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Preface

When I worked on my Introduction to Multiple Time Series Analysis (Liitke-
pohl (1991)), a suitable textbook for this field was not available. Given the
great importance these methods have gained in applied econometric work, it
is perhaps not surprising in retrospect that the book was quite successful.
Now, almost one and a half decades later the field has undergone substantial
development and, therefore, the book does not cover all topics of my own
courses on the subject anymore. Therefore, I started to think about a serious
revision of the book when I moved to the European University Institute in
Florence in 2002. Here in the lovely hills of Toscany I had the time to think
about bigger projects again and decided to prepare a substantial revision of
my previous book. Because the label Second Edition was already used for a
previous reprint of the book, I decided to modify the title and thereby hope
to signal to potential readers that significant changes have been made relative
to my previous multiple time series book.

Although Chapters 1-5 still contain an introduction to the vector autore-
gressive (VAR) methodology and their structure is largely the same as in
Liitkepohl (1991), there have been some adjustments and additions, partly
in response to feedback from students and colleagues. In particular, some
discussion on multi-step causality and also bootstrap inference for impulse
responses has been added. Moreover, the LM test for residual autocorrela-
tion is now presented in addition to the portmanteau test and Chow tests for
structural change are discussed on top of the previously considered prediction
tests. When I wrote my first book on multiple time series, the cointegration
revolution had just started. Hence, only one chapter was devoted to the topic.
By now the related models and methods have become far more important for
applied econometric work than, for example, vector autoregressive moving av-
erage (VARMA) models. Therefore, Part IT (Chapters 6-8) is now entirely de-
voted to VAR models with cointegrated variables. The basic framework in this
new part is the vector error correction model (VECM). Chapter 9 is also new.
It contains a discussion of structural vector autoregressive and vector error
correction models which are by now also standard tools in applied econometric
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analysis. Chapter 10 on systems of dynamic simultaneous equations maintains
much of the contents of the corresponding chapter in Liitkepohl (1991). Some
discussion of nonstationary, integrated series has been added, however. Chap-
ters 9 and 10 together constitute Part III. Given that the research activities
devoted to VARMA models have been less important than those on cointegra-
tion, I have shifted them to Part IV (Chapters 11-15) of the new book. This
part also contains a new chapter on cointegrated VARMA models (Chapter
14) and in Chapter 15 on infinite order VAR models, a section on models
with cointegrated variables has been added. The last part of the new book
contains three chapters on special topics related to multiple time series. One
chapter deals with autoregressive conditional heteroskedasticity (Chapter 16)
and is new, whereas the other two chapters on periodic models (Chapter 17)
and state space models (Chapter 18) are largely taken from Liitkepohl (1991).
All chapters have been adjusted to account for the new material and the new
structure of the book. In some instances, also the notation has been modified.
In Appendix A, some additional matrix results are presented because they
are used in the new parts of the text. Also Appendix C has been expanded
by sections on unit root asymptotics. These results are important in the more
extensive discussion of cointegration. Moreover, the discussion of bootstrap
methods in Appendix D has been revised. Generally, I have added many new
references and consequently the reference list is now much longer than in the
previous version. To keep the length of the book in acceptable bounds, I have
also deleted some material from the previous version. For example, station-
ary reduced rank VAR models are just mentioned as examples of models with
nonlinear parameter restrictions and not discussed in detail anymore. Reduced
rank models are now more important in the context of cointegration analysis.
Also the tables with example time series are not timely anymore and have
been eliminated. The example time series are available from my webpage and
they can also be downloaded from www.jmulti.de. It is my hope that these
revisions make the book more suitable for a modern course on multiple time
series analysis.

Although multiple time series analysis is applied in many disciplines, I have
prepared the text with economics and business students in mind. The exam-
ples and exercises are chosen accordingly. Despite this orientation, I hope that
the book will also serve multiple time series courses in other fields. It contains
enough material for a one semester course on multiple time series analysis. It
may also be combined with univariate times series books or with texts like
Fuller (1976) or Hamilton (1994) to form the basis of a one or two semester
course on univariate and multivariate time series analysis. Alternatively, it is
also possible to select some of the chapters or sections for a special topic of a
graduate level econometrics course. For example, Chapters 1-8 could be used
for an introduction to stationary and cointegrated VARs. For students already
familiar with these topics, Chapter 9 could be a special topic on structural
VAR modelling in an advanced econometrics course.
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The students using the book must have knowledge of matrix algebra and
should also have been introduced to mathematical statistics, for instance,
based on textbooks like Mood, Graybill & Boes (1974), Hogg & Craig (1978)
or Rohatgi (1976). Moreover, a working knowledge of the Box-Jenkins ap-
proach and other univariate time series techniques is an advantage. Although,
in principle, it may be possible to use the present text without any prior
knowledge of univariate time series analysis if the instructor provides the
required motivation, it is clearly an advantage to have some time series back-
ground. Also, a previous introduction to econometrics will be helpful. Matrix
algebra and an introductory mathematical statistics course plus the multiple
regression model are necessary prerequisites.

As the previous book, the present one is meant to be an introductory
exposition. Hence, I am not striving for utmost generality. For instance, quite
often I use the normality assumption although the considered results hold
under more general conditions. The emphasis is on explaining the underlying
ideas and not on generality. In Chapters 2-7 a number of results are proven
to illustrate some of the techniques that are often used in the multiple time
series arena. Most proofs may be skipped without loss of continuity. Therefore
the beginning and the end of a proof are usually clearly marked. Many results
are summarized in propositions for easy reference.

Exercises are given at the end of each chapter with the exception of Chap-
ter 1. Some of the problems may be too difficult for students without a good
formal training, some are just included to avoid details of proofs given in the
text. In most chapters empirical exercises are provided in addition to algebraic
problems. Solving the empirical problems requires the use of a computer. Ma-
trix oriented software such as GAUSS, MATLAB, or Ox will be most helpful.
Most of the empirical exercises can also be done with the easy-to-use software
JMulTi (see Liitkepohl & Kritzig (2004)) which is available free of charge at
the website www.jmulti.de. The data needed for the exercises are also available
at that website, as mentioned earlier.

Many persons have contributed directly or indirectly to this book and I am
very grateful to all of them. Many students and colleagues have commented
on my earlier book on the topic. Thereby they have helped to improve the
presentation and to correct errors. A number of colleagues have commented
on parts of the manuscript and have been available for discussions on the
topics covered. These comments and discussions have been very helpful for
my own understanding of the subject and have resulted in improvements to
the manuscript.

Although the persons who have contributed to the project in some way or
other are too numerous to be listed here, I wish to express my special grati-
tude to some of them. Because some parts of the old book are still maintained,
it is only fair to mention those who have helped in a special way in the prepa-
ration of that book. They include Theo Dykstra who read and commented
on a large part of the manuscript during his visit in Kiel in the summer of
1990, Hans-Eggert Reimers who read the entire manuscript, suggested many
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improvements, and pointed out numerous errors, Wolfgang Schneider who
helped with examples and also commented on parts of the manuscript as well
as Bernd Theilen who prepared the final versions of most figures, and Knut
Haase and Holger Claessen who performed the computations for many of the
examples. I deeply appreciate the help of all these collaborators.

Special thanks for comments on parts of the new book go to Pentti Saikko-
nen for helping with Part II and to Ralf Briiggemann, Helmut Herwartz, and
Martin Wagner for reading Chapters 9, 16, and 18, respectively. Christian
Kascha prepared some of the new figures and my wife Sabine helped with
the preparation of the author index. Of course, I assume full responsibility
for any remaining errors, in particular, as I have keyboarded large parts of
the manuscript myself. A preliminary IATEX version of parts of the old book
was provided by Springer-Verlag. I thank Martina Bihn for taking charge of
the project on the side of Springer-Verlag. Needless to say, I welcome any
comments by readers.

Florence and Berlin, Helmut Litkepohl
March 2005
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Introduction

1.1 Objectives of Analyzing Multiple Time Series

In making choices between alternative courses of action, decision makers at
all structural levels often need predictions of economic variables. If time series
observations are available for a variable of interest and the data from the
past contain information about the future development of a variable, it is
plausible to use as forecast some function of the data collected in the past. For
instance, in forecasting the monthly unemployment rate, from past experience
a forecaster may know that in some country or region a high unemployment
rate in one month tends to be followed by a high rate in the next month.
In other words, the rate changes only gradually. Assuming that the tendency
prevails in future periods, forecasts can be based on current and past data.

Formally, this approach to forecasting may be expressed as follows. Let y;
denote the value of the variable of interest in period ¢. Then a forecast for
period T 4 h, made at the end of period T, may have the form

Yyr+n = fyr,yr-1,...), (1.1.1)

where f(-) denotes some suitable function of the past observations yr, yr_1,
.... For the moment it is left open how many past observations enter into
the forecast. One major goal of univariate time series analysis is to specify
sensible forms of functions f(-). In many applications, linear functions have
been used so that, for example,

Yrenh =v+oayr + aoyr—1+ - .

In dealing with economic variables, often the value of one variable is not
only related to its predecessors in time but, in addition, it depends on past
values of other variables. For instance, household consumption expenditures
may depend on variables such as income, interest rates, and investment ex-
penditures. If all these variables are related to the consumption expenditures
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it makes sense to use their possible additional information content in forecast-
ing consumption expenditures. In other words, denoting the related variables
by y1t,Y2¢, - .., Yk, the forecast of y; 74 at the end of period 7" may be of
the form

Y1,7+h = f1(y1,T, Y21y YK, 1T Y1,7-1,Y2,7-15 - - - YK, 71, Y1, 7-25 - - )

Similarly, a forecast for the second variable may be based on past values of
all variables in the system. More generally, a forecast of the k-th variable may
be expressed as

Yo r+h = fe(Qir, - YR T YL T—1, - s YK, =1, - - -)- (1.1.2)

A set of time series yii, k= 1,..., K, t =1,...,T, is called a multiple time
series and the previous formula expresses the forecast ¥ r45 as a function
of a multiple time series. In analogy with the univariate case, it is one ma-
jor objective of multiple time series analysis to determine suitable functions
f1,..., [k that may be used to obtain forecasts with good properties for the
variables of the system.

It is also often of interest to learn about the dynamic interrelationships
between a number of variables. For instance, in a system consisting of invest-
ment, income, and consumption one may want to know about the likely impact
of a change in income. What will be the present and future implications of
such an event for consumption and for investment? Under what conditions
can the effect of an increase in income be isolated and traced through the sys-
tem? Alternatively, given a particular subject matter theory, is it consistent
with the relations implied by a multiple time series model which is developed
with the help of statistical tools? These and other questions regarding the
structure of the relationships between the variables involved are occasionally
investigated in the context of multiple time series analysis. Thus, obtaining
insight into the dynamic structure of a system is a further objective of multiple
time series analysis.

1.2 Some Basics

In the following chapters, we will regard the values that a particular economic
variable has assumed in a specific period as realizations of random variables. A
time series will be assumed to be generated by a stochastic process. Although
the reader is assumed to be familiar with these terms, it may be useful to
briefly review some of the basic definitions and expressions at this point, in
order to make the underlying concepts precise.

Let (£2, F, Pr) be a probability space, where (2 is the set of all elementary
events (sample space), F is a sigma-algebra of events or subsets of {2 and Pr
is a probability measure defined on F. A random variable y is a real valued
function defined on {2 such that for each real number ¢, A, = {w € 2y(w) <
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c} € F. In other words, A. is an event for which the probability is defined in
terms of Pr. The function F : R — [0, 1], defined by F(c) = Pr(A.), is the
distribution function of y.

A K-dimensional random wvector or a K-dimensional vector of random
variables is a function y from §2 into the K-dimensional Euclidean space R¥,
that is, y maps w € 2 on y(w) = (y1(w),...,yx(w))" such that for each
c=(c1,...,cx) € RE]

Ac ={wly(w) <epy. . yx(w) <ck} € F.

The function F : RX — [0, 1] defined by F(c) = Pr(A.) is the joint distribution
function of y.

Suppose Z is some index set with at most countably many elements like, for
instance, the set of all integers or all positive integers. A (discrete) stochastic
process is a real valued function

y:Zx2—-NR

such that for each fixed t € Z, y(t,w) is a random variable. The random
variable corresponding to a fixed ¢ is usually denoted by y; in the following.
The underlying probability space will usually not even be mentioned. In that
case, it is understood that all the members y; of a stochastic process are
defined on the same probability space. Usually the stochastic process will also
be denoted by y; if the meaning of the symbol is clear from the context.

A stochastic process may be described by the joint distribution functions
of all finite subcollections of y;’s, t € S C Z. In practice, the complete system
of distributions will often be unknown. Therefore, in the following chapters, we
will often be concerned with the first and second moments of the distributions.
In other words, we will be concerned with the means E(y;) = p, the variances
E[(y: — ut)?] and the covariances E[(y; — pu¢)(ys — pts)]-

A K-dimensional vector stochastic process or multivariate stochastic pro-
cess is a function

y:Z x 02— RE,

where, for each fixed ¢t € Z, y(t,w) is a K-dimensional random vector. Again
we usually use the symbol y; for the random vector corresponding to a fixed
t € Z. For simplicity, we also often denote the complete process by y;. The par-
ticular meaning of the symbol should be clear from the context. With respect
to the stochastic characteristics the same applies as for univariate processes.
That is, the stochastic characteristics are summarized in the joint distribution
functions of all finite subcollections of random vectors y;. In practice, inter-
est will often focus on the first and second moments of all random variables
involved.

A realization of a (vector) stochastic process is a sequence (of vectors)
yt(w), t € Z, for a fixed w. In other words, a realization of a stochastic process
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is a function Z — RE where t — y;(w). A (multiple) time series is regarded
as such a realization or possibly a finite part of such a realization, that is,
it consists, for instance, of values (vectors) y; (w),...,yr(w). The underlying
stochastic process is said to have generated the (multiple) time series or it is
called the generating or gemeration process of the time series or the data gen-
eration process (DGP). A time series y; (w), . .., yr(w) will usually be denoted
by 41, ...,y or simply by y,; just like the underlying stochastic process, if no
confusion is possible. The number of observations, T, is called the sample size
or time series length. With this terminology at hand, we may now return to
the problem of specifying forecast functions.

1.3 Vector Autoregressive Processes

Because linear functions are relatively easy to deal with, it makes sense to
begin with forecasts that are linear functions of past observations. Let us
consider a univariate time series y; and a forecast h = 1 period into the
future. If f(-) in (1.1.1) is a linear function, we have

Yr41 =v+oiyr + aoyr—1+-- - .

Assuming that only a finite number p, say, of past y values are used in the
prediction formula, we get

Yr+1 =V +onyr + aoyr—1 + -+ QpYr—pi1- (1.3.1)

Of course, the true value yp1 will usually not be exactly equal to the forecast
yr+1. Let us denote the forecast error by uri1 := yre1 — yr41 so that

Yr+1 = Yr+1 U1 =V oayr + -+ apYr_py1 + U1 (1.3.2)

Now, assuming that our numbers are realizations of random variables and
that the same data generation law prevails in each period T, (1.3.2) has the
form of an autoregressive process,

Y=V +oaYsi—1 + -+ QpYr—p + U, (1.3.3)

where the quantities y¢, y+—1,...,%—p, and u; are now random variables. To
actually get an autoregressive (AR) process we assume that the forecast errors
uy for different periods are uncorrelated, that is, u; and us are uncorrelated
for s # t. In other words, we assume that all useful information in the past
y¢’s is used in the forecasts so that there are no systematic forecast errors.

If a multiple time series is considered, an obvious extension of (1.3.1) would
be

Y m+1 = VA ogiayi,r + 2y, + o+ Qg YK, T
+ o k1 pY1,T—p1 T QK YK T—pt1, (1.3.4)
k=1,..., K.
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To simplify the notation, let y; := (y1t,-.-,yxe)s U .= @1ts---,Jt), V i=
(v1,...,vk) and

114 .- Q1K
Ai =
QOK1i - QKK
Then (1.3.4) can be written compactly as
yri1 =v+Awyr + -+ Apyr—pia- (1.3.5)

If the y;’s are regarded as random vectors, this predictor is just the optimal
forecast obtained from a vector autoregressive model of the form

yr=v+ A1y + -+ Apyr—p + (1.3.6)

where the uy = (u1y,...,ux) form a sequence of independently identically
distributed random K-vectors with zero mean vector.

Obviously such a model represents a tremendous simplification compared
with the general form (1.1.2). Because of its simple structure, it enjoys great
popularity in applied work. We will study this particular model in the follow-
ing chapters in some detail.

1.4 Outline of the Following Chapters

In Part I of the book, consisting of the next four chapters, we will investigate
some basic properties of stationary vector autoregressive (VAR) processes such
as (1.3.6). Forecasts based on these processes are discussed and it is shown
how VAR processes may be used for analyzing the dynamic structure of a sys-
tem of variables. Throughout Chapter 2, it is assumed that the process under
study is completely known including its coefficient matrices. In practice, for
a given multiple time series, first a model of the DGP has to be specified
and its parameters have to be estimated. Then the adequacy of the model
is checked by various statistical tools and then the estimated model can be
used for forecasting and dynamic or structural analysis. The main steps of
a VAR analysis are presented in Figure 1.1 in a schematic way. Estimation
and model specification are discussed in Chapters 3 and 4, respectively. In the
former chapter the estimation of the VAR coefficients is considered and the
consequences of using estimated rather than known processes for forecasting
and economic analysis are explored. In Chapter 4, the specification and model
checking stages of an analysis are considered. Criteria for determining the or-
der p of a VAR process are given and possibilities for checking the assumptions
underlying a VAR analysis are discussed.

In systems with many variables and/or large VAR order p, the number
of coefficients is quite substantial. As a result the estimation precision will
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Specification and
estimation of VAR model

model
v rejected

Model checking

model accepted

Y Y

Structural
analysis

Forecasting

Fig. 1.1. VAR analysis.

be low if estimation is based on time series of the size typically available
in economic applications. In order to improve the estimation precision, it is
useful to place restrictions from nonsample sources on the parameters and
thereby reduce the number of coefficients to be estimated. In Chapter 5, VAR
processes with parameter constraints and restricted estimation are discussed.
Zero restrictions, nonlinear constraints, and Bayesian estimation are treated.
In Part I, stationary processes are considered which have time invariant
expected values, variances, and covariances. In other words, the first and sec-
ond moments of the random variables do not change over time. In practice
many time series have a trending behavior which is not compatible with such
an assumption. This fact is recognized in Part II, where VAR processes with
stochastic and deterministic trends are considered. Processes with stochastic
trends are often called integrated and if two or more variables are driven by
the same stochastic trend, they are called cointegrated. Cointegrated VAR
processes have quite different properties from stationary ones and this has
to be taken into account in the statistical analysis. The specific estimation,
specification, and model checking procedures are discussed in Chapters 6-8.
The models discussed in Parts I and II are essentially reduced form models
which capture the dynamic properties of the variables and are useful forecast-
ing tools. For structural economic analysis, these models are often insufficient
because different economic theories may be compatible with the same sta-
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tistical reduced form model. In Chapter 9, it is discussed how to integrate
structural information in stationary and cointegrated VAR models. In many
econometric applications it is assumed that some of the variables are de-
termined outside the system under consideration. In other words, they are
exogenous or unmodelled variables. VAR processes with exogenous variables
are considered in Chapter 10. In the econometrics literature such systems
are often called systems of dynamic simultaneous equations. In the time se-
ries literature they are sometimes referred to as multivariate transfer function
models. Together Chapters 9 and 10 constitute Part III of this volume.

In Part IV of the book, it is recognized that an upper bound p for the VAR
order is often not known with certainty. In such a case, one may not want
to impose any upper bound and allow for an infinite VAR order. There are
two ways to make the estimation problem for the potentially infinite number
of parameters tractable. First, it may be assumed that they depend on a
finite set of parameters. This assumption leads to vector autoregressive moving
average (VARMA) processes. Some properties of these processes, parameter
estimation and model specification are discussed in Chapters 11-13 for the
stationary case and in Chapter 14 for cointegrated systems. In the second
approach for dealing with infinite order VAR processes, it is assumed that
finite order VAR processes are fitted and that the VAR order goes to infinity
with the sample size. This approach and its consequences for the estimators,
forecasts, and structural analysis are discussed in Chapter 15 for both the
stationary and the cointegrated cases.

In Part V, some special models and issues for multiple time series are
studied. In Chapter 16, models for conditionally heteroskedastic series are
considered and, in particular, multivariate generalized autoregressive condi-
tionally heteroskedastic (MGARCH) processes are presented and analyzed.
In Chapter 17, VAR processes with time varying coefficients are considered.
The coeflicient variability may be due to a one-time intervention from out-
side the system or it may result from seasonal variation. Finally, in Chapter
18, so-called state space models are introduced. The models represent a very
general class which encompasses most of the models previously discussed and
includes in addition VAR models with stochastically varying coefficients. A
brief review of these and other important models for multiple time series is
given. The Kalman filter is presented as an important tool for dealing with
state space models.

The reader is assumed to be familiar with vectors and matrices. The rules
used in the text are summarized in Appendix A. Some results on the multivari-
ate normal and related distributions are listed in Appendix B and stochastic
convergence and some asymptotic distribution theory are reviewed in Ap-
pendix C. In Appendix D, a brief outline is given of the use of simulation
techniques in evaluating properties of estimators and test statistics. Although
it is not necessary for the reader to be familiar with all the particular rules and
propositions listed in the appendices, it is implicitly assumed in the following
chapters that the reader has knowledge of the basic terms and results.
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Finite Order Vector Autoregressive Processes
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In the four chapters of this part, finite order, stationary vector autoregres-
sive (VAR) processes and their uses are discussed. Chapter 2 is dedicated to
processes with known coefficients. Some of their basic properties are derived,
their use for prediction and analysis purposes is considered. Unconstrained
estimation is discussed in Chapter 3, model specification and checking the
model adequacy are treated in Chapter 4, and estimation with parameter
restrictions is the subject of Chapter 5.



2

Stable Vector Autoregressive Processes

In this chapter, the basic, stationary finite order vector autoregressive (VAR)
model will be introduced. Some important properties will be discussed. The
main uses of vector autoregressive models are forecasting and structural anal-
ysis. These two uses will be considered in Sections 2.2 and 2.3. Throughout
this chapter, the model of interest is assumed to be known. Although this
assumption is unrealistic in practice, it helps to see the problems related to
VAR models without contamination by estimation and specification issues.
The latter two aspects of an analysis will be treated in detail in subsequent
chapters.

2.1 Basic Assumptions and Properties of VAR Processes

2.1.1 Stable VAR(p) Processes

The object of interest in the following is the VAR(p) model (VAR model of
order p),

yt:V+Alyt—1+"'+Apyt—p+ut> t:()a:l:la:tQa"'a (211)

where y: = (Y1t,...,yxt) is a (K x1) random vector, the A4; are fixed (K x K)
coefficient matrices, v = (v1,...,vk)" is a fixed (K x 1) vector of intercept
terms allowing for the possibility of a nonzero mean FE(y;). Finally, u; =
(ur¢, ..., ukt)" is a K-dimensional white noise or innovation process, that is,
E(ut) =0, E(uuy) = X, and E(ugul) = 0 for s # ¢. The covariance matrix
X, is assumed to be nonsingular if not otherwise stated.

At this stage, it may be worth thinking a little more about which process
is described by (2.1.1). In order to investigate the implications of the model
let us consider the VAR(1) model

Y = v+ Ayi—1 + uy. (2.1.2)
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If this generation mechanism starts at some time t = 1, say, we get
y1 = v+ Aiyo + ui,
Yo = v+ Ay tur=v+ A (v+ Ay +ur) +ug
= (Ix + A + Afyo + Arur + ug,

(2.1.3)

v = (Ix+A1+--+A Y+ AL O+ZA1ut ;
Hence, the vectors yq,...,y; are uniquely determined by yg,u1, ..., u;. Also,
the joint distribution of yi,...,y; is determined by the joint distribution of

Yo, U1y ..., Ut.

Although we will sometimes assume that a process is started in a specified
period, it is often convenient to assume that it has been started in the infinite
past. This assumption is in fact made in (2.1.1). What kind of process is con-
sistent with the mechanism (2.1.1) in that case? To investigate this question
we consider again the VAR(1) process (2.1.2). From (2.1.3) we have

ye = v+Aiy—1+u

j
(I + A+ + ADv+ Ay 0+ Al
=0

If all eigenvalues of A; have modulus less than 1, the sequence A%, i = 0,1, ...,
is absolutely summable (see Appendix A, Section A.9.1). Hence, the infinite
sum

oo

>

i=1
exists in mean square (Appendix C, Proposition C.9). Moreover,

(Ix + A1+ + Ay — (Ixg — A) v

J—00

(Appendix A, Section A.9.1). Furthermore, A{H converges to zero rapidly as
j — oo and, thus, we ignore the term A{Hyt_j_l in the limit. Hence, if all

eigenvalues of A; have modulus less than 1, by saying that y; is the VAR(1)
process (2.1.2) we mean that y; is the well-defined stochastic process

m :u+ZA§ut,i7 t=0,+1,42, ..., (2.1.4)
1=0

where
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p=(Ig — A)) '

The distributions and joint distributions of the y,’s are uniquely determined
by the distributions of the u; process. From Appendix C.3, Proposition C.10,
the first and second moments of the y; process are seen to be

E(y))=p forallt¢ (2.1.5)
and
Iy(h) = E(y: — 1) ye—n — )’
= i&ﬁii}ﬂﬂmﬂ%wﬁXMy (2.1.6)
i=0 j=0
zlmiMWmﬂzfyw&ﬁﬁ
=0 =0

because E(uul) =0 for s # ¢ and E(uuy) = Xy, for all ¢.

Because the condition for the eigenvalues of the matrix A; is of importance,
we call a VAR(1) process stable if all eigenvalues of A; have modulus less than
1. By Rule (7) of Appendix A.6, the condition is equivalent to

det(Ix — A12) #0 for |z] < 1. (2.1.7)

It is perhaps worth pointing out that the process y; for t = 0, +1,£2,... may
also be defined if the stability condition (2.1.7) is not satisfied. We will not
do so here because we will always assume stability of processes defined for all
teZ.

The previous discussion can be extended easily to VAR(p) processes with
p > 1 because any VAR(p) process can be written in VAR(1) form. More
precisely, if y; is a VAR(p) as in (2.1.1), a corresponding Kp-dimensional
VAR(1)

Y, =v+AY,_ 1+ U, (2.1.8)

can be defined, where

Yt v
Yi—1 0
th = . ) V= . 9
Yt—p+1 0 ]
(Kpx1) (Kpx1)
[ A, A, DA Ay i "
Ik 0 0 0 J
A= 0 Ix 0 0 ’ U, =
: 0
| 0 0 Ix 0 ] (Kpx1)
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Following the foregoing discussion, Y; is stable if

det(Igp — Az) #0 for |z| < 1. (2.1.9)
Its mean vector is

pi= B(Y) = (I, — A) v

and the autocovariances are

I'y(h) = i AL (AT (2.1.10)
=0

where Xy := E(U.U]). Using the (K x Kp) matrix
J:=[Ix:0:---:0], (2.1.11)

the process y; is obtained as y; = JY;. Because Y; is a well-defined stochastic
process, the same is true for y;. Its mean is F(y;) = Jpu which is constant for
all ¢ and the autocovariances I'y(h) = JI'y (h)J" are also time invariant.

It is easy to see that

det(Igp — Az) =det(Ix — A1z — -+ — Ap2P)

(see Problem 2.1). Given the definition of the characteristic polynomial of a
matrix, we call this polynomial the reverse characteristic polynomial of the
VAR(p) process. Hence, the process (2.1.1) is stable if its reverse characteristic

polynomial has no roots in and on the complex unit circle. Formally y; is stable
if

det(Jg — A1z —---— Ap2P) #0  for |z| < 1. (2.1.12)

This condition is called the stability condition.
In summary, we say that y; is a stable VAR(p) process if (2.1.12) holds
and

ye=JVi=Jp+JY AU, (2.1.13)
i=0
Because the U; := (u},0,...,0) involve the white noise process u;, the process

y¢ is seen to be determined by its white noise or innovation process. Often
specific assumptions regarding u; are made which determine the process y; by
the foregoing convention. An important example is the assumption that u; is
Gaussian white noise, that is, u; ~ N (0, X,) for all ¢ and u; and s are inde-
pendent for s # t. In that case, it can be shown that y, is a Gaussian process,
that is, subcollections y, . . ., y;1+, have multivariate normal distributions for
all ¢t and h.
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The condition (2.1.12) provides an easy tool for checking the stability of
a VAR process. Consider, for instance, the three-dimensional VAR(1) process

5 0 0
w=v+|.1 1 3 |y_1+u. (2.1.14)
0 .2 .3

For this process the reverse characteristic polynomial is

100 5 0 0
det 010|-].1.1 3]z
001 0o .2 .3
1—.52 0 0
= det -1z 1-.1z -3z
0 -2z 1-—.3z

= (1-.52)(1 — .42 — .03z?).
The roots of this polynomial are easily seen to be
21 =2, zg = 2.1525, z3 = —15.4858.

They are obviously all greater than 1 in absolute value. Therefore the process
(2.1.14) is stable.

As another example consider the bivariate (two-dimensional) VAR(2) pro-
cess

Sl 0 0
Y =V + |: 4 5 :| Yi—1 + |: 25 0 :| Yp—2 + Uyg. (2115)

Its reverse characteristic polynomial is

Lol [5 1], [0 0].)_,_ - ,
det([()l} [.4 .5]2 [.25 O]z)—l z+.212° — .0252°.

The roots of this polynomial are
z1 = 1.3, zo = 3.55 + 4.26¢, and z3 = 3.55 — 4.26:.

Here i := /=1 denotes the imaginary unit. Note that the modulus of z; and
23 18 |22| = |23 = V/3.552 + 4.262 = 5.545. Thus, the process (2.1.15) satisfies
the stability condition (2.1.12) because all roots are outside the unit circle.
Although the roots for higher dimensional and higher order processes are often
difficult to compute by hand, efficient computer programs exist that do the
job.

To understand the implications of the stability assumption, it may be
helpful to visualize time series generated by stable processes and contrast
them with realizations from unstable VAR processes. In Figure 2.1 three pairs
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of time series generated by three different stable bivariate (two-dimensional)
VAR processes are depicted. Although they differ considerably, a common
feature is that they fluctuate around constant means and their variability
(variance) does not change as they wander along. In contrast, the pairs of
series plotted in Figures 2.2 and 2.3 are generated by unstable, bivariate VAR
processes. The time series in Figure 2.2 have a trend and those in Figure
2.3 exhibit quite pronounced seasonal fluctuations. Both shapes are typical
of certain instabilities although they are quite common in practice. Hence,
the stability assumption excludes many series of practical interest. We shall
therefore discuss unstable processes in more detail in Part II. For that analysis
understanding the stable case first is helpful.

2.1.2 The Moving Average Representation of a VAR Process
In the previous subsection we have considered the VAR(1) representation
Yi=v+AY, 1+ U;

of the VAR(p) process (2.1.1). Under the stability assumption, the process Y;
has a representation

oo
YVi=p+Y AU, (2.1.16)
1=0

This form of the process is called the moving average (MA) representation,
where Y; is expressed in terms of past and present error or innovation vectors
U; and the mean term p. This representation can be used to determine the
autocovariances of Y; and the mean and autocovariances of y; can be obtained
as outlined in Section 2.1.1. Moreover, an MA representation of g, can be found
by premultiplying (2.1.16) by the (K x Kp) matrix J := [Ix : 0 : --- : 0]
(defined in (2.1.11)),

g = JY,=Jp+> JAJJU;
1=0

o+ Z Diup_i. (2.1.17)
1=0

Here p := Ju, &; := JA'J' and, due to the special structure of the white
noise process U;, we have U, = J'JU, and JU; = u;. Because the A’ are
absolutely summable, the same is true for the @;.

Later we will also consider other MA representations of a stable VAR(p)
process. The unique feature of the present representation is that the zero order
coefficient matrix @3 = I and the white noise process involved consists of the
error terms u; of the VAR representation (2.1.1). In Section 2.2.2, the u; will
be seen to be the errors of optimal forecasts made in period ¢ — 1. Therefore,
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Fig. 2.1. Bivariate time series generated by stable processes.
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Fig. 2.3. Unstable seasonal time series.

to distinguish the present representation from other MA representations, we
will sometimes refer to it as the canonical or fundamental or prediction error
representation.

Using Proposition C.10 of Appendix C.3, the representation (2.1.17) pro-
vides a possibility for determining the mean and autocovariances of y;:

E(ys) = p
and
Iy(h) = El(ye — 1) (ys—n — p)']
h—1 0o [e%s) /
= F ¢iut—i+z¢h+iut—h—i Zépiut—h—i
=0 =0 =0
= > D5, (2.1.18)

=0
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There is no need to compute the MA coefficient matrices @; via the VAR(1)
representation corresponding to y; as in the foregoing derivation. A more
direct way for determining these matrices results from writing the VAR(p)
process in lag operator notation. The lag operator L is defined such that
Ly; = y¢—1, that is, it lags (shifts back) the index by one period. Because of
this property it is sometimes called backshift operator. Using this operator,
(2.1.1) can be written as

Yy =v+ (AL + -+ A LP)y; + uy

or

A(L)yr = v + wy, (2.1.19)
where

A(L):=Ix —AqL—---— A LP.
Let

d(L) := i ;"
=0

be an operator such that
S(L)A(L) = Ik. (2.1.20)

Premultiplying (2.1.19) by &(L) gives
ye = P(L)v+ P(L)uy

_ (i @) - i@“m‘- (2.1.21)
=0 =0

The operator (L) is the inverse of A(L) and it is therefore sometimes denoted
by A(L)~!. Generally, we call the operator A(L) invertible if |A(z)| # 0 for
|z| < 1. If this condition is satisfied, the coefficient matrices of (L) = A(L)~*
are absolutely summable and, hence, the process ®(L)u; = A(L)  uy is well-
defined (see Appendix C.3). The coefficient matrices ¢; can be obtained from
(2.1.20) using the relations

Ix = (Po+P1L+PL? +---)(Ig — AL —---— A,LP)
Do+ (@1 — PoA1)L + (P — D141 — @OAQ)L2 + .-

|2 =) @ A | L+
j=1

or



2.1 Basic Assumptions and Properties of VAR Processes 23
Ix = &
0 = @1 _430141
0 = @2 — @1141 — @0142
0 = & — Z@HAj
j=1
where A; = 0 for j > p. Hence, the ®; can be computed recursively using
Py = Ik,
= Y B A, =12, (2.1.22)
j=1
The mean p of y; can be obtained as follows:
p=0(w=A1)"tv=Ix - A1 —---—A,) v (2.1.23)
For a VAR(1) process, the recursions (2.1.22) imply that &g = I, &1 =
Ay, ..., @; = A%, .... This result is in line with (2.1.4). For the example
VAR(1) process (2.1.14), we get @¢ = I3,
[ 5 0 0 25 0 0
=11 3|, @=|.06 .07 .12,
| 0 2 3 .02 .08 .15
[ 125 0 0
$3 =] .037 .031 .057 |, (2.1.24)
| 018 .038 .069
etc. For a VAR(2), the recursions (2.1.22) result in
@1 = Al
Dy = P1A;+ Ay = AT + Ay

Dy = PoA; + P1Ay = A+ Az Ay + A1 Ay

b = D1 AL+ Di_0A

Thus, for the example VAR(2) process (2.1.15), we get the MA coefficient

matrices &g = I,

5 .1 29 .1 21 .079
@1:{4 .5]’ 452:[.65 .29]’ 453:[.566 21

} . (2.1.25)
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etc. For both example processes, the ¢; matrices approach zero as 1 — oo.
This property is a consequence of the stability of the two processes.

It may be worth noting that the MA representation of a stable VAR(p)
process is not necessarily of infinite order. That is, the @; may all be zero for
i greater than some finite integer ¢. For instance, for the bivariate VAR(1)

—uy 0 « "
Yt =v 00 Yt—1 Ut,

the MA representation is easily seen to be

b4 0 «
Yt = Ut 00 Ut—1,

because

Oai
0o -0

for i > 1.

2.1.3 Stationary Processes

A stochastic process is stationary if its first and second moments are time
invariant. In other words, a stochastic process y; is stationary if

Ely)=pu for all ¢ (2.1.26a)

and

El(yt — ) (y4—n, — p)') = Iy(h) = I)(—=h)" for all t and h =0,1,2,....
(2.1.26b)

Condition (2.1.26a) means that all y; have the same finite mean vector p and
(2.1.26b) requires that the autocovariances of the process do not depend on ¢
but just on the time period h the two vectors y; and y;_j are apart. Note that,
if not otherwise stated, all quantities are assumed to be finite. For instance, 1 is
a vector of finite mean terms and Iy (h) is a matrix of finite covariances. Other
definitions of stationarity are often used in the literature. For example, the
joint distribution of n consecutive vectors may be assumed to be time invariant
for all n. We shall, however, use the foregoing definition in the following. We
call a process strictly stationary if the joint distributions of n consecutive
variables are time invariant and there is a reason to distinguish between our
notion of stationarity and the stricter form. By our definition, the white noise
process u; used in (2.1.1) is an obvious example of a stationary process. Also,
from (2.1.18) we know that a stable VAR(p) process is stationary. We state
this fact as a proposition.
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Proposition 2.1 (Stationarity Condition)
A stable VAR(p) process vy, t = 0,+1,£2, ..., is stationary. |

Because stability implies stationarity, the stability condition (2.1.12) is
often referred to as stationarity condition in the time series literature. The
converse of Proposition 2.1 is not true. In other words, an unstable process is
not necessarily nonstationary. Because unstable stationary processes are not
of interest in the following, we will not discuss this possibility here.

At this stage, it may be worth thinking about the generality of the VAR(p)
processes considered in this and many other chapters. In this context, an
important result due to Wold (1938) is of interest. He has shown that every
stationary process x; can be written as the sum of two uncorrelated processes
z and yy,

Ty = 2t + Yt,

where z; is a deterministic process that can be forecast perfectly from its own
past and y; is a process with MA representation

Yyt = Z¢iut7i7 (2.1.27)
i=0

where &g = Ik, the u; constitute a white noise process and the infinite sum
is defined as a limit in mean square although the @; are not necessarily abso-
lutely summable (Hannan (1970, Chapter III)). The term “deterministic” will
be explained more formally in Section 2.2. This result is often called Wold’s
Decomposition Theorem. If we assume that in the system of interest the only
deterministic component is the mean term, the theorem states that the sys-
tem has an MA representation. Suppose the @; are absolutely summable and
there exists an operator A(L) with absolutely summable coefficient matrices
satisfying A(L)®(L) = Ix. Then @&(L) is invertible (A(L) = ®#(L)~!) and y;
has a VAR representation of possibly infinite order,

ye = Aigi+u, (2.1.28)
i=1

where

0 0 -1
i=1 1=0

The A; can be obtained from the @; by recursions similar to (2.1.22).

The absolute summability of the A; implies that the VAR coefficient ma-
trices converge to zero rapidly. In other words, under quite general conditions,
every stationary, purely nondeterministic process (a process without a deter-
ministic component) can be approximated well by a finite order VAR, process.



26 2 Stable Vector Autoregressive Processes

This is a very powerful result which demonstrates the generality of the pro-
cesses under study. Note that economic variables can rarely be predicted with-
out error. Thus the assumption of having a nondeterministic system except
perhaps for a mean term is not a very restrictive one. The crucial and re-
strictive condition is the stationarity of the system, however. We will consider
nonstationary processes later. For that discussion it is useful to understand
the stationary case first.

An important implication of Wold’s Decomposition Theorem is worth not-
ing at this point. The theorem implies that any subprocess of a purely nonde-
terministic, stationary process y; consisting of any subset of the components
of y; also has an MA representation. Suppose, for instance, that interest cen-
ters on the first M components of the K-dimensional process y;, that is, we
are interested in z; = Fy;, where F = [Ijs : 0] is an (M x K) matrix. Then
E(x) = FE(y;) = Fu and I'y(h) = FI,(h)F' and, thus, z; is stationary. Ap-
plication of Wold’s theorem then implies that x; has an MA representation.

2.1.4 Computation of Autocovariances and Autocorrelations of
Stable VAR Processes

Although the autocovariances of a stationary, stable VAR(p) process can be
given in terms of its MA coefficient matrices as in (2.1.18), that formula is
unattractive in practice, because it involves an infinite sum. For practical
purposes it is easier to compute the autocovariances directly from the VAR
coefficient matrices. In this section, we will develop the relevant formulas.

Autocovariances of a VAR(1) Process

In order to illustrate the computation of the autocovariances when the process
coefficients are given, suppose that y; is a stationary, stable VAR(1) process

yr =v+ A1y—1 +ue

with white noise covariance matrix E(usu;) = X,,. Alternatively, the process
may be written in mean-adjusted form as

Y — = Ar1(ye—1 — 1) + uy, (2.1.29)

where u = E(y;), as before. Postmultiplying by (y;—» — u)" and taking expec-
tations gives

El(ye — 1) We—n — )] = A B[(y1—1 — 1) (ye—n — )] + Elue(ye—n — p)’]-
Thus, for h = 0,
I,00) = AL, (—1) + X, = A, T,(1) + X2, (2.1.30)

and for h > 0,
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I, (h) = ATy (h —1). (2.1.31)

These equations are usually referred to as Yule- Walker equations. If A; and
the covariance matrix I, (0) = X, of y; are known, the I, (h) can be computed
recursively using (2.1.31).

If Ay and X, are given, I,(0) can be determined as follows. For h = 1, we
get from (2.1.31), I,(1) = A11,(0). Substituting A% (0) for I',(1) in (2.1.30)
gives

I

Yy

(0) = AT, (0) A} + X
or

vec I,(0) vec(A11,(0)A}) + vec X,
(A1 ® Aq) vec I,(0) + vec X,,.

(For the definition of the Kronecker product ®, the vec operator and the rules
used here, see Appendix A). Hence,

vec I,(0) = (Igz — Ay ® A1) ' vec X,,. (2.1.32)

Note that the invertibility of Ix> — A; ® Ay follows from the stability of ¥,
because the eigenvalues of A; ® A; are the products of the eigenvalues of A,
(see Appendix A). Hence, the eigenvalues of A; ® A; have modulus less than
1. Consequently, det(Ix2 — A; ® A1) # 0 (see Appendix A.9.1).

Using, for instance,

225 0 0
.= 0 10 5 |, (2.1.33)
0 5 .74

we get for the example process (2.1.14),

vec I, (0) = (Ig — Ay ® Ay) ' vec X,

- 4 -1 - -

75 0 0 0 0 0 0 0 0 2.25
~05 9 —-15 0 0 0 0 0 0 0
0 -1 8 0 0 0 0 0 0 0
-05 0 0 9 0 0 —15 0 0 0
=| -0l —01 —03 —01 .99 —.03 —03 —03 —.09 1.0
0 —02 —03 0 —02 97 0 —.06 —09 5
0 0 0 -0l 0 0 8 0 0 0
0 0 0 —02 —02 —.06 —03 .97 —.09 5
0O 0 0 0 —04 —06 O —06 .91 | .74 |
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[3.000
.161
.019
.161

=] 1.172

674

.019

.674

.954

It follows that

3.000 .161 .019
L(0)=| 161 1.172 674 |,
019 .674 .954

[ 1.500 .080 .009
I,(1)=AI,0)= | .322 .335 .355
038 437 421

; (2.1.34)

[ 750 .040 .005
I,(2)=A,(1) = | 194 173 .163
| 076 .198 .197

Note that the results are rounded after the computation. A higher precision
has been used in intermediate steps.

Autocovariances of a Stable VAR(p) Process
For a higher order VAR(p) process,

Y —p=Ar(ye—1 — p) + -+ Ap(Ye—p — 1) +u, (2.1.35)

the Yule-Walker equations are also obtained by postmultiplying with (y;—p —
p) and taking expectations. For h = 0, using Iy (i) = Iy(—i)’,
Iy(0) = Aily(-1) 4+ A, (-p) + Xy
= AL,() +---+A,Ty(p) + Xy, (2.1.36)
and for h > 0,

Iy(h) = AyTy(h—1)+ -+ A, T, (h — p). (2.1.37)

These equations may be used to compute the Iy (h) recursively for h > p, if
Aq,..., A, and I'y(p—1),...,I,(0) are known.

The initial autocovariance matrices for |h| < p can be determined using
the VAR(1) process that corresponds to (2.1.35),

YVi—pn=AY;—1 —p) + U, (2.1.38)
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where Y3, A, and Uy are as in (2.1.8) and p := (¢/, ..., 1') = E(Y;). Proceed-
ing as in the VAR(1) case gives

Iv(0) = ATy (0)A’ + Xy,

where Xy = E(U,U]) and

Yt — 1
Iy(0) = E : [(ye —1)'s s WYe—pt1 — 11)']
Yt—p+1 — K
I',(0) ry1) ... Iylp-1)
N G R ¥ (1) R R
Iy(-p+1) Iy(-p+2) ... I,0)

Thus, the I',(h), h=—p+1,...,p— 1, are obtained from
vee I'y (0) = (I(gpy2 — A ® A) ! vec Xy (2.1.39)

For instance, for the example VAR(2) process (2.1.15) we get

S5 1 0 0
4 5 .25 0
A= 10 0 0 (2.1.40)
01 0 0
and, assuming
09 0
Zu_[ 0 .04], (2.1.41)
we have
.09 0 00
s _[Za0]_] 0 0400
10 ol |0 0 00
0 0 00O

Hence, using (2.1.39) and

gives

131 .066 072 .051
L0 = { 066 .181 } - h= { 104 .143 } ’
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.046 .040
Iy(2) = AT, (1) + AsT,(0) = [ 3108 ] , (2.1.42)
.035 .031

and so on. A method for computing I, (0) without explicitly inverting (I —
A ® A) is given by Barone (1987).

The autocovariance function of a stationary VAR(p) process is positive
semidefinite, that is,

Z Za;Fy(i —ja;

Lo LM . L [

Iy(-1) Iy(0) . Iy(n—1) ai
:(aé)"'wa/n) : . . . >0

Fy(_n) Fy(_n"" 1) Fy(o) Qn,

(2.1.43)

for any n > 0. Here the a; are arbitrary (K x 1) vectors. This result follows
because (2.1.43) is just the variance of

Yi—1
(ag,-..,an) )

Yt—n

which is always nonnegative.

Autocorrelations of a Stable VAR(p) Process

Because the autocovariances depend on the unit of measurement used for the
variables of the system, they are sometimes difficult to interpret. Therefore,
the autocorrelations

R,(h) =D 'I,(h)D~! (2.1.44)

are usually more convenient to work with as they are scale invariant measures
of the linear dependencies among the variables of the system. Here D is a
diagonal matrix with the standard deviations of the components of y; on the
main diagonal. That is, the diagonal elements of D are the square roots of the
diagonal elements of I,(0). Denoting the covariance between y; ; and y;—p
by (k) (i.e., v;;(h) is the ij-th element of Iy (h)) the diagonal elements
711(0),...,vxx (0) of I,(0) are the variances of yi4, ..., yx¢. Thus,
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0 | 1/\/ 7KK(0>

and the correlation between y; ; and y;;—p, is

7ij (h)

pij(h) = —— L (2.1.45)
7ii(0)1/755(0)
which is just the ij-th element of Ry, (h).
For the VAR(1) example process (2.1.14) we get from (2.1.34),
V3.000 0 0 1.732 0 0
D= 0 V1172 0 = 0 1.08 0
0 0  .954 0 0 977
and
[ 1 .086 .011 ]
R,(0)=D'I,(0)D~*=| .086 1 .637 |,
| 011 637 1 |
[.500 .043 .005 ]
R,(1)=D'I,(1)D~* = | .172 286 .336 |, (2.1.46)
| 022 413 .441 |
[ 250 .021 .003 ]
R,(2)=D'I,2)D~' = | .103 .148 .154 | .
| 045 .187 .206 |

A plot of some autocorrelations is shown in Figure 2.4. Assuming that the
three variables of the system represent rates of change of investment, income,
and consumption, respectively, it can, for instance, be seen that the contempo-
raneous and intertemporal correlations between consumption and investment
are quite small, while the patterns of the autocorrelations of the individual
series are similar.

2.2 Forecasting

We have argued in the introduction that forecasting is one of the main objec-
tives of multiple time series analysis. Therefore, we will now discuss predictors
based on VAR processes. Point forecasts and interval forecasts will be con-
sidered in turn. Before discussing particular predictors or forecasts (the two
terms will be used interchangeably) we comment on the prediction problem
in general.
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plinvestment,, investment,_,) plinvestment,, income,_,) p(investment,, consumption,_)
1 1 1
‘ | L
0123456 7h 0123456 7h 0123456 7h
-1 -1 -1
plincome,, investment,_,) plincome,, income,_,) plincome,, consumption,_,)
1 1 1
| l |- | ‘ |
0123456 7Hh 0123456 7Hh 0123456 7Hh
-1 -1 -1
p(consumption,, investment,_,) pl(consumption,, income,_) p(consumption,, consumption,_,)
1 1
L ‘ [ [
0123 456 7h 0123456 7Hh 0123456 7h
-1 -1 -1

Fig. 2.4. Autocorrelations of the investment/income/consumption system.

2.2.1 The Loss Function

The forecaster usually finds himself in a situation where in a particular period
t he has to make statements about the future values of variables yi,...,yx.
For this purpose he has available a model for the data generation process and
an information set, say (2;, containing the available information in period t.
The data generation process may, for instance, be a VAR(p) process and (2
may contain the past and present variables of the system under consideration,
that is, £2, = {ys|s < t}, where ys = (y1s,-.-,YKs)’. The period ¢, where the
forecast is made, is the forecast origin and the number of periods into the
future for which a forecast is desired is the forecast horizon. A predictor, h
periods ahead, is an h-step predictor.

If forecasts are desired for a particular purpose, a specific cost function
may be associated with the forecast errors. A forecast will be optimal if it
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minimizes the cost. To find a forecast that is optimal in this sense is usually
too ambitious a goal to be attainable in practice. Therefore, minimizing the
expected cost or loss is often used as an objective. In general, it will depend
on the particular loss function which forecast is optimal. On the other hand,
forecasts of economic variables are often published for general use. In that case,
the specific cost or loss function of all potential users cannot be taken into
account in computing a forecast. In this situation, the statistical properties
of the forecasts and perhaps interval forecasts are of interest to enable the
user to draw proper conclusions for his or her particular needs. It may also
be desirable to choose the forecast such that it minimizes a wide range of
plausible loss functions.

In the context of VAR models, predictors that minimize the forecast mean
squared errors (MSEs) are the most widely used ones. Arguments in favor of
using the MSE as loss function are given by Granger (1969b) and Granger
& Newbold (1986). They show that minimum MSE forecasts also minimize a
range of loss functions other than the MSE. Moreover, for many loss functions
the optimal predictors are simple functions of minimum MSE predictors. Fur-
thermore, for an unbiased predictor, the MSE is the forecast error variance
which is useful in setting up interval forecasts. Therefore, minimum MSE pre-
dictors will be of major interest in the following. If not otherwise stated, the
information set {2; is assumed to contain the variables of the system under
consideration up to and including period t.

2.2.2 Point Forecasts
Conditional Expectation

Suppose y: = (y1t, - - -, Ykt)' is a K-dimensional stable VAR(p) process as in
(2.1.1). Then, the minimum MSE predictor for forecast horizon h at forecast
origin t is the conditional expected value

Ei(yr+n) = E(y4n|2t) = E(yenl{ys|s < t}). (2.2.1)

This predictor minimizes the MSE of each component of y;. In other words,
if y;(h) is any h-step predictor at origin ¢,

MSE[7:(h)] = E[(yt+n — T¢(h)) Yesn — Ge(R))]
> MSE[E;(ye+1)] = El(Yesn — Et(irn)) Wern — Ee(yern))'], (2.2.2)

where the inequality sign > between two matrices means that the differ-
ence between the left-hand and the right-hand matrix is positive semidefinite.
Equivalently, for any (K x 1) vector ¢,

MSE[¢'g(h)] > MSE[c' Ey(ys-+1)]-

The optimality of the conditional expectation can be seen by noting that
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MSE[?jt(h)] E{[yt+h - Et(yt+h) + Et(yt+h) - ﬂt(h)]

X [Yern — Et(Yeen) + Ee(esn) — Ge(h)]'}
MSE[Et(yt-i-h)]

+ E{[E:(yen) — Ge(W][Et(Yesn) — G:(h)]'},

where E{[ys+n — Et(ys+n)][Et(ye+n) — Gt (h)]'} = 0 has been used. The latter
result holds because [ys+n, — Et(yetn)] is a function of innovations after period
t which are uncorrelated with the terms contained in [Fy(y;+r) — §¢(h)] which
are functions of y,, s < t.

The optimality of the conditional expectation implies that

Ey(yean) = v+ A1 E(Yern—1) + -+ ApEi(Ytrn—p) (2.2.3)

is the optimal h-step predictor of a VAR(p) process y;, provided wu; is inde-
pendent white noise so that u; and ug are independent for s # ¢ and, hence,
Et(ut_;,_h) =0 for h > 0.

The formula (2.2.3) can be used for recursively computing the h-step pre-
dictors starting with h = 1:

Ei(yiy1) = v+Aye+ -+ Apyi—pi1s

Ei(yiy2) = v+ AEi(ysy1) + Aoye + - + Apys—pyo,

By these recursions we get for a VAR(1) process
Ei(ysqn) = U+ A1+ + Ai‘*l)y + A?yt-

Assuming y; = (—6,3,5)" and v = (0,2,1)’, the following forecasts are
obtained for the VAR(1) example process (2.1.14):

0 5 0 016 —-3.0
1 0 .2 .3] 5 3.1
[ —1.50
Ei(yip2) = (Is+ Av+ A2y, = | 295 |, (2.2.4b)
2.57

etc. Similarly, we get for the VAR(2) process (2.1.15) with v = (.02,.03)’,
v = (.06,.03) and y;_; = (.055,.03),

mow = [ ][5 2[5 ]+ [ % 0[50

.03
| 08275 |
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02 5 17053 0 077 .06
Eilyerz) = [ 03 ] * [ 4 .5} [ .08275} * [ 25 0} [.03}

_ [ :?g‘;i } , (2.2.5)

The conditional expectation has the following properties:

(1) It is an unbiased predictor, that is, E[yi+n — Er(ye4n)] = 0.
(2) If uy is independent white noise, MSE[E; (yt11)] = MSE[E: (ye+1)|Yt, Yt—1,
...], that is, the MSE of the predictor equals the conditional MSE given

Yts Yt—15- -+
The latter property follows by similar arguments as the optimality of the
predictor Ei(yiin)-

It must be emphasized that the prediction formula (2.2.3) relies on u;
being independent white noise. If u; and us; are not independent but just
uncorrelated, E;(ugtp,) will be nonzero in general. As an example consider the
univariate AR(1) process y; = v + ay;—1 + u; with

I fort =0,+£2,44,...,
P (2 —1)/V2 fort=41,43,...,

where the e; are independent standard normal (N(0,1)) random variables
(see also Fuller (1976, Chapter 2, Exercise 16)). The process u; is easily seen
to be uncorrelated but not independent white noise. For even ¢,

Ey(urs1) = El(ef = 1)/V2|ye,ys-1,- ]
= (¢ —1)/V2,

because e; =y — vV — ayi_1.

Linear Minimum MSE Predictor

If u; is not independent white noise, additional assumptions are usually re-
quired to find the optimal predictor (conditional expectation) of a VAR(p)
process. Without such assumptions we can achieve the less ambitious goal of
finding the minimum MSE predictors among those that are linear functions
of Y4, 94—1,. ... Let us consider a zero mean VAR(1) process

Ye = A1y + we (2.2.6)

first. As in (2.1.3), it follows that

h—1

Yt+h = A?yt + Z Aiut-i-h—i-
i=0

Thus, for a predictor
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y¢(h) = Boyt + Biye—1 + - -,

where the B;’s are (K x K) coefficient matrices, we get a forecast error

h—1
Yern — Y (h Z A1Ut+h i+ (A — Bo)ys — Z B;yi—;.
1=0 =1

Using that u;yj, for j > 0, is uncorrelated with y,_;, for ¢ > 0, we get

MSE[y, ()]

h—1 h—1 !
=E (Z Azlut+h—i> (Z Allut-i-h—i)
i=0 i=0

v }

Obviously, this MSE matrix is minimal for By = A} and B; = 0. Thus, the
optimal (linear minimum MSE) predictor for this special case is

ye(h) = Alyy = Ayye(h — 1).

(Al = Bo)ye — Y Bith—i
i=1

(A} — Bo)yr — > Biye—i
i=1

The forecast error is

h—1
E Alugyn—i
i=0

and the MSE or forecast error covariance matrix is

h—1
Ey(h) = MSE[yt <ZA1ut+h 1) (ZAliut-l—h—i)
=0

/

Z ALy = MSE[y,(h — 1)] + A1 5, (AF1Y.

A general VAR(p) process with zero mean,
Yo = A1+ F Apyi_p + Uy,

has a VAR(1) counterpart,
Y, =AY,1 + U,

where Y;, A, and U; are as defined in (2.1.8). Using the same arguments as
above, the optimal predictor of Y;4 is seen to be

Y,(h) = A"Y, = AY;(h—1).
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It is easily seen by induction with respect to h that

y}tl(h)

(h—1

v=| MY
yt(h—.p+1)

where y¢(j) := y¢4; for j < 0. Defining the (K x Kp) matrix J := [Ig : 0 :

-: 0] as in (2.1.11), we get the optimal h-step predictor of the process y; at
origin t as

y(h) = JAY (h—1)=[A1,..., A,]Yi(h—1)

= Ay (h=1) 4+ Ayy(h — ). (2.2.7)

This formula may be used for recursively computing the forecasts. Obviously,

y+(h) is the conditional expectation E;(y:1p) if us is independent white noise

because the recursion in (2.2.3) is the same as the one obtained here for a

zero mean process with v = 0.
If the process y; has nonzero mean, that is,

Yy =v+ A1y o+ Apyep g,

we define x; := y; — p, where 1 := E(y;) = (I — Ay —---—Ap)~'v. The process
x; has zero mean and the optimal h-step predictor is

Adding p to both sides of this equation gives the optimal linear predictor of
Yt
ye(h) = @e(h) +p=p+Ai(ye(h =1) —p) + -+ Ap(y(h —p) — )
= v+Aiyph—1)+--+ Ay (h —p). (2.2.8)

Henceforth, we will refer to y;(h) as the optimal predictor irrespective of the
properties of the white noise process u;, that is, even if u; is not independent
but just uncorrelated white noise.

Using
h—1 ‘

Yien =AM, + Y A'Uin-i
i=0

for a zero mean process, we get the forecast error

h—1
Yern —ye(h) = JYion —Yi(h)] =J [Z A'Upin_i
i—0

h—1

h—1
= > JAT JUpin—i =Y  Piurin—i, (2.2.9)
=0 =0
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where the @; are the MA coefficient matrices from (2.1.17). The forecast error
is unchanged if y; has nonzero mean because the mean term cancels. The
forecast error representation (2.2.9) shows that the predictor y:(h) can also
be expressed in terms of the MA representation (2.1.17),

yt(h) =u+ Z @iuH_h_i =u+ Z¢h+iut_i. (2210)
i=h =0

From (2.2.9) the forecast error covariance or MSE matrix is easy to obtain,
h—1
5y(h) = MSE[y;(h)] = > ;5,8 = 2y(h— 1) + &1 2, P}, ;. (2.2.11)
i=0

Hence, the MSEs are monotonically nondecreasing and, for h — oo, the MSE
matrices approach the covariance matrix of y;,

oo
L0 =%, =Y &2.%
=0

(see (2.1.18)). That is,

Yy(h) — Xy. (2.2.12)
h—o0

If the process mean p is used as a forecast, the MSE matrix of that predictor
is just the covariance matrix X, of y;. Hence, the optimal long range forecast
(h — 00) is the process mean. In other words, the past of the process contains
no information on the development of the process in the distant future. Zero
mean processes with this property are purely nondeterministic, that is, v, — p
is purely nondeterministic if the forecast MSEs satisfy (2.2.12).

For the example VAR(1) process (2.1.14) with X, as in (2.1.33), using the
MA coefficient matrices from (2.1.24), the forecast MSE matrices

225 0 0
Z,)=%X,=] 0 1.0 5 |,
0 5 .74
2813 113 0
2,2) =2, + & 2,8, = | 113 1.129 .632 |, (2.2.13)
0 .632 .907
2.953 .146 .011
,3) = X,(2) + 55,8, = | 146 1.161 .663

011 .663 .943

are obtained. Similarly, for the VAR/(2) example process (2.1.15) with white
noise covariance matrix (2.1.41), we get with @, from (2.1.25),
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.09 0

(2.2.14)

3 ;[ 1129 .02
2,(2) =2, + &1 2,9 = [ o o644 } :

2.2.3 Interval Forecasts and Forecast Regions

In order to set up interval forecasts or forecast intervals, we make an assump-
tion about the distributions of the y; or the u;. It is most common to consider
Gaussian processes where Y, Y11, - - - , Ys+h have a multivariate normal distri-
bution for any ¢t and h. Equivalently, it may be assumed that u, is Gaussian,
that is, the u; are multivariate normal, u; ~ N(0,%,), and u; and ug are
independent for s # t.

Under these conditions the forecast errors are also normally distributed as
linear transformations of normal vectors,

ho1
Yern —ye(h) =D Bitgni ~ N0, 2,(h)). (2.2.15)
=0

This result implies that the forecast errors of the individual components are
normal so that

Yk,t+h — Yk t(h)
—_— ~ 0,1 2.2.16

where yg, ¢ (h) is the k-th component of y,(h) and oy, (h) is the square root of the
k-th diagonal element of X, (h). Denoting by z(,) the upper o100 percentage
point of the normal distribution, we get

Yh,t+h — Yt (R)
a f{ oy ST S Z(a/m}

= Pr{yc.s(h) = 2(a/2)06(h) < Ykitn < Yki(h) + 2(ay2)0k(h)} .

Hence, a (1—a)100% interval forecast, h periods ahead, for the k-th component
of y; is

Yr,t(h) £ 2(ay2)0%(R) (2.2.17a)
or
Ykt (h) = 2(a/2)0k(h), Ykt (h) + 2(ay2)0% (R)]. (2.2.17h)

If forecast intervals of this type are computed repeatedly from a large number
of time series (realizations of the considered process), then about (1 —«a)100%
of the intervals will contain the actual value of the random variable yj ¢+,
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Using (2.2.4a), (2.2.4b) and (2.2.13), 95% forecast intervals for the com-
ponents of the example VAR(1) process (2.1.14) are

y1.4(1) £1.96V2.25 or —3.0+2.94,

Y2.0(1) £1.96v/1.0 or 3.2+ 1.96,
ys+(1) £1.96V74 or  3.141.69, (2.2.18)
y1.4(2) + 1.96v/2.813 or —1.50 =+ 3.29,
Y2,0(2) + 1.96V1.129 or  2.95 + 2.08,
y3.0(2) £1.96V.907 or 2.57+1.87.

The result in (2.2.15) can also be used to establish joint forecast regions
for two or more variables. For instance, if a joint forecast region for the first

N components is desired, we define the (N x K) matrix F := [Iy : 0] and
note that

esn — w0 F'[FE, (0 ') Flypan -y (1) ~ *(N) (2.2.19)

by a well-known result for multivariate normal vectors (see Appendix B).
Hence, the x2(V)-distribution can be used to determine a (1—a)100% forecast
ellipsoid for the first N components of the process.

In practice, the construction of the ellipsoid is quite demanding if N is
greater than two or three. Therefore, a more practical approach is to use
Bonferroni’s method for constructing joint confidence regions. It is based on
the fact that for events Fq, ..., Ey the following probability inequality holds:

Pr(EyU---UEN) <Pr(Ey)+---+Pr(En).

Hence,

N N
Pr (ﬂE) >1-Y Pr(E)

where E; denotes the complement of E;. Consequently, if F; is the event that
Vi t+h falls within an interval H;,

N
Pr(Fyin € Hy x-- x Hy) > 1= Pr(E)). (2.2.20)

i=1

In other words, if we choose a (1 — %)100% forecast interval for each of the
N components, the resulting joint forecast region has probability at least
(1—)100% of containing all N variables jointly. For instance, for the VAR(1)
example process considered previously,

{(y1,92)| — 3.0 —2.94 < y; < -3.0+2.94, 3.2 —-1.96 <y, < 3.2+ 1.96}
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is a joint forecast region of (y1,t41,%y2,¢4+1) With probability content at least
90%.

By the same method joint forecast regions for different horizons h can be
obtained. For instance, a joint forecast region with probability content of at
least (1 — &)100% for Yk t+1,- .., Yk, t+n 1S

{Wr1s - U)Wkt (1) = Z(ay2n) 0k (1) < Yk < Ynot(8) + 2(a2m) 0k (1),
i=1,...h

(2.2.21)

Thus, for the example, a joint forecast region for y2 11, Y2 ++2 with probability
content of at least 90% is given by

{(y2.1,92.2)[1.24 < yo1 < 5.16, .87 < ya» < 5.03}.

Under our assumption of a Gaussian process, the distribution of the fore-
casts and forecast errors is known and, consequently, forecast intervals are
easy to set up. If the underlying process has a different and potentially un-
known distribution, considering the forecast distribution becomes more dif-
ficult. Even then methods are available to determine more than just point
forecasts. A survey of density forecasting is given by Tay & Wallis (2002).

2.3 Structural Analysis with VAR Models

Because VAR models represent the correlations among a set of variables, they
are often used to analyze certain aspects of the relationships between the
variables of interest. In the following, three ways to interpret a VAR model
will be discussed. They are all closely related and they are all beset with
problems that will be pointed out subsequently.

2.3.1 Granger-Causality, Instantaneous Causality, and Multi-Step
Causality

Definitions of Causality

Granger (1969a) has defined a concept of causality which, under suitable con-
ditions, is fairly easy to deal with in the context of VAR models. Therefore
it has become quite popular in recent years. The idea is that a cause cannot
come after the effect. Thus, if a variable x affects a variable z, the former
should help improving the predictions of the latter variable.

To formalize this idea, suppose that (2; is the information set containing all
the relevant information in the universe available up to and including period
t. Let z:(h|{2;) be the optimal (minimum MSE) h-step predictor of the process
z¢ at origin ¢, based on the information in {2;. The corresponding forecast MSE
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will be denoted by X, (h|f2;). The process x; is said to cause z; in Granger’s
sense if

. (h|82) < Z (b2, \ {zs|s < t}) for atleast one h=1,2,.... (2.3.1)

Alternatively, we will say that x; Granger-causes (or briefly causes) z; or z; is
Granger-causal for z if (2.3.1) holds. In (2.3.1) {2\ {zs|s < t} is the set con-
taining all the relevant information in the universe except for the information
in the past and present of the x; process. In other words, if z; can be predicted
more efficiently if the information in the x; process is taken into account in
addition to all other information in the universe, then x; is Granger-causal
for z.

The definition extends immediately to the case where z; and x; are M-
and N-dimensional processes, respectively. In that case, z; is said to Granger-
cause z; if

5. (h|92) # 5. (h|2 \ {zs]s < t}) (2.3.2)

for some ¢t and h. Alternatively, this could be expressed by requiring the two
MSEs to be different and

Z.(h2) < Z.(h] 2\ s < 1))

(i-e., the difference between the right-hand and the left-hand matrix is posi-
tive semidefinite). Because the null matrix is also positive semidefinite, it is
necessary to require in addition that the two matrices are not identical. If x;
causes z; and z; also causes xy the process (z;, x})’ is called a feedback system.

Sometimes the term “instantaneous causality” is used in economic analy-
ses. We say that there is instantaneous causality between z; and z; if

T2 U feran)) # Z2(12). (2.3.3)

In other words, in period ¢, adding x41 to the information set helps to improve
the forecast of z;11. We will see shortly that this concept of causality is really
symmetric, that is, if there is instantaneous causality between z; and x;, then
there is also instantaneous causality between z; and z; (see Proposition 2.3).
Therefore we do not use the notion “instantaneous causality from x; to z;” in
the foregoing definition.

A possible criticism of the foregoing definitions could relate to the choice
of the MSE as a measure of the forecast precision. Of course, the choice of
another measure could lead to a different definition of causality. However,
in the situations of interest in the following, equality of the MSEs will im-
ply equality of the corresponding predictors. In that case a process z; is not
Granger-caused by z; if the optimal predictor of z; does not use information
from the z; process. This result is intuitively appealing.

A more serious practical problem is the choice of the information set 2;.
Usually all the relevant information in the universe is not available to a fore-
caster and, thus, the optimal predictor given {2; cannot be determined. There-
fore a less demanding definition of causality is often used in practice. Instead
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of all the information in the universe, only the information in the past and
present of the process under study is considered relevant and (2 is replaced
by {zs,zs|s < t}. Furthermore, instead of optimal predictors, optimal linear
predictors are compared. In other words, z;(h|f2;) is replaced by the linear
minimum MSE h-step predictor based on the information in {z,, zs|s < t} and
2t (h]|2:\{zs|s < t}) is replaced by the linear minimum MSE h-step predictor
based on {zs|s < t}. In the following, when the terms “Granger-causality”
and “instantaneous causality” are used, these restrictive assumptions are im-
plicitly used if not otherwise noted.

Characterization of Granger-Causality

In order to determine the Granger-causal relationships between the variables
of the K-dimensional VAR process y;, suppose it has the canonical MA rep-
resentation

Yye = p+ Z@iut,i =pu+P(L)uy, Py = Ik, (2.3.4)
i=0

where u; is a white noise process with nonsingular covariance matrix X,.
Suppose that y; consists of the M-dimensional process z; and the (K — M)-
dimensional process x; and the MA representation is partitioned accordingly,

=] =[]+l s ] 249

Using the prediction formula (2.2.10), the optimal 1-step forecast of z; based
on y; is

(Ufysls 1)) = [ar : Ol(1) (2:3.6)
= u+ Z Di1,iU1 41— + Z D12 iU t4+1—i-
i=1 i=1

Hence the forecast error is

Zt+1 — Zt(1|{y5|5 S t}) = U1,t+1- (237)

As mentioned in Section 2.1.3, a subprocess of a stationary process also
has a prediction error MA representation. Thus,

oo oo
Z¢ = p1+ g Py ur i + E Do iUzt
i=0 i=1

o0
=+ Z Fivg g, (2.3.8)
i=0

where Fy = Iy and the last expression is a prediction error MA representa-
tion. Thus, the optimal 1-step predictor based on z; only is
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o0
2(1{zsls <)) =+ > Fivrgr (2.3.9)
i=1
and the corresponding forecast error is
Zt+4+1 — Zt(1|{23‘5 < t}) = Ut41- (2310)

Consequently, the predictors (2.3.6) and (2.3.9) are identical if and only if
vy = uy for all t. In other words, equality of the predictors is equivalent to
z having the MA representation

2 = p1+ Z Fiuyg—y = p1 + Z[Fz s 0]ug—s

i—0 i=0
oo
= pu+ g (P11, : Pra,i]us—i
i=0
o0 o
= i+ E DU —i + E DioiU2,t—;-
i=0 im1

Uniqueness of the canonical MA representation implies that F; = ®11,; and
b1, =0 fori=1,2,.... Hence, we get the following proposition.

Proposition 2.2 (Characterization of Granger-Noncausality)
Let y; be a VAR process as in (2.3.4)/(2.3.5) with canonical MA operator
@(z). Then

z2i(1{ys|s <t}) = z2e(1{zs]s <t}) & P12, =0 fori=1,2,....
(2.3.11)

Because we have just used the MA representation (2.3.4) and not its finite
order VAR form, the proposition is not only valid for VAR processes but
more generally for processes having a canonical MA representation such as
(2.3.4). From (2.2.10) it is obvious that equality of the 1-step predictors implies
equality of the h-step predictors for h = 2,3,.... Hence, the proposition
provides a necessary and sufficient condition for z; being not Granger-causal
for z;, that is, z; is not Granger-caused by z; if and only if @12, = 0 for
i = 1,2,.... Thus, Granger-noncausality can be checked easily by looking
at the MA representation of y;. Because we are mostly concerned with VAR
processes, it is worth noting that for a stationary, stable VAR(p) process

I R A11,1 A12,1 Zt—1
= |:fL't:|_|:V2:|+|:A21,1 A22,1} [%—1}—'—

Ay Aizp Zt—p Uit
: : , 2.3.12
- [ Aorp Azy Lt—p + U2t ( )
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the condition (2.3.11) is satisfied if and only if
AlgviZOfOI‘Z‘: 1,...,p

This result follows from the recursions in (2.1.22) or, alternatively, because
the inverse of

[ @1 (L) 0
| @21(L) ®ao(L)

is

¢11(L)_ 0
| —P22(L) "' @1 (L)P11 (L)~ Poo(L)~!

Thus, we have the following result.

Corollary 2.2.1
If y; is a stable VAR(p) process as in (2.3.12) with nonsingular white noise
covariance matrix Y, then

zi(h{ysls < t}) = z¢(h|{zs|s < t}), h=1,2,...
-~ A121i =0 for i = ]., ey D. (2313)

Alternatively,

wehl{wsls < 1) = wo(hl{zsls <)), h=12,...
<~ AQLi =0 for i = ]., ey D. (2314)

This corollary implies that noncausalities can be determined by just look-
ing at the VAR representation of the system. For instance, for the example
process (2.1.14),

Y1t b5 0 0 Y1,t—1
Yyor |=v+|.1 .1 .3 Yo,e—1 | + ue,
Y3t 0 2 3 Y3,t—1
= (yat,yst)’ does not Granger-cause z; := yi; because Aj21 = 0 if the

coefficient matrix is partitioned according to (2.3.12). On the other hand, z
Granger-causes x;. To give this discussion economic content let us assume
that the variables in the system are rates of change of investment (y1), in-
come (y2), and consumption (y3). With these specifications, the previous
discussion shows that investment Granger-causes the consumption/income
system whereas the converse is not true. It is also easy to check that con-
sumption causes the income/investment system and vice versa. Note that so
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far we have defined Granger-causality only in terms of two groups of vari-
ables. Therefore, at this stage, we cannot talk about the Granger-causal re-
lationship between consumption and income in the three-dimensional invest-
ment /income/consumption system.

Let us assume that the variables in the example VAR(2) process (2.1.15),

Yt T O I 0 0 || yie—2
k) — V _|_ ) + k) _|_ u s
[ Y2, ] [ 45 } [ Y2,t—1 } [ 25 0 Y2,t—2 K
represent the inflation rate (y1), and some interest rate (y2). Using Corollary
2.2.1, it is immediately obvious that inflation causes the interest rate and vice

versa. Hence the system is a feedback system. In the following we will refer
to (2.1.15) as the inflation/interest rate system.

Characterization of Instantaneous Causality

In order to study the concept of instantaneous causality in the framework
of the MA process (2.3.5), it is useful to rewrite that representation. Note
that the positive definite symmetric matrix X, can be written as the product
Y, = PP', where P is a lower triangular nonsingular matrix with positive
diagonal elements (see Appendix A.9.3). Thus, (2.3.5) can be represented as

Ye =1+ Z@ippilut—i =pu+ Z Owi—, (2.3.15)
i=0 i=0
where O, := &, P and w; := P~ lu, is white noise with covariance matrix
Yp=P 'Y, (PY =Ig. (2.3.16)

Because the white noise errors w; have uncorrelated components, they are
often called orthogonal residuals or innovations.

Partitioning the representation (2.3.15) according to the partitioning of
yr = (21, x}) gives

=)=l e e ]
T H2 921,0 922,0 w2 ¢
(C] ] Wy ¢
o e ] [ma ]
Hence,
Zip1 = 1+ Or1,0w1 441 + Or1,1w1, + Ora 1w + - -
and

Typ1 = p2 + O21,0W1 41 + O220wa t41 + O211w1 1 + Oz 1wy + -+ .
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The optimal 1-step predictor of x; based on {ys|s < ¢} and, in addition, on
Zt+1, is equal to the 1-step predictor of z; based on {wsls < t} U {ws 41},
that is,

ze(I{ysls <t} U{zem}) = @(L{ws = (w) w5 )'|s <t} U{wiisa})
= 621701017“_1 + CL’t(1|{ys|S < t}) (2317)
Consequently,

wi(I{ysls <t} Ufze01}) = 2 (1{ysls < t})

if and only if @219 = 0. This condition, in turn, is easily seen to hold if and
only if the covariance matrix X, is block diagonal with a ((K — M) x M)
block of zeros in the lower left-hand corner and an (M x (K — M)) block of
zeros in the upper right-hand corner. Of course, this means that u; and wus;
in (2.3.5) have to be uncorrelated, i.e., E(ujsub,) = 0. Thereby the following
proposition is proven.

Proposition 2.3 (Characterization of Instantaneous Causality)
Let y; be as in (2.3.5)/(2.3.15) with nonsingular innovation covariance matrix
Y. Then there is no instantaneous causality between z; and xz; if and only if

E(uypub,) = 0. (2.3.18)
]

This proposition provides a condition for instantaneous causality which is
easy to check if the process is given in MA or VAR form. For instance, for the
investment /income/consumption system with white noise covariance matrix
(2.1.33),

225 0 0
.= 0 10 5|,
0 5 .74

there is no instantaneous causality between (income, consumption) and in-
vestment.

From Propositions 2.2 and 2.3 it follows that y; = (2}, «})" has a represen-
tation with orthogonal innovations as in (2.3.15) of the form

I VO G0 O wi ¢
Ty 12 0 Bap wa ¢
O111 0 W1
+ ’ ’ +
{ O211 O Wa -1
M1 ©11(L) 0 Wyt
= + A 2.3.19
[ H2 } [ ©21(L) Oa2(L) (o ( )
if x; does not Granger-cause z; and, furthermore, there is no instantaneous
causation between z; and z;. In the absence of instantaneous causality, a

similar representation with ©2;(L) = 0 is obtained if z; is not Granger-causal
for x;.
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Discussion of Instantaneous and Granger-Causality

At this point, some words of caution seem appropriate. The term “causality”
suggests a cause and effect relationship between two sets of variables. Propo-
sition 2.3 shows that such an interpretation is problematic with respect to
instantaneous causality because this term only describes a nonzero correla-
tion between two sets of variables. It does not say anything about the cause
and effect relation. The direction of instantaneous causation cannot be derived
from the MA or VAR representation of the process but must be obtained from
further knowledge on the relationship between the variables. Such knowledge
may exist in the form of an economic theory.

Although a direction of causation has been defined in relation with
Granger-causality it is problematic to interpret the absence of causality from
¢ to z; in the sense that variations in z; will have no effect on z;. To see this
consider, for instance, the stable bivariate VAR(1) system

Tt Q21 (22 Tr—1 Uzt
In this system, x; does not Granger-cause z; by Corollary 2.2.1. However, the
system may be multiplied by some nonsingular matrix

15
5= 1]
so that
z | _ |0 =8 | M2 21| | e ’ (2.3.21)
Tt | 0 0 Tt Y21 Y22 Tp—1 V2t
where v11 = a1 + @218, 712 = a8, Y21 = @21, Y22 = a2 and
(v1g,v2¢) = B(uyg,uz:). Note that this is just another representation of

the process (z;,2¢)" and not another process. (The reader may check that
the process (2.3.21) has the same means and autocovariances as the one in
(2.3.20).)

In other words, the stochastic interrelationships between the random vari-
ables of the system can either be characterized by (2.3.20) or by (2.3.21)
although the two representations have quite different physical interpretations.
If (2.3.21) happens to represent the actual ongoings in the system, changes in
x may affect z; through the term with the coefficient —3 in the first equation.
Thus, the lack of a Granger-causal relationship from one group of variables to
the remaining variables cannot necessarily be interpreted as lack of a cause
and effect relationship. It must be remembered that a VAR or MA represen-
tation characterizes the joint distribution of sets of random variables. In order
to derive cause and effect relationships from it, usually requires further as-
sumptions regarding the relationship between the variables involved. We will
return to this problem in the following subsections.
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Further problems related to the interpretation of Granger-causality result
from restricting the information set to contain only past and present variables
of the system rather than all information in the universe. Only if all other
information in the universe is irrelevant for the problem at hand, the reduction
of the information set is of no consequence. Some related problems will be
discussed in the following.

Changing the Information Set

So far it has been assumed that the information set contains the variables
or groups of variables only for which we want to analyze the causal links.
Often we are interested in the causal links between two variables in a higher
dimensional system. In other words, we are interested in analyzing Granger-
causality in a framework where the information set contains more than just the
variables of direct interest. In the bivariate framework when the information
set is limited to the two variables of interest, it was seen that if the 1-step
ahead forecasts of one variable cannot be improved by using the information
in the other variable, the same holds for all h-step forecasts, h = 1,2,....
This result does not hold anymore if the information set contains additional
variables, as pointed out by Liitkepohl (1993).

To be more explicit, suppose the vector time series z;, y;, x; with dimen-
sions K., K, K, respectively, are jointly generated by a VAR(p) process

Zt D Zt—j
ve | =) Ai| i |+, (2.3.22)
T i=1 Tt—iq

where

Azzi Azy,i Azmi

s

A = Ayzi Auy,l Ayz,i , t=1,...,p,

)

_sz,i Axy7i Aa:wz

with Ay;; having dimension (Kj x K);) and wu; is zero mean white noise,
as usual. In this process, if A.,; = 0, 7 = 1,2,...,p, it is not difficult to
see that the information in y; cannot be used to improve the 1-step ahead
forecasts of z; but it is still possible that it can be used to improve the h-step
forecasts for h = 2,3, . ... In other words, if ¥, is 1-step noncausal for z;, it may
still be h-step causal for A > 1. Consequently, it makes sense to define more
refined concepts of causality which refer explicitly to the forecast horizon. For
instance, y; may be called h-step noncausal for z; (yi7>(p)2t) for h =1,2, ..,
if the j-step ahead forecasts of z; cannot be improved for j < h by taking into
account the information in past and present y;. Now the original concept of
Granger-causality corresponds to infinite-step causality.

The corresponding restrictions of multi-step causality on the VAR coeffi-
cients have been considered by Dufour & Renault (1998). Unlike in the bivari-
ate setting explored earlier, now nonlinear restrictions on the VAR coefficients
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are obtained which make it more difficult to check for h-step causality if the
information set is expanded by additional variables.

To state the restrictions formally, let A be defined as in the VAR(1) rep-
resentation (2.1.8), let J = [Ix : 0:---: 0] be a (K x Kp) matrix as before
and define AU) = JAJ and o) = vec(AW)). Dufour & Renault (1998) show
that in the process (2.3.22), y17/ ;)2 if and only if

Ra¥) =0 for j=1,...,h, (2.3.23)
and y;7/> ()2t if and only if
RaW) =0 for j=1,...,pK, + 1. (2.3.24)

Here the restriction matrix R is such that Rvec[A;,...,Ay] = vec[A,y1,...,
A,y pl, that is, it collects the elements of the second block in the first row of
each of the coefficient matrices.

As an example consider again the 3-dimensional VAR(1) process (2.1.14).
For infinite-step causality or noncausality from yo; to y1+ we need to check
the relevant elements of the coefficient matrix and its second power:

S5 0 0 25 0 0
Ai=|.1 .1 31, A3 =1 .06 .07 .12
0o .2 .3 .02 .08 .15

Clearly, ygtﬁ(l)ylt holds because o127 = 0 and also the restrictions for

ygtﬁ(m)ylt are satisfied in this case because the (1,2)-th element of A% is
also zero. In contrast, yi:7>1)ys¢ holds, while y1:75()ys: does not, because
the lower left-hand element of A? is nonzero. Notice that the definition and
characterizations of multi-step causality are given for the first two sets of
subvectors with the third one containing the extra variables. For applying
the definition and results in the present example, the variables may just be
rearranged accordingly.

In addition to these extensions related to increasing the information set,
there are also other problems which may make it difficult to interpret Granger-
causal relations even in a bivariate setting. Let us discuss some of them in
terms of an inflation/interest rate system. For example, it may make a differ-
ence whether the information set contains monthly, quarterly or annual data.
If a quarterly system is considered and no causality is found from the inter-
est rate to inflation it does not follow that a corresponding monthly interest
rate has no impact on the monthly inflation rate. In other words, the interest
rate may Granger-cause inflation in a monthly system even if it does not in a
quarterly system.

Furthermore, putting seasonally adjusted variables in the information set is
not the same as using unadjusted variables. Consequently, if Granger-causality
is found for the seasonally adjusted variables, it is still possible that in the ac-
tual seasonal system the interest rate is not Granger-causal for inflation. Sim-
ilar comments apply in the presence of measurement errors. Finally, causality
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analyses are usually based on estimated rather than known systems. Addi-
tional problems result in that case. We will return to them in the next chapter.

The previous critical remarks are meant to caution the reader and multiple
time series analyst against overinterpreting the evidence from a VAR model.
Still, causality analyses are useful tools in practice if these critical points are
kept in mind. At the very least, a Granger-causality analysis tells the analyst
whether a set of variables contains useful information for improving the pre-
dictions of another set of variables. Further discussions of causality issues and
many further references may be found in Geweke (1984) and Granger (1982).

2.3.2 Impulse Response Analysis

In the previous subsection, we have seen that Granger-causality may not tell
us the complete story about the interactions between the variables of a system.
In applied work, it is often of interest to know the response of one variable to
an impulse in another variable in a system that involves a number of further
variables as well. Thus, one would like to investigate the impulse response
relationship between two variables in a higher dimensional system. Of course,
if there is a reaction of one variable to an impulse in another variable we may
call the latter causal for the former. In this subsection, we will study this type
of causality by tracing out the effect of an exogenous shock or innovation in
one of the variables on some or all of the other variables. This kind of impulse
response analysis is sometimes called multiplier analysis. For instance, in a
system consisting of an inflation rate and an interest rate, the effect of an
increase in the inflation rate may be of interest. In the real world, such an
increase may be induced exogenously from outside the system by events like
the increase of the oil price in 1973/74 when the OPEC agreed on a joint
action to raise prices. Alternatively, an increase or reduction in the interest
rate may be administered by the central bank for reasons outside the simple
two variable system under study.

Responses to Forecast Errors

Suppose the effect of an innovation in investment in a system containing
investment (y1), income (y2), and consumption (ys) is of interest. To isolate
such an effect, suppose that all three variables assume their mean value prior
to time t = 0, y; = p for t < 0, and investment increases by one unit in period
t = 0, that is, u; 0 = 1. Now we can trace out what happens to the system
during periods ¢t = 1,2, ... if no further shocks occur, that is, us o = u3 o =0,
uy = 0, ug = 0,.... Because we are not interested in the mean of the system
in such an exercise but just in the variations of the variables around their
means, we assume that all three variables have mean zero and set v = 0 in
(2.1.14). Hence, y; = A1yi—1 + uy or, more precisely,
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Y1, 5 0 0 Yi,—1 (o
yor | = |1 1 3| | yoes | + | uoy |- (2.3.25)
Y3, 0 2 3 Y3,i—1 U3 ¢

Tracing a unit shock in the first variable in period ¢t = 0 in this system we get

[ Y10 U1,0 1
Yo=| Y20 | = | uo =101,

| ¥3,0 | us,0 0

[ Y1,1 1 .5
yi=|y1 | =4Adwo=|1],

| Y31 | 0

[ Y1,2 ] .25
Yo=| Yoo | = Ay = Afyo = | .06

| Y32 | .02

Continuing the procedure, it turns out that y; = (y1.4,y2,i,¥3,)" is just the
first column of A%. An analogous line of arguments shows that a unit shock
in yor (ys¢) at t = 0, after ¢ periods, results in a vector y; which is just the
second (third) column of A%. Thus, the elements of A% represent the effects of
unit shocks in the variables of the system after ¢ periods. Therefore they are
called impulse responses or dynamic multipliers.

Recall that AY = &; is just the i-th coefficient matrix of the MA rep-
resentation of a VAR(1) process. Consequently, the MA coefficient matrices
contain the impulse responses of the system. This result holds more gener-
ally for higher order VAR(p) processes as well. To see this, suppose that y;
is a stationary VAR(p) process as in (2.1.1) with ¥ = 0. This process has a
corresponding VAR(1) process Y; = AY;_; + U; as in (2.1.8) with v = 0.
Under the assumptions of the previous example, y; = 0 for t < 0, uy = 0
for t > 0 and yo = ug is a K-dimensional unit vector ey, say, with a one as
the k-th coordinate and zeros elsewhere. It follows that Yy = (e},,0,...,0)
and Y; = A'Y]. Hence, the impulse responses are the elements of the upper
left-hand (K x K) block of A®. This matrix, however, was shown to be the i-th
coefficient matrix @; of the MA representation (2.1.17) of y, i.e., &; = JALJ'
with J := [Ig : 0: --- : 0] a (K x Kp) matrix. In other words, ¢;;, the
jk-th element of &;, represents the reaction of the j-th variable of the system
to a unit shock in variable k, ¢ periods ago, provided, of course, the effect is
not contaminated by other shocks to the system. Because the u; are just the
1-step ahead forecast errors of the VAR process, the shocks considered here
may be regarded as forecast errors and the impulse responses are sometimes
referred to as forecast error impulse responses.

The response of variable j to a unit shock (forecast error) in variable
k is sometimes depicted graphically to get a visual impression of the dy-
namic interrelationships within the system. Impulse responses of the invest-
ment/income/consumption system are plotted in Figure 2.5 and the dynamic
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Fig. 2.5. Impulse responses of the investment/income/consumption system (im-
pulse — response).

responses of the inflation/interest rate system are depicted in Figure 2.6. For
instance, in the latter figure an inflation innovation is seen to induce the in-
terest rate to increase for two periods and then it tapers off to zero. In both
systems the effect of a unit shock in any of the variables dies away quite
rapidly due to the stability of the systems.

If the variables have different scales, it is sometimes useful to consider in-
novations of one standard deviation rather than unit shocks. For instance,
instead of tracing an unexpected unit increase in investment in the in-
vestment/income/consumption system with white noise covariance matrix
(2.1.33), one may follow up on a shock of v/2.25 = 1.5 units because the
standard deviation of uq; is 1.5. Of course, this is just a matter of rescaling
the impulse responses. In Figures 2.5 and 2.6, it suffices to choose the units
at the vertical axes equal to the standard deviations of the residuals corre-
sponding to the variables whose effects are considered. Such a rescaling may
sometimes give a better picture of the dynamic relationships because the av-
erage size of the innovations occurring in a system depends on their standard
deviation.
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Fig. 2.6. Impulse responses of the inflation/interest rate system (impulse — re-
sponse).

It follows from Proposition 2.2 that the impulse responses are zero if one
of the variables does not Granger-cause the other variables taken as a group.
More precisely, an innovation in variable k£ has no effect on the other variables
if the former variable does not Granger-cause the set of the remaining vari-
ables. As we have mentioned previously, in applied work it is often of foremost
interest whether one variable has an impact on a specific other variable. That
is, one would like to know whether, for some k # j, ¢ =0fori=1,2,....
If the ¢;r, represent the actual reactions of variable j to a unit shock in
variable k, we may call the latter noncausal for the j-th variable if ¢;1; = 0
for ¢ = 1,2,.... In order to check the latter condition, it is not necessary to
compute infinitely many @; matrices. The following proposition shows that it
suffices to check the first p(K — 1) &; matrices.

Proposition 2.4 (Zero Impulse Responses)
If y; is a K-dimensional stable VAR(p) process, then, for j # k,

ik =0 fori=1,2,...

is equivalent to
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ik =0 fori=1,...,p(K —1).
|

In other words, the proposition asserts that for a K-dimensional, station-
ary, stable VAR(p), if the first p/K — p responses of variable j to an impulse
in variable k are zero, all the following responses must also be zero. For in-
stance, in the investment/income/consumption VAR(1) system, because the
responses of investment for the next two periods after a consumption impulse
are zero, we know that investment will not react at all to such an impulse.
Note, that in a VAR(1) system of dimension greater than 2, it does not suffice
to check, say, the upper right-hand corner element of the coefficient matrix
in order to determine whether the last variable is noncausal for the first vari-
able. Notice that Proposition 2.4 is related to the conditions for multi-step
causality in (2.3.23) and (2.3.24). In general, the conditions are not identical,
however, because the two concepts differ. Proposition 2.4 will be helpful when
testing of impulse response relations is discussed in the next chapter. We will
now prove the proposition.

Proof of Proposition 2.4:
Returning to the lag operator notation of Section 2.1.2, we have

D(L) = (ds0(L))jn = A(L)"" = A(L)*¥ [ det(A(L)),

where A(L)* = (A;,(L));x is the adjoint of A(L) = Ix — AyL—---— A,LP
(see Appendix A.4.1). Obviously, ¢;x(L) = 0 is equivalent to A;x(L) = 0.
From the definition of a cofactor of a matrix in Appendix A.3, it is easy to see
that A;;(L) has degree not greater than pK —p. Defining (L) = [det A(L)]™?,
we get for k # j,

¢jk(L) = ¢jk,1L + ¢jk,2L2 4.
Aj(L)v(L)
(Ajk,lL + -+ AjkypK,prK_p)(]_ +yL+--- )

Hence,
i1
ik = Ajr and ik = Ajryi + Z Ak nYi-n for i > 1,
n=1

with Ajx,, = 0forn > pK —p. Consequently, Aj,; =0fori=1,...,pK—p,is
equivalent to ¢;i; = 0fori=1,2,...,pK —p, which proves the proposition. B

Sometimes interest centers on the accumulated effect over several or
more periods of a shock in one variable. This effect may be determined
by summing up the MA coefficient matrices. For instance, the k-th column
of ¥, := Z?:o ®; contains the accumulated responses over n periods to a
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unit shock in the k-th variable of the system. These quantities are some-
times called n-th interim multipliers. The total accumulated effects for all
future periods are obtained by summing up all the MA coefficient matrices.
Voo = Y o ®P; is sometimes called the matrix of long-run effects or total
multipliers. Because the MA operator @(z) is the inverse of the VAR operator
A(z) =Ix — A1z — -+ — A,2P, the long-run effects are easily obtained as

Vo =®(1) = (Ix — Ay — - — Ay)~ L. (2.3.26)

As an example, accumulated responses for the investment/income/consump-
tion system are depicted in Figure 2.7. Similarly, interim and total multipliers
of the inflation/interest rate system are shown in Figure 2.8.
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Fig. 2.7. Accumulated and long-run responses of the investment/income/con-
sumption system (impulse — response).

Responses to Orthogonal Impulses

A problematic assumption in this type of impulse response analysis is that
a shock occurs only in one variable at a time. Such an assumption may be
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Fig. 2.8. Accumulated and total responses of the inflation/interest rate system
(impulse — response).

reasonable if the shocks in different variables are independent. If they are not
independent one may argue that the error terms consist of all the influences
and variables that are not directly included in the set of y variables. Thus, in
addition to forces that affect all the variables, there may be forces that affect
variable 1, say, only. If a shock in the first variable is due to such forces it
may again be reasonable to interpret the @; coefficients as dynamic responses.
On the other hand, correlation of the error terms may indicate that a shock
in one variable is likely to be accompanied by a shock in another variable. In
that case, setting all other residuals to zero may provide a misleading picture
of the actual dynamic relationships between the variables. For example, in
the investment/income/consumption system, the white noise or innovation
covariance matrix is given in (2.1.33),

225 0 O
Xy = 0 10 .5
0 b5 .74

Obviously, there is a quite strong positive correlation between us: and us ¢,
the residuals of the income and consumption equations, respectively. Conse-
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quently, a shock in income may be accompanied by a shock in consumption in
the same period. Therefore, forcing the consumption innovation to zero when
the effect of an income shock is traced, as in the previous analysis, may in
fact obscure the actual relation between the variables.

This is the reason why impulse response analysis is often performed in
terms of the MA representation (2.3.15),

oo

Yt = Z Owi—i, (2.3.27)
i=0

where the components of w; = (wyy, ..., wk)" are uncorrelated and have unit

variance, X, = Ix. The mean term is dropped again because it is of no inter-
est in the present analysis. Recall that the representation (2.3.27) is obtained
by decomposing X, as X, = PP’, where P is a lower triangular matrix, and
defining ©; = &; P and w; = P~ lu,. In (2.3.27) it is reasonable to assume that
a change in one component of w; has no effect on the other components be-
cause the components are orthogonal (uncorrelated). Moreover, the variances
of the components are one. Thus, a unit innovation is just an innovation of size
one standard deviation. The elements of the ©; are interpreted as responses
of the system to such innovations. More precisely, the jk-th element of O; is
assumed to represent the effect on variable j of a unit innovation in the k-th
variable that has occurred ¢ periods ago.

To relate these impulse responses to a VAR model, we consider the zero
mean VAR(p) process

yr = A1y + -+ Apyr—p + . (2.3.28)

This process can be rewritten in such a way that the residuals of different
equations are uncorrelated. For this purpose, we choose a decomposition of the
white noise covariance matrix X, = WX_.W’, where X, is a diagonal matrix
with positive diagonal elements and W is a lower triangular matrix with unit
diagonal. This decomposition is obtained from the Choleski decomposition
XY, = PP’ by defining a diagonal matrix D which has the same main diagonal
as P and by specifying W = PD~! and ¥. = DD/,
Premultiplying (2.3.28) by A := W~ gives

Ay = Alyr—1 + -+ Apyr—p + €1, (2.3.29)

where AF := AA;,i=1,...,p, and &, = (€14,...,ex¢)" := Auy has diagonal
covariance matrix,

25 = E(Et&‘;) = AE(’U,tU/;)A/ = AEuA/
Adding (Ix — A)y, to both sides of (2.3.29) gives

Yy = A;yt + Aiyt—l —+ 4 A;yt—p + Et, (2330)
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where Aj := Ix — A. Because W is lower triangular with unit diagonal, the
same is true for A. Hence,

0 0o ... 0 0
Ba1 O 0 0

Ar =T — A=
Br1 Brz ... Prrx-1 0

is a lower triangular matrix with zero diagonal and, thus, in the representation
(2.3.30) of our VAR(p) process, the first equation contains no instantaneous
y’s on the right-hand side. The second equation may contain y;; and other-
wise lagged y’s on the right-hand side. More generally, the k-th equation may
contain yi¢,...,Yg—1, and not yie,...,Yyx+ on the right-hand side. Thus, if
(2.3.30) reflects the actual ongoings in the system, y,; cannot have an instan-
taneous impact on yg; for k < s. In the econometrics literature such a system
is called a recursive model (see Theil (1971, Section 9.6)). Herman Wold has
advocated these models where the researcher has to specify the instantaneous
“causal” ordering of the variables. This type of causality is therefore sometimes
referred to as Wold-causality. If we trace e;; innovations of size one standard
error through the system (2.3.30), we just get the © impulse responses. This
can be seen by solving the system (2.3.30) for y,

ye = (Ix — A5) " Ay + -+ (I — AS)_lA;yt—p + (Ix — A5) e

Noting that (Ix — Aj)~' = W = PD~! shows that the instantaneous effects
of one-standard deviation shocks (e;4’s of size one standard deviation) to the
system are represented by the elements of WD = P = @, because the diagonal
elements of D are just standard deviations of the components of €;. The 6©;
may then be obtained by tracing these effects through the system.

The ©;’s may provide response functions that are quite different from the
@, responses. For the example VAR(1) system (2.3.25) with X, as in (2.1.33)
we get

15 0 0
G=P=|0 1 0],
0 5 .7
(75 0 0
O1=®P=|.15 25 21|, (2.3.31)
0 .35 .21
(375 0 0
Oy =P, P = | .090 .130 .084 |,
| .030 .055 .105
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and so on. Some more innovation responses are depicted in Figure 2.9. Al-
though they are similar to those given in Figure 2.5, there is an obvious
difference in the response of consumption to an income innovation. While
consumption responds with a time lag of one period in Figure 2.5, there is an

instantaneous effect in Figure 2.9.
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Fig. 2.9. Orthogonalized impulse responses of the investment/income/consumption
system (impulse — response).

Note that ©g = P is lower triangular and some elements below the diagonal
will be nonzero if X, has nonzero off-diagonal elements. For instance, for the
investment/income/consumption example @ indicates that an income (ys)
innovation has an immediate impact on consumption (ys). If the white noise
covariance matrix X, contains zeros, some components of u; = (u1¢, ..., uxe)
are contemporaneously uncorrelated. Suppose, for instance, that w4 is uncor-
related with u; for i = 2,..., K. In this case, A = W~1! and, thus, A} has a
block of zeros so that y; has no instantaneous effect on y;, i = 2,..., K. In the
example, investment has no instantaneous impact on income and consumption
because
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225 0 0
.= 0 10 .5
0 5 .74

and, hence, uy; is uncorrelated with us; and us. This, of course, is reflected in
the matrix of instantaneous effects O given in (2.3.31). Because the elements
of P = @ represent the immediate responses of the system to unit innovations
they are sometimes called impact multipliers.

In order to determine whether there is no response at all of one variable to
an impulse in one of the other variables, it suffices to consider the first pK —p
response coeflicients and the immediate effect. This result is stated formally
in the next proposition where 0, ; denotes the jk-th element of ©;.

Proposition 2.5 (Zero Orthogonalized Impulse Responses)
If y; is a K-dimensional stable VAR(p) process, then, for j # k,

Ok =0 fori=0,1,2,...
is equivalent to
Ok =0 fori=0,1,...,p(K —1).
[ |

The proof of this result is analogous to that of Proposition 2.4 and is left
as an exercise (see Problem 2.2).

The fact that 6 is lower triangular shows that the ordering of the vari-
ables is of importance, that is, it is important which of the variables is called
y1 and which one is called y5 and so on. One problem with this type of impulse
response analysis is that the ordering of the variables cannot be determined
with statistical methods but has to be specified by the analyst. The order-
ing has to be such that the first variable is the only one with a potential
immediate impact on all other variables. The second variable may have an
immediate impact on the last K — 2 components of y; but not on y;; and so
on. To establish such an ordering may be a quite difficult exercise in practice.
The choice of the ordering, the Wold causal ordering, may, to a large extent,
determine the impulse responses and is therefore critical for the interpreta-
tion of the system. Currently we are dealing with known systems only. In this
situation, assuming that the ordering is known may not be a great restric-
tion. For the investment/income/consumption example it may be reasonable
to assume that an increase in income has an immediate effect on consumption
while increased consumption stimulates the economy and, hence, income with
some time lag.

Our interpretation of orthogonalized impulse responses is based on the rep-
resentation (2.3.30) and the impulses are viewed as changes in the observed
variables. Sometimes it is more plausible to focus on impulses which cannot
be associated easily with changes in a specific observed variable within the
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system. In that case, it may be more logical to base the interpretation on the
MA representation (2.3.27) which decomposes the variables in contributions
of the wy; innovations. If these innovations can be associated with a specific
impulse to the system, the orthogonalized impulse responses reflect the reac-
tions of the variables to such possibly unobserved innovations. In that case, a
specific impulse or shock to the system can have an instantaneous impact on
several variables while some other impulse may only have an instantaneous
effect on one specific variable and may effect the other variables only with
some delay. By decomposing X, = PP’ with some non-triangular P matrix,
it is also possible that all shocks have instantaneous effects on all observed
variables of the system. In this kind of interpretation, finding the decomposi-
tion matrix P and, hence, the innovations w; which actually can be associated
with shocks of interest, is often a difficult part of the analysis. We will provide
a more in-depth discussion of the related problems in Chapter 9 which deals
with structural VAR models.

Critique of Impulse Response Analysis

Besides specifying the relevant impulses to a system, there are a number of
further problems that render the interpretation of impulse responses difficult.
We have mentioned some of them in the context of Granger-causality. A major
limitation of our systems is their potential incompleteness. Although in real
economic systems almost everything depends on everything else, we will usu-
ally work with low-dimensional VAR systems. All effects of omitted variables
are assumed to be in the innovations. If important variables are omitted from
the system, this may lead to major distortions in the impulse responses and
makes them worthless for structural interpretations. The system may still be
useful for prediction, though.

To see the related problems more clearly, consider a system y; which is
partitioned in vectors z; and z; as in (2.3.5). If the z; variables are considered
only and the x; variables are omitted from the analysis, we get a system

oo oo
p1+ E D1 Ur,—i + E Do t—i

=0 i=1

p1+ Z Fivg—q, (2.3.32)
i=0

2t

as in (2.3.8). The actual reactions of the z; components to innovations uy; may
be given by the @, ; matrices. On the other hand, the F; or corresponding
orthogonalized “impulse responses” are likely to be interpreted as impulse
responses if the analyst does not realize that important variables have been
omitted. As we have seen in Section 2.3.1, the F; will be equal to the @1, ; if
and only if x; does not Granger-cause z;.

Further problems related to the interpretation of the MA coefficients as
dynamic multipliers or impulse responses result from measurement errors and
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the use of seasonally adjusted or temporally and/or contemporaneously ag-
gregated variables. A detailed account of the aggregation problem is given by
Liitkepohl (1987). We will discuss these problems in more detail in Chapter
11 in the context of more general models. These problems severely limit the
interpretability of the MA coefficients of a VAR system as impulse responses.
In the next subsection a further possibility to interpret VAR models will be
considered.

2.3.3 Forecast Error Variance Decomposition

If the innovations which actually drive the system can be identified, a further
tool for interpreting VAR models is available. Suppose a recursive identifi-
cation scheme is available so that the MA representation (2.3.15) with or-
thogonal white noise innovations may be considered. In the context of the
representation

Yo = p+ Z Owi—; (2.3.33)
=0

with X, = Ik, the error of the optimal hA-step forecast is

h—1 h—1
ern —y(h) = Y @aupn—i= Y BPP un
=0 =0

h—1
= > O (2.3.34)
=0

Denoting the mn-th element of @; by 0,,,,,; as before, the h-step forecast error
of the j-th component of y; is

h—1
Yittn — Yje(h) = Z(ajl,iwl,t+h—i + o+ iKWK i)
i=0
K
= Z(ij7owk7t+h + .4 ijyh_lwkytﬂ). (2335)
k=1

Thus, the forecast error of the j-th component potentially consists of all the
innovations wiy, ..., wk:. Of course, some of the 6,,,; may be zero so that
some components may not appear in (2.3.35). Because the wy’s are uncor-
related and have unit variances, the MSE of y; (k) is

K
E(yjen — yje(h)* = Z(Q?k,() T+t egzk,hq)-
k=1

Therefore,
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h—1
Olko+ Oiea+ -+ 051 = 2(6991'61@)2 (2.3.36)
i=0

is sometimes interpreted as the contribution of innovations in variable k to
the forecast error variance or MSE of the h-step forecast of variable j. Here
ey is the k-th column of I'x. Dividing (2.3.36) by

h—1 K
MSE[y; +(h)] =Y > 0%,
=0 k=1
gives
h—1
Wity = _(€}Oier)? /MSE[y;.+(h)] (2.3.37)
1=0

which is the proportion of the h-step forecast error variance of variable j, ac-
counted for by wy: innovations. If wy; can be associated with variable k, wjx p,
represents the proportion of the h-step forecast error variance accounted for
by innovations in variable k. Thereby, the forecast error variance is decom-
posed into components accounted for by innovations in the different variables
of the system. From (2.3.34), the h-step forecast MSE matrix is seen to be

h—1 h—1
Zy(h) = MSE[y:(h)] = > 60,0, =Y &5,
=0 =0

The diagonal elements of this matrix are the MSEs of the y;; variables which
may be used in (2.3.37).

For the investment/income/consumption example, forecast error variance
decompositions of all three variables are given in Table 2.1. For instance,
about 66% of the 1-step forecast error variance of consumption is accounted
for by own innovations and about 34% is accounted for by income innovations.
For long term forecasts, 57.5% and 42.3% of the error variance is accounted
for by consumption and income innovations, respectively. For any forecast
horizon, investment innovations contribute less than 1% to the forecast error
variance of consumption. Moreover, only small fractions (less than 10%) of
the forecast error variances of income are accounted for by innovations in
the other variables of the system. This kind of analysis is sometimes called
mnovation accounting.

From Proposition 2.5, it is obvious that for a stationary, stable, K-dimen-
sional VAR(p) process y; all forecast error variance proportions of variable
J, accounted for by innovations in variable k, will be zero if wji, = 0 for
h = pK —p+1. In this context it is perhaps worth pointing out the relationship
between Granger-causality and forecast error variance components. For that
purpose we consider a bivariate system y; = (24, x;)" first. In such a system, if
z¢ does not Granger-cause xy, the proportions of forecast error variances of x;
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Table 2.1. Forecast error variance decomposition of the investment/income/con-
sumption system

forecast forecast proportions of forecast error variance h periods

error horizon ahead accounted for by innovations in

in h investment income consumption

investment 1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
10 1 0 0
00 1 0 0

income 1 0 1 0
2 .020 941 .039
3 .026 .930 .044
4 .029 .926 .045
5 .030 .925 .045
10 .030 .925 .045
0 .030 .925 .045

consumption 1 0 .338 .662
2 0 411 .589
3 .001 421 578
4 .002 423 576
5 .002 423 575
10 .002 423 575
00 .002 423 575

accounted for by innovations in z; may still be nonzero. This property follows
directly from the definition of the ©; in (2.3.15). Granger-noncausality, by
Proposition 2.2, implies zero constraints on the @; which may disappear in
the @; if the error covariance matrix X, is not diagonal. On the other hand, if
Y, is diagonal, so that there is no instantaneous causation between z; and x;
and if, in addition, z; is not Granger-causal for x; the lower left-hand elements
of the ©; will be zero (see (2.3.19)). Therefore, the proportion of forecast error
variance of z; accounted for by z; innovations will also be zero.

In a higher dimensional system, suppose a set of variables z; does not
Granger-cause the remaining variables x; and there is also no instantaneous
causality between the two sets of variables. In that case, the forecast MSE
proportions of all x; variables accounted for by z; variables will be zero.

It is important to understand, however, that Granger-causality and fore-
cast error variance decompositions are quite different concepts because Gran-
ger-causality and instantaneous causality are different concepts. While Gran-
ger-causality is a uniquely defined property of two subsets of variables of a
given process, the forecast error variance decomposition is not unique as it de-
pends on the @; matrices and, thus, on the choice of the transformation matrix
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P. Therefore, the interpretation of a forecast error variance decomposition is
subject to similar criticisms as the interpretation of impulse responses. In ad-
dition, all the critical points raised in the context of Granger-causality apply.
That is, the forecast error variance components are conditional on the system
under consideration. They may change if the system is expanded by adding
further variables or if variables are deleted from the system. Also measure-
ment errors, seasonal adjustment and the use of aggregates may contaminate
the forecast error variance decompositions.

2.3.4 Remarks on the Interpretation of VAR Models

Innovation accounting and impulse response analysis in the framework of VAR,
models have been pioneered by Sims (1980, 1981) and others as an alternative
to classical macroeconomic analyses. Sims’ main criticism of the latter type
of analysis is that macroeconometric models are often not based on sound
economic theories or the available theories are not capable of providing a
completely specified model. If economic theories are not available to specify
the model, statistical tools must be applied. In this approach, a fairly loose
model is set up which does not impose rigid a priori restrictions on the data
generation process. Statistical tools are then used to determine possible con-
straints. VAR models represent a class of loose models that may be used in
such an approach. Of course, in order to interpret these models, some restric-
tive assumptions need to be made. In particular, the ordering of the variables
may be essential for interpretations of the types discussed in the previous
subsections. Sims (1981) suggests to try different orderings and investigate
the sensitivity of the corresponding orthogonalized impulse responses and the
related conclusions to the ordering of the variables.

So far we have assumed that a VAR model is given to us. Under this
assumption we have discussed forecasting and interpretation of the system.
In this situation it is of course unnecessary to use statistical tools in order
to determine constraints for the system because all constraints are known. In
practice, we will virtually never be in such a fortunate situation but we have
to determine the model from a given set of time series data. This problem will
be treated in subsequent chapters. The purpose of this chapter is to identify
some problems that are not related to estimation and model specification but
are inherent to the types of models considered.

2.4 Exercises

Problem 2.1
Show that

det(IKp — AZ) = det(IK — A1Z — = Apzp)

where A;,i=1,...,p, and A are as in (2.1.1) and (2.1.8), respectively.
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Problem 2.2
Prove Proposition 2.5.
(Hint: ©(L) = &(L)P = A(L)*¥ P/ det A(L)).

Problem 2.3

In the United States of Wonderland the growth rates of income (GNP) and
the money stock (M2) as well as an interest rate (IR) are related as in the
following VAR(2) model:

GNP, 2 7 1 07 GNP,
M2, = 11+ 0 4 1 M2;_4
IR, 0 9 0 .8 Ry
-2 0 0 GNP, _, U1t
+ 0 1 .1 M2t—2 + Ut 9
0 0 O IR¢—2 Ust
26 .03 0 S5 10
Yu=1.03 .09 O = PP, P=]10 30 (2.4.1)
0 0 .81 0 0 .9
(a) Show that the process y; = (GNP, M2;,IR;)’ is stable.
(b) Determine the mean vector of y;.
(c) Write the process y; in VAR(1) form.
(d) Compute the coefficient matrices @1,...,P5 of the MA representation

(2.1.17) of y;.

Problem 2.4

Determine the autocovariances I,(0), Iy (1), I'y(2), I,(3) of the process de-
fined in (2.4.1). Compute and plot the autocorrelations R, (0), Ry (1), Ry(2),
Ry(3).

Problem 2.5
Consider again the process (2.4.1).

(a) Suppose that

7 1.0
Y2000 = | 1.0 and  yig99 = | 1.5
1.5 3.0

and forecast y2001, Y2002, and y2003-

(b) Determine the MSE matrices for forecast horizons h = 1,2, 3.

(c) Assume that y; is a Gaussian process and construct 90% and 95% forecast
intervals for ¢ = 2001, 2002, 2003.

(d) Use the Bonferroni method to determine a joint forecast region for
GNPQQOl, GNPQQQQ, G‘NP2003 with probablhty content at least 97%
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Problem 2.6
Answer the following questions for the process (2.4.1).

(a) Is M2 Granger-causal for (GNP, IR)?
(b) Is IR Granger-causal for (GNP, M2)?

(c) Is there instantaneous causality between M2 and (GNP, IR)?

(d) Is there instantaneous causality between IR and (GNP, M2)?

(e) Is IR 2-step causal for GNP?

Problem 2.7

Plot the effect of a unit innovation in the interest rate (IR) on the three
variables of the system (2.4.1) in terms of the MA representation (2.1.17).
Consider only 5 periods following the innovation. Plot also the accumulated
responses and interpret the plots.

Problem 2.8

For the system (2.4.1), derive the coefficient matrices Oy, ..., O5 of the MA
representation (2.3.15) using the upper triangular P matrix given in (2.4.1).
Plot the effects of a unit innovation in IR in terms of that representation.
Compare to the plots obtained in Problem 2.7 and interpret. Repeat the
analysis with a lower triangular P matrix and comment on the results.

Problem 2.9
Decompose the MSE of the forecast GNP;(5) into the proportions accounted
for by its own innovations and innovations in M2 and IR.
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Estimation of Vector Autoregressive Processes

3.1 Introduction

In this chapter, it is assumed that a K-dimensional multiple time series
Y1y« -,y With ¥ = (y1¢,...,yke) is available that is known to be gener-
ated by a stationary, stable VAR(p) process

Ye=vV+ A1+ + Apyi—p + Uy (3.1.1)

All symbols have their usual meanings, that is, v = (v4,...,vk)" is a (K X
1) vector of intercept terms, the A; are (K x K) coefficient matrices and
u; is white noise with nonsingular covariance matrix Y. In contrast to the
assumptions of the previous chapter, the coefficients v, 4;,..., A,, and X, are
assumed to be unknown in the following. The time series data will be used to
estimate the coefficients. Note that notationwise we do not distinguish between
the stochastic process and a time series as a realization of a stochastic process.
The particular meaning of a symbol should be obvious from the context.

In the next three sections, different possibilities for estimating a VAR(p)
process are discussed. In Section 3.5, the consequences of forecasting with
estimated processes will be considered and, in Section 3.6, tests for causality
are described. The distribution of impulse responses obtained from estimated
processes is considered in Section 3.7.

3.2 Multivariate Least Squares Estimation

In this section, multivariate least squares (LS) estimation is discussed. The
estimator obtained for the standard form (3.1.1) of a VAR(p) process is consid-
ered in Section 3.2.1. Some properties of the estimator are derived in Sections
3.2.2 and 3.2.4 and an example is given in Section 3.2.3.
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3.2.1 The Estimator

It is assumed that a time series yq, ...,y of the y variables is available, that
is, we have a sample of size T for each of the K variables for the same sample
period. In addition, p presample values for each variable, y_,41,...,%0, are
assumed to be available. Partitioning a multiple time series in sample and
presample values is convenient in order to simplify the notation. We define

Y .= (yla"'ayT) (KXT)a
B:= (VaAl,“'aAp) (KX(KP+1))a

1

Yt
Zy = : ((Kp+ 1) X 1)?

Yt—p+1

2= (Zoy Zr) (Kp+1)xT), 321
U:=(uy,...,ur) (K xT),
y = vec(Y) (KT x 1),
8= vec(B) (K2 + K) x 1),
b := vec(B’) (K?p+ K) x 1),
u := vec(U) (KT x 1).

Here vec is the column stacking operator as defined in Appendix A.12.
Using this notation, for ¢t = 1,...,T, the VAR(p) model (3.1.1) can be
written compactly as

Y =BZ+U (3.2.2)
vec(Y) = vec(BZ) + vec(U)
= (Z' @ Ik) vec(B) + vec(U)
or

y=(Z'®Ik)B+u. (3.2.3)
Note that the covariance matrix of u is
Ya=Ir®X,. (3.2.4)

Thus, multivariate LS estimation (or GLS estimation) of 3 means to choose
the estimator that minimizes
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SB) = W(Ir®X,) tu=u(Ir® X, Hu

ly — (Z' @ Ix)B) (Ir ® Yy — (Z2' ® Ix)B]

vec(Y — BZ) (Ir @ X, 1) vec(Y — BZ)

= tr[(Y -B2)X,; (Y - BZ)]. (3.2.5)

In order to find the minimum of this function we note that

SB) = yIreoXYy+B(Zelx)Iro L") (Z ©Ik)B
—28(Z@Ix)Ir @ X )y
= yIreoIZYy+08 (22 X3 -208(Zx X, y.
Hence,
82(5) =227 X8 -2Z2 X Yy.

Equating to zero gives the normal equations
(ZZ' @ ;W8 =(Z® X )y (3.2.6)

and, consequently, the LS estimator is

(Zz) e Z)(Z e 2 )y
= ((22)'Z @ Ix)y. (3.2.7)

The Hessian of S(3),

~

B

0?8
—— =227 X,
8/38/8, ( ® u )7

is positive definite which confirms that ,@ is indeed a minimizing vector.
Strictly speaking, for these results to hold, it has to be assumed that ZZ’
is nonsingular. This result will hold with probability 1 if y; has a continuous
distribution which will always be assumed in the following. R

It may be worth noting that the multivariate LS estimator 3 is identical
to the ordinary LS (OLS) estimator obtained by minimizing

SB)=vu=ly - (Z' @ Ix)B|'ly — (7' @ Ix)B] (3.2.8)

(see Problem 3.1). This result is due to Zellner (1962) who showed that GLS
and LS estimation in a multiple equation model are identical if the regressors
in all equations are the same.

The LS estimator can be written in different ways that will be useful later
on:

o~

B = (22)Ze1Ix)(Z ®Ik)B +u]
= B+((2Z2) ' Z@Ik)u (3.2.9)

or
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~

veco(B) = B=((22")""Z Ig) vec(Y)
= vec(YZ'(Z2Z)71).
Thus,
B = YZ'(zZ)"
= (BZ+U)Z'(zZ')!
= B+UZ'(zZ") " (3.2.10)

Another possibility for deriving this estimator results from postmultiplying
Y = BZi_1 +uy
by Z,_, and taking expectations:
E(yZ,_,) = BE(Zi—17Z;_,). (3.2.11)
Estimating E(y:Z;_,) by

1 & 1
= wll = =YZ
T~ T

and E(Z;_1Z;_4) by

1 & 1
=Y TaZi =27,
T & T

we obtain the normal equations

Yyr—Blay

T T
and, hence, B = Y Z'(ZZ')~". Note that (3.2.11) is similar but not identical
to the system of Yule-Walker equations in (2.1.37). While central moments
about the expectation p = E(y;) are considered in (2.1.37), moments about
zero are used in (3.2.11).

Yet another possibility to write the LS estimator is

b =vec(B') = (Ix ® (22')"' Z) vec(Y"). (3.2.12)

In this form, it is particularly easy to see that multivariate LS estimation is
equivalent to OLS estimation of each of the K equations in (3.1.1) separately.
Let b, be the k-th row of B, that is, by, contains all the parameters of the k-th
equation. Obviously b’ = (by,...,b}). Furthermore, let y) = (yr1,-- -, Y1)’
be the time series available for the k-th variable, so that

Y(K)
With this notation b, = (ZZ")"*Zy(y is the OLS estimator of the model
Yy = Z'by + u(ry, where ugy = (ug1, ..., upr) and b = (3’17 ... ,E’K)
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3.2.2 Asymptotic Properties of the Least Squares Estimator

Because small sample properties of the LS estimator are difficult to derive
analytically, we focus on asymptotic properties. Consistency and asymptotic
normality of the LS estimator are easily established if the following results
hold:

I' :=plim ZZ'/T exists and is nonsingular (3.2.13)
and
d 1 1
— vec(UZ') = —=(Z ® Ik)u
g Zict) VT VT (3.2.14)
= L N0, T ® %),

where, as usual, 2 denotes convergence in distribution. It follows from a the-
orem due to Mann & Wald (1943) that these results are true under suitable
conditions for wu, if y; is a stationary, stable VAR(p). For instance, the con-
ditions stated in the following definition are sufficient.

Definition 3.1 (Standard White Noise)

A white noise process uy = (uyy,...,uxe) is called standard white noise if
the u; are continuous random vectors satisfying F(u;) = 0, X, = E(usu}) is
nonsingular, u; and us are independent for s # t, and, for some finite constant
&

Eluiujiugiume| < c fori,5,k,m=1,..., K, and all t.
|

The last condition means that all fourth moments exist and are bounded.
Obviously, if the u; are normally distributed (Gaussian) they satisfy the mo-
ment requirements. With this definition it is easy to state conditions for con-
sistency and asymptotic normality of the LS estimator. The following lemma
will be essential in proving these large sample results.

Lemma 3.1
If y; is a stable, K-dimensional VAR(p) process as in (3.1.1) with standard
white noise residuals u;, then (3.2.13) and (3.2.14) hold. [ ]

Proof: See Theorem 8.2.3 of Fuller (1976, p. 340). [ |

The lemma holds also for other definitions of standard white noise. For
example, the convergence result in (3.2.14) follows from a central limit theo-
rem for martingale differences or martingale difference arrays (see Proposition
C.13) by noting that w; = vec(usZ;_;) is a martingale difference sequence un-
der quite general conditions. The convergence result in (3.2.13) may then be
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obtained from a suitable weak law of large numbers (see Proposition C.12). In
the next proposition the resulting asymptotic properties of the LS estimator
are stated formally.

Proposition 3.1 (Asymptotic Properties of the LS Estimator)

Let y: be a stable, K-dimensional VAR(p) process as in (3.1.1) with stan-
dard white noise residuals, B = Y Z'(ZZ')~! is the LS estimator of the VAR
coefficients B and all symbols are as defined in (3.2.1). Then,

plim B=2B
and

VT(B - B) = VT vee(B — B) SN (0, ® 5,) (3.2.15)
or, equivalently,

VT(b —b) = VT vec(B' — B') S N(0, X, @ '), (3.2.16)
where I = plim ZZ'/T. |

Proof: Using (3.2.10),
’ A=
plim(B — B) = plim <UTZ > plim (Zf ) =0

by Lemma 3.1, because (3.2.14) implies plim UZ’/T = 0. Thus, the consis-
tency of B is established.
Using (3.2.9),

VIT(B-B) = VT(Z2Z)'Z® Ix)u

((;22’) e 1K> %(Z I,

Thus, by Proposition C.2(4) of Appendix C, \/T(,@' — ) has the same asymp-
totic distribution as

1 -1
[plim <ZZ’> ® Ik

%(z @Igu=IT"1® IK)%(Z ® I )u.

Hence, the asymptotic distribution of v/T' (B — ) is normal by Lemma 3.1
and the covariance matrix is

T

(I eI (It ely)=I"1te 5,

The result (3.2.16) can be established with similar arguments (see Problem
3.2). m
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As mentioned previously, if u; is Gaussian (normally distributed) white
noise, it satisfies the conditions of Proposition 3.1 so that consistency and
asymptotic normality of the LS estimator are ensured for stable Gaussian
(normally distributed) VAR(p) processes y;. Note that normality of u; implies
normality of the y; for stable processes.

In order to assess the asymptotic dispersion of the LS estimator, we need
to know the matrices I" and X,. From (3.2.13) an obvious consistent estimator
of I'is

I'=27T. (3.2.17)
Because X, = F(usuy), a plausible estimator for this matrix is

T
1 ~ ~/ ]‘AA/ 1 n D 4

1

= ?[Y —-YZ'(zZ 2|y - YZ' (22" Z)
- %Y[IT 222" 2)Ir - 2'(22') 7 2)'Y
= %Y(IT - 722 12)Y’. (3.2.18)

Often an adjustment for degrees of freedom is desired because in a regression
with fixed, nonstochastic regressors this leads to an unbiased estimator of the
covariance matrix. Thus, an estimator

~ T -

Yy=——7--—7-X 2.1
V= TR (3.2.19)

may be considered. Note that there are Kp 4 1 parameters in each of the K
equations of (3.1.1) and, hence, there are K P+ 1 parameters in each equation
of the system (3.2.2). Of course, Z‘ and X, are asymptotically equivalent.
They are consistent estimators of X, if the conditions of Proposition 3.1 hold.
In fact, a bit more can be shown.

Proposition 3.2 (Asymptotic Properties of the White Noise Covariance Ma-
triz Estimators)

Let y; be a stable, K-dimensional VAR(p) process as in (3.1.1) with standard
white noise innovations and let B be an estimator of the VAR coefficients
B so that T vec(B — B) converges in distribution. Furthermore, using the
symbols from (3.2.1), suppose that

Y,.=( -BZ)(Y - BZ)’/(T —¢),
where c is a fixed constant. Then

plimVT (%, — UU'/T) = 0. (3.2.20)
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Proof:

A _ ZU'
T)(B—B) 8- 5%

1 >, D7\
T(Y—BZ)(Y—BZ) = (B- B)<

vz’ _, v
+ (B-B) + :

Under the conditions of the proposition, plim(B — B) = 0. Hence, by Lemma
3.1,

plim (B — B)ZU' /T =0

and

zz'

plim |(B — B) T

VT(B-B)'| =0

(see Appendix C.1). Thus,
plim VT [(Y — BZ)(Y — BZ)'/T —UU’/T] = 0.
Therefore, the proposition follows by noting that T/(T'—¢) — 1 as T — ool

The proposition covers both estimators E and X,. It implies that the
feasible estimators Z and E have the same asymptotic properties as the
estimator

UU’ 1 Z !

which is based on the unknown true residuals and is therefore not feasible
in practice. In particular, if /T vec(UU’/T — X,,) converges in distribution,
VT vec(fu —X,) and VT Vec(g‘u — %) will have the same limiting distribu-
tion (see Proposition C.2 of Appendix C.1). Moreover, it can be shown that
the asymptotic distributions are independent of the limiting distribution of
the LS estimator B. Another immediate implication of Proposition 3.2 is that
X, and X, are consistent estimators of Y,,. This result is established next.

Corollary 3.2.1
Under the conditions of Proposition 3.2,

plim ¥, = plim £, = plim UU’/T = X,,.
]

Proof: By Proposition 3.2, it suffices to show that plim UU’/T = X, which
follows from Proposition C.12(4) because



3.2 Multivariate Least Squares Estimation 7

T
1 A 1 i
E (TUU) == > B(uuy) = S

t=1

and

T
1 ) 1 T
Var (Tvec(UU )) =2 ;Var[vec(utut)] < 729 770 0,
where ¢ is a constant upper bound for Var[vec(usuy)]. This bound exists be-
cause the fourth moments of u; are bounded by Definition 3.1. |

If y; is stable with standard white noise, Proposition 3.1 and Corollary
3.2.1 imply that (8; — (;)/5; has an asymptotic standard normal distribution.

Here f3; (0;) is the &-th component of B (8) and 5; is the square root of the
+th diagonal element of

(272" @ 5, (3.2.21)

This result means that we can use the “t-ratios” provided by common re-
gression programs in setting up confidence intervals and tests for individual
coefficients. The critical values and percentiles may be based on the asymp-
totic standard normal distribution. Because it was found in simulation studies
that the small sample distributions of the “t-ratios” have fatter tails than the
standard normal distribution, one may want to approximate the small sam-
ple distribution by some t-distribution. The question is then what number
of degrees of freedom (d.f.) should be used. The overall model (3.2.3) may
suggest a choice of d.f. = KT — K?p — K because in a standard regression
model with nonstochastic regressors the d.f. of the “t-ratios” are equal to the
sample size minus the number of estimated parameters. In the present case,
it seems also reasonable to use d.f. = T'— Kp — 1 because the multivari-
ate LS estimator is identical to the LS estimator obtained for each of the K
equations in (3.2.2) separately. In a separate regression for each individual
equation, we would have T" observations and Kp + 1 parameters. If the sam-
ple size T is large and, thus, the number of degrees of freedom is large, the
corresponding t-distribution will be very close to the standard normal so that
the choice between the two becomes irrelevant for large samples. Before we
look a little further into the problem of choosing appropriate critical values,
let us illustrate the foregoing results by an example.

3.2.3 An Example

As an example, we consider a three-dimensional system consisting of first
differences of the logarithms of quarterly, seasonally adjusted West German
fixed investment (y;), disposable income (y2), and consumption expenditures
(y3) from File E1 of the data sets associated with this book. We use only
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data from 1960-1978 and reserve the data for 1979-1982 for a subsequent
analysis. The original data and first differences of logarithms are plotted in
Figures 3.1 and 3.2, respectively. The original data have a trend and are
thus considered to be nonstationary. The trend is removed by taking first
differences of logarithms. We will discuss this issue in some more detail in
Part II. Note that the value for 1960.1 is lost in the differenced series.

— — — income

3000

______ consumption

investment /7

2000

1000

o
1960.1 1965.1 1970.1 1975.1 1980.1

Fig. 3.1. West German investment, income, and consumption data.

Let us assume that the data have been generated by a VAR(2) process.
The choice of the VAR order p = 2 is arbitrary at this point. In the next
chapter, criteria for choosing the VAR order will be considered. Because the
VAR order is two, we keep the first two observations of the differenced series
as presample values and use a sample size of T' = 73. Thus, we have a (3 x 73)
matrix Y, B = (v,A1,42) is (3 x 7), Z is (7 x 73) and B and b are both
(21 x 1) vectors.

The LS estimates are

B = 0,A,A)=YZ' (22"

017 —320 .146 961 —.161 .115 .934

016 .044 —153 289 050 .019 —.010 |. (3.2.22)
013 —.002 .225 —.264 .034 .355 —.022
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Fig. 3.2. First differences of logarithms of West German investment, income, and

consumption.

To check the stability of the estimated process, we determine the roots of the
polynomial det(I3 — A;z — A2?) which is easily seen to have degree 6. Its

roots are
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21 = 1.753, 23 = —2.694, 23,4 = —0.320 + 2.008i, 25/ = —1.285 + 1.280i.

Note that these roots have been computed using higher precision than the
three digits in (3.2.22). They all have modulus greater than 1 and, hence, the
stability condition is satisfied.

We get
- 1
Yo, = ———YY' -YZ(2Z)7 2V’
1 (227 2Y")
21.30 .72 1.23
= 72 137 .61 | x107* (3.2.23)
1.23 .61 .89

as estimate of the residual covariance matrix X,,. Furthermore,
I'=(zz/1)!
(14 17 —.69 -251 .10 —.67 —2.57 |

e 7.39 1.24 —-10.56 1.80 1.08 —=8.70
° e 139.81 —87.40 —4.58 30.21 —-50.88
=T ° ° o 207.22 .84 —55.35 73.82
° ° ° e 733 —.03 —-9.31
° ° ° ° o 134.19 —82.64
° ° ° ° . o 207.71

Dividing the elements of B by square roots of the corresponding diagonal
elements of (ZZ')~! ® X, we get the matrix of t-ratios:

—-0.97 —2.55 027 145 -1.29 021 141
3.60 138 —-1.10 1.71 158 0.14 —-0.06 |. (3.2.24)
3.67 —-0.09 201 -194 133 324 -0.16

We may compare these quantities with critical values from a ¢-distribution
with d.f. = KT — K?p— K =198 or d.f. =T — Kp—1 = 66. In both cases, we
get critical values of approximately £2 for a two-tailed test with significance
level 5%. Thus, the critical values are approximately the same as those from
a standard normal distribution.

Apparently quite a few coefficients are not significant under this criterion.
This observation suggests that the model contains unnecessarily many free
parameters. In subsequent chapters, we will discuss the problem of choosing
the VAR order and possible restrictions for the coefficients. Also, before an
estimated model is used for forecasting and analysis purposes, the assump-
tions underlying the analysis should be checked carefully. Checking the model
adequacy will be treated in greater detail in Chapter 4.

3.2.4 Small Sample Properties of the LS Estimator

As mentioned earlier, it is difficult to derive small sample properties of the
LS estimator analytically. In such a case it is sometimes helpful to use Monte
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Carlo methods to get some idea about the small sample properties. In a Monte
Carlo analysis, specific processes are used to artificially generate a large num-
ber of time series. Then a set of estimates is computed for each multiple time
series generated and the properties of the resulting empirical distributions of
these estimates are studied (see Appendix D). Such an approach usually per-
mits rather limited conclusions only because the findings may depend on the
particular processes used for generating the time series. Nevertheless, such
exercises give some insight into the small sample properties of estimators.
In the following, we use the bivariate VAR(2) example process (2.1.15),

.02 5.1 0 0
ve= [ .03 ] * [ 4 5 } Y-+ [ 925 0 ]ytz +uy (3.2.25)
with error covariance matrix

(90 4
X, = [ 0 4} x 10 (3.2.26)

to investigate the small sample properties of the multivariate LS estimator.
With this process we have generated 1000 bivariate time series of length T =
30 plus 2 presample values using independent standard normal errors, that is,
ug ~ N (0, 2,). Thus the 1000 bivariate time series are generated by a stable
Gaussian process so that Propositions 3.1 and 3.2 provide the asymptotic
properties of the LS estimators.

In Table 3.1, some empirical results are given. In particular, the empirical
mean, variance, and mean squared error (MSE) of each parameter estimator
are given. Obviously, the empirical means differ from the actual values of
the coeflicients. However, measuring the estimation precision by the empirical
variance (average squared deviation from the mean in 1000 samples) or MSE
(average squared deviation from the true parameter value), the coefficients
are seen to be estimated quite precisely even with a sample size as small as
T = 30. This is partly a consequence of the special properties of the process.

In Table 3.1, empirical percentiles of the t-ratios are also given together
with the corresponding percentiles from the ¢- and standard normal distribu-
tions (d.f. = c0). Even with the presently considered relatively small sample
size the percentiles of the three distributions that might be used for inference
do not differ much. Consequently, it does not matter much which of the the-
oretical percentiles are used, in particular, because the empirical percentiles,
in many cases, differ quite a bit from the corresponding theoretical quantities.
This example shows that the asymptotic results have to be used cautiously
in setting up small sample tests and confidence intervals. On the other hand,
this example also demonstrates that the asymptotic theory does provide some
guidance for inference. For example, the empirical 95th percentiles of all co-
efficients lie between the 90th and the 99th percentile of the standard normal
distribution given in the last row of the table. Of course, this is just one
example and not a general finding.
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Table 3.1. Empirical percentiles of ¢t-ratios of parameter estimates for the example
process and actual percentiles of t-distributions for sample size T' = 30

empirical empirical percentiles of t-ratios
parameter mean variance MSE 1. 5. 10. 50. 90. 95. 99.
vy = .02 .041 .0011 .0015 —1.91 —1.04 —0.64 0.62 1.92 2.29 3.12
v = .03 .038 .0005 .0006 —2.30 —1.40 —1.02 0.25 1.65 2.11 2.83
aii,n =5 41 .041 049 —2.78 —2.18 —1.74 —0.43 0.92 1.28 2.01
az1,1 = .4 40 .018 .018 —2.61 —1.74 —1.28 0.04 1.28 1.71 2.65
aizq =.1 .10 .078 .078 —2.27 —1.67 —1.35 —0.03 1.29 1.67 2.38
Q221 = .5 .44 .030 .034 —-2.69 —1.97 —1.59 —0.35 0.89 1.30 2.06
a2 =0 —.05 .056 .058 —2.75 —1.93 —1.50 —0.24 1.02 1.38 2.09
Q21,2 = .25 29 .023 024 -1.99 —-1.32 —0.99 0.20 1.45 1.81 2.48
a122 =0 —.07 .053 .058 —2.48 —1.91 —1.61 —0.28 0.97 1.39 2.03
a2 =0 —.01 .023 .024 —-2.71 —-1.72 —-1.36 —0.03 1.18 1.53 2.18
degrees of percentiles of t-distributions
freedom(d.f.) 1. 5. 10. 50. 90. 95. 99.
T—-Kp—1=25 —2.49 —1.71 —1.32 0 1.32 1.71 2.49
K(T—-Kp—1)=50 —241 —1.68 —1.30 0 1.30 1.68 2.41
00 —2.33 —1.65 —1.28 0 1.28 1.65 2.33

(normal distribution)

In an extensive study, Nankervis & Savin (1988) investigated the small
sample distribution of the “t-statistic” for the parameter of a univariate AR(1)
process. They found that it differs quite substantially from the corresponding
t-distribution, especially if the sample size is small (T' < 100) and the param-
eter lies close to the instability region. Analytical results on the bias in esti-
mating VAR models were derived by Nicholls & Pope (1988) and Tjgstheim &
Paulsen (1983). What should be learned from our Monte Carlo investigation
and these remarks is that asymptotic distributions in the present context can
only be used as rough guidelines for small sample inference. That, however,
is much better than having no guidance at all.

3.3 Least Squares Estimation with Mean-Adjusted Data
and Yule-Walker Estimation

3.3.1 Estimation when the Process Mean Is Known
Occasionally a VAR(p) model is given in mean-adjusted form,

(g — 1) = Ar(ye—1 — ) + -+ Ap(Ye—p — 1) + us. (3.3.1)

Multivariate LS estimation of this model form is straightforward if the mean
vector p is known. Defining
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YOi=(y1—py...yr —p) (K xT),

A= (A41,...,4)) (K x Kp),
Yo — 1
V)= : (Kp x 1),
Ytopi1 — fL (3.3.2)

X =,...,Y2 ) (KpxT),

yY = vec(Y?) (KT x 1),

a = vec(A) (K?p x 1),
we can write (3.3.1), for t =1,...,T, compactly as

YO=AX+U (3.3.3)
or

y' = (X'®Ix)a+u, (3.3.4)

where U and u are defined as in (3.2.1). The LS estimator is easily seen to be
o= (XXX ®Ig)y® (3.3.5)
or
A=YOX'(XX")"". (3.3.6)

If y; is stable and w; is standard white noise, it can be shown that

VT(a —a) SN0, 55), (3.3.7)
where
Ya=Iy(0) e X, (3.3.8)

and I'y (0) := E(Y,)Y,”).

3.3.2 Estimation of the Process Mean

Usually g will not be known in advance. In that case, it may be estimated by
the vector of sample means,

1 T
7= ; . (3.3.9)

Using (3.3.1), ¥ can be written as
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_ _ 1
Y= ptd [y+(yoyT)u +o

T
_ 1
+A, y+f(y—p+1+"'+yo—yT—p+1 — i —yr) — B
1z
DI
t=1
Hence,
(I — A A)FT-1) = 2o+ =3 (3.3.10)
K 1 D Yy o) = TZT T : U, 0.
where
p i—1
zr = ZAi Z(yofj —Yyr—j)
i=1 =0
Evidently,

E(zr/VT) = %E(ZT) =0

and

Var(zp /VT) = %Var(zT)TH 0

— OO

because y; is stable. In other words, z7/ VT converges to zero in mean square.
It follows that vT'(Ix — Ay — --- — A,)(T — p) has the same asymptotic
distribution as > u;/vT (see Appendix C, Proposition C.2). Hence, noting
that, by a central limit theorem (e.g., Fuller (1976) or Proposition C.13),

T
% 3w L N(0, 2,), (3.3.11)
t=1

if u; is standard white noise, we get the following result:

Proposition 3.3 (Asymptotic Properties of the Sample Mean)
If the VAR(p) process y; given in (3.3.1) is stable and w; is standard white
noise, then

VI (5 — 1) 5 N (0, Zp), (3.3.12)
where
Yr=Ug — Ay — = A) 'S (I — Ay — - — AL

In particular, plim y = pu. |
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The proposition follows from (3.3.10), (3.3.11), and Proposition C.15 of
Appendix C. The limiting distribution in (3.3.11) holds even in small samples
for Gaussian white noise u;.

Because p = (Ix — Ay — -+ — Ap)~'v (see Chapter 2, Section 2.1), an
alternative estimator for the process mean is obtained from the LS estimator
of the previous section:

= —A — —A)" D (3.3.13)

Using again Proposition C.15 of Appendix C, this estimator is also consistent
and has an asymptotic normal distribution,

- d ou , 4 o'
T(n— 0 r Yuw)=— |, 3.3.14
VI -0 4 (0.5 e 0 (3.3.14)
provided the conditions of Proposition 3.1 are satisfied. It can be shown that
o/ o
r Yu)=—— =25 3.1

and, hence, the estimators i and 7 for p are asymptotically equivalent (see Sec-
tion 3.4). This result suggests that it does not matter asymptotically whether
the mean is estimated separately or jointly with the other VAR coefficients.
While this holds asymptotically, it will usually matter in small samples which
estimator is used. An example will be given shortly.

3.3.3 Estimation with Unknown Process Mean

If the mean vector x is unknown, it may be replaced by ¥ in the vectors and
matrices in (3.3.2) giving X,Y" and so on. The resulting LS estimator,

a=((XX)'X @ Ix)y°,

is asymptotically equivalent to &. More precisely, it can be shown that, under
the conditions of Proposition 3.3,

VT(a — o) SN0, Ty (0)' & 2,), (3.3.16)

where I'y(0) := E(YY,%"). This result will be discussed further in the next
section on maximum likelihood estimation for Gaussian processes.

3.3.4 The Yule-Walker Estimator

The LS estimator can also be derived from the Yule-Walker equations given
in Chapter 2, (2.1.37). They imply
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r,(h—1)

Iy(h) =[A1,...,4)] ; , h >0,

Iy(h—p)
Iy(0) - Iy(p-1)
(1), Iy(p)] = [Ar,... ) Ay :
Ly(-p+1) r,(0)
= Al'y(0)
(3.3.17)

and, hence,

A=[T,1),...,T,m)]Iy(0)"

Estimating I'y (0) by XX’/T and [I,(1), ..., T,(p)] by Y°X'/T, the resulting
estimator is just the LS estimator,

o~

A=Y'X'(XX) . (3.3.18)

Alternatively, the moment matrices Iy(h) may be estimated using as
many data as are available, including the presample values. Thus, if a sample
Y1,---,yr and p presample observations y_,1,...,yo are available, u may be
estimated as

1 T
V= > W
T+pt:—p+1

and I, (h) may be estimated as

T

fal — 1 —% o/
Iy(h) = mtz_;h+l(yt 7 e—n —7)'- (3.3.19)

Using these estimators in (3.3.17), the so-called Yule-Walker estimator for
A is obtained. For stable processes, this estimator has the same asymptotic
properties as the LS estimator. However, it may have less attractive small
sample properties (e.g., Tjgstheim & Paulsen (1983)).

The Yule-Walker estimator always produces estimates in the stability re-
gion (see Brockwell & Davis (1987, §8.1) for a discussion of the univariate
case). In other words, the estimated process is always stable. This property
is sometimes regarded as an advantage of the Yule-Walker estimator. It is
responsible for possibly considerable bias of the estimator, however. Also, in
practice, it may not be known a priori whether the data generation process of
a given multiple time series is stable. In the unstable case, LS and Yule-Walker
estimation are not asymptotically equivalent anymore (see also the discussion
in Reinsel (1993, Section 4.4)). Therefore, enforcing stability may not be a
good strategy in practice. The LS estimator is usually used in the following.
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3.3.5 An Example

To illustrate the results of this section, we use again the West German invest-
ment, income, and consumption data. The variables y1, y2, and y3 are defined
as in Section 3.2.3, the sample period ranges from 1960.4 to 1978.4, that is,
T = 73 and the data for 1960.2 and 1960.3 are used as presample values.
Using only the sample values we get

018
y=|.020 (3.3.20)
.020

which is different, though not substantially so, from

L 017
n=(Is— A —Ay) o= .020 (3.3.21)
.020

as obtained from the LS estimates in (3.2.22).
Subtracting the sample means from the data we get, based on (3.3.18),

FU ~.319 143 960 —.160 .112  .933
A=(A},A) =] .044 —153 288 .050 .019 —.010 |. (3.3.22)
—.002 224 —.264 034 .354 —.023

This estimate is clearly distinct from the corresponding part of (3.2.22), al-
though the two estimates do not differ dramatically.

If the two presample values are used in estimating the process means and
moment matrices we get

R —-.319 147 959 -—-.160 .115  .932
Ayw = .044 —.152 286 .050 .020 —-.012 (3.3.23)
—.002 225 —.264 .034 .355 —.022

which is the Yule-Walker estimate. Although the sample size is moderate,
there is a slight difference between the estimates in (3.3.22) and (3.3.23).

3.4 Maximum Likelihood Estimation

3.4.1 The Likelihood Function

Assuming that the distribution of the process is known, maximum likelihood
(ML) estimation is an alternative to LS estimation. We will consider ML
estimation under the assumption that the VAR(p) process y; is Gaussian.
More precisely,
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Uy
u=vec(U)=| : | ~N(,Ir ® X,). (3.4.1)

ur

In other words, the probability density of u is

1 —1/2 1 -1
fu(u) = WUT ® Zu| 7Y% exp —gu'(IT ® X, ul . (3.4.2)
Moreover,
[ Ik 0 0 0 ]
—Aq Ik 0 0
u= —Ap —Ap,1 IK 0 (y_ﬂ*)
0 —A,
| 0 0 . Y
[ -4 —Ay ... =4,
_A2 —A3 ‘e 0
+ A, 0 ... 0 (Yo — ), (3.4.3)
| 0 o ... 0 |

where y := vec(Y) and p* := (¢/,..., ') are (TK x 1) vectors and Yy :=
Yo ---> Y pi1) and p = (p',...,p')" are (Kp x 1). Consequently, du/dy’
is a lower triangular matrix with unit diagonal which has unit determinant.
Hence, using that u =y — p* — (X' ® Ig)a,

fy(}’)

ou
\ay, fu(w)

1 _
= GoFrEtr @ S

xep| = 5y — " = (X' @ Lioja) (Ir  £,)
x(y — p* — (X' @ IK)a)], (3.4.4)

where X and « are as defined in (3.3.2). For simplicity, the initial values Y}
are assumed to be given fixed numbers. Hence, we get a log-likelihood function

ln l(,LL, «, EU)
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KT T
= —In27r— —In|X,]
2 2
1 - %
Sy w - (X @ noe] (I o 57 Iy it - (X' ® el
T P /
KT T 1
= *71112”*§1H|Zu|*§z (yt—M)—ZAi(ytz—M)]
t=1 i=1
P
x It l(yt —p) = > Ai(yeni — u)}
i=1
KT T
= ——In2r— —In|%,|
2 2

/
,% Z (yf, - ZAiZJt—i) -t <yt _ ZAiytﬂv)
t i p
!
+ N’ <IK — ZA1> E;l Z (yt — ZAiyt—i>
i , t B
—gu’ (IK - Az-) =t (IK — ZAi> m

KT 1
= —— 27— gln | Xu] — 5tr[(YO —AX) XN Y - AX)],  (3.4.5)

where YV := (y1 — pty...,yr — p) and A := (4y,...,Ap) are as defined in
(3.3.2). These different expressions of the log-likelihood function will be useful
in the following.

3.4.2 The ML Estimators

In order to determine the ML estimators of u, o, and X, the system of first
order partial derivatives is needed:

!
861'21 = (IK - Z Ai) ! Z (yt - Z Aiyti>
7 t 7
/
-T ([K - ZAi> bo (IK - ZAZ) M

Yy —p—AYY )

t

= [Ix - AGeIx)] 2, : (3.4.6)

where Y, is as defined in (3.3.2) and j := (1,...,1)" is a (p x 1) vector of ones,
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dlnl
Il (Xer0Ure Sy - - (X' Ixal
= XX Yy -u) - XX oI Ha, (3.4.7)
olml T ., 1_ .., ¢ 0 /-1
. 5& +§2u (YO - AX)(Y° — AX) 2L (3.4.8)

Equating to zero gives the system of normal equations which can be solved
for the estimators:

~1
p= % (IK - Z&) Z (yt - Zz&%—i) , (3.4.9)

a=(XX)'X®Ig)(y— i), (3.4.10)
5, = %&o _AX)(V0 - AXY, (3.4.11)

where X and Y are obtained from X and Y9, respectively, by replacing p
with f.

3.4.3 Properties of the ML Estimators

Comparing these results with the LS estimators obtained in Section 3.3, it
turns out that the ML estimators of u and « are identical to the LS estimators.
Thus, iz and & are consistent estimators if y,; is a stationary, stable Gaussian
VAR(p) process and VT (ji — i) and VT (& — ) are asymptotically normally
distributed. This result also follows from a more general maximum likelihood
theory (see Appendix C.6). In fact, that theory implies that the covariance
matrix of the asymptotic distribution of the ML estimators is the limit of T
times the inverse information matrix. The information matrix is

9%1nl ]

3.4.12
9806 ( )

7(6) = —E[

where 8’ := (i, @', 0') with o := vech(X,). Note that vech is a column stack-
ing operator that stacks only the elements on and below the main diagonal
of ¥,. It is related to the vec operator by the (3K(K + 1) x K?) elimina-
tion matrix Ly, that is, vech(X,) = Lxvec(X,) or, defining w := vec(X,),
o = Lgw (see Appendix A.12). For instance, for K = 3,

011 012 013
w = vec(X,)=vec| 12 022 023
013 023 033

/
(0’11,0’12,013,012,02270237013,0237033)

and
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o =vech(¥,) =Lyw= | 7% |. (3.4.13)

Note that in & we collect only the potentially different elements of X,.
The asymptotic covariance matrix of the ML estimator § is known to be

Jim[Z(8) JT) 7" (3.4.14)

In order to determine this matrix, we need the second order partial derivatives
of the log-likelihood. From (3.4.6) to (3.4.8) we get

9%Inl / 1
o T Ik =Y A ) 20 Ik = ) A, (3.4.15)

0%1nl

Soder —(XX'® %", (3.4.16)
9?Inl T, _ 1, _ _
Ow O’ = 5(271 ! ® Eu 1) - i(zu ! ® Eu ! UU/Eu 1)
1
—5(2;1UU’2;1 ® XY, (3.4.17)
where w = vec(X,) (see Problem 3.3),
9?1nl
= —[Ixk - @I)ATZ Y VY @Ik
op oo’ -
A/
- <Zu22;1®11(> (Ix ®j/®IK)7avg(;<, ) (3.4.18)
¢
(see Problem 3.4),
9l 1 dvec(U’) dvec(U)
= (0 Uk @U)——— + (U Ix)———
Sots = 35 o 5 (e 0 ) 5 4 e 1o )]
(3.4.19)
(see Problem 3.5), and
9?Inl 1,4 1 ~ Ovec(A) ,
50 Dol —§(Eu X, ) {(IK ®UX )W +(UX ®IK)]

(3.4.20)

(see Problem 3.6).
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It is obvious from (3.4.18) that

9?In 1
. 1 o
lim T7°F <aﬂ (904’) =0 (3.4.21)

because E(>, Y ,/T) — 0. Furthermore, from (3.4.19), it follows that

9% 1nl
El—F—)=0 3.4.22
(w5i¢) (3.4.22)
because E(U) = 0 and 0 vec(U')/0p/ is a matrix of constants. Moreover, from
(3.4.20), we have

9% 1Inl
1 71 —_— =
lim T7°F (&d 80/) 0 (3.4.23)

because E(UX'/T) — 0. Thus, limZ(8)/T is block diagonal and we get the
asymptotic distributions of u, o, and o as follows.

Multiplying minus the inverse of (3.4.15) by T gives the asymptotic co-
variance matrix of the ML estimator for the mean vector u, that is,

1

VT —p) SN o, <IK - iAi> 2y <1K - ZP:A;> . (3.4.24)

Hence, 1 has the same asymptotic distribution as 7 (see Proposition 3.3). In
other words, the two estimators for u are asymptotically equivalent and, un-
der the present conditions, this fact implies that 7 is asymptotically efficient
because the ML estimator is asymptotically efficient. The asymptotic equiv-
alence of i and § can also be seen from (3.4.9) (see the argument prior to
Proposition 3.3 and Problem 3.7).

Taking the limit of 7! times the expectation of minus (3.4.16) gives
I'y(0) ® X 1. Note that (X X'/T) is not strictly equal to I'y (0) because we
have assumed fixed initial values y_p41,...,y0. However, asymptotically, as
T goes to infinity, the impact of the initial values vanishes. Thus, we get

VT (& —a) L N0, Ty (0) ' @ 5,). (3.4.25)

Of course, this result also follows from the equivalence of the ML and LS
estimators.

Noting that E(UU') = TX,, it follows from (3.4.17) that

9?In T, .4 1
E (W) =-3E eI, (3.4.26)

Denoting by D the (K? x %K(K + 1)) duplication matrix (see Appendix
A.12) so that w = Dgo, we get
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Pl ' &Il dw D 9?Inl D
0o o’ do dwow' do’ K owow' K

and, hence,
VT(G — o) S N(0, Z5) (3.4.27)
with
5, = —rp(2hl 71—2[D’ ('@ 5Dk
7 doda' ) KA w S
= 2DL (¥, ® X,)D}, (3.4.28)

where D}; = (D Dx)~'D/; is the Moore-Penrose generalized inverse of the
duplication matrix Dg and Rule (17) from Appendix A.12 has been used. In
summary, we get the following proposition.

Proposition 3.4 (Asymptotic Properties of ML Estimators)
Let y; be a stationary, stable Gaussian VAR(p) process as in (3.3.1). Then the

ML estimators fi, &, and o = vech(X,) given in (3.4.9)—(3.4.11) are consistent
and

/7 — U Eﬁ 0 0
VT | a-a |3N |0, | 0 Z5 0 , (3.4.29)
o—o 0o 0 X;

so that g is asymptotically independent of & and Y, and & is asymptotically
independent of pz and X,. The covariance matrices are

—1 —1
2= <1K - ZAZ) . <1K - ZA;) :
Ya=Iy(0)'® X,

Y5 = 2D} (X, ® X,)D}.

They may be estimated consistently by replacing the unknown quantities by
their ML estimators and estimating I'y (0) by X X' /T. ]

In this section, we have chosen to consider the mean-adjusted form of a
VAR(p) process. Of course, it is possible to perform a similar derivation for the
standard form given in (3.1.1). In that case the ML estimators of v and a are
not asymptotically independent though. Their joint asymptotic distribution is
identical to that of 3 given in Proposition 3.1. From Proposition 3.2 we know
that the asymptotic distribution of & remains unaltered. In the next section,
we will investigate the consequences of forecasting with estimated rather than
known processes.
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3.5 Forecasting with Estimated Processes
3.5.1 General Assumptions and Results

In Chapter 2, Section 2.2, we have seen that the optimal h-step forecast of
the process (3.1.1) is

y(h) =v+ Ay (h—1)+ -+ Apy(h — p), (3.5.1)
where y;(j) = yi4; for j < 0. If the true coefficients B = (v, A1,..., Ap) are
replaced by estimators B = (U, Ay,..., A,), we get a forecast

Gi(h) =+ Aagu(h = 1) + -+ A, (h — p), (3:5.2)

where 3;(j) = y+; for j < 0. Thus, the forecast error is
[Wern = ye(h)] + [ye(h) — G ()]

h—1
Z @iut+h,i + [yt(h) — @\t(h)] 5 (353)
=0

Yern — Ye(h)

where the @; are the coefficient matrices of the canonical MA representation of
y+ (see (2.2.9)). Under quite general conditions for the process y;, the forecast
errors can be shown to have zero mean, E [yiyp — U:(h)] = 0, so that the
forecasts are unbiased even if the coefficients are estimated. Because we do
not need this result in the following, we refer to Dufour (1985) for the details
and a proof. All the u, in the first term on the right-hand side of the last
equality sign in (3.5.3) are attached to periods s > t, whereas all the y;
in the second term correspond to periods s < t, if estimation is done with
observations from periods up to time ¢ only. Therefore, the two terms are
uncorrelated. Hence, the MSE matrix of the forecast y;(h) is of the form

Zy(h) = MSE[G(0)] = Edlysrn — 3e(0)]lyeon — Ge())'}
— 5,(h) + MSE [y (h) — 5 ()], (3.5.4)

where
h—1
Zy(h)=> &5,
=0

(see (2.2.11)). In order to evaluate the last term in (3.5.4), the distribution of
the estimator B is needed. Because we have not been able to derive the small
sample distributions of the estimators considered in the previous sections but
we have derived the asymptotic distributions instead, we cannot hope for
more than an asymptotic approximation to the MSE of y;(h) — 3;(h). Such
an approximation will be derived in the following.

There are two alternative assumptions that can be made in order to facil-
itate the derivation of the desired result:
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(1) Ouly data up to the forecast origin are used for estimation.

(2) Estimation is done using a realization (time series) of a process that is
independent of the process used for prediction and has the same stochastic
structure (for instance, it is Gaussian and has the same first and second
moments as the process used for prediction).

The first assumption is the more realistic one from a practical point of view
because estimation and forecasting are usually based on the same data set.
In that case, because the sample size is assumed to go to infinity in deriving
asymptotic results, either the forecast origin has to go to infinity too or it
has to be assumed that more and more data at the beginning of the sample
become available. Because the forecast uses only p vectors y, prior to the
forecast period, these variables will be asymptotically independent of the esti-
mator B (they are asymptotically negligible in comparison with all the other
observations going into the estimate). Thus, asymptotically the first assump-
tion implies the same results as the second one. In the following, for simplicity,
the second assumption will therefore be used. Furthermore, it will be assumed
that for 3 = vec(B) and B = vec(B) we have

VI(B - B) SN0, Z5). (3.5.5)

Samaranayake & Hasza (1988) and Basu & Sen Roy (1986) give a formal proof
of the result that the MSE approximation obtained in the following remains
valid under assumption (1) above.

With the foregoing assumptions it follows that, conditional on a particular

realization Y; = (y;,...,¥;_,41)" of the process used for prediction,
_ d Ay (h) , Oy (h)
VT [Gulh) = s () Yi) S N (o, 1), ) (35.6)

because y;(h) is a differentiable function of 3 (see Appendix C, Proposition
C.15(3)). Here T is the sample size (time series length) used for estimation.
This result suggests the approximation of MSE [y;(h) — y(h)] by $2(h)/T,
where

Qh) = E{ agtgl) by ayégl)/ } (3.5.7)

In fact, for a Gaussian process v,

VT [5:(h) = 5 (h)] 5 N (0, (). (3.5.8)
Hence, we get an approximation
So(h) = 5, (h) + %Q(h) (3.5.9)

for the MSE matrix of g (h).
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From (3.5.7) it is obvious that 2(h) and, thus, the approximate MSE X (h)
can be reduced by using an estimator that is asymptotically more efficient
than 3, if such an estimator exists. In other words, efficient estimation is of
importance in order to reduce the forecast uncertainty.

3.5.2 The Approximate MSE Matrix

To derive an explicit expression for (2(h), the derivatives dy;(h)/08" are
needed. They can be obtained easily by noting that

yi(h) = J1B"Z,, (3.5.10)

where Z; := (1,y;, ... 7y£7p+1)/’

1 0 0 ... 0 0
v A1 A2 Apfl Ap
0Ig 0 ... 0 0 1o 0
Bi=|0 0 I 0o o0 |= B
. . : 0 Ik@p-1) 0
(0 0 0 ... Ix O |
[(Kp+1)x (Kp+1)]
and
Jl;:[\()/_/:IK:O:---:O] [K x (Kp+1)].
(Kx1) (KxK(p—1))

The relation (3.5.10) follows by induction (see Problem 3.8). Using (3.5.10),
we get

Ay (h Ovec(J1B"Z O vec(B"
8%(/) _ (8[13/ 1) _ (Z Jl)aB(,)
h—1 ) ) B
— @on)| L Eyen |2
i=0 9B
(Appendix A.13, Rule (8))
h—1 _ _
= (Z;®J1) { > (B)1Tig Bl } (Ikp+1 ® J1)
i=0
(see the definition of B)
h—1
— Z Zé(B/)hflfi ® JlB'LJ{
i=0

h—1
= > Z/(B) e, (3.5.11)
1=0
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where @; = J1B'J] follows as in (2.1.17). Using the LS estimator B with

asymptotic covariance matrix E@ = I'"' ® ¥, (see Proposition 3.1), the
matrix 2(h) is seen to be
Iy(h) 1y Ay (h)’
0 = 5| 28 )2t
h—1h—1 '
= Y > B(Z®) T B 2,) 0 9,8,
i=0 j=0

= >N Elte(z,B)" T T T B 2,)|9, 8,9
i g

= 3O B T T IBY T E(4,2))9, 5.
i g

h—1h—1
= 33 (BB e, 8,8, (3.5.12)
i=0 j=0

provided y; is stable so that
I:=plim(ZZ'|T) = E(Z:Z}).

Here Z := (Zy, ..., Zr—1) is the ((Kp+ 1) x T)) matrix defined in (3.2.1).
For example, for h =1,

N1)=(Kp+1)X,.
Hence, the approximation

Kp+1 T+ Kp+1

T

2() =X, + 2w 2 (3.5.13)
of the MSE matrix of the 1-step forecast with estimated coefficients is ob-
tained. This expression shows that the contribution of the estimation vari-
ability to the forecast MSE matrix Xj(1) depends on the dimension K of
the process, the VAR order p, and the sample size T' used for estimation. It
can be quite substantial if the sample size is small or moderate. For instance,
considering a three-dimensional process of order 8 which is estimated from 15
years of quarterly data (i.e., T = 52 plus 8 presample values needed for LS es-
timation), the 1-step forecast MSE matrix X, for known processes is inflated
by a factor (T'+ Kp+ 1)/T = 1.48. Of course, this approximation is derived
from asymptotic theory so that its small sample validity is not guaranteed. We
will take a closer look at this problem shortly. Obviously, the inflation factor
(T+Kp+1)/T — 1 for T — oo. Thus the MSE contribution due to sampling
variability vanishes if the sample size gets large. This result is a consequence
of estimating the VAR coefficients consistently. An expression for 2(h) can
also be derived on the basis of the mean-adjusted form of the VAR process
(see Problem 3.9).
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In practice, for h > 1, it will not be possible to evaluate 2(h) without
knowing the AR coefficients summarized in the matrix B. A consistent esti-
mator 2(h) may be obtained by replacing all unknown parameters by their
LS estimators, that is, B is replaced by B which is obtained by using B for
B, X, is replaced by Eu, @, is estimated by &; = JlB 'Ji, and I is estimated
by I' = ZZ'/T. The resulting estimator of E@(h) will be denoted by Eg(h)
the following.

The foregoing discussion is of importance in setting up interval forecasts.
Assuming that y; is Gaussian, an approximate (1 — «)100% interval forecast,
h periods ahead, for the k-th component yj, + of y; is

Ur,t(h) £ Z(a/2)§k(h) (3.5.14)

or
[gk,t(h) — Z(a/g)gk(h), @g)t(h) + Z(a/g)gk(h)} , (3.5.15)

where z(4) is the upper a100-th percentile of the standard normal distribution

and ak(h) is the square root of the A-th diagonal element of EA( ). Using Bon-
ferroni’s inequality, approximate joint confidence regions for a set of forecasts
can be obtained just as described in Section 2.2.3 of Chapter 2.

3.5.3 An Example

To illustrate the previous results, we consider again the investment/income/
consumption example of Section 3.2.3. Using the VAR(2) model with the
coefficient estimates given in (3.2.22) and

.02551 .03637
Yr—1 = Y2 = .02434 and Yyr = Y73 = .00517
.01319 .00599
results in forecasts
R R —.011
yr(1) = v+ Aryr + Agyr 1 = 020 |,
.022
(3.5.16)
N N 011
/y\T<2) = ;/\—I— Al@\T(l) —|— A2yT = 020 5
.015
and so on.
The estimated forecast MSE matrix for h =1 is
~ T+ K 1~ 1~
T 73
23.34 .785 1.351
= 785 1.505 674 | x107%, (3.5.17)

1.351 .674 978
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where 2, from (3.2.23) has been used. We need @, for evaluating

1 1
Y3 [(ﬁ’)1*i(ZZ’/T)*1]§1*j(ZZ’/T) &, 5,8,
i=0 j=0

/@
>
I

= w[B'(22) 'BZZ) 5, + tr(B") X, P,
+tr(B)®1 2y + tr(Ixcpi1)P1 2, D).
From (2.1.22) we know that #; = A;. Hence, we use &, = A; from (3.2.22).
Thus, we get

R 23.67 .547 1.226
5,(2)=| .547 1488 .554 | x 1074
1.226  .554  .952

and
R 10.59 .238 .538
2(2)=| .238 .675 .233 | x 1072,
538 233 422
Consequently,

~ 2512 .580 1.300
£5(2)=| 580 1.581 .586 | x 10~ (3.5.18)
1.300 586 1.009

Assuming that the data are generated by a Gaussian process, we get the
following approximate 95% interval forecasts:
J17(1) £1.9651 (1) or —.011 & .095,
Jor(1) £1.9655(1) or 020 + .024,
Js.r(1) £1.9655(1) or .022 +.019, (3.5.19)
J17(2) £1.9651(2) or 011 & .098,
Jo7(2) £1.9655(2) or 020 % .025,
7(2) £ 1.9655(2) or 015 & .020.

o~

Ys,
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In Figure 3.3, some more forecasts of the three variables with two-standard
error bounds to each side are depicted. The intervals indicated by the dashed
bounds may be interpreted as approximate 95% forecast intervals for the
individual forecasts. If the region enclosed by the dashed lines is viewed as a
joint confidence region for all 4 forecasts, a lower bound for the (approximate)
probability content is (100—4x5)% = 80%. In the figure it can be seen that for
investment and income the actually observed values for 1979 (¢ = 77,...,80)
are well inside the forecast regions, whereas two of the four consumption values
are outside that region.

3.5.4 A Small Sample Investigation

It is not obvious that the MSE and interval forecast approximations derived in
the foregoing are reasonable in small samples because the MSE modification
has been based on asymptotic theory. To investigate the small sample behavior
of the predictor with estimated coefficients, we have used again 1000 realiza-
tions of the bivariate VAR(2) process (3.2.25)/(3.2.26) of Section 3.2.4 and
we have computed forecast intervals for the period following the last sample
period. In Table 3.2, the proportions of actual values falling in these intervals
are reported for sample sizes of T'= 30 and 100.

Table 3.2. Accuracy of forecast intervals in small samples based on 1000
bivariate time series

percent of actual values falling
in the forecast interval

MSE used T =30 T =100
in interval % forecast
construction interval Y1 Y2 Y1 Y2
90 86.5 85.7 89.7 89.4
2,(1) 95 92.6  91.8 945  94.0
99 98.1 98.0 99.0 98.5
90 89.3 88.2 90.4 90.0
5(1) 95 944 941 953  94.6
99 99.0 98.4 99.3 98.8
90 85.2 84.2 89.6 88.5
2, 95 90.5  90.4 94.7 939
99 98.4 96.5 98.9 98.3
90 88.1 86.9 90.3 89.1
25(1) 95 93.4 927 95.2  94.0

99 99.4 97.8 99.1 98.5
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Fig. 3.3. Forecasts of the investment/income/consumption system.

Obviously, for T' = 30, the theoretical and actual percentages are in
best agreement if the approximate MSEs Xj(h) are used in setting up
the forecast intervals. On the other hand, only forecast intervals based on
Xy(h) = Z?:_ol ;X P, and Xj(h) are feasible in practice when the actual
process coefficients are unknown and have to be estimated. Comparing only
the results based on these two MSE matrices shows that it pays to use the
asymptotic approximation Xj(h).



102 3 Estimation of Vector Autoregressive Processes

In Table 3.2, we also give the corresponding results for 7" = 100. Because
the estimation uncertainty decreases with increasing sample size, one would
expect that now the theoretical and actual percentages are in good agreement
for all MSEs. This is precisely what can be observed in the table. Nevertheless,
even now the use of the MSE adjustment in X5(1) gives slightly more accurate
interval forecasts.

3.6 Testing for Causality

3.6.1 A Wald Test for Granger-Causality

In Chapter 2, Section 2.3.1, we have partitioned the VAR(p) process y; in
subprocesses z; and x4, that is, y; = (z},2;) and we have defined Granger-
causality from x; to z; and vice versa. We have seen that this type of causality
can be characterized by specific zero constraints on the VAR coefficients (see
Corollary 2.2.1). Thus, in an estimated VAR(p) system, if we want to test
for Granger-causality, we need to test zero constraints for the coefficients.
Given the results of Sections 3.2, 3.3, and 3.4 it is straightforward to derive
asymptotic tests of such constraints.
More generally we consider testing

Hy:CB =c against H;:CB #c, (3.6.1)

where C' is an (N x (K?p+ K)) matrix of rank N and ¢ is an (N x 1) vector.
Assuming that

VT(B-B) SN O, @ 5,) (3.6.2)

as in LS/ML estimation, we get
VT(CB-CB) LN [0,0(I' " @ £,)C'] (3.6.3)

(see Appendix C, Proposition C.15) and, hence,

T(CB—¢) [C(I" ® 2,)C"] " (CB— ) % 2 (N). (3.6.4)
This statistic is the Wald statistic (see Appendix C.7).

Replacing I' and X, by their usual estimators I' = ZZ'/T and iu as
given in (3.2.19), the resulting statistic

Aw = (CB —¢) [C((ZZ')—1 ® 2,)C" B (CB—c) (3.6.5)

still has an asymptotic y2-distribution with N degrees of freedom, provided
y; satisfies the conditions of Proposition 3.2, because under these conditions
[C((Z2")"! @ £,)C')7Y/T is a consistent estimator of C(I'e ZU)C’]_I.
Hence, we have the following result.
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Proposition 3.5 (Asymptotic Distribution of the Wald Statistic)
Suppose (3.6.2) holds. Furthermore, plim(ZZ’/T) = I, plim X, = X, are
both nonsingular and Hy : CB3 = c is true, with C being an (N x (K?p+ K))
matrix of rank /N. Then
w = (OB - ¢)[C((22))™ @ Z)CTHOB — &) % X (N).
|

In practice, it may be useful to make adjustments to the statistic or the
critical values of the test to compensate for the fact that the matrix ' ' @ X,
is unknown and has been replaced by an estimator. Working in that direction,
we note that

NF(N,T) T$ YA(N), (3.6.6)
where F'(N,T) denotes an F random variable with N and T degrees of freedom
(d.f.) (Appendix C, Proposition C.3). Because an F'(N,T)-distribution has a
fatter tail than the y?(INV)-distribution divided by N, it seems reasonable to
consider the test statistic

Ap = Aw /N (3.6.7)

in conjunction with critical values from some F-distribution. The question is
then what numbers of degrees of freedom should be used? From the foregoing
discussion it is plausible to use N as the numerator degrees of freedom. On the
other hand, any sequence that goes to infinity with the sample size qualifies
as a candidate for the denominator d.f. The usual F-statistic for a regression
model with nonstochastic regressors has denominator d.f. equal to the sample
size minus the number of estimated parameters. Therefore we may use this
number here too. Note that, in the model (3.2.3), we have a vector y with
KT observations and 3 contains K (Kp+1) parameters. Alternatively, we will
argue shortly that T'— Kp—1 is also a reasonable number for the denominator
d.f. Hence, we have the approximate distributions

Ap~ F(N,KT — K?p— K) ~ F(N,T — Kp — 1). (3.6.8)

3.6.2 An Example

To see how this result can be used in a test for Granger-causality, let us
consider again our example system from Section 3.2.3. The null hypothesis
of no Granger-causality from income/consumption (yo,y3) to investment (y;)
may be expressed in terms of the coefficients of the VAR(2) process as

Ho c0121 = (13,1 = Q12,2 = (0132 = 0. (369)

This null hypothesis may be written as in (3.6.1) by defining the (4 x 1) vector
¢ =0 and the (4 x 21) matrix
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000 000 100 000 000 000 00O
000 000 000 100 000 000 00O
000 000 000 000 000 100 00O
000 000 000 000 000 000 100

With this notation, using the estimation results from Section 3.2.3,
~ ~ -1
A =BC[C((22)) @ £,)C' B4 =159, (3.6.10)

In contrast, the 95th percentile of the F'(4,3-73 —9-2 —3) = F(4,198) ~
F(4,73 —3-2—1) = F(4,66)-distribution is about 2.5. Thus, in a 5% level
test, we cannot reject Granger-noncausality from income/consumption to in-
vestment.

In this example, the denominator d.f. are so large (namely 198 or 66) that
we could just as well use Ay in conjunction with a critical value from a x?(4)-
distribution. The 95th percentile of that distribution is 9.49 and, thus, it is
about four times that of the F-test while A\yy = 4\ p.

In an example of this type it is quite reasonable to use T'— Kp — 1 denomi-
nator d.f. for the F'-test because all the restrictions are imposed on coefficients
from one equation. Therefore A\ actually reduces to an F-statistic related to
one equation with Kp + 1 parameters which are estimated from T observa-
tions. The use of T — Kp — 1 d.f. may also be justified by arguments that
do not rely on the restrictions being imposed on the parameters of one equa-
tion only, namely by appealing to the similarity between the A statistic and
Hotelling’s T2 (e.g., Anderson (1984)).

Many other tests for Granger-causality have been proposed and investi-
gated (see, e.g., Geweke, Meese & Dent (1983)). In the next chapter, we will
return to the testing of hypotheses and then an alternative test will be con-
sidered.

3.6.3 Testing for Instantaneous Causality

Tests for instantaneous causality can be developed in the same way as tests for
Granger-causality because instantaneous causality can be expressed in terms
of zero restrictions for o = vech(X,) (see Proposition 2.3). If y; is a stable
Gaussian VAR(p) process and we wish to test

Hy:Co =0 against H;:Co #0, (3.6.11)

we may use the asymptotic distribution of the ML estimator given in Propo-
sition 3.4 to set up the Wald statistic

A\w = T&'C'[20D% (2, ® £,)DC"'Cq, (3.6.12)

where D}, is the Moore-Penrose inverse of the duplication matrix Dy and C
is an (N x K(K + 1)/2) matrix of rank N. Under Hyp, Ay has an asymptotic
x2-distribution with N degrees of freedom.
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Alternatively, a Wald test of (3.6.11) could be based on the lower triangular
matrix P which is obtained from a Choleski decomposition of X,,. Noting that
instantaneous noncausality implies zero elements of X, that correspond to
zero elements of P, we can write Hy from (3.6.11) equivalently as

Hy : Cvech(P) = 0. (3.6.13)

Because vech(P) is a continuously differentiable function of o, the asymptotic

distribution of the estimator P obtained from decomposing X, follows from
Proposition C.15(3) of Appendix C:

VT vech(P — P)-% N (0, HE5 H'), (3.6.14)
where

_ 9vech(P

g = dveeh(P) _ L (Ixs + Kr)(P® I )Li] !

oo’

(see Appendix A.13, Rule (10)). Here K,,,,, is the commutation matrix defined
such that vec(G) = K,,,vec(G’) for any (m x n) matrix G and Lk is the
(3K (K +1) x K?) elimination matrix defined such that vech(F) = L vec(F)
for any (K x K) matrix F' (see Appendix A.12.2). A Wald test of (3.6.13) may

therefore be based on
Aw = Tvech(P) C'[CHE5H'C']~1C vech(P) % (N, (3.6.15)

where hats denote the usual estimators. Although the two tests based on &
and P are derived from the same asymptotic distribution, they may differ in
small samples. Of course, in the previous discussion we may replace X by
the asymptotically equivalent estimator X, .

In our investment /income/consumption example, suppose we wish to test
for instantaneous causality between (income, consumption) and investment.
Following Proposition 2.3, the null hypothesis of no causality is

Hy:091=031=0 or Co =0,
where 055 is a typical element of X, and

~fo10000

07001000'

For this hypothesis, the test statistic in (3.6.12) assumes the value Ay = 5.46.
Alternatively, we may test

Hy :pa1 =ps1 =0 or Cvech(P) =0,

where p;; is a typical element of P. The corresponding value of the test statis-
tic from (3.6.15) is Ay = 5.70. Both tests are based on asymptotic x?(2)-
distributions and therefore do not reject the null hypothesis of no instanta-
neous causality at a 5% level. Note that the critical value for a 5% level test
is 5.99.
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3.6.4 Testing for Multi-Step Causality

In Section 2.3.1, we have also discussed the possibility of extending the in-
formation set and considering causality between two variables in a system
that includes further variables. Using the same ideas as in the definition of
Granger-causality resulted in the definition of h-step causality. This concept
implies nonlinear restrictions for the VAR coefficients for which the usual ap-
plication of the Wald principle does not result in a valid test. The following
example from Liitkepohl & Burda (1997) illustrates the problem.
Consider a three-dimensional VAR(1) process:

2t Qrz Qzy Qzy Zt—1 Uzt
Yo | = | Qyz Qyy Qya Ye—1 | + | Uyt | - (3.6.16)
Tt Qry Ogy Qg Tt—1 Ug t

From (2.3.24) we know that a test of co-step noncausality from y; to z
(yt%(oo)zt) needs to check h = 2 restrictions on the VAR coefficient vector.
They are of the following nonlinear form:

r(a) = {EZ@) ] = (ko R) [ ol ] ’

where
R=[000100 000],

a = vec(A;) and a? = vec(A?), with A; being the coefficient matrix of the
process in (3.6.16). Hence,

r(a) = [ Yz } = {8} . (3.6.17)

QpzQzy + Oy Olyyyy + Qg Olgy
Denoting the covariance matrix of the asymptotic distribution of \/T(a —a)

as usual by X5 and a consistent estimator by fa, the Wald statistic for testing
these restrictions has the form

— —\ —1
-~ /
Aw = Tr(&) ( or 5.0 ) (&),

o' % dax

where 5?/80/ is an estimator of dr/0a’ (see Appendix C.7). The statistic
has an asymptotic x?(2)-distribution under the null hypothesis, provided the
matrix

or o o
o’ ¥ 0

is nonsingular. In the present case, the latter condition is unfortunately not
satisfied for all relevant parameter values.
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To see this, note that the matrix of first order partial derivatives of the
function r () is

or [ 0 00

da/ | az 00

1 0 0 0 00
Oz + Qyy Qzy Oy Oy 00

The restrictions (3.6.17) are satisfied if

Oy = 0zg = 0,05y # 0, (3.6.18)
or

Ozy = gy = 0,04 # 0, (3.6.19)
or

Oy = Opy = Quzy = 0. (3.6.20)

Clearly, Or/0a’ has rank 1 only and, thus,

or or'

if (3.6.20) holds. Hence, the standard Wald statistic will not have its asymp-
totic x?(2)-distribution under the null hypothesis r(a) = 0 if (3.6.20) holds.

Liitkepohl & Burda (1997) discussed a possibility to circumvent the prob-
lem by simply drawing a random variable from a normal distribution and
adding it to the second restriction. Thereby a nonsingular distribution of the
modified restriction vector is obtained and a Wald type statistic can be con-
structed for this vector.

More generally, Liitkepohl & Burda (1997) proposed the following ap-
proach for testing the null hypothesis that the K,-dimensional vector y; is
not h-step causal for the K -dimensional vector z; (yt%(h)zt) if additional
K, variables x; are present in the system of interest. Using the notation from
Section 2.3.1, that is, A is defined as in the VAR(1) representation (2.1.8),
J:=[Ig:0:---:0]isa (K x Kp) matrix, AY) := JAJ and a¥) := vec(AW)),
the hypotheses of interest can be stated as

Ho:(In®R)a™ =0 against H; : (I, ® R)a™ #0, (3.6.21)
where R is a (pK, K, x pK?) matrix, as defined in (2.3.23), and

2)
2 —
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Let 3™ be the estimator corresponding to al® based on the multivariate LS
estimator & of a.. Furthermore, we denote by diag(D) a diagonal matrix which
has the diagonal elements of the square matrix D on its main diagonal and
define the (hpK, K, x hpK,K,) matrix

= 0 0
Zulh) = { 0 Ihs @ diag(RESR) } :

Moreover, we define a random vector wf\h) ~ N(0,A%,(h)) which is drawn
independently of @. Here A > 0 is some fixed real number. Liitkepohl &
Burda (1997) defined the following modified Wald statistic for testing the
pair of hypotheses in (3.6.21):

)\’
Apod = 7 ( (I, © R)a™ +

-1

% [(1n @ B) S3(h) (1 @ B) + ASu(h)

Here Eg(h) is a consistent estimator of the asymptotic covariance matrix of
VT (@™ —aM). It can be shown that

MO d
At S X (KL K,)

under Hy. Notice that there is no need to add anything to the first pK, K,
components of (I, ® R)a™ because they are equal to R& which has a non-
singular asymptotic distribution.

Clearly, adding some random term to a® reduces the efficiency of the
procedure and is likely to result in a loss in power of the test relative to a
procedure which does not use this device. In particular, if the noise term is
substantial in relation to the estimated variance, there may be some loss in
power. Therefore, the amount of noise (the variance of the noise) is linked to
the variance of the estimator through X, (h). Moreover, the quantity A\ may
be chosen close to zero. Thereby the loss in efficiency can be made arbitrarily
small.

There are in fact also other possibilities to avoid the problems related to
the Wald test. One way to get around it is to impose zero restrictions directly
on the VAR coefficients prior to analyzing multi-step causality. The relevant
subset models will be discussed in Chapter 5.
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3.7 The Asymptotic Distributions of Impulse Responses
and Forecast Error Variance Decompositions

3.7.1 The Main Results

In Chapter 2, Section 2.3.2, we have seen that the coefficients of the MA
representations

Yt :M-Q-Z@iut,i, @0 :IK, (371)
i=0
and
Yo = p+ Z Oiwi—; (3.7.2)
i=0

are sometimes interpreted as impulse responses or dynamic multipliers of the
system of variables y;. Here u = E(y;), the ©; = &;P, w; = P~ 'u;, and P
is the lower triangular Choleski decomposition of X, such that X, = PP’.
Hence, X, = E(wiw;) = Ik. In this section, we will assume that the &,’s and
©;’s are unknown and they are computed from the estimated VAR coefficients
and error covariance matrix. We will derive the asymptotic distributions of the
resulting estimated @;’s and ©;’s. In these derivations, we will not need the
existence of MA representations (3.7.1) and (3.7.2). We will just assume that
the @;’s are obtained from given coefficient matrices A;,..., A, by recursions

G =Y P A, i=1,2,...,
j=1

starting with ¢y = Ix and setting A; = 0 for j > p. Furthermore, the 6;’s
are obtained from Ay, ..., A,, and X, as ©; = @; P, where P is as specified in
the foregoing. In addition, the asymptotic distributions of the corresponding
accumulated responses

Wy = By Vo= &= (x—A—--—A)"" (if it exists),
=0 1=0

Z, = Z@i, = Z@i =(Ix — Ay —---— AP (if it exists),
=0 i=0

and the forecast error variance components,

h—1

wikh = Y _(€;Oiex)? /MSE,(h), (3.7.3)
1=0

will be given. Here ey, is the &th column of Ix and
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h—1
MSE;(h) = Y €}®; X, Pje;
i=0
is the jth diagonal element of the MSE matrix X, (h) of an h-step forecast
(see Chapter 2, Section 2.2.2).
The derivation of the asymptotic distributions is based on the following
result from Appendix C, Proposition C.15(3). Suppose 3 is an (n x 1) vector
of parameters and B is an estimator such that

VT(B - B) %N (0, Z3),

where T, as usual, denotes the sample size (time series length) used for es-
timation. Let g(3) be a continuously differentiable function with values in
the m-dimensional Euclidean space and suppose that dg;/908" = (9¢;/98;) is

nonzero at the true vector 8, for i = 1,...,m. Then,
5 d 99 ., 0g’

VT {Q(IB) 9(13)] —N (07 86/2'8816> .
In writing down the asymptotic distributions formally, we use the notation
a = vec(4y,...,Ap) (K?p x 1),

A Ay .0 Ay A

Ix 0 ... O 0
A = 0 Ik 0 0 (Kp x Kp),

0 0 ... Ix O
o := vech(X,) (AK(K+1)x1)

and the corresponding estimators are furnished with a hat. As before, vec
denotes the column stacking operator and vech is the corresponding operator
that stacks the elements on and below the main diagonal only. We also use
the commutation matrix K,,,,,, defined such that, for any (m x n) matrix G,
K nvee(G) = vec(G'), the (m? x 2m(m+1)) duplication matrix D,,,, defined
such that D,,,vech(F) = vec(F), for any symmetric (m x m) matrix F, and
the (3m(m 4 1) x m?) elimination matrix L,,, defined such that, for any
(m x m) matrix F,vech(F) = Ly,vec(F) (see Appendix A.12.2). Furthermore,
J:=[Ik:0:---:0]is a (K x Kp) matrix. With this notation, the following
proposition from Liitkepohl (1990) can be stated.

Proposition 3.6 (Asymptotic Distributions of Impulse Responses)
Suppose

ﬁ[gﬂg/\/@[?& ZOUD (3.7.4)

Then
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VT vee(®; — &;) SN (0,GiXaGl), i=1,2,..., (3.7.5)

where

L dvec(P;) o ni—l—m
Gi ._W_;)J(A) @ P
VT vec(W, — W,) S N (0, F,25F), n=12,..., (3.7.6)
where F,, ;= Gy + -+ G,,.

.-+ — Ap) is nonsingular,

If (I — Ay —
VT vec(Wao — W) 5 N (0, Foo Za FLL),

where Foo := (Wo,..., ) ® Wy
—_—

(3.7.7)

p times
(3.7.8)

\/Tvec(éi - 91) iN(O, CiZaCZ( + C_’zzaézl)7 1= 0, 1,2, ey

where
Co 1207 CZ = (P/®IK)Gi,i:1,27..., CZ = (IK®¢1)H; 7::071,...7

and
Oveell) _ 1y (L[ ® PYKiexe + (P ® I}

H =  do
Ly L (Ix> + Kgr)(P® I )Ly}t
(3.7.9)

VT vec(Z, — Z,) S N(0, BySaB., + By X5 B.),
(P' ® Ig)F, and B, := (Ix ® ¥,)H.

where B,, :=
If (Ix — Ay —--- — Ap) is nonsingular,
VT vec(Ese — Soo) SN (0, BooXaBl, + Boo X5 BL), (3.7.10)
where By, := (P' ® Ig)Fs and By, = (Ix @ Uoo)H.
Finally,
\/T(ajk,h — wj}g’h) LA N(O, djk,hzad;k,h + Ejk,hEaE;-k’h)
jk=1,....K, h=1,2,..., (3.7.11)
where
9 h—1
djkn = NISE, ()2 ; [MSEj(h)(e;-@Pek)(ezP’ ® €5)G;

e ' P, Pek Z (el @mEu ®e;-)Gm

m=0
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with Gg := 0 and

]k hoi= Z [2 MSE; (h)(€’; @iPek)(e;C ® e;@i)H

(€] "®, Pey,)? Z e’ ¢m®e;45m)DK}/MSEj(h)2.

In the next subsection, the proof of the proposition is indicated. Some
remarks are worthwhile now.

Remark 1 In the proposition, some matrices of partial derivatives may be
zero. For instance, if a VAR(1) model is fitted although the true order is zero,
that is, y; is white noise, then

Go=JA @I+ JIg@P, =0

because A = A; = 0 and &7 = A; = 0. Hence, a degenerate asymptotic
distribution with zero covariance matrix is obtained for /T vec(Py — Pa). As
explained in Appendix B, we call such a distribution also multivariate normal.
Otherwise it would be necessary to distinguish between cases with zero and
nonzero partial derivatives or we have to assume that all partial derivatives
are such that the covariance matrices have no zeros on the diagonal. Note
that estimators of the covariance matrices obtained by replacing unknown
quantities by their usual estimators may be problematic when the asymp-
totic distribution is degenerate. In that case, the usual t-ratios and confidence
intervals may not be appropriate.

To illustrate the potential problems resulting from a degenerate asymptotic
distribution, we follow Benkwitz, Liitkepohl & Neumann (2000) and consider
a univariate AR(1) process y; = ay;_1 + uz. In this case, ®; = a’. Suppose
that @ is an estimator of « satisfying VT(a — «) < N(0,02) with 02 # 0.
For instance, @ may be the LS estimator of «. Then

VT (@2 - a?) % N(0,02,)
with 022 = 4a%02. This quantity is, of course, zero if & = 0. In the latter
case, VTa/os has an asymptotic standard normal distribution and, hence,
Ta? /o2 has an asymptotic x?(1)-distribution. Thus, it is clear that in this
case V/T@a? is asymptotically degenerate.

Because the estimated UC%Q obtained by replacing o and 0‘% by their usual
LS estimators is nonzero almost surely, it is tempting to use the quantity
VT(@%—a?)/2a64 for constructing a confidence interval, say, for &,. However,
for o = 0, the t-ratio becomes vT@ /25 which converges to N (0, 1/4) asymp-

totically, because vTa /G4 LN (0,1). A confidence interval constructed on
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the basis of the asymptotic standard normal distribution would therefore be
a conservative one. In other words, asymptotic inference which ignores the
possible singularity in the asymptotic distribution of the impulse responses
may be misleading (see Benkwitz et al. (2000) for further discussion). [ ]

Remark 2 In the proposition, it is not explicitly assumed that y; is stable.
While the stability condition is partly introduced in (3.7.7) and (3.7.10) by
requiring that (I — A; —--- — A,) be nonsingular so that

det(Ig — A1z — -+ — Ap2P) #0 for z =1,

it is not needed for the other results to hold. The crucial condition is the
asymptotic distribution of the process parameters in (3.7.4). Although we
have used the stationarity and stability assumptions in Sections 3.2-3.4 in
order to derive the asymptotic distribution of the process parameters, we will
see in later chapters that asymptotic normality is also obtained for certain
nonstationary, unstable processes. Therefore, at least parts of Proposition 3.6
will be useful in a nonstationary environment. |

Remark 3 The block-diagonal structure of the covariance matrix of the
asymptotic distribution in (3.7.4) is in no way essential for the asymptotic
normality of the impulse responses. In fact, the asymptotic distributions in
(3.7.5)—(3.7.7) remain unchanged if the asymptotic covariance matrix of the
parameter estimators is not block-diagonal. On the other hand, without the
block-diagonal structure, the simple additive structure of the asymptotic co-
variance matrices in (3.7.8)—(3.7.11) is lost. Although these asymptotic distri-
butions are easily generalizable to the case of a general asymptotic covariance
matrix of the VAR coeflicients in (3.7.4), we have not stated the more general
result here because it is not needed in subsequent chapters of this text. ]

Remark 4 Under the conditions of Proposition 3.4, the covariance matrix of
the asymptotic distribution of the parameters has precisely the block-diagonal
structure assumed in (3.7.4) with

Ya = FY(O)il Xy

and

™
Q

=2D% (¥, ® ¥,)D},

where D}. = (D Dx)~'D/; is the Moore-Penrose inverse of the duplication
matrix Dg. Using these expressions in the proposition, some simplifications of
the covariance matrices can be obtained. For instance, the covariance matrix
in (3.7.5) becomes

eB>Nel
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i—1
— ZJ(A/)i—l—m® (Fy( ZJ A/ i—1l—n n
m=0
i—1 1—1
— Z Z A/ i—1— mF ( )—1Ai—1—nJ/] ®(¢m2u¢;l)
m=0n=0

which is computationally convenient because all matrices involved are of a
relatively small size. The advantage of the general formulation is that it can
be used with other Y5 matrices as well. We will see examples in subsequent
chapters. [ ]

Remark 5 In practice, to use the asymptotic distributions for inference, the
unknown quantities in the covariance matrices in Proposition 3.6 may be
replaced by their usual estimators given in Sections 3.2-3.4 for the case of a
stationary, stable process y; (see, however, Remark 1). ]

Remark 6 Summing the forecast error variance components over k,

K K
Y wikn =Y Bjgn =1
k=1 k=1

for each j and h. These restrictions are not taken into account in the derivation
of the asymptotic distributions in (3.7.11). It is easily checked, however, that
for dimension K = 1 the standard errors obtained from Proposition 3.6 are
zero as they should be, because all forecast error variance components are 1
in that case. A problem in this context is that the asymptotic distribution of
Wik, cannot be used in the usual way for tests of significance and setting up
confidence intervals if w;r, = 0. In that case, from the definitions of d;
and Ejk,h, the variance of the asymptotic distribution is easily seen to be
zero and, hence, estimating this quantity by replacing unknown parameters
by their usual estimators may lead to t-ratios that are not standard normal
asymptotically and, hence, cannot be used in the usual way for inference (see
Remark 1). This state of affairs is unfortunate from a practical point of view
because testing the significance of forecast error variance components is of
particular interest in practice. Note, however, that

Wik, h =0 < ijﬂ' =0 for iZO,...,h.
A test of the latter hypothesis may be possible. |

Remark 7 Joint confidence regions and test statistics for testing hypotheses
that involve several of the response coefficients can be obtained from Propo-
sition 3.6 in the usual way. However, it has to be taken into account that, for
instance, the elements of $; and ¢; will not be independent asymptotically. If
elements from two or more MA matrices are involved the joint distribution of
all the matrices must be determined. This distribution can be derived easily
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from the results given in the proposition. For instance, the covariance matrix
of the joint asymptotic distribution of VGC(@“ P ;) is

O vec(P;,P;) 5 Ovec(P;, ;)

oo’ °‘ Oa ’
where
dvec(P;)
8V€C(@i,¢j) . oo’
oo’ | Ovec(d,)
oo’

etc. We have chosen to state the proposition for individual MA coefficient ma-
trices because thereby all required matrices have relatively small dimensions
and, hence, are easy to compute. |

Remark 8 Denoting the jk-th elements of ¢; and ©; by ¢;i,; and 0; ;,
respectively, hypotheses of obvious interest, for j # k, are

Hy:¢jr; =0 for ¢=1,2,... (3.7.12)
and
Hy:0,=0 for i=0,1,2,... (3.7.13)

because they can be interpreted as hypotheses on noncausality from variable
k to variable j, that is, an impulse in variable k does not induce any response
of variable j. From Chapter 2, Propositions 2.4 and 2.5, we know that (3.7.12)
is equivalent to

Ho:éjri=0 for i=1,2,...,p(K—1) (3.7.14)
and (3.7.13) is equivalent to
HO :Gj;m =0 for iZO,l,...,p(K—l). (3715)

Using Bonferroni’s inequality (see Chapter 2, Section 2.2.3), a test of
(3.7.14) with significance level at most 100y% is obtained by rejecting Hy
if

‘ﬁ¢jk7i/a¢jk(i)| > Z(y/2p(K—1)) (3716)

for at least one i € {1,2,...,p(K —1)}. Here z(,) is the upper 100~ percentage
point of the standard normal distribution and @, (i) is an estimate of the
asymptotic standard deviation oy, (i) of VT ajk,i obtained via Proposition
3.6. In order to obtain an asymptotic standard normal distribution of the
t-ratio VT ; /T, (i), the variance U¢> (7) must be nonzero, however.
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A test of (3.7.15) with significance level at most « is obtained by rejecting
Hy if

> Z(y/2(pK —p+1)) for at least one
1€{0,1,2,....,p(K —1)}ifj >k

> 2(y/2(pK —p)) for at least one
i€{1,2,...,p(K-1)}if j < k.
(3.7.17)

IVT0;1.:/s,, (i)]

Here Gy, (i) is a consistent estimator of the standard deviation of the asymp-

totic distribution of \/ng;“ obtained from Proposition 3.6 and that standard
deviation is assumed to be nonzero.

A test based on Bonferroni’s principle may have quite low power because
the actual significance level may be much smaller than the given upper bound.
Therefore a test based on some x2- or Fstatistic would be preferable. Unfor-
tunately, such tests are not easily available for the present situation. The
problem is similar to the one discussed in Section 3.6.4 in the context of
testing for multi-step causality. For more discussion of this point see also
Liitkepohl (1990) and for a different approach of representing the uncertainty
in estimated impulse responses see Sims & Zha (1999). |

3.7.2 Proof of Proposition 3.6

The proof of Proposition 3.6 is a straightforward application of the matrix dif-
ferentiation rules given in Appendix A.13. It is sketched here for completeness
and because it is spread out over a number of publications in the literature.
Readers mainly interested in applying the proposition may skip this section
without loss of continuity.

To prove (3.7.5), note that @; = JA'J’' (see Chapter 2, Section 2.1.2) and
apply Rule (8) of Appendix A.13. The expression for F,, in (3.7.6) follows
because

dvec(¥,) "L 9 vec(d;)

dal oo’

=1

and
Ovec(Vy)  Ovec(Vo) Ovec(W )
oo - dvec(W')y O
Ovec(Ix — Ay —---— Ap)
oo’ ’

F =

= _(![/!)o ® WOO)
Furthermore,

- Ovec(®;)  Ovec(®:P) .,
Ci= ool foe% = (Pel)

0 vec(P;)
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and
~ _ Ovec(0;)  Ovec(P)
Ci=—p = Uk ®Pi)—5——,
where
Jdvec(P) _, Ovech(P)
oo’ Lk oo’ H,

follows from Appendix A.13, Rule (10). The matrices B, B, Bs, and B are
obtained in a similar manner, using the relations =, = ¥,,P and =, = ¥V P.
Finally, in (3.7.11),

Owjk,h

Bt = par
= 8vec( i)

i=0

- Z (e pex 2o )] /MSE;—(h)%

OMSE;(h) dvec(Py,)
B0 o000
dvec(P),)

oo

. dvec(®y)
= [(e}@mﬂu ® e;-) + (e; ® e;@mEu)KKK] T’m

+(ef ® P X))

T

TS
Ly

[(e;@mﬂu ®e}) + K (€@ Xy © e;)] Gm

|
(]

3
3
S

= |l
| o

1
= 2 (6;45m2u ® e’j)Gm,

3
I

0
(see Appendix A.12.2, Rule (23))
- 0wk,

dich = g

h—1
- {2(63@13%)(@; ® ¢\ ®; )8\/;(:(/ I\MSE; ()

1=0
M E;(

and
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h—1

OMSE; (h) dvec(X,)
do’ %(e;@m@@e;qsm) do’
h—1
dvech(X,)
= Y (¢ @ ¢[,)Dg o
m=0 ! ! 9o

Thereby Proposition 3.6 is proven. In the next section an example is discussed.

3.7.3 An Example

To illustrate the results of Section 3.7.1, we use again the investment/income/
consumption example from Section 3.2.3. Because

o ~.320 146 961
Gy =A = | .044 —153 289 |,
—.002 225 —.264

tlle elements of 51 must have the same standard errors as the elements of
A;. Checking the covariance matrix in (3.7.5), it is seen that the asymptotic
covariance matrix of @, is indeed the upper left-hand (K2 x K?) block of Yg,
because

Gi=J&Igk=[Ig2:0:---:0].

Thus, the square roots of the diagonal elements of

Iy

S 1 . |0
G1YaG T = o0 Iy (0) e X .
0

are estimates of the asymptotic standard errors of 51. Note that here and in
the following we use the LS estimators from the standard form of the VAR
process (see Section 3.2) and not the mean-adjusted form. Accordingly, the
estimate Iy (0)~! is obtained from (ZZ'/T)~! by deleting the first row and
column.

From (2.1.22) we get

L —.054 .262 416
Py =P1 A1 + Ag = 029 .114 —.088
045 261  .110

To estimate the corresponding standard errors, we note that

Go=JA @I+ JRP.
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Replacing the unknown quantities by the usual estimates gives
1~ =~ ~ 1, ~ -~ - ~, a o
TG 5Gh = 7 [JA'Ty(0)'AJ @ £ + JA'TY(0) ') ® 2,8}
+ITy (0) 'AT @ 6,5, + JTy(0) 1) © &, 5,8)].
The square roots of the diagonal elements of this matrix are estimates of
the standard deviations of the elements of @2 and so on. Some @ matrices
together with estimated standard errors are given in Table 3.3. In Figures

3.4 and 3.5, some impulse responses are depicted graphically along with two-
standard error bounds.
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Fig. 3.4. Estimated responses of consumption to a forecast error impulse in income
with estimated asymptotic two-standard error bounds.

In Figure 3.4, consumption is seen to increase in response to a unit shock
in income. However, under a two-standard error criterion (approximate 95%
confidence bounds) only the second response coefficient is significantly differ-
ent from zero. Of course, the large standard errors of the impulse response
coefficients reflect the substantial estimation uncertainty in the VAR coeffi-
cient matrices A; and As.

To check the overall significance of the response coefficients of consumption
to an income impulse, we may use the procedure described in Remark 8 of
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Table 3.3. Estimates of impulse responses for the investment/income/con-
sumption system with estimated asymptotic standard errors in parentheses

i D; i’z
[ —0.320 0.146  0.961 7 [ 0.680 0.146 0.961 1
(0.125) (0.562) (0.657) (0.125) (0.562) (0.657)
1 0.044 —0.153 0.289 0.044  0.847  0.289
(0.032) (0.143) (0.167) (0.032) (0.143) (0.167)
—0.002 0.225 —0.264 —0.002 0.225 0.736
| (0.025) (0.115) (0.134) ] | (0.025) (0.115) (0.134) |
[ —0.054 0.262 0.416 T [ 0.626  0.408  1.377 T
(0.129) (0.546) (0.663) (0.148) (0.651) (0.755)
9 0.029 0.114 —0.088 0.073 0.961 0.200
(0.032) (0.135) (0.162) (0.043) (0.192) (0.222)
0.045 0.261  0.110 0.043 0.486  0.846
L (0.026) (0.108) (0.131) | L (0.033) (0.144) (0.167) |
[ 0.119 0.353 —0.408 T [ 0.745 0.761 0.969 7
(0.084) (0.384) (0.476) (0.099) (0.483) (0.550)
3 —0.009 0.071  0.120 0.064 1.033  0.320
(0.016) (0.078) (0.094) (0.037) (0.176) (0.203)
—0.001 —-0.098 0.091 0.042 0.388 0.937
L (0.017) (0.078) (0.102) | L (0.033) (0.156) (0.183) |
[ 0.756 0.836  1.295 T
(0.133) (0.661) (0.798)
. 0 0.076 1.076  0.344
(0.048) (0.236) (0.285)
0.053  0.505  0.964
L (0.043) (0.213) (0.257) |

Section 3.7.1. That is, we have to check the significance of the first p(K —
1) = 4 response coefficients. Because one of them is individually significant
at an asymptotic 5% level we may reject the null hypothesis of no response
of consumption to income impulses at a significance level not greater than
4 x 5% = 20%. Of course, this is not a significance level we are used to
in applied work. However, it becomes clear from Table 3.3 that the second
response coefficient ¢35 is still significant if the individual significance levels
are reduced to 2.5%. Note that the upper 1.25 percentage point of the standard
normal distribution is ¢y o125 = 2.24. Thus, we may reject the no-response
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Fig. 3.5. Estimated responses of investment to a forecast error impulse in consump-
tion with estimated asymptotic two-standard error bounds.

hypothesis at an overall 4 x 2.5% = 10% level which is clearly a more common
size for a test in applied work. Still, in this exercise, the data do not reveal
strong evidence for the intuitively appealing hypothesis that consumption
responds to income impulses. In later chapters, we will see how the coefficients
can potentially be estimated with more precision.

In Figure 3.5, the responses of investment to consumption impulses are de-
picted. None of them is significant under a two-standard error criterion. This
result is in line with the Granger-causality analysis in Section 3.6. In that sec-
tion, we did not find evidence for Granger-causality from income/consumption
to investment. Assuming that the test result describes the actual situation,
the ¢13,; must be zero for i = 1,2, ... (see also Chapter 2, Section 2.3.1).

The covariance matrix of

R ~ 680 .146 .961
Oy =1+, = | 044 .847 .289
—.002 .225 .736

is, of course, the same as that of dgl and an estimate of the covariance matrix
of the elements of
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~ L 626 .408 1.377
Wy =I5+ P + Py = | 073 961 .200
043 486  .846

is obtained as (G14G2)Xa(G1+Gs)' /T. Some accumulated impulse responses
together with estimated standard errors are also given in Table 3.3 and accu-
mulated responses of consumption to income impulses and of investment to
consumption impulses are shown in Figures 3.6 and 3.7, respectively. They
reinforce the findings for the individual impulse responses in Figures 3.4 and
3.5.
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Fig. 3.6. Accumulated and long-run responses of consumption to a forecast error
impulse in income with estimated asymptotic two-standard error bounds.

An estimate of the asymptotic covariance matrix of the estimated long-run
responses Wy, = (I3 — Ay — Ap)~Lis
® @;) .

The matrix @OO together with the resulting standard errors is also given in Ta~
ble 3.3. For instance, the total long-run effect 113 o of a consumption impulse

1
T

~
Voo
~

([Pl - UL) © ¥oo) 2 ( pe
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Fig. 3.7. Accumulated and long-run responses of investment to a forecast error
impulse in consumption with estimated asymptotic two-standard error bounds.

on investment is 1.295 and its estimated asymptotic standard error is .798.
Not surprisingly, %13, is not significantly different from zero for any common
level of significance (e.g., 10%). On the other hand, 1532,00, the long-run effect
on consumption due to an impulse in income, is significant at an asymptotic
5% level. ~

For the interpretation of the @;’s, the critical remarks at the end of Chapter
2 must be kept in mind. As explained there, the @; and ¥,, coefficients may not
reflect the actual responses of the variables in the system. As an alternative,
one may want to determine the responses to orthogonal residuals. In order to
obtain the asymptotic covariance matrices of the ©; and Z;, a decomposition
of X, is needed. For our example,

R 4.61 0 0
P=1| .16 1.16 0| x1072
27 .49 .76

is the lower triangular matrix with positive diagonal elements satisfying ﬁ]f’ =
2. (Choleski decomposition). The asymptotic covariance matrix of vec(P) =
vec(6p) is a (9 x 9) matrix which is estimated as
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~

1=~ ~ 2 ~ ~ ~ ~
7C085Ch = ZHD(E, © £,)DH,

where, as usual, D} = (D% Dx)"'D/ and

~ ~ —~ —1
=1 {Ls (I @ P)Kys + (P I)| L }

The resulting estimated asymptotic standard errors of the elements of P are
given in Table 3.4. Note that the variances corresponding to elements above
the main diagonal of P are all zero because these elements are zero by defini-
tion and are not estimated.

The asymptotic covariance matrix of the elements of

R —1.196  .644  .730
6, = 256 —.035 .219 | x 1072
—.047 131 —.201

is obtained as the sum of the two matrices
CiZaC1/T = [(P'@ )G EaGL(P@ Iy)| /T

and

~

C155CY )T = (Is © &, )HE 5 H' (I3 ® @) /T.

The resulting standard errors for the elements of 91 are given in Table 3.4
along with some more 8 and =), matrices.

Some responses and accumulated responses of consumption to income in-
novations with two-standard error bounds are depicted in Figures 3.8 and 3.9.
The responses in Figures 3.4 and 3.8 are obviously a bit different. Note the
(significant) immediate reaction of consumption in Figure 3.8. However, from
period 1 onwards the response of consumption in both figures is qualitatively
similar. The difference of scales is due to the different sizes of the shocks
traced through the system. For instance, Figure 3.4 is based on a unit shock
in income while Figure 3.8 is based on an innovation of size one standard
deviation due to the transformation of the white noise residuals.

Again, a test of overall significance of the impulse responses in Figure 3.8
could be performed using Bonferroni’s principle. Now we have to check the
significance of the f32;’s for ¢ = 0,1,...,4 = p(K — 1). We reject the null
hypothesis of no response if at least one of the coefficients is significantly
different from zero. In this case, we can reject at an asymptotic 5% level of
significance because 932 o is significant at the 1% level (see Table 3.4). Thus,
we may choose individual significance levels of 1% for each of the 5 coefficients
and obtain 5% as an upper bound for the overall level. Of course, all these
interpretations are based on the assumption that the actual asymptotic stan-
dard errors of the impulse responses are nonzero (see Section 3.7.1, Remark
1).
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Table 3.4. Estimates of responses to orthogonal innovations for the invest-
ment/income/consumption system with estimated asymptotic standard errors

in parentheses

461 0 0 T461 0 0
(.38) (.38)
16 116 0 Y 16 116 0 Y
0 (.14) (.10 x 10 (.14) (.10) x 10
27 49 76 27 49 76
(11) (.10) (.06) L (11) (10) (.06)
120 64 .73 346 .64 .73 T
(57) (56) (.50) (63) (56) (.50)
26 —.04 .22 L 41 113 .22 L
! (14) (14) (13) | <10 (20) (17) (13) | <10
~05 13 —.20 22 62 .56
(12) (12) (.10) (15) (14) (.11)
~10 51 .32 332 115 1.05
(58) (57) (.50) (74) (.69) (.58)
13 .09 —.07 L 54 122 .15 L
2 (14) (14) (12) | <10 (24) (22) (17) | <10
28 36 .08 50 98 .64
(12) (12) (.10) | (20) (.18) (.14)
©3.97 1.61 .98 T
(.82) (.92) (.61)
61 142 .26 L
o 0 (31) (34) (22) | <10
58 1.06 .73
| (28) (.32) (.20)

We have also performed forecast error variance decompositions and we
have computed the standard errors on the basis of the results given in Propo-
sition 3.6. For some forecast horizons the decompositions are given in Table
3.5. The standard errors may be regarded as rough indications of the sampling
uncertainty. It must be kept in mind, however, that they may be quite mis-
leading if the true forecast error variance components are zero, as explained
in Remark 6 of Section 3.7.1. Obviously, this qualification limits their value in
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Fig. 3.8. Estimated responses of consumption to an orthogonalized impulse in
income with estimated asymptotic two-standard error bounds.

the present example. Students are invited to reproduce the numbers in Table
3.5 and the previous tables of this section.

3.7.4 Investigating the Distributions of the Impulse Responses by
Simulation Techniques

In the previous subsections, it was indicated repeatedly that in some cases
the small sample validity of the asymptotic results is problematic. In that
situation, one possibility is to use Monte Carlo or bootstrapping methods for
investigating the sampling properties of the quantities of interest. Although
these methods are quite expensive in terms of computer time, they were used
in the past for evaluating the properties of impulse response functions (see,
e.g., Runkle (1987) and Kilian (1998, 1999)). The general methodology is
described in Appendix D.

In the present situation, there are different approaches to simulation. One
possibility is to assume a specific distribution of the white noise process, e.g.,
uy ~ N(0, X)), and generate a large number of time series realizations based
on the estimated VAR coefficients. From these time series, new sets of coef-
ficients are then estimated and the corresponding impulse responses and/or
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Fig. 3.9. Estimated accumulated and long-run responses of consumption to an
orthogonalized impulse in income with estimated asymptotic two-standard error
bounds.

forecast error variance components are computed. The empirical distributions
obtained in this way may be used to investigate the actual distributions of
the quantities of interest.

Alternatively, if an assumption regarding the white noise distribution can-
not be made, bootstrap methods may be used and new sets of residuals may
be drawn from the estimation residuals. A large number of ¥, time series is
generated on the basis of these sets of disturbances. The bootstrap multiple
time series obtained in this way are then used to compute estimates of the
quantities of interest and study their properties. Three different methods for
computing bootstrap confidence intervals in the present context are described
in Appendix D.3. We have used the standard and the Hall percentile methods
to compute confidence intervals for the response of consumption to a fore-
cast error impulse and an orthogonalized impulse in income for our example
system. The results are shown in Figures 3.10 and 3.11, respectively.

Some interesting observations can be made. First, for the forecast error im-
pulse responses, the two different methods for establishing confidence intervals
produce quite similar results which are also at least qualitatively similar to
the asymptotic confidence intervals in Figure 3.4. Second, the situation is a
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Table 3.5. Forecast error variance decomposition of the investment/income/con-
sumption system with estimated asymptotic standard errors in parentheses

proportions of forecast error variance, h periods
ahead, accounted for by innovations in

forecast forecast
error horizon investment income consumption
in h Dj1,n Wiz,h Wj3,h
investment 1 1.00(.00) .00(.00) .00(.00)
G=1 2 .96(.04) .02(.03) .02(.03)
3 95(.04) .03(.03) .03(.03)
4 94(.05) .03(.03) .03(.03)
8 .94(.05) .03(.03) .03(.04)
income 1 .02(.03) .98(.03) .00(.00)
(G =2) 2 .06(.05) .91(.06) .03(.04)
3 .07(.06) .90(.07) .03(.04)
4 .07(.06) .89(.07) .04(.04)
8 .07(.06) .89(.07) .04(.04)
consumption 1 .08(.06) .27(.09) .65(.09)
(7 =3) 2 .08(.06) .27(.08) .65(.09)
3 .13(.08) .33(.09) .54(.09)
4 13(.08) .34(.09) .54(.09)
8 13(.08) .34(.09) .53(.09)

bit different for the orthogonalized impulse responses in Figure 3.11. Here the
two different bootstrap methods produce rather different confidence intervals.
These intervals are quite asymmetric in the sense that the estimated impulse
responses are not in the middle between the lower and upper bound of the in-
tervals. Thereby they also look quite differently from the asymptotic intervals
shown in Figure 3.8. The latter intervals are symmetric around the estimated
impulse response coefficients by construction. Again, the qualitative interpre-
tation does not change, however. In other words, the instantaneous and the
second coefficient are significantly different from zero, as before. Moreover,
the confidence intervals in Figure 3.11 are consistent with a rapidly declining
effect of an impulse in income.

It must be emphasized, however, that the bootstrap generally does not
solve the problem of a singular asymptotic distribution of the impulse re-
sponses and the resulting potentially invalid inference. If the asymptotic dis-
tribution is singular, the bootstrap may fail to produce meaningful confidence
intervals, for example. Again it may be worth considering a univariate AR(1)
process y; = ayi—1 + uz for illustrative purposes. The second forecast error
impulse response coefficient is @, = a?. The corresponding estimator 52 =a?
was found to have a singular asymptotic distribution if & = 0 (see Remark 1
in Section 3.7.1). Suppose a bootstrap is used to produce N bootstrap esti-

mates of «, a;n), n=1,..., N. Clearly, the corresponding bootstrap estimates
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Fig. 3.10. Estimated responses ( ) of consumption to a forecast error impulse in
income with 95% bootstrap confidence bounds based on 2000 bootstrap replications
(— — standard intervals, - - - Hall’s percentile intervals).

Eﬁ;(n) = 62?5) will all be positive with probability one because they are squares.
Thus, if the standard (1—+)100% bootstrap confidence interval is constructed
in the usual way by choosing é\;(N,y/Q) and .53(]\,(177)/2) as .lower and upper
bound, respectively, the true value of zero will never be within the confidence
interval. Hence, in this case the actual confidence level will be zero. Although
the Hall confidence intervals may be a bit better in this case, they will also
not provide the desired coverage level even in large samples. A more detailed
discussion of this problem is given by Benkwitz et al. (2000), where also meth-
ods for correct asymptotic inference are considered. One possible solution is
to eliminate all points where nonsingularities of the asymptotic distribution
may occur by fitting subset models (see Chapter 5). Another possibility to cir-
cumvent the problem is to allow the VAR process to be of infinite order and
increase the order with growing sample size. This possibility will be discussed
in detail in Chapter 15.
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Fig. 3.11. Estimated responses ( ) of consumption to an orthogonalized im-
pulse in income with 95% bootstrap confidence bounds based on 2000 bootstrap
replications (— — standard intervals, - - - Hall’s percentile intervals).

3.8 Exercises

3.8.1 Algebraic Problems

The notation of Sections 3.2-3.5 is used in the following problems.

Problem 3.1
Show that B = ((ZZ')~'Z @ Ik )y minimizes

SB) =vu=y - (Z' @ Ix)B|'ly - (Z'® Ix)B|.
Problem 3.2
Prove that
VT(b—b) LN (0,2, ® 'Y,
if y; is stable and
1

%VGC(ZU/) = —T(IK ® Z)vec(U') S N(0, 2, ® T).
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Problem 3.3
Show (3.4.17). (Hint: Use the product rule for matrix differentiation and
dvec(X 1) /Ovec(X,) = -X @ X 1)

Problem 3.4
Derive (3.4.18). (Hint: Use the last expression given in (3.4.6).)

Problem 3.5
Show (3.4.19).

Problem 3.6
Derive (3.4.20).

Problem 3.7
Prove that plim Z7/v/T = 0, where

i—1

: Azz _yTj

i=1 7=0
(Hint: Show that E(Zr/v/T) — 0 and Var(Zr/vT) —0.)

Problem 3.8
Show that Equation (3.5.10) holds.
(Hint: Define

ye(h)
Zt(h) = .
yi(h—p+1)
and show Z;(h) = BZ;(h — 1) by induction.)

Problem 3.9

In the context of Section 3.5, suppose that y; is a stable Gaussian VAR(p)
process which is estimated by ML in mean-adjusted form. Show that the
forecast MSE correction term has the form

Qh) = E <8yt(h) 3 8yt(h)’> +E <8yt(h) ho 3Z/t(h)/> 7

ow " Ou oo Jda
with
Ik
o :
Ik
(KpxK)

and
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8yt(h) « h—1—i
o ;(Yt —p)'(A) ® D;.

Here pp:= (¢/,..., 1) isa (Kpx 1) vector, Y; and A are as defined in (2.1.8),
Ji=1[Ig :0:---:0]is a (K x Kp) matrix, and ®; is the i-th coefficient
matrix of the prediction error MA representation (2.1.17).

Problem 3.10
Derive the ML estimator and its asymptotic distribution for the parameter of
a stable AR(1) process, y; = ay;—1 + ug, up ~ i.i.d. N(0,02).

3.8.2 Numerical Problems

The following problems require the use of a computer. They are based on
the two quarterly, seasonally adjusted U.S. investment series given in File E2.
Consider the variables

y1 — first differences of fixed investment,
yo — first differences of change in business inventories,

in the following problems. Use the data from 1947 to 1968 only.

Problem 3.11
Plot the two time series y1; and ys; and comment on the stationarity and
stability of the series.

Problem 3.12

Estimate the parameters of a VAR(1) model for (y1, y2:)" using multivariate
LS, that is, compute B and X,. Comment on the stability of the estimated
process.

Problem 3.13

Use the mean-adjusted form of a VAR(1) model and estimate the coefficients.
Assume that the data generation process is Gaussian and estimate the covari-
ance matrix of the asymptotic distribution of the ML estimators.

Problem 3.1
Determine the Yule-Walker estimate of the VAR(1) coefficient matrix and
compare it to the LS estimate.

Problem 3.15

Use the LS estimate and compute point forecasts yse(1), Use(2) (that is, the
forecast origin is the last quarter of 1968) and the corresponding MSE matrices
fy(l), fy(Q), fg(l), and 2@(2) Use these estimates to set up approximate
95% interval forecasts assuming that the process y; is Gaussian.

Problem 3.16
Test the hypothesis that y does not Granger-cause y;.



3.8 Exercises 133

Problem 3.17

Estimate the coefficient matrices @; and &9 from the LS estimates of the
VAR(1) model for y; and determine approximate standard errors of the esti-
mates.

Problem 3.18 N

Determine the upper triangular matrix P with positive diagonal for which
EP/ = X,. Estimate the covariance matrix of the asymptotic distribution of
P under the assumption that y; is Gaussian. Test the hypothesis that the
upper right-hand corner element of the underlying matrix P is zero.

Problem 3.19 R R

Use the results of the previous problems to compute ©@g, ©1, and @s. Deter-
mine also estimates of the asymptotic standard errors of the elements of these
three matrices.



4

VAR Order Selection and Checking the Model
Adequacy

4.1 Introduction

In the previous chapter, we have assumed that we have given a K-dimensional
multiple time series y1,...,yr, with v+ = (y1t,...,yx+)’, which is known to
be generated by a VAR(p) process,

Yy =v+ A1y o+ Apyep g, (4.1.1)

and we have discussed estimation of the parameters v, Ay, ..., A,, and X, =
E(utuy}). In deriving the properties of the estimators, a number of assumptions
were made. In practice, it will rarely be known with certainty whether the
conditions hold that are required to derive the consistency and asymptotic
normality of the estimators. Therefore statistical tools should be used in order
to check the validity of the assumptions made. In this chapter, some such tools
will be discussed.

In the next two sections, it will be discussed what to do if the VAR order
p is unknown. In practice, the order will usually be unknown. In Chapter 3,
we have assumed that a VAR(p) process such as (4.1.1) represents the data
generation process. We have not assumed that all the A; are nonzero. In
particular A, may be zero. In other words, p is just assumed to be an upper
bound for the VAR order. On the other hand, from (3.5.13) we know that the
approximate MSE matrix of the 1-step ahead predictor will increase with the
order p. Thus, choosing p unnecessarily large will reduce the forecast precision
of the corresponding estimated VAR(p) model. Also, the estimation precision
of the impulse responses depends on the precision of the parameter estimates.
Therefore it is useful to have procedures or criteria for choosing an adequate
VAR order.

In Sections 4.4-4.6, possibilities are discussed for checking some of the as-
sumptions of the previous chapters. The asymptotic distribution of the resid-
ual autocorrelations and so-called portmanteau tests are considered in Section
4.4. The latter tests are popular tools for checking the whiteness of the residu-
als. More precisely, they are used to test for nonzero residual autocorrelation.
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In Section 4.5, tests for nonnormality are considered. The normality assump-
tion was used in Chapter 3 in setting up forecast intervals.

One assumption underlying much of the previous analysis is the station-
arity of the systems considered. Nonstationarities may have various forms.
Not only trends indicate deviations from stationarity but also changes in the
variability or variance of the system. Moreover, exogenous shocks may affect
various characteristics of the system. Tests for structural change are presented
in Section 4.6.

4.2 A Sequence of Tests for Determining the VAR Order

Obviously, there is not just one correct VAR order for the process (4.1.1). In
fact, if (4.1.1) is a correct summary of the characteristics of the process y;,
then the same is true for

yr=v+A1ye 1+ A+ Ay p + Aprayepo1 + U

with Apyq1 = 0. In other words, if y; is a VAR(p) process, in this sense it is
also a VAR(p + 1) process. In the assumptions of the previous chapter, the
possibility of zero coefficient matrices is not excluded. In this chapter, it is
practical to have a unique number that is called the order of the process.
Therefore, in the following we will call ¥, a VAR(p) process if A, # 0 and
A; =0 for ¢ > p so that p is the smallest possible order. This unique number
will be called the VAR order.

4.2.1 The Impact of the Fitted VAR Order on the Forecast MSE

If y; is a VAR(p) process, it is useful to fit a VAR(p) model to the available
multiple time series and not, for instance, a VAR(p + i) because, under a
mean square error measure, forecasts from the latter process will be inferior
to those based on an estimated VAR(p) model. This result follows from the
approximate forecast MSE matrix Xj(h) derived in Section 3.5.2 of Chapter
3. For instance, for h =1,

T+ Kp+1

Sy =—25,
if a VAR(p) model is fitted to data generated by a K-dimensional VAR process
with order not greater than p. Obviously, Xj5(1) is an increasing function of
the order of the model fitted to the data.

Because the approximate MSE matrix is derived from asymptotic theory,
it is of interest to know whether the result remains true in small samples.
To get some feeling for the answer to this question, we have generated 1000
Gaussian bivariate time series with a process similar to (3.2.25),
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.02 R 0 0
ye = [ 03 ] * [ 45 }ytﬁ [ 25 0 }y”‘L“t’

090 ] (4.2.1)

E“[ 0 .04

We have fitted VAR(2), VAR(4), and VAR(6) models to the generated series
and we have computed forecasts with the estimated models. Then we have
compared these forecasts to generated post-sample values. The resulting av-
erage squared forecasting errors for different forecast horizons h and sample
sizes T are shown in Table 4.1. Obviously, the forecasts based on estimated
VAR(2) models are clearly superior to the VAR(4) and VAR(6) forecasts for
sample sizes T = 30, 50, and 100. While the comparative advantage of the
VAR(2) models is quite dramatic for T = 30, it diminishes with increasing
sample size. This, of course, was to be expected given that the approximate
forecast MSE matrix of an estimated process approaches that of the known
process as the sample size increases (see Section 3.5).

Table 4.1. Average squared forecast errors for the estimated bivariate VAR(2)
process (4.2.1) based on 1000 realizations

sample forecast average squared forecast errors

size horizon VAR(2) VAR(4) VAR(6)

T h Y1 Y2 Y1 Y2 Y1 Y2
1 111 .052 132 .062 .165  .075

30 2 155 .084 182 .098 223 119
3 146 141 183  .166 225 202
1 108 .043 119 .048 129 .054

50 2 132 .075 .144 083 161 .093
3 142120 .150 .130 168 .145
1 .091 .044 .095 .046 .098 .049

100 2 120 .064 125 .067 130  .069
3 .130  .108 135 113 .140 113

Of course, the process considered in this example is a very special one. To
see whether a similar result is obtained for other processes as well, we have
also generated 1000 three-dimensional time series with the VAR(1) process
(2.1.14),

.01 5 0 0 225 0 0
ye=1.02 1+ .1 1 3|p_1+tu with X, = 0 1.0 .5
0 0 .2 .3 0 .5 .74

(4.2.2)
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We have fitted VAR(1), VAR(3), and VAR(6) models to these data and we
have computed forecasts and forecast errors. Some average squared forecast
errors are presented in Table 4.2. Again forecasts from lower order models are
clearly superior to higher order models. In fact, in a large scale simulation
study involving many more processes, similar results were found (see Liitke-
pohl (1985)). Thus, it is useful to avoid fitting VAR models with unnecessarily
large orders.

Table 4.2. Average squared forecast errors for the estimated three-dimensional
VAR(1) process (4.2.2) based on 1000 realizations

sample forecast average squared forecast errors

size horizon VAR(1) VAR(3) VAR(6)

T h Y1 2 Y3 Y1 Y2 Y3 Y1 Yo Y3
1 87 1.14 2.68 1.14 1.52 3.62 2.25 2.78 6.82

30 2 1.09 1.21 3.21 1.44 1.67 4.12 2.54 298 7.85
3 1.06 1.31 3.32 1.35 1.58 4.23 2.59 2.79 8.63
1 .81 1.03 2.68 96 1.22 297 1.18 1.53 3.88

50 2 1.01 1.23 2.92 1.20 1.40 3.47 1.48 1.68 4.38
3 1.01 1.29 3.11 1.12 1.44 3.48 1.42 1.77 4.66
1 73 .93 235 77 1.00 2.62 .86 1.12 291

100 2 94 1.15 2.86 1.00 1.24 3.12 1.12 1.38 3.53
3 90 1.15 3.02 93 1.20 3.23 1.03 1.35 3.51

The question is then what to do if the true order is unknown and an upper
bound, say M, for the order is known only. One possibility to check whether
certain coefficient matrices may be zero is to set up a significance test. For
our particular problem of determining the correct VAR order, we may set
up a sequence of tests. First Hy : Ay, = 0 is tested. If this null hypothesis
cannot be rejected, we test Hg : Ap;—1 = 0 and so on until we can reject a
null hypothesis. Before we discuss this procedure in more detail, we will now
introduce a possible test statistic.

4.2.2 The Likelihood Ratio Test Statistic

Because we just need to test zero restrictions on the coefficients of a VAR
model, we may use the Wald statistic discussed in Section 3.6 in the context
of causality tests. To shed some more light on this type of statistic, it may
be instructive to consider the likelihood ratio testing principle. It is based
on comparing the maxima of the log-likelihood function over the unrestricted
and restricted parameter space. Specifically, the likelihood ratio statistic is

Apr = 2[Ini(8) — ni(3,)], (4.2.3)
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where 8 is the unrestricted ML estimator for a parameter vector d obtained
by maximizing the likelihood function over the full feasible parameter space
and &, is the restricted ML estimator which is obtained by maximizing the
likelihood function over that part of the parameter space where the restrictions
of interest are satisfied (see Appendix C.7). For the case of interest here, where
we have linear constraints for the coefficients of a VAR process, Apr can be
shown to have an asymptotic y2-distribution with as many degrees of freedom
as there are distinct linear restrictions.

To obtain this result, let us assume for the moment that y; is a stable
Gaussian (normally distributed) VAR(p) process as in (4.1.1). Using the no-
tation of Section 3.2.1 (as opposed to the mean-adjusted form considered in
Section 3.4), the log-likelihood function is

KT T
111[(,@72“) = _711127T7§1n‘2u|

1
5y~ (Z' @ n)B) (Ir @ 5 [y - (Z' @ Ix)B] (4.24)
(see (3.4.5)). The first order partial derivatives with respect to 3 are

Olnl
B

Equating to zero and solving for 3 gives the unrestricted ML /LS estimator

=ZeX Yy - (27 @ X 1B. (4.2.5)

B=(22)"'Z®Ik)y. (4.2.6)
Suppose the restrictions for 3 are given in the form
CB=c, (4.2.7)

where C'is a known (N x (K%p+K)) matrix of rank N and c is a known (N x 1)
vector. Then the restricted ML estimator may be found by a Lagrangian
approach (see Appendix A.14). The Lagrange function is

L(B,7) =Wl(B) ++(CB - ), (4.2.8)

where v is an (N x 1) vector of Lagrange multipliers. Of course, £ also depends
on Y,. Because these parameters are not involved in the restrictions (4.2.7),
we have skipped them there. The restricted maximum of the log-likelihood
function with respect to B is known to be attained at a point where the first
order partial derivatives of L are zero.

% =ZeoX Ny - (27 @ X; 1B+ C'y, (4.2.92)
oc _ CB—c. (4.2.9b)

oy
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Equating to zero and solving gives
B, =B+ (22 ' ewx,]C [C(22) " ©2,)C" " (c—CB) (4.2.10)
(see Problem 4.1).

Because for any given coefficient matrix B° the maximum of Inl with
respect to X, is obtained for

X0 = %(Y - BZ)(Y - B°2)

(see Section 3.4.2, (3.4.8) and (3.4.11)), the maximum for the unrestricted
case is attained for

~ 1 ~ ~
Su=5(Y = BZ)(Y - BZ) (4.2.11)
and for the restricted case we get

~ 1 ~ ~
Ty =Y = B.2)(Y - B,2). (4.2.12)
Here B and E are the coefficient matrices corresponding to B and ﬁr, re-
spectively, that is, ﬁ = vec(B ) and ﬁ = vec(B,). Thus, for this particular
situation, the likelihood ratio statistic becomes

Arr =2[ln (B, £,) — n 1(B,, Z1)].

This statistic can be shown to have an asymptotic x?(NV)-distribution. In
fact, this result also holds if y; is not Gaussian, but has a distribution from
a larger family. If y; is not Gaussian, the estimators obtained by maximizing
the Gaussian likelihood function in (4.2.4) are called quasi ML estimators. We
will now state the previous results formally and then present a proof.

Proposition 4.1 (Asymptotic Distribution of the LR Statistic)

Let y; be a stationary, stable VAR(p) process as in (4.1.1) with standard white
noise u; (see Definition 3.1). Suppose the true parameter vector 3 satisfies
linear constraints C3 = ¢, where C is an (N x (K?p + K)) matrix of rank
N and ¢ is an (N x 1) vector. Moreover, let Inl denote the Gaussian log-
likelihood function and let 8 and ﬁ be the (quasi) ML and restricted (quasi)
ML estimators, respectively, with corresponding estimators 2 and ET of the
white noise covariance matrix X, given in (4.2.11) and (4.2.12). Then

Aop = 2 1nl(,é,§u)—1nl(Br,§;)}

= T(In|X| — In|X,]) (4.2.13a)
= (B, -P(22' & 3.8, - B) (4.2.13D)
= (B, -B)(22' 2 (X;)7)(B, — B) +0,(1) (4.2.13¢)
= (B [0(z2) 0 2] (CB- ) to,(1)  (4213)

= (CB-¢) [0((22’)71 ® 5;)0'] (CB—c)+o0y(1) (4.2.13¢)
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and
d 2
ALr — X (V).

Here T is the sample size (time series length) and Z := (Zy, ..., Zr—1) with
Zé = (1)y£7"'7y£7p+1)' u

In this proposition, the quantity o,(1) denotes a sequence which converges
to zero in probability when the sample size T' — oo (see Appendix C.2). Note
that y; is not assumed to be Gaussian (normally distributed) in the propo-
sition. It is just assumed that wu; is independent white noise with bounded
fourth moments. Thus, In{ may not really be the log-likelihood function of y
:=vec(y1,-..,yr). It will only be the actual log-likelihood if y happens to be
multivariate normal. In that case, ,@ and ET are actual ML and restricted ML
estimators. Otherwise they are quasi ML estimators.

The second form of the LR statistic in (4.2.13a) is sometimes convenient for
computing the actual test value. It is also useful for comparing the likelihood
ratio tests to other procedures for VAR order selection, as we will see in Section
4.3. The expression in (4.2.13b) shows the similarity of the LR statistic to the
LM statistic given in (4.2.13c). Using (4.2.5) and

9*Inl , -1
W =—(ZZ'® X"
gives
~ 9 ~ ~ N N N B B
)\L]\/[ — 61nl(/3r) 8 lnl(,@r) alnl(:@r) — (/Br_ﬁ)/(ZZ/®(27C)_1)(/3r_18)

o oBos’ B

(see Appendix C.7 and Problem 4.5). Notice that in the present case we may
ignore the part of the parameter vector which corresponds to X, because its
ML estimator is asymptotically independent of the other parameters and the
asymptotic covariance matrix is block-diagonal. Therefore, at least asymptot-
ically, the terms related to scores of the covariance parameters vanish from
the LM statistic.

Comparing (4.2.13d) to (3.6.5) shows that, for the special case consid-
ered here, the LR statistic is also similar to the Wald statistic. In fact, the
important difference between the Wald and LR statistics is that the former
involves only estimators of the unrestricted model while both unrestricted and
restricted estimators enter into Arg (see also (4.2.13a)). The final form of the
statistic given in (4.2.13e) provides another useful expression which is close to
both the LR and the LM statistic. It shows that we may use the covariance
matrix estimator from the restricted model instead of the unrestricted one.

As in the case of the Wald test, one may consider using the statistic A, /N
in conjunction with the F(N,T — Kp — 1)-distribution in small samples. An-
other adjustment was suggested by Hannan (1970, p. 341).
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Proof of Proposition 4.1:
We first show the equivalence of the various forms of the LR statistic given in
the proposition. The equality in (4.2.13a) follows by noting that

y - (Z @ I)8) (Ir® £, [y - (2 @ Ix)B
=tr[(Y — BZ) X, ' (Y — BZ)]
= tr[XYY — BZ)(Y — BZ)].

Replacing the matrices B and X, by B and Z‘u, respectively, gives
~ o~ T <
Inl(8, ¥,) = constant — 3 In | X,
Similarly,
~ - T <
Ini(3,,X") = constant — 5 In | X7,
which gives the desired result.
In order to prove (4.2.13b), we observe that Inl is a quadratic function

in B. Thus, by Taylor’s theorem (Appendix A.13, Proposition A.3), for an
arbitrary fixed vector 3°,

_ 0y, OB o

ni(8) = mi(B8% + o3 B-8)
1 0y 02 In1(8%) 0
+§(5—ﬁ)W(5—ﬁ)~

Choosing Zﬂ for 8° and Br for 3, 8lnl([~3)/6f)'/ = 0 so that

,0% lnl(ﬂ)

gy BB @21

A =2 |nI(B) ~nl(B,)] = ~(8, - BY

As in Section 3.4, we can derive
8%Inl B
opas

Hence, (4.2.13b) follows and (4.2.13c) is an immediate consequence of the
fact that the restricted and unrestricted covariance matrix estimators are
consistent by Proposition 3.2. Thus, plim(X,, — X7) = 0 which can be used to
show (4.2.13c).

Using (4.2.10) and (4.2.14) gives

Ar = (CB—¢) [C((2Z) '@ 2,)C"]
xC(2ZY ' o x )22 @ ;) (22" @ £,)C"
x [C((22") " @ £,)C"] " (CB - ).

—(Z2Z' @ ZY).

-1
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The result (4.2.13d) follows by replacing X, with Y, and noting that this is a
consistent estimator of X,. Again by consistency of Z’Z, using this estimator
instead of fu changes the statistic only by a term which vanishes in probability
as the sample size increases. Hence, we have (4.2.13e).

The asymptotic x?(N)-distribution of Az now follows from Proposition
C.15(5) of Appendix C because [C((ZZ'/T)~* @ X7)C']"! is a consistent
estimator of [C(I'"! ® X,)C']7L. [ |

In the next subsection a sequential testing scheme based on LR tests is
discussed.

4.2.3 A Testing Scheme for VAR Order Determination

Assuming that M is known to be an upper bound for the VAR order, the
following sequence of null and alternative hypotheses may be tested using LR
tests:

HY @ Ay =0 versus  Hi : Ay #0
H02 : AJ\[_lzo versus H12 : AM_17§O |AN[:0

Hi @ Ap_iz1=0 versus H{ : Apy_i41 #0

Ay == Apriin = 0
HM © A =0 versus HM : A #0 |[Ay =+ = Ay =0.
(4.2.15)

In this scheme, each null hypothesis is tested conditionally on the previous
ones being true. The procedure terminates and the VAR order is chosen ac-
cordingly, if one of the null hypotheses is rejected. That is, if H is rejected,

p= M — i+ 1 will be chosen as estimate of the autoregressive order.
The likelihood ratio statistic for testing the i-th null hypothesis is

Arr(i) = T[] Z, (M — i)| — In|Z, (M — i + 1)), (4.2.16)

where X, (m) denotes the ML estimator of X, when a VAR(m) model is
fitted to a time series of length 7. By Proposition 4.1, this statistic has an
asymptotic x?(K?)-distribution if H¢ and all previous null hypotheses are
true. Note that K? parameters are set to zero in HY. Hence, we have to test
K? restrictions and we use Apg(i) in conjunction with critical values from
a x2(K?)-distribution. Alternatively, one may use Az (i)/K? in conjunction
with the F(K?,T — K(M — i+ 1) — 1)-distribution.

Of course, the order chosen for a particular process will depend on the
significance levels used in the tests. In this procedure, it is important to realize
that the significance levels of the individual tests must be distinguished from
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the Type I error of the whole procedure because rejection of H{ means that
Hé“, ..., H}M are automatically rejected too. Thus, denoting by D; the event
that Hg is rejected in the j-th test when it is actually true, the probability of
a Type I error for the i-th test in the sequence is

El:PI‘(DluDQUUDJ

Because D; is the event that Apg(j) falls in the rejection region, although
Hg is true, v; = Pr(D;) is just the significance level of the j-th individual
test. It can be shown that for m # j and m,j < i, Apr(m) and AL r(j) are
asymptotically independent statistics if Hg,..., H} are true (see Paulsen &
Tjgstheim (1985, pp. 223-224)). Hence, D,, and D, are independent events
in large samples so that

€ = PI<D1U---UDZ',1)+PI<DZ')—PI‘{(D:LU-'-UDZ‘,l)ﬂDi}
= gatvi—€1vi=e6a1+v(l—€-1),i=23,...,M. (42.17)

Of course, €; = «y1. Thus, it is easily seen by induction that
e=1—(1—-m)-1—7), i=1,2,...,M. (4.2.18)

If, for example, a 5% significance level is chosen for each individual test (v; =
.05), then

€1 =.05, € =1-.95x.95=.0975, €3 =.142625.

Hence, the actual rejection probability will become quite substantial if the
sequence of null hypotheses to be tested is long.

It is difficult to decide on appropriate significance levels in the testing
scheme (4.2.15). Whatever significance levels the researcher decides to use,
she or he should keep in mind the distinction between the overall and the
individual significance levels. Also, it must be kept in mind that we know the
asymptotic distributions of the LR statistics only. Thus, the significance levels
chosen will be approximate probabilities of Type I errors only.

Finally, in the literature another testing scheme was also suggested and
used. In that scheme the first set of hypotheses (i = 1) is as in (4.2.15) and
for ¢ > 1 the following hypotheses are tested:

Hé:AM =+ = Ap—_i11 = 0 versus H{ Ay #Oor...or Apr—ip1 # 0.

Here H{ is not tested conditionally on the previous null hypotheses being
true but it is tested against the full VAR(M) model. Unfortunately, the LR
statistics to be used in such a sequence will not be independent so that the
overall significance level (probability of Type I error) is difficult to determine.
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4.2.4 An Example

To illustrate the sequential testing procedure described in the foregoing, we use
the investment/income/consumption example from Section 3.2.3. The vari-
ables y1, yo2, and y3 represent first differences of the logarithms of the invest-
ment, income, and consumption data. We assume an upper bound of M =4
for the VAR order and therefore we set aside the first 4 values as presample
values. The data up to 1978.4 are used for estimation so that the sample size
is T = 71 in each test. The estimated error covariance matrices and their
determinants are given in Table 4.3. The corresponding y?- and F-test values
are summarized in Table 4.4. Because the denominator degrees of freedom
for the F-statistics are quite large (ranging from 62 to 70), the F-tests are
qualitatively similar to the x2-tests. Using individual significance levels of .05
in each test, H3 : Az = 0 is the first null hypothesis that is rejected. Thus,
the estimated order from both tests is p = 2. This supports the order chosen
in the example in Chapter 3. Alternative procedures for choosing VAR orders
are considered in the next section.

Table 4.3. ML estimates of the error covariance matrix
of the investment/income/consumption system

VAR

order

m X (m) x 10* | X (m)| x 10
[ 21.83 .410 1.228

0 . 1.420 571 2.473
L - . 1.084 |
[ 20.14 .493 1.173 ]

1 . 1.318  .625 1.782
|- . 1.018 |
[ 19.18 .617 1.126

2 . 1.270 574 1.255
B . 821 |
[ 19.08 .599 1.126 ]

3 . 1.235  .543 1.174
L . 784 |
[ 16.96 .573 1.252

4 . 1.234 544 .958
i . 765 |
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Table 4.4. LR statistics for the investment/income/consumption system

VAR order
7 Hé under Hé ALR®Y )\LR/gb
1 Ay =0 3 14.44 1.60
2 A3 =0 2 4.76 .53
3 A2 =0 1 24.90 2.77
4 A1 =0 0 23.25 2.58

2 Critical value for individual 5% level test: x*(9).05 = 16.92.
P Critical value for individual 5% level test: F/(9,71 — 3(5 — i) — 1) .95 = 2

4.3 Criteria for VAR Order Selection

Although performing statistical tests is a common strategy for detecting
nonzero parameters, the approach described in the previous section is not com-
pletely satisfactory if a model is desired for a specific purpose. For instance,
a VAR model is often constructed for prediction of the variables involved.
In such a case, we are not so much interested in finding the correct order of
the underlying data generation process but we are interested in obtaining a
good model for prediction. Hence, it seems useful to take the objective of the
analysis into account when choosing the VAR order. In the next subsection,
we will discuss criteria based on the forecasting objective.

If we really want to know the exact order of the data generation process
(e.g., for analysis purposes) it is still questionable whether a testing procedure
is the optimal strategy because that strategy has a positive probability of
choosing an incorrect order even if the sample size (time series length) is large
(see Section 4.3.3). In Section 4.3.2 we will present estimation procedures that
choose the correct order with probability 1 at least in large samples.

4.3.1 Minimizing the Forecast MSE

If forecasting is the objective, it makes sense to choose the order such that a
measure of forecast precision is minimized. The forecast MSE (mean squared
error) is such a measure. Therefore Akaike (1969, 1971) suggested to base the
VAR order choice on the approximate 1-step ahead forecast MSE given in
Chapter 3, (3.5.13),

 TH+Km+1
N T

where m denotes the order of the VAR process fitted to the data, T is the
sample size, and K is the dimension of the time series. To make this criterion
operational, the white noise covariance matrix X, has to be replaced by an
estimate. Also, to obtain a unique solution we would like to have a scalar
criterion rather than a matrix. Akaike suggested using the LS estimator with
degrees of freedom adjustment,

ZA(l) 2us
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~ T -
Zulm) = R 1™

for X, and taking the determinant of the resulting expression. Here g’u(m)
is the ML estimator of X, obtained by fitting a VAR(m) model, as in the
previous section. The resulting criterion is called the final prediction error
(FPE) criterion, that is,

T+ K 1 T =
FPE(m) — det{ i Tm+ e Su(m)
T+EKm+1]1% -

We have written the criterion in terms of the ML estimator of the covariance
matrix because in this form the FPE criterion has intuitive appeal. If the
order m is increased, det X, (m) declines while the multiplicative term (7" +
Km+1)/(T — Km — 1) increases. The VAR order estimate is obtained as
that value for which the two forces are balanced optimally. Note that the
determinant of the LS estimate X, (m) may increase with increasing m. On
the other hand, it is quite obvious that | X, (m)| cannot become larger when m
increases because the maximum of the log-likelihood function is proportional
to —In|X, (m)| apart from an additive constant and, for m < n, a VAR(m)
model may be interpreted as a restricted VAR (n) model. Thus, —In| X, (m)| <
S ()] or | (m)] > | Su(n)]

Based on the FPE criterion, the estimate p(FPE) of p is chosen such that

FPE[P(FPE)] = min{FPE(m)lm = 0,1,..., M}.

That is, VAR models of orders m = 0,1,..., M are estimated and the corre-
sponding FPE(m) values are computed. The order minimizing the FPE values
is then chosen as estimate for p.

Akaike (1973, 1974), based on a quite different reasoning, derived a very
similar criterion usually abbreviated by AIC (Akaike’s Information Criterion).
For a VAR(m) process the criterion is defined as

= 2
AIC(m) = In|X,(m)|+ T(number of freely estimated parameters)

~ 2mK?
= 1T, (m)| + mT . (4.3.2)

The estimate p(AIC) for p is chosen so that this criterion is minimized. Here
the constants in the VAR model may be ignored as freely estimated parameters
because counting them would just add a constant to the criterion which does
not change the minimizing order.

The similarity of the criteria AIC and FPE can be seen by noting that,
for a constant N,

T+ N 2N

_ v -2
= L+ 0.
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The quantity O(T~2) denotes a sequence of order T2, that is, a sequence
indexed by T that remains bounded if multiplied by T2 (see Appendix C.2).
Thus, the sequence goes to zero rapidly when 7" — oo. Hence,
In FPE(m) = In|X,(m)|+ KIn[(T + Km+1)/(T — Km —1)]
= Wn|Z,(m)|+ Kn[14+2(Km+1)/T +O(T~?)]

2(Km+1) 9
—F  * O(T~?)

= AIC(m)+2K/T + O(T~?). (4.3.3)

= In|Z,(m)|+K

The third equality sign follows from a Taylor series expansion of In(1 + x)
around 1. The term 2K /T does not depend on the order m and, hence, AIC(m)
+ 2K/T and AIC(m) assume their minimum for the same value of m. Con-
sequently, AIC and In FPE differ essentially by a term of order O(T~2) and,
thus, the two criteria will be about equivalent for moderate and large T'.

To illustrate these procedures for VAR order selection, we use again the
investment /income/consumption example. The determinants of the residual
covariance matrices are given in Table 4.3. Using these determinants, the FPE
and AIC values presented in Table 4.5 are obtained. Both criteria reach their
minimum for p = 2, that is, p(FPE) = p(AIC) = 2. The other quantities given
in the table will be discussed shortly.

Table 4.5. Estimation of the VAR order of the investment/income/consumption
system

VAR order

m FPE(m) x10'* AIC(m) HQ(m) SC(m)

0 2.691 —24.42 —24.42* —24.42"
1 2.500 —24.50 —24.38 —24.21

2 2.272* —24.59* —24.37 —24.02

3 2.748 —24.41 —24.07 —23.55

4 2.910 —24.36 —23.90 —23.21

* Minimum.

4.3.2 Consistent Order Selection

If interest centers on the correct VAR order, it makes sense to choose an
estimator that has desirable sampling properties. One problem of interest in
this context is to determine the statistical properties of order estimators such
as p(FPE) and p(AIC). Consistency is a desirable asymptotic property of an
estimator. As usual, an estimator p of the VAR order p is called consistent if

plimp=p or, equivalently, Tlglclx) Pr{p=p}=1. (4.3.4)

T— o0
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The latter definition of the plim may seem to differ slightly from the one
given in Appendix C. However, it is easily checked that the two definitions
are equivalent for integer valued random variables. Of course, a reasonable
estimator for p should be integer valued. The estimator p is called strongly
consistent if

Pr{lim p=p} = 1. (4.3.5)

Accordingly, a VAR order selection criterion will be called consistent or
strongly consistent if the resulting estimator has these properties. The follow-
ing proposition due to Hannan & Quinn (1979), Quinn (1980), and Paulsen
(1984) is useful for investigating the consistency of criteria for order determi-
nation.

Proposition 4.2 (Consistency of VAR Order Estimators)

Let y; be a K-dimensional stationary, stable VAR(p) process with standard
white noise (that is, u; is independent white noise with bounded fourth mo-
ments). Suppose the maximum order M > p and p is chosen so as to minimize
a criterion

Cr(m) = In| X, (m)| + meg /T (4.3.6)

over m = 0,1,..., M. Here X,(m) denotes the (quasi) ML estimator of X,
obtained for a VAR(m) model and ¢r is a nondecreasing sequence of real

numbers that depends on the sample size T. Then p is consistent if and only
if

cp — oo and ep/T—0 as T — . (4.3.7a)

The estimator p is a strongly consistent estimator if and only if (4.3.7a) holds
and

cr/2InInT > 1 (4.3.7b)

eventually, as T" — oo. |

We will not prove this proposition here but refer the reader to Quinn
(1980) and Paulsen (1984) for proofs. The basic idea of the proof is to show
that, for p > m, the quantity In|%,(m)|/In|%,(p)| will be greater than one
in large samples because In |2, (m)| is essentially the minimum of minus the
Gaussian log-likelihood function for a VAR(m) model. Consequently, because
the penalty terms mer /T and per /T go to zero as T — oo, Cr(m) > Cr(p) for
large T'. Thus, the probability of choosing too small an order goes to zero as
T — oo. Similarly, if m > p,In |2, (m)|/In| X, (p)|, approaches 1 in probability
if T'— oo and the penalty term of the lower order model is smaller than that
of a larger order process. Thus the lower order p will be chosen if the sample
size is large. The following corollary is an easy consequence of the proposition.
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Corollary 4.2.1
Under the conditions of Proposition 4.2, if M > p, p(FPE) and p(AIC) are
not consistent. [

Proof: Because FPE and AIC are asymptotically equivalent (see (4.3.3)), it
suffices to prove the corollary for p(AIC). Equating AIC(m) and Cr(m) given
in (4.3.6) shows that

2mK?/T = mer /T
or cr = 2K?2. Obviously, this sequence does not satisfy (4.3.7a). [ ]

We will see shortly that the limiting probability for underestimating the
VAR order is zero for both p(AIC) and p(FPE) so that asymptotically they
overestimate the true order with positive probability. However, Paulsen &
Tjgstheim (1985, p. 224) argued that the limiting probability for overesti-
mating the order declines with increasing dimension K and is negligible for
K > 5. In other words, asymptotically AIC and FPE choose the correct order
almost with probability one if the underlying multiple time series has large
dimension K.

Before we continue the investigation of AIC and FPE, we shall introduce
two consistent criteria that have been quite popular in recent applied work.
The first one is due to Hannan & Quinn (1979) and Quinn (1980). It is often
denoted by HQ (Hannan-Quinn criterion):

HQ(m) = In|S,(m)| + 22T

(# freely estimated parameters)

2InlnT

= In|X,(m)| + mK?2. (4.3.8)

The estimate p(HQ) is the order that minimizes HQ(m) for m =0,1,..., M.
Comparing this criterion to (4.3.6) shows that ¢z = 2K?InIn T and, thus, by
(4.3.7a), HQ is consistent for univariate processes and by (4.3.7b) it is strongly
consistent for K > 1, if the conditions of Proposition 4.2 are satisfied for y;.
Using Bayesian arguments Schwarz (1978) derived the following criterion:

= InT
SC(m) = In|X,(m)|+ HT(# freely estimated parameters)

- InT
= ln\Eu(m)\—FnTsz. (4.3.9)

Again the order estimate p(SC) is chosen so as to minimize the value of the
criterion. A comparison with (4.3.6) shows that for this criterion cr = K2InT.
Because

K?*InT/2InlnT

approaches infinity for T — oo, (4.3.7b) is satisfied and SC is seen to be
strongly consistent for any dimension K.
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Corollary 4.2.2

Under the conditions of Proposition 4.2, SC is strongly consistent and HQ is
consistent. If the dimension K of the process is greater than one, both criteria
are strongly consistent. |

In Table 4.5, the values of HQ and SC for the investment/income/con-
sumption example are given. Both criteria assume the minimum for m = 0,

that is, p(HQ) = p(SC) =0

4.3.3 Comparison of Order Selection Criteria

It is worth emphasizing that the foregoing results do not necessarily mean that
AIC and FPE are inferior to HQ and SC. Only if consistency is the yardstick
for evaluating the criteria, the latter two are superior under the conditions of
the previous section. So far we have not considered the small sample properties
of the estimators. In small samples, AIC and FPE may have better properties
(choose the correct order more often) than HQ and SC. Also, the former
two criteria are designed for minimizing the forecast error variance. Thus, in
small as well as large samples, models based on AIC and FPE may produce
superior forecasts although they may not estimate the orders correctly. In fact,
Shibata (1980) derived asymptotic optimality properties of AIC and FPE for
univariate processes. He showed that, under suitable conditions, they indeed
minimize the 1-step ahead forecast MSE asymptotically.

Although it is difficult in general to derive small sample properties of
the criteria, some such properties can be obtained. The following proposition
states small sample relations between the criteria.

Proposition 4.3 (Small Sample Comparison of AIC, HQ, and SC)

Let y_pr+15---,%0,Y1,5--.,yr be any K-dimensional multiple time series and
suppose that VAR(m) models, m = 0,1, ..., M, are fitted to y1,...,yr. Then
the following relations hold:

P(SC) < P(AIC)  if T > 8, (4.3.10)
p(SC) <p(HQ)  forall T, (4.3.11)
PHQ) < PAIC)  if T > 16. (4.3.12)
u

Note that we do not require stationarity of y;. In fact, we do not even
require that the multiple time series is generated by a VAR process. Moreover,
the proposition is valid in small samples and not just asymptotically. The proof
is an easy consequence of the following lemma.

Lemma 4.1
Let ag,ay,...,an, bo,b1,...,bp and cqg, cq,...,cp be real numbers. If

b1 —bm < g1 — Gmy, m=0,1,.... M —1, (4.3.13a)
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holds and if nonnegative integers n and k are chosen such that

¢n + ap, = min{c,, + a,,/m=0,1,..., M} (4.3.13Db)
and

¢k + b = min{c,, +bpm =0,1,..., M}, (4.3.13c¢)
then k > n.! [ ]

The proof of this lemma is left as an exercise (see Problem 4.2). It is now
easy to prove Proposition 4.3.

Proof of Proposition 4.3:
Let ¢, = In | X, (m)], by, = 2mK?/T and a,, = mK? InT/T. Then AIC(m) =
¢m + bm and SC(m) = ¢ + am. The sequences an,, by, and ¢, satisfy the
conditions of the lemma if
2K?)T = 2(m+1)K?/T —2mK?/T = by i1 — by,

< Amy1 — am = (m+1D)K?*InT/T —mK?*InT/T = K*InT/T
or, equivalently, if InT > 2 or T > e? = 7.39. Hence, choosing k = p(AIC)
and n = p(SC) gives p(SC) < p(AIC) if T > 8. The relations (4.3.11) and
(4.3.12) can be shown analogously. |

An immediate consequence of Corollary 4.2.1 and Proposition 4.3 is that
AIC and FPE asymptotically overestimate the true order with positive prob-
ability and underestimate the true order with probability zero.

Corollary 4.3.1
Under the conditions of Proposition 4.2, if M > p,

Tlim Pr{p(AIC) <p} =0 and lim Pr{p(AIC) > p} >0 (4.3.14)

and the same holds for p(FPE). ]
Proof: By (4.3.10) and Corollary 4.2.2,

Pr{p(AIC) < p} < Pr{p(SC) < p} — 0.

Because AIC is not consistent by Corollary 4.2.1, lim Pr{p(AIC) = p} <
1. Hence (4.3.14) follows. The same holds for FPE because this criterion is
asymptotically equivalent to AIC (see (4.3.3)). ]

The limitations of the asymptotic theory for the order selection criteria can
be seen by considering the criterion obtained by setting cr equal to 2InlnT
in (4.3.6). This results in a criterion

LT am grateful to Prof. K. Schiirger, Universitit Bonn, for pointing out the present
improvement of the corresponding lemma stated in Liitkepohl (1991).
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C(m) = In|X,(m)| + 2mInInT/T. (4.3.15)

Under the conditions of Proposition 4.2, it is consistent. Yet, using Lemma 4.1
and the same line of reasoning as in the proof of Proposition 4.3, p(AIC) <
p(C) if 2InInT < 2K? or, equivalently, if T < exp(exp K?2). For instance,
for a bivariate process (K = 2), exp(exp K?) ~ 5.14 x 10?3. Consequently,
if T < 5.14 x 10?3, the consistent criterion (4.3.15) chooses an order greater
than or equal to p(AIC) which in turn has a positive limiting probability
for exceeding the true order. This example shows that large sample results
sometimes are good approximations only if extreme sample sizes are available.
The foregoing result was used by Quinn (1980) as an argument for making cp
a function of the dimension K of the process in the HQ criterion.

It is also of interest to compare the order selection criteria to the sequen-
tial testing procedure discussed in the previous section. We have mentioned
in Section 4.2 that the order chosen in a sequence of tests will depend on the
significance levels used. As a consequence, a testing sequence may give the
same order as a selection criterion if the significance levels are chosen accord-
ingly. For instance, AIC chooses an order smaller than the maximum order
M if AIC(M — 1) < AIC(M) or, equivalently, if

ALr(l) = T(In |, (M —1)|—In |2, (M)|) < 2MK? —2(M —1)K? = 2K?.

For K = 2, 2K? = 8 ~ x?%(4).90. Thus, for a bivariate process, in order
to ensure that AIC chooses an order less than M whenever the LR testing
procedure does, we may use approximately a 10% significance level in the first
test of the sequence, provided the distribution of A (1) is well approximated
by a x?(4)-distribution.

The sequential testing procedure will not lead to a consistent order esti-
mator if the sequence of individual significance levels is held constant. To see
this, note that for M > p and a fixed significance level «y, the null hypothesis
Hy : Ay = 0 is rejected with probability «. In other words, in the testing
scheme, M is incorrectly chosen as VAR order with probability +. Thus, there
is a positive probability of choosing too high an order. This problem can be
circumvented by letting the significance level go to zero as T — oo.

4.3.4 Some Small Sample Simulation Results

As mentioned previously, many of the small sample properties of interest in the
context of VAR order selection are difficult to derive analytically. Therefore
we have performed a small Monte Carlo experiment to get some feeling for the
small sample behavior of the estimators. Some results will now be reported.
We have simulated 1000 realizations of the VAR(2) process (4.2.1) and we
have recorded the orders chosen by FPE, AIC, HQ, and SC for time series
lengths of T'= 30 and 100 and a maximum VAR order of M = 6. In addition,
we have determined the order by the sequence of LR tests described in Section
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4.2 using a significance level of 5% in each individual test and corresponding
critical values from x2-distributions. That is, we have used x2- rather than F-
tests. The frequency distributions obtained with the five different procedures
are displayed in Table 4.6. Obviously, for the sample sizes reported, none of
the criteria is very successful in estimating the order p = 2 correctly. This may
be due to the fact that Ay contains only a single, small nonzero element. The
similarity of AIC and FPE derived in (4.3.3) becomes evident for T' = 100. The
orders chosen by the LR testing procedures show that the actual significance
levels are quite different from their asymptotic approximations, especially for
sample size T = 30. If A1 g really had a x?(4)-distribution the order p = M = 6
should be chosen in about 5% of the cases while in the simulation experiment
P = 6 is chosen for 25.4% of the realizations. Hence, the x?(4)-distribution is
hardly a good small sample approximation to the actual distribution of Ay y.

In Table 4.6, we also present the sum of normalized mean squared forecast
errors of y; and yo obtained from post-sample forecasts with the estimated
processes. The quantities shown in the table are

N
% > Wrin) = 0r(h) @) 2y(h) ™ Wrine — Ir(h)@),  h=1,2,3,
i=1
where N is the number of replications, that is, in this case N = 1000, y75s)
is the realization in the i-th repetition and yr(h);) is the corresponding fore-
cast. Normalizing with the inverse of the h-step forecast error variance X (h)
is useful to standardize the forecast errors in such a way so as to have roughly
the same variability and, thus, comparable quantities are averaged. For large
sample size T' and a large number of replications N, the average normalized
squared forecast errors should be roughly equal to the dimension of the pro-
cess, that is, for the present bivariate process they should be close to 2.

Although in Table 4.6 SC often underestimates the true VAR order p = 2,
the forecasts obtained with the SC models are generally the best for 7' = 30.
The reason is that not restricting the single nonzero coefficient in A to zero
does not sufficiently improve the forecasts to offset the additional sampling
variability introduced by estimating all four elements of the As coefficient
matrix. For T' = 100, corresponding forecast MSEs obtained with the different
criteria and procedures are very similar, although SC chooses the correct order
much less often than the other criteria. This result indicates that choosing the
correct VAR order and selecting a good forecasting model are objectives that
may be reached by different VAR order selection procedures. Specifically, in
this example, slight underestimation of the VAR, order is not harmful to the
forecast precision. In fact, for T' = 30, the most parsimonious criterion which
underestimates the true VAR order in more than 80% of the realizations of
our VAR(2) process provides forecasts with the smallest normalized average
squared forecast errors. In fact, the LR tests which choose larger orders quite
frequently, produce clearly the worst forecasts.
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Table 4.6. Simulation results based on 1000 realizations of the bivariate VAR(2)
process (4.2.1)

FPE AIC HQ SC LR
VAR T =230
order frequency distributions of estimated VAR orders in %
0 0.1 0.1 0.6 2.6 0.1
1 46.1 42.0 60.4 81.2 29.8
2 33.3 32.2 28.5 14.4 16.5
3 8.3 9.0 5.0 1.1 6.5
4 3.8 4.1 2.2 0.5 8.1
5 3.9 5.0 1.5 0.1 13.6
6 4.5 7.6 1.8 0.1 25.4
forecast
horizon normalized average squared forecast errors
1 2.63 2.68 2.52 2.37 3.09
2 2.66 2.72 2.51 2.41 3.04
3 2.58 2.67 2.45 2.35 3.05
VAR T =100
order frequency distributions of estimated VAR orders in %
0 0.0 0.0 0.0 0.0 0.0
1 17.6 174 42.7 73.1 20.8
2 69.5 69.5 55.5 26.7 53.6
3 8.4 8.4 1.7 0.2 5.3
4 2.8 2.8 0.1 0.0 6.2
5 1.0 1.0 0.0 0.0 5.4
6 0.7 0.9 0.0 0.0 8.7
forecast
horizon normalized average squared forecast errors
1 2.15 2.15 2.15 2.17 2.22
2 2.20 2.20 2.20 2.22 2.25
3 2.12 2.12 2.13 2.12 2.17

It must be emphasized, however, that these results are very special and
hold for the single bivariate VAR(2) process used in the simulations. Different
results may be obtained for other processes. To substantiate this statement,
we have also simulated 1000 time series based on the VAR(1) process (4.2.2).
Some results are given in Table 4.7. While for sample size 7' = 30 again none
of the criteria and procedures is very successful in detecting the correct VAR
order p = 1, all four criteria FPE, AIC, HQ, and SC select the correct order in
more than 90% of the replications for T' = 100. The poor approximation of the
small sample distribution of the LR statistic by a x2(9)-distribution is evident.
Note that we have used the critical values for 5% level individual tests from
the y2-distribution. As in the VAR(2) example, the prediction performance
of the SC models is best for T = 30, although the criterion underestimates
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the true order in more than 80% of the replications. For both sample sizes,
the worst forecasts are obtained with the sequential testing procedure which
overestimates the true order quite often.

Table 4.7. Simulation results based on 1000 realizations of the three-dimensional
VAR(1) process (4.2.2)

FPE AIC HQ SC LR
VAR T =230
order frequency distributions of estimated VAR orders in %
0 24.3 17.5 44.5 81.3 0.7
1 50.7 35.3 394 18.0 2.2
2 7.5 4.7 3.0 0.3 1.3
3 3.0 2.2 0.9 0.2 1.5
4 1.8 1.7 0.4 0.0 3.7
5 2.9 4.2 1.5 0.0 14.9
6 9.8 34.4 10.3 0.2 75.7
forecast
horizon normalized average squared forecast errors
1 4.60 6.06 4.43 3.94 8.35
2 4.12 5.42 3.98 3.33 7.87
3 3.87 5.11 3.75 3.19 7.49
VAR T =100
order frequency distributions of estimated VAR, orders in %
0 0.0 0.0 0.3 8.1 0.0
1 94.1 93.8 99.6 91.9 61.2
2 5.0 5.1 0.1 0.0 5.4
3 0.7 0.7 0.0 0.0 4.3
4 0.2 0.3 0.0 0.0 7.3
5 0.0 0.0 0.0 0.0 9.3
6 0.0 0.1 0.0 0.0 12.5
forecast
horizon normalized average squared forecast errors
1 3.08 3.08 3.06 3.12 3.24
2 3.12 3.12 3.11 3.12 3.24
3 3.11 3.11 3.10 3.10 3.20

After these two simulation experiments, we still do not have a clear an-
swer to the question which criterion to use in small sample situations. One
conclusion that emerges from the two examples is that, in very small sam-
ples, slight underestimation of the true order is not necessarily harmful to
the forecast precision. Moreover, both examples clearly demonstrate that the
x2-approximation to the small sample distribution of the LR statistics is a
poor one. In a simulation study based on many other processes, Liitkepohl
(1985) obtained similar results. In that study, for low order VAR processes,
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the most parsimonious SC criterion was found to do quite well in terms of
choosing the correct VAR order and providing good forecasting models. Un-
fortunately, in practice we often don’t even know whether the underlying data
generation law is of finite order VAR type. Sometimes we may just approxi-
mate an infinite order VAR process by a finite order model. In that case, for
moderate sample sizes, some less parsimonious criterion like AIC may give
superior results in terms of forecast precision. Therefore, it may be a good
strategy to compare the order estimates obtained with different criteria and
possibly perform analyses with different VAR orders.

4.4 Checking the Whiteness of the Residuals

In the previous sections, we have considered procedures for choosing the or-
der of a VAR model for the generation process of a given multiple time series.
These procedures may be interpreted as methods for determining a filter that
transforms the given data into a white noise series. In this context, the criteria
for model choice may be regarded as criteria for deciding whether the resid-
uals are close enough to white noise to satisfy the investigator. Of course, if,
for example, forecasting is the objective, it may not be of prime importance
whether the residuals are really white noise as long as the model forecasts well.
There are, however, situations where checking the white noise (whiteness) as-
sumption for the residuals of a particular model is of interest. For instance, if
the model order is chosen by nonstatistical methods (for example, on the basis
of some economic theory) it may be useful to have statistical tools available
for investigating the properties of the residuals. Moreover, because different
criteria emphasize different aspects of the data generation process and may
therefore all provide useful information for the analyst, it is common not to
rely on just one procedure or criterion for model choice but use a number of
different statistical tools. Therefore, in this section, we shall discuss statistical
tools for checking the autocorrelation properties of the residuals of a given
VAR model.

In Sections 4.4.1 and 4.4.2, the asymptotic distributions of the residual
autocovariances and autocorrelations are given under the assumption that the
model residuals are indeed white noise. In Sections 4.4.3 and 4.4.4, two popular
statistics for checking the overall significance of the residual autocorrelations
are discussed. The results of this section are adapted from Chitturi (1974),
Hosking (1980, 1981a), Li & McLeod (1981), and Ahn (1988).

4.4.1 The Asymptotic Distributions of the Autocovariances and
Autocorrelations of a White Noise Process

It is assumed that u; is a K-dimensional white noise process with nonsingu-
lar covariance matrix X,. For instance, u; may represent the residuals of a
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VAR(p) process. Let U := (uy, ..., ur). The autocovariance matrices of u, are
estimated as

T
N 1 1
CﬂZEMyZi;E wuy_; = ZUFRU', =01, h <T. (44.1)
t=i+1

The (T x T') matrix F; is defined in the obvious way. For instance, for i = 2,

00 000
00 000
10 000
Fo= 101 000
00 100 |
[0 0 071 0 0]’
00 00 1 0
10 0 o
o 01 0 00 1
: S 00 -0
(00 - 1][0O0 - 0]

Of course, for i = 0, Fy = Ir. In the following, the precise form of F; is not
important. It is useful, though, to remember that F; is defined such that

T
! !
UFU = g UgUy_ ;-
t=it1

Let
Ch = (017"'ach) = UF(Ih®U/)7 (442)

where F := (Fy,..., Fy) is a (T x hT) matrix that is understood to depend
on h and T without this being indicated explicitly. Furthermore, let

cp, := vec(Cp). (4.4.3)
The estimated autocorrelation matrices of the u; are denoted by R;, that is,
R,:=D7'C;D™', i=0,1,...,h, (4.4.4)

where D is a (K x K) diagonal matrix, the diagonal elements being the square
roots of the diagonal elements of Cjy. In other words, a typical element of R;
is

Cmn,i

v/ Emm,04/Cnn,0 ’

Tmn,i =
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where ¢, is the mn-th element of C;. The matrix R; in (4.4.4) is an es-
timator of the true autocorrelation matrix R, (i) = 0 for ¢ # 0. We use the
notation

Ry :=(Ry,...,Ry) and rjp:=vec(Ry) (4.4.5)

and we denote by R, the true correlation matrix corresponding to X',. Now
we can give the asymptotic distributions of r; and cy,.

Proposition 4.4 (Asymptotic Distributions of White Noise Autocovariances
and Autocorrelations)

Let u; be a K-dimensional identically distributed standard white noise pro-
cess, that is, u; and us have the same multivariate distribution with nonsin-
gular covariance matrix X, and corresponding correlation matrix R,. Then,
for h > 1,

VTen S N0,1, © 2y © 2) (4.4.6)
and

VTr, S N(0,I, ® Ry ® R,). (4.4.7)

|

Proof: The result (4.4.6) follows from an appropriate central limit theorem.
The i.i.d. assumption for the u; implies that

/ !/
wy = vec(Uslly 1, ..., Utty_p)

is a stationary white noise process with covariance matrix E(w,w;) = I ®
X, ® Xy, so that the result (4.4.6) may, e.g., be obtained from the central
limit theorem for stationary processes given in Proposition C.13 of Appendix
C. Proofs can also be found in Fuller (1976, Chapter 6) and Hannan (1970,
Chapter IV, Section 4) among others.

The result in (4.4.7) is a quite easy consequence of (4.4.6). From Proposi-
tion 3.2, we know that Cj is a consistent estimator of . Hence,

VT vec(R;) = VT(D™' @ D7) vee(Ci) -5 N(0, Ry, ® R.)
by Proposition C.15(1) of Appendix C and (4.4.6), because

plim(D~! ® D~1)(X, ® X,)(D~' @ DY)
— plim(D~1 5, D1 © D-15,D~1) = Ry @ R

The result in (4.4.6) means that /T vec(C;) has the same asymptotic
distribution as VT vec(C}), namely,
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VT vec(C;), VT vec(Cj) iN(O, Xu®X).

Moreover, for i # j, the two estimators are asymptotically independent. By
(4.4.7), the same holds for v/T' vec(R;) and v/T vec(R;).

In practice, the u; and hence U will usually be unknown and the reader may
wonder about the relevance of Proposition 4.4. The result is not only useful
in proving other propositions but can also be used to check whether a given
time series is white noise. Before we explain that procedure, we mention that
Proposition 4.4 remains valid if the considered white noise process is allowed
to have nonzero mean and the mean vector is estimated by the sample mean
vector. That is, we consider covariance matrices

where

T

_ 1

u = E Ut .
t=1

Next we observe that the diagonal elements of R, ® R, are all ones. Conse-
quently, the variances of the asymptotic distributions of the elements of v T},
are all unity. Hence, in large samples the /T Tmm,i for ¢ > 0 have approximate
standard normal distributions. Denoting by pm.(7) the true correlation coeffi-
cients corresponding to the 7y, ;, a test, with level approximately 5%, of the
null hypothesis

Hy : pmn(i) =0 against  Hy: ppp(i) # 0

rejects Hy if |\/Trmm\ > 2 or, equivalently, |rmn i| > 2/\/T

Now we have a test for checking the null hypothesis that a given multiple
time series is generated by a white noise process. We simply compute the cor-
relations of the original data (possibly after some stationarity transformation)
and compare their absolute values with 2/v/T". In Section 4.3.2, we found that
the SC and HQ estimate of the order for the generation process of the invest-
ment/income/consumption example data is p = 0. Therefore, one may want
to check the white noise hypothesis for this example. The first two correlation
matrices for the data from 1960.4 to 1978.4 are

el

—-.197 103  .128 —.045 .067 .097
R, = 190 .020 228 | and Ry = 119 .079 .009
—.047 150 —.089 255 .355 .279

(4.4.8)

Comparing these quantities with 2/v/T = 2/v/73 = .234, we find that some
are significantly different from zero and, hence, we reject the white noise
hypothesis on the basis of this test.
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In applied work, the estimated autocorrelations are sometimes plotted and
+2/ VT-bounds around zero are indicated. The white noise hypothesis is then
rejected if any of the estimated correlation coefficients reach out of the area
between the +2/v/T-bounds. In Figure 4.1, plots of some autocorrelations are
provided for the example data. Some autocorrelations at lags 2, 4, 8, 11, and
12 are seen to be significant under the aforementioned criterion.

There are several points that must be kept in mind in such a procedure.
First, in an exact 5% level test, on average the test will reject one out of twenty
times it is performed independently, even if the null hypothesis is correct.
Thus, one would expect that one out of twenty autocorrelation estimates
exceeds 2/ VT in absolute value even if the underlying process is indeed white
noise. Note, however, that although R; and R; are asymptotically independent
for i # j, the same is not necessarily true for the elements of R;. Thus,
considering the individual correlation coefficients may provide a misleading
picture of their significance as a group. Tests for overall significance of groups
of autocorrelations are discussed in Sections 4.4.3 and 4.4.4.

Second, the tests we have considered here are just asymptotic tests. In
other words, the actual sizes of the tests may differ from their nominal sizes.
In fact, it has been shown by Dufour & Roy (1985) and others that in small
samples the variances of the correlation coefficients may differ considerably
from 1/T. They will often be smaller so that the tests are conservative in that
they reject the null hypothesis less often than is indicated by the significance
level chosen.

Despite this criticism, this check for whiteness of a time series enjoys much
popularity as it is very easy to carry out. It is a good idea, however, not to
rely on this criterion exclusively.

4.4.2 The Asymptotic Distributions of the Residual
Autocovariances and Autocorrelations of an Estimated VAR
Process

Theoretical Results

If a VAR(p) model has been fitted to the data, a procedure similar to that
described in the previous subsection is often used to check the whiteness of
the residuals. Instead of the actual u;’s, the estimation residuals are used,
however. We will now consider the consequences of that approach. For that
purpose, we assume that the model has been estimated by LS and, using the
notation of Section 3.2, the coefficient estimator is denoted by B and the

corresponding residuals are U= (Uy,...,ur):=Y — BZ. Furthermore,
Gii= ~ORD", i=01,...h
i T U, 1 =U,1,... N,
~ ~ 1

Ch:=(Cy,....Cp) = TﬁF(Ih U, (4.4.9)



162 4 VAR Order Selection and Checking the Model Adequacy
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0.12 0.35 0.58
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Fig. 4.1. Some estimated autocorrelations of the investment/income/consumption
system.

¢h = vec(Cp),
and, correspondingly,

R;:=D7'C;D™", Ry:= (Ri,...,Rp), Tn:=vec(Ry), (4.4.10)
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where Disa diagonal matrix with the square roots of the diagonal elements
of Cy on the main diagonal. We will consider the asymptotic distribution of
VT ¢, first. For that purpose the following lemma is helpful.

Lemma 4.2
Let y; be a stationary, stable VAR(p) process as in (4.1.1) with identically

distributed standard white noise u; and let B be a consistent estimator of
B =[v,A4,...,A] such that VT vec(B — B) has an asymptotic normal dis-
tribution. Then /T €, has the same asymptotic distribution as

VTcy, — VTG vee(B — B), (4.4.11)

where G := G' ® I with

Ty B15, - DPp1 X,
G=| 0 Zu o Pu2du | (Kp+1)xKh). (4.4.12)
0 0 @hf.pzu
|
Proof: Using the notation Y = BZ + U,
U=Y-BZ=BZ+U-BZ=U-(B-B)Z
Hence,
UF(I, @ U")
—UF(I,®U')—UF [Ih ® Z'(B - B)'} (4.4.13)

—(B-B)ZF(I, ®U') + (B — B)ZF {Ih ® 7' (B - B)].

Dividing by T and applying the vec operator, this expression becomes ¢j,. In
order to obtain the expression in (4.4.11), we consider the terms on the right-
hand side of (4.4.13) in turn. The first term becomes v/Tc;, upon division by
VT and application of the vec operator.

Dividing the second and last terms by /T they can be shown to converge
to zero in probability, that is,

plimVTUF [Ih ® Z'(B - B)’} JT =0 (4.4.14)
and

plimvVT(B — B)ZF [Ih ® 2'(B - B)’} JT =0 (4.4.15)
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(see Problem 4.3). Thus, it remains to show that dividing the third term in
(4.4.13) by VT and applying the vec operator yields an expression which is
asymptotically equivalent to the last term in (4.4.11). To see this, consider

ZF(I,@U") = (ZRU',...,ZFRU")

and
1
’ o ! = Yt—1 /
ZF,U = E Zt—lut_z’ = E . Uy
t=i+1 t=i+1 :
ytfp
_ 1 _
oo
> Pjur1—j
j=0
_ /
= E . Ug—gs
7 :
oo
> Pju—p—j
L 7=0 |

where the @; are the coefficient matrices of the canonical MA representation
of y; (see (2.1.17)). Upon division by T and application of the plim we get

0

i zppr = | T

plim ZF,U" = )
Bi pS,

where @; = 0 for j < 0. Hence,

0o 0 .- 0
1 Yw P12y 0 Ppa1Xy
phmTZF(IhQ@U’) = 0 Eu @h—22u — é
0 0 - &5,
((Kp+1)xKh)

The lemma follows by noting that

vec |(B—B)ZF(I, @ U")| = ([ZF (I, @ U")] ® Ix) vee(B — B).

The next lemma is also helpful later.

Lemma 4.3
If y, is a stable VAR(p) process as in (4.1.1) with identically distributed stan-
dard white noise, then
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1 Z/) Ia é
vz vee(U davlol L by 4.4.16
l VTey, G L,ex, @) (4.4.16)
where I' := plimZZ’/T and G is as defined in (4.4.12). |

For the two terms vec(UZ')/v/T and v/Tcj, separately, the asymptotic
distributions are already known from Lemma 3.1 and Proposition 4.4, respec-
tively. So the joint asymptotic distribution is the new result here. The reader
is referred to Ahn (1988) for a proof. Now the asymptotic distribution of the
residual autocovariances is easily obtained.

Proposition 4.5 (Asymptotic Distributions of Residual Autocovariances)
Let y; be a stationary, stable, K-dimensional VAR (p) process as in (4.1.1) with
identically distributed standard white noise process u; and let the coefficients

be estimated by multivariate LS or an asymptotically equivalent procedure.
Then

VT, N0, So(h)),
where
Ze(h) = (I,©%, —GT'G)o X%,
= (h®Xe%,)-GIy0) e x,]G. (4.4.17)
Here G and I are the same matrices as in Lemma 4.3, I'y (Ol is the covariance
matrix of V; = (yj,...,y1_,41) and G := G’ @ I, where G is a (Kp x Kh)
matrix which has the same form as G except that the first row of zeros is

eliminated. ]

Proof: Using Lemma 4.2, /T ¢}, is known to have the same asymptotic dis-
tribution as

VTcy, — VTG vee(B — B)
VT vec(B — B) }
VTey,
A

—1
- - Uz
—[-G o1 < ) @I 0| | r Vel
|: ® K i| T O Tch

~ o] |

Noting that plim(ZZ'/T)~! = I'"!, the desired result follows from Lemma
4.3 and Proposition C.15(1) of Appendix C because

~ e
roa . 2u> { r‘Gelg ]

G 1,25,

=1 .
a'r ®IK.1}< ;

= ([, ®X,-GI'G)ex,
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=, @Y, 0%, — (G @I '@ X,) (G Ik)
=1, ® X, ® X, — GIy(0)"' ® X,]G".
|
The form (4.4.17) shows that the variances are smaller than (not greater
than) the diagonal elements of I, ® ¥, ® X,. In other words, the variances
of the asymptotic distribution of the white noise autocovariances are greater
than or equal to the corresponding quantities of the estimated residuals. A

similar result can also be shown for the autocorrelations of the estimated
residuals.

Proposition 4.6 (Asymptotic Distributions of Residual Autocorrelations)
Let D be the (K x K') diagonal matrix with the square roots of X, on the diag-

onal and define G := G(I;, ® D~1). Then, under the conditions of Proposition
4.5,

VT, 5 N(0, Se(h),
where

Yp(h) = [(In ® Ry) — GoI' 'Gy] @ R,,. (4.4.18)
Specifically,

VT vee(R;) SN (0, Zr(5)), j=1.2,...,

where
0
. —1 / / -1 @j_l -1
Yr(j)=|R.—D X%, [0 PR @j_p] I : XuD R,
gp]’fp
(4.4.19)
with @, = 0 for i < 0. [ |

Proof: Noting that
T = vec(Ry) = vec [f)*lah(lh ® ﬁ’l)}
= (,®D '®@D Y,

and D! is a consistent estimator of D~!, we get from Proposition 4.5 that
VTT), has an asymptotic normal distribution with mean zero and covariance
matrix

(@D '@ D V(I ® X —GT'G)® X[, D~ @ D)
= [(Ih ® Ry,) — GBFﬁlGo} ® Ry,
where D~1X¥,D~! = R, has been used. [ |



4.4 Checking the Whiteness of the Residuals 167

From (4.4.19), it is obvious that the diagonal elements of the asymptotic
covariance matrix are not greater that 1 because a positive semidefinite ma-
trix is subtracted from R,,. Hence, if estimated residual autocorrelations are
used in a white noise test in a similar fashion as the autocorrelations of the
original data, we will get a conservative test that rejects the null hypothesis
less often than is indicated by the significance level, provided the asymptotic
distribution is a correct indicator of the small sample behavior of the test. In
particular, for autocorrelations at small lags the variances will be less than 1,
while the asymptotic variances approach one for elements of \/TRj with large
j. This conclusion follows because @;_1,...,9;_, approach zero as j — oo.
As a consequence, the matrix subtracted from R, goes to zero as j — 0o.

In practice, all unknown quantities are replaced by estimates in order to
obtain standard errors of the residual autocorrelations and tests of specific
hypotheses regarding the autocorrelations. It is perhaps worth noting, though,
that if I is estimated by ZZ’'/T, we have to use the ML estimator X, for X,
to ensure positive variances.

An Illustrative Example

As an example, we consider the VAR(2) model for the investment/income/con-
sumption system estimated in Section 3.2.3. For 7 = 1, we get

015 —.011 —.010
(.026) (.033) (.049)

5 —.007 —.002 —.068
(.026) (.033) (.049)

—.024 —.045 —.096
| (.026) (.033) (.049)

where the estimated standard errors are given in parentheses. Obviously, the
standard errors of the elements of R; are much smaller than 1/v/T = .117
which would be obtained if the variances of the elements of VT ﬁl were 1. In
contrast, for j = 6, we get

053 —.008 —.062 ]
(.117) (.116) (.117)

~ 165 .030 —.051
(.117) (.116) (.117)

068 .026 .020
| (117) (.116) (.117) ]

where the standard errors are very close to .117.
In Figure 4.2, we have plotted the residual autocorrelations and twice their
asymptotic standard errors (approximate 95% confidence bounds) around
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zero. It is apparent that the confidence bounds grow with increasing lag length.
For a rough check of 5% level significance of autocorrelations at higher lags,
we may use the +2/ V/T-bounds in practice, which is convenient from a com-
putational viewpoint.

rit,i r12,i r13,i

-0.71 -0.24 0.24 0.59
-0.71 -024 024 059
-0.71 -0.24 0.24 0,59

-0.71 -0,24 0.24 0.59
-0.71 -0.24 0.24 0.59
-0.71 -0,24 0.24 0.59

-0.69 -0.12 0,36 0.71
-059 -0.12 0.36 0.71
-0.68 -0.12 0,36 0.71

Fig. 4.2. Estimated residual autocorrelations with two-standard error bounds for
the investment/income/consumption VAR(2) model.

There are significant residual autocorrelations at lags 3, 4, 8, and 11. While
the significant values at lags 3 and 4 may be a reason for concern, one may not
worry too much about the higher order lags because one may not be willing
to fit a high order model if forecasting is the objective. As we have seen in
Section 4.3.4, slight underfitting may even improve the forecast performance.
In order to remove the significant residual autocorrelations at low lags, it may
help to fit a VAR(3) or VAR(4) model. Of course, this conflicts with choosing
the model order on the basis of the model selection criteria. Thus, it has to
be decided which criterion is given priority.

It may be worth noting that a plot like that in Figure 4.2 may give a
misleading picture of the overall significance of the residual autocorrelations
because they are not asymptotically independent. In particular, at low lags
there will not only be nonzero correlation between the elements of a specific R;
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but also between 1/%]- and ]le for i # j. Therefore, it is desirable to have tests
for overall significance of the residual autocorrelations of a VAR(p) model.
Such tests are discussed in the next subsections.

4.4.3 Portmanteau Tests

The foregoing results may also be used to construct a popular test for the
overall significance of the residual autocorrelations up to lag h. This test is
commonly called portmanteau test. It is designed for testing

Hy:Rp=(Ry,...,Ry) =0 against H;:Rp #0. (4.4.20)
The test statistic is
h
Qn = Ty te(RiR,'R:R;")
i=1
h A~ A A~ A~ ~ ~
= Ty tr(RjR,'R;R,'D7'D)
=1
h PN . R NN R R
= TZ tr(DR,DD'R,'D"'DR;,DD 'R, 'D™ ")
i=1
h A, A~ A~ A~
= TY t(C/Cy CiCyh. (4.4.21)
=1

Obviously, this statistic is very easy to compute from the estimated residuals.
By Proposition 4.5, it has an approximate asymptotic y2-distribution.

Proposition 4.7 (Approzimate Distribution of the Portmanteau Statistic)
Under the conditions of Proposition 4.5, we have, approximately, for large T
and h,

h
Qv = TY t(CiCy'CiCy)
=1
= T vec(Ch) (In® C;* @ C; V) vee(Ch) ~ x2(K2(h — p)). (4.4.22)
|

Sketch of the proof: By Proposition C.15(5) of Appendix C, @5, has the same
asymptotic distribution as

T¢, (I, @ X' @ X Y)e),.
Defining the (K x K) matrix P such that PP’ = ¥, and

Cj = (Ih ®P®P)_1Eh,
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it is easily seen that @ has the same asymptotic distribution as 7'¢) Cp.
Hence, by Proposition C.15(6), it suffices to show that VT ¢, iN(O,Q),
where {2 is an idempotent matrix of rank K2h — K?2p. Because an approxi-
mate limiting y2-distribution of @, is claimed only, we just show that (2 is
approximately equal to an idempotent matrix with rank K2(h — p).

Using Proposition 4.5, we get

2 = (LhoP leP H)y.(h)(I,o P e P

= I — PGy (0)™' ® X,|G'P’,

where P = I, ® P~' ® P~! and G is defined in Proposition 4.5. Noting that
the ij-th block of I'y(0) is

Cov(yr—irye—g) = Ly —1) = Y &p i Zu®),_j,
n=0

with @, = 0 for k < 0, we get approximately,

h
n=1 i,j=1,....p
h
= D& n P PR, | e
n=1 i
= G'P'PG.

Hence, if h is such that &; ~ 0 for i > h — p,
2~ Ik — PG(G'P'PG)"'G'P.
Thus, {2 is approximately equal to an idempotent matrix with rank
tr(I x> — PG(G'P'PG) 'G'P’) = hK? — pK?,
as was to be shown. |

Of course, these arguments do not fully prove Proposition 4.7 because
we have not shown that an approximately idempotent matrix (2 leads to an
approximate y2-distribution. To actually obtain the limiting y2-distribution,
we have to assume that h goes to infinity with the sample size. Because the
sketch of the proof should suffice to show in what sense the result is approxi-
mate, we do not pursue this issue further and refer the reader to Ahn (1988)
for details. For practical purposes, it is important to remember that the y>-
approximation to the distribution of the test statistic may be misleading for
small values of h.

Like in previous sections we have discussed asymptotic distributions in this
section. Not knowing the small sample distribution is clearly a shortcoming
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because, in practice, infinite samples are not available. Using Monte Carlo
techniques, it was found by some researchers that in small samples the nominal
size of the portmanteau test tends to be lower than the significance level chosen
(Davies, Triggs & Newbold (1977), Ljung & Box (1978), Hosking (1980)). As
a consequence the test has low power against many alternatives. Therefore it
has been suggested to use the modified test statistic

h
Z L tr(CIC; ). (4.4.23)

The modification may be regarded as an adjustment for the number of terms
in the sum in

T
~ 1 oy
= — UtUy_ ;.
T Z =i

t=i41

For T — oo, T/[T*(T —i)~!] — 1 and, thus, @), has the same asymptotic
distribution as @, that is, approximately in large samples and for large h,

Qn = x*(K*(h — p)). (4.4.24)

For our example model, we obtained Q12 = 81.9. Comparing this value
with x?(K2(h — p)).os = x?(90).95 ~ 113 shows that we cannot reject the
white noise hypothesis for the residuals at a 5% level.

As mentioned in the introduction to this section, these tests can also be
used in a model selection/order estimation procedure. A sequence of hypothe-
ses as in (4.2.15) is tested in such a procedure by checking whether the resid-
uals are white noise. In the following, Lagrange multiplier tests for residual
autocorrelation will be presented.

4.4.4 Lagrange Multiplier Tests

Another way of testing a VAR model for residual autocorrelation is to assume
a VAR model for the error vector, uy = Dius_1+- -+ Dpus_p +vs, where vy is
white noise. It is equal to u; if there is no residual autocorrelation. Therefore,
we wish to test the pair of hypotheses

Hy: D = =Dy =0 against

H, : Dj # 0 for at least one j € {1,...,h}. (4.4.25)
In this case, it is convenient to use the LM principle for constructing a test
because we then only need to estimate the restricted model where u; = v;.

We determine the test statistic with the help of the auxiliary regression model
(see also Appendix C.7)

U =v+Aiyi1+- -+ Ay—p+Ditli—1+ -+ Dpty_p + &4
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or, fort=1,...,T,
U=BZ+DU+E,

where D = [Dy : -+ : Dy is (K x Kh), U := (I, @ U)F' with F as in (4.4.2),
€ = le1,...,er] is a (K x T) matrix and the other symbols are defined as
before. In particular, the w; are the residuals from LS estimation of the original
VAR(p) model and @; = 0 for ¢ < 0. The LS estimator of [B : D] from the
auxiliary model is

(B:D] - ﬁ[z';mqg] iz -07’}>_1

-1

~ 77" U’
= UZ’:UZ/{ ~

[ } uz' '
G z7" ZU’
N Uz uu’ ’

where UZ’ = 0 from the first order conditions for computing the LS estimator
has been used. Thus, applying the rules for the partitioned inverse (Appendix
A.10, Rule (2)) gives

D=UUUU -UZ (z2Z" ) ZU')~". (4.4.26)
The standard y2-statistic for testing D = 0 then becomes
Arar(h) = vee(DY ([uu’ uz'(zz) 'z 2,;1) vee(D)

~ ~

= vec(UU'Y ([ﬁﬁ’ ~UZ'(zZ)'ZU ) @ 2_1) vee(UU),

u

where

~

vec(D) = ([L?ﬁ/ Uz (22 2] IK) vec(UU")

~

has been used. Noting that Ui’ = UF(I,®0U") shows that T~ vec(UU') = €,.
Moreover, from results in Section 4.4.2 we get

phm Z/ll/l' = phm (Ih QU)F'F(I,@U) =19 2,
and

phm%ﬁz’(zz’)—lzz]’ —GIr'a
(see the proof of Lemma 4.2). Hence,

~ 1~~~ ~ ~
Ye(h) = T[uu’ Uz (zzh 'z e L



4.4 Checking the Whiteness of the Residuals 173

is a consistent estimator of X.(h) and, because the foregoing results imply
that

A (h) = TE) Ee(h) "¢y,

the asymptotic y2-distribution of this statistic follows from Propositions 4.5
and C.15(5).

Proposition 4.8 (Asymptotic Distribution of the LM Statistic for Residual
Autocorrelation)
Under the conditions of Proposition 4.5,

A (R) 2 2 (REK?).
=

The LM test for residual autocorrelation is sometimes called Breusch-
Godfrey test because it was proposed by Breusch (1978) and Godfrey (1978)
(see also Godfrey (1988)). Unfortunately, the y2-distribution was found to
be a poor approximation of the actual null distribution of Apas(h) in many
situations (Edgerton & Shukur (1999) and Doornik (1996)). Even a standard
F-approximation is unsatisfactory. However, Doornik (1996) finds that the
following statistic derived from considerations in Rao (1973, §8c.5) provides
satisfactory results in small samples, if it is used with critical values from an
F(hK? Ns— fK?h + 1)-distribution:

~ 1/s
det(2u)> / | Ns— 5K+ 1
a K2h

FRao (h) - (

K2 —4 \? 1
:<K2+K2hQ—5> , N:Tprflthfi(Kth+1),
and 5‘5 is the residual coAvariance estir/rgator from an unrestricted LS estimation
of the auxiliary model U = BZ + DU + £.

We have also applied these tests to our example data and give some results
in Table 4.4.4. Tt turns out that neither of the tests finds strong evidence for
remaining residual autocorrelation. All p-values exceed 10%. Recall that a
p-value represents the probability of getting a test value greater than the
observed one, if the null hypothesis is true. Therefore, even at a significance
level of 10%, the null hypothesis of no residual autocorrelation cannot be
rejected.

In contrast to the portmanteau tests which should be used for reasonably
large h only, the LM tests are more suitable for small values of h. For large
h, the degrees of freedom in the auxiliary regression model will be exhausted
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Table 4.8. Autocorrelation tests for investment/income/consumption example
VAR(2) model, estimation period 1960.4-1978.4

approximate

test h test value distribution p-value
A (h) 1 6.37 X2(9) 0.70

2 15.52 x> (18) 0.62

3 32.81 X2 (27) 0.20

4 46.60 x> (36) 0.11
Frao(h) 1 0.62 F(9,148) 0.78

2 0.76 F(18,164) 0.75

3 1.14 F(21, 161) 0.30

4 1.26 F(36,154) 0.17

and the statistic cannot be computed in the way described in the foregoing.
An LM test for higher order residual autocorrelation may be based on the
auxiliary model

U =v+Aye—1 + -+ Apye—p + Dyptis—p + &4
and on a test
Hy:Dp, =0 versus H;: Dy #0.

The relevant LM statistic can be shown to have an asymptotic x2(K?)-
distribution under Hy.

4.5 Testing for Nonnormality

Normality of the underlying data generating process is needed, for instance,
in setting up forecast intervals. Nonnormal residuals can also indicate more
generally that the model is not a good representation of the data generation
process (see Chapter 16 for models for nonnormal data). Therefore, testing
this distributional assumption is desirable. We will present tests for multi-
variate normality of a white noise process first. In Subsection 4.5.2, it is then
demonstrated that the tests remain valid if the true residuals are replaced by
the residuals of an estimated VAR(p) process.

4.5.1 Tests for Nonnormality of a Vector White Noise Process

The tests developed in the following are based on the third and fourth central
moments (skewness and kurtosis) of the normal distribution. If = is a univari-
ate random variable with standard normal distribution, i.e., z ~ N(0,1), its
third and fourth moments are known to be E(z%) = 0 and E(z*) = 3. Let u,
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be a K-dimensional Gaussian white noise process with u; ~ N(p, 2y) and
let P be a matrix satisfying PP’ = X,. For example, P may be obtained by
a Choleski decomposition of X,,. Then

wy = (Wigy .., wie) = P ug — ) ~ N(0, I).

In other words, the components of w,; are independent standard normal ran-
dom variables. Hence,

w}y wiy 3
E| : =0 and FE| : =] | =:3k. (4.5.1)
Wiy Wt 3
This result will be utilized in checking the normality of the white noise process
uz. The idea is to compare the third and fourth moments of the transformed
process with the theoretical values in (4.5.1) obtained for a Gaussian process.

For the univariate case, the corresponding test is known as the Jarque-Bera or
Lommnicki-Jarque-Bera test (see Jarque & Bera (1987) and Lomnicki (1961)).

For constructing the test, we assume to have observations ui,...,ur and
define
1 « 1
ﬂ::—gu, Sy = ug — ) (ug — ),
T L t Wi T Ty t (ut ) (ug )

and Ps is a matrix for which P;P. = S, and such that plim(P; — P) = 0.
Moreover,

Vg 1= (’Ult,...,’UKt)/:Psil(ut_ﬂx tzl,...,T,

. 1
b]_ = (blly---;bKl)l with bkl = th:vgt, k= 17~-~7Ka (452)
and
) 1
by := (bia, ..., brs) with by = th:”’%“ k=1,..., K. (4.5.3)

Thus, by and b are estimators of the vectors in (4.5.1). In the next proposition,
the asymptotic distribution of b; and by is given.

Proposition 4.9 (Asymptotic Distribution of Skewness and Kurtosis)
If u; is Gaussian white noise with nonsingular covariance matrix X, and
expectation i, ur ~ N (y, 2y), then

bl d GIK 0
ﬁ{bg—&{}_ﬂv(o’{ 0 24IKD'
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In other words, b; and by are asymptotically independent and normally

distributed. The proposition implies that
As = Tb,b1 /6 5 \2(K)
and
A = T(bs — 3) (b2 — 3x) /24 5 \3(K).

The first statistic can be used to test

[ wiy | wi;
Hy: E =0 against H;:FE #0
| Wiy Wiy

and A\; may be used to test

I wilt 1 wilt
Hy: FE =3k against H;:F #* 3k.
4
L w}l(t ] Wit

Furthermore,

Aok = As + Ak -5 X2(2K),

(4.5.4)

(4.5.5)

(4.5.6)

(4.5.7)

(4.5.8)

which may be used for a joint test of the null hypotheses in (4.5.6) and (4.5.7).

Proof of Proposition 4.9
We state a helpful lemma first.

Lemma 4.4

Let z¢ = (214, .- .,2Kt)" be a Gaussian white noise process with mean p, and

covariance matrix I, i.e., z; ~ N (p2, I ). Furthermore, let

T

o _ 1
z=(Z1,...,2k) = Tzzt,
t=1
1

b1. a (K x 1) vector with k-th component by , := T

M=

and
T
. 1
ba . a (K x 1) vector with k-th component bys , == — Z (zpe — Zp)*
r4
Then

bl,z d GIK 0
ﬁ{bz,z—:sx]_’/v(o’{ 0 24IKD'

(Zkt - 5k)3,

(4.5.9)
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The proof of this lemma is easily obtained, for instance, from results of
Gasser (1975). Proposition 4.9 follows by noting that Ps is a consistent es-
timator of P (defined such that PP’ = X,) and by defining 2, = P~ lu,.
Hence,

VI(P @ P @ Py ) S (e ) @ (g — ) © (e — )

—%f%}]%-@®%—®®@r?)

t
— (Ps_l ®P5_1 ®PS_1 _ P—l ®P_1 ® P—l)

1 P
X — Y (ur— 1) ® (ur — ) @ (up —w) = 0.
V>
An analogous result is obtained for the fourth moments. Consequently,

by —bi. | p
\/:F[ A ] 2

and the proposition follows from Proposition C.2(2) of Appendix C. |

Remark 1 In Proposition 4.9, the white noise process is not required to have
zero mean. Thus, tests based on A;, A\g, or Agx may be applied if the original
observations are generated by a VAR(0) process. |

Remark 2 It is known that in the univariate case tests based on the skewness
and kurtosis (third and fourth moments) have small sample distributions that
differ substantially from their asymptotic counterparts (see, e.g., White &
MacDonald (1980), Jarque & Bera (1987) and the references given there).
Therefore, tests based on Ag, A\g, and Ak, in conjunction with the asymptotic
x2-distributions in (4.5.4), (4.5.5), and (4.5.8), must be interpreted cautiously.
They should be regarded as rough checks of normality only. |

Remark 3 Tests based on Ag, A\;, and Ay cannot be expected to possess
power against distributions having the same first four moments as the nor-
mal distribution. Thus, if higher order moment characteristics are of interest,
these tests cannot be recommended. Other tests for multivariate normality
are described by Mardia (1980), Baringhaus & Henze (1988), and others. W

4.5.2 Tests for Nonnormality of a VAR Process
A stationary, stable VAR(p) process, say
yr—p=A(yer — )+ + Ap(Ye—p — 1) +ue, (4.5.10)

is Gaussian (normally distributed) if and only if the white noise process u; is
Gaussian. Therefore, the normality of the y;’s may be checked via the u;’s. In



178 4 VAR Order Selection and Checking the Model Adequacy

practice, the u;’s are replaced by estimation residuals. In the following we will
demonstrate that this is of no consequence for the asymptotic distributions of
the A statistics considered in the previous subsection.

The reader may wonder why normality tests are based on the residuals
rather than the original observations y;. The reason is that tests based on the
latter may be less powerful than those based on the estimation residuals. For
the univariate case this point was demonstrated by Liitkepohl & Schneider
(1989). It is also worth recalling that the forecast errors used in the construc-
tion of forecast intervals are weighted sums of the u;’s. Therefore, checking
the normality of these quantities makes sense if the aim is to establish interval
forecasts. The next result states that Proposition 4.9 remains valid if the true
white noise innovations u; are replaced by estimation residuals.

Proposition 4.10 (Asymptotic Distribution of Residual Skewness and Kur-
tosis)

Let y; be a K-dimensional stationary, stable Gaussian VAR(p) process as in
(4.5.10), where u; is zero mean white noise with nonsingular covariance matrix
Y, and let Al, .. A be consistent and asymptotically normally distributed
estimators of the coeﬂiments based on a sample y1, ..., yr and possibly some
presample values. Define

at = (yt_?)_Al(ytfl _y>_'”_Ap(yt7P_y)7 t= 1a"'7Ta

- 1
X ::75 Ul
ST oKp- 14t

and let P be a matrix satisfying PP’ = ¥, such that plim(P — P) = 0.
Furthermore, define

Oy = (g, ..., 0xe) == P70

b12(6117...7/5K1)/ with gm = Zwkt, 1,..., K,
and

/b\g = (3127...,31(2)/ with Bkg = Zwkt, 1,..., K.
Then
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Although the proposition is formulated in terms of the mean-adjusted
form (4.5.10) of the process, it also holds if estimation residuals from the
standard intercept form are used instead. The parameter estimators may be
unconstrained ML or LS estimators. However, the proposition does not require
this. In other words, the proposition remains valid if, for instance, restricted
LS or generalized LS estimators are used, as discussed in the next chapter.
The following lemma will be helpful in proving Proposition 4.10.

Lemma 4.5
Under the conditions of Proposition 4.10,

T
. 1 - 1
plim Zut®ut®utZ(utu)@)(ut—u)@(ut—u)} =
T TiH
(4.5.11)
and
1 I
phm 72 ®1/it®ut®ut
T

Proof: A proof for the special case of a VAR(1) process y; is given and the
generalization is left to the reader. Also, we just show the first result. The
second one follows with analogous arguments. For the special VAR(1) case,

~

u = (ye—79)— A\l(ytfl -7)
= (us —u) + (A1 — A1) (ye—1 — ¥) +ar,
where ar = Ay (yr — yo)/T. Hence,

1 1
=S en o= =3 (-0 (- W)@ (@ - 7)) +dr,
VT 4 VT 4
where dr is a sum of expressions of the type

fZ[Al D1 = 7) +ar| @ (w —7) © ()

= VT (A~ ) @ Tore] 2 Sl ~ ) © (e~ ) @ (e — )

+VTar ® % Zt: [(us — W) ® (up — )], (4.5.13)
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o~

that is, dr consists of sums of Kronecker products involving (4 — A1) (y1—1 —
7), (us — @), and ar. Therefore, dr = 0,(1). For instance, (4.5.13) goes to zero
in probability because

1 _ _ :
phmf Z(ut ~ W) ® (uy —u) exists and  VTar = 0,(1)

t

so that the last term in (4.5.13) vanishes. Moreover, the elements of v/T'(A; —
A1) converge in distribution and

plim% ;(ytA - —1u)R(u—u)=0 (4.5.14)

(see Problem 4.4). Hence the first term in (4.5.13) vanishes. |

Proof of Proposition 4.10
By Proposition C.2(2) of Appendix C and Proposition 4.9, it suffices to show
that

~

= = 1 o
(P"loP 1@ P_l)ﬁ Et U @ Uy @ Uy
1
_(Ps_1®Ps_1®Ps_1)ﬁ Et (ur — 1) @ (up — ) ® (uy — W) =0
(4.5.15)

and the fourth moments possess a similar property. The result (4.5.15) follows
from Lemma 4.5 by noting that P and Ps are both consistent estimators of P
and, for stochastic vectors hr, gr and stochastic matrices Hr, Gy with

plim(hr — gr) =0, hp-Sh,
and

plim Hy = plim Gy = H,
we get

Hrhy — Grgr = (HT — H)hT + H(hT — gT) + (H — GT)gT 20.

|
Proposition 4.10 implies that
N 1= TH b1 /6 -5\ 2(K), (4.5.16)

~

e =T (b — 35c)' (b — 31) /245 x2(K), (4.5.17)
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and
Nk 1= s + A 5 X2 (2K). (4.5.18)

Thus, all three statistics may be used for testing nonnormality.

As we have seen, the results hold for any matrix satisfying PP =%, For
example, P may be a lower triangular matrix with positive diagonal obtained
by a Choleski decomposition of Y. Clearly, in this case P is a consistent
estimator of the corresponding matrix P (see Proposition 3.6). Doornik &
Hansen (1994) point out that with this choice the test results will depend on
the ordering of the variables. Therefore they suggest using a matrix based
on the square root of the correlation matrix corresponding to X, instead. In
any case, the matrix P is not unique and, hence, the tests will depend to
some extent on its choice. Strictly speaking, if one particular P is found for
which the null hypothesis can be rejected, this result provides evidence against
the normality of the process. Thus, different P matrices could be applied in
principle.

For illustrative purposes we consider our standard investment/income/con-
sumption example from Section 3.2.3. Using the least squares residuals from
the VAR(2) model with intercepts and a Choleski decomposition of X, yields

o~

N =315 and A, = 4.69

which are both smaller than x?(3).9o = 6.25, the critical value of an asymptotic
10% level test. Also

Aok = 7.84 < x2(6).90 = 10.64.

Thus, based on these asymptotic tests we cannot reject the null hypothesis of
a Gaussian data generation process.

It was pointed out by Kilian & Demiroglu (2000) that the small sample dis-
tributions of the test statistics may differ substantially from their asymptotic
approximations. Thus, the tests may not be very reliable in practice. Kilian
& Demiroglu (2000) proposed bootstrap versions to alleviate the problem.

4.6 Tests for Structural Change

Time invariance or stationarity of the data generation process is an important
condition that was used in deriving the properties of estimators and in com-
puting forecasts and forecast intervals. Recall that stationarity is a property
that ensures constant means, variances, and autocovariances of the process
through time. As we have seen in the investment/income/consumption exam-
ple, economic time series often have characteristics that do not conform with
the assumption of stationarity of the underlying data generation process. For
instance, economic time series often have trends or pronounced seasonal com-
ponents and time varying variances. While these components can sometimes
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be eliminated by simple transformations, there remains another important
source of nonstationarity, namely events that cause turbulence in economic
systems in particular time periods. For instance, wars usually change the eco-
nomic conditions in some areas or countries markedly. Also new tax legisla-
tion may have a major impact on some economic variables. Furthermore, the
oil price shocks in 1973/74 and 1979/80 are events that have caused drastic
changes in some variables (notably the price for gasoline). Such events may
be sources of structural change in economic systems.

Because stability and, hence, stationarity is an important assumption in
our analysis, it is desirable to have tools for checking this assumed property of
the data generation process. In this section, we consider two types of tests that
can be used for this purpose. The first set of tests checks whether a change in
the parameters has occurred at some point in time by comparing the estimated
parameters before and after the possible break date. These tests are known
as Chow tests. The second set of tests is based on comparing forecasts with
actually observed values. More precisely, forecasts are made prior to a period
of possible structural change and are compared to the values actually observed
during that period. The stability or stationarity hypothesis is rejected if the
forecasts differ too much from the actually observed values. These tests are
presented in Sections 4.6.1 and 4.6.2. Other tests will be considered in later
chapters.

4.6.1 Chow Tests

Suppose a change in the parameters of the VAR(p) process (4.1.1) is suspected
after period 77 < T. Given a sample y1, ...,y plus the required presample
values, the model can be set up as follows for estimation purposes:

Yoy : Yo = [Bu: Bel Z+ [Up) : Uy | = BZ+ U,

where Y1) = [y1,...,yn], Y2y = [Yr41,--.,yr], U is partitioned ac-
cordingly, By := [v1,411,...,4p1] and Bs = [vo, A1a,...,Ap] are the
(K x (pK +1)) dimensional parameter matrices associated with the first (¢ =
1,...,T1) and last (t =Ty +1,...,T) subperiods, respectively, B := [B; : Ba]
is (K x 2(Kp+ 1)) dimensional and

Z 0
Z .= (1) ] .
[ 0 Zg)
Here Z(l) = [Zo, ey ZT1,1] and Z(Q) = [ZTU ey ZT,1] with Zé = (17 y£7 ey
Yi—pt+1)s as usual.
In this model setup, a test for parameter constancy checks

Hy:By=DBsor [[:—Ivec(B) =0 versus H;: Bj # Bs.

Clearly, this is just a linear hypothesis which can be handled easily within
our LS or ML framework under standard assumptions. For example, the LS
estimator of B is
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B = [Yu:Yp)]Z'(2Z)"
= (Yo 2y (20 20) 7+ Yoy 2oy (202 Z0)) !

It has an asymptotic normal distribution under the assumptions of Proposition
3.1. To appeal to that proposition it has to be ensured, however, that 7' ZZ'
converges in probability to a nonsingular matrix. In other words,
phm%iZ(i)Zzi), i=1,2,

has to exist and be nonsingular. Hence, T; /T must not go to zero when T goes
to 00, so that both subperiods before and after the break must be assumed to
increase with T'. If the assumptions for asymptotic normality can be justified,
a Wald test can, for example, be used to test the stability hypothesis. Alter-
natively, an LR or quasi LR test may be applied. This type of test is often
given the label Chow test in the literature.

There are some practical matters in applying these tests in the present
context that are worth noting. If the possible break date is very close to the
sample beginning or the sample end, the LS/ML estimators of B; may not
be available due to lack of degrees of freedom. While at the sample beginning
one may be ready to delete a few observations to eliminate the structural
break, this option is often undesirable at the end of the sample. For example,
if forecasting is the objective of the analysis, a break towards the end of the
sample would clearly be problematic. Therefore, the so-called Chow forecast
tests have been proposed which also work for break dates close to the sample
end. In the next subsection, we present a slightly different set of forecast tests
which may be applied instead.

Even if the suspected break point is well inside the sample period so that
the application of the standard Chow test is unproblematic in principle, in
practice, the break may not occur in one period. If there is a longer time
phase in which a parameter shift to a new level takes place, it may be use-
ful to eliminate a few observations around the break date and use only the
remaining ones in estimating the parameters. One may also argue that us-
ing some observations from periods up to 71 in Z(,) may be problematic and
may result in reduced power because observations from both subperiods are
mixed in estimating Bs. Under the null hypothesis of parameter constancy,
this should be no problem, however, because, under Hy, the same process is
in operation before and after T7. Still, from the point of view of maximizing
power, deleting some observations around the possible break point may be a
good idea.

Other practical problems may result from multiple structural breaks within
the sample period. In principle, it is no problem to test multiple break points
simultaneously. Also, to improve power, one may only test some of the pa-
rameters or one may wish to test for a changing white noise covariance matrix
which is implicitly assumed to be time invariant in the foregoing discussion.
Details of such extensions will be discussed in Chapter 17.
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So far we have considered asymptotic results only. Unfortunately, it was
found by Candelon & Liitkepohl (2001) that asymptotic theory may be an
extremely poor guide for the small sample properties of Chow tests, in partic-
ular, if models with many parameters are under consideration. To improve the
reliability of the tests, these authors proposed to use bootstrapped versions.
Bootstrapped p-values may be obtained as described in Appendix D.3.

For the German investment/income/consumption data we have fitted a
VAR(2) model to data up to 1982.4 and we have performed a Chow test for
a break in period 1979.1. The test value is 30.5. Comparing that to 29.6,
the 10% critical value of a x?(21) distribution, stability is rejected at the
10% level. A bootstrapped p-value based on 2000 bootstrap replications turns
out to be 0.21, however. Thus, based on the bootstrapped test, stability is not
rejected. It is typical for the test based on the asymptotic y2-distribution that
it rejects more often in small samples than the specified nominal significance
level, even if the model is stable. This distortion is at least partly corrected
by the bootstrap.

4.6.2 Forecast Tests for Structural Change
A Test Statistic Based on one Forecast Period

Suppose y; is a K-dimensional stationary, stable Gaussian VAR(p) process as
in (4.1.1). The optimal h-step forecast at time T is denoted by yr(h) and the
corresponding forecast error is

h—1
er(h) == yrpn —yr(h) = Giurip i =[@hy:---: Gy Ix]ur,
=0
(4.6.1)
where ury = (wp ..., wp,,), the @; are the coefficient matrices of the

canonical MA representation (see Section 2.2.2). Because urj, ~ N (0,1, @
X.), the forecast error is a linear transformation of a multivariate normal
distribution and, consequently (see Appendix B),

er(h) ~ N(0, 2, (h)), (4.6.2)

where
h—1
Zy(h) => &5,
1=0

is the forecast MSE matrix (see (2.2.11)). Hence,
7 := er(h) Zy(h) " er(h) ~ x*(K) (4.6.3)

by Proposition B.3 of Appendix B.
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This derivation assumes that yrp is generated by the same VAR(p) pro-
cess that has generated the y; for ¢ < T. If this process does not prevail in
period T+h, the statistic 73, will, in general, not have a central y2-distribution.
Hence, 7, may be used to test the null hypothesis

Hy: (4.6.2) is true, that is, yr4p is generated by the same Gaussian VAR(p)
process that has generated yq,...,yr.

The alternative hypothesis is that yr4p is not generated by the same process
as y1,...,yr. The null hypothesis is rejected if the forecast errors are large
so that 7, exceeds a prespecified critical value from the y?(K)-distribution.
Such a test may be performed for h =1,2,....

It may be worth noting that in these tests we also check the normality as-
sumption for y;. Even if the same process has generated yrp and y1, ..., Yy,
(4.6.2) will not hold if that process is not Gaussian. Thus, the normality as-
sumption for y; is part of Hy. Other possible deviations from the null hypoth-
esis include changes in the mean and changes in the variance of the process.

In practice, the tests are not feasible in their present form because 7y
involves unknown quantities. The forecast errors er(h) and the MSE matrix
XY, (h) are both unknown and must be replaced by estimators. For the forecast
errors, we use

h—1
er(h) == yrin — Ge(h) = Z QUTh—i, (4.6.4)
i=0

where the le are obtained from the coefficient estimators Ei in the usual way
(see Section 3.5.2) and

Uy := Yt — v— Alyt—l - Apyt—p-

The MSE matrix may be estimated by
Z,(h) =Y ¢,5,8, (4.6.5)

where f’u is the LS estimator of X,. As usual, we use only data up to period
T for estimation and not the data from the forecast period. If the conditions
for consistency of the estimators are satisfied, that is,

plim v =v, plim A, =A;,i=1,...,p, and plim 58 =,
then plim &; = &;, plim fy(h) =X, (h) and
plim (@ — w;) = plim(v — ) + phim(A; — Ay )ys_1 + - - -

+ plim(4, — A\p)ytfp
= 0.
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Hence, defining
7 i= ep(h) 2, (h)ér(h),
we get plim (7, — 7,) = 0 and, thus, by Proposition C.2(2) of Appendix C,

P 52 (K). (4.6.6)
In other words, if the unknown coefficients are replaced by consistent estima-
tors, the resulting test statistics 7, have the same asymptotic distributions as
the Th-

Of course, it is desirable to know whether the x?(K)-distribution is a good
approximation to the distribution of 7;, in small samples. This, however, is not
likely because in Section 3.5.1,

S5(h) = 5, (h) + %Q(h) (4.6.7)

was found to be a better approximation to the MSE matrix than X (h), if
the forecasts are based on an estimated process. While asymptotically, as
T — oo, the term 2(h)/T vanishes, it seems plausible to include this term
in small samples. For univariate processes, it was confirmed in a simulation
study by Liitkepohl (1988b) that inclusion of the term results in a better
agreement between the small sample and asymptotic distributions. For mul-
tivariate vector processes, the simulation results of Section 3.5.4 point in the
same direction. Thus, in small samples a statistic of the type

er(h) Zy(h)"*er(h)

is more plausible than 7j. Here f‘@(h) is the estimator given in Section 3.5.2.
In addition to this adjustment, it is useful to adjust the statistic for using
an estimated rather than known forecast error covariance matrix. Such an
adjustment is often done by dividing by the degrees of freedom and using the
statistic in conjunction with critical values from an F-distribution. That is,
we may use

T = er(h) Zy(h)"‘er(h)/K ~ F(K,T — Kp—1). (4.6.8)

The approximate F-distribution follows from Proposition C.3(2) of Appendix
C and the denominator degrees of freedom are chosen by analogy with a
result due to Hotelling (e.g., Anderson (1984)). Other choices are possible.
Proposition C.3(2) requires, however, that the denominator degrees of freedom
go to infinity with the sample size T

A Test Based on Several Forecast Periods

Another set of stationarity tests is obtained by observing that the errors of
forecasts 1- to h-steps ahead are also jointly normally distributed under the
null hypothesis of structural stability,
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er(1)
eT(h) = = ®pur ), ~ N(O, Ey(h)), (469)
er(h)
where
Ik 0 0
ol Ik 0
Py, = . . . . (4.6.10)
Pp_1 Pp_s Ix
so that
2, (h) == ®p(I @ X,)P),. (4.6.11)

Using again Proposition B.3 of Appendix B,

An o= er(h)S,(h)er(h) =, (In ® 2, )ur,
h
= Z u’THE;luTH = A1+ u/ijrhE;luTJrh ~ XQ(hK). (4.6.12)
i=1
Thus, Ap, may be used to check whether a structural change has occurred
during the periods T+ 1,...,T + h.
To make this test feasible, it is necessary to replace unknown quantities
by estimators just as in the case of the 7-tests. Denoting the test statistics
based on estimated VAR processes by Ap,

M 5N 2(hEK) (4.6.13)

follows with the same arguments used for 7, provided consistent parameter
estimators are used.

Again it seems plausible to make small sample adjustments to the statistics
to take into account the fact that estimated quantities are used. The last
expression in (4.6.12) suggests that a closer look at the terms

Wy X urg (4.6.14)

is useful in searching for a small sample adjustment. This expression involves
the 1-step ahead forecast errors ury; = yry; — yr+i—1(1). If estimated co-
efficients are used in the 1-step ahead forecast, the MSE or forecast error
covariance matrix is approximately inflated by a factor (T + Kp + 1)/T (see
(3.5.13)). Because )\, is the sum of terms of the form (4.6.14), it may be
suitable to replace X, by (T + Kp + 1)§u/T when estimated quantities are
used. Note, however, that such an adjustment ignores possible dependencies
between the estimated Wpy; and Ury;. Nevertheless, it leads to a computa-
tionally extremely simple form and was therefore proposed in the literature
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(Liitkepohl (1989b)). Furthermore, it was suggested to divide by the degrees
of freedom of the asymptotic y2-distribution and, by appeal to Proposition
C.3(2) of Appendix C, use the resulting statistic, A, say, in conjunction with
critical values from F-distributions to adjust for the fact that X, is replaced
by an estimator. In other words,

h
N =T Sy iy /[(T+Kp+1)Kh) ~ F(Kh, T—Kp—1). (4.6.15)

i=1

The denominator degrees of freedom are chosen by the same arguments used
in (4.6.8). Obviously, A\; = 7.

Now we have different sets of stationarity tests and the question arises
which ones to use in practice. To answer this question, it would be useful
to know the power characteristics of the tests because it is desirable to use
the most powerful test available. For some alternatives the 7- and A-statistics
have noncentral x2-distributions (Liitkepohl (1988b, 1989)). In these cases
it is possible to investigate and compare their powers. It turns out that for
some alternatives the 7-tests are more powerful than the A-tests and for other
alternatives the opposite is true. Because we usually do not know the exact
form of the alternative (the exact form of the structural change) it may be a
good idea to apply both tests in practice. In addition, a Chow test may be
used.

An Example

To illustrate the use of the two tests for stationarity, we use the first differences
of logarithms of the West German investment, income, and consumption data
and test for a possible structural change caused by the oil price shocks in
1973/74 and 1979/80. Because the first drastic price increase occurred in late
1973, we have estimated a VAR(2) model using the sample period 1960.4—
1973.2 and presample values from 1960.2 and 1960.3. Thus T" = 51. It is
important to note that the data from the forecast period are not used for
estimation. We have used the estimated process to compute the 7, and A,
for h =1,...,8. The results are given in Table 4.9 together with the p-values
of the tests. The p-value is the probability that the test statistic assumes a
value greater than the observed test value, if the null hypothesis is true. Thus,
p-values smaller than .10 or .05 would be of concern. Obviously, in this case
none of the test values is statistically significant at the 10% level. Thus, the
tests do not give rise to concern about the stationarity of the underlying data
generation process during the period in question. Although we have given the
71, and A, values for various forecast horizons h in Table 4.9, we emphasize
that the tests are not independent for different h. Thus, the evidence from
the set of tests should not lead to overrating the confidence we may have in
this result.
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Table 4.9. Stability tests for the investment/income/consumption
system for 1973—-1975

forecast

horizon
quarter h Th  p-value A p-value
1973.3 1 .872 .46 872 .46
4 2 271 .85 717 .64
1974.1 3 .206 .89 517 .85
2 4 .836 48 627 .81
3 5 .b81 .63 785 .69
4 6 172 91 .832 .65
1975.1 7 126 .94 .863 .63
2 8 1.450 .24 1.041 .44

To check the possibility of a structural instability due to the 1979/80 oil
price increases, we used the VAR(2) model of Section 3.2.3 which is based on
data up to the fourth quarter of 1978. The resulting values of the test statis-
tics for h = 1,...,8 are presented in Table 4.10. Again none of the values is
significant at the 10% level. However, in Section 3.5.2, we found that the ob-
served consumption values in 1979 fall outside a 95% forecast interval. Hence,
looking at the three series individually, a possible nonstationarity would be
detected by a prediction test. This possible instability in 1979 was a reason for
using only data up to 1978 in the examples of previous chapters and sections.
The example indicates what can also be demonstrated theoretically, namely
that the power of a test based on joint forecasts of various variables may be
lower than the power of a test based on forecasts for individual variables (see
Liitkepohl (1989Db)).

4.7 Exercises

4.7.1 Algebraic Problems

Problem 4.1 _
Show that the restricted ML estimator 8, can be written in the form (4.2.10).

Problem 4.2
Prove Lemma 4.1.
[Hint: Suppose k < n. Then
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Table 4.10. Stability tests for the investment/income/consumption
system for 1979-1980

forecast

horizon
quarter h Th  p-value A p-value
1979.1 1 277 .84 277 .84
2 2 2.003 12 1.077 .38
3 3 2.045 12 1.464 .18
4 4 .203 .89 1.245 27
1980.1 5 .630 .60 1.339 .20
2 6 1.898 .86 1.374 17
3 7 .188 .90 1.204 .28
4 8 .535 .66 1.124 .34

Ch+an = cp+ (an _an—l) +F (ak+1 _ak)+ak

en+ (b —bp_1)+ -+ (bpp1 — bg) + ax
e+ by — by +ag
Ck + ag

which contradicts (4.3.13b).?]

(AVARAV,

Problem 4.3
Show (4.4.14) and (4.4.15).

Hint:
vec(VTUF[I;, ® Z'(B — B)')/T)
= VT vec [;UF(I;L ® 7" (I ® (E - B),)}
- [IK ® %UF(Ih ® Z’)] VT vee(I, @ (B - BY)
and

VT vec (;(E —B)ZF [Ih ® Z'(B - B)’D

= {[]h(g) (]EA}—B)} Uh@fZ)F/Z/ ®IK} ﬁvec(E—B).}

Problem 4.4
Show (4.5.14).

2 1 thank Prof. K. Schiirger, Universitit Bonn, for pointing out this proof.
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Hint: Note that

W1 —P) @ (us — W) @ (ug — ) = (Y1 — p) @ U ® Uy
(-1 — ) @u@u+---,

define new variables of the type
zt = (Yr—1 — 1) @ ug @ uy

and use that
o1
phmf ; 2= E(z) = 0.}

Problem 4.5
Using the notation and assumptions from Proposition 4.1, show that

dnl(B,) 0> Inl(B,) dnl(B,)
0B 0Bo3’ B

= (B, -B)(22' @ (Z;) "B, - B).

4.7.2 Numerical Problems

The following problems require the use of a computer. They refer to the bi-
variate series y; = (y1¢,y2¢)’ of first differences of the U.S. investment data in
File E2, available from the author’s webpage.

Problem 4.6

Set up a sequence of tests for the correct VAR order of the data generating
process using a maximum order of M = 4. Compute the required x? and F
likelihood ratio statistics. Which order would you choose?

Problem 4.7

Determine VAR order estimates on the basis of the four criteria FPE, AIC,
HQ, and SC. Use a maximum VAR order of M = 4 in a first estimation round
and M = 8 in a second estimation round. Compare the results.

Problem 4.8 R R

Compute the residual autocorrelations Ry,..., Ri2 and estimate their stan-
dard errors using the VAR(1) model obtained in Problem 3.12. Interpret your
results.

Problem 4.9

Compute LM test values Az pr(1), ALa(2), and Apas(4) and portmanteau test
values @ and Qy, for h = 10 and 12 for the VAR(1) model of the previous
problem. Test the whiteness of the residuals.

Problem 4.10
On the basis of a VAR(1) model, perform a test for nonnormality of the
example data.
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Problem 4.11
Investigate whether there was a structural change in U.S. investment after

1965 (possibly due to the increasing U.S. engagement in Vietnam).



5

VAR Processes with Parameter Constraints

5.1 Introduction

In Chapter 3, we have discussed estimation of the parameters of a K-
dimensional stationary, stable VAR(p) process of the form

Yy =v+ A1y o+ Apyep + g, (5.1.1)

where all the symbols have their usual meanings. In the investment/in-
come/consumption example considered throughout Chapter 3, we found that
many of the coefficient estimates were not significantly different from zero.
This observation may be interpreted in two ways. First, some of the coeffi-
cients may actually be zero and this fact may be reflected in the estimation
results. For instance, if some variable is not Granger-causal for the remaining
variables, zero coefficients are encountered. Second, insignificant coefficient
estimates are found if the information in the data is not rich enough to pro-
vide sufficiently precise estimates with confidence intervals that do not contain
Zero.

In the latter case, one may want to think about better ways to extract
the information from the data because, as we have seen in Chapter 3, a large
estimation uncertainty for the VAR coefficients leads to poor forecasts (large
forecast intervals) and imprecise estimates of the impulse responses and fore-
cast error variance components. Getting imprecise parameter estimates in a
VAR analysis is a common practical problem because the number of parame-
ters is often quite substantial relative to the available sample size or time series
length. Various cures for this problem have been proposed in the literature.
They all amount to putting constraints on the coefficients.

For instance, in the previous chapter, choosing the VAR order p has been
discussed. Selecting an order that is less than the maximum order amounts to
placing zero constraints on VAR coefficient matrices. This way complete coef-
ficient matrices are eliminated. In the present chapter, we will discuss putting
zero constraints on individual coefficients. Such constraints are but one form
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of linear restrictions which will be treated in Section 5.2. Nonlinear constraints
are considered in Section 5.3 and Bayesian estimation is the subject of Section
5.4.

5.2 Linear Constraints

In this section, the consequences of estimating the VAR coefficients subject
to linear constraints will be considered. Different estimation procedures are
treated in Subsections 5.2.2-5.2.5; forecasting and impulse response analysis
are discussed in Subsections 5.2.6 and 5.2.7, respectively; strategies for model
selection or the choice of constraints are dealt with in Subsection 5.2.8; model
checking follows in Subsection 5.2.9; and, finally, an example is discussed in
Subsection 5.2.10.

5.2.1 The Model and the Constraints

We consider the model (5.1.1) for t =1,...,T, written in compact form
Y = BZ +U, (5.2.1)
where
1

Yt
Y =[y,...,yr], Z:=[Zoy...,Zp_1] with Z; := .

Yt—p+1
B:=[v, Ay, ..., A, U:=u,...,ur).

Suppose that linear constraints for B are given in the form
B :=vec(B) = Ry +r, (5.2.2)

where 8 = vec(B) is a (K(Kp+1) x 1) vector, R is a known (K(Kp+1)x M)
matrix of rank M, -~ is an unrestricted (M x 1) vector of unknown param-
eters, and r is a K(Kp + 1)-dimensional vector of known constants. All the
linear restrictions of interest can be expressed in this form. For instance, the
restriction A, = 0 can be written as in (5.2.2) by choosing M = K?(p — 1)+ K,

1
R= [ OM ] , y=vec(v,A1,..., Ap_1),
and r = 0.

Although (5.2.2) is not the most conventional form of representing linear
constraints, it is used here because it is particularly useful for our purposes.
Often the constraints are expressed as
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B =c, (5.2.3)

where C is a known (N x (K?p+ K)) matrix of rank N and c is a known
(N x 1) vector (see Chapter 4, Section 4.2.2). Because rk(C) = N, the matrix
C has N linearly independent columns. For simplicity we assume that the first
N columns are linearly independent and partition C as C' = [C; : Cy], where
C1 is (N x N) nonsingular and Cy is (N x (K2p + K — N)). Partitioning 3
conformably gives

[C1 : Cs) [g; ] =018, +CeBy =c

or
B, = —C{'CyB, + Cr e

Therefore, choosing

—1 —1
R:[ e ] v =B, and r:[clc])
IpK2+K—N 0

the constraints (5.2.3) can be written in the form (5.2.2). Also, it is not difficult
to see that restrictions written as in (5.2.2) can be expressed in the form
C3 = c for suitable C' and c¢. Thus, the two forms are equivalent.

The representation (5.2.2) permits to impose the constraints by a simple
reparameterization of the original model. Vectorizing (5.2.1) and replacing 8
by R~y + r gives

y = vec(Y) = (Z'® Ik) vec(B) + vec(U)

= (Z'olx)(By+r)+u

or
z= (7' ®Ix)Ry +n, (5.2.4)

where z :=y — (Z' ® Ix)r and u := vec(U). This form of the model allows
us to derive the estimators and their properties just like in the original un-
constrained model. Estimation of v and 3 will be discussed in the following
subsections.

5.2.2 LS, GLS, and EGLS Estimation
Asymptotic Properties

Denoting by X, the covariance matrix of u;, the vector 4 minimizing

S(v) = W(rex;
= [z— (2’ ®Ix)Ry|(Ir ® 2, ")z — (Z' ® Ix) R~ (5.2.5)
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with respect to = is easily seen to be
¥ = [R(Z2Z @ ;" )R 'R (Z® X, ")z

= [R(ZZ' @ ;)R 'R(Z 2 2,1 [(Z' @ Ix)Ry + 1]

= Y+ [R(ZZ @ ;MR R (Ixpy1 @ Z,Y) vec(UZ') (5.2.6)
(see Chapter 3, Section 3.2.1). This estimator is commonly called a generalized
LS (GLS) estimator because it minimizes the generalized sum of squared
errors S(7) rather than the sum of squared errors u'u. We will see shortly
that in contrast to the unrestricted case considered in Chapter 3, it may make
a difference here whether S(7) or u’u is used as the objective function. The
GLS estimator is in general asymptotically more efficient than the multivariate
LS estimator and is therefore preferred here. We will see in Section 5.2.3

that, under Gaussian assumptions, the GLS estimator is equivalent to the
ML estimator. From (5.2.6),

VT(H —~) = [R’ (ZTZI ® 2;1> R] _lR’(IKp+1 ® 2;1)%%0((]2')
(5.2.7)

and the asymptotic properties of 4 are obtained as in Proposition 3.1.

Proposition 5.1 (Asymptotic Properties of the GLS Estimator)
Suppose the conditions of Proposition 3.1 are satisfied, that is, y; is a K-
dimensional stable, stationary VAR(p) process and u; is independent white
noise with bounded fourth moments. If 3 = Ry +r as in (5.2.2) with rk(R) =
M, then 74 given in (5.2.6) is a consistent estimator of 4 and

VI(F =) SN R ® 2R, (5.2.8)
where I' := E(Z;Z]) = plim ZZ'/T. [ ]
Proof: Under the conditions of the proposition, plim(ZZ’/T) = I" and

1
T vec(UZ') 5 N(0,T ® £,)

(see Lemma 3.1). Hence, by results stated in Appendix C, Proposition C.15(1),
using (5.2.7), VT(5 — 7) has an asymptotic normal distribution with covari-
ance matrix

[R(re X, YR 'RIo X, YNIe X)X YRR (I'® X, YR~}
=[R(I'® X, YR

Unfortunately, the estimator 4 is of limited value in practice because its
computation requires knowledge of X,. Since this matrix is usually unknown,
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it has to be replaced by an estimator. Using any consistent estimator X,
instead of X, in (5.2.6), we get an EGLS (estimated GLS) estimator

F=[R(2Z' ® S;RT'R(Z® 5"z (5.2.9)

which has the same asymptotic properties as the GLS estimator 4. This result
is an easy consequence of the representation (5.2.7) and Proposition C.15(1)
of Appendix C.

Proposition 5.2 (Asymptotic Properties of the EGLS Estimator)

Under the conditions of Proposition 5.1, if plim Y, = X, the EGLS estimator
?y in (5.2.9) is asymptotically equivalent to the GLS estimator 4 in (5.2.6),
that is, plim ?y =~ and

VT(F —~) SN, [R(I e Z;HRY. (5.2.10)

|

Once an estimator for ~ is available, an estimator for 3 is obtained by
substituting in (5.2.2), that is,

B=Ry+r. (5.2.11)

The asymptotic properties of this estimator follow immediately from Ap-
pendix C, Proposition C.15(2).

Proposition 5.3 (Asymptotic Properties of the Implied Restricted EGLS Es-
timator)

Under the conditions of Proposition 5.2, the estimator ,B = R§+r is consistent
and asymptotically normally distributed,

\/:F(fa —B) L N(0,RIR(I'® X;Y)R]"'R)). (5.2.12)
]

To make these EGLS estimators operational, we need a consistent estima-
tor of X,. From Chapter 3, Corollary 3.2.1, we know that, under the conditions
of Proposition 5.1,

~ 1 ~ ~
S, = — (Y- — BzY
T, 1~ BAY - B2)
_ 1 ol n—1 /
= 1 Ur =222 )Y (5.2.13)

is a consistent estimator of X, which may thus be used in place of ... Here
B=YZ'(Z2Z)"" is the unconstrained multivariate LS estimator of the coef-
ficient matrix B.
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Alternatively, the restricted LS estimator minimizing u’u with respect to
~ may be determined in a first step. The minimizing ~-vector is easily seen
to be

¥ =[R(Z2Z @ Ix)R| 'R (Z ® Ik)z (5.2.14)

(see Problem 5.1). As this LS estimator does not involve the white noise
covariance matrix X, , it is generally different from the GLS estimator. We
denote the corresponding B-vector by B, that is, ,é = R¥ + r. Furthermore,
B is the corresponding coefficient matrix, that is, vec(é) = [3 Then we may
choose

Y. =—(Y = BZ)(Y - BZ) (5.2.15)

as an estimator for X,. The consistency of this estimator is a consequence
of Proposition 3.2 and the fact that B is a consistent estimator of B with
asymptotic normal distribution. This result follows from the asymptotic nor-
mality of 4 which in turn follows by replacing X, with Ix in (5.2.6) and
(5.2.7). Thus, B = R +r is asymptotically normal. Consequently, we get the
following result from Proposition 3.2 and Corollary 3.2.1.

Proposition 5.4 (Asymptotic Properties of the White Noise Covariance Es-
timator)
Under the conditions of Proposition 5.1, 3/, is consistent and

plimVT(%, —UU'/T) = 0.
|

In (5.2.15), T may be replaced by T'— Kp — 1 without affecting the consis-
tency of the covariance matrix estimator. However, there is little justification
for subtracting Kp + 1 from T in the present situation because, due to zero
restrictions, some or all of the K equations of the system may contain fewer
than Kp + 1 parameters.

Of course, in practice one would like to know which one of the possible
covariance estimators leads to an EGLS estimator §/ with best small sample
properties. Although we cannot give a general answer to this question, it
seems plausible to use an estimator that takes into account the nonsample
information concerning the VAR coefficients, provided the restrictions are
correct. Thus, if one is confident about the validity of the restrictions, the
covariance matrix estimator ¥, may be used.

As an alternative to the EGLS estimator described in the foregoing, an
iterated EGLS estimator may be used. It is obtained by computing a new
covariance matrix estimator from the EGLS residuals. This estimator is then
used in place of X, in (5.2.9) and again a new covariance matrix estimator
is computed from the corresponding residuals and so on. The procedure is
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continued until convergence. We will not pursue it here. From Propositions
5.2 and 3.2 it follows that the asymptotic properties of the resulting iterated
EGLS estimator are the same as those of the EGLS estimator wherever the
iteration is terminated.

Comparison of LS and Restricted EGLS Estimators

A question of interest in this context is how the covariance matrix in (5.2.12)
compares with the asymptotic covariance matrix I ~1® X, of the unrestricted
multivariate LS estimator 3. To see that the restricted estimator has smaller
or at least not greater asymptotic variances than the unrestricted estimator,
it is helpful to write the restrictions in the form (5.2.3). In that case, the
restricted EGLS estimator of 3 turns out to be

?3 =B+[(z2) e 2)CC(22) " © £,)CT e — CB) (5.2.16)

(see Chapter 4, Section 4.2.2, and Problem 5.2). Noting that C3 — ¢ = 0,
subtracting B8 from both sides of (5.2.16), and multiplying by /T gives

~
=

VT(B—~B) =VT(B—B) — FrVT(B - B) = (Ix2pr i — Fr)VT(B - B),
Z7Z\"'
(%) o

F:=plim Fr = (I'' @ 2,)C'[C(I' ' X,)C''C.

FT = C/

so that

Thus, the covariance matrix of the asymptotic distribution of \/T(,@ —B) is

(I-F) (I ex,)(I-F)
=I'eyX,-I'eX)F-FI'eX)+FI 'eX,)F
=I'er,-Tt'ex)0CT e cr @ x,).

In other words, a positive semidefinite matrix is subtracted from the covari-
ance matrix I'"! ® X, to obtain the asymptotic covariance matrix of the
restricted estimator. Hence, the asymptotic variances of the latter will be
smaller than or at most equal to those of the unrestricted multivariate LS es-
timator. Because the two ways of writing the restrictions in (5.2.3) and (5.2.2)
are equivalent, the EGLS estimator of B subject to restrictions 8 = Ry + r
must also be asymptotically superior to the unconstrained estimator. In other
words,

I'''e@X, - RR((IeX YR 'R
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is positive semidefinite. This result shows that imposing restrictions is advan-
tageous in terms of asymptotic efficiency. It must be kept in mind, however,
that the restrictions are assumed to be valid in the foregoing derivations. In
practice, there is usually some uncertainty with respect to the validity of the
constraints.

5.2.3 Maximum Likelihood Estimation

So far in this chapter, no specific distribution of the process y; is assumed. If
the precise distribution of the process is known, ML estimation of the VAR
coefficients is possible. In the following, we assume that y; is Gaussian (nor-
mally distributed). The ML estimators of v and X, are found by equating
to zero the first order partial derivatives of the log-likelihood function and
solving for v and X,. The partial derivatives are found as in Section 3.4 of
Chapter 3. Note that

dlnl _ iﬂalnl :R,alnl
oy Oy 0B 0B’
by the chain rule for vector differentiation (Appendix A.13). Proceeding as in
Section 3.4, the ML estimator of - is seen to be

¥=[R(2Z' @ X;)R|"'R(Z ® ¥, )z, (5.2.17)

where ¥, is the ML estimator of X, (see Problem 5.3). The resulting ML
estimator of 3 is

B=RYy+r. (5.2.18)

Furthermore, the ML estimator of X, is seen to be
~ 1 ~ ~
Y= T(YfBZ)(YfBZ)’, (5.2.19)

where B is the (K x (Kp + 1)) matrix satisfying vec(B) = 3.

An immediate consequence of the consistency of the ML estimator E’u and
of Proposition 5.2 is that the EGLS estimator % and the ML estimator 4 are
asymptotically equivalent. In addition, it follows as in Section 3.2.2, Chapter
3, that X, has the same asymptotlc properties as in the unrestricted case (see
Proposition 3.2) and ﬂ and E are asymptotically independent. In summary,
we get the following result.

Proposition 5.5 (Asymptotic Properties of the Restricted ML Estimators)
Let y; be a Gaussian stable K-dimensional VAR(p) process as in (5.1.1) and

B = vec(B) = Ry + r as in (5.2.2). Then the ML estimators 8 and o =
vech(X,,) are consistent and asymptotically normally distributed,
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T R Y L R

where D}, = (D D) D/ is, as usual, the Moore-Penrose inverse of the
(K% x K(K +1)/2) duplication matrix D |

Of course, we could have stated the proposition in terms of the joint dis-
tribution of 4 and & instead. In the following, the distribution given in the
proposition will turn out to be more useful, though.

Both EGLS and ML estimation can be discussed in terms of the mean-
adjusted model considered in Section 3.3. However, the present discussion
includes restrictions for the intercept terms in a convenient way. If the re-
strictions are equivalent in the different versions of the model, the asymp-
totic properties of the estimators of a := vec(4s,...,A,) will not be af-
fected. For instance, the asymptotic covariance matrix of vT'(& — o), where
a is the ML estimator, is just the lower right-hand (K?p x K?p) block of
R[R(I' ® X Y)R]"'R’ from Proposition 5.5. If the sample means are sub-
tracted from all variables and the constraints are given in the form a« = Ry+r
for a suitable matrix R and vectors < and r, the covariance matrix of the
asymptotic distribution of vT'(& — ) can be written as

R[R (I'v(0)® X, )R ™'R/, (5.2.20)

where I'y(0) := Xy = Cov(Y:) with Y; := (5, .-, ¥p_pi1)

5.2.4 Constraints for Individual Equations

In practice, parameter restrictions are often formulated for the K equations
of the system (5.1.1) separately. In that case, it may be easier to write the
restrictions in terms of the vector b := vec(B’) which contains the parameters
of the first equation in the first Kp + 1 positions and those of the second
equation in the second Kp + 1 positions etc. If the constraints are expressed
as

b = Rc + 7, (5.2.21)

where R is a known ((K?2p + K) x M) matrix of rank M, c is an unknown
(M x 1) parameter vector, and 7 is a known (K?p + K)-dimensional vector,
the restricted EGLS and ML estimators of b and their properties are easily
derived. We get the following proposition:

Proposition 5.6 (EGLS Estimator of Parameters Arranged Equationwise)
Under the conditions of Proposition 5.2, if b = vec(B’) satisfies (5.2.21), the
EGLS estimator of c is

C=[R(Z; 0 ZZ)R7'R(5;' @ Z)[vec(Y') — (Z@ Ix)F],  (5.2.22)
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where ¥, is a consistent estimator of X,. The corresponding estimator of b
is

b=Rc+r, (5.2.23)

which is consistent and asymptotically normally distributed,

VT(b—b) % N(0,R[R (£, ® I'R]"'R). (5.2.24)
|

The proof is left as an exercise (see Problem 5.4). An estimator of 3 is

obtained from b by premultiplying with the commutation matrix Kgpi1,x-
If the restrictions in (5.2.21) are equivalent to those in (5.2.2), the estimator

for 3 obtained in this way is identical to E given in (5.2.11).

5.2.5 Restrictions for the White Noise Covariance Matrix

Occasionally restrictions for the white noise covariance matrix X, are avail-
able. For instance, in Chapter 2, Section 2.3.1, we have seen that instantaneous
noncausality is equivalent to Y, being block-diagonal. Thus, in that case there
are zero off-diagonal elements. Zero constraints are, in fact, the most common
constraints for the off-diagonal elements of X,. Therefore, we will focus on
such restrictions in the following.

Estimation under zero restrictions for X, is often most easily performed in
the context of the recursive model introduced in Chapter 2, Section 2.3.2. In
order to obtain the recursive form corresponding to the standard VAR model

Yy =v+ A1y o+ Apyep + g,

Yy is decomposed as X, = WX. W', where W is lower triangular with unit
main diagonal and Y. is a diagonal matrix. Then, premultiplying with W ~=1!
gives the recursive system

ye =1+ Agye + Alye1 + -+ Ay + e,

where n := W1y, A} := Ix — W~ is a lower triangular matrix with zero
diagonal, A¥ := W~1A;,i=1,...,p, and &; = (e14,...,6x¢) := W'y has
diagonal covariance matrix, X, := E(e:}). The characteristic feature of the
recursive representation of our process is that the k-th equation may involve
Y1, ---»Yk—1,¢ (current values of yi,...,ygr—1) on the right-hand side and the
components of the white noise process ¢; are uncorrelated.

Many zero restrictions for the off-diagonal elements of X, are equivalent
to simple zero restrictions on Aj which are easy to impose in equationwise LS
estimation. For instance, if X, is block-diagonal, say
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_ 211 0
Zu_|: 0 222:|7

then X1 and Y55 can be decomposed in the form
Eii = WiESiWila 1= 17 27

where W; is lower triangular with unit diagonal and X, is a diagonal matrix.
Hence,

—1 *
w0 &)

0 wy! 0 02
where the
0 - 0
s= 0 ] =1y
4.< * 0

are lower triangular with zero main diagonal. In summary, if X, is block-
diagonal with an (m X n) block of zeros in its lower left-hand corner, the
same holds for Af.

Because the error terms of the K equations of the recursive system are un-
correlated it can be shown that estimating each equation separately does not
result in a loss of asymptotic efficiency (see Problem 5.6). Using the notation

Yk1 €k1
Yoy = | o |y Ew) T
YkT EEKT
and denoting by b(;) the vector of all nonzero coefficients and by Z) the

corresponding matrix of regressors in the k-th equation of the recursive form
of the system, we may write the k-th equation as

Yik) = Ziky by + )

The LS estimator of by is

~ -1
by = (Z(iyZx)) Z(yY (k-

Under Gaussian assumptions, it is equivalent to the ML estimator and is thus
asymptotically efficient. Obviously, this framework makes it easy to take into
account zero restrictions by just eliminating regressors.

Generally, restrictions on X, imply restrictions for A and vice versa.
Unfortunately, zero restrictions on X, do not always imply zero restrictions
for Aj. Consider, for instance, the covariance matrix
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11 -1 100 11 -1
Y= 12 0]|=| 110|L|01 1]|(E=WIWw).
-10 3 -1 11 00 1
Hence,
1 00 000
b=L-W'l=L—-|-1 10|=| 100
2 -1 1 -2 10

Thus, although X, has a zero off-diagonal element, all elements of A below
the main diagonal are nonzero.

In practice, subject matter theory is often more likely to provide restric-
tions for the A matrix than for Y, because, as we have seen in Section
2.3.2, the elements of Af can sometimes be interpreted as impact multipliers
which represent the instantaneous effects of impulses in the variables. For this
reason, the recursive form of the system has considerable appeal.

Note, however, that if restrictions are available on the coefficients A; of
the standard VAR form, the implied constraints for the A} matrices should be
taken into account in the estimation. Such restrictions may be cross-equation
restrictions that involve coefficients from different equations. Taking them
into account may require simultaneous estimation of all or some equations
of the system rather than single equation LS estimation. In the following
sections, we return to the standard form of the VAR model. Further discussion
of covariance restrictions will be provided in the context of structural VAR
models in Chapter 9.

5.2.6 Forecasting

Forecasting with estimated processes was discussed in Section 3.5 of Chapter
3. The general results of that section remain valid even if parameter restric-
tions are imposed in the estimation procedure. Some differences in details will
be pointed out in the following.

We focus on the standard form (5.1.1) of the VAR model and denote the
parameter estimators by 7, //1\1, ceey ﬁp, and ,B' These estimators may be EGLS
or ML estimators. The resulting h-step forecast at origin ¢ is

Ge(h) =0+ A5 (h — 1) + -+ A5 (h — p) (5.2.25)

with g¢(j) = ye4; for j <0, as in Section 3.5. In line with that section, we
assume that forecasting and parameter estimation are based on independent
processes with identical stochastic structure. Then we get the approximate
MSE matrix

S5(h) = 5y(h) + 7. 20) (5.2.26)

where
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h—1
Zy(h) = E{lyesn — ve(B)][yern —ve(W)]'} = Y &: 2,8,
i=0

®; being, as usual, the i-th coefficient matrix of the canonical MA represen-
tation of ¥, and

— Oy (h) A@yt(h)’
2h):=F o7 Eﬁ bR ],

where Z@ is the covariance matrix of the asymptotic distribution of v/T' (3 - B).

In Chapter 3, the matrix {2(h) has a particularly simple form because
in that chapter EB = I'"' ® X,. In the present situation, where parameter
restrictions are imposed,

Y5 =R[R(I'e ¥, )R] 'R,

and the form of 2(h) is not quite so simple. Because the covariance matrix 2

is now smaller than in Chapter 3, £2(h) will also become smaller (not greater).
Using

Oy (h) — /(/\h—1—i
o8 ; Z,(B') ® P;
from Chapter 3, (3.5.11), we may now estimate {2(h) by
~ 1 I [t ‘ h—1 ‘ !
Qh) = 7 S Z®) e | 2y | Y Z(B) T T e,
o - (5.2.27)
Here
1 0 --- 0
B:= B (Kp+1)x (Kp+1))
0 Ixp-1n 0

(see Section 3.5.2). In practice, the unknown matrices B, @;, and Eﬁ are
replaced by consistent estimators. Of course, if T is large we may simply
ignore the term 2(h)/T in (5.2.26) because it approaches zero as T — oco.
An estimator of Xj(h) is then obtained by simply replacing the unknown
quantities in Xy (h) by estimators. Assuming that y; is Gaussian, forecast
intervals and regions can be determined exactly as in Section 3.5.

5.2.7 Impulse Response Analysis and Forecast Error Variance
Decomposition

Impulse response analysis and forecast error variance decomposition with re-
stricted VAR models can be done as described in Section 3.7. Proposition 3.6
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is formulated in sufficiently general form to accommodate the case of restricted
estimation. The impulse responses are then estimated from the restricted es-
timators of Aq,...,A,. As mentioned earlier, the covariance matrix of the
restricted estimator of o := vec(4y,...,A4,) is obtained by considering the
lower right-hand (K?p x K?2p) block of

S5 =R[R(I'e ¥, )R] 'R

As we have seen in Subsection 5.2.3, Proposition 5.5, the asymptotic covari-
ance matrix X5 of v/T'(&—o) is not affected by the restrictions for 3. However,
the estimator of

Y5 = 2D} (X, ® £,)DF

may be affected. As discussed in Section 5.2.2, we have the choice of different
consistent estimators for X, which may or may not take into account the
parameter constraints. In other words, we may estimate X, from the residuals
of an unrestricted estimation or we may use the residuals of the restricted LS
or EGLS estimation. The lower triangular matrix P that is used in estimating
the impulse responses for orthogonal innovations is estimated accordingly. In
the examples considered below, we will usually base the estimators of X,
and P on the residuals of the restricted EGLS estimation. In contrast, I" will
usually be estimated by ZZ’ /T, as in the unrestricted case. Of course, instead
of the intercept version of the process we may use the mean-adjusted form for
estimation, as mentioned in Section 5.2.3.

5.2.8 Specification of Subset VAR Models

A VAR model with zero constraints on the coefficients is called a subset VAR
model. Formally zero restrictions can be written as in (5.2.2) or (5.2.21) with
r = ¥ = 0. We have encountered such models in previous chapters. For in-
stance, when Granger-causality restrictions are imposed, we get subset VAR
models. This example suggests possibilities how to obtain such restrictions,
namely, from prior nonsample information and/or from tests of particular hy-
potheses. Subject matter theory sometimes implies a set of restrictions on a
VAR model that can be taken into account, using the estimation procedures
outlined in the foregoing. However, in many cases generally accepted a priori
restrictions are not available. In that situation, statistical procedures may be
used to detect or confirm possible zero constraints. In the following, we will
discuss such procedures.

If little or no a priori knowledge of possible zero constraints is available,
one may want to compare various different processes or models and choose the
one which is optimal under a specific criterion. Using hypothesis tests in such
a situation may create problems because the different possible models may not
be nested. In that case, statistical tests may not lead to a unique answer as to
which model to use. Therefore, in subset VAR modelling it is not uncommon to
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base the model choice on model selection criteria. For instance, appropriately
modified versions of AIC, SC, or HQ may be employed. Generally speaking,
in such an approach the subset VAR model is chosen that optimizes some
prespecified criterion.

Suppose it is just known that the order of the process is not greater than
some number p and otherwise no prior knowledge of possible zero constraints
is available. In that situation, one would ideally fit all possible subset VAR
models and select the one that optimizes the criterion chosen. The practica-
bility of such a procedure is limited by its computational expense. Note that
for a K-dimensional VAR(p) process, even if we do not take into account the
intercept terms for the moment, there exist K?p coefficients from which

(")

subsets with j elements can be chosen. Thus, there is a total of

K?p—1
> <K;p) — 2K

=0

subset VAR models, not counting the full VAR(p) model which is also a possi-
ble candidate. For instance, for a bivariate VAR(4) process, there are as many
as 216 — 1 = 65,535 subset models plus the full VAR(4) model. Of course, in
practice the dimension and order of the process will often be greater than in
this example and there may be many more subset VAR models. Therefore,
specific strategies for subset VAR modelling have been proposed which avoid
fitting all potential candidates. Some possibilities will be described briefly in
the following.

Elimination of Complete Matrices

Penm & Terrell (1982) considered subset models where complete coefficient
matrices A; rather than individual coefficients are set to zero. Such a strategy
reduces the models to be compared to

P
3 ( P > —2v.
=0 7
For instance, for a VAR(4) process, only 16 models need to be compared.
An obvious advantage of the procedure is its relatively small computa-
tional expense. Deleting complete coefficient matrices may be reasonable if
seasonal data with strong seasonal components are considered for which only
coefficients at seasonal lags are different from zero. On the other hand, there
may still be potential for further parameter restrictions. Moreover, some of the
deleted coefficient matrices may contain elements that would not have been
deleted had they been checked individually. Therefore, the following strategy
may be more useful.
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Top-Down Strategy

The top-down strategy starts from the full VAR(p) model and coefficients are
deleted in the K equations separately. The k-th equation may be written as

Ykt = Vg + Qk1,1Y1,6—1 + - + Qg 1YK t—11

(5.2.28)

+ a1 pYit—p T+ QK pYK,t—p + Ukt

The goal is to find the zero restrictions for the coefficients of this equation
that lead to the minimum value of a prespecified criterion. For this purpose,
the equation is estimated by LS and the corresponding value of the criterion is
evaluated. Then the last coefficient ak, is set to zero (i.e., yx —p is deleted
from the equation) and the equation is estimated again with this restriction.
If the value of the criterion for the restricted model is greater than for the
unrestricted model, yx ;—p is kept in the equation. Otherwise it is eliminated.
Then the same procedure is repeated for the second last coefficient, oy g1 5,
or variable yx_1+—p, and so on up to v,. In each step a lag of a variable is
deleted if the criterion does not increase by that additional constraint com-
pared to the smallest value obtained in the previous steps.
Criteria that may be used in this procedure are

- 2
AIC =1n 52 + T(number of estimated parameters), (5.2.29)
—y  2InlnT
HQ=1Inc%+ %(number of estimated parameters), (5.2.30)
or
ey InT .
SC=1Ino"+ T(number of estimated parameters). (5.2.31)
Here 52 stands for the sum of squared estimation residuals divided by the

sample size T'. For instance, the AIC value for a model with or without zero
restrictions is computed by estimating the k-th equation, computing the resid-
ual sum of squares and dividing by T to obtain 2. Then two times the number
of parameters contained in the estimated equation is divided by T" and added
to the natural logarithm of 2. In the final equation, only those variables and
coefficients are retained that lead to the minimum AIC value.

In a more formal manner, this procedure can be described as follows. The
k-th equation of the system may be written as

Yk
Yk) = : = Z'bi, + ug) = Z'Ricr, + ug,

YkT
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where by, = Ricp, reﬂegts the zero restrictions imposed on the parameters by,
of the k-th equation. Ry is the restriction matrix. The LS estimator of ¢, is

& = (RyZZ'Ri) ™ RiZyq,

and the implied restricted LS estimator for by is
by, = Ry

Furthermore, a corresponding estimator of the residual variance is
5 (Ri) = (yay — Z'bx) () — Z'0x) /T

Thus, the AIC value for a model with these restrictions is
_ o 2 _
AIC(Ry,) = n5?(Ry,) + Trk(Rk).

The other criteria are determined in a similar way.

In the foregoing subset procedure based on AIC, the unrestricted model
with Ry = Ixp11 is estimated first and the corresponding value AIC(Ifcpi1)
is determined. Then the last column of Ik, is eliminated. Let us denote the

resulting restriction matrix by R,(Cl). If
ATC(R}Y) < AIC(Ikcps1),

the next restriction matrix Réz), say, is obtained by deleting the last column
of R,(Cl) and AIC(R;Q)) is compared to AIC(RS)). If, however,

AIC(RM) > AIC(Ixp11),

the restriction matrix R,(f) is obtained by deleting the second last column of

Irp+1 and the next restriction matrix is decided upon by comparing AIC(R,?))
to AIC(Ixp+1)- In each step, a column of the restriction matrix is deleted if
that leads to a reduction or at least not to an increase of the AIC criterion.
Otherwise the column is retained.

The procedure is repeated for each of the K equations of the K-dimensional
system, that is, a restriction matrix, Ry say, is determined for each equation
separately. Once all zero restrictions have been determined by this strategy,
the K equations of the restricted model with overall restriction matrix

Ry 0
R= N
0 Ry
can be estimated simultaneously by EGLS, as described in Sections 5.2.2
and 5.2.4. Note that SC tends to choose the most parsimonious models with
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the fewest coefficients whereas AIC has a tendency to select the most lavish
models.

The advantage of this top-down procedure, starting from the top (largest
model) and then working down gradually, is that it permits to check all indi-
vidual coefficients. Also, the computational expense is very reasonable. The
disadvantage of the method is that it requires estimation of each full equation
in the initial selection step. This may exhaust the available degrees of freedom
if a model with large order is deemed necessary for some high-dimensional sys-
tem. Therefore, a slightly more elaborate bottom-up strategy may be preferred
occasionally.

Bottom-Up Strategy

Again the restrictions are chosen for each equation separately. In the k-th
equation, only lags of the first variable are considered initially and an optimal
lag length pq, say, for that variable is selected. That is, we select the optimal
model of the form

Ykt = Vg + Qg11Y1,6—1 + -+ Qp1p Y1,t—p; + Ukt

by fitting models

Ykt = Vi + Qg1,1Y1,6—1 T - - + Qk1nY1,t—n + Ukt,

where n ranges from zero to some prespecified upper bound p for the order.
p1 is that order for which the selection criterion, e.g., AIC, HQ, or SC, is
minimized.

In the next step, p; is held fixed and lags of y5 are added into the equation.
Denoting the optimal lag length for ys by po gives

Yt = Vet oriaYie—1+ -+ 0kip Y1e—p, T Qk2,1Y2,4—1 +
+ Ok2,p,Y2,t—py T+ Ukt

Note that p, may, of course, be zero in which case yo does not enter the
equation.

In the third step, p; and ps are both held fixed and the third variable, ys,
is absorbed into the equation in the same way. This procedure is continued
until an optimal lag length for each of the K variables is obtained, conditional
on the “optimal” lags of the previous variables.

Due to omitted variables effects, some of the lag lengths may be over-
stated in the final equation. For instance, when none of the other variables
enters the equation, lags of y; may be useful in explaining yx; and in re-
ducing the selection criterion. In contrast, lags of y; may not contribute to
explaining y; when lags of all the other variables are present too. Therefore,
once p1,...,px are chosen, a top-down run, as described in the previous sub-
section, may complete the search for zero restrictions for the k-th equation.
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After zero constraints have been obtained for each equation in this fashion,
the K restricted equations may be estimated as one system, using EGLS or
ML procedures.

Obviously, it is possible in this bottom-up approach that the largest model,
where all K variables enter with p lags in each equation is never fitted. Thereby
considerable savings of degrees of freedom may be possible, especially if the
maximum order p is substantial. A drawback of the procedure is that the final
set of restrictions may depend on the order of the variables.

Sequential Elimination of Regressors

Individual zero coefficients can also be chosen on the basis of the t-ratios of
the parameter estimators. A possible strategy is to sequentially delete those
regressors with the smallest absolute values of ¢-ratios until all ¢-ratios (in
absolute value) are greater than some threshold value, say 7. In this procedure
one regressor is eliminated at a time. Then new t-ratios are computed for the
reduced model. Briiggemann & Liitkepohl (2001) showed that this strategy
is equivalent to the sequential elimination based on model selection criteria if
the threshold value 7 is chosen accordingly. More precisely, they considered a
regression equation

Yt = 11 + - + BNT N + Une,

where all regressors are denoted by x;¢, that is, x;; may represent an inter-
cept term or lags of the variables involved in our analysis. Briiggemann &
Liitkepohl (2001) studied a procedure where those regressors are deleted se-
quentially, one at a time, which lead to the largest reduction of the given
selection criterion until no further reduction is possible. For a model selection
criterion of the type

Cr(iy,...,in) =In(SSE(i1,...,in)/T) + crn/T,

where SSE(i1,...,i,) is the sum of squared errors obtained by includ-
ing ;t,...,%;,: in the regression model and cr is a sequence indexed by
the sample size. Briigggemann & Liitkepohl (2001) showed that choosing
n = {[exp(cr/T)—1](T — N +5—1)}/2 in the j-th step of the elimination pro-
cedure based on t-ratios results in the same final model that is also obtained
by sequentially minimizing the selection criterion defined by the penalty term
cr. Hence, the threshold value depends on the selection criterion via cr, the
sample size, and the number of regressors in the model. The threshold values
for the t-ratios correspond to the critical values of the tests. For the criteria
AIC, HQ, and SC, the ¢y sequences are ¢ (AIC) = 2, ey (HQ) = 2Inln T, and
cr(SC) = InT, respectively. Using these criteria in the procedure, for an equa-
tion with 20 regressors and a sample size of T' = 100, roughly corresponds to
eliminating all regressors with t-values that are not significant at the 15-20%,
10% or 2-3% levels, respectively (see Briiggemann & Liitkepohl (2001)).



212 5 VAR Processes with Parameter Constraints

Procedures similar to those discussed here were, for instance, applied
by Hsiao (1979, 1982) and Liitkepohl (1987). Other subset VAR strategies
were proposed by Penm & Terrell (1984, 1986), Penm, Brailsford & Ter-
rell (2000), and Briiggemann (2004). Moreover, more elaborate, computer-
automated model specification and subset selection strategies based on a mix-
ture of testing and model selection criteria were recently implemented in the
software package PcGets (see Hendry & Krolzig (2001)). The alternative sub-
set modelling procedures all have their advantages and drawbacks. Therefore,
at this stage, none of them can be recommended as a universally best choice
in practice.

5.2.9 Model Checking

After a subset VAR model has been fitted, some checks of the model adequacy
are in order. Of course, one check is incorporated in the model selection pro-
cedure if some criterion is optimized. By definition, the best model is the one
that leads to the optimum criterion value. In practice, the choice of the crite-
rion is often ad hoc or even arbitrary and, in fact, several competing criteria
are often employed. It is then left to the applied researcher to decide on the
final model to be used for forecasting or economic analysis. In some cases, sta-
tistical tests of restrictions may aid in that decision. For example, F-tests, as
described in Section 4.2.2, may be helpful for that purpose. In the following,
we will discuss tests for residual autocorrelation.

Residual Autocovariances and Autocorrelations

The autocorrelation tests considered in Chapter 4 can also be used to check
the white noise assumption for the u; process in a subset VAR model, if
suitable adjustments are made. For that purpose, we will first consider the
residual autocovariances and autocorrelations. In analogy with Section 4.4 of
Chapter 4, we use the following notation:

T

1 .

Ci:zf E TRTA i=0,1,...,h,
t=it1

Ch = (Cl, e ,Ch),
cp, = vec(Cp),
Uy is the t-th estimation residual of a restricted estimation,

T
-~ ]- ~ ~/ .
C; == ULy, 1=0,1,...,h,
T &
t=1+1

Ch:=(Cy,...,Ch),
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Eh = Ve(i((/jh)7

D is the diagonal matrix with the square roots of the diagonal elements of 50
on the diagonal,

Th, = vec(Ry).
In the following proposition, the asymptotic distributions of ¢, and T}, are

given under the assumption of a correctly specified model.

Proposition 5.7 (Asymptotic Distributions of Residual Autocovariances and
Autocorrelations)

Suppose y; is a stable, stationary, K-dimensional VAR(p) process with identi-
cally distributed standard white noise u; and the parameter vector 3 satisfies
the restrictions 8 = Ry + r with R being a known (K(Kp+ 1) x M) ma-
trix of rank M. Furthermore suppose that 3 is estimated by EGLS such that

B = RY +r. Then

VTS, % N0, 27 (h)), (5.2.32)
where

Xrh)y =1, %, ®%, - GR[R(I'® X, )R] 'R ¢’
and G := G'®I is the matrix defined in Chapter 4, Lemma 4.2. Furthermore,

VT T, 5 N(0, Z7(h)), (5.2.33)
where

XI'h) =1, ®R, @R, — (Gy @ D"HRIR(I'® X, )R] 'R (Gy ® D™ 1)

and Gy := é([h ® D~1) is defined in Proposition 4.6, D is the diagonal matrix
with the square roots of the diagonal elements of Y, on the diagonal, and
R, := D7 'X,D7 ! is the correlation matrix corresponding to X,,. [ |

Proof: The proof is similar to that of Propositions 4.5 and 4.6. Defining G
as in Lemma 4.2, the lemma implies that v/T'¢;, is known to have the same
asymptotic distribution as

\/Tch—\/TGvec(ﬁ—B)

VT Vec(§ — B)

=[G @Ix: I
[ K } \/Tch




214 5 VAR Processes with Parameter Constraints

= [—(& Al VTE -
=[-(G ®IK)R.[]- ST
[ / ZZ/ v—1 ! / =_1
= [-(G'®@Ig)R: 1] [R ( T ® 2, )R] R(Igpt1®@X;Y) 0
I 0 I
iVec(UZ’)

VT
VTey,

(see (5.2.7)). The asymptotic distribution in (5.2.32) then follows from Lemma
4.3 and Proposition C.2 by noting that I' = plim(ZZ’/T) and X, = plim X,.
The limiting distribution of VTT), follows as in the proof of Proposition 4.6.

|

The results in Proposition 5.7 can be used to check the white noise as-
sumption for the u;’s. As in Section 4.4, residual autocorrelations are often
plotted and evaluated on the basis of two-standard error bounds about zero.
Estimators of the standard errors are obtained by replacing all unknown quan-
tities in X7 (h) by consistent estimators. Specifically X, may be estimated by
60. We will illustrate the resulting white noise test in Section 5.2.10 with an
example.

Portmanteau Tests

For the portmanteau statistic

h
Qn = TZtr(@@o’l@iao’l)
i=1
= T¢I, ®C; @ C; e, (5.2.34)
we get the following result.

Proposition 5.8 (Approzimate Distribution of the Portmanteau Statistic)
Suppose the conditions of Proposition 5.7 are satisfied and there are no re-

strictions linking the intercept terms to the Ay, ..., A, coefficients, that is,
R 0
R= (1) }
[ 0 Ry

is block-diagonal with Ry and R() having row-dimensions K and K 2p,
respectively. Then @, has an approximate limiting y2-distribution with
K?h — rk(R 2)) degrees of freedom for large T' and h. [ |
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Proof: Under the conditions of the proposition, the covariance matrix of the
asymptotic distribution in (5.2.32) is

Z(h) = In ® X, @ ¥y — GRa){ Rigy [y (0) © £, R(2)} ' Riy &,

where G is the matrix defined in Lemma 4.2. Using this fact, Proposition 5.8
can be proven just as Proposition 4.7 by replacing G in that proof by GR 2
(see Section 4.4.3). |

The degrees of freedom in Proposition 5.8 are obtained by subtracting the
number of unconstrained A; coefficients from K?2h. As in Section 4.4.3, the
modified portmanteau statistic

h
Z — i) (CIC GGy (5.2.35)

may be preferable for testing the white noise assumption in small samples. In
other words, under the white noise hypothesis, the small sample distribution
of Q, may be closer to the approximate y2-distribution than that of Q.

LM Test for Residual Autocorrelation

As for unrestricted models, an LM test for residual autocorrelation can also
be constructed if parameter restrictions are imposed on a VAR model. For
simplicity of exposition, we assume now that the restrictions can be written
in the form 8 = vec(B) = R~. For example, there may be zero restrictions. In
that case, a possible test statistic may be obtained by considering the auxiliary
model

SO0 = V2B Z + S7V2DU + €, (5.2.36)
where D = [Dy : -+~ : Dy is (K x Kh), U = (I, ® U)F’ with F as in (4.4.2),
E=le1,...,er]is a (K x T) error matrix, X, is some consistent estimator of

X, which has been used in EGLS estimation, = 125 a symmetric matrix
such that X, 1/22 1/2 _ Z‘ 1 and the other symbols are defined as before.
Note, however, that the @; are now the residuals from EGLS estimation of the
original restricted VAR(p) model and @; = 0 for ¢ < 0. The vectorized version
of the auxiliary model (5.2.36) is

(Ir @ £-12vec(U) = (Z' @ £ Ry + (U @ £ 1/?)vec(D) + vec(€).
Defining & = vec(D), the (EG)LS estimator from this auxiliary model is

K

Uz @ E;HYR UU' @ £7°

R(27' ® 5,")R R/(Z&’@E;l)]
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The first order conditions for a minimum of the EGLS objective function for
the original restricted VAR model are

Oy — (7' © Ix) Ry (Ix © Z;Y)y — (Z' ® Ic) Ry
oy

.
— 2R(Z® Ix)(Ix ® £,y - (2' ® Ix)RA)] = 0.

Hence, R (Z® 2’; b vec(fj ) = 0. Applying the rules for the partitioned inverse
(see Appendix A.10) thus gives

5 - (w5
- . . PN -1
—(UZ ® ZYIRIR (27 © STYRTIR (ZU @ 2;1))
xvec(Z1UU).
The usual y2-statistic for testing § = 0 is

~/

/\LM(h) = 0 (ﬁZ/A{’ ® E;l
—(UZ © S;YRIR (22" @ SRR (20 251))3.

o~

Substituting the expression for §, it can be seen that
Apar(h) = T, 25 (h)~'ey,
where
Srh) = %(ﬁﬁ ©
—(UZ ® S;YHRIR (22" © SRR (20 2;1))
is a consistent estimator of X7 (h). Thus, the situation is completely analogous

to the case of an unrestricted model treated in Section 4.4.4 and we get the
following result from Propositions 5.7 and C.15(5).

Proposition 5.9 (Asymptotic Distribution of LM Statistic for Residual Au-
tocorrelation of Restricted VAR)
Under the conditions of Proposition 5.7,

d
)\LM(h) — Xz(hK2).
|
Notice that unlike for the portmanteau test, the asymptotic distribution of
the LM statistic is identical to that obtained for unrestricted VARs in Propo-
sition 4.8. However, Aras(h) is in general not exactly an LM statistic because

the restricted estimator 7 is not identical to the ML estimator. Clearly, this
does not affect the asymptotic properties of the test statistic.
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Other Checks of Restricted Models

It must also be kept in mind that our discussion has been based on a number
of further assumptions that should be checked. Prominent among them are
stationarity, stability, and normality. The latter is used in setting up forecast
intervals and regions and the former properties are basic conditions underlying
much of our analysis (see, for instance, Propositions 5.1-5.6). The stability
tests based on predictions and described in Section 4.6 of Chapter 4 may be
applied in the same way as for full unrestricted VAR processes. Of course, now
the forecasts and MSE matrix estimators should be based on the restricted
coeflicient estimators as discussed in Section 5.2.6. Also, it is easy to see from
Section 4.5 that the tests for nonnormality remain valid when true restrictions
are placed on the VAR coefficient matrices.

5.2.10 An Example

As an example, we use again the same data as in Section 3.2.3 and some other
previous sections. That is, y1¢, Y2, and ys; are first differences of logarithms of
investment, income, and consumption, respectively. We keep four presample
values and use sample values from the period 1961.2-1978.4. Hence, the time
series length is T' = 71. We have applied the top-down strategy with selection
criteria AIC, HQ, and SC and a VAR order of p = 4. In other words, we use
the same maximum order as in the order selection procedure for full VAR
models in Chapter 4. Because HQ and SC choose the same model, we get
two different models only which are shown in Table 5.1. As usual, the HQ-SC
model is more parsimonious than the AIC model.

In Table 5.1, modified portmanteau statistics with corresponding p-values
are also given for both models. Obviously, none of the test values gives rise
to concern about the models. In Figure 5.1, residual autocorrelations of the
HQ-SC model with estimated two-standard error bounds about zero are de-
picted. The rather unusual looking estimated two-standard error bounds for
some low lags are a consequence of the zero elements in the estimated VAR
coefficient matrices. Recall that the asymptotic standard errors are bounded
from above by 1/ V'T. For low lags, they can be substantially smaller, however,
and this property is clearly reflected in Figure 5.1. Although some individual
autocorrelations fall outside the two-standard error bounds about zero, this
is not necessarily a reason for modifying the model. As in Chapter 4, such a
decision depends on which criterion is given priority.

We have also produced forecasts with the HQ-SC model and give them in
Table 5.2 together with forecasts from a full VAR(4) model. In this example,
the forecasts from the two models are quite close and the estimated forecast
intervals from the subset model are all smaller than those of a full VAR(4)
model. Although theoretically the more parsimonious subset model produces
more precise forecasts if the restrictions are correct, it must be kept in mind
that in the present case the restrictions, the forecasts and forecast intervals
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Table 5.1. EGLS estimates of subset VAR models for the investment/income/con-

sumption data

model selection criterion

AIC HQ-SC
015* .015
(.006) (.006)
5 015 .020
(.003) (-001)
.013 .016
(.003) (.003)
—219 0 0 —225 0 0
(.104) (.104)
= 0 0 235 0 0 0
Ay (.133)
0 274 —.391 0 .261 —.439
(.082) (.116) (.081) (.095)
0 0 0 0 0 0
A 010 0 0 0 0 0
(.024)
0 .335 0 0 .329 0
(.073) (.074)
0 0 0 0 0 0
gd 0 0 0 0 0 0
0 .095 0
(.076) 0 0 0
.340 0 0 331 0 0
R (.103) (.103)
A, 0 0 0 0 0 0
0 0 0 0 0 0

Q12 = 79.3 [.937]**

Q20 = 144 [.943]

Q12 = 85.5 [.893]

Q20 = 152 [.898]

*Estimated standard errors in parentheses.

“*p-value.
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AR N r12,0 r13,0

-0,71  -0,24 0.12 0,47
-0,71  -0,24 0.12 0,47
-0,71  -0,24 0.12 0,47

-0,71  -0,24 0,12 0.47
-0,71  -0,24 0,12 0.47
-0,71  -0,24 0,12 0.47

-0.59 -0,12 0.24 0,59
-0.59 -0,12 0.24 0,59
-0.59 -0,12 0.24 0,59

Fig. 5.1. Estimated residual autocorrelations of the investment/income/consump-
tion HQ-SC subset VAR model with estimated asymptotic two-standard error
bounds.

are estimated on the basis of a single realization of an unknown data gener-
ation process. Under these circumstances, a subset model may produce less
precise forecasts than a heavily parameterized full VAR model. Note that in
the present subset model, the income forecasts are the same for all forecast
horizons because income is generated by a white noise process in the HQ-SC
model.

We have also computed impulse responses from the HQ-SC subset VAR
model. The ©; responses of consumption to an impulse in income based on
orthogonalized residuals are depicted in Figure 5.2. Comparing them with
Figure 3.8 shows that they are qualitatively similar to the impulse responses
from the full VAR(2) model. Considering the responses of investment to a con-
sumption innovation reveals that they are all zero in the subset VAR model.
A closer look at Table 5.1 shows that income/consumption are not Granger-
causal for investment in both subset models. This result was also obtained in
the full VAR model (see Section 3.6.2). However, now it is directly seen in the
model without further causality testing. In other words, the causality testing
is built into the model selection procedure.
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Table 5.2. Point and interval forecasts from full and subset VAR (4) models for the
investment/income/consumption example

full VAR(4)

HQ-SC subset VAR(4)

variable forecast  point  95% interval point  95% interval
horizon  forecast forecast forecast forecast
investment 1 1006 [—.091,.103] 015 [—.074, .105]
2 025 [—.075,.125] 023 [—.068, .115]
3 028 |- 071 126) 018 [—.073,.110]
4 .026 [—.074,.125] .023 [—.069,.115]
income 1 021 [—.005, .047] 020 [—.004, .044]
2 022 [—.004, .049] 020 [—.004, .044]
3 017 [—.009,.043] 020 [—.004,.044]
4 022 [—.004, .049] 020 [—.004, .044]
consumption 1 022 [ .001,.042] 023 [ .004,.042]
2 015 [—.006, .036] 013 [—.007,.033]
3 020 [—.004, .043] 022 [ .001,.044]
4 .019 [—.004, .042] .018 [—.004, .040]
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Fig. 5.2. Estimated responses of consumption to an orthogonalized impulse in
income with two-standard error bounds based on the HQ-SC subset VAR model.
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5.3 VAR Processes with Nonlinear Parameter
Restrictions

Some authors have suggested nonlinear constraints for the coefficients of a
VAR model. For instance, multiplicative models with VAR operator

A(L) = Ig—AL—---—A,LP
= (Ig —B1L° — - — BQL*9)(Ix — O1L — --- — C,LY)
= B(L*)C(L)

have been considered. Here L is the lag operator defined in Chapter 2, Section
2.1.2, the B;’s and C;’s are (K x K) coefficient matrices and B(L?®) contains
“seasonal” powers of L only. Such models may be useful for seasonal data.
For instance, for quarterly data, a multiplicative seasonal operator may have
the form

(Ix — B1LY) (I — C1L — CoL?).

The corresponding VAR operator is

AL) = Iy —AL—---— AgL®
= Ix —C1L— CyL? — BiL* + B1C, L% + B,C, L,
so that Al = 01, AQ = 027 A3 = 0, A4 = Bl, A5 = —BlCl, A6 =

— B Cs. Hence, the coefficients o := vec[A, ..., A,] are determined by = :=
vec[By, C1, Cs), that is,

a=g(y). (5.3.1)

There are also other types of nonlinear constraints that may be written in this
way. For example, the VAR operator may have the form A(L) = B(L)C(L),
where

is a diagonal operator with ¢x(L) = 1+ cp1 L + - - - + cgqL?, which represents
the individual dynamics of the variables and B(L) = I — ByL —--- — B, L™
takes care of joint relations. Again the implied restrictions for « can easily be
cast in the form (5.3.1).

In principle, under general conditions, if restrictions are given in the form
(5.3.1), the analysis can proceed analogously to the linear restriction case.
That is, we need to find an estimator 4 of ~, for instance, by minimizing

SH) =y —(Z' ®Ix)g()] (Ir © Ny — (Z' ® Ix)g(¥)];
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where y, Z, and X, are as defined in Section 5.2. The minimization may
require an iterative algorithm. Such algorithms are described in Section 12.3.2
in the context of estimating VARMA models. Once we have an estimator 5, we
may estimate o as @ = g(7). Under similar conditions as for the linear case,
the estimators will be consistent and asymptotically normally distributed,

e.g.,
VT(a - a) SN0, 53). (5.3.2)

The corresponding estimators El, e ,Xp may be used in computing forecasts
and impulse responses etc. The asymptotic properties of these quantities then
follow exactly as in the previous sections (see in particular Sections 5.2.6 and

5.2.7).

Another type of “multiplicative” VAR operator has the form

A(L) =1x — B(L)C(L), (5.3.3)
where

B(L)=By+ B1L+---+ B,L?
is of dimension (K x r), that is, the B;’s have dimension (K x r), and
C(Ly=CiL+---+C,L?

is of dimension (r x K), with r < K. For p = 1, neglecting the intercept terms,
the process becomes

yr = BoCryi—1 + - + ByCrys—g—1 + uy

which is sometimes called an index model because y; is represented in terms
of lagged values of the “index” Chy;. In the extreme case where r = 1,
C1y; is simply a weighted sum or index of the components of y; which jus-
tifies the name of the model. Such models have been investigated by Reinsel
(1983) in some detail. Alternatively, if ¢ = 0, the process is called reduced
rank (RR)VAR process which has been analyzed by Velu, Reinsel & Wichern
(1986), Tso (1981), Ahn & Reinsel (1988), Reinsel (1993, Chapter 6), Reinsel
& Velu (1998) and Anderson (1999, 2002) among others. Models with a re-
duced rank structure in the coefficients will be of considerable importance in
Part II, where VAR processes with cointegrated variables are considered. We
will therefore not discuss them here.

5.4 Bayesian Estimation

5.4.1 Basic Terms and Notation

Although the reader is assumed to be familiar with Bayesian estimation, we
summarize some basics here. In the Bayesian approach, it is assumed that
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the nonsample or prior information is available in the form of a density. De-
noting the parameters of interest by «, let us assume that the prior infor-
mation is summarized in the prior probability density function (p.d.f.) g(c).
The sample information is summarized in the sample p.d.f., say f(y|a), which
is algebraically identical to the likelihood function {(a|y). The two types of
information are combined via Bayes’ theorem which states that

fyla)g(e)
fly) 7

where f(y) denotes the unconditional sample density which, for a given sam-
ple, is just a normalizing constant. In other words, the distribution of a,
given the sample information contained in y, can be summarized by g(aly).
This function is proportional to the likelihood function times the prior density

9(a),

g(aly) o< fyla)g(a) = l(aly)g(a). (5.4.1)

glaly) =

The conditional density g(ay) is the posterior p.d.f.. It contains all the in-
formation available on the parameter vector a.. Point estimators of a may be
derived from the posterior distribution. For instance, the mean of that distri-
bution, called the posterior mean, is often used as a point estimator for c. In
the next subsection this general framework is specialized to VAR models.

5.4.2 Normal Priors for the Parameters of a Gaussian VAR
Process

Suppose y; is a zero mean, stable, stationary Gaussian VAR(p) process of the
form

Yo = AYi—1+ -+ Apyi—p + we

and the prior distribution for a := vec(A) = vec(44, ..., Ap) is a multivariate
normal with known mean a* and covariance matrix V,

st = (57 e jlaanvtasan]. Ga2)

Combining this information with the sample information summarized in the
Gaussian likelihood function,

1\ KT/ »
laly) = (27r> |IT®2u|7/

xexp |5y = (X' & Tr)a) (r © 27y - (X' @ L))

(see Chapter 3, Section 3.4, for the definitions), gives the posterior density
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glay) < gla)l(aly)
o ep{ — 5 [(Va (o - a) (Va (e~ a))
+{(Ir® 2, )y — (X' @ £, )l
<{(Ir ® 7y — (X' ® 2;1/2)a}} } (5.4.3)

Here V,, Y2 and Yu 1/2 denote the symmetric square root matrices of V, L and

Y-l respectively (see Appendix A.9.2). The white noise covariance matrix

X, is assumed to be known for the moment. Defining

V,;l/Q
X' ox 2

Vit
(It ® 2%

w =

and W :=
y

the exponent in (5.4.3) can be rewritten as

- a)WW(a-a)+(w-Wa) (w-Wa), (5.4.4)
where

o= (W'W) W = [V + (XX @ 5] Ve la + (X @ 2, )y
(5.4.5)

Because the second term on the right-hand side of (5.4.4) does not contain «,
it may be absorbed into the constant of proportionality. Hence,

glaly) xexp [~ (o~ @) T3 (e~ @)

where & is given in (5.4.5) and
Sa=(WW) =V '+ (XX @2, (5.4.6)

Thus, the posterior density is easily recognizable as the density of a multi-
variate normal distribution with mean & and covariance matrix Y, that is,
the posterior distribution of a is N (&, Xy ). This distribution may be used
for inference regarding a.

Sometimes one would like to leave some of the coefficients without any
restrictions because no prior information is available. In the above framework,
this case can be handled by setting the corresponding prior variance to infinity.
Unfortunately, such a choice is inconvenient here because algebraic operations
have to be performed with the elements of V4, in order to compute & and Xy .
Therefore, in such cases it is preferable to write the prior information in the
form

Ca=c+e with e~ N(0,I). (5.4.7)
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Here C is a fixed matrix and ¢ is a fixed vector. If C is a (K%p x K?p)
nonsingular matrix,

an~N(C e, c7iCY).

That is, the prior information is given in the form of a multivariate normal
distribution with mean C'~c and covariance matrix (C'C')~1. From (5.4.5),
under Gaussian assumptions, the resulting posterior mean is

a=[C'C+ (XXX H 0 c+ (X ® X, Yy]. (5.4.8)

A practical advantage of this representation of the posterior mean is that it
does not require the inversion of V,. Moreover, this form can also be used
if no prior information is available for some of the coefficients. For instance,
if no prior information on the first coefficient is available, we may simply
eliminate one row from C and put zeros in the first column. Although the
prior information cannot be represented in the form of a proper multivariate
normal distribution in this case, the estimator & in (5.4.8) can still be used.

In order to make these concepts useful, the prior mean a* and covariance
matrix V, or C and ¢ must be specified. In the next subsection possible choices
are considered.

5.4.3 The Minnesota or Litterman Prior

In Litterman (1986) and Doan, Litterman & Sims (1984), a specific prior, often
referred to as Minnesota prior or Litterman prior, for the parameters of a VAR
model is described. A similar prior will be considered here as an example. The
so-called Minnesota prior was suggested for certain nonstationary processes.
We will adapt it for the stationary case because we are still dealing with
stationary, stable processes. The nonstationary version of the Minnesota prior
will be presented in Chapter 7.

If the intertemporal dependence of the variables is believed to be weak,
one way to describe this is to set the prior mean of the VAR coefficients to
zero with nonzero prior variances. In other words, a* = 0 and V, # 0. With
this choice of a* the posterior mean in (5.4.5) reduces to

a=[V'+ (XX o2 (XX, Yy. (5.4.9)

This estimator for a looks like the multivariate LS estimator except for the
inverse covariance matrix V!

In the spirit of Litterman (1986), the prior covariance matrix V, may be
specified as a diagonal matrix with diagonal elements

o if i = j,
Vijl = { ()\eUi/lUj)Q if 4 7& j, (5410)

where v;;,; is the prior variance of a;j;, A is the prior standard deviation of
the coefficients axr1, k = 1,...,K, 0 < 6 < 1, and o? is the i-th diagonal
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element of X,. For each equation, A controls how tightly the coefficient of
the first lag of the dependent variable is believed to be concentrated around
zero. For instance, in the k-th equation of the system it is the prior standard
deviation of ayy 1. In practice, different values of A are sometimes tried. Using
different \’s in different equations may also be considered.

Because it is believed that coefficients of high order lags are likely to be
close to zero, the prior variance decreases with increasing lag length [. Fur-
thermore, it is believed that most of the variation in each of the variables
is accounted for by own lags. Therefore coefficients of variables other than
the dependent variable are assigned a smaller variance in relative terms by
choosing 6 between 0 and 1, for instance, § = .2. The ratio o2/ 0']2- is included
to take care of the differences in the variability of the different variables. Here
the residual variances are preferred over the y; variances because it is as-
sumed that the response of one variable to another is largely determined by
the unexpected movements reflected in the residual variance. Finally, the as-
sumption of a diagonal V, matrix means that independent prior distributions
of the different coefficients are specified. This specification mainly reflects our
inability to model dependencies between the coeflicients.

As an example consider a bivariate VAR(2) system consisting of the two
equations

Y1t = 0111Y1,t—1 + @12,1Y2,¢—1 + ®112Y1¢—2 + 122Y2t—2 + Uiy,
N (Mo /o9) (\/2) (Mo /209)

Yor = Q211Y1,6—1 + Q221Y2¢t-1 + Q21 2Y1,t—2 + Qo22Y2t—2 + U,
(Moy/o1) N (Moy/201)  (N\/2)

(5.4.11)

where the prior standard deviations are given in parentheses. The prior co-
variance matrix of the eight coefficients of this system is

Vo =
—)\2 -

Aoz \ 2 0
(%)
Mo\ 2
(%)
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In terms of (5.4.7), this prior may be specified by choosing ¢ = 0 and C' an
(8 x 8) diagonal matrix with the square roots of the reciprocals of the diagonal
elements of V, on the main diagonal.

5.4.4 Practical Considerations

In specifying the Minnesota priors, even if A and 6 are chosen appropriately,
there remain some practical problems. The first results from the fact that
2, is usually unknown. In a strict Bayesian approach, a prior p.d.f. for the
elements of X, would be chosen. However, that would lead to a more difficult
posterior distribution for ae. Therefore, a more practical approach is to replace
the o; by the square roots of the diagonal elements of the LS or ML estimator
of X, e.g.,

Y=Y (Ip — X'(XX')'X)Y'/T.

A second problem is the computational expense that may result from the
inversion of the matrix V3! + (XX’ @ X 1) or C'C + (XX' ® X ') in the
posterior mean & which is usually used as an estimator for a.. This matrix has
dimension (K?p x K?2p). Because in a Bayesian analysis sometimes one may
want to choose a large order p and put tight zero priors on the coefficients
of large lags rather than make them zero with probability 1, like in an order
selection approach, the dimension of the matrix to be inverted in computing
a may be quite substantial, although this may not be a concern with mod-
ern computing technology. Still, Bayesian estimation is sometimes applied to
each of the K equations of the system individually. For instance, for the k-th
equation,

ap = [V '+ o XX TNV a4 07 2 Xy ) (5.4.12)

may be used as an estimator of the parameters aj (the transpose of the k-
th row of A = [A4,..., Ap]). Here a} is the prior mean and Vj, is the prior
covariance matrix of aj and ygk) is the k-th row of Y. Using (5.4.12) instead
of (5.4.5) reduces the computational expense a bit.

A further problem is related to the zero mean assumption made in the
foregoing for the process y;. In practice, one may simply subtract the sample
mean from each variable and then perform a Bayesian analysis for the mean-
adjusted data. This amounts to assuming that no prior information exists
for the mean terms. Alternatively, intercept terms may be included in the
analysis. If the prior information is specified in terms of (5.4.7), it is easy to
leave the intercept terms unrestricted, if desired.

5.4.5 An Example

To illustrate the Bayesian approach, we have computed estimates a as in
(5.4.12) for the investment/income/consumption example data with different
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values of A and 6. Again we use first differences of logarithms of the data
for the years 1960-1978. In Table 5.3, we give estimates for the investment
equation of a VAR(2) model. In a Bayesian analysis, one would usually choose
a larger VAR order. For illustrative purposes, the VAR(2) model is helpful,
however.

Table 5.3. Bayesian estimates of the investment equation from the investment/in-
come/consumption system

A 0 141 Q11,1 12,1 13,1 11,2 12,2 13,2
00 1 —.017 —.320 .146 961 —.161 115 .934
1 .99 —.015 —.309 .159 921 —.147 .135 .854
1 .99 .008 —.096 .150 .297 —.011 .062 .100
.01 .99 .018 —.001 .003 .005 —.000 .000 .001
1 .50 —.013 —.301 .194 847 —.141 .165 718
1 .10 .009 —.245 .190 .369 —.099 .074 137
1 .01 .023 —.208 .004 .007 —.078 .001 .002

In the investment equation, the parameter A controls the overall prior vari-
ance of all VAR coefficients while 6 controls the tightness of the variances of
the coefficients of lagged income and consumption. Roughly speaking, 8 spec-
ifies the fraction of the prior standard deviation A attached to the coefficients
of lagged income and consumption. Thus, a value of  close to one means that
all coefficients of lag 1 have about the same prior variance except for a scaling
factor that takes care of the different variability of different variables. Note
that the intercept terms are not restricted (prior variance set to o).

We assume a prior mean of zero for all coeflicients, aj, = 0, and thus shrink
towards zero by tightening the prior standard deviation A. The effect is clearly
reflected in Table 5.3. For § = .99 and A = 1 we get coefficient estimates which
are quite similar to unrestricted LS estimates (A = 00,0 = 1). Decreasing A
to zero tightens the prior variance and shrinks all VAR coefficients to zero.
For A = .01, they are quite close to zero already. On the other hand, moving
the variance fraction € towards zero shrinks the consumption and income
coefficients (au2,,0q3,;) towards zero. In Table 5.3, for A = 1 and § = .01
they are seen to be almost zero. This, of course, has some impact on the
investment coefficients (a11 ;) too.

5.4.6 Classical versus Bayesian Interpretation of & in Forecasting
and Structural Analysis

If the coefficients of a VAR process are estimated by a Bayesian procedure,
the estimated process may be used for prediction and economic analysis, as
described in the previous sections. Again one question of interest concerns
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the statistical properties of the resulting forecasts and impulse responses. It
is possible to interpret & in (5.4.5) or (5.4.8) as an estimator in the classical
sense and to answer this question in terms of asymptotic theory, as in the pre-
vious sections. In the classical context, & may be interpreted as a shrinkage
estimator or under the heading of estimation with stochastic restrictions (e.g.,
Judge, Griffiths, Hill, Liitkepohl & Lee (1985, Chapter 3)). In regression mod-
els with nonstochastic regressors, such estimators, under suitable conditions,
have smaller mean squared errors than ML estimators in small samples. In
the present framework, the small sample properties are unknown in general.

To derive asymptotic properties, let us consider the representation (5.4.8).
It is easily seen that, under our standard conditions,

c'c XX’ 1)‘1

el
T+T®"

) C'c Yoy x!
x plim T—&— vec | ——

T
XX\
plim< T ) ® Xy
= .

Here plim C'C/T = limC'C/T = 0 and plim C'¢/T = 0 has been used.
Moreover, viewing & as an estimator in the classical sense, it has the same
asymptotic distribution as the unconstrained multivariate LS estimator,

plima = plim(

2;1YX’>

i
plim vec ( T

a = vec(YX' (XX,

because
. cc XX/ “trer 1
VT(a—a) = {T—i—T@Eu_l} [\/Tf+ﬁvec(2u1YX’)
xXx\ 7t 1
- < 7 > ® X, ﬁvec(zglyx’) 0.

Thus, @ and @ have the same asymptotic distribution by Proposition C.2(2)
of Appendix C. This result is intuitively appealing because it shows that the
contribution of the prior information becomes negligible when the sample size
approaches infinity and the sample information becomes exhaustive. Yet the
result is not very helpful when a small sample is given in a practical situation.

Consequently, it may be preferable to base the analysis on the posterior
distribution of a. In general, it will be difficult to derive the distribution of,
say, the impulse responses from the posterior distribution of a analytically. In
that case, one may obtain, for instance, confidence intervals of these quantities
from a simulation. That is, a large number of samples is drawn from the
posterior distribution of & and the corresponding impulse response coefficients
are computed. The required percentage points are then estimated from the
empirical distributions of the estimated impulse responses (see Appendix D).
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5.5 Exercises

In the following exercises, the notation of the previous sections of this chapter
is used.

5.5.1 Algebraic Exercises

Problem 5.1
Show that 4 given in (5.2.14) minimizes

(z— (Z' @ Ix)RY) (2~ (Z' © Ix)R7)
with respect to ~.

Problem 5.2_
Prove that 8 given in (5.2.16) minimizes

v —(Z @ Ix)B)'(Ir ® "y — (Z' ® Ik)0]

subject to the restriction C3 = ¢, where C' is (N x K(Kp+ 1)) of rank N
and ¢ is (N x 1). (Hint: Specify the appropriate Lagrange function and find
its stationary point as described in Appendix A.14.)

Problem 5.3
Show that 4 given in (5.2.17) is the ML estimator of 4. (Hint: Use the partial
derivatives from Section 3.4.)

Problem 5.4
Prove Proposition 5.6.

Problem 5.5

Derive the asymptotic distribution of the EGLS estimator of the parameter
vector o := vec(A1, ..., Ap), based on mean-adjusted data, subject to restric-
tions &« = R~ + r, where R, v, and r have suitable dimensions.

Problem 5.6
Consider the recursive system of Section 5.2.5,

yr =n+Agys + -+ Apye—p + &1,

where ¢; has a diagonal covariance matrix Y.. Show that Y, &X' 'e; and
> €164 assume their minima with respect to the unknown parameters for the
same values of n, Ag, ..., A}.

(Hint: Note that

T K T

7 yv—1 _ 2 2
E EtEE Et—E E Ekt/aek
t=1

k=1t=1

and consider the partial derivatives with respect to the coefficients of the k-
th equation. Here e is the k-th element of £; and O’?k is the k-th diagonal
element of X..)
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5.5.2 Numerical Problems

The following problems require the use of a computer. They are based on the
bivariate time series y; = (Y1, yot)" of first differences of the U.S. investment
data provided in File E2.

Problem 5.7

Fit a VAR(2) model to the first differences of the data from File E2 subject to
the restrictions aq2; = 0,¢ = 1, 2. Determine the EGLS parameter estimates
and estimates of their asymptotic standard errors. Perform an F-test to check
the restrictions.

Problem 5.8
Based on the result of the previous problem, perform an impulse response
analysis for y; and ys.

Problem 5.9

Use a maximum order of 4 and the AIC criterion to determine an optimal
subset VAR model for y; with the top-down strategy described in Section
5.2.8. Repeat the exercise with the HQ criterion. Compare the two models
and interpret.

Problem 5.10
Based on the results of Problem 5.9, perform an impulse response analysis for
y1 and yo and compare the result to those of Problem 5.8.

Problem 5.11

Use the Minnesota prior with A = 1 and 6 = .2 and compute the posterior
mean of the coefficients of a VAR(4) model for the mean-adjusted y;. Compare
this estimator to the unconstrained multivariate LS estimator of a VAR(4)
model for the mean-adjusted data. Repeat the exercise with a VAR(4) model
that contains intercept terms.
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Cointegrated Processes
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In Part I, stationary, stable VAR processes have been considered. Recall that
a process is stationary if it has time invariant first and second moments. This
property implies that there are no trends (trending means) or shifts in the
mean or in the covariances. Moreover, there are no deterministic seasonal
patterns. In this part, nonstationary processes of a very specific type will
be considered. In particular, the processes will be allowed to have stochastic
trends. They are then called integrated. If some of the variables move together
in the long-run although they have stochastic trends, they are driven by a
common stochastic trend and they are called cointegrated. VAR processes with
integrated and cointegrated variables are analyzed in this part. In Chapter 6,
some important theoretical properties of cointegrated processes are discussed
and it is shown that they can be conveniently summarized in a vector error
correction model (VECM). Estimation of such models is treated in Chapter
7. Specification of VECMs and model checking are considered in Chapter 8.
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Vector Error Correction Models

As defined in Chapter 2, a process is stationary if it has time invariant first
and second moments. In particular, it does not have trends or changing vari-
ances. A VAR process has this property if the determinantal polynomial of its
VAR operator has all its roots outside the complex unit circle. Clearly, sta-
tionary processes cannot capture some main features of many economic time
series. For example, trends (trending means) are quite common in practice.
For instance, the original investment, income, and consumption data used in
many previous examples have trends (see Figure 3.1). Thus, if interest centers
on analyzing the original variables (or their logarithms) rather than the rates
of change, it is necessary to have models that accommodate the nonstationary
features of the data. It turns out that a VAR process can generate stochastic
and deterministic trends if the determinantal polynomial of the VAR opera-
tor has roots on the unit circle. In fact, it is even sufficient to allow for unit
roots (roots for z = 1) to obtain a trending behavior of the variables. We
will consider this case in some detail in this chapter. In the next section, the
effect of unit roots in the AR operator of a univariate process will be ana-
lyzed. Variables generated by such processes are called integrated variables
and the underlying generating processes are integrated processes. Vector pro-
cesses with unit roots are considered in Section 6.2. In these processes, some
of the variables can have common trends so that they move together to some
extent. They are then called cointegrated. This feature is considered in detail
in Section 6.3 and it is shown that vector error correction models (VECMs)
offer a convenient way to parameterize and specify them. In Section 6.3, the
processes are assumed to be purely stochastic and do not have deterministic
terms. How to incorporate these terms is the subject of Section 6.4. Once we
have a suitable model setup, it can be used for forecasting, causality analysis,
and impulse response analysis. These issues are treated in Sections 6.5—6.7.
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6.1 Integrated Processes
Recall that a VAR(p) process,
Y = Ay + o+ Apyrp + (6.1.1)
is stable if the polynomial defined by
det(Ig — A1z —--- — Ap2P)

has no roots in and on the complex unit circle. For a univariate AR(1) process,
Yt = Qys_1 + Us, this property means that

l—az#0 forl|z|] <1

or, equivalently, |a| < 1.

Consider the borderline case, where o = 1. The resulting process y; =
yi—1 + ug is called a random walk. Starting the process at ¢ = 0 with some
fixed yq, it is easy to see by successive substitution for lagged y;’s, that

t
Yo = Yoo1 T U= Yooz F U Fup == Yo+ ) (6.1.2)
i=1

Thus, y; consists of the sum of all disturbances or innovations of the previous
periods so that each disturbance has a lasting impact on the process. If u; is
white noise with variance o2

E(yt) =Y

and
Var(y;) = tVar(u;) = to?.

Hence, the variance of a random walk tends to infinity. Furthermore, the

correlation
t t+h
2|(5) (5+)]
i=1 i=1

[to2(t + h)o2]1/2
t
CEEDEES

for any integer h. This latter property of a random walk means that y; and
ys are strongly correlated even if they are far apart in time. It can also be
shown that the expected time between two crossings of zero is infinite. These
properties are often reflected in trending behavior. Examples are depicted in
Figure 6.1. This kind of trend is, of course, not a deterministic one but a
stochastic trend.

Corr(ye, ye4n) =
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0 2 40 60 80 100

Fig. 6.1. Artificially generated random walks.
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If the process has a nonzero constant term v, y; = v + y;_1 + u; is called
a random walk with drift and it has a deterministic linear trend in the mean.
To see this property, suppose again that the process is started at ¢ = 0 with
a fixed yo. Then

t

yt:yo+tV+ZUi
i=1

and E(y;) = yo +tv. An example of a time series generated by a random walk
with drift is shown in Figure 6.2.

80

60

40

20

Fig. 6.2. An artificially generated random walk with drift.

The previous discussion suggests that starting unstable processes at some
finite time tg is useful to obtain processes with finite moments. On the other
hand, if an AR process starts at some finite time, it is strictly speaking not
necessarily stationary, even if it is stable. To see this property, let y; = v +
ayi—1 + us be a univariate stable AR(1) process with |«| < 1. Starting with a
random variable yo at ¢t = 0, gives

t—1 t—1
4 . .
ytZVE a' +a'yo + g a'ug_;.
i=0 i=0
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Hence,
t—1
E(y) =vY o' +a'B(yo)
i=0

is generally not time invariant if & and v # 0. A similar result is obtained for
the second moments,

t—1

Var(y,) = o*Var(y) + 02 Z o’
i=0

However, the first and second moments approach limit values as t — oo and
one might call such a process asymptotically stationary. To simplify matters,
the term “asymptotically” is sometimes dropped and such processes are then
simply called stationary. Moreover, if we consider purely stochastic processes
without deterministic terms (v = 0), the initial variable can be chosen such
that y; is stationary if the process is stable. In particular, if we choose

o0
Yo = E a'u_;
=0

we get, for v =0,

00 t—1 oo
Y = ot Zoﬂu_i + Zo/ut_i = Zoﬂut_,;, t=1,2,...,
i=0 i=0 i=0
and, hence, for t =1,2,...,
E(yt) = 07

Var(y,) = o5, /(1 - o),

and also the autocovariances are time invariant. Thus, for a stable process
we may in fact choose the initial variable such that y; is stationary even if
the process is started in some given period. This result can also be used as a
justification for simply calling stable processes stationary in this situation. We
may implicitly assume that the starting value is chosen to justify the termi-
nology. For our purposes, this point is of limited importance because in later
chapters we will be interested in the parameters of the processes considered
and possibly in their asymptotic moments. Without further warning, nonsta-
tionary, unstable processes will be assumed to begin at some given finite time
period.

A behavior similar to that of a random walk is also observed for higher
order AR processes such as

Y =V +a1Ys—1+ -+ QpYr—p + Uy,
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if 1 =gz — - — 2P has a root for z = 1. Note that
l—anz—-—apzP = (1—XMiz) - (1= A\p2),
where Aq,..., ), are the reciprocals of the roots of the polynomial. If the

process has just one wnit root (a root equal to 1) and all other roots are
outside the complex unit circle, its behavior is similar to that of a random
walk, that is, its variances increase linearly, the correlation between variables
h periods apart tends to 1 and the process has a linear trend in mean if v # 0.
In case one of the roots is strictly inside the unit circle, the process becomes
explosive, that is, its variances go to infinity at an exponential rate. Many
researchers feel that such processes are unrealistic models for most economic
data. Although processes with roots on the unit circle other than one are
often useful, we shall concentrate on the case of unit roots and all other roots
outside the unit circle. This situation is of considerable practical interest.

Univariate processes with d unit roots (d roots equal to 1) in their AR
operators are called integrated of order d (I(d)). If there is just one unit root,
i.e., the process is I(1), it is quite easy to see how a stable and possibly
stationary process can be obtained: simply by taking first differences, Ay; :=
(1= L)ys = yt — yt—1, of the original process. More generally, if the process is
I(d) it can be made stable by differencing d times, that is, Ay, = (1 — L)%y,
is stable and, again, initial values can be chosen such that it is stationary. In
the following, it will often be convenient to extend this terminology also to
stable, stationary processes and to call them I(0).

More generally, y; may be defined to be an I(1) process, if Ay, = wy is
a stationary process with infinite MA representation, w; = Z;io Ojui—; =
0(L)uy, where the MA coefficients satisfy the condition > 372 j|0;] < oo,
0(1) = >27200; # 0, and uy ~ (0,07) is white noise. In that case, y; =
Yt—1 -+ wy can be rewritten as

o0
yr=Yo+wi+---+w =yo+0(1)(ug+- -+ u) +Z€;ut_j —wyg, (6.1.3)
j=0
where 67 = — Z;’ij“ i, j=0,1,..., and wj = Z;io f5u_; contains initial
values. Thus, y; can be represented as the sum of a random walk [0(1)(u; +
-+ uy)], a stationary process [>72, 05us—;], and initial values [yo — wg].
Notice that the condition Z;‘;ijj\ < o0 ensures that Z;io 07| < oo, so
that Z;’io 07u;—j is indeed well-defined by Proposition C.7 of Appendix C.3.
Although the condition for the 6; is stronger than absolute summability, it
is satisfied for many processes of practical interest. The decomposition of y;
in (6.1.3) is known as the Beveridge-Nelson decomposition (see also Appendix
C.8). A similar decomposition for multivariate processes is helpful in some of
the subsequent analysis. It will be discussed in Section 6.3.
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6.2 VAR Processes with Integrated Variables

Consider now a K-dimensional VAR(p) process without a deterministic term
as in (6.1.1). It can be written as

A(L)y: = e, (6.2.1)

where A(L) := Ix — A1L—---— A,L? and L is the lag operator. Multiplying
from the left by the adjoint A(L)*¥ of A(L) gives

[A(L)]y: = A(L)* Y (6.2.2)

(see Appendix A.4.1 for the definition of the adjoint of a matrix). Thus, the
VAR(p) process in (6.2.1) can be written as a process with univariate AR
operator, that is, all components have the same AR operator |A(L)|. The
right-hand side of (6.2.2), A(L)*¥uy, is a finite order MA process (see Chapter
11 for further discussion of such processes). If |A(L)| has d unit roots and
otherwise all roots are outside the unit circle, the AR operator can be written
as

[A(L)] = a(L)(1 - L) = a(L)A?,

where a(L) is an invertible operator. Consequently, A%y, is a stable process.
Hence, each component becomes stable upon differencing.

Because we are considering processes which are started at some specific
time g, we should perhaps think for a moment about the treatment of initial
values when multiplying by an operator such as A(L)*¥ in (6.2.2). One pos-
sible assumption is that the new representation is valid for all ¢ for which the
y¢’s are defined in (6.2.1).

The foregoing discussion shows that if a VAR(p) process is unstable be-
cause of unit roots only, it can be made stable by differencing its components.
Note, however, that, due to cancellations, it may not be necessary to difference
each component as many times as there are unit roots in |A(L)|. To illustrate
this point, consider the bivariate VAR(1) process

(ov]-[a 009 (] =[6tm]=w

Obviously, each component is stationary after differencing once, i.e., each
component is (1), although

A=\ 0 ][—a-ry

has two unit roots. It is also possible that some components are stable and
stationary as univariate processes whereas others need differencing. Examples
are easy to construct.
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If the VAR(p) process has a nonzero intercept term so that
A(L)y: = v +

and | A(2)| has one or more unit roots, then some of the components of y; may
have deterministic trends in their mean values. Unlike the univariate case, it is
also possible, however, that none of the components of y; has a deterministic
trend in mean. This occurs if A(L)*¥ v = 0. For instance, if

am =15

|A(z)| has a unit root and

A(L) = [ L =ik }

0 1-L
Hence,
A(L)% i | _ | V1= 12
129 Vg — V9

which is zero if v; = nvs. Thus, in a VAR analysis an intercept term cannot
be excluded a priori if there are unit roots and none of the component series
has a deterministic trend.

The following question comes to mind in this context. Suppose each com-
ponent of a VAR(p) process is I(d), is it possible that differencing each com-
ponent individually distorts interesting features of the relationship between
the original variables? If the latter were not the case, a VAR analysis could be
performed as described in previous chapters after differencing the individual
components. It turns out, however, that differencing may indeed distort the re-
lationship between the original variables. Systems with cointegrated variables
are examples, where fitting VAR models upon differencing may be inadequate.
Such systems are introduced next.

6.3 Cointegrated Processes, Common Stochastic Trends,
and Vector Error Correction Models

Equilibrium relationships are suspected between many economic variables
such as household income and expenditures or prices of the same commod-
ity in different markets. Suppose the variables of interest are collected in
the vector y; = (y1t,-..,yxet) and their long-run equilibrium relation is
B'y: = Byt + -+ + Bryrt = 0, where B = (B,...,Bx)’"- In any particular
period, this relation may not be satisfied exactly but we may have By, = z,
where z; is a stochastic variable representing the deviations from the equi-
librium. If there really is an equilibrium, it seems plausible to assume that
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the y; variables move together and that z; is stable. This setup, however,
does not exclude the possibility that the y; variables wander extensively as
a group. Thus, they may be driven by a common stochastic trend. In other
words, it is not excluded that each variable is integrated, yet there exists a lin-
ear combination of the variables which is stationary. Integrated variables with
this property are called cointegrated. In Figure 6.3, two artificially generated
cointegrated time series are depicted.

15

12

4 ~ 1y
A

Fig. 6.3. A bivariate cointegrated time series.

Generally, the variables in a K-dimensional process y; are called cointe-
grated of order (d,b), briefly, y; ~ CI(d,b), if all components of y; are I(d)
and there exists a linear combination 2, := By, with B = (By,...,Bg) # 0
such that z; is I(d — b). For instance, if all components of y; are I(1) and B'y;
is stationary (I(0)), then y, ~ CI(1,1). The vector B is called a cointegrating
vector or a cointegration vector. A process consisting of cointegrated variables
is called a cointegrated process. These processes were introduced by Granger
(1981) and Engle & Granger (1987). Since then they have become popular in
theoretical and applied econometric work.

In the following, a slightly different definition of cointegration will be used
in order to simplify the terminology. We call a K-dimensional process y; in-
tegrated of order d, briefly, y; ~ I(d), if Ay, is stable and A9~ly, is not
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stable. The I(d) process y; is called cointegrated if there is a linear combina-
tion P’y with P # 0 which is integrated of order less than d. This definition
differs from the one given by Engle & Granger (1987) in that we do not ex-
clude components of y; with order of integration less than d. If there is just
one I(d) component in y; and all other components are stable (I(0)), then
the vector y; is I(d) according to our definition because A%y, is stable and
A1y, is not. In such a case a relation By, that involves the stationary com-
ponents only is a cointegration relation in our terms. Clearly, this aspect of
our definition is not in line with the original idea of cointegration as a special
relation between integrated variables with common stochastic trends. In the
following, our definition is still useful because it simplifies the terminology as
it avoids distinguishing between variables with different orders of integration.
The reader should keep in mind the basic ideas of cointegration when it comes
to interpreting specific relationships, however.

Obviously, a cointegrating vector is not unique. Multiplying by a nonzero
constant yields a further cointegrating vector. Also, there may be various
linearly independent cointegrating vectors. For instance, if there are four vari-
ables in a system, the first two may be connected by a long-run equilibrium
relation and also the last two. Thus, there may be a cointegrating vector with
zeros in the last two positions and one with zeros in the first two positions.
In addition, there may be a cointegration relation involving all four variables.

Before the concept of cointegration was introduced, the closely related
error correction models were discussed in the econometrics literature (see,
e.g., Davidson, Hendry, Srba & Yeo (1978), Hendry & von Ungern-Sternberg
(1981), Salmon (1982)). In an error correction model, the changes in a vari-
able depend on the deviations from some equilibrium relation. Suppose, for
instance, that y;; represents the price of a commodity in a particular market
and yo; is the corresponding price of the same commodity in another market.
Assume furthermore that the equilibrium relation between the two variables
is given by y1; = B,y2: and that the changes in y1, depend on the deviations
from this equilibrium in period ¢t — 1,

Ay = o (y1,0-1 — Bry2,e—1) + v
A similar relation may hold for yoy,
Ay = O (y1,0—1 — P1Y2,0—1) + uae.

In a more general error correction model, the Ay;; may in addition depend
on previous changes in both variables as, for instance, in the following model:

Ayre = o1 (y1,e-1 — Bry2,—1) + Yi1,1A%1,0-1 + Vo1 AY2,e—1 + Uiy,
Ayzr = 02(y1,e-1 — Bry2,-1) + Yo1,1AY1,6-1 + Yoo 1 AY2,0—1 + uar.
(6.3.1)

Further lags of the Ay;;’s may also be included.



6.3 Cointegrated Processes and VECMs 247

To see the close relationship between error correction models and the con-
cept of cointegration, suppose that yq; and yo; are both I(1) variables. In that
case all terms in (6.3.1) involving the Ay;; are stable. In addition, u1; and ugy
are white noise errors which are also stable. Because an unstable term cannot
equal a stable process,

i(y1e-1 — Bry2.e-1) = AYir — Vg 1AY1e-1 — Vo1 AY2,e-1 — Uit

must be stable too. Hence, if 0y # 0 or g # 0, y1¢ — B yo: is stable and, thus,
represents a cointegration relation.
In vector and matrix notation the model (6.3.1) can be written as

Ayy = af'yi—1 + T1Ay1 + uy,
or
yr —yr—1 = By + Ti(yeo1 — ye—2) + s, (6.3.2)

where y; 1= (ylt,yzt)’, U = (U1t7u2t),7

| r_ — | Y111 Va2 ]
o= , =(1,—B;), and T;:= ’ i
[ 2 } g (1= ! { Yor,1 Ya2,1

Rearranging terms in (6.3.2) gives the VAR(2) representation
ye = (I + T+ B )ye—1 — Trye—o + ue

Hence, cointegrated variables may be generated by a VAR process.
To see how cointegration can arise more generally in K-dimensional VAR,
models, consider the VAR(2) process

Yt = Arye—1 + Aoyr—o +us (6.3.3)
with y¢ = (Y1, - -, Yke) - Suppose the process is unstable with
I — Ayz — Ap2?| = (1= M\2)--- (1= X\2) =0  for z = 1.

Because the A; are the reciprocals of the roots of the determinantal polyno-
mial, one or more of them must be equal to 1. All other roots are assumed to
lie outside the unit circle, that is, all A\; which are not 1 are inside the complex
unit circle. Because |Ix — A1 — Ag| = 0, the matrix

II .= _(IK_AI —AQ)

is singular. Suppose rk(IT) = 7 < K. Then IT can be decomposed as IT = af’,
where o and B are (K x r) matrices. From the discussion in the previous
section, we know that each variable becomes stationary upon differencing.
Let us assume that differencing once is sufficient, subtract y;—; on both sides
of (6.3.3) and rearrange terms as
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Y= Y1 = —(Ix — A1 — A2)ys—1 — Aoyr—1 + Asyp—2 +
or

Ayy =y + T1Ay—1 + wy, (6.3.4)
where 'y := — A, or

of'ye1 = Ayr — T1Ayr 1 — uy.

Because the right-hand side involves stationary terms only, &f'y;_1 must also
be stationary and it remains stationary upon multiplication by (o) ~ta’. In
other words, By, is stationary and, hence, each element of B'y; represents a
cointegrating relation. Note that simply taking first differences of all variables
in (6.3.3) eliminates the cointegration term which may well contain relations
of great importance for a particular analysis. Moreover, in general, a VAR
process with cointegrated variables does not admit a pure VAR representation
in first differences.

It may also be worth emphasizing that here we have worked under the
assumption that all variables are stationary after differencing once. In general,
variables with higher integration orders may also be present. In that case, B’y
may not be stationary even if rk(II) = r < K. The components of y; may
still be cointegrated of a higher order if linear combinations exist which have
a reduced order of integration.

In the following, we will be interested in the specific case where all indi-
vidual variables are I(1) or I(0). The K-dimensional VAR(p) process

yr = A1+ + Apye—p + ue, (6.3.5)
is called cointegrated of rank r if
IMI:=—-(Ix—A1—---—4,)

has rank 7 and, thus, IT can be written as a matrix product of’ with o and B
being of dimension (K xr) and of rank r. The matrix B is called a cointegrating
or cointegration matriz or a matriz of cointegrating or cointegration vectors
and o is sometimes called the loading matriz. If r = 0, Ay, has a stable
VAR(p — 1) representation and, for r = K, [Ix — A1 —---— A, =|—-II| #0
and, hence, the VAR operator has no unit roots so that y; is a stable VAR(p)
process.

Rewriting (6.3.5) as in (6.3.4) it has a wector error correction model
(VECM) representation

Ayy = MMy +T1 Ay + -+ Tp1Ayepy1 +ue
= of'yr—1 +T1Ay—1 4+ + Tpo1 Ayr—pi1 + s, (6.3.6)

where
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Fi::_(Ai+1+"'+Ap)a Z:].,,p—].

If this representation of a cointegrated process is given, it is easy to recover
the corresponding VAR form (6.3.5) by noting that

A = I+ 1g+14
Ai = I‘z — ]-‘i—h 1= 2, ey D — 1, (637)
A, = —T,_.

It may be worth pointing out that we can also rearrange the terms in a
different way and obtain a representation

Ay = D1Ays 1+ + Dp 1Ay pr1 + My p + uy, (6.3.8)
where the error correction term appears at lag p and
Di=—-(Ix—A1—---—4;), i=1,...,p—1.

In the following sections, we will usually work with (6.3.5) or (6.3.6). Of course,
thereby we work within a much more narrow framework than that allowed for
in the general definition of cointegration. First, we consider I(1) processes
only and, second, the discussion is limited to finite order VAR processes or
VECMs.

It is important to note that the decomposition of the (K x K) matrix IT
as the product of two (K x r) matrices, IT = af’, is not unique. In fact, for
every nonsingular (r x r) matrix @, we can define a* = aQ’ and p* = Q!
and get TI = o*B*. This nonuniqueness of the decomposition of IT shows
again that the cointegration relations are not unique. It is possible, however,
to impose restrictions on  and/or o to get unique relations. Such restrictions
may be implied by subject matter considerations or they may be imposed for
convenience, using the algebraic properties of the associated matrices.

As an example, consider a system of three interest rates, y; = (y1t, Yot, Yst)',
where y1, is a short-term rate, yo; is a medium-term rate, and ys; is a long-term
rate. Suppose all three interest rates are I(1) variables whereas the interest
rate spreads, y;; — y;¢ (¢ # j) are stationary (£(0)). Then we have two linearly
independent cointegrating relations which can, for example, be written as

gy [10 -1
Yt = 01 —1 Yt

or, alternatively, as

gy [ L L0
Yt = 0 1 -1 Yt-

Using the fact that rk(B) = r, there must be r linearly independent rows.
Thus, by a suitable rearrangement of the variables it can always be ensured
that the first r rows of B are linearly independent. Hence, the upper (r x r)
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submatrix consisting of the first r rows of B is nonsingular. Choosing @ then
equal to this matrix gives a cointegration matrix

B = [ [I{(K) ] , (6.3.9)

where B, is ((& —r) x r). This normalization will occasionally be used in
the following because it is quite convenient to ensure a unique cointegration
matrix. It does not imply a loss of generality except that it is assumed that the
variables are arranged in the right way so that the normalization is feasible.
If the system is known, as implicitly assumed here, rearranging the variables
in a suitable way is no problem, of course. In fact, we just need to know the
cointegration properties between all subsets of variables in order to find a
suitable arrangement of the variables.

To see this, consider again a three-dimensional system, y: = (y1¢, Y2, Yst)'s
with cointegrating rank 1 so that there is just one cointegration vector . In
that case, the normalization in (6.3.9) amounts to setting the first component
of the cointegration vector to one. Hence, B*'y; = [1, B/(K_l)]yt = Y1t +Boy2r +
Bsys:. Clearly, this normalization is only feasible if the first component of y;
actually belongs to the cointegration relation and has nonzero coefficient. If
we know that yo; and y3; are not cointegrated while y1;, y2¢, and ys: together
are cointegrated, then we know already that y;; is part of the cointegration
relation and, thus, has a nonzero coefficient in .

As another example, suppose y; has cointegrating rank 2. In that case the
normalized cointegrating relations are

o0 Rt ]

Thus, a cointegration relation must exist in the bivariate systems (y1¢,yse)’
and (ya2t,y3:)’. By checking these subsystems separately, a possible ordering
of the variables is easy to find. It may be worth mentioning, however, that
given our general definition of cointegration, it is possible that in this example
y1¢ or/and yo; are in fact stationary I(0) variables. For instance, if both are
1(0), B; = By = 0. Recall that a process y; is called I(1) even if only a single
component is I(1) and the other components are I(0).

Generally, any stationary variables in the system must be placed in the
upper r-dimensional subvector of y;. If yg:, the k-th component of y;, is sta-
tionary, there is a ‘cointegrating relation’ B;yt with B, being a vector with a
one as the k-th component and zeros elsewhere so that B;Cyt = Y. Thus, there
is a cointegrating relation for each of the stationary components of y;. Because
the associated cointegrating vectors are linearly independent, the cointegrat-
ing rank must be at least as great as the number of I(0) variables in the
system.

The important result to remember from this discussion is that the nor-
malization of the cointegration matrix given in (6.3.9) is always possible if
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the variables are arranged in a suitable way. Finding the proper ordering is
eagy if the cointegration properties of all subsystems are known, including the
univariate subsystems. In other words, we also need to know the order of inte-
gration of the individual variables in the system. In practice, the order of in-
tegration and the cointegrating rank of a given system and its subsystems will
not be known. Statistical procedures for determining the cointegrating rank
which can help to overcome this practical problem are discussed in Chapter
8.

If the normalization in (6.3.9) is made, the system may also be set up as

1 2 1
' = Byt + 2

(6.3.10)
Ay = 2

)

(1) )

where v, and zél
(Zt(1)/ Z;z)/

are (r x 1), y§2) and z£2) are (K —r) x 1) and z =

) is a stationary process. There cannot be any cointegrating rela-
tions between the components of the subsystem y,@, because otherwise there
would be more than r linearly independent cointegrating relations and the
cointegrating rank would be larger than r. Thus, the variables in y,EQ) repre-
sent stochastic trends in the system. The representation (6.3.10) is known as
the triangular representation of a cointegrated system. It has been used ex-
tensively in some of the literature related to cointegration analysis (see, e.g.,
Park & Phillips (1988, 1989)).

Yet another useful representation of a cointegrated system is given by
Johansen (1995, Theorem 4.2). The underlying result is often referred to as
Granger representation theorem. To state this representation, we use the fol-
lowing notation. For m > n, we denote by M, an orthogonal complement of
the (m x n) matrix M with rk(M) = n (see also Appendix A.8.2). In other
words, M is any (m x (m—mn)) matrix with rk(M ) = m—n and M'M, = 0.
If M is a nonsingular square matrix (m = n), then M, =0 and if n = 0, we
define M, = I,,,. This latter convention is sometimes useful to avoid clumsy
notation and looking at different cases separately. We assume that y; is a K-
dimensional cointegrated I(1) process as in (6.3.6) with cointegration rank r,
0 <r < K. Then the following proposition holds.

Proposition 6.1 (Granger Representation Theorem)
Suppose

Ay =o'y +T1Ay1 + -+ Tp 1 Aypin +ug, t=1,2,...,

where y; = 0 for t < 0, u; is white noise for t =1,2,..., and uy = 0 for t < 0.
Moreover, define
p—1
C(z):=(1—2)Ixg —op'z— ZI‘i(l —2)2"
i=1

and let the following conditions hold for the parameters:
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(a) detC(z) =0=|z| >1or z=1.
(b) The number of unit roots, z = 1, is exactly K —r.
(¢) a and P are (K x r) matrices with rk(a) = rk(B) = r.

Then y; has the representation
Y = Ezui‘FE*(L)Ut-Fyga (6.3.11)

where

-1

==, la; (IK - ir) BJ_] o), (6.3.12)

E"(L)uy = 375 Bjug—; is an 1(0) process and yg contains initial values. W

Remark 1 The proposition is of fundamental importance because it decom-
poses the process y; into (1) and I(0) components which have to be treated
accordingly, for example, when asymptotic properties of parameter estima-
tors are derived (see Chapter 7). It makes precise under what conditions the
process y; is driven by K — r I(1) components and r I(0) components. The
representation in (6.3.11) is a multivariate version of the Beveridge-Nelson
decomposition of y;. The first term on the right-hand side of (6.3.11) consists
of K random walks Zle u; which are multiplied by a matrix of rank K —r,
denoted by E. Thus, there are actually K — r stochastic trends driving the
system. They determine to a large extent the development of y;. Therefore
one may call y; an I(1) process if there are actually I(1) trends (random
walks) in the representation (6.3.11). In other words, y; is I(1) if it has the
representation (6.3.11) with E # 0. Clearly, for = to have the form given in
(6.3.12), the (K —r) x (K — r)) matrix

p—1
(X'IL (IK — ZI‘7> BJ_
i=1

must be invertible. Only under that condition, rk(2) = K — r. Therefore
the latter condition ensures that y; is actually driven by K — r random walk
components. |

Remark 2 The parameter matrices Z} in (6.3.11) are determined by the
model parameters. To state the precise relation, we define

B:=BMBB)" (K xn),

Q:—H;/J so that Q' =[B:B,],

(KxK)
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p—1
z) =1k — ZI‘izi,
i=1

B.(2) == QL (2)B(1 — 2) — oz : T(2)B ],

z)=1Ig —» Biz':== Q'B.(2)Q, (6.3.13)
=1

O(z):=B(2)" ! = Z@jzj.
§=0

Notice that B(0) = Q7 'B,(0)Q = [B: B,]Q = Ix. Hence, B(z) has the rep-
resentation Ix — Y 7_, B;z" stated in (6.3.13). Moreover, the matrix operator
©(z) can be decomposed as

6O(z) =0(1) + (1 - 2)07(2),
where expressions for the G);f’s can be found by comparing coefficients in

O(z) = Z?io 0,2’ and

O+ (1-2)0*(z) = O(1)+ Z ©52(1 - z)

= (0(1)+67)+> (0] -] )2

Hence,
6, =06(1)+ 0
and
0,=0-0"_,, i=12....
Using the last expression, we get by successive substitution,

® = ©+0]_,=) 0,,;+6;

j=1

Z@Z i +60,—-0© Z @, i=1,2,. (6.3.14)
Jj=1 j=i+1

From these quantities the operator 2*(z) in (6.3.11) can be obtained as
E*(z) = [©"(2) + Bp'B(2) ] (6.3.15)

(see the proof of Proposition 6.1). The representation (6.3.11) will turn out to
be useful, for example, in Chapter 9, where structural VECMs are discussed.
The coefficient matrices 2 of the operator E*(z) will then play an important
role as specific impulse response coefficients. |
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Proof of Proposition 6.1
The proof is adapted from Saikkonen (2005). We use the notation from Re-
mark 2 and first show that under the conditions of Proposition 6.1,

C(2) = Q 'B.(2)P(2), (6.3.16)

where

P(z) = { [(3; ~ 2B, ] - { {)T (1- ZO)IK—r }Q'

This representation is obtained by noting that
C(z) = [PE)(1-2)-0p2)Q'Q
= [P(2)B(1—2) —of'Bz:T(z)B,(1—2) —ap'B 2]Q

LB~ 2) ~ o5 TP (-2 | o |

. a p’
Q QI (2)P(1—2) —az:T(z [ = .
LB —2) —as TR | [ g
Clearly, det P(z) has exactly K — r unit roots and, thus, det B.(z) cannot

have any such roots so that det B.(z) # 0 for |z| < 1 must hold. In other
words, B, (L) is an invertible operator.

Now define

2= Q' P(L)y, = BBy + B, B A (6.3.17)
and note that

Bzt = By (6.3.18)

For the operator B(z) = Q7 'B.(2)Q, we have B(0) = Q7 'B.(0)Q = Ik
and det B(z) # 0 for |z] < 1 because det B, (z) has no roots inside or on the
complex unit circle. Moreover,

B(L)z = Q' B.(L)QQ ' P(L)y: = C(L)y: = ur.

Thus,
P
Zt = Z Bizt—i =+ uy (6319)
i=1

is a stable VAR(p) process with the same residual process u; as y;. We know
from Chapter 2 that it has an MA representation

2 =B(L) 'uy = O(L)uy = »_ Ojuy_j. (6.3.20)
j=0
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As we have seen in Remark 2, the matrix operator ©(z) can be decomposed
as

O(2) =0(1) + (1 — 2)@"(2).

Hence, we get from (6.3.20),

2 = O(1)uy + O (L) Auy, = B(1) 1wy + ©*(L) Auy. (6.3.21)
Using
w= Q7 Qu = BBl | " | =B+ BB

and, hence,
Ay, = BB Ays + BB Ay
it follows from (6.3.17) and (6.3.18) that Ay; = z; — Bp’2¢_1. Thus,
=/ 5/
BB Ay =B, B, 2
Substituting the expression from (6.3.21) for z; gives

Ay = BJ_B/J_Zt + BB’ Ay
= BB B us +©" (L) Aug + BB Ays = w.

Solving for y; = y;—1 + wy results in
¢
Yo = y0+zwi
i=1
t t t
_, B . _
= y+B. B B! Zui +©7%(L) Z Auy + B Z Ayy
i=1 i=1 i=1
¢
= Yo+ B BB ui + O (L)(ur — uo) + BB (v — vo)
i=1

= BB BT ui+ O (Lyue + BBy + w5, (6.3.22)
i=1

where y5 = yo — ©"(L)ug — PB'yo. Using B'y; = B2, the term By, = BBz
is seen to have a representation

BBz = BB'O(L)u;
and, thus, ©®*(L)u; + PP’y; has an MA representation

B (L)us = [©7(L) + BB'O(L)]ur.
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For the first term on the right-hand side of (6.3.22) we have
BB B = BB LQB.(1)Q
= B.BL[B:BLI[—o: T(1)B, ]!

= B [0: Ix—][-o: T(1)B,]"
BJ_[OC/J_I‘(l)BJ_rlO‘/J_v

because

[ (@) o TR, [l T8, ) e, — 1)
Ce R . T(1)B.) et |

Hence, B = BlBlB(l)_l is as stated in the proposition. Notice that the
invertibility of o, I'(1)B, follows from the invertibility of B(1) which in turn
is implied by det B(z) # 0 for |z] < 1. [ ]

6.4 Deterministic Terms in Cointegrated Processes

In the previous section, we have ignored deterministic terms in the DGP.
Clearly, deterministic terms may also be present in cointegrated processes
and VECMs. Actually, from the discussion of the random walk with drift it
should be clear that deterministic terms in a VAR process with unit roots may
have a different impact than in a stable VAR. For example, an intercept term
in a random walk generates a linear trend in the mean of the process, whereas
an intercept term in a stable AR process just implies a constant mean value.
To explore the implications of the deterministic term, the following model is
assumed:

Y =t + Tt (6.4.1)

where z; is a zero mean VAR(p) process with possibly cointegrated variables
and p; stands for the deterministic term. For example, the deterministic term
may just be a constant, s = po, or it may be a linear trend term, pu; = po+p1t,
where po and pq are fixed K-dimensional parameter vectors. Other possible
deterministic terms that may be included are seasonal dummy variables or
other dummies to account for special events. The advantage of setting up the
process in the form (6.4.1) by adding the deterministic part to the zero mean
stochastic part is that the mean of the y; variables is clearly specified by
the deterministic term and does not need to be derived from quantities that
involve the parameters of the stochastic part in addition. The disadvantage
is that the stochastic part z; is not directly observable in general. Therefore,
for estimation purposes, for instance, we have to rewrite the process in terms
of the observable y;’s. We will do so in the following for some cases of specific
interest.
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It is assumed that the DGP of z; can be represented as a VECM such as
(6.3.6),

Ary = of'z1 +T1Az 1+ +Tp1 Az +uy
= Iz 1 +T1Aze 1+ + prlﬂl’t,qu -+ Ug. (642)

Considering now the case of a constant deterministic term, p; = pg, we have
Xy = Yy — po so that Ay, = Az, and from (6.4.2) we get

Ay = of' (ye—1— po) + T1Ay—1 + -+ Tpo1 Ay pi1 +

= of” [ Ji-t1 } +T Ay 4+ D1 Ay prr + e

1
= % 1 +T1Ayi1 + -+ Tpo1Ayrpi1 + uy, (6.4.3)
where B := [B’ : 7/] with 7/ := —B'po an (r x 1) vector,

o Yt—1
Yg—1 = |: tl :|

and IT° := [IT : ] is (K x (K +1)) with vy := —IIug = or’. Hence, if there is
just a constant mean, it can be absorbed into the cointegration relations. In
other words, the constant mean becomes an intercept term in the cointegration
relations. Of course, the model can also be written with an overall intercept
term as

Ay = vo+afy1 +T1Ay 1+ + Ty 1 Ay + ue
= 19+ Hyt—l + FlAyt—l —+ -+ I‘p_lAyt_p+1 + uyg. (644)

Here vy cannot be an arbitrary (K x 1) vector but has to satisfy the indicated
restrictions (19 = ar’) in order to ensure that the intercept term in this model
does not generate a linear trend in the mean of the y; variables. By specifying
the deterministic term in additive form as in (6.4.1), the properties of the
mean of y; are easy to see.

A process with a linear trend in the mean, p; = po+ p1t, is another case of
practical importance. Using z; = y; — po — pat, Azy = Ay, — pq, and (6.4.2),
gives

Ayy —pp = OCB/(ytfl - Mo — Ml(t - 1)) + I‘l(Aytfl - Ml) +
+Lp—1(AYt—pr1 — p1) +ur (6.4.5)

or, collecting deterministic terms,

Ay = v+af 7] [ Y1 } +T Ay 4+ D1 Ay pr1 + e

t—1
= v+ Oy + 1Ay + -+ Ty 1 Ay pin + s (6.4.6)
where v := —TIug + (Ig — Ty — -+ = Tp_1)pg, o = —B'py, T := o[ : 7]

isa (K x (K + 1)) matrix and
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y
y?:[tt]-

Now the general intercept term v is in fact unrestricted and can take on any
value from RX, depending of course on po, p1, and the other parameters.
In contrast, the trend term can be absorbed into the cointegration relations.
Writing the model with unrestricted linear trend term in the form

Ayr =vo+vit + My 1 +T1 Ay 1+ -+ Tp 1Ay pr1 + ug,

the model is actually in principle capable of generating quadratic trends in
the means of the variables.

It is also possible, that the trend slope parameter p; is orthogonal to the
cointegration matrix so that B'u; = 0 and, hence, n = 0 and the trend term
disappears from the cointegration relations. This situation can also occur if
11 # 0 and the variables actually have linear trends in their means. The linear
trends will then be generated via the intercept term v. The resulting model,

Ay, = v+ oy + DAy 1+ + Lp 1 Ay pi1 +uy
= v+ Hyt,1 + I‘lAyt,1 + -+ I‘pflAyt,erl + Uy, (647)

with unrestricted intercept term v will be of some importance later on. It rep-
resents a situation where a linear trend appears in the variables but not in the
cointegration relations. Notice, however, that in this situation the cointegra-
tion rank must be smaller than K. If the process has cointegrating rank K, it
is stable and, hence, it cannot generate a linear trend when just an intercept
is included in the model. Formally, a “cointegrating matrix” B of rank K is
nonsingular so that B’x; cannot be zero if y; is nonzero.

It may also be worth noting that the specification of the deterministic com-
ponent in additive form as in (6.4.1) has the additional advantage that the
Beveridge-Nelson representation of y; is obtained by adding the deterministic
term to the Beveridge-Nelson representation of x;. Thus, a suitable gener-
alization of the Granger representation theorem (Proposition 6.1) is readily
available.

6.5 Forecasting Integrated and Cointegrated Variables

If forecasting is the objective, the VAR form of a process is quite convenient.
Because forecasting the deterministic part is trivial, a purely stochastic pro-
cess will be considered initially. For a VAR(p) process,

Y = Arye—1 + -+ ApYrp + U, (6.5.1)

the optimal h-step forecast with minimal MSE is given by the conditional
expectation, provided that expectation exists, even if det(Ix —A;z—- - -—A,2P)
has roots on the unit circle. In the proof of the optimality of the conditional
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expectation in Section 2.2.2, we have not used the stationarity and stability
of the system. Thus, assuming that u; is independent white noise, the optimal
h-step forecast at origin ¢ is

ye(h) = Aiye(h — 1)+ - + Ay (h — p), (6.5.2)

where y;(j) := yi4; for j <0, just as in the stationary, stable case.
Also the forecast errors are of the same form as in the stable case. To see
this, we write the process (6.5.1) in VAR(1) form as

Y, = AY,_, + Uy, (6.5.3)
where
A Ay ... Ap,1 Ap u
n Ix 0 ... 0 0 Ot
}/t — . , A = 0 IK 0 0 s and Ut =
Vit ; R : 0
(Kpx1) 0 0 ... Ig O (Kpx1)
(Kpx Kp)

If u; is independent white noise, the optimal h-step forecast of Y; is
Yy(h) = AY;(h — 1) = A™Y;.
Moreover,

Yien = AYipn—1 + Uy
A", + Upn + AUt + -+ AP0

Hence, the forecast error for the process Y; is

Yien —Yi(h) =Uppn + AUy +--- + AU .

Premultiplying by the (K x Kp) matrix J := [Ix : 0:---: 0] gives
Yt+h — yt(h) = JUt+h + JAJ’JUt+h_1 R JAh_lj/JUt+1
= Uppn +PrUppn_1 + -+ Pp_1upia, (6.5.4)

where J'JU, = U; and &; = JA'J' have been used. Thus, the form of the
forecast error is exactly the same as in the stable case and the forecast is
easily seen to be unbiased, that is,

E[th+h - yt(h)] =0.

Furthermore, the @;’s may be obtained from the A;’s by the recursions

P, = Zgzs,;_jAj, i=1,2,..., (6.5.5)

Jj=1
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with @y = I, just as in Chapter 2. Also the forecast MSE matrix becomes
h—1
Zy(h) => &2, (6.5.6)
i=0

as in the stable case. Yet there is a very important difference. In the stable
case, the ®;’s converge to zero as i — oo and X, (h) converges to the covariance
matrix of y; as h — oco. This result was obtained because the eigenvalues of
A have modulus less than one in the stable case. Hence, &; = JA'J' — 0
as i — 0o. Because the eigenvalues of A are just the reciprocals of the roots
of the determinantal polynomial det(Ix — A1z —--- — A,2P), the &;’s do not
converge to zero in the presently considered unstable case where one or more
of the eigenvalues of A are 1. Consequently, some elements of the forecast MSE
matrix X, (h) will approach infinity as h — oo. In other words, the forecast
MSEs will be unbounded and the forecast uncertainty may become extremely
large as we make forecasts for the distant future, even if the structure of the
process does not change.

To illustrate this point, consider the following bivariate VAR(1) example
process with cointegrating rank 1:

Yt 0 1]y U1
= ’ . 6.5.7
] -lo ] )] 65
The corresponding VECM representation is
1 -1 -1
Ayt = - |: 0 0 :| Yt—1 +ut = |: 0 :| []‘7 _1]yt—1 +ut7
that is,
— _1 I _ _
o= |: 0 :| ) B - [L 1]

For this process, it is easily seen that &y = I, and

qu:A{:{g ” j=1,2, ...,
which implies
h—1 9 9
Ey(h):zoquzu¢;=2u+(h—1)[gg Z;} h=1,2,...,
=

where o3 is the variance of ug;. Moreover, the conditional expectations are
yr,t(h) = y2+ (kK =1,2). Hence, the forecast intervals are

|:y2,t — Z(a/2)\/ 07 + (= 1)03, Y2t + 2(ay2)\/ 0k + (h — 1)03} ,
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where z(q/2) is the (1 — §)100 percentage point of the standard normal dis-
tribution. It is easy to see that the length of this interval is unbounded for
h — oo.

If there are cointegrated variables, some linear combinations can be fore-
casted with bounded forecast error variance, however. To see this, multiply
(6.5.7) by

Thereby we get

1 -1] Joo [
0 1 Yt = 01 Yt—1 0 1 Ut,

which implies that the cointegration relation z; := y1+ — y2r = u1¢ — ugy iS zero
mean white noise. Thus, the forecast intervals for z; for any forecast horizon
h are of constant length,

[2¢e(h) = 2(ay2)02(h), 2t(h) 4 2(a/2)0=(R)] = [=2(a/2)02s Z(a)2)02],

where 02 := Var(ui¢) + Var(ug) — 2Cov(uys, ug) is the variance of z; and

z¢(h) = 0 for h > 1 has been used.

If deterministic terms are present, we may use the foregoing formulas for
the mean-adjusted variables and then add the deterministic terms for the
forecast period to the mean-adjusted forecasts. More precisely, if y; = s + ¢,
where p; is the deterministic term and z; is the stochastic part, a forecast
for yyp is obtained from a forecast x;(h) for x;y, by simply adding peqp,
ye(h) = peen + 2¢(h). By the very nature of a deterministic term, pyip is
known, of course.

In practice, the parameters Ay,...,A4,, X, and and those of the deter-
ministic part are usually unknown. The consequences of replacing them by
estimators will be discussed in Chapter 7.

6.6 Causality Analysis

From the discussion in the previous subsection, it follows easily that the re-
strictions characterizing Granger-noncausality are exactly the same as in the
stable case. More precisely, suppose that the vector y; in (6.5.1) is partitioned
in M- and (K — M)-dimensional subvectors z; and x4,

2t A1 Az ,
= and A; = ' T, =10,
vt [ Ty ] [Azu Agai } b

where the A; are partitioned in accordance with the partitioning of y;. Then
x¢ does not Granger-cause z; if and only if
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Az =0, i=1,...,p (6.6.1)

In turn, z; does not Granger-cause x; if and only if Ag; ; =0fori=1,...,p.
It is also easy to derive the corresponding restrictions for the VECM,

-1
Az II;; IIp, ] { Zt—1 ] 5 [ Tiis Tioy ] [ Az }

= + L + uy,

{ Axy } [ Iy TIp || @ ; To1i Tooyi || Az e

where all matrices are partitioned in line with y:. From (6.3.6) it follows
immediately, that the restrictions in (6.6.1) can be written equivalently as

IIiy, =0 and Ty, =0 fori=1,....,p—1. (6.6.2)

In other words, in order to check Granger-causality, we just have to test a set
of linear hypotheses. It will be seen in the next chapter that in the case of
cointegrated processes, testing these restrictions is not as straightforward as
for stationary processes.

Also restrictions for multi-step causality and instantaneous causality can
be placed on the VAR coefficients and the residual covariance matrix in the
same way as in Chapter 2. Especially for the former restrictions, constructing
valid asymptotic tests is not straightforward, however.

6.7 Impulse Response Analysis

Integrated and cointegrated systems must be interpreted cautiously. As men-
tioned in Section 6.3, in cointegrated systems the term B'y; is usually thought
of as representing the long-run equilibrium relations between the variables.
Suppose there is just one such relation, say

Byyie + -+ Bryxe =0,

or, if B; #0,
B, P
Yt = —3 Y2t — — 7 YKt-
B B,

It is tempting to argue that the long-run effect of a unit increase in yo will
be a change of size B,/B; in y1. This, however, ignores all the other rela-
tions between the variables which are summarized in a VAR(p) model or the
corresponding VECM. A one-time unit innovation in y» may affect various
other variables which also have an impact on y;. Therefore, the long-run ef-
fect of a yo-innovation on y; may be quite different from —f,/B,. The impulse
responses may give a better picture of the relations between the variables.
In Chapter 2, Section 2.3.2, the impulse responses of stationary, stable
VAR(p) processes were shown to be the coefficients of specific MA repre-
sentations. An unstable, integrated or cointegrated VAR(p) process does not
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possess valid MA representations of the types discussed in Chapter 2. Yet the
@, and ©; matrices can be computed as in Section 2.3.2. For the &;’s we have
seen this in Section 6.5 and, from the discussion in that section, it is easy to
see that the elements of the $; = (¢;x,;) matrices may represent impulse re-
sponses just as in the stable case. More precisely, ¢, ; represents the response
of variable j to a unit forecast error in variable k, 7 periods ago, if the system
reflects the actual responses to forecast errors. Recall that in stable processes
the responses taper off to zero as i — oo. This property does not necessarily
hold in unstable systems where the effect of a one-time impulse may not die
out asymptotically.

In Section 2.3, we have also considered accumulated impulse responses,
responses to orthogonalized residuals and forecast error variance decomposi-
tions. These tools for structural analysis are all available for unstable systems
as well, using precisely the same formulas as in Chapter 2. The only quantities
that cannot be computed in general are the total “long-run effects” or total
multipliers ¥, and =, because they may not be finite.

To illustrate impulse response analysis of cointegrated systems, we consider
the following VECM:

AR, ] [ —0.07 0.24 —0.08 ARy,
[ADpt } - { 0.17} (Re—1 —ADpi—1) + [ 0 —0.31 } {ADpt_l }

n 0 -0.13 ARy o i 0.20 —0.06 ARy _3 4| v
0 —-0.37 ADpt_Q 0 —0.34 ADpt_g U2t ’
(6.7.1)

2.61 —0.15 |

-5
015 231 | <10

Y=
and the corresponding correlation matrix is

1 —0.06 ]
Ru = | —0.06 1 :

This model is from Liitkepohl (2004, Eq. (3.41)). The variables are a long-
term interest rate (R;) and the quarterly inflation rate (Dp;). The coefficients
are estimated from quarterly German data. Deterministic terms have been
deleted because they are not important for the present analysis.

In contrast to the inflation/interest rate example system considered in
Chapter 2, the two variables in the present system are I(1). The cointegra-
tion relation, Ry — 4Dpy, is just the real interest rate because 4Dp; is the
annual inflation rate and R; is an annual nominal interest rate. Thus, in the
present model the real interest rate is stationary. This relation is sometimes
called the Fisher effect. The zero restrictions have been determined by a sub-
set modelling algorithm. The residual covariance matrix is almost diagonal.
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R —>R Dp —> R
1.4 0.6
1.3
0.5
1.3
1.2 0.4
1.2
0.3
1.2
1.1F 0.2
11F
0.1
1.0
1.0 0.0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
R —> Dp Dp —> Dp
0.3 1.0
0.3
0.8
0.2
0.6
0.2
0.2 0.4
0.1
0.2
0.1
-0.0
0.0
0.0 -0.2
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Fig. 6.4. Forecast error impulse responses of VECM (6.7.1).

Therefore, forecast error impulse responses should be similar to orthogonalized
impulse responses, except for the scaling. The two types of impulse responses
are shown in Figures 6.4 and 6.5, respectively. Indeed, the shape of correspond-
ing impulse responses in the two figures is quite similar. A remarkable feature
of the impulse responses is that they do not die out to zero when the time
span after the impulse increases but approach some nonzero value. Clearly,
this reflects the nonstationarity of the system where a one-time impulse can
have permanent effects.

Using the orthogonalized impulse responses, it is also possible to compute
forecast error variance decompositions based on the same formulas as in Chap-
ter 2, Section 2.3.3. For the example system, they are shown in Figure 6.6.
They look similar to forecast error variance decompositions from a stationary
VAR process. Of course, there is no reason why they should look differently
than in the stationary case.

As discussed in Chapter 2, interpreting the forecast error and orthogonal-
ized impulse responses used here is often problematic if there is significant
correlation between the components of the residuals w;. It will be discussed in
Chapter 9 how identifying restrictions for impulse responses can be imposed
in the VECM framework.
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Fig. 6.5. Orthogonalized impulse responses of VECM (6.7.1).

6.8 Exercises

Problem 6.1
Consider the process

|10 n
Yt = O?ﬂyt*l Ut

with residual covariance matrix

_|1r
xu_[pl]

(a) What is the cointegrating rank of the process?
(b) Write the process in VECM form.

Problem 6.2
Determine the roots of the reverse characteristic polynomial and, if applicable,
the cointegrating rank of the process

[ 11 02
Yt = 0.2 1.4 Yt—1 +ut'

Can you write the process in VECM form?
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Fig. 6.6. Forecast error variance decomposition of VECM (6.7.1).

Problem 6.3

What is the maximum possible cointegrating rank of a three-dimensional pro-

cess Y = (Y1t, Yar, Yst) s

(a) if y1¢, yor are I(0) and ys; is 1(1)?

(b) if y1¢, yor, and ys; are I(1) and yi; and yor are not cointegrated in a
bivariate system?

(¢) if y1t, yot, and ys¢ are I(1) and (y1¢, y2¢)" and (yat, ys¢)’ are not cointegrated
as bivariate systems?

Problem 6.4
Find the Beveridge-Nelson decomposition associated with the VECM

Ay, = OCB/Z/t—1 + Uy,

(a) if all initial values are zero (y; = u; = 0 for ¢ < 0),
(b) if yo is nonzero.

Problem 6.5

Derive the VECM form of y; if the deterministic term is p; = po + 0l1>75),
where I(;>7,) is a shift dummy variable which is zero up to time T’z and then
jumps to one and J is the associated (K x 1) parameter vector.
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Problem 6.6
Consider the quarterly process y; = pg + x4, where z; has a VECM represen-
tation as in (6.4.2) and

pe = po + pat + 9151 + d282; + 03534

Here pg, w1, 01, 02, and d3 are K-dimensional parameter vectors and the s;;’s
(i =1,2,3) are seasonal dummy variables. Determine the VECM representa-
tion of y;.

Problem 6.7
Consider the VECM

Ay = [ _0:1 ] (1, =Dy—1 + uy.

(a) Rewrite the process in VAR form.

(b) Determine the roots of the reverse characteristic polynomial.

(c) Determine forecast intervals for the two variables for forecast horizon h.
(d) Has a forecast error impulse in y;; a permanent impact on yo;? Has a
forecast error impulse in yo; a permanent impact on 41,7



7

Estimation of Vector Error Correction Models

In this chapter, estimation of VECMs is discussed. The asymptotic properties
of estimators for nonstationary models differ in important ways from those
of stationary processes. Therefore, in the first section, a simple special case
model with no lagged differences and no deterministic terms is considered and
different estimation methods for the parameters of the error correction term
are treated. For this simple case, the asymptotic properties can be derived
with a reasonable amount of effort and the difference to estimation in station-
ary models can be seen fairly easily. Therefore it is useful to treat this case in
some detail. The results can then be extended to more general VECMs which
are considered in Section 7.2. In Section 7.3, Bayesian estimation including the
Minnesota or Litterman prior for integrated processes is discussed and fore-
casting and structural analysis based on estimated processes are considered
in Sections 7.4-7.6.

7.1 Estimation of a Simple Special Case VECM

In this section, a simple VECM without lagged differences and deterministic
terms is considered. More precisely, the model of interest is

Ayt :Hyt,1 =+ Uyt :aﬁ/yt,1 +u, t=1,2,..., (711)

where y; is K-dimensional, IT is a (K x K) matrix of rank r, 0 < r < K,
o and B are (K x r) with rank r, and u; is K-dimensional white noise with
mean zero and nonsingular covariance matrix X,,. For simplicity, we assume
that u; is standard white noise so that certain limiting results hold which will
be discussed and used in the following. For the time being, the initial vector
Yo is arbitrary with some fixed distribution. We also assume that y; is an (1)
vector so that we know from Section 6.3 that the ((K —r) x (K — r)) matrix

o\ B
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is invertible (see Eq. (6.3.12)). Here o, and B, are, as usual, orthogonal
complements of o and P, respectively.

The cointegration rank r is assumed to be known and it is strictly between
0 and K. For r = 0, Ay, is stable and for » = K, y; is stable. For the present
purposes, these two boundary cases are of limited interest because they can
be treated in the stationary framework considered in Part I. If r is not known,
however, it may be of interest to consider the case r = 0. The matrix IT is
then zero, of course. We will comment on this case at the end of this section.

We will discuss different estimators of the matrix II, assuming that a
sample y1, ...,y and a presample vector yg are available. Our first estimator
is the unrestricted LS estimator,

T T -1
Im= (Z Ayt%—l) <Z yt—1y£—1> . (7.1.2)
t=1 t=1

Substituting Iy, 1 + u; for Ay, gives

-1
T T

Im-1II= (Z uty£1> (Z yt1y£1> : (7.1.3)
t=1 t=1

To derive the asymptotic distribution of this quantity, we multiply from the
left with the (K x K) matrix

-2 ]

and from the right by
Q7' =[a(B') By (o By)7]
which yields

T T -1
QI - = Q (Z uty1/£1> QQ™" (Z yt1y1/51> Q™
t=1

t=1

T T -1
= (thz£_1> <Zzt_1zg_1> , (7.1.4)
=1 t=1

where v; := Qu¢ and z; := Q. Notice that invertibility of o, B, follows from
our assumption of an I(1) system, as mentioned earlier, and it implies that
the inverse of @) exists because

PALEAE {ffﬁ w5,

is invertible if o/, B, is nonsingular. Hence, () must be invertible and, thus,
B’o is also nonsingular.
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Premultiplying the VECM (7.1.1) by @ shows that

_ ‘a0
Az = QUIQ 'z + v = { BO 0

:| 2t—1 + v
Hence, denoting the first » components of z; by z( ) , we know that z(l) By,
consists of the cointegrating relations and is therefore stationary while the last

(2)

K — r components of z;, denoted by z,”’, constitute a (K — r)-dimensional

random walk because Az,@ is white noise. Thus, stationary and nonstationary
components are separated in z;. To derive the asymptotic properties of the
LS estimator, it is useful to write

QI -mQ~
T Zzt 1Zt 1 Zzt 1Zt 1

(2)/ t
[t | o w e
t

t

(7.1.5)

For the cross product terms in this relation, we have the following special case
results from Ahn & Reinsel (1990).

Lemma 7.1
T T
— (1) _(1y _
() Ty 50 =T Y Blyeays 1B 5 I,
t=1 t=1

T
(2) T%vec <Z vtz£1)1'> LNO, TV ® 5,),
t=1

Where Y, = QX,Q is the covariance matrix of vy.

-1 (2) 1/2 / 1/2
3) T vaz HE (/ W dW, ) X, |:IK ) ],

t=1
where Wk abbreviates a standard Wiener process Wk (s) of dimension

K (see Appendix C.8.2).
(4) T T3 Zzt th)ll -

(2 2
(5) T 224 2230 I, DL/ (/ W Wiyds >21/2|:IK }

The quantities in (2), (3), and (5) converge jointly. |

In this lemma we encounter asymptotic distributions of random matri-
ces. As in Appendix C.8.2, these are understood as the limits in distribution
of the vectorized quantities. Because the asymptotic distributions are also
conveniently stated in matrix form, not using vectorization here is a useful
simplification. Moreover, in the lemma as well as in the following analysis
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we denote the square root of a positive definite matrix X by X1/2, that is,
X1/2 is the positive definite symmetric matrix for which £/25%/2 = 5 (see
Appendix A.9.2).

Proof: The proof follows Ahn & Reinsel (1990). Lemma 7.1(1) is implied by
a standard weak law of large numbers (see, e.g., Proposition C.12(7)) because
zt(i)l contains stationary components only.

The second result also involves stationary processes only. Therefore it fol-
lows from a martingale difference central limit theorem for stationary pro-
cesses. Notice that Vec(vtzﬁ)l/) is a martingale difference sequence and, hence,
a martingale difference array which satisfies the conditions of Proposition
C.13(2). Thus, the result follows from that proposition.

To show Lemma 7.1(3), we define a random walk

Py
Z:: 222) :Zt*_l—"—vt’ t:1’2,...,
“t
with 23(1) = 0 and notice that the second part of 2/ is identical to the last

K — r components of z;. Hence, it follows from Proposition C.18(6) that

/

T 1
T izl <4y </ WKdW’K) »i/2,
t=1 0

Considering the last K — r columns only gives the desired result.
Part (4) of the lemma can be shown by defining

+(1

| = 1

t 2,52)

with zar(l) =0 and

1
= .
¢ e

Thus, v;" is an 7(0) process. By Proposition C.18(5), we have

(1) _(1 +(1) (2
Zztf(l)zﬁ u Zztfl)vt( u
t t

T

+ o

z v = = 0,(T),
; ' DTS PR P

‘|:Zj1+1}?7 t:1727...,

1%t
t t
which implies the desired result.
Lemma 7.1(5) is just a special case of Proposition C.18(9) because z; is a
random walk and the last K — r components of z; are just zt(z).
Finally, the joint convergence of the quantities in Lemma 7.1(2), (3), and
(5) follows because all quantities are eventually made up of the same wu;’s. W
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The lemma implies the following limiting result for the LS estimator II.

Result 1
Let
T2 0
o[ 3]
Then

vec|Q(TI — IN)Q ' D)

N, e 5,)

Vec{21/2 (Jy Wiaw, ) 21/2[0 }

l=

IK—T‘

([0 I )53 ( fy Wi Wieds )21/2[11“ Dl}

(7.1.6)
|

Proof:

mﬁ—ﬂm*D

T

1/ — 2)7

—1/2 2:1} Z( ) 12:%25_)1
t=1

/ /

E Zt 1Zt 1 E Zt 1Zt 1

xD D

2 2
Zzt( )1Zt 1/ Zzt( )1Zt 1/
T -1
(Tl/Qthzﬁ)lj ( 1zzt(1)lzt1)1/>
B —1
2)/ (2) (2
: < 1th2()> ( 222} )1 t()1/> + 0p(1).

The last equality follows from Lemma 7.1(4). The result in (7.1.6) is obtained
by vectorizing this matrix and applying Lemma 7.1(2), (3), and (5) and the
continuous mapping theorem (see Appendix C.8). |

-1

An immediate implication of Result 1 follows.
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Result 2 R
The estimator IT is asymptotically normal,

VTvee(Il — II) 4 N (o, BB xu) , (7.1.7)

and B(Fz(l))*l[i/ can be estimated consistently by

T -1
(leyt_ly;_l) |
t=1

Proof:
VIQ -mQ ™!
= Q(ﬁ -mQ'D [ é T*01/2 }

. -1
_ <T1/2 Z WEl){) ( -1 Z Zt(l)lztl)l’>
- -1
T2 ( -1 Zv 2(2)/> ( -2 Zzt2)1zt 1) +0,(1)

from the proof of Result 1 and, hence,
VTvec[QIT - QY] = (Q~Y @ Q)VTvec(IT — II)

4 [N@’(FS)“ ° ) ] |
0

Premultiplying by Q' ® Q! and recalling the definition of Q, gives a multi-
variate normal limiting distribution with covariance matrix

(Q®Q™ ([ ( Z(lo))_l X } ® Zu) QR®Q™)

B ol (e o IR

which implies (7.1.7) because X, = QX, Q.
Now consider

—1

T -1 T
(T_l Z yt1y£1> = Q/ <T_1 Z Zt12'£1> Q
t=1 t=1
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(2
lzzrgl)lzt 1/ 1Zzt 1%¢ )1/
=Q 0
-1 Zzt(2)1zt 1/ 1zzt lth)ll
Y [ S+ S118125%501 5, S5 S125* 0
L —5*52151_11 S* ’

275

where the rules for the partitioned inverse from Appendix A.10 have been

used and S* := (S5," — S2157,"S12) . Moreover,
=T 124”1% 1 Fz(l)
by Lemma 7.1(1),
Sig =Sy =T~ ! Zztl)th 1= (Tl/z)

by Lemma 7.1(4), and

Sog =T~ 122752)1 t(2)1l

By Lemma 7.1(5) and the continuous mapping theorem, Sy,' = O,(T~"

Using again the rules for the partitioned inverse from Appendix A.10,
S* = Sy + 855 821(S11 — S12855" S21) "1 S12.555"
= Op(T™) + Op(T71)0p(T?)0p(1)0,(T/*)0, (T ™)
= OP(T_l)a
because
S11 = 812555 Sa1 = Si1 — 0, (T?)O0p (T~ )0, (T/?) = S11 + 0,(1)
so that
(S11 — S12555" S21)~H = Op(1).
Hence, we get
S+ St S128% 8515 = (r)—t
+0,(1)0, (T'/2) 0y (T~ )0, (T1/?) 0, (1)
(I +0,(1)

and

558125 = 0,(1)0,(T*)0,(T ) = 0,(1).
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Thus,
e , - [ (@Y1 4 0,(1) 0,(1)
T Y 1Yy = Q { z P P Q
tZ:; e op(1) op(1)
= BI) B+ op(1),
which proves Result 2. [ ]

Thus, the limiting distribution of VT Vec(f[ —1II) is singular because I 2(1)
is an (r x r) matrix. Still, we can use the usual estimator of the covariance
matrix based on the regressor matrix. Thus, ¢t-ratios can be set up in the
standard way and have their usual asymptotic standard normal distributions,
if a consistent estimator of X, is used. In Result 8, we will see that the usual
residual covariance matrix is in fact a consistent estimator for X, as in the
stationary case. On the other hand, it is not difficult to see that the covariance
matrix in the limiting distribution (7.1.7) has rank r K. Therefore, setting up
a Wald test for more general restrictions may be problematic. As explained
in Appendix C.7, a nonsingular weighting matrix is needed for the Wald test
to have its usual limiting y2-distribution under the null hypothesis. Thus, if
we want to test, for example,

Hy:II=0 versus H;:II#0,

the corresponding Wald statistic is

T
Aw = Tvec(ﬁ)’ <<T‘1 Z yt1y£1> ® §;1> Vec(ﬁ).
t=1

Under Hj, the arguments in the proof of Result 2 can be used to show that
71! Zle Yt+—1Y;_q, converges to zero in probability and, hence, the limit of
the weighting matrix in the Wald statistic is singular. Thus, Ay will not have
an asymptotic x?(K?)-distribution. Therefore, caution is necessary in setting
up F-tests, for example. In the nonstationary case, they may not have an
asymptotic justification. We will provide more discussion of this problem in
Section 7.6 in the context of testing for Granger-causality.

It is interesting to note that the asymptotic distribution in (7.1.7) is the
same one that is obtained if the cointegration matrix B is known and only o
is estimated by LS. To see this result, we consider the LS estimator

T T -1
4= (Z Ayty£_1l3> (Z B’yt_1y£_1[5> . (7.1.8)
t=1 t=1

This estimator has the following properties.
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Result 3
VTvee(@ — o) % N(0,(IT) L @ 2,) (7.1.9)
and, thus,
VTvec(ap’ — II) 4, N©O,BIN 1 @ 2,).
[ |

Proof: Substituting ap’y;_1 + u, for Ay, in (7.1.8) and rearranging terms
gives

o—o= (Z Utﬂi—lB) <Z B/yt—ly£—13>

from which we get (7.1.9) by similar arguments as in the proof of Lemma 7.1.
Noting that vec(ap’ — IT) = (B ® Ix)vec(d — o), gives the stated asymptotic
distribution of v/Tvec(ap — II). [ |

-1

Clearly, this result may seem a bit surprising because it means that knowl-
edge of B does not improve our estimator for I, at least asymptotically. In
turn, not knowing B does not lead to a reduction in asymptotic precision of
our estimator. This is a consequence of the fact that B can be estimated with
a better convergence rate than /7. To see this fact, suppose for the moment
that o is known and that B is normalized as in (6.3.9) such that

_ [ é’;KT) } , (7.1.10)

We know from the discussion in Section 6.3 that this normalization is always
possible if the variables are arranged appropriately. Thus, upon normalization,
the only unknown elements of B are in the ((K —r) X r) matrix B x_,). This
matrix can be estimated from

Ayy — oDy = oy +u = (7] @ avee(B_,)) +up,  (7.111)

where y( ) and y( ) consist of the first r and the last K — r elements of Yi_1,
respectlvely Because this is a multivariate regression model where the regres-
sors are not identical in the different equations, we assume for the moment
that X, is also known and consider the GLS estimator

-1

vee(Blx_y) = (nyly,SQ){) ® (o' Xy o) !

T
x (I ® OL/Z' )vec <Z Ay, — 061/,5”1)%(2)1/) :
t=1
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or

Blr—ry = (@3 )"t/ Sy!

T —1
X <Z(Ayt ay ")) yt@){) <Zy§2)1y§2){> . (7.1.12)

t=1

This estimator has the following asymptotic distribution.

Result 4

1 ! 1 -1
1B~ B ([ Wicaw?) ([ Wi wieas)
(7.1.13)
where
Wi, = Q%[0 I, |5}/ * W,
Q?? denotes the lower right-hand ((K — ) x (K — r)) block of Q=1
W= (2 o) e D QT D AW

Thus, the asymptotic distribution depends on functionals of a standard
Wiener process. |

Proof: Replacing Ay, — (xyt( )1 in (7.1.12) with OLB/(K_T.)yt(i)l + uy and rear-

ranging terms gives

—1
B/(K—T) - B/(K—r) = (o2, ') o'y (Zu y(z) ) (Z 3/:52)1%2)1/) ‘
(7.1.14)

Thus, we have to consider the quantity

(Zwy( >/> (Z oS 1>1

-1
- () (i)

For the first matrix on the right-hand side we have

T
Ty u
t=1
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T
- 0
t=1 K=r

I S 0
=Q ! (T 12%2}—1) Q ! |:IKT ]
=Q! [ - thztz)/] - [ ?K_T }

1
4 Qixl? </ W dW' ) 2 { v }Q”',
0

IKfr

where Lemma 7.1(2) and (3) have been used for the last equality and the
limiting result, respectively. Thus,

12@/52)1%2 oo’ Xy )™ ﬂ/ Wi dW?' (7.1.15)

The matrix

2) (2
-2 Z yt( )1yt )1/

) o
—[0: Ire_y] ( QZ“ 12 1) 1/[?K—T}

=[0: Ix_,)Q" [O”EI; QZf 51)(21 L2 } Q™ { ?K_r ]

T
= Q22 <T2 Z Zf2)1zt(z)/> QQQ! + Op( )
t=1

1
4 Q20 Ik, ]2l (/ WKW’de> zi? { (I)K } Q*
0 -

1
= / Wi Wi _.ds, (7.1.16)
0

where Lemma 7.1(5) has been applied. Using (7.1.14) and combining (7.1.15)
and (7.1.16), gives the result in (7.1.13). u
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Clearly, in the present model setup, the GLS estimator of B?K_T) does not
have the usual normal limiting distribution. In fact, it converges with rate T
rather than the usual rate v/T, at least under our present rather restrictive
assumptions. The asymptotic distribution consists of functionals of a standard
Wiener process. It is also interesting to note that the two Wiener processes
W and W, _,. are independent because their cross-covariance matrix is

Q%2[0: Ix ,]Z,Q VI To(o/ X tar)
=Q*0: Ix_,)Qo(a/ Y o)t
= Q%o oo/ T o) 7!
= O7

where ¥, = QX,Q’ has been used to obtain the first equality. The indepen-
dence of the two Wiener processes implies that the conditional distribution

of
1
vec </ W}_,,dW;f/>
0

given Wi, _ . is

1
N (o, / W’;{_Twﬁ_rdse@(a’zula)l)
0

(see Ahn & Reinsel (1990), Phillips & Park (1988) or Johansen (1995)). This
reasoning leads to the following interesting result.

Result 5

1/2
5 2
vec ([3,(1(4) - <Z Yt )1?Jt 1)

LN (0, Tk ® (X a) 1) (7.1.17)

!

Proof: From (7.1.16) we have

1
@y d .
2§ yt 1yt )1 /0 Wi W3 _ . ds.

Hence, Result 5 follows because

1/2
A 2
vec ([3/(1(4) - <Z Yt )11%5 1)

T 1/2
2 2 Yy
= (Z s ’1) @ Irc | vee(Blic_ry — Blxc—r))-
t=1
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Result 5 means that, although the GLS estimator Ez x_pm has a nonstan-
dard limiting distribution, a transformation is asymptotically normal and can,
for example, be used to construct hypothesis tests with standard limiting
distributions. For example, _t-ratios can be constructed in the usual way by
considering an element of [3’( K—r) and dividing by its asymptotic standard
deviation obtained from

-1
(Z Y 1y(2) ) ® (0‘/21:10‘)_1-

Also Wald tests can be constructed as usual (see Appendix C.7).

Of course, the GLS estimator is only available under the very restrictive as-
sumption that both o and X, are known. It turns out, however, that the same
asymptotic distribution is obtained for the corresponding EGLS estimator,

~
=~

(K- n = )

A/ 2)1 T 2 2)r\
(@2 0) o (Zt (A — g,y )1) (thl yt(_)lyt(_)l) ,
(7.1.18)
where @ and f)u are consistent estimators of o and X, respectively. Fortu-
nately, such estimators are available in the present case. A consistent estimator

a follows from Result 2. If B is normalized as in (7.1.10), the first 7 columns of
II are equal to a.. Hence, the first r columns of II are a consistent estimator of
o and the usual white noise covariance matrix estimator from the unrestricted
LS estimation can be shown to be a consistent estimator of X, as we will
demonstrate later (see Result 8). The following result can be established.

Result 6

TBlxr) — Blacy) = 0p(1). (7.1.19)
[ |

Proof: Defining uf = Ay; — 0f'y;_1 and substituting aB’(KJ)yﬁ)l + uf for
Ay — (xyg )1 in (7.1.18) gives, after rearrangement of terms,

-1

B ~ 2 2
B/(K—T) - B/(K—r) (O‘Z ) (Z Uiy, )I> (Z Yy )1yt 1)

Hence,

~

TBlxry — Blac)
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= {(&’2;1&)*16( ol (oc’Egloc)’loc’E;l}

—1
( 1Z“ty(2)>< zzytz)l t<2>1/>

+(OCE 1’\) 1&’ ;1

~1
T

x (T_l ZWI—%)%%’) ( 22%(2)1% 1> -
t=1

The term in brackets is 0,(1) because o and Y, are consistent estimators
by assumption. Moreover, T~* ZtT:l(uf - ut)yﬁ){ = 0p(1) (see Problem 7.1).
Thus, the desired result follows because all other terms converge as established
previously. |

If the process is assumed to be Gaussian, ML estimation may be used
alternatively. In case o0 and X, are known, the ML estimator is identical to
the GLS estimator for 621(4) and, hence, B'(Kfr) is also the ML estimator. If
o and ¥, are unknown, ML estimation under the constraint rk(II) = r may
be used. The log-likelihood function is

T
KT T 1 _
Inl = —71n27r - aln | Xl — 3 tgzl(Ayt — Iy, 1) 2 (Ay, — Ty, ).
(7.1.20)

From Chapter 3, we know that maximizing this function is equivalent to min-
imizing the determinant

T
T Z(Ayt — yi—1)(Ays — Iy—1)’

To impose the rank restriction rk(IT) = r, we write IT = af’, where o and
B are (K x r) matrices with rank r. For the moment we do not impose any
normalization restrictions and consider minimization of the determinant

T Z(Ayt — 0By 1) (Aye — 0By 1)

t=1

with respect to o and B. This minimization problem is solved in Proposition
A.7 in Appendix A.14 and the solution is obtained by considering the eigen-
values A1 > --- > A\g and the associated orthonormal eigenvectors vi,..., Vg
of the matrix

T -1/2 , 7 T
(Z yt1y£1> (Z ytlAy,?) (Z AytAy£>
t=1 t=1

t=1
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T T —-1/2
x (Z Ayty,il) (Z yt1y£1> :
t=1 t=1

The minimum of the determinant is attained for

T ~1/2
B=[Vi,-os V] (Zyt_ly,il) (7.1.21)
t=1

and

T T -1
o= (Z Aytth) (Zﬁ’ytlyhB) : (7.1.22)

t=1 t=1

Clearly, the resulting ML estimator I = op’ for IT must have the same
asymptotic properties as the unrestricted LS estimator of IT because even
the estimator in Result 3, which is based on a known f§ does not have better
properties. Notice that, for a Gaussian model, the LS estimator based on a
known B is equal to the ML estimator because the same regressors appear in
all equations. Thus, we can draw the following conclusion.

Result 7
VTvec(@f' —TI) 5 N'(0,B(I'V) 1B @ X,,). (7.1.23)
|

This result was derived by Johansen (1995) and other authors for more
general models. It is also interesting to note that we can, of course, normalize
the ML estimator for B as in (7.1.10), that is, we postmultiply the estimator in
(7.1.21) by the inverse of the upper (rxr) submatrix. Denoting the normalized
estimator by B and using the corresponding estimator for o from (7.1.22),

T T -1
o= (Z Ayt?/éqﬁ) (Z B'yt—1y£_1[3> )
t=1 t=1

gives an estimator & of IT which is identical to &f’. Thus, the asymptotic
properties must also be identical. It follows that & has the same asymptotic
distribution as the LS estimator in (7.1.9). Moreover, the asymptotic distri-
bution of the lower ((K — r) x r) part of B is the same as that of the GLS
estimator in Result 4 because

v

/ _
(K—r) = )
IS e ]l S 2)r (2

(OC/EU o) 10’/271,1 (Ethl(Ayt ayt( 1)yt( )1> (Zt 1Y )1yt )1) )
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where the ML estimator f’u is substituted for X,. Thus, the asymptotic dis-
tribution of B( K—r) follows from Result 6 and the consistency of the ML

estimators & and .
In fact, any of the estimators for IT which we have considered so far, leads
to a consistent estimator of the white noise covariance matrix of the form

T
Sy =T7" (Ayy — Ty, 1) (Ays — Ty_y)'. (7.1.24)
t=1

Here II can be any of the estimators for IT considered so far, because they
are all asymptotically equivalent. The following result can be established.

Result 8
plim X, = %,. (7.1.25)
|

Proof: Notice that

T

Y, = T Z(Hytq —Tly, ., + uy)(Tyy—1 — My, ; + uy)’
=1

T T
= 77! Zutu; + (I1 — 1I) <T1 Zyt_lygl> (IT — 11’
t=1 t=1
T A~
+ <T1 Z uty£_1> (I1 — I1)’
t=1
R T
+(IT — II) <T1 Zyt_lu;> : (7.1.26)
t=1

Using a standard law of large numbers,

T
plim 7! Z uguy = X,

t=1

Thus, it suffices to show that all other terms are o,(1). This property follows
because from Lemma 7.1 we have

T
T Z Y1y = Op(1)
t=1
and

T
TS Byiayi B = 0, (D).
t=1
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Using the estimator ap’ for II, it is easily seen that all terms but the first
on the right-hand side of the last equality sign in (7.1.26) converge to zero
in probability. The argument is easily extended to the other estimators by
noting that their difference to the previously treated estimator is o,(T~1/2).

|

So far we have assumed that r # 0 and, hence, IT # 0. This assumption is
of obvious importance for some of the results to hold and some of the proofs
to work. If IT = 0, the analysis becomes even simpler in some respects. In
that case, y; is a multivariate random walk and we can apply Proposition
C.18 directly to evaluate the asymptotic properties of the term

T T -
T(II-1I) = <T1 Zuty£1> <T2 Zyt1y£1> )
t=1 t=1

where II is again the LS estimator. Using Proposition C.18(6) and (9) gives
the following result.

Result 9
If the cointegrating rank r» = 0,

1 ’ 1 -1
T(I-10) 4 $i/2 (/ WKdW’K> (/ WKW’de) o2 (7.1.27)
0 0

The LS estimator is again identical to the ML estimator and, hence, the
same result is obtained for the latter. On the other hand, the GLS estimator
is not applicable here. Now we cannot even use the usual ¢-ratios anymore in
a standard way because they do not have a limiting standard normal distri-
bution in this case. For the special case of a univariate model this can be seen
from Appendix C.8.1. Notice that for K = 1, IT = p — 1 in Proposition C.17
and, thus, the asymptotic distribution of TTI = T'(p — 1) is clearly different
from the standard normal in this case.

The results for the estimator of the VECM imply analogous results for the
parameters of the corresponding levels VAR form y; = Ajy;—1 + u;. Notice
that Ay = IT + Ix. Consequently, we have for the LS estimator, for example,

A - A =T-1L (7.1.28)

Hence, the asymptotic properties of A, follow immediately from those of 1I.

The simple model we have discussed in this section shows the main differ-
ences to the stationary case. All the results can be extended to richer models
with short-term dynamics and deterministic terms. Estimation of such models
will be considered in the next section.
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7.2 Estimation of General VECMs

We first consider a model without deterministic terms,
Ay =Ty, 1 +T1 Ay + - + Tpo1 Ayr—pt1 + s, (7.2.1)

where y; is a process of dimension K, rk(IT) = r with 0 < r < K so that
IT = af’, where o and B are (K x ) matrices with k(o) = rk(B) = r. All other
symbols have their conventional meanings, that is, the I'; (j =1,...,p — 1)
are (K x K) parameter matrices and u; ~ (0,%,) is standard white noise.
Also, y; is assumed to be an I(1) process so that

is nonsingular (see Section 6.3, Eq. (6.3.12)). These conditions are always
assumed to hold without further notice when the VECM (7.2.1) is considered
in this chapter.

For estimation purposes, we assume that a sample y1,...,yr and the
needed presample values are available. It is then often convenient to write
the VECM (7.2.1), for t = 1,...,T, in matrix notation as

AY =TIV, + TAX + 1, (7.2.3)
where

AY = [Ayy, ..., Ay,

Yo1:=[yo,- - yr-1l,

r=[,....T, 1],

Ay
AX = [AX(), ey AXT_l] with AXt_l =
Ayt7p+1

and
U .= [uh...,uT].

We will now consider LS, EGLS, and ML estimation of the parameters of
this model. Estimation of the parameters of the corresponding levels VAR
form will also be discussed and, moreover, we comment on the implications
of including deterministic terms.
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7.2.1 LS Estimation

From the matrix version (7.2.3) of our VECM, the LS estimator is seen to be

YoV, Y. AX 7!

-7 — ’o ’
II:T]=[AYY!,: AYAX'] AXY', AXAX' ,

(7.2.4)

using the usual formulas from Chapter 3. The corresponding white noise co-
variance matrix estimator is

2, = (T - Kp) " (AY —Y_, - TAX)(AY —IIY_, —TAX). (7.2.5)
The asymptotic properties of these estimators are given in the next proposi-
tion.

Proposition 7.1 (Asymptotic Properties of the LS Estimator for a VECM)
Consider the VECM (7.2.1). The LS estimator given in (7.2.4) is consistent
and

VT vee([IL: T] — [IT: T]) % N (0, Seo), (7.2.6)

where
S Ll )
Yeo = ) 2y
(|:0 IKpr 0 IKpr ®

and

1 TRYL YR BY L AXY

@=plim 7l TAxy g Axax
The matrix

Rl L

0 IKpr_ 0 IKp—K

is consistently estimated by

o[ VoYl Yo AX !
AXY', AXAX'

and X, is a consistent estimator for X,,. [ |

This proposition generalizes Result 2 of Section 7.1. Therefore similar re-
marks can be made.

Remark 1 The covariance matrix X, is singular. This property is easily
seen by noting that (2 is a [(Kp — K + 1) x (Kp — K + )] matrix. Thus, the
rank of the (K?p x K?p) matrix X, cannot be greater than K(Kp — K +r)
which is smaller than K2p under our assumption that r < K. Still, t-ratios
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can be set up and interpreted in the usual way because they have standard
normal limiting distributions under our assumptions. In contrast, Wald tests
and the corresponding F-tests of linear restrictions on the parameters may
not have the usual asymptotic x2- or approximate F-distributions that are
obtained for stationary processes. A more detailed discussion of this issue will
be given in Section 7.6. |

Remark 2 If B is known, the LS estimator
BY_ Y B BY  AX' 17}

AXY' B AXAX' (7.2.7)

[6:T] = [AYY! B : AY AX']
of [a : T'| may be considered. Using standard arguments for stationary pro-
cesses, its asymptotic distribution is seen to be

VT vee([6: T) — [o: T)) S N (0, Sor), (7.2.8)
where

BY_Y' B BY_ AX'

-1
AXY! B AXAX'} ® S

Yor=2"'® X, =plim T {

The asymptotic distribution in (7.2.8) is nonsingular so that, for given P,
asymptotic inference for a and T is standard. Noting that

[aﬁuf]_[n:r]:([a:f}_[a;r]){%' IK,?K}’

it is easy to see that
vec([op’ : T — [I1: T))

has the same asymptotic distribution as the LS estimator in Proposition 7.1.
This finding corresponds to Result 3 in Section 7.1. It means that, whether
the cointegrating matrix B is known or estimated is of no consequence for the
asymptotic distribution of the LS estimators of IT and T'. The reason is that
B is estimated “superconsistently” even if LS estimation is used. This point
will be discussed further in Section 7.2.2. |

Remark 3 If the cointegrating rank » = 0 and, thus, IT = 0,
VI - 11] = o,(1),

that is, the LS estimator of II converges faster than with the usual rate /7.
Therefore, Proposition 7.1 remains valid in the sense that all parts of the
asymptotic covariance matrix in (7.2.6) related to IT have to be set to zero.
In other words, the first K2 rows and columns of X, are zero. [ |
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Remark 4 From Proposition 7.1 it is also easy to derive the asymptotic
distribution of the LS estimator for the parameters of the levels VAR form
corresponding to our VECM,

Yt = Alyt—l —+ 4 Apyt—p + Ut. (729)

The A;’s are related to the VECM parameters by
Ay = II+1gx+Ty
Ai = I‘i—l"i_l, i=2,...,p—1, (7210)
A, = -Tpy

(see also (6.3.7)). Hence, they are obtained by a linear transformation,

A=[A1:- 1 A =[IT:T|W + J, (7.2.11)
where
J:=[Ix:0:---:0] (K x Kp)
and
[ Ik 0 0 ... 0 0
I —Ik 0 ... 0 0
0 Ix —Ig 0 0
W= - S : (Kp x Kp).
L0 0 ... Ix —Ig |

Consequently, using
vec([IL: T|W) = (W' @ Ik ) vec[IL : T,

we get the following implication of Proposition 7.1 (see also Sims, Stock &
Watson (1990)).

Corollary 7.1.1

Under the conditions of Proposition 7.1,

VT vec(A — A) L N(0, 55),

where A is the LS estimator of A and

o (8 [t )

0 Ixp-xk 0 Ikp-xk
- (W/®IK)ECO(W®IK)

Furthermore,
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IO — (XX e [(Y - AX)(Y — AX)]
is a consistent estimator of X<°. Here Y := [y,...,yr] and

Yt—1
X :=[Yy,...,Yrq] with Y,q:=
ytfp
|

Because X is singular, A also has a singular asymptotic distribution. The
distribution in Corollary 7.1.1 remains, in fact, valid if » = 0. |
Discussion of the Proof of Proposition 7.1

The proof of Proposition 7.1 is a generalization of that of Result 2 in Section
7.1. Multiplying

Yt
AX,
by
B0
Q =10 Ixp-1
/
o) 0

gives a process

(1)
— 2 e )* Yt
where
Lo [ B
o AX,

contains I(0) components only and Z§2) := o/, y; consists of I(1) components
(see Proposition 6.1). Therefore, a lemma analogous to Lemma 7.1 can be
established and used to prove Proposition 7.1. We leave the details as an
exercise (see Problem 7.2).

In fact, via the process z;, we can get the following useful lemma from
standard weak laws of large numbers and central limit theorems for stationary
processes (see Appendix C.4) as well as Proposition C.18 of Appendix C.
It summarizes a number of convergence results for variables generated by
the VECM (7.2.1). Some of these or similar results were derived by different
authors including Phillips & Durlauf (1986), Johansen (1988), Ahn & Reinsel
(1990) and Park & Phillips (1989).
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Lemma 7.2

(1) AXAX' = 0,(T) and (TT'AXAX")™1 = 0,(1).
(2) B'Y_1AX" = O,(T).
(3) B'Y_1Y! B = Op(T) and (T7'BY_1Y1B) 1 = Oy(1).
(4) BY_ U = 0,(T/?).
(5) B'Y_1AY" = O,(T"/?).
(6) YU = 0,(T).

(7) Y1 AX' = O,(T).

(8) B'Y_1Y!y = O,(T).
(9)

Some of these results are helpful in deriving Proposition 7.1 and they are
also useful in proving the next propositions. Because AY, B'Y_;, and AX
contain I(0) variables only, essentially the same results as in the stable case
hold for these quantities. This is reflected in Lemma 7.2(1)—(5). On the other
hand, Y_; contains I(1) variables that behave differently from I(0) variables.
For instance, for a stable process, Y_1Y” /T has a fixed probability limit (see
Chapter 3). Now the corresponding quantity Y_1Y”; is O,(7?). Intuitively,
the reason is that integrated variables do not fluctuate around a constant
mean but are trending. Thus, the sums of products and cross-products go to
infinity (or minus infinity) more rapidly than for stable processes.

7.2.2 EGLS Estimation of the Cointegration Parameters

For GLS estimation we assume that B is normalized as in (7.1.10),

P= { I?(Kr) } '

Because we are primarily interested in estimating B( K—r)> We concentrate on
the error correction term and replace the short-run parameters I' by their LS
estimators for a given matrix IT,

I[(IT) = (AY — IIY_ ) AX'(AXAX') ™"
Hence,

AY =TIY_ | + (AY —TIY_ ) AX'(AXAX")'AX + U™
Rearranging terms and defining the (7" x T') matrix

M :=Ir — AX'(AXAX") AKX,

gives
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Ry=TR, +U* =af' Ry + U™, (7.2.13)
where
Ro:=AYM and R;:=Y_ M.

Notice that Ry is just the residual matrix from a (multivariate) regression of
Ayy on AX; 7 and R; is the matrix of residuals from a regression of y;_1
on AX;_;. Denoting the first r and last K — r rows of R; by Rgl) and Rf),
respectively, and using the normalization of B, (7.2.13) can be rewritten as

Ro — aR{" = oB;_, R + U*. (7.2.14)

Based on this “concentrated model” the GLS estimator of B/( K—r) 18

~

-1
Blxc_ry = (@' T, o) o/ S, (Ry — aR{) R (R§2)R§2>’) (7.2.15)

(see Eq. (7.1.12)). Note that the same estimator is obtained if the short-run
parameters are not concentrated out first because I' has been replaced by
the optimal matrix for any given matrix II. As in the simple special case
model considered in Section 7.1, it is now obvious how to obtain a feasible
GLS estimator. In a first estimation round we determine the LS estimator of
II:T) as in (7.2.4) and X, as in (7.2.5). Using the first r columns of IT as
an estimator O, we get the EGLS estimator

~
=

~ —~ —1
Bl = (@/2,'0) 6/ T, (R — GRM)RP (R§2)R§2>’) . (7.2.16)

This estimator was proposed by Ahn & Reinsel (1990) and Saikkonen (1992)
(see also Reinsel (1993, p. 171)). Its asymptotic properties are analogous to
those of the EGLS estimator for the simple model considered in Section 7.1.
They are summarized in the following proposition which was proven by Ahn
& Reinsel (1990).

Proposition 7.2 (Asymptotic Properties of the EGLS Estimator for the
Cointegration Matriz)
Consider the VECM (7.2.1) with cointegration matrix B normalized as in

(7.1.10). Suppose & and X, are consistent estimators of o and X, respec-
tively. Then the EGLS estimator of B'(Kfr) given in (7.2.16) has the following
asymptotic distribution:

~ 1 / 1 -1
T( /(K—r) - B/(K—r)) i <A Wﬁ—rdwfl) </0 Wﬁ—rwﬁ/—rds) ’
(7.2.17)

where W§7T and Wf are suitable independent (K — r)- and r-dimensional
Wiener processes, respectively, whose parameters depend on those of the
VECM. Furthermore,
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N 1/2
vee | (Blr—ry = Blr—r) (Rgz)Rgz)/> ] = N0, I @ (&' 2 o))
(7.2.18)

Remark 1 The EGLS estimator has the same asymptotic distribution as
the GLS estimator. Moreover, it has the same asymptotic distribution one
would obtain if all parameters (a, I', and X,,) except B(K_T) were known. It

converges at rate T'. Hence, B( K—r) Is a superconsistent estimator of [3( K—r)
and, thus,

i
a B(K—r)

is a superconsistent estimator of B. The precise form of the Wiener processes
W}#{_T and Wf& depends on the short-run dynamics of the process y;. It is
given, for example, in Ahn & Reinsel (1990). ]

»

Remark 2 The matrix
T2RiR, = T2y MY,
= T2Y Y| —T2Y  AX (T AXAX)'T P AXY
= T2V Y, + op(1)O0p(1)Op(1)
T72Y_ 1Y +0,(1),

where Lemma 7.2(1) and (7) have been used. This result implies that (7.2.18)
could be stated alternatively as

= 1/2
vee | (Blx—r) = Blue—r) (Y1) ]imo,fm(oc'z;loc)-lx

where Y_(21) contains the last K — r rows of Y_;. For practical purposes, the
result as stated in (7.2.18) is more useful because it can be used directly for
setting up meaningful ¢-ratios and Wald or F-tests for hypotheses about the
coefficients of [3( Ker): These quantities have the usual asymptotic or approxi-
mate distributions. Of course, the same is true if (]%§2)1%§2)')1/2 is replaced by
(Y 2y 172 gl in small samples it is advantageous to take the short-run

dynamics into account as in (R?)R?)')l/? |

Remark 3 It is also possible to replace B in IT = o’ in (7.2.3) by the EGLS
estimator and estimate the other parameters by LS from the model

AY = of'Y_, + TAX + U*.
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The resulting estimator [0, : I'] has the same asymptotic properties as [ : T

in (7.2.7) which is based on a known B. As a consequence, [&B/ : T also has
the same asymptotic properties as [0’ : T]. |
Remark 4 The EGLS estimator was actually presented in a slightly different

form by Ahn & Reinsel (1990) and Saikkonen (1992). These authors use the
representation

El(Kfr) = (05, ') 1o/ 5, 'L,

where Il is the (K x (K — r)) matrix of the last K — r columns of the LS

estimator IT of IT (see Reinsel (1993, p. 171) for a discussion of the equivalence
of this estimator and the EGLS estimator (7.2.16)). |

7.2.3 ML Estimation

If the process y; is Gaussian or, equivalently, u; ~ AN(0,%,), the VECM
(7.2.1) can be estimated by maximum likelihood (ML) taking also the rank
restriction for TI = of’ into account (see Johansen (1988, 1995)). The log-
likelihood function for a sample of size T is

KT T
Inl = —In27r— —In|X,|
2 2
1
—5tr [(AY —op'Y_; —TAX)' X, 1 (AY —af'Y_; —TAX)].

(7.2.19)

In the following, we will first discuss the computation of the estimators and
then consider their asymptotic properties.

The Estimator

For ML estimation we do not assume that B is normalized. We only make
the assumption rk(IT) = r which implies that the matrix can be represented
as II = af’, where o and B are (K x r) with tk(at) = rk(B) = r. In the
next proposition the ML estimators are given. The proposition generalizes
the special case estimators given in (7.1.21) and (7.1.22).

Proposition 7.3 (ML Estimators of a VECM)
Let M = Ip — AX'(AXAX')"'AX, Ry := AYM and R, := Y_{M, as
before, and define

Sl'j = RZR;/T, 1= O, 1,

A1 > -+ > Ak are the eigenvalues of Sﬂl/ZSwS&)lSOlSﬂl/z,
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and
Vi,...,Vg are the corresponding orthonormal eigenvectors.

The log-likelihood function in (7.2.19) is maximized for
B = Bi=[i,...,v.)'S,"%

a = &= AYMYLPB (E/Y—lMYhB)ﬂ = SoiB(B'S1B) "L,
I = T'=(AY —Gp'Y_1)AX' (AXAX')"!,
Yy = Y= (AY —ap'Y_, —TAX)(AY —ap'Y_, — TAX)/T.
The maximum is

KT T

maxlnl = —7111271'— 3

" KT

i=1

Proof: From Chapter 3, Section 3.4, it is known that for any fixed o and
the maximum of In! is attained for

L(af) = (AY —ap'Y_1)AX (AXAX) L.

Thus, we replace T in (7.2.19) by f‘(OLB') and get the concentrated log-
likelihood

KT T
———In27r — —In|%,|
2 2

—%tr [(AYM — of'Y_ M) L (AY M — ap'Y_1M)] .

Hence, we just have to maximize this expression with respect to o, B, and
Yu. We also know from Chapter 3 that, for given o and B, the maximum is
attained if

Y(ap) = (AYM — op' Y_ M)(AYM — of'Y_ M) /T

is substituted for . Consequently, we have to maximize
T
—5In (AYM —aB'Y_ 1 M)(AYM — af'Y_1M)'/T|

or, equivalently, minimize the determinant with respect to o and B. Thus, all
results of Proposition 7.3 follow from Proposition A.7 of Appendix A.14. W

The solutions E and o of the optimization problem given in the propo-
sition are not unique because, for any nonsingular (r x r) matrix Q, aQ~!
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and BQ’ represent another set of ML estimators for o and B. However, the
proposition shows that explicit expressions for ML estimators are available. If
r = K, the proposition still remains valid. Also, ML estimators for the levels
VAR representation corresponding to the VECM (7.2.1) observing the rank
restriction are readily available via the relations in (7.2.10).

The next question concerns the properties of the ML estimators of a coin-
tegrated system. They are discussed in the following.

Asymptotic Properties of the ML Estimator

The following proposition generalizes Result 7 of Section 7.1.

Proposition 7.4 (Asymptotic Properties of the ML Estimators of a VECM)
The ML estimators for the VECM (7.2.1) given in Proposition 7.3 have the
following asymptotic properties:

VT vee([af : T] - [IT: T)) 3 N(0, Do), (7.2.21)
where Y, is as defined in Proposition 7.1, and
VT vech(E, — £,) 5 N(0,2D% (5, ® £,)D). (7.2.22)

Furthermore, ¥, is asymptotically independent of aB’ and T. Here, as usual,
D} = (DxDk)"'D/ and D is the (K% x %K(K + 1)) duplication matrix.
[ |

Remark 1 Tt is clear that the ML estimator of [IT : T'| must have the same
asymptotic distribution as the LS estimator in Proposition 7.1 because the
ML estimator with known or given cointegration matrix  also has the same
asymptotic distribution. The ML estimator afp’ of IT in Proposition 7.3 may
be viewed as a restricted LS estimator which is not as much restricted as the
one with known . Thus, the asymptotic result in (7.2.21) is not surprising.
A rigorous proof of the result is given in Johansen (1995). ]

Remark 2 The covariance matrix Y, is singular, as noted in Remark 1 for
Proposition 7.1. The rank of the (K?p x K?p) matrix X, cannot be greater
than K(Kp — K + r) which is smaller than K?p if r < K. |

Remark 3 Individually, the matrices o and B cannot be estimated consis-
tently without further constraints. Under the assumptions of Proposition 7.4,
these matrices are not identified (not unique). If we make specific identify-
ing assumptions in order to obtain unique parameter values and estimators,
consistent estimation is possible. For instance, we may use

b= [ éT(K—r) } '
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The ML estimator of B(K_T_) may be obtained from the ML estimator of B
given in Proposition 7.3 by denoting the first r rows of B by B, and letting
[VS( K—r) consist of the last K — r rows of BB(_T% This ML estimator has the
same asymptotic properties as the EGLS estimator in Proposition 7.2 (see

Ahn & Reinsel (1990)). In other words, inference procedures based on the ML
estimator can be derived from the result

o 1/2
vee | (Blxc—r) = Blae—r) (BB ]iMo,IK_T@(a'z;la)—l).

It was found in a number of studies that the ML estimator B( K—r) May have
some undesirable properties in small samples and, in particular, it may pro-
duce occasional outlying estimates which are far away from the true parameter
values (e.g., Phillips (1994), Hansen, Kim & Mittnik (1998)). This behavior
of the estimator is due to the lack of finite sample moments. Briiggemann &
Liitkepohl (2004) compared the EGLS and ML estimators in a small Monte
Carlo study and found that the EGLS estimator is more robust in this respect.

|

Remark 4 If B is identified, the corresponding ML estimator of o is asymp-
totically normal, i.e., v/T vec(G — o) converges to the same asymptotic distri-
bution as in Remark 2 for Proposition 7.1. |

Remark 5 The normality of the process is not essential for the asymptotic
properties of the estimators T and II = OLB’ Much of Proposition 7.4 holds
under weaker conditions when quasi ML estimators based on the Gaussian
likelihood function are considered. We have chosen the normality assumption
for convenience. |

Remark 6 The asymptotic distribution of 2, may be different if u; is not
Gaussian. The limiting distribution in (7.2.22) is obtained from the following
lemma. |

Lemma 7.3
plim VT(Z, — UU'/T) = 0.
|

This lemma not only implies consistency of g‘u but also shows that the
asymptotic distribution of

\FTvech(Eu —2)
is the same as that of

VT vech(T7IUU' — 5,).
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In other words, it is independent of the other coefficients of the system and
has the form given in (7.2.22) (see also Section 3.4, Proposition 3.4).
Proof of Lemma 7.3:
Y. = T7YAY —ap'Y_, —TAX)(AY —ap'Y_, — TAX)
= T7'U+ (IT—ap)Y_; + (T — T)AX]
x[U + (I — ap')Y_; + (T — T)AX]
uu’ ~ YU UY', ~

= S ([ -aR)R -ay
&) - aRy
va-ag) 2 e py oo 52w oy
+(T-T) A)T(,U/ + UATX/ (-1
~ AXAX'

+ (P = T)=—(T - r).

Using 0p' — IT = O,(T~%/2), T — T = 0,(T~%/2) and the results in Lemma
7.2, we get

VI -0 o),
VI - H 22 5y =0, )
vIm - &) 2 - Fy =0,

and
VI - o) 0 - Y = 0, (1),

Thus, Lemma 7.3 is proven if we can show that

!
% = 0,(1). (7.2.23)

To prove this result, we define &(B) to be the ML estimator of o given B and
note that

VT(@p —II)

Vi@ -m S — TR - app
+ VTP — a]%.

This quantity converges to zero in probability by Lemma 7.2(4), the fact that
VT[aB) — o] = O,(1) (see (7.2.8)) and because VT [af’ — a(B)B] = o0,(1).

We leave the latter result as an exercise (see Problem 7.3). |



7.2 Estimation of General VECMs 299
7.2.4 Including Deterministic Terms

So far we have assumed that there are no deterministic terms in the data
generation process, to simplify the exposition. In practice, such terms are
typically needed for a proper representation of the data generation process. It
turns out, however, that they can be easily accommodated in the estimation
procedures for VECMs discussed so far, if the setup of Section 6.4 is used.
Suppose the observed process y; can be represented as

Y = pht + Ty, (7.2.24)

where x; is a zero mean process with VECM representation as in (7.2.1) and
1 stands for the deterministic term. In general, the latter term may consist
of polynomial trends, seasonal and other dummy variables as well as constant
means. As in Section 6.4, we can then set up the VECM for the observed
variables as

Aye = afp 1] [ Do ] + 1Ay + -+ Tp 1 Ay pia + CD g
t—1

= Iy} + 1Ay 1+ +Tp1Ayspy1 + CDy g,  (7.2.25)

where D{° contains all the deterministic terms which are present in the coin-

tegration relations, D; contains all remaining deterministics, and n’ and C

are the corresponding parameter matrices. Moreover, I := a[p’ : /] = o’
and

+ Yt
y = cOo *
! [ Dt ]

Notice that we assume that a specific deterministic term appears only once,
either in Df° or in D;.

Now we can simply modify the matrices used for representing the estima-
tors in the previous subsections and then use basically the same formulas as
before for computing the estimators. For example, defining

Y—+1 = [y3_7 . 7y’1—t—1]a

" :=[ly,...,T, 1,0,
and
Ayyy
AXF = [AXT, .. AXE ] with AX}, = :
Ayt—p+1

Dy

gives the LS estimator
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O+ -7+ — +r . +/ Yj1y—+1/ Y—JﬁAXJrI o
IIT:T7]=[AYY ] : AYAX™] AXHYH AXTAXH
The EGLS or ML estimators may be obtained analogously.

Hence, the computation of the estimators is equally easy as in the case
without deterministic terms. Also, the asymptotic properties of the parame-
ter estimators are essentially unchanged. The asymptotic theory for the deter-
ministic terms requires some care, however, because their convergence rates
depend on the specific terms included. For instance, if linear trends are in-
cluded, the convergence rates of the associated slope parameters are different
from /T. Generally, if the VECM is specified properly, including the coin-
tegrating rank r, and if EGLS or ML methods are used, the usual inference
methods are available. In particular, likelihood ratio tests for parameter re-
strictions related to the deterministic terms permit standard y? asymptotics
(see, e.g., Johansen (1995)).

A question of interest in this context is, for example, whether a particular
deterministic term can indeed be constrained to the cointegration relations or
needs to be maintained in unrestricted form in the model. The ¢-th component
of D; can be absorbed in the error correction term if the i-th column of the
coefficient matrix C, denoted by C;, satisfies C; = am; for some r-dimensional
vector 7;. Thus, the relevant null hypothesis is

In other words, there are K —r restrictions for each component that is confined
to the cointegration relations. They are easy to test by a likelihood ratio test
because the ML estimators and, hence, the likelihood maxima are easy to
obtain for both the restricted and unrestricted model by just specifying the
terms in Dy and D, accordingly. If m deterministic components are restricted
to the cointegration relations, the LR statistic has an asymptotic x?(m(K —
r))-distribution under our usual assumptions.

7.2.5 Other Estimation Methods for Cointegrated Systems

Some other estimation methods for cointegration relations and VECMs have
been proposed in the literature. For example, other systems methods for
estimating the cointegrating parameters were considered by Phillips (1991)
who discussed nonparametric estimation of the short-run parameters. Stock
& Watson (1988) proposed an estimator based on principal components and
Bossaerts (1988) used canonical correlations. The latter two estimators were
shown to be inferior to the ML estimators in a small sample comparison by
Gonzalo (1994) and are therefore not considered here.

If there is just a single cointegration relation, it may also be estimated
by single equation LS. Suppose that B is normalized as in (7.1.10) such that

B=(1,By,...,Bg) and B'yt = Y1t + Poyor + - - + Pryx¢. Hence,
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Y1t = YeYat + - + VYKt + €cCe,

where 7; := —PB, and ec; is a stable, stationary process. Defining
Y11 Y21 ... YK1
yay = | and Y= | L
yir Yor ... YKT

the LS estimator for v/ := (y2,...,7vK) is
7 = yEI)Y(Q)(Y(’Q)Y(Q))—l_

Stock (1987) showed that 7 is superconsistent and, more precisely, T(7 — )
converges in distribution. Thus, ¥ —~ = O,(T~1). However, there is some evi-
dence that 7 is biased in small samples (Phillips & Hansen (1990)). Therefore,
using LS estimation of the cointegration parameters without any correction
for further dynamics in the model is not recommended.

A large number of single equation estimators for cointegration relations
were reviewed and compared by Caporale & Pittis (2004). In addition to the
simple LS estimator presented in the foregoing, they also considered estima-
tors which are corrected for short-run dynamics. For example, this may be
accomplished by including leads and lags of the differenced regressor vari-
ables in the estimation equation (e.g., Stock & Watson (1993)) or by adding
also lagged differences of the dependent variable (e.g., Banerjee, Dolado, Gal-
braith & Hendry (1993), Wickens & Breusch (1988)). Another possible choice
in this context is the fully modified estimator of Phillips & Hansen (1990)
which takes care of the short-run dynamics nonparametrically and a semi-
parametric variant of this estimator proposed by Inder (1993). In addition,
Caporale & Pittis (2004) presented a large number of modifications. Some of
these estimators have rather undesirable small sample properties compared
to the systems ML estimator presented in Section 7.2.3. Even those modifica-
tions that lead to small sample improvements were only shown to work in a
rather limited framework. Also, of course, some of these estimators are only
designed for situations where only one cointegration relation exists.

Two-Stage Estimation

Generally, if a superconsistent estimator E of the cointegration matrix B is
available, this estimator may be substituted for the true B and all the other
parameters may be estimated in a second stage from

Ay, = 0‘@%—1 + Ay + -+ Tpo1 Ay pyr + 4, (7.2.26)

where deterministic terms are again ignored for simplicity. If no restrictions
are imposed on o and the I';’s (i = 1,...,p — 1), LS estimation can be used
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without loss of asymptotic efficiency. Denoting the two-stage estimators of a
and T by O and Iy, respectively, we have

~ [~ ~\ —1
Oos = AYMY',B (B/Y,lMyil[s) (7.2.27)
and
To, = (AY — G, B'Y_1)AX' (AXAX') L, (7.2.28)

where the notation from the previous subsections has been used. For these
estimators the following proposition holds, which is stated without proof.

Proposition 7.5 (Asymptotic Properties of the Two-Stage LS Estimator)
Let y; be a K-dimensional, cointegrated process with VECM representation
(7.2.1). Then the two-stage estimator is consistent and

VT vec([Bgs : Tag] — [0 : T)) -5 N(0, Zo.r), (7.2.29)
where Y r is the same covariance matrix as in (7.2.8). |

The proposition implies that if a superconsistent estimator of the cointe-
gration matrix P is available, the loading coefficients and short-run parame-
ters of the VECM can be estimated by LS and these estimators have the same
asymptotic properties we would obtain by using the true B. Thus, standard
inference procedures can be used for the short-run parameters. An analogous
result is also available for VECMs with parameter restrictions (see Section 7.3
for the extension).

The second stage in the procedure may be modified. For instance, one
may just be interested in the first equation of the system. In this case, the
first equation may be estimated separately without taking into account the
remaining ones. Thus, the two-stage procedure may be applied in a single
equation modelling context.

Results similar to those in Proposition 7.5 were derived by many authors
(see, e.g., Stock (1987), Phillips & Durlauf (1986), Park & Phillips (1989),
and Johansen (1991)). Generally there has been a considerable amount of re-
search on estimation and hypothesis testing in systems with integrated and
cointegrated variables. For instance, Johansen (1991), Johansen & Juselius
(1990), and Liitkepohl & Reimers (1992b) considered estimation with restric-
tions on the cointegration and loading matrices; Park & Phillips (1988, 1989)
and Phillips (1988) provided general results on estimating systems with in-
tegrated and cointegrated exogenous variables; Stock (1987) considered a so-
called nonlinear LS estimator, and Phillips & Hansen (1990) discussed instru-
mental variables estimation of models containing integrated variables.

7.2.6 An Example

As an example, we use the bivariate system of quarterly, seasonally unadjusted
German long-term interest rate (R:; = yi1:) and inflation rate (Dp; = ya:)
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which was also analyzed in Liitkepohl (2004). The sample period is the second
quarter of 1972 to the end of 1998. Thus we have T' = 107 observations. The
data are available in File E6 and the two time series are plotted in Figure
7.1. Preliminary tests indicated that both series have a unit root and there
are also theoretical reasons for a cointegration relation between them. The
so-called Fisher effect implies that the real interest rate is stationary. Because
R; is a nominal yearly interest rate while Dp; is a quarterly inflation rate,
one would therefore expect R; — 4Dp; to be stationary, that is, this relation
is expected to be a cointegration relation.

0.03 0.05

0.04 0.06 0.08 0.10 0.12
0.01

—0.02

1974.3 1982.1 1989.3 1997.1 1974.3 1982.1 1989.3 1997.1

Fig. 7.1. Seasonally unadjusted, quarterly German interest rate (left) and inflation
rate (right), 1972.2-1998.4.

We have fitted a VECM with a constant, seasonal dummy variables, and
three lagged differences and the pre-specified cointegration relation R; —4Dp;
to the data. The results are shown in Table 7.1. Notice that three lagged
differences in the VECM imply a model with four lags in the levels. Includ-
ing at least lags of one year seems plausible because the inflation series has
a strong seasonal pattern (see Figure 7.1). Formal statistical procedures for
determining the lag length will be discussed in the next chapter. The seasonal
movement in Dp; is also the reason for including seasonal dummy variables in
addition to a constant. The deterministic term, Dy = (1, s1¢, S2¢, S3¢)’, where
the s;; are seasonal dummy variables, is placed outside the cointegration re-
lation. We have also estimated a VECM with cointegrating rank r = 1 using
the reduced rank ML procedure and the EGLS method. The estimates are
also shown in Table 7.1.

The two estimated cointegration relations are

Ry — (%.gg Dp; = ect (7.2.30)
and
Ry — 3.63 Dp, = ecPCL3, (7.2.31)

(0.61)



304 7 Estimation of Vector Error Correction Models

Table 7.1. Estimated VECMs for interest rate/inflation example system

known [ ML estimator EGLS estimator
—0.10 [ —0.10 —0.14
o (—2.3) (—2.3) (—2.8)
0.16 0.16 0.14
(3.8) i (3.8) (2.9)
, , [ 1.00: —3.96 1.00: —3.63
B (1:—4] (—6.3) } { (—6.0) }
[ 027 -—o0.21 [ 027 -0.21 [ 029 —0.16 ]
r (2.7) (—1.4) (2.7) (—1.4) (2.9) (=1.1)
! 0.07 —0.34 0.07 —0.34 0.08 —0.31
| ©7 (—2.4) ) (—2.4) | (03 (-2.2) |
[ —0.02 —0.22 [ —0.02 —0.22 [ 001 —019 ]
r (—0.2) (—1.8) (—0.2) (—1.8) (0.1) (—1.6)
2 —0.00 —0.39 —0.00 —0.39 001 —0.37
| (=00 (—3.4) | (0.0 (—3.4) | D (-3.2) |
[ 022 —o0.11 [ 022 —0.11 [ 026 —0.09 ]
r (2.3) (—1.3) (2.3) (—1.3) (2.6) (—1.1)
8 0.02 —0.35 0.02 —0.35 004 —0.34
(0.2) (—4.5) (0.2) (—4.5) (0.4) (—4.4)
[ 0.001 0.010 [ 0.002 0.010 [ 0.005 0.012
(0.4) (3.0) (0.4) (3.0) (1.2) (3.1)
0.001  —0.034 0.001  —0.034 0.001  —0.034
' (0.3) (=17.5) (0.3) (=7.5) (0.3) (=7.5)
0.009 —0.018 0.009 —0.018 0.009 —0.018
(1.8) (—3.8) (1.8) (—3.8) (1.8) (—3.8)
—0.000 —0.016 —0.000 —0.016 —0.000 —0.016
(—0.1) (—3.6) L (—0.1) (—3.6) L (-0.1) (—3.6)

Note: t-values in parentheses underneath parameter estimates; deterministic terms:
constant and seasonal dummies (D; = (1, s1¢, $2¢, S3¢)’)-

where estimated standard errors are given in parentheses. The first coefficient
is normalized to be 1. Thereby the t-ratios and the standard errors of the
inflation coefficient can be interpreted in the usual way. Clearly, —4 is well
within a two-standard error interval around both estimates. Therefore one
could argue that restricting the inflation coefficient to 4 is in line with the
data. Using the result in Proposition 7.2, a formal test of the null hypothesis
Hy : B, = —4, where B, denotes the second component of 8, can be based on
the t-statistic

—3.96 — (—4)
0.63

for the ML estimator or on

—3.63 — (—4)
0.61

= 0.06

=0.61
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for the EGLS estimator. Both t-values are small compared to critical values
from the standard normal distribution corresponding to usual significance
levels. Hence, the null hypothesis cannot be rejected for either of the two
estimators.

Comparing the other estimates of the three models in Table 7.1, it is ob-
vious that corresponding estimates do not differ much, especially when the
sampling uncertainty reflected in the t¢-ratios is taken into account. In par-
ticular, the ML estimates are very close to those of the model with fixed
cointegration vector. Thus, imposing the theoretically expected cointegration
vector does not appear to be a problematic constraint.

Another observation that can be made in Table 7.1 is that there are some
insignificant coefficients in the short-run matrices I'; and the estimated deter-
ministic terms (C'). Because some of the parameters in I's have rather large
t-ratios, it is clear that simply reducing the lag order is not likely to be a good
strategy for reducing the number of parameters in the model. It makes sense,
however, to consider restricting some of the parameter values to zero. This
issue is discussed in the next section.

7.3 Estimating VECMs with Parameter Restrictions

As for other models, restrictions may be imposed on the parameters of VECMs
to increase the estimation precision. We will first discuss restrictions for the
cointegration relations and then turn to restrictions on the loading coefficients
and short-run parameters.

7.3.1 Linear Restrictions for the Cointegration Matrix

In case just-identifying restrictions for the cointegration relations are available,
estimation may proceed as described in Section 7.2 and then the identified
estimator of B may be obtained by a suitable transformation of the estimator
B. For example, if B is just a single vector and ML estimation is used, a
normalization of the first component may be obtained by dividing the vector
B by its first component, as discussed earlier.

Sometimes over-identifying restrictions are available for the cointegration
matrix. In general, if the restrictions can be expressed in the form

Vec(B/(K_,,)) =Ry+r, (7.3.1)

where R is a fixed (r(K — r) x m) matrix of rank m, r is a fixed r(K — r)-
dimensional vector, and v is a vector of free parameters, the EGLS estimator
is still available. The GLS estimator may be obtained from the vectorized
“concentrated model” (7.2.14),

vec(Ro —aR{Y) = (R @ a)vec(B(_,,) + vec(U*)
= (R @ a)(Ry+1) + vec(U*),
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so that
vec(Ry — OcRgl)) - (R?)/ ®a)r = (R%Q)I ® a)Ry + vec(U™). (7.3.2)

Thus, the GLS estimator for vy is

-1

~

7 = [RAEPRY @ o2 R
«R/(R? @ a/3:1) [Vec(Ro —arY) — (R?Y' & oc)r] .

Substituting consistent estimators o and f‘u for o and X, respectively, gives
the EGLS estimator
~ o 71
7 = [R'(R?)R?)’ ® &'Z;loc)R} 53
><R’(R§2) @a' L) [vec(Ro - &Rgl)) - (R§2)I ® a)r} . -
Extending the arguments used for proving Proposition 7.2, the following
asymptotic properties of the EGLS estimator can be shown.

Proposition 7.6 (Asymptotic Properties of the Restricted EGLS Estimator)
Suppose y; is generated by the VECM (7.2.1) and P satisfies the restrictions
in (7.3.1). Then

112 2
[R’(R?)R?)’ Lo SR G- L N0, L) (7.3.4)

Thus, standard inference proceduaes can be based on the transformed es-
timator. It can also be shown that ¥ —y = O,(T~'). In other words, the
estimator is superconsistent. Clearly, consistent estimators of a and X, are
readily availaAble from unrestrictedA LS estimation as in Section 7.2.2.

Defining B\fK#) such that vec B\fK#) = R;\Y—&— r,

ER . [ i’r ‘|
) R
B(I(fr)

is a restricted estimator of the cointegration matrix. It can, for example, be
used in the two-stage procedure described in Section 7.2.5.

If the restrictions for the cointegration matrix can be written in the form
B = Hyp, where H is some known, fixed (K X s) matrix and ¢ is (s x r) with
s > r, ML estimation is also straightforward. For example, in a system with
three variables and one cointegration relation, if B;; = —B,;, we have

B 1 0
p= B; =10 1 [B“}=H%
7B21 0 —1 21



7.3 Estimating VECMs with Parameter Restrictions 307

where ¢ := (By1,B5;) and H is defined in the obvious way. If the restric-
tions can be represented in this form, Y_; is simply replaced by H'Y_; in
the quantities entering the eigenvalue problem in Proposition 7.3. Denoting
the resulting estimator by ¢ gives a restricted estimator p = Hg for B and
corresponding estimators of o and I' as in Proposition 7.3. If the restrictions
in (7.3.1) can be written in this form, the EGLS and the ML estimators have
again identical asymptotic properties.

However, the restrictions in (7.3.1) can in general not be written in the
form B = He. For instance, if there are three variables (K = 3) and two
cointegrating relations (r = 2), a single zero restriction on the second coin-
tegration vector cannot be expressed in the form B = Hy, whereas it may
still be written in the form (7.3.1). Moreover, it may be expressed in the form
B = [Hyi¢1, Hapo] with suitable matrices H; and Hy and vectors ¢; and ¢s.
For example, if a zero restriction is placed on the last element of the second
cointegrating vector, we get

Bii Bio
B= Bar Ban | = [Hip1, Haipo]
Bsy O

with Hy = I3, o1 := By, oy, Bs1)’s

H2 =

O O =
o = O

and @2 := (B4, Bes)’- In that case, restricted ML estimation is still not difficult
but requires an iterative optimization (see Boswijk & Doornik (2002)).

7.3.2 Linear Restrictions for the Short-Run and Loading
Parameters

If a superconsistent estimator of the cointegration matrix B is available, the
two-stage procedure described in Section 7.2.5 can be used for estimating the
loading and short-run parameters of a VECM. The method can be readily
extended to models with parameter restrictions. Suppose linear restrictions of
the form

vecla : T = Rep, (7.3.5)

where R is a fixed (K(r + K(p — 1)) x n) matrix and ¢ is an n-dimensional
vector. Then we can write the model in matrix form as

By,

AY—[oc:l"]{ AX

[ +or

and in vectorized form we get
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vec(AY) = ([Yilﬁ CAX ® IK) vecla : T] + vec(U*)
= ([Yilﬁ AX @ IK) Rep + vec(U™).

Hence, the GLS estimator of ¢ is
-1

A BY_.Y',B PY_,AX _
= e (| PV DR
v ( AXY' B Axax’ | Z )
Y
xR/ ([ BA%; ] ® 2;1> vec(AY), (7.3.6)

from which an EGLS estimator é is obtained by replacing the residual co-
variance matrix Y, by a consistent estimator. The latter estimator may, for
example, be obtained from an unrestricted estimation of the model. The re-
sulting EGLS estimator has the following asymptotic properties.

Proposition 7.7 (Asymptotic Properties of the Restricted EGLS Estimator
of the Short-Run Parameters)

Suppose y; is generated by the VECM (7.2.1), B is a superconsistent estima-
tor of B, X, is a consistent estimator of X, and the short-run and loading
parameters satisfy (7.3.5). Then
—1
® Eu1> 8%]

X

We do not prove the proposition but just note that it follows from the
fact that only stationary variables are involved if B is replaced by the true

VT(p — )
BY_1Y B BV AX

d .
N 0, plim T 1
- PH AXY' B AXAX'

(7.3.7)

cointegration matrix B and the resulting estimator for ¢ differs from @ by a
quantity which is o, (Tﬁl/ 2). Moreover, the asymptotic normal distribution of

vec[o: T = R follows in the usual way.
It is straightforward to extend these result to the case where the restric-
tions are of the form

vecla: T = Ry + r, (7.3.8)

where r is now a fixed (K(r + K(p — 1)) x 1) vector (see Problem 7.6). The
more special restrictions in (7.3.5) are considered here for convenience and
because they cover most cases of practical importance.
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7.3.3 An Example

In Section 7.2.6, we have seen that in the short-run dynamics of the German
interest rate/inflation example models a number of coefficients have quite low
t-ratios (see Table 7.1). Therefore it makes sense to restrict some of the coef-
ficients to zero. The following model from Liitkepohl (2004, Equation (3.41))
for our data set is an example of a restricted (subset) VECM:

AR ?0.0)7
t o —-3.1 .
{ADpJ— 017 | -1 —4Dpis)
(4.5)
[ 024 —0.08 7 0 —0.13
L @ 19 ARy 4 + (—2.5) ARy 2
0 —-0.3 ADp;_4 0 —-0.37 ADp;_o
L (-25) | (—3.6)
[ 0.20 —0.06 17
L @ 19 ARy 3
0 —0.34 ADp;_s
L (—+7) |
T 0 0 0.010 0 ¢ R
n (2.8) Si1,t + Uyt
0.010 —0.034 —0.018 —0.016 So.t Ugys |’
(3.0) (—7.6) (—3.8) (—3.6) S3.4
(7.3.9)

= 2.61 —0.15 _5
Zu= [ —0.15 231 } <1077

Here we have used the fixed cointegration vector that was found in Section
7.2.6 and EGLS estimation of the loading coeflicients and short-term parame-
ters is used. t-ratios are again given in parentheses underneath the parameter
estimates. They are all relatively large. In fact, with two exceptions they are
all larger than two. Recall that ¢-ratios can be interpreted in the usual way as
asymptotically standard normally distributed by Proposition 7.7. Comparing
the model (7.3.9) to those in Table 7.1, it turns out that the parameters with
very small t-ratios in the unrestricted models are just the ones restricted to
zero in (7.3.9). The model was actually found by a sequential model selection

procedure which will be discussed in the next chapter.

7.4 Bayesian Estimation of Integrated Systems

It is also possible to place Bayesian restrictions on VECMs. A very important
constraint in these models is the cointegrating rank, however. In Bayesian
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analysis, a basic idea is to allow the data to revise the prior restrictions im-
posed by the analyst. Using this principle also for the unit roots and, hence, for
the cointegration relations, setting up the system in VECM form may not be
the most plausible approach anymore. Therefore, Bayesian restrictions have
often been imposed on the levels VAR form, even if the variables are possi-
bly integrated. A popular prior in this context is the Minnesota or Litterman
prior which ignores possible cointegration between the variables altogether.
We will present this prior in the following after the general setting has been
discussed.

7.4.1 The Model Setup

In Chapter 5, Section 5.4, we have discussed Bayesian estimation of stationary,
stable VAR(p) processes. For a Gaussian process with integrated variables
and a normal prior, the posterior distribution of the VAR coeflicients can be
derived in a similar manner. We now consider a levels VAR(p) model of the
form

Ye=v+ Ay + -+ Apyi—p + U

As usual, 8 := vec[v, Ai,..., Ay is the vector of VAR coefficients including
an intercept vector and we assume a prior

B~ N(B", Vg). (7.4.1)

Then, using the same line of reasoning as in Section 5.4, the posterior mean
is

B=Vg' +(Z2Z @ X))V B +(Z® 1)yl
and the posterior covariance matrix is

Se=Vg'+(2ZZ 05",

where
1
Yt
y:=vec[yr,...,yr] and Z:=[Zy,...,Zr_1] with Z; := .
yt—p—i-l

7.4.2 The Minnesota or Litterman Prior

A possible choice of 8% and Vg for stable processes was discussed in Sec-
tion 5.4.3. If the variables are believed to be integrated, the following prior
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discussed by Doan et al. (1984) and Litterman (1986), sometimes known as
Minnesota prior, could be used: (1) Set the prior mean of the first lag of each
variable equal to one in its own equation and set all other coefficients at zero.
In other words, if the prior means were the true parameter values each vari-
able were a random walk. (2) Choose the prior variances of the coefficients as
in Section 5.4.3. In other words, the prior variances of the intercept terms are
infinite and the prior variance of o;, the ij-th element of A4, is

o D2 if i = j,
il (Mo /lo;)? if i # 3,

where A is the prior standard deviation of a;;1,0 < 8 < 1, and J? is the i-th
diagonal element of X,,. Thus, we get, for instance, for a bivariate VAR(2)
system,

yitr= 0 +1-y14-1+0-y2:1 +0-yr4—2+0-y2,2 +u,
(c0) (V) (No1/o2)  (N/2) (Mo /205)

yor = 0 +0-y14-1 +1-y24-1 +0-y10-2 + 0-y2s_2 +uogy,
(00)  (Mboy/o) (A) (Mo /201)  (A/2)

where all coefficients are set to their prior means and the numbers in parenthe-
ses are their prior standard deviations. Forgetting about the latter numbers
for the moment, each of these two equations is seen to specify a random walk
for one of the variables. The nonzero prior standard deviations indicate that
we are not sure about such a simple model. The standard deviations decline
with increasing lag length because more recent lags are assumed to be more
likely to belong into the model. The infinite standard deviations for the in-
tercept terms simply reflect that we do not have any prior guess for these
coefficients. Also, we do not impose covariance priors and, hence, choose Vj
to be a diagonal matrix. Its inverse is

0 -
0
1
3z 0
of
(Nbo2)?
( g% )?
_ Ao
Vf} ! = ! 1 9
N2
22
0 = :
2205
(AN0o2)2
2203
(A0o1)?
22
L a2 J

where 0 is also substituted for the inverse (infinite) standard deviation of the
intercept terms.
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To compute B3 requires the inversion of Vﬁ_1 + (27" @ X;1). Because this
matrix is usually quite large, in the past, Bayesian estimation has often been
performed separately for each of the K equations of the system. In that case,

b = (Vi ' + 0,222 )71 (Vi ok + 03,2 Zy )

is used as an estimator for the parameters by of the k-th equation, that is, b},
is the k-th row of B := [v, A1, ..., A,]. Here V}, is the prior covariance matrix
of by, by, is its prior mean, and y(x) := (Y1, -, yrr)’- As in Chapter 5, o?is
replaced by the k-th diagonal element of the ML estimator

Y. =Y(Ip -7 (22 Z2)Y')T

of the white noise covariance matrix.

Clearly, in this prior, possible cointegration between the variables is not
taken into account. Given the growing importance of the concept of cointegra-
tion in the recent literature, it is perhaps not surprising that the Minnesota
prior has lately lost some of its appeal. Bayesians have responded to the suc-
cess of the concept of cointegration and of VECMs in classical econometrics.
Some recent contributions to Bayesian analysis of VECMs include Kleibergen
& van Dijk (1994), Kleibergen & Paap (2002), Strachan (2003), and Strachan
& Inder (2004). A survey with many more references was given by Koop,
Strachan, van Dijk & Villani (2005).

7.4.3 An Example

As an example illustrating Bayesian estimation based on the Minnesota prior,
we consider the following four-dimensional system of U.S. economic variables:

y1 - logarithm of the real money stock M1 (In M1),

y2 - logarithm of GNP in billions of 1982 dollars (In GNP),

y3 - discount interest rate on new issues of 91-day Treasury bills (r°),
y4 - yield on long-term (20 years) Treasury bonds (r!).

Quarterly data for the years 1954 to 1987 are used. The data are available in
File E3. They are plotted in Figure 7.2. The GNP and MI data are seasonally
adjusted. The variables r° and ! are regarded as short- and long-term interest
rates, respectively. The plots in Figure 7.2 show that the series are trending.
Thus, they may be integrated and, given that this is a small monetary system,
there may in fact be cointegration. For example, there may be a long-run
money demand relation and perhaps the interest rate spread r! — r° may
be a stationary variable. Although the system may be cointegrated, we will
consider the Minnesota prior in the following.

We have first fitted an unrestricted VAR(2) model to the data and present
the results in Table 7.2. It can be seen that at least the last three of the
four diagonal elements of A; are estimated to be close to 1. The first diagonal
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Fig. 7.2. U.S. In M1, In GNP, and interest rate time series.
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element is also not drastically different from 1, although 1 is not within a two-
standard error interval around the estimate. On the basis of the unrestricted
estimates, a prior with mean 1 for the diagonal elements of A; does not appear
to be unreasonable for this example. Of course, in a Bayesian analysis the prior
is usually not chosen on the basis of an unrestricted estimation.

Table 7.2. VAR(2) coefficient estimates for the U.S. example system with estimated
standard errors in parentheses

estimation

method 14 A1 A2
.028 1.307 .106 —.554 —.814 —.318 —.101 .318 1.022
(.070) (.075) (.107) (.224) (.070) (.076) (.115) (.221)
129 .080 1.045 —.177 .473 —.135 —.014 —.197 —.416
unrestricted (.083) (.088) (.126) (.265) (.083) (.090) (.136) (.261)
LS .096 193 .068 .978 284 —.248 —.035 .053 —.644
(.077) (.081) (.116) (.245) (.077) (.083) (.125) (.240)
.030 .042 .042 .034 1.065 —.064 —.027 .070 —.308
(.038) (.041) (.058) (.122) (.038) (.041) (.063) (.120)
.041 1.332 .098 —.556 —.838 —.346 —.091 .354 .969
(.067) (.073) (.104) (.216) (.064) (.073) (.110) (.207)
.086 .071 1.052 —.169 .549 —.099 —.039 —.239 —.286
ML (.079) (.086) (.123) (.256) (.076) (.087) (.131) (.245)
(r=1) .005 179 .080 991 425 —.181 —.079 —.022 —.405
(.076) (.082) (.118) (.245) (.073) (.083) (.125) (.235)
—.014 037 .047 .041 1.138 —.032 —.050 .033 —.186

(.038) (.041) (.059) (.122)  (.036) (.042) (.062) (.117)

We have estimated the system with the Minnesota prior and different
values of A and 0. Some results for a VAR(2) process are given in Table 7.3
to illustrate the effect of the choice of the prior variance parameters A and 6.
For this particular data set, a combination A = 1 and 6 = .25 leads to mild
changes in the estimates only relative to unrestricted estimates (A = 00,6 =
1). Decreasing 6 has the effect of shrinking the off-diagonal elements towards
zero. Thus, a small 6 is reasonable if the variables are expected to be unrelated.
The effect of a small 6 is seen in Table 7.3 in the panel corresponding to A =1
and # = .01. On the other hand, lowering A shrinks the diagonal elements of
A; towards 1 and all other coefficients (except the intercept terms) towards
zero. This effect is clearly observed for A = .01, § = .25. Hence, if the analyst
has a strong prior in favor of unrelated random walks, a small )\ is appropriate.

In practice, one would usually choose a higher VAR order than 2 in a
Bayesian analysis because chopping off the process at p = 2 implies a very
strong prior with mean zero and variances zero for As, Ay4,..., which is a
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Table 7.3. Bayesian estimates of the U.S. example system

prior v Ay Ay
A =00 .028 1.307 .106 —.554 —.814 —.318 —.101 .318 1.022
0=1 129 .080 1.045 —.177 .473 —.135 —.014 —.197 —.416
(unrestricted) .096 193 .068 .978 .284 —.248 —.035 .053 —.644
.030 .042 .042 .034 1.065 —.064 —.027 .070 —.308
.061 1.307 .021 —.514 —.465 —.331 —.009 .212 .679
A=1 .110 .060 1.088 —.173 .283 —.108 —.060 —.162 —.238
0=.25 .078 .119 .064 1.060 .025 —.167 —.034 —.069 —.316
.029 .021 .029 .050 1.044 —.043 —.014 .031 —.265
.083 1.550 .004 —.012 —.007 —.570 —.002 —.000 .004
A=1 —.015 .005 1.270 —.011 —.011 —.001 —.271 —.003 —.002
0 =.01 —.032 —.003 .008 1.095 —.001 —.002 .002 —.216 —.001
—.016 —.003 .004 .002 1.187 —.001 .001 .000 —.252
—.045 1.009 .002 —.001 —.000 —.003 .000 —.000 .000
A=.01 .018 .001 .999 —.001 —.002 .000 —.002 —.000 —.000
0=.25 —.004 .001 —.000 .993 —.001 .000 —.000 —.002 —.000
—.003 .000 .000 .000 .994 .000 .000 —.000 —.002

bit unrealistic. The above analysis is just meant to illustrate the effect of
the parameters that determine the prior variances. Also, if the variables are
believed to be cointegrated, the Minnesota prior is not a good choice. It is
more suited for a process which has a VAR representation in first differences
because the basic idea underlying this prior is that the variables are roughly
unrelated random walks. Notice, however, that for the present system, if a
VECM with cointegration rank » = 1 and one lagged difference is fitted by ML
and the corresponding levels VAR coefficients are determined via (7.2.10), the
estimates in the lower part of Table 7.2 are obtained. If the system is actually
cointegrated, the rank restriction should not lead to major distortions in the
estimates. Therefore, it should not be surprising that the diagonal elements of
the ML estimator of A; are again not far from 1. Thus, even if the variables
are cointegrated, the Minnesota prior may not lead to substantial distortions.
This property may explain why the prior has been used successfully in many
applications, in particular, for forecasting (see Litterman (1986)).

7.5 Forecasting Estimated Integrated and Cointegrated
Systems

As seen in Chapter 6, Section 6.5, forecasting integrated and cointegrated
variables is conveniently discussed in the framework of the levels VAR rep-
resentation of the data generation process. Therefore we consider a VAR(p)
model,

Yo = Arye—1+ -+ Apyi_p + Uy, (7.5.1)
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with integrated and possibly cointegrated variables. All symbols have their
usual meanings (see Section 6.5). Deterministic terms are left out for conve-
nience. Adding them is a straightforward exercise which is left to the reader.

Replacing the coefficients A, ..., Ay, and the white noise covariance ma-
trix X, by estimators in the forecasting formulas of Section 6.5 creates similar
problems as in the stationary, stable case considered in Chapter 3, Section 3.5.
Denoting the h-step forecast based on estimated coefficients by g;(h) and in-
dicating estimators by hats gives

Gi(h) = Aag(h = 1) + -+ A,Gu(h = p), (75.2)
where 7;(j) := y¢+; for j < 0. For this predictor, the forecast error becomes
Yernh — Ue(R) = [Yern — ye(M)] + [ye(h) — e (R)]
h—1
= D Pitnpni+ [pe(h) = Gi(h)), (753)
i=0

where the last equality sign follows from Eq. (6.5.4) in Chapter 6. The last two
terms in (7.5.3) are uncorrelated if parameter estimation is based on data up
to period ¢ only. In fact, under standard assumptions, the last term has zero
probability limit, y;(h) —7:(h) = 0,(1), as in the stationary case (see Problem
7.7). Thus, the forecast errors from estimated processes and processes with
known coefficients are asymptotically equivalent. However, in the present case,
the MSE correction for estimated processes derived in Section 3.5 is difficult
to justify (see Problem 7.8 and Basu & Sen Roy (1987)). This problem must
be kept in mind when forecast intervals are constructed. One possible MSE
estimator is

)= ¢,5,8, (7.5.4)

where the @;’s are obtained from the estimated A,’s by the recursions in (6.5.5)
in Section 6.5. This estimator is likely to underestimate the true forecast un-
certainty on average in small samples. Therefore, there is some danger that
the confidence level of corresponding forecast intervals is overstated. Reimers
(1991) derived a small sample correction especially for models with cointe-
grated variables and Engle & Yoo (1987) and Reinsel & Ahn (1992) reported
on simulation studies in which imposing the cointegration restriction in the
estimation gave better long-range forecasts than the use of unrestricted mul-
tivariate LS estimators.

7.6 Testing for Granger-Causality

7.6.1 The Noncausality Restrictions

In Section 6.6, we have seen that the restrictions characterizing Granger-
noncausality are the same as in the stable case. If the levels VAR(p) repre-
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sentation (7.5.1) of the data generation process is considered again and the
vector y; is partitioned in M- and (K — M )-dimensional subvectors z; and xy,

Zt A Az .
= and A; = ’ T, i=1,...,p,
v [ Lt ] ’ { A2 Aoz } P

where the A; are partitioned in accordance with the partitioning of y;, then
x¢ does not Granger-cause z; if and only if the hypothesis

H() . A12,i =0 fOI 1= 1, oDy (761)

is true. Hence, we just have to test a set of linear restrictions. A Wald test is a
standard choice for this purpose. In the present case, it may be problematic,
however. We will discuss the potential problem next and then present a mod-
ification that has a limiting y2-distribution, as usual, and, hence, resolves the
problem.

7.6.2 Problems Related to Standard Wald Tests

If the process is estimated by one of the procedures described in Section
7.2 such that the estimator & of a := vec[A;,...,A,] has the asymptotic
distribution given in Corollary 7.1.1, then a Wald test can be conducted for
the pair of hypotheses

Hy:Ca=0 against H;:Ca #0. (7.6.2)
Here C' is an (N x pK?) matrix of rank N. The relevant Wald statistic is
Aw =Ta'C'(CEeC) Ca, (7.6.3)

where 2;;0 is a consistent estimator of X’5°. The statistic Ay has an asymptotic
x2(N)-distribution, provided the null hypothesis is true and

rk(CEC") = tk(CXC") = N. (7.6.4)

This result follows from standard asymptotic theory (see Appendix C.7). We
have chosen to state it here again because the rank condition (7.6.4) now be-
comes important. It is automatically satisfied for stable, full VAR processes as
discussed in Chapter 3, because in that case the asymptotic covariance matrix
of the coefficient estimator is nonsingular. Now, however, X< is singular if
the cointegration rank r is less than K (see Corollary 7.1.1). Therefore, it is
possible in principle that tk(CX°C") < N, even if C has full row rank N.

_A limiting x2-distribution of Ay can also be obtained if the inverse of
CXC" in (7.6.3) is replaced by a generalized inverse. In that case, the asymp-
totic distribution of Ay is x?(rk(CX°C”)) if

rk(CECC") = tk(CXLC) (7.6.5)
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with probability one (see Andrews (1987)). Unfortunately, the latter condition
will not hold in general. In particular, if a cointegrated system is estimated in
unconstrained form by multivariate LS and if X is estimated as in Corollary
7.1.1, Cf’g‘)C” has rank N with probability 1, while rk(CX<°C") may be less
than N. Andrews (1987) showed that in such a case the asymptotic distribu-
tion of Ay may not even be x2. A detailed analysis of the problem for the
particular case of testing for Granger-causality in cointegrated systems was
provided by Toda & Phillips (1993). In this context, it is perhaps worth point-
ing out that the equality in (7.6.5) may not hold, even if the cointegration
rank has been specified correctly and the corresponding restrictions have been
imposed in the estimation procedure (see Problem 7.9). For the hypothesis of
interest here, a possible solution to the problem was proposed by Dolado &
Liitkepohl (1996) and Toda & Yamamoto (1995). It will be presented next.
Our discussion follows the former article.

Another possible approach to overcome inference problems in levels VARs
with integrated variables was described by Phillips (1995). It is known as fully
modified VAR estimation and is based on nonparametric corrections. Some of
its drawbacks are pointed out by Kauppi (2004).

7.6.3 A Wald Test Based on a Lag Augmented VAR

As discussed in Section 7.2 (see in particular Section 7.2.1), the estimators of
coefficients attached to stationary regressors converge at the usual T/2 rate
to a nonsingular normal distribution. Therefore, the problem of the previous
subsection can be solved if the model can be rewritten in such a way that all
parameters under test are attached to stationary regressors. To this end, the
following reparameterization is helpful:

P
Yy = Z Ajyi—j + Aiye—i +
J=1j#i

P P
S AW =)+ | DA | v+
=1

j=1,j#i

Defining a differencing operator A such that Agy; = y — ye—p for k =
+1,42,..., the model can be written as

P

A=Y AjA i+ Ty + uy, (7.6.6)
Jj=1,j#i

where Il = —(Ix — Ay —--- — Ap), as usual. For k > 0, Apy = (yr — ye—1) +

(Yt—1 — Yt—2) + - + (Yt—k+1 — Yt—k) is stationary as the sum of stationary
processes and the same is easily seen to hold for k < 0. Therefore, it follows
from the previously mentioned results in Section 7.2 that the LS estimators
of the A;, j # 4, have a nonsingular joint asymptotic normal distribution.
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Notice that these estimators are, of course, identical to those based on the
levels VAR model (7.5.1) because we have just reparameterized the model.
Hence, the following proposition from Dolado & Liitkepohl (1996, Theorem
1) is obtained.

Proposition 7.8 (Asymptotic Distribution of the Wald Statistic)
Let y; be a K-dimensional I(1) process generated by the VAR(p) process in

(7.5.1) and denote the LS estimator of A; by A; (i = 1,...,p). Moreover,
let a(_;) be a K?(p — 1)-dimensional vector obtained by deleting A; from
[A1,..., Ap] and vectorizing the remaining matrix. Analogously, let o(_;) be

a K?(p—1)-dimensional vector obtained by deleting A; from [Xl, e ,Ep] and
vectorizing the remainder. Then

A d
\/T(a(_i) — Ot(_i)) — N(O, Za(,w); (767)
where the (K%(p — 1) x K%(p — 1)) covariance matrix Ye_; is nonsingular
and the Wald statistic Ay for testing Hy : Cay(_;) = 0 has a limiting x*(N)-
distribution, that is,

M = T&[_yC'(CZa, ,C") ' Cay_iy % XAN)

under Hy. Here C' is an (N x K2(p — 1)) matrix with rk(C) = N and %,
is a consistent estimator of X, iy

Q(—i)

Note that
Loy = plim T(X(_y X(_ )" @ Ty,
where X(_;) = [Xéfi), . ,ng_?] with
A1yt
X = | (T x
Ai—pyt—p
Yt—i
and (X(_lv)Xéﬂ.))ll denotes the upper left-hand (K?(p—1)x K2(p—1)) dimen-

sional submatrix of (X(,Z-)Xzﬂ.))’l. Thereby a consistent estimator of Xq
is obtained as
—~ =
Yoy = T(X(_i)Xéﬂ-)) ® Xy,
where fu is the residual covariance matrix obtained from the LS residuals.
Proposition 7.8 shows that, whenever the elements in at least one of the
complete coefficient matrices A; are not restricted under Hy, the Wald statistic
has its usual asymptotic x2-distribution. In other words, if restrictions are
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placed on all A;’s, ¢ =1,...,p, as in the noncausality hypothesis (7.6.1), we
can get a x> Wald test by adding an extra lag in estimating the parameters of
the process. If the true data generation process is a VAR(p), then a VAR (p+1)
with A,41 = 0 is also a correct model. Because we know that A,4; = 0, the
causality test can be based on the estimator o(_(,11)), that is, an estimator

o~

of the first K2p elements of vec[;l\l, ..., Api1]. Notice that LS estimation may
be applied to the levels VAR(p + 1) model. To carry out the causality test, it
is not necessary to actually perform the reparameterization of the process in
(7.6.6) because the LS estimators of the A; matrices do not change due to the
reparameterization. Also, the covariance matrix of the asymptotic distribution
may be estimated as usual from the levels VAR(p + 1).

We do not have to know the cointegration properties of the system to use
this lag augmentation test procedure. Of course, there may be a loss of power
due to over-specifying the lag length. The loss in power may not be substantial
if the true order p is large and the dimension K is small or moderate, because,
in this case, the relative reduction in the estimation precision due to one extra
VAR coefficient matrix may be small. On the other hand, if the true order is
small and K is large, an extra lag of all variables may lead to a sizeable decline
in overall estimation precision and, hence, in the power of the modified Wald
test. There are in fact cases, where the extra lag is not necessary to obtain
the asymptotic y2-distribution of the Wald test for Granger-causality. For
example, for bivariate processes with cointegrating rank 1, no extra lag is
needed, if both variables are I(1) (e.g., Liitkepohl & Reimers (1992a)).

Proposition 7.8 remains valid if deterministic terms are included in the
VAR model. This result follows from the discussion in Section 7.2 because
including such terms leaves the asymptotic properties of the VAR coefficients
unaffected. It may also be of interest that a similar result can be obtained
for VAR systems with I(d) variables where d > 1. In that case, d coefficient
matrices A; must be unrestricted under Hy (see Dolado & Liitkepohl (1996)).
Alternatively, d lags must be added if all parameter matrices of the original
process are restricted. This result can also be obtained from Sims et al. (1990).

7.6.4 An Example

We follow again Liitkepohl (2004) and use the German interest rate/inflation
example to illustrate causality testing for cointegrated variables. The data
generation process is assumed to be a VAR(4). The model is augmented
by one lag and, hence, a VAR(5) is fitted and used in the actual tests for
Granger-causality, while a VAR(4) is used for testing instantaneous causality.
The results are given in Table 7.4, where F-versions of the Granger-causality
test statistics are reported. The asymptotic x2-distribution is often a poor
approximation to the small sample distribution of the causality test statistics.
Therefore, an F-version is preferred which is obtained in the usual way by di-
viding the y2-statistic by its degrees of freedom parameter (see Section 3.6).
As in Section 3.6, the test for instantaneous causality is based on the residual
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covariance matrix. This approach is justified by Lemma 7.3 which shows that
the asymptotic distribution of the usual residual covariance matrix estimator
is the same as in the stationary case. Hence, the same test for instantaneous
causality can be used under normality assumptions.

Table 7.4. Tests for causality between German interest rate and inflation

causality hypothesis test value distribution p-value
R Granger-causal for Dp 2.24 F(4,152) 0.07
Dp Granger-causal for R 0.31 F(4,152) 0.87
R and Dp instantaneously causal 0.61 x2(1) 0.44

None of the p-values in Table 7.4 is smaller than 0.05. Therefore, none of
the noncausality hypotheses can be rejected at the 5% significance level. Given
the subset model (7.3.9), this outcome is somewhat surprising because there
are clearly significant estimates in that model. Of course, using the present
tests is a different way of looking at the data than considering the individual
coefficients in the subset model. The relatively large number of parameters in
the presently considered unrestricted model which even includes an extra lag,
makes it difficult for the sample information to clearly distinguish the sets of
parameters from their values specified in the null hypothesis.

The insignificant value of the test for instantaneous causality is not surpris-
ing, however. The correlation matrix corresponding to the covariance matrix

in (7.3.9) is

1 —0.01
—0.01 1 '
Thus, the instantaneous correlation between the two residual series is very
small. This property is reflected in the test result in Table 7.4.

7.7 Impulse Response Analysis

In Section 6.7, we have seen that, in principle, impulse response analysis in
cointegrated systems can be conducted in the same way as for stationary
systems. If estimated processes are used, the asymptotic properties of the
impulse response coefficients and forecast error variance components follow
from Proposition 3.6 in conjunction with Corollary 7.1.1. In other words, the
relevant covariance matrices X5 and X5 have to be used in Proposition 3.6. Of
course, the remarks on Proposition 3.6 regarding the estimation of standard
errors etc. apply for the present case too. In practice, confidence intervals for
impulse responses are typically computed with bootstrap methods.

To illustrate the impulse response analysis we use again our German in-
terest rate/inflation example system. We have performed an impulse response
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analysis on the basis of the subset VECM (7.3.9) and show forecast error
impulse responses with bootstrap confidence intervals determined by Hall’s
percentile method (see Appendix D.3) in Figure 7.3. Using forecast error im-
pulse responses is unproblematic here because no instantaneous causality and
no significant instantaneous correlation between the two residual series was
diagnosed in Section 7.6.4. The point estimates of the impulse responses look
very much like those in Figure 6.4 in Chapter 6. This similarity is not surpris-
ing because the model assumed in that chapter is very similar to the present
one. Because the variables are integrated of order one, the impulses have
permanent effects. This conclusion can be defended even if the estimation
uncertainty is taken into account.
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Fig. 7.3. Forecast error impulse responses for model (7.3.9) with 95% Hall per-
centile bootstrap confidence intervals based on 2000 bootstrap replications.

We emphasize again that an uncritical impulse response analysis is prob-
lematic. In particular, different sets of impulse responses exist and it is not
clear which one properly reflects the actual reactions of the variables. The
caveats of impulse response analysis are discussed in Sections 2.3 and 3.7.
They are therefore not repeated here. We will return to impulse response
analysis in Chapter 9, when structural restrictions are discussed for identify-
ing meaningful shocks.
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7.8 Exercises

7.8.1 Algebraic Exercises

Problem 7.1
Show that, in the proof of Result 6 of Section 7.1,

12 —u)y 2} = 0,(1).

(Hint: Use

T
TS (- )y = ( 125& )
t=1

Problem 7.2
Prove Proposition 7.1 based on the ideas presented in Section 7.2.1. (Hint:
See Ahn & Reinsel (1990).)

Problem 7.3 B
Prove that VT [ap’ — a(B)B’] = 0,(1) holds in the proof of Lemma 7.3. (Hint:
note that

o’ —a(B)p’ = alp’ — B] + [a—a(B)p".)
Problem 7.4
Determine the ML estimators in a cointegrated VAR(p) process with cointe-
gration rank r, under the assumption that the cointegration matrix satisfies
restrictions B = Hep, where H and ¢ are (K X s) and (s x r) matrices, re-

spectively, with r < s < K. (Hint: Proceed as in the proof of Proposition
7.3.)

Problem 7.5
Show that the expressions in (7.2.27) and (7.2.28) are the LS estimators of o

and T, respectively, conditional on B = f.

Problem 7.6

Derive the EGLS estimator for restrictions of the form vecjot : T'| = Rep +r
on the short-run parameters of the VECM (7.2.1) and state its asymptotic
distribution (see (7.3.8) for the definition of the notation).

Problem 7.7
Consider a cointegrated VAR(1) process without intercept, y; = Ajyi—1 + uy,
and show that

plim [yr(1) — §ir(1)] = plim (A; — Ay)yr = 0.

Assume that y; is Gaussian with initial vector yo = 0 and the ML estimator
Ay is based on yi,...,yr. (Hint: Use Lemma 7.2 and plim yr/T = 0 from
Phillips & Durlauf (1986).)



324 7 Estimation of Vector Error Correction Models

Problem 7.8

Consider the matrix 2(h) used in the MSE correction in Section 3.5 and
argue why it is problematic for unstable processes. Analyze in particular the
derivation in (3.5.12).

Problem 7.9

Consider a three-dimensional VAR(1) process with cointegration rank 1 and
suppose the cointegrating matrix has the form B = (B, B,,0)’. Use Corollary
7.1.1 to demonstrate that the elements in the last column of A; have zero
asymptotic variances. Formulate a linear hypothesis for the coefficients of A
for which the rank condition (7.6.4) is likely to be violated if the covariance
estimator of Corollary 7.1.1 is used.

7.8.2 Numerical Exercises

The following problems are based on the U.S. data given in File E3 and
described in Section 7.4.3. The variables are defined as in that subsection.

Problem 7.10

Apply the ML procedure described in Section 7.2.3 to estimate a VAR(3)
process with cointegration rank r = 1 and intercept vector. Determine the
estimates v, Ay, Ay, and Az and compare them to unrestricted LS estimates
of a VAR(3) process.

Problem 7.11

Compute forecasts up to 10 periods ahead using both the unrestricted VAR(3)
model and the VAR(3) model with cointegration rank 1. Compare the fore-
casts.

Problem 7.12
Compare the impulse responses obtained from an unrestricted and restricted
VAR(3) model with cointegration rank 1.
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Specification of VECMs

In specifying VECMs, the lag order, the cointegration rank and possibly fur-
ther restrictions have to be determined. The lag order and the cointegration
rank are typically determined before further restrictions are imposed on the
parameter matrices. Moreover, the specification of a VECM usually starts
by determining a suitable lag length because, in choosing the lag order, the
cointegration rank does not have to be known, whereas many procedures for
specifying the cointegration rank require knowledge of the lag order. There-
fore, in the following, we will first discuss the lag order choice (Section 8.1)
and then consider procedures for determining the cointegration rank (Section
8.2). We will comment on subset modelling in a VECM framework in Section
8.3 and, in Section 8.4, we will discuss checking the adequacy of such models.
More precisely, residual autocorrelation analysis, testing for nonnormality and
structural change are dealt with.

8.1 Lag Order Selection

It was mentioned in Section 7.2.1 that Wald tests for zero restrictions on
coefficient matrices of the lagged differences can be constructed. Hence, the
number of lagged differences in a VECM can be chosen by a sequence of tests
similar to that in Section 4.2. Because the procedure and its problems are
discussed in some detail in that section, we will not repeat the discussion here
but focus on order selection criteria such as AIC, HQ, and SC in this section.

In Section 4.3, the FPE criterion was introduced for stationary, stable
processes as a criterion that minimizes the forecast MSE and therefore has a
justification if forecasting is the objective. We have seen in Section 7.5 that the
forecast MSE correction used for estimated stationary processes is difficult to
justify in the cointegrated case and, hence, the FPE criterion cannot be based
on the same footing in the latter case. This argument does not mean, however,
that the criterion is not a useful one in some other sense for nonstationary
processes. For instance, it is possible that it still provides models with excellent
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small sample forecasting properties. It was also shown in Section 4.3 that
Akaike’s AIC is asymptotically equivalent to the FPE criterion. Therefore,
similar comments apply for AIC.

The criteria HQ and SC were justified by their ability to choose the order
“correctly in large samples”, that is, they are consistent criteria. It was shown
by Paulsen (1984) and Tsay (1984) that the consistency property of these
criteria is maintained for integrated processes. To make that statement precise,
we give the following result from Paulsen (1984) without proof.

Proposition 8.1 (Consistent VAR Order Estimation)
Let

ye=v+ Ay o+ Apyp g

be a K-dimensional VAR(p) process with A, # 0 and standard white noise u;
and suppose that det(Ix — Az —--- — A,2P) has s roots equal to one, that is,
z = 1is a root with multiplicity s, and all other roots are outside the complex
unit circle. Furthermore, let

Cr(m) = In| X, (m)| + mer /T, (8.1.1)

where X, (m) is the Gaussian ML or quasi ML estimator of X, for a VAR(m)
model based on a sample of size T" and m fixed presample values as in Propo-
sition 4.2, and ¢r is a nondecreasing sequence indexed by T'. Let p be such
that

Cr(p) = min{Cr(m)lm =0,1,..., M}

and suppose M > p. Then p is a consistent estimator of p if and only if
¢y — oo and ep/T — 0 as T — oo. [ ]

This proposition extends Proposition 4.2 to processes with integrated vari-
ables. It implies that AIC is not a consistent criterion while HQ and SC are
both consistent. Thus, if consistent estimation is the objective, we may apply
HQ and SC for stationary and integrated processes.

Denoting the orders chosen by AIC, HQ, and SC by p(AIC), p(HQ), and
p(SC), respectively, we also get from Proposition 4.3 that

p(SC) < p(HQ) < p(AIC) for T > 16.

This result is obtained because Proposition 4.3 does not require any stationar-
ity or stability assumptions. It follows as in Chapter 4 that AIC asymptotically
overestimates the true order with positive probability (see Corollary 4.3.1).

Although these results are nice because they generalize the stationary case
in an easy way, they do not mean that AIC or FPE are order selection criteria
inferior to HQ and SC. Recall that consistent order estimation may not be a
relevant objective in small sample situations. In fact, the true data generating
process may not admit a finite order VAR representation.
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Notice also that, while we have considered specifying the VAR order p,
the criteria are also applicable for choosing the number of lagged differences
in a VECM because p — 1 lagged differences in a VECM correspond to a VAR
order p. Thus, once we know p, we know the number of lagged differences.
If some of the variables are known to be integrated, the VAR order must be
at least 1. This information can be taken into account in model selection by
searching only over orders 1,..., M rather then 0,1,..., M.

We have applied the three criteria AIC, HQ, and SC to our German interest
rate/inflation example data from Section 7.2.6 with a maximum order of M =
8 and a constant and seasonal dummies in the model. The values of the criteria
are shown in Table 8.1. SC and HQ both recommend the order p = 1 while
P(AIC) = 4. Thus, in a VECM based on SC and HQ, no lagged differences
appear, whereas three lagged differences have to be included according to AIC.
We have chosen to go with the AIC estimate in the example in Section 7.2.6.

Table 8.1. VAR order estimation for interest rate/inflation system

VAR order

m AIC(m) HQ(m) SC(m)
0 —18.75 —18.75 —18.75
1 —20.98 —20.94" —20.88"
2 —20.97 —20.89 —20.76
3 —20.89 —20.77 —20.58
4 —20.99* —20.82 —20.57
5 —20.93 —20.72 —20.41
6 —20.89 —20.63 —20.26
7 —20.85 —20.55 —20.12
8 —20.80 —20.46 —19.96
*Minimum.

In Chapter 4, we have mentioned that model selection may be based on
the residual autocorrelations or portmanteau tests. These statistics can also
be used for VECMs. They are discussed in Section 8.4.1.

8.2 Testing for the Rank of Cointegration

Although model selection criteria have also been used in specifying the coin-
tegrating rank of a VECM (e.g., Liitkepohl & Poskitt (1998)), it is more
common in practice to use statistical tests for this purpose. Many different
tests have been proposed in the literature and the properties of most of them
depend on the deterministic terms included in the model. In the following,
we will therefore discuss models with different deterministic terms separately.
The general model is assumed to be of the form

Yt = Wt + Ty,
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where z; is the stochastic part which is assumed to have a VECM represen-
tation without deterministic terms and p; is the deterministic term, as in
Chapter 6, Section 6.4. We will start with the easiest although most unrealis-
tic case where no deterministic term is present and, thus, p; = 0. Most of the
discussion will focus on likelihood ratio (LR) tests and close relatives of them
because they are very common in applied work and they also fit well into the
present framework. Some comments on other procedures will be provided in
Section 8.2.9.

8.2.1 A VECM without Deterministic Terms

Based on Proposition 7.3, it is easy to derive the likelihood ratio statistic for
testing a specific cointegration rank r = ry of a VECM against a larger rank
of cointegration, say r = r1. Consider the VECM without determinist terms,

Ay, =y, 1 +T1 Ay + - + D1 Ayp—p1 + uy, (8.2.1)

where y; is a process of dimension K, rk(II) r with 0 < r < K, the
I’s (j=1,...,p—1) are (K x K) parameter matrices and u; ~ N(0, X,,) is
Gaussian white noise, as in Chapter 7, Section 7.2.3. For simplicity we assume
that the process starts at time ¢ = 1 with zero initial values (i.e., y; = 0 for
t <0). Alternatively, the initial values may be any fixed values.

Suppose we wish to test

Hy:tk(IT) =ry against Hj : 7o < rk(II) < ry. (8.2.2)

Under normality assumptions, the maximum of the likelihood function for a
model with cointegration rank r is given in Proposition 7.3. From that result,
the LR statistic for testing (8.2.2) is seen to be

ALr(ro,m1) = 2[Inl(ry) — Ini(rg)]

=T —iln(l — i)+ iln(l — i)
i=1 i=1

= -T Z In(1 — \;), (8.2.3)

i=ro+1

where [(r;) denotes the maximum of the Gaussian likelihood function for
cointegration rank 7;. Obviously, the test value is quite easy to compute,
using the eigenvalues from Proposition 7.3.

It turns out, however, that the asymptotic distribution of the LR statistic
under the null hypothesis for given ry and r; is nonstandard. In particular, it
is not a x2-distribution. It depends on the number of common trends K — rg
under Hj and on the alternative hypothesis. Two different pairs of hypotheses
have received prime attention in the related literature:

Hy:1k(II) =rg  versus Hj:rg <tk(Il) < K (8.2.4)
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and
Hy:tk(IT) =ro versus Hj :rk(II) = 7o + 1. (8.2.5)

The LR statistic Apr (70, K) for checking (8.2.4) is often referred to as the trace
statistic for testing the cointegrating rank and Apg(rg, 7o+1) is called the maz-
imum eigenvalue statistic. Johansen (1988, 1995) shows that the asymptotic
distributions of these LR statistics under the null hypothesis are

)\LR(T(), K) i) tI‘(D) (826)
and
ALr(r0,70 + 1) % Anax(D), (8.2.7)

where Apax(D) denotes the maximum eigenvalue of the matrix D and

D:= (/01 WdW’>/ </01 WW’ds) B (/01 WdW’) . (8.2.8)

Here W := Wg_, (s) stands for a (K — rg)-dimensional standard Wiener
process. In other words, the limiting null distributions are functionals of a (K —
r0)-dimensional standard Wiener process. Percentage points of the asymptotic
distributions and, thus, critical values for the LR tests can be generated easily.
Tables are, for example, available in Johansen (1995). Hence, a LR test is
available under Gaussian assumptions and, as usual, the test statistics have
the same limiting distributions even if the underlying process is not normally
distributed but satisfies the more general assumptions used in Section 7.2, for
example.

The strategy for determining the cointegrating rank of a given system of
K variables is to test a sequence of null hypotheses,

Ho :1k(I) =0, Hy:rk(IT)=1,...,Hy:tk(IT) = K — 1, (8.2.9)

and terminate the tests when the null hypothesis cannot be rejected for the
first time. The cointegrating rank is then chosen accordingly. Both the max-
imum eigenvalue and the trace tests may be used here. For example, if there
are three variables (K = 3), we first test rk(IT) = 0. If this null hypothesis
cannot be rejected, the analysis proceeds with a cointegration rank of » = 0
and, hence, a model in first differences is considered in the subsequent anal-
ysis. If, however, rk(II) = 0 is rejected, we test rk(IT) = 1. Should the test
not reject this hypothesis, the analysis may proceed with a VECM with coin-
tegrating rank r = 1. Otherwise rk(IT) = 2 is tested and r = 2 is chosen as
the cointegrating rank if this hypothesis cannot be rejected. If tk(IT) = 2 is
also rejected, one may consider working with a stationary VAR model for the
levels of the variables.
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Clearly, in these tests the lag order has to be known. In practice, it is often
chosen by one of the model selection criteria discussed in the previous section,
based on the levels VAR model, before the cointegrating rank is tested.

As mentioned previously, the model framework in (8.2.1) is too simple for
practical purposes because deterministic terms are usually needed to describe
the generation process of a given set of time series properly. Therefore, we will
now consider processes with deterministic terms.

8.2.2 A Nonzero Mean Term

We now assume that the deterministic term consists of a simple constant mean
term only,

e = lo- (8.2.10)

Although we typically think of ug as a fixed nonzero (K x 1) vector, the case
1o = 0 is not explicitly excluded. In other words, the user of the test is not
sure that the process mean is zero and therefore allows for the possibility of a
nonzero mean term. In Section 6.4, we have seen that in this case the VECM
for the observable variables y; can be written as

Ay =17 1 +ThAy 1+ -+ Tp1 Ay pyr + uy, (8.2.11)

where

o Yt—1
Ye—1 = |: tl :|

and II° := [IT : 1] is (K x (K + 1)) with vy := —IIug. Thus, the LR statistic
for testing the cointegration rank can be determined exactly as in the zero
mean case considered in the previous subsection, except that y;_; has to
be replaced by y7_; in the relevant formulas from which the eigenvalues are
computed in Proposition 7.3. In this case, the LR statistics have asymptotic
null distributions as in (8.2.6) and (8.2.7), where now

D= (/01 W"dW’)l (/01 WOWO’ds) (/01 W"dW’) (8.2.12)

with

WO .= W(s) := [ Wi —ry(5) }

—1

1

(see Johansen (1991)). Again, critical values may be found in Johansen (1995).
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8.2.3 A Linear Trend

A process with a linear trend is also of interest from a practical point of view.
Hence, let

e = pho + pat, (8.2.13)

where p9 and py are arbitrary (K x 1) vectors. In Section 6.4, we have seen
that in this case the VECM for the observable y; can be represented as

Ay, = v+ H‘"y;i1 + Ay 4+ D1 AY—pr + Uy, (8.2.14)
where v := —Tlpg+(Ix —T1— - —Tp_1)ug, T == [I1: 1] isa (K x (K +1))
matrix with 1y := —IIu, and

Yt—1
Yo = [t—l}

Thus, the LR statistics of interest can again be determined exactly as in the
zero mean case of Section 8.2.1 by replacing y;—; with ytt ; and accounting
for the intercept term by adding a row of ones in AX in the relevant formulas
in Proposition 7.3 (see Section 7.2.4). For the present case, the LR statistics
have asymptotic null distributions as in (8.2.6) and (8.2.7) with

D= (/01 W*dW’)/ (/01 W+W+’ds> B (/01 WWW’) : (8.2.15)

Here W abbreviates the (K —7+1)-dimensional stochastic process W (s) :=
[W(s)',s—3]' with W(s) := Wg_,(s) — fol W ko (u)du being a demeaned
standard Wiener process, as shown by Johansen (1994, 1995). Critical values
may also be found in the latter reference.

8.2.4 A Linear Trend in the Variables and Not in the
Cointegration Relations

In the model (8.2.14), the linear trend term is unrestricted and therefore may
also be part of the cointegration relations. Even if the variables have a linear
trend, it is possible that there is no such term in the cointegration relations.
In other words, the cointegration relations are drifting along a common linear
trend. This situation can arise if the trend slope is the same for all variables
which have a linear trend. Formally this case occurs if pq # 0 and Iy =
of’ 11 = 0 or, equivalently, if B'z; = 0. In other words, this situation is present
if the trend parameter u; is nonzero and it is orthogonal to the cointegration
relations. In this case, (8.2.14) reduces to

Ayt =v+ Hyt,1 + FlAyt,1 + -+ prlAytprrl + ug. (8216)
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Thus, in this situation we have a model just like (8.2.1), except that there is
an intercept term in addition. Again, the LR statistics for testing (8.2.4) or
(8.2.5) can be determined easily as in the zero mean case of Section 8.2.1 by
adding a row of ones in AX in the relevant formulas in Proposition 7.3 (see
Section 7.2.4). The limiting distributions of the LR statistics under the null
hypothesis are also as in (8.2.6) and (8.2.7), where now

D:= (/01WdW’>/ (/01WW’ds) B (/Olvww’). (8.2.17)

Here W := W (s) := V\/'C(s)—fo1 W€ (u)du, where We(s) := [Wg_p,—1(s),s]
is a (K — rp)-dimensional stochastic process. This result and corresponding
critical values for the tests may also be found in Johansen (1995).

Notice that the condition p1 # 0 and ITp; = 0 rules out the situation
where rk(IT) = K because, for a nonsingular matrix IT, the relation ITy; = 0
cannot hold for a nonzero u;. Thus, the assumptions made for deriving the
limiting distributions of the test statistics make a test of

Hy:tk(II) =K -1 wversus H;:1k(II) = K

meaningless. Intuitively, this result is obtained because, if IT has full rank, the
data generation process is stationary and, in that case, a VAR process with
an intercept does not generate a linear trend. Thus, if a linear trend is known
to be present in the variables, IT cannot have full rank in a model where an
intercept is the only deterministic term.

8.2.5 Summary of Results and Other Deterministic Terms

The results of the previous subsections are summarized in the following propo-
sition.

Proposition 8.2 (Limiting Distributions of LR Tests for the Cointegrating
Rank)

Suppose y; = ¢ + T, where p; is a deterministic term and z; is a purely
stochastic Gaussian process defined by

Amt = Hl‘t,]_ + Fletfl + -+ I‘p,]_Al‘t,del + Ut, t= 1, 2, ey

where all symbols are defined as in (8.2.1) and x; = 0 for ¢ < 0. Then the LR
statistics for testing (8.2.4) and (8.2.5) have limiting null distributions

)\LR(T(), K) i tI"(D)
and

ALr(ro,m0 + 1) 4 Amax (D),
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1
(/0 FdW%T(J)

respectively, where

! —1

o ([ row) ([ )

with

(1)
(2)
3)
(4)

F(s) = Wg_y(s), if iz = 0 a priori,

(s) = W?(s) = [Wg_p(s) : 1], if py = po is a constant,

(s) =[W(s)',s — 3] asin (8.2.15), if yuy = puo + put is a linear trend,
(s) = W(s) as in (8.2.17), if py = puo + pu1t is a linear trend with iy # 0
and B'p1 = 0, that is, the trend is orthogonal to the cointegration relations.

F
F
F

Several remarks are worthwhile with respect to this result.

Remark 1 Percentage points of the asymptotic distributions in Proposition
8.2 are easy to simulate by considering multivariate random walks of the form

T =xp—1+uy, t=1,2,...,T,

where xo = 0 and u; ~ N(0, I) is Gaussian white noise, that is,

t
i=1

Noting that

T 1
_ d
T2 E Ty 1Ty —’/ WW'ds,
— 0
t=1

T

1
T*Z t_lu;i/ WIW’,
0

=1

and so on (see Appendix C.8, Proposition C.18), we can, for example, approx-
imate

tr :</01WdW'>/ (/01 WW’als)1 (/;WdW’)-

[/ T s -1, i
/ / !/
tr g Ty Uy E T 1%;4_4 E Ty Uy
t=1 t=1 t=1

for a large sample size T'. Similar approximations can be used for the other
asymptotic distributions (see also Problem 8.2). [ |

by
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Remark 2 Although we only give the limiting distributions of the LR statis-
tics under the null hypothesis in the proposition, the asymptotic distributions
under local alternatives of the form

1
I =of + T%Bi

were also derived (see Johansen (1995) and Saikkonen & Liitkepohl (1999,
2000a)). Here o and B are fixed (K X 1) matrices of rank ro and oy and B,
are fixed (K x (r — rg)) matrices of rank r — ¢ and such that the matrices
[0 : 0] and [B : By] have full column rank r. Thus, in this setup, the matrix
IT is assumed to depend on the sample size. Local power studies have been
performed to shed light on the power properties of the LR tests when the
alternative is true but the corresponding parameter values are close to the
region where the null hypothesis holds. |

Remark 3 Power comparisons between the alternative test versions can help
in deciding whether to use trace or maximum eigenvalue tests. Liitkepohl,
Saikkonen & Trenkler (2001) performed a detailed small sample and lo-
cal power comparison of several test versions and concluded that trace and
maximum eigenvalue tests have very similar local power in many situations,
whereas each test version has its relative advantages in small samples, de-
pending on the criterion for comparison. Thus, neither of the tests is generally
preferable in practice. |

Remark 4 It is also possible to derive the asymptotic properties of the LR
tests for other deterministic terms. For example, higher order polynomial
trends may be considered. Such terms lead to changes in the null distribu-
tions of the test statistics. We do not consider them here because they seem
to be of lesser importance from a practical point of view. [ ]

Remark 5 Seasonal dummy variables are another type of deterministic terms
which are of practical importance. They are often used to account for seasonal
fluctuations in the variables (see, e.g., the example in Section 7.2.6). If sea-
sonal dummies are added in addition to an unrestricted intercept term, they
do not affect the asymptotic distributions of the LR statistics for the cointe-
gration rank. We have considered two models, however, where no unrestricted
intercept term was included. The first one was the model of Section 8.2.1
without any deterministic terms at all. As this model is of limited practical
use anyway, we do not consider the implications of adding seasonal dummy
variables. The other model without an unrestricted intercept term was the one
with a nonzero mean discussed in Section 8.2.2. It is of more use in practice
and it is therefore of interest to consider the possibility of adding seasonal
dummies.
Suppose there are ¢ seasons and the deterministic term is of the form

q—1

Pt = fto + Z disit,

=1
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where po and §; (i = 1,...,q — 1) are (K x 1) parameter vectors and the
seasonal dummies are denoted by s;;. Suppose that they are defined such that
they are orthogonal to the intercept term, that is,

1 if t is associated with season 1,
Sit = _ .
i =L otherwise,
q—1
for i = 1,...,q. In that case, using the same line of reasoning as in Section

6.4, the corresponding VECM for y; is

qg—1
Ay =117 1 + T Ay + -+ Tpo1 Ayp—pya + ZCSfSit + ug,
i=1

where the 0}’s are (K x 1) parameter vectors. Notice that Ls;; = $; -1 = S;—14
for i = 2,...,q and Lsy+ = s4 and, for any t, Z‘;:l s;t = 0 so that sy =
— qu;ll sit- Hence, the latter sum can be substituted for sq: (see also Problem
8.1). In this model, the seasonal dummies have no impact on the asymptotic
distribution of the LR statistic for the cointegrating rank (Johansen (1991)).

[ ]

Remark 6 A different situation arises if the deterministic term includes a
shift dummy variable I(;~7,) which is zero up to time T and then jumps
to one. Such a variable affects the asymptotic distributions of the LR test
statistics for the cointegrating rank. In fact, Johansen, Mosconi & Nielsen
(2000) showed that in this case the asymptotic distributions depend on where
the shift occurs in the sample. More precisely, it depends on the fraction of
the sample before the break. In contrast, impulse dummy variables which
are always zero except in one specific period, do not affect the asymptotic
properties of the LR tests. |

8.2.6 An Example

We have applied LR trace tests for the cointegrating rank to the German
interest rate/inflation example data from Section 7.2.6 and give results for
different lag orders in Table 8.2. Notice that, although we report the results for
the trace tests, the maximum eigenvalue variant is equivalent if Hy : rk(IT) = 1
is tested in a bivariate system. In that case, the alternative hypotheses in
(8.2.4) and (8.2.5) coincide. Because the inflation rate has a strong seasonal
pattern, we have included seasonal dummy variables in the deterministic term.
Given the theoretical considerations in Section 7.2.6, one may not see the
need for a general trend in the model. Clearly, one would not expect the
cointegration relation to include a linear trend. In fact, one may wonder about
the need to consider a deterministic linear trend at all in the model because
one could argue that neither interest rates nor inflation rates are likely to have
such components in Germany. Even if there is a strong case for excluding the
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possibility of a linear trend term in a long-run analysis of these two variables,
it may still be useful to include such a trend for a particular sample period.
Recall that any model is just an approximation to the data generation process
for a specific period of time. In Table 8.2, we therefore report results for
different deterministic terms.

Table 8.2. LR trace tests for the cointegration rank of the German interest
rate/inflation system

deterministic no. of lagged null test  critical values
term differences  hypothesis value 10% 5%
constant, seasonal dummies 0 rk(IT) =0 89.72 17.79  19.99
rk(II) = 1 154 750 9.3

3 rk(II) =0 21.78 17.79  19.99

rk(II) = 1 477 750 913

orthogonal linear trend, 0 rk(IT) =0 89.10 13.31 15.34

seasonal dummies

3 rk(II) =0 20.80 13.31 15.34
linear trend, 0 rk(IT) =0 97.21 2295 2547
seasonal dummies rk(II) =1 445 10.56  12.39
3 rk(II) = 24.78 2295 2547

rk(IT) = 1 7.72 1056  12.39
Notes: Sample period: 1972.2 —1998.4 (including presample values). Critical values
from Johansen (1995, Tables 15.2, 15.3, and 15.4).

For all deterministic terms and all lag orders, the tests reject a cointegrat-
ing rank of zero. The only possible exception is the case, where a fully general
linear trend and three lagged differences are included in the model. In that
case, the cointegration rank zero can only be rejected at the 10% level and
not at the 5% level, whereas in all other cases the tests reject at a 5% level.
Of course, the model with three lagged differences and a linear deterministic
trend is the least restricted model considered in Table 8.2. Thus, if any one
of the other models describes the DGP well, the same is true for the latter
model. Therefore, one may argue that the tests based on this model should be
the most reliable. Unfortunately, such an argument is valid for the size of the
test at best. In small sample studies, some evidence was found that redundant
lags or deterministic terms can have a negative effect on the powers of the LR
tests (see Hubrich, Liitkepohl & Saikkonen (2001) for an overview of small
sample studies). Thus, taking the small sample properties of the tests into ac-
count, there is substantial evidence that the cointegrating rank is larger than
zZero.

For the models with a constant and a linear trend, none of the tests can
reject a cointegration rank of r = 1. If a deterministic linear trend is assumed
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to be present in at least one of the variables and not in the cointegration
relations, that is, the trend is orthogonal to the cointegration relations, then
testing the null hypothesis rk(IT) = 1 does not make sense for a bivariate
system, as explained in Section 8.2.4. Therefore, no results are reported for
that null hypothesis in Table 8.2. Thus, the evidence in favor of a single
cointegration relation in our example system is overall quite strong. Therefore,
we have used this rank in previous models for the two series.

The discussion of which deterministic terms to include in the model for our
example data shows that there is a need for statistical procedures to assist
in the decision. There are indeed appropriate tests available, as discussed
in Section 7.2.4. We will return to some such tests for specific hypotheses of
interest in the present context in Section 8.2.8. Before we do so, we will discuss
some other ideas for testing the cointegrating rank of a VECM. In the next
subsection, we consider the possibility of subtracting the deterministic part
first and then applying LR type tests to the adjusted series.

8.2.7 Prior Adjustment for Deterministic Terms

LR tests for the cointegrating rank were found to have low power, in particular
in large models (large dimension and/or long lag order). Therefore, other tests
and test variants have been proposed which have advantages at least in some
situations. One variant was, for instance, proposed by Saikkonen & Liitkepohl
(2000d). They suggested a two-step procedure in which the deterministic part
is estimated first. Then the observed series are adjusted for the deterministic
terms and an ‘LR test’ is applied to the adjusted system. We will discuss their
approach for the case of a model with a linear trend term. The other cases of
interest can be handled with straightforward modifications.

Thus, we consider a data generation process of the form

Y = o + pat + ¢, (8.2.18)

where po and pq are fully general (K x 1) vectors and x; has a VECM repre-
sentation of the form (8.2.1). Hence, the data generation process of y; has the
VECM representation (8.2.14). Suppose we want to test the pair of hypotheses

Hy : tk(IT) = rg  versus Hj : tk(IT) > rg.

Then the model (8.2.14) is estimated by ML with a cointegration rank rg
and estimators &, B, T'; (j = 1,...,p — 1) as well as estimators of the other
parameters are obtained. From these estimators we can get estimators of the
levels VAR parameter matrices as follows (see Section 6.3, Eq. (6.3.7)):

A, = Ig+ap +Ty,

Ai - fi_f‘ifl» i:27~~‘7p_17

A, = T, ..
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These estimators are used to estimate the parameters o and 1 in (8.2.18)
by an EGLS procedure To present the estimator, we define A( ) = Ix —

A L—---— A Lp Gt = (L)at, and Ht = A( )bt, with
_J 1 for t>1, poo— Lt for t>1,
“=90 for t <0, 710 for t<0.

Moreover, we define

5 (o T ta) /20 ot
(@, Da )% |

Premultiplying (8.2.18) by QE(L) gives

where the transformation ensures that the error term has roughly a unit co-
variance matrix because Q Q E L. Thus, estimating the transformed model
(8.2.19) by LS amounts to EGLS estimation of yig and 41 in the untransformed
model y; = po+p1t+2x:. The resulting estimators of pp and g will be denoted
by 5t and a$E9, respectively.

Using these estimators, y; can now be trend-adjusted as Z; := y; — g5 —
1§$ESt and an ‘LR test’ can be applied to #;, as described in Section 8.2.1. Of
course, although the test statistics are computed in the same way as described
in that section except that y; is replaced by Z;, the tests are now not really
LR tests anymore because they are applied to adjusted data rather than the
original ones. To distinguish the resulting tests from the actual LR tests, we
will refer to them as GLS-LR tests and we denote the trace and maximum
eigenvalue test statistics as A¢55(rg, K) and A¥E5 (rg, o + 1), respectively, in
the following. Given that these tests are not actual LR tests, it may also not
be surprising that the limiting distributions of the test statistics are different
from those of the actual LR statistics. They also depend on the deterministic
terms that are included in the model. To state the asymptotic distributions

formally, we use the following conventions. A Brownian bridge of dimension
K — rq is defined as

W2 () = Wiy (s) = sW iy (1)

and an integral of a stochastic process F with respect to a Brownian bridge
is defined as

1 1 1
/ FAW? :— / FdW_,, / FdsW i, (1).
0 0 0

Now we can state the limiting null distributions of the A%* statistics for the
different deterministic terms of interest.
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Proposition 8.3 (Limiting Distributions of GLS-LR Tests for the Cointe-
grating Rank)

Under the conditions of Proposition 8.2, the GLS-LR test statistics have the
following limiting null distributions:

AGES (10, K) = t2(D)
and
)\gés(’ro, ro + 1) i) )\max(D)y

where D depends on the deterministic terms included in the model as follows:

(1) If ue = po is a constant,

D= (/;WdW’)l </01WW'ds)_1 (/;WdW’)

with W := Wi _,. (s).
(2) If uy = po + pat is a linear trend,

1 / 1 -1 1
D:( / WBdWB’> ( / WBWB’ds) ( / WBdWB’>.
0 0 0

(3) If py = po + pat is a linear trend with g # 0 and B’y = 0,

o ([ ) [ ) ([ o)

with W := Wg_,.(s), W(s) := [Wg_,,_1(s),s)’, and W(s) as in
(8.2.17).

Proofs of these results can be found in Saikkonen & Liitkepohl (2000b, d)
and Liitkepohl et al. (2001). The following remarks may be of interest.

Remark 1 The adjustment for deterministic terms may appear to be compli-
cated at first sight. One may, for instance, wonder why the deterministic terms
are not directly estimated by LS and then subtracted from the observed y;.
Unfortunately, in the present case, the LS estimators do not have the same
asymptotic properties as the EGLS estimators described here and also the
resulting cointegration tests will have different properties. The present proce-
dure is useful because it results in tests with attractive asymptotic properties,
as we will argue in the next remark. |
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Remark 2 Comparing the asymptotic distributions in Propositions 8.2 and
8.3, it turns out that the A¥5 statistics for the case of a constant deterministic
term (us = p19) have the same asymptotic distributions as the corresponding
LR statistics for the case without any deterministic term. Thus, estimation
of the constant mean term does not affect the asymptotic distributions of the
/\%']I%S statistics, while it has an impact on the LR statistics in Proposition
8.2. This observation suggests that the GLS-LR tests may have better power
properties, at least asymptotically. This conjecture was actually confirmed in
a local power comparison by Saikkonen & Liitkepohl (1999). The situation
is not as clear for the other situations. In other words, if there is a linear
trend term in the model, a local power comparison does not lead to a unique
ranking of the tests. In some situations the LR tests are preferable and in
other situations the GLS-LR variants may be preferable, depending on the
properties of the data generation process. Also, local power is an asymptotic
concept which allows to investigate the power properties of tests in regions
close to the null hypothesis when the sample size goes to infinity. Because
asymptotic theory is not always a good guide for small sample properties,
these results do not guarantee superior performance of the GLS-LR tests,
even when only a constant mean term is included in the model. In particular,
the latter tests may have size distortions in small samples. |

Remark 3 Although the asymptotic distributions in Proposition 8.3 look a
little more complicated than those in Proposition 8.2, critical values can again
be simulated easily because the asymptotic distributions are still functionals
of Wiener processes. Percentage points for all three asymptotic distributions
are tabulated in the literature (see Johansen (1995), Liitkepohl & Saikkonen
(2000) and Saikkonen & Liitkepohl (2000Db)). [ ]

Remark 4 The GLS-LR tests can also be adopted for other deterministic
terms such as higher order polynomials and seasonal dummy variables. For
the former case, different asymptotic distributions will result, whereas sea-
sonal dummies can be added to all three deterministic terms considered in
Proposition 8.3 without affecting the limiting distributions of the test statis-
tics. An advantage of the GLS-LR tests is that these asymptotic distributions
are also not affected by including shift dummies in the deterministic term.
This property is in contrast to the LR tests and means that the same critical
values can be used as for the corresponding tests without shift dummies (see
Saikkonen & Liitkepohl (2000c)). In particular, there is no need to compute
new critical values for each break point. Given the computing power which
is available today, this may not seem as a great advantage over the LR tests
at first sight. It makes it possible, however, to also consider cases where the
actual break date is unknown and has to be estimated in addition to the other
parameters of the process. Liitkepohl, Saikkonen & Trenkler (2004) consider
that case and show that a number of different estimators of the break date can
be used without affecting the asymptotic distributions of the /\(L;IL%S statistics
under the null hypothesis. |
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Example

We have also applied the GLS-LR tests to the German interest rate/inflation
example series and present the results in Table 8.3. Although the evidence is
again clearly in favor of a cointegrating rank of r = 1, all tests have more
trouble rejecting ro = 0 if the larger lag order is used. In that case, the
hypothesis rk(IT) = 0 cannot even be rejected at the 10% level if only a
constant and seasonal dummies are included in the model. Thus, although
the GLS-LR tests have good local power properties especially for this case,
superior small sample power is not guaranteed. Of course, it must also be kept
in mind that a test with higher power does not necessarily reject a specific
null hypothesis for a particular data set more easily than a test with lower
power. Moreover, our theoretical models underlying the asymptotic analysis
may not fully capture all features of the actual data generation process.

Table 8.3. GLS-LR trace tests for the cointegration rank of the German interest
rate/inflation system

deterministic no. of lagged null test  critical values
term differences  hypothesis value  10% 5%
constant, seasonal dummies 0 rk(IT) = 0 28.21 10.35 12.21

rk(IT) = 1 041 298 414

3 rk(II) =0 10.13 10.35 12.21

rk(IT) = 1 242 298 414

orthogonal linear trend, 0 rk(II) =0 28.16  8.03 9.79
seasonal dummies

3 rk(IT) =0 9.75  8.03 9.79

linear trend, 0 rk(IT) =0 49.42 13.89 15.92

seasonal dummies rk(IT) =1 1.83 543 6.83

3 rk(II) =0 14.43 13.89 15.92

rk(II) =1 4.71 5.43 6.83
Notes: Sample period: 1972.2 —1998.4 (including presample values). Critical values
from Johansen (1995, Tables 15.1), Saikkonen & Liitkepohl (2000b, Table 1) and
Liitkepohl & Saikkonen (2000, Table 1) for the case of a constant, an orthogonal
trend, and a general linear trend, respectively.

8.2.8 Choice of Deterministic Terms

As mentioned earlier, including redundant deterministic terms in the models
on which cointegration rank tests are based, may result in a substantial loss of
power (see also Doornik, Hendry & Nielsen (1998) and Hubrich et al. (2001)).
Therefore, it is helpful that statistical procedures are available for investi-
gating which terms to include. Johansen (1994, 1995) proposed LR tests for
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hypotheses regarding the deterministic terms. These tests are obvious choices
because the ML estimators and, hence, the corresponding maxima of the like-
lihood functions are easy to compute for various different deterministic terms
(see Section 7.2.4).

Apart from dummy variables, a linear trend

o + pat (8.2.20)

is the most general deterministic term considered in the foregoing. A possible
pair of hypotheses of interest related to this term when p; # 0 is

Hy:8u =0 versus Hy:Bpu #0. (8.2.21)

Hence, there is a deterministic linear trend in the variables and the test checks
whether the trend is orthogonal to the cointegration relations. In other words,
the test checks the model (8.2.14) against (8.2.16). The corresponding LR test
has a standard 2 limiting distribution under the null hypothesis, as we have
seen in Section 7.2.4. If the underlying VECM has cointegrating rank r and,
thus, B is a (K x r) matrix, r zero restrictions are specified in Hy. Therefore
we have r degrees of freedom, that is, the LR test statistic has an asymptotic
X2 (r)-distribution.
Another pair of hypotheses of interest is

Hy:pup =0 versus Hy:pp #0,8pu =0. (8.2.22)

In this case, a model with an unrestricted intercept, (8.2.16), is tested against
one where no linear trend is present and, thus, the constant can be absorbed
into the cointegration relations as in (8.2.11). Again, the LR test has stan-
dard asymptotic properties, that is, for a VECM of dimension K and with
cointegration rank r, it has a x?(K — r) limiting distribution.

If these tests are used for deciding on the deterministic term in a VECM, it
may be worth keeping in mind that they introduce additional uncertainty into
the modelling procedure. The tests are performed for a model with a specific
cointegrating rank. Thus, ideally the cointegrating rank has to be determined
before the deterministic terms are tested, whereas one motivation for them
was that cointegrating rank tests may have better power if the deterministic
term is specified properly. Thus, the tests present only a partial solution to
the problem. Proceeding as in the example and checking the robustness of the
rank tests with respect to different specifications of the deterministic terms is
a useful strategy.

8.2.9 Other Approaches to Testing for the Cointegrating Rank

The literature on cointegration rank tests has grown rapidly in recent years.
Many related issues have been discussed and investigated. Examples are non-
normal processes (Lucas (1997, 1998), Boswijk & Lucas (2002), Caner (1998)),
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the presence of higher order integration and long memory (Gonzalo & Lee
(1998), Breitung & Hassler (2002)), the impact of the dimension of the data
generation process (Ho & Sgrensen (1996)) and using a reversed sequence of
null hypotheses in testing for the cointegrating rank (Snell (1999)). Also, a
number of studies considered the small sample properties of the tests. A re-
cent review of the related literature with many more references was provided
by Hubrich et al. (2001).

Moreover, a number of other test procedures were proposed. For instance,
Liitkepohl & Saikkonen (1999a) used the idea underlying the causality test
which was presented in Section 7.6.3 and augmented the number of lags to
obtain a x2-test for the cointegrating rank. Bewley & Yang (1995) and Yang &
Bewley (1996) constructed a test based on canonical correlations of the levels
variables. Stock & Watson (1988) considered the use of principal component
analysis and Bierens (1997) presented a fully nonparametric approach to coin-
tegration rank testing. These and many other proposals were also reviewed in
Hubrich et al. (2001), including the possibility of choosing the cointegrating
rank by model selection criteria. A range of cointegration tests was also pro-
posed and investigated in a single equation framework (e.g., Engle & Granger
(1987), Phillips & Ouliaris (1990), Banerjee et al. (1993), Choi (1994), Shin
(1994), Haug (1996)). They are of limited usefulness for the situation we have
considered here, where several cointegrating relations may be present in a
system of variables. Therefore, no details are presented.

8.3 Subset VECMs

When the lag order and the cointegration rank of a VECM have been deter-
mined, specifying further restrictions may be useful to reduce the dimension-
ality of the parameter space and thereby improve the estimation precision.
As we have seen in Sections 7.2 and 7.3, the standard t-ratios and F-tests re-
tain their usual asymptotic properties if they are applied to the short-run and
loading parameters of a VECM. Therefore, subset modelling for cointegrated
systems may be based on statistical tests. Instead of using testing procedures,
restrictions for individual parameters or groups of parameters may also be
based on model selection criteria in a similar way as in Chapter 5. In particu-
lar, the strategies applied to individual equations of the system may be used.
Consider, for instance, the j-th equation of a VECM,

yjt:x1t91+"'+$Nt9N+ujt7 t:1,...7T. (831)

Here all right-hand side regressor variables are denoted by xy:, including de-
terministic terms and the cointegration relations. Thus, zx; = B;yt_l, where
B, is the i-th column of the cointegration matrix P, is a possible regressor. If B

is unknown, it may be replaced by a superconsistent estimator B, which may
be based on the unrestricted model and variables zx; = Biy;—1 may be added
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as regressors in (8.3.1). Using this setup, all the standard procedures described
in Section 5.2.8 are available, including the full search procedure, sequential
elimination of regressors as well as top-down and bottom-up strategies.

For the German interest rate/inflation example with cointegration rela-
tion B'y, = Ry — 4Dp,, we have used the sequential elimination of regressors
procedure in conjunction with the AIC criterion based on a search for restric-
tions on individual equations and found the following model, using the sample
period 1973.2-1998.4 plus the required presample values:

AR —0.07
+ - (=3.1) _
[ADpt}_ 0.7 | (-1 =4Dpi)
(4.5)
[ 0.24 —0.08 7 0 -0.13
n (2.5) (—1.9) ARy 4 n (—2.5) AR; o
0 -0.3 ADp; 0 —0.37 ADp;_s
L (-2.5) | (=3.6)
[ 0.20 —0.06 T
+ (2.1) (—1.6) AR;_3
0 -0.3 ADp,_5
L (=4.7) |
0 0 0.010 0 ¢ R
+ (2.8) S1,t n U1t
0.010 —0.034 —0.018 —0.016 59,1 Ugye |
(3.0) (~7.6) (—3.8) (—3.6) Sat
(8.3.2)

Here t-ratios are given in parentheses underneath the parameter estimates.
This is precisely the model that was also used in Section 7.3.3, see (7.3.9), to
illustrate EGLS estimation and that procedure is used here as well. Notice,
however, that the search procedure was based on LS estimation of individual
equations. Hence, different t-ratios were the basis for variable selection. Still,
generally the coefficients with large absolute t-ratios in the unrestricted model
(see Table 7.1) are maintained in the restricted subset VECM.

In the present example, we have pretended that the cointegration relation
is known. Such an assumption is not required for the subset procedures to be
applicable. The same subset model selection procedure may be applied if the
cointegration relations contain estimated parameters. In other words, it may
be used as the second stage in a two-stage procedure, where the cointegration
matrix P is estimated first and then the estimated  matrix is substituted for
the true one in the second stage. The subset restrictions are determined in
the second stage.



8.4 Model Diagnostics 345
8.4 Model Diagnostics

Diagnostic checking is also an important stage of the general modelling pro-
cedure for VECMs. Many of the tests for model adequacy discussed for sta-
tionary VAR processes can be extended to the VECM case. Tests for residual
autocorrelation, nonnormality, and structural change will be treated in turn
in the following. We will start with a discussion of the properties of residual
autocorrelations of an estimated VECM. The underlying model is assumed to
be of the simple form

Ayp =o'y + T1Ay—1 + -+ Tpo1 Ay—pin + s, (8.4.1)

where o and B are (K x r) matrices of rank r and all other symbols are de-
fined as in (8.2.1). We assume that the model has been estimated by reduced
rank ML or the two-stage procedure discussed in Section 7.2.5. If not explic-
itly stated otherwise, no restrictions are placed on the loading and short-run
parameters.

8.4.1 Checking for Residual Autocorrelation

Asymptotic Properties of Residual Autocovariances and
Autocorrelations

To study the properties of the autocovariances and autocorrelations of the
residuals of a VECM, we denote the estimated residuals by @; and otherwise
use the notation from Section 4.4 of Chapter 4 and Section 5.2.9 of Chapter
5, that is,

1 T
Cii= Z R i=0,1,...,h,

t=i+1
Cp :=(Ch,...,Ch), ¢y, = vec(Cy),
are the residual autocovariances and R; (i=0,1,...,h),

ﬁ,h = (ﬁl,...,ﬁh), and /I'\h = Vec(f{h)

denote the corresponding residual autocorrelations.

To derive the asymptotic properties of these quantities, it is convenient
to also treat the case of a known cointegration matrix. Suppose the short-
run and loading parameters of the VECM (8.4.1) are estimated with the
same method as before, except that the true cointegration matrix is used
instead of the estimated one. For the resulting estimation residuals we denote
the previously defined quantities by tildes instead of hats. In other words,
we have Cj, Cp,, and ¢, instead of Cj, Cp, and €, respectively, and so on.
Briiggemann, Liitkepohl & Saikkonen (2004) showed that C; and C; have
the same asymptotic distributions. More precisely they proved the following
lemma.



346 8 Specification of VECMs

Lemma 8.1

Ci—Ci=0,(T™") for i=1,2....
m

Although Briiggemann et al. (2004) showed this result for full VECMs
estimated by reduced rank ML or unrestricted LS, it is clear from their proof
that it also applies for other asymptotically equivalent estimation methods.
The lemma enables us to get the asymptotic distributions of residual autoco-
variances, for example, with the same arguments as previously derived results
(see, e.g., Proposition 5.7) because, if the cointegration matrix is known, all
regressors in the VECM are stationary variables. Therefore, the same argu-
ments apply as in Section 5.2.9 in Chapter 5. From Lemma 8.1 it then follows
that

VTC; —VTC; = 0,(1)

so that vT'¢ and v/T ¢ have identical asymptotic distributions. From the
asymptotic distributions of the residual autocovariances we also get those of
the residual autocorrelations in the familiar way.

Portmanteau and LM Tests for Residual Autocorrelation

Briiggemann et al. (2004) also showed that portmanteau and LM tests for
residual autocorrelation can be used in conjunction with VECMs. In this
case, the portmanteau statistic

h
Qh = TZtr( Al{ Ao_laiao_l) = T/C\;L(Ih ® 60_1 ® 6()_1)6h
i=1

has an approximate x?(hK?—K?(p—1)— Kr)-distribution. Notice that the de-
grees of freedom are adjusted relative to the stationary full VAR case. Now we
subtract from the number of autocovariances included in the statistic (hK?)
the number of estimated parameters not counting the elements of the cointe-
gration matrix. Again this result follows from Lemma 8.1 which allows us to
treat the cointegration matrix as known for asymptotic derivations, even if it
is estimated.

It may be worth emphasizing that this result also holds if the VECM
is estimated by unrestricted LS or, equivalently, the corresponding VAR in
levels is estimated by unrestricted LS. In other words, if the integration and
cointegration properties of a system of time series are not clear and an analyst
therefore decides to use a levels VAR model, the portmanteau test cannot be
used because the degrees of freedom of the approximating y2-distribution are
not known. If one ignores this problem and simply uses the smaller degrees
of freedom for the stationary full VAR case (hK? — pK?), the test is likely to
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reject a true null hypothesis far too often. Also, recall that the approximate y2-
distribution is obtained under the assumption that h goes to infinity with the
sample size. Thus, the portmanteau test is not suitable for testing for residual
autocorrelation of low order. As in the stationary case, in small samples it
may be preferable to use the modified portmanteau statistic

h
Qn =T (T —i)'u(C;Cy ' CiCy ).
=1

The asymptotic distribution of the LM statistic for residual autocorrela-
tion is not affected by the presence of integrated variables. We may use the
auxiliary regression model

~

U = ofy1 + Ay 1+ A+ L1 Ay pia
+ D1ty 1+ -+ Dpuy_p +e, t=1,...,T, (8.4.2)

with s = 0 for s < 1, and compute the LM statistic for the hypotheses
Hy:Dy=---=Dp=0vs. H : D; #0 for at least one j € {1,...,h}.
The resulting LM statistic has an asymptotic y2-distribution,
Arar(h) 5 x3(hE?),

if the null hypothesis of no autocorrelation is true, as in the stationary case (see
Section 4.4.4). In contrast to the portmanteau test, the LM test is especially
useful for testing for low order residual autocorrelation. For large h, it may in
fact not be possible to estimate the parameters in the auxiliary model (8.4.2)
because of an insufficient sample size.

Both the portmanteau tests and the LM tests are also applicable for subset
VECMs with restrictions on the short-run and loading parameters. In that
case, modifications analogous to those described in Section 5.2.9 have to be
used. For the portmanteau tests, this means that the degrees of freedom in the
approximate distributions have to be adjusted. More precisely, the number of
estimated loading and short-term parameters is subtracted from the number
of autocovariances included in the statistic. Here restricted parameters are
not counted. For the LM tests, the auxiliary model has to be modified. The
estimated residuals may now come from a two-stage estimation as described
in Section 7.3.2. Moreover, the restrictions should also be accounted for in the
auxiliary model as described in Section 5.2.9.

To illustrate these tests, we have applied them to the subset VECM (8.3.2)
for the German interest rate/inflation example data. In this case, the cointe-
gration relation is assumed to be known. According to our previous results,
the same asymptotic distributions of the autocorrelation test statistics are ob-
tained for an estimated cointegration relation. Moreover, deterministic terms
are included in the model (8.3.2). Again, it can be shown that such terms do
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Table 8.4. Residual autocorrelation tests for subset VECM (8.3.2)

test Arar(1) A (2) Adeame(3) A (4) Q21 Qaa Q30 Q30
test statistic 3.91 6.62 6.89 1026 77.2 89.3 93,5 111.5
approximate

distribution  x%(4)  x%(8) x%(12) x2(16) x2(86) x*(86) x*(110) x*(110)
p-value 0.42 0.58 0.86 0.85 0.74 0.38 0.87 0.44

not affect the asymptotic distributions of the portmanteau and LM tests for
residual autocorrelation (see Briiggemann et al. (2004) for details).

Both types of tests have been applied with different lag orders h and
the results are given in Table 8.4. The LM tests are useful for testing for low
order residual autocorrelation. Therefore, only lags one to four are considered.
Clearly, for a very long lag length (high order autocorrelation) the degrees of
freedom may be exhausted in the auxiliary regression. In contrast, the lag
length h has to be large for the approximate y2-distribution to be valid for
the portmanteau tests. Therefore, only large lag orders are considered for
these tests. All asymptotic p-values in Table 8.4 are substantially larger than
conventional significance levels for such tests. Hence, there is no apparent
residual autocorrelation problem for our example model.

8.4.2 Testing for Nonnormality

The tests for nonnormality considered in Chapter 4, Section 4.5, are based
on the estimated residuals from a VAR process. We can use the residuals of
a VECM instead without affecting the asymptotic distributions of the test
statistics. This result follows again from the previously used superconsistency
of the estimator for the cointegration matrix and the properties of the em-
pirical moment matrices of integrated variables (see also Kilian & Demiroglu
(2000)).

8.4.3 Tests for Structural Change

Time invariance is an important property of a VECM for valid statistical
inference as well as for proper economic analysis and forecasting. Therefore,
tests for structural change are also important tools for diagnostic checking of
VECMs. The Chow tests and the prediction tests considered in Section 4.6 for
stationary VARs can be extended easily to the case of cointegrated systems.
We will discuss both types of tests in the following.

Chow Tests

Analogously to Section 4.6.1, in deriving the Chow tests, we assume that
a change in the parameters of the VECM (8.4.1) is suspected after period
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Ty < T. For a sample y1,...,yr plus the required presample values, we can
then set up the model in two parts:

AYqy = o) By Yoy + Ty AX @y + Ugy (8.4.3)
and
AY(Q) = 0Y2) Bl(z)Y_l(Q) + F(Q)AX(Q) + U(Q), (8.4.4)

where AY(q) := [Ay1, ..., Ayr,], AY 9y := [Ayr 41,..., Ayr]| and the other
data matrices are partitioned accordingly. The parameter matrices o), B(i)
and ;) := [Ty, ...,Tp_1¢;)] contain the values for the i-th subperiod, where
i = 1,2. Using similar arguments as in the proof of Proposition 7.3, it follows
that the ML estimators of these parameter matrices can be determined by two
separate reduced rank regressions applied to each of the two models (see also
Problem 8.5). Notice that the presample values used in the second subsample
coincide with the last observations of the first subperiod. To avoid this over-
lap, one may consider starting the second subsample only with observation
Y1, +p+1- Such a modification may have advantages in small samples if there
is actually a structural break. If the null hypothesis of constant parameters
in both subperiods is tested, however, there is no strong case for dropping
observations between the two subsamples because, under the null hypothesis,
all observations are generated by the same process.

Assuming, as in Section 4.6.1, that both parts of the sample go to infinity
at a fixed proportion when T gets large, the asymptotic theory of Section 7.2
can be applied to derive the asymptotic distributions of the estimators. These
asymptotic results can then be used to test parameter constancy hypotheses
of the type

Ho : By = Bray, &1) = %2, 1) = Tz) (8.4.5)

against the alternative that at least one of the equalities is violated. From
the results in Section 7.2, it follows that the relevant Wald or LR tests have
asymptotic x2-distributions. To determine the number of degrees of freedom,
it has to be kept in mind, however, that a nonsingular asymptotic distribution
for the estimator of B is only obtained upon suitable normalization. Hence,
the equalities B(l) = 5(2) account only for (K —r) restrictions so that the LR
statistic corresponding to (8.4.5) has a limiting y?-distribution with r(K —
r)+rK+ (p—1)K? degrees of freedom. It is also possible to construct similar
tests for constancy of only a subset of the parameters (see Hansen (2003)).
Moreover, the tests can be extended to models with deterministic terms.

Prediction Tests for Structural Change

In Chapter 4, Section 4.6.2, we have considered two tests for structural change
that may be applied with small modifications if the data generation process
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is integrated or cointegrated. To see this, consider a K-dimensional Gaussian
VECM with cointegration rank r, as in (8.4.1). Denoting the optimal h-step
forecast at origin T' by yr(h) and its MSE matrix by X, (h), as in Section 6.5,
the quantity

h = [yrn — yr (W) Zy (W) yrn — yr(h)] (8.4.6)

has a y2(K)-distribution (see Section 4.6.2). If the parameters of the process
were known, this statistic could be used to test whether ypj, is generated by
a Gaussian process of the type (8.4.1).

In practice, the process parameters have to be replaced by estimators and,
in Section 4.6.2, we have modified the forecast MSE matrix accordingly. In
Section 7.5, we have seen that the MSE approximation used for stationary,
stable processes is not appropriate in the present integrated case. Therefore,
we propose the statistic

7 = lyrn = Gr () Sy ()~ yzn — Gr()/K, (8.4.7)
which has an approximate F(K,T — Kp — 1)-distribution. Here
r(h) = Avjr(h— 1)+ + Agr(h —p),

with yr(j) := yry; for j <0, and the A;’s are the ML estimators of the 4;’s
obtained from ML estimation of the VECM and converting to the levels VAR
representation. Moreover,

where E’u is the ML estimator of X, (see Proposition 7.3) and the @’s are
computed from the A;’s by the recursions in (6.5.5). The F' approximation to
the distribution of T# follows by noting that

plim(rp, — KT;L#) =0.
Hence K Tif has an asymptotic x?(K)-distribution and
7t ~ x}(K)/K ~ F(K,T — Kp — 1), (8.4.8)

where the numerator degrees of freedom are chosen in analogy with the sta-
tionary case. The quality of the F' approximation in small samples is presently
unknown.

A test based on several forecasts, as discussed in Section 4.6.2, may be
generalized to integrated processes in a similar way. We may use

h
M =T Wy, X /(T + Kp+ 1) Kh] (8.4.9)
i=1
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as a test statistic with an approximate F'(Kh,T — Kp — 1)-distribution. Here
the wpy;’s are the residuals obtained for the postsample period by using the
ML estimators. The approximate distribution follows from asymptotic theory
as in the stationary, stable case (see Problem 8.7).

A number of other tests for structural change are available for VECMs.
For instance, Hansen & Johansen (1999) proposed tests which are based on
the eigenvalues from the ML estimation procedure (see Proposition 7.3).

8.5 Exercises

8.5.1 Algebraic Exercises

Problem 8.1
Consider the model y; = s + x4, as in Section 8.2, for quarterly series with
deterministic term

3
pe = pio+ Y _ Gisit,
=1

where pg and d; (i = 1,2,3) are (K x 1) parameter vectors and the seasonal
dummies are denoted by s;;, that is, s;; has a value of 1 in season ¢ and —1/3
otherwise. Show that the VECM for y; can be written as

3
Ayt = Hoyg,l + FlAyt,1 + -+ prlAyt7p+1 + Z 5:821 =+ Uyt
i=1
Show also that the vector (si,Sot, S3t,S4¢)” is orthogonal to (1,1,1,1). In
other words, the seasonal dummies are orthogonal to the constant term.

Problem 8.2
Use Proposition C.18 from Appendix C.8.2 to construct a mechanism for
approximating the distribution

(/01 W%W’)l (/01 W"W"’ds)1 (/01 W"dW’)

in (8.2.12) via simulation.

Problem 8.3
Write down the EGLS estimation problem for the cointegration rank tests
described in Section 8.2.7 for a model with p; = pyo.

Problem 8.4

Consider residual autocorrelation tests for a three-dimensional VECM with
two lagged differences (p = 3) and a cointegrating rank of r = 2. What are the
approximate distributions of the @29, Q25, and Q39 portmanteau statistics?
What are the asymptotic distributions of Apas(2) and Apps(5)?
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Problem 8.5

Show that, for a sample vy, ..., yr with a possible structural break in period
Ti,1 <Ty < T, a VECM can be estimated by two separate reduced rank
regressions as in Proposition 7.3. (Hint: Use similar arguments as in the proof
of Proposition 7.3.)

Problem 8.6
Consider the model

AX 0
[AY() + AY(y)] = oafY_1+ [Ty : Tz [ o AX }*[Uu) U],

where the symbols are defined as in (8.4.3) and (8.4.4). Derive the ML es-

timators of the parameters. (Hint: Use similar arguments as in the proof of
Proposition 7.3.)

Problem 8.7
Under the conditions of Section 8.4.3, show that

(T + Kp+ 1)Khx, /T % (WK,
where )y, is the statistic defined in (8.4.9).

8.5.2 Numerical Exercises

The following problems are based on the U.S. data given in File E3 and
described in Section 7.4.3. The variables are defined in the same way as in
that section.

Problem 8.8
Use a maximum order of 10 and determine the VAR order of the example
system by the three model selection criteria AIC, HQ, and SC.

Problem 8.9
Assume that the data are generated by a VAR(3) process and determine the
cointegration rank with the tests described in Section 8.2.

Problem 8.10
Modify the AIC criterion appropriately and choose the order and cointegration
rank simultaneously with this criterion. Compare the result with that from
Problem 8.9.

Problem 8.11

Apply the ML procedure described in Section 7.2.3 and the EGLS estimator of
Section 7.2.2 to estimate the cointegration relation and the other parameters
of a VECM with cointegration rank r = 1, two lagged differences (i.e., p = 3)
and an intercept. Compare the estimates.

Problem 8.12
Use diagnostic tests to check the adequacy of the model estimated in Problem
8.11.
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In Parts I and II, we have assumed that the time series of interest are gener-
ated by stationary or cointegrated reduced form VAR processes. In this part,
structural models and systems with unmodelled, exogenous variables are dis-
cussed. In Chapter 9, structural VARs and VECMs are considered and, in
Chapter 10, conditional or partial models are treated, where we condition
on some variables whose generation process is not part of the model. These
systems may be stationary if the unmodelled variables are generated by sta-
tionary processes. Alternatively, some or all of the unmodelled variables may
be nonstochastic fixed quantities. In that case, the mean vectors of the time
series variables of interest may be time varying and, hence, the series may
not be stationary. They may still be stationary when the deterministic terms
are removed, however. Generally, some of the endogenous and unmodelled
stochastic variables may be integrated and have stochastic trends. Suitable
models for this case will also be considered in Chapter 10.
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Structural VARs and VECMs

In Chapters 2 and 6, we have seen that, on the one hand, impulse responses
are an important tool to uncover the relations between the variables in a
VAR or VECM and, on the other hand, there are some obstacles in their in-
terpretation. In particular, impulse responses are generally not unique and it
is often not clear which set of impulse responses actually reflects the ongoings
in a given system. Because the different sets of impulses can be computed
from the same underlying VAR or VECM, it is clear that nonsample informa-
tion has to be used to decide on the proper set for a particular given model.
In econometric terminology, VARs are reduced form models and structural
restrictions are required to identify the relevant innovations and impulse re-
sponses. In this chapter, different possible restrictions that have been proposed
in the literature will be considered. The resulting models are known as struc-
tural VAR (SVAR) models (see, e.g., Sims (1981, 1986), Bernanke (1986),
Shapiro & Watson (1988), Blanchard & Quah (1989)) or structural VECMs
(SVECMs) (e.g., King, Plosser, Stock & Watson (1991), Jacobson, Vredin &
Warne (1997), Gonzalo & Ng (2001), Breitung, Briiggemann & Liitkepohl
(2004)).

In the next section, structural restrictions will be discussed for stationary
processes. Some of them will also be relevant for VARs with integrated vari-
ables. Such variables are explicitly taken into account in VECMs for which
structural restrictions will be discussed in Section 9.2. It will be seen that
VECMs offer additional possibilities for structural restrictions. The general
modelling strategy for both SVARs and SVECMs is to specify and estimate
a reduced form model first and then focus on the structural parameters and
the resulting structural impulse responses. Estimation of structural VARs and
VECMs will be discussed in Section 9.3 and impulse response analysis and
forecast error variance decomposition based on such models are considered in
Section 9.4. Some extensions of the setup used in this chapter are pointed out
in Section 9.5.
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9.1 Structural Vector Autoregressions

Our point of departure is a K-dimensional stationary, stable VAR(p) process,
Yr = Aryr1 + -+ Apye—p + g, (9.1.1)

where, as usual, y; is a (K X 1) vector of observable time series variables, the
Aj’s (j=1,...,p) are (K x K) coefficient matrices and wu; is K-dimensional
white noise with u; ~ (0, X,). Deterministic terms have been excluded for
simplicity. In other words, we just consider the stochastic part of a data gen-
eration process because it is the part of interest from the point of view of
structural modelling and impulse response analysis. From Chapter 2, it is
known that the process (9.1.1) has a Wold MA representation

Y = up + Prug—1 + Poug—2 + -+, (9.1.2)
where
b= DA, s=12,..., (9.1.3)
j=1
with & = Ix.

In Chapter 2, we have also seen that the elements of the ¢; matrices are the
forecast error impulse responses. They may not reflect the relations between
the variables properly because the components of u; may be instantaneously
correlated, that is, Y, may not be a diagonal matrix. Thus, isolated shocks in
the components of u; may not be likely in practice. From Chapter 2, we also
know that there are different ways to orthogonalize the impulses. One possibil-
ity is based on a Choleski decomposition of the white noise covariance matrix,
Y, = PP’ where P is a lower-triangular matrix with positive elements on
the main diagonal. Again such an approach is arbitrary and therefore unsat-
isfactory, unless there are special reasons for a recursive structure. We will
now discuss different ways to use nonsample information in specifying unique
innovations and, hence, unique impulse responses. The relevant models will
be referred to as A-model, B-model and AB-model. The latter label was also
used by Amisano & Giannini (1997). The models will be considered in turn
in the following.

9.1.1 The A-Model

A conventional approach to finding a model with instantaneously uncorre-
lated residuals is to model the instantaneous relations between the observable
variables directly. That may be done by considering a structural form model,

Ayt = ATyt—l + -+ A;yt_p + &y, (914)
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where A% 1= AA; (j = 1,...,p) and & = Au; ~ (0,X. = AX,A"). Thus,
for a proper choice of A, ; will have a diagonal covariance matrix. An MA
representation based on the ; is given by

Yt = Oper + Ore41+6Ogep_o+ -+, (915)

where 6; = d5jA_1 (7 =0,1,2,...). The elements of the ©; matrices represent
the responses to €; shocks. If an identified structural form (9.1.4) can be found,
the corresponding impulse responses will be unique.

It may be worth reflecting a little on the restrictions required for a unique
matrix A of instantaneous effects. From the relation

5= AN

and the assumption of a diagonal X, matrix, we get K(K —1)/2 independent
equations, that is, all K (K —1)/2 off-diagonal elements of AX,,A" are equal to
zero. To solve uniquely for all K2 elements of A, we need a set of K2 equations,
however. In other words, we need K (K +1)/2 additional equations. They may
be set up in the form of restrictions for the elements of A. Clearly, we may want
to choose the diagonal elements of A to be unity. This normalization enables
us to write the k-th equation of (9.1.4) with yg; as the left-hand variable. In
addition to this normalization, we still need another K (K —1)/2 restrictions.
Such restrictions have to come from nonsample sources. For example, if a Wold
causal ordering is possible, where y;; may have an instantaneous impact on
all the other variables, yo; may have an instantaneous impact on all other
variables except yi¢, and so on (see Section 2.3.2), then

1 0 0
d21 1 0

A:
dK1 4dK2 ... 1

is a lower-triangular matrix. Thus, we have just enough restrictions (K (K —
1)/2 zeros above the main diagonal) so that the innovations and the associated
impulse responses are just-identified. The zeros can also appear in a different
arrangement as off-diagonal elements of A. There can also be more than K (K —
1)/2 restrictions, of course. In SVAR modelling it is common, however, that
just-identified models are considered. In other words, only as few restrictions
are imposed as are necessary for obtaining unique impulse responses. If at
some stage of the analysis it turns out that further restrictions are compatible
with the data, it is also possible to impose them, of course.

In the presently considered model, the identifying restrictions are imposed
on the matrix A such that €, = Au; has a diagonal covariance matrix. This
model will be called the A-model in the following. Given the way we have
introduced the associated restrictions, it is plausible to assume that A has
a unit main diagonal. In that case K (K — 1)/2 restrictions are required for
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the off-diagonal elements of A to ensure just-identified shocks €; and, hence,
just-identified impulse responses. If the restrictions are such that A is lower-
triangular, the same is true for A=1. Thus, the resulting ©; impulse responses
are qualitatively the same as the orthogonalized impulse responses based on
a Choleski decomposition of Y, which were considered in Chapter 2. The
only difference is that, for the latter case, the w; impulses have unit variances
which may not be the case for the presently considered ¢; impulses.
Regarding the restrictions for A, it should be understood that they cannot
be arbitrary restrictions. Writing them in the form Cavec(A) = ca, where Ca
is a (3K (K +1) x K?) selection matrix and ca is a suitable (3K (K +1) x 1)
fixed vector, the restrictions have to be such that the system of equations

AT Y ANt =5, and Cavec(A) = ca (9.1.6)

has a unique solution, at least locally. Clearly, this system is nonlinear in A.
Therefore, we can only hope for local uniqueness or identification in general.
The following proposition gives a necessary and sufficient condition for (9.1.6)
to have a locally unique solution and, thus, for local identification of the
structural parameters.

Proposition 9.1 (Identification of the A-Model)

Let X, be a (K x K) positive definite diagonal matrix and let A be a (K x K)
nonsingular matrix. Then, for a given symmetric, positive definite (K x K)
matrix X, an (N x K?) matrix Ca and a fixed (N x 1) vector ca, the system
of equations in (9.1.6) has a locally unique solution for A and the diagonal
elements of X if and only if

—2DL(Z, ®A"Y)  DEA @A )Dg
rk Cha 0 =K*+ LK(K +1).
0 Cy

Here Dy is a (K2 x $K (K + 1)) duplication matrix, D}, := (D% Dg)~'D/,
and C, is a (AK(K — 1) x $K(K + 1)) selection matrix which selects the
elements of vech(X.) below the main diagonal. [ ]

Proof: For an n-dimensional function ¢(x) of the m-dimensional vector z,
the system of equations ¢(z) = 0 can be solved locally uniquely for z in a
neighborhood of a given vector xq if and only if rk(d¢/0x'|z=r,) = m (See,
e.g., Rothenberg (1971, Theorem 6)). Hence, considering the function

vec(ATI DAL — X))
|: Zs;igg)) :| — CAVGC(A) — CA 5
v c Cyvech(X,)

a locally unique solution for A and vech(X.) exists for a given X, if and only
if
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dvech(A=1X A7) dvech(A=tX A1)

rk Ovec(A)’ O vech(Ze) = K2+ LK (K +1).
C 0 2
0 Co

Taking into account that the off-diagonal elements of Y. are uniquely deter-
mined by C,vech(X.) = 0, a locally unique solution for A and the diagonal
elements of Y. exists if and only if the rank condition is satisfied. Thus, the
proposition follows by using the rules for matrix and vector differentiation
from Appendix A.13 and noting that

Ovech(A~' X A1) Ovec(A~! T AT
Ovech(X.) K Jvech(X.)
- _1y Ovec(Xy)
= DL(A ' oA ) ——
KA A L)

= DL(A'@A YDk
and
dvech(A~1 X A7)
0 vec(A)

dvec(A1 X A1) Ovec(A~1)

dvec(A~1) dvec(A)
dvec(A1)
dvec(A~1Y
dvec(A'1)] dvec(A™1)
Ovec(A=1) | Ovec(A)
= Di(Ix: + Kgr)A' X @ Ig) (AT oA™Y
= —Di(Ix2 + Kgg)(Zu @A)
= _QD-‘I;(Eu Y A_l)a

:D;r(

= D [(AT'E. ® Ik)

+ (IK ® A_lze)

where K denotes a (K? x K?) commutation matrix and the last equality
sign holds because DKk = D} (see Appendix A.12.2). |

Although this proposition provides a condition for local identification of
the A-model only, a globally unique solution is obtained if the diagonal el-
ements of A are restricted to 1. A discussion of the nonuniqueness problem
resulting from sign changes of some elements will be deferred to Section 9.1.2.

For practical purposes, it is problematic that the identification condition
in Proposition 9.1 involves unknown parameters. Therefore, strictly speaking,
it can only be checked when the true parameters are known. In practice, the
unknown quantities may be replaced by estimates and the condition may be
checked using the estimated matrix because it can be shown that the rank of
the relevant matrix is either smaller than K2 + $ K (K + 1) everywhere in the
parameter space or the rank condition is satisfied almost everywhere. In the
latter case, it can fail only on a set of Lebesgue measure zero. Thus, if a ran-
domly drawn vector from the parameter space is considered, it should satisfy
the rank condition with probability one, if the model is locally identified. In
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any case, Ca must have at least K(K + 1)/2 rows to ensure identification.
In other words, having K (K + 1)/2 restrictions is a necessary condition for
identification.

Although we have stated the restrictions for the A matrix in the form
Cavec(A) = ca in the foregoing, we note that they can be written alternatively
in the form

vec(A) = Raya + 7a,

where Rp and ra are a suitable fixed matrix and a suitable vector, respectively,
and va is the vector of unrestricted parameters (see Chapter 5, Section 5.2.1).

9.1.2 The B-Model

Generally, in impulse response analysis the emphasis has shifted from specify-
ing the relations between the observable variables directly to interpreting the
unexpected part of their changes or the shocks. Therefore, it is not uncom-
mon to identify the structural innovations ; directly from the forecast errors
or reduced form residuals u;. One way to do so is to think of the forecast
errors as linear functions of the structural innovations. In that case, we have
the relations u; = Be;. Hence, X, = BX.B’. Normalizing the variances of the
structural innovations to one, i.e., assuming &; ~ (0, [ ), gives

¥, = BB (9.1.7)

Due to the symmetry of the covariance matrix, these relations specify only
K(K+1)/2 different equations and we need again K (K —1)/2 further relations
to identify all K2 elements of B. As in the previous A-model case, choosing
B to be lower-triangular, for example, provides sufficiently many restrictions.
Hence, choosing B by a Choleski decomposition solves the identification or
uniqueness problem, as we have also seen in Chapter 2, Section 2.3.2. Now it
is assumed, however, that this recursive structure is chosen only if it has some
theoretical justification so that the €,’s can be regarded as structural innova-
tions. This property makes them potentially different from the w; innovations
in Chapter 2 which were obtained by a mechanical application of the Choleski
decomposition. In principle, there could be other zero restrictions for B in the
present context. The triangular form is just an example. In practice, it is per-
haps the most important case (e.g., Eichenbaum & Evans (1995), Christiano,
Eichenbaum & Evans (1996)).
The present model with

Uy = BEt

and g; ~ (0, I ) will be called B-model in the following and it is worth remem-
bering that at least K(K — 1)/2 restrictions have to be imposed to identify
B. If there are just zero restrictions they can be written in the form
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Cgvec(B) =0, (9.1.8)

where Cg is an (N x K?) selection matrix. A necessary and sufficient rank
condition for local identification of the model is given in the next proposition.

Proposition 9.2 (Local Identification of the B-Model)

Let B be a nonsingular (K x K) matrix. Then, for a given symmetric, positive
definite (K x K) matrix ¥, and an (N x K?) matrix Cg, the system of
equations in (9.1.7)/(9.1.8) has a locally unique solution if and only if

o [ 2D} (B ® Ix) } _ K2
Cg

Proof: Using the same kind of reasoning as in the proof of Proposition 9.1,
the result of Proposition 9.2 follows by noting that

dvech(BB')

=D (I + K BeIx)=2DL(B® Ix).
Fvec(B kU2 + Krk)(B® Ik) k(B ® k)

A necessary condition for the ((1K (K + 1) + N) x K?) matrix

{ 2DJ[<(EB® Ik) ]

to have rank K? is that N = 1 K(K —1). In other words, we need + K (K —1)
restrictions for identification, as mentioned earlier.

It is easy to see that the solution of the system (9.1.7)/(9.1.8) will not be
globally unique because for any matrix B satisfying the equations, —B will
also be a solution. This result is due to the fact that B enters the equations
(9.1.7) in “squared” form. In fact, for any solution B, the matrix BA will also
be a solution for any diagonal matrix A which has only 1 and —1 elements
on the main diagonal. Obviously, if B is such that (9.1.7) and (9.1.8) hold,
Y, = BAA’B’ also holds because AA’ = Ix. Moreover,

Cgvec(BA) = Cg(A ® Ik )vec(B) =0,

because for each element b;; = 0 we have —b;; = 0. Thus, each column of B can
be replaced by a column with opposite sign. Hence, the restrictions in (9.1.8)
identify B only locally in general. Uniqueness can potentially be obtained by
fixing the signs of the diagonal elements, however. The signs of the diagonal
elements of B determine the signs of shocks. Thus, if we want to study the
effect of a positive shock to a particular variable while the corresponding
diagonal element of B is negative, we can just reverse the signs of all elements
in the relevant column of B or, in other words, we can just reverse the signs
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of all instantaneous responses to the corresponding shock to find the desired
result.

For later purposes, it is also worth noting that the restrictions can be
expressed in the alternative form

vec(B) = R, (9.1.9)

where g contains all the unrestricted coefficients of B and Rpg is a fixed matrix
of zeros and ones (see Section 5.2.1).

9.1.3 The AB-Model

It is also possible to consider both types of restrictions of the previous sub-
sections simultaneously. That is, we may consider the so-called AB-model,

Aut = BEt, Et ~ (O,IK) (9110)

In this case, a simultaneous equations system is formulated for the errors of the
reduced form model rather than the observable variables directly. Thereby the
model accounts for the shift from specifying direct relations for the observable
variables to formulating relations for the innovations. Applications of this
methodology can, for instance, be found in Gali (1992) and Pagan (1995) (see
also Breitung et al. (2004) for further discussion and an illustration).

In this model, we get from (9.1.10), u; = A~!Bg; and, hence, ¥, =
A='BB’A~Y. Thus, we have K (K + 1)/2 equations

vech(X,) = vech(A~'BB'A™Y), (9.1.11)

whereas the two matrices A and B have K? elements each. Thus, we need
additionally 2K? — K (K + 1) restrictions to identify all 2K? elements of A
and B at least locally. Even if the diagonal elements of A are set to one, 2K2 —
K — 1K (K + 1) further restrictions are needed for identification. Therefore,
it is perhaps not surprising that most applications consider special cases with
A = I (B-model) or B = I (A-model). Still, the general model is a useful
framework for SVAR analysis. The restrictions are typically normalization or
zero restrictions which can be written in the form of linear equations,

vec(A) = Raya +7a and vec(B) = Rgg + B, (9.1.12)

where Rp and Rp are suitable fixed matrices of zeros and ones, ya and g
are vectors of free parameters and ra and rg are vectors of fixed parameters
which allow, for instance, to normalize the diagonal elements of A. Although
rg is typically zero, as in (9.1.9), we present the restrictions for B here with a
general rg vector because this additional term will not complicate the analysis.

Multiplying the two sets of equations in (9.1.12) by orthogonal comple-
ments of Ry and Rg, Ra, and Rg, respectively, it is easy to see that they
can be written alternatively in the form
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Cavec(A) = ca and Cgvec(B) = cg, (9.1.13)

where Ca = Ra1, Cs = Rg1, ca = Raira and cg = Rpirg (see Appendix
A.8.2 for the definition of an orthogonal complement of a matrix). The ma-
trices Ca and Cg may be thought of as appropriate selection matrices. Again,
in general, the restrictions will ensure only local uniqueness of A and B due
to the nonlinear nature of the full set of equations from which to solve for
the two matrices. The following proposition states a rank condition for local
identification.

Proposition 9.3 (Local Identification of the AB-Model)

Let A and B be nonsingular (K x K) matrices. Then, for a given sym-
metric, positive definite (K x K) matrix X, the system of equations in
(9.1.11)/(9.1.13) has a locally unique solution if and only if

—2D5 (X, @A"Y 2DL(ATIB®ATY)
rk Cha 0 = 2K°. (9.1.14)
0 Ce
[

Proof: Again, we can use the same reasoning as in the proof of Proposition
9.1. The result of Proposition 9.3 is then obtained by noting that

dvech(A~1BB'A'71) dvech(A~1BB'A’"1) 9 vec(A~1B)
O vec(A) B O vec(A—1B)’ Ovec(A)
4 Ovec(AT'BB'A’1) dvec(A~1B)
- K 9vec(A-1BY O vec(A)
dvec(A1B)
dvec(A—1B)’
dvec(B'A""1)] dvec(A™1B)
Ovec(A~1B) | Jvec(A)
= DL [(A"'B®Ik)+ (Ixk ® A"'B)Kkk]
dvec(A™1)
O vec(A)
= —Dj(Ix2 +Kgr)(Zu @A)
= —2DL(Z, @AY

= DL [(AT'B®Ik)

+(Ix ® A7'B)

X(B/®IK)

and
Ovech(A~'BB'A'"1) dvech(A~'BB'A’~1) dvec(A~1B)
O vec(B) O vec(A—1B) dvec(B)
D} (Ix> + Krg)(AT'B®A™)
- DiABeAT),
because DK = D} (see Appendix A.12.2). [ ]
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To illustrate the AB-model, we follow Breitung et al. (2004) and use a
small macro system from Pagan (1995) for output ¢ an interest rate i,
and real money m;. The residuals of the reduced form VAR model will be
denoted by u; = (uf,ul,ul*)’. Pagan (1995) uses Keynesian arguments to
specify the following relations between the reduced form residuals and the

structural innovations:

uj = —apuj +bye® (IS curve),
ul = —aguf — aggul® + bogelM (inverse LM curve),
uy® = bazel” (money supply rule).

Here e; = (19, eFM ¢™)’ is the vector of structural innovations with &; ~

(0, Ix) (see Breitung et al. (2004) for further discussion of this example sys-
tem).
For our purposes the three equations can be written in AB-model form as

1 app O biy O 0
21 1 a23 Uy = 0 b22 0 Et.
0 0 1 0 0 s

Thus, we have the following set of restrictions:

—_
o
o
o

ag1
aie | +
a3

vec(A)=1| 1 | =

o
SO O OO OO
oo oo~ OO
o O OO0 oo 0o
H OO O, OO OR

and

b11
bao
b33

vec(B) = | baa | =

=N eloloNeNaoBaBeol S
SO0 O OO OO
— O OO oo o oo

bas

Because K = 3, we need 2K? — L K(K + 1) = 12 restrictions on A and B for
identification in this example model. There are 3 zeros and 3 ones in A. Thus,
we have 6 restrictions on this matrix. In addition, there are 6 zero restrictions

for B.
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Writing the restrictions in the form (9.1.13), we get
ail
azy
asi
a2
Az | =
as2
a13
a23
ass

SO OO O
O oo oo
[N ool )
(vl en B en I an B e B @n)
SO o R OO
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OO OO OO
_—0 O O oo
_ 0 O = O =

and

bi1
ba1
bs1
b1o
bao | =
b32
bis
bas
b33

OO O o oo
SO OO O
SO oo —O
SO O~ OO
oo oo oo
SO = O OO
O = OO OO
= O O o OO
SO OO OO
OO OO oo

Thus, the necessary condition for local identification is satisfied. The neces-
sary and sufficient condition from Proposition 9.3 can be checked by selecting
randomly drawn matrices A and B from the restricted parameter space and
determining the rank of the corresponding matrix in (9.1.14).

9.1.4 Long-Run Restrictions a la Blanchard-Quah

Clearly, it is not always easy to find suitable and generally acceptable restric-
tions for the matrices A and B. Imposing the restrictions directly on these
matrices is in fact not necessary to identify the structural innovations and
impulse responses. Another type of restrictions was discussed by Blanchard
& Quah (1989). They considered the accumulated effects of shocks to the sys-
tem. In terms of the structural impulse responses in (9.1.5) they focussed on
the total impact matriz,

Ew=) 0i=(Ix—A ——A4)'AT'B, (9.1.15)
=0

and they identified the structural innovations by placing zero restrictions on
this matrix. In other words, they assumed that some shocks do not have
any total long-run effects. In particular, they considered a bivariate system
consisting of output growth ¢; and an unemployment rate wr; (i.e., y; =
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(g¢,ury)') and they assumed that the structural innovations represent supply
and demand shocks. Moreover, they assumed that the demand shocks have
only transitory effects on ¢; and that the accumulated long-run effect of such
shocks on ¢; is zero. Placing the supply shocks first and the demand shocks
last in the vectors of structural innovations &, = (£f,e¢)’, the (1,2)-element of
Z 18 restricted to be zero. In other words, we restrict the upper right-hand
corner element of

=g —A1—--—A)'A'B

to zero. Given the VAR parameters, this set of equations clearly specifies a
restriction for A~!B. Thereby we have enough restrictions for identification of
a bivariate system if we set A = I, because, for K = 2, we have K(K—1)/2 =
1. Notice that A = Ix may be chosen because the idea is to identify the
structural shocks from the reduced form residuals only and no restrictions are
placed on the instantaneous effects of the observable variables directly. Thus,
we have a B-model with restriction

(0,0,1,0)vec[(Ix — Ay —---— A,) " 'B]

=(0,0,1,0)[Ia ® (Ix — Ay — -+~ — A,) 'vec(B) = 0.

In summary, the AB-model offers a useful general framework for placing
identifying restrictions for the structural innovations and impulse responses
on a VAR process. The restrictions can be simple normalization and exclusion
(zero) restrictions and may also be more general nonlinear restrictions. Clearly,
before we can actually use this framework in practice, it will be necessary
to estimate the reduced form and structural parameters. Estimation of the
former parameters has been discussed in some detail in previous chapters.
Thus, it remains to consider estimation of the A, B matrices. We will do so in
Section 9.3. Before turning to inference procedures, we will consider structural
restrictions for VECMs in the following section.

9.2 Structural Vector Error Correction Models

If all or some of the variables of interest are integrated, the previously dis-
cussed AB-model can still be used together with the levels VAR form of the
data generation process. In most of the analysis of Section 9.1, the stationarity
of the process was not used. Only in the treatment of the Blanchard-Quah
restrictions, stability of the VAR operator is required because otherwise the
matrix of total accumulated long-run effects does not exist. This result follows
from the fact that the matrix (Ix —A; —---— A,) is singular for cointegrated
processes, as we have seen in Chapter 6. In other cases, we may use the AB-
model even for integrated variables. In fact, we can even specify and fit a
reduced form VECM, convert that model to the levels VAR form and then
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use it as a basis for an AB-analysis, as discussed in the previous section. There
are, however, advantages in utilizing the cointegration properties of the vari-
ables. They provide restrictions which can be taken into account beneficially
in identifying the structural shocks. Therefore, it is useful to treat SVECMs
separately.

As in the previous chapters, we assume that all variables are at most (1)
and that the data generation process can be represented as a VECM with
cointegration rank r of the form

Ay =af'yr1 +T1 Ay 1+ + Ty 1Aye—pia + uy, (9.2.1)

where all symbols have their usual meanings. In other words, y; is a K-
dimensional vector of observable variables, o is a (K X r) matrix of loading
coefficients, P is the (K x r) cointegration matrix, I'; is a (K x K) short-run
coefficient matrix for j = 1,...,p—1, and u; is a white noise error vector with
U ~ (07 Eu)

In Chapter 6, Proposition 6.1, we have seen that the process has the
Beveridge-Nelson MA representation

t 0

=8> uit+ i+, (9.2.2)
i=1 =0

where the E;‘ are absolutely summable so that the infinite sum is well-defined
and the term gy contains the initial values. Absolute summability of the E;
implies that these matrices converge to zero for j — oo. Thus, the long-run
effects of shocks are captured by the common trends term Ezzzl u;. The

matrix

p—1 -1
E=B, [OC'L (IK - Zrz> BJ_] oy

has rank K — r. Thus, there are K — r common trends and if the structural
innovations embodied in the u; can be recovered, at most r of them can have
transitory effects only because the matrix 2 or a nonsingular transformation
of this matrix cannot have more than r columns of zeros. Thus, by knowing
the cointegrating rank of the system, we know already the maximum number
of transitory shocks.

In this context, the focus of interest is usually on the residuals and, hence,
in order to identify the structural innovations, the B-model setup is typically
used. In other words, we are looking for a matrix B such that

Uy = BEt with gt~ (0,[}()

Substituting this relation in the common trends term gives =B Z§=1 €;. Hence,
the long-run effects of the structural innovations are given by
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[1]

B.

Because the structural innovations represent a regular random vector with
nonsingular covariance matrix, the matrix B has to be nonsingular. Recall
that X, = BB’. Thus, tk(EB) = K — r and there can be at most r zero
columns in this matrix. In other words, r of the structural innovations can
have transitory effects and K — r of them must have permanent effects. If
there are r transitory shocks, we can restrict r columns of ZB to zero. Because
the matrix has reduced rank K — r, each column of zeros stands for K — r
independent restrictions only. Thus, the r transitory shocks represent r(K —r)
independent restrictions only. Still, it is useful to note that restrictions can
be imposed on the basis of our knowledge of the cointegrating rank of the
system which can be determined by statistical means. Further theoretical
considerations are required for imposing additional restrictions, however.

For local just-identification of the structural innovations in the B-model,
we need a total of K(K —1)/2 restrictions. Assuming that there are r shocks
with transitory effects only, we have already r(K — r) restrictions from the
cointegration structure of the model, this leaves us with K (K —1) —r(K —r)
further restrictions for just-identifying the structural innovations. In fact, r(r—
1)/2 additional contemporaneous restrictions are needed to disentangle the
transitory shocks and (K —r)((K —r)—1)/2 restrictions identify the permanent
shocks (see, e.g., King et al. (1991), Gonzalo & Ng (2001)). Then we have a
total of 2r(r—1)+3(K —r)(K—r)—1) = 1 K(K —1)—r(K —r) restrictions,
as required. Thus, it is not sufficient to impose arbitrary restrictions on B or
ZB, but we have to choose them to identify the transitory and permanent
shocks at least locally. In fact, the transitory shocks can only be identified
through restrictions directly on B because they correspond to zero columns
in EB. Thus, r(r — 1)/2 of the restrictions have to be imposed on B directly.
Generally, the restrictions have the form

Cggvec(EB) = ¢; or Civec(B) =¢; and  Cyvec(B) = ¢, (9.2.3)

where C) := C=g(Ix ® E) is a matrix of long-run restrictions, that is, Czp
is a suitable selection matrix such that Czgvec(EB) = ¢;, and C; specifies
short-run or instantaneous constraints by restricting elements of B directly.
Here ¢; and ¢, are vectors of suitable dimensions. In applied work, they are
typically zero vectors. In other words, zero restrictions are specified in (9.2.3)
for 2B and B.

As discussed for the stationary case in Section 9.1.2, the matrix B will
only be locally identified. In particular, in general we may reverse the signs of
the columns of B to find another valid matrix. Formal necessary and sufficient
conditions for local identification are given in the following proposition.

Proposition 9.4 (Local Identification of a SVECM)

Suppose the reduced form model (9.2.1) with Beveridge-Nelson MA represen-
tation (9.2.2) is given. Let B be a nonsingular (K x K) matrix. Then, the set
of equations
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Y. =BB', Cwvec(B)=¢ and Csvec(B) = cs,

with Cj, ¢, Cs, and ¢ as in (9.2.3), has a locally unique solution for B if and
only if

2D} (B ® Ik)
rk Cl = K2.
Cs

Proof: The model underlying Proposition 9.4 is a B-model. Therefore the
proposition can be shown using the same arguments as for Proposition 9.2.
Details are omitted. |

As an example, we consider a small model discussed by King et al. (1991).
They specified a model for the logarithms of private output (g;), consump-
tion (¢;), and investment (i;). Assuming that all three variables are I(1) with
cointegrating rank r = 2 and that there are two transitory shocks and one per-
manent shock, the permanent shock is identified without further assumptions
because K —r = 1 and, hence, (K — r)((K —r) —1)/2 = 0. Moreover, only
1 (= r(r —1)/2) further restriction is necessary to identify the two transitory
shocks. Placing the permanent shock first in the e, vector and allowing the
first transitory shock to have instantaneous effects on all variables, we may
use the following restrictions:

00 *
EB = 00 and B=| x (9.2.4)
00 *

* X %
* X %
* O *

Here asterisks denote unrestricted elements. The two zero columns in EB
represent two independent restrictions only because EB has rank 1. A third
restriction is placed on B in such a way that the third shock does not have an
instantaneous effect on the second variable. Hence, there are K(K —1)/2 =3
independent restrictions in total and the structural innovations are locally
just-identified. Uniqueness can be obtained by fixing the signs of the diagonal
elements of B.

In our three-dimensional example with two zero columns in EB, it does not
suffice to impose a further restriction on this matrix to ensure local uniqueness
of B. For that we need to disentangle the two transitory shocks which cannot
be identified by restrictions on the long-run matrix EB. Thus, we have to
impose a restriction directly on B. In fact, it is necessary to restrict an element
in the last two columns of B (see also Problem 9.1 for further details).

In the standard B-model with three variables, we need to specify at least
3 restrictions for identification. In contrast, in the present VECM case, as-
suming that r = 2 and there are two transitory shocks, only one restriction
is needed because two columns of EB are zero. Thus, taking into account the
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long-run restrictions from the cointegration properties of the variables may
result in substantial simplifications. In fact, for a bivariate system with one
cointegrating relation, no further restriction is required to identify the per-
manent and transitory shocks. It is enough to specify that the first shock is
allowed to have permanent effects while the second one can only have transi-
tory effects or vice versa. A more detailed higher-dimensional example may be
found in Breitung et al. (2004). Further discussion of partitioning the shocks
in permanent and transitory ones is also given in Gonzalo & Ng (2001) and
Fisher & Huh (1999).

9.3 Estimation of Structural Parameters

We will first consider estimation of the AB-SVAR model and then discuss
SVECMs. The A- and B-models are straightforward special cases which are
not treated separately in detail. For both SVARs and SVECMs, ML methods
are typically used and they will therefore be presented here.

9.3.1 Estimating SVAR Models
Suppose we wish to estimate the following SVAR model
Ay: = AAY;_1 + Bey, (9.3.1)

where Y/ | == [y;_1,---,¥i_p), A = [A1,..., 4], and &; is assumed to be
Gaussian white noise with covariance matrix Ik, &, ~ N (0,Ix). The nor-
mality assumption is just made for convenience to derive the estimators. The
asymptotic properties of the estimators will be the same under more general
distributional assumptions, as usual. The reduced form residuals correspond-
ing to (9.3.1) have the form u; = A~!Be;.

From Chapter 3, Section 3.4, the log-likelihood function for a sample
Y1, ..., Y7 is seen to be

ni(A,A,B) = —ElIn2r - Lin|A-1BB/A|
—str{(Y — AX)'[A7'BB/A1 7Y — AX)}
(9.3.2)
= constant + 2 In|A[? — Z1n |B|?
— L {ABIBTIA(Y — AX)(Y — AX)'},
where, as usual, Y := [y1,...,y7], X := [Y,...,Y7r_1], and the matrix rules

|A=1BB'(A=1)| = |A=1|2|B|? = |A|72|B|? and tr(VW) = tr(WV) have been
used (see Appendix A).

Suppose there are no restrictions on the reduced form parameters A. Then,
it follows from Section 3.4 that for any given A and B, the log-likelihood
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function Inl(A, A, B) is maximized with respect to A by A = Y X/(XX')~1.
Thus, replacing A with A in (9.3.2) gives the concentrated log-likelihood

T T T =
Inl.(A,B) = constant+ - In |A|2—§ In |B\2—§tr(A’B'_1B_1AEu), (9.3.3)

where ¥, = T-1(Y — AX)(Y — AX)'. Maximization of this function with
respect to A and B, subject to the structural restrictions (9.1.12) or (9.1.13),
has to be done by numerical methods because a closed form solution is usually
not available. If the restrictions are of the form (9.1.12), restricted maximiza-
tion of the concentrated log-likelihood amounts to maximization with respect
to ya and 7g. If these parameters are locally identified, the ML estimators
have standard asymptotic properties which are summarized in the following
proposition.

Proposition 9.5 (Properties of the SVAR ML Estimators)

Suppose y; is a stationary Gaussian VAR(p) as in (9.1.1) and structural re-
strictions of the form (9.1.12) are available such that ya and ~g are locally
identified. Then the ML estimators 74 and 7 are consistent and asymptoti-
cally normally distributed,

(][ <(2)")

where Z,(+) is the asymptotic information matrix. It has the form

I’yA_Ri\OzvecA Ran O
“\w /) | 0 Rg | “\ vecB 0 Rs

and
vec A
I“( vec B )
A" 'Be B! 9.3.4
B [ ~(Ix @B } e + ) o
x [(BPAP @B : —(Ix @ B™)]
[ ]

Proof: The proposition follows from the general ML theory (see Appendix
C.6). For the derivation of the asymptotic information matrix see Problem
9.4. [ |

If yo and g are identified, the same is true for A and B. Estimating these
matrices such that vec(A) = Ravya +ra and vec(B) = Rg7g + g, respectively,
we get the following immediate implication of Proposition 9.5.
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Corollary 9.5.1
Under the conditions of Proposition 9.5,

ﬁ([vec;&] B {vecAD LA (0, Das) |

vec B vec B

where
-1
o RA 0 YA R,/A 0
mo | =(0) 1% &l

If only just-identifying restrictions are imposed on the structural parame-
ters, we have for the ML estimator of X,

Y, =T (Y — AX)(Y — AX) = A" 'BB'A"" ",

If, however, over-identifying restrictions have been imposed on A and/or B,
the corresponding estimator for X,

Xr=A"'BB'A, (9.3.5)
will differ from fu In fact, the LR statistic,
g =T(In|X7 —In|2,)), (9.3.6)

can be used to check the over-identifying restrictions. Under the null hypoth-
esis that the restrictions are valid, it has an asymptotic y2-distribution with
degrees of freedom equal to the number of over-identifying restrictions. In
other words, the number of degrees of freedom is equal to the number of
independent constraints imposed on A and B minus 2K? — { K (K +1).

Computation of ML Estimates

Because the structural parameters A and B are nonlinearly related to the
reduced form parameters, no closed form of the ML estimates exists in general
and an iterative optimization algorithm may be used for actually computing
the ML estimates. Amisano & Giannini (1997) proposed to use a scoring
algorithm for this purpose. The i-th iteration of this algorithm is of the form

Rl @R e

where Z(-) denotes the information matrix of the free parameters va, g, that
is, in this case Z(-) = TZ,(+), s(-) is the score vector and ¢ is the step length
(see also Chapter 12, Section 12.3.2, for further discussion of optimization
algorithms of this type).
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The score vector can be obtained using the rules for matrix and vector
differentiation (Appendix A.13). Applying the chain rule for vector differen-
tiation, it is seen to be

YA\ _ _Oml Ry O vec A
’ ( . > B (va,78) B { 0 Ry S\ vecB )’ (9.3.8)
and
vec A\ Jdlnl B ([K®B”1) B
S ( vec B > - W - |: *(BflA(g) B/fl) s(vec[BT A])
vec B

with
s(vec[B~TA]) = Tvec([B~'A] 1Y) = T(Z, ® I )vec(B'A)

(see Problem 9.3 for further details). In practice, the iterations of the scoring
algorithm terminate if prespecified convergence criteria, such as the relative
change in the log-likelihood and the parameters, are satisfied. For this algo-
rithm to work, the inverse of the information matrix has to exist which is
guaranteed by the identification of the parameters, at least in a neighborhood
of the true parameter values. Giannini (1992) used this property to derive
alternative conditions for identification of the models presented in Section
9.1. More precisely, he derived identification conditions from the fact that, for
instance, the AB-model is locally identified if and only if the matrix

7, ( vec A )
vec B 9.3.9)
Ch 0 (9.3.
TG
has full column rank when Z,(-) is evaluated at the true parameter values (see
Rothenberg (1971)).

Although we have discussed models without deterministic terms and re-
strictions on the reduced form parameters, the ML estimation procedure for
the structural parameters can be extended easily to more general situations
which cover these complications. Again, estimation of the structural parame-
ters can be based on the concentrated likelihood function. If there are restric-
tions for the reduced form parameters A, for example, if a subset model is
considered, one may even use the EGLS estimator instead of the ML estima-
tor for these parameters in estimating the structural parameters. Clearly, in
that case, the white noise covariance estimator 3/, will not be the exact ML
estimator and the exact concentrated log-likelihood is obtained only if ML
estimators are substituted for the reduced form parameters A. Asymptoti-
cally, the corresponding estimators A, B based on the EGLS estimators will
have the same properties as the exact ML estimators, however. Even in small

samples, exact ML estimation may not result in substantial gains (see, e.g.,
Briiggemann (2004)).
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Estimation with Long-Run Restrictions a la Blanchard-Quah

If the total impact matrix = is restricted to be triangular as in Blanchard &
Quah (1989) and Gali (1999), estimation becomes particularly easy. Specifying
A = Ik, using the relation =, = (Ix — A; — -+ — A,) !B and noting that

Ewollo= (I — Ay = = Ay) ' Bl — AL~ = A

the matrix B can be estimated by premultiplying a Choleski decomposition
of the matrix

(Ig — Ay = = A Dy (Ig — Ay — - — ALY

by (Ixg — A1 —---— Ap).

This latter procedure works only if the VAR operator is stable and the
process is stationary because for integrated processes the inverse of (I —A; —
--+—A,) does not exist, as explained earlier. On the other hand, cointegrated
variables do not create problems for the other estimation methods for SVAR
models.

9.3.2 Estimating Structural VECMs

Suppose the structural restrictions for a VECM are given in the form of lin-
ear restrictions on EB and B, as in (9.2.3). For computing the parameter
estimates, we may replace E by its reduced form ML estimator,

p—1 -1
@ (IK —zri) m] &,
=1

where the f‘i’s are the ML estimators of the I';’s from Proposition 7.3 and
o, and B, are any orthogonal complements of the ML estimators o and B,
respectively. The restricted ML estimator of B can be obtained by setting
A = Ik and optimizing the concentrated log-likelihood function (9.3.3) with
respect to B, subject to the restrictions (9.2.3), with C; replaced by

E=0,

C) = Cep(lx ® B)

(see Vlaar (2004)). Although this procedure results in a set of stochastic re-
strictions, from a numerical point of view we have a standard constrained
optimization problem which can be solved by a Lagrange approach (see Ap-
pendix A.14) because E is fixed in computing the estimate of B. Due to the
fact that for a just-identified structural model the log-likelihood maximum is
the same as for the reduced form, a comparison of the log-likelihood values
can serve as a check for a proper convergence of the optimization algorithm
used for structural estimation.
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The properties of the ML estimator of B follow in principle from Corol-
lary 9.5.1. In other words, B is consistent and asymptotically normal under
standard conditions,

VT vee(B — B) 4, N(0, Xg).

The asymptotic distribution is singular because of the restrictions that have
been imposed on B. Thus, although t-ratios can be used for assessing the
significance of individual parameters, F-tests based on the Wald principle will
in general not be valid and have to be interpreted cautiously. Expressions for
the covariance matrices of the asymptotic distributions in terms of the model
parameters can be obtained in the usual way by working out the corresponding
information matrices (see Vlaar (2004)). For practical purposes, it is common
to use bootstrap methods for inference in this context.

In principle, the same approach can be used if there are over-identifying
restrictions for B. In that case, BB’ will not be equal to the reduced form
white noise covariance estimator X, however. Still the estimator of B will be
consistent and asymptotically normal under general conditions and also the
LR statistic given in (9.3.6) can be used to check the validity of the over-
identifying restrictions. It will have the usual asymptotic y2-distribution with
degrees of freedom equal to the number of over-identifying restrictions.

9.4 Impulse Response Analysis and Forecast Error
Variance Decomposition

Impulse response analysis can now be based on structural innovations. In
other words, the impulse response coefficients are obtained from the matrices

0, =®;,A"'B, j=0,1,2,....

Using the same reasoning as in Chapter 3, Section 3.7, the corresponding esti-
mated quantities are asymptotically normal as nonlinear functions of asymp-
totically normal parameter estimators,

\/Tvec(éj - 0)) <, N(0, Eéj).

In practice, bootstrap methods are routinely employed for inference in this
context. However, the same inference problems as in Chapter 3, Section 3.7,
prevail for structural impulse responses. More precisely, the asymptotic distri-
bution may be singular in which case confidence intervals based on asymptotic
theory or bootstrap methods may not have the desired confidence level even
asymptotically.

We use a set of quarterly U.S. data for the period 1947.1-1988.4 from
King et al. (1991) for the three variables log private output (¢¢), consumption
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Fig. 9.1. Quarterly U.S. log private output (—), consumption (- —), and investment

()

(ct), and investment (i) (all multiplied by 100) to illustrate structural impulse
responses.’ The three series are plotted in Figure 9.1. They all have a trending
behavior and there is some evidence that they are well modelled as I(1) series.
Applying LR tests for the cointegrating rank with a trend orthogonal to the
cointegration relations to a model with one lagged difference of the variables,
provides evidence for two cointegration relations, that is, r = 2 (see Section
8.2.4 for the description of the tests). Therefore we proceed from the following
estimated reduced form VECM (¢-statistics in parentheses):

—0.88

AQt (-0.2)

Ae | = | 283
- (-1.1)

Aiy —30.07
(—4.1)

! The data are available at the website http://www.wws.princeton.edu/ mwatson/.
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—0.23  0.20
(—3.6) (4.6) 1 0 -1.02 Qi1
+| —0.06 007 (—27.7) .
(15 (2.4) 01 -110 ot
—0.11  0.26 (—24.2) Q-1
| (-09)  (29)
[ 0.12 0.09  0.16
b o b [[20]
+ (?;42) (_2.,3) (d.g) A?tfl + | ue |- (94.1)
0.70 —0.17 0.33 Aiyy Usy
| (36)  (-06) (3.6

Before we can proceed with structural estimation, we have to specify iden-
tifying restrictions. Using the zero restrictions from (9.2.4), the following es-
timates are obtained:

0.08 1.03 —045
0.8)

(0.4)  (3.9) —o0.
R _ —-0.60 0.43 0
B= (—0.7) 1) (9.4.2)
0.26 1.96 1.00
0.6) (5.1 (1.9)
and
-0.71 0 O
(—0.8)
=5 _ -0.76 0 0
=B = (~0.8)
—-069 0 O
(=0.8)

Here bootstrapped t-statistics based on 2000 bootstrap replications are given
in parentheses. In other words, the standard deviations of the estimates are
obtained with a bootstrap (see Appendix D.3) and then the estimated coef-
ficients are divided by their respective bootstrap standard deviations to get
the t-ratios. Clearly, some of the t-ratios are quite small. Thus, it may be
possible to impose over-identifying restrictions. In fact, because all t-ratios
of the nonzero long-run effects are small, it may be tempting to argue that
no significant permanent effect is found. Recall, however, that, based on the
unit root and cointegration analysis, there cannot be more shocks with tran-
sitory effects. We have used the just-identified model for an impulse response
analysis to shed more light on this issue.

There are three structural innovations, one of which must have perma-
nent effects if the cointegration rank is 2. In Figure 9.2, the responses of all
three variables to the shock with potentially permanent effects are depicted.
The 95% confidence intervals are based on 2000 replications. Considering the
confidence intervals determined with Hall’s percentile method (see Appendix
D.3), it turns out that none of the confidence intervals associated with longer
term responses contains zero. Hence, a significant long-run effect may actually
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Fig. 9.2. Responses of output, consumption, and investment (top to bottom) to
a permanent shock with Hall percentile (left) and standard percentile (right) 95%
bootstrap confidence intervals based on 2000 bootstrap replications.

be present for each of the three variables. If, however, the standard percentile
bootstrap confidence intervals are used for the impulse responses, the situa-
tion is quite different. These confidence intervals are also shown in Figure 9.2
and they all include zero for longer term horizons. Thus, the results are not
very robust with respect to the methods used. Clearly, the confidence intervals
are quite asymmetric around the point estimates. In such a situation the Hall
percentile confidence intervals may be more reliable due to their built-in bias
correction.

The estimated responses to the permanent shock are all negative in the
long-run. To see the effects of an impulse which leads to positive long-run
effects, we can just reverse the signs of the responses. This follows from the
unidentified signs of the columns of B discussed in Sections 9.1.2 and 9.2.
Generally, the effects of positive and negative shocks of the same size are
identical in absolute value because our model is a linear one which does not
permit asymmetric reactions to positive and negative shocks.

In Figure 9.3, the responses of the variables to the two transitory shocks
are shown. All impulse responses approach zero quickly after some periods
and the effects of the shocks after 20 periods are practically negligible. The
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Fig. 9.3. Responses of output, consumption, and investment (top to bottom) to
transitory shocks with 95% Hall percentile bootstrap confidence intervals based on
2000 bootstrap replications (identification restriction (9.4.2)).

identifying restriction on the B matrix is clearly seen in the right-hand panel
in the middle row of Figure 9.3. Here the instantaneous effect of the second
transitory shock on ¢; is zero. If a zero restriction is imposed instead on the
upper right-hand corner element of B, the estimated matrix becomes

0.08
(0.4)
—0.60
(~0.7)

0.26
(0.6)

W
|

1.12
(5.7)
0.39
(2.9)

1.39
(4.5)

(

0
(1.4)
1
1

0
17

.70
1.2)

(9.4.3)

and the corresponding structural impulse responses are depicted in Figure 9.4.
Obviously, the identification restriction determines to some extent the shape
of the impulse responses. At least the responses to the second transitory shock
are quite different from those based on the identification restriction (9.4.2).
Now, of course, g; reacts only with a delay to the second transitory shock.
The first column of B in (9.4.3) is unchanged relative to (9.4.2) and, more
generally, the responses to the permanent shock (not shown) are unaffected
because that shock is identified without additional restrictions.
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Fig. 9.4. Responses of output, consumption, and investment (top to bottom) to
transitory shocks with 95% Hall percentile bootstrap confidence intervals based on
2000 bootstrap replications (identification restriction (9.4.3)).

Forecast error variance decompositions can also be based on the structural
innovations. The computations are based on the ©; as in Section 2.3.3. The
interpretation may be different, however. It may not be possible to associate
the structural innovations uniquely with the variables of the system. There-
fore, the forecast errors are not decomposed into contributions of the different
variables but into the contributions of the structural innovations. For instance,
for the example system with identifying restriction on B as in (9.4.2), a fore-
cast error variance decomposition is shown in Figure 9.5. Now we can see that
the permanent shocks (the first components of the €,’s) have a growing im-
portance with increasing forecast horizon, where the estimation uncertainty
is ignored, however. In turn, the importance of the transitory shocks (shocks
number 2 and 3) declines for all three variables. Actually, the third shock (the
second transitory shock) does not contribute much to the forecast errors of
any of the three variables.
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Fig. 9.5. Forecast error variance decomposition of the output, consumption, and
investment system based on identification scheme (9.4.2) with relative contributions
of the permanent shock (1) and the two transitory shocks (2 and 3).

9.5 Further Issues

Structural VARs and VECMs have not only found widespread use in applied
work but there are also numerous further methodological contributions. For
example, confidence bands for impulse responses are sometimes constructed
with Bayesian methods (e.g., Koop (1992)). In fact, the practice of reporting
confidence intervals around individual impulse response coefficients was ques-
tioned by Sims & Zha (1999). They proposed likelihood-characterizing error
bands as alternatives.

Also other forms of identifying restrictions were considered by some au-
thors. For example, Uhlig (1994) proposed to use inequality constraints for
the impulse responses for identifying them. In contrast, Lee, Pesaran & Pierse
(1992) and Pesaran & Shin (1996) considered persistence profiles which mea-
sure the persistence of certain shocks without imposing structural identifica-
tion restrictions.

It may be worth remembering, however, that structural impulse responses
are not immune to some of the problems discussed in Chapter 2 in the context
of impulse response analysis. In particular, omitted variables, filtering and
adjusting series prior to using them for a VAR analysis and using aggregated
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or transformed data can lead to major changes in the dynamic behavior of
the model. For instance, if an important variable is omitted from a system of
interest, adding it can change in principle all the impulse responses. Similarly,
using seasonally adjusted and, hence, filtered data can change the dynamic
structure of the variables and, thus, may lead to impulse responses which are
quite different from those for unadjusted variables. These problems are not
solved by imposing identifying restrictions and are worth keeping in mind also
in a structural VAR analysis.

9.6 Exercises

9.6.1 Algebraic Problems

Problem 9.1
Show that for a three-dimensional VECM with cointegration rank r = 2, the
set of restrictions

[
oy}
I

is not sufficient for identification. Moreover, show that the restrictions

[1
vy)
Il
® % %

00 0
00 and B= | %
00 *

¥ ¥ ¥
* ¥ ¥

do not identify B locally.
(Hint: Choose

- b1 O
=% e
where B is a (2 x 2) matrix. Show that Bz is not unique.)

Problem 9.2
Suppose a four-dimensional process y; can be written in VECM form (9.2.1)
with cointegrating rank 2. Impose just-identifying restrictions on B and EB.

Problem 9.3
Define C' = B~!A and write the concentrated log-likelihood (9.3.3) as
T -
Inl.(C) = constant + T'In |C| — Etr(C’C’Eu).

Use the rules for matrix differentiation from Appendix A.13 to show that

olnl,
oC

=TC'-TCSX,.
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Next show that

dvec(B71A) 1
— =] B
dvec(A) K®
and
dvec(B71A) Y1 1
—————~=—(A'B B™).
O vec(B)’ ( © )

Use these results to derive an explicit expression for the score vector

s ( YA > - 8lnl
w ) Iae)
Problem 9.4

Define a := [vec(A)’, vec(B)']" and «y := (va,v5)’ and show that, for the setup
in Proposition 9.5,

& 9% 1nl _ R, 0 B 0% 1nl Rpn O .
OO0y 0 Ry Dada 0 Rs

Moreover, show that (9.3.4) holds by proving that

B Il 8vec(2u)’E 9% 1nl dvec(X,)
dada’ ) Oa dvec(X,)0vec(X,) da’
and, for C such that CC’ = ¥,
dvec(X,)  Ovec(CC") dvec(C) O vec(C)

= I+ Kgr)(C® Ik)

da’  Odvec(C)  0a’ oa’

(see also Chapter 3 for related derivations).

9.6.2 Numerical Problems

Problem 9.5

Specify, estimate, and analyze a model for U.S. quarterly log output (¢;) and

the unemployment rate (ur;) for the period 1948.2-1987.4 as given in the

Journal of Applied Econometrics data archive at
http://www.econ.queensu.ca/jae/

(see the data for Weber (1995)). Blanchard & Quah (1989) considered this

system in their study.

(a) Analyze the integration and cointegration properties of the data.

(b) Fit a suitable VAR model to the bivariate series.

(¢) Check the adequacy of the model.

(d) Impose an identifying restriction on the long-run total impact matrix and
perform a structural impulse response analysis.
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(e) Compare standard and Hall percentile confidence intervals for the impulse
responses and interpret possible differences.

(f) Perform a forecast error variance decomposition and comment on the re-
sults.

(Hint: See Breitung et al. (2004) for a similar analysis.)

Problem 9.6
Analyze the Canadian labor market data from Breitung et al. (2004) (see
www.jmulti.de — datasets
for the data). The variables are:
p¢ — In productivity,
e; — In employment,
ury — unemployment rate,
wy — In real wage index.
Thus, y: = (p¢, e, ury, wy) is four-dimensional. The data are quarterly for the
period 1980.1-2000.4. They are constructed as described in Breitung et al.
(2004) based on data from the OECD database. Note that Breitung et al.
(2004) use a slightly different notation for the variables.
(

(a) Analyze the integration and cointegration properties of the data.
(b) Fit a VECM with cointegration rank r =1 for y;.
¢) Check the adequacy of your model.
(d) Impose identifying restrictions of the form
%k % ok * 000
B:**** andEB:***O
* ok ok ok * x % 0
* 0 % x * % x 0

and perform a structural impulse response analysis.

(e) Compare standard and Hall percentile confidence intervals for the impulse
responses and interpret possible differences.

(f) Impose another zero restriction on B and repeat the structural impulse
response analysis.

(g) Perform forecast error variance decompositions based on the structural
innovations for different identification schemes and comment on the re-
sults.

(Hint: See Breitung et al. (2004) for a detailed analysis of the system.)
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Systems of Dynamic Simultaneous Equations

10.1 Background

This chapter serves to point out some possible extensions of the models con-
sidered so far and to draw attention to potential problems related to such
extensions. So far, we have assumed that all stochastic variables of a system
have essentially the same status in that they are all determined within the
system. In other words, the model describes the joint generation process of all
the observable variables of interest. In practice, the generation process may be
affected by other observable variables which are determined outside the sys-
tem of interest. Such variables are called exogenous or unmodelled variables.
In contrast, the variables determined within the system are called endogenous.
Although deterministic terms can be included in the set of unmodelled vari-
ables, we often have stochastic variables in mind in this category. For instance,
weather related variables such as rainfall or hours of sunshine are usually re-
garded as stochastic exogenous variables. As another example of the latter
type of variables, if a small open economy is being studied, the price level or
the output of the rest of the world may be regarded as exogenous. A model
which specifies the generation process of some variables conditionally on some
other unmodelled variables is sometimes called a conditional or partial model
because it describes the generation process of a subset of the variables only.
A model with unmodelled variables may have the structural form

Ay, = Ajys1+- -+ Ay p+ By + Biay—1 +- -+ Biay_ g +wy, (10.1.1)

P
where y: = (Y1t - - ., yxe)' is a K-dimensional vector of endogenous variables,
xt = (T14y ..., o)’ is an M-dimensional vector of unmodelled variables, A is

(K x K) and represents the instantaneous relations between the endogenous
variables, the A7’s and B}’s are (K x K) and (K x M) coefficient matri-
ces, respectively, and wy, is a K-dimensional error vector. The vector x; may
contain both stochastic and non-stochastic components. For example, it may
include intercept terms, seasonal dummies, and the amount of rainfall in a spe-
cific region. If the error term w; is white noise, a model of the type (10.1.1) is
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sometimes called a VARX(p, s) model in the following. More generally, models
of the form (10.1.1) are often called linear systems because they are obviously
linear in all variables. In the econometrics literature, the label (linear) dy-
namic simultaneous equations model (SEM) is used for such a model. Because
we often have systems of economic variables in mind in the following discus-
sion, we will use this name occasionally. We will also consider a vector error
correction version of the model which is useful when cointegrated variables
are involved.

Other names that are occasionally found in the related literature are trans-
fer function models or distributed lag models. These terms will become more
plausible in the next section, where different representations and some prop-
erties of our basic model (10.1.1) will be discussed. Estimation is briefly con-
sidered in Section 10.3 and some remarks on model specification and model
checking follow in Section 10.4. Possible uses of such models, namely fore-
casting, multiplier analysis, and control, are treated in Sections 10.5-10.7.
Concluding remarks are contained in Section 10.8. It is not the purpose of
this chapter to give a detailed and complete account of all these topics. The
chapter is just meant to give some guidance to possible extensions of the by
now familiar VAR models and VECMs, the related problems and some further
reading.

10.2 Systems with Unmodelled Variables

10.2.1 Types of Variables

In the dynamic simultaneous equations model (10.1.1), we have partitioned
the observables in two groups, y; and x;. The components of y; are endoge-
nous variables and the components of z; are the unmodelled or exogenous
variables. Although we have given some explanation of the differences be-
tween the two groups of variables, we have not given a precise definition of
the terms endogenous and exogenous so far. The idea is that the endoge-
nous variables are determined within the system, whereas the unmodelled,
exogenous variables are those on which we can condition the analysis without
affecting the results of interest. Because there are different possible objectives
of an analysis, there are also different notions of exogeneity. For example, if we
are interested in estimating a particular parameter vector =, say, x; is exoge-
nous if the estimation properties do not suffer from conditioning on x; rather
than using a full model for the data generation process of all the variables
involved. In that case, x; is called weakly exogenous for ~. This and other
types of exogeneity have been formalized by Engle, Hendry & Richard (1983).
They call z; strongly exogenous if we can condition on this set of variables for
forecasting purposes without loosing forecast precision and they classify x; as
super-exogenous if policy analysis can be made conditional on these variables
(see also Geweke (1982), Hendry (1995, Chapter 5), Ericsson (1994) for more
discussion of exogeneity).
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A simple technical definition is to call z; exogenous if s, X¢_1,...,Ti_s
are independent of the error term w;. Moreover, x; is sometimes called strictly
exogenous if all its leads and lags are independent of all leads and lags of the
error process wy, that is, if x; and w; are independent processes. Such as-
sumptions simplify derivations of properties of estimators and are therefore
convenient. They may be unnecessarily restrictive, however, for some pur-
poses. In the following, we will implicitly make the assumption that z; and
wy are independent processes for convenience, although most results can be
obtained under less restrictive conditions.

For much of the present discussion, a formal definition of the types of
variables involved is not necessary. It suffices to have a partitioning into two
groups of variables. The reader should, however, have some intuition of which
variables are contained in y; and which ones are included in ;. As mentioned
previously, roughly speaking, y; contains the observable outputs of the system,
that is, the observable variables that are determined by the system. In con-
trast, the z; variables may be regarded as observable input variables which are
determined outside the system. In this setting, the error variables w; may be
viewed as unobservable inputs to the system. As we have seen, nonstochastic
components may be absorbed into the set of x; variables. All or some of the
components of x; may be under full or partial control of the government or a
decision or policy maker. In a control context, such variables are often referred
to as instruments or instrument variables (see Section 10.7). Sometimes the
lagged endogenous variables together with the exogenous variables of a system
are called predetermined variables. If x; contains just a constant and s = 0,
the model (10.1.1) reduces to a VAR model, provided w; is white noise.

For illustrative purposes, consider the following example system relating
investment (x1¢), income (y1+), and consumption (ys;) variables:

Yie = Vi + oGy 1Y1e—1 + &o Y21 + Bia @11 + Wiy,
(10.2.1)
Yor = V3 + Q%9 1Y2,4—1 + A21,0Y1t + A5y 1Y1,t—1 + W

This model is similar to those obtained for West German data in Chapter 5.
An important difference is that current income appears in the consumption
equation and there is no equation for investment. Thus, only income and
consumption are determined within the system whereas investment is not.
The fact that investment is, of course, determined within the economic system
as a whole does not necessarily mean that we have to specify its generation
mechanism if our main interest is with the generation mechanism of income
and consumption. In terms of the representation (10.1.1), the example system
can be written as

1 Oy | _ | @1 Qi2n Yi,t—1
—ago 1 Yot Q311 Qo Y2,t-1

+[ Vi Piza } { ! } + {w” } (10.2.2)
vy 0 T1,6—1 Wat
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Thus, y¢ = (Y11, y2:)’ and x; = (1, z1;) are both two-dimensional. The prede-
termined variables are y; 1 and z;_1.

In dynamic SEMs there are sometimes identities or exact relations between
some variables. For instance, the same figures may be used for supply and
demand of a product. In that case, an identity equating supply and demand
may appear as a separate equation of a system. So far we have not excluded
this possibility. However, in later sections the covariance matrix of w; will be
assumed to be nonsingular which excludes identities. Then we assume without
further notice that they have been eliminated by substitution. For instance,
the demand variable may be substituted for the supply variable in all instances
where it appears in the system.

10.2.2 Structural Form, Reduced Form, Final Form

The representation (10.1.1) is called the structural form of the model if it
represents the instantaneous effects of the endogenous variables properly. The
instantaneous effects are reflected in the elements of A. The idea is that the
instantaneous causal links are derived from theoretical considerations and are
used to place restrictions on A. Of course, multiplication of (10.1.1) with any
other nonsingular (K x K) matrix results in an equivalent representation of
the process generating y;. Such a representation is not called a structural
form, however, unless it reflects the actual relations of interest.

The reduced form of the system is obtained by premultiplying (10.1.1) with
A~! which gives

yr = A1+ -+ Apye—p + Boxe + - - - + Boxy—s + Uy, (10.2.3)

where A; := A7YAF (i =1,...,p), Bj := A_lB;k (j=0,1,...,s), and us :=
A~lw,. We always assume without notice that the inverse of A exists. In
Sections 10.5-10.7, we will see that the reduced form is useful for forecasting,
multiplier analysis, and control purposes.

For the example model given in (10.2.2), we have

_ 1 0
A 1 =
|: a21,0 1 :l

and, hence, the reduced form is

Y1t Y1,t—1 1 Ul
=A| 77 + By + , (10.2.4)
Yot Y2.t—1 T1,t—1 Ut
where
* *
A = 11,1 a2 | ay1,1 Q121
Q21,1 Q221 a21,0001 1 + Q311 a210Q791 t 507 |

(10.2.5)
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B, = [ﬂll,l Piz,1 } _ [ vf B2 7 (10.2.6)

* * *
Baiq B2z ag1,0v + Vs 321,0512,1

and

Uit | _ Wit
Ugt A21,0W1t + Wat

It is important to note that the reduced form parameters are in general non-
linear functions of the structural form parameters.
In lag operator notation, the reduced form (10.2.3) can be written as

A(L)yr = B(L)w + u, (10.2.7)
where

A(L):=Ix —AqL—---—A,LP
and

B(L):=By+ B1L+---+ BsL".

If the effect of a change in an exogenous variable on the endogenous variables is
of interest, it is useful to solve the system (10.2.7) for the endogenous variables
by multiplying with A(L)~!. The resulting representation,

yr = D(L)z; + A(L) 'y, (10.2.8)

where D(L) := A(L)"'B(L), is sometimes called the final form of the system.
Of course, using A(L)~! requires invertibility of A(L) which is guaranteed if

det A(z) #0 for |z] < 1. (10.2.9)

If y; contains just one variable, A(L) is a scalar operator and the form (10.2.8)
is often called a distributed lag model in the econometrics literature because it
describes how lagged effects of changes in x; are distributed over time. Because
the lag distribution for each exogenous variable can be written as a ratio of
two finite order polynomials in the lag operator (A(L)~'B(L)), the model is
referred to as a rational distributed lag model. In the time series literature, the
label rational transfer function model is often attached to (10.2.8) in both the
scalar and the vector case. The operator D(L) represents the transfer function
transferring the observable inputs into the outputs of the system.
For the example model with reduced form (10.2.4), we get a final form

{y“] _ (IQAlL)lBlL[;lJJr(IQAlL)l[ZZ}

Yot
_ — i1 i 1 i Uy
_ <§ Al BlL> [xu ] + (;_0 A1L> [th ] (10.2.10)

i=1
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Note that By = 0 and thus, Dy =0 and D; = Ai_lBl fori=1,2,....
The coefficient matrices D; = (di; ;) of the transfer function operator

D(L) = i D;L’
=0

contain the effects that changes in the exogenous variables have on the en-
dogenous variables. Everything else held constant, a unit change in the j-th
exogenous variable in period ¢ induces a marginal change of d;; units in the
k-th endogenous variable in period t + i. The elements of the D; matrices
are therefore called dynamic multipliers. The accumulated effects contained
in Y1, D; are the n-th interim multipliers and the elements of >_:  D; are
the long-run effects or total multipliers. We will return to multiplier analysis
in Section 10.6.

As in the example, the transfer function operator D(L) has infinite order
in general. A finite order representation of the system is obtained by noting
that A(L)™! = A(L)*¥ /|A(L)|, where A(L)*¥ denotes, as usual, the adjoint
of A(L). Thus, multiplying the reduced form by A(L)*¥ gives

|A(L)|y; = A(L)*¥ B(L)z; + A(L)*¥u, (10.2.11)

which involves finite order operators only. In the econometrics literature these
equations are sometimes called final equations. Because |A(L)| is a scalar
operator, each equation contains only one of the endogenous variables.

Assuming that the unmodelled variables x; are driven by a VAR(q) pro-
cess, say

= Crzy_y + -+ Cqxp_g + vy,

where ¢ < p and v; is white noise, then the joint generation process of z; and
Yt 1S

Ix —DBy Yt _ A By Yi—1 +
0 I Ty o 0 Ci Ty q

Ap Bp Yt—p Uy
Al

where it is assumed without loss of generality that s,q < p, B; :=0fori > s
and C; := 0 for j > q. If u; is also white noise, premultiplying by

Ix —DBy 71_ Ix By
0 Iy B 0 Iy

shows that the joint generation process of y; and z; is a VAR(p).
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10.2.3 Models with Rational Expectations

Sometimes the endogenous variables are assumed to depend not only on other
endogenous and exogenous variables but also on expectations on endogenous
variables. If only expectations formed in the previous period for the present
period are of importance, one could simply add another term involving the ex-
pectations variables to the structural form (10.1.1). Denoting the expectations
variables by y¢ may then result in a reduced form

ye=Ayp—1+ -+ Apyi—p + Fy; + Boxy + -+ + Bsxy—s +up (10.2.12)
or
A(L)yr = Fy; + B(L)w¢ + u, (10.2.13)

where F'is a (K x K) matrix of parameters and A(L) and B(L) are the matrix
polynomials in the lag operator from (10.2.7).

Following Muth (1961), the expectations yf formed in period ¢ — 1 are
called rational if they are the best possible predictions, given the information
in period t—1. In other words, yf is the conditional expectation F;_1(y:), given
all information available in period ¢t — 1. In forming the predictions or expecta-
tions, not only the past values of the endogenous and unmodelled variables are
assumed to be known but also the model (10.2.12) and the generation process
of the unmodelled variables. It is easy to see that, if the unmodelled variables
are generated by a VAR process, the expectations variables can be eliminated
from (10.2.12)/(10.2.13). The resulting reduced form is of VARX type. To
show this result, suppose that u; is independent white noise and, as before,
denote by E; the conditional expectation, given all information available in
period ¢. Applying F;_1 to (10.2.12) then gives

yi = Eia(y)
= Alyt—l + -+ Apyt—p
+Fy; + BoEi—1(x¢) + Bixi—1 + -+ + Bswy—s (10.2.14)

or

y; = (A(L) — Ix)ys + Fyi + BoEi—1(x¢) + (B(L) — Bo)y. (10.2.15)
Assuming that Ix — F is invertible, this system can be solved for yg:

yi = (Ix — F) ' [(A(L) = Ix)ys + BoEi—1(z¢) + (B(L) — Bo)a]. (10.2.16)
If x; is generated by a VAR(q) process, say

2y = Cr@p—1 + -+ Cyqp—q + V4,

where v; is independent white noise, then
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Et,l(xt) = C1$t71 + -+ qutfq'

Substituting this expression in (10.2.16) shows that yf depends on lagged
yr and x; only. Thus, substituting for y¢ in (10.2.12) or (10.2.13), we get a
standard VARX form of the model.

Thus, in theory, when the true coefficient matrices are known, we can
simply eliminate the term involving expectations variables and work with
a standard reduced form without an expectations term. It should be clear,
however, that substituting the right-hand side of (10.2.16) for y§ in (10.2.12)
implies nonlinear restrictions on the coefficient matrices of the reduced form
without expectations terms. Taking into account such restrictions may in-
crease the efficiency of parameter estimators. The same is true, of course,
for the structural form. Therefore, it is important in practice whether or not
the actual relationship between the variables is partly determined by agents’
expectations.

For expository purposes we have just treated a very special case where only
expectations formed in period ¢ — 1 for period t enter the model. Extensions
can be treated in a similar way. For instance, past expectations for more than
one period ahead or expectations formed in various previous periods may be
of importance. If z; is generated by a VAR(q) process, they can be eliminated
like in the special case considered in the foregoing.

A complication of the basic model that makes life a bit more difficult is
the inclusion of future expectations. It is quite realistic to suppose that, for
instance, the expected future price of a commodity may determine the supply
in the present period. For example, if bond prices are expected to fall during
the next period, an investor may decide to sell now. If future expectations
enter the model, the solution for the endogenous variables will in general not
be unique. In other words, the process that generates the endogenous variables
may not be uniquely determined by the model, even if the generation process
of the exogenous variables is uniquely specified. Further extensive discussions
of rational expectations models can be found in volumes by Lucas & Sargent
(1981) and Pesaran (1987).

10.2.4 Cointegrated Variables

Many of the results discussed so far in this section hold for systems of station-
ary or integrated variables. More precisely, whenever the VAR, operator A(L)
is not required to be invertible, integrated variables may be present as en-
dogenous as well as unmodelled variables. If there are cointegrated variables,
it may be preferable, however, to separate the short- and long-run dynam-
ics as in a VECM. Assuming that there are r cointegration relations among
the endogenous variables and they are not cointegrated with the unmodelled
variables, the corresponding form of the model is

Ady, = By +TT Ay 1+ + L) 1 AYt—pt1
+Bjxs + Bixi—1 + -+ Bixy_s + wy, (10.2.17)
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where A is a (K x K) matrix of instantaneous effects, as before, o* is a (K x )
matrix of structural loading coefficients, B is the (K x r) cointegration matrix,
I} (j=1,...,p—1)is a (K x K) matrix of structural short-run coefficients,
and all other symbols are defined as in (10.1.1). In many respects, this model
can be dealt with in essentially the same way as the VECMs considered in
Part IT of this volume.

It is also possible, however, that there is cointegration between endogenous
and unmodelled variables. In that case, a suitable form of the model is

Ady, = OC*B+/[ Zx/tf } +T7AY 1+ + T 1 Ay pia

+Y Az + YT Az 1+ -+ X Axy_ g1 + wy, (10.2.18)

where now the unmodelled variables appear in levels form in the error correc-
tion term only and otherwise enter in differenced form with suitable coefficient
matrices Y (j =0,1,...,s—1). It is easy to see that such a model form can
be obtained if the joint generation process of y; and z; has a (reduced form)
VECM representation

Ayy _ o +r| Yt—1 rn 1, Ay
|: Al‘t :| o |: Oy :|[3 |: Tt—1 * 0 ]._‘;f Al‘t_l +

]-‘p—l Tp—l Ayt7p+1 Ut
+[ 0, || An | T | (10.2.19)

where p > s is assumed without loss of generality and all symbols have obvious
definitions. Premultiplying this model form with

A =7

{ 0 Iy ]
gives a model where the first K equations are just the structural form
(10.2.18). Notice, however, that the y; may enter the z,; equations in (10.2.19)
via the cointegration relations if a, # 0. It turns out that z; is weakly ex-
ogenous for BT, if o, = 0. Thus, if the cointegration relations are of primary
interest, considering the partial model for Ay, is justified if o, = 0.

Both models (10.2.17) and (10.2.18) can be rewritten in levels form. The

result is then a structural form as in (10.1.1). Moreover, the structural forms
can be converted into reduced form by premultiplying with A~

10.3 Estimation

Parameter estimation in the presence of unmodelled variables will be dis-
cussed separately for stationary and cointegrated variables. We begin with
the stationary case.
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10.3.1 Stationary Variables

Suppose (y;, x;)" is generated by a stationary process and we wish to estimate
the parameters of the reduced form (10.2.3) which can be written as

Y — Athfl + Bthl + Boxt + Uy, (1031)
where A :=[Ay,...,4,], B:=[By,...,B],
Yt T
Y, = , Xy =
yt—p-i-l Ti—s+1

Here u; is assumed to be standard white noise with nonsingular covariance
matrix Y,. Moreover, we allow for parameter restrictions and assume that a
matrix R and a vector v exist such that

B := vec|A, B, By] = R~. (10.3.2)

With these assumptions, estimation of B and, hence, of A, B, and By is
straightforward.
For a sample of size T, the system can be written compactly as

Y = [A, B, B)|Z + U, (10.3.3)
where
Yo,...,YT,1
Y =[y,...,yr], Z:=1| Xo,..., X711 and U :=[ug,...,ur].
T1y-..-,XT

Vectorizing gives
y= (Z/ ®IK)R’Y +u,

where y := vec(Y) and u := vec(U). From Chapter 5, the GLS estimator is
known to be

N=[R(Z2Z © X;)R|"'R(Z 2 & V)y. (10.3.4)

This estimator is not operational because in practice X, is unknown. However,
as in Section 5.2.2, X, may be estimated from the LS estimator

Y =[R(ZZ @ Ix)R| 'R (Z ® Ix)y
which gives residuals u =y — (2’ ® Ix) RY and an estimator

>, =00")T (10.3.5)
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of X, where U is such that vec(U/) = 1. Using this estimator of the white
noise covariance matrix results in the EGLS estimator

3=[R(2Z @ E;)YR 'R (Z® £, )y. (10.3.6)

Under standard assumptions, this estimator is consistent and asymptotically
normal,

VT(F =) SN0, 25), (10.3.7)
where
s = (Rplim(T™'22") @ ¥ 'R) . (10.3.8)

One condition for this result to hold is, of course, that both plim T-'ZZ’ and
the inverse of the matrix in (10.3.8) exist. Further assumptions are required
to guarantee the asymptotic normal distribution of the EGLS estimator. The
assumptions may include the following ones: (i) u; is standard white noise,
(ii) the VAR part is stable, that is,

|A(z)| = g — A1z — - — Ap2P| #0  for |z] <1,

and (iii) x; is generated by a stationary, stable VAR, process which is inde-
pendent of the white noise process u;. A precise statement of more general
conditions and a proof are given, e.g., by Hannan & Deistler (1988). The latter
part of our set of assumptions requires that all the exogenous variables are
stochastic. It can be modified so as to include nonstochastic variables as well.
In that case, the plim in (10.3.8) reduces to a nonstochastic limit in some or
all components (see, e.g., Anderson (1971, Chapter 5), Harvey (1981)).

An estimator for 8 = R~y is obtained as 8 = R?y. If (10.3.7) holds, this
estimator also has an asymptotic normal distribution,

o~

VT(B - B)-% N(0, T3 =RI;R), (10.3.9)

Moreover, under general conditions, the corresponding estimator fu of the

white noise covariance matrix is asymptotically independent of ﬁ and has the
same asymptotic distribution as the estimator UU’/T based on the unob-
served true residuals. For instance, for a Gaussian process,

VT vech(S, — £,) 5 N(0,2D} (2, ® £,)DE), (10.3.10)

where D}, = (D%Dg) !D% is the Moore-Penrose inverse of the (K? x
1K(K 4 1)) duplication matrix D.
In discussing direct reduced form estimation with white noise errors, we

have treated a particularly simple case. The following complications are pos-
sible.
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(1) Usually there will be restrictions on the structural form coefficients A,
Af,i=1,...,p,and B}, j =0,...,s. Such restrictions may imply nonlin-
ear constraints on the reduced form coefficients which are not covered by
the above approach. Rational expectations assumptions may be another
source of nonlinear restrictions on the reduced form parameters. Theoreti-
cally, it is not difficult to handle nonlinear restrictions on the reduced form
parameters. In practice, numerical problems may arise in a multivariate
LS or GLS estimation with nonlinear restrictions.

(2) Interest may focus on the structural rather than the reduced form. Es-
timation of the structural form has been discussed extensively in the
econometrics literature. For recent surveys and many further references
see Judge et al. (1985), Hausman (1983), or textbooks such as Hayashi
(2000). A major complication in estimating the structural form of a SEM
such as (10.1.1) results from its possible nonuniqueness. Note that we
have not assumed a triangular A matrix or a diagonal covariance matrix
of w;. Premultiplication of (10.1.1) by any nonsingular matrix results in
an equivalent representation of the process. Thus, for proper estimation
there must be restrictions on the structural form coefficients that guaran-
tee uniqueness or identification of the structural form coefficients.

(3) So far we have just discussed models which are linear in the variables.
In practice, there may be nonlinear relations between the variables. Es-
timation of nonlinear dynamic models where the endogenous as well as
the unmodelled conditioning variables may enter in a nonlinear way are,
for instance, discussed by Bierens (1981), Gallant (1987), and Gallant &
White (1988).

In the next section, we will consider models with integrated and cointe-
grated variables.

10.3.2 Estimation of Models with I(1) Variables

If there are integrated and cointegrated variables in the model and a reduced
form VECM corresponding to the structural form (10.2.18),

t—1
+Y oAz + Y 1Az g + -+ Y1 ATy 1 + Uy, (10311)

Ayt = (XB+,|: :;/til :| + I‘lAyt—l +-+ ]-‘p—lAyt—p+1

is set up, estimation can in principle proceed as in Section 7.2. Assuming that
a sample of size T" and all required presample values are available and defining

AY = [Ay,. .., Ayr],

le = [y()+7 .. 71/’14:71], with yj—l = |: Yt-1 :|7
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Ay
Ayt—p+1
AXT = [AXS, ..., AXS ] with AXD = Axy ,
Az
| A5t |
and
U .= [U,h...,’U,T],
we get
AY = oY +TTAXT 4 U, (10.3.12)
where
rt.=r;: TS PRI R STETEE Uy

Thus, we have precisely the same model form as in Section 7.2 (see, e.g.,
(7.2.3)) and, in principle, all the estimators of that section are available. No-
tice, however, that now BT is a ((K 4+ M) x r) matrix whereas o is still
(K x 7). Because the error correction term now involves all the cointegration
relations between the endogenous and unmodelled variables, it is possible that
r > K. In that case, it is easy to see that most of the estimators of Section
7.2 are not available. Thus, we have to assume that » < K. In fact, if r = K,
the matrix IT* := af™ is of full row rank under our usual assumption that
rk(a) = rk(B") = r. Therefore, if K = r, we do not even need reduced
rank regression but can simply estimate the matrix II" = OLBJH by applying
multivariate LS to (10.3.12). An estimator of B* can then be obtained by
normalizing the cointegration matrix as in Section 7.2 such that

1
pt = { o ] (10.3.13)
Bar)
and, using

B+/ _ (ﬁz))AﬁJr’

where ﬁ(+1) is the (K x K) submatrix consisting of the first K columns of the

LS estimator II+ of II+.

If r < K, there is nothing special here relative to the procedures discussed
in Section 7.2. Reduced rank ML estimation, as discussed in Section 7.2.3,
is available just as the EGLS estimator of the cointegration parameters of
Section 7.2.2 and the two-stage estimator described in Section 7.2.5. Moreover,
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the two-stage procedure can also be used to estimate models with parameter
restrictions on o and I'", as in Section 7.3.2. In fact, a similar procedure can
even be used for the estimation of structural form models of the type (10.2.18).

In this context, it is, of course, of interest to know the properties of the
resulting estimators. They are available under suitable assumptions for the
model and the variables (see, e.g., Johansen (1992) or Davidson (2000, Section
16.5)). Under general assumptions, the estimator of the cointegration matrix
continues to be superconsistent, that is,

T(E* —B*) = 0,(1),

if all variables are at most I(1) and B* is identified. If the cointegration
relations do not enter the generation process of z;, that is, o, = 0 in (10.2.19),
x is weakly exogenous for BT and the ML and EGLS estimators of BT have
mixed normal distributions similar to those discussed in Section 7.2. Therefore
standard inference is possible, as discussed in that section. The estimators of
the o and I'" parameters have again standard properties which are the same
as in the case where the BT matrix is known.

10.4 Remarks on Model Specification and Model
Checking

The basic principles of model specification and checking the model adequacy
have been discussed in some detail in previous chapters. We will therefore
make just a few remarks here. With respect to the specification there is, how-
ever, a major difference between the models considered previously and the
dynamic SEMs of this chapter. While in a reduced form VAR analysis usually
relatively little prior knowledge from economic or other subject matter theory
is used, such theories may well be the major building block in specifying SEMs.
In that case, model checking becomes of central importance in investigating
the validity of the theory. Quite often, theories are not available that specify
the data generation process completely. For instance, the lag lengths of the en-
dogenous and/or exogenous variables may have to be specified with statistical
tools. Also, some researchers may not be prepared to rely on the available the-
ories and therefore prefer to substitute statistical investigations for uncertain
prior knowledge. Statistical specification strategies for general dynamic SEMs
were, for instance, proposed and discussed by Hannan & Kavalieris (1984),
Hannan & Deistler (1988), and Poskitt (1992). These strategies are based on
model selection criteria of the type considered in previous chapters. An ex-
tensive literature exists on the specification of special models. For instance,
distributed lag models are discussed at length in the econometrics literature
(for some references see Judge et al. (1985, Chapters 9 and 10)). Specification
proposals for transfer function models with one dependent variable y; go back
to the pioneering work of Box & Jenkins (1976). Other suggestions have been
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made by Haugh & Box (1977), Young, Jakeman & McMurtrie (1980), Liu &
Hanssens (1982), Tsay (1985), and Poskitt (1989) to name just a few.

If some of the variables are integrated, one may also want to investigate the
number of cointegration relations with statistical tests. From the discussion
in Section 10.3.2, it is clear that rank tests can be used for that purpose, as in
Section 8.2. These tests may now be based either on a VECM for the full joint
generation process of y; and x; or on a partial model with some unmodelled
variables. The latter approach may be preferable if a large number of variables
is involved. Johansen’s LR tests for the cointegrating rank may be unreliable
in that situation because of size distortions and lack of power. Therefore,
testing for the cointegrating rank in a partial model may be advantageous. The
asymptotic distributions of the relevant LR test statistics in this case depend
on the conditioning variables, however. This result is not surprising, of course,
because the conditioning variables can in fact be deterministic terms and we
have seen in Section 8.2 that such terms have an impact on the asymptotic
properties of the LR tests. The relevant tests for conditional models were
derived by Harbo, Johansen, Nielsen & Rahbek (1998) and critical values
were given in MacKinnon, Haug & Michelis (1999).

In checking the model adequacy one may want to test various restrictions.
These may range from constraints suggested by some kind of theory such
as the rational expectations hypothesis, to tests of the significance of extra
lags. The three testing principles discussed previously, namely the LR, LM,
and Wald principles (see Appendix C.7) can be used in the present context.
Their asymptotic properties follow in the usual way from properties of the
estimators and the model.

A residual analysis is another tool which is available in the present case.
Plots of residuals may help to identify unusual values or patterns that suggest
model deficiencies. Plots of residual autocorrelations may aid in checking the
white noise assumption. Also a portmanteau test for overall residual autocor-
relation may be developed for dynamic models with exogenous variables; see
Poskitt & Tremayne (1981) for a discussion of this issue and further references.

10.5 Forecasting

10.5.1 Unconditional and Conditional Forecasts

If the future paths of the unmodelled variables are unknown to the forecaster,
then forecasts of these variables are needed in order to predict the future values
of the endogenous variables on the basis of a dynamic SEM. For simplicity,
suppose that the exogenous variables are generated by a zero mean VAR(q)
process as in Section 10.2.3,

Ty = Cll‘t,1 + -4+ Cq(Et,q =+ vg. (1051)
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Now this process can be used to produce optimal forecasts x;(h) of x; in the
usual way. If the endogenous variables are generated by the reduced form
model (10.2.3) with u; being independent white noise which is also indepen-
dent of the x; process, the optimal h-step forecast of y.y, at origin ¢ is

ye(h) = Ayye(h—1)+- - -+ Apy (h—p)+Bozi(h)+- - -+ Bsxy(h—s), (10.5.2)

where y;(j) := yi4; and x4(j) := x44; for j < 0. This formula can be used for
recursively determining forecasts for h =1,2,....

An alternative way for getting these forecasts is obtained by writing the
generation processes of the exogenous variables in one overall model together

with the reduced form SEM:
Ix —DBy Yt A1 By Y1 |
0 Iy Ty 0 G Ti-1
Ap Bp yt,p Ut
+[ ! CHI Ea (10.5.3)

where we assume without loss of generality that p > max(s, ¢) and set B; =0
for i > s and C; = 0 for j > ¢. As in Section 10.2.2, premultiplying by

Ix —DBg _1_ Ix DBy
0 Iy B 0 Iy

gives a standard reduced form VAR(p) model. It is easy to see that the optimal
forecasts for y; and x; from that model are exactly the same as those obtained
by getting forecasts for x; from (10.5.1) first and using them in the prediction
formula for y; given in (10.5.2) (see Problem 10.5). Thus, under the present
assumptions, the discussion of forecasting VAR(p) processes applies. It will
not be repeated here. Also, it is not difficult to extend these ideas to sets of
unmodelled variables with nonstochastic components such as intercept terms
or seasonal dummies.

We will refer to forecasts of y; obtained in this way as unconditional fore-
casts because they are based on forecasts of the exogenous variables for the
forecast period. Occasionally, the forecaster may know some or all of the fu-
ture values of the exogenous variables, for instance, because they are under
the control of some decision maker. In that case he or she may be interested
in forecasts of y; conditional on a specific future path of z;. In order to de-
rive the optimal conditional forecasts, we write the reduced form (10.2.3) in
VARX(1,0) form,

Y, = AY;_; + Bz, + Uy, (10.5.4)

where
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Yt
: Uy
Yt—p+1 0
Y: = ;; , U= . | (Kp+ Ms)x1),
: 0
| Tt—s+1
[A; ... Ay1 A, | By Bs-1 By ]
Ik 0 0| O 0 0
: | :
0 I ..
PO U K 010 o0 0|
| 0 0
1 0 0
0 } Mo
i | 0 ... Iny O ]
((Kp+Ms)x(Kp+Ms))
and
"B
0
| ¢ (Kpx M)
0
B .= It
0
. (Ms x M)
- O_

Successive substitution for lagged Y;’s gives

h—1 h—1
YVi=A"Y, p+ > A'Bzi+ > AU (10.5.5)
i=0 i=0
Hence, premultiplying by the (K x (Kp + Ms)) matrix J := [Ix : 0:---: 0]
results in
h—1 ) h—1 .
Yern = JAMY 4+ Y JABrigni+ Y JA T uryn, (10.5.6)
i=0 i=0

where U; = J' JU; = J'u;, has been used. Now the optimal h-step forecast of
Yy at origin ¢, given x¢41,...,T¢4h, and all present and past information, is
easily seen to be

h—1
ye(hlz) == JA"Y; + > JA By (10.5.7)
=0
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and the corresponding forecast error is

h—1
Yern — ye(hlz) = TA T uypp ;. (10.5.8)
i=0
Thus, the MSE of the conditional forecast is
h-1 A
5y (hlz) := MSE[y(hlz)] = > JA'J' X, J(A') ] (10.5.9)
i=0
Although this MSE matrix formally looks like the MSE matrix of the optimal
forecast from a VAR model, where JA®J’ is replaced by &;, the MSE matrix
in (10.5.9) is in general different from the one of an unconditional forecast.
This fact is easy to see by considering the different definition of the matrix A
used in the pure VAR(p) case.

To illustrate the difference between conditional and unconditional fore-
casts, we consider the simple reduced form

yr = A1yr—1 + Bozt + uy, (10.5.10)
where z; is assumed to be generated by a zero mean VAR(1) process,
xy = Crai—1 + vg.

Moreover, we assume that u; and v; are independent white noise processes
with covariance matrices X, and X, respectively. The unconditional forecasts
are obtained from the VAR process

AR

which, upon premultiplying with

[ Ix —Bo 71_ Ix By
0 Iy | T L0 Iy

has the standard VAR(1) from

yt]{Al BoCl][ytl}Jr[ut—&—Bovt}

Ty 0 C Tp—1 vy

The optimal 1-step forecast from this model is

-4 )12}

0 Cl Tt

The corresponding MSE matrix is



10.5 Forecasting 405

|
*
—
=
N’

I

Ut

E ({ us + Bovy } [(ug + Bove)', v;]>

S+ ByX,Bl) ByX,
B} S|

The upper left-hand corner block of this matrix is the MSE matrix of y:(1),
the unconditional forecast of the endogenous variables. Thus,

2,(1) = 2, + By, B). (10.5.11)

On the other hand, in the VARX(1, 0) representation (10.5.4), we have A = A,
and B = By for the present example. Hence, the conditional 1-step forecast
of y; is

ye(1lz) = Arys + Bozi41
with corresponding MSE matrix
2y(1lz) = 2.

Obviously, Xy (1) — Xy (1|z) = ByX, By is positive semidefinite and, thus, the
unconditional forecast is inferior to the conditional forecast, if By # 0. It
must be kept in mind, however, that the conditional forecast is only feasible
if the future values of the exogenous variables are either known or assumed. If
only hypothetical values are used, the conditional forecast may be quite poor
if the actual values of the exogenous variables turn out to be different from
the hypothetical ones. The smaller MSE of the conditional forecast is simply
due to ignoring any uncertainty regarding the future paths of the exogenous
variables.

Using the foregoing results, interval forecasts and forecast regions can be
set up as usual. It may also be worth pointing out that we have not used
the stability of the VAR operator or stationarity of the variables. Hence, the
formulas are also valid for systems with integrated and cointegrated variables.
So far we have discussed forecasting with known models. The case of estimated
models will be considered next.

10.5.2 Forecasting Estimated Dynamic SEMs

In order to evaluate the consequences of using estimated instead of known
processes for unconditional forecasts, we can use a joint model for the en-
dogenous and exogenous variables and then draw on results of the previous
chapters. Therefore, in this section we will focus on conditional forecasts only.
We denote by y:(h|x) the conditional h-step forecast (10.5.7) based on the
estimated reduced form (10.2.3). The forecast error is

Yean = Ue(hlw) = [yern — g (hl2)] + [ye(hlz) = Ge(h]z)]. (10.5.12)
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Conditional on the exogenous variables, the two terms in brackets are uncor-
related. Hence, assuming, as in previous chapters, that the processes used for
estimation and forecasting are independent, an MSE approximation

1
Xy(hlx) = Xy(hlz) + Tﬂy(hu) (10.5.13)
is obtained in the by now familiar way. Here
, Oyi(hlz) , Oye(h|z)’
2y(h|lz) =F [ o8 2 08 , (10.5.14)

B = vec[A1,..., Ay, B1,...,Bs, By] and Vg is the covariance matrix of the
asymptotic distribution of v/T' (B — B). Tt is straightforward to show that

dyhlz) _ OJAMYY) ’72‘:1 O(JABxyin_;)
g o P 0B’
h—1
_ |:)/tl(Al)h717i 2 JALT
=0
1—1
+ Z Ty BAN) T QJAT sy, ® JAiJI]'
7=0

(10.5.15)

For stationary processes, an estimator of 2,(h|z) is obtained in the usual
way be replacing all unknown parameters in this expression and in EB by
estimators and by using the average over ¢ = 1,...,T for the expectation in
(10.5.14).

Although we have discussed forecasting with estimated coefficients in
terms of a simple VARX(p, s) model with white noise residuals, it is pos-
sible to generalize these results to models with autocorrelated error processes.
The more general case was treated, for instance, by Yamamoto (1980) and
Baillie (1981).

10.6 Multiplier Analysis

In an econometric simultaneous equations analysis, the marginal impact of
changes in the exogenous variables is sometimes investigated. For example, if
the exogenous variables are instruments for, say, the government or a central
bank the consequences of changes in these instruments may be of interest.
A government may, for instance, desire to know the effects of a change in
a tax rate. In that case, policy simulation is of interest. In other cases, the
consequences of changes in the exogenous variables that are not under the
control of any decision maker may be of interest. For instance, it may be
desirable to study the future consequences of the present weather conditions.



10.6 Multiplier Analysis 407

Therefore, the dynamic multipliers discussed in Section 10.2.2 are consid-
ered. They are contained in the D; matrices of the final form operator,

L)= i D;L":= A(L)"'B(L),
=0

where A(L) := I —AyL—---—A,LP and B(L) := By+B1L+---+ Bs;L® are
the reduced form operators, as before. Here stability and, hence, invertibility
of the VAR operator A(L) is assumed. The D; matrices are conveniently
obtained from the VARX(1,0) representation (10.5.4) which implies

ye=>Y JABr, i+ JATu (10.6.1)
=0 =0

because JA"Y, — 0 as h — oo, if y; is a stable, stationary process (see
(10.5.6)). The D,’s are coefficient matrices of the exogenous variables in the
final form representation. Thus,

D;=JA'B, i=0,1,..., (10.6.2)
the n-th interim multipliers are
M, :=Do+D1+---+D, =JI+A+---+A")B, n=0,1,..., (10.6.3)
and the total multipliers are
My =Y Di=J(I—A)"'B=A(1)""B(1). (10.6.4)
i=0

If the model contains integrated variables and the generation mechanism
is started at time ¢ = 0, say, from a set of initial values, then we get from
(10.5.5),

t—1 t—1
ye = JAY, + > JABr i+ Y JA T u . (10.6.5)
1=0 1=0

Thus, the D; matrices in (10.6.2) still reflect the marginal impacts of changes
in the unmodelled variables and, hence, contain the multipliers. Also the n-th
interim multipliers can be computed as in (10.6.3), whereas the total multi-
pliers in (10.6.4) will not exist in general.

Having obtained the foregoing representations of the multipliers, estima-
tion of these quantities is straightforward. Estimators of the dynamic mul-
tipliers are obtained by substituting estimators A and B of the coefficient
matrices in A and B. The asymptotic properties of the estimators then fol-
low in the usual way. For completeness we mention the following result from
Schmidt (1973).
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In the framework of Section 10.3, suppose B is a consistent estimator of
B := vec|A, B, By] satisfying

VT(B - )N, Z5).
Then
VT vee(D; — D;) 5 N (0,Gi25G)), (10.6.6)

where Go := [0 : Ixp] and

dvec(D;) |2
Gi = T’z = ZB/(A/)i_l_j (029] JAjJ/ : IM & JAZJ/ 5
7=0

i=1,2,...,

are [KM x (K?p + KM(s + 1))] matrices. The proof of this result is left as
an exercise. It is also easy to find the asymptotic distribution of the interim
multipliers (accumulated multipliers) and the total multipliers if they exist
(see Problem 10.8).

10.7 Optimal Control

A policy or decision maker who has control over some of the exogenous vari-
ables can use a dynamic simultaneous equations model to assess interventions
with a multiplier or simulation analysis, as described in the previous section.
However, if the decision maker has specific target values of the endogenous
variables in mind, he or she may wish to go a step further and determine
which values of the instrument variables will produce the desired values of the
endogenous variables.

Usually it will not be possible to actually achieve all targets simultane-
ously and sometimes the decision maker is not completely free to choose the
instruments. For instance, doubling a particular tax rate or increasing the
price of specific government services drastically may result in the overthrow
of the government or in social unrest and is therefore not a feasible option.
Therefore, a loss function is usually set up in which the loss of deviations
from the target values is specified. For instance, if the desired paths of the
endogenous and instrument variables after period T are y9.,4,...,y%,, and
. IRTERY , % +n» Tespectively, a quadratic loss function has the form

n

£ = Z[(yT+i — y%H)IKi(?JTH - y%ﬂ')
i=1

+(@r4i — ) Pi(wrg — 274)), (10.7.1)

where the K; and P; are symmetric positive semidefinite matrices. Because
the variables are assumed to be stochastic, the loss is a random variable too.
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Therefore, minimization of the average or expected loss, F(£), is usually the
objective.

In a quadratic loss function the same weight is assigned to positive and
negative deviations from the target values. For many situations and variables
this specification is not quite realistic. For example, if the target is to have an
unemployment rate of 2%, then having less than 2% may not be a problem at
all while any higher rate may be regarded as a serious problem. Nevertheless,
quadratic loss functions are the most common ones in applied and theoretical
studies. Therefore, we will also use them in the following. One reason for the
popularity of this type of loss function is clearly its tractability.

In order to approach a formal solution of the optimal control problem
outlined in the foregoing, we assume that the economic system is described
by a model like (10.1.1) with reduced form (10.2.3). However, to be able to
distinguish between instrument variables and other exogenous variables, we
introduce a new symbol for the latter. Suppose x; represents an (M x 1) vector
of instrument variables, the (IV x 1) vector z; contains all other unmodelled
variables and the reduced form of the model is

Yy = Alyt—l —+ -4 Apyt—p + B()It 4+ -4 le't_s + OZt + U, (1072)

where u; is white noise. Some of the components of z; may be lagged variables.
To summarize them in a vector indexed by ¢ is just a matter of convenience.

For the present purposes, it is useful to write the model in VARX(1,0)
form similar to (10.5.4),

Y, = AY;_1 + Ba, + Cz + U, (10.7.3)

where Y3, Uz, A, and B are as defined in (10.5.4) and

is a ((Kp+ Ms) x N) matrix. Recall that

Yt

Y, = Yt—p+1
3 z

L Tt—s+1 |

contains current and lagged endogenous and instrument variables. Thus, the
quadratic loss function specified in (10.7.1) may be rewritten in the form
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L= Z(YT+i — Y2 )'Qi(Yryi — Y2u), (10.7.4)

i=1

where the @; are symmetric positive semidefinite matrices involving the K;’s
and P;’s.

In this framework, the problem of optimal control may be stated as follows:
Given the model (10.7.3), given the vector Yr, given values zpy1,...,274n
of the uncontrolled variables and given target values y9.,,...,4%.,, and
a%.,1,...,2%,,, find the values %, ,,..., 2% ., that minimize the expected
loss E(£) specified in (10.7.4). The solution to this dynamic programming
problem is well documented in the control theory literature. It turns out to
be

v =GiYryi1+gi, i=1,...,n, (10.7.5)
where the Yr; are assumed to be obtained as
Yrii =AYy i1+ By + Coryy + ury.
Here the (M x (Kp + Ms)) matrix G; is defined as
G;:= —(B'H;B)"'B'H;A
and the (M x 1) vector g; is defined as
gi = —(B'H;B) " 'B'(H;Czr,; — h;)
with

Hn = Qn and Hi—l = Qi—l + (A + BGZ)/Hz(A + BGi),
fore=1,...,n—1,

and

hy, = QnYTOJrn and

h;,—1:= Qiflngjqfl — A/Hi(CZTJrZ' + Bgi) + A'h;
fori=1,...,n—1.

The actual computation of these quantities proceeds in the order H,, G,
by Gny, Hn—1, Gn-1, hn—1, gn—1, Hn—_2, .... This solution can be found in
various variations in the control theory literature (e.g., Chow (1975, 1981),
Murata (1982)). Obviously, because the Y; are random, the same is true for
the optimal decision rule z7;,i=1,...,n.

There are a number of problems that arise in practice in the context of
optimal control as presented here. For instance, we have considered a finite
planning horizon of n periods. In some situations it is of interest to find the
optimal decision rule for an infinite planning period. Moreover, in practice
the parameter matrices A, B, and C are usually unknown and have to be
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replaced by estimators. More generally, stochastic parameter models may be
considered. This, of course, introduces an additional stochastic element into
the optimal decision rule. A further complication arises if the relations be-
tween the variables cannot be captured adequately by a linear model such as
(10.7.2) but require a nonlinear specification. It is also possible to consider
other types of optimization rules. In this section, we have assumed that the
optimal decision rule for period 1"+ ¢ is determined on the basis of all avail-
able information in period T + ¢ — 1. In particular, the realization Yp ;1 is
assumed to be given in setting up the decision rule 7., ;. Such an approach
is often referred to as a closed-loop strategy. An alternative approach would
be to determine the decision rule at the beginning of the planning period for
the entire planning horizon. This approach is called an open-loop strategy.
Although it is in general inferior to closed-loop optimization, it may be of
interest occasionally. These and many other topics are treated in the opti-
mal control literature. Chow (1975, 1981) and Murata (1982) are books on
the topic with emphasis on optimal decision making related to economic and
econometric models. Friedmann (1981) provided the asymptotic properties of
the optimal decision rule when estimators are substituted for the parameters
in the control rule.

10.8 Concluding Remarks on Dynamic SEMs

In this chapter, we have summarized some problems related to the estimation,
specification, and analysis of dynamic models with unmodelled variables. Ma-
jor problem areas that were identified without giving details of possible so-
lutions are the distinction between endogenous and exogenous variables, the
identification or unique parameterization of dynamic models, the estimation,
specification, and checking of structural form models as well as the treatment
of nonlinear specifications. Also, we have just scratched the surface of con-
trol problems which represent one important area of applications of dynamic
SEMs.

Other problems of obvious importance in the context of these models re-
late to the choice of the data associated with the variables. If a structural
form is derived from some economic or other subject matter theory, it is im-
portant that the available data represents realizations of the variables related
to the theory. In particular, the level of aggregation (temporal and contem-
poraneous) and seasonal characteristics (seasonally adjusted or unadjusted)
may be of importance. The models we have considered do not allow specifi-
cally for seasonality, except perhaps for seasonal dummies and other seasonal
components among the unmodelled variables. The seasonality aspect in the
context of dynamic SEMs and models specifically designed for seasonal data
were discussed, for example, by Hylleberg (1986).

So far, we have essentially considered stationary and integrated processes.
Mild deviations from the stationarity assumption are possible in dynamic
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SEMs where unmodelled variables may cause changes in the mean or con-
ditional mean of the endogenous variables. However, in discussing properties
of estimators or long-run multipliers, we have made assumptions that come
close to assuming stationarity or cointegration. For instance, if the unmod-
elled variables are driven by a stationary VAR process, the means and second
moments of the endogenous variables may be time invariant. Unfortunately,
in practice, changes in the data generation process may occur. Therefore, we
will discuss specific types of models with time varying parameters in later
chapters (see Chapters 17 and 18).

10.9 Exercises

Problem 10.1
Consider the following structural form

Qr = ap + a1 Re—1 + wiy,
Py = By + 51Q¢ + wa,

where R; is a measure for the rainfall in period ¢, Q; is the quantity of an
agricultural product supplied in period ¢, and P; is the price of the product.
Derive the reduced form, the final equations, and the final form of the model.

Problem 10.2

Suppose that the rainfall variable R; in Problem 10.1 is generated by a white
noise process with mean pg. Determine the unconditional 3-step ahead fore-
casts for @Q; and P; based on the model from Problem 10.1. Determine also
the conditional 3-step ahead forecasts given R;i; = ugr, @ = 1,2,3. Compare
the two forecasts.

Problem 10.3
Given the model of Problem 10.1, what is the marginal total or long-run effect
of an additional unit of rainfall in period ¢?

Problem 10.4
Suppose the system y; has the structural form

A (L)yy = Fry; + B*(L)z; + wy,

where A*(L) := A— A{L—---— A*L?, B*(L) := Bi + B{L+---+ B{L" and
x¢ is generated by a VAR(q) process

C(L)l‘t = Vt.

Assume that y; represents rational expectations formed in period ¢ — 1 and
eliminate the expectations variables from the structural form.
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Problem 10.5
Show that the 1-step ahead forecast for y; obtained from the VAR(p) model
(10.5.3) is identical to the one determined from (10.5.2) if

l’t(l) = Cllt =+ e+ qut7q+1

is used as forecast for the exogenous variables.

Problem 10.6
Show that the partial derivatives 9y, (h|x)/9B" have the form given in (10.5.15).

Problem 10.7
Derive a prediction test for structural change on the basis of the conditional
forecasts of the endogenous variables of a dynamic SEM.

Problem 10.8

Show that the dynamic multipliers have the asymptotic distributions given in
Section 10.6. Show also that the n-th interim multipliers have an asymptotic
normal distribution,

\/Tvec(]\//jn - M,) i_/\[(()’ Sa(n),
where

and the G; are the [KM x K(Kp+ M(s + 1))] matrices defined in Section
10.6. Furthermore,

VT vee(My — M) i’/\/((), Y (00)),
where

Lin(00) = Goo X3GL,
with

Goo :=[(I = A)"'B) : Iy @ J(I — A)1J".
Here the notation from Section 10.6 is used.

Problem 10.9
Derive the optimal decision rule for the control problem stated in Section 10.7.
(Hint: See Chow (1975).)
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Infinite Order Vector Autoregressive Processes
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So far we have considered finite order VAR processes. A more flexible and
perhaps more realistic class of processes is obtained by allowing for an infi-
nite VAR order. Of course, having only a finite string of time series data, the
infinitely many VAR coefficients cannot be estimated without further assump-
tions. There are two competing approaches that have been used in practice
in order to overcome this problem. In one approach, it is assumed that the
infinite number of VAR coefficients depend on finitely many parameters. In
Chapter 11, vector autoregressive moving average (VARMA) processes are in-
troduced that may be viewed as finite parameterizations of potentially infinite
order VAR processes. Estimation and specification of these processes are dis-
cussed in Chapters 12 and 13, respectively. Cointegrated VARMA processes
are considered in Chapter 14. In Chapter 15, another approach is pursued. In
that approach, the infinite order VAR operator is truncated at some finite lag
and the resulting finite order VAR model is estimated. It is assumed, however,
that the truncation point depends on the time series length available for esti-
mation. A suitable asymptotic theory for the resulting estimators is discussed
both for stationary as well as cointegrated processes.
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Vector Autoregressive Moving Average
Processes

11.1 Introduction
In this chapter, we extend our standard finite order VAR model,

yr=v+Ay—1+- -+ Apyr—p +

by allowing the error terms, here €, to be autocorrelated rather than white
noise. The autocorrelation structure is assumed to be of a relatively simple
type so that &; has a finite order moving average (MA) representation,

er = Uy + Miug_q + -+ Myup_g,

where, as usual, u; is zero mean white noise with nonsingular covariance ma-
trix X,. A finite order VAR process with finite order MA error term is called
a VARMA (vector autoregressive moving average) process.

Before we study VARMA processes in general, we will discuss some prop-
erties of finite order MA processes in Section 11.2. In Section 11.3, we consider
the more general stationary VARMA processes with stable VAR part and we
will learn that generally they have infinite order pure VAR and MA repre-
sentations. Their autocovariance and autocorrelation properties are treated in
Section 11.4 and forecasting VARMA processes is discussed in Section 11.5.
In Section 11.6, transforming and aggregating these processes is considered.
In that section, we will see that a linearly transformed finite order VAR(p)
process, in general, does not admit a finite order VAR representation but
becomes a VARMA process. Because transformations of variables are quite
common in practice, this result is a powerful argument in favor of the more
general VARMA class. Finally, Section 11.7 contains discussions of causal-
ity issues and impulse response analysis in the context of VARMA systems.
Throughout this chapter, we consider stationary processes only.
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11.2 Finite Order Moving Average Processes

In Chapter 2, we have encountered MA processes of possibly infinite order.
Specifically, we have seen that stationary, stable finite order VAR processes
can be represented as MA processes. Now we deal explicitly with finite or-
der MA processes. Let us begin with the simplest case of a K-dimensional
MA process of order 1 (MA(1) process), yr = p + ug + Mjus_1, where
Yyt = (Y1t, - -, Ykt) ,u is zero mean white noise with nonsingular covariance
matrix X, and p = (u1,...,ux)" is the mean vector of y;, i.e., E(y;) = p
for all t. For notational simplicity we will assume in the following that u = 0,
that is, y; is a zero mean process. Thus, we consider

Y =uy + Miug—q, t=0,£1,+2 ..., (11.2.1)
which may be rewritten as

up = yp — Miug 1.
By successive substitution we get

up = yp — Mi(yr—1 — Miug—2) = yr — Miys—1 + Mius_o
o=y — Miyeoa 4+ (= M) Y + (_Ml)n+1ut7n71

ye + Z(_Ml)iyt—ia

i=1

if M} — 0 as i — oo. Hence,

oo

Y = — Z(_Ml)iytfi + ug, (11.2.2)

i=1

which is the potentially infinite order VAR representation of the process. Be-
cause (—M;)" may be equal to zero for i greater than some finite number p,
the process may in fact be a finite order VAR(p). For instance, we get p = 1
for a bivariate process with

0 m
M1_|:0 0}7

where m is some nonzero real number.

For the representation (11.2.2) to be meaningful, M} must approach zero
as i — 00, which in turn requires that the eigenvalues of M, are all less than
1 in modulus or, equivalently,

det(Ix + M12z) #0 for z € C,|z| < 1.

This condition is analogous to the stability condition for a VAR(1) process.
It guarantees that the infinite sum in (11.2.2) exists as a mean square limit.
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More generally, it can be shown that a (zero mean) MA(g) process (moving
average process of order q),

Y=g+ Mywg_y + -+ Myuy_g, t=0,+1,42, ..., (11.2.3)

has a pure VAR representation

ye =Y Iiyr—i + 1w, (11.2.4)
i=1
if
det(Ixg + Myz+ -+ Myz?) #0 for 2 € C,|z| < 1. (11.2.5)

An MA(q) process with this property is called invertible in the following be-
cause we can invert from the MA to a VAR representation. Writing the process
in lag operator notation as

Yy = (IK —+ MlL —+ -4 Mqu)ut = M(L)’U,t

the MA operator M (L) := I + My L+ --- + M L9 is invertible if it satisfies
(11.2.5) and we may formally write

M(L)ilyt = Ug¢.

The actual computation of the coefficient matrices IT; in
M(L)™ = 1I(L) = Ix =Y _ILL
i=1

can be done recursively using IT; = M; and

i—1

;= M; = > I jM;, i=2,3,..., (11.2.6)
j=1

where M; := 0 for j > ¢. These recursions follow immediately from the

corresponding recursions used to compute the MA coefficients of a pure VAR
process (see Chapter 2, (2.1.22)).

The autocovariances of the MA(q) process (11.2.3) are particularly easy to
obtain. They follow directly from those of an infinite order MA process given
in Chapter 2, Section 2.1.2, (2.1.18):

q—h
S My p S M, h=0,1,....q,
ILy(h) = E(yey,_p,) = § =0 (11.2.7)

0, h=q+1,q+2,...,
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with My := Ix. As before, I'y(—h) = I'y(h)’. Thus, the vectors y; and y;_p,
are uncorrelated if h > ¢. Obviously, the process (11.2.3) is stationary because
the I'y(h) do not depend on ¢ and the mean E(y;) = 0 for all .

It can be shown that a noninvertible MA(g) process violating (11.2.5) also
has a pure VAR representation if the determinantal polynomial in (11.2.5)
has no roots on the complex unit circle, i.e., if

det(Ig + Myz+---+ Myz?) #0 for |z| = 1. (11.2.8)

The VAR representation will, however, not be of the type (11.2.4) in that the
white noise process will in general not be the one appearing in (11.2.3). The
reason is that for any noninvertible MA(q) process satisfying (11.2.8), there
is an equivalent invertible MA(q) satisfying (11.2.5) which has an identical
autocovariance structure (see Hannan & Deistler (1988, Chapter 1, Section
3)). For instance, for the univariate MA(1) process

Yr = Up + MUp_1, (11.2.9)

the invertibility condition requires that 1 + mz has no roots for |z| < 1 or,
equivalently, |m| < 1. For any m, the process has autocovariances

(1+m?)o2 for h =0,

E(yyr—n) = mo?, for h = £1,
0 otherwise,

where 02 := Var(u;). It is easy to check that the process v; + %vt_l, where
v; is a white noise process with ¢2 := Var(v;) = m202, has the very same

autocovariance structure. Thus, if |m| > 1, we may choose the invertible
MA(1) representation

1
Ye = V¢ + Vi1 (11.2.10)

1 -1 0 1 i
(1 + mL> Y = Z; <m) Yi—i

1 -1
m

with

(%7

The reader is invited to check that v; is indeed a white noise process with
02 = m?02 (see Problem 11.10). Only if |m| = 1 and, hence, 1 + mz = 0 for
some z on the unit circle (z = 1 or —1), an invertible representation does not
exist.

Although for higher order and higher-dimensional processes, where roots
inside and outside the unit circle may exist, it is more complicated to find the

invertible representation, it can be done whenever (11.2.8) is satisfied. In the
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remainder of this chapter, we will therefore assume without notice that all
MA processes are invertible unless stated otherwise. It should be understood
that this assumption implies a slight loss of generality because MA processes
with roots on the complex unit circle are excluded.

11.3 VARMA Processes

11.3.1 The Pure MA and Pure VAR Representations of a
VARMA Process

As mentioned in the introduction to this chapter, allowing finite order VAR
processes to have finite order MA instead of white noise error terms, results in
the broad and flexible class of vector autoregressive moving average (VARMA)
processes. The general form of a process from this class with VAR order p and
MA order ¢ is

ye = v+Aiyeat+ Apyp Hur + Miugy + -+ Mgui—g,
t=0,41,42,. ... (11.3.1)

Such a process is briefly called a VARMA(p, ¢) process. As before, u; is zero
mean white noise with nonsingular covariance matrix .

It may be worth elaborating a bit on this specification. What kind of
process y; is defined by the VARMA (p, q) model (11.3.1)7 To look into this
question, let us denote the MA part by ¢, that is, e, = uy + Myuy—1 + -+ +
Mgus—q and

ye=v+ Ay 1+ + Apysp + e
If this process is stable, that is, if
det(Ig — A1z — - — Ap2P) #0  for |2| <1, (11.3.2)

then, by the same arguments used in Chapter 2, Section 2.1.2, and by Propo-
sition C.9 of Appendix C.3,

oo
ye = n+ Y Diery
i=0

= p+ Z Di(ug—i + Myug—i—1 +--- + Mqutfifq)
i=0

u+§:@mpi (11.3.3)
1=0

is well-defined as a limit in mean square, given a well-defined white noise
process u;. Here



424 11 Vector Autoregressive Moving Average Processes
pi= g — Ay — - — Ay 'y,

the D; are (K x K) matrices satisfying

ZDizi =(Ixg — Az — - — Ay2P)™H
i=0

and the @; are (K x K) matrices satisfying

Z@izi = (Z Dizi> (I + Myz + -+ My29).
1=0 =0

In the following, when we call y; a stable VARMA (p, ¢) process, we mean the
well-defined process given in (11.3.3). For instance, if u; is Gaussian white
noise, it can be shown that y, is a Gaussian process with all finite subcol-
lections of vectors w, ..., y:+n having joint multivariate normal distributions.
The representation (11.3.3) is a pure MA or simply MA representation of y;.

To make the derivation of the MA representation more transparent, let us
write the process (11.3.1) in lag operator notation,

A(L)ys = v+ M(L)uy, (11.3.4)

where A(L) :=Ix —AyL—---—A,L? and M(L) :=Ix + ML+ -+ M,L9.
A pure MA representation of y; is obtained by premultiplying with A(L)~1,

ye=A) v+ AL) T M(D)uy = p+ Y Piugs.
=0

Hence, multiplying from the left by A(L) gives

(Ix — AL L — -+ — A,LP) (Z @m‘)
1=0

= e+ | 0= Ay | I
i=1 j=1
=Ig+ML+---+ M,L?

and, thus, comparing coefficients results in
i
Mj=&; =Y A;®;j, i=12,...,
j=1

with &g := Ig, A;j := 0 for j > p, and M; := 0 for 7 > ¢. Rearranging terms
gives
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G =M+ Aidij, i=12,.... (11.3.5)
j=1

If the MA operator M (L) satisfies the invertibility condition (11.2.5), then
the VARMA process (11.3.4) is called invertible. In that case, it has a pure
VAR representation,

ye = > Miye—; = M(L) ALYy = M(1) v + uy,

i=1
and the I1; matrices are obtained by comparing coefficients in
Ix =Y ILL' = M(L) ' A(L).
i=1

Alternatively, multiplying this expression from the left by M (L) gives

(Ix + MyL+ - + M,LY) (IK -3 IL»Li>
=1

o] i
=Ix+Y | M=> M_;m; | L
i=1 j=1
:IK—AlL—"~—ApLP,

where My := Ix and M; := 0 for ¢ > ¢. Setting A; := 0 for i« > p and
comparing coefficients gives

1—1
—Ai=M; = M, I — 11,
j=1
or
i—1
I = Ay + M; = Y M; ;II; fori=12,.... (11.3.6)
j=1

As usual, the sum is defined to be zero if the lower bound for the summation
index exceeds its upper bound.
For instance, for the zero mean VARMA(1, 1) process

Y = Ayi—1 + ug + Miug_q, (11.3.7)
we get

H1 = A1+M1
II; = Asy+ My — MIly = —MyA; — M

I, = (-1)"7YMj+M™7A), i=1,2,...
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and the coefficients of the pure MA representation are
Dy = Ik
& = M+ A
Dy = M+ APy + APy = Ay (M + Ay)

O, = ATIM AL i=1,2,....

If y, is a stable and invertible VARMA process, then the pure MA represen-
tation (11.3.3) is called the canonical or prediction error MA representation,
in accordance with the terminology used in the finite order VAR case. In ad-
dition to the pure MA and VAR representations considered in this section, a
VARMA process also has VAR(1) representations. One such representation is
introduced next.

11.3.2 A VAR(1) Representation of a VARMA Process

Suppose y; has the VARMA(p, ¢) representation (11.3.1). For simplicity, we
assume that its mean is zero and, hence, v = 0. Let

_ _ Ut
Yt 0
: (Kpx1)
Y, = (Yot = | 0
Ut ’ Uy
0
: (Kqx1)
[ Ut—g+1 |
(K (p+q)x1) L 0]

A R0 ] G0 < K+ a)

where
(A ... Ay Ay
I 0 0
All = K .. )
| O . Iy 0
(KpxKp)
[ M, M, M,
0 0 0
A12 = . )
| 0 0 0
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0 0 0
1 0 0
Ay =0, Ay = K
(Kgx Kp)
0 ... Ix 0
(KgxKq)

With this notation, we get the VAR(1) representation of Yz,
Y, = AY;_1 + U,. (11.3.8)

If the VAR order is zero (p = 0), we choose p = 1 and set A; = 0 in this
representation.

The K (p+ ¢)-dimensional VAR(1) process in (11.3.8) is stable if and only
if y; is stable. This result follows because

det(IK(p+q) — AZ) = det(IKp — Allz) det(IKq — AQQZ)
= det(Ix — A1z —--- — Ap2P). (11.3.9)

Here the rules for the determinant of a partitioned matrix from Appendix A.10
have been used and we have also used that Ik, — Agzz is a lower triangular
matrix with ones on the main diagonal which has determinant 1. Furthermore,
det(Igxp — A112) = det(Ixg — A1z —--- — A,2P) follows as in Section 2.1.1.

From Chapter 2, we know that if y; and, hence, Y; is stable, the latter
process has an MA representation

Y, => AU,
i=0
Premultiplying by the (K x K(p+ ¢)) matrix J := [Ix : 0:---: 0] gives

Yy = i JAiUt_i = i JAiHJUt—i = i JAiHut—i = i Piur—i,
i=0 =0

i=0 i=0
where
T
0
: (Kp x K)
0
H= I
0
: (Kqx K)
L 0]
Thus,

®; = JA'H. (11.3.10)
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As an example, consider the zero mean VARMA(1, 1) process from (11.3.7),
Y = A1ye—1 + ug + Myug_q.

For this process

e AL M,y | ow
i=ln] a8 ] )

J=[Ik:0] (K x2K),

and

by = JH = Ik,
@1 = JAH:[AliMl]H:A1+M1,

2
Py = JA2HJ{%1 Aléwl ]HA%+A1M1,
(11.3.11)
, i giel -
& — JAZH:J[AOl AloMl]H:A’1+A§1M1, i=1.2,....

This, of course, is precisely the same formula obtained from the recursions in
(11.3.5).

The foregoing method of computing the MA matrices is just another way
of computing the coefficient matrices of the power series

Ik + Y L' = (Ix = AyL — -+ — ALP) " (Igc + My L+ -+ + M,L7).
=1

Therefore, it can just as well be used to compute the II; coefficient matrices
of the pure VAR representation of a VARMA process. Recall that

Ix =Y ILL = (Ig + MyL+ -+ ML) "I — Ay L — -+ — A,LP).
=1

Hence, if we define

(11.3.12)

M — [Mn M, ]’

My, Mo,

where
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[ My ... M, —M,
Ig 0 0
My, = - : : ’
| 0 Ik 0
(KqxKq)
[ —A; A1 -4,
0 0 0
My = : )
| 0 0 0
(Kqx Kp)
0 0 0
Ig 0 0
M21 = 0, MQQ = . )
(KpxKq) .
0 ... Ix O
(KpxKp)
we get
—II; = JM'H (11.3.13)
with
'
0
. (Kgx K)
0
H := I
0
| ¢ (Kpx K)
- O_
11.4 The Autocovariances and Autocorrelations of a
VARMA (p, q) Process
For the K-dimensional, zero mean, stable VARMA(p, ¢) process
Y = Alyt—l + -+ Apyt—p + uy + Mlut_l + -+ Mqut_q, (1141)

the autocovariances can be obtained formally from its pure MA representation
as in Section 2.1.2. For instance, if y; has the canonical MA representation

o0
Y = E Dius—g,
i=0
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the autocovariance matrices are

Ly(h) == E(yyi—p) = Y PrsiZu®.
i=0

For the actual computation of the autocovariance matrices, the following
approach is more convenient. Postmultiplying (11.4.1) by y, , and taking
expectations gives

E(wi—p) = AEWi1yip) + -+ AEY—pyi ) + E(wy;_p,) + - -
+MyE(ui—qYs_p)-

From the pure MA representation of the process, it can be seen that E(u;y,) =
0 for s < t. Hence, we get for h > g,

Ty(h) = AiTy(h — 1)+ -+ A, T, (h — p). (11.4.2)

If p > ¢ and I'y(0),...,Iy(p — 1) are available, this relation can be used to
compute the autocovariances recursively for h =p,p+1,....

The initial matrices can be obtained from the VAR(1) representation
(11.3.8), just as in Chapter 2, Section 2.1.4. In that section, we obtained
the relation

Iy (0) = AV (DA’ + Xy (11.4.3)

for the covariance matrix of the VAR(1) process Y;. Here Xy = E(U.U]) is
the covariance matrix of the white noise process in (11.3.8). Applying the vec
operator to (11.4.3) and rearranging terms gives

vec Fy(O) = (IKQ(p+q)2 —A® A>_1 VE}C(ZJU)7 (11.4.4)

where the existence of the inverse follows again from the stability of the pro-
cess, as in Section 2.1.4, by appealing to the determinantal relation (11.3.9).

Having computed I'y (0) as in (11.4.4), we may collect I,(0),...,[,(p—1)
from

_ | T1u(0)  T2(0)

FY(O) - I\12(O)/ 1'122(0) )
where
Fy(o) Fy(l) Fy(p—l)
Fy(_l) Fy(o) Fy(p_Z)
].-‘11(0) = : : .. : ’

Fy(—zﬂl) Fy(—b+2) Fy(o)
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CB(yy)  Elpg_y) - By
0 E(yt_wi_l) E(yt_lu;_ +1)

I12(0) = : - : ! ’

L 0 0 T E(yt—p-&-lu;,qul)

and
X, 0 0
0 X, 0

T'y(0) = :

| 0 0 2w

As mentioned previously, the recursions (11.4.2) are valid for A > ¢ only.
Thus, this way of computing the autocovariances requires that p > ¢. If the
VAR order is less than g, then it may be increased artificially by adding lags of
y with zero coefficient matrices until the VAR order p exceeds the MA order q.
Then the aforementioned procedure can be applied. A computationally more
efficient method of computing the autocovariances of a VARMA process is
described by Mittnik (1990).

The autocorrelations of a VARMA (p, q) process are obtained from its au-
tocovariances as in Chapter 2, Section 2.1.4. That is,

Ry,(h)=D"'I,(h)D™*, (11.4.5)

where D is a diagonal matrix with the square roots of the diagonal elements
of I'y(0) on the main diagonal.

To illustrate the computation of the covariance matrices, we consider the
VARMA(1,1) process (11.3.7). Because p = ¢, we add a second lag of y; so
that

yr = Arye—1 + Asyp—o + up + Miug_y

with Ay := 0. Thus, in this case,

Yt A 0 M
Yi=|wy— |, A=|Ix 0 0 |,
Uy 0 0 O
Ut Zu 0 Eu
Ut = 0 y ZU = 0 0
Ut Zu 0 Eu
With this notation, we get from (11.4.4),

5,0)  L,(1) Xy
vec| Iy(=1) I,00) 0 | = (Iggz — A @A)~ vec(Zp).
X 0o X,
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Now, because we have the starting-up matrices I, (0) and I, (1), the recursions
(11.4.2) may be applied, giving

Iy(h)=A1Iy(h—1) forh=23,....

In stating the assumptions for the VARMA (p, ¢) process at the beginning
of this section, invertibility has not been mentioned. This is no accident be-
cause this condition is actually not required for computing the autocovariances
of a VARMA (p, q) process. The same formulas may be used for invertible and
noninvertible processes. On the other hand, the stability condition is essential
here, because it ensures invertibility of the matrix I — A ® A.

11.5 Forecasting VARMA Processes

Suppose the K-dimensional zero mean VARMA(p, ¢) process
Yy = Alytfl + -+ Apytfp + U + Mlut,1 + -+ Mqut,q (1151)

is stable and invertible. As we have seen in Section 11.3.1, it has a pure VAR
representation,

Y = Zﬂiyt_i+ut, (11.5.2)
i=1
and a pure MA representation,
Yr = Z@iutﬂ" (11.5.3)
i=0

Formulas for optimal forecasts can be given in terms of each of these repre-
sentations.

Assuming that u; is independent white noise and applying the conditional
expectation operator E;, given information up to time ¢, to (11.5.1) gives an
optimal h-step forecast

Arye(h = 1) + -+ + Apye(h — p)
yt(h) _ +Mpuy + -+ + Mqut+h—q for h < q, (1154)

Ay (h=1)+ -+ Apye(h —p) for h > g,

where, as usual, y;(j) := ye4; for j < 0. Analogously, we get from (11.5.2),

ye(h) = Zniyt(h_i)7 (11.5.5)

and, in Chapter 2, Section 2.2.2, we have seen that the optimal forecast in
terms of the infinite order MA representation is
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o0 o0

yi(h) = Z@iuwhﬂ' = Z@thiutfi (11.5.6)
i=h =0

(see (2.2.10)). Although in Chapter 2 this result was derived in the slightly
more special setting of finite order VAR, processes, it is not difficult to see that
it carries over to the present situation. All three formulas (11.5.4)—(11.5.6)
result, of course, in equivalent predictors or forecasts. They are different rep-
resentations of the linear minimum MSE predictors if u; is uncorrelated but
not necessarily independent white noise.

A forecasting formula can also be obtained from the VAR(1) representation
(11.3.8) of the VARMA(p, q) process. From Section 2.2.2; the optimal h-step
forecast of a VAR(1) process at origin ¢ is known to be

Y;(h) = A"Y; = AY,(h —1). (11.5.7)

Premultiplying with the (K x K(p + ¢)) matrix J := [Ix : 0: ---: 0] results
precisely in the recursive relation (11.5.4) (see Problem 11.4).
The forecasts at origin ¢ are based on the information set

‘Qt = {y5|5 < t}'

This information set has the drawback of being unavailable in practice. Usually
a finite sample of y; data is given only and, hence, the u; cannot be determined
exactly. Thus, even if the parameters of the process are known, the prediction
formulas (11.5.4)—(11.5.6) cannot be used. However, the invertibility of the
process implies that the II; coefficient matrices go to zero exponentially with
increasing ¢ and we have the approximation

Zﬂzyt(h —i) ~ ZUiyt(h — 1)
i=1 i=1

for large n. Consequently, in practice, if the information set is

{1, ur} (11.5.8)

and T is large, then the forecast

T+h—1
gr(h) = > Mijr(h—1i), (11.5.9)
=1

where §7(j) := yr4; for j <0, will be almost identical to the optimal forecast.
For a low order process, as it is commonly used in practice, for which the roots
of

det(Ig + Mz + -+ - + Myz9)

are not close to the unit circle, T' > 50 will usually result in forecasts that can-
not be distinguished from the optimal forecasts. It is worth noting, however,
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that the optimal forecasts based on the finite information set (11.5.8) can be
determined. The resulting forecast formulas are, for instance, given by Brock-
well & Davis (1987, Chapter 11, §11.4). A similar problem is not encountered
in forecasting finite order VAR processes because there the optimal forecast
depends on a finite string of past variables only.

In the presently considered theoretical setting, the forecast MSE matrices
are most easily obtained from the representation (11.5.6). The forecast error
is

h—1
Yern — ye(h) = Z Dittyh—i
=0

and, hence, the forecast MSE matrix turns out to be

Zy(h) = ElWirn —ve(h) Wesn — yt(h))/]
h—1
= > o,2.9, (11.5.10)
=0

as in the finite order VAR case. Note, however, that, in the present case, the M;
coefficient matrices enter in computing the @; matrices. Because the forecasts
are unbiased, that is, the forecast errors have mean zero, the MSE matrix is
the forecast error covariance matrix. Consequently, if the process is Gaussian,
i.e., for all ¢ and h,y,...,yrrn have a multivariate normal distribution and
also the u;’s are normally distributed, then the forecast errors are normally
distributed,

Yern — y(h) ~ N0, 2, (h). (11.5.11)

This result may be used in the usual fashion in setting up forecast intervals.

If a process with nonzero mean vector p is considered, the mean vector
may simply be added to the prediction formula for the mean-adjusted process.
For example, if y; has zero mean and x; = y; + p, then the optimal h-step
forecast of x; is

z¢(h) = ye(h) + p.
The forecast MSE matrix is not affected, that is, X, (h) = X, (h).

11.6 Transforming and Aggregating VARMA Processes

In practice, the original variables of interest are often transformed before
their generation process is modelled. For example, data are often seasonally
adjusted prior to an analysis. Also, sometimes they are temporally aggre-
gated. For instance, quarterly data may have been obtained by adding up the
corresponding monthly values or by taking their averages. Moreover, contem-
poraneous aggregation over a number of households, regions or sectors of the
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economy is quite common. For example, the GNP (gross national product)
value for some period is the sum of private consumption, investment expen-
ditures, net exports, and government spending for that period. It is often of
interest to see what these transformations do to the generation processes of
the variables in order to assess the consequences of transformations for fore-
casting and structural analysis. In the following, we assume that the original
data are generated by a VARMA process and we study the consequences of
linear transformations. These results are of importance because many tempo-
ral as well as contemporaneous aggregation procedures can be represented as
linear transformations.

11.6.1 Linear Transformations of VARMA Processes

We shall begin with the result that a linear transformation of a process pos-
sessing an MA(q) representation gives a process that also has a finite order
MA representation with order not greater than q.

Proposition 11.1 (Linear Transformation of an MA(q) Process)
Let u; be a K-dimensional white noise process with nonsingular covariance
matrix Y, and let

Yo = p+u + Myug_q 4 -+ Mguy_g

be a K-dimensional invertible MA(q) process. Furthermore, let F' be an (M X
K) matrix of rank M. Then the M-dimensional process z; = Fy; has an
invertible MA(§) representation,

ze = Fpu+ve+ Nivg—q + - + Ngve—g,

where v; is M-dimensional white noise with nonsingular covariance matrix
X, the N; are (M x M) coefficient matrices and ¢ < gq. [ |

We will not give a proof of this result here but refer the reader to Liitke-
pohl (1984) or Liitkepohl (1987, Chapter 4). The proposition is certainly not
surprising because considering the autocovariance matrices of z;, it is seen
that

[(h) = El(Fy; — Fu)(Fy_n — Fp)') = FI,(h)F’

q—h
S FMin S,M/F',  h=0,1,....q,
=0

0, h=q+1,q+2,...,

by (11.2.7). Thus, the autocovariances of z; for lags greater than ¢ are all zero.
This result is a necessary requirement for the proposition to be true. It also
helps to understand that the MA order of z; may be lower than that of y,
because I, (h) = FI,(h)F’ may be zero even if I;(h) is nonzero.
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The proposition has some interesting implications. As we will see in the fol-
lowing (Corollary 11.1.1), it implies that a linearly transformed VARMA(p, q)
process has again a finite order VARMA representation. Thus, the VARMA
class is closed with respect to linear transformations. The same is not true
for the class of finite order VAR processes because, as we will see shortly, a
linearly transformed VAR(p) process may not admit a finite order VAR repre-
sentation. This, of course, is an argument in favor of considering the VARMA
class rather than restricting the analysis to finite order VAR processes.

Corollary 11.1.1

Let y; be a K-dimensional, stable, invertible VARMA (p, q) process and let
F be an (M x K) matrix of rank M. Then the process z; = Fy; has a
VARMA(p, §) representation with

Proof: We write the process y; in lag operator notation as
A(L)yy = M (L)uy, (11.6.1)

where the mean is set to zero without loss of generality as y; may represent
deviations from the mean. Premultiplying by the adjoint A(L)*% of A(L)
gives

|A(L) |y = A(L)*Y M (L)us, (11.6.2)

where A(L)*% A(L) = |A(L)| has been used. It is easy to check that |A(z)*¥| #
0 for |z| < 1. Thus, (11.6.2) is a stable and invertible VARMA representation
of y;. Premultiplying (11.6.2) with F results in

|A(L)|z; = FA(L)*Y M (L)u,. (11.6.3)

The operator A(L)*¥ M (L) is easily seen to have degree at most p(K —1)+¢
and, thus, the right-hand side of (11.6.3) is just a linearly transformed finite
order MA process which, by Proposition 11.1, has an MA(J) representation
with

§<p(K-1)+q

The degree of the AR operator |A(L)| is at most Kp because the determinant
is just a sum of products involving one operator from each row and each
column of A(L). This proves the corollary. [ ]
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The corollary gives upper bounds for the VARMA orders of a linearly
transformed VARMA process. For instance, if y; is a VAR(p)=VARMA(p, 0)
process, a linear transformation z; = Fy; has a VARMA (J, ) representation
with p < Kp and ¢ < (K —1)p. For some linear transformations, ¢ will be zero.
We will see in the following, however, that generally there are transformations
for which the upper bounds for the orders are attained and a representation
with lower orders does not exist. This result implies that a linear transfor-
mation of a finite order VAR(p) process may not admit a finite order VAR
representation. Specifically, the subprocesses or marginal processes of a K-
dimensional process y; are obtained by using transformation matrices such as
F = [I) : 0]. Hence, a subprocess of a VAR(p) process may not have a finite
order VAR but just a mixed VARMA representation.

For some transformations the result in Corollary 11.1.1 can, in fact, be
tightened. Generally, tighter bounds for the VARMA orders are available if
M > 1, as is seen in the following corollary.

Corollary 11.1.2

Let y; be a K-dimensional, stable, invertible VARMA (p, ¢) process and let
F be an (M x K) matrix of rank M. Then the process z; = Fy; has a
VARMA(p, §) representation with

P<(K—M+1)p
and
§<(K—-M)p+aq.
|

Proof: We first consider the case where z; is a subprocess of y; consisting of
the first M components. To treat this case, we denote the first M and last
K — M components of the process y; by y1; and yo, respectively, and we
partition the VAR and MA operators as well as the white noise process u,
accordingly. Thus, we can write the process as

A1 (L)yae + Ar2(L)yae = M1 (L)ure + Mio(L)ugy, (11.6.4)
Ao (L)y1s + Ao (L)yar = Mai(L)ury + Moo(L)uags. (11.6.5)
Premultiplying (11.6.5) by the adjoint of Aaa(L) gives
|Aoa(L)|yar = —Asa(L)*¥ Agy (L)yrs + Aoo (L) My (L)usy
+A22(L)“de22(L)u2t. (11.6.6)

Moreover, premultiplying (11.6.4) by |As2(L)|, replacing |Asa(L)|ye: by the
right-hand side of (11.6.6) and rearranging terms, we get
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[|A22(L)[A11(L) — Ar2(L) A2z (L)Y Az1 (L)]yne
= [|Ag2(L)| My (L) — A12(L) Ago (L)Y My (L)|uyy (11.6.7)
+[[A22 (L) M12(L) — Ar2(L)Aza (L)Y Maz(L)]us;.
The VAR part of this representation has order
p<max{(K—-M)p+p,(K-M—-1)p+p+p}=(K-M+1)p

and, by Proposition 11.1, the right-hand side of (11.6.7) has an MA represen-
tation with order

g <max{(K —M)p+q,p+(K-M-1)p+q}=(K—-M)p+q.

Hence, we have established the corollary for transformations F' = [I; : 0].
For a general (M x K) transformation matrix F' with rk(F) = M, we
choose a ((K — M) x K) matrix C such that the (K x K) matrix

e

is nonsingular and we consider the process x; = JFy;. Because nonsingular
transformations do not increase the orders of a VARMA process, z; also has
a VARMA (p, q) representation. Now we get the result of the corollary by
considering the transformation z; = Fy; = [Ip : 0]as. |

Other bounds for the VARMA orders than those provided in Corollaries
11.1.1 and 11.1.2 for linearly transformed VARMA processes and bounds for
special linear transformations are given in various articles in the literature. For
further results and references see Liitkepohl (1987, Chapter 4; 1986, Kapitel
2).

To illustrate Corollaries 11.1.1 and 11.1.2, we consider the bivariate
VAR(1) process

1-05L 0.66L ][yw ]| [ uw . 3

05L 1405L } { =] | with B, =1, (11.6.8)
Here K = 2, p = 1, and ¢ = 0. Thus, z; = [1,0]y: = y1: as a univariate
(M = 1) marginal process has an ARMA representation with orders not
greater than (2,1). The precise form of the process can be determined with
the help of the representation (11.6.3). Using that representation gives

[(1+0.3L)(1 —0.5L) — 0.66 - 0.5L22,

14+0.3L —-0.66L Uit
—0.5L 1-0.5L Ut

= [1,0] (11.6.9)
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The right-hand side, say wy, is the sum of an MA(1) process and a white
noise process. Thus, by Proposition 11.1, it is known to have an MA(1) rep-
resentation, say wis = vi¢ + Yv1,+—1. To determine v and 0’% = Var(vys), we
use
E(w?},) = E(vie+7v1,-1)° = (1470}
= E[(1+0.3L)u1; — 0.66Lug)* = 1.53

and

E(wawi—1) = E[(vie +yv1.-1)(v1,0-1 + yv1.4-2)] = v01
— E[((1 +0.3L)u1; — 0.66us,_1)
X((]. + 0.3L)u17t,1 — 0.66U27t,2)]
= 0.3.

Solving this nonlinear system of two equations for v and o7 gives
7=0.204 and o} =1.47.

Note that we have picked the invertible solution with |y| < 1. Thus, from
(11.6.9), we get a marginal process

(1 —0.2L — 0.48L%)y1; = (1 4+ 0.204L)vy; with of = 1.47.

In other words, y;; has indeed an ARMA(2, 1) representation and it is easy to
check that cancellation of the AR and MA operators is not possible. Hence,
the ARMA orders are minimal in this case.

As another example, consider again the bivariate VAR(1) process (11.6.8)
and suppose we are interested in the process z; := y1; +y2¢. Thus, F = [1,1] is
again a (1x 2) vector. Multiplying (11.6.8) by the adjoint of the VAR operator
gives

—0.5L 1-0.5L Ut

(1—0.2L — 0.48L?) [ ‘Z“ } = [ 103k 066k ] [““ }
2t

Hence, multiplying by F' gives
(1 —0.2L — 0.48L%)(y1; + yar) = (1 — 0.2L)uyy + (1 — 1.16L)us;.

Using similar arguments as for (11.6.9), it can be shown that the right-hand
side of this expression is a process with MA(1) representation v; — 0.504v;_1,
where 02 := Var(v;) = 2.70. Consequently, the process of interest has the
ARMA(2, 1) representation

(1—0.2L — 0.48L%)z = (1 — 0.504L)v; with o2 = 2.70. (11.6.10)

The following result is of interest if forecasting is the objective of the
analysis.



440 11 Vector Autoregressive Moving Average Processes

Proposition 11.2 (Forecast Efficiency of Linearly Transformed VARMA
Processes)

Let y; be a stable, invertible, K-dimensional VARMA (p, ¢) process, let F' be
an (M x K) matrix of rank M, and let z; = F'y;. Furthermore, denote the
MSE matrices of the optimal h-step predictors of y; and z by X, (h) and
Y. (h), respectively. Then

.(h) = FXy(h)F'
is positive semidefinite. |

This result means that Fy;(h) is generally a better predictor of z;4, with
smaller (at least not greater) MSEs than z;(h). In other words, forecasting
the original process y; and transforming the forecasts is generally better than
forecasting the transformed process directly. A proof and references for re-
lated results were given by Liitkepohl (1987, Chapter 4). To see the point
more clearly, consider again the example process (11.6.8) and suppose we are
interested in the sum of its components z; = y1; + yot. Forecasting the bivari-
ate process one step ahead results in a forecast MSE matrix Xy (1) = 2, = .
Thus, the corresponding 1-step ahead forecast of z; has MSE

[1,1]2y(1)[ H _o.

In contrast, if a univariate forecast is obtained on the basis of the ARMA(2,1)
representation (11.6.10), the 1-step ahead forecast MSE becomes o2 = 2.70.
Clearly, the latter forecast is inferior in terms of MSE.

Of course, these results hold for VARMA processes for which all the param-
eters are known. They do not necessarily carry over to estimated processes, a
case which was also investigated and reviewed by Liitkepohl (1987).

11.6.2 Aggregation of VARMA Processes

There is little to be added to the foregoing results for the case of contempo-
raneous aggregation. Suppose y; = (y1¢,...,YKt)’ consists of K variables. If
all or some of them are contemporaneously aggregated by taking their sum
or average, this just means that y; is transformed linearly and the foregoing
results apply directly. In particular, the aggregated process has a finite order
VARMA representation if the original process does. Moreover, if forecasts for
the aggregated variables are desired it is generally preferable to forecast the
disaggregated process and aggregate the forecasts rather than forecast the
aggregated process directly.

The foregoing results are also helpful in studying the consequences of tem-
poral aggregation. Suppose we wish to aggregate the variables y; generated
by

yr = A1Ye—1 + Aoyr—o + up + Mius—1
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over, say, m = 3 subsequent periods. To be able to use the previous framework,
we construct a process

Ik 0 0 Ym(r—1)+1
-Ay Ix O Ym(r—1)42
Ay —Ar Ik Ymr
0 Ay Ay Ym(r—2)+1 Ir 0 O U (r—1)+1
=0 0 A Ymr—2)+2 | + | M1 Ix O U (r—1)42
0 0 0 Ym(r-1) 0 My Ik UmTt
0 0 M U (r—2)+1
+100 O U (1—2)4-2
00 0 um(T,l)
Defining
Ym(r—1)+1 U (1—1)+1
Hr 1= Ym(r—1)+2 and Ur 1= U (1—1)42 5
Ymr UmT
we get
Aoy = A19r—1 + Mour + My, (11.6.11)

where 2y, Ay, My, and My have the obvious definitions. This form is a
VARMA(1, 1) representation of the 3K-dimensional process 1. Our standard
form of a VARMA(1, 1) process can be obtained from this form by premulti-
plying with Ay 1 and defining v, = Ay IMou, which gives

by = Ay Arn, 1 + vy + Ay DM Ao, 1.

Now temporal aggregation over m = 3 periods can be represented as a linear
transformation of the process f),. Clearly, it is not difficult to see that this
method generalizes for higher order processes and temporal aggregation over
more than three periods. Moreover, different types of temporal aggregation
can be handled. For instance, the aggregate may be the sum of subsequent
values or it may be their average. Furthermore, temporal and contemporane-
ous aggregation can be dealt with simultaneously. In all of these cases, the
aggregate has a VARMA representation if the original variables are gener-
ated by a finite order VARMA process and its structure can be studied using
the foregoing framework. Moreover, by Proposition 11.2, if forecasts of the
aggregate are of interest, it is in general preferable to forecast the original
disaggregated process and aggregate the forecasts rather than forecast the ag-
gregate directly. A detailed discussion of these issues and also of forecasting
with estimated processes can be found in Liitkepohl (1987).
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11.7 Interpretation of VARMA Models

The same tools and concepts that we have used for interpreting VAR models
may also be applied in the VARMA case. We will consider Granger-causality
and impulse response analysis in turn.

11.7.1 Granger-Causality

To study Granger-causality in the context of VARMA processes, we partition
y; in two groups of variables, z; and x;, and we partition the VAR and MA
operators as well as the white noise process u; accordingly. Hence, we get

[ ﬁi% QZEB } [ o ] = [ %;ﬁ% %28 } { o } (11.7.1)

where again a zero mean is assumed for simplicity and without loss of gener-
ality. The results derived in the following are not affected by a nonzero mean
term. The process (11.7.1) is assumed to be stable and invertible and its pure,
canonical MA representation is

ze | _ | Pu(L) Pr2(L) || une
Tt Do1(L) Doo(L) || war |
From Proposition 2.2, we know that z; is not Granger-causal for z; if and
only if @12(L) = 0. Although the proposition is stated for VAR processes, it is

easy to see that it remains correct for the presently considered VARMA case.
We also know that

[¢11(L) ¢12(L)]
@21(L) @22([/)
_ [AH(L) Alg(L)]_l{MH(L) M12(L)}
A1 (L) Aga(L) Mo (L) Maa(L)
D(L)
|: _A22(L)_1A21(L)D(L)
—D(L)Alg(L)AQQ(L)_l :|
AQQ(L)_l + AQQ(L)_IAgl (L)D(L)A12<L)A22(L)_1
[MH(L) Mlg(L)]
Moy (L) Mao(L) |7

where
D(L) :=[A11(L) — A12(L) Az (L) Agy (L))

and the rules for the partitioned inverse have been used (see Appendix A.10).
Consequently, x; is not Granger-causal for z; if and only if

0= D(L)M3(L) — D(L)A12(L) Az (L)' May(L)
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or, equivalently,
Mlg(L) — Alg(L)AQQ(L)_lMQQ(L) =0.

Moreover, it follows as in Proposition 2.3 that there is no instantaneous causal-
ity between z; and z if and only if E(ujub,) = 0. We state these results as
a proposition.

Proposition 11.3 (Characterization of Noncausality)
Let

_ | #
Yt = s

be a stable and invertible VARMA (p, q) process as in (11.7.1) with possibly
nonzero mean. Then z; is not Granger-causal for z; if and only if

Mia(L) = Ay (L) Ao (L)~ Moy (L). (11.7.2)
There is no instantaneous causality between z; and x; if and only if
E(uyiub,) = 0.
[ ]

Remark 1 Obviously, the restrictions characterizing Granger-noncausality
are not quite so easy here as in the VAR(p) case. Consider, for instance, a
bivariate VARMA(1, 1) process

[ Zt ] _ {Oéu,l 121 ] [ Zt—1 }—i— { U1t }_’_ [ mi1,1 Mi21 } { U1,t—1 }
Tt @211 Q221 Tt—1 U2t ma21,1 221 U2 t—1
For this process, the restrictions (11.7.2) reduce to

miz 1L = (—aia1L)(1 — a1 L)1 (1 +magq L)
or

(1 —ag1L)mig 1L =—(14mag1L)a121L
or

mi2,1 = —0121 and Q22 1M121 = 12,11M122,1-

This, of course, is a set of nonlinear restrictions whereas only linear constraints
were required to characterize Granger-noncausality in the corresponding pure
VAR(p) case. However, a sufficient condition for (11.7.2) to hold is

Mlg(L) = A12(L) = O, (1173)

which is again a set of linear constraints. Occasionally, these sufficient condi-
tions may be easier to test than (11.7.2). [ ]
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Remark 2 To turn the arguments put forward prior to Proposition 11.3 into
a formal proof requires that we convince ourselves that all the operations per-
formed with the matrices of lag polynomials are feasible and correct. Because
we have not proven these results, the arguments should just be taken as an
indication of how a proof may proceed. |

11.7.2 Impulse Response Analysis

The impulse responses and forecast error variance decompositions of a VARMA
model are obtained from its pure MA representation, as in the finite order
VAR case. Thus, the discussion of Sections 2.3.2 and 2.3.3 carries over to the
present case, except that the @;’s are computed with different formulas. Also,
Propositions 2.4 and 2.5 need modification. We will not give the details here
but refer the reader to the exercises (see Problem 11.9).

It may be worth reiterating some caveats of impulse response analysis
which may be more apparent now after the discussion of transformations in
Section 11.6. In particular, we have seen there that dropping variables (consid-
ering subprocesses) or aggregating the components of a VARMA process tem-
porally and/or contemporaneously results in possibly quite different VARMA
structures. They will in general have quite different coefficients in their pure
MA representations. In other words, the impulse responses may change dras-
tically if important variables are excluded from a system or if the level of
aggregation is altered, for instance, if quarterly instead of monthly data are
considered. Again, this does not necessarily render impulse response analysis
useless. It should caution the reader against over interpreting the evidence
from VARMA models, though. Some thought must be given to the choice of
variables, the level of aggregation, and other transformations of the variables.

11.8 Exercises

Problem 11.1
Write the MA(1) process y; = u; + Myuz—1 in VAR(1) form, YV; = AY;_1+ Uy,
and determine A’ for i =1, 2.

Problem 11.2

Suppose y; = Ajyr—1 + up + Miuz_1 + Mou,_o is a stable and invertible
VARMAC(1, 2) process. Determine the coefficient matrices I1;, i = 1,2, 3,4, of
its pure VAR representation and the coefficient matrices &;, i = 1,2,3,4, of
its pure MA representation.

Problem 11.3
Evaluate the autocovariances I'y(h), h = 1,2, 3, of the bivariate VARMA(2, 1)
process



11.8 Exercises 445

3 bl 0 0 6 .2
Yt = [ 5 } +[ 4 5 }ytﬁ-[ 25 0 :|yt2+ut+|: 0 3 }utl. (11.8.1)
(Hint: The use of a computer will greatly simplify this problem.)

Problem 11.4

Write the VARMA(1, 1) process y; = A1ys—1 +us + Myuz—1 in VAR(1) form,
Y; = AY;_; + U;. Determine forecasts Y;(h) = A"Y; for h = 1,2,3, and
compare them to forecasts obtained from the recursive formula (11.5.4).

Problem 11.5
Derive a univariate ARMA representation of the second component, o, of
the process given in (11.6.8).

Problem 11.6
Provide upper bounds for the ARMA orders of the process z; = Y1+ y2: + Y3,
where y; = (Y11, Yot, Yst, Ya¢)' is a 4-dimensional VARMA (3, 3) process.

Problem 11.7

Write the VARMA(1, 1) process y: from Problem 11.4 in a form such as
(11.6.11) that permits to analyze temporal aggregation over four periods in the
framework of Section 11.6.2. Give upper bounds for the orders of a VARMA
representation of the process obtained by temporally aggregating y; over four
periods.

Problem 11.8

Write down explicitly the restrictions characterizing Granger-noncausality for
a bivariate VARMA(2, 1) process. Is y1; Granger-causal for yo; in the process
(11.8.1)7

Problem 11.9
Generalize Propositions 2.4 and 2.5 to the VARMA((p, q) case.
(Hint: Show that for a K-dimensional VARMA (p, ¢) process,

ik =0, fori=1,2,...,
is equivalent to

¢jki =0, fori=1,2,...,p(K—1)+g;
and

Oiri =0, fori=0,1,2,...,
is equivalent to

Ok =0, fori=0,1,...,p(K—1)+q.)
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Problem 11.10

Suppose that m is a real number with |m| > 1 and wu; is a white noise process.
Show that the process

1\
vy = (1 + mL) (I+mL)u

is also white noise with Var(v;) = m*Var(u;).
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Estimation of VARMA Models

In this chapter, maximum likelihood estimation of the coefficients of a VARMA
model is considered. Before we can proceed to the actual estimation, a unique
set of parameters must be specified. In this context, the problem of nonunique-
ness of a VARMA representation becomes important. This identification prob-
lem, that is, the problem of identifying a unique structure among many equiv-
alent ones, is treated in Section 12.1. In Section 12.2, the Gaussian likelihood
function of a VARMA model is considered. A numerical algorithm for maxi-
mizing it and, thus, for computing the actual estimates is discussed in Section
12.3. The asymptotic properties of the ML estimators are the subject of Sec-
tion 12.4. Forecasting with estimated processes and impulse response analysis
are dealt with in Sections 12.5 and 12.6, respectively.

12.1 The Identification Problem

12.1.1 Nonuniqueness of VARMA Representations

In the previous chapter, we have considered K-dimensional, stationary pro-
cesses y; with VARMA (p, q) representations

ye = A1y + - F ApYr—p Fur + Miug—1 + -+ Maus—q. (12.1.1)

Because the mean term is of no importance for the presently considered prob-
lem, we have set it to zero. Therefore, no intercept term appears in (12.1.1).
This model can be written in lag operator notation as

A(L)ys = M(L)uy, (12.1.2)
where A(L) := I —AyL—---—A,L? and M (L) :=Ix + ML+ ---+ M,L9.

Assuming that the VARMA representation is stable and invertible, the well-
defined process described by the model (12.1.1) or (12.1.2) is given by
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ye =Y i = D(L)uy = A(L)""M(L)u,.
=0

In practice, it is sometimes useful to consider a slightly more general type
of VARMA model by attaching nonidentity coefficient matrices to y; and uy,
that is, one may want to consider representations of the type

Aoy = A1yp—1 + - + Apyr—p + Movy + Myve—y + - - + Myvi—g, (12.1.3)

where v; is a suitable white noise process. Such a form may be suggested by
subject matter theory which may imply instantaneous effects of some variables
on other variables. It will also turn out to be useful in finding unique structures
for VARMA models. By the specification (12.1.3) we mean the well-defined
process

yi = (Ag — AyL — -+ — A, LP) " (Mo + My L + -+ - + M,L%)v;,.

Such a process has a standard VARMA (p, q) representation with identity coef-
ficient matrices attached to the instantaneous y; and u; if Ag and Mj are non-
singular. To see this, we premultiply (12.1.3) by Ay " and define u; = Ay ' Mo,
which gives

ye = AgtAip+ o+ Ay Ay e + Ay MM Agug—g + -
+ A M MG Agu .

Redefining the matrices appropriately, this, of course, is a representation of
the type (12.1.1) with identity coefficient matrices at lag zero which describes
the same process as (12.1.3). The assumption that both Ag and My are nonsin-
gular does not entail any loss of generality, as long as none of the components
of y; can be written as a linear combination of the other components. We call
a stable and invertible representation as in (12.1.1) a VARMA representation
in standard form or a standard VARMA representation to distinguish it from
representations with nonidentity matrices at lag zero as in (12.1.3). This dis-
cussion shows that VARMA representations are not unique, that is, a given
process y; can be written in standard form or in nonstandard form by premul-
tiplying by any nonsingular (K x K) matrix. We have encountered a similar
problem in dealing with finite order structural VAR processes in Chapter 9.
However, once we consider standard reduced form VAR models only, we have
unique representations. This property is in sharp contrast to the presently
considered VARMA case, where, in general, a standard form is not a unique
representation, as we will see shortly.

It may be useful at this stage to emphasize what we mean by equivalent
representations of a process. Generally, two representations of a process y;
are equivalent if they give rise to the same realizations (except on a set of
measure zero) and, thus, to the same multivariate distributions of any finite
subcollection of variables v, yry1,-..,Yt4+n, for arbitrary integers ¢ and h.
Of course, this specification just says that equivalent representations really
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represent the same process. If y; is a zero mean process with canonical MA
representation

e = > B, o= I,
i=0
= o(L)u, (12.1.4)

where @(L) := Y72, ®;L", then any VARMA model A(L)y; = M(L)u, for
which

AL)"*M(L) = &(L) (12.1.5)

is an equivalent representation of the process y;. In other words, all VARMA
models are equivalent for which A(L)"!M (L) results in the same operator
@(L). Thus, in order to ensure uniqueness of a VARMA representation, we
must impose restrictions on the VAR and MA operators such that there is
precisely one feasible pair of operators A(L) and M (L) satisfying (12.1.5) for
a given @(L).

Obviously, given some stable, invertible VARMA representation A(L)y; =
M(L)u, an equivalent representation results if we premultiply by any non-
singular matrix Ag. Therefore, to remove this source of nonuniqueness, let us
for the moment focus on VARMA representations in standard form. As men-
tioned earlier, even then uniqueness is not ensured. To see this problem more
clearly, let us consider a bivariate VARMA(1, 1) process in standard form,

Y = Arye—1 + w + Miug—q. (12.1.6)

From Section 11.3.1, we know that this process has the canonical MA repre-
sentation

ye =Y Diupi=ur+ Y (A} + AT My)u_s. (12.1.7)

=0 i=1

Thus, for example, any VARMA(1,1) representation with M; = —A; will
result in the same canonical MA representation. In other words, if it turns
out that y; is such that M; = —A; for some set of coefficients, then any
choice of A; matrix that gives rise to a stable VAR operator can be matched
by an M; matrix that leads to an equivalent VARMA(1,1) representation
of ys. Of course, in this case, the MA coefficient matrices in (12.1.7) are
in fact all zero and y; = wu; is really white noise, that is, y; actually has
a VARMA(0,0) structure. This fact is also quite easy to see from the lag
operator representation of (12.1.6),

(IQ — AlL)yt = (IQ + MlL)ut.

Of course, if M; = —A;, the MA operator cancels against the VAR operator.
This type of parameter indeterminacy is also known from univariate ARMA
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processes. It is usually ruled out by the assumption that the AR and MA
operators have no common factors. Let us make a similar assumption in the
presently considered multivariate case by requiring that y; is not white noise,
i.e., M1 7& _Al-

Unfortunately, in the multivariate case, the nonuniqueness problem is not
solved by this assumption. To see this, suppose that

0 o
A1—|:0 0:| and Ml—O,

where o # 0. In this case, the canonical MA representation (12.1.4) has coef-
ficient matrices

By =Ay, Py==Py=---=0, (12.1.8)

because A} = 0 for i > 1. The same MA representation results if

A1:0 and M1_|:83:|

More generally, a canonical MA representation with coefficient matrices as in
(12.1.8) is obtained if

10 a+m 10 —-m
A1|:O 0 :| and M1|:0 0:|,

whatever the value of m. Note also that the VARMA representation will be
stable and invertible for any value of m.

To understand where the parameter indeterminacy comes from, consider
the VAR operator
0 o
I — 00 L. (12.1.9)
The inverse of this operator is

0 o
L+ 0 0] L, (12.1.10)

which is easily checked by multiplying the two operators together. Thus, the
operator (12.1.9) has a finite order inverse. Operators of this type are precisely
the ones that cause trouble in setting up a uniquely parameterized VARMA
representation of a given process because multiplying by such an operator
may cancel part of one operator (VAR or MA) while at the same time the
finite order of the other operator is maintained.

To get a better sense for this problem, let us look at the following
VARMAC(1,1) process:

A(L)yr = M(L)uy,
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A(L) = {18‘1@ almL} and  M(L) = [”g“lL ik

The two operators do not cancel if a1 # —mq; and a2 # —maa. Still we can
factor an operator

=[5 3]+ (3 aJe=o ]

from both operators without changing their general structure:

1 — 0511[1 —(")/ =+ Otlg)L
0 1 ’

L+muL (mi2 —v)L
0 1 ’
Cancelling D(L) gives operators

l—anl —(y+a)l | _ l+anl —(2y+ai2)L
0 1 = D(L) 0 1

and

[ 1+mu L (mi2—~)L | 1+ mp L (mi2—2v)L
0 1 = D(L) 0 1 '

Thus, we can again factor and cancel D(L). In fact, we can cancel D(L) as
often as we like without changing the general structure of the process. Hence,
even if the orders of both operators cannot be reduced simultaneously by
cancellation, it may still be possible to factor some operator from both A(L)
and M (L) without changing their general structure. Note that the troubling
operator D(L) is again one with finite order inverse,

D(L)™ = [é _YL ] .

Finite order operators that have a finite order inverse are characterized by
the property that their determinant is a nonzero constant, that is, it does not
involve L or powers of L. Operators with this property are called unimodular.
For instance, the operator (12.1.9) has determinant,

0 « 1 —aL
=[5 e =[[o 1]

and, hence, it is unimodular. The property of a unimodular operator to have
a finite order inverse follows because the inverse of an operator A(L) is its
adjoint divided by its determinant,
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A(L)™h = A(L)*Y/|A(L)| = |A(L)| T A(L)*.

The determinant is a univariate operator. A finite order invertible univariate
operator, however, has an infinite order inverse, unless its degree is zero, that
is, unless it is a constant.

In order to state uniqueness conditions for a VARMA representation, we
will first of all require that a representation is chosen for which further can-
cellation is not possible in the sense that there are no common factors in the
VAR and MA parts, except for unimodular operators. Operators A(L) and
M (L) with this property are left-coprime. This property may be defined by
calling the matrix operator [A(L) : M(L)] left-coprime, if the existence of
operators D(L), A(L), and M (L) satisfying

D(L)[A(L) : M(L)] = [A(L) : M(L)] (12.1.11)

implies that D(L) is unimodular, that is, | D(L)| is a nonzero constant. From
the foregoing examples, it should be understood that in general factoring
unimodular operators from A(L) and M (L) is unavoidable if no further con-
straints are imposed. Thus, to obtain uniqueness of left-coprime operators we
have to impose restrictions ensuring that the only feasible unimodular oper-
ator D(L) in (12.1.11) is D(L) = Ix. We will now give two sets of conditions
that ensure uniqueness of a VARMA representation.

12.1.2 Final Equations Form and Echelon Form

Suppose y; is a stationary zero mean process that has a stable, invertible
VARMA representation,

A(L)y: = M(L)u, (12.1.12)

where A(L) := Ag— A1 L—---—A,LP and M(L) := Mo+ M L+---+ M,L9.
Further suppose that A(L) and M(L) are left-coprime and the white noise
covariance matrix Y, is nonsingular.

Definition 12.1 (Final Equations Form)

The VARMA representation (12.1.12) is said to be in final equations form if
My = Ik and A(L) = a(L)Ix, where a(L) :==1—oy L —---—a,LP is a scalar
(one-dimensional) operator with «, # 0. [ ]

For instance, the bivariate VARMA (3, 1) model

) 1+muaL  mioaL Ut
1— oL —anl? —asL?) | Y1 | = : ’
( Qg (o7 azL?) |: Yot mao1 1L 1+ maog L U2t

(12.1.13)
with ag # 0, is in final equations form. The label “final equations form” for

this type of VARMA representation is in line with the terminology used in
Chapter 10, Section 10.2.2.
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Uniqueness of the final equations form
a(L)y; = M(L)uy

is seen by noting that D(L) = I is the only operator that retains the scalar
AR part upon multiplication. For the operator D(L)a(L)Ix to maintain the
order p, the operator D(L) must have degree zero, that is, D(L) = D. How-
ever, the only possible matrix D that guarantees a zero order matrix Iy for
the VAR operator is D = .

Definition 12.2 (Echelon Form)

The VARMA representation (12.1.12) is said to be in echelon form or ARMAE
form if the VAR and MA operators A(L) = [oki(L)]k,i=1,...,
[myi(L)] are left-coprime and satisfy the following conditions: The operators
ari(L) (i=1,...,K)and my;(L) ( =1,..., K) in the k-th row of A(L) and
M (L) have degree py and they have the form

Pk
akk(L)zl_Zakk,ij; fOI‘k:L...,K,
j=1

Pk
Ozki(L) = — Z aki7ij, for k 7& i,
J=pPk—prit1

and

Pk
mii(L) =Y mgi L7, forkyi=1,...,K, with My= Ap.
j=0

In the VAR operators ay;(L),
. [ min(py +1,p;)  for k>4, o
Phe = { min(px, p;) for k < 14, kii=1,...,K. (12.1.14)

That is, pg; specifies the number of free coefficients in the operator ay;(L)
for i # k. The row degrees (p1,...,pk) are called the Kronecker indices and
their sum Zszl p; is the McMillan degree. Obviously, for the VARMA orders
we have, in general, p = ¢ = max(p1,...,DK)- [ |

We will sometimes denote an echelon form VARMA model with Kronecker
indices (p1,...,pKx) by ARMAE(p1,...,pk). The following model is an ex-
ample of a bivariate VARMA process in echelon form or, more precisely, an

[ 1—oaq11L —a112L?  —aq22L? } [ Y1t ]

—a21,0 — Q21,1 L 1 -9l Yot
_ L+mii1 L+ mi12L? mig1 L+ migoL? U1y (12.1.15)
—az1,0 +mo11 L 1+mo L Uoy o
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or

1 0 Y1t
—Q21,0 1 Y2t
_ 11,1 0 Yi,t—1 11,2 (122 Y1,t—2
= +
Q11 Q22,1 Y2,6-1 0 0 Y2,6-2
" 1 0 Uie | | T mazg UL, —1
—an1o 1 Ut ma1,1 M22,1 U2 1

+ mii2 Mi22 U1,t—2
0 0 Ugt—2 |

In this model, the Kronecker indices (row degrees) are p; = 2 and py = 1.
Thus, the McMillan degree is 3. The py; numbers are

[pn p12]_{2 1]

pa pa2 | [ 21

(see (12.1.14)). The off-diagonal elements p12 and po; of this matrix indicate
the numbers of parameters contained in the operators aja(L) and as(L),
respectively. Because ay2(L) belongs to the first row or first equation of the
system, it has degree p; = 2. Hence, because it has just one free coefficient
(p12 = 1), it has the form a12(L) = —ay2 2 L?. Similarly, aeq (L) belongs to the
second row of the system and, thus, it has degree po = 1. Because it has py; = 2
free coefficients, it must be of the form ao1(L) = —a921,0 — a21,1L. Another
characteristic feature of the echelon form is that Ay is lower-triangular and
has ones on the main diagonal. Moreover, the zero order MA coefficient matrix
is identical to the zero order VAR matrix, My = Ao.

Some free coefficients of the echelon form of a VARMA model may be
zero and, hence, p or ¢ may be less than max(py,...,px). For instance, in
the example process (12.1.15), mj12 and mq22 may be zero. In that case,
q =1 < max(p1,p2) = 2. In order for a representation to be an echelon form
with Kronecker indices (p1,...,px), at least one operator in the k-th row of
[A(L) : M(L)] must have degree py, with nonzero coefficient at lag pg.

An echelon is a certain positioning of an army in the form of steps. Sim-
ilarly, the nonzero parameters in an echelon VARMA representation are po-
sitioned in a specific way. In particular, the positioning of freely varying pa-
rameters in the k-th equation depends only on Kronecker indices p; < pr and
not on Kronecker indices p; > p. More precisely, as long as p; > pi, the
positioning of the free parameters in the k-th equation will be the same for
any value p;. For the example process (12.1.15), it is easy to check that the
positions of the free parameters in the second equation will remain the same
if the row degree of the first equation is increased to p; = 3. In other words,
p21 does not change due to an increase in p;.

It can be shown that the echelon form, just like the final equations form,
guarantees uniqueness of the VARMA representation. In other words, if a
VARMA representation is in echelon form, then the representation is unique
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within the class of all echelon representations. A similar statement applies
for the final equations form. Also, for any stable, invertible VARMA(p, q)
representation, there exists an equivalent echelon form and an equivalent final
equations form.

The reader may wonder why we consider the complicated looking echelon
representation although the final equations form serves the same purpose. The
reason is that the echelon form is usually preferable in practice because it often
involves fewer free parameters than the equivalent final equations form. We
will see an example of this phenomenon shortly. Having as few free parameters
as possible is important to ease the numerical problems in maximizing the
likelihood function and to gain efficiency of the parameter estimators.

There are a number of other unique or identified parameterizations of
VARMA models. We have chosen to present the final equations form and the
echelon form because these two forms will play a role when we discuss the issue
of specifying VARMA models in Chapter 13. For proofs of the uniqueness of
the echelon form and for other identification conditions we refer to Hannan
(1969, 1970, 1976, 1979), Deistler & Hannan (1981), and Hannan & Deistler
(1988). We now proceed with illustrations of the final equations form and the
echelon form.

12.1.3 TIllustrations

Starting from some VARMA (p, q) representation A(L)y; = M (L)uy, one strat-
egy for finding the corresponding final equations form results from premulti-
plying with the adjoint A(L)*¥ of the VAR operator A(L) which gives

|A(L)|ye = A(L)*Y M (L)uy, (12.1.16)

where A(L)*% A(L) = |A(L)| has been used. Obviously, (12.1.16) has a scalar
VAR operator and, hence, is in final equations form if all superfluous terms
are cancelled.

To find the echelon form corresponding to a given VARMA model, we have
to cancel as much as possible so as to make the VAR and MA operators left-
coprime. Then a unimodular matrix operator has to be determined which,
upon premultiplication, transforms the given model into an echelon form.
It usually helps to determine the Kronecker indices (row degrees) and the
corresponding numbers pg; first. We will now consider examples.

Let us begin with the simple bivariate process

<12 - [ 8 ff } L) g = (12.1.17)

with o # 0. Noting that

A(L)|:H(1) ‘fLH:1 and A(L)“dj:[o X
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the final equations form is seen to be

Y = (h-+ {8 g:‘L>1u. (12.1.18)

To find the echelon representation, we first determine the Kronecker indices
or row degrees and the implied pi; from Definition 12.2. The first row of
(12.1.17) has degree p; = 1 and the second row has degree p, = 0. Hence,

pi=1 pi2=0, pa=1 pa=0,
so that

a11(L) =1—ai11L, aq2(L) =0, a1 (L) = —a91,0, and age(L) = 1.
Thus, the echelon form is

[ 1—an1l 0 } = [ 14+ mii1L maaaL . (12.1.19)

—ag1p 1 —Q21,0 1

The unique parameter values in this representation corresponding to the spe-
cific process (12.1.17) are easily seen to be

a1 =oaz10=my11 =0 and mi2; = o

Thus, in this particular case, the final equations form and the echelon form
coincide.

As another example, we consider a 3-dimensional process with VARMA(2, 1)
representation

1-6,L —0,L 0
0 1-— 93L - 94L2 —05L Yt
0 0 1
1—-mL 0 0
= 0 1—mL 0 . (12.1.20)
0 0 1—nsL

Using (12.1.16), its final equations form is seen to be

(1 —61L)(1 — 0sL — 04L%)y;

1—6sL — 6,12 0oL 020512
= 0 1-6,L 05L — 6105L7
0 0 (1—0.L)(1—0sL — 0,12
1-— 7]1L 0 0
X 0 1—noL 0 Uy

0 0 1-nL
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which is easily recognizable as a VARMA(3,4) structure with scalar VAR
operator.

The Kronecker indices, that is, the row degrees of (12.1.20) are (p1, p2,p3) =
(1,2,1) and the implied pg;-numbers from (12.1.14) are collected in the fol-
lowing matrix:

[Dkilki=1,2,3 =

—_ =
DN DN =
— =

Consequently, the VAR operator of the echelon form becomes

1—apaL —a12,1L —ai3,1L
2 2 2
—an12L* 1 —o 1L —age ol —agsal
—as11L —age0 — a3 1L 1—as3:1L
or
1 0 0 11,1 G121 (131 0 0 0
2
0 1 0 - 0 @221 0 L— Q21,2 (222 (232 L~.
0 —aszeo 1 31,1 32,1 Q33,1 0 0 0

(12.1.21)

Hence, in the echelon representation,

1 0 0
Ao=10 1 o0
0 —Q32,0 1

is different from I3, if aige o # 0, and, thus, My = Ay is also not the identity
matrix. The MA operator is

1+myqL mig1 L mi3,1L
mar 1L +ma1 2L? 14 mag1 L +maog2Ll? mag1 L+ magoL?
ms11L —as32,0 +ms21 L 1+mss 1L
or
1 0 0 mi1,1 Mi2,1 Ma3 0 0 0
0 1 0| 4+ | mai,i maz21 masi | L+ | mai2 Mmaz2 mas2 L?.
L 0 —asz20 1 ms31,1 Ma32,1 M33,1 0 0 0
(12.1.22)

The reader may be puzzled by the fact that the last element in the second
row of (12.1.21) does not involve a term with first power of L while such a
term appears in (12.1.20). This model form shows that there is a VARMA
representation equivalent to (12.1.20) with the second but not the first power
of L in the last operator in the second row of A(L). The fact, that there always



458 12 Estimation of VARMA Models

exists an equivalent echelon representation does not mean that there is always
an immediately obvious relation between the coefficients of any given VARMA
representation and its equivalent echelon form. However, in the present case
it is fairly easy to relate the representations (12.1.20) and (12.1.21)/(12.1.22).
Premultiplying (12.1.20) by the operator

(10 0O
0 1 65L (12.1.23)
|00 1

results in a VAR operator

[1—-6,L —6,L 0
0 1—6s5L—0,L7 0
0 0 1

and the MA operator changes accordingly. Notice that the operator (12.1.23)
has constant determinant and, of course, the resulting VARMA model is equiv-
alent to (12.1.20). The relation between its coefficients and those of the echelon
representation (12.1.21)/(12.1.22) is obvious:

ay =01, a1 =02, 6131 =0,

agie =0, a1 =103, «axo=~04 axs=0,

Q31,1 = 03,0 = Q32,1 = 33,1 = 0,
and the relation between (12.1.22) and the coefficients of (12.1.20) is also
apparent. Of course, if the zero coefficients are known, then this knowledge
may be used to reduce the number of free coefficients in the echelon form.

In this example, the unrestricted final equations form has 3 AR coefficients
and 36 MA coefficients. Thus, the unrestricted form contains 39 parameters,
apart from white noise covariance coefficients. In contrast, the unrestricted
echelon form (12.1.21)/(12.1.22) has only 23 free parameters and is therefore
preferable in terms of parameter parsimony. Note that, in practice, the true
coefficient values are unknown and we pick an identified structure, for exam-
ple, a final equations form or an echelon form. At that stage, further parameter
restrictions may not be available. Hence, if (12.1.20) is the actual data gener-
ation process we may pick a VARMA(3,4) model with scalar AR operator if
we decide to go with a final equations representation and we may choose the
model (12.1.21)/(12.1.22) if we decide to use an echelon form representation.
Obviously, the latter choice results in a more parsimonious parameterization.
As mentioned earlier, for estimation purposes the more parsimonious repre-
sentation is advantageous.

Although Aj # I in the previous example, it should be understood that in
many echelon representations Ag = My = Ik . In particular, if the row degrees
pr=--=pg =p,all pg; =p,i,k=1,..., K, and the echelon form is easily
seen to be a standard VARMA (p,p) model with A9 = My = Ix. We are
now ready to turn to the actual estimation of the parameters of an identified
VARMA model and we shall discuss its Gaussian likelihood function next.
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12.2 The Gaussian Likelihood Function

For maximum likelihood (ML) estimation the likelihood function is needed.
We will now derive useful approximations to the likelihood function of a Gaus-
sian VARMA (p, q) process. Special case MA processes will be considered first.

12.2.1 The Likelihood Function of an MA(1) Process

Because a zero mean MA (1) process is the simplest member of the finite order
MA family, we use that as a starting point. Hence, we assume to have a sam-
ple y1,...,yr which is generated by the Gaussian, K-dimensional, invertible
MA(1) process

Y = up + Myus_1, (1221)

where u; is a Gaussian white noise process with covariance matrix 3,. Thus,

U
Y1 |y
y=| | =M . |,
Yyr ur
where
My Ipx 0O ... 0 O
0 M, Igx 0 O
My = | : (12.2.2)
0 o0 0 ... M Ig

isa (KT x K(T +1)) matrix. Using that u; is Gaussian white noise and, thus,
Uo

U
~ N0, It 1 ® Xy),

up
if follows that
y ~ N0, (I741 ® 2,)00,)
and the likelihood function is seen to be
UMy, Xuly)

o [ (I ® 20| Y2 exp{—Ly' [ (Ir11 © 2)00] 'y},
(12.2.3)
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where o< stands for “is proportional to”. In other words, we have dropped a
multiplicative constant from the likelihood function which does not change
the maximizing values of M; and X,,.

It is inconvenient that this function involves the determinant and the in-
verse of a (KT x KT) matrix. A simpler form is obtained if ug is set to zero,
that is, the MA(1) process is assumed to be started up with a nonrandom
fixed vector ug = 0. In that case,

y = Myu,
where
Ix 0 ... 0 0
M, Iy 0 0 w
M, = : and u:=| @ |. (12.2.4)
. . ur
0 0 ... M Ig (KT>x1)

(KTXKT)
The likelihood function is then proportional to
lo(My, Z|y) = |9 (Ir ® )M 7V2 exp{—3y'[9 (I © £,)9M)] 'y}
= |27 exp{—§y' I (I @ X, )My}
1 Z
= |2, T/? exp{—ZZugxulut}, (12.2.5)
t=1

where it has been used that |9%;| = 1 and

i % 0 0 0
— M, Iy 0 0
mt = (—My)? -M;, .0 0
| (=M)T (—My)T 2 =M I
[ Ix 0 0
-1 % 0
L Iy —Hp_o ... Ik

where the IT; = —(—Mj)* are the coefficients of the pure VAR representation
of the process. By successive substitution, the MA(1) process in (12.2.1) can
be rewritten as
t—1
et Y (=M)'yei + (—Mi)'ug = uy. (12.2.6)

i=1
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Thus, if ug = 0,
t—1

Ut = Yt + Z(_Ml)zyt—iy
i=1

from which the last expression in (12.2.5) is obtained.

The equation (12.2.6) also shows that, for large ¢, the assumption regarding
ug becomes inconsequential because, for an invertible process, M} approaches
zero as t — o0o. The impact of ug disappears more rapidly for processes for
which M? goes to zero more rapidly as ¢ gets large. In other words, if all
eigenvalues of M are close to zero or, equivalently, all roots of det(Ix +
M;z) are far outside the unit circle, then the impact of ug is lower than
for processes with roots close to the unit circle. In summary, the likelihood
approximation in (12.2.5) will improve as the sample size gets large and will
become exact as T' — oo. In small samples, it is better for processes with roots
of det(Ix+ M, z) far away from the unit circle than for those with roots close to
the noninvertibility region. Because we will be concerned predominantly with
large sample properties in the following, we will often work with likelihood
approximations such as [y in (12.2.5).

12.2.2 The MA(q) Case

A similar reasoning as for MA(1) processes can also be employed for higher
order MA processes. Suppose the generation process of y; has a zero mean
MA (q) representation

Yt = Ut + Mlut,l + -+ Mqut,q. (1227)
Then
—U—q+1_
A Ug
y =M, w |
L Ur |
where
M, M, .M, Ik O 0
0 M, My My Ik 0
M, = | (12.2.8)
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isa (KT x K(T + q)) matrix and the exact likelihood for a sample of size T'
is seen to be
_ —
(M, ..., My, Suly) oc [y (Iryq © 2,)90, |2
x exp{ =5 0y (Irq © Zu)I,] 'y} (12.29)

Again a convenient approximation to the likelihood function is obtained
by setting u_q+1 = --- = ug = 0. In that case, the likelihood is, apart from a
multiplicative constant,

lo(Mi, ..., My, D,Jy) = |Zu| "7/ 2 exp{— Ly’ [0, 2 (Ir @ 27, Yy},

(12.2.10)
where
M Ik 0 0 0 7
M, I 0 o0
M, M, 0 o0
m, = - : (12.2.11)
Mq Mq,1 . . :
0 M,
L0 0 ... M, ... ... M Ig]
and, hence,
I 0 ... 0
-1 % 0
m, = . . .
—HT,1 —HT,Q IK

Here the II; are the coefficient matrices of the pure VAR representation of
the process y;. Thus, the II; can be computed recursively as in Section 11.2
of Chapter 11.

An alternative expression for the approximate likelihood is easily seen to
be

T
1
lo(My, ..., My, 2uly) = |Zu| "/ exp {—2 ZugEulut} ; (12.2.12)

t=1

where

t—1
Ut = Yt — Zniyt—i-
i=1
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Again, the likelihood approximation will be quite precise if T' is reasonably
large and the roots of det(Ix + Miz + - -+ Myz?) are not close to the unit
circle.

Although we will work with likelihood approximations in the following, it is
perhaps worth noting that an expression for the exact likelihood of an MA(q)
process can be derived that is more manageable than the one in (12.2.9) (see,
e.g., Hillmer & Tiao (1979), Kohn (1981)).

12.2.3 The VARMA(1,1) Case

Before we tackle general mixed VARMA models, we shall consider the simplest
candidate, namely a Gaussian zero mean, stationary, stable, and invertible
VARMA(1,1) process,

Yr = Arye—1 + w + My (12.2.13)
Assuming that we have a sample y1,...,yr, generated by this process and
defining

[ Ik 0 e 0 0]
—A Ig 0 0
—Ay A 0 0
D 00 (12.2.14)
0 -4, ' ‘ 0 0
0 0 Ik 0
L O O _Ap —A1 IK
we get
—A1yo Uo
9 0 . uy
Q[I + = 9)’{1 .
yr 0 ur

Hence, for given, fixed presample values yy,

U1
y=1 1 | ~ N yo, 47000 (I © 2,) 002477, (12.2.15)
yr

where
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Ao
0
Yo =

(.)
The corresponding likelihood function, conditional on yg, is
U(Ar, My, Zuly, yo)
oc (A7 Iyt © Z,) 9, A~/
x exp{—3(y — A7 yo) U [T (1 @ T)9 ]~ (y — A1 o)}
= [T (Igs © 3,00 |71/
X eXP{—%(mly - yO)/[ﬁl(IT-H 0y Eu)ﬁ;]_l(mly —Yyo)}, (12.2.16)

where |2;| = 1 has been used.
With the same arguments as in the pure MA case, a simple approximation
is obtained by setting ug = yo = 0. Then we get

lo(Ay, My, 2y) = |S|7T P exp{—3(M " Wy) (Ir ® 271 Wy}
T
1
= |2u—T/2exp{—22u;2;1ut}, (12.2.17)
t=1
where
t—1
we=y—» iy (12.2.18)
=1

and the II; are the coefficient matrices of the pure VAR representation, that
is, for the present case IT; = (—1)" "' (Mj + M ' A;),i=1,2,... (see Section
11.3.1). Note that in writing the likelihood approximation /g we have dropped
the conditions y and yg for notational simplicity.

The effect of starting up the process with yo = uy = 0 is quite easily
seen in (12.2.18), namely, for observation y;, the infinite order pure VAR
representation is truncated at lag ¢ — 1. Such a truncation has little effect if
the sample size is large and the roots of the MA operator are not close to the
unit circle.

12.2.4 The General VARMA (p, q) Case

Now suppose a sample y1, . .., yr is generated by the Gaussian K-dimensional,
stable, invertible VARMA ((p, ¢) process

Ao(ye — ) = At(ye—r —p) +- -+ Ap(ys—p — 1)
+AOUt + Mlut_l + -4 Mqut_q (12219)
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with mean vector p and nonsingular white noise covariance matrix Y. No-
tice that Ao appears as the coefficient matrix of y; and of u; as in the eche-
lon form. Thus, the echelon form is covered by our treatment of the general
VARMA(p, q) case. We have chosen the mean-adjusted form of the process
because this form has certain advantages in ML estimation, as we will see
later.

Usually some elements of the coefficient matrices will be zero or obey some
other type of restrictions. Therefore, to be realistic, we define

ap = vec(Ag) and B 1= vec[Ay,..., Ay, My, ..., M,] (12.2.20)

and assume that these coefficients are linearly related to an (N x 1) parameter
vector 7, that is,

(67} .
{ 3 ] =Ry +r (12.2.21)

for a suitable, known (K?(p+q+1) x N) matrix R and a known K2(p+q+1)-
vector r. For example, for a bivariate ARMARg(1,0) process with Kronecker
indices p; = 1 and po = 0,

1—ap1al 0O | 14+ muiaL magq L
(ye —p) = Ut

—021,0 1 —0Q21,0 1
or
1 0 o 0 1 0
{amo 1](%-#) - [ 10171 0](%1_’“)—’_[—0@10 1}%
Jr[ mbl,l m62,1 :|ut—1,
we have
[ 000 0]
i i -1 000
Q11,1 00O0O
0 0000
1 0 0100
o —Q21,0 o 0 o 00O0O
ao o " P lmua | BT 0000
1 0 0000
mi2,1 0010
0] 0000
0001
| 00 0 0]
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1
0
Q21,0 0
v = 11,1 and 7= (1)
miig |’ 0
mi21
. O -

Similarly, for the final equations form

| 14+mpL mioL
(1 alL)(yt N) - |: m21L 14+ m22L Ut

or

10 o 0 B 10 mi1 Mi2
|:0 1}(%#){ 0 041:|(yt_1 :U’)+|:0 1:|Ut+|:m21 m22:|ut—1a

we get

000O00O0
000O00O0
[ aq T 000O00O0
0 00000
1 0 1 0000
0 aq 00O0O00O0
@=1ol" P=lmy > B loooo0ol
1 mo1 1 00 00
mi2 01000
moo 00100
i i 00010
_O 000 1_
C 1]
(651 0
mi1 0
Y= mo1 s and r = 1
mi2 0
ma2 :
_O_

The likelihood function is a function of u,-y, and X,,. Its exact form, given
fixed initial values y_p+1, ..., Yo, can be derived analogously to the previously
considered special cases (see Problem 12.4 and Hillmer & Tiao (1979)). Here
we will just give the likelihood approximation obtained by assuming

y_p_i_lfu:...:yoflu:u_q_‘rl:~~~:u0:0,
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Apart from a multiplicative constant, we get

T
1
lO(/”'a v, Eu) = ‘Eu|_T/2 exp {_2 Z ’U,t(/.t, 7)/2171Ut(ﬂv 7)} 9 (12222)
t=1
where
t—1
we(p,y) = (e — 1) = > () (ye—i — 1), (12.2.23)
i=1

with the IT;(v)’s being again the coefficient matrices of the pure VAR rep-
resentation of y;. We have indicated that these matrices are determined by
the parameter vector «. Formally the likelihood approximation has the same
appearance as in the special cases. Of course, the u;’s are now potentially
more complicated functions of the parameters.

It is perhaps worth noting that the uniqueness or identification problem
discussed in Section 12.1 is reflected in the likelihood function. If the model is
parameterized in a unique way, for instance, in final equations form or echelon
form, the likelihood function has a locally unique maximum. This property
is of obvious importance to guarantee unique ML estimators. Note, however,
that the likelihood function in general has more than one local maximum. A
more detailed discussion of the properties of the likelihood function can be
found in Deistler & Potscher (1984).

The next section focuses on the maximization of the approximate likeli-
hood function (12.2.22) or, equivalently, the maximization of its logarithm,

T
T 1 _
Inlo(p, v, Zu) = =5 |2 = 5 > e y) Sy (). (12.2.24)

t=1

12.3 Computation of the ML Estimates

In the pure finite order VAR case considered in Chapters 3 and 5, we have
obtained the ML estimates by solving the normal equations. In the presently
considered VARMA (p, q) case, we may use the same principle. In other words,
we determine the first order partial derivatives of the log-likelihood function
or rather its approximation given in (12.2.24) and equate them to zero. We
will obtain the normal equations in Section 12.3.1. It turns out that they
are nonlinear in the parameters and we discuss algorithms for solving the
ML optimization problem in Section 12.3.2. The optimization procedures are
iterative algorithms that require starting-up values or preliminary estimates
for the parameters. A possible choice of initial estimates is proposed in Section
12.3.4. One of the optimization algorithms involves the information matrix
which is given in Section 12.3.3. An example is discussed in Section 12.3.5.
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12.3.1 The Normal Equations

In order to set up the normal equations corresponding to the approximate
log-likelihood given in (12.2.24), we derive the first order partial derivatives
with respect to all the parameters u,~y, and X,.

Odlnly a /10U o P =

o :_;:1:%2“ 0;/:;:1:%2“ [IK—;_lHi('y)], (12.3.1)
dlnly a ) o Oy

o :_;utzu — (12.3.2)

A recursive formula for computing the du, /9’ is given in the following lemma.

Lemma 12.1
Suppose p = 0 and let

up =y — Ag [ Arys—1 4+ Apyi—p + Myug_q + -+ Myug_g), (12.3.3)
ag := vec(Ap),
B :=vec[As,..., Ay, My, ..., My,

and suppose

(67} _
{ 3 ] = Ry+r, (12.3.4)

where R is a known (K?(p+q+ 1) x N) matrix, 7 is a known K?(p+q + 1)-
dimensional vector, and -« is an (N x 1) vector of unknown parameters. Then,

defining duo/vy" = Ou_1/0y" = -+ = Qu_g41/0y = 0 and yy = -+ =
Yopr1 = U= =U_g41 =0,
ou _
o = A s+ Ay
+M1’U,t_1 —+ -+ Mqut_q])/ (29 Aal}[IK2 : 0 R O]R
7[(2/1/5—1’ cee 7y1,£—p7u;—17 o ,U;_q) & AO_1HO : IK2(P+Q)}R
Ouy_ Quy_
—1 t—1 t
—Agt M e, (12.3.5)
fort=1,...,T. |

Replacing y; with y; — p in this lemma, the expression in (12.3.5) can be
used for recursively computing the du;/0v’ required in (12.3.2).

Proof:

aut
o'

= —[(A1yi—1 + -+ Apyr—p + Miug_1 + -+ Myup_y) @ I]
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-1
Ovec(Ag ")
A0 )
oy’
—1
_[(yifh tee 7y£7p7u2717 e 7’u’;7q) ® AO }

Xavec[Al,...,Ap,Ml, cs M)
oy’

[ [ v | 1

—AGV[A1,.. . Ay, My, M) |0 zt—f’ Jov' | . (12.3.6)
t—1
L L Ut—q | J
The lemma follows by noting that
dvec(Ay')  dvec(Ay!) dag —1vs -1
= =—[(4 Ay | Ig2:0: -

(12.3.7)
(see Rule (9) of Appendix A.13). |

The partial derivatives of the approximate log-likelihood with respect to
the elements of X, are

dlnly T L
T, =-5% Ly 2 <Zutut>2 (12.3.8)

(see Problem 12.5). Setting this expression to zero and solving for X, gives

!

Z (ks Y)ue (s ) (12.3.9)

Substituting for ¥, in (12.3.1) and (12.3.2) and setting to zero results in a
generally nonlinear set of normal equations which may be solved by numerical
methods. Before we discuss a possible algorithm, it may be worth pointing
out that by substituting X, (i, ) for X, in In Iy, we get

T
T = 1
Inlo(p,y) = —5 W |Zu(p,7) - Ztr< Z (s Y )ue (g, 7))
T = TK
= —§1n|Eu(,u,'y)|—7. (12.3.10)

Thus, instead of maximizing Inly we may equivalently minimize

[Z, ()| or (Sl )l. (12.3.11)
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12.3.2 Optimization Algorithms

The problem of optimizing (minimizing or maximizing) a function arises not
only in ML estimation but also in various other contexts. Therefore, general
algorithms have been developed. Following Judge et al. (1985, Section B.2),
we will give a brief introduction to so-called gradient algorithms and then
address the specific problem at hand. With the objective in mind that we
want to find the coefficient values that minimize —Inly or In|X, (1, )|, we
assume that the problem is to minimize a twice continuously differentiable,
scalar valued function h(7y), where « is some (N x 1) vector.

Given a vector =, in the parameter space, we are looking for a direction
(vector) d in which the objective function declines. Then we can perform a
step of length s, say, in that direction which will take us downhill. In other
words, we seek an appropriate step direction d and a step length s such that

h(7; + sd) < h(v;). (12.3.12)

If d is a downhill direction, a small step in that direction will always decrease
the objective function. Thus, we are seeking a d such that h(vy; + sd) is a
decreasing function of s, for s sufficiently close to zero. In other words, d

must be such that
dh(y; + sd) ] [ Ty
s=0 8’7/ Vi

0>
ds

_ | 9h(y)
s=0 6'7/

{ 3(%84; sd)

i

Using the abbreviation

b, . o)

oy

Vi

for the gradient of h() at «,, a possible choice of d is
d = —Dih;,

where D; is any positive definite matrix. With this choice of d,
hd = —h}D;h; <0

if h; # 0. Because the gradient is zero at a local minimum of the function,
we hope to have reached the minimum once h; = 0 and, hence, d = 0. The
general form of an iteration of a gradient algorithm is therefore

Yit1 =i — siDihg, (12.3.13)

where s; denotes the step length in the i-th iteration and D; is a positive
definite direction matriz. The name “gradient algorithm” stems from the fact
that the gradient h; is involved in the choice of the step direction. Many such
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algorithms have been proposed in the literature (see, for example, Judge et al.
(1985, Section B.2)). They differ in their choice of the direction matrix D; and
the step length s;.

To motivate the choice of the D; matrix that will be considered in the ML
algorithm presented below, we expand the objective function A(v) in a Taylor
series about -, (see Appendix A.13, Proposition A.3),

h(y) = h(y;) + hi(y =) + 5(v = 7)) Hi(y —7,), (12.3.14)
where
9%h
o allel Vi

is the Hessian matrix of second order partial derivatives of h(«), evaluated at
~;. If h(y) were a quadratic function, the right-hand side of (12.3.14) were
exactly equal to h(«) and the first order conditions for a minimum would result
by taking first order partial derivatives of the right-hand side and setting to
zero:

hi + Hi(y—~;)' =0
or
Y =";— Hi_lhi.

Thus, if () were a quadratic function, starting from any vector «,, we would
reach the minimum in one step of length s; = 1 by choosing the inverse Hessian
as the direction matrix. In general, if h(7) is not a quadratic function, then
the choice D; = Hi_1 is still reasonable once we are close to the minimum.
Recall that a positive definite Hessian is the second order condition for a local
minimum. Therefore, the inverse Hessian qualifies as a direction matrix. A
gradient algorithm with the inverse Hessian as the direction matrix is called
a Newton or Newton-Raphson algorithm.

From the previous subsection, we know that the first order partial deriva-
tives of our objective function —Inly are quite complicated and, thus, finding
the Hessian matrix of second order partial derivatives is even more compli-
cated. Therefore we approximate the Hessian by an estimate of the informa-
tion matrix,

32(_11”0)} (12.3.15)

10— |

which is the expected value of the Hessian matrix. The estimate of Z(~)
will be denoted by 7 (7). A computable expression will be given in the next
subsection. Because the true parameter vector ~ is unknown, 7 (7,) is used as
an estimate of Z(-y) in the i-th iteration step. Hence, for given mean vector p
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and white noise covariance matrix X, we get a minimization algorithm with
i-th iteration step

8(— In lo)

Yier =Y = siZ(v) 7!
+1 8")/

] . (12.3.16)
Vi

This algorithm is called the scoring algorithm.

As it stands, we still need some more information before we can execute
this algorithm. First, we need a starting-up vector «; for the first iteration.
This vector should be close to the minimizing vector to ensure that 7 (1) is
positive definite and we make good progress towards the minimum even in
the first iteration. We will consider one possible choice in Section 12.3.4.

Second, we have to choose the step length s;. There are various possible
alternatives (see, e.g., Judge et al. (1985, Section B.2)). Because we are just
interested in the main principles of the algorithm, we will ignore the problem
here and choose s; = 1.

Third, the algorithm provides an ML estimate of «, conditional on some
given X, matrix and mean vector u, because both the information matrix and
the gradient vector involve these quantities. They are usually also unknown.
As in the pure finite order VAR case, it can be shown that the sample mean

1 Z
:?;yt

is an estimator for p which has the same asymptotic properties as the ML
estimator. Therefore, ML estimation of v and X, is often done conditionally
on p = g. In other words, the sample mean is subtracted from the data before
the VARMA coefficients are estimated.

There are different ways to handle the unknown X, matrix. From (12.3.9),
we know that

i (p, ) ur (p1,7y)'

IIMH

Therefore, one possibility is to use X; := fu (¥,7;) in the i-th iteration. Equiv-
alently, the minimization algorithm can be applied to In \E‘u T, 7)|-

A number of computer program packages contain exact or approximate
ML algorithms which may be used in practice. The foregoing algorithm is
just meant to demonstrate some basic principles. Modifications in actual ap-
plications may result in improved convergence properties. Slow convergence
or no convergence at all may be the consequence of working with VARMA
orders or Kronecker indices which are larger than the true ones and, hence,
with an overparameterized model.
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12.3.3 The Information Matrix

In the scoring algorithm described previously, an estimate of the information
matrix is needed. To see how that can be obtained, we consider the second

order partial derivatives of — Inlj,
/5"‘/' (see (12.3.2))

9*(—Inly) ou;,
ooy Z E T

8ut -1 Ouy 4 0 vec|Ou} /0]

= Z 2 o' + (up Xy, ®I)T-

Taking the expectation of this expression, the last term vanishes because
E(u;) =0 and u; X! @ I is independent of

0 vec|Ou /0]
o'

as this term does not contain current y; or u; variables (see Lemma 12.1).
Hence,

9?(—Inlp) d oul 1 Ouy
EF|l— | =
[ 0y’ ] ZEL?VE“ 57}

t=1

Estimating the expected value in the usual way by the sample average gives
an estimator

Z@ut _1 0uy
— O S oy

for

3ut 1 8ut
F { Oy P oy }

These considerations suggest the estimator

T

_y aut y v) 5 1 0w (Y, 7) (12.3.17)
t=1 6’7/

for the information matrix Z (). In the i-th iteration of the scoring algorithm,
we evaluate this estimator for v = ;. The quantities du;/dv’ may be obtained
recursively as in Lemma 12.1 to make this estimator operational.

If «v is the true parameter value, the asymptotic information matrix equals
plim Z(v)/T. Thus, if we have a consistent estimator 4 of ~, Z(¥)/T is a
consistent estimator of the asymptotic information matrix, that is,

Zo(v) = plim Z(3)/T. (12.3.18)
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In Section 12.4, we will see that the inverse of this matrix, if it exists, is the
asymptotic covariance matrix of the ML estimator for «. If a nonidentified
structure is used, this problem is reflected in the asymptotic information ma-
trix being singular. Hence, it is important at this stage to have an identified
version of a VARMA model.
12.3.4 Preliminary Estimation
The coefficients of a VARMA (p, ¢) model in standard form,

Yo = Ay + - F Apyr—p Fup + Miug_q 4+ -+ Mgup_g,

could be estimated by multivariate LS, if the lagged u; were given. We as-
sume that the sample mean 7 has been subtracted previously. It is therefore
neglected here. In deriving preliminary estimators for the other parameters,
the idea is to fit a long pure autoregression first and then use estimated resid-
uals in place of the true residuals. Hence, we fit a VAR(n) model

Y = Zﬂi(n)yt—i +