,2 2 2� t � xn xŽ .

where c is the speed of light in vacuum. Analyze this equation using
WKB theory, and determine how the electric field varies with x, assum-
ing that the index varies little over a wavelength of the light.

( ) Ž .b The average flux of energy power per unit area carried by the beam in
1 2Ž . � w x � w Ž .xthe x-direction is n x E x, t c� Griffiths 1999, p. 383 . According02

to the WKB approach, how does this energy flux vary with x? Comment.

( )10 When a light beam of frequency � propagates in an arbitrary direction
Ž . Ž .through a nonmagnetic medium with index of refraction n r , Maxwell’s

equations imply that

2 2� c 
n2E r, t s 
 Eq2
 E � . 5.2.63Ž . Ž .2 2 ž /n� t n rŽ .

Ž .Assume that nsn x , and that the beam propagates in the x-y plane. Take
components of the equation, and use WKB theory to analyze the wave
propagation in two cases.
( )a If E sE s0 but E �0, show that this remains true everywhere, sox y z

ˆ � �that k �Es0 everywhere, and find the dependence of E on x.z

( )b If E s0 but E and E are not equal to zero initially, show that Ez x y z
remains zero. Although the propagation direction varies with x, the

Ž . 2waves must remain transverse, i.e., 
� � E s0, where �sn is the
Ž .dielectric function. Solve Eq. 5.2.63 for E in the WKB limit, applyx

� �k �E,0 to find E , and find the dependence of E on x.y

( ) Ž . Ž .c Show that for both cases a and b , the results are compatible with the
conservation of the x-component of the average Poynting flux:

1 1 2 2� �S �xs E�B* �xs E c � k r�sconstant.Ž .ˆ ˆ 0 x2� 20

ŽThis is the same result as obtained in the previous problem for a scalar
.wave equation.

( )11 An electromagnetic wave of frequency �s3 and speed cs1 is polarized in
the z-direction and propagates in the x-y plane. The beam is incident on a

Ž .medium with index of refraction n x . The electric field in these waves is
Ž .described by Eq. 5.2.63 . The angle of incidence is � s45�. The index varies0

in x according to

1, x�0,
n x sŽ . 1½ 1q sin x , xG0.4
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( )a Plot contours of constant Re E at ts0 in the range y5�x�15,z
y5�y�15.

( ) Ž .b Plot a ray trajectory y x starting at xsy5, ysy5, for y5�x�15,
using the previous parameters. Superimpose this ray on the previous
contour plot.

( )12 A surfer is a distance of 100 m from the shore, which runs north�south.
Swells with a 17-m wavelength are moving past him with a period of 4
seconds. Use the full dispersion relation for water waves, � 2 s

� � w Ž . � � xg k tanh h x k .
( )a What is the depth of the water at this location?
( )b At the surfer’s location, the waves travel in the direction 40� north of due

east with period and wavenumber given above. The ocean depth varies as
Ž 2 3.h r 1qx r10 , where x is in meters, measured from the surfer’s0

position. The surfer lets the swells carry him in, eventually taking him 100
Žm in the x-direction into shore where the depth is roughly one-tenth its

.previous value and the surfer can stand up . Assuming he rides directly
transverse to the wave face, and that he travels at the same speed as the
swells, plot the surfer’s trajectory. How long does it take him to make this
distance? How far north of his initial location does he get before he
reaches shore?

( ) Ž .13 An undersea mountain causes the water depth to vary as h x, y s1y
1 12 2w Ž . Ž . x Ž .0.7 exp y2 xy y5 yy . Water waves have frequency � k, r s2 2

1r2 2 2w Ž .xgk tanh kh r , where we will take gs1, and where ks k qk is the' x y

magnitude of the wavenumber. Use the equations of geometric optics to trace
11 wave-packet trajectories which initially have k s0, k s1, and start atx y
ys0, xs0.1n, ns0, 1, 2, . . . , 10. Follow the trajectories for 0� t�2, and
plot them all on a single parametric plot of y vs. x. What happens to the

Ž .rays? The same principle is at work in any lens system.

( )14 In shortwave radio communication, the diffuse plasma in the ionosphere can
be used as a mirror to bounce radio waves to receivers beyond the horizon.
For radio waves of frequency �, the index of refraction is a function of

Ž . w 2Ž . 2 x1r2altitude z, and is approximately n z, � s 1y� z r� , where � sp p
w 2 Ž . x1r2e N z r� m is the electron plasma frequency, e and m are the electron0

Ž . y3charge and mass respectively, and N z is the electron density in m . At
ground level zs0 the electron density is negligible, but at altitudes on the
order of 50�100 km it grows to some maximum value due to the ionizing
effect of UV radiation, and then decays again at still higher altitudes as the
atmospheric density falls off.
( )a Show that electromagnetic waves travel through this plasma with the

dispersion relation

� 2sc2 k 2q� 2 z .Ž .p

( )b Show that waves shone directly upward, with kskz, will reflect backˆ
provided that ��� , where � is the maximum plasma fre-p max p max

Ž .quency. Hint: Find the turning point for the rays.
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( )c More generally, show that for ��� , there is a maximum angle �p max max
with respect to the horizontal at which one can direct the waves and still

Ž .have them bounce back. Find an expression for the angle � � .max
w 2 Ž .2 xAnswer: sin � s � r� .max p max

( )d Take the following simple model for the electron density in the iono-
sphere:

0, z�H ,
N z sŽ . 214 y3 y10Ž zrHy1.½ 5�10 m zrHy1 e , zGH ,Ž . Ž .

Ž .with Hs70 km. Using this model and the results of part c , trace
several ray trajectories for values of � in the range 0��F� to showmax

Ž .that communication with a receiver closer than a certain distance d � to
Ž .the transmitter but beyond the horizon is impossible when ��� .p max

Ž . Ž . Ž . Ž .Find d � graphically for i �s2� cr10 10-meter wavelength and ii
�s2� cr5.

( ) Ž .15 A nebula consists of plasma with plasma frequency � x, y, z that varies inp
Ž . Ž 2 2 2 .1r2space as � x, y, z s Ax qBy qCz , where a, b, and c are constants.p

A radio source at the center of the nebula emits waves of frequency � in all
directions. Using the dispersion relation from the previous problem, and the
equations of geometrical optics, find the ray trajectories for the radio waves
analytically, and show that the waves are trapped within the nebula. Plot a
ray trajectory using ParametricPlot3D for the following conditions: As1
sy2rkm2, Bs4 sy2rkm2, Cs9 sy2rkm2, �s1010 sy1, and k initially in the

'Ž .direction xqyqz r 3 .ˆ ˆ ˆ
( ) ( )16 a At a planar interface between two media with refractive indices n and1

n , n �n , show using Snell’s law that a ray in medium 1 propagating2 1 2
toward the interface will be completely reflected provided that the angle

Ž .� between the interface and the ray satisfies ��� sarccos n rn .c 2 1
ŽHint: Show that no real solution for the refracted-wave angle exists if

.this inequality is satisfied.
( ) Ž .b In an optical fiber, the index of refraction nsn r is a decreasing

function of cylindrical radius r. In typical fibers the index is of the form
Ž . Ž . Ž .n r sn r�a , nsn r�a , with as4 �m, n s1.451, and n s1 2 1 2

1.444. The critical angle is then � s5.63�. The point of an optical fiber isc
that it guides the rays, even if the fiber bends. Initially, a ray propagates
along the axis of the fiber. Then the fiber is bent into a circle of radius
R�a. Given that n is nearly the same as n , so that � �1, show that1 2 c
the ray will be trapped in the fiber provided that R�2 ar� 2s830 �mc
Ž .� measured in radians .c

( ) Ž .17 The speed c of compressional sound waves in the earth P-waves is anp
increasing function of depth d measured from the earth’s surface, thanks to
the fact that the earth’s mean density increases with depth. In accordance
with Snell’s law, this causes waves that are initially propagating downward to
bend back toward the surface. A theorist’s model for the dependence of the
wave speed on depth d into the Earth’s upper crust is

c d sc q c yc drd , d�d ,Ž . Ž .p 0 1 0 0 0
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where c s8 kmrs is the speed at the surface, d s2900 km is the depth of0 0
the earth’s outer core, and c s14 kmrs is the speed at dsd . Assuming1 0
that the waves travel along the great circle defined by �s0, the equations for

Ž .geometrical optics is spherical coordinates r, � , � are

dr �� d� ��s , r s ,dt � k dt � kr �

dk dk�� 1 ��r �sy , sy ,dt � r dt r ��

ˆ Ž .where the wavevector ksk rqk �, and �sc dsR y r k, and R s6400ˆr � p e e
km is the earth’s radius.
( ) Ž . Ža Use these equations to plot the ray trajectories in the x, z plane where

.xs r sin � , zs r cos � followed by 10 sound rays until they reach the
Ž .surface again, starting from �s0, rsR i.e. xs0, zsR , k sy5e e r

y1 y1 Žm , and k sn m , ns5, 6, . . . , 15. This takes up to 1000 seconds for�

.the longest ray trajectories.
( )b Let � be the value of � for which a given ray reappears at the earth’s0

Ž .surface, rsR . Using FindRoot, determine the propagation time t �e p 0
Ž .to propagate from �s0 to �s� , for the rays found in part a . Plot this0

wpropagation time vs. � . Given the positions of three or more seismo-0
graphs and the arrival time of the pulse at each, one can fix the location

Ž .of the epicenter. See, for example, Garland 1979 in the reference list for
xChapter 4.

( )18 A point source generates sound wave pulses at rs0. The sound speed in still
Ž . Žair is c. The pulses initially travel in the qx horizontal direction i.e., k �0,x

.k s0 . However, a wind of velocity vsyayx is blowing, where y is altitudeˆy
and a is a positive constant. The shear in the wind causes the pulses to travel
upward. Using the equations of geometrical optics, find an analytic expression
for the time t required for the pulses to reach a height y. Plot the shape of

Ž . Žthe wave-packet trajectory y x for as1, cs340, and 0�x�100 in MKS
. wunits . The shape of this trajectory explains why it is difficult to make

someone hear you when they are upwind of your position: your shouts into
x w Ž . xthe wind are refracted up over the person’s head. Hint: see Eq. 5.1.88 .

( )19 Whistler waves are electromagnetic waves that travel along the earth’s mag-
netic field lines, and are described by the dispersion relation given by Eq.
Ž .5.1.104 . The earth’s magnetic field can be approximated as the field from a
point magnetic dipole of order Ms8�1015 Tm3. Therefore, in spherical
coordinates the magnetic field has the form

M ˆBsy 2r cos �q� sin � .Ž .ˆ3r

Ž .The plasma frequency in the earth’s magnetosphere varies roughly as � r sp
wŽ 2 . x2 7 y1 Ž� R sin � rr , where Rs6400 km, and � s3�10 s see Shulz andp0 p0

.Lanzerotti, 1974 . Follow the trajectories of four wave packets, that begin in
� � y5the northern hemisphere at �s0, �s�r4, rsR, k s3�10 m, but with

random initial propagation directions. Plot the trajectories using Paramet-
ricPlot3D, and plot the earth’s surface for reference, to determine visually
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Fig. 5.10 Four random whistler-wave packet trajectories.

Žat what location the trajectories return to the earth’s surface. The solution
for one set of random trajectories is shown in Fig. 5.10.

( )20 Moving boundary conditions present special difficulties, but can often be put
in standard form by means of a coordinate transformation. Consider the
following example. A plucked uniform string, of initial length L , is initially0

Ž . Ž .vibrating in its lowest mode with y x, t ssin � xrL cos � t, where � s0 0 0
� crL , and c is the propagation speed for waves on the string. For t�0, the0

Ž Ž . .Dirichlet boundary condition at xsL begins to move according to y L t , t0
Ž .s0, where L t sL y®t. This can be accomplished by running one’s finger0

along the string at speed ®. Solve this problem by first putting it in standard
Ž .form through the transformation xsxrL t . In these coordinates the bound-

Ž . Ž .ary conditions are stationary, y 0, t sy 1, t s0, but:
( )a Show that the wave equation becomes

c2 � 2
2D̂ y x , t s y x , t , 5.2.64Ž . Ž . Ž .2 2L t � xŽ .

where the operator
˙xL t� �Ž .

D̂� y ,
� t � xL tŽ .

and the time derivative is at fixed x. Hint: Use the following identities:

� � x �
y x , t s y x , t ,Ž . Ž .� x � xt � xt t

� � � x �
y x , t s y x , t q y x , t .Ž . Ž . Ž .� t � t � tx x � xx t
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( )b This problem is amenable to WKB analysis, provided that ®�c. The
Ž .solution can be written in the approximate form y x, t s

t
yiH �Ž t . d tw Ž . x Ž . Ž . Ž .Re C x, t e sin � x, where � t s� crL t , and C x, t is a rela-0

Ž .tively slowly varying complex amplitude. In the limit that ®rc�1, show
Ž .that C x, t satisfies the following first-order PDE:

˙� C c � C 1 L
tan � x y i s � xq tan � x C.Ž . ž /� t 2 L� xL tŽ .

( )c First-order PDEs of this type can be solved analytically using the method
Ž .of characteristics. See Chapter 7. DSolve can also solve this PDE

analytically. Show that, for ®rc�1, the solution from DSolve that
Ž .matches the proper initial conditions is C x, t 	1, so that

t � x
y x , t fcos � t dt sin . 5.2.65Ž . Ž . Ž .H L tŽ .0

( ) t Ž .d Use the Play function to listen to the sound made by cos H � t dt for0
the case L s1 m, cs300 mrs, and ®s2 mrs.0

( ) Ž .e Find the rate at which the string energy E t increases, and using this
Ž . Ž .show that E t r� t is an adiabatic invariant.

( ) Ž .f Use the result from part e to determine the horizontal force F that the
string exerts on the boundary.

( )21 Consider the following wave equation on the interval 0�x�L:

� 2 y � 2 y2sc t .Ž .2 2� t � x

This equation describes waves on a string for which the string tension T
Žandror the mass density � vary in time, but the length L is fixed. For

example, tightening a guitar string by turning the peg both increases the
tension and reduces the mass density as more string becomes wrapped around
the peg. Boundary conditions are taken to be ys0 at xs0, L, with an initial

Ž . Ž . Ž .condition y x, 0 ssin n� xrL , y x, 0 s0. In other words, like the previous˙
Ž .problem, the system starts off in a single normal mode. Assume that c t

varies in time slowly compared to the frequencies of the normal modes, find
the WKB solution for the string motion, and show that
( )a the system remains in mode n;
( ) Ž . Ž .b mode frequency varies in time according to � t sn� c t rL;
( ) Ž . Ž . Ž .c the adiabatic invariant for this system is E t � t rT t .
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CHAPTER 6

NUMERICAL SOLUTION OF LINEAR
PARTIAL DIFFERENTIAL EQUATIONS

6.1 THE GALERKIN METHOD

6.1.1 Introduction

The Galerkin method is a numerical method for the solution of differential
equations that is based on the ideas of eigenmode analysis. The method can be
applied to both linear and nonlinear PDEs of any order, for which solutions
are required in some given spatial domain. The domain can be infinite, but if it is
finite the method is most efficient when the boundary conditions are continuous
functions of position along the boundary, and when any edges formed by the
intersection of the bounding surfaces form convex cusps. For instance, the two-

Ž .dimensional domain shown in Fig. 6.1 a can be easily treated via the Galerkin
Ž .method. However, the domain in Fig. 6.1 b is considerably more difficult to deal

with, because it has a concave cusp pointing into the domain. The reason for these
restrictions will be discussed in the next section.

6.1.2 Boundary-Value Problems

Theory Consider a time-independent boundary-value problem in two dimen-
sions,

L̂� x , y s� x , y , 6.1.1Ž . Ž . Ž .

ˆ 2where L is some second order linear spatial operator such as � . We assume for
the moment that the boundary conditions are Dirichlet, specified on the boundary

Ž .S of a domain V such as that shown in Fig. 6.1 a :

�� s� x , y , 6.1.2Ž . Ž .S 0
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ŽFig. 6.1 Spatial domains shown outlined by solid lines, and defined by the smooth dashed
. Ž . Ž .curves for which a one can easily apply the Galerkin method; b difficulties arise.

Ž .for some function � x, y . This function must be smoothly varying on the0
boundary in order for the Galerkin method to work efficiently.

The boundary is itself determined by the intersection of M smooth curves, each
of which is defined by an equation of the form

z x , y s0, ns1, . . . , M . 6.1.3Ž . Ž .n

Ž .These curves are the lines shown schematically in Fig. 6.1 a .
To solve this problem numerically via the Galerkin method, we will expand
Ž . � 4� x, y in a set of N different basis functions ® , chosen to satisfy homogeneous�

Dirichlet boundary conditions:

�® s0. 6.1.4Ž .� S

We write the solution in the standard form for an eigenmode expansion:

� x , y su x , y q c ® x , y , 6.1.5Ž . Ž . Ž . Ž .Ý � �
�

Ž . Ž .where u x, y is any smooth function that satisfies the boundary condition
�u s� , and where the c ’s are the Fourier coefficients that must be determined.S 0 �

Ž . Ž .In order to find these coefficients, we substitute Eq. 6.1.5 into Eq. 6.1.1 ,
yielding

ˆ ˆc L® x , y s� x , y yLu x , y . 6.1.6Ž . Ž . Ž . Ž .Ý � �
�

Next, we take an inner product with respect to one of the basis functions, ® :�

ˆ ˆc ® , L® s ® , �yLu . 6.1.7Ž .Ý ž / ž /� � � �
�

So far, the method is identical to an eigenmode expansion. However, the ® ’s need�
ˆnot be eigenmodes of L; and they need not even form an orthogonal set. Rather,

they can be any set of functions that we choose, provided that in the limit as
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Ž . ŽN™� they form a complete set, and provided that they satisfy Eq. 6.1.4 . Also, it
.is preferable that the functions be as analytically simple in form as possible.

Ž .Furthermore, the inner product used in Eq. 6.1.7 can be any inner product o®er
Ž .the domain V. Again, however, the simpler the better.

For example, one possible choice for the ® ’s is the following: let the iterator ��

Ž .equal the set of integers i, j , and take

M
i j® x , y sx y z x , y for is0, 1, . . . , P , js0, 1, . . . , P . 6.1.8Ž . Ž . Ž .Łi j n x y

ns1

With this choice, the total number of functions is

Ns P q1 P q1 . 6.1.9Ž . Ž .Ž .x y

The product of z ’s implies that the ® ’s are zero on the boundary surface, and then i j
polynomial form in x and y provides a sufficient range of variation so that in the
limit as P and P approach infinity, the basis functions form a complete set.x y

For the inner product, one simple choice is

f , g s f * x , y g x , y dx dy , 6.1.10Ž . Ž . Ž . Ž .H
V

where the integral runs over the domain V of the problem. One could also choose
Ž . Ž . Ž . Ž .f , g sH f * x, y g x, y p x, y dx dy for some choice of weighting functionV
Ž .p x, y �0. But it is preferable that p does not weight any one region of the

Ždomain disproportionately unless there are regions of the domain where the
.solution is zero, or nearly zero . Otherwise, the solution may not converge well.

There is a certain art to finding good choices for the basis functions and the
inner product. What we are looking for are choices that minimize the number of
terms required to get a well-converged expansion for �, and that are sufficiently

Ž .simple so that inner products in Eq. 6.1.7 can be easily evaluated. In other words,
we want a small number of ® ’s to sum to something close to the exact solution.�

The best way to learn how to make good choices is by gaining experience with
the method. We will work through several examples in this and later sections.

We now solve for the Fourier coefficients c . To do so, we note that for�

Ž .different �-values, Eq. 6.1.7 forms a set of N linear equations in the N
Ž . Ž .unknowns c . Taking �s k, l and �s i, j , these equations are rewritten�

Ž . Ž .explicitly in terms of i, j and k, l :

PP yx

ˆ ˆ® , L® c s ® , �yLu , is0, 1, . . . , P , js0, 1, . . . , P .Ý Ý ž / ž /i j k l k l i j x y
ks0 ls0

6.1.11Ž .

Ž .Since the inner products in Eq. 6.1.11 are merely some integrals that we can find
once we have chosen the basis functions, we know everything that we need in order
to solve these N coupled linear equations for the N c ’s.k l
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From a theory perspective, it may be of use to note that the inner product
ˆ ˆŽ .® , L® is the projection of the operator L onto the basis functions ® and ® ,� � � �

and that this projection is just another way to represent the operator numerically.
Ž .We can think of this inner product as a square matrix L , so that Eq. 6.1.7��

becomes the matrix equation

L c s� , 6.1.12Ž .Ý �� � �
�

ˆŽ .where � s ® , �yLu . We need merely invert the matrix to solve for the c ’s:� � �
y1Ž .c s L � . Thus, this method has much in common with the matrix inversion� � � �

methods that we employed in solving linear boundary-value problems in Chapter 2.
Ž .We can now see why the boundary shown in Fig. 6.1 b are more difficult to

Ž . Ž .treat. The basis functions ® x, y are zero along the smooth curves z x, y s0� n
that define the bounding surface. These curves are displayed as the dashed lines in

Ž .the figure. Because of the shape of the cusp in Fig. 6.1 b , two of the curves
penetrate into the interior of the region, and so the functions ® are all zero along�

these curves. Therefore, they cannot form a complete set, since they must be able
to represent arbitrary functions within the domain.

Ž .While it is possible to define boundary curves z x, y s0 that are not smooth,n
Ž .forming concave cusps as shown in Fig. 6.1 b without continuing into the interior

Žof the domain using nonanalytic functions in the definition of z : see Example 3n
.below , such boundary curves introduce singular behavior into the ® ’s through Eq.�

ˆŽ .6.1.8 , and therefore the functions may not behave well when acted upon by L.
Unless the functions z are carefully chosen to minimize the singular behavior,n
derivatives of these basis functions are not well behaved, and the generalized
Fourier series solution does not converge very well.

However, we will see in Example 3 that even if care is taken in choosing
mathematical forms for the boundary curves so as to minimize the singular
behavior, the Galerkin method still faces difficulties when concave cusps are
present. The reason is simple: such cusps introduce rapid variation in the solution.

Ž .Ž .Taking Poisson’s equation as an example, we noted in Exercise 5 b of Sec. 3.2
that the electric field near the point of a concave cusp becomes infinite. Such rapid
variation in the derivative of � requires a Galerkin solution that keeps a large
number of basis functions.

For essentially the same reason, it is difficult to deal with boundary conditions
that are discontinuous. A situation where one electrode is held at potential V and1
an adjacent electrode is held at potential V is difficult to treat with the Galerkin2
method, because the discontinuous boundary condition causes rapid variation in
the solution that requires many basis functions to resolve.

When dealing with boundary conditions of the sort that cause rapid variation in
the solution, it is often easier to use other methods, such as the grid methods
discussed in Sec. 6.2.

Example 1 As an example of the Galerkin method, we will solve a problem that
we could also do analytically, so that we can compare the numerical solution with

2 Ž .the exact solution. The problem is to find the solution to � � x, y s0 in a square
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box with the boundary condition that �s0 on the edges, except along ys0,
Ž .where � x, 0 ssin � x. The exact solution for �, found by separation of variables,

is

sinh � 1yyŽ .
� x , y ssin � x . 6.1.13Ž . Ž .exact sinh �

To find the solution via the Galerkin method, we first choose functions ®i j
Ž .according to Eq. 6.1.8 :

Cell 6.1

v[i_____, j_____, x_____, y_____] = xi yj xy (1-x) (1-y);

These functions are zero along each edge of the box. Next, we define an inner
product. Sometimes it is more convenient to evaluate these inner product integrals
numerically rather than analytically, but in this case, analytic evaluation is faster.
However, even if one performs the integrals analytically, it is usually best to
convert any exact numbers to approximate numbers using N, so that the solutions
to the equations are not too complicated:

Cell 6.2

norm[f_____, g_____] := Integrate[f g, {x, 0, 1}, {y, 0, 1}]//N

wNote the use of a delayed equal sign, since the integration cannot be performed
Ž . Ž . xuntil f x, y and g x, y are known.

Ž .Next, we choose a function u x, y that matches the boundary conditions:

Cell 6.3

u[x_____, y_____] = (1-y) Sin[Pi x];

This function is indeed zero on the three sides defined by xs0, xs1, and ys1,
and it equals sin � x on the remaining side ys0.

ˆ 2It is also useful to define the operator Ls� :

Cell 6.4

L[f_____] := D[f, {x, 2}] + D[f, {y, 2}]

ˆŽ .We can now define the inner product L s ® , L® ,i jk l i j k l

Cell 6.5

Lmat[i_____, j_____, k_____, l_____] := norm[v[i, j, x, y], L[v[k, l, x, y]]]

ˆŽ . Ž .and the inner product � s ® , �yLu in this example, �s0 :i j i j

Cell 6.6

�vec[i_____, j_____] := norm[v[i, j, x, y], -L[u[x, y]]];
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Next, we create the coupled equations for the Fourier coefficients c . We willk l
refer to these coefficients as c[k,l], and we will give each equation a name,
eq[i, j], so that we may refer to it later:

Cell 6.7

eq[i_____, j_____] :=
eq[i, j] = Sum[Lmat[i, j, k, l] c[k, l], {k, 0, Px},

{l, 0, Py}] == �vec[i, j]

Here we made Mathematica remember each equation. Since each equation takes
some time to create, we only want to do it once. At this point it is useful to check
that everything is working, so we will use a Do statement that prints out each
equation. We choose values of P s3 and P s3 so as to create 16 equations; seex y

Ž .Eq. 6.1.9 :

Cell 6.8

Px = 3; Py = 3;
Do[Print["eq", {i, j}, " = ", eq[i, j]], {i, 0, Px},

{j, 0, Py}];

We omit the results in order to save space. But the reader can perform the
evaluations to confirm that everything appears to be working properly. We now
solve for the c ’s using Solve. Solve takes arguments of the form Solve[{equa-k l
tions},{®ariables}] so we need to create a one-dimensional list of equations and
another list of the variables. The list of equations can be created using a Table
command:

Cell 6.9

eqns = Flatten[Table[eq[i, j], {i, 0, Px}, {j, 0, Py}]];

We flattened the two-dimensional table into a one-dimensional list using the
Flatten command, in order for the list to obey the proper syntax for Solve.

To create the variable list, we use another flattened table:

Cell 6.10

vars = Flatten[Table[c[k, l], {k, 0, Px}, {1, 0, Py}]]

{c[0, 0], c[0, 1], c[0, 2], c[0, 3], c[1, 0], c[1, 1],
c[1, 2], c[1, 3], c[2, 0], c[2, 1], c[2, 2], c[2, 3],
c[3, 0], c[3, 1], c[3, 2], c[3, 3]}

Now we solve for the c ’s:m n

Cell 6.11

coefficients = Solve[eqns, vars][[1]]

{c[0, 0]™-6.67286, c[0, 1]™8.2558, c[0, 2]™-5.74432,
c[0, 3]™1.91403, c[1, 0]™-7.6008, c[1, 1]™9.47786,
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c[1, 2]™-6.67373, c[1, 3]™2.24739, c[2, 0]™7.6008,
c[2, 1]™-9.47786, c[2, 2]™6.67373, c[2, 3]™-2.24739,
c[3, 0]™-1.7257�10-10, c[3, 1]™1.13872�10-9,
c[3, 2]™-2.3676�10-9, c[3, 3]™1.47698�10-9}

Ž .This list of substitutions is used to construct � x, y as follows:

Cell 6.12

�[x_____, y_____] =
u[x, y] + Sum[c[k, l]v[k, l, x, y], {k, 0, Px},
{l, 0, Py}]/.coefficients;

The result is plotted in Cell 6.13. This solution appears to match the analytic
Ž .solution given by Eq. 6.1.13 . The error ��s�y� is, in fact, quite small, asexact

shown in Cell 6.14. The error could be reduced even further by increasing P andx
P . However, the more terms one keeps, the more time it takes to create and solvey
the equations.

Cell 6.13

Plot3D[�[x, y], {x, 0, 1}, {y, 0, 1},
AxesLabel™{"x", "y", "�"}];

Cell 6.14

�exact[x_____, y_____] = Sin[Pi x] Sinh[Pi (1-y)]/Sinh[Pi];
Plot3D[�[x, y] - �exact[x, y], {x, 0, 1},
{y, 0, 1}, AxesLabel™{"x", "y", "��"}, PlotPoints™50];
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The computation time can be reduced significantly if a general analytic form for
one or more of the inner products can be found. For example, the inner product
L in the above example can be determined analytically for general i, j, k and l:i jk l

Cell 6.15

Lmat[i_____, j_____, k_____, l_____] =
Integrate[v[i, j, x, y], L[v[k, l, x, y]], {x, 0, 1},

{y, 0, 1}]

Ž . w xthe result is suppressed to save space . Even though this expression for L i, j, k, l
is quite complicated, it takes less time to evaluate than the previous expression
that contained a delayed evaluation of the inner product. Previously, when the
equations eq[i,j] were constructed, the integrals in the inner product had to be
performed separately for every value of i, j, k, and l. Now, the equations take

Ž .much less time to create. Try it.

However, it is not always possible to work out the inner products analytically for
general values of the indices. For instance, the integrals needed in � are took l
complex to be done for general k and l.

Example 2 In the next example, we will solve Poisson’s equation in a domain that
does not allow for an analytic solution. The domain is defined by the equations
yFxr6q1, yGx 2. This domain is plotted in Cell 6.17. Here we have used a
technique involving the function Boole, available only in Mathematica version 4.1
or later, that allows one to plot or integrate over complex regions defined by
inequalities. We will also use this technique in defining the inner product over this
region. This technique is merely a convenience; it is also possible to write out the
ranges of integration in the inner product explicitly.
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Cell 6.16

<<<<<<<<<<Calculus‘

Cell 6.17

ContourPlot[Boole[yFx/6 + 1 &&&&&&&&&& yGx2],
{x, -1, 1.3}, {y, 0, 1.3}, PlotPoints™100];

2 Ž .Within this domain, we will solve � � x, y s1, with boundary conditions that
�� s0.S
The following module puts the whole Galerkin method together in one place:

Cell 6.18

(***** define the curves that determine the boundary: *****)
z[1, x_____, y_____] = y-(x/6 + 1);
z[2, x_____, y_____] = y-x2;
(* define the charge density *)
�[x_____, y_____] = 1;

(* define the function u used to
match inhomogeneous boundary conditions, if any *)

u[x_____, y_____] =
0;

(* define the inner product
using Boole notation (Mathematica 4.1 only) *)

norm[f_____, g_____] := Integrate[f g Boole[z[1, x, y]F0 &&&&&&&&&& z[2, x,
y]G0],

{x, -Infinity, Infinity}, {y, -Infinity, Infinity}]//N;
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Cell 6.19

galerkin[Px_____, Py_____, M_____] := Module[{v, Lmat, �vec, eq,
eqns, vars},
(* define the basis functions: *)

v[i_____, j_____, x_____, y_____] = xi yj Product[z[n, x, y], {n, 1, M}];
(* define the operator: *)
L[f_____] := D[f, {x, 2}] + D[f, {y, 2}];
(* determine the projection of the operator onto the basis

functions: *)
Lmat[i_____, j_____, k_____, l_____] := norm[v[i, j, x, y],
L[v[k, l, x, y]]];

(* determine the projection of � onto the basis functions: *)
�vec[i_____, j_____] := norm[v[i, j, x, y], �[x, y]-L[u[x, y]]];
(* define the equations for the Fourier coefficients

c[m,n] *)
eq[i_____, j_____] :=

eq[i, j] = Sum[Lmat[i, j, k, l] c[k, l], {k, 0, Px},
{l, 0, Py}] == �vec[i, j];

(* Print out the equations (not necessary, but a useful
check) *)

Do[Print["eq", {i, j}, " = ", eq[i, j]], {i, 0, Px},
{j, 0, Py}];

(* create lists of equations and variables *)
eqns = Flatten[Table[eq[i, j], {i, 0, Px}, {j, 0, Py}]];
vars = Flatten[Table[c[k, l], {k, 0, Px}, {l, 0, Py}]];
(* solve the equations *)
coefficients = Solve[eqns, vars][[1]];
(* define the solution *)
�[x_____, y_____] =

u[x, y] + Sum[c[k, l]v[k, l, x, y], {k, 0, Px},
{l, 0, Py}]/. coefficients;]

We will run the module taking P sP s4:x y

Cell 6.20

galerkin[4, 4, 2]

Ž .The module returns the approximate solution for the potential � x, y . We plot
the solution in Cell 6.21 as a contour plot.

Cell 6.21

ContourPlot[�[x, y] Boole[z[1, x, y]F0&&&&&&&&&&z[2, x, y]G0],
{x, -1, 1.3}, {y, 0, 1.3}, PlotPoints™100,
FrameLabel™{"x", "y"},

Contours™{0, -.02, -0.04, -0.06, -0.08}];
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We can check how well our approximate solution solves the Poisson equation by
substituting it into the PDE:

Cell 6.22

L[�[x, y]]-1;

The result deviates only slightly from zero, as shown in Cell 6.23. The error is
largest near the cusps in the domain, where the solution is expected to vary most
rapidly. Of course, one could improve the solution by keeping more terms in the
expansion.

Cell 6.23

Plot3D[Abs[%%%%%] Boole[z[1, x, y]F0&&&&&&&&&&z[2, x, y] G 0],
{x, -1, 1}, {y, 0, 1.3}, PlotPoints™50};
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Example 3 In this example, we consider the solution of Laplaces equation,
�2�s0, in a domain that has a concave cusp of the type discussed in relation to

Ž .Fig. 6.1 b . The domain boundary is defined by the following two equations:

z x , y sx 2qy2y1,Ž .1

� �z x , y syy x .Ž .2

The domain is shown in Cell 6.24. For boundary conditions, on the edges of the
Ž . Ž . 2 2cusp we take � xsy, y s� xsyy, y s1yx yy . This boundary condition

matches continuously onto the boundary condition �s0, applied to the circular
part of the boundary.

Cell 6.24

<<<<<<<<<<Calculus‘;

z[l, x_____, y_____] = x2 + y2-1;
z[2, x_____, y_____] = y-Abs[x];
ContourPlot[ Boole[z[1, x, y]F0 &&&&&&&&&& z[2, x, y]F0],

{x, -1.3, 1.3}, {y, -1.3, 1.3}, PlotPoints™100];

This problem is analytically tractable. The solution was developed as an exercise
w Ž .xin Chapter 4 Sec. 4.3, Exercise 9 and is given below in cylindrical coordinates:

� n�
� r , 	 s lim A 
 sin log rŽ . Ž .Ý n ž /log 

™0 ns1

n� n�
� sinh 	y� ysinh 	y�y� , 6.1.14Ž . Ž . Ž .ž / ž /log 
 log 
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where 	 runs between �s3�r4 and �q� , where �s3�r2 is the opening angle
of the domain. The Fourier coefficients A are determined according to then
equation

1 n� dr2sin log r 1y rŽ .H ž /log 
 rn�� 
sinh A 
 s .Ž .nž /log 
 1 n� dr2sin log rH ž /log 
 r


This analytic solution is constructed below:

Cell 6.25

A[n_____] = Simplify[Integrate[Sin[n Pi Log[r]/Log[
]] (1-r2)/r,
{r, 
, 1}]/
Integrate[Sin[n Pi Log[r]/Log[
 ]] ^̂̂̂̂2/r, {r, 
, 1}],
n g Integers]

2 (-1)n n2 �2 (-1 + 
2)-8 (-1 + (-1)n) Log[
]2

3 3 2n � + 4 n� Log[
]

Cell 6.26


 = 10. ^̂̂̂̂-8; � = 3 Pi/2.; � = 3 Pi/4;

�[r_____, 	_____] = Sum[A[n] Sin[n Pi Log[r]/Log[
]]
(Sinh[n Pi (	 - �)/Log[
]] + Sinh[n Pi (� + � - 	)/Log[
]])/
Sinh[n��/Log[
]], {n, 1, 150}];

Along the edges of the cusp at 	s� and 	s�q� , this analytic solution can be
seen to match the boundary condition �s1y r 2, as shown in Cell 6.27. However,

Ž .along 	s3�r2 i.e. the yy axis , the solution has a singular slope near the origin,
as shown in Cell 6.28. The singularity in ��r� r is expected near the point of a

w Ž .Ž .xcusp, as surface charge accumulates at such points see Sec. 3.2, Exercise 5 b .
This singular behavior will make it difficult to find a convergent numerical solution
using the Galerkin method.

Cell 6.27

Plot[{�[r, �], �[r, � + �], 1-r ^̂̂̂̂2}, {r, 0.0001, 1},
PlotRange™All,
AxesLabel™{"r", ""}, PlotLabel ->>>>> " � along edges
of cusp"];
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Cell 6.28

Plot[�[r, � + � /2], {r, 0.0001, 1}, PlotRange™All];

Nevertheless, we will now attempt a Galerkin solution. First, we must choose
basis functions. These functions must be zero on the boundary. However, if we

Ž . � �were to use the function z x, y syy x to define the basis functions via Eq.2
Ž .6.1.8 , grave problems would develop in the Galerkin method. Because gradients
of the ® are required in the solution, the result would exhibit a singularity alongm n
xs0 and strong Gibbs phenomena throughout the domain.

Ž .What we need instead is a different function z x, y that equals zero on the2
Ž . Ždomain boundary, but is not singular, except at 0, 0 . Such functions do exist after

.all, the solution of Poisson’s equation is one such function . One simple example is

2 2'z x , y syy 1ya x qay , 0�a�1.Ž . Ž .2

� �It is easy to see that this function equals zero only along the lines ys x , but the
Ž . Ž .function is singular only at x, y s 0, 0 . If we use this choice in the Galerkin

Ž .method, we can find a convergent solution for � x, y , although the convergence is
slow, as we will see. The code is given below. Note the use of symmetry in x when
defining the basis functions and the inner product: the solution is symmetric in x,
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so we choose basis functions that have this symmetry, and we integrate only over
the right half of the domain.

Cell 6.29

(* define the curves that determine the boundary: *)
z[1, x_____, y_____] = x ^̂̂̂̂2 + y ^̂̂̂̂2-1;
z[2, x_____, y_____] = y-Sqrt[3 x ^̂̂̂̂2/4 + y ^̂̂̂̂2/4];
(* define the charge density *)
�[x_____, y_____] = 0;
(* define the function u used to
match inhomogeneous boundary conditions, if any *)

u[x_____, y_____] = 1-(x ^̂̂̂̂2 + y ^̂̂̂̂2);
(* define the inner product
using Boole notation (Mathematica 4.1 only) *)

norm[f_____, g_____] := 2NIntegrate[f g Boole[z[1, x, y]F
0 &&&&&&&&&& z[2, x, y]F0],

{x, 0, Infinity}, {y, -Infinity, Infinity},
MaxRecursion™10];

Numerical integration is now the fastest approach to determining the inner
product. Even so, the equations take some time to evaluate for the chosen case of

ŽP sP s3. Each equation requires 16 two-dimensional numerical integrals to bex y
.evaluated, and there are 16 equations for the 16 Fourier coefficients. The result is

plotted in Cell 6.31.

Cell 6.30

galerkin[3, 3, 2]

The solution is apparently well behaved throughout the domain of interest.
However, closer examination shows that it is not particularly accurate near the
origin. In Fig. 6.2, we compare the Galerkin solution with the exact solution found
previously along the line 	s3�r2, for the case P sP s1, 3, 5. The solid curve isx y
the analytic solution, and the dashed, dotted, and dot-dashed curves are Galerkin
solutions in order of increasing accuracy. The Galerkin solutions do not converge
very rapidly near the origin, because of the singularity in the radial electric field

Ž .caused by the cusp point. This can be seen directly in the plot Fig. 6.3 of the
radial electric field along the same line, 	s3�r2. As might be expected, our
Galerkin solution fails to capture the singular behavior near the origin, although it
is reasonably accurate for rR0.5. Many more terms are needed to roughly
approximate the singularity, but calculation of the required inner products is
computationally intensive. In general, numerical solutions near singularities are

Cell 6.31

Plot3D[(�[x, y]) Boole[z[1, x, y]F0 &&&&&&&&&& z[2, x, y]F0],
{x, -1.3, 1.3}, {y, -1.3, 1.3}, PlotPoints™60,
PlotRange™All,

Mesh™False, AxesLabel™{"x", "y", ""}, PlotLabel ->>>>> "�"];
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Ž .Fig. 6.2 Potential along 	s3�r2 for exact solution solid and Galerkin solutions with
Ž . Ž . Ž .P sP s1 dashed , 3 dotted , 5 dot-dashed .x y

Ž .Fig. 6.3 Radial electric field along 	s3�r2 for exact solution solid and Galerkin
Ž . Ž . Ž .solutions with P sP s1 dashed , 3 dotted , 5 dot-dashed .x y
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problematic in any numerical method. However, the Galerkin method in particular
is best suited to problems with smoothly varying solutions, unless the required
inner products are easy to evaluate.

In Sec. 6.2, we will observe that grid methods can do a somewhat better job in
resolving solutions near singularities, if the grid is chosen to be sufficiently fine.

6.1.3 Time-Dependent Problems

The Heat Equation The Galerkin method can also be used in the solution of
PDEs with time dependence. As a simple example, we will use it to solve the heat
equation in one dimension on the interval 0FxFb,

� � 2

T x , t s� T x , t qS x , t , 6.1.15Ž . Ž . Ž . Ž .2� t � x

subject to mixed boundary conditions

T 0, t sT t ,Ž . Ž .1

6.1.16Ž .� T
b , t s0,Ž .� x

and the initial condition

T x , 0 sT x . 6.1.17Ž . Ž . Ž .0

We write the solution in the usual manner as

M

T x , t s c t ® x qu x , t , 6.1.18Ž . Ž . Ž . Ž . Ž .Ý n n
ns0

Ž .where u x, t is any smooth function that satisfies the boundary conditions. For
this problem, the choice

u x , t sT t 6.1.19Ž . Ž . Ž .1

works well.
Ž .The basis functions ® x are any set of M functions that form a complete set asn

M™�, and that satisfy homogeneous mixed boundary conditions of the same type
as specified in the problem. In this case, this implies homogeneous Dirichlet
conditions on one end, and homogeneous von Neumann conditions on the other:

� ®n® 0 s b s0.Ž . Ž .n � x

For example, we could choose these functions to be eigenmodes of the operator
� 2r� x 2, and then we would have the usual eigenmode expansion, as discussed
previously in Secs. 3.1.4 and 4.2.2. Here, however, we will choose some other set.
For instance, one simple choice is

n xn® x sx 1y , ns1, 2, . . . , M . 6.1.20Ž . Ž .n ž /nq1 b

Some of these functions are displayed in Cell 6.32, assuming bs2.
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Cell 6.32

(x/b)
v[n_____, x_____] = x ^̂̂̂̂ n 1-n ;ž /n + 1
b = 2; Plot[Evaluate[Table[v[n, x], {n, 1, 4}]], {x, 0, b}];

Next, we choose an inner product. We will make the simple choice

b
f , g s f *g dx . 6.1.21Ž . Ž .H

0

Ž . Ž .The Fourier coefficients c t in Eq. 6.1.18 must now be determined. To do so,n
Ž . Ž .we first substitute Eq. 6.1.18 into Eq. 6.1.15 , obtaining

M M 2� �
c t ® x s� c t ® x qS x , t , 6.1.22Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýn n n n2� t � xns1 ns1

Ž .where the modified source function S x, t is
2� �

S x , t sS x , t q� u x , t y u x , t . 6.1.23Ž . Ž . Ž . Ž . Ž .2 � t� x
Ž . Ž .Now, we take an inner product of Eq. 6.1.22 with respect to ® x , yieldingm

M M 2� �® , ® c t s c t ® , � ® q ® , S , ms1, 2, . . . , MŽ . Ž . Ž . Ž .Ý Ým n n n m n m2ž /� t � xns1 ns1

6.1.24Ž .
Ž .Equation 6.1.24 provides a set of M coupled ODEs for the time variation of the

Ž .Fourier coefficients c t . One can solve these ODEs either analytically or numeri-n
Ž .cally using DSolve or NDSolve . The initial conditions on the ODEs are

Ž .determined by Eq. 6.1.17 :
M

c 0 ® x qu x , 0 sT x . 6.1.25Ž . Ž . Ž . Ž . Ž .Ý n n 0
ns1

Ž .Taking an inner product of this equation with respect to ® x , we obtain a set ofm
coupled equations for the initial values of the Fourier coefficients:

M

c 0 ® , ® s ® , T yu x , 0 , ms1, 2, . . . , M . 6.1.26Ž . Ž . Ž . Ž .Ž .Ý n m n m 0
ns1
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Ž .These M equations, together with the M ODEs given by Eq. 6.1.24 , are sufficient
Ž .to specify c t .n

The following Mathematica commands solve this problem on the time interval
0F tF . We will use NDSolve to numerically determine the solutions to Eqs.
Ž . Ž .6.1.24 , subject to the initial conditions of Eq. 6.1.26 . The Fourier coefficients
Ž .c t are referred to as c[n][t]. This notation is equivalent to c[n,t], and itn

works in NDSolve, whereas the notation c[n,"t] does not, because NDSolve
interprets that as an instruction to solve a PDE for a function of two variables

Žc[n,t]. Recall that the same issue arose when we performed molecular dynam-
.ics simulations in Chapter 1.

Since this is a numerical solution to the problem, we must choose specific forms
for the initial and boundary conditions explicitly, and we must also choose a
numerical value for the thermal diffusivity � and the size of the interval, b. Below,
we make these choices, keeping Ms8 terms in the series expansion of the
solution, and solving over a time interval of 0� t�15:

Cell 6.33

T0[x_____] = 1; T1[t_____] =1 + Sin[t]; S[x_____, t_____] = 0;

� = 1/8; b = 2; M = 8;
 = 15.;

The temperature on the left side of the slab oscillates in time, and on the right the
temperature gradient is zero.

To construct the Galerkin solution to this problem, we first define the function
Ž . Ž .u x, t , according to Eq. 6.1.19 :

Cell 6.34

u[x_____, t_____] = T1[t];

Ž .We then define the inner product, as in Eq. 6.1.21 . In this case, we will assume
that the functions to be integrated are sufficiently straightforward that the inte-
grals can be done analytically using Integrate:

Cell 6.35

norm[f_____, g_____] := Integrate[fg, {x, 0, b}]

ˆ 2 2It is also useful to define the spatial operator Ls� � r� x :

Cell 6.36

L[f_____] := �D[f, {x,2}];

ˆŽ .Next, we define the projection of the operator onto the functions, L s ® , L® :m n m n

Cell 6.37

Lmat[m_____, n_____] := norm[v[m, x], L[v[n, x]]]
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Ž .We then define the inner product of the functions with each other, ® , ® . Herem n
we use symmetry of the inner product with respect to the interchange of n and m
in order to reduce the number of integrations needed. Also, we use the double-
equal-sign notation to store previously determined values of the inner product
without redoing the integration:

Cell 6.38

nm[n_____, m_____] := (nm[n, m] = norm[v[m, x], v[n, x]] )/; nGm;
nm[n_____, m_____] := nm[m, n]/; n <<<<< m

Ž . Ž .Next, we define the projection of the source function S x, t onto the ® x :m

Cell 6.39

Svec[m_____] := norm[v[m, x], S[x, t]-D[u[x, t], t] + L[u[x, t]]];

We are ready to specify the differential equations for the Fourier coefficients:

Cell 6.40

eq[m_____] := eq[m] = Sum[nm[m, n] D[c[n][t], t],
{n, 1, M}] ==

Sum[Lmat[m, n] c[n][t], {n, 1, M}] + Svec[m];

It is useful to point out the equations as a check:

Cell 6.41

Do[Print["eq[", m, "]= ", eq[m]], {m, 1, M}];

The initial conditions on the Fourier coefficients are specified according to Eq.
Ž .6.1.26 . We print these out as well:

Cell 6.42

ic[m_____] :=
ic[m] = Sum[nm[m, n] c[n][0], {n, 1, M}] == norm[v[m, x],
T0[x]-u[x, 0]];

Do[Print["ic[", m, "]=", ic[m]], {m, 1, M}];

In order to use NDSolve to determine the solution to the coupled ODEs, we must
make a list of the equations and initial conditions:

Cell 6.43

eqns = Join[Table[eq[m], {m, 1, M}], Table[ic[m], {m, 1, M}]];

Also, we create a list of the variables for which we are solving:

Cell 6.44

vars = Table[c[m][t], {m, 1, M}];

Finally, we solve the equations over a time  and define the solution:
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Cell 6.45

coefficients = NDSolve[eqns, vars, {t, 0, },
MaxSteps™5000][[1]];

T[x_____, t_____] = u[x, t] + Evaluate[Sum[c[n][t] v[n, x],
{n, 1, M}]];

T[x_____, t_____] = T[x, t]/. coefficients;

Cell 6.46 displays our solution. This solution exhibits the same behavior as was
observed in Example 1 of Sec. 4.2.2, where we solved a similar problem using the
exact eigenmodes for the system. The temperature oscillations only penetrate a
short distance into the material before they are averaged out.

Cell 6.46

Table[Plot[T[x, t], {x, 0, b}, PlotRange™{{0, 2}, {0, 2}},
AxesLabel™{"x", ""},

PlotLabel™"T[x, t], t=" <<<<<>>>>>ToString[t]], {t, 0, 15, .5}];



NUMERICAL SOLUTIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS456

Below, we collect the Galerkin method commands in one module:

Cell 6.47

galerkint[M_____, _____] := Module[{u, v, norm, L, eq, ic,
eqns, vars},

(***** define the function u used to
match inhomogeneous boundary conditions, if any *****)

u[x_____, t_____] = T1[t];

(***** define the basis functions: *****)
nnv[n_____, x_____] = x (1- (x/b));

n + 1
(***** define the inner product *****)

norm[f_____, g_____] := Integrate[f g, {x, 0, b}];

(***** define the operator: *****)
L̂[f_____] := �D[f, {x, 2}];

(***** determine the projection of the operator onto the basis
functions: *****)

ˆL[m_____, n_____] := norm[v[m, x], L[v[n, x]]];

(***** determine the norm of the basis functions with each
other. Use symmetry of the norm to reduce the number of
integrals that need be done; remember their values. *****)

nm[n_____, m_____] := (nm[n, m] = norm[v[m, x], v[n, x]])/; n G m;
nm[n_____, m_____] := nm[m, n]/; n <<<<< m ;

(***** determine the projection of S onto the basis functions:
*****)

S[m_____] := norm[v[m, x], S[x, t]-D[u[x, t], t] +
L̂[u[x, t]]];

(***** define the equations for the Fourier coefficients c[n][t]
*****)

eq[m_____] := eq[m] = Sum[nm[m, n] D[c[n][t], t], {n, 1, M}]
==Sum[L[m, n] c[n][t], {n, 1, M}] + S[m];

(***** Print out the equations (not necessary, but a useful
check) *****)

Do[Print["eq[", m, "]= ", eq[m]], {m, 1, M}];

(***** define the initial conditions *****)
ic[m_____] :=
ic[m] = Sum[nm[m, n] c[n][0], {n, 1, M}] == norm[v[m, x],
T0[x]-u[x, 0]];

(***** Print out the initial conditions (not necessary, but a
useful check) *****)

Do[Print["ic[", m, "]= ", ic[m]], {m, 1, M}];

(***** create lists of equations, variables *****)
eqns = Join[Table[eq[m], {m, 1, M}], Table[ic[m],
{m, 1, M}]];

vars = Table[c[m][t], {m, 1, M}];
(***** solve the equations *****)
coefficients = NDSolve[eqns, vars, {t, 0, ]][[1]];
(***** define the solution *****)
T[x_____, t_____] = u[x, t] + Evaluate[Sum[c[n][t] v[n, x],
{n, 1, M}]];

T[x_____, t_____] = T[x, t]/. coefficients;]
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Reflection of a Quantum Particle from a Barrier The evolution of a quantum
particle moving in an external potential is another case where the Galerkin method
is useful. This is a case where all of the steps in the method can be performed
analytically, except for the solution of the coupled ODEs.

Ž .We consider a particle that encounters a potential barrier V x of finite height
Ž .and width. The particle wave function � x, t satisfies the time-dependent

Schrodinger equation,¨

� �2 � 2

i� � x , t sy � x , t qV x � x , t . 6.1.27Ž . Ž . Ž . Ž . Ž .2� t 2m � x

The initial condition on the wave function is

� x , 0 s� x . 6.1.28Ž . Ž . Ž .0

Ž .For this problem, we take the barrier potential V x to be

� �V , x �a,0V x s 6.1.29Ž . Ž .½ � �0, x Ga.

We will assume that the system has periodic boundary conditions, with period 2 L.
ŽSo this barrier, and the wave function itself, are periodically replicated in cells of

.width 2 L. Then to match these boundary conditions we will expand the wave
function in terms of a periodic exponential Fourier series,

� x , t s c t e ik x , ksn�rL, nsyM , . . . , M . 6.1.30Ž . Ž . Ž .Ý k
k

Ž .Substituting this series into Eq. 6.1.27 , we obtain

2 2� � kik x ik x ik xi� c t e s c t e q c t V x e . 6.1.31Ž . Ž . Ž . Ž . Ž .Ý Ý Ýk k k� t 2m
k k k

In the last term, we replaced the dummy variable k by k. For the inner product,
we choose the one for which the Fourier modes are orthogonal:

L
f , g s f *g dx . 6.1.32Ž . Ž .H

yL

Ž . ik xThen, taking an inner product of Eq. 6.1.31 with respect to e yields the
Ž .following coupled equations for the Fourier coefficients c t :k

� �2 k 2

i� c t s c t q V c t , 6.1.33Ž . Ž . Ž . Ž .Ýk k k k k� t 2m
k
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where V is the projection of the potential onto the Fourier modes:k k

ik x ik xe , V x eŽ .Ž .
V s . 6.1.34Ž .k k ik x ik xe , eŽ .

Ž .For the barrier potential of Eq. 6.1.29 , this matrix can be evaluated analytically:

V0V s sin kyk a. 6.1.35Ž . Ž .k k kyk LŽ .

Ž .We are then left with the task of solving the coupled ODEs given by Eq. 6.1.33 ,
Ž . Ž .subject to the initial condition, Eq. 6.1.28 . When Eq. 6.1.30 is used in Eq.

Ž .6.1.28 and an inner product is taken, we obtain

e ik x , � xŽ . LŽ . 10 yi k xc 0 s s e � x dx , 6.1.36Ž . Ž . Ž .Hk 0ik x ik x 2 Le , eŽ . yL

which is simply the usual expression for the Fourier coefficient of the initial
condition.

Ž .Let’s solve this problem for specific dimensionless choices of the parameters:

Cell 6.48

� = 1; mass = 1;

For the initial condition, we choose a wave function centered at k s5 and at0
position xsy5, moving toward the potential barrier from the left:

� x sey2Ž xq5. 2
e5i x .Ž .0

Ž .2 Ž .This corresponds to a classical particle with energy �k r 2m s12.5 in our0
dimensionless units. We take the potential barrier height equal to V s15, in order0
to reflect the classical particle.

The Fourier coefficients of the initial condition can be evaluated for general k:

1 2Ž .y50y y5y20 iqk8 'e �r2
c 0 s .Ž .k 2 L

The following module integrates the equations of motion for this initial condi-
Ž .tion. The Fourier coefficients c t are referred to as c[n][t], where ksk

Ž .2� nr 2 L , nsyM, . . . , M. The equations for the coefficients are integrated up
to time  . The module can be easily modified to solve for propagation of a
quantum wave function starting with any initial condition and moving in any
one-dimensional potential, simply by changing the definition of the initial condi-

Ž .tions c 0 and the potential matrix V .k k k
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Cell 6.49

schrodinger[L_____, a_____, V0_____, M_____, _____] := Module[{k, v, ic, V, eq,¨
eqns, vars},
(***** DEFINE THE WAVENUMBER *****)
k[n_____] = Pi n/L;
(***** DEFINE THE BASIS FUNCTIONS *****)
v[n_____, x_____] = Exp[I k[n] x];
(***** DEFINE AND PRINT THE INITIAL CONDITIONS *****)

1 �-50- ((-50-20 I)+k[m])28E '2
ic[m_____] := ic[m] = c[m][0] == ;

2L

Do[Print["ic[", m, "]=", ic[m]], {m, -M, M}];

(***** DEFINE PROJECTION OF THE POTENTIAL ONTO THE MODES *****)
V[n_____, m_____] := V0 Sin[(k[n]-k[m]) a]/((k[n]-k[m]) L)/; n�m;
V[n_____, n_____] := V0 a/L;
(***** DEFINE AND PRINT THE ODES *****)
eq[n_____] := eq[n] = I D[c[n][t], t] ==

�2 k[n]2/(2 mass) c[n][t] + Sum[V[n, m] c[m][t],
{m, -M, M}];

Do[Print["eq[", m, "]=", eq[m]],
{m, -M, M}];

(***** CREATE LISTS OF THE EQUATIONS AND VARIABLES FOR USE IN
NDSOLVE*****)

eqns = Join[Table[eq[m], {m, -M, M}], Table[ic[m],
{m, -M, M}]];

vars = Table[c[n][t], {n, -M, M}];
(***** SOLVE THE EQUATIONS *****)
coefficients = NDSolve[eqns, vars, {t, 0, },
MaxSteps™6000][[1]];

(***** THE SOLUTION *****)
�[x_____, t_____] = Sum[c[n][t] v[n, x], {n, -M, M}];
�[x_____, t_____] = �[x, t]/. coefficients;]

In Cell 6.50 we run this module, taking Ls15 and a barrier half width as1. We
Žintegrate over a time s2.4 and take Ms60 a large number of modes must be

.kept in order to represent the sharply peaked initial condition .

Cell 6.50

schrodinger[15., 1., 15., 60, 2.4];¨

Cell 6.51

Table[Plot[Abs[�[x, t]] ^̂̂̂̂2, {x, -15, 15},
PlotRange™{0, 1}, PlotLabel ™" (|||||�[x, t]|||||)2,
t= " <<<<<>>>>>ToString[t],

AxesLabel™{"x", ""}], {t, 0, 2.4, .2}];
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The plots of the wave packet in Cell 6.51 display several interesting effects.
First, we can clearly see that dispersion causes the packet to spread, just as in the
discussion of freely propagating packets in Sec. 5.1.2. Second, during the reflec-
tion, there is a complex interference pattern produced as the reflected packet
travels back through the incident packet. Third, a fair fraction of the wave packet
is transmitted through the barrier, which runs from y1 to 1. A classical particle
with energy 12.5 would have been reflected from this barrier, which has potential
15. This is the well-known phenomenon of quantum tunneling through a classically
forbidden region.

One can also see something else in this simulation: with a speed of 5 in our
scaled units, the center of a freely propagating wave packet would have made it to
position xsy5q�5s7 in time s2.4. However, the center of the packet in
our simulation has actually made it farther than this: the animation clearly shows



EXERCISES FOR SEC. 6.1 461

that the center of the packet is roughly at xs9 at time s2.4. Adding a potential
barrier that creates a classically forbidden region has actually increased the
average group velocity of the transmitted part of the packet. Note that the width of
the potential barrier was 2, which is just the observed increase in position
compared to free propagation. It is as if the wave packet were instantaneously
transported across the forbidden zone.

This phenomenon is referred to in the literature as superluminal pulse propaga-
tion. Actually, this is something of a misnomer. A detailed analysis of the pulse
propagation shows that it does not violate the tenets of special relativity, because

Žthe wave packet has components that rapidly disperse the leading edge of the
.packet is far in advance of the pulse center. These forward components already

signal the arrival of the packet, and they are causal, always traveling at speeds less
than or equal to that of light.

Superluminal propagation can also occur in classical systems, such as light
traveling in a dispersive medium. Although this phenomenon is well-known, it has

w Ž .xrecently received renewed attention see, e.g., Winful 2003 .
The reader is invited to vary the parameters in this simulation in order to

further study these phenomena. Questions that one might ask are: how does the
mean group velocity of the transmitted packet vary with barrier height and width,
and as a function of the initial packet speed and width? What fraction of the
packet is transmitted as a function of these parameters? How is the dispersion of

Žthe packet affected by the barrier? Caution: The simulation runs rather slowly on
.older machines, due to the large number of modes that must be kept.

EXERCISES FOR SEC. 6.1

( )1 Use the Galerkin method to solve the potential in the grounded charge-filled
2 Ž .enclosure of Fig. 6.4. The potential satisfies � � x, y sx, and is zero on the

walls. Plot the resulting potential as a contour plot, and find the place where
the potential is minimum.

( )2 A grounded toroidal conducting shell has a shape given by the equation
2 Ž .2 2 Ž .z r2q ryR sa , where r, 	 , z are cylindrical coordinates, and Rs1

meter, as0.75 meter. Plot this shell using a ParametricPlot3Dcommand.
The shell is filled with a uniform charge density �r
 s10 V. Find and plot0

Ž .the contours of constant electrostatic potential in the r, z plane. At what r
and z is the potential maximum, and what is its value, to three significant

Ž .figures? Hint: Solve Poisson’s equation in cylindrical coordinates.

( )3 A hemispherical shell of radius a sits in the base of a cylindrical tube of the
Ž .same radius see Fig. 6.5 . The top of the tube at zsL is flat, and the sides

of the tube are insulated. The interior of the tube is filled with material of

Ž .Fig. 6.4 Exercise 1 .



NUMERICAL SOLUTIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS462

Ž .Fig. 6.5 Exercise 3 .

some uniform thermal diffusivity. The hemisphere is held at fixed tempera-
ture T , and the top end and of the tube is held at fixed temperature T . Use0 1

Ž .the Galerkin method to find the form of T r, z in equilibrium within the
Ž Ž .tube, for as1, Ls1.5. Hint: Try basis functions of the form ® r, z snm

w n Ž .xŽ 2 2 2 .Ž . m Ž .r yA z a y r yz Lyz z , and find the form of A z required to
.match the von Neumann boundary conditions at rsa.

( ) 2 2 2 2 2 24 A triaxial ellipsoid has a shape given by the equation x ra qy rb qz rc
s1, where as2, bs3, and cs4. The ellipsoid surface is at potential V .0
The ellipsoid is filled with a uniform negative charge of density y� . Using0
the Galerkin method, find the electrostatic potential inside the ellipsoid as a

Ž . Žfunction of x, y, z . Hint: The solution is a simple polynomial function of
.x, y, z.

( )5 Use the Galerkin method to solve the following heat equation problem in 1D,
1with inhomogeneous conductivity, on 0�x�1, for 0� t� . Choose your2

own modes, and test to make sure you have kept enough modes. Plot the
result as an animation:

� � �
4 xq1 T x , t s T x , t on 0�x�1Ž . Ž . Ž .ž /� x � x � t

with

T 0, t s0, T 1, t s1, and T x , 0 sx6 .Ž . Ž . Ž .

( ) Ž .6 Solve the time-dependent dimensionless Schrodinger equation for the wave¨
Ž . Ž .function � x, t of a particle in a potential V x for 0� t�1, subject to

Ž . Ž . Ž .boundary conditions � �a, t s0 and initial condition � x, 0 s� x :0

�� x , t � 2� x , t1Ž . Ž .
i qV x � x , t y .Ž . Ž . 2� t 2 � x

Ž . 4Take V x sx r4, use trigonometric functions for the modes in the Galerkin
Ž .method, and work out the matrix elements V of V x analytically fornm

Žgeneral n and m. Note: Check to make sure the integrals for V arenn
. Ž . w Ž .2 xevaluated properly. Take � x sexp y2 xy1 , and as4. Keep as many0

basis functions as necessary to obtain a converged answer. Plot the solution in
time increments of 0.01 for 0� t�4.
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( ) ( )7 a Use the Galerkin method to solve for the dynamics of the string with the
moving boundary condition, described in scaled coordinates by Eq.
Ž .5.2.64 . Again take the case L s1 m, cs300 mrs, and ®s2 mrs. For0

1Ž .basis functions, use sin n	 x. Plot y xs , t and listen to the sound the2

string makes using the Play function, for 0� t�0.45 s. Compare the
Ž . Žplot and the sound with the WKB solution, Eq. 5.2.65 . Hint: You will

.need to increase MaxSteps in NDSolve to around 5000.
( ) Ž .b Redo the problem, and make an animation of y x, t , for a case where

the WKB solution fails: L s1 m, cs300 mrs, and ®s200 mrs. Plot0
the solution over the time interval 0� t�0.0045 s.

( ) Ž .c Evaluate the energy variation of the string dynamics found in part b ,
and use this to determine the force on the moving boundary vs. time.

( ) 2 2 2 28 A large sheet of cloth has an elliptical shape given by x ra qy rb s1,
where as2 m and bs1 m. The edge of the sheet is fixed at zs0, and the
propagation speed of waves on the sheet is cs3 mrs. Initially the sheet is

Ž . Ž .flat and stationary, z x, y, 0 sz x, y, 0 s0. However, thanks to the accelera-˙
tion of gravity gs9.8 mrs2, the sheet begins to sag. The equation of motion
for the sheet is the damped wave equation,

� 2 � � 2 � 2
2q� z x , y , t sc q z x , y , t ,Ž . Ž .2 2 2ž /� t ž /� t � x � y

where �s10 sy1 due to air drag on the sheet. Solve for the dynamics of the
sheet using the Galerkin method, and plot the resulting motion as a series of
ParametricPlot3D graphics objects, for 0� t�1 s.

( ) Ž .9 A circular wading pool of radius as1 m has nonuniform depth, h r, 	 s
w Ž 2 . Ž 2 .xh 1q 2 r cos 2	 r 3a , where h s5 cm and coordinates are measured0 0

from the center of the pool. Assuming potential flow, the horizontal fluid
Ž .displacement vector can be expressed as �s�� r, 	 , t , with � satisfying the

PDE

� 2
2�s��c r , 	 �� r , 	 , t ,Ž . Ž .2� t

2Ž . Ž .and where c r, 	 sgh r, 	 is the square of the wave speed. The wave
Ž . w Ž . x �height is z r, 	 , t sy�� h r, 	 � . The boundary conditions are � �r sˆ rsa

w Ž . Ž . Ž . x0. See Eqs. 4.2.50 , 4.4.38 and 4.4.39 and the surrounding discussion.
( )a We will use the Galerkin method to solve this problem. First, we must

Ž . nŽchoose basis functions. Show that functions of the form ® r, 	 s r 1m n
2 .yb r cos m	 match the von Neumann boundary conditions required atn

Žrsa, provided that b is chosen properly. Why don’t we need sin m	n
.basis functions?

( )b Boundary conditions at rs0 must also be satisfied: the solution and its
derivatives must be finite. By examining the form of �2 in cylindrical
coordinates, show that this leads to the requirement on the basis funct-
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ions that

� ® 2mm nlim y ® s0. 6.1.37Ž .m nž /� r rr™0

Show that this equation implies that we must choose n in the range
nGm.

˙( ) Ž . Ž . Ž .c Initially, � r, 	 , 0 syJ j rra r10 and � r, 	 , 0 s0. Find the wave0 1, 1
Ž .motion and plot z r, 	 , t for 0� t�3 s.

6.2 GRID METHODS

6.2.1 Time-Dependent Problems

FTCS Method for the Heat Equation In Chapters 1 and 2, we showed how
boundary- and initial-value ODE problems can be solved using grid methods,
wherein the linear ODE is converted into a difference equation by discretizing the
independent variable. In this section, we apply analogous methods to partial
differential equations.

As a first example of a grid method in the solution of a PDE, consider the heat
equation in a slab running from 0�x�L,

� � 2

T x , t s� T x , t qS x , t . 6.2.1Ž . Ž . Ž . Ž .2� t � x

Ž . Ž . Ž .We solve for T x, t subject to the initial condition that T x, 0 sT x and the0
Ž . Ž . Ž . Ž .Dirichlet boundary conditions T 0, t sT t , T L, t sT t . To solve this prob-1 2

lem, we discretize both space and time, according to

t sn � t , ns0, 1, 2, . . . ,n
6.2.2Ž .

x s j � x , js0, 1, 2, . . . , M ,j

where � t is the step size in time, and � xsLrM is the step size in space. We will
Ž . Ž .solve Eq. 6.2.1 for T x, t only on this grid of points. It is useful to introduce the
Ž . n Žnotation T x , t sT subscripts refer to the spatial grid point, and superscriptsj n j

.refer to the time grid point .
Ž .We must now discretize the space and time derivatives in Eq. 6.2.1 . There are

many ways to do so, some better than others. To start with, we will discuss the
FTCS method, where we use a forward difference method for the time derivative

Žand a centered difference method for the space derivative hence the name:
.forward time, centered space . That is, for the time derivative, we write

T x , t yT x , t T nq1 yT nŽ . Ž .� T j nq1 j n j j
x , t ™ s , 6.2.3Ž .Ž .j n� t � t � t

and for the space derivative,

2 T x , t y2T x , t qT x , t T n y2T nqT nŽ . Ž . Ž .� T jq1 n j n jy1 n jq1 j jy1
x , t ™ s .Ž .j n2 2 2� x � x � x

6.2.4Ž .
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Ž .See Sec. 2.4.5 for a discussion of finite-difference derivatives. Substituting these
Ž .expressions into Eq. 6.2.1 , we collect all terms on the right-hand side except for

the term involving T nq1 :j

� � tnq1 n n n n nT sT q� t S q T y2T qT . 6.2.5Ž .Ž .j j j jq1 j jy12� x

Ž .Equation 6.2.5 is a recursion relation that bears a distinct resemblance to Euler’s
method. If, at the nth time step, we know T n for all values of j on the spatial grid,j

Ž .then we can use Eq. 6.2.5 to determine T at the nq1st time step at each spatial
gridpoint. The programming of this method in Mathematica is nearly as simple as
for Euler’s method. We refer to T n as the function T[j,n], and write thej
recursion relation as

Cell 6.52

Clear["Global‘*****"];

T[j_____, n_____] := T[j, n] =
� �t

T[j, n-1] + �t S[j, n-1] + (T[j + 1, n-1]
2�x

-2 T[j, n-1] + T[j-1, n-1])

Note the use of the double equality, in order to force Mathematica to remember
previously evaluated values of T , just as was done in Euler’s method.

Ž .However, Eq. 6.2.5 works only for the interior points. We cannot use it to
determine T n or T n , because the equation would require T n and T n , which0 M y1 Mq1
are outside the range of the grid. Fortunately, these boundary values can be

n Ž . n Ž .specified by the boundary conditions T sT t and T sT t :0 1 n M 2 n

Cell 6.53

T[0, n_____] := T1[t]/. t™n �t;
M = 10; T[M, n_____] := T2[t]/. t™n �t

In grid methods, we determine the unknown function at the boundary points of
the grid using the boundary conditions, and use the finite-differenced differen-
tial equation only at the interior points.

In order to start the recursion, we must also specify the initial condition:

Cell 6.54

T[j_____, 0] := T0[x]/. x™j �x

To use this method, all we need do is choose � t and M, and specify respectively
the source function S, the initial and boundary conditions T0, T1, and T2, and the
width L of the system and the thermal diffusivity � . We do so below for a specific
case:
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Cell 6.55

L = 1; � = 1/4; �t = 0.01; �x = L/M; S[j_____, n_____] = 0;

T0[x_____] = x2 (1-x);
T1[t_____] = t/(1 + 3 t); T2[t_____] = 0;

We now make a table of plots of the solution, evaluated at different times, as
shown in Cell 6.56.

Cell 6.56

Table[ListPlot[Table[{�x j, T[j, n]}, {j, 0, M}],
PlotJoined™True, PlotRange™{0, .4},
AxesLabel™{"x", ""},

PlotLabel™"T[x, t],t=" <<<<<>>>>>ToString[�t n]],
{n, 0, 200, 10}];

Note, however, the rather small time step size that we took, � ts0.01. In part,
this is because the forward difference method used for the time derivative is only
first-order accurate in � t, so small steps are required to achieve reasonable
accuracy. But there is also another reason. If we attempt to run the code with a
larger time step size, we run into an immediate problem: numerical instability. This
is shown in Cell 6.57 for � ts0.05. So that we need not reevaluate previous cells
defining T , we use an Unset command to clear only specific values of T[j, n].

Cell 6.57

Do[Unset[T[j, n]], {j, 1, M-1}, {n, 1, 200}];

�t=0.05;

Table[ListPlot[Table[{�x j, T[j, n]}, {j, 0, M}],
PlotJoined™True, PlotRange™{0, .4}, AxesLabel™{"x", ""},
PlotLabel™"T[x,t],t="<<<<<>>>>>ToString[�t n]], {n, 0, 10, 2}];
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The result shows that the solution immediately blows up. What happened?

von Neumann Stability Analysis The problem encountered in the previous
example is one of numerical instability caused by an overly large step size � t. ®on
Neumann stability analysis provides us with the tools we need to understand and
overcome this problem. The analysis relies on the idea that certain short-wave-
length spatial modes in the numerical solution can be unstable. In the stability
analysis for these modes, it suffices to neglect boundary conditions and source
terms, if any, and solve the recursion relation analytically, using Fourier modes.
That is, keeping only one mode, we write T nsa e ik x j, where k is the wavenumberj n

Ž .of the mode. Applying this ansatz to the FTCS method 6.2.5 , and neglecting the
source term, we find that we can divide out a factor of e ik x j from both sides,
leaving us with the following difference equation for a :n

� � t ik � x yi k � xa sa q e a y2 a qe a .Ž .nq1 n n n n2� x

Using a trigonometric identity, this equation can be rewritten as

� � t k � x2a sa 1y4 sin . 6.2.6Ž .nq1 n 2ž /2� x

Linear homogeneous difference equations of this sort have a general solution of
the form

a sA� n , 6.2.7Ž .n

where A is an undetermined constant, dependent on the initial condition. The
parameter � is called the amplification factor, since it is the factor by which the
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Fig. 6.6 von Neumann stability analysis for the heat equation.

solution is amplified in a single timestep. This parameter can be determined by
Ž . Ž .substitution of Eq. 6.2.7 into Eq. 6.2.6 :

� � t k � x2�s1y4 sin . 6.2.8Ž .2 2� x

The amplification factor depends on the step size in both time and space, and on
the wavenumber k of the mode in question. The important issue facing us is that,

� �for certain choices of these parameters, � can be larger that unity. If this is so,
the solution is unstable, because as the timestep n increases, the solution blows up

n ik x j � �like � e . However, if � �1 for all values of k, then each mode will decay in
Žtime rather than grow, and the solution will be well behaved. The decay of these

modes does not necessarily imply that the solution to the heat equation goes to
zero, because boundary conditions and source terms neglected here can keep the
solution finite. Rather, it implies that any short-wavelength noise in the solution
will decay away. This is just what we want to happen in order to obtain a smooth

.solution.
� �These considerations lead us to the condition that � F1 for all wavenumbers

Ž .k in order for our numerical solution to be stable. In Fig. 6.6 we graph Eq. 6.2.8
vs. k for several values of the parameter � � tr� x 2. From the figure, one can see
that the most unstable wavenumber satisfies k � xs� . For this wavenumber, Eq.
Ž . 26.2.8 becomes �s1y4� � tr� x , and the solution is stable for �Gy1. This
implies

� � t 1F 6.2.9Ž .2 2� x

in order for the FTCS method to be stable. This inequality is known as a Courant
condition. The Courant condition sets a rather stringent limit on the maximum
time step size � t for a given value of � x. For example, in the problem solved in

1the previous section, we took �s and � xs0.1, implying a maximum time step4

size given by � tF0.02. Thus, the first solution, with � ts0.01, worked well, but
the second solution, with � ts0.05, violated the Courant condition and the
method failed.
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CTCS Method The FTCS method uses a forward difference approximation for
the time derivative, which is only first-order accurate in � t. A higher-accuracy
difference approximation to the time derivative would be preferable. One simple
approach is the CTCS method, where both the time and space derivatives are
center-differenced. For the heat equation, this corresponds to the difference
equation

2 � � tnq1 ny1 n n n nT sT q2 � t S q T y2T qT . 6.2.10Ž .Ž .j j j jq1 j jy12� x

Unfortunately, however, von Neumann stability analysis of this equation leads us
to the conclusion that the CTCS method is unstable for any time step size. For,
when we substitute in T ns� n e ik x j, we obtain a quadratic equation for � :j

� 2q��y1s0, 6.2.11Ž .
Ž 2 . 2Ž .where �s 8� � tr� x sin k � xr2 . The two solutions for � are plotted in Cell

� �6.58. One of the two solutions has � �1 for all possible �-values, corresponding
to all possible � t, so the CTCS method does not work for the heat equation.
However, the CTCS method does work for other equations, such as the wave

Ž .equation and the Schrodinger equation. See the exercises.¨

Cell 6.58

sol = Solve[�2 + �� - 1 == 0, �];
Plot[Evaluate[�/. sol], {�, 0, 1}, AxesLabel™{"�", "�"}];

A way to modify the CTCS method so that it works for the heat equation is
discussed in the next sub-subsection.

Lax Method Finding a stable, efficient algorithm for the solution of a PDE is
‘‘more of an art than a science,’’ in the words of Press, Flannery, Teukolsky, and

Ž .Vetterling 1992 . Nowhere is this more evident than in the Lax method. In this
method, we make a seemingly trivial modification to the previous CTCS method
for the heat equation, and completely change the equation’s stability properties.
The change that we make is as follows: in the differenced time derivative,
Ž nq1 ny1 . Ž . ny1T yT r 2 � t , we replace T by its average value from surroundingj j j
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1nq1 ny1 ny1w Ž .x Ž .grid points: T y T qT r 2 � t . The resulting difference equation isj jq1 jy12

1 2 � � tnq1 ny1 ny1 n n n nT s T qT q2 � t S q T y2T qT . 6.2.12Ž .Ž .Ž .j jq1 jy1 j jq1 j jy122 � x

von Neumann stability analysis of this equation leads to the following quadratic
equation for the amplification factor � :

k � x2 2� q8 � sin �ycos k � xs0,ž /2
2 Ž . Ž .where �s� � tr� x . This is the same as Eq. 6.2.11 , except that cos k � x

replaces the constant term. But this makes a big difference. The magnitude of the
1solution to this quadratic is plotted in Cell 6.59, for �s . For this value of � , one5

� �can see that the solution is stable, since � F1. In fact, by varying the value of � ,
1one finds that the maximum possible value of � is . Thus, the Courant condition4

Ž .for Eq. 6.2.12 is
12� � tr� x F . 6.2.13Ž .4

Cell 6.59

sol = Solve[�2 + 8 � Sin[(k/2)] ^̂̂̂̂2 �-Cos[k] == 0, �];
Plot[Evaluate[Abs[(�/. sol)]/. �™1/5, {k, 0, 2 Pi},

AxesLabel™{"k", "|||||�|||||"}, PlotLabel™"|||||�|||||,
for � �t/�x2 = 1/5"];

The Lax modification to the CTCS method has improved matters over the
original FTCS method: the new method is now second-order accurate in both time

Ž .and space. However, the Courant condition of Eq. 6.2.13 is still a rather stringent
criterion for � t, making this method impractical for real-world problems. It would
be better if we could find a method that loosens this condition. One such method
is discussed below.

Implicit Methods. The Crank Nicolson Algorithm Problems that exhibit dif-
fusive behavior, such as the heat equation, are often best treated by implicit
methods. As an example of an implicit method, take the FTCS method applied to
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Ž .the heat equation, Eq. 6.2.5 , and replace the forward-differenced time derivative
� Ž n ny1 .with a backward difference, � Tr� t ™ T yT r� t. Then the heat equationt j jn

becomes

� � tn ny1 n n n nT yT s� t S q T y2T qT . 6.2.14Ž .Ž .j j j jq1 j jy12� x

Ž .This algorithm could be called the BTCS backward time, centered space method
Ž .but instead it is referred to as an implicit method. The reason is that Eq. 6.2.14

does not explicitly provide T n, given T ny1. Rather, since T n now appears on bothj j j
Ž . nsides of Eq. 6.2.14 , it provides a set of coupled linear equations for T which wej

must solve. This is as opposed to previous methods such as FTCS, where T n isj
given explicitly without needing to solve any equations. These previous methods
are called explicit methods.

Ž .The added complexity of Eq. 6.2.14 is offset by its superior stability properties.
Ž .von Neumann stability analysis applied to Eq. 6.2.14 yields the following amplifi-

cation factor:
y1k � x2�s 1q4� sin , 6.2.15Ž .ž /2

2 � �where �s� � tr� x . Thus, � F1 for any value of � . This method is stable for
any choice of � t.

However, the method is still only first-order accurate in � t, because of the
backward time difference. A second-order method can now be easily obtained by

Ž .taking the average of the right-hand side in Eq. 6.2.14 between time steps ny1
and n:

1n ny1 n ny1T yT s � t S qSŽ .j j j jž2

� � t n n n ny1 ny1 ny1q T y2T qT qT y2T qT . 6.2.16Ž .Ž .jq1 j jy1 jq1 j jy12 /� x
1Now the right-hand and left-hand sides are both centered at timestep ny , so the2

Ž .time derivative is now second-order accurate in � t. Equation 6.2.16 is called the
Crank�Nicolson scheme. von Neumann analysis of this equation leads to the
following amplification factor:

1y2� sin2 k � xr2Ž .
�s , 6.2.17Ž .21q2� sin k � xr2Ž .

which also exhibits stability for any choice of � t. The Crank�Nicolson method is
an implicit scheme that is very useful for solving linear problems with diffusive
behavior. Below, we implement the Crank�Nicholson scheme in Mathematica.

First, we choose values for the parameters:

Cell 6.60

Clear["Global‘*****"];

L = 1; M = 10; �t = 0.05; �x = L/M; � = 1/4;
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Note the large time step size relative to the Courant condition for the FTCS
Ž . Ž .� tF0.02 or the CTCS�Lax � tF0.01 method.

Next, we choose initial and boundary conditions, and a source term:

Cell 6.61

T0[x_____] = Sin[Pi x/L]//N;
T[0, n_____] := 0;
T[M, n_____] := 0;
S[j_____, n_____] = 0;

These initial and boundary conditions correspond to a single Fourier mode, which
should decay away according to

T x , t sey� � 2 trL2
sin � xrL . 6.2.18Ž . Ž . Ž .

Ž . nNow we solve Eq. 6.2.16 for T . This equation couples the different j-valuesj
together, so we need to solve a set of linear equations. This can be easily done

Ž .using Solve, particularly since the equations are sparse most elements are zero ,
wand the method of Gaussian elimination can be employed. These details need not

concern us; Solve takes care of them. Those who wish to learn about Gaussian
elimination and sparse-matrix solution techniques are referred to Press et al.
Ž . x1992 , or any other book on basic numerical techniques.

Since the output of Solve is a list of substitutions, it is more convenient to
write the recursion relation in terms of this list of substitutions rather than T n

j
itself. To this end, we define sol[n] as this list of substitutions for the solution at
time step n. For instance, the initial condition is given by the following list:

Cell 6.62

sol[0] = Table[T[j, 0]™T0[j �x], {j, 1, M-1}]

{T[1, 0]™0.309017, T[2, 0]™0.587785, T[3, 0]™0.809017,
T[4, 0]™0.951057, T[5, 0]™1., T[6, 0]™0.951057,
T[7, 0]™0.809017, T[8, 0]™0.587785, T[9, 0]™0.309017}

Note that we need not add the end points to the list, since they are already
determined by the boundary conditions. We can then write the Crank�Nicolson
method as the following recursion relation on sol[n]:

Cell 6.63

sol[n_____] := sol[n] =
Module[{vars, eqns},
(*define the variables*)
vars = Table[T[j, n], {j, 1, M-1}];
(*define the equations (Eqs. 6.2.16),
substituting for the values of T determined at the last
timestep *)

1
eqns = Table[T[j, n]-T[j, n-1] == (�t (S[j, n] +

2
� �t

S[j, n-1]) + (T[j + 1, n]-2T[j, n] +
2�x
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T[j-1, n] +T[j + 1, n-1] -2T[j, n-1] +
T[j-1, n-1])), {j, 1, M-1}]/. sol[n-1];

(*solve the equations *)
Solve[eqns, vars][[1]]]

Cell 6.64

CrankNicolson = Table[ListPlot[Table[{�x j, T[j, n]},
{j, 0, M]}/. sol[n],
PlotJoined™True, PlotRange™{0, L}, {0, 1}},
AxesLabel™{"x", ""}, PlotLabel™"T[x,t],t="
<<<<<>>>>>ToString[�t n],

DisplayFunction™Identity], {n, 0, 40, 5}];
exact = Table[Plot[e-�2�t/L2 Sin[Pi x/L], {x, 0, L},
DisplayFunction™Identity,

PlotStyle™RGBColor[1, 0, 0]], {t, 0, 40 �t, 5 �t}];
Table[Show[CrankNicolson[[n]], exact[[n]],

DisplayFunction™$$$$$DisplayFunction],
{n, 1, Length[exact]}];

ŽThe recursion comes about because sol[n] calls sol[n-1] see the substitution
.command in the definition of eqns . We can now evaluate the solution and

animate the result. In Cell 6.64 we compare this solution with the exact solution,
Ž .Eq. 6.2.18 . The method works beautifully, following the exact result precisely

even for these rather coarse grids in time and space.

Finally, we note that, just as it was possible to create an interpolation function
for grid solutions to ODEs, it is possible to do the same for grid solutions to PDEs:
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Cell 6.65

Tsol = Interpolation[
Flatten[Table[Table[{j�x, n �t, T[j, n]},
{j, 0, M}]/. sol[n], {n, 0, 25}], 1]]

InterpolatingFunction[{{0., 1.}, {0., 1.25}}, <>]

The Flatten command used here removes an extra set of brackets that the
Interpolation function finds objectionable. We can plot the solution function
Tsol[x,t] vs. both x and t, and we do so in Cell 6.66.

Cell 6.66

Plot3D[Tsol[x, t], {x, 0, 1}, {t, 0, 1.25},
AxesLabel™{"x", "t", "T[x,t]"}];

von Neumann and Mixed Boundary Conditions Grid methods can also be
employed in problems involving von Neumann or mixed boundary conditions.
Take, for example, a heat flow problem on 0�x�L with a boundary condition

�that � � Tr� x sy�. This von Neumann condition can be met by finite-xs0
differencing the derivative at the boundary xs0:

T nyT n �1 0 sy , 6.2.19Ž .� x �

from which we can obtain the boundary value for the temperature in terms of the
interior points:

T nsT nq� x �r� . 6.2.20Ž .0 1

Ž .On the other hand, the left-hand side of Eq. 6.2.19 is a forward-difference
form for the derivative at xs0, and is only first-order accurate in � x. Thus, the
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error in our numerical method will scale only as the first power of � x. This is
unfortunate, because the centered-difference equations used for the interior points
are all of second-order accuracy in � x. It would be better to use a more accurate

Ž .approximation for T � xs0, t .
One simple improvement is to place the boundary at xs0 halfway between the

grid points 0 and 1. Then we can use a centered-difference form for the von
Ž . w n n xNeumann boundary condition, T � xs0, t ™ T yT r� xsy�r�. The equa-1 0

tion is the same as before, but now it is second-order rather than first-order
accurate. The only change that we need make is to the location of the grid points.
Now,

1x s� x jy , js0, 1, 2, . . . , M . 6.2.21Ž .Ž .j 2

Considering now the boundary condition at xsL, if this condition is also von
Neumann, then xsL must fall between the My1st and Mth points in order to

Ž .employ the same centered-difference scheme there. Therefore, Eq. 6.2.21 implies
1 1Ž . Ž .that Ls� x My y and so � xsLr My1 . On the other hand, if the2 2

boundary condition at xsL is Dirichlet, then we need to have the Mth grid point
1Ž .fall at xsL, and this implies that � xsLr My .2

For example, consider the heat equation with insulating boundary conditions at
� � Ž .both ends, � Tr� x s� Tr� x s0. For the grid we use Eq. 6.2.21 withxs0 xsL

1Ž .� xsLr My1 . For this example, we take Ms10, Ls1, �s , � ts0.05 and4

set source terms equal to zero:

Cell 6.67

M = 10; L = 1.;
�x = L/(M-1);
x[j_____] = �x (j-1/2);
� = 1/4; �t = 0.05;
S[j_____, n_____] = 0;

Ž .According to Eq. 6.2.20 the boundary conditions are satisfied by the equations

Cell 6.68

T[0, n_____] = T[1, n];
T[M, n_____] = T[M-1, n];

For the initial condition, we again choose a single Fourier mode as a test, but this
time we choose a cosine mode so as to satisfy the boundary conditions:

Cell 6.69

T0[x_____] = Cos[Pi x/L];

Ž .2In theory this mode should decay away exponentially at the rate � �rL . We can
now run any of our previously discussed methods to solve for the temperature
evolution. We use the Crank�Nicolson module created in the previous section, and
plot the result in Cell 6.71. The close agreement between the numerical result
Ž . Ž .solid and the exact solution dashed speaks for itself.
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Cell 6.70

sol[0] = Table[T[j, 0]™T0[x[j]], {j, 1, M-1}]

{T[1, 0]™0.984808, T[2, 0]™0.866025, T[3, 0]™0.642788,
T[4, 0]™0.34302, T[5, 0]™6.12323�10-17,
T[6, 0]™-0.34202, T[7, 0]™-0.642788,
T[8, 0]™-0.866025, T[9, 0]™-0.984808}

Cell 6.71

CrankNicolson = Table[ListPlot[Table[{x[j], T[j, n]},
{j, 0, M}]/. sol[n],

PlotJoined™True, PlotRange™{{0, L}, {-1, 1}},
AxesLabel™{"x", ""}, PlotLabel™"T[x,t],t="
<<<<<>>>>>ToString[�t n],

DisplayFunction™Identity], {n, 0, 40, 5}];
exact = Table[Plot[e-�2 �t/L2 Cos[Pi x/L], {x, 0, L},
DisplayFunction™Identity,

PlotStyle™{RGBColor[1, 0, 0], Dashing[{0.05, 0.05}]}],
t, 0, 40 �t, 5 �t}];

Table[Show[CrankNicolson[[n]], exact[[n]],
DisplayFunction™$$$$$DisplayFunction],
{n, 1, Length[exact]}];

Mixed boundary conditions are more of a challenge. Now both the function and
its derivative are required on the boundary. For example, at xs0 the general

� w Ž . xmixed boundary condition is of the form � � Tr� x sa T 0, t y , where � , a,xs0
and  are given constants. How do we obtain second-order-accurate values for
both T and its derivative at the boundary point?

Since the boundary at xs0 falls halfway between the js0 and js1 grid
1 n nŽ .points, one simple approach is to use the average value, T qT , to approxi-0 12
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mate T at xs0. We still use the centered-difference form for the first derivative
�for � Tr� x at xs0, so the mixed boundary condition becomesxs0

n nT yT 11 0 n n� sa T qT y . 6.2.22Ž .Ž .0 1� x 2

Solving for T n yields0

2 a � xq 2�ya � x T nŽ . 1nT s . 6.2.23Ž .0 2�qa � x

�Similarly, for a mixed boundary condition at xsL, namely � � Tr� x sxsL
w Ž . xyb T L, t y , we take a grid for which xsL falls halfway between gridpoints

1 n n� Ž .My1 and M, so that T s T qT . Then the boundary condition isxsL M My12

n nT yT 1M My1 n n� syb T qT y , 6.2.24Ž .Ž .My1 M� x 2

which leads to

2b � xq 2�yb � x T nŽ . My1nT s . 6.2.25Ž .M 2�qb � x

Implementation of these boundary conditions follows the same course as in our
previous examples, and is left to the exercises.

Multiple Spatial Dimensions

Explicit Method. The explicit methods discussed previously generalize easily to
PDEs in multiple spatial dimensions. Continuing with our heat equation model, we
now consider the problem in two dimensions:

� � 2 � 2

T x , y , t s� q T x , y , t qS x , y , t . 6.2.26Ž . Ž . Ž . Ž .2 2� t ž /� x � y

For simplicity, we take the boundary to be a rectangular box of sides L and L ,x y
and create a rectangular spatial grid in x and y according to

x s j � x , js0, 1, 2, . . . , M ,j x

6.2.27Ž .
y sk � y , ks0, 1, 2, . . . , M ,k y

Žwhere � xsL rM and � ysL rM . Nonrectangular boundaries are treated inx x y y
.Sec. 6.2.2.
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The FTCS method on this grid is a trivial extension of the method in one
dimension:

� � t � � tnq1 n n n n n n n nT sT q� t S q T y2T qT q T y2T qT .Ž . Ž .jk jk jk jq1 k jk jy1 k jkq1 jk jky12 2� x � y

6.2.28Ž .

Ž .Equation 6.2.28 is valid for the points interior to the rectangle, and must be
supplemented by boundary conditions that determine the points on the boundary,
as well as by initial conditions specifying T 0 . von Neumann stability analysis forjk
this difference equation considers the stability of a Fourier mode of the form
� m e ik x x e ik y y, and leads to a Courant condition that

1 � x 2� y2

� � tF 6.2.29Ž .2 22 � x q� y

Ž .see the exercises . The other explicit methods discussed previously, CTCS and
Lax, also can be easily extended to multiple dimensions.

Example: Wave Equation with Nonuniform Wave Speed As an example of an
explicit method in two dimensions, we construct the numerical solution to a wave
equation in two dimensions with nonuniform wave speed,

� 2 � 2 � 2
2z x , y , t sc x , y q z x , y , t ,Ž . Ž . Ž .2 2 2ž /� t � x � y

Ž . Ž . Ž . Ž .with initial conditions z x, y, 0 sz x, y , z x, y, 0 s® x, y . Here we take the˙0 0
simple case z s® s0. For boundary conditions, we choose a square domain with0 0
unit sides and take an oscillating boundary condition,

z 0, y , t sz 1, y , t sz x , 1, t s0, z x , 0, t sx 1yx sin 2 t .Ž . Ž . Ž . Ž . Ž .

For the wave speed, we choose

2 21c x , y s 1y0.7 exp y2 xy0.5 y5 yy0.5 .Ž . Ž . Ž .½ 510

The wave speed, plotted in Cell 6.72, has a minimum at the center of the box.

Cell 6.72

cw[x_____, y_____] = 1/10 (1-.7 Exp[-2 (x-0.5)2-5 (y-0.5)2]);

Plot3D[cw[x, y], {x, 0, 1}, {y, 0, 1},
AxesLabel™{"x", "y", ""}, PlotLabel ->>>>> "wave speed"];
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For the numerical method, we choose CTCS. This explicit method works well
for the wave equation, being second-order in both the space and time step sizes,
and allowing relatively large steps according to the von Neumann stability crite-

12 2 2 Ž .rion: for � xs� ys�, c � t r� F for stability see the exercises . Therefore, if2
1 1 'Ž .cF and �s , � tF1r 3 2 s0.24. Below, we choose � ts0.2:10 30

Cell 6.73

Clear["Global‘*****"];

(* define the grid *)
M = 30; M = 30;x y

L = L =1;x y

�x = L /M ; �y = L /M ;x x y y

�t = 0.2;

x[j_____] := j �x;
y[k_____] := k �y;

(* initial conditions *)
z0[j_____, k_____] := 0;
v0[j_____, k_____] := 0;

(* zeroth step: *)
z[j_____, k_____, 0] := z0[j, k];

(* define the wave speed on the grid *)
c[j_____, k_____] := cw[x[j], y[k]];

(* boundary conditions *)
z[0, k_____, n_____] := 0;
z[M , k_____, n_____] := 0;x

z[j_____, 0, n_____] := x[j] (1-x[j]) Sin[2 n �t];
z[j_____, M , n_____] := 0;y
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The CTCS method for the wave equation is

c2 � t 2 c2 � t 2
jk jknq1 n ny1 n n n n n nz s2 z yz q z y2 z qz q z y2 z qz .Ž . Ž .jk jk jk jq1 k jk jy1 k j kq1 jk j ky12 2� x � y

We construct the recursion relation for this method below:

Cell 6.74

z[j_____, k_____, n_____] := (z[j, k, n] = 2 z[j, k, n-1]-z[j, k, n-2] +

�t2 c[j, k] ^̂̂̂̂2
((z[j+1, k, n-1]-2 z[j, k, n-1] +

2�x

z[j-1, k, n-1]) + (z[j, k + 1, n-1]-2 z[j, k, n-1] +

z[j, k-1, n-1])))/; nG2

The method can only be used for nG2, because evaluation of the nth timestep
refers back to the ny2nd step. Therefore, for the first step, we use the trick

w Ž .employed in Chapter 1 for second-order ODEs see Eq. 1.4.28 and the surround-
xing discussion :

� t 2
1 0z sz q® � tq a ,jk jk 0 jk jk2

Ž .where ® is the initial velocity equal to zero for our choice of initial conditions ,0 jk
and a is the initial acceleration, given byjk

c2 c2 � t 2
jk jk0 0 0 0 0 0a s z y2 z qz q z y2 z qzŽ . Ž .jk jq1 k jk jy1 k j kq1 jk j ky12 2� x � y

Ž .this is also equal to zero for our initial conditions . Therefore, we simply have
z1 sz 0 s0:jk jk

Cell 6.75

z[j_____, k_____, 1] := 0;

Ž .Of course, this cell must be modified if other initial conditions are used. At each
timestep, we construct an interpolation function of the solution in x and y:

Cell 6.76

zsol[n_____] := zsol[n] = Interpolation[
Flatten[Table[{j�x, k �y, z[j, k, n]}, {j, 0, M },x

{k, 0, M }], 1]]y
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In Cell 6.77 we plot the solution. The wavefronts curve toward the region of
lower c according to Snell’s law, and as they do so the amplitude and wavelength
decrease, as expected from our WKB analysis of this equation in Chapter 5.
However, note the formation of a focus at a point behind the region of low wave
speed, where the amplitude increases as wave energy is concentrated. This region

Žis acting as a lens for the waves see Exercise 13 in Sec. 5.2 and the examples in
Sec. 5.3.1 for similar problems, in which the ray trajectories for the waves are

.evaluated .

Implicit Methods and Operator Splitting. Putting implicit methods in multidi-
mensional form takes a bit more thought. For example, if we try to implement the
Crank�Nicolson scheme directly in two dimensions, we obtain

1n ny1 n ny1 n ny1 n ny1T sT q � t S qS qD T qD T qD T qD T , 6.2.30Ž .Ž .jk jk jk jk x jk x jk y jk y jk2

where for convenience we have introduced the notation

1 � � tn n n nD T s T y2T qT ,Ž .x jk jq1 k jk jy1 k22 � x

1 � � tn n n nD T s T y2T qT .Ž .y j j kq1 jk j ky122 � y

ŽD and D are difference operators for second derivatives in the x and yx y
.directions respectively, multiplied by � � tr2.

Ž .Solution of Eq. 6.2.30 requires some finesse, since the number of coupled
n Ž .Ž .equations for T equals M y1 M y1 , which can easily exceed several hun-jk x y

dred. The problem is even worse in three dimensions, where thousands of coupled
equations must be solved simultaneously. However, the equations are sparse, and
Mathematica’s Solve function is sufficiently adept at solving such problems so that
even in three dimensions, the solution can be obtained directly without too much
difficulty. We leave this brute-force approach to the problems at the end of the
section.

Rather than using a direct solution of the coupled equations, it is often
preferable to generalize the Crank�Nicolson scheme to multiple dimensions in a
slightly different way. The idea is to split the spatial operator �2 into its
constituent operators � 2r� x 2 and � 2r� y2, and also split the time step into two
half steps, each of size � tr2. We treat the � 2r� x 2 part of the operator implicitly

Cell 6.77

Table[Plot3D[Evaluate[zsol[n][x, y]], {x, 0, 1},
{y, 0, 1}, PlotPoints™60, PlotRange™{-.5, .5},
Mesh™False,

PlotLabel ->>>>> "t= <<<<<>>>>>ToString[n �t]], {n, 0, 140, 4}];
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2 2 win the first half step, and the � r� y part implicitly in the next half step. Note:
this type of operator splitting is called the alternating-direction implicit method.
Another type of operator splitting is discussed in Chapter 7 in relation to a

Ž . Ž .nonlinear convectionrdiffusion equation: see Eqs. 7.2.29 � 7.2.31 . For more on
Ž . xoperator splitting, see Press et al. 1992 . The equations used for each half step

are

1ny1r2 ny1 ny1 ny1r2 ny1T sT q � tS qD T qD T ,jk jk jk x jk y jk2

6.2.31Ž .
1n ny1r2 n ny1r2 nT sT q � tS qD T qD T .jk jk jk x jk y jk2

In the first half step, the source and � 2r� y2 are treated with forward time
differencing as in Euler’s method, and � 2r� x 2 is treated with a backward-dif-
ference; but in the next half step this is reversed and � 2r� x 2 is treated with a
forward-difference derivative, while the source and � 2r� y2 are treated with a
backward-difference derivative. As a result of this time symmetry, the method is

Žstill second-order accurate in time and in space as well, due to the centered-dif-
.ference form for D and D . Also, one can show that it is still absolutely stable.x y

Now, however, we need only solve a one-dimensional set of coupled equations in
each half step. In the first half step we must solve M y1 coupled equations forx
each value of k, and in the second half step we solve M y1 equations for eachy

Ž .Ž .value of j. All in all, we still have to solve M y1 M y1 equations, but they arex y
only coupled in batches of M y1 or M y1 equations at a time, and thisx y
simplifies the task enormously. The method is implemented below.

Cell 6.78

L = 1; L = 2; M = 10; M = 10; �t = 0.05; �x = L /M ;x y x y x x

�y = L /M ; � = 1/4;y y

We now must choose initial and boundary conditions on all four sides of the
rectangle. For simplicity, we take homogeneous Dirichlet conditions, no source
term, and an initial condition corresponding to the slowest-varying eigenmode of
�2:

Cell 6.79

Ž .4 initial condition 4
T0[x_____, y_____] = Sin[Pi y/L ] Sin[Pi x/L ]//N;y x

(* boundary conditions on the four sides *)
T[j_____, 0, n_____] := 0;
T[0, k_____, n_____] := 0;
T[j_____, M , n_____] := 0;y

T[M , k_____, n_____] := 0;x

(* source term *)
S[j_____, k_____, n_____] = 0;
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This initial condition should decay away according to

T x , t sey� tŽ� 2 rL2
xq� 2 rL2

y . sin � xrL sin � yrL . 6.2.32Ž . Ž . Ž .Ž .x y

Ž . nNow we solve Eq. 6.2.31 for T . Just as in the implementation of the 1Djk
Crank�Nicolson method, we define sol[n] as a list of substitutions for the
solution at time step n. The initial condition is given by the following list:

Cell 6.80

sol[0] =
Flatten[Table[T[j, k, 0]™T0[j �x, k �y], {j, 1, M -1},x

{k, 1, M -1}]];y

Also, we define the second-derivative difference functions to simplify the notation:

Cell 6.81

� �t
Dx[j_____, k_____, n_____] := (T[j + 1, k, n]-2 T[j, k, n] +

22�x
T [j-1, k, n]);

� �t
Dy[j_____, k_____, n_____] := (T[j, k + 1, n]-2 T[j, k, n] +

22�y
T[j, k-1, n]);

Then we have

Cell 6.82

sol[n_____] := sol[n] =
Module[{},
(*define the variables for the first half-step *)
vars1[k_____] := Table[T[j, k, n-1/2], {j, 1, M -1}];x

(*define the equations for the first half-step in Eqs.
(6.2.31), substituting for the values of T determined
at the last time step *)

eqns1[k_____] := Flatten[Table[T[j, k, n-1/2]-T[j, k, n-1] ==
1

�t S[j, k, n-1] + Dx[j, k, n-1/2] + Dy[j, k, n-1],
2
{j, 1, M -1}]/. sol[n-1]];x

(*solve the equations *)
soll = Flatten[Table[Solve[eqns1[k], vars1[k]],
{k, 1, M -1}]];y

(*define the variables for the second half-step *)
vars2[j_____] := Table[T[j, k, n], {k, 1, M -1}];y

(*define the equations for the second half-step in Eqs.
(6.2.31), substituting for the values of T determined at
the last time step and the first half-step*)

eqns2[j_____] := Flatten[Table[T[j, k, n] -T[j, k n-1/2] ==
1

�t S[j, k, n] + Dx[j, k, n-1/2] + Dy[
2

j, k, n], {k, 1, M -1}]/. Join[sol[n-1], soll]];y

(*solve the equations *)
Flatten[Table[Solve[eqns2[j], vars2[j]], {m, 1, M -1}]]]x
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In Cell 6.84 we display the result, after creating an interpolation function
Tsol[x,y,t].

Cell 6.83

Tsol = Interpolation[
Flatten[Table[Table[{j�x, k �y, n �t, T[j, k, n]},
{j, 0, M }, {k, 0, M }]/.x y

sol[n], {n, 0, 20}], 2]]

InterpolatingFunction[{{0., 1.}, {0., 2.}, {0., 1.}}, <>]

Cell 6.84

Table[Plot3D[Tsol[x, y, t], {x, 0, L },x

{y, 0, L }, PlotRange™{0, 1}, AxesLabel™{"x", "y", ""},y

PlotLabel™"T[x,y,t],t=" <<<<<>>>>>ToString[t] <<<<<>>>>> "\\\\\n",
BoxRatios™{L , L , 1}], {t, 0, 1, .1}];x y

In Cell 6.85, we compare the Crank�Nicolson solution with the exact solution, Eq.
1Ž . Ž .6.2.32 , along a cut at xs . The numerical solution solid line is so close to the2

Ž .exact solution dashed line that the two curves cannot be distinguished.
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Cell 6.85

CrankNicolson = Table[Plot[Tsol[1/2, y, t], {y, 0, L },y

PlotRange™{0, 1}, AxesLabel™{"y", ""},
DisplayFunction™Identity,

1
PlotLabel™"T[ , y, t],t="<<<<<>>>>>ToString[t]],

2
{t, 0, 1, .1}];

exact = Table[Plot[e-�2�t(1/Lx2+1/Ly2) Sin[Pi 5 �x/L ] Sin[x

Pi y/L ], {y, 0, L },y y

DisplayFunction™Identity, PlotStyle™{RGBColor[1, 0, 0],
Dashing[{0.05, 0.05}]}, {t, 0, 1, .1}];

Table[Show[CrankNicolson[[n]], exact[[n]],
DisplayFunction ™$$$$$DisplayFunction],
{n, 1, Length[exact]}];

6.2.2 Boundary-Value Problems

Direct Solution We now turn to the solution of time-independent boundary-value
problems using grid techniques. The canonical example of such a problem is
Poisson’s equation in two dimensions,

� 2 � 2

q � x , y s� x , y . 6.2.33Ž . Ž . Ž .2 2ž /� x � y
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We first consider the problem in a rectangular box with dimensions L and L ,x y
Ž .with � specified on the boundaries Dirichlet boundary conditions . As before, we

construct a grid on which we will determine �, at positions

x s j � x , js0, 1, 2, . . . , M ,j x

y sk � y , ks0, 1, 2, . . . , M ,k y

with � xsL rM and � ysL rM .x x y y
One way to solve this problem is to centered-difference the spatial derivatives,

Ž .defining a spatial grid that turns Eq. 6.2.33 into a system of coupled linear
equations:

� y2� q� � y2� q�jq1 k jk jy1 k j kq1 jk j ky1q s� ,jk2 2� x � y

js1, 2, . . . , M y1, ks1, 2, . . . , M y1. 6.2.34Ž .x y

These equations for the potential in the interior of the box are supplemented by
the boundary conditions on the box edges, which directly determine � for js0,jk
jsM , ks0, and ksM .x y

We can solve this problem directly using Solve. This involves the solution of
Ž .Ž .M y1 M y1 simultaneous equations for the potential at the interior points.x y
This is a daunting task, but let’s try it anyway to see if Mathematica can handle it.
First, we specify the dimensions of the box and the number of grid points:

Cell 6.86

M = 10; M = 10;x y

L = L = 1.;x y

�x = L /M ; �y = L /M ;x x y y

Next, we specify the boundary conditions. We take homogeneous Dirichlet condi-
tions:

Cell 6.87

�[0, k_____] = 0;
�[M , k_____] = 0;x

�[j_____, 0] = 0;
�[j_____, M ] = 0;y

For the source, we choose uniform charge density, �s1:

Cell 6.88

�[j_____, k_____] = 1;
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Ž .We are now ready to create the list of equations using Eq. 6.2.34 for the interior
points:

Cell 6.89

eqns = Flatten[

�[j + 1, k]-2 �[j, k] + �[j-1, k]
Table[ q

2�x

�[j, k + 1]-2 �[j, k] + �[j, k-1] ss
2�y

�[j, k], {j, 1, M -1}, {k, 1, M -1}]];x y

The list of variables for which we are solving is given by the following command:

Cell 6.90

vars = Flatten[Table[�[j, k], {j, 1, M -1}, {k, 1, M -1}]];x y

Finally, we solve the equations:

Cell 6.91

sol = Solve[eqns, vars][[1]];

Mathematica is able to solve this problem quite quickly. We can construct an
interpolation function of the solution in the usual way:

Cell 6.92

�sol = Interpolation[
Flatten[Table[{j�x, k �y, �[j, k]}, {j, 0, M },x

{k, 0, M }]/. sol, 1]]y

InterpolatingFunction[{{0., 1.}, {0., 1.}},<>]

A contour plot of the solution is shown in Cell 6.93.

Cell 6.93

ContourPlot[�sol[x, y], {x, 0, 1}, {y, 0, 1},
FrameLabel™{"x", "y"},
PlotLabel™"Potential inside a charge-filled square box"];
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Nonrectangular Boundaries The same direct method of solution can be used
for Poisson’s equation in domains with nonrectangular boundaries. We will assume
for now that the boundary can be matched to some rectangular grid, so that grid
points fall on the boundary. The grid is chosen as

x sx q j � x , js f k q1, . . . , g k ,Ž . Ž .j 0
6.2.35Ž .

y sy qk � y , ks0, 1, 2, . . . , M ,k 0 y

Ž . Ž .where � xsL rM and � ysL rM ; f k and g k are two integer functionsx x y y
that determine the left and right edges of the domain, respectively; and L and Lx y
are the dimensions of a rectangular box that is sufficiently large to contain the

Ždomain of interest. This procedure does not work very well for smoothly curved
.boundaries, as we will see.

Ž .The equations for the interior points are the same as Eq. 6.2.34 :

� y2� q� � y2� q�jq1 k jk jy1 k j kq1 jk j ky1q s� ,jk2 2� x � y

js f k q1, . . . , g k y1, ks1, 2, . . . , M y1. 6.2.36Ž . Ž . Ž .y

These equations for the potential in the interior of the box are supplemented by
the boundary conditions on the box edges, which directly determine � on thejk
boundary points.

Cell 6.94

Clear["Global‘*****"];

M = 30; M = 30;x y

L = 2; L = 2;x y

�x = L /M ; �y = L /M ;x x y y

x0 =-1; y0 =-1;
x[j_____] = x0 + j �x;
y[k_____] = y0 + k �y;
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The boundary conditions are specified by the following statements:

Cell 6.95

(* boundary conditions *)
�[j_____, k_____] := V0[j, k]/; jFf[k]
�[j_____, k_____] := V0[j, k]/; j G g[k]
�[j_____, 0] := V0[j, 0];
�[j_____, M ] := V0[j, M ];y y

Let’s choose the following equations for the boundaries: x 2qy2s1 and xs
� �y y . This boundary, shown in Cell 6.98, is the same as that chosen in Example 3

of Sec. 7.1, except that it is rotated by 90 degrees.
Ž . 2 Ž .We choose boundary conditions V r s1y r on the cusp surfaces, and V r0 0

s0 on the circular part of the boundary:

Cell 6.96

V0[j_____, k_____] := 0/; Abs[y[k]]G1/Sqrt[2] |||||||||| x[j] >>>>> 0
V0[j_____, k_____] := 1-x[j] ^̂̂̂̂2-y[j] ^̂̂̂̂2/; Abs[y[k]] <<<<<

1/Sqrt[2] &&&&&&&&&& x[j]F0

Ž . Ž .To determine the integer functions f k and g k that best fit this boundary, we
Ž . Ž .will first break the boundary up into left and right boundaries, x y sx y on theR

Ž . Ž .right and x y sx y on the left. For our example, equations for the left andL
right boundaries are of the following form:

2'x y s 1yy ,Ž .R

2 � �'y 1yy , y �1r�2,
x y sŽ .L ½ � � � �y y , y �1r�2.

Ž . Ž . Ž .Then the integer functions f k and g k are determined by the values of j k
Ž . Ž Ž ..corresponding to these boundary equations. Using x j sx q j � xsx y k on0 R

w Ž Ž .. xthe right boundary yields js x y k yx r� x. Rounding down to the nearestR 0
Ž .integer, we obtain the value of j corresponding to the right boundary at ysy k .

Ž .This is our function g k :

x y k yxŽ .Ž .R 0g k sFloor . 6.2.37Ž . Ž .ž /� x

Similarly, on the left boundary,

x y k yxŽ .Ž .L 0f k sFloor . 6.2.38Ž . Ž .ž /� x

Ž .These integer functions are defined below using the above definitions of x y andR
Ž .x y :L
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Cell 6.97

1
g[k_____] := Floor (-x0 + Sqrt[1-y[k] ^̂̂̂̂2])

�x

1
f[k_____] := Floor (-x0-Sqrt[1-y[k] ^̂̂̂̂2]) /;

�x

Abs[y[k]] >>>>> 1/Sqrt[2]

1
f[k_____] := Floor (-x0-Abs[y[k]]) /; Abs[y[k]]F1/Sqrt[2]

�x

The shape of this domain is shown in Cell 6.98.

Cell 6.98

ListPlot[
Join[Table[{x[f[k]], y[k]}, {k, 0, M }],y

Table[{x[g[k]], y[k]}, {k, 0, M }]],y

PlotRange™{{-1.2, 1.2}, {-1.2, 1.2}}];

The irregularities in the boundary reflect the difficulty of fitting a rectangular
grid to a curved boundary. They can be reduced by using a finer grid, but this
increases the number of coupled equations that we need to solve. They can also be
reduced by employing an averaging technique, determining the value of � on the

Žboundary as a weighted average of surrounding grid points. See the exercises for
.an implementation of this technique. Alternatively, a nonrectangular grid can be
Ž .chosen that better matches the edge s . However, this is rather nontrivial, and will

not be pursued further here. An excellent introduction to irregular grids, finite
element analysis and the like, can be found on the web in a set of course notes by

Ž .Peter Hunter and Andrew Pullan 2002 . A recent textbook on the subject is also
listed in the chapter references.
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Here we will make do with the coarse fit obtained above. Since we may be off by
as much as a grid spacing � x in the boundary location, we can only expect our
solution to be first-order accurate in � x. However, for distances from the bound-
ary much greater than � x, the effect of the irregularities in the boundary often
average out, and the solution can be more accurate than this estimate suggests.

Continuing with our example, we take �s0 for the source,

Cell 6.99

�[j_____, k_____] = 0.;

Ž .Then the list of equations, using Eq. 6.2.34 for the interior points, is given by

Cell 6.100

eqns = Flatten[Table[

�[j + 1, k]-2 �[j, k] + �[j-1, k]
Table[ q

2�x

�[j, k + 1]-2 �[j, k] + �[j, k-1] ss
2�y

�[j, k], {j, f[k] + 1, g[k] -1}], {k, 1, M -1}]];y

and the list of variables is

Cell 6.101

vars = Flatten[Table[Table[�[j, k], {j, f[k] + 1, g[k]-1}],
{k, 1, M -1}]];y

Finally, we solve the equations:

Cell 6.102

sol = Solve[eqns, vars][[1]];

We can again construct an interpolation function of the solution:

Cell 6.103

�sol = Interpolation[
Flatten[Table[{x[j], y[k], �[j, k]}, {j, 0, M },x

{k, 0, M }]/. sol, 1]]y

InterplatingFunction[{{-1., 1.}, {-1., 1.}}, <>]

A contour plot of the solution is shown in Cell 6.105.

Cell 6.104

<<<<<<<<<<Calculus‘
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Cell 6.105

ContourPlot[�sol[x, y] Boole[1-x ^̂̂̂̂2-y ^̂̂̂̂2G
0&&&&&&&&&& xG-Abs[y]], {x, -1, 1.},
{y, -1, 1}, FrameLabel™{"x", "y"}, PlotLabel™"�(x,y)",

PlotPoints™60];

Since this problem is analytically tractable, we can compare our numerical
Ž .solution to the analytic solution. The analytic solution is given by Eq. 6.1.14 , with

Ž .�s5�r4. In Fig. 6.7, we compare the analytic solution solid to the grid solution
Ž . Ž .along the x-axis, for M sM s30 dashed and 60 dotted . The solution is morex y

Ž .accurate than the corresponding Galerkin solution see Fig. 6.2 near the singular-
ity at xsys0. However, the Galerkin solution is superior near the circular
boundary, because of the aforementioned difficulty of fitting a curved edge to a
grid.

Fig. 6.7
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Relaxation Methods

Jacobi’s Method. Although direct solution of the coupled equations for the
potential is not difficult using Mathematica’s Solve function, it can be much more
difficult to program an efficient direct solution in other computing environments
where access to sophisticated linear algebra packages may be limited. In these
situations, relaxation methods are often useful. These methods have the advantage
that they are relatively simple to code, needing no sophisticated external library
routines. On the other hand, they are typically not as fast as the direct methods.

In the following relaxation method, one uses the following idea: solutions to
Poisson’s equation can be thought of as the equilibrium solution to the heat

Ž .equation with a source, Eq. 6.2.26 . Starting with any initial condition, the heat
equation solution will eventually relax to a solultion of Poisson’s equation.

Ž .For example, we can take the FTCS algorithm for the heat equation, 6.2.28 ,
replace T by � and Sr� by y�, and take the largest possible time step size that is

Ž .stable according to the Courant condition 6.2.29 :

1 � x 2 � y2
nq1 n� s� qjk jk 2 22 � x q� y

�
1 1n n n n n ny� q � y2� q� q � y2� q� .Ž . Ž .jk jq1 k jk jy1 k j kq1 jk j ky12 2ž /� x � y

If one expands out the expression, one finds that the terms involving � n cancel,jk
leaving

1 � x 2 � y2 1 1nq1 n n n n� s y� q � q� q � q� .Ž . Ž .jk jk jq1 k jy1 k j kq1 j ky12 2 2 2ž /2 � x q� y � x � y

6.2.39Ž .

Ž .Equation 6.2.39 is called Jacobi’s method. The equation provides us with a
recursion relation for determining the solution to Poisson’s equation. Starting with
any initial choice for � at timestep ns0, the solution eventually relaxes to a
solution of the Poisson equation �2�s�. We stop the recursion when the differ-
ence between � at adjacent time steps is less than some tolerance.

The following simple code implements the Jacobi method in a domain of
arbitrary shape:

Cell 6.106

Clear["Global‘*****"];

M = 20; M = 20;x y

L = 1.5; L = 2.;x y

�x = L /M ; �y = L /M ;x x y y

The homogeneous boundary conditions are specified by the following statements:
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Cell 6.107

�[j_____, k_____, n_____] := 0/; jFf[k]
�[j_____, k_____, n_____] := 0/; jGg[k]
�[j_____, 0, n_____] = 0;
�[j_____, M , n_____] = 0;y

Ž .The main body of the code is the Jacobi recursion relation, Eq. 6.2.39 :

Cell 6.108

�[j_____, k_____, n_____] :=

1 �x2�y2
�[j, k, n] =

2 22 (�x q �y )

1
-�[j, k] + (�[j + 1, k, n-1] + �[j-1, k, n-1]) +

2ž �x

1
(�[j, k + 1, n-1] + �[j, k-1, n-1])

2 /�y

We must start the recursion with an initial guess. Typically the closer the guess
to the exact solution, the better the method works. However, we will simply choose
�s0 inside the domain:

Cell 6.109

�[j_____, k_____, 0] = 0;

In order to determine how well the solution is converging to the correct answer, we
take the difference between the solutions at the nth and ny1st steps:

Cell 6.110

error[n_____] := Max[Table[
Table[Abs[�[j, k, n] - �[j, k, n-1]],
{j, f[k] + 1, g[k]-1}], {k, 1, M -1}]]y

When this difference is sufficiently small, we can say that the solution has
converged.

Let’s now perform a solution of �2�s1 in the irregular domain specified
below:

Cell 6.111

�[j_____, k_____] = 1;

g[k_____] := M ; kF5;x

g[k_____] := M -k + 5/; 5 <<<<<k<<<<<15;x

g[k_____] := M -10/; k G 15;x

f[k_____] = Floor[12 (k/M -1) ^̂̂̂̂2];y
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It requires many steps, but eventually the error falls to an acceptable level; as
shown in Cells 6.112 and 6.113. We can again construct an interpolation function
of the solution, taken from the 200th iteration:

Cell 6.112

error[200]

4.74156�10-6

Cell 6.113

<<<<<<<<<<Graphics‘;

LogLogListPlot[Table[{n, error[n]}, {n, 1, 200}],
AxesLabel™{"n", "error[n]"}];

Cell 6.114

�sol = Interpolation[
Flatten[Table[{j�x, k �y, �[j, k, 200]}, {j, 0, M },x

{k, 0, M }], 1]]y

InterpolatingFunction[{{0., 1.5}, {0., 2.}}, <>]

A contour plot of the solution is shown in Cell 6.115.

Cell 6.115

ContourPlot[�sol[x, y], {x, 0, 1.5}, {y, 0, 2},
FrameLabel™{"x", "y"},
PlotLabel™"Potential inside a\\\\\ncharge-filled irregular

box",
AspectRatio™4/3, PlotPoints™30];



6.2 GRID METHODS 497

Simultaneous Overrelaxation The convergence of the Jacobi method is quite
slow, rendering it impractical in most applications. Furthermore, the larger the
system, the slower the convergence. This is simply because we are solving a heat
equation problem, and we know that for a system of size L the solution to the heat

2 wequation decays toward equilibrium at a rate ® of order �rL the order of
Ž .xmagnitude of the lowest eigenvalue: see Eq. 3.1.60 . Multiplying this rate by our

time step size � t, and using the Courant condition � t�� x 2r� , where � x is the
grid spacing, we obtain

21 Lsnumber of timesteps � .ž /®� t � x

The number of timesteps required to get a converged solution scales like the
square of the number of grid points across the system.

In order to improve on this poor scaling, various recipes have been put forward.
Ž .One of the most successful is the method of simultaneous o®errelaxation SOR . In

this algorithm, the Jacobi method is modified in two ways, as pointed out by the
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Ž .arrows in Eq. 6.2.40 :

First, we use improved values for � on the right-hand side as soon as they become
available, in order to help improve the guess we are making for the next step. This
looks like an implicit method with � nq1 appearing on both sides, but it is not:jk
assuming that we are stepping through the equations from smaller to larger values
of j and k, by the time we evaluate � nq1 we have already evaluated � nq1 andjk jy1 k

nq1 Ž� , so we can use these values on the right-hand side. Stepping through thej ky1
grid is performed when we evaluate the error in the solution, creating a table of
the error at each grid point, just as in the Jacobi method. The steps in the table are

.performed from smaller to larger values of j and k.
Also, we have added terms involving a relaxation parameter �. It has been

proven that this parameter must take on a value in the range 1���2 for the
method to work. This parameter is added in order to take advantage of the fact

Žthat the Jacobi method converges exponentially toward equilibrium it is a solution
.to the heat equation , and tries to overshoot the exponential decay and go directly

to the final result in one step. However, the rate of convergence of the SOR
method depends sensitively on the choice of �, and there is no way to know the

Ž .correct choice beforehand without doing considerable extra work . This is the
main weakness of the method. Typically, one must simply make a guess for �.
However, even if the guess is not close to the optimum value, the SOR method
usually works better than the Jacobi method, and is just as easy to program. We
provide a module below, and use it to solve the same problem as we did previously:

Cell 6.116

Clear["Global‘*****"];
SOR[�_____, Nstep_____] := Module[{�},

(***** choose grid parameters and shape of region*****)
M = 20; M = 20;x y

L = 1.5; L = 2.;x y

�x = L /M ; �y = L /M ;x x y y

g[k_____] := M ; kF5;x

g[k_____] := M -k + 5/; 5 <<<<< k <<<<< 15;x

g[k_____] := M -10/; k G 15;x

f[k_____] = Floor[12 (k/M -1) ^̂̂̂̂2];y

(***** boundary conditions *****)
�[j_____, k_____, n_____] := 0/; jFf[k];
�[j_____, k_____, n_____] := 0/; j G g[k];
�[j_____, 0, n_____] = 0;
�[j_____, M , n_____] = 0;y

(***** charge density *****)
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�[j_____, k_____] = 1;
(***** SOR recursion relation *****)
�[j_____, k_____, n_____] := �[j, k, n] = (1 - �) �[j, k, n-1] +

1 �x2 �y2 1
� -�[j, k] + (�[j + 1, k, n-1]) +

2 2 2ž2 (�x q �y ) �x

1
�[j-1, k, n]) + (�[j, k + 1, n-1] + �[j, k-1, n]) ;

2 /�y

(***** initial choice for � to start the iteration *****)
�[j_____, k_____, 0] = 0;
(***** define error at the nth step *****)
error[n_____] := Max[Table[Table[

Abs[�[j, k, n] - �[j, k, n-1]], {j, f[k] + 1, g[k]-1}],
{k, 1, M -1}]];y

(*****evaluate error at step NStep*****)
Print["error at step NStep = ", error[Nstep]];
(***** create interpolation function of solution *****)
�sol = Interpolation[

Flatten[Table[{j�x, k �y, �[j, k, Nstep]}, {j, 0, M },x

{k, 0, M }], 1]]]y

Cell 6.117

SOR[1.6, 30]

error at step NStep = 4.15829�10-7

InterpolatingFunction[{{0., 1.5}, {0., 2.}}, <>]

With the guess �s1.6, the result has already converged within 30 steps, as
compared to the 200 steps needed in the Jacobi method. The error is plotted in
Cell 6.118, showing faster convergence than the Jacobi method. A description of

Ž .the theory behind SOR, and further references, can be found in Press et al. 1992 .
The reader is invited to vary the parameter �, the shape of the region, and the
boundary conditions in order to examine the convergence properties of the
method.

Ž .FFT Method Solution of Poisson’s equation within a rectangle or a 3D box can
be efficiently performed using the analytic trigonometric Fourier series methods
discussed in Chapter 4. However, for high-accuracy results, the number of terms
kept in the series in each dimension must be large, and the total number of terms

Ž . Ž .in the series is the square in 2D or cube in 3D of this large number. Evaluation
of the enormous list of Fourier coefficients can be most rapidly accomplished using

Cell 6.118

<<<<<<<<<<Graphics ‘
LogLogListPlot[Table[{n, error[n]}, {n, 1, 30}],

AxesLabel™{"n", "error[n]"}];
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the FFT methods discussed in Chapter 2. However, use of the FFT requires that
we discretize the potential on a grid.

As an example, consider the Poisson equation �2�s� with periodic boundary
conditions in a rectangular box with dimensions L and L . The density andx y
potential are discretized on the usual rectangular grid,

x s j � x , js0, 1, 2, . . . , M ,j x

y sk � y , ks0, 1, 2, . . . , M ,k y

where � xsL rM and � ysL rM . Then the density and potential at the gridx x y y
Ž .point j, k can be written in terms of a double discrete inverse Fourier transform

Ž . Žin x and y, using Eq. 2.3.63 changed to use Fourier conventions for spatial
.transforms :

M y1M y1 yx
2� im jrM 2� inkrMx y� s � e e 6.2.41Ž .˜Ý Ýjk m n

ms0 ns0

and

M y1M y1 yx
2� im jrM 2� inkrMx y˜� s � e e . 6.2.42Ž .Ý Ýjk m n

ms0 ns0

Ž .If we substitute these expressions into the discretized Poisson equation 6.2.34
and use orthogonality of the separate Fourier modes, we find that the Fourier

˜coefficients � and � are related according to˜m n m n

e2� imrM xy2qey2 � imrM x e2� inrM yy2qey2 � inrM y

�̃ q s� ,˜m n m n2 2ž /� x � y
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or in other words,

�̃m n�̃ sy 6.2.43Ž .m n 2� m , nŽ .
where

4 � m 4 � n2 2 2� m , n s sin q sin .Ž . 2 2M M� x � yx y

Ž .We can then use this expression in Eq. 6.2.42 to evaluate the potential at each
grid point. Thus, our strategy will be to:

Ž .a Compute the Fourier coefficients � by a FFT.˜m n

Ž . Ž .b Determine the Fourier coefficients of the potential via Eq. 6.2.43 .
Ž .c Perform an inverse FFT to obtain � . We can then interpolate, if we wish,jk

Ž . Ž .to determine � x, y at any point x, y in the rectangle.

Because of the centered-difference method used, the error in this method scales
roughly as k 2 � x 2, where k is the dominant wavenumber in the density and

Ž . 2 2potential. One can see this directly in Eq. 6.2.43 . For low wavenumbers, � fk
˜Ž .and Eq. 6.2.43 correctly yields the Fourier-transformed Poisson equation, �s

y�rk2. However, if the density is dominated by wavenumbers on the order of the˜
grid spacing, � 2 is not close to k 2 and the FFT method fails.

Ž .Before we proceed, we note that Eq. 6.2.43 blows up for nsms0. This is
Žbecause, for periodic boundary conditions, constant charge density the msns0

.term creates an infinite potential: the uniform charge density stretches to infinity
in both x and y directions in the periodically replicated boxes, creating an infinite
potential. Therefore, when using periodic boundary conditions, we require that
this term in the charge density vanish, so that the net charge density in the box is
zero.

First, we set the parameters of the grid, taking a rather fine grid in x and y to
illustrate the speed of the method:

Cell 6.119

Clear["Global‘*****"];
M = M = 50;x y

L = L = 1;x y

�x = L /M ; �y = L /M ;x x y y

This corresponds to a discrete Fourier series with 2500 terms, which would be
quite time-consuming to evaluate using a standard Fourier series expansion. For
fine grids, the FFT method is also more efficient than the direct or relaxation
methods discussed previously.

Next, we choose a charge density:

Cell 6.120

�[x_____, y_____] = x Sin[Pi x] Sin[Pi y]-2/Pi ^̂̂̂̂2;
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As required by our periodic boundary conditions, this charge density has a zero
average, as can be seen by evaluating the integral over the box:

Cell 6.121

Integrate[�[x, y], {x, 0, L }, {y, 0, L }]x y

0

The charge density is plotted in Cell 6.122.

Cell 6.122

Plot3D[�[x, y], {x, 0, 1}, {y, 0, 1},
PlotLabel™"�[x, y]", AxesLabel™{"x", "y", ""}];

We now create a matrix with elements � , and convert the matrix to approxi-jk
mate numbers in order to assure that no exact arithmetic is attempted in what
follows:

Cell 6.123

� matrix = Table[�[j �x, k �y], {j, 0, M -1}, {k, 0, M -1}]//N;x y

We next determine the Fourier coefficient matrix, � , using an FFT:˜m n

Cell 6.124

�ft = Fourier[� matrix];

Ž .The 1, 1 element of this matrix corresponds to the ms0, ns0 term, and should
be zero:
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Cell 6.125

�ft[[1, 1]]

-0.00666601 + 0. i

This element is not quite zero because of the discretization of the charge density:
the discrete Fourier transform is not exactly the same as the integral of the charge
over the rectangular domain, although it is close for large M and M . Therefore,x y
we simply set this term equal to zero directly:

Cell 6.126

�ft[[1, 1]] = 0;

w Ž .xNow we define the factor by which we are to divide � see Eq. 6.2.43 :˜m n

Cell 6.127

4 4
factor[m_____, n_____] :=- ( Sin[�m/M ] ^̂̂̂̂2 + Sin[� n/M ] ^̂̂̂̂2);x y2 2�x �y

factor[0, 0] = 1;

This factor is defined so that we may safely divide by it without getting an error
when msns0:

Cell 6.128

�̃ = Table[�ft[[m + 1, n + 1]]/factor[m, n], {m, 0, M -1},x

{n, 0, M -1}];y

Finally, we obtain the potential � at the grid points 0F jFM y1, 0FkFM y1:jk x y

Cell 6.129

˜�matrix = InverseFourier[�];

It is enlightening to compare the time required to complete these operations
with that required by the direct solution method, or the relaxation methods for the
same fine grid. The reader is invited to evaluate these methods, which should
provide convincing proof of the efficacy of the FFT method for this rectangular
geometry.

We can create an interpolation of the matrix �matrix by first adding to the
data the corresponding x, y positions for each grid point, and then interpolating
the resulting data list:

Cell 6.130

� = Table[{j �x, k �y, �matrix[[j + 1, k + 1]]}, {j, 0, M -1},x

{k, 0, M -1}];y

�sol = Interpolation[Flatten[�, 1]]
InterpolatingFunction[{{0., 0.98}, {0., 0.98}}, <>]
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This function is defined only in the square from 0 to 0.98, rather than from 0 to 1,
because of the discretization. If we wished, we could use the periodicity of the
system to extend the result to the entire x-y plane. The solution is plotted in Cell
6.131.

Cell 6.131

Plot3D[�sol[x, y], {x, 0, .98}, {y, 0, .98},
PlotLabel™"�(x,y)", AxesLabel™{"x", "y", ""}];

EXERCISES FOR SEC. 6.2

( )1 Consider the following heat equation problem on 0FxF1:

� T x , t � 2T x , tŽ . Ž .s� x q2 x , T 0, t sT 1, t s0, T x , 0 s0,Ž . Ž . Ž . Ž .2� t � x
1 1Ž . Ž .where � x s1 for 0�x� and � x s2 for �x�1.2 2

( ) Ža Using the FTCS method, and taking Ms10 i.e., 11 grid points including
.the end points , what is the largest time step size one can use?

( )b Solve the equation with the largest possible time step size. Make an
1animation showing only every fifth timestep for 0F tF .2

( )2 Using the Lax method with the largest possible time step size, solve the
following heat equation problem on 0FxF1:

� T x , t � T x , t�Ž . Ž .s � x , T 0, t ssin 6� t ,Ž . Ž . Ž .� t � x � x

T 1, t s0, T x , 0 s0,Ž . Ž .
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1 1 1Ž . Ž .where � x sx for 0�x� and � x s2 xy for �x�1. Make an2 2 2
1animation showing only every fifth timestep for 0F tF .2

( )3 Consider the following first-order PDE:

� y x , t � y x , tŽ . Ž .qc s0.
� t � x

Using von Neumann stability analysis, show that the CTCS method applied to
that equation is stable provided that the following Courant condition is
satisfied:

c � tr� xF1. 6.2.44Ž .

( ) w Ž .x4 For the time-dependent Schrodinger equation in 1D Eq. 3.1.81 , and for a¨
Ž .particle of mass m in a constant potential V x sV , show that the CTCS0

w � � Ž 2 .xmethod is stable only if � t V r�q4�r m � x �2. This sets a rather0
stringent condition on � t, rendering CTCS of only academic interest for
quantum problems.

( ) ( )5 a Use the CTCS method to finite-difference the wave equation in D
Ž .dimensions on a uniform Cartesian grid . Perform a von Neumann

stability analysis to show that this method is stable provided that c � tr� x
'F1r D .

( ) 2 2 2Ž . 2 Ž . 2b For the 1D wave equation, � yr� t sc x � y x, t r� x on y4�x�4,
1Ž . Ž .where c x s1 for x�0 and c x s for xG0, use the CTCS method to2

solve the following problem for 0� t�20. Take � xs0.25, � ts0.2:

� y x , t2 2Ž .y2Ž xy2. y2Ž xy2.y x , 0 se , sy2 xy2 e ,Ž . Ž .� t ts0

y y4, t sy 4, t s0.Ž . Ž .

Make an animation of the result showing every fifth time step. Note: The
CTCS scheme will require you to specify u1 directly from the two initialk
conditions. To determine u1 use the equation for uniform acceleration,k

u1 su0q® � tqa � t 2r2,k k 0 k k

where ® is the initial velocity of the k th point and a is the initial0 k k
acceleration, determined by

2� u x , 0Ž .2a sc .k 2� x xsx k

( ) ( ) Ž .6 a Prove Eq. 6.2.15 .
( ) Ž .b Prove Eq. 6.2.17 .

( ) Ž .7 Repeat Exercise 1 using the Crank�Nicolson method. Now take as a time
1step size � ts0.02 and show every frame of the animation for 0� t� .2
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( ) ( )8 a For the 1D Schrodinger equation and for a particle of mass m in a¨
Ž .uniform potential V x sV , show that the Crank�Nicolson method is0

stable for any time step size.
( )b Use the Crank�Nicolson method to solve the Schrodinger equation for a¨

Ž .particle of mass m, described by a wave function � x, t , moving in a
Ž .potential V x s8 x on y4�x�4, over the time range 0� t�3. Ani-

� � 2mate � over this time interval. Take �s0 on the boundaries, and
Ž . 5i xy2Ž xq2. 2

assume an initial condition � x, 0 se . Also, take ms�s1.

( )9 Consider the following heat equation problem on 0F rF1 in cylindrical
geometry:

� T � 2T 1 � T 1 � 2T 2s q q q r cos m	 ,2 2 2� t r � r� t r �	

� T r , 	 , tŽ .
T 1, 	 , t sy , T r , 	 , 0 s0.Ž . Ž .� r rs1

( )a The solution will depend on 	 as cos m	 , so only a radial grid is
necessary. While this simplifies the numerics, we now require a boundary
condition at rs0. Recall from Sec. 6.1 that the proper boundary condi-
tion is

� T m2

lim y Ts0
� r rr™0

w Ž .xsee Eq. 6.1.37 . For ms0 this implies � Tr� rs0 at rs0, but for
m�0 it implies Ts0 at rs0. In both cases the grid must avoid rs0.

1Ž . Ž .The best choice is r j s jy � r, js0, 1, . . . , using a centered differ-2
� Ž .ence for � Tr� r if ms0 , or the average value at grid points js0rs0

� Ž .and 1 for T if m�0 . Use the differencing techniques discussed inrs0
Ž . Ž .connection with Eqs. 6.2.23 and 6.2.25 to satisfy the mixed boundary

condition at rs1.
( )b Use the Crank�Nicolson method to solve this problem for the case

Žms1. Take the time step size � ts0.02, and take Ms10 i.e., 11 grid
.points in r . Make an animation of the solution as a function of r at 	s0

1for 0F tF .2

( ) Ž . yx 2
10 A sandbar causes the water depth in the ocean to vary as h x s1ye r2.

Water waves impinge on the sandbar at normal incidence, satisfying the 1D
2 Ž . 2 Ž .w 2Ž . Ž . xshallow-water wave equation � z x, t r� t s �r� x c x � z x, t r� x ,

2Ž . Ž . Ž .where c x sgh x . Solve using CTCS for z x, t on a grid with Ms50
points, with periodic boundary conditions on y5�x�5, and with initial

Ž . y2Ž xy2. 2 Ž . Ž . y2Ž xy2. 2 wconditions that z x, 0 se and z x, 0 sy4 xy2 e . Hint:˙
Ž . Ž . Ž .Periodic boundary conditions imply that z y5, t sz 5, t and z� y5, t s

Ž . xz� 5, t . Animate the solution for 0� t�6, taking gs1 and � t as large as
possible.

( )11 A square pool with 0�x�a, 0�y�a, has a sloped bottom, becoming
Ž . Ž .deeper as x or y increases: h x, y sh 1qxraqyra . Assuming potential0
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Ž .Fig. 6.8 Exercise 12 .

Ž .flow, the horizontal fluid displacement satisfies �s�� x, y, t , and the wave
Ž . w Ž . xheight is given by z x, y, t sy�� h x, y �� , with � satisfying the following

wave equation:

� 2� x , y , t �� x , y ,t�Ž . Ž .2s c x , yŽ .2 ž /� x � x� t

�� x , y , t� Ž .2q c x , y , 6.2.45Ž . Ž .ž /� y � y

where c2sgh. Initially, the fluid is stationary, but an inlet at the center of the
left-hand side, of length ar2, begins to add and remove water according to
Ž .� 0, y sx sin � t, ar4�y�3ar4. Around the rest of the pool, the normalx 0 0

Ž .component of � is zero. Using CTCS, solve � x, y, t on a 15-by-15 grid for
0� t�4 s, assuming that as5 m, h s10 cm, � s3, x s2 cm. Make an0 0 0

Ž .animation of the resulting wave height z x, y, t over this time period.

( )12 An electrolytic cell consists of a glass tank of width b and height a, and
Ž .length c in the z-direction into the page . The tank is filled with fluid that

has electrical conductivity � . The tank has electrodes of length Lsar2,
located as shown in Fig. 6.8, and attached on the left and right sides; the rest
of the surface is electrically insulated. The right electrode is grounded, and
the left electrode is at a potential V . Using the direct method, solve for the0
potential in the fluid, and use this result to find the total current I running

Žbetween the two electrodes. See Example 2 in Sec. 3.2.2 for help on setting
.up the equations for this problem. Do this problem for bsnar5, ns

1, 2, . . . , 10, and plot the result for I vs. bra, with I suitably normalized in
wterms of the given parameters. Hint: This is really a two-dimensional prob-

lem; current density and potential depend only on x and y. Part of the
boundary has a von Neumann boundary condition, and part has a Dirichlet
condition. For second-order accuracy, use a grid for which the boundary falls
halfway between the grid points. For the von Neumann portion of the
boundary, use the centered-difference method discussed in relation to Eq.
Ž .6.2.20 , and for the Dirichlet part of the boundary, use the averaging

Ž . xtechnique discussed in relation to Eq. 6.2.22 .

( )13 An enclosure in the shape of an isosceles triangle with base of length a and
with height b is filled with a uniform charge density �r
 s2 V. The surface0
of the triangle is grounded. Find the best grid to fit this problem, taking
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Ž .Fig. 6.9 Exercise 14 .

'M sM s20, and solve it using the direct method, for the case bs 5x y
meter, as1.5 meter.

( )14 A room is heated with a corner radiator, held at temperature T s70�C. As0
seen in Fig. 6.9, the bottom and left wall of the room are insulated, but the
right and top walls are at constant temperature of 15�C. Treating the air in
the room as a thermally conductive material, and for the dimensions of the

Ž .room shown in the figure, find the temperature distribution T x, y in the
room using the direct method. What is the total heat flux entering the room
through the radiator in watts per square meter, assuming that, for air, �s0.1

.Wrm K ?

( )15 A grounded square box, with an interior defined by 0�x�1 and 0�y�1, is
1cut into two sections by a conducting plate at xs . The plate is held at2

potential V s1 volt. The plate has a gap at the center, leaving an opening at0
1 3 Ž .�y� . Find the potential � x, y in the box, using a 20-by-20 grid. Solve4 4

this problem using simultaneous overrelaxation, and add conditions to the
recursion equation for the interior points that avoid the points that fall on the

Ž .central plate. The solution for � x, y is shown in Fig. 6.10.

( )16 A wire with square cross section is defined by y1�x�1, y1�y�1. It is
held at fixed temperature T , and is embedded in insulation with thermal0
diffusivity � , also in the shape of a square defined by y2�x�2, y2�y�2.
The surface of the insulation is at temperature T . Find and plot as a surface2

Ž .plot the equilibrium temperature T x, y in the insulator, using simultaneous
overrelaxation.

( )17 The bottom of a cubical box has a pyramidal cusp. The box walls are defined
1Ž . Žby the equations zs1, ys0, ys1, xs0, xs1, zsx for x� , zsy for2

1 1 1. Ž . Ž .y� , zs1yx for x� , zs1yy for y� . The potential on the2 2 2

pyramidal cusp is held fixed at V s2 volts, but the potential on the other box0
walls is zero. Using the direct method in three dimensions on a 10-by-10-by-10
grid, solve for the potential everywhere inside the box. Plot the result for

1Ž .� x, , z as a contour plot.2

( )18 It is easy to convince oneself that it is not possible to find any rectangular grid
that will fit the grounded triangular enclosure shown in Fig. 6.11, for as1,
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Ž .Fig. 6.10 Exercise 15 .

Ž .Fig. 6.11 a Triangular domain together with a possible choice of grid. The rightmost
Ž . Ž . Ž . Ž .point in each row has index jsg k q1. b Points g k and g k q1 at the end of row k.

'bs1, cs 3 . One can either content oneself with an order-� x approxima-
tion to the solution using the methods discussed in Sec. 6.2.2, or else attempt
to find a better way of matching the boundary conditions. One way to do so is
as follows. Choose the grid so that the bottom and left sides fall on the grid.
This requires that � ysbrM and � xsarP for integers P and M Withy y
these choices, the grid in x must run out to x s j � x, js0, 1, 2, . . . , M ,j x

w xwhere M sCeiling cr� x . However, the right side of the triangle does notx
fall on the grid.

Since we wish to set the potential on the right side of the triangle equal to
zero, we will use the following averaging technique. The equation for the

Ž . Ž .triangle’s right edge is x y sy cya yrbqc. For each value of y on theR k
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Ž . Ž .grid, this edge cuts between grid points x and x , where jsg k and g kj jq1
Ž . Ž .is given by Eq. 6.2.37 . The zero of potential should fall at x y , not at xR k j

or x . If we assume that the potential varies linearly between the gridjq1
Ž .points, this implies that 0s� x � q� x � , where jsg k , and where2 jk 1 jq1 k

Ž . Ž . Ž .� x sx yx y and � x sx y yx see the figure .2 jq1 R k 1 R k j
Ž .Therefore the interior points are defined by 0�k�M and 0� jFg k ,y

with the points � defined in terms of the interior points byg Žk .q1 k

� sy� x � r� x .g Žk .q1 k 1 g Žk . k 2

Ž .Implement this procedure and solve for � x, y using the direct method,
assuming that �r
 sx and taking M sPs10.0 y

( )19 Solve for the potential created by a rectangular lattice of ions and electrons,
Žwith charges e and ye respectively. Actually, in this two-dimensional prob-

lem these are charged rods, not point charges, and e is charge per unit
. Ž .length. The positive ‘‘ions’’ are at positions i, 2 j , and the ‘‘electrons’’ are at

1 1Ž .positions iq , 2 jq , where i and j are integers. In the rectangular2 2
1 3domain defined by y �x� , 0�y�2, solve for the potential using an4 4

1 3FFT, and take a sufficiently fine grid to determine the potential at xs , ys2 4

to three significant figures.

( ) Ž .20 The following charge density � x, y, z , defined in a cube, is periodically
replicated throughout space:

2 A2 2� x , y , z sAxyz 1yx 1yy 1yz y ,Ž . Ž . Ž .Ž . 720

0�x�1, 0�y�1 0�z�1.

Find the potential at the center of the cube to three significant figures using
the FFT method.
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CHAPTER 7

NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

Linear partial differential equations depend on only the first power of the
unknown function. On the other hand, many natural phenomena require nonlinear
partial differential equations for their description. These equations can depend on
the unknown function in an arbitrary fashion, and consequently the principle of
superposition no longer applies: the sum of two solutions to the homogeneous
PDE is no longer itself a solution. Therefore, the eigenmode and Fourier expan-
sion methods developed previously for linear PDEs will not work on nonlinear
PDEs.

Generally, nonlinear PDEs require numerical methods for their solution. The
Galerkin method and the grid methods discussed in Chapter 6 can still be applied,
and we will see examples in this chapter. We will also examine an advanced
simulation method, the particle-in-cell method, for the numerical solution of some
classes of nonlinear PDEs.

First, however, we will discuss an analytic method that can be applied to solve
first-order nonlinear PDEs: the method of characteristics.

7.1 THE METHOD OF CHARACTERISTICS FOR FIRST-ORDER PDEs

7.1.1 Characteristics

Ž .Consider the following PDE for a function f x, t :

� f � fq® x , t , f ss x , t , f . 7.1.1Ž . Ž . Ž .� t � x

This equation is first-order in time, and so requires a single initial condition:

f x , 0 s f x . 7.1.2Ž . Ž . Ž .0
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The equation is also first-order in space, and so in principle a single boundary
condition could be imposed. However, this can lead to difficulties that are
tangential to the discussion at hand. In what follows, for simplicity we will solve the
PDE on the entire real line without imposing boundary conditions, as we did in
Chapter 5.

First-order PDEs of this sort arise in a number of different physical contexts.
Ž . Ž .For example, the energy and wave action equations 5.2.59 and 5.3.23 describing

wave-packet dynamics are of this general form. We will also see that this equation
and its generalizations describe dye in a fluid flow, nonlinear waves, ideal gases in
an external force field, plasmas, and self-gravitating matter such as stars and
galaxies.

Ž .We will solve Eq. 7.1.1 using the method of characteristics, which is specially
suited for PDEs of this form, and which works whether or not the PDE is linear in

Ž .f. In this method, by means of a coordinate transformation x™x x, t that takes0
us to a moving frame, we convert the PDE into an ODE. The moving frame that

Ž .we choose is one that moves with velocity ® x, t, f .
This is not a standard Galilean transformation, where the entire frame moves

with the same velocity. Rather, the velocity varies from place to place and from
time to time. Because of this, it is best to think of the transformation in terms of an
infinite number of moving observers, spread along the x-axis. Each observer moves

Ž .along a trajectory xsx t, x , where x is the initial location of the observer:0 0

xsx at ts0. 7.1.3Ž .0

Ž .The trajectory x t, x of some given observer is called a characteristic.0
Each observer is responsible for recording the behavior of f at his or her own

Ž . Ž Ž . .moving position. Along this trajectory, fs f x t, x , t . Taking a differential and0
applying the chain rule, we find that each observer sees a differential change in f
given by

� f � f dx
dfs dtq dt .

� t � x dt

Ž .If we now divide by dt and substitute for � fr� t from Eq. 7.1.1 , we obtain the
following equation for the total time deri®ati®e of f along the characteristic
trajectory, dfrdt:

df � f dx � fs qsy® . 7.1.4Ž .dt � x dt � x

This equation simplifies if we take dxrdts®:

df ss x , t , f . 7.1.5Ž . Ž .dt

Ž .With this choice the original PDE, Eq. 7.1.1 , is converted into an ODE involving
the total rate of change of f as seen by an observer moving along the characteris-
tic. The characteristic itself is defined by the ODE

dx s® x , t , f , 7.1.6Ž . Ž .dt
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with initial condition xsx at time ts0. The solution to this ODE is our0
Ž . Ž .transformation xsx t, x , and we use this solution in solving Eq. 7.1.5 for f.0

Ž .Before we go on to solve Eq. 7.1.5 , it is instructive to compare it with Eq.
Ž .7.1.1 . We can then immediately make the following identification:

df � f � fs q® . 7.1.7Ž .dt � t � x

The total rate of change of f as seen by the moving observer consists of two terms.
The origin of the first term, � fr� t, is obvious. This term would occur even if the
observer were stationary. The second term, ®� fr� x, would occur even if f were
not a function of time. This term arises because the observer sees a change in f
due to his or her own motion at velocity ®.

Ž .There is another useful way to write the total derivative dfrdt. Since xsx t, x0
defines a transformation from coordinate x to x , we could write f in terms of x0 0

Ž .and t rather than x and t. If we now consider a general variation of f x , t , as x0 0
and t are varied by infinitesimal amounts, we obtain the differential relation

� f � f
dfs dtq dx . 7.1.8Ž .0� t � xx 0 0 t

However, a given characteristic is defined by a single initial condition x that does0
not vary, so dx s0 along the characteristic. Dividing through by dt, we then0
obtain

df � fs . 7.1.9Ž .dt � t x 0

Since the initial condition x is a fixed parameter of the characteristic, it should0
hardly be surprising that the total time derivative along a characteristic is the same
as a partial derivative, holding x fixed.0

7.1.2 Linear Cases

Ž . Ž .We now turn to the solution of Eqs. 7.1.5 and 7.1.6 . These are coupled
first-order ODEs. It is easiest to understand the solution to these ODEs by first

Ž . Ž . Ž .considering a linear case, where sss x, t and ®s® x, t . Then Eqs. 7.1.5 and
Ž .7.1.6 become

dfrdtss x , t , 7.1.10Ž . Ž .
dxrdts® x , t . 7.1.11Ž . Ž .

Ž .We first solve Eq. 7.1.11 for the characteristics. This is a first-order ODE with
Ž .initial condition xsx at ts0. We write the solution as xsx t, x .0 0

Ž . Ž .Next, we use these characteristics in solving Eq. 7.1.10 for f x, t . Here, it
must be remembered that dfrdt is the total rate of change, as seen by the moving

Ž .observer. Thus, x varies in time as x t, x along the characteristic, and s varies in0
Ž Ž . .time as s x t, x , t . The solution to dfrdtss is therefore0

t
f t s f 0 q s x t�, x , t� dt�, 7.1.12Ž . Ž . Ž . Ž .Ž .H 0

0
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Ž . Ž . Ž .where f 0 s f x is the initial value for f at position x , and where f t s0 0 0
Ž . �f x, t is the value of f on the characteristic at time t.xsx Ž t, x .0

The right-hand side is written in terms of x rather than x, so we must invert0
Ž . Ž . Ž .xsx t, x to obtain x sx x, t . Using this equation in Eq. 7.1.12 yields0 0 0

t
f x , t s f x x , t q s x t�, x , t� dt� . 7.1.13Ž . Ž . Ž . Ž .Ž . Ž .H0 0 0

Ž .x sx x , t0 0 0

This is our solution for f , written explicitly as a function of x and t. In order to
clarify the meaning of this result, we consider several examples below. Other
examples can be found in the exercises.

( ) Ž .Example 1: ss0 and © x, t, f sc Now Eq. 7.1.1 is

� f � fqc s0. 7.1.14Ž .� t � x

We will see that the solutions to this equation are like those to the wave equation,
except that propagation is now only in one direction. The solution is obtained

Ž . Ž .using Eqs. 7.1.5 and 7.1.6 :

dfrdts0,

dxrdtsc.

The solution to dxrdtsc with initial condition xsx is xsx qct. These0 0
straight parallel lines are the characteristics for the PDE for this example, and are
shown for three initial positions x in Fig. 7.1.0

The equation dfrdts0 implies that fsconstant along these characteristics;
that is, along each characteristic the value of f remains unchanged from its initial

Ž .value. For the characteristic starting at xsx , this value is fs f x , according to0 0 0
Ž .Eq. 7.1.2 . Therefore, the solution for f is

f t s f x , 7.1.15Ž . Ž . Ž .0 0

Ž . Ž . �where f t s f x, t is the value of f at time t, evaluated along thexsx qc t0

characteristic.
Ž .This equation could equally well have been obtained by using Eq. 7.1.9 , which

when combined with dfrdts0 yields

�� fr� t s0.x 0

Ž .The solution to this equation is clearly any function f x , since any such function0
Ž .can be differentiated with respect to t holding x fixed to yield zero. To satisfy0

Ž . Ž . Ž . Žthe initial condition, Eq. 7.1.2 , we require that f x s f x because xsx at0 0 0 0
. Ž .ts0 , and so we return to Eq. 7.1.15 .

To finish the solution, we now invert the characteristic equation xsx qct to0
Ž .obtain x sxyct. Substituting into Eq. 7.1.14 yields0

f x , t s f xyct .Ž . Ž .0
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Ž .Fig. 7.1 The solution to Eq. 7.1.1 for ss0 and ®sc, at four times. Also shown are three
characteristics.

This solution is simply a disturbance that moves at velocity c without varying from
Ž . Ž .its initial shape f x . One can verify that this is the solution to Eq. 7.1.14 by0

direct substitution:

Cell 7.1

Simplify[D[f[x, t], t] + c D[f[x, t], x] == 0 /.f™
Function[{x, t}, f0[x - ct]]]

True

This form of the solution is similar to d’Alembert’s solution for the wave equation,
Ž .Eq. 5.1.11 . Here, however, the disturbance moves only in one direction, because

Ž .7.1.1 is first-order rather than second-order in time and space. The shape of the
disturbance does not change, because f does not vary along each characteristic,
and because the characteristics are parallel lines. Thus, the entire solution is
transported without change along the characteristics, as depicted in Fig. 7.1.

n Ž . Ž .Example 2: ssax and ©sbx Equations 7.1.5 and 7.1.6 are now

dfrdtsax n ,

dxrdtsbx.

The solution to dxrdtsbx with initial condition xsx provides us with the0
characteristics:

x t , x sx e bt . 7.1.16Ž . Ž .0 0

These characteristics are shown in Fig. 7.2.
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Ž .Fig. 7.2 The solution to Eq. 7.1.1 for ss0 and ®sbx, at three times. Also shown are
three characteristics with initial conditions x sy2, 1, 3.0

The characteristics must be used when solving dfrdtsax n. The solution to
dfrdtsax n e nbt is0

ax n
0 nbtf t s f 0 q e y1 , 7.1.17Ž . Ž . Ž . Ž .nb

Ž . Ž . Ž . Ž . � Ž .where f 0 s f x and f t s f x, t . Finally, we must invert Eq. 7.1.160 0 xsx Ž t, x .0
Ž . yb t Ž .to obtain x x, t sx e . Substituting this result into Eq. 7.1.17 yields0

ax n eyn bt
yb t nbtf x , t s f x e q e y1 .Ž . Ž . Ž .0 nb

An example of the resulting evolution is shown in Cell 7.2 for as0, bs1, and
Ž . yŽ xy1. 2 Žf x se . Although f is constant along each characteristic dfrdts0 when0

.as0 , the spreading of the characteristics results in a change in shape of the
solution over time. The reader is invited to vary the parameters of the problem so
as to investigate other solutions.

Ž .Example 3: Mixing Dye Next, we consider a generalization of Eq. 7.1.1 to two
spatial dimensions:

� f � f � fq® x , y , t q® x , y , t s0. 7.1.18Ž . Ž . Ž .x y� t � x � y

Cell 7.2

f0[x_____] = Exp[-(x - 1)2];
f[x_____, t_____] = f0[x Exp[- t]];
Table[Plot[f[x, t], {x, -10, 20}, PlotRange™{0, 1}],

{t, 0, 4, .2}];
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Here, the functions ® and ® provide the x and y components of the velocity.x y
Ž .Equation 7.1.18 describes the behavior of dye placed in a fluid that moves with

Ž . Ž .flow velocity vs ® , ® . The density of the dye, f x, y, t , is carried along with thex y
fluid, and so follows

df s0. 7.1.19Ž .dt

Ž .Equation 7.1.18 is merely an expression for this total time derivative, analogous
Ž . Ž .to the one-dimensional total time derivative of Eq. 7.1.7 . Equation 7.1.19

implies that fsconstant along the characteristics. This means that elements of the
dye are carried along by the fluid without change in their density.

Ž .The characteristics for Eq. 7.1.18 are the coupled first-order ODEs,

dxrdts® x , y , t ,Ž .x
7.1.20Ž .

dyrdts® x , y , t ,Ž .y

with initial conditions xsx and ysy at ts0. For general functions ® and ® ,0 0 x y
these ODEs need not have an analytic solution and can even display chaotic
behavior. That is, the dye can be mixed chaotically if the fluid flow is sufficiently

Ž .complex. Thus, even though Eq. 7.1.18 is linear, it is not always possible to find a
closed-form analytic solution.

Below, we show some characteristics for a fluid flow with

® syqx ,x

® syyy x 3y1 1qcos t .Ž . Ž .y
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Ž . w Ž .xNote that �� ® , ® s0, so this flow is incompressible see Eq. 1.2.12 . Therefore,x y
the area of a patch of dye carried along by this particular flow will not change over
time.

The characteristics for the flow can be computed using NDSolve, for given
Ž .initial conditions x , y :0 0

Cell 7.3

c[x0_____, y0_____] := c[x0, y0] = {x[t], y[t]}/.
NDSolve[{x ’[t] == (y[t] + x[t]), y ’[t] == -y[t]
- (x[t] ^̂̂̂̂3 - 1) (1 + Cos[t]),

x[0] == x0, y[0] == y0}, {x, y}, {t, 0, 10}][[1]];

Ž .The characteristics can then be plotted in the x, y plane using Parametric-
Plot, as shown in Cell 7.4. Even this smooth flow produces a complex pattern of
characteristics. By computing the Lyapunov exponent for these trajectories, one
can show that in fact the trajectories are chaotic, exhibiting sensitive dependence
on the initial conditions.

Cell 7.4

Table[ParametricPlot[Evaluate[c[x0, y0]], {t, 0, 10},
DisplayFunction™Identity], {x0, -2, 2}, {y0, -2, 2}];

Show[%%%%%, DisplayFunction ->>>>> $$$$$DisplayFunction,
PlotRange™{{-30, 30}, {-30, 30}}, AspectRatio™1];

The behavior of a patch of dye in this flow can be followed by computing the
positions of the edge of the patch as a function of time. We do so in Cell 7.5 for a
patch that is initially circular, following 100 points from the patch edge. Although
the patch area remains constant, the dye patch is stretched and folded by the flow
in a very complex manner due to the chaotic nature of the characteristics.
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Ultimately, the filaments of dye become so thin that they are indistinguishable, and
the dye becomes thoroughly mixed through the background fluid.

Cell 7.5

patchedge[t1_____] := Table[c[Sin[�], Cos[�]], {�, 0, 2 Pi,
.02 Pi}]/. t™t1;

Table[ListPlot[Evaluate[patchedge[t1]], PlotJoined™True,
PlotRange™{{-10, 10}, {-10, 10}}, AspectRatio™1],
{t1, 0, 5, .2}];

Ž .Example 4: The Collisionless Boltzmann Equation Equation 7.1.18 can also be
interpreted in a different manner. Rather than thinking of f as the density of dye

Ž .placed in a fluid, we can instead think of f as the density in phase space x, p of a
one-dimensional gas of atoms of mass m, where psm dxrdt is the particle
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Ž . Ž .momentum. Now fs f x, p, t , and Eq. 7.1.18 is written as

� f p � f � fq qF x , p , t s0. 7.1.21Ž . Ž .� t m � x � p

Ž .The physical interpretation of the function F x, p, t becomes clear when we write
out the characteristic equations:

dx ps ,dt m

dp sF x , p , t .Ž .dt

These are Newton’s equations for the motion of particles in a prescribed external
Ž .force F x, p, t .

Ž . Ž .Equation 7.1.21 is called the collisionless Boltzmann or Vlasov equation. The
number of particles in the element dx dp is f dx dp. According to our understanding

Ž .of convective derivatives, Eq. 7.1.21 is equivalent to the equation dfrdts0 along
the characteristics. This means that the particle density in phase space remains
constant along the phase-space flow: particles are neither created nor destroyed,
but are simply carried through phase space by their dynamics.

Interactions between the particles are neglected in this description of the gas,
since the only force acting on the particles is the external force F. Therefore,

Ž .Eq. 7.1.21 describes the evolution of an ideal gas of noninteracting particles.
For example, consider the behavior of a gas of particles falling in gravity. If the

particles are confined in an evacuated container, the force law could be given
by something like Fsymg, x�0, and Fsymgykx, x�0, where the term kx
describes an elastic collision of the atoms with the bottom of the container

Ž .at xs0. A few characteristics for this flow in the x, p plane are shown in Cell 7.6
for a range of initial conditions, taking ks20, msgs1.

Cell 7.6

Clear[c];

m = g = 1; k = 20;
F[x_____] := -m g/; x >>>>> 0
F[x_____] := -m g - k x/; xF0
c[x0_____, p0_____] :=
c[x0, p0] = {x[t], p[t]}/.NDSolve[{x'''''[t] ==

p[t] /m, p '''''[t] == F[x[t]],
x[0] == x0, p[0] == p0}, {x, p}, {t, 0, 50},

MaxSteps™4000][[1]]

Tabel[ParametricPlot[Evaluate[c[x0, p0]], {t, 0, 20},
DisplayFunction™Identity], {x0, 0, 2}, {p0, -1, 1}];

Show[%%%%%, DisplayFunction™$$$$$DisplayFunction,
AxesLabel™{"x", "p"}];
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These characteristics show particles falling toward xs0, then rapidly reversing
their velocities and returning to their initial heights. There is no damping in the
equations of motion, so each particle in the gas continues to bounce off the bottom
of the container forever. Unlike the example of mixing dye presented earlier, the
characteristics here are not chaotic. Each characteristic curve is parametrized by
the constant energy E of particles on the curve. The particle motion is periodic,
with a frequency � that depends on the energy:0

� s� E . 7.1.22Ž . Ž .0 0

Even though the motion is not chaotic, an initial distribution of particles will
rapidly filament and mix. This kind of nonchaotic mixing is called phase mixing.
The phase mixing is due to particles moving around their energy surfaces at
different frequencies. The particles get out of phase with one another in their
periodic motion. An initially localized patch of phase-space density becomes
stretched and filamented due to the range of frequencies within the patch.

We can see this phase mixing by following Ms500 particles in their motion.
We choose the particles with random initial velocities and positions in the range

10� , and display their subsequent trajectories in Cell 7.7.2

A series of filamentary structures form and then are stretched out to such a fine
scale that they can no longer be discerned. Although f continues to evolve on finer
and finer scales as the filaments are stretched and wrapped up, on larger scales f
becomes time-independent. That is, the number of particles in any finite phase-
space element � x � p, namely f � x � p, eventually becomes independent of time.

Cell 7.7

M = 500;

particlepos[t1_____] = Table[c[0.5 Random[], 0.5 Random[]],
{M}]/.t™t1;

Table[ListPlot[Evaluate[particlepos[t1]], PlotRange™
{{-1, 1}, {-1, 1}},
AspectRatio™1, AxesLabel™{"x", "p"}], {t1, 0, 50, .4}];
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Ž .The time-independent solution f x, p for f can be found by dropping the partialeq
Ž .time derivative in Eq. 7.1.21 :

� f � fp � Veq eqy s0. 7.1.23Ž .m � x � x � p

Ž .Here we have used the fact that the force F x in this example is derivable from a
Ž . Ž .potential V x via Fsy� Vr� x. The solution to Eq. 7.1.23 can be found by

Ž . Ž . 2 Ž . Ž .making a change of variables from x, p to E, p , where Esp r 2m qV x is
Ž .the energy. In these variables, f s f E, p , and it is left as an exercise in partialeq eq

Ž .derivatives to show that Eq. 7.1.23 becomes

� f� V eqy s0. 7.1.24Ž .� x � p E

This equation can be integrated, yielding

f s f E . 7.1.25Ž . Ž .eq eq
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2 Ž . Ž .The equilibrium is a function only of the energy Esp r 2m qV x . This can be
easily understood intuitively: the phase mixing of the particle distribution eventu-
ally spreads particles out evenly along each energy surface, so that the particle
density becomes constant on each surface, but may vary from surface to surface.

Ž .The functional form of f E is determined by the initial conditions. For aneq
Ž .initial distribution f x, p , energy conservation implies that the number of parti-0

cles between the energy surfaces E and EqdE remains constant over time. This
Ž . Ž .number can be written either as f E dE or as H dx dp f x, p , where the areaeq 0

integral is over the infinitesimal area between energy surfaces E and EqdE
w Ž . x Ž . 2 Ž . Ž .EFH x, p FEqdE , and where H x, p sp r 2m qV x is the Hamiltonian.
Therefore, the equilibrium is determined by the equation

f E dEs dx dp f x , p . 7.1.26Ž . Ž . Ž .Heq 0
Ž .EFH x , p FEqdE

Even though the area integral is an infinitesimal, it is nontrivial to evaluate
because the distance between energy surfaces varies from place to place along the

Žsurfaces. The integral can be evaluated using action-angle variables, but we will
not involve ourselves with the canonical transformations required to define these

.variables. On the other hand, the integral can be performed numerically if we
convert dE to a finite quantity � E.

We first define the initial particle density. Since there are Ms500 particles
1 1spread uniformly over a region 0�x� and 0�p� , we define the initial2 2

distribution:

Cell 7.8

f0[x_____, p_____] := 4 M /; 0 <<<<< x <<<<< 1/2 &&&&&&&&&& 0 <<<<< p <<<<< 1/2
f0[x_____, p_____] := 0 /; Not[0 <<<<< x <<<<< 1/2 &&&&&&&&&& 0 <<<<< p <<<<< 1/2]

Ž . Ž .With this definition, H dx dp f x, p sM. Next, we define the potential V x for0
Ž .this problem, and the Hamiltonian function H x, p :

Cell 7.9

m = g = 1; k = 20;
V[x_____] = m g x + k x2/2 UnitStep[-x];
H[x_____, p_____] = p2/(2m) + V[x];

Finally, we integrate over the area between two constant-energy surfaces separated
by � E, using Boole notation:

Cell 7.10

<<<<<<<<<<Calculus‘;

feq[e_____] :=
NIntegrate[Boole[e <<<<< H[x, p] <<<<<e + �E] f0[x, p],

{x, 0, 1/2}, {p, 0, 1/2}]/ �E

�E = 0.001;
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ŽA plot of the equilibrium energy distribution is shown in Cell 7.11. Using
ListPlot rather than Plot speeds up the evaluation considerably by reducing

.the number of function evaluations.

Cell 7.11

ListPlot[Table[{e, feq[e]}, {e, -.2, 1, .025}],
PlotJoined™True, AxesLabel™{"E", "f (E)"}];eq

The distribution goes to zero for E�0 and ER0.6 due to our choice of initial
conditions, with all particles concentrated in this energy range. Also, it can be
easily verified that

	

f E dEsM .Ž .H eq
y	

We must now translate this distribution over energies back to a distribution in
Ž . Ž .the x, p plane. Since f E dE is the number of particles between energyeq

Ž . Ž .surfaces E and EqdE, the distribution f x, p is related to f E by the sameeq eq
Ž .formula as we used in Eq. 7.1.26 :

f E dEs dx dp f x , p .Ž . Ž .Heq eq
Ž .EFH x , p FEqdE

Ž .In fact, since f x, p is constant along the energy surfaces, we can take it out ofeq
the integral and write

f E dEsdA E f x , p ,Ž . Ž . Ž .eq eq

where

dA E s dx dpŽ . H
Ž .EFH x , p FEqdE

is the area between adjacent energy surfaces. Thus,

f EŽ .eq
f x , p s , 7.1.27Ž . Ž .eq dA

EŽ .dE
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Ž . wwhere EsH x, p . Using action-angle variables, one can show that dArdEs
Ž . Ž . x2
r� E , where � E is the orbit frequency of particles with energy E.0 0

Ž .In order to plot f x, p we must first work out dArdE. We do so numericallyeq
Ž .by first evaluating A E , the phase space area within energy surface E, and then

taking a derivative:

Cell 7.12

A[e_____] := NIntegrate[Boole[H[x, p] <<<<< e],
{x, -Infinity, Infinity}, {p, -Infinity, Infinity}]

In mechanics, this phase-space area is called the action for a given energy surface.
To take the derivative of this numerical function, it is best to first interpolate the
function, and then take a derivative of the interpolating function:

Cell 7.13

areadata = Table[{e, A[e]}, {e, 0, 2, .1}];

Ainterp = Interpolation[areadata];

dAdE[e_____] := D[Ainterp[e1], e1]/. e1™e

This derivative of the action is plotted in Cell 7.14.

Cell 7.14

Plot[dAdE[e], {e, 0, 1}, PlotLabel™"dA/dE",
AxesLabel™{"E", ""}];

To speed up the evaluation it is best to also create an interpolation function for
Ž .f E :eq

Cell 7.15

feqinterp =
Interpolation[Table[{e, feq[e]}, {e, 0, 1, .025}],
InterpolationOrder™1];

Ž .We use InterpolationOrderof only 1 because f E has a discontinuous firsteq
Ž . Ž .derivative. We then define the function f x, p according to Eq. 7.1.27 :eq
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Cell 7.16

feq[x_____, p_____] := feqinterp[H[x, p]]/dAdE[H[x, p]]/;
0 <<<<< H[x, p] <<<<< 1;

feq[x_____, p_____] := 0/; Not[0 <<<<< H[x, p] <<<<< 1]

The use of the conditional statements allows us to extend the definition to energies
beyond the range of the interpolation function. We plot the equilibrium in Cell
7.17. Note the hole in the distribution near the origin, which is also clearly visible
in the previous animation of the particle positions, Cell 7.7.

Cell 7.17

Plot3D[feq[x, p], {x, -1, 1}, {p, -1, 1}, PlotRange™All,
PlotPoints™40, AxesLabel™{"x", "p", ""},
PlotLabel ->>>>> "f (x,p)"];eq

It is interesting that this gas comes to an equilibrium at all, because we have not
included interactions between the particles that would be needed to drive this
system to a thermal equilibrium state. The equilibrium achieved here is a partial
equilibrium due to phase-mixing alone. Thermal equilibrium corresponds to a

Ž . Ž . yEr k BTparticular form for f E : f E sC e , where T is the temperature, C is aeq eq
constant, and k is Boltzmann’s constant. We will have more to say concerningB
thermal equilibrium in Chapter 8.

Another view of the equilibrium process considers only the particle positions. In
this view, we extract the positions, neglecting momenta.

Cell 7.18

pos[t1_____] := (a = particlepos[t1]; Table[a[[n, 1]], {n, 1, M}])

ŽThen we plot the particle positions in Cell 7.19 only the initial and final states are
.displayed in the printed version .
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Cell 7.19

Table[ListPlot[pos[t1], PlotRange™{-1, 1}],
{t1, 0, 50, .4}];

The phase mixing should be quite clear in this animation. After a few bounces,
the gas approaches equilibrium. The evolution toward equilibrium can be seen

Ž .more directly by evaluating the particle density n x, t . It is the integral over the
momenta of f :

	

n x , t s f x , p , t dp. 7.1.28Ž . Ž . Ž .H
y	

Ž .We can use the data generated above to approximately determine n x, t for
Ž .this evolution. The number of particles in the range xyxqdx equals n x, t dx.

Ž .Therefore, we can determine n x, t by counting particles that fall in small boxes
of size � x. If, at time t, the number of particles in the range xyxq� x equals
Ž .H x, t , then

n x , t sH x , t r� x .Ž . Ž .
This binning can be accomplished using the Histogram plotting function, avail-
able in the graphics add-on packages:

Cell 7.20

<<<<<<<<<<Graphics‘

Histogram takes as its primary argument a list of data values that it bins into
given categories. The HistogramCategories option is used to determine the
location and size of the bins. Here the bins are all of size 0.1, and run from y1 to
1. We use the Show function in order to actually display the histograms, because

Žthis allows us more flexibility in choosing the plot range and the axis origin see
. Ž .Cell 7.21 . Only the first histogram is displayed in the printed version.

Cell 7.21

H[t_____] := (plt = Histogram[pos[t],
HistogramCategories™Table[x, {x, -1, 1, .1}],
DisplayFunction™Identity];

Show[plt, PlotRange™{{-1, 1}, {0, 300}},
DisplayFunction™$$$$$DisplayFunction,

AxesLabel™{"x", "H[x, t]"}, AxesOrigin™{0, 0}]);

hist = Table[H[t], {t, 0, 50, .4}];
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This method of solving the Boltzmann equation, by following a large collection of
particles, is called a particle simulation. The fluctuations that we see in the density
at late times are due to the finite number of particles used in the simulation. We
will discuss other particle simulation methods in Sec. 7.3 and in Chapter 8.

We can also determine the expected equilibrium form of the density using Eq.
Ž . Ž .7.1.26 and 7.1.27 :

Cell 7.22

neq[x_____] := NIntegrate[feq[x, p], {p, -2, 2}, MaxRecursion™25]

In Fig. 7.3 we plot the density multiplied by the bin size � x, so that we can
Ž .compare it with the histogram function H x, t evaluated at the last timestep. The

theoretical equilibrium density matches the late-time density found in the particle

Ž .Fig. 7.3 Equilibrium density of particles vs. height x: theory line and simulation
Ž .histogram .
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simulation. Note that this density, with a dip near the origin, is far from what one
might expect intuitively in an equilibrium gas. This is because we are used to
thinking of thermal equilibrium states. The equilibrium shown above is a partial
equilibrium caused by collisionless phase mixing of the initial condition. It is what
one would see before collisions between particles have a chance of acting. In many
systems, the collisions act so rapidly that partial equilibrium is not observed.
However, in other systems, collisions occur rarely so that partial equilibrium is
easily seen. For instance, a gas can enter this collisionless regime if the density
is sufficiently low so that atom�atom collisions can be ignored over the time range
of interest.

7.1.3 Nonlinear Waves

A First-Order Nonlinear Wave Equation We now consider a nonlinear PDE
that describes the evolution of shallow-water waves with small but finite amplitude:

� z 3 z � zqc 1q s0, 7.1.29Ž .0 ž /� t 2 h � x

Ž . 'where z x, t is the wave height, c s gh is the linear wave speed, g is the0
wacceleration of gravity, and h is the equilibrium depth of the water see Eq.

Ž .x3.1.79 . The term 3 zc r2h is the lowest-order nonlinear correction to the wave0
w Ž .speed due to finite wave height see Whitham 1999 for a derivation of this

xcorrection . Simply put, a wave peak increases the water depth, resulting in a local
increase in wave speed. Without this term, solutions merely propagate to the right

w Ž .xwith speed c , describing linear shallow water waves see Eq. 7.1.14 . Equation0
Ž .7.1.29 neglects dispersion and viscous effects, and allows propagation in only one
direction. Nevertheless, its solutions have much to tell us concerning the behavior
of real finite-amplitude water waves.

We will first put the equation in a standard format. This is accomplished by
making a Galilean transformation to a moving frame, moving at speed c , via the0

Ž .change of variables xsxyc t. In this frame Eq. 7.1.29 becomes0

� z 3 z � zq c s0.0� t 2 h � x

Ž . Ž .Next, we scale the wave height z, defining f x, t s3c zr 2h . Using these scaled0
variables, and dropping the overbar on x for notational convenience, we arrive at

� f � fq f s0. 7.1.30Ž .� t � x

Ž .The simple form of the nonlinearity in Eq. 7.1.30 appears in many other physical
contexts, making the equation a paradigmatic nonlinear PDE. It is sometimes
referred to as Burgers’ equation without diffusion. The version with diffusion is
discussed in Sec. 7.2.4.
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Solution Using the method of characteristics, we can obtain a complete analytic
Ž . Žsolution to Eq. 7.1.30 . This is one of a mere handful of nonlinear PDEs where

.such a complete analytic solution is possible.
Ž .The characteristics for Eq. 7.1.30 are solutions to the equation

dxrdts f x , t . 7.1.31Ž . Ž .

Thus, the velocity along the characteristic depends on the amplitude of the solution
along the characteristic. However, this is not as complicated as it sounds, because

Ž .Eq. 7.1.30 implies that

dfrdts0 along the characteristics . 7.1.32Ž .

Thus, fsconstant along each characteristic, retaining its initial value:

f x t , x , t s f x , 7.1.33Ž . Ž . Ž .Ž .0 0 0

Ž . Ž . Ž .where f x s f x, 0 . Therefore, we can integrate Eq. 7.1.31 to obtain an0
equation for the characteristics:

xsx q f x t . 7.1.34Ž . Ž .0 0 0

Five of these nonlinear characteristics are depicted in Fig. 7.4. They are straight
Ž . Ž .lines in the x, t plane, with slope that depends on f x .0 0

Ž .Fig. 7.4 Solution of Eq. 7.1.30 at three times, along with five characteristics.
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Ž . Ž .In principle, one could invert Eq. 7.1.34 to obtain x sx x, t . Then, using0 0
Ž .this solution in Eq. 7.1.33 , one would obtain the solution

f x , t s f x x , t .Ž . Ž .Ž .0 0

However, as the required inversion usually cannot be accomplished analytically, it
Ž .is often easier to simply determine the solution for f x, t numerically using Eqs.

Ž . Ž .7.1.33 and 7.1.34 . This can be done as follows. First, we choose an initial
condition:

Cell 7.23

f0[x_____] = Exp[-x ^̂̂̂̂2];

Next, define a table of values taken from the initial condition, and call it fval[0]:

Cell 7.24

fval[0] = Table[{x0, f0[x0]}, {x0, -3, 3, .1}];

This table is a discrete representation of the continuous initial condition. It can be
Ž .plotted using a ListPlot, or an interpolation could be taken to reproduce f x .0

Ž . Ž .Next, we use Eqs. 7.1.27 and 7.1.28 to follow the evolution of each data point
Ž .in the table. The positions of the points satisfy Eq. 7.1.28 , and the values of f

remain fixed in time:

Cell 7.25

x[t_____, x0_____] = x0 + f0[x0] t;
f[t_____, x0_____] = f0[x0];

fval[t_____] := Table[{x[t, x0], f[t, x0]}, {x0, -3, 3, .1}]

The table fval[t] provides us with a discretized solution to the problem at all
times t. In Cell 7.26 we plot this solution. The bottom of the pulse does not move,

Žbecause the wave amplitude is zero there. Recall that this pulse is a wave as seen
in a frame that moves with the linear wave speed. Linear waves would not evolve

.at all in this moving frame. The peak of the pulse moves the fastest because wave
speed increases with increasing amplitude. Eventually, the peak overtakes the rest
of the pulse. This solution exhibits wa®ebreaking: the solution becomes double-val-
ued at around ts1. This phenomenon is familiar to anyone who has enjoyed
watching waves curl and collapse on the beach. Our nonlinear wave equation
cannot describe the collapse of the wave, which occurs because the wave crest is no
longer supported by the fluid below it. However, it has captured the essential
behavior of a breaking wave up to the point where the solution becomes double-
valued.

Cell 7.26

Table[ListPlot[fval[t], PlotJoined™True,
PlotRange™{{-3, 4}, {0, 1}},
PlotLabel ->>>>> "t=" <<<<<>>>>>ToString[t]], {t, 0, 2.4, .2}];
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Wavebreaking Time The wavebreaking can also be understood by examining the
Ž .characteristics. One can see from Eq. 7.1.34 or Fig. 7.4 that there are places

where the characteristics cross. At such points values of f that were initially
separated in x come to the same position, implying that the solution has become
double-valued in x.

Although different characteristics cross at different places and times, it is
evident that there is a time t when the crossing of characteristics first occurs. At0
this instant, the wa®ebreaking time, the solution goes from being a single-valued
function of x to being double-valued.

In order to determine the wavebreaking time, let us consider two characteristics
that arise from initial conditions x and x sx q� x. These characteristics01 02 01

Ž . Ž . Ž .cross when x t, x sx t, x . Applying Eq. 7.1.34 then yields a crossing time t01 02
given by

x q f x tsx q f x t .Ž . Ž .01 0 01 02 0 02

Solving for t yields

x yx � x01 02tsy s . 7.1.35Ž .f x y f x f x y f x q� xŽ . Ž . Ž . Ž .01 02 01 01

Ž .Assuming for the moment that � x is small, we Taylor-expand f x q� x to first01
order in � x and so obtain

1
tsy . 7.1.36Ž .df rdx0 01
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Ž .To find the wavebreaking time t , we find the minimum positive value for t:0

1
t smin y . 7.1.37Ž .0 ž /df rdx0 01

That is, we look for the maximum value of ydf rdx . This maximum will occur at0 01
the inflection point in f , where0

d 2 f rdx 2 s0 7.1.38Ž .0 01

and

d 3 f rdx 3 �0. 7.1.39Ž .0 01

For our Gaussian initial condition, there is only one inflection point with
ydf rdx �0 and d 2 f rdx 2 s0. It may be found easily using Mathematica:0 01 0 01

Cell 7.27

Factor[D[f0[x0], {x0, 2}]]

2 e-x0
2

(-1 + 2 x02)

'Thus, the inflection point happens at x s1r 2 . At this point ydf rdx is given01 0 01
by

Cell 7.28

-f0'''''[1/Sqrt[2]]

2'e

Therefore, the wavebreaking time for our Gaussian initial condition is t0's er2 s0.858 . . . . This agrees with the results of the previous animation.
We found the wavebreaking time by assuming that nearby characteristics were

Ž .the first to cross, so that a first-order Taylor expansion of Eq. 7.1.35 was allowed.
We must now show that the minimum wavebreaking time really does occur for
nearby characteristics. To do so, we keep up to third-order terms in � x in Eq.
Ž . Ž .7.1.35 , and vary with respect to � x. Equation 7.1.36 is then replaced by

1
tsy . 7.1.40Ž .2 32df d f d f� x � x0 0 0q q2 3dx 2 6dx dx01 01 01
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However, at the inflection point, d 2 f rdx 2 s0 and this expression becomes0 01

1
ts . 7.1.41Ž .32df d f� x0 0y y 3dx 6 dx01 01

Since both ydf rdx and d 3 f rdx 3 are greater than zero, the minimum value of0 01 0 01
t occurs at � x™0, proving that the minimum wavebreaking time happens for

Ž .closely separated characteristics, and is given by Eq. 7.1.37 .

EXERCISES FOR SEC. 7.1

( )1 For the following PDEs,
( )a find the characteristics, and plot them for x sy1, 0, and 1 and0

0� t�2;
( ) Ž .b solve the PDEs for f x, t :

� f � f 2yx yx( ) Ž .i qe s0, f x, 0 se . Animate the solution for 0� t�2
� t � x

on y3�x�3.
� f � f( ) Ž .ii q6 syf , f x, 0 ssin x. Animate for 0� t�2 on y2
�
� t � x

x�2
 .
� f � f 2( ) Ž . Ž .iii yx s log x , f x, 0 s0. Animate for 0� t�2 on y5�
� t � x

x�5.

( ) Ž .2 Prove Eq. 7.1.24 .

( )3 A radio wave packet with central frequency � travels in the qx direction0
through a nonuniform plasma. The dispersion relation for the waves is
� 2s� 2 x 2qc2 k 2, where c is the speed of light and � is a constant.
( ) Ž . Ž .a Using the equations of geometrical optics, Eqs. 5.2.48 � 5.2.75 , show

2 2Ž . 2 2 2that the local wavenumber satisfies c k x s� y� x .0

( ) Ž .b Find the characteristics for the energy equation 5.2.59 . In particular,
Ž . Ž . wŽ . xshow that x t s � r� sin c�r� tqa , where a is a constant of0 0

integration.
( )c Use the method of characteristics to solve the energy equation. Show that

Ž . Ž . Ž .for a given initial energy density � x , � x, t is given by � x, t s0
w Ž . Ž .x wŽ . x y1Ž .� x cos a rcos c�r� tqa , where assin � xr� yc� tr� ,0 0 0 0 0

Ž .and where x s � sin a r� is the initial condition. Animate this result0 0
Ž . yx 2

0on y5�x�10 for 0� t�1.5, assuming that � x se , cs�s1,0 0
and � s10.0

( )4 The dispersion relation for the waves in a time-dependent inhomogeneous
2D system is �sxk q tyk . A wave packet initially has wave actionx y
Ž . y2Ž x 2qy 2 . Ž . Ž .N x, y, ts0 se . Solve Eq. 5.3.23 for the wave action N x, y, t ,

using the method of characteristics. Animate the result using a series of
Plot3D commands in the time interval 0� t�2.

( )5 In the Galerkin method, it is often rather difficult to find basis functions that
satisfy von Neumann boundary conditions in two- or three-dimensional do-
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mains. The method of characteristics can be used to determine the basis
functions in this case. Take, for example, a two-dimensional domain with a

Ž .surface S determined by the equation z x, y s0. We wish to find basis
Ž . �functions ® that satisfy n ��® x, y s0, where n is any normal vector toi j i j S

Ž .the surface; for example, ns�z x, y . Consider the following first-order
PDE:

n ��® x , y sz x , y x i y j. 7.1.42Ž . Ž . Ž .i j

If we solve this PDE inside the domain, then by construction we will have
Ž . � Ž .found functions ® that satisfy n ��® x, y s0, because z x, y s0 on S.i j i j S

Ž . 2 2For instance, consider the elliptical domain specified by z x, y sx ra q
2 2 Ž 2 2 .y rb y1. A normal vector to this domain is ns 1, ya rxb . Using this

Ž .normal vector in Eq. 7.1.42 , and applying the method of characteristics,
show that

2xi j 2 2® x , y sx y b iqa jŽ . Ž .i j 2 2 2 2ž a 2b qb iqa jŽ .
2yq y1 , i , jG0.2 2 2 2 /b 2 a qb iqa jŽ .

( ) ( )6 a Particles in an ideal gas are confined in a harmonic well of the form
Ž . 2 2V x sm� x r2. Initially, the particles are distributed in phase space0

Ž . Ž . � �according to f x, p, ts0 sN p ra, x �a; fs0 otherwise. Find the
Ž .phase-mixed equilibrium solution f x, p for this initial condition.eq

( )b Simulate this problem for 0� t�10
r� for Ns100 particles. Show0
from the movie of the particle phase-space orbits that phase mixing does
not occur, and explain why, in a few words.

( )7 Find the wavebreaking time t for the following initial condition in Eq.0
Ž . Ž .7.1.30 : f x, 0 sA sin kx. Animate the solution for ksAs1 on y2
�x�
2
 for 0� t�2 t .0

( )8 Find the solution to the following nonlinear first-order partial differential
equation using the method of characteristics on y	�x�	:

� f x , t � f x , tŽ . Ž .2q f x , t s0 initial condition f x , 0 ssin 2 x .Ž . Ž .� t � x

ŽFind the time to the formation of a singularity in the solution the wavebreak-
. Ž .ing time t . Make an animation of the evolution of f x, t for 0�x�
 and0

for 0� t�2 t .0

( ) ( )9 a Find the solution to the following nonlinear PDE using the method of
characteristics on y	�x�	:

� u x , t � u x , tŽ . Ž .qu x , t syuŽ .� t � x
2initial condition u x , 0 sa exp y2 x .Ž . Ž .
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( )b For this initial condition, with as1, find the time t to the formation of0
a singularity in the solution.

( ) Ž .c Make an animation of the evolution of u x, t for y5�x�5 and for
0� t�2 t .0

( )d Find the value of a below which no singularity forms, because the
Žsolution decays away before wavebreaking can occur. Answer: as

.0.824631 . . . .

( )10 Consider the following simple model for the flow of traffic on a freeway. The
Ž .cars are modeled as a fluid of density f x, t . Cars move to the right with a

speed that depends on this density. At low densities, the cars move at the
speed limit c. But at higher traffic density, their speed is reduced. In our
simple model, we assume that the speed depends on density as cy f.
According to the Boltzmann equation, the density will then obey

� f � fq cy f ss, 7.1.43Ž . Ž .� t � x

Ž .where s is a source of cars such as an on ramp . Show that for ss0 and for
Žany nonuniform initial condition with regions of positive slope i.e., traffic

.density increasing in the direction of flow the slope increases until the
solution becomes double-valued, after which it is no longer valid. These

Žregions of increasing slope propagate along the freeway the phenomenon of
sudden traffic slowdowns for no apparent reason, familiar to any freeway

.driver . Illustrate this by means of an animation, taking cs1, ss0, and
Ž . 2 Ž .f x, 0 s0.2q0.5 sin x. See the exercises in Sec. 7.2 and Whitham 1999 for

other freeway models.

7.2 THE KdV EQUATION

7.2.1 Shallow-Water Waves with Dispersion

In the previous discussion of nonlinear shallow-water waves, dispersion was ne-
glected: the wave speed was independent of wavenumber. In this section we will
see that adding dispersion has an important effect: it suppresses the wavebreaking.
The basic reason is easy to understand: dispersion causes waves to spread, and this
acts against the steepening effect of the nonlinearity.

For linear water waves without surface tension, we have previously seen that the
dispersion relation is

'� k s gk tanh kh , 7.2.1Ž . Ž .

w Ž . xwhere h is the depth see Exercise 1 , Sec. 6.1 . For long wavelengths where
Ž . 'kh�1, this returns to the shallow-water result, � k sc ks gh k. When small0

Ž .nonlinearity is added, the resulting wave equation is Eq. 7.1.29 . However, if kh is
not infinitesimally small, then we need to keep dispersion in the equation. If we

Ž . Ž .expand � k in small kh, we obtain a correction to � k :
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Cell 7.29

Series[Sqrt[g k Tanh[k h]], {k, 0, 3}]

1 2 3 4' 'gh k- (h gh ) k + O[k]
6

Ž .Thus, the lowest-order correction to � k is

1 2 2� k sc k 1y k h . 7.2.2Ž . Ž .Ž .0 6

Ž .This correction can be added to Eq. 7.1.29 by appending a term:

� z 3 z � z 1 � 3z2qc 1q q c h s0. 7.2.3Ž .0 0 3ž /� t 2 h � x 6 � x

Ž .If we neglect the nonlinear term assuming small-amplitude disturbances , and
Fourier transform this equation in time and space, we obtain

1 2 3yi�q ic kq i c h k z k , � s0.Ž .˜Ž .0 06

Ž .This yields the linear dispersion relation of Eq. 7.2.2 .
Ž .We can put Eq. 7.2.3 into a standard format using the same transformations as
Ž . Ž . Ž .we used for Eq. 7.1.30 : xsxyc t, and f x, t s3c zr 2h . The result is the0 0
Ž .Korteweg�de Vries KdV equation:

� f � f � 3 fq f q� s0, 7.2.4Ž .3� t � x � x

where �sc h2r6, and where we have dropped the overbar on x for convenience.0
Because the KdV equation is not first-order, we can no longer apply the method

of characteristics. However, analytic solutions of the equation can be found using
advanced inverse-scattering methods that are beyond the scope of this book. Here,
for general initial conditions, we will content ourselves with a purely numerical
solution to the problem.

However, there is one type of analytic solution that can be derived with relative
ease: steady solutions, where f is time-independent when observed in a comoving
frame. These solutions will be the subject of the next subsection.

7.2.2 Steady Solutions: Cnoidal Waves and Solitons

Ž .The KdV equation admits steady solutions of the form fs f xy®t . In a frame
moving with speed ®, such solutions are time-independent. These solutions occur
because nonlinear steepening of the waves is in balance with dispersive broaden-
ing, allowing an equilibrium as viewed in the moving frame.

In order to find the form of these steady solutions, we define the variable
Ž .ssxy®t. Then we assume fs f s , so that � fr� xsdfrds and � fr� tsy®dfrds.

The KdV equation then becomes the following ODE:

df df d 3 fy® q f q� s0.3ds ds ds



NONLINEAR PARTIAL DIFFERENTIAL538

1 2Ž .Writing f dfrdss drds f allows us to integrate this third-order ODE once,2

yielding the following second-order ODE:

d 2 f1 2y®fq f q� sA ,2 2ds

where A is a constant of integration. If we now rearrange terms, writing � d 2 frds2

1 2sAq®fy f , we can see that this equation is of the same form as Newton’s2
2 2 Ž .second law, m d xrdt sF x , where the mass m replaces � , the position x

Ž .replaces f , the time t replaces s, and the force F x replaces the right-hand side.
1 2Ž .Equations of this type have a constant of integration: the energy Es m dxrdt2

Ž . Ž .qV x , where the potential V x is given by FsydVrdx. If we now translate
back to our variables, we find a constant ‘‘energy’’ given by

21 df
Es � qV f , 7.2.5Ž . Ž .ž /2 ds

Ž .where the ‘‘potential’’ V f is
1 12 3V f syAfy ®f q f . 7.2.6Ž . Ž .2 6

This potential is a cubic function of ‘‘position’’ f , and the behavior of f as a
function of ‘‘time’’ s can be determined by examining this potential function. The

Ž .function V f can have one of two basic forms, as shown in Cell 7.30.

Cell 7.30

<<<<<<<<<<Graphics‘;
V[f_____] = -Af - 1/2 vf ^̂̂̂̂2 + 1/6 f ^̂̂̂̂3;
Plot[Evaluate[{(V[f]/. {A™1, v™1}), V[f]/. {A™-1, v™1}}],
{f, -6, 6}, PlotStyle™{Red, Dashing[{0.05, 0.03}]}, Blue}];

2 Ž .Solutions with A�y® r2 the solid curve proceed monotonically from y	 to
q	. This can be seen analytically by solving for local extrema:

Cell 7.31

Solve[V ’[f] == 0, f]
2 2' '{{f™v - 2 A + v }, {f™v + 2A+v }}
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Thus, for A�y®2r2 ‘‘particles’’ will slide down the potential hill as ‘‘time’’ s
increases, and this implies f™y	 for large s. Such unbounded solutions are not

2 Ž .of physical interest. On the other hand, for A�y® r2, V f is no longer
Ž .monotonic the dashed curve , because there are now two real local extrema, a

maximum and a minimum. In this regime, ‘‘particles’’ can get trapped in the
potential well, resulting in periodic oscillations of f as a function of ‘‘time’’ s.

The form of these periodic nonlinear wavetrains depends on the value of A and
Ž .of the ‘‘energy’’ E, and may be found by solving Eq. 7.2.5 for dfrds:

df 2s EyV f . 7.2.7Ž . Ž .(ds �

This is an ODE that can be reduced to quadratures:

f df ssqB , 7.2.8Ž .H
2r� EyV fŽ .' Ž .

where B is another constant of integration, which we will set to zero in what
follows, as it merely corresponds to a change in the origin of s. The integral
involves the square root of a cubic polynomial, which makes it rather unpleasant,
but it can nevertheless be carried out analytically in terms of special functions
called elliptic functions:

Cell 7.32

Sqrt[�/2] Integrate[1/Sqrt[e - V[f]], f]

' '2 �Ž

EllipticF[ArcSin[�((-f + Root[-6 e-6 A#1-3v#12+#13 &, 3])/(-Root[-6 e-
6 A#1-3 v#12 +#3 &, 2] + Root[-6 e-6 A#1-3 v#12 +#13 &, 3]))],

Root[-6 e-6 A#1-3 v#12 +#13 &, 2]-Root[-6 e-6 A#1-3 v#12 +#13 &, 3] x
2 3 2 3Root[-6 e-6 A#1-3 v#1 +#1 &, 1]-Root[-6 e-6 A#1-3 v#1 +#1 &, 3]

(f-Root[- 6 e-6 A#1-3 v#12 +#13 &, 3])

2 3f-Root[- 6 e-6 A#1 -3 v#1 +#1 &, 1]( 2 3 2 3-Root[- 6 e-6 A#1-3 v#1 +#1 &, 1] + Root[- 6 e-6 A#1-3 v#1 + #1 &, 3]

2 3f-Root[- 6 e-6 A#1-3v #1 +#1 &, 2]( 2 3 2 3 /- Root[- 6 e-6 A #1-3 v #1 +#1 &, 2] +Root[- 6 e-6 A #1-3 v#1 +#1 &, 3]

3 2f f v
e + A f- +( 6 2ž

2 3f-Root[- 6 e-6 A#1-3 v #1 +#1 &, 3]( 2 3 2 3 /Root[- 6 e-6 A #1-3 v #1 +#1 &, 2]-Root[- 6 e-6 A#1-3 v #1 + #1 &, 3]
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This mess can be simplified somewhat if one notices that the Root functions in the
above expression are simply placeholders for the roots of the cubic polynomial

Ž .EyV f . That is, if we write

1EyV f sy fya fyb fyc 7.2.9Ž . Ž . Ž . Ž . Ž .6

with aGbGc, then we can substitute for these roots and obtain

Cell 7.33

FullSimplify[%%%%% /.
{Root[-6 e-6 A #####1-3 v #####12 + #####13 &&&&&, 1]™c,
Root[-6 e-6 A #####1-3 v #####12 + #####13 &&&&&, 2]™b,
Root[-6 e-6 A #####1-3 v #####12 + #####13 &&&&&, 3]™a,

1
e™V[f]- (f-a) (f-b) (f-c) }, c <<<<< b <<<<< a ]

6

b-f c-f a-f a-b' '2 3 (a-b) (a-f) � EllipticF ArcSin ,' ' ' '-a+b -a+c a-b a-c
-

(a-f) (-b + f) (-c + f)'
The special function EllipticF[�,m] is an incomplete elliptic integral of the

Ž � .first kind, referred to as F � m in most textbooks. The definition of this function
is

� d�
�F � m � .Ž . H 20 '1ym sin �

The next step is most easily done by hand: the square roots involving f all
cancel, leaving us with

'y2 3� ay f
F arcsin m ss, 7.2.10Ž .(ž /ayb'ayc

where

ayb
ms . 7.2.11Ž .ayc

Since cFbFa, it is worthwhile to note for future reference that 0FmF1.
Ž . Ž .Equation 7.2.10 can be inverted to obtain f s :

ay f s aycŽ . 2 y1ssin F s m .'ž /ayb 12�

The right-hand side can, in turn, be expressed as another special function, a
Ž � . Ž � . y1Ž � .Jacobian elliptic function sn � m , defined by sn � m �sin F � m . In other
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Ž � . Ž .words, if usF � m then sn u �sin � . Thus,

ayc2f s say ayb sn s m . 7.2.12Ž . Ž . Ž .'ž /12�

The function sn is a nonlinear version of the sine function. In Mathematica it is
referred to as JacobiSN[�,m]. There is a second function, cn, which is analogous
to the cosine function, and is defined by the identity sn2qcn2s1. Our periodic

Žsolution for f is often called a cnoidal wa®e because it is often expressed in terms
1.of cn rather than sn . The function sn is plotted in Cell 7.34 for ms .2

Cell 7.34

Plot[JacobiSN[�, 1/2], {�, -10, 10},
PlotLabel™"sn(�|||||m), m=1/2", AxesLabel™{"�", ""}];

Since the sn function, like the sine function, is zero at the origin and runs from
Ž .y1 to 1, we see from Eq. 7.2.12 that the maximum and minimum of the wave is a

and b respectively. This makes sense, since these are the turning points in the
Ž .motion of the ‘‘particle’’ in the ‘‘potential well’’ V f .

Ž .However, unlike the sine function, the period P m of the sn function is not
fixed, but rather varies, depending on m. As m increases away from zero, the

Ž .period P m of the sn function increases. In fact, one can show that

P m s4K m , 7.2.13Ž . Ž . Ž .

Ž .where K m is another special function, the complete elliptic function of the first
Ž .kind called EllipticK[m] in Mathematica . This function is related to F by

Ž . Ž � .K m sF 
r2 m . The period of sn is plotted in Cell 7.35 vs. m for 0�m�1.

Cell 7.35

Plot[4 EllipticK[m], {m, 0, 1},
PlotLabel ->>>>> "Period of sn(�|||||m)", AxesLabel™{"m", ""}];
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Ž .For m™0, corresponding to b™a, the period of sn is 2
 , and in fact, sn � , 0 s
sin � :

Cell 7.36

JacobiSN[�, 0]

Sin[�]

wThis low-amplitude limit of the cnoidal waves m™0 implies that b™a in Eq.
Ž .x7.2.12 corresponds to the limit of linear waves.

2 Ž .Since sn has a period half that of sn, Eq. 7.2.12 implies that the wavelength
Ž .� a, b, c of the cnoidal waves is given by

1 12�
� a, b , c s P m . 7.2.14Ž . Ž . Ž .(2 ayc

Ž .In the linear limit b™a m™0 this becomes

12�
� a, a, c s 
 . 7.2.15Ž . Ž .( ayc

Some examples of cnoidal waves for increasing amplitude are shown in Cell 7.37,
Žkeeping the wave height constant and increasing the depth of the troughs as1,

.cs0, and b decreasing away from a toward c .

Cell 7.37

f[s_____, a_____, b_____, c_____] =
a-(a-b) JacobiSN[Sqrt[(a-c)/12] s, m] ^̂̂̂̂2/. m™(a-b)/(a-c);

Table[Plot[f[s, 1, b, 0], {s, -20, 20},
PlotLabel™"m =" <<<<<>>>>>ToString[(a-b)/(a-c)/. {a™1, c™0}],

'AxesLabel™{"s/ � ", ""}, PlotRange™{-1, 1}],
{b, .9, 0., -.2}];
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Different values of a and c, aG0Gc, lead to the same basic behavior, but with
Ždifferent values for the peak height and trough depth. The reader is encouraged

.to vary the parameters a and c to verify this. Note how, for finite wave amplitude,
the troughs of the wave broaden and the peaks narrow. This corresponds qualita-
tively to the peaking of real water waves, shown in Fig. 7.5.

One can see from this photo that real nonlinear water waves are even more
sharply peaked than cnoidal waves. This has to do with the approximate form of

Fig. 7.5 Nonlinear water waves, created in a wave tank at the Ship Division of the National
w Ž . xPhysical Laboratory, England. Photograph by J. E. Frier, in Benjamin 1967 .
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Ž .dispersion used in the KdV equation. Equation 7.2.2 is a poor approximation to
Ž .the exact linear dispersion relation 7.2.1 at large wavenumbers, which contribute

to the sharp peak. More accurate equations that keep the exact linear dispersion
can be constructed, and show the desired slope discontinuities at the wave peaks.
w Ž . xSee, for instance, Whitham 1999 .

The wavelength � is not all that depends on the wave amplitude. The speed ®
of the cnoidal wave also depends on a, b, and c. This can be easily seen by

Ž . Ž . 2substituting Eq. 7.2.6 into 7.2.9 . The coefficient of f on the right-hand side of
1 2Ž . Ž .Eq. 7.2.9 is aqbqc , but the coefficient of f on the left-hand side is ®r2.6

Therefore, we find that the wave speed is

1®s aqbqc . 7.2.16Ž . Ž .3

1In the limit of a linear wave oscillating about fs0, b™a™0 and we have ®™ c.3

This is the correct result for the linear wave speed as seen in a frame moving at
velocity c . In this frame, the linear wave speed is given by ®s�rkyc . Using0 0

Ž . 2 2Eq. 7.2.1 for � yields ®syc k h r6. This does not look like ®scr3. However,0
Ž .remember that the wavelength �s2
rk for these waves is given by Eq. 7.2.15

'with as0: �s 12�r yc 
 . Squaring this equation and substituting cs3®Ž .
implies that ®sy� k 2, which may be seen to agree with the linear dispersion
relation if we recall that �sc h2r6.0

Ž .Another important case is the limit m™1 i.e. b™c . In this limit, the period
Ž . w Ž . xP m of sn approaches infinity see Eq. 7.2.13 and Cell 7.35 , and as a result so

does the period of the cnoidal waves. The reason for this divergence in the period
Ž .can be understood by examining motion in the potential V f . The limit b™c

corresponds to an energy E for which there is a turning point just at the top of the
Ž .potential curve Fig. 7.6 . Particles that start with zero velocity at the top of the hill

take an infinitely long time to fall down the slope, which is why the period of the
oscillatory motion goes to infinity for this energy.

Since the period of the motion is infinite, the wave peaks becomes infinitely
separated, resulting in a single isolated peak. This peak is called a soltion, or

Ž . Ž . Ž .Fig. 7.6 Potential V f for ®s2, As0 solid , and energy E dashed for which a soliton
solution exists.
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Ž .solitary wa®e. In Cell 7.38, we plot the case of a soliton of unit amplitude as1 for
Ž .which f™0 at large s i.e. c™b™0 .

Cell 7.38

Plot[f[s, 1, 0, 0], {s, -20, 20}, PlotLabel™
"m =" <<<<<>>>>>ToString[1] <<<<<>>>>>"(soliton)",

'AxesLabel™{"s/ � ", ""}, PlotRange™{-.2, 1}];

This soliton has a simple analytic form:

Cell 7.39

'w w xxSimplify f s/ � , a, 0, 0

2'a s
a Sech ' '2 3 �

Written as an equation, the soliton solution is

a
f s s . 7.2.17Ž . Ž .2 'cosh ar12� sŽ .

From this expression, one can see that the length of the soliton increases as the
Ž .amplitude a decreases. Cell 7.38 shows that the length from end to end is roughly

'Ls20 �ra .

Ž .Also, according to Eq. 7.2.16 , the speed of the soliton increases as the amplitude
increases:

®sar3.

Ž .This is the speed as viewed from a frame already moving at speed c . These0
expressions for the length and velocity are in scaled units. If we go back to real

Ž .units, the soliton height is z s2har 3c , and the soliton speed ® as seen in the0 0 lab
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lab frame depends on height z according to0

z0® sc 1q , 7.2.18Ž .lab 0 ž /2h

and the length is

20 3'Ls h rz . 7.2.19Ž .03

The earliest recorded observation of a soliton in the wild is found in a famous
Ž .paper by Scott Russell 1844 . There, he describes a soliton that he had witnessed

ten years earlier:

I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped�not so the mass of water in the
channel which it had put in motion; it accumulated around the prow of the vessel in a
state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and
well-defined heap of water, which continued its course along the channel apparently
without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling at a rate of some eight to nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a long chase of one or two miles I lost it in the
windings of the channel. Such, in the month of August, 1834, was my first chance
encounter with that singular and beautiful phenomenon.

This exciting narrative shows that solitons are not mere artifacts of some mathe-
matical idealization. In fact, it turns out that solitons are ubiquitous in nonlinear
systems with dispersion. Some examples of other systems exhibiting solitons may
be found in the exercises. They may even have useful practical applications: it has
been proposed that soliton pulses could be used to transmit information in fiber
optics networks. Even the best optical fibers are slightly dispersive, so that pulse
trains eventually spread and lose coherence. However, pulse trains consisting of

Žoptical solitons pulses with sufficiently large amplitude so that nonlinear effects in
.the index of refraction become important are not affected by dispersive spreading.

As of the year 2000, 10-Gbitrs bit rates have been demonstrated in fibers over
4 5 Ždistances of 10 �10 km see nearly any issue of Optics Letters from around this

.time . This is still an area of ongoing research, and the interested reader is
Ž .referred to A. Hasegawa and Y. Kodama 1995 .

7.2.3 Time-Dependent Solutions: The Galerkin Method

Introduction We have seen that steady soliton and cnoidal wave solutions to the
KdV equation occur because of a balance between nonlinear steepening and
dispersive spreading. But how do we know that such a balance is stable? If a steady
solution is slightly perturbed, does the result remain close to the steady solution, or
diverge from it? If the latter is true, then these steady solutions are not of much
more than academic interest. Although Scott Russell’s description indicates that
solitons are in fact stable, it would be nice to see this fact arise from the
mathematics.
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There has been considerable analytical work on the stability of steady solutions
to the KdV equation. This work is of a highly technical nature and will not be
discussed here. Rather, we will use numerical techniques already at our disposal to
test the stability of the solutions. We will also study the interaction between
solitons, and wavebreaking.

We will use the Galerkin method, solving the KdV equation with periodic
boundary conditions on an interval running from yL to L. A set of basis functions
for these boundary conditions are

® x se ik x , ksn
rL, yMFnFM . 7.2.20Ž . Ž .n

Ž .The solution for f x, t is then written in terms of these functions:

f x , t s c t e ik x . 7.2.21Ž . Ž . Ž .Ý n
n

Ž .The basis functions are orthogonal with respect to the inner product f , g s
HL f *g dx, so this is the inner product we will use. Substituting this series into theyL
KdV equation, we obtain

� ik x iŽkqk . x 3 ik xc t e q c t c t ik e y� ik c t e s0. 7.2.22Ž . Ž . Ž . Ž . Ž .Ý Ý Ý Ýn n n n� t
n n nn

ik x ik x iŽkqk . xŽ .We now take an inner product with respect to e , and note that e , e s
Ž .L . Therefore, kskyk, and Eq. 7.2.22 becomesk , kqk

� 3c t q c t c t iky� ik c t s0. 7.2.23Ž . Ž . Ž . Ž . Ž .Ýn nyn n n� t
n

Ž .We will solve these coupled nonlinear ODEs for c t using NDSolve. Before wek
Ž .do, however, we note that f x, t is a real function, so this implies

c t sc t *. 7.2.24Ž . Ž . Ž .yn n

Therefore, we do not need to solve for the coefficients with n�0:

Cell 7.40

c[n_____][t_____] := Conjugate[c[-n][t]] /; n <<<<< 0;

Ž .Also, note that the nonlinear term in Eq. 7.2.23 couples modes with different
wavenumbers. Even though the sum over n runs only from yM to M, coefficients

Ž .c t may fall outside this range. In fact, this is sure to happen eventually, even ifnyn
Ž . � �c t is initially zero for n �M. For example, say that initially only c and c aren y1 1

Žthe only nonzero coefficients i.e., the solution is a sinusoidal wave with wavenum-
. Ž .ber 
rL . Then according to Eq. 7.2.23 , there is an initial rate of change for c� 2
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given by
� 
 2c q i c s0,Ž .2 1� t L

� 
 2c y i c s0.Ž .y2 y1� t L

When c has grown to large amplitude, these coefficients couple in turn to� 2
modes with ns�3,�4, and so on, until a broad range of wavenumbers are
excited. This is called a cascade. If it is unchecked, eventually waves with arbitrar-
ily high wavenumbers are excited. This is what leads to wavebreaking in the case of

Ž .Eq. 7.1.30 : as the wave attains infinite slope, this corresponds to Fourier modes
with infinite wavenumber.

We can hope that the cascade is suppressed by the dispersive term in the KdV
Ž .equation. However, one can see in Eq. 7.2.23 that this term, proportional to � ,

causes only a rapid oscillation in the phase of c for large n, and does not affect itsn
amplitude. On the other hand, we might imagine that this rapid oscillation does
cause phase mixing, which has an equivalent effect to the suppression of the

� �amplitude, so we will simply neglect all modes with n �M, explicitly setting them
equal to zero:

Cell 7.41

c[n_____][t_____] := 0 /; Abs[n] >>>>> M;

The hope is that these modes will not be needed.

Example 1: Cnoidal Wave For our first test, we will try a cnoidal wave as the
initial condition:

Cell 7.42

f[s_____, a_____, b_____, c_____] =
a-(a-b) JacobiSN[Sqrt[(a-c)/12] s, m] ^̂̂̂̂2/. m™(a-b)/(a-c);

f0[x_____] = f[x, 1, .1, 0];

In order to fit this cnoidal wave into periodic boundary conditions, we choose L to
Ž .be a multiple of � a, b, c :

Cell 7.43

�[a_____, b_____, c_____] = 2 EllipticK[m]Sqrt[12/(a-c)]/.m™(a-b)/(a-c);

L = 2 �[1, .1, 0]

35.7231

Ž .As usual, the initial conditions on the Fourier modes are determined by f x0
according to

e ik x , f xŽ .Ž .0c 0 s . 7.2.25Ž . Ž .n 2 L

We will keep 15 modes in our solution:
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Cell 7.44

M = 15;

k[n_____] := n Pi/L;

ics = Table[
c[n][0] == NIntegrate[Exp[-I k[n] x] f0[x],
{x, -L, L}]/(2 L), {n, 0, M}];

NIntegrate: :ncvb :
NIntegrate failed to converge to prescribed accuracy after
7 recursive bisections in x near x = 35.72309221520074‘.

NIntegrate: :ncvb :
NIntegrate failed to converge to prescribed accuracy after
7 recursive bisections in x near x = -35.7231.

NIntegrate: :ncvb :
NIntegrate failed to converge to prescribed accuracy after
7 recursive bisections in x near x = 35.72309221520074‘.

General: :stop : Further output of
NIntegrate: :ncvb will be suppressed during this
calculation.

The errors in the integration can be ignored: they arise from the fact that several
of the modes have zero initial amplitude. These errors can be avoided by setting
these mode amplitudes equal to zero directly without evaluating the integrals.

We now integrate the ODEs forward in time using NDSolve, and plot the
result over a time range 0� t� t in steps of � t, with plot range from f tomax min
f . We do so using a module, since we will be studying several examples. Themax

Ž .ODEs that we will solve are given by Eq. 7.2.23 , taking �s1:

Cell 7.45

kdVmod[tmax_____, �t_____, fmin_____, fmax_____] := Module[{k, ODEs},

k[n_____] = n Pi/L;

ODEs = Table[D[c[n][t], t] - I k[n] ^̂̂̂̂3 c[n][t] +
Sum[I k[nb] c[nb][t] c[n - nb][t], {nb, -M, M}] == 0,
{n, 0, M}];

vars = Table[c[n][t], {n, 0, M}];

sol = NDSolve[Join[ODEs, ics], vars, {t, 0, tmax},
MaxSteps™6000];

f[x_____, t_____] = Sum[c[n][t] Exp[I k[n] x], {n, -M, M}];
f[x_____, t_____] = f[x, t]/. sol[[1]];

Table[
Plot[f[x, t], {x, -L, L}, PlotRange™{{-L, L},
{fmin, fmax}}, PlotLabel ™" M = "<<<<<>>>>>ToString[M]<<<<<>>>>>",
t = "<<<<<>>>>>ToString[t]], {t, 0, tmax, �t}];]
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We now evaluate the solution over the time range 0� t�200, as shown in Cell
7.46.

Cell 7.46

kdVmod[200, 5, 0, 2]

The solution appears to be well behaved and stable over the time scale of interest.
Ž .It moves to the right with a speed given by Eq. 7.2.16 . Other cnoidal waves and

solitons can be handled by simply varying the parameters. One can also add small
perturbations to these solutions. One finds by this sort of empirical approach that
steady solutions to the KdV equation are stable to small perturbations. This is
born out by the previously mentioned analytic work on this problem.

Example 2: Interacting Solitons In this example, for initial conditions we take
two soliton solutions with different amplitudes:

Cell 7.47

L = 60;

f0[x_____] = 1/3/Cosh[Sqrt[1/36] (x + 30)] ^̂̂̂̂2 + 1/4/
Cosh[Sqrt[1/48] (x - 30)] ^̂̂̂̂2;

We will again evaluate the solution keeping 15 modes:

Cell 7.48

M = 15;

k[n_____] := n Pi/L;

ics = Table[
c[n][0] == NIntegrate[Exp[- I k[n] x] f0[x],

{x, -L, L}]/(2L), {n, 0, M}];
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In order to follow the dynamics we must integrate over a longer time, 0� t�6000,
because our initial conditions are solitons of rather small amplitude. This implies
their velocities are small. The solution is displayed in Cell 7.49. The soliton in
back, being of larger amplitude, moves with higher speed and catches up to the
soliton in the front. It then feeds some of its amplitude to the soliton in the front,
until they exchange amplitudes, and the soliton in the front then moves away from
the one in the back. Effectively, the two solitons have exchanged places: they have
passed through one another without change. Thanks to the periodic boundary
conditions, this interaction then repeats itself ad infinitum.

Cell 7.49

kdVmod[6000, 100, 0, .6]

The fact that solitons effectively retain their shape during binary interactions
implies that a description of nonlinear processes can often be greatly
simplified�one can think of the nonlinear system as a gas of discrete solitons,
which act almost like discrete particles, interacting with one another but retaining
their identity.

Example 3: Suppression of Wavebreaking In this example, we investigate whether
wavebreaking occurs in the KdV equation. Recall that wavebreaking was observed

Ž .in the solutions to Eq. 7.1.30 , where dispersion is neglected. Although we cannot
hope to observe similar double-valued solutions using the Galerkin method, which
expands in a set of single-valued modes, we might expect to see some initial
conditions steepen, and the spectrum of waves should display a cascade to high
wavenumbers.
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For our initial condition, we take a single finite-amplitude sine wave. We now
keep Ms20 modes in order to be certain of capturing the high-wavenumber
dynamics properly, as shown in Cell 7.50.

Cell 7.50

L = 40; M = 20;
ics = Table[c[n][0] == 0, {n, 0, M}];
ics[[2]] = c[1][0] == 1/8;

kdVmod[800, 10, -1, 1]

Initially the wave steepens, just as when dispersion is neglected. However,
instead of breaking, the wave dissociates into several solitons that proceed to
interact with one another in a complex manner. The spectrum of the solution is

� Ž . �peaked at low wavenumbers, as can be seen in the plot of c t shown in Celln
7.51. Evidently the cascade to large wavenumbers has been suppressed by the
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dispersive term in the KdV equation. Modes in the upper half of the spectral range
have negligible amplitude. This implies that our cutoff of the spectrum at ns�M

Ždoes not affect the result. This can be verified by taking larger or somewhat
.smaller values of M: the answer does not change.

Cell 7.51

spectrum = Abs[vars/.sol[[1]]];
Table[ParametricPlot3D[{k[n], t, spectrum[[n + 1]]},

{t, 0, 800}, DisplayFunction™Identity], {n, 0, M}];
Show[%%%%%, DisplayFunction™$$$$$DisplayFunction, BoxRatios™

{1, 1, 1},
AxesLabel™{"k", "t", "|||||c (t)||||| "}, PlotLabel ->>>>>n

"wave spectrum\\\\\n "];

Thus, when dispersion is added in the KdV equation, wavebreaking no longer
occurs. Is this due to the relatively small amplitude of the wave chosen in the
above example? The answer is no�even for large amplitudes, the wavebreaking is
suppressed. However, it is harder to see this numerically because more modes
must be kept, making the problem somewhat harder to integrate. In Fig. 7.7 we
show an example of a sinusoidal initial condition with eight times the previous

Ž .amplitude. The solution still breaks up into solitons, and the spectrum Fig. 7.8
remains peaked in the lower half of the spectral range.

This leaves us in a bit of a quandary. By including dispersion in the KdV
equation, which should make the equation a more accurate descriptor of water

Ž .waves than Eq. 7.1.30 , we have actually lost wavebreaking, one of the main
qualitative features of such waves.

The solution to this puzzle lies in the approximate form of dispersion in the
KdV equation. As already mentioned in connection with the rounded peaks of

Ž .cnoidal waves, Eq. 7.2.2 is a poor approximation for large wavenumbers, yielding
a phase velocity that can actually be negative for large k. The exact dispersion
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Fig. 7.7 A solution of the KdV equation.

Ž .relation 7.2.1 varies much less rapidly at large k, and results in weaker dispersion
that allows real water waves to break, provided their amplitude is sufficiently large.

7.2.4 Shock Waves: Burgers’ Equation

Steady Solutions If we take the dispersive term � 3 fr� x 3 in the KdV equation,
change the sign, and lower the order of the derivative by one, we obtain Burgers’
equation,

� f � f � 2 fq f y� s0. 7.2.26Ž .2� t � x � x
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Fig. 7.8 Spectrum associated with solution shown in Fig. 7.7.

This nonlinear equation is a simplified model for the propagation of shock waves.
Now f can be thought of as either the perturbed pressure or density of a gas due
to a compressional wave, as seen in a frame moving with the linear wave speed.
The term proportional to � describes diffusion of these quantities due to viscosity
or thermal conduction, and the nonlinear term qualitatively describes a nonlinear
increase in wave speed when the wave pressure is large. The equation also has
application to other areas, such as the study of nonlinear patterns in traffic flow
Ž .see the exercises .

A steady solution for f can be found using the same techniques as were used for
the KdV equation. The solution travels to the right with speed ®, takes on one
value, f , at xsy	, and takes on a lower value, f , at xsq	. The form of they	 	

solution is

� f � f
f x , t s®y tanh xy®t , 7.2.27Ž . Ž . Ž .ž /2 4�

Ž .where � fs f y f is the jump in f across the shock see the exercises . They	 	

speed ® of the shock is related to f and f according toy	 	

1®s f q f . 7.2.28Ž . Ž .y	 	2

This relation between shock speed and the amplitude at �	 is called a Hugoniot
relation.

A typical shock solution is plotted in Cell 7.52 in the comoving frame. In this
Ž .example, we assume that f s0. According to Eq. 7.2.27 the width of the shock	

depends on the diffusivity � and on the jump � f , scaling roughly as �r� f. The
smaller the value of � , or the larger the jump, the narrower the shock.
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Cell 7.52

Plot[1/2 - 1/2 Tanh[x/4], {x, -20, 20},
AxesLabel™{"(x- v t)�f/�", "f(x,t)/�f"}];

rrrrrCTCS Crank-Nicolson Approach For numerical solutions of Burgers’ equa-
tion, the Galerkin method used in Sec. 7.2.3 for the KdV equation can be easily
adapted. This is left to the exercises. Here, we will instead use a grid method, for
practice. We solve the problem under periodic boundary conditions on 0Fx�L
and take xs j � x, js0, 1, 2, . . . , My1, � xsLrM, and tsn � t.

Ž . Ž .The first two terms of Eq. 7.2.26 are of the form of the wave equation, 7.1.30 ,
and hence we expect that the CTCS method will work for these terms. The
equation is nonlinear, which hinders von Neumann stability analysis, but if we
replace f � fr� x by c � fr� x, where c is a constant, then one can show that the
CTCS method is stable provided that timestep that satisfies the Courant condition

w Ž .x � �c � tr� xF1 see Eq. 6.2.44 . Thus, we might hope that if � tF� xrmax f , the
CTCS method will be stable. Actually, it turns out that sharp gradients in f can
also destabilize the method, but for sufficiently small timestep this method works
well.

Ž . Ž .However, the last term in Eq. 7.2.26 is diffusive, which as we saw in Sec. 6.2.1
causes instability in the CTCS method. For the diffusion term we therefore use a
variant of the Crank�Nicolson scheme, taking the average of the diffusion opera-
tor at two timesteps centered around timestep n. The resulting difference equation
is given below:

f nq1 y f ny1 f n y f n
j j jq1 jy1nq fj2 � t 2 � x

f nq1 y2 f nq1 q f nq1 f ny1 y2 f ny1 q f ny1
� jq1 j jy1 jq1 j jy1 ny q sS . 7.2.29Ž .j2 22 ž /� x � x

For future reference, note that we have added a finite-differenced source function
Ž . Ž .S x, t to the right-hand side of the equation. Equation 7.2.29 is an implicit

method. To solve it, we could apply the Crank�Nicolson algorithm that we used in
Sec. 6.2.1, but instead we will write the procedure in a different way, using a form
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of operator splitting that we haven’t seen before. First, we set up the grid and
choose values for � t and � :

Cell 7.53

Clear["Global‘*****"]
M = 40; L = 4; �x = L/M; �t = 0.03; � = 0.1;

Next, in order to simplify notation, we split the operator, taking the CTCS step and
keeping that part of the Crank�Nicolson diffusion operator that depends on
previous times. We place the result in an intermediate array F:

f n y f n
jq1 jy1nq1 ny1 n nF s f y2 � t f q� � t d f , j, ny1 q2 � t s , 7.2.30Ž . Ž .j j j 2 j2 � x

Ž . Ž n nwhere we have introduced a finite-difference operator d f , j, n s f y2 f q2 jq1 j
n . 2f r� x in order to further simply the notation. Defined as a recursion relation,jy1

Ž .the left-hand side of Eq. 7.2.30 must be evaluated at time step n rather than
nq1:

Cell 7.54

f[j, n-1]
F[j_____, n_____] := f[j, n-2] - �t (f[j + 1, n-1]-

�x
f[j-1, n-1]) +

��t d2[f, j, n-2] + 2 �t S[j, n-1]

Cell 7.55

f[j + 1, n] - 2 f[j, n] + f[j - 1, n]
d2[f_____, j_____, n_____] :=

2�x

We then solve coupled equations for f nq1 according toj

f nq1 sF nq1 q� � t d f , j, nq1 . 7.2.31Ž . Ž .j j 2

Ž . Ž . Ž .Equations 7.2.30 and 7.2.31 are equivalent to Eq. 7.2.29 . Note that this form
Ž .of operator splitting differs in concept from that used previously in Eqs. 6.2.31 .

There, different forms of the full operator were used in two substeps of size � tr2.
Here, the full time step � t is taken for each substep, but only pieces of the
operator are used in each.

Ž . n nTo solve Eq. 7.2.31 we introduce dummy variables � to replace f . Thej j
reason is that the equations in Solve must be in terms of unknown quantities, but
the f n’s are determined recursively by the procedure and so are not unknownj
variables. After the equations are solved for � n, we use these values to update f n.j j

The variables used in the equations are

Cell 7.56

vars[n_____] = Table[�[j, n], {j, 0, M-1}];
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Ž .In these variables, Eq. 7.2.31 becomes a list of equations:

Cell 7.57

eqns[n_____] := Table[�[j, n] == F[j, n] + � �t d2[�, j, n],
{j, 0, M-1}];

Ž .Now we solve these equations once at the nth step:

Cell 7.58

varsn[n_____] := varsn[n] = vars[n]/. Solve[eqns[n], vars[n]][[1]]

Then we substitute the results into f n:j

Cell 7.59

f[j_____, n_____] := (f[j, n] = varsn[n][[j + 1]])/; n >>>>> 1 &&&&&&&&&&
0FjFM -1

Since we will solve for points on the grid from js0 up to My1, the above
equations will require values for points jsy1 and jsM. According to the
periodic boundary conditions, these points are equivalent to jsMy1 and js0
respectively. Boundary conditions for both f and the dummy variable � must be
specified:

Cell 7.60

�[-1, n_____] := �[M - 1, n];
�[M, n_____] := �[0, n];
f[-1, n_____] := f[M - 1, n];
f[M, n_____] := f[0, n];

Also, the first timestep must be treated differently, since in the CTCS step ns1
calls nsy1. The simplest approach is to apply FTCS to the equation for this one
timestep. This is only first-order accurate in � t, but that is sufficient to our needs
here. A second-order scheme involving the predictor�corrector method is dis-
cussed in the exercises. Here we take

Cell 7.61

f[j_____, 1] := f[j, 1] =
f[j + 1, 0] - f[j - 1, 0]

f[j, 0] - �t f[j, 0] q
�x

� �t d2[f, j, 0] + �t S[j, 0]

For the source, we take Ss0,

Cell 7.62

S[j_____, n_____] = 0;

and for the initial condition, we take a simple sine wave, offset from the origin so
that it propagates to the right, as shown in Cell 7.63.
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Cell 7.63

f[j_____, 0] := 1 + Sin[j �x Pi];

Table[ListPlot[Table[{j�x, f[j, n]}, {j, 0, M}],
PlotRange™{0, 2},
PlotLabel ->>>>> "t = "<<<<<>>>>>ToString [n �t]], {n, 0, 80, 2}];

The wave steepens, but also decays due to the finite diffusivity. In order to see a
shock wave form, it is necessary to drive the system with a source. This is done by
reevaluating the previous cells, but now we take the following source:

Cell 7.64

S[j_____, n_____] := 0 /; j >>>>> 2;
S[0, n_____] = S[1, n_____] = S[2, n_____] = 10;

along with a zero initial condition.

Cell 7.65

f[j_____, 0] := 0;

Table[ListPlot[Table[{j�x, f[j, n]}, {j, 0, M}],
PlotRange™{0, 5},
PlotLabel ->>>>> "t = "<<<<<>>>>>ToString[n �t]], {n, 0, 80, 2}];
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The result is shown in Cell 7.65. The effect of the localized source is to create a
Žshock wave moving to the right. Think of the source as an explosive release of

.gas. The height of the shock wave is roughly 2.5 units, which depends on the
Ž . L Ž .strength of the source: if we define N t sH f x, t dx, then according to Eq.0

Ž . L 27.2.26 , dNrdtsH S dx. However, for this moving shock front, dNrdts®f s f r2,0 y y
where f is the height of the shock, and in the second stop we have used they

Ž .Hugoniot relation, Eq. 7.2.28 . Thus, for this shock wave the height of the shock
depends on the source in the following way:

f 2 Ly s S dx .H2 0

L 'Since H S dx,3 � x�10s3 for our source, we find f , 6 s2.45 . . . , very close0 y
to the value observed in the simulation.

Also, between times 0.6 and 2.4 the shock covers a distance of roughly 2 units,
making the speed roughly 2r1.8s1.1. This is close to the value of 1.25 expected

Ž .from the Hugoniot relation, Eq. 7.2.28 .

EXERCISES FOR SEC. 7.2

( ) ( )1 a According to the description by Scott Russell, the length of the soliton
that he observed was Ls30 ft, and the height was roughly 1.25 ft. Use
these facts to determine the depth of the water in the channel.
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( ) Ž .b Predict the speed of the soliton using the results of part a . How does
your prediction compare to Scott Russell’s observation of ® s8�9 mileslab
per hour?

( ) ( ) Ž .2 a Show that the coefficient A in the potential function V f is given in
Ž .terms of the roots a, b, c by Asy abqacqbc r6.

( )b Show that Esabcr6.

( )3 The Boussinesq equations describe slightly dispersive shallow-water waves
propagating both to the left and to the right, as viewed in the lab frame.
These are coupled equations for the horizontal velocity of the fluid surface,
Ž . Ž . Ž . Ž .u x, t , and the water depth h x, t , where h x, t sh qz x, t , h is the0 0

equilibrium depth, and z is the wave height. The equations are

� h �q hu s0,Ž .� t � x

� u � u � h 1 � 3hqu qg q h s0.0 2� t � x � x 3 � x � t

( )a Linearize these equations, assuming that z and u are small quantities,
and show that the resulting linear equations describe waves with the
following dispersion relation:

c2 k 2
02� s .2 21qk h r30

Ž .To second order in kh this is equivalent to Eq. 7.2.2 .0

( )b Defining hshrh , usurc , xsxrh , and ts tc rh , the Boussinesq0 0 0 0 0
equations become

� h �q hu s0,Ž .
� x� t

7.2.32Ž .
3� u � u � h 1 � hqu q q s0.23� x � x� t � x � t

Show that steady solutions to these equations depending only on ssxy®t
1are described by the motion of a particle with position h and mass 3

moving in a potential

2 2B h 1 2V h sy q y h 2 Aq® ,Ž . Ž .2 22h

and where A and B are constants of integration, with B relating u and h
through usBrhy®.

( )c Show that a soliton solution exists with h™1 as s™�	, provided that
Ž 2 2 .As1q B y® r2, and find the particle energy E corresponding to this

solution. Show that u™0 at s™�	 only if Bs®, which implies As1
for solitons.
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2( )d Show that the height h of this soliton is related to the speed by hs® .
Solve the equation of motion numerically on 0�s�4 for the case

Ž .Bs®s2, As1, and plot the form of this soliton solution for h s and
Ž .u s .

( )4 The sine�Gordon equation,

� 2 f � 2 fy qsin fs0, 7.2.33Ž .2 2� t � x

describes, among other things, the motion of magnetic domains in a ferro-
magnetic material. Here, f is proportional to the magnetization in the
material, which changes rapidly as one moves from one magnetic domain to
another. The linearized version of this equation is the Klein�Gordon equation

� 2 f � 2 fy q fs0,2 2� t � x

which has applications in several areas, including particle and plasma physics.
( )a Find the dispersion relation for the Klein�Gordon equation, and show

2'that the waves are dispersive, with phase speed cs� 1q1rk .
( )b Since the sin f term in the sine�Gordon equation causes both nonlinear-

ity and dispersion, one expects that the equation has steady solutions,
depending only on ssxy®t. Show that such solutions do exist provided

� �that ® �1, and find the functional form of soliton solutions for which
f™0 as s™q	 and f™2
 for s™y	. Show that the range in s over

2' Ž .which f varies from 2
 to 0 is proportional to ® y1 . Plot f s .

( )5 The nonlinear Schrodinger equation¨

�� � 2� 2� �i q qK � �s0 7.2.34Ž .2� t � x

Ž .describes the evolution of a quantum wave function � x, t trapped in a
Ž . � � 2potential V x syK � . For K�0 this particle is attracted to regions of

� � 2large probability density � , i.e., it is attracted to itself. This can lead to
nonlinear steepening of the wave function, but this steepening can be
balanced by dispersion, allowing steady solutions and solitons. This equation
has applications in many areas, including, of course, quantum physics, as well

Žas nonlinear optics where � is the electric field in a high-intensity wave
.moving through a nonlinear dielectric material . Solve for the steady solutions

Ž .to Eq. 7.2.34 , and find the functional form of solitons for which �™0 at
xs�	.

( ) Ž .6 Analyze the steady solutions of Burgers’ equation, Eq. 7.2.26 . Show that
Ž .these shock waves have the form given by Eq. 7.2.27 .

( )7 Models of compressional shock waves in a gas require the solution of the
Ž .Na®ier�Stokes equations, coupled equations for the pressure p x, t , velocity
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Ž . Ž .u x, t and mass density � x, t of the gas. The three equations are the
continuity equation for mass density,

�� �q u� s0; 7.2.35Ž . Ž .� t � x

the momentum equation,

� u � 1 � � 2

qu usy pq� u , 7.2.36Ž .2� t � x � � x � x

Ž 2 .where � is the kinematic viscosity of the gas units m rs ; and an equation of
state relating pressure to density,

�
psp �r� , 7.2.37Ž . Ž .0 0

where ��1 is the ratio of specific heats in the gas, and where p and � are0 0
Žthe equilibrium values of the pressure and mass density respectively. This

.model neglects thermal conduction for simplicity.
( )a Linearize these equations for small deviations from the equilibrium

psp , us0, �s� , to show that sound waves propagate with a disper-0 0
sion relation given by

� 2sk 2 c2y i�� ,Ž .0

where c s � p r� is the speed of sound. Show that these waves damp'0 0 0
exponentially due to finite viscosity, at a rate r given by rsk 2�r2 when
k��c .0

( ) Ž . Ž .b Analyze steady shock-wave solutions to Eqs. 7.2.35 � 7.2.37 , which
Ž .depend only on the variable ssxy®t where ® is the shock speed .

Show, for a shock moving to the right into still air where �s� and0
us0 at x™	, that the fluid velocity in the shock satisfies

2 �y1c� u � 10 2� s y1 q u yu®, 7.2.38Ž .ž /� s �y1 � 20

Ž .where �r� s®r ®yu .0

( ) Ž .c Use the result of part b to derive the following Hugoniot relation:

2 �y1c ® 10 2y1 q u yu ®s0,y yž /�y1 ®yu 2y

where u is the velocity of the gas well behind the shock.y
( )d Show that the shock always travels with speed ®�c and that ®rc is an0 0

Žincreasing function of u ru. Hint: Scale u by ® in the Hugonioty y
w Ž .x�y1 .relation, and note that 1r 1yx is an increasing function of x.

( )e Analytically solve for the shock assuming it is weak, so that ®™c and0
u �c . Show that in this limit,y 0

24c c c0 0 0u s 1y qO 1yy ž / ž /ž /�q1 ® ®
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and

uyu s s .Ž .
1qexp u 1q� sr2�Ž .y

5Plot u vs. s, assuming that �s , c s340 mrs, ®s360 mrs, and03

�s1�10y2 m2rs. Roughly speaking, what is the width of the shock in
Ž Ž .meters? Hint: Expand the Hugoniot relation and Eq. 7.2.38 to second

.order in u r®.y

( )8 Use the Galerkin method to numerically solve Burgers’ equation with con-
stant nonuniform forcing, in periodic boundary conditions, on 0�x�20:

� f � f 1 � 2 f 2 2yŽ xy5.q f y s e , 0�x�20.2� t � x 10 15� x

The forcing function on the right-hand side describes an explosive local
Žincrease in temperature, pressure, or density. Take 13 Fourier modes Ms

.12 , and solve for 0� t�25. Note the formation of a shock front propagating
to the right.

( ) Ž .9 Use the CTCS method to solve the sine�Gordon equation 7.2.33 in periodic
boundary conditions on 0�x�L, with Ls10. For the initial condition, take
Ž . Ž .f x, 0 s3 sin 
 xrL . Integrate the result for 0� t�10.

( ) Ž .10 Use the CTCS method to solve the traffic flow problem 7.1.43 , taking
Ž . Ž .f x, 0 s0 i.e. an initially empty freeway with ss1 for 0�x�1 and ss0

Žotherwise i.e., there is an on ramp at this location, feeding cars onto the
.freeway at a constant rate . Take cs1 and use periodic boundary conditions

on 0�x�10, and integrate in time up to a time as close as possible to the
Žformation of a singularity the CTCS method will become unstable at some

.point before this time, depending on your choice of step size .

( )11 A diffusive term is often added to the traffic flow problem, in order to model
diffusive spreading of the cars in the absence of nonlinearity. The equation
now becomes

� f � f � 2 fq cy f y� ss.Ž . 2� t � x � x

Using the numerical method of your choice, redo the previous problem,
taking �s0.2. Solve the problem over the time interval 0� t�15. Note the

Žformation of a backward-propagating shock a traffic jam, propagating back
.from the on ramp .

( )12 Here’s another numerical method for solving PDEs: finite-difference the
spatial operator on a grid, and then solve the resulting coupled ODEs in
time. These ODEs can be interpreted as the equations of motion for a system
of coupled masses and springs, which provides us with another way of
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thinking about the problem. Consider, for instance, the following nonlinear
PDE:

� 2� � 2� ��2sc 1q� .2 2 ž /� x� t � x

Centered-differencing of the spatial operator on a uniform grid of positions
xs j � x yields

d 2� � y2� q� � y�j jq1 j jy1 jq1 jy12sc 1q�2 2 ž /2 � xdt � x

2c � 2 2s � y� y � y� q � y� y � y� .Ž . Ž . Ž . Ž .jq1 j j jy1 jq1 j jy1 jž /2 2 � x� x
7.2.39Ž .

These equations are the same as the dynamical equations for a series of
Ž .masses of unit mass, at positions � t , connected to nearest neighbors byj

nonlinear springs with a nonlinear spring force vs. displacement � given by

Fsyk�y�� 2 ,

2 2 2 Ž 3.where ksc r� x and �sc �r 2 � x . In a famous paper from the early
Ž .days of computational physics, Fermi, Pasta, and Ulam FPU, 1955 studied

the behavior of this coupled mass�spring system. The authors were expecting
that the nonlinearity of the system, combined with the many degrees of
freedom, would result in chaotic dynamics that would lead to a thermal
equilibrium state, where energy was shared equally between all degrees of
freedom. Surprisingly, however, this is not what the authors observed. In this
problem, we will repeat a portion of their work.
( ) Ža Use the molecular dynamics code in Chapter 2 modified for 1D motion

. Ž .and nearest-neighbor interactions to solve Eqs. 7.2.39 for Mq1 masses,
Žwhere Ms15, with boundary conditions � s� s0 i.e., the end masses0 M

. Ž . Žare fixed to walls . For initial conditions take � ssin 
 jrM i.e., allj
.energy in the lowest normal mode of the linearized system , and � s0.˙j

1Taking ks1 and �s , integrate the equations for 0� t�1000. Plot4
Ž . Ž2 jq� t vs. t on a single graph for js1, . . . , My1. The 2 j is used toj

.separate the different curves.
( ) Ž .b Perform the following analysis on your results from part a . FPU

expected that the nonlinearity in the force would result in coupling
between normal modes, and a cascade of energy to higher and higher
Fourier modes, resulting in eventual energy equipartition where, on
average, all modes have the same energy. The amplitude of the k th
Fourier mode vs. time is
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M2 
 kj
a t s � t sin , ks1, 2, . . . , My1. 7.2.40Ž . Ž . Ž .Ýk jM M

js0

Ž .The energy in a normal mode neglecting the nonlinear terms is

1 12 2 2E t s a q � k a ,Ž . Ž .˙k k k2 2

2Ž . 2w Ž .xwhere � k s4 sin 
 kr 2 M is the frequency squared of these nor-
w Ž . xmal modes. See Eq. 4.2.30 . Evaluate these mode energies and plot

them versus time to show the spectral distribution of mode energies. Is
energy being shared equally among these modes?

( )c What do you think would happen if we used this technique on the KdV
equation? Would energy be shared equally among the modes?
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CHAPTER 8

INTRODUCTION TO RANDOM
PROCESSES

8.1 RANDOM WALKS

8.1.1 Introduction

How is heat conducted through a material? We know from experiment that the
heat flux obeys Fick’s law, �sy��T , and as a result the temperature is described
by the heat equation,

� Tr� ts��2T r, t . 8.1.1Ž . Ž .

Why, however, does the heat flux obey Fick’s law? What are the underlying
microscopic processes that lead to this result?

In a conductor, it is known that heat energy is carried from place to place
mostly by the conduction electrons, which are free to move throughout the
material. In a hot region of the conductor, the electrons on average move more
rapidly than in the surrounding colder regions. As a result, they disperse through
the colder electrons and carry their energy with them. The resulting diffusion of
heat is intimately connected to the diffusion of the electrons themselves. For this
reason, good electrical conductors are also good thermal conductors.

The electrons don’t simply move in straight-line trajectories; otherwise they
would be described by the collisionless Boltzmann equation, not the heat equation.
Rather, the electrons collide with one another and with nearly stationary ions in
the material. As a result of these collisions, the electron dynamics is chaotic, and
the electrons move randomly. We will see that this random component to the
dynamics is essential to the diffusive spreading of the temperature observed in
solutions of the heat equation.

These complex collisional processes require many-body quantum theory for
their description. However, Fick’s law is a very simple result. Furthermore, this law
applies to a broad range of systems for which the details of the dynamics differ
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greatly. For example, thermal conduction in nonconductors is due to the propaga-
Ž .tion of phonons sound wave packets rather than electrons, yet Fick’s law still

applies. Can we find a simplified model of the electron dynamics that still leads to
diffusion of heat, but which avoids the niceties of quantum collision theory?

Many of the ideas discussed in the following sections were developed by Ludwig
Boltzmann, the father of statistical physics. Important theory contributions were
also made by Poisson, Maxwell, Gibbs, Einstein, von Smoluchowski, and others.
However, we will begin with some elementary ideas in probability theory, first put
forward by Jacob Bernoulli in the seventeenth century.

8.1.2 The Statistics of Random Walks

The Random Walk Model We will describe thermal diffusion in a conductor
with a random walk model. First, we will neglect quantum effects and treat the
electrons as a gas of classical point particles. Next, we will assume that the
conduction electrons move only in one dimension. Third, we will assume that
electron positions are restricted to a grid of values, xs j � x, js . . . ,y2,y
1, 0, 1, 2, . . . . Fourth, we will assume that there are only two groups of electrons,
hot electrons with energy 1 in scaled units, and cold electrons with energy zero,
which remain stationary and so are unimportant. The hot electrons diffuse, and
carry their energy with them, causing thermal diffusion.

We will employ the following simple dynamical model for the hot electrons: an
electron suffers a random collision at regular time intervals � t. Thus, � ty1 is
roughly the electron collision frequency. After a collision, the electron ends up at one
of the two neighboring grid points to its initial location. Thus, � x is roughly the
mean free path, or mean distance traveled between collisions. If the electron is at
grid point j at time t sn � t, at the next timestep t the electron is at eithern nq1
grid point jy1 or jq1, with equal probability.

We will show that in the limit that the number of electrons M™� and as
Ž .� t™0 and � x™0, the number density n x, t of the hot particles obeys the

diffusion equation

� n 2sD � n , 8.1.2Ž .� t

Ž 2 .where D is the particle diffusion coefficient unit m rs , related to � x and � t by
2 Ž .Ds� x r 2 � t . Hence, in this model the thermal diffusivity is �sD.

This version of the electron dynamics is called a random walk in one dimension.
It is not realistic as it stands, but it contains much of the basic physics behind the
chaotic collision processes that are actually responsible for thermal conduction.
wSome of the pitfalls associated with the neglect of quantum effects are considered

Ž . xin Exercise 12 . The same model can be applied to any number of other diffusive
processes, such as thermal diffusion in nonconductors where phonons take the
place of electrons, or the diffusion of atoms through a gas. The model is simple
enough to solve analytically using concepts from probability theory. Before we do
so, however, it is entertaining and instructive to view the dynamics via a simulation
of the random walk.
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Simulations Mathematica’s intrinsic function Random can be used to perform
random walk simulations. Random[] generates a random number in the range

Žfrom 0 to 1. Random[t,range] generates a random number of type t t being
.either Integer, Real, or Complex in the range range. For instance,

� 4Random[Integer,{i,j}] yields any integer in the list i, iq1, . . . , j with equal
probability. this means that, if we evaluate this random number N�1 times, the

Ž .number of times H i that integer i occurs is approximately the same as for any
Ž .other integer in the list. More precisely, in the limit as N™�, the probability P i

that i occurs is defined as

H iŽ .
P i s lim . 8.1.3Ž . Ž .NN™�

This is simply the fraction of times that i occurs. In any random process, this
probability is well defined and is independent of N in the limit as N™�. Integers

Ž . Ž . Ž .i and j are equally probable when P i sP j . However, for finite N, H i may
² :Ž . Ž .differ substantially from the prediction based on the expected ®alue, H i sNP i .

Ž .One of the objects of this chapter will be to examine how quantities such as H i
Ž .vary from their expected a®erage values.

In order to make an electron take random steps of size � x to either the left or
right, define the random number function s[]:

Cell 8.1

s[] := �x (2 Random[Integer, {0, 1}] -1)

This function, which has no arguments, is designed to return either y� x or � x
Žwith equal probability. Try evaluating it several times to test this. Make a table of

.20 values. How many times does � x occur?
We will follow the dynamics of M electrons simultaneously. For the k th

electron, with position x n at timestep n, the dynamics is given by the equationk

x nsx ny1 qs. 8.1.4Ž .k k

This equation can be programmed as a recursion relation in the usual way:

Cell 8.2

x[k_____, n_____] := x[k, n] = x[k, n - 1] + s[]

We will follow the dynamics of Ms200 electrons for N s50 steps. As an initialstep
condition, we will start all electrons at xs0:

Cell 8.3

x[k_____, 0] = 0;

�x = 1; M = 200; Nstep = 50;
positions = Table[x[k, n], {k, 1, M}, {n, 0, Nstep}];
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Each row in the matrix positions is the trajectory of a particular electron, as shown
in Cell 8.4. The electron wanders randomly, sometimes returning to the origin, but
over time tending to take large excursions from its initial location. This can also be
observed by viewing the positions of all the electrons vs. time using an animation.

Cell 8.4

ListPlot[positions[[10]], AxesLabel™{"n", "x/�x"}];

At timestep n the positions of the M electrons are given by the following list:

Cell 8.5

pos[n_____] := Table[positions[[j, n + 1]], {j, 1, M}]

These positions are followed in Cell 8.6 for 50 steps.
Although the dynamics of any one particle is completely unpredictable, as a

group the cloud of particles spreads in a quite predictable and reproducible
fashion. If the experiment is repeated several times, the cloud will spread in the
same manner every time. This remarkable predictability of large numbers of
randomly moving particles is actually a simple consequence of the laws of probabil-
ity. In a large group of particles starting from the origin, we expect in the first step
that roughly half the particles will move in one direction, and the other half will
move in the other direction. In the next step, half of these two groups will step in
each direction again, and so on, producing the observed smooth and even spread-
ing of the distribution. The random walk shown above is one of the simplest
examples of how predictable behavior can arise from the chaotic dynamics of large
groups of particles. This effect is at the root of several fields of physics, notably

Ž .statistical mechanics�not to mention other fields of endeavor such as insurance .
The smooth spreading of the particle distribution can be quantitatively studied

by making a histogram of particle positions as a function of timestep. We have
used histograms before, in Sec. 7.1, but here we will go into a little more detail. A
histogram is a graph that shows the number of particles that fall into given bins.

Ž .Define the histogram function H j, n as the number of particles located at grid
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position j at timestep n. This function satisfies

H j, n sM , 8.1.5Ž . Ž .Ý
j

where the sum runs over all possible grid points. A histogram is simply a plot of H
vs. j at any given time.

Cell 8.6

Table[ListPlot[pos[n],
PlotRange™{-30, 30}, AxesLabel™
{"k", "x/�x, n ="<<<<<>>>>>ToString[n]}], {n, 0, 50}];

Ž .The function H j, n can be evaluated directly from a list of positions using the
BinCounts function, available in the Statistics add-on packages. Bin-
counts[data,{xmin,xmax,�x}} determines the number of elements in the
list data that fall in bins of size �x, running from xmin to xmax. For instance,

Cell 8.7

<<<<<<<<<<Statistics‘;

H = BinCounts[{0, 1, 3, 1, 5, 5, 4, 3, 3, 2},
{-1/2, 5 + 1/2, 1}]

{1, 2, 1, 3, 1, 2}

1 1 1 1There are one element in the range from y to , two in the range to 1 , and2 2 2 2

so on. The function H is simply the numbers associated with each bin. These
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values can be plotted as a bar chart using the Histogram plotting function. In
order to manipulate the axes ranges in the nicest way, we first generate a
histogram and then use Show to set the axis ranges and tick marks, as shown in
Cell 8.8.

Cell 8.8

<<<<<<<<<<Graphics‘;

histograms = Table[p1 = Histogram[pos[n], DisplayFunction™
Identity,

HistogramCategories™50, HistogramRange™{-25, 25},
PlotLabel ->>>>> "H[j, n],n= "<<<<<>>>>>ToString[n] <<<<<>>>>> "\\\\\n",

AxesLabel™{"j", ""}];

Show[p1, PlotRange™{{-25, 25}, {0, 100}},
DisplayFunction™$$$$$DisplayFunction, AxesOrigin™
{0, 0}], {n, 0, 50, 1}];

The figure shows that the distribution of particles spreads out smoothly over time
in a manner reminiscent of solutions to the heat equation, although there is some
noise. The noise is associated with the finite number of particles used in the

Ž .simulation Ms200 . It is only by using many particles that smooth results are
obtained. In the limit M™�, the fraction of particles at any given position,
Ž .H j, n rM, is a well-defined quantity between zero to 1. Following along with the

Ž . Ž .definition of probability given in Eq. 8.1.3 , we define the probability P j, n of
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finding particles at a given grid position at timestep n:

H j, nŽ .
P j, n � lim . 8.1.6Ž . Ž .MM™�

Ž .According to Eq. 8.1.5 , the probability satisfies

P j, n s1; 8.1.7Ž . Ž .Ý
j

that is, there is unit probability of finding the particles somewhere on the grid.
Ž . Ž .From Eq. 8.1.6 , we can see that the probability P j, n is the fraction of times

that particles fall at position j at time n, taken out of an infinite number of
Ž .different trajectories. For instance, at ns0 we have P 0, 0 s1, there is unit

Žprobability of finding particles at the origin and therefore, there is zero probabil-
.ity of finding them anywhere else . At ns1, we would expect from our random

1Ž . Ž . Ž .walk dynamics that P 1, 1 sP y1, 1 s . How to characterize P j, n for n�12

will be the subject of the next section.
First, however, we consider another way to examine the spreading of the

² :Ž .distribution: by evaluating the average position of the particles vs. time, x n ,
² 2:Ž .and the mean squared position vs. time, x n .

The average position is defined as

M1 n² :x n s lim x . 8.1.8Ž . Ž .Ý jMM™� ks1

This quantity can be obtained from the simulation data using the function Mean
available in the Statistics add-on packages. Mean determines the mean value

Ž .of a list of numbers thought one can just take the sum and divide by M , as shown
in Cell 8.9.

The average position fluctuates around zero, because the particles spread
equally in both directions in an unbiased random walk. Fluctuations in this
quantity are related to the finite number of particles in the simulation, in this case,
Ms200. For example, if there were only one particle, the average position would
fluctuate considerably, but as M™� these fluctuations are averaged out and we
would expect that, for M™�,

² :x n s0. 8.1.9Ž . Ž .

In the next section we will prove this result.

Cell 8.9

<<<<<<<<<<Statistics‘;
xav[n_____] := Mean[pos[n]];

ListPlot[Table[{n, xav[n]}, {n, 0, 50}],
AxesLabel™{"n", "<<<<<x>>>>>/�x"}];
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² 2:Ž .The spreading of the distribution is characterized by x n , defined as

M1 22 n² :x n s lim x . 8.1.10Ž . Ž .Ž .Ý jMM™� ks1

This function is the mean squared distance of particles from the origin. The rms
Ž . ² 2:root-mean-square width of the distribution is the square root of x , and is a

² 2:measure of the mean distance of particles from the origin. x can also be
evaluated using Mean:

Cell 8.10

x2av[n_____] := Mean[pos[n]^̂̂̂̂2]

Ž .Note: This command squares each element in pos[n], and then takes the mean.
ŽThe result is plotted in Fig. 8.1. Of course, we cannot take the M™� limit in a

simulation, so our numerical results have some statistical error. The size of this
.error will be considered in Sec. 8.3.2. The dots are values from the simulation, and

Ž .Fig. 8.1 Spreading of particles in a random walk simulation dots together with theory
Ž .line .
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² 2:Ž . wthe straight line is a theory for x n that we will derive presently see Eq.
Ž .x ² 2:8.1.31 . It seems that x increases linearly with time, so that the rms width of

'the particle distribution increases like t . This is a signature of diffusive processes,
w Ž .xand was observed previously in solutions of the heat equation see Eq. 5.1.100 . In

Ž . Ž .fact, the width w t defined by Eq. 6.100 is simply the rms width of the solution.

The Binomial Distribution We can analytically determine the probability distri-
Ž .bution P j, n for the preceding random walk process by applying elementary

ideas from probability theory. To illustrate the random walk, we first construct a
decision tree. Such a tree is shown in Fig. 8.2 for the first three steps of the walk.
Starting at js0, a particle can move either to the left or the the right to js�1,

1and each location has an equal probability of . In the next step, the particles can2

either return to the origin, or move further away, to �2. There are now four
possible paths taken by the particles, shown as dashed lines. Each path is equally
likely. Only one out of four of the paths leads to jsy2 and similarly for jsq2.
However, two out of four of the paths return to js0. Therefore,

1 2 1P y2, 2 sP 2, 2 s and P 0, 2 s s .Ž . Ž . Ž .4 4 2

In fact, one can see that for an unbiased random walk

number of paths arriving at j after n steps
P j, n s . 8.1.11Ž . Ž .total number of paths

For instance, for ns3 there are now eight possible paths, and

1P y3, 3 sP 3, 3 s ,Ž . Ž . 8

3P y1, 3 sP 1, 3 s .Ž . Ž . 8

Ž .Exercise: In Fig. 8.2 can you see the three paths that lead to js1 for ns3?
It is easy to generalize these results to consider a random walk with a bias,

where the probability of a step to the right equals p and that for a step to the left

Fig. 8.2 Decision tree for the first three steps of a random walk, starting at js0. Dashed
lines: possible paths for ns2 steps.
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equals qs1yp. Physically, such bias can occur if there is some reason why
particles should move more in one direction than the other, as would be the case if
gravity or an electric field acts on the system.

Ž . Ž . Ž . 2Clearly, after one step P y1, 1 sq, P 1, 1 sp. After two steps, P y2, 2 sq
Ž 2 . Ž . 2two steps to the left in a row have total probability q�qsq , while P 2, 2 sp
for the same reason. Also, the two paths that lead back to the origin each have

Ž .probability pq, so the total probability P 0, 2 is a sum of the probabilities for each
Ž .separate path, P 0, 2 s2 pq. These results agree with the unbiased case given

1above when psqs .2

Similar reasoning leads to the following results for ns3:

P y3, 3 sq3 ,Ž .

P y1, 3 sq2 pqqpqqpq2s3q2 p ,Ž .

P 1, 3 spqpqqp2qppqs3 p2q ,Ž .

P 3, 3 sp3.Ž .

1Ž .These results also agree with Eq. 8.1.11 for the unbiased case psqs .2

We are now prepared to consider an arbitrary number of steps. In order to get
to grid point j after n steps, a particle must move n steps to the right and nR L
steps to the left, with

nsn qn 8.1.12Ž .R L

and

jsn yn . 8.1.13Ž .R L

These two equations imply that the position j can be written in terms of n andR
the total number of steps n:

js2n yn. 8.1.14Ž .R

The decision tree for this random walk has the following form. Any given path
that ends up at j will consist of n steps to the right, and nyn steps to the left.R R
Each path is simply a sum of steps, as shown below for ns15:

jsy1q1y1y1q1q1q1y1y1q1y1y1q1y1y1sy3.

The steps to the left or right in this sum can be in any order and the path will still
end up at jsy3, provided that there are n s6 steps to the right and n s9R L
steps to the left. The total probability of any such path is pnR q nL. Therefore, all
paths ending at j after n steps have the same probability, pnR q nL.

Now all we need is the number of different paths that lead to position j. This is
simply the number of distinct permutations of the left and right steps making up
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the path. This combinatoric factor is given by the formula

n!
number of pathss .n !n !R L

This factor can be understood as follows. If there were n distinct elements in the
list of steps making up a path, then there would be n! ways of arranging these
elements: n possibilities for the first element, ny1 possibilities for the second
element, and so on. Now, however, there are subgroups consisting of n right stepsR
and n left steps within this list for which the elements are all identical. Permuta-L
tions which correspond to a mere rearrangement of these elements within their
own subgroups are not distinct paths. The number of such permutations is n ! forR
the right steps and n ! for the left steps. We divide by these factors in order to beL
left with only the distinct permutations of the list.

Since the total probability is the probability per path times the number of paths,
we arrive at

n!n nR L � �P j, n sp q , assuming nq j even and j Fn , 8.1.15Ž . Ž .n !n !R L

Ž .where n is given in terms of n and j by Eq. 8.1.14 , and n snyn . Note thatR L R
the equation is valid only for nq j even, because if nq j is odd then n is not anR

Ž .integer: see Eq. 8.1.14 . This is related to the fact that for n even, only even grid
points are populated, and for n odd, only odd grid points are populated. Thus, we
also have

� �P j, n s0, nq j odd or j �n. 8.1.16Ž . Ž .

Ž . Ž .Equations 8.1.15 and 8.1.16 give the famous binomial distribution, first
derived by Jacob Bernouilli. In Cell 8.11 we compare this theoretical formula with
the histograms obtained previously. For simplicity in the graphics, we evaluated
Ž . Ž .P j, n using Eq. 8.1.15 only, for real values of j, although only integer values of j

Ž .with jqn even should have been allowed. Fortunately, Eq. 8.1.15 is a smooth
Ž .function of j, and we can see that MP j, n nicely tracks the histograms from the

w Ž .simulation. Question: Why do we need the factor of M in MP j, n in order to
xmatch the histogram?

Cell 8.11

p = q = 1/2;
nR = (n + j)/2;
nL = n - nR;
P[n_____, j_____] = p ^̂̂̂̂nR q ^̂̂̂̂nL n !/(nR ! nL !);

Table[Plot[M P[n, x], {x, -n - 1, n + 1},
PlotRange™{0, 200}, DisplayFunction™Identity],
{n, 0, 50}];

Table[Show[histograms[[n]], %%%%%[[n]], PlotRange™
{{-25, 25}, {0, 200}},
DisplayFunction™$$$$$DisplayFunction], {n, 1, Length[%%%%%]}];
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Averages We can use the binomial distribution to understand the behavior of
² :Ž . ² 2:Ž .average quantities such as x n and x n . The average of a general function

Ž .f x of the particle positions can be written as

M1 n² :f n s lim f x , 8.1.17Ž . Ž .Ž .Ý kMM™� ks1

where the sum is over the particles. This is the method used previously to evaluate
² : ² 2: Ž . Ž .x and x ; see Eqs. 8.1.18 and 8.1.10 . However, there is a better way to

Ž .evaluate this average, in terms of the probability P j, n . First, we note that the
Ž .particles can be grouped onto their grid locations j, with H j, n giving the

number of particles on each grid point. Then an equivalent way to do the sum over
Ž .particles in Eq. 8.1.17 is

n1² :f n s lim H j, n f x ,Ž . Ž . Ž .Ý jMM™� jsyn

where x s j � x and now the sum runs over all the possible grid positions. Usingj
Ž .Eq. 8.1.6 then yields the important result

² :f n s P j, n f x . 8.1.18Ž . Ž . Ž . Ž .Ý j
j

² :We need not sum over all the particle positions to determine f ; rather, we can
sum over the probabilities of different states of the system. With this formula, we
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Ž .can prove several other useful results. For example, for any two functions f x and
Ž . Ž .g x , and for any constant c, Eq. 8.1.18 immediately implies that

² : ² : ² :fqcg s f qc g . 8.1.19Ž .

Thus, taking an average is a linear operation.
Ž . Ž . Ž .We can apply Eq. 8.1.18 , along with Eqs. 8.1.15 and 8.1.16 , to calculate

² :Ž . ² 2:Ž .x n and x n . These averages can be calculated by means of the binomial
theorem. This theorem states that

n n! nn nynR Rp q s pqq . 8.1.20Ž . Ž .Ý n ! nyn !Ž .R Rn s0R

Ž .However, the argument of the sum can be directly related to P j, n . According to
Ž .Eq. 8.1.14 ,

n

s . 8.1.21Ž .Ý Ý
n s0 jsyn ,ynq2 ,ynq4 , . . . , nR

Ž .Also, the argument of the sum in Eq. 8.1.20 is just the value of the binomial
Ž . Ž .distribution P j, n for jqn even. Therefore, Eq. 8.1.20 can be written as

n
n

P j, n s pqq s1, 8.1.22Ž . Ž . Ž .Ý
jsyn

Ž .where in the last step we used the fact that pqqs1. Of course, Eq. 8.1.22 is
merely a restatement of the general property of probability distributions, Eq.
Ž . Ž .8.1.7 . However, we can also use Eq. 8.1.22 to calculate averages.

² :Ž . Ž .For x n , we note that Eq. 8.1.14 implies

² : ² : ² : ² :x s j � x s� x 2n yn s� x 2 n yn , 8.1.23Ž .Ž .R R

Ž .where in the third and fourth steps we applied Eq. 8.1.19 . However, according to
Ž . Ž . Ž .Eqs. 8.1.18 , 8.1.15 , and 8.1.16 the average number of steps to the right after n
² :Ž .steps, n n , can be evaluated asR

² :n n s n P j, nŽ . Ž .ÝR R
jsyn ,ynq2 ,ynq4 , . . . , n

n n! n nynR Rs n p q , 8.1.24Ž .Ý R n ! nyn !Ž .R Rn s0R

Ž .where in the second step we have applied Eq. 8.1.21 . This sum can be carried out
nR Ž nR.analytically by noticing that n p sp � p r� p. Applying this identity to Eq.R
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Ž .8.1.22 yields

n
� n! n nynR R² :n n sp p qŽ . ÝR � p n ! nyn !Ž .R Rn s0R

� n ny1sp pqq snp pqq snp. 8.1.25Ž . Ž . Ž .� p

Ž .In the second step we have employed the binomial theorem, Eq. 8.1.20 . Equation
Ž .8.1.25 is eminently reasonable: in any one step, the probability of a step to the
right is p, so after n steps one expects to have taken an average number of steps
np to the right.

Ž .Substitution of this result into Eq. 8.1.23 then yields

² :x s� x 2 pnyn sn � x pyq . 8.1.26Ž . Ž . Ž .
1 ² : Ž .If psqs , then x s0 for all time, as we expected; see Eq. 8.1.9 . However,2

for p�q, there is a net drift of the particle distribution at constant velocity ®,
² :x s®t, where the drift velocity ® is given by

� x®s pyq . 8.1.27Ž . Ž .� t

We will have more to say concerning this drift later, but first let us turn to the
² 2: Ž . Ž .evaluation of x . We follow the same procedure as for x . Using Eqs. 8.1.14

Ž .and 8.1.19 we obtain

22 2 2 2 2 2 2² : ² : ² : ² :x s j � x s� x 2n yn s� x 4 n y4 n nqn . 8.1.28Ž . Ž .² : Ž .R R R

² : ² 2 :We already know n snp, so we only need to determine n . Using aR R
Ž .procedure analogous to Eq. 8.1.24 leads to

n n!2 2 n nynR R² :n n s n p qŽ . ÝR R n ! nyn !Ž .R Rn s0R

n
� � n! n nynR Rsp p p qÝ� p � p n ! nyn !Ž .R Rn s0R

� � �n ny1sp p pqq sp np pqqŽ . Ž .� p � p � p

ny1 ny22snp pqq qnp ny1 pqqŽ . Ž . Ž .

snpqn ny1 p2 ,Ž .
2 nR Ž . Ž . nRwhere in the second step we employed the identity n p sp �r� p p �r� p p .R

Ž .Applying this result to Eq. 8.1.27 yields, after some algebra,

² 2: ² :2 2x s x q4npq � x , 8.1.29Ž .

² : Ž .where x is given by Eq. 8.1.26 .
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1 2 2Ž . Ž . Ž .For the case where psqs , Eqs. 8.1.29 and 8.1.26 yield x sn � x . If2

we define a diffusion coefficient D as

� x 2

Ds , 8.1.30Ž .2 � t

Ž . ² 2:then Eq 8.1.29 becomes x s2 Dt: the squared width of the distribution
increases linearly with time, with slope 2 D. This linear increase agrees with the

Ž .behavior observed in the previous simulation see Fig. 8.1 and also agrees with the
Ž .solution to the heat equation starting from a concentrated heat pulse, Eq. 5.1.100 .

² 2:For p�q, x by itself is no longer a good measure of the change in the width
² 2: ²Ž ² :.2:of the distribution. A better measure is � x � xy x , the mean squared

change in the position from the average position. However, if we expand the
Ž .expression and use Eq. 8.1.29 we obtain

22 2 2² : ² : ² ² : ² : :� x s xy x s x y2 x x q x² :Ž .

² 2: ² :2s x y x s2 D	t , 8.1.31Ž .

where

D	s4 pqD. 8.1.32Ž .

Thus, for p�q, in addition to the mean drift of the distribution given by Eq.
Ž .8.1.26 , there is also a diffusive spreading around the mean with diffusion
coefficient D	. The form of D	 makes intuitive sense: for instance, if ps1 and
qs0, then particles always step to the right, and the entire distribution moves to
the right without spreading: D	s0.

The Heat and Fokker–Planck Equations from the Random Walk Model

The Master Equation. So far we have considered the evolution of the probability
Ž .distribution P j, n in a random walk that starts with all particles at js0 at

timestep ns0. Now let’s consider a random walk that starts from a general initial
Ž .distribution. We will derive a dynamical equation for P j, n , called the master

equation. In the limit that grid spacing � x and timestep size � t approach zero, the
master equation becomes the Fokker
Planck equation. This PDE is a generaliza-
tion of the heat equation.

Ž .Given the distribution on the grid at timestep n, P j, n , the master equation
Ž .predicts the distribution at the next timestep, P j, nq1 . In general,

P j, nq1 sP j, n q� P j, n y� P j, n , 8.1.33Ž . Ž . Ž . Ž . Ž .q y

Ž .where � P is the number of particles arriving at x in this step divided by M ,q j
Ž .and � P is the number of particles leaving x in the step also divided by M .y j

However, in one step, the random walk prescribes that all particles that were at x j
Ž . Ž .more to the left or right, so � P j, n sP j, n . Also, particles arrive at x onlyy j

from the adjacent sites to the right and left. The site to the left at x contributesjy1
a fraction p of the particles resident there, and the site to the right contributes a
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Ž . Ž . Ž .fraction q of its particles. Consequently, � P j, n spP jy1, n qqP jq1, n .q
Ž .Substituting our results for � P and � P into Eq. 8.1.33 yields the masterq y

equation for the random walk,

P j, nq1 spP jy1, n qqP jq1, n . 8.1.34Ž . Ž . Ž . Ž .

This simple difference equation can be used as a recursion relation to solve for P
starting from any initial distribution. It can be shown that the solution correspond-
ing to an initial condition with all particles at js0 is the binomial distribution,

Ž . Ž . Ž .Eqs. 8.1.15 and 8.1.16 see the exercises .

Ž .The Fokker
Planck Equation. If we assume that the distribution P j, n is slowly
Ž .varying in position and time compared to � x and � t i.e., � x™0 and � t™0 , we

can derive a PDE from the master equation: the Fokker
Planck equation. First,
Ž .let us define a probability density � x, t according to

� x , t sP j, n r� x . 8.1.35Ž . Ž .Ž .j n

This probability density is the unknown function whose dynamics are described by
the Fokker
Planck equation. In the limit that � x™0, the probability density can

Ž .be used to determine the probability P t that a particle falls in the rangeab
a�x�b at time t, according to

b
P t s dx � x , t . 8.1.36Ž . Ž . Ž .Hab

a

Note for future reference that probability densities are always normalized so that

�

dx � x , t s1; 8.1.37Ž . Ž .H
y�

i.e., there is unit probability that a particle is somewhere on the x-axis. This
Ž .equation also follows from Eq. 8.1.7 .

If we write the master equation in terms of � rather than P, it becomes

� x , t sp� x y� x , t qq � x q� x , t . 8.1.38Ž .Ž . Ž . Ž .j nq1 j n j n

Dropping the index j and taking the limit � x™0, a Taylor expansion of the
right-hand side to second order in � x yields

� 1 � 2
2� x , t sp � x , t y� x � x , t q � x � x , tŽ . Ž . Ž . Ž .nq1 n n n2ž /� x 2 � x

� 1 � 2
2qq � x , t q� x � x , t q � x � x , t .Ž . Ž . Ž .n n n2ž /� x 2 � x
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After collecting terms and using the identity pqqs1, we obtain

� 1 � 2
2� x , t y� x , t sy� x pyq � x , t q � x � x , t . 8.1.39Ž . Ž . Ž . Ž . Ž . Ž .nq1 n n n2� x 2 � x

If we now divide the left and right-hand sides by � t, and take the limit as � t™0,
the left-hand side becomes a forward-differenced time derivative and we obtain
the Fokker
Planck equation,

�� �� � 2�sy® qD . 8.1.40Ž .2� t � x � x

Ž . w Ž .xHere ®s pyq � xr� t is the drift velocity of the distribution see Eq. 8.1.26 ,
2 Ž .and Ds� x r2 � t is the diffusion coefficient obtained previously in Eq. 8.1.32

1 1 Ž .for the case psqs . In fact, when psqs , we have ®s0 and Eq. 8.1.402 2
Ž . wbecomes the heat equation for the temperature, Eq. 8.1.1 or the diffusion

Ž .xequation for the particle density nsN�, Eq. 8.1.2 . We have therefore shown
that unbiased random walk dynamics does lead to the heat and diffusion equa-
tions.

The Fokker
Planck equation can be used to model many physical systems for
which diffusion is coupled with a net drift. One example is the application of an
electric field to a conductor, causing a current to flow, along with the diffusion
caused by collisions. Another example is the behavior of a layer of dust added to a
fluid such as water. Gravity causes the dust to settle, but collisions of the dust
grains with the molecules in the fluid also cause the dust to diffuse, and create a
drag force on the dust grains. For dust grains in gravity, we would expect that the
drag force would balance gravity, causing a net drift at the terminal velocity

®sygr� , 8.1.41Ž .

where � is the drag coefficient. For conduction electrons, we would expect ® to be
Ž .related to the applied electric field and the electrical resistivity see the exercises .

While diffusion of electrons can be observed only indirectly through its effect on
thermal diffusion, the random motion of dust in a liquid can be directly observed
with a microscope, and was first noted by the Scottish botanist Robert Brown in his
famous work on Brownian motion. Einstein, along with von Smoluchowski, then

Žapplied the statistical theory of random walks to describe this motion more on this
.later .

Although the Fokker
Planck equation has been derived from artificial random
walk dynamics, it can often also be justified on more fundamental grounds. The
probability for steps of different sizes can in many cases be calculated directly from
the microscopic collisional dynamics of the particles. For instance, Boltzmann
carried out such calculations for a low-density gas of classical particles interacting
via a short-ranged potential through two-body collisions. With such calculations,
the thermal conductivity, diffusion coefficient, and viscosity of the gas can be
directly related to the density, temperature, and form of the interparticle potential.
We will not discuss this rather involved subject here, but interested readers can

Ž .find more material in Lifshitz and Pitaevskii 1981 .
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In other cases, such as in the Brownian motion of dust grains in a fluid, or the
motion of electrons in a conductor, the probability for steps of different sizes
cannot be easily determined from first principles calculations. Nevertheless the
drift velocity and diffusion coefficient are not arbitrary functions. We have
observed that the drift velocity is related to the applied external fields that are
causing the drift. Also, we will find that the diffusion and the drift are related to
one another by an Einstein relation. We will discuss Einstein relations in the
exercises and in Sec. 8.2.3.

It may give one pause that when p�q, the diffusion coefficient D in the
Fokker
Planck equation differs from D	s2 pq � x 2r� t, which describes the diffu-

w Ž .xsion associated with the binomial distribution see Eq. 8.1.32 . After all, both the
binomial distribution and the Fokker
Planck equation are supposed to describe
the same random walk. The resolution of this apparent paradox lies in the

Ž .assumption inherent in Eq. 8.1.40 , that � is slowly varying in both space and time
compared to � x and � t. In the limit that � x and � t approach zero, the ratio
� x 2r� t must remain finite in order to provide a finite diffusion coefficient. This

'implies that � x is of order � t . However, this also implies that the drift velocity ®
'Ž .is of order pyq r � t . For ® to remain finite in the limit as � t™0, we

1' 'Ž .therefore require pyq to be of order � t , in other words, p�q� qO � t .2'Ž .This implies that D	sDqO � t , so there is no paradox.

Entropy and Irreversibility. In describing the evolution of solutions to the
Fokker
Planck and heat equations, it is useful to define a function of the
probability density called the entropy

S t syk dx � x , t ln � x , t , 8.1.42Ž . Ž . Ž . Ž .HB

where k is Boltzmann’s constant. The importance of the entropy stems from theB
following fact, which we will prove below:

dSrdt�0 8.1.43Ž .

Ž . Ž .for any solution of the Fokker
Planck or heat equation. The proof of Eq. 8.1.43
Ž .is as follows. If we take a time derivative of Eq. 8.1.42 we obtain

dS �syk dx ln � x , t q1 � x , t .Ž . Ž .HBdt � t

Ž . Ž . Ž . Ž .However, H dx �r� t � x, t s drdt H dx �s0 according to Eq. 8.1.37 , so we can
drop the second term in the square brackets. Then substituting from the
Fokker
Planck equation for ��r� t yields

dS �� � 2�sk dx ln � x , t ® yD .Ž .HB 2ž /dt � x � x
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Integrating once by parts, and assuming that �™0 at infinity, yields

2dS 1 �� �� �� D ��syk dx ®�yD sk dx y® q .H HB B ž /dt � � x � x � x � � x

However, the first term in the square bracket vanishes upon performing the
integration, since � vanishes at infinity, and the second term is positive definite
because �G0 and D�0. Therefore,

2dS 1 ��sk D dx �0. 8.1.44Ž .HB ž /dt � � x

Because S must always increase, the Fokker
Planck and heat equations have the
property of irre®ersibility: solutions of these equations never repeat themselves over
time because this would require that S return to a previous value. Initial condi-
tions never recur. This is as opposed to solutions of other PDEs such as the wave
equation or the KdV equation, where we observed that initial conditions often
repeat themselves, as in a normal mode of oscillation.

The irreversibility of the heat and Fokker
Planck equations is caused by the
random motion of many particles. We have seen that this random motion causes
diffusive spreading of the distribution, and this is what is responsible for the
increase of the entropy. The broader the distribution becomes, the smaller its

Ž .mean amplitude must be in order to satisfy the normalization condition 8.1.37 ,
² :and hence the larger the value of y ln � . Irreversibility implies that once the

distribution has spread, it never becomes narrower again. Irreversibility is an
important property of many systems that exhibit chaotic dynamics, and is a fact of
everyday life. Once the eggs are scrambled they can’t be unscrambled, or more
precisely, they can’t unscramble themselves.

Or can they? Actually, in chaotic systems with many degrees of freedom, it is
possible for initial conditions to recur. It is not impossible for a broken glass lying
on the floor to suddenly draw kinetic energy from the random motion of molecules

Ž .in the floor tiles, and fly back up onto the table; it is just highly unlikely. This is
analogous to the notion that a roomful of monkeys seated in front of typewriters

Ž .could eventually bang out the works of Shakespeare or a physics textbook . It
Ž .could happen. Maybe it has already!

In fact, Poincare pro®ed that for closed Hamiltonian systems, recurrence back´
to within an arbitrarily small difference from the initial conditions must always
occur. It is not only possible for the glass to fly up off the floor, it is required by the
laws of physics. But don’t get out your video cameras yet. The catch is that this
recurrence can take a long time to happen. For chaotic systems with many degrees
of freedom, the Poincare recurrence time is typically much longer than the age of´
the universe.

We can see why this is so from our unbiased random walk simulation. It is
possible for all the particles to just happen to end up back at xs0 at the same
timestep. If there were only one particle, this recurrence would occur quite often,

Ž .Mbut for M�1 particles, the likelihood is incredibly small, equal to P 0, n . For
1 Ž .psqs and only ns10 steps, P 0, n is already down to 63r256s0.236 . . . .2
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Thus, for only Ms100 particles executing 10 unbiased steps, the probability of
Ž .M 100 y61recurrence is P 0, n s0.236 s1.3�10 .

On the other hand, if the dynamics were not random, but were instead a simple
oscillation of the particles as in the wave equation, recurrence could be a relatively
common event even for a great many particles. It is the chaotic nature of the
dynamics, coupled with the many degrees of freedom in the system, that makes
recurrence unlikely.

ŽBut this leaves us with one final question: if recurrence occurs with small
.probability in a random walk, and the Fokker
Planck equation describes a

Ž .random walk, then doesn’t that contradict Eq. 8.1.44 , which states that initial
Ž .conditions cannot recur? No. The point is that Eq. 8.1.44 describes the evolution

of the probability distribution � for a system of particles. The probability distribu-
tion describes the fraction of particles found in given states in the limit as the
number of particles M approaches infinity. But for finite M there are fluctuations
away from the expected behavior based on �. Recurrence is simply a very large
fluctuation. We will consider the size of these fluctuations in Sec. 8.3.2, Example 1.

The fact that the Fokker
Planck equation describes the probability distribution,
and therefore does not directly exhibit recurrence, was a source of considerable
controversy in the early days of the theory of statistical mechanics. This tiny
weakness in the probabilistic theory of thermal relaxation caused Boltzmann
considerable heartache, and is thought by many to have been a factor contributing
to his eventual suicide.

EXERCISES FOR SEC. 8.1

( ) ( )1 a Analytically determine the probability of throwing 8 points or less with
three dice, each numbered from 1 to 6.

( )b Write a simulation using the Mathematica random number generator in
Žorder to determine this probability numerically. Hint: Average results

.over 1000 realizations to get a good value for the probability.

( ) ( )2 a Write a simulation to numerically determine the probability that two or
Žmore students in a 20-student class have the same birthday assuming a

. Ž365-day year, with no leap years . Hint: Assign a number from 1 to 365
for each day. Use Sort to sort the list of 20 birthdays before hunting for
identical birthdays; this will speed up the search. The While or If
statements may come in handy. Average results over 1000 realizations of

.the class.
( )b Find an analytic expression for this probability, and compare with the

Žnumerics. Hint: Determine the probability that all the birthdays are
.different, and subtract this from unity.

( ) ( ) Ž .3 a The game of craps is played with two dice numbered from 1 to 6 . If you
roll 2, 3, or 12 on the first try, you lose. If you roll 7 or 11 on the first try,

Ž .you win. If you roll something else i.e., 4, 5, 6, 8, 9, 10 , to win you must
roll that number again before you roll 7, but if you roll 7 you lose. You
can roll as many times as you need to until you either win or lose. Using a
decision tree, analytically evaluate the probability that you will win.
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( )b Evaluate this probability numerically with a simulation, using 1000 real-
izations of the game.

( ) ( )4 a In a game of blackjack, drawing from a fresh 52-card deck, the dealer
gives himself two tens. He deals you a 6 and a 10. Work out the decision
tree to analytically determine the probability that you will beat the
dealer, scoring 21. You can draw as many cards as you like from this

Ž .single deck until you win or lose . Remember, aces can be either 1 or 11
Ž .points, and face cards jack, queen, king are worth 10 points.

( )b Simulate the game, and evaluate the probability of winning numerically
out of 1000 tries.

( ) ( )5 a Two particles start random walks from the origin at the same instant,
with steps of equal probability to the left and right. Determine the

Žprobability that the particles will meet again after n steps. Consider the
.relative displacement between the walkers.

( )b Perform the same calculation for an unbiased 2D random walk on a
square grid.

( ) ² :c Find an expression involving a sum for the mean number of times, N ,
that the particles meet after taking n steps, in 1D, 2D, and 3D unbiased

'² :walks. By evaluating the sum numerically, show that N diverges like n
Žin 1D and like ln n in 2D as n increases i.e., over a long time period the

.particles meet many times , but for 3D, on average, particles only meet
Ž .about 0.4 times, even if one waits forever i.e., particles lose one another .

( ) Ž .6 The binomial distribution is the probability P j, n that a particle ends up at
Ž .position j after n steps. However, since js2n yn, P j, n can also beR

thought of as the probability that n steps are taken to the right out of a totalR
Ž . Ž . Ž .of n steps. Denoting this probability by W n , n , we have W n , n sP j, n ,R R

where js2n yn. ThenR

n!nyn RnRW n , n sp 1yp . 8.1.45Ž . Ž . Ž .R n ! nyn !Ž .R R

Ž .This distribution is the probability that n e®ents i.e. steps to the right ofR
probability p occur in a total of n trials. It can be simplified in the limit that
n is large. In this limit, we can show that W is peaked around the average

Žvalue n snp. Since n�1 is assumed we then have 1�n �n assumingR R
.0�p�1 .

( )a Take the logarithm of W and use Stirling ’s formula

ln N !,N ln NyN for N�1. 8.1.46Ž .

With the aid of Mathematica, take the derivative of ln W with respect to
n to show that an extremum in ln W exists at n snp.R R

( )b Show that this extremum is a maximum by evaluating the second deriva-
Ž . �tive of ln W with respect to n . In particular, show that ln W  sR n sn pR

Ž .y1r npq .
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( ) Ž . Ž .c Use the results of a and b to show that

W n , n fC eyŽ nRyn p.2 rŽ2 n p q. , 8.1.47Ž . Ž .R

Žwhere C is a constant. This is a Gaussian distribution. Hint: Perform a
Taylor expansion of ln W about its maximum, keeping only up to quadratic

.terms.
( ) Ž .d Stirling’s formula as given by Eq. 8.1.46 is too crude to determine the

constant C. However, C can be found using the following argument.
Since 2npq is a large number by assumption, W varies little as n ™nR R
q1, and can be thought of as a continuous function of n . Also,R
Ž . Ž . n Ž . � Ž .W 0, n fW n, n f0. Therefore, Ý W n , n fH W n , n dn s1.n s0 R y� R RR

Ž .y1r2Use this to show that Cs 2� npq .
1( ) Ž . Ž .e Plot Eq. 8.1.47 in comparison with Eq. 8.1.45 for the case psqs ,2

ns10.

( )7 The distribution W can also be simplified in the limit that the probability p is
Ž .small and n is large. In this limit, W n , n is negligible unless 0�n �n.R R

In these limits, show that
( ) Ž .nyn R n p w Ž . xa 1yp fe . Hint: Use ln 1yp fyp.
( ) Ž . nRb Using Stirling’s formula show that n!r nyn !fn .R

( ) Ž .c Use these results to show that W n , n becomesR

nRnpŽ . yn pW n , n , e , 8.1.48Ž . Ž .R n !R

Ž .Equation 8.1.48 is called the Poisson distribution. Plot W vs. n forR
ns20 and ps0.1.

( ) Ž . � Ž . Žd Show that Eq. 8.1.48 is properly normalized: Ý W n , n s1. Then s0 RR
.sum can be continued to infinity because W is negligible for n ™n.R

( )8 A penny is tossed 600 times. What is the probability of scoring 372 tails?
Ž . Ž . Ž . Ž .Evaluate this using i Eq. 8.1.45 , ii Eq. 8.1.47 .

( ) ( )9 a In radioactive decay, in a small time � t the probability p that one atom
decays in a sample of M atoms is psM � tr� , where � is the lifetime of
any one atom. Assume that � t is chosen sufficiently small so that p�1.

Ž .Then over a time t�� t but t�� , show that the probability that m
Ž .atoms have decayed, W m, t , is given by Poisson distribution.

( ) ² :Ž .b Find the mean number of particles that have decayed in time t, m t .

( )10 A missile has a probability of 0.3 of hitting its intended target. How many
missiles should be fired at the target in order to have a probability of at least
80% that at least one missile will hit the target?

( )11 Show by substitution that the binomial distribution satisfies the master
Ž .equation 8.1.34 .

( ) ( )12 a Conduction electrons in an electrical conductor have number density n.
ŽWhen an electric field is applied E, there is a current density j units of

.amperes per square meter given by Es jr, where r is the resistivity
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Ž .units of � m . Show that the conduction electrons attain a drift velocity
® given by ®syErenr. Show that this is equivalent to a collisional drag
coefficient �se2 nrrm.

( ) 28 y3b In copper, the density of conduction electrons is roughly 10 m , and
the resistivity at room temperature is rs1.7�10y8 � m. Find the drag
coefficient � , and find the drift velocity ® in a 1-m-long wire across which
100 V is applied.

( )c If we treat electrons as classical particles, then their mean speed is given
by the temperature T , according to ®s k Trm . The time between' B
collisions can be estimated as roughly � ts�y1 and the electron mean
free path is then roughly � xs®r�. Using these estimates, show that

Ž .D�k Tr 2m� . We will prove this Einstein relation for classical parti-B
Ž .cles except for the factor of 2 in Sec. 8.2.3. Use this result to estimate

the thermal diffusivity of copper at Ts300 K. Compare with the actual
thermal diffusivity, �s1.1�10y4 m2rs.

( )d It’s surprising that this classical estimate works as well as it does,
considering the fact that electrons in a conductor are degenerate, with
much larger kinetic energy than the classical formula would suggest,
given by the Fermi energy � �k T. Thus, the mean free path is muchF B
larger than the classical result, and one would think the diffusion would
be commensurately larger. However, only a small fraction of these
degenerate electrons actually participate in the conductivity, that fraction

Žbeing of order k Tr� . This is the fraction within energy k T of theB F B
. Ž .Fermi surface. Then show that the classical formula of part c still works

approximately to describe the thermal diffusivity. For more on this topic,
Ž .see Reif 1965, Sec. 12.4 .

( )13 The Lange®in equation. Consider the following model of Brownian motion: a
dust particle’s ®elocity is randomly changed by a small random amount sn

Ževery timestep t sn � t, due to a randomly fluctuating force. This forcen
arises from collisions between the dust particle and atoms in the surrounding

.fluid. In addition, there is a drag force on the particle’s velocity, so that on
² : ² :average d ® rdtsy� ® , where � is a drag coefficient. In differential form

Ž . Ž .the equation for the velocity is then d®rdtsy� ®q f t , where f t is a
² :random force with zero mean, f s0. The random velocity step is therefore

tnq� t Ž .s sH f t	 dt	. Position x evolves according to dxrdts®. Finite-dif-n tn

ferencing the derivatives leads to the following random walk model for the
particle velocity and position:

® s� ® qs ,n ny1 ny1

8.1.49Ž .
x sx q� t ® ,n ny1 ny1

Žwhere �s 1y � � t. These equations comprise the finite-differenced
.Lange®in equations for position and velocity.

( )a Write a particle simulation for this problem for 1000 particles, taking
� ts1, �s0.1, and s s�1 with equal probability for either sign. Startn
all particles at ® s10, and x s0, and follow the dynamics for 500 0
timesteps.
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( )b How do the average velocity and position evolve in the simulation?
( ) ² :Ž . ² :Ž .c Find analytic expressions for ® t and x t , and compare with the

wsimulation. Hint: It may be simpler for you to solve differential equations
² :Ž . ² :Ž . xrather than difference equations for x t and ® t .

( ) ² 2: ² 2: ² :2d Plot the mean squared change in velocity, � ® s ® y ® , vs. time
from the simulation. Does the particle velocity diffuse?

( )e Plot the mean squared position change, and estimate the value of the
particle diffusion coefficient D from your simulation data.

( )f Solve the difference equation for ® analytically, and use this solution ton
show that

1y� 2 n
2 2² :� ® s s .Ž .n 21y�

Ž .Compare this result with the simulation result obtained in part d .
Ž ² :Hint: s s s0 for n�m. Also, note that Mathematica can find manyn m

.sums analytically using the function Sum.
( )g Show in the limit that n™� and � t™0 but t sn � t remains finite,n

that this result becomes

² 2:s2 y2� t² :� ® t s 1ye , 8.1.50Ž . Ž . Ž .n 2� � t

² 2:For short times t ™0, show that � ® s2 D t , where D sn V n V
² 2:s r2 � t is the ®elocity diffusion coefficient. Evaluate D , and compareV

² 2:this short-time theory with the simulation result for � ® by graphing
w Ž .2 nboth together. Hint: use the same method to simplify 1y� � t as was

Ž .Ž . xused in Exercise 7 a .
( )h In the long-time limit t ™�, statistical physics predicts that the particlen

will come to thermal equilibrium with a mean squared velocity equal to
² 2:the square of the thermal ®elocity, ® sk Trm, where m is the particleB

mass and T is the temperature. In this limit, prove the Einstein relation

k TsmD r� . 8.1.51Ž .B V

Ž .We will prove another Einstein relation in Sec. 8.2.3.
( ) ² :i Analytically evaluate x ® , plot the result vs. n for the parameters ofn n

the simulation, and compare with the simulation. Explain why this
quantity is positive for short times, but vanishes at large times t ��y1.n

( ) ² 2: y1j Evaluate x , and show that, at large times t �� and for � t™0,n n
Ž 2 . 2one has x s2 Dt , where DsD r� is the spatial diffusion coeffi-n n V

cient. Plot the result vs. n for the simulation parameters, and compare
Ž ² 2: 3 w Ž 2 . 2with the simulation. Solution: x s2 D � t n 1y� y2�y� qn V

1qn Ž 1qn .x wŽ .3Ž .x Ž .2 .� 2q2�y� r 1y� 1q� q x .n

( ) ( )14 a A gas of N particles is initially confined to the left half of a container of
volume V by a partition. The partition is then removed, and the particles
distribute themselves randomly throughout the container. What is the
probability that, at any instant, all the particles are all found back in the
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Žleft half of the container? This is a crude example of recurrence, and is
much more likely than Poincare recurrence, where each particle is found´

.with nearly the same position and velocity as it had initially.
( ) Ž .b What is the probability P N that N particles are in the left half of theL L

Ž .container at any instant and NyN are in the right half ? Show that forL
N large this probability is given by a Gaussian distribution.

( ) Ž 2 .c Use this probability to determine the mean squared fluctuation �N inL
the number of particles in the left half away from the mean value Nr2.

( )15 A polymer is a long chain of atoms connected by bonds. Consider the
following simplified model of a polymer. Assume that the polymer lies in the
x-y plane, and the bonds are all of unit length. Furthermore, assume that the
bonds can only be in the �x or �y directions. Then starting at one end of

Ž . Ž .the chain, at x, y s 0, 0 , the next atom can be at one of four locations,
Ž . Ž .�1, 0 or 0,�1 , with equal probability. The next atom can be at any of its
four possible locations, and so on. Thus we see that the atoms are at the
locations corresponding to a two-dimensional random walk. One important
question, which can be addressed experimentally, is the mean size of a
polymer chain consisting of n bonds. The mean size is typically evaluated as
² 2:1r2 ² 2:Ž . Ž . n � � 2r , where r n s 1rn Ý r , the sum runs over the positions ofis0 i
all nq1 atoms in the chain, and the average is over all possible configurations
of the polymer, all of which are assumed to be equally probable. This is
equivalent to an average over all possible random walk processes. Determine
² 2:Ž . ² 2:r n in this random walk model, and in particular show that r An.

( )16 Experiments on polymers show that the size of a polymer with n bonds is
larger than suggested by the result given in the previous problem. The reason
is that atoms in a polymer take up space, and so the random walk is excluded
from regions already occupied by the polymer. This causes the polymer to
spread out more than the simple random walk of the previous problem would
predict. One way to estimate the effect of the excluded volume on the size of
the polymer is to use a self-a®oiding random walk. This is a random walk
where, as before, a step in any of the four directions is equally probable,
except that the step cannot move to an already occupied position. The
possible polymer configurations for ns2 bonds are shown in Fig. 8.3,

Žassuming that the first bond is always to the right the direction of this bond
can be chosen arbitrarily because of the fourfold symmetry of the random

.walk on a square lattice . A considerable effort over the years has gone into
determining the statistics of such self-avoiding walks. Little can be accom-
plished analytically without great effort, but numerical methods have proven
to be very fruitful.
( ) ² 2:Ž .a Determine r n analytically for a self-avoiding random walk for ns2

and 3. Average over all possible configurations of the chain, assuming
that each configuration is equally likely. Compare to the results of the

Žprevious problem. Which result is larger? Amazingly, Dr. E. Teramoto
² 2:Ž .of Kyoto University evaluated r n analytically for n up to 20 bonds,

w Ž .xusing pencil and paper according to Rosenbluth and Rosenbluth 1955 .
( )b Write a simulation for a self-avoiding random walk. Starting at the origin,

the first step is always to the right, and the steps thereafter can be in any
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Fig. 8.3 The three possible paths for a self-avoiding random walk consisting of two steps.

² 2:Ž .direction. In determining r n , throw away any configuration that
Žcrosses itself at timestep n or earlier. Such configurations can still be

counted in the average for timesteps before a crossing in the configura-
.tion has occurred.

There is one addendum to this method that must be made. In order to
increase the efficiency of the simulation, do not allow the walk to double
back on itself. This implies that at any timestep there are only three
possible directions for the next step, each with equal probability. There
are many different ways to code this, and the method is left up to you.
Run your simulation of the polymer for Ms5000 trials, up to a length of
ns50. The reason that M must be chosen this large is that by the time
ns50 only about 100 configurations will be left in the average. Make a

² 2:log
log plot of r vs. n. It should be nearly a straight line with slope b.
² 2: bThus, r An . The exponent b equals one in a simple random walk,

but should be larger than one in a self-avoiding random walk. Thus, the
polymer grows in size with increasing n more rapidly than expected from
a simple random walk. This is the excluded-volume effect. To find the

² 2: ² 2:exponent b, for n�10, fit log r to a form log r saqb log n. For
large n, it has been predicted that b is roughly 1.5 for a random walk in
2D, and 1.2 in 3D. How close did your simulation result come to the 2D
estimate?

8.2 THERMAL EQUILIBRIUM

8.2.1 Random Walks with Arbitrary Steps

Averages In a random walk the steps need not be of fixed size. Let’s consider a
more general random walk where the step size s is distributed according to a

Ž .probability density w s . In one step, the particle position changes from x ton
x sx qs. As is always the case with probability densities,nq1 n

b
P s w s ds 8.2.1Ž . Ž .Hab

a

w Ž .xis the probability that the step falls in the range a�s�b see Eq. 8.1.36 .
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² : � Ž .The average step size is s sH sw s ds. For instance, in our previousy�

Ž . Ž . Ž . ² : Ž .random walk, w s sp � sy� x qq � sq� x , and then s s� x pyq .
Consider N steps in a random walk process. We will label each step s ,n

ns1, 2, 3, . . . , N. The probability dP that each step falls in the range s ™s qds ,n n n
ns1, 2, . . . , N, is the product of the probabilities for the steps:

dPsw s ds ��� w s ds . 8.2.2Ž . Ž . Ž .1 1 N N

Ž .This provides an example of a multi®ariate i.e. multidimensional probability
Ž . Ž . Ž . Ž .distribution. The function � s , s , . . . , s �w s w s ��� w s on the right-hand1 2 N 1 2 N

side of the equation is the probability density for the N-step process. This
multivariate distribution is normalized in the usual way:

� s , . . . , s ds ds ��� ds s1,Ž .H 1 N 1 2 N

and we can calculate average quantities over this distribution just as we did for
Ž .averages over a single variable. For any function f s , s , . . . , s , the average is1 2 N

� � �

f s ds ds ��� ds � s , . . . , s f s , s , . . . , s . 8.2.3Ž . Ž . Ž . Ž .H H H1 2 N 1 N 1 2 N
y� y� y�

² :Ž .For example, if we wish to determine the average position after N steps, x N ,
we can write the position as a sum of the individual steps, xss qs q ���qs .1 2 N
Taking an average, we obtain

² : ² : ² : ² : ² :x N s s qs q ���qs s s q s q ���q s ,Ž . 1 2 N 1 2 N

Ž .where in the second step we used the linearity property of averages, Eq. 8.1.19 .
Ž . Ž . Ž .Now, for a random walk, with �sw s w s ��� w s , integrals over each term in1 2 N

the sum yield the same result. For instance, for the nth term,

� � � �
² : ² :s s ds w s ds w s ��� ds w s s s ds w s s s s ;Ž . Ž . Ž . Ž .H H H Hn 1 1 2 2 N N n n n n

y� y� y� y�

² :that is, the average step size s is independent of the time step n. Therefore, we
find that

² : ² :x N sN s , 8.2.4Ž . Ž .

² :so there is a net drift of the particle distribution with velocity ®s s r� t. We can
² 2:Ž . Ž .perform a similar analysis for x N . According to Eq. 8.2.3 ,

N N N N
2 2² : ² : ² :x N s s s s s q s s ,Ž . Ý Ý Ý Ýi j i i j¦ ;

is1 js1 is1 i , js1
j�i

where in the second step we separated out terms in the sums for which is j.
² 2: ² 2:Applying our distribution to these averages, we find that s s s , independenti
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² : ² :² : ² :2of i, and s s s s s s s . Thus, we findi j i j

² 2: ² 2: ² :2x N sN s qN Ny1 s . 8.2.5Ž . Ž . Ž .

Ž .The factor N Ny1 is the number of terms in the sum over i and j, i� j. If we
now consider the mean squared change in position away from the average,
² 2: ² 2: ² :2 w Ž .x Ž . Ž .� x s x y x , see Eq. 8.1.31 and use Eqs. 8.2.4 and 8.2.5 to calculate
this quantity, we obtain

22 2² : ² : ² :� x sN s y s . 8.2.6Ž .

The mean squared change in position increases linearly with the number of steps
Ž .in a random walk. In analogy to Eq. 8.1.31 , we then define a diffusion coefficient

² 2:D for this process, so that � x s2 Dt:

22² : ² :s y sŽ .
Ds 8.2.7Ž .2 � t

This generalizes our previous expression Ds2 pq � x 2r� t.

Conditional Probability and the Master Equation An important property of
random walks is that the steps are uncorrelated. As an example, consider a random

Ž .walk with fixed size ss�1, and define the probability of a step s to be P s ,
Ž . Ž .where P 1 sp and P y1 sq. The probability of a step is not connected to the

results of previous steps, and this means that the steps are uncorrelated with
previous steps. For such a process, we know that the probability of several
consecutive steps is given by the product of the individual probabilities. For

Ž .instance, the probability P s , s of two consecutive steps with outcomes s and s1 2 1 2
is

P s , s sP s P s . 8.2.8Ž . Ž . Ž . Ž .1 2 1 2

Ž .We have already uses this result several times; see, for instance, Eq. 8.2.2 .
However, this is only true for uncorrelated steps. More generally, if the second
step depends in some way on the first step, we define a conditional probability
Ž � .P s s . This is the probability that the outcome of the second step is s , on2 1 2

condition that the outcome of the first step was s . In other words, if we take these1
Ž � .two steps M times where M™�, P s s is the fraction of the outcomes that2 1

yield s taken out of those that first yielded s . In the form of an equation,2 1
Ž � . Ž � . Ž . Ž .P s s sN s s rN s , where N s is the total number of outcomes that2 1 2 1 1 1

Ž � .yielded s , and N s s is the number of outcomes that yielded s given that s1 2 1 2 1
Ž . Ž � .first occurred. However, it is also the case that P s , s sN s s rM, and1 2 2 1

Ž . Ž .P s sN s rM. These results can be combined to yield the following equation:1 1

�P s , s sP s P s s . 8.2.9Ž . Ž . Ž .Ž .1 2 1 2 1

It is instructive to examine this important result from several perspectives. For an
Ž � . Ž .uncorrelated random walk, P s s sP s independent of the first step, and Eq.2 1 2

Ž . Ž .8.2.9 returns to Eq. 8.2.8 . At the other extreme, the case of perfect correlation,
Ž � .the second step is always the same as the first. In this case P s s s1 if s ss2 1 2 1
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Ž . Ž . Ž .and is zero otherwise. Then Eq. 8.2.9 yields P s , s sP s if s ss and1 2 1 2 1
Ž .P s , s s0 if s �s , as we would have intuitively guessed when s is perfectly1 2 2 1 2

correlated to s .1
An example of random variables in between these two extremes of no correla-

tion and perfect correlation is the set of position x of a particle at timesteps n.n
The position is correlated with its value at the previous timestep. Taking the case

Ž .of a random walk on a grid with fixed step size � x , the conditional probability
Ž � .P j i for a particle to be at grid position j given that it was at position i on the

Ž � .previous step is P j i sp� qq� , where � is the Kronecker delta func-jy1, i jq1, i i j
Ž .tion. Then the probability P i, n; j, nq1 that a particle will be at position i at

Ž .timestep n and at step j at timestep nq1 is, according to Eq. 8.2.9 ,

P i , n; j, nq1 sP i , n p� qq� . 8.2.10Ž . Ž . Ž .Ž .jy1 , i jq1 , i

ŽIf we now sum both sides over all locations i, the left side becomes Ý P i, n; j, nqi
. Ž .1 sP j, nq1 , the probability that a particle is at step j at timestep nq1 for any

Ž . Ž .previous position. On the right side we obtain pP jy1, n qqP jq1, n . There-
Ž .fore we return to the master equation for this random walk, Eq. 8.1.34 .

Ž .For a general uncorrelated random walk with a probability distribution w s for
each step, the conditional probability that particles are in a range x to xqdx given

Ž � . Žthat they were at position x	 at the previous timestep, is P x, xqdx x	 sw xy
.x	 dx. We can use this result to obtain a master equation for a general random

walk. Let us assume that the position x	 occurred at timestep n. Then the
Ž .probability for consecutive steps at times t and t , � x	, t ; x, t dx	 dx, cann nq1 n nq1

Ž .be obtained from Eq. 8.2.9 :

� x	, t ; x , t dx	 dxs� x	, t dx	 w xyx	 dx ,Ž . Ž . Ž .n nq1 n

Ž . Ž .where � x	, t dx	 is the probability at timestep n; see Eq. 8.1.35 . Integratingn
Ž .both sides over x	, the left-hand side becomes � x, t dx, the probability at thenq1

nq1st timestep that the particle is in the range x™xqdx, for any previous
position. Dividing both sides by dx, we obtain the master equation for the
evolution of the probability density � in a general random walk,

� x , t s dx	 � x	, t w xyx	 . 8.2.11Ž . Ž . Ž . Ž .Hnq1 n

This master equation can be solved directly for any given initial condition using
Ž .Fourier transform techniques see the exercises .

Correlation Functions How can we tell if two outcomes of a random process, i
and j, are correlated or not? One way is to examine the correlation c, defined by

² : ² :² :ij y i j
cs . 8.2.12Ž .

2 2 22² : ² : ² : ² :i y i i y j'Ž . Ž .Ž .

² : ² : Ž .The average ij is given by ij sÝ P i, j ij, where the sum is over all possiblei, j
Ž .outcomes for i and j, and P i, j is the probability that both i and j occur.
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Ž .However, for uncorrelated outcomes we can use Eq. 8.2.8 , in which case we
² : Ž . Ž . ² :² :obtain ij sÝ P i iÝ P j js i j . Therefore, for uncorrelated outcomes, Eq.i j

Ž . Ž .8.2.12 yields cs0. For perfectly correlated outcomes where js i, Eq. 8.2.12
implies cs1. For perfect anticorrelation, where jsyi, it is easy to see that
csy1. Generally one can prove that c must be somewhere between y1 and 1,
with negative values implying some degree of anticorrelation, and positive values
corresponding to positive correlation.

Take, for example, the correlation between positions in a random walk that
starts at the origin, with general steps s . The correlation between positions atn
timesteps n and nqm is

² : ² :² :x x y x xn nqm n nqmc n , nqm s .Ž .
2 2² :² :' � x � xn nqm

² : ² :We already know that x sn s for any n. However, what is the value ofn
² :x x ? This is given byn nqm

n nqm n n nqm
2² : ² : ² : ² : ² :x x s s s s s q s sÝ Ý Ý Ý Ýn nqm i j i i j

is1 js1 is1 is1 js1
j�i

² 2: ² :2sn s qn nqmy1 s ,Ž .

where in the second step we separated out the terms with is j. Then using Eqs.
Ž . Ž . Ž . '8.2.6 and 8.2.4 , a little algebra leads to the result c n, nqm snr n nqm .Ž .
This shows that correlations between positions x and x are always nonnega-n nqm
tive, and slowly fall off as m increases. Over time, the particle loses memory of its
previous position at timestep n as it steps randomly away from that position. If we
consider the case ns0, we see that cs0 for m�0: the loss of correlation is
immediate because the first step is completely uncorrelated with the origin.

Inhomogeneous Random Walks In a real system, eventually the dust reaches
the bottom of the fluid container; or the electrons reach the edge of the conductor.
How can we allow for the effect of this barrier on the random walk? More
generally, external forces applied to the dust grains or the electrons may vary with
position. We would then expect that the distribution of the random steps should

Ž . Ždepend on the position x of the particle: wsw x, s . Here we take x to be the
.position before the step is taken. For example, for the case of a barrier at xs0

Ž .with particles confined to x�0, we would require that w x, s s0 for s�yx, so
that no steps below xs0 are allowed.

The master equation for an inhomogeneous random walk follows from the same
Ž .analysis as for Eq. 8.2.11 . Now the conditional probability that particles are in

Ž � .range around x given that they were at previously at x	 is P x, xqdx x	 s
Ž .w x	, xyx	 dx, and the resulting master equation is

� x , t s dx	 � x	, t w x	, xyx	 . 8.2.13Ž . Ž . Ž . Ž .Hnq1 n
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A drift velocity and a diffusion coefficient can still be defined for such an
inhomogeneous random walk, provided that the steps are small compared to the
inhomogeneity scale length. If this is so, then a Fokker
Planck equation can be

Ž .obtained from Eq. 8.2.13 . Defining the step size ssxyx	 and changing the
Ž .integration variable to s, Eq. 8.2.13 becomes

� x , t s ds � xys, t w xys, s .Ž . Ž . Ž .Hnq1 n

Ž . Ž .Assuming that � x, t and w x, s are slowly varying in x, we can Taylor-expandn
these functions to second order in s:

�
� x , t s ds � x , t w x , s ys � x , t w x , sŽ . Ž . Ž . Ž . Ž .Hnq1 n n½ � x

21 �2q s � x , t w x , s .Ž . Ž .n2 52 � x

Dividing by � t and performing the integration over s then yields the inhomoge-
neous Fokker
Planck equation:

�� � �q ® x �y D x � s0. 8.2.14Ž . Ž . Ž .ž /� t � x � x

The quantity in large parentheses is the particle flux due to diffusion and drift,
where

s2 w x , s dsŽ .H2² :s
D x s s 8.2.15Ž . Ž .2 � t 2 � t

is the diffusion coefficient, and where

sw x , s dsŽ .H² :s xŽ .® x s s 8.2.16Ž . Ž .� t � t

Ž .is related to the drift velocity ® x of the particles. This relation follows from
noting that diffusive flux has the form of Fick’s law, yD��r� x, and flux due to

Ž .drift has the form ®�. Then we can write the particle flux appearing in Eq. 8.2.14
as a sum of these two fluxes:

� ��® x �y D x � s® x �yD ,Ž . Ž . Ž .� x � x

from which we obtain the drift velocity ®:

� D® x s® x y . 8.2.17Ž . Ž . Ž .� x
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The inhomogeneous Fokker
Planck equation, written in terms of ® rather than
®, is

�� � ��q ® x �yD x s0. 8.2.18Ž . Ž . Ž .ž /� t � x � x

Because this equation is inhomogeneous, it is difficult to solve analytically except
in certain special cases. However, the numerical methods discussed in Chapter 6
can be applied�see the exercises. We can also use random walk simulations to

Ž .obtain approximate numerical solutions to Eq. 8.2.18 . This method is considered
in the next subsection.

8.2.2 Simulations

In order to create a random walk simulation with steps distributed according to
Ž .some general distribution w s , we require a method of choosing points randomly

from this probability distribution. Random number generators such as Random
distribute the particles uniformly over a given range. How do we generate a
nonuniform distribution? The two most commonly used approaches are the trans-
formation method and the rejection method.

Transformation Method The transformation method works as follows. We can
Ž .use Random to generate a uniform distribution p x of particles over some range

Ž .of x. In order to generate a new distribution of particles, w x , we apply a
Ž .transformation to the particle positions ysy x . A range of positions x™xqdx

Ž . Ž .transforms to a new range y x ™y xqdx . Taylor-expanding, this range may be
Ž . Ž .written as y x ™y x qdy, where dysdx dyrdx. The probability distribution for

Ž .y, w y , is obtained from the fact that every particle in dx transforms to a particle
in dy, so the number of particles in the range dx equals the number of particles in
the range dy:

� �w y dy sp x dx . 8.2.19Ž . Ž . Ž .

In other words,

dx
w y sp x . 8.2.20Ž . Ž . Ž .dy

Ž . Ž .Thus, to generate some distribution w y , we can use Eq. 8.2.20 to determine the
Ž . Ž .required transformation y x , given that p x is constant. Then according to Eq.

Ž .8.2.20 ,

y
x y s w y dy , 8.2.21Ž . Ž . Ž .H

y�

Ž . Ž .where the function x y is the inverse of the required transformation y x , and we
have dropped the constant p because this constant enters only as a normalization

Ž .to w y .
Ž . 2For example, let’s assume that w y sy r9 for 0�y�3, and is zero otherwise.

w � Ž . xThis distribution has the proper normalization, H w y dys1. Then accordingy�
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Ž .Fig. 8.4 The function x y for the choice
2Ž .w y sy r9, 0�y�3.

Ž . Ž . Ž . 3 Ž .to Eq. 8.2.21 , x y s0 for y�0, x y sy r27 for 0�y�3, and x y s1 for
Ž . Ž . 1r3y�3. This function is plotted in Fig. 8.4. The function y x is then y x s3 x

over the range of interest, 0�x�1. In Cell 8.12, we define a random number r
Ž .that is distributed according to w y , and generate the resulting distribution out of

10,000 random numbers. We compare the histogram in bins of size � xs0.1 with
Ž .the function 10,000w y � x, which is the expected number of particles in a bin.

The correct quadratic distribution is properly reproduced over the required range
0�y�3.

Cell 8.12

y[x_____] = 3 (x)(1/3);
s[] := y[Random[]];

data = Table[s[], {10000}];
<<<<<<<<<<Graphics‘;
h = Histogram[data, HistogramRange™{-1, 4},

HistogramCategories™50, DisplayFunction™Identity];
t = Plot[0.1 10000 y ^̂̂̂̂2/9, {y, 0, 3}, DisplayFunction™

Identity];
Show[h, t, DisplayFunction™$$$$$DisplayFunction]

Rejection Method The transformation method is only useful if it is easy to find
Ž .the function y x . This is not always the case. Another method can often be

applied in such situations: the rejection method. In this method, we distribute
Ž .particles in x according to some distribution w x by using two uniformly dis-

tributed random numbers.
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Fig. 8.5 Rejection method. Random points are distributed uniformly in the grey region.
Ž .Points are rejected if they fall above the curve w x .

Ž .The method is depicted in Fig. 8.5. Around the function w x we draw a curve
Ž . Ž . Ž .f x . This curve is arbitrary, but must contain w x . If w x is nonzero only on the

Ž .range a�x�b, then f x must also be nonzero over this range, and must be
Ž . Ž .greater than or equal to w x . Typically f x is just chosen to be a constant that is

Ž .greater than or equal to the maximum of w x , and that is what we will do here:
Ž . Ž .f x s f Gmax � x for a�x�b.0

We will now use our uniform random number generator to distribute particles
Ž .uniformly below the line f x s f . That is, we choose one random number s in0 x

the range a�x�b, and a second random number s in the range 0�y� f :y 0

Cell 8.13

Clear["Global‘*****"];

sx[] := Random[Real, {a, b}];
sy[] := Random[Real, {0, f0}];

Ž . Ž .Now, notice that the number of points s , s that fall below the curve w x in thex y
Ž .range x to xqdx is simply proportional to the area dx w x . Therefore, if we keep

Ž .only those points that fall below the curve w x and reject the rest, the x-position
Ž .of the points will be distributed according to w x : the number of values of x

Ž .falling in the range x to xqdx is proportional to w x dx. The program for the
rejection method is given below:

Cell 8.14

s[] := (xx = sx[]; While[sy[] >>>>> w[xx], xx = sx[]]; xx)

The While statement repeatedly executes the test sy[]>>>>>w[xx] and the com-
mand xx=sx[] until the test is not true. This allows us to reject points above the

Ž .curve w x until a point falls below the curve, when it is accepted. The x-position
of this point is the desired random number.

Below, we show how the method can be applied to determine a random number
2yx 'Ž .distributed according to a Gaussian density, w x se r � . In principle, this

distribution extends to ��, but large values of x are highly unlikely, so we take
asy10 and bs10. We should not take a, b, or f to be overly large, or we waste0
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too much time rejecting almost all of the points. We choose f as the maximum of0
Ž .w x :

Cell 8.15

w[x_____] = Exp[-x ^̂̂̂̂2]/Sqrt[Pi];
a = - 10; b = 10;
f0 = 1/Sqrt [Pi];

We now plot distribution arising from 5000 points as a histogram in Cell 8.16. It is
clearly an excellent match to a Gaussian.

Cell 8.16

Table[s[], {5000}]; Histogram[%%%%%];

Two Simulations of a Random Walk with Bias

Uniform System. We can now simulate a random walk with a given probability
Ž .distribution w s for the steps. We first take the case of a homogeneous system for

which
1

w s sy 1ysya , ya�s�a, 8.2.22Ž . Ž . Ž .2 a 1yaŽ .
Ž .and w s s0 otherwise. Thus, the maximum step size is a. This distribution is

1 Ž .plotted in Cell 8.17 for the case as . According to Eq. 8.2.4 we expect a4
1² : ² :uniform drift speed ® given by ®s s r� t. For this distribution, s sy . Also,36

the particle distribution should spread with diffusion coefficient D given by Eq.
1 1 1 22Ž . ² : Ž . Ž .8.2.7 . For this distribution, s s s0.021 . . . , so Ds y r 2 � t s48 48 36

Ž .13r 1296 � t s0.0100 . . .r� t.

Cell 8.17

Clear["Global‘*****"];
a = 1/4;

1
w[s_____] := (1 - s - a) /; -a F s F a;

2 a (1 - a)
w[s_____] := 0 /; Abs[s] >>>>> a;
Plot[w[s], {x, -1, 1}, AxesLabel™{"s", "w(s)"}];
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Fig. 8.6 Mean position and mean squared change in position for a random walk with a
bias.

We will use the rejection method to create a random variable s[] with
Ž .distribution w s , and test these predictions for the resulting random walk, starting

all particles at xs0. The resulting simulation for Ms200 particles is displayed in
Cell 8.18. Particles settle toward lower x, and spread as expected. The mean
position of the distribution and the mean squared change in position are shown in

Ž . Ž .Fig. 8.6, together with the theory predictions of Eqs. 8.2.4 and 8.2.7 . Both
quantities closely adhere to their predicted values.

Cell 8.18

(* define the random step *)
f0 = 3.;
sx[] := Random[Real, {-a, a}];
sy[] := Random[Real, {0, f0}];
s[] := (ss = sx[]; While[sy[] >>>>> w[ss], ss = sx[]]; ss);
(* the random walk *)
x[k_____, n_____] := x[k, n] = x[k, n - 1] + s[];
(* initial condition and parameters*)
x[k_____, 0] = 0;

M = 200;
Nstep = 50;
(* analysis*)
positions = Table[x[k, n], {k, 1, 200}, {n, 0, Nstep}];

pos[n_____] := Table[positions[[j, n + 1]], {j, 1, M}];
Table[

ListPlot[pos[n], PlotRange™{-6, 2}, AxesLabel™
{"k", "x"}], {n, 0, 50}];
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Nonuniform System. Here we simulate a nonuniform system where the particles
Ždrift toward smaller x but are confined to the range x�0 as occurs, for instance,

.when dust settles through a fluid to the bottom of a container at xs0 . We
therefore require that no particles step below xs0: ws0 if s�yx. The previous
random walk can be easily modified to include this constraint by shifting the step
distribution to the right, so that

1
w x , s sy 1ysyaqb x , yaqb x �s�aqb x ,Ž . Ž . Ž . Ž .2 a 1yaŽ .

8.2.23Ž .

Ž . Ž . Ž .where b x s0 if x�a and b x sayx if x�a. Thus, w x, s is independent of
x for x�a, but for 0�x�a it shifts so that no particle ever steps below xs0.
Since the distribution of steps shifts without changing shape, the diffusion coeffi-

1 Ž .cient D is unaffected, and for as remains Ds13r 1296 � t for all x�0. The4

resulting random walk is shown in Cell 8.19. The only change to the previous
rejection method is that now the random number s is a function of position x, and
we choose the random number s from a range that depends on x. We now beginx
particles at xs2 so that we can see them settle toward the container bottom at
xs0.

Cell 8.19

Clear["Global‘*****"];
a = 1/4;
b[x_____] := 0/; x >>>>> a;
b[x_____] := a - x/; x F a;

1
w[x_____, s_____] := (1 - s - a + b[x])

2 a (1 - a)
(* rejection method *)
f0 = 3.;
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sx[x_____] := Random[Real, {-a + b[x], a + b[x]}];
sy[] := Random[Real, {0, f0}];
s[x_____] := (ss = sx[x]; While[sy[] >>>>> w[x, ss],

ss = sx[x]]; ss);

(* the random walk *)
x[k_____, n_____] := x[k, n] = x[k, n - 1] + s[x[k, n - 1]];
(* initial condition and parameters*)
x[k_____, 0] = 2;

M = 200;
Nstep = 150;
(* analysis*)
positions = Table[x[k, n], {k, 1, 200}, {n, 0, Nstep}];
pos[n_____] := Table[positions[[j, n + 1]], {j, 1, M}];

Table[
ListPlot[pos[n], PlotRange™{0, 3}, AxesLabel™{"k", "x"}],
{n, 0, 100, 2}];
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The random diffusion causes the particles to dance above the bottom of the
container, so that the density distribution attains an equilibrium. This equilibrium

² :can also be seen in the behavior of average quantities, such as x , shown in Cell
8.20.

Cell 8.20

ListPlot[Table[{n, xav[n]}, {n, 0, 150}],
AxesLabel™{"n", "<<<<<x>>>>>"}, PlotRange™{0, 2}];

In a real system, this equilibrium is called a thermal equilibrium state. To what
extent does our random process model true thermal equilibrium? In order to
answer this question, we need the proper functional form of the thermal equilib-
rium distribution.

8.2.3 Thermal Equilibrium

The Boltzmann Distribution The thermal equilibrium distribution of particles in
an external potential was first derived by Boltzmann, and is referred to as the

Ž .Boltzmann distribution � x . One way to derive this distribution is as a time-inde-B
Ž .pendent solution of the Fokker
Planck equation 8.2.18 :

��� B0s ® x � yD x .Ž . Ž .Bž /� x � x

Integrating this equation once yields

��B�s® x � yD x ,Ž . Ž .B � x

where � is a constant of integration. However, the right-hand side is the particle
Ž .flux divided by the total number of particles caused by diffusion and convection

at velocity ®. Since we assume that xs0 is impermeable, the flux must be zero
there, and this implies �s0, as one would expect in equilibrium. The resulting
first-order differential equation for � has the general solutionB

x ® x	Ž .
� x sC exp dx	 ,Ž . HB ž /D x	Ž .0

wwhere C is another constant of integration. Note that ®�0 is assumed, so that
Ž . x� x ™0 exponentially as x™�. The constant C can be obtained from theB
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Ž .normalization condition for all probability densities, Eq. 8.1.37 . The result is

x ® x	Ž .
exp dx	Hž /D x	Ž .0

� x s . 8.2.24Ž . Ž .B � x  ® x	Ž .
dx exp dx	H Hž /D x	Ž .0 0

The Boltzmann distribution can also be derived directly using the theory of
equilibrium statistical mechanics, without reference to the Fokker
Planck equa-
tion. It is the distribution that maximizes the entropy S for particles trapped in a

Ž . ² :given potential � x , with given mean potential energy � per particle. This form
of the Boltzmann distribution is written as

ey� Ž x .r k BT

� x s , 8.2.25Ž . Ž .B
y� Ž x  .r k TBdx eH

where T is the temperature of the system, and where k is Boltzmann’s constant.B

Ž . Ž .Einstein Relations At first glance, Eqs. 8.2.24 and 8.2.25 appear to be
unrelated. The fact that they are actually identical distributions leads to a nontriv-

Ž . Ž .ial result, called an Einstein relation. In order for Eqs. 8.2.24 and 8.2.25 to be
identical distributions, it must be the case that

® x �� x1Ž . Ž .sy . 8.2.26Ž .k T � xD xŽ . B

On the other hand, the drift velocity of a particle should be determined by the
balance between the force y��r� x on the particle and the collisional drag:
0sym� ®y��r� x, where m is the particle mass and � is the drag coefficient.
This implies that

�� x1 Ž .® x sy , 8.2.27Ž . Ž .m� � x

Ž .which is simply the usual expression for terminal velocity. Comparing Eqs. 8.2.26
Ž .and 8.2.27 leads to the Einstein relation

k TBDs . 8.2.28Ž .m�

This important and nontrivial relation between seemingly unconnected quantities
was first discovered by Einstein in his doctoral research on Brownian motion of
dust grains in a fluid. Diffusion and frictional drag are inversely proportional to
one another in a thermal-equilibrium system. Note that the coefficients D and �
often cannot be calculated directly from the detailed microscopic collision pro-
cesses that are responsible for the diffusion and drag. However, the drag rate �

Ž .can be easily measured in experiments, and then Eq. 8.2.28 provides a prediction
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for D. This prediction has been verified time and again in experiments on
disparate systems.

Irreversibility and the Free Energy Solutions to the inhomogeneous
Fokker
Planck equation approach thermal equilibrium monotonically over time,
in the following sense. The following function, called the Helmholtz free energy per
particle F, decreases monotonically:

² :F t s � t yTS t s � x � x , t dxqk T dx � x , t ln � x , t .Ž . Ž . Ž . Ž . Ž . Ž . Ž .H HB

8.2.29Ž .

Ž .Through an analysis analogous to that used to prove Eq. 8.1.44 , one can show
that

2dF dx ��syk T ® x � x , t yD x F0 8.2.30Ž . Ž . Ž . Ž .HBdt � x� x , t D xŽ . Ž .

Ž . Žsee the exercises . When thermal equilibrium is achieved, the particle flux the
.square bracket vanishes and dFrdts0. Thus, solutions of the inhomogeneous

Fokker
Planck equation display irreversibility: initial conditions that are out of
thermal equilibrium never recur. The dust never re-forms in a layer back at the top

Žof the fluid. Of course, this neglects the extremely unlikely possibility of Poincaré
.recurrence back to the initial state, as discussed previously in Sec. 8.1.2.

Comparison with Simulations Let’s now compare our previous simulation of
dust grains settling in a fluid with the predictions of thermal equilibrium. For these

1 13 Ž .simulations, ®sy and Ds are independent of x, so Eq. 8.2.24 predicts36 1296

that the Boltzmann distribution is

� sC ey � ® � xrD 8.2.31Ž .B

� �with Cs ® rD. This exponential distribution is also what one would obtain from
Ž . Ž .Eq. 8.2.25 for dust grains in a gravitational field � x smgx: the grains pile up

against the bottom of the container with an exponential tail in their density due to
finite temperature. In Cell 8.21 this thermal distribution is compared with a
histogram of the particle positions, obtained from averaging over the last 20
timesteps in the previous simulation of Ms200 particles. We take histogram bins

Ž .of size � xs0.1, so the number of particles in each bin should be H x s
Ž .20 � x M� x .eq

Cell 8.21

p1 = Histogram[Flatten[Table[pos[n], {n, 131, 150}]],
HistogramRange™{0, 2},
HistogramCategories™20, DisplayFunction™Identity];

d = 13/1296; v = 1/36; �x = 0.1;
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�B[x_____] = v/d Exp[-v x/d];
p2 = Plot[20 �x M �B[x], {x, 0, 2}, DisplayFunction™

Identity];

Show[p1, p2, AxesLabel™{"x", "h(x)"}, DisplayFunction™
$$$$$DisplayFunction];

The thermal equilibrium theory does not explain our simulation very well. This
is because the Fokker
Planck equation assumes very small steps are being taken,

1Ž .but w x, s has finite width 2 as , which is not much smaller than the width of2

� . Our steps are too large to use the Boltzmann distribution.B
Actually, much of this error can be removed by being more careful in determin-

Ž . Ž . Ž .ing the drift speed ® x . For our choice of w x, s , the drift speed ® x is not

Ž .Fig. 8.7 Comparison of the Boltzmann distribution line with histograms from a random
13 2 1 1 1Ž . Ž . Ž .walk with bias, for D x s , ® x s yx, x� , and ® x sy , xG .1296 9 4 36 4
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Ž .constant when x�a. Instead, w x, s varies with x, and it is left as an exercise to
show that

2® x s yx , x�aŽ . 9

1 13Ž .for as and � ts1 . However, as previously noted, D remains fixed at Ds4 1296

for all x. The true Boltzmann distribution using this nonuniform drift speed,
Ž .described by Eq. 8.2.24 , is shown in Fig. 8.7 and is a much better fit to the data

from the simulation, although there is still considerable error for x�a. According
Ž .to Eq. 8.2.27 , there is now an effective repulsive potential for x�a that reduces

the probability of particles being in this region.
One can improve the agreement between theory and simulation by reducing the

Ž .width a of w x, s , but this increases the time required for the system to come to
equilibrium. A better simulation method is discussed in Sec. 8.3.

EXERCISES FOR SEC. 8.2

( )1 In a random walk in three dimensions, a particle starts from the origin and
takes steps of fixed length l but with equal probability for any direction.
Determine the rms distance the particle moves away from the origin in N
steps.

( )2 An integer is chosen randomly in the range 1
20. What is the probability that
it is prime? If the number is odd, what is the probability that it is prime?

( )3 In a certain town of 5000 people, 750 have blond hair, 500 have blue eyes,
and 420 have both blond hair and blue eyes. A person is selected at random
from the town.
( )a If hershe has blond hair, what is the probability that hershe will have

blue eyes?
( )b If hershe has blue eyes, what is the probability that hershe does not

have blond hair?
( )c What is the probability that hershe has neither blond hair nor blue eyes?

( )4 In a certain college, 7% of the men and 3% of the women are taller than 6 ft.
Furthermore, 60% of the students are men. If a student is selected at
random, and is over 6 ft, what is the probability hershe’s a woman?

( ) ( )5 a You are somehow transported back to the year 1975, where you find
yourself in a rabbit costume, as a contestant on the then-popular TV
game show Let ’s Make a Deal. The host Monty Hall approaches you and
demands that you choose either door number 1, door number 2, or door
number 3. Behind one of these doors there are fabulous prizes; behind
the other two there are piles of useless junk. You choose door number 1.
Monty, knowing the right door, opens door number 3, revealing that it is
one of the no-prize doors. So the right door is either door 1, or door 2.
Monty then gives you the opportunity to switch doors to door 2. Explain
why you should switch to door number 2, by using conditional probabili-
ties to determine the probability that door 1 is correct versus the
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Žprobability that door 2 hides the prizes. Hint: It’s easiest to see the
answer for the more general case of N�1 doors and 1 prize door,

.where Monty opens all the doors but yours and one other.
( )b Prove that it is better to switch by creating a simulation of the game with

three doors. For 1000 tries, take the case where you don’t switch. How
many times do you win? Now repeat for the case where you switch doors.
Now how many times do you win?

( ) ( ) Ž .6 a Solve the master equation for a general random walk, Eq. 8.2.11 , using
ŽFourier transforms, starting all particles at xs0. Hint: Use the convolu-

.tion theorem. Show that the solution is

dk nik x� x , n s e w k , 8.2.32Ž . Ž . Ž .˜H 2�

Ž . Ž .where w k is the Fourier transform of the probability density � s for a˜
step of size s.

( ) Ž . Ž .b Prove using Eq. 8.2.32 that � x, n is properly normalized:
� Ž .H dx � x, n s1.y�

( ) Ž .c Prove the following identity for this random walk using Eq. 8.2.32 :

m� nm m² :x n s i w k . 8.2.33Ž . Ž . Ž .˜m� k ks0

( ) Ž . ya � s � ² :Ž . ² 2:Ž .d For a step distribution w s sa e r2, evaluate x n , x n ,
² 4:Ž . Ž . Ž .and x n using Eq. 8.2.33 , and show that � x, n s

Ž .yn r2 Ž � � .ny1r2 Ž � � . Ž . Ž .2 a 8� a x K a x r ny1 !, where K x is a modified1r2yn n
Bessel function. Animate this result for ns5 steps.

( ) ( )7 a In Brownian motion, the velocity ® at timestep n obeys the finite-dif-n
Ž .ferenced Langevin equation 8.1.49 , ® s� ® qs , where �s1yn ny1 ny1

� � t, � is the drag coefficient, and s is a random step in velocity withn
Ž .zero mean, s s0. Solve this equation for ® , assuming an initial velocityn

® , and prove that0

1y� 2 n
2 2 nqm 2 m² :® ® s® � q s � .Ž .n nqm 0 21y�

( ) ² :b In the long-time limit n � t™�, but taking � t™0, show that ® ®n nqm
Ž . y� tm™ D r� e , where t sm � t and D is the velocity diffusionV m V

Ž .coefficient�see Eq. 8.1.51 . Hence, in thermal equilibrium, the velocity
Ž .correlation function c n, nqm falls off exponentially with time, as

ey� tm.

( )8 Create a random walk simulation using 1000 particles with step distribution
Ž . Ž .Ž .w s given in Exercise 6 d with as1. Use the rejection method. Follow the

distribution for five steps, and compare the resulting histograms with the
Ž .Ž .theory of Exercise 6 d .
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( ) ( )9 a Create a random walk simulation with Ns1000 particles with steps of
fixed size �1, but taking ps0.4, qs0.6. Follow the simulation of
Ns50 steps, starting all particles at xs0.

( ) Ž .Ž . Ž 2 .Ž .b Evaluate x n and � x n , and compare with the theoretical predic-
tions based on the binomial distribution.

( )c Make an animation of the histogram of positions, and compare it with the
binomial distribution itself at each timestep.

( )10 Use the transformation method to write a code that distributes a random
Ž . ys Ž .variable s according to the probability distribution w s se , s�0, w s s0,

s�0. Test the code for 1000 tries, and compare the resulting histogram for s
Ž .with w s .

( ) Ž .11 In a 2D random walk process, the step probability density w x, y s2,
0�x�1 and 0�y�x, and is zero otherwise. Particles start from the origin.
( ) ² : ² : ² 2: ² 2:a Analytically determine x , y , x , y vs. the timestep n.n n n n

( )b Analytically evaluate the following correlation function:

² : ² :² :x y y x yn nqm n nqmc n , m s .Ž .x y 2 2² :² :' � x � yn nqm

( ) Ž .c Create a 2D random walk simulation for 1000 particles, and test part b
over 50 steps by plotting the correlation function vs. m for ns0, 5, and
10, along with the theory.

( ) ( )12 a A particle undergoes Langevin dynamics with zero random forcing,
taking steps according to ® s� ® , where �s1y� � t. Show that an ny1

Ž .distribution of velocities � ®, n evolves in time according to the equation
Ž . Ž . Ž .� ®, n s� ®r�, ny1 r� . Hint: Use the transformation method.

( )b Solve this equation numerically and animate the result over 20 steps for
2y® 'Ž .the case �s0.9, � ®, 0 se r � .

( ) ( ) Ž .13 a Show that the master equation for the velocity distribution � V, n of a
particle of mass m undergoing Langevin dynamics, ® s� ® qs , isn ny1 ny1

1
� ®, n s � ®r� , ny1 q w ®y®	 � ®	, ny1 d®	,Ž . Ž . Ž . Ž .H�

Ž .where w s is the distribution of the steps.
( )b In the limit as � t and the step size approach zero, show that this master

equation becomes the Fokker
Planck equation for velocity diffusion,

�� � m® ��s D �q , 8.2.34Ž .V ž /� t � ® k T � ®B

² 2: Ž . wwhere D s s r 2 � t is the velocity diffusion coefficient. Hint: RecallV
Ž . xthe Einstein relation 8.1.51 .

( )c Show that the thermal equilibrium form for the velocity distribution is a
Maxwellian distribution, �sC eym ®2 r2 k BT, and find C.
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( ) ( )14 a Assuming that D is constant, apply the method of characteristics to Eq.V
Ž .8.2.34 to show that the equation can be written as

2�� � �2� ts��qD e ,V 2� t ®0 � ®0

where ® s®e� t is the initial velocity, and �smD rk T.0 V B

( )b Solve this equation by Fourier transforming in velocity ® and solving the
Ž . Ž .resulting first-order ODE in time, with initial condition � ®, 0 s� ® .0

Show that the solution is

dk Dk 2
� t 2� t� ®, t s � k exp ik®e q� ty e y1 .Ž . Ž . Ž .˜H 0 ž /2� 2�

( )c Perform the Fourier transformation for the case of an initial condition
Ž . Ž .� ® s� ®y® to show that0 0

1 2 2yw ®y² ®:Ž t .x r2 ²� ® Ž t .:� ®, t s e .Ž .
2² :'2� � ® tŽ .

² :Ž . y� t ² 2:Ž .where ® t s® e is the mean velocity, and � ® t is given by Eq.0
Ž .8.1.50 . Animate the solution for ® s2 and D s�s1, over the time0 V
0� t�3.

( ) Ž .15 Prove Eq. 8.2.30 , which implies that nonequilibrium solutions to the inho-
mogeneous Fokker
Planck equation exhibit irreversibility.

( ) Ž .16 For particles diffusing in a potential � x , the Fokker
Planck equation
Ž .8.2.18 is

�� � 1 �� ��s D x �q , 8.2.35Ž . Ž .ž /� t � x k T � x � xB

Ž . Ž .where we have substituted for ® x using Eq. 8.2.26 . Consider the case
2 Ž .Dsk Ts1 and �sx i.e., particles trapped in a harmonic potential .B

Using any numerical method you choose taken from Chapter 6 or 7, solve this
Ž . Ž . Ž .problem for � x, t with initial condition � x, 0 s1, 0�x�1, and � x, 0 s0

otherwise. For boundary conditions take �s0 at xs�5. Animate the
solution for 0� t�2, and show that the solution approaches the Boltzmann

2yx 'distribution � se r � .B

( ) ( )17 a Solve the Fokker
Planck equation analytically for dust particles of mass
m at temperature T falling in gravity g to the bottom of a container at
xs0. Assume that the diffusion coefficient Dsconstant, and take as the

Ž . Ž .initial condition � x s� xyx . Boundary conditions are that the flux0
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Žis zero at the bottom of the container. Solution:

� 2 22y� x yD Žk q� r4. tq� Ž xyx .r20� x , t s� e q dk eŽ . H� 0

�
2k cos kx y� sin kx 2k cos kxy� sin kxŽ . Ž .0 0 ,2 24k q�

. Žwhere �smgrk T. Hint: Solve as an eigenmode expansion, assumingB
.that � vanishes at xsL, and then take the limit as L™�.

( )b For Ds�sx s1, evaluate the integral numerically and create an0
animation of the solution over the time range 0� t�0.3.

( )18 Simulation project: The Eden model. Random process models have diffused
into many fields of science. Consider the following model for the spread of
tumors, rumors, disease, urban sprawl, or any number of other uncontrolled
growth processes: the Eden model, named after the biologist M. Eden. A
small cluster of tumor cells infect cells on the perimeter of the tumor, and
these infect other adjacent cells, and so on. At each step in the process, one
of the perimeter cells is chosen randomly to become infected, after which it is
added to the cluster and a new perimeter is calculated, from which a new
infected cell will be chosen in the next step. The resulting tumor growth is

Ž .surprisingly realistic and rather horrifying to watch as an animation . This
model is one of a large group of random processes, variously referred to as
kinetic growth or percolation models. We will perform the Eden model on a
2D square lattice. Initially, only one cell at the origin is in the tumor cluster:

Cell 8.22

cluster[0] = {{0, 0}},

The perimeter points of the cluster are held in the list perim:

Cell 8.23

perim[0] = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}};

From this perimeter list, a newly infected cell is chosen at random. We
define a function newsite[n], which is the position of this cell, chosen from
the previous perimeter list, perim[n-1]:

Cell 8.24

newsite[n_____] :=
newsite[n] = perim[n - 1][[Random[Integer,

{1, Length[perim[n - 1]]}]]]

The new cluster is the union of the old cluster with the new site:

Cell 8.25

cluster[n_____] := cluster[n] = Append[cluster[n - 1],
newsite[n]]

Finally, we must calculate the new perimeter, by first removing the new
site from the old perimeter, and then adding the group of nearest neighbors
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Žto the new site onto the perimeter making sure to avoid those nearest
.neighbors already in the cluster :

Cell 8.26

perim[n_____] := perim[n] = (perim1 = Complement[perim[n-1],
{newsite[n]}]
(*removes newsite from the perimeter *);
nn = Table[newsite[n] + {{0, 1}, {1, 0}, {-1, 0},

{0, -1}} [[m]], {m, 1, 4}];
nn = Complement[nn, cluster[n]];
(*nn is the nearest neighbors to the new site,
excluding those in the cluster *)
Union[perim1, nn] (* add nearest neighbors to the
perimeter list *))

( )a Create an animation of the cluster growth for up to ns2000, showing
Ž .only every 20th step. Use a ListPlot to display the positions.

( )b The edge of the tumor cluster is highly corrugated. The length L of the
perimeter is simply the number of cells in the list perim. Show using a
log
log plot that LAnb, and find a value of b from your simulation.
What value of b would you expect if the tumor had a smooth edge?

( )c The Eden model can be made more realistic by assigning a probability of
immunity p to each member of the perimeter. When a perimeter cell is
chosen, use the rejection method to determine whether to infect the cell:
Evaluate a random number r with 0� r�1; if r�p, the cell is not
allowed to be infected in any future step: set it aside in a new list
immunes, which can never enter the tumor cluster, and choose another
perimeter cell until one is found that can be infected.

Fig. 8.8 Typical tumor growth in the improved Eden model with ps0.4, ns2000 steps.
Light grey cells are immune; dark grey cells are on the perimeter where more growth can
occur.
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( )i Reevaluate the improved Eden model taking ps0.5 for all cells and
Ž .ns200. Create an animation as in part a , and reevaluate the
Žexponent b for the length of the perimeter include the immunes in

. Ž .the perimeter . See Fig. 8.8. Note: If p is chosen too large, then the
tumor has a good probability of not growing, as it can be surrounded
by immune cells. Did the tumor grow without bound or stop?

( )ii Repeat for ps0.2 and ns2000.
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APPENDIX

FINITE-DIFFERENCED DERIVATIVES

Ž .Say we know the value of some smooth function y x only at a sequence of evenly
spaced grid points xs j � x, js0, 1, 2, 3, . . . . How do we determine an approxi-

Žn.Ž .mate numerical value for the nth derivative of this function, y x , evaluated at
one of the grid points xsx ? What will be the error in this derivative compared toi
the true value?

Žn. Ž .We will refer to this finite-differenced form of the derivative as y x , in orderFD
Žn.Ž .to distinguish it from the exact derivative y x of the function. We will write the

finite-differenced derivative, evaluated at the grid position x , as a linear combina-i
Ž .tion of the values y x at M consecutive grid points, starting at js l:j

lqMy1 a y x q j � xŽ .j iŽn. py x s qO � x , A.1Ž . Ž . Ž .Ý nFD i � x
jsl

where the a ’s are constants that remain to be determined, the order of the error pj
also must be determined, and l is arbitrary. Typically for best accuracy l and M
are chosen so that x Fx Fx , but this is not required by the mathemat-iql i iqlqMy1
ics. We have anticipated that each term in the sum will be of order 1r� x n and
have divided this term out, so that the a ’s are of order unity.j

Ž .In order to find the a ’s, we will Taylor-expand y x q j � x up to order My1:j i

My1 1 k Žk . My x q j � x s j � x y x qO � x . A.2Ž . Ž . Ž . Ž . Ž .Ýi ik!
ks0

Ž .Substituting this expression into Eq. A.1 yields

My1 lqMy11Žn. kyn Žk . k Myny x s � x y x a j qO � x . A.3Ž . Ž . Ž . Ž .Ý ÝFD i i jk!
ks0 jsl
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Ž .In order for this expression to be valid for any choice of the function y x , we
Žn.Ž .require that only terms on the right-hand side that are proportional to y xi

Ž . Žk .Ž .survive the summations. Since, for general y x , the values of y x are indepen-i
dent variables, we therefore require that

lqMy1
ka j s0 for ks0, 1, 2, . . . , My1, k�n , A.4Ž .Ý j

jsl

and for ksn,

lqMy11 na j s1 A.5Ž .Ý jn!
jsl

Ž .When these equations are used in Eq. A.3 , that equation becomes

y Žn. x sy Žn. x qO � x Myn . A.6Ž . Ž . Ž . Ž .FD i i

Ž . Ž .Equations A.4 and A.5 provide us with M linear equations in the M
unknowns a , js l, . . . , lqMy1. Their solution provides us with a finite-j

Ž .differenced form for the derivative, Eq. A.1 . Furthermore, the order of the error
in the finite-differenced derivative scales as psMyn. Therefore, to reduce the

Ž .error to at most O � x , an nth derivative requires at least Msnq1 points to be
Ž .used in Eq. A.1 . Furthermore, the larger the value of M, the more accurate

the approximation.
Ž . Ž .For example, consider the first derivative of y x . In order to find an O � xi

form for this derivative, we require two points, Ms2. If we choose these points as
Ž . Ž . Ž .y x and y k , then Eq. A.4 becomesi iq1

1
0a j sa qa s0,Ý j 0 1

js0

Ž .and Eq. A.5 is

11 1a j sa s1.Ý j 11!
js0

Ž .Therefore, we obtain a sya s1, and Eq. A.1 becomes the standard form for a1 0
forward-differenced first derivative,

y x yy xŽ . Ž .iq1 iŽn.y x s qO � x .Ž . Ž .FD i � x

However, for derivatives where n is even, such as y�, we can do a bit better if
we use a centered-difference form of the derivative. In such a form, l is chosen so

Ž .that the number of grid points in Eq. A.1 below x equals the number of pointsi
Ž .above x , that is, lsy My1 r2 with M odd.i

Ž . Ž Myn .The error estimate in Eq. A.3 assumes that the O � x term in the power
series expansion has a nonvanishing coefficient. However, if we choose a
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centered-difference form for the derivative, one can show that this term actually
Ž Mynq1 .vanishes thanks to the symmetry of the sum, and the error is actually O � x .

Thus, for a centered-difference form of the second derivative, taking Ms3 terms
Ž . Ž . Ž .involving y x , y x , and y x results in an error not of order � x, but ratheriy1 i iq1

of order � x 2:

y x y2 y x qy xŽ . Ž . Ž .� iq1 i iy1 2y x s qO � x .Ž . Ž .FD i 2� x

Centered-difference forms for odd derivatives also exist, for which one again
Ž .takes lsy My1 r2 with M odd. For these derivatives, one can show that

a s0 using symmetry, and as a result these centered-difference odd derivatives0
Ž .are independent of y x . For instance, one finds that the centered-differencei

form of y� taking Ms3 terms is

y x q0 y x yy xŽ . Ž . Ž .� iq1 i iy1 2y x s qO � x .Ž . Ž .FD i 2 � x

Ž . Ž .Of course, it is possible to use Mathematica to solve Eqs. A.4 and A.5 for
derivatives of any order, keeping any number of grid points. Below, we provide a

Žn. Ž .module that does so. It evaluates y 0 keeping grid points from js l toFD
js lqMy1:

Cell A.1

Clear["Global‘*****"]
FD[n_____, M_____, l_____] := Module[{p, eqns1, eqns2, eqn3, coeff, a},
p[j_____, k_____] = jk;
p[0, 0] = 1;
eqns1 = Table[Sum[a[j] p[j, k], {j, l, l + M - 1}] == 0,

{k, 0, n - 1}];
eqns2 = Table[Sum[a[j] p[j, k], {j, l, l + M - 1}] == 0,

{k, n + 1, M - 1}];
eqn3 = {Sum[a[j] p[j, n], {j, l, l + M - 1}] / n ! == 1};
coeff = Solve[Join[eqns1, eqns2, eqn3], Table[a[j],

{j, l, l + M - 1}]];
Together[Expand[Sum[a[j] y[j �x], {j, l, l + M - 1}]/

�x ^̂̂̂̂n]/. coeff[[1]]]]

For instance, a second-order-accurate backward-difference version of the first
� Ž .derivative, y 0 , is given byFD

Cell A.2

FD[1, 3, -2]

3 y[0] + y[-2 �x] - 4 y[-�x]
2 �x
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This can be checked by Taylor-expanding the result in powers of � x:

Cell A.3

Series[%%%%%, {�x, 0, 1}]

y’[0] + O[�x]2

As a second example, the second-order-accurate centered-difference form of the
fourth derivative is

Cell A.4

FD[4, 5, -2]

6 y[0] + y[-2 �x] - 4 y[-�x] - 4 y[�x] + y[2 �x]
4�x

Again, the form and the error can be checked by Taylor-expanding the result in
powers of � x:

Cell A.5

Series[%%%%%, {�x, 0, 1}]

y(4) [0] + O[�x]2
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Note: Items that appear only in the electronic version are indexed according to the section numbers in
which they occur.

Ž .r; adding conditions to function definitions , 9.8.6
Ž .† adjoint in traditional mathematical notation ,

272
Ž .™ arrow , 9.6.1

Ž . Ž .* * brackets used for comments within code ,
216

Ž . Žbrackets used to determine order in a
.calculation , 9.2.1

� 4 Ž .brackets used to define lists , 9.5.1
w x Žbrackets used to enclose the argument of a

.function , 9.2.3
ww xx Ž .brackets used to extract list elements , 9.5.1
Ž* complex conjugate in traditional mathematical

.notation , 9.2.5
Ž .wildcard in Mathematica expressions , 9.4.2,

9.7
Ž .? definition of , 9.7
Ž .g element of , 33

Ž .s , :s and ss different forms of equality ,
9.10.1

Ž .! factorial function , 9.2.3
� Ž� , � , F , G , ss , � , &&, logical

.statements , 9.8.6
Ž .�� reading Mathematica files , 9.6.8, 9.11.4, 167.
See also Import

Ž .% referencing previous results , 9.4.1
Ž .r. replacing variables , 9.8.2
Ž ._ underscore , 9.8.3

$$$$$DisplayFunction, 35

$$$$$MachinePrecision, see Machine precision
$$$$$Path, 9.11.4

Abort Evaluation, 9.3
Acceptance rate, 8.3.2
AccuracyGoal, 9.11.1, 26
Action, 525. See also Adiabatic invariants; Wave

action
Adams-Bashforth method, see Numerical solution

of ODEs
Add-on packages, 9.6.8
Adiabatic invariants, 404. See also WKB method

for waves on a string, 432
Adjoint, see †; Differential operators;

Orthogonality.
AiryAi[x] and AiryBi[x], 18
Airy functions, 18

asymptotic form for large argument, 424
differential equation for, 18, 84

Airy, George, B., 81
Aliasing, 150
Alternating direction implicit method, see Grid

methods
Angular momentum, specific, 15

total, 58
Animations, 9.6.7
Append, 9.5.4
Approximate mathematics, 9.2.2
Arbitrary precision numbers, 9.2.6
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Area weighting, 7.3.4. See also Interpolation PIC
method

Asymptotic expansions, 402
Ž .Average s , see also Mean

Žfluctuation in position mean square change in
.position , 574, 580, 581

fluctuation in density, 8.3.2
fluctuation in energy, 8.3.2
in a general random walk, 592
in terms of probability distribution, 578
linearity of, 579
position, 573, 580

Backward difference, see Derivatives, finite-
differenced forms

Bandwidth, 127
and the uncertainty principle, 134
connection to bit rate, 128

Basis functions, 263, 436. See also Galerkin
method

boundary condition at origin, 464
for mixed boundary conditions, 451
in presence of a convex cusp, 448

Beats, 83
Bernoulli, Jacob, 568
Bessel

beam, 388
Friedrich W., 248

Bessel functions, 248
as cylindrical radial eigenmodes of �2, 314
as eigenmodes of a hanging string, 288
as solutions of a Sturm�Liouville problem, 271
asymptotic form for large argument, 424
differential equation for, 248
form for small argument, 259
modified, 255
orthogonality relation, 252
spherical, 317
zeros of, 250

BesselI and BesselK, 255
BesselJ and BesselY, 248
BesselJZeros and BesselYZeros, 250
Bilinear equation, 304
Blackbody, 230, 349
Bode’s rule, see Numerical integration
Bohr

Niels, 350
radius, 350

Boltzmann equation
collisionless, 520
equilibrium solution, 521
for self-gravitating systems, 7.3.1

Boltzmann, Ludwig, 568
Boole, 442, 6.3.3
Boundary conditions, 4, 5, 62, 64

applying, in grid methods, see Grid methods
contained in the forcing function, 184

continuous vs. discontinuous, 312. See also
Galerkin method, boundary curves

Dirichlet, 203, 209, 231
for Laplace’s and Poisson’s equation, 231
for Sturm�Liouville problems, 269
homogeneous, 179, 196, 269
mixed, 209, 231�232
moving, 431
periodic, 168, 239
static, 203, 210
time-dependent, 278, 283
von Neumann, 203, 209, 231

Boundary value problems, 4, 62. See also
Eigenvalue problems

existence and uniqueness of solution, 63, 196
Green’s function approach, 178
matrix inverse method for ID problems, 78,

181, 184. See also Green’s functions.
numerical solution on a grid, 486
numerical solution via Galerkin method, 435
particular solution via Fourier series, 118
shooting method for 1D problems, see Shooting

method
Bow, 300
Boussinesq equation, see Partial differential

equations
Brillouin, Leon, 396´
Brownian motion, 583

in gravity, 603
Brown, Robert, 583
Burgers’ equation, 554

without diffusion, 529

Cantilever, 9.10 Exercise 5
Catenary, 205
Caustis, 5.3.1
Cell, 9.1
Centered-difference

derivative, 182. See also Derivatives, finite-
differenced forms

method, see Numerical solution of ODEs; Grid
methods

Chaotic systems, 14, 20, 27, 517. See also Ordinary
differential equations; Lyapunov exponent

Characteristics
definition, 512
for a nonlinear wave equation, 530
for the linear collisionless Boltzmann equation,

520
method of, 511

Chebyshev, Pafnuty L., 273
Circulation, 7.3 Exercise 5
Clarke, Arthur C., 224
Clear, 9.4.2. See also Remove; Unset
Clearing variables, all user-defined, 9.4.2

Ž .Comments in code, see * *
Complex arithmetic, 9.2.5
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Contexts, 9.2.4, 9.6.8. See also Shadowing
Continuity equation

for energy density, 208, 423
for mass density, 563
for wave action, 5.3.2

ContourPlot, 9.6.6
adding labels to contours, 9.6.8

Ž .over arbitrary regions using Boole , 442
Convergence

in the mean, 272
nonuniform, 99. See also Gibbs phenomenon
uniform, 98

Convolution theorem, 132
Coordinates

cylindrical, 238
rectangular, 233
separable, 305
spherical, 240

Correlation
Ž .function, see Function s , correlation

time, 8.3.2
Coulomb, Charles, 301
Coulomb’s law, 59
Courant

condition, 468, 505. See also Grid methods; von
Neumann stability analysis

Richard, 468
Crank-Nicolson method, see Grid methods
CTCS method, see Grid methods
Cyclotron

radius, 22
frequency, seeFrequency, cyclotron

D, 9.9.1
d’Alembert, Jean, 203
Damped harmonic oscillator

as a Sturm�Liouville problem, 270
equation, 70

Ž .Green’s function for, see Green’s function s
homogeneous solution, 74
response to sinusoial forcing, 79

Damping rate, 9, 21, 70
Data

fitting, see Fit, Least-squares fit
interpolation, 9.11.3
plotting, 9.6.4
reading from a file, 9.11.4
writing to a file, see Export

Debye length, 328
Decibel, 389
Decision tree, 575
Default3D, 9.6.6
Delta function

Dirac, 135
Kronecker, 75
periodic, 141, 169

Density
current, 237
energy, see Energy density
mass, of various materials, Front Endpaper

Tables
momentum, see Momentum density

Ž .particle or number , 527
phase space, 519
probability, 361, 582. See also Schrodinger’s¨

equation
Ž .Derivative s , 9.9.1

centered-difference forms, 182
in Mathematica, see D
finite-differenced form, 617, 181
of a �-function, 139
total time, 512

Det, 9.5.2
Detailed balance, 8.3.1
Differential equations, 1

boundary conditions, 4. See also Boundary value
problems; Boundary conditions

general solution, 2
graphical solution, 5
initial conditions, 2
ordinary, see Ordinary differential equations
partial, see Partial differential equations

Differential operators, 70
adjoint of, 272
Hermitian, see Hermitian operators

Ž .inverse of, see Green’s function s
linear, 70. See also Linear ODEs
matrix form by finite-differencing, 75
matrix form by projection onto basis functions,

438
non-Hermitian, 272
nonlinear, 84
self-adjoint, 272. See also Hermitian operators

Diffraction, 372, 5.3.1
Diffusion

coefficient, 568
equation, 209, 568. See also Heat equation
in random walk, 581
of velocity, 590. See also Langevin equation

DiracDelta, 139
Dirac, Paul, 139
Direction field, 6
Directory, 9.11.4, 153. See also SetDirectory
Dirichlet

boundary condition, see Boundary conditions,
Dirichlet

Johann, 203
Dispersion

definition, 360
function, 375, 423, 5.3.1
longitudinal and transverse, 371
neglect of, in geometrical optics, 424
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Ž .Dispersion Continued
of a Gaussian wavepacket, in 1 dimension, 365
of whistler waves

Dispersion relation
for classical wave equations, 375
for deep water waves, 387, 390
for free quantum particle, 360
for heat equation, 384
for light, 415
for sound waves, 563
for water waves including surface tension, 387
for waves on a string, 357
local, 5.3.1

Distribution
binomial, 575, 577
Boltzmann, 605
Gaussian, 588
Gibbs, 8.3.1
Maxwellian, 611
Poisson, 588
probability, see Probability

Do, 440
Dominant balance, 398, 425
Doppler shift, 382
Dot product, 9.5.2. See also Inner product
DSolve, 17

E�B drift, see Velocity, E�B drift
Ear, inner, 108. See also Sound
Eccentricity, 22, 9.6 Exercise 3

Ž .Eden model, see Random walk s
Eigenmodes

compressional, for elastic rod, 295
Dirichlet, in heat equation, 214
Dirichlet, in wave equation, 197
for electron in a periodic lattice, 276
for quantum harmonic oscillator, 276
for quantum particle in a box, 275
for quantum particle in gravity, 277
in a coffee cup, 353
in a water channel of nonuniform depth, 296
in a water channel of uniform depth, 227
mixed, for heat equation, 221
numerical, 6.3
numerical via Galerkin method, 6.3.3
numerical, via grid method, 6.3.2
numerical, via shooting method, 6.3.4
of a circular drumhead, 334
of a quantum dot, 350
of a rubber ball, 350, 351
of a tidal estuary, 297
of �2, 304. See also Laplacian operator
of drumheads with arbitrary shape, 6.3.2, 6.3.3
of Hermitian operators, 270. See also

Sturm�Liouville problems
of the hydrogen atom, 350
of the ocean, 340

perturbed quantum, see Perturbation theory
transverse, for elastic rod, 297
via the WKB method, 6.3.4
von Neumann, for heat equation, 217

Eigenvalue problems, see also Eigenmodes
and orthogonality of eigenmodes, 253, See also

Hermitian operators
definition, 64
in linear algebra, 9.5.2
numerical solution of, 6.3
with periodic boundary conditions, 239
with singular boundary conditions, 241, 248

Eigenvalues and Eigenvectors, 9.5.2
Eigenvalues, see Eigenmodes, Eigenvalue

problems
Eikonal, 396. See also WKB method

equation, 5.3.1
Einstein

Albert, 20, 51
relation, 590, 606

EllipticF, 540
EllipticK, 541
Energy, 13, 58

cascade, 548. See also Wavebreaking
conservation, in heat equation, 208
conservation, in wave equation, 282
density, 207, 373, 377, 5.3.2
equipartition, 565. See also Wavebreaking,

suppression of
flux, 206, 377
in a wavepacket, see Wavepacket
levels, 276. See also Schrodinger’s equation;¨

Eigenmodes
of waves on a drumhead, 346
perturbed, see Perturbation theory

Ensemble, 8.3.1
Entropy, 584

Ž .Equation s
2D fluid, 7.3 Exercise 5
algebraic, solution of, see Solution of algebraic

equations
differential, see Differential equations
Navier-Stokes, 562
meaning of s ; :s and ss , 9.10.1
of state, 563

Equilibrium
chemical, for disociation of H , 212
configuration of a molecule, 60, 8.3.2
deformation of earth, 332
existence of, in heat equation, 211
of an elastic band in gravity, 9.10 Exercise 4
of a horizontal rod in gravity, 9.10 Exercise 5,

295
of a stretched string, 191, 224

Ž .of a string in gravity catenary , 205, 228
of a vertical rod in gravity, 9.10.1, 224
of pyramid in gravity, 9.10 Exercise 7



INDEX 625

temperature in heat equation, 211
thermal, 526, 605. See also Thermal equilibrium

Equipartition, see Energy equipartition
Error

in chaotic systems, 27
in numerical solution of algebraic equations,

9.11.1
order of, in numerical method, 38
statistical, 8.3.2. See also Random walk,

Correlation function
Euler

equations, 7.3 Exercise 5
Leonhard, 31

Euler’s method, 31, 38, 75, 175, 182, 188. See also
Numerical solution of ODE’s

for systems of ODEs, 41
Evanescence, 422. See also Turning points
Exact mathematics, 9.2.2
Expand, 9.8.1

Ž .Expected value, 569. See also Average s
Explicit methods, see Grid methods
Export, 7.3 Exercise 5. See also Import
ExtendGraphics packages, 9.6.8
Extrasolar planets, see Planets, extrasolar

Factor, 9.8.1
Fermat’s spiral, 9.6.8
Fermi, Enrico, 565
Fermi Pasta Ulam system, see Ordinary

differential equations
FFTs, 144

in Mathematica, see Fourier and inverse Fourier
for boundary value problems, 499
for real data, 151
in PIC methods, 7.3.4
used in frequency filtering, 156

Fick’s law, 206, 567
Field lines, chaotic magnetic field, 54

differential equation, 16
for TE modes in a cube cavity, 51
from a point dipole, 22

FindRoot, 9.11.1
Finite element methods, 491. See also Grid

methods
Fit, 9.11.4
Fitting data, see Fit, Least-squares fit
Fixed points, 10, 12
Flatten, 9.5.4

Ž .Fluctuations, see Average s ; Probability
Flux

heat, see Energy flux
momentum, see Momentum flux

Fokker�Planck equation, 583
for inhomogeneous system, 597
for the Rosenbluth�Teller�Metropolis Monte

Carlo method, 8.3.1
for velocity diffusion, 611

irreversible nature of solutions, see
Irreversibility

numerical solution via random walk, 598
Forcing, 70, 79

delta-function, 161. See also Green’s functions
general, possibly nonperiodic, 158
inclusion of boundary conditions in, 184
periodic, 87, 105
sinusoidal, 79

Forward difference, see Derivatives, finite-
differenced forms

Fourier coefficients, 80
exponential, 104
for a square wave, 96
for a triangle wave, 94
generalized, 266

Fourier and InverseFourier, 152
Fourier, Jean, 87
Fourier series, 89

completeness, 268
exponential, for general functions, 103
exponential, for real functions, 102
for even and odd functions, 94
for functions defined on an interval, 111
for periodic functions, 87
for a square wave, 96
generalized, 261, 266
in solution of heat equation, 214
in solution of wave equation, 198
uniform convergence, 98. See also Convergence
used in solving boundary value problems, 118

FourierTransform and
InverseFourierTransform, 124

Fourier transforms, 122
connection to Fourier series, 141
conventions in time and space, 123
discrete, 144
fast, see FFTs
generalized, 137
in cylindrical coordinates, 390, 390�393
in Mathematica, see FourierTransform and
InverseFourierTransform

in solution of 3D heat equation, 384
in solution of 3D wave equation, 369
in spherical coordinates, 378
inverse, 123
sine and cosine, 129
used to solve ID wave equation, 356

Free energy, see Irreversibility, in a confined
system

Frequency
collision, 568
cyclotron, 22, 395
fundamental, 87
Nyquist, 150
plasma, see Plasma frequency
spectrum, see Spectrum
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Front End, 9.3
FTCS method, see Grid method
FullSimplify, 9.8.1

Ž .Function s
Ž .adding conditions to the definition /; , 9.8.6

Airy, see Airy functions
associated Legendre, 241
basis, see Basis functions; Galerkin method
Bessel, see Bessel functions
correlations, 595, 8.3.2

Ž .delayed evaluation of := , 9.8.5
error, 177
hypergeometric, 241
intrinsic, 9.2.3

Ž .Jacobian Elliptic JacobiSN,JacobiCN , 541
of several variables, 9.8.3
periodic, 87

Žpure InterpolatingFunction,
.Function , 24, 515, 9.11.3

sectionally continuous, 89
stream, 7.3 Exercise 5
unknown, 1
use of the underscore when defining, 9.8.3
user-defined, 9.8.3

Fundamental period, see Frequency, fundamental

Galerkin, Boris G., 435
Galerkin method, 435

basis functions, 436
boundary curves, smooth vs. cusped, 438

Ž .for nonlinear system KdV equation , 547
for perturbed quantum systems, see

Perturbation theory
for time-dependent PDEs, 451
for time-independent boundary value problems,

435
module, for time-dependent problems, 456
module, for time-independent problems, 443
numerical eigenmodes, 6.3.3
von Neumann basis functions, 534

Gauss, Johann Carl Friedrich, 233
Gaussian quadrature, see Numerical integration
Gauss’s law, 233, 300
Geometrical optics, 415. See also Ray trajectories

and neglect of dispersion, 424
connection to ray trajectories, 417
derivation, 5.3.1
equations of, 416
for quantum system, 419
for whistler waves, 430
Hamiltonian form, 417
turning points, see Turning points
wavepacket amplitude, 422, 5.3.1. See also Wave

action
Get, see ��
Gibbs

distribution, see Distribution, Gibbs
Josiah, 98
phenomenon, 98, 247, 253

Gram, Jorgen P., 263
Gram�Schmidt method, 262
Gravitational collapse, 7.3.5
Greek letters, from keyboard, 9.4.3

from palletes, 9.4.3
Green, George 169

Ž .Green’s function s , 169
as an inverse operator, 174, 181
definition, for Poisson’s equation, 301
discretized, 174, 181
expansion in terms of operator eigenmodes,

304
for a charge in free space, 301
for a damped harmonic oscillator, 161
for an Nth order ODE with constant

coefficients, 163
for heat equation, 385
for initial value problems, 170
for ODE boundary value problems, 178
for wave equations, 381
from homogeneous solutions, 171, 180
of �2 in an infinite conducting tube, 326
within a spherical conducting shell, 329

Grid methods, 464. See also Numerical solution
of ODEs

alternating direction implicit method, 481
boundary condition at origin, 506
boundary conditions, von Neumann and mixed,

474
Crank�Nicholson method, 471, 556
CTCS for wave equation in 2 dimensions, 478
CTCS method, 469
direct solution of BVPs, 486
explicit methods, 471
FFT methods, 499
for nonlinear systems, 531, 556, 564
FTCS method, 464
implicit methods, 39, 470
Jacobi’s method, 494
Lax method, 469
nonrectangular boundaries, 489, 508. See also

Finite element methods
numerical eigenmodes, 6.3.2
operator splitting, 481, 557
simultaneous overrelaxation, 497
von Neumann stability analysis, 467

Group velocity, 363
definition, in 1 dimension, 364
definition, in 3 dimensions, 368

Ž .for complex frequencies damped waves , 385
in an isotropic medium, 368

Hamiltonian, 12
for system of interacting particles, 58
in geometrical optics, 417
mechanics, as WKB limit of quantum

mechanics, 419
pendulum, 15

Hamilton, Sir William, 12
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Harmonic oscillator, 2. See also Ordinary
differential equations, Linear ODEs

damped, 70
quantum eigenmodes, 276

Heat equation, 208. See also Fokker�Planck
equation; Partial Differential Equations

approach to equilibrium, 216
connection to diffusion, 583. See also Diffusion;

Random walk
derivation, 206
eigenmodes, see Eigenmodes; Eigenvalue

problems
general solution with Dirichlet boundary

conditions, 214
general solution with von Neumann boundary

conditions, 218
general solution with mixed boundary

conditions, 222
Green’s function, 385
multidimensional, 334
numerical solution, 451, 464, 470, 476, 481,

6.3.2. See also Numerical solution of PDEs
Heaviside

Oliver, 9.8.6
step function, 9.8.6, 140

Heisenberg, Werner K., 134
Hermite, Charles, 261, 273
Hermitian operators, 268. See also Differential

operators; Linear Odes; Eigenmodes;
Eigenvalue problems; Sturm�Liouville
problems

completeness and orthogonality of eigenmodes,
reality of eigenvalues, 270

Hermite polynomials, see Orthogonal polynomials
Histogram, 527

function, 570
Homogeneous

equation, see Linear ODEs, homogeneous
solution, 71, 78
boundary conditions, see Boundary conditions,

homogeneous
Hooke, Robert, 2
Hugoniot relation, 555
Huygens, Christiaan, 5.3.1

Ž .Hydrogen atom s
energy levels, see Eigenmodes of the hydrogen

atom
in electric field, see Stark effect
in magnetic field, see Zeeman shift
reactions to form H , see Equilibrium, chemical2

Hyperlinks, xv

Ideal gas, 520. See also Boltzmann equation,
collisionless; Thermal equilibrium

as a model of the galaxy, 7.3.1
If, 9.9.3
Implicit methods, see Grid methods
Import, 153, 9.11.4. See also Export, ��

Initial conditions, 2. See also Initial value
problems

Initial value problems, 4, 5, 185. See also
Differential equations

existence and uniqueness of solution, 6
Inner products, 261. See also Hermitian operators,

Orthogonality
choice of, in Galerkin method, 437
general properties, 262

InputForm, 9.2.6
Integrability, see Ordinary differential equations,

integrable
Ž .Integral s

analytic, 9.9.3
ŽElliptic, of the first kind EllipticF,

.EllipticK , 540
numerical, see Numerical integration

Ž .over arbitrary regions using Boole , 443
Integrate, 9.9.3. See also Nintegrate

Ž .InterpolatingFunction, see Function s ,
pure

Interpolation, 9.11.3. See also SplineFit
cubic spline, see Splines
linear, in PIC method, 7.3.4
order, 9.11.3

Interrupt Evaluation, 9.3
Inverse, 9.5.2
Irreversibility, 585

in a confined system, 607
Ising model, see Rosenbluth�Teller�Metropolis

Monte Carlo method

Jacobi, Carl Gustav Jacob, 494
Jacobi’s method, see Grid methods
Jeans

instability, 7.3.5, 7.3 Exercise 3
James H., 7.3.5

Jeffreys, Harold, 396
Join, 9.5.4

KdV equation, 537
derivation of steady solutions, see Solitons,

Waves, cnoidal
stability of steady solutions, 548
suppression of wavebreaking, see

Wavebreaking, suppression of
Kernel, 9.3
Keyboard equivalents, 9.4.3, 9.6.1
Klein�Gordon equation, see Partial differential

equations
Korteweg, Diederik J., 537
Korteweg-de Vries equation, see KdV equation
KroneckerDelta, 75

LabelContour.m, 9.5.8
Laguerre

Edmond N., 273
polynomials, see Orthogonal polynomials
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Landau
damping, 7.3 Exercise 6
Lev Davidovich, 7.3 Exercise 6

Langevin equation, 589
master equation for, 611
velocity correlations in, 610

Laplace, Pierre, 231
Laplace’s equation, 231. See also Poisson’s

equation
alternate forms for solution, 326
analytic solution via separation of variables,

233, 238, 248
boundary conditions, 231
eigenmode vs. direct solution methods, 308
existence of solution, 233
numerical solution, 438, 446, 489. See also

Boundary value problems
uniqueness of solution, 232

Ž 2 .Laplacian operator � , 4
as a Hermitian operator, 303
eigenmodes in cylindrical geometry, 312
eigenmodes in rectangular geometry, 305
eigenmodes in spherical geometry, 317
in cylindrical coordinates, 238
in spherical coordinates, 240

Lax method, see Grid methods
Leapfrog method, see Numerical solution of

ODEs
Least-squares fit, 9.11, Exercise 7. See also Fit
Legendre

Adrien-Marie, 265
functions, see Functions
polynomials, see Orthogonal polynomials
equation, see Ordinary differential equations

LegendreP, 241
Lens, see Snell’s law
Liebniz, Gottfried, 1
Linear ODEs, 70

and linear operators, see Differential operators
damped harmonic oscillator, see Damped

harmonic oscillator
degenerate homogeneous solutions, 73
discretized form as a matrix equation, 76
eigenmodes, see Eigenmodes; Eigenvalue

problems
exact resonance, 82, 120
general solution, 72
homogeneous, 71
homogeneous solution, 78
inhomogeneous, 78
method of undetermined coefficients, 79
particular solution, 78, 81, 119
resonance, 82, 105, 108
superposition principle, 71
with constant coefficients, independent

homogeneous solutions, 73
Liouville, Joseph, 261

Lissajous figure, 9.6.5
ListPlay, 157. See also Play
ListPlot, 9.6.4

Ž .List s , 9.5.1
dimension, 9.5.1
extracting elements from, 9.5.1

Ž .in vectorrmatrix notation MatrixForm , 9.5.1
operations, 9.5.4

Logical statements, 9.8.6, 9.9.3, 9.10.1
Lorenz system, see Ordinary differential equations
Lyapunov

Aleksandr, 28
exponent, 28, 51�52

Mach cone, 394
Machine precision, 9.2.2
Magnification, xvi
Map, 7.3.3
Master equation

for fixed stepsize, 581
for Langevin dynamics, see Langevin equation
for a nonuniform random walk, 596
for a uniform random walk, 595
in the Rosenbluth�Teller�Metropolis Monte

Carlo method, 8.3.1
solution via Fourier transforms, 610

Matrix multiplication, 9.5.2
Maxwell, James Clerk, 427, 568
Mean, 573
Mean free path, 568
Metropolis, Nicholas, 8.3.1
Mixed boundary conditions, see Boundary

conditions, mixed
Mixing dye, 516. See also Boltzmann equation,

collisionless; Chaotic systems
Mobius

August Ferdinand, 9.6 Exercise 6
strip, 9.6 Exercise 6

Mod, 9.10 Exercise 5, 7.3.4
Module, 36
Molecular dynamics, 43, 59

for charged particles in a Penning trap, 61
for an elastic rod, 61
for determining molecular configuration, 60

Momentum, 12
density, 377
equation, 563
flux, 377
total linear, 58

Monte Carlo method, see
Rosenbluth�Teller�Metropolis Monte Carlo
method

Moving boundary conditions, see Boundary
conditions, moving

Multipole moments
form far from the origin, 329
form near the origin, 331
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N, 9.2.6
Nanotubes, 224
Navier, Claude, 562
Navier�Stokes equations, see Partial differential

equations
NDSolve, 23

improving the solution accuracy
Ž .AccuracyGoal, PrecisionGoal , 26

Newton, Sir Isaac, 1
Newton’s method, 9.11.1, 9.11 Exercise 6
NIntegrate, 9.11.2. See also Integrate
Niven, Larry, 332
NonlinearFit, 9.11.4
Normal, 9.9.2
Normal modes, 197. See also Eigenvalue problems;

Eigenmodes
Notebook, 9.1
NSolve, 9.10.1
NullSpace, 9.5.2
Numerical integration

Bode’s rule, 9.11 Exercise 9
Gaussian quadrature, 9.11 Exercise 9
NIntegrate, 9.11.2
Simpson’s rule, 9.11 Exercise 9
trapezoidal rule, 9.11 Exercise 8

Numerical solution of ODEs, 23
Adams�Bashforth method, 57, 7.3 Exercise 5
centered-difference method, 56
error, 25, 28
Euler’s method, see Euler’s method
leapfrog method, 57, 7.3.3
matrix method, for linear ODEs, 76, 175, 184
molecular dynamics method, see Molecular

dynamics
order of a numerical method, 38
predictor-corrector method, 38
Runga�Kutta method, 40
shooting method, see Shooting method,

Boundary value problems
using intrinsic Mathematica function, see
NDSolve

Numerical solution of PDEs, 435
expansion in basis functions, see Galerkin

method
on a grid, see Grid methods
numerical eigenmodes, see Eigenmode,

numerical
particle in cell method, see PIC method
random-walk simulations for the

Fokker�Planck equation, 601
ray tracing, 5.3.1. See also WKB method

One component plasma, 7.3 Exercise 6
Ž .Operator s

differential, see Differential operators: Linear
ODEs

integral, 131, 174
splitting, see Grid methods

Options for intrinsic functions, 9.7
Orbits of planets, see Planets
Ordinary differential equations, 1

Airy equation, 18, 84
Bessel’s equation, 248. See also Bessel functions
chaotic, see Chaotic systems
damped harmonic oscillator, 9, 70
driven pendulum, 27
existence and uniqueness of solutions for BVP’s,

63
existence and uniqueness of solutions for IVP’s,

6
Ž .Fermi Pasta Ulam FPU system, 565

for field lines, see Field lines
Hamiltonian systems, see Hamiltonian
harmonic oscillator equation, 2, 17
integrable, 14
Langevin equation, see Langevin equation
Legendre equation, 241
linear, see Linear ODEs
Lorenz system, 52
numerical solution, see Numerical solution of

ODEs
order, 3
pendulum, 14
phase space, 9
Van der Pol oscillator, 15, 50, 81

Orthogonality, for complex functions, in Fourier
series, 103

for general functions, in terms of inner products,
262

for real functions, in Fourier series, 90
of associated Legendre functions, 243
of Bessel functions, 252
of eigenmodes of �2, 303
of eigenmodes of Hermitian operators, 270
of eigenmodes of the adjoint operator, 273
of eigenmodes satisfying mixed boundary

conditions, 222
of polynomials, see Orthogonal polynomials
of spherical Bessel functions, 320
of spherical harmonics, 243
via Gram-Schmidt method, 262

Orthogonal polynomials, 263
Chebyshev, 273
Hermite, 273, 276
Laguerre, 273, 350
Legendre, 265, 275

Palettes, 9.4.3
Parametric Plots, 9.6.5

for curves in two dimensions
Ž .ParametricPlot , 9.6.5

for curves or surfaces in 3 dimensions
Ž .ParametricPlot3D , 9.6 Exercise 6

Parseval’s theorem, 165
Partial differential equations, 4

Boussinesq equations, 7.2 Exercise 3
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Ž .Partial differential equations Continued
Burgers’ equation, see Burgers’ equation
collisionless Boltzmann equation, see

Boltzmann equation, collisionless
Euler equations, 7.3 Exercise 5
first-order, 511
Fokker�Planck equation, see Fokker�Planck

equation
heat equation, see Heat equation
Helmholz equation, 302
in infinite domains, 355. See also Fourier

transforms; WKB method
KdV equation, see KdV equation
Klein�Gordon equation, 562
Laplace’s equation, see Laplace’s equation
linear, general solution using operator

eigenmodes, see Eigenmodes; Hermitian
operators

Navier�Stokes equations, 562, 7.3.5
numerical solution, see Numerical solution of

PDEs
Poisson’s equation, see Poisson’s equation

¨Schrodinger’s equation, see Schroddinger’s¨
equation

sine-Gordon equation, 562
standard form for, 279, 301
traffic flow equation, 536, 564. See also Burgers’

equation
wave equation, see Wave equation

Particular solution, see Linear ODEs, particular
solution

Pendulum, see Ordinary differential equations
Penning trap, 61, 259

Ž .Percolation, see Random walk s , Eden model
Perihelion, 22, 9.6 Exercise 3

precession of Mercury’s, 51
Periodic extension of a function, 111

even, 113
odd, 116

Perturbation theory, 6.3 Exercise 17
degenerate, 6.3 Exercise 17
first-order energy shift, 6.3 Exercise 17
second-order energy shift, 6.3 Exercise 17

Phase
mixing, 521
space, 9
WKB, 397. See also Eikonal; Wave packet,

phase
Phase velocity, 360

Ž .for complex frequencies damped waves , 384
in multidimensions, 368

PIC method, 7.3
Ž .Planet s

cooling rate of, 344
extrasolar, 62
Mercury, see Perihelion, precession of

Mercury’s
orbits of, 22, 48, 59
tidal deformation of, 332, 343

Plasma, frequency, 395
propagation of radio waves through, 428
single component, see One component

plasma
waves, magnetized, 394
waves, whistler, see Whistler waves
waves, thermal correlations to, 7.3

Exercise 6
Play, 106. See also ListPlay
Plot, 9.6.1

some options for, 9.6.1
several curves, 9.6.3

Plot3D, 9.6.6
Ž .over arbitrary regions see Boole

Plots
changing the viewpoint in 3D plots, 9.6.6
changing the viewpoint in 3D plots interactivity,

see RealTime3D
curves or surfaces in 2D or 3D defined by

Ž .parameter s , see Parametric plots
data, see ListPlot
functions of one variable, see Plot
functions of two variables, see ContourPot;
Plot3D

over arbitrary regions defined by inequalities,
see Boole

repeating a previous plot, see Show
PlotVectorField, 7
Poincaré

Jules Henri, 54
plot, 54
recurrence, 585, 590

Poisson’s equation, 300. See also Partial
differential equations; Laplace’s equation

boundary conditions, see Laplace’s equation,
boundary conditions

eigenmodes, 302. See also Laplacian operator
existence of solution, 304, 325
general solution via generalized Fourier series,

304
general solution via Green’s function, 302
numerical solution of, 442, 486, 494, 497, 499.

See also Boundary value problems
solution in terms of multipole moments, 329
standard form, 301
uniqueness of solution, 300

Poisson, Simeon Denis, 4
Polarization, circular, 228

of electromagnetic waves, 427
Polymers, 591
Potential

Coulomb, 301
electrostatic, 231, 300. See also Laplace’s

equation, Poisson’s equation
flow, 352
gravitational, 331
Lennard-Jones, 60, 8.3.2
retarded, 381

Power series, 9.9.2. See also Series
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Poynting flux, 389, 427. See also Energy, flux
Precision, 9.2.6
PrecisionGoal, 9.11.2, 26
Predictor corrector method, see Numerical

solution of ODEs
Probability, conditional, 594

definition of, 569
density, see Density, probability
distribution, definition, 572
transition, 8.3.1

Quotient, 7.3.4

Radiation, 230. See also Wavepacket energy and
momentum flux

from a stationary point source, 381
Radius of convergence, 9.9.2
Random, 9.2.3, 9.11 Exercise 5, 569

Ž .Random walk s , 567. See also
Rosenbluth�Teller�Metropolis Monte Carlo
method

Eden model, 613
fluctuations from the mean, 8.3.2. See also

Ž .Average s
inhomogeneous, 596
self-avoiding, 591
with arbitrary steps, 592

Rayleigh
length, see Dispersion, longitudinal and

transverse
Ž .Lord William Strutt, Lord Rayleigh , 396

Ray trajectories, 412. See also Refraction;
Geometrical optics

for P waves in the earth, 429
for shallow water waves near the beach, 413
in a lens, see Snell’s law

Reading data from external files, see
Import, ��

RealTime3D, 9.6.6
Recursion relations

definition, 31
for perturbed energy levels, 6.3 Exercise 17
used in WKB method, 401, 424
used to find polynomial roots, 425
used to solve algebraic equations, see Newton’s

method
used to solve ODEs, see Euler’s method;

Numerical solution of ODEs
used to solve PDEs, see Relaxation methods;

Grid methods
Refraction, 412. See also WKB method; Ray

trajectories; Snell’s law
index of, 375, 415
index of, nonlinear, 546
in optical fibers, 429

Rejection method, 599
Relaxation methods, see Grid methods

Remove, 9.4.2. See also Clear; Unset
Ž .Replacing variables /. , 9.8.2

Resistivity, 588. See also Density, current
Retarded time, 382
Riemann, Georg, 122
Rosenbluth, Marshall, 8.3.1
Rosenbluth�Teller�Metropolis Monte Carlo

methods, 8.3
applied to Ising model, 8.3 Exercise 5
for interacting classical particles, 8.3.2
for ideal gas, 8.3.2

Runga�Kutta method, see Numerical solution of
ODEs

SampledSoundList, 154
Schmidt, Erhard, 263
Schrodinger, Erwin, 229¨
Schrodinger’s equation, 229. See also Partial¨

differential equations
conservation law for probability density, 388
energy levels, 276. See also Eigenmodes
multidimensional, 366
nonlinear, 562
numerical solution of, 457, 6.3.3, 6.3.4
perturbed eigenmodes, see Perturbation theory
time-independent, 276
tunneling, 460

Scott-Russell, J., 546
Self-adjoint, see Hermitian operators
Separation of variables, 195

for heat equation, 213
for Laplace’s equation in cylindrical coordinates,

238, 248
for Laplace’s equation in rectangular

coordinates, 233
for Laplace’s equation in spherical coordinates,

240
Series, 9.9.2. See also Normal
SetDirectory, 9.11.4, 153
Shadowing, 9.6.8
Shallow, 154
Shock waves, 554. See also Equations, Navier-

Stokes; differential equations
jump condition, see Hugoniot relation

Shooting method, 64
for numerical eigenmodes, 6.3.4
for problems with turning points, 6.4.3, 6.3

Exercise 7
Show, 9.6.2, 154
Simplify, 9.8.1
Simplifying expressions, 9.8.1
Simpson’s rule, see Numerical integration
Simultaneous over-relaxation, see Grid methods
Sine-Gordon equation, see Partial differential

equations
Sine integral, 100
Skin depth, 294
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Skipping rope, 228, 294
Snell’s law, 414. See also WKB method; Ray

trajectories
and lensing effect, 428, 481, 5.3.1

Solitons, 537
in the KdV equation, 544
in other systems, 546, 561

Solution of algebraic equations
Ž .analysis Solve , 9.10.1

graphical, one variable, 9.11.1
graphical, two variables, 9.11.1

Ž .numerical FindRoot , 9.11.1
Ž .numerical Newton’s method , see Newton’s

method
Ž .numerical NSolve , 9.10.1

Solve, 9.10.1
Sound, 106

perception of phase vs. amplitude, 108, 111, 169
speed, see Speed of sound; Wave speed
unit of amplitude, see Decibel

Special characters, 9.4.3
Ž .Specific heat s , 208

for various materials, Front Endpaper
ratio of, 563

Spectrum, 123
numerical, see FFTs

Speed of sound, Front Endpaper Tables; See also
Wave speed

Spherical harmonics, 243
in multipole expansions, 329
in spherical eigenmode of �2, 321

SphericalHarmonicY, 243
Splines, 9.11.3. See also Interpolation;

SplineFit
cubic, 9.11 Exercise 10

SplineFit, 9.11.3
Standard form, 279, 280. See also Partial

differential equations
Stark effect, 6.3 Exercise 14
Stokes, George, 562
Stefan�Boltzmann constant, 230
Step size, 31
Stirling’s formula, 587
Strange attractors, 52, 81
Sturm, Jacques, 261
Sturm�Liouville problems, 261, 269. See also

Hermitian operators
Superposition principle, 71, 78, 160, 205

Table, 9.5.3
Taylor

Brook, 9.9.2
expansion, see Power series

Teller, Edward, 8.3.1
Tether, 224
Thermal conductivity, 206

for various materials, Front Endpaper Tables
microscopic model, 568. See also Diffusion

Thermal diffusivity, 209
Thermal equilibrium, 526, 605

Boltzmann distribution, see Distribution,
Boltzmann

Gibbs distribution, see Distribution, Gibbs
Tidal acceleration, 332
Tidal deformation of the earth, see Planets
Tidal waves, see Waves, tidal
Time step, 31
Tonotopic map, 108
Total internal reflection, 419. See also Turning

points; Geometrical optics
Traffic flow, see Partial differential equations
Transformation method, 598
Transition probability, see Probability
Transpose, 9.5.2
Trapezoidal rule, see Numerical integration
Tree codes, 7.3.2
Tuning fork, 162
Turbulence, 7.3 Exercise 5
Turning points, 419

and breakdown of WKB method, 421
and total internal reflection, 419
behavior of a wave near, 422
effect on WKB eigenvalues, 6.3.4

Uncertainty principle, 133, 165. See also
Bandwidth

and Rayleigh length, 373
Underdetermined systems, 9.10.1
Undetermined coefficients, methods of 79
Unit matrix, 9.5.2. See also Delta function,

Kronecker
Unset, 466, 7.3 Exercise 5

Van der Pol oscillator, see Ordinary differential
equations

Variables, 9.4.2
internal, 36

Vector and matrix operations, 9.5.1
eigenvalues and eigenvectors, 9.5.2

Ž .vector magnitude length , 9.5.2
Velocity, 1

as rate of change of position, 2
center of mass, 59
drift, in the Fokker�Planck equation, 583
E�B drift, 22
group, see Group velocity
phase, see Phase velocity; Wave speed
superluminal, 461
terminal, 583
thermal, 590

Viscosity, 563
Vlasov equation, see Boltzmann equation,

collisionless
von Neumann

boundary conditions, see Boundary conditions,
von Neumann
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John, 467
stability analysis, see Grid methods

Vortices and vorticity, 7.3 Exercise 5

Wave action
connection to adiabatic invariants, 5.3.2
conservation law, 5.3.2
for general wave equations, 5.3
for quantum wave equations, 388

Wavebreaking
time, in Burgers’ equation without diffusion,

532
suppression of, 551

Wave equation, 194. See also Partial differential
equations

biharmonic, 295
d’Alembert’s solution, 203, 358
derivation, 191
eigenmodes, 280. See also Eigenmodes;

Eigenvalue problems
for uniform system, 194
general classical form, 375
general quantum form, 388
general solution for arbitrary source, b.c.’s, 281
in an inhomogeneous medium, see WKB

method; Geometrical optics
multidimensional, 333
numerical solution, 478, 5.3.1, 6.3.2, 6.3.3, 6.3.4.

See also Numerical solution of PDEs
solution for a uniform string, 197
vector, 228, 427
with a source, 204

Wavefunction, 229. See also Schrodinger’s¨
equation; Eigenmodes

behavior of, in reflection from a barrier, 457
Wavenumber, 123
Wave packet, 361

ampliude in nonuniform medium, 422, 5.3.1.
See also Wave action

average energy density and flux, 374
average momentum density, 377
dispersion, see Dispersion
energy density and flux for general classical

wave equation, 377
energy density, neglecting dispersion, 373
energy flux, neglecting dispersion, 374
form neglecting dispersion, in 1D, 364
form neglecting dispersion, in 3D, 371
phase in nonuniform medium, 5.3.1. See also

Phase, Eikonal
trajectory in nonuniform medium, 415. See also

Geometrical optics
velocity, see Group velocity
width, Gaussian, in 1 dimension, 366
WKB, on a nonuniform string, 407

Wave speed, 194. See also Phase velocity; Group
velocity

for shallow water waves, 227
for sound waves, 296. See also Speed of sound
in various materials, Front Endpaper Tables
on a string, 194

Waves. see also Eigenmodes
cnoidal, 537, 541
diffraction of, see Diffraction
dispersion of, see Dispersion
electromagnetic, 415, 423, 427, 5.3.2. See also

Refraction; Radiation; Wave equation
in an anisotropic medium, 382
in an inhomogeneous medium, see WKB

method
nonlinear, see Burger’s equation; KdV equation;

Schrodinger’s equation; Partial differential¨
equations

on a uniform string with fixed ends, 197
P-, 429
phase of, 367
plasma, see Plasma waves; Whistler waves
reflection of, see Total internal reflection
refraction of, see Refraction
shallow water, 226, 297, 352, 410
shock, see Shock waves
sound, see Speed of sound; Wave speed; Sound
tidal, 227
travelling, in 1D, 356
travelling, on a circular drumhead, 338

Wave vector, 366
While, 9.11 Exercise 6, 600
Whipcrack, 292
Whistler waves, 395

trajectories through magnetosphere, 430
WKB limit, 398
WKB method, 396. See also Eikonal, Wave packet

and adiabatic invariants, 404
for a string with time-varying length, 431
for eigenmodes, 6.3.4
for shallow water waves near a beach, 410
for travelling waves on a nonuniform string, 402
travelling waves in multiple dimensions, 5.3.1.

See also Geometrical optics
for the wave equation in 1D, 426
higher-order corrections, 401
near turning points, see Turning points
ray trajectories, 413
Snell’s law, 414
wave-packet trajectory, 415. See also

Geometrical optics
Work-kinetic-energy theorem, 9.9 Exercise 7
Writing data to a file, see Export
Wronskian, 172, 180

Zeeman shift, 6.3 Exercise 15



FUNDAMENTAL CONSTANTS

y19elementary charge e 1.6022�10 coulomb
y31electron mass m 9.1095�10 kilograme
y27proton mass m 1.6726�10 kilogramp

8speed of light in vacuum c 2.9979�10 metersrsecond
y34Planck constant h 6.6262�10 joule-second
y34�shr2� 1.0546�10 joule-second

y11 2Gravitational constant G 6.6720�10 joule-meterrkilogram
y12permittivity of free space � 8.8542�10 faradrmeter0

y7permeability of free space � 4��10 henryrmeter0
y23Boltzmann constant k 1.3807�10 joulerkelvinB

y8 2 4Stefan�Boltzmann constant � 5.6705�10 wattrmeter kelvin
23Avogadro’s number N 6.0221�10 particlesrmoleA

SOME ASTRONOMICAL DATA

24earth mass 5.97�10 kilograms
6Ž .earth radius mean 6.38�10 meters
22moon mass 7.35�10 kilograms
6Ž .moon radius mean 1.74�10 meters
30sun mass 1.99�10 kilograms
8Ž .sun radius mean 6.96�10 meters
9Ž .earth�sun distance mean 1.50�10 meters
6Ž .earth�moon distance mean 3.84�10 meters

SOME PROPERTIES OF MATERIALS*

Ž .air dry
3mass density 1.21 kilogramsrmeter

speed of sound 343 metersrsecond
thermal conductivity 0.026 wattrmeter kelvin

3specific heat at constant pressure 1220 joulesrmeter kelvin

water
3mass density 998 kilogramsrmeter

speed of sound 1482 metersrsecond
thermal conductivity 0.59 wattrmeter kelvin

6 3specific heat at constant pressure 4.19�10 joulesrmeter kelvin

copper
3mass density 8950 kilogramsrmeter

Ž .speed of sound compressional waves 5010 metersrsecond
Ž .speed of sound shear waves 2270 metersrsecond

thermal conductivity 400 wattsrmeter kelvin
6 3specific heat at constant pressure 3.45�10 joulesrmeter kelvin
y8electrical resistivity 1.67�10 ohm�meter

*measured at 20 �C and 1 atmosphere
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UNIT CONVERSION

This book employs SI units. However, other units are sometimes preferable. Some
conversion factors are listed below.

Length
˚ y8Ž .1 Angstrom A s10 meter

1 foots0.305 meter
1 light years9.46�1015 meters
1 parsecs3.26 light years

Volume
1 liters1000 centimeter 3s10y3 meter 3

1 U.S. gallons0.83 imperial gallons3.78 liters

Time
1 hours3600 seconds
1 days8.64�104 seconds

Ž . y11 hertz hz s1 second

Mass
Ž . y271 atomic mass unit amu s1.6605�10 kilogram

Force
Ž .1 pound lb s4.45 newtons

Energy and Power
1 ergs10y7 joule
1 kcals1 Cals1000 cals4.184�103 joules

Ž . y191 electron volt eV s1.602�10 joule
1 foot-pounds1.36 joules
1 horsepowers746 watts

Pressure
1 atmospheres1.013 bars1.013�105 newtonsrmeter 2s14.7 poundsrinch2s760 torr
1 pascals1 newtonrmeter 2

Temperature
Ž .x �Cs 273.16qx K
Ž .x �Fs5 xy32 r9 �C

1 eVsk �11,605 KB
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Copyright  2003 John Wiley & Sons, Inc. ISBN: 0-471-26610-8



THEOREMS FROM VECTOR CALCULUS

In the following theorems, V is a volume with volume element d 3r, S is the
surface of this volume, and n is a unit vector normal to this surface, pointing out ofˆ
the volume.

��A d 3rs A �n d 2 r divergence theoremŽ .ˆH H
V S

f �2gq�f ��g d 3rs f n ��g d 2 r Green’s first identityŽ .ˆŽ .H H
V S

f �2gyg�2 f d 3rs f �gyg�f �n d 2 r Green’s theoremŽ . Ž .ˆŽ .H H
V S

EXPLICIT FORMS FOR VECTOR DIFFERENTIAL OPERATIONS

Ž .Cartesian coordinates x, y, z :

�� �� ��
��sx qy qzˆ ˆ ˆ� x � y � t

� 2� � 2� � 2�2� �s q q2 2 2� x � y � z

� A� A � Ayx z��As q q
� x � y � z

� A � A� A � A � A � Ay yz x z x��Asx y qy y qz yˆ ˆ ˆž /ž / ž /� y � z � z � x � x � y

Ž .Cylindrical coordinates r, � , z :

�� 1 �� ��ˆ��sr q� qzˆ ˆ� r r �� � z

1 � �� 1 � 2� � 2�2� �s r q qž / 2 2 2r � r � r r �� � z

� A � A1 � 1 � z��As r A q qŽ .rr � r r �� � z

� A � A � A � A � A1 1 � 1z � r z rˆ��Asr y q� y qz r A yŽ .ˆ ˆ �ž / ž / ž /r �� � z � z � r r � r r ��

Ž .Spherical coordinates r, � , � :

�� 1 �� 1 ��ˆ ˆ��sr q� q�ˆ � r r �� r sin � ��

1 � �� 1 � �� 1 � 2�2 2� �s r q sin � qž / ž /2 2 2 2 2� r � r �� ��r r sin � r sin � ��

� A1 � 1 � 1 �2��As r A q sin � A qŽ .Ž .r �2 2� r �� r sin � ��r r sin �

� A � A � A1 � 1 1 � 1 �� r rˆ ˆ��Asr sin � A y q� y r A q� r A yŽ .ˆ Ž . Ž .� � �ž /ž / ž /r sin � �� �� r sin � �� r � r r � r ��
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