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Preface

When I worked on my Introduction to Multiple Time Series Analysis (Lütke-
pohl (1991)), a suitable textbook for this field was not available. Given the
great importance these methods have gained in applied econometric work, it
is perhaps not surprising in retrospect that the book was quite successful.
Now, almost one and a half decades later the field has undergone substantial
development and, therefore, the book does not cover all topics of my own
courses on the subject anymore. Therefore, I started to think about a serious
revision of the book when I moved to the European University Institute in
Florence in 2002. Here in the lovely hills of Toscany I had the time to think
about bigger projects again and decided to prepare a substantial revision of
my previous book. Because the label Second Edition was already used for a
previous reprint of the book, I decided to modify the title and thereby hope
to signal to potential readers that significant changes have been made relative
to my previous multiple time series book.

Although Chapters 1–5 still contain an introduction to the vector autore-
gressive (VAR) methodology and their structure is largely the same as in
Lütkepohl (1991), there have been some adjustments and additions, partly
in response to feedback from students and colleagues. In particular, some
discussion on multi-step causality and also bootstrap inference for impulse
responses has been added. Moreover, the LM test for residual autocorrela-
tion is now presented in addition to the portmanteau test and Chow tests for
structural change are discussed on top of the previously considered prediction
tests. When I wrote my first book on multiple time series, the cointegration
revolution had just started. Hence, only one chapter was devoted to the topic.
By now the related models and methods have become far more important for
applied econometric work than, for example, vector autoregressive moving av-
erage (VARMA) models. Therefore, Part II (Chapters 6–8) is now entirely de-
voted to VAR models with cointegrated variables. The basic framework in this
new part is the vector error correction model (VECM). Chapter 9 is also new.
It contains a discussion of structural vector autoregressive and vector error
correction models which are by now also standard tools in applied econometric
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analysis. Chapter 10 on systems of dynamic simultaneous equations maintains
much of the contents of the corresponding chapter in Lütkepohl (1991). Some
discussion of nonstationary, integrated series has been added, however. Chap-
ters 9 and 10 together constitute Part III. Given that the research activities
devoted to VARMA models have been less important than those on cointegra-
tion, I have shifted them to Part IV (Chapters 11–15) of the new book. This
part also contains a new chapter on cointegrated VARMA models (Chapter
14) and in Chapter 15 on infinite order VAR models, a section on models
with cointegrated variables has been added. The last part of the new book
contains three chapters on special topics related to multiple time series. One
chapter deals with autoregressive conditional heteroskedasticity (Chapter 16)
and is new, whereas the other two chapters on periodic models (Chapter 17)
and state space models (Chapter 18) are largely taken from Lütkepohl (1991).
All chapters have been adjusted to account for the new material and the new
structure of the book. In some instances, also the notation has been modified.
In Appendix A, some additional matrix results are presented because they
are used in the new parts of the text. Also Appendix C has been expanded
by sections on unit root asymptotics. These results are important in the more
extensive discussion of cointegration. Moreover, the discussion of bootstrap
methods in Appendix D has been revised. Generally, I have added many new
references and consequently the reference list is now much longer than in the
previous version. To keep the length of the book in acceptable bounds, I have
also deleted some material from the previous version. For example, station-
ary reduced rank VAR models are just mentioned as examples of models with
nonlinear parameter restrictions and not discussed in detail anymore. Reduced
rank models are now more important in the context of cointegration analysis.
Also the tables with example time series are not timely anymore and have
been eliminated. The example time series are available from my webpage and
they can also be downloaded from www.jmulti.de. It is my hope that these
revisions make the book more suitable for a modern course on multiple time
series analysis.

Although multiple time series analysis is applied in many disciplines, I have
prepared the text with economics and business students in mind. The exam-
ples and exercises are chosen accordingly. Despite this orientation, I hope that
the book will also serve multiple time series courses in other fields. It contains
enough material for a one semester course on multiple time series analysis. It
may also be combined with univariate times series books or with texts like
Fuller (1976) or Hamilton (1994) to form the basis of a one or two semester
course on univariate and multivariate time series analysis. Alternatively, it is
also possible to select some of the chapters or sections for a special topic of a
graduate level econometrics course. For example, Chapters 1–8 could be used
for an introduction to stationary and cointegrated VARs. For students already
familiar with these topics, Chapter 9 could be a special topic on structural
VAR modelling in an advanced econometrics course.
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The students using the book must have knowledge of matrix algebra and
should also have been introduced to mathematical statistics, for instance,
based on textbooks like Mood, Graybill & Boes (1974), Hogg & Craig (1978)
or Rohatgi (1976). Moreover, a working knowledge of the Box-Jenkins ap-
proach and other univariate time series techniques is an advantage. Although,
in principle, it may be possible to use the present text without any prior
knowledge of univariate time series analysis if the instructor provides the
required motivation, it is clearly an advantage to have some time series back-
ground. Also, a previous introduction to econometrics will be helpful. Matrix
algebra and an introductory mathematical statistics course plus the multiple
regression model are necessary prerequisites.

As the previous book, the present one is meant to be an introductory
exposition. Hence, I am not striving for utmost generality. For instance, quite
often I use the normality assumption although the considered results hold
under more general conditions. The emphasis is on explaining the underlying
ideas and not on generality. In Chapters 2–7 a number of results are proven
to illustrate some of the techniques that are often used in the multiple time
series arena. Most proofs may be skipped without loss of continuity. Therefore
the beginning and the end of a proof are usually clearly marked. Many results
are summarized in propositions for easy reference.

Exercises are given at the end of each chapter with the exception of Chap-
ter 1. Some of the problems may be too difficult for students without a good
formal training, some are just included to avoid details of proofs given in the
text. In most chapters empirical exercises are provided in addition to algebraic
problems. Solving the empirical problems requires the use of a computer. Ma-
trix oriented software such as GAUSS, MATLAB, or Ox will be most helpful.
Most of the empirical exercises can also be done with the easy-to-use software
JMulTi (see Lütkepohl & Krätzig (2004)) which is available free of charge at
the website www.jmulti.de. The data needed for the exercises are also available
at that website, as mentioned earlier.

Many persons have contributed directly or indirectly to this book and I am
very grateful to all of them. Many students and colleagues have commented
on my earlier book on the topic. Thereby they have helped to improve the
presentation and to correct errors. A number of colleagues have commented
on parts of the manuscript and have been available for discussions on the
topics covered. These comments and discussions have been very helpful for
my own understanding of the subject and have resulted in improvements to
the manuscript.

Although the persons who have contributed to the project in some way or
other are too numerous to be listed here, I wish to express my special grati-
tude to some of them. Because some parts of the old book are still maintained,
it is only fair to mention those who have helped in a special way in the prepa-
ration of that book. They include Theo Dykstra who read and commented
on a large part of the manuscript during his visit in Kiel in the summer of
1990, Hans-Eggert Reimers who read the entire manuscript, suggested many
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improvements, and pointed out numerous errors, Wolfgang Schneider who
helped with examples and also commented on parts of the manuscript as well
as Bernd Theilen who prepared the final versions of most figures, and Knut
Haase and Holger Claessen who performed the computations for many of the
examples. I deeply appreciate the help of all these collaborators.

Special thanks for comments on parts of the new book go to Pentti Saikko-
nen for helping with Part II and to Ralf Brüggemann, Helmut Herwartz, and
Martin Wagner for reading Chapters 9, 16, and 18, respectively. Christian
Kascha prepared some of the new figures and my wife Sabine helped with
the preparation of the author index. Of course, I assume full responsibility
for any remaining errors, in particular, as I have keyboarded large parts of
the manuscript myself. A preliminary LATEX version of parts of the old book
was provided by Springer-Verlag. I thank Martina Bihn for taking charge of
the project on the side of Springer-Verlag. Needless to say, I welcome any
comments by readers.

Florence and Berlin, Helmut Lütkepohl
March 2005
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1

Introduction

1.1 Objectives of Analyzing Multiple Time Series

In making choices between alternative courses of action, decision makers at
all structural levels often need predictions of economic variables. If time series
observations are available for a variable of interest and the data from the
past contain information about the future development of a variable, it is
plausible to use as forecast some function of the data collected in the past. For
instance, in forecasting the monthly unemployment rate, from past experience
a forecaster may know that in some country or region a high unemployment
rate in one month tends to be followed by a high rate in the next month.
In other words, the rate changes only gradually. Assuming that the tendency
prevails in future periods, forecasts can be based on current and past data.

Formally, this approach to forecasting may be expressed as follows. Let yt

denote the value of the variable of interest in period t. Then a forecast for
period T + h, made at the end of period T , may have the form

ŷT+h = f(yT , yT−1, . . .), (1.1.1)

where f(·) denotes some suitable function of the past observations yT , yT−1,
. . .. For the moment it is left open how many past observations enter into
the forecast. One major goal of univariate time series analysis is to specify
sensible forms of functions f(·). In many applications, linear functions have
been used so that, for example,

ŷT+h = ν + α1yT + α2yT−1 + · · · .

In dealing with economic variables, often the value of one variable is not
only related to its predecessors in time but, in addition, it depends on past
values of other variables. For instance, household consumption expenditures
may depend on variables such as income, interest rates, and investment ex-
penditures. If all these variables are related to the consumption expenditures
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it makes sense to use their possible additional information content in forecast-
ing consumption expenditures. In other words, denoting the related variables
by y1t, y2t, . . . , yKt, the forecast of y1,T+h at the end of period T may be of
the form

ŷ1,T+h = f1(y1,T , y2,T , . . . , yK,T , y1,T−1, y2,T−1, . . . , yK,T−1, y1,T−2, . . .).

Similarly, a forecast for the second variable may be based on past values of
all variables in the system. More generally, a forecast of the k-th variable may
be expressed as

ŷk,T+h = fk(y1,T , . . . , yK,T , y1,T−1, . . . , yK,T−1, . . .). (1.1.2)

A set of time series ykt, k = 1, . . . ,K, t = 1, . . . , T , is called a multiple time
series and the previous formula expresses the forecast ŷk,T+h as a function
of a multiple time series. In analogy with the univariate case, it is one ma-
jor objective of multiple time series analysis to determine suitable functions
f1, . . . , fK that may be used to obtain forecasts with good properties for the
variables of the system.

It is also often of interest to learn about the dynamic interrelationships
between a number of variables. For instance, in a system consisting of invest-
ment, income, and consumption one may want to know about the likely impact
of a change in income. What will be the present and future implications of
such an event for consumption and for investment? Under what conditions
can the effect of an increase in income be isolated and traced through the sys-
tem? Alternatively, given a particular subject matter theory, is it consistent
with the relations implied by a multiple time series model which is developed
with the help of statistical tools? These and other questions regarding the
structure of the relationships between the variables involved are occasionally
investigated in the context of multiple time series analysis. Thus, obtaining
insight into the dynamic structure of a system is a further objective of multiple
time series analysis.

1.2 Some Basics

In the following chapters, we will regard the values that a particular economic
variable has assumed in a specific period as realizations of random variables. A
time series will be assumed to be generated by a stochastic process. Although
the reader is assumed to be familiar with these terms, it may be useful to
briefly review some of the basic definitions and expressions at this point, in
order to make the underlying concepts precise.

Let (Ω, F , Pr) be a probability space, where Ω is the set of all elementary
events (sample space), F is a sigma-algebra of events or subsets of Ω and Pr
is a probability measure defined on F . A random variable y is a real valued
function defined on Ω such that for each real number c, Ac = {ω ∈ Ω|y(ω) ≤
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c} ∈ F . In other words, Ac is an event for which the probability is defined in
terms of Pr. The function F : R → [0, 1], defined by F (c) = Pr(Ac), is the
distribution function of y.

A K-dimensional random vector or a K-dimensional vector of random
variables is a function y from Ω into the K-dimensional Euclidean space RK ,
that is, y maps ω ∈ Ω on y(ω) = (y1(ω), . . . , yK(ω))′ such that for each
c = (c1, . . . , cK)′ ∈ R

K ,

Ac = {ω|y1(ω) ≤ c1, . . . , yK(ω) ≤ cK} ∈ F .

The function F : RK → [0, 1] defined by F (c) = Pr(Ac) is the joint distribution
function of y.

Suppose Z is some index set with at most countably many elements like, for
instance, the set of all integers or all positive integers. A (discrete) stochastic
process is a real valued function

y : Z ×Ω → R

such that for each fixed t ∈ Z, y(t, ω) is a random variable. The random
variable corresponding to a fixed t is usually denoted by yt in the following.
The underlying probability space will usually not even be mentioned. In that
case, it is understood that all the members yt of a stochastic process are
defined on the same probability space. Usually the stochastic process will also
be denoted by yt if the meaning of the symbol is clear from the context.

A stochastic process may be described by the joint distribution functions
of all finite subcollections of yt’s, t ∈ S ⊂ Z. In practice, the complete system
of distributions will often be unknown. Therefore, in the following chapters, we
will often be concerned with the first and second moments of the distributions.
In other words, we will be concerned with the means E(yt) = µt, the variances
E[(yt − µt)2] and the covariances E[(yt − µt)(ys − µs)].

A K-dimensional vector stochastic process or multivariate stochastic pro-
cess is a function

y : Z ×Ω → R
K ,

where, for each fixed t ∈ Z, y(t, ω) is a K-dimensional random vector. Again
we usually use the symbol yt for the random vector corresponding to a fixed
t ∈ Z. For simplicity, we also often denote the complete process by yt. The par-
ticular meaning of the symbol should be clear from the context. With respect
to the stochastic characteristics the same applies as for univariate processes.
That is, the stochastic characteristics are summarized in the joint distribution
functions of all finite subcollections of random vectors yt. In practice, inter-
est will often focus on the first and second moments of all random variables
involved.

A realization of a (vector) stochastic process is a sequence (of vectors)
yt(ω), t ∈ Z, for a fixed ω. In other words, a realization of a stochastic process
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is a function Z → RK where t → yt(ω). A (multiple) time series is regarded
as such a realization or possibly a finite part of such a realization, that is,
it consists, for instance, of values (vectors) y1(ω), . . . , yT (ω). The underlying
stochastic process is said to have generated the (multiple) time series or it is
called the generating or generation process of the time series or the data gen-
eration process (DGP). A time series y1(ω), . . . , yT (ω) will usually be denoted
by y1, . . . , yT or simply by yt just like the underlying stochastic process, if no
confusion is possible. The number of observations, T , is called the sample size
or time series length. With this terminology at hand, we may now return to
the problem of specifying forecast functions.

1.3 Vector Autoregressive Processes

Because linear functions are relatively easy to deal with, it makes sense to
begin with forecasts that are linear functions of past observations. Let us
consider a univariate time series yt and a forecast h = 1 period into the
future. If f(·) in (1.1.1) is a linear function, we have

ŷT+1 = ν + α1yT + α2yT−1 + · · · .
Assuming that only a finite number p, say, of past y values are used in the
prediction formula, we get

ŷT+1 = ν + α1yT + α2yT−1 + · · · + αpyT−p+1. (1.3.1)

Of course, the true value yT+1 will usually not be exactly equal to the forecast
ŷT+1. Let us denote the forecast error by uT+1 := yT+1 − ŷT+1 so that

yT+1 = ŷT+1 + uT+1 = ν + α1yT + · · · + αpyT−p+1 + uT+1. (1.3.2)

Now, assuming that our numbers are realizations of random variables and
that the same data generation law prevails in each period T , (1.3.2) has the
form of an autoregressive process,

yt = ν + α1yt−1 + · · · + αpyt−p + ut, (1.3.3)

where the quantities yt, yt−1, . . . , yt−p, and ut are now random variables. To
actually get an autoregressive (AR) process we assume that the forecast errors
ut for different periods are uncorrelated, that is, ut and us are uncorrelated
for s �= t. In other words, we assume that all useful information in the past
yt’s is used in the forecasts so that there are no systematic forecast errors.

If a multiple time series is considered, an obvious extension of (1.3.1) would
be

ŷk,T+1 = ν + αk1,1y1,T + αk2,1y2,T + · · · + αkK,1yK,T

+ · · · + αk1,py1,T−p+1 + · · · + αkK,pyK,T−p+1, (1.3.4)
k = 1, . . . ,K.
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To simplify the notation, let yt := (y1t, . . . , yKt)′, ŷt := (ŷ1t, . . . , ŷKt)′, ν :=
(ν1, . . . , νK)′ and

Ai :=

⎡⎢⎣ α11,i . . . α1K,i

...
. . .

...
αK1,i . . . αKK,i

⎤⎥⎦ .

Then (1.3.4) can be written compactly as

ŷT+1 = ν + A1yT + · · · + ApyT−p+1. (1.3.5)

If the yt’s are regarded as random vectors, this predictor is just the optimal
forecast obtained from a vector autoregressive model of the form

yt = ν + A1yt−1 + · · · + Apyt−p + ut, (1.3.6)

where the ut = (u1t, . . . , uKt)′ form a sequence of independently identically
distributed random K-vectors with zero mean vector.

Obviously such a model represents a tremendous simplification compared
with the general form (1.1.2). Because of its simple structure, it enjoys great
popularity in applied work. We will study this particular model in the follow-
ing chapters in some detail.

1.4 Outline of the Following Chapters

In Part I of the book, consisting of the next four chapters, we will investigate
some basic properties of stationary vector autoregressive (VAR) processes such
as (1.3.6). Forecasts based on these processes are discussed and it is shown
how VAR processes may be used for analyzing the dynamic structure of a sys-
tem of variables. Throughout Chapter 2, it is assumed that the process under
study is completely known including its coefficient matrices. In practice, for
a given multiple time series, first a model of the DGP has to be specified
and its parameters have to be estimated. Then the adequacy of the model
is checked by various statistical tools and then the estimated model can be
used for forecasting and dynamic or structural analysis. The main steps of
a VAR analysis are presented in Figure 1.1 in a schematic way. Estimation
and model specification are discussed in Chapters 3 and 4, respectively. In the
former chapter the estimation of the VAR coefficients is considered and the
consequences of using estimated rather than known processes for forecasting
and economic analysis are explored. In Chapter 4, the specification and model
checking stages of an analysis are considered. Criteria for determining the or-
der p of a VAR process are given and possibilities for checking the assumptions
underlying a VAR analysis are discussed.

In systems with many variables and/or large VAR order p, the number
of coefficients is quite substantial. As a result the estimation precision will
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Specification and
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�

Model checking
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rejected

�
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Forecasting Structural
analysis

Fig. 1.1. VAR analysis.

be low if estimation is based on time series of the size typically available
in economic applications. In order to improve the estimation precision, it is
useful to place restrictions from nonsample sources on the parameters and
thereby reduce the number of coefficients to be estimated. In Chapter 5, VAR
processes with parameter constraints and restricted estimation are discussed.
Zero restrictions, nonlinear constraints, and Bayesian estimation are treated.

In Part I, stationary processes are considered which have time invariant
expected values, variances, and covariances. In other words, the first and sec-
ond moments of the random variables do not change over time. In practice
many time series have a trending behavior which is not compatible with such
an assumption. This fact is recognized in Part II, where VAR processes with
stochastic and deterministic trends are considered. Processes with stochastic
trends are often called integrated and if two or more variables are driven by
the same stochastic trend, they are called cointegrated. Cointegrated VAR
processes have quite different properties from stationary ones and this has
to be taken into account in the statistical analysis. The specific estimation,
specification, and model checking procedures are discussed in Chapters 6–8.

The models discussed in Parts I and II are essentially reduced form models
which capture the dynamic properties of the variables and are useful forecast-
ing tools. For structural economic analysis, these models are often insufficient
because different economic theories may be compatible with the same sta-
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tistical reduced form model. In Chapter 9, it is discussed how to integrate
structural information in stationary and cointegrated VAR models. In many
econometric applications it is assumed that some of the variables are de-
termined outside the system under consideration. In other words, they are
exogenous or unmodelled variables. VAR processes with exogenous variables
are considered in Chapter 10. In the econometrics literature such systems
are often called systems of dynamic simultaneous equations. In the time se-
ries literature they are sometimes referred to as multivariate transfer function
models. Together Chapters 9 and 10 constitute Part III of this volume.

In Part IV of the book, it is recognized that an upper bound p for the VAR
order is often not known with certainty. In such a case, one may not want
to impose any upper bound and allow for an infinite VAR order. There are
two ways to make the estimation problem for the potentially infinite number
of parameters tractable. First, it may be assumed that they depend on a
finite set of parameters. This assumption leads to vector autoregressive moving
average (VARMA) processes. Some properties of these processes, parameter
estimation and model specification are discussed in Chapters 11–13 for the
stationary case and in Chapter 14 for cointegrated systems. In the second
approach for dealing with infinite order VAR processes, it is assumed that
finite order VAR processes are fitted and that the VAR order goes to infinity
with the sample size. This approach and its consequences for the estimators,
forecasts, and structural analysis are discussed in Chapter 15 for both the
stationary and the cointegrated cases.

In Part V, some special models and issues for multiple time series are
studied. In Chapter 16, models for conditionally heteroskedastic series are
considered and, in particular, multivariate generalized autoregressive condi-
tionally heteroskedastic (MGARCH) processes are presented and analyzed.
In Chapter 17, VAR processes with time varying coefficients are considered.
The coefficient variability may be due to a one-time intervention from out-
side the system or it may result from seasonal variation. Finally, in Chapter
18, so-called state space models are introduced. The models represent a very
general class which encompasses most of the models previously discussed and
includes in addition VAR models with stochastically varying coefficients. A
brief review of these and other important models for multiple time series is
given. The Kalman filter is presented as an important tool for dealing with
state space models.

The reader is assumed to be familiar with vectors and matrices. The rules
used in the text are summarized in Appendix A. Some results on the multivari-
ate normal and related distributions are listed in Appendix B and stochastic
convergence and some asymptotic distribution theory are reviewed in Ap-
pendix C. In Appendix D, a brief outline is given of the use of simulation
techniques in evaluating properties of estimators and test statistics. Although
it is not necessary for the reader to be familiar with all the particular rules and
propositions listed in the appendices, it is implicitly assumed in the following
chapters that the reader has knowledge of the basic terms and results.
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Finite Order Vector Autoregressive Processes
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In the four chapters of this part, finite order, stationary vector autoregres-
sive (VAR) processes and their uses are discussed. Chapter 2 is dedicated to
processes with known coefficients. Some of their basic properties are derived,
their use for prediction and analysis purposes is considered. Unconstrained
estimation is discussed in Chapter 3, model specification and checking the
model adequacy are treated in Chapter 4, and estimation with parameter
restrictions is the subject of Chapter 5.



2

Stable Vector Autoregressive Processes

In this chapter, the basic, stationary finite order vector autoregressive (VAR)
model will be introduced. Some important properties will be discussed. The
main uses of vector autoregressive models are forecasting and structural anal-
ysis. These two uses will be considered in Sections 2.2 and 2.3. Throughout
this chapter, the model of interest is assumed to be known. Although this
assumption is unrealistic in practice, it helps to see the problems related to
VAR models without contamination by estimation and specification issues.
The latter two aspects of an analysis will be treated in detail in subsequent
chapters.

2.1 Basic Assumptions and Properties of VAR Processes

2.1.1 Stable VAR(p) Processes

The object of interest in the following is the VAR(p) model (VAR model of
order p),

yt = ν + A1yt−1 + · · · + Apyt−p + ut, t = 0,±1,±2, . . . , (2.1.1)

where yt = (y1t, . . . , yKt)′ is a (K×1) random vector, the Ai are fixed (K×K)
coefficient matrices, ν = (ν1, . . . , νK)′ is a fixed (K × 1) vector of intercept
terms allowing for the possibility of a nonzero mean E(yt). Finally, ut =
(u1t, . . . , uKt)′ is a K-dimensional white noise or innovation process, that is,
E(ut) = 0, E(utu

′
t) = Σu and E(utu

′
s) = 0 for s �= t. The covariance matrix

Σu is assumed to be nonsingular if not otherwise stated.
At this stage, it may be worth thinking a little more about which process

is described by (2.1.1). In order to investigate the implications of the model
let us consider the VAR(1) model

yt = ν + A1yt−1 + ut. (2.1.2)
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If this generation mechanism starts at some time t = 1, say, we get

y1 = ν + A1y0 + u1,

y2 = ν + A1y1 + u2 = ν + A1(ν + A1y0 + u1) + u2

= (IK + A1)ν + A2
1y0 + A1u1 + u2,

... (2.1.3)

yt = (IK + A1 + · · · + At−1
1 )ν + At

1y0 +
t−1∑
i=0

Ai
1ut−i

...

Hence, the vectors y1, . . . , yt are uniquely determined by y0, u1, . . . , ut. Also,
the joint distribution of y1, . . . , yt is determined by the joint distribution of
y0, u1, . . . , ut.

Although we will sometimes assume that a process is started in a specified
period, it is often convenient to assume that it has been started in the infinite
past. This assumption is in fact made in (2.1.1). What kind of process is con-
sistent with the mechanism (2.1.1) in that case? To investigate this question
we consider again the VAR(1) process (2.1.2). From (2.1.3) we have

yt = ν + A1yt−1 + ut

= (IK + A1 + · · · + Aj
1)ν + Aj+1

1 yt−j−1 +
j∑

i=0

Ai
1ut−i.

If all eigenvalues of A1 have modulus less than 1, the sequence Ai
1, i = 0, 1, . . . ,

is absolutely summable (see Appendix A, Section A.9.1). Hence, the infinite
sum

∞∑
i=1

Ai
1ut−i

exists in mean square (Appendix C, Proposition C.9). Moreover,

(IK + A1 + · · · + Aj
1)ν −→

j→∞
(IK − A1)−1ν

(Appendix A, Section A.9.1). Furthermore, Aj+1
1 converges to zero rapidly as

j → ∞ and, thus, we ignore the term Aj+1
1 yt−j−1 in the limit. Hence, if all

eigenvalues of A1 have modulus less than 1, by saying that yt is the VAR(1)
process (2.1.2) we mean that yt is the well-defined stochastic process

yt = µ +
∞∑

i=0

Ai
1ut−i, t = 0,±1,±2, . . . , (2.1.4)

where
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µ := (IK − A1)−1ν.

The distributions and joint distributions of the yt’s are uniquely determined
by the distributions of the ut process. From Appendix C.3, Proposition C.10,
the first and second moments of the yt process are seen to be

E(yt) = µ for all t (2.1.5)

and

Γy(h) := E(yt − µ)(yt−h − µ)′

= lim
n→∞

n∑
i=0

n∑
j=0

Ai
1E(ut−iu

′
t−h−j)(A

j
1)

′ (2.1.6)

= lim
n∑

i=0

Ah+i
1 ΣuA

i
1
′
=

∞∑
i=0

Ah+i
1 ΣuA

i
1
′
,

because E(utu
′
s) = 0 for s �= t and E(utu

′
t) = Σu for all t.

Because the condition for the eigenvalues of the matrix A1 is of importance,
we call a VAR(1) process stable if all eigenvalues of A1 have modulus less than
1. By Rule (7) of Appendix A.6, the condition is equivalent to

det(IK − A1z) �= 0 for |z| ≤ 1. (2.1.7)

It is perhaps worth pointing out that the process yt for t = 0,±1,±2, . . . may
also be defined if the stability condition (2.1.7) is not satisfied. We will not
do so here because we will always assume stability of processes defined for all
t ∈ Z.

The previous discussion can be extended easily to VAR(p) processes with
p > 1 because any VAR(p) process can be written in VAR(1) form. More
precisely, if yt is a VAR(p) as in (2.1.1), a corresponding Kp-dimensional
VAR(1)

Yt = ν + AYt−1 + Ut (2.1.8)

can be defined, where

Yt :=

⎡⎢⎢⎢⎣
yt

yt−1

...
yt−p+1

⎤⎥⎥⎥⎦
(Kp×1)

, ν :=

⎡⎢⎢⎢⎣
ν
0
...
0

⎤⎥⎥⎥⎦
(Kp×1)

,

A :=

⎡⎢⎢⎢⎢⎢⎣
A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

⎤⎥⎥⎥⎥⎥⎦
(Kp×Kp)

, Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦
(Kp×1)

.
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Following the foregoing discussion, Yt is stable if

det(IKp − Az) �= 0 for |z| ≤ 1. (2.1.9)

Its mean vector is

µ := E(Yt) = (IKp − A)−1ν

and the autocovariances are

ΓY (h) =
∞∑

i=0

Ah+iΣU (Ai)′, (2.1.10)

where ΣU := E(UtU
′
t). Using the (K ×Kp) matrix

J := [IK : 0 : · · · : 0], (2.1.11)

the process yt is obtained as yt = JYt. Because Yt is a well-defined stochastic
process, the same is true for yt. Its mean is E(yt) = Jµ which is constant for
all t and the autocovariances Γy(h) = JΓY (h)J ′ are also time invariant.

It is easy to see that

det(IKp − Az) = det(IK −A1z − · · · −Apz
p)

(see Problem 2.1). Given the definition of the characteristic polynomial of a
matrix, we call this polynomial the reverse characteristic polynomial of the
VAR(p) process. Hence, the process (2.1.1) is stable if its reverse characteristic
polynomial has no roots in and on the complex unit circle. Formally yt is stable
if

det(IK − A1z − · · · −Apz
p) �= 0 for |z| ≤ 1. (2.1.12)

This condition is called the stability condition.
In summary, we say that yt is a stable VAR(p) process if (2.1.12) holds

and

yt = JYt = Jµ + J
∞∑

i=0

AiUt−i. (2.1.13)

Because the Ut := (u′
t, 0, . . . , 0)′ involve the white noise process ut, the process

yt is seen to be determined by its white noise or innovation process. Often
specific assumptions regarding ut are made which determine the process yt by
the foregoing convention. An important example is the assumption that ut is
Gaussian white noise, that is, ut ∼ N (0, Σu) for all t and ut and us are inde-
pendent for s �= t. In that case, it can be shown that yt is a Gaussian process,
that is, subcollections yt, . . . , yt+h have multivariate normal distributions for
all t and h.
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The condition (2.1.12) provides an easy tool for checking the stability of
a VAR process. Consider, for instance, the three-dimensional VAR(1) process

yt = ν +

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦ yt−1 + ut. (2.1.14)

For this process the reverse characteristic polynomial is

det

⎛⎝⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦−
⎡⎣ .5 0 0

.1 .1 .3
0 .2 .3

⎤⎦ z

⎞⎠
= det

⎡⎣ 1 − .5z 0 0
−.1z 1 − .1z −.3z

0 −.2z 1 − .3z

⎤⎦
= (1 − .5z)(1 − .4z − .03z2).

The roots of this polynomial are easily seen to be

z1 = 2, z2 = 2.1525, z3 = −15.4858.

They are obviously all greater than 1 in absolute value. Therefore the process
(2.1.14) is stable.

As another example consider the bivariate (two-dimensional) VAR(2) pro-
cess

yt = ν +
[
.5 .1
.4 .5

]
yt−1 +

[
0 0
.25 0

]
yt−2 + ut. (2.1.15)

Its reverse characteristic polynomial is

det
([

1 0
0 1

]
−

[
.5 .1
.4 .5

]
z −

[
0 0
.25 0

]
z2

)
= 1 − z + .21z2 − .025z3.

The roots of this polynomial are

z1 = 1.3, z2 = 3.55 + 4.26i, and z3 = 3.55 − 4.26i.

Here i :=
√−1 denotes the imaginary unit. Note that the modulus of z2 and

z3 is |z2| = |z3| =
√

3.552 + 4.262 = 5.545. Thus, the process (2.1.15) satisfies
the stability condition (2.1.12) because all roots are outside the unit circle.
Although the roots for higher dimensional and higher order processes are often
difficult to compute by hand, efficient computer programs exist that do the
job.

To understand the implications of the stability assumption, it may be
helpful to visualize time series generated by stable processes and contrast
them with realizations from unstable VAR processes. In Figure 2.1 three pairs



18 2 Stable Vector Autoregressive Processes

of time series generated by three different stable bivariate (two-dimensional)
VAR processes are depicted. Although they differ considerably, a common
feature is that they fluctuate around constant means and their variability
(variance) does not change as they wander along. In contrast, the pairs of
series plotted in Figures 2.2 and 2.3 are generated by unstable, bivariate VAR
processes. The time series in Figure 2.2 have a trend and those in Figure
2.3 exhibit quite pronounced seasonal fluctuations. Both shapes are typical
of certain instabilities although they are quite common in practice. Hence,
the stability assumption excludes many series of practical interest. We shall
therefore discuss unstable processes in more detail in Part II. For that analysis
understanding the stable case first is helpful.

2.1.2 The Moving Average Representation of a VAR Process

In the previous subsection we have considered the VAR(1) representation

Yt = ν + AYt−1 + Ut

of the VAR(p) process (2.1.1). Under the stability assumption, the process Yt

has a representation

Yt = µ +
∞∑

i=0

AiUt−i. (2.1.16)

This form of the process is called the moving average (MA) representation,
where Yt is expressed in terms of past and present error or innovation vectors
Ut and the mean term µ. This representation can be used to determine the
autocovariances of Yt and the mean and autocovariances of yt can be obtained
as outlined in Section 2.1.1. Moreover, an MA representation of yt can be found
by premultiplying (2.1.16) by the (K × Kp) matrix J := [IK : 0 : · · · : 0]
(defined in (2.1.11)),

yt = JYt = Jµ +
∞∑

i=0

JAiJ ′JUt−i

= µ +
∞∑

i=0

Φiut−i. (2.1.17)

Here µ := Jµ, Φi := JAiJ ′ and, due to the special structure of the white
noise process Ut, we have Ut = J ′JUt and JUt = ut. Because the Ai are
absolutely summable, the same is true for the Φi.

Later we will also consider other MA representations of a stable VAR(p)
process. The unique feature of the present representation is that the zero order
coefficient matrix Φ0 = IK and the white noise process involved consists of the
error terms ut of the VAR representation (2.1.1). In Section 2.2.2, the ut will
be seen to be the errors of optimal forecasts made in period t− 1. Therefore,
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Fig. 2.3. Unstable seasonal time series.

to distinguish the present representation from other MA representations, we
will sometimes refer to it as the canonical or fundamental or prediction error
representation.

Using Proposition C.10 of Appendix C.3, the representation (2.1.17) pro-
vides a possibility for determining the mean and autocovariances of yt:

E(yt) = µ

and

Γy(h) = E[(yt − µ)(yt−h − µ)′]

= E

[(
h−1∑
i=0

Φiut−i +
∞∑

i=0

Φh+iut−h−i

)( ∞∑
i=0

Φiut−h−i

)′]

=
∞∑

i=0

Φh+iΣuΦ
′
i. (2.1.18)
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There is no need to compute the MA coefficient matrices Φi via the VAR(1)
representation corresponding to yt as in the foregoing derivation. A more
direct way for determining these matrices results from writing the VAR(p)
process in lag operator notation. The lag operator L is defined such that
Lyt = yt−1, that is, it lags (shifts back) the index by one period. Because of
this property it is sometimes called backshift operator. Using this operator,
(2.1.1) can be written as

yt = ν + (A1L+ · · · + ApL
p)yt + ut

or

A(L)yt = ν + ut, (2.1.19)

where

A(L) := IK −A1L− · · · −ApL
p.

Let

Φ(L) :=
∞∑

i=0

ΦiL
i

be an operator such that

Φ(L)A(L) = IK . (2.1.20)

Premultiplying (2.1.19) by Φ(L) gives

yt = Φ(L)ν + Φ(L)ut

=

( ∞∑
i=0

Φi

)
ν +

∞∑
i=0

Φiut−i. (2.1.21)

The operator Φ(L) is the inverse of A(L) and it is therefore sometimes denoted
by A(L)−1. Generally, we call the operator A(L) invertible if |A(z)| �= 0 for
|z| ≤ 1. If this condition is satisfied, the coefficient matrices of Φ(L) = A(L)−1

are absolutely summable and, hence, the process Φ(L)ut = A(L)−1ut is well-
defined (see Appendix C.3). The coefficient matrices Φi can be obtained from
(2.1.20) using the relations

IK = (Φ0 + Φ1L+ Φ2L
2 + · · · )(IK − A1L− · · · −ApL

p)
= Φ0 + (Φ1 − Φ0A1)L+ (Φ2 − Φ1A1 − Φ0A2)L2 + · · ·

+

⎛⎝Φi −
i∑

j=1

Φi−jAj

⎞⎠Li + · · ·

or
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IK = Φ0

0 = Φ1 − Φ0A1

0 = Φ2 − Φ1A1 − Φ0A2

...

0 = Φi −
i∑

j=1

Φi−jAj

...

where Aj = 0 for j > p. Hence, the Φi can be computed recursively using

Φ0 = IK ,

Φi =
i∑

j=1

Φi−jAj , i = 1, 2, . . . . (2.1.22)

The mean µ of yt can be obtained as follows:

µ = Φ(1)ν = A(1)−1ν = (IK − A1 − · · · − Ap)−1ν. (2.1.23)

For a VAR(1) process, the recursions (2.1.22) imply that Φ0 = IK , Φ1 =
A1, . . . , Φi = Ai

1, . . . . This result is in line with (2.1.4). For the example
VAR(1) process (2.1.14), we get Φ0 = I3,

Φ1 =

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦ , Φ2 =

⎡⎣ .25 0 0
.06 .07 .12
.02 .08 .15

⎤⎦ ,

Φ3 =

⎡⎣ .125 0 0
.037 .031 .057
.018 .038 .069

⎤⎦ , (2.1.24)

etc. For a VAR(2), the recursions (2.1.22) result in

Φ1 = A1

Φ2 = Φ1A1 + A2 = A2
1 + A2

Φ3 = Φ2A1 + Φ1A2 = A3
1 + A2A1 + A1A2

...
Φi = Φi−1A1 + Φi−2A2

...

Thus, for the example VAR(2) process (2.1.15), we get the MA coefficient
matrices Φ0 = I2,

Φ1 =
[
.5 .1
.4 .5

]
, Φ2 =

[
.29 .1
.65 .29

]
, Φ3 =

[
.21 .079
.566 .21

]
, (2.1.25)
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etc. For both example processes, the Φi matrices approach zero as i → ∞.
This property is a consequence of the stability of the two processes.

It may be worth noting that the MA representation of a stable VAR(p)
process is not necessarily of infinite order. That is, the Φi may all be zero for
i greater than some finite integer q. For instance, for the bivariate VAR(1)

yt = ν +
[

0 α
0 0

]
yt−1 + ut,

the MA representation is easily seen to be

yt = µ + ut +
[

0 α
0 0

]
ut−1,

because[
0 α
0 0

]i

= 0

for i > 1.

2.1.3 Stationary Processes

A stochastic process is stationary if its first and second moments are time
invariant. In other words, a stochastic process yt is stationary if

E(yt) = µ for all t (2.1.26a)

and

E[(yt − µ)(yt−h − µ)′] = Γy(h) = Γy(−h)′ for all t and h = 0, 1, 2, . . . .
(2.1.26b)

Condition (2.1.26a) means that all yt have the same finite mean vector µ and
(2.1.26b) requires that the autocovariances of the process do not depend on t
but just on the time period h the two vectors yt and yt−h are apart. Note that,
if not otherwise stated, all quantities are assumed to be finite. For instance, µ is
a vector of finite mean terms and Γy(h) is a matrix of finite covariances. Other
definitions of stationarity are often used in the literature. For example, the
joint distribution of n consecutive vectors may be assumed to be time invariant
for all n. We shall, however, use the foregoing definition in the following. We
call a process strictly stationary if the joint distributions of n consecutive
variables are time invariant and there is a reason to distinguish between our
notion of stationarity and the stricter form. By our definition, the white noise
process ut used in (2.1.1) is an obvious example of a stationary process. Also,
from (2.1.18) we know that a stable VAR(p) process is stationary. We state
this fact as a proposition.
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Proposition 2.1 (Stationarity Condition)
A stable VAR(p) process yt, t = 0,±1,±2, . . . , is stationary.

Because stability implies stationarity, the stability condition (2.1.12) is
often referred to as stationarity condition in the time series literature. The
converse of Proposition 2.1 is not true. In other words, an unstable process is
not necessarily nonstationary. Because unstable stationary processes are not
of interest in the following, we will not discuss this possibility here.

At this stage, it may be worth thinking about the generality of the VAR(p)
processes considered in this and many other chapters. In this context, an
important result due to Wold (1938) is of interest. He has shown that every
stationary process xt can be written as the sum of two uncorrelated processes
zt and yt,

xt = zt + yt,

where zt is a deterministic process that can be forecast perfectly from its own
past and yt is a process with MA representation

yt =
∞∑

i=0

Φiut−i, (2.1.27)

where Φ0 = IK , the ut constitute a white noise process and the infinite sum
is defined as a limit in mean square although the Φi are not necessarily abso-
lutely summable (Hannan (1970, Chapter III)). The term “deterministic” will
be explained more formally in Section 2.2. This result is often called Wold’s
Decomposition Theorem. If we assume that in the system of interest the only
deterministic component is the mean term, the theorem states that the sys-
tem has an MA representation. Suppose the Φi are absolutely summable and
there exists an operator A(L) with absolutely summable coefficient matrices
satisfying A(L)Φ(L) = IK . Then Φ(L) is invertible (A(L) = Φ(L)−1) and yt

has a VAR representation of possibly infinite order,

yt =
∞∑

i=1

Aiyt−i + ut, (2.1.28)

where

A(z) := IK −
∞∑

i=1

Aiz
i =

( ∞∑
i=0

Φiz
i

)−1

for |z| ≤ 1.

The Ai can be obtained from the Φi by recursions similar to (2.1.22).
The absolute summability of the Ai implies that the VAR coefficient ma-

trices converge to zero rapidly. In other words, under quite general conditions,
every stationary, purely nondeterministic process (a process without a deter-
ministic component) can be approximated well by a finite order VAR process.
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This is a very powerful result which demonstrates the generality of the pro-
cesses under study. Note that economic variables can rarely be predicted with-
out error. Thus the assumption of having a nondeterministic system except
perhaps for a mean term is not a very restrictive one. The crucial and re-
strictive condition is the stationarity of the system, however. We will consider
nonstationary processes later. For that discussion it is useful to understand
the stationary case first.

An important implication of Wold’s Decomposition Theorem is worth not-
ing at this point. The theorem implies that any subprocess of a purely nonde-
terministic, stationary process yt consisting of any subset of the components
of yt also has an MA representation. Suppose, for instance, that interest cen-
ters on the first M components of the K-dimensional process yt, that is, we
are interested in xt = Fyt, where F = [IM : 0] is an (M ×K) matrix. Then
E(xt) = FE(yt) = Fµ and Γx(h) = FΓy(h)F ′ and, thus, xt is stationary. Ap-
plication of Wold’s theorem then implies that xt has an MA representation.

2.1.4 Computation of Autocovariances and Autocorrelations of
Stable VAR Processes

Although the autocovariances of a stationary, stable VAR(p) process can be
given in terms of its MA coefficient matrices as in (2.1.18), that formula is
unattractive in practice, because it involves an infinite sum. For practical
purposes it is easier to compute the autocovariances directly from the VAR
coefficient matrices. In this section, we will develop the relevant formulas.

Autocovariances of a VAR(1) Process

In order to illustrate the computation of the autocovariances when the process
coefficients are given, suppose that yt is a stationary, stable VAR(1) process

yt = ν + A1yt−1 + ut

with white noise covariance matrix E(utu
′
t) = Σu. Alternatively, the process

may be written in mean-adjusted form as

yt − µ = A1(yt−1 − µ) + ut, (2.1.29)

where µ = E(yt), as before. Postmultiplying by (yt−h −µ)′ and taking expec-
tations gives

E[(yt − µ)(yt−h − µ)′] = A1E[(yt−1 − µ)(yt−h − µ)′] + E[ut(yt−h − µ)′].

Thus, for h = 0,

Γy(0) = A1Γy(−1) + Σu = A1Γy(1)′ + Σu (2.1.30)

and for h > 0,
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Γy(h) = A1Γy(h− 1). (2.1.31)

These equations are usually referred to as Yule-Walker equations. If A1 and
the covariance matrix Γy(0) = Σy of yt are known, the Γy(h) can be computed
recursively using (2.1.31).

If A1 and Σu are given, Γy(0) can be determined as follows. For h = 1, we
get from (2.1.31), Γy(1) = A1Γy(0). Substituting A1Γy(0) for Γy(1) in (2.1.30)
gives

Γy(0) = A1Γy(0)A′
1 + Σu

or

vecΓy(0) = vec(A1Γy(0)A′
1) + vecΣu

= (A1 ⊗ A1) vecΓy(0) + vecΣu.

(For the definition of the Kronecker product ⊗, the vec operator and the rules
used here, see Appendix A). Hence,

vecΓy(0) = (IK2 − A1 ⊗ A1)−1 vecΣu. (2.1.32)

Note that the invertibility of IK2 − A1 ⊗ A1 follows from the stability of yt

because the eigenvalues of A1 ⊗A1 are the products of the eigenvalues of A1

(see Appendix A). Hence, the eigenvalues of A1 ⊗A1 have modulus less than
1. Consequently, det(IK2 − A1 ⊗A1) �= 0 (see Appendix A.9.1).

Using, for instance,

Σu =

⎡⎣ 2.25 0 0
0 1.0 .5
0 .5 .74

⎤⎦ , (2.1.33)

we get for the example process (2.1.14),

vecΓy(0) = (I9 − A1 ⊗ A1)−1 vecΣu

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.75 0 0 0 0 0 0 0 0
−.05 .95 −.15 0 0 0 0 0 0

0 −.10 .85 0 0 0 0 0 0
−.05 0 0 .95 0 0 −.15 0 0
−.01 −.01 −.03 −.01 .99 −.03 −.03 −.03 −.09

0 −.02 −.03 0 −.02 .97 0 −.06 −.09
0 0 0 −.01 0 0 .85 0 0
0 0 0 −.02 −.02 −.06 −.03 .97 −.09
0 0 0 0 −.04 −.06 0 −.06 .91

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.25
0
0
0

1.0
.5
0
.5
.74

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.000
.161
.019
.161

1.172
.674
.019
.674
.954

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows that

Γy(0) =

⎡⎣ 3.000 .161 .019
.161 1.172 .674
.019 .674 .954

⎤⎦ ,

Γy(1) = A1Γy(0) =

⎡⎣ 1.500 .080 .009
.322 .335 .355
.038 .437 .421

⎤⎦ , (2.1.34)

Γy(2) = A1Γy(1) =

⎡⎣ .750 .040 .005
.194 .173 .163
.076 .198 .197

⎤⎦ .

Note that the results are rounded after the computation. A higher precision
has been used in intermediate steps.

Autocovariances of a Stable VAR(p) Process

For a higher order VAR(p) process,

yt − µ = A1(yt−1 − µ) + · · · + Ap(yt−p − µ) + ut, (2.1.35)

the Yule-Walker equations are also obtained by postmultiplying with (yt−h −
µ)′ and taking expectations. For h = 0, using Γy(i) = Γy(−i)′,

Γy(0) = A1Γy(−1) + · · · + ApΓy(−p) + Σu

= A1Γy(1)′ + · · · + ApΓy(p)′ + Σu, (2.1.36)

and for h > 0,

Γy(h) = A1Γy(h− 1) + · · · + ApΓy(h− p). (2.1.37)

These equations may be used to compute the Γy(h) recursively for h ≥ p, if
A1, . . . , Ap and Γy(p− 1), . . . , Γy(0) are known.

The initial autocovariance matrices for |h| < p can be determined using
the VAR(1) process that corresponds to (2.1.35),

Yt − µ = A(Yt−1 − µ) + Ut, (2.1.38)
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where Yt, A, and Ut are as in (2.1.8) and µ := (µ′, . . . , µ′)′ = E(Yt). Proceed-
ing as in the VAR(1) case gives

ΓY (0) = AΓY (0)A′ + ΣU ,

where ΣU = E(UtU
′
t) and

ΓY (0) = E

⎛⎜⎝
⎡⎢⎣ yt − µ

...
yt−p+1 − µ

⎤⎥⎦ [(yt − µ)′, . . . , (yt−p+1 − µ)′]

⎞⎟⎠

=

⎡⎢⎢⎢⎣
Γy(0) Γy(1) . . . Γy(p− 1)
Γy(−1) Γy(0) . . . Γy(p− 2)

...
...

. . .
...

Γy(−p + 1) Γy(−p + 2) . . . Γy(0)

⎤⎥⎥⎥⎦ .

Thus, the Γy(h), h = −p + 1, . . . , p− 1, are obtained from

vecΓY (0) = (I(Kp)2 − A ⊗A)−1 vecΣU . (2.1.39)

For instance, for the example VAR(2) process (2.1.15) we get

A =

⎡⎢⎢⎣
.5 .1 0 0
.4 .5 .25 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎦ (2.1.40)

and, assuming

Σu =
[
.09 0
0 .04

]
, (2.1.41)

we have

ΣU =
[
Σu 0
0 0

]
=

⎡⎢⎢⎣
.09 0 0 0
0 .04 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .

Hence, using (2.1.39) and

ΓY (0) =
[

Γy(0) Γy(1)
Γy(1)′ Γy(0)

]
gives

Γy(0) =
[
.131 .066
.066 .181

]
, Γy(1) =

[
.072 .051
.104 .143

]
,



30 2 Stable Vector Autoregressive Processes

Γy(2) = A1Γy(1) + A2Γy(0) =
[
.046 .040
.113 .108

]
, (2.1.42)

Γy(3) = A1Γy(2) + A2Γy(1) =
[
.035 .031
.093 .083

]
,

and so on. A method for computing Γy(0) without explicitly inverting (I −
A ⊗ A) is given by Barone (1987).

The autocovariance function of a stationary VAR(p) process is positive
semidefinite, that is,

n∑
j=0

n∑
i=0

a′jΓy(i− j)ai

= (a′0, . . . , a
′
n)

⎡⎢⎢⎢⎣
Γy(0) Γy(1) . . . Γy(n)
Γy(−1) Γy(0) . . . Γy(n− 1)

...
...

. . .
...

Γy(−n) Γy(−n + 1) . . . Γy(0)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a0

a1

...
an

⎤⎥⎥⎥⎦ ≥ 0

(2.1.43)

for any n ≥ 0. Here the ai are arbitrary (K × 1) vectors. This result follows
because (2.1.43) is just the variance of

(a′0, . . . , a
′
n)

⎡⎢⎢⎢⎣
yt

yt−1

...
yt−n

⎤⎥⎥⎥⎦
which is always nonnegative.

Autocorrelations of a Stable VAR(p) Process

Because the autocovariances depend on the unit of measurement used for the
variables of the system, they are sometimes difficult to interpret. Therefore,
the autocorrelations

Ry(h) = D−1Γy(h)D−1 (2.1.44)

are usually more convenient to work with as they are scale invariant measures
of the linear dependencies among the variables of the system. Here D is a
diagonal matrix with the standard deviations of the components of yt on the
main diagonal. That is, the diagonal elements of D are the square roots of the
diagonal elements of Γy(0). Denoting the covariance between yi,t and yj,t−h

by γij(h) (i.e., γij(h) is the ij-th element of Γy(h)) the diagonal elements
γ11(0), . . . , γKK(0) of Γy(0) are the variances of y1t, . . . , yKt. Thus,
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D−1 =

⎡⎢⎣ 1/
√
γ11(0) 0

. . .
0 1/

√
γKK(0)

⎤⎥⎦
and the correlation between yi,t and yj,t−h is

ρij(h) =
γij(h)√

γii(0)
√
γjj(0)

(2.1.45)

which is just the ij-th element of Ry(h).
For the VAR(1) example process (2.1.14) we get from (2.1.34),

D =

⎡⎣
√

3.000 0 0
0

√
1.172 0

0 0
√
.954

⎤⎦ =

⎡⎣ 1.732 0 0
0 1.083 0
0 0 .977

⎤⎦
and

Ry(0) = D−1Γy(0)D−1 =

⎡⎣ 1 .086 .011
.086 1 .637
.011 .637 1

⎤⎦ ,

Ry(1) = D−1Γy(1)D−1 =

⎡⎣ .500 .043 .005
.172 .286 .336
.022 .413 .441

⎤⎦ , (2.1.46)

Ry(2) = D−1Γy(2)D−1 =

⎡⎣ .250 .021 .003
.103 .148 .154
.045 .187 .206

⎤⎦ .

A plot of some autocorrelations is shown in Figure 2.4. Assuming that the
three variables of the system represent rates of change of investment, income,
and consumption, respectively, it can, for instance, be seen that the contempo-
raneous and intertemporal correlations between consumption and investment
are quite small, while the patterns of the autocorrelations of the individual
series are similar.

2.2 Forecasting

We have argued in the introduction that forecasting is one of the main objec-
tives of multiple time series analysis. Therefore, we will now discuss predictors
based on VAR processes. Point forecasts and interval forecasts will be con-
sidered in turn. Before discussing particular predictors or forecasts (the two
terms will be used interchangeably) we comment on the prediction problem
in general.
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Fig. 2.4. Autocorrelations of the investment/income/consumption system.

2.2.1 The Loss Function

The forecaster usually finds himself in a situation where in a particular period
t he has to make statements about the future values of variables y1, . . . , yK .
For this purpose he has available a model for the data generation process and
an information set, say Ωt, containing the available information in period t.
The data generation process may, for instance, be a VAR(p) process and Ωt

may contain the past and present variables of the system under consideration,
that is, Ωt = {ys|s ≤ t}, where ys = (y1s, . . . , yKs)′. The period t, where the
forecast is made, is the forecast origin and the number of periods into the
future for which a forecast is desired is the forecast horizon. A predictor, h
periods ahead, is an h-step predictor.

If forecasts are desired for a particular purpose, a specific cost function
may be associated with the forecast errors. A forecast will be optimal if it
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minimizes the cost. To find a forecast that is optimal in this sense is usually
too ambitious a goal to be attainable in practice. Therefore, minimizing the
expected cost or loss is often used as an objective. In general, it will depend
on the particular loss function which forecast is optimal. On the other hand,
forecasts of economic variables are often published for general use. In that case,
the specific cost or loss function of all potential users cannot be taken into
account in computing a forecast. In this situation, the statistical properties
of the forecasts and perhaps interval forecasts are of interest to enable the
user to draw proper conclusions for his or her particular needs. It may also
be desirable to choose the forecast such that it minimizes a wide range of
plausible loss functions.

In the context of VAR models, predictors that minimize the forecast mean
squared errors (MSEs) are the most widely used ones. Arguments in favor of
using the MSE as loss function are given by Granger (1969b) and Granger
& Newbold (1986). They show that minimum MSE forecasts also minimize a
range of loss functions other than the MSE. Moreover, for many loss functions
the optimal predictors are simple functions of minimum MSE predictors. Fur-
thermore, for an unbiased predictor, the MSE is the forecast error variance
which is useful in setting up interval forecasts. Therefore, minimum MSE pre-
dictors will be of major interest in the following. If not otherwise stated, the
information set Ωt is assumed to contain the variables of the system under
consideration up to and including period t.

2.2.2 Point Forecasts

Conditional Expectation

Suppose yt = (y1t, . . . , yKt)′ is a K-dimensional stable VAR(p) process as in
(2.1.1). Then, the minimum MSE predictor for forecast horizon h at forecast
origin t is the conditional expected value

Et(yt+h) := E(yt+h|Ωt) = E(yt+h|{ys|s ≤ t}). (2.2.1)

This predictor minimizes the MSE of each component of yt. In other words,
if ȳt(h) is any h-step predictor at origin t,

MSE[ȳt(h)] = E[(yt+h − ȳt(h))(yt+h − ȳt(h))′]
≥ MSE[Et(yt+h)] = E[(yt+h − Et(yt+h))(yt+h − Et(yt+h))′], (2.2.2)

where the inequality sign ≥ between two matrices means that the differ-
ence between the left-hand and the right-hand matrix is positive semidefinite.
Equivalently, for any (K × 1) vector c,

MSE[c′ȳt(h)] ≥ MSE[c′Et(yt+h)].

The optimality of the conditional expectation can be seen by noting that
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MSE[ȳt(h)] = E{[yt+h − Et(yt+h) + Et(yt+h) − ȳt(h)]
× [yt+h − Et(yt+h) + Et(yt+h) − ȳt(h)]′}

= MSE[Et(yt+h)]
+E{[Et(yt+h) − ȳt(h)][Et(yt+h) − ȳt(h)]′},

where E{[yt+h − Et(yt+h)][Et(yt+h) − ȳt(h)]′} = 0 has been used. The latter
result holds because [yt+h−Et(yt+h)] is a function of innovations after period
t which are uncorrelated with the terms contained in [Et(yt+h)− ȳt(h)] which
are functions of ys, s ≤ t.

The optimality of the conditional expectation implies that

Et(yt+h) = ν + A1Et(yt+h−1) + · · · + ApEt(yt+h−p) (2.2.3)

is the optimal h-step predictor of a VAR(p) process yt, provided ut is inde-
pendent white noise so that ut and us are independent for s �= t and, hence,
Et(ut+h) = 0 for h > 0.

The formula (2.2.3) can be used for recursively computing the h-step pre-
dictors starting with h = 1:

Et(yt+1) = ν + A1yt + · · · + Apyt−p+1,

Et(yt+2) = ν + A1Et(yt+1) + A2yt + · · · + Apyt−p+2,

...

By these recursions we get for a VAR(1) process

Et(yt+h) = (IK + A1 + · · · + Ah−1
1 )ν + Ah

1yt.

Assuming yt = (−6, 3, 5)′ and ν = (0, 2, 1)′, the following forecasts are
obtained for the VAR(1) example process (2.1.14):

Et(yt+1) =

⎡⎣ 0
2
1

⎤⎦ +

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦⎡⎣ −6
3
5

⎤⎦ =

⎡⎣ −3.0
3.2
3.1

⎤⎦ , (2.2.4a)

Et(yt+2) = (I3 + A1)ν + A2
1yt =

⎡⎣ −1.50
2.95
2.57

⎤⎦ , (2.2.4b)

etc. Similarly, we get for the VAR(2) process (2.1.15) with ν = (.02, .03)′,
yt = (.06, .03)′ and yt−1 = (.055, .03)′,

Et(yt+1) =
[
.02
.03

]
+

[
.5 .1
.4 .5

] [
.06
.03

]
+

[
0 0
.25 0

] [
.055
.03

]
=

[
.053
.08275

]
,
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Et(yt+2) =
[
.02
.03

]
+

[
.5 .1
.4 .5

] [
.053
.08275

]
+

[
0 0
.25 0

] [
.06
.03

]
=

[
.0548
.1076

]
. (2.2.5)

The conditional expectation has the following properties:

(1) It is an unbiased predictor, that is, E[yt+h −Et(yt+h)] = 0.
(2) If ut is independent white noise, MSE[Et(yt+h)] = MSE[Et(yt+h)|yt, yt−1,

. . . ], that is, the MSE of the predictor equals the conditional MSE given
yt, yt−1, . . . .

The latter property follows by similar arguments as the optimality of the
predictor Et(yt+h).

It must be emphasized that the prediction formula (2.2.3) relies on ut

being independent white noise. If ut and us are not independent but just
uncorrelated, Et(ut+h) will be nonzero in general. As an example consider the
univariate AR(1) process yt = ν + αyt−1 + ut with

ut =
{

et for t = 0,±2,±4, . . . ,
(e2t−1 − 1)/

√
2 for t = ±1,±3, . . . ,

where the et are independent standard normal (N (0, 1)) random variables
(see also Fuller (1976, Chapter 2, Exercise 16)). The process ut is easily seen
to be uncorrelated but not independent white noise. For even t,

Et(ut+1) = E[(e2t − 1)/
√

2|yt, yt−1, . . . ]

= (e2t − 1)/
√

2,

because et = yt − ν − αyt−1.

Linear Minimum MSE Predictor

If ut is not independent white noise, additional assumptions are usually re-
quired to find the optimal predictor (conditional expectation) of a VAR(p)
process. Without such assumptions we can achieve the less ambitious goal of
finding the minimum MSE predictors among those that are linear functions
of yt, yt−1, . . . . Let us consider a zero mean VAR(1) process

yt = A1yt−1 + ut (2.2.6)

first. As in (2.1.3), it follows that

yt+h = Ah
1yt +

h−1∑
i=0

Ai
1ut+h−i.

Thus, for a predictor
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yt(h) = B0yt + B1yt−1 + · · · ,
where the Bi’s are (K ×K) coefficient matrices, we get a forecast error

yt+h − yt(h) =
h−1∑
i=0

Ai
1ut+h−i + (Ah

1 −B0)yt −
∞∑

i=1

Biyt−i.

Using that ut+j , for j > 0, is uncorrelated with yt−i, for i ≥ 0, we get

MSE[yt(h)]

= E

⎡⎣(h−1∑
i=0

Ai
1ut+h−i

)(
h−1∑
i=0

Ai
1ut+h−i

)′⎤⎦
+ E

{[
(Ah

1 −B0)yt −
∞∑

i=1

Biyt−i

][
(Ah

1 −B0)yt −
∞∑

i=1

Biyt−i

]′}
.

Obviously, this MSE matrix is minimal for B0 = Ah
1 and Bi = 0. Thus, the

optimal (linear minimum MSE) predictor for this special case is

yt(h) = Ah
1yt = A1yt(h− 1).

The forecast error is

h−1∑
i=0

Ai
1ut+h−i

and the MSE or forecast error covariance matrix is

Σy(h) := MSE[yt(h)] = E

⎡⎣(h−1∑
i=0

Ai
1ut+h−i

)(
h−1∑
i=0

Ai
1ut+h−i

)′⎤⎦
=

h−1∑
i=0

Ai
1Σu(Ai

1)
′ = MSE[yt(h− 1)] + Ah−1

1 Σu(Ah−1
1 )′.

A general VAR(p) process with zero mean,

yt = A1yt−1 + · · · + Apyt−p + ut,

has a VAR(1) counterpart,

Yt = AYt−1 + Ut,

where Yt, A, and Ut are as defined in (2.1.8). Using the same arguments as
above, the optimal predictor of Yt+h is seen to be

Yt(h) = AhYt = AYt(h− 1).
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It is easily seen by induction with respect to h that

Yt(h) =

⎡⎢⎢⎢⎣
yt(h)

yt(h− 1)
...

yt(h− p + 1)

⎤⎥⎥⎥⎦ ,

where yt(j) := yt+j for j ≤ 0. Defining the (K × Kp) matrix J := [IK : 0 :
· · · : 0] as in (2.1.11), we get the optimal h-step predictor of the process yt at
origin t as

yt(h) = JAYt(h− 1) = [A1, . . . , Ap]Yt(h− 1)
= A1yt(h− 1) + · · · + Apyt(h− p). (2.2.7)

This formula may be used for recursively computing the forecasts. Obviously,
yt(h) is the conditional expectation Et(yt+h) if ut is independent white noise
because the recursion in (2.2.3) is the same as the one obtained here for a
zero mean process with ν = 0.

If the process yt has nonzero mean, that is,

yt = ν + A1yt−1 + · · · + Apyt−p + ut,

we define xt := yt−µ, where µ := E(yt) = (I−A1−· · ·−Ap)−1ν. The process
xt has zero mean and the optimal h-step predictor is

xt(h) = A1xt(h− 1) + · · · + Apxt(h− p).

Adding µ to both sides of this equation gives the optimal linear predictor of
yt,

yt(h) = xt(h) + µ = µ + A1(yt(h− 1) − µ) + · · · + Ap(yt(h− p) − µ)
= ν + A1yt(h− 1) + · · · + Apyt(h− p). (2.2.8)

Henceforth, we will refer to yt(h) as the optimal predictor irrespective of the
properties of the white noise process ut, that is, even if ut is not independent
but just uncorrelated white noise.

Using

Yt+h = AhYt +
h−1∑
i=0

AiUt+h−i

for a zero mean process, we get the forecast error

yt+h − yt(h) = J [Yt+h − Yt(h)] = J

[
h−1∑
i=0

AiUt+h−i

]

=
h−1∑
i=0

JAiJ ′JUt+h−i =
h−1∑
i=0

Φiut+h−i, (2.2.9)
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where the Φi are the MA coefficient matrices from (2.1.17). The forecast error
is unchanged if yt has nonzero mean because the mean term cancels. The
forecast error representation (2.2.9) shows that the predictor yt(h) can also
be expressed in terms of the MA representation (2.1.17),

yt(h) = µ +
∞∑

i=h

Φiut+h−i = µ +
∞∑

i=0

Φh+iut−i. (2.2.10)

From (2.2.9) the forecast error covariance or MSE matrix is easy to obtain,

Σy(h) := MSE[yt(h)] =
h−1∑
i=0

ΦiΣuΦ
′
i = Σy(h− 1) + Φh−1ΣuΦ

′
h−1. (2.2.11)

Hence, the MSEs are monotonically nondecreasing and, for h → ∞, the MSE
matrices approach the covariance matrix of yt,

Γy(0) = Σy =
∞∑

i=0

ΦiΣuΦ
′
i

(see (2.1.18)). That is,

Σy(h) −→
h→∞

Σy. (2.2.12)

If the process mean µ is used as a forecast, the MSE matrix of that predictor
is just the covariance matrix Σy of yt. Hence, the optimal long range forecast
(h → ∞) is the process mean. In other words, the past of the process contains
no information on the development of the process in the distant future. Zero
mean processes with this property are purely nondeterministic, that is, yt −µ
is purely nondeterministic if the forecast MSEs satisfy (2.2.12).

For the example VAR(1) process (2.1.14) with Σu as in (2.1.33), using the
MA coefficient matrices from (2.1.24), the forecast MSE matrices

Σy(1) = Σu =

⎡⎣ 2.25 0 0
0 1.0 .5
0 .5 .74

⎤⎦ ,

Σy(2) = Σu + Φ1ΣuΦ
′
1 =

⎡⎣ 2.813 .113 0
.113 1.129 .632

0 .632 .907

⎤⎦ , (2.2.13)

Σy(3) = Σy(2) + Φ2ΣuΦ
′
2 =

⎡⎣ 2.953 .146 .011
.146 1.161 .663
.011 .663 .943

⎤⎦
are obtained. Similarly, for the VAR(2) example process (2.1.15) with white
noise covariance matrix (2.1.41), we get with Φ1 from (2.1.25),
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Σy(1) = Σu =
[
.09 0
0 .04

]
,

Σy(2) = Σu + Φ1ΣuΦ
′
1 =

[
.1129 .02
.02 .0644

]
. (2.2.14)

2.2.3 Interval Forecasts and Forecast Regions

In order to set up interval forecasts or forecast intervals, we make an assump-
tion about the distributions of the yt or the ut. It is most common to consider
Gaussian processes where yt, yt+1, . . . , yt+h have a multivariate normal distri-
bution for any t and h. Equivalently, it may be assumed that ut is Gaussian,
that is, the ut are multivariate normal, ut ∼ N (0, Σu), and ut and us are
independent for s �= t.

Under these conditions the forecast errors are also normally distributed as
linear transformations of normal vectors,

yt+h − yt(h) =
h−1∑
i=0

Φiut+h−i ∼ N (0, Σy(h)). (2.2.15)

This result implies that the forecast errors of the individual components are
normal so that

yk,t+h − yk,t(h)
σk(h)

∼ N (0, 1), (2.2.16)

where yk,t(h) is the k-th component of yt(h) and σk(h) is the square root of the
k-th diagonal element of Σy(h). Denoting by z(α) the upper α100 percentage
point of the normal distribution, we get

1 − α = Pr
{
−z(α/2) ≤ yk,t+h − yk,t(h)

σk(h)
≤ z(α/2)

}
= Pr

{
yk,t(h) − z(α/2)σk(h) ≤ yk,t+h ≤ yk,t(h) + z(α/2)σk(h)

}
.

Hence, a (1−α)100% interval forecast, h periods ahead, for the k-th component
of yt is

yk,t(h) ± z(α/2)σk(h) (2.2.17a)

or

[yk,t(h) − z(α/2)σk(h), yk,t(h) + z(α/2)σk(h)]. (2.2.17b)

If forecast intervals of this type are computed repeatedly from a large number
of time series (realizations of the considered process), then about (1−α)100%
of the intervals will contain the actual value of the random variable yk,t+h.
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Using (2.2.4a), (2.2.4b) and (2.2.13), 95% forecast intervals for the com-
ponents of the example VAR(1) process (2.1.14) are

y1,t(1) ± 1.96
√

2.25 or −3.0 ± 2.94,

y2,t(1) ± 1.96
√

1.0 or 3.2 ± 1.96,

y3,t(1) ± 1.96
√
.74 or 3.1 ± 1.69, (2.2.18)

y1,t(2) ± 1.96
√

2.813 or −1.50 ± 3.29,

y2,t(2) ± 1.96
√

1.129 or 2.95 ± 2.08,

y3,t(2) ± 1.96
√
.907 or 2.57 ± 1.87.

The result in (2.2.15) can also be used to establish joint forecast regions
for two or more variables. For instance, if a joint forecast region for the first
N components is desired, we define the (N × K) matrix F := [IN : 0] and
note that

[yt+h − yt(h)]′F ′[FΣy(h)F ′]−1F [yt+h − yt(h)] ∼ χ2(N) (2.2.19)

by a well-known result for multivariate normal vectors (see Appendix B).
Hence, the χ2(N)-distribution can be used to determine a (1−α)100% forecast
ellipsoid for the first N components of the process.

In practice, the construction of the ellipsoid is quite demanding if N is
greater than two or three. Therefore, a more practical approach is to use
Bonferroni’s method for constructing joint confidence regions. It is based on
the fact that for events E1, . . . , EN the following probability inequality holds:

Pr(E1 ∪ · · · ∪ EN ) ≤ Pr(E1) + · · · + Pr(EN ).

Hence,

Pr

(
N⋂

i=1

Ei

)
≥ 1 −

N∑
i=1

Pr(Ēi),

where Ēi denotes the complement of Ei. Consequently, if Ei is the event that
yi,t+h falls within an interval Hi,

Pr(Fyt+h ∈ H1 × · · · ×HN ) ≥ 1 −
N∑

i=1

Pr(Ēi). (2.2.20)

In other words, if we choose a
(
1 − α

N

)
100% forecast interval for each of the

N components, the resulting joint forecast region has probability at least
(1−α)100% of containing all N variables jointly. For instance, for the VAR(1)
example process considered previously,

{(y1, y2)| − 3.0 − 2.94 ≤ y1 ≤ −3.0 + 2.94, 3.2 − 1.96 ≤ y2 ≤ 3.2 + 1.96}
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is a joint forecast region of (y1,t+1, y2,t+1) with probability content at least
90%.

By the same method joint forecast regions for different horizons h can be
obtained. For instance, a joint forecast region with probability content of at
least (1 − α)100% for yk,t+1, . . . , yk,t+h is

{(yk,1, . . . , yk,h)|yk,t(i) − z(α/2h)σk(i) ≤ yk,i ≤ yk,t(i) + z(α/2h)σk(i),
i = 1, . . . , h}.

(2.2.21)

Thus, for the example, a joint forecast region for y2,t+1, y2,t+2 with probability
content of at least 90% is given by

{(y2,1, y2,2)|1.24 ≤ y2,1 ≤ 5.16, .87 ≤ y2,2 ≤ 5.03}.

Under our assumption of a Gaussian process, the distribution of the fore-
casts and forecast errors is known and, consequently, forecast intervals are
easy to set up. If the underlying process has a different and potentially un-
known distribution, considering the forecast distribution becomes more dif-
ficult. Even then methods are available to determine more than just point
forecasts. A survey of density forecasting is given by Tay & Wallis (2002).

2.3 Structural Analysis with VAR Models

Because VAR models represent the correlations among a set of variables, they
are often used to analyze certain aspects of the relationships between the
variables of interest. In the following, three ways to interpret a VAR model
will be discussed. They are all closely related and they are all beset with
problems that will be pointed out subsequently.

2.3.1 Granger-Causality, Instantaneous Causality, and Multi-Step
Causality

Definitions of Causality

Granger (1969a) has defined a concept of causality which, under suitable con-
ditions, is fairly easy to deal with in the context of VAR models. Therefore
it has become quite popular in recent years. The idea is that a cause cannot
come after the effect. Thus, if a variable x affects a variable z, the former
should help improving the predictions of the latter variable.

To formalize this idea, suppose that Ωt is the information set containing all
the relevant information in the universe available up to and including period
t. Let zt(h|Ωt) be the optimal (minimum MSE) h-step predictor of the process
zt at origin t, based on the information in Ωt. The corresponding forecast MSE
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will be denoted by Σz(h|Ωt). The process xt is said to cause zt in Granger’s
sense if

Σz(h|Ωt) < Σz(h|Ωt \ {xs|s ≤ t}) for at least one h = 1, 2, . . . . (2.3.1)

Alternatively, we will say that xt Granger-causes (or briefly causes) zt or xt is
Granger-causal for zt if (2.3.1) holds. In (2.3.1) Ωt \ {xs|s ≤ t} is the set con-
taining all the relevant information in the universe except for the information
in the past and present of the xt process. In other words, if zt can be predicted
more efficiently if the information in the xt process is taken into account in
addition to all other information in the universe, then xt is Granger-causal
for zt.

The definition extends immediately to the case where zt and xt are M -
and N -dimensional processes, respectively. In that case, xt is said to Granger-
cause zt if

Σz(h|Ωt) �= Σz(h|Ωt \ {xs|s ≤ t}) (2.3.2)

for some t and h. Alternatively, this could be expressed by requiring the two
MSEs to be different and

Σz(h|Ωt) ≤ Σz(h|Ωt \ {xs|s ≤ t})
(i.e., the difference between the right-hand and the left-hand matrix is posi-
tive semidefinite). Because the null matrix is also positive semidefinite, it is
necessary to require in addition that the two matrices are not identical. If xt

causes zt and zt also causes xt the process (z′t, x
′
t)

′ is called a feedback system.
Sometimes the term “instantaneous causality” is used in economic analy-

ses. We say that there is instantaneous causality between zt and xt if

Σz(1|Ωt ∪ {xt+1}) �= Σz(1|Ωt). (2.3.3)

In other words, in period t, adding xt+1 to the information set helps to improve
the forecast of zt+1. We will see shortly that this concept of causality is really
symmetric, that is, if there is instantaneous causality between zt and xt, then
there is also instantaneous causality between xt and zt (see Proposition 2.3).
Therefore we do not use the notion “instantaneous causality from xt to zt” in
the foregoing definition.

A possible criticism of the foregoing definitions could relate to the choice
of the MSE as a measure of the forecast precision. Of course, the choice of
another measure could lead to a different definition of causality. However,
in the situations of interest in the following, equality of the MSEs will im-
ply equality of the corresponding predictors. In that case a process zt is not
Granger-caused by xt if the optimal predictor of zt does not use information
from the xt process. This result is intuitively appealing.

A more serious practical problem is the choice of the information set Ωt.
Usually all the relevant information in the universe is not available to a fore-
caster and, thus, the optimal predictor given Ωt cannot be determined. There-
fore a less demanding definition of causality is often used in practice. Instead
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of all the information in the universe, only the information in the past and
present of the process under study is considered relevant and Ωt is replaced
by {zs, xs|s ≤ t}. Furthermore, instead of optimal predictors, optimal linear
predictors are compared. In other words, zt(h|Ωt) is replaced by the linear
minimum MSE h-step predictor based on the information in {zs, xs|s ≤ t} and
zt(h|Ωt \{xs|s ≤ t}) is replaced by the linear minimum MSE h-step predictor
based on {zs|s ≤ t}. In the following, when the terms “Granger-causality”
and “instantaneous causality” are used, these restrictive assumptions are im-
plicitly used if not otherwise noted.

Characterization of Granger-Causality

In order to determine the Granger-causal relationships between the variables
of the K-dimensional VAR process yt, suppose it has the canonical MA rep-
resentation

yt = µ +
∞∑

i=0

Φiut−i = µ + Φ(L)ut, Φ0 = IK , (2.3.4)

where ut is a white noise process with nonsingular covariance matrix Σu.
Suppose that yt consists of the M -dimensional process zt and the (K −M)-
dimensional process xt and the MA representation is partitioned accordingly,

yt =
[
zt

xt

]
=

[
µ1

µ2

]
+

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

] [
u1t

u2t

]
. (2.3.5)

Using the prediction formula (2.2.10), the optimal 1-step forecast of zt based
on yt is

zt(1|{ys|s ≤ t}) = [IM : 0]yt(1) (2.3.6)

= µ1 +
∞∑

i=1

Φ11,iu1,t+1−i +
∞∑

i=1

Φ12,iu2,t+1−i.

Hence the forecast error is

zt+1 − zt(1|{ys|s ≤ t}) = u1,t+1. (2.3.7)

As mentioned in Section 2.1.3, a subprocess of a stationary process also
has a prediction error MA representation. Thus,

zt = µ1 +
∞∑

i=0

Φ11,iu1,t−i +
∞∑

i=1

Φ12,iu2,t−i

= µ1 +
∞∑

i=0

Fivt−i, (2.3.8)

where F0 = IM and the last expression is a prediction error MA representa-
tion. Thus, the optimal 1-step predictor based on zt only is
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zt(1|{zs|s ≤ t}) = µ1 +
∞∑

i=1

Fivt+1−i (2.3.9)

and the corresponding forecast error is

zt+1 − zt(1|{zs|s ≤ t}) = vt+1. (2.3.10)

Consequently, the predictors (2.3.6) and (2.3.9) are identical if and only if
vt = u1,t for all t. In other words, equality of the predictors is equivalent to
zt having the MA representation

zt = µ1 +
∞∑

i=0

Fiu1,t−i = µ1 +
∞∑

i=0

[Fi : 0]ut−i

= µ1 +
∞∑

i=0

[Φ11,i : Φ12,i]ut−i

= µ1 +
∞∑

i=0

Φ11,iu1,t−i +
∞∑

i=1

Φ12,iu2,t−i.

Uniqueness of the canonical MA representation implies that Fi = Φ11,i and
Φ12,i = 0 for i = 1, 2, . . . . Hence, we get the following proposition.

Proposition 2.2 (Characterization of Granger-Noncausality)
Let yt be a VAR process as in (2.3.4)/(2.3.5) with canonical MA operator
Φ(z). Then

zt(1|{ys|s ≤ t}) = zt(1|{zs|s ≤ t}) ⇔ Φ12,i = 0 for i = 1, 2, . . . .
(2.3.11)

Because we have just used the MA representation (2.3.4) and not its finite
order VAR form, the proposition is not only valid for VAR processes but
more generally for processes having a canonical MA representation such as
(2.3.4). From (2.2.10) it is obvious that equality of the 1-step predictors implies
equality of the h-step predictors for h = 2, 3, . . . . Hence, the proposition
provides a necessary and sufficient condition for xt being not Granger-causal
for zt, that is, zt is not Granger-caused by xt if and only if Φ12,i = 0 for
i = 1, 2, . . . . Thus, Granger-noncausality can be checked easily by looking
at the MA representation of yt. Because we are mostly concerned with VAR
processes, it is worth noting that for a stationary, stable VAR(p) process

yt =
[
zt

xt

]
=

[
ν1

ν2

]
+

[
A11,1 A12,1

A21,1 A22,1

] [
zt−1

xt−1

]
+ · · ·

+
[
A11,p A12,p

A21,p A22,p

] [
zt−p

xt−p

]
+

[
u1t

u2t

]
, (2.3.12)
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the condition (2.3.11) is satisfied if and only if

A12,i = 0 for i = 1, . . . , p.

This result follows from the recursions in (2.1.22) or, alternatively, because
the inverse of[

Φ11(L) 0
Φ21(L) Φ22(L)

]
is [

Φ11(L)−1 0
−Φ22(L)−1Φ21(L)Φ11(L)−1 Φ22(L)−1

]
Thus, we have the following result.

Corollary 2.2.1
If yt is a stable VAR(p) process as in (2.3.12) with nonsingular white noise
covariance matrix Σu, then

zt(h|{ys|s ≤ t}) = zt(h|{zs|s ≤ t}), h = 1, 2, . . .
⇔ A12,i = 0 for i = 1, . . . , p. (2.3.13)

Alternatively,

xt(h|{ys|s ≤ t}) = xt(h|{xs|s ≤ t}), h = 1, 2, . . .
⇔ A21,i = 0 for i = 1, . . . , p. (2.3.14)

This corollary implies that noncausalities can be determined by just look-
ing at the VAR representation of the system. For instance, for the example
process (2.1.14),⎡⎣ y1,t

y2,t

y3,t

⎤⎦ = ν +

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦⎡⎣ y1,t−1

y2,t−1

y3,t−1

⎤⎦ + ut,

xt := (y2t, y3t)′ does not Granger-cause zt := y1t because A12,1 = 0 if the
coefficient matrix is partitioned according to (2.3.12). On the other hand, zt

Granger-causes xt. To give this discussion economic content let us assume
that the variables in the system are rates of change of investment (y1), in-
come (y2), and consumption (y3). With these specifications, the previous
discussion shows that investment Granger-causes the consumption/income
system whereas the converse is not true. It is also easy to check that con-
sumption causes the income/investment system and vice versa. Note that so
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far we have defined Granger-causality only in terms of two groups of vari-
ables. Therefore, at this stage, we cannot talk about the Granger-causal re-
lationship between consumption and income in the three-dimensional invest-
ment/income/consumption system.

Let us assume that the variables in the example VAR(2) process (2.1.15),[
y1,t

y2,t

]
= ν +

[
.5 .1
.4 .5

] [
y1,t−1

y2,t−1

]
+

[
0 0
.25 0

] [
y1,t−2

y2,t−2

]
+ ut,

represent the inflation rate (y1), and some interest rate (y2). Using Corollary
2.2.1, it is immediately obvious that inflation causes the interest rate and vice
versa. Hence the system is a feedback system. In the following we will refer
to (2.1.15) as the inflation/interest rate system.

Characterization of Instantaneous Causality

In order to study the concept of instantaneous causality in the framework
of the MA process (2.3.5), it is useful to rewrite that representation. Note
that the positive definite symmetric matrix Σu can be written as the product
Σu = PP ′, where P is a lower triangular nonsingular matrix with positive
diagonal elements (see Appendix A.9.3). Thus, (2.3.5) can be represented as

yt = µ +
∞∑

i=0

ΦiPP−1ut−i = µ +
∞∑

i=0

Θiwt−i, (2.3.15)

where Θi := ΦiP and wt := P−1ut is white noise with covariance matrix

Σw = P−1Σu(P−1)′ = IK . (2.3.16)

Because the white noise errors wt have uncorrelated components, they are
often called orthogonal residuals or innovations.

Partitioning the representation (2.3.15) according to the partitioning of
yt = (z′t, x

′
t)

′ gives[
zt

xt

]
=

[
µ1

µ2

]
+

[
Θ11,0 0
Θ21,0 Θ22,0

] [
w1,t

w2,t

]

+
[
Θ11,1 Θ12,1

Θ21,1 Θ22,1

] [
w1,t−1

w2,t−1

]
+ · · · .

Hence,

zt+1 = µ1 + Θ11,0w1,t+1 + Θ11,1w1,t + Θ12,1w2,t + · · ·
and

xt+1 = µ2 + Θ21,0w1,t+1 + Θ22,0w2,t+1 + Θ21,1w1,t + Θ22,1w2,t + · · · .
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The optimal 1-step predictor of xt based on {ys|s ≤ t} and, in addition, on
zt+1, is equal to the 1-step predictor of xt based on {ws|s ≤ t} ∪ {w1,t+1},
that is,

xt(1|{ys|s ≤ t} ∪ {zt+1}) = xt(1|{ws = (w′
1,s, w

′
2,s)

′|s ≤ t} ∪ {w1,t+1})
= Θ21,0w1,t+1 + xt(1|{ys|s ≤ t}). (2.3.17)

Consequently,

xt(1|{ys|s ≤ t} ∪ {zt+1}) = xt(1|{ys|s ≤ t})
if and only if Θ21,0 = 0. This condition, in turn, is easily seen to hold if and
only if the covariance matrix Σu is block diagonal with a ((K − M) × M)
block of zeros in the lower left-hand corner and an (M × (K −M)) block of
zeros in the upper right-hand corner. Of course, this means that u1t and u2t

in (2.3.5) have to be uncorrelated, i.e., E(u1tu
′
2t) = 0. Thereby the following

proposition is proven.

Proposition 2.3 (Characterization of Instantaneous Causality)
Let yt be as in (2.3.5)/(2.3.15) with nonsingular innovation covariance matrix
Σu. Then there is no instantaneous causality between zt and xt if and only if

E(u1tu
′
2t) = 0. (2.3.18)

This proposition provides a condition for instantaneous causality which is
easy to check if the process is given in MA or VAR form. For instance, for the
investment/income/consumption system with white noise covariance matrix
(2.1.33),

Σu =

⎡⎣ 2.25 0 0
0 1.0 .5
0 .5 .74

⎤⎦ ,

there is no instantaneous causality between (income, consumption) and in-
vestment.

From Propositions 2.2 and 2.3 it follows that yt = (z′t, x
′
t)

′ has a represen-
tation with orthogonal innovations as in (2.3.15) of the form[

zt

xt

]
=

[
µ1

µ2

]
+

[
Θ11,0 0

0 Θ22,0

] [
w1,t

w2,t

]
+

[
Θ11,1 0
Θ21,1 Θ22,1

] [
w1,t−1

w2,t−1

]
+ · · ·

=
[
µ1

µ2

]
+

[
Θ11(L) 0
Θ21(L) Θ22(L)

] [
w1,t

w2,t

]
, (2.3.19)

if xt does not Granger-cause zt and, furthermore, there is no instantaneous
causation between xt and zt. In the absence of instantaneous causality, a
similar representation with Θ21(L) ≡ 0 is obtained if zt is not Granger-causal
for xt.



48 2 Stable Vector Autoregressive Processes

Discussion of Instantaneous and Granger-Causality

At this point, some words of caution seem appropriate. The term “causality”
suggests a cause and effect relationship between two sets of variables. Propo-
sition 2.3 shows that such an interpretation is problematic with respect to
instantaneous causality because this term only describes a nonzero correla-
tion between two sets of variables. It does not say anything about the cause
and effect relation. The direction of instantaneous causation cannot be derived
from the MA or VAR representation of the process but must be obtained from
further knowledge on the relationship between the variables. Such knowledge
may exist in the form of an economic theory.

Although a direction of causation has been defined in relation with
Granger-causality it is problematic to interpret the absence of causality from
xt to zt in the sense that variations in xt will have no effect on zt. To see this
consider, for instance, the stable bivariate VAR(1) system[

zt

xt

]
=

[
α11 0
α21 α22

] [
zt−1

xt−1

]
+

[
u1t

u2t

]
. (2.3.20)

In this system, xt does not Granger-cause zt by Corollary 2.2.1. However, the
system may be multiplied by some nonsingular matrix

B =
[

1 β
0 1

]
so that[

zt

xt

]
=

[
0 −β
0 0

] [
zt

xt

]
+

[
γ11 γ12

γ21 γ22

] [
zt−1

xt−1

]
+

[
v1t

v2t

]
, (2.3.21)

where γ11 := α11 + α21β, γ12 := α22β, γ21 := α21, γ22 := α22 and
(v1t, v2t)′ := B(u1t, u2t)′. Note that this is just another representation of
the process (zt, xt)′ and not another process. (The reader may check that
the process (2.3.21) has the same means and autocovariances as the one in
(2.3.20).)

In other words, the stochastic interrelationships between the random vari-
ables of the system can either be characterized by (2.3.20) or by (2.3.21)
although the two representations have quite different physical interpretations.
If (2.3.21) happens to represent the actual ongoings in the system, changes in
xt may affect zt through the term with the coefficient −β in the first equation.
Thus, the lack of a Granger-causal relationship from one group of variables to
the remaining variables cannot necessarily be interpreted as lack of a cause
and effect relationship. It must be remembered that a VAR or MA represen-
tation characterizes the joint distribution of sets of random variables. In order
to derive cause and effect relationships from it, usually requires further as-
sumptions regarding the relationship between the variables involved. We will
return to this problem in the following subsections.
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Further problems related to the interpretation of Granger-causality result
from restricting the information set to contain only past and present variables
of the system rather than all information in the universe. Only if all other
information in the universe is irrelevant for the problem at hand, the reduction
of the information set is of no consequence. Some related problems will be
discussed in the following.

Changing the Information Set

So far it has been assumed that the information set contains the variables
or groups of variables only for which we want to analyze the causal links.
Often we are interested in the causal links between two variables in a higher
dimensional system. In other words, we are interested in analyzing Granger-
causality in a framework where the information set contains more than just the
variables of direct interest. In the bivariate framework when the information
set is limited to the two variables of interest, it was seen that if the 1-step
ahead forecasts of one variable cannot be improved by using the information
in the other variable, the same holds for all h-step forecasts, h = 1, 2, . . . .
This result does not hold anymore if the information set contains additional
variables, as pointed out by Lütkepohl (1993).

To be more explicit, suppose the vector time series zt, yt, xt with dimen-
sions Kz, Ky, Kx, respectively, are jointly generated by a VAR(p) process⎡⎣ zt

yt

xt

⎤⎦ =
p∑

i=1

Ai

⎡⎣ zt−i

yt−i

xt−i

⎤⎦ + ut, (2.3.22)

where

Ai =

⎡⎣ Azz,i Azy,i Azx,i

Ayz,i Ayy,i Ayx,i

Axz,i Axy,i Axx,i

⎤⎦ , i = 1, . . . , p,

with Akl,i having dimension (Kk × Kl) and ut is zero mean white noise,
as usual. In this process, if Azy,i = 0, i = 1, 2, . . . , p, it is not difficult to
see that the information in yt cannot be used to improve the 1-step ahead
forecasts of zt but it is still possible that it can be used to improve the h-step
forecasts for h = 2, 3, . . . . In other words, if yt is 1-step noncausal for zt, it may
still be h-step causal for h > 1. Consequently, it makes sense to define more
refined concepts of causality which refer explicitly to the forecast horizon. For
instance, yt may be called h-step noncausal for zt (yt �→(h)zt) for h = 1, 2, ...,
if the j-step ahead forecasts of zt cannot be improved for j ≤ h by taking into
account the information in past and present yt. Now the original concept of
Granger-causality corresponds to infinite-step causality.

The corresponding restrictions of multi-step causality on the VAR coeffi-
cients have been considered by Dufour & Renault (1998). Unlike in the bivari-
ate setting explored earlier, now nonlinear restrictions on the VAR coefficients



50 2 Stable Vector Autoregressive Processes

are obtained which make it more difficult to check for h-step causality if the
information set is expanded by additional variables.

To state the restrictions formally, let A be defined as in the VAR(1) rep-
resentation (2.1.8), let J = [IK : 0 : · · · : 0] be a (K ×Kp) matrix as before
and define A(j) = JAj and α(j) = vec(A(j)). Dufour & Renault (1998) show
that in the process (2.3.22), yt �→(h)zt if and only if

Rα(j) = 0 for j = 1, . . . , h, (2.3.23)

and yt �→(∞)zt if and only if

Rα(j) = 0 for j = 1, . . . , pKx + 1. (2.3.24)

Here the restriction matrix R is such that Rvec[A1, . . . , Ap] = vec[Azy,1, . . . ,
Azy,p], that is, it collects the elements of the second block in the first row of
each of the coefficient matrices.

As an example consider again the 3-dimensional VAR(1) process (2.1.14).
For infinite-step causality or noncausality from y2t to y1t we need to check
the relevant elements of the coefficient matrix and its second power:

A1 =

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦ , A2
1 =

⎡⎣ .25 0 0
.06 .07 .12
.02 .08 .15

⎤⎦ .

Clearly, y2t �→(1)y1t holds because α12,1 = 0 and also the restrictions for
y2t �→(∞)y1t are satisfied in this case because the (1,2)-th element of A2

1 is
also zero. In contrast, y1t �→(1)y3t holds, while y1t �→(∞)y3t does not, because
the lower left-hand element of A2

1 is nonzero. Notice that the definition and
characterizations of multi-step causality are given for the first two sets of
subvectors with the third one containing the extra variables. For applying
the definition and results in the present example, the variables may just be
rearranged accordingly.

In addition to these extensions related to increasing the information set,
there are also other problems which may make it difficult to interpret Granger-
causal relations even in a bivariate setting. Let us discuss some of them in
terms of an inflation/interest rate system. For example, it may make a differ-
ence whether the information set contains monthly, quarterly or annual data.
If a quarterly system is considered and no causality is found from the inter-
est rate to inflation it does not follow that a corresponding monthly interest
rate has no impact on the monthly inflation rate. In other words, the interest
rate may Granger-cause inflation in a monthly system even if it does not in a
quarterly system.

Furthermore, putting seasonally adjusted variables in the information set is
not the same as using unadjusted variables. Consequently, if Granger-causality
is found for the seasonally adjusted variables, it is still possible that in the ac-
tual seasonal system the interest rate is not Granger-causal for inflation. Sim-
ilar comments apply in the presence of measurement errors. Finally, causality
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analyses are usually based on estimated rather than known systems. Addi-
tional problems result in that case. We will return to them in the next chapter.

The previous critical remarks are meant to caution the reader and multiple
time series analyst against overinterpreting the evidence from a VAR model.
Still, causality analyses are useful tools in practice if these critical points are
kept in mind. At the very least, a Granger-causality analysis tells the analyst
whether a set of variables contains useful information for improving the pre-
dictions of another set of variables. Further discussions of causality issues and
many further references may be found in Geweke (1984) and Granger (1982).

2.3.2 Impulse Response Analysis

In the previous subsection, we have seen that Granger-causality may not tell
us the complete story about the interactions between the variables of a system.
In applied work, it is often of interest to know the response of one variable to
an impulse in another variable in a system that involves a number of further
variables as well. Thus, one would like to investigate the impulse response
relationship between two variables in a higher dimensional system. Of course,
if there is a reaction of one variable to an impulse in another variable we may
call the latter causal for the former. In this subsection, we will study this type
of causality by tracing out the effect of an exogenous shock or innovation in
one of the variables on some or all of the other variables. This kind of impulse
response analysis is sometimes called multiplier analysis. For instance, in a
system consisting of an inflation rate and an interest rate, the effect of an
increase in the inflation rate may be of interest. In the real world, such an
increase may be induced exogenously from outside the system by events like
the increase of the oil price in 1973/74 when the OPEC agreed on a joint
action to raise prices. Alternatively, an increase or reduction in the interest
rate may be administered by the central bank for reasons outside the simple
two variable system under study.

Responses to Forecast Errors

Suppose the effect of an innovation in investment in a system containing
investment (y1), income (y2), and consumption (y3) is of interest. To isolate
such an effect, suppose that all three variables assume their mean value prior
to time t = 0, yt = µ for t < 0, and investment increases by one unit in period
t = 0, that is, u1,0 = 1. Now we can trace out what happens to the system
during periods t = 1, 2, . . . if no further shocks occur, that is, u2,0 = u3,0 = 0,
u1 = 0, u2 = 0, . . . . Because we are not interested in the mean of the system
in such an exercise but just in the variations of the variables around their
means, we assume that all three variables have mean zero and set ν = 0 in
(2.1.14). Hence, yt = A1yt−1 + ut or, more precisely,
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y2,t

y3,t

⎤⎦ =

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦⎡⎣ y1,t−1

y2,t−1

y3,t−1

⎤⎦ +

⎡⎣ u1,t

u2,t

u3,t

⎤⎦ . (2.3.25)

Tracing a unit shock in the first variable in period t = 0 in this system we get

y0 =

⎡⎣ y1,0

y2,0

y3,0

⎤⎦ =

⎡⎣ u1,0

u2,0

u3,0

⎤⎦ =

⎡⎣ 1
0
0

⎤⎦ ,

y1 =

⎡⎣ y1,1

y2,1

y3,1

⎤⎦ = A1y0 =

⎡⎣ .5
.1
0

⎤⎦ ,

y2 =

⎡⎣ y1,2

y2,2

y3,2

⎤⎦ = A1y1 = A2
1y0 =

⎡⎣ .25
.06
.02

⎤⎦ .

Continuing the procedure, it turns out that yi = (y1,i, y2,i, y3,i)′ is just the
first column of Ai

1. An analogous line of arguments shows that a unit shock
in y2t (y3t) at t = 0, after i periods, results in a vector yi which is just the
second (third) column of Ai

1. Thus, the elements of Ai
1 represent the effects of

unit shocks in the variables of the system after i periods. Therefore they are
called impulse responses or dynamic multipliers.

Recall that Ai
1 = Φi is just the i-th coefficient matrix of the MA rep-

resentation of a VAR(1) process. Consequently, the MA coefficient matrices
contain the impulse responses of the system. This result holds more gener-
ally for higher order VAR(p) processes as well. To see this, suppose that yt

is a stationary VAR(p) process as in (2.1.1) with ν = 0. This process has a
corresponding VAR(1) process Yt = AYt−1 + Ut as in (2.1.8) with ν = 0.
Under the assumptions of the previous example, yt = 0 for t < 0, ut = 0
for t > 0 and y0 = u0 is a K-dimensional unit vector ek, say, with a one as
the k-th coordinate and zeros elsewhere. It follows that Y0 = (e′k, 0, . . . , 0)′

and Yi = AiY0. Hence, the impulse responses are the elements of the upper
left-hand (K×K) block of Ai. This matrix, however, was shown to be the i-th
coefficient matrix Φi of the MA representation (2.1.17) of yt, i.e., Φi = JAiJ ′

with J := [IK : 0 : · · · : 0] a (K × Kp) matrix. In other words, φjk,i, the
jk-th element of Φi, represents the reaction of the j-th variable of the system
to a unit shock in variable k, i periods ago, provided, of course, the effect is
not contaminated by other shocks to the system. Because the ut are just the
1-step ahead forecast errors of the VAR process, the shocks considered here
may be regarded as forecast errors and the impulse responses are sometimes
referred to as forecast error impulse responses.

The response of variable j to a unit shock (forecast error) in variable
k is sometimes depicted graphically to get a visual impression of the dy-
namic interrelationships within the system. Impulse responses of the invest-
ment/income/consumption system are plotted in Figure 2.5 and the dynamic
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Fig. 2.5. Impulse responses of the investment/income/consumption system (im-
pulse → response).

responses of the inflation/interest rate system are depicted in Figure 2.6. For
instance, in the latter figure an inflation innovation is seen to induce the in-
terest rate to increase for two periods and then it tapers off to zero. In both
systems the effect of a unit shock in any of the variables dies away quite
rapidly due to the stability of the systems.

If the variables have different scales, it is sometimes useful to consider in-
novations of one standard deviation rather than unit shocks. For instance,
instead of tracing an unexpected unit increase in investment in the in-
vestment/income/consumption system with white noise covariance matrix
(2.1.33), one may follow up on a shock of

√
2.25 = 1.5 units because the

standard deviation of u1t is 1.5. Of course, this is just a matter of rescaling
the impulse responses. In Figures 2.5 and 2.6, it suffices to choose the units
at the vertical axes equal to the standard deviations of the residuals corre-
sponding to the variables whose effects are considered. Such a rescaling may
sometimes give a better picture of the dynamic relationships because the av-
erage size of the innovations occurring in a system depends on their standard
deviation.
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Fig. 2.6. Impulse responses of the inflation/interest rate system (impulse → re-
sponse).

It follows from Proposition 2.2 that the impulse responses are zero if one
of the variables does not Granger-cause the other variables taken as a group.
More precisely, an innovation in variable k has no effect on the other variables
if the former variable does not Granger-cause the set of the remaining vari-
ables. As we have mentioned previously, in applied work it is often of foremost
interest whether one variable has an impact on a specific other variable. That
is, one would like to know whether, for some k �= j, φjk,i = 0 for i = 1, 2, . . . .
If the φjk,i represent the actual reactions of variable j to a unit shock in
variable k, we may call the latter noncausal for the j-th variable if φjk,i = 0
for i = 1, 2, . . . . In order to check the latter condition, it is not necessary to
compute infinitely many Φi matrices. The following proposition shows that it
suffices to check the first p(K − 1) Φi matrices.

Proposition 2.4 (Zero Impulse Responses)
If yt is a K-dimensional stable VAR(p) process, then, for j �= k,

φjk,i = 0 for i = 1, 2, . . .

is equivalent to
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φjk,i = 0 for i = 1, . . . , p(K − 1).

In other words, the proposition asserts that for a K-dimensional, station-
ary, stable VAR(p), if the first pK − p responses of variable j to an impulse
in variable k are zero, all the following responses must also be zero. For in-
stance, in the investment/income/consumption VAR(1) system, because the
responses of investment for the next two periods after a consumption impulse
are zero, we know that investment will not react at all to such an impulse.
Note, that in a VAR(1) system of dimension greater than 2, it does not suffice
to check, say, the upper right-hand corner element of the coefficient matrix
in order to determine whether the last variable is noncausal for the first vari-
able. Notice that Proposition 2.4 is related to the conditions for multi-step
causality in (2.3.23) and (2.3.24). In general, the conditions are not identical,
however, because the two concepts differ. Proposition 2.4 will be helpful when
testing of impulse response relations is discussed in the next chapter. We will
now prove the proposition.

Proof of Proposition 2.4:
Returning to the lag operator notation of Section 2.1.2, we have

Φ(L) = (φjk(L))j,k = A(L)−1 = A(L)adj/ det(A(L)),

where A(L)adj = (Ajk(L))j,k is the adjoint of A(L) = IK −A1L− · · · −ApL
p

(see Appendix A.4.1). Obviously, φjk(L) ≡ 0 is equivalent to Ajk(L) ≡ 0.
From the definition of a cofactor of a matrix in Appendix A.3, it is easy to see
that Ajk(L) has degree not greater than pK−p. Defining γ(L) = [detA(L)]−1,
we get for k �= j,

φjk(L) = φjk,1L + φjk,2L
2 + · · ·

= Ajk(L)γ(L)
= (Ajk,1L + · · · + Ajk,pK−pL

pK−p)(1 + γ1L + · · · ).
Hence,

φjk,1 = Ajk,1 and φjk,i = Ajk,i +
i−1∑
n=1

Ajk,nγi−n for i > 1,

with Ajk,n = 0 for n > pK−p. Consequently, Ajk,i = 0 for i = 1, . . . , pK−p, is
equivalent to φjk,i = 0 for i = 1, 2, . . . , pK−p, which proves the proposition.

Sometimes interest centers on the accumulated effect over several or
more periods of a shock in one variable. This effect may be determined
by summing up the MA coefficient matrices. For instance, the k-th column
of Ψn :=

∑n
i=0 Φi contains the accumulated responses over n periods to a
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unit shock in the k-th variable of the system. These quantities are some-
times called n-th interim multipliers. The total accumulated effects for all
future periods are obtained by summing up all the MA coefficient matrices.
Ψ∞ :=

∑∞
i=0 Φi is sometimes called the matrix of long-run effects or total

multipliers. Because the MA operator Φ(z) is the inverse of the VAR operator
A(z) = IK − A1z − · · · −Apz

p, the long-run effects are easily obtained as

Ψ∞ = Φ(1) = (IK −A1 − · · · −Ap)−1. (2.3.26)

As an example, accumulated responses for the investment/income/consump-
tion system are depicted in Figure 2.7. Similarly, interim and total multipliers
of the inflation/interest rate system are shown in Figure 2.8.
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Fig. 2.7. Accumulated and long-run responses of the investment/income/con-
sumption system (impulse → response).

Responses to Orthogonal Impulses

A problematic assumption in this type of impulse response analysis is that
a shock occurs only in one variable at a time. Such an assumption may be
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Fig. 2.8. Accumulated and total responses of the inflation/interest rate system
(impulse → response).

reasonable if the shocks in different variables are independent. If they are not
independent one may argue that the error terms consist of all the influences
and variables that are not directly included in the set of y variables. Thus, in
addition to forces that affect all the variables, there may be forces that affect
variable 1, say, only. If a shock in the first variable is due to such forces it
may again be reasonable to interpret the Φi coefficients as dynamic responses.
On the other hand, correlation of the error terms may indicate that a shock
in one variable is likely to be accompanied by a shock in another variable. In
that case, setting all other residuals to zero may provide a misleading picture
of the actual dynamic relationships between the variables. For example, in
the investment/income/consumption system, the white noise or innovation
covariance matrix is given in (2.1.33),

Σu =

⎡⎣ 2.25 0 0
0 1.0 .5
0 .5 .74

⎤⎦ .

Obviously, there is a quite strong positive correlation between u2,t and u3,t,
the residuals of the income and consumption equations, respectively. Conse-
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quently, a shock in income may be accompanied by a shock in consumption in
the same period. Therefore, forcing the consumption innovation to zero when
the effect of an income shock is traced, as in the previous analysis, may in
fact obscure the actual relation between the variables.

This is the reason why impulse response analysis is often performed in
terms of the MA representation (2.3.15),

yt =
∞∑

i=0

Θiwt−i, (2.3.27)

where the components of wt = (w1t, . . . , wKt)′ are uncorrelated and have unit
variance, Σw = IK . The mean term is dropped again because it is of no inter-
est in the present analysis. Recall that the representation (2.3.27) is obtained
by decomposing Σu as Σu = PP ′, where P is a lower triangular matrix, and
defining Θi = ΦiP and wt = P−1ut. In (2.3.27) it is reasonable to assume that
a change in one component of wt has no effect on the other components be-
cause the components are orthogonal (uncorrelated). Moreover, the variances
of the components are one. Thus, a unit innovation is just an innovation of size
one standard deviation. The elements of the Θi are interpreted as responses
of the system to such innovations. More precisely, the jk-th element of Θi is
assumed to represent the effect on variable j of a unit innovation in the k-th
variable that has occurred i periods ago.

To relate these impulse responses to a VAR model, we consider the zero
mean VAR(p) process

yt = A1yt−1 + · · · + Apyt−p + ut. (2.3.28)

This process can be rewritten in such a way that the residuals of different
equations are uncorrelated. For this purpose, we choose a decomposition of the
white noise covariance matrix Σu = WΣεW

′, where Σε is a diagonal matrix
with positive diagonal elements and W is a lower triangular matrix with unit
diagonal. This decomposition is obtained from the Choleski decomposition
Σu = PP ′ by defining a diagonal matrix D which has the same main diagonal
as P and by specifying W = PD−1 and Σε = DD′.

Premultiplying (2.3.28) by A := W−1 gives

Ayt = A∗
1yt−1 + · · · + A∗

pyt−p + εt, (2.3.29)

where A∗
i := AAi, i = 1, . . . , p, and εt = (ε1t, . . . , εKt)′ := Aut has diagonal

covariance matrix,

Σε = E(εtε
′
t) = AE(utu

′
t)A

′ = AΣuA′.

Adding (IK − A)yt to both sides of (2.3.29) gives

yt = A∗
0yt + A∗

1yt−1 + · · · + A∗
pyt−p + εt, (2.3.30)
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where A∗
0 := IK − A. Because W is lower triangular with unit diagonal, the

same is true for A. Hence,

A∗
0 = IK − A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
β21 0 . . . 0 0
...

. . . . . .
...

...
. . . . . .

...
βK1 βK2 . . . βK,K−1 0

⎤⎥⎥⎥⎥⎥⎥⎦
is a lower triangular matrix with zero diagonal and, thus, in the representation
(2.3.30) of our VAR(p) process, the first equation contains no instantaneous
y’s on the right-hand side. The second equation may contain y1t and other-
wise lagged y’s on the right-hand side. More generally, the k-th equation may
contain y1t, . . . , yk−1,t and not ykt, . . . , yKt on the right-hand side. Thus, if
(2.3.30) reflects the actual ongoings in the system, yst cannot have an instan-
taneous impact on ykt for k < s. In the econometrics literature such a system
is called a recursive model (see Theil (1971, Section 9.6)). Herman Wold has
advocated these models where the researcher has to specify the instantaneous
“causal” ordering of the variables. This type of causality is therefore sometimes
referred to as Wold-causality. If we trace εit innovations of size one standard
error through the system (2.3.30), we just get the Θ impulse responses. This
can be seen by solving the system (2.3.30) for yt,

yt = (IK −A∗
0)

−1A∗
1yt−1 + · · · + (IK − A∗

0)
−1A∗

pyt−p + (IK − A∗
0)

−1εt.

Noting that (IK −A∗
0)

−1 = W = PD−1 shows that the instantaneous effects
of one-standard deviation shocks (εit’s of size one standard deviation) to the
system are represented by the elements of WD = P = Θ0 because the diagonal
elements of D are just standard deviations of the components of εt. The Θi

may then be obtained by tracing these effects through the system.
The Θi’s may provide response functions that are quite different from the

Φi responses. For the example VAR(1) system (2.3.25) with Σu as in (2.1.33)
we get

Θ0 = P =

⎡⎣ 1.5 0 0
0 1 0
0 .5 .7

⎤⎦ ,

Θ1 = Φ1P =

⎡⎣ .75 0 0
.15 .25 .21
0 .35 .21

⎤⎦ , (2.3.31)

Θ2 = Φ2P =

⎡⎣ .375 0 0
.090 .130 .084
.030 .055 .105

⎤⎦ ,
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and so on. Some more innovation responses are depicted in Figure 2.9. Al-
though they are similar to those given in Figure 2.5, there is an obvious
difference in the response of consumption to an income innovation. While
consumption responds with a time lag of one period in Figure 2.5, there is an
instantaneous effect in Figure 2.9.
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Fig. 2.9. Orthogonalized impulse responses of the investment/income/consumption
system (impulse → response).

Note that Θ0 = P is lower triangular and some elements below the diagonal
will be nonzero if Σu has nonzero off-diagonal elements. For instance, for the
investment/income/consumption example Θ0 indicates that an income (y2)
innovation has an immediate impact on consumption (y3). If the white noise
covariance matrix Σu contains zeros, some components of ut = (u1t, . . . , uKt)′

are contemporaneously uncorrelated. Suppose, for instance, that u1t is uncor-
related with uit for i = 2, . . . ,K. In this case, A = W−1 and, thus, A∗

0 has a
block of zeros so that y1 has no instantaneous effect on yi, i = 2, . . . ,K. In the
example, investment has no instantaneous impact on income and consumption
because
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Σu =

⎡⎣ 2.25 0 0
0 1.0 .5
0 .5 .74

⎤⎦
and, hence, u1t is uncorrelated with u2t and u3t. This, of course, is reflected in
the matrix of instantaneous effects Θ0 given in (2.3.31). Because the elements
of P = Θ0 represent the immediate responses of the system to unit innovations
they are sometimes called impact multipliers.

In order to determine whether there is no response at all of one variable to
an impulse in one of the other variables, it suffices to consider the first pK−p
response coefficients and the immediate effect. This result is stated formally
in the next proposition where θjk,i denotes the jk-th element of Θi.

Proposition 2.5 (Zero Orthogonalized Impulse Responses)
If yt is a K-dimensional stable VAR(p) process, then, for j �= k,

θjk,i = 0 for i = 0, 1, 2, . . .

is equivalent to

θjk,i = 0 for i = 0, 1, . . . , p(K − 1).

The proof of this result is analogous to that of Proposition 2.4 and is left
as an exercise (see Problem 2.2).

The fact that Θ0 is lower triangular shows that the ordering of the vari-
ables is of importance, that is, it is important which of the variables is called
y1 and which one is called y2 and so on. One problem with this type of impulse
response analysis is that the ordering of the variables cannot be determined
with statistical methods but has to be specified by the analyst. The order-
ing has to be such that the first variable is the only one with a potential
immediate impact on all other variables. The second variable may have an
immediate impact on the last K − 2 components of yt but not on y1t and so
on. To establish such an ordering may be a quite difficult exercise in practice.
The choice of the ordering, the Wold causal ordering, may, to a large extent,
determine the impulse responses and is therefore critical for the interpreta-
tion of the system. Currently we are dealing with known systems only. In this
situation, assuming that the ordering is known may not be a great restric-
tion. For the investment/income/consumption example it may be reasonable
to assume that an increase in income has an immediate effect on consumption
while increased consumption stimulates the economy and, hence, income with
some time lag.

Our interpretation of orthogonalized impulse responses is based on the rep-
resentation (2.3.30) and the impulses are viewed as changes in the observed
variables. Sometimes it is more plausible to focus on impulses which cannot
be associated easily with changes in a specific observed variable within the



62 2 Stable Vector Autoregressive Processes

system. In that case, it may be more logical to base the interpretation on the
MA representation (2.3.27) which decomposes the variables in contributions
of the wkt innovations. If these innovations can be associated with a specific
impulse to the system, the orthogonalized impulse responses reflect the reac-
tions of the variables to such possibly unobserved innovations. In that case, a
specific impulse or shock to the system can have an instantaneous impact on
several variables while some other impulse may only have an instantaneous
effect on one specific variable and may effect the other variables only with
some delay. By decomposing Σu = PP ′ with some non-triangular P matrix,
it is also possible that all shocks have instantaneous effects on all observed
variables of the system. In this kind of interpretation, finding the decomposi-
tion matrix P and, hence, the innovations wt which actually can be associated
with shocks of interest, is often a difficult part of the analysis. We will provide
a more in-depth discussion of the related problems in Chapter 9 which deals
with structural VAR models.

Critique of Impulse Response Analysis

Besides specifying the relevant impulses to a system, there are a number of
further problems that render the interpretation of impulse responses difficult.
We have mentioned some of them in the context of Granger-causality. A major
limitation of our systems is their potential incompleteness. Although in real
economic systems almost everything depends on everything else, we will usu-
ally work with low-dimensional VAR systems. All effects of omitted variables
are assumed to be in the innovations. If important variables are omitted from
the system, this may lead to major distortions in the impulse responses and
makes them worthless for structural interpretations. The system may still be
useful for prediction, though.

To see the related problems more clearly, consider a system yt which is
partitioned in vectors zt and xt as in (2.3.5). If the zt variables are considered
only and the xt variables are omitted from the analysis, we get a system

zt = µ1 +
∞∑

i=0

Φ11,iu1,t−i +
∞∑

i=1

Φ12,iu2,t−i

= µ1 +
∞∑

i=0

Fivt−i, (2.3.32)

as in (2.3.8). The actual reactions of the zt components to innovations u1t may
be given by the Φ11,i matrices. On the other hand, the Fi or corresponding
orthogonalized “impulse responses” are likely to be interpreted as impulse
responses if the analyst does not realize that important variables have been
omitted. As we have seen in Section 2.3.1, the Fi will be equal to the Φ11,i if
and only if xt does not Granger-cause zt.

Further problems related to the interpretation of the MA coefficients as
dynamic multipliers or impulse responses result from measurement errors and
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the use of seasonally adjusted or temporally and/or contemporaneously ag-
gregated variables. A detailed account of the aggregation problem is given by
Lütkepohl (1987). We will discuss these problems in more detail in Chapter
11 in the context of more general models. These problems severely limit the
interpretability of the MA coefficients of a VAR system as impulse responses.
In the next subsection a further possibility to interpret VAR models will be
considered.

2.3.3 Forecast Error Variance Decomposition

If the innovations which actually drive the system can be identified, a further
tool for interpreting VAR models is available. Suppose a recursive identifi-
cation scheme is available so that the MA representation (2.3.15) with or-
thogonal white noise innovations may be considered. In the context of the
representation

yt = µ +
∞∑

i=0

Θiwt−i (2.3.33)

with Σw = IK , the error of the optimal h-step forecast is

yt+h − yt(h) =
h−1∑
i=0

Φiut+h−i =
h−1∑
i=0

ΦiPP−1ut+h−i

=
h−1∑
i=0

Θiwt+h−i. (2.3.34)

Denoting the mn-th element of Θi by θmn,i as before, the h-step forecast error
of the j-th component of yt is

yj,t+h − yj,t(h) =
h−1∑
i=0

(θj1,iw1,t+h−i + · · · + θjK,iwK,t+h−i)

=
K∑

k=1

(θjk,0wk,t+h + · · · + θjk,h−1wk,t+1). (2.3.35)

Thus, the forecast error of the j-th component potentially consists of all the
innovations w1t, . . . , wKt. Of course, some of the θmn,i may be zero so that
some components may not appear in (2.3.35). Because the wk,t’s are uncor-
related and have unit variances, the MSE of yj,t(h) is

E(yj,t+h − yj,t(h))2 =
K∑

k=1

(θ2
jk,0 + · · · + θ2

jk,h−1).

Therefore,
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θ2
jk,0 + θ2

jk,1 + · · · + θ2
jk,h−1 =

h−1∑
i=0

(e′jΘiek)2 (2.3.36)

is sometimes interpreted as the contribution of innovations in variable k to
the forecast error variance or MSE of the h-step forecast of variable j. Here
ek is the k-th column of IK . Dividing (2.3.36) by

MSE[yj,t(h)] =
h−1∑
i=0

K∑
k=1

θ2
jk,i

gives

ωjk,h =
h−1∑
i=0

(e′jΘiek)2/MSE[yj,t(h)] (2.3.37)

which is the proportion of the h-step forecast error variance of variable j, ac-
counted for by wkt innovations. If wkt can be associated with variable k, ωjk,h

represents the proportion of the h-step forecast error variance accounted for
by innovations in variable k. Thereby, the forecast error variance is decom-
posed into components accounted for by innovations in the different variables
of the system. From (2.3.34), the h-step forecast MSE matrix is seen to be

Σy(h) = MSE[yt(h)] =
h−1∑
i=0

ΘiΘ
′
i =

h−1∑
i=0

ΦiΣuΦ
′
i.

The diagonal elements of this matrix are the MSEs of the yjt variables which
may be used in (2.3.37).

For the investment/income/consumption example, forecast error variance
decompositions of all three variables are given in Table 2.1. For instance,
about 66% of the 1-step forecast error variance of consumption is accounted
for by own innovations and about 34% is accounted for by income innovations.
For long term forecasts, 57.5% and 42.3% of the error variance is accounted
for by consumption and income innovations, respectively. For any forecast
horizon, investment innovations contribute less than 1% to the forecast error
variance of consumption. Moreover, only small fractions (less than 10%) of
the forecast error variances of income are accounted for by innovations in
the other variables of the system. This kind of analysis is sometimes called
innovation accounting.

From Proposition 2.5, it is obvious that for a stationary, stable, K-dimen-
sional VAR(p) process yt all forecast error variance proportions of variable
j, accounted for by innovations in variable k, will be zero if ωjk,h = 0 for
h = pK−p+1. In this context it is perhaps worth pointing out the relationship
between Granger-causality and forecast error variance components. For that
purpose we consider a bivariate system yt = (zt, xt)′ first. In such a system, if
zt does not Granger-cause xt, the proportions of forecast error variances of xt
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Table 2.1. Forecast error variance decomposition of the investment/income/con-
sumption system

forecast forecast proportions of forecast error variance h periods
error horizon ahead accounted for by innovations in
in h investment income consumption

investment 1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0
5 1 0 0
10 1 0 0
∞ 1 0 0

income 1 0 1 0
2 .020 .941 .039
3 .026 .930 .044
4 .029 .926 .045
5 .030 .925 .045
10 .030 .925 .045
∞ .030 .925 .045

consumption 1 0 .338 .662
2 0 .411 .589
3 .001 .421 .578
4 .002 .423 .576
5 .002 .423 .575
10 .002 .423 .575
∞ .002 .423 .575

accounted for by innovations in zt may still be nonzero. This property follows
directly from the definition of the Θi in (2.3.15). Granger-noncausality, by
Proposition 2.2, implies zero constraints on the Φi which may disappear in
the Θi if the error covariance matrix Σu is not diagonal. On the other hand, if
Σu is diagonal, so that there is no instantaneous causation between zt and xt

and if, in addition, zt is not Granger-causal for xt the lower left-hand elements
of the Θi will be zero (see (2.3.19)). Therefore, the proportion of forecast error
variance of xt accounted for by zt innovations will also be zero.

In a higher dimensional system, suppose a set of variables zt does not
Granger-cause the remaining variables xt and there is also no instantaneous
causality between the two sets of variables. In that case, the forecast MSE
proportions of all xt variables accounted for by zt variables will be zero.

It is important to understand, however, that Granger-causality and fore-
cast error variance decompositions are quite different concepts because Gran-
ger-causality and instantaneous causality are different concepts. While Gran-
ger-causality is a uniquely defined property of two subsets of variables of a
given process, the forecast error variance decomposition is not unique as it de-
pends on the Θi matrices and, thus, on the choice of the transformation matrix
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P . Therefore, the interpretation of a forecast error variance decomposition is
subject to similar criticisms as the interpretation of impulse responses. In ad-
dition, all the critical points raised in the context of Granger-causality apply.
That is, the forecast error variance components are conditional on the system
under consideration. They may change if the system is expanded by adding
further variables or if variables are deleted from the system. Also measure-
ment errors, seasonal adjustment and the use of aggregates may contaminate
the forecast error variance decompositions.

2.3.4 Remarks on the Interpretation of VAR Models

Innovation accounting and impulse response analysis in the framework of VAR
models have been pioneered by Sims (1980, 1981) and others as an alternative
to classical macroeconomic analyses. Sims’ main criticism of the latter type
of analysis is that macroeconometric models are often not based on sound
economic theories or the available theories are not capable of providing a
completely specified model. If economic theories are not available to specify
the model, statistical tools must be applied. In this approach, a fairly loose
model is set up which does not impose rigid a priori restrictions on the data
generation process. Statistical tools are then used to determine possible con-
straints. VAR models represent a class of loose models that may be used in
such an approach. Of course, in order to interpret these models, some restric-
tive assumptions need to be made. In particular, the ordering of the variables
may be essential for interpretations of the types discussed in the previous
subsections. Sims (1981) suggests to try different orderings and investigate
the sensitivity of the corresponding orthogonalized impulse responses and the
related conclusions to the ordering of the variables.

So far we have assumed that a VAR model is given to us. Under this
assumption we have discussed forecasting and interpretation of the system.
In this situation it is of course unnecessary to use statistical tools in order
to determine constraints for the system because all constraints are known. In
practice, we will virtually never be in such a fortunate situation but we have
to determine the model from a given set of time series data. This problem will
be treated in subsequent chapters. The purpose of this chapter is to identify
some problems that are not related to estimation and model specification but
are inherent to the types of models considered.

2.4 Exercises

Problem 2.1
Show that

det(IKp − Az) = det(IK −A1z − · · · −Apz
p)

where Ai, i = 1, . . . , p, and A are as in (2.1.1) and (2.1.8), respectively.
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Problem 2.2
Prove Proposition 2.5.
(Hint: Θ(L) = Φ(L)P = A(L)adjP/ detA(L)).

Problem 2.3
In the United States of Wonderland the growth rates of income (GNP) and
the money stock (M2) as well as an interest rate (IR) are related as in the
following VAR(2) model:⎡⎣ GNPt

M2t

IRt

⎤⎦ =

⎡⎣ 2
1
0

⎤⎦ +

⎡⎣ .7 .1 0
0 .4 .1
.9 0 .8

⎤⎦⎡⎣ GNPt−1

M2t−1

IRt−1

⎤⎦
+

⎡⎣ −.2 0 0
0 .1 .1
0 0 0

⎤⎦⎡⎣ GNPt−2

M2t−2

IRt−2

⎤⎦ +

⎡⎣ u1t

u2t

u3t

⎤⎦ ,

Σu =

⎡⎣ .26 .03 0
.03 .09 0
0 0 .81

⎤⎦ = PP ′, P =

⎡⎣ .5 .1 0
0 .3 0
0 0 .9

⎤⎦ . (2.4.1)

(a) Show that the process yt = (GNPt,M2t, IRt)′ is stable.
(b) Determine the mean vector of yt.
(c) Write the process yt in VAR(1) form.
(d) Compute the coefficient matrices Φ1, . . . , Φ5 of the MA representation

(2.1.17) of yt.

Problem 2.4
Determine the autocovariances Γy(0), Γy(1), Γy(2), Γy(3) of the process de-
fined in (2.4.1). Compute and plot the autocorrelations Ry(0), Ry(1), Ry(2),
Ry(3).

Problem 2.5
Consider again the process (2.4.1).

(a) Suppose that

y2000 =

⎡⎣ .7
1.0
1.5

⎤⎦ and y1999 =

⎡⎣ 1.0
1.5
3.0

⎤⎦
and forecast y2001, y2002, and y2003.

(b) Determine the MSE matrices for forecast horizons h = 1, 2, 3.
(c) Assume that yt is a Gaussian process and construct 90% and 95% forecast

intervals for t = 2001, 2002, 2003.
(d) Use the Bonferroni method to determine a joint forecast region for

GNP2001, GNP2002, GNP2003 with probability content at least 97%.



68 2 Stable Vector Autoregressive Processes

Problem 2.6
Answer the following questions for the process (2.4.1).

(a) Is M2 Granger-causal for (GNP, IR)?
(b) Is IR Granger-causal for (GNP, M2)?
(c) Is there instantaneous causality between M2 and (GNP, IR)?
(d) Is there instantaneous causality between IR and (GNP, M2)?
(e) Is IR 2-step causal for GNP?

Problem 2.7
Plot the effect of a unit innovation in the interest rate (IR) on the three
variables of the system (2.4.1) in terms of the MA representation (2.1.17).
Consider only 5 periods following the innovation. Plot also the accumulated
responses and interpret the plots.

Problem 2.8
For the system (2.4.1), derive the coefficient matrices Θ0, . . . , Θ5 of the MA
representation (2.3.15) using the upper triangular P matrix given in (2.4.1).
Plot the effects of a unit innovation in IR in terms of that representation.
Compare to the plots obtained in Problem 2.7 and interpret. Repeat the
analysis with a lower triangular P matrix and comment on the results.

Problem 2.9
Decompose the MSE of the forecast GNPt(5) into the proportions accounted
for by its own innovations and innovations in M2 and IR.



3

Estimation of Vector Autoregressive Processes

3.1 Introduction

In this chapter, it is assumed that a K-dimensional multiple time series
y1, . . . , yT with yt = (y1t, . . . , yKt)′ is available that is known to be gener-
ated by a stationary, stable VAR(p) process

yt = ν + A1yt−1 + · · · + Apyt−p + ut. (3.1.1)

All symbols have their usual meanings, that is, ν = (ν1, . . . , νK)′ is a (K ×
1) vector of intercept terms, the Ai are (K × K) coefficient matrices and
ut is white noise with nonsingular covariance matrix Σu. In contrast to the
assumptions of the previous chapter, the coefficients ν,A1, . . . , Ap, and Σu are
assumed to be unknown in the following. The time series data will be used to
estimate the coefficients. Note that notationwise we do not distinguish between
the stochastic process and a time series as a realization of a stochastic process.
The particular meaning of a symbol should be obvious from the context.

In the next three sections, different possibilities for estimating a VAR(p)
process are discussed. In Section 3.5, the consequences of forecasting with
estimated processes will be considered and, in Section 3.6, tests for causality
are described. The distribution of impulse responses obtained from estimated
processes is considered in Section 3.7.

3.2 Multivariate Least Squares Estimation

In this section, multivariate least squares (LS) estimation is discussed. The
estimator obtained for the standard form (3.1.1) of a VAR(p) process is consid-
ered in Section 3.2.1. Some properties of the estimator are derived in Sections
3.2.2 and 3.2.4 and an example is given in Section 3.2.3.
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3.2.1 The Estimator

It is assumed that a time series y1, . . . , yT of the y variables is available, that
is, we have a sample of size T for each of the K variables for the same sample
period. In addition, p presample values for each variable, y−p+1, . . . , y0, are
assumed to be available. Partitioning a multiple time series in sample and
presample values is convenient in order to simplify the notation. We define

Y := (y1, . . . , yT ) (K × T ),

B := (ν,A1, . . . , Ap) (K×(Kp + 1)),

Zt :=

⎡⎢⎢⎢⎣
1
yt

...
yt−p+1

⎤⎥⎥⎥⎦ ((Kp + 1) × 1),

Z := (Z0, . . . , ZT−1) ((Kp + 1) × T ),

U := (u1, . . . , uT ) (K × T ),

y := vec(Y ) (KT × 1),

β := vec(B) ((K2p + K) × 1),

b := vec(B′) ((K2p + K) × 1),

u := vec(U) ((KT × 1).

(3.2.1)

Here vec is the column stacking operator as defined in Appendix A.12.
Using this notation, for t = 1, . . . , T , the VAR(p) model (3.1.1) can be

written compactly as

Y = BZ + U (3.2.2)

or

vec(Y ) = vec(BZ) + vec(U)
= (Z′ ⊗ IK) vec(B) + vec(U)

or

y = (Z ′ ⊗ IK)β + u. (3.2.3)

Note that the covariance matrix of u is

Σu = IT ⊗Σu. (3.2.4)

Thus, multivariate LS estimation (or GLS estimation) of β means to choose
the estimator that minimizes
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S(β) = u′(IT ⊗Σu)−1u = u′(IT ⊗Σ−1
u )u

= [y − (Z ′ ⊗ IK)β]′(IT ⊗Σ−1
u )[y − (Z ′ ⊗ IK)β]

= vec(Y −BZ)′(IT ⊗Σ−1
u ) vec(Y −BZ)

= tr
[
(Y −BZ)′Σ−1

u (Y −BZ)
]
. (3.2.5)

In order to find the minimum of this function we note that

S(β) = y′(IT ⊗Σ−1
u )y + β′(Z ⊗ IK)(IT ⊗Σ−1

u )(Z ′ ⊗ IK)β
− 2β′(Z ⊗ IK)(IT ⊗Σ−1

u )y
= y′(IT ⊗Σ−1

u )y + β′(ZZ ′ ⊗Σ−1
u )β − 2β′(Z ⊗Σ−1

u )y.

Hence,

∂S(β)
∂β

= 2(ZZ ′ ⊗Σ−1
u )β − 2(Z ⊗Σ−1

u )y.

Equating to zero gives the normal equations

(ZZ ′ ⊗Σ−1
u )β̂ = (Z ⊗Σ−1

u )y (3.2.6)

and, consequently, the LS estimator is

β̂ = ((ZZ′)−1 ⊗Σu)(Z ⊗Σ−1
u )y

= ((ZZ′)−1Z ⊗ IK)y. (3.2.7)

The Hessian of S(β),

∂2S

∂β∂β′ = 2(ZZ′ ⊗Σ−1
u ),

is positive definite which confirms that β̂ is indeed a minimizing vector.
Strictly speaking, for these results to hold, it has to be assumed that ZZ′

is nonsingular. This result will hold with probability 1 if yt has a continuous
distribution which will always be assumed in the following.

It may be worth noting that the multivariate LS estimator β̂ is identical
to the ordinary LS (OLS) estimator obtained by minimizing

S̄(β) = u′u = [y − (Z ′ ⊗ IK)β]′[y − (Z ′ ⊗ IK)β] (3.2.8)

(see Problem 3.1). This result is due to Zellner (1962) who showed that GLS
and LS estimation in a multiple equation model are identical if the regressors
in all equations are the same.

The LS estimator can be written in different ways that will be useful later
on:

β̂ = ((ZZ′)−1Z ⊗ IK) [(Z ′ ⊗ IK)β + u]
= β + ((ZZ ′)−1Z ⊗ IK)u (3.2.9)

or
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vec(B̂) = β̂ = ((ZZ′)−1Z ⊗ IK) vec(Y )
= vec(YZ′(ZZ′)−1).

Thus,

B̂ = Y Z ′(ZZ′)−1

= (BZ + U)Z ′(ZZ ′)−1

= B + UZ ′(ZZ′)−1. (3.2.10)

Another possibility for deriving this estimator results from postmultiplying

yt = BZt−1 + ut

by Z ′
t−1 and taking expectations:

E(ytZ
′
t−1) = BE(Zt−1Z

′
t−1). (3.2.11)

Estimating E(ytZ
′
t−1) by

1
T

T∑
t=1

ytZ
′
t−1 =

1
T
Y Z ′

and E(Zt−1Z
′
t−1) by

1
T

T∑
t=1

Zt−1Z
′
t−1 =

1
T
ZZ ′,

we obtain the normal equations
1
T
Y Z ′ = B̂

1
T
ZZ′

and, hence, B̂ = Y Z ′(ZZ ′)−1. Note that (3.2.11) is similar but not identical
to the system of Yule-Walker equations in (2.1.37). While central moments
about the expectation µ = E(yt) are considered in (2.1.37), moments about
zero are used in (3.2.11).

Yet another possibility to write the LS estimator is

b̂ = vec(B̂′) = (IK ⊗ (ZZ′)−1Z) vec(Y ′). (3.2.12)

In this form, it is particularly easy to see that multivariate LS estimation is
equivalent to OLS estimation of each of the K equations in (3.1.1) separately.
Let b′k be the k-th row of B, that is, bk contains all the parameters of the k-th
equation. Obviously b′ = (b′1, . . . , b

′
k). Furthermore, let y(k) = (yk1, . . . , ykT )′

be the time series available for the k-th variable, so that

vec(Y ′) =

⎡⎢⎣ y(1)

...
y(K)

⎤⎥⎦.
With this notation b̂k = (ZZ′)−1Zy(k) is the OLS estimator of the model
y(k) = Z ′bk + u(k), where u(k) = (uk1, . . . , ukT )′ and b̂′ = (̂b′1, . . . , b̂

′
K).
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3.2.2 Asymptotic Properties of the Least Squares Estimator

Because small sample properties of the LS estimator are difficult to derive
analytically, we focus on asymptotic properties. Consistency and asymptotic
normality of the LS estimator are easily established if the following results
hold:

Γ := plim ZZ′/T exists and is nonsingular (3.2.13)

and

1√
T

T∑
t=1

vec(utZ
′
t−1) =

1√
T

vec(UZ ′) =
1√
T

(Z ⊗ IK)u

d−→
T→∞

N (0, Γ ⊗Σu),
(3.2.14)

where, as usual, d→ denotes convergence in distribution. It follows from a the-
orem due to Mann & Wald (1943) that these results are true under suitable
conditions for ut, if yt is a stationary, stable VAR(p). For instance, the con-
ditions stated in the following definition are sufficient.

Definition 3.1 (Standard White Noise)
A white noise process ut = (u1t, . . . , uKt)′ is called standard white noise if
the ut are continuous random vectors satisfying E(ut) = 0, Σu = E(utu

′
t) is

nonsingular, ut and us are independent for s �= t, and, for some finite constant
c,

E|uitujtuktumt| ≤ c for i, j, k,m = 1, . . . ,K, and all t.

The last condition means that all fourth moments exist and are bounded.
Obviously, if the ut are normally distributed (Gaussian) they satisfy the mo-
ment requirements. With this definition it is easy to state conditions for con-
sistency and asymptotic normality of the LS estimator. The following lemma
will be essential in proving these large sample results.

Lemma 3.1
If yt is a stable, K-dimensional VAR(p) process as in (3.1.1) with standard
white noise residuals ut, then (3.2.13) and (3.2.14) hold.

Proof: See Theorem 8.2.3 of Fuller (1976, p. 340).

The lemma holds also for other definitions of standard white noise. For
example, the convergence result in (3.2.14) follows from a central limit theo-
rem for martingale differences or martingale difference arrays (see Proposition
C.13) by noting that wt = vec(utZ

′
t−1) is a martingale difference sequence un-

der quite general conditions. The convergence result in (3.2.13) may then be



74 3 Estimation of Vector Autoregressive Processes

obtained from a suitable weak law of large numbers (see Proposition C.12). In
the next proposition the resulting asymptotic properties of the LS estimator
are stated formally.

Proposition 3.1 (Asymptotic Properties of the LS Estimator)
Let yt be a stable, K-dimensional VAR(p) process as in (3.1.1) with stan-
dard white noise residuals, B̂ = Y Z ′(ZZ′)−1 is the LS estimator of the VAR
coefficients B and all symbols are as defined in (3.2.1). Then,

plim B̂ = B

and
√
T (β̂ − β) =

√
T vec(B̂ −B) d→N (0, Γ−1 ⊗Σu) (3.2.15)

or, equivalently,
√
T (b̂ − b) =

√
T vec(B̂′ −B′) d→N (0, Σu ⊗ Γ−1), (3.2.16)

where Γ = plim ZZ′/T .

Proof: Using (3.2.10),

plim(B̂ −B) = plim
(
UZ ′

T

)
plim

(
ZZ ′

T

)−1

= 0

by Lemma 3.1, because (3.2.14) implies plim UZ ′/T = 0. Thus, the consis-
tency of B̂ is established.

Using (3.2.9),
√
T (β̂ − β) =

√
T ((ZZ′)−1Z ⊗ IK)u

=

((
1
T
ZZ′

)−1

⊗ IK

)
1√
T

(Z ⊗ IK)u.

Thus, by Proposition C.2(4) of Appendix C,
√
T (β̂−β) has the same asymp-

totic distribution as[
plim

(
1
T
ZZ′

)−1

⊗ IK

]
1√
T

(Z ⊗ IK)u = (Γ−1 ⊗ IK)
1√
T

(Z ⊗ IK)u.

Hence, the asymptotic distribution of
√
T (β̂ − β) is normal by Lemma 3.1

and the covariance matrix is

(Γ−1 ⊗ IK)(Γ ⊗Σu)(Γ−1 ⊗ IK) = Γ−1 ⊗Σu.

The result (3.2.16) can be established with similar arguments (see Problem
3.2).
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As mentioned previously, if ut is Gaussian (normally distributed) white
noise, it satisfies the conditions of Proposition 3.1 so that consistency and
asymptotic normality of the LS estimator are ensured for stable Gaussian
(normally distributed) VAR(p) processes yt. Note that normality of ut implies
normality of the yt for stable processes.

In order to assess the asymptotic dispersion of the LS estimator, we need
to know the matrices Γ and Σu. From (3.2.13) an obvious consistent estimator
of Γ is

Γ̂ = ZZ′/T. (3.2.17)

Because Σu = E(utu
′
t), a plausible estimator for this matrix is

Σ̃u =
1
T

T∑
t=1

ûtû
′
t =

1
T
ÛÛ ′ =

1
T

(Y − B̂Z)(Y − B̂Z)′

=
1
T

[Y − Y Z′(ZZ′)−1Z][Y − Y Z′(ZZ′)−1Z]′

=
1
T
Y [IT − Z ′(ZZ′)−1Z][IT − Z ′(ZZ ′)−1Z]′Y ′

=
1
T
Y (IT − Z ′(ZZ′)−1Z)Y ′. (3.2.18)

Often an adjustment for degrees of freedom is desired because in a regression
with fixed, nonstochastic regressors this leads to an unbiased estimator of the
covariance matrix. Thus, an estimator

Σ̂u =
T

T −Kp− 1
Σ̃u (3.2.19)

may be considered. Note that there are Kp + 1 parameters in each of the K
equations of (3.1.1) and, hence, there are Kp+1 parameters in each equation
of the system (3.2.2). Of course, Σ̂u and Σ̃u are asymptotically equivalent.
They are consistent estimators of Σu if the conditions of Proposition 3.1 hold.
In fact, a bit more can be shown.

Proposition 3.2 (Asymptotic Properties of the White Noise Covariance Ma-
trix Estimators)
Let yt be a stable, K-dimensional VAR(p) process as in (3.1.1) with standard
white noise innovations and let B̄ be an estimator of the VAR coefficients
B so that

√
T vec(B̄ − B) converges in distribution. Furthermore, using the

symbols from (3.2.1), suppose that

Σ̄u = (Y − B̄Z)(Y − B̄Z)′/(T − c),

where c is a fixed constant. Then

plim
√
T (Σ̄u − UU ′/T ) = 0. (3.2.20)
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Proof:

1
T

(Y − B̄Z)(Y − B̄Z)′ = (B − B̄)
(
ZZ ′

T

)
(B − B̄)′ + (B − B̄)

ZU ′

T

+
UZ ′

T
(B − B̄)′ +

UU ′

T
.

Under the conditions of the proposition, plim(B − B̄) = 0. Hence, by Lemma
3.1,

plim (B − B̄)ZU ′/
√
T = 0

and

plim
[
(B − B̄)

ZZ′

T

√
T (B − B̄)′

]
= 0

(see Appendix C.1). Thus,

plim
√
T
[
(Y − B̄Z)(Y − B̄Z)′/T − UU ′/T

]
= 0.

Therefore, the proposition follows by noting that T/(T − c) → 1 as T → ∞.

The proposition covers both estimators Σ̂u and Σ̃u. It implies that the
feasible estimators Σ̃u and Σ̂u have the same asymptotic properties as the
estimator

UU ′

T
=

1
T

T∑
t=1

utu
′
t

which is based on the unknown true residuals and is therefore not feasible
in practice. In particular, if

√
T vec(UU ′/T − Σu) converges in distribution,√

T vec(Σ̂u −Σu) and
√
T vec(Σ̃u −Σu) will have the same limiting distribu-

tion (see Proposition C.2 of Appendix C.1). Moreover, it can be shown that
the asymptotic distributions are independent of the limiting distribution of
the LS estimator B̂. Another immediate implication of Proposition 3.2 is that
Σ̃u and Σ̂u are consistent estimators of Σu. This result is established next.

Corollary 3.2.1
Under the conditions of Proposition 3.2,

plim Σ̃u = plim Σ̂u = plim UU ′/T = Σu.

Proof: By Proposition 3.2, it suffices to show that plim UU ′/T = Σu which
follows from Proposition C.12(4) because
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E

(
1
T
UU ′

)
=

1
T

T∑
t=1

E(utu
′
t) = Σu

and

Var
(

1
T

vec(UU ′)
)

=
1
T 2

T∑
t=1

Var[vec(utu
′
t)] ≤

T

T 2
g −→

T→∞
0,

where g is a constant upper bound for Var[vec(utu
′
t)]. This bound exists be-

cause the fourth moments of ut are bounded by Definition 3.1.

If yt is stable with standard white noise, Proposition 3.1 and Corollary
3.2.1 imply that (β̂i −βi)/ŝi has an asymptotic standard normal distribution.
Here βi (β̂i) is the i-th component of β (β̂) and ŝi is the square root of the
i-th diagonal element of

(ZZ ′)−1 ⊗ Σ̂u. (3.2.21)

This result means that we can use the “t-ratios” provided by common re-
gression programs in setting up confidence intervals and tests for individual
coefficients. The critical values and percentiles may be based on the asymp-
totic standard normal distribution. Because it was found in simulation studies
that the small sample distributions of the “t-ratios” have fatter tails than the
standard normal distribution, one may want to approximate the small sam-
ple distribution by some t-distribution. The question is then what number
of degrees of freedom (d.f.) should be used. The overall model (3.2.3) may
suggest a choice of d.f. = KT − K2p − K because in a standard regression
model with nonstochastic regressors the d.f. of the “t-ratios” are equal to the
sample size minus the number of estimated parameters. In the present case,
it seems also reasonable to use d.f. = T − Kp − 1 because the multivari-
ate LS estimator is identical to the LS estimator obtained for each of the K
equations in (3.2.2) separately. In a separate regression for each individual
equation, we would have T observations and Kp + 1 parameters. If the sam-
ple size T is large and, thus, the number of degrees of freedom is large, the
corresponding t-distribution will be very close to the standard normal so that
the choice between the two becomes irrelevant for large samples. Before we
look a little further into the problem of choosing appropriate critical values,
let us illustrate the foregoing results by an example.

3.2.3 An Example

As an example, we consider a three-dimensional system consisting of first
differences of the logarithms of quarterly, seasonally adjusted West German
fixed investment (y1), disposable income (y2), and consumption expenditures
(y3) from File E1 of the data sets associated with this book. We use only
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data from 1960–1978 and reserve the data for 1979–1982 for a subsequent
analysis. The original data and first differences of logarithms are plotted in
Figures 3.1 and 3.2, respectively. The original data have a trend and are
thus considered to be nonstationary. The trend is removed by taking first
differences of logarithms. We will discuss this issue in some more detail in
Part II. Note that the value for 1960.1 is lost in the differenced series.

income

consumption

investment

3
0

0
0

2
0

0
0

1
0

0
0

0

1960.1 1965.1 1970.1 1975.1 1980.1

Fig. 3.1. West German investment, income, and consumption data.

Let us assume that the data have been generated by a VAR(2) process.
The choice of the VAR order p = 2 is arbitrary at this point. In the next
chapter, criteria for choosing the VAR order will be considered. Because the
VAR order is two, we keep the first two observations of the differenced series
as presample values and use a sample size of T = 73. Thus, we have a (3×73)
matrix Y , B = (ν,A1, A2) is (3 × 7), Z is (7 × 73) and β and b are both
(21 × 1) vectors.

The LS estimates are

B̂ = (ν̂, Â1, Â2) = Y Z ′(ZZ′)−1

=

⎡⎣ −.017 −.320 .146 .961 −.161 .115 .934
.016 .044 −.153 .289 .050 .019 −.010
.013 −.002 .225 −.264 .034 .355 −.022

⎤⎦ . (3.2.22)
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0
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2
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5

consumption

Fig. 3.2. First differences of logarithms of West German investment, income, and
consumption.

To check the stability of the estimated process, we determine the roots of the
polynomial det(I3 − Â1z − Â2z

2) which is easily seen to have degree 6. Its
roots are
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z1 = 1.753, z2 = −2.694, z3/4 = −0.320± 2.008i, z5/6 = −1.285± 1.280i.

Note that these roots have been computed using higher precision than the
three digits in (3.2.22). They all have modulus greater than 1 and, hence, the
stability condition is satisfied.

We get

Σ̂u =
1

T −Kp− 1
(Y Y ′ − Y Z′(ZZ ′)−1ZY ′)

=

⎡⎣ 21.30 .72 1.23
.72 1.37 .61

1.23 .61 .89

⎤⎦× 10−4 (3.2.23)

as estimate of the residual covariance matrix Σu. Furthermore,

Γ̂−1 = (ZZ′/T )−1

= T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.14 .17 −.69 −2.51 .10 −.67 −2.57
• 7.39 1.24 −10.56 1.80 1.08 −8.70
• • 139.81 −87.40 −4.58 30.21 −50.88
• • • 207.22 .84 −55.35 73.82
• • • • 7.33 −.03 −9.31
• • • • • 134.19 −82.64
• • • • • • 207.71

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Dividing the elements of B̂ by square roots of the corresponding diagonal
elements of (ZZ ′)−1 ⊗ Σ̂u we get the matrix of t-ratios:⎡⎣ −0.97 −2.55 0.27 1.45 −1.29 0.21 1.41

3.60 1.38 −1.10 1.71 1.58 0.14 −0.06
3.67 −0.09 2.01 −1.94 1.33 3.24 −0.16

⎤⎦. (3.2.24)

We may compare these quantities with critical values from a t-distribution
with d.f. = KT −K2p−K = 198 or d.f. = T −Kp−1 = 66. In both cases, we
get critical values of approximately ±2 for a two-tailed test with significance
level 5%. Thus, the critical values are approximately the same as those from
a standard normal distribution.

Apparently quite a few coefficients are not significant under this criterion.
This observation suggests that the model contains unnecessarily many free
parameters. In subsequent chapters, we will discuss the problem of choosing
the VAR order and possible restrictions for the coefficients. Also, before an
estimated model is used for forecasting and analysis purposes, the assump-
tions underlying the analysis should be checked carefully. Checking the model
adequacy will be treated in greater detail in Chapter 4.

3.2.4 Small Sample Properties of the LS Estimator

As mentioned earlier, it is difficult to derive small sample properties of the
LS estimator analytically. In such a case it is sometimes helpful to use Monte
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Carlo methods to get some idea about the small sample properties. In a Monte
Carlo analysis, specific processes are used to artificially generate a large num-
ber of time series. Then a set of estimates is computed for each multiple time
series generated and the properties of the resulting empirical distributions of
these estimates are studied (see Appendix D). Such an approach usually per-
mits rather limited conclusions only because the findings may depend on the
particular processes used for generating the time series. Nevertheless, such
exercises give some insight into the small sample properties of estimators.

In the following, we use the bivariate VAR(2) example process (2.1.15),

yt =
[
.02
.03

]
+

[
.5 .1
.4 .5

]
yt−1 +

[
0 0
.25 0

]
yt−2 + ut (3.2.25)

with error covariance matrix

Σu =
[

9 0
0 4

]
× 10−4 (3.2.26)

to investigate the small sample properties of the multivariate LS estimator.
With this process we have generated 1000 bivariate time series of length T =
30 plus 2 presample values using independent standard normal errors, that is,
ut ∼ N (0, Σu). Thus the 1000 bivariate time series are generated by a stable
Gaussian process so that Propositions 3.1 and 3.2 provide the asymptotic
properties of the LS estimators.

In Table 3.1, some empirical results are given. In particular, the empirical
mean, variance, and mean squared error (MSE) of each parameter estimator
are given. Obviously, the empirical means differ from the actual values of
the coefficients. However, measuring the estimation precision by the empirical
variance (average squared deviation from the mean in 1000 samples) or MSE
(average squared deviation from the true parameter value), the coefficients
are seen to be estimated quite precisely even with a sample size as small as
T = 30. This is partly a consequence of the special properties of the process.

In Table 3.1, empirical percentiles of the t-ratios are also given together
with the corresponding percentiles from the t- and standard normal distribu-
tions (d.f. = ∞). Even with the presently considered relatively small sample
size the percentiles of the three distributions that might be used for inference
do not differ much. Consequently, it does not matter much which of the the-
oretical percentiles are used, in particular, because the empirical percentiles,
in many cases, differ quite a bit from the corresponding theoretical quantities.
This example shows that the asymptotic results have to be used cautiously
in setting up small sample tests and confidence intervals. On the other hand,
this example also demonstrates that the asymptotic theory does provide some
guidance for inference. For example, the empirical 95th percentiles of all co-
efficients lie between the 90th and the 99th percentile of the standard normal
distribution given in the last row of the table. Of course, this is just one
example and not a general finding.
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Table 3.1. Empirical percentiles of t-ratios of parameter estimates for the example
process and actual percentiles of t-distributions for sample size T = 30

empirical empirical percentiles of t-ratios
parameter mean variance MSE 1. 5. 10. 50. 90. 95. 99.

ν1 = .02 .041 .0011 .0015 −1.91 −1.04 −0.64 0.62 1.92 2.29 3.12
ν2 = .03 .038 .0005 .0006 −2.30 −1.40 −1.02 0.25 1.65 2.11 2.83
α11,1 = .5 .41 .041 .049 −2.78 −2.18 −1.74 −0.43 0.92 1.28 2.01
α21,1 = .4 .40 .018 .018 −2.61 −1.74 −1.28 0.04 1.28 1.71 2.65
α12,1 = .1 .10 .078 .078 −2.27 −1.67 −1.35 −0.03 1.29 1.67 2.38
α22,1 = .5 .44 .030 .034 −2.69 −1.97 −1.59 −0.35 0.89 1.30 2.06
α11,2 = 0 −.05 .056 .058 −2.75 −1.93 −1.50 −0.24 1.02 1.38 2.09
α21,2 = .25 .29 .023 .024 −1.99 −1.32 −0.99 0.20 1.45 1.81 2.48
α12,2 = 0 −.07 .053 .058 −2.48 −1.91 −1.61 −0.28 0.97 1.39 2.03
α22,2 = 0 −.01 .023 .024 −2.71 −1.72 −1.36 −0.03 1.18 1.53 2.18

degrees of percentiles of t-distributions
freedom(d.f.) 1. 5. 10. 50. 90. 95. 99.

T − Kp − 1 = 25 −2.49 −1.71 −1.32 0 1.32 1.71 2.49
K(T − Kp − 1) = 50 −2.41 −1.68 −1.30 0 1.30 1.68 2.41
∞ −2.33 −1.65 −1.28 0 1.28 1.65 2.33
(normal distribution)

In an extensive study, Nankervis & Savin (1988) investigated the small
sample distribution of the “t-statistic” for the parameter of a univariate AR(1)
process. They found that it differs quite substantially from the corresponding
t-distribution, especially if the sample size is small (T < 100) and the param-
eter lies close to the instability region. Analytical results on the bias in esti-
mating VAR models were derived by Nicholls & Pope (1988) and Tjøstheim &
Paulsen (1983). What should be learned from our Monte Carlo investigation
and these remarks is that asymptotic distributions in the present context can
only be used as rough guidelines for small sample inference. That, however,
is much better than having no guidance at all.

3.3 Least Squares Estimation with Mean-Adjusted Data
and Yule-Walker Estimation

3.3.1 Estimation when the Process Mean Is Known

Occasionally a VAR(p) model is given in mean-adjusted form,

(yt − µ) = A1(yt−1 − µ) + · · · + Ap(yt−p − µ) + ut. (3.3.1)

Multivariate LS estimation of this model form is straightforward if the mean
vector µ is known. Defining
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Y 0 := (y1 − µ, . . . , yT − µ) (K × T ),

A := (A1, . . . , Ap) (K ×Kp),

Y 0
t :=

⎡⎢⎣ yt − µ
...

yt−p+1 − µ

⎤⎥⎦ (Kp× 1),

X := (Y 0
0 , . . . , Y

0
T−1) (Kp× T ),

y0 := vec(Y 0) (KT × 1),

α := vec(A) (K2p× 1),

(3.3.2)

we can write (3.3.1), for t = 1, . . . , T , compactly as

Y 0 = AX + U (3.3.3)

or

y0 = (X ′ ⊗ IK)α + u, (3.3.4)

where U and u are defined as in (3.2.1). The LS estimator is easily seen to be

α̂ = ((XX ′)−1X ⊗ IK)y0 (3.3.5)

or

Â = Y 0X ′(XX ′)−1. (3.3.6)

If yt is stable and ut is standard white noise, it can be shown that

√
T (α̂ − α) d→N (0, Σα̂), (3.3.7)

where

Σα̂ = ΓY (0)−1 ⊗Σu (3.3.8)

and ΓY (0) := E(Y 0
t Y

0′
t ).

3.3.2 Estimation of the Process Mean

Usually µ will not be known in advance. In that case, it may be estimated by
the vector of sample means,

y =
1
T

T∑
t=1

yt. (3.3.9)

Using (3.3.1), y can be written as
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y = µ + A1

[
y +

1
T

(y0 − yT ) − µ

]
+ · · ·

+Ap

[
y +

1
T

(y−p+1 + · · · + y0 − yT−p+1 − · · · − yT ) − µ

]
+

1
T

T∑
t=1

ut.

Hence,

(IK −A1 − · · · −Ap)(y − µ) =
1
T
zT +

1
T

∑
t

ut, (3.3.10)

where

zT =
p∑

i=1

Ai

⎡⎣i−1∑
j=0

(y0−j − yT−j)

⎤⎦ .

Evidently,

E(zT /
√
T ) =

1√
T
E(zT ) = 0

and

Var(zT /
√
T ) =

1
T

Var(zT ) −→
T →∞

0

because yt is stable. In other words, zT /
√
T converges to zero in mean square.

It follows that
√
T (IK − A1 − · · · − Ap)(y − µ) has the same asymptotic

distribution as
∑

ut/
√
T (see Appendix C, Proposition C.2). Hence, noting

that, by a central limit theorem (e.g., Fuller (1976) or Proposition C.13),

1√
T

T∑
t=1

ut
d→N (0, Σu), (3.3.11)

if ut is standard white noise, we get the following result:

Proposition 3.3 (Asymptotic Properties of the Sample Mean)
If the VAR(p) process yt given in (3.3.1) is stable and ut is standard white
noise, then

√
T (y − µ) d→N (0, Σy), (3.3.12)

where

Σy = (IK −A1 − · · · −Ap)−1Σu(IK −A1 − · · · −Ap)′−1.

In particular, plim y = µ.
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The proposition follows from (3.3.10), (3.3.11), and Proposition C.15 of
Appendix C. The limiting distribution in (3.3.11) holds even in small samples
for Gaussian white noise ut.

Because µ = (IK − A1 − · · · − Ap)−1ν (see Chapter 2, Section 2.1), an
alternative estimator for the process mean is obtained from the LS estimator
of the previous section:

µ̂ = (Ik − Â1 − · · · − Âp)−1ν̂. (3.3.13)

Using again Proposition C.15 of Appendix C, this estimator is also consistent
and has an asymptotic normal distribution,

√
T (µ̂− µ) d→N

(
0,

∂µ

∂β′ (Γ
−1 ⊗Σu)

∂µ′

∂β

)
, (3.3.14)

provided the conditions of Proposition 3.1 are satisfied. It can be shown that

∂µ

∂β′ (Γ
−1 ⊗Σu)

∂µ′

∂β
= Σy (3.3.15)

and, hence, the estimators µ̂ and y for µ are asymptotically equivalent (see Sec-
tion 3.4). This result suggests that it does not matter asymptotically whether
the mean is estimated separately or jointly with the other VAR coefficients.
While this holds asymptotically, it will usually matter in small samples which
estimator is used. An example will be given shortly.

3.3.3 Estimation with Unknown Process Mean

If the mean vector µ is unknown, it may be replaced by y in the vectors and
matrices in (3.3.2) giving X̂, Ŷ 0 and so on. The resulting LS estimator,

̂̂α = ((X̂X̂ ′)−1X̂ ⊗ IK)ŷ0,

is asymptotically equivalent to α̂. More precisely, it can be shown that, under
the conditions of Proposition 3.3,

√
T ( ̂̂α − α) d→N (0, ΓY (0)−1 ⊗Σu), (3.3.16)

where ΓY (0) := E(Y 0
t Y

0′
t ). This result will be discussed further in the next

section on maximum likelihood estimation for Gaussian processes.

3.3.4 The Yule-Walker Estimator

The LS estimator can also be derived from the Yule-Walker equations given
in Chapter 2, (2.1.37). They imply
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Γy(h) = [A1, . . . , Ap]

⎡⎢⎣ Γy(h− 1)
...

Γy(h− p)

⎤⎥⎦ , h > 0,

or

[Γy(1), . . . , Γy(p)] = [A1, . . . , Ap]

⎡⎢⎣ Γy(0) . . . Γy(p− 1)
...

. . .
...

Γy(−p + 1) . . . Γy(0)

⎤⎥⎦
= AΓY (0)

(3.3.17)

and, hence,

A = [Γy(1), . . . , Γy(p)]ΓY (0)−1.

Estimating ΓY (0) by X̂X̂ ′/T and [Γy(1), . . . , Γy(p)] by Ŷ 0X̂ ′/T , the resulting
estimator is just the LS estimator,̂̂

A = Ŷ 0X̂ ′(X̂X̂ ′)−1. (3.3.18)

Alternatively, the moment matrices Γy(h) may be estimated using as
many data as are available, including the presample values. Thus, if a sample
y1, . . . , yT and p presample observations y−p+1, . . . , y0 are available, µ may be
estimated as

y∗ =
1

T + p

T∑
t=−p+1

yt

and Γy(h) may be estimated as

Γ̂y(h) =
1

T + p− h

T∑
t=−p+h+1

(yt − y∗)(yt−h − y∗)′. (3.3.19)

Using these estimators in (3.3.17), the so-called Yule-Walker estimator for
A is obtained. For stable processes, this estimator has the same asymptotic
properties as the LS estimator. However, it may have less attractive small
sample properties (e.g., Tjøstheim & Paulsen (1983)).

The Yule-Walker estimator always produces estimates in the stability re-
gion (see Brockwell & Davis (1987, §8.1) for a discussion of the univariate
case). In other words, the estimated process is always stable. This property
is sometimes regarded as an advantage of the Yule-Walker estimator. It is
responsible for possibly considerable bias of the estimator, however. Also, in
practice, it may not be known a priori whether the data generation process of
a given multiple time series is stable. In the unstable case, LS and Yule-Walker
estimation are not asymptotically equivalent anymore (see also the discussion
in Reinsel (1993, Section 4.4)). Therefore, enforcing stability may not be a
good strategy in practice. The LS estimator is usually used in the following.
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3.3.5 An Example

To illustrate the results of this section, we use again the West German invest-
ment, income, and consumption data. The variables y1, y2, and y3 are defined
as in Section 3.2.3, the sample period ranges from 1960.4 to 1978.4, that is,
T = 73 and the data for 1960.2 and 1960.3 are used as presample values.
Using only the sample values we get

y =

⎡⎣ .018
.020
.020

⎤⎦ (3.3.20)

which is different, though not substantially so, from

µ̂ = (I3 − Â1 − Â2)−1ν̂ =

⎡⎣ .017
.020
.020

⎤⎦ (3.3.21)

as obtained from the LS estimates in (3.2.22).
Subtracting the sample means from the data we get, based on (3.3.18),

̂̂
A = (̂̂A1,

̂̂
A2) =

⎡⎣ −.319 .143 .960 −.160 .112 .933
.044 −.153 .288 .050 .019 −.010

−.002 .224 −.264 .034 .354 −.023

⎤⎦ . (3.3.22)

This estimate is clearly distinct from the corresponding part of (3.2.22), al-
though the two estimates do not differ dramatically.

If the two presample values are used in estimating the process means and
moment matrices we get

ÂY W =

⎡⎣ −.319 .147 .959 −.160 .115 .932
.044 −.152 .286 .050 .020 −.012

−.002 .225 −.264 .034 .355 −.022

⎤⎦ (3.3.23)

which is the Yule-Walker estimate. Although the sample size is moderate,
there is a slight difference between the estimates in (3.3.22) and (3.3.23).

3.4 Maximum Likelihood Estimation

3.4.1 The Likelihood Function

Assuming that the distribution of the process is known, maximum likelihood
(ML) estimation is an alternative to LS estimation. We will consider ML
estimation under the assumption that the VAR(p) process yt is Gaussian.
More precisely,
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u = vec(U) =

⎡⎢⎣ u1

...
uT

⎤⎥⎦ ∼ N (0, IT ⊗Σu). (3.4.1)

In other words, the probability density of u is

fu(u) =
1

(2π)KT/2
|IT ⊗Σu|−1/2 exp

[
−1

2
u′(IT ⊗Σ−1

u )u
]
. (3.4.2)

Moreover,

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 . . . 0 . . . . . . 0
−A1 IK 0 . . . . . . 0

...
...

. . .
...

...
−Ap −Ap−1 . . . IK 0

0 −Ap
. . .

...
...

. . . . . .
...

0 0 . . . −Ap . . . . . . IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(y − µ∗)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A1 −A2 . . . −Ap

−A2 −A3 . . . 0
...

...
−Ap 0 . . . 0

...
...

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Y0 − µ), (3.4.3)

where y := vec(Y ) and µ∗ := (µ′, . . . , µ′)′ are (TK × 1) vectors and Y0 :=
(y′0, . . . , y

′
−p+1)

′ and µ := (µ′, . . . , µ′)′ are (Kp × 1). Consequently, ∂u/∂y′

is a lower triangular matrix with unit diagonal which has unit determinant.
Hence, using that u = y − µ∗ − (X ′ ⊗ IK)α,

fy(y) =
∣∣∣∣ ∂u∂y′

∣∣∣∣fu(u)

=
1

(2π)KT/2
|IT ⊗Σu|−1/2

×exp
[
− 1

2
(y − µ∗ − (X ′ ⊗ IK)α)′(IT ⊗Σ−1

u )

×(y − µ∗ − (X ′ ⊗ IK)α)
]
, (3.4.4)

where X and α are as defined in (3.3.2). For simplicity, the initial values Y0

are assumed to be given fixed numbers. Hence, we get a log-likelihood function

ln l(µ,α, Σu)
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= −KT

2
ln 2π − T

2
ln |Σu|

−1
2

[y − µ∗ − (X ′ ⊗ IK)α]′ (IT ⊗Σ−1
u ) [y − µ∗ − (X ′ ⊗ IK)α]

= −KT

2
ln 2π − T

2
ln |Σu| − 1

2

T∑
t=1

[
(yt − µ) −

p∑
i=1

Ai(yt−i − µ)

]′

×Σ−1
u

[
(yt − µ) −

p∑
i=1

Ai(yt−i − µ)

]

= −KT

2
ln 2π − T

2
ln |Σu|

−1
2

∑
t

(
yt −

∑
i

Aiyt−i

)′
Σ−1

u

(
yt −

∑
i

Aiyt−i

)

+ µ′
(
IK −

∑
i

Ai

)′
Σ−1

u

∑
t

(
yt −

∑
i

Aiyt−i

)

−T

2
µ′

(
IK −

∑
i

Ai

)′
Σ−1

u

(
IK −

∑
i

Ai

)
µ

= −KT

2
ln 2π − T

2
ln |Σu| − 1

2
tr[(Y 0 − AX)′Σ−1

u (Y 0 −AX)], (3.4.5)

where Y 0 := (y1 − µ, . . . , yT − µ) and A := (A1, . . . , Ap) are as defined in
(3.3.2). These different expressions of the log-likelihood function will be useful
in the following.

3.4.2 The ML Estimators

In order to determine the ML estimators of µ,α, and Σu, the system of first
order partial derivatives is needed:

∂ ln l
∂µ

=

(
IK −

∑
i

Ai

)′
Σ−1

u

∑
t

(
yt −

∑
i

Aiyt−i

)

−T

(
IK −

∑
i

Ai

)′
Σ−1

u

(
IK −

∑
i

Ai

)
µ

= [IK −A(j ⊗ IK)]′Σ−1
u

[∑
t

(yt − µ−AY 0
t−1)

]
, (3.4.6)

where Y 0
t is as defined in (3.3.2) and j := (1, . . . , 1)′ is a (p×1) vector of ones,
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∂ ln l
∂α

= (X ⊗ IK)(IT ⊗Σ−1
u ) [y − µ∗ − (X ′ ⊗ IK)α]

= (X ⊗Σ−1
u )(y − µ∗) − (XX ′ ⊗Σ−1

u )α, (3.4.7)

∂ ln l
∂Σu

= −T

2
Σ−1

u +
1
2
Σ−1

u (Y 0 −AX)(Y 0 −AX)′Σ−1
u . (3.4.8)

Equating to zero gives the system of normal equations which can be solved
for the estimators:

µ̃ =
1
T

(
IK −

∑
i

Ãi

)−1 ∑
t

(
yt −

∑
i

Ãiyt−i

)
, (3.4.9)

α̃ = ((X̃X̃ ′)−1X̃ ⊗ IK)(y − µ̃∗), (3.4.10)

Σ̃u =
1
T

(Ỹ 0 − ÃX̃)(Ỹ 0 − ÃX̃)′, (3.4.11)

where X̃ and Ỹ 0 are obtained from X and Y 0, respectively, by replacing µ
with µ̃.

3.4.3 Properties of the ML Estimators

Comparing these results with the LS estimators obtained in Section 3.3, it
turns out that the ML estimators of µ and α are identical to the LS estimators.
Thus, µ̃ and α̃ are consistent estimators if yt is a stationary, stable Gaussian
VAR(p) process and

√
T (µ̃− µ) and

√
T (α̃−α) are asymptotically normally

distributed. This result also follows from a more general maximum likelihood
theory (see Appendix C.6). In fact, that theory implies that the covariance
matrix of the asymptotic distribution of the ML estimators is the limit of T
times the inverse information matrix. The information matrix is

I(δ) = −E

[
∂2 ln l
∂δ∂δ′

]
(3.4.12)

where δ′ := (µ′,α′,σ′) with σ := vech(Σu). Note that vech is a column stack-
ing operator that stacks only the elements on and below the main diagonal
of Σu. It is related to the vec operator by the ( 1

2K(K + 1) × K2) elimina-
tion matrix LK , that is, vech(Σu) = LKvec(Σu) or, defining ω := vec(Σu),
σ = LKω (see Appendix A.12). For instance, for K = 3,

ω = vec(Σu) = vec

⎡⎣ σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎤⎦
= (σ11, σ12, σ13, σ12, σ22, σ23, σ13, σ23, σ33)′

and
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σ = vech(Σu) = L3 ω =

⎡⎢⎢⎢⎢⎢⎢⎣
σ11

σ12

σ13

σ22

σ23

σ33

⎤⎥⎥⎥⎥⎥⎥⎦. (3.4.13)

Note that in δ we collect only the potentially different elements of Σu.
The asymptotic covariance matrix of the ML estimator δ̃ is known to be

lim
T→∞

[I(δ)/T ]−1
. (3.4.14)

In order to determine this matrix, we need the second order partial derivatives
of the log-likelihood. From (3.4.6) to (3.4.8) we get

∂2 ln l
∂µ ∂µ′ = −T

(
IK −

∑
i

Ai

)′
Σ−1

u

(
IK −

∑
i

Ai

)
, (3.4.15)

∂2 ln l
∂α∂α′ = −(XX ′ ⊗Σ−1

u ), (3.4.16)

∂2 ln l
∂ω ∂ω′ =

T

2
(Σ−1

u ⊗Σ−1
u ) − 1

2
(Σ−1

u ⊗Σ−1
u UU ′Σ−1

u )

−1
2
(Σ−1

u UU ′Σ−1
u ⊗Σ−1

u ), (3.4.17)

where ω = vec(Σu) (see Problem 3.3),

∂2 ln l
∂µ ∂α′ = − [IK − (j′ ⊗ IK)A′]Σ−1

u

∑
t

Y 0′
t−1 ⊗ IK

−
(∑

t

u′
tΣ

−1
u ⊗ IK

)
(IK ⊗ j′ ⊗ IK)

∂ vec(A′)
∂α′ (3.4.18)

(see Problem 3.4),

∂2 ln l
∂ω ∂µ′ =

1
2
(Σ−1

u ⊗Σ−1
u )

[
(IK ⊗ U)

∂ vec(U ′)
∂µ′ + (U ⊗ IK)

∂ vec(U)
∂µ′

]
(3.4.19)

(see Problem 3.5), and

∂2 ln l
∂ω ∂α′ = −1

2
(Σ−1

u ⊗Σ−1
u )

[
(IK ⊗ UX ′)

∂ vec(A′)
∂α′ + (UX ′ ⊗ IK)

]
(3.4.20)

(see Problem 3.6).
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It is obvious from (3.4.18) that

lim T−1E

(
∂2 ln l

∂µ ∂α′

)
= 0 (3.4.21)

because E(
∑

t Y
0
t−1/T ) → 0. Furthermore, from (3.4.19), it follows that

E

(
∂2 ln l
∂ω ∂µ′

)
= 0 (3.4.22)

because E(U) = 0 and ∂ vec(U ′)/∂µ′ is a matrix of constants. Moreover, from
(3.4.20), we have

lim T−1E

(
∂2 ln l
∂ω ∂α′

)
= 0 (3.4.23)

because E(UX ′/T ) → 0. Thus, lim I(δ)/T is block diagonal and we get the
asymptotic distributions of µ,α, and σ as follows.

Multiplying minus the inverse of (3.4.15) by T gives the asymptotic co-
variance matrix of the ML estimator for the mean vector µ, that is,

√
T (µ̃− µ) d→N

⎛⎝0,

(
IK −

p∑
i=1

Ai

)−1

Σu

(
IK −

p∑
i=1

A′
i

)−1
⎞⎠ . (3.4.24)

Hence, µ̃ has the same asymptotic distribution as y (see Proposition 3.3). In
other words, the two estimators for µ are asymptotically equivalent and, un-
der the present conditions, this fact implies that y is asymptotically efficient
because the ML estimator is asymptotically efficient. The asymptotic equiv-
alence of µ̃ and y can also be seen from (3.4.9) (see the argument prior to
Proposition 3.3 and Problem 3.7).

Taking the limit of T−1 times the expectation of minus (3.4.16) gives
ΓY (0)⊗Σ−1

u . Note that E(XX ′/T ) is not strictly equal to ΓY (0) because we
have assumed fixed initial values y−p+1, . . . , y0. However, asymptotically, as
T goes to infinity, the impact of the initial values vanishes. Thus, we get

√
T (α̃ − α) d→N (0, ΓY (0)−1 ⊗Σu). (3.4.25)

Of course, this result also follows from the equivalence of the ML and LS
estimators.

Noting that E(UU ′) = TΣu, it follows from (3.4.17) that

E

(
∂2 ln l

∂ω ∂ω′

)
= −T

2
(Σ−1

u ⊗Σ−1
u ). (3.4.26)

Denoting by DK the (K2 × 1
2K(K + 1)) duplication matrix (see Appendix

A.12) so that ω = DKσ, we get
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∂2 ln l
∂σ ∂σ′ =

∂ω′

∂σ

∂2 ln l
∂ω ∂ω′

∂ω

∂σ′ = D′
K

∂2 ln l
∂ω ∂ω′DK

and, hence,

√
T (σ̃ − σ) d→N (0, Σσ̃) (3.4.27)

with

Σσ̃ = −TE

(
∂2 ln l

∂σ ∂σ′

)−1

= 2
[
D′

K(Σ−1
u ⊗Σ−1

u )DK

]−1

= 2D+
K(Σu ⊗Σu)D+′

K , (3.4.28)

where D+
K = (D′

KDK)−1D′
K is the Moore-Penrose generalized inverse of the

duplication matrix DK and Rule (17) from Appendix A.12 has been used. In
summary, we get the following proposition.

Proposition 3.4 (Asymptotic Properties of ML Estimators)
Let yt be a stationary, stable Gaussian VAR(p) process as in (3.3.1). Then the
ML estimators µ̃, α̃, and σ̃ = vech(Σ̃u) given in (3.4.9)–(3.4.11) are consistent
and

√
T

⎡⎣ µ̃− µ
α̃ − α
σ̃ − σ

⎤⎦ d→N
⎛⎝0,

⎡⎣ Σµ̃ 0 0
0 Σα̃ 0
0 0 Σσ̃

⎤⎦⎞⎠ , (3.4.29)

so that µ̃ is asymptotically independent of α̃ and Σ̃u and α̃ is asymptotically
independent of µ̃ and Σ̃u. The covariance matrices are

Σµ̃ =

(
IK −

∑
i

Ai

)−1

Σu

(
IK −

∑
i

A′
i

)−1

,

Σα̃ = ΓY (0)−1 ⊗Σu,

Σσ̃ = 2D+
K(Σu ⊗Σu)D+′

K .

They may be estimated consistently by replacing the unknown quantities by
their ML estimators and estimating ΓY (0) by X̃X̃ ′/T .

In this section, we have chosen to consider the mean-adjusted form of a
VAR(p) process. Of course, it is possible to perform a similar derivation for the
standard form given in (3.1.1). In that case the ML estimators of ν and α are
not asymptotically independent though. Their joint asymptotic distribution is
identical to that of β̂ given in Proposition 3.1. From Proposition 3.2 we know
that the asymptotic distribution of σ̃ remains unaltered. In the next section,
we will investigate the consequences of forecasting with estimated rather than
known processes.
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3.5 Forecasting with Estimated Processes

3.5.1 General Assumptions and Results

In Chapter 2, Section 2.2, we have seen that the optimal h-step forecast of
the process (3.1.1) is

yt(h) = ν + A1yt(h− 1) + · · · + Apyt(h− p), (3.5.1)

where yt(j) = yt+j for j ≤ 0. If the true coefficients B = (ν,A1, . . . , Ap) are
replaced by estimators B̂ = (ν̂, Â1, . . . , Âp), we get a forecast

ŷt(h) = ν̂ + Â1ŷt(h− 1) + · · · + Âpŷt(h− p), (3.5.2)

where ŷt(j) = yt+j for j ≤ 0. Thus, the forecast error is

yt+h − ŷt(h) = [yt+h − yt(h)] + [yt(h) − ŷt(h)]

=
h−1∑
i=0

Φiut+h−i + [yt(h) − ŷt(h)] , (3.5.3)

where the Φi are the coefficient matrices of the canonical MA representation of
yt (see (2.2.9)). Under quite general conditions for the process yt, the forecast
errors can be shown to have zero mean, E [yt+h − ŷt(h)] = 0, so that the
forecasts are unbiased even if the coefficients are estimated. Because we do
not need this result in the following, we refer to Dufour (1985) for the details
and a proof. All the us in the first term on the right-hand side of the last
equality sign in (3.5.3) are attached to periods s > t, whereas all the ys

in the second term correspond to periods s ≤ t, if estimation is done with
observations from periods up to time t only. Therefore, the two terms are
uncorrelated. Hence, the MSE matrix of the forecast ŷt(h) is of the form

Σŷ(h) := MSE [ŷt(h)] = E{[yt+h − ŷt(h)][yt+h − ŷt(h)]′}
= Σy(h) + MSE [yt(h) − ŷt(h)] , (3.5.4)

where

Σy(h) =
h−1∑
i=0

ΦiΣuΦ
′
i

(see (2.2.11)). In order to evaluate the last term in (3.5.4), the distribution of
the estimator B̂ is needed. Because we have not been able to derive the small
sample distributions of the estimators considered in the previous sections but
we have derived the asymptotic distributions instead, we cannot hope for
more than an asymptotic approximation to the MSE of yt(h) − ŷt(h). Such
an approximation will be derived in the following.

There are two alternative assumptions that can be made in order to facil-
itate the derivation of the desired result:
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(1) Only data up to the forecast origin are used for estimation.
(2) Estimation is done using a realization (time series) of a process that is

independent of the process used for prediction and has the same stochastic
structure (for instance, it is Gaussian and has the same first and second
moments as the process used for prediction).

The first assumption is the more realistic one from a practical point of view
because estimation and forecasting are usually based on the same data set.
In that case, because the sample size is assumed to go to infinity in deriving
asymptotic results, either the forecast origin has to go to infinity too or it
has to be assumed that more and more data at the beginning of the sample
become available. Because the forecast uses only p vectors ys prior to the
forecast period, these variables will be asymptotically independent of the esti-
mator B̂ (they are asymptotically negligible in comparison with all the other
observations going into the estimate). Thus, asymptotically the first assump-
tion implies the same results as the second one. In the following, for simplicity,
the second assumption will therefore be used. Furthermore, it will be assumed
that for β = vec(B) and β̂ = vec(B̂) we have

√
T (β̂ − β) d→N (0, Σ

β̂
). (3.5.5)

Samaranayake & Hasza (1988) and Basu & Sen Roy (1986) give a formal proof
of the result that the MSE approximation obtained in the following remains
valid under assumption (1) above.

With the foregoing assumptions it follows that, conditional on a particular
realization Yt = (y′t, . . . , y

′
t−p+1)

′ of the process used for prediction,

√
T [ŷt(h) − yt(h)|Yt]

d→N
(

0,
∂yt(h)
∂β′ Σβ̂

∂yt(h)′

∂β

)
(3.5.6)

because yt(h) is a differentiable function of β (see Appendix C, Proposition
C.15(3)). Here T is the sample size (time series length) used for estimation.
This result suggests the approximation of MSE [ŷt(h) − yt(h)] by Ω(h)/T ,
where

Ω(h) = E

[
∂yt(h)
∂β′ Σβ̂

∂yt(h)′

∂β

]
. (3.5.7)

In fact, for a Gaussian process yt,
√
T [ŷt(h) − yt(h)] d→N (0, Ω(h)). (3.5.8)

Hence, we get an approximation

Σŷ(h) = Σy(h) +
1
T
Ω(h) (3.5.9)

for the MSE matrix of ŷt(h).
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From (3.5.7) it is obvious that Ω(h) and, thus, the approximate MSE Σŷ(h)
can be reduced by using an estimator that is asymptotically more efficient
than β̂, if such an estimator exists. In other words, efficient estimation is of
importance in order to reduce the forecast uncertainty.

3.5.2 The Approximate MSE Matrix

To derive an explicit expression for Ω(h), the derivatives ∂yt(h)/∂β′ are
needed. They can be obtained easily by noting that

yt(h) = J1BhZt, (3.5.10)

where Zt := (1, y′t, . . . , y
′
t−p+1)

′,

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0
ν A1 A2 . . . Ap−1 Ap

0 IK 0 . . . 0 0
0 0 IK 0 0
...

...
. . .

...
0 0 0 . . . IK 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[(Kp+1)×(Kp+1)]

=

⎡⎣ 1 0 . . . 0
B

0 IK(p−1) 0

⎤⎦

and

J1 := [ 0︸︷︷︸
(K×1)

: IK : 0 : · · · : 0︸ ︷︷ ︸
(K×K(p−1))

] [K × (Kp + 1)].

The relation (3.5.10) follows by induction (see Problem 3.8). Using (3.5.10),
we get

∂yt(h)
∂β′ =

∂ vec(J1BhZt)
∂β′ = (Z ′

t ⊗ J1)
∂ vec(Bh)

∂β′

= (Z ′
t ⊗ J1)

[
h−1∑
i=0

(B′)h−1−i ⊗Bi

]
∂ vec(B)

∂β′

(Appendix A.13, Rule (8))

= (Z ′
t ⊗ J1)

[
h−1∑
i=0

(B′)h−1−i ⊗Bi

]
(IKp+1 ⊗ J ′

1)

(see the definition of B)

=
h−1∑
i=0

Z ′
t(B

′)h−1−i ⊗ J1BiJ ′
1

=
h−1∑
i=0

Z ′
t(B

′)h−1−i ⊗ Φi, (3.5.11)
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where Φi = J1BiJ ′
1 follows as in (2.1.17). Using the LS estimator β̂ with

asymptotic covariance matrix Σβ̂ = Γ−1 ⊗ Σu (see Proposition 3.1), the
matrix Ω(h) is seen to be

Ω(h) = E

[
∂yt(h)
∂β′ (Γ−1 ⊗Σu)

∂yt(h)′

∂β

]
=

h−1∑
i=0

h−1∑
j=0

E(Z ′
t(B

′)h−1−i
Γ−1Bh−1−jZt) ⊗ ΦiΣuΦ

′
j

=
∑

i

∑
j

E[tr(Z ′
t(B

′)h−1−i
Γ−1Bh−1−jZt)]ΦiΣuΦ

′
j

=
∑

i

∑
j

tr[(B′)h−1−i
Γ−1Bh−1−jE(ZtZ

′
t)]ΦiΣuΦ

′
j

=
h−1∑
i=0

h−1∑
j=0

tr[(B′)h−1−i
Γ−1Bh−1−jΓ ]ΦiΣuΦ

′
j , (3.5.12)

provided yt is stable so that

Γ := plim(ZZ ′/T ) = E(ZtZ
′
t).

Here Z := (Z0, . . . , ZT−1) is the ((Kp + 1) × T ) matrix defined in (3.2.1).
For example, for h = 1,

Ω(1) = (Kp + 1)Σu.

Hence, the approximation

Σŷ(1) = Σu +
Kp + 1

T
Σu =

T + Kp + 1
T

Σu (3.5.13)

of the MSE matrix of the 1-step forecast with estimated coefficients is ob-
tained. This expression shows that the contribution of the estimation vari-
ability to the forecast MSE matrix Σŷ(1) depends on the dimension K of
the process, the VAR order p, and the sample size T used for estimation. It
can be quite substantial if the sample size is small or moderate. For instance,
considering a three-dimensional process of order 8 which is estimated from 15
years of quarterly data (i.e., T = 52 plus 8 presample values needed for LS es-
timation), the 1-step forecast MSE matrix Σu for known processes is inflated
by a factor (T + Kp + 1)/T = 1.48. Of course, this approximation is derived
from asymptotic theory so that its small sample validity is not guaranteed. We
will take a closer look at this problem shortly. Obviously, the inflation factor
(T +Kp+1)/T → 1 for T → ∞. Thus the MSE contribution due to sampling
variability vanishes if the sample size gets large. This result is a consequence
of estimating the VAR coefficients consistently. An expression for Ω(h) can
also be derived on the basis of the mean-adjusted form of the VAR process
(see Problem 3.9).



98 3 Estimation of Vector Autoregressive Processes

In practice, for h > 1, it will not be possible to evaluate Ω(h) without
knowing the AR coefficients summarized in the matrix B. A consistent esti-
mator Ω̂(h) may be obtained by replacing all unknown parameters by their
LS estimators, that is, B is replaced by B̂ which is obtained by using B̂ for
B, Σu is replaced by Σ̂u, Φi is estimated by Φ̂i = J1B̂iJ ′

1, and Γ is estimated
by Γ̂ = ZZ ′/T . The resulting estimator of Σŷ(h) will be denoted by Σ̂ŷ(h) in
the following.

The foregoing discussion is of importance in setting up interval forecasts.
Assuming that yt is Gaussian, an approximate (1− α)100% interval forecast,
h periods ahead, for the k-th component yk,t of yt is

ŷk,t(h) ± z(α/2)
̂̂σk(h) (3.5.14)

or [
ŷk,t(h) − z(α/2)

̂̂σk(h), ŷk,t(h) + z(α/2)
̂̂σk(h)

]
, (3.5.15)

where z(α) is the upper α100-th percentile of the standard normal distribution
and ̂̂σk(h) is the square root of the k-th diagonal element of Σ̂ŷ(h). Using Bon-
ferroni’s inequality, approximate joint confidence regions for a set of forecasts
can be obtained just as described in Section 2.2.3 of Chapter 2.

3.5.3 An Example

To illustrate the previous results, we consider again the investment/income/
consumption example of Section 3.2.3. Using the VAR(2) model with the
coefficient estimates given in (3.2.22) and

yT−1 = y72 =

⎡⎣ .02551
.02434
.01319

⎤⎦ and yT = y73 =

⎡⎣ .03637
.00517
.00599

⎤⎦
results in forecasts

ŷT (1) = ν̂ + Â1yT + Â2yT−1 =

⎡⎣ −.011
.020
.022

⎤⎦ ,

ŷT (2) = ν̂ + Â1ŷT (1) + Â2yT =

⎡⎣ .011
.020
.015

⎤⎦ ,

(3.5.16)

and so on.
The estimated forecast MSE matrix for h = 1 is

Σ̂ŷ(1) =
T + Kp + 1

T
Σ̂u =

73 + 6 + 1
73

Σ̂u

=

⎡⎣ 23.34 .785 1.351
.785 1.505 .674

1.351 .674 .978

⎤⎦× 10−4, (3.5.17)
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where Σ̂u from (3.2.23) has been used. We need Φ̂1 for evaluating

Σ̂ŷ(2) = Σ̂y(2) +
1
T
Ω̂(2),

where

Σ̂y(2) = Σ̂u + Φ̂1Σ̂uΦ̂
′
1

and

Ω̂(2) =
1∑

i=0

1∑
j=0

tr
[
(B̂′)1−i(ZZ′/T )−1B̂1−j(ZZ′/T )

]
Φ̂iΣ̂uΦ̂

′
j

= tr[B̂′(ZZ′)−1B̂ZZ ′]Σ̂u + tr(B̂′)Σ̂uΦ̂
′
1

+tr(B̂)Φ̂1Σ̂u + tr(IKp+1)Φ̂1Σ̂uΦ̂
′
1.

From (2.1.22) we know that Φ1 = A1. Hence, we use Φ̂1 = Â1 from (3.2.22).
Thus, we get

Σ̂y(2) =

⎡⎣ 23.67 .547 1.226
.547 1.488 .554

1.226 .554 .952

⎤⎦× 10−4

and

Ω̂(2) =

⎡⎣ 10.59 .238 .538
.238 .675 .233
.538 .233 .422

⎤⎦× 10−3.

Consequently,

Σ̂ŷ(2) =

⎡⎣ 25.12 .580 1.300
.580 1.581 .586

1.300 .586 1.009

⎤⎦× 10−4. (3.5.18)

Assuming that the data are generated by a Gaussian process, we get the
following approximate 95% interval forecasts:

ŷ1,T (1) ± 1.96̂̂σ1(1) or −.011 ± .095,

ŷ2,T (1) ± 1.96̂̂σ2(1) or .020 ± .024,

ŷ3,T (1) ± 1.96̂̂σ3(1) or .022 ± .019, (3.5.19)

ŷ1,T (2) ± 1.96̂̂σ1(2) or .011 ± .098,

ŷ2,T (2) ± 1.96̂̂σ2(2) or .020 ± .025,

ŷ3,T (2) ± 1.96̂̂σ3(2) or .015 ± .020.
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In Figure 3.3, some more forecasts of the three variables with two-standard
error bounds to each side are depicted. The intervals indicated by the dashed
bounds may be interpreted as approximate 95% forecast intervals for the
individual forecasts. If the region enclosed by the dashed lines is viewed as a
joint confidence region for all 4 forecasts, a lower bound for the (approximate)
probability content is (100−4×5)% = 80%. In the figure it can be seen that for
investment and income the actually observed values for 1979 (t = 77, . . . , 80)
are well inside the forecast regions, whereas two of the four consumption values
are outside that region.

3.5.4 A Small Sample Investigation

It is not obvious that the MSE and interval forecast approximations derived in
the foregoing are reasonable in small samples because the MSE modification
has been based on asymptotic theory. To investigate the small sample behavior
of the predictor with estimated coefficients, we have used again 1000 realiza-
tions of the bivariate VAR(2) process (3.2.25)/(3.2.26) of Section 3.2.4 and
we have computed forecast intervals for the period following the last sample
period. In Table 3.2, the proportions of actual values falling in these intervals
are reported for sample sizes of T = 30 and 100.

Table 3.2. Accuracy of forecast intervals in small samples based on 1000
bivariate time series

percent of actual values falling
in the forecast interval

MSE used T = 30 T = 100
in interval % forecast
construction interval y1 y2 y1 y2

90 86.5 85.7 89.7 89.4
Σy(1) 95 92.6 91.8 94.5 94.0

99 98.1 98.0 99.0 98.5

90 89.3 88.2 90.4 90.0
Σŷ(1) 95 94.4 94.1 95.3 94.6

99 99.0 98.4 99.3 98.8

90 85.2 84.2 89.6 88.5

Σ̂y(1) 95 90.5 90.4 94.7 93.9
99 98.4 96.5 98.9 98.3

90 88.1 86.9 90.3 89.1

Σ̂ŷ(1) 95 93.4 92.7 95.2 94.0
99 99.4 97.8 99.1 98.5
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Fig. 3.3. Forecasts of the investment/income/consumption system.

Obviously, for T = 30, the theoretical and actual percentages are in
best agreement if the approximate MSEs Σŷ(h) are used in setting up
the forecast intervals. On the other hand, only forecast intervals based on
Σ̂y(h) =

∑h−1
i=0 Φ̂iΣ̂uΦ̂

′
i and Σ̂ŷ(h) are feasible in practice when the actual

process coefficients are unknown and have to be estimated. Comparing only
the results based on these two MSE matrices shows that it pays to use the
asymptotic approximation Σ̂ŷ(h).
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In Table 3.2, we also give the corresponding results for T = 100. Because
the estimation uncertainty decreases with increasing sample size, one would
expect that now the theoretical and actual percentages are in good agreement
for all MSEs. This is precisely what can be observed in the table. Nevertheless,
even now the use of the MSE adjustment in Σ̂ŷ(1) gives slightly more accurate
interval forecasts.

3.6 Testing for Causality

3.6.1 A Wald Test for Granger-Causality

In Chapter 2, Section 2.3.1, we have partitioned the VAR(p) process yt in
subprocesses zt and xt, that is, y′t = (z′t, x

′
t) and we have defined Granger-

causality from xt to zt and vice versa. We have seen that this type of causality
can be characterized by specific zero constraints on the VAR coefficients (see
Corollary 2.2.1). Thus, in an estimated VAR(p) system, if we want to test
for Granger-causality, we need to test zero constraints for the coefficients.
Given the results of Sections 3.2, 3.3, and 3.4 it is straightforward to derive
asymptotic tests of such constraints.

More generally we consider testing

H0 : Cβ = c against H1 : Cβ �= c, (3.6.1)

where C is an (N × (K2p+K)) matrix of rank N and c is an (N × 1) vector.
Assuming that

√
T (β̂ − β) d→N (0, Γ−1 ⊗Σu) (3.6.2)

as in LS/ML estimation, we get
√
T (Cβ̂ − Cβ) d→N [

0, C(Γ−1 ⊗Σu)C ′] (3.6.3)

(see Appendix C, Proposition C.15) and, hence,

T (Cβ̂ − c)′
[
C(Γ−1 ⊗Σu)C′]−1

(Cβ̂ − c) d→χ2(N). (3.6.4)

This statistic is the Wald statistic (see Appendix C.7).
Replacing Γ and Σu by their usual estimators Γ̂ = ZZ′/T and Σ̂u as

given in (3.2.19), the resulting statistic

λW = (Cβ̂ − c)′
[
C((ZZ′)−1 ⊗ Σ̂u)C ′

]−1

(Cβ̂ − c) (3.6.5)

still has an asymptotic χ2-distribution with N degrees of freedom, provided
yt satisfies the conditions of Proposition 3.2, because under these conditions
[C((ZZ ′)−1 ⊗ Σ̂u)C ′]−1/T is a consistent estimator of

[
C(Γ−1 ⊗Σu)C′]−1.

Hence, we have the following result.
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Proposition 3.5 (Asymptotic Distribution of the Wald Statistic)
Suppose (3.6.2) holds. Furthermore, plim(ZZ ′/T ) = Γ, plim Σ̂u = Σu are
both nonsingular and H0 : Cβ = c is true, with C being an (N × (K2p+K))
matrix of rank N . Then

λW = (Cβ̂ − c)′[C((ZZ′)−1 ⊗ Σ̂u)C ′]−1(Cβ̂ − c) d→χ2(N).

In practice, it may be useful to make adjustments to the statistic or the
critical values of the test to compensate for the fact that the matrix Γ−1⊗Σu

is unknown and has been replaced by an estimator. Working in that direction,
we note that

NF (N,T ) d−→
T →∞

χ2(N), (3.6.6)

where F (N,T ) denotes an F random variable with N and T degrees of freedom
(d.f.) (Appendix C, Proposition C.3). Because an F (N,T )-distribution has a
fatter tail than the χ2(N)-distribution divided by N , it seems reasonable to
consider the test statistic

λF = λW /N (3.6.7)

in conjunction with critical values from some F -distribution. The question is
then what numbers of degrees of freedom should be used? From the foregoing
discussion it is plausible to use N as the numerator degrees of freedom. On the
other hand, any sequence that goes to infinity with the sample size qualifies
as a candidate for the denominator d.f. The usual F -statistic for a regression
model with nonstochastic regressors has denominator d.f. equal to the sample
size minus the number of estimated parameters. Therefore we may use this
number here too. Note that, in the model (3.2.3), we have a vector y with
KT observations and β contains K(Kp+1) parameters. Alternatively, we will
argue shortly that T−Kp−1 is also a reasonable number for the denominator
d.f. Hence, we have the approximate distributions

λF ≈ F (N,KT −K2p−K) ≈ F (N,T −Kp− 1). (3.6.8)

3.6.2 An Example

To see how this result can be used in a test for Granger-causality, let us
consider again our example system from Section 3.2.3. The null hypothesis
of no Granger-causality from income/consumption (y2, y3) to investment (y1)
may be expressed in terms of the coefficients of the VAR(2) process as

H0 : α12,1 = α13,1 = α12,2 = α13,2 = 0. (3.6.9)

This null hypothesis may be written as in (3.6.1) by defining the (4×1) vector
c = 0 and the (4 × 21) matrix
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C =

⎡⎢⎢⎣
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎦ .

With this notation, using the estimation results from Section 3.2.3,

λF = β̂′C ′
[
C((ZZ ′)−1 ⊗ Σ̂u)C ′

]−1

Cβ̂/4 = 1.59. (3.6.10)

In contrast, the 95th percentile of the F (4, 3 · 73 − 9 · 2 − 3) = F (4, 198) ≈
F (4, 73 − 3 · 2 − 1) = F (4, 66)-distribution is about 2.5. Thus, in a 5% level
test, we cannot reject Granger-noncausality from income/consumption to in-
vestment.

In this example, the denominator d.f. are so large (namely 198 or 66) that
we could just as well use λW in conjunction with a critical value from a χ2(4)-
distribution. The 95th percentile of that distribution is 9.49 and, thus, it is
about four times that of the F -test while λW = 4λF .

In an example of this type it is quite reasonable to use T −Kp−1 denomi-
nator d.f. for the F -test because all the restrictions are imposed on coefficients
from one equation. Therefore λF actually reduces to an F -statistic related to
one equation with Kp + 1 parameters which are estimated from T observa-
tions. The use of T − Kp − 1 d.f. may also be justified by arguments that
do not rely on the restrictions being imposed on the parameters of one equa-
tion only, namely by appealing to the similarity between the λF statistic and
Hotelling’s T 2 (e.g., Anderson (1984)).

Many other tests for Granger-causality have been proposed and investi-
gated (see, e.g., Geweke, Meese & Dent (1983)). In the next chapter, we will
return to the testing of hypotheses and then an alternative test will be con-
sidered.

3.6.3 Testing for Instantaneous Causality

Tests for instantaneous causality can be developed in the same way as tests for
Granger-causality because instantaneous causality can be expressed in terms
of zero restrictions for σ = vech(Σu) (see Proposition 2.3). If yt is a stable
Gaussian VAR(p) process and we wish to test

H0 : Cσ = 0 against H1 : Cσ �= 0, (3.6.11)

we may use the asymptotic distribution of the ML estimator given in Propo-
sition 3.4 to set up the Wald statistic

λW = T σ̃′C′[2CD+
K(Σ̃u ⊗ Σ̃u)D+′

K C ′]−1Cσ̃, (3.6.12)

where D+
K is the Moore-Penrose inverse of the duplication matrix DK and C

is an (N ×K(K + 1)/2) matrix of rank N . Under H0, λW has an asymptotic
χ2-distribution with N degrees of freedom.
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Alternatively, a Wald test of (3.6.11) could be based on the lower triangular
matrix P which is obtained from a Choleski decomposition of Σu. Noting that
instantaneous noncausality implies zero elements of Σu that correspond to
zero elements of P , we can write H0 from (3.6.11) equivalently as

H0 : Cvech(P ) = 0. (3.6.13)

Because vech(P ) is a continuously differentiable function of σ, the asymptotic
distribution of the estimator P obtained from decomposing Σ̃u follows from
Proposition C.15(3) of Appendix C:

√
T vech(P̃ − P ) d→N (0, H̄Σσ̃H̄

′), (3.6.14)

where

H̄ =
∂vech(P )

∂σ′ = [LK(IK2 + KKK)(P ⊗ IK)L′
K ]−1

(see Appendix A.13, Rule (10)). Here Kmn is the commutation matrix defined
such that vec(G) = Kmnvec(G′) for any (m × n) matrix G and LK is the
( 1
2
K(K+1)×K2) elimination matrix defined such that vech(F ) = LK vec(F )

for any (K×K) matrix F (see Appendix A.12.2). A Wald test of (3.6.13) may
therefore be based on

λW = Tvech(P̃ )′C′[C ̂̄HΣ̂σ̃
̂̄H ′C ′]−1C vech(P̃ ) d→χ2(N), (3.6.15)

where hats denote the usual estimators. Although the two tests based on σ̃
and P̃ are derived from the same asymptotic distribution, they may differ in
small samples. Of course, in the previous discussion we may replace Σ̃u by
the asymptotically equivalent estimator Σ̂u.

In our investment/income/consumption example, suppose we wish to test
for instantaneous causality between (income, consumption) and investment.
Following Proposition 2.3, the null hypothesis of no causality is

H0 : σ21 = σ31 = 0 or Cσ = 0,

where σij is a typical element of Σu and

C =
[

0 1 0 0 0 0
0 0 1 0 0 0

]
.

For this hypothesis, the test statistic in (3.6.12) assumes the value λW = 5.46.
Alternatively, we may test

H0 : p21 = p31 = 0 or C vech(P ) = 0,

where pij is a typical element of P . The corresponding value of the test statis-
tic from (3.6.15) is λW = 5.70. Both tests are based on asymptotic χ2(2)-
distributions and therefore do not reject the null hypothesis of no instanta-
neous causality at a 5% level. Note that the critical value for a 5% level test
is 5.99.
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3.6.4 Testing for Multi-Step Causality

In Section 2.3.1, we have also discussed the possibility of extending the in-
formation set and considering causality between two variables in a system
that includes further variables. Using the same ideas as in the definition of
Granger-causality resulted in the definition of h-step causality. This concept
implies nonlinear restrictions for the VAR coefficients for which the usual ap-
plication of the Wald principle does not result in a valid test. The following
example from Lütkepohl & Burda (1997) illustrates the problem.

Consider a three-dimensional VAR(1) process:⎡⎣ zt

yt

xt

⎤⎦ =

⎡⎣ αzz αzy αzx

αyz αyy αyx

αxz αxy αxx

⎤⎦⎡⎣ zt−1

yt−1

xt−1

⎤⎦ +

⎡⎣ uz,t

uy,t

ux,t

⎤⎦ . (3.6.16)

From (2.3.24) we know that a test of ∞-step noncausality from yt to zt

(yt �→(∞)zt) needs to check h = 2 restrictions on the VAR coefficient vector.
They are of the following nonlinear form:

r(α) =
[
Rα

Rα(2)

]
= (I2 ⊗R)

[
α

α(2)

]
,

where

R = [0 0 0 1 0 0 0 0 0],

α = vec(A1) and α(2) = vec(A2
1), with A1 being the coefficient matrix of the

process in (3.6.16). Hence,

r(α) =
[

αzy

αzzαzy + αzyαyy + αzxαxy

]
=

[
0
0

]
. (3.6.17)

Denoting the covariance matrix of the asymptotic distribution of
√
T (α̂−α)

as usual by Σα̂ and a consistent estimator by Σ̂α̂, the Wald statistic for testing
these restrictions has the form

λW = Tr(α̂)′
(

∂̂r

∂α′ Σ̂α̂
∂̂r′

∂α

)−1

r(α̂),

where ∂̂r/∂α′ is an estimator of ∂r/∂α′ (see Appendix C.7). The statistic
has an asymptotic χ2(2)-distribution under the null hypothesis, provided the
matrix

∂r

∂α′Σα̂
∂r′

∂α

is nonsingular. In the present case, the latter condition is unfortunately not
satisfied for all relevant parameter values.
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To see this, note that the matrix of first order partial derivatives of the
function r(α) is

∂r

∂α′ =
[

0 0 0 1 0 0 0 0 0
αzy 0 0 αzz + αyy αzy αzx αxy 0 0

]
.

The restrictions (3.6.17) are satisfied if

αzy = αzx = 0, αxy �= 0, (3.6.18)

or

αzy = αxy = 0, αzx �= 0, (3.6.19)

or

αzy = αzx = αxy = 0. (3.6.20)

Clearly, ∂r/∂α′ has rank 1 only and, thus,

rk
(

∂r

∂α′Σα̂
∂r′

∂α

)
= 1,

if (3.6.20) holds. Hence, the standard Wald statistic will not have its asymp-
totic χ2(2)-distribution under the null hypothesis r(α) = 0 if (3.6.20) holds.

Lütkepohl & Burda (1997) discussed a possibility to circumvent the prob-
lem by simply drawing a random variable from a normal distribution and
adding it to the second restriction. Thereby a nonsingular distribution of the
modified restriction vector is obtained and a Wald type statistic can be con-
structed for this vector.

More generally, Lütkepohl & Burda (1997) proposed the following ap-
proach for testing the null hypothesis that the Ky-dimensional vector yt is
not h-step causal for the Kz-dimensional vector zt (yt �→(h)zt) if additional
Kx variables xt are present in the system of interest. Using the notation from
Section 2.3.1, that is, A is defined as in the VAR(1) representation (2.1.8),
J := [IK : 0 : · · · : 0] is a (K×Kp) matrix, A(j) := JAj , and α(j) := vec(A(j)),
the hypotheses of interest can be stated as

H0 : (Ih ⊗R) a(h) = 0 against H1 : (Ih ⊗R) a(h) �= 0, (3.6.21)

where R is a (pKzKy × pK2) matrix, as defined in (2.3.23), and

a(h) =

⎡⎢⎢⎢⎣
α
α(2)

...
α(h)

⎤⎥⎥⎥⎦ .
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Let â(h) be the estimator corresponding to a(h) based on the multivariate LS
estimator α̂ of α. Furthermore, we denote by diag(D) a diagonal matrix which
has the diagonal elements of the square matrix D on its main diagonal and
define the (hpKzKy × hpKzKy) matrix

Σ̂w(h) =
[

0 0
0 Ih−1 ⊗ diag(RΣ̂α̂R

′)

]
.

Moreover, we define a random vector w
(h)
λ ∼ N (0, λΣ̂w(h)) which is drawn

independently of α̂. Here λ > 0 is some fixed real number. Lütkepohl &
Burda (1997) defined the following modified Wald statistic for testing the
pair of hypotheses in (3.6.21):

λmod
W = T

(
(Ih ⊗R) â(h) +

w
(h)
λ√
T

)′

×
[
(Ih ⊗R) Σ̂â(h) (Ih ⊗R′) + λΣ̂w(h)

]−1

×
(

(Ih ⊗R) â(h) +
w

(h)
λ√
T

)
.

Here Σ̂â(h) is a consistent estimator of the asymptotic covariance matrix of√
T (â(h) − a(h)). It can be shown that

λmod
W

d→ χ2(hpKzKy)

under H0. Notice that there is no need to add anything to the first pKzKy

components of (Ih ⊗ R)â(h) because they are equal to Rα̂ which has a non-
singular asymptotic distribution.

Clearly, adding some random term to â(h) reduces the efficiency of the
procedure and is likely to result in a loss in power of the test relative to a
procedure which does not use this device. In particular, if the noise term is
substantial in relation to the estimated variance, there may be some loss in
power. Therefore, the amount of noise (the variance of the noise) is linked to
the variance of the estimator through Σw(h). Moreover, the quantity λ may
be chosen close to zero. Thereby the loss in efficiency can be made arbitrarily
small.

There are in fact also other possibilities to avoid the problems related to
the Wald test. One way to get around it is to impose zero restrictions directly
on the VAR coefficients prior to analyzing multi-step causality. The relevant
subset models will be discussed in Chapter 5.
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3.7 The Asymptotic Distributions of Impulse Responses
and Forecast Error Variance Decompositions

3.7.1 The Main Results

In Chapter 2, Section 2.3.2, we have seen that the coefficients of the MA
representations

yt = µ +
∞∑

i=0

Φiut−i, Φ0 = IK , (3.7.1)

and

yt = µ +
∞∑

i=0

Θiwt−i (3.7.2)

are sometimes interpreted as impulse responses or dynamic multipliers of the
system of variables yt. Here µ = E(yt), the Θi = ΦiP , wt = P−1ut, and P
is the lower triangular Choleski decomposition of Σu such that Σu = PP ′.
Hence, Σw = E(wtw

′
t) = IK . In this section, we will assume that the Φi’s and

Θi’s are unknown and they are computed from the estimated VAR coefficients
and error covariance matrix. We will derive the asymptotic distributions of the
resulting estimated Φi’s and Θi’s. In these derivations, we will not need the
existence of MA representations (3.7.1) and (3.7.2). We will just assume that
the Φi’s are obtained from given coefficient matrices A1, . . . , Ap by recursions

Φi =
i∑

j=1

Φi−jAj , i = 1, 2, . . . ,

starting with Φ0 = IK and setting Aj = 0 for j > p. Furthermore, the Θi’s
are obtained from A1, . . . , Ap, and Σu as Θi = ΦiP , where P is as specified in
the foregoing. In addition, the asymptotic distributions of the corresponding
accumulated responses

Ψn =
n∑

i=0

Φi, Ψ∞ =
∞∑

i=0

Φi = (IK −A1 − · · · −Ap)−1 (if it exists),

Ξn =
n∑

i=0

Θi, Ξ∞ =
∞∑

i=0

Θi = (IK −A1 − · · · − Ap)−1P (if it exists),

and the forecast error variance components,

ωjk,h =
h−1∑
i=0

(e′jΘiek)2/MSEj(h), (3.7.3)

will be given. Here ek is the k-th column of IK and
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MSEj(h) =
h−1∑
i=0

e′jΦiΣuΦ
′
iej

is the j-th diagonal element of the MSE matrix Σy(h) of an h-step forecast
(see Chapter 2, Section 2.2.2).

The derivation of the asymptotic distributions is based on the following
result from Appendix C, Proposition C.15(3). Suppose β is an (n× 1) vector
of parameters and β̂ is an estimator such that

√
T (β̂ − β) d→N (0, Σβ̂),

where T , as usual, denotes the sample size (time series length) used for es-
timation. Let g(β) be a continuously differentiable function with values in
the m-dimensional Euclidean space and suppose that ∂gi/∂β′ = (∂gi/∂βj) is
nonzero at the true vector β, for i = 1, . . . ,m. Then,

√
T
[
g(β̂) − g(β)

]
d→N

(
0,

∂g

∂β′Σβ̂

∂g′

∂β

)
.

In writing down the asymptotic distributions formally, we use the notation

α := vec(A1, . . . , Ap) (K2p× 1),

A :=

⎡⎢⎢⎢⎢⎢⎣
A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

⎤⎥⎥⎥⎥⎥⎦ (Kp×Kp),

σ := vech(Σu) ( 1
2K(K + 1) × 1)

and the corresponding estimators are furnished with a hat. As before, vec
denotes the column stacking operator and vech is the corresponding operator
that stacks the elements on and below the main diagonal only. We also use
the commutation matrix Kmn, defined such that, for any (m× n) matrix G,
Kmnvec(G) = vec(G′), the (m2× 1

2m(m+1)) duplication matrix Dm, defined
such that Dmvech(F ) = vec(F ), for any symmetric (m × m) matrix F, and
the ( 1

2m(m + 1) × m2) elimination matrix Lm, defined such that, for any
(m×m) matrix F, vech(F ) = Lmvec(F ) (see Appendix A.12.2). Furthermore,
J := [IK : 0 : · · · : 0] is a (K ×Kp) matrix. With this notation, the following
proposition from Lütkepohl (1990) can be stated.

Proposition 3.6 (Asymptotic Distributions of Impulse Responses)
Suppose

√
T

[
α̂ − α
σ̂ − σ

]
d→N

(
0,

[
Σα̂ 0
0 Σσ̂

])
. (3.7.4)

Then
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√
T vec(Φ̂i − Φi)

d→N (0, GiΣα̂G
′
i), i = 1, 2, . . . , (3.7.5)

where

Gi :=
∂ vec(Φi)

∂α′ =
i−1∑
m=0

J(A′)i−1−m ⊗ Φm.

√
T vec(Ψ̂n − Ψn) d→N (0, FnΣα̂F

′
n), n = 1, 2, . . . , (3.7.6)

where Fn := G1 + · · · + Gn.
If (IK −A1 − · · · − Ap) is nonsingular,
√
T vec(Ψ̂∞ − Ψ∞) d→N (0, F∞Σα̂F

′
∞), (3.7.7)

where F∞ := (Ψ ′
∞, . . . , Ψ ′

∞)︸ ︷︷ ︸
p times

⊗ Ψ∞.

√
T vec(Θ̂i −Θi)

d→N (0, CiΣα̂C
′
i + C̄iΣα̂C̄

′
i), i = 0, 1, 2, . . . , (3.7.8)

where

C0 := 0, Ci := (P ′ ⊗ IK)Gi, i = 1, 2, . . . , C̄i := (IK ⊗ Φi)H, i = 0, 1, . . . ,

and

H :=
∂ vec(P )

∂σ′ = L′
K{LK [(IK ⊗ P )KKK + (P ⊗ IK)]L′

K}−1

= L′
K{LK(IK2 + KKK)(P ⊗ IK)L′

K}−1.
√
T vec(Ξ̂n − Ξn) d→N (0, BnΣα̂B

′
n + B̄nΣσ̂B̄

′
n), (3.7.9)

where Bn := (P ′ ⊗ IK)Fn and B̄n := (IK ⊗ Ψn)H.
If (IK −A1 − · · · − Ap) is nonsingular,
√
T vec(Ξ̂∞ − Ξ∞) d→N (0, B∞Σα̂B

′
∞ + B̄∞Σσ̂B̄

′
∞), (3.7.10)

where B∞ := (P ′ ⊗ IK)F∞ and B̄∞ := (IK ⊗ Ψ∞)H.
Finally,
√
T (ω̂jk,h − ωjk,h) d→ N (0, djk,hΣα̂d

′
jk,h + djk,hΣσ̂d

′
jk,h)

j, k = 1, . . . ,K, h = 1, 2, . . . , (3.7.11)

where

djk,h :=
2

MSEj(h)2

h−1∑
i=0

[
MSEj(h)(e′jΦiPek)(e′kP

′ ⊗ e′j)Gi

−(e′jΦiPek)2
h−1∑
m=0

(e′jΦmΣu ⊗ e′j)Gm

]
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with G0 := 0 and

djk,h :=
h−1∑
i=0

[
2MSEj(h)(e′jΦiPek)(e′k ⊗ e′jΦi)H

−(e′jΦiPek)2
h−1∑
m=0

(e′jΦm ⊗ e′jΦm)DK

]/
MSEj(h)2.

In the next subsection, the proof of the proposition is indicated. Some
remarks are worthwhile now.

Remark 1 In the proposition, some matrices of partial derivatives may be
zero. For instance, if a VAR(1) model is fitted although the true order is zero,
that is, yt is white noise, then

G2 = JA′ ⊗ IK + JIK ⊗ Φ1 = 0

because A = A1 = 0 and Φ1 = A1 = 0. Hence, a degenerate asymptotic
distribution with zero covariance matrix is obtained for

√
T vec(Φ̂2 − Φ2). As

explained in Appendix B, we call such a distribution also multivariate normal.
Otherwise it would be necessary to distinguish between cases with zero and
nonzero partial derivatives or we have to assume that all partial derivatives
are such that the covariance matrices have no zeros on the diagonal. Note
that estimators of the covariance matrices obtained by replacing unknown
quantities by their usual estimators may be problematic when the asymp-
totic distribution is degenerate. In that case, the usual t-ratios and confidence
intervals may not be appropriate.

To illustrate the potential problems resulting from a degenerate asymptotic
distribution, we follow Benkwitz, Lütkepohl & Neumann (2000) and consider
a univariate AR(1) process yt = αyt−1 + ut. In this case, Φi = αi. Suppose
that α̂ is an estimator of α satisfying

√
T (α̂ − α) d→ N (0, σ2

α̂) with σ2
α̂ �= 0.

For instance, α̂ may be the LS estimator of α. Then

√
T (α̂2 − α2) d→ N (0, σ2

α̂2)

with σ2
α̂2 = 4α2σ2

α̂. This quantity is, of course, zero if α = 0. In the latter
case,

√
T α̂/σα̂ has an asymptotic standard normal distribution and, hence,

T α̂2/σ2
α̂ has an asymptotic χ2(1)-distribution. Thus, it is clear that in this

case
√
T α̂2 is asymptotically degenerate.

Because the estimated σ2
α̂2 obtained by replacing α and σ2

α̂ by their usual
LS estimators is nonzero almost surely, it is tempting to use the quantity√
T (α̂2−α2)/2α̂σ̂α̂ for constructing a confidence interval, say, for Φ2. However,

for α = 0, the t-ratio becomes
√
T α̂/2σ̂α̂ which converges to N (0, 1/4) asymp-

totically, because
√
T α̂/σ̂α̂

d→ N (0, 1). A confidence interval constructed on
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the basis of the asymptotic standard normal distribution would therefore be
a conservative one. In other words, asymptotic inference which ignores the
possible singularity in the asymptotic distribution of the impulse responses
may be misleading (see Benkwitz et al. (2000) for further discussion).

Remark 2 In the proposition, it is not explicitly assumed that yt is stable.
While the stability condition is partly introduced in (3.7.7) and (3.7.10) by
requiring that (IK − A1 − · · · − Ap) be nonsingular so that

det(IK − A1z − · · · −Apz
p) �= 0 for z = 1,

it is not needed for the other results to hold. The crucial condition is the
asymptotic distribution of the process parameters in (3.7.4). Although we
have used the stationarity and stability assumptions in Sections 3.2–3.4 in
order to derive the asymptotic distribution of the process parameters, we will
see in later chapters that asymptotic normality is also obtained for certain
nonstationary, unstable processes. Therefore, at least parts of Proposition 3.6
will be useful in a nonstationary environment.

Remark 3 The block-diagonal structure of the covariance matrix of the
asymptotic distribution in (3.7.4) is in no way essential for the asymptotic
normality of the impulse responses. In fact, the asymptotic distributions in
(3.7.5)–(3.7.7) remain unchanged if the asymptotic covariance matrix of the
parameter estimators is not block-diagonal. On the other hand, without the
block-diagonal structure, the simple additive structure of the asymptotic co-
variance matrices in (3.7.8)–(3.7.11) is lost. Although these asymptotic distri-
butions are easily generalizable to the case of a general asymptotic covariance
matrix of the VAR coefficients in (3.7.4), we have not stated the more general
result here because it is not needed in subsequent chapters of this text.

Remark 4 Under the conditions of Proposition 3.4, the covariance matrix of
the asymptotic distribution of the parameters has precisely the block-diagonal
structure assumed in (3.7.4) with

Σα̂ = ΓY (0)−1 ⊗Σu

and

Σσ̂ = 2D+
K(Σu ⊗Σu)D+′

K ,

where D+
K = (D′

KDK)−1D′
K is the Moore-Penrose inverse of the duplication

matrix DK . Using these expressions in the proposition, some simplifications of
the covariance matrices can be obtained. For instance, the covariance matrix
in (3.7.5) becomes

GiΣα̂G
′
i
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=

[
i−1∑
m=0

J(A′)i−1−m ⊗ Φm

]
(ΓY (0)−1 ⊗Σu)

[
i−1∑
n=0

J(A′)i−1−n ⊗ Φn

]′

=
i−1∑
m=0

i−1∑
n=0

[
J(A′)i−1−mΓY (0)−1Ai−1−nJ ′]⊗ (ΦmΣuΦ

′
n)

which is computationally convenient because all matrices involved are of a
relatively small size. The advantage of the general formulation is that it can
be used with other Σα̂ matrices as well. We will see examples in subsequent
chapters.

Remark 5 In practice, to use the asymptotic distributions for inference, the
unknown quantities in the covariance matrices in Proposition 3.6 may be
replaced by their usual estimators given in Sections 3.2–3.4 for the case of a
stationary, stable process yt (see, however, Remark 1).

Remark 6 Summing the forecast error variance components over k,

K∑
k=1

ωjk,h =
K∑

k=1

ω̂jk,h = 1

for each j and h. These restrictions are not taken into account in the derivation
of the asymptotic distributions in (3.7.11). It is easily checked, however, that
for dimension K = 1 the standard errors obtained from Proposition 3.6 are
zero as they should be, because all forecast error variance components are 1
in that case. A problem in this context is that the asymptotic distribution of
ω̂jk,h cannot be used in the usual way for tests of significance and setting up
confidence intervals if ωjk,h = 0. In that case, from the definitions of djk,h

and djk,h, the variance of the asymptotic distribution is easily seen to be
zero and, hence, estimating this quantity by replacing unknown parameters
by their usual estimators may lead to t-ratios that are not standard normal
asymptotically and, hence, cannot be used in the usual way for inference (see
Remark 1). This state of affairs is unfortunate from a practical point of view
because testing the significance of forecast error variance components is of
particular interest in practice. Note, however, that

ωjk,h = 0 ⇐⇒ θjk,i = 0 for i = 0, . . . , h.

A test of the latter hypothesis may be possible.

Remark 7 Joint confidence regions and test statistics for testing hypotheses
that involve several of the response coefficients can be obtained from Propo-
sition 3.6 in the usual way. However, it has to be taken into account that, for
instance, the elements of Φ̂i and Φ̂j will not be independent asymptotically. If
elements from two or more MA matrices are involved the joint distribution of
all the matrices must be determined. This distribution can be derived easily
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from the results given in the proposition. For instance, the covariance matrix
of the joint asymptotic distribution of vec(Φ̂i, Φ̂j) is

∂ vec(Φi, Φj)
∂α′ Σα̂

∂ vec(Φi, Φj)′

∂α
,

where

∂ vec(Φi, Φj)
∂α′ =

⎡⎢⎢⎣
∂ vec(Φi)

∂α′

∂ vec(Φj)
∂α′

⎤⎥⎥⎦
etc. We have chosen to state the proposition for individual MA coefficient ma-
trices because thereby all required matrices have relatively small dimensions
and, hence, are easy to compute.

Remark 8 Denoting the jk-th elements of Φi and Θi by φjk,i and θjk,i,
respectively, hypotheses of obvious interest, for j �= k, are

H0 : φjk,i = 0 for i = 1, 2, . . . (3.7.12)

and

H0 : θjk,i = 0 for i = 0, 1, 2, . . . (3.7.13)

because they can be interpreted as hypotheses on noncausality from variable
k to variable j, that is, an impulse in variable k does not induce any response
of variable j. From Chapter 2, Propositions 2.4 and 2.5, we know that (3.7.12)
is equivalent to

H0 : φjk,i = 0 for i = 1, 2, . . . , p(K − 1) (3.7.14)

and (3.7.13) is equivalent to

H0 : θjk,i = 0 for i = 0, 1, . . . , p(K − 1). (3.7.15)

Using Bonferroni’s inequality (see Chapter 2, Section 2.2.3), a test of
(3.7.14) with significance level at most 100γ% is obtained by rejecting H0

if

|
√
T φ̂jk,i/σ̂φjk

(i)| > z(γ/2p(K−1)) (3.7.16)

for at least one i ∈ {1, 2, . . . , p(K−1)}. Here z(γ) is the upper 100γ percentage
point of the standard normal distribution and σ̂φjk

(i) is an estimate of the
asymptotic standard deviation σφjk

(i) of
√
T φ̂jk,i obtained via Proposition

3.6. In order to obtain an asymptotic standard normal distribution of the
t-ratio

√
T φ̂jk,i/σ̂φjk

(i), the variance σ2
φjk

(i) must be nonzero, however.
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A test of (3.7.15) with significance level at most γ is obtained by rejecting
H0 if

|
√
T θ̂jk,i/σ̂θjk

(i)|

⎧⎪⎪⎨⎪⎪⎩
> z(γ/2(pK−p+1)) for at least one

i ∈ {0, 1, 2, . . . , p(K − 1)} if j > k

> z(γ/2(pK−p)) for at least one
i ∈ {1, 2, . . . , p(K − 1)} if j < k.

(3.7.17)

Here σ̂θjk
(i) is a consistent estimator of the standard deviation of the asymp-

totic distribution of
√
T θ̂jk,i obtained from Proposition 3.6 and that standard

deviation is assumed to be nonzero.
A test based on Bonferroni’s principle may have quite low power because

the actual significance level may be much smaller than the given upper bound.
Therefore a test based on some χ2- or F-statistic would be preferable. Unfor-
tunately, such tests are not easily available for the present situation. The
problem is similar to the one discussed in Section 3.6.4 in the context of
testing for multi-step causality. For more discussion of this point see also
Lütkepohl (1990) and for a different approach of representing the uncertainty
in estimated impulse responses see Sims & Zha (1999).

3.7.2 Proof of Proposition 3.6

The proof of Proposition 3.6 is a straightforward application of the matrix dif-
ferentiation rules given in Appendix A.13. It is sketched here for completeness
and because it is spread out over a number of publications in the literature.
Readers mainly interested in applying the proposition may skip this section
without loss of continuity.

To prove (3.7.5), note that Φi = JAiJ ′ (see Chapter 2, Section 2.1.2) and
apply Rule (8) of Appendix A.13. The expression for Fn in (3.7.6) follows
because

∂ vec(Ψn)
∂α′ =

n∑
i=1

∂ vec(Φi)
∂α′

and

F∞ =
∂ vec(Ψ∞)

∂α′ =
∂ vec(Ψ∞)
∂ vec(Ψ−1∞ )′

∂ vec(Ψ−1
∞ )

∂α′

= −(Ψ ′
∞ ⊗ Ψ∞)

∂ vec(IK − A1 − · · · −Ap)
∂α′ .

Furthermore,

Ci =
∂ vec(Θi)

∂α′ =
∂ vec(ΦiP )

∂α′ = (P ′ ⊗ IK)
∂ vec(Φi)

∂α′
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and

C̄i =
∂ vec(Θi)

∂σ′ = (IK ⊗ Φi)
∂ vec(P )

∂σ′ ,

where

∂ vec(P )
∂σ′ = L′

K

∂ vech(P )
∂σ′ = H,

follows from Appendix A.13, Rule (10). The matrices Bn, B̄n, B∞, and B̄∞ are
obtained in a similar manner, using the relations Ξn = ΨnP and Ξ∞ = Ψ∞P .

Finally, in (3.7.11),

djk,h =
∂ωjk,h

∂α′

=

[
2

h−1∑
i=0

(e′jΦiPek)(e′kP
′ ⊗ e′j)

∂ vec(Φi)
∂α′ MSEj(h)

−
h−1∑
i=0

(e′jΦiPek)2
∂MSEj(h)

∂α′

]/
MSEj(h)2,

∂MSEj(h)
∂α′ =

h−1∑
m=0

[
(e′jΦmΣu ⊗ e′j)

∂ vec(Φm)
∂α′

+(e′j ⊗ e′jΦmΣu)
∂ vec(Φ′

m)
∂α′

]
=

h−1∑
m=0

[
(e′jΦmΣu ⊗ e′j) + (e′j ⊗ e′jΦmΣu)KKK

] ∂ vec(Φm)
∂α′

=
h−1∑
m=0

[
(e′jΦmΣu ⊗ e′j) + K11(e′jΦmΣu ⊗ e′j)

]
Gm

= 2
h−1∑
m=0

(e′jΦmΣu ⊗ e′j)Gm,

(see Appendix A.12.2, Rule (23))

djk,h =
∂ωjk,h

∂σ′

=
h−1∑
i=0

[
2(e′jΦiPek)(e′k ⊗ e′jΦi)

∂ vec(P )
∂σ′ MSEj(h)

−(e′jΦiPek)2
∂MSEj(h)

∂σ′

]/
MSEj(h)2,

and
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∂MSEj(h)
∂σ′ =

h−1∑
m=0

(e′jΦm ⊗ e′jΦm)
∂ vec(Σu)

∂σ′

=
h−1∑
m=0

(e′jΦm ⊗ e′jΦm)DK
∂ vech(Σu)

∂σ′ .

Thereby Proposition 3.6 is proven. In the next section an example is discussed.

3.7.3 An Example

To illustrate the results of Section 3.7.1, we use again the investment/income/
consumption example from Section 3.2.3. Because

Φ̂1 = Â1 =

⎡⎣ −.320 .146 .961
.044 −.153 .289

−.002 .225 −.264

⎤⎦ ,

the elements of Φ̂1 must have the same standard errors as the elements of
Â1. Checking the covariance matrix in (3.7.5), it is seen that the asymptotic
covariance matrix of Φ̂1 is indeed the upper left-hand (K2 ×K2) block of Σα̂

because

G1 = J ⊗ IK = [IK2 : 0 : · · · : 0].

Thus, the square roots of the diagonal elements of

G1Σ̂α̂G
′
1/T =

1
T

[I9 : 0 : · · · : 0](Γ̂Y (0)−1 ⊗ Σ̂u)

⎡⎢⎢⎢⎣
I9
0
...
0

⎤⎥⎥⎥⎦
are estimates of the asymptotic standard errors of Φ̂1. Note that here and in
the following we use the LS estimators from the standard form of the VAR
process (see Section 3.2) and not the mean-adjusted form. Accordingly, the
estimate Γ̂Y (0)−1 is obtained from (ZZ′/T )−1 by deleting the first row and
column.

From (2.1.22) we get

Φ̂2 = Φ̂1Â1 + Â2 =

⎡⎣ −.054 .262 .416
.029 .114 −.088
.045 .261 .110

⎤⎦ .

To estimate the corresponding standard errors, we note that

G2 = JA′ ⊗ IK + J ⊗ Φ1.
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Replacing the unknown quantities by the usual estimates gives
1
T
Ĝ2Σ̂α̂Ĝ

′
2 =

1
T

[
JÂ′Γ̂Y (0)−1ÂJ ′ ⊗ Σ̂u + JÂ′Γ̂Y (0)−1J ′ ⊗ Σ̂uΦ̂

′
1

+JΓ̂Y (0)−1ÂJ ′ ⊗ Φ̂1Σ̂u + JΓ̂Y (0)−1J ′ ⊗ Φ̂1Σ̂uΦ̂
′
1

]
.

The square roots of the diagonal elements of this matrix are estimates of
the standard deviations of the elements of Φ̂2 and so on. Some Φ̂i matrices
together with estimated standard errors are given in Table 3.3. In Figures
3.4 and 3.5, some impulse responses are depicted graphically along with two-
standard error bounds.
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Fig. 3.4. Estimated responses of consumption to a forecast error impulse in income
with estimated asymptotic two-standard error bounds.

In Figure 3.4, consumption is seen to increase in response to a unit shock
in income. However, under a two-standard error criterion (approximate 95%
confidence bounds) only the second response coefficient is significantly differ-
ent from zero. Of course, the large standard errors of the impulse response
coefficients reflect the substantial estimation uncertainty in the VAR coeffi-
cient matrices A1 and A2.

To check the overall significance of the response coefficients of consumption
to an income impulse, we may use the procedure described in Remark 8 of
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Table 3.3. Estimates of impulse responses for the investment/income/con-
sumption system with estimated asymptotic standard errors in parentheses

i Φ̂i Ψ̂i

1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.320 0.146 0.961
(0.125) (0.562) (0.657)

0.044 −0.153 0.289
(0.032) (0.143) (0.167)

−0.002 0.225 −0.264
(0.025) (0.115) (0.134)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.680 0.146 0.961
(0.125) (0.562) (0.657)

0.044 0.847 0.289
(0.032) (0.143) (0.167)

−0.002 0.225 0.736
(0.025) (0.115) (0.134)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.054 0.262 0.416
(0.129) (0.546) (0.663)

0.029 0.114 −0.088
(0.032) (0.135) (0.162)

0.045 0.261 0.110
(0.026) (0.108) (0.131)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.626 0.408 1.377
(0.148) (0.651) (0.755)

0.073 0.961 0.200
(0.043) (0.192) (0.222)

0.043 0.486 0.846
(0.033) (0.144) (0.167)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.119 0.353 −0.408
(0.084) (0.384) (0.476)

−0.009 0.071 0.120
(0.016) (0.078) (0.094)

−0.001 −0.098 0.091
(0.017) (0.078) (0.102)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.745 0.761 0.969
(0.099) (0.483) (0.550)

0.064 1.033 0.320
(0.037) (0.176) (0.203)

0.042 0.388 0.937
(0.033) (0.156) (0.183)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∞ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.756 0.836 1.295
(0.133) (0.661) (0.798)

0.076 1.076 0.344
(0.048) (0.236) (0.285)

0.053 0.505 0.964
(0.043) (0.213) (0.257)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Section 3.7.1. That is, we have to check the significance of the first p(K −
1) = 4 response coefficients. Because one of them is individually significant
at an asymptotic 5% level we may reject the null hypothesis of no response
of consumption to income impulses at a significance level not greater than
4 × 5% = 20%. Of course, this is not a significance level we are used to
in applied work. However, it becomes clear from Table 3.3 that the second
response coefficient φ̂32,2 is still significant if the individual significance levels
are reduced to 2.5%. Note that the upper 1.25 percentage point of the standard
normal distribution is c0.0125 = 2.24. Thus, we may reject the no-response
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Fig. 3.5. Estimated responses of investment to a forecast error impulse in consump-
tion with estimated asymptotic two-standard error bounds.

hypothesis at an overall 4×2.5% = 10% level which is clearly a more common
size for a test in applied work. Still, in this exercise, the data do not reveal
strong evidence for the intuitively appealing hypothesis that consumption
responds to income impulses. In later chapters, we will see how the coefficients
can potentially be estimated with more precision.

In Figure 3.5, the responses of investment to consumption impulses are de-
picted. None of them is significant under a two-standard error criterion. This
result is in line with the Granger-causality analysis in Section 3.6. In that sec-
tion, we did not find evidence for Granger-causality from income/consumption
to investment. Assuming that the test result describes the actual situation,
the φ13,i must be zero for i = 1, 2, . . . (see also Chapter 2, Section 2.3.1).

The covariance matrix of

Ψ̂1 = I3 + Φ̂1 =

⎡⎣ .680 .146 .961
.044 .847 .289

−.002 .225 .736

⎤⎦
is, of course, the same as that of Φ̂1 and an estimate of the covariance matrix
of the elements of
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Ψ̂2 = I3 + Φ̂1 + Φ̂2 =

⎡⎣ .626 .408 1.377
.073 .961 .200
.043 .486 .846

⎤⎦
is obtained as (G1+Ĝ2)Σ̂α̂(G1+Ĝ2)′/T . Some accumulated impulse responses
together with estimated standard errors are also given in Table 3.3 and accu-
mulated responses of consumption to income impulses and of investment to
consumption impulses are shown in Figures 3.6 and 3.7, respectively. They
reinforce the findings for the individual impulse responses in Figures 3.4 and
3.5.

1.
00

0.
60

0.
20

– 
0.

20

0 1 2 3 4 5 6 7 8

Fig. 3.6. Accumulated and long-run responses of consumption to a forecast error
impulse in income with estimated asymptotic two-standard error bounds.

An estimate of the asymptotic covariance matrix of the estimated long-run
responses Ψ̂∞ = (I3 − Â1 − Â2)−1 is

1
T

([Ψ̂ ′
∞ : Ψ̂ ′

∞] ⊗ Ψ̂∞)Σ̂α̂

([
Ψ̂∞
Ψ̂∞

]
⊗ Ψ̂ ′

∞

)
.

The matrix Ψ̂∞ together with the resulting standard errors is also given in Ta-
ble 3.3. For instance, the total long-run effect ψ̂13,∞ of a consumption impulse



3.7 Impulse Responses 123

0 21 3 4 5 6 7 8

3.
50

2.
50

1.
50

0.
50

– 
0.

50

Fig. 3.7. Accumulated and long-run responses of investment to a forecast error
impulse in consumption with estimated asymptotic two-standard error bounds.

on investment is 1.295 and its estimated asymptotic standard error is .798.
Not surprisingly, ψ̂13,∞ is not significantly different from zero for any common
level of significance (e.g., 10%). On the other hand, ψ̂32,∞, the long-run effect
on consumption due to an impulse in income, is significant at an asymptotic
5% level.

For the interpretation of the Φ̂i’s, the critical remarks at the end of Chapter
2 must be kept in mind. As explained there, the Φ̂i and Ψ̂n coefficients may not
reflect the actual responses of the variables in the system. As an alternative,
one may want to determine the responses to orthogonal residuals. In order to
obtain the asymptotic covariance matrices of the Θ̂i and Ξ̂i, a decomposition
of Σ̂u is needed. For our example,

P̂ =

⎡⎣ 4.61 0 0
.16 1.16 0
.27 .49 .76

⎤⎦× 10−2

is the lower triangular matrix with positive diagonal elements satisfying P̂ P̂ ′ =
Σ̂u (Choleski decomposition). The asymptotic covariance matrix of vec(P̂ ) =
vec(Θ̂0) is a (9 × 9) matrix which is estimated as
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1
T

̂̄C0Σ̂σ̂
̂̄C ′

0 =
2
T
ĤD+

K(Σ̂u ⊗ Σ̂u)D+′
K Ĥ ′,

where, as usual, D+
K = (D′

KDK)−1D′
K and

Ĥ = L′
3

{
L3

[
(I3 ⊗ P̂ )K33 + (P̂ ⊗ I3)

]
L′

3

}−1

.

The resulting estimated asymptotic standard errors of the elements of P̂ are
given in Table 3.4. Note that the variances corresponding to elements above
the main diagonal of P̂ are all zero because these elements are zero by defini-
tion and are not estimated.

The asymptotic covariance matrix of the elements of

Θ̂1 =

⎡⎣ −1.196 .644 .730
.256 −.035 .219

−.047 .131 −.201

⎤⎦× 10−2

is obtained as the sum of the two matrices

Ĉ1Σ̂α̂Ĉ
′
1/T =

[
(P̂ ′ ⊗ I3)G1Σ̂α̂G

′
1(P̂ ⊗ I3)

]/
T

and̂̄C1Σ̂σ̂
̂̄C ′

1/T = (I3 ⊗ Φ̂1)ĤΣ̂σ̂Ĥ
′(I3 ⊗ Φ̂′

1)/T.

The resulting standard errors for the elements of Θ̂1 are given in Table 3.4
along with some more Θ̂i and Ξ̂n matrices.

Some responses and accumulated responses of consumption to income in-
novations with two-standard error bounds are depicted in Figures 3.8 and 3.9.
The responses in Figures 3.4 and 3.8 are obviously a bit different. Note the
(significant) immediate reaction of consumption in Figure 3.8. However, from
period 1 onwards the response of consumption in both figures is qualitatively
similar. The difference of scales is due to the different sizes of the shocks
traced through the system. For instance, Figure 3.4 is based on a unit shock
in income while Figure 3.8 is based on an innovation of size one standard
deviation due to the transformation of the white noise residuals.

Again, a test of overall significance of the impulse responses in Figure 3.8
could be performed using Bonferroni’s principle. Now we have to check the
significance of the θ̂32,i’s for i = 0, 1, . . . , 4 = p(K − 1). We reject the null
hypothesis of no response if at least one of the coefficients is significantly
different from zero. In this case, we can reject at an asymptotic 5% level of
significance because θ̂32,0 is significant at the 1% level (see Table 3.4). Thus,
we may choose individual significance levels of 1% for each of the 5 coefficients
and obtain 5% as an upper bound for the overall level. Of course, all these
interpretations are based on the assumption that the actual asymptotic stan-
dard errors of the impulse responses are nonzero (see Section 3.7.1, Remark
1).
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Table 3.4. Estimates of responses to orthogonal innovations for the invest-
ment/income/consumption system with estimated asymptotic standard errors
in parentheses

i Θ̂i Ξ̂i

0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4.61 0 0
(.38)

.16 1.16 0
(.14) (.10)

.27 .49 .76
(.11) (.10) (.06)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4.61 0 0
(.38)

.16 1.16 0
(.14) (.10)

.27 .49 .76
(.11) (.10) (.06)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1.20 .64 .73
(.57) (.56) (.50)

.26 −.04 .22
(.14) (.14) (.13)

−.05 .13 −.20
(.12) (.12) (.10)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3.46 .64 .73
(.63) (.56) (.50)

.41 1.13 .22
(.20) (.17) (.13)

.22 .62 .56
(.15) (.14) (.11)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.10 .51 .32
(.58) (.57) (.50)

.13 .09 −.07
(.14) (.14) (.12)

.28 .36 .08
(.12) (.12) (.10)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3.32 1.15 1.05
(.74) (.69) (.58)

.54 1.22 .15
(.24) (.22) (.17)

.50 .98 .64
(.20) (.18) (.14)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

∞ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3.97 1.61 .98
(.82) (.92) (.61)

.61 1.42 .26
(.31) (.34) (.22)

.58 1.06 .73
(.28) (.32) (.20)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

We have also performed forecast error variance decompositions and we
have computed the standard errors on the basis of the results given in Propo-
sition 3.6. For some forecast horizons the decompositions are given in Table
3.5. The standard errors may be regarded as rough indications of the sampling
uncertainty. It must be kept in mind, however, that they may be quite mis-
leading if the true forecast error variance components are zero, as explained
in Remark 6 of Section 3.7.1. Obviously, this qualification limits their value in
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Fig. 3.8. Estimated responses of consumption to an orthogonalized impulse in
income with estimated asymptotic two-standard error bounds.

the present example. Students are invited to reproduce the numbers in Table
3.5 and the previous tables of this section.

3.7.4 Investigating the Distributions of the Impulse Responses by
Simulation Techniques

In the previous subsections, it was indicated repeatedly that in some cases
the small sample validity of the asymptotic results is problematic. In that
situation, one possibility is to use Monte Carlo or bootstrapping methods for
investigating the sampling properties of the quantities of interest. Although
these methods are quite expensive in terms of computer time, they were used
in the past for evaluating the properties of impulse response functions (see,
e.g., Runkle (1987) and Kilian (1998, 1999)). The general methodology is
described in Appendix D.

In the present situation, there are different approaches to simulation. One
possibility is to assume a specific distribution of the white noise process, e.g.,
ut ∼ N (0, Σ̂u), and generate a large number of time series realizations based
on the estimated VAR coefficients. From these time series, new sets of coef-
ficients are then estimated and the corresponding impulse responses and/or
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Fig. 3.9. Estimated accumulated and long-run responses of consumption to an
orthogonalized impulse in income with estimated asymptotic two-standard error
bounds.

forecast error variance components are computed. The empirical distributions
obtained in this way may be used to investigate the actual distributions of
the quantities of interest.

Alternatively, if an assumption regarding the white noise distribution can-
not be made, bootstrap methods may be used and new sets of residuals may
be drawn from the estimation residuals. A large number of yt time series is
generated on the basis of these sets of disturbances. The bootstrap multiple
time series obtained in this way are then used to compute estimates of the
quantities of interest and study their properties. Three different methods for
computing bootstrap confidence intervals in the present context are described
in Appendix D.3. We have used the standard and the Hall percentile methods
to compute confidence intervals for the response of consumption to a fore-
cast error impulse and an orthogonalized impulse in income for our example
system. The results are shown in Figures 3.10 and 3.11, respectively.

Some interesting observations can be made. First, for the forecast error im-
pulse responses, the two different methods for establishing confidence intervals
produce quite similar results which are also at least qualitatively similar to
the asymptotic confidence intervals in Figure 3.4. Second, the situation is a
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Table 3.5. Forecast error variance decomposition of the investment/income/con-
sumption system with estimated asymptotic standard errors in parentheses

proportions of forecast error variance, h periods
ahead, accounted for by innovations in

forecast forecast
error horizon investment income consumption
in h ω̂j1,h ω̂j2,h ω̂j3,h

investment 1 1.00(.00) .00(.00) .00(.00)
(j = 1) 2 .96(.04) .02(.03) .02(.03)

3 .95(.04) .03(.03) .03(.03)
4 .94(.05) .03(.03) .03(.03)

8 .94(.05) .03(.03) .03(.04)

income 1 .02(.03) .98(.03) .00(.00)
(j = 2) 2 .06(.05) .91(.06) .03(.04)

3 .07(.06) .90(.07) .03(.04)
4 .07(.06) .89(.07) .04(.04)

8 .07(.06) .89(.07) .04(.04)

consumption 1 .08(.06) .27(.09) .65(.09)
(j = 3) 2 .08(.06) .27(.08) .65(.09)

3 .13(.08) .33(.09) .54(.09)
4 .13(.08) .34(.09) .54(.09)

8 .13(.08) .34(.09) .53(.09)

bit different for the orthogonalized impulse responses in Figure 3.11. Here the
two different bootstrap methods produce rather different confidence intervals.
These intervals are quite asymmetric in the sense that the estimated impulse
responses are not in the middle between the lower and upper bound of the in-
tervals. Thereby they also look quite differently from the asymptotic intervals
shown in Figure 3.8. The latter intervals are symmetric around the estimated
impulse response coefficients by construction. Again, the qualitative interpre-
tation does not change, however. In other words, the instantaneous and the
second coefficient are significantly different from zero, as before. Moreover,
the confidence intervals in Figure 3.11 are consistent with a rapidly declining
effect of an impulse in income.

It must be emphasized, however, that the bootstrap generally does not
solve the problem of a singular asymptotic distribution of the impulse re-
sponses and the resulting potentially invalid inference. If the asymptotic dis-
tribution is singular, the bootstrap may fail to produce meaningful confidence
intervals, for example. Again it may be worth considering a univariate AR(1)
process yt = αyt−1 + ut for illustrative purposes. The second forecast error
impulse response coefficient is Φ2 = α2. The corresponding estimator Φ̂2 = α̂2

was found to have a singular asymptotic distribution if α = 0 (see Remark 1
in Section 3.7.1). Suppose a bootstrap is used to produce N bootstrap esti-
mates of α, α̂∗

(n), n = 1, . . . , N . Clearly, the corresponding bootstrap estimates
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Fig. 3.10. Estimated responses (——) of consumption to a forecast error impulse in
income with 95% bootstrap confidence bounds based on 2000 bootstrap replications
(— — standard intervals, - - - Hall’s percentile intervals).

Φ̂∗
2(n) = α̂∗2

(n) will all be positive with probability one because they are squares.
Thus, if the standard (1−γ)100% bootstrap confidence interval is constructed
in the usual way by choosing Φ̂∗

2(Nγ/2) and Φ̂∗
2(N(1−γ)/2) as lower and upper

bound, respectively, the true value of zero will never be within the confidence
interval. Hence, in this case the actual confidence level will be zero. Although
the Hall confidence intervals may be a bit better in this case, they will also
not provide the desired coverage level even in large samples. A more detailed
discussion of this problem is given by Benkwitz et al. (2000), where also meth-
ods for correct asymptotic inference are considered. One possible solution is
to eliminate all points where nonsingularities of the asymptotic distribution
may occur by fitting subset models (see Chapter 5). Another possibility to cir-
cumvent the problem is to allow the VAR process to be of infinite order and
increase the order with growing sample size. This possibility will be discussed
in detail in Chapter 15.
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Fig. 3.11. Estimated responses (——) of consumption to an orthogonalized im-
pulse in income with 95% bootstrap confidence bounds based on 2000 bootstrap
replications (— — standard intervals, - - - Hall’s percentile intervals).

3.8 Exercises

3.8.1 Algebraic Problems

The notation of Sections 3.2–3.5 is used in the following problems.

Problem 3.1
Show that β̂ = ((ZZ′)−1Z ⊗ IK)y minimizes

S̄(β) = u′u = [y − (Z ′ ⊗ IK)β]′[y − (Z ′ ⊗ IK)β].

Problem 3.2
Prove that

√
T (b̂ − b) d→N (0, Σu ⊗ Γ−1),

if yt is stable and

1√
T

vec(ZU ′) =
1√
T

(IK ⊗ Z)vec(U ′) d→N (0, Σu ⊗ Γ ).
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Problem 3.3
Show (3.4.17). (Hint: Use the product rule for matrix differentiation and
∂ vec(Σ−1

u )/∂ vec(Σu)′ = −Σ−1
u ⊗Σ−1

u .)

Problem 3.4
Derive (3.4.18). (Hint: Use the last expression given in (3.4.6).)

Problem 3.5
Show (3.4.19).

Problem 3.6
Derive (3.4.20).

Problem 3.7
Prove that plim z̃T /

√
T = 0, where

z̃T =
p∑

i=1

Ãi

i−1∑
j=0

(y−j − yT−j).

(Hint: Show that E(z̃T /
√
T )→ 0 and Var(z̃T/

√
T )→ 0.)

Problem 3.8
Show that Equation (3.5.10) holds.
(Hint: Define

Zt(h) :=

⎡⎢⎢⎢⎣
1

yt(h)
...

yt(h− p + 1)

⎤⎥⎥⎥⎦
and show Zt(h) = BZt(h− 1) by induction.)

Problem 3.9
In the context of Section 3.5, suppose that yt is a stable Gaussian VAR(p)
process which is estimated by ML in mean-adjusted form. Show that the
forecast MSE correction term has the form

Ω(h) = E

(
∂yt(h)
∂µ′ Σµ̃

∂yt(h)′

∂µ

)
+ E

(
∂yt(h)
∂α′ Σα̃

∂yt(h)′

∂α

)
,

with

∂yt(h)
∂µ′ = IK − JAh

⎡⎢⎣ IK

...
IK

⎤⎥⎦
(Kp×K)

and
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∂yt(h)
∂α′ =

h−1∑
i=0

(Yt − µ)′(A′)h−1−i ⊗ Φi.

Here µ := (µ′, . . . , µ′)′ is a (Kp×1) vector, Yt and A are as defined in (2.1.8),
J := [IK : 0 : · · · : 0] is a (K × Kp) matrix, and Φi is the i-th coefficient
matrix of the prediction error MA representation (2.1.17).

Problem 3.10
Derive the ML estimator and its asymptotic distribution for the parameter of
a stable AR(1) process, yt = αyt−1 + ut, ut ∼ i.i.d.N (0, σ2

u).

3.8.2 Numerical Problems

The following problems require the use of a computer. They are based on
the two quarterly, seasonally adjusted U.S. investment series given in File E2.
Consider the variables

y1 – first differences of fixed investment,
y2 – first differences of change in business inventories,

in the following problems. Use the data from 1947 to 1968 only.

Problem 3.11
Plot the two time series y1t and y2t and comment on the stationarity and
stability of the series.

Problem 3.12
Estimate the parameters of a VAR(1) model for (y1t, y2t)′ using multivariate
LS, that is, compute B̂ and Σ̂u. Comment on the stability of the estimated
process.

Problem 3.13
Use the mean-adjusted form of a VAR(1) model and estimate the coefficients.
Assume that the data generation process is Gaussian and estimate the covari-
ance matrix of the asymptotic distribution of the ML estimators.

Problem 3.14
Determine the Yule-Walker estimate of the VAR(1) coefficient matrix and
compare it to the LS estimate.

Problem 3.15
Use the LS estimate and compute point forecasts ŷ86(1), ŷ86(2) (that is, the
forecast origin is the last quarter of 1968) and the corresponding MSE matrices
Σ̂y(1), Σ̂y(2), Σ̂ŷ(1), and Σ̂ŷ(2). Use these estimates to set up approximate
95% interval forecasts assuming that the process yt is Gaussian.

Problem 3.16
Test the hypothesis that y2 does not Granger-cause y1.
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Problem 3.17
Estimate the coefficient matrices Φ1 and Φ2 from the LS estimates of the
VAR(1) model for yt and determine approximate standard errors of the esti-
mates.

Problem 3.18
Determine the upper triangular matrix P̂ with positive diagonal for which
P̂ P̂ ′ = Σ̂u. Estimate the covariance matrix of the asymptotic distribution of
P̂ under the assumption that yt is Gaussian. Test the hypothesis that the
upper right-hand corner element of the underlying matrix P is zero.

Problem 3.19
Use the results of the previous problems to compute Θ̂0, Θ̂1, and Θ̂2. Deter-
mine also estimates of the asymptotic standard errors of the elements of these
three matrices.



4

VAR Order Selection and Checking the Model
Adequacy

4.1 Introduction

In the previous chapter, we have assumed that we have given a K-dimensional
multiple time series y1, . . . , yT , with yt = (y1t, . . . , yKt)′, which is known to
be generated by a VAR(p) process,

yt = ν + A1yt−1 + · · · + Apyt−p + ut, (4.1.1)

and we have discussed estimation of the parameters ν,A1, . . . , Ap, and Σu =
E(utu

′
t). In deriving the properties of the estimators, a number of assumptions

were made. In practice, it will rarely be known with certainty whether the
conditions hold that are required to derive the consistency and asymptotic
normality of the estimators. Therefore statistical tools should be used in order
to check the validity of the assumptions made. In this chapter, some such tools
will be discussed.

In the next two sections, it will be discussed what to do if the VAR order
p is unknown. In practice, the order will usually be unknown. In Chapter 3,
we have assumed that a VAR(p) process such as (4.1.1) represents the data
generation process. We have not assumed that all the Ai are nonzero. In
particular Ap may be zero. In other words, p is just assumed to be an upper
bound for the VAR order. On the other hand, from (3.5.13) we know that the
approximate MSE matrix of the 1-step ahead predictor will increase with the
order p. Thus, choosing p unnecessarily large will reduce the forecast precision
of the corresponding estimated VAR(p) model. Also, the estimation precision
of the impulse responses depends on the precision of the parameter estimates.
Therefore it is useful to have procedures or criteria for choosing an adequate
VAR order.

In Sections 4.4–4.6, possibilities are discussed for checking some of the as-
sumptions of the previous chapters. The asymptotic distribution of the resid-
ual autocorrelations and so-called portmanteau tests are considered in Section
4.4. The latter tests are popular tools for checking the whiteness of the residu-
als. More precisely, they are used to test for nonzero residual autocorrelation.
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In Section 4.5, tests for nonnormality are considered. The normality assump-
tion was used in Chapter 3 in setting up forecast intervals.

One assumption underlying much of the previous analysis is the station-
arity of the systems considered. Nonstationarities may have various forms.
Not only trends indicate deviations from stationarity but also changes in the
variability or variance of the system. Moreover, exogenous shocks may affect
various characteristics of the system. Tests for structural change are presented
in Section 4.6.

4.2 A Sequence of Tests for Determining the VAR Order

Obviously, there is not just one correct VAR order for the process (4.1.1). In
fact, if (4.1.1) is a correct summary of the characteristics of the process yt,
then the same is true for

yt = ν + A1yt−1 + · · · + Apyt−p + Ap+1yt−p−1 + ut

with Ap+1 = 0. In other words, if yt is a VAR(p) process, in this sense it is
also a VAR(p + 1) process. In the assumptions of the previous chapter, the
possibility of zero coefficient matrices is not excluded. In this chapter, it is
practical to have a unique number that is called the order of the process.
Therefore, in the following we will call yt a VAR(p) process if Ap �= 0 and
Ai = 0 for i > p so that p is the smallest possible order. This unique number
will be called the VAR order.

4.2.1 The Impact of the Fitted VAR Order on the Forecast MSE

If yt is a VAR(p) process, it is useful to fit a VAR(p) model to the available
multiple time series and not, for instance, a VAR(p + i) because, under a
mean square error measure, forecasts from the latter process will be inferior
to those based on an estimated VAR(p) model. This result follows from the
approximate forecast MSE matrix Σŷ(h) derived in Section 3.5.2 of Chapter
3. For instance, for h = 1,

Σŷ(1) =
T + Kp + 1

T
Σu,

if a VAR(p) model is fitted to data generated by a K-dimensional VAR process
with order not greater than p. Obviously, Σŷ(1) is an increasing function of
the order of the model fitted to the data.

Because the approximate MSE matrix is derived from asymptotic theory,
it is of interest to know whether the result remains true in small samples.
To get some feeling for the answer to this question, we have generated 1000
Gaussian bivariate time series with a process similar to (3.2.25),
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yt =
[
.02
.03

]
+

[
.5 .1
.4 .5

]
yt−1 +

[
0 0
.25 0

]
yt−2 + ut,

Σu =
[
.09 0
0 .04

]
. (4.2.1)

We have fitted VAR(2), VAR(4), and VAR(6) models to the generated series
and we have computed forecasts with the estimated models. Then we have
compared these forecasts to generated post-sample values. The resulting av-
erage squared forecasting errors for different forecast horizons h and sample
sizes T are shown in Table 4.1. Obviously, the forecasts based on estimated
VAR(2) models are clearly superior to the VAR(4) and VAR(6) forecasts for
sample sizes T = 30, 50, and 100. While the comparative advantage of the
VAR(2) models is quite dramatic for T = 30, it diminishes with increasing
sample size. This, of course, was to be expected given that the approximate
forecast MSE matrix of an estimated process approaches that of the known
process as the sample size increases (see Section 3.5).

Table 4.1. Average squared forecast errors for the estimated bivariate VAR(2)
process (4.2.1) based on 1000 realizations

sample forecast average squared forecast errors
size horizon VAR(2) VAR(4) VAR(6)
T h y1 y2 y1 y2 y1 y2

1 .111 .052 .132 .062 .165 .075
30 2 .155 .084 .182 .098 .223 .119

3 .146 .141 .183 .166 .225 .202

1 .108 .043 .119 .048 .129 .054
50 2 .132 .075 .144 .083 .161 .093

3 .142 .120 .150 .130 .168 .145

1 .091 .044 .095 .046 .098 .049
100 2 .120 .064 .125 .067 .130 .069

3 .130 .108 .135 .113 .140 .113

Of course, the process considered in this example is a very special one. To
see whether a similar result is obtained for other processes as well, we have
also generated 1000 three-dimensional time series with the VAR(1) process
(2.1.14),

yt =

⎡⎣ .01
.02
0

⎤⎦ +

⎡⎣ .5 0 0
.1 .1 .3
0 .2 .3

⎤⎦ yt−1 + ut with Σu =

⎡⎣ 2.25 0 0
0 1.0 .5
0 .5 .74

⎤⎦ .

(4.2.2)
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We have fitted VAR(1), VAR(3), and VAR(6) models to these data and we
have computed forecasts and forecast errors. Some average squared forecast
errors are presented in Table 4.2. Again forecasts from lower order models are
clearly superior to higher order models. In fact, in a large scale simulation
study involving many more processes, similar results were found (see Lütke-
pohl (1985)). Thus, it is useful to avoid fitting VAR models with unnecessarily
large orders.

Table 4.2. Average squared forecast errors for the estimated three-dimensional
VAR(1) process (4.2.2) based on 1000 realizations

sample forecast average squared forecast errors
size horizon VAR(1) VAR(3) VAR(6)
T h y1 y2 y3 y1 y2 y3 y1 y2 y3

1 .87 1.14 2.68 1.14 1.52 3.62 2.25 2.78 6.82
30 2 1.09 1.21 3.21 1.44 1.67 4.12 2.54 2.98 7.85

3 1.06 1.31 3.32 1.35 1.58 4.23 2.59 2.79 8.63

1 .81 1.03 2.68 .96 1.22 2.97 1.18 1.53 3.88
50 2 1.01 1.23 2.92 1.20 1.40 3.47 1.48 1.68 4.38

3 1.01 1.29 3.11 1.12 1.44 3.48 1.42 1.77 4.66

1 .73 .93 2.35 .77 1.00 2.62 .86 1.12 2.91
100 2 .94 1.15 2.86 1.00 1.24 3.12 1.12 1.38 3.53

3 .90 1.15 3.02 .93 1.20 3.23 1.03 1.35 3.51

The question is then what to do if the true order is unknown and an upper
bound, say M , for the order is known only. One possibility to check whether
certain coefficient matrices may be zero is to set up a significance test. For
our particular problem of determining the correct VAR order, we may set
up a sequence of tests. First H0 : AM = 0 is tested. If this null hypothesis
cannot be rejected, we test H0 : AM−1 = 0 and so on until we can reject a
null hypothesis. Before we discuss this procedure in more detail, we will now
introduce a possible test statistic.

4.2.2 The Likelihood Ratio Test Statistic

Because we just need to test zero restrictions on the coefficients of a VAR
model, we may use the Wald statistic discussed in Section 3.6 in the context
of causality tests. To shed some more light on this type of statistic, it may
be instructive to consider the likelihood ratio testing principle. It is based
on comparing the maxima of the log-likelihood function over the unrestricted
and restricted parameter space. Specifically, the likelihood ratio statistic is

λLR = 2[ln l(δ̃) − ln l(δ̃r)], (4.2.3)
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where δ̃ is the unrestricted ML estimator for a parameter vector δ obtained
by maximizing the likelihood function over the full feasible parameter space
and δ̃r is the restricted ML estimator which is obtained by maximizing the
likelihood function over that part of the parameter space where the restrictions
of interest are satisfied (see Appendix C.7). For the case of interest here, where
we have linear constraints for the coefficients of a VAR process, λLR can be
shown to have an asymptotic χ2-distribution with as many degrees of freedom
as there are distinct linear restrictions.

To obtain this result, let us assume for the moment that yt is a stable
Gaussian (normally distributed) VAR(p) process as in (4.1.1). Using the no-
tation of Section 3.2.1 (as opposed to the mean-adjusted form considered in
Section 3.4), the log-likelihood function is

ln l(β, Σu) = −KT

2
ln 2π − T

2
ln|Σu|

−1
2

[y − (Z ′ ⊗ IK)β]′ (IT ⊗Σ−1
u ) [y − (Z ′ ⊗ IK)β] (4.2.4)

(see (3.4.5)). The first order partial derivatives with respect to β are

∂ ln l
∂β

= (Z ⊗Σ−1
u )y − (ZZ′ ⊗Σ−1

u )β. (4.2.5)

Equating to zero and solving for β gives the unrestricted ML/LS estimator

β̃ = ((ZZ ′)−1Z ⊗ IK)y. (4.2.6)

Suppose the restrictions for β are given in the form

Cβ = c, (4.2.7)

where C is a known (N×(K2p+K)) matrix of rank N and c is a known (N×1)
vector. Then the restricted ML estimator may be found by a Lagrangian
approach (see Appendix A.14). The Lagrange function is

L(β, γ) = ln l(β) + γ′(Cβ − c), (4.2.8)

where γ is an (N×1) vector of Lagrange multipliers. Of course, L also depends
on Σu. Because these parameters are not involved in the restrictions (4.2.7),
we have skipped them there. The restricted maximum of the log-likelihood
function with respect to β is known to be attained at a point where the first
order partial derivatives of L are zero.

∂L
∂β

= (Z ⊗Σ−1
u )y − (ZZ′ ⊗Σ−1

u )β + C′γ, (4.2.9a)

∂L
∂γ

= Cβ − c. (4.2.9b)
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Equating to zero and solving gives

β̃r = β̃ +
[
(ZZ′)−1 ⊗Σu

]
C ′ [C((ZZ′)−1 ⊗Σu)C′]−1

(c− Cβ̃) (4.2.10)

(see Problem 4.1).
Because for any given coefficient matrix B0 the maximum of ln l with

respect to Σu is obtained for

Σ0
u =

1
T

(Y −B0Z)(Y −B0Z)′

(see Section 3.4.2, (3.4.8) and (3.4.11)), the maximum for the unrestricted
case is attained for

Σ̃u =
1
T

(Y − B̃Z)(Y − B̃Z)′ (4.2.11)

and for the restricted case we get

Σ̃r
u =

1
T

(Y − B̃rZ)(Y − B̃rZ)′. (4.2.12)

Here B̃ and B̃r are the coefficient matrices corresponding to β̃ and β̃r , re-
spectively, that is, β̃ = vec(B̃) and β̃r = vec(B̃r ). Thus, for this particular
situation, the likelihood ratio statistic becomes

λLR = 2[ln l(β̃, Σ̃u) − ln l(β̃r , Σ̃
r
u)].

This statistic can be shown to have an asymptotic χ2(N)-distribution. In
fact, this result also holds if yt is not Gaussian, but has a distribution from
a larger family. If yt is not Gaussian, the estimators obtained by maximizing
the Gaussian likelihood function in (4.2.4) are called quasi ML estimators. We
will now state the previous results formally and then present a proof.

Proposition 4.1 (Asymptotic Distribution of the LR Statistic)
Let yt be a stationary, stable VAR(p) process as in (4.1.1) with standard white
noise ut (see Definition 3.1). Suppose the true parameter vector β satisfies
linear constraints Cβ = c, where C is an (N × (K2p + K)) matrix of rank
N and c is an (N × 1) vector. Moreover, let ln l denote the Gaussian log-
likelihood function and let β̃ and β̃r be the (quasi) ML and restricted (quasi)
ML estimators, respectively, with corresponding estimators Σ̃u and Σ̃r

u of the
white noise covariance matrix Σu given in (4.2.11) and (4.2.12). Then

λLR = 2
[
ln l(β̃, Σ̃u) − ln l(β̃r , Σ̃

r
u)
]

= T (ln|Σ̃r
u| − ln|Σ̃u|) (4.2.13a)

= (β̃r − β̃)′(ZZ′ ⊗ Σ̃−1
u )(β̃r − β̃) (4.2.13b)

= (β̃r − β̃)′(ZZ′ ⊗ (Σ̃r
u)−1)(β̃r − β̃) + op(1) (4.2.13c)

= (Cβ̃ − c)′
[
C((ZZ ′)−1 ⊗ Σ̃u)C′

]−1

(Cβ̃ − c) + op(1) (4.2.13d)

= (Cβ̃ − c)′
[
C((ZZ ′)−1 ⊗ Σ̃r

u)C′
]−1

(Cβ̃ − c) + op(1) (4.2.13e)
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and

λLR
d→χ2(N).

Here T is the sample size (time series length) and Z := (Z0, . . . , ZT−1) with
Z ′

t := (1, y′t, . . . , y
′
t−p+1).

In this proposition, the quantity op(1) denotes a sequence which converges
to zero in probability when the sample size T → ∞ (see Appendix C.2). Note
that yt is not assumed to be Gaussian (normally distributed) in the propo-
sition. It is just assumed that ut is independent white noise with bounded
fourth moments. Thus, ln l may not really be the log-likelihood function of y
:= vec(y1, . . . , yT ). It will only be the actual log-likelihood if y happens to be
multivariate normal. In that case, β̃ and β̃r are actual ML and restricted ML
estimators. Otherwise they are quasi ML estimators.

The second form of the LR statistic in (4.2.13a) is sometimes convenient for
computing the actual test value. It is also useful for comparing the likelihood
ratio tests to other procedures for VAR order selection, as we will see in Section
4.3. The expression in (4.2.13b) shows the similarity of the LR statistic to the
LM statistic given in (4.2.13c). Using (4.2.5) and

∂2 ln l
∂β∂β′ = −(ZZ ′ ⊗Σ−1

u )

gives

λLM =
∂ ln l(β̃r)

∂β′
∂2 ln l(β̃r)
∂β∂β′

∂ ln l(β̃r)
∂β

= (β̃r − β̃)′(ZZ ′⊗(Σ̃r
u)−1)(β̃r − β̃)

(see Appendix C.7 and Problem 4.5). Notice that in the present case we may
ignore the part of the parameter vector which corresponds to Σu because its
ML estimator is asymptotically independent of the other parameters and the
asymptotic covariance matrix is block-diagonal. Therefore, at least asymptot-
ically, the terms related to scores of the covariance parameters vanish from
the LM statistic.

Comparing (4.2.13d) to (3.6.5) shows that, for the special case consid-
ered here, the LR statistic is also similar to the Wald statistic. In fact, the
important difference between the Wald and LR statistics is that the former
involves only estimators of the unrestricted model while both unrestricted and
restricted estimators enter into λLR (see also (4.2.13a)). The final form of the
statistic given in (4.2.13e) provides another useful expression which is close to
both the LR and the LM statistic. It shows that we may use the covariance
matrix estimator from the restricted model instead of the unrestricted one.

As in the case of the Wald test, one may consider using the statistic λLR/N
in conjunction with the F (N,T −Kp− 1)-distribution in small samples. An-
other adjustment was suggested by Hannan (1970, p. 341).
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Proof of Proposition 4.1:
We first show the equivalence of the various forms of the LR statistic given in
the proposition. The equality in (4.2.13a) follows by noting that

[y − (Z ′ ⊗ IK)β]′ (IT ⊗Σ−1
u ) [y − (Z ′ ⊗ IK)β]

= tr[(Y −BZ)′Σ−1
u (Y −BZ)]

= tr[Σ−1
u (Y −BZ)(Y −BZ)′].

Replacing the matrices B and Σu by B̃ and Σ̃u, respectively, gives

ln l(β̃, Σ̃u) = constant − T

2
ln |Σ̃u|.

Similarly,

ln l(β̃r , Σ̃
r
u) = constant − T

2
ln |Σ̃r

u|,

which gives the desired result.
In order to prove (4.2.13b), we observe that ln l is a quadratic function

in β. Thus, by Taylor’s theorem (Appendix A.13, Proposition A.3), for an
arbitrary fixed vector β0,

ln l(β) = ln l(β0) +
∂ ln l(β0)

∂β′ (β − β0)

+
1
2
(β − β0)′

∂2 ln l(β0)
∂β∂β′ (β − β0).

Choosing β̃ for β0 and β̃r for β, ∂ ln l(β̃)/∂β′ = 0 so that

λLR = 2
[
ln l(β̃) − ln l(β̃r )

]
= −(β̃r − β̃)′

∂2 ln l(β̃)
∂β∂β′ (β̃r − β̃). (4.2.14)

As in Section 3.4, we can derive

∂2 ln l
∂β∂β′ = −(ZZ′ ⊗Σ−1

u ).

Hence, (4.2.13b) follows and (4.2.13c) is an immediate consequence of the
fact that the restricted and unrestricted covariance matrix estimators are
consistent by Proposition 3.2. Thus, plim(Σ̃u − Σ̃r

u) = 0 which can be used to
show (4.2.13c).

Using (4.2.10) and (4.2.14) gives

λLR = (Cβ̃ − c)′
[
C((ZZ′)−1 ⊗Σu)C′]−1

×C((ZZ ′)−1 ⊗Σu)(ZZ ′ ⊗ Σ̃−1
u )((ZZ′)−1 ⊗Σu)C ′

× [
C((ZZ′)−1 ⊗Σu)C′]−1

(Cβ̃ − c).
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The result (4.2.13d) follows by replacing Σu with Σ̃u and noting that this is a
consistent estimator of Σu. Again by consistency of Σ̃r

u, using this estimator
instead of Σ̃u changes the statistic only by a term which vanishes in probability
as the sample size increases. Hence, we have (4.2.13e).

The asymptotic χ2(N)-distribution of λLR now follows from Proposition
C.15(5) of Appendix C because [C((ZZ ′/T )−1 ⊗ Σ̃r

u)C′]−1 is a consistent
estimator of [C(Γ−1 ⊗Σu)C′]−1.

In the next subsection a sequential testing scheme based on LR tests is
discussed.

4.2.3 A Testing Scheme for VAR Order Determination

Assuming that M is known to be an upper bound for the VAR order, the
following sequence of null and alternative hypotheses may be tested using LR
tests:

H1
0 : AM = 0 versus H1

1 : AM �= 0
H2

0 : AM−1 = 0 versus H2
1 : AM−1 �= 0 |AM = 0

...
Hi

0 : AM−i+1 = 0 versus Hi
1 : AM−i+1 �= 0

|AM = · · · = AM−i+2 = 0
...

HM
0 : A1 = 0 versus HM

1 : A1 �= 0 |AM = · · · = A2 = 0.
(4.2.15)

In this scheme, each null hypothesis is tested conditionally on the previous
ones being true. The procedure terminates and the VAR order is chosen ac-
cordingly, if one of the null hypotheses is rejected. That is, if Hi

0 is rejected,
p̂ = M − i + 1 will be chosen as estimate of the autoregressive order.

The likelihood ratio statistic for testing the i-th null hypothesis is

λLR(i) = T [ln|Σ̃u(M − i)| − ln|Σ̃u(M − i + 1)|], (4.2.16)

where Σ̃u(m) denotes the ML estimator of Σu when a VAR(m) model is
fitted to a time series of length T . By Proposition 4.1, this statistic has an
asymptotic χ2(K2)-distribution if Hi

0 and all previous null hypotheses are
true. Note that K2 parameters are set to zero in Hi

0. Hence, we have to test
K2 restrictions and we use λLR(i) in conjunction with critical values from
a χ2(K2)-distribution. Alternatively, one may use λLR(i)/K2 in conjunction
with the F (K2, T −K(M − i + 1) − 1)-distribution.

Of course, the order chosen for a particular process will depend on the
significance levels used in the tests. In this procedure, it is important to realize
that the significance levels of the individual tests must be distinguished from
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the Type I error of the whole procedure because rejection of Hi
0 means that

Hi+1
0 , . . . , HM

0 are automatically rejected too. Thus, denoting by Dj the event
that Hj

0 is rejected in the j-th test when it is actually true, the probability of
a Type I error for the i-th test in the sequence is

εi = Pr(D1 ∪D2 ∪ · · · ∪Di).

Because Dj is the event that λLR(j) falls in the rejection region, although
Hj

0 is true, γj = Pr(Dj) is just the significance level of the j-th individual
test. It can be shown that for m �= j and m, j ≤ i, λLR(m) and λLR(j) are
asymptotically independent statistics if H1

0 , . . . , H
i
0 are true (see Paulsen &

Tjøstheim (1985, pp. 223–224)). Hence, Dm and Dj are independent events
in large samples so that

εi = Pr(D1 ∪ · · · ∪Di−1) + Pr(Di) − Pr{(D1 ∪ · · · ∪Di−1) ∩Di}
= εi−1 + γi − εi−1γi = εi−1 + γi(1 − εi−1), i = 2, 3, . . . ,M. (4.2.17)

Of course, ε1 = γ1. Thus, it is easily seen by induction that

εi = 1 − (1 − γ1) · · · (1 − γi), i = 1, 2, . . . ,M. (4.2.18)

If, for example, a 5% significance level is chosen for each individual test (γi =
.05), then

ε1 = .05, ε2 = 1 − .95 × .95 = .0975, ε3 = .142625.

Hence, the actual rejection probability will become quite substantial if the
sequence of null hypotheses to be tested is long.

It is difficult to decide on appropriate significance levels in the testing
scheme (4.2.15). Whatever significance levels the researcher decides to use,
she or he should keep in mind the distinction between the overall and the
individual significance levels. Also, it must be kept in mind that we know the
asymptotic distributions of the LR statistics only. Thus, the significance levels
chosen will be approximate probabilities of Type I errors only.

Finally, in the literature another testing scheme was also suggested and
used. In that scheme the first set of hypotheses (i = 1) is as in (4.2.15) and
for i > 1 the following hypotheses are tested:

Hi
0 : AM = · · · = AM−i+1 = 0 versus Hi

1 : AM �= 0 or . . . or AM−i+1 �= 0.

Here Hi
0 is not tested conditionally on the previous null hypotheses being

true but it is tested against the full VAR(M) model. Unfortunately, the LR
statistics to be used in such a sequence will not be independent so that the
overall significance level (probability of Type I error) is difficult to determine.
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4.2.4 An Example

To illustrate the sequential testing procedure described in the foregoing, we use
the investment/income/consumption example from Section 3.2.3. The vari-
ables y1, y2, and y3 represent first differences of the logarithms of the invest-
ment, income, and consumption data. We assume an upper bound of M = 4
for the VAR order and therefore we set aside the first 4 values as presample
values. The data up to 1978.4 are used for estimation so that the sample size
is T = 71 in each test. The estimated error covariance matrices and their
determinants are given in Table 4.3. The corresponding χ2- and F -test values
are summarized in Table 4.4. Because the denominator degrees of freedom
for the F -statistics are quite large (ranging from 62 to 70), the F -tests are
qualitatively similar to the χ2-tests. Using individual significance levels of .05
in each test, H3

0 : A2 = 0 is the first null hypothesis that is rejected. Thus,
the estimated order from both tests is p̂ = 2. This supports the order chosen
in the example in Chapter 3. Alternative procedures for choosing VAR orders
are considered in the next section.

Table 4.3. ML estimates of the error covariance matrix
of the investment/income/consumption system

VAR
order

m Σ̃u(m) × 104 |Σ̃u(m)| × 1011

0

⎡⎣ 21.83 .410 1.228
· 1.420 .571
· · 1.084

⎤⎦ 2.473

1

⎡⎣ 20.14 .493 1.173
· 1.318 .625
· · 1.018

⎤⎦ 1.782

2

⎡⎣ 19.18 .617 1.126
· 1.270 .574
· · .821

⎤⎦ 1.255

3

⎡⎣ 19.08 .599 1.126
· 1.235 .543
· · .784

⎤⎦ 1.174

4

⎡⎣ 16.96 .573 1.252
· 1.234 .544
· · .765

⎤⎦ .958
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Table 4.4. LR statistics for the investment/income/consumption system

VAR order

i Hi
0 under Hi

0 λLR
a λLR/9b

1 A4 = 0 3 14.44 1.60
2 A3 = 0 2 4.76 .53
3 A2 = 0 1 24.90 2.77
4 A1 = 0 0 23.25 2.58
a Critical value for individual 5% level test: χ2(9).95 = 16.92.
b Critical value for individual 5% level test: F (9, 71 − 3(5 − i) − 1).95 ≈ 2

4.3 Criteria for VAR Order Selection

Although performing statistical tests is a common strategy for detecting
nonzero parameters, the approach described in the previous section is not com-
pletely satisfactory if a model is desired for a specific purpose. For instance,
a VAR model is often constructed for prediction of the variables involved.
In such a case, we are not so much interested in finding the correct order of
the underlying data generation process but we are interested in obtaining a
good model for prediction. Hence, it seems useful to take the objective of the
analysis into account when choosing the VAR order. In the next subsection,
we will discuss criteria based on the forecasting objective.

If we really want to know the exact order of the data generation process
(e.g., for analysis purposes) it is still questionable whether a testing procedure
is the optimal strategy because that strategy has a positive probability of
choosing an incorrect order even if the sample size (time series length) is large
(see Section 4.3.3). In Section 4.3.2 we will present estimation procedures that
choose the correct order with probability 1 at least in large samples.

4.3.1 Minimizing the Forecast MSE

If forecasting is the objective, it makes sense to choose the order such that a
measure of forecast precision is minimized. The forecast MSE (mean squared
error) is such a measure. Therefore Akaike (1969, 1971) suggested to base the
VAR order choice on the approximate 1-step ahead forecast MSE given in
Chapter 3, (3.5.13),

Σŷ(1) =
T + Km + 1

T
Σu,

where m denotes the order of the VAR process fitted to the data, T is the
sample size, and K is the dimension of the time series. To make this criterion
operational, the white noise covariance matrix Σu has to be replaced by an
estimate. Also, to obtain a unique solution we would like to have a scalar
criterion rather than a matrix. Akaike suggested using the LS estimator with
degrees of freedom adjustment,
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Σ̂u(m) =
T

T −Km− 1
Σ̃u(m),

for Σu and taking the determinant of the resulting expression. Here Σ̃u(m)
is the ML estimator of Σu obtained by fitting a VAR(m) model, as in the
previous section. The resulting criterion is called the final prediction error
(FPE) criterion, that is,

FPE(m) = det
[
T + Km + 1

T

T

T −Km− 1
Σ̃u(m)

]
=

[
T + Km + 1
T −Km− 1

]K

det Σ̃u(m). (4.3.1)

We have written the criterion in terms of the ML estimator of the covariance
matrix because in this form the FPE criterion has intuitive appeal. If the
order m is increased, det Σ̃u(m) declines while the multiplicative term (T +
Km + 1)/(T − Km − 1) increases. The VAR order estimate is obtained as
that value for which the two forces are balanced optimally. Note that the
determinant of the LS estimate Σ̂u(m) may increase with increasing m. On
the other hand, it is quite obvious that |Σ̃u(m)| cannot become larger when m
increases because the maximum of the log-likelihood function is proportional
to −ln|Σ̃u(m)| apart from an additive constant and, for m < n, a VAR(m)
model may be interpreted as a restricted VAR(n) model. Thus, −ln|Σ̃u(m)| ≤
−ln|Σ̃u(n)| or |Σ̃u(m)| ≥ |Σ̃u(n)|.

Based on the FPE criterion, the estimate p̂(FPE) of p is chosen such that

FPE[p̂(FPE)] = min{FPE(m)|m = 0, 1, . . . ,M}.
That is, VAR models of orders m = 0, 1, . . . ,M are estimated and the corre-
sponding FPE(m) values are computed. The order minimizing the FPE values
is then chosen as estimate for p.

Akaike (1973, 1974), based on a quite different reasoning, derived a very
similar criterion usually abbreviated by AIC (Akaike’s Information Criterion).
For a VAR(m) process the criterion is defined as

AIC(m) = ln|Σ̃u(m)| + 2
T

(number of freely estimated parameters)

= ln|Σ̃u(m)| + 2mK2

T
. (4.3.2)

The estimate p̂(AIC) for p is chosen so that this criterion is minimized. Here
the constants in the VAR model may be ignored as freely estimated parameters
because counting them would just add a constant to the criterion which does
not change the minimizing order.

The similarity of the criteria AIC and FPE can be seen by noting that,
for a constant N ,

T + N

T −N
= 1 +

2N
T

+ O(T−2).
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The quantity O(T−2) denotes a sequence of order T−2, that is, a sequence
indexed by T that remains bounded if multiplied by T 2 (see Appendix C.2).
Thus, the sequence goes to zero rapidly when T → ∞. Hence,

ln FPE(m) = ln|Σ̃u(m)| + K ln [(T + Km + 1)/(T −Km− 1)]

= ln |Σ̃u(m)| + K ln
[
1 + 2(Km + 1)/T + O(T−2)

]
= ln |Σ̃u(m)| + K

2(Km + 1)
T

+ O(T−2)

= AIC(m) + 2K/T + O(T−2). (4.3.3)

The third equality sign follows from a Taylor series expansion of ln(1 + x)
around 1. The term 2K/T does not depend on the order m and, hence, AIC(m)
+ 2K/T and AIC(m) assume their minimum for the same value of m. Con-
sequently, AIC and ln FPE differ essentially by a term of order O(T−2) and,
thus, the two criteria will be about equivalent for moderate and large T .

To illustrate these procedures for VAR order selection, we use again the
investment/income/consumption example. The determinants of the residual
covariance matrices are given in Table 4.3. Using these determinants, the FPE
and AIC values presented in Table 4.5 are obtained. Both criteria reach their
minimum for p̂ = 2, that is, p̂(FPE) = p̂(AIC) = 2. The other quantities given
in the table will be discussed shortly.

Table 4.5. Estimation of the VAR order of the investment/income/consumption
system

VAR order
m FPE(m) ×1011 AIC(m) HQ(m) SC(m)

0 2.691 −24.42 −24.42∗ −24.42∗

1 2.500 −24.50 −24.38 −24.21
2 2.272∗ −24.59∗ −24.37 −24.02
3 2.748 −24.41 −24.07 −23.55
4 2.910 −24.36 −23.90 −23.21
∗ Minimum.

4.3.2 Consistent Order Selection

If interest centers on the correct VAR order, it makes sense to choose an
estimator that has desirable sampling properties. One problem of interest in
this context is to determine the statistical properties of order estimators such
as p̂(FPE) and p̂(AIC). Consistency is a desirable asymptotic property of an
estimator. As usual, an estimator p̂ of the VAR order p is called consistent if

plim
T→∞

p̂ = p or, equivalently, lim
T→∞

Pr{p̂ = p} = 1. (4.3.4)
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The latter definition of the plim may seem to differ slightly from the one
given in Appendix C. However, it is easily checked that the two definitions
are equivalent for integer valued random variables. Of course, a reasonable
estimator for p should be integer valued. The estimator p̂ is called strongly
consistent if

Pr{lim p̂ = p} = 1. (4.3.5)

Accordingly, a VAR order selection criterion will be called consistent or
strongly consistent if the resulting estimator has these properties. The follow-
ing proposition due to Hannan & Quinn (1979), Quinn (1980), and Paulsen
(1984) is useful for investigating the consistency of criteria for order determi-
nation.

Proposition 4.2 (Consistency of VAR Order Estimators)
Let yt be a K-dimensional stationary, stable VAR(p) process with standard
white noise (that is, ut is independent white noise with bounded fourth mo-
ments). Suppose the maximum order M ≥ p and p̂ is chosen so as to minimize
a criterion

Cr(m) = ln|Σ̃u(m)| + mcT/T (4.3.6)

over m = 0, 1, . . . ,M . Here Σ̃u(m) denotes the (quasi) ML estimator of Σu

obtained for a VAR(m) model and cT is a nondecreasing sequence of real
numbers that depends on the sample size T . Then p̂ is consistent if and only
if

cT → ∞ and cT/T → 0 as T → ∞. (4.3.7a)

The estimator p̂ is a strongly consistent estimator if and only if (4.3.7a) holds
and

cT /2 ln lnT > 1 (4.3.7b)

eventually, as T → ∞.

We will not prove this proposition here but refer the reader to Quinn
(1980) and Paulsen (1984) for proofs. The basic idea of the proof is to show
that, for p > m, the quantity ln |Σ̃u(m)|/ ln |Σ̃u(p)| will be greater than one
in large samples because ln |Σ̃u(m)| is essentially the minimum of minus the
Gaussian log-likelihood function for a VAR(m) model. Consequently, because
the penalty terms mcT/T and pcT /T go to zero as T → ∞, Cr(m) > Cr(p) for
large T . Thus, the probability of choosing too small an order goes to zero as
T → ∞. Similarly, if m > p, ln |Σ̃u(m)|/ln|Σ̃u(p)|, approaches 1 in probability
if T → ∞ and the penalty term of the lower order model is smaller than that
of a larger order process. Thus the lower order p will be chosen if the sample
size is large. The following corollary is an easy consequence of the proposition.
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Corollary 4.2.1
Under the conditions of Proposition 4.2, if M > p, p̂(FPE) and p̂(AIC) are
not consistent.

Proof: Because FPE and AIC are asymptotically equivalent (see (4.3.3)), it
suffices to prove the corollary for p̂(AIC). Equating AIC(m) and Cr(m) given
in (4.3.6) shows that

2mK2/T = mcT /T

or cT = 2K2. Obviously, this sequence does not satisfy (4.3.7a).

We will see shortly that the limiting probability for underestimating the
VAR order is zero for both p̂(AIC) and p̂(FPE) so that asymptotically they
overestimate the true order with positive probability. However, Paulsen &
Tjøstheim (1985, p. 224) argued that the limiting probability for overesti-
mating the order declines with increasing dimension K and is negligible for
K ≥ 5. In other words, asymptotically AIC and FPE choose the correct order
almost with probability one if the underlying multiple time series has large
dimension K.

Before we continue the investigation of AIC and FPE, we shall introduce
two consistent criteria that have been quite popular in recent applied work.
The first one is due to Hannan & Quinn (1979) and Quinn (1980). It is often
denoted by HQ (Hannan-Quinn criterion):

HQ(m) = ln |Σ̃u(m)| + 2 ln lnT
T

(# freely estimated parameters)

= ln |Σ̃u(m)| + 2 ln lnT
T

mK2. (4.3.8)

The estimate p̂(HQ) is the order that minimizes HQ(m) for m = 0, 1, . . . ,M .
Comparing this criterion to (4.3.6) shows that cT = 2K2 ln lnT and, thus, by
(4.3.7a), HQ is consistent for univariate processes and by (4.3.7b) it is strongly
consistent for K > 1, if the conditions of Proposition 4.2 are satisfied for yt.

Using Bayesian arguments Schwarz (1978) derived the following criterion:

SC(m) = ln |Σ̃u(m)| + lnT
T

(# freely estimated parameters)

= ln |Σ̃u(m)| + lnT
T

mK2. (4.3.9)

Again the order estimate p̂(SC) is chosen so as to minimize the value of the
criterion. A comparison with (4.3.6) shows that for this criterion cT = K2 lnT .
Because

K2 lnT/2 ln lnT

approaches infinity for T → ∞, (4.3.7b) is satisfied and SC is seen to be
strongly consistent for any dimension K.
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Corollary 4.2.2
Under the conditions of Proposition 4.2, SC is strongly consistent and HQ is
consistent. If the dimension K of the process is greater than one, both criteria
are strongly consistent.

In Table 4.5, the values of HQ and SC for the investment/income/con-
sumption example are given. Both criteria assume the minimum for m = 0,
that is, p̂(HQ) = p̂(SC) = 0.

4.3.3 Comparison of Order Selection Criteria

It is worth emphasizing that the foregoing results do not necessarily mean that
AIC and FPE are inferior to HQ and SC. Only if consistency is the yardstick
for evaluating the criteria, the latter two are superior under the conditions of
the previous section. So far we have not considered the small sample properties
of the estimators. In small samples, AIC and FPE may have better properties
(choose the correct order more often) than HQ and SC. Also, the former
two criteria are designed for minimizing the forecast error variance. Thus, in
small as well as large samples, models based on AIC and FPE may produce
superior forecasts although they may not estimate the orders correctly. In fact,
Shibata (1980) derived asymptotic optimality properties of AIC and FPE for
univariate processes. He showed that, under suitable conditions, they indeed
minimize the 1-step ahead forecast MSE asymptotically.

Although it is difficult in general to derive small sample properties of
the criteria, some such properties can be obtained. The following proposition
states small sample relations between the criteria.

Proposition 4.3 (Small Sample Comparison of AIC, HQ, and SC)
Let y−M+1, . . . , y0, y1, . . . , yT be any K-dimensional multiple time series and
suppose that VAR(m) models, m = 0, 1, . . . ,M , are fitted to y1, . . . , yT . Then
the following relations hold:

p̂(SC) ≤ p̂(AIC) if T ≥ 8, (4.3.10)
p̂(SC) ≤ p̂(HQ) for all T, (4.3.11)
p̂(HQ) ≤ p̂(AIC) if T ≥ 16. (4.3.12)

Note that we do not require stationarity of yt. In fact, we do not even
require that the multiple time series is generated by a VAR process. Moreover,
the proposition is valid in small samples and not just asymptotically. The proof
is an easy consequence of the following lemma.

Lemma 4.1
Let a0, a1, . . . , aM , b0, b1, . . . , bM and c0, c1, . . . , cM be real numbers. If

bm+1 − bm < am+1 − am, m = 0, 1, . . . ,M − 1, (4.3.13a)
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holds and if nonnegative integers n and k are chosen such that

cn + an = min{cm + am|m = 0, 1, . . . ,M} (4.3.13b)

and

ck + bk = min{cm + bm|m = 0, 1, . . . ,M}, (4.3.13c)

then k ≥ n.1

The proof of this lemma is left as an exercise (see Problem 4.2). It is now
easy to prove Proposition 4.3.

Proof of Proposition 4.3:
Let cm = ln |Σ̃u(m)|, bm = 2mK2/T and am = mK2 lnT/T . Then AIC(m) =
cm + bm and SC(m) = cm + am. The sequences am, bm, and cm satisfy the
conditions of the lemma if

2K2/T = 2(m + 1)K2/T − 2mK2/T = bm+1 − bm

< am+1 − am = (m + 1)K2 lnT/T −mK2 lnT/T = K2 lnT/T

or, equivalently, if lnT > 2 or T > e2 = 7.39. Hence, choosing k = p̂(AIC)
and n = p̂(SC) gives p̂(SC) ≤ p̂(AIC) if T ≥ 8. The relations (4.3.11) and
(4.3.12) can be shown analogously.

An immediate consequence of Corollary 4.2.1 and Proposition 4.3 is that
AIC and FPE asymptotically overestimate the true order with positive prob-
ability and underestimate the true order with probability zero.

Corollary 4.3.1
Under the conditions of Proposition 4.2, if M > p,

lim
T→∞

Pr{p̂(AIC) < p} = 0 and lim Pr{p̂(AIC) > p} > 0 (4.3.14)

and the same holds for p̂(FPE).

Proof: By (4.3.10) and Corollary 4.2.2,

Pr{p̂(AIC) < p} ≤ Pr{p̂(SC) < p} → 0.

Because AIC is not consistent by Corollary 4.2.1, lim Pr{p̂(AIC) = p} <
1. Hence (4.3.14) follows. The same holds for FPE because this criterion is
asymptotically equivalent to AIC (see (4.3.3)).

The limitations of the asymptotic theory for the order selection criteria can
be seen by considering the criterion obtained by setting cT equal to 2 ln lnT
in (4.3.6). This results in a criterion
1 I am grateful to Prof. K. Schürger, Universität Bonn, for pointing out the present

improvement of the corresponding lemma stated in Lütkepohl (1991).
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C(m) = ln |Σ̃u(m)| + 2m ln lnT/T. (4.3.15)

Under the conditions of Proposition 4.2, it is consistent. Yet, using Lemma 4.1
and the same line of reasoning as in the proof of Proposition 4.3, p̂(AIC) ≤
p̂(C) if 2 ln lnT ≤ 2K2 or, equivalently, if T ≤ exp(expK2). For instance,
for a bivariate process (K = 2), exp(expK2) ≈ 5.14 × 1023. Consequently,
if T < 5.14 × 1023, the consistent criterion (4.3.15) chooses an order greater
than or equal to p̂(AIC) which in turn has a positive limiting probability
for exceeding the true order. This example shows that large sample results
sometimes are good approximations only if extreme sample sizes are available.
The foregoing result was used by Quinn (1980) as an argument for making cT

a function of the dimension K of the process in the HQ criterion.
It is also of interest to compare the order selection criteria to the sequen-

tial testing procedure discussed in the previous section. We have mentioned
in Section 4.2 that the order chosen in a sequence of tests will depend on the
significance levels used. As a consequence, a testing sequence may give the
same order as a selection criterion if the significance levels are chosen accord-
ingly. For instance, AIC chooses an order smaller than the maximum order
M if AIC(M − 1) < AIC(M) or, equivalently, if

λLR(1) = T (ln |Σ̃u(M −1)|− ln |Σ̃u(M)|) < 2MK2 −2(M −1)K2 = 2K2.

For K = 2, 2K2 = 8 ≈ χ2(4).90. Thus, for a bivariate process, in order
to ensure that AIC chooses an order less than M whenever the LR testing
procedure does, we may use approximately a 10% significance level in the first
test of the sequence, provided the distribution of λLR(1) is well approximated
by a χ2(4)-distribution.

The sequential testing procedure will not lead to a consistent order esti-
mator if the sequence of individual significance levels is held constant. To see
this, note that for M > p and a fixed significance level γ, the null hypothesis
H0 : AM = 0 is rejected with probability γ. In other words, in the testing
scheme, M is incorrectly chosen as VAR order with probability γ. Thus, there
is a positive probability of choosing too high an order. This problem can be
circumvented by letting the significance level go to zero as T → ∞.

4.3.4 Some Small Sample Simulation Results

As mentioned previously, many of the small sample properties of interest in the
context of VAR order selection are difficult to derive analytically. Therefore
we have performed a small Monte Carlo experiment to get some feeling for the
small sample behavior of the estimators. Some results will now be reported.

We have simulated 1000 realizations of the VAR(2) process (4.2.1) and we
have recorded the orders chosen by FPE, AIC, HQ, and SC for time series
lengths of T = 30 and 100 and a maximum VAR order of M = 6. In addition,
we have determined the order by the sequence of LR tests described in Section
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4.2 using a significance level of 5% in each individual test and corresponding
critical values from χ2-distributions. That is, we have used χ2- rather than F -
tests. The frequency distributions obtained with the five different procedures
are displayed in Table 4.6. Obviously, for the sample sizes reported, none of
the criteria is very successful in estimating the order p = 2 correctly. This may
be due to the fact that A2 contains only a single, small nonzero element. The
similarity of AIC and FPE derived in (4.3.3) becomes evident for T = 100. The
orders chosen by the LR testing procedures show that the actual significance
levels are quite different from their asymptotic approximations, especially for
sample size T = 30. If λLR really had a χ2(4)-distribution the order p̂ = M = 6
should be chosen in about 5% of the cases while in the simulation experiment
p̂ = 6 is chosen for 25.4% of the realizations. Hence, the χ2(4)-distribution is
hardly a good small sample approximation to the actual distribution of λLR.

In Table 4.6, we also present the sum of normalized mean squared forecast
errors of y1 and y2 obtained from post-sample forecasts with the estimated
processes. The quantities shown in the table are

1
N

N∑
i=1

(yT+h(i) − ŷT (h)(i))′Σy(h)−1(yT+h(i) − ŷT (h)(i)), h = 1, 2, 3,

where N is the number of replications, that is, in this case N = 1000, yT+h(i)

is the realization in the i-th repetition and ŷT (h)(i) is the corresponding fore-
cast. Normalizing with the inverse of the h-step forecast error variance Σy(h)
is useful to standardize the forecast errors in such a way so as to have roughly
the same variability and, thus, comparable quantities are averaged. For large
sample size T and a large number of replications N , the average normalized
squared forecast errors should be roughly equal to the dimension of the pro-
cess, that is, for the present bivariate process they should be close to 2.

Although in Table 4.6 SC often underestimates the true VAR order p = 2,
the forecasts obtained with the SC models are generally the best for T = 30.
The reason is that not restricting the single nonzero coefficient in A2 to zero
does not sufficiently improve the forecasts to offset the additional sampling
variability introduced by estimating all four elements of the A2 coefficient
matrix. For T = 100, corresponding forecast MSEs obtained with the different
criteria and procedures are very similar, although SC chooses the correct order
much less often than the other criteria. This result indicates that choosing the
correct VAR order and selecting a good forecasting model are objectives that
may be reached by different VAR order selection procedures. Specifically, in
this example, slight underestimation of the VAR order is not harmful to the
forecast precision. In fact, for T = 30, the most parsimonious criterion which
underestimates the true VAR order in more than 80% of the realizations of
our VAR(2) process provides forecasts with the smallest normalized average
squared forecast errors. In fact, the LR tests which choose larger orders quite
frequently, produce clearly the worst forecasts.
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Table 4.6. Simulation results based on 1000 realizations of the bivariate VAR(2)
process (4.2.1)

FPE AIC HQ SC LR
VAR T = 30
order frequency distributions of estimated VAR orders in %

0 0.1 0.1 0.6 2.6 0.1
1 46.1 42.0 60.4 81.2 29.8
2 33.3 32.2 28.5 14.4 16.5
3 8.3 9.0 5.0 1.1 6.5
4 3.8 4.1 2.2 0.5 8.1
5 3.9 5.0 1.5 0.1 13.6
6 4.5 7.6 1.8 0.1 25.4

forecast
horizon normalized average squared forecast errors

1 2.63 2.68 2.52 2.37 3.09
2 2.66 2.72 2.51 2.41 3.04
3 2.58 2.67 2.45 2.35 3.05

VAR T = 100
order frequency distributions of estimated VAR orders in %

0 0.0 0.0 0.0 0.0 0.0
1 17.6 17.4 42.7 73.1 20.8
2 69.5 69.5 55.5 26.7 53.6
3 8.4 8.4 1.7 0.2 5.3
4 2.8 2.8 0.1 0.0 6.2
5 1.0 1.0 0.0 0.0 5.4
6 0.7 0.9 0.0 0.0 8.7

forecast
horizon normalized average squared forecast errors

1 2.15 2.15 2.15 2.17 2.22
2 2.20 2.20 2.20 2.22 2.25
3 2.12 2.12 2.13 2.12 2.17

It must be emphasized, however, that these results are very special and
hold for the single bivariate VAR(2) process used in the simulations. Different
results may be obtained for other processes. To substantiate this statement,
we have also simulated 1000 time series based on the VAR(1) process (4.2.2).
Some results are given in Table 4.7. While for sample size T = 30 again none
of the criteria and procedures is very successful in detecting the correct VAR
order p = 1, all four criteria FPE, AIC, HQ, and SC select the correct order in
more than 90% of the replications for T = 100. The poor approximation of the
small sample distribution of the LR statistic by a χ2(9)-distribution is evident.
Note that we have used the critical values for 5% level individual tests from
the χ2-distribution. As in the VAR(2) example, the prediction performance
of the SC models is best for T = 30, although the criterion underestimates
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the true order in more than 80% of the replications. For both sample sizes,
the worst forecasts are obtained with the sequential testing procedure which
overestimates the true order quite often.

Table 4.7. Simulation results based on 1000 realizations of the three-dimensional
VAR(1) process (4.2.2)

FPE AIC HQ SC LR
VAR T = 30
order frequency distributions of estimated VAR orders in %

0 24.3 17.5 44.5 81.3 0.7
1 50.7 35.3 39.4 18.0 2.2
2 7.5 4.7 3.0 0.3 1.3
3 3.0 2.2 0.9 0.2 1.5
4 1.8 1.7 0.4 0.0 3.7
5 2.9 4.2 1.5 0.0 14.9
6 9.8 34.4 10.3 0.2 75.7

forecast
horizon normalized average squared forecast errors

1 4.60 6.06 4.43 3.94 8.35
2 4.12 5.42 3.98 3.33 7.87
3 3.87 5.11 3.75 3.19 7.49

VAR T = 100
order frequency distributions of estimated VAR orders in %

0 0.0 0.0 0.3 8.1 0.0
1 94.1 93.8 99.6 91.9 61.2
2 5.0 5.1 0.1 0.0 5.4
3 0.7 0.7 0.0 0.0 4.3
4 0.2 0.3 0.0 0.0 7.3
5 0.0 0.0 0.0 0.0 9.3
6 0.0 0.1 0.0 0.0 12.5

forecast
horizon normalized average squared forecast errors

1 3.08 3.08 3.06 3.12 3.24
2 3.12 3.12 3.11 3.12 3.24
3 3.11 3.11 3.10 3.10 3.20

After these two simulation experiments, we still do not have a clear an-
swer to the question which criterion to use in small sample situations. One
conclusion that emerges from the two examples is that, in very small sam-
ples, slight underestimation of the true order is not necessarily harmful to
the forecast precision. Moreover, both examples clearly demonstrate that the
χ2-approximation to the small sample distribution of the LR statistics is a
poor one. In a simulation study based on many other processes, Lütkepohl
(1985) obtained similar results. In that study, for low order VAR processes,
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the most parsimonious SC criterion was found to do quite well in terms of
choosing the correct VAR order and providing good forecasting models. Un-
fortunately, in practice we often don’t even know whether the underlying data
generation law is of finite order VAR type. Sometimes we may just approxi-
mate an infinite order VAR process by a finite order model. In that case, for
moderate sample sizes, some less parsimonious criterion like AIC may give
superior results in terms of forecast precision. Therefore, it may be a good
strategy to compare the order estimates obtained with different criteria and
possibly perform analyses with different VAR orders.

4.4 Checking the Whiteness of the Residuals

In the previous sections, we have considered procedures for choosing the or-
der of a VAR model for the generation process of a given multiple time series.
These procedures may be interpreted as methods for determining a filter that
transforms the given data into a white noise series. In this context, the criteria
for model choice may be regarded as criteria for deciding whether the resid-
uals are close enough to white noise to satisfy the investigator. Of course, if,
for example, forecasting is the objective, it may not be of prime importance
whether the residuals are really white noise as long as the model forecasts well.
There are, however, situations where checking the white noise (whiteness) as-
sumption for the residuals of a particular model is of interest. For instance, if
the model order is chosen by nonstatistical methods (for example, on the basis
of some economic theory) it may be useful to have statistical tools available
for investigating the properties of the residuals. Moreover, because different
criteria emphasize different aspects of the data generation process and may
therefore all provide useful information for the analyst, it is common not to
rely on just one procedure or criterion for model choice but use a number of
different statistical tools. Therefore, in this section, we shall discuss statistical
tools for checking the autocorrelation properties of the residuals of a given
VAR model.

In Sections 4.4.1 and 4.4.2, the asymptotic distributions of the residual
autocovariances and autocorrelations are given under the assumption that the
model residuals are indeed white noise. In Sections 4.4.3 and 4.4.4, two popular
statistics for checking the overall significance of the residual autocorrelations
are discussed. The results of this section are adapted from Chitturi (1974),
Hosking (1980, 1981a), Li & McLeod (1981), and Ahn (1988).

4.4.1 The Asymptotic Distributions of the Autocovariances and
Autocorrelations of a White Noise Process

It is assumed that ut is a K-dimensional white noise process with nonsingu-
lar covariance matrix Σu. For instance, ut may represent the residuals of a
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VAR(p) process. Let U := (u1, . . . , uT ). The autocovariance matrices of ut are
estimated as

Ci := Γ̂u(i) :=
1
T

T∑
t=i+1

utu
′
t−i =

1
T
UFiU

′, i = 0, 1, . . . , h < T. (4.4.1)

The (T × T ) matrix Fi is defined in the obvious way. For instance, for i = 2,

Fi :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 0
0 0 · · · 0 0 0
1 0 · · · 0 0 0
0 1 0 0 0
...

. . .
...

...
...

0 0 · · · 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
0 0 · · · 0
1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1
0 0 · · · 0
0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

′

.

Of course, for i = 0, F0 = IT . In the following, the precise form of Fi is not
important. It is useful, though, to remember that Fi is defined such that

UFiU
′ =

T∑
t=i+1

utu
′
t−i.

Let

Ch := (C1, . . . , Ch) = UF (Ih ⊗ U ′), (4.4.2)

where F := (F1, . . . , Fh) is a (T × hT ) matrix that is understood to depend
on h and T without this being indicated explicitly. Furthermore, let

ch := vec(Ch). (4.4.3)

The estimated autocorrelation matrices of the ut are denoted by Ri, that is,

Ri := D−1CiD
−1, i = 0, 1, . . . , h, (4.4.4)

where D is a (K×K) diagonal matrix, the diagonal elements being the square
roots of the diagonal elements of C0. In other words, a typical element of Ri

is

rmn,i =
cmn,i√

cmm,0
√
cnn,0

,
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where cmn,i is the mn-th element of Ci. The matrix Ri in (4.4.4) is an es-
timator of the true autocorrelation matrix Ru(i) = 0 for i �= 0. We use the
notation

Rh := (R1, . . . , Rh) and rh := vec(Rh) (4.4.5)

and we denote by Ru the true correlation matrix corresponding to Σu. Now
we can give the asymptotic distributions of rh and ch.

Proposition 4.4 (Asymptotic Distributions of White Noise Autocovariances
and Autocorrelations)
Let ut be a K-dimensional identically distributed standard white noise pro-
cess, that is, ut and us have the same multivariate distribution with nonsin-
gular covariance matrix Σu and corresponding correlation matrix Ru. Then,
for h ≥ 1,

√
Tch

d→N (0, Ih ⊗Σu ⊗Σu) (4.4.6)

and
√
Trh

d→N (0, Ih ⊗Ru ⊗Ru). (4.4.7)

Proof: The result (4.4.6) follows from an appropriate central limit theorem.
The i.i.d. assumption for the ut implies that

wt = vec(utu
′
t−1, . . . , utu

′
t−h)

is a stationary white noise process with covariance matrix E(wtw
′
t) = Ih ⊗

Σu ⊗ Σu so that the result (4.4.6) may, e.g., be obtained from the central
limit theorem for stationary processes given in Proposition C.13 of Appendix
C. Proofs can also be found in Fuller (1976, Chapter 6) and Hannan (1970,
Chapter IV, Section 4) among others.

The result in (4.4.7) is a quite easy consequence of (4.4.6). From Proposi-
tion 3.2, we know that C0 is a consistent estimator of Σu. Hence,

√
T vec(Ri) =

√
T (D−1 ⊗D−1) vec(Ci)

d→N (0, Ru ⊗Ru)

by Proposition C.15(1) of Appendix C and (4.4.6), because

plim(D−1 ⊗D−1)(Σu ⊗Σu)(D−1 ⊗D−1)
= plim(D−1ΣuD

−1 ⊗D−1ΣuD
−1) = Ru ⊗Ru.

The result in (4.4.6) means that
√
T vec(Ci) has the same asymptotic

distribution as
√
T vec(Cj), namely,
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√
T vec(Ci),

√
T vec(Cj)

d→N (0, Σu ⊗Σu).

Moreover, for i �= j, the two estimators are asymptotically independent. By
(4.4.7), the same holds for

√
T vec(Ri) and

√
T vec(Rj).

In practice, the ut and hence U will usually be unknown and the reader may
wonder about the relevance of Proposition 4.4. The result is not only useful
in proving other propositions but can also be used to check whether a given
time series is white noise. Before we explain that procedure, we mention that
Proposition 4.4 remains valid if the considered white noise process is allowed
to have nonzero mean and the mean vector is estimated by the sample mean
vector. That is, we consider covariance matrices

Ci =
1
T

T∑
t=i+1

(ut − u)(ut−i − u)′,

where

u =
1
T

T∑
t=1

ut.

Next we observe that the diagonal elements of Ru ⊗ Ru are all ones. Conse-
quently, the variances of the asymptotic distributions of the elements of

√
Trh

are all unity. Hence, in large samples the
√
Trmn,i for i > 0 have approximate

standard normal distributions. Denoting by ρmn(i) the true correlation coeffi-
cients corresponding to the rmn,i, a test, with level approximately 5%, of the
null hypothesis

H0 : ρmn(i) = 0 against H1: ρmn(i) �= 0

rejects H0 if |√Trmn,i| > 2 or, equivalently, |rmn,i| > 2/
√
T .

Now we have a test for checking the null hypothesis that a given multiple
time series is generated by a white noise process. We simply compute the cor-
relations of the original data (possibly after some stationarity transformation)
and compare their absolute values with 2/

√
T . In Section 4.3.2, we found that

the SC and HQ estimate of the order for the generation process of the invest-
ment/income/consumption example data is p̂ = 0. Therefore, one may want
to check the white noise hypothesis for this example. The first two correlation
matrices for the data from 1960.4 to 1978.4 are

R1 =

⎡⎣ −.197 .103 .128
.190 .020 .228

−.047 .150 −.089

⎤⎦ and R2 =

⎡⎣ −.045 .067 .097
.119 .079 .009
.255 .355 .279

⎤⎦ .

(4.4.8)

Comparing these quantities with 2/
√
T = 2/

√
73 = .234, we find that some

are significantly different from zero and, hence, we reject the white noise
hypothesis on the basis of this test.
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In applied work, the estimated autocorrelations are sometimes plotted and
±2/

√
T -bounds around zero are indicated. The white noise hypothesis is then

rejected if any of the estimated correlation coefficients reach out of the area
between the ±2/

√
T -bounds. In Figure 4.1, plots of some autocorrelations are

provided for the example data. Some autocorrelations at lags 2, 4, 8, 11, and
12 are seen to be significant under the aforementioned criterion.

There are several points that must be kept in mind in such a procedure.
First, in an exact 5% level test, on average the test will reject one out of twenty
times it is performed independently, even if the null hypothesis is correct.
Thus, one would expect that one out of twenty autocorrelation estimates
exceeds 2/

√
T in absolute value even if the underlying process is indeed white

noise. Note, however, that although Ri and Rj are asymptotically independent
for i �= j, the same is not necessarily true for the elements of Ri. Thus,
considering the individual correlation coefficients may provide a misleading
picture of their significance as a group. Tests for overall significance of groups
of autocorrelations are discussed in Sections 4.4.3 and 4.4.4.

Second, the tests we have considered here are just asymptotic tests. In
other words, the actual sizes of the tests may differ from their nominal sizes.
In fact, it has been shown by Dufour & Roy (1985) and others that in small
samples the variances of the correlation coefficients may differ considerably
from 1/T . They will often be smaller so that the tests are conservative in that
they reject the null hypothesis less often than is indicated by the significance
level chosen.

Despite this criticism, this check for whiteness of a time series enjoys much
popularity as it is very easy to carry out. It is a good idea, however, not to
rely on this criterion exclusively.

4.4.2 The Asymptotic Distributions of the Residual
Autocovariances and Autocorrelations of an Estimated VAR
Process

Theoretical Results

If a VAR(p) model has been fitted to the data, a procedure similar to that
described in the previous subsection is often used to check the whiteness of
the residuals. Instead of the actual ut’s, the estimation residuals are used,
however. We will now consider the consequences of that approach. For that
purpose, we assume that the model has been estimated by LS and, using the
notation of Section 3.2, the coefficient estimator is denoted by B̂ and the
corresponding residuals are Û = (û1, . . . , ûT ) := Y − B̂Z. Furthermore,

Ĉi :=
1
T
ÛFiÛ

′, i = 0, 1, . . . h,

Ĉh := (Ĉ1, . . . , Ĉh) =
1
T
ÛF (Ih ⊗ Û ′), (4.4.9)
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Fig. 4.1. Some estimated autocorrelations of the investment/income/consumption
system.

ĉh := vec(Ĉh),

and, correspondingly,

R̂i := D̂−1ĈiD̂
−1, R̂h := (R̂1, . . . , R̂h), r̂h := vec(R̂h), (4.4.10)
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where D̂ is a diagonal matrix with the square roots of the diagonal elements
of Ĉ0 on the main diagonal. We will consider the asymptotic distribution of√
T ĉh first. For that purpose the following lemma is helpful.

Lemma 4.2
Let yt be a stationary, stable VAR(p) process as in (4.1.1) with identically
distributed standard white noise ut and let B̂ be a consistent estimator of
B = [ν,A1, . . . , Ap] such that

√
T vec(B̂ −B) has an asymptotic normal dis-

tribution. Then
√
T ĉh has the same asymptotic distribution as

√
Tch −

√
TG vec(B̂ −B), (4.4.11)

where G := G̃′ ⊗ IK with

G̃ :=

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0
Σu Φ1Σu · · · Φh−1Σu

0 Σu · · · Φh−2Σu

...
...

0 0 · · · Φh−pΣu

⎤⎥⎥⎥⎥⎥⎦ ((Kp + 1) ×Kh). (4.4.12)

Proof: Using the notation Y = BZ + U ,

Û = Y − B̂Z = BZ + U − B̂Z = U − (B̂ −B)Z.

Hence,

ÛF (Ih ⊗ Û ′)

= UF (Ih ⊗ U ′) − UF
[
Ih ⊗ Z ′(B̂ −B)′

]
(4.4.13)

− (B̂ −B)ZF (Ih ⊗ U ′) + (B̂ −B)ZF
[
Ih ⊗ Z ′(B̂ −B)′

]
.

Dividing by T and applying the vec operator, this expression becomes ĉh. In
order to obtain the expression in (4.4.11), we consider the terms on the right-
hand side of (4.4.13) in turn. The first term becomes

√
Tch upon division by√

T and application of the vec operator.
Dividing the second and last terms by

√
T they can be shown to converge

to zero in probability, that is,

plim
√
TUF

[
Ih ⊗ Z ′(B̂ −B)′

]
/T = 0 (4.4.14)

and

plim
√
T (B̂ −B)ZF

[
Ih ⊗ Z ′(B̂ −B)′

]
/T = 0 (4.4.15)
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(see Problem 4.3). Thus, it remains to show that dividing the third term in
(4.4.13) by

√
T and applying the vec operator yields an expression which is

asymptotically equivalent to the last term in (4.4.11). To see this, consider

ZF (Ih ⊗ U ′) = (ZF1U
′, . . . , ZFhU

′)

and

ZFiU
′ =

T∑
t=i+1

Zt−1u
′
t−i =

T∑
t=i+1

⎡⎢⎢⎢⎣
1

yt−1

...
yt−p

⎤⎥⎥⎥⎦u′
t−i

=
∑

t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
∞∑

j=0

Φjut−1−j

...
∞∑

j=0

Φjut−p−j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u′

t−i,

where the Φi are the coefficient matrices of the canonical MA representation
of yt (see (2.1.17)). Upon division by T and application of the plim we get

plim
1
T
ZFiU

′ =

⎡⎢⎢⎢⎣
0

Φi−1Σu

...
Φi−pΣu

⎤⎥⎥⎥⎦,
where Φj = 0 for j < 0. Hence,

plim
1
T
ZF (Ih ⊗ U ′) =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0
Σu Φ1Σu · · · Φh−1Σu

0 Σu · · · Φh−2Σu

...
...

0 0 · · · Φh−pΣu

⎤⎥⎥⎥⎥⎥⎦
((Kp+1)×Kh)

= G̃.

The lemma follows by noting that

vec
[
(B̂ −B)ZF (Ih ⊗ U ′)

]
= ([ZF (Ih ⊗ U ′)]′ ⊗ IK) vec(B̂ −B).

The next lemma is also helpful later.

Lemma 4.3
If yt is a stable VAR(p) process as in (4.1.1) with identically distributed stan-
dard white noise, then
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1√
T

vec(UZ ′)√
Tch

]
d→N

(
0,

[
Γ G̃

G̃′ Ih ⊗Σu

]
⊗Σu

)
, (4.4.16)

where Γ := plimZZ ′/T and G̃ is as defined in (4.4.12).

For the two terms vec(UZ ′)/
√
T and

√
Tch separately, the asymptotic

distributions are already known from Lemma 3.1 and Proposition 4.4, respec-
tively. So the joint asymptotic distribution is the new result here. The reader
is referred to Ahn (1988) for a proof. Now the asymptotic distribution of the
residual autocovariances is easily obtained.

Proposition 4.5 (Asymptotic Distributions of Residual Autocovariances)
Let yt be a stationary, stable, K-dimensional VAR(p) process as in (4.1.1) with
identically distributed standard white noise process ut and let the coefficients
be estimated by multivariate LS or an asymptotically equivalent procedure.
Then

√
T ĉh

d→N (0, Σc(h)),

where

Σc(h) = (Ih ⊗Σu − G̃′Γ−1G̃) ⊗Σu

= (Ih ⊗Σu ⊗Σu) − Ḡ[ΓY (0)−1 ⊗Σu]Ḡ′. (4.4.17)

Here G̃ and Γ are the same matrices as in Lemma 4.3, ΓY (0) is the covariance
matrix of Yt = (y′t, . . . , y

′
t−p+1)

′ and Ḡ := Ğ′ ⊗ IK , where Ğ is a (Kp×Kh)
matrix which has the same form as G̃ except that the first row of zeros is
eliminated.

Proof: Using Lemma 4.2,
√
T ĉh is known to have the same asymptotic dis-

tribution as
√
Tch −

√
TG vec(B̂ −B)

=
[
−G̃′ ⊗ IK : I

] [ √
T vec(B̂ −B)√

Tch

]

=
[
−G̃′ ⊗ IK : I

]⎡⎣ (
ZZ′

T

)−1

⊗ IK 0

0 I

⎤⎦[
1√
T

vec(UZ ′)√
Tch

]
.

Noting that plim(ZZ′/T )−1 = Γ−1, the desired result follows from Lemma
4.3 and Proposition C.15(l) of Appendix C because

[
−G̃′Γ−1 ⊗ IK : I

]([
Γ G̃

G̃′ Ih ⊗Σu

]
⊗Σu

)[
−Γ−1G̃⊗ IK

I

]

= (Ih ⊗Σu − G̃′Γ−1G̃) ⊗Σu
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= Ih ⊗Σu ⊗Σu − (G̃′ ⊗ IK)(Γ−1 ⊗Σu)(G̃⊗ IK)

= Ih ⊗Σu ⊗Σu − Ḡ[ΓY (0)−1 ⊗Σu]Ḡ′.

The form (4.4.17) shows that the variances are smaller than (not greater
than) the diagonal elements of Ih ⊗ Σu ⊗ Σu. In other words, the variances
of the asymptotic distribution of the white noise autocovariances are greater
than or equal to the corresponding quantities of the estimated residuals. A
similar result can also be shown for the autocorrelations of the estimated
residuals.

Proposition 4.6 (Asymptotic Distributions of Residual Autocorrelations)
Let D be the (K×K) diagonal matrix with the square roots of Σu on the diag-
onal and define G0 := G̃(Ih⊗D−1). Then, under the conditions of Proposition
4.5,

√
T r̂h

d→N (0, Σr(h)),

where

Σr(h) = [(Ih ⊗Ru) −G′
0Γ

−1G0] ⊗Ru. (4.4.18)

Specifically,
√
T vec(R̂j)

d→N (0, ΣR(j)), j = 1, 2, . . . ,

where

ΣR(j) =

⎛⎜⎜⎜⎝Ru −D−1Σu

[
0 : Φ′

j−1 : · · · : Φ′
j−p

]
Γ−1

⎡⎢⎢⎢⎣
0

Φj−1

...
Φj−p

⎤⎥⎥⎥⎦ΣuD
−1

⎞⎟⎟⎟⎠⊗Ru

(4.4.19)

with Φi = 0 for i < 0.

Proof: Noting that

r̂h = vec(R̂h) = vec
[
D̂−1Ĉh(Ih ⊗ D̂−1)

]
= (Ih ⊗ D̂−1 ⊗ D̂−1)ĉh

and D̂−1 is a consistent estimator of D−1, we get from Proposition 4.5 that√
T r̂h has an asymptotic normal distribution with mean zero and covariance

matrix

(Ih ⊗D−1 ⊗D−1){(Ih ⊗Σu − G̃′Γ−1G̃) ⊗Σu}(Ih ⊗D−1 ⊗D−1)

=
[
(Ih ⊗Ru) −G′

0Γ
−1G0

]⊗Ru,

where D−1ΣuD
−1 = Ru has been used.



4.4 Checking the Whiteness of the Residuals 167

From (4.4.19), it is obvious that the diagonal elements of the asymptotic
covariance matrix are not greater that 1 because a positive semidefinite ma-
trix is subtracted from Ru. Hence, if estimated residual autocorrelations are
used in a white noise test in a similar fashion as the autocorrelations of the
original data, we will get a conservative test that rejects the null hypothesis
less often than is indicated by the significance level, provided the asymptotic
distribution is a correct indicator of the small sample behavior of the test. In
particular, for autocorrelations at small lags the variances will be less than 1,
while the asymptotic variances approach one for elements of

√
TR̂j with large

j. This conclusion follows because Φj−1, . . . , Φj−p approach zero as j → ∞.
As a consequence, the matrix subtracted from Ru goes to zero as j → ∞.

In practice, all unknown quantities are replaced by estimates in order to
obtain standard errors of the residual autocorrelations and tests of specific
hypotheses regarding the autocorrelations. It is perhaps worth noting, though,
that if Γ is estimated by ZZ ′/T , we have to use the ML estimator Σ̃u for Σu

to ensure positive variances.

An Illustrative Example

As an example, we consider the VAR(2) model for the investment/income/con-
sumption system estimated in Section 3.2.3. For j = 1, we get

R̂1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.015 −.011 −.010
(.026) (.033) (.049)

−.007 −.002 −.068
(.026) (.033) (.049)

−.024 −.045 −.096
(.026) (.033) (.049)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where the estimated standard errors are given in parentheses. Obviously, the
standard errors of the elements of R̂1 are much smaller than 1/

√
T = .117

which would be obtained if the variances of the elements of
√
TR̂1 were 1. In

contrast, for j = 6, we get

R̂6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.053 −.008 −.062
(.117) (.116) (.117)

.165 .030 −.051
(.117) (.116) (.117)

.068 .026 .020
(.117) (.116) (.117)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where the standard errors are very close to .117.
In Figure 4.2, we have plotted the residual autocorrelations and twice their

asymptotic standard errors (approximate 95% confidence bounds) around
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zero. It is apparent that the confidence bounds grow with increasing lag length.
For a rough check of 5% level significance of autocorrelations at higher lags,
we may use the ±2/

√
T -bounds in practice, which is convenient from a com-

putational viewpoint.

Fig. 4.2. Estimated residual autocorrelations with two-standard error bounds for
the investment/income/consumption VAR(2) model.

There are significant residual autocorrelations at lags 3, 4, 8, and 11. While
the significant values at lags 3 and 4 may be a reason for concern, one may not
worry too much about the higher order lags because one may not be willing
to fit a high order model if forecasting is the objective. As we have seen in
Section 4.3.4, slight underfitting may even improve the forecast performance.
In order to remove the significant residual autocorrelations at low lags, it may
help to fit a VAR(3) or VAR(4) model. Of course, this conflicts with choosing
the model order on the basis of the model selection criteria. Thus, it has to
be decided which criterion is given priority.

It may be worth noting that a plot like that in Figure 4.2 may give a
misleading picture of the overall significance of the residual autocorrelations
because they are not asymptotically independent. In particular, at low lags
there will not only be nonzero correlation between the elements of a specific R̂j
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but also between R̂j and R̂i for i �= j. Therefore, it is desirable to have tests
for overall significance of the residual autocorrelations of a VAR(p) model.
Such tests are discussed in the next subsections.

4.4.3 Portmanteau Tests

The foregoing results may also be used to construct a popular test for the
overall significance of the residual autocorrelations up to lag h. This test is
commonly called portmanteau test. It is designed for testing

H0 : Rh = (R1, . . . , Rh) = 0 against H1 :Rh �= 0. (4.4.20)

The test statistic is

Qh := T

h∑
i=1

tr(R̂′
iR̂

−1
u R̂iR̂

−1
u )

= T

h∑
i=1

tr(R̂′
iR̂

−1
u R̂iR̂

−1
u D̂−1D̂)

= T
h∑

i=1

tr(D̂R̂′
iD̂D̂−1R̂−1

u D̂−1D̂R̂iD̂D̂−1R̂−1
u D̂−1)

= T

h∑
i=1

tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 ). (4.4.21)

Obviously, this statistic is very easy to compute from the estimated residuals.
By Proposition 4.5, it has an approximate asymptotic χ2-distribution.

Proposition 4.7 (Approximate Distribution of the Portmanteau Statistic)
Under the conditions of Proposition 4.5, we have, approximately, for large T
and h,

Qh = T

h∑
i=1

tr(Ĉ ′
iĈ

−1
0 ĈiĈ

−1
0 )

= T vec(Ĉh)′(Ih ⊗ Ĉ−1
0 ⊗ Ĉ−1

0 ) vec(Ĉh) ≈ χ2(K2(h− p)). (4.4.22)

Sketch of the proof: By Proposition C.15(5) of Appendix C, Qh has the same
asymptotic distribution as

T ĉ′h(Ih ⊗Σ−1
u ⊗Σ−1

u )ĉh.

Defining the (K ×K) matrix P such that PP ′ = Σu and

c̃h := (Ih ⊗ P ⊗ P )−1ĉh,
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it is easily seen that Qh has the same asymptotic distribution as T c̃′hc̃h.

Hence, by Proposition C.15(6), it suffices to show that
√
T c̃h

d→N (0, Ω),
where Ω is an idempotent matrix of rank K2h − K2p. Because an approxi-
mate limiting χ2-distribution of Qh is claimed only, we just show that Ω is
approximately equal to an idempotent matrix with rank K2(h− p).

Using Proposition 4.5, we get

Ω = (Ih ⊗ P−1 ⊗ P−1)Σc(h)(Ih ⊗ P ′−1 ⊗ P ′−1)
= IhK2 − PḠ[ΓY (0)−1 ⊗Σu]Ḡ′P′,

where P = Ih ⊗ P−1 ⊗ P−1 and Ḡ is defined in Proposition 4.5. Noting that
the ij-th block of ΓY (0) is

Cov(yt−i, yt−j) = Γy(j − i) =
∞∑

n=0

Φn−iΣuΦ
′
n−j ,

with Φk = 0 for k < 0, we get approximately,

Γy(0) ⊗Σ−1
u ≈

[
h∑

n=1

Φn−iΣuΦ
′
n−j

]
i,j=1,...,p

⊗Σ−1
u

=

[
h∑

n=1

Φn−iΣuP
′−1P−1ΣuΦ

′
n−j

]
i,j

⊗Σ−1
u

= Ḡ′P′PḠ.

Hence, if h is such that Φi ≈ 0 for i > h− p,

Ω ≈ IhK2 − PḠ(Ḡ′P′PḠ)−1Ḡ′P′.

Thus, Ω is approximately equal to an idempotent matrix with rank

tr(IhK2 − PḠ(Ḡ′P′PḠ)−1Ḡ′P′) = hK2 − pK2,

as was to be shown.

Of course, these arguments do not fully prove Proposition 4.7 because
we have not shown that an approximately idempotent matrix Ω leads to an
approximate χ2-distribution. To actually obtain the limiting χ2-distribution,
we have to assume that h goes to infinity with the sample size. Because the
sketch of the proof should suffice to show in what sense the result is approxi-
mate, we do not pursue this issue further and refer the reader to Ahn (1988)
for details. For practical purposes, it is important to remember that the χ2-
approximation to the distribution of the test statistic may be misleading for
small values of h.

Like in previous sections we have discussed asymptotic distributions in this
section. Not knowing the small sample distribution is clearly a shortcoming
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because, in practice, infinite samples are not available. Using Monte Carlo
techniques, it was found by some researchers that in small samples the nominal
size of the portmanteau test tends to be lower than the significance level chosen
(Davies, Triggs & Newbold (1977), Ljung & Box (1978), Hosking (1980)). As
a consequence the test has low power against many alternatives. Therefore it
has been suggested to use the modified test statistic

Q̄h := T 2
h∑

i=1

(T − i)−1 tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 ). (4.4.23)

The modification may be regarded as an adjustment for the number of terms
in the sum in

Ĉi =
1
T

T∑
t=i+1

ûtû
′
t−i.

For T → ∞, T/[T 2(T − i)−1] → 1 and, thus, Q̄h has the same asymptotic
distribution as Qh, that is, approximately in large samples and for large h,

Q̄h ≈ χ2(K2(h− p)). (4.4.24)

For our example model, we obtained Q̄12 = 81.9. Comparing this value
with χ2(K2(h − p)).95 = χ2(90).95 ≈ 113 shows that we cannot reject the
white noise hypothesis for the residuals at a 5% level.

As mentioned in the introduction to this section, these tests can also be
used in a model selection/order estimation procedure. A sequence of hypothe-
ses as in (4.2.15) is tested in such a procedure by checking whether the resid-
uals are white noise. In the following, Lagrange multiplier tests for residual
autocorrelation will be presented.

4.4.4 Lagrange Multiplier Tests

Another way of testing a VAR model for residual autocorrelation is to assume
a VAR model for the error vector, ut = D1ut−1+ · · ·+Dhut−h+vt, where vt is
white noise. It is equal to ut if there is no residual autocorrelation. Therefore,
we wish to test the pair of hypotheses

H0 : D1 = · · · = Dh = 0 against
H1 : Dj �= 0 for at least one j ∈ {1, . . . , h}. (4.4.25)

In this case, it is convenient to use the LM principle for constructing a test
because we then only need to estimate the restricted model where ut = vt.
We determine the test statistic with the help of the auxiliary regression model
(see also Appendix C.7)

ût = ν + A1yt−1 + · · · + Apyt−p + D1ût−1 + · · · + Dhût−h + εt
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or, for t = 1, . . . , T ,

Û = BZ + DÛ + E ,
where D := [D1 : · · · : Dh] is (K×Kh), Û := (Ih ⊗ Û)F ′ with F as in (4.4.2),
E := [ε1, . . . , εT ] is a (K × T ) matrix and the other symbols are defined as
before. In particular, the ût are the residuals from LS estimation of the original
VAR(p) model and ût = 0 for t ≤ 0. The LS estimator of [B : D] from the
auxiliary model is

[B̂ : D̂] = Û [Z ′ : Û ′]
([

Z

Û
]

[Z ′ : Û ′]
)−1

= [ÛZ ′ : Û Û ′]

[
ZZ ′ ZÛ ′

ÛZ ′ Û Û ′

]−1

= [0 : Û Û ′]

[
ZZ′ ZÛ ′

ÛZ ′ Û Û ′

]−1

,

where ÛZ ′ = 0 from the first order conditions for computing the LS estimator
has been used. Thus, applying the rules for the partitioned inverse (Appendix
A.10, Rule (2)) gives

D̂ = Û Û ′[Û Û ′ − ÛZ ′(ZZ ′)−1ZÛ ′]−1. (4.4.26)

The standard χ2-statistic for testing D = 0 then becomes

λLM (h) = vec(D̂)′
(
[Û Û ′ − ÛZ ′(ZZ ′)−1ZÛ ′] ⊗ Σ̂−1

u

)
vec(D̂)

= vec(Û Û ′)′
(
[Û Û ′ − ÛZ ′(ZZ ′)−1ZÛ ′]−1 ⊗ Σ̂−1

u

)
vec(Û Û ′),

where

vec(D̂) =
(
[Û Û ′ − ÛZ ′(ZZ′)−1ZÛ ′]−1 ⊗ IK

)
vec(Û Û ′)

has been used. Noting that Û Û ′ = ÛF (Ih⊗Û ′) shows that T−1 vec(Û Û ′) = ĉh.
Moreover, from results in Section 4.4.2 we get

plim
1
T
Û Û ′ = plim

1
T

(Ih ⊗ Û)F ′F (Ih ⊗ Û ′) = Ih ⊗Σu

and

plim
1
T
ÛZ ′(ZZ′)−1ZÛ ′ = G̃Γ−1G̃

(see the proof of Lemma 4.2). Hence,

Σ̂c(h) =
1
T

[Û Û ′ − ÛZ ′(ZZ′)−1ZÛ ′] ⊗ Σ̂u
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is a consistent estimator of Σc(h) and, because the foregoing results imply
that

λLM (h) = T ĉ′hΣ̂c(h)−1ĉh,

the asymptotic χ2-distribution of this statistic follows from Propositions 4.5
and C.15(5).

Proposition 4.8 (Asymptotic Distribution of the LM Statistic for Residual
Autocorrelation)
Under the conditions of Proposition 4.5,

λLM (h) d→ χ2(hK2).

The LM test for residual autocorrelation is sometimes called Breusch-
Godfrey test because it was proposed by Breusch (1978) and Godfrey (1978)
(see also Godfrey (1988)). Unfortunately, the χ2-distribution was found to
be a poor approximation of the actual null distribution of λLM (h) in many
situations (Edgerton & Shukur (1999) and Doornik (1996)). Even a standard
F -approximation is unsatisfactory. However, Doornik (1996) finds that the
following statistic derived from considerations in Rao (1973, §8c.5) provides
satisfactory results in small samples, if it is used with critical values from an
F (hK2, Ns− 1

2K
2h + 1)-distribution:

FRao(h) =

⎡⎣(det(Σ̃u)

det(Σ̃ε)

)1/s

− 1

⎤⎦ Ns− 1
2K

2h + 1
K2h

.

Here

s =
(

K4h2 − 4
K2 + K2h2 − 5

)1/2

, N = T −Kp− 1 −Kh− 1
2
(K −Kh + 1),

and Σ̃ε is the residual covariance estimator from an unrestricted LS estimation
of the auxiliary model Û = BZ + DÛ + E .

We have also applied these tests to our example data and give some results
in Table 4.4.4. It turns out that neither of the tests finds strong evidence for
remaining residual autocorrelation. All p-values exceed 10%. Recall that a
p-value represents the probability of getting a test value greater than the
observed one, if the null hypothesis is true. Therefore, even at a significance
level of 10%, the null hypothesis of no residual autocorrelation cannot be
rejected.

In contrast to the portmanteau tests which should be used for reasonably
large h only, the LM tests are more suitable for small values of h. For large
h, the degrees of freedom in the auxiliary regression model will be exhausted
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Table 4.8. Autocorrelation tests for investment/income/consumption example
VAR(2) model, estimation period 1960.4-1978.4

approximate
test h test value distribution p-value

λLM (h) 1 6.37 χ2(9) 0.70
2 15.52 χ2(18) 0.62
3 32.81 χ2(27) 0.20
4 46.60 χ2(36) 0.11

FRao(h) 1 0.62 F (9, 148) 0.78
2 0.76 F (18, 164) 0.75
3 1.14 F (27, 161) 0.30
4 1.26 F (36, 154) 0.17

and the statistic cannot be computed in the way described in the foregoing.
An LM test for higher order residual autocorrelation may be based on the
auxiliary model

ût = ν + A1yt−1 + · · · + Apyt−p + Dhût−h + εt

and on a test

H0 : Dh = 0 versus H1 : Dh �= 0.

The relevant LM statistic can be shown to have an asymptotic χ2(K2)-
distribution under H0.

4.5 Testing for Nonnormality

Normality of the underlying data generating process is needed, for instance,
in setting up forecast intervals. Nonnormal residuals can also indicate more
generally that the model is not a good representation of the data generation
process (see Chapter 16 for models for nonnormal data). Therefore, testing
this distributional assumption is desirable. We will present tests for multi-
variate normality of a white noise process first. In Subsection 4.5.2, it is then
demonstrated that the tests remain valid if the true residuals are replaced by
the residuals of an estimated VAR(p) process.

4.5.1 Tests for Nonnormality of a Vector White Noise Process

The tests developed in the following are based on the third and fourth central
moments (skewness and kurtosis) of the normal distribution. If x is a univari-
ate random variable with standard normal distribution, i.e., x ∼ N (0, 1), its
third and fourth moments are known to be E(x3) = 0 and E(x4) = 3. Let ut
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be a K-dimensional Gaussian white noise process with ut ∼ N (µu, Σu) and
let P be a matrix satisfying PP ′ = Σu. For example, P may be obtained by
a Choleski decomposition of Σu. Then

wt = (w1t, . . . , wKt)′ := P−1(ut − µu) ∼ N (0, IK).

In other words, the components of wt are independent standard normal ran-
dom variables. Hence,

E

⎡⎢⎣ w3
1t
...

w3
Kt

⎤⎥⎦ = 0 and E

⎡⎢⎣ w4
1t
...

w4
Kt

⎤⎥⎦ =

⎡⎢⎣ 3
...
3

⎤⎥⎦ =: 3K . (4.5.1)

This result will be utilized in checking the normality of the white noise process
ut. The idea is to compare the third and fourth moments of the transformed
process with the theoretical values in (4.5.1) obtained for a Gaussian process.
For the univariate case, the corresponding test is known as the Jarque-Bera or
Lomnicki-Jarque-Bera test (see Jarque & Bera (1987) and Lomnicki (1961)).

For constructing the test, we assume to have observations u1, . . . , uT and
define

u :=
1
T

T∑
t=1

ut, Su :=
1

T − 1

∑
t

(ut − u)(ut − u)′,

and Ps is a matrix for which PsP
′
s = Su and such that plim(Ps − P ) = 0.

Moreover,

vt := (v1t, . . . , vKt)′ = P−1
s (ut − u), t = 1, . . . , T,

b1 := (b11, . . . , bK1)′ with bk1 =
1
T

∑
t

v3
kt, k = 1, . . . ,K, (4.5.2)

and

b2 := (b12, . . . , bK2)′ with bk2 =
1
T

∑
t

v4
kt, k = 1, . . . ,K. (4.5.3)

Thus, b1 and b2 are estimators of the vectors in (4.5.1). In the next proposition,
the asymptotic distribution of b1 and b2 is given.

Proposition 4.9 (Asymptotic Distribution of Skewness and Kurtosis)
If ut is Gaussian white noise with nonsingular covariance matrix Σu and
expectation µu, ut ∼ N (µu, Σu), then

√
T

[
b1

b2 − 3K

]
d→N

(
0,

[
6IK 0
0 24IK

])
.



176 4 VAR Order Selection and Checking the Model Adequacy

In other words, b1 and b2 are asymptotically independent and normally
distributed. The proposition implies that

λs := Tb′1b1/6
d→χ2(K) (4.5.4)

and

λk := T (b2 − 3K)′(b2 − 3K)/24 d→χ2(K). (4.5.5)

The first statistic can be used to test

H0 : E

⎡⎢⎣ w3
1t
...

w3
Kt

⎤⎥⎦ = 0 against H1 : E

⎡⎢⎣ w3
1t
...

w3
Kt

⎤⎥⎦ �= 0 (4.5.6)

and λk may be used to test

H0 : E

⎡⎢⎣ w4
1t
...

w4
Kt

⎤⎥⎦ = 3K against H1 : E

⎡⎢⎣ w4
1t
...

w4
Kt

⎤⎥⎦ �= 3K . (4.5.7)

Furthermore,

λsk := λs + λk
d→χ2(2K), (4.5.8)

which may be used for a joint test of the null hypotheses in (4.5.6) and (4.5.7).

Proof of Proposition 4.9
We state a helpful lemma first.

Lemma 4.4
Let zt = (z1t, . . . , zKt)′ be a Gaussian white noise process with mean µz and
covariance matrix IK , i.e., zt ∼ N (µz, IK). Furthermore, let

z = (z1, . . . , zK)′ :=
1
T

T∑
t=1

zt,

b1,z a (K × 1) vector with k-th component bk1,z :=
1
T

T∑
t=1

(zkt − zk)3,

and

b2,z a (K × 1) vector with k-th component bk2,z :=
1
T

T∑
t=1

(zkt − zk)4.

Then
√
T

[
b1,z

b2,z − 3K

]
d→N

(
0,

[
6IK 0
0 24IK

])
. (4.5.9)
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The proof of this lemma is easily obtained, for instance, from results of
Gasser (1975). Proposition 4.9 follows by noting that Ps is a consistent es-
timator of P (defined such that PP ′ = Σu) and by defining zt = P−1ut.
Hence,

√
T (P−1

s ⊗ P−1
s ⊗ P−1

s )
1
T

∑
t

(ut − u) ⊗ (ut − u) ⊗ (ut − u)

−
√
T

[
1
T

∑
t

(zt − z) ⊗ (zt − z) ⊗ (zt − z)

]
= (P−1

s ⊗ P−1
s ⊗ P−1

s − P−1 ⊗ P−1 ⊗ P−1)

× 1√
T

∑
t

(ut − u) ⊗ (ut − u) ⊗ (ut − u)
p→ 0.

An analogous result is obtained for the fourth moments. Consequently,

√
T

[
b1 − b1,z

b2 − b2,z

]
p→ 0

and the proposition follows from Proposition C.2(2) of Appendix C.

Remark 1 In Proposition 4.9, the white noise process is not required to have
zero mean. Thus, tests based on λs, λk, or λsk may be applied if the original
observations are generated by a VAR(0) process.

Remark 2 It is known that in the univariate case tests based on the skewness
and kurtosis (third and fourth moments) have small sample distributions that
differ substantially from their asymptotic counterparts (see, e.g., White &
MacDonald (1980), Jarque & Bera (1987) and the references given there).
Therefore, tests based on λs, λk, and λsk, in conjunction with the asymptotic
χ2-distributions in (4.5.4), (4.5.5), and (4.5.8), must be interpreted cautiously.
They should be regarded as rough checks of normality only.

Remark 3 Tests based on λs, λk, and λsk cannot be expected to possess
power against distributions having the same first four moments as the nor-
mal distribution. Thus, if higher order moment characteristics are of interest,
these tests cannot be recommended. Other tests for multivariate normality
are described by Mardia (1980), Baringhaus & Henze (1988), and others.

4.5.2 Tests for Nonnormality of a VAR Process

A stationary, stable VAR(p) process, say

yt − µ = A1(yt−1 − µ) + · · · + Ap(yt−p − µ) + ut, (4.5.10)

is Gaussian (normally distributed) if and only if the white noise process ut is
Gaussian. Therefore, the normality of the yt’s may be checked via the ut’s. In
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practice, the ut’s are replaced by estimation residuals. In the following we will
demonstrate that this is of no consequence for the asymptotic distributions of
the λ statistics considered in the previous subsection.

The reader may wonder why normality tests are based on the residuals
rather than the original observations yt. The reason is that tests based on the
latter may be less powerful than those based on the estimation residuals. For
the univariate case this point was demonstrated by Lütkepohl & Schneider
(1989). It is also worth recalling that the forecast errors used in the construc-
tion of forecast intervals are weighted sums of the ut’s. Therefore, checking
the normality of these quantities makes sense if the aim is to establish interval
forecasts. The next result states that Proposition 4.9 remains valid if the true
white noise innovations ut are replaced by estimation residuals.

Proposition 4.10 (Asymptotic Distribution of Residual Skewness and Kur-
tosis)
Let yt be a K-dimensional stationary, stable Gaussian VAR(p) process as in
(4.5.10), where ut is zero mean white noise with nonsingular covariance matrix
Σu and let Â1, . . . , Âp be consistent and asymptotically normally distributed
estimators of the coefficients based on a sample y1, . . . , yT and possibly some
presample values. Define

ût := (yt − y) − Â1(yt−1 − y) − · · · − Âp(yt−p − y), t = 1, . . . , T,

Σ̂u :=
1

T −Kp− 1

T∑
t=1

ûtû
′
t,

and let P̂ be a matrix satisfying P̂ P̂ ′ = Σ̂u such that plim(P̂ − P ) = 0.
Furthermore, define

ŵt = (ŵ1t, . . . , ŵKt)′ := P̂−1ût,

b̂1 = (̂b11, . . . , b̂K1)′ with b̂k1 :=
1
T

T∑
t=1

ŵ3
kt, k = 1, . . . ,K,

and

b̂2 = (̂b12, . . . , b̂K2)′ with b̂k2 :=
1
T

T∑
t=1

ŵ4
kt, k = 1, . . . ,K.

Then

√
T

[
b̂1

b̂2 − 3K

]
d→N

(
0,

[
6IK 0
0 24IK

])
.
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Although the proposition is formulated in terms of the mean-adjusted
form (4.5.10) of the process, it also holds if estimation residuals from the
standard intercept form are used instead. The parameter estimators may be
unconstrained ML or LS estimators. However, the proposition does not require
this. In other words, the proposition remains valid if, for instance, restricted
LS or generalized LS estimators are used, as discussed in the next chapter.
The following lemma will be helpful in proving Proposition 4.10.

Lemma 4.5
Under the conditions of Proposition 4.10,

plim

[
1√
T

T∑
t=1

ût ⊗ ût ⊗ ût − 1√
T

T∑
t=1

(ut − u) ⊗ (ut − u) ⊗ (ut − u)

]
= 0

(4.5.11)

and

plim

[
1√
T

T∑
t=1

ût ⊗ ût ⊗ ût ⊗ ût

− 1√
T

T∑
t=1

(ut − u) ⊗ (ut − u) ⊗ (ut − u) ⊗ (ut − u)

]
= 0 (4.5.12)

Proof: A proof for the special case of a VAR(1) process yt is given and the
generalization is left to the reader. Also, we just show the first result. The
second one follows with analogous arguments. For the special VAR(1) case,

ût = (yt − y) − Â1(yt−1 − y)

= (ut − u) + (A1 − Â1)(yt−1 − y) + aT ,

where aT = A1(yT − y0)/T . Hence,

1√
T

∑
t

[ût ⊗ ût ⊗ ût] =
1√
T

∑
t

[(ut − u) ⊗ (ut − u) ⊗ (ut − u)] + dT ,

where dT is a sum of expressions of the type

1√
T

∑
t

[
(A1 − Â1)(yt−1 − y) + aT

]
⊗ (ut − u) ⊗ (ut − u)

=
√
T
[
(A1 − Â1) ⊗ I2K

] 1
T

∑
t

[(yt−1 − y) ⊗ (ut − u) ⊗ (ut − u)]

+
√
TaT ⊗ 1

T

∑
t

[(ut − u) ⊗ (ut − u)] , (4.5.13)
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that is, dT consists of sums of Kronecker products involving (A1 − Â1)(yt−1 −
y), (ut −u), and aT . Therefore, dT = op(1). For instance, (4.5.13) goes to zero
in probability because

plim
1
T

∑
t

(ut − u) ⊗ (ut − u) exists and
√
TaT = op(1)

so that the last term in (4.5.13) vanishes. Moreover, the elements of
√
T (A1−

Â1) converge in distribution and

plim
1
T

∑
t

(yt−1 − y) ⊗ (ut − u) ⊗ (ut − u) = 0 (4.5.14)

(see Problem 4.4). Hence the first term in (4.5.13) vanishes.

Proof of Proposition 4.10
By Proposition C.2(2) of Appendix C and Proposition 4.9, it suffices to show
that

(P̂−1 ⊗ P̂−1 ⊗ P̂−1)
1√
T

∑
t

ût ⊗ ût ⊗ ût

−(P−1
s ⊗ P−1

s ⊗ P−1
s )

1√
T

∑
t

(ut − u) ⊗ (ut − u) ⊗ (ut − u)
p→ 0

(4.5.15)

and the fourth moments possess a similar property. The result (4.5.15) follows
from Lemma 4.5 by noting that P̂ and Ps are both consistent estimators of P
and, for stochastic vectors hT , gT and stochastic matrices HT , GT with

plim(hT − gT ) = 0, hT
d→h,

and

plim HT = plim GT = H,

we get

HThT −GT gT = (HT −H)hT + H(hT − gT ) + (H −GT )gT
p→ 0.

Proposition 4.10 implies that

λ̂s := T b̂′1b̂1/6
d→χ2(K), (4.5.16)

λ̂k := T (̂b2 − 3K)′(b̂2 − 3K)/24 d→χ2(K), (4.5.17)
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and

λ̂sk := λ̂s + λ̂k
d→χ2(2K). (4.5.18)

Thus, all three statistics may be used for testing nonnormality.
As we have seen, the results hold for any matrix satisfying P̂ P̂ ′ = Σ̂u. For

example, P̂ may be a lower triangular matrix with positive diagonal obtained
by a Choleski decomposition of Σ̂u. Clearly, in this case P̂ is a consistent
estimator of the corresponding matrix P (see Proposition 3.6). Doornik &
Hansen (1994) point out that with this choice the test results will depend on
the ordering of the variables. Therefore they suggest using a matrix based
on the square root of the correlation matrix corresponding to Σ̂u instead. In
any case, the matrix P̂ is not unique and, hence, the tests will depend to
some extent on its choice. Strictly speaking, if one particular P̂ is found for
which the null hypothesis can be rejected, this result provides evidence against
the normality of the process. Thus, different P̂ matrices could be applied in
principle.

For illustrative purposes we consider our standard investment/income/con-
sumption example from Section 3.2.3. Using the least squares residuals from
the VAR(2) model with intercepts and a Choleski decomposition of Σ̂u yields

λ̂s = 3.15 and λ̂k = 4.69

which are both smaller than χ2(3).90 = 6.25, the critical value of an asymptotic
10% level test. Also

λ̂sk = 7.84 < χ2(6).90 = 10.64.

Thus, based on these asymptotic tests we cannot reject the null hypothesis of
a Gaussian data generation process.

It was pointed out by Kilian & Demiroglu (2000) that the small sample dis-
tributions of the test statistics may differ substantially from their asymptotic
approximations. Thus, the tests may not be very reliable in practice. Kilian
& Demiroglu (2000) proposed bootstrap versions to alleviate the problem.

4.6 Tests for Structural Change

Time invariance or stationarity of the data generation process is an important
condition that was used in deriving the properties of estimators and in com-
puting forecasts and forecast intervals. Recall that stationarity is a property
that ensures constant means, variances, and autocovariances of the process
through time. As we have seen in the investment/income/consumption exam-
ple, economic time series often have characteristics that do not conform with
the assumption of stationarity of the underlying data generation process. For
instance, economic time series often have trends or pronounced seasonal com-
ponents and time varying variances. While these components can sometimes
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be eliminated by simple transformations, there remains another important
source of nonstationarity, namely events that cause turbulence in economic
systems in particular time periods. For instance, wars usually change the eco-
nomic conditions in some areas or countries markedly. Also new tax legisla-
tion may have a major impact on some economic variables. Furthermore, the
oil price shocks in 1973/74 and 1979/80 are events that have caused drastic
changes in some variables (notably the price for gasoline). Such events may
be sources of structural change in economic systems.

Because stability and, hence, stationarity is an important assumption in
our analysis, it is desirable to have tools for checking this assumed property of
the data generation process. In this section, we consider two types of tests that
can be used for this purpose. The first set of tests checks whether a change in
the parameters has occurred at some point in time by comparing the estimated
parameters before and after the possible break date. These tests are known
as Chow tests. The second set of tests is based on comparing forecasts with
actually observed values. More precisely, forecasts are made prior to a period
of possible structural change and are compared to the values actually observed
during that period. The stability or stationarity hypothesis is rejected if the
forecasts differ too much from the actually observed values. These tests are
presented in Sections 4.6.1 and 4.6.2. Other tests will be considered in later
chapters.

4.6.1 Chow Tests

Suppose a change in the parameters of the VAR(p) process (4.1.1) is suspected
after period T1 < T . Given a sample y1, . . . , yT plus the required presample
values, the model can be set up as follows for estimation purposes:[

Y(1) : Y(2)

]
= [B1 : B2]Z +

[
U(1) : U(2)

]
= BZ + U,

where Y(1) := [y1, . . . , yT1 ], Y(2) := [yT1+1, . . . , yT ], U is partitioned ac-
cordingly, B1 := [ν1, A11, . . . , Ap1] and B2 := [ν2, A12, . . . , Ap2] are the
(K× (pK +1)) dimensional parameter matrices associated with the first (t =
1, . . . , T1) and last (t = T1 +1, . . . , T ) subperiods, respectively, B := [B1 : B2]
is (K × 2(Kp + 1)) dimensional and

Z :=
[
Z(1) 0
0 Z(2)

]
.

Here Z(1) := [Z0, . . . , ZT1−1] and Z(2) := [ZT1 , . . . , ZT−1] with Z ′
t := (1, y′t, . . . ,

y′t−p+1), as usual.
In this model setup, a test for parameter constancy checks

H0 : B1 = B2 or [I : −I]vec(B) = 0 versus H1 : B1 �= B2.

Clearly, this is just a linear hypothesis which can be handled easily within
our LS or ML framework under standard assumptions. For example, the LS
estimator of B is
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B̂ =
[
Y(1) : Y(2)

]
Z′(ZZ′)−1

=
[
Y(1)Z

′
(1)(Z(1)Z

′
(1))

−1 : Y(2)Z
′
(2)(Z(2)Z

′
(2))

−1
]
.

It has an asymptotic normal distribution under the assumptions of Proposition
3.1. To appeal to that proposition it has to be ensured, however, that T−1ZZ′

converges in probability to a nonsingular matrix. In other words,

plim
Ti

T

1
Ti

Z(i)Z
′
(i), i = 1, 2,

has to exist and be nonsingular. Hence, Ti/T must not go to zero when T goes
to ∞, so that both subperiods before and after the break must be assumed to
increase with T . If the assumptions for asymptotic normality can be justified,
a Wald test can, for example, be used to test the stability hypothesis. Alter-
natively, an LR or quasi LR test may be applied. This type of test is often
given the label Chow test in the literature.

There are some practical matters in applying these tests in the present
context that are worth noting. If the possible break date is very close to the
sample beginning or the sample end, the LS/ML estimators of Bi may not
be available due to lack of degrees of freedom. While at the sample beginning
one may be ready to delete a few observations to eliminate the structural
break, this option is often undesirable at the end of the sample. For example,
if forecasting is the objective of the analysis, a break towards the end of the
sample would clearly be problematic. Therefore, the so-called Chow forecast
tests have been proposed which also work for break dates close to the sample
end. In the next subsection, we present a slightly different set of forecast tests
which may be applied instead.

Even if the suspected break point is well inside the sample period so that
the application of the standard Chow test is unproblematic in principle, in
practice, the break may not occur in one period. If there is a longer time
phase in which a parameter shift to a new level takes place, it may be use-
ful to eliminate a few observations around the break date and use only the
remaining ones in estimating the parameters. One may also argue that us-
ing some observations from periods up to T1 in Z(2) may be problematic and
may result in reduced power because observations from both subperiods are
mixed in estimating B2. Under the null hypothesis of parameter constancy,
this should be no problem, however, because, under H0, the same process is
in operation before and after T1. Still, from the point of view of maximizing
power, deleting some observations around the possible break point may be a
good idea.

Other practical problems may result from multiple structural breaks within
the sample period. In principle, it is no problem to test multiple break points
simultaneously. Also, to improve power, one may only test some of the pa-
rameters or one may wish to test for a changing white noise covariance matrix
which is implicitly assumed to be time invariant in the foregoing discussion.
Details of such extensions will be discussed in Chapter 17.
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So far we have considered asymptotic results only. Unfortunately, it was
found by Candelon & Lütkepohl (2001) that asymptotic theory may be an
extremely poor guide for the small sample properties of Chow tests, in partic-
ular, if models with many parameters are under consideration. To improve the
reliability of the tests, these authors proposed to use bootstrapped versions.
Bootstrapped p-values may be obtained as described in Appendix D.3.

For the German investment/income/consumption data we have fitted a
VAR(2) model to data up to 1982.4 and we have performed a Chow test for
a break in period 1979.1. The test value is 30.5. Comparing that to 29.6,
the 10% critical value of a χ2(21) distribution, stability is rejected at the
10% level. A bootstrapped p-value based on 2000 bootstrap replications turns
out to be 0.21, however. Thus, based on the bootstrapped test, stability is not
rejected. It is typical for the test based on the asymptotic χ2-distribution that
it rejects more often in small samples than the specified nominal significance
level, even if the model is stable. This distortion is at least partly corrected
by the bootstrap.

4.6.2 Forecast Tests for Structural Change

A Test Statistic Based on one Forecast Period

Suppose yt is a K-dimensional stationary, stable Gaussian VAR(p) process as
in (4.1.1). The optimal h-step forecast at time T is denoted by yT (h) and the
corresponding forecast error is

eT (h) := yT+h − yT (h) =
h−1∑
i=0

ΦiuT+h−i = [Φh−1 : · · · : Φ1 : IK ]uT,h

(4.6.1)

where uT,h := (u′
T+1, . . . , u

′
T+h)′, the Φi are the coefficient matrices of the

canonical MA representation (see Section 2.2.2). Because uT,h ∼ N (0, Ih ⊗
Σu), the forecast error is a linear transformation of a multivariate normal
distribution and, consequently (see Appendix B),

eT (h) ∼ N (0, Σy(h)), (4.6.2)

where

Σy(h) =
h−1∑
i=0

ΦiΣuΦ
′
i

is the forecast MSE matrix (see (2.2.11)). Hence,

τh := eT (h)′Σy(h)−1eT (h) ∼ χ2(K) (4.6.3)

by Proposition B.3 of Appendix B.
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This derivation assumes that yT+h is generated by the same VAR(p) pro-
cess that has generated the yt for t ≤ T . If this process does not prevail in
period T+h, the statistic τh will, in general, not have a central χ2-distribution.
Hence, τh may be used to test the null hypothesis

H0: (4.6.2) is true, that is, yT+h is generated by the same Gaussian VAR(p)
process that has generated y1, . . . , yT .

The alternative hypothesis is that yT+h is not generated by the same process
as y1, . . . , yT . The null hypothesis is rejected if the forecast errors are large
so that τh exceeds a prespecified critical value from the χ2(K)-distribution.
Such a test may be performed for h = 1, 2, . . ..

It may be worth noting that in these tests we also check the normality as-
sumption for yt. Even if the same process has generated yT+h and y1, . . . , yT ,
(4.6.2) will not hold if that process is not Gaussian. Thus, the normality as-
sumption for yt is part of H0. Other possible deviations from the null hypoth-
esis include changes in the mean and changes in the variance of the process.

In practice, the tests are not feasible in their present form because τh

involves unknown quantities. The forecast errors eT (h) and the MSE matrix
Σy(h) are both unknown and must be replaced by estimators. For the forecast
errors, we use

êT (h) := yT+h − ŷt(h) =
h−1∑
i=0

Φ̂iûT+h−i, (4.6.4)

where the Φ̂i are obtained from the coefficient estimators Âi in the usual way
(see Section 3.5.2) and

ût := yt − ν̂ − Â1yt−1 − · · · − Âpyt−p.

The MSE matrix may be estimated by

Σ̂y(h) :=
h−1∑
i=0

Φ̂iΣ̂uΦ̂
′
i, (4.6.5)

where Σ̂u is the LS estimator of Σu. As usual, we use only data up to period
T for estimation and not the data from the forecast period. If the conditions
for consistency of the estimators are satisfied, that is,

plim ν̂ = ν, plim Âi = Ai, i = 1, . . . , p, and plim Σ̂u = Σu,

then plim Φ̂i = Φi, plim Σ̂y(h) = Σy(h) and

plim(ût − ut) = plim(ν − ν̂) + plim(A1 − Â1)yt−1 + · · ·
+ plim(Ap − Âp)yt−p

= 0.
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Hence, defining

τ̂h := êT (h)′Σ̂y(h)êT (h),

we get plim (τ̂h − τh) = 0 and, thus, by Proposition C.2(2) of Appendix C,

τ̂h
d→χ2(K). (4.6.6)

In other words, if the unknown coefficients are replaced by consistent estima-
tors, the resulting test statistics τ̂h have the same asymptotic distributions as
the τh.

Of course, it is desirable to know whether the χ2(K)-distribution is a good
approximation to the distribution of τ̂h in small samples. This, however, is not
likely because in Section 3.5.1,

Σŷ(h) = Σy(h) +
1
T
Ω(h) (4.6.7)

was found to be a better approximation to the MSE matrix than Σy(h), if
the forecasts are based on an estimated process. While asymptotically, as
T → ∞, the term Ω(h)/T vanishes, it seems plausible to include this term
in small samples. For univariate processes, it was confirmed in a simulation
study by Lütkepohl (1988b) that inclusion of the term results in a better
agreement between the small sample and asymptotic distributions. For mul-
tivariate vector processes, the simulation results of Section 3.5.4 point in the
same direction. Thus, in small samples a statistic of the type

êT (h)′Σ̂ŷ(h)−1êT (h)

is more plausible than τ̂h. Here Σ̂ŷ(h) is the estimator given in Section 3.5.2.
In addition to this adjustment, it is useful to adjust the statistic for using
an estimated rather than known forecast error covariance matrix. Such an
adjustment is often done by dividing by the degrees of freedom and using the
statistic in conjunction with critical values from an F -distribution. That is,
we may use

τh := êT (h)′Σ̂ŷ(h)−1êT (h)/K ≈ F (K,T −Kp− 1). (4.6.8)

The approximate F -distribution follows from Proposition C.3(2) of Appendix
C and the denominator degrees of freedom are chosen by analogy with a
result due to Hotelling (e.g., Anderson (1984)). Other choices are possible.
Proposition C.3(2) requires, however, that the denominator degrees of freedom
go to infinity with the sample size T .

A Test Based on Several Forecast Periods

Another set of stationarity tests is obtained by observing that the errors of
forecasts 1- to h-steps ahead are also jointly normally distributed under the
null hypothesis of structural stability,
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eT (h) :=

⎡⎢⎣ eT (1)
...

eT (h)

⎤⎥⎦ = ΦhuT,h ∼ N (0,Σy(h)), (4.6.9)

where

Φh :=

⎡⎢⎢⎢⎣
IK 0 . . . 0
Φ1 IK 0
...

...
. . .

...
Φh−1 Φh−2 . . . IK

⎤⎥⎥⎥⎦ (4.6.10)

so that

Σy(h) := Φh(Ih ⊗Σu)Φ′
h. (4.6.11)

Using again Proposition B.3 of Appendix B,

λh := eT (h)′Σy(h)−1eT (h) = u′
T,h(Ih ⊗Σ−1

u )uT,h

=
h∑

i=1

u′
T+iΣ

−1
u uT+i = λh−1 + u′

T+hΣ
−1
u uT+h ∼ χ2(hK). (4.6.12)

Thus, λh may be used to check whether a structural change has occurred
during the periods T + 1, . . . , T + h.

To make this test feasible, it is necessary to replace unknown quantities
by estimators just as in the case of the τ -tests. Denoting the test statistics
based on estimated VAR processes by λ̂h,

λ̂h
d→χ2(hK) (4.6.13)

follows with the same arguments used for τ̂h, provided consistent parameter
estimators are used.

Again it seems plausible to make small sample adjustments to the statistics
to take into account the fact that estimated quantities are used. The last
expression in (4.6.12) suggests that a closer look at the terms

u′
T+iΣ

−1
u uT+i (4.6.14)

is useful in searching for a small sample adjustment. This expression involves
the 1-step ahead forecast errors uT+i = yT+i − yT+i−1(1). If estimated co-
efficients are used in the 1-step ahead forecast, the MSE or forecast error
covariance matrix is approximately inflated by a factor (T + Kp + 1)/T (see
(3.5.13)). Because λh is the sum of terms of the form (4.6.14), it may be
suitable to replace Σu by (T + Kp + 1)Σ̂u/T when estimated quantities are
used. Note, however, that such an adjustment ignores possible dependencies
between the estimated ûT+i and ûT+j . Nevertheless, it leads to a computa-
tionally extremely simple form and was therefore proposed in the literature
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(Lütkepohl (1989b)). Furthermore, it was suggested to divide by the degrees
of freedom of the asymptotic χ2-distribution and, by appeal to Proposition
C.3(2) of Appendix C, use the resulting statistic, λh say, in conjunction with
critical values from F -distributions to adjust for the fact that Σu is replaced
by an estimator. In other words,

λh := T

h∑
i=1

û′
T+iΣ̂

−1
u ûT+i/[(T+Kp+1)Kh] ≈ F (Kh, T−Kp−1). (4.6.15)

The denominator degrees of freedom are chosen by the same arguments used
in (4.6.8). Obviously, λ1 = τ1.

Now we have different sets of stationarity tests and the question arises
which ones to use in practice. To answer this question, it would be useful
to know the power characteristics of the tests because it is desirable to use
the most powerful test available. For some alternatives the τ - and λ-statistics
have noncentral χ2-distributions (Lütkepohl (1988b, 1989)). In these cases
it is possible to investigate and compare their powers. It turns out that for
some alternatives the τ -tests are more powerful than the λ-tests and for other
alternatives the opposite is true. Because we usually do not know the exact
form of the alternative (the exact form of the structural change) it may be a
good idea to apply both tests in practice. In addition, a Chow test may be
used.

An Example

To illustrate the use of the two tests for stationarity, we use the first differences
of logarithms of the West German investment, income, and consumption data
and test for a possible structural change caused by the oil price shocks in
1973/74 and 1979/80. Because the first drastic price increase occurred in late
1973, we have estimated a VAR(2) model using the sample period 1960.4–
1973.2 and presample values from 1960.2 and 1960.3. Thus T = 51. It is
important to note that the data from the forecast period are not used for
estimation. We have used the estimated process to compute the τh and λh

for h = 1, . . . , 8. The results are given in Table 4.9 together with the p-values
of the tests. The p-value is the probability that the test statistic assumes a
value greater than the observed test value, if the null hypothesis is true. Thus,
p-values smaller than .10 or .05 would be of concern. Obviously, in this case
none of the test values is statistically significant at the 10% level. Thus, the
tests do not give rise to concern about the stationarity of the underlying data
generation process during the period in question. Although we have given the
τh and λh values for various forecast horizons h in Table 4.9, we emphasize
that the tests are not independent for different h. Thus, the evidence from
the set of tests should not lead to overrating the confidence we may have in
this result.
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Table 4.9. Stability tests for the investment/income/consumption
system for 1973–1975

forecast
horizon

quarter h τh p-value λh p-value

1973.3 1 .872 .46 .872 .46
4 2 .271 .85 .717 .64

1974.1 3 .206 .89 .517 .85
2 4 .836 .48 .627 .81
3 5 .581 .63 .785 .69
4 6 .172 .91 .832 .65

1975.1 7 .126 .94 .863 .63
2 8 1.450 .24 1.041 .44

To check the possibility of a structural instability due to the 1979/80 oil
price increases, we used the VAR(2) model of Section 3.2.3 which is based on
data up to the fourth quarter of 1978. The resulting values of the test statis-
tics for h = 1, . . . , 8 are presented in Table 4.10. Again none of the values is
significant at the 10% level. However, in Section 3.5.2, we found that the ob-
served consumption values in 1979 fall outside a 95% forecast interval. Hence,
looking at the three series individually, a possible nonstationarity would be
detected by a prediction test. This possible instability in 1979 was a reason for
using only data up to 1978 in the examples of previous chapters and sections.
The example indicates what can also be demonstrated theoretically, namely
that the power of a test based on joint forecasts of various variables may be
lower than the power of a test based on forecasts for individual variables (see
Lütkepohl (1989b)).

4.7 Exercises

4.7.1 Algebraic Problems

Problem 4.1
Show that the restricted ML estimator β̃r can be written in the form (4.2.10).

Problem 4.2
Prove Lemma 4.1.[
Hint: Suppose k < n. Then
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Table 4.10. Stability tests for the investment/income/consumption
system for 1979–1980

forecast
horizon

quarter h τh p-value λh p-value

1979.1 1 .277 .84 .277 .84
2 2 2.003 .12 1.077 .38
3 3 2.045 .12 1.464 .18
4 4 .203 .89 1.245 .27

1980.1 5 .630 .60 1.339 .20
2 6 1.898 .86 1.374 .17
3 7 .188 .90 1.204 .28
4 8 .535 .66 1.124 .34

cn + an = cn + (an − an−1) + · · · + (ak+1 − ak) + ak

> cn + (bn − bn−1) + · · · + (bk+1 − bk) + ak

≥ ck + bk − bk + ak

= ck + ak

which contradicts (4.3.13b).2
]

Problem 4.3
Show (4.4.14) and (4.4.15).[
Hint:

vec(
√
TUF [Ih ⊗ Z ′(B̂ −B)′]/T )

=
√
T vec

[
1
T
UF (Ih ⊗ Z ′)(Ih ⊗ (B̂ −B)′)

]
=

[
IK ⊗ 1

T
UF (Ih ⊗ Z ′)

]√
T vec(Ih ⊗ (B̂ −B)′)

and

√
T vec

(
1
T

(B̂ −B)ZF
[
Ih ⊗ Z ′(B̂ −B)′

])
=

{[
Ih ⊗ (B̂ −B)

] (Ih ⊗ Z)F ′Z ′

T
⊗ IK

}√
T vec(B̂ −B).

]
Problem 4.4
Show (4.5.14).

2 I thank Prof. K. Schürger, Universität Bonn, for pointing out this proof.
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Hint: Note that

(yt−1 − y) ⊗ (ut − u) ⊗ (ut − u) = (yt−1 − µ) ⊗ ut ⊗ ut

−(yt−1 − µ) ⊗ ut ⊗ u + · · · ,
define new variables of the type

zt = (yt−1 − µ) ⊗ ut ⊗ ut

and use that

plim
1
T

∑
t

zt = E(zt) = 0.
]

Problem 4.5
Using the notation and assumptions from Proposition 4.1, show that

∂ ln l(β̃r)
∂β′

∂2 ln l(β̃r)
∂β∂β′

∂ ln l(β̃r)
∂β

= (β̃r − β̃)′(ZZ ′ ⊗ (Σ̃r
u)−1)(β̃r − β̃).

4.7.2 Numerical Problems

The following problems require the use of a computer. They refer to the bi-
variate series yt = (y1t, y2t)′ of first differences of the U.S. investment data in
File E2, available from the author’s webpage.

Problem 4.6
Set up a sequence of tests for the correct VAR order of the data generating
process using a maximum order of M = 4. Compute the required χ2 and F
likelihood ratio statistics. Which order would you choose?

Problem 4.7
Determine VAR order estimates on the basis of the four criteria FPE, AIC,
HQ, and SC. Use a maximum VAR order of M = 4 in a first estimation round
and M = 8 in a second estimation round. Compare the results.

Problem 4.8
Compute the residual autocorrelations R̂1, . . . , R̂12 and estimate their stan-
dard errors using the VAR(1) model obtained in Problem 3.12. Interpret your
results.

Problem 4.9
Compute LM test values λLM (1), λLM (2), and λLM (4) and portmanteau test
values Qh and Q̄h for h = 10 and 12 for the VAR(1) model of the previous
problem. Test the whiteness of the residuals.

Problem 4.10
On the basis of a VAR(1) model, perform a test for nonnormality of the
example data.
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Problem 4.11
Investigate whether there was a structural change in U.S. investment after
1965 (possibly due to the increasing U.S. engagement in Vietnam).
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VAR Processes with Parameter Constraints

5.1 Introduction

In Chapter 3, we have discussed estimation of the parameters of a K-
dimensional stationary, stable VAR(p) process of the form

yt = ν + A1yt−1 + · · · + Apyt−p + ut, (5.1.1)

where all the symbols have their usual meanings. In the investment/in-
come/consumption example considered throughout Chapter 3, we found that
many of the coefficient estimates were not significantly different from zero.
This observation may be interpreted in two ways. First, some of the coeffi-
cients may actually be zero and this fact may be reflected in the estimation
results. For instance, if some variable is not Granger-causal for the remaining
variables, zero coefficients are encountered. Second, insignificant coefficient
estimates are found if the information in the data is not rich enough to pro-
vide sufficiently precise estimates with confidence intervals that do not contain
zero.

In the latter case, one may want to think about better ways to extract
the information from the data because, as we have seen in Chapter 3, a large
estimation uncertainty for the VAR coefficients leads to poor forecasts (large
forecast intervals) and imprecise estimates of the impulse responses and fore-
cast error variance components. Getting imprecise parameter estimates in a
VAR analysis is a common practical problem because the number of parame-
ters is often quite substantial relative to the available sample size or time series
length. Various cures for this problem have been proposed in the literature.
They all amount to putting constraints on the coefficients.

For instance, in the previous chapter, choosing the VAR order p has been
discussed. Selecting an order that is less than the maximum order amounts to
placing zero constraints on VAR coefficient matrices. This way complete coef-
ficient matrices are eliminated. In the present chapter, we will discuss putting
zero constraints on individual coefficients. Such constraints are but one form



194 5 VAR Processes with Parameter Constraints

of linear restrictions which will be treated in Section 5.2. Nonlinear constraints
are considered in Section 5.3 and Bayesian estimation is the subject of Section
5.4.

5.2 Linear Constraints

In this section, the consequences of estimating the VAR coefficients subject
to linear constraints will be considered. Different estimation procedures are
treated in Subsections 5.2.2–5.2.5; forecasting and impulse response analysis
are discussed in Subsections 5.2.6 and 5.2.7, respectively; strategies for model
selection or the choice of constraints are dealt with in Subsection 5.2.8; model
checking follows in Subsection 5.2.9; and, finally, an example is discussed in
Subsection 5.2.10.

5.2.1 The Model and the Constraints

We consider the model (5.1.1) for t = 1, . . . , T , written in compact form

Y = BZ + U, (5.2.1)

where

Y := [y1, . . . , yT ], Z := [Z0, . . . , ZT−1] with Zt :=

⎡⎢⎢⎢⎣
1
yt

...
yt−p+1

⎤⎥⎥⎥⎦ ,

B := [ν,A1, . . . , Ap], U := [u1, . . . , uT ].

Suppose that linear constraints for B are given in the form

β := vec(B) = Rγ + r, (5.2.2)

where β = vec(B) is a (K(Kp+1)×1) vector, R is a known (K(Kp+1)×M)
matrix of rank M , γ is an unrestricted (M × 1) vector of unknown param-
eters, and r is a K(Kp + 1)-dimensional vector of known constants. All the
linear restrictions of interest can be expressed in this form. For instance, the
restriction Ap = 0 can be written as in (5.2.2) by choosing M = K2(p− 1)+K,

R =
[
IM

0

]
, γ = vec(ν,A1, . . . , Ap−1),

and r = 0.
Although (5.2.2) is not the most conventional form of representing linear

constraints, it is used here because it is particularly useful for our purposes.
Often the constraints are expressed as
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Cβ = c, (5.2.3)

where C is a known (N × (K2p + K)) matrix of rank N and c is a known
(N × 1) vector (see Chapter 4, Section 4.2.2). Because rk(C) = N , the matrix
C has N linearly independent columns. For simplicity we assume that the first
N columns are linearly independent and partition C as C = [C1 : C2], where
C1 is (N ×N) nonsingular and C2 is (N × (K2p + K − N)). Partitioning β
conformably gives

[C1 : C2]
[

β1

β2

]
= C1β1 + C2β2 = c

or

β1 = −C−1
1 C2β2 + C−1

1 c.

Therefore, choosing

R =
[ −C−1

1 C2

IpK2+K−N

]
, γ = β2, and r =

[
C−1

1 c
0

]
,

the constraints (5.2.3) can be written in the form (5.2.2). Also, it is not difficult
to see that restrictions written as in (5.2.2) can be expressed in the form
Cβ = c for suitable C and c. Thus, the two forms are equivalent.

The representation (5.2.2) permits to impose the constraints by a simple
reparameterization of the original model. Vectorizing (5.2.1) and replacing β
by Rγ + r gives

y := vec(Y ) = (Z ′ ⊗ IK) vec(B) + vec(U)
= (Z′ ⊗ IK)(Rγ + r) + u

or

z = (Z ′ ⊗ IK)Rγ + u, (5.2.4)

where z := y − (Z ′ ⊗ IK)r and u := vec(U). This form of the model allows
us to derive the estimators and their properties just like in the original un-
constrained model. Estimation of γ and β will be discussed in the following
subsections.

5.2.2 LS, GLS, and EGLS Estimation

Asymptotic Properties

Denoting by Σu the covariance matrix of ut, the vector γ̂ minimizing

S(γ) = u′(IT ⊗Σ−1
u )u

= [z − (Z ′ ⊗ IK)Rγ]′(IT ⊗Σ−1
u )[z − (Z ′ ⊗ IK)Rγ] (5.2.5)
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with respect to γ is easily seen to be

γ̂ = [R′(ZZ′ ⊗Σ−1
u )R]−1R′(Z ⊗Σ−1

u )z
= [R′(ZZ′ ⊗Σ−1

u )R]−1R′(Z ⊗Σ−1
u ) [(Z ′ ⊗ IK)Rγ + u]

= γ + [R′(ZZ′ ⊗Σ−1
u )R]−1 R′(IKp+1 ⊗Σ−1

u ) vec(UZ ′) (5.2.6)

(see Chapter 3, Section 3.2.1). This estimator is commonly called a generalized
LS (GLS) estimator because it minimizes the generalized sum of squared
errors S(γ) rather than the sum of squared errors u′u. We will see shortly
that in contrast to the unrestricted case considered in Chapter 3, it may make
a difference here whether S(γ) or u′u is used as the objective function. The
GLS estimator is in general asymptotically more efficient than the multivariate
LS estimator and is therefore preferred here. We will see in Section 5.2.3
that, under Gaussian assumptions, the GLS estimator is equivalent to the
ML estimator. From (5.2.6),

√
T (γ̂ − γ) =

[
R′

(
ZZ′

T
⊗Σ−1

u

)
R

]−1

R′(IKp+1 ⊗Σ−1
u )

1√
T

vec(UZ ′)

(5.2.7)

and the asymptotic properties of γ̂ are obtained as in Proposition 3.1.

Proposition 5.1 (Asymptotic Properties of the GLS Estimator)
Suppose the conditions of Proposition 3.1 are satisfied, that is, yt is a K-
dimensional stable, stationary VAR(p) process and ut is independent white
noise with bounded fourth moments. If β = Rγ +r as in (5.2.2) with rk(R) =
M , then γ̂ given in (5.2.6) is a consistent estimator of γ and

√
T (γ̂ − γ) d→N (0, [R′(Γ ⊗Σ−1

u )R]−1), (5.2.8)

where Γ := E(ZtZ
′
t) = plim ZZ ′/T .

Proof: Under the conditions of the proposition, plim(ZZ′/T ) = Γ and

1
T

vec(UZ ′) d→N (0, Γ ⊗Σu)

(see Lemma 3.1). Hence, by results stated in Appendix C, Proposition C.15(1),
using (5.2.7),

√
T (γ̂ − γ) has an asymptotic normal distribution with covari-

ance matrix

[R′(Γ ⊗Σ−1
u )R]−1R′(I ⊗Σ−1

u )(Γ ⊗Σu)(I ⊗Σ−1
u )R[R′(Γ ⊗Σ−1

u )R]−1

= [R′(Γ ⊗Σ−1
u )R]−1.

Unfortunately, the estimator γ̂ is of limited value in practice because its
computation requires knowledge of Σu. Since this matrix is usually unknown,
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it has to be replaced by an estimator. Using any consistent estimator Σ̄u

instead of Σu in (5.2.6), we get an EGLS (estimated GLS) estimator

̂̂γ = [R′(ZZ′ ⊗ Σ̄−1
u )R]−1R′(Z ⊗ Σ̄−1

u )z (5.2.9)

which has the same asymptotic properties as the GLS estimator γ̂. This result
is an easy consequence of the representation (5.2.7) and Proposition C.15(1)
of Appendix C.

Proposition 5.2 (Asymptotic Properties of the EGLS Estimator)
Under the conditions of Proposition 5.1, if plim Σ̄u = Σu, the EGLS estimator̂̂γ in (5.2.9) is asymptotically equivalent to the GLS estimator γ̂ in (5.2.6),
that is, plim ̂̂γ = γ and

√
T (̂̂γ − γ) d→N (0, [R′(Γ ⊗Σ−1

u )R]−1). (5.2.10)

Once an estimator for γ is available, an estimator for β is obtained by
substituting in (5.2.2), that is,

̂̂
β = R̂̂γ + r. (5.2.11)

The asymptotic properties of this estimator follow immediately from Ap-
pendix C, Proposition C.15(2).

Proposition 5.3 (Asymptotic Properties of the Implied Restricted EGLS Es-
timator)

Under the conditions of Proposition 5.2, the estimator ̂̂
β = R̂̂γ+r is consistent

and asymptotically normally distributed,

√
T (̂̂β − β) d→N (0, R[R′(Γ ⊗Σ−1

u )R]−1R′). (5.2.12)

To make these EGLS estimators operational, we need a consistent estima-
tor of Σu. From Chapter 3, Corollary 3.2.1, we know that, under the conditions
of Proposition 5.1,

Σ̂u =
1

T −Kp− 1
(Y − B̂Z)(Y − B̂Z)′

=
1

T −Kp− 1
Y (IT − Z ′(ZZ′)−1

Z)Y ′ (5.2.13)

is a consistent estimator of Σu which may thus be used in place of Σ̄u. Here
B̂ = Y Z ′(ZZ ′)−1 is the unconstrained multivariate LS estimator of the coef-
ficient matrix B.
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Alternatively, the restricted LS estimator minimizing u′u with respect to
γ may be determined in a first step. The minimizing γ-vector is easily seen
to be

γ̆ = [R′(ZZ′ ⊗ IK)R]−1R′(Z ⊗ IK)z (5.2.14)

(see Problem 5.1). As this LS estimator does not involve the white noise
covariance matrix Σu, it is generally different from the GLS estimator. We
denote the corresponding β-vector by β̆, that is, β̆ = Rγ̆ + r. Furthermore,
B̆ is the corresponding coefficient matrix, that is, vec(B̆) = β̆. Then we may
choose

Σ̆u =
1
T

(Y − B̆Z)(Y − B̆Z)′ (5.2.15)

as an estimator for Σu. The consistency of this estimator is a consequence
of Proposition 3.2 and the fact that B̆ is a consistent estimator of B with
asymptotic normal distribution. This result follows from the asymptotic nor-
mality of γ̆ which in turn follows by replacing Σu with IK in (5.2.6) and
(5.2.7). Thus, β̆ = Rγ̆ + r is asymptotically normal. Consequently, we get the
following result from Proposition 3.2 and Corollary 3.2.1.

Proposition 5.4 (Asymptotic Properties of the White Noise Covariance Es-
timator)
Under the conditions of Proposition 5.1, Σ̆u is consistent and

plim
√
T (Σ̆u − UU ′/T ) = 0.

In (5.2.15), T may be replaced by T −Kp−1 without affecting the consis-
tency of the covariance matrix estimator. However, there is little justification
for subtracting Kp + 1 from T in the present situation because, due to zero
restrictions, some or all of the K equations of the system may contain fewer
than Kp + 1 parameters.

Of course, in practice one would like to know which one of the possible
covariance estimators leads to an EGLS estimator ̂̂γ with best small sample
properties. Although we cannot give a general answer to this question, it
seems plausible to use an estimator that takes into account the nonsample
information concerning the VAR coefficients, provided the restrictions are
correct. Thus, if one is confident about the validity of the restrictions, the
covariance matrix estimator Σ̆u may be used.

As an alternative to the EGLS estimator described in the foregoing, an
iterated EGLS estimator may be used. It is obtained by computing a new
covariance matrix estimator from the EGLS residuals. This estimator is then
used in place of Σ̄u in (5.2.9) and again a new covariance matrix estimator
is computed from the corresponding residuals and so on. The procedure is
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continued until convergence. We will not pursue it here. From Propositions
5.2 and 3.2 it follows that the asymptotic properties of the resulting iterated
EGLS estimator are the same as those of the EGLS estimator wherever the
iteration is terminated.

Comparison of LS and Restricted EGLS Estimators

A question of interest in this context is how the covariance matrix in (5.2.12)
compares with the asymptotic covariance matrix Γ−1⊗Σu of the unrestricted
multivariate LS estimator β̂. To see that the restricted estimator has smaller
or at least not greater asymptotic variances than the unrestricted estimator,
it is helpful to write the restrictions in the form (5.2.3). In that case, the
restricted EGLS estimator of β turns out to be

̂̂
β = β̂ + [(ZZ′)−1 ⊗ Σ̄u]C′[C((ZZ ′)−1 ⊗ Σ̄u)C′]−1(c− Cβ̂) (5.2.16)

(see Chapter 4, Section 4.2.2, and Problem 5.2). Noting that Cβ − c = 0,
subtracting β from both sides of (5.2.16), and multiplying by

√
T gives

√
T (̂̂β − β) =

√
T (β̂ − β) − FT

√
T (β̂ − β) = (IK2p+K − FT )

√
T (β̂ − β),

where

FT :=

[(
ZZ′

T

)−1

⊗ Σ̄u

]
C′

[
C

((
ZZ′

T

)−1

⊗ Σ̄u

)
C ′

]−1

C

so that

F := plim FT = (Γ−1 ⊗Σu)C ′[C(Γ−1 ⊗Σu)C′]−1C.

Thus, the covariance matrix of the asymptotic distribution of
√
T (̂̂β − β) is

(I − F )(Γ−1 ⊗Σu)(I − F )′

= Γ−1 ⊗Σu − (Γ−1 ⊗Σu)F ′ − F (Γ−1 ⊗Σu) + F (Γ−1 ⊗Σu)F ′

= Γ−1 ⊗Σu − (Γ−1 ⊗Σu)C ′[C(Γ−1 ⊗Σu)C′]−1C(Γ−1 ⊗Σu).

In other words, a positive semidefinite matrix is subtracted from the covari-
ance matrix Γ−1 ⊗ Σu to obtain the asymptotic covariance matrix of the
restricted estimator. Hence, the asymptotic variances of the latter will be
smaller than or at most equal to those of the unrestricted multivariate LS es-
timator. Because the two ways of writing the restrictions in (5.2.3) and (5.2.2)
are equivalent, the EGLS estimator of β subject to restrictions β = Rγ + r
must also be asymptotically superior to the unconstrained estimator. In other
words,

Γ−1 ⊗Σu −R[R′(Γ ⊗Σ−1
u )R]−1R′
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is positive semidefinite. This result shows that imposing restrictions is advan-
tageous in terms of asymptotic efficiency. It must be kept in mind, however,
that the restrictions are assumed to be valid in the foregoing derivations. In
practice, there is usually some uncertainty with respect to the validity of the
constraints.

5.2.3 Maximum Likelihood Estimation

So far in this chapter, no specific distribution of the process yt is assumed. If
the precise distribution of the process is known, ML estimation of the VAR
coefficients is possible. In the following, we assume that yt is Gaussian (nor-
mally distributed). The ML estimators of γ and Σu are found by equating
to zero the first order partial derivatives of the log-likelihood function and
solving for γ and Σu. The partial derivatives are found as in Section 3.4 of
Chapter 3. Note that

∂ ln l
∂γ

=
∂β′

∂γ

∂ ln l
∂β

= R′ ∂ ln l
∂β

,

by the chain rule for vector differentiation (Appendix A.13). Proceeding as in
Section 3.4, the ML estimator of γ is seen to be

γ̃ = [R′(ZZ′ ⊗ Σ̃−1
u )R]−1R′(Z ⊗ Σ̃−1

u )z, (5.2.17)

where Σ̃u is the ML estimator of Σu (see Problem 5.3). The resulting ML
estimator of β is

β̃ = Rγ̃ + r. (5.2.18)

Furthermore, the ML estimator of Σu is seen to be

Σ̃u =
1
T

(Y − B̃Z)(Y − B̃Z)′, (5.2.19)

where B̃ is the (K × (Kp + 1)) matrix satisfying vec(B̃) = β̃.
An immediate consequence of the consistency of the ML estimator Σ̃u and

of Proposition 5.2 is that the EGLS estimator ̂̂γ and the ML estimator γ̃ are
asymptotically equivalent. In addition, it follows as in Section 3.2.2, Chapter
3, that Σ̃u has the same asymptotic properties as in the unrestricted case (see
Proposition 3.2) and β̃ and Σ̃u are asymptotically independent. In summary,
we get the following result.

Proposition 5.5 (Asymptotic Properties of the Restricted ML Estimators)
Let yt be a Gaussian stable K-dimensional VAR(p) process as in (5.1.1) and
β = vec(B) = Rγ + r as in (5.2.2). Then the ML estimators β̃ and σ̃ =
vech(Σ̃u) are consistent and asymptotically normally distributed,
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√
T

[
β̃ − β
σ̃ − σ

]
d→N

(
0,

[
R[R′(Γ ⊗Σ−1

u )R]−1R′ 0
0 2D+

K(Σu ⊗Σu)D+′
K

])
,

where D+
K = (D′

KDK)−1D′
K is, as usual, the Moore-Penrose inverse of the

(K2 ×K(K + 1)/2) duplication matrix DK .

Of course, we could have stated the proposition in terms of the joint dis-
tribution of γ̂ and σ̃ instead. In the following, the distribution given in the
proposition will turn out to be more useful, though.

Both EGLS and ML estimation can be discussed in terms of the mean-
adjusted model considered in Section 3.3. However, the present discussion
includes restrictions for the intercept terms in a convenient way. If the re-
strictions are equivalent in the different versions of the model, the asymp-
totic properties of the estimators of α := vec(A1, . . . , Ap) will not be af-
fected. For instance, the asymptotic covariance matrix of

√
T (α̃ − α), where

α̃ is the ML estimator, is just the lower right-hand (K2p×K2p) block of
R[R′(Γ ⊗ Σ−1

u )R]−1R′ from Proposition 5.5. If the sample means are sub-
tracted from all variables and the constraints are given in the form α = Rγ+r
for a suitable matrix R and vectors γ and r, the covariance matrix of the
asymptotic distribution of

√
T (α̃ − α) can be written as

R[R′(ΓY (0) ⊗Σ−1
u )R]−1R′, (5.2.20)

where ΓY (0) := ΣY = Cov(Yt) with Yt := (y′t, . . . , y
′
t−p+1)

′.

5.2.4 Constraints for Individual Equations

In practice, parameter restrictions are often formulated for the K equations
of the system (5.1.1) separately. In that case, it may be easier to write the
restrictions in terms of the vector b := vec(B′) which contains the parameters
of the first equation in the first Kp + 1 positions and those of the second
equation in the second Kp + 1 positions etc. If the constraints are expressed
as

b = R̄c + r̄, (5.2.21)

where R̄ is a known ((K2p + K) × M) matrix of rank M , c is an unknown
(M × 1) parameter vector, and r̄ is a known (K2p + K)-dimensional vector,
the restricted EGLS and ML estimators of b and their properties are easily
derived. We get the following proposition:

Proposition 5.6 (EGLS Estimator of Parameters Arranged Equationwise)
Under the conditions of Proposition 5.2, if b = vec(B′) satisfies (5.2.21), the
EGLS estimator of c is

̂̂c = [R̄′(Σ̄−1
u ⊗ ZZ′)R̄]−1R̄′(Σ̄−1

u ⊗ Z)[vec(Y ′) − (Z ⊗ IK)r̄], (5.2.22)
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where Σ̄u is a consistent estimator of Σu. The corresponding estimator of b
is ̂̂b = R̄̂̂c + r̄, (5.2.23)

which is consistent and asymptotically normally distributed,

√
T (̂̂b − b) d→ N (0, R̄[R̄′(Σ̄−1

u ⊗ Γ )R̄]−1R̄′). (5.2.24)

The proof is left as an exercise (see Problem 5.4). An estimator of β is

obtained from ̂̂b by premultiplying with the commutation matrix KKp+1,K .
If the restrictions in (5.2.21) are equivalent to those in (5.2.2), the estimator

for β obtained in this way is identical to ̂̂
β given in (5.2.11).

5.2.5 Restrictions for the White Noise Covariance Matrix

Occasionally restrictions for the white noise covariance matrix Σu are avail-
able. For instance, in Chapter 2, Section 2.3.1, we have seen that instantaneous
noncausality is equivalent to Σu being block-diagonal. Thus, in that case there
are zero off-diagonal elements. Zero constraints are, in fact, the most common
constraints for the off-diagonal elements of Σu. Therefore, we will focus on
such restrictions in the following.

Estimation under zero restrictions for Σu is often most easily performed in
the context of the recursive model introduced in Chapter 2, Section 2.3.2. In
order to obtain the recursive form corresponding to the standard VAR model

yt = ν + A1yt−1 + · · · + Apyt−p + ut,

Σu is decomposed as Σu = WΣεW
′, where W is lower triangular with unit

main diagonal and Σε is a diagonal matrix. Then, premultiplying with W−1

gives the recursive system

yt = η + A∗
0yt + A∗

1yt−1 + · · · + A∗
pyt−p + εt,

where η := W−1ν, A∗
0 := IK − W−1 is a lower triangular matrix with zero

diagonal, A∗
i := W−1Ai, i = 1, . . . , p, and εt = (ε1t, . . . , εKt)

′ := W−1ut has
diagonal covariance matrix, Σε := E(εtε

′
t). The characteristic feature of the

recursive representation of our process is that the k-th equation may involve
y1,t, . . . , yk−1,t (current values of y1, . . . , yk−1) on the right-hand side and the
components of the white noise process εt are uncorrelated.

Many zero restrictions for the off-diagonal elements of Σu are equivalent
to simple zero restrictions on A∗

0 which are easy to impose in equationwise LS
estimation. For instance, if Σu is block-diagonal, say
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Σu =
[
Σ11 0
0 Σ22

]
,

then Σ11 and Σ22 can be decomposed in the form

Σii = WiΣεiW
′
i , i = 1, 2,

where Wi is lower triangular with unit diagonal and Σεi is a diagonal matrix.
Hence,

A∗
0 = IK −

[
W−1

1 0
0 W−1

2

]
=:

[
A∗

01 0
0 A∗

02

]
,

where the

A∗
0i =

⎡⎢⎢⎢⎢⎣
0 · · · · · · 0

∗ . . .
...

...
. . . . . .

...
∗ · · · ∗ 0

⎤⎥⎥⎥⎥⎦, i = 1, 2,

are lower triangular with zero main diagonal. In summary, if Σu is block-
diagonal with an (m× n) block of zeros in its lower left-hand corner, the
same holds for A∗

0.
Because the error terms of the K equations of the recursive system are un-

correlated it can be shown that estimating each equation separately does not
result in a loss of asymptotic efficiency (see Problem 5.6). Using the notation

y(k) :=

⎡⎢⎣ yk1

...
ykT

⎤⎥⎦ , ε(k) :=

⎡⎢⎣ εk1

...
εkT

⎤⎥⎦
and denoting by b(k) the vector of all nonzero coefficients and by Z(k) the
corresponding matrix of regressors in the k-th equation of the recursive form
of the system, we may write the k-th equation as

y(k) = Z(k)b(k) + ε(k).

The LS estimator of b(k) is

b̂(k) = (Z ′
(k)Z(k))

−1
Z ′

(k)y(k).

Under Gaussian assumptions, it is equivalent to the ML estimator and is thus
asymptotically efficient. Obviously, this framework makes it easy to take into
account zero restrictions by just eliminating regressors.

Generally, restrictions on Σu imply restrictions for A∗
0 and vice versa.

Unfortunately, zero restrictions on Σu do not always imply zero restrictions
for A∗

0. Consider, for instance, the covariance matrix
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Σu =

⎡⎣ 1 1 −1
1 2 0

−1 0 3

⎤⎦ =

⎡⎣ 1 0 0
1 1 0

−1 1 1

⎤⎦ I3

⎡⎣ 1 1 −1
0 1 1
0 0 1

⎤⎦ (= WΣεW
′).

Hence,

A∗
0 = I3 −W−1 = I3 −

⎡⎣ 1 0 0
−1 1 0

2 −1 1

⎤⎦ =

⎡⎣ 0 0 0
1 0 0

−2 1 0

⎤⎦ .

Thus, although Σu has a zero off-diagonal element, all elements of A∗
0 below

the main diagonal are nonzero.
In practice, subject matter theory is often more likely to provide restric-

tions for the A∗
0 matrix than for Σu because, as we have seen in Section

2.3.2, the elements of A∗
0 can sometimes be interpreted as impact multipliers

which represent the instantaneous effects of impulses in the variables. For this
reason, the recursive form of the system has considerable appeal.

Note, however, that if restrictions are available on the coefficients Ai of
the standard VAR form, the implied constraints for the A∗

i matrices should be
taken into account in the estimation. Such restrictions may be cross-equation
restrictions that involve coefficients from different equations. Taking them
into account may require simultaneous estimation of all or some equations
of the system rather than single equation LS estimation. In the following
sections, we return to the standard form of the VAR model. Further discussion
of covariance restrictions will be provided in the context of structural VAR
models in Chapter 9.

5.2.6 Forecasting

Forecasting with estimated processes was discussed in Section 3.5 of Chapter
3. The general results of that section remain valid even if parameter restric-
tions are imposed in the estimation procedure. Some differences in details will
be pointed out in the following.

We focus on the standard form (5.1.1) of the VAR model and denote the
parameter estimators by ν̂, Â1, . . . , Âp, and β̂. These estimators may be EGLS
or ML estimators. The resulting h-step forecast at origin t is

ŷt(h) = ν̂ + Â1ŷt(h− 1) + · · · + Âpŷt(h− p) (5.2.25)

with ŷt(j) := yt+j for j ≤ 0, as in Section 3.5. In line with that section, we
assume that forecasting and parameter estimation are based on independent
processes with identical stochastic structure. Then we get the approximate
MSE matrix

Σŷ(h) = Σy(h) +
1
T
Ω(h), (5.2.26)

where
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Σy(h) := E{[yt+h − yt(h)][yt+h − yt(h)]′} =
h−1∑
i=0

ΦiΣuΦ
′
i,

Φi being, as usual, the i-th coefficient matrix of the canonical MA represen-
tation of yt, and

Ω(h) := E

[
∂yt(h)
∂β′ Σβ̂

∂yt(h)′

∂β

]
,

where Σβ̂ is the covariance matrix of the asymptotic distribution of
√
T (β̂ − β).

In Chapter 3, the matrix Ω(h) has a particularly simple form because
in that chapter Σ

β̂
= Γ−1 ⊗ Σu. In the present situation, where parameter

restrictions are imposed,

Σβ̂ = R[R′(Γ ⊗Σ−1
u )R]−1R′,

and the form of Ω(h) is not quite so simple. Because the covariance matrix Σβ̂

is now smaller than in Chapter 3, Ω(h) will also become smaller (not greater).
Using

∂yt(h)
∂β′ =

h−1∑
i=0

Z ′
t(B

′)h−1−i ⊗ Φi

from Chapter 3, (3.5.11), we may now estimate Ω(h) by

Ω̂(h) =
1
T

T∑
t=1

[
h−1∑
i=0

Z ′
t(B

′)h−1−i ⊗ Φi

]
Σ

β̂

[
h−1∑
i=0

Z ′
t(B

′)h−1−i ⊗ Φi

]′

.

(5.2.27)

Here

B :=

⎡⎣ 1 0 · · · 0
B

0 IK(p−1) 0

⎤⎦ ((Kp + 1) × (Kp + 1))

(see Section 3.5.2). In practice, the unknown matrices B, Φi, and Σ
β̂

are
replaced by consistent estimators. Of course, if T is large we may simply
ignore the term Ω(h)/T in (5.2.26) because it approaches zero as T →∞.
An estimator of Σŷ(h) is then obtained by simply replacing the unknown
quantities in Σy(h) by estimators. Assuming that yt is Gaussian, forecast
intervals and regions can be determined exactly as in Section 3.5.

5.2.7 Impulse Response Analysis and Forecast Error Variance
Decomposition

Impulse response analysis and forecast error variance decomposition with re-
stricted VAR models can be done as described in Section 3.7. Proposition 3.6
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is formulated in sufficiently general form to accommodate the case of restricted
estimation. The impulse responses are then estimated from the restricted es-
timators of A1, . . . , Ap. As mentioned earlier, the covariance matrix of the
restricted estimator of α := vec(A1, . . . , Ap) is obtained by considering the
lower right-hand (K2p×K2p) block of

Σβ̂ = R[R′(Γ ⊗Σ−1
u )R]−1R′.

As we have seen in Subsection 5.2.3, Proposition 5.5, the asymptotic covari-
ance matrix Σσ̃ of

√
T (σ̃−σ) is not affected by the restrictions for β. However,

the estimator of

Σσ̃ = 2D+
K(Σu ⊗Σu)D+′

K

may be affected. As discussed in Section 5.2.2, we have the choice of different
consistent estimators for Σu which may or may not take into account the
parameter constraints. In other words, we may estimate Σu from the residuals
of an unrestricted estimation or we may use the residuals of the restricted LS
or EGLS estimation. The lower triangular matrix P that is used in estimating
the impulse responses for orthogonal innovations is estimated accordingly. In
the examples considered below, we will usually base the estimators of Σu

and P on the residuals of the restricted EGLS estimation. In contrast, Γ will
usually be estimated by ZZ′/T , as in the unrestricted case. Of course, instead
of the intercept version of the process we may use the mean-adjusted form for
estimation, as mentioned in Section 5.2.3.

5.2.8 Specification of Subset VAR Models

A VAR model with zero constraints on the coefficients is called a subset VAR
model. Formally zero restrictions can be written as in (5.2.2) or (5.2.21) with
r = r̄ = 0. We have encountered such models in previous chapters. For in-
stance, when Granger-causality restrictions are imposed, we get subset VAR
models. This example suggests possibilities how to obtain such restrictions,
namely, from prior nonsample information and/or from tests of particular hy-
potheses. Subject matter theory sometimes implies a set of restrictions on a
VAR model that can be taken into account, using the estimation procedures
outlined in the foregoing. However, in many cases generally accepted a priori
restrictions are not available. In that situation, statistical procedures may be
used to detect or confirm possible zero constraints. In the following, we will
discuss such procedures.

If little or no a priori knowledge of possible zero constraints is available,
one may want to compare various different processes or models and choose the
one which is optimal under a specific criterion. Using hypothesis tests in such
a situation may create problems because the different possible models may not
be nested. In that case, statistical tests may not lead to a unique answer as to
which model to use. Therefore, in subset VAR modelling it is not uncommon to
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base the model choice on model selection criteria. For instance, appropriately
modified versions of AIC, SC, or HQ may be employed. Generally speaking,
in such an approach the subset VAR model is chosen that optimizes some
prespecified criterion.

Suppose it is just known that the order of the process is not greater than
some number p and otherwise no prior knowledge of possible zero constraints
is available. In that situation, one would ideally fit all possible subset VAR
models and select the one that optimizes the criterion chosen. The practica-
bility of such a procedure is limited by its computational expense. Note that
for a K-dimensional VAR(p) process, even if we do not take into account the
intercept terms for the moment, there exist K2p coefficients from which(

K2p
j

)
subsets with j elements can be chosen. Thus, there is a total of

K2p−1∑
j=0

(
K2p
j

)
= 2K2p − 1

subset VAR models, not counting the full VAR(p) model which is also a possi-
ble candidate. For instance, for a bivariate VAR(4) process, there are as many
as 216 − 1 = 65,535 subset models plus the full VAR(4) model. Of course, in
practice the dimension and order of the process will often be greater than in
this example and there may be many more subset VAR models. Therefore,
specific strategies for subset VAR modelling have been proposed which avoid
fitting all potential candidates. Some possibilities will be described briefly in
the following.

Elimination of Complete Matrices

Penm & Terrell (1982) considered subset models where complete coefficient
matrices Aj rather than individual coefficients are set to zero. Such a strategy
reduces the models to be compared to

p∑
j=0

(
p
j

)
= 2p.

For instance, for a VAR(4) process, only 16 models need to be compared.
An obvious advantage of the procedure is its relatively small computa-

tional expense. Deleting complete coefficient matrices may be reasonable if
seasonal data with strong seasonal components are considered for which only
coefficients at seasonal lags are different from zero. On the other hand, there
may still be potential for further parameter restrictions. Moreover, some of the
deleted coefficient matrices may contain elements that would not have been
deleted had they been checked individually. Therefore, the following strategy
may be more useful.



208 5 VAR Processes with Parameter Constraints

Top-Down Strategy

The top-down strategy starts from the full VAR(p) model and coefficients are
deleted in the K equations separately. The k-th equation may be written as

ykt = νk + αk1,1y1,t−1 + · · · + αkK,1yK,t−1+
... (5.2.28)

+ αk1,py1,t−p + · · · + αkK,pyK,t−p + ukt.

The goal is to find the zero restrictions for the coefficients of this equation
that lead to the minimum value of a prespecified criterion. For this purpose,
the equation is estimated by LS and the corresponding value of the criterion is
evaluated. Then the last coefficient αkK,p is set to zero (i.e., yK,t−p is deleted
from the equation) and the equation is estimated again with this restriction.
If the value of the criterion for the restricted model is greater than for the
unrestricted model, yK,t−p is kept in the equation. Otherwise it is eliminated.
Then the same procedure is repeated for the second last coefficient, αk,K−1,p,
or variable yK−1,t−p and so on up to νk. In each step a lag of a variable is
deleted if the criterion does not increase by that additional constraint com-
pared to the smallest value obtained in the previous steps.

Criteria that may be used in this procedure are

AIC = ln σ̃2 +
2
T

(number of estimated parameters), (5.2.29)

HQ = ln σ̃2 +
2 ln lnT

T
(number of estimated parameters), (5.2.30)

or

SC = ln σ̃2 +
lnT
T

(number of estimated parameters). (5.2.31)

Here σ̃2 stands for the sum of squared estimation residuals divided by the
sample size T . For instance, the AIC value for a model with or without zero
restrictions is computed by estimating the k-th equation, computing the resid-
ual sum of squares and dividing by T to obtain σ̃2. Then two times the number
of parameters contained in the estimated equation is divided by T and added
to the natural logarithm of σ̃2. In the final equation, only those variables and
coefficients are retained that lead to the minimum AIC value.

In a more formal manner, this procedure can be described as follows. The
k-th equation of the system may be written as

y(k) =

⎡⎢⎣ yk1

...
ykT

⎤⎥⎦ = Z ′bk + u(k) = Z ′R̄kck + u(k),
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where bk = R̄kck reflects the zero restrictions imposed on the parameters bk

of the k-th equation. R̄k is the restriction matrix. The LS estimator of ck is

ĉk = (R̄′
kZZ

′R̄k)−1
R̄′

kZy(k)

and the implied restricted LS estimator for bk is

b̂k = R̄kĉk.

Furthermore, a corresponding estimator of the residual variance is

σ̃2(R̄k) = (y(k) − Z ′b̂k)′(y(k) − Z ′b̂k)/T.

Thus, the AIC value for a model with these restrictions is

AIC(R̄k) = ln σ̃2(R̄k) +
2
T

rk(R̄k).

The other criteria are determined in a similar way.
In the foregoing subset procedure based on AIC, the unrestricted model

with R̄k = IKp+1 is estimated first and the corresponding value AIC(IKp+1)
is determined. Then the last column of IKp+1 is eliminated. Let us denote the
resulting restriction matrix by R̄

(1)
k . If

AIC(R̄(1)
k ) ≤ AIC(IKp+1),

the next restriction matrix R̄
(2)
k , say, is obtained by deleting the last column

of R̄(1)
k and AIC(R̄(2)

k ) is compared to AIC(R̄(1)
k ). If, however,

AIC(R̄(1)
k ) > AIC(IKp+1),

the restriction matrix R̄
(2)
k is obtained by deleting the second last column of

IKp+1 and the next restriction matrix is decided upon by comparing AIC(R̄(2)
k )

to AIC(IKp+1). In each step, a column of the restriction matrix is deleted if
that leads to a reduction or at least not to an increase of the AIC criterion.
Otherwise the column is retained.

The procedure is repeated for each of the K equations of the K-dimensional
system, that is, a restriction matrix, R̄k say, is determined for each equation
separately. Once all zero restrictions have been determined by this strategy,
the K equations of the restricted model with overall restriction matrix

R̄ =

⎡⎢⎣ R̄1 0
. . .

0 R̄K

⎤⎥⎦
can be estimated simultaneously by EGLS, as described in Sections 5.2.2
and 5.2.4. Note that SC tends to choose the most parsimonious models with
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the fewest coefficients whereas AIC has a tendency to select the most lavish
models.

The advantage of this top-down procedure, starting from the top (largest
model) and then working down gradually, is that it permits to check all indi-
vidual coefficients. Also, the computational expense is very reasonable. The
disadvantage of the method is that it requires estimation of each full equation
in the initial selection step. This may exhaust the available degrees of freedom
if a model with large order is deemed necessary for some high-dimensional sys-
tem. Therefore, a slightly more elaborate bottom-up strategy may be preferred
occasionally.

Bottom-Up Strategy

Again the restrictions are chosen for each equation separately. In the k-th
equation, only lags of the first variable are considered initially and an optimal
lag length p1, say, for that variable is selected. That is, we select the optimal
model of the form

ykt = νk + αk1,1y1,t−1 + · · · + αk1,p1y1,t−p1 + ukt

by fitting models

ykt = νk + αk1,1y1,t−1 + · · · + αk1,ny1,t−n + ukt,

where n ranges from zero to some prespecified upper bound p for the order.
p1 is that order for which the selection criterion, e.g., AIC, HQ, or SC, is
minimized.

In the next step, p1 is held fixed and lags of y2 are added into the equation.
Denoting the optimal lag length for y2 by p2 gives

ykt = νk + αk1,1y1,t−1 + · · · + αk1,p1y1,t−p1 + αk2,1y2,t−1 + · · ·
+ αk2,p2y2,t−p2 + ukt.

Note that p2 may, of course, be zero in which case y2 does not enter the
equation.

In the third step, p1 and p2 are both held fixed and the third variable, y3,
is absorbed into the equation in the same way. This procedure is continued
until an optimal lag length for each of the K variables is obtained, conditional
on the “optimal” lags of the previous variables.

Due to omitted variables effects, some of the lag lengths may be over-
stated in the final equation. For instance, when none of the other variables
enters the equation, lags of y1 may be useful in explaining ykt and in re-
ducing the selection criterion. In contrast, lags of y1 may not contribute to
explaining yk when lags of all the other variables are present too. Therefore,
once p1, . . . , pK are chosen, a top-down run, as described in the previous sub-
section, may complete the search for zero restrictions for the k-th equation.
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After zero constraints have been obtained for each equation in this fashion,
the K restricted equations may be estimated as one system, using EGLS or
ML procedures.

Obviously, it is possible in this bottom-up approach that the largest model,
where all K variables enter with p lags in each equation is never fitted. Thereby
considerable savings of degrees of freedom may be possible, especially if the
maximum order p is substantial. A drawback of the procedure is that the final
set of restrictions may depend on the order of the variables.

Sequential Elimination of Regressors

Individual zero coefficients can also be chosen on the basis of the t-ratios of
the parameter estimators. A possible strategy is to sequentially delete those
regressors with the smallest absolute values of t-ratios until all t-ratios (in
absolute value) are greater than some threshold value, say η. In this procedure
one regressor is eliminated at a time. Then new t-ratios are computed for the
reduced model. Brüggemann & Lütkepohl (2001) showed that this strategy
is equivalent to the sequential elimination based on model selection criteria if
the threshold value η is chosen accordingly. More precisely, they considered a
regression equation

ykt = β1x1t + · · · + βNxNt + ukt,

where all regressors are denoted by xjt, that is, xjt may represent an inter-
cept term or lags of the variables involved in our analysis. Brüggemann &
Lütkepohl (2001) studied a procedure where those regressors are deleted se-
quentially, one at a time, which lead to the largest reduction of the given
selection criterion until no further reduction is possible. For a model selection
criterion of the type

Cr(i1, . . . , in) = ln(SSE(i1, . . . , in)/T ) + cTn/T,

where SSE(i1, . . . , in) is the sum of squared errors obtained by includ-
ing xi1t, . . . , xint in the regression model and cT is a sequence indexed by
the sample size. Brüggemann & Lütkepohl (2001) showed that choosing
η = {[exp(cT /T )−1](T−N+j−1)}1/2 in the j-th step of the elimination pro-
cedure based on t-ratios results in the same final model that is also obtained
by sequentially minimizing the selection criterion defined by the penalty term
cT . Hence, the threshold value depends on the selection criterion via cT , the
sample size, and the number of regressors in the model. The threshold values
for the t-ratios correspond to the critical values of the tests. For the criteria
AIC, HQ, and SC, the cT sequences are cT (AIC) = 2, cT (HQ) = 2 ln lnT , and
cT (SC) = lnT , respectively. Using these criteria in the procedure, for an equa-
tion with 20 regressors and a sample size of T = 100, roughly corresponds to
eliminating all regressors with t-values that are not significant at the 15–20%,
10% or 2–3% levels, respectively (see Brüggemann & Lütkepohl (2001)).
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Procedures similar to those discussed here were, for instance, applied
by Hsiao (1979, 1982) and Lütkepohl (1987). Other subset VAR strategies
were proposed by Penm & Terrell (1984, 1986), Penm, Brailsford & Ter-
rell (2000), and Brüggemann (2004). Moreover, more elaborate, computer-
automated model specification and subset selection strategies based on a mix-
ture of testing and model selection criteria were recently implemented in the
software package PcGets (see Hendry & Krolzig (2001)). The alternative sub-
set modelling procedures all have their advantages and drawbacks. Therefore,
at this stage, none of them can be recommended as a universally best choice
in practice.

5.2.9 Model Checking

After a subset VAR model has been fitted, some checks of the model adequacy
are in order. Of course, one check is incorporated in the model selection pro-
cedure if some criterion is optimized. By definition, the best model is the one
that leads to the optimum criterion value. In practice, the choice of the crite-
rion is often ad hoc or even arbitrary and, in fact, several competing criteria
are often employed. It is then left to the applied researcher to decide on the
final model to be used for forecasting or economic analysis. In some cases, sta-
tistical tests of restrictions may aid in that decision. For example, F -tests, as
described in Section 4.2.2, may be helpful for that purpose. In the following,
we will discuss tests for residual autocorrelation.

Residual Autocovariances and Autocorrelations

The autocorrelation tests considered in Chapter 4 can also be used to check
the white noise assumption for the ut process in a subset VAR model, if
suitable adjustments are made. For that purpose, we will first consider the
residual autocovariances and autocorrelations. In analogy with Section 4.4 of
Chapter 4, we use the following notation:

Ci :=
1
T

T∑
t=i+1

utu
′
t−i, i = 0, 1, . . . , h,

Ch := (C1, . . . , Ch),

ch := vec(Ch),

ût is the t-th estimation residual of a restricted estimation,

Ĉi :=
1
T

T∑
t=i+1

ûtû
′
t−i, i = 0, 1, . . . , h,

Ĉh := (Ĉ1, . . . , Ĉh),
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ĉh := vec(Ĉh),

D̂ is the diagonal matrix with the square roots of the diagonal elements of Ĉ0

on the diagonal,

R̂i := D̂−1ĈiD̂
−1, i = 0, 1, . . . , h,

R̂h := (R̂1, . . . , R̂h),

r̂h := vec(R̂h).

In the following proposition, the asymptotic distributions of ĉh and r̂h are
given under the assumption of a correctly specified model.

Proposition 5.7 (Asymptotic Distributions of Residual Autocovariances and
Autocorrelations)
Suppose yt is a stable, stationary, K-dimensional VAR(p) process with identi-
cally distributed standard white noise ut and the parameter vector β satisfies
the restrictions β = Rγ + r with R being a known (K(Kp + 1) ×M) ma-
trix of rank M . Furthermore suppose that β is estimated by EGLS such that̂̂
β = R̂̂γ + r. Then

√
T ĉh

d→N (0, Σr
c(h)), (5.2.32)

where

Σr
c(h) = Ih ⊗Σu ⊗Σu −GR[R′(Γ ⊗Σ−1

u )R]−1R′G′

and G := G̃′⊗IK is the matrix defined in Chapter 4, Lemma 4.2. Furthermore,
√
T r̂h

d→N (0, Σr
r (h)), (5.2.33)

where

Σr
r (h) = Ih ⊗Ru ⊗Ru − (G′

0 ⊗D−1)R[R′(Γ ⊗Σ−1
u )R]−1R′(G0 ⊗D−1)

and G0 := G̃(Ih ⊗D−1) is defined in Proposition 4.6, D is the diagonal matrix
with the square roots of the diagonal elements of Σu on the diagonal, and
Ru := D−1ΣuD

−1 is the correlation matrix corresponding to Σu.

Proof: The proof is similar to that of Propositions 4.5 and 4.6. Defining G̃
as in Lemma 4.2, the lemma implies that

√
T ĉh is known to have the same

asymptotic distribution as

√
Tch −

√
TG vec(̂̂B −B)

= [−G̃′ ⊗ IK : I]

[ √
T vec(̂̂B −B)√

Tch

]
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= [−(G̃′ ⊗ IK)R : I]

[ √
T (̂̂γ − γ)√

Tch

]

= [−(G̃′ ⊗ IK)R : I]

⎡⎢⎣
[
R′

(
ZZ′

T
⊗ Σ̄−1

u

)
R

]−1

R′(IKp+1 ⊗ Σ̄−1
u ) 0

0 I

⎤⎥⎦
×
⎡⎣ 1√

T
vec(UZ ′)
√
Tch

⎤⎦
(see (5.2.7)). The asymptotic distribution in (5.2.32) then follows from Lemma
4.3 and Proposition C.2 by noting that Γ = plim(ZZ′/T ) and Σu = plim Σ̄u.
The limiting distribution of

√
T r̂h follows as in the proof of Proposition 4.6.

The results in Proposition 5.7 can be used to check the white noise as-
sumption for the ut’s. As in Section 4.4, residual autocorrelations are often
plotted and evaluated on the basis of two-standard error bounds about zero.
Estimators of the standard errors are obtained by replacing all unknown quan-
tities in Σr

r (h) by consistent estimators. Specifically Σu may be estimated by
Ĉ0. We will illustrate the resulting white noise test in Section 5.2.10 with an
example.

Portmanteau Tests

For the portmanteau statistic

Qh := T

h∑
i=1

tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 )

= T ĉ′h(Ih ⊗ Ĉ−1
0 ⊗ Ĉ−1

0 )ĉh (5.2.34)

we get the following result.

Proposition 5.8 (Approximate Distribution of the Portmanteau Statistic)
Suppose the conditions of Proposition 5.7 are satisfied and there are no re-
strictions linking the intercept terms to the A1, . . . , Ap coefficients, that is,

R =
[
R(1) 0
0 R(2)

]
is block-diagonal with R(1) and R(2) having row-dimensions K and K2p,
respectively. Then Qh has an approximate limiting χ2-distribution with
K2h− rk(R(2)) degrees of freedom for large T and h.
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Proof: Under the conditions of the proposition, the covariance matrix of the
asymptotic distribution in (5.2.32) is

Σr
c(h) = Ih ⊗Σu ⊗Σu −GR(2){R′

(2)[ΓY (0) ⊗Σ−1
u ]R(2)}−1R′

(2)G
′,

where G is the matrix defined in Lemma 4.2. Using this fact, Proposition 5.8
can be proven just as Proposition 4.7 by replacing Ḡ in that proof by GR(2)

(see Section 4.4.3).

The degrees of freedom in Proposition 5.8 are obtained by subtracting the
number of unconstrained Ai coefficients from K2h. As in Section 4.4.3, the
modified portmanteau statistic

Q̄h := T 2
h∑

i=1

(T − i)−1tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 ) (5.2.35)

may be preferable for testing the white noise assumption in small samples. In
other words, under the white noise hypothesis, the small sample distribution
of Q̄h may be closer to the approximate χ2-distribution than that of Qh.

LM Test for Residual Autocorrelation

As for unrestricted models, an LM test for residual autocorrelation can also
be constructed if parameter restrictions are imposed on a VAR model. For
simplicity of exposition, we assume now that the restrictions can be written
in the form β = vec(B) = Rγ. For example, there may be zero restrictions. In
that case, a possible test statistic may be obtained by considering the auxiliary
model

Σ̂−1/2
u Û = Σ̂−1/2

u BZ + Σ̂−1/2
u DÛ + E , (5.2.36)

where D = [D1 : · · · : Dh] is (K ×Kh), Û = (Ih ⊗ Û)F ′ with F as in (4.4.2),
E = [ε1, . . . , εT ] is a (K × T ) error matrix, Σ̂u is some consistent estimator of
Σu which has been used in EGLS estimation, Σ̂−1/2

u is a symmetric matrix
such that Σ̂

−1/2
u Σ̂

−1/2
u = Σ̂−1

u , and the other symbols are defined as before.
Note, however, that the ût are now the residuals from EGLS estimation of the
original restricted VAR(p) model and ût = 0 for t ≤ 0. The vectorized version
of the auxiliary model (5.2.36) is

(IT ⊗ Σ̂−1/2
u )vec(Û) = (Z ′ ⊗ Σ̂−1/2

u )Rγ + (Û ′ ⊗ Σ̂−1/2
u )vec(D) + vec(E).

Defining δ = vec(D), the (EG)LS estimator from this auxiliary model is[
γ̂

δ̂

]
=

[
R′(ZZ′ ⊗ Σ̂−1

u )R R′(ZÛ ′ ⊗ Σ̂−1
u )

(ÛZ′ ⊗ Σ̂−1
u )R Û Û ′ ⊗ Σ̂−1

u

]−1 [
R′(Z ⊗ Σ̂−1

u )

Û ⊗ Σ̂−1
u

]
vec(Û).
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The first order conditions for a minimum of the EGLS objective function for
the original restricted VAR model are

∂[y − (Z ′ ⊗ IK)Rγ]′(IK ⊗ Σ̂−1
u )[y − (Z ′ ⊗ IK)Rγ]

∂γ

∣∣∣∣∣
γ̂

= −2R′(Z ⊗ IK)(IK ⊗ Σ̂−1
u )[y − (Z ′ ⊗ IK)Rγ̂] = 0.

Hence, R′(Z⊗Σ̂−1
u ) vec(Û) = 0. Applying the rules for the partitioned inverse

(see Appendix A.10) thus gives

δ̂ =
(
Û Û ′ ⊗ Σ̂−1

u

−(ÛZ ′ ⊗ Σ̂−1
u )R[R′(ZZ′ ⊗ Σ̂−1

u )R]−1R′(ZÛ ′ ⊗ Σ̂−1
u )

)−1

×vec(Σ̂−1
u Û Û ′).

The usual χ2-statistic for testing δ = 0 is

λLM (h) = δ̂
′(Û Û ′ ⊗ Σ̂−1

u

−(ÛZ ′ ⊗ Σ̂−1
u )R[R′(ZZ′ ⊗ Σ̂−1

u )R]−1R′(ZÛ ′ ⊗ Σ̂−1
u )

)
δ̂.

Substituting the expression for δ̂, it can be seen that

λLM (h) = T ĉ′hΣ̂
r
c(h)−1ĉh,

where

Σ̂r
c(h) =

1
T

(
Û Û ′ ⊗ Σ̂−1

u

−(ÛZ ′ ⊗ Σ̂−1
u )R[R′(ZZ ′ ⊗ Σ̂−1

u )R]−1R′(ZÛ ′ ⊗ Σ̂−1
u )

)
is a consistent estimator of Σr

c(h). Thus, the situation is completely analogous
to the case of an unrestricted model treated in Section 4.4.4 and we get the
following result from Propositions 5.7 and C.15(5).

Proposition 5.9 (Asymptotic Distribution of LM Statistic for Residual Au-
tocorrelation of Restricted VAR)
Under the conditions of Proposition 5.7,

λLM (h) d→ χ2(hK2).

Notice that unlike for the portmanteau test, the asymptotic distribution of
the LM statistic is identical to that obtained for unrestricted VARs in Propo-
sition 4.8. However, λLM (h) is in general not exactly an LM statistic because
the restricted estimator γ̂ is not identical to the ML estimator. Clearly, this
does not affect the asymptotic properties of the test statistic.
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Other Checks of Restricted Models

It must also be kept in mind that our discussion has been based on a number
of further assumptions that should be checked. Prominent among them are
stationarity, stability, and normality. The latter is used in setting up forecast
intervals and regions and the former properties are basic conditions underlying
much of our analysis (see, for instance, Propositions 5.1–5.6). The stability
tests based on predictions and described in Section 4.6 of Chapter 4 may be
applied in the same way as for full unrestricted VAR processes. Of course, now
the forecasts and MSE matrix estimators should be based on the restricted
coefficient estimators as discussed in Section 5.2.6. Also, it is easy to see from
Section 4.5 that the tests for nonnormality remain valid when true restrictions
are placed on the VAR coefficient matrices.

5.2.10 An Example

As an example, we use again the same data as in Section 3.2.3 and some other
previous sections. That is, y1t, y2t, and y3t are first differences of logarithms of
investment, income, and consumption, respectively. We keep four presample
values and use sample values from the period 1961.2–1978.4. Hence, the time
series length is T = 71. We have applied the top-down strategy with selection
criteria AIC, HQ, and SC and a VAR order of p = 4. In other words, we use
the same maximum order as in the order selection procedure for full VAR
models in Chapter 4. Because HQ and SC choose the same model, we get
two different models only which are shown in Table 5.1. As usual, the HQ-SC
model is more parsimonious than the AIC model.

In Table 5.1, modified portmanteau statistics with corresponding p-values
are also given for both models. Obviously, none of the test values gives rise
to concern about the models. In Figure 5.1, residual autocorrelations of the
HQ-SC model with estimated two-standard error bounds about zero are de-
picted. The rather unusual looking estimated two-standard error bounds for
some low lags are a consequence of the zero elements in the estimated VAR
coefficient matrices. Recall that the asymptotic standard errors are bounded
from above by 1/

√
T . For low lags, they can be substantially smaller, however,

and this property is clearly reflected in Figure 5.1. Although some individual
autocorrelations fall outside the two-standard error bounds about zero, this
is not necessarily a reason for modifying the model. As in Chapter 4, such a
decision depends on which criterion is given priority.

We have also produced forecasts with the HQ-SC model and give them in
Table 5.2 together with forecasts from a full VAR(4) model. In this example,
the forecasts from the two models are quite close and the estimated forecast
intervals from the subset model are all smaller than those of a full VAR(4)
model. Although theoretically the more parsimonious subset model produces
more precise forecasts if the restrictions are correct, it must be kept in mind
that in the present case the restrictions, the forecasts and forecast intervals
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Table 5.1. EGLS estimates of subset VAR models for the investment/income/con-
sumption data

model selection criterion

AIC HQ-SC

̂̂ν
⎡⎢⎢⎢⎢⎣

.015∗
(.006)

.015
(.003)

.013
(.003)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

.015
(.006)

.020
(.001)

.016
(.003)

⎤⎥⎥⎥⎥⎦

̂̂
A1

⎡⎢⎢⎢⎢⎣
−.219
(.104)

0 0

0 0 .235
(.133)

0 .274
(.082)

−.391
(.116)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

−.225
(.104)

0 0

0 0 0

0 .261
(.081)

−.439
(.095)

⎤⎥⎥⎥⎥⎦

̂̂
A2

⎡⎢⎢⎢⎢⎣
0 0 0

.010
(.024)

0 0

0 .335
(.073)

0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 .329
(.074)

0

⎤⎥⎥⎥⎥⎥⎦

̂̂
A3

⎡⎢⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 .095
(.076)

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦

̂̂
A4

⎡⎢⎢⎢⎣
.340
(.103)

0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

.331
(.103)

0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
Q̄12 = 79.3 [.937]∗∗ Q̄12 = 85.5 [.893]

Q̄20 = 144 [.943] Q̄20 = 152 [.898]
∗Estimated standard errors in parentheses.
∗∗p-value.
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Fig. 5.1. Estimated residual autocorrelations of the investment/income/consump-
tion HQ-SC subset VAR model with estimated asymptotic two-standard error
bounds.

are estimated on the basis of a single realization of an unknown data gener-
ation process. Under these circumstances, a subset model may produce less
precise forecasts than a heavily parameterized full VAR model. Note that in
the present subset model, the income forecasts are the same for all forecast
horizons because income is generated by a white noise process in the HQ-SC
model.

We have also computed impulse responses from the HQ-SC subset VAR
model. The Θi responses of consumption to an impulse in income based on
orthogonalized residuals are depicted in Figure 5.2. Comparing them with
Figure 3.8 shows that they are qualitatively similar to the impulse responses
from the full VAR(2) model. Considering the responses of investment to a con-
sumption innovation reveals that they are all zero in the subset VAR model.
A closer look at Table 5.1 shows that income/consumption are not Granger-
causal for investment in both subset models. This result was also obtained in
the full VAR model (see Section 3.6.2). However, now it is directly seen in the
model without further causality testing. In other words, the causality testing
is built into the model selection procedure.
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Table 5.2. Point and interval forecasts from full and subset VAR(4) models for the
investment/income/consumption example

full VAR(4) HQ-SC subset VAR(4)
variable forecast

horizon
point
forecast

95% interval
forecast

point
forecast

95% interval
forecast

investment 1 .006 [−.091, .103] .015 [−.074, .105]
2 .025 [−.075, .125] .023 [−.068, .115]
3 .028 [−.071, .126] .018 [−.073, .110]
4 .026 [−.074, .125] .023 [−.069, .115]

income 1 .021 [−.005, .047] .020 [−.004, .044]
2 .022 [−.004, .049] .020 [−.004, .044]
3 .017 [−.009, .043] .020 [−.004, .044]
4 .022 [−.004, .049] .020 [−.004, .044]

consumption 1 .022 [ .001, .042] .023 [ .004, .042]
2 .015 [−.006, .036] .013 [−.007, .033]
3 .020 [−.004, .043] .022 [ .001, .044]
4 .019 [−.004, .042] .018 [−.004, .040]

– 
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00
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00

00
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00
35
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00

70
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Fig. 5.2. Estimated responses of consumption to an orthogonalized impulse in
income with two-standard error bounds based on the HQ-SC subset VAR model.
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5.3 VAR Processes with Nonlinear Parameter
Restrictions

Some authors have suggested nonlinear constraints for the coefficients of a
VAR model. For instance, multiplicative models with VAR operator

A(L) = IK −A1L− · · · −ApL
p

= (IK −B1L
s − · · · −BQL

sQ)(IK − C1L− · · · − CqL
q)

= B(Ls)C(L)

have been considered. Here L is the lag operator defined in Chapter 2, Section
2.1.2, the Bi’s and Cj ’s are (K ×K) coefficient matrices and B(Ls) contains
“seasonal” powers of L only. Such models may be useful for seasonal data.
For instance, for quarterly data, a multiplicative seasonal operator may have
the form

(IK −B1L
4)(IK − C1L− C2L

2).

The corresponding VAR operator is

A(L) = IK −A1L− · · · −A6L
6

= IK − C1L− C2L
2 −B1L

4 + B1C1L
5 + B1C2L

6,

so that A1 = C1, A2 = C2, A3 = 0, A4 = B1, A5 = −B1C1, A6 =
−B1C2. Hence, the coefficients α := vec[A1, . . . , Ap] are determined by γ :=
vec[B1, C1, C2], that is,

α = g(γ). (5.3.1)

There are also other types of nonlinear constraints that may be written in this
way. For example, the VAR operator may have the form A(L) = B(L)C(L),
where

C(L) =

⎡⎢⎣ c1(L) 0
. . .

0 cK(L)

⎤⎥⎦
is a diagonal operator with ck(L) = 1 + ck1L + · · · + ckqL

q, which represents
the individual dynamics of the variables and B(L) = IK −B1L− · · · −BnL

n

takes care of joint relations. Again the implied restrictions for α can easily be
cast in the form (5.3.1).

In principle, under general conditions, if restrictions are given in the form
(5.3.1), the analysis can proceed analogously to the linear restriction case.
That is, we need to find an estimator γ̂ of γ, for instance, by minimizing

S(γ) = [y − (Z ′ ⊗ IK)g(γ)]′(IT ⊗Σ−1
u )[y − (Z ′ ⊗ IK)g(γ)],
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where y, Z, and Σu are as defined in Section 5.2. The minimization may
require an iterative algorithm. Such algorithms are described in Section 12.3.2
in the context of estimating VARMA models. Once we have an estimator γ̂, we
may estimate α as α̂ = g(γ̂). Under similar conditions as for the linear case,
the estimators will be consistent and asymptotically normally distributed,
e.g.,

√
T (α̂ − α) d→N (0, Σα̂). (5.3.2)

The corresponding estimators Â1, . . . , Âp may be used in computing forecasts
and impulse responses etc. The asymptotic properties of these quantities then
follow exactly as in the previous sections (see in particular Sections 5.2.6 and
5.2.7).

Another type of “multiplicative” VAR operator has the form

A(L) = IK −B(L)C(L), (5.3.3)

where

B(L) = B0 + B1L + · · · + BqL
q

is of dimension (K × r), that is, the Bi’s have dimension (K × r), and

C(L) = C1L + · · · + CpL
p

is of dimension (r×K), with r < K. For p = 1, neglecting the intercept terms,
the process becomes

yt = B0C1yt−1 + · · · + BqC1yt−q−1 + ut

which is sometimes called an index model because yt is represented in terms
of lagged values of the “index” C1yt. In the extreme case where r = 1,
C1yt is simply a weighted sum or index of the components of yt which jus-
tifies the name of the model. Such models have been investigated by Reinsel
(1983) in some detail. Alternatively, if q = 0, the process is called reduced
rank (RR)VAR process which has been analyzed by Velu, Reinsel & Wichern
(1986), Tso (1981), Ahn & Reinsel (1988), Reinsel (1993, Chapter 6), Reinsel
& Velu (1998) and Anderson (1999, 2002) among others. Models with a re-
duced rank structure in the coefficients will be of considerable importance in
Part II, where VAR processes with cointegrated variables are considered. We
will therefore not discuss them here.

5.4 Bayesian Estimation

5.4.1 Basic Terms and Notation

Although the reader is assumed to be familiar with Bayesian estimation, we
summarize some basics here. In the Bayesian approach, it is assumed that



5.4 Bayesian Estimation 223

the nonsample or prior information is available in the form of a density. De-
noting the parameters of interest by α, let us assume that the prior infor-
mation is summarized in the prior probability density function (p.d.f.) g(α).
The sample information is summarized in the sample p.d.f., sayf(y|α), which
is algebraically identical to the likelihood function l(α|y). The two types of
information are combined via Bayes’ theorem which states that

g(α|y) =
f(y|α)g(α)

f(y)
,

where f(y) denotes the unconditional sample density which, for a given sam-
ple, is just a normalizing constant. In other words, the distribution of α,
given the sample information contained in y, can be summarized by g(α|y).
This function is proportional to the likelihood function times the prior density
g(α),

g(α|y) ∝ f(y|α)g(α) = l(α|y)g(α). (5.4.1)

The conditional density g(α|y) is the posterior p.d.f.. It contains all the in-
formation available on the parameter vector α. Point estimators of α may be
derived from the posterior distribution. For instance, the mean of that distri-
bution, called the posterior mean, is often used as a point estimator for α. In
the next subsection this general framework is specialized to VAR models.

5.4.2 Normal Priors for the Parameters of a Gaussian VAR
Process

Suppose yt is a zero mean, stable, stationary Gaussian VAR(p) process of the
form

yt = A1yt−1 + · · · + Apyt−p + ut

and the prior distribution for α := vec(A) = vec(A1, . . . , Ap) is a multivariate
normal with known mean α∗ and covariance matrix Vα,

g(α) =
(

1
2π

)K2p/2

|Vα|−1/2exp
[
−1

2
(α − α∗)′V −1

α (α − α∗)
]
. (5.4.2)

Combining this information with the sample information summarized in the
Gaussian likelihood function,

l(α|y) =
(

1
2π

)KT/2

|IT ⊗Σu|−1/2

×exp
[
−1

2
(y − (X ′ ⊗ IK)α)′(IT ⊗Σ−1

u )(y − (X ′ ⊗ IK)α)
]

(see Chapter 3, Section 3.4, for the definitions), gives the posterior density
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g(α|y) ∝ g(α)l(α|y)

∝ exp
{
− 1

2

[
(V −1/2

α (α − α∗))′(V −1/2
α (α − α∗))

+ {(IT ⊗Σ−1/2
u )y − (X ′ ⊗Σ−1/2

u )α}′

×{(IT ⊗Σ−1/2
u )y − (X ′ ⊗Σ−1/2

u )α}
]}

. (5.4.3)

Here V −1/2
α and Σ

−1/2
u denote the symmetric square root matrices of V −1

α and
Σ−1

u , respectively (see Appendix A.9.2). The white noise covariance matrix
Σu is assumed to be known for the moment. Defining

w :=

[
V

−1/2
α α∗

(IT ⊗Σ
−1/2
u )y

]
and W :=

[
V

−1/2
α

X ′ ⊗Σ
−1/2
u

]
,

the exponent in (5.4.3) can be rewritten as

− 1
2 (w −Wα)′(w −Wα)

= −1
2
[(α − ᾱ)′W ′W (α − ᾱ) + (w −W ᾱ)′(w −W ᾱ)], (5.4.4)

where

ᾱ := (W ′W )−1W ′w = [V −1
α + (XX ′ ⊗Σ−1

u )]−1[V −1
α α∗ + (X ⊗Σ−1

u )y].
(5.4.5)

Because the second term on the right-hand side of (5.4.4) does not contain α,
it may be absorbed into the constant of proportionality. Hence,

g(α|y) ∝ exp
[
−1

2
(α − ᾱ)′Σ̄−1

α (α − ᾱ)
]
,

where ᾱ is given in (5.4.5) and

Σ̄α := (W ′W )−1 = [V −1
α + (XX ′ ⊗Σ−1

u )]−1. (5.4.6)

Thus, the posterior density is easily recognizable as the density of a multi-
variate normal distribution with mean ᾱ and covariance matrix Σ̄α, that is,
the posterior distribution of α is N (ᾱ, Σ̄α). This distribution may be used
for inference regarding α.

Sometimes one would like to leave some of the coefficients without any
restrictions because no prior information is available. In the above framework,
this case can be handled by setting the corresponding prior variance to infinity.
Unfortunately, such a choice is inconvenient here because algebraic operations
have to be performed with the elements of Vα in order to compute ᾱ and Σ̄α.
Therefore, in such cases it is preferable to write the prior information in the
form

Cα = c + e with e ∼ N (0, I). (5.4.7)
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Here C is a fixed matrix and c is a fixed vector. If C is a (K2p × K2p)
nonsingular matrix,

α ∼ N (C−1c, C−1C−1′).

That is, the prior information is given in the form of a multivariate normal
distribution with mean C−1c and covariance matrix (C′C)−1. From (5.4.5),
under Gaussian assumptions, the resulting posterior mean is

ᾱ = [C ′C + (XX ′ ⊗Σ−1
u )]−1[C′c + (X ⊗Σ−1

u )y]. (5.4.8)

A practical advantage of this representation of the posterior mean is that it
does not require the inversion of Vα. Moreover, this form can also be used
if no prior information is available for some of the coefficients. For instance,
if no prior information on the first coefficient is available, we may simply
eliminate one row from C and put zeros in the first column. Although the
prior information cannot be represented in the form of a proper multivariate
normal distribution in this case, the estimator ᾱ in (5.4.8) can still be used.

In order to make these concepts useful, the prior mean α∗ and covariance
matrix Vα or C and c must be specified. In the next subsection possible choices
are considered.

5.4.3 The Minnesota or Litterman Prior

In Litterman (1986) and Doan, Litterman & Sims (1984), a specific prior, often
referred to as Minnesota prior or Litterman prior, for the parameters of a VAR
model is described. A similar prior will be considered here as an example. The
so-called Minnesota prior was suggested for certain nonstationary processes.
We will adapt it for the stationary case because we are still dealing with
stationary, stable processes. The nonstationary version of the Minnesota prior
will be presented in Chapter 7.

If the intertemporal dependence of the variables is believed to be weak,
one way to describe this is to set the prior mean of the VAR coefficients to
zero with nonzero prior variances. In other words, α∗ = 0 and Vα �= 0. With
this choice of α∗ the posterior mean in (5.4.5) reduces to

ᾱ = [V −1
α + (XX ′ ⊗Σ−1

u )]−1(X ⊗Σ−1
u )y. (5.4.9)

This estimator for α looks like the multivariate LS estimator except for the
inverse covariance matrix V −1

α .
In the spirit of Litterman (1986), the prior covariance matrix Vα may be

specified as a diagonal matrix with diagonal elements

vij,l =
{

(λ/l)2 if i = j,
(λθσi/lσj)2 if i �= j,

(5.4.10)

where vij,l is the prior variance of αij,l, λ is the prior standard deviation of
the coefficients αkk,1, k = 1, . . . ,K, 0 < θ < 1, and σ2

i is the i-th diagonal
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element of Σu. For each equation, λ controls how tightly the coefficient of
the first lag of the dependent variable is believed to be concentrated around
zero. For instance, in the k-th equation of the system it is the prior standard
deviation of αkk,1. In practice, different values of λ are sometimes tried. Using
different λ’s in different equations may also be considered.

Because it is believed that coefficients of high order lags are likely to be
close to zero, the prior variance decreases with increasing lag length l. Fur-
thermore, it is believed that most of the variation in each of the variables
is accounted for by own lags. Therefore coefficients of variables other than
the dependent variable are assigned a smaller variance in relative terms by
choosing θ between 0 and 1, for instance, θ = .2. The ratio σ2

i /σ
2
j is included

to take care of the differences in the variability of the different variables. Here
the residual variances are preferred over the yk variances because it is as-
sumed that the response of one variable to another is largely determined by
the unexpected movements reflected in the residual variance. Finally, the as-
sumption of a diagonal Vα matrix means that independent prior distributions
of the different coefficients are specified. This specification mainly reflects our
inability to model dependencies between the coefficients.

As an example consider a bivariate VAR(2) system consisting of the two
equations

y1t = α11,1y1,t−1 + α12,1y2,t−1 + α11,2y1,t−2 + α12,2y2,t−2 + u1t,
(λ) (λθσ1/σ2) (λ/2) (λθσ1/2σ2)

y2t = α21,1y1,t−1 + α22,1y2,t−1 + α21,2y1,t−2 + α22,2y2,t−2 + u2t,
(λθσ2/σ1) (λ) (λθσ2/2σ1) (λ/2)

(5.4.11)

where the prior standard deviations are given in parentheses. The prior co-
variance matrix of the eight coefficients of this system is

Vα =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ2 (
λθσ2

σ1

)2

0(
λθσ1

σ2

)2

λ2 (
λ

2

)2

(
λθσ2

2σ1

)2

0

(
λθσ1

2σ2

)2

(
λ

2

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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In terms of (5.4.7), this prior may be specified by choosing c = 0 and C an
(8 × 8) diagonal matrix with the square roots of the reciprocals of the diagonal
elements of Vα on the main diagonal.

5.4.4 Practical Considerations

In specifying the Minnesota priors, even if λ and θ are chosen appropriately,
there remain some practical problems. The first results from the fact that
Σu is usually unknown. In a strict Bayesian approach, a prior p.d.f. for the
elements of Σu would be chosen. However, that would lead to a more difficult
posterior distribution for α. Therefore, a more practical approach is to replace
the σi by the square roots of the diagonal elements of the LS or ML estimator
of Σu, e.g.,

Σ̃u = Y (IT −X ′(XX ′)−1X)Y ′/T.

A second problem is the computational expense that may result from the
inversion of the matrix V −1

α + (XX ′ ⊗ Σ−1
u ) or C ′C + (XX ′ ⊗ Σ−1

u ) in the
posterior mean ᾱ which is usually used as an estimator for α. This matrix has
dimension (K2p×K2p). Because in a Bayesian analysis sometimes one may
want to choose a large order p and put tight zero priors on the coefficients
of large lags rather than make them zero with probability 1, like in an order
selection approach, the dimension of the matrix to be inverted in computing
ᾱ may be quite substantial, although this may not be a concern with mod-
ern computing technology. Still, Bayesian estimation is sometimes applied to
each of the K equations of the system individually. For instance, for the k-th
equation,

āk := [V −1
k + σ−2

k XX ′]−1[V −1
k a∗k + σ−2

k Xy(k)] (5.4.12)

may be used as an estimator of the parameters ak (the transpose of the k-
th row of A = [A1, . . . , Ap]). Here a∗k is the prior mean and Vk is the prior
covariance matrix of ak and y′(k) is the k-th row of Y . Using (5.4.12) instead
of (5.4.5) reduces the computational expense a bit.

A further problem is related to the zero mean assumption made in the
foregoing for the process yt. In practice, one may simply subtract the sample
mean from each variable and then perform a Bayesian analysis for the mean-
adjusted data. This amounts to assuming that no prior information exists
for the mean terms. Alternatively, intercept terms may be included in the
analysis. If the prior information is specified in terms of (5.4.7), it is easy to
leave the intercept terms unrestricted, if desired.

5.4.5 An Example

To illustrate the Bayesian approach, we have computed estimates āk as in
(5.4.12) for the investment/income/consumption example data with different
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values of λ and θ. Again we use first differences of logarithms of the data
for the years 1960–1978. In Table 5.3, we give estimates for the investment
equation of a VAR(2) model. In a Bayesian analysis, one would usually choose
a larger VAR order. For illustrative purposes, the VAR(2) model is helpful,
however.

Table 5.3. Bayesian estimates of the investment equation from the investment/in-
come/consumption system

λ θ ν1 α11,1 α12,1 α13,1 α11,2 α12,2 α13,2

∞ 1 −.017 −.320 .146 .961 −.161 .115 .934

1 .99 −.015 −.309 .159 .921 −.147 .135 .854
.1 .99 .008 −.096 .150 .297 −.011 .062 .100
.01 .99 .018 −.001 .003 .005 −.000 .000 .001

1 .50 −.013 −.301 .194 .847 −.141 .165 .718
1 .10 .009 −.245 .190 .369 −.099 .074 .137
1 .01 .023 −.208 .004 .007 −.078 .001 .002

In the investment equation, the parameter λ controls the overall prior vari-
ance of all VAR coefficients while θ controls the tightness of the variances of
the coefficients of lagged income and consumption. Roughly speaking, θ spec-
ifies the fraction of the prior standard deviation λ attached to the coefficients
of lagged income and consumption. Thus, a value of θ close to one means that
all coefficients of lag 1 have about the same prior variance except for a scaling
factor that takes care of the different variability of different variables. Note
that the intercept terms are not restricted (prior variance set to ∞).

We assume a prior mean of zero for all coefficients, a∗k = 0, and thus shrink
towards zero by tightening the prior standard deviation λ. The effect is clearly
reflected in Table 5.3. For θ = .99 and λ = 1 we get coefficient estimates which
are quite similar to unrestricted LS estimates (λ = ∞, θ = 1). Decreasing λ
to zero tightens the prior variance and shrinks all VAR coefficients to zero.
For λ = .01, they are quite close to zero already. On the other hand, moving
the variance fraction θ towards zero shrinks the consumption and income
coefficients (α12,i, α13,i) towards zero. In Table 5.3, for λ = 1 and θ = .01
they are seen to be almost zero. This, of course, has some impact on the
investment coefficients (α11,i) too.

5.4.6 Classical versus Bayesian Interpretation of ᾱ in Forecasting
and Structural Analysis

If the coefficients of a VAR process are estimated by a Bayesian procedure,
the estimated process may be used for prediction and economic analysis, as
described in the previous sections. Again one question of interest concerns



5.4 Bayesian Estimation 229

the statistical properties of the resulting forecasts and impulse responses. It
is possible to interpret ᾱ in (5.4.5) or (5.4.8) as an estimator in the classical
sense and to answer this question in terms of asymptotic theory, as in the pre-
vious sections. In the classical context, ᾱ may be interpreted as a shrinkage
estimator or under the heading of estimation with stochastic restrictions (e.g.,
Judge, Griffiths, Hill, Lütkepohl & Lee (1985, Chapter 3)). In regression mod-
els with nonstochastic regressors, such estimators, under suitable conditions,
have smaller mean squared errors than ML estimators in small samples. In
the present framework, the small sample properties are unknown in general.

To derive asymptotic properties, let us consider the representation (5.4.8).
It is easily seen that, under our standard conditions,

plim ᾱ = plim
(
C′C
T

+
XX ′

T
⊗Σ−1

u

)−1

× plim
[
C′c
T

+ vec
(
Σ−1

u Y X ′

T

)]
=

[
plim

(
XX ′

T

)−1

⊗Σu

]
plim vec

(
Σ−1

u Y X ′

T

)
= α.

Here plimC′C/T = limC ′C/T = 0 and plim C′c/T = 0 has been used.
Moreover, viewing ᾱ as an estimator in the classical sense, it has the same
asymptotic distribution as the unconstrained multivariate LS estimator,

α̂ = vec(Y X ′(XX ′)−1),

because
√
T (ᾱ − α̂) =

[
C′C
T

+
XX ′

T
⊗Σ−1

u

]−1 [
C ′c√
T

+
1√
T

vec(Σ−1
u Y X ′)

]
−

[(
XX ′

T

)−1

⊗Σu

]
1√
T

vec(Σ−1
u Y X ′)

p→ 0.

Thus, ᾱ and α̂ have the same asymptotic distribution by Proposition C.2(2)
of Appendix C. This result is intuitively appealing because it shows that the
contribution of the prior information becomes negligible when the sample size
approaches infinity and the sample information becomes exhaustive. Yet the
result is not very helpful when a small sample is given in a practical situation.

Consequently, it may be preferable to base the analysis on the posterior
distribution of α. In general, it will be difficult to derive the distribution of,
say, the impulse responses from the posterior distribution of α analytically. In
that case, one may obtain, for instance, confidence intervals of these quantities
from a simulation. That is, a large number of samples is drawn from the
posterior distribution of α and the corresponding impulse response coefficients
are computed. The required percentage points are then estimated from the
empirical distributions of the estimated impulse responses (see Appendix D).
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5.5 Exercises

In the following exercises, the notation of the previous sections of this chapter
is used.

5.5.1 Algebraic Exercises

Problem 5.1
Show that γ̆ given in (5.2.14) minimizes

(z − (Z ′ ⊗ IK)Rγ)′(z − (Z ′ ⊗ IK)Rγ)

with respect to γ.

Problem 5.2
Prove that ̂̂

β given in (5.2.16) minimizes

[y − (Z ′ ⊗ IK)β]′(IT ⊗ Σ̄−1
u )[y − (Z ′ ⊗ IK)β]

subject to the restriction Cβ = c, where C is (N ×K(Kp + 1)) of rank N
and c is (N × 1). (Hint: Specify the appropriate Lagrange function and find
its stationary point as described in Appendix A.14.)

Problem 5.3
Show that γ̃ given in (5.2.17) is the ML estimator of γ. (Hint: Use the partial
derivatives from Section 3.4.)

Problem 5.4
Prove Proposition 5.6.

Problem 5.5
Derive the asymptotic distribution of the EGLS estimator of the parameter
vector α := vec(A1, . . . , Ap), based on mean-adjusted data, subject to restric-
tions α = Rγ + r, where R, γ, and r have suitable dimensions.

Problem 5.6
Consider the recursive system of Section 5.2.5,

yt = η + A∗
0yt + · · · + A∗

pyt−p + εt,

where εt has a diagonal covariance matrix Σε. Show that
∑

t ε
′
tΣ

−1
ε εt and∑

t ε
′
tεt assume their minima with respect to the unknown parameters for the

same values of η,A∗
0, . . . , A

∗
p.

(Hint: Note that

T∑
t=1

ε′tΣ
−1
ε εt =

K∑
k=1

T∑
t=1

ε2
kt/σ

2
εk

and consider the partial derivatives with respect to the coefficients of the k-
th equation. Here εkt is the k-th element of εt and σ2

εk
is the k-th diagonal

element of Σε.)
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5.5.2 Numerical Problems

The following problems require the use of a computer. They are based on the
bivariate time series yt = (y1t, y2t)′ of first differences of the U.S. investment
data provided in File E2.

Problem 5.7
Fit a VAR(2) model to the first differences of the data from File E2 subject to
the restrictions α12,i = 0, i = 1, 2. Determine the EGLS parameter estimates
and estimates of their asymptotic standard errors. Perform an F -test to check
the restrictions.

Problem 5.8
Based on the result of the previous problem, perform an impulse response
analysis for y1 and y2.

Problem 5.9
Use a maximum order of 4 and the AIC criterion to determine an optimal
subset VAR model for yt with the top-down strategy described in Section
5.2.8. Repeat the exercise with the HQ criterion. Compare the two models
and interpret.

Problem 5.10
Based on the results of Problem 5.9, perform an impulse response analysis for
y1 and y2 and compare the result to those of Problem 5.8.

Problem 5.11
Use the Minnesota prior with λ = 1 and θ = .2 and compute the posterior
mean of the coefficients of a VAR(4) model for the mean-adjusted yt. Compare
this estimator to the unconstrained multivariate LS estimator of a VAR(4)
model for the mean-adjusted data. Repeat the exercise with a VAR(4) model
that contains intercept terms.
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In Part I, stationary, stable VAR processes have been considered. Recall that
a process is stationary if it has time invariant first and second moments. This
property implies that there are no trends (trending means) or shifts in the
mean or in the covariances. Moreover, there are no deterministic seasonal
patterns. In this part, nonstationary processes of a very specific type will
be considered. In particular, the processes will be allowed to have stochastic
trends. They are then called integrated. If some of the variables move together
in the long-run although they have stochastic trends, they are driven by a
common stochastic trend and they are called cointegrated. VAR processes with
integrated and cointegrated variables are analyzed in this part. In Chapter 6,
some important theoretical properties of cointegrated processes are discussed
and it is shown that they can be conveniently summarized in a vector error
correction model (VECM). Estimation of such models is treated in Chapter
7. Specification of VECMs and model checking are considered in Chapter 8.
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Vector Error Correction Models

As defined in Chapter 2, a process is stationary if it has time invariant first
and second moments. In particular, it does not have trends or changing vari-
ances. A VAR process has this property if the determinantal polynomial of its
VAR operator has all its roots outside the complex unit circle. Clearly, sta-
tionary processes cannot capture some main features of many economic time
series. For example, trends (trending means) are quite common in practice.
For instance, the original investment, income, and consumption data used in
many previous examples have trends (see Figure 3.1). Thus, if interest centers
on analyzing the original variables (or their logarithms) rather than the rates
of change, it is necessary to have models that accommodate the nonstationary
features of the data. It turns out that a VAR process can generate stochastic
and deterministic trends if the determinantal polynomial of the VAR opera-
tor has roots on the unit circle. In fact, it is even sufficient to allow for unit
roots (roots for z = 1) to obtain a trending behavior of the variables. We
will consider this case in some detail in this chapter. In the next section, the
effect of unit roots in the AR operator of a univariate process will be ana-
lyzed. Variables generated by such processes are called integrated variables
and the underlying generating processes are integrated processes. Vector pro-
cesses with unit roots are considered in Section 6.2. In these processes, some
of the variables can have common trends so that they move together to some
extent. They are then called cointegrated. This feature is considered in detail
in Section 6.3 and it is shown that vector error correction models (VECMs)
offer a convenient way to parameterize and specify them. In Section 6.3, the
processes are assumed to be purely stochastic and do not have deterministic
terms. How to incorporate these terms is the subject of Section 6.4. Once we
have a suitable model setup, it can be used for forecasting, causality analysis,
and impulse response analysis. These issues are treated in Sections 6.5–6.7.
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6.1 Integrated Processes

Recall that a VAR(p) process,

yt = A1yt−1 + · · · + Apyt−p + ut, (6.1.1)

is stable if the polynomial defined by

det(IK − A1z − · · · −Apz
p)

has no roots in and on the complex unit circle. For a univariate AR(1) process,
yt = αyt−1 + ut, this property means that

1 − αz �= 0 for |z| ≤ 1

or, equivalently, |α| < 1.
Consider the borderline case, where α = 1. The resulting process yt =

yt−1 + ut is called a random walk. Starting the process at t = 0 with some
fixed y0, it is easy to see by successive substitution for lagged yt’s, that

yt = yt−1 + ut = yt−2 + ut−1 + ut = · · · = y0 +
t∑

i=1

ui. (6.1.2)

Thus, yt consists of the sum of all disturbances or innovations of the previous
periods so that each disturbance has a lasting impact on the process. If ut is
white noise with variance σ2

u,

E(yt) = y0

and

Var(yt) = tVar(ut) = tσ2
u.

Hence, the variance of a random walk tends to infinity. Furthermore, the
correlation

Corr(yt, yt+h) =
E

[(
t∑

i=1
ui

)(
t+h∑
i=1

ui

)]
[tσ2

u(t + h)σ2
u]1/2

=
t

(t2 + th)1/2
−→
t→∞ 1

for any integer h. This latter property of a random walk means that yt and
ys are strongly correlated even if they are far apart in time. It can also be
shown that the expected time between two crossings of zero is infinite. These
properties are often reflected in trending behavior. Examples are depicted in
Figure 6.1. This kind of trend is, of course, not a deterministic one but a
stochastic trend.
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Fig. 6.1. Artificially generated random walks.
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If the process has a nonzero constant term ν, yt = ν + yt−1 + ut is called
a random walk with drift and it has a deterministic linear trend in the mean.
To see this property, suppose again that the process is started at t = 0 with
a fixed y0. Then

yt = y0 + tν +
t∑

i=1

ui

and E(yt) = y0 + tν. An example of a time series generated by a random walk
with drift is shown in Figure 6.2.
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Fig. 6.2. An artificially generated random walk with drift.

The previous discussion suggests that starting unstable processes at some
finite time t0 is useful to obtain processes with finite moments. On the other
hand, if an AR process starts at some finite time, it is strictly speaking not
necessarily stationary, even if it is stable. To see this property, let yt = ν +
αyt−1 + ut be a univariate stable AR(1) process with |α| < 1. Starting with a
random variable y0 at t = 0, gives

yt = ν

t−1∑
i=0

αi + αty0 +
t−1∑
i=0

αiut−i.
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Hence,

E(yt) = ν

t−1∑
i=0

αi + αtE(y0)

is generally not time invariant if α and ν �= 0. A similar result is obtained for
the second moments,

Var(yt) = α2tVar(y0) + σ2
u

t−1∑
i=0

α2i.

However, the first and second moments approach limit values as t → ∞ and
one might call such a process asymptotically stationary. To simplify matters,
the term “asymptotically” is sometimes dropped and such processes are then
simply called stationary. Moreover, if we consider purely stochastic processes
without deterministic terms (ν = 0), the initial variable can be chosen such
that yt is stationary if the process is stable. In particular, if we choose

y0 =
∞∑

i=0

αiu−i

we get, for ν = 0,

yt = αt
∞∑

i=0

αiu−i +
t−1∑
i=0

αiut−i =
∞∑

i=0

αiut−i, t = 1, 2, . . . ,

and, hence, for t = 1, 2, . . . ,

E(yt) = 0,

Var(yt) = σ2
u/(1 − α2),

and also the autocovariances are time invariant. Thus, for a stable process
we may in fact choose the initial variable such that yt is stationary even if
the process is started in some given period. This result can also be used as a
justification for simply calling stable processes stationary in this situation. We
may implicitly assume that the starting value is chosen to justify the termi-
nology. For our purposes, this point is of limited importance because in later
chapters we will be interested in the parameters of the processes considered
and possibly in their asymptotic moments. Without further warning, nonsta-
tionary, unstable processes will be assumed to begin at some given finite time
period.

A behavior similar to that of a random walk is also observed for higher
order AR processes such as

yt = ν + α1yt−1 + · · · + αpyt−p + ut,
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if 1 − α1z − · · · − αpz
p has a root for z = 1. Note that

1 − α1z − · · · − αpz
p = (1 − λ1z) · · · (1 − λpz),

where λ1, . . . , λp are the reciprocals of the roots of the polynomial. If the
process has just one unit root (a root equal to 1) and all other roots are
outside the complex unit circle, its behavior is similar to that of a random
walk, that is, its variances increase linearly, the correlation between variables
h periods apart tends to 1 and the process has a linear trend in mean if ν �= 0.
In case one of the roots is strictly inside the unit circle, the process becomes
explosive, that is, its variances go to infinity at an exponential rate. Many
researchers feel that such processes are unrealistic models for most economic
data. Although processes with roots on the unit circle other than one are
often useful, we shall concentrate on the case of unit roots and all other roots
outside the unit circle. This situation is of considerable practical interest.

Univariate processes with d unit roots (d roots equal to 1) in their AR
operators are called integrated of order d (I(d)). If there is just one unit root,
i.e., the process is I(1), it is quite easy to see how a stable and possibly
stationary process can be obtained: simply by taking first differences, ∆yt :=
(1−L)yt = yt − yt−1, of the original process. More generally, if the process is
I(d) it can be made stable by differencing d times, that is, ∆dyt = (1−L)dyt

is stable and, again, initial values can be chosen such that it is stationary. In
the following, it will often be convenient to extend this terminology also to
stable, stationary processes and to call them I(0).

More generally, yt may be defined to be an I(1) process, if ∆yt = wt is
a stationary process with infinite MA representation, wt =

∑∞
j=0 θjut−j =

θ(L)ut, where the MA coefficients satisfy the condition
∑∞

j=0 j|θj | < ∞,
θ(1) =

∑∞
j=0 θj �= 0, and ut ∼ (0, σ2

u) is white noise. In that case, yt =
yt−1 + wt can be rewritten as

yt = y0 +w1 + · · ·+wt = y0 +θ(1)(u1 + · · ·+ut)+
∞∑

j=0

θ∗jut−j −w∗
0 , (6.1.3)

where θ∗j = −∑∞
i=j+1 θi, j = 0, 1, . . . , and w∗

0 =
∑∞

j=0 θ
∗
ju−j contains initial

values. Thus, yt can be represented as the sum of a random walk [θ(1)(u1 +
· · · + ut)], a stationary process [

∑∞
j=0 θ

∗
jut−j ], and initial values [y0 − w∗

0 ].
Notice that the condition

∑∞
j=0 j|θj | < ∞ ensures that

∑∞
j=0 |θ∗j | < ∞, so

that
∑∞

j=0 θ
∗
jut−j is indeed well-defined by Proposition C.7 of Appendix C.3.

Although the condition for the θj is stronger than absolute summability, it
is satisfied for many processes of practical interest. The decomposition of yt

in (6.1.3) is known as the Beveridge-Nelson decomposition (see also Appendix
C.8). A similar decomposition for multivariate processes is helpful in some of
the subsequent analysis. It will be discussed in Section 6.3.
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6.2 VAR Processes with Integrated Variables

Consider now a K-dimensional VAR(p) process without a deterministic term
as in (6.1.1). It can be written as

A(L)yt = ut, (6.2.1)

where A(L) := IK −A1L− · · · −ApL
p and L is the lag operator. Multiplying

from the left by the adjoint A(L)adj of A(L) gives

|A(L)|yt = A(L)adjut (6.2.2)

(see Appendix A.4.1 for the definition of the adjoint of a matrix). Thus, the
VAR(p) process in (6.2.1) can be written as a process with univariate AR
operator, that is, all components have the same AR operator |A(L)|. The
right-hand side of (6.2.2), A(L)adjut, is a finite order MA process (see Chapter
11 for further discussion of such processes). If |A(L)| has d unit roots and
otherwise all roots are outside the unit circle, the AR operator can be written
as

|A(L)| = α(L)(1 − L)d = α(L)∆d,

where α(L) is an invertible operator. Consequently, ∆dyt is a stable process.
Hence, each component becomes stable upon differencing.

Because we are considering processes which are started at some specific
time t0, we should perhaps think for a moment about the treatment of initial
values when multiplying by an operator such as A(L)adj in (6.2.2). One pos-
sible assumption is that the new representation is valid for all t for which the
yt’s are defined in (6.2.1).

The foregoing discussion shows that if a VAR(p) process is unstable be-
cause of unit roots only, it can be made stable by differencing its components.
Note, however, that, due to cancellations, it may not be necessary to difference
each component as many times as there are unit roots in |A(L)|. To illustrate
this point, consider the bivariate VAR(1) process([

1 0
0 1

]
−

[
1 0
0 1

]
L

)[
y1t

y2t

]
=

[
(1 − L)y1t

(1 − L)y2t

]
= ut.

Obviously, each component is stationary after differencing once, i.e., each
component is I(1), although

|A(L)| =
∣∣∣∣[ 1 − L 0

0 1 − L

]∣∣∣∣ = (1 − L)2

has two unit roots. It is also possible that some components are stable and
stationary as univariate processes whereas others need differencing. Examples
are easy to construct.
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If the VAR(p) process has a nonzero intercept term so that

A(L)yt = ν + ut

and |A(z)| has one or more unit roots, then some of the components of yt may
have deterministic trends in their mean values. Unlike the univariate case, it is
also possible, however, that none of the components of yt has a deterministic
trend in mean. This occurs if A(L)adjν = 0. For instance, if

A(L) =
[

1 − L ηL
0 1

]
,

|A(z)| has a unit root and

A(L)adj =
[

1 −ηL
0 1 − L

]
.

Hence,

A(L)adj

[
ν1

ν2

]
=

[
ν1 − ην2

ν2 − ν2

]
which is zero if ν1 = ην2. Thus, in a VAR analysis an intercept term cannot
be excluded a priori if there are unit roots and none of the component series
has a deterministic trend.

The following question comes to mind in this context. Suppose each com-
ponent of a VAR(p) process is I(d), is it possible that differencing each com-
ponent individually distorts interesting features of the relationship between
the original variables? If the latter were not the case, a VAR analysis could be
performed as described in previous chapters after differencing the individual
components. It turns out, however, that differencing may indeed distort the re-
lationship between the original variables. Systems with cointegrated variables
are examples, where fitting VAR models upon differencing may be inadequate.
Such systems are introduced next.

6.3 Cointegrated Processes, Common Stochastic Trends,
and Vector Error Correction Models

Equilibrium relationships are suspected between many economic variables
such as household income and expenditures or prices of the same commod-
ity in different markets. Suppose the variables of interest are collected in
the vector yt = (y1t, . . . , yKt)′ and their long-run equilibrium relation is
β′yt = β1y1t + · · · + βKyKt = 0, where β = (β1, . . . , βK)′. In any particular
period, this relation may not be satisfied exactly but we may have β′yt = zt,
where zt is a stochastic variable representing the deviations from the equi-
librium. If there really is an equilibrium, it seems plausible to assume that
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the yt variables move together and that zt is stable. This setup, however,
does not exclude the possibility that the yt variables wander extensively as
a group. Thus, they may be driven by a common stochastic trend. In other
words, it is not excluded that each variable is integrated, yet there exists a lin-
ear combination of the variables which is stationary. Integrated variables with
this property are called cointegrated. In Figure 6.3, two artificially generated
cointegrated time series are depicted.
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Fig. 6.3. A bivariate cointegrated time series.

Generally, the variables in a K-dimensional process yt are called cointe-
grated of order (d, b), briefly, yt ∼ CI(d, b), if all components of yt are I(d)
and there exists a linear combination zt := β′yt with β = (β1, . . . ,βK)′ �= 0
such that zt is I(d− b). For instance, if all components of yt are I(1) and β′yt

is stationary (I(0)), then yt ∼ CI(1, 1). The vector β is called a cointegrating
vector or a cointegration vector. A process consisting of cointegrated variables
is called a cointegrated process. These processes were introduced by Granger
(1981) and Engle & Granger (1987). Since then they have become popular in
theoretical and applied econometric work.

In the following, a slightly different definition of cointegration will be used
in order to simplify the terminology. We call a K-dimensional process yt in-
tegrated of order d, briefly, yt ∼ I(d), if ∆dyt is stable and ∆d−1yt is not
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stable. The I(d) process yt is called cointegrated if there is a linear combina-
tion β′yt with β �= 0 which is integrated of order less than d. This definition
differs from the one given by Engle & Granger (1987) in that we do not ex-
clude components of yt with order of integration less than d. If there is just
one I(d) component in yt and all other components are stable (I(0)), then
the vector yt is I(d) according to our definition because ∆dyt is stable and
∆d−1yt is not. In such a case a relation β′yt that involves the stationary com-
ponents only is a cointegration relation in our terms. Clearly, this aspect of
our definition is not in line with the original idea of cointegration as a special
relation between integrated variables with common stochastic trends. In the
following, our definition is still useful because it simplifies the terminology as
it avoids distinguishing between variables with different orders of integration.
The reader should keep in mind the basic ideas of cointegration when it comes
to interpreting specific relationships, however.

Obviously, a cointegrating vector is not unique. Multiplying by a nonzero
constant yields a further cointegrating vector. Also, there may be various
linearly independent cointegrating vectors. For instance, if there are four vari-
ables in a system, the first two may be connected by a long-run equilibrium
relation and also the last two. Thus, there may be a cointegrating vector with
zeros in the last two positions and one with zeros in the first two positions.
In addition, there may be a cointegration relation involving all four variables.

Before the concept of cointegration was introduced, the closely related
error correction models were discussed in the econometrics literature (see,
e.g., Davidson, Hendry, Srba & Yeo (1978), Hendry & von Ungern-Sternberg
(1981), Salmon (1982)). In an error correction model, the changes in a vari-
able depend on the deviations from some equilibrium relation. Suppose, for
instance, that y1t represents the price of a commodity in a particular market
and y2t is the corresponding price of the same commodity in another market.
Assume furthermore that the equilibrium relation between the two variables
is given by y1t = β1y2t and that the changes in y1t depend on the deviations
from this equilibrium in period t− 1,

∆y1t = α1(y1,t−1 − β1y2,t−1) + u1t.

A similar relation may hold for y2t,

∆y2t = α2(y1,t−1 − β1y2,t−1) + u2t.

In a more general error correction model, the ∆yit may in addition depend
on previous changes in both variables as, for instance, in the following model:

∆y1t = α1(y1,t−1 − β1y2,t−1) + γ11,1∆y1,t−1 + γ12,1∆y2,t−1 + u1t,

∆y2t = α2(y1,t−1 − β1y2,t−1) + γ21,1∆y1,t−1 + γ22,1∆y2,t−1 + u2t.

(6.3.1)

Further lags of the ∆yit’s may also be included.
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To see the close relationship between error correction models and the con-
cept of cointegration, suppose that y1t and y2t are both I(1) variables. In that
case all terms in (6.3.1) involving the ∆yit are stable. In addition, u1t and u2t

are white noise errors which are also stable. Because an unstable term cannot
equal a stable process,

αi(y1,t−1 − β1y2,t−1) = ∆yit − γi1,1∆y1,t−1 − γi2,1∆y2,t−1 − uit

must be stable too. Hence, if α1 �= 0 or α2 �= 0, y1t −β1y2t is stable and, thus,
represents a cointegration relation.

In vector and matrix notation the model (6.3.1) can be written as

∆yt = αβ′yt−1 + Γ1∆yt−1 + ut,

or

yt − yt−1 = αβ′yt−1 + Γ1(yt−1 − yt−2) + ut, (6.3.2)

where yt := (y1t, y2t)′, ut := (u1t, u2t)′,

α :=
[

α1

α2

]
, β′ := (1,−β1), and Γ1 :=

[
γ11,1 γ12,1

γ21,1 γ22,1

]
.

Rearranging terms in (6.3.2) gives the VAR(2) representation

yt = (IK + Γ1 + αβ′)yt−1 − Γ1yt−2 + ut.

Hence, cointegrated variables may be generated by a VAR process.
To see how cointegration can arise more generally in K-dimensional VAR

models, consider the VAR(2) process

yt = A1yt−1 + A2yt−2 + ut (6.3.3)

with yt = (y1t, . . . , yKt)′. Suppose the process is unstable with

|IK −A1z −A2z
2| = (1 − λ1z) · · · (1 − λnz) = 0 for z = 1.

Because the λi are the reciprocals of the roots of the determinantal polyno-
mial, one or more of them must be equal to 1. All other roots are assumed to
lie outside the unit circle, that is, all λi which are not 1 are inside the complex
unit circle. Because |IK −A1 − A2| = 0, the matrix

Π := −(IK − A1 −A2)

is singular. Suppose rk(Π) = r < K. Then Π can be decomposed as Π = αβ′,
where α and β are (K × r) matrices. From the discussion in the previous
section, we know that each variable becomes stationary upon differencing.
Let us assume that differencing once is sufficient, subtract yt−1 on both sides
of (6.3.3) and rearrange terms as
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yt − yt−1 = −(IK −A1 − A2)yt−1 −A2yt−1 + A2yt−2 + ut

or

∆yt = Πyt−1 + Γ1∆yt−1 + ut, (6.3.4)

where Γ1 := −A2, or

αβ′yt−1 = ∆yt − Γ1∆yt−1 − ut.

Because the right-hand side involves stationary terms only, αβ′yt−1 must also
be stationary and it remains stationary upon multiplication by (α′α)−1α′. In
other words, β′yt is stationary and, hence, each element of β′yt represents a
cointegrating relation. Note that simply taking first differences of all variables
in (6.3.3) eliminates the cointegration term which may well contain relations
of great importance for a particular analysis. Moreover, in general, a VAR
process with cointegrated variables does not admit a pure VAR representation
in first differences.

It may also be worth emphasizing that here we have worked under the
assumption that all variables are stationary after differencing once. In general,
variables with higher integration orders may also be present. In that case, β′yt

may not be stationary even if rk(Π) = r < K. The components of yt may
still be cointegrated of a higher order if linear combinations exist which have
a reduced order of integration.

In the following, we will be interested in the specific case where all indi-
vidual variables are I(1) or I(0). The K-dimensional VAR(p) process

yt = A1yt−1 + · · · + Apyt−p + ut, (6.3.5)

is called cointegrated of rank r if

Π := −(IK − A1 − · · · −Ap)

has rank r and, thus, Π can be written as a matrix product αβ′ with α and β
being of dimension (K×r) and of rank r. The matrix β is called a cointegrating
or cointegration matrix or a matrix of cointegrating or cointegration vectors
and α is sometimes called the loading matrix. If r = 0, ∆yt has a stable
VAR(p− 1) representation and, for r = K, |IK −A1 − · · · −Ap| = | −Π| �= 0
and, hence, the VAR operator has no unit roots so that yt is a stable VAR(p)
process.

Rewriting (6.3.5) as in (6.3.4) it has a vector error correction model
(VECM) representation

∆yt = Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut

= αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (6.3.6)

where



6.3 Cointegrated Processes and VECMs 249

Γi := −(Ai+1 + · · · + Ap), i = 1, . . . , p− 1.

If this representation of a cointegrated process is given, it is easy to recover
the corresponding VAR form (6.3.5) by noting that

A1 = Π + IK + Γ1

Ai = Γi − Γi−1, i = 2, . . . , p− 1, (6.3.7)
Ap = −Γp−1.

It may be worth pointing out that we can also rearrange the terms in a
different way and obtain a representation

∆yt = D1∆yt−1 + · · · + Dp−1∆yt−p+1 + Πyt−p + ut, (6.3.8)

where the error correction term appears at lag p and

Di = −(IK −A1 − · · · − Ai), i = 1, . . . , p− 1.

In the following sections, we will usually work with (6.3.5) or (6.3.6). Of course,
thereby we work within a much more narrow framework than that allowed for
in the general definition of cointegration. First, we consider I(1) processes
only and, second, the discussion is limited to finite order VAR processes or
VECMs.

It is important to note that the decomposition of the (K ×K) matrix Π
as the product of two (K × r) matrices, Π = αβ′, is not unique. In fact, for
every nonsingular (r × r) matrix Q, we can define α∗ = αQ′ and β∗ = βQ−1

and get Π = α∗β∗′. This nonuniqueness of the decomposition of Π shows
again that the cointegration relations are not unique. It is possible, however,
to impose restrictions on β and/or α to get unique relations. Such restrictions
may be implied by subject matter considerations or they may be imposed for
convenience, using the algebraic properties of the associated matrices.

As an example, consider a system of three interest rates, yt = (y1t, y2t, y3t)′,
where y1t is a short-term rate, y2t is a medium-term rate, and y3t is a long-term
rate. Suppose all three interest rates are I(1) variables whereas the interest
rate spreads, yit −yjt (i �= j) are stationary (I(0)). Then we have two linearly
independent cointegrating relations which can, for example, be written as

β′yt =
[

1 0 −1
0 1 −1

]
yt

or, alternatively, as

β∗′yt =
[

1 −1 0
0 1 −1

]
yt.

Using the fact that rk(β) = r, there must be r linearly independent rows.
Thus, by a suitable rearrangement of the variables it can always be ensured
that the first r rows of β are linearly independent. Hence, the upper (r × r)
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submatrix consisting of the first r rows of β is nonsingular. Choosing Q then
equal to this matrix gives a cointegration matrix

β∗ =
[
Ir

β(K−r)

]
, (6.3.9)

where β(K−r) is ((K− r)× r). This normalization will occasionally be used in
the following because it is quite convenient to ensure a unique cointegration
matrix. It does not imply a loss of generality except that it is assumed that the
variables are arranged in the right way so that the normalization is feasible.
If the system is known, as implicitly assumed here, rearranging the variables
in a suitable way is no problem, of course. In fact, we just need to know the
cointegration properties between all subsets of variables in order to find a
suitable arrangement of the variables.

To see this, consider again a three-dimensional system, yt = (y1t, y2t, y3t)′,
with cointegrating rank 1 so that there is just one cointegration vector β. In
that case, the normalization in (6.3.9) amounts to setting the first component
of the cointegration vector to one. Hence, β∗′yt = [1,β′

(K−1)]yt = y1t +β2y2t +
β3y3t. Clearly, this normalization is only feasible if the first component of yt

actually belongs to the cointegration relation and has nonzero coefficient. If
we know that y2t and y3t are not cointegrated while y1t, y2t, and y3t together
are cointegrated, then we know already that y1t is part of the cointegration
relation and, thus, has a nonzero coefficient in β.

As another example, suppose yt has cointegrating rank 2. In that case the
normalized cointegrating relations are[

1 0 β1

0 1 β2

]
yt =

[
y1t + β1y3t

y2t + β2y3t

]
.

Thus, a cointegration relation must exist in the bivariate systems (y1t, y3t)′

and (y2t, y3t)′. By checking these subsystems separately, a possible ordering
of the variables is easy to find. It may be worth mentioning, however, that
given our general definition of cointegration, it is possible that in this example
y1t or/and y2t are in fact stationary I(0) variables. For instance, if both are
I(0), β1 = β2 = 0. Recall that a process yt is called I(1) even if only a single
component is I(1) and the other components are I(0).

Generally, any stationary variables in the system must be placed in the
upper r-dimensional subvector of yt. If ykt, the k-th component of yt, is sta-
tionary, there is a ‘cointegrating relation’ β′

kyt with βk being a vector with a
one as the k-th component and zeros elsewhere so that β′

kyt = ykt. Thus, there
is a cointegrating relation for each of the stationary components of yt. Because
the associated cointegrating vectors are linearly independent, the cointegrat-
ing rank must be at least as great as the number of I(0) variables in the
system.

The important result to remember from this discussion is that the nor-
malization of the cointegration matrix given in (6.3.9) is always possible if
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the variables are arranged in a suitable way. Finding the proper ordering is
easy if the cointegration properties of all subsystems are known, including the
univariate subsystems. In other words, we also need to know the order of inte-
gration of the individual variables in the system. In practice, the order of in-
tegration and the cointegrating rank of a given system and its subsystems will
not be known. Statistical procedures for determining the cointegrating rank
which can help to overcome this practical problem are discussed in Chapter
8.

If the normalization in (6.3.9) is made, the system may also be set up as

y
(1)
t = −β′

(K−r)y
(2)
t + z

(1)
t ,

∆y
(2)
t = z

(2)
t ,

(6.3.10)

where y
(1)
t and z

(1)
t are (r × 1), y

(2)
t and z

(2)
t are ((K − r) × 1) and zt =

(z(1)′
t , z

(2)′
t )′ is a stationary process. There cannot be any cointegrating rela-

tions between the components of the subsystem y
(2)
t , because otherwise there

would be more than r linearly independent cointegrating relations and the
cointegrating rank would be larger than r. Thus, the variables in y

(2)
t repre-

sent stochastic trends in the system. The representation (6.3.10) is known as
the triangular representation of a cointegrated system. It has been used ex-
tensively in some of the literature related to cointegration analysis (see, e.g.,
Park & Phillips (1988, 1989)).

Yet another useful representation of a cointegrated system is given by
Johansen (1995, Theorem 4.2). The underlying result is often referred to as
Granger representation theorem. To state this representation, we use the fol-
lowing notation. For m ≥ n, we denote by M⊥ an orthogonal complement of
the (m × n) matrix M with rk(M) = n (see also Appendix A.8.2). In other
words, M⊥ is any (m×(m−n)) matrix with rk(M⊥) = m−n and M ′M⊥ = 0.
If M is a nonsingular square matrix (m = n), then M⊥ = 0 and if n = 0, we
define M⊥ = Im. This latter convention is sometimes useful to avoid clumsy
notation and looking at different cases separately. We assume that yt is a K-
dimensional cointegrated I(1) process as in (6.3.6) with cointegration rank r,
0 ≤ r < K. Then the following proposition holds.

Proposition 6.1 (Granger Representation Theorem)
Suppose

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, t = 1, 2, . . . ,

where yt = 0 for t ≤ 0, ut is white noise for t = 1, 2, . . . , and ut = 0 for t ≤ 0.
Moreover, define

C(z) := (1 − z)IK − αβ′z −
p−1∑
i=1

Γi(1 − z)zi

and let the following conditions hold for the parameters:
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(a) detC(z) = 0 ⇒ |z| > 1 or z = 1.
(b) The number of unit roots, z = 1, is exactly K − r.
(c) α and β are (K × r) matrices with rk(α) = rk(β) = r.

Then yt has the representation

yt = Ξ
t∑

i=1

ui + Ξ∗(L)ut + y∗0 , (6.3.11)

where

Ξ = β⊥

[
α′
⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′
⊥, (6.3.12)

Ξ∗(L)ut =
∑∞

j=0 Ξ∗
jut−j is an I(0) process and y∗0 contains initial values.

Remark 1 The proposition is of fundamental importance because it decom-
poses the process yt into I(1) and I(0) components which have to be treated
accordingly, for example, when asymptotic properties of parameter estima-
tors are derived (see Chapter 7). It makes precise under what conditions the
process yt is driven by K − r I(1) components and r I(0) components. The
representation in (6.3.11) is a multivariate version of the Beveridge-Nelson
decomposition of yt. The first term on the right-hand side of (6.3.11) consists
of K random walks

∑t
i=1 ui which are multiplied by a matrix of rank K − r,

denoted by Ξ. Thus, there are actually K − r stochastic trends driving the
system. They determine to a large extent the development of yt. Therefore
one may call yt an I(1) process if there are actually I(1) trends (random
walks) in the representation (6.3.11). In other words, yt is I(1) if it has the
representation (6.3.11) with Ξ �= 0. Clearly, for Ξ to have the form given in
(6.3.12), the ((K − r) × (K − r)) matrix

α′
⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

must be invertible. Only under that condition, rk(Ξ) = K − r. Therefore
the latter condition ensures that yt is actually driven by K − r random walk
components.

Remark 2 The parameter matrices Ξ∗
j in (6.3.11) are determined by the

model parameters. To state the precise relation, we define

β̄ := β(β′β)−1 (K × r),

Q :=
[

β′

β̄′
⊥

]
(K×K)

so that Q−1 = [β̄ : β⊥],
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Γ(z) := IK −
p−1∑
i=1

Γiz
i,

B∗(z) := Q[Γ(z)β̄(1 − z) − αz : Γ(z)β⊥],

B(z) = IK −
p∑

i=1

Biz
i := Q−1B∗(z)Q, (6.3.13)

and

Θ(z) := B(z)−1 =
∞∑

j=0

Θjz
j .

Notice that B(0) = Q−1B∗(0)Q = [β̄ : β⊥]Q = IK . Hence, B(z) has the rep-
resentation IK −∑p

i=1 Biz
i stated in (6.3.13). Moreover, the matrix operator

Θ(z) can be decomposed as

Θ(z) = Θ(1) + (1 − z)Θ∗(z),

where expressions for the Θ∗
j ’s can be found by comparing coefficients in

Θ(z) =
∑∞

j=0 Θjz
j and

Θ(1) + (1 − z)Θ∗(z) = Θ(1) +
∞∑

j=0

Θ∗
jz

j(1 − z)

= (Θ(1) + Θ∗
0) +

∞∑
j=1

(Θ∗
j − Θ∗

j−1)z
j .

Hence,

Θ0 = Θ(1) + Θ∗
0

and

Θi = Θ∗
i − Θ∗

i−1, i = 1, 2, . . . .

Using the last expression, we get by successive substitution,

Θ∗
i = Θi + Θ∗

i−1 =
i∑

j=1

Θi−j + Θ∗
0

=
i∑

j=1

Θi−j + Θ0 −Θ(1) = −
∞∑

j=i+1

Θj , i = 1, 2, . . . . (6.3.14)

From these quantities the operator Ξ∗(z) in (6.3.11) can be obtained as

Ξ∗(z) = [Θ∗(z) + β̄β′B(z)−1] (6.3.15)

(see the proof of Proposition 6.1). The representation (6.3.11) will turn out to
be useful, for example, in Chapter 9, where structural VECMs are discussed.
The coefficient matrices Ξ∗

j of the operator Ξ∗(z) will then play an important
role as specific impulse response coefficients.
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Proof of Proposition 6.1
The proof is adapted from Saikkonen (2005). We use the notation from Re-
mark 2 and first show that under the conditions of Proposition 6.1,

C(z) = Q−1B∗(z)P (z), (6.3.16)

where

P (z) :=
[

β′

(1 − z)β̄′
⊥

]
=

[
Ir 0
0 (1 − z)IK−r

]
Q.

This representation is obtained by noting that

C(z) = [Γ(z)(1 − z) − αβ′z]Q−1Q

= [Γ(z)β̄(1 − z) − αβ′β̄z : Γ(z)β⊥(1 − z) − αβ′β⊥z]Q

= [Γ(z)β̄(1 − z) − αz : Γ(z)β⊥(1 − z)]
[

β′

β̄′
⊥

]
= Q−1Q[Γ(z)β̄(1 − z) − αz : Γ(z)β⊥]

[
β′

(1 − z)β̄′
⊥

]
.

Clearly, detP (z) has exactly K − r unit roots and, thus, detB∗(z) cannot
have any such roots so that detB∗(z) �= 0 for |z| ≤ 1 must hold. In other
words, B∗(L) is an invertible operator.

Now define

zt := Q−1P (L)yt = β̄β′yt + β⊥β̄′
⊥∆yt (6.3.17)

and note that

β′zt = β′yt. (6.3.18)

For the operator B(z) = Q−1B∗(z)Q, we have B(0) = Q−1B∗(0)Q = IK

and detB(z) �= 0 for |z| ≤ 1 because detB∗(z) has no roots inside or on the
complex unit circle. Moreover,

B(L)zt = Q−1B∗(L)QQ−1P (L)yt = C(L)yt = ut.

Thus,

zt =
p∑

i=1

Bizt−i + ut (6.3.19)

is a stable VAR(p) process with the same residual process ut as yt. We know
from Chapter 2 that it has an MA representation

zt = B(L)−1ut = Θ(L)ut =
∞∑

j=0

Θjut−j . (6.3.20)
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As we have seen in Remark 2, the matrix operator Θ(z) can be decomposed
as

Θ(z) = Θ(1) + (1 − z)Θ∗(z).

Hence, we get from (6.3.20),

zt = Θ(1)ut + Θ∗(L)∆ut = B(1)−1ut + Θ∗(L)∆ut. (6.3.21)

Using

yt = Q−1Qyt = [β̄ : β⊥]
[

β′yt

β̄′
⊥yt

]
= β̄β′yt + β⊥β̄′

⊥yt

and, hence,

∆yt = β̄β′∆yt + β⊥β̄′
⊥∆yt,

it follows from (6.3.17) and (6.3.18) that ∆yt = zt − β̄β′zt−1. Thus,

β⊥β̄′
⊥∆yt = β⊥β̄′

⊥zt.

Substituting the expression from (6.3.21) for zt gives

∆yt = β⊥β̄′
⊥zt + β̄β′∆yt

= β⊥β̄′
⊥B(1)−1ut + Θ∗(L)∆ut + β̄β′∆yt := wt.

Solving for yt = yt−1 + wt results in

yt = y0 +
t∑

i=1

wi

= y0 + β⊥β̄′
⊥B(1)−1

t∑
i=1

ui + Θ∗(L)
t∑

i=1

∆ut + β̄β′
t∑

i=1

∆yt

= y0 + β⊥β̄′
⊥B(1)−1

t∑
i=1

ui + Θ∗(L)(ut − u0) + β̄β′(yt − y0)

= β⊥β̄′
⊥B(1)−1

t∑
i=1

ui + Θ∗(L)ut + β̄β′yt + y∗0 , (6.3.22)

where y∗0 := y0 − Θ∗(L)u0 − β̄β′y0. Using β′yt = β′zt, the term β̄β′yt = β̄β′zt

is seen to have a representation

β̄β′zt = β̄β′Θ(L)ut

and, thus, Θ∗(L)ut + β̄β′yt has an MA representation

Ξ∗(L)ut = [Θ∗(L) + β̄β′Θ(L)]ut.
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For the first term on the right-hand side of (6.3.22) we have

β⊥β̄′
⊥B(1)−1 = β⊥β̄′

⊥Q
−1B∗(1)−1Q

= β⊥β̄′
⊥[β̄ : β⊥][−α : Γ(1)β⊥]−1

= β⊥[0 : IK−r][−α : Γ(1)β⊥]−1

= β⊥[α′
⊥Γ(1)β⊥]−1α′

⊥,

because

[−α : Γ(1)β⊥]−1 =

[
(α′α)−1α′{Γ(1)β⊥[α′

⊥Γ(1)β⊥]−1α′
⊥ − IK}

[α′
⊥Γ(1)β⊥]−1α′

⊥

]
.

Hence, Ξ = β⊥β̄′
⊥B(1)−1 is as stated in the proposition. Notice that the

invertibility of α′
⊥Γ(1)β⊥ follows from the invertibility of B(1) which in turn

is implied by detB(z) �= 0 for |z| ≤ 1.

6.4 Deterministic Terms in Cointegrated Processes

In the previous section, we have ignored deterministic terms in the DGP.
Clearly, deterministic terms may also be present in cointegrated processes
and VECMs. Actually, from the discussion of the random walk with drift it
should be clear that deterministic terms in a VAR process with unit roots may
have a different impact than in a stable VAR. For example, an intercept term
in a random walk generates a linear trend in the mean of the process, whereas
an intercept term in a stable AR process just implies a constant mean value.
To explore the implications of the deterministic term, the following model is
assumed:

yt = µt + xt, (6.4.1)

where xt is a zero mean VAR(p) process with possibly cointegrated variables
and µt stands for the deterministic term. For example, the deterministic term
may just be a constant, µt = µ0, or it may be a linear trend term, µt = µ0+µ1t,
where µ0 and µ1 are fixed K-dimensional parameter vectors. Other possible
deterministic terms that may be included are seasonal dummy variables or
other dummies to account for special events. The advantage of setting up the
process in the form (6.4.1) by adding the deterministic part to the zero mean
stochastic part is that the mean of the yt variables is clearly specified by
the deterministic term and does not need to be derived from quantities that
involve the parameters of the stochastic part in addition. The disadvantage
is that the stochastic part xt is not directly observable in general. Therefore,
for estimation purposes, for instance, we have to rewrite the process in terms
of the observable yt’s. We will do so in the following for some cases of specific
interest.
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It is assumed that the DGP of xt can be represented as a VECM such as
(6.3.6),

∆xt = αβ′xt−1 + Γ1∆xt−1 + · · · + Γp−1∆xt−p+1 + ut

= Πxt−1 + Γ1∆xt−1 + · · · + Γp−1∆xt−p+1 + ut. (6.4.2)

Considering now the case of a constant deterministic term, µt = µ0, we have
xt = yt − µ0 so that ∆yt = ∆xt and from (6.4.2) we get

∆yt = αβ′(yt−1 − µ0) + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut

= αβo′
[
yt−1

1

]
+ Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut

= Πoyo
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (6.4.3)

where βo′ := [β′ : τ ′] with τ ′ := −β′µ0 an (r × 1) vector,

yo
t−1 :=

[
yt−1

1

]
and Πo := [Π : ν0] is (K×(K+1)) with ν0 := −Πµ0 = ατ ′. Hence, if there is
just a constant mean, it can be absorbed into the cointegration relations. In
other words, the constant mean becomes an intercept term in the cointegration
relations. Of course, the model can also be written with an overall intercept
term as

∆yt = ν0 + αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut

= ν0 + Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut. (6.4.4)

Here ν0 cannot be an arbitrary (K×1) vector but has to satisfy the indicated
restrictions (ν0 = ατ ′) in order to ensure that the intercept term in this model
does not generate a linear trend in the mean of the yt variables. By specifying
the deterministic term in additive form as in (6.4.1), the properties of the
mean of yt are easy to see.

A process with a linear trend in the mean, µt = µ0 +µ1t, is another case of
practical importance. Using xt = yt − µ0 − µ1t, ∆xt = ∆yt − µ1, and (6.4.2),
gives

∆yt − µ1 = αβ′(yt−1 − µ0 − µ1(t− 1)) + Γ1(∆yt−1 − µ1) + · · ·
+Γp−1(∆yt−p+1 − µ1) + ut (6.4.5)

or, collecting deterministic terms,

∆yt = ν + α[β′ : η′]
[
yt−1

t− 1

]
+ Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut

= ν + Π+y+
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (6.4.6)

where ν := −Πµ0 + (IK − Γ1 − · · · − Γp−1)µ1, η′ := −β′µ1, Π+ := α[β′ : η′]
is a (K × (K + 1)) matrix and
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y+
t :=

[
yt

t

]
.

Now the general intercept term ν is in fact unrestricted and can take on any
value from RK , depending of course on µ0, µ1, and the other parameters.
In contrast, the trend term can be absorbed into the cointegration relations.
Writing the model with unrestricted linear trend term in the form

∆yt = ν0 + ν1t + Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut,

the model is actually in principle capable of generating quadratic trends in
the means of the variables.

It is also possible, that the trend slope parameter µ1 is orthogonal to the
cointegration matrix so that β′µ1 = 0 and, hence, η = 0 and the trend term
disappears from the cointegration relations. This situation can also occur if
µ1 �= 0 and the variables actually have linear trends in their means. The linear
trends will then be generated via the intercept term ν. The resulting model,

∆yt = ν + αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut

= ν + Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (6.4.7)

with unrestricted intercept term ν will be of some importance later on. It rep-
resents a situation where a linear trend appears in the variables but not in the
cointegration relations. Notice, however, that in this situation the cointegra-
tion rank must be smaller than K. If the process has cointegrating rank K, it
is stable and, hence, it cannot generate a linear trend when just an intercept
is included in the model. Formally, a “cointegrating matrix” β of rank K is
nonsingular so that β′µ1 cannot be zero if µ1 is nonzero.

It may also be worth noting that the specification of the deterministic com-
ponent in additive form as in (6.4.1) has the additional advantage that the
Beveridge-Nelson representation of yt is obtained by adding the deterministic
term to the Beveridge-Nelson representation of xt. Thus, a suitable gener-
alization of the Granger representation theorem (Proposition 6.1) is readily
available.

6.5 Forecasting Integrated and Cointegrated Variables

If forecasting is the objective, the VAR form of a process is quite convenient.
Because forecasting the deterministic part is trivial, a purely stochastic pro-
cess will be considered initially. For a VAR(p) process,

yt = A1yt−1 + · · · + Apyt−p + ut, (6.5.1)

the optimal h-step forecast with minimal MSE is given by the conditional
expectation, provided that expectation exists, even if det(IK−A1z−· · ·−Apz

p)
has roots on the unit circle. In the proof of the optimality of the conditional
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expectation in Section 2.2.2, we have not used the stationarity and stability
of the system. Thus, assuming that ut is independent white noise, the optimal
h-step forecast at origin t is

yt(h) = A1yt(h− 1) + · · · + Apyt(h− p), (6.5.2)

where yt(j) := yt+j for j ≤ 0, just as in the stationary, stable case.
Also the forecast errors are of the same form as in the stable case. To see

this, we write the process (6.5.1) in VAR(1) form as

Yt = AYt−1 + Ut, (6.5.3)

where

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦
(Kp×1)

, A :=

⎡⎢⎢⎢⎢⎢⎣
A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

⎤⎥⎥⎥⎥⎥⎦
(Kp×Kp)

, and Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦
(Kp×1)

.

If ut is independent white noise, the optimal h-step forecast of Yt is

Yt(h) = AYt(h− 1) = AhYt.

Moreover,

Yt+h = AYt+h−1 + Ut+h

= AhYt + Ut+h + AUt+h−1 + · · · + Ah−1Ut+1.

Hence, the forecast error for the process Yt is

Yt+h − Yt(h) = Ut+h + AUt+h−1 + · · · + Ah−1Ut+1.

Premultiplying by the (K ×Kp) matrix J := [IK : 0 : · · · : 0] gives

yt+h − yt(h) = JUt+h + JAJ ′JUt+h−1 + · · · + JAh−1J ′JUt+1

= ut+h + Φ1ut+h−1 + · · · + Φh−1ut+1, (6.5.4)

where J ′JUt = Ut and Φi = JAiJ ′ have been used. Thus, the form of the
forecast error is exactly the same as in the stable case and the forecast is
easily seen to be unbiased, that is,

E[yt+h − yt(h)] = 0.

Furthermore, the Φi’s may be obtained from the Ai’s by the recursions

Φi =
i∑

j=1

Φi−jAj , i = 1, 2, . . . , (6.5.5)
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with Φ0 = IK , just as in Chapter 2. Also the forecast MSE matrix becomes

Σy(h) =
h−1∑
i=0

ΦiΣuΦ
′
i, (6.5.6)

as in the stable case. Yet there is a very important difference. In the stable
case, the Φi’s converge to zero as i → ∞ and Σy(h) converges to the covariance
matrix of yt as h → ∞. This result was obtained because the eigenvalues of
A have modulus less than one in the stable case. Hence, Φi = JAiJ ′ → 0
as i → ∞. Because the eigenvalues of A are just the reciprocals of the roots
of the determinantal polynomial det(IK −A1z − · · · −Apz

p), the Φi’s do not
converge to zero in the presently considered unstable case where one or more
of the eigenvalues of A are 1. Consequently, some elements of the forecast MSE
matrix Σy(h) will approach infinity as h → ∞. In other words, the forecast
MSEs will be unbounded and the forecast uncertainty may become extremely
large as we make forecasts for the distant future, even if the structure of the
process does not change.

To illustrate this point, consider the following bivariate VAR(1) example
process with cointegrating rank 1:[

y1t

y2t

]
=

[
0 1
0 1

] [
y1,t−1

y2,t−1

]
+

[
u1t

u2t

]
. (6.5.7)

The corresponding VECM representation is

∆yt = −
[

1 −1
0 0

]
yt−1 + ut =

[ −1
0

]
[1,−1]yt−1 + ut,

that is,

α =
[ −1

0

]
, β′ = [1,−1].

For this process, it is easily seen that Φ0 = I2 and

Φj = Aj
1 =

[
0 1
0 1

]
, j = 1, 2, . . . ,

which implies

Σy(h) =
h−1∑
j=0

ΦjΣuΦ
′
j = Σu + (h− 1)

[
σ2

2 σ2
2

σ2
2 σ2

2

]
, h = 1, 2, . . . ,

where σ2
2 is the variance of u2t. Moreover, the conditional expectations are

yk,t(h) = y2,t (k = 1, 2). Hence, the forecast intervals are[
y2,t − z(α/2)

√
σ2

k + (h− 1)σ2
2 , y2,t + z(α/2)

√
σ2

k + (h− 1)σ2
2

]
, k = 1, 2,
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where z(α/2) is the (1 − α
2 )100 percentage point of the standard normal dis-

tribution. It is easy to see that the length of this interval is unbounded for
h → ∞.

If there are cointegrated variables, some linear combinations can be fore-
casted with bounded forecast error variance, however. To see this, multiply
(6.5.7) by[

1 −1
0 1

]
.

Thereby we get[
1 −1
0 1

]
yt =

[
0 0
0 1

]
yt−1 +

[
1 −1
0 1

]
ut,

which implies that the cointegration relation zt := y1t −y2t = u1t−u2t is zero
mean white noise. Thus, the forecast intervals for zt for any forecast horizon
h are of constant length,

[zt(h) − z(α/2)σz(h), zt(h) + z(α/2)σz(h)] = [−z(α/2)σz, z(α/2)σz],

where σ2
z := Var(u1t) + Var(u2t) − 2Cov(u1t, u2t) is the variance of zt and

zt(h) = 0 for h ≥ 1 has been used.
If deterministic terms are present, we may use the foregoing formulas for

the mean-adjusted variables and then add the deterministic terms for the
forecast period to the mean-adjusted forecasts. More precisely, if yt = µt +xt,
where µt is the deterministic term and xt is the stochastic part, a forecast
for yt+h is obtained from a forecast xt(h) for xt+h by simply adding µt+h,
yt(h) = µt+h + xt(h). By the very nature of a deterministic term, µt+h is
known, of course.

In practice, the parameters A1, . . . , Ap, Σu, and and those of the deter-
ministic part are usually unknown. The consequences of replacing them by
estimators will be discussed in Chapter 7.

6.6 Causality Analysis

From the discussion in the previous subsection, it follows easily that the re-
strictions characterizing Granger-noncausality are exactly the same as in the
stable case. More precisely, suppose that the vector yt in (6.5.1) is partitioned
in M - and (K −M)-dimensional subvectors zt and xt,

yt =
[
zt

xt

]
and Ai =

[
A11,i A12,i

A21,i A22,i

]
, i = 1, . . . , p,

where the Ai are partitioned in accordance with the partitioning of yt. Then
xt does not Granger-cause zt if and only if
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A12,i = 0, i = 1, . . . , p. (6.6.1)

In turn, zt does not Granger-cause xt if and only if A21,i = 0 for i = 1, . . . , p.
It is also easy to derive the corresponding restrictions for the VECM,[

∆zt

∆xt

]
=

[
Π11 Π12

Π21 Π22

][
zt−1

xt−1

]
+

p−1∑
i=1

[
Γ11,i Γ12,i

Γ21,i Γ22,i

][
∆zt−i

∆xt−i

]
+ ut,

where all matrices are partitioned in line with yt. From (6.3.6) it follows
immediately, that the restrictions in (6.6.1) can be written equivalently as

Π12 = 0 and Γ12,i = 0 for i = 1, . . . , p− 1. (6.6.2)

In other words, in order to check Granger-causality, we just have to test a set
of linear hypotheses. It will be seen in the next chapter that in the case of
cointegrated processes, testing these restrictions is not as straightforward as
for stationary processes.

Also restrictions for multi-step causality and instantaneous causality can
be placed on the VAR coefficients and the residual covariance matrix in the
same way as in Chapter 2. Especially for the former restrictions, constructing
valid asymptotic tests is not straightforward, however.

6.7 Impulse Response Analysis

Integrated and cointegrated systems must be interpreted cautiously. As men-
tioned in Section 6.3, in cointegrated systems the term β′yt is usually thought
of as representing the long-run equilibrium relations between the variables.
Suppose there is just one such relation, say

β1y1t + · · · + βKyKt = 0,

or, if β1 �= 0,

y1t = −β2

β1

y2t − · · · − βK

β1

yKt.

It is tempting to argue that the long-run effect of a unit increase in y2 will
be a change of size β2/β1 in y1. This, however, ignores all the other rela-
tions between the variables which are summarized in a VAR(p) model or the
corresponding VECM. A one-time unit innovation in y2 may affect various
other variables which also have an impact on y1. Therefore, the long-run ef-
fect of a y2-innovation on y1 may be quite different from −β2/β1. The impulse
responses may give a better picture of the relations between the variables.

In Chapter 2, Section 2.3.2, the impulse responses of stationary, stable
VAR(p) processes were shown to be the coefficients of specific MA repre-
sentations. An unstable, integrated or cointegrated VAR(p) process does not
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possess valid MA representations of the types discussed in Chapter 2. Yet the
Φi and Θi matrices can be computed as in Section 2.3.2. For the Φi’s we have
seen this in Section 6.5 and, from the discussion in that section, it is easy to
see that the elements of the Φi = (φjk,i) matrices may represent impulse re-
sponses just as in the stable case. More precisely, φjk,i represents the response
of variable j to a unit forecast error in variable k, i periods ago, if the system
reflects the actual responses to forecast errors. Recall that in stable processes
the responses taper off to zero as i → ∞. This property does not necessarily
hold in unstable systems where the effect of a one-time impulse may not die
out asymptotically.

In Section 2.3, we have also considered accumulated impulse responses,
responses to orthogonalized residuals and forecast error variance decomposi-
tions. These tools for structural analysis are all available for unstable systems
as well, using precisely the same formulas as in Chapter 2. The only quantities
that cannot be computed in general are the total “long-run effects” or total
multipliers Ψ∞ and Ξ∞ because they may not be finite.

To illustrate impulse response analysis of cointegrated systems, we consider
the following VECM:[

∆Rt

∆Dpt

]
=

[ −0.07
0.17

]
(Rt−1 − 4Dpt−1) +

[
0.24 −0.08
0 −0.31

] [
∆Rt−1

∆Dpt−1

]

+
[

0 −0.13
0 −0.37

] [
∆Rt−2

∆Dpt−2

]
+

[
0.20 −0.06
0 −0.34

] [
∆Rt−3

∆Dpt−3

]
+

[
u1,t

u2,t

]
,

(6.7.1)

Σu =
[

2.61 −0.15
−0.15 2.31

]
× 10−5

and the corresponding correlation matrix is

Ru =
[

1 −0.06
−0.06 1

]
.

This model is from Lütkepohl (2004, Eq. (3.41)). The variables are a long-
term interest rate (Rt) and the quarterly inflation rate (Dpt). The coefficients
are estimated from quarterly German data. Deterministic terms have been
deleted because they are not important for the present analysis.

In contrast to the inflation/interest rate example system considered in
Chapter 2, the two variables in the present system are I(1). The cointegra-
tion relation, Rt − 4Dpt, is just the real interest rate because 4Dpt is the
annual inflation rate and Rt is an annual nominal interest rate. Thus, in the
present model the real interest rate is stationary. This relation is sometimes
called the Fisher effect. The zero restrictions have been determined by a sub-
set modelling algorithm. The residual covariance matrix is almost diagonal.
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Fig. 6.4. Forecast error impulse responses of VECM (6.7.1).

Therefore, forecast error impulse responses should be similar to orthogonalized
impulse responses, except for the scaling. The two types of impulse responses
are shown in Figures 6.4 and 6.5, respectively. Indeed, the shape of correspond-
ing impulse responses in the two figures is quite similar. A remarkable feature
of the impulse responses is that they do not die out to zero when the time
span after the impulse increases but approach some nonzero value. Clearly,
this reflects the nonstationarity of the system where a one-time impulse can
have permanent effects.

Using the orthogonalized impulse responses, it is also possible to compute
forecast error variance decompositions based on the same formulas as in Chap-
ter 2, Section 2.3.3. For the example system, they are shown in Figure 6.6.
They look similar to forecast error variance decompositions from a stationary
VAR process. Of course, there is no reason why they should look differently
than in the stationary case.

As discussed in Chapter 2, interpreting the forecast error and orthogonal-
ized impulse responses used here is often problematic if there is significant
correlation between the components of the residuals ut. It will be discussed in
Chapter 9 how identifying restrictions for impulse responses can be imposed
in the VECM framework.
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Fig. 6.5. Orthogonalized impulse responses of VECM (6.7.1).

6.8 Exercises

Problem 6.1
Consider the process

yt =
[

1 0
0 ψ

]
yt−1 + ut

with residual covariance matrix

Σu =
[

1 ρ
ρ 1

]
.

(a) What is the cointegrating rank of the process?
(b) Write the process in VECM form.

Problem 6.2
Determine the roots of the reverse characteristic polynomial and, if applicable,
the cointegrating rank of the process

yt =
[

1.1 −0.2
−0.2 1.4

]
yt−1 + ut.

Can you write the process in VECM form?
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Fig. 6.6. Forecast error variance decomposition of VECM (6.7.1).

Problem 6.3
What is the maximum possible cointegrating rank of a three-dimensional pro-
cess yt = (y1t, y2t, y3t)′,

(a) if y1t, y2t are I(0) and y3t is I(1)?
(b) if y1t, y2t, and y3t are I(1) and y1t and y2t are not cointegrated in a

bivariate system?
(c) if y1t, y2t, and y3t are I(1) and (y1t, y2t)′ and (y2t, y3t)′ are not cointegrated

as bivariate systems?

Problem 6.4
Find the Beveridge-Nelson decomposition associated with the VECM

∆yt = αβ′yt−1 + ut,

(a) if all initial values are zero (yt = ut = 0 for t ≤ 0),
(b) if y0 is nonzero.

Problem 6.5
Derive the VECM form of yt if the deterministic term is µt = µ0 + δI(t>TB),
where I(t>TB) is a shift dummy variable which is zero up to time TB and then
jumps to one and δ is the associated (K × 1) parameter vector.
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Problem 6.6
Consider the quarterly process yt = µt + xt, where xt has a VECM represen-
tation as in (6.4.2) and

µt = µ0 + µ1t + δ1s1t + δ2s2t + δ3s3t.

Here µ0, µ1, δ1, δ2, and δ3 are K-dimensional parameter vectors and the sit’s
(i = 1, 2, 3) are seasonal dummy variables. Determine the VECM representa-
tion of yt.

Problem 6.7
Consider the VECM

∆yt =
[ −0.1

0.1

]
(1,−1)yt−1 + ut.

(a) Rewrite the process in VAR form.
(b) Determine the roots of the reverse characteristic polynomial.
(c) Determine forecast intervals for the two variables for forecast horizon h.
(d) Has a forecast error impulse in y1t a permanent impact on y2t? Has a

forecast error impulse in y2t a permanent impact on y1t?



7

Estimation of Vector Error Correction Models

In this chapter, estimation of VECMs is discussed. The asymptotic properties
of estimators for nonstationary models differ in important ways from those
of stationary processes. Therefore, in the first section, a simple special case
model with no lagged differences and no deterministic terms is considered and
different estimation methods for the parameters of the error correction term
are treated. For this simple case, the asymptotic properties can be derived
with a reasonable amount of effort and the difference to estimation in station-
ary models can be seen fairly easily. Therefore it is useful to treat this case in
some detail. The results can then be extended to more general VECMs which
are considered in Section 7.2. In Section 7.3, Bayesian estimation including the
Minnesota or Litterman prior for integrated processes is discussed and fore-
casting and structural analysis based on estimated processes are considered
in Sections 7.4–7.6.

7.1 Estimation of a Simple Special Case VECM

In this section, a simple VECM without lagged differences and deterministic
terms is considered. More precisely, the model of interest is

∆yt = Πyt−1 + ut = αβ′yt−1 + ut, t = 1, 2, . . . , (7.1.1)

where yt is K-dimensional, Π is a (K × K) matrix of rank r, 0 < r < K,
α and β are (K × r) with rank r, and ut is K-dimensional white noise with
mean zero and nonsingular covariance matrix Σu. For simplicity, we assume
that ut is standard white noise so that certain limiting results hold which will
be discussed and used in the following. For the time being, the initial vector
y0 is arbitrary with some fixed distribution. We also assume that yt is an I(1)
vector so that we know from Section 6.3 that the ((K − r)× (K − r)) matrix

α′
⊥β⊥
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is invertible (see Eq. (6.3.12)). Here α⊥ and β⊥ are, as usual, orthogonal
complements of α and β, respectively.

The cointegration rank r is assumed to be known and it is strictly between
0 and K. For r = 0, ∆yt is stable and for r = K, yt is stable. For the present
purposes, these two boundary cases are of limited interest because they can
be treated in the stationary framework considered in Part I. If r is not known,
however, it may be of interest to consider the case r = 0. The matrix Π is
then zero, of course. We will comment on this case at the end of this section.

We will discuss different estimators of the matrix Π, assuming that a
sample y1, . . . , yT and a presample vector y0 are available. Our first estimator
is the unrestricted LS estimator,

Π̂ =

(
T∑

t=1

∆yty
′
t−1

)(
T∑

t=1

yt−1y
′
t−1

)−1

. (7.1.2)

Substituting Πyt−1 + ut for ∆yt gives

Π̂ − Π =

(
T∑

t=1

uty
′
t−1

)(
T∑

t=1

yt−1y
′
t−1

)−1

. (7.1.3)

To derive the asymptotic distribution of this quantity, we multiply from the
left with the (K ×K) matrix

Q :=
[

β′

α′
⊥

]
and from the right by

Q−1 = [α(β′α)−1 : β⊥(α′
⊥β⊥)−1]

which yields

Q(Π̂ −Π)Q−1 = Q

(
T∑

t=1

uty
′
t−1

)
Q′Q−1′

(
T∑

t=1

yt−1y
′
t−1

)−1

Q−1

=

(
T∑

t=1

vtz
′
t−1

)(
T∑

t=1

zt−1z
′
t−1

)−1

, (7.1.4)

where vt := Qut and zt := Qyt. Notice that invertibility of α′
⊥β⊥ follows from

our assumption of an I(1) system, as mentioned earlier, and it implies that
the inverse of Q exists because[

β′

α′
⊥

]
[β : β⊥] =

[
β′β 0
α′
⊥β α′

⊥β⊥

]
is invertible if α′

⊥β⊥ is nonsingular. Hence, Q must be invertible and, thus,
β′α is also nonsingular.
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Premultiplying the VECM (7.1.1) by Q shows that

∆zt = QΠQ−1zt−1 + vt =
[

β′α 0
0 0

]
zt−1 + vt.

Hence, denoting the first r components of zt by z
(1)
t , we know that z(1)

t = β′yt

consists of the cointegrating relations and is therefore stationary while the last
K − r components of zt, denoted by z

(2)
t , constitute a (K − r)-dimensional

random walk because ∆z
(2)
t is white noise. Thus, stationary and nonstationary

components are separated in zt. To derive the asymptotic properties of the
LS estimator, it is useful to write

Q(Π̂ − Π)Q−1

=

[
T∑

t=1

vtz
(1)′
t−1 :

T∑
t=1

vtz
(2)′
t−1

]⎡⎢⎢⎣
∑

t

z
(1)
t−1z

(1)′
t−1

∑
t

z
(1)
t−1z

(2)′
t−1∑

t

z
(2)
t−1z

(1)′
t−1

∑
t

z
(2)
t−1z

(2)′
t−1

⎤⎥⎥⎦
−1

.
(7.1.5)

For the cross product terms in this relation, we have the following special case
results from Ahn & Reinsel (1990).

Lemma 7.1

(1) T−1
T∑

t=1

z
(1)
t−1z

(1)′
t−1 = T−1

T∑
t=1

β′yt−1y
′
t−1β p→ Γ (1)

z .

(2) T−1/2vec

(
T∑

t=1

vtz
(1)′
t−1

)
d→ N (0, Γ (1)

z ⊗Σv),

where Σv := QΣuQ
′ is the covariance matrix of vt.

(3) T−1
T∑

t=1

vtz
(2)′
t−1

d→ Σ1/2
v

(∫ 1

0

WKdW′
K

)′
Σ1/2

v

[
0
IK−r

]
,

where WK abbreviates a standard Wiener process WK(s) of dimension
K (see Appendix C.8.2).

(4) T−3/2
T∑

t=1

z
(1)
t−1z

(2)′
t−1

p→ 0.

(5) T−2
T∑

t=1

z
(2)
t−1z

(2)′
t−1

d→ [0 : IK−r]Σ1/2
v

(∫ 1

0

WKW′
Kds

)
Σ1/2

v

[
0
IK−r

]
.

The quantities in (2), (3), and (5) converge jointly.

In this lemma we encounter asymptotic distributions of random matri-
ces. As in Appendix C.8.2, these are understood as the limits in distribution
of the vectorized quantities. Because the asymptotic distributions are also
conveniently stated in matrix form, not using vectorization here is a useful
simplification. Moreover, in the lemma as well as in the following analysis
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we denote the square root of a positive definite matrix Σ by Σ1/2, that is,
Σ1/2 is the positive definite symmetric matrix for which Σ1/2Σ1/2 = Σ (see
Appendix A.9.2).

Proof: The proof follows Ahn & Reinsel (1990). Lemma 7.1(1) is implied by
a standard weak law of large numbers (see, e.g., Proposition C.12(7)) because
z
(1)
t−1 contains stationary components only.

The second result also involves stationary processes only. Therefore it fol-
lows from a martingale difference central limit theorem for stationary pro-
cesses. Notice that vec(vtz

(1)′
t−1) is a martingale difference sequence and, hence,

a martingale difference array which satisfies the conditions of Proposition
C.13(2). Thus, the result follows from that proposition.

To show Lemma 7.1(3), we define a random walk

z∗t =

[
z
∗(1)
t

z
(2)
t

]
= z∗t−1 + vt, t = 1, 2, . . . ,

with z
∗(1)
0 = 0 and notice that the second part of z∗t is identical to the last

K − r components of zt. Hence, it follows from Proposition C.18(6) that

T−1
T∑

t=1

vtz
∗′
t−1

d→ Σ1/2
v

(∫ 1

0

WKdW′
K

)′
Σ1/2

v .

Considering the last K − r columns only gives the desired result.
Part (4) of the lemma can be shown by defining

z+
t =

[
z
+(1)
t

z
(2)
t

]
= z+

t−1 + v+
t , t = 1, 2, . . . ,

with z
+(1)
0 = 0 and

v+
t =

[
z
(1)
t

v
(2)
t

]
.

Thus, v+
t is an I(0) process. By Proposition C.18(5), we have

T∑
t=1

z+
t−1v

+′
t =

⎡⎢⎢⎣
∑

t

z
+(1)
t−1 z

(1)′
t

∑
t

z
+(1)
t−1 v

(2)′
t∑

t

z
(2)
t−1z

(1)′
t

∑
t

z
(2)
t−1v

(2)′
t

⎤⎥⎥⎦ = Op(T ),

which implies the desired result.
Lemma 7.1(5) is just a special case of Proposition C.18(9) because z∗t is a

random walk and the last K − r components of z∗t are just z(2)
t .

Finally, the joint convergence of the quantities in Lemma 7.1(2), (3), and
(5) follows because all quantities are eventually made up of the same ut’s.
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The lemma implies the following limiting result for the LS estimator Π̂.

Result 1
Let

D =
[
T 1/2 0

0 T

]
.

Then

vec[Q(Π̂ −Π)Q−1D]

d→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N (0, (Γ (1)
z )−1 ⊗Σv)

vec

{
Σ

1/2
v

(∫ 1

0
WKdW′

K

)′
Σ

1/2
v

[
0
IK−r

]

×
(

[0 : IK−r]Σ
1/2
v

(∫ 1

0
WKW′

Kds
)
Σ

1/2
v

[
0
IK−r

])−1
}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(7.1.6)

Proof:

Q(Π̂ − Π)Q−1D

=

[
T−1/2

T∑
t=1

vtz
(1)′
t−1 : T−1

T∑
t=1

vtz
(2)′
t−1

]

×D

⎡⎢⎢⎣
∑

t

z
(1)
t−1z

(1)′
t−1

∑
t

z
(1)
t−1z

(2)′
t−1∑

t

z
(2)
t−1z

(1)′
t−1

∑
t

z
(2)
t−1z

(2)′
t−1

⎤⎥⎥⎦
−1

D

=

⎡⎣(T−1/2
T∑

t=1

vtz
(1)′
t−1

)(
T−1

T∑
t=1

z
(1)
t−1z

(1)′
t−1

)−1

:

(
T−1

T∑
t=1

vtz
(2)′
t−1

)(
T−2

T∑
t=1

z
(2)
t−1z

(2)′
t−1

)−1
⎤⎦ + op(1).

The last equality follows from Lemma 7.1(4). The result in (7.1.6) is obtained
by vectorizing this matrix and applying Lemma 7.1(2), (3), and (5) and the
continuous mapping theorem (see Appendix C.8).

An immediate implication of Result 1 follows.
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Result 2
The estimator Π̂ is asymptotically normal,

√
Tvec(Π̂ − Π) d→ N

(
0,β(Γ (1)

z )−1β′ ⊗Σu

)
, (7.1.7)

and β(Γ (1)
z )−1β′ can be estimated consistently by(

T−1
T∑

t=1

yt−1y
′
t−1

)−1

.

Proof:
√
TQ(Π̂− Π)Q−1

= Q(Π̂ −Π)Q−1D

[
1 0
0 T−1/2

]
=

⎡⎣(T−1/2
T∑

t=1

vtz
(1)′
t−1

)(
T−1

T∑
t=1

z
(1)
t−1z

(1)′
t−1

)−1

: T−1/2

(
T−1

T∑
t=1

vtz
(2)′
t−1

)(
T−2

T∑
t=1

z
(2)
t−1z

(2)′
t−1

)−1
⎤⎦ + op(1)

from the proof of Result 1 and, hence,
√
Tvec[Q(Π̂ −Π)Q−1] = (Q−1′ ⊗Q)

√
Tvec(Π̂− Π)

d→
[
N

(
0, (Γ (1)

z )−1 ⊗Σv

)
0

]
.

Premultiplying by Q′ ⊗Q−1 and recalling the definition of Q, gives a multi-
variate normal limiting distribution with covariance matrix

(Q′ ⊗Q−1)
([

(Γ (1)
z )−1 0
0 0

]
⊗Σv

)
(Q⊗Q−1′)

or

[β : α⊥]
[

(Γ (1)
z )−1 0
0 0

] [
β′

α′
⊥

]
⊗Q−1ΣvQ

−1′

which implies (7.1.7) because Σv = QΣuQ
′.

Now consider(
T−1

T∑
t=1

yt−1y
′
t−1

)−1

= Q′
(
T−1

T∑
t=1

zt−1z
′
t−1

)−1

Q
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= Q′

⎡⎢⎢⎣
T−1

∑
t

z
(1)
t−1z

(1)′
t−1 T−1

∑
t

z
(1)
t−1z

(2)′
t−1

T−1
∑

t

z
(2)
t−1z

(1)′
t−1 T−1

∑
t

z
(2)
t−1z

(2)′
t−1

⎤⎥⎥⎦
−1

Q

= Q′
[
S−1

11 + S−1
11 S12S

∗S21S
−1
11 −S−1

11 S12S
∗

−S∗S21S
−1
11 S∗

]
Q,

where the rules for the partitioned inverse from Appendix A.10 have been
used and S∗ := (S−1

22 − S21S
−1
11 S12)−1. Moreover,

S11 := T−1
∑

t

z
(1)
t−1z

(1)′
t−1

p→ Γ (1)
z

by Lemma 7.1(1),

S12 = S′
21 := T−1

∑
t

z
(1)
t−1z

(2)′
t−1 = op(T 1/2)

by Lemma 7.1(4), and

S22 := T−1
∑

t

z
(2)
t−1z

(2)′
t−1.

By Lemma 7.1(5) and the continuous mapping theorem, S−1
22 = Op(T−1).

Using again the rules for the partitioned inverse from Appendix A.10,

S∗ = S−1
22 + S−1

22 S21(S11 − S12S
−1
22 S21)−1S12S

−1
22

= Op(T−1) + Op(T−1)op(T 1/2)Op(1)op(T 1/2)Op(T−1)
= Op(T−1),

because

S11 − S12S
−1
22 S21 = S11 − op(T 1/2)Op(T−1)op(T 1/2) = S11 + op(1)

so that

(S11 − S12S
−1
22 S21)−1 = Op(1).

Hence, we get

S−1
11 + S−1

11 S12S
∗S21S

−1
11 = (Γ (1)

z )−1

+Op(1)op(T 1/2)Op(T−1)op(T 1/2)Op(1)

= (Γ (1)
z )−1 + op(1)

and

−S−1
11 S12S

∗ = Op(1)op(T 1/2)Op(T−1) = op(1).
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Thus,(
T−1

T∑
t=1

yt−1y
′
t−1

)−1

= Q′
[

(Γ (1)
z )−1 + op(1) op(1)

op(1) op(1)

]
Q

= β(Γ (1)
z )−1β′ + op(1),

which proves Result 2.

Thus, the limiting distribution of
√
Tvec(Π̂−Π) is singular because Γ

(1)
z

is an (r × r) matrix. Still, we can use the usual estimator of the covariance
matrix based on the regressor matrix. Thus, t-ratios can be set up in the
standard way and have their usual asymptotic standard normal distributions,
if a consistent estimator of Σu is used. In Result 8, we will see that the usual
residual covariance matrix is in fact a consistent estimator for Σu, as in the
stationary case. On the other hand, it is not difficult to see that the covariance
matrix in the limiting distribution (7.1.7) has rank rK. Therefore, setting up
a Wald test for more general restrictions may be problematic. As explained
in Appendix C.7, a nonsingular weighting matrix is needed for the Wald test
to have its usual limiting χ2-distribution under the null hypothesis. Thus, if
we want to test, for example,

H0 : Π = 0 versus H1 : Π �= 0,

the corresponding Wald statistic is

λW = Tvec(Π̂)′
((

T−1
T∑

t=1

yt−1y
′
t−1

)
⊗ Σ̂−1

u

)
vec(Π̂).

Under H0, the arguments in the proof of Result 2 can be used to show that
T−1

∑T
t=1 yt−1y

′
t−1 converges to zero in probability and, hence, the limit of

the weighting matrix in the Wald statistic is singular. Thus, λW will not have
an asymptotic χ2(K2)-distribution. Therefore, caution is necessary in setting
up F -tests, for example. In the nonstationary case, they may not have an
asymptotic justification. We will provide more discussion of this problem in
Section 7.6 in the context of testing for Granger-causality.

It is interesting to note that the asymptotic distribution in (7.1.7) is the
same one that is obtained if the cointegration matrix β is known and only α
is estimated by LS. To see this result, we consider the LS estimator

α̂ =

(
T∑

t=1

∆yty
′
t−1β

)(
T∑

t=1

β′yt−1y
′
t−1β

)−1

. (7.1.8)

This estimator has the following properties.
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Result 3
√
Tvec(α̂ − α) d→ N (0, (Γ (1)

z )−1 ⊗Σu) (7.1.9)

and, thus,
√
Tvec(α̂β′ − Π) d→ N (0,β(Γ (1)

z )−1β′ ⊗Σu).

Proof: Substituting αβ′yt−1 + ut for ∆yt in (7.1.8) and rearranging terms
gives

α̂ − α =

(
T∑

t=1

uty
′
t−1β

)(
T∑

t=1

β′yt−1y
′
t−1β

)−1

from which we get (7.1.9) by similar arguments as in the proof of Lemma 7.1.
Noting that vec(α̂β′ − Π) = (β ⊗ IK)vec(α̂ − α), gives the stated asymptotic
distribution of

√
Tvec(α̂β − Π).

Clearly, this result may seem a bit surprising because it means that knowl-
edge of β does not improve our estimator for Π, at least asymptotically. In
turn, not knowing β does not lead to a reduction in asymptotic precision of
our estimator. This is a consequence of the fact that β can be estimated with
a better convergence rate than

√
T . To see this fact, suppose for the moment

that α is known and that β is normalized as in (6.3.9) such that

β =
[
Ir

β(K−r)

]
. (7.1.10)

We know from the discussion in Section 6.3 that this normalization is always
possible if the variables are arranged appropriately. Thus, upon normalization,
the only unknown elements of β are in the ((K − r)× r) matrix β(K−r). This
matrix can be estimated from

∆yt − αy(1)
t−1 = αβ′

(K−r)y
(2)
t−1 + ut = (y(2)′

t−1 ⊗ α)vec(β′
(K−r)) + ut, (7.1.11)

where y
(1)
t−1 and y

(2)
t−1 consist of the first r and the last K − r elements of yt−1,

respectively. Because this is a multivariate regression model where the regres-
sors are not identical in the different equations, we assume for the moment
that Σu is also known and consider the GLS estimator

vec(β̂′
(K−r)) =

⎡⎣( T∑
t=1

y
(2)
t−1y

(2)′
t−1

)−1

⊗ (α′Σ−1
u α)−1

⎤⎦
×(IT ⊗ α′Σ−1

u )vec

(
T∑

t=1

(∆yt − αy(1)
t−1)y

(2)′
t−1

)
.
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or

β̂′
(K−r) = (α′Σ−1

u α)−1α′Σ−1
u

×
(

T∑
t=1

(∆yt − αy(1)
t−1)y

(2)′
t−1

)(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)−1

. (7.1.12)

This estimator has the following asymptotic distribution.

Result 4

T (β̂′
(K−r) − β′

(K−r))
d→

(∫ 1

0

W∗
K−rdW

∗′
r

)′ (∫ 1

0

W∗
K−rW

∗′
K−rds

)−1

,

(7.1.13)

where

W∗
K−r := Q22[0 : IK−r]Σ1/2

v WK ,

Q22 denotes the lower right-hand ((K − r) × (K − r)) block of Q−1 and

W∗
r := (α′Σ−1

u α)−1α′Σ−1
u Q−1Σ1/2

v WK .

Thus, the asymptotic distribution depends on functionals of a standard
Wiener process.

Proof: Replacing ∆yt − αy(1)
t−1 in (7.1.12) with αβ′

(K−r)y
(2)
t−1 + ut and rear-

ranging terms gives

β̂′
(K−r) − β′

(K−r) = (α′Σ−1
u α)−1α′Σ−1

u

(
T∑

t=1

uty
(2)′
t−1

)(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)−1

.

(7.1.14)

Thus, we have to consider the quantity

T

(
T∑

t=1

uty
(2)′
t−1

)(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)−1

=

(
T−1

T∑
t=1

uty
(2)′
t−1

)(
T−2

T∑
t=1

y
(2)
t−1y

(2)′
t−1

)−1

.

For the first matrix on the right-hand side we have

T−1
T∑

t=1

uty
(2)′
t−1
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=

(
T−1

T∑
t=1

uty
′
t−1

)[
0
IK−r

]

= Q−1

(
T−1

T∑
t=1

vtz
′
t−1

)
Q−1′

[
0
IK−r

]

= Q−1

[
op(1) : T−1

T∑
t=1

vtz
(2)′
t−1

]
Q−1′

[
0
IK−r

]
d→ Q−1Σ1/2

v

(∫ 1

0

WKdW′
K

)′
Σ1/2

v

[
0
IK−r

]
Q22′,

where Lemma 7.1(2) and (3) have been used for the last equality and the
limiting result, respectively. Thus,

T−1
T∑

t=1

y
(2)
t−1u

′
tΣ

−1
u α(α′Σ−1

u α)−1 d→
∫ 1

0

W∗
K−rdW

∗
r
′
. (7.1.15)

The matrix

T−2
T∑

t=1

y
(2)
t−1y

(2)′
t−1

= [0 : IK−r]

(
T−2

T∑
t=1

yt−1y
′
t−1

)[
0
IK−r

]

= [0 : IK−r]Q−1

(
T−2

T∑
t=1

zt−1z
′
t−1

)
Q−1′

[
0
IK−r

]

= [0 : IK−r]Q−1

[
op(1) op(1)
op(1) T−2

∑T
t=1 z

(2)
t−1z

(2)′
t−1

]
Q−1′

[
0
IK−r

]

= Q22

(
T−2

T∑
t=1

z
(2)
t−1z

(2)′
t−1

)
Q22′ + op(1)

d→ Q22[0 : IK−r]Σ1/2
v

(∫ 1

0

WKW′
Kds

)
Σ1/2

v

[
0
IK−r

]
Q22′

=
∫ 1

0

W∗
K−rW

∗′
K−rds, (7.1.16)

where Lemma 7.1(5) has been applied. Using (7.1.14) and combining (7.1.15)
and (7.1.16), gives the result in (7.1.13).
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Clearly, in the present model setup, the GLS estimator of β′
(K−r) does not

have the usual normal limiting distribution. In fact, it converges with rate T
rather than the usual rate

√
T , at least under our present rather restrictive

assumptions. The asymptotic distribution consists of functionals of a standard
Wiener process. It is also interesting to note that the two Wiener processes
W∗

r and W∗
K−r are independent because their cross-covariance matrix is

Q22[0 : IK−r]ΣvQ
−1′Σ−1

u α(α′Σ−1
u α)−1

= Q22[0 : IK−r]Qα(α′Σ−1
u α)−1

= Q22α′
⊥α(α′Σ−1

u α)−1

= 0,

where Σv = QΣuQ
′ has been used to obtain the first equality. The indepen-

dence of the two Wiener processes implies that the conditional distribution
of

vec
(∫ 1

0

W∗
K−rdW

∗
r
′
)′

given W∗
K−r is

N
(

0,
∫ 1

0

W∗
K−rW

∗′
K−rds⊗ (α′Σ−1

u α)−1

)
(see Ahn & Reinsel (1990), Phillips & Park (1988) or Johansen (1995)). This
reasoning leads to the following interesting result.

Result 5

vec

⎡⎣(β̂′
(K−r) − β′

(K−r))

(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)1/2
⎤⎦

d→ N (
0, IK−r ⊗ (α′Σ−1

u α)−1
)
. (7.1.17)

Proof: From (7.1.16) we have

T−2
T∑

t=1

y
(2)
t−1y

(2)′
t−1

d→
∫ 1

0

W∗
K−rW

∗′
K−rds.

Hence, Result 5 follows because

vec

⎡⎣(β̂′
(K−r) − β′

(K−r))

(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)1/2
⎤⎦

=

⎛⎝(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)1/2

⊗ IK

⎞⎠ vec(β̂′
(K−r) − β′

(K−r)).
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Result 5 means that, although the GLS estimator β̂′
(K−r) has a nonstan-

dard limiting distribution, a transformation is asymptotically normal and can,
for example, be used to construct hypothesis tests with standard limiting
distributions. For example, t-ratios can be constructed in the usual way by
considering an element of β̂′

(K−r) and dividing by its asymptotic standard
deviation obtained from(

T∑
t=1

y
(2)
t−1y

(2)′
t−1

)−1

⊗ (α′Σ−1
u α)−1.

Also Wald tests can be constructed as usual (see Appendix C.7).
Of course, the GLS estimator is only available under the very restrictive as-

sumption that both α and Σu are known. It turns out, however, that the same
asymptotic distribution is obtained for the corresponding EGLS estimator,

̂̂β′
(K−r) =

(α̂′
Σ̂−1

u α̂)−1α̂′
Σ̂−1

u

(∑T
t=1(∆yt − α̂y(1)

t−1)y
(2)′
t−1

)(∑T
t=1 y

(2)
t−1y

(2)′
t−1

)−1

,

(7.1.18)

where α̂ and Σ̂u are consistent estimators of α and Σu, respectively. Fortu-
nately, such estimators are available in the present case. A consistent estimator
α̂ follows from Result 2. If β is normalized as in (7.1.10), the first r columns of
Π are equal to α. Hence, the first r columns of Π̂ are a consistent estimator of
α and the usual white noise covariance matrix estimator from the unrestricted
LS estimation can be shown to be a consistent estimator of Σu, as we will
demonstrate later (see Result 8). The following result can be established.

Result 6

T (̂̂β′
(K−r) − β̂′

(K−r)) = op(1). (7.1.19)

Proof: Defining u∗
t = ∆yt − α̂β′yt−1 and substituting α̂β′

(K−r)y
(2)
t−1 + u∗

t for

∆yt − α̂y(1)
t−1 in (7.1.18) gives, after rearrangement of terms,

̂̂β′
(K−r) − β′

(K−r) = (α̂′
Σ̂−1

u α̂)−1α̂′
Σ̂−1

u

(
T∑

t=1

u∗
t y

(2)′
t−1

)(
T∑

t=1

y
(2)
t−1y

(2)′
t−1

)−1

.

Hence,

T (̂̂β′
(K−r) − β̂′

(K−r))
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=
[
(α̂′

Σ̂−1
u α̂)−1α̂′

Σ̂−1
u − (α′Σ−1

u α)−1α′Σ−1
u

]
×

(
T−1

T∑
t=1

uty
(2)′
t−1

)(
T−2

T∑
t=1

y
(2)
t−1y

(2)′
t−1

)−1

+(α̂′
Σ̂−1

u α̂)−1α̂′
Σ̂−1

u

×
(
T−1

T∑
t=1

(u∗
t − ut)y

(2)′
t−1

)(
T−2

T∑
t=1

y
(2)
t−1y

(2)′
t−1

)−1

.

The term in brackets is op(1) because α̂ and Σ̂u are consistent estimators
by assumption. Moreover, T−1

∑T
t=1(u

∗
t − ut)y

(2)′
t−1 = op(1) (see Problem 7.1).

Thus, the desired result follows because all other terms converge as established
previously.

If the process is assumed to be Gaussian, ML estimation may be used
alternatively. In case α and Σu are known, the ML estimator is identical to
the GLS estimator for β′

(K−r) and, hence, β̂′
(K−r) is also the ML estimator. If

α and Σu are unknown, ML estimation under the constraint rk(Π) = r may
be used. The log-likelihood function is

ln l = −KT

2
ln 2π − T

2
ln |Σu| − 1

2

T∑
t=1

(∆yt − Πyt−1)′Σ−1
u (∆yt − Πyt−1).

(7.1.20)

From Chapter 3, we know that maximizing this function is equivalent to min-
imizing the determinant∣∣∣∣∣T−1

T∑
t=1

(∆yt −Πyt−1)(∆yt −Πyt−1)′
∣∣∣∣∣ .

To impose the rank restriction rk(Π) = r, we write Π = αβ′, where α and
β are (K × r) matrices with rank r. For the moment we do not impose any
normalization restrictions and consider minimization of the determinant∣∣∣∣∣T−1

T∑
t=1

(∆yt − αβ′yt−1)(∆yt − αβ′yt−1)′
∣∣∣∣∣

with respect to α and β. This minimization problem is solved in Proposition
A.7 in Appendix A.14 and the solution is obtained by considering the eigen-
values λ1 ≥ · · · ≥ λK and the associated orthonormal eigenvectors ν1, . . . , νK

of the matrix(
T∑

t=1

yt−1y
′
t−1

)−1/2 ( T∑
t=1

yt−1∆y′t

)(
T∑

t=1

∆yt∆y′t

)
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×
(

T∑
t=1

∆yty
′
t−1

)(
T∑

t=1

yt−1y
′
t−1

)−1/2

.

The minimum of the determinant is attained for

β̃ = [ν1, . . . , νr]′
(

T∑
t=1

yt−1y
′
t−1

)−1/2

(7.1.21)

and

α̃ =

(
T∑

t=1

∆yty
′
t−1β̃

)(
T∑

t=1

β̃′yt−1y
′
t−1β̃

)−1

. (7.1.22)

Clearly, the resulting ML estimator Π̃ = α̃β̃′ for Π must have the same
asymptotic properties as the unrestricted LS estimator of Π because even
the estimator in Result 3, which is based on a known β does not have better
properties. Notice that, for a Gaussian model, the LS estimator based on a
known β is equal to the ML estimator because the same regressors appear in
all equations. Thus, we can draw the following conclusion.

Result 7
√
Tvec(α̃β̃′ − Π) d→ N (0,β(Γ (1)

z )−1β′ ⊗Σu). (7.1.23)

This result was derived by Johansen (1995) and other authors for more
general models. It is also interesting to note that we can, of course, normalize
the ML estimator for β as in (7.1.10), that is, we postmultiply the estimator in
(7.1.21) by the inverse of the upper (r×r) submatrix. Denoting the normalized
estimator by β̆ and using the corresponding estimator for α from (7.1.22),

ᾰ =

(
T∑

t=1

∆yty
′
t−1β̆

)(
T∑

t=1

β̆′yt−1y
′
t−1β̆

)−1

,

gives an estimator ᾰβ̆′ of Π which is identical to α̃β̃′. Thus, the asymptotic
properties must also be identical. It follows that ᾰ has the same asymptotic
distribution as the LS estimator in (7.1.9). Moreover, the asymptotic distri-
bution of the lower ((K − r) × r) part of β̆ is the same as that of the GLS
estimator in Result 4 because

β̆′
(K−r) =

(ᾰ′
Σ̃−1

u ᾰ)−1ᾰ′
Σ̃−1

u

(∑T
t=1(∆yt − ᾰy(1)

t−1)y
(2)′
t−1

)(∑T
t=1 y

(2)
t−1y

(2)′
t−1

)−1

,
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where the ML estimator Σ̃u is substituted for Σu. Thus, the asymptotic dis-
tribution of β̆(K−r) follows from Result 6 and the consistency of the ML

estimators ᾰ and Σ̃u.
In fact, any of the estimators for Π which we have considered so far, leads

to a consistent estimator of the white noise covariance matrix of the form

Σ̃u = T−1
T∑

t=1

(∆yt − Π̂yt−1)(∆yt − Π̂yt−1)′. (7.1.24)

Here Π̂ can be any of the estimators for Π considered so far, because they
are all asymptotically equivalent. The following result can be established.

Result 8

plim Σ̃u = Σu. (7.1.25)

Proof: Notice that

Σ̃u = T−1
T∑

t=1

(Πyt−1 − Π̂yt−1 + ut)(Πyt−1 − Π̂yt−1 + ut)′

= T−1
T∑

t=1

utu
′
t + (Π − Π̂)

(
T−1

T∑
t=1

yt−1y
′
t−1

)
(Π − Π̂)′

+

(
T−1

T∑
t=1

uty
′
t−1

)
(Π − Π̂)′

+(Π − Π̂)

(
T−1

T∑
t=1

yt−1u
′
t

)
. (7.1.26)

Using a standard law of large numbers,

plim T−1
T∑

t=1

utu
′
t = Σu.

Thus, it suffices to show that all other terms are op(1). This property follows
because from Lemma 7.1 we have

T−1
T∑

t=1

yt−1u
′
t = Op(1)

and

T−1
T∑

t=1

β′yt−1y
′
t−1β = Op(1).
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Using the estimator α̂β′ for Π, it is easily seen that all terms but the first
on the right-hand side of the last equality sign in (7.1.26) converge to zero
in probability. The argument is easily extended to the other estimators by
noting that their difference to the previously treated estimator is op(T−1/2).

So far we have assumed that r �= 0 and, hence, Π �= 0. This assumption is
of obvious importance for some of the results to hold and some of the proofs
to work. If Π = 0, the analysis becomes even simpler in some respects. In
that case, yt is a multivariate random walk and we can apply Proposition
C.18 directly to evaluate the asymptotic properties of the term

T (Π̂ −Π) =

(
T−1

T∑
t=1

uty
′
t−1

)(
T−2

T∑
t=1

yt−1y
′
t−1

)−1

,

where Π̂ is again the LS estimator. Using Proposition C.18(6) and (9) gives
the following result.

Result 9
If the cointegrating rank r = 0,

T (Π̂−Π) d→ Σ1/2
u

(∫ 1

0

WKdW′
K

)′ (∫ 1

0

WKW′
Kds

)−1

Σ−1/2
u . (7.1.27)

The LS estimator is again identical to the ML estimator and, hence, the
same result is obtained for the latter. On the other hand, the GLS estimator
is not applicable here. Now we cannot even use the usual t-ratios anymore in
a standard way because they do not have a limiting standard normal distri-
bution in this case. For the special case of a univariate model this can be seen
from Appendix C.8.1. Notice that for K = 1, Π̂ = ρ̂ − 1 in Proposition C.17
and, thus, the asymptotic distribution of T Π̂ = T (ρ̂ − 1) is clearly different
from the standard normal in this case.

The results for the estimator of the VECM imply analogous results for the
parameters of the corresponding levels VAR form yt = A1yt−1 + ut. Notice
that A1 = Π + IK . Consequently, we have for the LS estimator, for example,

Â1 −A1 = Π̂− Π. (7.1.28)

Hence, the asymptotic properties of Â1 follow immediately from those of Π̂.
The simple model we have discussed in this section shows the main differ-

ences to the stationary case. All the results can be extended to richer models
with short-term dynamics and deterministic terms. Estimation of such models
will be considered in the next section.
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7.2 Estimation of General VECMs

We first consider a model without deterministic terms,

∆yt = Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (7.2.1)

where yt is a process of dimension K, rk(Π) = r with 0 < r < K so that
Π = αβ′, where α and β are (K×r) matrices with rk(α) = rk(β) = r. All other
symbols have their conventional meanings, that is, the Γj (j = 1, . . . , p − 1)
are (K × K) parameter matrices and ut ∼ (0, Σu) is standard white noise.
Also, yt is assumed to be an I(1) process so that

α′
⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥ (7.2.2)

is nonsingular (see Section 6.3, Eq. (6.3.12)). These conditions are always
assumed to hold without further notice when the VECM (7.2.1) is considered
in this chapter.

For estimation purposes, we assume that a sample y1, . . . , yT and the
needed presample values are available. It is then often convenient to write
the VECM (7.2.1), for t = 1, . . . , T , in matrix notation as

∆Y = ΠY−1 + Γ∆X + U, (7.2.3)

where

∆Y := [∆y1, . . . ,∆yT ],

Y−1 := [y0, . . . , yT−1],

Γ := [Γ1, . . . ,Γp−1],

∆X := [∆X0, . . . , ∆XT−1] with ∆Xt−1 :=

⎡⎢⎣ ∆yt−1

...
∆yt−p+1

⎤⎥⎦
and

U := [u1, . . . , uT ].

We will now consider LS, EGLS, and ML estimation of the parameters of
this model. Estimation of the parameters of the corresponding levels VAR
form will also be discussed and, moreover, we comment on the implications
of including deterministic terms.
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7.2.1 LS Estimation

From the matrix version (7.2.3) of our VECM, the LS estimator is seen to be

[Π̂ : Γ̂] = [∆Y Y ′
−1 : ∆Y∆X ′]

[
Y−1Y

′
−1 Y−1∆X ′

∆XY ′−1 ∆X∆X ′

]−1

, (7.2.4)

using the usual formulas from Chapter 3. The corresponding white noise co-
variance matrix estimator is

Σ̂u := (T −Kp)−1(∆Y − Π̂Y−1 − Γ̂∆X)(∆Y − Π̂Y−1 − Γ̂∆X)′. (7.2.5)

The asymptotic properties of these estimators are given in the next proposi-
tion.

Proposition 7.1 (Asymptotic Properties of the LS Estimator for a VECM)
Consider the VECM (7.2.1). The LS estimator given in (7.2.4) is consistent
and

√
T vec([Π̂ : Γ̂] − [Π : Γ]) d→N (0, Σco), (7.2.6)

where

Σco =
([

β 0
0 IKp−K

]
Ω−1

[
β′ 0
0 IKp−K

])
⊗Σu

and

Ω = plim
1
T

[
β′Y−1Y

′−1β β′Y−1∆X ′

∆XY ′
−1β ∆X∆X ′

]
.

The matrix[
β 0
0 IKp−K

]
Ω−1

[
β′ 0
0 IKp−K

]
is consistently estimated by

T

[
Y−1Y

′
−1 Y−1∆X ′

∆XY ′−1 ∆X∆X ′

]−1

and Σ̂u is a consistent estimator for Σu.

This proposition generalizes Result 2 of Section 7.1. Therefore similar re-
marks can be made.

Remark 1 The covariance matrix Σco is singular. This property is easily
seen by noting that Ω is a [(Kp−K + r)× (Kp−K + r)] matrix. Thus, the
rank of the (K2p×K2p) matrix Σco cannot be greater than K(Kp−K + r)
which is smaller than K2p under our assumption that r < K. Still, t-ratios
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can be set up and interpreted in the usual way because they have standard
normal limiting distributions under our assumptions. In contrast, Wald tests
and the corresponding F -tests of linear restrictions on the parameters may
not have the usual asymptotic χ2- or approximate F -distributions that are
obtained for stationary processes. A more detailed discussion of this issue will
be given in Section 7.6.

Remark 2 If β is known, the LS estimator

[α̂ : Γ̂] = [∆Y Y ′
−1β : ∆Y∆X ′]

[
β′Y−1Y

′
−1β β′Y−1∆X ′

∆XY ′−1β ∆X∆X ′

]−1

(7.2.7)

of [α : Γ] may be considered. Using standard arguments for stationary pro-
cesses, its asymptotic distribution is seen to be

√
T vec([α̂ : Γ̂] − [α : Γ]) d→N (0, Σα,Γ), (7.2.8)

where

Σα,Γ = Ω−1 ⊗Σu = plim T

[
β′Y−1Y

′−1β β′Y−1∆X ′

∆XY ′
−1β ∆X∆X ′

]−1

⊗Σu.

The asymptotic distribution in (7.2.8) is nonsingular so that, for given β,
asymptotic inference for α and Γ is standard. Noting that

[α̂β′ : Γ̂] − [Π : Γ] = ([α̂ : Γ̂] − [α : Γ])
[

β′ 0
0 IKp−K

]
,

it is easy to see that

vec([α̂β′ : Γ̂] − [Π : Γ])

has the same asymptotic distribution as the LS estimator in Proposition 7.1.
This finding corresponds to Result 3 in Section 7.1. It means that, whether
the cointegrating matrix β is known or estimated is of no consequence for the
asymptotic distribution of the LS estimators of Π and Γ. The reason is that
β is estimated “superconsistently” even if LS estimation is used. This point
will be discussed further in Section 7.2.2.

Remark 3 If the cointegrating rank r = 0 and, thus, Π = 0,
√
T [Π̂ −Π] = op(1),

that is, the LS estimator of Π converges faster than with the usual rate
√
T .

Therefore, Proposition 7.1 remains valid in the sense that all parts of the
asymptotic covariance matrix in (7.2.6) related to Π have to be set to zero.
In other words, the first K2 rows and columns of Σco are zero.
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Remark 4 From Proposition 7.1 it is also easy to derive the asymptotic
distribution of the LS estimator for the parameters of the levels VAR form
corresponding to our VECM,

yt = A1yt−1 + · · · + Apyt−p + ut. (7.2.9)

The Ai’s are related to the VECM parameters by

A1 = Π + IK + Γ1

Ai = Γi − Γi−1, i = 2, . . . , p− 1, (7.2.10)
Ap = −Γp−1

(see also (6.3.7)). Hence, they are obtained by a linear transformation,

A := [A1 : · · · : Ap] = [Π : Γ]W + J, (7.2.11)

where

J := [IK : 0 : · · · : 0] (K ×Kp)

and

W :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 0 . . . 0 0
IK −IK 0 . . . 0 0
0 IK −IK 0 0
...

. . . . . .
...

...
. . . . . .

...
0 0 . . . . . . IK −IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Kp×Kp).

Consequently, using

vec([Π : Γ]W ) = (W ′ ⊗ IK) vec[Π : Γ],

we get the following implication of Proposition 7.1 (see also Sims, Stock &
Watson (1990)).

Corollary 7.1.1
Under the conditions of Proposition 7.1,

√
T vec(Â− A) d→N (0, Σco

α ),

where Â is the LS estimator of A and

Σco
α :=

(
W ′

[
β 0
0 IKp−K

]
Ω−1

[
β′ 0
0 IKp−K

]
W

)
⊗Σu

= (W ′ ⊗ IK)Σco(W ⊗ IK).

Furthermore,
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Σ̂co
α = (XX ′)−1 ⊗ [(Y − ÂX)(Y − ÂX)′]

is a consistent estimator of Σco
α . Here Y := [y1, . . . , yT ] and

X := [Y0, . . . , YT−1] with Yt−1 :=

⎡⎢⎣ yt−1

...
yt−p

⎤⎥⎦.

Because Σco
α is singular, Â also has a singular asymptotic distribution. The

distribution in Corollary 7.1.1 remains, in fact, valid if r = 0.

Discussion of the Proof of Proposition 7.1

The proof of Proposition 7.1 is a generalization of that of Result 2 in Section
7.1. Multiplying[

yt

∆Xt

]
by

Q∗ :=

⎡⎣ β′ 0
0 IK(p−1)

α′
⊥ 0

⎤⎦
gives a process

zt =

[
z
(1)
t

z
(2)
t

]
:= Q∗

[
yt

∆Xt

]
, (7.2.12)

where

z
(1)
t :=

[
β′yt

∆Xt

]
contains I(0) components only and z

(2)
t := α′

⊥yt consists of I(1) components
(see Proposition 6.1). Therefore, a lemma analogous to Lemma 7.1 can be
established and used to prove Proposition 7.1. We leave the details as an
exercise (see Problem 7.2).

In fact, via the process zt, we can get the following useful lemma from
standard weak laws of large numbers and central limit theorems for stationary
processes (see Appendix C.4) as well as Proposition C.18 of Appendix C.
It summarizes a number of convergence results for variables generated by
the VECM (7.2.1). Some of these or similar results were derived by different
authors including Phillips & Durlauf (1986), Johansen (1988), Ahn & Reinsel
(1990) and Park & Phillips (1989).
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Lemma 7.2

(1) ∆X∆X ′ = Op(T ) and (T−1∆X∆X ′)−1 = Op(1).
(2) β′Y−1∆X ′ = Op(T ).
(3) β′Y−1Y

′
−1β = Op(T ) and (T−1β′Y−1Y

′
−1β)−1 = Op(1).

(4) β′Y−1U
′ = Op(T 1/2).

(5) β′Y−1∆Y ′ = Op(T 1/2).
(6) Y−1U

′ = Op(T ).
(7) Y−1∆X ′ = Op(T ).
(8) β′Y−1Y

′
−1 = Op(T ).

(9) Y−1Y
′
−1 = Op(T 2).

Some of these results are helpful in deriving Proposition 7.1 and they are
also useful in proving the next propositions. Because ∆Y , β′Y−1, and ∆X
contain I(0) variables only, essentially the same results as in the stable case
hold for these quantities. This is reflected in Lemma 7.2(1)–(5). On the other
hand, Y−1 contains I(1) variables that behave differently from I(0) variables.
For instance, for a stable process, Y−1Y

′
−1/T has a fixed probability limit (see

Chapter 3). Now the corresponding quantity Y−1Y
′
−1 is Op(T 2). Intuitively,

the reason is that integrated variables do not fluctuate around a constant
mean but are trending. Thus, the sums of products and cross-products go to
infinity (or minus infinity) more rapidly than for stable processes.

7.2.2 EGLS Estimation of the Cointegration Parameters

For GLS estimation we assume that β is normalized as in (7.1.10),

β =
[
Ir

β(K−r)

]
.

Because we are primarily interested in estimating β(K−r), we concentrate on
the error correction term and replace the short-run parameters Γ by their LS
estimators for a given matrix Π,

Γ̂(Π) = (∆Y − ΠY−1)∆X ′(∆X∆X ′)−1.

Hence,

∆Y = ΠY−1 + (∆Y − ΠY−1)∆X ′(∆X∆X ′)−1∆X + U∗.

Rearranging terms and defining the (T × T ) matrix

M := IT −∆X ′(∆X∆X ′)−1∆X,

gives
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R0 = ΠR1 + U∗ = αβ′R1 + U∗, (7.2.13)

where

R0 := ∆YM and R1 := Y−1M.

Notice that R0 is just the residual matrix from a (multivariate) regression of
∆yt on ∆Xt−1 and R1 is the matrix of residuals from a regression of yt−1

on ∆Xt−1. Denoting the first r and last K − r rows of R1 by R
(1)
1 and R

(2)
1 ,

respectively, and using the normalization of β, (7.2.13) can be rewritten as

R0 − αR(1)
1 = αβ′

(K−r)R
(2)
1 + U∗. (7.2.14)

Based on this “concentrated model” the GLS estimator of β′
(K−r) is

β̂′
(K−r) = (α′Σ−1

u α)−1α′Σ−1
u (R0 − αR(1)

1 )R(2)′
1

(
R

(2)
1 R

(2)′
1

)−1

(7.2.15)

(see Eq. (7.1.12)). Note that the same estimator is obtained if the short-run
parameters are not concentrated out first because Γ has been replaced by
the optimal matrix for any given matrix Π. As in the simple special case
model considered in Section 7.1, it is now obvious how to obtain a feasible
GLS estimator. In a first estimation round we determine the LS estimator of
[Π : Γ] as in (7.2.4) and Σu as in (7.2.5). Using the first r columns of Π̂ as
an estimator α̂, we get the EGLS estimator̂̂β′

(K−r) = (α̂′
Σ̂−1

u α̂)−1α̂′
Σ̂−1

u (R0 − α̂R(1)
1 )R(2)′

1

(
R

(2)
1 R

(2)′
1

)−1

. (7.2.16)

This estimator was proposed by Ahn & Reinsel (1990) and Saikkonen (1992)
(see also Reinsel (1993, p. 171)). Its asymptotic properties are analogous to
those of the EGLS estimator for the simple model considered in Section 7.1.
They are summarized in the following proposition which was proven by Ahn
& Reinsel (1990).

Proposition 7.2 (Asymptotic Properties of the EGLS Estimator for the
Cointegration Matrix)
Consider the VECM (7.2.1) with cointegration matrix β normalized as in
(7.1.10). Suppose α̂ and Σ̂u are consistent estimators of α and Σu, respec-
tively. Then the EGLS estimator of β′

(K−r) given in (7.2.16) has the following
asymptotic distribution:

T (̂̂β′
(K−r) − β′

(K−r))
d→

(∫ 1

0

W#
K−rdW

#′
r

)′ (∫ 1

0

W#
K−rW

#′
K−rds

)−1

,

(7.2.17)

where W#
K−r and W#

r are suitable independent (K − r)- and r-dimensional
Wiener processes, respectively, whose parameters depend on those of the
VECM. Furthermore,
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vec
[
(̂̂β′

(K−r) − β′
(K−r))

(
R

(2)
1 R

(2)′
1

)1/2
]

d→ N (
0, IK−r ⊗ (α′Σ−1

u α)−1
)
.

(7.2.18)

Remark 1 The EGLS estimator has the same asymptotic distribution as
the GLS estimator. Moreover, it has the same asymptotic distribution one
would obtain if all parameters (α, Γ, and Σu) except β(K−r) were known. It

converges at rate T . Hence, ̂̂β(K−r) is a superconsistent estimator of β(K−r)

and, thus,

̂̂β =

[
Ir̂̂β(K−r)

]

is a superconsistent estimator of β. The precise form of the Wiener processes
W#

K−r and W#
r depends on the short-run dynamics of the process yt. It is

given, for example, in Ahn & Reinsel (1990).

Remark 2 The matrix

T−2R1R
′
1 = T−2Y−1MY ′

−1

= T−2Y−1Y
′
−1 − T−2Y−1∆X ′(T−1∆X∆X ′)−1T−1∆XY ′

−1

= T−2Y−1Y
′
−1 + op(1)Op(1)Op(1)

= T−2Y−1Y
′
−1 + op(1),

where Lemma 7.2(1) and (7) have been used. This result implies that (7.2.18)
could be stated alternatively as

vec
[
(̂̂β′

(K−r) − β′
(K−r))

(
Y

(2)
−1 Y

(2)′
−1

)1/2
]

d→ N (
0, IK ⊗ (α′Σ−1

u α)−1
)
,

where Y
(2)
−1 contains the last K − r rows of Y−1. For practical purposes, the

result as stated in (7.2.18) is more useful because it can be used directly for
setting up meaningful t-ratios and Wald or F -tests for hypotheses about the
coefficients of β(K−r). These quantities have the usual asymptotic or approxi-

mate distributions. Of course, the same is true if (R(2)
1 R

(2)′
1 )1/2 is replaced by

(Y (2)
−1 Y

(2)′
−1 )1/2. Still, in small samples it is advantageous to take the short-run

dynamics into account as in (R(2)
1 R

(2)′
1 )1/2.

Remark 3 It is also possible to replace β in Π = αβ′ in (7.2.3) by the EGLS
estimator and estimate the other parameters by LS from the model

∆Y = α̂̂β′Y−1 + Γ∆X + ̂̂
U∗.
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The resulting estimator [̂̂α : ̂̂Γ] has the same asymptotic properties as [α̂ : Γ̂]

in (7.2.7) which is based on a known β. As a consequence, [̂̂α̂̂β′ : ̂̂Γ] also has
the same asymptotic properties as [α̂β′ : Γ̂].

Remark 4 The EGLS estimator was actually presented in a slightly different
form by Ahn & Reinsel (1990) and Saikkonen (1992). These authors use the
representation

̂̂β′
(K−r) = (α̂′

Σ̂−1
u α̂)−1α̂′

Σ̂−1
u Π̂2,

where Π̂2 is the (K × (K − r)) matrix of the last K − r columns of the LS
estimator Π̂ of Π (see Reinsel (1993, p. 171) for a discussion of the equivalence
of this estimator and the EGLS estimator (7.2.16)).

7.2.3 ML Estimation

If the process yt is Gaussian or, equivalently, ut ∼ N (0, Σu), the VECM
(7.2.1) can be estimated by maximum likelihood (ML) taking also the rank
restriction for Π = αβ′ into account (see Johansen (1988, 1995)). The log-
likelihood function for a sample of size T is

ln l = −KT

2
ln 2π − T

2
ln |Σu|

−1
2
tr

[
(∆Y − αβ′Y−1 − Γ∆X)′Σ−1

u (∆Y − αβ′Y−1 − Γ∆X)
]
.

(7.2.19)

In the following, we will first discuss the computation of the estimators and
then consider their asymptotic properties.

The Estimator

For ML estimation we do not assume that β is normalized. We only make
the assumption rk(Π) = r which implies that the matrix can be represented
as Π = αβ′, where α and β are (K × r) with rk(α) = rk(β) = r. In the
next proposition the ML estimators are given. The proposition generalizes
the special case estimators given in (7.1.21) and (7.1.22).

Proposition 7.3 (ML Estimators of a VECM)
Let M := IT − ∆X ′(∆X∆X ′)−1∆X , R0 := ∆YM and R1 := Y−1M , as
before, and define

Sij := RiR
′
j/T, i = 0, 1,

λ1 ≥ · · · ≥ λK are the eigenvalues of S−1/2
11 S10S

−1
00 S01S

−1/2
11 ,
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and

ν1, . . . , νK are the corresponding orthonormal eigenvectors.

The log-likelihood function in (7.2.19) is maximized for

β = β̃ := [ν1, . . . , νr]′S
−1/2
11 ,

α = α̃ := ∆YMY ′
−pβ̃

(
β̃′Y−1MY ′

−1β̃
)−1

= S01β̃(β̃′S11β̃)−1,

Γ = Γ̃ := (∆Y − α̃β̃′Y−1)∆X ′(∆X∆X ′)−1,

Σu = Σ̃u := (∆Y − α̃β̃′Y−1 − Γ̃∆X)(∆Y − α̃β̃′Y−1 − Γ̃∆X)′/T.

The maximum is

max ln l = −KT

2
ln 2π − T

2

[
ln |S00| +

r∑
i=1

ln(1 − λi)

]
− KT

2
. (7.2.20)

Proof: From Chapter 3, Section 3.4, it is known that for any fixed α and β
the maximum of ln l is attained for

Γ̃(αβ′) = (∆Y − αβ′Y−1)∆X ′(∆X∆X ′)−1.

Thus, we replace Γ in (7.2.19) by Γ̃(αβ′) and get the concentrated log-
likelihood

−KT

2
ln 2π − T

2
ln |Σu|

−1
2
tr

[
(∆YM − αβ′Y−1M)′Σ−1

u (∆YM − αβ′Y−1M)
]
.

Hence, we just have to maximize this expression with respect to α, β, and
Σu. We also know from Chapter 3 that, for given α and β, the maximum is
attained if

Σ̃(αβ′) = (∆YM − αβ′Y−1M)(∆YM − αβ′Y−1M)′/T

is substituted for Σu. Consequently, we have to maximize

−T

2
ln |(∆YM − αβ′Y−1M)(∆YM − αβ′Y−1M)′/T |

or, equivalently, minimize the determinant with respect to α and β. Thus, all
results of Proposition 7.3 follow from Proposition A.7 of Appendix A.14.

The solutions β̃ and α̃ of the optimization problem given in the propo-
sition are not unique because, for any nonsingular (r × r) matrix Q, α̃Q−1
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and β̃Q′ represent another set of ML estimators for α and β. However, the
proposition shows that explicit expressions for ML estimators are available. If
r = K, the proposition still remains valid. Also, ML estimators for the levels
VAR representation corresponding to the VECM (7.2.1) observing the rank
restriction are readily available via the relations in (7.2.10).

The next question concerns the properties of the ML estimators of a coin-
tegrated system. They are discussed in the following.

Asymptotic Properties of the ML Estimator

The following proposition generalizes Result 7 of Section 7.1.

Proposition 7.4 (Asymptotic Properties of the ML Estimators of a VECM)
The ML estimators for the VECM (7.2.1) given in Proposition 7.3 have the
following asymptotic properties:

√
T vec([α̃β̃′ : Γ̃] − [Π : Γ]) d→N (0, Σco), (7.2.21)

where Σco is as defined in Proposition 7.1, and

√
T vech(Σ̃u −Σu) d→N (0, 2D+

K(Σu ⊗Σu)D+′
K ). (7.2.22)

Furthermore, Σ̃u is asymptotically independent of α̃β̃′ and Γ̃. Here, as usual,
D+

K = (D′
KDK)−1D′

K and DK is the (K2 × 1
2K(K + 1)) duplication matrix.

Remark 1 It is clear that the ML estimator of [Π : Γ] must have the same
asymptotic distribution as the LS estimator in Proposition 7.1 because the
ML estimator with known or given cointegration matrix β also has the same
asymptotic distribution. The ML estimator α̃β̃′ of Π in Proposition 7.3 may
be viewed as a restricted LS estimator which is not as much restricted as the
one with known β. Thus, the asymptotic result in (7.2.21) is not surprising.
A rigorous proof of the result is given in Johansen (1995).

Remark 2 The covariance matrix Σco is singular, as noted in Remark 1 for
Proposition 7.1. The rank of the (K2p×K2p) matrix Σco cannot be greater
than K(Kp−K + r) which is smaller than K2p if r < K.

Remark 3 Individually, the matrices α and β cannot be estimated consis-
tently without further constraints. Under the assumptions of Proposition 7.4,
these matrices are not identified (not unique). If we make specific identify-
ing assumptions in order to obtain unique parameter values and estimators,
consistent estimation is possible. For instance, we may use

β =
[
Ir

β(K−r)

]
.



7.2 Estimation of General VECMs 297

The ML estimator of β(K−r) may be obtained from the ML estimator of β
given in Proposition 7.3 by denoting the first r rows of β̃ by β̃(r) and letting

β̆(K−r) consist of the last K − r rows of β̃β̃−1
(r). This ML estimator has the

same asymptotic properties as the EGLS estimator in Proposition 7.2 (see
Ahn & Reinsel (1990)). In other words, inference procedures based on the ML
estimator can be derived from the result

vec
[
(β̆′

(K−r) − β′
(K−r))

(
R

(2)
1 R

(2)′
1

)1/2
]

d→ N (
0, IK−r ⊗ (α′Σ−1

u α)−1
)
.

It was found in a number of studies that the ML estimator β̆(K−r) may have
some undesirable properties in small samples and, in particular, it may pro-
duce occasional outlying estimates which are far away from the true parameter
values (e.g., Phillips (1994), Hansen, Kim & Mittnik (1998)). This behavior
of the estimator is due to the lack of finite sample moments. Brüggemann &
Lütkepohl (2004) compared the EGLS and ML estimators in a small Monte
Carlo study and found that the EGLS estimator is more robust in this respect.

Remark 4 If β is identified, the corresponding ML estimator of α is asymp-
totically normal, i.e.,

√
T vec(α̃−α) converges to the same asymptotic distri-

bution as in Remark 2 for Proposition 7.1.

Remark 5 The normality of the process is not essential for the asymptotic
properties of the estimators Γ̃ and Π̃ = α̃β̃′. Much of Proposition 7.4 holds
under weaker conditions when quasi ML estimators based on the Gaussian
likelihood function are considered. We have chosen the normality assumption
for convenience.

Remark 6 The asymptotic distribution of Σ̃u may be different if ut is not
Gaussian. The limiting distribution in (7.2.22) is obtained from the following
lemma.

Lemma 7.3

plim
√
T (Σ̃u − UU ′/T ) = 0.

This lemma not only implies consistency of Σ̃u but also shows that the
asymptotic distribution of

√
T vech(Σ̃u −Σu)

is the same as that of
√
T vech(T−1UU ′ −Σu).
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In other words, it is independent of the other coefficients of the system and
has the form given in (7.2.22) (see also Section 3.4, Proposition 3.4).

Proof of Lemma 7.3:

Σ̃u = T−1(∆Y − α̃β̃′Y−1 − Γ̃∆X)(∆Y − α̃β̃′Y−1 − Γ̃∆X)′

= T−1[U + (Π − α̃β̃′)Y−1 + (Γ − Γ̃)∆X ]

×[U + (Π − α̃β̃′)Y−1 + (Γ − Γ̃)∆X]′

=
UU ′

T
+ (Π − α̃β̃′)

Y−1U
′

T
+

UY ′
−1

T
(Π − α̃β̃′)′

+ (Π − α̃β̃′)
Y−1Y

′
−1

T
(Π − α̃β̃′)′

+ (Π − α̃β̃′)
Y−1∆X ′

T
(Γ − Γ̃)′ + (Γ − Γ̃)

∆XY ′
−1

T
(Π − α̃β̃′)′

+ (Γ − Γ̃)
∆XU ′

T
+

U∆X ′

T
(Γ − Γ̃)′

+ (Γ − Γ̃)
∆X∆X ′

T
(Γ − Γ̃)′.

Using α̃β̃′ − Π = Op(T−1/2), Γ̃ − Γ = Op(T−1/2) and the results in Lemma
7.2, we get

√
T (Γ − Γ̃)

∆XU ′

T
= op(1),

√
T (Γ − Γ̃)

∆X∆X ′

T
(Γ − Γ̃)′ = op(1),

√
T (Π − α̃β̃′)

Y−1∆X ′

T
(Γ − Γ̃)′ = op(1),

and
√
T (Π − α̃β̃′)

Y−1Y
′
−1

T
(Π − α̃β̃′)′ = op(1).

Thus, Lemma 7.3 is proven if we can show that
√
T (α̃β̃′ − Π)

Y−1U
′

T
= op(1). (7.2.23)

To prove this result, we define α̃(β) to be the ML estimator of α given β and
note that

√
T (α̃β̃′ − Π)

Y−1U
′

T
=

√
T [α̃β̃′ − α̃(β)β′]

Y−1U
′

T

+
√
T [α̃(β) − α]

β′Y−1U
′

T
.

This quantity converges to zero in probability by Lemma 7.2(4), the fact that√
T [α̃(β) − α] = Op(1) (see (7.2.8)) and because

√
T [α̃β̃′ − α̃(β)β′] = op(1).

We leave the latter result as an exercise (see Problem 7.3).
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7.2.4 Including Deterministic Terms

So far we have assumed that there are no deterministic terms in the data
generation process, to simplify the exposition. In practice, such terms are
typically needed for a proper representation of the data generation process. It
turns out, however, that they can be easily accommodated in the estimation
procedures for VECMs discussed so far, if the setup of Section 6.4 is used.
Suppose the observed process yt can be represented as

yt = µt + xt, (7.2.24)

where xt is a zero mean process with VECM representation as in (7.2.1) and
µt stands for the deterministic term. In general, the latter term may consist
of polynomial trends, seasonal and other dummy variables as well as constant
means. As in Section 6.4, we can then set up the VECM for the observed yt

variables as

∆yt = α[β′ : η′]
[

yt−1

Dco
t−1

]
+ Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + CDt + ut

= Π+y+
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + CDt + ut, (7.2.25)

where Dco
t contains all the deterministic terms which are present in the coin-

tegration relations, Dt contains all remaining deterministics, and η′ and C
are the corresponding parameter matrices. Moreover, Π+ := α[β′ : η′] = αβ+′

and

y+
t :=

[
yt

Dco
t

]
.

Notice that we assume that a specific deterministic term appears only once,
either in Dco

t or in Dt.
Now we can simply modify the matrices used for representing the estima-

tors in the previous subsections and then use basically the same formulas as
before for computing the estimators. For example, defining

Y +
−1 := [y+

0 , . . . , y
+
T−1],

Γ+ := [Γ1, . . . ,Γp−1, C],

and

∆X+ := [∆X+
0 , . . . , ∆X+

T−1] with ∆X+
t−1 :=

⎡⎢⎢⎢⎣
∆yt−1

...
∆yt−p+1

Dt

⎤⎥⎥⎥⎦
gives the LS estimator



300 7 Estimation of Vector Error Correction Models

[Π̂+ : Γ̂+] = [∆Y Y +′
−1 : ∆Y∆X+′]

[
Y +
−1Y

+′
−1 Y +

−1∆X+′

∆X+Y +′
−1 ∆X+∆X+′

]−1

.

The EGLS or ML estimators may be obtained analogously.
Hence, the computation of the estimators is equally easy as in the case

without deterministic terms. Also, the asymptotic properties of the parame-
ter estimators are essentially unchanged. The asymptotic theory for the deter-
ministic terms requires some care, however, because their convergence rates
depend on the specific terms included. For instance, if linear trends are in-
cluded, the convergence rates of the associated slope parameters are different
from

√
T . Generally, if the VECM is specified properly, including the coin-

tegrating rank r, and if EGLS or ML methods are used, the usual inference
methods are available. In particular, likelihood ratio tests for parameter re-
strictions related to the deterministic terms permit standard χ2 asymptotics
(see, e.g., Johansen (1995)).

A question of interest in this context is, for example, whether a particular
deterministic term can indeed be constrained to the cointegration relations or
needs to be maintained in unrestricted form in the model. The i-th component
of Dt can be absorbed in the error correction term if the i-th column of the
coefficient matrix C, denoted by Ci, satisfies Ci = αηi for some r-dimensional
vector ηi. Thus, the relevant null hypothesis is

α′
⊥Ci = 0.

In other words, there are K−r restrictions for each component that is confined
to the cointegration relations. They are easy to test by a likelihood ratio test
because the ML estimators and, hence, the likelihood maxima are easy to
obtain for both the restricted and unrestricted model by just specifying the
terms in Dco

t and Dt accordingly. If m deterministic components are restricted
to the cointegration relations, the LR statistic has an asymptotic χ2(m(K −
r))-distribution under our usual assumptions.

7.2.5 Other Estimation Methods for Cointegrated Systems

Some other estimation methods for cointegration relations and VECMs have
been proposed in the literature. For example, other systems methods for
estimating the cointegrating parameters were considered by Phillips (1991)
who discussed nonparametric estimation of the short-run parameters. Stock
& Watson (1988) proposed an estimator based on principal components and
Bossaerts (1988) used canonical correlations. The latter two estimators were
shown to be inferior to the ML estimators in a small sample comparison by
Gonzalo (1994) and are therefore not considered here.

If there is just a single cointegration relation, it may also be estimated
by single equation LS. Suppose that β is normalized as in (7.1.10) such that
β = (1, β2, . . . , βK)′ and β′yt = y1t + β2y2t + · · · + βKyKt. Hence,
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y1t = γ2y2t + · · · + γKyKt + ect,

where γi := −βi and ect is a stable, stationary process. Defining

y(1) :=

⎡⎢⎣ y11

...
y1T

⎤⎥⎦ and Y(2) :=

⎡⎢⎣ y21 . . . yK1

...
...

y2T . . . yKT

⎤⎥⎦,
the LS estimator for γ′ := (γ2, . . . , γK) is

γ̂′ = y′(1)Y(2)(Y ′
(2)Y(2))−1.

Stock (1987) showed that γ̂ is superconsistent and, more precisely, T (γ̂ − γ)
converges in distribution. Thus, γ̂−γ = Op(T−1). However, there is some evi-
dence that γ̂ is biased in small samples (Phillips & Hansen (1990)). Therefore,
using LS estimation of the cointegration parameters without any correction
for further dynamics in the model is not recommended.

A large number of single equation estimators for cointegration relations
were reviewed and compared by Caporale & Pittis (2004). In addition to the
simple LS estimator presented in the foregoing, they also considered estima-
tors which are corrected for short-run dynamics. For example, this may be
accomplished by including leads and lags of the differenced regressor vari-
ables in the estimation equation (e.g., Stock & Watson (1993)) or by adding
also lagged differences of the dependent variable (e.g., Banerjee, Dolado, Gal-
braith & Hendry (1993), Wickens & Breusch (1988)). Another possible choice
in this context is the fully modified estimator of Phillips & Hansen (1990)
which takes care of the short-run dynamics nonparametrically and a semi-
parametric variant of this estimator proposed by Inder (1993). In addition,
Caporale & Pittis (2004) presented a large number of modifications. Some of
these estimators have rather undesirable small sample properties compared
to the systems ML estimator presented in Section 7.2.3. Even those modifica-
tions that lead to small sample improvements were only shown to work in a
rather limited framework. Also, of course, some of these estimators are only
designed for situations where only one cointegration relation exists.

Two-Stage Estimation

Generally, if a superconsistent estimator β̂ of the cointegration matrix β is
available, this estimator may be substituted for the true β and all the other
parameters may be estimated in a second stage from

∆yt = αβ̂′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + u∗
t , (7.2.26)

where deterministic terms are again ignored for simplicity. If no restrictions
are imposed on α and the Γi’s (i = 1, . . . , p − 1), LS estimation can be used
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without loss of asymptotic efficiency. Denoting the two-stage estimators of α
and Γ by α̂2s and Γ̂2s, respectively, we have

α̂2s = ∆YMY ′
−1β̂

(
β̂′Y−1MY ′

−1β̂
)−1

(7.2.27)

and

Γ̂2s = (∆Y − α̂2sβ̂′Y−1)∆X ′(∆X∆X ′)−1, (7.2.28)

where the notation from the previous subsections has been used. For these
estimators the following proposition holds, which is stated without proof.

Proposition 7.5 (Asymptotic Properties of the Two-Stage LS Estimator)
Let yt be a K-dimensional, cointegrated process with VECM representation
(7.2.1). Then the two-stage estimator is consistent and

√
T vec([α̂2s : Γ̂2s] − [α : Γ]) d→N (0, Σα,Γ), (7.2.29)

where Σα,Γ is the same covariance matrix as in (7.2.8).

The proposition implies that if a superconsistent estimator of the cointe-
gration matrix β is available, the loading coefficients and short-run parame-
ters of the VECM can be estimated by LS and these estimators have the same
asymptotic properties we would obtain by using the true β. Thus, standard
inference procedures can be used for the short-run parameters. An analogous
result is also available for VECMs with parameter restrictions (see Section 7.3
for the extension).

The second stage in the procedure may be modified. For instance, one
may just be interested in the first equation of the system. In this case, the
first equation may be estimated separately without taking into account the
remaining ones. Thus, the two-stage procedure may be applied in a single
equation modelling context.

Results similar to those in Proposition 7.5 were derived by many authors
(see, e.g., Stock (1987), Phillips & Durlauf (1986), Park & Phillips (1989),
and Johansen (1991)). Generally there has been a considerable amount of re-
search on estimation and hypothesis testing in systems with integrated and
cointegrated variables. For instance, Johansen (1991), Johansen & Juselius
(1990), and Lütkepohl & Reimers (1992b) considered estimation with restric-
tions on the cointegration and loading matrices; Park & Phillips (1988, 1989)
and Phillips (1988) provided general results on estimating systems with in-
tegrated and cointegrated exogenous variables; Stock (1987) considered a so-
called nonlinear LS estimator, and Phillips & Hansen (1990) discussed instru-
mental variables estimation of models containing integrated variables.

7.2.6 An Example

As an example, we use the bivariate system of quarterly, seasonally unadjusted
German long-term interest rate (Rt = y1t) and inflation rate (Dpt = y2t)
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which was also analyzed in Lütkepohl (2004). The sample period is the second
quarter of 1972 to the end of 1998. Thus we have T = 107 observations. The
data are available in File E6 and the two time series are plotted in Figure
7.1. Preliminary tests indicated that both series have a unit root and there
are also theoretical reasons for a cointegration relation between them. The
so-called Fisher effect implies that the real interest rate is stationary. Because
Rt is a nominal yearly interest rate while Dpt is a quarterly inflation rate,
one would therefore expect Rt − 4Dpt to be stationary, that is, this relation
is expected to be a cointegration relation.

Fig. 7.1. Seasonally unadjusted, quarterly German interest rate (left) and inflation
rate (right), 1972.2–1998.4.

We have fitted a VECM with a constant, seasonal dummy variables, and
three lagged differences and the pre-specified cointegration relation Rt−4Dpt

to the data. The results are shown in Table 7.1. Notice that three lagged
differences in the VECM imply a model with four lags in the levels. Includ-
ing at least lags of one year seems plausible because the inflation series has
a strong seasonal pattern (see Figure 7.1). Formal statistical procedures for
determining the lag length will be discussed in the next chapter. The seasonal
movement in Dpt is also the reason for including seasonal dummy variables in
addition to a constant. The deterministic term, Dt = (1, s1t, s2t, s3t)′, where
the sit are seasonal dummy variables, is placed outside the cointegration re-
lation. We have also estimated a VECM with cointegrating rank r = 1 using
the reduced rank ML procedure and the EGLS method. The estimates are
also shown in Table 7.1.

The two estimated cointegration relations are

Rt − 3.96
(0.63)

Dpt = ecML
t (7.2.30)

and

Rt − 3.63
(0.61)

Dpt = ecEGLS
t , (7.2.31)
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Table 7.1. Estimated VECMs for interest rate/inflation example system

known β ML estimator EGLS estimator

α

⎡⎢⎣ −0.10
(−2.3)

0.16
(3.8)

⎤⎥⎦
⎡⎢⎣ −0.10

(−2.3)

0.16
(3.8)

⎤⎥⎦
⎡⎢⎣ −0.14

(−2.8)

0.14
(2.9)

⎤⎥⎦
β′ [1 : −4]

[
1.00 : −3.96

(−6.3)

] [
1.00 : −3.63

(−6.0)

]

Γ1

⎡⎢⎣ 0.27
(2.7)

−0.21
(−1.4)

0.07
(0.7)

−0.34
(−2.4)

⎤⎥⎦
⎡⎢⎣ 0.27

(2.7)
−0.21
(−1.4)

0.07
(0.7)

−0.34
(−2.4)

⎤⎥⎦
⎡⎢⎣ 0.29

(2.9)
−0.16
(−1.1)

0.08
(0.8)

−0.31
(−2.2)

⎤⎥⎦

Γ2

⎡⎢⎣ −0.02
(−0.2)

−0.22
(−1.8)

−0.00
(−0.0)

−0.39
(−3.4)

⎤⎥⎦
⎡⎢⎣ −0.02

(−0.2)
−0.22
(−1.8)

−0.00
(−0.0)

−0.39
(−3.4)

⎤⎥⎦
⎡⎢⎣ 0.01

(0.1)
−0.19
(−1.6)

0.01
(0.1)

−0.37
(−3.2)

⎤⎥⎦

Γ3

⎡⎢⎣ 0.22
(2.3)

−0.11
(−1.3)

0.02
(0.2)

−0.35
(−4.5)

⎤⎥⎦
⎡⎢⎣ 0.22

(2.3)
−0.11
(−1.3)

0.02
(0.2)

−0.35
(−4.5)

⎤⎥⎦
⎡⎢⎣ 0.26

(2.6)
−0.09
(−1.1)

0.04
(0.4)

−0.34
(−4.4)

⎤⎥⎦

C′

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.001
(0.4)

0.010
(3.0)

0.001
(0.3)

−0.034
(−7.5)

0.009
(1.8)

−0.018
(−3.8)

−0.000
(−0.1)

−0.016
(−3.6)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.002
(0.4)

0.010
(3.0)

0.001
(0.3)

−0.034
(−7.5)

0.009
(1.8)

−0.018
(−3.8)

−0.000
(−0.1)

−0.016
(−3.6)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.005
(1.2)

0.012
(3.1)

0.001
(0.3)

−0.034
(−7.5)

0.009
(1.8)

−0.018
(−3.8)

−0.000
(−0.1)

−0.016
(−3.6)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Note: t-values in parentheses underneath parameter estimates; deterministic terms:
constant and seasonal dummies (Dt = (1, s1t, s2t, s3t)

′).

where estimated standard errors are given in parentheses. The first coefficient
is normalized to be 1. Thereby the t-ratios and the standard errors of the
inflation coefficient can be interpreted in the usual way. Clearly, −4 is well
within a two-standard error interval around both estimates. Therefore one
could argue that restricting the inflation coefficient to 4 is in line with the
data. Using the result in Proposition 7.2, a formal test of the null hypothesis
H0 : β2 = −4, where β2 denotes the second component of β, can be based on
the t-statistic

−3.96 − (−4)
0.63

= 0.06

for the ML estimator or on

−3.63 − (−4)
0.61

= 0.61
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for the EGLS estimator. Both t-values are small compared to critical values
from the standard normal distribution corresponding to usual significance
levels. Hence, the null hypothesis cannot be rejected for either of the two
estimators.

Comparing the other estimates of the three models in Table 7.1, it is ob-
vious that corresponding estimates do not differ much, especially when the
sampling uncertainty reflected in the t-ratios is taken into account. In par-
ticular, the ML estimates are very close to those of the model with fixed
cointegration vector. Thus, imposing the theoretically expected cointegration
vector does not appear to be a problematic constraint.

Another observation that can be made in Table 7.1 is that there are some
insignificant coefficients in the short-run matrices Γi and the estimated deter-
ministic terms (C). Because some of the parameters in Γ̂3 have rather large
t-ratios, it is clear that simply reducing the lag order is not likely to be a good
strategy for reducing the number of parameters in the model. It makes sense,
however, to consider restricting some of the parameter values to zero. This
issue is discussed in the next section.

7.3 Estimating VECMs with Parameter Restrictions

As for other models, restrictions may be imposed on the parameters of VECMs
to increase the estimation precision. We will first discuss restrictions for the
cointegration relations and then turn to restrictions on the loading coefficients
and short-run parameters.

7.3.1 Linear Restrictions for the Cointegration Matrix

In case just-identifying restrictions for the cointegration relations are available,
estimation may proceed as described in Section 7.2 and then the identified
estimator of β may be obtained by a suitable transformation of the estimator
β̂. For example, if β is just a single vector and ML estimation is used, a
normalization of the first component may be obtained by dividing the vector
β̃ by its first component, as discussed earlier.

Sometimes over-identifying restrictions are available for the cointegration
matrix. In general, if the restrictions can be expressed in the form

vec(β′
(K−r)) = Rγ + r, (7.3.1)

where R is a fixed (r(K − r) ×m) matrix of rank m, r is a fixed r(K − r)-
dimensional vector, and γ is a vector of free parameters, the EGLS estimator
is still available. The GLS estimator may be obtained from the vectorized
“concentrated model” (7.2.14),

vec(R0 − αR(1)
1 ) = (R(2)′

1 ⊗ α)vec(β′
(K−r)) + vec(U∗)

= (R(2)′
1 ⊗ α)(Rγ + r) + vec(U∗),
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so that

vec(R0 − αR(1)
1 ) − (R(2)′

1 ⊗ α)r = (R(2)′
1 ⊗ α)Rγ + vec(U∗). (7.3.2)

Thus, the GLS estimator for γ is

γ̂ =
[
R′(R(2)

1 R
(2)′
1 ⊗ α′Σ−1

u α)R
]−1

×R′(R(2)
1 ⊗ α′Σ−1

u )
[
vec(R0 − αR(1)

1 ) − (R(2)′
1 ⊗ α)r

]
.

Substituting consistent estimators α̂ and Σ̂u for α and Σu, respectively, gives
the EGLS estimator

̂̂γ =
[
R′(R(2)

1 R
(2)′
1 ⊗ α̂′

Σ̂−1
u α̂)R

]−1

×R′(R(2)
1 ⊗ α̂′

Σ̂−1
u )

[
vec(R0 − α̂R(1)

1 ) − (R(2)′
1 ⊗ α̂)r

]
.

(7.3.3)

Extending the arguments used for proving Proposition 7.2, the following
asymptotic properties of the EGLS estimator can be shown.

Proposition 7.6 (Asymptotic Properties of the Restricted EGLS Estimator)
Suppose yt is generated by the VECM (7.2.1) and β satisfies the restrictions
in (7.3.1). Then[

R′(R(2)
1 R

(2)′
1 ⊗ α̂′

Σ̂−1
u α̂)R

]1/2

(̂̂γ − γ) d→ N (0, Im). (7.3.4)

Thus, standard inference procedures can be based on the transformed es-
timator. It can also be shown that ̂̂γ − γ = Op(T−1). In other words, the
estimator is superconsistent. Clearly, consistent estimators of α and Σu are
readily available from unrestricted LS estimation as in Section 7.2.2.

Defining ̂̂βR
(K−r) such that vec ̂̂βR

(K−r) = R̂̂γ + r,

̂̂βR :=

[
Ir̂̂βR

(K−r)

]
is a restricted estimator of the cointegration matrix. It can, for example, be
used in the two-stage procedure described in Section 7.2.5.

If the restrictions for the cointegration matrix can be written in the form
β = Hϕ, where H is some known, fixed (K × s) matrix and ϕ is (s× r) with
s ≥ r, ML estimation is also straightforward. For example, in a system with
three variables and one cointegration relation, if β31 = −β21, we have

β =

⎡⎣ β11

β21

−β21

⎤⎦ =

⎡⎣ 1 0
0 1
0 −1

⎤⎦[
β11

β21

]
= Hϕ,
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where ϕ := (β11,β21)
′ and H is defined in the obvious way. If the restric-

tions can be represented in this form, Y−1 is simply replaced by H ′Y−1 in
the quantities entering the eigenvalue problem in Proposition 7.3. Denoting
the resulting estimator by ϕ̃ gives a restricted estimator β̃ = Hϕ̃ for β and
corresponding estimators of α and Γ as in Proposition 7.3. If the restrictions
in (7.3.1) can be written in this form, the EGLS and the ML estimators have
again identical asymptotic properties.

However, the restrictions in (7.3.1) can in general not be written in the
form β = Hϕ. For instance, if there are three variables (K = 3) and two
cointegrating relations (r = 2), a single zero restriction on the second coin-
tegration vector cannot be expressed in the form β = Hϕ, whereas it may
still be written in the form (7.3.1). Moreover, it may be expressed in the form
β = [H1ϕ1,H2ϕ2] with suitable matrices H1 and H2 and vectors ϕ1 and ϕ2.
For example, if a zero restriction is placed on the last element of the second
cointegrating vector, we get

β =

⎡⎣ β11 β12

β21 β22

β31 0

⎤⎦ = [H1ϕ1,H2ϕ2]

with H1 := I3, ϕ1 := (β11, β21,β31)
′,

H2 :=

⎡⎣ 1 0
0 1
0 0

⎤⎦
and ϕ2 := (β12,β22)

′. In that case, restricted ML estimation is still not difficult
but requires an iterative optimization (see Boswijk & Doornik (2002)).

7.3.2 Linear Restrictions for the Short-Run and Loading
Parameters

If a superconsistent estimator of the cointegration matrix β̂ is available, the
two-stage procedure described in Section 7.2.5 can be used for estimating the
loading and short-run parameters of a VECM. The method can be readily
extended to models with parameter restrictions. Suppose linear restrictions of
the form

vec[α : Γ] = �ϕ, (7.3.5)

where � is a fixed (K(r + K(p − 1)) × n) matrix and ϕ is an n-dimensional
vector. Then we can write the model in matrix form as

∆Y = [α : Γ]
[

β̂′Y−1

∆X

]
+ U∗

and in vectorized form we get
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vec(∆Y ) =
(
[Y ′

−1β̂ : ∆X ′] ⊗ IK

)
vec[α : Γ] + vec(U∗)

=
(
[Y ′

−1β̂ : ∆X ′] ⊗ IK

)
�ϕ + vec(U∗).

Hence, the GLS estimator of ϕ is

ϕ̂ =

[
�′

([
β̂′Y−1Y

′
−1β̂ β̂′Y−1∆X ′

∆XY ′
−1β̂ ∆X∆X ′

]
⊗Σ−1

u

)
�
]−1

×�′
([

β̂′Y−1

∆X

]
⊗Σ−1

u

)
vec(∆Y ), (7.3.6)

from which an EGLS estimator ̂̂ϕ is obtained by replacing the residual co-
variance matrix Σu by a consistent estimator. The latter estimator may, for
example, be obtained from an unrestricted estimation of the model. The re-
sulting EGLS estimator has the following asymptotic properties.

Proposition 7.7 (Asymptotic Properties of the Restricted EGLS Estimator
of the Short-Run Parameters)
Suppose yt is generated by the VECM (7.2.1), β̂ is a superconsistent estima-
tor of β, Σ̂u is a consistent estimator of Σu, and the short-run and loading
parameters satisfy (7.3.5). Then

√
T ( ̂̂ϕ − ϕ)

d→ N
⎛⎝0,plim T

[
�′

([
β̂′Y−1Y

′
−1β̂ β̂′Y−1∆X ′

∆XY ′
−1β̂ ∆X∆X ′

]
⊗Σ−1

u

)
�
]−1

⎞⎠ .

(7.3.7)

We do not prove the proposition but just note that it follows from the
fact that only stationary variables are involved if β̂ is replaced by the true
cointegration matrix β and the resulting estimator for ϕ differs from ̂̂ϕ by a
quantity which is op(T−1/2). Moreover, the asymptotic normal distribution of

vec[̂̂α : ̂̂Γ] = � ̂̂ϕ follows in the usual way.
It is straightforward to extend these result to the case where the restric-

tions are of the form

vec[α : Γ] = �ϕ + r, (7.3.8)

where r is now a fixed (K(r + K(p − 1)) × 1) vector (see Problem 7.6). The
more special restrictions in (7.3.5) are considered here for convenience and
because they cover most cases of practical importance.
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7.3.3 An Example

In Section 7.2.6, we have seen that in the short-run dynamics of the German
interest rate/inflation example models a number of coefficients have quite low
t-ratios (see Table 7.1). Therefore it makes sense to restrict some of the coef-
ficients to zero. The following model from Lütkepohl (2004, Equation (3.41))
for our data set is an example of a restricted (subset) VECM:

[
∆Rt

∆Dpt

]
=

⎡⎣ −0.07
(−3.1)

0.17
(4.5)

⎤⎦ (Rt−1 − 4Dpt−1)

+

⎡⎣ 0.24
(2.5)

−0.08
(−1.9)

0 −0.31
(−2.5)

⎤⎦[
∆Rt−1

∆Dpt−1

]
+

⎡⎣ 0 −0.13
(−2.5)

0 −0.37
(−3.6)

⎤⎦[
∆Rt−2

∆Dpt−2

]

+

⎡⎣ 0.20
(2.1)

−0.06
(−1.6)

0 −0.34
(−4.7)

⎤⎦[
∆Rt−3

∆Dpt−3

]

+

⎡⎣ 0 0 0.010
(2.8)

0

0.010
(3.0)

−0.034
(−7.6)

−0.018
(−3.8)

−0.016
(−3.6)

⎤⎦
⎡⎢⎢⎣

c
s1,t

s2,t

s3,t

⎤⎥⎥⎦ +
[
û1,t

û2,t

]
,

(7.3.9)

Σ̃u =
[

2.61 −0.15
−0.15 2.31

]
× 10−5.

Here we have used the fixed cointegration vector that was found in Section
7.2.6 and EGLS estimation of the loading coefficients and short-term parame-
ters is used. t-ratios are again given in parentheses underneath the parameter
estimates. They are all relatively large. In fact, with two exceptions they are
all larger than two. Recall that t-ratios can be interpreted in the usual way as
asymptotically standard normally distributed by Proposition 7.7. Comparing
the model (7.3.9) to those in Table 7.1, it turns out that the parameters with
very small t-ratios in the unrestricted models are just the ones restricted to
zero in (7.3.9). The model was actually found by a sequential model selection
procedure which will be discussed in the next chapter.

7.4 Bayesian Estimation of Integrated Systems

It is also possible to place Bayesian restrictions on VECMs. A very important
constraint in these models is the cointegrating rank, however. In Bayesian
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analysis, a basic idea is to allow the data to revise the prior restrictions im-
posed by the analyst. Using this principle also for the unit roots and, hence, for
the cointegration relations, setting up the system in VECM form may not be
the most plausible approach anymore. Therefore, Bayesian restrictions have
often been imposed on the levels VAR form, even if the variables are possi-
bly integrated. A popular prior in this context is the Minnesota or Litterman
prior which ignores possible cointegration between the variables altogether.
We will present this prior in the following after the general setting has been
discussed.

7.4.1 The Model Setup

In Chapter 5, Section 5.4, we have discussed Bayesian estimation of stationary,
stable VAR(p) processes. For a Gaussian process with integrated variables
and a normal prior, the posterior distribution of the VAR coefficients can be
derived in a similar manner. We now consider a levels VAR(p) model of the
form

yt = ν + A1yt−1 + · · · + Apyt−p + ut.

As usual, β := vec[ν,A1, . . . , Ap] is the vector of VAR coefficients including
an intercept vector and we assume a prior

β ∼ N (β∗, Vβ). (7.4.1)

Then, using the same line of reasoning as in Section 5.4, the posterior mean
is

β̄ = [V −1
β + (ZZ′ ⊗Σ−1

u )]−1[V −1
β β∗ + (Z ⊗Σ−1

u )y]

and the posterior covariance matrix is

Σ̄β = [V −1
β + (ZZ′ ⊗Σ−1

u )]−1,

where

y := vec[y1, . . . , yT ] and Z := [Z0, . . . , ZT−1] with Zt :=

⎡⎢⎢⎢⎣
1
yt

...
yt−p+1

⎤⎥⎥⎥⎦.

7.4.2 The Minnesota or Litterman Prior

A possible choice of β∗ and Vβ for stable processes was discussed in Sec-
tion 5.4.3. If the variables are believed to be integrated, the following prior
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discussed by Doan et al. (1984) and Litterman (1986), sometimes known as
Minnesota prior, could be used: (1) Set the prior mean of the first lag of each
variable equal to one in its own equation and set all other coefficients at zero.
In other words, if the prior means were the true parameter values each vari-
able were a random walk. (2) Choose the prior variances of the coefficients as
in Section 5.4.3. In other words, the prior variances of the intercept terms are
infinite and the prior variance of αij,l, the ij-th element of Al, is

vij,l =
{

(λ/l)2 if i = j,
(λθσi/lσj)2 if i �= j,

where λ is the prior standard deviation of αii,1, 0 < θ < 1, and σ2
i is the i-th

diagonal element of Σu. Thus, we get, for instance, for a bivariate VAR(2)
system,

y1t = 0 + 1 · y1,t−1 + 0 · y2,t−1 + 0 · y1,t−2 + 0 · y2,t−2 +u1t,
(∞) (λ) (λθσ1/σ2) (λ/2) (λθσ1/2σ2)

y2t = 0 + 0 · y1,t−1 + 1 · y2,t−1 + 0 · y1,t−2 + 0 · y2,t−2 +u2t,
(∞) (λθσ2/σ1) (λ) (λθσ2/2σ1) (λ/2)

where all coefficients are set to their prior means and the numbers in parenthe-
ses are their prior standard deviations. Forgetting about the latter numbers
for the moment, each of these two equations is seen to specify a random walk
for one of the variables. The nonzero prior standard deviations indicate that
we are not sure about such a simple model. The standard deviations decline
with increasing lag length because more recent lags are assumed to be more
likely to belong into the model. The infinite standard deviations for the in-
tercept terms simply reflect that we do not have any prior guess for these
coefficients. Also, we do not impose covariance priors and, hence, choose Vβ

to be a diagonal matrix. Its inverse is

V −1
β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

1
λ2 0

σ2
1

(λθσ2)2

σ2
2

(λθσ1)2
1
λ2

0 22

λ2

22σ2
1

(λθσ2)2

22σ2
2

(λθσ1)2

22

λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 0 is also substituted for the inverse (infinite) standard deviation of the
intercept terms.
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To compute β̄ requires the inversion of V −1
β + (ZZ′ ⊗Σ−1

u ). Because this
matrix is usually quite large, in the past, Bayesian estimation has often been
performed separately for each of the K equations of the system. In that case,

b̄k = [V −1
k + σ−2

k ZZ′]−1(V −1
k b∗k + σ−2

k Zy(k))

is used as an estimator for the parameters bk of the k-th equation, that is, b′k
is the k-th row of B := [ν,A1, . . . , Ap]. Here Vk is the prior covariance matrix
of bk, b∗k is its prior mean, and y(k) := (yk1, . . . , ykT )′. As in Chapter 5, σ2

k is
replaced by the k-th diagonal element of the ML estimator

Σ̃u = Y (IT − Z ′(ZZ′)−1Z)Y ′/T

of the white noise covariance matrix.
Clearly, in this prior, possible cointegration between the variables is not

taken into account. Given the growing importance of the concept of cointegra-
tion in the recent literature, it is perhaps not surprising that the Minnesota
prior has lately lost some of its appeal. Bayesians have responded to the suc-
cess of the concept of cointegration and of VECMs in classical econometrics.
Some recent contributions to Bayesian analysis of VECMs include Kleibergen
& van Dijk (1994), Kleibergen & Paap (2002), Strachan (2003), and Strachan
& Inder (2004). A survey with many more references was given by Koop,
Strachan, van Dijk & Villani (2005).

7.4.3 An Example

As an example illustrating Bayesian estimation based on the Minnesota prior,
we consider the following four-dimensional system of U.S. economic variables:

y1 - logarithm of the real money stock M1 (ln M1),
y2 - logarithm of GNP in billions of 1982 dollars (ln GNP),
y3 - discount interest rate on new issues of 91-day Treasury bills (rs),
y4 - yield on long-term (20 years) Treasury bonds (rl).

Quarterly data for the years 1954 to 1987 are used. The data are available in
File E3. They are plotted in Figure 7.2. The GNP and Ml data are seasonally
adjusted. The variables rs and rl are regarded as short- and long-term interest
rates, respectively. The plots in Figure 7.2 show that the series are trending.
Thus, they may be integrated and, given that this is a small monetary system,
there may in fact be cointegration. For example, there may be a long-run
money demand relation and perhaps the interest rate spread rl − rs may
be a stationary variable. Although the system may be cointegrated, we will
consider the Minnesota prior in the following.

We have first fitted an unrestricted VAR(2) model to the data and present
the results in Table 7.2. It can be seen that at least the last three of the
four diagonal elements of A1 are estimated to be close to 1. The first diagonal
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Fig. 7.2. U.S. ln M1, ln GNP, and interest rate time series.
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element is also not drastically different from 1, although 1 is not within a two-
standard error interval around the estimate. On the basis of the unrestricted
estimates, a prior with mean 1 for the diagonal elements of A1 does not appear
to be unreasonable for this example. Of course, in a Bayesian analysis the prior
is usually not chosen on the basis of an unrestricted estimation.

Table 7.2. VAR(2) coefficient estimates for the U.S. example system with estimated
standard errors in parentheses

estimation
method ν A1 A2

.028 1.307 .106 −.554 −.814 −.318 −.101 .318 1.022
(.070) (.075) (.107) (.224) (.070) (.076) (.115) (.221)

.129 .080 1.045 −.177 .473 −.135 −.014 −.197 −.416
unrestricted (.083) (.088) (.126) (.265) (.083) (.090) (.136) (.261)

LS .096 .193 .068 .978 .284 −.248 −.035 .053 −.644
(.077) (.081) (.116) (.245) (.077) (.083) (.125) (.240)

.030 .042 .042 .034 1.065 −.064 −.027 .070 −.308
(.038) (.041) (.058) (.122) (.038) (.041) (.063) (.120)

.041 1.332 .098 −.556 −.838 −.346 −.091 .354 .969
(.067) (.073) (.104) (.216) (.064) (.073) (.110) (.207)

.086 .071 1.052 −.169 .549 −.099 −.039 −.239 −.286
ML (.079) (.086) (.123) (.256) (.076) (.087) (.131) (.245)

(r = 1) .005 .179 .080 .991 .425 −.181 −.079 −.022 −.405
(.076) (.082) (.118) (.245) (.073) (.083) (.125) (.235)

−.014 .037 .047 .041 1.138 −.032 −.050 .033 −.186
(.038) (.041) (.059) (.122) (.036) (.042) (.062) (.117)

We have estimated the system with the Minnesota prior and different
values of λ and θ. Some results for a VAR(2) process are given in Table 7.3
to illustrate the effect of the choice of the prior variance parameters λ and θ.
For this particular data set, a combination λ = 1 and θ = .25 leads to mild
changes in the estimates only relative to unrestricted estimates (λ = ∞, θ =
1). Decreasing θ has the effect of shrinking the off-diagonal elements towards
zero. Thus, a small θ is reasonable if the variables are expected to be unrelated.
The effect of a small θ is seen in Table 7.3 in the panel corresponding to λ = 1
and θ = .01. On the other hand, lowering λ shrinks the diagonal elements of
A1 towards 1 and all other coefficients (except the intercept terms) towards
zero. This effect is clearly observed for λ = .01, θ = .25. Hence, if the analyst
has a strong prior in favor of unrelated random walks, a small λ is appropriate.

In practice, one would usually choose a higher VAR order than 2 in a
Bayesian analysis because chopping off the process at p = 2 implies a very
strong prior with mean zero and variances zero for A3, A4, . . ., which is a
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Table 7.3. Bayesian estimates of the U.S. example system

prior ν A1 A2

λ = ∞ .028 1.307 .106 −.554 −.814 −.318 −.101 .318 1.022
θ = 1 .129 .080 1.045 −.177 .473 −.135 −.014 −.197 −.416
(unrestricted) .096 .193 .068 .978 .284 −.248 −.035 .053 −.644

.030 .042 .042 .034 1.065 −.064 −.027 .070 −.308

.061 1.307 .021 −.514 −.465 −.331 −.009 .212 .679
λ = 1 .110 .060 1.088 −.173 .283 −.108 −.060 −.162 −.238
θ = .25 .078 .119 .064 1.060 .025 −.167 −.034 −.069 −.316

.029 .021 .029 .050 1.044 −.043 −.014 .031 −.265

.083 1.550 .004 −.012 −.007 −.570 −.002 −.000 .004
λ = 1 −.015 .005 1.270 −.011 −.011 −.001 −.271 −.003 −.002
θ = .01 −.032 −.003 .008 1.095 −.001 −.002 .002 −.216 −.001

−.016 −.003 .004 .002 1.187 −.001 .001 .000 −.252

−.045 1.009 .002 −.001 −.000 −.003 .000 −.000 .000
λ = .01 .018 .001 .999 −.001 −.002 .000 −.002 −.000 −.000
θ = .25 −.004 .001 −.000 .993 −.001 .000 −.000 −.002 −.000

−.003 .000 .000 .000 .994 .000 .000 −.000 −.002

bit unrealistic. The above analysis is just meant to illustrate the effect of
the parameters that determine the prior variances. Also, if the variables are
believed to be cointegrated, the Minnesota prior is not a good choice. It is
more suited for a process which has a VAR representation in first differences
because the basic idea underlying this prior is that the variables are roughly
unrelated random walks. Notice, however, that for the present system, if a
VECM with cointegration rank r = 1 and one lagged difference is fitted by ML
and the corresponding levels VAR coefficients are determined via (7.2.10), the
estimates in the lower part of Table 7.2 are obtained. If the system is actually
cointegrated, the rank restriction should not lead to major distortions in the
estimates. Therefore, it should not be surprising that the diagonal elements of
the ML estimator of A1 are again not far from 1. Thus, even if the variables
are cointegrated, the Minnesota prior may not lead to substantial distortions.
This property may explain why the prior has been used successfully in many
applications, in particular, for forecasting (see Litterman (1986)).

7.5 Forecasting Estimated Integrated and Cointegrated
Systems

As seen in Chapter 6, Section 6.5, forecasting integrated and cointegrated
variables is conveniently discussed in the framework of the levels VAR rep-
resentation of the data generation process. Therefore we consider a VAR(p)
model,

yt = A1yt−1 + · · · + Apyt−p + ut, (7.5.1)
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with integrated and possibly cointegrated variables. All symbols have their
usual meanings (see Section 6.5). Deterministic terms are left out for conve-
nience. Adding them is a straightforward exercise which is left to the reader.

Replacing the coefficients A1, . . . , Ap, and the white noise covariance ma-
trix Σu by estimators in the forecasting formulas of Section 6.5 creates similar
problems as in the stationary, stable case considered in Chapter 3, Section 3.5.
Denoting the h-step forecast based on estimated coefficients by ŷt(h) and in-
dicating estimators by hats gives

ŷt(h) = Â1ŷt(h− 1) + · · · + Âpŷt(h− p), (7.5.2)

where ŷt(j) := yt+j for j ≤ 0. For this predictor, the forecast error becomes

yt+h − ŷt(h) = [yt+h − yt(h)] + [yt(h) − ŷt(h)]

=
h−1∑
i=0

Φiut+h−i + [yt(h) − ŷt(h)], (7.5.3)

where the last equality sign follows from Eq. (6.5.4) in Chapter 6. The last two
terms in (7.5.3) are uncorrelated if parameter estimation is based on data up
to period t only. In fact, under standard assumptions, the last term has zero
probability limit, yt(h)− ŷt(h) = op(1), as in the stationary case (see Problem
7.7). Thus, the forecast errors from estimated processes and processes with
known coefficients are asymptotically equivalent. However, in the present case,
the MSE correction for estimated processes derived in Section 3.5 is difficult
to justify (see Problem 7.8 and Basu & Sen Roy (1987)). This problem must
be kept in mind when forecast intervals are constructed. One possible MSE
estimator is

Σ̂y(h) =
h−1∑
i=0

Φ̂iΣ̂uΦ̂
′
i, (7.5.4)

where the Φ̂i’s are obtained from the estimated Ai’s by the recursions in (6.5.5)
in Section 6.5. This estimator is likely to underestimate the true forecast un-
certainty on average in small samples. Therefore, there is some danger that
the confidence level of corresponding forecast intervals is overstated. Reimers
(1991) derived a small sample correction especially for models with cointe-
grated variables and Engle & Yoo (1987) and Reinsel & Ahn (1992) reported
on simulation studies in which imposing the cointegration restriction in the
estimation gave better long-range forecasts than the use of unrestricted mul-
tivariate LS estimators.

7.6 Testing for Granger-Causality

7.6.1 The Noncausality Restrictions

In Section 6.6, we have seen that the restrictions characterizing Granger-
noncausality are the same as in the stable case. If the levels VAR(p) repre-
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sentation (7.5.1) of the data generation process is considered again and the
vector yt is partitioned in M - and (K−M)-dimensional subvectors zt and xt,

yt =
[
zt

xt

]
and Ai =

[
A11,i A12,i

A21,i A22,i

]
, i = 1, . . . , p,

where the Ai are partitioned in accordance with the partitioning of yt, then
xt does not Granger-cause zt if and only if the hypothesis

H0 : A12,i = 0 for i = 1, . . . , p, (7.6.1)

is true. Hence, we just have to test a set of linear restrictions. A Wald test is a
standard choice for this purpose. In the present case, it may be problematic,
however. We will discuss the potential problem next and then present a mod-
ification that has a limiting χ2-distribution, as usual, and, hence, resolves the
problem.

7.6.2 Problems Related to Standard Wald Tests

If the process is estimated by one of the procedures described in Section
7.2 such that the estimator α̂ of α := vec[A1, . . . , Ap] has the asymptotic
distribution given in Corollary 7.1.1, then a Wald test can be conducted for
the pair of hypotheses

H0 : Cα = 0 against H1 : Cα �= 0. (7.6.2)

Here C is an (N × pK2) matrix of rank N . The relevant Wald statistic is

λW = T α̂′C′(CΣ̂co
α C′)−1Cα̂, (7.6.3)

where Σ̂co
α is a consistent estimator of Σco

α . The statistic λW has an asymptotic
χ2(N)-distribution, provided the null hypothesis is true and

rk(CΣ̂co
α C ′) = rk(CΣco

α C′) = N. (7.6.4)

This result follows from standard asymptotic theory (see Appendix C.7). We
have chosen to state it here again because the rank condition (7.6.4) now be-
comes important. It is automatically satisfied for stable, full VAR processes as
discussed in Chapter 3, because in that case the asymptotic covariance matrix
of the coefficient estimator is nonsingular. Now, however, Σco

α is singular if
the cointegration rank r is less than K (see Corollary 7.1.1). Therefore, it is
possible in principle that rk(CΣco

α C′) < N , even if C has full row rank N .
A limiting χ2-distribution of λW can also be obtained if the inverse of

CΣ̂co
α C ′ in (7.6.3) is replaced by a generalized inverse. In that case, the asymp-

totic distribution of λW is χ2(rk(CΣco
α C′)) if

rk(CΣ̂co
α C ′) = rk(CΣco

α C′) (7.6.5)
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with probability one (see Andrews (1987)). Unfortunately, the latter condition
will not hold in general. In particular, if a cointegrated system is estimated in
unconstrained form by multivariate LS and if Σco

α is estimated as in Corollary
7.1.1, CΣ̂co

α C′ has rank N with probability 1, while rk(CΣco
α C′) may be less

than N . Andrews (1987) showed that in such a case the asymptotic distribu-
tion of λW may not even be χ2. A detailed analysis of the problem for the
particular case of testing for Granger-causality in cointegrated systems was
provided by Toda & Phillips (1993). In this context, it is perhaps worth point-
ing out that the equality in (7.6.5) may not hold, even if the cointegration
rank has been specified correctly and the corresponding restrictions have been
imposed in the estimation procedure (see Problem 7.9). For the hypothesis of
interest here, a possible solution to the problem was proposed by Dolado &
Lütkepohl (1996) and Toda & Yamamoto (1995). It will be presented next.
Our discussion follows the former article.

Another possible approach to overcome inference problems in levels VARs
with integrated variables was described by Phillips (1995). It is known as fully
modified VAR estimation and is based on nonparametric corrections. Some of
its drawbacks are pointed out by Kauppi (2004).

7.6.3 A Wald Test Based on a Lag Augmented VAR

As discussed in Section 7.2 (see in particular Section 7.2.1), the estimators of
coefficients attached to stationary regressors converge at the usual T 1/2 rate
to a nonsingular normal distribution. Therefore, the problem of the previous
subsection can be solved if the model can be rewritten in such a way that all
parameters under test are attached to stationary regressors. To this end, the
following reparameterization is helpful:

yt =
p∑

j=1,j �=i

Ajyt−j + Aiyt−i + ut

=
p∑

j=1,j �=i

Aj(yt−j − yt−i) +

⎛⎝ p∑
j=1

Aj

⎞⎠ yt−i + ut.

Defining a differencing operator ∆k such that ∆kyt = yt − yt−k for k =
±1,±2, . . ., the model can be written as

∆iyt =
p∑

j=1,j �=i

Aj∆i−jyt−j + Πyt−i + ut, (7.6.6)

where Π = −(IK −A1 − · · · −Ap), as usual. For k > 0, ∆kyt = (yt − yt−1) +
(yt−1 − yt−2) + · · · + (yt−k+1 − yt−k) is stationary as the sum of stationary
processes and the same is easily seen to hold for k < 0. Therefore, it follows
from the previously mentioned results in Section 7.2 that the LS estimators
of the Aj , j �= i, have a nonsingular joint asymptotic normal distribution.
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Notice that these estimators are, of course, identical to those based on the
levels VAR model (7.5.1) because we have just reparameterized the model.
Hence, the following proposition from Dolado & Lütkepohl (1996, Theorem
1) is obtained.

Proposition 7.8 (Asymptotic Distribution of the Wald Statistic)
Let yt be a K-dimensional I(1) process generated by the VAR(p) process in
(7.5.1) and denote the LS estimator of Ai by Âi (i = 1, . . . , p). Moreover,
let α(−i) be a K2(p − 1)-dimensional vector obtained by deleting Ai from
[A1, . . . , Ap] and vectorizing the remaining matrix. Analogously, let α̂(−i) be
a K2(p−1)-dimensional vector obtained by deleting Âi from [Â1, . . . , Âp] and
vectorizing the remainder. Then

√
T (α̂(−i) − α(−i))

d→ N (0, Σα(−i)), (7.6.7)

where the (K2(p − 1) × K2(p − 1)) covariance matrix Σα(−i) is nonsingular
and the Wald statistic λW for testing H0 : Cα(−i) = 0 has a limiting χ2(N)-
distribution, that is,

λW = T α̂′
(−i)C

′(CΣ̂α(−i)C
′)−1Cα̂(−i)

d→ χ2(N)

under H0. Here C is an (N ×K2(p− 1)) matrix with rk(C) = N and Σ̂α(−i)

is a consistent estimator of Σα(−i) .

Note that

Σα(−i) = plim T (X(−i)X
′
(−i))

11 ⊗Σu,

where X(−i) = [X(−i)
0 , . . . , X

(−i)
T−1] with

X
(−i)
t−1 =

⎡⎢⎢⎢⎣
∆i−1yt−1

...
∆i−pyt−p

yt−i

⎤⎥⎥⎥⎦ (K2p× 1)

and (X(−i)X
′
(−i))

11 denotes the upper left-hand (K2(p−1)×K2(p−1)) dimen-
sional submatrix of (X(−i)X

′
(−i))

−1. Thereby a consistent estimator of Σα(−i)

is obtained as

Σ̂α(−i) = T (X(−i)X
′
(−i))

11 ⊗ Σ̂u,

where Σ̂u is the residual covariance matrix obtained from the LS residuals.
Proposition 7.8 shows that, whenever the elements in at least one of the

complete coefficient matrices Ai are not restricted under H0, the Wald statistic
has its usual asymptotic χ2-distribution. In other words, if restrictions are
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placed on all Ai’s, i = 1, . . . , p, as in the noncausality hypothesis (7.6.1), we
can get a χ2 Wald test by adding an extra lag in estimating the parameters of
the process. If the true data generation process is a VAR(p), then a VAR(p+1)
with Ap+1 = 0 is also a correct model. Because we know that Ap+1 = 0, the
causality test can be based on the estimator α̂(−(p+1)), that is, an estimator
of the first K2p elements of vec[Â1, . . . , Âp+1]. Notice that LS estimation may
be applied to the levels VAR(p+ 1) model. To carry out the causality test, it
is not necessary to actually perform the reparameterization of the process in
(7.6.6) because the LS estimators of the Aj matrices do not change due to the
reparameterization. Also, the covariance matrix of the asymptotic distribution
may be estimated as usual from the levels VAR(p + 1).

We do not have to know the cointegration properties of the system to use
this lag augmentation test procedure. Of course, there may be a loss of power
due to over-specifying the lag length. The loss in power may not be substantial
if the true order p is large and the dimension K is small or moderate, because,
in this case, the relative reduction in the estimation precision due to one extra
VAR coefficient matrix may be small. On the other hand, if the true order is
small and K is large, an extra lag of all variables may lead to a sizeable decline
in overall estimation precision and, hence, in the power of the modified Wald
test. There are in fact cases, where the extra lag is not necessary to obtain
the asymptotic χ2-distribution of the Wald test for Granger-causality. For
example, for bivariate processes with cointegrating rank 1, no extra lag is
needed, if both variables are I(1) (e.g., Lütkepohl & Reimers (1992a)).

Proposition 7.8 remains valid if deterministic terms are included in the
VAR model. This result follows from the discussion in Section 7.2 because
including such terms leaves the asymptotic properties of the VAR coefficients
unaffected. It may also be of interest that a similar result can be obtained
for VAR systems with I(d) variables where d > 1. In that case, d coefficient
matrices Ai must be unrestricted under H0 (see Dolado & Lütkepohl (1996)).
Alternatively, d lags must be added if all parameter matrices of the original
process are restricted. This result can also be obtained from Sims et al. (1990).

7.6.4 An Example

We follow again Lütkepohl (2004) and use the German interest rate/inflation
example to illustrate causality testing for cointegrated variables. The data
generation process is assumed to be a VAR(4). The model is augmented
by one lag and, hence, a VAR(5) is fitted and used in the actual tests for
Granger-causality, while a VAR(4) is used for testing instantaneous causality.
The results are given in Table 7.4, where F -versions of the Granger-causality
test statistics are reported. The asymptotic χ2-distribution is often a poor
approximation to the small sample distribution of the causality test statistics.
Therefore, an F -version is preferred which is obtained in the usual way by di-
viding the χ2-statistic by its degrees of freedom parameter (see Section 3.6).
As in Section 3.6, the test for instantaneous causality is based on the residual
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covariance matrix. This approach is justified by Lemma 7.3 which shows that
the asymptotic distribution of the usual residual covariance matrix estimator
is the same as in the stationary case. Hence, the same test for instantaneous
causality can be used under normality assumptions.

Table 7.4. Tests for causality between German interest rate and inflation

causality hypothesis test value distribution p-value

R Granger-causal for Dp 2.24 F (4, 152) 0.07
Dp Granger-causal for R 0.31 F (4, 152) 0.87
R and Dp instantaneously causal 0.61 χ2(1) 0.44

None of the p-values in Table 7.4 is smaller than 0.05. Therefore, none of
the noncausality hypotheses can be rejected at the 5% significance level. Given
the subset model (7.3.9), this outcome is somewhat surprising because there
are clearly significant estimates in that model. Of course, using the present
tests is a different way of looking at the data than considering the individual
coefficients in the subset model. The relatively large number of parameters in
the presently considered unrestricted model which even includes an extra lag,
makes it difficult for the sample information to clearly distinguish the sets of
parameters from their values specified in the null hypothesis.

The insignificant value of the test for instantaneous causality is not surpris-
ing, however. The correlation matrix corresponding to the covariance matrix
in (7.3.9) is[

1 −0.01
−0.01 1

]
.

Thus, the instantaneous correlation between the two residual series is very
small. This property is reflected in the test result in Table 7.4.

7.7 Impulse Response Analysis

In Section 6.7, we have seen that, in principle, impulse response analysis in
cointegrated systems can be conducted in the same way as for stationary
systems. If estimated processes are used, the asymptotic properties of the
impulse response coefficients and forecast error variance components follow
from Proposition 3.6 in conjunction with Corollary 7.1.1. In other words, the
relevant covariance matrices Σα̂ and Σσ̂ have to be used in Proposition 3.6. Of
course, the remarks on Proposition 3.6 regarding the estimation of standard
errors etc. apply for the present case too. In practice, confidence intervals for
impulse responses are typically computed with bootstrap methods.

To illustrate the impulse response analysis we use again our German in-
terest rate/inflation example system. We have performed an impulse response
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analysis on the basis of the subset VECM (7.3.9) and show forecast error
impulse responses with bootstrap confidence intervals determined by Hall’s
percentile method (see Appendix D.3) in Figure 7.3. Using forecast error im-
pulse responses is unproblematic here because no instantaneous causality and
no significant instantaneous correlation between the two residual series was
diagnosed in Section 7.6.4. The point estimates of the impulse responses look
very much like those in Figure 6.4 in Chapter 6. This similarity is not surpris-
ing because the model assumed in that chapter is very similar to the present
one. Because the variables are integrated of order one, the impulses have
permanent effects. This conclusion can be defended even if the estimation
uncertainty is taken into account.

Fig. 7.3. Forecast error impulse responses for model (7.3.9) with 95% Hall per-
centile bootstrap confidence intervals based on 2000 bootstrap replications.

We emphasize again that an uncritical impulse response analysis is prob-
lematic. In particular, different sets of impulse responses exist and it is not
clear which one properly reflects the actual reactions of the variables. The
caveats of impulse response analysis are discussed in Sections 2.3 and 3.7.
They are therefore not repeated here. We will return to impulse response
analysis in Chapter 9, when structural restrictions are discussed for identify-
ing meaningful shocks.
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7.8 Exercises

7.8.1 Algebraic Exercises

Problem 7.1
Show that, in the proof of Result 6 of Section 7.1,

T−1
T∑

t=1

(u∗
t − ut)y

(2)′
t−1 = op(1).

(
Hint: Use

T−1
T∑

t=1

(u∗
t − ut)y

(2)′
t−1 = (α̂ − α)T−1

T∑
t=1

β′yt−1y
(2)′
t−1.

)
Problem 7.2
Prove Proposition 7.1 based on the ideas presented in Section 7.2.1. (Hint:
See Ahn & Reinsel (1990).)

Problem 7.3
Prove that

√
T [α̃β̃′ − α̃(β)β′] = op(1) holds in the proof of Lemma 7.3.

(
Hint:

note that

α̃β̃′ − α̃(β)β′ = α̃[β̃′ − β′] + [α̃ − α̃(β)]β′.
)

Problem 7.4
Determine the ML estimators in a cointegrated VAR(p) process with cointe-
gration rank r, under the assumption that the cointegration matrix satisfies
restrictions β = Hϕ, where H and ϕ are (K × s) and (s × r) matrices, re-
spectively, with r < s < K. (Hint: Proceed as in the proof of Proposition
7.3.)

Problem 7.5
Show that the expressions in (7.2.27) and (7.2.28) are the LS estimators of α
and Γ, respectively, conditional on β = β̂.

Problem 7.6
Derive the EGLS estimator for restrictions of the form vec[α : Γ] = �ϕ + r
on the short-run parameters of the VECM (7.2.1) and state its asymptotic
distribution (see (7.3.8) for the definition of the notation).

Problem 7.7
Consider a cointegrated VAR(1) process without intercept, yt = A1yt−1 + ut,
and show that

plim [yT (1) − ŷT (1)] = plim (A1 − Ã1)yT = 0.

Assume that yt is Gaussian with initial vector y0 = 0 and the ML estimator
Ã1 is based on y1, . . . , yT . (Hint: Use Lemma 7.2 and plim yT /T = 0 from
Phillips & Durlauf (1986).)
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Problem 7.8
Consider the matrix Ω(h) used in the MSE correction in Section 3.5 and
argue why it is problematic for unstable processes. Analyze in particular the
derivation in (3.5.12).

Problem 7.9
Consider a three-dimensional VAR(1) process with cointegration rank 1 and
suppose the cointegrating matrix has the form β = (β1,β2, 0)′. Use Corollary
7.1.1 to demonstrate that the elements in the last column of A1 have zero
asymptotic variances. Formulate a linear hypothesis for the coefficients of A1

for which the rank condition (7.6.4) is likely to be violated if the covariance
estimator of Corollary 7.1.1 is used.

7.8.2 Numerical Exercises

The following problems are based on the U.S. data given in File E3 and
described in Section 7.4.3. The variables are defined as in that subsection.

Problem 7.10
Apply the ML procedure described in Section 7.2.3 to estimate a VAR(3)
process with cointegration rank r = 1 and intercept vector. Determine the
estimates ν̃, Ã1, Ã2, and Ã3 and compare them to unrestricted LS estimates
of a VAR(3) process.

Problem 7.11
Compute forecasts up to 10 periods ahead using both the unrestricted VAR(3)
model and the VAR(3) model with cointegration rank 1. Compare the fore-
casts.

Problem 7.12
Compare the impulse responses obtained from an unrestricted and restricted
VAR(3) model with cointegration rank 1.
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Specification of VECMs

In specifying VECMs, the lag order, the cointegration rank and possibly fur-
ther restrictions have to be determined. The lag order and the cointegration
rank are typically determined before further restrictions are imposed on the
parameter matrices. Moreover, the specification of a VECM usually starts
by determining a suitable lag length because, in choosing the lag order, the
cointegration rank does not have to be known, whereas many procedures for
specifying the cointegration rank require knowledge of the lag order. There-
fore, in the following, we will first discuss the lag order choice (Section 8.1)
and then consider procedures for determining the cointegration rank (Section
8.2). We will comment on subset modelling in a VECM framework in Section
8.3 and, in Section 8.4, we will discuss checking the adequacy of such models.
More precisely, residual autocorrelation analysis, testing for nonnormality and
structural change are dealt with.

8.1 Lag Order Selection

It was mentioned in Section 7.2.1 that Wald tests for zero restrictions on
coefficient matrices of the lagged differences can be constructed. Hence, the
number of lagged differences in a VECM can be chosen by a sequence of tests
similar to that in Section 4.2. Because the procedure and its problems are
discussed in some detail in that section, we will not repeat the discussion here
but focus on order selection criteria such as AIC, HQ, and SC in this section.

In Section 4.3, the FPE criterion was introduced for stationary, stable
processes as a criterion that minimizes the forecast MSE and therefore has a
justification if forecasting is the objective. We have seen in Section 7.5 that the
forecast MSE correction used for estimated stationary processes is difficult to
justify in the cointegrated case and, hence, the FPE criterion cannot be based
on the same footing in the latter case. This argument does not mean, however,
that the criterion is not a useful one in some other sense for nonstationary
processes. For instance, it is possible that it still provides models with excellent



326 8 Specification of VECMs

small sample forecasting properties. It was also shown in Section 4.3 that
Akaike’s AIC is asymptotically equivalent to the FPE criterion. Therefore,
similar comments apply for AIC.

The criteria HQ and SC were justified by their ability to choose the order
“correctly in large samples”, that is, they are consistent criteria. It was shown
by Paulsen (1984) and Tsay (1984) that the consistency property of these
criteria is maintained for integrated processes. To make that statement precise,
we give the following result from Paulsen (1984) without proof.

Proposition 8.1 (Consistent VAR Order Estimation)
Let

yt = ν + A1yt−1 + · · · + Apyt−p + ut

be a K-dimensional VAR(p) process with Ap �= 0 and standard white noise ut

and suppose that det(IK −A1z−· · ·−Apz
p) has s roots equal to one, that is,

z = 1 is a root with multiplicity s, and all other roots are outside the complex
unit circle. Furthermore, let

Cr(m) = ln |Σ̃u(m)| + mcT /T, (8.1.1)

where Σ̃u(m) is the Gaussian ML or quasi ML estimator of Σu for a VAR(m)
model based on a sample of size T and m fixed presample values as in Propo-
sition 4.2, and cT is a nondecreasing sequence indexed by T . Let p̂ be such
that

Cr(p̂) = min{Cr(m)|m = 0, 1, . . . ,M}
and suppose M ≥ p. Then p̂ is a consistent estimator of p if and only if
cT → ∞ and cT /T → 0 as T → ∞.

This proposition extends Proposition 4.2 to processes with integrated vari-
ables. It implies that AIC is not a consistent criterion while HQ and SC are
both consistent. Thus, if consistent estimation is the objective, we may apply
HQ and SC for stationary and integrated processes.

Denoting the orders chosen by AIC, HQ, and SC by p̂(AIC), p̂(HQ), and
p̂(SC), respectively, we also get from Proposition 4.3 that

p̂(SC) ≤ p̂(HQ) ≤ p̂(AIC) for T ≥ 16.

This result is obtained because Proposition 4.3 does not require any stationar-
ity or stability assumptions. It follows as in Chapter 4 that AIC asymptotically
overestimates the true order with positive probability (see Corollary 4.3.1).

Although these results are nice because they generalize the stationary case
in an easy way, they do not mean that AIC or FPE are order selection criteria
inferior to HQ and SC. Recall that consistent order estimation may not be a
relevant objective in small sample situations. In fact, the true data generating
process may not admit a finite order VAR representation.
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Notice also that, while we have considered specifying the VAR order p,
the criteria are also applicable for choosing the number of lagged differences
in a VECM because p−1 lagged differences in a VECM correspond to a VAR
order p. Thus, once we know p, we know the number of lagged differences.
If some of the variables are known to be integrated, the VAR order must be
at least 1. This information can be taken into account in model selection by
searching only over orders 1, . . . ,M rather then 0, 1, . . . ,M .

We have applied the three criteria AIC, HQ, and SC to our German interest
rate/inflation example data from Section 7.2.6 with a maximum order of M =
8 and a constant and seasonal dummies in the model. The values of the criteria
are shown in Table 8.1. SC and HQ both recommend the order p̂ = 1 while
p̂(AIC) = 4. Thus, in a VECM based on SC and HQ, no lagged differences
appear, whereas three lagged differences have to be included according to AIC.
We have chosen to go with the AIC estimate in the example in Section 7.2.6.

Table 8.1. VAR order estimation for interest rate/inflation system

VAR order
m AIC(m) HQ(m) SC(m)

0 −18.75 −18.75 −18.75
1 −20.98 −20.94∗ −20.88∗

2 −20.97 −20.89 −20.76
3 −20.89 −20.77 −20.58
4 −20.99∗ −20.82 −20.57
5 −20.93 −20.72 −20.41
6 −20.89 −20.63 −20.26
7 −20.85 −20.55 −20.12
8 −20.80 −20.46 −19.96
∗Minimum.

In Chapter 4, we have mentioned that model selection may be based on
the residual autocorrelations or portmanteau tests. These statistics can also
be used for VECMs. They are discussed in Section 8.4.1.

8.2 Testing for the Rank of Cointegration

Although model selection criteria have also been used in specifying the coin-
tegrating rank of a VECM (e.g., Lütkepohl & Poskitt (1998)), it is more
common in practice to use statistical tests for this purpose. Many different
tests have been proposed in the literature and the properties of most of them
depend on the deterministic terms included in the model. In the following,
we will therefore discuss models with different deterministic terms separately.
The general model is assumed to be of the form

yt = µt + xt,
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where xt is the stochastic part which is assumed to have a VECM represen-
tation without deterministic terms and µt is the deterministic term, as in
Chapter 6, Section 6.4. We will start with the easiest although most unrealis-
tic case where no deterministic term is present and, thus, µt = 0. Most of the
discussion will focus on likelihood ratio (LR) tests and close relatives of them
because they are very common in applied work and they also fit well into the
present framework. Some comments on other procedures will be provided in
Section 8.2.9.

8.2.1 A VECM without Deterministic Terms

Based on Proposition 7.3, it is easy to derive the likelihood ratio statistic for
testing a specific cointegration rank r = r0 of a VECM against a larger rank
of cointegration, say r = r1. Consider the VECM without determinist terms,

∆yt = Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (8.2.1)

where yt is a process of dimension K, rk(Π) = r with 0 ≤ r ≤ K, the
Γj ’s (j = 1, . . . , p− 1) are (K ×K) parameter matrices and ut ∼ N (0, Σu) is
Gaussian white noise, as in Chapter 7, Section 7.2.3. For simplicity we assume
that the process starts at time t = 1 with zero initial values (i.e., yt = 0 for
t ≤ 0). Alternatively, the initial values may be any fixed values.

Suppose we wish to test

H0 : rk(Π) = r0 against H1 : r0 < rk(Π) ≤ r1. (8.2.2)

Under normality assumptions, the maximum of the likelihood function for a
model with cointegration rank r is given in Proposition 7.3. From that result,
the LR statistic for testing (8.2.2) is seen to be

λLR(r0, r1) = 2[ln l(r1) − ln l(r0)]

= T

[
−

r1∑
i=1

ln(1 − λi) +
r0∑

i=1

ln(1 − λi)

]

= −T

r1∑
i=r0+1

ln(1 − λi), (8.2.3)

where l(ri) denotes the maximum of the Gaussian likelihood function for
cointegration rank ri. Obviously, the test value is quite easy to compute,
using the eigenvalues from Proposition 7.3.

It turns out, however, that the asymptotic distribution of the LR statistic
under the null hypothesis for given r0 and r1 is nonstandard. In particular, it
is not a χ2-distribution. It depends on the number of common trends K − r0
under H0 and on the alternative hypothesis. Two different pairs of hypotheses
have received prime attention in the related literature:

H0 : rk(Π) = r0 versus H1 : r0 < rk(Π) ≤ K (8.2.4)
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and

H0 : rk(Π) = r0 versus H1 : rk(Π) = r0 + 1. (8.2.5)

The LR statistic λLR(r0,K) for checking (8.2.4) is often referred to as the trace
statistic for testing the cointegrating rank and λLR(r0, r0+1) is called the max-
imum eigenvalue statistic. Johansen (1988, 1995) shows that the asymptotic
distributions of these LR statistics under the null hypothesis are

λLR(r0,K) d→ tr(D) (8.2.6)

and

λLR(r0, r0 + 1) d→ λmax(D), (8.2.7)

where λmax(D) denotes the maximum eigenvalue of the matrix D and

D :=
(∫ 1

0

WdW′
)′ (∫ 1

0

WW′ds
)−1 (∫ 1

0

WdW′
)
. (8.2.8)

Here W := WK−r0(s) stands for a (K − r0)-dimensional standard Wiener
process. In other words, the limiting null distributions are functionals of a (K−
r0)-dimensional standard Wiener process. Percentage points of the asymptotic
distributions and, thus, critical values for the LR tests can be generated easily.
Tables are, for example, available in Johansen (1995). Hence, a LR test is
available under Gaussian assumptions and, as usual, the test statistics have
the same limiting distributions even if the underlying process is not normally
distributed but satisfies the more general assumptions used in Section 7.2, for
example.

The strategy for determining the cointegrating rank of a given system of
K variables is to test a sequence of null hypotheses,

H0 : rk(Π) = 0, H0 : rk(Π) = 1, . . . , H0 : rk(Π) = K − 1, (8.2.9)

and terminate the tests when the null hypothesis cannot be rejected for the
first time. The cointegrating rank is then chosen accordingly. Both the max-
imum eigenvalue and the trace tests may be used here. For example, if there
are three variables (K = 3), we first test rk(Π) = 0. If this null hypothesis
cannot be rejected, the analysis proceeds with a cointegration rank of r = 0
and, hence, a model in first differences is considered in the subsequent anal-
ysis. If, however, rk(Π) = 0 is rejected, we test rk(Π) = 1. Should the test
not reject this hypothesis, the analysis may proceed with a VECM with coin-
tegrating rank r = 1. Otherwise rk(Π) = 2 is tested and r = 2 is chosen as
the cointegrating rank if this hypothesis cannot be rejected. If rk(Π) = 2 is
also rejected, one may consider working with a stationary VAR model for the
levels of the variables.
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Clearly, in these tests the lag order has to be known. In practice, it is often
chosen by one of the model selection criteria discussed in the previous section,
based on the levels VAR model, before the cointegrating rank is tested.

As mentioned previously, the model framework in (8.2.1) is too simple for
practical purposes because deterministic terms are usually needed to describe
the generation process of a given set of time series properly. Therefore, we will
now consider processes with deterministic terms.

8.2.2 A Nonzero Mean Term

We now assume that the deterministic term consists of a simple constant mean
term only,

µt = µ0. (8.2.10)

Although we typically think of µ0 as a fixed nonzero (K × 1) vector, the case
µ0 = 0 is not explicitly excluded. In other words, the user of the test is not
sure that the process mean is zero and therefore allows for the possibility of a
nonzero mean term. In Section 6.4, we have seen that in this case the VECM
for the observable variables yt can be written as

∆yt = Πoyo
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (8.2.11)

where

yo
t−1 :=

[
yt−1

1

]
and Πo := [Π : ν0] is (K × (K + 1)) with ν0 := −Πµ0. Thus, the LR statistic
for testing the cointegration rank can be determined exactly as in the zero
mean case considered in the previous subsection, except that yt−1 has to
be replaced by yo

t−1 in the relevant formulas from which the eigenvalues are
computed in Proposition 7.3. In this case, the LR statistics have asymptotic
null distributions as in (8.2.6) and (8.2.7), where now

D :=
(∫ 1

0

WodW′
)′ (∫ 1

0

WoWo′ds
)−1 (∫ 1

0

WodW′
)

(8.2.12)

with

Wo := Wo(s) :=
[

WK−r0(s)
1

]
(see Johansen (1991)). Again, critical values may be found in Johansen (1995).
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8.2.3 A Linear Trend

A process with a linear trend is also of interest from a practical point of view.
Hence, let

µt = µ0 + µ1t, (8.2.13)

where µ0 and µ1 are arbitrary (K × 1) vectors. In Section 6.4, we have seen
that in this case the VECM for the observable yt can be represented as

∆yt = ν + Π+y+
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (8.2.14)

where ν := −Πµ0+(IK−Γ1−· · ·−Γp−1)µ1, Π+ := [Π : ν1] is a (K×(K+1))
matrix with ν1 := −Πµ1, and

y+
t−1 :=

[
yt−1

t− 1

]
.

Thus, the LR statistics of interest can again be determined exactly as in the
zero mean case of Section 8.2.1 by replacing yt−1 with y+

t−1 and accounting
for the intercept term by adding a row of ones in ∆X in the relevant formulas
in Proposition 7.3 (see Section 7.2.4). For the present case, the LR statistics
have asymptotic null distributions as in (8.2.6) and (8.2.7) with

D :=
(∫ 1

0

W+dW′
)′ (∫ 1

0

W+W+′ds
)−1 (∫ 1

0

W+dW′
)
. (8.2.15)

Here W+ abbreviates the (K−r0+1)-dimensional stochastic process W+(s) :=
[W(s)′, s− 1

2 ]′ with W(s) := WK−r0(s)−
∫ 1

0
WK−r0(u)du being a demeaned

standard Wiener process, as shown by Johansen (1994, 1995). Critical values
may also be found in the latter reference.

8.2.4 A Linear Trend in the Variables and Not in the
Cointegration Relations

In the model (8.2.14), the linear trend term is unrestricted and therefore may
also be part of the cointegration relations. Even if the variables have a linear
trend, it is possible that there is no such term in the cointegration relations.
In other words, the cointegration relations are drifting along a common linear
trend. This situation can arise if the trend slope is the same for all variables
which have a linear trend. Formally this case occurs if µ1 �= 0 and Πµ1 =
αβ′µ1 = 0 or, equivalently, if β′µ1 = 0. In other words, this situation is present
if the trend parameter µ1 is nonzero and it is orthogonal to the cointegration
relations. In this case, (8.2.14) reduces to

∆yt = ν + Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut. (8.2.16)
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Thus, in this situation we have a model just like (8.2.1), except that there is
an intercept term in addition. Again, the LR statistics for testing (8.2.4) or
(8.2.5) can be determined easily as in the zero mean case of Section 8.2.1 by
adding a row of ones in ∆X in the relevant formulas in Proposition 7.3 (see
Section 7.2.4). The limiting distributions of the LR statistics under the null
hypothesis are also as in (8.2.6) and (8.2.7), where now

D :=
(∫ 1

0

W̆dW′
)′ (∫ 1

0

W̆W̆′ds
)−1 (∫ 1

0

W̆dW′
)
. (8.2.17)

Here W̆ := W̆(s) := Wc(s)−∫ 1

0
Wc(u)du, where Wc(s) := [WK−r0−1(s)′, s]′

is a (K − r0)-dimensional stochastic process. This result and corresponding
critical values for the tests may also be found in Johansen (1995).

Notice that the condition µ1 �= 0 and Πµ1 = 0 rules out the situation
where rk(Π) = K because, for a nonsingular matrix Π, the relation Πµ1 = 0
cannot hold for a nonzero µ1. Thus, the assumptions made for deriving the
limiting distributions of the test statistics make a test of

H0 : rk(Π) = K − 1 versus H1 : rk(Π) = K

meaningless. Intuitively, this result is obtained because, if Π has full rank, the
data generation process is stationary and, in that case, a VAR process with
an intercept does not generate a linear trend. Thus, if a linear trend is known
to be present in the variables, Π cannot have full rank in a model where an
intercept is the only deterministic term.

8.2.5 Summary of Results and Other Deterministic Terms

The results of the previous subsections are summarized in the following propo-
sition.

Proposition 8.2 (Limiting Distributions of LR Tests for the Cointegrating
Rank)
Suppose yt = µt + xt, where µt is a deterministic term and xt is a purely
stochastic Gaussian process defined by

∆xt = Πxt−1 + Γ1∆xt−1 + · · · + Γp−1∆xt−p+1 + ut, t = 1, 2, . . . ,

where all symbols are defined as in (8.2.1) and xt = 0 for t ≤ 0. Then the LR
statistics for testing (8.2.4) and (8.2.5) have limiting null distributions

λLR(r0,K) d→ tr(D)

and

λLR(r0, r0 + 1) d→ λmax(D),
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respectively, where

D =
(∫ 1

0

FdW′
K−r0

)′ (∫ 1

0

FF′ds
)−1 (∫ 1

0

FdW′
K−r0

)
with

(1) F(s) = WK−r0(s), if µt = 0 a priori,
(2) F(s) = Wo(s) = [WK−r0(s)

′ : 1]′, if µt = µ0 is a constant,
(3) F(s) = [W(s)′, s− 1

2 ]′ as in (8.2.15), if µt = µ0 + µ1t is a linear trend,
(4) F(s) = W̆(s) as in (8.2.17), if µt = µ0 + µ1t is a linear trend with µ1 �= 0

and β′µ1 = 0, that is, the trend is orthogonal to the cointegration relations.

Several remarks are worthwhile with respect to this result.

Remark 1 Percentage points of the asymptotic distributions in Proposition
8.2 are easy to simulate by considering multivariate random walks of the form

xt = xt−1 + ut, t = 1, 2, . . . , T,

where x0 = 0 and ut ∼ N (0, IK) is Gaussian white noise, that is,

xt =
t∑

i=1

ui.

Noting that

T−2
T∑

t=1

xt−1x
′
t−1

d→
∫ 1

0

WW′ds,

T−1
T∑

t=1

xt−1u
′
t

d→
∫ 1

0

WdW′,

and so on (see Appendix C.8, Proposition C.18), we can, for example, approx-
imate

tr

[(∫ 1

0

WdW′
)′ (∫ 1

0

WW′ds
)−1 (∫ 1

0

WdW′
)]

by

tr

⎡⎣( T∑
t=1

xt−1u
′
t

)′ ( T∑
t=1

xt−1x
′
t−1

)−1 ( T∑
t=1

xt−1u
′
t

)⎤⎦
for a large sample size T . Similar approximations can be used for the other
asymptotic distributions (see also Problem 8.2).
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Remark 2 Although we only give the limiting distributions of the LR statis-
tics under the null hypothesis in the proposition, the asymptotic distributions
under local alternatives of the form

Π = αβ′ +
1
T

α1β′
1

were also derived (see Johansen (1995) and Saikkonen & Lütkepohl (1999,
2000a)). Here α and β are fixed (K × r0) matrices of rank r0 and α1 and β1

are fixed (K × (r − r0)) matrices of rank r − r0 and such that the matrices
[α : α1] and [β : β1] have full column rank r. Thus, in this setup, the matrix
Π is assumed to depend on the sample size. Local power studies have been
performed to shed light on the power properties of the LR tests when the
alternative is true but the corresponding parameter values are close to the
region where the null hypothesis holds.

Remark 3 Power comparisons between the alternative test versions can help
in deciding whether to use trace or maximum eigenvalue tests. Lütkepohl,
Saikkonen & Trenkler (2001) performed a detailed small sample and lo-
cal power comparison of several test versions and concluded that trace and
maximum eigenvalue tests have very similar local power in many situations,
whereas each test version has its relative advantages in small samples, de-
pending on the criterion for comparison. Thus, neither of the tests is generally
preferable in practice.

Remark 4 It is also possible to derive the asymptotic properties of the LR
tests for other deterministic terms. For example, higher order polynomial
trends may be considered. Such terms lead to changes in the null distribu-
tions of the test statistics. We do not consider them here because they seem
to be of lesser importance from a practical point of view.

Remark 5 Seasonal dummy variables are another type of deterministic terms
which are of practical importance. They are often used to account for seasonal
fluctuations in the variables (see, e.g., the example in Section 7.2.6). If sea-
sonal dummies are added in addition to an unrestricted intercept term, they
do not affect the asymptotic distributions of the LR statistics for the cointe-
gration rank. We have considered two models, however, where no unrestricted
intercept term was included. The first one was the model of Section 8.2.1
without any deterministic terms at all. As this model is of limited practical
use anyway, we do not consider the implications of adding seasonal dummy
variables. The other model without an unrestricted intercept term was the one
with a nonzero mean discussed in Section 8.2.2. It is of more use in practice
and it is therefore of interest to consider the possibility of adding seasonal
dummies.

Suppose there are q seasons and the deterministic term is of the form

µt = µ0 +
q−1∑
i=1

δisit,
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where µ0 and δi (i = 1, . . . , q − 1) are (K × 1) parameter vectors and the
seasonal dummies are denoted by sit. Suppose that they are defined such that
they are orthogonal to the intercept term, that is,

sit =
{

1 if t is associated with season i,
−1
q−1

otherwise,

for i = 1, . . . , q. In that case, using the same line of reasoning as in Section
6.4, the corresponding VECM for yt is

∆yt = Πoyo
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 +

q−1∑
i=1

δ∗i sit + ut,

where the δ∗i ’s are (K×1) parameter vectors. Notice that Lsit = si,t−1 = si−1,t

for i = 2, . . . , q and Ls1t = sqt and, for any t,
∑q

i=1 sit = 0 so that sqt =
−∑q−1

i=1 sit. Hence, the latter sum can be substituted for sqt (see also Problem
8.1). In this model, the seasonal dummies have no impact on the asymptotic
distribution of the LR statistic for the cointegrating rank (Johansen (1991)).

Remark 6 A different situation arises if the deterministic term includes a
shift dummy variable I(t>TB) which is zero up to time TB and then jumps
to one. Such a variable affects the asymptotic distributions of the LR test
statistics for the cointegrating rank. In fact, Johansen, Mosconi & Nielsen
(2000) showed that in this case the asymptotic distributions depend on where
the shift occurs in the sample. More precisely, it depends on the fraction of
the sample before the break. In contrast, impulse dummy variables which
are always zero except in one specific period, do not affect the asymptotic
properties of the LR tests.

8.2.6 An Example

We have applied LR trace tests for the cointegrating rank to the German
interest rate/inflation example data from Section 7.2.6 and give results for
different lag orders in Table 8.2. Notice that, although we report the results for
the trace tests, the maximum eigenvalue variant is equivalent if H0 : rk(Π) = 1
is tested in a bivariate system. In that case, the alternative hypotheses in
(8.2.4) and (8.2.5) coincide. Because the inflation rate has a strong seasonal
pattern, we have included seasonal dummy variables in the deterministic term.
Given the theoretical considerations in Section 7.2.6, one may not see the
need for a general trend in the model. Clearly, one would not expect the
cointegration relation to include a linear trend. In fact, one may wonder about
the need to consider a deterministic linear trend at all in the model because
one could argue that neither interest rates nor inflation rates are likely to have
such components in Germany. Even if there is a strong case for excluding the



336 8 Specification of VECMs

possibility of a linear trend term in a long-run analysis of these two variables,
it may still be useful to include such a trend for a particular sample period.
Recall that any model is just an approximation to the data generation process
for a specific period of time. In Table 8.2, we therefore report results for
different deterministic terms.

Table 8.2. LR trace tests for the cointegration rank of the German interest
rate/inflation system

deterministic no. of lagged null test critical values
term differences hypothesis value 10% 5%

constant, seasonal dummies 0 rk(Π) = 0 89.72 17.79 19.99
rk(Π) = 1 1.54 7.50 9.13

3 rk(Π) = 0 21.78 17.79 19.99
rk(Π) = 1 4.77 7.50 9.13

orthogonal linear trend, 0 rk(Π) = 0 89.10 13.31 15.34
seasonal dummies

3 rk(Π) = 0 20.80 13.31 15.34

linear trend, 0 rk(Π) = 0 97.21 22.95 25.47
seasonal dummies rk(Π) = 1 4.45 10.56 12.39

3 rk(Π) = 0 24.78 22.95 25.47
rk(Π) = 1 7.72 10.56 12.39

Notes: Sample period: 1972.2−1998.4 (including presample values). Critical values
from Johansen (1995, Tables 15.2, 15.3, and 15.4).

For all deterministic terms and all lag orders, the tests reject a cointegrat-
ing rank of zero. The only possible exception is the case, where a fully general
linear trend and three lagged differences are included in the model. In that
case, the cointegration rank zero can only be rejected at the 10% level and
not at the 5% level, whereas in all other cases the tests reject at a 5% level.
Of course, the model with three lagged differences and a linear deterministic
trend is the least restricted model considered in Table 8.2. Thus, if any one
of the other models describes the DGP well, the same is true for the latter
model. Therefore, one may argue that the tests based on this model should be
the most reliable. Unfortunately, such an argument is valid for the size of the
test at best. In small sample studies, some evidence was found that redundant
lags or deterministic terms can have a negative effect on the powers of the LR
tests (see Hubrich, Lütkepohl & Saikkonen (2001) for an overview of small
sample studies). Thus, taking the small sample properties of the tests into ac-
count, there is substantial evidence that the cointegrating rank is larger than
zero.

For the models with a constant and a linear trend, none of the tests can
reject a cointegration rank of r = 1. If a deterministic linear trend is assumed
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to be present in at least one of the variables and not in the cointegration
relations, that is, the trend is orthogonal to the cointegration relations, then
testing the null hypothesis rk(Π) = 1 does not make sense for a bivariate
system, as explained in Section 8.2.4. Therefore, no results are reported for
that null hypothesis in Table 8.2. Thus, the evidence in favor of a single
cointegration relation in our example system is overall quite strong. Therefore,
we have used this rank in previous models for the two series.

The discussion of which deterministic terms to include in the model for our
example data shows that there is a need for statistical procedures to assist
in the decision. There are indeed appropriate tests available, as discussed
in Section 7.2.4. We will return to some such tests for specific hypotheses of
interest in the present context in Section 8.2.8. Before we do so, we will discuss
some other ideas for testing the cointegrating rank of a VECM. In the next
subsection, we consider the possibility of subtracting the deterministic part
first and then applying LR type tests to the adjusted series.

8.2.7 Prior Adjustment for Deterministic Terms

LR tests for the cointegrating rank were found to have low power, in particular
in large models (large dimension and/or long lag order). Therefore, other tests
and test variants have been proposed which have advantages at least in some
situations. One variant was, for instance, proposed by Saikkonen & Lütkepohl
(2000d). They suggested a two-step procedure in which the deterministic part
is estimated first. Then the observed series are adjusted for the deterministic
terms and an ‘LR test’ is applied to the adjusted system. We will discuss their
approach for the case of a model with a linear trend term. The other cases of
interest can be handled with straightforward modifications.

Thus, we consider a data generation process of the form

yt = µ0 + µ1t + xt, (8.2.18)

where µ0 and µ1 are fully general (K × 1) vectors and xt has a VECM repre-
sentation of the form (8.2.1). Hence, the data generation process of yt has the
VECM representation (8.2.14). Suppose we want to test the pair of hypotheses

H0 : rk(Π) = r0 versus H1 : rk(Π) > r0.

Then the model (8.2.14) is estimated by ML with a cointegration rank r0
and estimators α̃, β̃, Γ̃j (j = 1, . . . , p − 1) as well as estimators of the other
parameters are obtained. From these estimators we can get estimators of the
levels VAR parameter matrices as follows (see Section 6.3, Eq. (6.3.7)):

Ã1 = IK + α̃β̃′ + Γ̃1,

Ãi = Γ̃i − Γ̃i−1, i = 2, . . . , p− 1,

Ãp = −Γ̃p−1.



338 8 Specification of VECMs

These estimators are used to estimate the parameters µ0 and µ1 in (8.2.18)
by an EGLS procedure. To present the estimator, we define Ã(L) := IK −
Ã1L− · · · − ÃpL

p, G̃t := Ã(L)at, and H̃t := Ã(L)bt, with

at :=
{

1 for t ≥ 1,
0 for t ≤ 0, bt :=

{
t for t ≥ 1,
0 for t ≤ 0.

Moreover, we define

Q̃ :=

[
(α̃′

Σ̃−1
u α̃)−1/2α̃′

Σ̃−1
u

(α̃′
⊥Σ̃uα̃⊥)−1/2α̃′

⊥

]
.

Premultiplying (8.2.18) by Q̃Ã(L) gives

Q̃Ã(L)yt = Q̃G̃tµ0 + Q̃H̃tµ1 + η∗t , t = p + 1, . . . , T, (8.2.19)

where the transformation ensures that the error term has roughly a unit co-
variance matrix because Q̃′Q̃ = Σ̃−1

u . Thus, estimating the transformed model
(8.2.19) by LS amounts to EGLS estimation of µ0 and µ1 in the untransformed
model yt = µ0+µ1t+xt. The resulting estimators of µ0 and µ1 will be denoted
by µ̃GLS

0 and µ̃GLS
1 , respectively.

Using these estimators, yt can now be trend-adjusted as x̃t := yt− µ̃GLS
0 −

µ̃GLS
1 t and an ‘LR test’ can be applied to x̃t, as described in Section 8.2.1. Of

course, although the test statistics are computed in the same way as described
in that section except that yt is replaced by x̃t, the tests are now not really
LR tests anymore because they are applied to adjusted data rather than the
original ones. To distinguish the resulting tests from the actual LR tests, we
will refer to them as GLS-LR tests and we denote the trace and maximum
eigenvalue test statistics as λGLS

LR (r0,K) and λGLS
LR (r0, r0 +1), respectively, in

the following. Given that these tests are not actual LR tests, it may also not
be surprising that the limiting distributions of the test statistics are different
from those of the actual LR statistics. They also depend on the deterministic
terms that are included in the model. To state the asymptotic distributions
formally, we use the following conventions. A Brownian bridge of dimension
K − r0 is defined as

WB(s) = WK−r0(s) − sWK−r0(1)

and an integral of a stochastic process F with respect to a Brownian bridge
is defined as∫ 1

0

FdWB :=
∫ 1

0

FdWK−r0 −
∫ 1

0

FdsWK−r0(1).

Now we can state the limiting null distributions of the λGLS
LR statistics for the

different deterministic terms of interest.
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Proposition 8.3 (Limiting Distributions of GLS-LR Tests for the Cointe-
grating Rank)
Under the conditions of Proposition 8.2, the GLS-LR test statistics have the
following limiting null distributions:

λGLS
LR (r0,K) d→ tr(D)

and

λGLS
LR (r0, r0 + 1) d→ λmax(D),

where D depends on the deterministic terms included in the model as follows:

(1) If µt = µ0 is a constant,

D =
(∫ 1

0

WdW′
)′ (∫ 1

0

WW′ds
)−1 (∫ 1

0

WdW′
)

with W := WK−r0(s).
(2) If µt = µ0 + µ1t is a linear trend,

D =
(∫ 1

0

WBdWB′
)′ (∫ 1

0

WBWB′ds
)−1 (∫ 1

0

WBdWB′
)
.

(3) If µt = µ0 + µ1t is a linear trend with µ1 �= 0 and β′µ1 = 0,

D =
(∫ 1

0

W̆dW′
)′ (∫ 1

0

WcWc′ds
)−1 (∫ 1

0

W̆dW′
)

with W := WK−r0(s), Wc(s) := [WK−r0−1(s)′, s]′, and W̆(s) as in
(8.2.17).

Proofs of these results can be found in Saikkonen & Lütkepohl (2000b, d)
and Lütkepohl et al. (2001). The following remarks may be of interest.

Remark 1 The adjustment for deterministic terms may appear to be compli-
cated at first sight. One may, for instance, wonder why the deterministic terms
are not directly estimated by LS and then subtracted from the observed yt.
Unfortunately, in the present case, the LS estimators do not have the same
asymptotic properties as the EGLS estimators described here and also the
resulting cointegration tests will have different properties. The present proce-
dure is useful because it results in tests with attractive asymptotic properties,
as we will argue in the next remark.
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Remark 2 Comparing the asymptotic distributions in Propositions 8.2 and
8.3, it turns out that the λGLS

LR statistics for the case of a constant deterministic
term (µt = µ0) have the same asymptotic distributions as the corresponding
LR statistics for the case without any deterministic term. Thus, estimation
of the constant mean term does not affect the asymptotic distributions of the
λGLS

LR statistics, while it has an impact on the LR statistics in Proposition
8.2. This observation suggests that the GLS-LR tests may have better power
properties, at least asymptotically. This conjecture was actually confirmed in
a local power comparison by Saikkonen & Lütkepohl (1999). The situation
is not as clear for the other situations. In other words, if there is a linear
trend term in the model, a local power comparison does not lead to a unique
ranking of the tests. In some situations the LR tests are preferable and in
other situations the GLS-LR variants may be preferable, depending on the
properties of the data generation process. Also, local power is an asymptotic
concept which allows to investigate the power properties of tests in regions
close to the null hypothesis when the sample size goes to infinity. Because
asymptotic theory is not always a good guide for small sample properties,
these results do not guarantee superior performance of the GLS-LR tests,
even when only a constant mean term is included in the model. In particular,
the latter tests may have size distortions in small samples.

Remark 3 Although the asymptotic distributions in Proposition 8.3 look a
little more complicated than those in Proposition 8.2, critical values can again
be simulated easily because the asymptotic distributions are still functionals
of Wiener processes. Percentage points for all three asymptotic distributions
are tabulated in the literature (see Johansen (1995), Lütkepohl & Saikkonen
(2000) and Saikkonen & Lütkepohl (2000b)).

Remark 4 The GLS-LR tests can also be adopted for other deterministic
terms such as higher order polynomials and seasonal dummy variables. For
the former case, different asymptotic distributions will result, whereas sea-
sonal dummies can be added to all three deterministic terms considered in
Proposition 8.3 without affecting the limiting distributions of the test statis-
tics. An advantage of the GLS-LR tests is that these asymptotic distributions
are also not affected by including shift dummies in the deterministic term.
This property is in contrast to the LR tests and means that the same critical
values can be used as for the corresponding tests without shift dummies (see
Saikkonen & Lütkepohl (2000c)). In particular, there is no need to compute
new critical values for each break point. Given the computing power which
is available today, this may not seem as a great advantage over the LR tests
at first sight. It makes it possible, however, to also consider cases where the
actual break date is unknown and has to be estimated in addition to the other
parameters of the process. Lütkepohl, Saikkonen & Trenkler (2004) consider
that case and show that a number of different estimators of the break date can
be used without affecting the asymptotic distributions of the λGLS

LR statistics
under the null hypothesis.
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Example

We have also applied the GLS-LR tests to the German interest rate/inflation
example series and present the results in Table 8.3. Although the evidence is
again clearly in favor of a cointegrating rank of r = 1, all tests have more
trouble rejecting r0 = 0 if the larger lag order is used. In that case, the
hypothesis rk(Π) = 0 cannot even be rejected at the 10% level if only a
constant and seasonal dummies are included in the model. Thus, although
the GLS-LR tests have good local power properties especially for this case,
superior small sample power is not guaranteed. Of course, it must also be kept
in mind that a test with higher power does not necessarily reject a specific
null hypothesis for a particular data set more easily than a test with lower
power. Moreover, our theoretical models underlying the asymptotic analysis
may not fully capture all features of the actual data generation process.

Table 8.3. GLS-LR trace tests for the cointegration rank of the German interest
rate/inflation system

deterministic no. of lagged null test critical values
term differences hypothesis value 10% 5%

constant, seasonal dummies 0 rk(Π) = 0 28.21 10.35 12.21
rk(Π) = 1 0.41 2.98 4.14

3 rk(Π) = 0 10.13 10.35 12.21
rk(Π) = 1 2.42 2.98 4.14

orthogonal linear trend, 0 rk(Π) = 0 28.16 8.03 9.79
seasonal dummies

3 rk(Π) = 0 9.75 8.03 9.79

linear trend, 0 rk(Π) = 0 49.42 13.89 15.92
seasonal dummies rk(Π) = 1 1.83 5.43 6.83

3 rk(Π) = 0 14.43 13.89 15.92
rk(Π) = 1 4.71 5.43 6.83

Notes: Sample period: 1972.2−1998.4 (including presample values). Critical values
from Johansen (1995, Tables 15.1), Saikkonen & Lütkepohl (2000b, Table 1) and
Lütkepohl & Saikkonen (2000, Table 1) for the case of a constant, an orthogonal
trend, and a general linear trend, respectively.

8.2.8 Choice of Deterministic Terms

As mentioned earlier, including redundant deterministic terms in the models
on which cointegration rank tests are based, may result in a substantial loss of
power (see also Doornik, Hendry & Nielsen (1998) and Hubrich et al. (2001)).
Therefore, it is helpful that statistical procedures are available for investi-
gating which terms to include. Johansen (1994, 1995) proposed LR tests for
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hypotheses regarding the deterministic terms. These tests are obvious choices
because the ML estimators and, hence, the corresponding maxima of the like-
lihood functions are easy to compute for various different deterministic terms
(see Section 7.2.4).

Apart from dummy variables, a linear trend

µ0 + µ1t (8.2.20)

is the most general deterministic term considered in the foregoing. A possible
pair of hypotheses of interest related to this term when µ1 �= 0 is

H0 : β′µ1 = 0 versus H1 : β′µ1 �= 0. (8.2.21)

Hence, there is a deterministic linear trend in the variables and the test checks
whether the trend is orthogonal to the cointegration relations. In other words,
the test checks the model (8.2.14) against (8.2.16). The corresponding LR test
has a standard χ2 limiting distribution under the null hypothesis, as we have
seen in Section 7.2.4. If the underlying VECM has cointegrating rank r and,
thus, β is a (K × r) matrix, r zero restrictions are specified in H0. Therefore
we have r degrees of freedom, that is, the LR test statistic has an asymptotic
χ2(r)-distribution.

Another pair of hypotheses of interest is

H0 : µ1 = 0 versus H1 : µ1 �= 0, β′µ1 = 0. (8.2.22)

In this case, a model with an unrestricted intercept, (8.2.16), is tested against
one where no linear trend is present and, thus, the constant can be absorbed
into the cointegration relations as in (8.2.11). Again, the LR test has stan-
dard asymptotic properties, that is, for a VECM of dimension K and with
cointegration rank r, it has a χ2(K − r) limiting distribution.

If these tests are used for deciding on the deterministic term in a VECM, it
may be worth keeping in mind that they introduce additional uncertainty into
the modelling procedure. The tests are performed for a model with a specific
cointegrating rank. Thus, ideally the cointegrating rank has to be determined
before the deterministic terms are tested, whereas one motivation for them
was that cointegrating rank tests may have better power if the deterministic
term is specified properly. Thus, the tests present only a partial solution to
the problem. Proceeding as in the example and checking the robustness of the
rank tests with respect to different specifications of the deterministic terms is
a useful strategy.

8.2.9 Other Approaches to Testing for the Cointegrating Rank

The literature on cointegration rank tests has grown rapidly in recent years.
Many related issues have been discussed and investigated. Examples are non-
normal processes (Lucas (1997, 1998), Boswijk & Lucas (2002), Caner (1998)),
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the presence of higher order integration and long memory (Gonzalo & Lee
(1998), Breitung & Hassler (2002)), the impact of the dimension of the data
generation process (Ho & Sørensen (1996)) and using a reversed sequence of
null hypotheses in testing for the cointegrating rank (Snell (1999)). Also, a
number of studies considered the small sample properties of the tests. A re-
cent review of the related literature with many more references was provided
by Hubrich et al. (2001).

Moreover, a number of other test procedures were proposed. For instance,
Lütkepohl & Saikkonen (1999a) used the idea underlying the causality test
which was presented in Section 7.6.3 and augmented the number of lags to
obtain a χ2-test for the cointegrating rank. Bewley & Yang (1995) and Yang &
Bewley (1996) constructed a test based on canonical correlations of the levels
variables. Stock & Watson (1988) considered the use of principal component
analysis and Bierens (1997) presented a fully nonparametric approach to coin-
tegration rank testing. These and many other proposals were also reviewed in
Hubrich et al. (2001), including the possibility of choosing the cointegrating
rank by model selection criteria. A range of cointegration tests was also pro-
posed and investigated in a single equation framework (e.g., Engle & Granger
(1987), Phillips & Ouliaris (1990), Banerjee et al. (1993), Choi (1994), Shin
(1994), Haug (1996)). They are of limited usefulness for the situation we have
considered here, where several cointegrating relations may be present in a
system of variables. Therefore, no details are presented.

8.3 Subset VECMs

When the lag order and the cointegration rank of a VECM have been deter-
mined, specifying further restrictions may be useful to reduce the dimension-
ality of the parameter space and thereby improve the estimation precision.
As we have seen in Sections 7.2 and 7.3, the standard t-ratios and F -tests re-
tain their usual asymptotic properties if they are applied to the short-run and
loading parameters of a VECM. Therefore, subset modelling for cointegrated
systems may be based on statistical tests. Instead of using testing procedures,
restrictions for individual parameters or groups of parameters may also be
based on model selection criteria in a similar way as in Chapter 5. In particu-
lar, the strategies applied to individual equations of the system may be used.
Consider, for instance, the j-th equation of a VECM,

yjt = x1tθ1 + · · · + xNtθN + ujt, t = 1, . . . , T. (8.3.1)

Here all right-hand side regressor variables are denoted by xkt, including de-
terministic terms and the cointegration relations. Thus, xkt = β′

iyt−1, where
βi is the i-th column of the cointegration matrix β, is a possible regressor. If β
is unknown, it may be replaced by a superconsistent estimator β̂, which may
be based on the unrestricted model and variables xkt = β̂′

iyt−1 may be added
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as regressors in (8.3.1). Using this setup, all the standard procedures described
in Section 5.2.8 are available, including the full search procedure, sequential
elimination of regressors as well as top-down and bottom-up strategies.

For the German interest rate/inflation example with cointegration rela-
tion β′yt = Rt − 4Dpt, we have used the sequential elimination of regressors
procedure in conjunction with the AIC criterion based on a search for restric-
tions on individual equations and found the following model, using the sample
period 1973.2–1998.4 plus the required presample values:

[
∆Rt

∆Dpt

]
=

⎡⎣ −0.07
(−3.1)

0.17
(4.5)

⎤⎦ (Rt−1 − 4Dpt−1)

+

⎡⎣ 0.24
(2.5)

−0.08
(−1.9)

0 −0.31
(−2.5)

⎤⎦[
∆Rt−1

∆Dpt−1

]
+

⎡⎣ 0 −0.13
(−2.5)

0 −0.37
(−3.6)

⎤⎦[
∆Rt−2

∆Dpt−2

]

+

⎡⎣ 0.20
(2.1)

−0.06
(−1.6)

0 −0.34
(−4.7)

⎤⎦[
∆Rt−3

∆Dpt−3

]

+

⎡⎣ 0 0 0.010
(2.8)

0

0.010
(3.0)

−0.034
(−7.6)

−0.018
(−3.8)

−0.016
(−3.6)

⎤⎦
⎡⎢⎢⎣

c
s1,t

s2,t

s3,t

⎤⎥⎥⎦ +
[
û1,t

û2,t

]
.

(8.3.2)

Here t-ratios are given in parentheses underneath the parameter estimates.
This is precisely the model that was also used in Section 7.3.3, see (7.3.9), to
illustrate EGLS estimation and that procedure is used here as well. Notice,
however, that the search procedure was based on LS estimation of individual
equations. Hence, different t-ratios were the basis for variable selection. Still,
generally the coefficients with large absolute t-ratios in the unrestricted model
(see Table 7.1) are maintained in the restricted subset VECM.

In the present example, we have pretended that the cointegration relation
is known. Such an assumption is not required for the subset procedures to be
applicable. The same subset model selection procedure may be applied if the
cointegration relations contain estimated parameters. In other words, it may
be used as the second stage in a two-stage procedure, where the cointegration
matrix β is estimated first and then the estimated β matrix is substituted for
the true one in the second stage. The subset restrictions are determined in
the second stage.
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8.4 Model Diagnostics

Diagnostic checking is also an important stage of the general modelling pro-
cedure for VECMs. Many of the tests for model adequacy discussed for sta-
tionary VAR processes can be extended to the VECM case. Tests for residual
autocorrelation, nonnormality, and structural change will be treated in turn
in the following. We will start with a discussion of the properties of residual
autocorrelations of an estimated VECM. The underlying model is assumed to
be of the simple form

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (8.4.1)

where α and β are (K × r) matrices of rank r and all other symbols are de-
fined as in (8.2.1). We assume that the model has been estimated by reduced
rank ML or the two-stage procedure discussed in Section 7.2.5. If not explic-
itly stated otherwise, no restrictions are placed on the loading and short-run
parameters.

8.4.1 Checking for Residual Autocorrelation

Asymptotic Properties of Residual Autocovariances and
Autocorrelations

To study the properties of the autocovariances and autocorrelations of the
residuals of a VECM, we denote the estimated residuals by ût and otherwise
use the notation from Section 4.4 of Chapter 4 and Section 5.2.9 of Chapter
5, that is,

Ĉi :=
1
T

T∑
t=i+1

ûtû
′
t−i, i = 0, 1, . . . , h,

Ĉh := (Ĉ1, . . . , Ĉh), ĉh := vec(Ĉh),

are the residual autocovariances and R̂i (i = 0, 1, . . . , h),

R̂h := (R̂1, . . . , R̂h), and r̂h := vec(R̂h)

denote the corresponding residual autocorrelations.
To derive the asymptotic properties of these quantities, it is convenient

to also treat the case of a known cointegration matrix. Suppose the short-
run and loading parameters of the VECM (8.4.1) are estimated with the
same method as before, except that the true cointegration matrix is used
instead of the estimated one. For the resulting estimation residuals we denote
the previously defined quantities by tildes instead of hats. In other words,
we have C̃i, C̃h, and c̃h instead of Ĉi, Ĉh, and ĉh, respectively, and so on.
Brüggemann, Lütkepohl & Saikkonen (2004) showed that C̃i and Ĉi have
the same asymptotic distributions. More precisely they proved the following
lemma.
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Lemma 8.1

C̃i − Ĉi = Op(T−1) for i = 1, 2, . . . .

Although Brüggemann et al. (2004) showed this result for full VECMs
estimated by reduced rank ML or unrestricted LS, it is clear from their proof
that it also applies for other asymptotically equivalent estimation methods.
The lemma enables us to get the asymptotic distributions of residual autoco-
variances, for example, with the same arguments as previously derived results
(see, e.g., Proposition 5.7) because, if the cointegration matrix is known, all
regressors in the VECM are stationary variables. Therefore, the same argu-
ments apply as in Section 5.2.9 in Chapter 5. From Lemma 8.1 it then follows
that

√
TC̃i −

√
T Ĉi = op(1)

so that
√
T c̃ and

√
T ĉ have identical asymptotic distributions. From the

asymptotic distributions of the residual autocovariances we also get those of
the residual autocorrelations in the familiar way.

Portmanteau and LM Tests for Residual Autocorrelation

Brüggemann et al. (2004) also showed that portmanteau and LM tests for
residual autocorrelation can be used in conjunction with VECMs. In this
case, the portmanteau statistic

Qh := T
h∑

i=1

tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 ) = T ĉ′h(Ih ⊗ Ĉ−1

0 ⊗ Ĉ−1
0 )ĉh

has an approximate χ2(hK2−K2(p−1)−Kr)-distribution. Notice that the de-
grees of freedom are adjusted relative to the stationary full VAR case. Now we
subtract from the number of autocovariances included in the statistic (hK2)
the number of estimated parameters not counting the elements of the cointe-
gration matrix. Again this result follows from Lemma 8.1 which allows us to
treat the cointegration matrix as known for asymptotic derivations, even if it
is estimated.

It may be worth emphasizing that this result also holds if the VECM
is estimated by unrestricted LS or, equivalently, the corresponding VAR in
levels is estimated by unrestricted LS. In other words, if the integration and
cointegration properties of a system of time series are not clear and an analyst
therefore decides to use a levels VAR model, the portmanteau test cannot be
used because the degrees of freedom of the approximating χ2-distribution are
not known. If one ignores this problem and simply uses the smaller degrees
of freedom for the stationary full VAR case (hK2 − pK2), the test is likely to
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reject a true null hypothesis far too often. Also, recall that the approximate χ2-
distribution is obtained under the assumption that h goes to infinity with the
sample size. Thus, the portmanteau test is not suitable for testing for residual
autocorrelation of low order. As in the stationary case, in small samples it
may be preferable to use the modified portmanteau statistic

Q̄h := T 2
h∑

i=1

(T − i)−1tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 ).

The asymptotic distribution of the LM statistic for residual autocorrela-
tion is not affected by the presence of integrated variables. We may use the
auxiliary regression model

ût = αβ̂′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1

+ D1ût−1 + · · · + Dhût−h + εt, t = 1, . . . , T, (8.4.2)

with ûs = 0 for s < 1, and compute the LM statistic for the hypotheses

H0 : D1 = · · · = Dh = 0 vs. H1 : Dj �= 0 for at least one j ∈ {1, . . . , h}.

The resulting LM statistic has an asymptotic χ2-distribution,

λLM (h) d→ χ2(hK2),

if the null hypothesis of no autocorrelation is true, as in the stationary case (see
Section 4.4.4). In contrast to the portmanteau test, the LM test is especially
useful for testing for low order residual autocorrelation. For large h, it may in
fact not be possible to estimate the parameters in the auxiliary model (8.4.2)
because of an insufficient sample size.

Both the portmanteau tests and the LM tests are also applicable for subset
VECMs with restrictions on the short-run and loading parameters. In that
case, modifications analogous to those described in Section 5.2.9 have to be
used. For the portmanteau tests, this means that the degrees of freedom in the
approximate distributions have to be adjusted. More precisely, the number of
estimated loading and short-term parameters is subtracted from the number
of autocovariances included in the statistic. Here restricted parameters are
not counted. For the LM tests, the auxiliary model has to be modified. The
estimated residuals may now come from a two-stage estimation as described
in Section 7.3.2. Moreover, the restrictions should also be accounted for in the
auxiliary model as described in Section 5.2.9.

To illustrate these tests, we have applied them to the subset VECM (8.3.2)
for the German interest rate/inflation example data. In this case, the cointe-
gration relation is assumed to be known. According to our previous results,
the same asymptotic distributions of the autocorrelation test statistics are ob-
tained for an estimated cointegration relation. Moreover, deterministic terms
are included in the model (8.3.2). Again, it can be shown that such terms do



348 8 Specification of VECMs

Table 8.4. Residual autocorrelation tests for subset VECM (8.3.2)

test λLM (1) λLM (2) λLM (3) λLM (4) Q24 Q̄24 Q30 Q̄30

test statistic 3.91 6.62 6.89 10.26 77.2 89.3 93.5 111.5

approximate
distribution χ2(4) χ2(8) χ2(12) χ2(16) χ2(86) χ2(86) χ2(110) χ2(110)

p-value 0.42 0.58 0.86 0.85 0.74 0.38 0.87 0.44

not affect the asymptotic distributions of the portmanteau and LM tests for
residual autocorrelation (see Brüggemann et al. (2004) for details).

Both types of tests have been applied with different lag orders h and
the results are given in Table 8.4. The LM tests are useful for testing for low
order residual autocorrelation. Therefore, only lags one to four are considered.
Clearly, for a very long lag length (high order autocorrelation) the degrees of
freedom may be exhausted in the auxiliary regression. In contrast, the lag
length h has to be large for the approximate χ2-distribution to be valid for
the portmanteau tests. Therefore, only large lag orders are considered for
these tests. All asymptotic p-values in Table 8.4 are substantially larger than
conventional significance levels for such tests. Hence, there is no apparent
residual autocorrelation problem for our example model.

8.4.2 Testing for Nonnormality

The tests for nonnormality considered in Chapter 4, Section 4.5, are based
on the estimated residuals from a VAR process. We can use the residuals of
a VECM instead without affecting the asymptotic distributions of the test
statistics. This result follows again from the previously used superconsistency
of the estimator for the cointegration matrix and the properties of the em-
pirical moment matrices of integrated variables (see also Kilian & Demiroglu
(2000)).

8.4.3 Tests for Structural Change

Time invariance is an important property of a VECM for valid statistical
inference as well as for proper economic analysis and forecasting. Therefore,
tests for structural change are also important tools for diagnostic checking of
VECMs. The Chow tests and the prediction tests considered in Section 4.6 for
stationary VARs can be extended easily to the case of cointegrated systems.
We will discuss both types of tests in the following.

Chow Tests

Analogously to Section 4.6.1, in deriving the Chow tests, we assume that
a change in the parameters of the VECM (8.4.1) is suspected after period
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T1 < T . For a sample y1, . . . , yT plus the required presample values, we can
then set up the model in two parts:

∆Y(1) = α(1)β
′
(1)Y−1(1) + Γ(1)∆X(1) + U(1) (8.4.3)

and

∆Y(2) = α(2)β
′
(2)Y−1(2) + Γ(2)∆X(2) + U(2), (8.4.4)

where ∆Y(1) := [∆y1, . . . , ∆yT1 ], ∆Y(2) := [∆yT1+1, . . . , ∆yT ] and the other
data matrices are partitioned accordingly. The parameter matrices α(i), β(i)

and Γ(i) := [Γ1(i), . . . ,Γp−1(i)] contain the values for the i-th subperiod, where
i = 1, 2. Using similar arguments as in the proof of Proposition 7.3, it follows
that the ML estimators of these parameter matrices can be determined by two
separate reduced rank regressions applied to each of the two models (see also
Problem 8.5). Notice that the presample values used in the second subsample
coincide with the last observations of the first subperiod. To avoid this over-
lap, one may consider starting the second subsample only with observation
yT1+p+1. Such a modification may have advantages in small samples if there
is actually a structural break. If the null hypothesis of constant parameters
in both subperiods is tested, however, there is no strong case for dropping
observations between the two subsamples because, under the null hypothesis,
all observations are generated by the same process.

Assuming, as in Section 4.6.1, that both parts of the sample go to infinity
at a fixed proportion when T gets large, the asymptotic theory of Section 7.2
can be applied to derive the asymptotic distributions of the estimators. These
asymptotic results can then be used to test parameter constancy hypotheses
of the type

H0 : β(1) = β(2),α(1) = α(2),Γ(1) = Γ(2) (8.4.5)

against the alternative that at least one of the equalities is violated. From
the results in Section 7.2, it follows that the relevant Wald or LR tests have
asymptotic χ2-distributions. To determine the number of degrees of freedom,
it has to be kept in mind, however, that a nonsingular asymptotic distribution
for the estimator of β is only obtained upon suitable normalization. Hence,
the equalities β(1) = β(2) account only for r(K−r) restrictions so that the LR
statistic corresponding to (8.4.5) has a limiting χ2-distribution with r(K −
r)+rK+(p−1)K2 degrees of freedom. It is also possible to construct similar
tests for constancy of only a subset of the parameters (see Hansen (2003)).
Moreover, the tests can be extended to models with deterministic terms.

Prediction Tests for Structural Change

In Chapter 4, Section 4.6.2, we have considered two tests for structural change
that may be applied with small modifications if the data generation process
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is integrated or cointegrated. To see this, consider a K-dimensional Gaussian
VECM with cointegration rank r, as in (8.4.1). Denoting the optimal h-step
forecast at origin T by yT (h) and its MSE matrix by Σy(h), as in Section 6.5,
the quantity

τh = [yT+h − yT (h)]′Σy(h)−1[yT+h − yT (h)] (8.4.6)

has a χ2(K)-distribution (see Section 4.6.2). If the parameters of the process
were known, this statistic could be used to test whether yT+h is generated by
a Gaussian process of the type (8.4.1).

In practice, the process parameters have to be replaced by estimators and,
in Section 4.6.2, we have modified the forecast MSE matrix accordingly. In
Section 7.5, we have seen that the MSE approximation used for stationary,
stable processes is not appropriate in the present integrated case. Therefore,
we propose the statistic

τ#
h = [yT+h − ỹT (h)]′Σ̃y(h)−1[yT+h − ỹT (h)]/K, (8.4.7)

which has an approximate F (K,T −Kp− 1)-distribution. Here

ỹT (h) = Ã1ỹT (h− 1) + · · · + ÃpỹT (h− p),

with ỹT (j) := yT+j for j ≤ 0, and the Ãi’s are the ML estimators of the Ai’s
obtained from ML estimation of the VECM and converting to the levels VAR
representation. Moreover,

Σ̃y(h) =
h−1∑
i=0

Φ̃iΣ̃uΦ̃
′
i,

where Σ̃u is the ML estimator of Σu (see Proposition 7.3) and the Φ̃i’s are
computed from the Ãi’s by the recursions in (6.5.5). The F approximation to
the distribution of τ#

h follows by noting that

plim(τh −Kτ#
h ) = 0.

Hence Kτ#
h has an asymptotic χ2(K)-distribution and

τ#
h ≈ χ2(K)/K ≈ F (K,T −Kp− 1), (8.4.8)

where the numerator degrees of freedom are chosen in analogy with the sta-
tionary case. The quality of the F approximation in small samples is presently
unknown.

A test based on several forecasts, as discussed in Section 4.6.2, may be
generalized to integrated processes in a similar way. We may use

λh = T
h∑

i=1

ũ′
T+iΣ̃

−1
u ũT+i/[(T + Kp + 1)Kh] (8.4.9)
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as a test statistic with an approximate F (Kh, T −Kp− 1)-distribution. Here
the ũT+i’s are the residuals obtained for the postsample period by using the
ML estimators. The approximate distribution follows from asymptotic theory
as in the stationary, stable case (see Problem 8.7).

A number of other tests for structural change are available for VECMs.
For instance, Hansen & Johansen (1999) proposed tests which are based on
the eigenvalues from the ML estimation procedure (see Proposition 7.3).

8.5 Exercises

8.5.1 Algebraic Exercises

Problem 8.1
Consider the model yt = µt + xt, as in Section 8.2, for quarterly series with
deterministic term

µt = µ0 +
3∑

i=1

δisit,

where µ0 and δi (i = 1, 2, 3) are (K × 1) parameter vectors and the seasonal
dummies are denoted by sit, that is, sit has a value of 1 in season i and −1/3
otherwise. Show that the VECM for yt can be written as

∆yt = Πoyo
t−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 +

3∑
i=1

δ∗i sit + ut.

Show also that the vector (s1t, s2t, s3t, s4t)′ is orthogonal to (1, 1, 1, 1)′. In
other words, the seasonal dummies are orthogonal to the constant term.

Problem 8.2
Use Proposition C.18 from Appendix C.8.2 to construct a mechanism for
approximating the distribution(∫ 1

0

WodW′
)′ (∫ 1

0

WoWo′ds
)−1 (∫ 1

0

WodW′
)

in (8.2.12) via simulation.

Problem 8.3
Write down the EGLS estimation problem for the cointegration rank tests
described in Section 8.2.7 for a model with µt = µ0.

Problem 8.4
Consider residual autocorrelation tests for a three-dimensional VECM with
two lagged differences (p = 3) and a cointegrating rank of r = 2. What are the
approximate distributions of the Q20, Q25, and Q30 portmanteau statistics?
What are the asymptotic distributions of λLM (2) and λLM (5)?
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Problem 8.5
Show that, for a sample y1, . . . , yT with a possible structural break in period
T1, 1 < T1 < T , a VECM can be estimated by two separate reduced rank
regressions as in Proposition 7.3. (Hint: Use similar arguments as in the proof
of Proposition 7.3.)

Problem 8.6
Consider the model[

∆Y(1) : ∆Y(2)

]
= αβ′Y−1+

[
Γ(1) : Γ(2)

] [ ∆X(1) 0
0 ∆X(2)

]
+
[
U(1) : U(2)

]
,

where the symbols are defined as in (8.4.3) and (8.4.4). Derive the ML es-
timators of the parameters. (Hint: Use similar arguments as in the proof of
Proposition 7.3.)

Problem 8.7
Under the conditions of Section 8.4.3, show that

(T + Kp + 1)Khλh/T
d→χ2(hK),

where λh is the statistic defined in (8.4.9).

8.5.2 Numerical Exercises

The following problems are based on the U.S. data given in File E3 and
described in Section 7.4.3. The variables are defined in the same way as in
that section.

Problem 8.8
Use a maximum order of 10 and determine the VAR order of the example
system by the three model selection criteria AIC, HQ, and SC.

Problem 8.9
Assume that the data are generated by a VAR(3) process and determine the
cointegration rank with the tests described in Section 8.2.

Problem 8.10
Modify the AIC criterion appropriately and choose the order and cointegration
rank simultaneously with this criterion. Compare the result with that from
Problem 8.9.

Problem 8.11
Apply the ML procedure described in Section 7.2.3 and the EGLS estimator of
Section 7.2.2 to estimate the cointegration relation and the other parameters
of a VECM with cointegration rank r = 1, two lagged differences (i.e., p = 3)
and an intercept. Compare the estimates.

Problem 8.12
Use diagnostic tests to check the adequacy of the model estimated in Problem
8.11.



Part III

Structural and Conditional Models
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In Parts I and II, we have assumed that the time series of interest are gener-
ated by stationary or cointegrated reduced form VAR processes. In this part,
structural models and systems with unmodelled, exogenous variables are dis-
cussed. In Chapter 9, structural VARs and VECMs are considered and, in
Chapter 10, conditional or partial models are treated, where we condition
on some variables whose generation process is not part of the model. These
systems may be stationary if the unmodelled variables are generated by sta-
tionary processes. Alternatively, some or all of the unmodelled variables may
be nonstochastic fixed quantities. In that case, the mean vectors of the time
series variables of interest may be time varying and, hence, the series may
not be stationary. They may still be stationary when the deterministic terms
are removed, however. Generally, some of the endogenous and unmodelled
stochastic variables may be integrated and have stochastic trends. Suitable
models for this case will also be considered in Chapter 10.
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Structural VARs and VECMs

In Chapters 2 and 6, we have seen that, on the one hand, impulse responses
are an important tool to uncover the relations between the variables in a
VAR or VECM and, on the other hand, there are some obstacles in their in-
terpretation. In particular, impulse responses are generally not unique and it
is often not clear which set of impulse responses actually reflects the ongoings
in a given system. Because the different sets of impulses can be computed
from the same underlying VAR or VECM, it is clear that nonsample informa-
tion has to be used to decide on the proper set for a particular given model.
In econometric terminology, VARs are reduced form models and structural
restrictions are required to identify the relevant innovations and impulse re-
sponses. In this chapter, different possible restrictions that have been proposed
in the literature will be considered. The resulting models are known as struc-
tural VAR (SVAR) models (see, e.g., Sims (1981, 1986), Bernanke (1986),
Shapiro & Watson (1988), Blanchard & Quah (1989)) or structural VECMs
(SVECMs) (e.g., King, Plosser, Stock & Watson (1991), Jacobson, Vredin &
Warne (1997), Gonzalo & Ng (2001), Breitung, Brüggemann & Lütkepohl
(2004)).

In the next section, structural restrictions will be discussed for stationary
processes. Some of them will also be relevant for VARs with integrated vari-
ables. Such variables are explicitly taken into account in VECMs for which
structural restrictions will be discussed in Section 9.2. It will be seen that
VECMs offer additional possibilities for structural restrictions. The general
modelling strategy for both SVARs and SVECMs is to specify and estimate
a reduced form model first and then focus on the structural parameters and
the resulting structural impulse responses. Estimation of structural VARs and
VECMs will be discussed in Section 9.3 and impulse response analysis and
forecast error variance decomposition based on such models are considered in
Section 9.4. Some extensions of the setup used in this chapter are pointed out
in Section 9.5.
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9.1 Structural Vector Autoregressions

Our point of departure is a K-dimensional stationary, stable VAR(p) process,

yt = A1yt−1 + · · · + Apyt−p + ut, (9.1.1)

where, as usual, yt is a (K × 1) vector of observable time series variables, the
Aj ’s (j = 1, . . . , p) are (K ×K) coefficient matrices and ut is K-dimensional
white noise with ut ∼ (0, Σu). Deterministic terms have been excluded for
simplicity. In other words, we just consider the stochastic part of a data gen-
eration process because it is the part of interest from the point of view of
structural modelling and impulse response analysis. From Chapter 2, it is
known that the process (9.1.1) has a Wold MA representation

yt = ut + Φ1ut−1 + Φ2ut−2 + · · · , (9.1.2)

where

Φs =
s∑

j=1

Φs−jAj , s = 1, 2, . . . , (9.1.3)

with Φ0 = IK .
In Chapter 2, we have also seen that the elements of the Φj matrices are the

forecast error impulse responses. They may not reflect the relations between
the variables properly because the components of ut may be instantaneously
correlated, that is, Σu may not be a diagonal matrix. Thus, isolated shocks in
the components of ut may not be likely in practice. From Chapter 2, we also
know that there are different ways to orthogonalize the impulses. One possibil-
ity is based on a Choleski decomposition of the white noise covariance matrix,
Σu = PP ′, where P is a lower-triangular matrix with positive elements on
the main diagonal. Again such an approach is arbitrary and therefore unsat-
isfactory, unless there are special reasons for a recursive structure. We will
now discuss different ways to use nonsample information in specifying unique
innovations and, hence, unique impulse responses. The relevant models will
be referred to as A-model, B-model and AB-model. The latter label was also
used by Amisano & Giannini (1997). The models will be considered in turn
in the following.

9.1.1 The A-Model

A conventional approach to finding a model with instantaneously uncorre-
lated residuals is to model the instantaneous relations between the observable
variables directly. That may be done by considering a structural form model,

Ayt = A∗
1yt−1 + · · · + A∗

pyt−p + εt, (9.1.4)
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where A∗
j := AAj (j = 1, . . . , p) and εt := Aut ∼ (0, Σε = AΣuA′). Thus,

for a proper choice of A, εt will have a diagonal covariance matrix. An MA
representation based on the εt is given by

yt = Θ0εt + Θ1εt−1 + Θ2εt−2 + · · · , (9.1.5)

where Θj = ΦjA
−1 (j = 0, 1, 2, . . . ). The elements of the Θj matrices represent

the responses to εt shocks. If an identified structural form (9.1.4) can be found,
the corresponding impulse responses will be unique.

It may be worth reflecting a little on the restrictions required for a unique
matrix A of instantaneous effects. From the relation

Σε = AΣuA′

and the assumption of a diagonal Σε matrix, we get K(K−1)/2 independent
equations, that is, all K(K−1)/2 off-diagonal elements of AΣuA′ are equal to
zero. To solve uniquely for all K2 elements of A, we need a set of K2 equations,
however. In other words, we need K(K+1)/2 additional equations. They may
be set up in the form of restrictions for the elements of A. Clearly, we may want
to choose the diagonal elements of A to be unity. This normalization enables
us to write the k-th equation of (9.1.4) with ykt as the left-hand variable. In
addition to this normalization, we still need another K(K − 1)/2 restrictions.
Such restrictions have to come from nonsample sources. For example, if a Wold
causal ordering is possible, where y1t may have an instantaneous impact on
all the other variables, y2t may have an instantaneous impact on all other
variables except y1t, and so on (see Section 2.3.2), then

A =

⎡⎢⎢⎢⎣
1 0 . . . 0

a21 1 0
...

. . .
...

aK1 aK2 . . . 1

⎤⎥⎥⎥⎦
is a lower-triangular matrix. Thus, we have just enough restrictions (K(K −
1)/2 zeros above the main diagonal) so that the innovations and the associated
impulse responses are just-identified. The zeros can also appear in a different
arrangement as off-diagonal elements of A. There can also be more than K(K−
1)/2 restrictions, of course. In SVAR modelling it is common, however, that
just-identified models are considered. In other words, only as few restrictions
are imposed as are necessary for obtaining unique impulse responses. If at
some stage of the analysis it turns out that further restrictions are compatible
with the data, it is also possible to impose them, of course.

In the presently considered model, the identifying restrictions are imposed
on the matrix A such that εt = Aut has a diagonal covariance matrix. This
model will be called the A-model in the following. Given the way we have
introduced the associated restrictions, it is plausible to assume that A has
a unit main diagonal. In that case K(K − 1)/2 restrictions are required for
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the off-diagonal elements of A to ensure just-identified shocks εt and, hence,
just-identified impulse responses. If the restrictions are such that A is lower-
triangular, the same is true for A−1. Thus, the resulting Θj impulse responses
are qualitatively the same as the orthogonalized impulse responses based on
a Choleski decomposition of Σu which were considered in Chapter 2. The
only difference is that, for the latter case, the wt impulses have unit variances
which may not be the case for the presently considered εt impulses.

Regarding the restrictions for A, it should be understood that they cannot
be arbitrary restrictions. Writing them in the form CAvec(A) = cA, where CA

is a ( 1
2K(K + 1)×K2) selection matrix and cA is a suitable ( 1

2K(K + 1)× 1)
fixed vector, the restrictions have to be such that the system of equations

A−1ΣεA
′−1 = Σu and CAvec(A) = cA (9.1.6)

has a unique solution, at least locally. Clearly, this system is nonlinear in A.
Therefore, we can only hope for local uniqueness or identification in general.
The following proposition gives a necessary and sufficient condition for (9.1.6)
to have a locally unique solution and, thus, for local identification of the
structural parameters.

Proposition 9.1 (Identification of the A-Model)
Let Σε be a (K×K) positive definite diagonal matrix and let A be a (K×K)
nonsingular matrix. Then, for a given symmetric, positive definite (K × K)
matrix Σu, an (N ×K2) matrix CA and a fixed (N × 1) vector cA, the system
of equations in (9.1.6) has a locally unique solution for A and the diagonal
elements of Σε if and only if

rk

⎡⎣ −2D+
K(Σu ⊗ A−1) D+

K(A−1 ⊗ A−1)DK

CA 0
0 Cσ

⎤⎦ = K2 + 1
2K(K + 1).

Here DK is a (K2 × 1
2K(K + 1)) duplication matrix, D+

K := (D′
KDK)−1D′

K ,
and Cσ is a ( 1

2
K(K − 1) × 1

2K(K + 1)) selection matrix which selects the
elements of vech(Σε) below the main diagonal.

Proof: For an n-dimensional function ϕ(x) of the m-dimensional vector x,
the system of equations ϕ(x) = 0 can be solved locally uniquely for x in a
neighborhood of a given vector x0 if and only if rk(∂ϕ/∂x′|x=x0) = m (see,
e.g., Rothenberg (1971, Theorem 6)). Hence, considering the function

[
vec(A)

vech(Σε)

]
�→

⎡⎣ vec(A−1ΣεA
′−1 −Σu)

CAvec(A) − cA
Cσvech(Σε)

⎤⎦,
a locally unique solution for A and vech(Σε) exists for a given Σu if and only
if
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rk

⎡⎢⎢⎣
∂ vech(A−1ΣεA

′−1)
∂ vec(A)′

∂ vech(A−1ΣεA
′−1)

∂ vech(Σε)′
CA 0
0 Cσ

⎤⎥⎥⎦ = K2 + 1
2K(K + 1).

Taking into account that the off-diagonal elements of Σε are uniquely deter-
mined by Cσvech(Σε) = 0, a locally unique solution for A and the diagonal
elements of Σε exists if and only if the rank condition is satisfied. Thus, the
proposition follows by using the rules for matrix and vector differentiation
from Appendix A.13 and noting that

∂ vech(A−1ΣεA
′−1)

∂ vech(Σε)′
= D+

K

∂ vec(A−1ΣεA
′−1)

∂ vech(Σε)′

= D+
K(A−1 ⊗ A−1)

∂ vec(Σε)
∂ vech(Σε)′

= D+
K(A−1 ⊗ A−1)DK

and
∂ vech(A−1ΣεA

′−1)
∂ vec(A)′

= D+
K

∂ vec(A−1ΣεA
′−1)

∂ vec(A−1)′
∂ vec(A−1)
∂ vec(A)′

= D+
K

[
(A−1Σε ⊗ IK)

∂ vec(A−1)
∂ vec(A−1)′

+ (IK ⊗ A−1Σε)
∂ vec(A′−1)
∂ vec(A−1)′

]
∂ vec(A−1)
∂ vec(A)′

= −D+
K(IK2 + KKK)(A−1Σε ⊗ IK)(A′−1 ⊗ A−1)

= −D+
K(IK2 + KKK)(Σu ⊗ A−1)

= −2D+
K(Σu ⊗ A−1),

where KKK denotes a (K2 ×K2) commutation matrix and the last equality
sign holds because D+

KKKK = D+
K (see Appendix A.12.2).

Although this proposition provides a condition for local identification of
the A-model only, a globally unique solution is obtained if the diagonal el-
ements of A are restricted to 1. A discussion of the nonuniqueness problem
resulting from sign changes of some elements will be deferred to Section 9.1.2.

For practical purposes, it is problematic that the identification condition
in Proposition 9.1 involves unknown parameters. Therefore, strictly speaking,
it can only be checked when the true parameters are known. In practice, the
unknown quantities may be replaced by estimates and the condition may be
checked using the estimated matrix because it can be shown that the rank of
the relevant matrix is either smaller than K2 + 1

2K(K + 1) everywhere in the
parameter space or the rank condition is satisfied almost everywhere. In the
latter case, it can fail only on a set of Lebesgue measure zero. Thus, if a ran-
domly drawn vector from the parameter space is considered, it should satisfy
the rank condition with probability one, if the model is locally identified. In
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any case, CA must have at least K(K + 1)/2 rows to ensure identification.
In other words, having K(K + 1)/2 restrictions is a necessary condition for
identification.

Although we have stated the restrictions for the A matrix in the form
CAvec(A) = cA in the foregoing, we note that they can be written alternatively
in the form

vec(A) = RAγA + rA,

where RA and rA are a suitable fixed matrix and a suitable vector, respectively,
and γA is the vector of unrestricted parameters (see Chapter 5, Section 5.2.1).

9.1.2 The B-Model

Generally, in impulse response analysis the emphasis has shifted from specify-
ing the relations between the observable variables directly to interpreting the
unexpected part of their changes or the shocks. Therefore, it is not uncom-
mon to identify the structural innovations εt directly from the forecast errors
or reduced form residuals ut. One way to do so is to think of the forecast
errors as linear functions of the structural innovations. In that case, we have
the relations ut = Bεt. Hence, Σu = BΣεB

′. Normalizing the variances of the
structural innovations to one, i.e., assuming εt ∼ (0, IK), gives

Σu = BB′. (9.1.7)

Due to the symmetry of the covariance matrix, these relations specify only
K(K+1)/2 different equations and we need again K(K−1)/2 further relations
to identify all K2 elements of B. As in the previous A-model case, choosing
B to be lower-triangular, for example, provides sufficiently many restrictions.
Hence, choosing B by a Choleski decomposition solves the identification or
uniqueness problem, as we have also seen in Chapter 2, Section 2.3.2. Now it
is assumed, however, that this recursive structure is chosen only if it has some
theoretical justification so that the εt’s can be regarded as structural innova-
tions. This property makes them potentially different from the wt innovations
in Chapter 2 which were obtained by a mechanical application of the Choleski
decomposition. In principle, there could be other zero restrictions for B in the
present context. The triangular form is just an example. In practice, it is per-
haps the most important case (e.g., Eichenbaum & Evans (1995), Christiano,
Eichenbaum & Evans (1996)).

The present model with

ut = Bεt

and εt ∼ (0, IK) will be called B-model in the following and it is worth remem-
bering that at least K(K − 1)/2 restrictions have to be imposed to identify
B. If there are just zero restrictions they can be written in the form
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CBvec(B) = 0, (9.1.8)

where CB is an (N × K2) selection matrix. A necessary and sufficient rank
condition for local identification of the model is given in the next proposition.

Proposition 9.2 (Local Identification of the B-Model)
Let B be a nonsingular (K×K) matrix. Then, for a given symmetric, positive
definite (K × K) matrix Σu and an (N × K2) matrix CB, the system of
equations in (9.1.7)/(9.1.8) has a locally unique solution if and only if

rk
[

2D+
K(B ⊗ IK)
CB

]
= K2.

Proof: Using the same kind of reasoning as in the proof of Proposition 9.1,
the result of Proposition 9.2 follows by noting that

∂ vech(BB′)
∂ vec(B)′

= D+
K(IK2 + KKK)(B ⊗ IK) = 2D+

K(B ⊗ IK).

A necessary condition for the ((1
2K(K + 1) + N) ×K2) matrix[

2D+
K(B ⊗ IK)
CB

]
to have rank K2 is that N = 1

2K(K−1). In other words, we need 1
2
K(K−1)

restrictions for identification, as mentioned earlier.
It is easy to see that the solution of the system (9.1.7)/(9.1.8) will not be

globally unique because for any matrix B satisfying the equations, −B will
also be a solution. This result is due to the fact that B enters the equations
(9.1.7) in “squared” form. In fact, for any solution B, the matrix BΛ will also
be a solution for any diagonal matrix Λ which has only 1 and −1 elements
on the main diagonal. Obviously, if B is such that (9.1.7) and (9.1.8) hold,
Σu = BΛΛ′B′ also holds because ΛΛ′ = IK . Moreover,

CBvec(BΛ) = CB(Λ⊗ IK)vec(B) = 0,

because for each element bij = 0 we have −bij = 0. Thus, each column of B can
be replaced by a column with opposite sign. Hence, the restrictions in (9.1.8)
identify B only locally in general. Uniqueness can potentially be obtained by
fixing the signs of the diagonal elements, however. The signs of the diagonal
elements of B determine the signs of shocks. Thus, if we want to study the
effect of a positive shock to a particular variable while the corresponding
diagonal element of B is negative, we can just reverse the signs of all elements
in the relevant column of B or, in other words, we can just reverse the signs
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of all instantaneous responses to the corresponding shock to find the desired
result.

For later purposes, it is also worth noting that the restrictions can be
expressed in the alternative form

vec(B) = RBγB, (9.1.9)

where γB contains all the unrestricted coefficients of B and RB is a fixed matrix
of zeros and ones (see Section 5.2.1).

9.1.3 The AB-Model

It is also possible to consider both types of restrictions of the previous sub-
sections simultaneously. That is, we may consider the so-called AB-model,

Aut = Bεt, εt ∼ (0, IK). (9.1.10)

In this case, a simultaneous equations system is formulated for the errors of the
reduced form model rather than the observable variables directly. Thereby the
model accounts for the shift from specifying direct relations for the observable
variables to formulating relations for the innovations. Applications of this
methodology can, for instance, be found in Gaĺı (1992) and Pagan (1995) (see
also Breitung et al. (2004) for further discussion and an illustration).

In this model, we get from (9.1.10), ut = A−1Bεt and, hence, Σu =
A−1BB′A−1′. Thus, we have K(K + 1)/2 equations

vech(Σu) = vech(A−1BB′A−1′), (9.1.11)

whereas the two matrices A and B have K2 elements each. Thus, we need
additionally 2K2 − 1

2
K(K + 1) restrictions to identify all 2K2 elements of A

and B at least locally. Even if the diagonal elements of A are set to one, 2K2−
K − 1

2K(K + 1) further restrictions are needed for identification. Therefore,
it is perhaps not surprising that most applications consider special cases with
A = IK (B-model) or B = IK (A-model). Still, the general model is a useful
framework for SVAR analysis. The restrictions are typically normalization or
zero restrictions which can be written in the form of linear equations,

vec(A) = RAγA + rA and vec(B) = RBγB + rB, (9.1.12)

where RA and RB are suitable fixed matrices of zeros and ones, γA and γB

are vectors of free parameters and rA and rB are vectors of fixed parameters
which allow, for instance, to normalize the diagonal elements of A. Although
rB is typically zero, as in (9.1.9), we present the restrictions for B here with a
general rB vector because this additional term will not complicate the analysis.

Multiplying the two sets of equations in (9.1.12) by orthogonal comple-
ments of RA and RB, RA⊥ and RB⊥, respectively, it is easy to see that they
can be written alternatively in the form
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CAvec(A) = cA and CBvec(B) = cB, (9.1.13)

where CA = RA⊥, CB = RB⊥, cA = RA⊥rA and cB = RB⊥rB (see Appendix
A.8.2 for the definition of an orthogonal complement of a matrix). The ma-
trices CA and CB may be thought of as appropriate selection matrices. Again,
in general, the restrictions will ensure only local uniqueness of A and B due
to the nonlinear nature of the full set of equations from which to solve for
the two matrices. The following proposition states a rank condition for local
identification.

Proposition 9.3 (Local Identification of the AB-Model)
Let A and B be nonsingular (K × K) matrices. Then, for a given sym-
metric, positive definite (K × K) matrix Σu, the system of equations in
(9.1.11)/(9.1.13) has a locally unique solution if and only if

rk

⎡⎣ −2D+
K(Σu ⊗ A−1) 2D+

K(A−1B ⊗ A−1)
CA 0
0 CB

⎤⎦ = 2K2. (9.1.14)

Proof: Again, we can use the same reasoning as in the proof of Proposition
9.1. The result of Proposition 9.3 is then obtained by noting that

∂ vech(A−1BB′A′−1)
∂ vec(A)′

=
∂ vech(A−1BB′A′−1)

∂ vec(A−1B)′
∂ vec(A−1B)
∂ vec(A)′

= D+
K

∂ vec(A−1BB′A′−1)
∂ vec(A−1B)′

∂ vec(A−1B)
∂ vec(A)′

= D+
K

[
(A−1B ⊗ IK)

∂ vec(A−1B)
∂ vec(A−1B)′

+(IK ⊗ A−1B)
∂ vec(B′A′−1)
∂ vec(A−1B)′

]
∂ vec(A−1B)
∂ vec(A)′

= D+
K

[
(A−1B ⊗ IK) + (IK ⊗ A−1B)KKK

]
×(B′ ⊗ IK)

∂ vec(A−1)
∂ vec(A)′

= −D+
K(IK2 + KKK)(Σu ⊗ A−1)

= −2D+
K(Σu ⊗ A−1)

and

∂ vech(A−1BB′A′−1)
∂ vec(B)′

=
∂ vech(A−1BB′A′−1)

∂ vec(A−1B)′
∂ vec(A−1B)
∂ vec(B)′

= D+
K(IK2 + KKK)(A−1B ⊗ A−1)

= 2D+
K(A−1B ⊗ A−1),

because D+
KKKK = D+

K (see Appendix A.12.2).
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To illustrate the AB-model, we follow Breitung et al. (2004) and use a
small macro system from Pagan (1995) for output qt, an interest rate it,
and real money mt. The residuals of the reduced form VAR model will be
denoted by ut = (uq

t , u
i
t, u

m
t )′. Pagan (1995) uses Keynesian arguments to

specify the following relations between the reduced form residuals and the
structural innovations:

uq
t = −a12u

i
t + b11ε

IS
t (IS curve),

ui
t = −a21u

q
t − a23u

m
t + b22ε

LM
t (inverse LM curve),

um
t = b33ε

m
t (money supply rule).

Here εt = (εIS
t , εLM

t , εm
t )′ is the vector of structural innovations with εt ∼

(0, IK) (see Breitung et al. (2004) for further discussion of this example sys-
tem).

For our purposes the three equations can be written in AB-model form as⎡⎣ 1 a12 0
a21 1 a23

0 0 1

⎤⎦ut =

⎡⎣ b11 0 0
0 b22 0
0 0 b33

⎤⎦ εt.

Thus, we have the following set of restrictions:

vec(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a21

0
a12

1
0
0

a23

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ a21

a12

a23

⎤⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
1
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

vec(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11

0
0
0

b22

0
0
0

b33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ b11

b22

b33

⎤⎦ .

Because K = 3, we need 2K2 − 1
2
K(K + 1) = 12 restrictions on A and B for

identification in this example model. There are 3 zeros and 3 ones in A. Thus,
we have 6 restrictions on this matrix. In addition, there are 6 zero restrictions
for B.
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Writing the restrictions in the form (9.1.13), we get

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a21

a31

a12

a22

a32

a13

a23

a33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
1
0
1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11

b21

b31

b12

b22

b32

b13

b23

b33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Thus, the necessary condition for local identification is satisfied. The neces-
sary and sufficient condition from Proposition 9.3 can be checked by selecting
randomly drawn matrices A and B from the restricted parameter space and
determining the rank of the corresponding matrix in (9.1.14).

9.1.4 Long-Run Restrictions à la Blanchard-Quah

Clearly, it is not always easy to find suitable and generally acceptable restric-
tions for the matrices A and B. Imposing the restrictions directly on these
matrices is in fact not necessary to identify the structural innovations and
impulse responses. Another type of restrictions was discussed by Blanchard
& Quah (1989). They considered the accumulated effects of shocks to the sys-
tem. In terms of the structural impulse responses in (9.1.5) they focussed on
the total impact matrix,

Ξ∞ =
∞∑

i=0

Θi = (IK − A1 − · · · −Ap)−1A−1B, (9.1.15)

and they identified the structural innovations by placing zero restrictions on
this matrix. In other words, they assumed that some shocks do not have
any total long-run effects. In particular, they considered a bivariate system
consisting of output growth qt and an unemployment rate urt (i.e., yt =
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(qt, urt)′) and they assumed that the structural innovations represent supply
and demand shocks. Moreover, they assumed that the demand shocks have
only transitory effects on qt and that the accumulated long-run effect of such
shocks on qt is zero. Placing the supply shocks first and the demand shocks
last in the vectors of structural innovations εt = (εs

t , ε
d
t )

′, the (1,2)-element of
Ξ∞ is restricted to be zero. In other words, we restrict the upper right-hand
corner element of

Ξ∞ = (IK − A1 − · · · −Ap)−1A−1B

to zero. Given the VAR parameters, this set of equations clearly specifies a
restriction for A−1B. Thereby we have enough restrictions for identification of
a bivariate system if we set A = IK , because, for K = 2, we have K(K−1)/2 =
1. Notice that A = IK may be chosen because the idea is to identify the
structural shocks from the reduced form residuals only and no restrictions are
placed on the instantaneous effects of the observable variables directly. Thus,
we have a B-model with restriction

(0, 0, 1, 0)vec[(IK − A1 − · · · −Ap)−1B]

= (0, 0, 1, 0)[I2 ⊗ (IK − A1 − · · · −Ap)−1]vec(B) = 0.

In summary, the AB-model offers a useful general framework for placing
identifying restrictions for the structural innovations and impulse responses
on a VAR process. The restrictions can be simple normalization and exclusion
(zero) restrictions and may also be more general nonlinear restrictions. Clearly,
before we can actually use this framework in practice, it will be necessary
to estimate the reduced form and structural parameters. Estimation of the
former parameters has been discussed in some detail in previous chapters.
Thus, it remains to consider estimation of the A,B matrices. We will do so in
Section 9.3. Before turning to inference procedures, we will consider structural
restrictions for VECMs in the following section.

9.2 Structural Vector Error Correction Models

If all or some of the variables of interest are integrated, the previously dis-
cussed AB-model can still be used together with the levels VAR form of the
data generation process. In most of the analysis of Section 9.1, the stationarity
of the process was not used. Only in the treatment of the Blanchard-Quah
restrictions, stability of the VAR operator is required because otherwise the
matrix of total accumulated long-run effects does not exist. This result follows
from the fact that the matrix (IK −A1 −· · ·−Ap) is singular for cointegrated
processes, as we have seen in Chapter 6. In other cases, we may use the AB-
model even for integrated variables. In fact, we can even specify and fit a
reduced form VECM, convert that model to the levels VAR form and then
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use it as a basis for an AB-analysis, as discussed in the previous section. There
are, however, advantages in utilizing the cointegration properties of the vari-
ables. They provide restrictions which can be taken into account beneficially
in identifying the structural shocks. Therefore, it is useful to treat SVECMs
separately.

As in the previous chapters, we assume that all variables are at most I(1)
and that the data generation process can be represented as a VECM with
cointegration rank r of the form

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, (9.2.1)

where all symbols have their usual meanings. In other words, yt is a K-
dimensional vector of observable variables, α is a (K × r) matrix of loading
coefficients, β is the (K × r) cointegration matrix, Γj is a (K ×K) short-run
coefficient matrix for j = 1, . . . , p−1, and ut is a white noise error vector with
ut ∼ (0, Σu).

In Chapter 6, Proposition 6.1, we have seen that the process has the
Beveridge-Nelson MA representation

yt = Ξ
t∑

i=1

ui +
∞∑

j=0

Ξ∗
jut−j + y∗0 , (9.2.2)

where the Ξ∗
j are absolutely summable so that the infinite sum is well-defined

and the term y∗0 contains the initial values. Absolute summability of the Ξ∗
j

implies that these matrices converge to zero for j → ∞. Thus, the long-run
effects of shocks are captured by the common trends term Ξ

∑t
i=1 ui. The

matrix

Ξ = β⊥

[
α′
⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′
⊥

has rank K − r. Thus, there are K − r common trends and if the structural
innovations embodied in the ui can be recovered, at most r of them can have
transitory effects only because the matrix Ξ or a nonsingular transformation
of this matrix cannot have more than r columns of zeros. Thus, by knowing
the cointegrating rank of the system, we know already the maximum number
of transitory shocks.

In this context, the focus of interest is usually on the residuals and, hence,
in order to identify the structural innovations, the B-model setup is typically
used. In other words, we are looking for a matrix B such that

ut = Bεt with εt ∼ (0, IK).

Substituting this relation in the common trends term gives ΞB
∑t

i=1 εi. Hence,
the long-run effects of the structural innovations are given by
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ΞB.

Because the structural innovations represent a regular random vector with
nonsingular covariance matrix, the matrix B has to be nonsingular. Recall
that Σu = BB′. Thus, rk(ΞB) = K − r and there can be at most r zero
columns in this matrix. In other words, r of the structural innovations can
have transitory effects and K − r of them must have permanent effects. If
there are r transitory shocks, we can restrict r columns of ΞB to zero. Because
the matrix has reduced rank K − r, each column of zeros stands for K − r
independent restrictions only. Thus, the r transitory shocks represent r(K−r)
independent restrictions only. Still, it is useful to note that restrictions can
be imposed on the basis of our knowledge of the cointegrating rank of the
system which can be determined by statistical means. Further theoretical
considerations are required for imposing additional restrictions, however.

For local just-identification of the structural innovations in the B-model,
we need a total of K(K − 1)/2 restrictions. Assuming that there are r shocks
with transitory effects only, we have already r(K − r) restrictions from the
cointegration structure of the model, this leaves us with 1

2K(K−1)−r(K−r)
further restrictions for just-identifying the structural innovations. In fact, r(r−
1)/2 additional contemporaneous restrictions are needed to disentangle the
transitory shocks and (K−r)((K−r)−1)/2 restrictions identify the permanent
shocks (see, e.g., King et al. (1991), Gonzalo & Ng (2001)). Then we have a
total of 1

2r(r−1)+ 1
2 (K−r)((K−r)−1) = 1

2
K(K−1)−r(K−r) restrictions,

as required. Thus, it is not sufficient to impose arbitrary restrictions on B or
ΞB, but we have to choose them to identify the transitory and permanent
shocks at least locally. In fact, the transitory shocks can only be identified
through restrictions directly on B because they correspond to zero columns
in ΞB. Thus, r(r − 1)/2 of the restrictions have to be imposed on B directly.
Generally, the restrictions have the form

CΞBvec(ΞB) = cl or Clvec(B) = cl and Csvec(B) = cs, (9.2.3)

where Cl := CΞB(IK ⊗ Ξ) is a matrix of long-run restrictions, that is, CΞB

is a suitable selection matrix such that CΞBvec(ΞB) = cl, and Cs specifies
short-run or instantaneous constraints by restricting elements of B directly.
Here cl and cs are vectors of suitable dimensions. In applied work, they are
typically zero vectors. In other words, zero restrictions are specified in (9.2.3)
for ΞB and B.

As discussed for the stationary case in Section 9.1.2, the matrix B will
only be locally identified. In particular, in general we may reverse the signs of
the columns of B to find another valid matrix. Formal necessary and sufficient
conditions for local identification are given in the following proposition.

Proposition 9.4 (Local Identification of a SVECM)
Suppose the reduced form model (9.2.1) with Beveridge-Nelson MA represen-
tation (9.2.2) is given. Let B be a nonsingular (K ×K) matrix. Then, the set
of equations
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Σu = BB′, Clvec(B) = cl and Csvec(B) = cs,

with Cl, cl, Cs, and cs as in (9.2.3), has a locally unique solution for B if and
only if

rk

⎡⎣ 2D+
K(B ⊗ IK)

Cl

Cs

⎤⎦ = K2.

Proof: The model underlying Proposition 9.4 is a B-model. Therefore the
proposition can be shown using the same arguments as for Proposition 9.2.
Details are omitted.

As an example, we consider a small model discussed by King et al. (1991).
They specified a model for the logarithms of private output (qt), consump-
tion (ct), and investment (it). Assuming that all three variables are I(1) with
cointegrating rank r = 2 and that there are two transitory shocks and one per-
manent shock, the permanent shock is identified without further assumptions
because K − r = 1 and, hence, (K − r)((K − r) − 1)/2 = 0. Moreover, only
1 (= r(r− 1)/2) further restriction is necessary to identify the two transitory
shocks. Placing the permanent shock first in the εt vector and allowing the
first transitory shock to have instantaneous effects on all variables, we may
use the following restrictions:

ΞB =

⎡⎣ ∗ 0 0
∗ 0 0
∗ 0 0

⎤⎦ and B =

⎡⎣ ∗ ∗ ∗
∗ ∗ 0
∗ ∗ ∗

⎤⎦ . (9.2.4)

Here asterisks denote unrestricted elements. The two zero columns in ΞB
represent two independent restrictions only because ΞB has rank 1. A third
restriction is placed on B in such a way that the third shock does not have an
instantaneous effect on the second variable. Hence, there are K(K − 1)/2 = 3
independent restrictions in total and the structural innovations are locally
just-identified. Uniqueness can be obtained by fixing the signs of the diagonal
elements of B.

In our three-dimensional example with two zero columns in ΞB, it does not
suffice to impose a further restriction on this matrix to ensure local uniqueness
of B. For that we need to disentangle the two transitory shocks which cannot
be identified by restrictions on the long-run matrix ΞB. Thus, we have to
impose a restriction directly on B. In fact, it is necessary to restrict an element
in the last two columns of B (see also Problem 9.1 for further details).

In the standard B-model with three variables, we need to specify at least
3 restrictions for identification. In contrast, in the present VECM case, as-
suming that r = 2 and there are two transitory shocks, only one restriction
is needed because two columns of ΞB are zero. Thus, taking into account the
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long-run restrictions from the cointegration properties of the variables may
result in substantial simplifications. In fact, for a bivariate system with one
cointegrating relation, no further restriction is required to identify the per-
manent and transitory shocks. It is enough to specify that the first shock is
allowed to have permanent effects while the second one can only have transi-
tory effects or vice versa. A more detailed higher-dimensional example may be
found in Breitung et al. (2004). Further discussion of partitioning the shocks
in permanent and transitory ones is also given in Gonzalo & Ng (2001) and
Fisher & Huh (1999).

9.3 Estimation of Structural Parameters

We will first consider estimation of the AB-SVAR model and then discuss
SVECMs. The A- and B-models are straightforward special cases which are
not treated separately in detail. For both SVARs and SVECMs, ML methods
are typically used and they will therefore be presented here.

9.3.1 Estimating SVAR Models

Suppose we wish to estimate the following SVAR model

Ayt = AAYt−1 + Bεt, (9.3.1)

where Y ′
t−1 := [y′t−1, . . . , y

′
t−p], A := [A1, . . . , Ap], and εt is assumed to be

Gaussian white noise with covariance matrix IK , εt ∼ N (0, IK). The nor-
mality assumption is just made for convenience to derive the estimators. The
asymptotic properties of the estimators will be the same under more general
distributional assumptions, as usual. The reduced form residuals correspond-
ing to (9.3.1) have the form ut = A−1Bεt.

From Chapter 3, Section 3.4, the log-likelihood function for a sample
y1, . . . , yT is seen to be

ln l(A,A,B) = −KT
2 ln 2π − T

2 ln |A−1BB′A′−1|
−1

2 tr{(Y − AX)′[A−1BB′A′−1]−1(Y −AX)}
= constant + T

2 ln |A|2 − T
2

ln |B|2

−1
2 tr{A′B′−1B−1A(Y − AX)(Y − AX)′},

(9.3.2)

where, as usual, Y := [y1, . . . , yT ], X := [Y0, . . . , YT−1], and the matrix rules
|A−1BB′(A−1)′| = |A−1|2|B|2 = |A|−2|B|2 and tr(VW ) = tr(WV ) have been
used (see Appendix A).

Suppose there are no restrictions on the reduced form parameters A. Then,
it follows from Section 3.4 that for any given A and B, the log-likelihood
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function ln l(A,A,B) is maximized with respect to A by Â = Y X ′(XX ′)−1.
Thus, replacing A with Â in (9.3.2) gives the concentrated log-likelihood

ln lc(A,B) = constant+
T

2
ln |A|2−T

2
ln |B|2−T

2
tr(A′B′−1B−1AΣ̃u), (9.3.3)

where Σ̃u = T−1(Y − ÂX)(Y − ÂX)′. Maximization of this function with
respect to A and B, subject to the structural restrictions (9.1.12) or (9.1.13),
has to be done by numerical methods because a closed form solution is usually
not available. If the restrictions are of the form (9.1.12), restricted maximiza-
tion of the concentrated log-likelihood amounts to maximization with respect
to γA and γB. If these parameters are locally identified, the ML estimators
have standard asymptotic properties which are summarized in the following
proposition.

Proposition 9.5 (Properties of the SVAR ML Estimators)
Suppose yt is a stationary Gaussian VAR(p) as in (9.1.1) and structural re-
strictions of the form (9.1.12) are available such that γA and γB are locally
identified. Then the ML estimators γ̃A and γ̃B are consistent and asymptoti-
cally normally distributed,

√
T

([
γ̃A

γ̃B

]
−

[
γA

γB

])
d→ N

(
0, Ia

(
γA

γB

)−1
)
,

where Ia(·) is the asymptotic information matrix. It has the form

Ia

(
γA

γB

)
=

[
R′

A 0
0 R′

B

]
Ia

(
vec A
vec B

)[
RA 0
0 RB

]
and

Ia

(
vec A
vec B

)
=

[
A−1B ⊗ B′−1

−(IK ⊗ B′−1)

]
(IK2 + KKK)

× [
(B′A′−1 ⊗ B−1) : −(IK ⊗ B−1)

] (9.3.4)

Proof: The proposition follows from the general ML theory (see Appendix
C.6). For the derivation of the asymptotic information matrix see Problem
9.4.

If γA and γB are identified, the same is true for A and B. Estimating these
matrices such that vec(Ã) = RAγ̃A + rA and vec(B̃) = RBγ̃B + rB, respectively,
we get the following immediate implication of Proposition 9.5.
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Corollary 9.5.1
Under the conditions of Proposition 9.5,

√
T

([
vec Ã

vec B̃

]
−

[
vec A
vec B

])
d→ N (0, ΣAB) ,

where

ΣAB =
[
RA 0
0 RB

]
Ia

(
γA

γB

)−1 [
R′

A 0
0 R′

B

]
.

If only just-identifying restrictions are imposed on the structural parame-
ters, we have for the ML estimator of Σu,

Σ̃u = T−1(Y − ÂX)(Y − ÂX)′ = Ã−1B̃B̃′Ã′−1.

If, however, over-identifying restrictions have been imposed on A and/or B,
the corresponding estimator for Σu,

Σ̃r
u := Ã−1B̃B̃′Ã′−1, (9.3.5)

will differ from Σ̃u. In fact, the LR statistic,

λLR = T (ln |Σ̃r
u| − ln |Σ̃u|), (9.3.6)

can be used to check the over-identifying restrictions. Under the null hypoth-
esis that the restrictions are valid, it has an asymptotic χ2-distribution with
degrees of freedom equal to the number of over-identifying restrictions. In
other words, the number of degrees of freedom is equal to the number of
independent constraints imposed on A and B minus 2K2 − 1

2K(K + 1).

Computation of ML Estimates

Because the structural parameters A and B are nonlinearly related to the
reduced form parameters, no closed form of the ML estimates exists in general
and an iterative optimization algorithm may be used for actually computing
the ML estimates. Amisano & Giannini (1997) proposed to use a scoring
algorithm for this purpose. The i-th iteration of this algorithm is of the form[

γ̃A

γ̃B

]
i+1

=
[
γ̃A

γ̃B

]
i

+ � I
([

γ̃A

γ̃B

]
i

)−1

s
([

γ̃A

γ̃B

]
i

)
, (9.3.7)

where I(·) denotes the information matrix of the free parameters γA, γB, that
is, in this case I(·) = TIa(·), s(·) is the score vector and � is the step length
(see also Chapter 12, Section 12.3.2, for further discussion of optimization
algorithms of this type).
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The score vector can be obtained using the rules for matrix and vector
differentiation (Appendix A.13). Applying the chain rule for vector differen-
tiation, it is seen to be

s
(

γA

γB

)
=

∂ ln l
∂(γ′

A, γ
′
B)′

=
[
R′

A 0
0 R′

B

]
s
(

vec A
vec B

)
, (9.3.8)

and

s
(

vec A
vec B

)
=

∂ ln l

∂

(
vec A
vec B

) =
[

(IK ⊗ B′−1)
−(B−1A ⊗ B′−1)

]
s(vec[B−1A])

with

s(vec[B−1A]) = Tvec([B−1A]′−1) − T (Σ̃u ⊗ IK)vec(B−1A)

(see Problem 9.3 for further details). In practice, the iterations of the scoring
algorithm terminate if prespecified convergence criteria, such as the relative
change in the log-likelihood and the parameters, are satisfied. For this algo-
rithm to work, the inverse of the information matrix has to exist which is
guaranteed by the identification of the parameters, at least in a neighborhood
of the true parameter values. Giannini (1992) used this property to derive
alternative conditions for identification of the models presented in Section
9.1. More precisely, he derived identification conditions from the fact that, for
instance, the AB-model is locally identified if and only if the matrix⎡⎢⎢⎣ Ia

(
vec A
vec B

)
[
CA 0
0 CB

]
⎤⎥⎥⎦ (9.3.9)

has full column rank when Ia(·) is evaluated at the true parameter values (see
Rothenberg (1971)).

Although we have discussed models without deterministic terms and re-
strictions on the reduced form parameters, the ML estimation procedure for
the structural parameters can be extended easily to more general situations
which cover these complications. Again, estimation of the structural parame-
ters can be based on the concentrated likelihood function. If there are restric-
tions for the reduced form parameters A, for example, if a subset model is
considered, one may even use the EGLS estimator instead of the ML estima-
tor for these parameters in estimating the structural parameters. Clearly, in
that case, the white noise covariance estimator Σ̃u will not be the exact ML
estimator and the exact concentrated log-likelihood is obtained only if ML
estimators are substituted for the reduced form parameters A. Asymptoti-
cally, the corresponding estimators Ã, B̃ based on the EGLS estimators will
have the same properties as the exact ML estimators, however. Even in small
samples, exact ML estimation may not result in substantial gains (see, e.g.,
Brüggemann (2004)).
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Estimation with Long-Run Restrictions à la Blanchard-Quah

If the total impact matrix Ξ∞ is restricted to be triangular as in Blanchard &
Quah (1989) and Gaĺı (1999), estimation becomes particularly easy. Specifying
A = IK , using the relation Ξ∞ = (IK − A1 − · · · − Ap)−1B and noting that

Ξ∞Ξ ′
∞ = (IK − A1 − · · · −Ap)−1Σu(IK − A′

1 − · · · − A′
p)

−1,

the matrix B can be estimated by premultiplying a Choleski decomposition
of the matrix

(IK − Â1 − · · · − Âp)−1Σ̃u(IK − Â′
1 − · · · − Â′

p)
−1

by (IK − Â1 − · · · − Âp).
This latter procedure works only if the VAR operator is stable and the

process is stationary because for integrated processes the inverse of (IK−A1−
· · ·−Ap) does not exist, as explained earlier. On the other hand, cointegrated
variables do not create problems for the other estimation methods for SVAR
models.

9.3.2 Estimating Structural VECMs

Suppose the structural restrictions for a VECM are given in the form of lin-
ear restrictions on ΞB and B, as in (9.2.3). For computing the parameter
estimates, we may replace Ξ by its reduced form ML estimator,

Ξ̃ = β̃⊥

[
α̃′
⊥

(
IK −

p−1∑
i=1

Γ̃i

)
β̃⊥

]−1

α̃′
⊥,

where the Γ̃i’s are the ML estimators of the Γi’s from Proposition 7.3 and
α̃⊥ and β̃⊥ are any orthogonal complements of the ML estimators α̃ and β̃,
respectively. The restricted ML estimator of B can be obtained by setting
A = IK and optimizing the concentrated log-likelihood function (9.3.3) with
respect to B, subject to the restrictions (9.2.3), with Cl replaced by

C̃l = CΞB(IK ⊗ Ξ̃)

(see Vlaar (2004)). Although this procedure results in a set of stochastic re-
strictions, from a numerical point of view we have a standard constrained
optimization problem which can be solved by a Lagrange approach (see Ap-
pendix A.14) because Ξ̃ is fixed in computing the estimate of B. Due to the
fact that for a just-identified structural model the log-likelihood maximum is
the same as for the reduced form, a comparison of the log-likelihood values
can serve as a check for a proper convergence of the optimization algorithm
used for structural estimation.
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The properties of the ML estimator of B follow in principle from Corol-
lary 9.5.1. In other words, B̃ is consistent and asymptotically normal under
standard conditions,

√
T vec(B̃ − B) d→ N (0, ΣB).

The asymptotic distribution is singular because of the restrictions that have
been imposed on B. Thus, although t-ratios can be used for assessing the
significance of individual parameters, F -tests based on the Wald principle will
in general not be valid and have to be interpreted cautiously. Expressions for
the covariance matrices of the asymptotic distributions in terms of the model
parameters can be obtained in the usual way by working out the corresponding
information matrices (see Vlaar (2004)). For practical purposes, it is common
to use bootstrap methods for inference in this context.

In principle, the same approach can be used if there are over-identifying
restrictions for B. In that case, B̃B̃′ will not be equal to the reduced form
white noise covariance estimator Σ̃u, however. Still the estimator of B will be
consistent and asymptotically normal under general conditions and also the
LR statistic given in (9.3.6) can be used to check the validity of the over-
identifying restrictions. It will have the usual asymptotic χ2-distribution with
degrees of freedom equal to the number of over-identifying restrictions.

9.4 Impulse Response Analysis and Forecast Error
Variance Decomposition

Impulse response analysis can now be based on structural innovations. In
other words, the impulse response coefficients are obtained from the matrices

Θj = ΦjA
−1B, j = 0, 1, 2, . . . .

Using the same reasoning as in Chapter 3, Section 3.7, the corresponding esti-
mated quantities are asymptotically normal as nonlinear functions of asymp-
totically normal parameter estimators,

√
T vec(Θ̂j −Θj)

d→ N (0, ΣΘ̂j
).

In practice, bootstrap methods are routinely employed for inference in this
context. However, the same inference problems as in Chapter 3, Section 3.7,
prevail for structural impulse responses. More precisely, the asymptotic distri-
bution may be singular in which case confidence intervals based on asymptotic
theory or bootstrap methods may not have the desired confidence level even
asymptotically.

We use a set of quarterly U.S. data for the period 1947.1–1988.4 from
King et al. (1991) for the three variables log private output (qt), consumption
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Fig. 9.1. Quarterly U.S. log private output (—), consumption (– –), and investment
(- - -).

(ct), and investment (it) (all multiplied by 100) to illustrate structural impulse
responses.1 The three series are plotted in Figure 9.1. They all have a trending
behavior and there is some evidence that they are well modelled as I(1) series.
Applying LR tests for the cointegrating rank with a trend orthogonal to the
cointegration relations to a model with one lagged difference of the variables,
provides evidence for two cointegration relations, that is, r = 2 (see Section
8.2.4 for the description of the tests). Therefore we proceed from the following
estimated reduced form VECM (t-statistics in parentheses):

⎡⎣ ∆qt

∆ct

∆it

⎤⎦ =

⎡⎢⎢⎢⎢⎣
−0.88
(−0.2)

−2.83
(−1.1)

−30.07
(−4.1)

⎤⎥⎥⎥⎥⎦
1 The data are available at the website http://www.wws.princeton.edu/ mwatson/.
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+

⎡⎢⎢⎢⎢⎣
−0.23
(−3.6)

0.20
(4.6)

−0.06
(−1.5)

0.07
(2.4)

−0.11
(−0.9)

0.26
(2.9)

⎤⎥⎥⎥⎥⎦
⎡⎣ 1 0 −1.02

(−27.7)

0 1 −1.10
(−24.2)

⎤⎦⎡⎣ qt−1

ct−1

it−1

⎤⎦

+

⎡⎢⎢⎢⎢⎣
0.12
(1.2)

0.09
(0.7)

0.16
(3.4)

0.21
(3.2)

−0.21
(−2.3)

0.02
(0.8)

0.70
(3.6)

−0.17
(−0.6)

0.33
(3.6)

⎤⎥⎥⎥⎥⎦
⎡⎣ ∆qt−1

∆ct−1

∆it−1

⎤⎦ +

⎡⎣ u1t

u2t

u3t

⎤⎦ . (9.4.1)

Before we can proceed with structural estimation, we have to specify iden-
tifying restrictions. Using the zero restrictions from (9.2.4), the following es-
timates are obtained:

B̃ =

⎡⎢⎢⎢⎢⎣
0.08
(0.4)

1.03
(3.9)

−0.45
(−0.8)

−0.60
(−0.7)

0.43
(4.1)

0

0.26
(0.6)

1.96
(5.1)

1.00
(1.9)

⎤⎥⎥⎥⎥⎦ (9.4.2)

and

Ξ̃B̃ =

⎡⎢⎢⎢⎢⎣
−0.71
(−0.8)

0 0

−0.76
(−0.8)

0 0

−0.69
(−0.8)

0 0

⎤⎥⎥⎥⎥⎦ .

Here bootstrapped t-statistics based on 2000 bootstrap replications are given
in parentheses. In other words, the standard deviations of the estimates are
obtained with a bootstrap (see Appendix D.3) and then the estimated coef-
ficients are divided by their respective bootstrap standard deviations to get
the t-ratios. Clearly, some of the t-ratios are quite small. Thus, it may be
possible to impose over-identifying restrictions. In fact, because all t-ratios
of the nonzero long-run effects are small, it may be tempting to argue that
no significant permanent effect is found. Recall, however, that, based on the
unit root and cointegration analysis, there cannot be more shocks with tran-
sitory effects. We have used the just-identified model for an impulse response
analysis to shed more light on this issue.

There are three structural innovations, one of which must have perma-
nent effects if the cointegration rank is 2. In Figure 9.2, the responses of all
three variables to the shock with potentially permanent effects are depicted.
The 95% confidence intervals are based on 2000 replications. Considering the
confidence intervals determined with Hall’s percentile method (see Appendix
D.3), it turns out that none of the confidence intervals associated with longer
term responses contains zero. Hence, a significant long-run effect may actually
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Fig. 9.2. Responses of output, consumption, and investment (top to bottom) to
a permanent shock with Hall percentile (left) and standard percentile (right) 95%
bootstrap confidence intervals based on 2000 bootstrap replications.

be present for each of the three variables. If, however, the standard percentile
bootstrap confidence intervals are used for the impulse responses, the situa-
tion is quite different. These confidence intervals are also shown in Figure 9.2
and they all include zero for longer term horizons. Thus, the results are not
very robust with respect to the methods used. Clearly, the confidence intervals
are quite asymmetric around the point estimates. In such a situation the Hall
percentile confidence intervals may be more reliable due to their built-in bias
correction.

The estimated responses to the permanent shock are all negative in the
long-run. To see the effects of an impulse which leads to positive long-run
effects, we can just reverse the signs of the responses. This follows from the
unidentified signs of the columns of B discussed in Sections 9.1.2 and 9.2.
Generally, the effects of positive and negative shocks of the same size are
identical in absolute value because our model is a linear one which does not
permit asymmetric reactions to positive and negative shocks.

In Figure 9.3, the responses of the variables to the two transitory shocks
are shown. All impulse responses approach zero quickly after some periods
and the effects of the shocks after 20 periods are practically negligible. The
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Fig. 9.3. Responses of output, consumption, and investment (top to bottom) to
transitory shocks with 95% Hall percentile bootstrap confidence intervals based on
2000 bootstrap replications (identification restriction (9.4.2)).

identifying restriction on the B matrix is clearly seen in the right-hand panel
in the middle row of Figure 9.3. Here the instantaneous effect of the second
transitory shock on ct is zero. If a zero restriction is imposed instead on the
upper right-hand corner element of B, the estimated matrix becomes

B̃ =

⎡⎢⎢⎢⎢⎣
0.08
(0.4)

1.12
(5.7)

0

−0.60
(−0.7)

0.39
(2.9)

0.17
(1.4)

0.26
(0.6)

1.39
(4.5)

1.70
(11.2)

⎤⎥⎥⎥⎥⎦ (9.4.3)

and the corresponding structural impulse responses are depicted in Figure 9.4.
Obviously, the identification restriction determines to some extent the shape
of the impulse responses. At least the responses to the second transitory shock
are quite different from those based on the identification restriction (9.4.2).
Now, of course, qt reacts only with a delay to the second transitory shock.
The first column of B̃ in (9.4.3) is unchanged relative to (9.4.2) and, more
generally, the responses to the permanent shock (not shown) are unaffected
because that shock is identified without additional restrictions.
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Fig. 9.4. Responses of output, consumption, and investment (top to bottom) to
transitory shocks with 95% Hall percentile bootstrap confidence intervals based on
2000 bootstrap replications (identification restriction (9.4.3)).

Forecast error variance decompositions can also be based on the structural
innovations. The computations are based on the Θj as in Section 2.3.3. The
interpretation may be different, however. It may not be possible to associate
the structural innovations uniquely with the variables of the system. There-
fore, the forecast errors are not decomposed into contributions of the different
variables but into the contributions of the structural innovations. For instance,
for the example system with identifying restriction on B as in (9.4.2), a fore-
cast error variance decomposition is shown in Figure 9.5. Now we can see that
the permanent shocks (the first components of the εt’s) have a growing im-
portance with increasing forecast horizon, where the estimation uncertainty
is ignored, however. In turn, the importance of the transitory shocks (shocks
number 2 and 3) declines for all three variables. Actually, the third shock (the
second transitory shock) does not contribute much to the forecast errors of
any of the three variables.
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Fig. 9.5. Forecast error variance decomposition of the output, consumption, and
investment system based on identification scheme (9.4.2) with relative contributions
of the permanent shock (1) and the two transitory shocks (2 and 3).

9.5 Further Issues

Structural VARs and VECMs have not only found widespread use in applied
work but there are also numerous further methodological contributions. For
example, confidence bands for impulse responses are sometimes constructed
with Bayesian methods (e.g., Koop (1992)). In fact, the practice of reporting
confidence intervals around individual impulse response coefficients was ques-
tioned by Sims & Zha (1999). They proposed likelihood-characterizing error
bands as alternatives.

Also other forms of identifying restrictions were considered by some au-
thors. For example, Uhlig (1994) proposed to use inequality constraints for
the impulse responses for identifying them. In contrast, Lee, Pesaran & Pierse
(1992) and Pesaran & Shin (1996) considered persistence profiles which mea-
sure the persistence of certain shocks without imposing structural identifica-
tion restrictions.

It may be worth remembering, however, that structural impulse responses
are not immune to some of the problems discussed in Chapter 2 in the context
of impulse response analysis. In particular, omitted variables, filtering and
adjusting series prior to using them for a VAR analysis and using aggregated
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or transformed data can lead to major changes in the dynamic behavior of
the model. For instance, if an important variable is omitted from a system of
interest, adding it can change in principle all the impulse responses. Similarly,
using seasonally adjusted and, hence, filtered data can change the dynamic
structure of the variables and, thus, may lead to impulse responses which are
quite different from those for unadjusted variables. These problems are not
solved by imposing identifying restrictions and are worth keeping in mind also
in a structural VAR analysis.

9.6 Exercises

9.6.1 Algebraic Problems

Problem 9.1
Show that for a three-dimensional VECM with cointegration rank r = 2, the
set of restrictions

ΞB =

⎡⎣ 0 0 0
∗ 0 0
∗ 0 0

⎤⎦
is not sufficient for identification. Moreover, show that the restrictions

ΞB =

⎡⎣ ∗ 0 0
∗ 0 0
∗ 0 0

⎤⎦ and B =

⎡⎣ 0 ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤⎦ .

do not identify B locally.
(Hint: Choose

B =
[

b11 0
0 B2

]
,

where B2 is a (2 × 2) matrix. Show that B2 is not unique.)

Problem 9.2
Suppose a four-dimensional process yt can be written in VECM form (9.2.1)
with cointegrating rank 2. Impose just-identifying restrictions on B and ΞB.

Problem 9.3
Define C = B−1A and write the concentrated log-likelihood (9.3.3) as

ln lc(C) = constant + T ln |C| − T

2
tr(C ′CΣ̃u).

Use the rules for matrix differentiation from Appendix A.13 to show that

∂ ln lc
∂C

= TC′−1 − TCΣ̃u.
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Next show that

∂ vec(B−1A)
∂ vec(A)′

= IK ⊗ B−1

and

∂ vec(B−1A)
∂ vec(B)′

= −(A′B′−1 ⊗ B−1).

Use these results to derive an explicit expression for the score vector

s
(

γA

γB

)
=

∂ ln l
∂(γ′

A, γ
′
B)′

.

Problem 9.4
Define a := [vec(A)′, vec(B)′]′ and γ := (γ′

A, γ
′
B)′ and show that, for the setup

in Proposition 9.5,

−E

(
∂2 ln l
∂γ∂γ′

)
= −

[
R′

A 0
0 R′

B

]
E

(
∂2 ln l
∂a∂a′

)[
RA 0
0 RB

]
.

Moreover, show that (9.3.4) holds by proving that

E

(
∂2 ln l
∂a∂a′

)
=

∂ vec(Σu)′

∂a
E

(
∂2 ln l

∂ vec(Σu)∂ vec(Σu)′

)
∂ vec(Σu)

∂a′

and, for C such that CC′ = Σu,

∂ vec(Σu)
∂a′

=
∂ vec(CC′)
∂ vec(C)′

∂ vec(C)
∂a′

= (IK2 + KKK)(C ⊗ IK)
∂ vec(C)

∂a′

(see also Chapter 3 for related derivations).

9.6.2 Numerical Problems

Problem 9.5
Specify, estimate, and analyze a model for U.S. quarterly log output (qt) and
the unemployment rate (urt) for the period 1948.2–1987.4 as given in the
Journal of Applied Econometrics data archive at

http://www.econ.queensu.ca/jae/
(see the data for Weber (1995)). Blanchard & Quah (1989) considered this
system in their study.

(a) Analyze the integration and cointegration properties of the data.
(b) Fit a suitable VAR model to the bivariate series.
(c) Check the adequacy of the model.
(d) Impose an identifying restriction on the long-run total impact matrix and

perform a structural impulse response analysis.
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(e) Compare standard and Hall percentile confidence intervals for the impulse
responses and interpret possible differences.

(f) Perform a forecast error variance decomposition and comment on the re-
sults.

(Hint: See Breitung et al. (2004) for a similar analysis.)

Problem 9.6
Analyze the Canadian labor market data from Breitung et al. (2004) (see

www.jmulti.de → datasets
for the data). The variables are:

pt – ln productivity,
et – ln employment,
urt – unemployment rate,
wt – ln real wage index.

Thus, yt = (pt, et, urt, wt)′ is four-dimensional. The data are quarterly for the
period 1980.1–2000.4. They are constructed as described in Breitung et al.
(2004) based on data from the OECD database. Note that Breitung et al.
(2004) use a slightly different notation for the variables.

(a) Analyze the integration and cointegration properties of the data.
(b) Fit a VECM with cointegration rank r = 1 for yt.
(c) Check the adequacy of your model.
(d) Impose identifying restrictions of the form

B =

⎡⎢⎢⎣
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗

⎤⎥⎥⎦ and ΞB =

⎡⎢⎢⎣
∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

⎤⎥⎥⎦
and perform a structural impulse response analysis.

(e) Compare standard and Hall percentile confidence intervals for the impulse
responses and interpret possible differences.

(f) Impose another zero restriction on B and repeat the structural impulse
response analysis.

(g) Perform forecast error variance decompositions based on the structural
innovations for different identification schemes and comment on the re-
sults.

(Hint: See Breitung et al. (2004) for a detailed analysis of the system.)
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Systems of Dynamic Simultaneous Equations

10.1 Background

This chapter serves to point out some possible extensions of the models con-
sidered so far and to draw attention to potential problems related to such
extensions. So far, we have assumed that all stochastic variables of a system
have essentially the same status in that they are all determined within the
system. In other words, the model describes the joint generation process of all
the observable variables of interest. In practice, the generation process may be
affected by other observable variables which are determined outside the sys-
tem of interest. Such variables are called exogenous or unmodelled variables.
In contrast, the variables determined within the system are called endogenous.
Although deterministic terms can be included in the set of unmodelled vari-
ables, we often have stochastic variables in mind in this category. For instance,
weather related variables such as rainfall or hours of sunshine are usually re-
garded as stochastic exogenous variables. As another example of the latter
type of variables, if a small open economy is being studied, the price level or
the output of the rest of the world may be regarded as exogenous. A model
which specifies the generation process of some variables conditionally on some
other unmodelled variables is sometimes called a conditional or partial model
because it describes the generation process of a subset of the variables only.

A model with unmodelled variables may have the structural form

Ayt = A∗
1yt−1 + · · ·+A∗

pyt−p +B∗
0xt +B∗

1xt−1 + · · ·+B∗
sxt−s +wt, (10.1.1)

where yt = (y1t, . . . , yKt)′ is a K-dimensional vector of endogenous variables,
xt = (x1t, . . . , xMt)′ is an M -dimensional vector of unmodelled variables, A is
(K ×K) and represents the instantaneous relations between the endogenous
variables, the A∗

i ’s and B∗
j ’s are (K × K) and (K × M) coefficient matri-

ces, respectively, and wt, is a K-dimensional error vector. The vector xt may
contain both stochastic and non-stochastic components. For example, it may
include intercept terms, seasonal dummies, and the amount of rainfall in a spe-
cific region. If the error term wt is white noise, a model of the type (10.1.1) is
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sometimes called a VARX(p, s) model in the following. More generally, models
of the form (10.1.1) are often called linear systems because they are obviously
linear in all variables. In the econometrics literature, the label (linear) dy-
namic simultaneous equations model (SEM) is used for such a model. Because
we often have systems of economic variables in mind in the following discus-
sion, we will use this name occasionally. We will also consider a vector error
correction version of the model which is useful when cointegrated variables
are involved.

Other names that are occasionally found in the related literature are trans-
fer function models or distributed lag models. These terms will become more
plausible in the next section, where different representations and some prop-
erties of our basic model (10.1.1) will be discussed. Estimation is briefly con-
sidered in Section 10.3 and some remarks on model specification and model
checking follow in Section 10.4. Possible uses of such models, namely fore-
casting, multiplier analysis, and control, are treated in Sections 10.5–10.7.
Concluding remarks are contained in Section 10.8. It is not the purpose of
this chapter to give a detailed and complete account of all these topics. The
chapter is just meant to give some guidance to possible extensions of the by
now familiar VAR models and VECMs, the related problems and some further
reading.

10.2 Systems with Unmodelled Variables

10.2.1 Types of Variables

In the dynamic simultaneous equations model (10.1.1), we have partitioned
the observables in two groups, yt and xt. The components of yt are endoge-
nous variables and the components of xt are the unmodelled or exogenous
variables. Although we have given some explanation of the differences be-
tween the two groups of variables, we have not given a precise definition of
the terms endogenous and exogenous so far. The idea is that the endoge-
nous variables are determined within the system, whereas the unmodelled,
exogenous variables are those on which we can condition the analysis without
affecting the results of interest. Because there are different possible objectives
of an analysis, there are also different notions of exogeneity. For example, if we
are interested in estimating a particular parameter vector γ, say, xt is exoge-
nous if the estimation properties do not suffer from conditioning on xt rather
than using a full model for the data generation process of all the variables
involved. In that case, xt is called weakly exogenous for γ. This and other
types of exogeneity have been formalized by Engle, Hendry & Richard (1983).
They call xt strongly exogenous if we can condition on this set of variables for
forecasting purposes without loosing forecast precision and they classify xt as
super-exogenous if policy analysis can be made conditional on these variables
(see also Geweke (1982), Hendry (1995, Chapter 5), Ericsson (1994) for more
discussion of exogeneity).
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A simple technical definition is to call xt exogenous if xt, xt−1, . . . , xt−s

are independent of the error term wt. Moreover, xt is sometimes called strictly
exogenous if all its leads and lags are independent of all leads and lags of the
error process wt, that is, if xt and wt are independent processes. Such as-
sumptions simplify derivations of properties of estimators and are therefore
convenient. They may be unnecessarily restrictive, however, for some pur-
poses. In the following, we will implicitly make the assumption that xt and
wt are independent processes for convenience, although most results can be
obtained under less restrictive conditions.

For much of the present discussion, a formal definition of the types of
variables involved is not necessary. It suffices to have a partitioning into two
groups of variables. The reader should, however, have some intuition of which
variables are contained in yt and which ones are included in xt. As mentioned
previously, roughly speaking, yt contains the observable outputs of the system,
that is, the observable variables that are determined by the system. In con-
trast, the xt variables may be regarded as observable input variables which are
determined outside the system. In this setting, the error variables wt may be
viewed as unobservable inputs to the system. As we have seen, nonstochastic
components may be absorbed into the set of xt variables. All or some of the
components of xt may be under full or partial control of the government or a
decision or policy maker. In a control context, such variables are often referred
to as instruments or instrument variables (see Section 10.7). Sometimes the
lagged endogenous variables together with the exogenous variables of a system
are called predetermined variables. If xt contains just a constant and s = 0,
the model (10.1.1) reduces to a VAR model, provided wt is white noise.

For illustrative purposes, consider the following example system relating
investment (x1t), income (y1t), and consumption (y2t) variables:

y1t = ν∗1 + α∗
11,1y1,t−1 + α∗

12,1y2,t−1 + β∗
12,1x1,t−1 + w1t,

y2t = ν∗2 + α∗
22,1y2,t−1 + a21,0y1t + α∗

21,1y1,t−1 + w2t.
(10.2.1)

This model is similar to those obtained for West German data in Chapter 5.
An important difference is that current income appears in the consumption
equation and there is no equation for investment. Thus, only income and
consumption are determined within the system whereas investment is not.
The fact that investment is, of course, determined within the economic system
as a whole does not necessarily mean that we have to specify its generation
mechanism if our main interest is with the generation mechanism of income
and consumption. In terms of the representation (10.1.1), the example system
can be written as[

1 0
−a21,0 1

][
y1t

y2t

]
=

[
α∗

11,1 α∗
12,1

α∗
21,1 α∗

22,1

][
y1,t−1

y2,t−1

]
+
[
ν∗1 β∗

12,1

ν∗2 0

][
1

x1,t−1

]
+

[
w1t

w2t

]
. (10.2.2)
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Thus, yt = (y1t, y2t)′ and xt = (1, x1t)′ are both two-dimensional. The prede-
termined variables are yt−1 and xt−1.

In dynamic SEMs there are sometimes identities or exact relations between
some variables. For instance, the same figures may be used for supply and
demand of a product. In that case, an identity equating supply and demand
may appear as a separate equation of a system. So far we have not excluded
this possibility. However, in later sections the covariance matrix of wt will be
assumed to be nonsingular which excludes identities. Then we assume without
further notice that they have been eliminated by substitution. For instance,
the demand variable may be substituted for the supply variable in all instances
where it appears in the system.

10.2.2 Structural Form, Reduced Form, Final Form

The representation (10.1.1) is called the structural form of the model if it
represents the instantaneous effects of the endogenous variables properly. The
instantaneous effects are reflected in the elements of A. The idea is that the
instantaneous causal links are derived from theoretical considerations and are
used to place restrictions on A. Of course, multiplication of (10.1.1) with any
other nonsingular (K ×K) matrix results in an equivalent representation of
the process generating yt. Such a representation is not called a structural
form, however, unless it reflects the actual relations of interest.

The reduced form of the system is obtained by premultiplying (10.1.1) with
A−1 which gives

yt = A1yt−1 + · · · + Apyt−p + B0xt + · · · + Bsxt−s + ut, (10.2.3)

where Ai := A−1A∗
i (i = 1, . . . , p), Bj := A−1B∗

j (j = 0, 1, . . . , s), and ut :=
A−1wt. We always assume without notice that the inverse of A exists. In
Sections 10.5–10.7, we will see that the reduced form is useful for forecasting,
multiplier analysis, and control purposes.

For the example model given in (10.2.2), we have

A−1 =
[

1 0
a21,0 1

]
and, hence, the reduced form is[

y1t

y2t

]
= A1

[
y1,t−1

y2,t−1

]
+ B1

[
1

x1,t−1

]
+

[
u1t

u2t

]
, (10.2.4)

where

A1 =
[
α11,1 α12,1

α21,1 α22,1

]
=

[
α∗

11,1 α∗
12,1

a21,0α
∗
11,1 + α∗

21,1 a21,0α
∗
12,1 + α∗

22,1

]
,

(10.2.5)
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B1 =
[
β11,1 β12,1

β21,1 β22,1

]
=

[
ν∗1 β∗

12,1

a21,0ν
∗
1 + ν∗2 a21,0β

∗
12,1

]
, (10.2.6)

and[
u1t

u2t

]
=

[
w1t

a21,0w1t + w2t

]
.

It is important to note that the reduced form parameters are in general non-
linear functions of the structural form parameters.

In lag operator notation, the reduced form (10.2.3) can be written as

A(L)yt = B(L)xt + ut, (10.2.7)

where

A(L) := IK −A1L− · · · −ApL
p

and

B(L) := B0 + B1L + · · · + BsL
s.

If the effect of a change in an exogenous variable on the endogenous variables is
of interest, it is useful to solve the system (10.2.7) for the endogenous variables
by multiplying with A(L)−1. The resulting representation,

yt = D(L)xt + A(L)−1ut, (10.2.8)

where D(L) := A(L)−1B(L), is sometimes called the final form of the system.
Of course, using A(L)−1 requires invertibility of A(L) which is guaranteed if

detA(z) �= 0 for |z| ≤ 1. (10.2.9)

If yt contains just one variable, A(L) is a scalar operator and the form (10.2.8)
is often called a distributed lag model in the econometrics literature because it
describes how lagged effects of changes in xt are distributed over time. Because
the lag distribution for each exogenous variable can be written as a ratio of
two finite order polynomials in the lag operator (A(L)−1B(L)), the model is
referred to as a rational distributed lag model. In the time series literature, the
label rational transfer function model is often attached to (10.2.8) in both the
scalar and the vector case. The operator D(L) represents the transfer function
transferring the observable inputs into the outputs of the system.

For the example model with reduced form (10.2.4), we get a final form[
y1t

y2t

]
= (I2 − A1L)−1B1L

[
1
x1t

]
+ (I2 − A1L)−1

[
u1t

u2t

]
=

( ∞∑
i=1

Ai−1
1 B1L

i

)[
1
x1t

]
+

( ∞∑
i=0

Ai
1L

i

)[
u1t

u2t

]
. (10.2.10)
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Note that B0 = 0 and thus, D0 = 0 and Di = Ai−1
1 B1 for i = 1, 2, . . ..

The coefficient matrices Di = (dkj,i) of the transfer function operator

D(L) =
∞∑

i=0

DiL
i

contain the effects that changes in the exogenous variables have on the en-
dogenous variables. Everything else held constant, a unit change in the j-th
exogenous variable in period t induces a marginal change of dkj,i units in the
k-th endogenous variable in period t + i. The elements of the Di matrices
are therefore called dynamic multipliers. The accumulated effects contained
in

∑n
i=0 Di are the n-th interim multipliers and the elements of

∑∞
i=0 Di are

the long-run effects or total multipliers. We will return to multiplier analysis
in Section 10.6.

As in the example, the transfer function operator D(L) has infinite order
in general. A finite order representation of the system is obtained by noting
that A(L)−1 = A(L)adj/|A(L)|, where A(L)adj denotes, as usual, the adjoint
of A(L). Thus, multiplying the reduced form by A(L)adj gives

|A(L)|yt = A(L)adjB(L)xt + A(L)adjut (10.2.11)

which involves finite order operators only. In the econometrics literature these
equations are sometimes called final equations. Because |A(L)| is a scalar
operator, each equation contains only one of the endogenous variables.

Assuming that the unmodelled variables xt are driven by a VAR(q) pro-
cess, say

xt = C1xt−1 + · · · + Cqxt−q + vt,

where q ≤ p and vt is white noise, then the joint generation process of xt and
yt is[

IK −B0

0 IM

][
yt

xt

]
=

[
A1 B1

0 C1

][
yt−1

xt−1

]
+ · · ·

+
[
Ap Bp

0 Cp

][
yt−p

xt−p

]
+

[
ut

vt

]
,

where it is assumed without loss of generality that s, q ≤ p, Bi := 0 for i > s
and Cj := 0 for j > q. If ut is also white noise, premultiplying by[

IK −B0

0 IM

]−1

=
[
IK B0

0 IM

]
shows that the joint generation process of yt and xt is a VAR(p).
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10.2.3 Models with Rational Expectations

Sometimes the endogenous variables are assumed to depend not only on other
endogenous and exogenous variables but also on expectations on endogenous
variables. If only expectations formed in the previous period for the present
period are of importance, one could simply add another term involving the ex-
pectations variables to the structural form (10.1.1). Denoting the expectations
variables by ye

t may then result in a reduced form

yt = A1yt−1 + · · · + Apyt−p + Fye
t + B0xt + · · · + Bsxt−s + ut (10.2.12)

or

A(L)yt = Fye
t + B(L)xt + ut, (10.2.13)

where F is a (K×K) matrix of parameters and A(L) and B(L) are the matrix
polynomials in the lag operator from (10.2.7).

Following Muth (1961), the expectations ye
t formed in period t − 1 are

called rational if they are the best possible predictions, given the information
in period t−1. In other words, ye

t is the conditional expectation Et−1(yt), given
all information available in period t−1. In forming the predictions or expecta-
tions, not only the past values of the endogenous and unmodelled variables are
assumed to be known but also the model (10.2.12) and the generation process
of the unmodelled variables. It is easy to see that, if the unmodelled variables
are generated by a VAR process, the expectations variables can be eliminated
from (10.2.12)/(10.2.13). The resulting reduced form is of VARX type. To
show this result, suppose that ut is independent white noise and, as before,
denote by Et the conditional expectation, given all information available in
period t. Applying Et−1 to (10.2.12) then gives

ye
t = Et−1(yt)

= A1yt−1 + · · · + Apyt−p

+Fye
t + B0Et−1(xt) + B1xt−1 + · · · + Bsxt−s (10.2.14)

or

ye
t = (A(L) − IK)yt + Fye

t + B0Et−1(xt) + (B(L) −B0)xt. (10.2.15)

Assuming that IK − F is invertible, this system can be solved for ye
t :

ye
t = (IK −F )−1[(A(L)− IK)yt +B0Et−1(xt) + (B(L)−B0)xt]. (10.2.16)

If xt is generated by a VAR(q) process, say

xt = C1xt−1 + · · · + Cqxt−q + vt,

where vt is independent white noise, then
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Et−1(xt) = C1xt−1 + · · · + Cqxt−q.

Substituting this expression in (10.2.16) shows that ye
t depends on lagged

yt and xt only. Thus, substituting for ye
t in (10.2.12) or (10.2.13), we get a

standard VARX form of the model.
Thus, in theory, when the true coefficient matrices are known, we can

simply eliminate the term involving expectations variables and work with
a standard reduced form without an expectations term. It should be clear,
however, that substituting the right-hand side of (10.2.16) for ye

t in (10.2.12)
implies nonlinear restrictions on the coefficient matrices of the reduced form
without expectations terms. Taking into account such restrictions may in-
crease the efficiency of parameter estimators. The same is true, of course,
for the structural form. Therefore, it is important in practice whether or not
the actual relationship between the variables is partly determined by agents’
expectations.

For expository purposes we have just treated a very special case where only
expectations formed in period t− 1 for period t enter the model. Extensions
can be treated in a similar way. For instance, past expectations for more than
one period ahead or expectations formed in various previous periods may be
of importance. If xt is generated by a VAR(q) process, they can be eliminated
like in the special case considered in the foregoing.

A complication of the basic model that makes life a bit more difficult is
the inclusion of future expectations. It is quite realistic to suppose that, for
instance, the expected future price of a commodity may determine the supply
in the present period. For example, if bond prices are expected to fall during
the next period, an investor may decide to sell now. If future expectations
enter the model, the solution for the endogenous variables will in general not
be unique. In other words, the process that generates the endogenous variables
may not be uniquely determined by the model, even if the generation process
of the exogenous variables is uniquely specified. Further extensive discussions
of rational expectations models can be found in volumes by Lucas & Sargent
(1981) and Pesaran (1987).

10.2.4 Cointegrated Variables

Many of the results discussed so far in this section hold for systems of station-
ary or integrated variables. More precisely, whenever the VAR operator A(L)
is not required to be invertible, integrated variables may be present as en-
dogenous as well as unmodelled variables. If there are cointegrated variables,
it may be preferable, however, to separate the short- and long-run dynam-
ics as in a VECM. Assuming that there are r cointegration relations among
the endogenous variables and they are not cointegrated with the unmodelled
variables, the corresponding form of the model is

A∆yt = α∗β′yt−1 + Γ∗
1∆yt−1 + · · · + Γ∗

p−1∆yt−p+1

+B∗
0xt + B∗

1xt−1 + · · · + B∗
sxt−s + wt, (10.2.17)
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where A is a (K×K) matrix of instantaneous effects, as before, α∗ is a (K×r)
matrix of structural loading coefficients, β is the (K×r) cointegration matrix,
Γ∗

j (j = 1, . . . , p− 1) is a (K ×K) matrix of structural short-run coefficients,
and all other symbols are defined as in (10.1.1). In many respects, this model
can be dealt with in essentially the same way as the VECMs considered in
Part II of this volume.

It is also possible, however, that there is cointegration between endogenous
and unmodelled variables. In that case, a suitable form of the model is

A∆yt = α∗β+′
[
yt−1

xt−1

]
+ Γ∗

1∆yt−1 + · · · + Γ∗
p−1∆yt−p+1

+Υ∗
0∆xt + Υ∗

1∆xt−1 + · · · + Υ∗
s−1∆xt−s+1 + wt, (10.2.18)

where now the unmodelled variables appear in levels form in the error correc-
tion term only and otherwise enter in differenced form with suitable coefficient
matrices Υ∗

j (j = 0, 1, . . . , s− 1). It is easy to see that such a model form can
be obtained if the joint generation process of yt and xt has a (reduced form)
VECM representation[

∆yt

∆xt

]
=

[
α
αx

]
β+′

[
yt−1

xt−1

]
+

[
Γ1 Υ1

0 Γx
1

][
∆yt−1

∆xt−1

]
+ · · ·

+
[

Γp−1 Υp−1

0 Γx
p−1

][
∆yt−p+1

∆xt−p+1

]
+

[
ut

vt

]
, (10.2.19)

where p ≥ s is assumed without loss of generality and all symbols have obvious
definitions. Premultiplying this model form with[

A −Υ∗
0

0 IM

]
gives a model where the first K equations are just the structural form
(10.2.18). Notice, however, that the yt may enter the xt equations in (10.2.19)
via the cointegration relations if αx �= 0. It turns out that xt is weakly ex-
ogenous for β+, if αx = 0. Thus, if the cointegration relations are of primary
interest, considering the partial model for ∆yt is justified if αx = 0.

Both models (10.2.17) and (10.2.18) can be rewritten in levels form. The
result is then a structural form as in (10.1.1). Moreover, the structural forms
can be converted into reduced form by premultiplying with A−1.

10.3 Estimation

Parameter estimation in the presence of unmodelled variables will be dis-
cussed separately for stationary and cointegrated variables. We begin with
the stationary case.
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10.3.1 Stationary Variables

Suppose (y′t, x′
t)′ is generated by a stationary process and we wish to estimate

the parameters of the reduced form (10.2.3) which can be written as

yt = AYt−1 + BXt−1 + B0xt + ut, (10.3.1)

where A := [A1, . . . , Ap], B := [B1, . . . , Bs],

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦, Xt :=

⎡⎢⎣ xt

...
xt−s+1

⎤⎥⎦.
Here ut is assumed to be standard white noise with nonsingular covariance
matrix Σu. Moreover, we allow for parameter restrictions and assume that a
matrix R and a vector γ exist such that

β := vec[A,B,B0] = Rγ. (10.3.2)

With these assumptions, estimation of β and, hence, of A, B, and B0 is
straightforward.

For a sample of size T , the system can be written compactly as

Y = [A,B,B0]Z + U, (10.3.3)

where

Y := [y1, . . . , yT ], Z :=

⎡⎣ Y0, . . . , YT−1

X0, . . . , XT−1

x1, . . . , xT

⎤⎦ and U := [u1, . . . , uT ].

Vectorizing gives

y = (Z ′ ⊗ IK)Rγ + u,

where y := vec(Y ) and u := vec(U). From Chapter 5, the GLS estimator is
known to be

γ̂ = [R′(ZZ′ ⊗Σ−1
u )R]−1R′(Z ⊗Σ−1

u )y. (10.3.4)

This estimator is not operational because in practice Σu is unknown. However,
as in Section 5.2.2, Σu may be estimated from the LS estimator

γ̆ = [R′(ZZ′ ⊗ IK)R]−1R′(Z ⊗ IK)y

which gives residuals ŭ = y − (Z ′ ⊗ IK)Rγ̆ and an estimator

Σ̆u = Ŭ Ŭ ′/T (10.3.5)
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of Σu, where Ŭ is such that vec(Ŭ) = ŭ. Using this estimator of the white
noise covariance matrix results in the EGLS estimator̂̂γ = [R′(ZZ′ ⊗ Σ̆−1

u )R]−1R′(Z ⊗ Σ̆−1
u )y. (10.3.6)

Under standard assumptions, this estimator is consistent and asymptotically
normal,

√
T (̂̂γ − γ) d→N (0, Σ̂̂γ), (10.3.7)

where

Σ̂̂γ = (R′[plim(T−1ZZ′) ⊗Σ−1
u ]R)−1. (10.3.8)

One condition for this result to hold is, of course, that both plim T−1ZZ ′ and
the inverse of the matrix in (10.3.8) exist. Further assumptions are required
to guarantee the asymptotic normal distribution of the EGLS estimator. The
assumptions may include the following ones: (i) ut is standard white noise,
(ii) the VAR part is stable, that is,

|A(z)| = |IK −A1z − · · · −Apz
p| �= 0 for |z| ≤ 1,

and (iii) xt is generated by a stationary, stable VAR process which is inde-
pendent of the white noise process ut. A precise statement of more general
conditions and a proof are given, e.g., by Hannan & Deistler (1988). The latter
part of our set of assumptions requires that all the exogenous variables are
stochastic. It can be modified so as to include nonstochastic variables as well.
In that case, the plim in (10.3.8) reduces to a nonstochastic limit in some or
all components (see, e.g., Anderson (1971, Chapter 5), Harvey (1981)).

An estimator for β = Rγ is obtained as ̂̂
β = R̂̂γ. If (10.3.7) holds, this

estimator also has an asymptotic normal distribution,

√
T (̂̂β − β) d→N (0, Σ̂̂

β
= RΣ̂̂γR′), (10.3.9)

Moreover, under general conditions, the corresponding estimator ̂̂
Σu of the

white noise covariance matrix is asymptotically independent of ̂̂
β and has the

same asymptotic distribution as the estimator UU ′/T based on the unob-
served true residuals. For instance, for a Gaussian process,

√
T vech(̂̂Σu −Σu) d→N (0, 2D+

K(Σu ⊗Σu)D+′
K ), (10.3.10)

where D+
K = (D′

KDK)−1D′
K is the Moore-Penrose inverse of the (K2 ×

1
2K(K + 1)) duplication matrix DK .

In discussing direct reduced form estimation with white noise errors, we
have treated a particularly simple case. The following complications are pos-
sible.
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(1) Usually there will be restrictions on the structural form coefficients A,
A∗

i , i = 1, . . . , p, and B∗
j , j = 0, . . . , s. Such restrictions may imply nonlin-

ear constraints on the reduced form coefficients which are not covered by
the above approach. Rational expectations assumptions may be another
source of nonlinear restrictions on the reduced form parameters. Theoreti-
cally, it is not difficult to handle nonlinear restrictions on the reduced form
parameters. In practice, numerical problems may arise in a multivariate
LS or GLS estimation with nonlinear restrictions.

(2) Interest may focus on the structural rather than the reduced form. Es-
timation of the structural form has been discussed extensively in the
econometrics literature. For recent surveys and many further references
see Judge et al. (1985), Hausman (1983), or textbooks such as Hayashi
(2000). A major complication in estimating the structural form of a SEM
such as (10.1.1) results from its possible nonuniqueness. Note that we
have not assumed a triangular A matrix or a diagonal covariance matrix
of wt. Premultiplication of (10.1.1) by any nonsingular matrix results in
an equivalent representation of the process. Thus, for proper estimation
there must be restrictions on the structural form coefficients that guaran-
tee uniqueness or identification of the structural form coefficients.

(3) So far we have just discussed models which are linear in the variables.
In practice, there may be nonlinear relations between the variables. Es-
timation of nonlinear dynamic models where the endogenous as well as
the unmodelled conditioning variables may enter in a nonlinear way are,
for instance, discussed by Bierens (1981), Gallant (1987), and Gallant &
White (1988).

In the next section, we will consider models with integrated and cointe-
grated variables.

10.3.2 Estimation of Models with I(1) Variables

If there are integrated and cointegrated variables in the model and a reduced
form VECM corresponding to the structural form (10.2.18),

∆yt = αβ+′
[
yt−1

xt−1

]
+ Γ1∆yt−1 + · · · + Γp−1∆yt−p+1

+Υ0∆xt + Υ1∆xt−1 + · · · + Υs−1∆xt−s+1 + ut, (10.3.11)

is set up, estimation can in principle proceed as in Section 7.2. Assuming that
a sample of size T and all required presample values are available and defining

∆Y := [∆y1, . . . ,∆yT ],

Y +
−1 := [y+

0 , . . . , y
+
T−1], with y+

t−1 :=
[
yt−1

xt−1

]
,
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∆X+ := [∆X+
0 , . . . , ∆X+

T−1] with ∆X+
t−1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆yt−1

...
∆yt−p+1

∆xt

∆xt−1

...
∆xt−s+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

U := [u1, . . . , uT ],

we get

∆Y = αβ+′Y +
−1 + Γ+∆X+ + U, (10.3.12)

where

Γ+ := [Γ1 : · · · : Γp−1 : Υ0 : Υ1 : · · · : Υs−1].

Thus, we have precisely the same model form as in Section 7.2 (see, e.g.,
(7.2.3)) and, in principle, all the estimators of that section are available. No-
tice, however, that now β+ is a ((K + M) × r) matrix whereas α is still
(K × r). Because the error correction term now involves all the cointegration
relations between the endogenous and unmodelled variables, it is possible that
r > K. In that case, it is easy to see that most of the estimators of Section
7.2 are not available. Thus, we have to assume that r ≤ K. In fact, if r = K,
the matrix Π+ := αβ+′ is of full row rank under our usual assumption that
rk(α) = rk(β+) = r. Therefore, if K = r, we do not even need reduced
rank regression but can simply estimate the matrix Π+ = αβ+′ by applying
multivariate LS to (10.3.12). An estimator of β+ can then be obtained by
normalizing the cointegration matrix as in Section 7.2 such that

β+ =
[
IK

β+
(M)

]
(10.3.13)

and, using

β̂+′ = (Π̂+
(1))

−1Π̂+,

where Π̂+
(1) is the (K ×K) submatrix consisting of the first K columns of the

LS estimator Π̂+ of Π+.
If r < K, there is nothing special here relative to the procedures discussed

in Section 7.2. Reduced rank ML estimation, as discussed in Section 7.2.3,
is available just as the EGLS estimator of the cointegration parameters of
Section 7.2.2 and the two-stage estimator described in Section 7.2.5. Moreover,
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the two-stage procedure can also be used to estimate models with parameter
restrictions on α and Γ+, as in Section 7.3.2. In fact, a similar procedure can
even be used for the estimation of structural form models of the type (10.2.18).

In this context, it is, of course, of interest to know the properties of the
resulting estimators. They are available under suitable assumptions for the
model and the variables (see, e.g., Johansen (1992) or Davidson (2000, Section
16.5)). Under general assumptions, the estimator of the cointegration matrix
continues to be superconsistent, that is,

T (β̂+ − β+) = Op(1),

if all variables are at most I(1) and β+ is identified. If the cointegration
relations do not enter the generation process of xt, that is, αx = 0 in (10.2.19),
xt is weakly exogenous for β+ and the ML and EGLS estimators of β+ have
mixed normal distributions similar to those discussed in Section 7.2. Therefore
standard inference is possible, as discussed in that section. The estimators of
the α and Γ+ parameters have again standard properties which are the same
as in the case where the β+ matrix is known.

10.4 Remarks on Model Specification and Model
Checking

The basic principles of model specification and checking the model adequacy
have been discussed in some detail in previous chapters. We will therefore
make just a few remarks here. With respect to the specification there is, how-
ever, a major difference between the models considered previously and the
dynamic SEMs of this chapter. While in a reduced form VAR analysis usually
relatively little prior knowledge from economic or other subject matter theory
is used, such theories may well be the major building block in specifying SEMs.
In that case, model checking becomes of central importance in investigating
the validity of the theory. Quite often, theories are not available that specify
the data generation process completely. For instance, the lag lengths of the en-
dogenous and/or exogenous variables may have to be specified with statistical
tools. Also, some researchers may not be prepared to rely on the available the-
ories and therefore prefer to substitute statistical investigations for uncertain
prior knowledge. Statistical specification strategies for general dynamic SEMs
were, for instance, proposed and discussed by Hannan & Kavalieris (1984),
Hannan & Deistler (1988), and Poskitt (1992). These strategies are based on
model selection criteria of the type considered in previous chapters. An ex-
tensive literature exists on the specification of special models. For instance,
distributed lag models are discussed at length in the econometrics literature
(for some references see Judge et al. (1985, Chapters 9 and 10)). Specification
proposals for transfer function models with one dependent variable yt go back
to the pioneering work of Box & Jenkins (1976). Other suggestions have been
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made by Haugh & Box (1977), Young, Jakeman & McMurtrie (1980), Liu &
Hanssens (1982), Tsay (1985), and Poskitt (1989) to name just a few.

If some of the variables are integrated, one may also want to investigate the
number of cointegration relations with statistical tests. From the discussion
in Section 10.3.2, it is clear that rank tests can be used for that purpose, as in
Section 8.2. These tests may now be based either on a VECM for the full joint
generation process of yt and xt or on a partial model with some unmodelled
variables. The latter approach may be preferable if a large number of variables
is involved. Johansen’s LR tests for the cointegrating rank may be unreliable
in that situation because of size distortions and lack of power. Therefore,
testing for the cointegrating rank in a partial model may be advantageous. The
asymptotic distributions of the relevant LR test statistics in this case depend
on the conditioning variables, however. This result is not surprising, of course,
because the conditioning variables can in fact be deterministic terms and we
have seen in Section 8.2 that such terms have an impact on the asymptotic
properties of the LR tests. The relevant tests for conditional models were
derived by Harbo, Johansen, Nielsen & Rahbek (1998) and critical values
were given in MacKinnon, Haug & Michelis (1999).

In checking the model adequacy one may want to test various restrictions.
These may range from constraints suggested by some kind of theory such
as the rational expectations hypothesis, to tests of the significance of extra
lags. The three testing principles discussed previously, namely the LR, LM,
and Wald principles (see Appendix C.7) can be used in the present context.
Their asymptotic properties follow in the usual way from properties of the
estimators and the model.

A residual analysis is another tool which is available in the present case.
Plots of residuals may help to identify unusual values or patterns that suggest
model deficiencies. Plots of residual autocorrelations may aid in checking the
white noise assumption. Also a portmanteau test for overall residual autocor-
relation may be developed for dynamic models with exogenous variables; see
Poskitt & Tremayne (1981) for a discussion of this issue and further references.

10.5 Forecasting

10.5.1 Unconditional and Conditional Forecasts

If the future paths of the unmodelled variables are unknown to the forecaster,
then forecasts of these variables are needed in order to predict the future values
of the endogenous variables on the basis of a dynamic SEM. For simplicity,
suppose that the exogenous variables are generated by a zero mean VAR(q)
process as in Section 10.2.3,

xt = C1xt−1 + · · · + Cqxt−q + vt. (10.5.1)
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Now this process can be used to produce optimal forecasts xt(h) of xt in the
usual way. If the endogenous variables are generated by the reduced form
model (10.2.3) with ut being independent white noise which is also indepen-
dent of the xt process, the optimal h-step forecast of yt+h at origin t is

yt(h) = A1yt(h−1)+· · ·+Apyt(h−p)+B0xt(h)+· · ·+Bsxt(h−s), (10.5.2)

where yt(j) := yt+j and xt(j) := xt+j for j ≤ 0. This formula can be used for
recursively determining forecasts for h = 1, 2, . . ..

An alternative way for getting these forecasts is obtained by writing the
generation processes of the exogenous variables in one overall model together
with the reduced form SEM:[

IK −B0

0 IM

][
yt

xt

]
=

[
A1 B1

0 C1

][
yt−1

xt−1

]
+ · · ·

+
[
Ap Bp

0 Cp

][
yt−p

xt−p

]
+

[
ut

vt

]
, (10.5.3)

where we assume without loss of generality that p ≥ max(s, q) and set Bi = 0
for i > s and Cj = 0 for j > q. As in Section 10.2.2, premultiplying by[

IK −B0

0 IM

]−1

=
[
IK B0

0 IM

]
gives a standard reduced form VAR(p) model. It is easy to see that the optimal
forecasts for yt and xt from that model are exactly the same as those obtained
by getting forecasts for xt from (10.5.1) first and using them in the prediction
formula for yt given in (10.5.2) (see Problem 10.5). Thus, under the present
assumptions, the discussion of forecasting VAR(p) processes applies. It will
not be repeated here. Also, it is not difficult to extend these ideas to sets of
unmodelled variables with nonstochastic components such as intercept terms
or seasonal dummies.

We will refer to forecasts of yt obtained in this way as unconditional fore-
casts because they are based on forecasts of the exogenous variables for the
forecast period. Occasionally, the forecaster may know some or all of the fu-
ture values of the exogenous variables, for instance, because they are under
the control of some decision maker. In that case he or she may be interested
in forecasts of yt conditional on a specific future path of xt. In order to de-
rive the optimal conditional forecasts, we write the reduced form (10.2.3) in
VARX(1, 0) form,

Yt = AYt−1 + Bxt + Ut, (10.5.4)

where



10.5 Forecasting 403

Yt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

xt

...
xt−s+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦ ((Kp + Ms) × 1),

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 . . . Ap−1 Ap |
IK 0 0 |

. . .
...

... |
0 . . . IK 0 |

B1 . . . Bs−1 Bs

0 . . . 0 0...
. . .

...
...

0 . . . 0 0−−−−−−−−− −−−−−−−−−

0

| 0 . . . 0 0
| IM 0 0
| . . .

...
...

| 0 . . . IM 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
((Kp+Ms)×(Kp+Ms))

,

and

B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

0
...
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Kp×M)

IM

0
...
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Ms×M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Successive substitution for lagged Yt’s gives

Yt = AhYt−h +
h−1∑
i=0

AiBxt−i +
h−1∑
i=0

AiUt−i. (10.5.5)

Hence, premultiplying by the (K × (Kp + Ms)) matrix J := [IK : 0 : · · · : 0]
results in

yt+h = JAhYt +
h−1∑
i=0

JAiBxt+h−i +
h−1∑
i=0

JAiJ ′ut+h−i, (10.5.6)

where Ut = J ′JUt = J ′ut, has been used. Now the optimal h-step forecast of
yt at origin t, given xt+1, . . . , xt+h, and all present and past information, is
easily seen to be

yt(h|x) := JAhYt +
h−1∑
i=0

JAiBxt+h−i (10.5.7)
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and the corresponding forecast error is

yt+h − yt(h|x) =
h−1∑
i=0

JAiJ ′ut+h−i. (10.5.8)

Thus, the MSE of the conditional forecast is

Σy(h|x) := MSE[yt(h|x)] =
h−1∑
i=0

JAiJ ′ΣuJ(Ai)′J ′. (10.5.9)

Although this MSE matrix formally looks like the MSE matrix of the optimal
forecast from a VAR model, where JAiJ ′ is replaced by Φi, the MSE matrix
in (10.5.9) is in general different from the one of an unconditional forecast.
This fact is easy to see by considering the different definition of the matrix A
used in the pure VAR(p) case.

To illustrate the difference between conditional and unconditional fore-
casts, we consider the simple reduced form

yt = A1yt−1 + B0xt + ut, (10.5.10)

where xt is assumed to be generated by a zero mean VAR(1) process,

xt = C1xt−1 + vt.

Moreover, we assume that ut and vt are independent white noise processes
with covariance matrices Σu and Σv, respectively. The unconditional forecasts
are obtained from the VAR process[

IK −B0

0 IM

][
yt

xt

]
=

[
A1 0
0 C1

][
yt−1

xt−1

]
+

[
ut

vt

]
which, upon premultiplying with[

IK −B0

0 IM

]−1

=
[
IK B0

0 IM

]
,

has the standard VAR(1) from[
yt

xt

]
=

[
A1 B0C1

0 C1

][
yt−1

xt−1

]
+

[
ut + B0vt

vt

]
.

The optimal 1-step forecast from this model is[
yt(1)
xt(1)

]
=

[
A1 B0C1

0 C1

][
yt

xt

]
.

The corresponding MSE matrix is
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Σ∗(1) = E

([
ut + B0vt

vt

]
[(ut + B0vt)′, v′t]

)
=

[
Σu + B0ΣvB

′
0 B0Σv

ΣvB
′
0 Σv

]
.

The upper left-hand corner block of this matrix is the MSE matrix of yt(1),
the unconditional forecast of the endogenous variables. Thus,

Σy(1) = Σu + B0ΣvB
′
0. (10.5.11)

On the other hand, in the VARX(1, 0) representation (10.5.4), we have A = A1

and B = B0 for the present example. Hence, the conditional 1-step forecast
of yt is

yt(1|x) = A1yt + B0xt+1

with corresponding MSE matrix

Σy(1|x) = Σu.

Obviously, Σy(1)−Σy(1|x) = B0ΣvB
′
0 is positive semidefinite and, thus, the

unconditional forecast is inferior to the conditional forecast, if B0 �= 0. It
must be kept in mind, however, that the conditional forecast is only feasible
if the future values of the exogenous variables are either known or assumed. If
only hypothetical values are used, the conditional forecast may be quite poor
if the actual values of the exogenous variables turn out to be different from
the hypothetical ones. The smaller MSE of the conditional forecast is simply
due to ignoring any uncertainty regarding the future paths of the exogenous
variables.

Using the foregoing results, interval forecasts and forecast regions can be
set up as usual. It may also be worth pointing out that we have not used
the stability of the VAR operator or stationarity of the variables. Hence, the
formulas are also valid for systems with integrated and cointegrated variables.
So far we have discussed forecasting with known models. The case of estimated
models will be considered next.

10.5.2 Forecasting Estimated Dynamic SEMs

In order to evaluate the consequences of using estimated instead of known
processes for unconditional forecasts, we can use a joint model for the en-
dogenous and exogenous variables and then draw on results of the previous
chapters. Therefore, in this section we will focus on conditional forecasts only.
We denote by ŷt(h|x) the conditional h-step forecast (10.5.7) based on the
estimated reduced form (10.2.3). The forecast error is

yt+h − ŷt(h|x) = [yt+h − yt(h|x)] + [yt(h|x) − ŷt(h|x)]. (10.5.12)
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Conditional on the exogenous variables, the two terms in brackets are uncor-
related. Hence, assuming, as in previous chapters, that the processes used for
estimation and forecasting are independent, an MSE approximation

Σŷ(h|x) = Σy(h|x) +
1
T
Ωy(h|x) (10.5.13)

is obtained in the by now familiar way. Here

Ωy(h|x) := E

[
∂yt(h|x)
∂β′ Σ

β̂

∂yt(h|x)′

∂β

]
, (10.5.14)

β := vec[A1, . . . , Ap, B1, . . . , Bs, B0] and Σ
β̂

is the covariance matrix of the

asymptotic distribution of
√
T (β̂ − β). It is straightforward to show that

∂yt(h|x)
∂β′ =

∂(JAhYt)
∂β′ +

h−1∑
i=0

∂(JAiBxt+h−i)
∂β′

=
h−1∑
i=0

[
Y ′

t (A′)h−1−i ⊗ JAiJ ′

+
i−1∑
j=0

x′
t+h−iB

′(A′)i−1−j ⊗ JAjJ ′ : x′
t+h−i ⊗ JAiJ ′

]
.

(10.5.15)

For stationary processes, an estimator of Ωy(h|x) is obtained in the usual
way be replacing all unknown parameters in this expression and in Σ

β̂
by

estimators and by using the average over t = 1, . . . , T for the expectation in
(10.5.14).

Although we have discussed forecasting with estimated coefficients in
terms of a simple VARX(p, s) model with white noise residuals, it is pos-
sible to generalize these results to models with autocorrelated error processes.
The more general case was treated, for instance, by Yamamoto (1980) and
Baillie (1981).

10.6 Multiplier Analysis

In an econometric simultaneous equations analysis, the marginal impact of
changes in the exogenous variables is sometimes investigated. For example, if
the exogenous variables are instruments for, say, the government or a central
bank the consequences of changes in these instruments may be of interest.
A government may, for instance, desire to know the effects of a change in
a tax rate. In that case, policy simulation is of interest. In other cases, the
consequences of changes in the exogenous variables that are not under the
control of any decision maker may be of interest. For instance, it may be
desirable to study the future consequences of the present weather conditions.
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Therefore, the dynamic multipliers discussed in Section 10.2.2 are consid-
ered. They are contained in the Di matrices of the final form operator,

D(L) =
∞∑

i=0

DiL
i := A(L)−1B(L),

where A(L) := IK −A1L−· · ·−ApL
p and B(L) := B0 +B1L+ · · ·+BsL

s are
the reduced form operators, as before. Here stability and, hence, invertibility
of the VAR operator A(L) is assumed. The Di matrices are conveniently
obtained from the VARX(1, 0) representation (10.5.4) which implies

yt =
∞∑

i=0

JAiBxt−i +
∞∑

i=0

JAiJ ′ut−i, (10.6.1)

because JAhYt → 0 as h → ∞, if yt is a stable, stationary process (see
(10.5.6)). The Di’s are coefficient matrices of the exogenous variables in the
final form representation. Thus,

Di = JAiB, i = 0, 1, . . . , (10.6.2)

the n-th interim multipliers are

Mn := D0+D1+ · · ·+Dn = J(I+A+· · ·+An)B, n = 0, 1, . . . , (10.6.3)

and the total multipliers are

M∞ :=
∞∑

i=0

Di = J(I − A)−1B = A(1)−1B(1). (10.6.4)

If the model contains integrated variables and the generation mechanism
is started at time t = 0, say, from a set of initial values, then we get from
(10.5.5),

yt = JAtY0 +
t−1∑
i=0

JAiBxt−i +
t−1∑
i=0

JAiJ ′ut−i. (10.6.5)

Thus, the Di matrices in (10.6.2) still reflect the marginal impacts of changes
in the unmodelled variables and, hence, contain the multipliers. Also the n-th
interim multipliers can be computed as in (10.6.3), whereas the total multi-
pliers in (10.6.4) will not exist in general.

Having obtained the foregoing representations of the multipliers, estima-
tion of these quantities is straightforward. Estimators of the dynamic mul-
tipliers are obtained by substituting estimators Âi and B̂j of the coefficient
matrices in A and B. The asymptotic properties of the estimators then fol-
low in the usual way. For completeness we mention the following result from
Schmidt (1973).
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In the framework of Section 10.3, suppose β̂ is a consistent estimator of
β := vec[A,B,B0] satisfying

√
T (β̂ − β)

d→N (0, Σ
β̂
).

Then
√
T vec(D̂i −Di)

d→N (0, GiΣβ̂G
′
i), (10.6.6)

where G0 := [0 : IKM ] and

Gi :=
∂ vec(Di)

∂β′ =

⎡⎣i−1∑
j=0

B′(A′)i−1−j ⊗ JAjJ ′ : IM ⊗ JAiJ ′

⎤⎦ ,

i = 1, 2, . . . ,

are [KM × (K2p + KM(s + 1))] matrices. The proof of this result is left as
an exercise. It is also easy to find the asymptotic distribution of the interim
multipliers (accumulated multipliers) and the total multipliers if they exist
(see Problem 10.8).

10.7 Optimal Control

A policy or decision maker who has control over some of the exogenous vari-
ables can use a dynamic simultaneous equations model to assess interventions
with a multiplier or simulation analysis, as described in the previous section.
However, if the decision maker has specific target values of the endogenous
variables in mind, he or she may wish to go a step further and determine
which values of the instrument variables will produce the desired values of the
endogenous variables.

Usually it will not be possible to actually achieve all targets simultane-
ously and sometimes the decision maker is not completely free to choose the
instruments. For instance, doubling a particular tax rate or increasing the
price of specific government services drastically may result in the overthrow
of the government or in social unrest and is therefore not a feasible option.
Therefore, a loss function is usually set up in which the loss of deviations
from the target values is specified. For instance, if the desired paths of the
endogenous and instrument variables after period T are y0

T+1, . . . , y
0
T+n and

x0
T+1, . . . , x

0
T+n, respectively, a quadratic loss function has the form

L =
n∑

i=1

[(yT+i − y0
T+i)

′Ki(yT+i − y0
T+i)

+(xT+i − x0
T+i)

′Pi(xT+i − x0
T+i)], (10.7.1)

where the Ki and Pi are symmetric positive semidefinite matrices. Because
the variables are assumed to be stochastic, the loss is a random variable too.
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Therefore, minimization of the average or expected loss, E(L), is usually the
objective.

In a quadratic loss function the same weight is assigned to positive and
negative deviations from the target values. For many situations and variables
this specification is not quite realistic. For example, if the target is to have an
unemployment rate of 2%, then having less than 2% may not be a problem at
all while any higher rate may be regarded as a serious problem. Nevertheless,
quadratic loss functions are the most common ones in applied and theoretical
studies. Therefore, we will also use them in the following. One reason for the
popularity of this type of loss function is clearly its tractability.

In order to approach a formal solution of the optimal control problem
outlined in the foregoing, we assume that the economic system is described
by a model like (10.1.1) with reduced form (10.2.3). However, to be able to
distinguish between instrument variables and other exogenous variables, we
introduce a new symbol for the latter. Suppose xt represents an (M × 1) vector
of instrument variables, the (N × 1) vector zt contains all other unmodelled
variables and the reduced form of the model is

yt = A1yt−1 + · · · + Apyt−p + B0xt + · · · + Bsxt−s + Czt + ut, (10.7.2)

where ut is white noise. Some of the components of zt may be lagged variables.
To summarize them in a vector indexed by t is just a matter of convenience.

For the present purposes, it is useful to write the model in VARX(1, 0)
form similar to (10.5.4),

Yt = AYt−1 + Bxt + Czt + Ut, (10.7.3)

where Yt, Ut,A, and B are as defined in (10.5.4) and

C :=

⎡⎢⎢⎣
C
0...
0

⎤⎥⎥⎦
is a ((Kp + Ms) ×N) matrix. Recall that

Yt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

xt

...
xt−s+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
contains current and lagged endogenous and instrument variables. Thus, the
quadratic loss function specified in (10.7.1) may be rewritten in the form



410 10 Systems of Dynamic Simultaneous Equations

L =
n∑

i=1

(YT+i − Y 0
T+i)

′Qi(YT+i − Y 0
T+i), (10.7.4)

where the Qi are symmetric positive semidefinite matrices involving the Ki’s
and Pi’s.

In this framework, the problem of optimal control may be stated as follows:
Given the model (10.7.3), given the vector YT , given values zT+1, . . . , zT+n

of the uncontrolled variables and given target values y0
T+1, . . . , y

0
T+n and

x0
T+1, . . . , x

0
T+n, find the values x∗

T+1, . . . , x
∗
T+n that minimize the expected

loss E(L) specified in (10.7.4). The solution to this dynamic programming
problem is well documented in the control theory literature. It turns out to
be

x∗
T+i = GiYT+i−1 + gi, i = 1, . . . , n, (10.7.5)

where the YT+i are assumed to be obtained as

YT+i = AYT+i−1 + Bx∗
T+i + CzT+i + uT+i.

Here the (M × (Kp + Ms)) matrix Gi is defined as

Gi := −(B′HiB)−1B′HiA

and the (M × 1) vector gi is defined as

gi := −(B′HiB)−1B′(HiCzT+i − hi)

with

Hn := Qn and Hi−1 := Qi−1 + (A + BGi)′Hi(A + BGi),
for i = 1, . . . , n− 1,

and

hn := QnY
0
T+n and

hi−1 := Qi−1Y
0
T+i−1 − A′Hi(CzT+i + Bgi) + A′hi

for i = 1, . . . , n− 1.

The actual computation of these quantities proceeds in the order Hn, Gn,
hn, gn, Hn−1, Gn−1, hn−1, gn−1, Hn−2, . . .. This solution can be found in
various variations in the control theory literature (e.g., Chow (1975, 1981),
Murata (1982)). Obviously, because the Yt are random, the same is true for
the optimal decision rule x∗

T+i, i = 1, . . . , n.
There are a number of problems that arise in practice in the context of

optimal control as presented here. For instance, we have considered a finite
planning horizon of n periods. In some situations it is of interest to find the
optimal decision rule for an infinite planning period. Moreover, in practice
the parameter matrices A, B, and C are usually unknown and have to be



10.8 Concluding Remarks on Dynamic SEMs 411

replaced by estimators. More generally, stochastic parameter models may be
considered. This, of course, introduces an additional stochastic element into
the optimal decision rule. A further complication arises if the relations be-
tween the variables cannot be captured adequately by a linear model such as
(10.7.2) but require a nonlinear specification. It is also possible to consider
other types of optimization rules. In this section, we have assumed that the
optimal decision rule for period T + i is determined on the basis of all avail-
able information in period T + i − 1. In particular, the realization YT+i−1 is
assumed to be given in setting up the decision rule x∗

T+i. Such an approach
is often referred to as a closed-loop strategy. An alternative approach would
be to determine the decision rule at the beginning of the planning period for
the entire planning horizon. This approach is called an open-loop strategy.
Although it is in general inferior to closed-loop optimization, it may be of
interest occasionally. These and many other topics are treated in the opti-
mal control literature. Chow (1975, 1981) and Murata (1982) are books on
the topic with emphasis on optimal decision making related to economic and
econometric models. Friedmann (1981) provided the asymptotic properties of
the optimal decision rule when estimators are substituted for the parameters
in the control rule.

10.8 Concluding Remarks on Dynamic SEMs

In this chapter, we have summarized some problems related to the estimation,
specification, and analysis of dynamic models with unmodelled variables. Ma-
jor problem areas that were identified without giving details of possible so-
lutions are the distinction between endogenous and exogenous variables, the
identification or unique parameterization of dynamic models, the estimation,
specification, and checking of structural form models as well as the treatment
of nonlinear specifications. Also, we have just scratched the surface of con-
trol problems which represent one important area of applications of dynamic
SEMs.

Other problems of obvious importance in the context of these models re-
late to the choice of the data associated with the variables. If a structural
form is derived from some economic or other subject matter theory, it is im-
portant that the available data represents realizations of the variables related
to the theory. In particular, the level of aggregation (temporal and contem-
poraneous) and seasonal characteristics (seasonally adjusted or unadjusted)
may be of importance. The models we have considered do not allow specifi-
cally for seasonality, except perhaps for seasonal dummies and other seasonal
components among the unmodelled variables. The seasonality aspect in the
context of dynamic SEMs and models specifically designed for seasonal data
were discussed, for example, by Hylleberg (1986).

So far, we have essentially considered stationary and integrated processes.
Mild deviations from the stationarity assumption are possible in dynamic
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SEMs where unmodelled variables may cause changes in the mean or con-
ditional mean of the endogenous variables. However, in discussing properties
of estimators or long-run multipliers, we have made assumptions that come
close to assuming stationarity or cointegration. For instance, if the unmod-
elled variables are driven by a stationary VAR process, the means and second
moments of the endogenous variables may be time invariant. Unfortunately,
in practice, changes in the data generation process may occur. Therefore, we
will discuss specific types of models with time varying parameters in later
chapters (see Chapters 17 and 18).

10.9 Exercises

Problem 10.1
Consider the following structural form

Qt = α0 + α1Rt−1 + w1t,
Pt = β0 + β1Qt + w2t,

where Rt is a measure for the rainfall in period t, Qt is the quantity of an
agricultural product supplied in period t, and Pt is the price of the product.
Derive the reduced form, the final equations, and the final form of the model.

Problem 10.2
Suppose that the rainfall variable Rt in Problem 10.1 is generated by a white
noise process with mean µR. Determine the unconditional 3-step ahead fore-
casts for Qt and Pt based on the model from Problem 10.1. Determine also
the conditional 3-step ahead forecasts given Rt+i = µR, i = 1, 2, 3. Compare
the two forecasts.

Problem 10.3
Given the model of Problem 10.1, what is the marginal total or long-run effect
of an additional unit of rainfall in period t?

Problem 10.4
Suppose the system yt has the structural form

A∗(L)yt = F ∗ye
t + B∗(L)xt + wt,

where A∗(L) := A−A∗
1L− · · · −A∗

pL
p, B∗(L) := B∗

0 +B∗
1L+ · · ·+B∗

sL
s and

xt is generated by a VAR(q) process

C(L)xt = vt.

Assume that ye
t represents rational expectations formed in period t − 1 and

eliminate the expectations variables from the structural form.
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Problem 10.5
Show that the 1-step ahead forecast for yt obtained from the VAR(p) model
(10.5.3) is identical to the one determined from (10.5.2) if

xt(1) = C1xt + · · · + Cqxt−q+1

is used as forecast for the exogenous variables.

Problem 10.6
Show that the partial derivatives ∂yt(h|x)/∂β′ have the form given in (10.5.15).

Problem 10.7
Derive a prediction test for structural change on the basis of the conditional
forecasts of the endogenous variables of a dynamic SEM.

Problem 10.8
Show that the dynamic multipliers have the asymptotic distributions given in
Section 10.6. Show also that the n-th interim multipliers have an asymptotic
normal distribution,

√
T vec(M̂n −Mn)

d→N (0, Σm̂(n)),

where

Σm̂(n) = (G0 + · · · + Gn)Σβ̂(G0 + · · · + Gn)′

and the Gi are the [KM × K(Kp + M(s + 1))] matrices defined in Section
10.6. Furthermore,

√
T vec(M̂∞ −M∞)

d→N (0, Σm̂(∞)),

where

Σm̂(∞) = G∞Σβ̂G
′
∞

with

G∞ := [((I − A)−1B)′ : IM ] ⊗ J(I −A)−1J ′.

Here the notation from Section 10.6 is used.

Problem 10.9
Derive the optimal decision rule for the control problem stated in Section 10.7.
(Hint: See Chow (1975).)
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So far we have considered finite order VAR processes. A more flexible and
perhaps more realistic class of processes is obtained by allowing for an infi-
nite VAR order. Of course, having only a finite string of time series data, the
infinitely many VAR coefficients cannot be estimated without further assump-
tions. There are two competing approaches that have been used in practice
in order to overcome this problem. In one approach, it is assumed that the
infinite number of VAR coefficients depend on finitely many parameters. In
Chapter 11, vector autoregressive moving average (VARMA) processes are in-
troduced that may be viewed as finite parameterizations of potentially infinite
order VAR processes. Estimation and specification of these processes are dis-
cussed in Chapters 12 and 13, respectively. Cointegrated VARMA processes
are considered in Chapter 14. In Chapter 15, another approach is pursued. In
that approach, the infinite order VAR operator is truncated at some finite lag
and the resulting finite order VAR model is estimated. It is assumed, however,
that the truncation point depends on the time series length available for esti-
mation. A suitable asymptotic theory for the resulting estimators is discussed
both for stationary as well as cointegrated processes.



11

Vector Autoregressive Moving Average

Processes

11.1 Introduction

In this chapter, we extend our standard finite order VAR model,

yt = ν + A1yt−1 + · · · + Apyt−p + εt,

by allowing the error terms, here εt, to be autocorrelated rather than white
noise. The autocorrelation structure is assumed to be of a relatively simple
type so that εt has a finite order moving average (MA) representation,

εt = ut + M1ut−1 + · · · + Mqut−q,

where, as usual, ut is zero mean white noise with nonsingular covariance ma-
trix Σu. A finite order VAR process with finite order MA error term is called
a VARMA (vector autoregressive moving average) process.

Before we study VARMA processes in general, we will discuss some prop-
erties of finite order MA processes in Section 11.2. In Section 11.3, we consider
the more general stationary VARMA processes with stable VAR part and we
will learn that generally they have infinite order pure VAR and MA repre-
sentations. Their autocovariance and autocorrelation properties are treated in
Section 11.4 and forecasting VARMA processes is discussed in Section 11.5.
In Section 11.6, transforming and aggregating these processes is considered.
In that section, we will see that a linearly transformed finite order VAR(p)
process, in general, does not admit a finite order VAR representation but
becomes a VARMA process. Because transformations of variables are quite
common in practice, this result is a powerful argument in favor of the more
general VARMA class. Finally, Section 11.7 contains discussions of causal-
ity issues and impulse response analysis in the context of VARMA systems.
Throughout this chapter, we consider stationary processes only.
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11.2 Finite Order Moving Average Processes

In Chapter 2, we have encountered MA processes of possibly infinite order.
Specifically, we have seen that stationary, stable finite order VAR processes
can be represented as MA processes. Now we deal explicitly with finite or-
der MA processes. Let us begin with the simplest case of a K-dimensional
MA process of order 1 (MA(1) process), yt = µ + ut + M1ut−1, where
yt = (y1t, . . . , yKt)′, ut is zero mean white noise with nonsingular covariance
matrix Σu, and µ = (µ1, . . . , µK)′ is the mean vector of yt, i.e., E(yt) = µ
for all t. For notational simplicity we will assume in the following that µ = 0,
that is, yt is a zero mean process. Thus, we consider

yt = ut + M1ut−1, t = 0,±1,±2, . . . , (11.2.1)

which may be rewritten as

ut = yt −M1ut−1.

By successive substitution we get

ut = yt −M1(yt−1 −M1ut−2) = yt −M1yt−1 + M2
1ut−2

= · · · = yt −M1yt−1 + · · · + (−M1)nyt−n + (−M1)n+1ut−n−1

= yt +
∞∑

i=1

(−M1)iyt−i,

if M i
1 → 0 as i → ∞. Hence,

yt = −
∞∑

i=1

(−M1)iyt−i + ut, (11.2.2)

which is the potentially infinite order VAR representation of the process. Be-
cause (−M1)i may be equal to zero for i greater than some finite number p,
the process may in fact be a finite order VAR(p). For instance, we get p = 1
for a bivariate process with

M1 =
[

0 m
0 0

]
,

where m is some nonzero real number.
For the representation (11.2.2) to be meaningful, M i

1 must approach zero
as i → ∞, which in turn requires that the eigenvalues of M1 are all less than
1 in modulus or, equivalently,

det(IK + M1z) �= 0 for z ∈ C, |z| ≤ 1.

This condition is analogous to the stability condition for a VAR(1) process.
It guarantees that the infinite sum in (11.2.2) exists as a mean square limit.
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More generally, it can be shown that a (zero mean) MA(q) process (moving
average process of order q),

yt = ut + M1ut−1 + · · · + Mqut−q, t = 0,±1,±2, . . . , (11.2.3)

has a pure VAR representation

yt =
∞∑

i=1

Πiyt−i + ut, (11.2.4)

if

det(IK + M1z + · · · + Mqz
q) �= 0 for z ∈ C, |z| ≤ 1. (11.2.5)

An MA(q) process with this property is called invertible in the following be-
cause we can invert from the MA to a VAR representation. Writing the process
in lag operator notation as

yt = (IK + M1L + · · · + MqL
q)ut = M(L)ut

the MA operator M(L) := IK + M1L + · · · + MqL
q is invertible if it satisfies

(11.2.5) and we may formally write

M(L)−1yt = ut.

The actual computation of the coefficient matrices Πi in

M(L)−1 = Π(L) = IK −
∞∑

i=1

ΠiL
i

can be done recursively using Π1 = M1 and

Πi = Mi −
i−1∑
j=1

Πi−jMj , i = 2, 3, . . . , (11.2.6)

where Mj := 0 for j > q. These recursions follow immediately from the
corresponding recursions used to compute the MA coefficients of a pure VAR
process (see Chapter 2, (2.1.22)).

The autocovariances of the MA(q) process (11.2.3) are particularly easy to
obtain. They follow directly from those of an infinite order MA process given
in Chapter 2, Section 2.1.2, (2.1.18):

Γy(h) = E(yty
′
t−h) =

⎧⎪⎪⎨⎪⎪⎩
q−h∑
i=0

Mi+hΣuM
′
i , h = 0, 1, . . . , q,

0, h = q + 1, q + 2, . . . ,

(11.2.7)
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with M0 := IK . As before, Γy(−h) = Γy(h)′. Thus, the vectors yt and yt−h

are uncorrelated if h > q. Obviously, the process (11.2.3) is stationary because
the Γy(h) do not depend on t and the mean E(yt) = 0 for all t.

It can be shown that a noninvertible MA(q) process violating (11.2.5) also
has a pure VAR representation if the determinantal polynomial in (11.2.5)
has no roots on the complex unit circle, i.e., if

det(IK + M1z + · · · + Mqz
q) �= 0 for |z| = 1. (11.2.8)

The VAR representation will, however, not be of the type (11.2.4) in that the
white noise process will in general not be the one appearing in (11.2.3). The
reason is that for any noninvertible MA(q) process satisfying (11.2.8), there
is an equivalent invertible MA(q) satisfying (11.2.5) which has an identical
autocovariance structure (see Hannan & Deistler (1988, Chapter 1, Section
3)). For instance, for the univariate MA(1) process

yt = ut + mut−1, (11.2.9)

the invertibility condition requires that 1 + mz has no roots for |z| ≤ 1 or,
equivalently, |m| < 1. For any m, the process has autocovariances

E(ytyt−h) =

⎧⎨⎩
(1 + m2)σ2

u for h = 0,
mσ2

u for h = ±1,
0 otherwise,

where σ2
u := Var(ut). It is easy to check that the process vt + 1

m
vt−1, where

vt is a white noise process with σ2
v := Var(vt) = m2σ2

u, has the very same
autocovariance structure. Thus, if |m| > 1, we may choose the invertible
MA(1) representation

yt = vt +
1
m
vt−1 (11.2.10)

with

vt =
(

1 +
1
m
L

)−1

yt =
∞∑

i=0

(−1
m

)i

yt−i

=
(

1 +
1
m
L

)−1

(1 + mL)ut.

The reader is invited to check that vt is indeed a white noise process with
σ2

v = m2σ2
u (see Problem 11.10). Only if |m| = 1 and, hence, 1 + mz = 0 for

some z on the unit circle (z = 1 or −1), an invertible representation does not
exist.

Although for higher order and higher-dimensional processes, where roots
inside and outside the unit circle may exist, it is more complicated to find the
invertible representation, it can be done whenever (11.2.8) is satisfied. In the
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remainder of this chapter, we will therefore assume without notice that all
MA processes are invertible unless stated otherwise. It should be understood
that this assumption implies a slight loss of generality because MA processes
with roots on the complex unit circle are excluded.

11.3 VARMA Processes

11.3.1 The Pure MA and Pure VAR Representations of a
VARMA Process

As mentioned in the introduction to this chapter, allowing finite order VAR
processes to have finite order MA instead of white noise error terms, results in
the broad and flexible class of vector autoregressive moving average (VARMA)
processes. The general form of a process from this class with VAR order p and
MA order q is

yt = ν + A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q,

t = 0,±1,±2, . . . . (11.3.1)

Such a process is briefly called a VARMA(p, q) process. As before, ut is zero
mean white noise with nonsingular covariance matrix Σu.

It may be worth elaborating a bit on this specification. What kind of
process yt is defined by the VARMA(p, q) model (11.3.1)? To look into this
question, let us denote the MA part by εt, that is, εt = ut + M1ut−1 + · · · +
Mqut−q and

yt = ν + A1yt−1 + · · · + Apyt−p + εt.

If this process is stable, that is, if

det(IK − A1z − · · · −Apz
p) �= 0 for |z| ≤ 1, (11.3.2)

then, by the same arguments used in Chapter 2, Section 2.1.2, and by Propo-
sition C.9 of Appendix C.3,

yt = µ +
∞∑

i=0

Diεt−i

= µ +
∞∑

i=0

Di(ut−i + M1ut−i−1 + · · · + Mqut−i−q)

= µ +
∞∑

i=0

Φiut−i (11.3.3)

is well-defined as a limit in mean square, given a well-defined white noise
process ut. Here
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µ := (IK − A1 − · · · − Ap)−1ν,

the Di are (K ×K) matrices satisfying

∞∑
i=0

Diz
i = (IK −A1z − · · · −Apz

p)−1,

and the Φi are (K ×K) matrices satisfying

∞∑
i=0

Φiz
i =

( ∞∑
i=0

Diz
i

)
(IK + M1z + · · · + Mqz

q).

In the following, when we call yt a stable VARMA(p, q) process, we mean the
well-defined process given in (11.3.3). For instance, if ut is Gaussian white
noise, it can be shown that yt is a Gaussian process with all finite subcol-
lections of vectors yt, . . . , yt+h having joint multivariate normal distributions.
The representation (11.3.3) is a pure MA or simply MA representation of yt.

To make the derivation of the MA representation more transparent, let us
write the process (11.3.1) in lag operator notation,

A(L)yt = ν + M(L)ut, (11.3.4)

where A(L) := IK −A1L− · · ·−ApL
p and M(L) := IK +M1L+ · · ·+MqL

q.
A pure MA representation of yt is obtained by premultiplying with A(L)−1,

yt = A(1)−1ν + A(L)−1M(L)ut = µ +
∞∑

i=0

Φiut−i.

Hence, multiplying from the left by A(L) gives

(IK −A1L− · · · −ApL
p)

( ∞∑
i=0

ΦiL
i

)

= IK +
∞∑

i=1

⎛⎝Φi −
i∑

j=1

AjΦi−j

⎞⎠Li

= IK + M1L + · · · + MqL
q

and, thus, comparing coefficients results in

Mi = Φi −
i∑

j=1

AjΦi−j , i = 1, 2, . . . ,

with Φ0 := IK , Aj := 0 for j > p, and Mi := 0 for i > q. Rearranging terms
gives
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Φi = Mi +
i∑

j=1

AjΦi−j , i = 1, 2, . . . . (11.3.5)

If the MA operator M(L) satisfies the invertibility condition (11.2.5), then
the VARMA process (11.3.4) is called invertible. In that case, it has a pure
VAR representation,

yt −
∞∑

i=1

Πiyt−i = M(L)−1A(L)yt = M(1)−1ν + ut,

and the Πi matrices are obtained by comparing coefficients in

IK −
∞∑

i=1

ΠiL
i = M(L)−1A(L).

Alternatively, multiplying this expression from the left by M(L) gives

(IK + M1L + · · · + MqL
q)

(
IK −

∞∑
i=1

ΠiL
i

)

= IK +
∞∑

i=1

⎛⎝Mi −
i∑

j=1

Mi−jΠj

⎞⎠Li

= IK − A1L− · · · −ApL
p,

where M0 := IK and Mi := 0 for i > q. Setting Ai := 0 for i > p and
comparing coefficients gives

−Ai = Mi −
i−1∑
j=1

Mi−jΠj −Πi

or

Πi = Ai + Mi −
i−1∑
j=1

Mi−jΠj for i = 1, 2, . . . . (11.3.6)

As usual, the sum is defined to be zero if the lower bound for the summation
index exceeds its upper bound.

For instance, for the zero mean VARMA(1, 1) process

yt = A1yt−1 + ut + M1ut−1, (11.3.7)

we get

Π1 = A1 + M1

Π2 = A2 + M2 −M1Π1 = −M1A1 −M2
1

...
Πi = (−1)i−1(M i

1 + M i−1
1 A1), i = 1, 2, . . . ,
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and the coefficients of the pure MA representation are

Φ0 = IK

Φ1 = M1 + A1

Φ2 = M2 + A1Φ1 + A2Φ0 = A1(M1 + A1)
...

Φi = Ai−1
1 M1 + Ai

1, i = 1, 2, . . . .

If yt is a stable and invertible VARMA process, then the pure MA represen-
tation (11.3.3) is called the canonical or prediction error MA representation,
in accordance with the terminology used in the finite order VAR case. In ad-
dition to the pure MA and VAR representations considered in this section, a
VARMA process also has VAR(1) representations. One such representation is
introduced next.

11.3.2 A VAR(1) Representation of a VARMA Process

Suppose yt has the VARMA(p, q) representation (11.3.1). For simplicity, we
assume that its mean is zero and, hence, ν = 0. Let

Yt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

ut

...
ut−q+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(K(p+q)×1)

Ut :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut

0
...
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Kp× 1)

ut

0...
0

⎫⎪⎪⎬⎪⎪⎭ (Kq × 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

A :=
[

A11 A12

A21 A22

]
[K(p + q) ×K(p + q)],

where

A11 :=

⎡⎢⎢⎣
A1 . . . Ap−1 Ap

IK 0 0
. . .

...
0 . . . IK 0

⎤⎥⎥⎦
(Kp×Kp)

,

A12 :=

⎡⎢⎢⎢⎣
M1 . . . Mq−1 Mq

0 . . . 0 0
...

...
...

0 . . . 0 0

⎤⎥⎥⎥⎦,
(Kp×Kq)
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A21 := 0,
(Kq×Kp)

A22 :=

⎡⎢⎢⎣
0 . . . 0 0
IK 0 0

. . .
...

0 . . . IK 0

⎤⎥⎥⎦.
(Kq×Kq)

With this notation, we get the VAR(1) representation of Yt,

Yt = AYt−1 + Ut. (11.3.8)

If the VAR order is zero (p = 0), we choose p = 1 and set A1 = 0 in this
representation.

The K(p+ q)-dimensional VAR(1) process in (11.3.8) is stable if and only
if yt is stable. This result follows because

det(IK(p+q) −Az) = det(IKp − A11z) det(IKq −A22z)
= det(IK − A1z − · · · − Apz

p). (11.3.9)

Here the rules for the determinant of a partitioned matrix from Appendix A.10
have been used and we have also used that IKq − A22z is a lower triangular
matrix with ones on the main diagonal which has determinant 1. Furthermore,
det(IKp − A11z) = det(IK −A1z − · · · − Apz

p) follows as in Section 2.1.1.
From Chapter 2, we know that if yt and, hence, Yt is stable, the latter

process has an MA representation

Yt =
∞∑

i=0

AiUt−i.

Premultiplying by the (K ×K(p + q)) matrix J := [IK : 0 : · · · : 0] gives

yt =
∞∑

i=0

JAiUt−i =
∞∑

i=0

JAiHJUt−i =
∞∑

i=0

JAiHut−i =
∞∑

i=0

Φiut−i,

where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK

0...
0

⎫⎪⎪⎬⎪⎪⎭ (Kp×K)

IK

0...
0

⎫⎪⎪⎬⎪⎪⎭ (Kq ×K)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus,

Φi = JAiH. (11.3.10)
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As an example, consider the zero mean VARMA(1, 1) process from (11.3.7),

yt = A1yt−1 + ut + M1ut−1.

For this process

Yt =
[
yt

ut

]
, A =

[
A1 M1

0 0

]
, Ut =

[
ut

ut

]
,

J = [IK : 0] (K × 2K),

and

H =
[
IK

IK

]
(2K ×K).

Hence,

Φ0 = JH = IK ,

Φ1 = JAH = [A1 : M1]H = A1 + M1,

Φ2 = JA2H = J

[
A2

1 A1M1

0 0

]
H = A2

1 + A1M1,

... (11.3.11)

Φi = JAiH = J

[
Ai

1 Ai−1
1 M1

0 0

]
H = Ai

1 + Ai−1
1 M1, i = 1, 2, . . . .

This, of course, is precisely the same formula obtained from the recursions in
(11.3.5).

The foregoing method of computing the MA matrices is just another way
of computing the coefficient matrices of the power series

IK +
∞∑

i=1

ΦiL
i = (IK − A1L− · · · − ApL

p)−1(IK + M1L+ · · · + MqL
q).

Therefore, it can just as well be used to compute the Πi coefficient matrices
of the pure VAR representation of a VARMA process. Recall that

IK −
∞∑

i=1

ΠiL
i = (IK + M1L + · · · + MqL

q)−1(IK −A1L− · · · −ApL
p).

Hence, if we define

M :=
[

M11 M12

M21 M22

]
, (11.3.12)

where
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M11 :=

⎡⎢⎢⎢⎣
−M1 . . . −Mq−1 −Mq

IK 0 0
. . .

...
...

0 . . . IK 0

⎤⎥⎥⎥⎦,
(Kq×Kq)

M12 :=

⎡⎢⎢⎢⎣
−A1 . . . −Ap−1 −Ap

0 . . . 0 0
...

...
...

0 . . . 0 0

⎤⎥⎥⎥⎦,
(Kq×Kp)

M21 := 0,
(Kp×Kq)

M22 :=

⎡⎢⎢⎢⎣
0 . . . 0 0
IK 0 0

. . .
...

...
0 . . . IK 0

⎤⎥⎥⎥⎦,
(Kp×Kp)

we get

−Πi = JMiH (11.3.13)

with

H :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK

0
...
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Kq ×K)

IK

0
...
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Kp×K)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

11.4 The Autocovariances and Autocorrelations of a
VARMA(p, q) Process

For the K-dimensional, zero mean, stable VARMA(p, q) process

yt = A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q, (11.4.1)

the autocovariances can be obtained formally from its pure MA representation
as in Section 2.1.2. For instance, if yt has the canonical MA representation

yt =
∞∑

i=0

Φiut−i,
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the autocovariance matrices are

Γy(h) := E(yty
′
t−h) =

∞∑
i=0

Φh+iΣuΦ
′
i.

For the actual computation of the autocovariance matrices, the following
approach is more convenient. Postmultiplying (11.4.1) by y′t−h and taking
expectations gives

E(yty
′
t−h) = A1E(yt−1y

′
t−h) + · · · + ApE(yt−py

′
t−h) + E(uty

′
t−h) + · · ·

+MqE(ut−qy
′
t−h).

From the pure MA representation of the process, it can be seen that E(uty
′
s) =

0 for s < t. Hence, we get for h > q,

Γy(h) = A1Γy(h− 1) + · · · + ApΓy(h− p). (11.4.2)

If p > q and Γy(0), . . . , Γy(p − 1) are available, this relation can be used to
compute the autocovariances recursively for h = p, p + 1, . . . .

The initial matrices can be obtained from the VAR(1) representation
(11.3.8), just as in Chapter 2, Section 2.1.4. In that section, we obtained
the relation

ΓY (0) = AΓY (0)A′ + ΣU (11.4.3)

for the covariance matrix of the VAR(1) process Yt. Here ΣU = E(UtU
′
t) is

the covariance matrix of the white noise process in (11.3.8). Applying the vec
operator to (11.4.3) and rearranging terms gives

vec ΓY (0) = (IK2(p+q)2 − A⊗ A)−1 vec(ΣU ), (11.4.4)

where the existence of the inverse follows again from the stability of the pro-
cess, as in Section 2.1.4, by appealing to the determinantal relation (11.3.9).

Having computed ΓY (0) as in (11.4.4), we may collect Γy(0), . . . , Γy(p−1)
from

ΓY (0) =
[

Γ11(0) Γ12(0)
Γ12(0)′ Γ22(0)

]
,

where

Γ11(0) =

⎡⎢⎢⎢⎣
Γy(0) Γy(1) . . . Γy(p− 1)
Γy(−1) Γy(0) . . . Γy(p− 2)

...
...

. . .
...

Γy(−p + 1) Γy(−p + 2) . . . Γy(0)

⎤⎥⎥⎥⎦ ,
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Γ12(0) =

⎡⎢⎢⎢⎣
E(ytu

′
t) E(ytu

′
t−1) · · · E(ytu

′
t−q+1)

0 E(yt−1u
′
t−1) · · · E(yt−1u

′
t−q+1)

...
. . .

...
0 0 . . . E(yt−p+1u

′
t−q+1)

⎤⎥⎥⎥⎦ ,

and

Γ22(0) =

⎡⎢⎢⎢⎣
Σu 0 . . . 0
0 Σu 0
...

. . .
...

0 0 . . . Σu

⎤⎥⎥⎥⎦ .

As mentioned previously, the recursions (11.4.2) are valid for h > q only.
Thus, this way of computing the autocovariances requires that p > q. If the
VAR order is less than q, then it may be increased artificially by adding lags of
yt with zero coefficient matrices until the VAR order p exceeds the MA order q.
Then the aforementioned procedure can be applied. A computationally more
efficient method of computing the autocovariances of a VARMA process is
described by Mittnik (1990).

The autocorrelations of a VARMA(p, q) process are obtained from its au-
tocovariances as in Chapter 2, Section 2.1.4. That is,

Ry(h) = D−1Γy(h)D−1, (11.4.5)

where D is a diagonal matrix with the square roots of the diagonal elements
of Γy(0) on the main diagonal.

To illustrate the computation of the covariance matrices, we consider the
VARMA(1, 1) process (11.3.7). Because p = q, we add a second lag of yt so
that

yt = A1yt−1 + A2yt−2 + ut + M1ut−1

with A2 := 0. Thus, in this case,

Yt =

⎡⎣ yt

yt−1

ut

⎤⎦ , A =

⎡⎣ A1 0 M1

IK 0 0
0 0 0

⎤⎦,

Ut =

⎡⎣ ut

0
ut

⎤⎦, ΣU =

⎡⎣ Σu 0 Σu

0 0 0
Σu 0 Σu

⎤⎦.
With this notation, we get from (11.4.4),

vec

⎡⎣ Γy(0) Γy(1) Σu

Γy(−1) Γy(0) 0
Σu 0 Σu

⎤⎦ = (I9K2 −A ⊗ A)−1 vec(ΣU ).
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Now, because we have the starting-up matrices Γy(0) and Γy(1), the recursions
(11.4.2) may be applied, giving

Γy(h) = A1Γy(h− 1) for h = 2, 3, . . . .

In stating the assumptions for the VARMA(p, q) process at the beginning
of this section, invertibility has not been mentioned. This is no accident be-
cause this condition is actually not required for computing the autocovariances
of a VARMA(p, q) process. The same formulas may be used for invertible and
noninvertible processes. On the other hand, the stability condition is essential
here, because it ensures invertibility of the matrix I −A ⊗ A.

11.5 Forecasting VARMA Processes

Suppose the K-dimensional zero mean VARMA(p, q) process

yt = A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q (11.5.1)

is stable and invertible. As we have seen in Section 11.3.1, it has a pure VAR
representation,

yt =
∞∑

i=1

Πiyt−i + ut, (11.5.2)

and a pure MA representation,

yt =
∞∑

i=0

Φiut−i. (11.5.3)

Formulas for optimal forecasts can be given in terms of each of these repre-
sentations.

Assuming that ut is independent white noise and applying the conditional
expectation operator Et, given information up to time t, to (11.5.1) gives an
optimal h-step forecast

yt(h) =

⎧⎪⎨⎪⎩
A1yt(h− 1) + · · · + Apyt(h− p)

+Mhut + · · · + Mqut+h−q for h ≤ q,

A1yt(h− 1) + · · · + Apyt(h− p) for h > q,

(11.5.4)

where, as usual, yt(j) := yt+j for j ≤ 0. Analogously, we get from (11.5.2),

yt(h) =
∞∑

i=1

Πiyt(h− i), (11.5.5)

and, in Chapter 2, Section 2.2.2, we have seen that the optimal forecast in
terms of the infinite order MA representation is
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yt(h) =
∞∑

i=h

Φiut+h−i =
∞∑

i=0

Φh+iut−i (11.5.6)

(see (2.2.10)). Although in Chapter 2 this result was derived in the slightly
more special setting of finite order VAR processes, it is not difficult to see that
it carries over to the present situation. All three formulas (11.5.4)–(11.5.6)
result, of course, in equivalent predictors or forecasts. They are different rep-
resentations of the linear minimum MSE predictors if ut is uncorrelated but
not necessarily independent white noise.

A forecasting formula can also be obtained from the VAR(1) representation
(11.3.8) of the VARMA(p, q) process. From Section 2.2.2, the optimal h-step
forecast of a VAR(1) process at origin t is known to be

Yt(h) = AhYt = AYt(h− 1). (11.5.7)

Premultiplying with the (K ×K(p + q)) matrix J := [IK : 0 : · · · : 0] results
precisely in the recursive relation (11.5.4) (see Problem 11.4).

The forecasts at origin t are based on the information set

Ωt = {ys|s ≤ t}.
This information set has the drawback of being unavailable in practice. Usually
a finite sample of yt data is given only and, hence, the ut cannot be determined
exactly. Thus, even if the parameters of the process are known, the prediction
formulas (11.5.4)–(11.5.6) cannot be used. However, the invertibility of the
process implies that the Πi coefficient matrices go to zero exponentially with
increasing i and we have the approximation

∞∑
i=1

Πiyt(h− i) ≈
n∑

i=1

Πiyt(h− i)

for large n. Consequently, in practice, if the information set is

{y1, . . . , yT } (11.5.8)

and T is large, then the forecast

y̆T (h) =
T+h−1∑

i=1

Πiy̆T (h− i), (11.5.9)

where y̆T (j) := yT+j for j ≤ 0, will be almost identical to the optimal forecast.
For a low order process, as it is commonly used in practice, for which the roots
of

det(IK + M1z + · · · + Mqz
q)

are not close to the unit circle, T > 50 will usually result in forecasts that can-
not be distinguished from the optimal forecasts. It is worth noting, however,
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that the optimal forecasts based on the finite information set (11.5.8) can be
determined. The resulting forecast formulas are, for instance, given by Brock-
well & Davis (1987, Chapter 11, §11.4). A similar problem is not encountered
in forecasting finite order VAR processes because there the optimal forecast
depends on a finite string of past variables only.

In the presently considered theoretical setting, the forecast MSE matrices
are most easily obtained from the representation (11.5.6). The forecast error
is

yt+h − yt(h) =
h−1∑
i=0

Φiut+h−i

and, hence, the forecast MSE matrix turns out to be

Σy(h) := E[(yt+h − yt(h))(yt+h − yt(h))′]

=
h−1∑
i=0

ΦiΣuΦ
′
i, (11.5.10)

as in the finite order VAR case. Note, however, that, in the present case, the Mi

coefficient matrices enter in computing the Φi matrices. Because the forecasts
are unbiased, that is, the forecast errors have mean zero, the MSE matrix is
the forecast error covariance matrix. Consequently, if the process is Gaussian,
i.e., for all t and h, yt, . . . , yt+h have a multivariate normal distribution and
also the ut’s are normally distributed, then the forecast errors are normally
distributed,

yt+h − yt(h) ∼ N (0, Σy(h)). (11.5.11)

This result may be used in the usual fashion in setting up forecast intervals.
If a process with nonzero mean vector µ is considered, the mean vector

may simply be added to the prediction formula for the mean-adjusted process.
For example, if yt has zero mean and xt = yt + µ, then the optimal h-step
forecast of xt is

xt(h) = yt(h) + µ.

The forecast MSE matrix is not affected, that is, Σx(h) = Σy(h).

11.6 Transforming and Aggregating VARMA Processes

In practice, the original variables of interest are often transformed before
their generation process is modelled. For example, data are often seasonally
adjusted prior to an analysis. Also, sometimes they are temporally aggre-
gated. For instance, quarterly data may have been obtained by adding up the
corresponding monthly values or by taking their averages. Moreover, contem-
poraneous aggregation over a number of households, regions or sectors of the



11.6 Transforming and Aggregating VARMA Processes 435

economy is quite common. For example, the GNP (gross national product)
value for some period is the sum of private consumption, investment expen-
ditures, net exports, and government spending for that period. It is often of
interest to see what these transformations do to the generation processes of
the variables in order to assess the consequences of transformations for fore-
casting and structural analysis. In the following, we assume that the original
data are generated by a VARMA process and we study the consequences of
linear transformations. These results are of importance because many tempo-
ral as well as contemporaneous aggregation procedures can be represented as
linear transformations.

11.6.1 Linear Transformations of VARMA Processes

We shall begin with the result that a linear transformation of a process pos-
sessing an MA(q) representation gives a process that also has a finite order
MA representation with order not greater than q.

Proposition 11.1 (Linear Transformation of an MA(q) Process)
Let ut be a K-dimensional white noise process with nonsingular covariance
matrix Σu and let

yt = µ + ut + M1ut−1 + · · · + Mqut−q

be a K-dimensional invertible MA(q) process. Furthermore, let F be an (M ×
K) matrix of rank M . Then the M -dimensional process zt = Fyt has an
invertible MA(q̆) representation,

zt = Fµ + vt + N1vt−1 + · · · + Nq̆vt−q̆,

where vt is M -dimensional white noise with nonsingular covariance matrix
Σv, the Ni are (M ×M) coefficient matrices and q̆ ≤ q.

We will not give a proof of this result here but refer the reader to Lütke-
pohl (1984) or Lütkepohl (1987, Chapter 4). The proposition is certainly not
surprising because considering the autocovariance matrices of zt, it is seen
that

Γz(h) = E[(Fyt − Fµ)(Fyt−h − Fµ)′] = FΓy(h)F ′

=

⎧⎪⎪⎨⎪⎪⎩
q−h∑
i=0

FMi+h ΣuM
′
iF

′, h = 0, 1, . . . , q,

0, h = q + 1, q + 2, . . . ,

by (11.2.7). Thus, the autocovariances of zt for lags greater than q are all zero.
This result is a necessary requirement for the proposition to be true. It also
helps to understand that the MA order of zt may be lower than that of yt

because Γz(h) = FΓy(h)F ′ may be zero even if Γy(h) is nonzero.
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The proposition has some interesting implications. As we will see in the fol-
lowing (Corollary 11.1.1), it implies that a linearly transformed VARMA(p, q)
process has again a finite order VARMA representation. Thus, the VARMA
class is closed with respect to linear transformations. The same is not true
for the class of finite order VAR processes because, as we will see shortly, a
linearly transformed VAR(p) process may not admit a finite order VAR repre-
sentation. This, of course, is an argument in favor of considering the VARMA
class rather than restricting the analysis to finite order VAR processes.

Corollary 11.1.1
Let yt be a K-dimensional, stable, invertible VARMA(p, q) process and let
F be an (M × K) matrix of rank M . Then the process zt = Fyt has a
VARMA(p̆, q̆) representation with

p̆ ≤ Kp

and

q̆ ≤ (K − 1)p + q.

Proof: We write the process yt in lag operator notation as

A(L)yt = M(L)ut, (11.6.1)

where the mean is set to zero without loss of generality as yt may represent
deviations from the mean. Premultiplying by the adjoint A(L)adj of A(L)
gives

|A(L)|yt = A(L)adjM(L)ut, (11.6.2)

where A(L)adjA(L) = |A(L)| has been used. It is easy to check that |A(z)adj | �=
0 for |z| ≤ 1. Thus, (11.6.2) is a stable and invertible VARMA representation
of yt. Premultiplying (11.6.2) with F results in

|A(L)|zt = FA(L)adjM(L)ut. (11.6.3)

The operator A(L)adjM(L) is easily seen to have degree at most p(K− 1)+ q
and, thus, the right-hand side of (11.6.3) is just a linearly transformed finite
order MA process which, by Proposition 11.1, has an MA(q̆) representation
with

q̆ ≤ p(K − 1) + q.

The degree of the AR operator |A(L)| is at most Kp because the determinant
is just a sum of products involving one operator from each row and each
column of A(L). This proves the corollary.
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The corollary gives upper bounds for the VARMA orders of a linearly
transformed VARMA process. For instance, if yt is a VAR(p)=VARMA(p, 0)
process, a linear transformation zt = Fyt has a VARMA(p̆, q̆) representation
with p̆ ≤ Kp and q̆ ≤ (K−1)p. For some linear transformations, q̆ will be zero.
We will see in the following, however, that generally there are transformations
for which the upper bounds for the orders are attained and a representation
with lower orders does not exist. This result implies that a linear transfor-
mation of a finite order VAR(p) process may not admit a finite order VAR
representation. Specifically, the subprocesses or marginal processes of a K-
dimensional process yt are obtained by using transformation matrices such as
F = [IM : 0]. Hence, a subprocess of a VAR(p) process may not have a finite
order VAR but just a mixed VARMA representation.

For some transformations the result in Corollary 11.1.1 can, in fact, be
tightened. Generally, tighter bounds for the VARMA orders are available if
M > 1, as is seen in the following corollary.

Corollary 11.1.2
Let yt be a K-dimensional, stable, invertible VARMA(p, q) process and let
F be an (M × K) matrix of rank M . Then the process zt = Fyt has a
VARMA(p̆, q̆) representation with

p̆ ≤ (K −M + 1)p

and

q̆ ≤ (K −M)p + q.

Proof: We first consider the case where zt is a subprocess of yt consisting of
the first M components. To treat this case, we denote the first M and last
K − M components of the process yt by y1t and y2t, respectively, and we
partition the VAR and MA operators as well as the white noise process ut

accordingly. Thus, we can write the process as

A11(L)y1t + A12(L)y2t = M11(L)u1t + M12(L)u2t, (11.6.4)

A21(L)y1t + A22(L)y2t = M21(L)u1t + M22(L)u2t. (11.6.5)

Premultiplying (11.6.5) by the adjoint of A22(L) gives

|A22(L)|y2t = −A22(L)adjA21(L)y1t + A22(L)adjM21(L)u1t

+A22(L)adjM22(L)u2t. (11.6.6)

Moreover, premultiplying (11.6.4) by |A22(L)|, replacing |A22(L)|y2t by the
right-hand side of (11.6.6) and rearranging terms, we get
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[|A22(L)|A11(L) − A12(L)A22(L)adjA21(L)]y1t

= [|A22(L)|M11(L) −A12(L)A22(L)adjM21(L)]u1t

+[|A22(L)|M12(L) − A12(L)A22(L)adjM22(L)]u2t.

(11.6.7)

The VAR part of this representation has order

p̆ ≤ max{(K −M)p + p, (K −M − 1)p + p + p} = (K −M + 1)p

and, by Proposition 11.1, the right-hand side of (11.6.7) has an MA represen-
tation with order

q̆ ≤ max{(K −M)p + q, p + (K −M − 1)p + q} = (K −M)p + q.

Hence, we have established the corollary for transformations F = [IM : 0].
For a general (M × K) transformation matrix F with rk(F ) = M , we

choose a ((K −M) ×K) matrix C such that the (K ×K) matrix

F =
[
F
C

]
is nonsingular and we consider the process xt = Fyt. Because nonsingular
transformations do not increase the orders of a VARMA process, xt also has
a VARMA(p, q) representation. Now we get the result of the corollary by
considering the transformation zt = Fyt = [IM : 0]xt.

Other bounds for the VARMA orders than those provided in Corollaries
11.1.1 and 11.1.2 for linearly transformed VARMA processes and bounds for
special linear transformations are given in various articles in the literature. For
further results and references see Lütkepohl (1987, Chapter 4; 1986, Kapitel
2).

To illustrate Corollaries 11.1.1 and 11.1.2, we consider the bivariate
VAR(1) process[

1 − 0.5L 0.66L
0.5L 1 + 0.3L

][
y1t

y2t

]
=

[
u1t

u2t

]
with Σu = I2. (11.6.8)

Here K = 2, p = 1, and q = 0. Thus, zt = [1, 0]yt = y1t as a univariate
(M = 1) marginal process has an ARMA representation with orders not
greater than (2, 1). The precise form of the process can be determined with
the help of the representation (11.6.3). Using that representation gives

[(1 + 0.3L)(1 − 0.5L) − 0.66 · 0.5L2]zt

= [1, 0]
[

1 + 0.3L −0.66L
−0.5L 1 − 0.5L

][
u1t

u2t

]
= (1 + 0.3L)u1t − 0.66Lu2t.

(11.6.9)
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The right-hand side, say w1t, is the sum of an MA(1) process and a white
noise process. Thus, by Proposition 11.1, it is known to have an MA(1) rep-
resentation, say w1t = v1t + γv1,t−1. To determine γ and σ2

1 = Var(v1t), we
use

E(w2
1t) = E(v1t + γv1,t−1)2 = (1 + γ2)σ2

1

= E[(1 + 0.3L)u1t − 0.66Lu2t]2 = 1.53

and

E(wtwt−1) = E[(v1t + γv1,t−1)(v1,t−1 + γv1,t−2)] = γσ2
1

= E[((1 + 0.3L)u1t − 0.66u2,t−1)
×((1 + 0.3L)u1,t−1 − 0.66u2,t−2)]

= 0.3.

Solving this nonlinear system of two equations for γ and σ2
1 gives

γ = 0.204 and σ2
1 = 1.47.

Note that we have picked the invertible solution with |γ| < 1. Thus, from
(11.6.9), we get a marginal process

(1 − 0.2L− 0.48L2)y1t = (1 + 0.204L)v1t with σ2
1 = 1.47.

In other words, y1t has indeed an ARMA(2, 1) representation and it is easy to
check that cancellation of the AR and MA operators is not possible. Hence,
the ARMA orders are minimal in this case.

As another example, consider again the bivariate VAR(1) process (11.6.8)
and suppose we are interested in the process zt := y1t +y2t. Thus, F = [1, 1] is
again a (1×2) vector. Multiplying (11.6.8) by the adjoint of the VAR operator
gives

(1 − 0.2L− 0.48L2)
[
y1t

y2t

]
=

[
1 + 0.3L −0.66L
−0.5L 1 − 0.5L

][
u1t

u2t

]
.

Hence, multiplying by F gives

(1 − 0.2L− 0.48L2)(y1t + y2t) = (1 − 0.2L)u1t + (1 − 1.16L)u2t.

Using similar arguments as for (11.6.9), it can be shown that the right-hand
side of this expression is a process with MA(1) representation vt − 0.504vt−1,
where σ2

v := Var(vt) = 2.70. Consequently, the process of interest has the
ARMA(2, 1) representation

(1 − 0.2L− 0.48L2)zt = (1 − 0.504L)vt with σ2
v = 2.70. (11.6.10)

The following result is of interest if forecasting is the objective of the
analysis.
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Proposition 11.2 (Forecast Efficiency of Linearly Transformed VARMA
Processes)
Let yt be a stable, invertible, K-dimensional VARMA(p, q) process, let F be
an (M × K) matrix of rank M , and let zt = Fyt. Furthermore, denote the
MSE matrices of the optimal h-step predictors of yt and zt by Σy(h) and
Σz(h), respectively. Then

Σz(h) − FΣy(h)F ′

is positive semidefinite.

This result means that Fyt(h) is generally a better predictor of zt+h with
smaller (at least not greater) MSEs than zt(h). In other words, forecasting
the original process yt and transforming the forecasts is generally better than
forecasting the transformed process directly. A proof and references for re-
lated results were given by Lütkepohl (1987, Chapter 4). To see the point
more clearly, consider again the example process (11.6.8) and suppose we are
interested in the sum of its components zt = y1t + y2t. Forecasting the bivari-
ate process one step ahead results in a forecast MSE matrix Σy(1) = Σu = I2.
Thus, the corresponding 1-step ahead forecast of zt has MSE

[1, 1]Σy(1)
[

1
1

]
= 2.

In contrast, if a univariate forecast is obtained on the basis of the ARMA(2, 1)
representation (11.6.10), the 1-step ahead forecast MSE becomes σ2

v = 2.70.
Clearly, the latter forecast is inferior in terms of MSE.

Of course, these results hold for VARMA processes for which all the param-
eters are known. They do not necessarily carry over to estimated processes, a
case which was also investigated and reviewed by Lütkepohl (1987).

11.6.2 Aggregation of VARMA Processes

There is little to be added to the foregoing results for the case of contempo-
raneous aggregation. Suppose yt = (y1t, . . . , yKt)′ consists of K variables. If
all or some of them are contemporaneously aggregated by taking their sum
or average, this just means that yt is transformed linearly and the foregoing
results apply directly. In particular, the aggregated process has a finite order
VARMA representation if the original process does. Moreover, if forecasts for
the aggregated variables are desired it is generally preferable to forecast the
disaggregated process and aggregate the forecasts rather than forecast the
aggregated process directly.

The foregoing results are also helpful in studying the consequences of tem-
poral aggregation. Suppose we wish to aggregate the variables yt generated
by

yt = A1yt−1 + A2yt−2 + ut + M1ut−1



11.6 Transforming and Aggregating VARMA Processes 441

over, say, m = 3 subsequent periods. To be able to use the previous framework,
we construct a process⎡⎣ IK 0 0

−A1 IK 0
−A2 −A1 IK

⎤⎦⎡⎣ ym(τ−1)+1

ym(τ−1)+2

ymτ

⎤⎦
=

⎡⎣ 0 A2 A1

0 0 A2

0 0 0

⎤⎦⎡⎣ ym(τ−2)+1

ym(τ−2)+2

ym(τ−1)

⎤⎦ +

⎡⎣ IK 0 0
M1 IK 0
0 M1 IK

⎤⎦⎡⎣ um(τ−1)+1

um(τ−1)+2

umτ

⎤⎦
+

⎡⎣ 0 0 M1

0 0 0
0 0 0

⎤⎦⎡⎣ um(τ−2)+1

um(τ−2)+2

um(τ−1)

⎤⎦ .

Defining

yτ :=

⎡⎣ ym(τ−1)+1

ym(τ−1)+2

ymτ

⎤⎦ and uτ :=

⎡⎣ um(τ−1)+1

um(τ−1)+2

umτ

⎤⎦ ,

we get

A0yτ = A1yτ−1 + M0uτ + M1uτ−1, (11.6.11)

where A0, A1, M0, and M1 have the obvious definitions. This form is a
VARMA(1, 1) representation of the 3K-dimensional process yτ . Our standard
form of a VARMA(1, 1) process can be obtained from this form by premulti-
plying with A−1

0 and defining vτ = A−1
0 M0uτ which gives

yτ = A−1
0 A1yτ−1 + vτ + A−1

0 M1M
−1
0 A0vτ−1.

Now temporal aggregation over m = 3 periods can be represented as a linear
transformation of the process yτ . Clearly, it is not difficult to see that this
method generalizes for higher order processes and temporal aggregation over
more than three periods. Moreover, different types of temporal aggregation
can be handled. For instance, the aggregate may be the sum of subsequent
values or it may be their average. Furthermore, temporal and contemporane-
ous aggregation can be dealt with simultaneously. In all of these cases, the
aggregate has a VARMA representation if the original variables are gener-
ated by a finite order VARMA process and its structure can be studied using
the foregoing framework. Moreover, by Proposition 11.2, if forecasts of the
aggregate are of interest, it is in general preferable to forecast the original
disaggregated process and aggregate the forecasts rather than forecast the ag-
gregate directly. A detailed discussion of these issues and also of forecasting
with estimated processes can be found in Lütkepohl (1987).
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11.7 Interpretation of VARMA Models

The same tools and concepts that we have used for interpreting VAR models
may also be applied in the VARMA case. We will consider Granger-causality
and impulse response analysis in turn.

11.7.1 Granger-Causality

To study Granger-causality in the context of VARMA processes, we partition
yt in two groups of variables, zt and xt, and we partition the VAR and MA
operators as well as the white noise process ut accordingly. Hence, we get[

A11(L) A12(L)
A21(L) A22(L)

][
zt

xt

]
=

[
M11(L) M12(L)
M21(L) M22(L)

][
u1t

u2t

]
, (11.7.1)

where again a zero mean is assumed for simplicity and without loss of gener-
ality. The results derived in the following are not affected by a nonzero mean
term. The process (11.7.1) is assumed to be stable and invertible and its pure,
canonical MA representation is[

zt

xt

]
=

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

][
u1t

u2t

]
.

From Proposition 2.2, we know that xt is not Granger-causal for zt if and
only if Φ12(L) ≡ 0. Although the proposition is stated for VAR processes, it is
easy to see that it remains correct for the presently considered VARMA case.
We also know that[

Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

]
=

[
A11(L) A12(L)
A21(L) A22(L)

]−1[
M11(L) M12(L)
M21(L) M22(L)

]
=

[
D(L)

−A22(L)−1A21(L)D(L)

−D(L)A12(L)A22(L)−1

A22(L)−1 + A22(L)−1A21(L)D(L)A12(L)A22(L)−1

]
×
[
M11(L) M12(L)
M21(L) M22(L)

]
,

where

D(L) := [A11(L) −A12(L)A22(L)−1A21(L)]−1

and the rules for the partitioned inverse have been used (see Appendix A.10).
Consequently, xt is not Granger-causal for zt if and only if

0 ≡ D(L)M12(L) −D(L)A12(L)A22(L)−1M22(L)
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or, equivalently,

M12(L) −A12(L)A22(L)−1M22(L) ≡ 0.

Moreover, it follows as in Proposition 2.3 that there is no instantaneous causal-
ity between xt and zt if and only if E(u1tu

′
2t) = 0. We state these results as

a proposition.

Proposition 11.3 (Characterization of Noncausality)
Let

yt =
[
zt

xt

]
be a stable and invertible VARMA(p, q) process as in (11.7.1) with possibly
nonzero mean. Then xt is not Granger-causal for zt if and only if

M12(L) ≡ A12(L)A22(L)−1M22(L). (11.7.2)

There is no instantaneous causality between zt and xt if and only if

E(u1tu
′
2t) = 0.

Remark 1 Obviously, the restrictions characterizing Granger-noncausality
are not quite so easy here as in the VAR(p) case. Consider, for instance, a
bivariate VARMA(1, 1) process[

zt

xt

]
=

[
α11,1 α12,1

α21,1 α22,1

][
zt−1

xt−1

]
+
[
u1t

u2t

]
+
[
m11,1 m12,1

m21,1 m22,1

][
u1,t−1

u2,t−1

]
.

For this process, the restrictions (11.7.2) reduce to

m12,1L = (−α12,1L)(1 − α22,1L)−1(1 + m22,1L)

or

(1 − α22,1L)m12,1L = −(1 + m22,1L)α12,1L

or

m12,1 = −α12,1 and α22,1m12,1 = α12,1m22,1.

This, of course, is a set of nonlinear restrictions whereas only linear constraints
were required to characterize Granger-noncausality in the corresponding pure
VAR(p) case. However, a sufficient condition for (11.7.2) to hold is

M12(L) ≡ A12(L) ≡ 0, (11.7.3)

which is again a set of linear constraints. Occasionally, these sufficient condi-
tions may be easier to test than (11.7.2).
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Remark 2 To turn the arguments put forward prior to Proposition 11.3 into
a formal proof requires that we convince ourselves that all the operations per-
formed with the matrices of lag polynomials are feasible and correct. Because
we have not proven these results, the arguments should just be taken as an
indication of how a proof may proceed.

11.7.2 Impulse Response Analysis

The impulse responses and forecast error variance decompositions of a VARMA
model are obtained from its pure MA representation, as in the finite order
VAR case. Thus, the discussion of Sections 2.3.2 and 2.3.3 carries over to the
present case, except that the Φi’s are computed with different formulas. Also,
Propositions 2.4 and 2.5 need modification. We will not give the details here
but refer the reader to the exercises (see Problem 11.9).

It may be worth reiterating some caveats of impulse response analysis
which may be more apparent now after the discussion of transformations in
Section 11.6. In particular, we have seen there that dropping variables (consid-
ering subprocesses) or aggregating the components of a VARMA process tem-
porally and/or contemporaneously results in possibly quite different VARMA
structures. They will in general have quite different coefficients in their pure
MA representations. In other words, the impulse responses may change dras-
tically if important variables are excluded from a system or if the level of
aggregation is altered, for instance, if quarterly instead of monthly data are
considered. Again, this does not necessarily render impulse response analysis
useless. It should caution the reader against over interpreting the evidence
from VARMA models, though. Some thought must be given to the choice of
variables, the level of aggregation, and other transformations of the variables.

11.8 Exercises

Problem 11.1
Write the MA(1) process yt = ut +M1ut−1 in VAR(1) form, Yt = AYt−1 +Ut,
and determine Ai for i = 1, 2.

Problem 11.2
Suppose yt = A1yt−1 + ut + M1ut−1 + M2ut−2 is a stable and invertible
VARMA(1, 2) process. Determine the coefficient matrices Πi, i = 1, 2, 3, 4, of
its pure VAR representation and the coefficient matrices Φi, i = 1, 2, 3, 4, of
its pure MA representation.

Problem 11.3
Evaluate the autocovariances Γy(h), h = 1, 2, 3, of the bivariate VARMA(2, 1)
process
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yt =
[
.3
.5

]
+
[
.5 .1
.4 .5

]
yt−1+

[
0 0
.25 0

]
yt−2+ut+

[
.6 .2
0 .3

]
ut−1. (11.8.1)

(Hint: The use of a computer will greatly simplify this problem.)

Problem 11.4
Write the VARMA(1, 1) process yt = A1yt−1 + ut +M1ut−1 in VAR(1) form,
Yt = AYt−1 + Ut. Determine forecasts Yt(h) = AhYt for h = 1, 2, 3, and
compare them to forecasts obtained from the recursive formula (11.5.4).

Problem 11.5
Derive a univariate ARMA representation of the second component, y2t, of
the process given in (11.6.8).

Problem 11.6
Provide upper bounds for the ARMA orders of the process zt = y1t +y2t +y3t,
where yt = (y1t, y2t, y3t, y4t)′ is a 4-dimensional VARMA(3, 3) process.

Problem 11.7
Write the VARMA(1, 1) process yt from Problem 11.4 in a form such as
(11.6.11) that permits to analyze temporal aggregation over four periods in the
framework of Section 11.6.2. Give upper bounds for the orders of a VARMA
representation of the process obtained by temporally aggregating yt over four
periods.

Problem 11.8
Write down explicitly the restrictions characterizing Granger-noncausality for
a bivariate VARMA(2, 1) process. Is y1t Granger-causal for y2t in the process
(11.8.1)?

Problem 11.9
Generalize Propositions 2.4 and 2.5 to the VARMA(p, q) case.
(Hint: Show that for a K-dimensional VARMA(p, q) process,

φjk,i = 0, for i = 1, 2, . . . ,

is equivalent to

φjk,i = 0, for i = 1, 2, . . . , p(K − 1) + q;

and

θjk,i = 0, for i = 0, 1, 2, . . . ,

is equivalent to

θjk,i = 0, for i = 0, 1, . . . , p(K − 1) + q.)



446 11 Vector Autoregressive Moving Average Processes

Problem 11.10
Suppose that m is a real number with |m| > 1 and ut is a white noise process.
Show that the process

vt =
(

1 +
1
m
L

)−1

(1 + mL)ut

is also white noise with Var(vt) = m2Var(ut).
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Estimation of VARMA Models

In this chapter, maximum likelihood estimation of the coefficients of a VARMA
model is considered. Before we can proceed to the actual estimation, a unique
set of parameters must be specified. In this context, the problem of nonunique-
ness of a VARMA representation becomes important. This identification prob-
lem, that is, the problem of identifying a unique structure among many equiv-
alent ones, is treated in Section 12.1. In Section 12.2, the Gaussian likelihood
function of a VARMA model is considered. A numerical algorithm for maxi-
mizing it and, thus, for computing the actual estimates is discussed in Section
12.3. The asymptotic properties of the ML estimators are the subject of Sec-
tion 12.4. Forecasting with estimated processes and impulse response analysis
are dealt with in Sections 12.5 and 12.6, respectively.

12.1 The Identification Problem

12.1.1 Nonuniqueness of VARMA Representations

In the previous chapter, we have considered K-dimensional, stationary pro-
cesses yt with VARMA(p, q) representations

yt = A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q. (12.1.1)

Because the mean term is of no importance for the presently considered prob-
lem, we have set it to zero. Therefore, no intercept term appears in (12.1.1).
This model can be written in lag operator notation as

A(L)yt = M(L)ut, (12.1.2)

where A(L) := IK −A1L− · · ·−ApL
p and M(L) := IK +M1L+ · · ·+MqL

q.
Assuming that the VARMA representation is stable and invertible, the well-
defined process described by the model (12.1.1) or (12.1.2) is given by
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yt =
∞∑

i=0

Φiut−i = Φ(L)ut = A(L)−1M(L)ut.

In practice, it is sometimes useful to consider a slightly more general type
of VARMA model by attaching nonidentity coefficient matrices to yt and ut,
that is, one may want to consider representations of the type

A0yt = A1yt−1 + · · · + Apyt−p + M0vt + M1vt−1 + · · · + Mqvt−q, (12.1.3)

where vt is a suitable white noise process. Such a form may be suggested by
subject matter theory which may imply instantaneous effects of some variables
on other variables. It will also turn out to be useful in finding unique structures
for VARMA models. By the specification (12.1.3) we mean the well-defined
process

yt = (A0 − A1L− · · · − ApL
p)−1(M0 + M1L + · · · + MqL

q)vt.

Such a process has a standard VARMA(p, q) representation with identity coef-
ficient matrices attached to the instantaneous yt and ut if A0 and M0 are non-
singular. To see this, we premultiply (12.1.3) by A−1

0 and define ut = A−1
0 M0vt

which gives

yt = A−1
0 A1yt−1 + · · · + A−1

0 Apyt−p + ut + A−1
0 M1M

−1
0 A0ut−1 + · · ·

+A−1
0 MqM

−1
0 A0ut−q.

Redefining the matrices appropriately, this, of course, is a representation of
the type (12.1.1) with identity coefficient matrices at lag zero which describes
the same process as (12.1.3). The assumption that both A0 and M0 are nonsin-
gular does not entail any loss of generality, as long as none of the components
of yt can be written as a linear combination of the other components. We call
a stable and invertible representation as in (12.1.1) a VARMA representation
in standard form or a standard VARMA representation to distinguish it from
representations with nonidentity matrices at lag zero as in (12.1.3). This dis-
cussion shows that VARMA representations are not unique, that is, a given
process yt can be written in standard form or in nonstandard form by premul-
tiplying by any nonsingular (K ×K) matrix. We have encountered a similar
problem in dealing with finite order structural VAR processes in Chapter 9.
However, once we consider standard reduced form VAR models only, we have
unique representations. This property is in sharp contrast to the presently
considered VARMA case, where, in general, a standard form is not a unique
representation, as we will see shortly.

It may be useful at this stage to emphasize what we mean by equivalent
representations of a process. Generally, two representations of a process yt

are equivalent if they give rise to the same realizations (except on a set of
measure zero) and, thus, to the same multivariate distributions of any finite
subcollection of variables yt, yt+1, . . . , yt+h, for arbitrary integers t and h.
Of course, this specification just says that equivalent representations really
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represent the same process. If yt is a zero mean process with canonical MA
representation

yt =
∞∑

i=0

Φiut−i, Φ0 = IK ,

= Φ(L)ut, (12.1.4)

where Φ(L) :=
∑∞

i=0 ΦiL
i, then any VARMA model A(L)yt = M(L)ut for

which

A(L)−1M(L) = Φ(L) (12.1.5)

is an equivalent representation of the process yt. In other words, all VARMA
models are equivalent for which A(L)−1M(L) results in the same operator
Φ(L). Thus, in order to ensure uniqueness of a VARMA representation, we
must impose restrictions on the VAR and MA operators such that there is
precisely one feasible pair of operators A(L) and M(L) satisfying (12.1.5) for
a given Φ(L).

Obviously, given some stable, invertible VARMA representation A(L)yt =
M(L)ut, an equivalent representation results if we premultiply by any non-
singular matrix A0. Therefore, to remove this source of nonuniqueness, let us
for the moment focus on VARMA representations in standard form. As men-
tioned earlier, even then uniqueness is not ensured. To see this problem more
clearly, let us consider a bivariate VARMA(1, 1) process in standard form,

yt = A1yt−1 + ut + M1ut−1. (12.1.6)

From Section 11.3.1, we know that this process has the canonical MA repre-
sentation

yt =
∞∑

i=0

Φiut−i = ut +
∞∑

i=1

(Ai
1 + Ai−1

1 M1)ut−i. (12.1.7)

Thus, for example, any VARMA(1, 1) representation with M1 = −A1 will
result in the same canonical MA representation. In other words, if it turns
out that yt is such that M1 = −A1 for some set of coefficients, then any
choice of A1 matrix that gives rise to a stable VAR operator can be matched
by an M1 matrix that leads to an equivalent VARMA(1, 1) representation
of yt. Of course, in this case, the MA coefficient matrices in (12.1.7) are
in fact all zero and yt = ut is really white noise, that is, yt actually has
a VARMA(0, 0) structure. This fact is also quite easy to see from the lag
operator representation of (12.1.6),

(I2 −A1L)yt = (I2 + M1L)ut.

Of course, if M1 = −A1, the MA operator cancels against the VAR operator.
This type of parameter indeterminacy is also known from univariate ARMA



450 12 Estimation of VARMA Models

processes. It is usually ruled out by the assumption that the AR and MA
operators have no common factors. Let us make a similar assumption in the
presently considered multivariate case by requiring that yt is not white noise,
i.e., M1 �= −A1.

Unfortunately, in the multivariate case, the nonuniqueness problem is not
solved by this assumption. To see this, suppose that

A1 =
[

0 α
0 0

]
and M1 = 0,

where α �= 0. In this case, the canonical MA representation (12.1.4) has coef-
ficient matrices

Φ1 = A1, Φ2 = Φ3 = · · · = 0, (12.1.8)

because Ai
1 = 0 for i > 1. The same MA representation results if

A1 = 0 and M1 =
[

0 α
0 0

]
.

More generally, a canonical MA representation with coefficient matrices as in
(12.1.8) is obtained if

A1 =
[

0 α + m
0 0

]
and M1 =

[
0 −m
0 0

]
,

whatever the value of m. Note also that the VARMA representation will be
stable and invertible for any value of m.

To understand where the parameter indeterminacy comes from, consider
the VAR operator

I2 −
[

0 α
0 0

]
L. (12.1.9)

The inverse of this operator is

I2 +
[

0 α
0 0

]
L, (12.1.10)

which is easily checked by multiplying the two operators together. Thus, the
operator (12.1.9) has a finite order inverse. Operators of this type are precisely
the ones that cause trouble in setting up a uniquely parameterized VARMA
representation of a given process because multiplying by such an operator
may cancel part of one operator (VAR or MA) while at the same time the
finite order of the other operator is maintained.

To get a better sense for this problem, let us look at the following
VARMA(1, 1) process:

A(L)yt = M(L)ut,
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where

A(L) :=
[

1 − α11L −α12L
0 1

]
and M(L) :=

[
1 + m11L m12L

0 1

]
.

The two operators do not cancel if α11 �= −m11 and α12 �= −m12. Still we can
factor an operator

D(L) :=
[

1 0
0 1

]
+

[
0 γ
0 0

]
L =

[
1 γL
0 1

]
from both operators without changing their general structure:

A(L) = D(L)
[

1 − α11L −(γ + α12)L
0 1

]
,

M(L) = D(L)
[

1 + m11L (m12 − γ)L
0 1

]
.

Cancelling D(L) gives operators[
1 − α11L −(γ + α12)L

0 1

]
= D(L)

[
1 + α11L −(2γ + α12)L

0 1

]
and[

1 + m11L (m12 − γ)L
0 1

]
= D(L)

[
1 + m11L (m12 − 2γ)L

0 1

]
.

Thus, we can again factor and cancel D(L). In fact, we can cancel D(L) as
often as we like without changing the general structure of the process. Hence,
even if the orders of both operators cannot be reduced simultaneously by
cancellation, it may still be possible to factor some operator from both A(L)
and M(L) without changing their general structure. Note that the troubling
operator D(L) is again one with finite order inverse,

D(L)−1 =
[

1 −γL
0 1

]
.

Finite order operators that have a finite order inverse are characterized by
the property that their determinant is a nonzero constant, that is, it does not
involve L or powers of L. Operators with this property are called unimodular.
For instance, the operator (12.1.9) has determinant,∣∣∣∣I2 − [

0 α
0 0

]
L

∣∣∣∣ =
∣∣∣∣[ 1 −αL

0 1

]∣∣∣∣ = 1

and, hence, it is unimodular. The property of a unimodular operator to have
a finite order inverse follows because the inverse of an operator A(L) is its
adjoint divided by its determinant,
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A(L)−1 = A(L)adj/|A(L)| = |A(L)|−1A(L)adj .

The determinant is a univariate operator. A finite order invertible univariate
operator, however, has an infinite order inverse, unless its degree is zero, that
is, unless it is a constant.

In order to state uniqueness conditions for a VARMA representation, we
will first of all require that a representation is chosen for which further can-
cellation is not possible in the sense that there are no common factors in the
VAR and MA parts, except for unimodular operators. Operators A(L) and
M(L) with this property are left-coprime. This property may be defined by
calling the matrix operator [A(L) : M(L)] left-coprime, if the existence of
operators D(L), Ā(L), and M̄(L) satisfying

D(L)[Ā(L) : M̄(L)] = [A(L) : M(L)] (12.1.11)

implies that D(L) is unimodular, that is, |D(L)| is a nonzero constant. From
the foregoing examples, it should be understood that in general factoring
unimodular operators from A(L) and M(L) is unavoidable if no further con-
straints are imposed. Thus, to obtain uniqueness of left-coprime operators we
have to impose restrictions ensuring that the only feasible unimodular oper-
ator D(L) in (12.1.11) is D(L) = IK . We will now give two sets of conditions
that ensure uniqueness of a VARMA representation.

12.1.2 Final Equations Form and Echelon Form

Suppose yt is a stationary zero mean process that has a stable, invertible
VARMA representation,

A(L)yt = M(L)ut, (12.1.12)

where A(L) := A0 −A1L−· · ·−ApL
p and M(L) := M0 +M1L+ · · ·+MqL

q.
Further suppose that A(L) and M(L) are left-coprime and the white noise
covariance matrix Σu is nonsingular.

Definition 12.1 (Final Equations Form)
The VARMA representation (12.1.12) is said to be in final equations form if
M0 = IK and A(L) = α(L)IK , where α(L) := 1−α1L−· · ·−αpL

p is a scalar
(one-dimensional) operator with αp �= 0.

For instance, the bivariate VARMA(3, 1) model

(1 − α1L− α2L
2 − α3L

3)
[
y1t

y2t

]
=

[
1 + m11,1L m12,1L
m21,1L 1 + m22,1L

] [
u1t

u2t

]
(12.1.13)

with α3 �= 0, is in final equations form. The label “final equations form” for
this type of VARMA representation is in line with the terminology used in
Chapter 10, Section 10.2.2.
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Uniqueness of the final equations form

α(L)yt = M(L)ut

is seen by noting that D(L) = IK is the only operator that retains the scalar
AR part upon multiplication. For the operator D(L)α(L)IK to maintain the
order p, the operator D(L) must have degree zero, that is, D(L) = D. How-
ever, the only possible matrix D that guarantees a zero order matrix IK for
the VAR operator is D = IK .

Definition 12.2 (Echelon Form)
The VARMA representation (12.1.12) is said to be in echelon form or ARMAE

form if the VAR and MA operators A(L) = [αki(L)]k,i=1,...,K and M(L) =
[mki(L)] are left-coprime and satisfy the following conditions: The operators
αki(L) (i = 1, . . . ,K) and mkj(L) (j = 1, . . . ,K) in the k-th row of A(L) and
M(L) have degree pk and they have the form

αkk(L) = 1 −
pk∑

j=1

αkk,jL
j , for k = 1, . . . ,K,

αki(L) = −
pk∑

j=pk−pki+1

αki,jL
j , for k �= i,

and

mki(L) =
pk∑

j=0

mki,jL
j , for k, i = 1, . . . ,K, with M0 = A0.

In the VAR operators αki(L),

pki :=
{

min(pk + 1, pi) for k ≥ i,
min(pk, pi) for k < i,

k, i = 1, . . . ,K. (12.1.14)

That is, pki specifies the number of free coefficients in the operator αki(L)
for i �= k. The row degrees (p1, . . . , pK) are called the Kronecker indices and
their sum

∑K
k=1 pi is the McMillan degree. Obviously, for the VARMA orders

we have, in general, p = q = max(p1, . . . , pK).

We will sometimes denote an echelon form VARMA model with Kronecker
indices (p1, . . . , pK) by ARMAE(p1, . . . , pK). The following model is an ex-
ample of a bivariate VARMA process in echelon form or, more precisely, an
ARMAE(2, 1):[

1 − α11,1L− α11,2L
2 −α12,2L

2

−α21,0 − α21,1L 1 − α22,1L

] [
y1t

y2t

]
=

[
1 + m11,1L + m11,2L

2 m12,1L + m12,2L
2

−α21,0 + m21,1L 1 + m22,1L

] [
u1t

u2t

]
(12.1.15)
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or [
1 0

−α21,0 1

] [
y1,t

y2,t

]
=

[
α11,1 0
α21,1 α22,1

] [
y1,t−1

y2,t−1

]
+

[
α11,2 α12,2

0 0

] [
y1,t−2

y2,t−2

]
+

[
1 0

−α21,0 1

] [
u1,t

u2,t

]
+

[
m11,1 m12,1

m21,1 m22,1

] [
u1,t−1

u2,t−1

]
+

[
m11,2 m12,2

0 0

] [
u1,t−2

u2,t−2

]
.

In this model, the Kronecker indices (row degrees) are p1 = 2 and p2 = 1.
Thus, the McMillan degree is 3. The pki numbers are[

p11 p12

p21 p22

]
=

[
2 1
2 1

]
(see (12.1.14)). The off-diagonal elements p12 and p21 of this matrix indicate
the numbers of parameters contained in the operators α12(L) and α21(L),
respectively. Because α12(L) belongs to the first row or first equation of the
system, it has degree p1 = 2. Hence, because it has just one free coefficient
(p12 = 1), it has the form α12(L) = −α12,2L

2. Similarly, α21(L) belongs to the
second row of the system and, thus, it has degree p2 = 1. Because it has p21 = 2
free coefficients, it must be of the form α21(L) = −α21,0 − α21,1L. Another
characteristic feature of the echelon form is that A0 is lower-triangular and
has ones on the main diagonal. Moreover, the zero order MA coefficient matrix
is identical to the zero order VAR matrix, M0 = A0.

Some free coefficients of the echelon form of a VARMA model may be
zero and, hence, p or q may be less than max(p1, . . . , pK). For instance, in
the example process (12.1.15), m11,2 and m12,2 may be zero. In that case,
q = 1 < max(p1, p2) = 2. In order for a representation to be an echelon form
with Kronecker indices (p1, . . . , pK), at least one operator in the k-th row of
[A(L) : M(L)] must have degree pk, with nonzero coefficient at lag pk.

An echelon is a certain positioning of an army in the form of steps. Sim-
ilarly, the nonzero parameters in an echelon VARMA representation are po-
sitioned in a specific way. In particular, the positioning of freely varying pa-
rameters in the k-th equation depends only on Kronecker indices pi ≤ pk and
not on Kronecker indices pj > pk. More precisely, as long as pj > pk, the
positioning of the free parameters in the k-th equation will be the same for
any value pj . For the example process (12.1.15), it is easy to check that the
positions of the free parameters in the second equation will remain the same
if the row degree of the first equation is increased to p1 = 3. In other words,
p21 does not change due to an increase in p1.

It can be shown that the echelon form, just like the final equations form,
guarantees uniqueness of the VARMA representation. In other words, if a
VARMA representation is in echelon form, then the representation is unique
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within the class of all echelon representations. A similar statement applies
for the final equations form. Also, for any stable, invertible VARMA(p, q)
representation, there exists an equivalent echelon form and an equivalent final
equations form.

The reader may wonder why we consider the complicated looking echelon
representation although the final equations form serves the same purpose. The
reason is that the echelon form is usually preferable in practice because it often
involves fewer free parameters than the equivalent final equations form. We
will see an example of this phenomenon shortly. Having as few free parameters
as possible is important to ease the numerical problems in maximizing the
likelihood function and to gain efficiency of the parameter estimators.

There are a number of other unique or identified parameterizations of
VARMA models. We have chosen to present the final equations form and the
echelon form because these two forms will play a role when we discuss the issue
of specifying VARMA models in Chapter 13. For proofs of the uniqueness of
the echelon form and for other identification conditions we refer to Hannan
(1969, 1970, 1976, 1979), Deistler & Hannan (1981), and Hannan & Deistler
(1988). We now proceed with illustrations of the final equations form and the
echelon form.

12.1.3 Illustrations

Starting from some VARMA(p, q) representation A(L)yt = M(L)ut, one strat-
egy for finding the corresponding final equations form results from premulti-
plying with the adjoint A(L)adj of the VAR operator A(L) which gives

|A(L)|yt = A(L)adjM(L)ut, (12.1.16)

where A(L)adjA(L) = |A(L)| has been used. Obviously, (12.1.16) has a scalar
VAR operator and, hence, is in final equations form if all superfluous terms
are cancelled.

To find the echelon form corresponding to a given VARMA model, we have
to cancel as much as possible so as to make the VAR and MA operators left-
coprime. Then a unimodular matrix operator has to be determined which,
upon premultiplication, transforms the given model into an echelon form.
It usually helps to determine the Kronecker indices (row degrees) and the
corresponding numbers pki first. We will now consider examples.

Let us begin with the simple bivariate process(
I2 −

[
0 α
0 1

]
L

)
yt = ut (12.1.17)

with α �= 0. Noting that

|A(L)| =
∣∣∣∣[ 1 −αL

0 1

]∣∣∣∣ = 1 and A(L)adj =
[

1 αL
0 1

]
,
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the final equations form is seen to be

yt =
(
I2 +

[
0 α
0 0

]
L

)
ut. (12.1.18)

To find the echelon representation, we first determine the Kronecker indices
or row degrees and the implied pki from Definition 12.2. The first row of
(12.1.17) has degree p1 = 1 and the second row has degree p2 = 0. Hence,

p11 = 1, p12 = 0, p21 = 1, p22 = 0,

so that

α11(L) = 1 − α11,1L, α12(L) = 0, α21(L) = −α21,0, and α22(L) = 1.

Thus, the echelon form is[
1 − α11,1L 0
−α21,0 1

]
yt =

[
1 + m11,1L m12,1L
−α21,0 1

]
ut. (12.1.19)

The unique parameter values in this representation corresponding to the spe-
cific process (12.1.17) are easily seen to be

α11,1 = α21,0 = m11,1 = 0 and m12,1 = α.

Thus, in this particular case, the final equations form and the echelon form
coincide.

As another example, we consider a 3-dimensional process with VARMA(2, 1)
representation⎡⎣ 1 − θ1L −θ2L 0

0 1 − θ3L− θ4L
2 −θ5L

0 0 1

⎤⎦ yt

=

⎡⎣ 1 − η1L 0 0
0 1 − η2L 0
0 0 1 − η3L

⎤⎦ut. (12.1.20)

Using (12.1.16), its final equations form is seen to be

(1 − θ1L)(1 − θ3L− θ4L
2)yt

=

⎡⎣ 1 − θ3L− θ4L
2 θ2L θ2θ5L

2

0 1 − θ1L θ5L− θ1θ5L
2

0 0 (1 − θ1L)(1 − θ3L− θ4L
2)

⎤⎦
×

⎡⎣ 1 − η1L 0 0
0 1 − η2L 0
0 0 1 − η3L

⎤⎦ut
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which is easily recognizable as a VARMA(3, 4) structure with scalar VAR
operator.

The Kronecker indices, that is, the row degrees of (12.1.20) are (p1, p2, p3) =
(1, 2, 1) and the implied pki-numbers from (12.1.14) are collected in the fol-
lowing matrix:

[pki]k,i=1,2,3 =

⎡⎣ 1 1 1
1 2 1
1 2 1

⎤⎦ .

Consequently, the VAR operator of the echelon form becomes⎡⎣ 1 − α11,1L −α12,1L −α13,1L
−α21,2L

2 1 − α22,1L− α22,2L
2 −α23,2L

2

−α31,1L −α32,0 − α32,1L 1 − α33,1L

⎤⎦
or ⎡⎣ 1 0 0

0 1 0
0 −α32,0 1

⎤⎦−
⎡⎣ α11,1 α12,1 α13,1

0 α22,1 0
α31,1 α32,1 α33,1

⎤⎦L−
⎡⎣ 0 0 0

α21,2 α22,2 α23,2

0 0 0

⎤⎦L2.

(12.1.21)

Hence, in the echelon representation,

A0 =

⎡⎣ 1 0 0
0 1 0
0 −α32,0 1

⎤⎦
is different from I3, if α32,0 �= 0, and, thus, M0 = A0 is also not the identity
matrix. The MA operator is⎡⎣ 1 + m11,1L m12,1L m13,1L

m21,1L + m21,2L
2 1 + m22,1L + m22,2L

2 m23,1L + m23,2L
2

m31,1L −α32,0 + m32,1L 1 + m33,1L

⎤⎦
or [

1 0 0
0 1 0
0 −α32,0 1

]
+

[
m11,1 m12,1 m13,1

m21,1 m22,1 m23,1

m31,1 m32,1 m33,1

]
L +

[
0 0 0

m21,2 m22,2 m23,2

0 0 0

]
L2.

(12.1.22)

The reader may be puzzled by the fact that the last element in the second
row of (12.1.21) does not involve a term with first power of L while such a
term appears in (12.1.20). This model form shows that there is a VARMA
representation equivalent to (12.1.20) with the second but not the first power
of L in the last operator in the second row of A(L). The fact, that there always



458 12 Estimation of VARMA Models

exists an equivalent echelon representation does not mean that there is always
an immediately obvious relation between the coefficients of any given VARMA
representation and its equivalent echelon form. However, in the present case
it is fairly easy to relate the representations (12.1.20) and (12.1.21)/(12.1.22).
Premultiplying (12.1.20) by the operator⎡⎣ 1 0 0

0 1 θ5L
0 0 1

⎤⎦ (12.1.23)

results in a VAR operator⎡⎣ 1 − θ1L −θ2L 0
0 1 − θ3L− θ4L

2 0
0 0 1

⎤⎦
and the MA operator changes accordingly. Notice that the operator (12.1.23)
has constant determinant and, of course, the resulting VARMA model is equiv-
alent to (12.1.20). The relation between its coefficients and those of the echelon
representation (12.1.21)/(12.1.22) is obvious:

α11,1 = θ1, α12,1 = θ2, θ13,1 = 0,
α21,2 = 0, α22,1 = θ3, α22,2 = θ4, α23,2 = 0,
α31,1 = α32,0 = α32,1 = α33,1 = 0,

and the relation between (12.1.22) and the coefficients of (12.1.20) is also
apparent. Of course, if the zero coefficients are known, then this knowledge
may be used to reduce the number of free coefficients in the echelon form.

In this example, the unrestricted final equations form has 3 AR coefficients
and 36 MA coefficients. Thus, the unrestricted form contains 39 parameters,
apart from white noise covariance coefficients. In contrast, the unrestricted
echelon form (12.1.21)/(12.1.22) has only 23 free parameters and is therefore
preferable in terms of parameter parsimony. Note that, in practice, the true
coefficient values are unknown and we pick an identified structure, for exam-
ple, a final equations form or an echelon form. At that stage, further parameter
restrictions may not be available. Hence, if (12.1.20) is the actual data gener-
ation process we may pick a VARMA(3, 4) model with scalar AR operator if
we decide to go with a final equations representation and we may choose the
model (12.1.21)/(12.1.22) if we decide to use an echelon form representation.
Obviously, the latter choice results in a more parsimonious parameterization.
As mentioned earlier, for estimation purposes the more parsimonious repre-
sentation is advantageous.

Although A0 �= I in the previous example, it should be understood that in
many echelon representations A0 = M0 = IK . In particular, if the row degrees
p1 = · · · = pK = p, all pki = p, i, k = 1, . . . ,K, and the echelon form is easily
seen to be a standard VARMA(p, p) model with A0 = M0 = IK . We are
now ready to turn to the actual estimation of the parameters of an identified
VARMA model and we shall discuss its Gaussian likelihood function next.
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12.2 The Gaussian Likelihood Function

For maximum likelihood (ML) estimation the likelihood function is needed.
We will now derive useful approximations to the likelihood function of a Gaus-
sian VARMA(p, q) process. Special case MA processes will be considered first.

12.2.1 The Likelihood Function of an MA(1) Process

Because a zero mean MA(1) process is the simplest member of the finite order
MA family, we use that as a starting point. Hence, we assume to have a sam-
ple y1, . . . , yT which is generated by the Gaussian, K-dimensional, invertible
MA(1) process

yt = ut + M1ut−1, (12.2.1)

where ut is a Gaussian white noise process with covariance matrix Σu. Thus,

y :=

⎡⎢⎣ y1

...
yT

⎤⎥⎦ = M1

⎡⎢⎢⎢⎣
u0

u1

...
uT

⎤⎥⎥⎥⎦,
where

M1 :=

⎡⎢⎢⎢⎢⎢⎢⎣

M1 IK 0 . . . 0 0
0 M1 IK 0 0
...

. . . . . .
...

...
. . . . . .

...
0 0 0 . . . M1 IK

⎤⎥⎥⎥⎥⎥⎥⎦ (12.2.2)

is a (KT ×K(T +1)) matrix. Using that ut is Gaussian white noise and, thus,⎡⎢⎢⎢⎣
u0

u1

...
uT

⎤⎥⎥⎥⎦ ∼ N (0, IT+1 ⊗Σu),

if follows that

y ∼ N (0,M1(IT+1 ⊗Σu)M
′
1)

and the likelihood function is seen to be

l(M1, Σu|y)

∝ |M1(IT+1 ⊗Σu)M
′
1|−1/2 exp{−1

2y
′[M1(IT+1 ⊗Σu)M

′
1]

−1y},
(12.2.3)
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where ∝ stands for “is proportional to”. In other words, we have dropped a
multiplicative constant from the likelihood function which does not change
the maximizing values of M1 and Σu.

It is inconvenient that this function involves the determinant and the in-
verse of a (KT ×KT ) matrix. A simpler form is obtained if u0 is set to zero,
that is, the MA(1) process is assumed to be started up with a nonrandom
fixed vector u0 = 0. In that case,

y = M1u,

where

M1 :=

⎡⎢⎢⎢⎢⎢⎢⎣

IK 0 . . . 0 0
M1 IK 0 0

. . . . . .
...

. . . . . .
...

0 0 . . . M1 IK

⎤⎥⎥⎥⎥⎥⎥⎦
(KT×KT )

and u :=

⎡⎢⎣ u1

...
uT

⎤⎥⎦
(KT×1)

. (12.2.4)

The likelihood function is then proportional to

l0(M1, Σu|y) = |M1(IT ⊗Σu)M′
1|−1/2 exp{−1

2y
′[M1(IT ⊗Σu)M′

1]
−1y}

= |Σu|−T/2 exp{−1
2
y′M′−1

1 (IT ⊗Σ−1
u )M−1

1 y}

= |Σu|−T/2 exp

{
−1

2

T∑
t=1

u′
tΣ

−1
u ut

}
, (12.2.5)

where it has been used that |M1| = 1 and

M−1
1 =

⎡⎢⎢⎢⎢⎢⎢⎣

IK 0 . . . 0 0
−M1 IK 0 0

(−M1)2 −M1
. . . 0 0

...
...

. . . . . .
...

(−M1)T−1 (−M1)T−2 . . . −M1 IK

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
IK 0 . . . 0
−Π1 IK 0

...
. . .

...
−ΠT−1 −ΠT−2 . . . IK

⎤⎥⎥⎥⎦,
where the Πi = −(−M1)i are the coefficients of the pure VAR representation
of the process. By successive substitution, the MA(1) process in (12.2.1) can
be rewritten as

yt +
t−1∑
i=1

(−M1)iyt−i + (−M1)tu0 = ut. (12.2.6)
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Thus, if u0 = 0,

ut = yt +
t−1∑
i=1

(−M1)iyt−i,

from which the last expression in (12.2.5) is obtained.
The equation (12.2.6) also shows that, for large t, the assumption regarding

u0 becomes inconsequential because, for an invertible process, M t
1 approaches

zero as t → ∞. The impact of u0 disappears more rapidly for processes for
which M t

1 goes to zero more rapidly as t gets large. In other words, if all
eigenvalues of M1 are close to zero or, equivalently, all roots of det(IK +
M1z) are far outside the unit circle, then the impact of u0 is lower than
for processes with roots close to the unit circle. In summary, the likelihood
approximation in (12.2.5) will improve as the sample size gets large and will
become exact as T → ∞. In small samples, it is better for processes with roots
of det(IK+M1z) far away from the unit circle than for those with roots close to
the noninvertibility region. Because we will be concerned predominantly with
large sample properties in the following, we will often work with likelihood
approximations such as l0 in (12.2.5).

12.2.2 The MA(q) Case

A similar reasoning as for MA(1) processes can also be employed for higher
order MA processes. Suppose the generation process of yt has a zero mean
MA(q) representation

yt = ut + M1ut−1 + · · · + Mqut−q. (12.2.7)

Then

y = Mq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u−q+1

...
u0

u1

...
uT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

Mq :=

⎡⎢⎢⎢⎢⎢⎢⎣

Mq Mq−1 . . . M1 IK 0 . . . . . . 0
0 Mq . . . M2 M1 IK 0
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . .

...
0 0 . . . Mq . . . M2 M1 IK

⎤⎥⎥⎥⎥⎥⎥⎦ (12.2.8)
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is a (KT ×K(T + q)) matrix and the exact likelihood for a sample of size T
is seen to be

l(M1, . . . ,Mq, Σu|y) ∝ |Mq(IT+q ⊗Σu)M
′
q|−1/2

× exp{−1
2
y′[Mq(IT+q ⊗Σu)M

′
q]

−1y}. (12.2.9)

Again a convenient approximation to the likelihood function is obtained
by setting u−q+1 = · · · = u0 = 0. In that case, the likelihood is, apart from a
multiplicative constant,

l0(M1, . . . ,Mq, Σu|y) = |Σu|−T/2 exp{− 1
2y

′[M′−1
q (IT ⊗Σ−1

u )M−1
q ]y},
(12.2.10)

where

Mq :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 . . . . . . . . . . . . 0 0
M1 IK 0 0

M2 M1
. . . 0 0

...
...

. . . . . .
...

Mq Mq−1
. . . . . .

...

0 Mq
. . . . . .

...
. . . . . . . . .

0 0 . . . Mq . . . . . . M1 IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.2.11)

and, hence,

M−1
q =

⎡⎢⎢⎢⎣
IK 0 . . . 0
−Π1 IK 0

...
...

. . .
...

−ΠT−1 −ΠT−2 . . . IK

⎤⎥⎥⎥⎦.
Here the Πi are the coefficient matrices of the pure VAR representation of
the process yt. Thus, the Πi can be computed recursively as in Section 11.2
of Chapter 11.

An alternative expression for the approximate likelihood is easily seen to
be

l0(M1, . . . ,Mq, Σu|y) = |Σu|−T/2 exp

{
−1

2

T∑
t=1

u′
tΣ

−1
u ut

}
, (12.2.12)

where

ut = yt −
t−1∑
i=1

Πiyt−i.
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Again, the likelihood approximation will be quite precise if T is reasonably
large and the roots of det(IK + M1z + · · · + Mqz

q) are not close to the unit
circle.

Although we will work with likelihood approximations in the following, it is
perhaps worth noting that an expression for the exact likelihood of an MA(q)
process can be derived that is more manageable than the one in (12.2.9) (see,
e.g., Hillmer & Tiao (1979), Kohn (1981)).

12.2.3 The VARMA(1, 1) Case

Before we tackle general mixed VARMA models, we shall consider the simplest
candidate, namely a Gaussian zero mean, stationary, stable, and invertible
VARMA(1, 1) process,

yt = A1yt−1 + ut + M1ut−1. (12.2.13)

Assuming that we have a sample y1, . . . , yT , generated by this process and
defining

Ap :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IK 0 . . . 0 0
−A1 IK 0 0
−A2 −A1

. . . . . .
0 0

...
...

. . . . . .

. . . . . .
...

...

−Ap −Ap−1

. . . . . .

. . . . . .
0 0

0 −Ap

. . . . . .

. . . . . .
0 0

...
. . . . . .

. . . . . .

. . . . . .
...

...

0 0
. . . . . .

. . . . . .
IK 0

0 0 . . . −Ap . . . −A1 IK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12.2.14)

we get

A1

⎡⎢⎣ y1

...
yT

⎤⎥⎦ +

⎡⎢⎢⎢⎣
−A1y0

0
...
0

⎤⎥⎥⎥⎦ = M1

⎡⎢⎢⎢⎣
u0

u1

...
uT

⎤⎥⎥⎥⎦.
Hence, for given, fixed presample values y0,

y =

⎡⎢⎣ y1

...
yT

⎤⎥⎦ ∼ N (A−1
1 y0,A

−1
1 M1(IT+1 ⊗Σu)M

′
1A

′−1
1 ), (12.2.15)

where
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y0 :=

⎡⎢⎢⎢⎣
A1y0

0
...
0

⎤⎥⎥⎥⎦.
The corresponding likelihood function, conditional on y0, is

l(A1,M1, Σu|y, y0)

∝ |A−1
1 M1(IT+1 ⊗Σu)M

′
1A

′−1
1 |−1/2

× exp{− 1
2(y − A−1

1 y0)′A′
1[M1(IT+1 ⊗Σu)M

′
1]

−1A1(y − A−1
1 y0)}

= |M1(IT+1 ⊗Σu)M
′
1|−1/2

× exp{− 1
2(A1y − y0)′[M1(IT+1 ⊗Σu)M

′
1]

−1(A1y − y0)}, (12.2.16)

where |A1| = 1 has been used.
With the same arguments as in the pure MA case, a simple approximation

is obtained by setting u0 = y0 = 0. Then we get

l0(A1,M1, Σu) = |Σu|−T/2 exp{− 1
2(M−1

1 A1y)′(IT ⊗Σ−1
u )M−1

1 A1y}

= |Σu|−T/2 exp

{
−1

2

T∑
t=1

u′
tΣ

−1
u ut

}
, (12.2.17)

where

ut = yt −
t−1∑
i=1

Πiyt−i (12.2.18)

and the Πi are the coefficient matrices of the pure VAR representation, that
is, for the present case Πi = (−1)i−1(M i

1 +M i−1
1 A1), i = 1, 2, . . . (see Section

11.3.1). Note that in writing the likelihood approximation l0 we have dropped
the conditions y and y0 for notational simplicity.

The effect of starting up the process with y0 = u0 = 0 is quite easily
seen in (12.2.18), namely, for observation yt, the infinite order pure VAR
representation is truncated at lag t − 1. Such a truncation has little effect if
the sample size is large and the roots of the MA operator are not close to the
unit circle.

12.2.4 The General VARMA(p, q) Case

Now suppose a sample y1, . . . , yT is generated by the Gaussian K-dimensional,
stable, invertible VARMA(p, q) process

A0(yt − µ) = A1(yt−1 − µ) + · · · + Ap(yt−p − µ)
+A0ut + M1ut−1 + · · · + Mqut−q (12.2.19)
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with mean vector µ and nonsingular white noise covariance matrix Σu. No-
tice that A0 appears as the coefficient matrix of yt and of ut as in the eche-
lon form. Thus, the echelon form is covered by our treatment of the general
VARMA(p, q) case. We have chosen the mean-adjusted form of the process
because this form has certain advantages in ML estimation, as we will see
later.

Usually some elements of the coefficient matrices will be zero or obey some
other type of restrictions. Therefore, to be realistic, we define

α0 := vec(A0) and β := vec[A1, . . . , Ap,M1, . . . ,Mq] (12.2.20)

and assume that these coefficients are linearly related to an (N×1) parameter
vector γ, that is,[

α0

β

]
= Rγ + r (12.2.21)

for a suitable, known (K2(p+q+1)×N) matrix R and a known K2(p+q+1)-
vector r. For example, for a bivariate ARMAE(1, 0) process with Kronecker
indices p1 = 1 and p2 = 0,[

1 − α11,1L 0
−α21,0 1

]
(yt − µ) =

[
1 + m11,1L m12,1L
−α21,0 1

]
ut

or [
1 0

−α21,0 1

]
(yt − µ) =

[
α11,1 0

0 0

]
(yt−1 − µ) +

[
1 0

−α21,0 1

]
ut

+
[
m11,1 m12,1

0 0

]
ut−1,

we have

α0 =

⎡⎢⎢⎣
1

−α21,0

0
1

⎤⎥⎥⎦, β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11,1

0
0
0

m11,1

0
m12,1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−1 0 0 0

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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γ =

⎡⎢⎢⎣
α21,0

α11,1

m11,1

m12,1

⎤⎥⎥⎦, and r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Similarly, for the final equations form

(1 − α1L)(yt − µ) =
[

1 + m11L m12L
m21L 1 + m22L

]
ut

or [
1 0
0 1

]
(yt−µ) =

[
α1 0
0 α1

]
(yt−1−µ)+

[
1 0
0 1

]
ut +

[
m11 m12

m21 m22

]
ut−1,

we get

α0 =

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦, β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

0
0
α1

m11

m21

m12

m22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

γ =

⎡⎢⎢⎢⎢⎣
α1

m11

m21

m12

m22

⎤⎥⎥⎥⎥⎦, and r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The likelihood function is a function of µ,γ, and Σu. Its exact form, given
fixed initial values y−p+1, . . . , y0, can be derived analogously to the previously
considered special cases (see Problem 12.4 and Hillmer & Tiao (1979)). Here
we will just give the likelihood approximation obtained by assuming

y−p+1 − µ = · · · = y0 − µ = u−q+1 = · · · = u0 = 0.
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Apart from a multiplicative constant, we get

l0(µ,γ, Σu) = |Σu|−T/2 exp

{
−1

2

T∑
t=1

ut(µ,γ)′Σ−1
u ut(µ,γ)

}
, (12.2.22)

where

ut(µ,γ) = (yt − µ) −
t−1∑
i=1

Πi(γ)(yt−i − µ), (12.2.23)

with the Πi(γ)’s being again the coefficient matrices of the pure VAR rep-
resentation of yt. We have indicated that these matrices are determined by
the parameter vector γ. Formally the likelihood approximation has the same
appearance as in the special cases. Of course, the ut’s are now potentially
more complicated functions of the parameters.

It is perhaps worth noting that the uniqueness or identification problem
discussed in Section 12.1 is reflected in the likelihood function. If the model is
parameterized in a unique way, for instance, in final equations form or echelon
form, the likelihood function has a locally unique maximum. This property
is of obvious importance to guarantee unique ML estimators. Note, however,
that the likelihood function in general has more than one local maximum. A
more detailed discussion of the properties of the likelihood function can be
found in Deistler & Pötscher (1984).

The next section focuses on the maximization of the approximate likeli-
hood function (12.2.22) or, equivalently, the maximization of its logarithm,

ln l0(µ,γ, Σu) = −T

2
ln |Σu| − 1

2

T∑
t=1

ut(µ,γ)′Σ−1
u ut(µ,γ). (12.2.24)

12.3 Computation of the ML Estimates

In the pure finite order VAR case considered in Chapters 3 and 5, we have
obtained the ML estimates by solving the normal equations. In the presently
considered VARMA(p, q) case, we may use the same principle. In other words,
we determine the first order partial derivatives of the log-likelihood function
or rather its approximation given in (12.2.24) and equate them to zero. We
will obtain the normal equations in Section 12.3.1. It turns out that they
are nonlinear in the parameters and we discuss algorithms for solving the
ML optimization problem in Section 12.3.2. The optimization procedures are
iterative algorithms that require starting-up values or preliminary estimates
for the parameters. A possible choice of initial estimates is proposed in Section
12.3.4. One of the optimization algorithms involves the information matrix
which is given in Section 12.3.3. An example is discussed in Section 12.3.5.
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12.3.1 The Normal Equations

In order to set up the normal equations corresponding to the approximate
log-likelihood given in (12.2.24), we derive the first order partial derivatives
with respect to all the parameters µ,γ, and Σu.

∂ ln l0
∂µ′ = −

T∑
t=1

u′
tΣ

−1
u

∂ut

∂µ′ =
T∑

t=1

u′
tΣ

−1
u

[
IK −

t−1∑
i=1

Πi(γ)

]
, (12.3.1)

∂ ln l0
∂γ′ = −

T∑
t=1

u′
tΣ

−1
u

∂ut

∂γ′ . (12.3.2)

A recursive formula for computing the ∂ut/∂γ′ is given in the following lemma.

Lemma 12.1
Suppose µ = 0 and let

ut = yt −A−1
0 [A1yt−1 + · · · + Apyt−p + M1ut−1 + · · · + Mqut−q], (12.3.3)

α0 := vec(A0),

β := vec[A1, . . . , Ap,M1, . . . ,Mq],

and suppose[
α0

β

]
= Rγ + r, (12.3.4)

where R is a known (K2(p+ q + 1)×N) matrix, r is a known K2(p+ q + 1)-
dimensional vector, and γ is an (N ×1) vector of unknown parameters. Then,
defining ∂u0/γ

′ = ∂u−1/∂γ ′ = · · · = ∂u−q+1/∂γ′ = 0 and y0 = · · · =
y−p+1 = u0 = · · · = u−q+1 = 0,

∂ut

∂γ′ = {(A−1
0 [A1yt−1 + · · · + Apyt−p

+M1ut−1 + · · · + Mqut−q])′ ⊗ A−1
0 }[IK2 : 0 : · · · : 0]R

−[(y′t−1, . . . , y
′
t−p, u

′
t−1, . . . , u

′
t−q) ⊗ A−1

0 ][0 : IK2(p+q)]R

−A−1
0

[
M1

∂ut−1

∂γ′ + · · · + Mq
∂ut−q

∂γ′

]
, (12.3.5)

for t = 1, . . . , T .

Replacing yt with yt − µ in this lemma, the expression in (12.3.5) can be
used for recursively computing the ∂ut/∂γ′ required in (12.3.2).

Proof:

∂ut

∂γ′ = −[(A1yt−1 + · · · + Apyt−p + M1ut−1 + · · · + Mqut−q)′ ⊗ IK ]
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×∂ vec(A−1
0 )

∂γ′

−[(y′t−1, . . . , y
′
t−p, u

′
t−1, . . . , u

′
t−q) ⊗A−1

0 ]

×∂ vec[A1, . . . , Ap,M1, . . . ,Mq]
∂γ′

−A−1
0 [A1, . . . , Ap,M1, . . . ,Mq]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt−1

...
yt−p

ut−1

...
ut−q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
/∂γ′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12.3.6)

The lemma follows by noting that

∂ vec(A−1
0 )

∂γ′ =
∂ vec(A−1

0 )
∂α′

0

∂α0

∂γ′ = −[(A−1
0 )′ ⊗ A−1

0 ][IK2 : 0 : · · · : 0]R

(12.3.7)

(see Rule (9) of Appendix A.13).

The partial derivatives of the approximate log-likelihood with respect to
the elements of Σu are

∂ ln l0
∂Σu

= −T

2
Σ−1

u +
1
2
Σ−1

u

(
T∑

t=1

utu
′
t

)
Σ−1

u (12.3.8)

(see Problem 12.5). Setting this expression to zero and solving for Σu gives

Σ̃u(µ,γ) =
1
T

T∑
t=1

ut(µ,γ)ut(µ,γ)′. (12.3.9)

Substituting for Σu in (12.3.1) and (12.3.2) and setting to zero results in a
generally nonlinear set of normal equations which may be solved by numerical
methods. Before we discuss a possible algorithm, it may be worth pointing
out that by substituting Σ̃u(µ,γ) for Σu in ln l0, we get

ln l0(µ,γ) = −T

2
ln |Σ̃u(µ,γ)| − 1

2
tr

(
Σ̃u(µ,γ)−1

T∑
t=1

ut(µ,γ)ut(µ,γ)′
)

= −T

2
ln |Σ̃u(µ,γ)| − TK

2
. (12.3.10)

Thus, instead of maximizing ln l0 we may equivalently minimize

ln |Σ̃u(µ,γ)| or |Σ̃u(µ,γ)|. (12.3.11)
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12.3.2 Optimization Algorithms

The problem of optimizing (minimizing or maximizing) a function arises not
only in ML estimation but also in various other contexts. Therefore, general
algorithms have been developed. Following Judge et al. (1985, Section B.2),
we will give a brief introduction to so-called gradient algorithms and then
address the specific problem at hand. With the objective in mind that we
want to find the coefficient values that minimize − ln l0 or ln |Σ̃u(µ,γ)|, we
assume that the problem is to minimize a twice continuously differentiable,
scalar valued function h(γ), where γ is some (N × 1) vector.

Given a vector γi in the parameter space, we are looking for a direction
(vector) d in which the objective function declines. Then we can perform a
step of length s, say, in that direction which will take us downhill. In other
words, we seek an appropriate step direction d and a step length s such that

h(γi + sd) < h(γi). (12.3.12)

If d is a downhill direction, a small step in that direction will always decrease
the objective function. Thus, we are seeking a d such that h(γi + sd) is a
decreasing function of s, for s sufficiently close to zero. In other words, d
must be such that

0 >
dh(γi + sd)

ds

∣∣∣∣
s=0

=

[
∂h(γ)
∂γ ′

∣∣∣∣
γi

] [
∂(γi + sd)

∂s

∣∣∣∣
s=0

]
=

[
∂h(γ)
∂γ′

∣∣∣∣
γi

]
d.

Using the abbreviation

hi :=
∂h(γ)
∂γ

∣∣∣∣
γi

for the gradient of h(γ) at γi, a possible choice of d is

d = −Dihi,

where Di is any positive definite matrix. With this choice of d,

h′
id = −h′

iDihi < 0

if hi �= 0. Because the gradient is zero at a local minimum of the function,
we hope to have reached the minimum once hi = 0 and, hence, d = 0. The
general form of an iteration of a gradient algorithm is therefore

γi+1 = γi − siDihi, (12.3.13)

where si denotes the step length in the i-th iteration and Di is a positive
definite direction matrix. The name “gradient algorithm” stems from the fact
that the gradient hi is involved in the choice of the step direction. Many such
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algorithms have been proposed in the literature (see, for example, Judge et al.
(1985, Section B.2)). They differ in their choice of the direction matrix Di and
the step length si.

To motivate the choice of the Di matrix that will be considered in the ML
algorithm presented below, we expand the objective function h(γ) in a Taylor
series about γi (see Appendix A.13, Proposition A.3),

h(γ) ≈ h(γi) + h′
i(γ − γi) + 1

2 (γ − γi)′Hi(γ − γi), (12.3.14)

where

Hi :=
∂2h

∂γ∂γ′

∣∣∣∣
γi

is the Hessian matrix of second order partial derivatives of h(γ), evaluated at
γi. If h(γ) were a quadratic function, the right-hand side of (12.3.14) were
exactly equal to h(γ) and the first order conditions for a minimum would result
by taking first order partial derivatives of the right-hand side and setting to
zero:

h′
i + Hi(γ − γi)

′ = 0

or

γ = γi −H−1
i hi.

Thus, if h(γ) were a quadratic function, starting from any vector γi, we would
reach the minimum in one step of length si = 1 by choosing the inverse Hessian
as the direction matrix. In general, if h(γ) is not a quadratic function, then
the choice Di = H−1

i is still reasonable once we are close to the minimum.
Recall that a positive definite Hessian is the second order condition for a local
minimum. Therefore, the inverse Hessian qualifies as a direction matrix. A
gradient algorithm with the inverse Hessian as the direction matrix is called
a Newton or Newton-Raphson algorithm.

From the previous subsection, we know that the first order partial deriva-
tives of our objective function − ln l0 are quite complicated and, thus, finding
the Hessian matrix of second order partial derivatives is even more compli-
cated. Therefore we approximate the Hessian by an estimate of the informa-
tion matrix,

I(γ) := E

[
∂2(− ln l0)
∂γ∂γ′

]
, (12.3.15)

which is the expected value of the Hessian matrix. The estimate of I(γ)
will be denoted by Î(γ). A computable expression will be given in the next
subsection. Because the true parameter vector γ is unknown, Î(γi) is used as
an estimate of I(γ) in the i-th iteration step. Hence, for given mean vector µ
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and white noise covariance matrix Σu, we get a minimization algorithm with
i-th iteration step

γi+1 = γi − siÎ(γi)
−1

[
∂(− ln l0)

∂γ

∣∣∣∣
γi

]
. (12.3.16)

This algorithm is called the scoring algorithm.
As it stands, we still need some more information before we can execute

this algorithm. First, we need a starting-up vector γ1 for the first iteration.
This vector should be close to the minimizing vector to ensure that Î(γ1) is
positive definite and we make good progress towards the minimum even in
the first iteration. We will consider one possible choice in Section 12.3.4.

Second, we have to choose the step length si. There are various possible
alternatives (see, e.g., Judge et al. (1985, Section B.2)). Because we are just
interested in the main principles of the algorithm, we will ignore the problem
here and choose si = 1.

Third, the algorithm provides an ML estimate of γ, conditional on some
given Σu matrix and mean vector µ, because both the information matrix and
the gradient vector involve these quantities. They are usually also unknown.
As in the pure finite order VAR case, it can be shown that the sample mean

y =
1
T

T∑
t=1

yt

is an estimator for µ which has the same asymptotic properties as the ML
estimator. Therefore, ML estimation of γ and Σu is often done conditionally
on µ = y. In other words, the sample mean is subtracted from the data before
the VARMA coefficients are estimated.

There are different ways to handle the unknown Σu matrix. From (12.3.9),
we know that

Σ̃u(µ,γ) =
1
T

T∑
t=1

ut(µ,γ)ut(µ,γ)′.

Therefore, one possibility is to use Σi := Σ̃u(y,γi) in the i-th iteration. Equiv-
alently, the minimization algorithm can be applied to ln |Σ̃u(y,γ)|.

A number of computer program packages contain exact or approximate
ML algorithms which may be used in practice. The foregoing algorithm is
just meant to demonstrate some basic principles. Modifications in actual ap-
plications may result in improved convergence properties. Slow convergence
or no convergence at all may be the consequence of working with VARMA
orders or Kronecker indices which are larger than the true ones and, hence,
with an overparameterized model.
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12.3.3 The Information Matrix

In the scoring algorithm described previously, an estimate of the information
matrix is needed. To see how that can be obtained, we consider the second
order partial derivatives of − ln l0,

∂2(− ln l0)
∂γ∂γ′ = ∂

[
T∑

t=1

∂u′
t

∂γ
Σ−1

u ut

]/
∂γ′ (see (12.3.2))

=
T∑

t=1

∂u′
t

∂γ
Σ−1

u

∂ut

∂γ′ + (u′
tΣ

−1
u ⊗ I)

∂ vec[∂u′
t/∂γ]

∂γ′ .

Taking the expectation of this expression, the last term vanishes because
E(ut) = 0 and u′

tΣ
−1
u ⊗ I is independent of

∂ vec[∂u′
t/∂γ]

∂γ′

as this term does not contain current yt or ut variables (see Lemma 12.1).
Hence,

E

[
∂2(− ln l0)
∂γ∂γ ′

]
=

T∑
t=1

E

[
∂u′

t

∂γ
Σ−1

u

∂ut

∂γ′

]
.

Estimating the expected value in the usual way by the sample average gives
an estimator

1
T

T∑
t=1

∂u′
t

∂γ
Σ−1

u

∂ut

∂γ ′

for

E

[
∂u′

t

∂γ
Σ−1

u

∂ut

∂γ′

]
.

These considerations suggest the estimator

Î(γ) =
T∑

t=1

∂ut(y,γ)′

∂γ
Σ−1

u

∂ut(y,γ)
∂γ ′ (12.3.17)

for the information matrix I(γ). In the i-th iteration of the scoring algorithm,
we evaluate this estimator for γ = γi. The quantities ∂ut/∂γ ′ may be obtained
recursively as in Lemma 12.1 to make this estimator operational.

If γ is the true parameter value, the asymptotic information matrix equals
plim Î(γ)/T . Thus, if we have a consistent estimator γ̃ of γ, Î(γ̃)/T is a
consistent estimator of the asymptotic information matrix, that is,

Ia(γ) = plim Î(γ̃)/T. (12.3.18)
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In Section 12.4, we will see that the inverse of this matrix, if it exists, is the
asymptotic covariance matrix of the ML estimator for γ. If a nonidentified
structure is used, this problem is reflected in the asymptotic information ma-
trix being singular. Hence, it is important at this stage to have an identified
version of a VARMA model.

12.3.4 Preliminary Estimation

The coefficients of a VARMA(p, q) model in standard form,

yt = A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q,

could be estimated by multivariate LS, if the lagged ut were given. We as-
sume that the sample mean y has been subtracted previously. It is therefore
neglected here. In deriving preliminary estimators for the other parameters,
the idea is to fit a long pure autoregression first and then use estimated resid-
uals in place of the true residuals. Hence, we fit a VAR(n) model

yt =
n∑

i=1

Πi(n)yt−i + ut(n),

where n is larger than p and q. From that estimation, we compute estimated
residuals

ût(n) := yt −
n∑

i=1

Π̂i(n)yt−i, (12.3.19)

where Π̂i(n) are the multivariate LS estimators. Then we set up a multivariate
regression model

Y = [A : M ]Xn + U0, (12.3.20)

where Y := [y1, . . . , yT ], A := [A1, . . . , Ap], M := [M1, . . . ,Mq],

Xn := [Y0,n, . . . , YT−1,n] with Yt,n :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

ût(n)
...

ût−q+1(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(K(p + q) × 1)

and U0 is a (K × T ) matrix of residuals. Usually restrictions will be imposed
on the parameters A and M of the model, for instance, if the model is given
in final equations form. Additional restrictions may also be available. Suppose
the restrictions are such that there exists a matrix R and a vector γ satisfying
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vec[A : M ] = Rγ. (12.3.21)

Applying the vec operator to (12.3.20) and substituting Rγ for vec[A : M ]
gives

vec(Y ) = (X ′
n ⊗ IK)Rγ + vec(U0) (12.3.22)

and the LS estimator of γ is known to be

γ̂(n) = [R′(XnX
′
n ⊗ IK)R]−1R′(Xn ⊗ IK) vec(Y ) (12.3.23)

(see Chapter 5, Section 5.2). This estimator may be used as an initial vector
γ1 in the ML algorithm described in the previous subsections.

Using this estimator, a new set of residuals may be obtained as

vec(Û0) = vec(Y ) − (X ′
n ⊗ IK)Rγ̂(n)

which may be used to obtain a white noise covariance estimator

Σ̃u(n) = Û0Û0′/T. (12.3.24)

This estimator may be used in place of Σu in the initial round of the iterative
optimization algorithm described earlier.

Alternatively, instead of the LS estimator (12.3.23), we may use an EGLS
estimator,

̂̂γ(n) = [R′(XnX
′
n ⊗ Σ̃u)R]−1R′(Xn ⊗ Σ̃u) vec(Y ),

with Σ̃u(n) in place of Σ̃u or a white noise covariance matrix estimator based
on the residuals ût(n).

The echelon form of a VARMA(p, q) process may be of the more general
type

A0yt = A1yt−1 + · · ·+Apyt−p +A0ut +M1ut−1 + · · ·+Mqut−q, (12.3.25)

where A0 is a lower triangular matrix with unit diagonal. To handle this case,
we proceed in a similar manner as in the standard case and substitute the
residuals ût(n) for the lagged ut and for current residuals from other equations.
In other words, in the k-th equation we substitute estimation residuals for
uit, i < k. Because A0 is the coefficient matrix for both yt and ut, we define

Xc
n := [Y c

0,n, . . . , Y
c
T−1,n], where Y c

t,n :=
[
yt+1 − ût+1(n)

Yt,n

]
and we pick a restriction matrix Rc and a vector γc such that

Rcγc = vec[IK − A0, A,M ].

Hence,
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vec(Y ) = (Xc′
n ⊗ IK)Rcγc + vec(U0)

and the LS estimator of γc becomes

γ̂c(n) = [R′
c(X

c
nX

c′
n ⊗ IK)Rc]−1R′

c(X
c
n ⊗ IK)vec(Y ).

The starting-up estimator of Σu is then obtained from the residuals of this
regression. It is possible that the VARMA process corresponding to these coef-
ficients is unstable or noninvertible. Especially in the latter case, modifications
are desirable (see Hannan & Kavalieris (1984), Hannan & Deistler (1988)).

To see more clearly what is being done in this preliminary estimation
procedure, let us look at an example. Suppose the bivariate VARMA(1, 1)
echelon form model from (12.1.19) with Kronecker indices (p1, p2) = (1, 0) is
to be estimated:

y1,t = α11,1y1,t−1 + u1,t + m11,1u1,t−1 + m12,1u2,t−1,

y2,t = α21,0y1,t − α21,0u1,t + u2,t = α21,0(y1,t − u1,t) + u2,t.
(12.3.26)

We assume that the sample mean has been removed previously. The parame-
ters in the first equation are estimated by applying LS to⎡⎢⎣ y1,1

...
y1,T

⎤⎥⎦ =

⎡⎢⎣ y1,0 û1,0(n) û2,0(n)
...

...
...

y1,T−1 û1,T−1(n) û2,T−1(n)

⎤⎥⎦
⎡⎣ α11,1

m11,1

m12,1

⎤⎦ +

⎡⎢⎣ u1,1

...
u1,T

⎤⎥⎦,
or, using obvious notation, to

y(1) = X(1)γ1 + u(1).

Here the ûi,t(n) are the residuals from the estimated long VAR model of order
n. The LS estimator of γ1 is γ̂1 = (X ′

(1)X(1))−1X ′
(1)y(1).

Similarly, α21,0 is estimated by applying LS to⎡⎢⎣ y2,1

...
y2,T

⎤⎥⎦ =

⎡⎢⎣ y1,1 − û1,1(n)
...

y1,T − û1,T (n)

⎤⎥⎦α21,0 +

⎡⎢⎣ u2,1

...
u2,T

⎤⎥⎦.
In this case, it would be possible to use the residuals of the first regression
instead of the û1,t(n) which are the residuals from the long VAR. However,
we have chosen to use the latter in the preliminary estimation procedure.

In the foregoing, we have so far ignored the problem of choosing presample
values for the estimation. Two alternative choices are reasonable. Either all
presample values are replaced by zero or some yt values at the beginning of
the sample are set aside as presample values and the presample values for the
residuals are replaced by zero.

The initial estimators obtained in the foregoing procedure can be shown to
be consistent under general conditions if n goes to infinity with the sample size
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(see Hannan & Kavalieris (1984), Hannan & Deistler (1988), Poskitt (1992)).
We will discuss the situation, where VAR processes of increasing order are
fitted to a potentially infinite order process, in Chapter 15 and therefore we
do not give details here.

12.3.5 An Illustration

We illustrate the estimation procedure using the income (y1) and consump-
tion (y2) data from File E1. As in previous chapters, we use first differences of
logarithms of the data from 1960 to 1978. In this case, we subtract the sample
mean at an initial stage and denote the mean-adjusted income and consump-
tion variables by y1t and y2t, respectively. We assume a VARMA(2, 2) model
in echelon form with Kronecker indices p = (p1, p2) = (0, 2) [ARMAE(0, 2)],[

y1,t

y2,t

]
=

[
0 0
0 α22,1

][
y1,t−1

y2,t−1

]
+

[
0 0
0 α22,2

][
y1,t−2

y2,t−2

]
+

[
u1,t

u2,t

]
+
[

0 0
m21,1 m22,1

][
u1,t−1

u2,t−1

]
+

[
0 0

m21,2 m22,2

][
u1,t−2

u2,t−2

]
.

(12.3.27)

In the next chapter, it will become apparent why this model is chosen. It im-
plies that the first variable (income) is white noise (y1t = u1t). Given the sub-
set VAR models of Chapter 5 (Table 5.1), this specification does not appear to
be totally unreasonable. The second equation in (12.3.27) describes consump-
tion as a function of lagged consumption, lagged income (u1,t−i = y1,t−i), and
a moving average term involving lagged residuals u2,t.

Eventually we use a sample from 1960.2 (t = 1) to 1978.4 (t = 75), that is,
T = 75. In the preliminary estimation of the model (12.3.27), we estimate a
VAR(8) model first, using 8 presample values. Then, using two more presample
values, we run a regression of y2t on its own lags and lagged ûit(8). More
precisely, the regression model is⎡⎢⎣ y2,11

...
y2,T

⎤⎥⎦

=

⎡⎢⎣ y2,10 y2,9 û1,10(8) û2,10(8) û1,9(8) û2,9(8)
...

...
...

...
...

...
y2,T−1 y2,T−2 û1,T−1(8) û2,T−1(8) û1,T−2(8) û2,T−2(8)

⎤⎥⎦γ

+

⎡⎢⎣ u2,11

...
u2,T

⎤⎥⎦,
where γ := (α22,1, α22,2,m21,1,m22,1,m21,2,m22,2)′. In this particular case,
we could have substituted y1t for û1t(8) because the model implies y1t = u1t.
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We have not done so, however, but we have used the residuals from the long
autoregression. The resulting preliminary parameter estimates

γ̃1 = (α̃22,1(1), . . . , m̃22,2(1))′

are given in Table 12.1.

Table 12.1. Iterative estimates of the income/consumption system

γ̃i

i α̃22,1 α̃22,2 m̃21,1 m̃22,1 m̃21,2 m̃22,2 |Σ̃u(γ̃i)| × 108

1 0.020 0.395 0.296 −0.367 0.181 −0.224 0.872564
2 −0.178 0.492 0.331 −0.527 0.175 −0.015 0.942791
3 0.072 0.117 0.305 −0.589 0.191 0.065 0.779788
4 0.202 0.078 0.311 −0.731 0.146 0.147 0.776107
5 0.219 0.063 0.312 −0.744 0.142 0.158 0.775959
6 0.224 0.062 0.313 −0.748 0.140 0.159 0.775952
...

10 0.225 0.061 0.313 −0.750 0.140 0.160 0.775951

We use these estimates to start the scoring algorithm. For our particular
example, the i-th iteration proceeds as follows:

(1) Compute residuals

ũt(i) = yt − Ã1(i)yt−1 − Ã2(i)yt−2 − M̃1(i)ũt−1(i) − M̃2(i)ũt−2(i)

recursively, for t = 1, 2, . . . , T , with ũ−1(i) = ũ0(i) = y−1 = y0 = 0 and

Ã1(i) =
[

0 0
0 α̃22,1(i)

]
, Ã2(i) =

[
0 0
0 α̃22,2(i)

]
,

M̃1(i) =
[

0 0
m̃21,1(i) m̃22,1(i)

]
, M̃2(i) =

[
0 0

m̃21,2(i) m̃22,2(i)

]
.

(2) Compute the partial derivatives ∂̃ut/∂γ recursively as

∂̃ut

∂γ′ (i) = −
[

0 0 0 0 0 0
y2,t−1 y2,t−2 ũ2,t−1(i) ũ2,t−1(i) ũ1,t−2(i) ũ2,t−2(i)

]
−M̃1(i)

∂̃ut−1

∂γ′ (i) − M̃2(i)
∂̃ut−2

∂γ′ (i)

for t = 1, 2, . . . , T , with

∂̃u−1

∂γ′ (i) =
∂̃u0

∂γ′ (i) = 0.
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(3) Compute

Σ̃u(γ̃i) =
1
T

T∑
t=1

ũt(i)ũt(i)′,

Î(γ̃i) =
T∑

t=1

∂̃u′
t

∂γ
(i)Σ̃u(γ̃i)

−1 ∂̃ut

∂γ ′ (i),

and

∂(− ln l0)
∂γ′

∣∣∣∣
γ̃i

=
T∑

t=1

ũt(i)′Σ̃u(γ̃i)
−1 ∂̃ut

∂γ′ (i).

(4) Perform the iteration step

γ̃i+1 = γ̃i − Î(γ̃i)
−1

[
∂(− ln l0)

∂γ

∣∣∣∣
γ̃i

]
.

Some estimates obtained in these iterations are also given in Table 12.1 to-
gether with |Σ̃u(γ̃i)|. After a few iterations the latter quantity approximately
reaches its minimum and, thus, − ln l0 obtains its minimum. After the tenth
iteration there is not much change in the γ̃i and |Σ̃u(γ̃i)| in further steps. We
work with γ̃10 in the following.

The determinantal polynomial of the MA operator for i = 10 is

|I2 + M̃1(10)z + M̃2(10)z2| = 1 + m̃22,1(10)z + m̃22,2(10)z2

= 1 − .750z + .160z2

which has roots that are clearly outside the unit circle. Thus, the estimated
MA operator is invertible. Also, the determinant of the estimated VAR poly-
nomial,

|I2 − Ã1(10)z − Ã2(10)z2| = 1 − α̃22,1(10)z − α̃22,2(10)z2

= 1 − .225z − .061z2,

is easily seen to have its roots outside the unit circle. Hence, the estimated
VARMA process is stable and invertible.

Generally, computing the ML estimates is not always easy. Therefore, other
estimation methods were also proposed in the literature (e.g., Koreisha &
Pukkila (1987), van Overschee & DeMoor (1994), Kapetanios (2003)).

12.4 Asymptotic Properties of the ML Estimators

12.4.1 Theoretical Results

In this section, the asymptotic properties of the ML estimators are given.
We will not prove the main result but refer the reader to Hannan (1979),
Dunsmuir & Hannan (1976), Hannan & Deistler (1988), and Kohn (1979) for
further discussions and proofs.
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Proposition 12.1 (Asymptotic Properties of ML Estimators)
Let yt be a K-dimensional, stationary Gaussian process with stable and in-
vertible VARMA(p, q) representation

A0(yt−µ) = A1(yt−1−µ)+· · ·+Ap(yt−p−µ)+A0ut+M1ut−1+· · ·+Mqut−q,

(12.4.1)

where ut is Gaussian white noise with nonsingular covariance matrix Σu. Sup-
pose the VAR and MA operators are left-coprime and either in final equations
form or in echelon form with possibly linear restrictions on the coefficients so
that the coefficient matrices A0, A1, . . . , Ap,M1, . . . ,Mq depend on a set of
unrestricted parameters γ as in (12.2.21). Let µ̃, γ̃, and Σ̃u be the ML es-
timators of µ,γ, and Σu, respectively, and denote vech(Σu) and vech(Σ̃u)
by σ and σ̃, respectively. Then all three ML estimators are consistent and
asymptotically normally distributed,

√
T

⎡⎣ µ̃− µ
γ̃ − γ
σ̃ − σ

⎤⎦ d→N
⎛⎝0,

⎡⎣ Σµ̃ 0 0
0 Σγ̃ 0
0 0 Σσ̃

⎤⎦⎞⎠ , (12.4.2)

where

Σµ̃ = A(1)−1M(1)ΣuM(1)′A(1)′−1,

Σγ̃ = Ia(γ)−1 = plim

[
1
T

T∑
t=1

∂u′
t

∂γ
Σ−1

u

∂ut

∂γ′

]−1

with ∂ut/∂γ ′ as given in Lemma 12.1, and

Σσ̃ = 2D+
K(Σu ⊗Σu)D+′

K

with D+
K = (D′

KDK)−1D′
K and DK is the (K2× 1

2
K(K+1)) duplication ma-

trix. The covariance matrix in (12.4.2) is consistently estimated by replacing
the unknown quantities by their ML estimators.

Some remarks on this proposition may be worthwhile.

Remark 1 The results of the proposition do not change if the ML estimator
µ̃ is replaced by the sample mean y and γ̃ and σ̃ are ML estimators conditional
on y, that is, γ̃ and σ̃ are obtained by replacing µ by y in the ML algorithm.
One consequence of this result is that asymptotically the sample mean is a
fully efficient estimator of µ.

Remark 2 The proposition is formulated for final equations or echelon form
VARMA models. Its statement remains true for other uniquely identified
structures.

Remark 3 Because the covariance matrix of the asymptotic distribution in
(12.4.2) is block-diagonal, the estimators of µ,γ, and Σu are asymptotically
independent.
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Remark 4 Much of the proposition remains valid even if yt is not normally
distributed. In that case the estimators obtained by maximizing the Gaussian
likelihood function are quasi ML estimators. If ut is independent standard
white noise (see Chapter 3, Definition 3.1), γ̃ and y maintain their asymptotic
properties. The covariance matrix of σ̃ may be different from the one given
in Proposition 12.1.

Remark 5 The results of the proposition remain valid under general condi-
tions if instead of the ML estimator γ̃ an estimator is used which is obtained
from one iteration of the scoring algorithm outlined in Section 12.3.2, starting
from the preliminary estimator of Section 12.3.4. Thus, one possible approach
to estimating the parameters of a VARMA model is to compute the sample
mean y first and use that as an estimator of µ. Then the preliminary estima-
tor for γ may be computed as described in Section 12.3.4 and that estimator
is used as the initial vector in the optimization algorithm of Section 12.3.2.
Then just one step of the form (12.3.16) is performed with si = s1 = 1. The
resulting estimators γ̃2 and Σ̃u(y, γ̃2) may then be used instead of γ̃ and Σ̃u

in Proposition 12.1. Under general conditions, they have the same asymptotic
distributions as the actual ML estimators. Of course, this possibility is a com-
putationally attractive way to estimate the coefficients of a VARMA model.
In general, the small sample properties of the resulting estimators are not the
same as those of the ML estimators, however.

Remark 6 Because often the final equations form involves more parameters
than the echelon form, unrestricted estimation of the former may result in
inefficient estimators. Intuitively, if we start from the echelon form and de-
termine the corresponding final equations form, the coefficients of the latter
are seen to satisfy restrictions that could be imposed to obtain more efficient
estimators.

In the following sections, we will occasionally be interested in the asymp-
totic distribution of the coefficients of the standard representation of the pro-
cess,

(yt−µ) = A1(yt−1−µ)+ · · ·+Ap(yt−p−µ)+ut +M1ut−1 + · · ·+Mqut−q.

(12.4.3)

The coefficients are functions of γ and their asymptotic distributions follow
in the usual way. Let

α := vec[A1, . . . , Ap] and m := vec[M1, . . . ,Mq],

then[
α
m

]
=

[
α(γ)
m(γ)

]
.

The ML estimators are
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α̃
m̃

]
=

[
α(γ̃)
m(γ̃)

]
.

They are consistent and asymptotically normal,

√
T

([
α̃
m̃

]
−

[
α
m

])
d→N

⎛⎜⎜⎝0, Σ[ α̃
m̃ ] =

⎡⎢⎢⎣
∂α

∂γ′

∂m
∂γ′

⎤⎥⎥⎦Σγ̃

[
∂α′

∂γ
,
∂m′

∂γ

]⎞⎟⎟⎠ .

(12.4.4)

If A0 = IK ,α and m will often be linearly related to γ and we get the following
corollary of Proposition 12.1.

Corollary 12.1.1
Under the conditions of Proposition 12.1, if[

α
m

]
= Rγ + r,

√
T

([
α̃
m̃

]
−

[
α
m

])
d→N (0, RΣγ̃R

′)

and α̃ and m̃ are asymptotically independent of y, µ̃, and σ̃.

The remarks following the proposition also apply for the corollary. For
illustrative purposes, consider the bivariate ARMAE(0, 1) model,[

1 0
0 1 − α22,1L

]
yt =

[
1 0

m21,1L 1 + m22,1L

]
ut (12.4.5)

or

yt =
[

0 0
0 α22,1

]
yt−1 + ut +

[
0 0

m21,1 m22,1

]
ut−1.

In this case,

α =

⎡⎢⎢⎣
0
0
0

α22,1

⎤⎥⎥⎦, m =

⎡⎢⎢⎣
0

m21,1

0
m22,1

⎤⎥⎥⎦, γ =

⎡⎣ α22,1

m21,1

m22,1

⎤⎦,

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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If the VARMA model is not in standard form originally, we premultiply
by A−1

0 to get

yt − µ = A−1
0 A1(yt−1 − µ) + · · · + A−1

0 Ap(yt−p − µ)
+ ut + A−1

0 M1ut−1 + · · · + A−1
0 Mqut−q. (12.4.6)

In this case, it is more reasonable to assume that

β0 := vec[A0, A1, . . . , Ap,M1, . . . ,Mq] (12.4.7)

is linearly related to γ, say,

β0 = Rγ + r. (12.4.8)

Then it follows for

α := vec[A−1
0 A1, . . . , A

−1
0 Ap] = vec(A−1

0 [A1, . . . , Ap]) (12.4.9)

and

m := vec(A−1
0 [M1, . . . ,Mq]), (12.4.10)

that⎡⎢⎢⎢⎣
∂α

∂γ′

∂m
∂γ′

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∂α

∂β′
0

∂m
∂β′

0

⎤⎥⎥⎥⎦∂β0

∂γ′ =

⎡⎢⎢⎢⎣
∂α

∂β′
0

∂m
∂β′

0

⎤⎥⎥⎥⎦R.
Hence, we need to evaluate ∂α/∂β′

0 and ∂m/∂β′
0 to obtain the asymptotic

covariance matrix of the standard form coefficients.

∂α

∂β′
0

= (IKp ⊗ A−1
0 )

∂ vec[A1, . . . , Ap]
∂β′

0

+

⎛⎜⎝
⎡⎢⎣ A′

1
...
A′

p

⎤⎥⎦⊗ IK

⎞⎟⎠ ∂ vec(A−1
0 )

∂β′
0

= (IKp ⊗ A−1
0 )[0 : IK2p : 0]

−

⎛⎜⎝
⎡⎢⎣ A′

1
...
A′

p

⎤⎥⎦⊗ IK

⎞⎟⎠ ((A−1
0 )′ ⊗ A−1

0 )
∂ vec(A0)

∂β′
0

(see Rule 9 of Appendix A.13)

= (IKp ⊗ A−1
0 )[0 : IK2p : 0]

−

⎛⎜⎝
⎡⎢⎣ (A−1

0 A1)′
...

(A−1
0 Ap)′

⎤⎥⎦⊗ A−1
0

⎞⎟⎠ [IK2 : 0]. (12.4.11)

A similar expression is obtained for ∂m/∂β′
0. This result is summarized in

the next corollary.
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Corollary 12.1.2
Under the conditions of Proposition 12.1, if β0 is as defined in (12.4.7) and
satisfies the restrictions in (12.4.8) and α and m are the coefficients of the
standard form VARMA representation defined in (12.4.9) and (12.4.10), re-
spectively, with ML estimators α̃ and m̃, then

√
T

([
α̃
m̃

]
−

[
α
m

])
d→N

(
0, Σ[ α̃

m̃ ] =
[
Hα

Hm

]
RΣγ̃R

′[H ′
α : H ′

m]
)
,

where

Hα :=
∂α

∂β′
0

(K2p×K2(p + q + 1))

= (IKp ⊗ A−1
0 )[ 0︸︷︷︸

(K2p×K2)

: IK2p : 0︸︷︷︸
(K2p×K2q)

]

−

⎛⎜⎝
⎡⎢⎣ (A−1

0 A1)′
...

(A−1
0 Ap)′

⎤⎥⎦⊗A−1
0

⎞⎟⎠ [IK2 : 0]

and

Hm :=
∂m
∂β′

0

(K2q ×K2(p + q + 1))

= (IKq ⊗ A−1
0 )[0 : IK2q] −

⎛⎜⎝
⎡⎢⎣ (A−1

0 M1)′
...

(A−1
0 Mq)′

⎤⎥⎦⊗A−1
0

⎞⎟⎠ [IK2 : 0].

Again an example may be worthwhile. Consider the following bivariate
ARMAE(2, 1) process with some zero restrictions placed on the coefficients
(see also Problem 12.3):[

1 − α11,1L− α11,2L
2 0

−α21,0 − α21,1L 1 − α22,1L

]
yt =

[
1 0

−α21,0 1 + m22,1L

]
ut

(12.4.12)

or [
1 0

−α21,0 1

]
yt =

[
α11,1 0
α21,1 α22,1

]
yt−1 +

[
α11,2 0

0 0

]
yt−2

+
[

1 0
−α21,0 1

]
ut +

[
0 0
0 m22,1

]
ut−1.

Hence,
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β0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−α21,0

0
1

α11,1

α21,1

0
α22,1

α11,2

0
0
0
0
0
0

m22,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
−1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

γ =

⎡⎢⎢⎢⎢⎢⎢⎣
α21,0

α11,1

α21,1

α22,1

α11,2

m22,1

⎤⎥⎥⎥⎥⎥⎥⎦.

Furthermore,

A−1
0 =

[
1 0

−α21,0 1

]−1

=
[

1 0
α21,0 1

]
.

Thus,

α = vec[A−1
0 A1, A

−1
0 A2]

= vec
[

α11,1 0
α11,1α21,0 + α21,1 α22,1

∣∣∣∣ α11,2 0
α11,2α21,0 0

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α11,1

α11,1α21,0 + α21,1

0
α22,1

α11,2

α11,2α21,0

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and
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m = vec[A−1
0 M1] = vec

[
0 0
0 m22,1

]
=

⎡⎢⎢⎣
0
0
0

m22,1

⎤⎥⎥⎦.
Consequently,

∂α

∂γ′ = HαR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
α11,1 α21,0 1 0 0 0

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

α11,2 0 0 0 α21,0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.4.13)

and

∂m
∂γ′ = HmR =

⎡⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎦ (12.4.14)

(see also Problem 12.7).

12.4.2 A Real Data Example

In their general form, the results may look more complicated than they usually
are. Therefore, considering our income/consumption example from Section
12.3.5 again may be helpful. For the VARMA(2, 2) model with Kronecker
indices (0, 2) given in (12.3.27), the parameters are

γ = (α22,1, α22,2,m21,1,m22,1,m21,2,m22,2)′.

The ML estimates are given in Table 12.1. Using γ̃ = γ̃10 from that table, an
estimate of I(γ) is obtained from the iterations described in Section 12.3.5,
that is, we use Î(γ̃10) = Î(γ̃). The square roots of the diagonal elements of
Î(γ̃)−1 are estimates of the standard errors of the elements of γ̃. Giving the
estimated standard errors in parentheses, we get

γ̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
.225 (.252)
.061 (.166)
.313 (.090)

−.750 (.274)
.140 (.141)
.160 (.233)

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.4.15)
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As mentioned in Remark 5 of Section 12.4.1, an alternative, asymptotically
equivalent estimator is obtained by iterating just once. In the present example
that leads to estimates

γ̃2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−.178 (.165)
.492 (.133)
.331 (.099)

−.527 (.172)
.175 (.127)

−.015 (.152)

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.4.16)

These estimates are somewhat different from those in (12.4.15). However,
given the sampling variability reflected in the estimated standard errors, the
differences in most of the parameter estimates are not substantial.

Under a two-standard error criterion, only two of the coefficients in
(12.4.15) are significantly different from zero. As a consequence, one may
wish to restrict some of the coefficients to zero and thereby further reduce the
parameter space. We will not do so at this stage but consider the estimates
of α and m implied by γ̃ given in (12.4.15) (see, however, Problem 12.10):

α̃ = vec[Ã1, Ã2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
.225(.252)
0
0
0
.061(.166)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

m̃ = vec[M̃1, M̃2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
.313(.090)
0

−.750(.274)
0
.140(.141)
0
.160(.233)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12.4.17)

The standard errors are, of course, not affected by adding a few zero elements.
A more elaborate but still simple computation becomes necessary to obtain
the standard errors if A0 �= IK (see Corollary 12.1.2).

12.5 Forecasting Estimated VARMA Processes

With respect to forecasting with estimated processes, in principle, the same
arguments apply for VARMA models that have been put forward for pure
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VAR models. Suppose that the generation process of a multiple time series of
interest admits a VARMA(p, q) representation,

yt −µ = A1(yt−1 −µ) + · · ·+Ap(yt−p −µ) + ut +M1ut−1 + · · ·+Mqut−q,

(12.5.1)

and denote by ŷt(h) the h-step ahead forecast (with nonzero mean) at origin t
given in Section 11.5, based on estimated rather than known coefficients. For
instance, using the pure VAR representation of the process,

ŷt(h) = µ̂ +
h−1∑
i=1

Π̂i(ŷt(h− i) − µ̂) +
∞∑

i=h

Π̂i(yt+h−i − µ̂). (12.5.2)

For practical purposes, one would, of course, truncate the infinite sum. For
the moment we will, however, consider the infinite sum. For this predictor,
the forecast error is

yt+h − ŷt(h) = [yt+h − yt(h)] + [yt(h) − ŷt(h)],

where yt(h) is the optimal forecast based on known coefficients and the two
terms on the right-hand side are uncorrelated as the first one can be written
in terms of us with s > t and the second one contains ys with s ≤ t, if the
parameter estimators are based on ys with s ≤ t only. Thus, the forecast MSE
becomes

Σŷ(h) = MSE[yt(h)] + MSE[yt(h) − ŷt(h)]
= Σy(h) + E[yt(h) − ŷt(h)][yt(h) − ŷt(h)]′. (12.5.3)

Formally, this is the same expression that was obtained for finite order VAR
processes and, using the same arguments as in that case, we approximate the
MSE[yt(h) − ŷt(h)] by Ω(h)/T , where

Ω(h) = E

[
∂yt(h)
∂η′ Ση̃

∂yt(h)′

∂η

]
, (12.5.4)

η is the vector of estimated coefficients, and Ση̃ is its asymptotic covariance
matrix. If ML estimation is used and

η =

⎡⎣ µ
α
m

⎤⎦,
where α = vec[A1, . . . , Ap] and m = vec[M1, . . . ,Mq ], we have from Proposi-
tion 12.1 and Corollaries 12.1.1 and 12.1.2,

Ση̃ =

[
Σµ̃ 0
0 Σ[ α̃

m̃ ]

]
.
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Thus,

∂yt(h)
∂η′ Ση̃

∂yt(h)′

∂η
=

∂yt(h)
∂µ′ Σµ̃

∂yt(h)′

∂µ
+

∂yt(h)
∂[α′,m′]

Σ[ α̃
m̃ ]

∂yt(h)′

∂

[
α
m

] .
Hence, in order to get an expression for Ω(h) we need the partial derivatives
of yt(h) with respect to µ,α, and m. They are given in the next lemma.

Lemma 12.2
If yt is a process with stable and invertible VARMA(p, q) representation
(12.5.1) and pure VAR representation

yt = µ +
∞∑

i=1

Πi(yt−i − µ) + ut,

we have

∂yt(h)
∂µ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
IK −

∞∑
i=1

Πi

)
, for h = 1,(

IK −
∞∑

i=1

Πi

)
+

h−1∑
i=1

Πi
∂yt(h− i)

∂µ′ , h = 2, 3, . . . ,

∂yt(h)
∂[α′,m′]

=
h−1∑
i=1

[(yt(h− i) − µ)′ ⊗ IK ]
∂ vec(Πi)
∂[α′,m′]

+
h−1∑
i=1

Πi
∂yt(h− i)
∂[α′,m′]

+
∞∑

i=h

[(yt+h−i − µ)′ ⊗ IK ]
∂ vec(Πi)
∂[α′,m′]

, for h = 1, 2, . . . ,

with

∂ vec(Πi)
∂[α′,m′]

= −
i−1∑
j=0

[H ′(M′)i−1−j ⊗ JMj ]
[

0 IKq ⊗ J ′

IKp ⊗ J ′ 0

]
,

where H, M, and J are as defined in Chapter 11, Section 11.3.2, (11.3.13). In
other words, H, M, and J are defined so that −Πi = JMiH.

The proof of this lemma is left as an exercise (see Problem 12.8). The
formulas given in this lemma can be used for recursively computing the partial
derivatives of yt(h) with respect to the VARMA coefficients for h = 1, 2, . . . .

An estimator of Ω(h) is obtained by replacing all unknown quantities by
their respective estimators and truncating the infinite sum or, equivalently,
replacing yt − µ by zero for t ≤ 0. Denoting the resulting estimated partial
derivatives by

∂̂yt(h)
∂µ′ and

∂̂yt(h)
∂[α′,m′]

,
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an estimator for Ω(h) is

Ω̂(h) =
1
T

T∑
t=1

⎡⎢⎢⎣ ∂̂yt(h)
∂µ′ Σ̂µ̃

∂̂yt(h)′

∂µ
+

∂̂yt(h)
∂[α′,m′]

Σ̂[ α̃
m̃ ]

∂̂yt(h)′

∂

[
α
m

]
⎤⎥⎥⎦ , (12.5.5)

where Σ̂µ̃ and

Σ̂[ α̃
m̃ ]

are estimators of Σµ̃ and

Σ[ α̃
m̃ ],

respectively (see Corollaries 12.1.1 and 12.1.2 for the latter matrix). An esti-
mator of the forecast MSE matrix (12.5.3) is then

Σ̂ŷ(h) = Σ̂y(h) +
1
T
Ω̂(h), (12.5.6)

where the estimator Σ̂y(h) is again obtained by replacing unknown quantities
by their respective estimators.

With these results in hand, forecast intervals can be set up, under Gaussian
assumptions, just as in the finite order VAR case discussed in Chapters 2 and
3.

12.6 Estimated Impulse Responses

As mentioned in Section 11.7.2, the impulse responses of a VARMA(p, q)
process are the coefficients of pure MA representations. For instance, if the
process is in standard form, the forecast error impulse responses are

Φi = JAiH (12.6.1)

with J , A, and H as defined in Section 11.3.2 (see (11.3.10)). Other quantities
of interest may be the elements of Θi = ΦiP , where P is a lower triangular
Choleski decomposition of Σu, the white noise covariance matrix. Also fore-
cast error variance components and accumulated impulse responses may be
of interest. All these quantities are estimated in the usual way from the es-
timated coefficients of the process. For example, Φ̂i = JÂiH, where Â is
obtained from A by replacing the Ai and Mj by estimators Âi and M̂j . The
asymptotic distributions of the estimated quantities follow immediately from
Proposition 3.6, which is formulated for the finite order VAR case. The only
modifications that we have to make to accommodate the VARMA(p, q) case
are to replace α by
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β := vec[A1, . . . , Ap,M1, . . . ,Mq] =
[

α
m

]
,

replace Σα̃ by Σ
β̃

and specify

Gi =
∂ vec(Φi)

∂β′ = (H ′ ⊗ J)
∂ vec(Ai)

∂β′

= (H ′ ⊗ J)

[
i−1∑
m=0

(A′)i−1−m ⊗ Am

]
∂ vec(A)

∂β′

=
i−1∑
m=0

H ′(A′)i−1−m ⊗ JAmJ ′. (12.6.2)

With these modifications of Proposition 3.6, the asymptotic distributions of all
the quantities of interest are available. Of course, all the caveats of Proposition
3.6 apply here too. In principle, structural impulse responses, as discussed in
Chapter 9, may be of interest as well. They are typically not based on VARMA
models, however.

12.7 Exercises

Problem 12.1
Are the operators[

1 − 0.5L 0.3L
0 1

]
and

[
1 − 0.2L 1.3L− 0.44L2

0.5L 1 + 0.2L

]
left-coprime? (Hint: Show that the first operator is a common factor.)

Problem 12.2
Write the bivariate process[

1 − β1L 0
β2L

2 1 − β3L

]
yt =

[
1 − β1L 0
β4L 1

]
ut

in final equations form and in echelon form.

Problem 12.3
Show that (12.4.12) is an echelon form representation.

Problem 12.4
Derive the likelihood function for a general Gaussian VARMA(p, q) model
given fixed but not necessarily zero initial vectors y−p+1, . . . , y0. Do not as-
sume that u−q+1 = · · · = u0 = 0!

Problem 12.5
Identify the rules from Appendix A that are used in deriving the partial
derivatives in (12.3.8).
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Problem 12.6
Suppose that ln |Σ̃u(µ,γ)| given in (12.3.11) is to be minimized with respect
to γ. Show that the resulting normal equations are

∂ ln |Σ̃u(µ,γ)|
∂γ′ =

2
T

T∑
t=1

u′
tΣ

−1
u

∂ut

∂γ′ .

Thus, the normal equations are equivalent to those obtained from the log-
likelihood function.

Problem 12.7
Consider the bivariate VARMA(2, 1) process given in (12.4.12) and set up
the matrices Hα and Hm according to their general form given in Corollary
12.1.2. Show that HαR and HmR are identical to the matrices specified in
(12.4.13) and (12.4.14), respectively.

Problem 12.8
Prove Lemma 12.2. (Hint: Use Rule (8) of Appendix A.13.)

Problem 12.9
Derive the asymptotic covariance matrices of the impulse responses and fore-
cast error variance components obtained from an estimated VARMA process.
(Hint: Use the suggestion given in Section 12.6.)

Problem 12.10
Consider the income/consumption example of Section 12.3.5 and determine
preliminary and full ML estimates for the parameters of the model[

y1,t

y2,t

]
=

[
0 0
0 α22,2

][
y1,t−2

y2,t−2

]
+
[
u1,t

u2,t

]
+

[
0 0

m21,1 m22,1

][
u1,t−1

u2,t−1

]
+
[

0 0
m21,2 0

][
u1,t−2

u2,t−2

]
.
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Specification and Checking the Adequacy of

VARMA Models

13.1 Introduction

A great number of strategies has been suggested for specifying VARMA mod-
els. There is not a single one that has become a standard like the Box & Jenkins
(1976) approach in the univariate case. None of the multivariate procedures is
in widespread use for modelling moderate or high-dimensional economic time
series. Some are mainly based on a subjective assessment of certain character-
istics of a process such as the autocorrelations and partial autocorrelations.
A decision on specific orders and constraints on the coefficient matrices is
then based on these quantities. Other methods rely on a mixture of statis-
tical testing, use of model selection criteria and personal judgement of the
analyst. Again other procedures are based predominantly on statistical model
selection criteria and, in principle, they could be performed automatically by
a computer. Automatic procedures have the advantage that their statistical
properties can possibly be derived rigorously. In actual applications, some kind
of mixture of different approaches is often used. In other words, the expertise
and prior knowledge of an analyst will usually not be abolished in favor of
purely statistical procedures. Models suggested by different types of criteria
and procedures will be judged and evaluated by an expert before one or more
candidates are put to a specific use such as forecasting. The large amount
of information in a number of moderately long time series makes it usually
necessary to condense the information considerably before essential features
of a system become visible.

In the following, we will outline procedures for specifying the final equa-
tions form and the echelon form of a VARMA process. We do not claim that
these procedures are superior to other approaches. They are just meant to
illustrate what is involved in the specification of VARMA models. The speci-
fication strategies for both forms could be turned into automatic algorithms.
On the other hand, they also leave room for human intervention if desired.
In Section 13.4, some references for other specification strategies are given
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and model checking is discussed briefly in Section 13.5. A critique of VARMA
modelling is given in Section 13.6.

13.2 Specification of the Final Equations Form

13.2.1 A Specification Procedure

Historically, procedures for specifying final equations VARMA representations
were among the earlier strategies for modelling systems of economic time series
(see, for example, Zellner & Palm (1974), Wallis (1977)). The objective is to
find the orders p and q of the representation

α(L)yt = M(L)ut, (13.2.1)

where

α(L) := 1 − α1L− · · · − αpL
p

is a (1 × 1) scalar operator,

M(L) := IK + M1L + · · · + MqL
q

is a (K × K) matrix operator and it is assumed that the process mean has
been removed in a previous step of the analysis.

If a K-dimensional system yt = (y1t, . . . , yKt)′ has a VARMA represen-
tation of the form (13.2.1), then it follows that each component series has a
univariate ARMA representation

α(L)ykt = mk(L)vkt, k = 1, . . . ,K,

where mk(L) is an operator of degree at most q because the k-th row of
M(L)ut is

mk1(L)u1t + · · · + mkK(L)uKt.

In other words, it is a sum of MA(q) processes which is known to have an
MA representation of degree at most q (see Proposition 11.1). Thus, each
component series of yt has the same AR operator and an MA operator of
degree at most q. In general, at least one of the component series will have
MA degree q because a reduction of the MA order of all component series
requires a very special set of parameters which is not regarded as likely in
practice. This fact is used in specifying the final form VARMA representation
by first determining univariate component models and then putting them
together in a joint model. Specifically, the following specification strategy is
used.

STAGE I: Specify univariate models
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αk(L)ykt = mk(L)vkt

for the components of yt. Here

αk(L) := 1 − αk1L− · · · − αkpk
Lpk

is of order pk,

mk(L) := 1 + mk1L + · · · + mkqk
Lqk

is of order qk, and vkt is a univariate white noise process.

The Box & Jenkins (1976) strategy for specifying univariate ARMA mod-
els may be used at this stage. Alternatively, some automatic procedure or
criterion such as the one proposed by Hannan & Rissanen (1982) or Poskitt
(1987) may be applied.

STAGE II: Determine a common AR operator α(L) for all component pro-
cesses, specify the corresponding MA orders and choose the degree q of the
joint MA operator as the maximum of the individual MA degrees obtained in
this way.

At this stage, a common AR operator may, for example, be obtained as
the product of the individual operators, that is,

α(L) = α1(L) · · ·αK(L).

In this case, the k-th component process is multiplied by

K∏
i=1,i �=k

αi(L)

and α(L) has degree p =
∑K

i=1 pi, while the MA operator

mk(L) = mk(L)
K∏

i=1,i �=k

αi(L)

has degree

qk +
K∑

i=1,i�=k

pi.

The joint MA operator of the VARMA representation (13.2.1) is then assumed
to have degree

max
k

⎛⎝qk +
K∑

i=1,i �=k

pi

⎞⎠ . (13.2.2)
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Of course, the αk(L), k = 1, . . . ,K, may have common factors. In that case, a
joint AR operator α(L) with degree much lower than

∑K
i=1 pi may be possible.

Correspondingly, the joint MA operator may have degree lower than (13.2.2).
Suppose, for instance, that K = 3 and

α1(L) = 1 − α11L, m1(L) = 1 + m11L,

α2(L) = 1 − α21L− α22L
2, m2(L) = 1 + m21L,

α3(L) = 1 − α31L, m3(L) = 1.

Now a joint AR operator is

α(L) = α1(L)α2(L)α3(L),

which has degree 4. However, if α2(L) can be factored as

α2(L) = (1 − α11L)(1 − α31L) = α1(L)α3(L),

then a common AR operator α(L) = α2(L) may be chosen and we get uni-
variate models

α(L)y1t = α3(L)m1(L)v1t [ARMA(2, 2)],
α(L)y2t = m2(L)v2t [ARMA(2, 1)], (13.2.3)
α(L)y3t = α1(L)m3(L)v3t [ARMA(2, 1)].

The maximum of the individual MA degrees is chosen as the joint MA degree,
that is, q = 2 and, of course,

p = degree(α(L)) = 2.

A problem that should be noticed from this discussion and example is that the
degrees p and q determined in this way may be quite large. It is conceivable
that p =

∑K
i=1 pi is the smallest possible AR order for the final equations form

representation and the corresponding MA degree may be quite substantial too.
This, clearly, can be a disadvantage as unduely many parameters can cause
trouble in a final estimation algorithm and may lead to imprecise forecasts
and impulse responses.

Often it may be possible to impose restrictions on the AR and MA opera-
tors in (13.2.1). This modification may either be done in a third stage of the
procedure or it may be incorporated in Stages I and/or II, depending on the
type of information available. Restrictions may be obtained with the help of
statistical tools such as testing the significance of single coefficients or groups
of parameters. Alternatively, restrictions may be implied by subject matter
theory. Zellner & Palm (1974) give a detailed example where both types of
restrictions are used.

Perhaps because of the potentially great number of parameters, final form
modelling has not become very popular. It can only be recommended if it
results in a reasonably parsimonious parameterization.
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13.2.2 An Example

For illustrative purposes, we consider a bivariate system consisting of first
differences of logarithms of income (y1) and consumption (y2). We use again
the data from File E1 up to the fourth quarter of 1978. If the 3-dimensional
system involving investment in addition really were generated by a VAR(2)
process, as assumed in Chapters 3 and 4, it is quite possible that the sub-
process consisting of income and consumption only has a mixed VARMA
generation process with nontrivial MA part (see Section 11.6.1). Moreover,
the marginal univariate processes for y1 and y2 may be of a mixed ARMA
type. However, we found that the subset AR(3) models (with standard errors
in parentheses)

(1 − .245
(.113)

L3)y1t = .015
(.003)

+ v1t (13.2.4)

and

(1 − .309
(.111)

L2 − .187
(.111)

L3)y2t = .010
(.004)

+ v2t (13.2.5)

fit the data quite well. For illustrative purposes, we will therefore proceed
from these models. The reader may try to find better models and repeat the
analysis with them.

Generally, a (1 × 1) scalar operator

γ(L) = 1 − γ1L− · · · − γpL
p

of degree p can be factored in p components,

γ(L) = (1 − λ1L) · · · (1 − λpL),

where λ1, . . . , λp are the reciprocals of the roots of γ(z). Thus, the two AR
operators from (13.2.4) and (13.2.5) can be factored as

α1(L) = 1 − .245L3

= (1 − .626L)(1 + (.313 + .542i)L)(1 + (.313 − .542i)L) (13.2.6)

and

α2(L) = 1 − .309L2 − .187L3

= (1 − .747L)(1 + (.374 + .332i)L)(1 + (.374 − .332i)L), (13.2.7)

where i denotes the imaginary part of the complex numbers. None of the
factors in (13.2.6) is very close to any of the factors in (13.2.7). Thus, models
with common AR operator may be of the form

α1(L)α2(L)y1t = α2(L)v1t

and
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α1(L)α2(L)y2t = α1(L)v2t.

With the arguments of the previous subsection, the resulting bivariate final
equations model is a VARMA(6, 3) process,

α1(L)α2(L)
[
y1t

y2t

]
= (I3 + M1L + M2L

2 + M3L
3)
[
u1t

u2t

]
. (13.2.8)

Obviously, this model involves very many parameters and is therefore unattrac-
tive. In fact, such a heavily parameterized model may cause numerical prob-
lems when full maximum likelihood estimation is attempted. It is possible, if
not likely, that some parameters turn out to be insignificant and could be set
to zero. However, the significance of parameters is commonly judged on the
basis of their standard errors or t-ratios. These quantities become available in
the ML estimation round which, as we have argued, may be problematic in
the present case.

Given the estimation uncertainty, one may argue that the real factors in
the operators α1(L) and α2(L) may be identical. Proceeding under that as-
sumption results in a VARMA(5, 2) final equations form. Such a model is
more parsimonious and has therefore more appeal than (13.2.8). Still it in-
volves a considerable number of parameters. This example illustrates why
final equations modelling, although relatively simple, does not enjoy much
popularity. For higher-dimensional models, the problem of heavy parameteri-
zation becomes even more severe because the number of parameters is likely
to increase rapidly with the dimension of the system. We will now present
procedures for specifying echelon forms.

13.3 Specification of Echelon Forms

In specifying an echelon VARMA representation, the objective is to find the
Kronecker indices and possibly impose some further restrictions on the param-
eters. For a K-dimensional process, there are K Kronecker indices. Different
strategies have been proposed for their specification. We will discuss some of
them in the following. Once the Kronecker indices are determined, further
restrictions may be imposed, for instance, on the basis of significance tests for
individual coefficients or groups of parameters.

In the first subsection below, we will discuss a procedure for specifying the
Kronecker indices which is usually not feasible in practice. It is nevertheless
useful to study that procedure because the feasible strategies considered in
Subsections 13.3.2–13.3.4 may be regarded as approximations or short-cuts of
that procedure with similar asymptotic properties. In Subsection 13.3.2, we
present a procedure which is easy to carry out for systems with small Kro-
necker indices and low dimensions. It is quite costly for higher-dimensional
systems, though. For such systems a specification strategy inspired by Han-
nan & Kavalieris (1984) or a procedure due to Poskitt (1992) may be more
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appealing. These approaches are considered in Subsections 13.3.3 and 13.3.4,
respectively. The material discussed in this section is covered in more depth
and more rigorously in Hannan & Deistler (1988, Chapters 5, 6, 7) and Poskitt
(1992).

13.3.1 A Procedure for Small Systems

If it is known that the generation process of a given K-dimensional multiple
time series admits an echelon VARMA representation with Kronecker indices
pk ≤ pmax, k = 1, . . . ,K, where pmax is a prespecified number, then, in theory,
it is possible to evaluate the maximum log-likelihood for all sets of Kronecker
indices p = (p1, . . . , pK) with pk ≤ pmax and choose the set p̂ that optimizes
a specific criterion. This approach is completely analogous to the specification
of the VAR order in the finite order VAR case considered in Section 4.3. In
that section, we have discussed the possibility to consistently estimate the
VAR order with such an approach. It turns out that a similar result can be
obtained for the present more general VARMA case.

Before we give further details, it may be worth emphasizing, however,
that in the VARMA case, such a specification strategy is generally not fea-
sible in practice because the maximization of the log-likelihood is usually
quite costly and, for systems with moderate or high dimensions, an enor-
mous number of likelihood maximizations would be required. For instance,
for a five-dimensional system, evaluating the maximum of the log-likelihood
for all vectors of Kronecker indices p = (p1, . . . , p5) with pk ≤ 8 requires
95 = 59, 049 likelihood maximizations. Despite this practical problem, we dis-
cuss the theoretical properties of this procedure to provide a basis for the
following subsections.

Let us denote by Σ̃(p) the ML estimator of the white noise covariance
matrix Σu obtained for a set of Kronecker indices p. Furthermore, let

Cr(p) := ln |Σ̃u(p)| + cTd(p)/T (13.3.1)

be a criterion to be minimized over all sets of Kronecker indices p =
(p1, . . . , pK), pk ≤ pmax. Here d(p) is the number of freely varying parameters
in the ARMAE(p) form. For example, for a bivariate system with Kronecker
indices p = (p1, p2) = (1, 0), the ARMAE(1, 0) form is[

1 0
−α21,0 1

][
y1,t

y2,t

]
=

[
α11,1 0

0 0

][
y1,t−1

y2,t−1

]
+

[
1 0

−α21,0 1

][
u1,t

u2,t

]
+
[
m11,1 m12,1

0 0

][
u1,t−1

u2,t−1

]
.

Thus, d(1, 0) = 4. In (13.3.1), cT is a sequence indexed by the sample size T .
In general, if models are included in the search procedure for which all

Kronecker indices exceed the true ones, the estimation of unidentified models
is required for which cancellation of the VAR and MA operators is possible.
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This over-specification is not necessarily a problem for evaluating the crite-
rion in (13.3.1) because we only need the maximum log-likelihood or rather
ln |Σ̃u(p)| in that criterion. That quantity can be determined even if the cor-
responding VARMA coefficients are meaningless. The coefficients cannot and
should not be interpreted, however.

Note that the criterion (13.3.1) is very similar to that considered in Propo-
sition 4.2 of Chapter 4. In that proposition, the consistency or inconsistency of
a criterion is seen to depend on the choice of the sequence cT . Hannan (1981)
and Hannan & Deistler (1988, Chapter 5, Section 5) showed that a criterion
such as the one in (13.3.1) provides a consistent estimator of the true set of
Kronecker indices if cT is a nondecreasing function of T satisfying

cT → ∞ and cT/T → 0 as T → ∞, (13.3.2)

and the true data generation process satisfies some weak conditions. If, in
addition,

cT /2 ln lnT > 1 (13.3.3)

eventually as T → ∞, the procedure provides a strongly consistent estimator
of the true Kronecker indices. The conditions for the VARMA process are,
for instance, satisfied if the white noise process ut is identically distributed
standard white noise (see Definition 3.1) and the true data generation process
admits a stable and invertible ARMAE representation with Kronecker indices
not greater than pmax. This result extends Proposition 4.2 to the VARMA
case.

Implications of this result are that the Schwarz criterion with cT = lnT ,

SC(p) := ln |Σ̃u(p)| + d(p) lnT/T, (13.3.4)

is strongly consistent and that the Hannan-Quinn criterion, using the border-
line penalty term cT = 2 ln lnT ,

HQ(p) := ln |Σ̃u(p)| + 2d(p) ln lnT/T, (13.3.5)

is consistent. Hannan & Deistler (1988) also showed that

AIC(p) := ln |Σ̃u(p)| + 2d(p)/T (13.3.6)

with cT = 2 is not a consistent criterion. Again these results are similar to
those for the finite order VAR case.

As in that case, it is worth emphasizing that these results do not necessarily
imply the inferiority of AIC or HQ. In small samples, these criteria may be
preferable. They may, in fact, provide superior models for a specific analysis of
interest. Also, in practice, the actual data generation mechanism will usually
not really admit a VARMA representation. Recall that the best we can hope
for is that our model is a good approximation to the true data generation
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process. In that case, the relevance of the consistency property is of course
doubtful.

Again, the specification strategy presented in the foregoing is not likely to
have much practical appeal as it is computationally too burdensome. In the
next subsections, more practical modifications are discussed.

13.3.2 A Full Search Procedure Based on Linear Least Squares
Computations

The Procedure

A major obstacle for using the procedure described in the previous subsec-
tion is the requirement to maximize the log-likelihood various times. This
maximization is costly because for mixed VARMA models the log-likelihood
function is nonlinear in the parameters and iterative optimization algorithms
have to be employed. Because we just need an estimator of Σu for the evalu-
ation of model selection criteria such as (13.3.1), an obvious modification of
the procedure would use an estimator that avoids the nonlinear optimization
problem. Such an estimator may be obtained from the preliminary estimation
procedure described in Chapter 12, Section 12.3.4. Therefore, a specification
of the Kronecker indices may proceed in the following stages.

STAGE I: Fit a long VAR process of order n, say, to the data and obtain
the estimated residual vectors ût(n), t = 1, . . . , T .

The choice of n could be based on an order selection criterion such as AIC.
In any case, n has to be greater than the largest Kronecker index pmax to be
considered in the next stage of the procedure.

STAGE II: Using the residuals ût(n) from Stage I, compute the preliminary
estimator of Section 12.3.4 for all sets of Kronecker indices p with pk ≤ pmax,
where the latter number is a prespecified upper bound for the Kronecker in-
dices. Determine all corresponding estimators Σ̃u(p) based on the residuals
of the preliminary estimations (see (12.3.24)). (Here we suppress the order n
from the first stage for notational convenience because the same n is used for
all Σ̃u(p) at this stage.) Choose the estimator p̂ which minimizes a prespeci-
fied criterion of the form (13.3.1).

The choice of the criterion Cr(p) is left to the researcher. SC, HQ, and
AIC from (13.3.4)–(13.3.6) are possible candidates. Stage II could be iterated
by using the residuals from a previous run through Stage II instead of the
residuals from Stage I. Once an estimate p̂ of the Kronecker indices is deter-
mined, the ML estimates conditional on p̂ may be computed in a final stage.

STAGE III: Estimate the echelon form VARMA model with Kronecker in-
dices p̂ by maximizing the Gaussian log-likelihood function or by just one step
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of the scoring algorithm (see Section 12.3.2).

Hannan & Deistler (1988, Chapter 6) discussed conditions under which
this procedure provides a consistent estimator of the Kronecker indices and
VARMA parameter estimators that have the same asymptotic properties as
the estimators obtained for given, known, true Kronecker indices (see Proposi-
tion 12.1). In addition to our usual assumptions for the VARMA process such
as stability and invertibility, the required assumptions relate to the criteria
for choosing the VAR order in Stage I and the Kronecker indices in Stage
II. These conditions are asymptotic conditions that leave some room for the
actual choice in small samples. Any criterion from (13.3.4)–(13.3.6) may be a
reasonable choice in practice.

The procedure still involves extensive computations, unless the dimension
K of the underlying multiple time series and pmax are small. For example,
for a five-dimensional system with pmax = 8 we still have to perform 95 =
59, 049 estimations in order to compare all feasible models. Although these
estimations involve linear least squares computations only, the computational
costs may be substantial. Therefore, we outline two less costly procedures
in the following subsections. For small systems, the present procedure is a
reasonable choice. We give an example next.

An Example

We consider again the income/consumption example from Section 13.2.2. In
the first stage of our procedure, we fit a VAR(8) model (n = 8) and we use
the residuals, ût(8), at the next stage. The choice of n = 8 is to some extent
arbitrary. We have chosen a fairly high order to gain flexibility for the Kro-
necker indices considered at Stage II. Recall that n must exceed all Kronecker
indices to be considered subsequently. Using the procedure described as Stage
II, we have estimated models with Kronecker indices pk ≤ pmax = 4 and we
have determined the corresponding values of the criteria AIC and HQ. They
are given in Tables 13.1 and 13.2, respectively. Both criteria reach their mini-
mum for p = (p1, p2) = (0, 2). The ARMAE(0, 2) form is precisely the model
estimated in Chapter 12, Section 12.3.5. Replacing the parameters by their
ML estimates with estimated standard errors in parentheses, we have[

y1,t

y2,t

]
=

[
0 0
0 .225

(.252)

][
y1,t−1

y2,t−1

]
+

[
0 0
0 .061

(.166)

][
y1,t−2

y2,t−2

]

+
[
û1,t

û2,t

]
+

[
0 0

.313
(.090)

−.750
(.274)

][
û1,t−1

û2,t−1

]

+

[
0 0

.140
(.141)

.160
(.233)

][
û1,t−2

û2,t−2

]
.
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Obviously, some of the parameters are quite small compared to their esti-
mated standard errors. In such a situation, one may want to impose further
zero constraints on the parameters. Because α̂22,1, α̂22,2, and m̂22,2 have the
smallest t-ratios in absolute terms, we restrict these estimates to zero and
reestimate the model. The resulting system obtained by ML estimation is[

y1,t

y2,t

]
=

[
û1,t

û2,t

]
+

[
0 0

.308
(.088)

−.475
(.104)

][
û1,t−1

û2,t−1

]

+

[
0 0

.302
(.076)

0

][
û1,t−2

û2,t−2

]
.

Now all parameters are significant under a two-standard error criterion.

Table 13.1. AIC values of ARMAE(p1, p2) models for the
income/consumption data

p1

p2 0 1 2 3 4

0 −16.83 −18.41 −18.30 −18.25 −18.15
1 −18.50 −18.42 −18.30 −18.23 −18.13
2 −18.64∗ −18.55 −18.42 −18.29 −18.19
3 −18.57 −18.50 −18.37 −18.27 −18.19
4 −18.47 −18.38 −18.27 −18.20 −18.05
∗Minimum

Table 13.2. HQ values of ARMAE(p1, p2) models for the
income/consumption data

p1

p2 0 1 2 3 4

0 −16.83 −18.35 −18.21 −18.12 −17.98
1 −18.46 −18.31 −18.14 −18.03 −17.89
2 −18.56∗ −18.41 −18.21 −18.03 −17.88
3 −18.45 −18.32 −18.12 −17.95 −17.82
4 −18.31 −18.16 −17.98 −17.84 −17.63
∗Minimum

13.3.3 Hannan-Kavalieris Procedure

A full search procedure for the optimal Kronecker indices, as in Stage II of the
previous subsection, involves a substantial amount of computation work if the
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dimension K of the time series considered is large or if the upper bound pmax

for the Kronecker indices is high. For instance, if monthly data are considered
and lags of at least one year are deemed necessary, pmax ≥ 12 is required.
Even if the system involves just three variables (K = 3) the number of mod-
els to be compared is vast, namely 133 = 2197. Therefore, shortcuts for Stage
II of the previous subsection were proposed. The first one we present here is
inspired by discussions of Hannan & Kavalieris (1984). Therefore, we call it
the Hannan-Kavalieris procedure although these authors proposed a more so-
phisticated approach. In particular, they discussed a number of computational
simplifications (see also Hannan & Deistler (1988, Chapter 6)). The following
modification of Stage II may be worth trying.

STAGE II (HK): Based on the covariance estimators obtained from the pre-
liminary estimation procedure of Section 12.3.4, find the Kronecker indices,
say p(1) = p(1)(1, . . . , 1), that minimize a prespecified criterion of the type
Cr(p) in (13.3.1) over p = p(1, . . . , 1), p = 0, . . . , pmax, that is, all Kronecker
indices are identical in this first step. Then the last index pK is varied between
0 and p(1) while all other indices are fixed at p(1). We denote the optimal value
of pK by p̂K , that is, p̂K minimizes the prespecified criterion. Then we proceed
in the same way with pK−1 and so on. More generally, p̂k is chosen such that

Cr(p(1), . . . , p(1), p̂k, . . . , p̂K)
= min{Cr(p(1), . . . , p(1), p, p̂k+1, . . . , p̂K)|p = 0, . . . , p(1)}.

This modification reduces the computational burden considerably. Just to
give an example, for K = 5 and pmax = 8, at most 9 + 5 · 9 = 54 models have
to be estimated. If p(1) is small, then the number may be substantially lower.
For comparison purposes, we repeat that the number of estimations in a full
search procedure would be 95 = 59, 049.

To illustrate the procedure, consider the following panel of criterion values
for Kronecker indices (p1, p2):

p1

p2 0 1 2 3
0 3.48 3.28 3.26 3.27
1 3.25 3.23 3.14 3.20
2 3.23 3.21 3.15 3.19
3 3.24 3.20 3.21 3.18

The minimum value on the main diagonal is obtained for p(1) = 2 with
Cr(p(1), p(1)) = 3.15. Going upward from (p1, p2) = (2, 2), the minimum is
seen to be Cr(2, 1) = 3.14. Turning left from (p1, p2) = (2, 1), a further re-
duction of the criterion value is not obtained. Therefore, the estimate for the
Kronecker indices is p̂ = (2, 1).
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In this case, we have actually found the overall minimum of all criterion
values in the panel, that is,

Cr(2, 1) = min{Cr(p1, p2)|pi = 0, 1, 2, 3}.
In general, the Hannan-Kavalieris procedure will not lead to the overall mini-
mum. For instance, for our bivariate income/consumption example from Sec-
tion 13.3.2, we can find the HK estimates p̂ from Tables 13.1 and 13.2. For
example, on the main diagonal of the panel in Table 13.2, the HQ criterion
assumes its minimum for (p1, p2) = (1, 1) and p̂(HQ) = (1, 0). Clearly, this
result differs from the estimate p̂ = (0, 2) that was obtained in the full search
procedure.

Under suitable conditions for the model selection criteria, the HK proce-
dure is consistent. Hannan & Deistler (1988) also discussed the consequences
of the true data generation process being not in the class of considered pro-
cesses.

13.3.4 Poskitt’s Procedure

Another short-cut version of Stage II of the model specification procedure
was suggested by Poskitt (1992). It capitalizes on the important property of
echelon forms that the restrictions for the k-th equation implied by a set of
Kronecker indices p are determined by the indices pi ≤ pk. They do not de-
pend on the specific values of the pj which are greater than pk. The proposed
modification of Stage II is based on separate LS estimations of each of the
K equations of the system. The estimation is similar to the preliminary es-
timation method outlined in Section 12.3.4, that is, it uses the residuals of a
long autoregression from Stage I instead of the true ut’s. A model selection
criterion of the form

Crk(p) := ln σ̃2
k(p) + cT dk(p)/T (13.3.7)

is then evaluated for each of the K equations separately. Here σ̃2
k(p) is the

residual variance estimate such that T σ̃2
k(p) is the residual sum of squares of

the k-th equation in a system with Kronecker indices p, dk(p) is the number
of freely varying parameters in the k-th equation, and cT is a number that de-
pends on the sample size T . Of course, (13.3.7) is the single equation analogue
of the systems criterion (13.3.1). Stage II of Poskitt’s procedure proceeds then
as follows:

STAGE II (P): Determine the required values Crk(p) and choose the esti-
mates p̂k of the Kronecker indices according to the following rule:

If Crk(0, . . . , 0) ≥ Crk(1, . . . , 1) for all k = 1, . . . ,K, compute Crk(2, . . .,
2), k = 1, . . . ,K, and compare to Crk(1, . . . , 1). If the Crk(2, . . . , 2) are all not
greater than the corresponding Crk(1, . . . , 1), proceed to Crk(3, . . . , 3) and so
on.



506 13 Specification and Checking the Adequacy of VARMA Models

If at some stage

Crk(j − 1, . . . , j − 1) ≥ Crk(j, . . . , j)

does not hold for all k, choose p̂k = j − 1 for all k with

Crk(j − 1, . . . , j − 1) < Crk(j, . . . , j).

The p̂k obtained in this way are fixed in all the following steps. We continue
by increasing the remaining indices and comparing the criteria for those equa-
tions for which the Kronecker indices are not yet fixed. Here it is important
that the restrictions for the k-th equation do not depend on the Kronecker
indices pi > pk which are chosen in subsequent steps.

To make the procedure a bit more transparent, it may be helpful to con-
sider an example. Suppose that interest centers on a three-dimensional system,
that is, K = 3. First Crk(0, 0, 0) and Crk(1, 1, 1) are computed for k = 1, 2, 3.
Suppose

Crk(0, 0, 0) ≥ Crk(1, 1, 1), for k = 1, 2, 3.

Then we evaluate Crk(2, 2, 2), k = 1, 2, 3. Suppose

Cr1(1, 1, 1) < Cr1(2, 2, 2)

and

Crk(1, 1, 1) ≥ Crk(2, 2, 2), for k = 2, 3.

Then p̂1 = 1 is fixed and Crk(1, 2, 2) is compared to Crk(1, 3, 3) for k = 2, 3.
Suppose

Cr2(1, 2, 2) ≥ Cr2(1, 3, 3) and Cr3(1, 2, 2) < Cr3(1, 3, 3).

Then we fix p̂3 = 2 and compare Cr2(1, 3, 2) to Cr2(1, 4, 2) and so on until
p2 can also be fixed because no further reduction of the criterion Cr2(·) is
obtained in one step. It is important to note that for each index only the
first local minimum of the corresponding criterion is searched for. We are
not seeking a global minimum over all p with pk less than some prespecified
upper bound. For moderate or large systems, the present procedure has the
advantage of involving a very reasonable amount of computation work only.

Poskitt (1992) derived the properties of the Kronecker indices and the
VARMA coefficients estimated by this procedure. He gave conditions under
which the Kronecker indices are estimated consistently and the final VARMA
parameter estimators have the asymptotic distribution given in Proposition
12.1. Assuming that the true data generation process can indeed be described
by a stable, invertible ARMAE representation with a finite set of Kronecker
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indices, the conditions imposed by Poskitt relate to the distribution of the
white noise process ut, to the choice of n, and to the criteria Crk(p).

With respect to the process or white noise distribution, the assumptions
are satisfied, for example, if ut is Gaussian. In fact, for most results it suffices
that ut is standard white noise. An exception is the asymptotic distribution of
the white noise covariance estimator Σ̃u. It may change if ut has a nonnormal
distribution.

The VAR order n at Stage I is assumed to go to infinity with the sample
size at a certain rate. In practice, the order selection criteria AIC or HQ may
be used at Stage I. It must be guaranteed, however, that n is greater than the
Kronecker indices considered at Stage II(P).

Poskitt (1992) also discussed a modification of his algorithm that appears
to have some practical advantages. We do not go into that procedure here but
recommend that the interested reader examines the relevant literature. The
message from the present discussion should be that consistent and feasible
strategies for estimating the Kronecker indices exist. Poskitt also discussed
the case where the true data generation process is not in the class of VARMA
processes considered in the specification procedure. He derived some asymp-
totic results for this case as well.

In summary, a full search procedure is feasible for low-dimensional systems
if the maximum for the Kronecker indices is small or moderate. For high-
dimensional systems and/or large upper bounds of the Kronecker indices, the
Hannan-Kavalieris procedure or Poskitt’s specification strategy are preferable
from a computational point of view. The relative performance in small samples
is so far unknown in general. It is left to the individual researcher to decide
on a specific specification procedure with his or her available resources and
perhaps the objective of the analysis in mind. Of course, it is legitimate to
try different strategies and criteria and compare the resulting models and the
implications for the subsequent analysis.

13.4 Remarks on Other Specification Strategies for
VARMA Models

A number of other specification strategies for VARMA processes were pro-
posed and investigated in the literature based on representations other than
the final equations and echelon forms. Examples are Quenouille (1957), Tiao
& Box (1981), Jenkins & Alavi (1981), Aoki (1987), Cooper & Wood (1982),
Granger & Newbold (1986), Akaike (1976), Tiao & Tsay (1989), Tsay (1989a,
b), to list just a few. Some of these strategies are based on subjective criteria.
As mentioned earlier, none of these procedures seems to be in common use
for analyzing economic time series and none of them has become the standard
procedure. So far, few VARMA analyses of higher-dimensional time series are
reported in the literature. Given this state of affairs, it is difficult to give
well-founded recommendations as to which strategy to use in any particular
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situation. Those familiar with the Box-Jenkins approach for univariate time
series modelling will be aware of the problems that can arise even in the
univariate case if the investigator has to decide on a model on the basis of
statistics such as the autocorrelations and partial autocorrelations. Therefore,
it is an obvious advantage to have an automatic or semiautomatic procedure
if one feels uncertain about the interpretation of statistical quantities related
to specific characteristics of a process and if little or no prior information is
available. On the other hand, if firmly based prior information about the data
generation process is available, then it may be advantageous to use that at an
early stage and depart from automatic procedures.

13.5 Model Checking

Prominent candidates in the model checking tool-kit are tests of statistical
hypotheses. All three testing principles, LR (likelihood ratio), LM (Lagrange
multiplier), and Wald tests (see Appendix C.7) can be applied in principle in
the VARMA context. Because estimation requires iterative procedures, it is
often desirable to estimate just one model. Hence, LR tests which require esti-
mation under both the null and alternative hypotheses are often unattractive.
In finite order VAR modelling, the unrestricted version is usually relatively
easy to estimate and therefore it makes sense to use Wald tests in the pure
VAR case because these tests are based on the unconstrained estimator. In
contrast, the restricted estimator is often easier to obtain in the VARMA con-
text when models with nontrivial MA part are considered. In this situation,
LM tests have an obvious advantage because the LM statistic involves the
restricted estimator only. Of course, the restricted estimator is especially easy
to determine if the constrained model is a pure, finite order VAR process.
We will briefly discuss LM tests in the following. For further discussions and
proofs the reader is referred to Kohn (1979), Hosking (1981b), and Poskitt &
Tremayne (1982).

13.5.1 LM Tests

Suppose we wish to test

H0 : ϕ(β) = 0 against H1 : ϕ(β) �= 0, (13.5.1)

where β is an M -dimensional parameter vector and ϕ(·) is a twice continuously
differentiable function with values in the N -dimensional Euclidean space. In
other words, ϕ(β) is an (N×1) vector and we assume that the matrix ∂ϕ/∂β′

of first order partial derivatives has rank N at the true parameter vector. In
this setup, we consider the case where the restrictions relate to the VARMA
coefficients only. Moreover, we assume that the conditions of Proposition 12.1
are satisfied.
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For instance, in the bivariate zero mean VARMA(1, 1) model with Kro-
necker indices (p1, p2) = (1, 1),[

y1,t

y2,t

]
=

[
α11,1 α12,1

α21,1 α22,1

][
y1,t−1

y2,t−1

]
+
[
u1,t

u2,t

]
+

[
m11,1 m12,1

m21,1 m22,1

][
u1,t−1

u2,t−1

]
, (13.5.2)

with β′ = (α11,1, α21,1, α12,1, α22,1,m11,1,m21,1,m12,1,m22,1), one may wish
to test that the MA degree is zero, that is,

ϕ(β) =

⎡⎢⎢⎣
m11,1

m21,1

m12,1

m22,1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦.
The corresponding matrix of partial derivatives is

∂ϕ

∂β′ = [0 : I4]

which obviously has rank N = 4.
As another example, suppose we wish to test for Granger-causality from

y2t to y1t in the model (13.5.2). In that case,

ϕ(β) =
[

α12,1 + m12,1

α22,1m12,1 − α12,1m22,1

]
=

[
0
0

]
(13.5.3)

(see Remark 1 of Section 11.7.1). The corresponding matrix of partial deriva-
tives is

∂ϕ

∂β′ =
[

0 0 1 0 0 0 1 0
0 0 −m22,1 m12,1 0 0 α22,1 −α12,1

]
.

This matrix may have rank 1 under special conditions. In particular, this
occurs if α12,1 = m12,1 = 0 and α22,1 = −m22,1.

The LM statistic for testing (13.5.1) is

λLM := s(β̃r )
′Ĩa(β̃r , Σ̃

r
u)−1s(β̃r )/T, (13.5.4)

where

s(β̃r ) =
∂ ln l0
∂β

∣∣∣∣
β̃r

=
T∑

t=1

[
∂ut(y,β)′

∂β

∣∣∣∣
β̃r

]
(Σ̃r

u)−1ũt(y, β̃r ) (13.5.5)

is the score vector evaluated at the restricted estimator β̃r and

Ĩa(β̃r , Σ̃
r
u) =

1
T

T∑
t=1

[
∂ut(y,β)′

∂β

∣∣∣∣
β̃r

]
(Σ̃r

u)−1

[
∂ut(y,β)

∂β′

∣∣∣∣
β̃r

]
(13.5.6)
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is an estimator of the asymptotic information matrix based on the restricted
estimator β̃r. Here

Σ̃r
u =

1
T

T∑
t=1

ũt(y, β̃r )ũt(y, β̃r )
′.

Note that in contrast to Appendix C, Section C.7, an estimator of the asymp-
totic information matrix rather than the information matrix is used in (13.5.4).
Therefore T appears in the denominator. If H0 is true, the statistic λLM has
an asymptotic χ2(N)-distribution under general conditions.

The LM test is especially suitable for model checking because testing larger
VAR or MA orders against a maintained model is particularly easy. A new
estimation is not required as long as the null hypothesis does not change.
For instance, if we wish to test a given VARMA(p, q) specification against a
VARMA(p+s, q) or a VARMA(p, q+s) model, we just need an estimator of the
coefficients of the VARMA(p, q) process. Note, however, that a VARMA(p, q)
cannot be tested against a VARMA(p + s, q + s), that is, we cannot increase
both the VAR and MA orders simultaneously because the VARMA(p+s, q+s)
model will not be identified (cancellation is possible!) if the null hypothesis
is true. In that case, the LM statistic will not have its usual asymptotic χ2-
distribution.

13.5.2 Residual Autocorrelations and Portmanteau Tests

Alternative tools for model checking are the residual autocorrelations and
portmanteau tests. The asymptotic distributions of the residual autocorrela-
tions of estimated VARMA models were discussed by Hosking (1980), Li &
McLeod (1981), and Poskitt & Tremayne (1982), among others. We do not
give the details here but just mention that the resulting standard errors of
autocorrelations at large lags obtained from asymptotic considerations are ap-
proximately 1/

√
T , while they may be much smaller for low lags, just as for

pure finite order VAR processes.
The modified portmanteau statistic is

Q̄h := T 2
h∑

i=1

(T − i)−1 tr(Ĉ′
iĈ

−1
0 ĈiĈ

−1
0 ), (13.5.7)

where

Ĉi :=
1
T

T∑
t=i+1

ũt(y, β̃)ũt−i(y, β̃)′

and the ũt(y, β̃)’s are the residuals of an estimated VARMA model, as before.
Under general conditions, Q̄h has an approximate asymptotic χ2-distribution.
The degrees of freedom are obtained by subtracting the number of freely
estimated VARMA coefficients from K2h.
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13.5.3 Prediction Tests for Structural Change

In the pure VAR case, we have considered prediction tests for structural
change as model checking devices. If the data generation process is Gaus-
sian, the two tests introduced in Chapter 4, Section 4.6.2, may be applied in
the VARMA case as well with minor modifications.

The statistics based on h-step ahead forecasts only are of the form

τh := êT (h)′Σ̂ŷ(h)−1êT (h), (13.5.8)

where êT (h) = yT+h − ŷT (h) is the error vector of an h-step forecast based
on an estimated VARMA(p, q) process and Σ̂ŷ(h) is an estimator of the cor-
responding MSE matrix (see Section 12.5). The statistic may be applied in
conjunction with an F (K,T−K(p+q)−1)-distribution. The denominator de-
grees of freedom may be used even if constraints are imposed on the VARMA
coefficients because the F -distribution is just chosen as a small sample approx-
imation to a χ2(K)/K distribution. Its justification comes from the fact that
F (K,T − s) converges to χ2(K)/K for any fixed constant s, as T approaches
infinity. Thus, any constant that is subtracted from T in the denominator
degrees of freedom of the F -distribution, is justified on the same asymptotic
grounds. It is not clear which choice is best from a small sample point of view.

The other statistic considered in Section 4.6.2 is based on 1- to h-step
forecasts and, for the present case, it may be modified as

λh := T
h∑

i=1

û′
T+iΣ̃

−1
u ûT+i/[(T + K(p + q) + 1)Kh] (13.5.9)

and its approximate distribution for a structurally stable Gaussian process
is F (Kh, T − K(p + q) − 1). Here ûT+i = yT+i − ŷT+i−1(1) and Σ̃u is the
ML estimator of Σu. Note that the LS estimator of Σu was used in Section
4.6.2 instead. Again, there is not much theoretical justification for the choice
of the denominator in (13.5.9) and for the denominator degrees of freedom in
the approximating F -distribution. More detailed investigations of the small
sample distribution of λh are required before firmly based recommendations
regarding modifications of the statistic are possible. Here we have just used
the direct analogue of the finite order pure VAR case.

It is also possible to fit a finite order VAR process to data generated by a
mixed VARMA process and base the prediction tests on forecasts from that
model. In Chapter 15, it will be shown that such an approach is theoretically
sound under general conditions.

13.6 Critique of VARMA Model Fitting

In this and the previous two chapters, much of the analysis is based on the as-
sumption that the true data generation mechanism is from the VARMA(p, q)
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class. In practice, any such model is just an approximation to the actual data
generation process. Therefore, the model selection task is not really the prob-
lem of finding the true structure but of finding a good or useful approximation
to the real life mechanism. Despite this fact, it is sometimes helpful to assume
a specific true process or process class to be able to derive, under ideal condi-
tions, the statistical properties of the procedures used. One then hopes that
the actual properties of a procedure in a particular practical situation are at
least similar to those obtained under ideal conditions.

Against this background, one may wonder whether it is sufficient or even
preferable to approximate the generation process of a given multiple time se-
ries by a finite order VAR(p) process rather than go through the painstaking
specification and estimation of a mixed VARMA model. Clearly, the estima-
tion of VARMA models is in general more complicated than that of finite order
VAR models. Moreover, the specification of VAR models by statistical meth-
ods is much simpler than that of VARMA models. Are there still situations
where it is reasonable to consider the more complicated VARMA models? The
answer to this question is in the affirmative. For instance, if subject matter
theory suggests a VARMA model with nontrivial MA part, it is often neces-
sary to work with such a specification to answer the questions of interest or
derive the relevant results. Also, in some cases, a VARMA approximation may
be more parsimonious in terms of the number of parameters involved than an
appropriate finite order VAR approximation. In such cases, the VARMA ap-
proximation may, for instance, result in more efficient forecasts that justify
the costly specification and estimation procedures. The future attractiveness
of VARMA models will depend on the easy availability of efficient and robust
estimation and specification procedures that reduce the costs to an acceptable
level.

In Chapter 15, we will follow another road and explicitly assume that just
an approximating and not a true VAR(p) model is fitted. Assumptions will be
provided that allow the derivation of statistical properties in that case. So far,
we have considered stable, stationary VARMA processes. In the next chapter,
extensions for integrated and cointegrated variables will be considered.

13.7 Exercises

Problem 13.1
At the first stage of a final equations form specification procedure, the follow-
ing two univariate models were obtained:

(1 + 0.3L− 0.4L2)y1t = (1 + 0.6L)v1t,

(1 − 0.5L)y2t = (1 + 0.6L)v2t.

Which orders do you choose for the bivariate final equations VARMA repre-
sentation of (y1t, y2t)′?



13.7 Exercises 513

Problem 13.2
At Stage II of a specification procedure for an echelon form of a bivariate
system, the following values of the HQ criterion are obtained:

p1

p2 0 1 2 3 4
0 2.1 1.9 1.5 1.5 1.6
1 1.8 1.7 1.4 1.2 1.3
2 1.7 1.4 1.3 1.4 1.4
3 1.7 1.4 1.3 1.4 1.5
4 1.8 1.7 1.6 1.5 1.5

Choose an estimate (p̂1, p̂2)′ by the Hannan-Kavalieris procedure. Interpret
the estimate in the light of a full search procedure.

Problem 13.3
At the second stage of the Poskitt procedure for a bivariate model, the spec-
ification criteria Cr1(p1, p2) and Cr2(p1, p2) assume the following values:

Cr1(p1, p2)
p1

p2 0 1 2 3
0 3.5 2.5 1.7 1.8
1 3.5 1.5 1.8 1.7
2 3.5 1.5 1.8 1.9
3 3.5 1.5 1.8 1.4

Cr2(p1, p2)
p1

p2 0 1 2 3
0 4.2 3.2 3.2 3.2
1 3.5 1.8 1.9 1.9
2 3.1 1.9 1.7 1.6
3 3.4 2.1 1.8 1.9

Use the Poskitt strategy to find an estimate (p̂1, p̂2) of the Kronecker indices.

The following problems require the use of a computer. They are based on
the first differences of the U.S. investment data given in File E2.

Problem 13.4
Determine a final equations form VARMA model for the U.S. investment data
for the years 1947–1968 using the specification strategy described in Section
13.2.1.

Problem 13.5
Determine an ARMAE model for the U.S. investment data using the specifi-
cation strategy described in Section 13.3.2 with n = 6 and based on the HQ
criterion. Compare the model to the final equations form model from Problem
13.4.

Problem 13.6
Compute forecasts for the investment series for the years 1969 and 1970 based
on (i) the final equations form VARMA model, (ii) the ARMAE model, and
(iii) a bivariate VAR(1) model. Compare the forecasts to the true values and
interpret.
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Problem 13.7
Compute Φi and Θi impulse responses from the two models obtained in Prob-
lems 13.4 and 13.5, compare and interpret them.

Problem 13.8
Specify a univariate ARMA model for the sum zt = y1t + y2t of the two
investment series for the years 1947–1968. Is the univariate ARMA model
compatible with the bivariate echelon form model specified in Problem 13.5?
(Hint: Use the results of Section 11.6.1.)

Problem 13.9
Evaluate forecasts for the zt series of the previous problem for the years 1969–
1970 and compare them to forecasts obtained by aggregating the bivariate
forecasts from the ARMAE model of Problem 13.5.



14

Cointegrated VARMA Processes

14.1 Introduction

So far, we have concentrated on stationary VARMA processes for I(0) vari-
ables. In this chapter, the variables are allowed to be I(1) and may be coin-
tegrated. As we have seen in Chapter 12, one of the problems in dealing with
VARMA models is the nonuniqueness of their parameterization. For infer-
ence purposes, it is necessary to focus on a unique representation of a DGP.
For stationary VARMA processes, we have considered the echelon form to
tackle the identification problem. In the next section, this representation of
a VARMA process will be combined with the error correction (EC) form.
Thereby it is again possible to separate the long-run cointegration relations
from the short-term dynamics. The resulting representation turns out to be a
convenient framework for modelling cointegrated variables.

The representation of a VARMA process considered in this chapter is
characterized by the cointegrating rank and the Kronecker indices. When
these quantities are given, the model can be estimated. Estimation procedures
and their asymptotic properties are considered in Section 14.3. A procedure
for specifying the Kronecker indices and the cointegrating rank from a given
multiple time series will be discussed in Section 14.4. The forecasting aspects
of our models will be addressed briefly in Section 14.5 and an example is given
in Section 14.6.

In this chapter, an introductory treatment of cointegrated VARMA mod-
els is given. The chapter draws on material from Lütkepohl & Claessen (1997)
who introduced the error correction echelon form of a VARMA process,
Poskitt & Lütkepohl (1995) and Poskitt (2003) who presented estimation
and specification procedures for such models, as well as Bartel & Lütkepohl
(1998) who explored the small sample properties of some of the procedures.
Further references to more advanced treatments of specific issues will be given
throughout the chapter.
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14.2 The VARMA Framework for I(1) Variables

14.2.1 Levels VARMA Models

In this chapter, it is assumed that some or all of the variables of interest
are I(1) variables, whereas the remaining ones are again I(0). Moreover, the
variables may be cointegrated. Thus, we consider the situation that was dis-
cussed extensively in Part II. In contrast to the framework of that part, we
now assume that the DGP of yt = (y1t, . . . , yKt)′ is from the VARMA class,

A0yt = A1yt−1+· · ·+Apyt−p+M0ut+M1ut−1+· · ·+Mput−p, t = 1, 2, . . . ,
(14.2.1)

or

A(L)yt = M(L)ut, t = 1, 2, . . . , (14.2.2)

where ut = yt = 0 for t ≤ 0 is assumed for convenience and, as usual, ut is a
white noise process with zero mean and nonsingular, time invariant covariance
matrix E(utu

′
t) = Σu. Moreover, in (14.2.2) the VAR operator is

A(L) := A0 − A1L− · · · − ApL
p

and the MA operator is

M(L) := M0 + M1L + · · · + MpL
p.

The zero order matrices A0 and M0 are assumed to be nonsingular and some
of the coefficient matrices may be zero so that the AR or MA order may
actually be less than p. The matrix polynomials are assumed to satisfy

detA(z) �= 0, |z| ≤ 1, z �= 1, and detM(z) �= 0, |z| ≤ 1. (14.2.3)

The second part of this condition is the usual invertibility condition for the
MA operator. As in the pure VAR case, we allow the VAR operator A(z) to
have roots for z = 1 to account for integrated and cointegrated components
of yt. As mentioned previously, all component series are at most I(1), that is,
∆yt is stationary or at least asymptotically stationary.

Notice that there are no deterministic terms in our model. For the intro-
ductory treatment of the present chapter, this setup is convenient. Of course,
in applied work, deterministic terms will usually be required. Although adding
such terms is formally straightforward, it is known from the discussion in
Chapter 6, Section 6.4, and Chapter 7, Section 7.2.4, that the implications of
such terms in models with integrated variables are more complicated than in
the stationary case, in particular with respect to statistical inference.

In this context, it may also be worth emphasizing that the zero initial
value assumption (ut = yt = 0 for t ≤ 0) is not altogether innocent. Allowing
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for more general initial values will result in additional complications which we
intend to avoid here. Further comments on these issues will be provided later.

Under our assumptions of zero initial values, the process has the pure VAR
representation

yt =
t−1∑
i=1

Πiyt−i + ut, (14.2.4)

where

Π(z) =
∞∑

i=1

Πiz
i = M(z)−1A(z),

as in Section 11.3. Notice that the inverse of M(z) exists under our invertibility
assumption (14.2.3). The process also has a pure MA representation

yt =
t−1∑
i=0

Φiut−i,

where

Φ(z) =
∞∑

i=1

Φiz
i = A(z)−1M(z).

Here the inverse of A(z) is defined only in a small neighborhood of zero and,
in particular,

n∑
i=1

Φi

may diverge for n → ∞. Our MA representation is still valid due to the zero
initial value assumption. The VAR and MA representations of the process
show that the uniqueness of the VARMA representation can be discussed in
the same way as in Chapter 12. We have to find restrictions for A(L) and
M(L) such that a unique relation between [A(L) : M(L)] and M(L)−1A(L) is
obtained. From Chapter 12, we know already that the echelon form restrictions
can be used for that purpose. In the present situation, a slight modification
turns out to be useful. We will present it in the next subsection.

If zero initial values are not assumed, the initial values may also help in
identifying the model. A discussion of how initial values can contribute to
uniquely identifying a VARMA process with I(1) variables is provided by
Poskitt (2004). The problem is, however, that the initial values of the ut will
usually be unknown in practice and may not be available for identification.
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14.2.2 The Reverse Echelon Form

In order to obtain a unique representation, we use similar restrictions as in
Definition 12.2. We will, however, reverse the roles of A(L) and M(L) in this
case, as proposed by Lütkepohl & Claessen (1997). In other words, we now
impose the restrictions placed on the VAR operator in Definition 12.2 on M(L)
and similarly, the restrictions for M(L) in that definition will now be imposed
on the VAR operator. This modification will turn out to be convenient in
combining the restrictions with the error correction form. We denote the kl-
th elements of A(z) and M(z) by αkl(z) and mkl(z), respectively, and impose
the constraints specified in the following definition.

Definition 14.1 (Reverse Echelon Form)
The VARMA representation (14.2.1) is in reverse echelon form if A(L) and
M(L) satisfy the following restrictions: The operator [A(z) : M(z)] is left-
coprime,

mkk(L) = 1 +
pk∑
i=1

mkk,iL
i, for k = 1, . . . ,K, (14.2.5)

mkl(L) =
pk∑

i=pk−pkl+1

mkl,iL
i, for k �= l, (14.2.6)

and

αkl(L) = αkl,0 −
pk∑
i=1

αkl,iL
i, with αkl,0 = mkl,0 for k, l = 1, . . . ,K.

(14.2.7)

Here

pkl =
{

min(pk + 1, pl) for k ≥ l,
min(pk, pl) for k < l,

k, l = 1, . . . ,K.

The row degrees pk in this representation are again called Kronecker indices.
In (14.2.1), p = max(p1, . . . , pK), that is, p is the maximum row degree or
Kronecker index. ARMARE(p1, . . . , pK) denotes a reverse echelon form with
Kronecker indices p1, . . . , pK .

It was argued by Poskitt (2004) that the initial conditions may contribute
to a unique representation of an integrated VARMA process in such a way that
[A(z) : M(z)] does not have to be left-coprime. In that case, the mapping from
the set of operators [A(z) : M(z)] to the set of admissible transfer functions
Φ(z) may not be one-to-one, whereas in the present formulation which requires
left-coprimeness of [A(z) : M(z)], a one-to-one mapping may be obtained
using the reverse echelon form restrictions.
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To see the difference to the ARMAE form discussed in Section 12.1, con-
sider a three-dimensional process with Kronecker indices (p1, p2, p3) = (1, 2, 1)
as in (12.1.21)/(12.1.22). In this case,

[pkl] =

⎡⎣ 1 1 1
1 2 1
1 2 1

⎤⎦ .

Hence, an ARMARE(1, 2, 1) has the following form:⎡⎣ 1 0 0
0 1 0
0 α32,0 1

⎤⎦ yt

=

⎡⎣ α11,1 α12,1 α13,1

α21,1 α22,1 α23,1

α31,1 α32,1 α33,1

⎤⎦ yt−1 +

⎡⎣ 0 0 0
α21,2 α22,2 α23,2

0 0 0

⎤⎦ yt−2

+

⎡⎣ 1 0 0
0 1 0
0 α32,0 1

⎤⎦ut +

⎡⎣ m11,1 m12,1 m13,1

0 m22,1 0
m31,1 m32,1 m33,1

⎤⎦ut−1 (14.2.8)

+

⎡⎣ 0 0 0
m21,2 m22,2 m23,2

0 0 0

⎤⎦ut−2.

Clearly, in this representation the autoregressive operator is unrestricted ex-
cept for the constraints imposed by the maximum row degrees or Kronecker
indices and the zero order matrix (A0 = M0), whereas zero restrictions are
placed on the moving average coefficient matrices attached to low lags of the
ut. For example, in (14.2.8), there are two zero restrictions on M1. A compar-
ison with the representation in (12.1.21)/(12.1.22) shows that the restrictions
imposed on A1 in (12.1.21) correspond to those imposed on M1 in (14.2.8).

14.2.3 The Error Correction Echelon Form

The EC form may be obtained from (14.2.1) by subtracting A0yt−1 on both
sides and rearranging terms, as for the VECM form of a VAR model in Section
6.3:

A0∆yt = Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1

+ M0ut + M1ut−1 + · · · + Mput−p
(14.2.9)

where

Π = −(A0 −A1 − · · · −Ap)

and
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Γi = −(Ai+1 + · · · + Ap), i = 1, . . . , p− 1.

Again, Πyt−1 is the error correction term and r = rk(Π) is the cointegrating
rank of the system.

If the operators A(L) and M(L) satisfy the reverse echelon from re-
strictions, it is easily seen that the Γi satisfy similar identifying constraints
as the Ai. More precisely, Γi obeys the same zero restrictions as Ai+1 for
i = 1, . . . , p − 1, because a zero restriction on an element αkl,i of Ai implies
that the corresponding elements αkl,j of Aj are also zero for j > i. For the
same reason, the zero restrictions on Π are the same as those on A0 − A1.
This means in particular that there are no echelon form zero restrictions on
Π if all Kronecker indices pk ≥ 1, k = 1, . . . ,K, because in that case the
reverse echelon form does not impose zero restrictions on A1. On the other
hand, if some Kronecker indices are zero, this fact has implications for the
integration and cointegration structure of the variables. A specific analysis of
the relations between the variables is called for in that case. Denoting by  
the number of Kronecker indices which are zero, it is not difficult to see that

rk(Π) ≥  (14.2.10)

(see Problem 14.1). This result has to be taken into account in the procedure
for specifying the cointegrating rank of a VARMA system, as discussed in
Section 14.4.

An EC model which satisfies the reverse echelon from restrictions will be
called an EC-ARMARE form in the following. As an example, consider again
the system (14.2.8). Its EC-ARMARE form is⎡⎣ 1 0 0

0 1 0
0 α32,0 1

⎤⎦∆yt

=

⎡⎣ π11 π12 π13

π21 π22 π23

π31 π32 π33

⎤⎦ yt−1 +

⎡⎣ 0 0 0
γ21,1 γ22,1 γ23,1

0 0 0

⎤⎦∆yt−1

+

⎡⎣ 1 0 0
0 1 0
0 α32,0 1

⎤⎦ut +

⎡⎣ m11,1 m12,1 m13,1

0 m22,1 0
m31,1 m32,1 m33,1

⎤⎦ut−1

+

⎡⎣ 0 0 0
m21,2 m22,2 m23,2

0 0 0

⎤⎦ut−2.

As a further example, consider the three-dimensional ARMARE(0, 0, 1) model

yt =

⎡⎣ 0 0 0
0 0 0

α31,1 α32,1 α33,1

⎤⎦ yt−1
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+ ut +

⎡⎣ 0 0 0
0 0 0

m31,1 m32,1 m33,1

⎤⎦ut−1. (14.2.11)

Its EC-ARMARE form is

∆yt =

⎡⎣ −1 0 0
0 −1 0

π31 π32 π33

⎤⎦ yt−1 + ut +

⎡⎣ 0 0 0
0 0 0

m31,1 m32,1 m33,1

⎤⎦ut−1.

Obviously, the rank of

Π =

⎡⎣ −1 0 0
0 −1 0

π31 π32 π33

⎤⎦
is at least 2 and, thus, the cointegrating rank in this case is also at least 2.

Specifying an EC-ARMARE model requires that the cointegrating rank
r is determined, the Kronecker indices p1, . . . , pK are obtained and possibly
further over identifying zero restrictions are placed on the coefficient matrices
Γi and Mj . Before we consider strategies for these tasks, we discuss the esti-
mation of EC-ARMARE models for given cointegrating rank and Kronecker
indices in the next section.

14.3 Estimation

14.3.1 Estimation of ARMARE Models

For given Kronecker indices, an ARMARE model can be estimated even if
the cointegrating rank is unknown. Under Gaussian assumptions, ML esti-
mation can be used. The estimators may be determined by maximizing a
log-likelihood function as in (12.2.24),

ln l0(γ, Σu) = −T

2
ln |Σu| − 1

2

T∑
t=1

ut(γ)′Σ−1
u ut(γ), (14.3.1)

where an additive constant is dropped and zero initial conditions are assumed
so that

ut(γ) = yt −
t−1∑
i=1

Πi(γ)yt−i.

If the initial values are nonzero, ln l0 is just an approximate log-likelihood.
Here γ contains all unrestricted autoregressive and moving average parame-
ters, as in Section 12.2, and maximization may proceed by an iterative pro-
cedure, as in Section 12.3. Starting values are required for such an algorithm.
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The preliminary estimator presented in Chapter 12, Section 12.3.4, can be
used for that purpose (e.g., Poskitt (2003)).

As in the case of a cointegrated VAR model, the ML estimators have
asymptotic properties which are in some respects different from those obtained
in the stationary case. Roughly speaking, they are the same that would be
obtained if the true cointegration matrix were known. Thus, if 0 < r < K,
generally the ML estimator γ̃ is consistent and

√
T (γ̃ − γ) d→ N (0, Σγ̃),

where the covariance matrix Σγ̃ is singular. These results follow from Yap &
Reinsel (1995) and also hold under suitable alternative conditions if yt is not
Gaussian.

If the cointegrating rank is known, it is often desirable to estimate the
EC-ARMARE form of the process because it also provides estimates of the
cointegration relations which may well be of major interest. Therefore, esti-
mation of these models will be considered next.

14.3.2 Estimation of EC-ARMARE Models

If identifying restrictions are imposed on the cointegration matrix, then es-
timation of the EC-ARMARE form can also be done by Gaussian ML based
on a log-likelihood function similar to (14.3.1), where γ now contains the
free parameters of the EC-ARMARE form. An alternative approach would
be to estimate the cointegration matrix β first by reduced rank regression or
an EGLS procedure based on a long VAR(n) model, as in Section 7.2. The
properties of this estimator will be discussed further in Chapter 15, where
fitting approximate VAR models is discussed. For the present purposes, it is
sufficient to note that this estimator, say β̂, may be used in an ML proce-
dure which estimates the other parameters by maximizing the log-likelihood
function conditionally on β̂. In other words, the cointegration parameters are
fixed at the first stage estimator β̂ of the cointegration matrix β and then the
log-likelihood is maximized with respect to the other parameters. The result-
ing estimators have the same asymptotic properties as the full ML estimators
(see Yap & Reinsel (1995)).

Starting values for the other parameters that may be used as initial val-
ues for an iterative procedure to maximize the log-likelihood function, may
be determined in an analogous way as in Section 12.3.4. The short-run and
loading parameter estimators have an asymptotic normal distribution which
is the same as if the cointegration matrix β were known. This result, of course,
is analogous to the pure VAR case considered in Chapter 7 (see also Phillips
(1991, Remark (n)) and Yap & Reinsel (1995)).

The previous discussion assumes given Kronecker indices and possibly a
known cointegrating rank. Statistical procedures for specifying these quanti-
ties will be discussed next.
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14.4 Specification of EC-ARMARE Models

14.4.1 Specification of Kronecker Indices

For stationary processes, proposals for specifying the Kronecker indices of an
ARMAE model were discussed in Section 13.3. The strategies for specifying
the Kronecker indices of cointegrated ARMARE forms presented in this sec-
tion were proposed by Poskitt & Lütkepohl (1995) and Poskitt (2003). In the
latter article, it is also argued that they result in consistent estimators of the
Kronecker indices under suitable conditions. In a simulation study, Bartel &
Lütkepohl (1998) found that they worked reasonably well in small samples,
at least for the processes explored in their Monte Carlo study.

The specification procedures may be partitioned in two stages. The first
stage is the same as for the procedures for stationary processes discussed in
Section 13.3.2 and consists of fitting a long autoregression by least squares in
order to obtain estimates of the unobservable innovations ut, t = 1, . . . , T .

STAGE I: Use multivariate LS estimation to fit a long VAR(n) process to
the data to obtain residuals ût(n).

These residuals are then substituted for the unknown lagged ut’s in the
individual equations of an ARMARE form which may then be estimated by
linear LS procedures. Based on the equations estimated in this way, a choice
of the Kronecker indices is made using model selection criteria. Poskitt &
Lütkepohl (1995), Guo, Huang & Hannan (1990), and Huang & Guo (1990)
showed that the estimated residuals ût(n) are “good” estimates of the true
residuals if n approaches infinity at a suitable rate, as T goes to infinity (see
Lemma 3.1 of Poskitt & Lütkepohl (1995) for details).

The methods presented in the following differ in the way they choose the
Kronecker indices in the next step. An obvious idea may be to search over all
models associated with Kronecker indices

{(p1, . . . , pK)|0 ≤ pk ≤ pmax, k = 1, . . . ,K}

for some prespecified upper bound pmax and choose the set of Kronecker in-
dices which optimizes some model selection criterion, as in Section 13.3.2 for
the stationary case. The two procedures presented in the following are more
efficient computationally and they are similar to Poskitt’s procedure presented
in Section 13.3.4. The first variant uses linear regressions to estimate the indi-
vidual equations separately for different lag lengths. A choice of the optimal
lag length is then based on some prespecified criterion similar to those consid-
ered for the stationary case. The following formal description of the procedure
is taken from Poskitt & Lütkepohl (1995).

STAGE II: Proceed in the following steps.
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(ia) For m = 0, set T σ̃2
k(m) equal to the residual sum of squares from the

regression of ykt on a constant and (yjt − ûjt(n)), j = 1, . . . ,K, j �= k.
For m = 1, . . . , pmax ≤ n, regress ykt on a constant, (yjt − ûjt(n)), j =
1, . . . ,K, j �= k, and yt−s and ût−s(n), s = 1, . . . ,m, and determine the
residual sums of squares, T σ̃2

k(m), for k = 1, . . . ,K.
(ib) For k = 1, . . . ,K, compute a selection criterion of the form

Crk(m) = ln σ̃2
k(m) + cTm/T, m = 0, 1, . . . , pmax,

where cT is a function of T which will be specified later.
(ii) Set the estimate of the k-th Kronecker index equal to

p̂k = arg min
0≤m≤pmax

Crk(m), k = 1, . . . ,K.

In the regressions in Step (ia), restrictions from the echelon structure are
not explicitly taken into account, because for each value of m, the algorithm
implicitly assumes that the current index under consideration is the smallest
and, thus, no restrictions are imported from other equations. Still, the k-th
equation will be misspecified whenever m is less than the true Kronecker
index because in that case, lagged values required for a correct specification
are omitted. On the other hand, if m is greater than the true Kronecker
index, the k-th equation will be correctly specified but may include redundant
parameters and variables. Therefore, it is intuitively plausible that for an
appropriate choice of cT , the criterion function Crk(m) will be minimized
asymptotically when m is equal to the true Kronecker index. For practical
purposes, possible choices of cT are cT = n lnT or cT = n2.

At Stage II, values for n, pmax, and cT have to be chosen. The theoretical
consistency results stated in Poskitt (2003) are quite general and provide
an asymptotic justification for many different values of these quantities. The
following choices may be considered in practice:

• Choose n by AIC or use n = max{(lnT )a, p̂(AIC)}, where a > 1.
• Choose pmax = 1

2
n.

• Choose cT = n lnT or cT = n2.

Poskitt & Lütkepohl (1995) also proposed a modification of Stage II which
permits to take into account coefficient restrictions derived from those equa-
tions in the system which have smaller Kronecker indices. In that modification,
after running through Stage II for the first time, we fix the smallest Kronecker
index and repeat Stage II, but search only those equations which are found
to have indices larger than the smallest. In this second application of Stage
II, the restrictions implied by the smallest Kronecker index found in the first
round are taken into account when the second smallest index is determined.
We proceed in this way by fixing the smallest Kronecker index found in each
successive round until all the Kronecker indices have been specified. In this
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procedure, the variables are ordered in such a way that the Kronecker indices
of the final system are ordered from largest to smallest. That is, the variable
whose equation is associated with the smallest Kronecker index is placed last
in the list of variables. The one with the second smallest Kronecker index
is assigned the next to the last place and so on. For details, see Poskitt &
Lütkepohl (1995) and Poskitt (2003).

It should be understood that the Kronecker indices found in such a pro-
cedure for a given time series of finite length can only be expected to be
a reasonable starting point for a more refined analysis of the system under
consideration. Based on the specified Kronecker indices, a more efficient pro-
cedure for estimating the parameters may be applied and the model may be
modified subsequently.

So far, we have not discussed the choice of the cointegrating rank. In
practice, of course, this quantity is unlikely to be known. Comments on the
estimation of r will be given in the following subsection.

14.4.2 Specification of the Cointegrating Rank

Saikkonen & Luukkonen (1997) and Lütkepohl & Saikkonen (1999b) showed
that Johansen’s LR tests for the cointegrating rank (see Section 8.2) maintain
their asymptotic properties even if a finite order VAR process is fitted although
the true underlying process has an infinite order VAR structure. Consequently,
these tests may be applied at Stage I of the present specification procedure.
The cointegrating rank is then determined independently of the Kronecker
indices. Alternatively, Yap & Reinsel (1995) extended the likelihood ratio
principle to VARMA processes and developed cointegration rank tests under
the assumption that identified versions of A(z) and M(z) are used. Thus,
these tests may be applied once the Kronecker indices have been specified.
Whatever approach is adopted, for our purposes the following modification is
noteworthy.

If a Kronecker index pk = 0, the variable ykt inherits all of its dynamics
from other variables in the system and it is known from (14.2.10) that the
cointegrating rank r ≥  , the number of zero Kronecker indices. Hence, the
testing procedure proceeds by considering only null hypotheses where r is
greater than or equal to  . In other words, the following sequence of null
hypotheses is tested: H0 : r =  , H0 : r =  + 1, . . ., H0 : r = K − 1. The
estimator of r is chosen such that it is the smallest value for which H0 cannot
be rejected.

Once a model has been estimated, some checks for model adequacy are in
order and possible further model reductions or modifications may be called
for. For instance, insignificant parameter estimates may be restricted to zero.
Here it is convenient that the t-ratios of the short-run parameters have their
usual asymptotic standard normal distributions under the null hypothesis,
due to the asymptotic normal distribution of the ML estimators. Thus, they
can be used for significance tests in the usual way and may help to place over
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identifying restrictions on the parameters. Moreover, a detailed analysis of the
residual properties should be performed to reveal possible model deficiencies.
The checks for model adequacy described in Chapters 4 and 8 can be used
here as well with appropriate modifications.

14.5 Forecasting Cointegrated VARMA Processes

Forecasting cointegrated VARMA processes proceeds completely analogously
to forecasting stationary VARMA processes. The same formulas can be used.
Like for pure VAR models, the properties of the forecasts will be different,
however. In particular, the forecast error covariance matrices will be un-
bounded for increasing forecast horizon. Hence, also forecast intervals will
be unbounded in length. In this respect, the properties of the forecasts are
analogous to those of cointegrated pure VAR processes. The reader is referred
to Section 6.5 for details.

14.6 An Example

For illustrative purposes, we use an example from Lütkepohl & Claessen
(1997), based on the U.S. macroeconomic data which were also considered
in Section 7.4.3. The data are available in File E3. It consists of 136 quarterly
observations for the years 1954.1 to 1983.4 of the real money stock M1 (y1t),
GNP in billions of 1982 dollars (y2t), the discount interest rate on new issues
of 91-day treasury bills (y3t), and the yield on long term (20 years) treasury
bonds (y4t). Logarithms of seasonally adjusted GNP and M1 data are used.
Thus, yt is a four-dimensional vector. Notice that we do not use the full sam-
ple period covered in File E3 but truncate the data for the last four years.
The reason is that in the exercises readers are asked to perform a forecast
comparison based on the model presented in the following. The data for the
years 1984–1987 are set aside for this comparison.

Following the procedure outlined in Section 14.4.2, the cointegrating rank
may be determined with LR type tests applied to a long VAR model. After
running through an extensive specification procedure, Lütkepohl & Claessen
(1997) finally specified an EC-ARMARE(2, 1, 1, 1) model with cointegrating
rank 1 for the data generation process of this system and obtained the follow-
ing estimated model⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
−.509
(.117)

1 0 0

−.099
(.105)

0 1 0

.084
(.043)

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦∆yt
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.091
(.035)

.216
(.060)

.190
(.056)

.055
(.022)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.039
(.015)

−.090
(.026)

−.082
(.024)

−.023
(.010)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[1,−.343,−16.72, 19.35]yt−1

+

⎡⎢⎢⎢⎣
.810
(.084)

.074
(.069)

−.682
(.101)

−.507
(.192)

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦∆yt−1

+

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

−.509
(.117)

1 0 0

−.099
(.105)

0 1 0

.084
(.043)

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ut

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.478
(.109)

0 0 0

−.101
(.113)

.006
(.091)

.339
(.144)

.898
(.258)

.160
(.084)

.123
(.070)

.377
(.106)

.154
(.202)

.037
(.045)

.043
(.036)

.093
(.057)

−.070
(.103)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ut−1

+

⎡⎢⎢⎢⎣
.082
(.091)

−.022
(.073)

.205
(.123)

.646
(.220)

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ut−2. (14.6.1)

Estimated standard errors are given in parentheses. The cointegration vector
β̂′ = [1,−.343,−16.72, 19.35] was obtained by estimating a VECM with one
lagged difference of yt and with cointegrating rank 1, using the ML procedure
presented in Section 7.2.3 and normalizing the first element of β̂ to be 1.

Some of the parameter values in (14.6.1) are quite small compared to their
estimated standard errors. In particular, some of them are not significant
under a two-standard error criterion. Therefore, zero restrictions were placed
on the coefficients and the following estimated model was obtained:⎡⎢⎢⎢⎢⎣

1 0 0 0
−.476
(.107)

1 0 0

0 0 1 0
.145
(.032)

0 0 1

⎤⎥⎥⎥⎥⎦∆yt
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

.094
(.035)

.219
(.056)

.207
(.057)

.069
(.020)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.042
(.016)

−.096
(.026)

−.094
(.026)

−.031
(.009)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
[1,−.343,−16.72, 19.35]yt−1

+

⎡⎢⎢⎢⎣
.772
(.063)

.087
(.067)

.788
(.100)

.198
(.195)

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦∆yt−1

+

⎡⎢⎢⎢⎢⎣
1 0 0 0

−.476
(.107)

1 0 0

0 0 1 0
.145
(.032)

0 0 1

⎤⎥⎥⎥⎥⎦ut

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−.640
(.082)

0 0

0 0 0 1.105
(.297)

.331
(.104)

0 .339
(.083)

0

.162
(.042)

0 .110
(.054)

−.323
(.095)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ut−1

+

⎡⎢⎢⎢⎣
.107
(.081)

0 .233
(.114)

.984
(.196)

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ut−2. (14.6.2)

This example is just meant to illustrate that the procedures presented
in this chapter are indeed feasible in practice. The reader is encouraged to
perform a forecast comparison of the model presented here with pure VAR
models and VECMs for the data (see Problem 14.6).

14.7 Exercises

14.7.1 Algebraic Exercises

Problem 14.1
Show that in the model (14.2.9), rk(Π) ≥  , where  is the number of Kro-
necker indices which are zero. (Hint: Consider the matrix A0 −A1).
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Problem 14.2
Write down an ARMARE(2, 1, 2) model explicitly in matrix form and also
write down the corresponding EC-ARMARE form.

Problem 14.3
Consider the following EC-ARMARE model:[

1 0
α21,0 1

]
∆yt =

[
π11 π12

π21 π22

]
yt−1 +

[
γ11,1 γ12,1

0 0

]
∆yt−1

+
[

1 0
α21,0 1

]
ut +

[
m11,1 0
m21,1 m22,1

]
ut−1.

(a) Write the model in ARMARE form.
(b) Specify the Kronecker indices.
(c) How many over-identifying restrictions are present in this model?
(d) Write the model in pure VAR form.

14.7.2 Numerical Exercises

The following problems are based on the U.S. data given in File E3, as de-
scribed in Section 14.6. The variables are defined in the same way as in that
section. Thus, a system of dimension four is considered.

Problem 14.4
Fit a pure VAR model to the four-dimensional data set without considering
integration and cointegration properties of the variables. Use only the data
for 1954.1–1983.4 for modelling and estimation. Compute forecasts from the
model for the period 1984.1–1987.4.

Problem 14.5
Use the following steps in constructing VECMs for the period 1954.1–1983.4
and computing forecasts of the four variables for the period 1984.1–1987.4.

(a) Determine the cointegrating rank of the system.
(b) Estimate the cointegration relation(s) with the reduced rank ML and the

EGLS methods discussed in Chapter 7.
(c) Construct subset VECMs based on the estimated cointegration relations

from the previous step.
(d) Confirm that the models obtained in the previous steps are adequate rep-

resentations of the data generation process.
(e) Compute forecasts from your model for the period 1984.1–1987.4.

Problem 14.6
Compare the forecasts obtained in Problems 14.4 and 14.5 with those from the
EC-ARMARE model (14.6.2) on the basis of the MSEs. Discuss the results.
(Hint: See Lütkepohl & Claessen (1997).)
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Fitting Finite Order VAR Models to Infinite

Order Processes

15.1 Background

In the previous chapters, we have derived properties of models, estimators,
forecasts, and test statistics under the assumption of a true model. We have
also argued that such an assumption is virtually never fulfilled in practice. In
other words, in practice, all we can hope for is a model that provides a useful
approximation to the actual data generation process of a given multiple time
series. In this chapter, we will, to some extent, take into account this state of
affairs and assume that an approximating rather than a true model is fitted.
Specifically, we assume that the true data generation process is an infinite
order VAR process and, for a given sample size T , a finite order VAR(p) is
fitted to the data.

In practice, it is likely that a higher order VAR model is considered if the
sample size or time series length is larger. In other words, the order p increases
with the sample size T . If an order selection criterion is used in choosing the
VAR order, the maximum order to be considered is likely to depend on T .
This again implies that the actual order chosen depends on the sample size
because it will depend on the maximum order. In summary, the actual order
selected may be regarded as a function of the sample size T . In order to derive
statistical properties of estimators and forecasts, we will make this assumption
in the following. More precisely, we will assume that the VAR order goes to
infinity with the sample size. Under that assumption, an asymptotic theory
has been developed that will be discussed in this chapter.

In Section 15.2, the assumptions for the underlying true process and for
the order of the process fitted to the data are specified in detail and asymp-
totic estimation results are provided for stable processes. In Section 15.3,
the consequences for forecasting are discussed and impulse response analysis
is considered in Section 15.4. Our standard investment/income/consumption
example is used to contrast the present approach to that considered in Chap-
ter 3, where a true finite order process is assumed. Finally, in Section 15.5,
extensions to cointegrated processes are discussed.
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15.2 Multivariate Least Squares Estimation

Suppose the generation process of a given multiple time series is a stationary,
stable, K-dimensional, infinite order VAR process,

yt =
∞∑

i=1

Πiyt−i + ut, (15.2.1)

with absolutely summable Πi, that is,
∞∑

i=1

‖Πi‖ < ∞ (15.2.2)

(see Appendix C.3) and canonical MA representation

yt =
∞∑

i=0

Φiut−i, Φ0 = IK , (15.2.3)

satisfying

det

( ∞∑
i=0

Φiz
i

)
�= 0 for |z| ≤ 1 and

∞∑
i=1

i1/2‖Φi‖ < ∞. (15.2.4)

The zero mean assumption implied by these conditions is not essential and
is imposed for convenience only. Stable, invertible VARMA processes satisfy
the foregoing conditions. The assumptions allow for more general processes,
however. Of course, the generation process may also be a stable, finite order
VAR(p) in which case Πi = 0 for i > p.

We have argued in the previous section that in practice the true structure
will usually be unknown and the investigator may consider fitting a finite
order VAR process with the VAR order depending on the length T of the
available time series. For this situation, Lewis & Reinsel (1985) have shown
consistency and asymptotic normality of the multivariate LS estimators. For
univariate processes, similar results were discussed earlier by Berk (1974) and
Bhansali (1978).

To state these results formally, we use the following notation:

Π(n) := [Π1, . . . , Πn],

π(n) := vec Π(n).

Fitting a VAR(n) process, the i-th estimated coefficient matrix is denoted by
Π̂i(n),

Π̂(n) := [Π̂1(n), . . . , Π̂n(n)],

and

π̂(n) := vec Π̂(n).

Now we can state a result of Lewis & Reinsel (1985).
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Proposition 15.1 (Properties of the LS Estimator of an Approximating
VAR Model)
Let the multiple time series y1, . . . , yT be generated by a potentially infinite
order VAR process satisfying (15.2.1)–(15.2.4) with standard white noise ut.
Suppose finite order VAR(nT ) processes are fitted by multivariate LS and
assume that the order nT depends upon the sample size T such that

nT → ∞, n3
T /T → 0, and

√
T

∞∑
i=nT +1

‖Πi‖ → 0 as T → ∞.

(15.2.5)

Furthermore, let c1, c2 be positive constants and f(n) a sequence of (K2n×1)
vectors such that

0 < c1 ≤ f(n)′f(n) ≤ c2 < ∞ for n = 1, 2, . . . .

Then
√
T − nT f(nT )′[π̂(nT ) − π(nT )]
[f(nT )′(Γ−1

nT ⊗Σu)f(nT )]1/2

d−→N (0, 1), (15.2.6)

where

Γn := E

⎛⎜⎝
⎡⎢⎣ yt

...
yt−n+1

⎤⎥⎦ [
y′t, . . . , y

′
t−n+1

]⎞⎟⎠ . (15.2.7)

Remark 1 The assumption (15.2.5) means that, although the VAR order
has to go to infinity with the sample size, it has to do so at a much slower
rate because n3

T /T → 0. The requirement

√
T

∞∑
i=nT +1

‖Πi‖ → 0 (15.2.8)

is always satisfied if yt is actually a finite order VAR process and nT → ∞.
For infinite order VAR processes, this condition implies a lower bound for the
rate at which nT goes to infinity. To see this, consider the univariate MA(1)
process

yt = ut −mut−1,

where 0 < |m| < 1 to ensure invertibility. Its AR representation is

yt = −
∞∑

i=1

miyt−i + ut
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and condition (15.2.8) becomes

√
T

∞∑
i=n+1

|mi| =
√
T |m|n+1

∞∑
i=0

|m|i

=
√
T
|m|n+1

1 − |m| −→
T→∞

0. (15.2.9)

Here the subscript T has been dropped from nT for notational simplicity. In
this example, nT = T 1/ε with ε > 3 is a possible choice for the sequence nT

that satisfies both (15.2.9) and n3
T /T → 0. On the other hand, nT = ln lnT

is not a permissible choice because in this case
√
T |m|nT +1

does not approach zero as T → ∞. This result is easily established by consid-
ering the logarithm of (15.2.9),

1
2 lnT + (nT + 1) ln |m| − ln(1 − |m|),

which goes to infinity for nT = ln lnT .
In summary, (15.2.8) is a lower bound and n3

T /T → 0 establishes an upper
bound for the rate at which nT has to go to infinity with the sample size T .

Remark 2 Proposition 15.1 implies that for fixed m,√
T − nT vec([Π̂1(nT ), . . . , Π̂m(nT )] − [Π1, . . . , Πm])

has an asymptotic multivariate normal distribution with mean zero and covari-
ance matrix V ⊗Σu, where V is obtained as follows: Let Vn be the upper left-
hand (Km×Km) block of the inverse of Γn, for n ≥ m. Then V = limn→∞ Vn.
Loosely speaking, V is the upper left-hand (Km ×Km) block of the inverse
of the infinite order matrix

E

⎛⎜⎝
⎡⎢⎣ yt

yt−1

...

⎤⎥⎦ [
y′t, y

′
t−1, . . .

]⎞⎟⎠ .

Thus, the result can be used for inference on a finite number of parameters.
It is also possible, however, to use the result from Proposition 15.1 to con-
struct tests for hypotheses involving an infinite number of restrictions. Such
hypotheses can arise in studying Granger-causality in infinite order VAR pro-
cesses. This case was considered explicitly by Lütkepohl & Poskitt (1996).

Remark 3 If the data generation process has nonzero mean originally, the
sample mean y may be subtracted initially from the data. It is asymptotically
independent of the Π̂i(nT ) and has an asymptotic normal distribution,
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√
T (y − µ) d→N (0, Σy),

where

Σy =

( ∞∑
i=0

Φi

)
Σu

( ∞∑
i=0

Φi

)′
.

A corresponding result from Lütkepohl & Poskitt (1991) for the white
noise covariance matrix is stated next.

Proposition 15.2 (Asymptotic Properties of the White Noise Covariance
Matrix Estimator)
Let

ût(n) := yt −
n∑

i=1

Π̂i(n)yt−i, t = 1, . . . , T,

be the multivariate LS residuals from a VAR(n) model fitted to a multiple
time series of length T , let

Σ̃u(n) :=
1
T

T∑
t=1

ût(n)ût(n)′

be the corresponding estimator of the white noise covariance matrix and let
U := [u1, . . . , uT ] so that

1
T
UU ′ =

1
T

T∑
t=1

utu
′
t

is an estimator of Σu based on the true white noise process ut. Then, under
the conditions of Proposition 15.1,

plim
√
T (Σ̃u(nT ) − T−1UU ′) = 0.

We know from Chapter 3, Propositions 3.2 and 3.4, that, for a Gaussian
process, T−1UU ′ has an asymptotic normal distribution,

√
T vech(T−1UU ′ −Σu) d→N (0, 2D+

K(Σu ⊗Σu)D+′
K ), (15.2.10)

where, as usual, D+
K = (D′

KDK)−1D′
K is the Moore-Penrose inverse of the

(K2 × 1
2K(K + 1)) duplication matrix DK . Using Proposition C.2(2) of Ap-

pendix C.1, Proposition 15.2 implies that
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√
T vech(Σ̃u(nT ) −Σu)

has precisely the same asymptotic distribution as the one in (15.2.10). Obvi-
ously, this distribution does not depend on the VAR structure of yt or the VAR
coefficients. In addition, the estimator Σ̃u(nT ) is asymptotically independent
of π̂(nT ). In the following, the consequences of these results for prediction
and impulse response analysis will be discussed.

15.3 Forecasting

15.3.1 Theoretical Results

Suppose the VAR(nT ) model estimated in the previous section is used for
forecasting. In that case, the usual h-step forecast at origin T , ỹT (h), can be
computed recursively for h = 1, 2, . . . , using

ỹT (h) =
nT∑
i=1

Π̂i(nT )ỹT (h− i), (15.3.1)

where ỹT (j) := yT+j for j ≤ 0 (see Section 3.5). We use the notation

ỹT (h) :=

⎡⎢⎣ ỹT (1)
...

ỹT (h)

⎤⎥⎦, yT (h) :=

⎡⎢⎣ yT (1)
...

yT (h)

⎤⎥⎦, yT,h :=

⎡⎢⎣ yT+1

...
yT+h

⎤⎥⎦
and

Σy(h) := E {[yT,h − yT (h)][yT,h − yT (h)]′} ,
where yT (j), j = 1, . . . , h, is the optimal j-step forecast at origin T based on
the infinite past, that is,

yT (j) =
∞∑

i=1

ΠiyT (j − i)

with yT (i) := yT+i for i ≤ 0 (see Section 11.5). The following result is also
essentially due to Lewis & Reinsel (1985) (see also Lütkepohl (1987, Section
3.3, Proposition 3.2)).

Proposition 15.3 (Asymptotic Distributions of Estimated Forecasts)
Under the conditions of Proposition 15.1, if yt is a Gaussian process and if
independent processes with identical stochastic structures are used for esti-
mation and forecasting, respectively, then√

T

nT
[ỹT (h) − yT (h)] d→N (0,KΣy(h))

for h = 1, 2 . . ..
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Remark 1 The proposition implies that for large samples the forecast vector
ỹT (h) has approximate MSE matrix

Σỹ(h) =
(

1 +
KnT

T

)
Σy(h). (15.3.2)

This result can be seen by noting that

E {[yT,h − ỹT (h)][yT,h − ỹT (h)]′}
= E {[yT,h − yT (h)][yT,h − yT (h)]′}

+ E {[yT (h) − ỹT (h)][yT (h) − ỹT (h)]′}
and approximating the last term via the asymptotic result of Proposition 15.3.

Remark 2 An approximation for the MSE matrix of an h-step forecast ỹT (h)
follows directly from (15.3.2),

Σỹ(h) =
(

1 +
KnT

T

)
Σy(h), h = 1, 2, . . . . (15.3.3)

In Section 3.5.1, we have obtained an approximate MSE matrix

Σŷ(h) = Σy(h) +
1
T
Ω(h) (15.3.4)

for an h-step forecast based on an estimated VAR process with known finite
order. If in Chapter 3 the process mean is known to be zero and is not esti-
mated, it can be shown that Ω(h) approaches zero as h → ∞. In other words,
the MSE part due to estimation variability goes to zero as the forecast horizon
increases. The same does not hold in the present case. In fact, the Σỹ(h)’s are
monotonically nondecreasing for growing h, that is,

Σỹ(h) ≥ Σỹ(i), for h ≥ i.

The explanation for this result is that, under the present assumptions, increas-
ingly many parameters are estimated with growing sample size. For a zero
mean VAR process with known finite order, the optimal forecast approaches
the process mean of zero when the forecast horizon gets large and, thus, the
estimated VAR parameters do not contribute to the forecast uncertainty for
long-run forecasts. The same is not true under the present conditions, where
the VAR order goes to infinity.

Remark 3 We have also seen in Section 3.5.2 that Ω(1) = (Kp + 1)Σu for
a K-dimensional VAR(p) process with estimated intercept term. It is easy to
see that, if the process mean is known to be zero and the mean term is not
estimated, Ω(1) = KpΣu. Hence, in that case,

Σŷ(1) = Σy(1) +
Kp

T
Σu = Σu +

Kp

T
Σu = Σỹ(1),
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if nT = p. In other words, for 1-step ahead forecasts, the two MSE approx-
imations are identical if the same VAR orders are used in both approaches.
It is easy to see that the same does not hold in general for predictions more
than 1 step ahead (see Problem 15.2).

Remark 4 Because forecasts can be obtained from finite order approxima-
tions to infinite order VAR processes, we may also base the prediction tests for
structural change considered in Sections 4.6.2 and 13.5.3 on such approxima-
tions. Of course, in that case the MSE approximation implied by Proposition
15.3 should be used in setting up the test statistics. For instance, a test statis-
tic based on h-step forecasts would be

τ̃h = (yT+h − ỹT (h))′Σ̃ỹ(h)−1(yT+h − ỹT (h)),

where Σ̃ỹ(h) is an estimator of Σỹ(h).

Remark 5 If yt is a process with nonzero mean vector µ, then the sample
mean may be subtracted from the original data and the previous analysis may
be performed with the mean-adjusted data. If the sample mean is added to
the forecasts, an extra term should be added to the approximate MSE matrix.
A term similar to that resulting from an estimated mean term in a finite order
VAR setting with known order may be added (see Problem 3.9, Chapter 3).

15.3.2 An Example

To illustrate the effects of approximating a potentially infinite order VAR
process by a finite order model, we use again the West German invest-
ment/income/consumption data from File E1. The variables y1, y2, and y3

are defined as in Chapter 3, Section 3.2.3, and we use the same sample pe-
riod 1960–1978 and a VAR order nT = 2. That is, we assume that the VAR
order depends on the sample size in such a way that nT = 2 for T = 73.
Note that the condition (15.2.5) for the VAR order is an asymptotic condi-
tion that leaves open the actual choice in finite samples. Therefore, we choose
the VAR order that was suggested by the AIC criterion in Chapter 4 and,
thus, we use the same VAR order as in Chapter 3. As a consequence, the
point forecasts obtained under our present assumptions are the same one gets
from a mean-adjusted model under the conditions of Chapter 3. The inter-
val forecasts obtained under the different sets of assumptions are different for
h > 1, however, because the approximate MSE matrices are different. We
have estimated Σỹ(h) by

Σ̃ỹ(h) =
(

1 +
3nT

T

) h−1∑
i=0

Φ̂iΣ̂uΦ̂
′
i +

1
T
Ĝy(h), (15.3.5)

where the Φ̂i’s and Σ̂u are obtained from the VAR(2) estimates, as in Section
3.5.3, and Ĝy(h)/T is a term that takes account of the fact that the mean
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term is estimated in addition to the VAR coefficients. It is the same term that
is used if a VAR(2) process with true order p = 2 is assumed and the model
is estimated in mean-adjusted form (see Problem 3.9).

Table 15.1. Interval forecasts from a VAR(2) model for the investment/in-
come/consumption example series based on different asymptotic theories

95% interval forecasts
forecast point based on known based on infinite

variable horizon forecast order assumption order assumption

investment 1 −.010 [−.105, .085] [−.105. .085]
2 .012 [−.087, .110] [−.088, .112]
3 .022 [−.075, .119] [−.078, .122]
4 .013 [−.084. .111] [−.088, .114]

income 1 .020 [−.004, .044] [−.004, .044]
2 .020 [−.004, .045] [−.005, .045]
3 .017 [−.007, .042] [−.008, .042]
4 .021 [−.004, .045] [−.005, .047]

consumption 1 .022 [ .002, .041] [ .002, .041]
2 .015 [−.005, .035] [−.005, .035]
3 .020 [−.002, .042] [−.002, .042]
4 .019 [−.003, .041] [−.003, .041]

We have used the approximate forecast MSEs from (15.3.5) to set up fore-
cast intervals under Gaussian assumptions and give them in Table 15.1. For
comparison purposes we also give forecast intervals obtained from a VAR(2)
process in mean-adjusted form based on the asymptotic theory of Chapter
3, assuming that the true order is p = 2. As we know from Remark 3 in
Section 15.3.1, the 1-step forecast MSEs are the same under the two com-
peting assumptions. For larger forecast horizons, most of the intervals based
on the infinite order assumption become slightly wider than those based on
the known finite order assumption, as expected on the basis of Remark 2 in
Section 15.3.2. For our sample size, the differences are quite small, though.

Which of the two sets of forecast intervals should we use in practice? This
question is difficult to answer. Assuming a known finite VAR order is, of
course, more restrictive and less realistic than the assumption of an unknown
and possibly infinite order. The additional uncertainty introduced by the lat-
ter assumption is reflected in the wider forecast intervals. It may be worth
noting, however, that such a result is not necessarily obtained in all practical
situations. In other words, there may be time series and generation processes
for which the infinite order assumption actually leads to smaller forecast in-
tervals than the assumption of a known finite VAR order (see Problem 15.2).
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Under both sets of assumptions, the MSE approximations are derived from
asymptotic theory and little is known about the small sample quality of these
approximations. Both approaches are based on a set of assumptions that may
not hold in practice. Notably the stationarity and normality assumptions may
be doubtful in many practical situations. Given all these reservations, there
is still one argument in favor of the present approach, assuming a potentially
infinite VAR order. For h > 1, the MSE approximation in (15.3.3) is generally
simpler to compute than the one obtained in Chapter 3.

15.4 Impulse Response Analysis and Forecast Error
Variance Decompositions

15.4.1 Asymptotic Theory

For a researcher who does not know the true structure of the data generating
process, it is possible to base an impulse response analysis or forecast error
variance decomposition on an approximating finite order VAR process. Given
the results of Section 15.2, we can now study the consequences of such an
approach. As in Sections 2.3.2 and 2.3.3, the quantities of interest here are
the forecast error impulse responses,

Φi =
i∑

j=1

Φi−jΠj , i = 1, 2, . . . , Φ0 = IK ,

the accumulated forecast error impulse responses,

Ψm =
m∑

i=0

Φi, m = 0, 1, . . . ,

the responses to orthogonalized impulses,

Θi = ΦiP, i = 0, 1, . . . ,

where P is the lower triangular matrix obtained by a Choleski decomposition
of Σu, the accumulated orthogonalized impulse responses,

Ξm =
m∑

i=0

Θi, m = 0, 1, . . . ,

and the forecast error variance components,

ωjk,h =
h−1∑
i=0

(e′jΘiek)2/MSEj(h), h = 1, 2, . . . ,

where ek is the k-th column of IK and
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MSEj(h) =
h−1∑
i=0

e′jΦiΣuΦ
′
iej

is the j-th diagonal element of the MSE matrix, Σy(h), of an h-step forecast.
Estimators of these quantities are obtained from the Π̂i(nT ) and Σ̃u(nT ) in

the obvious way. For instance, estimators for the Φi’s are obtained recursively
as

Φ̃i(nT ) =
i∑

j=1

Φ̃i−j(nT )Π̂j(nT ), i = 1, 2, . . . ,

with Φ̃0(nT ) = IK , and

Θ̃i(nT ) = Φ̃i(nT )P̃ (nT ), i = 0, 1, . . . ,

are estimators of the Θi’s. Here P̃ (nT ) is the unique lower triangular matrix
with positive main diagonal for which

P̃ (nT )P̃ (nT )′ = Σ̃u(nT ).

The asymptotic distributions of all the estimators are given in the next propo-
sition. Proofs, based on Propositions 15.1 and 15.2, are given by Lütkepohl
(1988a) and Lütkepohl & Poskitt (1991).

Proposition 15.4 (Asymptotic Distributions of Impulse Responses)
Under the conditions of Proposition 15.2, the impulse responses and forecast
error variance components have the following asymptotic normal distributions:

√
T vec(Φ̃i(nT ) − Φi)

d→N
⎛⎝0, Σ−1

u ⊗
i−1∑
j=0

ΦjΣuΦ
′
j

⎞⎠ , i = 1, 2, . . . ;

(15.4.1)

√
T vec(Ψ̃m(nT ) − Ψm) d→N

⎛⎝0, Σ−1
u ⊗

m∑
k=1

m∑
l=1

l−1∑
j=0

ΦjΣuΦ
′
k−l+j

⎞⎠ ,

(15.4.2)

m = 1, 2, . . ., with Φj := 0 for j < 0;

√
T vec(Θ̃i(nT ) −Θi)

d→N (0, Ωθ(i)), i = 0, 1, . . . , (15.4.3)

where
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Ωθ(i) =

⎛⎝IK ⊗
i−1∑
j=0

ΦjΣuΦ
′
j

⎞⎠ + (IK ⊗ Φi)HΣσ̃H
′(IK ⊗ Φ′

i),

H = L′
K [LK(IK2 + KKK)(P ⊗ IK)L′

K ]−1,

LK is the ( 1
2K(K + 1) ×K2) elimination matrix,

KKK is the (K2 ×K2) commutation matrix,

and Σσ̃ is the asymptotic covariance matrix of
√
T vech(T−1

∑T
t=1 utu

′
t−Σu);

√
T vec(Ξ̃m(nT ) − Ξm) d→N (0, Ωξ(m)), m = 1, 2, . . . , (15.4.4)

where

Ωξ(m) =
m∑

k=0

m∑
l=0

⎡⎣IK ⊗
l−1∑
j=0

ΦjΣuΦ
′
k−l+j + (IK ⊗ Φl)HΣσ̃H

′(IK ⊗ Φ′
k)

⎤⎦
with Φj := 0 for j < 0;

√
T (ω̃jk,h(nT ) − ωjk,h) d→N (0, σ2

jk,h), h = 1, 2, . . . , j, k = 1, . . . ,K,

(15.4.5)

where

σ2
jk,h =

h−1∑
l=0

h−1∑
m=0

gjk,h(l)

[
IK ⊗

m−1∑
i=0

ΦiΣuΦ
′
l−m+i

+ (IK ⊗ Φm)HΣσ̃H
′(IK ⊗ Φ′

l)

]
gjk,h(m)′

with

gjk,h(m) = 2
[
(e′k ⊗ e′j)(e

′
jΘmek)MSEj(h)

− (e′jΘm ⊗ e′j)
h−1∑
i=0

(e′jΘiek)2
]/

MSEj(h)2.

Remark 1 In the proposition, it is ignored that σ2
jk,h may be zero, in which

case the asymptotic normal distribution is degenerate. In particular, σ2
jk,h = 0

if ωjk,h = 0. This result is easily seen by noting that ωjk,h is zero if and only
if θjk,0 = · · · = θjk,h−1 = 0, where θjk,m is the jk-th element of Θm. Thus,
the asymptotic distribution in (15.4.5) is not immediately useful for testing

H0 : ωjk,h = 0 against H1 : ωjk,h �= 0, (15.4.6)
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which is a set of hypotheses of particular interest in practice. The significance
of ωjk,h may be checked, however, by testing θjk,0 = · · · = θjk,h−1 = 0. Using a
minor generalization of (15.4.3), this hypothesis can be tested (see Lütkepohl
& Poskitt (1991)).

Remark 2 In sharp contrast to the case where the VAR order is assumed
to be known and finite (see Proposition 3.6), the asymptotic variances of all
impulse responses are nonzero in the present case. Another difference between
the finite and infinite order VAR cases is that in the former the asymptotic
standard errors of the Φi and Θi go to zero as i increases, while the covariance
matrix in (15.4.1) is a nondecreasing function of i and the covariance matrix
in (15.4.3) is bounded away from zero, for i > 0.

Remark 3 For i = 1, the asymptotic covariance matrix of Φ̃1(nT ) in (15.4.1)
is Σ−1

u ⊗ Σu. It can be shown that the same asymptotic covariance matrix
is obtained for Φ̂1 from Proposition 3.6, if a VAR(n) process is fitted with
n greater than the true order p (see Lütkepohl (1988a)). A similar result is
obtained for Θ̃i(nT ) and Θ̂i for i = 0, 1 (see Problem 15.4).

Remark 4 The results in Proposition 15.4 can also be used to construct tests
for zero impulse responses. This case was considered by Lütkepohl (1996b).

Remark 5 Although forecast error and orthogonalized impulse responses are
considered only in Proposition 15.4, similar results can also be obtained for
the structural impulse responses discussed in Chapter 9.

15.4.2 An Example

To illustrate the consequences of the finite and infinite VAR order assump-
tions, we use again the VAR(2) model for the investment/income/consumption
data. Of course, the same estimated impulse responses are obtained as in Sec-
tion 3.7. (The intercept form of the model is used now.) The standard errors
are different, however. In Figures 15.1 and 15.2, consumption responses to in-
come impulses are depicted and the two-standard error bounds obtained from
both sets of assumptions are shown. In both figures, the two-standard error
bounds based on Proposition 3.6 decline almost to zero for longer lags while
the two-standard error bounds from Proposition 15.4 are seen to grow with
the time lag. This behavior reflects the additional estimation uncertainty that
results from assuming that the VAR order goes to infinity with the sample
size. Thereby more and more parameters are estimated as the sample size gets
large.

In Table 15.2, forecast error variance decompositions of the system are
shown. Again most standard errors based on the infinite VAR assumption are
slightly larger than those from Chapter 3, which are also given in the table.
Although it is tempting to use the estimated standard errors in checking the
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Fig. 15.2. Estimated responses of consumption to an orthogonalized impulse in
income with two-standard error bounds based on finite and infinite VAR order as-
sumptions.
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Table 15.2. Forecast error variance decompositions of the investment/income/con-
sumption system with standard errors from two different asymptotic theories

proportions of forecast error variance, h periods ahead,
forecast accounted for by innovations ina

forecast horizon investment income consumption
error in h ωj1,h ωj2,h ωj3,h

investment 1 1.000(.000)[.000] .000(.000)[.000] .000(.000)[.000]
(j = 1) 2 .960(.042)[.044] .018(.030)[.030] .023(.031)[.033]

3 .946(.042)[.045] .028(.033)[.033] .026(.029)[.032]
4 .941(.045)[.048] .029(.031)[.032] .030(.032)[.036]

8 .938(.048)[.050] .031(.032)[.034] .032(.035)[.039]

income 1 .018(.031)[.031] .983(.031)[.031] .000(.000)[.000]
(j = 2) 2 .060(.054)[.053] .908(.063)[.064] .032(.037)[.040]

3 .070(.057)[.058] .896(.066)[.068] .035(.039)[.041]
4 .068(.056)[.057] .892(.067)[.069] .039(.041)[.045]

8 .069(.057)[.058] .891(.068)[.070] .040(.041)[.045]

consumption 1 .080(.061)[.061] .273(.086)[.086] .647(.090)[.090]
(j = 3) 2 .077(.059)[.059] .274(.082)[.082] .649(.088)[.088]

3 .130(.080)[.080] .334(.089)[.091] .537(.091)[.092]
4 .129(.079)[.079] .335(.088)[.090] .536(.089)[.091]

8 .129(.080)[.081] .340(.089)[.092] .532(.091)[.093]
aEstimated standard error based on a finite known VAR order assumption in paren-
theses and estimated standard error based on an infinite VAR order assumption in
brackets.

significance of individual forecast error variance components, we know from
Remark 1 of Section 15.4.1 that they are not useful for that purpose because
the asymptotic standard errors from Proposition 15.4 corresponding to zero
forecast error variance components are zero.

15.5 Cointegrated Infinite Order VARs

In Chapter 6, it was discussed that assuming a fixed finite starting date is
advantageous if integrated variables are considered. Therefore, some modi-
fications will be necessary in defining infinite order processes for integrated
variables. Details of the model setup will be given in Section 15.5.1. The prop-
erties of estimators of the parameters of such models are considered in Sec-
tion 15.5.2, and testing for the cointegrating rank will be discussed in Section
15.5.3.
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15.5.1 The Model Setup

The general framework presented in the following is that of Saikkonen (1992)
and Saikkonen & Lütkepohl (1996). Given a K-dimensional system of time
series variables yt with cointegrating rank r, we assume that the variables are
arranged such that for t = 1, 2, . . . ,

y
(1)
t = −β′

(K−r)y
(2)
t + z

(1)
t ,

∆y
(2)
t = z

(2)
t , (15.5.1)

where y
(1)
t and y

(2)
t are (r × 1) and ((K − r) × 1), respectively, such that

yt =

[
y
(1)
t

y
(2)
t

]
,

as in the triangular representation discussed in Section 6.3 (see (6.3.10)).
Hence, β(K−r) is ((K − r) × r) such that[

Ir

β(K−r)

]
is the cointegration matrix and

zt =

[
z
(1)
t

z
(2)
t

]

is a strictly stationary process with E(zt) = 0 and positive definite covariance
matrix Σz = E(ztz

′
t). As a further technical condition which is needed in

some proofs, we also assume that zt has a continuous spectral density matrix
which is positive definite at zero frequency. For a discussion of spectral density
matrices of vector processes see, e.g., Fuller (1976, Section 4.4). The initial
vector y0 is assumed to be such that the process ∆yt is stationary.

In matrix form, the process yt may be written as[
Ir β′

(K−r)

0 IK−r

]
yt =

[
0 0
0 IK−r

]
yt−1 + zt. (15.5.2)

Multiplying by the inverse of the left-hand matrix,[
Ir −β′

(K−r)

0 IK−r

]
,

subtracting yt−1 on both sides of the equation and rearranging terms gives

∆yt = −
[
Ir β′

(K−r)

0 0

]
yt−1 + vt = −

[
β′

0

]
yt−1 + vt, (15.5.3)
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where β′ = [Ir : β′
(K−r)] and

vt =
[
Ir −β′

(K−r)

0 IK−r

]
zt

is a stationary process. It is assumed to have an infinite order VAR represen-
tation,

vt =
∞∑

j=1

Gjvt−j + ut, t ∈ Z, (15.5.4)

where ut is again standard white noise. Notice that, due to the stationarity of
vt, there is no problem in defining it for all integers t. Moreover, because the
process vt is stationary, it also has an MA representation for which we could
make similar assumptions as in (15.2.4). We do not need that representation
here, however, and therefore we formulate the required assumptions directly
for the VAR coefficients. In particular, the Gj ’s are assumed to satisfy

det

⎛⎝IK −
∞∑

j=1

Gjz
j

⎞⎠ �= 0 for |z| ≤ 1 and
∞∑

j=1

j‖Gj‖ < ∞. (15.5.5)

This condition imposes weak restrictions on the autocorrelation structure of
the process vt and is, for example, satisfied for VARMA processes. From the
previous assumptions, it follows that if the infinite order VAR is approximated
by a finite order process, the approximation error gets sufficiently small for
our purposes, if the order of the approximating process is chosen as in (15.2.5)
with

√
T
∑∞

i=nT +1 ‖Gj‖ → 0 as T → ∞.
Defining

G∗
j := −(Gj+1 + · · · + Gn), j = 0, 1, . . . , n− 1,

and

G∗
n−1(L) :=

n−1∑
j=0

G∗
jL

j ,

it follows that

Gn(L) := IK −
n∑

j=1

GjL
j = Gn(1) −G∗

n−1(L)(1 − L) (15.5.6)

(see Problem 15.6). Multiplying (15.5.3) by Gn(L) and rearranging terms gives
the VECM representation

∆yt = αβ′yt−1 +
n∑

j=1

Γj∆yt−j + et, t = n + 1, n + 2, . . . , (15.5.7)
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where

α := −
⎛⎝IK −

n∑
j=1

Gj

⎞⎠[
Ir

0

]
,

et := ut +
∞∑

j=n+1

Gjvt−j

and
n∑

j=1

ΓjL
j =

n∑
j=1

GjL
j + G∗

n−1(L)
[

β′

0

]
L

=
n∑

j=1

(
Gj + G∗

j−1

[
β′

0

])
Lj .

Hence,

Γj = Gj − (Gj + · · · + Gn)
[

β′

0

]
, j = 1, . . . , n

(see Problem 15.7). Although this fact is not specifically indicated, the
coefficient matrices α and Γj , j = 1, . . . , n, depend on n. In particular,
Γn = [0 : Γn2], where Γn2 is (K × (K − r)). It can be shown that as-
sumption (15.5.5) implies that the Γi’s are absolutely summable, that is,
limn→∞

∑n
j=1 ‖Γj‖ exists, and the process yt is well-defined (Phillips & Solo

(1992, 2.1 Lemma)).
Rearranging terms, the VECM (15.5.7) can also be rewritten in levels VAR

form as

yt =
n+1∑
j=1

Πjyt−j + et, t = n + 1, n + 2, . . . , (15.5.8)

where

Π1 = IK + αβ′ + Γ1 = IK + G1 −
[

β′

0

]
,

Πj = Γj − Γj−1 = Gj − [0 : Gj−1,1β′
(K−r) −Gj−1,2], j = 2, . . . , n,

Πn+1 = −Γn.

Here Gj−1,1 and Gj−1,2 are submatrices of Gj−1 consisting of the first r and
last K − r columns, respectively. Thus, although the Γj depend on n, the
same is not true for the Πj , except for Πn+1. In the following subsection, the
asymptotic properties of the LS estimators of the VECM and the levels VAR
representations will be considered.
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15.5.2 Estimation

Suppose a levels VAR(nT + 1) model of the form (15.5.8) is estimated by
multivariate LS based on a sample of size T . Notice that the order of the model
now depends explicitly on the sample size T , as in the case where stationary
processes were approximated by finite order VARs, discussed earlier in this
chapter. We assume again that the VAR order goes to infinity with the sample
size although at a smaller rate than T . The following proposition, which is
similar to Theorem 2 of Saikkonen & Lütkepohl (1996), gives the details.
In stating the proposition, the LS estimators are denoted by Π̂j , Π(n) :=
[Π1, . . . , Πn], and Π̂(n) := [Π̂1, . . . , Π̂n], as before. Now we can present the
result.

Proposition 15.5 (Asymptotic Distribution of the LS Estimator of the VAR
Coefficients)
Suppose that finite order VAR(nT +1) processes are fitted by multivariate LS
to a multiple time series generated by the process specified in Section 15.5.1
and assume that the order nT depends on the sample size T such that

nT → ∞, n3
T /T → 0, and

√
T

∞∑
i=nT +1

‖Gi‖ → 0 as T → ∞.

(15.5.9)

Furthermore, let c1, c2 be fixed constants and f(n) a sequence of nonzero
((Kr + K2n) × 1) vectors such that

0 < c1 ≤ f(n)′f(n) ≤ c2 < ∞ for n = 1, 2, . . . .

Then
√
T − nT f(nT )′[π̂(nT ) − π(nT )]

[f(nT )′(H ′
nT

Γ−1
nT ,V ECMHnT

⊗Σu)f(nT )]1/2

d−→N (0, 1), (15.5.10)

where π(n) := vecΠ(n) and π̂(n) := vec Π̂(n), as in Section 15.2, HnT
is a

((r + KnT ) ×KnT ) matrix defined such that

[Π1 : · · · : ΠnT
] = [α : Γ1 : · · · : ΓnT

]HnT
+ [IK : 0 : · · · : 0]

and

ΓnT ,V ECM := E

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

u
(1)
t−1

∆yt−1

...
∆yt−nT

⎤⎥⎥⎥⎦ [u(1)′
t−1, ∆y′t−1, . . . , ∆y′t−nT

]

⎞⎟⎟⎟⎠ . (15.5.11)

Here u
(1)
t−1 denotes the vector of the first r components of ut−1.
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This proposition can be proven analogously to Theorem 2 in Saikkonen &
Lütkepohl (1996). Clearly, the proposition is similar to Proposition 15.1. Note,
however, that in the present proposition, only the first nT coefficient matrices
are considered, although a VAR(nT +1) process is fitted to the data. Dropping
the last lag in deriving the asymptotic distribution of the estimators ensures
that standard asymptotic properties are obtained. This devise was also used
in Section 7.6.3 in deriving a Wald test for Granger-causality in a finite order
cointegrated VAR context.

Consider now the VECM with nT lagged differences,

∆yt = Πyt−1 +
nT∑
j=1

Γj∆yt−j + et. (15.5.12)

Suppose that the model is also estimated by multivariate LS based on a sample
of size T . The estimators are denoted by Π̂ and Γ̂j and the residuals are
signified as ût(nT ). Using this notation,

Σ̃u =
1

T − nT − 1

T∑
t=nT +2

ût(nT )ût(nT )′ (15.5.13)

is an estimator of the white noise covariance matrix Σu. The loading matrix
α may be estimated as α̂ = Π̂1, where the latter matrix consists of the first
r columns of Π̂, as in the EGLS procedure presented in Section 7.2.2. As in
that procedure, the matrix β′

(K−r) may be estimated as

̂̂β′
(K−r) = (α̂′

Σ̃−1
u α̂)−1α̂′

Σ̃−1
u Π̂2, (15.5.14)

where Π̂2 consists of the last K − r columns of Π̂ (see Remark 4 of Section
7.2.2). The next proposition summarizes the asymptotic properties of the esti-
mators. Proofs can be found in Saikkonen (1992) and Saikkonen & Lütkepohl
(1996).

Proposition 15.6 (Asymptotic Distribution of VECM Estimators)
Under the conditions of Proposition 15.5,

T (̂̂β′
(K−r) − β′

(K−r))
d→

(∫ 1

0

W#
K−rdW

#′
r

)′ (∫ 1

0

W#
K−rW

#′
K−rds

)−1

,

(15.5.15)

where W#
K−r and W#

r are independent (K − r)- and r-dimensional Wiener
processes, respectively, as in Proposition 7.2. Furthermore,

√
T − nT f(nT )′ [̂γ(nT ) − γ(nT )]

[f(nT )′(Γ−1
nT ,V ECM ⊗Σu)f(nT )]1/2

d−→N (0, 1), (15.5.16)

where γ(n) := vec[α : Γ1 : · · · : Γn] and γ̂(n) := vec[α̂ : Γ̂1 : · · · : Γ̂n].
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Notice that the asymptotic distribution of the cointegration parameters
in (15.5.15) is the same as that of the corresponding ML estimator for Gaus-
sian finite order VAR processes, as discussed in Section 7.2 (see in particular
Proposition 7.2 and Remark 3 for Proposition 7.4). The loading and short-
run parameters have asymptotic properties similar to those of finite order
processes as well. Their asymptotic properties are the same that would be ob-
tained if the true β matrix were known and used in the estimation procedure.

Moreover, Saikkonen & Lütkepohl (1996) showed that the white noise
covariance matrix estimator Σ̃u also has similar asymptotic properties as in
the finite order case. Furthermore, they stated slightly more general versions of
Propositions 15.5 and 15.6 and discussed how the results can be used in testing
hypotheses of parameter restrictions. In particular, they considered the case
of testing for Granger-causality. They also discussed adding an intercept term
to the model. Saikkonen & Lütkepohl (2000a) presented extensions which can
be used in deriving, for example, asymptotic properties of impulse responses
in the present framework.

In practice, the cointegrating rank is usually unknown and has to be de-
termined from the given multiple time series. How to do so in the present
framework of an infinite order process is discussed next.

15.5.3 Testing for the Cointegrating Rank

In Section 8.2, we have discussed testing the cointegrating rank of a finite
order VAR process by considering pairs of hypotheses of the form

H0 : rk(Π) = r0 against H1 : r0 < rk(Π) ≤ r1. (15.5.17)

In particular, the cases r1 = r0 + 1 and r1 = K were discussed and suitable
likelihood ratio tests were introduced. Suppose now that the test statistics
are computed in precisely the same way as in Section 8.2.1, based on the
VECM (15.5.12) with nT lagged differences of yt. In other words, we compute
the statistic as if (15.5.12) were a Gaussian process with lag order nT . To
emphasize the dependence on the lag order, we denote the test statistic cor-
responding to the pair of hypotheses in (15.5.17) by λ

(nT )
LR (r0, r1). Lütkepohl

& Saikkonen (1999b) proved the following result.

Proposition 15.7 (Asymptotic Distributions of Tests for the Cointegrating
Rank)
Suppose yt is generated by an infinite order process as described in Section
15.5.1. Moreover, suppose that

nT → ∞ and n3
T /T → 0 as T → ∞. (15.5.18)

Then λ
(nT )
LR (r0, r0 + 1) and λ

(nT )
LR (r0,K) have the same limiting null distribu-

tions as for a Gaussian finite order process given in Proposition 8.2.
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Notice that in this proposition we just have an upper bound for the rate
at which the lag order nT has to go to infinity. No lower bound for the rate
of divergence is needed. In fact, Lütkepohl & Saikkonen (1999b) considered
also processes with nonzero mean term and, in addition, they treated the case
where the lag order is chosen by some model selection procedure instead of
a deterministic rule derived from (15.5.18). In summary, these results show
that as far as asymptotic theory is concerned, the cointegrating rank of an
I(1) process may be chosen on the basis of a finite order approximation rather
than a correctly specified model. This result is not only important because,
in practice, models are usually just approximations to the true DGP and,
hence, allowing explicitly for some approximation error is more realistic, it
is also important because we have proposed this approach for choosing the
cointegrating rank of a VARMA process in Chapter 14, Section 14.4.2.

15.6 Exercises

Problem 15.1
For the invertible MA(1) process yt = ut + Mut−1 and n = 1, 2, determine
the matrix Γn defined in (15.2.7).

Problem 15.2
Suppose the true data generation mechanism is a univariate AR(1) process,
yt = αyt−1 + ut. Assume that a univariate AR(1) is indeed fitted to the data
and compare the resulting approximate forecast MSEs Σŷ(h) (given in Section
3.5) and Σỹ(h) (given in Section 15.3.1) for h = 1, 2, . . .. (Hint: See Lütkepohl
(1987, pp. 76, 77).)

Problem 15.3
Suppose the true data generation process is an invertible MA(1), as in Problem
15.1. Write down explicit expressions for the asymptotic covariance matrices
of Φ̃i(nT ), Θ̃i(nT ), i = 1, 2, and of Ψ̃m(nT ), Ξ̃m(nT ), m = 1, 2.

Problem 15.4
Let Θ̃i(nT ) and Θ̂i be estimators of the orthogonalized impulse responses Θi

obtained under the conditions of Propositions 15.4 and 3.6, respectively. If
the true data generation mechanism is a finite order VAR(p) process and the
actual process fitted to the data has order nT > p, show that the asymptotic
covariance matrices in (15.4.3) and (3.7.8) are identical for i = 0, 1.

Problem 15.5
Consider the investment/income/consumption system of Section 15.3.2 and
fit a VAR(4) process to the data.

(a) Determine 95% interval forecasts for all three variables and forecast hori-
zons h = 1, 2, 3 under the assumption of a known true VAR order of p = 4
and under the assumption of an infinite order true generation process.



15.6 Exercises 553

(b) Determine Φi and Θi impulse responses and their asymptotic standard
errors for i = 1, 2, 3, 4 under both the assumption of a finite and an infinite
true VAR order. Compare the estimated standard errors obtained under
the two alternative scenarios for all variables.

Problem 15.6
Show that the relation in (15.5.6) holds.

Problem 15.7
Derive the model representation (15.5.7). (Hint: See Saikkonen (1992, Section
2).)
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Time Series Topics



16

Multivariate ARCH and GARCH Models

16.1 Background

In the previous chapters, we have discussed modelling the conditional mean
of the data generation process of a multiple time series, conditional on the
past at each particular time point. In that context, the variance or covariance
matrix of the conditional distribution was assumed to be time invariant. In
fact, in much of the discussion, the residuals or forecast errors were assumed
to be independent white noise. Such a simplification is useful and justified in
many applications.

There are also situations, however, when such an assumption is problem-
atic, for instance, when financial time series are being analyzed. To see this,
consider the monthly returns of the DAX (German stock index) for the pe-
riod 1965–1995 depicted in Figure 16.1. The autocorrelations are all within the
±2/

√
T band and, hence, in accordance with the results discussed in Chap-

ter 4, Section 4.4, one may conclude that the returns are not autocorrelated.
If they were not only uncorrelated but also independent, then their squares
were independent too. That this is not the case is clearly seen in the third
panel of Figure 16.1, where also the autocorrelations of the squared returns
are given. Consequently, in this case, assuming independent observations or,
equivalently, independent residuals in the AR(0) model yt = ν + ut is clearly
problematic. Because we have used the independence assumption in deriving
the ±2/

√
T confidence bounds in Chapter 4, Section 4.4, the conclusion of

uncorrelated returns may also be questioned in this case.
The correlations in the squares of the DAX returns shown in Figure 16.1

indicate that there is conditional heteroskedasticity. With a little imagina-
tion, it can also be seen in the figure that the volatility in the DAX returns
changes over time. It is lower in the first half of the sample period than in
the second half. Similar characteristics in many time series, in particular in
financial market series, have motivated the development of specific models for
conditionally heteroskedastic data.
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DAX returns

autocorrelations of returns

autocorrelations of squared returns

Fig. 16.1. Monthly DAX returns for the years 1965–1995 with autocorrelations and
autocorrelations of squared returns.
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It may be tempting to argue that the conditional mean is the optimal fore-
cast and, hence, changes in volatility are of less importance from a forecasting
point of view. This position ignores, however, that the forecast error variances,
that is, the variances of the conditional distributions are needed for setting
up forecast intervals. Taking into account conditional heteroskedasticity is
therefore important also when forecasts of the variables under investigation
are desired. Moreover, for example in financial analysis, forecasts of the fu-
ture volatility of a series under consideration are often of interest to assess
the risk associated with certain assets. In that case, variance forecasts are of
direct interest, of course. Furthermore, the volatility in a market and, hence,
the risk associated with investments in a particular market may have a direct
effect on the expectations of the market participants. Hence, there may be a
feedback from the second to the first moments. Therefore, the emphasis on a
more detailed modelling of the volatility of time series was a natural develop-
ment which was boosted by Engle’s (1982) invention of ARCH (autoregressive
conditional heteroskedasticity) models. By now the acronym ARCH stands for
a wide range of models for changing conditional volatility. Moreover, there is
also some literature on multivariate extensions which are the central topic of
this chapter.

Because many series have a close relationship, it is obvious to conjecture
that an increase, say, in the volatility of one series may have an impact on the
volatility of another series as well. For example, this may occur in exchange
rates of different currencies, in interest rates for bonds of different times to
maturity, or in returns on stocks in a specific segment of the market. Therefore,
multivariate models for conditional heteroskedasticity are of interest.

In the following, a brief review of some facts on univariate ARCH and
generalized ARCH (GARCH) models is given and then multivariate extensions
will be discussed. Part of this chapter reports results from an article by Engle
& Kroner (1995). There are also a number of review articles which cover
multivariate ARCH and GARCH models among other things. Examples are
Bollerslev, Engle & Nelson (1994), Bera & Higgins (1993), Bauwens, Laurent
& Rombouts (2004), Bollerslev, Chou & Kroner (1992), and Pagan (1996).
The latter two articles also survey some of the applied literature.

16.2 Univariate GARCH Models

16.2.1 Definitions

Consider the univariate serially uncorrelated, zero mean process ut. For in-
stance, ut may represent the residuals of an autoregressive process. The
ut are said to follow an autoregressive conditionally heteroskedastic process
of order q (ARCH(q)) if the conditional distribution of ut, given its past
Ωt−1 := {ut−1, ut−2, . . . }, has zero mean and the conditional variance is

σ2
t|t−1 := Var(ut|Ωt−1) = E(u2

t |Ωt−1) = γ0+γ1u
2
t−1+· · ·+γqu

2
t−q, (16.2.1)
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that is, ut|Ωt−1 ∼ (0, σ2
t|t−1). Another, sometimes quite useful way to define

an ARCH process is to specify

ut = σt|t−1εt, εt ∼ i.i.d.(0, 1). (16.2.2)

Here the i.i.d. assumption for εt is slightly more restrictive than the previous
definition which makes statements about the first two moments of the condi-
tional distribution only. In the following, the definition (16.2.2) will be used.
The ut’s, generated in this way, will be serially uncorrelated with mean zero.

Originally, Engle (1982), in his seminal paper on ARCH models, assumed
the conditional distribution to be normal so that

εt ∼ i.i.d.N (0, 1) and ut|Ωt−1 ∼ N (0, σ2
t|t−1). (16.2.3)

Although different distributions were considered later as well, even with this
special distributional assumption the model is capable of generating series
with characteristics similar to those of many observed time series. In par-
ticular, it is capable to generate series with volatility clustering and outliers
similar to the DAX series in Figure 16.1. Even if the conditional distribution
underlying an ARCH(q) model is normal, the unconditional distribution will
generally be nonnormal. In particular, it is leptokurtic, that is, it has more
mass around zero and in the tails than the normal distribution and, hence, it
can produce occasional outliers.

It turns out, however, that, for many series, ARCH processes with fairly
large orders are necessary to capture the dynamics in the conditional vari-
ances. Therefore, Bollerslev (1986) and Taylor (1986) proposed to gain greater
parsimony by extending the model in a similar manner as the AR model
when moving to mixed ARMA models. They suggested the generalized ARCH
(GARCH) model with conditional variances given by

σ2
t|t−1 = γ0 + γ1u

2
t−1 + · · · + γqu

2
t−q + β1σ

2
t−1|t−2 + · · · + βmσ2

t−m|t−m−1.

(16.2.4)

These models are briefly denoted by GARCH(q,m). They generate processes
with existing unconditional variance if and only if the coefficient sum

γ1 + · · · + γq + β1 + · · · + βm < 1. (16.2.5)

If this condition is satisfied, ut has a constant unconditional variance given
by

σ2
u =

γ0

1 − γ1 − · · · − γq − β1 − · · · − βm
. (16.2.6)

The similarity of GARCH models and ARMA models for the conditional
mean can be seen by defining vt := u2

t − σ2
t|t−1, substituting u2

t − vt for σ2
t|t−1

in (16.2.4) and rearranging terms. Thereby we get
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u2
t = γ0 + (β1 + γ1)u2

t−1 + · · · + (βq + γq)u2
t−q

+ vt − β1vt−1 − · · · − βmvt−m (16.2.7)

which is formally an ARMA(q,m) model for u2
t . Here it is assumed without

loss of generality that q ≥ m and βj := 0 for j > m.

16.2.2 Forecasting

Although the conditional expectation of the process ut given Ωt−h is zero and,
hence, the optimal h-step forecasts are all zero for h = 1, 2, . . . , there is an
important difference to the situation where the ut are an independent white
noise process. If the ut are Gaussian N (0, σ2

u), a 1-step ahead (1 − α)100%
forecast interval has the form

ut(1) ± c1−α/2σu,

where ut(1) denotes the forecast, as usual, and c1−α/2 is the relevant 1− α/2
percentage point of the normal distribution (see Section 2.2.3). Thus, the
forecast intervals are of constant width, regardless of the forecast origin t. In
contrast, if ut is a GARCH(q,m) process, the correct 1-step ahead (1−α)100%
forecast interval is

ut(1) ± c1−α/2σt+1|t, (16.2.8)

where the length depends on the history of the process because the conditional
standard deviation, σt+1|t, varies over time.

To illustrate this phenomenon, suppose the mean-adjusted DAX returns
were generated by a GARCH(1, 1) model with conditionally normal compo-
nents and conditional variances

σ2
t|t−1 = 0.0003 + 0.120u2

t−1 + 0.771σ2
t−1|t−2.

This model was actually fitted to the monthly DAX returns by Lütkepohl
(1997) for the period 1960–1991. The 1-step ahead 95% forecast intervals are
shown in Figure 16.2. The unconditional variance is in this case

σ2
u =

γ0

1 − γ1 − β1
=

0.0003
1 − 0.120 − 0.771

= 2.75 × 10−3.

Assuming mistakenly that the data is i.i.d. normal and using the foregoing
white noise variance, results in the constant forecast intervals also shown in
Figure 16.2. It is important to note the implications of these results. The
constant intervals completely ignore the variations in volatility, whereas the
GARCH intervals clearly reflect the greater forecast uncertainty in times of
high volatility and are narrower in times where the stock market is less volatile.

As mentioned earlier, if the residuals follow a normal GARCH process, the
unconditional distribution of the observations will generally be nonnormal.
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Fig. 16.2. 95% 1-step ahead forecast intervals for the DAX returns obtained under
GARCH (- - -) and constant (– –) variance assumptions.

Hence, the constant forecast intervals which have been computed under nor-
mality assumptions may not have the desired 95% probability content because
of the false distributional assumption. The nonnormal unconditional distribu-
tion of GARCH processes also complicates multi-step interval forecasting.
Formulas and properties of multi-step forecasts were discussed by Baillie &
Bollerslev (1992). Without going into details, it may be worth noting that for
a stationary process, when the forecast horizon increases, the optimal forecast
will always approach the process mean with the unconditional variance being
the forecast error variance and the forecast error distribution approaching the
unconditional process distribution, which will generally be nonnormal if the
conditional distribution is normal.

We will now discuss how to extend these concepts to the case of vector
processes. In that context, we will also address the issue of estimating the
parameters of a GARCH model.

16.3 Multivariate GARCH Models

Multivariate extensions of ARCH and GARCH models may be defined in
principle similarly to VAR and VARMA models. Early articles on multivariate
ARCH and GARCH models are Engle, Granger & Kraft (1986), Diebold &
Nerlove (1989), Bollerslev, Engle & Wooldridge (1988). There are a number of
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complications in analyzing and estimating such models which will be discussed
now. The simpler multivariate ARCH models will be considered first.

16.3.1 Multivariate ARCH

Suppose that ut = (u1t, . . . , uKt)′ is a K-dimensional zero mean, serially un-
correlated process which may be the residual process of some dynamic model
and which can be represented as

ut = Σ
1/2
t|t−1εt, (16.3.1)

where εt is K-dimensional i.i.d. white noise, εt ∼ i.i.d. (0, IK), and Σt|t−1 is
the conditional covariance matrix of ut, given ut−1, ut−2, . . . . As usual, Σ1/2

t|t−1

is the symmetric positive definite square root of Σt|t−1 (see Appendix A.9.2
for details on the square root of a positive definite matrix). Obviously, the ut’s
have a conditional distribution, given Ωt−1 := {ut−1, ut−2, . . .}, of the form

ut|Ωt−1 ∼ (0, Σt|t−1). (16.3.2)

They represent a multivariate ARCH(q) process if

vech(Σt|t−1) = γ0 + Γ1vech(ut−1u
′
t−1) + · · · + Γqvech(ut−qu

′
t−q), (16.3.3)

where vech again denotes the half-vectorization operator which stacks the
columns of a square matrix from the diagonal downwards in a vector, γ0 is a
1
2
K(K + 1)-dimensional vector of constants and the Γj ’s are (1

2K(K + 1) ×
1
2K(K+1)) coefficient matrices. Different conditional distributions have been
assumed and analyzed. For example, a multivariate normal conditional distri-
bution may be considered, i.e., εt ∼ N (0, IK), so that ut|Ωt−1 ∼ N (0, Σt|t−1).
Although this distribution is perhaps not the most suitable one for many fi-
nancial time series, it will play a role when parameter estimation is discussed
in Section 16.4. Conditional distributions of processes representing financial
time series are often better represented by more heavy-tailed distributions
such as t-distributions with a small degrees of freedom parameter.

As an example, consider a bivariate (K = 2) ARCH(1) process,

vech
[
σ11,t|t−1 σ12,t|t−1

σ12,t|t−1 σ22,t|t−1

]
=

⎡⎣ σ11,t|t−1

σ12,t|t−1

σ22,t|t−1

⎤⎦
=

⎡⎣ γ10

γ20

γ30

⎤⎦ +

⎡⎣ γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

⎤⎦⎡⎣ u2
1,t−1

u1,t−1u2,t−1

u2
2,t−1

⎤⎦ .

Obviously, even this simple model for a bivariate series has a fair number of
parameters which makes it difficult to handle. In particular, the implications
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of a general model of this type for the relationships between the variables
and their higher order moment properties are not obvious. Therefore, more
restricted models have been proposed. For instance, Bollerslev et al. (1988)
considered diagonal ARCH processes where the Γj matrices are all diagonal.
In the first order case, the model has the form⎡⎣ σ11,t|t−1

σ12,t|t−1

σ22,t|t−1

⎤⎦ =

⎡⎣ γ10

γ20

γ30

⎤⎦ +

⎡⎣ γ11 0 0
0 γ22 0
0 0 γ33

⎤⎦⎡⎣ u2
1,t−1

u1,t−1u2,t−1

u2
2,t−1

⎤⎦ .

Even simple processes of this type can generate rich volatility dynamics.
Still, despite their simpler structure, processes of this type involve nontrivial
technical problems. One of them is that the parameters have to be such that
the conditional covariance matrices Σt|t−1 are all positive definite. To guar-
antee this property, Baba, Engle, Kraft & Kroner (1990) and Engle & Kroner
(1995) investigated the following variant of a multivariate ARCH model,

Σt|t−1 = Γ ∗
0 + Γ ∗

1
′ut−1u

′
t−1Γ

∗
1 + · · · + Γ ∗

q
′ut−qu

′
t−qΓ

∗
q , (16.3.4)

where the Γ ∗
j ’s are each (K×K) matrices. This particular multivariate model

has been christened BEKK model. Here the Σt|t−1 are positive definite if Γ ∗
0

has this property which may be enforced by writing it in a product form,
Γ ∗

0 = C∗
0
′C∗

0 with triangular C∗
0 matrix. Another advantage of this model is

that it is relatively parsimonious. For instance, for a bivariate process with
K = 2 and q = 1, there are only 7 parameters, whereas the full model has 12
coefficients. Moreover, in contrast to the diagonal model, it can produce quite
rich interactions between the conditional second order moments.

16.3.2 MGARCH

In principle, multivariate ARCH models may be generalized in the same way
as in the univariate case. In the multivariate GARCH (MGARCH) model for
ut, the conditional covariance matrices have the form

vech(Σt|t−1) = γ0 +
q∑

j=1

Γjvech(ut−ju
′
t−j) +

m∑
j=1

Gjvech(Σt−j|t−j−1),

(16.3.5)

where the Gj ’s are also fixed ( 1
2
K(K + 1)× 1

2K(K + 1)) coefficient matrices.
For example, for a bivariate GARCH(1, 1) model,

vech
[
σ11,t|t−1 σ12,t|t−1

σ12,t|t−1 σ22,t|t−1

]
=

⎡⎣ σ11,t|t−1

σ12,t|t−1

σ22,t|t−1

⎤⎦
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=

⎡⎣ γ10

γ20

γ30

⎤⎦ +

⎡⎣ γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

⎤⎦⎡⎣ u2
1,t−1

u1,t−1u2,t−1

u2
2,t−1

⎤⎦
+

⎡⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤⎦⎡⎣ σ11,t−1|t−2

σ12,t−1|t−2

σ22,t−1|t−2

⎤⎦ .

A VARMA representation of an MGARCH process may be obtained anal-
ogously to the univariate case (see (16.2.7)) by defining xt := vech(utu

′
t) and

vt := xt − vech(Σt|t−1). Using these specifications and substituting xt − vt

for vech(Σt|t−1), (16.3.5) can be rewritten as

xt = γ0 +
max(q,m)∑

j=1

(Γj + Gj)xt−j + vt −
m∑

j=1

Gjvt−j ,

where Γj = 0 for j > q and Gj = 0 for j > m. This representation is
occasionally useful in deriving properties of MGARCH processes (e.g., Section
16.6.1).

Engle & Kroner (1995) showed that the MGARCH process ut with condi-
tional covariances as given in (16.3.5) is stationary if and only if all eigenvalues
of the matrix

q∑
j=1

Γj +
m∑

j=1

Gj (16.3.6)

have modulus less than one.
The parameter space of an MGARCH model has a large dimension in gen-

eral and needs to be restricted to guarantee uniqueness of the representation
and to obtain suitable properties of the conditional covariances. To reduce the
parameter space, Bollerslev et al. (1988) discussed diagonal MGARCH mod-
els, where the Γj ’s and Gi’s in (16.3.5) are diagonal matrices. Alternatively,
a BEKK GARCH model of the following form may be useful:

Σt|t−1 = C∗
0
′C∗

0 +
N∑

n=1

q∑
j=1

Γ ∗′
jnut−ju

′
t−jΓ

∗
jn +

N∑
n=1

m∑
j=1

G∗′
jnΣt−j|t−j−1G

∗
jn,

(16.3.7)

where again C∗
0 is a triangular (K×K) matrix and the coefficient matrices Γ ∗

jn,
G∗

jn are also (K×K). Given the similarity of MGARCH and VARMA models,
it is clear from Chapter 12, Section 12.1, that restrictions have to be imposed
on the coefficient matrices to ensure uniqueness of the parameterization. Engle
& Kroner (1995) gave the following properties of BEKK GARCH models
which also address the uniqueness problem:
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(1) From the stationarity condition (16.3.6), the BEKK model is seen to be
stationary if all eigenvalues of the matrix

N∑
n=1

q∑
j=1

Γ ∗′
jn ⊗ Γ ∗′

jn +
N∑

n=1

m∑
j=1

G∗′
jn ⊗G∗′

jn (16.3.8)

have modulus less than one.
(2) The BEKK model nests all positive definite diagonal GARCH models,

that is, every diagonal GARCH model with positive definite conditional
covariance matrices has a BEKK representation.

(3) The BEKK model (16.3.7) generates positive definite covariance matrices
Σt|t−1 if Σ0|−1, Σ−1|−2, . . . , Σ−m+1|−m are positive definite and if at least
one of the matrices C∗

0 , G∗
jn, j = 1, . . . ,m, n = 1, . . . , N , is nonsingular

(see Engle & Kroner (1995, Proposition 2.5)).
(4) In the class of BEKK GARCH(1, 1) models with N = 1, the representation

Σt|t−1 = C∗′
0 C∗

0 + Γ ∗′
11ut−1u

′
t−1Γ

∗
11 + G∗′

11Σt−1|t−2G
∗
11

is unique if all diagonal elements of C∗
0 are positive and γ∗

11,1, g
∗
11,1 > 0.

Here γ∗
11,1 and g∗11,1 represent the upper left-hand elements of Γ ∗

11 and
G∗

11, respectively.
(5) For a more general BEKK GARCH(1, 1) model with

Σt|t−1 = C∗′
0 C∗

0 +
N∑

n=1

Γ ∗′
1nut−1u

′
t−1Γ

∗
1n +

N∑
n=1

G∗′
1nΣt−1|t−2G

∗
1n,

uniqueness is achieved by the following restrictions:
(a) All diagonal elements of C∗

0 are positive.
(b) Γ ∗

1n = G∗
1n = 0 for n > K2.

(c) In the matrices Γ ∗
1nj

with nj = K(j−1)+1, . . . ,Kj, and j = 1, . . . ,K,
the first j − 1 columns and the first nj −K(j − 1) − 1 rows are zero.
Moreover, the lower right hand element of Γ ∗

1nj
, γ∗

KK,nj
> 0.

(d) Restrictions analogous to those for the Γ ∗
1n also hold for the G∗

1n.
(Engle & Kroner (1995, Proposition 2.3)).

For illustrative purposes, suppose K = 3 so that N = K2 = 9 and n1 =
1, 2, 3; n2 = 4, 5, 6; n3 = 7, 8, 9. Hence, a unique representation is obtained if
the zero restrictions shown in the following matrices are imposed:

Γ ∗
11 =

⎡⎣ γ∗
11,1 γ∗

12,1 γ∗
13,1

γ∗
21,1 γ∗

22,1 γ∗
23,1

γ∗
31,1 γ∗

32,1 γ∗
33,1

⎤⎦ , Γ ∗
12 =

⎡⎣ 0 0 0
γ∗
21,2 γ∗

22,2 γ∗
23,2

γ∗
31,2 γ∗

32,2 γ∗
33,2

⎤⎦ ,

Γ ∗
13 =

⎡⎣ 0 0 0
0 0 0

γ∗
31,3 γ∗

32,3 γ∗
33,3

⎤⎦ , Γ ∗
14 =

⎡⎣ 0 γ∗
12,4 γ∗

13,4

0 γ∗
22,4 γ∗

23,4

0 γ∗
32,4 γ∗

33,4

⎤⎦ ,
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Γ ∗
15 =

⎡⎣ 0 0 0
0 γ∗

22,5 γ∗
23,5

0 γ∗
32,5 γ∗

33,5

⎤⎦ , Γ ∗
16 =

⎡⎣ 0 0 0
0 0 0
0 γ∗

32,6 γ∗
33,6

⎤⎦ ,

Γ ∗
17 =

⎡⎣ 0 0 γ∗
13,7

0 0 γ∗
23,7

0 0 γ∗
33,7

⎤⎦ , Γ ∗
18 =

⎡⎣ 0 0 0
0 0 γ∗

23,8

0 0 γ∗
33,8

⎤⎦ ,

Γ ∗
19 =

⎡⎣ 0 0 0
0 0 0
0 0 γ∗

33,9

⎤⎦ .

The same zero restrictions are also imposed on the G∗
1n. Of course, in a specific

case, there may be further zero restrictions on the coefficient matrices. In
particular, N may be less than K2. An example of this type is given in Section
16.4.2.

Given the correspondence between GARCH and VARMA models, it should
be clear from the discussion of uniqueness of VARMA representations in Chap-
ter 12 that a unique parameterization of a multivariate GARCH representa-
tion is not a trivial matter. Whether the constraints given here are the most
operational ones in practice remains to be seen. If a unique representation is
set up, estimation becomes possible. This issue will be discussed in Section
16.4.

16.3.3 Other Multivariate ARCH and GARCH Models

Although the BEKK model with low orders may be a relatively parsimonious
representation of the conditional covariance structure of a process, the number
of parameters still grows quickly with the dimension of the underlying system.
Therefore, in practice, it is only feasible if systems with just a few variables
are under consideration and further simplifications were proposed to alleviate
modelling of higher dimensional processes. Some of them can be viewed as
special BEKK models. For example, Lin (1992) specified a factor GARCH
model, where the Γ ∗

1n’s and G∗
1n’s in a BEKK GARCH(1, 1) model are of the

form

Γ ∗
1n = γnηnξ

′
n and G∗

1n = gnηnξ
′
n, n = 1, . . . , N. (16.3.9)

Here γn and gn are scalars and ηn and ξn are (K × 1) vectors satisfying
ξ′nξn = 1, η′nξn = 1 for n = 1, . . . , N and η′nξk = 0 for n �= k. Thus, the Γ ∗

1n’s
and G∗

1n’s have all rank 1.
In some proposals, the conditional covariance matrix has the form

Σt|t−1 = QHt|t−1Q
′, (16.3.10)

where Q is (K ×K) and does not depend on t, whereas Ht|t−1 is a positive
definite (K ×K) matrix which may depend on t. For example, Vrontos, Del-
laportas & Politis (2003) proposed to use a triangular matrix Q and specified
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Ht|t−1 = diag(σ2
1t|t−1, . . . , σ

2
Kt|t−1) (16.3.11)

to be a diagonal matrix with univariate GARCH conditional variances σ2
kt|t−1

on the diagonal. A closely related model, the so-called generalized orthogonal
GARCH model, was proposed by van der Weide (2002).

Clearly, restricting the second moment dynamics to a transformation of
univariate GARCH models as in (16.3.11) is restrictive and, in particular, it
limits the covariance dynamics in a potentially undesired way. Therefore, the
alternative specification

Σt|t−1 = DtRtDt (16.3.12)

was proposed, where restrictions of different forms are specified for the (K×K)
matrices Dt and Rt. For example, if Rt = R is a time invariant correlation
matrix and Dt = diag(σ1t|t−1, . . . , σKt|t−1) is a diagonal matrix with time
varying conditional standard deviations on the diagonal, Bollerslev’s (1990)
constant conditional correlation (CCC) MGARCH model is obtained. Clearly,
in this model, the time invariant R is the correlation matrix corresponding
to the covariance matrix Σt|t−1 for all t. Engle (2002) extended the model by
allowing for richer dynamics and proposed the so-called dynamic conditional
correlation (DCC) model. A related model was also proposed by Tse & Tsui
(2002).

In financial markets, it has been observed frequently that positive and
negative shocks or news have quite different effects (Black (1976)). This so-
called leverage effect can be introduced in different ways in MGARCH models.
For example, Hafner & Herwartz (1998b) and Herwartz & Lütkepohl (2000)
generalized a univariate proposal by Glosten, Jagannathan & Runkle (1993)
and replaced

Γ ∗′
11ut−1u

′
t−1Γ

∗
11 by Γ ∗′

11ut−1u
′
t−1Γ

∗
11 + Γ ∗′

− ut−1u
′
t−1Γ

∗
−I

(
K∑

k=1

ukt < 0

)
(16.3.13)

in a BEKK model with N = 1. Here I(·) denotes an indicator function which
takes the value 1 if the argument is valid and 0 otherwise and Γ ∗

− is an addi-
tional (K ×K) coefficient matrix. Another approach to allow for asymmetry
is to use the so-called exponential GARCH (EGARCH) model proposed by
Nelson (1991). A multivariate version was considered by Braun, Nelson &
Sunier (1995).

A range of other models was also proposed and the literature on MGARCH
models has grown rapidly over the last years. A recent survey was provided by
Bauwens et al. (2004), where more information on the aforementioned models,
further proposals and references can be found.
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16.4 Estimation

16.4.1 Theory

Using Bayes’ theorem, the joint density function of u1, . . . , uT is f(u1, . . . , uT )
= f(u1)f(u2|u1) · · · f(uT |uT−1, . . . , u1). Thus, if in (16.3.1) εt ∼ i.i.d. N (0, IK)
so that the conditional distribution of ut given Ωt−1 is Gaussian and if the
ut are observed quantities, the log-likelihood function of the general GARCH
model described by (16.3.5), for a sample u1, . . . , uT , is given by

ln l(δ) =
T∑

t=1

ln lt(δ), (16.4.1)

where δ = vec(γ0, Γ1, . . . , Γq, G1, . . . , Gm) is the vector of unknown parameters
and

ln lt(δ) = −K

2
ln 2π − 1

2
ln |Σt|t−1| − 1

2
u′

tΣ
−1
t|t−1ut, t = 1, . . . , T, (16.4.2)

where the required initial values for specifying Σt|t−1 are assumed to be avail-
able. Similarly, the log-likelihood may be set up for special cases such as
diagonal or BEKK models.

The likelihood function may be maximized with respect to the parameters
δ by using numerical methods. A closed form solution does not exist because of
the nonlinearity of the function. For uniqueness of the maximum and, hence,
the existence of a unique ML estimator, it is important that an identified,
unique parameterization is used, e.g., the BEKK form of the model with the
restrictions discussed in Section 16.3.2. Of course, if the log-likelihood function
(16.4.1)/(16.4.2) is used although the true distribution of the εt is nonnormal,
the resulting estimators will just be quasi ML estimators. Comte & Lieberman
(2003) showed that quasi ML estimators have the following properties.

Proposition 16.1 (Properties of Quasi ML Estimators of GARCH Models)
Let ut be a BEKK GARCH process satisfying the following conditions:

(a) The parameter space is compact and identification restrictions are im-
posed.

(b) The eigenvalues of the matrix (16.3.6) have modulus less than one.
(c) εt = (ε1t, . . . , εKt)′ ∼ i.i.d. (0, IK) with εit, εjt independent for i �= j

(i, j = 1, . . . ,K) and such that ut admits moments of at least order 8.
Moreover, the εt are continuous random variables with a density which is
positive in a neighborhood of the origin.

(d) The initial values ut, t ≤ 0, are such that the process ut is strictly station-
ary.

Then the quasi ML estimator δ̃ of δ obtained by maximizing the Gaussian
likelihood function exists and is strongly consistent,
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δ̃
a.s.→ δ.

Moreover, δ̃ has an asymptotic normal distribution,
√
T (δ̃ − δ) d→ N (0, C−1

1 C0C
−1
1 ), (16.4.3)

where

C1 = −E

(
∂2 ln lt(δ)
∂δ∂δ′

)
and C0 = E

(
∂ ln lt(δ)

∂δ

∂ ln lt(δ)
∂δ′

)
. (16.4.4)

A number of comments are worth making regarding this proposition.

Remark 1 It can be shown that C0 = C1 if εt is normally distributed. Hence,
in this case, the asymptotic distribution in (16.4.3) becomes N (0, C−1

1 ), that
is, the covariance matrix is the inverse asymptotic information matrix.

Remark 2 The condition of a compact parameter space is typical for nonlin-
ear estimation problems. Although not totally satisfactory, it is not regarded
as very problematic because the compact subset of the Euclidean space to
which it refers may be so large that the condition is not really restrictive. The
assumption regarding the initial values is also not restrictive if the stationar-
ity of the process is accepted. It can be replaced by the assumption that the
initial values are fixed, nonstochastic values.

Remark 3 In contrast, the assumptions regarding the εt are not fully satis-
factory. In particular, the requirement that moments of order 8 have to exist
for ut is undesirable for financial time series where the existence of higher
order moments is regarded as problematic. On the other hand, the theorem
improves on previously available results which shows how difficult it is to de-
rive asymptotic properties of the estimators of MGARCH processes. A number
of other authors have derived more specialized results, notably for univariate
processes (see the review articles mentioned at the end of Section 16.1). For
multivariate GARCH processes, consistency of the quasi ML estimators was
shown by Jeantheau (1998) under the main assumption of a strictly stationary
and ergodic process. Ling & McAleer (2003) derived asymptotic normality of
quasi ML estimators under less restrictive moment assumptions for a VARMA
process with CCC GARCH residuals.

Typically, the ut are residuals of some dynamic model. Suppose they are
the errors of a VAR(p) process, possibly with integrated or cointegrated vari-
ables. Thus, we have a model of the form

yt = ν + A1yt−1 + · · · + Apyt−p + ut.

In this case, the VAR parameters have to be estimated in addition to the coef-
ficients associated with the ut process. Setting up the corresponding Gaussian
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likelihood or quasi likelihood function is not difficult. However, the optimiza-
tion may be a formidable task. Assuming that the numerical problems can
be solved, there is some hope that the asymptotics can also be resolved be-
cause, under quite general conditions, the asymptotic information matrix of
the VAR parameters and the GARCH parameters is block diagonal so that
the estimators of the VAR coefficients are asymptotically independent of the
GARCH parameter estimators. This result also suggests a two step estimation
procedure in which the VAR coefficients ν,A1, . . . , Ap are estimated by LS or,
if restrictions are imposed on the parameters, by EGLS and then a GARCH
model is fitted to the residuals of the first stage estimation.

Given that normality of the conditional distribution of the ut is often dif-
ficult to justify, in particular, in financial applications, it may also be worth
pointing out that ML estimation with other distributions has been studied.
The survey by Bauwens et al. (2004) provides further information and refer-
ences on these issues as well as computational aspects of ML and quasi ML
estimation.

16.4.2 An Example

Two series of daily stock returns (first differences of ln prices) will be used to
illustrate the previous theoretical considerations. In particular, returns of VW
(Volkswagen) common stock (y1t) and preference stock (y2t) for the period
January 1987–December 1992 (1579 observations) are used.1 The two series
are plotted in Figure 16.3. The corresponding logarithms of the price series
are both strongly related to the performance of the VW company and, hence,
they are likely to be related to each other. Therefore, it makes sense to analyze
the stocks as a bivariate series. The ln price series were previously analyzed
by Herwartz & Lütkepohl (2000). In contrast to these authors, we consider
the bivariate series yt = (y1t, y2t)′ of returns. Although the ln prices may be
cointegrated, a preliminary analysis has shown that there is weak evidence of
cointegration at best. Therefore, it seems justified to focus on the returns in
the following.

The two series of stock returns display some changes in their volatility
and there are also some unusually large (in absolute value) observations. Such
values are often classified as outliers. Thus, based on the graphs in Figure
16.3, one may not expect the series to be generated by a Gaussian process
and ARCH or GARCH models may be used to capture the volatility dynamics.

Fitting VAR(p) models of increasing order to the bivariate series yt, it
turns out that AIC and HQ recommend an order of p = 3 while SC suggests
p = 0. Therefore, the residuals of the following estimated VAR(3) model
(with t-values in parentheses) will be used in the following bivariate GARCH
analysis:
1 The price series are from Deutsche Finanzdatenbank Karlsruhe.
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Fig. 16.3. Daily returns of VW common (y1) and preference stock (y2).
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yt =

⎡⎣ −0.24 × 10−3

(−0.5)

−0.42 × 10−3

(−0.8)

⎤⎦ +

⎡⎣ −0.00
(−0.0)

0.02
(0.3)

0.12
(2.0)

−0.13
(−2.3)

⎤⎦ yt−1

+

⎡⎣ −0.18
(−3.2)

0.16
(2.8)

−0.08
(−1.3)

0.03
(0.6)

⎤⎦ yt−2 +

⎡⎣ −0.08
(−1.3)

0.11
(1.9)

−0.01
(−0.2)

0.01
(0.1)

⎤⎦ yt−3 + ût. (16.4.5)

The residual series are plotted in Figure 16.4. They still show volatility clus-
ters and outliers. Hence, there may be conditional heteroskedasticity in the
residuals of model (16.4.5). In that case, it may not be a good strategy to
choose the VAR order first by one of our standard model selection criteria, as
we have done it here. Alternatively, it may be preferable to derive criteria that
allow a simultaneous determination of the joint model for the conditional first
and second moments (see Brooks & Burke (2003)). We will nevertheless use
the residuals from the model (16.4.5) in the subsequent analysis for illustrative
purposes.

Based on the residuals of the model (16.4.5), the following BEKK GARCH-
(1, 1) model was estimated (with t-values in parentheses):

Σt|t−1 =

⎡⎣ 0.004
(2.6)

0.005
(3.2)

0 0.003
(5.5)

⎤⎦⎡⎣ 0.004
(2.6)

0

0.005
(3.2)

0.003
(5.5)

⎤⎦

+

⎡⎣ 0.254
(1.9)

−0.004
(−0.0)

0.040
(0.1)

0.332
(1.1)

⎤⎦ ût−1û
′
t−1

⎡⎣ 0.254
(1.9)

0.040
(0.1)

−0.004
(−0.0)

0.332
(1.1)

⎤⎦

+

⎡⎣ 0.941
(7.8)

0.023
(0.2)

−0.019
(−0.2)

0.864
(17.6)

⎤⎦Σt−1|t−2

⎡⎣ 0.941
(7.8)

−0.019
(−0.2)

0.023
(0.2)

0.864
(17.6)

⎤⎦ .

(16.4.6)

Note that the uniqueness conditions mentioned in Section 16.3.2 are satisfied
here. It is not clear, however, that in the present situation the t-ratios have
standard normal limiting distributions because the assumptions of Proposi-
tion 16.1 are violated. In particular, we are working with residuals from a
previously fitted model rather than with original observations. Still the sizes
of the t-ratios underneath the coefficient estimates indicate some interaction
in the conditional second moments.

It would be helpful to have tools for checking the model quality and for
analyzing the relationships summarized in the model. For model checking,
the estimated εt = Σ

−1/2
t|t−1ut can be used. Standardized estimated εt (divided
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Fig. 16.4. Residual series of model (16.4.5).
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ε̂1t

ε̂2t

Fig. 16.5. Standardized residuals of model (16.4.6) (ε̂1t upper panel, ε̂2t lower
panel).
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by their estimated standard deviations) are plotted in Figure 16.5. Volatility
clusters are not quite so obvious anymore as in Figure 16.4. On the other
hand, outliers are still present which sheds doubt on the normality of the εt.
Some tests for model adequacy will be discussed in the next section.

16.5 Checking MGARCH Models

16.5.1 ARCH-LM and ARCH-Portmanteau Tests

Before an MGARCH model is fitted to the residuals of a VAR or VECM, one
may want to check if ARCH effects are present in the residuals. An LM test
is a standard tool for this purpose (e.g., Doornik & Hendry (1997)). The idea
is to consider the auxiliary model

vech(utu
′
t) = β0 + B1vech(ut−1u

′
t−1) + · · · + Bqvech(ut−qu

′
t−q) + errort,

(16.5.1)

where β0 is 1
2
K(K+1)-dimensional and the Bj ’s are ( 1

2K(K+1)× 1
2K(K+1))

coefficient matrices (j = 1, . . . , q). If all the Bj matrices are zero, there is no
ARCH in the residuals. Therefore, the pair of hypotheses

H0 : B1 = · · · = Bq = 0 versus H1 : B1 �= 0 or · · · or Bq �= 0, (16.5.2)

is checked. It turns out that the corresponding LM statistic can be determined
by replacing all unknown ut’s in (16.5.1) by estimated residuals from a VAR
or VECM, say, and estimating the parameters in the resulting auxiliary model
by LS. Denoting the resulting residual covariance matrix estimator based on
(16.5.1) by Σ̂vech and the corresponding matrix obtained for q = 0 by Σ̂0, the
relevant LM statistic can be shown to be of the form

LMMARCH(q) =
1
2
TK(K + 1) − T tr(Σ̂vechΣ̂

−1
0 ). (16.5.3)

Under the null hypothesis, the statistic has an asymptotic χ2(qK2(K+1)2/4)-
distribution, if ut satisfies standard conditions (see Doornik & Hendry (1997,
Sec. 10.9.2.4)).

In (16.5.1), each of the Bj matrices is of dimension ( 1
2K(K+1)× 1

2K(K+
1)) and, hence, the auxiliary model involves a large number of parameters
even if the order q and the dimension of the process K are only moderate.
Therefore the test is not suitable to check for large q, unless the sample size
is very large too. It is possible, however, to apply the test to each of the K
residual series individually.

From the VARMA representation of an MGARCH process in Section
16.3.2, it can be seen that there is no ARCH in the process ut, if the pro-
cess xt := vech(utu

′
t) has no serial correlation. This observation suggests that
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we may apply a portmanteau test to xt to check for ARCH in ut. Thus, one
may use

QARCH
h := T

h∑
i=1

tr(C ′
iC

−1
0 CiC

−1
0 ) (16.5.4)

or the associated modified version

Q̄ARCH
h := T 2

h∑
i=1

(T − i)−1 tr(C′
iC

−1
0 CiC

−1
0 ) (16.5.5)

where now Ci = T−1
∑T

t=i+1(xt − x)(xt−i − x)′ (i = 0, 1, . . . , h).
The asymptotic χ2-distributions of these tests follow from the results in

Section 4.4.3, if xt is indeed white noise. In practice, it will usually be replaced
by a quantity based on estimation residuals ût. A rigorous treatment of the
properties of the statistics in that case seems to be still missing. In principle,
the ARCH-portmanteau test can also be applied to the individual residual
series.

16.5.2 LM and Portmanteau Tests for Remaining ARCH

In practice, it is also useful to check for remaining ARCH in the residuals of a
fitted ARCH or GARCH model. Such tests are of particular importance in the
present context because low order multivariate models are typically fitted as
a first attempt to account for conditionally heteroskedastic residuals. Higher
order models often have an excessive number of parameters and the estimates
are difficult to compute numerically. Therefore, it makes sense to start with
low order models and increase the order only if the low order model cannot
capture the second order moment dynamics in the data properly. Hence, tests
for remaining ARCH in the residuals of an MGARCH model are needed.

Both the ARCH-LM and the ARCH-portmanteau tests have been used
for this purpose. In that case, the ut’s in the xt vectors are replaced by the
estimated εt from (16.3.1). In other words, ε̃t := Σ̃

−1/2
t|t−1ũt is used instead

of ut. Here ML estimators are signified by a tilde. Whereas the LM tests
maintain their validity under general conditions in the present situation (Engle
& Kroner (1995)), the same is not true for the portmanteau tests. They have
still found widespread use in applied work (see Tse & Tsui (1999) for references
and further discussion).

Again, it may be useful to apply the tests not only to the multivariate
residual vectors but also to the univariate components separately. There are
also other tests for remaining ARCH which have a sounder theoretical ba-
sis than the portmanteau tests (see Bauwens et al. (2004) for a review and
Lundbergh & Teräsvirta (2002) for a discussion of the univariate case).
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16.5.3 Other Diagnostic Tests

Other diagnostic tools for checking the validity of fitted MGARCH models
are also available. In fact, some of the residual diagnostics for VAR models
are also applicable here. Instead of the ut’s, the εt’s should now be used
as the basic residuals. For example, they can be used to perform tests for
nonnormality. Although the necessary extensions are in many cases possible,
some care is needed in the present context. It can by no means be taken for
granted that all the procedures work properly. The case of normality tests and
related caveats when they are applied to GARCH residuals was discussed by
Fiorentini, Sentana & Calzolari (2004).

16.5.4 An Example

As an example, we consider again the VW stock returns. In Section 16.4.2,
we have fitted an MGARCH(1, 1) model because the residuals of the model
(16.4.5) appeared to have volatility clusters. Now we can use ARCH-LM tests
and formally test for conditional heteroskedasticity of the ut’s. Some results
are presented in Table 16.1. Both bivariate and univariate tests applied to the
individual residual series clearly reject the no-ARCH null hypothesis. Thus,
there is strong evidence in favor of conditionally heteroskedastic residuals. We
do not present results of the ARCH-portmanteau test because its validity is
not clear.

Table 16.1. ARCH-LM tests for ût residuals from (16.4.5)

bivariate û1t û2t

test LM(1) LM(4) LM(1) LM(4) LM(1) LM(4)

test value 147.4 245.5 54.9 62.1 56.1 70.8
asymptotic distribution χ2(9) χ2(36) χ2(1) χ2(4) χ2(1) χ2(4)
p-value 0.00 0.00 0.00 0.00 0.00 0.00

Of course, the fact that there may be ARCH in the residuals does not
necessarily mean that an MGARCH(1, 1) process is a suitable model. There-
fore, we also applied tests for remaining ARCH to the residuals ε̃t = Σ̃

−1/2
t|t−1ũt

based on (16.4.6). The test results are given in Table 16.2. Now none of the
ARCH-LM tests rejects the null hypothesis at conventional significance lev-
els. On the other hand, applying nonnormality tests confirms what could have
been conjectured by looking at the residuals in Figure 16.5, namely that, due
to the outliers, normality of the conditional distribution is not likely to be a
reasonable assumption. Thus, it may be worth trying some other distribution
for the εt or some other model than the standard BEKK GARCH(1, 1) we
have presented in Section 16.4.2.
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Table 16.2. ARCH-LM and nonnormality (λ̂sk) tests for ε̂t residuals associated
with (16.4.6)

bivariate ε̂1t ε̂2t

test LM(1) LM(4) λ̂sk LM(1) LM(4) λ̂sk LM(1) LM(4) λ̂sk

test value 10.43 33.48 12770 0.067 0.364 4440 0.099 0.385 10314
asymp. distr. χ2(9) χ2(36) χ2(4) χ2(1) χ2(4) χ2(2) χ2(1) χ2(4) χ2(2)
p-value 0.32 0.59 0.00 0.80 0.99 0.00 0.75 0.98 0.00

16.6 Interpreting GARCH Models

16.6.1 Causality in Variance

As we have seen in Chapter 2, Section 2.3.1, Granger’s definition of causality
is based on forecasts. We have also seen in Chapter 2 that, under suitable
conditions, optimal forecasts are obtained as conditional expectations. There-
fore, Granger-causality may be defined in terms of conditional expectations.
In other words, we may define a time series variable xt to be causal for zt, if

E(zt+1|zt, zt−1, . . . ) �= E(zt+1|zt, zt−1, . . . , xt, xt−1, . . . ). (16.6.1)

This definition suggests a direct extension to higher order conditional mo-
ments. We define xt to be causal for zt in r-th moment if

E(zr
t+1|zt, zt−1, . . . ) �= E(zr

t+1|zt, zt−1, . . . , xt, xt−1, . . . ). (16.6.2)

Thus, (16.6.1) defines causality in mean and considering the central second
moments in (16.6.2) gives a definition of causality in variance which is anal-
ogous to the previous definition of Granger-causality. The interpretation is
also analogous to that of Granger-causality in mean. In other words, if xt

is causal-in-variance for zt, the conditional volatility of zt can be predicted
more precisely by taking into account present and past information in xt than
without taking this information into account.

If the conditional covariance structure can be described by multivariate
ARCH or MGARCH models, the restrictions implied by these definitions are
also similar to those for Granger-causality in VAR and VARMA models (see
Comte & Lieberman (2000)). In other words, they can be described in terms
of zero restrictions on the ARCH or MGARCH parameters. Depending on
the specific parameterization of the MGARCH model, the restrictions can be
nonlinear in the present situation, however. Tests for causality in variance
were proposed and investigated by Cheung & Ng (1996), Hong (2001), and
Pantelidis & Pittis (2004).

It is also possible to generalize the causality definition and specify, for
example, conditions for both the conditional first and second order moments
(e.g., Granger, Robins & Engle (1986)). More generally, one may consider
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the full conditional distributions rather than just specific moments. In other
words, one may define xt to be causal for zt if

Fzt+1|zt,zt−1,...(·) �= Fzt+1|zt,zt−1,...,xt,xt−1,...(·), (16.6.3)

where Fz|x(·) denotes the conditional distribution function of z given x. Gen-
eralizing these concepts to the case where xt and zt are vectors is theoretically
straightforward, as in the case of Granger-causality in mean.

16.6.2 Conditional Moment Profiles and Generalized Impulse
Responses

Impulse responses were used among other tools for analyzing the relations
between the variables of linear models such as VARs and VECMs. In lin-
ear models, they have the advantage of being time invariant and their shape
is invariant to the size and direction of the impulses. These features enable
the analyst to represent the reactions of the variables to impulses hitting the
system in a small set of graphs. GARCH models are nonlinear models, how-
ever. In such models, the situation is quite different. In general, in a nonlinear
model, the marginal effect of an impulse will depend on the state of the sys-
tem when the impulse arrives. Thus, it depends on the history of the variables
and it may be different in each time point during the sample. Moreover, the
shape of the impulse responses will generally depend on the size and direction
of the impulse. For example, quite different reactions may be obtained from
positive and negative impulses. In a linear model, a negative impulse of one
unit induces the same responses of the variables with opposite sign as a posi-
tive impulse of one unit. In contrast, in a nonlinear model, a positive impulse
may, e.g., induce almost no reaction of the variables whereas a corresponding
negative impulse hitting the system at the same state may lead to a strong
reaction. These features are quite plausible in some systems. For example,
if the impulses represent news arriving in a financial market, positive news
may have a quite different effect than negative news. Hence, nonlinear mod-
els clearly have their attractive features for describing economic systems or
phenomena.

Still, the greater flexibility of nonlinear models makes them more difficult
to interpret properly. In fact, it is not obvious how to define impulse responses
of nonlinear models in a meaningful manner. Gallant, Rossi & Tauchen (1993)
proposed so-called conditional moment profiles which may give useful informa-
tion on important features and implications of nonlinear multiple time series
models. In the spirit of their definition, we consider quantities of the general
form

E[g(yt+h)|yt + ξ,Ωt−1] − E[g(yt+h)|yt, Ωt−1], h = 1, 2, . . . , (16.6.4)

where g(·) denotes some function of interest, ξ represents the impulses hitting
the system at time t, and Ωt−1 := (yt−1, yt−2, . . . ) denotes the history of
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the variables at time t. In other words, the conditional expectation of some
quantity of interest, given the history of yt in period t, is compared to the
conditional expectation that is obtained if a shock ξ occurs at time t. For
example, defining

g(yt+h) = [yt+h − E(yt+h|Ωt+h−1)][yt+h −E(yt+h|Ωt+h−1)]′ (16.6.5)

results in conditional volatility profiles, which may be compared to a baseline
profile obtained for a specific history of the process and a zero impulse. Clearly,
in general the conditional moment profiles depend on the history Ωt−1 as well
as the impulse ξ. Similar quantities were also considered by Koop, Pesaran &
Potter (1996) who called them generalized impulse responses.

If models with ARCH or MGARCH errors are used to describe the volatil-
ity dynamics of a financial market, the volatility resulting from the arrival
of news may be of interest (see Engle & Ng (1993)). In this case, using the
function (16.6.5) and comparing conditional covariance matrices

Σt+h|t = E{[yt+h − E(yt+h|Ωt+h−1)][yt+h − E(yt+h|Ωt+h−1)]′|yt, Ωt−1},

based on the actual history at time t, to

Σξ
t+h|t = E{[yt+h−E(yt+h|Ωt+h−1)][yt+h−E(yt+h|Ωt+h−1)]′|yt+ξ,Ωt−1},

for h = 1, 2, . . . , may give an impression of the reactions of the market under
consideration. For instance, for the BEKK GARCH(1, 1) model, we get

Σt+1|t = C∗
0
′C∗

0 + Γ ∗′
11E(utu

′
t|yt, Ωt−1)Γ ∗

11 + G∗′
11Σt|t−1G

∗
11. (16.6.6)

The quantities in (16.6.6) are usually computed using the estimates of the
conditional mean equation and the relevant GARCH volatility model. The
matrix E(utu

′
t|yt, Ωt−1) = utu

′
t is replaced by ûtû

′
t, where the ût are typ-

ically residuals from estimating the conditional mean model. If the corre-
sponding quantities related to an impulse ξ are considered, the impulse is
simply added to the ût. Because Σt+h|t, h = 2, 3, . . ., is a convenient estimator
for E(ut+hu

′
t+h|yt, Ωt−1), recursive forecasts of future volatility, conditional

on information which is available at time t, are computed as:

Σt+h|t = C∗
0
′C∗

0 + Γ ∗′
11Σt+h−1|tΓ ∗

11 + G∗′
11Σt+h−1|tG∗

11, h = 2, 3, . . . .
(16.6.7)

From the conditional covariance matrices, conditional moment profiles are
obtained as differences⎡⎢⎣ φ11t,h(ξ) . . . φ1Kt,h(ξ)

...
. . .

...
φ1Kt,h(ξ) . . . φKKt,h(ξ)

⎤⎥⎦ = Σξ
t+h|t −Σt+h|t. (16.6.8)
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Although these quantities may be interesting to look at, they depend on
t, h, and ξ. Hence, there is a separate impulse response function for each
given t and ξ. In empirical work, it will therefore be necessary to summarize
the wealth of information in the conditional moment profiles in a meaningful
way. In a study of two stock price series, Herwartz & Lütkepohl (2000), for
example, considered the following summary statistics:

• Averages over all histories for different impulse vectors ξ, φ̄ij.,h(ξ) =
T−1

∑T
t=1 φijt,h(ξ).

• Averages over a large range of different impulse vectors ξr, φ̄ijt,h(·) =
R−1

∑R
r=1 φijt,h(ξr), for given values of t and h. Here R is the number of

impulses considered. The impulse ξr may, for instance, be obtained from
the estimated model residuals.

Although these summary statistics condense the information in the condi-
tional moment profiles considerably, they are still a rich source of information
which can be presented in graphs or further condensed by fitting nonpara-
metric density functions or using other summary statistics (see Herwartz &
Lütkepohl (2000)).

Of course, in practice, an additional obstacle is that the actual data gener-
ation process is unknown and estimated models are available at best. In that
case, the conditional moment profiles or generalized impulse responses will be
computed from estimated quantities only. They are therefore also estimates
and it would be useful to have measures for their sampling variability. It is
not clear how this additional information is computed and presented in the
best way in practice. In any case, if only the estimated quantities are available
and presented, it is useful to keep in mind these further limitations when the
results are interpreted.

It is naturally of interest to better understand what the various models for
conditional volatility can tell us about the relations between variables and,
hence, about what is actually going on in a particular market or segment of the
economy. Therefore it is not surprising that the interpretation of MGARCH
models is a field of active research. Some important recent contributions in
addition to those noted earlier are Engle & Ng (1993), Lin (1997), and Hafner
& Herwartz (1998a).

16.7 Problems and Extensions

There are a number of problems associated with ARCH and GARCH mod-
elling. Some of them have been mentioned in earlier sections of this chapter
but may be worth emphasizing again. In addition, there are some problems
which we have not addressed so far.

First, due to the highly nonlinear form of the log-likelihood function and
the potentially large number of parameters in a multivariate GARCH model
which have to satisfy a number of restrictions, computing ML estimates is
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a difficult task. Therefore it is highly desirable to develop fast and robust
optimization algorithms which work well under these particular conditions.
A review and comparison of some of the available software was provided by
Brooks, Burke & Persand (2003).

Secondly, a sound analysis of conditional heteroskedasticity in a multi-
variate time series context requires that at least the asymptotic properties
of the estimators are known. As we have seen in Section 16.4.1, some asymp-
totic theory is available for quasi ML estimators of specific MGARCH models.
Unfortunately, the required conditions are not satisfactory in all situations.
Hence, developing asymptotic theory under more general conditions is desir-
able.

Third, a toolkit for model specification and model checking is available,
as we have seen in Section 16.5. There are some open questions regarding the
statistical properties of these tools, however. Moreover, given the wealth of
possible model specifications, some more refined tools are desirable that help
the analyst to find the best specification for a particular data set and analysis
objective and for discriminating between alternative models.

Fourth, although a range of proposals have been made on how to interpret
multivariate GARCH models, the available tools leave room for improvements.
The nonlinearity of these models makes it more difficult to extract the essential
features than in linear models for the conditional mean.

Finally, there are many features in financial and other economic data
which are not described well by the GARCH models considered in this chap-
ter. Therefore, a range of other models have been proposed that can capture
specific aspects of the distributional properties of financial series in a more
satisfactory way. For example, exogenous variables may be included in a mul-
tivariate GARCH model (see Engle & Kroner (1995)). Also, as mentioned in
Section 16.1, the volatility in a series may have an impact on the conditional
mean. To account for this possibility, it may be useful to allow conditional vari-
ances to enter the conditional mean function (Engle, Lilien & Robins (1987)).
These so-called ARCH-in-mean (ARCH-M) models may also be generalized
to the multivariate case.

Stochastic volatility models represent another approach to modelling time-
varying volatility. In this approach, the conditional covariance matrix depends
on an unobserved latent process and not on past observations as in the ARCH
model. For instance, in the univariate case, letting εt ∼ i.i.d.N (0, 1) and
specifying ut := σtεt, the logarithm of the conditional standard deviation is
assumed to be generated as

lnσt = ϕ lnσt−1 + ηκt,

where κt ∼ i.i.d.N (0, 1) and ϕ and η are constant parameters. A survey
of multivariate stochastic volatility models was given by Ghysels, Harvey &
Renault (1996). It may also be worth noting that, in some sense, random co-
efficient autoregressive models may be regarded as extensions of multivariate
ARCH models (see Wong & Li (1997)).
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16.8 Exercises

Problem 16.1
Write down BEKK GARCH models explicitly for the following combinations
of N and q in (16.3.7):

(N, q) = (1, 1), (2, 1), (1, 2), (2, 2).

Problem 16.2
Write down the factor MGARCH model (16.3.9) explicitly for N = 2.

Problem 16.3
Write down in detail all elements of Σt|t−1 of a factor MGARCH model as
proposed by Vrontos et al. (2003) (see Section 16.3.3) for the case of a bivariate
series (K = 2).

Problem 16.4
Consider the DEM/USD and GBP/USD exchange rate series from

www.jmulti.de → datasets
(File exrate.dat) and perform the following analysis steps:

(a) Eliminate all rows with missing values from the exchange rate data set.
(b) Determine the VAR order by model selection criteria.
(c) Plot the autocorrelations series and the mean-adjusted squared series.

Interpret the plots.
(d) Use ARCH-LM and ARCH-portmanteau tests for the mean-adjusted se-

ries and interpret the results. Apply the tests to the bivariate and the two
univariate series separately and compare the results.

(e) Fit a bivariate BEKK GARCH(1, 1) model to the bivariate series.
(f) Perform model specification tests based on the residuals of the estimated

MGARCH model and interpret the results.

(Hint: A similar data set was analyzed by Herwartz (2004).)



17

Periodic VAR Processes and Intervention

Models

17.1 Introduction

In Part II of the book, we have considered cointegrated VAR models and
we have seen that they give rise to nonstationary processes with potentially
time varying first and second moments. Yet the models have time invariant
coefficients. Nonstationarity, that is, time varying first and/or second moments
of a process, can also be modelled in the framework of time varying coefficient
processes. Suppose, for instance, that the time series under consideration show
a seasonal pattern. In that case, a VAR(p) process with different intercept
terms for each season may be a reasonable model:

yt = νi + A1yt−1 + · · · + Apyt−p + ut. (17.1.1)

Here νi is a (K × 1) intercept vector associated with the i-th season, that is,
in (17.1.1), the time index t is assumed to be associated with the i-th season
of the year. It is easy to see that such a process has a potentially different
mean for each season of the year.

Assuming s seasons, the model (17.1.1) could be written alternatively as

yt = n1tν1 + · · · + nstνs + A1yt−1 + · · · + Apyt−p + ut,

where

nit = 0 or 1 and
s∑

i=1

nit = 1. (17.1.2)

In other words, nit assumes the value of 1 if t belongs to the i-th season and
is zero otherwise, that is, nit is a seasonal dummy variable.

Of course, the model (17.1.1) is covered, e.g., by the set-up of Chapter
10. In a seasonal context, it is possible, however, that the other coefficients
also vary for different seasons. In that case, a more general model may be
adequate:
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yt = νt + A1tyt−1 + · · · + Aptyt−p + ut (17.1.3)

with

Bt := [νt, A1t, . . . , Apt]
= n1t[ν1, A11, . . . , Ap1] + · · · + nst[νs, A1s, . . . , Aps]
= n1tB1 + · · · + nstBs (17.1.4)

and

Σt := E(utu
′
t) = n1tΣ1 + · · · + nstΣs. (17.1.5)

Here the nit are seasonal dummy variables as in (17.1.2), the Bi := [νi, A1i,
. . . , Api] are (K × (Kp + 1)) coefficient matrices, and the Σi are (K × K)
covariance matrices. The model (17.1.3) with periodically varying coefficients
as specified in (17.1.4)/(17.1.5) is a general periodic VAR(p) model, sometimes
abbreviated as PAR(p), with period s. Varying coefficient models of this type
will be discussed in Section 17.3.

The model (17.1.3) can also be used in a situation where a stationary, sta-
ble data generation process is in operation until period T1, say, and then some
outside intervention occurs after which another VAR(p) process generates the
data. This case can be handled within the model class (17.1.3) by defining
s = 2,

n1t =
{

1 for t ≤ T1,
0 for t > T1,

and

n2t =
{

1 for t > T1,
0 for t ≤ T1.

Intervention models of this type will be considered in Section 17.4. Interven-
tions in economic systems may, for instance, be due to legislative activities
or catastrophic weather conditions. Of course, there could be more than one
intervention in the stretch of a time series. The general model (17.1.3) encom-
passes that situation when the dummy variables are chosen appropriately. In
Section 17.2, some properties of the general model (17.1.3) will be given that
can be derived without special assumptions regarding the movement of the
parameters. These properties are valid for both the periodic and intervention
models discussed in Sections 17.3 and 17.4, respectively.

An important characteristic of periodic and intervention models is that
only a finite number of regimes exist that are associated with specific, known
time periods. In other words, the coefficient variations are systematic. Such a
model structure is not realistic in all situations of practical interest. We will
therefore discuss models with randomly varying coefficients in Chapter 18.
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17.2 The VAR(p) Model with Time Varying Coefficients

In this section, we consider the following general form of a K-dimensional
VAR(p) model with time varying coefficients:

yt = νt + A1tyt−1 + · · · + Aptyt−p + ut, t ∈ Z, (17.2.1)

where ut is a zero mean noise process with covariance matrices E(utu
′
t) = Σt.

That is, the ut may have time varying covariance matrices and, thus, may
not be identically distributed. We retain the independence assumption for ut

and us, s �= t. Of course, the constant coefficient VAR(p) model considered in
previous chapters is a special case of (17.2.1). Further special cases are treated
in the next sections. We will now discuss some properties of the general model.

17.2.1 General Properties

To derive general properties, it is convenient to write the model (17.2.1) in
VAR(1) form:

Yt = νt + AtYt−1 + Ut, (17.2.2)

where

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦
(Kp × 1)

, νt :=

⎡⎢⎢⎢⎣
νt

0
...
0

⎤⎥⎥⎥⎦
(Kp × 1)

,

At :=

⎡⎢⎢⎢⎣
A1,t · · · Ap−1,t Ap,t

IK 0 0
. . .

...
...

0 . . . IK 0

⎤⎥⎥⎥⎦
(Kp × Kp)

, Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦
(Kp × 1)

.

By successive substitution we get

Yt =

⎛⎝h−1∏
j=0

At−j

⎞⎠Yt−h +
h−1∑
i=0

⎛⎝i−1∏
j=0

At−j

⎞⎠νt−i +
h−1∑
i=0

⎛⎝i−1∏
j=0

At−j

⎞⎠Ut−i.

(17.2.3)

Defining the (K × Kp) matrix J := [IK : 0] such that yt = JYt and pre-
multiplying (17.2.3) by this matrix gives

yt = J

⎛⎝h−1∏
j=0

At−j

⎞⎠Yt−h +
h−1∑
i=0

Φitνt−i +
h−1∑
i=0

Φitut−i, (17.2.4)
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where

Φit := J

⎛⎝i−1∏
j=0

At−j

⎞⎠J ′ (17.2.5)

and it has been used that J ′JUt = Ut, JUt = ut, and similar results hold for
νt. If

h−1∑
i=0

Φitνt−i

converges to a constant, say µt, for h → ∞, and if the first term on the
right-hand side of (17.2.4) converges to zero in mean square and the last term
converges in mean square as h → ∞, we get the representation

yt = µt +
∞∑

i=0

Φitut−i, (17.2.6)

where µt = E(yt). In the following, it is assumed without further notice that
this representation exists.

It can be used to derive the autocovariance structure of the process. For
instance,

E[(yt − µt)(yt − µt)′] = E

[( ∞∑
j=0

Φjtut−j

)( ∞∑
i=0

Φitut−i

)′]

= E

[ ∞∑
j=0

∞∑
i=0

Φjtut−ju
′
t−iΦ

′
it

]
=

∞∑
i=0

ΦitΣt−iΦ
′
it

and

E[(yt − µt)(yt−1 − µt−1)′] = E

[( ∞∑
j=0

Φjtut−j

)( ∞∑
i=0

Φi,t−1ut−1−i

)′]

= E

[ ∞∑
j=−1

∞∑
i=0

Φj+1,tut−j−1u
′
t−1−iΦ

′
i,t−1

]

=
∞∑

i=0

Φi+1,tΣt−1−iΦ
′
i,t−1.

More generally, for some integer h,

E[(yt − µt)(yt−h − µt−h)′] =
∞∑

i=0

Φi+h,tΣt−h−iΦ
′
i,t−h.

Usually these formulas are not very useful for actually computing the auto-
covariances. They show, however, that the autocovariances generally depend
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on t and h so that the process yt is not stationary. In addition, of course, the
mean vectors µt may be time varying.

Optimal forecasts can be obtained either from (17.2.1) or from (17.2.6).
In the former case, the forecasts can be computed recursively as

yt(h) = νt+h + A1,t+hyt(h− 1) + · · · + Ap,t+hyt(h− p), (17.2.7)

where yt(j) := yt+j for j ≤ 0. Using (17.2.6) gives

yt(h) = µt+h +
∞∑

i=h

Φi,t+hut+h−i (17.2.8)

and the forecast error is

yt+h − yt(h) =
h−1∑
i=0

Φi,t+hut+h−i. (17.2.9)

Hence, the forecast MSE matrices turn out to be

Σt(h) := MSE[yt(h)] =
h−1∑
i=0

Φi,t+hΣt+h−iΦ
′
i,t+h. (17.2.10)

We will discuss some basics of ML estimation for the general model (17.2.1)
next.

17.2.2 ML Estimation

Although specific results require specific assumptions, it is useful to establish
some general results related to ML estimation for Gaussian processes first.
We write the model (17.2.1) as

yt = BtZt−1 + ut, (17.2.11)

where Bt := [νt, A1t, . . . , Apt], Zt−1 := (1, Y ′
t−1)

′, and we assume that the
(K × (Kp + 1)) matrices Bt depend on an (N × 1) vector γ of fixed, time
invariant parameters, that is, Bt = Bt(γ). Furthermore, the Σt are assumed
to depend on an (M×1) vector σ of fixed parameters. The vector σ is disjoint
of and unrelated with γ. Examples where this situation arises will be seen in
the next sections. One example, of course, is a constant coefficient model,
where Bt = B = [ν,A1, . . . , Ap] and Σt = Σu for all t. Here we may choose
γ = vec(B) and σ = vech(Σu) if no further restrictions are imposed.

Assuming that ut is a Gaussian noise process, that is, ut ∼ N (0, Σt), the
log-likelihood function of our general model is

ln l(γ,σ) = −KT

2
ln 2π − 1

2

T∑
t=1

ln |Σt| − 1
2

T∑
t=1

u′
tΣ

−1
t ut, (17.2.12)
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where any initial condition terms are ignored. The corresponding normal equa-
tions are

0 =
∂ ln l
∂γ

= −
T∑

t=1

∂u′
t

∂γ
Σ−1

t ut

= −
T∑

t=1

∂(yt −BtZt−1)′

∂γ
Σ−1

t ut

=
T∑

t=1

∂ vec(Bt)′

∂γ
(Zt−1 ⊗ IK)Σ−1

t ut

=
T∑

t=1

∂ vec(Bt)′

∂γ
Σ−1

t utZ
′
t−1 (17.2.13)

and

0 =
∂ ln l
∂σ

= −1
2

∑
t

[
∂ vec(Σt)′

∂σ

∂ ln |Σt|
∂ vec(Σt)

]
−1

2

∑
t

[
∂ vec(Σt)′

∂σ

∂u′
tΣ

−1
t ut

∂ vec(Σt)

]
= −1

2

∑
t

[
∂ vec(Σt)′

∂σ
vec(Σ−1

t −Σ−1
t utu

′
tΣ

−1
t )

]
. (17.2.14)

Even if ∂ vec(Bt)′/∂γ is a matrix that does not depend on γ, (17.2.13) is in
general a system of equations which is nonlinear in γ and σ because ut =
yt−BtZt−1 involves γ. However, we will see in the next sections that in many
cases of interest, (17.2.13) reduces to a linear system which is easy to solve.
Also, a solution of (17.2.14) is easy to obtain under the conditions of the next
sections.

It is furthermore possible to derive an expression for the information ma-
trix associated with the general log-likelihood function (17.2.12). The second
partial derivatives with respect to γ are

∂2 ln l
∂γ∂γ′ = −

∑
t

[
∂ vec(Bt)′

∂γ
(Zt−1 ⊗ IK)Σ−1

t (Z ′
t−1 ⊗ IK)

∂ vec(Bt)
∂γ′

]
+ terms with mean zero

= −
∑

t

[
∂ vec(Bt)′

∂γ
(Zt−1Z

′
t−1 ⊗Σ−1

t )
∂ vec(Bt)

∂γ′

]
+ terms with mean zero. (17.2.15)

Assuming that ∂ vec(Σt)′/∂σ does not depend on σ and, thus, the second
order partial derivatives of Σt with respect to the elements of σ are zero, we
get
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∂2 ln l
∂σ∂σ′ = −1

2

∑
t

(
∂ vec(Σt)′

∂σ

[
∂ vec(Σ−1

t )
∂σ′

−(IK ⊗Σ−1
t utu

′
t)
∂ vec(Σ−1

t )
∂σ′

−(Σ−1
t utu

′
t ⊗ IK)

∂ vec(Σ−1
t )

∂σ′

])
=

1
2

∑
t

[
∂ vec(Σt)′

∂σ
(Σ−1

t ⊗Σ−1
t −Σ−1

t ⊗Σ−1
t utu

′
tΣ

−1
t

−Σ−1
t utu

′
tΣ

−1
t ⊗Σ−1

t )
∂ vec(Σt)

∂σ′

]
. (17.2.16)

The assumption of zero second partial derivatives of Σt with respect to σ will
be satisfied in all cases of interest in the following sections. Furthermore, it is
easy to see that under the present assumptions

E[∂2 ln l/∂γ∂σ′] = 0.

Consequently, the information matrix becomes

I(γ,σ) = E

⎡⎢⎢⎣ ∂2(− ln l)

∂

[
γ
σ

]
∂(γ ′,σ′)

⎤⎥⎥⎦ = −E

⎡⎢⎢⎣ ∂2 ln l

∂

[
γ
σ

]
∂(γ′,σ′)

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
∑

t

[
∂ vec(Bt)′

∂γ
[E(Zt−1Z

′
t−1) ⊗Σ−1

t ]
∂ vec(Bt)

∂γ′

]
0

0
1
2

∑
t

[
∂ vec(Σt)′

∂σ
(Σ−1

t ⊗Σ−1
t )

∂ vec(Σt)
∂σ′

]
⎤⎥⎥⎥⎥⎦ .

(17.2.17)

Although these expressions look a bit unwieldy in their present general form,
they are quite handy if special assumptions regarding the time variations of
the coefficients are made. We will now turn to such special types of time
varying coefficient VAR models.

17.3 Periodic Processes

As we have seen in Section 17.1, in periodic VAR or PAR processes the coef-
ficients vary periodically with period s, say. In other words,

yt = νt + AtYt−1 + ut, (17.3.1)

where
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νt = n1tν1 + · · · + nstνs, (K × 1)

At = [A1t, . . . , Apt] = n1tA1 + · · · + nstAs, (K ×Kp) (17.3.2)

Σt = E(utu
′
t) = n1tΣ1 + · · · + nstΣs, (K ×K)

and the nit are seasonal dummy variables which have a value of one if t
is associated with the i-th season and zero otherwise. Obviously, the gen-
eral framework of the previous section encompasses this model. Hence, some
properties can be obtained by substituting the expressions from (17.3.2) in
the general formulas of the previous section. For periodic processes, however,
many properties are more easily derived via another approach which will be
introduced and exploited in the next subsection.

Special models arise if only a subset of the parameters vary periodically.
For instance, if Σi = Σ1 and Ai = A1 for i = 1, . . . , s, we have a model with
seasonal means and otherwise time invariant structure. Simplifications of this
kind are useful in practice because they imply a reduction in the number of
free parameters to be estimated and thereby result in more efficient estimates
and forecasts, at least in large samples. A special case of foremost interest is, of
course, a non-periodic, constant coefficient VAR model. If the data generation
process turns out to be of that type, the interpretation and analysis is greatly
simplified. We will consider estimation and tests of various sets of relevant
hypotheses in Subsection 17.3.2.

17.3.1 A VAR Representation with Time Invariant Coefficients

Suppose we have a quarterly process with period s = 4 and y1 belongs to the
first quarter. Then we may define an annual process with vectors

y1 :=

⎡⎢⎢⎣
y4

y3

y2

y1

⎤⎥⎥⎦, y2 :=

⎡⎢⎢⎣
y8

y7

y6

y5

⎤⎥⎥⎦, . . . , yτ :=

⎡⎢⎢⎣
y4τ

y4τ−1

y4τ−2

y4τ−3

⎤⎥⎥⎦ , . . .

This process has a representation with time invariant coefficient matrices. For
instance, if the process for each quarter is a VAR(1),

yt = νt + A1,tyt−1 + ut

= νi + A1,iyt−1 + ut, if t belongs to the i-th quarter,

then the process yt has the representation⎡⎢⎢⎣
IK −A1,4 0 0
0 IK −A1,3 0
0 0 IK −A1,2

0 0 0 IK

⎤⎥⎥⎦
⎡⎢⎢⎣

y4τ

y4τ−1

y4τ−2

y4τ−3

⎤⎥⎥⎦
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=

⎡⎢⎢⎣
ν4

ν3

ν2

ν1

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0

A1,1 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

y4τ−4

y4τ−5

y4τ−6

y4τ−7

⎤⎥⎥⎦ +

⎡⎢⎢⎣
u4τ

u4τ−1

u4τ−2

u4τ−3

⎤⎥⎥⎦ . (17.3.3)

More generally, if we have s different regimes (seasons per year) with con-
stant parameters within each regime and if we assume that y1 belongs to the
first season, we may define the sK-dimensional process

yτ :=

⎡⎢⎢⎢⎣
ysτ

ysτ−1

...
ysτ−s+1

⎤⎥⎥⎥⎦
(sK × 1)

, τ = 0,±1,±2, . . . .

This process has the following VAR(P ) representation, where P is the smallest
integer greater than or equal to p/s:

A0yτ = ν + A1yτ−1 + · · · + AP yτ−P + uτ , (17.3.4)

where

A0 :=

⎡⎢⎢⎢⎢⎢⎢⎣

IK −A1,s −A2,s . . . −As−1,s

0 IK −A1,s−1 . . . −A2,s−1

...
. . .

...
...

. . .
...

0 0 0 . . . IK

⎤⎥⎥⎥⎥⎥⎥⎦
(sK×sK)

, ν :=

⎡⎢⎢⎢⎣
νs

νs−1

...
ν1

⎤⎥⎥⎥⎦
(sK×1)

,

Ai :=

⎡⎢⎢⎢⎣
Ais,s Ais+1,s . . . A(i+1)s−1,s

Ais−1,s−1 Ais,s−1 . . . A(i+1)s−2,s−1

...
...

...
Ais−s+1,1 Ais−s+2,1 . . . Ais,1

⎤⎥⎥⎥⎦
(sK×sK)

, i = 1, . . . , P,

uτ :=

⎡⎢⎢⎢⎣
usτ

usτ−1

...
usτ−s+1

⎤⎥⎥⎥⎦
(sK×1)

.

All Ai,j ’s with i > p are zero.
The process yτ is stationary if the yt’s have bounded first and second

moments and the VAR operator is stable, that is,

det(A0 − A1z − · · · − AP z
P )

= det(IsK − A−1
0 A1z − · · · − A−1

0 AP z
P ) �= 0 for |z| ≤ 1. (17.3.5)
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Note that det(A0) = 1.
For the example process (17.3.3), we have

A−1
0 =

⎡⎢⎢⎣
IK A1,4 A1,4A1,3 A1,4A1,3A1,2

0 IK A1,3 A1,3A1,2

0 0 IK A1,2

0 0 0 IK

⎤⎥⎥⎦
and, thus,

A−1
0 A1 =

⎡⎢⎢⎣
A1,4A1,3A1,2A1,1 0 0 0
A1,3A1,2A1,1 0 0 0
A1,2A1,1 0 0 0
A1,1 0 0 0

⎤⎥⎥⎦.
Hence,

det(A0 − A1z) = det(IK −A1,4A1,3A1,2A1,1z) �= 0 for |z| ≤ 1

is the stability condition for the example process. If this condition is satisfied,
we can, for instance, compute the autocovariances of the process yτ in the
usual way. Note, however, that stationarity of yτ does not imply stationarity
of the original process yt. Even if yτ has a time invariant mean vector

µ =

⎡⎢⎢⎣
µ4

µ3

µ2

µ1

⎤⎥⎥⎦,
for example, the mean vectors µ4 and µ3 associated with the fourth and
third quarters, respectively, may be different. Similar thoughts apply for other
quarters and for the autocovariances associated with different quarters.

The process yτ corresponding to a periodic process yt can also be used to
determine an upper bound for the order p of the latter. If yτ is stationary and
its order P is selected in the usual way, we know that p ≤ sP .

Optimal forecasts of a periodic process are easily obtained from the recur-
sions (17.2.7). Assuming that the forecast origin t is associated with the last
period of the year, we get

yt(1) = ν1 + A1,1yt + · · · + Ap,1yt−p+1

yt(2) = ν2 + A1,2yt(1) + · · · + Ap,2yt−p+2

...
yt(s) = νs + A1,syt(s− 1) + · · · + Ap,syt(s− p)

yt(s + 1) = ν1 + A1,1yt(s) + · · · + Ap,1yt(s + 1 − p)
...
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17.3.2 ML Estimation and Testing for Time Varying Coefficients

The general framework for ML estimation of the periodic VAR(p) model given
in (17.3.1)/(17.3.2), under Gaussian assumptions, is laid out in Section 17.2.2.
For the present case, however, a number of simplifications are obtained and
closed form expressions can be given for the estimators. In the following, we
discuss estimation under various types of restrictions and we consider tests
of time invariance of different groups of coefficients. Most of the tests are
likelihood ratio (LR) tests, the general form of which is discussed in Appendix
C.7. Recall that the LR statistic is

λLR = 2[ln l(δ̃) − ln l(δ̃r)], (17.3.6)

where δ̃ is the unconstrained ML estimator and δ̃r is the restricted ML estima-
tor obtained by maximizing the likelihood function under the null hypothesis
H0. If H0 is true, under general conditions, the LR statistic has an asymp-
totic χ2-distribution with degrees of freedom equal to the number of linearly
independent restrictions. In the following, we will give the maximum of the
likelihood function under various sets of restrictions in addition to the ML
estimators. These results will enable us to set up LR tests for different sets of
restrictions.

For the present case of a periodic VAR model, the normal equations given
in (17.2.13) reduce to

0 =
∂ ln l
∂γ

=
T∑

t=1

∂ vec(n1tB1 + · · · + nstBs)′

∂γ
Σ−1

t utZ
′
t−1

=
s∑

i=1

T∑
t=1

nit
∂ vec(Bi)′

∂γ
Σ−1

i utZ
′
t−1, (17.3.7)

where Bi := [νi, A1i, . . . , Api] := [νi, Ai], i = 1, . . . , s, and

Σ−1
t =

(
s∑

i=1

nitΣi

)−1

=
∑

i

nitΣ
−1
i

has been used. Moreover, (17.2.14) reduces to

0 =
∂ ln l
∂σ

= −1
2

s∑
i=1

T∑
t=1

nit

[
∂ vec(Σi)′

∂σ
vec(Σ−1

i −Σ−1
i utu

′
tΣ

−1
i )

]
.

(17.3.8)

We will see in the following that the solution of these sets of normal equations
is relatively easy in many situations. The discussion follows Lütkepohl (1992).
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All Coefficients Time Varying

We begin with a periodic VAR(p) model for which all coefficients are time
varying, that is,

H1 : Bt = [νt, At] =
s∑

i=1

nitBi, Σt =
s∑

i=1

nitΣi. (17.3.9)

For this case

γ = vec[B1, . . . , Bs]

and

σ = [vech(Σ1)′, . . . , vech(Σs)′]′.

Using a little algebra, the ML estimators can be obtained from (17.3.7) and
(17.3.8):

B̃
(1)
i =

(
T∑

t=1

nitytZ
′
t−1

)(
T∑

t=1

nitZt−1Z
′
t−1

)−1

(17.3.10)

and

Σ̃
(1)
i =

∑
t

nit(yt − B̃
(1)
i Zt−1)(yt − B̃

(1)
i Zt−1)′/T n̄i, (17.3.11)

for i = 1, . . . , s. Here n̄i =
∑T

t=1 nit/T . Except for an additive constant, the
corresponding maximum of the log-likelihood function is

λ1 := −1
2

∑
t

ln |Σ̃(1)
t | = −1

2
T (n̄1 ln |Σ̃(1)

1 | + · · · + n̄s ln |Σ̃(1)
s |). (17.3.12)

All Coefficients Time Invariant

The next case we consider is our well-known basic stationary VAR(p) model,
where all the coefficients are time invariant:

H2 : Bi = B1, Σi = Σ1, i = 2, . . . , s. (17.3.13)

For this case, we know that the ML estimators are

B̃
(2)
1 =

(∑
t

ytZ
′
t−1

)(∑
t

Zt−1Z
′
t−1

)−1

(17.3.14)

and
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Σ̃
(2)
1 =

∑
t

(yt − B̃
(2)
1 Zt−1)(yt − B̃

(2)
1 Zt−1)′/T. (17.3.15)

The maximum log-likelihood is, except for an additive constant,

λ2 := −1
2T ln |Σ̃(2)

1 |. (17.3.16)

This case is considered here because H2 is a null hypothesis of foremost interest
in the present context. Of course, if it turns out that H2 is true, we can
proceed with a standard VAR analysis. The slight change of notation relative
to previous chapters is useful here to avoid confusion.

Time Invariant White Noise

If just the white noise covariance matrix is time invariant while the other
coefficients vary, we have

H3 : Bt = [νt, At] =
s∑

i=1

nitBi and Σi = Σ1, i = 2, . . . , s. (17.3.17)

For this case, it follows from (17.3.7) that the ML estimators of the Bi are

B̃
(3)
i = B̃

(1)
i , i = 1, . . . , s, (17.3.18)

and (17.3.8) implies

Σ̃
(3)
1 =

s∑
i=1

T∑
t=1

nit(yt − B̃
(1)
i Zt−1)(yt − B̃

(1)
i Zt−1)′/T. (17.3.19)

The resulting maximum log-likelihood turns out to be

λ3 := − 1
2T ln |Σ̃(3)

1 |, (17.3.20)

where again an additive constant is suppressed.

Time Invariant Covariance Structure

If just the intercept terms and, hence, the means are time varying, we have the
conventional case of a model with seasonal dummies and otherwise constant
coefficients. In the present framework, this situation may be represented as

H4 : νt =
s∑

i=1

nitνi and Ai = A1, Σi = Σ1, i = 2, . . . , s. (17.3.21)

Under this hypothesis, the ML estimators are easily obtained by defining
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Wt−1 =

⎡⎢⎢⎢⎣
n1,t

...
ns,t

Yt−1

⎤⎥⎥⎥⎦ and C = [ν1, . . . , νs, A1].

The ML estimator of C is

C̃ =

(∑
t

ytW
′
t−1

)(∑
t

Wt−1W
′
t−1

)−1

(17.3.22)

and that of Σ1 is

Σ̃
(4)
1 =

∑
t

(yt − C̃Wt−1)(yt − C̃Wt−1)′/T. (17.3.23)

Dropping again an additive constant, the corresponding maximum of the log-
likelihood function is

λ4 := −1
2
T ln |Σ̃(4)

1 |. (17.3.24)

LR Tests

In Table 17.1, the LR tests of some hypotheses of interest are listed. The LR
statistics, under general conditions, all have asymptotic χ2-distributions with
the given degrees of freedom. For this result to hold, it is important that the
n̄i are approximately equal for i = 1, . . . , s, as assumed in periodic models.
Moreover, the corresponding yτ process is assumed to be stable. In Chapter
8, Section 8.4.3, we have argued that if integrated variables are involved and
VECMs are considered, the degrees of freedom of Chow tests have to be
adjusted relative to the stable case. Because Chow tests are formally similar to
some of the tests considered here, it is perhaps not surprising that adjustments
will also be necessary in the present case if I(1) variables are involved. The
reader is invited to check the degrees of freedom listed in Table 17.1 for the
case of a stable underlying yτ process by counting the number of restrictions
imposed under the null hypothesis.

In Chapter 4, Section 4.6.1, we have argued that the asymptotic distribu-
tions of similar LR tests are poor guides for the actual small sample distribu-
tions. Therefore, the same problem must be expected to prevail in the present
case. Using bootstrap versions of the present tests may improve the situation
(see Appendix D.3).

Testing a Model with Time Varying Error Covariance Matrix
Only Against One Where All Coefficients Are Time Varying

ML estimation of models for which all coefficients are time invariant except
for the error covariance matrix is complicated by the implied nonlinearity of
the normal equations (17.3.7). Thus, LR tests involving the hypothesis
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Table 17.1. LR tests for time varying parameters

null alternative LR statistic
hypothesis hypothesis λLR degrees of freedom

H2 H1 2(λ1 − λ2) (s − 1)K[K(p + 1
2
) + 3

2
]

H3 H1 2(λ1 − λ3) (s − 1)K(K + 1)/2

H4 H1 2(λ1 − λ4) (s − 1)K[Kp + (K + 1)/2]

H2 H3 2(λ3 − λ2) (s − 1)K(Kp + 1)

H2 H4 2(λ4 − λ2) (s − 1)K

H5 : Bi = B1, i = 2, . . . , s and Σt =
s∑

i=1

nitΣi (17.3.25)

are computationally unattractive. If we wish to test H5 against a model for
which all parameters are time varying (H5 against H1), estimation under the
alternative is straightforward and, therefore, a Wald test may be considered.

Just as a reminder, if the unrestricted estimator γ̃ of a parameter vector
γ has an asymptotic normal distribution,

√
T (γ̃ − γ) d→N (0, Σγ̃),

and the restrictions under the null hypothesis are given in the form Rγ = 0,
then the Wald statistic is of the form

λW = T γ̃′R′(RΣ̃γ̃R
′)−1Rγ̃, (17.3.26)

where Σ̃γ̃ is a consistent estimator of Σγ̃ . If rk(R) = N , RΣγ̃R
′ is invertible,

and the null hypothesis is true, the Wald statistic has an asymptotic χ2(N)-
distribution (see Appendix C.7).

In the case of interest here, the restrictions relate to the VAR coefficients
and intercept terms only. Therefore, we consider the s(K2p+K)-dimensional
vector γ = vec[B1, . . . , Bs]. The restrictions under the null hypothesis H5 can
be written as Rγ = 0 with

R =

⎡⎢⎣ 1 −1 0
...

. . .
1 0 −1

⎤⎥⎦
((s−1)×s)

⊗IK2p+K . (17.3.27)

Denoting the unrestricted ML estimator of γ by γ̃, standard asymptotic the-
ory implies that it has an asymptotic normal distribution with

Σγ̃ = lim
T→∞

TI(γ)−1
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and

I(γ) = −E

[
∂2 ln l
∂γ∂γ′

]
is the upper left-hand block of the information matrix (17.2.17). For the
present case, I(γ) is seen to be block diagonal with the i-th ((K2p + K) ×
(K2p + K)) block on the diagonal being

−E

[
∂2 ln l
∂γi∂γ ′

i

]
= E

[∑
t

nitZt−1Z
′
t−1

]
⊗Σ−1

i ,

where γi = vec(Bi). Thus Σγ̃ is also block-diagonal and, under standard
assumptions, the i-th block is consistently estimated by(

1
T

∑
t

nitZt−1Z
′
t−1

)−1

⊗ Σ̃
(1)
i .

The resulting estimator Σ̃γ̃ of Σγ̃ may be used in (17.3.26). If H5 is true, λW

has an asymptotic χ2-distribution with (s− 1)K(Kp+ 1) degrees of freedom.

Testing a Time Invariant Model Against One with Time Varying
Error Covariance

In order to test a stationary constant parameter model (H2) against one,
where the error covariances vary (H5), an LM (Lagrange multiplier) test is
convenient because it requires ML estimation under the null hypothesis only.
In Appendix C.7, the general form of the LM statistic is given as

λLM = s(γ̃r, σ̃r)′I(γ̃r, σ̃r)−1s(γ̃r, σ̃r), (17.3.28)

where I(γ̃r, σ̃r) is the information matrix of the unrestricted model evaluated
at the restricted ML estimators obtained under the null hypothesis and

s(γ,σ) =

⎡⎢⎢⎣
∂ ln l
∂γ

∂ ln l
∂σ

⎤⎥⎥⎦
is the score vector of first order partial derivatives of the log-likelihood func-
tion. In the present case, γ = vec(B1) is left unrestricted. Thus, γ̃r = γ̃
and[

∂ ln l
∂γ

∣∣∣∣
γ̃r

]
= 0.
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Consequently, defining σ = (vech(Σ1)′, . . . , vech(Σs)′)′, the LM statistic re-
duces to

λLM = −∂ ln l
∂σ′ E

[
∂2 ln l
∂σ∂σ′

]−1
∂ ln l
∂σ

(17.3.29)

with all derivatives evaluated at the restricted estimator,

σ̃r = σ̃(2) :=

⎡⎢⎢⎣
vech(Σ̃(2)

1 )
...

vech(Σ̃(2)
1 )

⎤⎥⎥⎦ (1
2sK(K + 1) × 1).

From (17.3.8), we see that

∂ ln l
∂ vech(Σi)

= −1
2

T∑
t=1

nitD′
Kvec(Σ−1

i −Σ−1
i utu

′
tΣ

−1
i ), (17.3.30)

where DK = ∂ vec(Σi)/∂ vech(Σi)′ is the (K2 × 1
2K(K + 1)) duplication

matrix, as usual. Furthermore, for the present case,

∂ vec(Σt)′

∂σ
=

⎡⎢⎣ n1tD′
K

...
nstD′

K

⎤⎥⎦ ( 1
2sK(K + 1) ×K2).

Thus, we get from (17.2.17),

−E

[
∂2 ln l
∂σ∂σ′

]

=

⎡⎢⎣
1
2T n̄1D′

K(Σ−1
1 ⊗Σ−1

1 )DK 0
. . .

0 1
2T n̄sD′

K(Σ−1
s ⊗Σ−1

s )DK

⎤⎥⎦
which implies

−E

[
∂2 ln l
∂σ∂σ′

]−1

=

⎡⎢⎣ 2D+
K(Σ1 ⊗Σ1)D+′

K /T n̄1 0
. . .

0 2D+
K(Σs ⊗Σs)D+′

K /T n̄s

⎤⎥⎦, (17.3.31)

where D+
K is the Moore-Penrose inverse of DK . Using (17.3.30) and (17.3.31)

with ut replaced by ũt = yt − B̃
(2)
1 Zt−1 and Σi replaced by Σ̃

(2)
1 the LM

statistic in (17.3.29) is easy to evaluate. Under the null hypothesis H2 and
general conditions, it has an asymptotic χ2-distribution with (s−1)K(K+1)/2
degrees of freedom.
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17.3.3 An Example

The previously considered theoretical concepts shall now be illustrated by an
example from Lütkepohl (1992). We use the first differences of logarithms of
quarterly, seasonally unadjusted West German income and consumption data
for the years 1960–1987 given in File E4. The two series are plotted in Figure
17.1. Obviously, they exhibit a quite strong seasonal pattern.

There are various problems that may be brought up with respect to the
data. For instance, it is possible that the logarithms of the original series
are cointegrated (see Part II). In that case, fitting a VAR process to the
first differences may be inappropriate. Also, there may be structural shifts
during the sample period. We ignore such problems here because we just want
to provide an illustrative example for the theoretical results of the previous
subsections.

Because we have quarterly data, the period s = 4 is given naturally. Stack-
ing the variables for each year in one long 8-dimensional vector yτ , as in Sec-
tion 17.3.1, we just have 27 observations for each component of yτ . (Note
that the first value of the series is lost by differencing.) Thus, the largest full
VAR process that can be fitted to the 8-dimensional system is a VAR(3). In
such a situation, application of model selection criteria is a doubtful strategy
for choosing the order of yτ . Because we want to test the null hypothesis of
constant coefficients, it may be reasonable to choose the VAR order under
the null hypothesis, that is, to assume a constant coefficient model at the
VAR order selection stage. Therefore we have fitted constant coefficient VAR
models to the bivariate yt series consisting of the quarterly income and con-
sumption variables. FPE, AIC, HQ, and SC all have chosen the order p = 5
when a maximum of 8 was allowed. Of course, this may not mean too much if
the coefficients are actually time varying. The order 5 seems to be a reason-
able choice, however, because it means that, for each observation, lags from a
whole year and the corresponding quarter of the previous year are included.
Therefore, we will work with p = 5 in the following.

The first test we carry out is one of H2 against H1, that is, a constant
coefficient model is tested against one where all the coefficients are time vary-
ing. Note that we use the order p = 5 also for the model with time varying
coefficients. The test value λLR = 2(λ1 − λ2) = 223.79 is clearly significant
at the 1% level because in this case the number of degrees of freedom of
the asymptotic χ2-distribution is 75. Thus, we conclude that at least some
coefficients are not time invariant. To see whether the noise series may be
regarded as stationary, we also test H3 against H1. The resulting test value
is λLR = 2(λ1 − λ3) = 35.95 which is also significant at the 1% level because
we now have 9 degrees of freedom. Next we use the Wald test described in
Section 17.3.2 to see whether the VAR coefficients and intercept terms may
be assumed to be constant through time. In other words, we test H5 against
H1. The test value becomes λW = 347. Comparing this with critical values
from the χ2(66)-distribution, we again reject the null hypothesis H5 at the
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Fig. 17.1. Seasonally unadjusted West German income and consumption series.
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1% level. The reader is invited to perform further tests on these data. The
tests performed so far support a full periodic model. Notice, however, that our
tests are based on asymptotic theory. Their actual distributions in samples as
small as the present one are unclear and, in any case, they are not likely to
be well approximated by the asymptotic χ2-distributions. Thus, it is not clear
how much evidence in favor of a full periodic model the tests actually provide
in this specific case.

Of course, it is possible that a periodic model does not adequately capture
the characteristics of the data generating process. In that case, the tests may
not have much relevance. To check the adequacy of a periodic model, similar
tools may be used as in the stationary nonperiodic case. For instance, a resid-
ual analysis could be performed in a similar fashion as for nonperiodic VAR
models. The properties of tests for model adequacy may be derived from the
stationary representation of the annual process yτ .

17.3.4 Bibliographical Notes and Extensions

Early discussions of periodic time series models include those by Gladyshev
(1961) and Jones & Brelsford (1967). Pagano (1978) studied properties of
periodic autoregressions while Cleveland & Tiao (1979) considered periodic
univariate ARMA models and Tiao & Grupe (1980) explored the consequences
of fitting nonperiodic models to data generated by a periodic model. Cipra
(1985) discussed inference for periodic moving average processes and Li & Hui
(1988) developed an algorithm for ML estimation of periodic ARMA models.
A Bayesian analysis of periodic autoregressions was given by Anděl (1983,
1987) and an application of periodic modelling can be found, for instance,
in Osborn & Smith (1989). More recently, periodic models for integrated and
cointegrated variables were also considered (e.g., Herwartz (1995), Boswijk &
Franses (1995, 1996), Boswijk, Franses & Haldrup (1997), Ghysels & Osborn
(2001, Chapter 6)). The last publication also includes many more references
related to periodic time series models.

17.4 Intervention Models

In Section 17.1, an intervention model was described as one where a particular
stationary data generation mechanism is in operation until period T1, say, and
another process generates the data after period T1. For instance,

yt = ν1 + A1Yt−1 + ut, E(utu
′
t) = Σ1, t ≤ T1 (17.4.1)

and

yt = ν2 + A2Yt−1 + ut, E(utu
′
t) = Σ2, t > T1. (17.4.2)

In the present case, it makes a difference whether the intervention is modelled
within the intercept form of the process like in (17.4.1)/(17.4.2) or within a
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mean-adjusted representation. We will consider both cases in turn, following
Lütkepohl (1992).

17.4.1 Interventions in the Intercept Model

Before we consider more general situations, it may be useful to study the
case described by (17.4.1) and (17.4.2) in a little more detail. For simplicity,
suppose that A2 = A1 and Σ2 = Σ1 so that there is just a shift in the intercept
terms. Moreover, we assume that the process is stable. In this case, the mean
of yt is

E(yt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞∑
i=0

Φiν1, t ≤ T1,

t−T1∑
i=0

Φiν2 +
∞∑

i=t−T1+1

Φiν1, t > T1,

where the Φi’s are the coefficient matrices of the moving average representa-
tion of the mean-adjusted process, i.e.,

∞∑
i=0

Φiz
i = (IK −A11z − · · · − Ap1z

p)−1.

Hence, after the intervention, the process mean does not reach a fixed new
level immediately but only gradually,

E(yt) −→
t→∞

∞∑
i=0

Φiν2.

In the more general situation, where all coefficients change due to the
intervention, similar results also hold for the autocovariance structure. Of
course, such a behavior may be quite plausible in practice because a system
may react slowly to an intervention. On the other hand, it is also conceivable
that an abrupt change occurs. For the case of a change in the mean, we will
discuss this situation in Section 17.4.2.

Before discussing that case, we note that the model setup considered in
Section 17.3 may be used for intervention models as well with properly spec-
ified nit, as mentioned in Section 17.1. The hypotheses considered in Section
17.3.2 are also of interest in the present context. The test statistics may be
computed with the same formulas as in Section 17.3.2 and the tests are of-
ten referred to as Chow tests (see also Chapter 4, Section 4.6.1). However,
the test statistics do not necessarily have the indicated asymptotic distribu-
tions in the present case. The problem is that the ML estimators given in
the previous section may not be consistent anymore. To see this, consider, for
instance, the hypothesis H1 (all coefficients time varying) and the model in
(17.4.1)/(17.4.2). If T1 is some fixed finite point and T > T1,
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B̃1 = [ν̃1, Ã1] =

(
T1∑
t=1

ytZ
′
t−1

)(
T1∑
t=1

Zt−1Z
′
t−1

)−1

will not be consistent because the sample information regarding B1 := [ν1, A1]
does not increase when T goes to infinity. As a way out of this problem it
may be assumed that T1 increases with T . For instance, T1 may be a fixed
proportion of T . Then, under common assumptions,

plim B̃1 = plim

(
1
T1

T1∑
t=1

ytZ
′
t−1

)
plim

(
1
T1

T1∑
t=1

Zt−1Z
′
t−1

)−1

= B1.

Also asymptotic normality is easy to obtain in this case and the test statistics
have the limiting χ2-distributions obtained from the results in Section 17.3.2.

A logical problem may arise if more than one intervention is present. In
that case, it may not be easy to justify the assumption that all subperiods
approach infinity with the sample period T . Whether or not this is a problem
of practical relevance must be decided on the basis of the as yet unknown small
sample properties of the tests. In any event, the large sample χ2-distributions
are just meant to be a guide for the small sample performance of the tests
and as such they may be used if the periods between the interventions are
reasonably large. Unfortunately, as mentioned in Chapter 4, Section 4.6.1,
the asymptotic χ2-distributions of the test statistics are not likely to be good
approximations to the actual small sample distributions if systems of variables
are considered.

17.4.2 A Discrete Change in the Mean

We have seen that in an intercept model like (17.4.1)/(17.4.2) the mean grad-
ually approaches a new level after the intervention. Occasionally, it may be
more plausible to assume that there is a one-time jump in the process mean
after time T1. In such a situation, a model in mean-adjusted form,

yt − µt = A1(yt−1 − µt−1) + · · · + Ap(yt−p − µt−p) + ut, (17.4.3)

is easier to work with. Here µt := E(yt) and, for simplicity, it is assumed
that all other coefficients are time invariant and that the process is stable.
Therefore, the second subscript is dropped from the VAR coefficient matrices.
We also assume Gaussian white noise ut with time invariant covariance, ut ∼
N (0, Σu). Suppose

µt = n1tµ1 + · · · + nstµs, nit = 0 or 1,
s∑

i=1

nit = 1. (17.4.4)

In other words, there are s interventions so that for each i, the nit’s, t =
1, . . . , T , are a sequence of zeros and ones, the latter appearing in consecutive
positions.
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In general, exact ML estimation of the model (17.4.3) results in nonlinear
normal equations. To avoid the use of nonlinear optimization algorithms, the
µi’s may be estimated by

µ̃i =
1

T n̄i

T∑
t=1

nityt, i = 1, . . . , s. (17.4.5)

Provided T n̄i =
∑

t nit approaches infinity with T , it can be shown that under
general assumptions, µ̃i is consistent and√

T n̄i(µ̃i − µi)
d→N (0, Σµ̃), (17.4.6)

where

Σµ̃ = (IK −A1 − · · · −Ap)−1Σu(IK − A1 − · · · − Ap)′−1

(see Chapter 3, Section 3.3, and Problem 17.6). Note that the asymptotic co-
variance matrix does not depend on i. Furthermore, the µ̃i are asymptotically
independent. Hence, it is quite easy to perform a Wald test of the hypothesis

H6 : µi = µ1, i = 2, . . . , s or R

⎡⎢⎣ µ1

...
µs

⎤⎥⎦ = 0, (17.4.7)

where R has a similar structure as in (17.3.27). The corresponding Wald
statistic is

λW = T [
√
n̄1µ̃

′
1, . . . ,

√
n̄sµ̃

′
s]R

′[R(Is ⊗ Σ̃µ̃)R′]−1R

⎡⎢⎣
√
n̄1µ̃1

...√
n̄sµ̃s

⎤⎥⎦, (17.4.8)

where [R(Is ⊗ Σ̃µ̃)R′]−1 reduces to⎡⎢⎢⎢⎣
2 1 . . . 1
1 2 1
...

. . .
...

1 1 . . . 2

⎤⎥⎥⎥⎦
−1

⊗ Σ̃−1
µ̃

and Σ̃µ̃ is estimated in the usual way. In other words,

Ã =

(∑
t

ỹtỸ
′
t−1

)(∑
t

Ỹt−1Ỹ
′
t−1

)−1

and
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Σ̃u =
∑

t

(ỹt − ÃỸt−1)(ỹt − ÃỸt−1)′/T,

where ỹt := yt − µ̃t and

Ỹt−1 :=

⎡⎢⎣ yt−1 − µ̃t−1

...
yt−p − µ̃t−p

⎤⎥⎦.
Under H6, λW has an asymptotic χ2-distribution with (s − 1)K degrees of
freedom, if the VAR process is stable.

17.4.3 An Illustrative Example

As an example of testing for structural change in the present framework, we
consider again the seasonally adjusted quarterly West German investment,
income, and consumption data given in File E1. The data were first used in
Chapter 3. As in that and some other chapters, we perform the analysis for
the first differences of logarithms (rates of change) of the data. In Chapter
4, tests for a structural break after the year 1978 when the second oil price
crisis occurred were already performed. We will now consider different pairs
of hypotheses to illustrate the results of this section.

For an event like a drastic oil price increase, a smooth adjustment of the
general economic conditions seems more plausible than a discrete change.
Therefore the intercept version of an intervention model is chosen with n1t =
1, n2t = 0, for t ≤ 1978.4 and n1t = 0, n2t = 1 for t ≥ 1979.1. Because a
VAR(2) model performed reasonably well in Chapter 4 for the period 1960–
1978 we use VAR(2) processes for both subperiods. This choice is plausible
under the null hypothesis of no structural change after 1978.

We first test a stationary model (H2) against one where all parameters are
allowed to vary (H1). The resulting value of the LR statistic is λLR = 64.11.
From Table 17.1 we have

(s− 1)K
[
K(p + 1

2
) + 3

2

]
= 27

degrees of freedom because s = 2, K = 3, and p = 2. Hence, we can reject the
null hypothesis of time invariance at the 1% level of significance (χ2(27).99 =
46.96). This result, of course, does not necessarily mean that all coefficients
are really time varying. For instance, the error covariance matrix may be time
invariant while the other coefficients vary. To check this possibility, we test
H3 against H1 (all coefficients time varying). The value of the LR statistic
becomes λLR = 33.46 and the number of degrees of freedom for this test is 6.
Thus, the test value exceeds the critical value of the χ2-distribution for a 1%
significance level (χ2(6).99 = 16.81) and we reject the null hypothesis. Further
tests on the data are possible and the reader is invited to carry them out.
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It is perhaps worth pointing out that we have only four years of data or
16 observations for each variable after the potential structural change. The
quality of the χ2-approximations to the distributions of the LR statistics is
therefore doubtful in the present case, as discussed in Chapter 4, Section 4.6.1.
In that section, we found that a bootstrap version of a Chow test of H2 against
H3 may result in a different conclusion than the use of asymptotic critical
values. Clearly, similar results are conceivable for the example considered in
this section.

17.4.4 Extensions and References

Although we have used the label “intervention” for the type of change that
occurs in the models considered in the previous subsections, they could also
be regarded as outliers if, for instance, a change in the process mean occurs
for a small number of periods only. Tsay (1988) discussed univariate time
series models with outliers and structural changes and listed a number of
further references. By appropriate choice of the dummy variables nit, it is
possible to combine periodic and intervention or outlier models. Extensions
of the present framework to VARMA or restricted VAR models are possible
in principle. Moreover, cointegrated VAR models with structural shifts were
already mentioned in Chapter 8 in the context of testing for the cointegration
rank.

More general forms of interventions in the process mean were discussed
by Box & Tiao (1975) and Abraham (1980). They assumed that inter-
ventions have occurred at t = T1, . . . , Tk and they define a vector It =
(It(T1), . . . , It(Tk))′ of dummy variables that may be of the type

It(Ti) =
{

0 for t < Ti,
1 for t ≥ Ti,

or of the type

It(Ti) =
{

0 for t �= Ti,
1 for t = Ti.

They model the interventions as R(L)It, where R(L) is a matrix of rational
functions in the lag operator.

Further complications arise if the time of the break is unknown and has
to be estimated in addition to the VAR coefficients. This case was discussed
by Bai (1994), Bai, Lumsdaine & Stock (1998), and Lütkepohl et al. (2004),
among others.

17.5 Exercises

Problem 17.1
Suppose yt is a periodic K-dimensional VAR(1) (PAR(1)) process,
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yt = ν1 + A11yt−1 + ut, E(utu
′
t) = Σ1, if t is even,

and

yt = ν2 + A12yt−1 + ut, E(utu
′
t) = Σ2, if t is odd.

(a) Derive explicit expressions for the means µt and the matrices Φit.
(b) Derive the autocovariances E[(yt − µt)(yt−h − µt−h)′] for h = 1, 2, 3, for

both cases, t even and t odd. Write down explicitly the assumptions used
in deriving the autocovariance matrices.

Problem 17.2
Assume that the process yt given in Problem 17.1 is bivariate with

A11 =
[
.5 .3
.8 1.2

]
and

A12 =
[
.6 .4
.8 .5

]
.

Is the corresponding process yτ = (y′2τ , y
′
2τ−1)

′ stable?

Problem 17.3
Give the forecasts yt(h), h = 1, 2, 3, t odd, for the process from Problem 17.1
and derive explicit expressions for the forecast MSE matrices.

Problem 17.4
For the process given in Problem 17.1, construct an LM test of the hypotheses

H0 : ν1 = ν2, A11 = A12, Σ1 = Σ2

against

H1 : ν1 = ν2, A11 = A12, Σ1 �= Σ2.

Provide an explicit expression for the LM statistic.

Problem 17.5
Suppose the process from Problem 17.1 is in operation until period T1 and
after that another periodic VAR(1) process of the same type but with different
coefficients generates a set of variables. Define dummy variables in such a way
that the complete process can be written in the form (17.1.3)–(17.1.5).

Problem 17.6
Show that (17.4.6) holds. (Hint: See Chapter 3, Section 3.3.)

Problem 17.7
In 1974 the Deutsche Bundesbank officially changed its monetary policy and
started targeting the money stock. Use the two interest rate series given in
File E5 and test for an intervention after 1974 within the framework discussed
in Section 17.4. Use tests for different types of interventions related to shifts
in the intercept terms, the VAR coefficients, and the white noise covariances.
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State Space Models

18.1 Background

State space models may be regarded as generalizations of the models consid-
ered so far. They have been used extensively in system theory, the physical
sciences, and engineering. The terminology is therefore largely from these
fields. The general idea behind these models is that an observed (multiple)
time series y1, . . . , yT depends upon a possibly unobserved state zt which is
driven by a stochastic process. The relation between yt and zt is described by
the observation or measurement equation

yt = Htzt + vt, (18.1.1)

where Ht is a matrix that may also depend on the period of time, t, and vt

is the observation error which is typically assumed to be a noise process. The
state vector or state of nature is generated as

zt = Bt−1zt−1 + wt−1 (18.1.2)

which is often called the transition equation because it describes the transition
of the state of nature from period t − 1 to period t. The matrix Bt is a
coefficient matrix that may depend on t and wt is an error process. The
system (18.1.1)/(18.1.2) is one form of a state space model.

The following example from Meinhold & Singpurwalla (1983) may illus-
trate the related concepts. Suppose we wish to trace a satellite’s orbit. The
state vector zt may then consist of the position and the speed of the satel-
lite in period t with respect to the center of the earth. The state cannot be
measured directly but, for example, the distance from a certain observatory
may be measured. These measurements constitute the observed vectors yt. As
another example, consider the income of an individual which may depend on
unobserved factors such as intelligence, special abilities, special interests and
so on. In this case, the state vector consists of the variables that describe the
abilities of the person and yt is his or her observed income.
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The reader may recall that all the models considered so far have been
written in a form similar to (18.1.1)/(18.1.2) at some stage. For instance, our
standard (zero mean) VAR(p) model can be written in VAR(1) form as

Yt = AYt−1 + Ut, (18.1.3)

where

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦, Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦, etc..

Defining zt := Yt, Bt := A, and wt−1 := Ut, Equation (18.1.3) may be
viewed as the transition equation of a state space model. The corresponding
measurement equation is

yt = [IK : 0 : · · · : 0]Yt

with Ht := [IK : 0 : · · · : 0] and vt := 0.
In the next section, we will introduce a slightly more general version of a

state space model, we will review many of the previous models, and we will
cast them into state space form. As we have seen, the representations of the
models used in the previous chapters are useful for many purposes. There
are occasions, however, where a state space representation makes life easier.
We have actually used state space representations of some models without
explicitly mentioning this fact. We will also consider some further models
that have been discussed in the literature and which may be set up as special
cases of state space models. Thereby we will give an overview of a number
of important models that have been considered in the multiple time series
literature.

In Section 18.3, we will discuss the Kalman filter which is an extremely
useful tool in the analysis of state space models. Given the observable vectors
yt, it provides estimates of the state vectors and measures of the precision
of these estimates. In a situation where the state vector consists of unob-
servable variables, such estimates may be of interest. In a system such as
(18.1.1)/(18.1.2), the matrices Bt and Ht and the covariance matrices of vt

and wt will often depend on unknown parameters. The Kalman filter is also
helpful in estimating these parameters. This issue will be discussed in Section
18.4.

In this chapter, we will just give a brief introduction to some basic con-
cepts related to state space models and the Kalman filter. Various textbooks
exist that provide broader introductions to the topic and a more in-depth dis-
cussion. Examples are Jazwinski (1970), Anderson & Moore (1979), Hannan
& Deistler (1988), Aoki (1987), and Harvey (1989).
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18.2 State Space Models

18.2.1 The Model Setup

As mentioned in the previous section, a state space model consists of a tran-
sition or system equation

zt+1 = Btzt + Ftxt + wt, t = 0, 1, 2, . . . ,

or, equivalently,

zt = Bt−1zt−1 + Ft−1xt−1 + wt−1, t = 1, 2, . . . , (18.2.1)

and a measurement or observation equation

yt = Htzt + Gtxt + vt, t = 1, 2, . . . . (18.2.2)

Here

yt is a (K × 1) vector of observable output or endogenous variables,
zt is an (N × 1) state vector or the state of nature,
xt is an (M × 1) vector of observable inputs or instruments or policy

variables,
vt is a (K × 1) vector of observation or measurement errors or noise,
wt is an (N × 1) vector of system or transition equation errors or noise,
Ht is a (K ×N) measurement matrix,
Gt is a (K ×M) input matrix of the observation equation,
Bt is an (N ×N) transition or system matrix,

and

Ft is a (N ×M) input matrix of the transition equation.

The matrices Ht, Gt, Bt, and Ft are assumed to be known at time t. Although
they are in general allowed to vary, at least some of them will often be time
invariant. In practice, at least some of the elements of these matrices are
usually unknown and have to be estimated. This issue is deferred to Section
18.4. It is perhaps noteworthy that the process generating the zt’s and, hence,
also the yt’s is assumed to be started from an initial state z0 and a given
initial input x0.

To complete the description of the model, we make the following stochastic
assumptions for the noise processes and the initial state:

The joint process[
wt

vt

]
is a zero mean, serially uncorrelated noise process with possibly time varying
covariance matrices
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Σwt

Σwtvt

Σvtwt
Σvt

]
.

The initial state z0 is uncorrelated with wt, vt for all t and has a distribution
with mean µz0 and covariance matrix Σz0 . The input sequence x0, x1, . . . is
assumed to be nonstochastic for simplicity. If the observed inputs are actually
stochastic, the analysis is assumed to be conditional on a given sequence of
inputs.

With these assumptions we can derive stochastic properties of the states
and the system outputs. Successive substitution in (18.2.1) implies

zt = Φt,tz0 +
t∑

i=1

Φi−1,t(Ft−ixt−i + wt−i), (18.2.3)

where

Φ0,t := IN and Φi,t :=
i∏

j=1

Bt−j , i = 1, 2, . . .

(see also Section 17.2.1). Hence,

µzt
:= E(zt) = Φt,tµz0 +

t∑
i=1

Φi−1,tFt−ixt−i (18.2.4)

and

Cov(zt, zt+h) = E[(zt − µzt
)(zt+h − µzt+h

)′]

= Φt,tΣz0Φ
′
t+h,t+h +

t∑
i=1

Φi−1,tΣwt−i
Φ′

h+i−1,t+h. (18.2.5)

Under the aforementioned stochastic assumptions, it is also easy to derive the
means and covariance matrices of the output process:

µyt
:= E(yt) = HtE(zt) + Gtxt

and

Cov(yt, yt+h) = HtCov(zt, zt+h)H′
t for h �= 0.

Generally, the means and autocovariances of the yt’s are obviously not time
invariant. Thus, in general, yt is a nonstationary process.

We will now consider various special cases of state space models which
are obtained by specific definitions of the state vector, the inputs, the noise
processes, and the matrices Ht, Gt, Bt, and Ft. These matrices and the noise
covariance matrices will often not depend on t, in which case we will suppress
the subscript for notational simplicity.
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A Finite Order VAR Process

Although we have mentioned earlier how to cast a VAR(p) process,

yt = ν + A1yt−1 + · · · + Apyt−p + ut, (18.2.6)

in state space form, it may be useful to consider this model again because it
illustrates that often different state space models can represent a particular
process. One possible state space representation is obtained by defining

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦, ν :=

⎡⎢⎢⎢⎣
ν
0
...
0

⎤⎥⎥⎥⎦,

A :=

⎡⎢⎢⎢⎣
A1 . . . Ap−1 Ap

IK 0 0
. . .

...
...

0 . . . IK 0

⎤⎥⎥⎥⎦, Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦. (18.2.7)

Hence,

Yt = AYt−1 + ν + Ut, (18.2.8)

yt = [IK : 0 : · · · : 0]Yt (18.2.9)

is a state space model with state vector zt := Yt, B := A, F := ν, xt := 1,
wt := Ut+1, H := [IK : 0 : · · · : 0], G := 0, vt := 0.

An alternative possibility is to define the state vector as

zt :=

⎡⎢⎢⎢⎣
1
yt

...
yt−p+1

⎤⎥⎥⎥⎦
and choose

B :=

⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0 0
ν A1 . . . Ap−1 Ap

0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

⎤⎥⎥⎥⎥⎥⎦ and wt :=

⎡⎢⎢⎢⎢⎢⎣
0

ut+1

0
...
0

⎤⎥⎥⎥⎥⎥⎦,

so that

zt+1 = Bzt + wt
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and

yt = [0 : IK : 0 : · · · : 0]zt,

which describes the same process as (18.2.8)/(18.2.9). It may be worth point-
ing out that in the present framework, the process is assumed to be started at
time t = 1 with initial values z0 = [1, y′0, . . . , y

′
−p+1]

′, while we have assumed
an infinite past of the process in some previous chapters.

A VARMA(p, q) Process

One state space representation of the VARMA(p, q) process

yt = ν + A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q (18.2.10)

is known from Chapter 11, Section 11.3.2. It is obtained by choosing a state
vector

zt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

ut

...
ut−q+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, transition noise wt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut+1

0
...
0

ut+1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

an input sequence xt := 1 as in (18.2.8), B := A from Chapter 11, Equation
(11.3.8), F := ν defined similarly as in (18.2.8), H := [IK : 0 : · · · : 0], G := 0,
and vt := 0. For many purposes, this form is not the most useful state space
representation of a VARMA model. Other state space representations are
given by Aoki (1987), Hannan & Deistler (1988), and Wei (1990).

The VARX Model

The VARX model

yt = A1yt−1 + · · · + Apyt−p + B0xt + · · · + Bsxt−s + ut (18.2.11)

considered in Chapter 10 is easily cast in state space form by choosing the
state vector

zt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

xt

...
xt−s+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and the transition equation

zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 . . . Ap−1 Ap | B1 . . . Bs−1 Bs

I 0 0 | 0 . . . 0 0
. . .

...
... | ...

...
...

0 . . . I 0 | 0 . . . 0 0
−− −− −− −− −− −− −− −− −−

| 0 . . . 0 0
0 | I 0 0

| . . .
...

...
| 0 . . . I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
zt−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

0
...
0
I
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
xt +

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦. (18.2.12)

The corresponding observation equation is

yt = [IK : 0 : · · · : 0]zt.

It is also possible to extend the model so as to allow for a finite order MA(q)
error process in (18.2.11) (see Problem 18.1).

Systematic Sampling and Aggregation

Suppose that annual data is available whereas a decision maker is interested
in, say, quarterly figures. Let ηit be an (M × 1) vector of variables associated
with the i-th quarter of year t and suppose the vector of all quarterly variables
associated with year t,

ηt :=

⎡⎢⎢⎣
η1t

η2t

η3t

η4t

⎤⎥⎥⎦,
is generated by the VAR(p) process

ηt = A1ηt−1 + · · · + Apηt−p + ut.

Then we may define a state vector
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zt :=

⎡⎢⎣ ηt

...
ηt−p+1

⎤⎥⎦
and a transition equation

zt = Azt−1 + Ut,

where A and Ut are the same quantities as in (18.2.7). If the yearly values
are obtained by adding (aggregating) the quarterly figures, the observation
equation is

yt = [IM : IM : IM : IM : 0 : · · · : 0]zt,

where M is the dimension of ηit. Alternatively, if the annual figures are ob-
tained by systematic sampling, that is, by taking, say, the fourth quarter
values as the annual figures, the observation equation is

yt = [0 : 0 : 0 : IM : 0 : · · · : 0]zt.

Extensions of this framework to the case where ηt is generated by a
VARMA or VARX process are straightforward. For applications of state space
models in aggregation and systematic sampling problems see Nijman (1985),
Harvey (1984), Harvey & Pierse (1984), Jones (1980), Ansley & Kohn (1983).

The examples considered so far have in common that the system matrices
H, G, B, and F are all time invariant and the state vector consists of at
least some observed or observable variables. In contrast, the state vector is
unobservable in the next two examples while the system matrices remain time
invariant.

Structural Time Series Models

In a structural time series model, the observed time series is viewed as a sum
of unobserved components such as a trend, a seasonal component, and an
irregular component (see, e.g., Kitagawa (1981), Harvey & Todd (1983), Har-
vey (1989)). For instance, for a univariate time series y1, . . . , yT , the structural
model may have the form

yt = µt + γt + ut, (18.2.13)

where µt is a trend component and γt is a seasonal component. Harvey & Todd
(1983) assume a local approximation to a linear trend function for which both
the level and the slope are shifting. They postulate a process

µt = µt−1 + βt−1 + ηt with βt = βt−1 + ξt (18.2.14)

as the trend generation mechanism. Here ηt and ξt are assumed to be white
noise processes. This trend model is a mixture of two random walks which are
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discussed in Chapter 6, Section 6.1. For the seasonal component, it is assumed
that the sum over the seasonal factors of a full year is approximately zero,

γt = −
s−1∑
j=1

γt−j + ωt, (18.2.15)

where s is the number of seasons and ωt is white noise. The three white noise
processes ηt, ξt, and ωt are assumed to be independent.

This model can be set up in state space form by defining the state vector
to be

zt :=

⎡⎢⎢⎢⎢⎢⎣
µt

βt

γt

...
γt−s+2

⎤⎥⎥⎥⎥⎥⎦
and, hence, the transition equation is

zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 |
0 1 | 0
−−−− −−−−−−−−−

0

| −1 . . . −1 −1
| 1 0 0
| . . .

...
...

| 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
zt−1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ηt

ξt

ωt

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (18.2.16)

The corresponding measurement equation is

yt = [1, 0, 1, 0, . . . , 0]zt + ut. (18.2.17)

It may be worth noting that these models can be seen to describe special
integrated ARMA processes. Hence, it is, of course, not surprising that they
can be cast in state space form. Multivariate generalizations of this model are
possible (see Harvey (1987) and Proietti (2002)).

Factor Analytic Models

In a classical factor analytic setting, it is assumed that a set of K observed
variables yt depends linearly on N < K unobserved common factors ft and
on individual or idiosyncratic components ut. In other words,

yt = Lft + ut, (18.2.18)

where L is a (K × N) matrix of factor loadings and the components of ut

are typically assumed to be uncorrelated, that is, Σu is a diagonal matrix
(Anderson (1984), Morrison (1976)). One objective of a factor analysis is the
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construction or estimation of the unobserved factors ft. We may view (18.2.18)
as the measurement equation of a state space model and, if the factors ft and
fs are independent for t �= s, we may specify a trivial transition equation
ft = wt−1.

However, if yt consists of time series variables, it may be more reasonable
to assume that the factors are autocorrelated. For example, they may be
generated by a VAR or VARMA process. Also the idiosyncratic components
ut may be autocorrelated. Dynamic factor analytic models of this type were
considered, for instance, by Sargent & Sims (1977), Geweke (1977), and Engle
& Watson (1981). Assuming that

ft = A1ft−1 + · · · + Apft−p + ηt

and

ut = C1ut−1 + · · · + Cqut−q + εt,

where ηt and εt are white noise processes, a state space model can be set up
by specifying a state vector,

zt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft

...
ft−p+1

ut

...
ut−q+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and a transition equation

zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 . . . Ap−1 Ap |
I 0 0 |

. . .
...

... |
0 . . . I 0 |

0

−−−−−−−−− −−−−−−−−−

0

| C1 . . . Cq−1 Cq

| I 0 0
| . . .

...
...

| 0 . . . I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
zt−1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηt

0
...
0
εt

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18.2.19)

The corresponding measurement equation is

yt = Lft + ut = [L : 0 : · · · : 0 : IK : 0 : · · · : 0]zt. (18.2.20)

An extension to the case where ft and ut are generated by VARMA pro-
cesses is left to the reader (see Problem 18.2). If exogenous variables are added
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to the original model (18.2.18) and, in addition, the factors are dynamic pro-
cesses, we obtain the dynamic MIMIC models of Engle & Watson (1981). More
recent references on dynamic factor models include Stock & Watson (2002a,
b) and Forni, Hallin, Lippi & Reichlin (2000).

In all the previous examples the system matrices Ht, Gt, Bt, and Ft are
time invariant. We will now consider models where at least some elements of
these matrices vary through time.

VARX Models with Systematically Varying Coefficients

We extend the varying coefficients VAR models of Chapter 17 slightly by
adding further “exogenous” variables and assuming that a given multiple time
series is generated according to

yt = A1,tyt−1 + · · · + Ap,tyt−p + Ftxt + ut. (18.2.21)

The vector xt may simply include an intercept term or seasonal dummies. It
may also include other deterministic terms and even lags of exogenous vari-
ables. Because we are assuming that the input variables of the state space
model are nonstochastic, we restrict xt to be a deterministic sequence, how-
ever. Using

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦, At :=

⎡⎢⎢⎢⎣
A1,t . . . Ap−1,t Ap,t

I 0 0
. . .

...
...

0 . . . I 0

⎤⎥⎥⎥⎦,

Ft :=

⎡⎢⎢⎢⎣
Ft

0
...
0

⎤⎥⎥⎥⎦, and wt−1 :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦,
gives a transition equation

Yt = AtYt−1 + Ftxt + wt−1 (18.2.22)

and a measurement equation

yt = [IK : 0 : · · · : 0]Yt. (18.2.23)

Obviously, the transition matrix Bt−1 := At and the input matrix Ft of the
transition equation may be time varying in this state space model.
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Random Coefficients VARX Models

So far all the original models either have time invariant, constant coefficients
or, as in the previous example, systematically varying coefficients. We will
now consider models with random coefficients and demonstrate how they can
be cast in state space form. Let us begin with a simple multivariate regression
model of the form

yt = Ctxt + vt = (x′
t ⊗ I)vec(Ct) + vt. (18.2.24)

Assuming that the parameter vector γt := vec(Ct) is generated by a VAR(q)
process,

γt = ν + B1γt−1 + · · · + Bqγt−q + ut, (18.2.25)

we may define the state vector as

zt :=

⎡⎢⎣ γt
...

γt−q+1

⎤⎥⎦
and get a state space model with the following transition and measurement
equations, respectively:

zt =

⎡⎢⎢⎢⎣
B1 . . . Bq−1 Bq

I 0 0
. . .

...
...

0 . . . I 0

⎤⎥⎥⎥⎦zt−1 +

⎡⎢⎢⎢⎣
ν
0
...
0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦,
yt = [x′

t ⊗ I : 0 : · · · : 0]zt + vt.

Obviously, the measurement matrix,

Ht := [x′
t ⊗ I : 0 : · · · : 0],

may be time varying. It may, in fact, be random if the xt are stochastic vari-
ables. Such an assumption is mandatory if xt contains lagged yt variables. To
see this point more clearly, let us explicitly introduce lagged yt’s in (18.2.24):

yt = AtYt−1 + Ctxt + vt

= (Y ′
t−1 ⊗ I)vec(At) + (x′

t ⊗ I)vec(Ct) + vt, (18.2.26)

where At := [A1t, . . . , Apt] and Y ′
t−1 := [y′t−1, . . . , y

′
t−p]. Now suppose that

γt := vec(Ct) is generated by the VAR(q) process (18.2.25) and αt = vec(At)
is driven by a VAR(r) process

αt = D1αt−1 + · · · + Drαt−r + ηt, (18.2.27)
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which is assumed to be independent of γt. Defining the state vector as

zt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

γt
...

γt−q+1

αt

...
αt−r+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the following state space model is obtained:

zt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 . . . Bq−1 Bq |
I 0 0 |

. . .
...

... |
0 . . . I 0 |

0

−−−−−−−−− −−−−−−−−−

0

| D1 . . . Dr−1 Dr

| I 0 0
| . . .

...
...

| 0 . . . I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
zt−1

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν
0
...
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut

0
...
0
ηt

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18.2.28)

yt = [x′
t ⊗ I : 0 : · · · : 0 : Y ′

t−1 ⊗ I : 0 : · · · : 0]zt + vt. (18.2.29)

Further extensions of this model are possible. For instance, αt and γt

may be individually or jointly generated by a VARMA rather than a finite
order VAR process. Moreover, input variables with constant coefficients could
appear in (18.2.26). These extensions are left to the reader (see Problem 18.3).

The number of publications on random coefficients models is vast in both
the econometrics and the time series literature. Famous examples from the
earlier econometrics literature on the topic are Hildreth & Houck (1968),
Swamy (1971), and Cooley & Prescott (1973, 1976). Surveys of the earlier
literature were given by Chow (1984) and Nicholls & Pagan (1985). Both of
these articles include extensive reference lists. For a more recent overview see
also Swamy & Tavlas (2001). On the time series side, a number of references
can be found in the monograph by Nicholls & Quinn (1982). Other important
work on the topic includes the article by Doan et al. (1984) who investigated
the potential of random coefficients VAR models with Bayesian restrictions
for econometric time series analysis.
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18.2.2 More General State Space Models

There are also time series models that do not fall into the state space frame-
work considered so far. Therefore it may be worth pointing out that more
general nonlinear state space models have been studied in recent publications.
A very general setup has the form

zt+1 = bt(zt, xt, wt, δ1) (18.2.30)

for the transition equation and

yt = ht(zt, xt, vt, δ2) (18.2.31)

for the measurement equation. In other words, the functional dependence
between the inputs, the states, and the output variables may be of a general
nonlinear form and also the transition from one state to the next is described
by a more general function than previously. Here δ1 and δ2 are vectors of
parameters.

Bilinear time series models are examples for which the linear state space
framework is too narrow. A very simple univariate bilinear time series model
has the form

yt = αyt−1 + ut + βyt−1ut−1,

where ut is univariate white noise. The product term βyt−1ut−1 distinguishes
this model from a linear specification. Bilinear models have been found useful
in modelling nonnormal phenomena (see, e.g., Granger & Andersen (1978)).

A more general multivariate bilinear time series model may be specified
as follows:

yt = A1yt−1 + · · · + Apyt−p + ut + M1ut−1 + · · · + Mqut−q

+
r∑

i=1

s∑
j=1

Cij vec(yt−iu
′
t−j). (18.2.32)

Assuming, without loss of generality, that p ≥ r and q ≥ s and defining

zt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

ut

...
ut−q+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 . . . Ap−1 Ap |
I 0 0 |

. . .
...

... |
0 . . . I 0 |

M1 . . . Mq−1 Mq

0 . . . 0 0...
...

...
0 . . . 0 0−−−−−−−−− −−−−−−−−−

0

| 0 . . . 0 0
| I 0 0
| . . .

...
...

| 0 . . . I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

wt :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut+1

0
...
0

ut+1

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and a matrix C which contains the elements of the Cij matrices in a suitable
arrangement, we get a bilinear state space model of the form

zt+1 = Bzt + wt + Cvec(ztz
′
t), (18.2.33)

yt = [IK : 0 : · · · : 0]zt. (18.2.34)

Obviously, the transition equation involves a nonlinear term, namely vec(ztz
′
t).

Hence, (18.2.33)/(18.2.34) is an example of a nonlinear state space system.
The work of Granger & Andersen (1978) and others on univariate bilinear

models has stimulated investigations in this area. Much of the earlier work is
documented in a monograph by Subba Rao & Gabr (1984). More recent work
on multivariate bilinear models includes Stensholt & Tjøstheim (1987) and
Liu (1989).

With all these examples we have not nearly exhausted the range of models
that have been used and studied in the recent time series literature. Important
omissions are threshold autoregressive models analyzed by Tong (1983) and
exponential autoregressive models introduced by Ozaki (1980) and Haggan
& Ozaki (1980). A general nonlinear model class was considered by Priestley
(1980) and reviews of many nonlinear models and extensive lists of refer-
ences were given by Priestley (1988), Anděl (1989), and Granger & Teräsvirta
(1993).

18.3 The Kalman Filter

The Kalman filter was originally developed by Kalman (1960) and Kalman
& Bucy (1961). It is a tool to recursively estimate the states zt, given obser-
vations y1, . . . , yT of the output variables. Under normality assumptions, the
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estimator of the state produced by the Kalman filter is the conditional expec-
tation E(zt|y1, . . . , yt). The Kalman filter also provides the conditional covari-
ance matrix Cov(zt|y1, . . . , yt) which may serve as a measure for estimation
or prediction uncertainty. Of course, for t > T , the estimator E(zt|y1, . . . , yT )
is a forecast or prediction at origin T , in the terminology of the previous
chapters. The computation of the estimators E(zt|y1, . . . , yt), t = 1, . . . , T , is
called filtering to distinguish it from the forecasting problem.

In some of the examples of Section 18.2, estimation of the state vectors is
of obvious interest, for instance, if the state vector consists of time varying
coefficients or if the state vector contains the unobserved factors of a dynamic
factor analytic model. In other cases, where the state vector is not of foremost
interest or where it consists of observable variables, the conditional means and
covariance matrices can still be useful in evaluating the likelihood function,
for example. We will return to this point in Section 18.4. Now the Kalman
filter recursions will be presented.

18.3.1 The Kalman Filter Recursions

Assumptions for the State Space Model

We assume a state space model with transition equation

zt = Bzt−1 + Fxt−1 + wt−1 (18.3.1)

and with measurement equation

yt = Htzt + Gxt + vt (18.3.2)

for t = 1, 2, . . .. Note that both input matrices and the transition matrix are
assumed to be time invariant and known. This condition is satisfied in most
of the example models of Section 18.2. The measurement matrices Ht are
assumed to be known and nonstochastic at time t. This assumption does not
exclude lagged output variables from Ht because the past output variables are
given at time t. The input sequence xt, t = 0, 1, . . ., is again assumed to be
nonstochastic for simplicity. The noise processes wt and vt are independent.
They are both Gaussian with time invariant covariances,

wt ∼ N (0, Σw), t = 0, 1, . . . ,
vt ∼ N (0, Σv), t = 1, 2, . . . .

Also the initial state is Gaussian, z0 ∼ N (µ0, Σ0), and it is assumed to be
independent of vt, wt−1, t = 1, . . .. The initial state may be a constant, non-
stochastic vector in which case Σ0 = 0.

With the exception of the normality assumption, the foregoing conditions
are satisfied for most of the example models of Section 18.2 under the usual
assumptions entertained for these models. It is possible to derive recursions
similar to those given below under more general conditions. If the normality
assumption is dropped, the recursions given below can still be justified. We
will return to this issue after having presented them.
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The Recursions

We will use the following additional notation in stating the Kalman filter
recursions:

zt|s := E(zt|y1, . . . , ys),

Σz(t|s) := Cov(zt|y1, . . . , ys),

yt|s := E(yt|y1, . . . , ys),

Σy(t|s) := Cov(yt|y1, . . . , ys),

(18.3.3)

(z|y) ∼ N (µ,Σ) means that the conditional distribution of
z given y is multivariate normal with mean µ
and covariance matrix Σ.

Under the previously stated conditions, the normality assumption implies

(zt|y1, . . . , yt−1) ∼ N (zt|t−1, Σz(t|t− 1)) for t = 2, . . . , T, (18.3.4)

(zt|y1, . . . , yt) ∼ N (zt|t, Σz(t|t)) for t = 1, . . . , T, (18.3.5)

(yt|y1, . . . , yt−1) ∼ N (yt|t−1, Σy(t|t− 1)) for t = 2, . . . , T, (18.3.6)

and

(zt|y1, . . . , yT ) ∼ N (zt|T , Σz(t|T )), (18.3.7)

(yt|y1, . . . , yT ) ∼ N (yt|T , Σy(t|T )) for t > T. (18.3.8)

The conditional means and covariance matrices can be obtained by the fol-
lowing Kalman filter recursions which are graphically depicted in Figure 18.1:

Initialization: z0|0 := µ0, Σz(0|0) := Σ0.

Prediction step (1 ≤ t ≤ T ):

zt|t−1 = Bzt−1|t−1 + Fxt−1,

Σz(t|t− 1) = BΣz(t− 1|t− 1)B′ + Σw,

yt|t−1 = Htzt|t−1 + Gxt,

Σy(t|t− 1) = HtΣz(t|t− 1)H′
t + Σv.

Correction step (1 ≤ t ≤ T ):

zt|t = zt|t−1 + Pt(yt − yt|t−1),

Σz(t|t) = Σz(t|t− 1) − PtΣy(t|t− 1)P′
t,

where
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Pt := Σz(t|t− 1)H′
tΣy(t|t− 1)−1 (Kalman filter gain).

Although the output variables we have in mind have nonsingular distributions,
it may be worth noting that if the inverse of Σy(t|t − 1) does not exist, it
may be replaced by a suitable generalized inverse. The recursions proceed by
performing the prediction step for t = 1. Then the correction step is carried
out for t = 1. Then the prediction and correction steps are repeated for t = 2,
and so on.

Forecasting step (t > T ):

zt|T = Bzt−1|T + Fxt−1,

Σz(t|T ) = BΣz(t− 1|T )B′ + Σw,

yt|T = Htzt|T + Gxt,

Σy(t|T ) = HtΣz(t|T )H′
t + Σv.

The forecasting step may be carried out recursively for t = T + 1, T + 2, . . ..

Computational Aspects and Extensions

In practice, in running through the Kalman filter recursions, computational
inaccuracies may accumulate in such a way that the actually computed co-
variance matrices are not positive semidefinite. These and other computational
issues were discussed in Anderson & Moore (1979, Chapter 6) and numerical
modifications of the recursions were suggested that may help to overcome the
possible difficulties (see also Schneider (1992)).

As mentioned previously, it is possible to justify the Kalman filter recur-
sions even if the initial state and the white noise processes are not Gaussian.
In that case, the quantities obtained by the recursions are no longer moments
of conditional normal distributions, however. For other interpretations of the
quantities see, for example, Schneider (1988).

Sometimes reconstruction of the state vectors, given all the information
y1, . . . , yT , is of interest. For instance, in the random coefficients models of
Section 18.2.1, where the state vector zt contains the coefficients associated
with period t, one may want to estimate the states and, hence, the coefficients,
given all the sample information y1, . . . , yT . We will see a detailed example in
Section 18.5. Recursions are also available to compute zt|T and Σz(t|T ) for
t < T . The evaluation of zt|T for t < T is known as smoothing. Under the
previous assumptions (including normality),

(zt|y1, . . . , yT ) ∼ N (zt|T , Σz(t|T ))

for t = 0, 1, . . . , T . The conditional moments may be obtained recursively,
starting at the end of the sample and moving backwards, that is, the recursions
proceed for t = T − 1, T − 2, . . . , 0 as follows.
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�...

�t = T + 1, T + 2, . . .
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�
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initialization

Fig. 18.1. Kalman filter recursions.
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Smoothing step (t < T ):

zt|T = zt|t + St(zt+1|T − zt+1|t),

Σz(t|T ) = Σz(t|t) − St[Σz(t + 1|t) −Σz(t + 1|T )]S′
t,

where

St := Σz(t|t)B′Σz(t + 1|t)−1 (Kalman smoothing matrix),

(see Anderson & Moore (1979)).

18.3.2 Proof of the Kalman Filter Recursions

The proof follows Anderson & Moore (1979, pp. 39-41) and Meinhold &
Singpurwalla (1983). It may be skipped without loss of continuity. We pro-
ceed inductively and we use the following properties of multivariate normal
distributions (see Propositions B.1 and B.2 of Appendix B):

y ∼ N (µy, Σy), z ∼ N (µz, Σz) are independent (K × 1) random vectors

⇒ y + z ∼ N (µy + µz, Σy + Σz). (18.3.9)

If A is a fixed, nonrandom matrix and c a fixed vector,

y ∼ N (µy, Σy) ⇒ Ay + c ∼ N (Aµy + c, AΣyA
′). (18.3.10)

Moreover,[
z
y

]
∼ N

([
µz

µy

]
,

[
Σz Σzy

Σyz Σy

])
⇒ (z|y) ∼ N (µz + ΣzyΣ

−1
y (y − µy), Σz −ΣzyΣ

−1
y Σyz). (18.3.11)

Here Σ−1
y may be replaced by a generalized inverse, if Σy is singular.

We will now demonstrate the prediction and correction steps for t = 1.
With that goal in mind, we note that by (18.3.9) and (18.3.10) and the joint
normality of w0 and v1, the two vectors z1 and y1 are jointly normally dis-
tributed,[

z1

y1

]
=

[
I

H1

]
z1 +

[
0

Gx1

]
+

[
0
I

]
v1

=
[

I
H1

]
Bz0 +

[
Fx0

Gx1 + H1Fx0

]
+

[
I 0

H1 I

][
w0

v1

]

∼ N
([

Bµ0 + Fx0

H1(Bµ0 + Fx0) + Gx1

]
,[

I 0
H1 I

][
Σw 0
0 Σv

][
I H′

1

0 I

]
+

[
B

H1B

]
Σ0[B′,B′H′

1]
)
.
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Hence,

z1|0 := E(z1) = Bµ0 + Fx0 = Bz0|0 + Fx0,

Σz(1|0) := Cov(z1) = Σw + BΣ0B′ = BΣz(0|0)B′ + Σw,

y1|0 := E(y1) = H1z1|0 + Gx1,

Σy(1|0) := Cov(y1) = H1ΣwH′
1 + Σv + H1BΣ0B′H′

1

= H1Σz(1|0)H′
1 + Σv,

which proves the prediction step for t = 1. Using these results and (18.3.11),
the conditional distribution of z1 given y1 is seen to be

(z1|y1) ∼ N [z1|0 + Σz(1|0)H′
1Σy(1|0)−1(y1 − y1|0),

Σz(1|0) −Σz(1|0)H′
1Σy(1|0)−1H1Σz(1|0)],

which proves the correction step for t = 1.
Now the prediction and correction steps can be shown by induction. Sup-

pose the normal distributions in (18.3.4)–(18.3.6) and the prediction and cor-
rection steps are correct for t−1. Then, using the transition and measurement
equations, zt and yt have a joint normal distribution[

zt

yt

]
=

[
I
Ht

]
zt +

[
0
G

]
xt +

[
0
I

]
vt

=
[

I
Ht

]
(Bzt−1 + Fxt−1 + wt−1) +

[
0
G

]
xt +

[
0
I

]
vt.

By the induction assumption and (18.3.9)/(18.3.10), this term has the follow-
ing conditional normal distribution, given y1, . . . , yt−1:

N
([

Bzt−1|t−1 + Fxt−1

Ht(Bzt−1|t−1 + Fxt−1) + Gxt

]
,[

Σz(t|t− 1) •
HtΣz(t|t− 1) HtΣz(t|t− 1)H′

t + Σv

])
, (18.3.12)

where Σz(t|t−1) = BΣz(t−1|t−1)B′ +Σw. This proves the prediction step.
Application of (18.3.11) to (18.3.12) gives the conditional distribution of zt

given y1, . . . , yt and proves the correction step.
It remains to prove the forecasting step. Again by induction (zt|y1, . . . , yT )

and (yt|y1, . . . , yT ) both have normal distributions with the first and second
moments as stated in the forecasting step.

18.4 Maximum Likelihood Estimation of State Space
Models

In this section, we consider ML estimation of the state space system given in
Section 18.3.1. We assume that the matrices B, F, Ht, G, Σw, Σv, Σ0, and
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the vector µ0 depend on a vector of time invariant parameters δ. In other
words, δ is time invariant, even if Ht is not. For a given δ, the matrices are
assumed to be uniquely determined and at least twice continuously differen-
tiable with respect to the elements of δ. For instance, in the state space model
(18.2.8)/(18.2.9) which represents the finite order VAR process (18.2.6),

δ =
[

vec[ν,A1, . . . , Ap]
vech(Σu)

]
,

if no constraints are placed on the VAR coefficients or Σu and if the initial
conditions y−p+1, . . . , y0 are assumed to be known and fixed. The objective in
this section is to estimate δ. We will set up the log-likelihood function first.
Then we discuss its maximization and, finally, the asymptotic properties of
the ML estimators are considered.

18.4.1 The Log-Likelihood Function

By Bayes’ theorem, the sample density function can be written as

f(y1, . . . , yT ; δ) = f(y1; δ)f(y2, . . . , yT |y1; δ)
...
= f(y1; δ)f(y2|y1; δ) · · · f(yT |y1, . . . , yT−1; δ).

Thus, using the notation of the previous section and assuming that yt has
dimension K, the Gaussian log-likelihood for the present case is

ln l(δ|y1, . . . , yT ) = ln f(y1, . . . , yT ; δ)

= ln f(y1; δ) +
T∑

t=2

ln f(yt|y1, . . . , yt−1; δ)

= −KT

2
ln(2π) − 1

2

T∑
t=1

ln |Σy(t|t− 1)|

−1
2

T∑
t=1

(yt − yt|t−1)′Σy(t|t− 1)−1(yt − yt|t−1),

(18.4.1)

where we have used that y1|0 := E(y1), Σy(1|0) := Cov(y1), and

(yt|y1, . . . , yt−1) ∼ N (yt|t−1, Σy(t|t− 1)), t = 1, . . . , T,

from Section 18.3.1. Here both yt|t−1 and Σy(t|t−1) depend in general on the
parameter vector δ. If a specific vector δ is given, all the quantities in the log-
likelihood function can be computed with the Kalman filter recursions. Thus,
the Kalman filter is seen to be a useful tool for evaluating the log-likelihood



18.4 Maximum Likelihood Estimation of State Space Models 633

function of a wide range of models. Note also that we have considered like-
lihood approximations for VARMA processes in Chapter 12. In the present
framework, the exact likelihood may be obtained (see also Solo (1984)).

To simplify the expression for the log-likelihood given in (18.4.1), we use
the following notation:

et(δ) := yt − yt|t−1 and Σt(δ) := Σy(t|t− 1). (18.4.2)

This notation makes the dependence on δ explicit. Occasionally, we will, how-
ever, drop δ. With this notation, the log-likelihood function can be written
as

ln l(δ) = −KT

2
ln(2π) − 1

2

T∑
t=1

[ln |Σt(δ)| + et(δ)′Σt(δ)−1et(δ)]. (18.4.3)

18.4.2 The Identification Problem

Recall from the discussion in Chapter 12 that unique maximization of the
likelihood function and asymptotic inference require an identified or unique
parameterization. Identification is not automatic in the present context be-
cause, for instance, VARMA models are not identified without specific restric-
tions and VARMA processes are just special cases of the presently considered
models. Hence, the identification or uniqueness problem is inherent in the
general linear state space model, too. We will state the problem here again in
sufficient generality to cover the present case.

Let y := vec(y1, . . . , yT ) be the vector of observed random variables and
denote its distribution by F (y; δ0), where δ0 is the true parameter vector. We
assume that the true distribution of y is a member of the parametric family

{F (y; δ)|δ ∈ D},

where D ⊂ R
n is the parameter space. The vector δ0 is said to be identified

or identifiable if it is the only vector in D which gives rise to the distribution
of y. In other words, for any δ1 ∈ D,

δ1 �= δ0 ⇒ F (y; δ1) �= F (y; δ0) (for at least one y). (18.4.4)

To compute ML estimators and to derive asymptotic properties it is actu-
ally sufficient that δ0 has a neighborhood in which it is uniquely determined
by the true distribution of y. To distinguish this case from one where unique-
ness follows for the whole parameter space, the vector δ0 or the model is
often called locally identified or locally identifiable if there exists a neighbor-
hood U(δ0) of δ0 such that (18.4.4) holds for any δ1 ∈ U(δ0). In contrast,
the model or parameter vector is globally identifiable or globally identified if
(18.4.4) holds for all δ1 ∈ D.



634 18 State Space Models

Because the negative log-likelihood function has a locally unique mini-
mum if its Hessian matrix is positive definite, identification conditions for
state space models may be formulated via the information matrix. If we are
interested in asymptotic properties of estimators, it is sufficient to obtain
identification in large samples. Hence, under some regularity conditions, the
identification assumption may be disguised in the requirement of a positive
definite asymptotic information matrix. In a later proposition giving asymp-
totic properties of the ML estimators, to ensure identification, we will include
the condition that the sequence of normalized information matrices, I(δ0)/T ,
is bounded from below by a positive definite matrix, as T goes to infinity.
In special case models, other identification conditions are often easier to deal
with and are therefore preferred. For example, for VARMA processes the iden-
tification conditions given in Section 12.1.2 may be used.

18.4.3 Maximization of the Log-Likelihood Function

From some previous chapters we know that maximization of the log-likelihood
function is in general a nonlinear optimization problem. Therefore, numerical
methods are required for its solution. One possibility is a gradient algorithm
as described, for example, in Section 12.3.2 for iteratively minimizing − ln l.
Recall that the general form of the i-th iteration step is

δi+1 = δi − siDi

[
∂(− ln l)

∂δ

∣∣∣∣
δi

]
, (18.4.5)

where si is the step length and Di is a positive definite direction matrix. The
inverse information matrix is one possible choice for this matrix. In that case,
the method is called scoring algorithm. We will provide the ingredients for this
algorithm in the following, that is, we will give expressions for the gradient
of ln l and an estimator of the information matrix. There are various ways to
choose the step length si. For instance, it could be chosen so as to optimize
the progress towards the minimum. Another alternative would be to simply
set si = 1. We will not discuss the step length selection in further detail here
because it is of limited importance for the statistical analysis of the model.

The Gradient of the Log-Likelihood

From (18.4.3), we get

∂ ln l
∂δ′ = −1

2

T∑
t=1

[
vec

(
∂ ln |Σt|
∂Σt

)′
∂ vec(Σt)

∂δ′ +
∂ tr(e′tΣ

−1
t et)

∂δ′

]
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= −1
2

∑
t

[
vec(Σ−1

t )′
∂ vec(Σt)

∂δ′ + 2e′tΣ
−1
t

∂et

∂δ′

− vec(Σ−1
t ete

′
tΣ

−1
t )′

∂ vec(Σt)
∂δ′

]

= −1
2

∑
t

[
vec[Σ−1

t (IK − ete
′
tΣ

−1
t )]′

∂ vec(Σt)
∂δ′ + 2e′tΣ

−1
t

∂et

∂δ′

]
,

(18.4.6)

where ∂et/∂δ′ may be replaced by −∂yt|t−1/∂δ′.

The Information Matrix

Using E(ete
′
t) = Σt (= Σy(t|t− 1)) and E[et(δ0)] = 0, straightforward appli-

cation of the rules for matrix and vector differentiation yields the information
matrix,

I(δ0) = −E

[
∂2 ln l
∂δ∂δ′

∣∣∣∣
δ0

]

=
1
2

T∑
t=1

[
∂ vec(Σt)′

∂δ
(Σ−1

t ⊗Σ−1
t )

∂ vec(Σt)
∂δ′

+ 2E
(
∂e′t
∂δ

Σ−1
t

∂et

∂δ′

)]
. (18.4.7)

Because the true parameter values involved in this expression are unknown,
they are replaced by estimators and the expectation is simply dropped. For in-
stance, in the i-th iteration of the scoring algorithm, δi is used as an estimator
for δ0.

Discussion of the Scoring Algorithm

The scoring algorithm may have poor convergence properties far away from
the maximum of the log-likelihood function. On the other hand, it has very
good convergence properties close to the maximum. Unfortunately, it may be
expensive in terms of computation time because it requires (possibly numeri-
cal) evaluation of derivatives in each iteration. Therefore, other maximization
methods were proposed in the literature. Notably the EM (expectation step-
maximization step) algorithm of Dempster, Laird & Rubin (1977) was found
to be useful in practice (see Watson & Engle (1983), Schneider (1992)). The
EM algorithm is an iterative algorithm which has the advantage of involving
much cheaper computations in each iteration step than the scoring algorithm.
On the other hand, convergence of the former is slower than that of the lat-
ter algorithm. Nicholls & Pagan (1985) and Schneider (1991, 1992) suggested
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combining the EM and the scoring algorithms. This proposal may be useful
if no good initial estimator δ1 is available from where to start the scoring
algorithm. Another alternative is to use the so-called subspace algorithm for
getting initial values (e.g., Bauer & Wagner (2002)).

18.4.4 Asymptotic Properties of the ML Estimator

We consider the state space model from Section 18.3.1 with transition equation

zt = Bzt−1 + Fxt−1 + wt−1 (18.4.8)

and measurement equation

yt = Htzt + Gxt + vt. (18.4.9)

All assumptions of Section 18.3.1 are taken to be satisfied. In addition we
assume that

(i) the true parameter vector δ0 is in the interior of the parameter space which
is supposed to be compact;

(ii) Ht = (xt ⊗ I)J , where J is a known selection matrix such as J = [IK :
0 : · · · : 0] or Ht = H is a time invariant nonstochastic matrix;

(iii) the inputs xt are nonstochastic and uniformly bounded, that is, there
exist real numbers c1 and c2 such that c1 ≤ x′

txt ≤ c2 for all t = 0, 1, 2, . . .;
(iv) the sequence of normalized information matrices is bounded from below

by a positive definite matrix, that is, there exists a constant c such that
T−1I(δ0) > cIn or, in other words, T−1I(δ0)− cIn is positive definite, as
T → ∞;

(v) all eigenvalues of B have modulus less than 1.

As we have discussed in Section 18.4.2, (iv) is an identification condition.
The last assumption is a stability condition, and (iii) guarantees that the
input variables have no trends. We have seen in Chapter 7 that the stan-
dard asymptotic theory may not apply for trending variables. Therefore, they
are excluded here. With these assumptions, the following proposition can be
established.

Proposition 18.1 (Asymptotic Properties of the ML Estimator)
With all the assumptions stated in the foregoing, the ML estimator δ̃ of δ0 is
consistent and asymptotically normally distributed,

√
T (δ̃ − δ0)

d→N (0, Σδ̃), (18.4.10)

where

Σδ̃ = limTI(δ0)−1

is the inverse asymptotic information matrix. It is consistently estimated by
substituting the ML estimators for unknown parameters in (18.4.7), dropping
the expectation operator and dividing by T .
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Pagan (1980) gives a proof of this proposition based on Crowder (1976) (see
also Schneider (1988)). Other sets of conditions are possible to accommodate
the situation where the inputs xt are stochastic. They may, in fact, contain
lagged yt’s. Moreover, B may have eigenvalues on the unit circle if it does
not contain unknown parameters. The reader is referred to the articles by
Pagan (1980), Nicholls & Pagan (1985), Schneider (1988), and to a book by
Caines (1988) for details. When particular models are considered, different
sets of assumptions are often preferable for two reasons. First, other sets
of conditions may be easier to verify or to understand for special models.
Second, the conditions of Proposition 18.1 or the modifications mentioned in
the foregoing may not be satisfied. We will see an example of the latter case
shortly.

A number of alternatives to ML estimation were suggested, see, e.g., An-
derson & Moore (1979), Nicholls & Pagan (1985), Schneider (1988), and Bauer
& Wagner (2002) for more details and references.

It may be worth noting that application of the Kalman filter to systems
with estimated parameters produces state estimates and precision matrices
that do not take into account the estimation variability. Watanabe (1985)
and Hamilton (1986) considered the properties of state estimators obtained
with estimated parameter Kalman filter recursions. Furthermore, a state space
framework for unit root processes was presented by Bauer & Wagner (2003).

18.5 A Real Data Example

As an illustrative example, we consider a dynamic consumption function with
time varying coefficients,

yt = γ0t + γ1txt + γ2txt−1 + γ3tyt−1 + γ4txt−2 + γ5tyt−2 + vt

= X ′
tγt + vt, (18.5.1)

where

Xt :=

⎡⎢⎢⎢⎢⎢⎢⎣
1
xt

xt−1

yt−1

xt−2

yt−2

⎤⎥⎥⎥⎥⎥⎥⎦ and γt :=

⎡⎢⎢⎢⎢⎢⎢⎣
γ0t

γ1t

γ2t

γ3t

γ4t

γ5t

⎤⎥⎥⎥⎥⎥⎥⎦.

Here yt and xt represent rates of change (first differences of logarithms) of
consumption and income, respectively. Suppose that the coefficient vector γt

differs from γt−1 by an additive random disturbance, that is,

γt = γt−1 + wt−1. (18.5.2)

In other words, γt is driven by a (multivariate) random walk. Clearly, (18.5.1)
and (18.5.2) represent the measurement and transition equations of a state
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space model with Ht = X ′
t and B = I6. We complete the model by assuming

that vt and wt are independent Gaussian white noise processes, vt ∼ N (0, σ2
v)

and wt ∼ N (0, Σw), where

Σw =

⎡⎢⎣ σ2
w0

0
. . .

0 σ2
w5

⎤⎥⎦ (18.5.3)

is a diagonal matrix. Furthermore, the initial state γ0 is also assumed to
be normally distributed, γ0 ∼ N (γ0, Σ0), and independent of vt and wt.
Admittedly, our assumed model is quite simple. Still, it is useful to illustrate
some concepts considered in the previous sections.

Assuming that a sample y = (y1, . . . , yT )′ is available, the log-likelihood
function of our model is

ln l(σ2
v , Σw,γ0, Σ0|y)

= −T

2
ln(2π) − 1

2

T∑
t=1

ln |Σy(t|t− 1)| − 1
2

T∑
t=1

(yt − yt|t−1)2/Σy(t|t− 1),

(18.5.4)

where Σy(t|t−1) is a scalar ((1×1) matrix) because yt is a univariate variable.
The log-likelihood function may be evaluated with the Kalman filter recursions
for given parameters σ2

v, Σw,γ0, and Σ0. The maximization problem may
be solved with an iterative algorithm. Once estimates of the parameters σ2

v

and Σw are available, estimates γt|T of the coefficients of the consumption
function (18.5.1) may be obtained with the smoothing recursions given in
Section 18.3.1.

Using first differences of logarithms of the quarterly consumption and in-
come data given in File E1 for the years 1960 to 1982, we have estimated the
parameters of the state space model (18.5.1)/(18.5.2). The ML estimates of
the parameters of interest, namely the variances σ2

v and σ2
wi

, i = 0, 1, . . . , 5,
together with estimated standard errors (square roots of the diagonal elements
of the estimated inverse information matrix) and corresponding t-ratios are
given in Table 18.1.

The interpretation of the standard errors and t-ratios needs caution for
various reasons. In Proposition 18.1, where the asymptotic distribution of the
ML estimators is given, we have assumed that all eigenvalues of the transition
matrix B have modulus less than 1. This condition is clearly not satisfied in
the present example, where B = I6 and, thus, all six eigenvalues are equal to
1. However, as mentioned in Section 18.4.4, the condition on the eigenvalues
of B is not crucial if B is a known matrix which does not contain unknown
parameters. Of course, setting B = I6 is just an assumption which may or
may not be adequate.

A further deviation from the assumptions of Proposition 18.1 is that the in-
puts Xt contain lagged endogenous variables and hence are stochastic. Again,
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Table 18.1. ML estimates for the example model

parameter estimate standard error t-ratio

σ2
v 3.91 × 10−5 1.99 × 10−5 1.97

σ2
w0 2.04 × 10−5 2.33 × 10−5 .88

σ2
w1 .14 × 10−2 1.08 × 10−2 .13

σ2
w2 .46 × 10−2 .92 × 10−2 .50

σ2
w3 .45 × 10−2 1.11 × 10−2 .41

σ2
w4 .51 × 10−2 .94 × 10−2 .54

σ2
w5 .62 × 10−2 1.16 × 10−2 .54

we have mentioned in Section 18.4.4 that this assumption is not necessarily
critical. The conditions of Proposition 18.1 could be modified so as to allow
for lagged dependent variables.

Another assumption that may be problematic is the normality of the
white noise sequences and the initial state. The normality assumption may be
checked by computing the skewness and kurtosis of the standardized quanti-
ties (yt−yt|t−1)/Σy(t|t−1)1/2. A test for nonnormality may then be based on
the χ2-statistic involving both skewness and kurtosis as described in Chapter
4, Section 4.5. For the present example, the statistic assumes the value 3.00
and has a χ2(2)-distribution under the null hypothesis of normality. Thus, it
is not significant at any conventional level.

Finally, we have assumed in Proposition 18.1 that the true parameter val-
ues lie in the interior of the parameter space. Given that the variance estimates
are quite small compared to their estimated standard errors, it is possible that
at least the σ2

wi
are in fact zero and, thus, lie on the boundary of the feasible

parameter space. If the σ2
wi

are actually zero, the γt are time invariant in our
model which would be a hypothesis of considerable interest. It would permit
us to work with a constant coefficient specification. Unfortunately, if σ2

wi
= 0,

the corresponding t-ratio does not have an asymptotic standard normal dis-
tribution in general. Thus, we cannot use the t-ratios given in Table 18.1 for
testing the null hypotheses σ2

wi
= 0, i = 0, 1, . . . , 5.

In the present context, we may ignore the problems related to the asymp-
totic theory for the moment and simply regard the model as a descriptive
tool. Using the estimated values of the parameters of the model, we may con-
sider the smoothing estimates γt|T of the states (the coefficients of the con-
sumption function). They are plotted in Figure 18.2. The two-standard error
bounds which are also shown in the figure are computed from the Σγ(t|T ).
These quantities are obtained with the smoothing recursions given in Section
18.3.1. From the plots in Figure 18.2, it can be seen that the intercept term
γ0t is the only coefficient that exhibits substantial variation through time. For
instance, a considerable downturn is observed in 1966/1967, where the West
German economy was in a recession. All the other coefficients show relatively
little variation through time, although γ3t, γ4t, and γ5t (the coefficients of
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Fig. 18.2. Smoothing estimates of the consumption function coefficients (— —
coefficient estimate, —∇— estimated two-standard error bound).
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yt−1, xt−2, and yt−2, respectively) have a tendency to decline in the second
half of the 1970s. However, given the estimated two-standard error bounds,
overall the results support a specification with constant coefficients of current
and lagged income and lagged consumption.

As mentioned previously, this example is quite simplistic. It is just meant
to illustrate some of the concepts discussed in this chapter. In a more general
model, other lags of income and/or consumption could appear on the right-
hand side of the consumption function, the coefficients could be generated
by a more general VAR model and the covariance matrix of wt could be
nondiagonal. Moreover, the consumption function may just be a part of a
system of equations.

Given that we have discussed different models for the same data in previous
chapters, the example also illustrates that there is not just one possible model
or model class for the generation process of a multiple time series. The reader
may wonder which of the models we have considered in this and the previous
chapters is “best”. That, however, depends on the questions of interest. In
other words, the time series analyst has to decide on the model with the
objective of his or her analysis in mind. In this book, we have just tried to
introduce some of the possible tools in this venture. With these tools in hand,
the analyst is hoped to be able to approach his or her problems of interest in
a superior way, with an improved sense of the available possibilities and the
potential pitfalls.

18.6 Exercises

Problem 18.1
Write the VARMAX model

yt = A1yt−1 + · · · + Apyt−p + B0xt + · · · + Bsxt−s

+ ut + M1ut−1 + · · · + Mqut−q

in state space form.

Problem 18.2
Suppose that in the dynamic factor analytic model, yt = Lft+ut, the common
factors ft are generated by the VARMA(p, q) process,

ft = A1ft−1 + · · · + Apft−p + ηt + M1ηt−1 + · · · + Mqηt−q,

and the individual factors ut are generated by the VARMA(r, s) process

ut = C1ut−1 + · · · + Crut−r + εt + D1εt−1 + · · · + Dsεt−s.

Write the model in state space form.
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Problem 18.3
Assume that yt is generated according to

yt = AtYt−1 + Ctxt + vt,

where At := [A1t, . . . , Apt] and Yt−1 := [y′t−1, . . . , y
′
t−p]

′. Suppose that αt :=
vec[At : Ct] is driven by the VARMA(r, s) process

αt = D1αt−1 + · · · + Drαt−r + ηt + M1ηt−1 + · · · + Msηt−s.

Write the model in state space form.

Problem 18.4
Write down explicitly the first two steps of the Kalman filter recursions.

Problem 18.5
Suppose the scalar observable variable yt is generated by the random coeffi-
cient regression model

yt = ν + xtβt + vt, t = 1, . . . , T,

where βt = αβt−1 + wt is driven by an AR(1) process. Suppose further that
vt and wt are independent zero mean Gaussian white noise processes with
variance 1 and let β0 be a standard normal random variable.

(a) Determine the conditional distribution of βt given y1, . . . , yt−1.
(b) Write down the log-likelihood function of the model and derive its gradi-

ent. Find an expression for the information matrix.

Problem 18.6
Consider the K-dimensional Gaussian stable VAR(1) process yt = Ayt−1 +ut

with y0 ∼ N (0, 0) and ut ∼ N (0, Σu) for t = 1, 2, . . .. Use the Kalman filter
recursions to determine yt|t−1.

(a) Show that yt|t−1 = Ayt−1.
(b) Show that the conditions of Proposition 18.1 are satisfied if

δ =
[

vec(A)
vech(Σu)

]
.

Problem 18.7
Repeat the analysis of Section 18.5 with the same data and the state space
model consisting of the measurement equation

yt = γ0t + γ1txt + γ2tyt−1 + vt

and the transition equation⎡⎣ γ0,t

γ1,t

γ2,t

⎤⎦ =

⎡⎣ γ0,t−1

γ1,t−1

γ2,t−1

⎤⎦ + wt−1.
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A

Vectors and Matrices

The following summary of matrix and vector algebra is not meant to be an
introduction to the subject but is just a brief review of terms and rules used in
the text. Most of them can be found in books such as Graybill (1969), Searle
(1982), Anderson (1984, Appendix), Magnus & Neudecker (1988), Magnus
(1988) or Lütkepohl (1996a). Therefore proofs or further references are only
provided in exceptional cases.

A.1 Basic Definitions

A matrix is a rectangular array of numbers. For instance,[
3 −5
.3 0

]
, (0, 1, 0),

[
3 5 .3 .3
2 2 2 2

]
are matrices. More generally,

A = (aij) =

⎡⎢⎣ a11 . . . a1n

...
...

am1 . . . amn

⎤⎥⎦ (A.1.1)

is a matrix with m rows and n columns. Such a matrix is briefly called (m×
n) matrix, m being the row dimension and n being the column dimension.
The numbers aij are the elements or components of A. In the following, it is
assumed that the elements of all matrices considered are real numbers unless
otherwise stated. In other words, we will be concerned with real rather than
complex matrices. If the dimensions m and n are clear from the context or if
they are of no importance, the notation A = (aij) means that aij is a typical
element of A, that is, A consists of elements aij , i = 1, . . . ,m, j = 1, . . . , n.

A (1×n) matrix is a row vector and an (m×1) matrix is a column vector
which is often denoted by a lower case letter in the text. If not otherwise
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noted, all vectors will be column vectors in the following. Instead of (m× 1)
matrix we sometimes say (m×1) vector or simply m-vector or m-dimensional
vector.

An (m × m) matrix with the number of rows equal to the number of
columns is a square matrix. An (m×m) square matrix⎡⎢⎢⎢⎣

a11 0 . . . 0
0 a22 0
...

. . .
...

0 0 . . . amn

⎤⎥⎥⎥⎦
with zeros off the main diagonal is a diagonal matrix. If all the diagonal
elements of a diagonal matrix are one, it is an identity or unit matrix. An
(m×m) identity matrix is denoted by Im or simply by I if the dimension is
unimportant or obvious from the context. A square matrix with all elements
below (above) the main diagonal being zero is called upper (lower) triangular
or simply triangular matrix. A matrix consisting of zeros only is a null matrix
or zero matrix. Usually, in this text, such a matrix is simply denoted by 0 and
its dimensions have to be figured out from the context.

The transpose of the (m × n) matrix A given in (A.1.1) is the (n × m)
matrix

A′ =

⎡⎢⎣ a11 . . . am1

...
...

a1n . . . amn

⎤⎥⎦,
the n rows of A′ being the n columns of A. The matrix A is symmetric if
A′ = A. For instance,

[
3 3 1
0 1 0

]
is the transpose of

⎡⎣ 3 0
3 1
1 0

⎤⎦
and[

2 −1
−1 0

]
is a symmetric matrix.

A.2 Basic Matrix Operations

Let A = (aij) and B = (bij) be (m×n) matrices. The two matrices are equal,
A = B, if aij = bij for all i, j. The following matrix operations are basic:
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A + B := (aij + bij). (addition)
A−B := (aij − bij). (subtraction)

For a real constant c,

cA = Ac := (caij). (multiplication by a scalar)

Let C = (cij) be an (n× r) matrix, then the product

AC :=

⎛⎝ n∑
j=1

aijcjk

⎞⎠ (multiplication)

is an (m× r) matrix. For instance,[
3 3
2 1

] [
2 3 0
2 4 −1

]
=

[
3 · 2 + 3 · 2 3 · 3 + 3 · 4 3 · 0 − 3 · 1
2 · 2 + 1 · 2 2 · 3 + 1 · 4 2 · 0 − 1 · 1

]
=

[
12 21 −3
6 10 −1

]
.

If the column dimension of A is the same as the row dimension of C so that
A and C can be multiplied, the two matrices are conformable. In the product
AC the matrix C is premultiplied by A and A is postmultiplied by C.

Rules: Suppose A, B, and C are matrices with suitable dimensions so that
the following operations are defined and c is a scalar.

(1) A + B = B + A.
(2) (A + B) + C = A + (B + C).
(3) A(B + C) = AB + AC.
(4) c(A + B) = cA + cB.
(5) AB �= BA in general.
(6) (AB)C = A(BC).
(7) (AB)′ = B′A′.
(8) AI = IA = A.
(9) AA′ and A′A are symmetric matrices.

A.3 The Determinant

The determinant of an (m × m) square matrix A = (aij) is the sum of all
products

(−1)pa1i1a2i2 · · ·amim

consisting of precisely one element from each row and each column multiplied
by −1 or 1, depending on the permutation i1, . . . , im of the subscripts. The −1
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is used if the number of inversions of i1, . . . , im to obtain the order 1, 2, . . . ,m
is odd and 1 is used otherwise. The sum is taken over all m! permutations of
the column subscripts.

For a (1×1) matrix the determinant equals the value of the single element
and for m > 1 the determinant may be defined recursively as follows. Suppose

A =
[
a11 a12

a21 a22

]
is a (2 × 2) matrix. Then the determinant is

det(A) = |A| = a11a22 − a12a21. (A.3.1)

For instance,

det
[

3 1
2 2

]
= 4.

To specify the determinant of a general (m ×m) matrix A = (aij) we define
the minor of the ij-th element aij as the determinant of the ((m−1)×(m−1))
matrix that is obtained by deleting the i-th row and j-th column from A. The
cofactor of aij , denoted by Aij , is the minor multiplied by (−1)i+j . Now

det(A) = |A| = ai1Ai1 + · · · + aimAim = a1jA1j + · · · + amjAmj (A.3.2)

for any i or j ∈ {1, . . . ,m}. It does not matter which row or column is chosen
in (A.3.2) because the determinant of a matrix is a unique number.

For example, for the (3 × 3) matrix

A =

⎡⎣ 2 1 3
0 2 1
1 −1 4

⎤⎦ (A.3.3)

the minor of the upper right-hand corner element is

det
[

0 2
1 −1

]
= −2.

The cofactor is also −2 because (−1)1+3 = 1. Developing by the first row
gives

|A| = 2 · det
[

2 1
−1 4

]
− 1 · det

[
0 1
1 4

]
+ 3 · det

[
0 2
1 −1

]
= 13.

The same result is obtained by developing by any other row or column, e.g.,
using the first column gives

|A| = 2 · det
[

2 1
−1 4

]
− 0 · det

[
1 3

−1 4

]
+ 1 · det

[
1 3
2 1

]
= 13.
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Rules: In the following rules, A = (aij) and B = (bij) are (m ×m) matrices
and c is a scalar.

(1) det(Im) = 1.
(2) If A is a diagonal matrix, det(A) = a11 · a22 · · · amm.
(3) If A is a lower or upper triangular matrix, |A| = a11 · · · amm.
(4) If A contains a row or column of zeros, |A| = 0.
(5) If B is obtained from A by adding to one row (column) a scalar multiple

of another row (column), then |A| = |B|.
(6) If A has two identical rows or columns, then |A| = 0.
(7) det(cA) = cm det(A).
(8) |AB| = |A||B|.
(9) If C is an (m× n) matrix, det(Im + CC ′) = det(In + C′C).

A.4 The Inverse, the Adjoint, and Generalized Inverses

A.4.1 Inverse and Adjoint of a Square Matrix

An (m × m) square matrix A is nonsingular or regular or invertible if there
exists a unique (m × m) matrix B such that AB = Im. The matrix B is
denoted by A−1. It is the inverse of A,

AA−1 = A−1A = Im.

For m > 1, the (m×m) matrix of cofactors,

Aadj =

⎡⎢⎣ A11 . . . A1m

...
. . .

...
Am1 . . . Amm

⎤⎥⎦
′

is the adjoint of A. For a (1× 1) matrix A, we define the adjoint to be 1, that
is, Aadj = 1. To compute the inverse of the (m×m) matrix A, the relation

A−1 = |A|−1Aadj (A.4.1)

is sometimes useful. For this expression to be meaningful, |A| has to be
nonzero. Indeed, A is nonsingular if and only if det(A) �= 0.

As an example consider the matrix given in (A.3.3). Its adjoint is

Aadj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 2 1
−1 4

∣∣∣∣ −
∣∣∣∣ 0 1

1 4

∣∣∣∣ ∣∣∣∣ 0 2
1 −1

∣∣∣∣
−

∣∣∣∣ 1 3
−1 4

∣∣∣∣ ∣∣∣∣ 2 3
1 4

∣∣∣∣ −
∣∣∣∣ 2 1

1 −1

∣∣∣∣∣∣∣∣ 1 3
2 1

∣∣∣∣ −
∣∣∣∣ 2 3

0 1

∣∣∣∣ ∣∣∣∣ 2 1
0 2

∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

=

⎡⎣ 9 −7 −5
1 5 −2

−2 3 4

⎤⎦ .
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Consequently,

A−1 =
1
13

⎡⎣ 9 −7 −5
1 5 −2

−2 3 4

⎤⎦ .

Multiplying this matrix by A is easily seen to result in the (3 × 3) identity
matrix.

Rules:

(1) For an (m×m) square matrix A,AAadj = AadjA = |A|Im.
(2) An (m×m) matrix A is nonsingular if and only if det(A) �= 0.

In the following, A = (aij) and B are nonsingular (m ×m) matrices and
c �= 0 is a scalar constant.

(3) A−1 = Aadj/|A|.
(4) (A′)−1 = (A−1)′.
(5) (AB)−1 = B−1A−1.
(6) (cA)−1 = 1

cA
−1.

(7) I−1
m = Im.

(8) If A is a diagonal matrix, then A−1 is also diagonal with diagonal elements
1/aii.

(9) For an (m× n) matrix C, (Im + CC ′)−1 = Im − C(In + C ′C)−1C′.

A.4.2 Generalized Inverses

Let A be an (m×n) matrix. Any matrix B satisfying ABA = A is a generalized
inverse of A. For example, if

A =
[

1 0
0 0

]
,

the following matrices are generalized inverses of A:[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
1 0
0 1

2

]
.

Obviously, a generalized inverse is not unique in general. An (n×m) matrix B
is called Moore-Penrose (generalized) inverse of A if it satisfies the following
four conditions:

ABA = A,
BAB = B,
(AB)′ = AB,
(BA)′ = BA.

(A.4.2)
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The Moore-Penrose inverse of A is denoted by A+, it exists for any (m × n)
matrix and is unique.

Rules: (See Magnus & Neudecker (1988, p. 33, Theorem 5).)

(1) A+ = A−1 if A is nonsingular.
(2) (A+)+ = A.
(3) (A′)+ = (A+)′.
(4) A′AA+ = A+AA′ = A′.
(5) A′A+′A+ = A+A+′A′ = A+.
(6) (A′A)+ = A+A+′, (AA′)+ = A+′A+.
(7) A+ = (A′A)+A′ = A′(AA′)+.

A.5 The Rank

Let x1, . . . , xn be (m × 1) vectors. They are linearly independent if, for the
constants c1, . . . , cn,

c1x1 + · · · + cnxn = 0

implies c1 = · · · = cn = 0. Equivalently, defining the (n × 1) vector c =
(c1, . . . , cn)′ and the (m× n) matrix X = (x1, . . . , xn), the columns of X are
linearly independent if Xc = 0 implies c = 0. The columns of X are linearly
dependent if c1x1 + · · ·+ cnxn = 0 holds with at least one ci �= 0. In that case,

xi = d1x1 + · · · + di−1xi−1 + di+1xi+1 + · · · + dnxn,

where dj = −cj/ci. In other words, x1, . . . , xn are linearly dependent if at
least one of the vectors is a linear combination of the other vectors.

If n > m, the columns of X are linearly dependent. Consequently, if
x1, . . . , xn are linearly independent, then n ≤ m.

Let a1, . . . , an be the columns of the (m × n) matrix A = (a1, . . . , an).
That is, the ai are (m× 1) vectors. The rank of A, briefly rk(A), is the max-
imum number of linearly independent columns of A. Thus, if n ≤ m and
the a1, . . . , an are linearly independent, rk(A) = n. The maximum number of
linearly independent columns of A equals the maximum number of linearly
independent rows. Hence, the rank may be defined equivalently as the max-
imum number of linearly independent rows. If m ≥ n (m ≤ n) then we say
that A has full rank if rk(A) = n (rk(A) = m).

Rules: Let A be an (m× n) matrix.

(1) rk(A) ≤ min(m,n).
(2) rk(A) = rk(A′).
(3) rk(AA′) = rk(A′A) = rk(A).
(4) If B is a nonsingular (n× n) matrix, then rk(AB) = rk(A).
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(5) If rk(A) = m, then A+ = A′(AA′)−1.
(6) If rk(A) = n, then A+ = (A′A)−1A′.
(7) If B is an (n× r) matrix, rk(AB) ≤ min{rk(A), rk(B)}.
(8) If A is (m×m), then rk(A) = m if and only if |A| �= 0.

A.6 Eigenvalues and -vectors – Characteristic Values
and Vectors

The eigenvalues or characteristic values or characteristic roots of an (m ×
m) square matrix A are the roots of the polynomial in λ given by det(A −
λIm) or det(λIm−A). The determinant is sometimes called the characteristic
determinant and the polynomial is called the characteristic polynomial of A.
Because the roots of a polynomial are complex numbers, the eigenvalues are
also complex in general. A number λi is an eigenvalue of A, if the columns
of (A − λiIm) are linearly dependent. Consequently, there exists an (m × 1)
vector vi �= 0 such that

(A− λiIm)vi = 0 or Avi = λivi.

A vector with this property is an eigenvector or characteristic vector of A
associated with the eigenvalue λi. Of course, any nonzero scalar multiple of
vi is also an eigenvector of A associated with λi.

As an example consider the matrix

A =
[

1 0
1 3

]
.

Its eigenvalues are the roots of

|A− λI2| = det
[

1 − λ 0
1 3 − λ

]
= (1 − λ)(3 − λ).

Hence, λ1 = 1 and λ2 = 3 are the eigenvalues of A. Associated eigenvectors
are obtained by solving[

1 0
1 3

][
v11

v21

]
=

[
v11

v21

]
and

[
1 0
1 3

][
v12

v22

]
= 3

[
v12

v22

]
.

Thus,[
v11

v21

]
=

[
1

− 1
2

]
and

[
v12

v22

]
=

[
0
1

]
are eigenvectors of A associated with λ1 and λ2, respectively.

In the following rules, the modulus of a complex number z = z1 + iz2 is
used. Here z1 and z2 are the real and imaginary parts of z, respectively, and
i =

√−1. The modulus |z| of z is defined as
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|z| :=
√
z2
1 + z2

2 .

If z2 = 0 so that z is a real number, the modulus is just the absolute value of
z, which justifies the notation.

Rules:

(1) If A is symmetric, then all its eigenvalues are real numbers.
(2) The eigenvalues of a diagonal matrix are its diagonal elements.
(3) The eigenvalues of a triangular matrix are its diagonal elements.
(4) An (m×m) matrix has at most m eigenvalues.
(5) Let λ1, . . . , λm be the eigenvalues of the (m ×m) matrix A, then |A| =

λ1 · · ·λm, that is, the determinant is the product of the eigenvalues.
(6) Let λi and λj be distinct eigenvalues of A with associated eigenvectors vi

and vj . Then vi and vj are linearly independent.
(7) All eigenvalues of the (m×m) matrix A have modulus less than 1 if and

only if det(Im −Az) �= 0 for |z| ≤ 1, that is, the polynomial det(Im −Az)
has no roots in and on the complex unit circle.

A.7 The Trace

The trace of an (m ×m) square matrix A = (aij) is the sum of its diagonal
elements,

trA = tr(A) := a11 + · · · + amm.

For example,

tr
[

1 0
1 3

]
= 4.

Rules: A and B are (m ×m) matrices and λ1, . . . , λm are the eigenvalues of
A.

(1) tr(A + B) = tr(A) + tr(B).
(2) trA = trA′.
(3) If C is (m× n) and D is (n×m), tr(CD) = tr(DC).
(4) tr A = λ1 + · · · + λm.

A.8 Some Special Matrices and Vectors

A.8.1 Idempotent and Nilpotent Matrices

An (m×m) matrix A is idempotent if AA = A2 = A. Examples of idempotent
matrices are A = Im, A = 0, and
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A =

⎡⎢⎢⎢⎢⎣
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤⎥⎥⎥⎥⎦.
An (m×m) matrix A is nilpotent if there exists a positive integer i such that
Ai = 0. For instance, the (2 × 2) matrices

A =
[

0 3
0 0

]
and B =

[
1 −1
1 −1

]
are nilpotent because A2 = B2 = 0.

Rules: In the following rules, A is an (m×m) matrix.

(1) If A is a diagonal matrix, it is idempotent if and only if all the diagonal
elements are either zero or one.

(2) If A is symmetric and idempotent, rk(A) = tr(A).
(3) If A is idempotent and rk(A) = m, then A = Im.
(4) If A is idempotent, then Im −A is idempotent.
(5) If A is symmetric and idempotent, then A+ = A.
(6) If B is an (m× n) matrix, then BB+ and B+B are idempotent.
(7) If A is idempotent, then all its eigenvalues are zero or one.
(8) If A is nilpotent, then all its eigenvalues are zero.

A.8.2 Orthogonal Matrices and Vectors and Orthogonal
Complements

Two (m× 1) vectors x and y are orthogonal if x′y = 0. They are orthonormal
if they are orthogonal and have unit length, where the length of a vector x is
||x|| :=

√
x′x.

An (m × k) matrix B is orthogonal to the (m × n) matrix A if A′B = 0.
If A is an (m × n) matrix of full column rank, an orthogonal complement
of A, denoted by A⊥, is an (m × (m − n)) matrix of full column rank such
that A′A⊥ = 0. The orthogonal complement of a nonsingular square matrix
is zero and the orthogonal complement of a zero matrix is an identity matrix
of suitable dimension.

An (m ×m) square matrix A is orthogonal if its transpose is its inverse,
A′A = AA′ = Im. In other words, A is orthogonal if its rows and columns are
orthonormal vectors.

Examples of orthogonal vectors are

x =

⎡⎣ 5
0
0

⎤⎦ and y =

⎡⎣ 0
2
0

⎤⎦.



A.8 Some Special Matrices and Vectors 655

The following four matrices are orthogonal matrices:[
0 1
1 0

]
,

[
cosϕ sinϕ

− sinϕ cosϕ

]
,

⎡⎣ 0 1 0
1 0 0
0 0 1

⎤⎦ ,

⎡⎣ 1/
√

3 1/
√

3 1/
√

3
1/

√
2 −1/

√
2 0

1/
√

6 1/
√

6 −2/
√

6

⎤⎦ .

Suppose

A =

⎡⎣ 1 0
1 1
0 2

⎤⎦,
then⎡⎣ 1

−1
1
2

⎤⎦ and

⎡⎣ 2
−2

1

⎤⎦
are orthogonal complements of A.

Rules:

(1) Im is an orthogonal matrix.
(2) If A is an orthogonal matrix, then det(A) = 1 or −1.
(3) If A and B are orthogonal and conformable matrices, then AB is orthog-

onal.
(4) If λi, λj are distinct eigenvalues of a symmetric matrix A, then the corre-

sponding eigenvectors vi and vj are orthogonal.
(5) For an (m × n) matrix A of full column rank and n < m, the matrix

[A : A⊥] is invertible.

A.8.3 Definite Matrices and Quadratic Forms

Let A be a symmetric (m × m) matrix and x an (m × 1) vector. The func-
tion x′Ax is called a quadratic form in x. The symmetric matrix A or the
corresponding quadratic form is

(i) positive definite if x′Ax > 0 for all m-vectors x �= 0;
(ii) positive semidefinite if x′Ax ≥ 0 for all m-vectors x;
(iii) negative definite if x′Ax < 0 for all m-vectors x �= 0;
(iv) negative semidefinite if x′Ax ≤ 0 for all m-vectors x;
(v) indefinite if x′Ax > 0 for some x and x′Ax < 0 for another x.

Rules: In the following rules, A is a symmetric (m×m) matrix.
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(1) A = (aij) is positive definite if and only if all its principle minors are
positive, where

det

⎡⎢⎣ a11 . . . a1i

...
. . .

...
ai1 . . . aii

⎤⎥⎦
is the i-th principle minor of A.

(2) A is negative definite (semidefinite) if and only if −A is positive definite
(semidefinite).

(3) If A is positive or negative definite, it is nonsingular.
(4) All eigenvalues of a positive (negative) definite matrix are greater (smaller)

than zero.
(5) A diagonal matrix is positive (negative) definite if and only if all its diag-

onal elements are positive (negative).
(6) If A is positive definite and B an (m× n) matrix, then B′AB is positive

semidefinite.
(7) If A is positive definite and B an (m × n) matrix with rk(B) = n, then

B′AB is positive definite.
(8) If A is positive definite, then A−1 is positive definite.
(9) If A is idempotent, then it is positive semidefinite.

With these rules it is easy to check that

[
2 1
1 1

]
and

⎡⎣ 3 1 0
1 1 0
0 0 4

⎤⎦
are positive definite matrices and[

1 1
1 1

]
and

[
1 0
0 0

]
are positive semidefinite matrices.

A.9 Decomposition and Diagonalization of Matrices

A.9.1 The Jordan Canonical Form

Let A be an (m×m) matrix with eigenvalues λ1, . . . , λn. Then there exists a
nonsingular matrix P such that

P−1AP =

⎡⎢⎣ Λ1 0
. . .

0 Λn

⎤⎥⎦ =: Λ or A = PΛP−1, (A.9.1)
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where

Λi =

⎡⎢⎢⎢⎢⎢⎢⎣

λi 1 0 . . . 0
0 λi 1 0
...

. . . . . .
...

0 0
. . . 1

0 0 . . . . . . λi

⎤⎥⎥⎥⎥⎥⎥⎦.

This decomposition of A is the Jordan canonical form. Because the eigenvalues
of A may be complex numbers, Λ and P may be complex matrices. If multiple
roots of the characteristic polynomial exist, they may have to appear more
than once in the list λ1, . . . , λn.

The Jordan canonical form has some important implications. For instance,
it implies that

Aj = (PΛP−1)j = PΛjP−1

and it can be shown that

Λj
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λj
i

(
j
1

)
λj−1

i . . .

(
j

ri − 1

)
λj−ri+1

i

0 λj
i . . .

(
j

ri − 2

)
λj−ri+2

i

...
. . .

...

0 0 . . . λj
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where(
p
q

)
=

p!
(p− q)!q!

denotes a binomial coefficient. We have the following rules.

Rules: Suppose A is a real (m×m) matrix with eigenvalues λ1, . . . , λn which
have all modulus less than 1, that is, |λi| < 1 for i = 1, . . . , n. Furthermore,
let Λ and P be the matrices given in (A.9.1).

(1) Aj = PΛjP−1 −→
j→∞

0.

(2)
∑∞

j=0 A
j = (Im − A)−1 exists.

(3) The sequence Aj , j = 0, 1, 2, . . ., is absolutely summable, that is,
∞∑

j=0

|αkl,j |

is finite for all k, l = 1, . . . ,m, where αkl,j is a typical element of Aj . (See
Section C.3 regarding the concept of absolute summability.)
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A.9.2 Decomposition of Symmetric Matrices

If A is a symmetric (m ×m) matrix, then there exists an orthogonal matrix
P such that

P ′AP = Λ =

⎡⎢⎣ λ1 0
. . .

0 λm

⎤⎥⎦ or A = PΛP ′, (A.9.2)

where the λi’s are the eigenvalues of A and the columns of P are the corre-
sponding eigenvectors. Here all matrices are real again because the eigenvalues
of a symmetric matrix are real numbers. Denoting the i-th column of P by pi

and using that p′ipj = 0 for i �= j, we get

A = PΛP ′ =
m∑

i=1

λipip
′
i. (A.9.3)

Moreover,

A2 = PΛP ′PΛP ′ = PΛ2P ′

and, more generally,

Ak = PΛkP ′.

If A is a positive definite symmetric (m×m) matrix, then all eigenvalues are
positive so that the notation

Λ1/2 :=

⎡⎢⎣
√
λ1 0

. . .
0

√
λm

⎤⎥⎦
makes sense. Defining Q = PΛ1/2P ′, we get QQ = A. In generalization of the
terminology for positive real numbers, Q may be called a square root of A and
may be denoted by A1/2.

A.9.3 The Choleski Decomposition of a Positive Definite Matrix

If A is a positive definite (m ×m) matrix, then there exists a lower (upper)
triangular matrix P with positive main diagonal such that

P−1AP ′−1 = Im or A = PP ′. (A.9.4)

Similarly, if A is positive semidefinite with rk(A) = n < m, then there exists
a nonsingular matrix P such that
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P−1AP ′−1 =
[
In 0
0 0

]
. (A.9.5)

Alternatively, A = QQ′, where

Q = P

[
In 0
0 0

]
.

For instance,⎡⎣ 26 3 0
3 9 0
0 0 81

⎤⎦ =

⎡⎣ 5 1 0
0 3 0
0 0 9

⎤⎦⎡⎣ 5 0 0
1 3 0
0 0 9

⎤⎦
=

⎡⎣ √
26 0 0

3/
√

26 15/
√

26 0
0 0 9

⎤⎦⎡⎣ √
26 3/

√
26 0

0 15/
√

26 0
0 0 9

⎤⎦.
The decomposition A = PP ′, where P is lower triangular with positive main
diagonal, is sometimes called Choleski decomposition. Computer programs are
available to determine the matrix P for a given positive definite matrix A. If
a lower triangular matrix P is supplied by the program, an upper triangular
matrix Q can be obtained as follows: Define an (m×m) matrix

G =

⎡⎢⎢⎢⎣
0 . . . 0 1
0 . . . 1 0
...

. . .
...

1 0 0

⎤⎥⎥⎥⎦
with ones on the diagonal from the upper right-hand corner to the lower left-
hand corner and zeros elsewhere. Note that G′ = G and G−1 = G. Suppose a
decomposition of the (m×m) matrix A is desired. Then decompose B = GAG
as B = PP ′, where P is lower triangular. Hence,

A = GBG = GPGGP ′G = QQ′,

where Q = GPG is upper triangular.

A.10 Partitioned Matrices

Let the (m × n) matrix A be partitioned into submatrices A11, A12, A21, A22

with dimensions (p× q), (p× (n− q)), ((m− p)× q), and ((m− p)× (n− q)),
respectively, so that

A =
[
A11 A12

A21 A22

]
. (A.10.1)

For such a partitioned matrix, a number of useful results hold.
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Rules:

(1) A′ =
[
A′

11 A′
21

A′
12 A′

22

]
.

(2) If n = m and q = p and A,A11, and A22 are nonsingular, then

A−1 =
[

D −DA12A
−1
22

−A−1
22 A21D A−1

22 + A−1
22 A21DA12A

−1
22

]
=

[
A−1

11 + A−1
11 A12GA21A

−1
11 −A−1

11 A12G
−GA21A

−1
11 G

]
,

where D := (A11 − A12A
−1
22 A21)−1 and G := (A22 − A21A

−1
11 A12)−1.

(3) Under the conditions of (2),

(A11 −A12A
−1
22 A21)−1 = A−1

11 +A−1
11 A12(A22 −A21A

−1
11 A12)−1A21A

−1
11 .

(4) Under the conditions of (2), if A12 and A21 are null matrices,

A−1 =
[
A−1

11 0
0 A−1

22

]
.

(5) If A is a square matrix (n = m) and A11 is square and nonsingular, then
|A| = |A11| · |A22 − A21A

−1
11 A12|.

(6) If A is a square matrix and A22 is square and nonsingular, then |A| =
|A22| · |A11 −A12A

−1
22 A21|.

A.11 The Kronecker Product

Let A = (aij) and B = (bij) be (m × n) and (p × q) matrices, respectively.
The (mp× nq) matrix

A⊗B :=

⎡⎢⎣ a11B . . . a1nB
...

...
am1B . . . amnB

⎤⎥⎦ (A.11.1)

is the Kronecker product or direct product of A and B. For example, the
Kronecker product of

A =
[

3 4 −1
2 0 0

]
and B =

[
5 −1
3 3

]
(A.11.2)

is

A⊗B =

⎡⎢⎢⎣
15 −3 20 −4 −5 1
9 9 12 12 −3 −3

10 −2 0 0 0 0
6 6 0 0 0 0

⎤⎥⎥⎦
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and

B ⊗A =

⎡⎢⎢⎣
15 20 −5 −3 −4 1
10 0 0 −2 0 0
9 12 −3 9 12 −3
6 0 0 6 0 0

⎤⎥⎥⎦ .

Rules: In the following rules, suitable dimensions are assumed.

(1) A⊗B �= B ⊗A in general.
(2) (A⊗B)′ = A′ ⊗B′.
(3) A⊗ (B + C) = A⊗B + A⊗ C.
(4) (A⊗B)(C ⊗D) = AC ⊗BD.
(5) If A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1.
(6) If A and B are square matrices with eigenvalues λA, λB, respectively, and

associated eigenvectors vA, vB , then λAλB is an eigenvalue of A⊗B with
eigenvector vA ⊗ vB .

(7) If A and B are (m ×m) and (n × n) square matrices, respectively, then
|A⊗B| = |A|n|B|m.

(8) If A and B are square matrices,

tr(A⊗B) = tr(A)tr(B).

(9) (A⊗B)+ = A+ ⊗B+.

A.12 The vec and vech Operators and Related Matrices

A.12.1 The Operators

Let A = (a1, . . . , an) be an (m× n) matrix with (m× 1) columns ai. The vec
operator transforms A into an (mn× 1) vector by stacking the columns, that
is,

vec(A) =

⎡⎢⎣ a1

...
an

⎤⎥⎦.
For instance, if A and B are as in (A.11.2), then

vec(A) =

⎡⎢⎢⎢⎢⎢⎢⎣
3
2
4
0

−1
0

⎤⎥⎥⎥⎥⎥⎥⎦ and vec(B) =

⎡⎢⎢⎣
5
3

−1
3

⎤⎥⎥⎦ .

Rules: Let A, B, C be matrices with appropriate dimensions.
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(1) vec(A + B) = vec(A) + vec(B).
(2) vec(ABC) = (C′ ⊗ A)vec(B).
(3) vec(AB) = (I ⊗ A)vec(B) = (B′ ⊗ I)vec(A).
(4) vec(ABC) = (I ⊗AB)vec(C) = (C ′B′ ⊗ I)vec(A).
(5) vec(B′)′vec(A) = tr(BA) = tr(AB) = vec(A′)′vec(B).
(6) tr(ABC) = vec(A′)′(C′ ⊗ I)vec(B)

= vec(A′)′(I ⊗B)vec(C)
= vec(B′)′(A′ ⊗ I)vec(C)
= vec(B′)′(I ⊗ C)vec(A)
= vec(C ′)′(B′ ⊗ I)vec(A)
= vec(C ′)′(I ⊗ A)vec(B).

The vech operator is closely related to vec. It only stacks the elements on
and below the main diagonal of a square matrix. For instance,

vech

⎡⎣ α11 α12 α13

α21 α22 α23

α31 α32 α33

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
α11

α21

α31

α22

α32

α33

⎤⎥⎥⎥⎥⎥⎥⎦.

In general, if A is an (m×m) matrix, vech(A) is an m(m+ 1)/2-dimensional
vector. The vech operator is usually applied to symmetric matrices to collect
the separate elements only.

A.12.2 Elimination, Duplication, and Commutation Matrices

The vec and vech operators are related by the elimination matrix, Lm, and
the duplication matrix, Dm. The former is an ( 1

2m(m+ 1)×m2) matrix such
that, for an (m×m) square matrix A,

vech(A) = Lmvec(A). (A.12.1)

Thus, e.g., for m = 3,

L3 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦.

The duplication matrix Dm is (m2 × 1
2
m(m + 1)) and is defined so that, for

any symmetric (m×m) matrix A,

vec(A) = Dmvech(A). (A.12.2)
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For instance, for m = 3,

D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Because the rank of Dm is easily seen to be m(m + 1)/2, the matrix D′
mDm

is invertible. Thus, left-multiplication of (A.12.2) by (D′
mDm)−1D′

m gives

(D′
mDm)−1D′

mvec(A) = vech(A). (A.12.3)

Note, however, that (D′
mDm)−1D′

m �= Lm in general because (A.12.3) holds
for symmetric matrices A only while (A.12.1) holds for arbitrary square ma-
trices A.

The commutation matrix, Kmn, is another matrix that is occasionally
useful in dealing with the vec operator. Kmn is an (mn×mn) matrix defined
such that, for any (m× n) matrix A,

vec(A′) = Kmnvec(A)

or, equivalently,

vec(A) = Knmvec(A′).

For example,

K32 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
because for

A =

⎡⎣ α11 α12

α21 α22

α31 α32

⎤⎦,

vec(A′) =

⎡⎢⎢⎢⎢⎢⎢⎣
α11

α12

α21

α22

α31

α32

⎤⎥⎥⎥⎥⎥⎥⎦ = K32

⎡⎢⎢⎢⎢⎢⎢⎣
α11

α21

α31

α12

α22

α32

⎤⎥⎥⎥⎥⎥⎥⎦ = K32vec(A).
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Rules:

(7) LmDm = Im(m+1)/2.
(8) KmmDm = Dm.
(9) Km1 = K1m = Im.
(10) K′

mn = K−1
mn = Knm.

(11) tr Kmm = m.
(12) det(Kmn) = (−1)mn(m−1)(n−1)/4.
(13) tr(D′

mDm) = m2, tr(D′
mDm)−1 = m(m + 3)/4.

(14) det(D′
mDm) = 2m(m−1)/2.

(15) tr(DmD′
m) = m2.

(16) |D′
m(A⊗A)Dm| = 2m(m−1)/2|A|m+1, where A is an (m×m) matrix.

(17) (D′
m(A⊗A)Dm)−1 = (D′

mDm)−1D′
m(A−1 ⊗A−1)Dm(D′

mDm)−1, if A
is a nonsingular (m×m) matrix.

(18) LmL′
m = Im(m+1)/2.

(19) LmL′
m and LmKmmL′

m are idempotent.

Let A and B be lower triangular (m×m) matrices. Then we have the following
rules:

(20) Lm(A⊗B)L′
m is lower triangular.

(21) L′
mLm(A′ ⊗B)L′

m = (A′ ⊗B)L′
m.

(22) [Lm(A′ ⊗ B)L′
m]s = Lm((A′)s ⊗ Bs)L′

m for s = 0, 1, . . . and for s =
. . . ,−2,−1, if A−1 and B−1 exist.

Let G be (m× n), F (p× q), and b (p× 1). Then the following results hold:

(23) Kpm(G⊗ F ) = (F ⊗G)Kqn.
(24) Kpm(G⊗ F )Knq = F ⊗G.
(25) Kpm(G⊗ b) = b ⊗G.
(26) Kpm(b ⊗G) = G⊗ b.
(27) vec(G⊗ F ) = (In ⊗ Kqm ⊗ Ip)(vec(G) ⊗ vec(F )).
(28) (D′

mDm)−1D′
mKmm = (D′

mDm)−1D′
m.

A.13 Vector and Matrix Differentiation

In the following, it will be assumed that all derivatives exist and are con-
tinuous. Let f(β) be a scalar function that depends on the (n × 1) vector
β = (β1, . . . , βn)′.

∂f

∂β
:=

⎡⎢⎢⎢⎢⎣
∂f

∂β1
...
∂f

∂βn

⎤⎥⎥⎥⎥⎦, ∂f

∂β′ :=
[
∂f

∂β1
, . . . ,

∂f

∂βn

]
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are (n× 1) and (1 × n) vectors of first order partial derivatives, respectively,
and

∂2f

∂β∂β′ :=
[

∂2f

∂βi∂βj

]
=

⎡⎢⎢⎢⎢⎢⎣
∂2f

∂β1∂β1
. . .

∂2f

∂β1∂βn
...

...
∂2f

∂βn∂β1
. . .

∂2f

∂βn∂βn

⎤⎥⎥⎥⎥⎥⎦
is the (n× n) Hessian matrix of second order partial derivatives. If f(A) is a
scalar function of an (m× n) matrix A = (aij), then

∂f

∂A
:=

[
∂f

∂aij

]
is an (m × n) matrix of partial derivatives. If the (m × n) matrix A = (aij)
depends on the scalar β, then

∂A

∂β
:=

[
∂aij

∂β

]
is an (m× n) matrix. If y(β) = (y1(β), . . . , ym(β))′ is an (m× 1) vector that
depends on the (n× 1) vector β, then

∂y

∂β′ :=

⎡⎢⎢⎢⎢⎣
∂y1

∂β1
. . .

∂y1

∂βn
...

...
∂ym

∂β1
. . .

∂ym

∂βn

⎤⎥⎥⎥⎥⎦
is an (m× n) matrix and

∂y′

∂β
:=

(
∂y

∂β′

)′
.

For example, if β = (β1, β2)′ and f(β) = β2
1 − 2β1β2, then

∂f

∂β
=

⎡⎢⎢⎢⎣
∂f

∂β1

∂f

∂β2

⎤⎥⎥⎥⎦ =
[

2β1 − 2β2

−2β1

]
.

If

y(β) =
[
β3

1 + β2

eβ1

]
, then

∂y

∂β′ =
[

3β2
1 1

eβ1 0

]
.

The following two propositions are useful for deriving rules for vector and
matrix differentiation.
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Proposition A.1 (Chain Rule for Vector Differentiation)
Let α and β be (m× 1) and (n× 1) vectors, respectively, and suppose h(α) is
(p× 1) and g(β) is (m× 1). Then, with α = g(β),

∂h(g(β))
∂β′ =

∂h(α)
∂α′

∂g(β)
∂β′ (p× n).

Proposition A.2 (Product Rules for Vector Differentiation)
(a) Suppose β is (m × 1), a(β) = (a1(β), . . . , an(β))′ is (n × 1), c(β) =
(c1(β), . . . , cp(β))′ is (p× 1) and A = (aij) is (n× p) and does not depend on
β. Then

∂[a(β)′Ac(β)]
∂β′ = c(β)′A′ ∂a(β)

∂β′ + a(β)′A
∂c(β)
∂β′ .

(b) If β is a (1 × 1) scalar, A(β) is (m× n) and B(β) is (n× p), then

∂AB

∂β
=

∂A

∂β
B + A

∂B

∂β
.

(c) If β is an (m× 1) vector, A(β) is (n× p) and B(β) is (p× q), then

∂ vec(AB)
∂β′ = (Iq ⊗A)

∂ vec(B)
∂β′ + (B′ ⊗ In)

∂ vec(A)
∂β′ .

Proof:

(a)

∂(a′Ac)
∂β′ =

∂

(∑
i,j

aiaijcj

)
∂β′

=
∑
i,j

[
∂ai

∂β′ aijcj + aiaij
∂cj

∂β′

]
= c′A′ ∂a

∂β′ + a′A
∂c

∂β′ .

(b)

AB =

⎡⎣∑
j

aijbjk

⎤⎦ and
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∂
(∑

j aijbjk

)
∂β

=
∑

j

[
∂aij

∂β
bjk + aij

∂bjk

∂β

]
.

(c) Follows from (b) by stacking the columns of AB and writing the resulting
columns ∂ vec(AB)/∂βi for i = 1, . . . ,m in one matrix.

The following rules are now easy to verify.

Rules:

(1) Let A be an (m× n) matrix and β be an (n× 1) vector. Then

∂Aβ

∂β′ = A and
∂β′A′

∂β
= A′.

Proof: This result is a special case of Proposition A.2(a).

(2) Let A be (m×m) and β be (m× 1). Then

∂β′Aβ
∂β

= (A + A′)β and
∂β′Aβ
∂β′ = β′(A′ + A).

Proof: See Proposition A.2(a).

(3) If A is (m×m) and β is (m× 1), then

∂2β′Aβ
∂β∂β′ = A + A′.

Proof: Follows from (1) and (2).

(4) If A is a symmetric (m×m) matrix and β an (m× 1) vector then

∂2β′Aβ
∂β∂β′ = 2A.

Proof: See (3).

(5) Let Ω be a symmetric (n × n) matrix and c(β) an (n × 1) vector that
depends on the (m× 1) vector β. Then

∂c(β)′Ωc(β)
∂β′ = 2c(β)′Ω

∂c(β)
∂β′

and

∂2c(β)′Ωc(β)
∂β∂β′ = 2

[
∂c(β)′

∂β
Ω
∂c(β)
∂β′ + [c(β)′Ω ⊗ Im]

∂ vec(∂c(β)′/∂β)
∂β′

]
.

In particular, if y is an (n× 1) vector and X an (n×m) matrix,
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∂(y −Xβ)′Ω(y −Xβ)
∂β′ = −2(y −Xβ)′ΩX

and

∂2(y −Xβ)′Ω(y −Xβ)
∂β∂β′ = 2X ′ΩX.

Proof: Follows from Proposition A.2(a).

(6) Suppose β is (m× 1), B(β) is (n× p), A is (k × n), and C is (p× q) and
the latter two matrices do not depend on β. Then

∂ vec(ABC)
∂β′ = (C′ ⊗ A)

∂ vec(B)
∂β′ .

Proof: Follows from Rule (2), Section A.12, and Proposition A.1.

(7) Suppose β is (m × 1), A(β) is (n × p), D(β) is (q × r), and C is (p × q)
and does not depend on β. Then

∂ vec(ACD)
∂β′ = (Ir ⊗ AC)

∂ vec(D)
∂β′ + (D′C′ ⊗ In)

∂ vec(A)
∂β′ .

Proof: Follows from Proposition A.2(c) by setting B = CD and noting
that ∂ vec(CD)/∂β′ = (Ir ⊗ C)∂ vec(D)/∂β′.

(8) If β is (m× 1) and A(β) is (n× n), then, for any positive integer h,

∂ vec(Ah)
∂β′ =

[
h−1∑
i=0

(A′)h−1−i ⊗Ai

]
∂ vec(A)

∂β′ .

Proof: Follows inductively from Proposition A.2(c). The result is evident
for h = 1. Assuming it holds for h− 1 gives

∂ vec(AAh−1)
∂β′ = (In ⊗ A)

[
h−2∑
i=0

(A′)h−2−i ⊗ Ai

]
∂ vec(A)

∂β′

+((A′)h−1 ⊗ In)
∂ vec(A)

∂β′ .

(9) If A is a nonsingular (m×m) matrix, then

∂ vec(A−1)
∂ vec(A)′

= −(A−1)′ ⊗A−1.

Proof: Using Proposition A.2(c),
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0 =
∂ vec(Im)
∂ vec(A)′

=
∂ vec(A−1A)
∂ vec(A)′

= (Im ⊗A−1)
∂ vec(A)
∂ vec(A)′

+(A′ ⊗ Im)
∂ vec(A−1)
∂ vec(A)′

.

(10) Let A be a symmetric positive definite (m × m) matrix and let P be
a lower triangular (m × m) matrix with positive elements on the main
diagonal such that A = PP ′. Moreover, let Lm be an ( 1

2m(m + 1) ×m2)
elimination matrix such that Lmvec(A) = vech(A) consists of the elements
on and below the main diagonal of A only. Then

∂ vech(P )
∂ vech(A)′

= {Lm[(Im ⊗ P )Kmm + (P ⊗ Im)]L′
m}−1

= {Lm(Im2 + Kmm)(P ⊗ Im)L′
m}−1,

where Kmm is an (m2×m2) commutation matrix such that Kmmvec(P ) =
vec(P ′).

Proof: See Lütkepohl (1989a).

(11) If A = (aij) is an (m×m) matrix, then

∂ tr(A)
∂A

= Im.

Proof: tr(A) = a11 + · · · + amm. Hence,

∂ tr(A)
∂aij

=
{

0 if i �= j,
1 if i = j.

(12) If A = (aij) is (m× n) and B = (bij) is (n×m), then

∂ tr(AB)
∂A

= B′.

Proof: Follows because tr(AB) =
∑n

j=1 a1jbj1 + · · · + ∑n
j=1 amjbjm.

(13) Suppose A is an (m × n) matrix and B, C are (m × m) and (n × m),
respectively. Then

∂ tr(BAC)
∂A

= B′C′.

Proof: Follows from Rule (12) because tr(BAC) = tr(ACB).

(14) Let A,B,C,D be (m × n), (n × n), (m × n), and (n × m) matrices,
respectively. Then

∂ tr(DABA′C)
∂A

= CDAB + D′C′AB′.
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Proof: See Murata (1982, Appendix, Theorem 6a).

(15) Let A,B, and C be (m × m) matrices and suppose A is nonsingular.
Then

∂ tr(BA−1C)
∂A

= −(A−1CBA−1)′.

Proof: By Rule (6) of Section A.12,

tr(BA−1C) = vec(B′)′(C ′ ⊗ Im) vec(A−1).

Hence, using (9),

∂ tr(BA−1C)
∂ vec(A)′

= −vec(B′)′(C′ ⊗ Im)((A−1)′ ⊗ A−1)

= − [
(A−1C ⊗A−1′) vec(B′)

]′
= − [

vec(A−1′B′C′A−1′)
]′

by Rule (2) of Section A.12.

(16) Let A = (aij) be an (m×m) matrix. Then

∂|A|
∂A

= (Aadj)′,

where Aadj is the adjoint of A.

Proof: Developing by the i-th row of A gives

|A| = ai1Ai1 + · · · + aimAim,

where Aij is the cofactor of aij . Hence,

∂|A|
∂aij

= Aij

because Aij does not contain aij .

(17) If A is a nonsingular (m×m) matrix with |A| > 0, then

∂ ln |A|
∂A

= (A′)−1.

Proof: Using Proposition A.1 (chain rule),

∂ ln |A|
∂A

=
∂ ln |A|
∂|A| · ∂|A|

∂A
=

1
|A| (A

adj)′ = (A′)−1.
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Proposition A.3 (Taylor’s Theorem)
Let f(β) be a scalar valued function of the (m× 1) vector β. Suppose f(β) is
at least twice continuously differentiable on an open set S that contains β0, β,
and the entire line segment between β0 and β. Then there exists a point β on
the line segment such that

f(β) = f(β0) +
∂f(β0)
∂β′ (β − β0) +

1
2
(β − β0)′

∂2f(β)
∂β∂β′ (β − β0), (A.13.1)

where ∂f(β0)/∂β′ := (∂f/∂β′|β0).

The expansion of f given in (A.13.1) is a second order Taylor expansion
at or around β0.

A.14 Optimization of Vector Functions

Suppose f(β) is a real valued (scalar) differentiable function of the (m × 1)
vector β. A necessary condition for a local optimum (minimum or maximum)
at β̃ is that

∂f

∂β
= 0 for β = β̃, that is,

∂f(β̃)
∂β

:=

[
∂f

∂β

∣∣∣∣
β̃

]
= 0.

In other words, f(·) has a stationary point at β̃. If this condition is satisfied
and the Hessian matrix of second order partial derivatives

∂2f

∂β∂β′

is negative (positive) definite for β = β̃, then β̃ is a local maximum (mini-
mum).

If a set of constraints is given in the form

ϕ(β) = (ϕ1(β), . . . , ϕn(β))′ = 0,

that is, ϕ(β) is an (n × 1) vector, then a local optimum, subject to these
constraints, is obtained at a stationary point of the Lagrange function

L(β, λ) = f(β) − λ′ϕ(β),

where λ is an (n×1) vector of Lagrange multipliers. In other words, a necessary
condition for a constrained local optimum is that

∂L
∂β

= 0 and
∂L
∂λ

= 0

hold simultaneously.
The following results are useful in some optimization problems.
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Proposition A.4 (Maximum of tr(B′ΩB))
Let Ω be a positive semidefinite symmetric (K ×K) matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λK and corresponding orthonormal (K × 1) eigenvectors
v1, v2, . . . , vK . Moreover, let B be a (K × r) matrix with B′B = Ir. Then the
maximum of tr(B′ΩB) with respect to B is obtained for

B = B̂ = [v1, . . . , vr]

and

max
B

tr(B′ΩB) = λ1 + · · · + λr.

Proof: The proposition follows from Theorem 6, p. 205, of Magnus & Neu-
decker (1988) by induction. For r = 1, our result is just a special case of that
theorem. For r > 1, assuming that the proposition holds for r−1 and denoting
the columns of B by b1, . . . , br,

tr(B′ΩB) = tr

⎡⎢⎣ b′1
...
b′r

⎤⎥⎦Ω[b1, . . . , br] = tr

⎡⎢⎣ b′1Ωb1
∗

. . .
∗ b′rΩbr

⎤⎥⎦
= b′1Ωb1 + · · · + b′r−1Ωbr−1 + b′rΩbr

= λ1 + · · · + λr−1 + b′rΩbr

and max b′rΩbr = v′Ωvr = λr, under the conditions of the proposition, by the
aforementioned theorem from Magnus & Neudecker (1988).

The next proposition may be regarded as a corollary of Proposition A.4.

Proposition A.5 (Minimum of tr(Y −BCX)′Σ−1
u (Y −BCX))

Let Y,X,Σu, B, and C be matrices of dimensions (K × T ), (Kp × T ), (K ×
K), (K × r), and (r × Kp), respectively, with Σu positive definite, rk(B) =
rk(C) = r, rk(X) = Kp, and rk(Y ) = K. Then a minimum of

tr[(Y −BCX)′Σ−1
u (Y −BCX)] (A.14.1)

with respect to B and C is obtained for

B = B̂ = Σ1/2
u V̂ and C = Ĉ = V̂ ′Σ−1/2

u Y X ′(XX ′)−1, (A.14.2)

where V̂ = [v̂1, . . . , v̂r] is the (K × r) matrix of the orthonormal eigenvectors
corresponding to the r largest eigenvalues of

1
T
Σ−1/2

u Y X ′(XX ′)−1XY ′Σ−1/2
u

in nonincreasing order.
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Proof: We first assume Σu = IK .

tr[(Y −BCX)′(Y −BCX)]
= tr[(Y −BCX)(Y −BCX)′]
= [vec(Y ) − vec(BCX)]′[vec(Y ) − vec(BCX)]
= [vec(Y ) − (X ′ ⊗B)vec(C)]′ [vec(Y ) − (X ′ ⊗B)vec(C)] .

(A.14.3)

A derivation similar to that in Section 3.2.1 shows that this sum of squares is
minimized with respect to vec(C) when this vector is chosen to be

vec(Ĉ) = [(X ⊗B′)(X ′ ⊗B)]−1 (X ⊗B′)vec(Y )
= (XX ′ ⊗B′B)−1 vec(B′Y X ′)
= vec[(B′B)−1B′Y X ′(XX ′)−1].

Because we may normalize the columns of B, we choose B′B = Ir without
loss of generality. Hence,

Ĉ = B′Y X ′(XX ′)−1. (A.14.4)

Substituting for C in (A.14.3) gives

tr[(Y −BB′Y X ′(XX ′)−1X)(Y −BB′Y X ′(XX ′)−1X)′]
= tr(Y Y ′) − tr(BB′Y X ′(XX ′)−1XY ′) − tr(Y X ′(XX ′)−1XY ′BB′)

+ tr(BB′Y X ′(XX ′)−1XX ′(XX ′)−1XY ′BB′)
= tr(Y Y ′) − tr(B′Y X ′(XX ′)−1XY ′B),

where again B′B = Ir has been used. This expression is minimized with
respect to B, where

1
T

trB′Y X ′(XX ′)−1XY ′B

assumes its maximum. By Proposition A.4, the maximum is attained if B
consists of the eigenvectors corresponding to the r largest eigenvalues of

1
T
Y X ′(XX ′)−1XY ′

which proves the proposition for Σu = IK .
If Σu �= IK ,

tr[(Y −BCX)′Σ−1
u (Y −BCX)] = tr[(Y # −B#CX)′(Y # −B#CX)]

has to be minimized with respect to B# and C. Here Y # = Σ
−1/2
u Y and

B# = Σ
−1/2
u B. From the above derivation the solution is B̂# = V̂ and

Ĉ = B̂#′Y #X ′(XX ′)−1 = V̂ ′Σ−1/2
u Y X ′(XX ′)−1,

where the columns of V̂ are the eigenvectors corresponding to the r largest
eigenvalues of
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1
T
Y #X ′(XX ′)−1XY #′ =

1
T
Σ−1/2

u Y X ′(XX ′)−1XY ′Σ−1/2
u .

Hence, B̂ = Σ
1/2
u B̂# = Σ

1/2
u V̂ .

A result similar to that in Proposition A.4 also holds for the maximum and
minimum of a determinant. The following proposition is a slight modification
of Theorem 15 of Magnus & Neudecker (1988, Chapter 11).

Proposition A.6 (Maximum and Minimum of |CΩC ′|)
Let Ω be a positive definite symmetric (K × K) matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λK and corresponding orthonormal (K × 1) eigenvectors
v1, . . . , vK . Furthermore, let C be an (r ×K) matrix with CC ′ = Ir. Then

max
C

|CΩC′| = λ1 · · ·λr

and the maximum is attained for

C = Ĉ = [v1, . . . , vr]′.

Moreover,

min
C

|CΩC ′| = λKλK−1 · · ·λK−r+1

and the minimum is attained for

C = Ĉ = [vK , . . . , vK−r+1]′.

An important implication of this proposition is used in Chapter 7 and is stated
next.

Proposition A.7 (Minimum of |T−1(Y −BCX)(Y −BCX)′|)
Let Y and X be (K×T ) matrices of rank K and let B and C be of rank r and
dimensions (K×r) and (r×K), respectively. Furthermore, let λ1 ≥ · · · ≥ λK

be the eigenvalues of

(XX ′)−1/2XY ′(Y Y ′)Y X ′(XX ′)−1/2′

and the corresponding orthonormal eigenvectors are v1, . . . , vK . Here

(XX ′)−1/2

is some matrix satisfying

(XX ′)−1/2(XX ′)(XX ′)−1/2′ = IK .

Then
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min
B,C

|T−1(Y −BCX)(Y −BCX)′| = |T−1Y Y ′|(1 − λ1) · · · (1 − λr)

and the minimum is attained for

C = Ĉ = [v1, . . . , vr]′(XX ′)−1/2

and

B = B̂ = Y X ′Ĉ ′(ĈXX ′Ĉ ′)−1.

A proof of this proposition can be found in Tso (1981). It should be noted
that the minimizing matrices B̂ and Ĉ are not unique. Any nonsingular (r×r)
matrix F leads to another set of minimizing matrices FĈ, B̂F−1.

A.15 Problems

The following problems refer to the matrices

A =
[

5 2
−1 1

]
, B =

[
6 0 0

−6 1 0

]
, C =

⎡⎣ 1 4 0
2 2 2
1 2 0

⎤⎦,
D =

[
5 2
2 1

]
, H(β) =

[
4β1 2β1 + β2

1 + β2 3

]
.

Problem A.1
Determine A + D, A− 2D, A′, AB, BC, B′A, B′A′, A⊗D, B ⊗D, D ⊗B,
B′ ⊗D′, B +BC, tr A, tr D, detA, |D|, |C|, vec(B), vec(B′), vech(C), K33,
A−1, D−1, (A ⊗ D)−1, rk(C), rk(B), det(A ⊗ D), tr(A ⊗ D), C−1 (use the
rules for the partitioned inverse).

Problem A.2
Determine the eigenvalues of A, D, and A⊗D.

Problem A.3
Find an upper triangular matrix Q such that D = QQ′ and find an orthog-
onal matrix P such that D = PΛP ′, where Λ is a diagonal matrix with the
eigenvalues of D on the main diagonal. Compute D5.

Problem A.4
Is F = I2 −BB′ idempotent? Is BB′ positive definite?



676 A Vectors and Matrices

Problem A.5
Determine the following derivatives.

∂ det(H)
∂β

,
∂2 det(H)
∂β∂β′ ,

∂ tr(H)
∂β

,

∂ vec(H)
∂β′ ,

∂ vec(H2)
∂β′ ,

∂H(β)β
∂β′ ,

where β = (β1, β2)′.

Problem A.6
Determine the stationary points of |H| with respect to β. Are they local
extrema?

Problem A.7
Give a second order Taylor expansion of det(H) around β = (0, 0)′.
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Multivariate Normal and Related Distributions

B.1 Multivariate Normal Distributions

A K-dimensional vector of continuous random variables y = (y1, . . . , yK)′ has
a multivariate normal distribution with mean vector µ = (µ1, . . . , µK)′ and
covariance matrix Σ, briefly

y ∼ N (µ,Σ),

if its distribution has the probability density function (p.d.f.)

f(y) =
1

(2π)K/2
|Σ|−1/2 exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
. (B.1.1)

Alternatively, y ∼ N (µ,Σ), if for any K-vector c for which c′Σc �= 0 the
linear combination c′y has a univariate normal distribution, that is, c′y ∼
N (c′µ, c′Σc) (see Rao (1973, Chapter 8)). This definition of a multivariate
normal distribution is useful because it carries over to the case where Σ is
positive semidefinite and singular, while the multivariate density in (B.1.1) is
only meaningful, if Σ is positive definite and, hence, nonsingular. It must be
emphasized, however, that the two definitions are equivalent, if Σ is positive
definite rather than just positive semidefinite. Another possibility to define
a multivariate normal distribution with singular covariance matrix may be
found in Anderson (1984).

The following results regarding the multivariate normal and related distri-
butions are useful. Many of them are stated in Judge et al. (1985, Appendix
A). Proofs can be found in Rao (1973, Chapter 8) and Hogg & Craig (1978,
Chapter 12).

Proposition B.1 (Marginal and Conditional Distributions of a Multivariate
Normal)
Let y1 and y2 be two random vectors such that
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y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

where the partitioning of the mean vector and covariance matrix corresponds
to that of the vector (y′1, y

′
2)

′. Then,

y1 ∼ N (µ1, Σ11)

and the conditional distribution of y1 given y2 = c is also multivariate normal,

(y1|y2 = c) ∼ N (µ1 + Σ12Σ
−1
22 (c− µ2), Σ11 −Σ12Σ

−1
22 Σ21).

If Σ22 is singular, the inverse can be replaced by a generalized inverse. More-
over, y1 and y2 are independent if and only if Σ12 = Σ′

21 = 0.

Proposition B.2 (Linear Transformation of a Multivariate Normal Random
Vector)
Suppose y ∼ N (µ,Σ) is (K × 1), A is an (M ×K) matrix and c an (M × 1)
vector. Then

x = Ay + c ∼ N (Aµ + c, AΣA′).

B.2 Related Distributions

Suppose y ∼ N (0, IK). The distribution of z = y′y is a (central) chi-square
distribution with K degrees of freedom,

z ∼ χ2(K).

Proposition B.3 (Distributions of Quadratic Forms)

(1) Suppose y ∼ N (0, IK) and A is a symmetric idempotent (K ×K) matrix
with rk(A) = n. Then y′Ay ∼ χ2(n).

(2) If y ∼ N (0, Σ), where Σ is a positive definite (K × K) matrix, then
y′Σ−1y ∼ χ2(K).

(3) Let y ∼ N (0, QA), where Q is a symmetric idempotent (K × K) ma-
trix with rk(Q) = n and A is a positive definite (K × K) matrix. Then
y′A−1y ∼ χ2(n).

(4) Suppose y ∼ N (0, Σ), where Σ is a nonsingular (K × K) covariance
matrix. Furthermore, let A be a (K ×K) matrix with rk(A) = n. Then

y′Ay ∼ χ2(n) ⇒ AΣA = A

and

AΣA = A ⇒ y′Ay ∼ χ2(n).
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Proposition B.4 (Independence of a Normal Vector and a Quadratic Form)
Suppose y ∼ N (µ, σ2IK), A is a symmetric, idempotent (K ×K) matrix, B
is an (M ×K) matrix and BA = 0. Then By is stochastically independent of
the random variable y′Ay.

Proposition B.5 (Independence of Quadratic Forms)
Suppose y ∼ N (µ, σ2IK) and A and B are symmetric, idempotent (K ×K)
matrices with AB = 0, then y′Ay and y′By are stochastically independent.

If z ∼ N (0, 1) and u ∼ χ2(m) are stochastically independent, then

T =
z√
u/m

has a t-distribution with m degrees of freedom, T ∼ t(m). If u ∼ χ2(m) and
v ∼ χ2(n) are independent, then

u/m

v/n
∼ F (m,n),

that is, the ratio of two independent χ2 random variables, each divided by its
degrees of freedom, has an F -distribution with m and n degrees of freedom.
The numbers m and n indicate the numerator and denominator degrees of
freedom, respectively.

Proposition B.6 (Distributions of Ratios of Quadratic Forms)

(1) Suppose x ∼ N (0, Im) and y ∼ N (0, In) are independent. Then

x′x/m
y′y/n

∼ F (m,n).

(2) If y ∼ N (0, IK) and A and B are symmetric, idempotent (K×K) matrices
with rk(A) = m, rk(B) = n and AB = 0, then

y′Ay/m
y′By/n

∼ F (m,n).

(3) z ∼ F (m,n) ⇒ 1
z
∼ F (n,m).

If y ∼ N (µ, IK), then y′y has a noncentral χ2-distribution with K degrees
of freedom and noncentrality parameter (or simply noncentrality) τ = µ′µ.
Briefly,

y′y ∼ χ2(K; τ).



680 B Multivariate Normal and Related Distributions

The noncentrality parameter is sometimes defined differently in the literature.
For instance, λ = 1

2µ
′µ is sometimes called noncentrality parameter. Let w ∼

χ2(m; τ) and v ∼ χ2(n) be independent random variables, then

w/m

v/n
∼ F (m,n; τ),

that is, the ratio has a noncentral F -distribution with m and n degrees of
freedom and noncentrality parameter τ .

Proposition B.7 (Quadratic Form with Noncentral χ2-Distribution)
If y ∼ N (µ,Σ) with positive definite (K × K) covariance matrix Σ, then
y′Σ−1y ∼ χ2(K;µ′Σ−1µ).



C

Stochastic Convergence and Asymptotic

Distributions

It is often difficult to derive the exact distributions of estimators and test
statistics. In that case, their asymptotic or limiting properties, when the sam-
ple size gets large, are of interest. The limiting properties are then regarded
as approximations to the properties for the sample size available. In order to
study the limiting properties, some concepts of convergence of sequences of
random variables and vectors are useful. They are discussed in Sections C.1
and C.2. Infinite sums of random variables are treated in Section C.3. Laws of
large numbers and central limit theorems are given in Section C.4. Asymptotic
properties of estimators are considered in Section C.5. Maximum likelihood
estimators and their asymptotic properties are discussed in Section C.6 and
some common testing principles are treated in Section C.7. Finally, asymp-
totic properties of nonstationary processes with unit roots are dealt with in
Section C.8.

This appendix contains a brief summary of results used in the text. Many
of these results can be found in Judge et al. (1985, Section 5.8). A more
complete discussion and proofs are provided in Fuller (1976), Roussas (1973),
Serfling (1980), Davidson (1994, 2000) and other more advanced books on
statistics. Further references will be given in the following.

C.1 Concepts of Stochastic Convergence

Let x1, x2, . . . or {xT }, T = 1, 2, . . . , be a sequence of scalar random variables
which are all defined on a common probability space (Ω,F ,Pr). The sequence
{xT } converges in probability to the random variable x (which is also defined
on (Ω,F ,Pr)) if for every ε > 0,

lim
T→∞

Pr(|xT − x| > ε) = 0

or, equivalently,

lim
T→∞

Pr(|xT − x| < ε) = 1.
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This type of stochastic convergence is abbreviated as

plim xT = x or xT
p→ x.

The limit x may be a fixed, nonstochastic real number which is then regarded
as a degenerate random variable that takes on one particular value with prob-
ability one.

The sequence {xT } converges almost surely (a.s.) or with probability one
to the random variable x if for every ε > 0,

Pr
(

lim
T→∞

|xT − x| < ε
)

= 1.

This type of stochastic convergence is often written as xT
a.s.→ x and is some-

times called strong convergence.
The sequence {xT } converges in quadratic mean or mean square error to

x, briefly xT
q.m.→ x, if

lim
T→∞

E(xT − x)2 = 0.

This type of convergence requires that the mean and variance of the xT ’s and
x exist.

Finally, denoting the distribution functions of xT and x by FT and F ,
respectively, the sequence {xT} is said to converge in distribution or weakly
or in law to x, if for all real numbers c for which F is continuous,

lim
T→∞

FT (c) = F (c).

This type of convergence is abbreviated as xT
d→ x. It must be emphasized

that we do not require the convergence of the sequence of p.d.f.s of the xT ’s
to the p.d.f. of x. In fact, we do not even require that the distributions of
the xT ’s have p.d.f.s. Even if they do have p.d.f.s, convergence in distribution
does not imply their convergence to the p.d.f. of x.

All these concepts of stochastic convergence can be extended to se-
quences of random vectors (multivariate random variables). Suppose {xT =
(x1T , . . . , xKT )′}, T = 1, 2, . . . , is a sequence of K-dimensional random vectors
and x = (x1, . . . , xK)′ is a K-dimensional random vector. Then the following
definitions are used:

plim xT = x or xT
p→ x if plim xkT = xk for k = 1, . . . ,K.

xT
a.s.→ x if xkT

a.s.→ xk for k = 1, . . . ,K.

xT
q.m.→ x if limE[(xT − x)′(xT − x)] = 0.

xT
d→ x if limFT (c) = F (c) for all continuity points of F.
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Here FT and F are the joint distribution functions of xT and x, respectively.
Almost sure convergence and convergence in probability can be defined for
matrices in the same way in terms of convergence of the individual elements.
Convergence in quadratic mean and in distribution is easily extended to se-
quences of random matrices by vectorizing them. In the following proposition,
the relationships between the different modes of convergence are given.

Proposition C.1 (Convergence Properties of Sequences of Random Vari-
ables)
Suppose {xT } is a sequence of K-dimensional random variables. Then the
following relations hold:

(1) xT
a.s.→ x ⇒ xT

p→ x ⇒ xT
d→ x.

(2) xT
q.m.→ x ⇒ xT

p→ x ⇒ xT
d→ x.

(3) If x is a fixed, nonstochastic vector, then

xT
q.m.→ x ⇔ [limE(xT ) = x and limE{(xT−ExT )′(xT−ExT )} = 0].

(4) If x is a fixed, nonstochastic random vector, then

xT
p→ x ⇔ xT

d→ x.

(5) (Slutsky’s Theorem) If g : RK → Rm is a continuous function, then

xT
p→ x ⇒ g(xT )

p→ g(x) [plim g(xT ) = g(plim xT )],

xT
d→ x ⇒ g(xT ) d→ g(x),

and

xT
a.s.→ x ⇒ g(xT ) a.s.→ g(x).

Proposition C.2 (Properties of Convergence in Probability and in Distribu-
tion)
Suppose {xT } and {yT } are sequences of (K × 1) random vectors, {AT } is a
sequence of (K ×K) random matrices, x is a (K × 1) random vector, c is a
fixed (K × 1) vector, and A is a fixed (K ×K) matrix.

(1) If plim xT , plim yT , and plim AT exist, then
(a) plim (xT ± yT ) = plim xT ± plim yT ;
(b) plim (c′xT ) = c′(plim xT );
(c) plim x′

T yT = (plim xT )′(plim yT );
(d) plim ATxT = plim (AT )plim (xT ).

(2) If xT
d→ x and plim (xT − yT ) = 0, then yT

d→ x.
(3) If xT

d→ x and plim yT = c, then
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(a) xT ± yT
d→ x± c;

(b) y′TxT
d→ c′x.

(4) If xT
d→ x and plim AT = A, then ATxT

d→ Ax.
(5) If xT

d→ x and plim AT = 0, then plim ATxT = 0.

Proposition C.3 (Limits of Sequences of t and F Random Variables)

(1) t(T ) d→T→∞ N (0, 1)
(that is, a sequence of random variables with t-distributions with T degrees
of freedom converges to a standard normal distribution as the degrees of
freedom go to infinity).

(2) JF (J, T ) d→T→∞ χ2(J).

C.2 Order in Probability

Let {aT } be a sequence of real numbers and {bT} a sequence of positive real
numbers. Then aT is said to be of smaller order than bT (aT = o(bT )) if
limT→∞ aT /bT = 0 and aT is said to be at most of order bT (aT = O(bT )) if
there exists a number c such that for all T , |aT |/bT ≤ c.

Proposition C.4 (Order of Convergence Results)
For sequences of real numbers {aT}, {bT } and sequences of positive real num-
bers {cT }, {dT }, the following results hold:

(1) aT = o(cT ), bT = o(dT ) ⇒ aT bT = o(cT dT ), aT + bT = o(max[cT , dT ])
and |aT |s = o(cs

T ) for s > 0.
(2) aT = O(cT ), bT = O(dT ) ⇒ aT bT = O(cT dT ), aT +bT = O(max[cT , dT ])

and |aT |s = O(cs
T ) for s > 0.

(3) aT = o(cT ), bT = O(dT ) ⇒ aT bT = o(cT dT ).

Let {AT = (aij,T )} be a sequence of random (m × n) matrices and {bT }
a sequence of positive real numbers. Then AT is said to be of smaller order
in probability than bT (AT = op(bT )) if plim T→∞AT /bT = 0 and AT is
said to be at most of order in probability bT or bounded in probability by bT

(AT = Op(bT )) if, for every ε > 0, there exists a number cε such that for all
T , Pr{|aij,T | ≥ cεbT } ≤ ε for i = 1, . . . ,m, j = 1, . . . , n. The following results
hold for sequences of random matrices.

Proposition C.5 (Order in Probability Results)
For sequences of random matrices of suitable fixed dimensions {AT }, {BT }
and sequences of positive real numbers {cT }, {dT } the following results hold:
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(1) AT = op(cT ), BT = op(dT ) ⇒ ATBT = op(cT dT ) and AT + BT =
op(max[cT , dT ]).

(2) AT = Op(cT ), BT = Op(dT ) ⇒ ATBT = Op(cT dT ) and AT + BT =
Op(max[cT , dT ]).

(3) AT = op(cT ), BT = Op(dT ) ⇒ ATBT = op(cT dT ).

For the next result see, e.g., Fuller (1976, p. 192).

Proposition C.6 (Taylor’s Theorem for Functions of Random Vectors)
Let yT = (y1T , . . . , yKT )′ = a + Op(rT ) be a K-dimensional random vector
sequence, where rT = o(1), and let g : RK → R be a function with continuous
partial derivatives of order two at a = (a1, . . . , aK)′. Then

g(yT ) = g(a) +
∂g(a)
∂y′

(yT − a) + Op(r2
T ).

If g has continuous partial derivatives of order three,

g(yT ) = g(a) +
∂g(a)
∂y′

(yT − a) +
1
2
(yT − a)′

∂2g(a)
∂y∂y′

(yT − a) + Op(r3
T ).

C.3 Infinite Sums of Random Variables

The MA representation of a VAR process is often an infinite sum of random
vectors. As in the study of infinite sums of real numbers, we must specify
what we mean by such an infinite sum. The concept of absolute convergence
is basic in the following. A doubly infinite sequence of real numbers {ai},
i = 0,±1,±2, . . . , is absolutely summable if

lim
n→∞

n∑
i=−n

|ai|

exists and is finite. The limit is usually denoted by

∞∑
i=−∞

|ai|.

The following theorem provides a justification for working with infinite sums
of random variables. A proof may be found in Fuller (1976, pp. 29-31).
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Proposition C.7 (Existence of Infinite Sums of Random Variables)
Suppose {ai} is an absolutely summable sequence of real numbers and {zt},
t = 0,±1,±2, . . . , is a sequence of random variables satisfying

E(z2
t ) ≤ c, t = 0,±1,±2, . . . ,

for some finite constant c. Then there exists a sequence of random variables
{yt}, t = 0,±1,±2, . . . , such that

n∑
i=−n

aizt−i
q.m.−→

n→∞ yt

and, thus,

plim
n→∞

n∑
i=−n

aizt−i = yt.

The random variables yt are uniquely determined except on a set of probability
zero. If, in addition, the zt are independent random variables, then

n∑
i=−n

aizt−i
a.s.→ yt.

This theorem makes precise what we mean by a (univariate) infinite MA

yt =
∞∑

i=0

Φiut−i,

where ut is univariate zero mean white noise with variance σ2
u < ∞. Defining

ai = 0 for i < 0 and ai = Φi for i ≥ 0 and assuming that {ai} is absolutely
summable, the proposition guarantees that the process yt is uniquely defined
as a limit in mean square, except on a set of probability zero. The latter
qualification may be ignored for practical purposes because we may always
change a random variable on a set of probability zero without changing its
probability characteristics. The requirement for the MA coefficients to be
absolutely summable is satisfied if yt is a stable AR process. For instance,
if yt = αyt−1 + ut is an AR(1) process, Φi = αi which is an absolutely
summable sequence for |α| < 1. With respect to the moments of an infinite
sum of random variables the following result holds:

Proposition C.8 (Moments of Infinite Sums of Random Variables)
Suppose zt satisfies the conditions of Proposition C.7, {ai} and {bi} are ab-
solutely summable sequences of real numbers,
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yt =
∞∑

i=−∞
aizt−i, and xt =

∞∑
i=−∞

bizt−i.

Then

E(yt) = lim
n→∞

n∑
i=−n

aiE(zt−i)

and

E(ytxt) = lim
n→∞

n∑
i=−n

n∑
j=−n

aibjE(zt−izt−j)

and, in particular,

E(y2
t ) = lim

n→∞

n∑
i=−n

n∑
j=−n

aiajE(zt−izt−j).

Proof: Fuller (1976, pp. 32-33).

All these concepts and results may be extended to vector processes. A
sequence of (K ×K) matrices {Ai = (amn,i)}, i = 0,±1,±2, . . . , is absolutely
summable if each sequence {amn,i}, m,n = 1, . . . ,K; i = 0,±1,±2, . . . , is
absolutely summable. Equivalently, {Ai} may be defined to be absolutely
summable if the sequence {‖Ai‖} is summable, where

‖Ai‖ = [tr(AiA
′
i)]

1/2 =

(∑
m

∑
n

a2
mn,i

)1/2

is the Euclidean norm of Ai. To see the equivalence of the two definitions,
note that

|amn,i| ≤ ‖Ai‖ ≤
∑
m

∑
n

|amn,i|.

Hence,

∞∑
i=−∞

|amn,i| (C.3.1)

exists and is finite if
∞∑

i=−∞
‖Ai‖ (C.3.2)
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is finite. In turn, if (C.3.1) is finite for all m,n, then, for all h,

h∑
i=−h

‖Ai‖ ≤
h∑

i=−h

∑
m

∑
n

|amn,i|

so that (C.3.2) is finite. Thus, the two definitions are indeed equivalent.

Proposition C.9 (Existence of Infinite Sums of Random Vectors)
Suppose {Ai} is an absolutely summable sequence of real (K ×K) matrices
and {zt} is a sequence of K-dimensional random variables satisfying

E(z′tzt) ≤ c, t = 0,±1,±2, . . . ,

for some finite constant c. Then there exists a sequence of K-dimensional
random variables {yt} such that

n∑
i=−n

Aizt−i
q.m.−→

n→∞ yt.

The sequence is uniquely determined except on a set of probability zero.

Proof: Analogous to Fuller (1976, pp. 29-31); replace the absolute value by
‖ · ‖.

This proposition ensures that the infinite MA representations of the VAR
processes considered in this text are well-defined because it can be shown
that the MA coefficient matrices of a stable VAR process form an absolutely
summable sequence. With respect to moments of infinite sums, we have the
following result.

Proposition C.10 (Moments of Infinite Sums of Random Vectors)
Suppose zt satisfies the conditions of Proposition C.9, {Ai} and {Bi} are
absolutely summable sequences of (K ×K) matrices,

yt =
∞∑

i=−∞
Aizt−i and xt =

∞∑
i=−∞

Bizt−i.

Then

E(yt) = lim
n→∞

n∑
i=−n

AiE(zt−i)

and

E(ytx
′
t) = lim

n→∞

n∑
i=−n

n∑
j=−n

AiE(zt−iz
′
t−j)B

′
j ,

where the limit of the sequence of matrices is the matrix of limits of the
sequences of individual elements.
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Proof: Along similar lines as the proof of Fuller (1976, Theorem 2.2.2, pp. 32-
33).

While we have restricted the discussion to absolutely summable sequences
of coefficients, it may be worth mentioning that infinite sums of random vari-
ables and vectors can be defined in more general terms.

C.4 Laws of Large Numbers and Central Limit Theorems

The derivation of asymptotic properties of estimators and test statistics is
largely based on laws of large numbers (LLNs) and central limit theorems
(CLTs) some examples of which are listed in the following. So-called weak
LLNs specify conditions under which a sample mean converges in probability
to the population mean and strong LLNs state the corresponding results for
almost sure convergence.

In stating some of the results, martingale difference processes are useful
tools. Suppose {xt} (t = 1, 2, . . . ) is a sequence of zero mean random vari-
ables and let Ωt be an information set available at time t which includes at
least {x1, . . . , xt} and possibly other random variables. The sequence {xt} is
said to be a martingale difference sequence with respect to the sequence Ωt

if E(xt|Ωt−1) = 0 for all t = 2, 3, . . . . It is simply referred to as martingale
difference sequence if E(xt) = 0 for t = 1, 2, . . . , and E(xt|xt−1, . . . , x1) = 0
for t = 2, 3, . . . . More generally, a sequence {xt} of K-dimensional vector ran-
dom variables satisfying E(xt) = 0 for all t and E(xt|xt−1, . . . , x1) = 0 for
t = 2, 3, . . . , is a vector martingale difference sequence.

It is sometimes useful to allow the xt’s to depend on the sample size. This
way a different sequence for each sample size T is obtained. Denoting by xT,t

the t-th element of the T -th sequence, not just a sequence but an array of
random variables {xT,t} (t = 1, 2, . . . , T ;T = 1, 2, . . . ) is obtained. Such an
array is called a martingale difference array if E(xT,t) = 0 for all t and T and
E(xT,t|xT,t−1, . . . , xT,1) = 0 for all t and T > 1. This definition also applies
for vector arrays.

The following inequality is a useful device for deriving asymptotic results.
It is therefore presented here (see, e.g., Fuller (1976, Theorem 5.1.1)).

Proposition C.11 (Chebyshev’s Inequality)
Given r ∈ N, r > 0, let x be a random variable such that E(|x|r) exists. Then,
for any c ∈ R and ε > 0,

Pr{|x− c| ≥ ε} ≤ E(|x− c|r)
εr

.

The next proposition collects some weak LLNs (see, e.g., Davidson (1994,
Part IV)).



690 C Stochastic Convergence

Proposition C.12 (Weak Laws of Large Numbers)

(1) (Khinchine’s Theorem) (Rao (1973, p. 112))
Let {xt} be a sequence of i.i.d. random variables with E(xt) = µ < ∞.
Then

xT :=
1
T

T∑
t=1

xt
p→ µ.

(2) Let {xt} be a sequence of independent random variables with E(xt) =
µ < ∞ and E|xt|1+ε ≤ c < ∞ (t = 1, 2, . . . ) for some ε > 0 and a finite
constant c. Then xT

p→ µ.
(3) (Chebyshev’s Theorem) (Rao (1973, p. 112))

Let {xt} be a sequence of uncorrelated random variables with E(xt) =
µ < ∞ and limT→∞E(xT − µ)2 = 0. Then xT

p→ µ.
(4) (Corollary to Chebyshev’s Theorem)

Let {xt} be a sequence of independent random variables with E(xt) =
µ < ∞ and Var(xt) ≤ c < ∞ (t = 1, 2, . . . ) for some finite constant c.
Then xT

p→ µ.
(5) (LLN for Martingale Differences)

Let {xt} be a strictly stationary martingale difference sequence with
E|xt| < ∞ (t = 1, 2, . . . ). Then xT

p→ 0.
(6) (LLN for Martingale Difference Arrays)

Let {xT,t} be a martingale difference array with E|xT,t|1+ε ≤ c < ∞
for all t and T for some ε > 0 and a finite constant c. Then xT :=
T−1

∑T
t=1 xT,t

p→ 0.
(7) (Stationary Processes) (Hamilton (1994, Proposition 7.5))

Let {xt} be a stationary stochastic process with E(xt) = µ < ∞ and
E[(xt − µ)(xt−j − µ)] = γj (t = 1, 2, . . . ) such that

∑∞
j=0 |γj | < ∞. Then

xT
q.m.→ µ and, hence, xT

p→ µ, and limT→∞ TE(xT − µ)2 =
∑∞

j=−∞ γj .

Notice that the i.i.d. assumption in Khinchine’s theorem may be replaced
by the requirement that moments exist of order larger than one. In fact,
Chebyshev’s theorem even requires the existence of second order moments.
It is actually sufficient that the variances of the xt are bounded. It may be
worth noting that heterogenous variances are allowed for the weak LLN to
hold, if the variances are bounded. The last result in the proposition shows
that uncorrelated elements of the sequence under consideration are not re-
quired. Actually, a martingale difference sequence does not necessarily have
independent elements so that for most of the above results independence of
the sequence elements is not assumed.

Notice, that the proposition generalizes straightforwardly to sequences of
random vectors because convergence in probability for a sequence of random
vectors is defined in terms of convergence of the sequences of the individual
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elements. The following CLTs are stated for vector sequences and, of course,
hold for univariate sequences as special cases.

Proposition C.13 (Central Limit Theorems)

(1) (Lindeberg-Levy CLT)
Let {xt} be a sequence of K-dimensional i.i.d. random vectors with mean
µ and covariance matrix Σx. Then

√
T (xT − µ) d→ N (0, Σx).

(2) (CLT for Martingale Difference Arrays) (see Hamilton (1994, Proposition
7.9))
Let {xT,t = (x1T,t, . . . , xKT,t)′} be a K-dimensional martingale dif-
ference array with covariance matrices E(xT,tx

′
T,t) = ΣTt such that

T−1
∑T

t=1 ΣTt → Σ, where Σ is positive definite. Moreover, suppose that
T−1

∑T
t=1 xT,tx

′
T,t

p→ Σ and E(xiT,txjT,txkT,txlT,t) < ∞ for all t and T
and all 1 ≤ i, j, k, l ≤ K. Then

√
T xT

d→ N (0, Σ).

(3) (CLT for Stationary Processes)
Let xt = µ+

∑∞
j=0 Φjut−j be a K-dimensional stationary stochastic pro-

cess with E(xt) = µ < ∞,
∑∞

j=0 ‖Φj‖ < ∞ and ut ∼ (0, Σu) i.i.d. white
noise. Then

√
T (xT − µ) d→ N

⎛⎝0,
∞∑

j=−∞
Γx(j)

⎞⎠ ,

where Γx(j) := E[(xt − µ)(xt−j − µ)′].

The results in Proposition C.13 are just examples of useful CLTs. A variety
of similar results exists for different sets of conditions. More discussion of
CLTs and proofs can be found in Davidson (1994, Part V). For the CLT for
stationary processes see Anderson (1971, Chapters 7 and 8).

To derive the asymptotic distribution of a vector sequence it is actually
sufficient to consider univariate series. This is a consequence of the following
result.

Proposition C.14 (Cramér-Wold Device) (Rao (1973, p. 123))
Let xT be a K-dimensional sequence of random vectors and x a K-dimensional
random vector. If c′xT

d→ c′x for all c ∈ R
K , then xT

d→ x.
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Therefore, to show asymptotic normality of a sequence,
√
T (β̂T − β) d→

N (0, Σ), it suffices to show for all K-vectors c with c′Σc �= 0,
√
Tc′(β̂T − β)
(c′Σc)1/2

d→ N (0, 1).

Hence, CLTs for univariate series can in fact be used to show multivariate
results.

C.5 Standard Asymptotic Properties of Estimators and
Test Statistics

Suppose we have a sequence of (m × n) estimators {B̂T } for an (m × n)
parameter matrix B, where T denotes the sample sizes (time series lengths)
on which the estimators are based. For simplicity we will delete the subscript
T in the following and we will mean the sequence of estimators when we use
the term “estimator”.

The estimator B̂ is consistent if plim B̂ = B. In the related literature, this
type of consistency is sometimes called weak consistency. However, in this
text, we simply use the term consistency instead. The estimator is strongly
consistent if B̂ a.s.→ B, and the estimator is mean square consistent if B̂

q.m.→ B.
By Proposition C.1, both strong consistency and mean square consistency
imply consistency.

Let β̂ be an estimator (a sequence of estimators) of a (K × 1) vector β.
The estimator is said to have an asymptotic normal distribution if

√
T (β̂ −

β) converges in distribution to a random vector with multivariate normal
distribution N (0, Σ), that is,

√
T (β̂ − β) d→ N (0, Σ). (C.5.1)

In that case, for large T , N (β,Σ/T ) is usually used as an approximation to
the distribution of β̂. Equivalently, by the Cramér-Wold device (Proposition
C.14), (C.5.1) may be defined by requiring that

√
Tc′(β̂ − β)
(c′Σc)1/2

d→ N (0, 1),

for any (K×1) vector c for which c′Σc �= 0. The following proposition provides
some useful rules for determining the asymptotic distributions of estimators
and test statistics.

Proposition C.15 (Asymptotic Properties of Estimators)
Suppose β̂ is an estimator of the (K×1) vector β with

√
T (β̂−β) d→ N (0, Σ).

Then the following rules hold:
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(1) If plim Â = A, then
√
TÂ(β̂ − β) d→ N (0, AΣA′) (see Schmidt (1976,

p. 251)).
(2) If R �= 0 is an (M ×K) matrix, then

√
T (Rβ̂ −Rβ) d→ N (0, RΣR′).

(3) (Delta method)
If g(β) = (g1(β), . . . , gm(β))′ is a vector-valued continuously differentiable
function with ∂g/∂β′ �= 0 at β, then

√
T [g(β̂) − g(β)] d→ N

(
0,

∂g(β)
∂β′ Σ

∂g(β)′

∂β

)
.

If ∂g/∂β′ = 0 at β,
√
T [g(β̂) − g(β)]

p→ 0. (See Serfling (1980, pp. 122-
124)).

(4) If Σ is nonsingular, T (β̂ − β)′Σ−1(β̂ − β) d→ χ2(K).
(5) If Σ is nonsingular and plim Σ̂ = Σ, then T (β̂−β)′Σ̂−1(β̂−β) d→ χ2(K).
(6) If Σ = QA, where Q is symmetric, idempotent of rank n and A is positive

definite, then T (β̂ − β)′A−1(β̂ − β) d→ χ2(n).

C.6 Maximum Likelihood Estimation

Suppose y1, y2, . . . is a sequence of K-dimensional random vectors, the first
T of which have a joint probability density function fT (y1, . . . , yT ; δ0), where
δ0 is an unknown (M ×1) vector of parameters that does not depend on T . It
is assumed to be from a subset D of the M -dimensional Euclidean space R

M .
Suppose further that fT (·; δ) has a known functional form and one wishes to
estimate δ0.

For a fixed realization y1, . . . , yT , the function

l(δ) = l(δ|y1, . . . , yT ) = fT (y1, . . . , yT ; δ),

viewed as a function of δ, is the likelihood function. Its natural logarithm
ln l(δ|·) is the log-likelihood function. A vector δ̃, maximizing the likelihood
function or log-likelihood function, is called a maximum likelihood (ML) esti-
mate, that is, if

l(δ̃) = sup
δ∈D

l(δ),

then δ̃ is an ML estimate. Here sup denotes the supremum, that is, the least
upper bound, which may exist even if the maximum does not. In general, δ̃
depends on y1, . . . , yT , that is, δ̃ = δ̃(y1, . . . , yT ). Replacing the fixed values
y1, . . . , yT by their corresponding random vectors, δ̃ is an ML estimator of δ0
if the functional dependence on y1, . . . , yT is such that δ̃ is a random vector.
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If l(δ) is a differentiable function of δ, the vector of first order partial
derivatives of ln l(δ), that is,

s(δ) = ∂ ln l(δ)/∂δ,

regarded as a random vector (a function of the random vectors y1, . . . , yT ), is
the score vector. It vanishes at δ = δ̃ if the maximum of ln l(δ) is attained at
an interior point of the parameter space D. The information matrix for δ0 is
minus the expectation of the matrix of second order partial derivatives of ln l,
evaluated at the true parameter vector δ0,

I(δ0) = −E

[
∂2 ln l
∂δ∂δ′

∣∣∣∣
δ0

]
.

The matrix

Ia(δ0) = lim
T→∞

I(δ0)/T,

if it exists, is the asymptotic information matrix for δ0. If it is nonsingular,
its inverse is a lower bound for the covariance matrix of the asymptotic dis-
tribution of any consistent estimator with asymptotic normal distribution. In
other words, if δ̂ is a consistent estimator of δ0 with

√
T (δ̂ − δ0)

d→ N (0, Σδ̂),

then Ia(δ0)−1 ≤ Σδ̂, that is, Σδ̂ − Ia(δ0)−1 is positive semidefinite. Under
quite general regularity conditions, an ML estimator δ̃ for δ0 is consistent and

√
T (δ̃ − δ0)

d→ N (0, Ia(δ0)−1).

Thus, in large samples, δ̃ is approximately distributed as N (δ0, Ia(δ0)−1/T ).

C.7 Likelihood Ratio, Lagrange Multiplier, and Wald
Tests

Three principles for constructing tests of statistical hypotheses are employed
frequently in the text. We consider testing of

H0 : ϕ(δ0) = 0 against H1 : ϕ(δ0) �= 0, (C.7.1)

where δ0 is the true (M × 1) parameter vector, as in the previous section,
and ϕ : RM → RN is a continuously differentiable function so that ϕ(δ) is of
dimension (N × 1). We assume that [∂ϕ/∂δ′|δ0 ] has rank N . This condition
implies that N ≤ M and the N restrictions for the parameter vector are
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distinguishable in a neighborhood of δ0. Often the hypotheses can be written
alternatively as

H0 : δ0 = g(γ0) against H1 : δ0 �= g(γ0), (C.7.2)

where γ0 is an (M − N)-dimensional vector and g : R
M−N → R

M is a con-
tinuously differentiable function in a neighborhood of γ0 (see Gallant (1987,
pp. 57-58)).

The likelihood ratio (LR) test of (C.7.1) or (C.7.2) is based on the statistic

λLR = 2[ln l(δ̃) − ln l(δ̃r)],

where δ̃ denotes the unconstrained ML estimator and δ̃r is the restricted
ML estimator of δ0, subject to the restrictions specified under H0, that is,
δ̃r is obtained by maximizing ln l over the parameter space restricted by the
conditions stated in H0. Under suitable regularity conditions, we have

λLR
d→ χ2(N). (C.7.3)

The Lagrange multiplier (LM) statistic for testing (C.7.1) or (C.7.2) is of
the form

λLM = s(δ̃r)′I(δ̃r)−1s(δ̃r), (C.7.4)

where s(δ) denotes the score vector and I(δ) the information matrix, as before.
In the LM statistic, both functions are evaluated at the restricted estimator of
δ0. Under H0, λLM has an asymptotic χ2(N)-distribution, if weak regularity
conditions are satisfied. The name derives from the fact that it can be written
as

λLM = λ̃′
[
∂ϕ

∂δ′

∣∣∣∣
δ̃r

]
I(δ̃r)−1

[
∂ϕ′

∂δ

∣∣∣∣
δ̃r

]
λ̃, (C.7.5)

where λ̃ is the vector of Lagrange multipliers for which the Lagrange func-
tion has a stationary point corresponding to the constrained estimator (see
Appendix A.14).

The equivalence of (C.7.4) and (C.7.5) can be seen by recalling that the
constrained minimum of − ln l is attained at a stationary point of the Lagrange
function

L(δ, λ) = − ln l(δ) + λ′ϕ(δ).

In other words, δ̃r satisfies

0 =

[
∂L
∂δ′

∣∣∣∣
δ̃r,λ̃

]
= −

[
∂ ln l
∂δ′

∣∣∣∣
δ̃r

]
+ λ̃′

[
∂ϕ

∂δ′

∣∣∣∣
δ̃r

]
= −s(δ̃r)′ + λ̃′

[
∂ϕ

∂δ′

∣∣∣∣
δ̃r

]
.
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The LM statistic is often computed via an auxiliary regression. To see how
this can be done, consider a normal regression model of the form

y = Xβ + Zγ + u,

where y and u are (T×1) vectors, X and Z are (T×M) and (T×N) regressor
matrices, respectively, β and γ are (M × 1) and (N × 1) parameter vectors
and u ∼ N (0, σ2

uIT ). Suppose we wish to test the pair of hypotheses

H0 : γ = 0 versus H1 : γ �= 0.

In this case, the score vector is

s

(
β
γ

)
=

1
σ2

u

[
X ′

Z ′

]
(y −Xβ − Zγ),

the inverse information matrix is

σ2
u

[
X ′X X ′Z
Z ′X Z′Z

]−1

,

and the restricted estimator is[
β̂
0

]
=

[
(X ′X)−1X ′y

0

]
.

Notice that the first order conditions for computing this estimator imply

X ′(y −Xβ̂) = X ′û = 0.

Here û := y −Xβ̂ is the residual vector of the restricted estimation. Hence,
the score vector evaluated at the restricted estimator is

s

(
β̂
0

)
=

1
σ2

u

[
X ′(y −Xβ̂)
Z′(y −Xβ̂)

]
=

1
σ2

u

[
0

Z ′û

]
and the LM statistic becomes

λLM = [0 : û′Z]
[
X ′X X ′Z
Z ′X Z′Z

]−1 [ 0
Z ′û

]
/σ2

u

= û′Z(Z ′Z − Z ′X(X ′X)−1X ′Z)−1Z ′û/σ2
u,

where the rules for the partitioned inverse have been used (see Appendix
A.10).

The same statistic is obtained by using the usual χ2-statistic for testing
γ = 0 in the auxiliary regression model

û = Xβ + Zγ + e,
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where e is an error vector. The LS estimator from this model is[
β̃
γ̃

]
=

[
X ′X X ′Z
Z ′X Z ′Z

]−1 [
X ′û
Z ′û

]
.

Using X ′û = 0 and the rules for the partitioned inverse gives

γ̃ = (Z ′Z − Z ′X(X ′X)−1X ′Z)−1Z ′û
∼ N (γ, σ2

u(Z ′Z − Z ′X(X ′X)−1X ′Z)−1).

Hence, the χ2-statistic

γ̃′(Z ′Z − Z ′X(X ′X)−1X ′Z)γ̃/σ2
u

is easily seen to be identical to the previously obtained expression for λLM .
Of course, algebraically the same result is obtained if σ2

u is replaced by an
estimator. Using the usual modifications, the statistic has an F -distribution
in this case. More precisely,

γ̃′(Z ′Z − Z ′X(X ′X)−1X ′Z)γ̃
Nσ̂2

u

∼ F (N,T −M −N).

Although we have used a normal regression model with nonstochastic re-
gressors in this illustration, a similar reasoning often applies for more general
situations and it implies an auxiliary regression model from which the LM
statistic can be obtained. The reason is that much of the derivation rests on
the algebraic properties of the quantities involved. Therefore, similar argu-
ments can be used, for example, if the regressors are stochastic or a GLS
estimation is used. In Chapters 4 and 5, the LM statistics for residual auto-
correlation in VAR models are, for instance, derived in this way.

The Wald statistic is based on an unconstrained estimator which is asymp-
totically normal,

√
T (δ̃ − δ0)

d→ N (0, Σδ̃).

By Proposition C.15(3), it follows that

√
T [ϕ(δ̃) − ϕ(δ0)]

d→ N
(

0,

[
∂ϕ

∂δ′

∣∣∣∣
δ0

]
Σ

δ̃

[
∂ϕ′

∂δ

∣∣∣∣
δ0

])
.

Thus, by Proposition C.15(5), if H0 : ϕ(δ0) = 0 is true and the covariance
matrix is invertible,

λW = Tϕ(δ̃)′
([

∂ϕ

∂δ′

∣∣∣∣
δ̃

]
Σ̃δ̃

[
∂ϕ′

∂δ

∣∣∣∣
δ̃

])−1

ϕ(δ̃) d→ χ2(N), (C.7.6)

where Σ̃
δ̃

is a consistent estimator of Σ
δ̃
. The statistic λW is the Wald statistic.

For further discussion of the three test statistics and proofs of their asymptotic
distributions see also Hayashi (2000, Chapter 7).
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In summary, we have three test statistics with equivalent asymptotic distri-
butions under the null hypothesis. The LR statistic involves both the restricted
and the unrestricted ML estimators, the LM statistic is based on the restricted
estimator only, and the Wald statistic requires just the unrestricted estimator.
The choice among the three statistics is often based on computational con-
venience. Wald tests have the disadvantage that they are not invariant under
transformations of the restrictions. In other words, if the restrictions can be
written in two equivalent ways (e.g., δi = 0 and δ2

i = 0) the corresponding
Wald tests may have different small sample properties. Their small sample
power may be low (see Gregory & Veall (1985), Breusch & Schmidt (1988)).

C.8 Unit Root Asymptotics

C.8.1 Univariate Processes

In deriving asymptotic results for processes with unit roots, it is helpful to
consider also continuous stochastic processes. An important example is a stan-
dard Brownian motion or a standard Wiener process W(·) which is a function
defined on the unit interval [0, 1] and it assigns a random variable W(t) to
each t ∈ [0, 1] such that the following conditions hold:

(1) W(0) = 0 with probability one.
(2) W(t) is continuous in t with probability one.
(3) For any partitioning of the unit interval, 0 ≤ t1 < t2 < · · · < tk ≤ 1, the

vector⎡⎢⎣ W(t2) − W(t1)
...

W(tk) − W(tk−1)

⎤⎥⎦ ∼ N

⎛⎜⎝
⎡⎢⎣ 0

...
0

⎤⎥⎦ ,

⎡⎢⎣ t2 − t1 0
. . .

...
0 . . . tk − tk−1

⎤⎥⎦
⎞⎟⎠ ,

that is, the differences have a multivariate normal distribution with inde-
pendent components, means of zero, and variances ti − ti−1.

Wiener processes play an important role in the asymptotic theory for unit root
processes. Nonstandard versions of the type Z(t) = σW(t) are often encoun-
tered. Their increments are still independent but Z(t)−Z(s) ∼ N (0, σ2(t−s))
for s < t. Notice also that Z(t) ∼ N (0, σ2t).

In developing unit root asymptotics, we are often interested in quantities
of the form

XT (r) =
1
T

[Tr]∑
t=1

wt,

where wt is a stationary stochastic process, r ∈ [0, 1] denotes a fraction and
[Tr] signifies the largest integer less than or equal to Tr. If the wt = ut are
i.i.d. (0, σ2

u), we know from a central limit theorem (see Proposition C.13) that
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√
TXT (r) =

√
[Tr]√
T

1√
[Tr]

[Tr]∑
t=1

ut
d→ N (0, rσ2

u),

for every r ∈ [0, 1], because
√

[Tr]/
√
T → √

r. Moreover,

√
T [XT (r2) −XT (r1)]/σu

d→ N (0, r2 − r1),

for r1 < r2. For nonoverlapping partitions of the unit interval, the partial sums
will be made up of independent terms and they are therefore independent.
Hence, it is plausible to write

√
TXT (·)/σu

d→ W(·). (C.8.1)

This notation and result generalizes the previously defined concept of con-
vergence in distribution because now convergence is stated for a sequence
of continuous time stochastic processes. The result is often referred to as a
functional central limit theorem (FCLT) or invariance principle or Donsker’s
theorem.

Giving a precise definition of the related concept of convergence in dis-
tribution is simplified by considering convergence of probability measures. A
sequence of probability measures PrT is said to converge to the probability
measure Pr or PrT converges weakly to Pr, if PrT (A) → Pr(A) for all mea-
surable sets A, with the exception of sets for which the boundary points have
nonzero probability mass. Instead of considering the distribution functions,
we may define convergence in distribution via weak convergence of the corre-
sponding sequence of probability measures. Thus, constructing a probability
space on a suitable space of functions defined on the unit interval, the conver-
gence in (C.8.1) can be defined rigorously. Although this type of convergence
is more properly called weak convergence, we will still use the symbol d→ for
signifying it. For more precise discussions see, for example, Davidson (1994,
2000) or Johansen (1995).

We may also generalize the concept of convergence in probability to the
case of sequences of random functions. For a sequence GT (·) and a random
function G(·) we write GT

p→ G if

sup
t∈[0,1]

|GT (t) −G(t)| p→ 0.

Another useful tool in dealing with unit root process is the continuous
mapping theorem which states that, given a sequence of stochastic functions
{GT (·)}, a stochastic function G(·) and a continuous functional g(·) (a function
defined on a space of functions), we have

GT
d→ G ⇒ g(GT ) d→ g(G).

Using the FCLT, this theorem implies, for instance, that
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0

√
TXT (r)dr d→ σu

∫ 1

0

W(r)dr

because the integral is a continuous functional.
These tools are useful in proving the following proposition from Hamilton

(1994, Proposition 17.1) which summarizes a number of helpful results from
the literature, many of which were derived, e.g., by Phillips (1987).

Proposition C.16 (Properties of Random Walks and Related Quantities)
Suppose xt = xt−1 + ut is a random walk with i.i.d. white noise, ut ∼ (0, σ2

u),
and x0 = 0. Then the following results hold:

(1) T−1/2
∑T

t=1 ut
d→ σuW(1) = N (0, σ2

u).

(2) T−1
∑T

t=1 xt−1ut
d→ 1

2σ
2
u[W(1)2 − 1] = 1

2
σ2

u[χ2(1) − 1].

(3) T−3/2
∑T

t=1 tut
d→ σuW(1) − σu

∫ 1

0
W(r)dr = N (0, σ2

u/3).

(4) T−3/2
∑T

t=1 xt−1
d→ σu

∫ 1

0
W(r)dr = N (0, σ2

u/3).

(5) T−2
∑T

t=1 x
2
t−1

d→ σ2
u

∫ 1

0
W(r)2dr.

(6) T−5/2
∑T

t=1 txt−1
d→ σu

∫ 1

0
rW(r)dr.

(7) T−3
∑T

t=1 tx
2
t−1

d→ σ2
u

∫ 1

0
rW(r)2dr.

(8) T−(n+1)
∑T

t=1 t
n → 1/(n + 1) for n = 0, 1, . . . .

From these results, the following asymptotic distributions of Dickey-Fuller
(DF) statistics for unit roots can be derived. For details see, e.g., Hamil-
ton (1994, Section 17.4). It is assumed that estimation is based on a sample
y1, . . . , yT and a presample value y0 is also available.

Proposition C.17 (Asymptotic Distributions of Dickey-Fuller Test Statis-
tics)

(1) Suppose ρ̂ =
∑T

t=1 yt−1yt/
∑T

t=1 y
2
t−1 is the LS estimator of the coefficient

ρ of the AR(1) process yt = ρyt−1 + ut, t = 1, 2, . . . , where ut ∼ (0, σ2
u) is

i.i.d. white noise. Here y0 is a fixed starting value or a stochastic variable
with a given fixed distribution (which does not depend on the sample
size). Then, if ρ = 1,

T (ρ̂− 1) d→
1
2
[W(1)2 − 1]∫ 1

0
W(r)2dr

and the t-statistic

tρ̂−1 =
ρ̂− 1
σ̂ρ̂

d→
1
2 [W(1)2 − 1][∫ 1

0
W(r)2dr

]1/2
,

where σ̂2
ρ̂ = T−1

∑T
t=1(yt − ρ̂yt−1)2/

∑T
t=1 y

2
t−1 is the usual LS estimator

of the variance of ρ̂.
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(2) Suppose yt = µ+xt, t = 1, 2, . . . , with xt = ρxt−1 +ut, where ut ∼ (0, σ2
u)

is i.i.d. white noise and µ is a fixed mean term. Moreover, let x0 = 0 and
y0 be a fixed starting value or a stochastic variable with a given fixed
distribution. Furthermore, ρ̂ is the LS estimator of ρ from a regression
yt = ν + ρyt−1 + ut. Then, if ρ = 1,

T (ρ̂− 1) d→
1
2 [W(1)2 − 1] − W(1)

∫ 1

0
W(r)dr∫ 1

0
W(r)2dr −

[∫ 1

0
W(r)dr

]2

and the t-statistic

tρ̂−1 =
ρ̂− 1
σ̂ρ̂

d→
1
2 [W(1)2 − 1] −W(1)

∫ 1

0
W(r)dr{∫ 1

0
W(r)2dr −

[∫ 1

0
W(r)dr

]2
}1/2

,

where σ̂2
ρ̂ is the usual LS estimator of the variance of ρ̂.

(3) Suppose yt = ν + yt−1 + ut, t = 1, 2, . . . , where ut ∼ (0, σ2
u) is i.i.d. white

noise and ν �= 0 is a constant term. Moreover, let y0 be a fixed starting
value or a stochastic variable with a given fixed distribution. Furthermore,
ρ̂ is the LS estimator of ρ from a regression yt = ν + ρyt−1 + ut. Then, if
ρ = 1,

T 3/2(ρ̂− 1) d→ N (0, 12σ2
u/ν

2)

and the t-statistic

tρ̂−1 =
ρ̂− 1
σ̂ρ̂

d→ N (0, 1),

where σ̂2
ρ̂ is the usual LS estimator of the variance of ρ̂.

(4) Suppose yt = µ0 + µ1t + xt, t = 1, 2, . . . , with xt = ρxt−1 + ut, where
ut ∼ (0, σ2

u) is i.i.d. white noise and µ0 and µ1 are fixed intercept and
trend slope terms. Moreover, let x0 = 0 and y0 be a fixed starting value
or a stochastic variable with a given fixed distribution. Furthermore, ρ̂ is
the LS estimator of ρ from a regression yt = ν0 + ν1t+ ρyt−1 + ut. Then,
if ρ = 1,

T (ρ̂− 1) d→ a/b

and

tρ̂−1 =
ρ̂− 1
σ̂ρ̂

d→ a/
√
b,

where
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a =
∫ 1

0

W(r)dW(r)

+12
[∫ 1

0

rW(r)dr − 1
2

∫ 1

0

W(r)dr
] [∫ 1

0

W(r)dr − 1
2
W(1)

]
−W(1)

∫ 1

0

W(r)dr

and

b =
∫ 1

0

W(r)2dr − 12
(∫ 1

0

rW(r)dr
)2

+12
∫ 1

0

W(r)dr
∫ 1

0

rW(r)dr − 4
(∫ 1

0

W(r)dr
)2

.

Furthermore, σ̂2
ρ̂ is the usual LS estimator of the variance of ρ̂.

Obviously, most of the asymptotic distributions obtained for ρ̂ are non-
standard if ρ = 1. In fact, even the convergence rate of the estimator is non-
standard. It converges at a much faster rate to its true value of 1 than usual
estimators based on stationary processes. More precisely, ρ̂− ρ = Op(T−1) if
ρ = 1 in Cases 1, 2, and 4 in the proposition, whereas in the stationary case
of an AR(1) process yt = ρyt−1 + ut, say, we have for the LS estimator of ρ,
ρ̂ − ρ = Op(T−1/2). The latter rate also holds if yt is stationary and has a
nonzero mean term. In Case 3 of Proposition C.17, the convergence rate of ρ̂
is even larger because in that case the estimator is dominated by the linear
trend which is generated by the drift term.

It is important to note that the limiting distributions in Cases 1, 2, and
4 are free of unknown nuisance parameters. Therefore, it is easy to compute
percentage points of the limiting distributions by simulation methods. To do
that, it is strictly speaking not even necessary to know the exact form of
the asymptotic distributions of the estimators. It is sufficient to know that
well-defined asymptotic distributions are obtained which do not depend on
unknown nuisance parameters. Of course, there are also situations when a
more detailed knowledge of the asymptotic distributions and closed form ex-
pressions are helpful.

The results of Proposition C.16 can be generalized in different ways. First
of all, the process xt may have a more complicated dependence structure.
In particular, the error process may be a stationary process. Consider, for
instance, a process xt = xt−1 + wt, where wt =

∑∞
j=0 θjut−j = θ(L)ut is a

stationary process with
∑∞

j=0 j|θj| < ∞ and ut ∼ (0, σ2
u) is white noise, then

xt can be rewritten as

xt = x0 + w1 + · · · + wt = x0 + θ(1)(u1 + · · · + ut) +
∞∑

j=0

θ∗jut−j − w∗
0 ,
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where θ(1) =
∑∞

j=0 θj , θ∗j = −∑∞
i=j+1 θi, j = 0, 1, . . . , and w∗

0 =
∑∞

j=0 θ
∗
ju−j

contains initial values. Thus, xt is the sum of a random walk, a stationary
process and initial values. Note that the condition

∑∞
j=0 j|θj | < ∞ ensures

that
∑∞

j=0 |θ∗j | < ∞, so that
∑∞

j=0 θ
∗
jut−j is indeed well-defined according to

Proposition C.7. Although the condition for the θj is stronger than absolute
summability, it is satisfied for many processes of practical interest. For ex-
ample, the MA representation of a stable AR or ARMA process satisfies the
condition. The decomposition of xt in a random walk, a stationary compo-
nent, and initial values is known as the Beveridge-Nelson decomposition. It is
a convenient tool in generalizing the results in Propositions C.16 and C.17.

In fact, if yt is a finite order AR process, yt = α1yt−1 + · · ·+ αpyt−p + ut,
where ut is again white noise, yt can be rewritten as

yt = ρyt−1 + γ1∆yt−1 + · · · + γp−1∆yt−p+1 + ut

or, subtracting yt−1 on both sides,

∆yt = (ρ− 1)yt−1 + γ1∆yt−1 + · · · + γp−1∆yt−p+1 + ut.

Estimating ρ or ρ−1 from these equations by LS, it turns out that the resulting
estimators have the same asymptotic properties as in Proposition C.17 (see,
e.g., Hamilton (1994)).

Another possible generalization of these results may be obtained by con-
sidering multivariate processes. We will tackle both generalizations at once in
the following.

C.8.2 Multivariate Processes

For the present purposes, multivariate Brownian motions or Wiener processes
are of central importance. The univariate definition can be generalized as
follows. A K-dimensional standard Brownian motion or standard Wiener pro-
cess W(·) is a function defined on the unit interval [0, 1] which assigns a
K-dimensional random vector W(t) to each t ∈ [0, 1] such that:

(1) W(0) = 0 with probability one.
(2) A realization W(t) is a continuous function in t on the unit interval with

probability one.
(3) For any partitioning of the unit interval, 0 ≤ t1 < t2 < · · · < tk ≤ 1, the

vector⎡⎢⎣ W(t2) − W(t1)
...

W(tk) − W(tk−1)

⎤⎥⎦ ∼ N

⎛⎜⎝
⎡⎢⎣ 0

...
0

⎤⎥⎦ ,

⎡⎢⎣ (t2 − t1)IK 0
. . .

...
0 . . . (tk − tk−1)IK

⎤⎥⎦
⎞⎟⎠ ,

that is, the differences have multivariate normal distributions with inde-
pendent components, means of zero, and variances of the form ti − ti−1,
depending on their difference in time.
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Again, for any nonsingular (K × K) matrix P , a nonstandard version of a
Wiener process Z(t) := PW(t) is obtained for which the increments are still
independent but Z(t) − Z(s) ∼ N (0, (t− s)PP ′) for s < t. Moreover, Z(t) ∼
N (0, tPP ′).

For a sequence GT (·) of multivariate random functions, we define conver-
gence in probability to a random function G, GT

p→ G, to hold if

sup
t∈[0,1]

‖GT (t) −G(t)‖ p−→
T→∞

0.

Also, the continuous mapping theorem remains valid in the multivariate case.
As in the univariate case, it is of interest to consider quantities of the form

XT (r) =
1
T

[Tr]∑
t=1

wt,

where wt is a stationary stochastic process, r ∈ [0, 1] denotes a fraction and
[Tr] signifies the largest integer less than or equal to Tr. If wt = ut ∼ (0, Σu)
is i.i.d. white noise, it follows from a multivariate version of a suitable CLT
(see Proposition C.13) that

√
T [XT (r2) −XT (r1)]

d→ N (0, (r2 − r1)Σu)

for r1 < r2. Hence, using the same ideas as in the univariate case,
√
TΣ−1/2

u XT (·) d→ W(·),
which is a multivariate version of the previously stated FCLT also referred to
as invariance principle or Donsker’s theorem.

If xt = xt−1 + wt, where

wt = Ξ(L)ut =
∞∑

j=0

Ξjut−j , with
∞∑

j=0

j‖Ξj‖ < ∞,

and ut ∼ (0, Σu = (σij)) is white noise, then a multivariate Beveridge-Nelson
decomposition is available,

xt = x0 + w1 + · · · + wt = x0 + Ξ(1)
t∑

s=1

us +
∞∑

j=0

Ξ∗
jut−j − w∗

0 ,

where Ξ(1) =
∑∞

j=0 Ξj , Ξ∗
j = −∑∞

i=j+1 Ξi, j = 0, 1, . . . , and w∗
0 =∑∞

j=0 Ξ∗
ju−j contains initial values. Now xt is a sum of a multivariate ran-

dom walk, a stationary process, and initial values (see also Proposition 6.1).
Using these concepts, the following generalized version of Proposition C.16
can be established. It also goes back to Phillips and others (see Phillips &
Durlauf (1986), Park & Phillips (1988, 1989), Phillips & Solo (1992), Sims
et al. (1990), Johansen (1995)) and may be found, e.g., in Hamilton (1994,
Proposition 18.1).
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Proposition C.18 (Properties of Multivariate Unit Root Processes)
Suppose xt = xt−1 + wt, t = 1, 2, . . . , is a K-dimensional generalized random
walk with initial vector x0 = 0 and stationary error term

wt = Ξ(L)ut =
∞∑

j=0

Ξjut−j , t ∈ Z,

where
∞∑

j=0

j‖Ξj‖ < ∞,

and ut ∼ (0, Σu = (σij)), t ∈ Z, is i.i.d. white noise with finite fourth moments.
Let P be a lower triangular matrix such that Σu = PP ′,

Γw(h) := E(wtw
′
t−h) =

∞∑
j=0

Ξj+hΣuΞ′
j , h = 0, 1, 2, . . . ,

for an arbitrary positive integer n, Wt := (w′
t−1, . . . , w

′
t−n)′ is a Kn-dimen-

sional vector with ΣW := E(WtW
′
t ), and the (K × K) matrix Λ := Ξ(1)P .

Then the following results hold:

(1) T−1/2
∑T

t=1 wt
d→ ΛW(1).

(2) T−1/2
∑T

t=1 Wtuit
d→ N (0, σiiΣW ) for i = 1, . . . ,K.

(3) T−1
∑T

t=1 wtw
′
t−h

p→ Γw(h) for h = 0, 1, 2, . . . .
(4) T−1

∑T
t=1(xt−1w

′
t−h + wt−hx

′
t−1)

d→
{

ΛW(1)W(1)′Λ′ − Γw(0) for h = 0,
ΛW(1)W(1)′Λ′ − Γw(0) +

∑h−1
j=−h+1 Γw(j) for h = 1, 2, . . . .

(5) T−1
∑T

t=1 xt−1w
′
t

d→ Λ
{∫ 1

0
W(r)dW(r)′

}
Λ′ +

∑∞
j=1 Γw(j).

(6) T−1
∑T

t=1 xt−1u
′
t

d→ Λ
{∫ 1

0
W(r)dW(r)′

}
P ′.

(7) T−3/2
∑T

t=1 xt−1
d→ Λ

∫ 1

0
W(r)dr.

(8) T−3/2
∑T

t=1 twt−h
d→ Λ

{
W(1) − ∫ 1

0
W(r)dr

}
for h = 0, 1, 2, . . . .

(9) T−2
∑T

t=1 xt−1x
′
t−1

d→ Λ
{∫ 1

0
W(r)W(r)′dr

}
Λ′.

(10) T−5/2
∑T

t=1 txt−1
d→ Λ

∫ 1

0
rW(r)dr.

(11) T−3
∑T

t=1 txt−1x
′
t−1

d→ Λ
{∫ 1

0
rW(r)W(r)′dr

}
Λ′.

These results are the basis for much of the asymptotic theory related to
multivariate VAR processes with unit roots. Extensions exist for more general
processes wt and ut.



D

Evaluating Properties of Estimators and Test

Statistics by Simulation and Resampling
Techniques

If asymptotic theory is difficult or only small samples are available, properties
of estimators and test statistics are sometimes investigated by heavy use of the
computer. The idea is to simulate the distribution (or some of its properties)
of the random variables of interest by artificially sampling from some known
distribution. Generally, if the random variable or vector of interest, say q =
q(z), is a function of a random vector z with a known distribution Fz, then
samples z1, . . . , zn are drawn from Fz and the empirical distribution of q given
by qn = q(zn), n = 1, . . . , N , is determined. The characteristics of the actual
distribution of q are then inferred from the empirical distribution.

Often the statistics of interest in this book are functions of multiple time
series generated by VAR(p) processes. Therefore, we will briefly describe in the
next section how to simulate such time series. Afterwards, some more details
are given on simulation and resampling techniques for evaluating estimators
and test statistics.

D.1 Simulating a Multiple Time Series with VAR
Generation Process

To simulate a multiple time series of dimension K and length T , we first gener-
ate a series of (often independent) disturbance vectors u−s, . . . , u0, u1, . . . , uT .
If a series of Gaussian disturbances is desired, i.e., ut ∼ N (0, Σu), we may
choose K independent univariate standard normal variates v1, . . . , vK and
multiply by a (K ×K) matrix P for which PP ′ = Σu, that is,

ut = P

⎡⎢⎣ v1

...
vK

⎤⎥⎦.
This process is repeated T + s + 1 times until we have the desired series of
disturbances. Programs for generating (pseudo) standard normal variates are
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available on most computers. Also facilities for generating random numbers
from other distributions are usually available and may be used in a similar
manner to obtain disturbances from other distributions of interest.

For a given set of parameters ν,A1, . . . , Ap, where ν is (K × 1) and the
Ai are (K ×K), and a given set of starting values y−p+1, . . . , y0, the ut may
be used to simulate a time series y1, . . . , yT with VAR(p) generation process
recursively as

yt = ν + A1yt−1 + · · · + Apyt−p + ut

starting with t = 1, t = 2, etc. until t = T . There are different ways to obtain
the initial values. Assuming that the desired process is stable, they may be
set to zero or to the process mean µ = (IK −A1 − · · · −Ap)−1ν. Because the
choice of initial values has some impact on the generated time series, a number
of presample values yt, t = −s, . . . , 0, is often generated and then discarded in
the subsequent analysis.

A possible way to ensure the same correlation structure for the initial
values and the rest of the time series is to determine the covariance matrix of
p consecutive yt vectors, say ΣY . Using the results of Chapter 2, Section 2.1,
that matrix may be obtained from

vec(ΣY ) = (I(Kp)2 − A ⊗A)−1vec(ΣU ),

where

A =

⎡⎢⎢⎢⎢⎢⎣
A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
0 IK 0 0
...

. . .
...

...
0 0 . . . IK 0

⎤⎥⎥⎥⎥⎥⎦
(Kp×Kp)

and ΣU =

⎡⎢⎢⎢⎣
Σu 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎤⎥⎥⎥⎦
(Kp×Kp)

.

Then a (Kp × Kp) matrix Q is chosen such that QQ′ = ΣY and p initial
starting vectors are obtained as⎡⎢⎣ y0

...
y−p+1

⎤⎥⎦ = Q

⎡⎢⎣ v1

...
vKp

⎤⎥⎦ +

⎡⎢⎣ µ
...
µ

⎤⎥⎦,
where the vi are independent variates with mean zero and unit variance.

D.2 Evaluating Distributions of Functions of Multiple
Time Series by Simulation

Suppose we are interested in the function qT = q(y1, . . . , yT ) of some VAR(p)
process yt, where qT is of dimension (M × 1). The quantity qT may be some
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estimator or test statistic. To investigate the distribution FT of qT , we gen-
erate a large number, say N , of independent multiple time series of length T
and compute the corresponding values of qT , say qT (n), n = 1, . . . , N . The
properties of FT are then estimated from the empirical distribution of the
qT (n). For instance, the mean vector of qT is estimated as

1
N

N∑
n=1

qT (n).

Analogously, we may estimate the variances, standard deviations, quantiles
or other characteristics of FT .

D.3 Resampling Methods

If the distribution of the disturbances of a VAR model under consideration
is unknown, so-called bootstrap or resampling methods may be applied to
investigate the distributions of functions of stochastic processes or multiple
time series. Suppose a time series y1, . . . , yT and the presample values required
for estimation are available. Fitting a VAR(p) model to this time series, we
get coefficient estimates ν̂, Â1, . . . , Âp, and a series of residuals û1, . . . , ûT . An
estimator of a quantity of interest, say q = q(A1, . . . , Ap), is then obtained as

q̂ = q(Â1, . . . , Âp). (D.3.1)

The properties of q̂ follow from those of Â1, . . . , Âp. To assess the sampling un-
certainty of q̂, confidence intervals are often established, based on the asymp-
totic distribution of q̂. Alternatively, if q is a test statistic, its p-value may be
of interest which can be approximated on the basis of the asymptotic distribu-
tion. Unfortunately, this distribution is often a rather poor approximation of
the actual distribution for a given finite sample. In some of these cases, boot-
strap methods provide a better small sample approximation. The theoretical
justification for the bootstrap also rests on asymptotic theory, however. In
particular, it can usually be justified if the quantity of interest has a normal
limiting distribution (Horowitz (2001)).

A residual based bootstrap is often used in this context. Assuming that a
sample y1, . . . , yT plus presample values as required are available, it proceeds
as follows:

(1) The parameters of the model under consideration are estimated. Let ût,
t = 1, . . . , T , be the estimation residuals.

(2) Centered residuals û1−u., . . . , ûT −u. are computed. Here u. = T−1
∑

ût

denotes the usual average. Bootstrap residuals u∗
1, . . . , u

∗
T are then ob-

tained by randomly drawing with replacement from the centered residu-
als.



710 D Simulation and Resampling Techniques

(3) Bootstrap time series are computed recursively as

y∗t = ν̂ + Â1y
∗
t−1 + · · · + Âpy

∗
t−p + u∗

t , t = 1, . . . , T,

where the same initial values may be used for each generated series,
(y∗−p+1, . . . , y

∗
0) = (y−p+1, . . . , y0).

(4) Based on the bootstrap time series, the parameters A1, . . . , Ap are reesti-
mated.

(5) Using the parameter estimates obtained in the previous stage, a bootstrap
version of the statistic of interest, say q̂∗, is calculated.

(6) These steps are repeated N times, where N is a large number.

There is now a range of other bootstrap methods which may have advan-
tages in certain situations. For example, rather than using a residual-based
bootstrap, a block bootstrap may be applied which is based on the original
observations rather than the model residuals (see, e.g., Li & Maddala (1996)
for details). It may be preferable if there is uncertainty regarding specific as-
pects of the model like, for instance, the VAR order. These methods are not
discussed here because residual based bootstraps are still the most popular
methods in the present context.

In the following, the symbol q denotes the quantity of interest for which
a confidence interval is desired. Its estimator implied by the estimators of
the model coefficients and the corresponding bootstrap estimator are denoted
by q̂ and q̂∗, respectively. The following bootstrap confidence intervals are
examples that have been considered in the literature in the context of impulse
response analysis (see, e.g., Benkwitz, Lütkepohl & Wolters (2001)):

• Standard percentile interval
Denoting by s∗γ/2 and s∗(1−γ/2) the γ/2- and (1 − γ/2)-quantiles, respec-
tively, of the N bootstrap versions of q̂∗, the interval

CIS =
[
s∗γ/2, s

∗
(1−γ/2)

]
,

may be set up. It is the percentile confidence interval discussed, e.g., by
Efron & Tibshirani (1993).

• Hall’s percentile interval
Hall (1992) uses the result that asymptotically the distribution of

√
T (q̂−q)

corresponds to that of
√
T (q̂∗ − q̂), to derive the interval

CIH =
[
q̂ − t∗(1−γ/2), q̂ − t∗γ/2

]
.

Here t∗γ/2 and t∗(1−γ/2) are the γ/2- and (1 − γ/2)-quantiles, respectively,
of (q̂∗ − q̂) and the interval is obtained by pretending that these are the
quantiles of (q̂ − q).

• Hall’s studentized interval
A studentized statistic (q̂ − q)/(V̂ar(q̂))1/2 often results in more precise
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confidence intervals at least in theory. Using bootstrap quantiles t∗∗γ/2 and

t∗∗(1−γ/2) from the distribution of (q̂∗ − q̂)/(V̂ar(q̂∗))1/2, an interval

CISH =
[
q̂ − t∗∗(1−γ/2)

√
V̂ar(q̂), q̂ − t∗∗γ/2

√
V̂ar(q̂)

]
can be constructed by using these quantities in conjunction with (q̂ −
q)/(V̂ar(q̂))1/2. Here the variance Var(q̂) may be estimated from the boot-
strap estimates of q,

V̂ar(q̂) =
1

N − 1

N∑
i=1

(
q̂∗,i − q̂∗

)2

,

where N is the number of bootstrap replications and q̂∗,i denotes the
value of the statistic of interest obtained in the i-th bootstrap replication.
Moreover, the variances V̂ar(q̂∗) may be estimated by a bootstrap within
each bootstrap replication. In other words,

V̂ar(q̂∗) =
1

N∗ − 1

N∗∑
i=1

(
q̂∗∗,i − q̂∗∗

)2

,

where q̂∗∗,i is obtained by a double bootstrap, that is, pseudo-data are
generated according to a process obtained on the basis of the bootstrap
systems parameters and N∗ is the number of bootstrap replications within
each bootstrap replication.

A number of refinements and modifications of these intervals exist (see
Hall (1992)).

The bootstrap confidence intervals have the property that they attain the
nominal confidence content at least asymptotically under general conditions.
Roughly speaking, if

√
T (q̂ − q) converges as T → ∞,

√
T (q̂∗ − q̂) converges

to the same limit distribution under suitable conditions (e.g., Hall (1992)).
Therefore CIH has the correct size asymptotically, that is, Pr(q ∈ CIH) →
1 − γ as T → ∞, under general conditions, and, hence, Hall’s percentile
method is asymptotically precise. The same holds for the CISH interval. On
the other hand, to obtain such a result for the standard percentile interval
CIS , the limiting distribution of

√
T (q̂ − q) has to be symmetric about zero.

For example, this result holds if it is zero mean normal. Roughly speaking,
CIS works with an implicit asymptotic unbiasedness assumption for q̂. If the
distribution of q̂ is not centered at q, CIS will generally not have the desired
confidence content even asymptotically (see also Efron & Tibshirani (1993)
and Benkwitz et al. (2000) for a more detailed discussion of this point).

If q̂ is a statistic for which a p-value is desired, the following method may
be used. Recall that the p-value of a test is the probability of obtaining a value
of the test statistic greater than the observed one, if the null hypothesis holds.
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Hence, the p-value may be estimated by the proportion of bootstrap values q̂∗

exceeding the value of the test statistic q̂. Again, under general assumptions,
this estimator is consistent.



References

Abraham, B. (1980). Intervention analysis and multiple time series, Biometrika
67: 73–78.

Ahn, S. K. (1988). Distribution for residual autocovariances in multivariate autore-
gressive models with structured parameterization, Biometrika 75: 590–593.

Ahn, S. K. & Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for
multiple time series, Journal of the American Statistical Association 83: 849–
856.

Ahn, S. K. & Reinsel, G. C. (1990). Estimation of partially nonstationary multi-
variate autoregressive models, Journal of the American Statistical Association
85: 813–823.

Akaike, H. (1969). Fitting autoregressive models for prediction, Annals of the Insti-
tute of Statistical Mathematics 21: 243–247.

Akaike, H. (1971). Autoregressive model fitting for control, Annals of the Institute
of Statistical Mathematics 23: 163–180.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
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Index of Notation

Most of the notation is clearly defined in the text where it is used. The follow-
ing list is meant to provide some general guidelines. Occasionally, in the text
a symbol has a meaning which differs from the one specified in this list when
confusion is unlikely. For instance, A usually stands for a VAR coefficient
matrix whereas in the Appendix it is often a general matrix.
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General Symbols

= equals
:= equals by definition
⇒ implies
⇔ is equivalent to
∼ is distributed as
∈ element of
⊂ subset of
∪ union
∩ intersection∑

summation sign∏
product sign

→ converges to, approaches
p→ converges in probability to

a.s.→ converges almost surely to
q.m.→ converges in quadratic mean to
d→ converges in distribution to
i.i.d. independently, identically distributed
lim limit
plim probability limit
max maximum
min minimum
sup supremum, least upper bound
ln natural logarithm
exp exponential function
|z| absolute value or modulus of z
K dimension of a stochastic process or time series
T sample size, time series length
R real numbers
R

m m-dimensional Euclidean space
C complex numbers
Z integers
N positive integers
I(·) indicator function
L lag operator
∆ differencing operator
E expectation
Var variance
Cov covariance, covariance matrix
MSE mean squared error (matrix)
Pr probability
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l(·) likelihood function
ln l log-likelihood function
l0(·) approximate likelihood function
ln l0 approximate log-likelihood function
λLM Lagrange multiplier statistic
λLR likelihood ratio statistic
λW Wald statistic
Qh portmanteau statistic
Q̄h modified portmanteau statistic
d.f. degrees of freedom
AIC Akaike information criterion
FPE final prediction error (criterion)
HQ Hannan-Quinn (criterion)
SC Schwarz criterion

Distributions and Stochastic Processes

N (µ,Σ) (multivariate) normal distribution with mean
(vector) µ and variance (covariance matrix) Σ

χ2(m) χ2-distribution with m degrees of freedom
F (m,n) F-distribution with m numerator and n denominator

degrees of freedom
t(m) t-distribution with m degrees of freedom
AR autoregressive (process)
AR(p) autoregressive process of order p
ARCH autoregressive conditional heteroskedasticity
ARMA autoregressive moving average (process)
ARMA(p, q) autoregressive moving average process of order (p, q)
ARMAE echelon form VARMA model
ARMAE(p1, . . . , pK) echelon form VARMA model with

Kronecker indices (p1, . . . , pK)
EC-ARMARE error correction echelon form VARMA model
GARCH generalized autoregressive conditional

heteroskedasticity
MA moving average (process)
MA(q) moving average process of order q
MGARCH multivariate generalized autoregressive conditional

heteroskedasticity
PAR periodic (vector) autoregression
VAR vector autoregressive (process)
VAR(p) vector autoregressive process of order p
VARMA vector autoregressive moving average (process)
VARMA(p, q) vector autoregressive moving average process

of order (p, q)
VECM vector error correction model
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Vector and Matrix Operations

M ′ transpose of M
Madj adjoint of M
M−1 inverse of M
M+ Moore-Penrose generalized inverse of M
M⊥ orthogonal complement of M
M1/2 square root of M
Mk k-th power of M
MN matrix product of M and N
+ plus
− minus
⊗ Kronecker product
det(M), det M determinant of M
|M | determinant of M
‖M‖ Euclidean norm of M
rk(M), rk M rank of M
tr(M), tr M trace of M
vec column stacking operator
vech column stacking operator for symmetric matrices (stacks

the elements on and below the main diagonal only)

∂ϕ

∂β′ vector or matrix of first order partial derivatives of ϕ with
respect to β

∂2ϕ

∂β∂β′ Hessian matrix of ϕ, matrix of second order partial
derivatives of ϕ with respect to β

General Matrices

Dm (m2 × 1
2m(m + 1)) duplication matrix

Im (m×m) unit or identity matrix
I(·) information matrix
Ia(·) asymptotic information matrix
J := [IK : 0 : · · · : 0]
Kmn (mn×mn) commutation matrix
Lm ( 1

2m(m + 1) ×m2) elimination matrix
0 zero or null matrix or vector
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Vectors and Matrices Related to Stochastic Processes and Multiple Time Series

ut K-dimensional white noise process
ukt k-th element of ut

u(k) :=

⎡⎢⎣ uk1

...
ukT

⎤⎥⎦
U := [u1, . . . , uT ]
u := vec(U)

Ut :=

⎡⎢⎢⎢⎣
ut

0
...
0

⎤⎥⎥⎥⎦ or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut

0
...
0
ut

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
yt K-dimensional stochastic process
ykt k-th element of yt

y(k) :=

⎡⎢⎣ yk1

...
ykT

⎤⎥⎦
y :=

T∑
t=1

yt/T , sample mean (vector)

yt(h) h-step forecast of yt+h at origin t
Y := [y1, . . . , yT ]
y := vec(Y )

Yt :=

⎡⎢⎣ yt

...
yt−p+1

⎤⎥⎦ or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

ut

...
ut−q+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

...
yt−p+1

xt

...
xt−s+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Zt :=

⎡⎢⎢⎢⎣
1
yt

...
yt−p+1

⎤⎥⎥⎥⎦
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Matrices and Vectors Related to VAR and VARMA Representations and
VECMs (Parts I, II, III, IV)

Ai VAR coefficient matrix
A := [A1, . . . , Ap]
α := vec(A)

A :=

⎡⎢⎢⎢⎣
A1 . . . Ap−1 Ap

IK 0 0
. . .

...
...

0 . . . IK 0

⎤⎥⎥⎥⎦ or
[

A11 A12

A21 A22

]

A11 :=

⎡⎢⎢⎢⎣
A1 . . . Ap−1 Ap

IK 0 0
. . .

...
...

0 . . . IK 0

⎤⎥⎥⎥⎦ (Kp×Kp)

A12 :=

⎡⎢⎢⎢⎣
M1 . . . Mq−1 Mq

0 . . . 0 0
...

...
...

0 . . . 0 0

⎤⎥⎥⎥⎦ (Kp×Kq)

A21 := 0 (Kq ×Kp)

A22 :=
[

0 0
IK(q−1) 0

]
(Kq ×Kq)

Mi MA coefficient matrix

m := vec[M1, . . . ,Mq]

M :=
[

M11 M12

M21 M22

]
(K(p + q) ×K(p + q))

M11 :=

⎡⎢⎢⎢⎣
−M1 . . . −Mq−1 −Mq

IK 0 0
. . .

...
...

0 . . . IK 0

⎤⎥⎥⎥⎦ (Kq ×Kq)
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M12 :=

⎡⎢⎢⎢⎣
−A1 . . . −Ap−1 −Ap

0 . . . 0 0
...

...
...

0 . . . 0 0

⎤⎥⎥⎥⎦ (Kq ×Kp)

M21 := 0 (Kp×Kq)

M22 :=
[

0 0
IK(p−1) 0

]
(Kp×Kp)

Φi coefficient matrix of canonical MA representation
Πi coefficient matrix of pure VAR representation
α loading matrix of VECM
β cointegration matrix
Π := αβ′

Γi short-run coefficient matrix of VECM

Impulse Responses and Related Quantities

Φi matrix of forecast error impulse responses

Ψm :=
m∑

i=0

Φi, matrix of accumulated forecast error impulse responses

Ψ∞ :=
∞∑

i=0
Φi, matrix of total or long-run forecast error impulse responses

Θi matrix of orthogonalized impulse responses

Ξm :=
m∑

i=0
Θi, matrix of accumulated orthogonalized impulse responses

Ξ∞ :=
∞∑

i=0
Θi, matrix of total or long-run orthogonalized impulse responses

ωjk,h proportion of h-step forecast error variance of variable j, accounted
for by innovations in variable k

Ξ matrix of long-run effects
Ξ∗

j matrix of transitory effects
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Moment Matrices

Γ := plim ZZ ′/T
Γy(h) := Cov(yt, yt−h) for a stationary process yt

Ry(h) correlation matrix corresponding to Γy(h)
Σu := E(utu

′
t) = Cov(ut), white noise covariance matrix

Σy := E[(yt − µ)(yt − µ)′] = Cov(yt), covariance matrix of a stationary
process yt

P lower triangular Choleski decomposition of Σu

Σα̂ covariance matrix of the asymptotic distribution of
√
T (α̂ − α)

Ω(h) correction term for MSE matrix of h-step forecast
Σy(h) MSE or forecast error covariance matrix of h-step forecast of yt

Σŷ(h) approximate MSE matrix of h-step forecast of estimated process yt



Author Index

Abraham, B., 609
Ahn, S.K., 157, 165, 170, 222, 271, 272,

280, 290, 292–294, 297, 316, 323
Akaike, H., 146, 147, 507
Alavi, A.S., 507
Amisano, G., 358, 374
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ARMARE form of —, 518–519

EC-ARMARE form of —, 519–521
error correction echelon form of —,

519–521
estimation of —, 521–522
reverse echelon form of —, 518–519
specification of cointegrating rank of

—, 525–526
Cointegrating

— matrix, 256
— vector, 245

Cointegrating rank, see cointegration
rank

Cointegration matrix, 248
Cointegration rank, 248

— of VAR process, 248
— of VARMA process, 525–526
LR test for —, 327–335, 551–552
maximum eigenvalue test for —, 329
testing for —, 327–343, 551–552
trace test for —, 329

Column vector, 645
Common trend, 245
Commutation matrix, 663
Complex matrix, 657
Complex number

modulus of —, 652
Conditional forecast, 402
Conditional likelihood function, 464
Conditional model, 387
Conditional moment profiles, 580–582
Confidence interval

— for forecast error variance
components, 114

— for impulse responses, 112
Hall’s percentile —, 710
Hall’s studentized —, 710
standard percentile —, 710

Consistency
super —, 288, 301

Consistent estimation
— of Kronecker indices, 501
— of VAR order, 148–150, 326
— of white noise covariance matrix,

76
Constant conditional correlation

GARCH model, 568
Constrained VAR models

linear constraints, 194–221
nonlinear constraints, 221–222
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Contemporaneous aggregation of
VARMA process, 440

Continuous mapping theorem, 699
Convergence

— almost surely, 682
— in distribution, 682
— in law, 682
— in mean square error, 682
— in probability, 681
— in quadratic mean, 682
— with probability one, 682
strong —, 682
weak —, 682

Cramér-Wold device, 691

Data generation process, 4
DCC GARCH model, 568
Decomposition of matrices, 656–659

Choleski —, 659
Jordan —, 656–657

Definite
— matrix, 655–656
— quadratic form, 655–656

Degree
McMillan —, 453

Degrees of freedom, 678
Determinant of a matrix, 647
Deterministic trend, 238
DGP, 4
Diagnostic checking

— of VAR models, 157–189
— of VARMA models, 508–510
— of cointegrated systems, 344–351
— of dynamic SEMs, 400–401
— of restricted VAR models, 212–214

Diagonal matrix, 646
Diagonalization of a matrix, 657–658
Dickey-Fuller test, 700
Difference operator, 242
Differencing, 242
Differentiation of vectors and matrices,

664–671
Direction matrix, 471
Discrete stochastic process, 3
Distributed lag model, 387, 391–392

rational —, 391–392
Distribution

— multivariate normal, 677–678
— normal, 677–678

— of quadratic form, 678
chi-square —, 678
F —, 679
noncentral F —, 680
noncentral chi-square —, 679
posterior —, 222
prior —, 222

Distribution function, 3
joint —, 3

Donsker’s theorem, 699, 704
Drift of a random walk, 238
Dummy variable, 585

seasonal —, 585
Duplication matrix, 662
Dynamic

— MIMIC model, 621
— factor analytic model, 620
— multipliers, 392

Dynamic conditional correlation
GARCH model, 568

Dynamic SEM
checking the adequacy of —, 400–401
estimation of —, 394–400
final equations of —, 392
final form of —, 391
forecasting of —, 401–406

conditional —, 402
unconditional —, 402

multipliers of —, 406–408
optimal control of —, 408–411
rational expectations in —, 392–394
reduced form of —, 390
specification of —, 400–401
structural form of —, 390

EC-ARMARE form
— of VARMA process, 519–521
estimation of —, 522
specification of —, 523–526

Echelon form
— VARMA representation, 452–453
— of a VARMA process, 452–453
specification of —, 498–507

Effect of linear transformations
— on MA process, 435
— on VARMA orders, 436
— on forecast efficiency, 439

Efficiency
— of estimators, 198–200
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— of forecasts, 439

EGARCH model, 568

EGLS estimation

— of parameters arranged equation-
wise, 200–201

asymptotic properties of —, 197–200

implied restricted —, 197
restricted —, 197–201

Eigenvalue of a matrix, 652

Eigenvector of a matrix, 652

Elimination matrix, 662

EM algorithm, 635

Empirical distribution, 707

generation of —, 707

Endogenous variable, 387–390, 613

Equilibrium, 244–245

Equilibrium relation, 245

Error correction echelon form, 519–521
estimation of —, 522

specification of —, 523–526

Error correction model, 246

Error process

— of the measurement equation of a
state space model, 613

— of the transition equation of a
state space model, 613

Estimated generalized least squares
estimation, see EGLS estimation

Estimation

— of AB-model, 372–375
— of ARMARE form, 521–522

— of Blanchard-Quah model, 376

— of SVAR, 372–376

— of SVAR with long-run restrictions,
376

— of SVECM, 376–377

— of VAR models, 69–93, 531–536

— of VARMA models, 447–487
— of autocorrelations, 157–169

— of autocovariances, 157–169

— of cointegrated VARMA process,
521–522

— of cointegrated systems, 269–309

— of dynamic SEMs, 394–400

— of error correction echelon form,
522

— of integrated VAR processes,
309–315

— of multivariate GARCH model,
569–571

— of periodic models, 594–598
— of process mean, 83–85
— of reverse echelon form, 521–522
— of state space models, 631–637
— of time varying coefficient models,

589–591
— of white noise covariance matrix,

75–77, 197–198
— with linear restrictions, 195–204
— with nonlinear restrictions, 222
— with unknown process mean, 85
Bayesian —, 222–229
EGLS —, 197
generalized least squares —, 291–294
GLS —, 195
least squares —, 286–291
LS —, 69–82, 197
maximum likelihood —, 87–93, 200,

294–300, 589–591
multivariate least squares —, 69–82,

531–536
preliminary —, 474–477
restricted

EGLS —, 195–200
GLS —, 195–200

restricted —, 195–204, 222
two-stage —, 301–302
Yule-Walker —, 85–86

Exact likelihood function, 458–461
Exogenous variable, 387–390

strictly —, 389
strongly —, 388
super —, 388
systems with —, 388–390
weakly —, 388

Expectation
rational —, 392

F -distribution, 679
noncentral, 680

Factor analytic model
dynamic —, 620

Factor GARCH model, 567
Factor loadings, 620
FCLT, 699
Filter

Kalman —, 625–631
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Filtering, 625

Final equations form

— VARMA representation, 452

— of a dynamic simultaneous
equations model, 392

specification of —, 494–498

Final form of a dynamic simultaneous
equations system, 391

Final prediction error criterion, see
FPE criterion

Finite order MA process, 420–423

Forecast

— interval, 39–41

— of VAR process, 93–102, 536–540

— of VARMA process, 432–434,
487–490

— region, 39–41

conditional —, 402

estimated —, 93–102, 487–490,
536–540

loss function for —, 32–33

minimum MSE —, 35–39

point —, 33–39

unconditional —, 402

Forecast error, 93–95

Forecast error impulse responses, 51–56

Forecast error variance component, 108

Forecast error variance decomposition,
63–66, 540–545

— of VAR process, 63–66

— of cointegrated system, 264

asymptotic distribution of —,
108–118, 205–206, 541–543

structural —, 381–382
Forecast interval, 98

Forecast MSE matrix, 434

approximate —, 96–98, 489–490, 536
Forecast region, 98

Forecasting

— of ARCH process, 561–562
— of GARCH model, 561–562

— of VAR process, 31–41

— of VARMA process, 432–434
— of cointegrated system, 258–261,

315–316

— of dynamic SEM, 401–406

— of estimated VAR process, 93–102,
204–205

— of estimated VARMA process,
487–490

— of infinite order VAR process,
536–540

— of integrated system, 258–261,
315–316

— of restricted VAR process, 204–205
FPE criterion, 146
Fully modified VAR estimation, 318
Functional central limit theorem, 699

multivariate —, 704

GARCH model, 557–584
asymmetric —, 568
CCC —, 568
constant conditional correlation —,

568
dynamic conditional correlation —,

568
exponential —, 568
factor —, 567
generalized orthogonal —, 568
interpretation of —, 579–582
multivariate —, 562–584
univariate —, 559–562

GARCH process, 557–584
forecasting of —, 561–562

Gaussian likelihood function
— of MA process, 458–463
— of VAR process, 87–89
— of VARMA process, 463–467
— of cointegrated process, 294
— of state space model, 631–633

Gaussian process
VAR, 16
VARMA, 423
white noise, 75

Generalized autoregressive conditional
heteroskedasticity, 559

Generalized impulse responses, 580–582
Generalized inverse of a matrix, 650
Generalized orthogonal GARCH model,

568
Generating process of a time series, 4
Generation process of a time series, 4
Global identification, 633–634
Globally identified model, 633–634
GLS estimation, 195–200

— of cointegrated system, 291–294
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asymptotic properties of —, 197
Gradient

— algorithm, 469
— of log-likelihood function, 635
— of vector function, 469

Granger representation theorem, 251
Granger-causality

— in VAR models, 41–51, 102–104
— in VARMA models, 441–444
— in cointegrated system, 261–262
— in cointegrated systems, 316–321
characterization of —, 316
lag augmentation test for —, 318
lag augmented Wald test for —, 318
test for —, 102–104, 316–321
Wald test for —, 102–104, 316–321

Hall’s percentile confidence interval, 710
Hall’s studentized confidence interval,

710
Hannan-Kavalieris procedure, 503–505
Hannan-Quinn criterion, see HQ

criterion
Hessian matrix, 665
HQ criterion, 150, 208

Idempotent matrix, 653
Identification

— of VARMA model, 447–458
— of VARX model, 400
— of dynamic simultaneous equations

system, 400
— of state space model, 633–634
global —, 634
local —, 634

Identification problem, 447–458
Identified model

globally —, 634
locally —, 634
state space, 633–634
VARMA, 447–458

Identity matrix, 646
Impact multiplier, 61
Impulse response analysis, 377–382

— of VAR model, 51–63
— of VARMA model, 444, 490
— of cointegrated system, 262–264,

321–322
Impulse responses, 51–63, 377–382

— of VARMA model, 444, 490
— of cointegrated system, 262–264,

321–322
accumulated —, 55
asymptotic distribution of —,

108–118, 205–206, 541–543
estimation of —, 108, 205–206
forecast error —, 51–56
generalized —, 580–582
orthogonalized —, 56–62, 359
structural —, 359, 377–382
total —, 56

Indefinite
— matrix, 656
— quadratic form, 656

Index model, 222
Infinite order MA representation

— of a VARMA process, 423
— of a time varying coefficient

process, 587
Infinite order VAR representation

— of a VARMA process, 425
— of an MA process, 420

Information matrix
— of VAR process, 90
— of VARMA process, 472–474
— of state space model, 635
— of time varying coefficient VAR

model, 591
Initial

— input, 613
— state, 613

Innovations
structural —, 359

Input
— matrix of a state space model, 613
— variables, 388
observable —, 388, 613
unobservable —, 388

Inputs of a state space model, 613
Instantaneous causality

— in VAR models, 41–51
tests for —, 104–108

Instrument
— variable, 388, 613
observable —, 388, 613

Integrated
— of order d, 242
— process, 237–244
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— time series, 237–244
— variable, 237–244

Integration
order of —, 242

Interim multipliers, 56, 392
Interpretation

— of ARCH model, 579–582
— of GARCH model, 579–582
— of VARMA model, 441–444
classical versus Bayesian —, 228–229

Interval forecast, 39–41, 98
Intervention

— in intercept model, 604–606
testing for —, 605–606

Intervention model, 586
estimation of —, 604–608
specification of —, 604–608

Invariance principle, 699
multivariate —, 704

Inverse of a matrix, 649
Invertible

— MA operator, 422
— MA process, 420–422
— VARMA process, 425
— matrix, 649

IS-LM model, 366
Iterative optimization algorithm

EM algorithm, 635
Newton algorithm, 471
scoring algorithm, 472, 634–636

Jarque-Bera test, 175
Jordan canonical form, 657

Kalman filter, 625–631
— correction step, 627
— forecasting step, 627
— gain, 627
— initialization, 627
— prediction step, 627
— recursions, 626–630
— smoothing step, 630

Kalman gain, 627
Kalman smoothing matrix, 630
Khinchine’s theorem, 690
Kronecker indices, 453

— of VARMA process, 453
— of cointegrated VARMA process,

518

— of echelon form, 453
— of reverse echelon form, 518
determination of —, 498–507
estimation of —, 498–507
specification of —, 498–507

Kronecker product, 660
Kurtosis

asymptotic distribution of —, 175,
178

measure of multivariate —, 174–180

Lagrange function, 671, 695
Lagrange multiplier statistic, 508–510,

600–601
asymptotic distribution of —, 510,

601
Lagrange multiplier test, 508–510,

600–601, 694–698
Lagrange multipliers, 671
Law of large numbers, 689–692

— for martingale difference arrays,
690

— for martingale difference sequence,
690

— for stationary processes, 690
strong —, 689
weak —, 689

Least squares estimation
— of VAR process, 69–82, 531–536
— of cointegrated VAR process,

286–291
— with mean-adjusted data, 82–85
asymptotic properties of —, 72–77,

197–200, 532–533
multivariate —, 69–82, 531–536
restricted —, 197–200
small sample properties of —, 80–82

Least squares estimator of white noise
covariance matrix, 75–77, 535–536

asymptotic properties of —, 75,
535–536

Left-coprime operator, 452
Leptokurtosis, 560
Leverage effect, 568
Likelihood function, 693

— of MA process, 458–463
— of VAR process, 87–89
— of VARMA process, 463–467
— of cointegrated process, 294
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— of state space model, 631–633
— of time varying coefficient VAR

model, 589
conditional —, 464

Likelihood ratio statistic
asymptotic distribution of —, 140
definition of —, 138

Likelihood ratio test, 694–698
— for cointegration rank, 327–343,

551–552
— of linear restrictions, 138–143
— of periodicity, 598
— of varying coefficients, 595–598
— of zero restrictions, 138–143

Lindeberg-Levy central limit theorem,
691

Linear constraints
— for VAR coefficients, 194–195

Linear system, 387
Linear transformation

— of MA process, 435–436
— of VARMA process, 436–440
— of multivariate normal distribution,

678
Linearly dependent vectors, 652
Linearly independent vectors, 652
Litterman prior

— for nonstationary process, 310–315
— for stationary process, 225–227

LLN, 689
LM test, 695

— for autocorrelation, 171–174
Loading matrix, 248
Locally identified model, 634
Log-likelihood function, 693
Lomnicki-Jarque-Bera test, 175
Long-run

— effect, 392
— multiplier, 392

Loss function, 32–33
quadratic —, 409

LR test, 695
LS estimation, see least squares

estimation

MA operator, 422
MA process

autocovariances of —, 422
finite order —, 420–423

invertible —, 420–422
likelihood function of —, 458–463

MA representation
— of a VARMA process, 423
canonical —, 426
forecast error —, 426
prediction error —, 426

MA representation of VAR process,
18–24

Martingale difference array, 689
law of large numbers for —, 690

Martingale difference sequence, 689
law of large numbers for —, 690
vector —, 689

Matrix, 645
— addition, 646
— differentiation, 664–671
— multiplication, 646
— multiplication by a scalar, 646
— operations, 646–647
— rules, 645–675
— subtraction, 646
operator

left-coprime —, 452
unimodular —, 452

adjoint of —, 649
characteristic determinant of —, 652
characteristic polynomial of —, 652
characteristic root of —, 652
characteristic value of —, 652
characteristic vector of —, 652
Choleski decomposition of —, 659
cofactor of an element of —, 648
column dimension of —, 645
commutation —, 663
conformable —, 647
decomposition of —, 656–659
determinant of —, 647
diagonal —, 646
diagonalization of —, 657–658
duplication —, 662
eigenvalue of —, 652
eigenvector of —, 652
element of —, 645
elimination —, 662
full rank —, 652
generalized inverse of —, 650
Hessian —, 665
idempotent —, 653
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identity —, 646
indefinite —, 656
information —, 694
inverse of —, 649
invertible —, 649
Jordan canonical form of —, 657
lower triangular —, 646
minor of an element of —, 648
Moore-Penrose inverse of —, 650
negative definite —, 656
negative semidefinite —, 656
nilpotent —, 653
nonsingular —, 649
null —, 646
orthogonal —, 654
orthogonal complement of —, 654
partitioned —, 659
positive definite —, 655
positive semidefinite —, 655
rank of —, 652
regular —, 649
row dimension of —, 645
square —, 645
square root of —, 658
symmetric —, 646
trace of —, 653
transpose of —, 646
triangular —, 646
typical element of —, 645
unit —, 646
upper triangular —, 646
zero —, 646

Maximum eigenvalue test for cointegra-
tion rank, 329

Maximum likelihood estimation, see
ML estimation

McMillan degree
— of VARMA process, 453
— of echelon form, 453

Mean squared error matrix, see MSE
matrix

Mean vector of a VAR process, 82
Mean-adjusted

— VAR process, 82
— process, 82

Measurement
— equation of state space model, 611,

613
— errors, 613

— matrix, 613
MGARCH, 562–584
MIMIC models, 621
Minimization

— algorithms, 469–472
iterative —, 469–472
numerical —, 469–472

Minimum MSE forecast, 35–39
Minor of an element of a square matrix,

648
ML estimates

computation of —, 89–90, 467–477,
631–637

ML estimation, 693
— of AB-model, 372–375
— of Blanchard-Quah model, 376
— of SVAR, 372–376
— of SVECM, 376–377
— of VAR process, 87–93
— of VAR process with time varying

coefficients, 589–591
— of VARMA process, 458–487
— of cointegrated system, 294–300
— of periodic VAR process, 594–598
— of restricted VAR process, 200
— of state space model, 631–637
quasi —, 140

Model checking
— of VAR models, 157–189
— of VARMA models, 508–510
— of cointegrated systems, 344–351
— of dynamic SEMs, 400–401
— of restricted VAR models, 212–217
— of state space models, 639
— of subset VAR models, 212–217

Model selection
— of VAR models, 135–157
— of VARMA models, 493–508
— of cointegrated processes, 325–344
— of subset VAR models, 206–212

Model specification
— of VAR models, 135–157
— of VARMA models, 493–508
— of cointegrated processes, 325–344
— of dynamic SEMs, 400–401
— of periodic VAR models, 594–604
— of subset VAR models, 206–212

Model specification criteria
AIC, 147, 208
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FPE, 146

HQ, 150, 208

SC, 150, 208

Modified portmanteau statistic, 174,
214

approximate distribution of —, 174,
214

Modified portmanteau test, 174, 214,
510

Modulus of a complex number, 652

Moore-Penrose (generalized) inverse,
650

Moving average process, see MA process

Moving average representation of VAR
process, 18–24

MSE matrix, 434

approximate —, 96–98, 489–490, 536

MSE of forecast, 96–98, 434, 489–490,
536

Multi-step causality

— in VAR models, 41–51

tests for —, 105–108

Multiplicative operator, 221–222

Multiplier

— analysis, 392, 406–408

dynamic —, 392

impact —, 61

interim —, 392

long-run —, 392

total —, 392

Multivariate ARCH model, 563–564

interpretation of —, 579–582

Multivariate Beveridge-Nelson decom-
position, 252

Multivariate GARCH model, 562–584

BEKK, 565–567

estimation of —, 569–571

interpretation of —, 579–582

Multivariate least squares estimation,
69–86

— of VAR process, 69–82

— of infinite order VAR process,
531–536

Multivariate normal distribution,
677–678

linear transformation of —, 678

Multivariate stochastic process

discrete —, 3

Negative definite
— matrix, 656
— quadratic form, 656

Negative semidefinite matrix, 656
Newton algorithm, 471
Newton-Raphson algorithm, 471
Nilpotent matrix, 653
Noncentral F -distribution, 680
Noncentral chi-square distribution, 679
Noncentrality parameter, 679
Nonlinear

— parameter restrictions, 221–222
— state space model, 623–625

Nonnormality
tests for —, 174–180

Nonsingular matrix, 649
Nonstationary

— VAR process, 242, 256, 585–586
— process, 237, 585–586, 614,

621–623
— time series, 237

Normal distribution
— multivariate, 677–678

Normal equations
— for VAR coefficient estimates, 71
— for VAR process with time varying

coefficients, 589
— for VARMA estimation, 467–469

Normal prior, 222–225
— p.d.f., 222

Normal prior for Gaussian VAR process,
222–225, 309

Observable
— input, 388
— output, 388
— variables, 388

Observation
— equation of state space model, 611,

613
— error, 611, 613
— noise, 613

Open-loop strategy, 411
Operator

left-coprime —, 452
MA —, 422
unimodular —, 452

Optimal control, 408–411
closed-loop —, 411
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open-loop —, 411
problem of —, 410

Optimization
— algorithms, 469–472
— of vector functions, 671–675

Order determination
— for VAR process, 135–157
— for cointegrated process, 325–327
criteria for —, 146–157
tests for —, 136–145

Order estimation
— for cointegrated processes, 325–327
— of VAR process, 146–157
consistent —, 148–150
criteria for —, 146–157

Order in probability, 684–685
Order of

— MA process, 420
— VAR process, 136
— VARMA process, 423

Orthogonal
— matrix, 654
— vectors, 654

Orthogonal complement of a matrix,
654

Orthogonalized impulse responses,
56–62

accumulated —, 108
Orthonormal vectors, 654
Outlier, 609
Output

— of a state space system, 613
observable —, 388

Partial model, 387
Partitioned matrix, 659

rules for —, 659–660
Period of a stochastic process, 591
Periodic VAR process

— definition of, 591–594
— estimation of, 594–598
— specification of, 594–604

Permanent shock, 369
Point forecast, 33–39
Policy

— simulation, 406
— variable, 613

Portmanteau statistic, 169–171, 214,
510

approximate distribution of —, 169,
214, 510

modified —, 171, 214, 510
Portmanteau test, 169–171, 214, 510

modified —, 171, 214, 510
Positive definite

— matrix, 655
— quadratic form, 655

Positive semidefinite matrix, 655
Poskitt’s procedure, 505–507
Posterior

— density, 222
— mean, 222
— p.d.f., 222

Postmultiplication, 647
Predetermined variable, 388
Prediction tests for structural change

— based on one forecast, 184–186
— based on several forecasts, 186–188
— for cointegrated systems, 349–351
— of VAR processes, 184–189
— of VARMA processes, 510

Preliminary estimation of VARMA
process, 474–477

Preliminary estimator of VARMA
process, 475–477

Premultiplication, 647
Probability space, 2
Process

cointegrated —, 244–256
invertible MA —, 420–422
invertible VARMA —, 425
periodic —, 586
stable VARMA —, 423
VAR —, 5
VARMA —, 423–426

Product rule for vector differentiation,
665

Pure MA representation of a VARMA
process, 423

Pure VAR representation of a VARMA
process, 425

Quadratic form, 655
distribution of —, 678
indefinite —, 656
independence of —, 679
negative definite —, 656
negative semidefinite —, 656
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positive definite —, 655
positive semidefinite —, 655

Quasi ML estimator, 140

Random coefficient VARX model,
621–623

Random variable, 2
Random vector, 3
Random walk, 237
Random walk with drift, 238
Rank of a matrix, 652
Rank of cointegration

LR test for —, 327–343, 551–552
testing for —, 327–343, 551–552

Rational
— distributed lag model, 391–392
— expectations, 392
— transfer function, 392
— transfer function model, 392

Real matrices, 645
Recursions

Kalman filter —, 626–630
Recursive computation

— of derivatives, 467–468
— of residuals, 478

Reduced form of a dynamic SEM, 390
Regular matrix, 649
Resampling, 709–712
Resampling technique, 709–712
Residual autocorrelation

— of VAR process, 161–169, 212–213
— of VARMA process, 510
asymptotic properties of —, 166,

212–213
estimation of —, 161–169, 212–213

Residual autocovariance
— of VAR process, 161–169, 212–213
— of VARMA process, 510
asymptotic properties of —, 165,

212–213
estimation of —, 161–169, 212–213

Residual based bootstrap, 709
Residuals of VAR process

checking the whiteness of —, 157–174,
214

Residuals of VARMA process
checking the whiteness of —, 510
estimation of —, 475

Restricted estimation of VAR models,
195–204

asymptotic properties of —, 197–201
EGLS, 197–200
GLS, 195–197
LS, 197
ML, 200

Restrictions for VAR coefficients
— for individual equations, 200–201
linear —, 194–195
nonlinear —, 221–222
tests of —, 104–108, 138–143
Wald test of —, 104–108
zero —, 206–212

Restrictions for VARMA coefficients
Granger-causality —, 441–444
identifying —, 452–454
linear —, 464
LM test of —, 508–510
tests of —, 508–510

Restrictions on white noise covariance,
202–204

Reverse echelon form, 518–519
estimation of —, 521–522

Row vector, 645

Sample
— autocorrelations, 159
— autocovariances, 157
— mean, 83–85

SC, 150, 208
Schwarz criterion, see SC
Score vector, 694
Scoring algorithm, 374, 472, 634–636
Seasonal

— dummies, 585
— model, 585
— operator, 221
— process, 585
— time series, 585

Second order Taylor expansion, 671
SEM, 387
Sequential elimination of regressors

specification of subset VAR model,
211

Shock
permanent —, 369
transitory —, 369

Simulation techniques
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evaluating properties of estimators by
—, 707–709

evaluating properties of test statistics
by —, 707–709

Simultaneous equations model, see
SEM

Skewness
asymptotic distribution of —, 175,

178
measure of multivariate —, 174–180

Slutsky’s theorem, 683
Small sample properties

— of LS estimator, 80–82
— of VAR order selection criteria,

151–157
— of estimated forecasts, 100–102
— of estimators, 707–709
— of test statistics, 707–709
investigation of —, 80, 707–709

Smoothing, 630
Smoothing matrix

Kalman —, 630
Smoothing step, 630
Specification of

— EC-ARMARE form, 523–526
— VAR models, 135–157
— VARMA models, 493–508
— cointegrated systems, 325–344
— dynamic SEMs, 400–401
— echelon form, 498–507
— error correction echelon form,

523–526
— final equations form, 494–498
— subset VAR models, 206–212

Specification of cointegrating rank
— of EC-ARMARE form, 525–526
— of VAR process, 327–343
— of error correction echelon form,

525–526
Square root of a matrix, 658
Stability condition, 15, 16
Stability of a VARMA process, 423
Stable

— VAR process, 13–18
— VARMA process, 423

Standard percentile confidence interval,
710

Standard VARMA representation, 448
Standard white noise, 73

State space model
estimation of —, 631–637
global identification of —, 634
identification of —, 633–634
local identification of —, 634
log-likelihood function of —, 631–633
ML estimation of —, 631–637
nonlinear —, 623–625

State space representation
— of VAR process, 614–616
— of VARMA process, 616
— of VARX process, 616
— of VARX process with system-

atically varying coefficients,
621

— of factor analytic model, 619–621
— of random coefficient VARX

model, 621–623
State vector, 611, 613
Stationarity

asymptotic —, 241
strict —, 24

Stationarity condition for VAR process,
25

Stationary point of a function, 671
Stationary stochastic process, 24–26

strictly —, 24
Stationary VAR process, 24–26
Step direction, 469
Stochastic convergence, 681–684

— almost surely, 682
— in distribution, 682
— in law, 682
— in mean square error, 682
— in probability, 681
— in quadratic mean, 682
— with probability one, 682
strong —, 682
weak —, 682

Stochastic process
cointegrated —, 244–256
discrete —, 3
MA, 420–423
multivariate —, 3
nonstationary —, 237, 585–586, 614,

621–623
periodic —, 591–594
VAR, 13–18
VARMA, 423–426



Subject Index 761

VARX, 387, 616, 621–623
Stochastic trend, 238
Stochastic volatility model, 583
Strictly exogenous variable, 389
Strictly stationary stochastic process,

24
Strong law of large numbers, 689
Strongly exogenous variable, 388
Structural analysis

— of VARMA models, 441–444
— of cointegrated system, 261–264
— of cointegrated systems, 316–322
— of dynamic SEMs, 406–408
— of subset VAR models, 205–206,

221
Structural change, 182

Chow test for —, 182–184, 348–349
prediction test for —, 349–351
testing for —, 182–189, 348–351, 510,

598–601, 608
Structural form

— of a VAR process, 358
— of a dynamic SEM, 390

Structural impulse responses, 359,
377–382

Structural innovation, 359
permanent —, 369
transitory —, 369

Structural models
VAR, 357–386
VECM, 357–386

Structural time series model, 618–619
Structural VAR, 358–368

— with Blanchard-Quah restrictions,
367–368

— with long-run restrictions, 367–368
AB-model, 364–367
A-model, 358–362
B-model, 362–364

Structural vector autoregression, see
structural VAR

Structural vector error correction
model, 368–372

Submatrix, 659
Subset model

bottom-up procedure for —, 344
full search procedure for —, 344
sequential elimination of regressors,

344

top-down procedure for —, 344
Subset VAR model, 206–221

checking of —, 212–217

specification of —, 206–212
bottom-up strategy, 211
sequential elimination of regressors,

211
top-down strategy, 208–210

structural analysis of —, 221
Super-exogenous variable, 388
Superconsistent estimator, 288, 301
SVAR, 357–368

— with Blanchard-Quah restrictions,
367–368

— with long-run restrictions, 367–368
AB-model, 364–367
A-model, 358–362
B-model, 362–364
Blanchard-Quah —, 367–368
concentrated likelihood function, 373
estimation of —, 372–376
ML estimation of —, 372–376

SVECM, 368–372
estimation of —, 376–377
ML estimation of —, 376–377

Symmetric matrix, 646
System equation, 611
System matrix, 613
System with exogenous variables,

388–412
Systematic sampling, 616–618
Systematically varying coefficients

— of VAR models, 585–589
— of VARX models, 621

Taylor expansion, 671
second order —, 671

Taylor’s theorem, 670, 685
Temporal aggregation, 434–435,

440–441, 616–618
Testing for

— Granger-causality, 102–104,
316–321

— causal relations, 102–108, 316–321
— instantaneous causality, 104–108
— multi-step causality, 105–108
— nonnormality, 174–180

— periodicity, 598–604
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— rank of cointegration, 327–343,
551–552

— structural change, 181–189,
348–351, 510, 598–601, 608

— whiteness of residuals, 169–174,
214, 510

nonnormality
— of VAR process, 177–180
— of white noise process, 174–177

residual autocorrelation
— of VAR process, 169–174
— of VARMA process, 510
— of subset VAR model, 214
— of white noise process, 157–161

structural change
— based on one forecast period,

182–186
— based on several forecast periods,

186–188
Tests of parameter restrictions

linear restrictions, 102, 138–143
nonlinear restrictions, 508–510

Threshold models, 625
Time invariant

— autocovariances, 597
— coefficients, 596

Time series
nonstationary—, 237
seasonal —, 585

Time varying
— coefficients, 585–591
randomly —, 621–623
systematically —, 585–591

Top-down strategy for subset VAR
specification, 208–210

Total forecast error impulse responses,
56

Total impact matrix, 367
Total impulse responses, 56
Total multiplier, 392
Trace of a matrix, 653
Trace test for cointegration rank, 329
Transfer function, 392
Transfer function model, 387, 392

rational —, 392
Transformation

— of MA process, 435–436
— of VARMA process, 436–440
linear —, 435–440

Transition equation
— errors, 613
— noise, 613
— of a state space model, 611

Transition matrix, 613
Transitory shock, 369
Transpose of a matrix, 646
Trend

deterministic —, 238
stochastic —, 238

Triangular matrix
lower —, 646
upper —, 646

Triangular representation of cointe-
grated system, 251

Two-stage estimation
— of cointegrated system, 301–302
asymptotic properties of —, 301

Unconditional forecast, 402
Unimodular operator, 452
Univariate ARCH model, 559–562
Univariate GARCH model, 559–562
Unmodelled variable, 387–390

VAR estimation
fully modified —, 318

VAR order estimator
consistent —, 148
small sample properties of —,

151–157
strongly consistent —, 148

VAR order selection
AIC criterion for —, 147
comparison of criteria for —, 150–157
consistent —, 148–150
criteria for —, 146–157
FPE criterion for —, 146
HQ criterion for —, 150
SC criterion for —, 150
sequence of tests for —, 136–145
testing scheme for —, 143–144

VAR process, 5
— with linear parameter restrictions,

194–221
— with nonlinear parameter

restrictions, 221–222
— with parameter constraints,

193–231
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— with time varying coefficients,
586–591

autocorrelations of —, 30–31
autocovariances of —, 21, 26–30
checking the adequacy of —, 157–189
estimation of —, 69–93, 531–536
forecast error variance decomposition

of —, 63–66
forecasting of —, 31–41, 93–102,

536–540
impulse response analysis of —,

108–129, 540–545
infinite order —, 531–552
LS estimation of —, 69–86, 531–536
MA representation of —, 18–24
mean-adjusted —, 82
nonstationary —, 256, 586–594
order determination of —, 135–157
order estimation of —, 146–157
specification of —, 135–157
stable —, 13–18
state space representation of —,

614–616
stationarity condition for —, 25
structural —, 358–368
subset —, 206–221
unstable —, 256
Yule-Walker estimation of —, 85–86

VAR representation of a VARMA
process

infinite order —, 425
pure —, 425

VARMA process
— for integrated variables, 515–521
— in standard form, 448
— representation in standard form,

448
aggregation of —, 440–441
ARMARE form of —, 518–519
autocorrelations of —, 430
autocovariances of —, 429–432
checking the adequacy of —, 508–510
definition of —, 423–426
EC-ARMARE form of —, 519–521
echelon form of —, 452–453
error correction echelon form of —,

519–521
estimation of —, 447–487, 521–522
final equations form of —, 452

forecasting of —, 432–434, 487–490
Granger-causality in —, 441–444
identifiability of —, 447–458
identification of —, 447–458
impulse response analysis of —, 444,

490
interpretation of —, 441–444
invertible —, 425
linear transformation of —, 435–440
MA representation of —, 423
ML estimation of —, 458–487
nonuniqueness of —, 447–452
preliminary estimation of —, 474–477
reverse echelon form of —, 518–519
specification of —, 493–508
stable —, 423
standard form —, 448
state space representation of —, 616
transformation of —, 434–441
VAR representation of —, 425
VAR(1) representation of —, 426–429

VARX model, 387, 616, 621
random coefficient —, 621–623

Vec operator, 661
Vech operator, 662
VECM, 244–256
Vector autoregressive moving average

process, see VARMA process
Vector autoregressive process, see VAR

process
Vector differentiation, 664–671
Vector error correction model, 244–256

Wald statistic, 102, 321, 598
asymptotic distribution of —, 102,

321, 598
Wald test, 694–698

— for Granger-causality, 102, 316–321
— for instantaneous causality,

104–108
— for multi-step causality, 105–108
— of linear constraints, 102, 316–321
— of zero constraints, 104–108,

598–600
Weak law of large numbers, 689
Weakly exogenous variable, 388
White noise

Gaussian —, 75
standard —, 73
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testing for —, 157–161, 169–174, 214,
510

White noise assumption
checking of —, 157–161
testing of —, 169–174, 214, 510

White noise covariance matrix estimator
asymptotic properties of —, 75–76,

200, 296, 479–481
Whiteness of residuals

checking the —, 157–174, 214, 510
testing for —, 169–174, 214, 510

Wiener process, 698

multivariate —, 703
standard —, 698

Wold causal ordering, 61, 359
Wold’s decomposition theorem, 25

Yule-Walker estimation of VAR process,
85–86

Zero mean VARMA process, 429
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