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Preface

Simulation of Metabolism
The  experimental  and  theoretical  study  of  metabolism  in  mammalian  cells,  and  the
human erythrocyte in particular,  has a long history, so it is valid to challenge the need
for  another  book  on  this  topic;  but  as  you  will  see,  this  book  is  very  different  from
previous ones in that it is interactive. Our response is that an understanding of cellular
metabolism at  the  molecular  level,  with  all  its  intricate  controls,  is  far  from  complete
and  many  fundamental  and  clinically  relevant  discoveries  remain  to  be  made.  Three
major technological advances in recent years � mass spectrometry, NMR spectroscopy,
and computing � have greatly contributed to the renaissance of cellular metabolism as a
topic  of  research.  It  is  the  computer  modelling  of  metabolism,  in  particular  the
simulation of time courses of reactions, that is our focus.

Anticipated Readership
This  book  is  aimed  at  advanced  undergraduate  and  postgraduate  students  of
biochemistry,  enzymology,  functional  genomics,  biotechnology,  theoretical  biology,
computational  science,  applied  mathematics  �  indeed,  anyone  interested  in  applying
computational methods to the simulation and study of metabolic systems.

Contents
Chapters  1  and  2  provide  an  introduction  to  biochemical  enzyme  kinetics,  including
basic  definitions;  the mathematical formulation of  reaction schemes and the computer-
based  methods  used  in  their  analysis;  and  quantitative  aspects  of  enzymology  such  as
the analysis of kinetic data, the mechanistic basis of enzyme inhibitions, and models of
enzyme  regulation.  Chapter  3  contains  an  introduction  to  the  procedures  used  to
simulate metabolic systems using symbolic computation; and a model of the urea cycle
of  the  human  liver  is  used  to  exemplify  these.  More  advanced  methods  incorporating
matrix  algebra  are  introduced  in  Chapter  4,  where  we  show  that  the  differential  rate
equations  describing  complex  metabolic  reaction  schemes  can  be  represented  in  a
simple and compact way. Our implementation of the key elements of  metabolic control
analysis  (MCA)  as  presented  by  Heinrich  and  SchusterH1L  is  described  in  Chapter  5.
Parameter  estimation  is  the  subject  of  Chapter  6  and  here  we  consider  linear  and
nonlinear least-squares regression analysis for this purpose, and parameter estimation in
large-scale metabolic networks where over-parameterization may be an issue. Chapter 7
applies  the  theory  and  methods  developed  in  the  previous  chapters  to  the  human



erythrocyte  to  illustrate  how  a  realistic  model  of  metabolism can  be  built  up.  Finally,
the concepts and methods described in Chapters 5 and 6 are used to perform MCA on
the  erythrocyte  model  presented  in  Chapter  7.  The  five  appendices  contain
supplementary material and Mathematica  code that is required to run the programs and
worked examples contained in Chapters 1 � 8 from the interactive CD.

Layout
Each  chapter  is  divided  into  sections  for  easy  cross-referencing  between  topics.  We
have  made  extensive  use  of  worked  examples  to  emphasize,  or  to  extend,  a  basic
concept  that  is  discussed  in the body of  the text.  The exercises are  posed as  questions
and are made to stand out  from the main text by the use of a solid horizontal line and
the letters Q (question) and A (answer) in the margin. This approach has been adapted
from that used in our ownH2L  and other successful Schaum's Outline texts. In many cases
the  references  that  we  cite  are  merely  representative  of  the  literature  in  a  particular
topic; we apologize in advance to those of  our colleagues who feel  their  work has not
been adequately referenced. 

Motivation
Our  motivation  for  writing  this  book  was  our  success  in  modelling  a  particularly
troublesome  aspect  of  human  erythrocyte  metabolism,  and  our  wish  to  share  the
methodology that led to the insights that we consider would have been unattainable by
other means.  Briefly, these insights were as follows.(3-5)

Sound  explanations  for  several  readily  elicited  metabolic  responses  in  human
erythrocytes  had  not  previously  been  found,  notably,  the  exquisite  sensitivity  of  the
steady-state concentration  of  2,3-bisphosphoglycerate  (2,3BPG)  to pH,  and to changes
in  oxygen partial  pressure.  Alteration of  the intracellular  pH from the normal value of
7.2  to  6.8  (only  0.4  pH  units),  which  is  a  transition  that  is  frequently  encountered
physiologically,  brings  about,  over  several  hours,  an  almost  total  disappearance  of
2,3BPG. Researchers sought an unidentified effector molecule that would be produced
in a reaction that is under the control of the state of oxygenation of hemoglobin. It was
surmised  that  this  compound  might  decrease  the  activity  of  2,3BPG  synthase,  or
activate  the  2,3BPG  phosphatase  that  catalyses  its  hydrolysis,  thus  linking  the  oxygen
partial  pressure  to  the  2,3BPG  concentration.  On  the  other  hand,  we  posited   that  an
explanation of these two notable metabolic responses might be found by simply piecing
together  the  vast  and  disparate  metabolic  and  kinetic  data  available  from  almost  a
century  of  relevant  scientific  literature,  and  from  our  own  experiments  using  modern
analytical techniques.  Hence, we combined our own NMR spectroscopy data of whole
cells  and  cell  extracts  with  computer  modelling  of  the  metabolism  and  provided   a
plausible explanation for the observations.H3L  
NMR  experiments  of  many  types  provide  a  means  of  rapidly,  precisely,  and  in  some



circumstances  uniquely,  obtaining  estimates  of  metabolite  concentrations  in  a  totally
non-invasive  way.  As  such,  NMR  methods  admirably  satisfy  Krebs�  notion  of  what
constitutes  the essential ingredient  for  scientific progress.  Specifically, in summarizing
his discovery of the urea cycle, Krebs wrote :H6L
"If  there  is  a  lesson  to  be  drawn  �  it  is  �  the  importance  to  progress  of  new
techniques,  especially techniques which make it possible to conduct a large number of
experiments, and of studying a phenomenon under many different conditions. � It also
illustrates  the  importance  of  following  up  an  unexpected  and  puzzling  observation
arising  in  the  course  of  the  experiment.  Luck,  it  is  true,  is  necessary,  but  the  more
experiments are carried out, the greater is the probability of meeting with luck." 

Another "method" that allows rapid evaluation of experimental data should be added to
the  list  of  techniques  that  Krebs  did  not  use,  namely,  computer-based  simulation  of
metabolic  systems.  We  are  not,  of  course,  the  first  to  suggest  this  approach.  It  was
pioneered at the University of Philadelphia in the 1950s by Britton Chance and Joseph
Higgins,  and  then  in  a  very  elaborate  way  by  David  and  Lillian  Garfinkel.H7L  In  the
1970s  one  of  us  (PWK)  helped  construct  a  computer  model  of  the  human  urea  cycle.
However, a persistent criticism of this and all other computer models of metabolism has
been the failure to address the consequences of intracellular partitioning of metabolites
between  the  cytoplasm,  mitochondria,  and  other  organelles,  and  likely  effects  of  the
viscous  intracellular  milieu  and  surface  adhesion,  on  the  rates  of  enzymic  reactions.
Because  it  is  non-invasive  and  highly  selective  to  the  detection  of  chemical  species,
NMR spectroscopy has provided a means to address many of these questions.

Also,  in  the  present  decade  computers  have  gained  so  much  in  calculating  speed  and
user friendliness that it is now routine practice, using a modest-cost personal computer,
to  calculate  the  time  dependence  of  a  kinetic  system,  whether  physical,  chemical,  or
biochemical,  that  is  described  by  arrays  of  hundreds  of  stiff  non-linear  differential
equations.  In  the  past,  the  solutions  were  obtained  using  specialized  programs,  often
written  in  machine  code  by  the  individual  scientist.  However,  with  the  advent  of
sophisticated  general  programming  environments  like  Mathematica  that  have
implementations of contemporary algorithms and excellent graphics output capabilities,
the  task  of  developing  new  models  of  metabolism and  visualizing  their  responses  has
become accessible to many  students of biochemistry, and the life sciences in general. 

Acknowledgments
This  book  has  emerged from work  carried  out  by past  and  present  students  in  PWK�s
laboratory: accordingly, we gratefully acknowledge Michael York, Zoltan Endre, Glenn
King, David Thorburn,  Kiaran Kirk,  Julia Raftos,  Lisa McIntyre, Nicola Nygh, Serena
Hyslop,  Lindy  Rae,  and  Hilary  Berthon.  They  contributed  kinetic  data  primarily  from
NMR  spectroscopy  and  also  assisted  in  the  development  of  the  computer  model  of
human  erythrocyte  metabolism  that  culminated  in  PJM's  Ph.D.  thesis.  We  also  thank
Bill Bubb and Bob Chapman for their invaluable input into the NMR work, and Brian
Bulliman  and  Bill  Lowe  for  computing  and  technical  assistance,  respectively.   David



Regan,  who  spent  his  Ph.D.  with  PWK  studying  diffusion  in  cellular  systems  using
NMR  and  simulations,  generously  gave  his  time  to  proofread  the  entire  book;  and
Professor Athel Cornish-Bowden of Marseille gave a thorough and incisive appraisal of
an  earlier  draft  and  made  numerous  valuable  suggestions  for  changes  and  inclusions.
We  thank  Alan  Henigman  for  his  positive  review  of  an  early  draft  of  this  book  and,
with  Julie  Benner  and  Debra  Pierce,  assisted  in  the  process  of  locating  a  suitable
publisher. Fequierre Vilsaint of CRC Press took up the project with enthusiasm and we
thank  him,  Pat  Roberson,  and  Naomi  Lynch  enormously  for  their  encouragement,
support, and finally for delivering so efficiently the final product.

Mathematica
Finally,  it  is  relevant  to  comment on  Mathematica  and  how it  relates  to  this  book:  we
make  extensive  use  of  Mathematica  in  this  book;  in  fact,  it  has  been  typeset  in  this
program.  Even  in  Chapter  1  there  are  examples  of  quite  sophisticated  usage  of
Mathematica.  Therefore, it is recommended that the CD version of the book be read on
your computer with Mathematica available to run the various examples and exercises.

As  noted  above,  the  main  concepts  of  biochemical  kinetics  and  metabolic  control
analysis  are  illustrated  in  the  worked  examples  (marked  with  a  Q)  and  are  expanded
upon  in  the  exercises  that  are  located  at  the  conclusion  of  each  chapter,  all  using
Mathematica  in  some  way.   We  encourage  you  to  not  only  reproduce  the  output  of
these  examples  but  to  make  modifications  to  the  programs  and  explore  the  results  of
these  changes.  A  spin-off  of  all  the  biochemical,  metabolic,  and  kinetic  investigations
will be the development of a facility in the use of this truly outstanding program. 

If,  on  occasion,  a  Mathematica  function  is  encountered  that  requires  further
clarification,  simply proceed to the Help Menu and look up the index. Alternatively, a
hard copy of the Mathematica  book can be used, but after some practice you will most
likely find the screen version to be more convenient.

The  easy-to-use  text  by  DonH8L  is  a  valuable  source  of  descriptions  of  the  various
functions and semantics of Mathematica and for illustrating their usage. There are also
many  specialized  texts,  like  the  present  one,  that  use  Mathematica  to  present  their
particular  scientific  or  mathematical themes and  that  can provide   examples and tricks
of  usage  that  are  seemingly  infinite  in  number.  We  anticipate  that  it  will  become
obvious  to  you  that  scientists  have  gained,  in  Mathematica,  access  to  mathematical
�power� and resources that were undreamed of even 5 years ago.

Conclusions
Mathematica,  like  all  computer  languages,  is  best  learnt  by  experimentation;  likewise
for gaining skills in metabolic simulation. Therefore, we encourage you to run as many



of the examples in this book as possible, and to be creative in your exploration of these
and with the exercises that are listed at the end of each chapter.
 
Finally, we will welcome feedback from you on how this book could be improved.

Peter J. Mulquiney
Philip W. Kuchel
Sydney 2003
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1 Introduction to 
Chemical Kinetics and 
Numerical Integration

1.1  Aims and Objectives
This  book  is  about  simulating  the  chemical  dynamics  of  metabolic  pathways  using
computer  methods.  It  develops  the  many  required  concepts  by  using  numerous
examples and has as its ultimate goal a model of the metabolism of the most intensively
studied mammalian cell, the human erythrocyte.

Our  three  main  aims  in  writing  the  book  were,  first,  to  present  a  complete  set  of
concepts required for the deterministic theory of chemical and enzyme kinetics, in order
to  equip  students  of  Biochemistry  to  formulate  their  own  dynamic  models  of  time-
dependent  metabolic systems. An enabling objective was that a student  would become
proficient  with  Mathematica  since  it  is  in  this  �environment�  that  the  book  is  written.
We chose Mathematica  because of its huge suite of mathematical functions that can be
implemented by simple one-line commands; for its symbolic computational power; and
for the large number of other texts that can be used by a student to gain proficiency in
the language and to glean ideas for metabolic modelling. 

The second aim was to present in detail a realistic and contemporary  computer model
of  metabolism, and for  this  we chose one on human erythrocytes.   To our  knowledge,
this  modelH1L  is  one  of  the  most  comprehensive  yet  produced.  We  found  that  a  model
that  includes  the  fine  details  of  pH  effects  and  Mg2+  binding  to  metabolites  on  the
enzymes  of  the  erythrocyte  was  necessary  in  order  to  provide  reliable  chemical
interpretations  of  experimental  data  that  were  routinely  obtained  when  NMR
spectroscopy  was  applied  to  these  cells.  In  other  words,  the  model  includes  the  pH
dependence  of  various  reactions,  considers  the  concentration  of  Mg2+ -metabolite
complexes,  and  it  successfully  predicted  outcomes  under  unexplored  situations  that
were subsequently verified experimentally. 

Even if  you,  the reader,  are not  interested in erythrocyte metabolism per se,  the act  of
developing  the  model,  which  is  fully  described,  may yet  be  of  interest,  as  the  various
processes involved are applicable to metabolic models of any pathway in any cell type.
A  second  enabling  objective  was  to  encourage  the  understanding  of  the  modern



paradigm  of  metabolic  analysis,  namely,  metabolic  control  theory  or  analysis  (MCA).
Accordingly, Mathematica  is used to implement all the major procedures of MCA; this
type  of  �meta-analysis�  is  implemented  and  applied  to  the  model  of  erythrocyte
metabolism.

The  third  aim was  a  biochemical  one:  to  summarize and  document  a  consistent  set  of
rate equations and associated kinetic parameters for most of the enzymes of the human
erythrocyte. Inevitably, in the literature, there are instances of wildly different estimates
of  enzyme  kinetic  parameters  and  conflicting  conclusions  drawn  from kinetic  studies.
Thus,  much of the significance of the present model lies in the arguments surrounding
our  choice,  for  the  model,  of  particular  choices  of  values  of  the  various  kinetic
parameters.  By a  process  of  iteration between data from a wide  range of  experimental
situations  and  the  simulations  of  these  experiments,  key  kinetic  parameters  were
adjusted in order to obtain a fit of the model to �experimental reality.H1L  The speed with
which  Mathematica  can  solve  a  large  array  of  non-linear  differential  equations  that
make up the model was and is crucial to this iterative process. The present model can be
simulated  for  10  h  of  'real'  metabolism  in  ~1  min  of  computer  time;  so  the  effect  of
altering  a  kinetic-parameter  value  on  metabolite  concentrations  can  be  assessed  very
rapidly.  This  quick  response  is  vital  when  applying  MCA,  and  it  helps  identify  those
parameters that are most responsible for a given metabolic response. This analysis also
facilitates the choice of parameters to include in any simplified model derived for some
special purpose from the more complex one; this is called model reduction.

1.2  Complexity 
It  is  evident  that  in  the operation of  metabolic pathways,  as  in  most  complex systems,
there  are  readily  describable  features  or  responses  that  are  not  inherent  in  the  kinetic
behavior  of  the  individual  enzymes,  when they are  studied  in  isolation.  The responses
of  the  system  as  a  whole  can  manifest  as  unanticipated  fluctuations  in  metabolite
concentrations,  including stable periodicities,  growth  in size of  micro-,  meso-,  or  even
macroscopic structures, and possibly even self-replication of the system. 

There  are  basically  three  patterns,  or  networks,  of  interconnection  that  operate  within
metabolic  pathways  in  cells.  The  first  is  the  interconnectedness  that  is  represented  by
the chemical transformations that are predicated on the laws of chemical reactivity; the
reactions  involve  substrates  that  become  products,  that  in  turn  become  substrates  for
other enzymes. The second entails reactants that activate or inhibit, and thus control, the
enzymes  of  the  pathway  at  places  in  the  sequence  that  are  often  far  removed,
chemically, from the enzyme-catalyzed reactions that produce them. And the third level
involves  the  relative abundance  or  amounts of  individual  enzymes that  are  determined
by  their  rates  of  breakdown  and  rates  of  synthesis,  via  proteases  and  via  mRNA,
respectively.  Preceding  the  translation  of  mRNA  into  protein  is  the  regulation  of
transcription  of  DNA  by  transcription  factors,  many  of  which  are  hormone-  and
metabolite-binding  proteins.  Hormones  and  metabolites  from  outside  a  metabolic
pathway therefore regulate it by bringing about changes in enzyme concentrations.
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These three levels of interconnection are what shape the kinetic behavior of a metabolic
pathway.  The  responses  of  the  pathway  to  perturbations  of  enzyme  activity,  rates  of
substrate  supply  or  product  removal,  do  not  succumb  readily  to  intuitive  analysis,  at
least not quantitative analysis; the systems are just too complex for that. The situation is
akin  to  what  Aristotle  alluded  to  when  considering  certain  features  of  geometrical
systems: "The whole is greater than the sum of the parts." For metabolic pathways, the
adage  can  be  fruitfully  reworded  to:  "The  responses  of  the  system  are  different  from
those  predicted  from  the  responses  of  the  parts  when  they  are  studied  alone."  For
example,  individual  enzymes  in  a  closed  system  never  display  regular  periodic
variations  in  reactant  concentrations,  but  sequences  of  enzymic  reactions  in  a
thermodynamically open system can.

Thus  the  philosophical  stance  taken  in  this  book  is  the  reductionist  one,  which  in  the
present  context  amounts  to  the  statement:  "Notwithstanding  the  complexity  of
metabolic  systems  there  are  no  'hidden  forces'  that  come  into  play  when  the  system
reaches  a  certain  level  of  complexity."  However,  we  acknowledge  that  an  operational
definition of complexity is not easy to formulate either!

1.3  Definitions
There are several  key concepts that are essential for  an understanding of chemical and
enzyme kinetics; they are as follows.H1L
1.3.1 Principle of mass action

This  is  the  fundamental  principle  of  chemical  and  enzyme  kinetics.  It  provides  the
procedure that is used to write down the mathematical equation(s) that describe the rate
of  a  chemical  reaction.  It  is  "The  rate  of  a  chemical  reaction  is  proportional  to  the
product  of  the  concentrations  of  the  reactants  involved  in  the  elementary  chemical
process."  The  constant  of  proportionality  is  called  the  rate  constant,  or  more
specifically the unitary rate constant in order to emphasize the fact that it applies to an
elementary process. A subtlety that may need consideration, especially when describing
reactions  in  concentrated  biological  solutions,  is  that  it  is  chemical  activity  and  not
simply concentration that should actually appear in the rate equations. 

Chemical  activity  is  given  by  the  product  of  the  concentration  and  a  dimensionless
factor called the activity coefficient. For most biological systems the activity coefficient
is  taken  to  be  1.  However,  even  a  simple  solution  such  as  154  mM  [or  0.9%  (w/v)]
NaCl,  which  is  known  as  "physiological  saline,"  has  an  experimentally  measured
osmolality of 283 mOsmol kg-1  at 25°C, compared with what would be obtained with
the  ideal  solution  of  2  ×  154  =  304  mOsmol  kg-1 .  Thus  the  operational  non-ideality
coefficient for dilute solutions of this simple salt is ~0.93. 

Q: What is the formalism used to represent a chemical reaction, and how do we express its
time dependence?

Introduction to Chemical Kinetics 3



A: Consider  the  reversible  reaction  scheme  with  reactants  A,  B,  P,  and  Q,  where  a
common convention  is  to  denote  substrates  as  capital  letters  from the  first  part  of  the
alphabet  and  products  by  letters  farther  down  the  alphabet.  The  rate  constants  k1 and
k-1 characterize the rate of the forward and reverse reactions, respectively.

[1.1]A + B H Io
k-1

k1
P + Q ,

[1.2]forward rate = k1@AD @BD ,

[1.3]reverse  rate = k-1@PD @QD .

The square brackets denote concentration in mol L-1 . 

At chemical equilibrium, the forward and reverse reaction rates are equal, so there is no
net production of any of the reactants with time. Hence,

[1.4]
k1ÅÅÅÅÅÅÅÅÅÅÅ
k-1

 
@PDe @QDeÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@ADe @BDe = Ke ,

where the subscript e indicates that the concentration is evident at equilibrium, and Ke
is called the equilibrium constant.

The  reaction  rate  is  usually  expressed  as  the  change  in  concentration  of  a  chemical
species  per  unit  of  time,  so  it  is  written  mathematically  as  a  derivative.  The
mathematical expression for  the net  rate of  change of  [A],  therefore,  includes terms to
describe both forward flux (Greek: 'to flow'; units mol L-1 s-1 ) from A, and reverse flux
to A; e.g., for the above reaction the rate expression for [A] is

[1.5]
d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= - k1@AD @BD + k-1@PD @QD .

1.3.2 Equilibrium constant

The  equilibrium  constant  of  a  chemical  reaction,  including  an  enzymic  reaction,  is
defined  as  the  product  of  the  concentration  of  the  products  divided  by  those  of  the
substrates,  when  the  reaction  is  at  equilibrium.  A  subtle  question  that  is  prompted  by
this  definition,  in  relation  to  enzymes  and  macromolecules  that  bind  ligands  such  as
hemoglobin  that  binds  oxygen,  is:  Which  species  should  be  defined  as  the  product(s)
and which the substrate(s)? 

In a reaction between enzyme E and reactant A that can be represented as E + A F EA,
we  might  expect  to  consider  the  product  to  be  EA;  however,  in  enzyme kinetics  it  is
conventional  to  consider  the  products  to  be  free  E  and  free  A  and  to  view  the  EA
complex  as  the  primary  reactant.  Thus  the  reaction  is  described  in  terms  of  the
dissociation  of the EA complex; hence, the equilibrium constant is called a dissociation
equilibrium  constant. Such constants have the same units as concentration, namely, mol
L-1 .
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1.3.3 Molecularity

This appellation, when applied to a specific reaction, refers to the number of molecules
involved  in  the  elementary  reaction.  In  a  simple  decomposition  process  that  involves
only  one  molecule,  called  fission  or  scission,  the  molecularity is  one.   However,  most
reactions  such  as  hydrolytic  ones  involve  two  molecules  colliding  so  the  molecularity
is  2.  Another  example  is  that  the  molecularities  of  the  forward  and  reverse  reactions
depicted in Eqn [1.1] are both 2.

1.3.4 Order of a reaction

The  overall  order  of  a  reaction  is  equal  to  the  sum  of  the  powers  to  which  the
concentrations  are  raised  in  the  rate  equation.  The  order  with  respect  to  individual
reactants is equal to the powers to which their concentrations alone are raised. 

Q: What is the overall order of the reaction that involves the condensation of A with B and
whose rate is described by the following equation?

[1.6]
d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= -k1@AD1ê3 @BD1ê2 .

A:  5/6.

The overall  order  of  the reaction is  the sum of the exponents  of  the two concentration
terms, namely, 1/3 + 1/2 = 5/6.  The order of the reaction with respect to A is 1/3, and
for B it is 1/2.

It  is  usual  for  a  simple  reaction  to  have  a  molecularity  that  is  an  integer,  but  it  is
important to note that the order of a reaction is an experimentally determined value. The
simplest  way  to  determine  it  is  to  measure  the  reaction  rate  for  a  range  of  reactant
concentrations and then to plot log(rate) versus log(concentration) and this gives a line
with a slope equal to the order. If the concentration of all the substrates are altered in a
constant ratio then the overall reaction order is determined. If just one concentration is
varied,  while  the  rest  are  held  constant,  then  the  reaction  order  for  just  that  species
emerges from the analysis. 

Q: How do we experimentally determine the order of a bimolecular reaction?

A:  Suppose that the two reactants are A and B. The order with respect to A is determined
by fixing the concentration of B and measuring the initial rate of decline of [A] from its
initial concentration @AD0 ; and vice versa when determining the order of reaction for B.
A graph  of  log(�  rate  of  decline)  versus  logH@AD0Lhas  a  slope  equal  to  the  order.  This
can  be  seen  from the  general  expression  for  the  rate  which  is  a  generalization  of  Eqn
[1.6]. 
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[1.7]

rate =
d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= - k1@ADn @BDm ,

logH-rateL = logHk1L + n  logH@AD0L + m  logH@AD0L ,

= n  logH@AD0L + Constant .

1.3.5 Units of rate constants

Unitary rate constants obey the dimensional relationship Hmol L-1L-Hn-1L  s-1 , where n is
the order  of  the reaction.  As shown in the worked example in Section 1.3.1,  a unitary
rate  constant  is  denoted  by  a  lowercase  k  with  a  subscripted  integer  that  identifies  the
particular  reaction  in  a  system  of  reactions  (e.g.,  k-1 ).  The  direction  of  a  reaction  is
usually written with an arrow facing from left to right on the page with a positive sign
(or no sign) on the subscripted number of the rate constant indicating that is applies to
the  forward  reaction.  The  negative  subscript  refers  to  the  reverse  reaction  that  is
indicated by the arrow drawn from right to left.

Q: What is the mathematical expression that describes the rate at which A is converted into
P, in the following first-order reaction?

[1.8]Aö
k

P .

A: The rate equation is

[1.9]
d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= - k @AD .

On  the  left-hand  side  of  the  differential  rate-equation,  Eqn  [1.8],  the  units  (or
dimensions)  are  those  of  reaction  rate,  namely,   mol  L-1 s-1 ,  and  those  on  the  right
must  match  these,  according  to  the  basic  tenet  of  dimensional  analysis.  The  [A]  term
has  units  of  mol L-1 so  k  must  have  units  of  s-1 .  Thus,  simple  dimensional  analysis
leads directly to the general expression (see above) for the units of a rate constant.

1.3.6 Extent of reaction

This  is  a  useful  notion  that  expresses  the  fractional  departure  of  a  reaction  from  its
commencement to the situation at a particular time. It  is a dimensionless ratio that can
apply to the decline of  a substrate or the appearance of  a product.  In the latter case,  if
[P] increases, the extent of the reaction is given by @PDt /@PD¶, where t denotes the time
at which the extent of the reaction is determined, and ¶ implies the concentration of P
that pertains at a very long time when the system is no longer changing. For a substrate
A which  decreases  with  time,  the  expression  for  the  extent  of  the  reaction  at  time t  is
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(@AD0 -  @ADt )/(@AD0 -  @AD¶ ),  where  the  subscript  0  specifies  the  concentration  of  A  at
zero-time. 

1.4  Time Courses of Reactions

1.4.1 Introduction

The  chemical  reaction  depicted  in  the  Section  1.3.5  has  an  associated  differential
equation  that  describes  the  rate  of  the  reaction  for  any  given  concentration  of  the
reactant  A.  The  time  course  of  [A]  is  described  by  a  mathematical  equation  that  is
obtained  by  solving  this  differential  equation;  in  other  words,  we  integrate  the
differential equation to obtain [A] as a function of time. The solution of Eqn [1.8] is a
fundamental  result in integral calculus and is

[1.10]@AD = @AD0 ‰-k t .

Q: What is the shape of the graph of Eqn [1.10]?

A: To  plot  the  equation  we  must  choose  the  initial  condition,  namely,  the  value  of  the
dependent  variable  [A]  at  t  =  0,  and  also  assign  a  value  to  k.  However,  we  must  first
define the function. This is done with the following Mathematica input:

a@t_D := a@0D #−k t;
There  are  four  important  features  to  note  about  this  definition.  The  first  is  the  use  of
lower  case  'a'  rather  than  'A'  to  denote  the  concentration  of  the  reactant.  Because
Mathematica  commands all  begin with a capital letter, it  is  good practice to use lower
case  letters  when  defining  our  own  variable-  and  function-names.  This  allows
Mathematica  commands  and  functions  to  be  easily  distinguished  from  user-defined
ones in programs. The second point is that a[0] denotes the concentration of A at t = 0.
Third,  the definition involves  the use of  the _ (called a "blank")  on the left-hand side
(lhs)  of  the  equation.  This  indicates  that  the  argument  of  the  function  can  be  any
symbol, but the symbol must also appear on the right-hand side (rhs) in the definitional
equation.  This  ability  to  define  so  easily  our  own  functions  is  an  important  feature  of
Mathematica.  The fourth point to note is the use of the symbol  := to assign the lhs  of
the function to the rhs. The colon before the equals sign indicates that this assignment is
a  delayed assignment, which means that the rhs  of  the equation is not  evaluated when
the  assignment  is  made,  but  instead  it  is  evaluated  each  time  the  value  of  lhs  is
requested  in  the  program.  In  contrast  an  equals  sign  without  the  colon  invokes  an
immediate assignment. Thus lhs = rhs evaluates rhs at the time the assignment is made
in the program. In the program below we use = to assign the initial condition to A and
to assign the value to k.

a@0D = 10;
k = 0.5;
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Finally, we use the function Plot to draw the graph of the expression from t = 0 to t =
10.

gph1 = Plot@a@tD, 8t, 0, 10<,
AxesLabel −> 8"Time ", "Concentration"< D;
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Figure 1.1. Time course of the so-called exponential decay defined by Eqn [1.10].  

To determine the value of a[t] at any time, say, t = 4, we simply type the following:

a@4D
1.35335

f @x_D := x2 define the function f HxL = x2

lhs = rhs rhs is evaluated when the assignment is made

lhs := rhs rhs  is evaluated each time the value of lhs  is requested

Plot@ f , 8x, xmin, xmax<,
option -> valueD plot f as a function of x from xmin to xmax. See  

Mathematica  help  browser  for  a  list  of  options

Basic Mathematica commands.

Q: Use the Mathematica function DSolve to verify that Eqn [1.10] is indeed the solution to
the differential equation defined by Eqn [1.9].
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A: DSolve  is  a  powerful  function  that  determines  analytical  solutions  to  differential
equations.  Before  we use DSolve  it  is  useful  to unassign or clear those variables and
names we have used in the previous worked example. These assignments are permanent
in  a  Mathematica  session  and  are  kept  until  they  are  explicitly  removed,  or  when  we
quit  the  Mathematica  session.  By  clearing  values  we  eliminate  a  common  source  of
error  that  arises  when  programming  in  Mathematica.  In  fact,  we  find  it  good
programming  practice  to  clear  all  variables  that  we  intend  to  use  in  a  program  in  the
first  line  of  the  code,  just  in  case  these  variables  have  been  used  previously  and  still
have assigned values.

Clear@a, kD
By solving Eqn [1.9] with the initial condition @AD0 = A0 we obtain the required result.

solution = DSolve@8a'@tD & −k a@tD, a@0D & a0<, a@tD, tD88a@tD → a0 "−k t<<
There  are  two important  points  to  note  about  DSolve.  First,  the  equations  and initial
conditions  must be written as  lhs  == rhs where   == is  the logical operator  equals sign
which  is  different  from  the  immediate  assignment  (=)  and  delayed  assignment  (:=)
operators.  The  second  is  that  the  solution  to  the  differential  equation  is  given  as  a
replacement  rule  rather  than  a  simple  mathematical  expression.  Replacement  rules
along with the /. (ReplaceAll) command can be used to transform any expression.
This subtle and very valuable operator is illustrated next.

a@tD ê. solution8a0 "−k t<
The replacement rule can be converted to a function by using the following input:

a@t_D = a@tD ê. solution;
Hence we can plot a[t]by using

k = 0.5;
a0 = 10;
Plot@a@tD, 8t, 0, 10<,

AxesLabel −> 8"Time ", "Concentration"<D;
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Figure  1.2.  Time  course  of  a  reaction  defined  by  Eqn  [1.10]  with  the  initial  condition@AD0 = 10 mmol L-1 and rate constant k = 0.5. The ordinate denotes concentration in units
of mmol L-1 and the abscissa denotes time in units of seconds.

We can also determine the value of  [A] at any time, say t  = 4,  by using the following
input:

a@4D81.35335<
 

x =.  or Clear@xD remove any value assigned to x

DSolve@eqns, f @xD, xD solves a differential equation for the function f @xD,
with independent variable x

== the logical operator equal

lhs -> rhs or lhs Ø rhs lhs Ø rhs  represents  a rule that transforms lhs  to rhs

expr ê. lhs -> rhs apply a transformation rule to expr 

f @x_D = f @xD ê. rule define a function using a repacement rule

More Mathematica commands.

1.4.2 Half-life

The  time  taken  for  [A]  to  fall  to  half  of  its  initial  value  is  called  the  half-life  of  the
reaction. This time is a function of k, as can be seen from the following:
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[1.11]
@AD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD0 =
1
ÅÅÅÅÅ
2

= ‰-k  t1ê2 ,

hence,

[1.12]Log@0.5D = -k  t1ê2 ,

so 

[1.13]t1ê2 = Log@2D ê k = 0.693 ê k .

1.4.3 Reaction lifetime

An alternative term to that of half-life is the  lifetime of the reaction; it is denoted by t.
Its  value is the reciprocal  of  the first  order  rate constant,  i.e.,  t  = 1/k. We gain further
insight into the meaning of t from Eqn [1.10]:

[1.14]
@AD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD0 = ‰-k  1êk = ‰-1 .

In words, t is the time taken for [A] to fall to 1/‰, or 0.368,  of its initial value.

Q: What  are  the values of  the half-life  and lifetime of  the reaction shown in the previous
question? Draw a solid vertical line at the half-life, and a dashed line at the lifetime, on
the decay curve.

A: Since  k  =  0.5  s-1, then  from Eqn  [1.13],  t1ê2  =  0.693/0.5  =  1.39  s,  and  from Section
1.4.3, t = 1/0.5 = 2 s. Notice that the lifetime is longer than the half-life by a factor of
1/Log[2], or 1.44.

The requisite graph is generated using the following functions.

First  we  define  the  lines  to  be  drawn.  These  are  generated  using  the  Graphics
function of which more details can be found in the Mathematica help browser.

halfLifeLine = Graphics@8AbsoluteThickness@2D, Line@881.39, 0<, 81.39, 10<<D<D;
lifeTimeLine = Graphics@8Dashing@80.05, 0.02, 0.05, 0.02<D,

Line@882.0, 0<, 82.0, 10<<D<D;
The  lines  are  displayed  together  with  the  plot  of  Eqn  [1.10]  by  using  the  Show
function.  Recall  that  we  assigned  the  plot  of  Eqn  [1.10]  to  the  name  gph1  in  the
previous example.

Show@8gph1, halfLifeLine, lifeTimeLine<,
AxesLabel −> 8"Time ", "Concentration"<D;
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Figure  1.3.  Exponential  decay  with  @AD0  =  10  mmol  L-1  and  k  =  0.5  s-1 ,  showing the
value  of  the  half-life  of  the  reaction  (vertical  solid  line)  and  the  lifetime  of  the  reaction
(vertical dashed line), respectively.

Graphics@primatives,
option -> valueD represents a two-dimensional graphical image. See

help browser for a list of primatives and options

Show@g1, g2,
�, option -> valueD shows several plots and graphics objects combined

Dealing with graphics.

1.4.4 Coupled first-order reactions

As  a  prelude  to  modelling  sequences  of  enzyme-catalyzed  reactions,  consider  a
sequence of only two reactions. This configuration is said to be a coupled reaction.

[1.15]A Ø
k1 B Ø

k2 C .

From Section 1.3.1, and by analogy with Eqn [1.10], the rate equations that describe the
kinetics of this coupled system are

[1.16]
d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= - k1@AD ,

[1.17]
d@BD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= + k1@AD - k2@BD ,
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[1.18]
d@CD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= +k2@BD .

Q: Is it possible to solve the system of differential equations defined by Eqns [1.16 - 1.18]
by using the function DSolve?

A: Yes, the program is as follows:

Use DSolve to solve the first equation .

Clear@a, b, c, a0, b0, c0, SubscriptD;
firstDE = DSolve@8a'@tD & −k1 a@tD, a@0D & a0<, a@tD, tD88a@tD → a0 "−t 0.51<<

Use this solution to define a function for the time course of a[t].

a@t_D = a@tD ê. firstDE;
Next,  solve  the  second  and  third  differential  equations  and  define  the  appropriate
functions for b[t] and c[t].

secondDE = DSolve@8b'@tD & k1 a@tD − k2 b@tD, b@0D & b0<, b@tD, tD
b@t_D = b@tD ê. secondDE;
thirdDE = DSolve@8c'@tD & k2 b@tD, c@0D & c0<, c@tD, tD
c@t_D = c@tD ê. thirdDE;99b@tD →

1
$$$$$$$$$$$$$$$$$$$$$$$$$$$$
0.51 − 0.52H"−t H0.51−0.52L−t 0.52 H−a0 0.51 + a0 "t H0.51−0.52L 0.51 +

b0 "t H0.51−0.52L 0.51 − b0 "t H0.51−0.52L 0.52LL==99c@tD →

1
$$$$$$$$$$$$$$$$$$$$$$$$$$$$
0.51 − 0.52

 H"−t 0.51 Ha0 "t 0.51 0.51 + b0 "t 0.51 0.51 + c0 "t 0.51 0.51 −

a0 "t H0.51−0.52L 0.51 − b0 "t H0.51−0.52L 0.51 + a0 0.52 − a0 "t 0.51

0.52 − b0 "t 0.51 0.52 − c0 "t 0.51 0.52 + b0 "t H0.51−0.52L 0.52LL==
Hence, after having defined the parameter values and initial conditions, we plot the time
courses of a[t], b[t], and c[t] as follows:

a0 = 10; b0 = 0; c0 = 0;

k1 = 0.5; k2 = 0.6;

Plot@8a@tD, b@tD, c@tD<, 8t, 0, 10<,
AxesLabel −> 8"Time ", "Concentration"<D;
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Figure 1.4. Simulation of the time course of the reaction scheme described by Eqn [1.15]
using DSolve, with the differential equations in Eqns [1.16 - 1.18]. The ordinate denotes
concentration in mmol L-1  and the abscissa, time in seconds.

In  the  previous  worked  example  each  differential  equation  was  solved  sequentially,
with the solution of the first giving the expression for the dependent variable [A]. This
was  then  fed  into  the  analysis  for  [B]  and  so  on.  Performing  the  integration  in
sequence like this was done only for pedagogical purposes. However, it is possible with
the function DSolve  to enter a complete list that contains all the relevant expressions
for  the  differential  equations  and  initial  conditions,  and  to  solve  them simultaneously.
This  is  done  as  follows,  where  we  use  a  different  set  of  parameter  values  from  the
example above so that different time courses are obtained.

Q: Can the differential  equations  in the previous  question be  solved simultaneously using
DSolve?

A: Yes, DSolve can be used in the following way: 

Clear@a, b, c, a0, b0, c0, SubscriptD;
solution = DSolve@8a'@tD & −k1 a@tD,

b'@tD & k1 a@tD − k2 b@tD,
c'@tD & k2 b@tD,
a@0D & a0,
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b@0D & b0,
c@0D & c0<,8a@tD, b@tD, c@tD<, tD99a@tD → a0 "−t 0.51, b@tD →

1
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
−0.51 + 0.52

H"−t 0.51−t 0.52H−a0 "t 0.51 0.51 − b0 "t 0.51 0.51 + a0 "t 0.52 0.51 + b0 "t 0.51 0.52LL,
c@tD →

1
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
−0.51 + 0.52

 H"−t 0.51−t 0.52 Ha0 "t 0.51 0.51 + b0 "t 0.51 0.51 −

a0 "t 0.51+t 0.52 0.51 − b0 "t 0.51+t 0.52 0.51 − c0 "t 0.51+t 0.52 0.51 −

b0 "t 0.51 0.52 − a0 "t 0.52 0.52 + a0 "t 0.51+t 0.52 0.52 +

b0 "t 0.51+t 0.52 0.52 + c0 "t 0.51+t 0.52 0.52LL==
By  specifying  the  appropriate  functions,  parameter  values,  and  initial  conditions,  the
results of the integration can be plotted. 

a@t_D = a@tD ê. solution;
b@t_D = b@tD ê. solution;
c@t_D = c@tD ê. solution;
a0 = 10; b0 = 0; c0 = 0;

k1 = 0.5; k2 = 0.3;

Plot@8a@tD, b@tD, c@tD<, 8t, 0, 10<,
AxesLabel −> 8"Time ", "Concentration"<D;
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Figure 1.5. Simulation of the time course of the reaction scheme described by Eqn [1.15]
using DSolve with the differential equations in Eqns [1.16 - 1.18]; but unlike the analysis
for  Fig.  1.3,  the  equations  were  solved  simultaneously.  The  ordinate  denotes
concentration in mmol L-1  and the abscissa, time in seconds.
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1.4.5 Multiple-coupled reactions

What  if  the  reaction  sequence  is  more  extensive?   Is  it  possible  to  solve  the
simultaneous  differential  equations  analytically?  The  answer  is  "Yes!"  but  only  in
general  if  the  reactions  are  simple  first-order  ones.  Indeed  Mathematica  solves  these
with ease. Consider, for example, the  sequence of five reactions with six reactants:

[1.19]A Ø
k1 B Ø

k2 C Ø
k3 D Ø

k4 E Ø
k5 F .

Integrating the six differential equations 'by hand' is very tedious (e.g., referenceH2L ), but
Mathematica readily yields the exact analytical solutions.

Q: Derive and solve the system of differential equations resulting from the reaction scheme
shown in Eqn [1.19]. 

A: Use DSolve in the same manner as for the previous example.

Clear@a, b, c, d, e, f, a0, SubscriptD;
solution = DSolve@8

a'@tD & −k1 a@tD,
b'@tD & k1 a@tD − k2 b@tD,
c'@tD & k2 b@tD − k3 c@tD,
d'@tD & k3 c@tD − k4 d@tD,
e'@tD & k4 d@tD − k5 e@tD,
f'@tD & k5 e@tD,
a@0D & a0, b@0D & 0, c@0D & 0, d@0D & 0, e@0D & 0, f@0D & 0<,8a@tD, b@tD, c@tD, d@tD, e@tD, f@tD<, tD;

And, with the following initial conditions, we can plot the results.

a0 = 10;

k1 = 0.5; k2 = 0.55; k3 = 0.6; k4 = 0.65; k5 = 0.7;

Plot@Evaluate@8a@tD, b@tD, c@tD, d@tD, e@tD, f@tD< ê. solutionD,8t, 0, 10<, PlotRange → All,
AxesLabel −> 8"Time ", "Concentration"<D;

16 Chapter 1



2 4 6 8 10
Time

2

4

6

8

10

Concentration

Figure 1.6. Simulation of the time course of the reaction scheme described by Eqn [1.19]
using  DSolve  with  the  corresponding  differential  rate  equations.  The  ordinate  denotes
concentration in mmol L-1  and the abscissa, time in seconds.

Notice that in the solution to this problem we use a different method for evaluating and
plotting  the  results  generated  by  DSolve.  Instead  of  using  the  replacement  rule
generated  by  DSolve  to  define  new  functions,  we  use  a  combination  of  the
Evaluate function and the /. operator directly within the Plot function itself. This
is often a more efficient way of using results which are expressed as replacement rules.
In  order  to  evaluate  the  results  of  a  replacement  rule  at  a  specific  time  (say,  t  =  4)
without defining a new function, we can use the following commands:8a@tD, b@tD, c@tD, d@tD, e@tD, f@tD< ê. solution ê. t −> 4881.35335, 2.45321, 2.44581, 1.7734, 1.04475, 0.929452<<

Plot@Evaluate@ f @xD ê. ruleD,8x, xmin, xmax<D Plotting solutions given as replacement rules

f @xD = f @xD ê. rule ê. x -> value Evaluating solutions given as replacement rules
at particular value of the independent variable

Using solutions expressed as replacement rules.

From the above example we see that the analytical expression for each of the reactants
in the scheme in Eqn [1.19] is a function of time which is mathematically described as a
sum  of  exponentials.  These  complicated  expressions  can  be  viewed  by  removing  the
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end-of-line  semicolons  and  re-executing  the  first  Cell  in  the  example.  In  a  linear
reaction system like that above, the exact number of exponentials in the expression for
the concentration of a species is equal to 1 + the number of  species that precedes it in
the sequence. The exponents are a complicated series of sums of various products of the
rate  constants,  and  they  are  preceded  by  similarly  complicated  pre-exponential
coefficients. The complexity evident in such analytical solutions does not bode well for
a  direct  analytical  assault  on  the  kinetic  representation  of  a  metabolic  system  with
hundreds of reactants!

1.4.6 Non-first-order systems

When a reaction scheme contains second- and higher-order reactions (see Section 1.3.4)
it  turns  out  that  except  in  very  special  cases,  there  is  no  general  analytical  solution  to
the  set  of  simultaneous  differential  equations  that  describe  the  system.  When  a
differential  equation  contains  the  product  of  two  or  more  dependent  variables
(concentrations  of  reactants  in  the  present  context)  it  is  said  to  be  nonlinear.  For
example,  the  next,  relatively  simple,  reaction  scheme  cannot  be  solved  analytically
because two of its differential equations are nonlinear:

[1.20]A + B H Io
k-1

k1
C Ø

k2 D .

However,  the   equations  can  be  solved  by  using  a  procedure  called  numerical
integration. This is the topic of the next section. In order to provide some motivation to
proceed with the present topic it is encouraging to note that in Mathematica,  numerical
integration  of  an  array  of  linear  or  nonlinear  differential  equations  is  done  by  simply
adding the letter "N" to the DSolve function, viz.,  NDSolve.

NDSolve@eqns ,8 y1, y2, ...<, 8x, xmin, xmax<D find numerical solutions for several functions  
yi with x  in the range  xmin to  xmax

Finding numerical solutions to differential equations.

Q:  Simulate the time course of the reaction scheme in Eqn [1.20] using NDSolve. 

A: When performing numerical integration, the output is given as numerical values, so all
initial conditions and parameter values must be specified before executing the function
or  algorithm.  There  can  be  no  parameter  with  an  unassigned  value  and  this  includes
specifying the minimum and maximum values of the independent variable, time.

Clear@a, b, c, dD;
a0 = 5;
b0 = 4.5;
k1 = 1;
k−1 = 1;
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k2 = 1;

solution = NDSolve@8
a'@tD & −k1 a@tD b@tD + k−1 c@tD,
b'@tD & −k1 a@tD b@tD + k−1 c@tD,
c'@tD & k1 a@tD b@tD − k−1 c@tD − k2 c@tD,
d'@tD & k2 c@tD,
a@0D & a0,
b@0D & b0,
c@0D & 0,
d@0D & 0<,8a@tD, b@tD, c@tD, d@tD<,8t, 0, 10<D88a@tD → InterpolatingFunction@880., 10.<<, <>D@tD,

b@tD → InterpolatingFunction@880., 10.<<, <>D@tD,
c@tD → InterpolatingFunction@880., 10.<<, <>D@tD,
d@tD → InterpolatingFunction@880., 10.<<, <>D@tD<<

Notice  that  unlike  DSolve,  where  the  solutions  for  each  reactant  were  given  as
analytical functions,  the solutions  for  the reactants  resulting from NDSolve  are given
as  objects  called  Interpolating  Functions.  The  Interpolating
Function effectively stores a table of values for each reactant as a function of t, then
interpolates in this table to find an approximation to each reactant at the particular t that
is requested. 

We can plot the results in exactly the same way as we did for DSolve.

Plot@Evaluate@8a@tD, b@tD, c@tD, d@tD< ê. solutionD,8t, 0, 10<, AxesLabel −> 8"Time ", "Concentration"<D;
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Figure 1.7. Simulation of the time course of the reaction described by Eqn [1.20], using
NDSolve  operating  on  the  corresponding  differential  rate  equations.  The  ordinate
denotes concentration in mmol L-1  and the abscissa, time in seconds.

1.5  Numerical Integration of Differential Equations

1.5.1 General

It  was  our  intention  in  presenting  Section 1.4  to  provide  the  motivation for  the  use  of
numerical analysis, as opposed to analytical integration, for modelling the dynamics of
complicated reaction schemes. It will become obvious that numerical integration can be
a  robust  and  reliable  means  of  solving  arrays  of  nonlinear  differential  equations.  The
only  disadvantage  of  this  approach  is  that  an  analytical  or  general  expression  is  not
obtained, only a series of numbers expressed as InterpolatingFunction  objects
in Mathematica.  Hence a feeling for how changes in parameter values affect a solution
really  only  emerges  from  repeated  simulations  rather  than  from  inspecting  and
manipulating  an  analytical  expression.  On  the  other  hand,  numerical  integration  turns
out  to  be  the  only  tractable  computational  method  for  modelling  time  courses  of
schemes with myriad reactants. Therefore, we proceed by developing an understanding
of this part of numerical analysis to a level that is sufficient for our current purposes.H3L
We concentrate first on solving a single first-order ordinary (with no partial derivatives)
differential  equation  that  has  one  initial  condition.  Importantly,  the  methods  that  we
develop  can  be  easily  extended  to  arrays  of  simultaneous  differential  equations.  In
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general,  the  single  differential  equation  that  describes  a  simple  first-order  reaction  is
expressed as 

[1.21]y' = f @t, yD ,

where the prime denotes the first derivative, and the initial condition is

[1.22]y@t 0D = y0 .

Equation [1.21] can be viewed as the specification of a family of curves for which the
slope  at  any  point  (t,  y)  is  given  by  the  formula  f[t,  y];  and  Eqn  [1.22]  ties  down  the
actual  function,  y[t],  to  being  one  particular  member of  the  family of  curves.  In  other
words,  a solution  of  Eqns [1.21] and [1.22] is defined as the expression for y given in
terms  of  various  parameters,  as  well  as  t,  that  satisfies  both  of  the  equations.  This  is
illustrated  with  the  three  functions  in  the  next  example.  If  we  declare  that  the  initial
condition  is  y[0]  =  1,  then  the  particular  function  that  we  have  identified  is  the  one
labelled y2  in the example below.

Q: What  is  the effect  on the shape,  or  the relative position,  of  the exponential  curves that
are solutions of Eqn [1.21], brought about by changing the value of the pre-exponential
coefficient?

A: The plots are as follows:

y1@t_D := 2 #t;
y2@t_D := #t;
y3@t_D := 0.5 #t;

Plot@8 y1@tD, y2@tD, y3@tD<,8t, −3, 3<, PlotRange → 88−3, 3<, 80, 6<<,
AxesLabel → 8"t", " y y1 y2 y3"<D;
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Figure 1.8. Plots of the function  y = A  ‰t  for three different values of A: 2, 1, and  0.5,
respectively.

1.5.2 Numerical integration � overview

A preliminary view of  how we obtain  a  numerical solution  for  y[t]  is  as  follows.   We
first substitute a value of t into f[t, y] in Eqn [1.21] and thus determine the slope of the
curve. At the outset, the only value of y[t] that is known is the one at the point (t0 , y0 );
so  we  begin  our  solution  here.  We  compute  the  slope  of  the  curve  at  t  =  t 0 and  then
draw  a  short  tangent  line  through  (t0 ,  y0 ).  If  we  denote  the  increment  in  t  by  h,  we
arrive at the new coordinate t1 = t0  + h. This value of t, coupled with the equation for a
straight  line [  y =  y0 + (t1 -  t0 )  slope],  yields the new value y =  y1 .  We then substitute
the new values y1  and t1  into the slope formula to obtain f[t1 , y1 ]. By cycling through
(called iterating) this process, we obtain a series of joined straight-line segments (i.e., a
portion  of  a  polygon)  that  approximates the true function.  This  is  called Euler's  point-
slope method of numerical integration of a differential equation.

Consider the implementation of the Euler method to the exponential function.

Q: Use  Euler's  method  to  solve  y'[t]  =  y[t]  with  y[0]  =  1  and  compare  this  solution
graphically with the analytical solution.

A: First, we use DSolve  to generate an analytical solution to this differential equation in
the usual manner.
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solution =

DSolve@8yanalytical '@tD == yanalytical@tD, yanalytical@0D == 1<,
yanalytical@tD, tD

yanalytical@t_D = yanalytical@tD ê. solution;88yanalytical@tD → "t<<
To solve this differential equation by Euler's method we begin by specifying the initial
condition and choosing a stepsize, say, h = 0.5.

yem@0D = 1;
h = 0.5;

Now apply Euler's method iteratively using the Do  command for 5 iterations, and then
put the results into a Table of ordered pairs (t, y[t]).

Do@yem@iD = yem@i − 1D + h yem@i − 1D, 8i, 1, 5<D;
emTable = Table@8i h, yem@iD<, 8i, 0, 5<D880, 1<, 80.5, 1.5<, 81., 2.25<,81.5, 3.375<, 82., 5.0625<, 82.5, 7.59375<<

Graphically  compare  the  two  results  using  ListPlot  to  plot  the  table  of  points  in
emTable  and the familiar Plot  function to graph the analytical solution. Notice that
in  the following functions  we suppress  the initial  output  of  the ListPlot  and Plot
commands  by  using  the  option  DisplayFunction→Identity;  this  allows  us  to
produce a single combined plot using the Show function. 

gph1 = ListPlot@emTable, PlotStyle −> 8PointSize@0.025D<,
DisplayFunction → IdentityD;

gph2 = ListPlot@emTable, PlotJoined → True,
DisplayFunction → IdentityD;

gph3 = Plot@yanalytical@tD, 8t, 0, 2.5<,
DisplayFunction → IdentityD;

Show@gph1, gph2, gph3,
DisplayFunction → $DisplayFunction, AxesLabel → 8"t", "y"<D;
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Figure 1.9. The analytical solution of Eqn [1.20] and the numerical solution (large points)
obtained by using Euler's point-slope method.

Do@expr, 8i, imin, imax, di<D evaluate expr with i running from imin to
imax in steps of di. If di is omitted, step size is 1

Table@expr, 8i, imin, imax, di<D make a list of the values of expr
with i running from  imin to  imax  in
steps of  di . If di is omitted, step size is 1

ListPlot@list, option -> valueD plot points  Hx1, y1L , ... in list. See  
help  browser  for  a  list  of  options

Loops, lists, and plotting lists.

It  can  be  seen  from  Fig.  1.9  that  there  are  dangers  with  approximating  a  smoothly
curved solution by a series of linear segments. So, it is important to find ways of taking
into account the likely curvature of the real solution, which of course we don't know a
priori.  It is a marvel of modern numerical analysis that error-knowing-and-minimizing
algorithms  have  been  developed.  To  this  end,  there  are  two  basic  categories  of
numerical  integration:  (1)  the  single  step  methods  that  rely  on  information  about  the
curve, one point at a time. They are said to be the direct methods as they do not iterate a
solution (see much more on this topic below); and (2) multi-step methods in which each
successive  point  on  the  curve  is  found  with  fewer  evaluations  of  the  slope  function
(derivative)  than  in  (1);  but  iterations  are  required  to  arrive  at  a  sufficiently  accurate
value.  Most methods of  this type are called predictor-corrector  methods. One of  these
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is  the  default  algorithm  used  in  NDSolve  in  Mathematica.  There  is  a  problem  with
getting  these  methods  started,  but  this  disadvantage  is  offset  by  the  side  benefit  of
obtaining  an  estimate  of  the  error  as  the  solution  proceeds.  In  practice  with
Mathematica the peculiarities of the various methods are transparent to the user, and the
most  modern  algorithm  is  implemented  unless  the  default  is  overridden  by  specific
commands (see the Mathematica book for details). 

1.5.3 Taylor series solution

A  systematic  study  of  numerical  integration  is  usefully  begun  with  the  Taylor  series
expansion  of  a  mathematical  function;  this  theory  is  often  discussed  in  intermediate-
level mathematics. The resulting power-series  provides a representation of an arbitrary
function at a given point t when its value is known in the  neighborhood of the point t0 .
The  function  must  be  continuous  or  at  least  piecewise  continuous   and  be  infinitely
differentiable in order for this representation to be strictly meaningful. Hence,

[1.23]y@tD = y@t0D + y'@t0D h + y''@t0D h ê 2! + y'''@t0D h ê 3! + ... yHnL@t0D hn ê n! + ...

where  we define a  step size h  = (t  -  t0 ),  and yHjL [t0 ]  denotes  the  j-th  derivative  of  y[t]
evaluated at t =  t0 . The Taylor series approximation is used to generate the value of y
at  t = t0  + h. Then the value at t = t0  + 2h is generated by replacing t0  in Eqn [1.23] by
t  = t0  +  h.   We repeat  the application of  the Taylor  series  with  increasing values of  t,
using the fixed step size h. This means that the (m+1)-th value of y is y[ tm+1 ] and it is
based on the value at tm  via Eqn [1.23]. Hence,

[1.24]y@tm+1D = y@tmD + y'@tmD h + y''@tmD h ê 2 + y'''@t0D h ê 3! + ... yHnL@tmD hn ê n! + ...

where,  in  general,   h  =  (tm+1  -  tm ).  Henceforth,  we  adopt  the  simpler  convention  that
ym ª y[tm ].

We can approximate any function by truncating the infinite Taylor series after m terms;
and  the  more  terms  we  include,  the  more  accurate  is  the  approximation.  For  the  first
term  of  the  series  we  already  have  an  expression  for  the  slope  of  the  function  (Eqn
[1.21]) but for each successive term a differentiation operation is required. Hence,

[1.25]ym
' = f @tm, ymD .

And, y''  is obtained by taking the second derivative with respect to both t and y:

[1.26]y'' =
∑f
ÅÅÅÅÅÅÅÅÅ
∑ t

+ f  
∑f
ÅÅÅÅÅÅÅÅÅÅ
∑y

,

or, more concisely,

[1.27]y'' = ft + f  fy ,

where differentiation with respect to t or y is indicated by the subscript on f. Note that
when  carrying  out  this  analysis,  the  differentiation  is  done  first,  and  then  the  actual
numerical value is obtained for each term by substituting the values of tm  and y[tm ] into
them.
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By using this nomenclature, Eqn [1.23] becomes

[1.28]ym+1 = ym + h ikjjf +
h
ÅÅÅÅÅ
2

 Hft + f  fyLy{zz + OHh3L ,

where  O(h3 )  is  read  as  'of  the  order  of  h  cubed,'  and  it  denotes  the  fact  that  all
subsequent terms contain h to the third or higher power, or degree. In other words, if we
use Eqn [1.28]  without the O(h3 ) term, the error  introduced by truncating the series is
approximately K h3 , where K is some constant.

The  Taylor  series  solution  of  a  differential  equation is  classified as  a  one-step  method
because the value of ym+1 is obtained by using only tm  and ym , in one step.

A major practical problem with the Taylor series solution is that  it  is  often difficult  to
obtain  the  analytical  expressions  for  the  second-  and  higher-order  partial  derivatives.
However,  this  is  easy  today  with  Mathematica;  and  the  Taylor  series  method  can
provide a means of comparison of other methods of approximation even when they do
not require the calculation of higher-order derivatives, as is shown below.

1.5.4 Runge-Kutta methods � overview

These  methods  constitute  a  broad  class  of  techniques  for  numerically  solving
differential  equations.   The  methods  have  three  distinguishing  features:  (1)  they  are
called  one-step  methods  as  they  require  information  at  the  preceding  point  only;  (2)
they  agree  with  the  Taylor  series  (Eqn  [1.24])  through  to  order  p,  which  is  therefore
called the order of the method; and (3) they do not require the evaluation of any higher-
order  derivatives  as  they  use  only  the  given  first-derivative  expression,  f.  This  latter
property  makes the  methods  more useful  than the  Taylor  series  method.  However,  the
price  paid  for  not  evaluating  the  higher-order  derivatives  is  to  evaluate  far  more  than
one value beyond (tm , ym ), when stepping from (tm , ym ) to (tm+1 , ym+1 ). 

A geometrical representation is  useful  for  understanding  these methods,  but  remember
that  algebraic  analysis  is  still  needed  for  their  ultimate  verification.  Suppose  that  the
solution ym  at the point t = tm  is known. Then a line is drawn through the point (tm , ym )
such  that  its  slope  is  ym '  =  f[tm , ym ].  See  Fig.  1.9  where  the  heavy  line  denotes  the
exact  but  unknown  solution  and the  line  just  described  is  denoted  by L1 .  Then we let
ym+1  be the point where L1  intersects the ordinate erected at t = tm+1  = tm + h. Hence,
the equation for  L1  is

[1.29]y = ym + ym ' Ht - tmL ,

but 

[1.30]ym ' = f @tm, ymD ,

and

[1.31]tm+1 - tm = h ,
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so

[1.32]ym+1 = ym + h f @tm, ymD .

The error  at  t  = tm+1  is  shown in Fig.  1.9  as  e,  and Eqn [1.32]  agrees with the Taylor
series through to terms in h, so the truncation error is represented by

[1.33]eT = K h2 .

Note  that  although  the  point  (tm ,  ym )  in  Fig.  1.10  is  drawn  lying  on  the  exact
(unknown)  curve,  in  practice  it  is  an  approximation,  so  it  will  not  necessarily  do  so.
Equation  (1.31)  is  called  Euler's  point-slope  method and  is  the  oldest  and  best  known
numerical  method  for  integrating  a  differential  equation.  However,  besides  having  a
relatively  large  truncation  error,  it  can  also  be  quite  unstable.  In  other  words,  a  small
error   due  to  numerical  round-off,  truncation,  or  inherent  in  the  underlying  function  f
becomes  magnified  as  t  increases.  Therefore,  more  accurate  methods  have  been
developed.

In passing,  note that according to the definition above,  Euler's point-slope method is a
first-order Runge-Kutta one, since it agrees with the Taylor series representation of the
function through to terms in h.

Figure  1.10.   Graphical  analysis  of  Euler's  point-slope  method,  which  is  a  first-order
Runge-Kutta method of numerical integration.
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Euler's  point-slope  method  can  be  improved  in  a  number  of  different  ways.  The  two
most  important  ones  are  called  the  Improved  Euler  method  and  the  Modified  Euler
method and they are discussed next. 

1.5.5 Improved Euler method

With  the  Improved  Euler  method  (also  called  Huen's  method),  we  work  with  the
average  of  the  slopes  at  (tm ,  ym )  and  (tm +  h,   ym +  h  ym ').  In  Fig.  1.11  this  point  is
denoted by (tm+1 , ym+1 ). Geometrically, we use Euler's point-slope method to locate the
point  (tm + h,  ym + h ym ') on the line L1  and at this point we compute the slope of the
function leading to line L2 . Then we take the average of the two slopes and obtain the
dashed line L

-
. Finally, the line L is drawn parallel to L

-
 through the point (tm , ym ). The

point at which this line intersects the ordinate erected at tm+1 is taken to be  ym+1 . 

Let us analyze the construction algebraically. The slope of  L
-

 and hence of L is given by

[1.34]f@tm, ym, hD = -2
1  8f @tm, ymD + f @tm + h, ym + h ym 'D< ,

recalling that 

[1.35]ym ' = f @tm, ymD ,

so the equation for L is

[1.36]y = ym + Ht - tmL f@tm, ym, hD .

These three equations define the Improved Euler method. 

How  well  does  this  solution  agree  with  the  Taylor  series  solution?   To  see  this  we
expand the slope of the function, f, as a Taylor series: 

[1.37]f @t, yD = f @tm, ymD + Ht - tmL ∑f
ÅÅÅÅÅÅÅÅÅ
∑ t

+ Hy - ymL ∑f
ÅÅÅÅÅÅÅÅÅ
∑ t

+ ... ,

where the partial derivatives are evaluated at t = tm  and y = ym . Substituting t = tm  + h
and y = ym  + h ym '  into Eqn [1.36] and using Eqn [1.34] we obtain

[1.38]f @tm + h, ym + h ym 'D = f + h ft + h f  fy + O@h2D ,

where f and the second-order (partial) derivatives are evaluated at (tm , ym ). Substituting
this  expression  into  the  slope  formula  (Eqn  [1.35])  and  after  some  rearrangement  we
obtain

[1.39]f@tm, ym, hD = f +
h
ÅÅÅÅÅ
2

 8ft + f  fy< + O@h2D .

Finally,  this  expression  is  used  in  Eqn  [1.36]  to  provide  a  direct  comparison  with  the
Taylor series:

[1.40]ym = ym + h f +
h2
ÅÅÅÅÅÅÅÅ
2

 8ft + f  fy< + O@h2D .
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Thus  from  Eqn  [1.40]  we  see  that  the  equation  agrees  with  the  Taylor  series  through
terms in h2 . Therefore we say that the Improved Euler method is a second-order Runge-
Kutta  method.  We  see  that  we  are  required  to  evaluate  the  slope  f[t ,  y]  twice,  at  (tm ,
ym ) and (tm  + h,  ym + h ym '). In a comparison,  the computational effort involved with
using the Taylor series is three function (slope) evaluations, f, ft , and fy .

Figure 1.11. Graphical analysis of the Modified Euler method of numerical integration.

1.5.6 Modified Euler method

In  the  Improved  Euler  method  slopes  are  averaged,  but  in  this  method  positions  of
points  are averaged as is shown geometrically in Fig.  1.12.  We begin with the line L1
that passes through (tm ,   ym ) and has  the slope f[tm ,   ym ].   We proceed along L1  and
find the point of intersection with the ordinate erected at tm + h/2; this is the point P at
which  y = ym + (h/2) ym ' . The slope of the function at this point is then calculated:

[1.41]f@tm, ym, hD = f @tm + h ê 2, ym + Hh ê 2L ym 'D ,

again, where

[1.42]ym ' = f @tm, ymD .

The line through P with this new slope is shown as L* in Fig. 1.12. Next we draw a line
parallel to L* passing through (tm ,  ym ) that is shown as L0 . Now designate the value of
ym+1  to be the intersection of L0  with t = tm  + h. Hence the equation for L0  is

Introduction to Chemical Kinetics 29



[1.43]y = ym + Ht - tmL f@tm, ym, hD .

Thus,

[1.44]ym+1 = ym + h f@tm, ym, hD .

Equations  [1.40  �  1.43]  define  the  modified  Euler  method  that  is  also  known  as  the
improved  polygon  method,  for  (almost!)  obvious  reasons.  It  can  be  shown  to  be  a
second-order Runge-Kutta method.

Figure 1.12. Graphical analysis of the Modified Euler method of numerical integration.

1.5.7 General Runge-Kutta methods

Both of the refined Euler methods have a master equation of the form

[1.45]ym+1 = ym + h f@tm, ym, hD ,

and in both cases   

[1.46]f@tm, ym, hD = a1 f @tm, ymD + a2 f @tm + b1 h, ym + b2 h ym 'D .

So,  by  using  this  classification  of  the  methods  we  can  see  that  the  Improved  Euler
method has the following relationships:

[1.47]a1 = a2 =
1
ÅÅÅÅÅ
2

,
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[1.48]b1 = b2 = 1 ,

 while for the Modified Euler method, we have

[1.49]a1 = 0, a2 = 1 ,

[1.50]b1 = b2 =
1
ÅÅÅÅÅ
2

.

It  can  be  shown  with  some  clever  analysis  that  a  general  second-order  Runge-Kutta
method is one in which, in Eqn [1.46], 

[1.51]a1 = 1 - w, a2 = w and w ∫ 0 ,

[1.52]b1 = b2 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 w

.

The truncation error for any non-zero choice of w is

[1.53]¶T = K h3 .

It  is  mathematically possible to  estimate the bounds  on |K|  and  it  has  been shown that
the smallest upper bound is obtained when w = 2/3.

1.5.8 Higher-order Runge-Kutta methods

Third-  and  fourth-order  Runge-Kutta  methods  have  been  developed  in  ways  that  are
entirely  analogous  to  the  second-order  ones.  Hence  we  will  not  work  through  the
derivations but simply state the fourth-order formula:

[1.54]ym+1 = ym +
h
ÅÅÅÅÅ
6

 Hk1 + 2 k2 + 3 k3 + k4L ,

[1.55]k1 = f @tm, ymD ,

[1.56]k2 = f
ÄÇÅÅÅÅÅÅÅÅtm +

h
ÅÅÅÅÅ
2

, ym +
h
ÅÅÅÅÅ
2

 k1

ÉÖÑÑÑÑÑÑÑÑ ,

[1.57]k3 = f
ÄÇÅÅÅÅÅÅÅÅtm +

h
ÅÅÅÅÅ
2

, ym +
h
ÅÅÅÅÅ
2

 k2

ÉÖÑÑÑÑÑÑÑÑ ,

[1.58]k4 = f @tm + h, ym + h k3D ,

and the truncation error is

[1.59]¶T = K h5 .

1.6  Predictor Corrector Methods
A hallmark of the Runge-Kutta methods is that stepping to the next point, (tm+1 , ym+1 ),
uses  information  at  (tm+1 ,  ym+1 )  but  at  no  other  prior  points.  We  must  evaluate  the
slope function (derivative) at one or more subsequent  points, depending on the order of
the  method.  The  fact  that  these  methods  do  not  use  the  accumulated  information  of
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prior  points,  plus  the  lack  of  a  convenient  error  estimation  procedure,  suggest  there
might be value in devising other methods.

These newer methods turn out to be the Predictor-Corrector ones. As the name implies,
a value for ym+1  is first predicted by one formula and it is then corrected by another. If
required, the latter value can be re-corrected by iteration.

1.6.1 The predictor

A  simple  approach  is  as  follows.  For  the  predictor  we  use  a  simple  second-order
method, namely,

[1.60]ym+1
H0L = ym-1 + 2 h f @tm, ymD ,

where the superscript (0) indicates that this is the initial guess at ym+1 , i.e., the predicted
value.  Immediately note  that  the  method  cannot  be  used  to  compute  y1 since  to  do  so
would  require  the  point  y-1 .  Thus,  a  Runge-Kutta  method  is  used  to  predict  y1 .
Alternatively,  we  might  have  thought  that  Euler's  method  could  have  been  used  here,
thus obviating the need for (tm-1 , ym-1 ),  but it turns out that the truncation error in this
method is routinely too large. The use of prior information on the function leads to the
classification of these methods as multistep ones.

Figure 1.13 gives some geometrical insight into the operation of the predictor. First, we
draw the  line  L parallel  to  L1  through  the  point  (tm-1 ,   ym-1 ).  This  line  intersects  the
ordinate,  erected  at  t  =  tm+1 ,  at  the  predicted  value  of  ym+1

H0L .  We  now  improve  this
prediction by drawing the line L parallel to L1  through the point (tm-1 ,  ym-1 ). This line
intersects  the  ordinate  erected  at  t  =  tm+1  at  the  predicted  value  of  ym+1

H0L .  Then  we
improve this prediction. 
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Figure 1.13.  Graphical  analysis of  the predictor part  of  the predictor-corrector method of
numerical integration.

1.6.2 The corrector

Since ym+1 is known approximately, the approximate slope at the point (tm+1 , ym+1
H0L ) can

be calculated. This is shown as the line L2  in Fig. 1.14. The line L1 is the same as that in
Fig. 1.13 and its slope is given by f[tm , ym ]. Then the slopes of L1  and L2 are averaged
to give the line L

-
. Finally, the line L3  is drawn parallel to L

-
 through the point  (tm , ym ).

Its  intersection  with  the  ordinate  erected  at  t  =  tm+1  yields  the  new  approximation  to
ym+1 . This value is called the corrected value ym+1

H1L .  In algebraic terms it is given by

[1.61]ym+1
H1L = ym +

h
ÅÅÅÅÅ
2

 8f @tm, ymD + f @tm+1, ym+1
H0L D< .

Another, and hopefully even better, estimate of f[tm+1 , ym+1 ] is obtained  by using ym+1
H1L

and recorrecting its value. Thus, in general, the i-th approximation to ym+1  is given by

[1.62]ym+1
HiL = ym +

h
ÅÅÅÅÅ
2

 9f @tm, ymD + f Atm+1, ym+1
Hi-1LE= .

Finally, the iteration of this step is stopped when

[1.63]… ym+1
Hi+1L - ym+1

HiL … < ¶ ,

where ¶ is a value that we specify and which is called the tolerance.

It  can  be  shown  mathematically  that  if  the  partial  derivative  ∑fÅÅÅÅÅÅÅ∑y  is  bounded  and   §
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some number M, then if the step-size h is less than 2/M, the solution will converge to a
finite value.  But it is a curious result that this convergence limit is not necessarily, but
almost always,  the 'correct' value.

Figure 1.14.  Graphical analysis of  the corrector  part of  the predictor-corrector method of
numerical integration.

1.6.3 Choosing the value of h

The choice of the initial value of h in the predictor corrector method can be guided by
the  inequality  h  <  2/M.  However,  this  is  not  very  convenient  because  the  value  of  M
must be estimated, so almost invariably h is simply chosen to be a small fraction around
0.01%  of  the  maximum  time  of  the  simulation.  Once  the  numerical  integration  has
started, the automatic procedures specified above 'kicks in.'  

If  the value of  the expression  on the left  of  Eqn [1.63]  does not  satisfy the inequality,
then  h  is  halved  and  the  predictor  step  is  repeated.  This  is  then  followed  by  the
corrector  step  and  its  iteration.  If  the  value  is  smaller  than  required,  h  is  increased
usually by doubling it. 

Finally,  we  must  consider  the  manner  in  which  the  truncation  error  grows;  in  other
words,  we must consider the instability  of the solution. This aspect is addressed by the
proper  choice  of  step-size  h;  and  in  various  Mathematica  functions  the  integration
algorithm performs this  task  automatically, so you will  not  be  unduly  troubled  by this
problem.   
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1.6.4 Numerical integration in Mathematica � NDSolve and stiffness

As  discussed  previously,  NDSolve  is  the  Mathematica  function  that  is  used  for
numerically  solving  arrays  of  simultaneous  differential  equations.  The  function  uses  a
variety  of  methods  of  numerical  integration  and  takes  into  account  an  important
characteristic  known  as  the  'stiffness'  of  the  array  of  equations.  Stiffness  refers  to  the
extent  to  which  the  set  of  equations  has  members  that  describe  slow  processes  and
members that describe very fast processes. A large range of rate constants means that in
order for the numerical integrator to accurately keep track of the fast processes, the step
size  must  be  very  small;  on  the  other  hand,  the  slow  processes  could  be  accurately
represented  by  using  very  large  step  sizes.  If  it  is  phenomena  that  occur  after  a  long
time that  are  of  interest,  the  system still  has  to  evolve  through  the  fast  stages and  this
requires time-consuming small step sizes to be used in the integration. A large range of
rate  constants  in  a  system is  referred  to  as  imparting stiffness  to  the system. The term
arose in electrical engineering and it refers to the stiffness of a servo-motor shaft when
there is very strong negative feedback in its electrical circuit.  

The  default  method  of  numerical  integration  used  in  NDSolve  is  one  based  on  the
LSODE  algorithm  that  detects  whether  the  system  of  differential  equations  is  stiff  or
not  and  uses  the  most  efficient  method.  For  non-stiff  systems  it  uses  the  method  of
Adams,  while  for  stiff  systems  it  uses  the  method  of  Gear.  Because  of  its  use  of  the
Gear  algorithm,  NDSolve  is  well  suited  to  numerical  integration  involved  in
simulating metabolic systems.

Another  important  feature  of  NDSolve  is  our  ability to  specify  the required  accuracy
of its solutions. It will limit the initial and maximum values of the step size h so that the
solution  will  be  accurate  to  a  predetermined  number  of  decimal  places  or  a
predetermined  number  of  significant  figures.  Thus,  if  your  goal  is  to  determine  the
solution to, say, 5 decimal places, you use the option AccuracyGoal → 5. While if
your goal is 5 significant figures, you use the option  PrecisionGoal → 5.  These
options are used in many places throughout the book, e.g., in Section 3.2.4.

1.7  Conclusions
In  conclusion,  the  procedure  for  writing  a  set  of  simultaneous  first-order  ordinary
nonlinear  differential  equations  that  describe  a  biochemical  reaction  scheme  is
relatively  straightforward.  It  relies  on  the  principle  of  mass  action.  The  numerical
solution of  the equations,  however,  demands assignment of values to all rate constants
and  the  specification  of  the  initial  values  of  all  dependent  variables.  Under  almost  all
circumstance  it  is  not  time  efficient  to  program  one's  own  numerical  integration
procedure. However, in the spirit of advising against the use of black boxes in science,
this chapter has presented the mathematical basis of numerical integration. On the other
hand,  in the routine practice of computer modelling of enzymic reactions, we advocate
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the use of packages that have been developed specifically for this purpose; in particular,
we aim to convince you of the merits of using Mathematica  for this task, coupled with
the Metabolic Control Analysis (MCA) Package that we introduce in the next chapters.
The  semantics  that  need  to  be  adhered  to  when  using  Mathematica  to  perform  the
simulations are described in its Help menu. Only in special circumstances is it useful or
indeed  possible  to  derive  an  analytical  solution  to  the  differential  equations  for  a
realistic  reaction  network,  so  the  work  described  in  the  next  chapters  depends  on
numerical integration.

The  derivation  of  the  differential  equations  that  describe  very  complex  metabolic
systems,  including  multistep  enzymic  reactions,  becomes  a  tedious  and  error-prone
process.  Hence  the  automation  of  this  step  is  also  a  welcome  development.  In  the
chapters  ahead  the  automatic  derivation  of  the  rate  equations  and  may  aspects  of
metabolic simulations are developed in detail.

1.8  Exercises

1.8.1

 Modify Eqn [1.15] to make it a pair of reversible reactions,
 A F

k-1

k1
B F

k-2

k2
C   ,

and  then  write  the  differential  equations  that  describe  the  kinetics  of  this  reaction
scheme.

1.8.2

(1) Derive the time course expressions for each of the reactants in the scheme shown in
Exercise 1.1.  (2)  What  do  you notice about  the number  of  exponentials  in  each of  the
expressions?  In  other  words,  for  the  irreversible  system  shown  in  Eqns  [1.15]  and
[1.19],  the  expression  for  [A]  is  a  single  exponential.  (3)  Is  the  rule  regarding  the
number  of  exponential  terms  the  same in  the  case  of  reversible-reactions;  if  not,  why
not?

1.8.3

Plot  the  time course  of  concentrations  for  each  of  A,  B,  and  C,  as  a  function  of  time
using the expressions generated in Exercise 1.1 above. Choose the following parameter
values: A[0] =10 mmol L-1, and k1 = 1, k-1 =1.1, k2 = 1.5, and k-2 =1.6 s-1.

1.8.4

Repeat  Exercises  1.8.1  �  1.8.3  above  with  a  larger  number  of  reactants  in  the  linear
sequence of reversible reactions and address each of the questions that are posed there.

36 Chapter 1



1.8.5

Rerun the program in the worked example in Section 1.4.6 choosing different values of
a0, b0, and the three rate constants. Notice in particular what happens to the maximum
value of the concentration of the intermediate species C, and the time at which it occurs,
when k1  and k-1  are made large relative to k2 . 

It  turns  out  that  this  reaction  scheme,  and  its  solution,  are  very  much  like  what  arise
with a simple enzyme.  For enzyme systems, the enzyme concentration is usually very
low,  in  the  micro-  to  nanomolar  range,  but  the  rate  constants  that  characterize  the
binding and dissociation steps are large, of the order of 106 mol-1  L and 106 s-1 .

1.8.6

Go  to  the  Mathematica  Help  menu  and  review  the  attributes  of   NDSolve  and
NIntegrate. 
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2 Elements of Enzyme 
Kinetics

2.1  Kinetics of Enzymic Reactions

2.1.1 Purpose

In the first chapter the key concepts of chemical kinetics were introduced. All of these
concepts  are applicable to the chemical reactions which occur  inside living organisms.
However,  a  prominent  feature  of  such  biochemical  reactions  is  that  they  tend  to  be
catalyzed  by  proteins  called  enzymes.   The  involvement  of  enzymes  in  biochemical
reactions adds some special features to the kinetics of biochemical reactions. 

The  study  of  biochemical  reactions  is  termed  enzyme  kinetics  and  in  this  chapter  we
present  the  relevant  terms,  definitions,  and  concepts  that  relate  classical  chemical
kinetics to enzyme kinetics. Thus we will be able to compose the differential equations
that are necessary to simulate the time dependence of single and multi-enzyme systems.
Since  a  guiding  principle  of  this  book  is  the  linking  of  simulations  to  experimental
reality, the theoretical basis of various methods of data analysis that are used to extract
estimates  of  rate  constants  in  kinetic  equations  from  experimental  data  are  presented;
this is done first.

2.1.2 The Michaelis-Menten equation

In  1926  J.  B.  SumnerH1L  reported  the  crystallization  of  an  enzyme,  urease,  and  thus
convinced  most  chemists  and  biologists  that  enzymes  are  distinct,  albeit  complex,
chemical  species  that  are  able  to  be  purified  to  homogeneity.  This  concept,  coupled
with  that  of  Michaelis  and  Menten  in  1913,H2L that  enzymes  form  specific  complexes
with  their  reactants,  paved  the  way  for  a  detailed  understanding  of  the  chemical
mechanisms of  individual  types of  enzymes.  One of  the  simplest experiments that  can
be  carried  out  on  a  solution  of  a  particular  enzyme  is  to  study  the  rate  at  which  it
converts its substrate(s) to product(s).   This process can be studied by using a physical
recording  device  such  as  a  spectrophotometer;  the  chemical  reaction  either  directly  or
indirectly  develops  a  chromophore,  thus  enabling  a  record  of  the  time  dependence  of
the concentrations of at least one of the reactants. Alternatively, an NMR spectrometer
can  be  used,  most  often  without  the requirement for  additional  reactants  to  generate  a
detectable  chromophore,  since  almost  invariably  the  NMR  spectrum of  the  product(s)
will  be  different  from  that  of  the  substrate(s).  Experimentally,  the  effect  of  substrate
concentrations on the rate of the reaction is measured, and because the products of the



reaction might inhibit or activate the enzyme as they accumulate during the reaction, or
the  enzyme  may  be  unstable  in  the  conditions  of  the  assay  medium,  it  is  common
practice to measure the initial velocity, v0 . This initial velocity is measured as the slope
of  the  progress  curve  of  the  reaction  after  extrapolating  it  back  to  t  =  0.  When  the
substrate  concentration,  @AD0 ,  is  much  greater  than  the  enzyme  concentration,  the
overall rate of the reaction is not only proportional to the concentration of the enzyme,
but  the  plot  of  v0  versus  @AD0  has  the  form  of  a  rectangular  hyperbola.  The  equation
describing the rectangular hyperbola is called the Michaelis-Menten equation: 

[2.1]v0 = ikjj d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
y{zzt=0

=
Vmax@AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Km + @AD0 .

This equation has the property that when @AD0  is very large, v0 = Vmax  (hence it is called
the maximum velocity),  and when v0 = Vmax ê 2,  the experimental value of @AD0 is equal
to Km , and this is called the Michaelis constant. 

Q: Using Mathematica construct a plot of the Michaelis-Menten equation over a domain of
concentrations of A, for an enzyme having a Vmax of 1  mmol s-1 and a Km  of 1 mM. 

A: The  following  Mathematica  Cell  has  the  requisite  series  of  functions  to  perform  this
task. Recall that items such as the semantics of delayed evaluation of equations, and of
the Plot function, are given in Chapter 1 and also in the Mathematica Help Menu.

v0@a_D :=
Vmax a
"""""""""""""""Km + a ;

Vmax = 1 ×10−6;
Km = 1× 10−3;
Plot@v0@aD, 8a, 0, 5×10−3<,
PlotRange −> 80, 1×10−6<, AxesLabel −> 8"@AD", "v0"<D;

0.001 0.002 0.003 0.004 0.005
@AD2×10-7

4×10-7

6×10-7

8×10-7

1×10-6
v0

Figure  2.1.  The  rectangular  hyperbolic  form  of  the  Michaelis-Menten  equation.  The
ordinate is in units of mmol s-1 and the abscissa is in units of  mmol L-1 .
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2.1.3 Graphical evaluation of Vmax  and Km

The challenge faced by an experimenter is the determination of the two key parameters
of the Michaelis-Menten equation, Vmax  and Km , given a set of data pairs (@AD0,i , v0,i  i
=  1,...,N),  where  N  is  usually  5  �  10.  Actually,  a  deeper  challenge  awaits  the
experimenter,  and  that  is  to  determine  whether  the  fitting  equation  is  a  realistic
description of the data. Nevertheless, suppose that we have established, from inspecting
the  Michaelis-Menten  plot,  that  the  data  conform,  at  least  roughly,  to  a  rectangular
hyperbola. Then we can make progress with the analysis by rearranging Eqn [2.1] into
one of several possible forms that yield straight lines, when the newly transformed data-
variables  are  plotted  versus  each  other.  The  practical  advantages  of  this  mathematical
manipulation  are  that  (1)  Vmax  and  Km  can  be  determined readily  by  fitting  a  straight
line  to  the  transformed  data;  (2)  departure  of  the  data  from  a  straight  line  are  more
readily  detected  by  eye,  than  non-conformity  to  a  rectangular  hyperbola  (these
departures  may  indicate  an  inappropriateness  of  the  simple  model  of  the  enzyme
kinetics); and (3) the effects of inhibitors on the reaction can be more easily visualized. 

It  is  worth  noting  that  these  data-transformation  procedures,  while  being  useful  for
providing initial estimates of parameters and for 'eye-balling' the data, do bias the error
structure of the data and as such yield biased estimates of the kinetic parameters. Thus
they have been superseded by non-linear regression for the final or definitive estimates
of the parameters and their associated errors (see Chapter 6).

2.1.4 Lineweaver-Burk plot

The  most  commonly  used  transformation  of  Eqn  [2.1]  entails  taking  the  reciprocal  of
each side of the equation to yield the Lineweaver-Burk, or double reciprocal, plot:

[2.2]
1

ÅÅÅÅÅÅÅÅ
v0

= KmÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Vmax

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD0 + 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Vmax

.

A plot  of  the transformed data pairs   (1 ê @AD0,i ,  1/v0,i )  i  = 1,...,  N,  gives  a straight line
with ordinate and abscissa intercepts at 1/Vmax and �1/Km , respectively.

Q: Generate  a  Lineweaver-Burk  plot  for  the  enzyme  described  in  the  previous  worked
example.

A: First  we  need  to  generate  a  Table  of  ordered  pairs  (1 ê @AD0,i ,  1/v0,i )  using  our
definition of v0@a_D from the previous example.

lbData =

TableA9recipa, 1
"""""""""""""""""""""""""""""""""""""v0@1êrecipaD =, 8recipa, 1, 5001, 1000<E;
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We then use ListPlot  to graph this Table  as well as Plot to graph the inverse of
v0@a_Ddirectly.

gph1 = ListPlot@lbData,
PlotStyle −> 8PointSize@0.02D<, DisplayFunction → IdentityD;

gph2 = PlotA 1
"""""""""""""""""""""""""""""""""""""v0@1êrecipaD , 8recipa, −2001, 5001<,

DisplayFunction → IdentityE;
Show@gph1, gph2, DisplayFunction → $DisplayFunction,

AxesLabel −> 8"1ê@AD", "1êv0"<D;

-2000 -1000 1000 2000 3000 4000 5000
1ê@AD

-1×106

1×106

2×106

3×106

4×106

5×106

6×106
1êv0

Figure 2.2.  Lineweaver-Burk plot for a simple Michaelis-Menten enzyme reaction. Note
the ordinate and abscissa intercepts occur  at 1/Vmax and �1/Km , respectively.

2.1.5 Eadie-Hofstee plot

The Eadie-Hofstee equation is derived by multiplying both sides of Eqn [2.1] by (Km +
[AD0 ), dividing by  [AD0,  and then rearranging the terms to give:

[2.3]v0 = -Km 
v0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@AD0

+ Vmax .

Hence, a plot of the data pairs consisting of (v0,i /@AD0,i , v0,i ) gives a straight line with a
slope that has the value �Km and an ordinate intercept that is the value of Vmax.
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Q: Generate  an  Eadie-Hofstee  plot  for  the  enzyme  described  in  the  worked  example  in
Section 2.1.2.

A: First we define the Eadie-Hofstee equation

v0@vOnA0_D := −Km v0OnA0 + Vmax ;
and then we can generate the appropriate Table of ordered pairs and graph as follows:

ehData =

Table@8v0OnA0, v0@v0OnA0D<, 8v0OnA0, 0, 0.001, 0.0001<D;
gph1 = ListPlot@ehData, PlotStyle −> 8PointSize@0.025D<,

DisplayFunction → IdentityD;
gph2 = Plot@v0@v0OnA0D, 8v0OnA0, 0, 0.001<,

DisplayFunction → IdentityD;
Show@gph1, gph2, DisplayFunction → $DisplayFunction,

AxesLabel −> 8"v0ê@AD", "v0"<D;

0.0002 0.0004 0.0006 0.0008 0.001
v0ê@AD2×10-7

4×10-7

6×10-7

8×10-7

1×10-6
v0

Figure  2.3.   Eadie-Hofstee  plot  for  a  simple  Michaelis-Menten  enzyme  reaction.  Note
that the slope gives the value of �Km and the ordinate intercept gives the value of Vmax.
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2.1.6 Hanes-Woolf plot

The Hanes-Woolf equation is derived by taking the reciprocal of both sides of Eqn [2.1]
and multiplying each by [AD0  and then rearranging terms to give:

[2.4]
@AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅv0

=
@AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVmax

+
KmÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅVmax

.

Thus,  for  a  Michaelis-Menten  enzyme  reaction,  a  plot  of  the  data  pairs  (@AD0,i ,@AD0,i /v0,i )  gives  a  straight  line  with  a  slope  whose  value  is  1/Vmax  and  an  abscissa
intercept that is �Km .

2.1.7 Eisenthal and Cornish-Bowden equation (direct linear plot)

A  totally  different  approach  to  analyzing  enzyme  kinetic  data  involves  plotting  many
lines  onto  the  experimental  data;  it  was  introduced  in  1974 by  Eisenthal  and  Cornish-
Bowden.H3L For this procedure a Cartesian axis-system is drawn with v0  on the ordinate
and @AD 0  on the abscissa. With the data pairs (@AD0,i , v0,i ),  i = 1,...,N,  a straight line is
drawn to pass  through the points  (�@AD0,i ,  0)  and (0, v0,i ).  The intersection of  this  line
with others,  similarly drawn,  occurs at as many different points as there are data pairs.
In other words, since experimental data are never error free, a set of values 8Km, Vmax<j ,
j = 1,...,N-1, is obtained. The next step in the analysis is to arrange the respective values
of  Km,j  and Vmax,j  into two separate sets, in ascending order. It has been shown that the
'statistically  best  estimate'  of  the  two  parameters  is  given  by  the  respective  median
(middle) values in the set.H3L
2.2  Enzyme Inhibition

2.2.1 Degree of inhibition

The  rate  of  an  enzymic  reaction  is  often  affected  by  substances  other  than  the
reactant(s). Inhibitors  slow the rate and activators  increase it. In dealing with inhibitors
it is important to distinguish between the effects that are observed experimentally on the
various  analytical  plots  mentioned  above,  and  the  molecular  mechanism  (or  models)
proposed  to  explain  the  effects.  The  purpose  behind  studies  of  enzyme  inhibition  is
often to enhance an understanding of the mechanism of the enzyme by interpreting the
changes in apparent values of Vmax  and Km  in terms of various possible models of the
mechanism (see Chapter 3).

There are three basic types of inhibition of an enzyme and these are defined in terms of
the degree of inhibition, which is defined as

[2.5]i =
v0 - v0

i
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

v0
,
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where  v0 and  v0
i  are  the  initial  velocities  of  the  reaction  measured  in  the  absence  and

presence of the inhibitor, respectively.

1. Pure noncompetitive  inhibition is said to exist if i is unaffected by the concentration
of the substrate.

2. Competitive inhibition exists if i decreases as the substrate concentration is increased.

3. Anti- or uncompetitive inhibitions exists if i increases as the substrate concentration is
increased.

In  addition  to  these  canonical  forms  of  inhibition  is  mixed  inhibition,  in  which  i
increases  or  decreases  as  the  substrate  concentration  increases,  but  not  to  the  same
extent  as  for  the  pure  competitive  or  anticompetitive  cases.  Mechanistically,
noncompetitive  inhibition  is  a  special  case  of  mixed  inhibition,  but  operationally,  as
defined  in Eqn [2.5],  mixed inhibition is  a  combination of  two of  the above canonical
types of inhibition. 

2.2.2 Michaelis-Menten equations that include inhibitor effects

There  are  four  simple  equationsH4L  that  are  extensions  of  the  Michaelis-Menten  one
shown as Eqn [2.1]. These equations merit special consideration because the kinetics of
many enzymes can be satisfactorily described by them. In these equations KI  and KI

'  are
inhibition constants that are equilibrium dissociation constants and as such have units of
mol L-1.

[2.6]1. Pure noncompetitive inhibition : v0 =
Vmax @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHKm + @AD0L I1 + @IDÅÅÅÅÅÅÅKI

M .

[2.7]2. Pure competitive inhibition : v0 =
Vmax @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

KmI1 + @IDÅÅÅÅÅÅÅKI
M + @AD0 .

[2.8]3. Anticompetitive inhibition : v0 =
Vmax @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Km + @AD0 I1 + @IDÅÅÅÅÅÅÅKI
M .

[2.9]4. Mixed inhibition : v0 =
Vmax @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

KmI1 + @IDÅÅÅÅÅÅÅKI
M + @AD0 I1 + @IDÅÅÅÅÅÅÅKI

' M .

2.3  Enzyme Mechanisms

2.3.1 Michaelis-Menten mechanism

Michaelis  and  Menten  set  out  to  explain  the  mechanistic  basis  of  the  peculiar  kinetic
data  that  they  had  obtained  from  the  invertase-catalyzed  hydrolysis  of  sucrose.  This
reaction  yields  glucose  and  fructose  from  sucrose.  In  particular  they  wanted  to
understand the general relationship between the rate of the reaction catalyzed by a given
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amount of enzyme in a given volume and the concentration of  sucrose. It had already
been  shown  by  others  that  the  relationship  was  not  linear  and  that  the  reaction  rate
increased  to  a  maximum  value,  and  not  beyond,  as  the  substrate  concentration  was
increased.  This  outcome  exemplified  the  phenomenon  known  as  saturation.   Their
mechanistic  interpretation  of  the  data  involved  postulating  that  the  enzyme  forms  a
complex with sucrose and the idea that this complex then undergoes hydrolysis at a rate
that  is  slow  relative  to  the  rate  of  formation  of  the  enzyme-sucrose  complex.  The
reaction scheme they proposed was

[2.10]E + A H Io
k-1

k1
 EA ö

k2  E + P .

Thus, Michaelis and Menten assumed that the values of both k1  and k-1 are very large
compared  with  that  of  k2,  and  the  overall  rate  of  the  reaction   depends  on  the
concentration of the EA complex, so the reaction rate can be expressed as

[2.11]v0 = k2 @EAD .

To derive a formula for v0,  an expression is needed for [EA],  but this can only be given
in terms of parameters that are experimentally knowable. These include the fact that the
total concentration of  the enzyme and the reactants  are each constant;  hence,  so-called
conservation of mass conditions are written as

[2.12]@AD0 = @AD + @EAD + @PD ,

[2.13]@ED0 = @ED + @EAD .

Since it is assumed that k1 , k-1  q k2 , the first part of the reaction can be described as
if it is in a state of quasi-equilibrium, so the relationship between the concentrations of
the  reactants  is  described  by  an  equilibrium  constant,  KA  =  [E]  [A]/[EA].  The
expression  for  the  equilibrium  constant  can  be  rearranged  to  give  one  for  the
concentration of the EA complex in terms of the knowables in Eqns [2.12] and [2.13]:

[2.14]KA = H@ED0 - @EADL @AD0 ê @EAD ,

which, upon rearrangement, gives

[2.15]@EAD =
@ED0 @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

KA + @AD0 .

Substitution of Eqn [2.15] into Eqn [2.11] gives

[2.16]v0 =
k2 @ED0 @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
KA + @AD0 .

This  equation  is  of  exactly  the  same form as  Eqn  [2.1]  provided  that  we  equate  Vmax
with k2 @ED0, and Km  with KA .

The  choice  of  the  particular  reaction  scheme in  Eqn  [2.10],  and  the  assumption about
the relative rates of the two sub-reactions in the overall scheme, lead to the hyperbolic
equation that describes the dependence of the rate of the enzyme-catalyzed reaction on
the substrate concentration. Thus, a macroscopically observable (rectangular hyperbola)
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response to an experimental variable was able to be interpreted in terms of an invisible
molecular process. Hence this is a classical example of what science is all about!

2.3.2 The steady state

In  1925  Briggs  and  HaldaneH5L reinvestigated  the  theory  of  Michaelis  and  Menten  and
introduced  an  important  new  development.  Instead  of  assuming  that  the  first  stage  of
the reaction (Eqn [2.14]) is in equilibrium, they assumed that the rate of change  of the
concentration  of  the  EA  complex  is  (approximately)  zero,  i.e.,  it  is  in  a  steady  state.
This situation is described mathematically as

[2.17]
d@EAD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= 0 .

Then the flux equation for [EA] is given by

[2.18]
d@EAD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= k1@ED @AD - Hk-1 + k2L @EAD ,

and by using the conservation of  mass conditions  (Eqns [2.12]  and [2.13])  with [A] >@AD0 , then 

[2.19]k1 @ED0 @AD0 - Hk1 @AD0 + k-1 + k2L@EAD = 0 .

After rearranging this equation and using the substitution that v0  = k2  [EA], the result is

[2.20]v0 =
k2 @ED0 @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk-1+ k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1

+ @AD0 .

Remarkably, the equation has the same form as Eqns [2.1] and [2.16], provided that Km
is identified with (k-1  + k2 )/k1  and Vmax  has the same interpretation as before, namely,
k2  @ED0 .  Thus,  Briggs  and  Haldane  provided  a  new  mechanistic  interpretation  of  the
rectangular  hyperbolic  relationship  between  v0  and @AD0 .  In  summary,  this  was  based
on  the  idea  of  an  EA  complex  and  the  fact  that,  to  a  good  level  of  approximation
because  the  rate  of  formation  of  the  complex  is  fast  relative  to  its  breakdown  to  free
enzyme and product, its time derivative is effectively zero, or it is said to be in a steady
state. 

There are several features of Eqn [2.20] that are worth noting:

1. Because k2  describes the number of molecules of substrate converted to product per
second,  per  molecule  of  enzyme,  it  is  called  the  turnover  number  of  the  enzyme.   In
general,  if  the  enzyme has  a  mechanism that  is  more complex than  that  in  Eqn  [2.10]
the expression for Vmax  is more complicated than simply k2  @ED0 , and it is an expression
that is the ratio of sums of products of unitary rate constants (see later in Chapter 3 for
examples). 

2. If the enzyme is not pure it may not be possible to know accurately the concentration
of  the  active  form  of  the  enzyme,  @ED0 .  Nevertheless,  Vmax  can  still  be  obtained  by
using  steady-state  kinetic  analysis.  Thus,  in  order  to  standardize  experimental  results,
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the  enzyme  activity  is  usually  expressed  in  enzyme  units,  which  are  the  amount  of
enzyme  that  transforms  1  µmol  of  substrate  into  product(s)  in  1  min,  under  standard
conditions of pH, ionic strength, and temperature (usually 25°C).

3.  When  @AD0  is  large  compared  with  Km ,  virtually  all  of  the  active  enzyme is  in  the
form of  the  EA complex,  so  the  enzyme is  said  to  be  saturated  with  substrate.  In  this
situation the enzyme operates at its maximum velocity under the specified conditions of
buffer-type, pH, temperature, etc.

2.3.3 Reversible Michaelis-Menten enzyme

A  more  realistic  representation  of  the  reaction  scheme  for  an  enzyme,  as  opposed  to
Eqn [2.10], is one in which the conversion of the EA complex to product is reversible.
Thus the scheme is

[2.21]E + A H Io
k-1

k1
 EA H Io

k-2

k2
 E + P .

The  derivation  of  the  steady-state  rate  equation  for  this  mechanism is  begun  with  the
general expression for the overall, or net, rate of product formation:

[2.22]v =
d@PD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= k2@EAD - k-2@ED @PD .

Hence, the rate equations for [EA] and [E] are required. They are as follows:

[2.23]
d@EAD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= k1@ED @AD - Hk-1 + k2L@EAD + k-2@ED @PD ,

and

[2.24]
d@ED
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= -k1@ED @AD + Hk-1 + k2L@EAD - k-2@ED @PD .

The steady-state assumption specifies that

[2.25]
d@EAD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= 0 ,

 and

[2.26]
d@ED
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= 0 .

Thus,  by  combining  Eqns  [2.23]  and  [2.25]  with  the  conservation  of  mass  conditions
(Eqn  [2.12]  and  [2.13]),  and  the  fact  that  the  substrate  and  product  concentrations  are
much greater than total enzyme concentration, we obtain

[2.27]k1 H@ED0 - @EADL @AD0 - Hk-1 + k2L@EAD + k-2 H@ED0 - @EADL @PD0 = 0 ,

so

[2.28]Hk1 @AD0 - k-2 @PD0L @ED0 + Hk1 @AD0 + k-1 + k2 + k-2 @PD0L = 0 ,

and

48 Chapter 2



[2.29]@EAD =
k1 @AD0 - k-2 @PD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k1 @AD0 + k-1 + k2 + k-2 @PD0 .

Similarly, the expression for [E] is obtained by combining Eqns [2.24] and [2.26] with
the conservation of mass conditions, to give

[2.30]@ED =
Hk1 + k-2L@ED0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k1 @AD0 + k-1 + k2 + k-2 @PD0 .

Hence,  from  Eqns  [2.22]  and  [2.30]  and  after  some  algebraic  simplification,  the  rate
expression becomes:

[2.31]v0 =
Hk1 k2@AD0 - k-1 k-2 @PD0L@ED0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k1 @AD0 + k-1 + k2 + k-2 @PD0 .

Q: At  first  sight,  Eqn  [2.31]  has  a  different  form  from  that  of  the  Michaelis-Menten
expression (Eqn [2.1]); however, it becomes the same under certain specific conditions.
To reveal  this  carry out  the following:   Make [P] = 0 and then algebraically rearrange
the terms in Eqn [2.31].

A: Define Eqn [2.31] with

Clear@SubscriptD;
v0@a_, p_D :=

Hk1 k2 a − k−1 k−2 pL e0
""""""""""""""""""""""""""""""""""""""""""""""""""""""k1 a + k−1 + k2 + k−2 p ;

Note that the definition of a function of two variables is a simple extension of the one
variable case. By setting p Ø 0 we obtain

vel = v0@a, pD ê. p −> 0
a e0 k1 k2"""""""""""""""""""""""""""""""""

k−1 + a k1 + k2

This expression has the same form as the Michaelis-Menten equation; it is more clearly
seen by the following algebraic re-arrangements:

num = Numerator@velDê k1 ;
denom = FactorTerms@Denominator@velDêk1, a D;
num

""""""""""""""""denom ê. e0 k2 −> Vmax ê. k−1
"""""""""k1 +

k2
"""""""k1 −> Km

a Vmax"""""""""""""""
a + K3
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Numerator@exprD numerator of expr

Denominator@exprD denominator of expr

FactorTerms@expr, xD pull out factors that do not depend on x

Rearranging algebraic expressions.

Q: The result  in the previous  example is the Michaelis-Menten expression.  What happens
to  Eqn  [2.31]  when  k-2 is  set  equal  to  zero,  thus  making  the  reaction  scheme  in  Eqn
[2.21] the same as that in Eqn [2.10]?

A: Use the following replacement procedure.

vel = v0@a, pD ê. k−2 −> 0
a e0 k1 k2"""""""""""""""""""""""""""""""""

k−1 + a k1 + k2

Additional algebraic re-arrangements lead to the next expression.

num = Numerator@velDê k1 ;
denom = FactorTerms@Denominator@velDêk1, a D;
num

""""""""""""""""denom ê. e0 k2 −> Vmax ê. k−1
"""""""""k1 +

k2
"""""""k1 −> Km

a Vmax"""""""""""""""
a + K3

Thus, we can see that this again is the Michaelis-Menten expression.

2.4  Regulatory Enzymes
The enzyme kinetic equations discussed so far can be called Michaelis-Menten ones. A
plot  of  reaction  velocity  versus  substrate  concentration  is  a  rectangular  hyperbola.
Alternatively, a Lineweaver-Burk plot is a straight line. This situation pertains not only
to many single-substrate enzymes but it also applies to many enzymes with two or more
substrates when the reaction velocity is measured as a function of the concentration of
one of the substrates while the others are held constant (see Chapter 3).

On  the  other  hand,  many other  enzymes display  non-linear  Lineweaver-Burk  plots,  or
plots  of  velocity  versus  substrate  concentration  that  are  not  simple  rectangular
hyperbolas.  Such  plots  are  described  by  mathematical  functions  that  are  a  ratio  of
polynomials,  in  which  the  numerator  is  one  degree  less  than  that  of  the  denominator.
The enzyme mechanism that can be analyzed to yield the rate equation usually involves
an  oligomeric  enzyme  with  allosterically  regulated  active  sites.  For  examples  of  rate
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equations commonly used to model such enzymes, see the excellent books by Cornish-
BowdenH6L  and RobertsH7L  on enzyme kinetics.

2.5  Exercises

2.5.1

Explore  the  functional  behavior  of  the  Michaelis-Menten  equation  (Eqn  [2.1])  by  (1)
altering  the  value  of  the  maximum  substrate  concentration.  (2)  Notice  the  extent  to
which  Vmax  is  likely  to  be  able  to  be  accurately  inferred  from  the  graph.  (3)  What
happens to the shape of the plot when Km is varied?

2.5.2

Investigate  the  functional  behavior  of  the  Lineweaver-Burk  equation  (Eqn  [2.2])  by
doing  the  following.  (1)  Alter  the  value  of  the  maximum substrate  concentration  and
notice  the  extent  to  which  Vmax  is  likely to  be  able  to  be  accurately inferred  from the
graph. (2) What happens to the abscissa intercept when the value of Km is decreased?

2.5.3

Investigate the functional behavior of the Eadie-Hofstee equation (Eqn [2.3]) by doing
the  following.  (1)   Alter  the  value  of  Vmax  and  evaluate  what  happens  to  the  ordinate
intercept. (2) What happens to the abscissal intercept when  Km  is decreased?

2.5.4

Plot  the  Hanes-Woolf  equation  (Eqn  [2.4])  and  explore  its  functional  behaviour  by
doing  the  following.  (1)  Alter  the  value  of  Vmax  and  evaluate  what  happens  to  the
slope. (2) What happens to the value of the abscissa intercept when Km  is decreased?
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3 Basic Procedures for 
Simulating Metabolic 
Systems

3.1  Introduction
Traditionally the study of enzyme kinetics has been divided into two main areas, steady-
state  analysis  and  pre-steady-state  analysis.  The  former  usually  requires  simple
instrumentation  like  a  spectrophotometer  with  which  to  perform  the  assays,  but  the
latter  involves  special  apparatus  that  is  fitted  to  a  spectrophotometer  to  record  the
progress of a reaction in its first few milli- or even microseconds. Practitioners of pre-
steady-state  kinetics  use  stopped-flow  and  temperature-jump  devices  and  they  were
often  held  in  awe  by  the  'mere  mortals'  who  used  more  traditional  methods.  In  recent
years other techniques including radioactive-isotope exchange and NMR magnetization
transfer have added to the approaches for gaining data to help define the mechanisms of
enzymic reactions; these methods enable the measurement of fluxes in the forward and
reverse  directions  when  the  overall  reaction  is  at  chemical  equilibrium  and  they  give
access to the fast steps in a reaction.  What makes NMR even more significant is that it
can  be  applied  to  intact  cells  and  tissues  and  it  has  even  been  used  to  study  fast
membrane-transport reactions that occur in the sub-second time scale.

Often, the sets of kinetic parameter values available in the literature on a given enzyme
are  diverse,  having  been  obtained  with  many  different  experimental  techniques  and
under  a  range  of  experimental  conditions.  It  is  sometimes  difficult  to  reach  a
satisfactory conclusion regarding which values in a set of kinetic parameters to use in a
computer model that involves the particular enzyme. In addition, the sets of parameters
are  usually  incomplete  and  are  insufficient  to  define  unambiguously  the  underlying
reaction  mechanism.  Therefore,  a  systematic  approach  is  needed  to  arrive  at  a  set  of
parameter  values,  preferably  unitary  rate  constants,  that  are  consistent  with  the
proposed mechanism of the enzyme and fit in with the known values of the steady-state
parameters.

Thus, there are three main aims in this chapter. They are to (1) show how to take a set
of  steady-state  kinetic  parameters  for  an  enzyme  and  generate  a  set  of  unitary  rate
constants  that  are  internally  consistent  with  this  set;  (2)  incorporate  into  a  reaction
mechanism features that reflect the pH dependence of the enzyme; and (3) account for



the  effect  of  cation  binding  to  the  enzyme  and  its  substrate(s)  in  a  mechanistic  and
kinetic way. 

3.1.1 Inborn errors of metabolism

Experimentally,  the  most  readily  available  kinetic  data  on  enzymes are  those  obtained
with steady-state analysis. In particular, in the literature the most abundant quantitative
kinetic  items  are  the  values  of  Km  and  Vmax .  Inherited  systematic  changes  in  these
parameter values in a particular enzyme for each particular disease is the basis of inborn
errors  of  metabolism.  Part  of  the  motivation  for  this  book  is  the  expectation  that  a
quantitative  understanding  of  the  metabolic  changes,  based  on  simulations  like  those
described herein, will lead to more rational treatments.

Inborn  errors  of  metabolism  come  about  through  several  fundamentally  different
mechanisms that can ultimately be traced backed to  mutations in genes. Alterations of
the base  sequence of  a gene  can lead to (1)  altered packaging of  DNA which changes
the rate of transcription to messenger RNA; (2) altered processing of mRNA including
splicing changes and hence altered amino acid sequences in the protein; (3) altered rate
of translation of  the processed mRNA into protein;  (4)  altered amino acid sequence in
the progenitor enzyme or the final enzyme molecule. Thus the inherited defect can lead
to (5) a reduction in the amount of the otherwise normal enzyme; (6) defective targeting
of  the  enzyme to  intracellular  or  plasma membrane locations  that  expresses  itself  as  a
reduction in total effective enzyme concentration and hence Vmax ; (7) substitution  of an
amino acid residue, or even its omission, leads to altered binding affinity of the enzyme
for  its  substrate(s);  this  changes  Km  values;  (8)  a  similar  outcome  occurs  for  an
inhibitor or effector binding site which affects the  value of  KI  or KE ; (9) alteration of
the interface between domains of a monomeric enzyme or the subunits of an oligomeric
or  polymeric  enzyme and  hence  a  change  in  the  'interaction  constant'  L  (e.g.,  Section
2.5). 

3.1.2 Constancy of Keq

All of the possible structural bases of altered enzymic activity are ultimately reflected in
the  values  of  the  unitary  rate  constants,  and  hence  in  the  corresponding  steady-state
parameters,  of  the  enzyme.  Thus,  when  modelling  inborn  errors  of  metabolism  it  is
usual to focus on a particular step in the reaction mechanism and to change the values
of  the  two  or  more  relevant  unitary  rate  constants.  It  is  worth  remembering  that  an
enzyme  does  not  change  the  value  of  the  equilibrium  constant  for  the  overall
(bio)chemical  reaction;  it  only  changes  the  rate  at  which  equilibrium  is  attained.  For
example,  consider  modelling  a  reduced  binding  affinity  of  an  enzyme  for  one  of  its
substrates.  At  least  one  forward  rate  constant  will  need  to  be  decreased  in  order  to
reflect the reduced rate, but to preserve the constancy of the equilibrium constant for the
whole reaction, at least one of the 'off' or reverse rate constants must also be reduced.
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3.2  Relationships between Unitary Rate Constants and 
Steady-State Parameters

3.2.1 Progress curve of a Michaelis-Menten reaction

Consider  the  irreversible  Michaelis-Menten  scheme  �  it  is  the  simplest  enzyme
mechanism of all (see also Eqn [2.31]).

[3.1]E + A H Io
k-1

k1
 EA ö

k2  E + P ,

[3.2]v0 =
k2@ED0 @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅI k-1+ k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1

M + @AD0 .

Eqn [3.2] expresses the fact that in a conventional steady-state kinetic analysis of such
an enzyme only two parameters are estimated, Km  and Vmax , and these encapsulate all
the  information  that  is  required  to  describe  the  progress  of  the  reaction  after  the
establishment of  a  steady state  of  the  EA concentration.  In  other  words,  if  we assume
that  [EA]  is  constant,  which  involves  ignoring  the  rapid  pre-steady-state  phase  of  the
time course,  the progress  of  the reaction is described by the solution of the Michaelis-
Menten differential equation.

Q: Simulate the decline of  substrate  in a reaction that is catalyzed  by a simple Michaelis-
Menten  enzyme;  let  the  Km  and  Vmax  be  5  mmol  L-1  and  100.0  µmol  L-1  min-1 ,
respectively,  and let the initial concentration of the substrate be 10 mmol L-1 . Simulate
a time course of 400 min.

A: The relevant differential equation is (Eqn [2.1])

[3.3]
d@AD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= -

Vmax@AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Km + @AD0 ,

and a suitable Mathematica  program entails  the use of   NDSolve  (see  Section 1.4.6),
as follows:
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Clear@SubscriptD;
v1 :=

Vmax a@tD
""""""""""""""""""""""""""Km + a@tD ;

Vmax = 100 10^−6;
Km = 5.0 10^−3;
a0 = 10.0 10^−3;

solution =

NDSolve@8a'@tD % −v1, a@0D % a0 <, a@tD, 8t, 0, 400<D88a@tD → InterpolatingFunction@880., 400.<<, <>D@tD<<
By using the resulting InterpolatingFunction  (Section 1.4.6) we can Plot the
time course.

Plot@Evaluate@a@tD ê. solutionD, 8t, 0, 400<,
AxesLabel −> 8"Time HminL", "Concentration HML"<D;

100 200 300 400
Time HminL0.002

0.004

0.006

0.008

0.01
Concentration HML

Figure 3.1. Time course of the enzymic reaction described by  Eqn [3.3].

Q: In the previous  example we only simulated the decline  of  A.  How do we simulate the
appearance of P?

A: The conservation of mass condition for A specifies that
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[3.4]@AD0 = @ADt + @PDt ,

where the subscript t denoted any given time, hence

[3.5]@PDt = @AD0 - @ADt .

So, using our solution from the previous example, we must Plot Eqn [3.5] to solve
this problem.

Plot@Evaluate@8a@tD, a0 − a@tD< ê. solutionD, 8t, 0, 400<,
AxesLabel −> 8"Time HminL", "Concentration HML"<D;

100 200 300 400
Time HminL0.002

0.004

0.006

0.008

0.01
Concentration HML

Figure 3.2. Time course of substrate and product concentration of the Michaelis-Menten
reaction.

We  note  that  the  two  progress  curves  are  mirror  images  of  each  other  with  the
horizontal line of reflection being at half the starting concentration of A. This outcome
is a direct consequence of the conservation relationship in Eqn [3.4]. For the Michaelis-
Menten reaction scheme this is not strictly true  since there will be some buildup of the
enzyme-substrate complex EA (see Eqn [2.12])  prior  to  it  attaining a steady state.  But
as long as [A] is much greater than the concentration of the enzyme, this will usually be
an exceptionally good approximation for times beyond a second or less.

3.2.2 Pre-steady-state Michaelis-Menten scheme

Eqn  [3.2]  contains  the  definition  of  the  steady-state  kinetic  parameters  of  a  simple
Michaelis-Menten enzyme:

[3.6]Km =
k-1 + k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k1
,
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and

[3.7]Vmax = k2 @ED0 ,

where @ED0  is the molar concentration of the active sites of the enzyme.

If  we  wish  to  simulate  the  pre-steady-state  phase  of  the  reaction,  it  is  necessary  to
specify  the  values  of  the  unitary  rate  constants.  In  the  absence  of  any  experimental
studies  that  give  these  values,  or  at  least  some  of  them,  we  must  solve  the  nonlinear
algebraic equations that are expressed in Eqns [3.6] and [3.7] for the three values  (k1 ,
k-1 , and k2 ).

It  is usually possible to make a reliable estimate of the turnover  number of an enzyme
(Section 2.3.2)  from an estimate of Vmax ,  hence k2  is  readily evaluated by rearranging
Eqn [3.7].  This outcome is possible provided that the enzyme has been purified and its
molecular weight, and order of oligomerization (see Section 3.2.3), are known. Solving
Eqns [3.6] and [3.7] for the three unknowns clearly means that the value of one of the
unitary  rate  constants  must  be  arbitrarily  specified.  Suppose  we  give  k1  the  value  aa
mol-1  L s-1, then symbolic expressions for the other two unitary rate constants can be
obtained by using the Solve function. 

Solve@lhs == rhs, varsD attempts to solve an equation or
set of equations for the variables vars

Solving simultaneous equations.

Q: What  is  the  procedure  for  determining  expressions  for  the  unitary  rate  constants  for  a
Michaelis-Menten enzyme in terms of the steady-state parameters Vmax  and Km ?

A: This  problem,  which  is  one  of  solving  a  pair  of  simultaneous  nonlinear  algebraic
equations, is solved as follows:

Clear@SubscriptD;
k1 = aa;
eqn1 := Km ==

k−1 + k2
"""""""""""""""""""k1 ;

eqn2 := Vmax == k2 e0;

Solve@8eqn1, eqn2<, 8k−1, k2<D99k−1 → −
−aa e0 Km + Vmax&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

e0
, k2 →

Vmax&&&&&&&&&&&
e0

==
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The analysis for  this  problem is rather  elementary and the equations could easily have
been  done  accurately  without  symbolic  computation.  However,  the  basic  approach  is
applicable to sets of much more complex expressions of steady-state parameters so it is
a strategy well worth understanding. 

3.2.3 Enzyme oligomerization and the turnover number

There is  a complication with the definition of  @ED0 ;   it  pertains to  the concentration of
active sites since many enzymes are oligomeric. If  the enzyme is oligomeric then @ED0
must be related to the concentration of  the holoenzyme (or  whole  oligomer),  @E'D0 ,  by
the expression

[3.8]@ED0 = n µ m µ @E'D0 ,

where n is the number of subunits in the oligomeric holoenzyme and m is the number of
active  sites  on  each  monomer  (subunit).  If  we  know  the  concentration  of  the
holoenzyme, the value of the forward catalytic breakdown rate constant is related to the
turnover number of each active site by the expression

[3.9]kcat
f = turnover  number µ n µ m ,

where m is almost invariably 1, and the maximum velocity is given by

[3.10]Vmax = kcat
f @E'D0 .

 

3.2.4 Specific examples of enzyme mechanisms

Consider  an  example  of  the  above  analysis  for  a  simple  hydrolytic  enzyme,  arginase.
Arginase catalyses the hydrolysis of arginine to ornithine and urea.

[3.11]arginine Ø ornithine + urea .

Although  we  will  return  to  this  enzyme a  little  later,  in  this  instance  let  us  ignore  the
fact that there are two products of the reaction and assume that the kinetics of arginase
are  well  described  by  the  Michaelis-Menten  equation.  Then  it  is  simple  to  relate  the
unitary rate constants to the steady-state kinetic parameters.

Q: Determine a set of unitary rate constants that are consistent with the known steady-state
parameters  for  a  1  ng  L-1  solution  of  arginase  assuming  it  to  be  a  simple  Michaelis-
Menten enzyme with a Km  for arginine  of  5.0 mmol L-1  and a turnover number of 4.5
× 103  s-1 . The molecular mass of arginase is ~105,000 Da and it exists in solution as a
trimer. 
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A: First,  we  use  Eqn  [3.8]  to  convert  the  gram concentration  to  a  molar  concentration  of
enzyme.

edash0 = 1.× 10−9 ×103 ê105000
9.52381×10−12

By applying Eqn [3.8] we obtain the concentration of subunits in the trimer.

e0 = 3 ×1× edash0
2.85714×10−11

Therefore,  by  using  Eqns  [3.6]  and  [3.7]  we  obtain  the  following  values  for  the
Michaelis-Menten parameters:

Vmax = e0 × 4.5× 103 ;
Km = 5.0× 10−3;

Finally, by arbitrarily selecting a value of 1 × 107 mol-1 L  s-1 for k1,we can use Solve
with Eqns [3.6] and [3.7] to determine the values of k-1 and k2.

k1 = 1.0× 107;
eqn1 := Km ==

k−1 + k2
"""""""""""""""""""k1 ;

eqn2 := Vmax == k2 e0;

solution = Solve@8eqn1, eqn2<, 8k−1, k2<D88k−1 → 45500., k2 → 4500.<<
The answer to the question is that the unitary rate constants that are consistent with the
values of the steady-state parameters are {k1   = 1 × 107  mol-1  L s-1 , k-1  = 4.55 × 104

s-1 , k2  = 4.5 × 103  s-1 }. 

Q: Use the unitary rate constants determined in the previous example, in conjunction with
the  relevant  differential  equations,  to  simulate  a  time course  of  the  arginase-catalyzed
reaction.  Compare the results with those obtained by solving the time course using the
Michaelis-Menten equation (Eqn [3.3]).

A: With the parameters and solution still defined from the last example and assuming that
the  initial  concentration  of  arginine  is  10  mM, we  solve  the  time course  by  using  the
unitary rate constants and rate equations with the following input:

a0 = 10.0× 10−3;

preSSTimecourse = NDSolve@8
a'@tD % −k1 a@tD e@tD + k−1 ea@tD,
ea'@tD % k1 a@tD e@tD − Hk−1 + k2L ea@tD,
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e'@tD % −k1 a@tD e@tD + Hk−1 + k2L ea@tD,
p'@tD % k2 ea@tD,
a@0D % a0, ea@0D % 0, e@0D % e0, p@0D % 0.0< ê. solution,8a, ea, e, p<,8t, 0, 1<, AccuracyGoal −> 12D;

Note the application of the /. solution operator to the list of differential equations.
This  introduces  the  values  of  k-1  and  k2  that  were  obtained  in  the  previous  example;
k1 is  still  an  assigned  value.  We  have  also  specified  the  option  AccuracyGoal →
12 (see Section 1.6.4). The reason for this is that we are interested in the concentration
of the product  in the 'pre-steady-state' phase of  the reaction that occurs within the first
few milliseconds when the concentration of product is very low. 

Similarly, we solve for the time course using the Michaelis-Menten rate equation (Eqn
[3.3]).

ssTimecourse =

NDSolveA9a'@tD % −
Vmax a@tD

""""""""""""""""""""""""""Km + a@tD , a@0D % a0=,
a@tD, 8t, 0, 1<, AccuracyGoal −> 12E;

By graphing the two time courses we obtain

Plot@8Evaluate@p@tD ê. preSSTimecourseD,
Evaluate@Ha0 − a@tDL ê. ssTimecourseD<,8t, 0.0, 1<,
AxesLabel → 8"Time HminL", "Concentration HML"<,
PlotRange −> AllD;
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Figure 3.3. Time course of the arginase-catalyzed reaction. Comparing pre-steady-state
reaction kinetics to Michaelis-Menten kinetics.

It is evident that under the conditions used and in the timescale considered, there is no
perceptible  difference  between  the  pre-steady-state  and  steady-state  solutions  for  the
time course. However, if we plot just the first 100 ms of the timecourse,

Plot@8Evaluate@p@tD ê. preSSTimecourseD,
Evaluate@Ha0 − a@tDL ê. ssTimecourseD<,8t, 0.0, 0.0001<,
AxesLabel → 8"", "Concentration HML"<, PlotRange −> AllD;
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Figure 3.4. Time course of the arginase-catalyzed reaction. Comparing pre-steady-state
reaction kinetics (lower curve) to Michaelis-Menten kinetics (upper curve) within the first
100 ms.

Thus, we see a small time lag before the pre-steady-state time course has the same slope
as that described by the solution of the steady-state equation.

3.3  Upper Limit of Values for Unitary Rate Constants
In the first question in Section 3.2.4 we sought the value of three unitary rate constants.
However, there were only two steady-state parameters so it was necessary to assume the
value of one of either k1  or k-1 ; k1  was  chosen because there is a rational choice that
can be made for the value of such a second-order rate constant. Could we have chosen a
much larger value than the 1 × 107 mol-1  L s-1  that was used? The answer is "yes, sort
of!"  as  there  is  an  upper  bound  on  the  value;  this  is  called  the  'diffusion  limit'  for  a
second-order rate constant.

3.3.1 Diffusion control of reaction rate

The  upper  limit  of  second-order  rate  constants  can  be  determined  experimentally  by
using  rapid-reaction  methods.   At  ~37°C  the  value  has  been  found  to  be  ~1  ×  108

mol-1  L s-1 . This value applies to solutions such as those found in the cytoplasm of a
cell,  or  in  the  plasma  of  blood.  A  simple  theoretical  analysis  shows  how  this  value
comes about.

Consider two reacting molecular species, A and B, in solution. If the rate of the reaction
is  proportional  to  the  rate  at  which  a  molecule  of  A  collides  with  one  of  B,  then  the
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effective  mean intermolecular (inter-collision)  distance and the diffusion  coefficient  of
each  reactant  will  dictate  the  rate.  Since  the  molecules  are  in  motion  we  can,  without
loss of generality, conveniently focus attention on just one molecule of A  and place its
centre  at  the  origin  of  a  spherical  polar  coordinate  system. The  relative  motion  of  the
two molecules can then be characterized by the sum of their diffusion coefficients (DA
+  DB ).  If  the  inward  flux  of  molecules  of  B  through  a  sphere  of  radius  r  around  the
single molecule of A is denoted by J (flux; units, mol m-2  s-1 ), then the magnitude of
the flux is given by Fick's first law of bulk diffusion,

[3.12]J = -HDA + DBL d@nBDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dr

,

where  the  derivative  term  expresses  the  gradient  in  number-concentration  (number  of
molecules per unit volume) of B. Thus, the number of molecules of B diffusing across
the surface of a sphere of radius r (surface area = 4 p r2 ) per second is given by I = J 4
p  r2 .  Equation [3.12]  can be integrated with respect  to the radius and [nB ]  in  the bulk
medium,

[3.13]I
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p r2  ‡

r=RAB

r=R¶

dr
ÅÅÅÅÅÅÅÅÅ
r2 = -HDA + DBL ‡

0

@nBD = @nBDr=¶

d@nBD ,

where  H@nBDLr=¶  is defined as the concentration in the bulk solution, namely,  @nBDbulk .
Thus,

[3.14]
-I

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p R¶

+
I

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p RAB

= HDA + DBL H@nBDLbulk ,

and at r = R¶  the flux is assumed to be zero. Eqn [3.14] is rearranged to give (dropping
the "bulk" subscript) the expression that has units of Hnumber of moleculesL-1 m3   s-1 ,

[3.15]
I Hnumber of molecules s-1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@nBD Hnumber of molecules m-3L = k ' = 4  p RAB HDA + DBL ;

[nB ] is now expressed as  a molar concentration by dividing Eqn [3.15]  by Avogadro's
number,  N,  and  multiplying  by  10-3  to  convert  the  units  of  m-3  to  L-1 .  Hence,
multiplying the  Eqn  [3.15]  by  N  ×  103  gives  the  expression  for  the  second-order  rate
constant, k, with the appropriate units (mol-1  L s-1 ),

[3.16]k = k ' N 103 = 4 p RAB HDA + DBL N  103 .

Q: Does  the  analysis  in  the  previous  section  (Eqn  [3.16])  yield  a  realistic  value  for  the
upper  limit  of  a  second-order  rate  constant  that  characterizes  the  reaction  between  a
metabolite and enzyme in a cellular environment? 

A: The diffusion coefficient of bulk water at 37°C is ~2 × 10-9  m2  s-1 .  Suppose that the
metabolite  B  has  a  diffusion  coefficient  that  is  an  order  of  magnitude  less  than  water
because  of  the  higher  viscosity  in  the  cell,  and  the  enzyme's  diffusion  coefficient  is
smaller  again  by  a  factor  of  10  because  of  its  much  larger  molecular  mass.  Also,  the
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radius of many metabolites is ~ 0.2 to 1 nm while that of a typical enzyme is ~3 nM. By
using Eqn [3.16]  the value of k is calculated to be

k = 4 π ∗ 4× 10−9 m H2.2×10−10 m2 s−1L 6.022 1023 mol−1 103 L  m−3

6.65937×109 L
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

mol s

This value is about two orders of magnitude greater that we expected if the claim of 1 ×
108  mol-1  L  s-1 is  correct.  The  explanation  for  the  discrepancy  lies  in  the  very
simplistic  model  used  in  our  analysis.  We  did  not  take  into  account  the  fact  that
molecules  need  to  be  correctly  aligned  in  order  to  react,  so  not  all  collisions  lead  to
products.  Furthermore,  the value of  the diffusion coefficients under  cellular conditions
are likely to be significantly less than that used here.  So, 1 × 108  mol-1  L s-1  appears
to  be  a  useful,  albeit  conservatively  low,  value  to  use  in  simulating  enzymic systems.
This value is useful if we are faced with having to choose an arbitrary one for a second-
order rate constant in simulations of metabolism, and it is used in some of the following
sections.

3.4  Realistic Enzyme Models
In reality, it is uncommon to encounter enzymic reactions that can be simply described
by  the  Michaelis-Menten  mechanism.  Those  enzymes  that  appear  most  commonly  to
conform to this simple model are hydrolytic ones. As this name suggests water is a co-
reactant  with  the  substrate,  so  the  enzyme  has  in  reality  two  substrates  and  not  one.
Because  the  concentration  of  water  in  a  reaction  mixture  is  so  large  (55.55  mol  L-1 ),
relative to the other substrate(s), it is assumed to be constant and therefore it is not usual
to  include  the concentration  of  water  in  the  rate  equation.  On the other  hand,  it  is  not
possible to ignore the fact that two products are formed in most hydrolytic reactions. A
good example of this is again provided by arginase, an enzyme of the urea cycle that we
first considered in Section 3.2.4.

3.4.1 Deriving steady-state rate equations

The steady-state rate equation for any enzymic reaction mechanism can, in principle, be
derived in the same way as that for the Michaelis-Menten mechanism (Section 2.3.2).

Q: Derive  an  expression  for  the  steady-state   rate  equation  for  arginase  in  terms  of  its
unitary rate constants.

A: The complete reaction mechanism of arginase is

Basic Procedures for Simulating Metabolic Systems 65



[3.17]

where A, U, and O denote arginine, urea, and ornithine, respectively. 

A rate equation for this mechanism can be derived by using the steady-state assumption
described in Section 2.3.2. First we write expressions that describe the rate of change of
the concentrations of all but one enzyme form.

Clear@k, SubscriptD;
eqn1 := e'@tD % −k1 e a + k−1 ea − k−3 e o + k3 eo;
eqn2 := ea'@tD % k1 e a − k−1 ea − k2 ea;

By applying the steady-state assumption, the left-hand side of each equation is set equal
to zero.

e'@tD = 0;
ea'@tD = 0;

Expressions describing the steady-state concentrations of each of the enzyme forms can
then  be  derived  by  solving  the  above  simultaneous  equations  and  the  conservation  of
mass equation for the enzyme.

solution = Solve@8eqn1, eqn2, e0 % e + ea + eo<, 8e, ea, eo<D99eo → −
−e0 o k−3 k−1 − e0 o k−3 k2 − a e0 k1 k2&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

o k−3 k−1 + o k−3 k2 + a k1 k2 + k−1 k3 + a k1 k3 + k2 k3
,

e →
e0 Hk−1 + k2L k3&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

−a k1 Hk−1 − k3L − Hk−1 + k2L H−o k−3 − a k1 − k3L ,

ea →
a e0 k1 k3&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

−a k1 Hk−1 − k3L − Hk−1 + k2L H−o k−3 − a k1 − k3L ==
The rate of production of urea is given by

varg := u'@tD % k2 ea

and hence the steady-state rate equation is

varg ê. solution
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9u(@tD ==
a e0 k1 k2 k3&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

−a k1 Hk−1 − k3L − Hk−1 + k2L H−o k−3 − a k1 − k3L =
From the last question, the steady-state  rate equation for arginase is

[3.18]v =
d@UD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
=

k1 k2 k3 @AD @ED0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k3Hk-1 + k2L + k-3 Hk-1 + k2L @OD + k1 Hk2 + k3L @AD ,

and  the  correspondences  between  the  unitary  rate  constants  and  the  steady-state
parameters are readily derived.

[3.19]kcat
f = Vmax

f ê @ED0 = k2 k3 ê Hk2 + k3L ,

[3.20]Km,A = k3 Hk-1 + k2L ê Hk1 Hk2 + k3LL ,

[3.21]Ki,O = k3 ê k-3 .

Note the use of nomenclature to denote the forward catalytic steady-state rate constant,
kcat

f ,  and  its  corresponding  maximum  velocity.  Also,  since  there  are  Michaelis  and
inhibition  constants  for  each  reactant,  it  is  necessary  to  use  double  subscripts  such  as
Km,A  and Ki,O , respectively. 

3.4.2 The RateEquation function

Another  way  to  derive  steady-state  rate  equations  is  to  use  the  RateEquation
function  that  is  fully  described  in  Appendix  1.  It  automatically  derives  a  steady-state
rate  equation  for  almost  any  enzyme mechanism with  up  to  14  enzyme forms.  Before
this function is used for the first time you must evaluate all the cells in Appendix 1 so
that  the  appropriate  .m  file  is  created.  This  allows  the  function  to  be  called  using  the
following commands.

<< rateequationderiver loads in the functionRateEquation
RateEquation@rcm, elD derives  the  steady state  rate  equation  for  an  

enzyme  mechanism  defined  in  the  rate  constant  
matrix  Hrcm - see below and Appendix 1L. The  
argument  el  is  optional  and  is  a  list  
of  user  defined  names  for  the  enzyme  
forms  of  the  reaction  mechansim.

Deriving rate equations.

Q: Use the function RateEquation to derive the rate expression given in Eqn [3.18].

A: First it is necessary to load in the function RateEquation.
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<< rateequationderiver
Then, the only 'thinking task' required of you is to set up the rate constant matrix based
on the reaction scheme in Eqn [3.17]. The matrix is

→ e → ea → eo
e → 0 k1 a k−3 o
ea → k−1 0 k2
eo → k3 0 0

Hence, in Mathematica the matrix is entered as

rcmArginase = 880, k1 a, k−3 o<, 8k−1, 0, k2<, 8k3, 0, 0<<;
The function RateEquation is applied as follows:

RateEquation@rcmArginase, 8e, ea, eo<D
The output is

Enzyme Distribution Functions

eêeo = Hk−1 k3 + k2 k3L
eaêeo = a k1 k3

eoêeo = Ho k−3 k−1 + o k−3 k2 + a k1 k2L
Steady−State Rate Equations

d@aDêdt =−a eo k1 k2 k3ê Denominator

d@oDêdt =a eo k1 k2 k3ê Denominator

Denominator

o Hk−3 k−1 + k−3 k2L + k−1 k3 + k2 k3 + a Hk1 k2 + k1 k3L
Thus, it can be seen that the functional form of the output is the same as Eqn [3.18], as
required by the question.
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3.4.3 Calculating a consistent set of unitary rate constants

Having  determined the  steady-state  rate  equation,  as  well  as  the  relationships  between
the  unitary  rate  constants  and  the  steady-state  kinetic  parameters,  it  is  possible  to
calculate a consistent set of unitary rate constants. 

Q: Calculate a consistent set of unitary rate constants for the arginase mechanism shown in
Eqn  [3.17]  by  using  the  three  well-knownH8L  values  of  the  steady-state  parameters  for
the enzyme, Km,A , Ki,O  and the turnover number.

A:  Use the Mathematica function Solve as follows:

The known parameter values areH8L
kcat,f = 4.5 × 103; H∗mol L−1 s−1∗L
Km,a = 5.0 × 10−3; H∗mol L−1 ∗L
Ki,o = 3.0 × 10−3; H∗mol L−1 ∗L

Only  three  steady-state  parameter  values  are  known,  so  two  of  the  five  unitary  rate
constants  must  be  assigned  values.  Select  the  two  second-order  rate  constants  and  set
them to 1/10th of the diffusion limit value (Section 3.3.1).

k1 = 1.0 × 107;
k−3 = 1.0 × 107;

Now  use  Solve   to  determine  the  values  of  the  unitary  rate  constants  from the  non-
linear  algebraic  equations  that  relate  the  steady-state  parameters  to  the  unitary  rate
constants (Section 3.4.1).

Solve@8kcat,f % k2 k3 êHk2 + k3L,
Km,a % k3 Hk−1 + k2LêHk1 Hk2 + k3LL, Ki,o % k3 êk−3<, 8k−1, k2, k3<D88k−1 → 53529.4, k2 → 5294.12, k3 → 30000.<<

Thus the set of unitary rate constants whose values are consistent with the values of the
steady-state parameters are {k1  = 1 × 107  mol-1  L s-1 , k-1  = 5.35 × 104  s-1 , k2  = 5.29
× 103  s-1 , k3  = 3 × 104  s-1 , k-3  = 1 × 107  mol-1  L s-1 }. 

3.5  Deriving Expressions for Steady-State Parameters
Enzymes  are  often  studied  by  using  a  range  of  concentrations  of  various  substrates,
products,  and  inhibitors  in  order  to  determine  the  reaction  mechanism.  The  choice  of
particular experiments is made on the basis of the well-trodden path of standard enzyme
kinetic practice, as described in many authoritative texts.H4-7L
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As noted  in  Section  3.4.2,  the  function  RateEquation  provides  a  means  of  rapidly
deriving  the  steady-state  rate  equations  for  virtually  any  enzyme mechanism.  But  for
the present problem we must regroup the various terms involving unitary rate constants
in  the  rate  equation  to  couch  the  rate  equation  on  a  form  that  has  the  equivalent
Michaelis-Menten  constants,  inhibition  constants,  and  Vmax  parameters.   For  arginase
(Section 3.4.1) the relationships between the unitary rate constants and the steady-state
parameters  were  readily  apparent.  However,  for  many enzyme mechanisms this  is  not
the case.

The  Vmax  of  an  enzymic  reaction  is  simply  the  rate  obtained  when  the  substrate
concentration  is  (infinitely!)  high.  This  situation  ensures  that  the  active  site(s)  of  the
enzyme  are  saturated  with  the  substrate.  When  choosing  a  range  of  substrate
concentrations for use in kinetic experiments the rule of thumb that is used is that "the
highest substrate concentration must be at least 5 times the Km value" for the particular
substrate. Recall that the  Km  is defined as the substrate concentration that gives half the
maximum  velocity.  Then  at  the  top  of  this  range  the  enzyme  will  be  operating  at
approximately 5/6 th of its Vmax .

For  enzymes  with  two  or  more  co-substrates,  Vmax  is  the  velocity  when  each  co-
substrate is at a saturating concentration, and the products are all at zero concentration.
The corresponding Km  values are now defined as the substrate concentration that gives
the  half-maximum  velocity  when  all  the  other  co-substrates  are  at  saturating
concentrations.

The  biochemical  literature  is  replete  with  kinetic  data  on  enzymes  with  the  maximal
velocities  often  expressed  in  terms  of  the  turnover  number(s),  and  the  steady-state
parameters  given  as  Michaelis  constants  and  various  types  of  inhibition  constant.  The
challenge  facing  the  metabolic  modeler  is  to  match  these  values  with  the  appropriate
terms in the rate equation that describes the appropriate enzyme mechanism. Hence, it is
useful to have an automatic procedure for deriving the expressions for these parameters.
This  process  is  shown  in  the  next  example  by  using  another  urea  cycle  enzyme,
ornithine carbamoyl transferase.

Q: Derive the steady-state rate equation and hence expressions for Vmax  in the forward and
reverse  directions,  as  well  as  the  respective  Km  values  for  each  substrate,  in  the
ornithine carbamoyl transferase reaction. 

A:  The reaction mechanism for this urea cycle enzyme isH8L
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[3.22]

where  CP,  O,  C,  and  P  denote  carbamoyl  phosphate,  ornithine,  citrulline,  and
orthophosphate,  respectively.  There  are  two  important  points  to  note  about  this
mechanism. First,  the  formation of  a  ternary  complex occurs  between the  enzyme and
both  substrates;  and  second,  the  substrates  and  products  bind/release  to/from  the
enzyme in a specific order. These two features lead to the definition of this mechanism
as a compulsory-ordered ternary-complex one. 

We derive the overall steady-state expression for the reaction mechanism of Eqn [3.22]
in a manner similar to that used in the example in Section 3.4.2. We begin by setting up
the rate constant matrix and then using RateEquation, as follows:

Clear@SubscriptD;
rcmOCT = 880, k1 cp, 0, k−4 p<,8k−1, 0, k2 o, 0<, 80, k−2, 0, k3<, 8k4, 0, k−3 c, 0<<;
RateEquation@rcmOCT, 8e, ecp, eocp, ep<D

The output is

Enzyme Distribution Functions

eêeo = Hc k−3 k−2 k−1 + k−2 k−1 k4 + k−1 k3 k4 + o k2 k3 k4L
ecpêeo = Hc p k−4 k−3 k−2 + c cp k−3 k−2 k1 + cp k−2 k1 k4 + cp k1 k3 k4L
eocpêeo = Hc p k−4 k−3 k−1 + c o p k−4 k−3 k2 + c cp o k−3 k1 k2 + cp o k1 k2 k4L
epêeo = Hp k−4 k−2 k−1 + p k−4 k−1 k3 + o p k−4 k2 k3 + cp o k1 k2 k3L
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Steady−State Rate Equations

d@cpDêdt =eo Hc p k−4 k−3 k−2 k−1 − cp o k1 k2 k3 k4Lê Denominator

d@pDêdt =eo H−c p k−4 k−3 k−2 k−1 + cp o k1 k2 k3 k4Lê Denominator

d@oDêdt =eo Hc p k−4 k−3 k−2 k−1 − cp o k1 k2 k3 k4Lê Denominator

d@cDêdt =eo H−c p k−4 k−3 k−2 k−1 + cp o k1 k2 k3 k4Lê Denominator

Denominator

c k−3 k−2 k−1 + p Hk−4 k−2 k−1 + c Hk−4 k−3 k−2 + k−4 k−3 k−1L +

k−4 k−1 k3 + o Hc k−4 k−3 k2 + k−4 k2 k3LL +

k−2 k−1 k4 + k−1 k3 k4 + o k2 k3 k4 + cpHc k−3 k−2 k1 + k−2 k1 k4 + k1 k3 k4 + o Hc k−3 k1 k2 + k1 k2 k3 + k1 k2 k4LL
We  can  now apply  the  Limit  function  in  various  ways  to  determine the  steady-state
parameters.

Limit@expr, x -> x0D finds the limiting value of expr  when x  approaches x0

The Limit function.

We  start  by  choosing  one  of  the  rate  expressions  in  the  output  generated  above;  it  is
usual practice to select an expression that describes the rate of change of concentration
of a product (since we usually define the rate of product formation to be positive). We
convert this particular expression to an input one by cutting and pasting it into an input
Cell:

vel = H−c p k−4 k−3 k−2 k−1 + cp o k1 k2 k3 k4Lêdenom;
denom =

c k−3 k−2 k−1 + p Hk−4 k−2 k−1 + c Hk−4 k−3 k−2 + k−4 k−3 k−1L + k−4 k−1 k3 +

o Hc k−4 k−3 k2 + k−4 k2 k3LL + k−2 k−1 k4 +

k−1 k3 k4 + o k2 k3 k4 + cp Hc k−3 k−2 k1 + k−2 k1 k4 +

k1 k3 k4 + o Hc k−3 k1 k2 + k1 k2 k3 + k1 k2 k4LL;
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Now  derive  the  expression  for  Vmax  for  the  forward  direction.  This  entails  taking  the
limit  of  the  rate  equation  as  the  two substrate  concentrations  go  to  infinity  while  also
setting the product concentrations to zero.

Vmaxf1 = Limit@vel, o → InfinityD;
Vmaxf2 = Limit@Vmaxf1, cp → InfinityD;
Vmax,f = Vmaxf2 ê. c → 0;
Print@"Vmax in forward direction = ", Vmax,fD
Vmax in forward direction =

k3 k4&&&&&&&&&&&&&&&&&
k3 + k4

The expression for the Km  of ornithine is obtained by (1) solving the rate equation for
the  value  of  the  ornithine  concentration  that  yields  a  rate  of   Vmax /2;  (2)  setting  the
product  concentrations  to  zero;  and  (3)  taking  the  limit  as  the  co-substrate(s)  go  to
infinity.  The  analysis  uses  the  powerful  symbolic  capability  of  Mathematica  for  this
otherwise very tedious and error-prone task.

kmorn1 = SolveAvel ==
Vmax,f
"""""""""""""""2 , oE;

kmorn2 = kmorn1 ê. 8c → 0, p → 0<;
Km,o = o ê. Limit@kmorn2, cp → InfinityD;
Print@"Km for ornithine = ", Km,oD;
Km for ornithine = 9 Hk−2 + k3L k4&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

k2 Hk3 + k4L =
Similarly,  we  obtain  expressions  for  the  other  steady-state  parameters.  For  example,
Vmax  for  the  reverse  direction  is  obtained  in  the  same  manner  as  for  the  forward
direction but with the products now viewed as substrates.

Vmaxr1 = Limit@vel, c → InfinityD;
Vmaxr2 = Limit@Vmaxr1, p → InfinityD;
Vmax,r = Vmaxr2 ê. o → 0;
Print@"Vmax in reverse direction =", Vmax,rD;
Vmax in reverse direction =−

k−2 k−1&&&&&&&&&&&&&&&&&&&&&
k−2 + k−1

The other Km  expressions are determined as follows:H∗Km for carbamoyl phosphate is...∗L
kmcp1 = SolveAvel ==

Vmax,f
"""""""""""""""2 , cpE;

kmcp2 = kmcp1 ê. 8c → 0, p → 0<;
Km,cp = cp ê. Limit@kmcp2, o → InfinityD;
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Print@"Km for carbamoyl phosphate = ", Km,cpD;H∗Km for citrulline is...∗L
kmcit1 = SolveAvel ==

Vmax,r
"""""""""""""""2 , cE;

kmcit2 = kmcit1 ê. 8o → 0, cp → 0<;
Km,c = c ê. Limit@kmcit2, p → InfinityD;
Print@"Km for citrulline = ", Km,cD;H∗Km for phosphate is...∗L
kmpi1 = SolveAvel ==

Vmax,r
"""""""""""""""2 , pE;

kmpi2 = kmpi1 ê. 8o → 0, cp → 0<;
Km,p = p ê. Limit@kmpi2, c → InfinityD;
Print@"Km for phosphate = ", Km,pD;
Km for carbamoyl phosphate = 9 k3 k4&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

k1 Hk3 + k4L =
Km for citrulline = 9 k−1 Hk−2 + k3L&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

k−3 Hk−2 + k−1L =
Km for phosphate = 9 k−2 k−1&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

k−4 Hk−2 + k−1L =
Having  derived  the  relationships  between  the  unitary  rate  constants  and  the
experimentally  measurable  steady-state  parameters,  a  consistent  set  of  unitary  rate
constants can be calculated (see next worked example).

Q: Calculate  a  consistent  set  of  unitary  rate  constants  for  the  ornithine  carbamoyl
transferase mechanism shown in Eqn [3.22].  Use the three known values of the steady-
state parameters and the equilibrium constant.H8L

A: In  this  mechanism  there  are  eight  unitary  rate  constants  but  only  three  well-known
steady-state  parameter  values,  plus  the  equilibrium  constant  of  the  overall  reaction.
Therefore  it  is  necessary  to  assume  values  of  four  of  the  unitary  constants.  As  in  the
example in Section 3.4.3, the program is also based on the Solve function.

The known parameter values areH8L
kcat,f = 1.4 × 103;
Km,cp = 8.1 × 10−5;
Km,o = 9.0 × 10−4;
Keq = 1.0 × 105;
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and we assume the following 'reasonable' values for four of the unitary rate constants:

k−2 = 1.0 × 103;
k3 = 3.0 × 103;
k−3 = 9.0 × 104;
k−4 = 5.0 × 105;

We now Solve for the unitary rate constants:

SolveA9kcat,f ==
k3 k4

"""""""""""""""""k3 + k4 , Km,cp ==
k3 k4

"""""""""""""""""""""""""""""k1 Hk3 + k4L , Km,o ==
Hk−2 + k3L k4
"""""""""""""""""""""""""""""""k2 Hk3 + k4L ,

Keq == k1 k2 k3 k4 êHk−1 k−2 k−3 k−4L=, 8k1, k−1, k2, k4<E88k−1 → 62.7343, k1 → 1.7284×107, k2 → 2.07407×106, k4 → 2625.<<
In conclusion, the unitary rate constants that are consistent with the values of the steady-
state  parameters  are  {k1  =  1.73  ×  107  mol-1  L  s-1 ,  k-1  =  62.73  s-1 ,  k2  =  2.07  ×
106 mol-1  L s-1 , k3 = 3 µ 103  s-1 , k-3  = 9 × 104  mol-1  L s-1 , k4  = 2.63 × 103  s-1 , and
k-4  =  2.07  ×  106  mol-1  L  s-1 }.   These  are  used  in  a  model  of  the  urea  cycle  that  is
described in Section 3.8.

3.6  Multiple Equilibria
Another  major  task  in  formulating  a  model  of  metabolism  is  the  inclusion  of
quantitative descriptions of the concentrations of complexes between metal cations and,
primarily,  phosphorylated  metabolic  intermediates.  The  procedure  used  to  calculate
these  concentrations  turns  out  to  be  formally  equivalent  to  that  used  to  determine  the
values  of  unitary  rate  constants,  given  a  set  of  steady-state  kinetic  parameters.  In  the
present  case  the  initial  concentrations  of  all  reactants  must  be  specified,  together  with
expressions  for,  and  values  of,  the  various  equilibrium  constants  of  the  binding
reactions. Having made this claim it is probably most convincing to simply illustrate the
process of analysis; it is as follows.

Q: Calculate the concentrations of free Mg, free ATP, and their 1:1 complex in a reaction
mixture that has attained equilibrium, from a total concentration of 3 mmol L-1  Mg and
1 mmol L-1  ATP. Assume that the reaction scheme is

[3.23]Mg2+ + ATP4- H Ioooooo
KMgATP

 MgATP2-, KMgATP = 1 µ 102 M-1 .

A: We begin by writing the expression for the equilibrium constant of the reaction; it is
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eqn1 := Kmgatp ==
mgatp2mi

""""""""""""""""""""""""""""""""mg × atp4mi ; Kmgatp = 1×102;

The following conservation of mass conditions also apply.

eqn2 := mg + mgatp2mi == 3.0×10−3;
eqn3 := atp4mi + mgatp2mi == 1.0×10−3;

Thus there exist  three equations in three unknowns  which we solve using the function
Solve.

solution = Solve@8eqn1, eqn2, eqn3<, 8mg, atp4mi, mgatp2mi<D88mgatp2mi → 0.00021767, mg → 0.00278233, atp4mi → 0.00078233<,8mgatp2mi → 0.0137823, mg → −0.0107823, atp4mi → −0.0127823<<
The output is a list of two solutions but we note by inspection that only one of them is
physically  meaningful  because  all  concentrations  must  be  positive.  The  only
meaningful solution shows that the concentration of  free Mg is 2.782 mM, and that of
its  1:1  complex  with  ATP  is  0.218  mM.  A  simple  way  to  delete  the  nonphysical
solution  is  with  the  following  input  which  relies  on  a  number  of  Mathematica  pattern
recognition commands.

realSolution = solution ê.H8a___, b_ −> c_, d___< ê; Negative@cDL −> 8< êê Flatten8mgatp2mi → 0.00021767, mg → 0.00278233, atp4mi → 0.00078233<
It  is  left  to  the  reader  to  use  the  Mathematica  help  browser  to  understand  these
commands and syntax of this input. 

Also by way of a check on the solution to the problem we note that the conservation of
mass condition for total ATP is satisfied since 2.782 mM + 0.218 mM = 3.0 mM. The
test  for  conservation  of  mass  is  always  worth  carrying  out  to  ensure  your  program  is
functioning correctly. This can be tested with the following input:8eqn2, eqn3< ê. realSolution8True, True<

H8a___, b_ -> c_, d___< ê;
Negative@cDL -> 8< replacement rule which converts a list of rules

containing negative values on the rhs to an empty set

list êê Flatten removes the inner set of braces from the list

Removing non-physically meaningful solutions from a list of replacement rules.
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Q: Consider the more realistic reaction scheme than that given above in which ATP exists
in various protonated forms and these have different values of the binding constant for
Mg and Ca. In addition, suppose that Ca is present in the solution as well. Calculate the
concentrations  of  free  Mg,  Ca,  and  the  various  protonated  forms  of  ATP  and  their
complexes in a reaction mixture that has attained equilibrium from a total concentration
of each species of  3 mmol L-1 . Assume that the reaction scheme is as follows, noting
that  here  we  use  the  superscripted  valences  of  the  ions  to  help  emphasize  the  net
charges of the different complexes.

The  complexes  of  Mg  and  ATP  are  formed  in  the  following  reactions  with  their
respective equilibrium constants.

[3.24]Mg2+ + ATP4- H Iooooooo
KMgATP2-

 MgAT P2-, KMgATP2- = 1 µ 102 M-1 ,

[3.25]Mg2+ + ATP3- H Iooooooo
KMgATP-

Mg ATP-, KMgHATP- = 7 µ 103 M-1 .

Complexes of Ca and ATP are

[3.26]Ca2+ + ATP4- H Iooooooo
KCaATP2-

CaATP2-, KCaATP2- = 1 µ 102 M-1 ,

[3.27]Ca2+ + ATP3- H Ioooooo
KCaATP-

CaATP-, KCaATP- = 1 µ 104 M-1 .

Protonation of ATP also occurs.

[3.28]H+ + ATP4- H Iooooo
KATP3-

ATP3-, KATP3- = 3 µ 106 M-1 ,

[3.29]H+ + ATP3- H Iooooo
KATP2-

ATP2-, KATP2- = 1 µ 104 M-1 .

A: We  solve  this  problem  in  a  manner  similar  to  that  used  in  the  previous  question,  by
setting up the expressions for the equilibrium constants and defining the conservation of
mass conditions.

The equilibrium equations for the reactions in Eqns [3.24 - 3.29] are

eqn1 := Kmgatp2mi ==
mgatp2mi

""""""""""""""""""""""""""""""""mg × atp4mi ; Kmgatp2mi = 1×102;

eqn2 := Kmgatpmi ==
mgatpmi

""""""""""""""""""""""""""""""""mg × atp3mi ; Kmgatpmi = 7×103;

eqn3 := Kcaatp2mi ==
caatp2mi

""""""""""""""""""""""""""""""""ca × atp4mi ; Kcaatp2mi = 1×102;

eqn4 := Kcaatpmi ==
caatpmi

""""""""""""""""""""""""""""""""ca × atp3mi ; Kcaatpmi = 1×104;
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eqn5 := Katp3mi × h ==
atp3mi

""""""""""""""""""""atp4mi ; Katp3mi = 3×106;

eqn6 := Katp2mi × h ==
atp2mi

""""""""""""""""""""atp3mi ; Katp2mi = 1×104;

The conservation of mass equations are

eqn7 := mg + mgatp2mi + mgatpmi == 3.0×10−3;
eqn8 := ca + caatp2mi + caatpmi == 3.0×10−3;
eqn9 := atp4mi + atp3mi + atp2mi +

caatp2mi + caatpmi + mgatp2mi + mgatpmi == 5.0×10−3;

Hence  there  are  9  equations  and  10  unknowns.  By  setting  the  pH  to  7.2  and  then
calculating the H+ concentration, we can solve for the remaining 9 unknowns.

pH = 7.2;
h = 1 ∗10^−pH;

unknowns = 8mg, ca, atp4mi, atp3mi,
atp2mi, mgatp2mi, mgatpmi, caatp2mi, caatpmi<;

solution = Solve@8eqn1, eqn2, eqn3,
eqn4, eqn5, eqn6, eqn7, eqn8, eqn9<, unknownsD;

realsolution = solution ê.H8a___, b_ −> c_, d___< ê; Negative@cDL −> 8< êê Flatten;

MatrixForm@Transpose@8unknowns, unknowns ê. realsolution<DDi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

mg 0.00122309
ca 0.000989526

atp4mi 0.00101951
atp3mi 0.00019298

atp2mi 1.21762×10−7

mgatp2mi 0.000124695
mgatpmi 0.00165222
caatp2mi 0.000100883
caatpmi 0.00190959

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Note that we have used the new commands MatrixForm and Transpose to display
the solutions as a matrix.
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MatrixForm@listD diplays the list in matrix form

Transpose@mD Transposes the matrix m

Displaying lists.

Papers  by  Conigrave  and  MorrisH1L  and  Mulquiney  and  KuchelH2,3L  treat  even  more
complicated  reaction  schemes  than  those  that  are  considered  here,  but  the  basic
principles  of  solving  the  nonlinear  algebraic  equations  to  yield  estimates  of  all  the
concentrations  of  the  reactants  are  exactly  the  same.  The  nonlinearity  of  the  system
comes about  via  the definitions  of  the equilibrium constants,  since the expressions  are
ratios  of  products  of  the  equilibrium  concentrations  of  the  reactants.  The  other
important aspect of setting up the analysis is the definition of the conservation of mass
conditions.  In  these  expressions  special  care  is  needed  when  taking  into  account  the
stoichiometry of the complexes.

3.7  pH Effects on Kinetic Parameters
The   dependence  of  enzymic  activity  on  pH  is  well  known  and  the  simplest  reaction
schemes  that  encapsulate  this  dependence  are  elaborations  of  the  Michaelis-Menten
one.  In  general,  changes  come about  in  Vmax  and  Km  because  of  changes  in  one  or  a
combination of the following: (1) ionization of groups in the substrate; (2) ionization of
groups  involved  in  binding  the  substrate;  (3)   groups  involved  in  catalysis;  and  (4)
ionization of other groups on the enzyme such as effector binding sites. 

Because  the  topic  is  well  described  in  many  books  on  enzyme kinetics,H4-7L  only  one
illustrative example of  a  pH effect  on a simple enzyme will  be given here.  This  is  the
simplest of all enzymic-reaction schemes.

3.7.1 Ionization of the substrate

If  we assume that  there are no relevant ionizable groups  on E or  EA, then the scheme
that describes just ionization of the substrate is

[3.30]
A
LKa
HA+

+ E  H Io
k1

k-1

EA ö
k2 E + P .

This  is  analogous  to  pure  competitive  inhibition  (Section  2.2.2)  and  hence  the  rate
equation is

[3.31]v =
Vmax @AD0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Km H1 + @H+D êKaL + @AD0 ,

where  Ka  denotes  the  acid  (hence  the  subscript  a)  dissociation  constant  of  the  HA+

complex and it is given by
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[3.32]Ka =
@H+De @ADeÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@HA+D .

Note that at the start of the reaction 

[3.33]@AD0 = @AD + @HA+D .

It  is  also  evident  that  the  apparent  Michaelis constant,  Km
' ,   depends  on  pH,  with  the

protons acting like a competitive inhibitor.

[3.34]Km
' = Km

ikjjj1 +
@H+D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Ka

y{zzz .

Thus, if the pH is decreased the apparent Michaelis constant will increase because there
is a decrease in the concentration of the 'true' substrate, HA+ .

Another  model  of  substrate  ionization  entails  the  enzyme binding  the  protonated  form
of the substrate, then the rate equation is the same as Eqn [3.31] except that 

[3.35]Km
ikjjj1 +

@H+D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Ka

y{zzz becomes KmJ1 +
KaÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ@H+D N = Km

' .

There  are  seemingly  countless  possible  models  of  the  pH-dependence  of  Michaelis-
Menten  and  more  complex  enzymic  reactions.   The  book  by  RobertsH7L  is  especially
good on this topic.  

Q: Draw  a  series  of  Michaelis-Menten  plots  for  a  single-substrate  enzyme  that  has  an
ionizable  substrate  with  a  single  pKa  of  7.0.  Suppose  that  the  forward  catalytic
breakdown rate constant (see Section 3.2.3) of the enzyme is 1000 s-1 , @ED0  = 10-6  M,
and Km  = 1.0 mM.

A: A consistent enzyme reaction scheme is that given in Eqn [3.30];  and the mathematical
function is given by Eqn [3.31].

Clear@Subscript, pHD;
v0@s_D :=

Vmax s
"""""""""""""""""""""""""""""""""""""""""
Km I1 + 10−pH

""""""""""Ka M + s
;

The following parameters are given:

kcat,f = 1.0 × 103;
e0 = 1.0 × 10−6;
Km = 1.0 × 10−3;
pKa = 7.0;

From these we can determine the Vmax  and Ka  values,

Ka = 10−pKa;
Vmax = kcat,f e0;

and a plot of Eqn [3.31] as a function of substrate concentration from pH 4 � 6.
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plotTable = Table@v0@sD ê. pH −> 3.5 + i∗0.5, 8i, 5<D;
Plot@Evaluate@plotTableD, 8s, 0, 100 Km<,

AxesLabel → 8"@sD HML", "v0@sD HM s−1L"<D;

0.02 0.04 0.06 0.08 0.1
@sD HML0.0002

0.0004

0.0006

0.0008

v0@sD HM s−1L

Figure 3.5. The effects of pH on the kinetics of a particular enzyme. Note that in moving
from the upper to the lower curve the rates are at pH 6, 5.5, 5, 4.5, and 4.

3.8  A Simple Model of the Urea Cycle
The previous  Sections  of  this  chapter were concerned mainly with models of  enzymes
in isolation. Specifically, the concern was how to derive steady-state rate equations for
various mechanisms and how to relate the unitary rate constants of these mechanisms to
the steady-state parameters, the latter usually being the only parameters that have been
measured experimentally. Thus, having described how to model individual enzymes we
now turn to the simulation of metabolic pathways.  As a simple example, a model of the
urea cycle (Figure 3.6) is developed. 

The  model  presented  here  was  originally  developedH8L  to  study  the  possible  effects  on
metabolite concentrations of changing various kinetic parameters of the enzymes of the
urea cycle. The concentrations of the metabolic intermediates are known to be affected
in inborn errors of the enzymes of the urea cycle. The most dramatic clinical signs arise
from  an  overall  slowing  of  flux  through  the  cycle  and  hence  of  a  buildup  of  free
ammonia in the body. The high ammonia concentrations lead to nausea, vomiting, loss
of consciousness, convulsions, and ultimately death.

The  model  as  it  was  conceived  was  the  first  to  attempt  to  simulate  the  kinetics  of  a
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metabolic  pathway  that  is  subjected  to  an  inborn  error  of  one  of  the  enzymes.  At  the
time it was developed, the use of unitary rate constants led to very slow simulations of
metabolic  outcomes;  in  fact,  using  a  Univac  1108  that  had  128  K  of  RAM,  the
simulation of 10 min of a time course took 10 min of central processing unit (cpu) time.
How times change! But as was shown in 1977, for most purposes the urea cycle can be
simulated by using only the steady-state equations; this avoids the stiffness (see Section
1.6)  that consideration of  the pre-steady-state phases of  the enzymic reactions imposes
on the computation.

The  urea  cycle  model  consists  of  four  enzyme  reaction  schemes:  arginase,  ornithine
carbamoyl  transferase,  argininosuccinate  lyase,  and  argininosuccinate  synthetase.  Rate
equations and kinetic parameters for the first two reactions have been determined above
in  Sections  3.4  and  3.5.  The  mechanisms  of  the  latter  two  enzymes  are  given  in  the
exercises  at  the  end  of  this  chapter;  and  it  is  left  as  an  exercise  for  you  the  reader  to
verify the rate equations and kinetic parameters used in the following model.

Figure 3.6. The urea cycle of the mammalian hepatocyte.

Q: Assemble  the  differential  equations  for  each  of  the  enzymes  of  the  urea  cycle  and
simulate a time course of the operation of the cycle for a period of 1 h.
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A: The  model  is  based  on  the  urea  cycle  that  operates  in  human  liver.  The  steady-state
output of urea is set to the rate that is found for the 'average' adult human, namely, 6.6 ×
10-5  mol  L-1  s-1 .  Since  the  steady-state  concentrations  of  the  intermediates  of  the
cycle  develop  rapidly,  the  efflux  rate  of  other  metabolites  that  are  peripheral  to  the
cycle must ultimately have this value as well.

To simulate this system we first define the rate equations for the four main enzymes.H8L
Ornithine carbamoyl transferase (OCT)

eoct = 2.6 ×10−6;
k1,oct = 1.7× 107 ;
k−1,oct = 63;
k2,oct = 2.1× 106;
k−2,oct = 1.0 × 103;
k3,oct = 3 ×103 ;
k−3,oct = 9.0 ×104 ;
k4,oct = 2.6× 103 ;
k−4,oct = 5.0×105;

voct@t_D := eoct 
1

""""""""""""""""""""""denomoct Hcp@tD o@tD k1,oct k2,oct k3,oct k4,oct −

c@tD p@tD k−4,oct k−3,oct k−2,oct k−1,oct L;
denomoct := c@tD k−3,oct k−2,oct k−1,oct + p@tD Hk−4,oct k−2,oct k−1,oct +

c@tD Hk−4,oct k−3,oct k−2,oct + k−4,oct k−3,oct k−1,octL + k−4,oct k−1,oct
k3,oct + o@tD Hc@tD k−4,oct k−3,oct k2,oct + k−4,oct k2,oct k3,octLL +

k−2,oct k−1,oct k4,oct + k−1,oct k3,oct k4,oct +

o@tD k2,oct k3,oct k4,oct +

cp@tD Hc@tD k−3,oct k−2,oct k1,oct + k−2,oct k1,oct k4,oct +

k1,oct k3,oct k4,oct + o@tD Hc@tD k−3,oct k1,oct k2,oct +

k1,oct k2,oct k3,oct + k1,oct k2,oct k4,octLL
Argininosuccinate synthetase (ASS)

eass = 4.0 × 10−6;
k1,ass = 2.4 10^5;
k−1,ass = 2.3;
k2,ass = 3.5 10^5;
k−2,ass = 10.0;
k3,ass = 4.8 10^5;
k−3,ass = 10.0;
k4,ass = 2.0 10^1;
k−4,ass = 8.9 10^5;
k5,ass = 5.0 10^1;
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k−5,ass = 6.4 10^5;
k6,ass = 5.0 10^1;
k−6,ass = 1.7 10^5;

vass@t_D := eass 
1

""""""""""""""""""""""denomass  Hk1,ass k2,ass k3,ass k4,ass k5,ass k6,ass c@tD atp@tD asp@tD −

k−1,ass k−2,ass k−3,ass k−4,ass k−5,ass k−6,ass pp@tD amp@tD as@tDL;
denomass := k−1,ass k−2,ass k5,ass k6,ass Hk−3,ass + k4,assL +

k1,ass k−2,ass k−3,ass k−4,ass k6,ass c@tD pp@tD +

k1,ass k−2,ass k5,ass k6,ass Hk−3,ass + k4,assL c@tD +

k−1,ass k3,ass k4,ass k5,ass k−6,ass asp@tD as@tD +

k−1,ass k3,ass k4,ass k5,ass k6,ass asp@tD +

k1,ass k2,ass k−3,ass k−4,ass k6,ass c@tD atp@tD pp@tD +

k1,ass k2,ass k5,ass k6,ass Hk−3,ass + k4,assL c@tD atp@tD +

k1,ass k−2,ass k−3,ass k−4,ass k−5,ass c@tD pp@tD amp@tD +

k1,ass k3,ass k4,ass k5,ass k6,ass c@tD asp@tD +

k2,ass k3,ass k4,ass k5,ass k−6,ass atp@tD asp@tD as@tD +

k2,ass k3,ass k4,ass k5,ass k6,ass atp@tD asp@tD +

k−1,ass k3,ass k4,ass k−5,ass k−6,ass asp@tD amp@tD as@tD + k1,ass k2,ass
k3,ass Hk4,ass k5,ass + k4,ass k6,ass + k5,ass k6,assL c@tD atp@tD asp@tD +

k1,ass k2,ass k3,ass k−4,ass k6,ass c@tD atp@tD asp@tD pp@tD +

k−1,ass k−2,ass k−3,ass k−4,ass k6,ass pp@tD +

k1,ass k2,ass k3,ass k4,ass k−5,ass c@tD atp@tD asp@tD amp@tD +

k−1,ass k−2,ass k5,ass k−6,ass Hk−3,ass + k4,assL as@tD +

k1,ass k2,ass k−3,ass k−4,ass k−5,ass c@tD atp@tD pp@tD amp@tD +

k−1,ass k−2,ass k−3,ass k−4,ass k−5,ass pp@tD amp@tD +

k2,ass k3,ass k4,ass k−5,ass k−6,ass atp@tD asp@tD amp@tD as@tD +

k−1,ass k−2,ass k−3,ass k−4,ass k−6,ass pp@tD as@tD +

k2,ass k−3,ass k−4,ass k−5,ass k−6,ass atp@tD pp@tD amp@tD as@tD +

k−1,ass k−2,ass k−5,ass k−6,ass Hk−3,ass + k4,assL amp@tD as@tD +

k−1,ass k3,ass k−4,ass k−5,ass k−6,ass asp@tD pp@tD amp@tD as@tD +

k−4,ass k−5,ass k−6,assHk−1,ass k−2,ass + k−1,ass k−3,ass + k−2,ass k−3,assL pp@tD amp@tD as@tD +

k1,ass k2,ass k3,ass k−4,ass k−5,ass c@tD atp@tD asp@tD pp@tD amp@tD +

k2,ass k3,ass k−4,ass k−5,ass k−6,ass atp@tD asp@tD pp@tD amp@tD as@tD
Argininosuccinate lyase (ASL)

eas = 2.2 × 10−6;
k1,as = 2.7 × 106;
k−1,as = 7.0 × 101;
k2,as = 7.5 × 101;
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k−2,as = 1.5 × 106;
k3,as = 1.1 × 103;
k−3,as = 7.0 × 105;

vas@t_D := eas 
k1,as k2,as k3,asas@tD − k−3,as k−2,as k−1,as a@tD f@tD

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""denomas ;

denomas := f@tD k−2,as k−1,as +

a@tD Hf@tD k−3,as k−2,as + k−3,as k−1,as + k−3,as k2,asL + k−1,as k3,as +

k2,as k3,as + as@tD Hf@tD k−2,as k1,as + k1,as k2,as + k1,as k3,asL;
Arginase 

earg = 8.9 ×10−6;
k1,arg = 1.0× 107 ;
k−1,arg = 5.4×104 ;
k2,arg = 5.3× 103 ;
k3,arg = 3.0× 104 ;
k−3,arg = 1.0×107 ;

varg@t_D := earg 
k1,arg k2,arg k3,arg a@tD
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""denomarg ;

denomarg := o@tD Hk−3,arg k−1,arg + k−3,arg k2,argL +

k−1,arg k3,arg + k2,arg k3,arg + a@tD Hk1,arg k2,arg + k1,arg k3,argL;
Next we define the rate equations for the co-substrates and products that are peripheral
to the cycle proper. For these peripheral reactions we assume simple first-order kinetics,
as follows.

vatp@t_D := katp atppool@tD; katp = 6.6 × 10−2;
vpp@t_D := kpp pp@tD; kpp = 6.6 × 10−2;
vf@t_D := kf f@tD; kf = 6.6 × 10−2;
vcp@t_D := kcp ampool@tD; kcp = 6.6 × 10−2;
vasp@t_D := kasp asppool@tD; kasp = 6.6 × 10−2;
vamp@t_D := kamp amp@tD; kamp = 6.6 × 10−2;
vp@t_D := kp p@tD; kp = 6.6 × 10−2;

Having  defined  the  rate  equations,  we  are  now  in  a  position  to  set  up  the  system  of
differential equations which make up the model.

eqn1 := c'@tD % voct@tD − vass@tD;
eqn2 := a'@tD % vas@tD − varg@tD;
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eqn3 := u'@tD % varg@tD;
eqn4 := atp'@tD % vatp@tD − vass@tD;
eqn5 := pp'@tD % −vpp@tD + vass@tD;
eqn6 := f'@tD % −vf@tD + vas@tD;
eqn7 := as'@tD % vass@tD − vas@tD;
eqn8 := o'@tD % varg@tD − voct@tD;
eqn9 := cp'@tD % vcp@tD − voct@tD;
eqn10 := asp'@tD % vasp@tD − vass@tD;
eqn11 := amp'@tD % −vamp@tD + vass@tD;
eqn12 := p'@tD % −vp@tD + voct@tD;

In this model we assume that the pool  concentrations of  ATP, AMP, and aspartate are
kept  constant  by  some  external  processes.  These  concentrations  can  be  thought  of  as
'external' parameters and  they are assigned the following values:

atppool@tD = 1.0 × 10−4;
ampool@tD = 1.0 × 10−4;
asppool@tD = 1.0 × 10−4;

Now we solve this system of equations by using NDSolve
sol = NDSolve@8eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, eqn7,

eqn8, eqn9, eqn10, eqn11, eqn12, c@0.D % 1.0 × 10−7,
as@0.D % 1.0 × 10−5, a@0.D % 1.0 × 10−7, o@0.D % 4.5 × 10−4,
u@0.D % 1.0 × 10−5, cp@0.D % 1.0 × 10−4, atp@0.D % 1.0 × 10−3,
asp@0.D % 1.0 × 10−3, pp@0.D % 1.0 × 10−5,
amp@0.D % 1.0 × 10−5, f@0.D % 1.0 × 10−5, p@0.D % 1.0 × 10−5<,8c@tD, a@tD, u@tD, atp@tD, pp@tD, f@tD, as@tD, o@tD, cp@tD,
asp@tD, amp@tD, p@tD<, 8t, 0.0, 600<, AccuracyGoal → 10D;

and then plot the results as follows:

graph1 = Plot@Evaluate@o@tD ê. solD,8t, 0, 600<, PlotRange −> 80, 0.00045<,
AxesLabel → 8"Time HsL", "@ornD Hmoles L^−1L"<D;
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Figure 3.7. Time course of ornithine concentration in the urea cycle simulation.

graph2 = Plot@Evaluate@c@tD ê. solD, 8t, 0, 600<, PlotRange → All,
AxesLabel → 8"Time HsL", "@citD Hmoles L^−1L"<D;

100 200 300 400 500 600
Time HsL0.00002

0.00004

0.00006

0.00008

@citD Hmoles L^−1L

Figure 3.8. Time course of citrulline concentration in the urea cycle simulation.
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graph3 = Plot@Evaluate@a@tD ê. solD, 8t, 0, 600<, PlotRange → All,
AxesLabel → 8"Time HsL", "@argD Hmoles L^−1L"<D;

100 200 300 400 500 600
Time HsL5×10-7

1×10-6
1.5×10-6
2×10-6

2.5×10-6
3×10-6

@argD Hmoles L^−1L

Figure 3.9. Time course of arginine concentration in the urea cycle simulation.

graph4 = Plot@Evaluate@u@tD ê. solD, 8t, 0, 600<, PlotRange → All,
AxesLabel → 8"Time HsL", "@ureD Hmoles L^−1L"<D;
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Figure 3.10. Time course of urea concentration in the urea cycle simulation.
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Show@8graph1, graph2, graph3, graph4<D;

100 200 300 400 500 600
Time HsL0.0001

0.0002

0.0003

0.0004

@ornD Hmoles L^−1L

Figure 3.11. Combined plot of the previous four graphs showing ornithine (upper curve),
citrulline (lower curve), and urea (the middle curve which rapidly rises out of the envelope
of the graph).

3.9  Conclusions
On first view this Mathematica model of the urea cycle appears to be very complicated.
With the detailed rate equations is there not a large scope for typographical errors and
mistakes  in  parameter  values?  And,  this  is  only  a  very  simple metabolic model.  What
happens when we start to explore more complex metabolic systems?

Unfortunately the nature of metabolic systems is that they are very complicated and any
model  which  hopes  to  capture  the  ways  that  these  systems  operate  will  inevitably  be
complex.  As  we  saw  in  the  urea  cycle  model,  a  large  part  of  the  modelling  process
involves  the  construction  of  appropriate  rate  equations.  This  part  of  the  modelling
process is by far the hardest and most complicated. Unfortunately, for most enzymes it
is  not  possible  to  find  a  rate  equation  in  the  literature  that  can be  simply inserted into
the model that is being developed. 

Most  rate  equations  have  been  developed  in  order  to  understand  a  particular
experimental  situation.  For  example,  the  rate  of  an  enzyme  may  have  only  been
characterized  for  the  reaction  in  one  direction  using  only  initial  velocity  data.  In  this
case,  the model that is  fitted to the data will not include the effects of  the products on
the rate. While this model can be entirely appropriate for the experimental situation, it is
not appropriate for a model of a 'real' cellular system.  In such a system there will also
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be  a  variety  of  effectors  that  play  a  role  in  the  enzyme's  activity  in  situ.  Hence,  rate
equations  for  modelling  metabolic  systems  need  to  take  into  account  the  effects  of
substrates,  products,  and  all  important  effectors.  Developing  the  appropriate  model
requires an appreciation of the available literature on the enzyme and also its role in the
wider  metabolic  scheme.  Knowing  what  aspects  of  the  reaction  mechanism to  include
in  the  model,  and  how to  incorporate  data  obtained  from a  wide  range  of  laboratories
and under  a  wide  range  of  experimental  conditions,  forms a  major  part  of  the "art" of
metabolic modelling. 

Fortunately,  once the appropriate  reaction scheme has been determined, the mechanics
of  deriving  rate  equations  and  determining  the  relationships  between  steady-state
parameters and unitary rate constants is largely taken care of by Mathematica. Thus the
symbolic  algebraic  capabilities  of  Mathematica  as  well  as  the  RateEquation
function allows these processes to be carried out essentially free of error.

The  second  major  task  of  model  development  is  the  formulation  of  the  systems  of
differential  equations  that  make  up  the  model.  Although  this  was  a  relatively  simple
task for the urea cycle model, it becomes a possible source of error when we deal with
larger metabolic systems. In the next chapter,  however,  we show how entire metabolic
systems  can  be  represented  in  a  compact  form  using  vectors  and  matrices.  This
approach  greatly  simplifies the  handling  of  metabolic systems in  Mathematica  as  well
as  providing  important  new  tools,  such  as  the  automatic  derivation  of  differential
equations, for modelling metabolic systems in normal and disease states. 

3.10  Exercises

3.10.1

(1)  Adjust  the  values  of  Vmax  and  Km   in  the  worked  example  (question)  in  Section
3.2.1  to  observe  what  happens  to  the  shape  and  the  duration  of  the  simulated  time
course for both substrate and product. (2) Next, assume that this reaction produces two
molecules  of  P  from each  molecule  of  A.  What  happens  to  the  shape  of  the  progress
curves for both A and P? Hint: change the conservation of mass equations.

3.10.2

(1) For the arginase reaction (see the first question in Section 3.2.4), try substituting the
values of the unitary rate constants back into the steady-state expressions to check that
they do indeed return the original steady-state values. (2) Suppose that the temperature
of an assay mixture is raised so that the turnover number of the enzyme is increased by
a factor of  2. If  all the other steady-state  parameters remain unchanged,  calculate a set
of unitary rate constants that are consistent with these values.

3.10.3

The reaction mechanism for the urea cycle enzyme, argininosuccinate lyase, is
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[3.36]

where  AS,   F,  and  A  denote  argininosuccinate,  fumarate,  and  arginine,  respectively.
Derive  the  steady-state  rate  equation  for  this  enzyme  using  the  function
RateEquation as in Section 3.5. 

3.10.4

Use  the  methods  described  in  Section  3.5  to  derive  the  expressions  for  the   standard
steady-state  kinetic  parameters  for  arginase  that  has  the  mechanism  shown  in  Eqn
[3.17].

3.10.5

In  Section  3.7  we  examined  the  effects  of  pH  on  the  kinetics  of  an  enzyme.  For  the
worked  example  in  this  section,   (1)  alter  the  range  of  pH  values  for  which  the
Michaelis-Menten  equation  is  plotted.  Notice  the  extent  to  which  Vmax  is  likely  to  be
able to be accurately inferred from the graphs; and (2) what happens to the apparent Km
as the pH is varied?

3.10.6

Verify that the unitary rate constants used for argininosuccinate lyase that were used in
the  model of  the  urea  cycle presented  in  Section 3.8  are  consistent  with  the  following
steady-state parameters and the overall  equilibrium constant  for  the reaction: kcat

f  = 70
mol L−1 s−1 ; Km,AS =  5 × 10-5  mol L−1 ; Km,F =  1 × 10-4  mol L−1 ; Km,A =  1 × 10-4

mol L−1 ;  Keq =  3.2  ×  10-3  mol L−1 .  The  reaction  mechanism for  argininosuccinate
lyase is given in Exercise 3.3.

3.10.7

The reaction mechanism for argininosuccinate synthetase is
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[3.37]

where  C,  ATP,  ASP,  PP,  AMP,  and  AS  denote  citrulline,  ATP,  aspartate,
pyrophosphate,  AMP,  and  argininosuccinate,  respectively.  Verify  that  the  unitary  rate
constants  used  in  the  model  of  the  urea  cycle  model  presented  in  Section  3.8  are
consistent with the following steady-state kinetic parameters and the overall equilibrium
constant  for  the  reaction:  kcat

f  =  11.2  mol2 L−2 s−1 ;  Km,C =  4.6  ×  10-5  mol L−1 ;
Km,ATP =  3.2  ×  10-4  mol L−1 ;  Km,ASP =  3.5  ×  10-5  mol L−1 ;  Keq =8.9;  Km,CAS =
3.0 × 10-4  mol L−1 ; Km,CPP =  1.0 × 10-4  mol L−1 ; Ki,ATPAMP =  3.5 × 10-4  mol L−1 .

3.10.8

Clinically,  arginase  deficiency  leads  to  profound  hyperammonemia.  It  has  been  found
that  in  the  patients  who  survive  early  infancy,  the  maximal  activity  of  the  enzyme  is
around 3% of the normal value. Assuming that this implies that there is only 3% of the
normal  enzyme  concentration,  simulate  the  operation  of  the  human  urea  cycle  under
this  pathological  condition.  Comment  on  the  concentrations  of  the  intermediates  and
whether  they attain steady states.  In  the  event  of  the  latter  not  occurring,  speculate on
the  likely  outcome for  the  particular  metabolite(s)  and  hence  the  clinical  status  of  the
patient. 

3.10.9

There  are  basically  two  major  clinical  variants  or  types  of  inborn  errors  of
argininosuccinate  lyase  deficiency:  (1)  one  condition  in  which  there  are  early signs  of
the  severe  onset  of  hyperammonemia that  leads  to  death  in  infancy;  and  (2)  a  milder
course  of  disease  with  survival  into  adolescence.  The  former  appears  to  result  from a
low concentration of normal enzyme, while the latter patients probably have an enzyme
with lower substrate affinity. 

(1) Suppose that in the first case @ED0  is 3% of its normal value. Simulate the operation
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of  the  urea  cycle  for  a  period  of  1  h.  Comment on  dramatic  features  of  the  simulated
time course.

(2)  Simulate  the  operation  of  the  urea  cycle  in  which  the  affinity  of  the  enzyme  for
argininosuccinate  lyase  is  reduced  to  3% of  its  normal  value.  Again,  comment on  any
dramatic  findings.   Does  the  system  attain  a  new  steady  state  of  metabolite
concentrations?

3.10.10

This exercise will be able to be completed only after reading Chapters 4 and 5.  Apply
MCA (Chapter 5) to the model of the urea cycle described in Section 3.8 and determine
the values of the flux control coefficients for each enzyme. Comment on the occurrence
of metabolic resistance in these simulations; this occurs in situations where the affinity
of the enzyme for one of its substrates is diminished and the steady-state  concentration
of the substrate(s) rises to a new value thus overcoming the blockage of the pathway. 
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4 Advanced Simulation 
of Metabolic Pathways

4.1  Introduction
In  the  previous  chapter  we  examined  the  kinetic  behaviour  of  reactions  catalyzed  by
individual  isolated  enzymes  and  built  up  to  systems  of  rate  equations  that  describe
metabolic  pathways.  In  this  Chapter  and  the  next  we  show  how  entire  metabolic
systems can be  represented  in  compact  form using  vectors  and  matrices. Although  for
those  not  familiar  with  matrices  this  process  may  at  first  seem  obscure  and
unnecessarily difficult, the payoff is greater ease of model construction and analysis.

4.2  Simulating the Time-Dependent Behaviour of Multi-
enzyme Systems

Before  we  begin  our  matrix  approach  to  modelling,  it  is  worthwhile  re-examining  the
approach we have used so far. This is best illustrated with the following simple example.

Q: Determine  the  time  dependence  of  the  concentrations  of  reactants  in  the  two-reaction
sequence,

[4.1]S 1  F
v1

 S 2  F
v2

 S 3

where  v1  and  v2  are  described  by  simple  reversible  Michaelis-Menten  rate  equations
(Section 2.3.3)  with all Vmax  values being 1 mmol L-1  h-1  and all  Km  values being 1
mmol L-1 . Suppose that the initial concentrations are S1 [0] = 1 mmol L-1 , S2 [0] = 0,
and S3 [0] = 0.

A: The analysis begins by defining the rate expressions and assigning values to the various
parameters.  Then  the  differential  equations  are  solved  numerically  with  NDSolve
yielding a result that is stored as an InterpolatingFunction (Section 1.4.6).

v@1D :=

Vmax,1,f s1@tD"""""""""""""""""""""""""Km,1,s1 − Vmax,1,r s2@tD"""""""""""""""""""""""""Km,1,s2"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1 + s1@tD"""""""""""""Km,1,s1 + s2@tD"""""""""""""Km,1,s2

;

v@2D :=

Vmax,2,f s2@tD"""""""""""""""""""""""""Km,2,s2 − Vmax,2,r s3@tD"""""""""""""""""""""""""Km,2,s3""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1 + s2@tD"""""""""""""Km,2,s2 + s3@tD"""""""""""""Km,2,s3

;



Vmax,1,f = 1; Vmax,1,r = 1;
Vmax,2,f = 1; Vmax,2,r = 1;
Km,1,s1 = 1; Km,1,s2 = 1;
Km,2,s2 = 1; Km,2,s3 = 1;

timecourse =

NDSolve@8
s1 '@tD == −v@1D,
s2 '@tD == v@1D − v@2D,
s3 '@tD == v@2D,
s1@0D == 1, s2@0D == 0, s3@0D == 0<,

8s1, s2, s3<, 8t, 0, 10<D88s1 → InterpolatingFunction@880., 10.<<, <>D,
s2 → InterpolatingFunction@880., 10.<<, <>D,
s3 → InterpolatingFunction@880., 10.<<, <>D<<

Hence, plotting the time course of all three metabolites over the entire 10 h of simulated
time we obtain the following:

Plot@Evaluate@8s1@tD, s2@tD, s3@tD< ê. timecourseD, 8t, 0, 10<,
AxesLabel −> 8"Time HhL", "Concentration HmML"<,
PlotRange −> 80, 1<D;
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Figure  4.1.  Time  course  of  the  reaction  scheme  shown  in  Eqn  [4.1].   Upper  curve  is
S1, middle curve S2,  and lower curve S3.

Recall  that  we  can  evaluate  the  concentration  of  the  three  metabolites  with  the
following command:
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8s1@tD, s2@tD, s3@tD< ê. timecourse ê. t −> 1880.665123, 0.242544, 0.0923338<<

4.3  Using Matrix Notation in Simulating Metabolic Pathways
For  large  metabolic  networks,  it  is  often  simpler  to  express  the  set  of  simultaneous
differential  equations  that  describe  the  reaction  system  in  matrix  form.  The  use  of
matrix  notation  is  also  useful  for  analysing  the  existence  and  stability  of  steady states
and for performing MCA (see Chapter 5).

Thus the set of differential equations describing the rate of production and utilization of
all metabolites, Si , in a metabolic network of reactions is given by

[4.2]
dSiÅÅÅÅÅÅÅÅÅÅÅÅ
dt

= ‚
j=1

r

 nij vj ,

where vj  (j = 1,...,r) is the rate of reaction j, and nij is the stoichiometric coefficient with
i and j referring to the metabolite and reaction, respectively. 

In matrix notation, Eqn [4.2] is given by

[4.3]
dS
ÅÅÅÅÅÅÅÅÅÅ
dt

= N v ,

where  v  and  S  denote  the  vectors  of  reaction  rate  expressions  and  concentrations,
respectively,  while  N  is  termed  the  stoichiometry  matrix  with  each  element  being  nij .
The  stoichiometry  matrix  has  one  row  for  each  reactant  and  one  column  for  each
reaction in  the  scheme.  The number at  the intersection of  a  row and a column defines
the number of molecules of that reactant to engage in the specified elementary reaction,
namely,  its  stoichiometry.  Although  this  representation  may  seem  overly  complex  at
present,  expressions  like  Eqn  [4.2]  and  [4.3]  are  almost  invariably  much  simpler  than
they look at first sight because in a large model most of the nij are zero and nearly all the
rest are either � 1 or 1.

To  analyse  systems  of  differential  equations  that  are  represented  in  matrix  notation
requires  a  moderate  amount  of  computer  programming.  However,  once  the  general
procedure has been set up it can be used for any reaction scheme. Because of its general
usefulness  we  have  written  an  add-on  package  called  MetabolicControl-
Analysis  that  contains  the  matrix  representation  of  reaction  schemes  and  several
other  useful  functions  that  are  described  below  and  in  Chapter  5.   The  details  of  the
programming  are  not  given  in  the  text  but  the  programs  in  Appendix  2  contain  many
comment  statements  to  help  you,  the  reader,  understand  the  algorithms.  Before  this
package is used for the first time, the reader must evaluate all the Cells in Appendix 2
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so  that  the  appropriate  .m  file  is  created  and  the  functions  can  be  called  in  a
Mathematica session.

<<
MetabolicControlAnalysis

read in the add -
on package MetabolicControlAnalysis

NDSolveMatrix@S, N , v,
initial conditions, 8t, tmin, tmax<D Uses the functionNDSolve to find a  numerical

solution for the metabolite concentrations,
S, with time in the range tmin  to tmax,
for a system of ordinary differential
equations defined by the matrices S, N ,
and v, and subject to the initial  conditions

Reading in the package MetabolicControlAnalysis.

Q: By using the matrix representation of a reaction scheme, plot the 10 h time course of the
concentrations of the reactants in the following linear sequence,

[4.4]S1  Ø
v1  S2 Ø

v2  S3 Ø
v3  S4

where  the  vi  are  simple  irreversible  Michaelis-Menten  rate  equations  (Section  2.3.1)
with all Vmax  values set to 1 mmol L-1  h-1 ; all Km  values are 1 mmol L-1  and S1 [0] =
1 mmol L-1 , S2 [0] = S3 [0] = S4 [0] = 0 mmol L-1 .

A: The  first  step  in  answering  the  question  is  to  load  the  MetabolicControl-
Analysis package.

<< MetabolicControlAnalysis`

Then the matrices and vectors of Eqn [4.3] must be defined. A simple way to define the
concentration vector is as follows:

S¯ := Table@si@tD, 8i, 4<D;

Similarly, the stoichiometry and rate equation vectors are defined as follows:
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N¯ =

i

k

jjjjjjjjjjjj

−1 0 0
1 −1 0
0 1 −1
0 0 1

y

{

zzzzzzzzzzzz
;

DoAv@iD :=
Vmax,i,f si@tD

""""""""""""""""""""""""""""""""""""""""""""""
Km,i,si I1 + si@tD"""""""""""""Km,i,si M

, 8i, 3<E;

v̄ := Table@v@iD, 8i, 3<D;

Vmax,1,f = 1; Vmax,2,f = 1; Vmax,3,f = 1; Km,1,s1 = 1; Km,2,s2 = 1; Km,3,s3 = 1;

With the S, N, and v matrices defined and the parameter values set, NDSolveMatrix
is used to obtain the numerical solution.

sol = NDSolveMatrix@S¯, N¯, v̄,
8s1@0D == 1, s2@0D == 0, s3@0D == 0, s4@0D == 0<, 8t, 0, 10<D88s1 → InterpolatingFunction@880., 10.<<, <>D,
s2 → InterpolatingFunction@880., 10.<<, <>D,
s3 → InterpolatingFunction@880., 10.<<, <>D,
s4 → InterpolatingFunction@880., 10.<<, <>D<<

The following is a plot of all the concentrations of all the Si  that are listed in the vector
S:

Plot@Evaluate@S¯ ê. solD, 8t, 0, 10<,
AxesLabel −> 8"Time HhL", "Concentration HmML"<,
PlotRange −> 80, 1<D;
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Figure 4.2.  Time course of  the reaction scheme shown in Eqn [4.4].   The figure shows
S1 declining from an initial concentration of 1 mM and S4  accumulating to ~1 mM by the
end of the time course. The metabolites S2 and S3 are seen to build up and then decline
during the time course.

And here is the value of each of the reactants listed in S at 2 h: 

S¯ ê. t −> 2 ê. sol880.278465, 0.332676, 0.210329, 0.17853<<
The list of four numbers gives the concentrations in mM for the reactants in the order in
which they are defined in S. Thus, S1  is 0.28 mM, S2  is 0.33 mM, etc.

In the worked example above the parameter values were individually specified to be 1,
with units  that  depend on the nature of  the parameter. By setting the parameter values
with  the  =   command,  whenever  Mathematica  sees  the  parameter  it  automatically
replaces  it  with  the  value.  For  some  analyses,  these  parameter  value  assignments  will
need  to  be  unset  or  cleared and  we shall  see  examples of  this  later  in  Chapter  5.  This
can  be  tedious  when  simulating  complex  networks  of  reactions.  To  obviate  this
problem,  the  function  NDSolveMatrix  can  accept  parameter  values  as  a  separate
parameter vector.
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NDSolveMatrix@S, N , v,
initial conditions, 8t, tmin, tmax<, pD Uses the functionNDSolve to find a numerical

solution for the metabolite concentrations,
S, with time in the range tmin  to
tmax, for a system of ordinary differential
equations defined by the matrices S,
N , v, and the parameter matrix p

Finding numerical solutions to a system of differential equations with parameter values 
specified in a parameter matrix.

Q: Set all the Km  values in the previous worked example to 0.5 mmol L-1  and re-simulate
the time course using a matrix representation of the Km  and other parameter values.

A: First the previous values should be cleared and then the matrix denoted p̄  is specified.

Clear@SubscriptD;

p̄ = 88Vmax,1,f, 1<, 8Vmax,2,f, 1<, 8Vmax,3,f, 1<, 8Km,1,s1, 0.5<,
8Km,2,s2, 0.5<, 8Km,3,s3, 0.5<< ; p̄ êê MatrixFormi

k
jjjjjjjjjjjjjjjjjjjjjj
Vmax,1,f 1
Vmax,2,f 1
Vmax,3,f 1
Km,1,s1 0.5
Km,2,s2 0.5
Km,3,s3 0.5

y
{
zzzzzzzzzzzzzzzzzzzzzz

The  matrix  has  the  parameter  name in  the  first  column and  its  numerical  value  in  the
second.  Often,  a  more  convenient  way  of  inputting  the  parameter  matrix  is  to  do  as
follows:

p = 8Vmax,1,f, Vmax,2,f, Vmax,3,f, Km,1,s1, Km,2,s2, Km,3,s3<;
pv = 81, 1, 1, 0.5, 0.5, 0.5<;
p̄ = Transpose@8p, pv<D88Vmax,1,f, 1<, 8Vmax,2,f, 1<, 8Vmax,3,f, 1<,8Km,1,s1, 0.5<, 8Km,2,s2, 0.5<, 8Km,3,s3, 0.5<<

The numerical solution and graphical output of the system are then obtained by using

sol = NDSolveMatrix@S¯, N¯, v̄,
8s1@0D == 1, s2@0D == 0, s3@0D == 0, s4@0D == 0<, 8t, 0, 10<, p̄D;

Plot@Evaluate@S¯ ê. solD, 8t, 0, 10<,
AxesLabel −> 8"Time HhL", "Concentration HmML"<,
PlotRange −> 80, 1<D;
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Figure 4.3. Time course of the reaction scheme shown in Eqn [4.1]. S1 declines from an
initial concentration of 1 mmol L-1  and S4 accumulates to ~1 mmol L-1  by the end of the
time course. The metabolites S2 and S3 are seen to build up and then decline during the
time course.

Note  the  decline  in  [S1 ]  with  time,  the  rise  to  maximum concentrations  and  then  the
decline  of  the  two intermediate  species,   S2  and  S3 ,  and  the  sigmoidal  monotonically
strictly increasing concentration of S4 .

4.4  Generating the Stoichiometry Matrix
In the above examples the task of specifying the stoichiometric matrix, N, was a simple
one. However, for larger and more complex metabolic networks, the generation of these
matrices can be tedious and error prone. The functions StoichiometryMatrix and
NMatrix  automate this process, thus generating the stoichiometic matrix from the list
of reactions that constitute the metabolic scheme of interest.
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NMatrix@eqn, extparsD generates a stoichiometry
matrix for the reaction system
defined in the equation list eqn; it takes into
account the fact that the parameters in the list,
extpars, are any external parameters

StoichiometryMatrix@
eqn, extparsD same asNMatrix except that it

returns a  stiochiometry matrix which has
rows and columns labelled with metabolite
names and reaction names, respectively

SMatrix@eqn, extparsD generates the corresponding substrate list, S, for the
reaction system defined by eqn  and extpars

VMatrix@eqnD generates the corresponding reaction velocity list,
v, for the reaction system defined by eqn

Generating stoichiometry matrices and substrate lists.

Q: Generate  a  stoichiometry  matrix,  substrate  list,  and  reaction  velocity  list  for  the
following outline model of anaerobic energy metabolism in muscle:

[4.5]Glc + 2 ADP + 2 Phos ö
vglyc

2 Lac + 2 ATP ,

[4.6]ATP öø
vatpase

ADP + 2 Phos ,

[4.7]ADP + PCr ö
vck ATP + Cr ,

[4.8]ADP + ADP ö
vmk ATP + AMP ,

where  Eqns  [4.5]  �  [4.8]  describe  glycolysis,  various  ATPases,  creatine  kinase,  and
myokinase,  respectively. Assume that the concentrations of  glucose and lactate remain
constant.  In  other  words,  assume  that  the  rate  of  input  of  glucose  and  the  rate  of
removal of lactate from the system are such that the concentrations of these metabolites
remain constant.

A: To generate the required matrices and lists we first need to input a list that contains the
details  of  the  reaction  scheme  in  a  format  that  the  MetabolicControlAnalysis
package commands can recognise.  This can be done with the following list of labelled
eqns:

eqns = 8
8gly, glc + 2 adp + 2 phos → 2 lac + 2 atp<,
8atpase, atp → adp + phos<,
8ck, adp + pcr ↔ atp + cr<,
8mk, 2 adp ↔ atp + amp<<;
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There are a number of features to note about the format of eqns. The first is that each
element  of  the  list  contains   the  name of  the  reaction  and  then  the  reaction  written  in
conventional biochemical notation. The name that is entered for each reaction is used to
index the reaction rate equation. For example, by naming the first reaction gly we have
told Mathematica that its associated rate equation will be called v[gly].  So when we
define the rate equation for this reaction we will need to give it the name v[gly]. It is,
however,  not necessary to give a name to each reaction. For example, if we had failed
to  name  the  reactions,  the  first  reaction  would  then  be  called  reaction  number  1  with
associated rate equation v[1], and so on.  The other important feature in the format of
eqns  is  the  use  of  the  arrow  to  separate  the  substrates  from  the  products  in  each
reaction. You can use any type of arrow you like to do this separation. The type that is
used does not effect the final form of the stoichiometric matrix. In this example we have
used  one-way  arrows  to  denote  irreversible  reactions  and  two-way  arrows  to  denote
reversible  reactions,  but  this  is  only for  our own benefit  and it  makes no difference to
the generation of the stoichiometry matrix. 

Having  defined  the  equation  list  we  are  now  in  a  position  to  use  the  functions
SMatrix,  NMatrix,  and  VMatrix  from  the  MetabolicControlAnalysis
package, to directly generate S, N, and v. This can be done with the following input:

S¯ = SMatrix@eqns, 8glc, lac<D; S¯ êê MatrixFormi
k
jjjjjjjjjjjjjjjjjjjjjj
adp
amp
atp
cr
pcr
phos

y
{
zzzzzzzzzzzzzzzzzzzzzz

In  generating  the  list  of  substrates  we have given a list  of  the 'external'  metabolites as
the  second  argument  of  the  SMatrix  function.  These  are  the  metabolites  whose
concentrations  are  kept  constant  by  some  external  processes.  Having  done  this,  the
function  then  picked  out  all  six  of  the  'internal'  metabolites  and  has  listed  them  in
alphabetical  order  in  the  vector.  This  is  the  order  used  for  the  rows  in  the  following
stoichiometry matrix:

N¯ = NMatrix@eqns, 8glc, lac<D ; N¯ êê MatrixFormi
k
jjjjjjjjjjjjjjjjjjjjjj
−2 1 −1 −2
0 0 0 1
2 −1 1 1
0 0 1 0
0 0 −1 0
−2 1 0 0

y
{
zzzzzzzzzzzzzzzzzzzzzz

Similarly,  the  columns  of  N  correspond  to  the  following  vector  of  reaction  rate
expressions:

v̄ = VMatrix@eqnsD; v̄ êê MatrixForm
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i
k
jjjjjjjjjjjj

v@glyD
v@atpaseD
v@ckD
v@mkD

y
{
zzzzzzzzzzzz

Note  that  as  mentioned  above,  each  reaction  rate  in  v  is  indexed  by  the  names  in  the
first column of eqns.

In  the  absence  of  generating  S  it  would  not  be  immediately  obvious  which  row
corresponds to which metabolite, and which column to which reaction. Thus it is useful
to be able to generate an annotated form as is shown next. The order of the reactions is
simply that used in the initial eqns list. 

StoichiometryMatrix@eqns, 8Glc, Lac<D êê MatrixFormi

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

s™r gly atpase ck mk
adp −2 1 −1 −2
amp 0 0 0 1
atp 2 −1 1 1
cr 0 0 1 0
glc −1 0 0 0
lac 2 0 0 0
pcr 0 0 −1 0
phos −2 1 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Thus it is clear, for example, that in each elementary ATPase reaction, 1 ADP molecule
and 1 phos(phate) are produced, and 1 ATP is consumed.

4.5  Determining Steady-State Concentrations
In  general,  a  metabolic  pathway  can  be  thought  of  as  a  network  of  biochemical
reactions  whose  function  is  to  take  in  substrates  from  the  environment  and  transform
them into  something  that  is  required  by  the  organism.  Thus  the  organism may take  in
fuel  molecules  which  are  used  to  produce  ATP  which  is,  in  turn,  used  as  the  main
energy  'currency'  of  the  cell.   Or  alternatively,  the  organism  may  take  in  substrates
which it uses as the building blocks for different subcellular components. Thus we can
often  think  of  a  metabolic pathway as  having  a  source  substrate  (such  as  the  fuel  and
building  block molecules) and an end product  or  sink (such as ATP or  the subcellular
components).

If  the  sources  or  sinks  of  a  metabolic  pathway  do  not  change  significantly  in
concentrations,  or  if  their  concentrations  do  not  significantly  effect  the  rates  of  the
reaction  in  the  metabolic  pathway,  then  the  pathway  can  often  develop  a  steady  state.
This  occurs  when  the  concentrations  of  all  the  metabolites  between  the  source(s)  and
the  sink(s)  do  not  change  over  time.  Thus  the  idea  of  a  steady  state  in  a  metabolic
pathway is similar to the idea of the steady state in enzyme kinetics, a concept that was
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introduced  in  Chapter  2.  Mathematically,  the  steady  state  of  a  metabolic  pathway  is
described by setting the right-hand side of Eqn [4.3] to 0, i.e.,

[4.9]N  v = 0 .

The  idea  of  a  steady  state  is  really  a  mathematical  abstraction  that  never  completely
occurs  in  reality.  One  reason  for  this  is  that  there  is  never  a  situation  when  the
concentrations  of  the  sources  or  sinks  are  completely  constant  or  have  absolutely  no
effect on the reaction rates. A second reason is that in reality, it would take an infinite
amount of time to reach a true steady state. This is because as the system moves closer
to  a  steady  state,  the  rate  at  which  the  system  approaches  the  steady  state  becomes
slower.  Notwithstanding these limitations, the idea of  steady state is  still  a  very useful
one. For example, routine measurements of the glycolytic metabolites in red blood cells
and  other  cell  types  show  that  as  long  as  the  cells  are  incubated  under  the  same
conditions,  the  assayed  concentrations  of  the  metabolites  remain  remarkably  constant
over time.

To determine the steady state of  a metabolic system, it is  necessary to solve the set of
nonlinear algebraic equations that are defined by Eqn [4.9]. This process can be tedious
to  program  de  novo,  so  we  have  provided  the  following  function  in  the
MetabolicControlAnalysis package, which carries out the operation.

SteadyState@S, N , v, pD Uses the Mathematica  function
Solve to determine the solution to
Eqn @4.9D. Note that likeNDSolveMatrix,
the inclusion of the parameter
table p  is optional

Solving metabolic steady states.

Q: Consider the linear three-reaction sequence described in the worked example in Section
4.3, but now assume that the concentrations of S1 and S4  are fixed at 1 mM by external
processes. What are the steady-state  concentrations of S2  and S3 ?

A: The  first  step  in  answering  this  question  is  to  define  an  equation  list  of  the  reaction
sequence that is given in Section 4.3.

eqns = 8 8s1@tD → s2@tD<,
8s2@tD → s3@tD<,
8s3@tD → s4@tD<<;

Having  done  this,  we  are  now  in  a  position  to  define  the  appropriate  matrices  and
vectors  of  the  system.  Note  that  when  doing  this  we  define  S1 and  S2  to  be  external
parameters. So the relevant substrate list is

S¯ := SMatrix@eqns, 8s1@tD , s4@tD<D ;
S¯ êê MatrixForm
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J s2@tD
s3@tD N

and the relevant stoichiometry matrix and reaction list are

N¯ = NMatrix@eqns, 8s1@tD , s4@tD<D ;
N¯ êê MatrixFormJ 1 −1 0
0 1 −1

N
DoAv@iD =

Vmax,i,f si@tD
""""""""""""""""""""""""""""""""""""""""""""""
Km,i,si I1 + si@tD"""""""""""""Km,i,si M

, 8i, 3<E;

v̄ := VMatrix@eqnsD;
v̄ êê MatrixFormi
k
jjjjjjjjjjjjjjjjj

Vmax,1,f s1@tD%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Km,1,s1 I1+ s1@tD%%%%%%%%%%%%%%%%Km,1,s1

M
Vmax,2,f s2@tD%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Km,2,s2 I1+ s2@tD%%%%%%%%%%%%%%%%Km,2,s2
M

Vmax,3,f s3@tD%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Km,3,s3 I1+ s3@tD%%%%%%%%%%%%%%%%Km,3,s3

M
y
{
zzzzzzzzzzzzzzzzz

So  if  we  specify  the  parameters,  we  can  then  use  SteadyState  to  determine  the
steady state.

p = 8s1@tD, s4@tD, Vmax,1,f, Vmax,2,f, Vmax,3,f, Km,1,s1, Km,2,s2, Km,3,s3<;
pv = 81, 1, 1, 1, 1, 1, 1, 1<;
SteadyState@S¯, N¯, v̄, Transpose@8p, pv<DD88s2@tD → 1, s3@tD → 1<<

Thus  the function SteadyState returns a replacement rule which can be used in the
usual manner to obtain the concentration of each metabolite. 

Alternatively,  NDSolveMatrix  can  be  used  to  follow  the  time  course  of  [S2 ]  and
[S3 ] from an initial concentration of  0  mM to their  respective steady-state values.  The
graphical output shows that the steady state is attained after ~30 h. 

sol = NDSolveMatrix@S¯, N¯, v̄,
8s2@0D == 0, s3@0D == 0<, 8t, 0, 30<, Transpose@8p, pv<DD;

Plot@Evaluate@S¯ ê. solD, 8t, 0, 30<,
AxesLabel −> 8"Time HhL", "Concentration HmML"<D;
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Figure 4.4. Time course of the reaction scheme shown in Eqn [4.1] with metabolites S1
and S4 at constant concentrations. Upper curve is S2 and lower curve S3.

By  leaving  out  the  Vmax and Km from  the  parameter  table  it  is  possible  to  obtain
expressions  for  the  steady-state  concentrations  of  S2  and  S3 written  in  terms  of
Vmax and Km.  This  enables  visual  inspection  of  the expressions  which may help obtain
an  idea  of  which  parameters  most  influence  the  steady-state  concentrations.  This
analysis can be a prelude to the quantitative MCA that is discussed in Chapter 5. 

We  can  implement  this  analysis  by  not  including  the  Vmax and Kmparameters  in  the
parameter table that was defined at the beginning of this  example. Thus,

p2 = 8s1@tD, s4@tD<;
pv2 = 81, 1<;

SteadyState@S¯, N¯, v̄, Transpose@8p2, pv2<DD99s2@tD → −
Km,2,s2 Vmax,1,f%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vmax,1,f − Vmax,2,f − Km,1,s1 Vmax,2,f
,

s3@tD → −
Km,3,s3 Vmax,1,f%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Vmax,1,f − Vmax,3,f − Km,1,s1 Vmax,3,f
==

By omitting p  altogether,  the  steady state  can be  expressed  in  terms of  Vmax, Km, S1,
and S4 .

SteadyState@S¯, N¯, v̄D
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99s2@tD → −
Km,2,s2 Vmax,1,f s1@tD%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

−Km,1,s1 Vmax,2,f + Vmax,1,f s1@tD − Vmax,2,f s1@tD ,

s3@tD → −
Km,3,s3 Vmax,1,f s1@tD%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

−Km,1,s1 Vmax,3,f + Vmax,1,f s1@tD − Vmax,3,f s1@tD ==
The  SteadyState  function  will  often  be  unable  to  locate  a  solution  for  metabolic
models that are more complicated than the one described in the above question/answer.
In  large metabolic models there may be no analytical solutions or  the solution may be
so  complicated  that  the  algorithm  simply  cannot  determine  it.  In  the  latter  cases,  the
function NSteadyState can be used to find an approximate numerical solution. This
algorithm is based on Mathematica's FindRoot function.

NSteadyState@S, N , v, p, initD Uses the Mathematica function FindRoot to
determine an approximate numerical solution to
Eqn @4.9Dwhere init contains initial estimates of the
steady state concentations in the form of areplacement
rule. Note that the inclusion of the parameter table p is
optional.

Solving metabolic steady states  numerically.

Q: Calculate  the   steady-state   concentrations  of  S2  and  S3  for  the  metabolic  scheme
described in the previous question, using NSteadyState. 

A: To  use  NSteadyState  we  must  first  set  up  a  replacement  rule  containing  initial
estimates  of  the  steady-state  concentrations  of  S2  and  S3 .  We  can  use  the  simulation
values at 20 h that were obtained in the previous question/answer to do this.

ssvalues = S¯ ê. t −> 30 ê. solP1T;
rrule = Table@S¯PiT −> ssvaluesPiT, 8i, Length@S¯D<D8s2@tD → 0.999664, s3@tD → 0.997363<

Note that in the above input we have relied on the Part or [[...]] function. 

With  the  initial  estimate,  we  can  refine  the  answer  by  using  the  function,
NSteadyState.

NSteadyState@S¯, N¯, v̄, Transpose@8p, pv<D, rruleD8s2@tD → 1., s3@tD → 0.999997<
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In  conclusion,  we  see  that  the  numerical  estimate  is  the  same  as  that  returned  in  the
previous example.

listPiT returns the ith element of a list

Selecting elements of lists.

4.6  Conservation Relations
A defining feature of any metabolic system is its metabolite-conservation relationships.
For  example,  in  the  human  erythrocyte  under  normal  conditions  the  sums  of  the
concentrations of the adenine nucleotides ([ATP]+[ADP]+[AMP]) and the nicotinamide
adenine dinucleotides ([NAD]+[NADH]) are both constant.

The  stoichiometry matrix,  N,  which  contains  the  stoichiometric structure  of  the  model
of  the  metabolic  system,  implicitly  contains  these  conservation  relationships  in  it.  A
function  in  the  MetabolicControlAnalysis  package  called  Conservation-
Relations  has  been  written  to  extract  these  relationships  from  an  N  matrix.  No
knowledge of the kinetic behaviour of the individual reactions is needed for the analysis
so it is done by using only S and N, as follows.

ConservationRelations@S, ND Determines nonnegative
conservation relations between
the metabolites Si  in the metabolic
network defined by N .

Determining conservation relations between metabolites.

Q: Calculate the conservation relationships if any exist in the reaction scheme given in the
question/answer  in  Section  4.3.  Recall  that  the  scheme  can  be  represented  by  the
metabolite and stoichiometry matrices.

A: This is achieved as follows:

S¯ = Table@si@tD, 8i, 4<D;

N¯ =

i

k

jjjjjjjjjjjj

−1 0 0
1 −1 0
0 1 −1
0 0 1

y

{

zzzzzzzzzzzz
;

110 Chapter 4



The next function identifies any conservation relationships.

ConservationRelations@S¯, N¯D8s1@tD + s2@tD + s3@tD + s4@tD< == 8Const@1D<
Thus, the conservation condition is such that the sum of all metabolite concentrations in
the  metabolic  system  is  constant.  In  general,  the  conservation  relations  can  also  be
returned in terms of a matrix, G.

[4.10]G.S = Const ,

where  Const  is  a  matrix  of  constants.  The  function  ConservationRelations
will return G if the option GMatrix → True is included. Hence,

G¯ = ConservationRelations@S¯, N¯, GMatrix → TrueD;
G¯ êê MatrixForm
G¯.S¯ + Array@Const, Length@G¯DDH 1 1 1 1 L8s1@tD + s2@tD + s3@tD + s4@tD< == 8Const@1D<

If  we now modify this metabolic system by assuming that the concentrations of S1 and
S4  are  fixed,  as  we  did  in  the  question/answer  in  Section  4.5,  the  conservation
relationships disappear, as is indicated by the null matrix, denoted by {}, below.

S¯ = Table@Si@tD, 8i, 2, 3<D;

N¯ = J 1 −1 0
0 1 −1 N;

ConservationRelations@S¯, N¯, GMatrix → TrueD8<

Q: Calculate  the  conservation  relationships  and  the  vector  of  steady-state  concentrations
for the following reaction scheme that is written in the Mathematica Cell:

Clear@ConstD;

eqns = 88s1@tD → s2@tD<,
8s2@tD + s5@tD → s3@tD + s6@tD <,
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8s3@tD → s4@tD<,
8s6@tD → s5@tD<<;

N¯ = NMatrix@eqns, 8s1@tD, s4@tD<D;
S¯ = SMatrix@eqns, 8s1@tD, s4@tD<D;

v@1D = 1;
v@2D = s2@tD s5@tD;
v@3D = s3@tD;
v@4D = s6@tD;

v̄ := VMatrix@eqns, 8s1@tD, s4@tD<D;
A: The  conservation  relations  of  this  system  are  obtained  by  using  the  function

ConservationRelations from the MetabolicControlAnalysis package.

ConservationRelations@S¯, N¯D8s5@tD + s6@tD< == 8Const@1D<
Hence, the conservation relationship is that the sum of the concentrations of S5  and S6
is constant. 

If  we  now  determine  the  steady-state  concentrations  of  the  system,  it  is  seen  that  the
result is given in terms of the constant, Const[1].

steadystate = SteadyState@S¯, N¯, v̄D99s2@tD →
1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
−1 + Const@1D ,

s3@tD → 1, s5@tD → −1 + Const@1D, s6@tD → 1==
These constants can be assigned values like other parameters. For example,

Const@1D = 1.5;
steadystate88s2@tD → 2., s3@tD → 1, s5@tD → 0.5, s6@tD → 1<<

Thus  the  concentrations  of  metabolites at  the steady state are  defined in terms of  both
the metabolite-conservation relationships and the kinetic parameters.

From  an  examination  of  the  simple  examples  in  this  section,  the  reader  may  be
wondering  about  the  utility  of  the   ConservationRelations  function,  given  the
rather obvious form of the conservation relations that we have determined thus far. This
function  is  important  for  two  reasons:  (1)  it  is  a  mathematical  necessity  to  be  able  to
specify  these  conservation  relations  so  that  we  can  solve  for  the  steady-state
concentrations.   As  seen  in  the  previous  question/answer,  the  solution  of  the  steady-
state  vector  will  be  expressed  in  terms  of  the  constants  of  these  relationships;  (2)  in
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models  of  much  more  complicated  metabolic  systems,  these  relationships  can  become
less  obvious.  Hence  the  function  ConservationRelations  becomes  particularly
important.  We  will  return  to  these  issues  again  in  Section  7.5  where  we  deal  with
determining  steady  states  and  conservation  relationships  in  a  realistic  cellular  system,
namely, the metabolism in the human erythrocyte.

4.7  Stability of a Steady State
After  the  calculation  of  the  steady-state  concentrations  of  metabolites  in  a  reaction
scheme it is often relevant to determine if the particular steady state is stable. A steady
state  is  said  to  be  asymptotically  stable  if,  after  a  minor  perturbation  in  system
concentrations,  the system returns  to  the original  set  of  values.   In other  words,  as the
time since perterbation approaches infinity, the system will approach the original steady
state.  If  the  perterbation  causes  the  system to  move toward  another  steady  state,  or  to
not  reach  a  steady  state  at  all,  then  the  steady  state  is  said  to  be  unstable.   In  the
MetabolicControlAnalysis  package  the  function  Stability  determines
whether a set of simultaneous differential equations, defined by S, N, v, and p, is stable
or  not  at  a  given  steady  state.  It  can  be  shown  mathematically  that  the  presence  or
absence  of  asymptotic  stability  is  determined  by  the  so-called  eigenvalues  of  the
Jacobian of the system of differential equations.H1L  The Jacobian is defined as followsH1L
by 

[4.11]Jacobian HML = N
∑ v
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ S

or mij = „
k

∑vkÅÅÅÅÅÅÅÅÅÅÅÅ
∑Sj

.

If  the  eigenvalues  all  have  negative  real  parts,  the  steady  state  is  said  to  be
asymptotically  stable.  If  at  least  one  of  the  eigenvalues  has  a  positive  real  part,  the
steady  state  is  unstable.  In  the  case  that  some  of  the  eigenvalues  have  zero  real  parts
(with the remaining eigenvalues all having negative real parts) no conclusions can been
drawn about the stability. In this final case, further analysis is needed (see Heinrich and
SchusterH1L  and references therein).
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Stability@S, N , v, p,
SteadyStateConc Ø steadystateD Assesses whether the system of differential equations,

defined by S, N , v,
and p  is asymptotically stable at the steady state
given by the replacement rule steadystate. Also,
the function returns the eigenvalues of the Jacobian
of the system of differential equations defined by S,
N , v, and p. Note that the inclusion
of the parameter table p  is optional

MMatrix@S, N , v,
p, Normalized Ø False,
SteadyStateConc Ø steadystateD Calculates the Jacobian of the system of

differential equations defined by S, N , v,
and p. Note that the last three arguments are optional;
however,
the default value for the option Normalized is True

Assessing the stability of a steady state.

Q: Assess the stability of the steady state calculated in the question/answer in Section 4.5.

A: The  function  Stability  requires  the  full  description  of  the  reaction scheme, and in
addition it must have the full set of steady-state concentrations. Thus, the reaction list is

Clear@Subscript, ConstD
eqns = 8 8s1@tD → s2@tD<,

8s2@tD → s3@tD<,
8s3@tD → s4@tD<<;

The  S,  N,  and  v  matrices  and  the  parameters  are  defined  as  they  were  previously  in
Section 4.6.

S¯ := SMatrix@eqns, 8s1@tD , s4@tD<D ;
N¯ = NMatrix@eqns, 8s1@tD , s4@tD<D ;

DoAv@iD =
Vmax,i,f si@tD

""""""""""""""""""""""""""""""""""""""""""""""
Km,i,si I1 + si@tD"""""""""""""Km,i,si M

, 8i, 3<E;

v̄ := VMatrix@eqnsD;

p = 8s1@tD, s4@tD, Vmax,1,f, Vmax,2,f, Vmax,3,f, Km,1,s1, Km,2,s2, Km,3,s3<;
pv = 81, 1, 1, 1, 1, 1, 1, 1<;

If  we  determine the  steady-state  vector,  we  can  then  use  the  Stability  function  to
assess the stability of the particular steady state.

ss = SteadyState@S¯, N¯, v̄, Transpose@8p, pv<DD

Stability@S¯, N¯, v̄, Transpose@8p, pv<D, SteadyStateConc → ssP1TD
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88s2@tD → 1, s3@tD → 1<<
Asymptotically Stable

9− 1
%%%%
4
, −

1
%%%%
4
=

This output verifies that the steady state is stable, since the eigenvalues returned by the
Stability function are all real and negative.

Q: Calculate the Jacobian of the reaction system

[4.12]S1  Ø
v1  S2 Ø

v2 ,

assuming  that  both  reactions  are  each  dependent  on  S1  and  S2 .  Thus,  v1 ª  v1 (S1 , S2 )
and v2 ª v2 (S1 , S2 ).

A: The  following  series  of  functions  defines  the  reaction  scheme  and  then  MMatrix
carries out the evaluation of the Jacobian.

Clear@vD;

S¯ = Table@si@tD, 8i, 1, 2<D;
N¯ = IdentityMatrix@2D;
v̄ := Table@v@iD@S¯D, 8i, 1, 2<D;

jacob = MMatrix@S¯, N¯, v̄, Normalized −> FalseD88v@1DH81,0<L@8s1@tD, s2@tD<D, v@1DH80,1<L@8s1@tD, s2@tD<D<,8v@2DH81,0<L@8s1@tD, s2@tD<D, v@2DH80,1<L@8s1@tD, s2@tD<D<<
The  eigenvalues  of  the  Jacobian  are  determined  by  using  the  Mathematica  function
Eigenvalues. The sign of the real part of these eigenvalues must be negative for the
system to be stable at the given steady state.

Eigenvalues@jacobD
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9 1
%%%%
2

Iv@2DH80,1<L@8s1@tD, s2@tD<D + v@1DH81,0<L@8s1@tD, s2@tD<D −,Iv@2DH80,1<L@8s1@tD, s2@tD<D2 − 2 v@2DH80,1<L@8s1@tD, s2@tD<D
v@1DH81,0<L@8s1@tD, s2@tD<D + v@1DH81,0<L@8s1@tD, s2@tD<D2 +
4 v@1DH80,1<L@8s1@tD, s2@tD<D v@2DH81,0<L@8s1@tD, s2@tD<DMM,

1
%%%%
2

Iv@2DH80,1<L@8s1@tD, s2@tD<D + v@1DH81,0<L@8s1@tD, s2@tD<D +,Iv@2DH80,1<L@8s1@tD, s2@tD<D2 − 2 v@2DH80,1<L@8s1@tD, s2@tD<D
v@1DH81,0<L@8s1@tD, s2@tD<D + v@1DH81,0<L@8s1@tD, s2@tD<D2 +
4 v@1DH80,1<L@8s1@tD, s2@tD<D v@2DH81,0<L@8s1@tD, s2@tD<DMM=

Clearly,  the  sign  of  the  eigenvalues  is  dependent  on  the  expressions  for  the  velocities
and the values of their parameters, as well as the actual steady-state values themselves.

Q: What is the steady-state concentration of S1  in the reaction scheme defined below (from
Heinrich  and  Shuster,H1L  Scheme  4,   p.  47)?  The  scheme  involves  the  supply  of  the
metabolite,  S1 ,  and  two  pathways  of  removal,  with  one  displaying  high-substrate
inhibition of the enzyme that catalyzes it. 

[4.13]

Suppose that v1 = k1,  v2 = k2@S1D,  and v3 = k3@S1DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+H @S1 DÅÅÅÅÅÅÅÅÅÅÅKi

Ln ,  with k1 = 0.9 mmol L-1  h-1 , k2  =

0.11 h-1,  k3  = 0.4 h-1, Ki = 3 mmol L-1 , and n = 4.

A: First  we  need  to  define  the  appropriate  matrices,  reaction  rates,  and  parameter  values
for this system.

Clear@SubscriptD;

S¯ = 8s1@tD<;

N¯ = 881, −1, −1<<;

v@1D := k1;
v@2D := k2 s1@tD;
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v@3D :=
k3 s1@tD

""""""""""""""""""""""""""""""
1 + I s1@tD"""""""""""Ki Mn

;

v̄ := Table@v@jD, 8j, 3<D;

p = 8k1, k2, k3, Ki, n<;
pv = 80.9, 0.11, 0.4, 3, 4<;

Then the steady state is calculated as follows:

ss = SteadyState@S¯, N¯, v̄, Transpose@8p, pv<DD88s1@tD → −2.33223 − 2.7614 (<, 8s1@tD → −2.33223 + 2.7614 (<,8s1@tD → 2.05637<, 8s1@tD → 3.28846<, 8s1@tD → 7.50144<<
By selecting only the real solutions we find three physically relevant steady states.

realss = ss ê. 8a___, b_ −> c_Complex, d___< −> 8< êê Flatten8s1@tD → 2.05637, s1@tD → 3.28846, s1@tD → 7.50144<
We can now use a Do statement around the Stability function to assess the stability
of each steady state individually.

Do@Stability@S¯, N¯, v̄, Transpose@8p, pv<D,
SteadyStateConc −> realssPiTD , 8i, 3<D

Asymptotically Stable8−0.200649<
Asymptotically Unstable80.113127<
Asymptotically Stable8−0.0810647<

The  stability  analysis  reveals  that  the  second  steady  state  in  the  list  is  asymptotically
unstable. This is illustrated in the graph from the following simulation where the initial
concentration  of  S1 is  set  to  the  second  value.  (More  significant  figures  are  used  than
are shown above.)
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sol = NDSolveMatrix@S¯, N¯, v̄,
8s1@0D == 3.28846091596<, 8t, 0, 800<, Transpose@8p, pv<DD;

Plot@Evaluate@S¯ ê. solD, 8t, 0, 800<,
AxesLabel −> 8"Time HhL", "Concentration HmML"<,
PlotRange → 81, 4<D;

200 400 600 800
Time HhL1.5

2

2.5

3

3.5

4
Concentration HmML

Figure 4.5. Time course of the reaction scheme shown in Eqn [4.13].  

The graph shows that the concentration is stable at ~3.3 mmol L-1  and after ~320 h it
undergoes a transition to a new steady state at ~2.0 mmol L-1 .

4.8  When Cell Volume Changes with Time
All  the  metabolic  pathways  that  we  have  considered  so  far  have  involved  the
assumption that the reactions take place in free solution and no consideration has been
given  to  partitioning  of  reactants  and  enzymes into  various  compartments. To actually
simulate  such  a  system   introduces  another  order  of  complexity  into  formulating  the
model.  The principal  'trick'  in  such models is  to  express  the rate equations in terms of
the  rate  of  change  of  amounts  (moles)  rather  than  concentrations.  If  we  do  this  Eqn
[4.3] becomes

[4.14]
dHV.SL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dt
= N v ,

where  N  is  the  stoichiometry  matrix,  v  is  the  vector  of  reaction  velocities  containing
rate equations expressed in terms of the time rate of change of amounts, S is the vector
of  substrate  concentrations,  and V  is  a  diagonal  matrix where  the ith  element contains
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the  compartment  volume  of  the  ith  substrate  in  S.  Note  that  in  this  formulation,
although the rate equations are expressed in terms of the rate of change of amounts, the
rate  equations  are  also  expressed  as  functions  of  substrate  concentrations.  In  other
words, all we do for this analysis is to take the usual rate expressions and multiply them
by the appropriate compartment volumes.

If we expand Eqn [4.14] we obtain

[4.15]V 
dS
ÅÅÅÅÅÅÅÅÅÅ
dt

+ S 
dV
ÅÅÅÅÅÅÅÅÅÅÅ
dt

= N v .

Now for many systems of interest we can assume that the compartment volumes remain
constant with time. In this case Eqn [4.15] simplifies to

[4.16]V 
dS
ÅÅÅÅÅÅÅÅÅÅ
dt

= N v ,

or

[4.17]
dS
ÅÅÅÅÅÅÅÅÅÅ
dt

= V-1 N v .

This  may  seem  a  little  abstract  at  the  moment  but  it  should  become  clearer  with  the
following question/answer.

Q: Consider  the  following  simple  two-compartment  model  (Eqn  [4.18])  consisting  of  an
intracellular  and  an  extracellular  compartment  with  volumes  Voli  and  Vole,
respectively. 

[4.18]

The  model  contains  only  two  metabolites  A  and  B;  the  subscript  e  denotes  that  the
metabolite  is  in  the  extracellular  compartment,  while  the  subscript  i  refers  to  the
intracellular  compartment.  Assume  that  all  reactions  are  described  by  first-order  rate
constants.  Simulate  a  time  course  for  this  system  and  determine  the  steady-state
concentrations of A and B in each compartment.
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A: The  reaction  scheme  represented  in  Eqn  [4.18]  can  be  described  by  the  following
equation list:

eqns = 8
8Ai@tD → Ae@tD<,
8Ae@tD → Be@tD<,
8Be@tD → Bi@tD<,
8 Bi@tD → Ai@tD<<;

We  model  each  of  these  transport  and  metabolic  reactions  with  simple  first-order  rate
equations  as  indicated  in  the  question.  Note  that  because  we  want  to  express  the
reaction/transport  rates  in  terms  of  the  number  of  molecules  per  unit  time,  it  is
necessary  to  multiply  each  rate  equation  by  the  appropriate  compartment  volume.
Suppose that the compartment volumes are

Voli = 0.75;
Vole = 0.25;

Hence, the requisite rate equations are

v@1D := k1 Ai@tD Voli; k1 = 1;

v@2D := k2 Ae@tD Vole; k2 = 1;

v@3D := k3 Be@tD Vole; k3 = 1;

v@4D := k4 Bi@tD Voli; k4 = 1;

Now  use  the  MetabolicControlAnalysis  functions  to  derive  the  matrices  and
vectors of this system, in the manner used above. 

S¯ = SMatrix@eqnsD;
N¯ = NMatrix@eqnsD;
v̄ = VMatrix@eqnsD;
S¯ êê MatrixForm
N¯ êê MatrixForm
v̄ êê MatrixFormi
k
jjjjjjjjjjjj
Ae@tD
Ai@tD
Be@tD
Bi@tD

y
{
zzzzzzzzzzzzi

k
jjjjjjjjjjjj
1 −1 0 0
−1 0 0 1
0 1 −1 0
0 0 1 −1

y
{
zzzzzzzzzzzz
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i
k
jjjjjjjjjjjj
0.75 Ai@tD
0.25 Ae@tD
0.25 Be@tD
0.75 Bi@tD

y
{
zzzzzzzzzzzz

It remains to define the V matrix of Eqn [4.14]; this is simply the diagonal matrix where
the  ith  element  contains  the  compartment  volume  of  the  ith  substrate  in  S.  Hence  for
this system, V is given by

V¯ = DiagonalMatrix@8Vole, Voli, Vole, Voli<D;
V¯ êê MatrixFormi
k
jjjjjjjjjjjj
0.25 0 0 0
0 0.75 0 0
0 0 0.25 0
0 0 0 0.75

y
{
zzzzzzzzzzzz

When  constructing this matrix, make sure that the order of the volumes in the diagonal
matrix matches the order of the substrates in the substrate list. 

Having  constructed  all  the  appropriate  matrices  we  can  solve  this  system  of  matrices
and  vectors  by  using  the  NDSolveMatrix  function  in  the  manner  described  above,
except that we use V-1 N  instead of simply N.

sol = NDSolveMatrix@S¯, Inverse@V¯ D.N¯, v̄,
8Ai@0D + 1, Ae@0D + 0, Bi@0D + 0, Be@0D + 0<, 8t, 0, 10<D88Ae → InterpolatingFunction@880., 10.<<, <>D,
Ai → InterpolatingFunction@880., 10.<<, <>D,
Be → InterpolatingFunction@880., 10.<<, <>D,
Bi → InterpolatingFunction@880., 10.<<, <>D<<

Plot@Evaluate@S¯ ê. solD, 8t, 0, 10<, PlotRange −> 80, 1.5<,
AxesLabel −> 8"Time", "Concentration"<D;
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Figure 4.6. Time course of the reaction scheme shown in Eqn [4.18].  Ai  delines from an
initial  concentration  of  1  to  a  steady  state  of  0.25  mmol  L-1 ,  while  Bi  approaches  a
steady state of 0.25 mmol L-1  from an initial concentration of 0 mmol L-1 . Both [Ae ] and
[ Be ] approach a steady state of 0.75 mmol L-1 with [Ae ] initially overshooting this steady-
state concentration by a modest amount.

From this simulated time course it is seen that the system approaches a steady state. To
determine  the  values  of  the  concentrations  we  use  the  function  SteadyState;
however, we must first determine the conservation of mass relations; these are given by
the following function from the MetabolicControlAnalysis package.

ConservationRelations@S¯, Inverse@V¯ D.N¯D8Ae@tD + 3. Ai@tD + 1. Be@tD + 3. Bi@tD< == 8Const@1D<
From the initial conditions used in the time course simulation, we must set Const[1]
= 3.

Const@1D = 3;
Hence, the steady state of the system is given by the following function evaluation: 

SteadyState@S¯, Inverse@V¯ D.N¯, v̄D88Ae@tD → 0.75, Ai@tD → 0.25, Be@tD → 0.75, Bi@tD → 0.25<<
In the above example we assumed that cell volumes were constant.  In many situations
of interest this may not be the case. For example, most cells are unable to sustain a high
transmembrane difference  in  osmotic pressure  and,  if  this  occurs,  the  cell  volume will
change. 
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To simulate metabolic systems in which compartment volumes change we could resort
to using  Eqn [4.15]. However, another method, which often makes model formulation
easier,  is  to  represent  the  changes  as   changes  in  amounts  rather  than  concentrations.
When doing so the familiar equations are still employed:

[4.19]
dS
ÅÅÅÅÅÅÅÅÅÅ
dt

= N v .

However,  in  this  case,  S,  is  a  list  of  substrate  amounts  (not  concentrations),  while  the
rate  equations  in  v  are  written  in  terms  of  the  rate  of  change  of  amounts.  The
stoichiometric matrix, N, remains unchanged. This overall approach to modelling these
systems is illustrated in the following question/answer.

Q: Simulate the time dependence of the concentrations of Na, Ca, and K in a suspension of
red  blood  cells  in  which  a  calcium  ionophore  is  added  to  the  cells.  The  ionophore
stimulates  K  efflux  by  delivering  Ca  into  the  cells,  thus  'switching  on'  the  calcium-
activated (Gardos) K channel.

A: In this problem it is assumed that a cell is not able to sustain a substantial difference of
osmolality  across  its  membrane.  Hence,  as  ions  flow  across  the  membrane,  water
distribution is altered and this is reflected in a change in the cell volume. Furthermore,
since  the  metal  cations  permeate the  cell  membrane,  but  charged  intracellular  proteins
do  not,  a  potential  difference  is  generated  across  the  membrane.  This  is  called  the
Donnan  potential.  Its  value  is  calculated  by  using  the  Nernst  equation  (see  below).  A
graphical illustration of the reaction scheme is as follows:

Figure 4.7. Model of a suspension of cells that take up calcium that, in turn, activates the
loss of potassium from the cells. The calcium influx is also accompanied by exchange of
sodium between the inside and the outside of the cells. The scheme is a model of human
erythrocytes  in  which  calcium  activates  the  Gardos  channel.  The  model  consists  of  a
Michaelis-Menten membrane transport protein for each of the cationic species, while it is
assumed, as is  the case with human erythrocytes, that  the passive exchange of  anions
(chloride  and  bicarbonate)  is  very  rapid  (on  the  sub-second  timescale)  via  the  band  3
(capnophorin) transport protein. 
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The first step in modelling this system is to define carefully all the initial volumes in the
system. Suppose that the total sample volume is 3 × 10-3 L. Hence we define the values
as follows:

voltotal = 3.0 × 10−3;

We  now specify  the  fraction  of  the  sample  volume that  is  occupied  by  the  cells.  This
fraction is called the hematocrit. Note that the hematocrit potentially changes in time as
the  ions  exchange  across  the  cell  membrane  and  an  input  value  is  the  haematocrit  at
zero time. Thus, 

ht@0D = 0.65;

The  volume  fraction  of  an  erythrocyte  that  is  occupied  by  haemoglobin  and  the
cytoskeleton  is  usually  taken  to  be  0.29  of  the  volume  of  the  cell  of  normal  volume.
When  the  cell  changes  volume,  the  volume  of  these  proteins  stays  the  same but  their
volume relative to the cell volume changes. Thus the fraction of the erythrocyte volume
that is occupied by haemoglobin is given by

volhbn = ht@0D ×0.29× voltotal;

Now  use  these  values  to  calculate  the  initial  water  volumes  in  the  intracellular
Hvoli,w@0DL  and extracellular Hvole@0DLspace of the sample. 

vole@0D = H1 − ht@0DL×voltotal;
voli@0D = ht@0D ×voltotal;
voli,w@0D = voli@0D − volhbn;
voltotal,w@0D = voli,w@0D + vole@0D;

Having  defined  the  initial  water  volumes  in  the  two  compartments  of  the  sample,  we
must  determine  how  these  two  volumes  change  with  time.  Before  we  do  this  it  is
necessary to define the ion movements that will lead to these volume changes. 

The system of transport  processes that is described in Fig. 4.7 can be represented with
the following equation list:

eqns = 88kitrans, ki@tD → ke@tD <,
8ketrans, ke@tD → ki@tD <,
8naitrans, nai@tD → nae@tD <,
8naetrans, nae@tD → nai@tD <,
8caitrans, cai@tD → cae@tD <,
8caetrans, cae@tD → cai@tD <<;
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Each  of  the  cationic  transport  processes  is  modelled  by  a  Michaelis-Menten  rate
equation.  For  simplicity  we  assume  that  intracellular  calcium  activates  the  influx  and
efflux  of  both  sodium  and  potassium  ions.  The  rate  equations  and  their  associated
parameters are as follows:

Vmax,ki = 0.0061 voli@0D;
Km,ki = 2.5 × 10−4;
Kac = 2.5 × 10−5;

v@kitransD :=
Vmax,ki ki@tD""""""""""""""""""voli,w@tD

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""ki@tD""""""""""""""""""voli,w@tD + Km,ki I1 + Kac voli,w@tD""""""""""""""""""""""""cai@tD M
;

Vmax,ke = 0.0061 voli@0D;
Km,ke = 2.5 × 10−4;

v@ketransD :=
Vmax,ke ke@tD"""""""""""""""vole@tD"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""ke@tD"""""""""""""""vole@tD + Km,ke I1 + Kac voli,w@tD""""""""""""""""""""""""cai@tD M

;

Vmax,nai = 0.00045 voli@0D;
Km,nai = 2.5 × 10−3;

v@naitransD :=
Vmax,nai nai@tD""""""""""""""""""voli,w@tD

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""nai@tD""""""""""""""""""voli,w@tD + Km,nai I1 + Kac voli,w@tD""""""""""""""""""""""""cai@tD M
;

Vmax,nae = 0.00045 voli@0D;
Km,nae = 2.5 × 10−3;

v@naetransD :=
Vmax,nae nae@tD"""""""""""""""vole@tD"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""nae@tD"""""""""""""""vole@tD + Km,nae I1 + Kac voli,w@tD""""""""""""""""""""""""cai@tD M

;

Vmax,cai = 0.0122 voli@0D;
Km,cai = 2.0 × 10−6;

v@caitransD :=
Vmax,cai cai@tD""""""""""""""""""voli,w@tD
""""""""""""""""""""""""""""""""""""""""cai@tD""""""""""""""""""voli,w@tD + Km,cai

;

Vmax,cae = 0.0122 voli@0D;
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Km,cae = 2.0 × 10−6;

v@caetransD :=
Vmax,cae cae@tD"""""""""""""""vole@tD"""""""""""""""""""""""""""""""""""""cae@tD"""""""""""""""vole@tD + Km,cae

;

Note that each rate equation is specified in terms of the rate of change of amount (units:
mol  s-1 )  rather  than  the  rate  of  change  of  concentration.  Because  of  this  the
Vmax parameters  in  the  above  equations  have  units  of  mol  s-1  and  are  made  up  as
follows: number of molecules of  transporter  per cell  (N) × turnover  number per active
site of the transporter × number of cells in the sample. The total number of cells in the
sample is given by voltotal  × ht[0] / volume of a single cell . 

Hence, when determining Vmax  values from the literature, we must pay special attention
to its physical units. The Vmax values we needed for the above equations are reported in
terms  of  mol  HL internal volumeL-1  s-1 so  it  is  necessary  to  convert  them  to  the
appropriate units by multiplying by the internal volume of the cell.

Having defined the systems of reactions and the associated rate equations, we are now
able to define the S, N, and v matrices, and the initial conditions.

S¯ = SMatrix@eqnsD;
N¯ = NMatrix@eqnsD;
v̄ = VMatrix@eqnsD;

IC = 8nae@0D == 0.14× vole@0D,
nai@0D == 0.005×voli,w@0D,
ke@0D == 0.010× vole@0D,
ki@0D == 0.14×voli,w@0D,
cae@0D == 0.002×vole@0D,
cai@0D == 0.0001× voli,w@0D<;

The  final  task  before  we  can  simulate  a  timecourse  is  to  define  how  cell  volume will
change with changes in ionic concentrations. Our model of volume change requires the
following major assumption:  that  the passive exchange of  anions  is rapid compared to
the  rates  of  transport  of  other  ions.  With  this  assumption  we  know  that  chloride  ions
(and  other  anions  such  as  bicarbonate)  will  distribute  between  the  intracellular  and
extracellular  spaces  so  that  electroneutrality  is  maintained  in  each  compartment.  Thus
the following equation must hold:

cle@t_D := nae@tD + ke@tD + 2 cae@tD;
cli@t_D := nai@tD + ki@tD + 2 cai@tD − 4 hb;

Note that we have assumed that the charge on each haemoglobin molecule is � 4. 

In addition we know that the erythrocyte membrane is not able to withstand an osmotic
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pressure  difference  of  any  great  magnitude.  So  it  is  appropriate  to  assume  that  the
osmotic  pressure  inside  the  cell  is  equal  to  the  osmotic  pressure  outside  the  cell.  This
assumption  is  equivalent  to  assuming that  the  sum of  the  concentrations  of  all  solutes
inside  is  equal  to  the  sum  of  all  those  outside,  under  conditions  of  thermodynamic
'ideality'. Hence, the following equation will yield the intracellular volume as a function
of the concentrations of the ionic species inside and outside the cell:

voli,w@t_D :=

Hvoltotal,w@0D Hki@tD + nai@tD + cai@tD + cli@tD + hbLLêHki@tD +

nai@tD + cai@tD + cli@tD + hb + ke@tD + nae@tD + cae@tD + cle@tDL;

where  the  mass  (mol)  of  haemoglobin,  hb,  is  calculated  by  using  its  partial  specific
volume (0.73 L kg-1 ) and its molecular weight (64.5 kg).

hb =
volhbn

"""""""""""""""""""""""""""""0.73× 64.5 ;

The  volume  of  aqueous  medium outside  the  cells  is  simply  the  total  solute-accessible
volume in the sample minus the aqueous volume inside the cells.

vole@t_D := voltotal,w@0D − voli,w@tD;

We  are  now  in  a  position  to  solve  the  time-dependent  behaviour  of  this  system using
NDSolveMatrix and  then  to  view  the  time  courses  of  concentrations  or  amounts
graphically.

res = NDSolveMatrix@S¯, N¯, v̄, IC, 8t, 0, 5000<, MaxSteps −> 5000D;

Plot@Evaluate@ki@tD ê. resD,
8t, 0.0, 5000< , AxesLabel → 8"Time HsL", "K+ HmolL"<,
PlotRange → 80.0, 0.0002<D;
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Figure 4.8.  Simulated time course of  the amount of  intracellular potassium ion in a cell
suspension for the reaction scheme shown in Fig. 4.7.  

Plot@Evaluate@8cai@tDê voli,w@tD, cae@tDê vole@tD< ê. resD,
8t, 160, 320<, PlotRange → All,
AxesLabel → 8"Time HsL", "@Ca+Din and @Ca+DoutHmol L−1L"<D;

200 225 250 275 300
Time HsL

0.0006

0.0008

0.0012

@Ca+Din and @Ca+DoutHmol L−1L

Figure  4.9.  Simulated  time  course  of  the  concentration  of  intra-  (lower  curve)  and
extracellular calcium ions for the reaction scheme shown in Fig. 4.7.  

Plot@Evaluate@8voli,w@tD + volhbn, vole@tD< ê. resD,
8t, 0, 5000<, PlotRange → All,
AxesLabel → 8"Time HsL", "Volin and Volout HLL"<D;
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Figure 4.10. Simulated time course of the intra- (upper curve) and extracellular volumes
for the reaction scheme shown in Fig. 4.7.  

Note that  the volumes do not  reach the same value,  primarily because the hemoglobin
and other proteins inside the cells occupy volume.

From these results we can also calculate the membrane, based on the anion distribution
ratio, by using the Nernst equation as follows:

rR = 8.314; tT = 310; fF = 96500;
parNernst = rR tTê fF;

gph4 = Plot@1000 parNernst∗Log@Evaluate@cli@tDêcle@tD ê. resDD,
8t, 0, 5000<, PlotRange → All,
AxesLabel → 8"Time HsL", "Membrane PotentialHmVL"<D;
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Figure 4.11.  Simulated time course of  the membrane potential  for  the reaction scheme
shown in Fig. 4.7.  

4.9  Decompostion of N and Calculation of the Link Matrix 
(Optional)

The  functions  NDSolveMatrix,  SteadyState,  and  Conservation-
Relations, as well as the add-on functions given in Chapter 5 which are functions in
the add-on package  MetabolicControlAnalysis,  all involve a rearrangement of
the stoichiometry matrix. This rearrangement is usually hidden from the user. However,
by  using  the  command  LinkMatrix,  information  can  be  obtained  on  what
rearrangements have been made in N to expedite the solution of the matrix form of the
rate  equations.  The  link  matrix  is  given  this  name  because  it  contains  stoichiometric
information  that  links  various  reactants  as  co-substrates  in  various  reactions  in  the
metabolic scheme.

LinkMatrix@S, ND Rearranges the rows of
N  so that its upper rank N rows are
linearly independent and form a submatrix 
No. Also returns a ' Link Matrix, ' L,
such that N = L No =  No

Transforming the matrix N into one that is suitable for use in metabolic calculations.
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Q: Determine  the  link  matrix  for  the  reaction  scheme  given  in  the  previous
question/answer in Section 4.6.

A: The  stoichiometry  matrix  is  re-entered  and  the  function  LinkMatrix  performs  the
analysis.

Clear@ConstD;

eqns = 88S@1D@tD → S@2D@tD<,
8S@2D@tD + S@5D@tD → S@3D@tD + S@6D@tD <,
8S@3D@tD → S@4D@tD<,
8S@6D@tD → S@5D@tD<<;

N¯ = NMatrix@eqns, 8S@1D@tD, S@4D@tD<D;
S¯ = SMatrix@eqns, 8S@1D@tD, S@4D@tD<D;

linkoutput = LinkMatrix@S¯, N¯D98S¯, 8S@2D@tD, S@3D@tD, S@6D@tD, S@5D@tD<<,8L¯, 881, 0, 0<, 80, 1, 0<, 80, 0, 1<, 80, 0, −1<<<,9N¯0, 881, −1, 0, 0<, 80, 1, −1, 0<, 80, 1, 0, −1<<=,8N¯, 881, −1, 0, 0<, 80, 1, −1, 0<, 80, 1, 0, −1<, 80, −1, 0, 1<<<,8G, 880, 0, 1, 1<<<, 8LinkMatrixTransform, 883, 4<<<=
Thus the function LinkMatrix returns a table, the first element of which contains the
rearranged  S  vector.  The  second  element  is  L,  the  third  No ,  and  the  fourth  the
rearranged N. The fifth element contains the matrix G which has the propertyH1L

[4.20]GN = 0 ,

while the last element contains rules for  transforming the old N  into the rearranged N.
Each transformation rule is given as a two-element list {a, b} indicating that row a has
been moved to row b. 

Note  that  G  returned  by  LinkMatrix  is  always  in  the  form  (�L`  I  ).  This  is  not
always the case for G calculated with the function ConservationRelations. The
latter G is calculated in a manner that ensures that the conservation relationships are not
negative. 

The  merit  of  using  these  transformed  matrices  lies  in  some  of  the  deeper  aspects  of
MCA that are not developed further in this book.
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4.10  Excercises

4.10.1

Use  the  function  NMatrix  from  the  MetabolicControlAnalysis  add-on
package  to  determine  and  interpret  the  stoichiometric  matrix  for  the  reaction  scheme
given in Eqn [4.4].

4.10.2

Numerically determine the steady-state vector of concentrations for the reaction scheme
given in Section 4.5; however, use an initial estimate of 0.0 mmol L-1  for both [S2 ] and
@S3D .

4.10.3

Determine  the  conservation  relations  for  the  reaction  scheme  given  in  Eqns  [4.5]  �
[4.8]. Give a cell-physiological interpretation for each of the derived relations.

4.10.4

What  can  be  said  about  the  stability  of  the  steady  state  determined in  the  last  worked
question/answer in Section 4.6?

4.11  References
1. Heinrich, R. and Schuster, S. (1996) The Regulation of Cellular Systems. Chapman 

& Hall, New York.
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5 Metabolic Control 
Analysis

5.1  Introduction
In  Chapter  4  we  used  Mathematica  to  simulate  the  time-dependent  behavior  of  some
simplistic metabolic systems and to determine the existence of stable or unstable steady-
state modes. These types of analyses are extremely important as they allow us to make
predictions with a model and to ask a myriad of "what if?" questions about the system.
The  tests  that  were  used  are  amongst  the  first  steps  in  testing  a  mathematical  model
against experimental results. These steps are vital for assessing the validity or predictive
usefulness of a model. Indeed we use these techniques again when we study parameter
estimation  and  model  refinement  in  Chapter  6.  These  steps  are  also  the  first  to  be
applied before MCA is applied to a model of a metabolic scheme. 

MCA  is  an  analysis  paradigm  in  the  field  of  metabolism  that  was  developed  to  give
rigorous, quantitative answers to questions such as "What are the roles of the individual
reactions in determining selected metabolite concentrations and fluxes through different
segments of the pathway?" The major concepts of MCA were formulated in the 1970s
by  Kascer  and  BurnsH1L  and  Heinrich  and  Rapoport.H2L  The  ideas  had  earlier  become
well  known  to  engineers  who  referred  to  them  as  sensitivity  analysis.  The  analysis
enables  the  determination  of  the  sensitivity  of  a  response  or  output  of  a  dynamical
system to variations in the value of a selected parameter in the system. 

In  this  chapter  Mathematica  is  used  to  perform  MCA  on  mathematical  models  of
metabolism. Only an introduction to MCA is given; however,  sufficient information is
provided  to  allow sophisticated  MCA on  complicated and  realistic  metabolic  systems.
More  detailed  reviews  of  the  theoretical  and  experimental  aspects  of  MCA  appear  in
several texts and journal articles.H3-6L
This  chapter  also  introduces  more  aspects  of  our  add-on  package,
MetabolicControlAnalysis. It includes functions that are useful for performing
MCA  on  systems  of  differential  equations  that  are  represented  in  vector  and  matrix
form.  The  matrix  notation  and  various  analytical  procedures  that  are  used  in  these
functions  are  those  presented  by  Heinrich  and  Schuster;H5L  and  readers  who  are
interested in the theory behind the calculations are encouraged to consult this excellent
book.

Finally, we will illustrate the ideas of MCA by using some simple examples. Because of



the use of matrix algebra, there are times when one may feel that the mathematics is an
unnecessarily  complicated way  to  express  relatively  simple ideas.  However,  bear  with
the  presentation;  the  utility  of  the  method  of  expressing  the  ideas  mathematically  in
matrix  form  will  become  more  apparent  when  we  apply  these  methods  to  the
biochemically important and realistic examples in Chapters 7 and 8.

5.2  Control Coefficients
A  major  focus  of  MCA  is  the  quantification  of  the  role  that  individual  enzymic
reactions  play  in  determining  metabolite  concentrations  and  pathway  fluxes  at  a
particular  steady  state  of  metabolite  concentrations.  Fundamental  to  the  theory  is  the
definition  and  calculation  of  elasticity  coefficients,  response  coefficients,  and  control
coefficients.  These  three  types  of  coefficient  are  dealt  with,  in  turn,  in  this  and  the
following few sections. It is also important to note that MCA was developed primarily
for the analysis of systems under steady-state conditions. Hence all the coefficients are
defined for a particular reference steady state.

The description of the MCA coefficients begins with the one that, historically, was the
first  to  be  defined:  for  a  metabolic system of  i  metabolites,   j  metabolite fluxes,  and k
reactions, at  a particular steady state, the flux control coefficients (FCC) are defined as

[5.1]Cvk
J j =

vkÅÅÅÅÅÅÅÅ
J j

 
∑ J j ê∑ pk
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑vk ê∑ pk

,

where pk  is a parameter that only affects the velocity of reaction k (vk ), and ∑vk /∑ pk  is
evaluated  with  the  parameter  values  and  concentrations  associated  with  the  particular
steady state.  Note that the change in flux is normalized by dividing it by the reference
value  at  the  steady  state,  and  the  change  in  reaction  velocity  is  also  normalized  by
dividing  it  by  the  value  at  the  steady state.  Thus  the  FCC expresses  quantitatively the
effect that varying the parameter pk  has on the flux through the system, J j , if the effect
of pk on the local enzyme rate, vk ,  is  known. In other words,  the FCC is a measure of
the extent to which the intrinsic rate of reaction k controls the steady-state flux J. 
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<<
MetabolicControlAnalysiÑ
s`

Reads in the addon package
MetabolicControlAnalysis.

FluxControlMatrix@S, N ,
v, p, SteadyState Ø steadystateD Calculates a matrix for the metabolic

system defined by the substrate vector ,
S, the stoichiometric matrix, N ,
and the parameter matrix, p, at the steady
state given by the replacement rule steadystate;
where the element mij is the flux control coefficient
of the flux through reaction i with respect to
reaction j. Note that the last two arguments are optional.

Calculating flux control coefficients.

Q: Consider  the  example  from  Hofmeyer  and  Cornish-Bowden;H7L  a  metabolite,  M,   is
produced  at  a  rate,  vs ,  by a  supply (source)  pathway and consumed at  a rate,  vd ,  by a
demand (sink) pathway.

[5.2]ö
vs  M  ö

vd

Assuming  that  both  vs  and  vd  are  influenced  by  M,  what  are  the  FCC  values  for
pathway flux with respect to the supply  and demand pathways?

A: First  we  load  the  add-on  package  MetabolicControlAnalysis  and  define  the
reactant  vector  S,  the  stoichiometry  matrix  N,  and  the  vector  of  velocity  or  rate
expressions v, for this system.

<< MetabolicControlAnalysis ;̀

S¯ = 8M@tD<;
N¯ = H 1 −1 L;
v̄ := 8v@sD@M@tDD, v@dD@M@tDD<;

By  assuming  that  in  the  steady  state  M[t]  = Mss ,  we  apply  the  function
FluxControlMatrix to return a matrix of flux control coefficients.

FluxControlMatrix@S¯, N¯, v̄,
SteadyStateConc → 8M@tD −> Mss<D êê MatrixFormikjjjjj 1 − v@sD"@MssD###########################################−v@dD"@MssD+v@sD"@MssD v@dD@MssD v@sD"@MssD#################################################################v@sD@MssD H−v@dD"@MssD+v@sD"@MssDL

− v@sD@MssD v@dD"@MssD#################################################################v@dD@MssD H−v@dD"@MssD+v@sD"@MssDL 1 + v@dD"@MssD###########################################−v@dD"@MssD+v@sD"@MssD y{zzzzz
From the elements in row 2 column 1, and row 1 column 2, we can write the following
expressions for the flux control coefficients:
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[5.3]Cvs
J =

¶M
vd

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶M

vd - ¶M
vs

 and Cvd
J =

-¶M
vs

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶M

vd - ¶M
vs

,

where ¶M
vd  = v@dD"@MssD / v[d][Mss ] and ¶M

vs  = v@sD"@MssD / v[s][Mss ]. Note that these
expressions  have  been  simplified  by  using  the  fact  that  in  the  steady-state  vs = vd .  Be
careful  to  look  closely  at  the  meanings  of  these  two  expressions:  the  numerator
specifies  the dependence of  a change in reaction rate  with respect  to [M] when [M] is
equal  to  the  steady-state  concentration,  and  the  denominator  expresses  the  velocity  of
the reaction at the steady-state concentration of M.  These terms, ¶M

vd   and ¶M
vs , are called

elasticity coefficients (see Section 5.3).

An  important  point  regarding  this  question/answer  is  that  Cvs
J  +  Cvd

J  =  1.  This  is  an
example  of  the  summation  theorem  for  flux  control  coefficients.H1-3,5,6L  Formally,  the
theorem states that  the sum of  all  flux  control  coefficients  in  a  metabolic system for  a
particular metabolic flux, J j,  is equal to 1, i.e.,

[5.4]‚
k

 Cvk
J j = 1 .

Hence, the entries along each row of the matrix of flux control coefficients should add
up to 1. This relationship is only true for normalized flux control coefficients, namely,
flux control coefficients that are defined according to Eqn [5.1].

In a manner similar to the flux control coefficient, a concentration control coefficient  is
defined as

[5.5]Cvk
Si =

vkÅÅÅÅÅÅÅÅ
Si

 
∑Si ê∑ pkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑vk ê∑ pk

where Si  is the concentration of the metabolite i. Notice that the expression contains the
normalization  of  reaction  rate  and  metabolite  concentration  with  respect  to  the
corresponding  steady-state  value  of  Si .  (See  Eqn  [5.9]  below  for  a  relaxation  of  this
condition.) 

ConcControlMatrix@S, N ,
v, p, SteadyState Ø steadystateD Returns a matrix where the element 

mij is the concentration control coefficient
of metabolite i  with respect to reaction j.

Calculating concentration control coefficients.

Q: Consider  the  reaction  scheme  shown  in  the  previous  question/answer.  Calculate  the
concentration control coefficient for M in this scheme.

136 Chapter 5



A: We  begin  the  solution  by  specifying  S,  N,  and  v  in  the  same form as  they  were  used
above,  and  then  we  implement  the  function  ConcControlMatrix  from  the
MetabolicControlAnalysis package (which we have already loaded).

ConcControlMatrix@S¯, N¯, v̄,
SteadyStateConc → 8M@tD −> Mss<D êê MatrixFormH − v@sD@MssD#####################################################Mss H−v@dD"@MssD+v@sD"@MssDL v@dD@MssD#####################################################Mss H−v@dD"@MssD+v@sD"@MssDL L

Using the same definitions for ¶ as above, we obtain

[5.6]Cvs
M =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶M

vd - ¶M
vs

 and Cvd
M =

-1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
¶M

vd - ¶M
vs

.

In  a  manner  like  flux  control  coefficients,  there  is  also  a  summation  theorem  for
concentration control coefficients. It is

[5.7]‚
k

 Cvk
Si = 0 .

Hence entries along each row of the matrix of concentration control coefficients add up
to 0. This is illustrated in the previous question/answer where Cvs

M  + Cvd
M  = 0. 

Q: Consider the reaction scheme below in Eqn [5.8] that is characterized by the system of
differential equations: v[1] = k1  s1 [t], v[2] = k2  s2 [t], and v[3] = k3  s3 [t]. 

[5.8]S1 ö
v1 S2 ö

v2  S3 ö
v3

Calculate the concentration control matrix for this system.

A: A suitable program to solve this problem is
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S¯ = 8s2@tD, s3@tD<;

N¯ = J 1 −1 0
0 +1 −1 N;

v@1D := k1 s1@tD;
v@2D := k2 s2@tD;
v@3D := k3 s3@tD;

v̄ := Table@v@iD, 8i, 3<D;H∗Parameter vector.∗L
p = 8k1, k2, k3, s1@tD<;
pv = 81, 2, 1, 1<;
p̄ = Transpose@8p, pv<D;

Before  we  can  calculate  the  matrix  of  concentration  control  coefficients,  we  must
calculate  the  metabolite  concentrations  at  the  steady  state.  This  is  achieved  with  the
SteadyState function from the MetabolicControlAnalysis add-on package.

solution = SteadyState@S¯, N¯, v̄, p̄D99s2@tD →
1
####
2
, s3@tD → 1==

There is only one steady state for this reaction scheme, and the matrix of concentration
control coefficients for this steady state is given by using the ConcControlMatrix
function, that is also from the MetabolicControlAnalysis add-on package.

ConcControlMatrix@S¯, N¯, v̄, p̄,
SteadyStateConc −> solutionP1TD êê MatrixFormJ 1 −1 0
1 0 −1

N
From this matrix it can be seen that the concentration of  S2  depends only on reactions
1 and 2 (elements 1 an �1 in the first two columns of the first row, respectively), while
the  concentration  of  S3  depends  only  on  reactions  1  and  3  (elements  1  and  �1  in  the
first and third columns of the second row, respectively).

Q: Consider  again  the  reaction  scheme  in  Eqn  [5.8].  What  happens  to  the  concentration
control  coefficient  for  S2 when  reaction  v1  becomes  subject  to  feedback  inhibition  by
S3 ?
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A: The feedback inhibition can be modelled by modifying the equation for v1 by including
an inhibition term that is akin to the competitive inhibition factor in a Michaelis-Menten
equation (Section 2.2.2). Hence we suppose that the inhibition of v1  is described by the
equation  v[1] = k1 s1@tD /(1+s3@tD /Ki,1 ). Then we redefine the rate vector and parameter
vector from the previous question/answer as follows:

v@1D :=
k1 s1@tD
))))))))))))))))))))))
1 + s3@tD)))))))))))Ki,1

;

v̄ := Table@v@jD, 8j, 3<D;

p = 8k1, k2, k3, Ki,1, s1@tD<;
pv = 81, 2, 1, 0.3, 1<;
p̄ = Transpose@8p, pv<D;

The  steady  state  for  this  new  metabolic  system  is  obtained  by  using  the  function
SteadyState from the MetabolicControlAnalysis add-on package.

solution = SteadyState@S¯, N¯, v̄, p̄D88s2@tD → −0.358945, s3@tD → −0.717891<,8s2@tD → 0.208945, s3@tD → 0.417891<<
Of the two pairs of lists in solution  only one is physically meaningful, namely, the
one  having  non-negative  values  of  the  steady state  concentrations  of  S2 and S3 .  These
realistic  concentrations  are  next  used  via  the  replacement  rule,
SteadyStateConc −> solutionP2T ,  in  the  function  ConcControlMatrix
that calculates the matrix of concentration control coefficients.

ConcControlMatrix@S¯, N¯, v̄, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormJ 0.632068 −1. 0.367932
0.632068 0. −0.632068

N
The  main  conclusion  that  can  be  drawn  from  this  matrix  is  that  the  reaction  v3  that
consumes the metabolite S3  that inhibits reaction 1 now shares some of the control over
the concentration of S2 . Specifically, the element in the third column of the first row is
now non-zero, being 0.367932.

The  functions  FluxControlMatrix  and  ConcControlMatrix  also  have  the
option  of  returning  non-normalized  control  coefficients.  Non-normalized  flux  and
concentration control coefficients are defined by

[5.9]Cvk
J j =

∑ J j ê∑ pk
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑vk ê∑ pk

and Cvk
Si =

∑Si ê∑ pkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑vk ê∑ pk

,
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respectively,  and  can  be  calculated  from  the  functions  by  including  the  option
Normalized → False.

Q: Calculate  non-normalized  control  coefficients  for  the  reaction  scheme  analyzed  in  the
previous question/answer.

A: For this operation we apply the ConcControlMatrix function as previously but this
time we add the option Normalized → False, as follows:

ConcControlMatrix@S¯, N¯, v̄, p̄, SteadyStateConc −> solutionP2T,
Normalized −> FalseD êê MatrixFormJ 0.316034 −0.5 0.183966
0.632068 0. −0.632068

N
One notable feature of this normalized matrix is that the elements in each row sum to 0;
this is expected according to the corresponding summation theorem (Eqn [5.7]). 

5.3  Calculation of Control Coefficients by Numerical 
Perturbation

The  functions  presented  in  the  previous  section,  in  the  MetabolicControl-
Analysis  add-on  package,  allow control  coefficients  to  be  conveniently  and rapidly
calculated.  The  algorithms  used  in  these  functions  are  given  in  Appendix  2  and  are
based on the matrix methods described by Heinrich and Schuster.H5L  However, for most
realistic  metabolic  systems,  application  of  these  methods  can  lead  to  significant
numerical errors.  (For  a  discussion  of  this point  see Section 8.4.)  Hence it  is  useful  to
have another more generally applicable method for estimating control coefficients.

This  alternative  method  of  calculating  control  coefficients  is  to  use  numerical
perturbation.  This  involves  replacing  the  partial  differentials  in  the  above  equations
(Eqns  [5.1],  [5.5],  [5.9])  by  finite  differences.  For  example,  we  can  numerically
approximate  the  differential,  ∑ J j ê∑ pk ,  in  Eqn  [5.1]  by  making  a  small  (say,  0.1%)
change in the value or  the parameter and then resimulating a time course to determine
system fluxes.  ∑ J j ê∑ pk will  then be approximated by the difference  in the flux values
before  and  after  perturbation  divided  by  0.001.  This  technique  is  illustrated  in  the
following example.

Q: For  the  reaction  scheme  given  in  Eqn  [5.8],  calculate  the  value  of  C v1
S2  by  numerical

perturbation.
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A: A parameter that we can perturb in order to affect v1  is k1 .  Hence we must set up two
parameter tables, one containing the original parameter values and the other exactly the
same except that the value of k1 is increased by 0.1% of its original value. This is done
as follows:

p = 8k1, k2, k3, Ki,1, s1@tD<;
pv1 = 81, 2, 1, 0.3, 1<; H∗Vector of parameter values.∗L
pv2 = 81∗1.001, 2, 1, 0.3, 1<; H∗k@1D multiplied by 1.001.∗L
p1¯̄̄ ¯̄

= Transpose@8p, pv1<D; H∗Parameter table.∗L
p2¯̄̄ ¯̄

= Transpose@8p, pv2<D;H∗Second parameter table with k@1D increased by 0.1 %∗L
The effect  of  the perturbation  of  the parameter k1  on  the steady-state concentration  of
S2  can  now be  determined  by  evaluating  steady  states  using  the  original  and  then  the
perturbed  parameter  tables.  This  is  done  with  the  function  SteadyState  in  the
MetabolicControlAnalysis add-on package.

solution1 = SteadyState@S¯, N¯, v̄, p1¯̄̄ ¯̄D;
solution2 = SteadyState@S¯, N¯, v̄, p2¯̄̄ ¯̄D ;

s2,1 = s2@tD ê. solution1P2T ;
s2,2 = s2@tD ê. solution2P2T;

concControlCoeff =
s2,2 − s2,1
)))))))))))))))))))))))))s2,1 ×

1
))))))))))))))))0.001

0.631921

The value of  0.631921  of the concentration control  coefficient compares well with the
value of 0.632068 calculated previously by the matrix method.

An  important  point  to  note  when  applying  the  numerical  perturbation  method   for
calculating  control  coefficients  is  that  for  many  enzymic  reactions  the  following
relationship holds:

[5.10]
ekÅÅÅÅÅÅÅÅ
vk

 
∑vkÅÅÅÅÅÅÅÅÅÅÅÅ
∑ek

= 1 ,

and hence Eqns [5.1] and [5.5] reduce to

[5.11]Cvk
J j =

ekÅÅÅÅÅÅÅÅ
J j

 
∑ J j
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ek

 and C vk
Si =

ekÅÅÅÅÅÅÅÅ
Si

 
∑SiÅÅÅÅÅÅÅÅÅÅÅÅ
∑ek

,

respectively.  Thus,  for  many reactions  control  coefficients  can be estimated simply by
perturbing the total enzyme concentration. For an example of this see Section 8.4.
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5.4  Elasticity Coefficients
Another  derived  parameter  in  MCA  is  the  elasticity  coefficient.  This  coefficient  is
different from the previous two in that elasticity coefficients are properties of individual
enzymes  in  isolation,  rather  than  of  the  metabolic  system  as  a  whole.  Essentially,
elasticity  coefficients  measure  how  the  velocity  of  an  enzymic  reaction  changes  in
response  to  changes  in  substrate,  product,  inhibitor,  and  activator  concentrations.
Hence,  these  coefficients  quantify  what  enzyme kineticists  have  been  measuring since
the days of Michaelis and Menten.

More  formally,  an  elasticity  coefficient  characterizes  the  response  of  an  individual
enzyme in isolation to the perturbation of a parameter or metabolite concentration; and
it  is  determined  at  a  reference  state  of  substrate,  product,  and  effector  concentrations.
Elasticity coefficients are of two types, being defined as follows:

[5.12]¶S j
vi =

S j
ÅÅÅÅÅÅÅÅ
vi

 
∑viÅÅÅÅÅÅÅÅÅÅÅÅ
∑S j

; ¶ - elasticities ,

[5.13]ppk
vi =

pkÅÅÅÅÅÅÅÅÅ
vi

 
∑viÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ pk

; p - elasticities ,

where vi  is the velocity of reaction i, S j  is the concentration of metabolite S j  and pk  is
a parameter that affects vi .  Note that  ¶-elasticities and p-elasticities are essentially the
same  thing,  mathematically.   The  reason  to  distinguish  them  apart  is  that
computationally  it  is  necessary  to  treat  the  metabolite  concentrations  (state  variables)
differently  from  the  model  or  so-called  structural  parameters  like  rate  constants  and
total enzyme concentrations.

EpsilonElasticityMatrix@
S, N , v, p,
SteadyState Ø steadystateD Returns a matrix where the element mij is the ¶-

elasticity of
reaction i  with respect to substrate j.

PiElasticityMatrix@
S, N , v, 8paramter list<, p,
SteadyState Ø steadystateD Returns a matrix where the element mik  is the p -

elasticity of
reaction i  with respect to the kth
parameter of the parameter list.

Calculating elasticity coefficients.

Q: For  the  modified  reaction  scheme  of  Eqn  [5.8]  (S1 ö
v1 S2 ö

v2  S3 ö
v3 ;  v[1]  =

k1 s1@tD /(1+s3@tD /Ki,1 ), v[2] = k2  s2 [t], and v[3] = k3  s3 [t]), calculate the matrices of (1)
¶-elasticity coefficients; and (2) p-elasticity coefficients for all parameters. 

A: (1)  This  is  achieved  with  the  following  function  from  the  MetabolicControl-
Analysis add-on package. 
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EpsilonElasticityMatrix@S¯, N¯, v̄, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormikjjjjjjj 0. −0.582109
1. 0.
0. 1.

y{zzzzzzz
Recall  from Eqn [5.12]  that the rows refer  to reactions (1 � 3)  and the columns to the
substrates  (S2 and  S3 );  so  the  top  left-hand  element  indicates  that  v1  is  unaffected  by
S2 ,  but  the  ¶-elasticity  coefficient  (top  right-hand  element  of  the  matrix)  is  non-zero
and  negative.  This  is  consistent  with   the  imposed  negative  feedback  or  inhibition  by
S3 of v1 . From the second row it is seen that the elasticity of v2 with respect to S2 is 1 but
the elasticity of S3 with respect to this reaction is 0; this is predicted on the grounds that
the rate equation for v2 has no term in S3 implying that S3 does not influence the rate of
the reaction. A similar argument can be made for the interpretation of the third row of
the matrix.

(2)  The  function  PiElasticityMatrix  is  also  in  the  MetabolicControl-
Analysis  add-on package. Thus, the p-elasticity matrix is calculated in an analogous
manner  to  the  ¶-elasticity  matrix  except  that  an  additional  argument  {parameter  list}
must be included, as follows:

p = 8k1, k2, k3, Ki,1, s1@tD<;

PiElasticityMatrix@S¯, N¯, v̄, p, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormikjjjjjjj 1. 0. 0. 0.582109 1.
0. 1. 0. 0. 0.
0. 0. 1. 0. 0.

y{zzzzzzz
Recall that each column corresponds to a parameter in the reaction scheme, in the order
specified by the p vector; while the rows correspond to the reactions as specified by the
v̄  vector.  When  applying  PiElasticityMatrix  only  those  parameters  for  which
elasticity coefficients are to be calculated need to be included in the parameter list or p
vector.

For  the  functions  EpsilonElasticityMatrix  and  PiElasticityMatrix
there is the option of returning non-normalized coefficients; these are defined by

[5.14]¶S j
vi =

∑viÅÅÅÅÅÅÅÅÅÅÅÅ
∑S j

; ¶ - elasticities ,

[5.15]ppk
vi =

∑viÅÅÅÅÅÅÅÅÅÅÅÅ
∑S j

; p - elasticities ,

and they are calculated by including the option  Normalized → False.
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Q: For  the  modified  reaction  scheme  of  Eqn  [5.8]  (S1 ö
v1 S2 ö

v2  S3 ö
v3 ;  v[1]  =

k1 s1@tD /(1+s3@tD /Ki,1 ), v[2] = k2  s2 [t], and v[3] = k3  s3 [t]), calculate the matrix of non-
normalized p-elasticity coefficients for all parameters.

A: This  is  done  as  in  the  previous  question/answer  except  that  the  additional  argument
Normalized → False is included.

PiElasticityMatrix@S¯, N¯, v̄, p, p̄, SteadyStateConc −> solutionP2T,
Normalized −> FalseD êê MatrixFormikjjjjjjj 0.417891 0 0 0.81086 0.417891

0 0.208945 0 0 0
0 0 0.417891 0 0

y{zzzzzzz
The non-normalized matrix has  zeros  in  the same positions  as  for  the normalized case
above, but  the non-zero elements have substantially different values from the previous
matrix. The significance of this is discussed later.

Q: Calculate the matrix of non-normalized ¶-elasticity coefficients of reaction 2 in the two
metabolite  system  shown  in  the  scheme  in  Eqn  [5.16].  Each  enzymic  reaction  has  a
dependence  of  its  rate  on  the  concentrations  of  S1 and  S2 that  is  represented  by
v1 (S1 , S2 ) and v2 (S1 , S2 ).

[5.16]S1  Ø
v1  S2 Ø

v2

A: The calculation is begun by setting up a Table of values of  S1 and S2  denoted by S¯ ;  a
stoichiometry matrix, N¯ , that in this case is the identity matrix; and a vector, v̄ , of rate
equations.  Then  the  function  EpsilonElasticityMatrix  from  the
MetabolicControlAnalysis  add-on  package  is  used  to  generate  the  matrix  of
elasticity coefficients.

Clear@vD;
S¯ = Table@si@tD, 8i, 1, 2<D;
N¯ = IdentityMatrix@2D; H∗2 x 2 identity matrix.∗L
v̄ := Table@v@iD@S¯D, 8i, 1, 2<D;

EpsilonElasticityMatrix@S¯, N¯, v̄, Normalized −> FalseD êê
MatrixFormikjjjj v@1DH81,0<L@8s1@tD, s2@tD<D v@1DH80,1<L@8s1@tD, s2@tD<D
v@2DH81,0<L@8s1@tD, s2@tD<D v@2DH80,1<L@8s1@tD, s2@tD<D y{zzzz
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Thus,  the element in row 1 column 1 is the derivative of  v1  with respect to S1 , while
the  element in  row 1  column 2  is  the  derivative  of  v1  with  respect  to  S2 .  The second
row contains derivatives of v2 .

5.5  Response Coefficients
The  final  type  of  coefficients  of  major  importance  in  MCA  are  the  response
coefficients.  These  characterize  the  effect  of  an  infinitesimally  small  change  in  a
parameter  value  in  the  system on  concentrations  or  fluxes  in  the  system of  reactions.
Thus, the concentration response coefficient is defined by

[5.17]Rpk
Si =

pkÅÅÅÅÅÅÅÅÅ
Si

 
∑SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ pk

,

and the flux response coefficient is defined by

[5.18]Rpk
J j =

pkÅÅÅÅÅÅÅÅÅ
S j

 
∑ J j

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ pk

,

ConcResponseMatrix@
S, N , v, 8paramter list<, p,
SteadyState Ø steadystateD Returns a matrix where the

element mik  is the concentration
response coefficient of the
concentration of metabolite i  with
respect to the kth parameter of parameter list.

FluxResponseMatrix@
S, N , v, 8paramter list<, p,
SteadyState Ø steadystateD Returns a matrix where the element m jk  is the flux

response coefficient of
the flux through reaction j  with
respect to the kth parameter of parameter list.

Calculating response coefficients.

Q: (1)  For  the  modified  reaction  scheme  of  Eqn  [5.8]  (S1 ö
v1 S2 ö

v2  S3 ö
v3 ;  v[1]  =

k1 s1@tD /(1+s3@tD /Ki,1 ),  v[2]  =  k2  s2 [t],  and  v[3]  =  k3  s3 [t])  calculate  the  concentration
response matrix for all parameters. (2) What would be the expected response in [S3 ] if
the parameter k2  were changed?

A: (1)  This  problem  is  solved  by  defining  the  metabolite  vector,  S¯ ,   the  stoichiometry
matrix,  N¯ ,  the  three  rate  expressions  that  are  placed  in  the  vector,  v̄ ,  the  parameter
vector, p, and the vector of corresponding parameter values, pv. Then a function-call to
ConcResponseMatrix,  from  the  MetabolicControlAnalysis  add-on
package, yields the solution. 
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S¯ = 8s2@tD, s3@tD<;

N¯ = J 1 −1 0
0 +1 −1 N;

v@1D :=
k1 s1@tD
))))))))))))))))))))))
1 + s3@tD)))))))))))Ki,1

;

v@2D := k2 s2@tD;
v@3D := k3 s3@tD;

v̄ := Table@v@jD, 8j, 3<D;

p = 8k1, k2, k3, Ki,1, s1@tD<;
pv = 81, 2, 1, 0.3, 1<;
p̄ = Transpose@8p, pv<D;

ConcResponseMatrix@S¯, N¯, v̄, p, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormJ 0.632068 −1. 0.367932 0.367932 0.632068
0.632068 0. −0.632068 0.367932 0.632068

N
The  matrix  represents  the  concentration  response  coefficients  with  those  pertaining  to
S2  (in the column order specified in the vector p) in the first row and to S3 in the second
row.  While  not  intending  to  discuss  all  10  coefficients,  it  is  useful  to  note  that  the
concentration response coefficient of  S3 with respect to v[2] = k2  s2 [t] is 0 (second row
and second column of  the matrix). This outcome is as expected simply on the grounds
that  the  expression  for  v[2]  has  no  term  in  S3  and  hence  the  derivative  of  v[2]  with
respect  to  S3 is  0.  Or,  physically,  the  reaction  characterized  by  v2  does  not  have  any
mechanistic involvement of  S3 .

(2)  Hence  the  answer  to  the  second  part  of  the  question  is  that  the  entry  in  row  2
column 2 gives the response coefficient for  S3  with respect to the parameter k2 .  Since
this entry is 0, a perturbation of k2  would be expected to have no effect on [S3 ] under
all conditions of reactant concentrations.

From  MCA  and  the  definition  of  the  control  coefficients  it  follows  that  response
coefficients  can  be  written  in  terms  of  control  coefficients  and  p-elasticities.  This
outcome is as follows: 

[5.19]Rpk
Si = ‚

j
 Cv j

Si  ppk
v j ,
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[5.20]and Rpk
J j = ‚

i
Cvi

J j  ppk
vi .

Thus by definition the key MCA functions in the MetabolicControlAnalysis 
add-on package have the following interrelationship:

ConcResponseMatrix = ConcControlMatrix.PiElasticityMatrix  
and 
FluxResponseMatrix = FluxControlMatrix.PiElasticityMatrix.

Q: The matrix of concentration response coefficients given in the previous question/answer
can also be calculated by using the following relationship between the key matrices:  

ConcResponseMatrix  =  ConcControlMatrix  ·  PiElasticityMat-
rix. 

Verify this.

A: The  Mathematica  implementation of  this  analysis  for  the  reaction  scheme used  in  the
previous question/answer is

ConcControlMatrix@S¯, N¯, v̄, p̄, SteadyStateConc −> solutionP2TD.
PiElasticityMatrix@S¯, N¯, v̄, p, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormJ 0.632068 −1. 0.367932 0.367932 0.632068

0.632068 0. −0.632068 0.367932 0.632068
N

This gives the same result as previously obtained.

From Eqns [5.19] and [5.20] it is seen that the total response from the perturbation of a
parameter  is  the  sum of  the  individual  responses  from each  reaction.  These  individual
responses Cv j

Si ppk
v j  or Cvi

J j ppk
vi  are defined as the partial response coefficients. 
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PartialConcResponse@
S, N , v, n, 8parameter list<,
p, SteadyState Ø steadystateD Returns a matrix of partial

concentration response coefficients for a
metabolite at position n  in S. Each
entry mjk  in the matrix gives the
product of the concentration control coefficient
with respect to reaction j  and the p-elasticity
coefficient with respect to reaction j  and parameter k.

PartialFluxResponse@
S, N , v, n, 8parameter list<,
p, SteadyState Ø steadystateD Returns a matrix of

partial flux response coefficients for a
flux at position n  in v. Each entry 
m jk  in the matrix gives the
product of the flux control coefficient with
respect to reaction j  and the p-elasticity
coefficient with respect to reaction j  and parameter k.

Calculating partial response coefficients.

Q: For the reaction scheme given in Eqn [5.8] calculate the matrix of partial concentration
response coefficients for S2 .

A: This  is  achieved  with  the  function  PartialConcResponse  from  the
MetabolicControlAnalysis add-on package.

PartialConcResponse@S¯, N¯, v̄, 1, p,
p̄, SteadyStateConc −> solutionP2TD êê MatrixFormikjjjjjjj 0.632068 0. 0. 0.367932 0.632068

0. −1. 0. 0. 0.
0. 0. 0.367932 0. 0.

y{zzzzzzz
The  interpretation  of  this  matrix  is  as  follows.  Each  column  corresponds  to  the
consecutive members of  the parameter set {k1 , k2 , k3 ,  Ki,1 ,  s1 [t]} and each row to the
reactions v1 , v2 , and v3 . Each column in the matrix describes how the total response to
a parameter perturbation  is  partitioned amongst the reactions of  the system. Hence the
sum of entries in each column will add up to the total response coefficient.

For  example,  from  the  concentration  response  matrix  calculated  in  the  previous
question/answer,  the response coefficient of [S2 ] to k1  is  0.632.  From column 1 in the
partial  concentration  response  matrix  for  [S2 ]  calculated  above,  it  is  seen  that  this
response is entirely due to reaction 1. Although this result is hardly surprising, this type
of analysis can be very useful in more complicated metabolic networks (see Chapter 8).
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5.6  Internal Response Coefficients
Two  more  coefficients  that  are  useful  for  describing  the  regulation  of  metabolic
pathways  are  the  internal  response  coefficients.  These  are  defined  in  a  manner  that  is
analogous to the response coefficients but they use ¶-elasticities instead of p-elasticities.
The  definition  of  the  response  that  characterizes  the  effects  of  a  fluctuation  in
concentration of S j  on the concentration of Si  is

[5.21]R
è

S j

Si = „
k

N

 Cvk
Si  ¶S j

vk  = ‚
k

N
kRvk

Si ,

and  for  the  dependence  of  the  flux  Ji  on  the  concentration  of  S j  the  definition  of  the
internal response coefficient is

[5.22]RS j
Ji = „

k

N

 Cvk
Ji  ¶S j

vk = ‚
k

N
kRvk

Si .

Q: Calculate the internal response matrices for the reaction scheme given in Eqn [5.8].

A:  (1) The internal concentration response matrix is calculated as follows:

ConcControlMatrix@S¯, N¯, v̄, p̄, SteadyStateConc −> solutionP2TD.
EpsilonElasticityMatrix@S¯, N¯, v̄, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormJ −1. 0.

0. −1.
N

The  interpretation  of  the  output  matrix  is  that  S2  has  a  negative  effect  on  its  own
concentration  (top  left-hand  element of  the  matrix),  and  this  is  unsurprising  since it  is
the  substrate  for  the  reaction  that  removes  itself.  On  the  other  hand,  for   S3 ,  by
construction  of  the  reaction  scheme  and  the  rate  equations,  there  is  no  mechanistic
action of S3  on the concentration of S2  so the top right-hand element of the matrix is 0.
The same argument applies to the effect of S2 on S3  and hence the relevant values in the
second row of the matrix.

(2)  For  the second part  of  the question,  the following product  returns the internal  flux
response matrix.

FluxControlMatrix@S¯, N¯, v̄, p̄, SteadyStateConc −> solutionP2TD.
EpsilonElasticityMatrix@S¯, N¯, v̄, p̄,
SteadyStateConc −> solutionP2TD êê MatrixFormikjjjjjjjj 0. 0.

0. 0.

0. 5.55112× 10−17

y{zzzzzzzz
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The  interpretation  of  this  matrix  is  as  follows.  Each  column  corresponds  to  the
consecutive members of the reactant set { S2 ,  S3 } and each row to the  v1 , v2 , and v3 .
A  column  in  the  matrix  describes  how  a  flux  through  each  reaction  in  the  linear
sequence is partitioned amongst the reactions of the system. Hence the sum of entries in
each  column  will  add  up  to  the  total  response  coefficient  of  the  system.  In  this  open
reaction  system  the  elements  of  the  matrix  are  all  zero,  thus  implying  that  the  fluxes
through  each reaction  are not  controlled by either   S2   acting via S3  or  vice versa  for
S3 acting  via  S2 .  While  this  outcome  is  easy  to  visualize  and  understand  for  a  simple
system  such  as  that  in  Eqn  [5.8],  such  may  not  be  true  for  complicated  models  of
metabolism as discussed in Chapter 8.

The  results  in  the  last  question/answer  are  instances  of  the  general  theoretical  result
relating to the internal response coefficients, that

[5.23]R
è

S j

Si
= „

k

N

 Cvk
Si  ¶S j

vk  = ‚
k

N
kRS j

Si = -dij ,

[5.24]and R
è

S j

Ji = ‚
k

N

Cvk
Ji  ¶S j

vk = ‚
k

N
kRS j

Ji = 0 .

Each kRS j
Si  or kRS j

Ji  is called the partial internal response coefficient. The coefficient is a
measure of the contribution of the kth reaction to the total response of the system. From
Eqn [5.23] we obtain the following result for the summation of the coefficients:

[5.25]-R
è

Si

Si = -‚
k

kRSi
Si  = 1 ,

where  each  -kRSi
Si ª  kHSi

Si is  a  measure  of  the  contribution  of  each  kth  reaction  to  the
restoration  of  homeostasis  after  a  perturbation  in  Si . k  HSi

Si  is  called  the  homeostatic
strength of the kth reaction with respect to metabolite Si .
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PartialInternalConcRespÑ
onse@S, N , v, n, m, p,
SteadyState Ø steadystateD Returns a vector which contains

the partial internal concentration
response coefficients for a  metabolite
at position n  in S  with respect
to a metabolite at position m  in
S. The jth position in the vector is the
partial internal response coefficient for reaction j.

PartialInternalFluxRespÑ
onse@S, N , v, n, m, p,
SteadyState Ø steadystateD Returns a vector which

contains the partial internal flux response
coefficients for a flux at position n  in
v  with respect to a metabolite
at position m  in S. The jth position
in the vector is the partial
internal response coefficient for reaction j.

Calculating partial internal response coefficients.

Q: For  the  reaction  scheme  given  in  Eqn  [5.8]  calculate  the  homeostatic  strength  of  all
reactions with respect to S3 .

A: This calculation is done with the function PartialInternalConcResponse  from
the  MetabolicControlAnalysis  add-on  package.  (Note  that  the  homeostatic
strength is the negative of the partial internal concentration response coefficient.)

− PartialInternalConcResponse@S¯, N¯, v̄, 2, 2,
p̄, SteadyStateConc −> solutionP2TD êê MatrixFormikjjjjjjj 0.3679320

0.632068

y{zzzzzzz
This  result  indicates  that  the  consumption  of  S3  by  reaction  3  is  more  important  than
the feedback inhibition of reaction 1 by S3  for maintaining homeostasis of S3 . This is a
remarkable  insight  and  certainly  one  that  can  be  fruitfully  explored  by  varying  the
relative values of the kinetic parameters. Such excursions are left for you, the reader.

5.7  Conclusions
This  chapter  has  introduced  the  various  control  coefficients  that  exist  in  the  modern
theory of MCA.H5L  Time and space have not permitted extensive examples of  their use
and interpretation in this chapter. However, this is used extensively in Chapters 7 and 8. 
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On  the  other  hand,  it  is  worth  summarizing the  fact  that  all  the  MCA coefficients  for
any   simulatable  pathway  can  be  determined  by  using  the  relevant  function  from  the
MetabolicControlAnalysis  add-on  package  that  is  presented  here.  The  list  of
coefficients  and their  corresponding  package functions  is  as follows:  (1)  concentration
control  coefficient,  ConcControlMatrix;  (2)  flux  control  coefficient,  Flux-
ControlMatrix;  (3)  reactant-concentration-  or  ¶-elasticity,  EpsilonElas-
ticityMatrix;  (4)  parameter-value-  or  π-elasticity,  PiElasticityMatrix;  (5)
concentration  response  coefficient,  ConcResponseMatrix;  (6)  flux  response
coefficient,  FluxResponseMatrix;  (7)  partial  internal  response  coefficient  with
respect  to the concentration of a reactant, PartialInternalConcResponse;  and
(8)  and  the  partial  internal  response  coefficient  with  respect  to  a  flux,  Partial-
InternalFluxResponse.

In a mathematical sense the MCA parameters are all derived by taking the single partial
derivative of one variable or parameter with respect to another. Further insights into the
control  of  a  metabolic  pathway  can  be  obtained  via  additional  coefficients  that  are
obtained  by  second-order  partial  derivatives  and  the  use  of  the  chain  rule  of
differentiation. All of the system parameters apply under the condition of a steady state
of  the  concentrations  of  the  reactants.  On  the  other  hand,  the  two  elasticities  apply  to
single  enzymes and  are  fundamentally  based  on  the  form or  nature  of  the  steady-state
rate equation; in many circumstances this equation will be a Michaelis-Menten equation
or a simple elaboration of it.

Before turning to the application of the MCA methods described herein we consider the
important  task  of  estimating  parameters  from  experimental  observations  of  complex
metabolic systems in cells.

5.8  Exercises

5.8.1

Consider  the  reaction  scheme  given  in  the  first  question/answer  of  Section  5.2.  If  the
supply   pathway  has  a  flux  control  coefficient  of  0.75  what  will  the  flux  control
coefficients  of  the  demand  pathway  be?  What  does  this  imply  about  the  relative
magnitudes of ¶M

vd   and ¶M
vs ?

5.8.2

Consider  the  reaction  scheme  given  in  the  first  question/answer  of  Section  5.2.  If  the
supply  pathway  has  a  concentration  control  coefficient  of  0.5  what  will  be  the
concentration control coefficient of the demand pathway? 

5.8.3

Use  the  NMatrix  function  introduced  in  Chapter  4  to  verify  that  the  stoichiometry
matrix given for the reaction scheme in Eqn [5.8] is correct. 
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5.8.4

Calculate  and  interpret  the  flux  control  matrix  for  the  reaction  scheme  given  in  Eqn
[5.8] .

5.8.5

For  the  reaction  scheme  given  in  Eqn  [5.8],  calculate  the  value  of  C v1
S3  by  numerical

perturbation.

5.8.6

The  ¶-elasticity  matrix  calculated  in  the  first  worked  example  in  Section  5.4  has  two
non-zero entries in the second column. Why? What is the interpretation of the fact that
the elements are of opposite  sign?

5.8.7

Calculate the flux response matrix for the system presented in the first question/answer
in Section 5.5.  Are there any parameters which will have no effect on pathway flux at
all?
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6 Parameter Estimation

6.1  Introduction
Modelling  any  metabolic  system  involves  three  main  tasks:  (1)  defining  the
mathematical functions that make up the individual units of the model, in other words,
the  rate  equations  of  all  the  (bio)chemical  reactions  in  the  metabolic  scheme;  (2)
collecting experimental kinetic and binding data on the various units of the system; and
(3)  deciding  on  values  for  the  adjustable  parameters  in  the  various  mathematical
functions  so  that  the  agreement between the  predictions  of  the model  and  the data are
maximized.  This  latter  task  is  known  as  parameter  estimation  or  model  fitting,  and  is
the subject of this chapter.

The  approach  to  modelling cellular  systems used in  this  book  is  to  develop models of
the  individual  biochemical  and  biophysical  processes,  such  as  enzymic  reactions  and
ion transport processes, and to collect these together to describe the system as a whole.
Models of real cellular systems can become extremely complicated when constructed in
this way. For example, the model of the red blood cell described in Chapter 7 contains
60 state variables  (metabolites) and 270 parameters.  Such systems are often said to be
overparameterized  with  respect  to  the  available  experimental  data.  This  is  because  in
order  to  be  able  to  estimate  all  the  parameters  in  the  model  with  a  high  degree  of
certainty,  we  need  to  follow all  the  independent  state  variables  in  the  system during  a
very  large  number  of  experiments  that  involve  system  perturbations.  Current
experimental  techniques  do  not  enable  this  for  most  cellular  systems.  In  other  words,
the  rich  parameterization  of  these  models,  combined  with  only  sparse  experimental
data, does not allow reliable estimation of all the relevant parameter values.

On the other hand, when fitting a cellular model to experimental data, we usually have
preconceptions  of  the  values  of  many  of  the  parameters  involved.  In  the  process  of
developing  models  of  the  individual  enzymes  and  transporters,  estimates  are  made  of
many  of  these  parameters.  Thus  the  problem  of  parameter  estimation  for  the  whole
system  is  usually  not  one  of  ab  initio  estimation,  but  rather  is  one  of  refining  prior
estimates of parameter values. This approach to parameter estimation is discussed next.
Note  that  the  topic  is  very  mathematical,  and  yet  the  various  procedures  that  are
discussed are implemented in Mathematica   and are transparent to the user;  hence this
section can safely be skipped by those anxious to proceed to the modelling sections.

 6.2  Approaches to Parameter Estimation
The aim of parameter estimation is to find the vector of values, j, that leads to the best
simulation of the given data, d. We seek a j that has the maximum probability given the



data, d; this is called the conditional probability, p(j»d). Bayes' theorem shows that this
conditional probability can be factored into three terms :H1,2L

[6.1]max
j

 pHj » dL = max
j

 
pHd » jL pHjL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p HdL ,

[6.2]= max
j

 
p Hd » jL p HjL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅŸj p Hd » jL p HjL „j
,

where p(j) is called the prior probability of j, p(d»j) is the conditional probability of d
given  j,  and  p(d)  describes  the  probability  of  the  data.   Since  the  denominator  is  an
integral  over  all  possible  parameter  values,  it  is  a  constant  that  is  independent  of  the
final j. Hence, 

[6.3]max
j

 pHj » dL = max
j

 pHd » jL pHjL .

In  other  words,  the  particular  j  that  maximizes  p(j»d)  is  found  by  maximizing  the
product  of  p(d»j)  and  p(j).  Parameter  estimation  based  on  Eqn  [6.3]  is  termed
maximum  a  posteriori  (MAP)  estimation,  and  it  plays  a  very  important  role  in
parameter estimation when modelling metabolic systems.

If  we assume that p(j)  =1,  an assumption that  we investigate in Section 6.4,  then Eqn
[6.3] reduces to 

[6.4]max
j

 pHj » dL = max
j

 pHd » jL .

Parameter  estimation  using  Eqn  [6.4]  is  termed  maximum  likelihood  estimation  and  it
works by choosing parameter values that maximize the probability of the data. The least
squares method of parameter estimation uses a maximum likelihood estimator, and this
is discussed next.

6.3  Least Squares
Consider  a  data  set  d  of  N  reaction  velocities,  vi ,  each  of  which  is  associated  with  a
particular  substrate  concentration,  si ;  we  believe  that  the  function  vi  =  v(si ,j)  is  an
appropriate  model  to  describe  the  data.  Then  the  aim  of  parameter  estimation  (using
Eqn  [6.4])  is  to  maximize  the  probability  of  obtaining  the  N  velocity  measurements,
given j. In other words, we wish to estimate maxj  pHj » dL .  To do this we must assign
mathematical  expressions  that  describe  the  errors  in  the  measured  data.  It  is  usual  to
assume  that  each  measurement  is  associated  with  an  error  that  has  a  normal,   or
Gaussian,  distribution  around  the  true  value  v(si ,j),  with  variance  si

2 .  Then  the
probability of observing a particular velocity vi is given by

[6.5]pHviL dv =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p si
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hvi - v Hsi, jLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 si
2

ÉÖÑÑÑÑÑÑÑÑÑ dv .

156 Chapter 6



Assuming that every measurement is independent of every other one, the probability of
the  whole  data  set  having  the  given  values  is  the  product  of  the  probabilities  of  each
data element, namely,

[6.6]pHd » jL = Â
i=1

N

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p si
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hvi - v Hsi, jLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 si
2

ÉÖÑÑÑÑÑÑÑÑÑ dv .

Now choose  j  to  maximize p(d»j).  This  is  equivalent  to  maximizing the  logarithm of
the  expression  on  the  right-hand  side  of  Eqn  [6.6]  or,  more  usefully,  minimizing  the
negative of its logarithm:

[6.7]min
j

-log  pHd » jL = min
j

 „
i=1

N

 
Hvi - v Hsi, jLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 si
2 +

1
ÅÅÅÅÅ
2

 logH2 p si
2L .

In Eqn [6.7] we can factor out  the 1/2 in the first  term and we ignore the second term
because  it  is  independent  of  j.  Therefore  our  goal  is  to  find values for  the parameters
that minimize

[6.8]c2  ª „
i=1

N

 
Hvi - v Hsi, jLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

si
2 .

This  quantity  is  the "Chi-square"  measure that  is  so familiar to  users  of  statistics.  It  is
important  to  remember  that  it  is  a  maximum likelihood  estimator  that  applies  only  to
data with normally distributed errors.

6.4  Maximum a Posteriori (MAP)
In  Section  6.2  we  considered  the  concept  of  MAP  estimation  and  the  fact  that  it
amounts to evaluating the expression

[6.9]max
j

 pHj » dL = max
j

 pHd » jL pHjL .

In  Section  6.3  we  derived  expressions  for  p(d»j)  when  the  data  have  normally
distributed errors. In order to use MAP we also need to be able to derive mathematical
expressions  for  p(j).  To  do  this  we  need  to  express,  in  mathematical terms,  our  prior
knowledge  about  j.  With  j  =  {j1 ,  ...,  jM },  our  prior  knowledge  will  include
knowledge  about  the  distribution  of  each  parameter.  Typically  we  will  have  prior
knowledge  that  each  parameter,  i,   is  normally  distributed  with  a  mean  of  ji

êêê  and
variance qi

2 . Hence the probability that the value of  parameter i is  ji is given by

[6.10]pHjiL d  j =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!2 p qi
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hji - ji

êêêL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 qi
2

ÉÖÑÑÑÑÑÑÑÑÑ d  j .

If each parameter is statistically independent, then
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[6.11]pHjL = Â
i=1

N

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!2 p qi
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hji - ji

êêêL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 qi
2

ÉÖÑÑÑÑÑÑÑÑÑ d  j .

If  there  are  no  prior  expectations  about  the  mean  value  of  a  parameter,  a  reasonable
prior belief would be that the mean value is that which is estimated via MAP. Thus, ji

êêê

becomes ji in Eqn [6.11] and hence p(j)  = 1.  This step gives some justification to the
use  of  the  maximum  likelihood  estimator  to  derive  the  "chi-square"  measure.
Furthermore, if we have prior information only on the means of a subset of parameters,
f = {j1 , ..., jL }, such that 0 § L § M, then 

[6.12]pHjL = Â
i=1

L

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!2 p qi
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hji - ji

êêêL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 qi
2

ÉÖÑÑÑÑÑÑÑÑÑ d  j .

By combining Eqns [6.6] and [6.11] we obtain

[6.13]

pHj » dL = Â
i=1

N

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!2 p si
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hvi - v Hsi, jLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 si
2

ÉÖÑÑÑÑÑÑÑÑÑ dv

Â
i=1

L

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!2 p qi
2

 Exp 
ÄÇÅÅÅÅÅÅÅÅÅ -Hji - ji

êêêL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 qi
2

ÉÖÑÑÑÑÑÑÑÑÑ d  j .

As  in  Section  6.3,  we  maximize  p(j»d)  by  minimizing  the  negative  logarithm  of  Eqn
[6.13]. Then by neglecting the terms that are independent of j and by factoring out the
various constants we obtain the result that p(j»d) can be maximized by minimizing the
following expression:

[6.14]MAP ª „
i=1

N

 
Hvi - v Hsi, jLL2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

si
2 + „

i=1

L

 
Hji - ji

êêêL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

qi
2 .

In  conclusion,  we  have  shown  (Sections  6.3  and  6.4)  how  when  minimized  two
different functions yield parameter estimates that are the most probable for a particular
data  set.  These  functions  are  termed  figure-of-merit  functions  (usually  shortened  to
'merit functions'). The first of these merit functions, χ2 , is appropriate for use when the
prior  information  on  the  parameter  estimates  is  minimal  relative  to  the   information
provided  by  the  data.  This  will  be  the  case  when  estimating parameters  for  models  of
enzymic  reactions  and  transport  processes.  The  second  of  these  functions,  MAP,  is
useful when there is a significant amount of prior information on the probable values of
the  parameter  set.  This  will  be  the  case  when  constructing  models  of  cellular  systems
based on models of the components of the system. We now turn to the techniques and
algorithms that can be used to minimize these two functions.
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6.5  Parameters in Rate Equations
Parameter  estimation  can  be  divided  into  two  sections.  The  first  involves  estimating
parameters  in  rate  equations  that  describe  enzymic  reactions  and  transport  processes.
The  second   involves  estimating  parameters  in  models  that  consist  of  systems  of
differential  equations.  The  methods  chosen  for  the  minimization of  the  merit  function
are  different  in  each  case  because  parameter  estimation  for  a  single  rate  equation
usually  employs  techniques  that  rely  on  the  determination  of  the  gradient  and  second
derivatives  with  respect  to  the  parameters  in  the  rate  equation.  On  the  other  hand,  for
most  systems  of  differential  equations  there  is  no  analytical  solution.  In  such  cases
analytical expressions  for the first  or second derivatives with respect to parameters are
not  available  so  we  must  rely  on  techniques  that  either  do  not  use  this  information  or
that use numerical estimates of them.

6.5.1  Linear least squares

Most rate equations that describe biological processes are nonlinear. However, there are
a  few  cases,  such  as  passive  transport  of  a  solute  across  a  membrane,  that  are
describable  as  first-order  processes.  In  addition,  some  nonlinear  rate  equations  are
readily  transformed  into  linear  ones;  e.g.,  in  Section  2.1  the  linear  Lineweaver-Burk
plot was derived from the nonlinear Michaelis-Menten equation.

The  Mathematica  package,  Statistics`LinearRegression`,  contains  several
functions  that  perform linear  least-squares estimation of  parameters; the functions also
deliver a number of associated statistical diagnostics. The function Regress performs
a linear fit  of an equation onto data by minimizing χ2  and its  default settings assume
that the error distributions of each measurement have identical variances. However, the
option  Weights  allows  individual  data  variances  to  be  included.  The  Mathematica
Help browser gives further information on this package and its functions.

This  package  relies  on  matrix algebra  and  singular  value decomposition and can yield
the best fit parameters in a single step. The interested reader can find the theory behind
these algorithms in a variety of sources.H2,3L
Let us now illustrate the process of linear least-squares estimation.

<<
Statistics`LinearRegresÑ
sion

load in the add -
on package for performing linear regression

Regress@data, 81, x<, 8x<D Fits a linear model to data

Performing linear least squares regression.
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Q: Show  that  linear  regression  can  be  used  to  estimate  the  parameters  of  the  Michaelis-
Menten  rate  equation  if  the  rate  data  are  first  transformed  according  to  the  method of
Lineweaver-Burk (Section 2.1.4). 

A: We begin by loading the relevant Mathematica add-on package.

<< Statistics`LinearRegression`
Let  us  synthesize  some  "experimental  data"  that  although  not  real  are  nonetheless
realistic.  They are  generated  by adding  Gaussian  noise  to  velocity data  values derived
from the  Michaelis-Menten equation;  we  choose  quite  arbitrarily  Vmax = 10  mmol L-1

s-1  and Km = 3 mmol L-1 . First, we generate the data without noise.

v0@a_D := Vmax a
###############Km + a ;

Vmax = 10;
Km = 3;
dataEnz = Table@8a, v0@aD<, 8a, 0.5, 5, 0.5<D

880.5, 1.42857<, 81., 2.5<, 81.5, 3.33333<,82., 4.<, 82.5, 4.54545<, 83., 5.<, 83.5, 5.38462<,84., 5.71429<, 84.5, 6.<, 85., 6.25<<
Next  we  add  Gaussian  noise:  to  do  this  we  open  the  add-on  package  Statistics
`ContinuousDistributions`  and  then  use  the  Map,  Random,  and
NormalDistribution  commands. The noise is assumed to have a mean of 0 and a
standard deviation of 0.15. 

<< Statistics`ContinuousDistributions ;̀
dataEnzNoisy = Map@

8#P1T, #P2T + Random@NormalDistribution@0, 0.15DD< &, dataEnzD880.5, 1.45987<, 81., 2.39286<, 81.5, 3.54621<,82., 4.01127<, 82.5, 4.54339<, 83., 5.0744<, 83.5, 5.24343<,84., 5.66551<, 84.5, 6.04067<, 85., 6.08823<<
 A "double-reciprocal"  transformation is performed on dataEnzNoisy  to implement
Lineweaver-Burk analysis (Section 2.1.4) before Regress is used to fit a straight line
to these transformed data.

dataDr = 1 êdataEnzNoisy;
fitR1 = Regress@dataDr, 81, x<, 8x<D
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9ParameterTable →

"" "Estimate" "SE" "TStat"
1 0.10285` 0.004746` 21.6706`
x 0.29359` 0.006027` 48.7059`

,

RSquared → 0.9966390404147704`,
AdjustedRSquared → 0.9962189204666166`,
EstimatedVariance → 0.00010056165576915086 =̀

The  default  output  of  Regress  is  a  table  that  describes  various  aspects  of  the
regression  process.  The  meanings  of  each  of  these  components  is  given  in  the
Mathematica  Help  browser  or  by  consulting   a  standard  statistics  textbook  (e.g.,
RiceH4L ).
The fit yields estimates of the parameters that have small relative standard errors (SE),
indicating a good fit. This can be verified further by plotting the fitted line over the data
as  follows.  First,  extract  the  parameters  of  the  linear  model  from  the
ParameterTable in the output from Regress.

parTable = ParameterTable ê. fitR1;
const = parTableP1,1,1T;
slope = parTableP1,2,1T;

Next, plot the data and model predictions on the same graph as follows:

graph1 = ListPlot@dataDr,
PlotStyle −> 8PointSize@0.02D<, DisplayFunction → IdentityD;

graph2 = Plot@const + x∗ slope, 8x, −0.333, 2<,
AxesOrigin −> 80, 0<, DisplayFunction → IdentityD;

Show@8graph1, graph2<, DisplayFunction → $DisplayFunction,
AxesLabel −> 8"1ê@aD", "1êv0"<D;
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Figure 6.1. Lineweaver-Burk plot of synthetic noisy enzyme kinetic data. The ordinate is
1 ê v0  and the abscissa 1 ê @SD0 .

Notice that the fitted line conforms well to the data. 

Data  transformations  such  as  are  used  in  the  Lineweaver-Burk  analysis  also transform
the  error  structure  of  the  data.  Consequently,  they  yield  biased  estimates  of  the
parameters  and  are  therefore  only  to  be  used  for  'eye-balling'  the  data  to  assess
conformity of the model with the data, and for providing initial estimates of parameter
values for nonlinear regression analysis. This method which is described next should be
used  for  obtaining  the  definitive  estimates  of  parameter  values  and  their  associated
errors.

6.5.2 Nonlinear estimation

As  stated  in  the  previous  section,  the  majority  of  rate  equations  that  describe  cellular
systems  are  nonlinear  with  respect  to  their  dependent  variables  and  their  parameters.
Unfortunately this means that we can no longer use the techniques of linear algebra and
so  we  rely  on  iterative-search  methods  for  parameter  estimation.  For  nonlinear
estimation we start with an initial trial set of parameter values and progressively refine
these  by iteratively applying an algorithm that  adjusts  the values so as  to  decrease the
value of a merit function.  

The  Levenberg-Marquardt  algorithm  is  the  standard  one  used  in  nonlinear  parameter
estimation. It relies on two different methods for the minimization of the merit function.
The first is the steepest descent, or gradient descent, method which decreases the value
of the merit function by using information on the direction in which the rate of decrease
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is the greatest. For example, if χ2  (Eqn [6.8]) is the merit function, then the direction of
steepest descent is given by the negative gradient, �∇χ2 (j), where

[6.15]H“ c2L j =
∑ c2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ j j

= -2 „
i=1

N

 
vi - v Hsi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

si
2  

∑ v Hsi, jLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ j j

.

By making a step a in the direction �∇χ2 (j),  jnext  is estimated from jcurrnet  using

[6.16]jnext = jcurrent - a “ c2 HjcurrentL .

The second method of determining  jnext  from jcurrent is to evaluate the merit function
using a second-order Taylor approximation around jcurrent . Again, taking Eqn [6.8] as
the merit function, the second-order approximation of χ2  around jcurrent  is

[6.17]
c2 HjL = c2 HjcurrentL +

“ c2 HjcurrentL.Hj - jcurrentL+ 1
ÅÅÅÅÅ
2

 Hj - jcurrentL.H.Hj - jcurrentL ,

where H is the matrix of second derivatives called the Hessian. It is defined as follows:

[6.18]

H jk =
∑2 c2 HjL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ j j ∑ jk
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2
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∑ j j ∑ jk

ÉÖÑÑÑÑÑÑÑÑÑ .

In  this  case  jnext  is  selected  to  be  the  set  of  parameter  values  which  minimizes  Eqn
[6.17]. This set is found by setting “χ2 Hj) = 0; in other words, we solve

[6.19]“ c2 HjnextL = c2 HjcurrentL + H.Hjnext - jcurrentL = 0

for  ϕnext. The  solution  is

[6.20]jnext = jcurrent - H-1.“ c2 HjnextL .

The method is called Newton's method or the inverse-Hessian method. 

The reason that the Levenberg-Marquardt method employs the two iterative methods is
that  the  reliability  and  efficiency  of  each  method  vary  depending  on  how  close  the
initial parameter estimates are to their final values. For example, if the initial estimate of
ϕcurrent  is  very  close  to  the  global  minimum the  inverse-Hessian  method  converges
quickly;  while  the  steepest  descent  method  converges  relatively  slowly  because  the
gradient becomes progressively smaller as the minimum is approached. Alternatively, if
the  estimate  of  ϕcurrent  is  far  from  the  minimum,  the  value  given  for  ϕnext  by  the
inverse-Hessian method can be even farther away from the minimum than the previous
ϕcurrent . 

How does the Levenberg-Marquardt  algorithm 'know' when to switch between the two
methods? The answer is as follows: the algorithm first uses the diagonal elements of the

Parameter Estimation 163



Hessian matrix to specify the order of magnitude of the step (i.e., a in Eqn [6.16]) that
is taken in the steepest descent method, hence Eqn [6.16] becomes

[6.21]ji,next = ji,current -
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
lHii

 
∑ c2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ ji

,

where l is a scalar factor. The choice of a is based on the curvature of the error surface
given by Hii . If the curvature is large then very small gradient descent steps are taken.

Having  defined  the  size  of  the  gradient  descent  steps,  a,  the  algorithm  combines  the
steepest descent and inverse-Hessian methods by defining a new matrix, M, such that

[6.22]Mii =
1
ÅÅÅÅÅ
2

 Hii H1 + lL and Mij =
1
ÅÅÅÅÅ
2

 Hij j ∫ i

This allows the replacement of Eqns [6.16] and [6.20] with

[6.23]jnext = jcurrent - M-1.“ c2 HjnextL
so that when l approaches zero Eqn [6.23] approaches the inverse-Hessian method, and
when l is relatively large, M becomes diagonally dominant and Eqn [6.23] approaches
the steepest descent method. 

In conclusion, the usual approach to implementing the Levenberg-Marquardt algorithm
is to begin with a moderate value for  l  and solve Eqn [5.20].  Then if the value of the
merit  function  decreases  in  size,  l  is  decreased  (say,  by  a  factor  of  10)  forcing  Eqn
[5.20]  toward  the  inverse-Hessian  method.  On  the  other  hand,  if  the  merit  function
increases in value,  then l  is  increased by a factor  of 10 forcing Eqn [5.20]  toward the
steepest descent method.

6.5.3 Nonlinear least squares

The  Mathematica  add-on  package  Statistics`NonlinearFit  contains  several
nonlinear  least  squares  functions  which  use  the  Levenberg-Marquardt  method  as  the
default option. One of these functions, NonlinearRegress, is illustrated next.

<<
Statistics`NonlinearFit

load in the add-on package for
performing nonlinear least-squares estimation

NonlinearRegress@
data, 81, x<, 8x<D Fits a linear model to data

Performing nonlinear least-squares regression analysis.

Q: How do we use nonlinear regression analysis to fit the Michaelis-Menten function onto
enzyme kinetic data?

A: We  illustrate  the  method  by  using  the  kinetic  data  from  the  previous  example;  it  is
labelled dataEnzNoisy. 
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First, load the NonlinearFit package.

<< Statistics`NonlinearFit ;̀
Clear@SubscriptD

Next, use the NonlinearRegress function as follows.

results = NonlinearRegressAdataEnzNoisy, Vmax a
###############Km + a , a, 8Vmax, Km<E9BestFitParameters → 8Vmax → 9.66041, Km → 2.7907<,

ParameterCITable →

Estimate Asymptotic SE CI
Vmax 9.66041 0.274669 89.02702, 10.2938<
Km 2.7907 0.168322 82.40255, 3.17885<,
EstimatedVariance → 0.00829601, ANOVATable →

DF SumOfSq MeanSq
Model 2 217.467 108.733
Error 8 0.0663681 0.00829601
Uncorrected Total 10 217.533
Corrected Total 9 21.9156

,

AsymptoticCorrelationMatrix→ J 1. 0.97612
0.97612 1.

N,
FitCurvatureTable →

Curvature
Max Intrinsic 0.0235299
Max Parameter−Effects 0.106493
95. % Confidence Region 0.473568

=
The meaning of the various elements of this Mathematica  output are found in the Help
Browser and in standard statistical textbooks, so we will not discuss them in detail here.
However,  it  is  worth  noting  that  the  key  numbers  are  the  parameter  estimates and  the
"Asymptotic SE" values; these are the standard errors of the parameter estimates which
provide a quantitative idea of their reliability.

The  synthetic  data  and  the  estimated  Michaelis-Menten  equation  can  be  plotted
together, as follows:

graph1 = ListPlot@dataEnzNoisy,
PlotStyle −> 8PointSize@0.02D<, DisplayFunction → IdentityD;

graph2 = PlotA Vmax a
###############Km + a ê. 8BestFitParameters ê. results<,

8a, 0, 10<, DisplayFunction → IdentityE;
Show@8graph1, graph2<, DisplayFunction → $DisplayFunction,

AxesLabel −> 8"Time HhL", "v0"<D;
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Figure  6.2.  Nonlinear  regression  of  the  Michaelis-Menten  expression  onto  enzyme
kinetic  data using the Mathematica function NonlinearRegress.  The ordinate is  v0  and
the abscissa @SD0 .  

6.5.4 Nonlinear MAP 

The  algorithms  supplied  in  the  package  Statistics`NonlinearFit`  only
perform parameter estimation based  on  least-squares minimization. On the other  hand,
the  function  FindMinimum  uses  a  variety  of  methods,  including  the  Levenberg-
Marquardt method, to determine the local minima of a user defined function. So, if we
define our own MAP function we can use FindMinimum for parameter estimation, as
follows:

FindMinimum@
f , 8x, x0<, 8y, y0<D Searches for a local minimum

in a function of several variables

Minimizing merit functions.
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Q: Is  it  possible  to  fit  the  Michaelis-Menten equation  onto  enzyme kinetic  data assuming
that  we  have  prior  knowledge  about  the  Vmax of  the  enzyme?   Suppose  that  the  prior
knowledge  is  that  the errors  in  Vmax are  normally distributed with  a  mean of  10 mmol
L-1  min-1  and  a  variance  that  is  10  times  less  than  the  variance  of  the  experimental
data.  The  synthetic  data  from  the  previous  example  (dataEnzNoisy)  fulfills  these
criteria, since they were constructed with these properties in the first place. 

A: We  have  prior  knowledge  about  the  value  of  Vmax  so  we  use  MAP  estimation  rather
than  least-squares  estimation.  First,  define  the  MAP  merit  function,  recalling  that  a
MAP  function  for  normally  distributed  measurement  errors  and  normally  distributed
prior parameter probabilities is given by Eqn [6.14].

Hence  for  the  data  in  dataEnzNoisy  the  MAP  merit  function  is  given  by  Eqn
[6.14], as follows:

v0@a_D := Vmax a
#################Km + a ;

conc = Transpose@dataEnzNoisyDP1T;
velMeas = Transpose@dataEnzNoisyDP2T;
velPred = Map@v0, concD;
MAP@Km_, Vmax_D :=
Plus @@ HvelMeas − velPredL2 + 10∗HVmax − 10L2;

Now apply the FindMinimum function to estimate the Michaelis-Menten parameters.

FindMinimum@MAP@Km, VmaxD, 8Vmax, 10.<, 8Km, 3.<D80.0778725, 8Vmax → 9.99674, Km → 2.99311<<
Notice how the estimate of Vmax  is much closer to 10 than in the previous example. The
fact  that  the  variance  of  our  prior  distribution  for  Vmax  was  low  compared  to  the
experimental data means that deviations from this prior belief were heavily weighted in
the MAP merit function.

The  important  topic  of  estimating  the  standard  errors  associated  with  parameter
estimates that are obtained by using MAP are discussed in Section 6.8.

6.6  Parameters in Systems of Differential Equations
Kinetic  models  of  cellular  systems  are  usually  described  by  arrays  of  simultaneous
differential  equations.  There  are  two  features  of  these  arrays  that  make  parameter
estimation very difficult. First, the number of parameters in the models tends to be large
which means that the process of optimization of parameters can be very slow. More will
be discussed about this aspect in Section 6.7. Second, for most realistic models there is
no  analytical  solution  to  the  array  of  differential  equations.  Thus,  unlike  the  situation
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with single  rate  equations  it  is  not  possible  to  determine analytical expressions  for  the
first or second derivatives of the rate equations with respect to the various parameters in
the array. Therefore we must rely on techniques that either do not require first or second
derivatives (direct methods) or which use numerical estimates of these values. Because
of the high time�cost involved in numerically estimating derivatives, direct methods are
usually preferred; these are described next.

The two main approaches to minimizing merit functions without evaluating derivatives
are (1) the downhill simplex method and (2) the 'direction-set' modification of Powell's
method.  Mathematica's  FindMinimum  function  relies  on  a  modification  of  Powell's
method so is the one explored here.  For more details on the downhill  simplex method,
see Press et al.H3L
The  basic  idea  behind  the  direction-set  method  is  to  first  minimize  the  objective
function by changing the values of the parameter estimates in the direction of a chosen
vector.  Once  the  minimum  along  this  vector  direction  (line)  has  been  found,  a  new
vector  direction  is  determined and  the  merit  function  minimized in  this  new direction.
By a series of such line minimizations, the algorithm iteratively locates the minimum of
the  merit  function.  The  'trick'  to  successful  direction-set  methods  lies  in  the  way  they
calculate the directions for each successive line minimization; Press et al.H3L  contains the
mathematical details.

In  Mathematica  FindMinimum  automatically  uses  a  direction-set  method  if
derivatives cannot be found. The use of FindMinimum is illustrated next. 

Q: Suppose  we  have  noisy  experimental  data consisting  of  reactant  concentrations  over  a
10-h time course from a linear reaction scheme like that in Eqn [6.24].   Also, suppose
that  prior  information  on  the  error  estimates  of  these  concentrations  indicates  that  the
noise  is  normally  distributed  with  a  mean  of  zero  and  a  standard  deviation  of  0.03
units. How can we use the data to obtain a best estimate of the kinetic parameter values
(Km,i  and Vmax,i , i = 1,...,3) in the model? 

[6.24]S1  Ø
v1  S2 Ø

v2  S3 Ø
v3  S4

Aside:  For  this  exercise  we  must  first  synthesize  the  noisy  data.  To  do  this  we  make
each  vi  a  simple  irreversible  Michaelis-Menten  rate  equation  (Section  2.3.1)  with  all
Vmax  values being 1 mmol L-1  h-1 ,   all  Km  values 1 mmol L-1 ,  and S1 [0] = 1 mmol
L-1 ,  S2 [0]  =  S3 [0]  =  S4 [0]  =  0  mmol  L-1 .  For  the  subsequent  analysis  our  prior
knowledge of the mean of the parameters will be the parameter values used to calculate
the  synthetic  data  in  the  first  place;  and  recall  that  the  synthetic  data  are  made  noisy
with  normally  distributed  random  variations  that  have  a  mean  of  0  and  standard
deviation of 0.03. 

A: MAP estimation is used for this problem. The first step entails defining the equations of
the  model  in  the  form  of  a  mathematical  function  that  is  amenable  to  processing  via
FindMinimum. Hence, the model must be set up as a system of matrices, as is done in
Chapter  4.  To  start  this  analysis  we  reload  the  package  MetabolicControl-
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Analysis  and  specify  the  various  initial  substrate  concentrations,  stoichiometry
matrix, and rate equations.

<< MetabolicControlAnalysis`

S¯ := Table@si@tD, 8i, 4<D;

N¯ =

i

k

jjjjjjjjjjjj

−1 0 0
1 −1 0
0 1 −1
0 0 1

y

{

zzzzzzzzzzzz
;

v@1D := Vm1 s1@tD
######################################
Km1 H1 + s1@tD###########Km1 L

;

v@2D := Vm2 s2@tD
######################################
Km2 H1 + s2@tD###########Km2 L

;

v@3D := Vm3 s3@tD
######################################
Km3 H1 + s3@tD###########Km3 L

;

v̄ := Table@v@iD, 8i, 3<D;

ic1 = 8s1@0D == 1, s2@0D == 0, s3@0D == 0, s4@0D == 0<;

pars = 8Vm1, Vm2, Vm3, Km1, Km2, Km3<;
parValues = 81, 1, 1, 1, 1, 1<;

Detour:  We  interrupt  our  analysis  to  generate  the  "experimental"  data  that  we  will
subsequently analyze. We define a function that produces a table of simulated substrate
concentrations  starting  at  time  =  0  h,  continuing  in  1-h  increments  to  10  h,  based  on
Eqn  [6.24].  The  argument  of  the  function  is  a  list  of  parameter  values.  To  define  the
function  we  use  the  Module  command noting  that  this  function  is  not  self-contained
and requires values that are defined in the Cell  above. 

model@a_ListD :=
Module@8parTable, result, sol<,
parTable = Transpose@8pars, a<D;
sol = NDSolveMatrix@S¯, N¯, v̄,
ic1, 8t, 0, 10<, parTable, MaxSteps → 10000D;

result = Table@Evaluate@S¯ ê. solD, 8t, 0, 10, 1<D
D

Having  defined  this  function,  and  after  having  loaded  the
Statistics`ContinuousDistributions`package,  we  can  create  the
synthetic data.
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<< Statistics`ContinuousDistributions ;̀
exptData = model@parValuesD;
noisyExptData =

MapAll@# + Random@NormalDistribution@0, 0.03DD &, exptDataD;
plotData = Table@88i − 1, noisyExptDataPi,1,1T<,

8i − 1, noisyExptDataPi,1,2T<, 8i − 1, noisyExptDataPi,1,3T<,
8i − 1, noisyExptDataPi,1,4T<<, 8i, 1, 10<D;

ListPlot@Flatten@plotData, 1D,
AxesLabel −> 8"Time HhL", "Concentration HmML"<,
PlotStyle −> 8PointSize@0.02D<D;

2 4 6 8
Time HhL0.2

0.4

0.6

0.8

1

Concentration HmML

Figure 6.3. Plot of the synthetic experimental data.  

Return  from  detour:  Having  obtained  the  experimental  data  we  now  analyze  it  to
obtain estimates of the parameter values. Using the function in Eqn [6.25] we define the
merit functions for the least squares and MAP estimations, as follows:

ss@a_ListD :=
Plus @@ HFlatten@noisyExptDataD − Flatten@model@aDDL^2

map@a_ListD :=
Plus @@ HFlatten@noisyExptDataD − Flatten@model@aDDL^2 +

Plus @@ Ha − 81, 1, 1, 1, 1, 1<L^2
The  least-squares  parameter  estimates  are  found  by  minimizing  the  ss[a] (sum-of-
squares)  merit  function;  but  when we use FindMinimum  on  a  function  that  does  not
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have derivatives it is necessary to specify an upper and lower bound of the initial values
for each parameter.

ssResults = FindMinimum@ss@parsD, 8Vm1, 1, 2<,
8Vm2, 1, 2<, 8Vm3, 1, 2<, 8Km1, 1, 2<, 8Km2, 1, 2<,
8Km3, 0.1, 10<, PrecisionGoal → 3, MaxIterations → 100D80.946883, 8Vm1 → −18.8473, Vm2 → 1.03136,
Vm3 → 1., Km1 → 1., Km2 → 1., Km3 → −0.091883<<

Result:  It  is  evident  in  this  simple  example  that  the  synthetic  data  do  not  allow  the
accurate estimation of all the parameter values. However, if we use MAP estimation by
minimizing   map[a],  as  is  shown  next,  the  parameters  that  were  used  to  create  the
synthetic data are recovered. 

mapResults = FindMinimum@map@parsD, 8Vm1, 1, 2<,
8Vm2, 1, 2<, 8Vm3, 1, 2<, 8Km1, 1, 2<, 8Km2, 1, 2<,
8Km3, 1, 2<, PrecisionGoal → 3, MaxIterations → 100D80.946883,8Vm1 → 1., Vm2 → 1., Vm3 → 1., Km1 → 1., Km2 → 1., Km3 → 1.<<

This is  a  remarkable result  which could  be dwelt  upon much more via further  worked
examples, but  restrictions on space do not  allow this.  However,  we hope that  you will
be  able  to  generate  your  own  examples  using  the  above  Cells  as  a  template  for  the
analytical procedures.

6.7  Optimal Parameters
A problem with the iterative methods of nonlinear parameter estimation is that they are
only  useful  for  finding  local  minima.  They  will  only  locate  a  minimum  in  a  merit
function  that  is  near  that  defined  by  the  starting  values  of  the  parameters.  By
performing parameter estimation from a single starting set we have no way of knowing
whether  the  minimum  in  the  merit  function  that  has  been  found  is  a  global  one.
Therefore it is important to perform the merit function minimization by using a number
of randomly generated starting parameter sets. If the same minimum is arrived at from
each  starting  set  we  often  assume  that  the  true  global  minimum  has  been  located.  If
different  minima  are  located  a  number  of  useful  approaches  can  be  used,  such  as
simulated  annealing   and  genetic  algorithms.  These  methods  are  beyond  the  intended
scope of this book,  but the interested reader can find the details in Gershenfeld.H2L  The
implementation  of  these  analyses  in  Mathematica  requires  some  complicated
programming.  
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6.8  Variances of Parameters 
Calculating  the  uncertainties  in  parameter  estimates  is  a  very  important  and  yet  very
technical  topic.  Fortunately,  the  Mathematica  functions  Regress  and
NonlinearRegress  automatically yield the standard errors of the estimates. On the
other  hand,  when  FindMinimum  is  used  to  minimize  a  merit  function,  no  error
estimates are given. So it is important to have a strategy to make these estimates. This
can be done via a so-called  Monte Carlo simulation. 

The  idea behind  the  Monte  Carlo  approach  is  to  assume that  the  parameters that  have
been  estimated  are  the  true  underlying  parameters  relevant  to  the  real  system.  Then
these  parameter  values,  along  with  a  function  that  generates  noise,  is  used  with  the
model to simulate sets of synthetic data. This is done in exactly the manner used in the
example above.  Several  simulated data sets  are  then subjected to  parameter estimation
and  from  the  set  of   estimates  for  each  parameter  a  mean  and  standard  deviation  is
calculated, using the conventional formulae.

Q: What  are  the  standard  deviations  of  the  least-squares  estimates  of  the  parameters
obtained for the "experimental" data from the metabolic model of the previous example?

A: The  estimate  of  the  standard  deviations  uses  the  Monte  Carlo  simulation  technique.
Recall that the results of the least-squares estimation are called ssResults.

ssResults80.946883, 8Vm1 → −18.8473, Vm2 → 1.03136,
Vm3 → 1., Km1 → 1., Km2 → 1., Km3 → −0.091883<<

Use the following input to simulate a single set of synthetic data using these results.

dataS1 = model@pars ê. ssResultsP2TD;
dataS2 = Flatten@dataS1, 1D;
synData =

MapAll@# + Random@NormalDistribution@0, 0.03DD &, dataS2D;
To simulate an array of 25 data sets we use

Do@
syntheticData@iD = MapAll@
# + Random@NormalDistribution@0, 0.03DD &, dataS2D, 8i, 25<D

The merit function for each syntheticData[i] is

ssNew@i_, a_ListD :=
Plus @@ HFlatten@syntheticData@iDD − Flatten@model@aDDL^2

Next, apply FindMinimum to each of the 25 merit functions.
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Do@
ssRes@iD = FindMinimum@ssNew@i, parsD, 8Vm1, 1, 2<, 8Vm2, 1, 2<,

8Vm3, 1, 2<, 8Km1, 1, 2<, 8Km2, 1, 2<, 8Km3, 1, 2<,
PrecisionGoal → 2, MaxIterations → 1000D, 8i, 25<D

Finally,  by  using  the  package  Statistics`MultiDescriptiveStatistics`,
the standard deviation of each parameter estimate is determined.

<< Statistics`MultiDescriptiveStatistics`
data = Table@pars ê. ssRes@iDP2T, 8i, 25<D;
sd = StandardDeviation@dataD;
8pars, pars ê. ssResultsP2T, sd< êê MatrixFormikjjjjjjj Vm1 Vm2 Vm3 Km1 Km2 Km3

−18.8473 1.03136 1. 1. 1. −0.091883
11.0746 10.7785 0.0195382 0.0329097 0.0767816 0.00239576

y{zzzzzzz
This is  a  very  neat outcome and essentially provides  a recipe for  estimating parameter
values, and their standard deviations, for models that describe very complex systems of
metabolic reactions. Such complexity is encountered in the next two chapters.

6.9  Exercises

6.9.1

Determine the steady-state parameters for the enzyme kinetic data given in the worked
example in Section 6.5.1  using a Eadie-Hofstee  plot  and the linear regression package
in Mathematica.

6.9.2

Re-run the example given in Section 6.5.1 with a larger standard deviation for the noise
function. What happens to the  relative size of the error estimates on the parameters?

6.9.3

The  noise function used for the velocity data for the example given in Section 6.5 had a
constant standard deviation. This is the situation for many experimental techniques such
as  NMR  spectroscopy;  with  NMR  the  noise  in  a  spectrum  has  a  fixed  value  but  the
signal  intensity  (peak  area)  depends  on  the  relative  amounts  of  compounds  present  in
the sample. Thus the signal-to-noise ratio of the spectral peaks varies from one peak to
the next, depending on the concentration of the substances. 

On  the  other  hand,  in  some  experimental  data  the  error  term has  a  standard  deviation
that is a constant proportion of the measured velocity. Reanalyze the example in Section
6.5.1 with such an error model.
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6.9.4

For  the  example  in  Section  6.5.3,  examine  the  output  of  the  NonlinearRegress
function to determine 95% confidence intervals for each parameter. Do you understand
how these were calculated?

6.9.5

Re-run  the  worked  example  in  Section  6.5.4  assuming  that  we  only  have  prior
information about the Km  value and not Vmax . Assume that the prior distribution for Km
has  a  mean  of  3  mmol L-1  and  a  variance  five  times  less  than  the  variance  of  the
synthetic experimental data.

6.9.6

Use  the  Monte  Carlo  simulation  method  to  determine  the  standard  deviations  of  the
estimated parameters in the worked example in Section 6.5.4.
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7 Model of Erythrocyte 
Metabolism

7.1  Introduction
In the earlier chapters of this book we aimed to show how Mathematica  can be used to
simulate  some  relatively  simple  models  of  metabolism. We  surveyed  a  lot  of  territory
and  presented  a  large  number  of  analytical  tools.  To  some  readers,  the  analyses,
especially  in  Chapter  5,  may  have  seemed  rather  esoteric,  with  their  heavy  use  of
mathematics  applied  to  simple  and  possibly  unrealistic  models.  In  this  and  the  next
chapter  we  aim  to  show  that  it  was  not  mathematics  for  its  own  sake,  but  that  the
analytical  procedures  can  give  valuable  insights  that  cannot  be  obtained  in  any  other
way. 

In the following sections we tackle much more complicated real-life problems; namely,
we present  and  analyze a realistic model of  erythrocyte metabolism. The model is  one
that  was developed for  use in our  day-to-day experimental work.H1-4L  It  has been used
as an aid to experimental design and  for the analysis of experimental data. In addition
to providing an illustrative example of  modelling complex systems it is hoped that the
human erythrocyte model, and its associated enzyme kinetic equations, will be a useful
catalogue of kinetic equations for those working in the area of metabolic biochemistry.

7.2  Models of Erythrocyte Metabolism
Over the last 25 years many mathematical models of erythrocyte metabolism have been
developed.H4-7L  These  have  been  very  successful  in  identifying  the  key  features  of  the
regulation and control  of  the metabolism of  the cell.  Indeed the erythrocyte is the best
modelled  of  all  biochemical  systems  and  there  are  a  number  of  reasons  for  this.  The
first is the ease of obtaining them by simple venipuncture.  Second, the erythrocyte  has
relatively  simple  metabolism as  a  result  of  lacking  mitochondria  and  other  organelles
(Fig. 7.1).



Figure  7.1.  Erythrocyte  metabolism.  The  best  known  physiological  function  of  the
erythrocyte is the facilitation of oxygen transport throughout the body. In response to this
task,  the erythrocyte  has evolved into a highly specialized but  metabolically simple cell.
The  mature  human  erythrocyte  has  lost  all  organelles  and  hence  its  metabolism  is
primarily reduced to the glycolytic and pentose phosphate pathways.These two pathways
generate  the  ATP  and  reducing  equivalents  that  keep  the  cell  functionally  active.  A
peculiar feature of glycolysis in erythrocytes is the possession of an alternative pathway
for carbon flux via 1,3-bisphosphoglycerate (1,2-BPG). This pathway, known as the 2,3-
BPG or Rapoport-Luebering shunt, bypasses phosphoglycerate kinase by converting 1,3-
BPG to 2,3-BPG in the metabolic pathway. The enzymes are denoted by: AK (adenylate
kinase);  Ald  (aldolase);  BPGP  (2,3-BPG  phosphatase);  BPGS  (2,3-BPG  synthase);
G6PDH  (glucose-6-phosphate  dehydrogenase);  GAPDH  (glyceraldehyde-3-phosphate
dehydrogenase); GPI  (glucosephosphate isomerase);  HK (Hexokinase);  kATPase  (non-
glycolytic  energy  consumption);  kox  (reduction  processes  consuming  GSH);  koxNADH
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(reducing  processes  requiring  NADH);  Lactonase  (δ-gluconolactonase);  LDH  (lactate
dehydrogenase;  note  that  the  model  also  includes  an  NADPH-dependent  lactate
dehydrogenase);  PFK  (phosphofructokinase);  PGK  (phosphoglycerate  kinase);  6PGDH
(6-phosphogluconate  dehydrogenase);  PGM  (phosphoglycerate  mutase);  PK  (pyruvate
kinase);  R5PI  (ribose-5-phosophate  isomerase);  Ru5E  (ribulose-5-phosphate
epimerase);  TA  (transaldolase);  TK  (transketolase);  TPI  (triose  phosphate  isomerase).
Metabolites:  1,3-BPG  (1,3-bisphosphoglycerate);  2,3-BPG  (2,3-bisphosphoglycerate);
Ery4P (erythrose 4-phosphate);  Fru(1,6)P2 (fructose 1,6-bisphosphate); Fru6P (fructose
6-phosphate);  Glc  (glucose);  Glc6P  (glucose  6-phosphate);  GraP  (glyceraldehyde  3-
phosphate);  GrnP  (dihydroxyacetone  phosphate);  Lac  (lactate);  Lace  (extracellular
lactate);  Pi  (inorganic  phosphate);  Pie  (extracellular  inorganic  phosphate);  PEP
(phosphenolpyruvate); 2-PGA (2-phosphoglycerate); 3-PGA (3-phosphoglycerate); 6-PG
(6-phosphogluconate);  6-PGL  (6-phosphoglucolactone);  Pyr  (pyruvate);  Pyre
(extracellular pyruvate); Rib5P (ribose 5-phosphate); Ru5P (ribulose 5-phoshate); Sed7P
(sedoheptulose 7-phosphate); Xu5P (xylulose 5-phosphate).

The  model  presented  in  this  chapter  was  developed  with  the  primary  aim  of
illuminating  our  understanding  of  the  regulation  and  control  of  the  2,3-
bisphosphoglycerate  (2,3-BPG)  concentration.  2,3-BPG  is  important  in  regulating
blood  oxygen  transport  and  delivery.  In  clinical  and  environmental  conditions  where
oxygen transport  has been compromised, such as anemia, congenital heart disease, and
high altitude, the concentration of 2,3-BPG is often elevated well above normal values.
2,3-BPG  is  a  heterotropic  allosteric  effector  of  oxygen  binding  by  hemoglobin  (Hb).
By  binding  preferentially  to  the  deoxygenated  form  of  Hb,  it  decreases  the  apparent
affinity  of  Hb  for  O2 .  Although  the  interactions  between  Hb  and  2,3-BPG  had  been
known  for  more  than  30  years  prior  to  the  development  of  this  model,  the  precise
regulatory  features  of  2,3-BPG  metabolism  were  still  an  issue  of  much  debate  until
recently.

7.3  Stoichiometry of Human Erythrocyte Metabolism
The model is based on three main metabolic systems: glycolysis, the pentose phosphate
pathway  (PPP),  and  the  2,3-BPG  shunt  (Fig.  7.1).   It  also  includes  the  transport  of
lactate, pyruvate, and phosphate across the plasma membrane. Glucose transport is also
included  but  the  rate  of  this  process  is  known  to  be  so  rapid  in  humans  that  the
concentration  of  intracellular  glucose  in  the  model  is  set  equal  to  that  of  extracellular
glucose.  A  number  of  processes  that  are  particularly  important  in  relation  to  2,3-BPG
metabolism are  simulated  and  these  include  the  binding  of  metabolites  to  hemoglobin
and  magnesium  ions,  as  well  as  the  effects  of  pH  on  several  enzymic  reactions  and
binding  processes.  A  final  point  worth  noting  is  that,  in  the  first  presentation  of  the
model, the intracellular volume is assumed to be constant. 

The rate equations for all these processes are presented in Appendix 3, 'Rate Equations
for  Enzymes  of  the  Red  Cell.'  The  equations  can  readily  be  up-loaded  for  use  in  the
current  Mathematica  session.  Note,  however,  that  before these equations can be called
the  reader  must  evaluate  all  the  cells  in  Appendix  3  so  that  the  appropriate  files  are
created. 
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In  order  to  construct  the  model  using  these  rate  equations,  we  must  first  specify  the
stoichiometry  matrix,  and  the  substrate  and  reaction  vectors.  In  addition,  since  this
model  involves  two  different  compartment  volumes,  the  intracellular  volume  (Voli )
and  the  extracellular  volume  (Vole ),  we  would  normally  have  to  specify  a  diagonal
volume  matrix,  V,  as  was  done  in  Section  4.8.  However,  in  the  worked  example
(question/answer)  below we generate the matrix (V-1 N)  (see Section 4.8)  in one step.
The little trick we use to do this may appear difficult to understand at first, but it greatly
increases the speed of construction of the model.

Q: Specify the stoichiometry of the model of erythrocyte metabolism: this step will provide
the  specification  of  all  of  the  rate  equations  and  hence  the  interconnectedness  of  the
metabolic reactions.

A: The  first  action  is  to  load  the  red  cell  kinetic  equations  that  are  in  RBCequations
and the MetabolicControlAnalysis add-on package.

<< RBCequations;
<< MetabolicControlAnalysis`

The next  step that  would  normally be  used in  model construction  would be  to specify
the  stoichiometry  of  the  model  by  writing  down  the  list  of  all  the  reactions  that  will
form part of the model. We would then use NMatrix to define N, and then separately
define the diagonal volume matrix, V,  associated with N.  We can, however,  define the
matrix (V-1 N) in one step by using the following trick. This  involves defining the list
of reactions as usual,  but in addition,  multiplying the stoichiometry coefficient of each
metabolite by the volume of the compartment in which the metabolite is found. 

The  trick  is  only  required  for  reactions  that  explicitly  or  implicitly involve  metabolite
transport. Thus  for these reactions we will express the reaction rates in terms of the rate
of  change  of  amounts,  while  all  other  reaction  rates  will  be  expressed  in  terms of  the
rate  of  change  of  concentration.  The  rate  equations  that  we  load  with  the  command
<<RBCequations were defined following these conventions. 

To  use  this  method the  list  of  reactions  which  make up  the  model  is  as  follows.  Note
that each reaction is given a name that corresponds to its name in the RBCequations
file.

eqns = 9H∗Glycolytic reactions.∗L
9hk, Glc@tD

##############################Voli + Vole +
MgATP@tD
#########################Voli →

Glc6P@tD
########################Voli +

MgADP@tD
#########################Voli =,

8gpi, Glc6P@tD → Fru6P@tD< ,
8pfk, Fru6P@tD + MgATP@tD → Fru16P2@tD + MgADP@tD<,
8ald, Fru16P2@tD → GrnP@tD + GraP@tD<,
8tpi, GraP@tD → GrnP@tD <,
8gapdh, GraP@tD + Phos@tD + NAD@tD → B13PG@tD + NADH@tD<,
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8pgk, B13PG@tD + MgADP@tD → P3GA@tD + MgATP@tD<,
8pgm, P3GA@tD → P2GA@tD<,
8eno, P2GA@tD → PEP@tD<,
8pk, PEP@tD + MgADP@tD → Pyr@tD + MgATP@tD<,
8ldh, Pyr@tD + NADH@tD → Lac@tD + NAD@tD <,
8ldhp, Pyr@tD + NADPH@tD → Lac@tD + NADP@tD<,H∗Reactions of 2,3 BPG synthase−phosphatase.∗L
8bpgsp1, B13PG@tD + BPGSP@tD ↔ BPGSP$B13PG@tD <,
8bpgsp2, BPGSP$B13PG@tD → BPGSPP@tD + P3GA@tD<,
8bpgsp3, BPGSPP@tD + P3GA@tD → BPGSPP$P3GA@tD <,
8bpgsp4, BPGSPP@tD + P2GA@tD → BPGSPP$P2GA@tD<,
8bpgsp5, BPGSPP$P3GA@tD → BPGSP$B23PG@tD <,
8bpgsp6, BPGSPP$P2GA@tD → BPGSP$B23PG@tD <,
8bpgsp7, BPGSP$B23PG@tD → BPGSP@tD + B23PG@tD <,
8bpgsp8, BPGSPP@tD + Phos@tD → BPGSPP$Phos@tD <,
8bpgsp9, BPGSPP$Phos@tD → BPGSP@tD + 2 Phos@tD<,H∗Pentose phosphate pathway reactions.∗L
8g6pdh, Glc6P@tD + NADP@tD → P6GL@tD + NADPH@tD <,
8pglhydrolysis, P6GL@tD → P6G@tD <,
8p6gdh,
P6G@tD + NADP@tD → CO2@tD + Ru5P@tD + NADPH@tD<,

8gssgr, GSSG@tD + NADPH@tD → 2 GSH@tD + NADP@tD <,
8ru5pe, Ru5P@tD → Xu5P@tD<,
8r5pi, Ru5P@tD → Rib5P@tD<,
8tk1, TK@tD + Xu5P@tD → TK$Xu5P@tD<,
8tk2, TK$Xu5P@tD → TKG@tD + GraP@tD<,
8tk3, TKG@tD + Rib5P@tD → TKG$Rib5P@tD<,
8tk4, TKG$Rib5P@tD → TK@tD + Sed7P@tD<,
8tk5, TKG@tD + Ery4P@tD → TKG$Ery4P@tD <,
8tk6, TKG$Ery4P@tD → TK@tD + Fru6P@tD <,
8ta, Sed7P@tD + GraP@tD → Ery4P@tD + Fru6P@tD<,H∗Energy Consumption and oxidative reactions.∗L
8ak, MgADP@tD + ADP@tD → MgATP@tD + AMP@tD<,
8atpase, MgATP@tD → MgADP@tD + Phos@tD<,
8ox, 2 GSH@tD → GSSG@tD <,
8oxnadh, NADH@tD → NAD@tD<,H∗Membrane transport.∗L
9lactransport, 1

#############Voli Lac@tD →
1

#############Vole Lace@tD=,
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9pyrtransport, 1
#############Voli Pyr@tD →

1
#############Vole  Pyre@tD=,

9phostransport, 1
#############Voli Phos@tD →

1
#############Vole  Phose@tD=,

H∗Mg−metabolite binding.∗L
8mgatp, Mg@tD + ATP@tD → MgATP@tD<,
8mgadp, Mg@tD + ADP@tD → MgADP@tD<,
8mgb23pg, Mg@tD + B23PG@tD → Mg$B23PG@tD<,
8mgb13pg, Mg@tD + B13PG@tD → Mg$B13PG@tD<,
8mgfru16p2, Mg@tD + Fru16P2@tD → Mg$Fru16P2@tD<,
8mgglc16p2, Mg@tD + Glc16P2@tD → Mg$Glc16P2@tD<,
8mgphos, Mg@tD + Phos@tD → Mg$Phos@tD<,H∗Hb−metabolite binding.∗L
8hbmgatp, Hb@tD + MgATP@tD → Hb$MgATP@tD<,
8hbatp, Hb@tD + ATP@tD → Hb$ATP@tD<,
8hbadp, Hb@tD + ADP@tD → Hb$ADP@tD<,
8hbbpg, Hb@tD + B23PG@tD → Hb$B23PG@tD<,
8hbb13pg, Hb@tD + B13PG@tD → Hb$B13PG@tD<

=;

By using  the  previously  mentioned  trick,  most  equations  in  the  list  are  written  as  per
usual. It is only the hexokinase reaction and the three membrane transport reactions that
include  volume  terms.  The  hexokinase  reaction  requires  volume  terms  because  it
implicitly involves transport since glucose is assumed not to 'see' the cell membrane and
thus  has  a  compartment  volume  equal  to  Vole + Voli .  For  these  four  reactions,  the
reaction rates have units of mol s-1 , while all other reactions have units of mol L-1 s-1 .
When we use NMatrix on this list we will generate V-1 N in one step.

Another  important  point  about  this  list  of  reactions  is  that  for  two  of  them,  2,3-BPG
synthase-phosphatase  (BPGSP)  and  transaldolase  (TA),  the  elementary  steps  of  the
enzymic reaction are included, rather than the overall stoichiometry of the reactions at a
steady state. Obviously,  those steps in which only the overall  reaction stoichiometry is
given  are  modelled  with  steady-state  rate  equations,  while  the  enzymic  reactions  in
which  the  elementary  steps  are  given  are  modelled  with  a  set  of  elementary  rate
equations.

The method used for modelling each enzymic reaction varies with the task at hand. For
most  applications,  using  a  steady-state  rate  equation  is  simplest  because  it  greatly
reduces the number of differential equations in the model and reduces the "stiffness" of
the set as well (see Chapter 1). In the above model two enzymic reactions are expressed
in  terms  of  the  elementary  rate  equations  because  the  particular  enzymes  catalyze  a
number  of  different  reactions  at  a  single  active  site.  In  this  situation  the  form  of  the
steady-state equation is very complicated and is unwieldy to modify if this is required.
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Having defined the reaction list, we are in a position to generate (V−1  N). Before we do
this, however,  we must define the compartment volumes.  In Section 4.8 we noted that
the  hematocrit  of  a  sample  gives  the  proportion  of  the  sample  that  is  cells.  For  our
model we will take it to be 0.5 that is near to the usual hematocrit of whole blood. Also,
the volume fraction of  an erythrocyte of  normal shape that is  occupied by hemoglobin
and  the  cytoskeleton  is  ~0.3.  Hence,  with  these  values  we  define  the  intracellularHVoliLand extracellular HVoleL  volumes per L of erythrocyte suspension.

α =
7

#######10 H∗Cell water fraction of total cell volume.∗L;
Ht =

1
####2 H∗Hematocrit.∗L;

Vole = 1 − Ht;
Voli = α Ht;

Having  defined  the  compartment  volumes,  we  can  now  generate  HV−1  NL .  We  will
call this matrix VNêêêêê .

VN¯̄̄ ¯̄
=

NMatrix@eqns, 8CO2@tD, Glc@tD, Lace@tD, Phose@tD, Pyre@tD<D ;
Dimensions@VN¯̄̄ ¯̄D856, 53<

This  input  generates  a  stoichiometry  matrix  that  is  based  on  the  assumption  that  the
concentrations  of  CO2 ,  glucose,  extracellular  lactate,  pyruvate,  and  phosphate  are  all
constant.  The  latter  is  a  reasonable  assumption  for  the  in  situ  erythrocyte  where  the
concentrations of these metabolites are buffered in the blood plasma. The stoichiometry
matrix  is  too  large  to  print  here  but  from the  Dimensions  function  it  is  seen  that  it
describes  the  stoichiometric  relationships  between  56  internal  metabolites  in  53
different reactions.

Q: Generate the substrate and reaction velocity vectors for the erythrocyte model.

A: Recall that to generate these vectors we require the SMatrix  and VMatrix  from the
MetabolicControlAnalysis  add-on  package.  Note  also  that  as  in  the  previous
example we load in the definitions for each rate equation that are specified in the list by
using the command <<RBCequations.
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v̄ = VMatrix@eqnsD ;
S¯ =

SMatrix@eqns, 8CO2@tD, Glc@tD, Lace@tD, Phose@tD, Pyre@tD<D;
S_8ADP@tD, AMP@tD, ATP@tD, B13PG@tD, B23PG@tD, BPGSP@tD,
BPGSPP@tD, BPGSPP$P2GA@tD, BPGSPP$P3GA@tD, BPGSPP$Phos@tD,
BPGSP$B13PG@tD, BPGSP$B23PG@tD, Ery4P@tD, Fru16P2@tD,
Fru6P@tD, Glc16P2@tD, Glc6P@tD, GraP@tD, GrnP@tD, GSH@tD,
GSSG@tD, Hb@tD, Hb$ADP@tD, Hb$ATP@tD, Hb$B13PG@tD,
Hb$B23PG@tD, Hb$MgATP@tD, Lac@tD, Mg@tD, MgADP@tD,
MgATP@tD, Mg$B13PG@tD, Mg$B23PG@tD, Mg$Fru16P2@tD,
Mg$Glc16P2@tD, Mg$Phos@tD, NAD@tD, NADH@tD, NADP@tD,
NADPH@tD, P2GA@tD, P3GA@tD, P6G@tD, P6GL@tD, PEP@tD,
Phos@tD, Pyr@tD, Rib5P@tD, Ru5P@tD, Sed7P@tD, TK@tD,
TKG@tD, TKG$Ery4P@tD, TKG$Rib5P@tD, TK$Xu5P@tD, Xu5P@tD<

7.4  In Vivo Steady State of the Erythrocyte
By defining the matrices and vectors  S,  (V-1 N),  and v,  we have defined the model of
the  erythrocyte.  An  important  question  that  can  now  be  asked  is  "Does  the  model
exhibit  a  steady  state?"  In  Chapter  4,  the  function  SteadyState  was  introduced;  it
allows  us  to  answer  this  question.  Unfortunately  the  present  metabolic  system  is  too
large for the SteadyState algorithm to locate one. But in such situations a good first
approach  is  to  perform  a  simulation  to  determine  if  at  least  a  quasi-steady  state  is
attained. Then we can use the results of the simulation to provide an initial estimate of
the steady state for use in the NSteadyState function.

Q: Simulate a time course of the model of metabolism of the human erythrocyte.

A: Before being able to perform the simulation the initial conditions must be specified. The
initial values of metabolite concentrations to be used here are those we have measured
on  freshly  extracted  human  red  cells.H3L  Even  if  the  metabolites  are  ultimately
partitioned  between  free,  Hb-bound,  and  Mg-bound  forms,  it  is  assumed  as  a  starting
point that all metabolites are initially free in solution. 

The so-called external parameters and their values to be in the model are as follows: 

r@tD = 0.69 ;H∗Donnan ratio.∗L
k@+1D = 0.150 H∗Intracellular K+ concentration.∗L;
pH1@tD = 7.2 H∗Intracellular pH.∗L;
CO2@tD = 1.2× 10−3;
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Glc@tD = 5 ×10−3 ;
Lace@tD = 1.82× 10−3 ;
Phose@tD = 1.92× 10−3 ;
Pyre@tD = 85× 10−6 ;

Next, for  the initial conditions (concentrations) of the metabolites we use the values in
the list ic1.

ic1 = 8
ADP@0D == 0.31×10−3,
AMP@0D == 30× 10−6,
ATP@0D == 2.1×10−3,
B13PG@0D == 0.7× 10−6,
B23PG@0D == 6.70×10−3,
BPGSP@0D == 3.8× 10−6,
BPGSPP@0D , 0,
BPGSPP$P2GA@0D , 0,
BPGSPP$P3GA@0D , 0,
BPGSPP$Phos@0D , 0,
BPGSP$B13PG@0D , 0,
BPGSP$B23PG@0D , 0,
Ery4P@0D , 10×10−6,
Fru16P2@0D == 2.7×10−6,
Fru6P@0D == 13×10−6,
Glc16P2@0D == 122×10−6,
Glc6P@0D == 40×10−6,
GraP@0D == 5.7×10−6,
GrnP@0D == 19.0× 10−6,
GSH@0D == 3.2× 10−3,
GSSG@0D == 0.09× 10−6,
Hb@0D == 7× 10−3,
Hb$ADP@0D , 0,
Hb$ATP@0D , 0,
Hb$B13PG@0D , 0,
Hb$B23PG@0D , 0,
Hb$MgATP@0D , 0,
Lac@0D == 1.4∗ 10^−3,
Mg@0D == 3.0∗ 10^−3,
MgADP@0D , 0,
MgATP@0D , 0,
Mg$B13PG@0D , 0,
Mg$B23PG@0D , 0,
Mg$Fru16P2@0D , 0,
Mg$Glc16P2@0D , 0,
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Mg$Phos@0D , 0,
NAD@0D == 60× 10−6,
NADH@0D == 0.14× 10−6,
NADP@0D == 0.125×10−6,
NADPH@0D == 64×10−6,
P2GA@0D == 10×10−6,
P3GA@0D == 64×10−6,
P6G@0D == 1.4× 10−7,
P6GL@0D == 1.4×10−10,
PEP@0D == 23× 10−6,
Phos@0D == 1.0×10−3,
Pyr@0D == 60× 10−6,
Rib5P@0D == 10×10−6,
Ru5P@0D , 10× 10−6,
Sed7P@0D == 10×10−6,
TK@0D == 3.3× 10−7,
TKG@0D , 0,
TKG$Ery4P@0D , 0,
TKG$Rib5P@0D , 0,
TK$Xu5P@0D , 0,
Xu5P@0D , 1×10−6<;

With  the  initial  conditions  specified  a  simulation  can  be  performed.  The  system  is
allowed to evolve for  1 × 106  s to determine whether it converges on at least a quasi-
steady state.

sol =

NDSolveMatrix@S¯, VN¯̄̄ ¯̄, v̄, ic1, 8t, 0, 1×106<, AccuracyGoal → 10,
PrecisionGoal → 10, WorkingPrecision → 15, MaxSteps → 2000D;

Plots of total 2,3-BPG and Glc6P concentrations over this time course are generated as
follows:

Plot@Evaluate@8Glc6P@tD< ê. solD, 8t, 0, 1*^6<,
PlotRange −> 880, 1×106<, 80., 50.× 10−6<<,
AxesLabel −> 8"Time", "Concentration HML"<D;
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Figure 7.2. Simulated time course of glucose 6-phosphate concentration in a suspension
of human erythrocytes.

Plot@Evaluate@8B23PG@tD + Hb$B23PG@tD + Mg$B23PG@tD< ê. solD,
8t, 0, 1× 106<, PlotRange −> 80., 8×10−3<,
AxesLabel −> 8"Time", "Concentration HML"<D;
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Figure  7.3.  Simulated  time  course  of  2,3-bisphosphoglycerate  concentration  in  human
erythrocytes.

From  these  representative  time  courses  it  appears  that  the  system evolves  to  a  steady
state. Values of all metabolites at t = 1 × 106  s (278 h) are
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sValues = S¯ ê. t → 1× 106 ê. sol;
sTable = Transpose@8S¯, Flatten@sValuesD<D;
sTable88ADP@tD, 0.00010835<, 8AMP@tD, 0.0000293475<,8ATP@tD, 0.000153333<, 8B13PG@tD, 3.57355×10−7<,8B23PG@tD, 0.00295352<, 8BPGSP@tD, 3.10247×10−7<,8BPGSPP@tD, 6.91289×10−7<, 8BPGSPP$P2GA@tD, 8.28742×10−12<,8BPGSPP$P3GA@tD, 9.07249×10−11<,8BPGSPP$Phos@tD, 1.12746×10−6<,8BPGSP$B13PG@tD, 2.16381×10−8<,8BPGSP$B23PG@tD, 1.64938×10−6<,8Ery4P@tD, 7.09617×10−7<, 8Fru16P2@tD, 2.2274×10−6<,8Fru6P@tD, 0.0000121442<, 8Glc16P2@tD, 0.000121845<,8Glc6P@tD, 0.00003746<, 8GraP@tD, 5.14369×10−6<,8GrnP@tD, 0.000021374<, 8GSH@tD, 0.00320001<,8GSSG@tD, 8.6459× 10−8<, 8Hb@tD, 0.00372286<,8Hb$ADP@tD, 0.000100843<, 8Hb$ATP@tD, 0.000205501<,8Hb$B13PG@tD, 4.21287×10−7<, 8Hb$B23PG@tD, 0.00274888<,8Hb$MgATP@tD, 0.000221496<, 8Lac@tD, 0.00140482<,8Mg@tD, 0.000383448<, 8MgADP@tD, 0.0000955809<,8MgATP@tD, 0.00152555<, 8Mg$B13PG@tD, 2.61032×10−8<,8Mg$B23PG@tD, 0.000760772<, 8Mg$Fru16P2@tD, 2.83559×10−9<,8Mg$Glc16P2@tD, 1.55114×10−7<, 8Mg$Phos@tD, 0.0000129705<,8NAD@tD, 0.0000598949<, 8NADH@tD, 2.45135×10−7<,8NADP@tD, 1.12787×10−7<, 8NADPH@tD, 0.0000640122<,8P2GA@tD, 0.0000118539<, 8P3GA@tD, 0.0000709407<,8P6G@tD, 0.0000322494<, 8P6GL@tD, 1.12795×10−8<,8PEP@tD, 0.0000198158<, 8Phos@tD, 0.000994883<,8Pyr@tD, 0.0000585718<, 8Rib5P@tD, 4.70849×10−6<,8Ru5P@tD, 3.99151×10−6<, 8Sed7P@tD, 5.53726×10−6<,8TK@tD, 1.49963×10−7<, 8TKG@tD, 1.7198×10−7<,8TKG$Ery4P@tD, 1.45191×10−9<, 8TKG$Rib5P@tD, 1.41216×10−9<,8TK$Xu5P@tD, 5.19321×10−9<, 8Xu5P@tD, 7.28302×10−6<<

These  metabolite  concentrations,  along  with  the  associated  metabolic  fluxes,  are  in
good agreement with some experimental findings.H2L  Note that a more visually friendly
version of this table can be produced by using the //MatrixForm command.

Having  obtained  an  initial  estimate  for  the  in  vivo  steady  state,  we  now  apply  the
NSteadyState  function  to  refine  this  estimate.  But  before  we  do  this  we  must
determine the conservation of mass relationships that exist in the model of erythrocyte
metabolism.
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7.5  Conservation of Mass Relationships
From  a  knowledge  of  the  stoichiometry  matrix  alone  it  is  possible  to  determine  the
conservation  relationships  of  the  metabolic  reaction  scheme.  This  is  done  in  the
following question/answer.

Q: How  do  we  determine  the  existence  and  nature  of  any  conservation  of  mass
relationships that might exist in the model of erythrocyte metabolism?

A: To  answer  this  question,  as  was  done  in  Chapter  4,  we  apply  the  function
ConservationRelations  from  the  MetabolicControlAnalysis  package
to the model.

ConservationRelations@S¯, VN¯̄̄ ¯̄D8ADP@tD + AMP@tD + ATP@tD + Hb$ADP@tD +

Hb$ATP@tD + Hb$MgATP@tD + MgADP@tD + MgATP@tD,
BPGSP@tD + BPGSPP@tD + BPGSPP$P2GA@tD + BPGSPP$P3GA@tD +

BPGSPP$Phos@tD + BPGSP$B13PG@tD + BPGSP$B23PG@tD,
Glc16P2@tD + Mg$Glc16P2@tD, GSH@tD + 2 GSSG@tD,
Hb@tD + Hb$ADP@tD + Hb$ATP@tD +

Hb$B13PG@tD + Hb$B23PG@tD + Hb$MgATP@tD,
Hb$MgATP@tD + Mg@tD + MgADP@tD + MgATP@tD + Mg$B13PG@tD +

Mg$B23PG@tD + Mg$Fru16P2@tD + Mg$Glc16P2@tD + Mg$Phos@tD,
NAD@tD + NADH@tD, NADP@tD + NADPH@tD,
TK@tD + TKG@tD + TKG$Ery4P@tD + TKG$Rib5P@tD + TK$Xu5P@tD<
== 8Const@1D, Const@2D, Const@3D, Const@4D,
Const@5D, Const@6D, Const@7D, Const@8D, Const@9D<

Hence in the above model there are conservations of mass of (1) the adenosine moiety;
(2)  BPGSP  (3)  Glc(1,6)P2;  (4)  glutathione;  (5)   hemoglobin;  (6)  magnesium;  (7)
NAD(P)(H);  and  (8) transketolase. 

When  performing  the  numerical  simulation  in  Section  7.4  we  did  not  use  the
conservation  relationships  to  reduce  the  dimensions  of  the  system  of  differential
equations.  Although  from a  consideration  of  the  stoichiometry the  above  conservation
relationships must apply, they will not automatically hold for the simulation unless the
numerical integration is very accurate. Thus, one test of the accuracy of a simulation is
to  test  the  continued  validity  of  these  relationships  throughout  the  simulated  time
course. This is illustrated next.
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Plot@Evaluate@ADP@tD + AMP@tD + ATP@tD + Hb$ADP@tD +

Hb$ATP@tD + Hb$MgATP@tD + MgADP@tD + MgATP@tD ê. solD,
8t, 0, 1×106<, PlotRange → 80.0023, 0.0025<,
AxesLabel −> 8"Time", "Concentration HML"<D;
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Figure  7.4.  Checking  that  the  conservation  relationship  between  adenosine  moieties
holds for the simulated time course.  

Figure  7.4  shows  that  the  sum of  the  concentrations  of  adenosine  moieties  is  constant
during  the  ~280  h  time course.  Having  determined that  all  eight  conservation  of  mass
relationships  hold  we  can  improve  the  estimate  of  the  in  vivo  steady  state  of  the
metabolism by using the function NSteadyState from the MetabolicControl-
Analysis package.

Q: Use the function NSteadyState  to  estimate the values of  concentrations attained in
the simulation presented in Section 7.4.

A: Before  applying  NSteadyState  it  is  necessary  to  assign  values  to  the  constants  of
the  conservation  of  mass  relationships.  These  constants  can  be  determined  by
evaluating them after using the initial conditions of the in vivo system. This can be done
by cutting-and-pasting the output of the question/answer in Section 7.4, as follows:

8Const@1D, Const@2D, Const@3D, Const@4D,
Const@5D, Const@6D, Const@7D, Const@8D, Const@9D< =

8ADP@tD + AMP@tD + ATP@tD + Hb$ADP@tD + Hb$ATP@tD + Hb$MgATP@tD +

MgADP@tD + MgATP@tD, BPGSP@tD + BPGSPP@tD + BPGSPP$P2GA@tD +

BPGSPP$P3GA@tD + BPGSPP$Phos@tD + BPGSP$B13PG@tD +

BPGSP$B23PG@tD, Glc16P2@tD + Mg$Glc16P2@tD,
GSH@tD + 2 GSSG@tD, Hb@tD + Hb$ADP@tD + Hb$ATP@tD +
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Hb$B13PG@tD + Hb$B23PG@tD + Hb$MgATP@tD,
Hb$MgATP@tD + Mg@tD + MgADP@tD + MgATP@tD + Mg$B13PG@tD +

Mg$B23PG@tD + Mg$Fru16P2@tD + Mg$Glc16P2@tD + Mg$Phos@tD,
NAD@tD + NADH@tD, NADP@tD + NADPH@tD, TK@tD + TKG@tD +

TKG$Ery4P@tD + TKG$Rib5P@tD + TK$Xu5P@tD< ê. t → 0 ê. solP1T80.00244, 3.8×10−6, 0.000122, 0.00320018,
0.007, 0.003, 0.00006014, 0.000064125, 3.3×10−7<

It  is  necessary  to  convert  the  estimate  of  the  steady-state  concentrations,  that  are
obtained  via  the  simulation,  into  the  appropriate  replacement  rule.  This  is  done  as
follows:

sValues = S¯ ê. t → 1× 106 ê. sol;
initialEst = Table@S¯@@iDD −> sValues@@1, iDD, 8i, Length@S¯D<D8ADP@tD → 0.00010835, AMP@tD → 0.0000293475,
ATP@tD → 0.000153333, B13PG@tD → 3.57355×10−7,
B23PG@tD → 0.00295352, BPGSP@tD → 3.10247×10−7,
BPGSPP@tD → 6.91289×10−7, BPGSPP$P2GA@tD → 8.28742×10−12,
BPGSPP$P3GA@tD → 9.07249×10−11, BPGSPP$Phos@tD → 1.12746×10−6,
BPGSP$B13PG@tD → 2.16381×10−8, BPGSP$B23PG@tD → 1.64938×10−6,
Ery4P@tD → 7.09617×10−7, Fru16P2@tD → 2.2274×10−6,
Fru6P@tD → 0.0000121442, Glc16P2@tD → 0.000121845,
Glc6P@tD → 0.00003746, GraP@tD → 5.14369×10−6,
GrnP@tD → 0.000021374, GSH@tD → 0.00320001,
GSSG@tD → 8.6459×10−8, Hb@tD → 0.00372286,
Hb$ADP@tD → 0.000100843, Hb$ATP@tD → 0.000205501,
Hb$B13PG@tD → 4.21287×10−7, Hb$B23PG@tD → 0.00274888,
Hb$MgATP@tD → 0.000221496, Lac@tD → 0.00140482,
Mg@tD → 0.000383448, MgADP@tD → 0.0000955809,
MgATP@tD → 0.00152555, Mg$B13PG@tD → 2.61032×10−8,
Mg$B23PG@tD → 0.000760772, Mg$Fru16P2@tD → 2.83559×10−9,
Mg$Glc16P2@tD → 1.55114×10−7, Mg$Phos@tD → 0.0000129705,
NAD@tD → 0.0000598949, NADH@tD → 2.45135×10−7,
NADP@tD → 1.12787× 10−7, NADPH@tD → 0.0000640122,
P2GA@tD → 0.0000118539, P3GA@tD → 0.0000709407,
P6G@tD → 0.0000322494, P6GL@tD → 1.12795×10−8,
PEP@tD → 0.0000198158, Phos@tD → 0.000994883,
Pyr@tD → 0.0000585718, Rib5P@tD → 4.70849×10−6,
Ru5P@tD → 3.99151× 10−6, Sed7P@tD → 5.53726×10−6,
TK@tD → 1.49963×10−7, TKG@tD → 1.7198×10−7,
TKG$Ery4P@tD → 1.45191×10−9, TKG$Rib5P@tD → 1.41216×10−9,
TK$Xu5P@tD → 5.19321×10−9, Xu5P@tD → 7.28302×10−6<

The steady-state concentrations can then be estimated with the following function:
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steadyState = NSteadyState@S¯, VN¯̄̄ ¯̄, v̄, initialEstD8ADP@tD → 0.00010835, AMP@tD → 0.0000293472,
ATP@tD → 0.000153334, B13PG@tD → 3.57358×10−7,
B23PG@tD → 0.00295354, BPGSP@tD → 3.10236×10−7,
BPGSPP@tD → 6.91269×10−7, BPGSPP$P2GA@tD → 8.28719×10−12,
BPGSPP$P3GA@tD → 9.07224×10−11, BPGSPP$Phos@tD → 1.12743×10−6,
BPGSP$B13PG@tD → 2.16375×10−8, BPGSP$B23PG@tD → 1.64933×10−6,
Ery4P@tD → 7.09623×10−7, Fru16P2@tD → 2.22743×10−6,
Fru6P@tD → 0.0000121444, Glc16P2@tD → 0.000121845,
Glc6P@tD → 0.0000374605, GraP@tD → 5.14373×10−6,
GrnP@tD → 0.0000213741, GSH@tD → 0.00320001,
GSSG@tD → 8.6459×10−8, Hb@tD → 0.00372285,
Hb$ADP@tD → 0.000100842, Hb$ATP@tD → 0.000205502,
Hb$B13PG@tD → 4.2129×10−7, Hb$B23PG@tD → 0.00274889,
Hb$MgATP@tD → 0.000221496, Lac@tD → 0.00140482,
Mg@tD → 0.000383447, MgADP@tD → 0.0000955801,
MgATP@tD → 0.00152555, Mg$B13PG@tD → 2.61033×10−8,
Mg$B23PG@tD → 0.000760774, Mg$Fru16P2@tD → 2.83561×10−9,
Mg$Glc16P2@tD → 1.55114×10−7, Mg$Phos@tD → 0.0000129705,
NAD@tD → 0.0000598949, NADH@tD → 2.45135×10−7,
NADP@tD → 1.12786× 10−7, NADPH@tD → 0.0000640122,
P2GA@tD → 0.0000118539, P3GA@tD → 0.0000709407,
P6G@tD → 0.0000322497, P6GL@tD → 1.12795×10−8,
PEP@tD → 0.0000198158, Phos@tD → 0.000994883,
Pyr@tD → 0.0000585718, Rib5P@tD → 4.70853×10−6,
Ru5P@tD → 3.99154× 10−6, Sed7P@tD → 5.53733×10−6,
TK@tD → 1.49963×10−7, TKG@tD → 1.7198×10−7,
TKG$Ery4P@tD → 1.45192×10−9, TKG$Rib5P@tD → 1.41217×10−9,
TK$Xu5P@tD → 5.19324×10−9, Xu5P@tD → 7.28307×10−6<

Inspection  of  the  above  steady-state  concentrations  indicates  that  they  are  essentially
the same as those determined by simulation of the time course for ~280 h. This can also
be confirmed by the following calculation:

sss = S¯ ê. steadyState;
sie = S¯ ê. initialEst;
sie − sie
##########################sss80., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.<
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The  calculation  shows  that  the  relative  difference  between  the  simulated  steady-state
concentrations  and  those  calculated  with  the  function   NSteadyState  from  the
MetabolicControlAnalysis add-on package is insignificant!

Q: Is the steady state that is calculated above stable?
 

A: To  answer  this  question  we  use  the  Stability  function  from  the
MetabolicControlAnalysis  package. The following Mathematica  input is used,
with the consequent diagnostic output.

Stability@S¯, VN¯̄̄ ¯̄, v̄, SteadyStateConc → steadyStateD

Asymptotically Unstable8−1.00023×108, −1.60544×106, −19888.8, −6343.18, −4238.33,
−3300.83, −3056.35, −2979.01, −2945.63, −1462.18,
−1217.33, −1201.55, −1201.53, −1201.03, −1200., −1126.86,
−424.786, −217.858, −215.172, −191.47, −103.524,
−73.2418, −40.9648, −10.2955, −7.29762, −5.30389,
−5.26565, −4.38785, −2.18217, −1.28346, −1.19732,
−1.021, −0.821454, −0.413529, −0.30293, −0.207559,
−0.148637, −0.0253603, −0.0159573 + 0.00485246 (,
−0.0159573 − 0.00485246 (, −0.0146684, −0.00730836,
−0.00601884, −0.00181841, −0.00130747, −0.00105352,
−0.00005637, 8.8251×10−8, −1.20209×10−9, −1.12108×10−10,
−1.19318×10−11, 8.65173×10−14, 2.13345×10−14,
1.80779×10−15, 2.05997×10−17, 6.26896×10−18<

The  list  of  eigenvalues  has  three  non-negative  real  numbers  so  the  Stability
function returned an "unstable" verdict. On the other hand, these  values are very small
and close to the precision limit of the calculations. Since all the negative real values are
also  effectively  zero,  establishing  the  existence  of  stability  of  the  steady  state  is  not
possible with the present type of analysis (see Section 4.7).

However,  it  can  be  shown on  repeated  simulation that  the  same (quasi-)steady state is
arrived at after long times from a wide range of initial conditions. This  suggests that at
least operationally the steady state is stable.
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7.6  Simulating a Time Course
So  far,  we  have  examined  the  behavior  of  the  erythrocyte  model  with  the  assumption
that  metabolites  such   as  CO2 ,  glucose,  extracellular  lactate,  pyruvate,  and  phosphate
remain at constant fixed concentrations; in other words, these metabolites are treated as
so-called external metabolites. The assumption of this situation is reasonable because in
situ  the  erythrocyte  is  exposed  to  approximately  constant  concentrations  in  the  blood
plasma.  This  enables  the  erythrocyte  to  establish  a  steady  state  of  metabolite
concentrations  in  this  thermodynamically  open  system.  However,  in  many  important
experimental  conditions  and  many  disease  states,  erythrocyte  metabolism  does  not
attain a steady state and the concentrations of these metabolites can no longer be treated
as fixed in a simulation.

We  finish  this  chapter  with  an  example  that  reveals  how  the  present  model  of
erythrocyte  metabolismH2-4L  simulates  time-dependent  changes  that  occur  over  short
times before  the  attainment of  a  global  steady state  of  metabolite concentrations.  This
type of analysis is very useful for the interpretation of experimental data as well as for
testing  the  behavior  of  the  model  under  conditions  that  simulate  inborn  errors  of
enzyme function.

Q: Simulate  the  time  course  of  glucose,  total  2,3-BPG,  and  lactate  concentrations  that
might  occur  in  an  experiment  in  which  erythrocytes  (hematocrit  =  0.5)  are  incubated
with  an  initial  concentration  of  10  mmol  L-1  glucose  and  assuming  constant  CO2 .
Assume that during the time course the intracellular pH decreased linearly from 7.2 to
6.8 in 10 h.

A: The  starting  point  for  this  simulation  requires  external  parameters,  initial  conditions,
and equations from the previous simulation. However, these are required to be modified
to simulate the new time course.

First,  the  external  parameters are  identified  and their  concentrations  specified.  Four  of
the  parameters  that  were  defined  as  external  ones  in  the  previous  model  are  now
internal parameters. Hence we must Clear these values.

Glc@tD =.; Lace@tD =.; Phose@tD =.; Pyre@tD =.;

It  is  assumed  that  CO2  remains  as  an  external  parameter  (which  has  already  been
assigned a value of 1.2 mmol L-1 ). In the model pH also remains an external parameter
but  its  value  will  no  longer  be  constant.  Since pH is  assumed to  change  linearly  from
7.2 to 6.8 in 10 h, the following equation describes this change. 

pH1@tD =.;
pH1@t_D := 7.2 − 0.4∗ têH36000L;

Glucose, external lactate, pyruvate, and phosphate are no longer deemed to be external

192 Chapter 7



parameters, so initial conditions are required for them; these are appended  to the initial
conditions list, ic1, which was defined previously. This is achieved as follows:

ic2 = Union@8Glc@0D == 10×10−3,
Lace@0D == 1.82×10−3,
Phose@0D == 1.92×10−3,
Pyre@0D == 85×10−6<, ic1D;

All that remains to be done is to define the matrices and vectors of the new model. To
do this, use is made of the original equation list, eqns, but  CO2 only is specified as an
external parameter. Hence the new matrices and vectors are

nVN¯̄̄ ¯̄̄ ¯̄
= NMatrix@eqns, 8CO2@tD<D ;

nS¯̄̄ ¯̄
= SMatrix@eqns, 8CO2@tD<D ;

The  reaction  velocity  vector  remains  unchanged  from previously.  Now simulate  some
selected time courses of concentrations.

sol2 = NDSolveMatrix@nS¯̄̄ ¯̄, nVN¯̄̄ ¯̄̄ ¯̄, v̄, ic2,
8t, 0, 36000<, AccuracyGoal → 10, PrecisionGoal → 10,
WorkingPrecision → 15, MaxSteps → 2000D;

Plot@Evaluate@8Glc@tD, HLac@tD Voli + Lac@tD VoleLêHVole + VoliL<
ê. sol2D, 8t, 0, 30000<,

AxesLabel −> 8"Time", "Concentration HML"<D;

Model of Red Cell Metabolism 193



5000 10000 15000 20000 25000 30000
Time

0.002

0.004

0.006

0.008

0.01
Concentration HML

Figure 7.5. Simulated time course of glucose consumption (declining curve) and lactate
production (increasing curve) for the model of human erythrocyte metabolism.

Plot@Evaluate@8B23PG@tD + Hb$B23PG@tD + Mg$B23PG@tD< ê. sol2D,
8t, 0, 30000<, PlotRange −> 80., 8×10−3<,
AxesLabel −> 8"Time", "Concentration HML"<D;
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Figure 7.6. Simulated time course of 2,3-BPG depletion in human erythrocytes. 

These simulations demonstrate that in such an experiment the concentration of total 2,3-
BPG would  be  expected  to  decline  from an initial  concentration of  ~7 mmol L-1  to  a
concentration of ~0 mmol L-1  after 10 h. In fact, when NMR spectroscopy was used to
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follow  the  metabolite  changes  in  such  an  experiment  this  is  precisely  what  was
observed.H2L  The decline in 2,3-BPG was shown to be mainly due to the decrease in pH
that occurs during the experiment and the fact that a low pH inhibits many enzymes of
glycolysis and the 2,3-BPG shunt.  The inhibition of  glycolytic enzymes is  reflected in
the  plot  of  glucose  and  lactate concentrations  during  the  experiment;  as  the  pH drops,
the rate of glucose utilization (and lactate production) falls. 

The role of pH in regulating erythrocyte metabolism is addressed in greater detail in the
next  chapter,  but  for  now  an  easy  way  to  demonstrate  its  importance  is  to  perform
Exercise 7.6.

7.7  Exercises

7.7.1

Print  out  the  stoichiometry  matrix  generated  in  Section  7.3  and  check  its  validity  for
several of the more obvious reactants, such as Fru6P and 2,3-BPG.

7.7.2

Determine the flux through hexokinase at t = 1,000,000 s in the simulation performed in
Section 7.4. Define the units of the flux.

7.7.3

Test that all the conservation of mass relationships are adhered to during the simulation
performed in Section 7.4.

7.7.4

Repeat  the  question/answer  in  Section  7.8;  however,  on  this  occasion  assume  that
intracellular pH is constant throughout the experiment.

7.7.5

In Sections 7.4 and 7.5 the normal in vivo steady states of metabolite concentrations in
the  erythrocyte  were  determined.  What  is  the  rate  of  glycolysis  under  the  steady-state
condition? What happens to this rate of glycolysis if the total magnesium concentration
in the erythrocyte is reduced by 50%?

7.7.6

What  happens  to  the  steady-state  concentration  of  2,3-BPG  when  intracellular  pH  is
increased to 7.3 from 7.2? How long does it take for [2,3-BPG] to be halfway between
the normal and the new steady-state value?
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8 Metabolic Control 
Analysis of Human 
Erythrocyte Metabolism

8.1  Introduction
The simulations that were presented in Chapter 7 allowed a comparison of the behavior
of the model of erythrocyte metabolism with real experimental results (see the original
papersH1-4L  for  the  data).  While  this  was  an  extremely  important  step  in  model
verification,  it  left  many  unanswered  questions  about  the  underlying  regulatory  and
control  features.  In  Chapter  5  we introduced the concepts  of  MCA and described how
they  provide  greater  insights  into  a  model's  behavior  than  would  be  unattainable  with
only  descriptive  language.  In  this  chapter  we  apply  the  procedures  of  MCA  to  our
model.

The  main  questions  that  are  addressed  are:  Which  reactions  are  important  for
controlling  pathway  fluxes?  Which  reactions  are  important  for  controlling  metabolite
concentrations? What is the mechanism for the control of 2,3-BPG concentration?

8.2  Normal In Vivo Steady State
In  the  following  sections  the  various  coefficients  of  MCA  are  calculated.  These
coefficients are defined with respect to a particular steady state of the system. We also
ask questions about  the control  and regulation of erythrocyte metabolism as it pertains
in the neighborhood of the normal in vivo steady state of metabolite concentrations. The
steady-state  values  used  in  the  following  discussions  are  those  that  were  simulated  in
Chapter 7.

Q: Calculate the normal in vivo  steady state of  the erythrocyte for  the model described in
Chapter 7.

A: The  simulation  method  of  Chapter  7  is  used  to  calculate  the  concentration  of
metabolites in the normal in vivo steady state. To use this method we need to load in the
red blood cell  equations  and the metabolic control  analysis package.  We also must re-
enter  the  equation  list  for  the  model  and  the  values  of  any  external  parameters  and



initial conditions. The equation list and the external parameters and initial conditions of
the erythrocyte model are found in Appendices 4 and 5. By evaluating the cells in these
appendices,  we  will  then  be  able  to  load  the  equation  list  and  the  values  with  the  <<
command.

All these tasks are performed with the following commands: 

<< RBCequations;
<< eqns;
<< initialconditions;
<< MetabolicControlAnalysis`

We are now in a position to define the matrices and vectors for the model. This is done
as follows:

VN¯̄̄ ¯̄
=

NMatrix@eqns, 8CO2@tD, Glc@tD, Lace@tD, Phose@tD, Pyre@tD<D ;

S¯ =

SMatrix@eqns, 8CO2@tD, Glc@tD, Lace@tD, Phose@tD, Pyre@tD<D;

v̄ := VMatrix@eqnsD

Next, use NDSolveMatrix as was done in Chapter 7.

sol =

NDSolveMatrix@S¯, VN¯̄̄ ¯̄, v̄, ic1, 8t, 0, 1×106<, AccuracyGoal → 10,
PrecisionGoal → 10, WorkingPrecision → 15, MaxSteps → 2000D;

A replacement rule to enable the insertion of  the steady-state concentrations is defined
by using the substrate values after 1 × 106  s of simulation.

sValues = S¯ ê. t −> 1×106 ê. sol êê Flatten;

steadyState = Table@S¯PiT → sValuesPiT, 8i, Length@S¯D<D;

The  Table  steadyState  contains  the  concentrations  of  all  the  reactants.  It  can  be
inspected by re-running the Cell after deleting the semicolon at the end of the line.

8.3  Identifying Zero Fluxes
In  the  following  sections  normalized  metabolic  control  coefficients  are  used  in
preference  to  non-normalized  ones  because  they  convey  a  better  biochemical
understanding  as  the  result  of  having  a  (usually)  well-defined  range  of  values,  0  �  1.
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However,  the normalization of  coefficients  involves  division  by the normalizing value
which  may  be  zero,  thus  rendering  the  coefficient  undefinable.  In  other  words,  the
normalized flux coefficients  become undefined  in situations when the flux is zero in a
given  steady state,  and  a concentration  coefficient  does  likewise when the steady-state
concentration is zero.

In the analysis above the pathway fluxes are calculated by using numerical methods, so
there is  no certainty whether  a particular pathway flux is actually zero or  simply close
to it. Because there is a limit to the precision of any numerically calculated number, we
can  never  be  sure  whether  some  numbers  are  simply  very  small  or  whether  they  are
actually zero. Clearly, this has implications for calculating control coefficients.  

Hence,  an  important  question  is:  Are  any  of  the  fluxes  in  the  erythrocyte  model
necessarily zero in the steady state? An efficient analytical procedure for answering this
question is described in the following question/answer.

Q: Identify  all  zero  fluxes  in  the  mathematical  model  of  erythrocyte  metabolism  at  its
steady state.

A: First, determine by simple inspection which reaction velocities are very small after 1 ×
106 s of simulation.  This is done as follows:

velocityTable = v̄ ê. steadyState;

zeroFluxPosition =

Position@velocityTable, x_?HAbs@#1D < 1×10−10 &LD8815<, 816<, 817<, 818<, 819<, 835<, 841<, 842<, 843<, 844<,845<, 846<, 847<, 848<, 849<, 850<, 851<, 852<, 853<<
The second line of  the input  returns the position in the list  of  those reaction velocities
that are less than 1 × 10-10  mol L-1 s-1 .

Thus it appears that there are many reactions that have rates around 10-10  mol L-1 s-1 .
The  important  question,  from  the  point  of  view  of  calculating  normalized  control
coefficients,  is  whether  they  really  are  zero  or  simply  close  to  zero.  This  question  is
considered in the next question/answer.

Q: Is  it  possible  to  decide  whether  any  of  the  reaction  rates  identified  in  the  previous
question/answer  would  actually  be  zero  if  the  steady-state  concentrations  were  known
exactly? 

A: It  turns  out  that  by  analyzing  the  stoichiometry  of  the  system,  for  some  of  these
reactions,  we  can  obtain  the  relevant  information.  The  following  functions  pick  out
those fluxes which are necessarily zero in the steady state.
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First, we calculate the so-called null space of the stoichiometry matrixH5L  as follows:

null = Transpose@NullSpace@VN¯̄̄ ¯̄DD ;

Then  by  identifying  those  columns  of  the  null  space  matrix  which  contain  all  zero
elements, we can identify the reaction rates that are necessarily zero in the steady state.

zeroFluxPosition =

Position@null, Table@0, 8i, Length@Transpose@nullDD<DD8819<, 835<, 841<, 842<, 843<, 844<, 845<,846<, 847<, 848<, 849<, 850<, 851<, 852<, 853<<
An explanation of this method is given below.

In  the  method  used  above,  the  columns  of  the  null  matrix  represent  a  basis  set  of
vectors for the matrix equationH5L

[8.1]N.null = 0 .

This means that any solution of the equation

[8.2]N  v = 0

must  be  a  linear  combination  of  these  basis  vectors.  The  steady-state  fluxes,  J,  are
determined by solving Eqn [8.1]. Hence if any row of null consists entirely of zeros,
then the flux in the same row in J will necessarily be 0. These conclusions are reached
entirely by considering reaction stoichiometries; in other words, they are not affected by
the values of any rate parameters in the system. 

The  reactions  identified  in  the  above  example  are  in  strict  'detailed  balance'  in  every
steady  state  of  the  system.   Thus,  the  flux  through  each  of  these  reactions  cannot  be
influenced  by  any  other  reaction  of  the  system  (since  their  net  flux  is  always  zero).
Therefore  the  non-normalized  control  coefficients  expressing  the  control  of  other
reactions  on  the  flux  through  each  strictly  balanced  reaction  is  zero;  and  the
corresponding  normalized  MCA  coefficient  will  be  undefined.  Therefore,  to  avoid
problems  when  calculating  control  coefficients  it  is  prudent  to  remove  the  zero-flux
reactions from the matrices; furthermore, no valuable information is lost. This removal
is  done  by  the  function  FluxControlMatrix  (see  below)  by  using  the  option
Normalized  →  zerofluxposition,  where  zerofluxposition  is  a  list
{{i},{j},  ....}  specifying  the  fluxes/reaction  rates  in  rows/columns  i,  j,  ...  which  are
necessarily zero.

8.4  Flux Control Coefficients
As  is  noted  in  Chapter  5,  flux  control  coefficients  give  information  on  the  relative
importance  of  a  particular  reaction  in  controlling  a  particular  flux  in  a  metabolic
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pathway.  Often,  the  easiest  way  to  calculate  the  flux  control  coefficient  for  a  model,
that  is  formulated using  matrix notation,  is  with  the function  FluxControlMatrix
from the MetabolicControlAnalysis add-on package.

Q: Calculate the non-normalized flux control coefficient values for the erythrocyte model.

A: The matrix is calculated as follows:

fcm = FluxControlMatrix@S¯, VN¯̄̄ ¯̄, v̄,
SteadyStateConc → steadyState, Normalized → FalseD;

Dimensions@
fcmD
Inverse::luc :  Result for Inverse of badly conditioned

matrix "1# may contain significant numerical errors.853, 53<
The  resultant  flux  control  matrix  is  a  53  ×  53  one,  since  there  are  53  reactions  in  the
system and there is one possible flux associated with each reaction.

The error message that is returned when the previous function is evaluated needs some
explanation.  Inverse::luc  sometimes  appears  when  the  FluxControlMatrix  and
ConcControlMatrix  functions  are  used.  These  commands  require  the  calculation
of  the  inverse  of  the  Jacobian  (MMatrix)  of  the  system.  In  some  cases  the  Jacobian
matrix  is  ill-conditioned,  meaning  that  small  perturbations  in  its  elements  cause  large
changes  in  the  calculated  inverse.  In  these  cases,  because  the  Jacobian  is  a  numerical
one,  there may be significant  errors  in  the calculated results.  In  practice,  although this
problem  is  something  to  be  aware  of,  in  most  cases  the  results  of  the  ControlMatrix
algorithms  closely  match  control  coefficients  calculated  by  numerical  modulation
(Section 5.3).  This point is demonstrated in the following example, but we first switch
off the error messages facility, as follows:

Off@Inverse::"luc"D;

Q: Calculate the normalized flux control coefficients for the erythrocyte model.

A: From the  discussion  in  Section  8.3  it  is  apparent  that  we  must  specify  those  reactions
and  fluxes  that  obey  strict  detailed-balance.  As  is  noted  above  this  is  done  using  the
Option Normalized → zeroFluxPosition.

fcm = FluxControlMatrix@S¯, VN¯̄̄ ¯̄, v̄, SteadyStateConc → steadyState,
Normalized → zeroFluxPositionD;

Dimensions@fcmD
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838, 53<
The use and interpretation of the flux control matrix is demonstrated by addressing the
questions in the remainder of this section.

Q: How much control does hexokinase exert over the flux through glycolysis?

A: Before  answering  this  question,  recall  that  the  flux  control  matrix  has  the  following
meaning: the entry in row i and column j gives the flux control coefficient of reaction j
with  respect  to  pathway  flux  i.  In  other  words,  this  entry  gives  a  measure  of  how
reaction  j  controls  the  pathway  flux  through  reaction  i.   Thus  the  flux  control  matrix
will  have  dimensions  of  38  ×  53  because  53  reactions  make  up  the  model,  but  from
Section 8.4 it is clear there are 15 equations that obey strict detailed-balance.

If the flux control coefficient of hexokinase, with respect to the flux through glycolysis
(which  we will  also  take as  the  pathway flux  through  hexokinase),  is  sought,  then the
matrix  entry  in  row  1,  column  1  of  the  flux  control  matrix  must  be  inspected.  The
relevant  flux  control  coefficient  is  given  by  the  following  evaluation.  (The  other  flux
control coefficients are treated in more examples below.) 

cc = fcmP1,1T
0.00416549

From the flux-summation theorem of  MCA (Section 5.2)  we know that  all  the control
coefficients  for  flux  through  glycolysis  should  sum to  1.  Therefore,  we  can  infer  that
hexokinase does not exhibit very much control over glycolytic flux in the normal steady
state. 

Q: Can the conclusion reached in the previous example be right? This is a surprising result
in  view  of  the  claims  in  the  earlier  literature  on  the  control  of  human  erythrocyte
metabolism.

A: In answering this question, we first determine if the flux-summation theorem holds for
all the flux control  coefficients.  We do this by summing the entries for all the rows of
the flux control matrix. This is done with the following input:

Table@Apply@Plus, fcmPiT D, 8i, Length@fcmD<D81., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.00054,
0.999997, 1.00054, 0.999997, 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.00002<
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It is clear that each set of flux control coefficients sum to one, or very close to one. This
provides consistency with the summation theorem for flux control coefficients (Section
5.2).

Q: In  view  of  the  results  from  the  previous  two  question/answers,  in  which  reactions  is
most of the control of glycolytic flux vested? 

A: One way of answering this question is to determine which reactions have a flux control
coefficient  whose  absolute  value  is  greater  than,  say,   0.1.  The  following  program
implements this idea. It defines a function which returns the reaction name of any flux
control coefficients which is greater than a specified value. The first step of the program
is to define a list of reactions and a list of fluxes. The list of fluxes is simply the list of
reactions (reactionList) with those reactions which have zero flux removed. 

reactionList = Drop@StoichiometryMatrix@eqnsD@@1DD, 1D;
fluxList = Delete@reactionList, zeroFluxPositionD;

We  then  generate  replacement  rules  of  the  form  column/row  number  Ø  reaction/flux
name and vice versa.  These allow us to identify various rows and columns in the flux
control matrix with particular fluxes and reactions.

numToRxn =

Table@i → reactionListPiT, 8i, Length@reactionListD<D;
rxnToNum = Table@reactionListPiT → i,

8i, Length@reactionListD<D;
numToFlux = Table@i → reactionListPiT,

8i, Length@reactionListD<D;
fluxToNum = Table@reactionListPiT → i,

8i, Length@reactionListD<D;

This allows us to define a function, CJ[x,y], which gives the control coefficients for
flux x which are ¥ y.

CJ@x_, y_D := Module@
8bigFccPosition, names, values<,
bigFccPosition =

Position@fcmPxê.fluxToNumT, z_?HAbs@#1D >= y &LD êê Flatten;
names = bigFccPosition ê. numToRxn ;
values = Part@fcmPxê.fluxToNumT, bigFccPositionD;
Transpose@8names, values<DD

Thus,  using  the  above  definitions,  the  reactions  that  have  an  absolute  value  for  their
glycolytic flux control coefficient greater than 0.1 are given by
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CJ@hk, 0.1D88bpgsp9, 0.181721<, 8atpase, 0.679922<<
From the list it is evident that the reactions with the two largest glycolytic flux control
coefficients  are  ATPase  and  the  ninth  reaction  step  of  the  2,3-BPG  synthase-
phosphatase reaction scheme. This is a very interesting result!

Q: Which  reactions  are  primarily responsible  for  controlling  the  flux  through  the  pentose
phosphate pathway (PPP)?

A: In  answering  this  question  we  take  the  flux  through  the  PPP  to  be  flux  via  G6PDH.
Hence,  the  reactions  with  the  largest  flux  control  coefficients  can  be  determined  as
follows using the function CJ defined above:

CJ@g6pdh, 0.1D88ox, 0.940131<<
From this  output  we  see  that  the  reaction  (ox)  has  the  highest  flux  control  coefficient
with  a  value  of  0.940131.  Therefore,  the  answer  is  that  the  rate  of  oxidation  of
glutathione  is  primarily  what  controls  PPP  flux  under  the  normal  in  vivo  steady-state
condition.

Q: Which reactions are primarily responsible for controlling the flux through the 2,3-BPG
shunt?

A: In  answering  this  question  we  take  the  flux  through  the  second  step  of  the  2,3-
BPGsynthase-phophatase  reaction  scheme  as  the  pathway  flux  of  the  2,3-BPG  shunt.
Hence,  the  largest  flux  control  coefficients  can  be  determined  as  follows,  using  the
function CJ defined above:

CJ@bpgsp2, 0.1D88eno, 0.108495<, 8pk, 0.158887<, 8bpgsp2, 0.1307<,8bpgsp9, 0.836173<, 8atpase, −0.124067<<
Therefore,  the  answer  to  the  question  is  that  the  energetic  and  oxidative  loads,  almost
independently,  control  the  fluxes  through  glycolysis  and  the  PPP,  respectively,  while
the irreversible phosphatase reaction of the 2,3-BPG synthase-phosphatase enzyme has
the greatest control over 2,3-BPG shunt activity.
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Q: Calculate  the  flux  control  coefficient  of  hexokinase,  with  respect  to  the  flux  through
glycolysis  by  numerical  modulation.  This  analysis  will  serve  as  a  check on  the  matrix
calculations performed in the previous question/answers.

A: Recall  from  Chapter  4  that  the  numerical  modulation  method  involves  varying
parameter values by a small, incremental amount as a  numerical means of determining
a partial derivative. For the hexokinase reaction this is done as follows.

Define  solution1  as  the  normal  steady  state  of  metabolite  concentrations,  as
determined previously.

solution1 =

NDSolveMatrix@S¯, VN¯̄̄ ¯̄, v̄, ic1, 8t, 0, 1*^6<, AccuracyGoal → 10,
PrecisionGoal → 10, WorkingPrecision → 15, MaxSteps → 2000D;

The velocity of hexokinase at the steady state is then given by

v1 = v@hkD ê. t → 1*^6 ê. solution1;

Next we numerically modulate the hexokinase reaction. This is most easily achieved by
increasing the concentration of hexokinase by, say, 1%.  

HKold = HK;
HK = HK ∗1.01;

Now  determine  the  new  steady-state  velocity  of  hexokinase  after  the  parameter
modulation. But, before this is done a new reaction velocity matrix must be defined, as
follows:

v2¯̄̄ ¯̄ := VMatrix@eqnsD ;

solution2 =

NDSolveMatrix@S¯, VN¯̄̄ ¯̄, v2¯̄̄ ¯̄, ic1, 8t, 0, 1*^6<, AccuracyGoal → 10,
PrecisionGoal → 10, WorkingPrecision → 15, MaxSteps → 2000D;

v2 = v@hkD ê. t → 1*^6 ê. solution2;

Finally, the estimated flux control coefficient is  determined as follows:

fluxControlCoeff =
v2 − v1
))))))))))))))))))v1 ×

1
)))))))))))))0.01

HK = HKold;80.00306096<
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In  conclusion,  this  value  agrees  to  closely with  that  calculated above  using  the  matrix
method! 

8.5  Concentration Control Coefficients
The  function  ConcentrationControlMatrix  in  the  MetabolicControl-
Analysis  add-on  package  can  be  used  to  calculate  the  concentration  control
coefficients for the erythrocyte model. These coefficient values express the importance
of  a  particular  reaction  in  controlling  the  concentration  of  a  particular  metabolite
(Section 5.2).

Q: How is the concentration control coefficient matrix computed?

A: This  is  done  by  executing  the  following  function  with  the  three  arguments  that  define
the whole erythrocyte model, namely, S¯, VN¯̄¯̄̄ , and  v̄ :

ccm =

ConcControlMatrix@S¯, VN¯̄̄ ¯̄, v̄, SteadyStateConc → steadyStateD;
Dimensions@ccmD856, 53<

The  whole  matrix  is  not  printed  here  because  of  space  restrictions,  but  it  can  be
inspected by simply deleting the semicolon after the function and then re-evaluating the
Mathematica Cell.

Also,  note  that  each  entry  in  row  i  and  column  j  of  the  control  matrix  gives  the
concentration  control  coefficient  of  reaction  j  with  respect  to  metabolite  i.  The
concentration control coefficient matrix has dimensions of 56 × 53 because there are 56
internal substrate variables and 53 reactions in the erythrocyte model. 

Q: Which reactions are important in controlling the concentration of 2,3-BPG?

A: Before  answering  this  question  directly,  it  turns  out  to  be  useful  to  define  first  some
replacement rules and functions which make the overall analysis much simpler.

First define a replacement rule of the form substrate name Ø row, and one of the form
row Ø substrate name.

substrateToNum = Table@S¯PiT → i, 8i, Length@S¯D<D;
numToSubstrate = Table@i → S¯PiT, 8i, Length@S¯D<D;
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Then,  as  was  done  for  the  flux  control  coefficients,  we  define  a  function,
CC[x,y],which  gives  the  concentration  control  coefficients  for  concentration  x
which are ¥ y.

CC@x_, y_D := Module@8bigCccPosition, names, values<,
bigCccPosition =

Position@ccmPxê.substrateToNumT, z_?HAbs@#1D >= y &LD êê Flatten;
names = bigCccPosition ê. numToRxn ;
values = Part@ccmPxê.substrateToNumT, bigCccPositionD;
Transpose@8names, values<DD

Now  check  whether  the  summation  theorem  (Eqn  [5.7])  holds  for  the  control  of  2,3-
BPG concentration.

Apply@Plus, ccm@@B23PG@tD ê. substrateToNumDDD
−1.90026×10−7

Clearly, this output indicates a value that is very nearly 0, as expected, thus indicating a
successful  analysis.  And  finally,  the  important  reactions  for  controlling  free  2,3-BPG
concentration are determined with the function CC, as follows:

CC@B23PG@tD, 0.01D88hk, 1.57071<, 8pfk, 0.345435<, 8eno, −0.183782<,8pk, −0.269142<, 8bpgsp2, 0.127866<, 8bpgsp9, −0.410397<,8atpase, −1.16271<, 8ox, −0.0190557<<
The  list  indicates  that  there  are  several  enzymes that  exert  significant  control  over  the
concentration  of  2,3-BPG.  The  most  important  of  these  are  hexokinase,
phosphofructokinase,  enolase,  pyruvate  kinase,  the  two  irreversible  steps  of  the  2,3-
BPG synthase-phosphatase, and the ATPase.

8.6  Response Coefficients and Partitioned Responses
Another  class  of  question  that  is  important  to  answer  in  relation  to  the  behavior  of  a
metabolic pathways is: How does the model respond to different external effectors? For
example,  experimental  work  on  2,3-BPG metabolism has  shown  that  its  concentration
is  very  sensitive  to  changes  in  intracellular  pH.H2L  One  way  of  characterizing  this
sensitivity is through the concentration response coefficient.

Q: What is the value of the response coefficient of 2,3-BPG concentration with respect to
intracellular pH?
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A: In  order  to  calculate  response  and  elasticity  coefficients  with  respect  to  pH1[t]  we
must clear its set value and then reassign a value using a parameter matrix, as shown in
Chapter  4.  In  addition,  because  the  matrix  of  reaction  velocities  was  determined  with
pH1[t]  having  a  fixed  value,  it  must  be  regenerated  with  this  value  cleared.  This  is
done with the following functions:

pH1@tD =.;
pars = 88pH1@tD, 7.2<<;
p = 8pH1@tD<;
v̄ := VMatrix@eqnsD ;

The concentration response matrix can now be calculated with

crm = ConcResponseMatrix@S¯, VN¯̄̄ ¯̄,
v̄, p, pars, SteadyStateConc → steadyStateD;

And the response coefficient of 2,3-BPG concentration with respect to intracellular pH
is

crm@@B23PG@tD ê. substrateToNumDD847.304<
This  number,  in  isolation,  does  not  convey  much  information  about  the  sensitivity  of
2,3-BPG  concentration  to  changes  in  pH.  We  need  some  means  of  comparing  it  with
other values, and decomposing it into its component values; this is done by calculating
partial response coefficients.

Q: Determine the contributions  of  the individual reactions in the erythrocyte model to the
2,3-BPG response to a change in pH.

A: To  do  this  we  use  the  PartialConcResponse  function  in  the  Metabolic-
ControlAnalysis add-on package, as follows:

pcr = PartialConcResponse@S¯, VN¯̄̄ ¯̄, v̄, B23PG@tD ê. substrateToNum,
p, pars, SteadyStateConc → steadyStateD;

The following input then returns a list of the positions where the absolute value of the
partial concentration response coefficient is ¥ 5.

bigPcrPosition =

Position@pcr êê Flatten, x_?HAbs@#1D ≥ 5 &LD êê Flatten;
names = bigPcrPosition ê. numToRxn ;
values = Part@pcr êê Flatten, bigPcrPositionD;
Transpose@8names, values<D
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88hk, 10.2622<, 8pfk, 27.3347<, 8bpgsp3, 7.86728<<
In conclusion, the enzymes most responsible for the response of 2,3-BPG concentration
to  pH  are  hexokinase,  phosphofructokinase,  and  step  3  of  the  2,3-BPG  synthase-
phosphatase reaction scheme.

Finally, the following function demonstrates that all the partitioned responses add up to
the total value given in the previous example.

Apply@Plus, pcrD847.304<
This  is  a  very  reassuring  result,  not  only  with  respect  to  our  efficient  use  and
understanding  of  MCA,  but  it  is  also  a  valuable  check  on  the  Mathematica
programming of the various complicated functions.

Q: What  is  the  value  of  the  response  coefficient  of  glycolytic  flux  with  respect  to
intracellular pH?

A: The  response  of  glycolytic  flux  to  pH  change  is  calculated  by  taking  the  flux  via
hexokinase as the relevant value. The analysis is as follows:

frm = FluxResponseMatrix@S¯, VN¯̄̄ ¯̄,
v̄, p, pars, SteadyStateConc → steadyState,
Normalized → zeroFluxPositionD;

frm@@hk ê. fluxToNumDD8−1.89546<
Again, this value has little meaning unless it can be analyzed further to determine which
reactions  are  the  major  contributors  to  it.  This  analysis  is  done  by  determining  the
partial flux response coefficients, as is shown in the following question/answer.

Q: Partition the total flux response coefficient given in the previous question/answer.

A: To address this question we must calculate the partial flux response coefficients; this is
done as follows:
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pfr = PartialFluxResponse@S¯, VN¯̄̄ ¯̄, v̄,
hk ê. rxnToNum, p, pars, SteadyStateConc → steadyState,
Normalized → zeroFluxPositionD;

A list in which the absolute value of the coefficient is ¥ 0.01 is generated as follows:

bigPcrPosition =

Position@pfr êê Flatten, x_?HAbs@#1D ≥ 0.01 &LD êê Flatten;
names = bigPcrPosition ê. numToRxn ;
values = Part@pfr êê Flatten, bigPcrPositionD;
Transpose@8names, values<D88hk, 0.0272152<, 8pfk, 0.0724396<, 8gapdh, −0.0438938<,8pk, −0.048605<, 8ldh, 0.0402698<, 8bpgsp1, 0.230263<,8bpgsp2, −0.515469<, 8bpgsp3, −2.9455<,8bpgsp4, −0.0179343<, 8bpgsp7, −0.388286<,8phostransport, −0.139795<, 8mgatp, 0.185179<,8mgadp, 0.127097<, 8mgb23pg, −0.448401<, 8hbmgatp, 1.82561<,8hbatp, 1.07457<, 8hbadp, 0.527308<, 8hbbpg, −1.45574<<

Thus, there are 18 reactions through which intracellular pH exerts a significant effect on
the  glycolytic  flux  that  occurs  via  hexokinase.  Take  some  time  to  think  about  this
finding and endeavor to form a metabolic overview of this control.

It  is  relevant  to  check,  as  was  done  for  one  of  the  flux  control  coefficients  in  Section
8.4,  that  the  response  coefficient  calculated  above  agrees  with  that  estimated  by
numerical modulation.

Q: Calculate the response coefficient of glycolytic flux with respect to intracellular pH by
numerical modulation.

A: This is done as follows:

solution1 = NDSolveMatrix@S¯, VN¯̄̄ ¯̄, v̄, ic1, 8t, 0, 1 ×106<,
pars, AccuracyGoal → 10, PrecisionGoal → 10,
WorkingPrecision → 15, MaxSteps → 2000D;

v1 = v@hkD ê. pH1@tD → 7.2 ê. t → 1×106 ê. solution1;

pars2 = 88pH1@tD, 1.001∗ 7.2<<;H∗Define new value for pH1@tD.∗L
solution2 = NDSolveMatrix@S¯, VN¯̄̄ ¯̄, v̄, ic1, 8t, 0, 1 ×106<,

pars2, AccuracyGoal → 10, PrecisionGoal → 10,
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WorkingPrecision → 15, MaxSteps → 2000D;H∗Determine the steady state after parameter modulation.∗L
v2 = v@hkD ê. pH1@tD → 7.2 1.001 ê. t → 1×106 ê. solution2;H∗Determine the velocity of hk after parameter modulation.∗L
ResponseCoeff =

v2 − v1
))))))))))))))))))v1 ×

1
))))))))))))))))0.0018−1.93932<

This  value  is  in  very  good  agreement  with  that  calculated  above  using  the  matrix
method.

8.7  Elasticity Coefficients
We  can  also  use  the  PiElasticityMatrix  and  the  EpsilonElasticity-
Matrix   functions  to  calculate  the  whole  matrices  of  elasticity  coefficients  (see
Chapter 5). Note that with these functions Normalized can have all the usual Options
(see Appendix 2 for details).

Q: Calculate  the  non-normalized  p-elasticity  matrix  (Eqn  [5.13])  with  respect  to
intracellular pH that is used as a parameter here.

A: Simply apply the  following  function  to  the  erythrocyte  model;  recall  that  the model is
defined by the vectors and matrices S¯ , VN¯̄¯̄̄ , v̄, p, pars. 

PiElasticityMatrix@S¯, VN¯̄̄ ¯̄, v̄, p, pars,
SteadyStateConc → steadyState, Normalized → FalseD881.788×10−7<, 80<, 85.97536×10−6<, 80<, 80<, 80.0000498037<,80<, 80<, 80<, 8−9.37433×10−8<, 8−0.0000292711<,80<, 8−0.000014607<, 88.51056×10−7<, 80.0360437<,83.25555×10−8<, 80<, 80<, 80.00271634<, 80<, 80<, 80<,80<, 80<, 80<, 80<, 80<, 80<, 80<, 80<, 80<, 80<, 80<, 80<,8−6.92731× 10−6<, 80<, 80<, 80<, 88.8578×10−10<, 80<,88.07328×10−8<, 80.615534<, 80.0408956<, 80.657863<,80.0000225723<, 80<, 80<, 80.00710249<, 8−0.978296<,8−0.907653<, 8−0.445397<, 8−12.1412<, 8−0.00186074<<
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It  is  clear  that  a  significant  number  of  the  reactions  have  no  pH  dependence.  This  is
obvious  from  the  form  of  the  expressions  that  we  specified  in  the  first  place.  The
reactions that are pH dependent, however,  do not always have a pH dependence that is
readily  apparent,  and  this  is  due  to  the  actual  values  of  the  concentrations  of  all  the
reactants at the steady state.

Q: Calculate  all  non-normalized  ¶-elasticity  coefficients  (Eqn  [5.12])  for  each  reaction
with respect to 2,3-BPG. 

A: The  MetabolicControlAnalysis  add-on  package  has  the  relevant  function
EpsilonElasticityMatrix to automatically carry out this operation.

eem = EpsilonElasticityMatrix@S¯, VN¯̄̄ ¯̄, v̄, pars,
SteadyStateConc → steadyState, Normalized → FalseD;

Dimensions@eemD853, 56<
The  latter  two  numbers  are  the  dimensions  of  the  matrix,  eem,  of  ¶-elasticity
coefficients. Now pick out all the elasticities for each reaction with respect to 2,3-BPG
from the matrix that are ¥ 0.0000001.

bigEcPosition = Position@eemPAll,B23PG@tDê.substrateToNumT êê Flatten,
x_?HAbs@#1D ≥ 0.0000001 &LD êê Flatten;

names = bigEcPosition ê. numToRxn ;
values =

Part@eemPAll,B23PG@tDê.substrateToNumT êê Flatten, bigEcPositionD;
Transpose@8names, values<D88hk, −4.04733× 10−6<, 8pfk, −0.000261023<,8ald, −0.0000645999<, 8bpgsp7, −0.558427<,8mgb23pg, 309.097<, 8hbbpg, 1116.85<<

Thus, it is seen that there are six major 2,3-BPG sensitive steps.

8.8  Internal Response Coefficients
Partial  internal  response  coefficients  can also give valuable  information on the control
of  a  metabolic  pathway.  For  example,  the  homeostatic  strength  of  a  reaction  gives
information  about  how  important  that  reaction  is  in  controlling  the  concentration  of  a
particular metabolite (Section 5.6).

212 Chapter 8



Q: Calculate  the  homeostatic  strength  of  all  reactions  with  respect  to  2,3-BPG
concentration.

A: The parameter that  is  sought  is  the partial  internal  response  coefficient  with respect  to
[2,3-BPG] for each reaction flux. We can calculate these as follows:

num = B23PG@tD ê. substrateToNum;

picr = PartialInternalConcResponse@S¯, VN¯̄̄ ¯̄, v̄,
num, num, pars, SteadyStateConc → steadyStateD;

bigPcIRPosition =

Position@picr, x_?HAbs@#1D ≥ 0.01 &LD êê Flatten;

names = bigPcIRPosition ê. numToRxn;
values = Part@picr, bigPcIRPositionD;
Transpose@8names, values<D88hk, −0.0952908<, 8pfk, −0.489822<, 8bpgsp7, −0.155465<,8mgb23pg, −0.188363<, 8hbbpg, −0.0707982<<

Thus, hexokinase, phosphofructokinase,  and the seventh reaction of 2,3-BPG synthase-
phosphatase  are  almost  all  equally  important  in  controlling  the  concentration  of  2,3-
BPG.  This  analysis  also  reveals  that  the  binding  of  2,3-BPG  to  free  magnesium  and
hemoglobin are  very important for controlling the concentration of 2,3-BPG.

The  accuracy of  the calculations is  confirmed by adding  all  homeostatic strengths;  the
correct result is �1 . 

Apply@Plus, picrD
−1.

The  partial  response  coefficients  are  the  high-order  metabolic  control  analysis
parameters as they provide insights that would be hard to obtain by less formal or non-
mathematical means.

8.9  Concluding Remarks
The odyssey, if you have read this book from its beginning to this endpoint,  has taken
you from the principle of mass action in chemical kinetics, through enzyme kinetics and
simulation  of  simple  enzymic  reactions,   to  a  contemporary  model  of  one  aspect  of
mammalian metabolism. It  has culminated in the analytical dissection of the control of
this  model.  We  would  have  liked  to  have  paused  more  to  consider,  on  the  way,
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additional questions and examples and develop greater familiarity with various aspects
of  MCA,  in  particular,  but  space  and  time  did  not  allow  this.  We  are,  however,
confident  that  we  have  presented  all  the  key  elements  of  a  strategy  for  the  simulation
and metabolic control  analysis  of  realistic metabolic systems; and in addition we have
also  pointed  the  way  to  an  approach  for  parameter  estimation  that  will  be  the  key  to
linking  metabolic simulation to  the  experiments  which  inform the  next  iteration in  the
refinement of a model. 

8.10  Exercises

8.10.1

Comment on the significance of the fact that hexokinase, phosphofructokinase, and 2,3-
BPG  synthase-phosphatase  step  3  are  the  main  controllers  of  the  normal  steady-state
concentration of 2,3-BPG.

8.10.2

Is  the  result  in  Section  8.6,  that  there  are  18  reactions  through  which  intracellular  pH
exerts a significant effect  on glycolytic flux,  surprising to you?  Is  it  a  result that other
scientists and scholars might have expected? 

8.10.3

Give a verbal description of the results obtained in the last example of Section 8.7. Give
a  biochemical  explanation  of  the  functional  implications of  the  results  for  a  red  blood
cell.

8.10.4

This  is  very  open-ended  (!):  explore  the  effects  on  any  metabolic  control  analysis
parameter that arises as the consequence of the alteration of the activity of one or more
enzymes,  such  as  may  occur  with  an  inborn  error  of  metabolism.  Investigate  if  there
might  be  metabolic  strategies  to  circumvent  the  clinical  consequences  of  the  defect,
based on insights gained from metabolic control analysis of the model.
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Appendix 1 - Rate 
Equation Deriver
RateEquation[rcm,el]  derives  the  steady-state  rate  equation  for  an  enzyme
mechanism defined  in  the  rate  constant  matrix  (rcm �  see  below).  The  argument  el  is
optional  and  is  a  list  of  user-defined  names  for  the  enzyme  forms  of  the  reaction
mechanism. 

Rate  constant  matrix  (rcm):  this  is  constructed  by  drawing  a  square  grid  with  n  ×  n
cells,  where n is the total number of enzyme forms (free enzyme plus complexes) in the
reaction scheme. On the left, adjacent to the first column, form a list down through each
enzyme form,  placing the names at consecutive rows with an arrow facing left to right
after each name; this labels each "from" row. Then, across the top of the first row write
the names of each enzyme form,  in the same order as used for the first column. Before
each  enzyme  name  place  an  arrow  facing  left  to  right;  this  labels  the  "to"  columns.
Refer to the enzyme reaction scheme and place the relevant rate constant, together with
any relevant reactant symbol, in the appropriate grid location. Note that a zero appears
in all cells at the intersection of a "from" row with the "to" column of the same species.
See also Section 3.4.2 for a description of this matrix.

The program is based on the method described by Cornish-Bowden.H1L  The rationale of
the method is summarized as follows: in the steady-state the proportion of any enzyme
form,  E(m),  can  be  written  as  [E(m)]/eo  =  N(m)/D  where  eo  is  the  total  enzyme
concentration,  N(m)  is  the  specific  numerator  expression,  and  D equals  the  sum of  all
N(m). These equations are known as the distribution equations.

The  rules  to  determine  N(m)  that  can  be  inferred  from  the  method  of  King  and
AltmanH2L   are
(1) Each N(m) is a product of n-1 rate constants where n is the number of enzyme forms.
(2) There are no rate constants for reactions leading directly away from E(m).
(3)  There  is  one  rate  constant  only  for  a  reaction  leading  directly  away  from  each
enzyme form apart from E(m) itself.
(4) There is at least one rate constant for a reaction leading to E(m).
(5) No cyclic reactions can be represented in the product. 

The following program generates products of rate constants that satisfy Rules 1 � 5 and
hence  determines  the  steady-state  rate  equation.  In  its  present  form  the  program  can
only determine rate equations for reaction mechanisms containing <15 enzyme forms.

RateEquation@rcm_, iel_: 8<D := Module@8el, rcm2, rcm3, sl, xx, yy, rate, bm, combm, nm2, nm3, p5, cpa,



i, j, l, n, o, X, cpm, nmf, npm, en, denom1, denom2, num, dd<,H∗Generate list of enzyme forms HelL
if not entered as input.∗L

If@iel # 8<, el = Table@e@iD, 8i, Length@rcmD<D, el = ielD;H∗ Subroutine to generate substrate list HslL. ∗LH∗Convert rcm to a list
containing rate constants and substrates.∗L
rcm2 = Flatten@rcm ê. Times → ListD;H∗Delete all rate constants in this new list.∗L
rcm3 = DeleteCases@rcm2, x_SubscriptD;
rcm4 = DeleteCases@rcm3, x_kD;H∗Delete all rate constants which are zero.∗L

sl = DeleteCases@rcm4, 0D;H∗Subroutine to generate the rate equation in terms of
concentrations of enzyme forms for each substrate.∗L
rm = Table@rcm@@iDD∗el@@iDD, 8i, Length@rcmD<D;H∗Determine the positions of the rates
which contain substrates. These positions
give the rates of the steps that

consume the substrate.∗L
xx@1D = Table@Position@rm, sl@@iDD∗ b_D, 8i, Length@slD<D;H∗Determine the positions
of the rates which release substrate.∗L
yy@1D = Table@Reverse@xx@1D@@i, jDDD,8i, Length@xx@1DD<, 8j, Length@xx@1D@@iDDD<D;H∗Extract the rates of the steps which
consume the substrate.∗L
xx@2D = Table@Extract@rm, xx@1D@@i, jDDD,8i, Length@xx@1DD<, 8j, Length@xx@1D@@iDDD<D;H∗Extract the rates of the steps which
produce the substrate.∗L
yy@2D = Table@Extract@rm, yy@1D@@i, jDDD,8i, Length@yy@1DD<, 8j, Length@xx@1D@@iDDD<D;H∗Add all the rates together which
consume a particular substrate.∗L
xx@3D = Table@xx@2D@@iDD ê. List → Plus,8i, Length@xx@2DD<D;H∗Add all the rates together which
produce a particular substrate.∗L
yy@3D = Table@yy@2D@@iDD ê. List → Plus,8i, Length@yy@2DD<D;H∗Generate the rates by subtracting the
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rates of steps that consume a particular
substrate from those that produce it.∗L

Do@
rate@sl@@iDDD = yy@3D@@iDD − xx@3D@@iDD, 8i, Length@slD<D;H∗ Number of enzyme forms.∗L

n = Length@rcmD;H∗ To create the bm table we first omit
the "from E" HE→L ROW; this ensures that the
ultimate product has no step leading AWAY from E;
but it includes every other row thus ensuring
that there is exactly one step leading
away from every other enzyme form. The
process is repeated for the other rows that
correspond to the EA→, EAB−>, etc species.∗L

bm = Table@Delete@rcm, iD, 8i, n<D;H∗ Form a table of all possible list COMBINATIONS of
rate constants at level 1 of bm... for  this  we  

define  an  outer  product  function  that  operates  

on  lists  Hn−tuplesL  rather  than  products  of  

rate  constants. Define  fn@a,b,c,...D  where  a,
b,c, ... are the first, second,
third ... n−tuples of each entry in bm. Thus,
generate n−tuples of rate constants that satisfy Rules 1,
2 and 3 for each enzyme form.∗L
fn@a_, b_: 81<, c_: 81<, d_: 81<, e_: 81<, f_: 81<, g_: 81<, h_: 81<, i_: 81<, j_: 81<, k_: 81<, l_: 81<, m_: 81<, n_: 81<D :=

DeleteCases@Flatten@Outer@List, a, b, c, d, e,
f, g, h, i, j, k, l, m, nD, 13D, 1, 2D;H∗The function generates outer products for up to 14

n−tuples each of 14 rate constants.
The n−tuples are given the default value of 81< so that

Flattening this list and deleting the 1' s eliminates
any extra entries in the ' default argument list'.∗L

combm = Apply@fn, bm, 81<D;H∗Eliminate n−tuples containing zeroes.This requires
searching for an intersection of an n−tuple with80<. If this is "Null" the n−tuple is retained.∗L

nm2 = DeleteCases@Table@If@Intersection@combm@@i, jDD, 80<D !=80<, combm@@i, jDD, 8dd< D, 8i, Length@combmD<,8j, Length@combm@@iDD D<D, 8dd<, InfinityD;H∗Eliminate n−tuples that do not contain rate
constants that lead to the respective
enzyme forms in each ' row' of nm2.∗L

p1 = Table@Position@nm2@@iDD, rcm@@j, iDDD, 8i, n<, 8j, n<D;
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p2 = Table@Flatten@p1@@iDD, 1D, 8i, n<D;
p3 = Table@p2@@j, i, 1DD, 8j, n<, 8i, Length@p2@@jDDD<D;
p4 = Table@Union@p3@@iDDD, 8i, n<D;
nm3 = Table@nm2@@i, p4@@i, lDDDD, 8i, n<, 8l, Length@p4@@iDDD<D;H∗ Subroutine  to  create  a  matrix  of  n−tuples that

 satisfies  Rules  1−5: i.e., remove cyclic
n−tuples  from  nm3. This  uses  three  nested  loops, the  

outer  one  being  to  count  through  each  enzyme  form.∗L
For@i = 1, i < n + 1, i++, H∗nm3 contains lists

which are in turn lists of the product
n−tuples for each enzyme form. This ' line' creates
a loop to count from one enzyme form to the next. i.e.,

to count through from nm3@@1DD to nm3@@nDD.∗L
For@j = 1, j < Length@nm3@@iDDD + 1, j++,H∗Loop to count through the n−

tuples in the list for each enzyme form.∗L
For@m = 1, m < n, m++, H∗ Loop to step through each

element Hrate constantL in each n−tuple  in  nm3.∗LH∗ Return the column number Hi.e., index  of  the  to−

enzyme formL in rcm that each element of each
n−tuple is in. Note that Position@rcm,nm3@@i,j,mDDD
gives the list 88row,column<< defining the
position of the n−tuple element defined by
nm3@@,j,,mDD in rcm. The suffix @@1,2DD to this
command then picks out the column number.∗L

p5@i, j, m, 1D = Position@rcm, nm3@@i, j, mDDD@@1, 2DD;H∗ If the rate constant index, i,
corresponds to the enzyme form index then the
n−tuple is considered to contain a rate−constant  

that  leads  to  the  requisite  enzyme  form.∗L
If@p5@i, j, m, 1D == i, Continue@DD;H∗If the element of the product

n−tuple is in column i of rcm then increment m.Or
in other words if the element of the product n−

tuple leads to the enzyme form in column i,
then check the next element of the product.If this
is not the case perform the next subroutine. Note
that the command Continue tells the computer
to increment the last loop. i.e.the k loop.∗LH∗ The following subroutine determines whether the
element of the product n−tuple Hnm3@@i,j,mDDL leads
to other elements of the product n−tuple which
eventually lead to the enzyme form in column i.∗L
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Ho = 1; Label@xxxD; X = o + 1;
p6 = Flatten@Table@Position@

rcm@@p5@i, j, m, oDDD, nm3@@i, j, tDDD, 8t, n − 1<DD;H∗ We previously determined the enzyme form that the element
of the product n−tuple Hnm3@@i,j,mDDL led to. This
next step determines which rate constant of the
n−tuple  leads  away  from  this  enzyme  form  and  

hence  what  enzyme  form  this  rate  constant  

leads  to. This  is  achieved  in  the  following  

way. For  example  if  nm3@@i,j,mDD  leads  to  

the  enzyme  form  in  column  y,we then determine
which column contains an element of the n−

tuple  in  row  y. Thus  using  the  Table  command  

we  jump  through  each  element  of  the  n−tuple  Has defined by nm3@@i,j,tDD in the above commandL  

and  find  its  position  in  the  row  defined  by  

rcm@@p5@i,j,m,oDD.∗L
If@p6 === 8<, cpa@i, jD = nm3@@i, jDD; m = n; Continue@DD;H∗ If the enzyme form in the column which contains
element nm3@@i,j,mDD leads to nothing i.e.,
if P6==8< then the product is cyclic. We then

set the array element cpa@i,jD equal to
this cyclic product n−tuple. m is set to n,

so that the k loop for these particular values
of i and j finishes. The continue command
then increments to the next value of j.∗L
p5@i, j, m, XD = p6@@1DD;
If@p5@i, j, m, XD == i, Continue@DD;H∗If the enzyme form in the column which contains
element nm3@@i,j,mDD leads to the enzyme form i then
increment m Hdo this via the Continue commandL. If
not keep following the product through
until enzyme form i is found. If it is
not found then the product is cyclic.∗L
o++;
If@o < n, Goto@xxxDDL;
cpa@i, jD = nm3@@i, jDD;D;D;D;H∗ Turn cpa Hcyclic product arrayL into cpm
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Hcyclic product matrixL. The cpa@x_,y_D part of the
composite function is there to specify elimination
of the cyclic terms in the formation of CPM.∗L

cpm = DeleteCases@Table@cpa@i, jD, 8i, n<,8j, Length@nm3@@iDDD<D, cpa@x_, y_D,
InfinityD;H∗Remove cyclic n−

tuples from nm3 to give the numerator product
matrix which satisfies Rules 1−5.∗L
nmf = Table@Complement@nm3@@iDD, cpm@@iDDD, 8i, n<D;
npm = Table@Apply@Times, nmf@@i, jDDD,8i, n<, 8j, Length@nmf@@iDDD<D;
Do@en@iD = Apply@Plus, npm@@iDDD, 8i, n<D;
denom1 = Apply@Plus, Flatten@npmDD;
denom2 = Collect@denom1, slD;
num = Simplify@Table@rate@sl@@iDDD , 8i, Length@slD<D ê.

Table@el@@iDD → en@iD, 8i, Length@elD<DD ;
Print@"Enzyme Distribution Functions"D;
Do@Print@el@@iDD, "êeo = " en@iDD, 8i, n<D;
Print@""D;
Print@"Steady−State Rate Equations"D;
Do@Print@"d"@sl@@iDDD, "êdt =",
eo num@@iDD, "ê Denominator"D, 8i, Length@slD<D;

Print@""D;
Print@"Denominator"D;
Print@denom2D;D;

Save@"rateequationderiver", RateEquationD;
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Appendix 2 - Metabolic 
Control Analysis 
Functions

A2.1 Metabolic Control Analysis Functions
The  following  is  an  alphabetical  listing  of  the  21  functions  included  in  the  add-on
package  MetabolicControlAnalysis.  These  functions  can  be  used  after
applying  the  command,  <<MetabolicControlAnalysis`.  This  listing  of
functions  is  followed  by  the  program  used  to  create  the  package
MetabolicControlAnalysis. 

ConcControlMatrix

ConcControlMatrix[S,  N,  v,  p,  SteadyStateØsteadystate]  calculates a matrix for
the  metabolic  system  defined  by  S,  N,  v,  and  p,  at  the  steady  state  given  by  the
replacement  rule  steadystate,  where  the  element  mij  is  the  normalized  concentration
control coefficient of metabolite i with respect to reaction j. 

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate  must  have  the  form  of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
†  The  Option  NormalizedØFalse  can  be  included  to  calculate  non-normalized  control
coefficients. 
† See also: FluxControlMatrix.

ConcResponseMatrix

†  ConcResponseMatrix[S,  N,  v,  {parameter  list},  p,  SteadyStateØsteadystate]
returns a matrix where the element mik  is the concentration response coefficient of the
concentration of metabolite i in S with respect to the kth parameter of {parameter list}. 

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate  must  have  the  form  of  a



replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
† The Option NormalizedØFalse can be included to calculate non-normalized response
coefficients. 
† See also: FluxResponseMatrix.

ConservationRelations

†  ConservationRelations[S,  N]  determines  non-negative  conservation
relations between the metabolites Si in the metabolic network defined by N.

† The Option, GMatrixØTrue,  will return a matrix, G, such that  G.S  = Const where
Const is a matrix of constants. The default value for GMatrix is False.
† All entries in N must be exact numbers.
† See also: NSteadyState.

EpsilonElasticityMatrix

†  EpsilonElasticityMatrix[S,  N,  v,  p,  SteadyStateØsteadystate]  returns  a
matrix  where  the  element  mij  is  the   ¶-elasticity   of  reaction  i  in  v  with  respect  to
substrate j in S. 

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
† The Option NormalizedØFalse can be included to calculate non-normalized elasticity
coefficients. 
†  The  Option  NormalizedØzerofluxposition,  where  zerofluxposition  is  a  list  {{i},{j},
....},  can  be  included  so  that  normalized  coefficients  are  not  calculated  for  fluxes
through reactions i, j, ... . This is important when there are zero fluxes in the system as
the normalized coefficients become undefined.
† See also: PiElasticityMatrix.

FluxControlMatrix

†  FluxControlMatrix[S,  N,  v,  p,  SteadyStateØsteadystate]  calculates  a  matrix
for  the  metabolic  system  defined  by  S,  N,  v,  and  p,  at  the  steady  state  given  by  the
replacement  rule  steadystate,  where  the  element  mij  is  the  normalized  flux  control
coefficient of the flux through reaction i with respect to reaction j. 

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
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replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
†  The  Option  NormalizedØFalse  can  be  included  to  calculate  non-normalized  control
coefficients. 
†  The  Option  NormalizedØzerofluxposition,  where  zerofluxposition  is  a  list  {{i},{j},
....},   can  be  included  to  so  that  normalized  coefficients  are  not  calculated  for  fluxes
through reactions i, j, ... . This is important when there are zero fluxes in the system as
the normalized coefficients become undefined.
† See also: ConcControlMatrix.

FluxResponseMatrix

†  FluxResponseMatrix[S,  N,  v,  {parameter  list},  p,  SteadyStateØsteadystate]
returns  a  matrix  where  the  element  m jk  is  the  flux  response  coefficient  of  the  flux
through reaction j in v with respect to the kth parameter of {parameter list}.

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
† The Option NormalizedØFalse can be included to calculate non-normalized response
coefficients. 
†  The  Option  NormalizedØzerofluxposition,  where  zerofluxposition  is  a  list  {{i},{j},
....},  can  be  included  so  that  normalized  coefficients  are  not  calculated  for  fluxes
through reactions i,  j,  ...  This  is  important when there are zero fluxes in the system as
the normalized coefficients become undefined.
† See also: ConcResponseMatrix.

LinkMatrix

†  LinkMatrix[S,  N]  rearranges  the  rows  of  N  so  that  its  upper  rank(N)  rows  are
linearly independent  and form a submatrix No .  Output  of  this function is a table. The
first  element  of  the  table  gives  the  new  S.  The  second  gives  a  'Link  Matrix',  L,  such

that N = L No =
ikjjj I
L`

y{zzzNo . The third row gives the No matrix, the fourth the rearranged

N. The fifth element contains the matrix G which has the property GN = 0, and the last
row  gives  the  transformation  rules  for  transforming  the  old  matrices  into  the  new
matrices. Each transformation rule is in the form {old row number, new row number}.

† See Section 4.9 for more information.
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MMatrix

†  MMatrix[S,  N,  v,  p,  NormalizedØFalse,  SteadyStateConcØsteadystate]  calculates
the Jacobian of the differential equation system defined by S, N, v, and p. 

†  Note  that  the  last  three  arguments  are  optional,  however,  the  default  value  for
Normalized is True.
† See also: Stability.

NDSolveMatrix

†  NDSolveMatrix[S,  N,  v,  initial  conditions,  {t,tmin,tmax}]  uses  the  function
NDSolve to find a numerical solution  for  the metabolite concentrations, S , with time
in the range tmin to tmax, for a system  of ordinary differential equations defined by the
matrices S, N, and  v, and subject to the initial conditions.
† NDSolveMatrix[S, N, v, initial conditions, {t,tmin,tmax}, p] solves the system of
ordinary differential equations defined by the matrices S, N, v, and the parameter matrix
p. p has the form {{p1 , value1 },{p2 , value2 }, ...}.

† NDSolveMatrix has the same Options as NDSolve. 

NMatrix

†  NMatrix[eqn,  extpars]  generates  a  numerical-only  stoichiometry  matrix  for  the
reaction system defined in the equation list, eqn; it takes into account the parameters in
the list, extpars, are  external parameters. 

† See also: StoichiometryMatrix.

NSteadyState

†  NSteadyState[S,  N,  v,  p,  init]  uses  FindRoot  to  determine  an  approximate
numerical solution to N v  = 0 for a system of ordinary differential equations defined by
the  matrices  S,  N,   v,  and  p.  init  contains  initial  estimates  of  the  steady-state
concentrations in the form of a replacement rule.
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† Inclusion of the parameter table p is optional.
† NSteadyState gives solutions in terms of rules of the form x -> sol. 
†  The  constants  returned  by  ConservationRelations  must  be  assigned  values  before
NSteadyState can be applied.
† NDSteadyState has the same Options as FindRoot. 
† See also: NSteadyState, NDSolveMatrix, ConservationRelations.

PartialConcResponse

†  PartialConcResponse[S,  N,  v,  n,  {parameter  list},  p,  SteadyState  Ø
steadystate]  returns  a  matrix  of  partial  concentration  response  coefficients  for  a
metabolite  at  position  n  in  S.   Each  entry  m jk  in  the  matrix  gives  the  product  of  the
concentration  control  coefficient  with  respect  to  reaction  j  and  the  p-elasticity
coefficient with respect to reaction j and parameter k. 

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
†  The  Option  NormalizedØFalse  can  be  included  to  calculate  non-normalized  partial
response coefficients. 
† See also: PartialFluxResponse.

PartialFluxResponse

†  PartialFluxResponse[S,  N,  v,  n,  {parameter  list},  p,  SteadyState  Ø
steadystate] returns a matrix of partial flux response coefficients for a flux at position n
in v. Each entry m jk  in the matrix gives the product of the flux control coefficient with
respect  to  reaction  j  and  the  p-elasticity  coefficient  with  respect  to  reaction  j  and
parameter k.

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
†  The  Option  NormalizedØFalse  can  be  included  to  calculate  non-normalized  partial
response coefficients. 
†  The  Option  NormalizedØzerofluxposition,  where  zerofluxposition  is  a  list  {{i},{j},
....},  can  be  included  so  that  normalized  coefficients  are  not  calculated  for  fluxes
through reactions i, j, ... . This is important when there are zero fluxes in the system as
the normalized coefficients become undefined.
† See also: PartialConcResponse.
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PartialInternalConcResponse

† PartialInternalConcResponse[S, N, v, n, m, p, SteadyState Ø steadystate]
returns  a  vector  which  contains  the  partial  internal  concentration  response  coefficients
for a metabolite at position n in S with respect to a metabolite at position m in S. The jth
position in the vector is the partial internal response coefficient for reaction j.

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
†  The  Option  NormalizedØFalse  can  be  included  to  calculate  non-normalized  partial
internal response coefficients. 
† See also: PartialInternalFluxResponse.

PartialInternalFluxResponse

† PartialInternalFluxResponse[S, N, v, n, m, p, SteadyState Ø steadystate]
returns a vector which contains the partial internal flux response coefficients for a flux
at position n in v with respect to a metabolite at position m in S. The jth position in the
vector is the partial internal response coefficient for reaction j.

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† The default value for the Option, SteadyStateConc, is S.
†  The  Option  NormalizedØFalse  can  be  included  to  calculate  non-normalized  partial
internal response coefficients. 
†  The  Option  NormalizedØzerofluxposition,  where  zerofluxposition  is  a  list  {{i},{j},
....},  can  be  included  so  that  normalized  coefficients  are  not  calculated  for  fluxes
through reactions i, j, ... . This is important when there are zero fluxes in the system as
the normalized coefficients become undefined.
† See also: PartialInternalConcResponse.

PiElasticityMatrix

†  PiElasticityMatrix[S, N, v, {parameter list}, p, SteadyState Ø steadystate]
returns a matrix where the element mik  is the p-elasticity of reaction i in v with respect
to the kth parameter of {parameter list}.

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
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† The default value for the Option, SteadyStateConc, is S.
† The Option NormalizedØFalse can be included to calculate non-normalized elasticity
coefficients. 
†  The  Option  NormalizedØzerofluxposition,  where  zerofluxposition  is  a  list  {{i},{j},
....},  can  be  included  so  that  normalized  coefficients  are  not  calculated  for  fluxes
through reactions i, j, ... . This is important when there are zero fluxes in the system as
the normalized coefficients become undefined.
† See also: EpsilonElasticityMatrix.

SMatrix

†  SMatrix[eqn,  extpars]  generates  the  corresponding  substrate  list,  S,  for  the
reaction system defined by eqn and extpars.

† See also: NMatrix, VMatrix.

Stability

†  Stability[S,  N,  v,  p,  SteadyStateConc  Ø  steadystate]  assesses  whether  the
differential  equation  system  defined  by,  N,  v,  and  p  is  asymptotically  stable  at  the
steady  state  given  by  the  replacement  rule  steadystate.  This  function  also  returns  the
eigenvalues of the Jacobian of the differential equation system. 

† Inclusion of the parameter table p is optional.
†  steadystate  in  the  argument  SteadyStateConcØsteadystate,  must  have  the  form of  a
replacement rule as generated by SteadyState or NSteadyState.
† See also: MMatrix.

SteadyState

† SteadyState[S, N, v, p] uses Solve to determine the solution to N v  = 0 for a
system of ordinary differential equations defined by the matrices S, N,  v, and p.

† Inclusion of the parameter table p is optional.
† SteadyState gives solutions in terms of rules of the form x -> sol. 
† See also: NSteadyState, NDSolveMatrix.

StoichiometryMatrix

†  StoichiometryMatrix[eqn,  extpars]  is  similar  to  NMatrix  except  that  it  returns  a
stiochiometry  matrix  which  has  rows  and  columns  labelled  by  metabolite  names  and
reaction names, respectively.
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† See also: NMatrix.

VMatrix

†  VMatrix[eqn,  extpars]  generates  the  corresponding  reaction  velocity  list,  v,  for
the reaction system  defined by eqn. 

† See also: NMatrix, SMatrix.

A2.2 Metabolic Control Analysis Program
The following is the program used to create the package MetabolicControlAnalysis. 

Off@General::spell1D;
Off@General::spellD;H∗Begin MetabolicControl Analysis Package.∗LH∗Note that Eqn numbers in the comments
section refer to Eqns in Heinrich and Schuster,H1996L The Regulation of Cellular Systems.∗L

BeginPackage@"MetabolicControlAnalysis "̀,
"LinearAlgebra`MatrixManipulation "̀D;

H∗Usage messages for the exported functions.∗L
MetabolicControlAnalysis::usage =

"MetabolicControlAnalysis is a package of
functions useful for metabolic control analysis.";

ConcControlMatrix::usage = "ConcControlMatrix@
smatrix,nmatrix,vmatrix,pmatrix, options...D

calculates a matrix of concentration control coefficients
where matrix@@i,jDD is the concentration control
coefficient of metabolite i with respect to reaction j.";

ConcResponseMatrix::usage =

"ConcResponseMatrix@smatrix,nmatrix,vmatrix,8parameter
list<,pmatrix,options...D generates a matrix of
concentration response coefficients where matrix@@
i,jDD is the response coefficient of concentration
i with respect to kinetic parameter j.";

EpsilonElasticityMatrix::usage =
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"EpsilonElasticityMatrix@smatrix,nmatrix,vmatrix,
pmatrix,options...D generates a matrix where matrix@@
i,jDD is the partial derivative of reaction i with
respect to the concentration of substrate j.";

FluxControlMatrix::usage = "FluxControlMatrix@
smatrix,nmatrix,vmatrix,pmatrix, options...D

calculates a matrix of flux control coefficients
where matrix@@i,jDD is the flux control
coefficient of flux i with respect to reaction j.";

FluxResponseMatrix::usage =

"FluxResponseMatrix@smatrix,nmatrix,vmatrix,8parameter list<,pmatrix, options...D generates
a matrix of flux response coefficients where
matrix@@i,jDD is the response coefficient of
flux i with respect to kinetic parameter j.";

LinkMatrix::usage =

"LinkMatrix@smatrix,nmatrixD rearranges the rows of
smatrix and nmatrix so that the upper rows of nmatrix
are linearly independent HThese linearly independent
rows are called the submatrix N0L. Output of this
function is a table. The first element of the table
gives the new smatrix. The second gives the link matrix H
LL. The link matrix is a matrix which when right
multiplied with N0 gives the rearranged nmatrix. The
third row gives the N0 matrix and the last row give the
transformation rules for Tranferring the old matrices
into the new matrices. Each transformation rule in
given in the form 8old row number, new row number<.";

MMatrix::usage =

"MMatrix@smatrix,nmatrix,vmatrix,pmatrix,options...D
generates the Jacobian of the differential
equation system described by smatrix,nmatrix,
and vmatrix which has been approximated
with a first order Taylor expansion.";

NDSolveMatrix::usage =

"NDSolveMatrix@smatrix,nmatrix,vmatrix,initialconditions,8t,tmin,tmax<,pmatrix,options...Dfinds a
numerical solution to the ordinary differential
equations described by smatrix, nmatrix, and
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vmatrix for all metabolite in smatrix with the
independent variable t in the range tmin to tmax.";

NMatrix::usage =

"NMatrix@eqn,extparsD returns the stoichiometry matrix, or
nmatrix, for the reaction system defined in the equation
list, eqn, and taking into account the parameters
in the list, extpars, are external parameters.";

ConservationRelations::usage =

"ConservationRelations@smatrix,nmatrixD
generates a list of conservation relations.";

NSteadyState::usage =

"SteadyState@smatrix,nmatrix,vmatrix,pmatrixD finds
the steady state solutionHsL of the system of
ordinary differential equations described by smatrix,
nmatrix,and vmatrix. A steady state implies that
the concentrations of metabolites are constant.";

PartialConcResponse::usage =

"PartialConcResponse@smatrix,nmatrix,vmatrix,
n_Integer,8par<,pmatrix,options...D finds
a column vector of the partial response
coefficients for metabolite n and parameter par.";

PartialFluxResponse::usage =

"PartialFluxResponse@smatrix,nmatrix,vmatrix,
n_Integer,8par<,pmatrix,options...D finds
a column vector of the partial response
coefficients for flux n and parameter par.";

PartialInternalConcResponse::usage =

"PartialInternalConcResponse@smatrix,nmatrix,vmatrix,
n_Integer,m_Integer,pmatrix,options...D finds a column
vector of the partial internal response coefficients
for metabolite n with respect to metabolite m.";

PartialInternalFluxResponse::usage =

"PartialInternalConcResponse@smatrix,nmatrix,vmatrix,
n_Integer,m_Integer,pmatrix,options...D finds a
column vector of the partial internal response
coefficients for flux n with respect to metabolite m.";
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PiElasticityMatrix::usage =

"PiElasticityMatrix@smatrix,nmatrix,vmatrix,8paramter
list<,pmatrix, options...D generates a matrix
where matrix@@i,jDD is the partial derivative of
reaction i with respect to kinetic parameter j.";

SMatrix::usage =

"SMatrix@eqn, extparsD returns the substrate matrix
for the reaction system defined in the equation
list, eqn, and taking into account the parameters
in the list, extpars, are external parameters.";

Stability::usage =

"Stability@smatrix,nmatrix,vmatrix,pmatrixD determines
whether the steady state solutionHsL of the system
of ordinary differential equations described by
smatrix, nmatrix, and vmatrix is stable or unstable.";

SteadyState::usage =

"SteadyState@smatrix,nmatrix,vmatrix,pmatrixD finds the
steady state solutionHsL of the system of ordinary
differential equations described by smatrix,
nmatrix,and vmatrix. A steady state implies that
the concentrations of metabolites are constant.";

StoichiometryMatrix::usage =

"StoichiometryMatrix@eqn,extparsD
returns an anotated stoichiometry matrix for the
reaction system defined in the equation list,
eqn, and taking into account the parameters in
the list, extpars, are external parameters.";

VMatrix::usage =

"VMatrix@eqn,extparsD returns a reaction velocity matrix for
the reaction system defined in the equation list.";H∗Set default values of Options.∗L

Options@EpsilonElasticityMatrixD =

Options@MMatrixD =

Options@PiElasticityMatrixD =

Options@ConcControlMatrixD =

Options@FluxControlMatrixD =

Options@ConcResponseMatrixD =

Options@FluxResponseMatrixD =
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Options@PartialConcResponseD =

Options@PartialFluxResponseD =

Options@PartialInternalConcResponseD =

Options@PartialInternalFluxResponseD =8Normalized −> True, SteadyStateConc −> 8<<;
Options@ConservationRelationsD =

Options@ConservationRelations2D = 8GMatrix −> False<;H∗Usage messages for Options.∗L
GMatrix::usage =

"GMatrix is an option of ConservationRelations.
The default value is false which returns the
conservation relations. If this option is set
to true the function returns the G matrix.";

Normalized::usage =

"Normalized is an option of EpsilonElasticityMatrix,
MMatrix,PiElasticityMatrix, ConcControlMatrix,
FluxControlMatrix, ConcResponseMatrix,
FluxResponseMatrix, PartialConcResponse,
PartialFluxResponse,PartialInternalConcResponse,
and PartialInternalFluxResponse.";

SteadyStateConc::usage =

"SteadyStateConc is an option of EpsilonElasticityMatrix,
PiElasticityMatrix, ConcControlMatrix,
FluxControlMatrix, ConcResponseMatrix,
FluxResponseMatrix, PartialConcResponse,
PartialFluxResponse,PartialInternalConcResponse,
and PartialInternalFluxResponse. Set to a list of
replacement rules that define the steady state. The
default value is S which returns the results of the
function in terms of the steady state concentrations.";H∗ Begin the private context.∗L

Begin@"Private`"D ;H∗ Define auxiliary functions.∗LH∗These functions are hidden from the package user
and are only defined for programming purposes.∗LH∗ConservationRelations2.∗LH∗Determines a set of conservation relations using
the G matrix calculated with LinkMatrix. Note that
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the conservation constants, Konst, determined with
this function are different from those constants,
Const, determined with ConservationRelations.∗L
ConservationRelations2@smatrix_List,
nmatrix_List, opts___RuleD :=

Module@8transform, linkmatrixsolution, newgmatrix, gmatrixrule<,H∗Rearrange S, N, v into Eqn 3.8 using LinkMatrix.∗L
linkmatrixsolution = LinkMatrix@smatrix, nmatrixD;
newgmatrix = linkmatrixsolution@@5, 2DD;H∗The G matrix for the rearranged system.∗L
transform = linkmatrixsolution@@6, 2DD;H∗Assign True or False to gmatrixrule
depending of the value of the GMatrix Option.∗L

gmatrixrule = GMatrix ê. 8opts< ê.
Options@ConservationRelationsD;H∗Returns G or conservation relations,
depending on value of gmatrixrule. Note that a gmatrix
for the original system is returned. This involves
rearranging the G matrix for the rearranged system
using the function NewToOld described below.∗L

If@newgmatrix == 8<,H∗If gmatrix =8<, print 8<∗L8<,H∗Otherwise∗L
If@gmatrixrule,H∗If gmatrixrule = True return gmatrix.∗L
Transpose@NewToOld@Transpose@newgmatrixD, transformDD,H∗If gmatrixrule =

False return conservation relations.∗L
Print@Transpose@NewToOld@Transpose@newgmatrixD,

transformDD.smatrix , " == ",
Array@Global`Konst, Length@newgmatrixDDDH∗See Eqn 3.4 for this relation.∗LDDDH∗ConservationRelationsTransform.∗LH∗Produces a replacement rule
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which expresses the conservation constants,
Konst, determined with ConservationRelations2,
in terms of the nonnegative conservation constants,
Const, determined with ConservationRelations.∗L
ConservationRelationsTransform@smatrix_List, nmatrix_ListD :=

Module@8cr2, cr2i, rcr2i, transcr2, cr,
cri, rcri, transcr, rkonst, ckonst, solution <,

cr2 =

ConservationRelations2@smatrix, nmatrix, GMatrix −> TrueD;
If@cr2 % 8<, 8<,H∗If there are no conservation relations,
the conservation relation transform rule
is an empty set. If not determine the
nonnegative conservation relations G matrix.∗L

cr = ConservationRelations@smatrix,
nmatrix, GMatrix −> TrueD ;H∗We now find two matrices, transcr and transcr2,
such that transcr.cr == transcr2.cr2∗LH∗Note that RowReduce@crD==

RowReduce@cr2D and hence transcr and transcr2 can be
determined by taking note of the row rearrangements
that RowReduce performs on each of these matrices.∗LH∗determining transcr2.∗L

cr2i =

Table@Join@cr2@@iDD, IdentityMatrix@Length@cr2DD@@iDDD,8i, Length@cr2D<DH∗Append identity matrix to cr2.∗L;
rcr2i = RowReduce@cr2iDH∗Rearrange cr2i with the function
row reduce. The appended identity matrix in cr2i will
now have been rearranged and will contain information
about all the row combinations that RowReduce
performed on cr2. Hence transcr2 is given by.∗L;

transcr2 = Table@Take@rcr2i@@iDD, −Length@cr2DD,8i, Length@cr2D<D;H∗determining transcr.∗L
cri = Table@Join@cr@@iDD, IdentityMatrix@Length@crDD@@iDDD,8i, Length@crD<DH∗Append identity matrix to cr.∗L;
rcri = RowReduce@criDH∗Rearrange cri with the
function RowReduce. Hence transcr is given by.∗L;
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transcr = Table@Take@rcri@@iDD, −Length@crDD,8i, Length@crD<D;H∗Now since transcr.cr == transcr2.cr2, then
transcr.const==transcr2.konst,

where const is the vector of conservation constants
associated with cr and konst is the vector of
conservation constants associated with cr2.∗LH∗Hence we can determine the konsts in
terms of the consts using Solve.∗L

rkonst = transcr2.Array@Global`Konst, Length@cr2DD;
cconst = transcr.Array@Global`Const, Length@crDD êê Flatten;

solution = Solve@rkonst % cconst,
Array@Global`Konst, Length@cr2DDD@@1DDDDH∗LinkMatrixTransform.∗LH∗Rearranges the rows of nmatrix so that the upper rows of

nmatrix are linearly independent and then returns a
table of transformation rules for Tranferring the old
matrices into the new matrices. Each transformation rule
is given in the form 8old row number, new row number<.∗L

LinkMatrixTransform@nmatrix_ListD :=

Module@8tempmatrix, nomatrix, gmatrix, swap, numldrows<,
nomatrix = nmatrix;H∗Determine number of linearly dependent rows.∗L
gmatrix = NullSpace@Transpose@nmatrixDD;
numldrows = Length@gmatrixD;
Do@ H∗We need to find one transformation

rule for each linearly dependent row.∗L
Do@H∗Delete the ith row of nomatrix∗L

tempmatrix = Delete@nomatrix, iD;H∗Test to see whether
the number of linearly dependent rows is
decreased when the ith row is deleted.∗L
If@ Length@NullSpace@Transpose@tempmatrixDDD <
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Length@NullSpace@Transpose@nomatrixDDD,H∗If it is then row i is
linearly dependent. Create swap rule ordered
pair in the form 8old row, new row<.∗L

swap@jD = 8i + j − 1,HLength@nmatrixD − numldrows + jL<;H∗Then break from this do statement to find the next
transformation rule using the remaining rows∗L

nomatrix = tempmatrix;
Break@DD;H∗If row i is not linearly dependent then check i+1∗L

, 8i, 2, Length@nomatrixD<D;
, 8j, numldrows<D;H∗Create table of transformation rules.∗L

Table@swap@iD, 8i, numldrows<DDH∗NewToOld.∗LH∗Transforms a new matrix HN or SL into
an old matrix using the transformation rules
determined by LinkMatrixTransform.∗L

NewToOld@matrix_List, transformmatrix_ListD :=

Module@8deletetable, imatrix<,H∗Delete all the linearly dependent
rows in the old matrix using transformmatrix∗L

deletetable = Table@8transformmatrix@@i, 2DD<,8i, Length@transformmatrixD, 1, −1<D;
imatrix = Delete@matrix, deletetableD;H∗Use TransformMatrix to reinsert the linearly
dependent rows in their original positions.∗L

Do@imatrix = Insert@imatrix,
matrix @@ transformmatrix@@i, 2DDDD,
transformmatrix@@i, 1DDD

, 8i, Length@transformmatrixD<D;
imatrixDH∗OldToNew.∗LH∗Transforms an old matrix HN or SL to
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a new matrix using the transformation rules
determined by LinkMatrixTransform.∗L

OldToNew@matrix_List, transformmatrix_ListD :=

Module@8deletetable, imatrix, dmatrix, newmatrix<,H∗Delete all the linearly dependent
rows in the matrix using transformmatrix∗L

deletetable =

Table@8transformmatrix@@i, 1DD<,8i, Length@transformmatrixD<D;
imatrix = Delete@matrix, deletetableD;H∗Create a table of linearly
dependent rows using transform matrix.∗L

dmatrix = Table@matrix@@transformmatrix@@i, 1DDDD,8i, Length@transformmatrixD<D;H∗Append dependent rows to independent rows.∗L
newmatrix = Flatten@8imatrix, dmatrix<, 1DDH∗Define the exported functions.∗LH∗Error messages for the exported functions ∗L

MetabolicControlAnalysis::badarg =

"The number of `1` does not equal the
number of `2` in the stoichiometric matrix!";H∗ConcControlMatrix.∗L

ConcControlMatrix@smatrix_List, nmatrix_List,
vmatrix_List, p_List: 8<, opts___RuleD :=

Module@8linkmatrixsolution, newsmatrix, linkmatrix,
nomatrix, linkmatrixtransform, parameterrule,
pars, parvals, steadystaterule, normalized,
mmatrixar, coefmatrix, newsmatrixar, vmatrixar<,H∗Rearrange S, N, v into Eqn 3.8
using LinkMatrix.∗L

linkmatrixsolution = LinkMatrix@smatrix, nmatrixD;
newsmatrix = linkmatrixsolution@@1, 2DD;
linkmatrix = linkmatrixsolution@@2, 2DD;
nomatrix = linkmatrixsolution@@3, 2DD;
linkmatrixtransform = linkmatrixsolution@@6, 2DD;
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H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;
H∗Calculate the nonnormalized concentration
control matrix using Eqn 5.25 b and Eqn 5.24.∗LH∗Eqn 5.24.∗L

mmatrixar =

nomatrix.EpsilonElasticityMatrix@newsmatrix, nmatrix,
vmatrix, p, Normalized −> False, optsD.linkmatrix;H∗Eqn 5.25 b.∗L

coefmatrix =

NewToOld@−linkmatrix.Inverse@mmatrixarD.nomatrix,
linkmatrixtransformD;H∗Evaluate  S  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
smatrixar = smatrix ê. steadystaterule ê. parameterrule;H∗Evaluate  v  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
vmatrixar = vmatrix ê. steadystaterule ê. parameterrule;H∗Assign the value of
the Normalized Option to normalized.∗L

normalized = Normalized ê. 8opts< ê.
Options@FluxControlMatrixD;H∗ Evaluate the control
matrix with various normalization options.∗L

If@normalized,H∗If normalized=

True calculate normalized matrix with Eqn 5.34 a.∗L
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Inverse@DiagonalMatrix@smatrixarDD.coefmatrix.
DiagonalMatrix@vmatrixarD ,H∗If normalized=False return non−normalized matrix∗L
coefmatrix,H∗Otherwise calculate normalized matrix.∗L
Inverse@DiagonalMatrix@smatrixarDD.
coefmatrix.DiagonalMatrix@vmatrixarDDD ê; HLength@smatrixD == Length@nmatrixD &&
Length@vmatrixD == Length@Transpose@nmatrixDDL »»

Message@MetabolicControlAnalysis::badarg,
"reactions andêor metabolites",
"columns andêor rows"DH∗Error Message.∗LH∗ConcResponseMatrix.∗L

ConcResponseMatrix@smatrix_List, nmatrix_List,
vmatrix_List, partp_List, p_List: 8<, opts___RuleD :=

Module@8coefmatrix, smatrixar, partpar, normalized,
parameterrule, pars, parvals, steadystaterule<,H∗Calculate the un−

normalized response matrix using Eqn 5.28.∗L
coefmatrix = ConcControlMatrix@smatrix, nmatrix, vmatrix, p,

Normalized → False, optsD.PiElasticityMatrix@smatrix,
nmatrix, vmatrix, partp, p, Normalized → False, optsD;H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;H∗Evaluate  S  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
smatrixar = smatrix ê. steadystaterule ê. parameterrule;
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H∗Evaluate  partp  with  parameter  rule.∗L
partpar = partp ê. steadystaterule ê. parameterrule;H∗Assign the value of
the Normalized Option to normalized.∗L

normalized = Normalized ê. 8opts< ê.
Options@ConcControlMatrixD;H∗ Evaluate the response
matrix with various normalization options.∗L

If@normalized,H∗If normalized=True calculate normalized matrix.∗L
Inverse@DiagonalMatrix@smatrixarDD.
coefmatrix.DiagonalMatrix@partparD ,H∗If normalized=False return non−normalized matrix.∗L
coefmatrix,H∗Otherwise calculate normalized matrix.∗L
Inverse@DiagonalMatrix@smatrixarDD.
coefmatrix.DiagonalMatrix@partparDDDH∗Conservation Relations.∗LH∗This algorithm detects non−

negative conservation relations using convex
analysis. The algorithm is based on a method described
in Heinrich and Schuster H1996L Section 3.1 .2.∗L

ConservationRelations@smatrix_, nmatrix_, opts___RuleD :=

Module@8lhstableau, rhstableau, tableau, mc,
mr, g, columnindicestable, xx, nn, intersection,
conditions, gmatrix, gmatrixrule, i, tn, k, l<,H∗Create initial tableau; HN IL.∗L

lhstableau@0D = nmatrix;
rhstableau@0D = IdentityMatrix@Length@nmatrixDD;
tableau@0D = AppendRows@nmatrix, rhstableau@0DD;H∗Number of rows and columns in lhstableau.∗L
mc = Dimensions@lhstableau@0DD@@2DD;
mr = Length@lhstableau@0DD;H∗Next Do statement contains a subroutine

for determining a series of tableau. First
time through the Do statement we start with
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tableau@0D and finish with tableau@1D. This
is done by taking all possible HallowableL non−

negative  linear  combinations  of  pairs  of  rows  

in  tableau@0D  that  give  a  zero  in  the  first  

column. Next  time  through  we  do  the  same  starting  

with  tableau@1D  so  that  tableau@2D has  only  

zeros  in  columns  1  and  2.  The  Do  statement  ends  

when  tableau@mc=number of columns in lhs tableauD  

has  been  created;
this will have a lhs tableau of zeros.∗L
Do@H∗Create a table of column indices for tableau@tnD. Each

row of this table contains the positions of
zero elements in the corresponding tableau row;
note only 0 s in rhstableau are considered;
see Eqn 3.25 for a definition of these indices. This
table will be used later in the program.∗L

columnindicestable@tnD = Table@
Flatten@Position@rhstableau@tnD@@iDD, 0DD + mc,8i, Length@tableau@tnDD<D;

g = 0; H∗Set the counter, g, to 0 each time through the Do
statement. g will count the number of allowable
positive linear combinations in each tableau.∗LH∗The following For statement is created to count through
the rows in the current tableau, tableau@iD.∗L

For@i = 1, i < Length@tableau@tnDD + 1, i++,H∗Check to see if element tn+1 in row i not 0.∗LH∗If@1D.∗L
If@tableau@tnD@@i, tn + 1DD != 0,H∗If this element is not zero then use the following

For statement to count through the rows below
row i. This For statement will be used to
create all possible HallowableL positive linear
combinations of row i with those rows below row i.∗L

For@k = i + 1, k < Length@tableau@tnDD + 1, k++,H∗An allowable positive linear combination of row i
with row k will have to satisfy 2 conditions;
Eqn 3.27 HCondition 1L and Eqn 3.28 HCondition 2L.∗L
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H∗START CHECK CONDITIONS.∗LH∗If@2D.∗LH∗CHECK CONDITION1.∗L
If@
tableau@tnD@@i, tn + 1DD ∗tableau@tnD@@k, tn + 1DD < 0 ,H∗If condition 1 is satisfied we need
to then check condition 2∗LH∗CHECK CONDITION 2.∗LH∗First determine a table
of columnindices which does not contain
the column indices for rows i and k.∗L

xx@tnD = Delete@columnindicestable@tnD, 88i<, 8k<<D;H∗assign intersection = intersection of column
indices of rows i and k. ie LHS of Eqn 3.28.∗L

intersection = Intersection@columnindicestable@
tnD@@iDD, columnindicestable@tnD@@kDDD;H∗If@3D.∗L

If@xx@tnD % 8<,H∗If xx@tnD =8< condition 2 is satisfied.∗L
conditions = True,H∗Otherwise∗L
For@l = 1, l < Length@tableau@tnDD − 1, l++,H∗Check Eqn 3.28 HCondition 2L for row l.∗LH∗If@4D.∗L
If@Complement@intersection, xx@tnD@@lDDD == 8<,H∗If it is not satisfied set conditions=

False and break from the current For loop.∗L
conditions = False; Break@D,H∗Otherwise set conditions=True and

continue checking other rows in xx@tnD.∗L
conditions = TrueD;H∗End If@4D.∗LD;H∗End of l++∗LD;H∗End If@3D.∗LD; H∗End If@2D.∗LH∗END CHECK CONDITIONS.∗LH∗If conditions are satisfied, conditions =

True and we can use Eqn 3.26 to calculate a
valid non negative linear combination.∗LH∗If@5D.∗L

If@conditions,
g++;
nn@tn, gD =
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Abs@tableau@tnD@@i, tn + 1DDD ∗tableau@tnD@@kDD +

Abs@tableau@tnD@@k, tn + 1DDD∗tableau@tnD@@iDD;
conditions = FalseD; H∗End If@5D.∗LD, H∗End of k++∗LH∗False part of If@1D; If the tested element is 0,
row i goes into the new tableau.∗L
g++;
nn@tn, gD = tableau@tnD@@iDDD;H∗End of If@1D.∗LD; H∗End of i++∗LH∗Create new tableau.∗L

tableau@tn + 1D = Table@nn@tn, iD, 8i, g<D;
rhstableau@tn + 1D = TakeColumns@tableau@tn + 1D, −mrD
, 8tn, 0, mc − 1<DH∗End of Do.∗L;H∗Construct G matrix from the
rhs of the last tableau Htableau@mcDL.∗L

If@tableau@mcD % 8<,
gmatrix = 8<,
gmatrix = Table@Flatten@RowReduce@8rhstableau@mcD@@iDD<DD,8i, Length@rhstableau@mcDD<DD;H∗Assign True or False to gmatrixrule
depending of the value of the GMatrix Option.∗L

gmatrixrule = GMatrix ê. 8opts< ê.
Options@ConservationRelations2D;H∗Returns G or conservation relations,
depending on value of gmatrixrule.∗L
If@gmatrix == 8<,H∗If gmatrix =8<, print 8<∗L8<,H∗Otherwise∗L
If@gmatrixrule,H∗If gmatrixrule = True return gmatrix.∗L
gmatrix,H∗If gmatrixrule =

False return conservation relations.∗L
Print@gmatrix.smatrix, " == ",
Array@Global`Const, Length@gmatrixDDDD
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DD;H∗EpsilonElasticityMatrix.∗L
EpsilonElasticityMatrix@smatrix_List,
nmatrix_List, vmatrix_List, p_List: 8<, opts___RuleD :=

Module@8parameterrule, pars, parvals, normalized,
epsilonelasticitymatrix, vmatrixar, smatrixar<,H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;H∗Calculate the un−

normalized epsilon elasticity matrix using Eqn 5.35 a.∗L
epsilonelasticitymatrix = Outer@D, vmatrix, smatrixD ê.

steadystaterule ê. parameterrule;H∗Evaluate  v  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
vmatrixar = vmatrix ê. steadystaterule ê. parameterrule;H∗Evaluate  S  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
smatrixar = smatrix ê. steadystaterule ê. parameterrule;H∗Assign the value of
the Normalized Option to normalized.∗L

normalized = Normalized ê. 8opts< ê.
Options@EpsilonElasticityMatrixD;H∗Evaluate the elasticity
matrix with various normalization options.∗L

If@normalized,
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H∗If normalized=

True calculate normalized matrix with Eqn 5.33 a∗L
Inverse@DiagonalMatrix@vmatrixarDD.
epsilonelasticitymatrix.DiagonalMatrix@smatrixarD,H∗If normalized=False return non−normalized matrix∗L
epsilonelasticitymatrix,H∗Otherwise delete the matrix rows defined in normalized
before normalizing the matrix. i.e. this option allows
the removal of zero fluzes before normalization.∗L

Inverse@DiagonalMatrix@Delete@vmatrixar, normalizedDDD.
Delete@epsilonelasticitymatrix, normalizedD.
DiagonalMatrix@smatrixarDDDH∗FluxControlMatrix.∗L

FluxControlMatrix@smatrix_List, nmatrix_List,
vmatrix_List, p_List: 8<, opts___RuleD :=

Module@8linkmatrixsolution, newsmatrix,
linkmatrix, nomatrix, linkmatrixtransform,
paramterrule, pars, parvals, steadystaterule,
mmatrixar, coefmatrix, vmatrixar, normalized<,H∗Rearrange S, N, v into Eqn 3.8
using LinkMatrix.∗L
linkmatrixsolution = LinkMatrix@smatrix, nmatrixD;
newsmatrix = linkmatrixsolution@@1, 2DD;
linkmatrix = linkmatrixsolution@@2, 2DD;
nomatrix = linkmatrixsolution@@3, 2DD;
linkmatrixtransform = linkmatrixsolution@@6, 2DD;H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;
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H∗Calculate the non−normalized flux
control matrix using Eqn 5.26 b and Eqn 5.24.∗LH∗Eqn 5.24.∗L

mmatrixar =

nomatrix.EpsilonElasticityMatrix@newsmatrix, nmatrix,
vmatrix, p, Normalized −> False, optsD.linkmatrix;H∗Eqn 5.26 b.∗L

coefmatrix = IdentityMatrix@Length@Transpose@nomatrixDDD −

EpsilonElasticityMatrix@newsmatrix, nmatrix,
vmatrix, p, Normalized −> False, optsD.
linkmatrix.Inverse@mmatrixarD.nomatrix;H∗Evaluate  v  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
vmatrixar = vmatrix ê. steadystaterule ê. parameterrule;H∗Assign the value of
the Normalized Option to normalized.∗L

normalized = Normalized ê. 8opts< ê.
Options@FluxControlMatrixD;H∗ Evaluate the control
matrix with various normalization options.∗L

If@normalized,H∗If normalized=

True calculate normalized matrix with Eqn 5.34 b∗L
Inverse@DiagonalMatrix@vmatrixarDD.coefmatrix.
DiagonalMatrix@vmatrixarD,H∗If normalized=False return non−normalized matrix∗L
coefmatrix,H∗Otherwise delete the matrix rows defined in normalized
before normalizing the matrix. i.e., this option allows
the removal of zero fluxes before normalization.∗L

Inverse@DiagonalMatrix@Delete@vmatrixar, normalizedDDD.
Delete@coefmatrix, normalizedD.DiagonalMatrix@vmatrixarDDD ê; HLength@smatrixD == Length@nmatrixD &&
Length@vmatrixD == Length@Transpose@nmatrixDDL »»

Message@MetabolicControlAnalysis::badarg,
"reactions andêor metabolites",
"columns andêor rows"DH∗Error Message.∗L
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H∗FluxResponseMatrix.∗L
FluxResponseMatrix@smatrix_List, nmatrix_List,
vmatrix_List, partp_List, p_List: 8<, opts___RuleD :=

Module@8coefmatrix, vmatrixar, partpar, normalized,
parameterrule, pars, parvals, steadystaterule<,H∗Calculate the non−normalized matrix with Eqn 5.29∗L

coefmatrix = FluxControlMatrix@smatrix, nmatrix, vmatrix, p,
Normalized → False, optsD.PiElasticityMatrix@smatrix,
nmatrix, vmatrix, partp, p, Normalized → False, optsD;H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;H∗Evaluate  v  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
vmatrixar = vmatrix ê. steadystaterule ê. parameterrule;H∗Evaluate  partp  with  parameter  rule.∗L
partpar = partp ê. steadystaterule ê. parameterrule;H∗Assign the value of
the Normalized Option to normalized.∗L

normalized = Normalized ê. 8opts< ê.
Options@FluxControlMatrixD;H∗Evaluate the response
matrix with various normalization options.∗L

If@normalized,H∗If normalized=True calculate normalized matrix∗L
Inverse@DiagonalMatrix@vmatrixarDD.
coefmatrix.DiagonalMatrix@partparD,H∗If normalized=False return non−normalized matrix∗L
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coefmatrix,H∗Otherwise delete the matrix rows defined in normalized
before normalizing the matrix. i.e., this option allows
the removal of zero fluxes before normalization.∗L

Inverse@DiagonalMatrix@Delete@vmatrixar, normalizedDDD.
Delete@coefmatrix, normalizedD.DiagonalMatrix@partparDDDH∗LinkMatrix.∗LH∗Rearranges S, N, v into Eqn 3.8.∗L

LinkMatrix@smatrix_List, nmatrix_ListD :=

ModuleA8linkmatrixtransform, newnmatrix,
newgmatrix, nomatrix, linkdashmatrix, linkmatrix,
newsmatrix, modifiedgmatrix, rgm, nrgm<,

linkmatrixtransform = LinkMatrixTransform@nmatrixD;
newnmatrix = OldToNew@nmatrix, linkmatrixtransformD;
newgmatrix = NullSpace@Transpose@newnmatrixDDH∗See Eqn 3.5.∗L;
nomatrix = TakeRows@newnmatrix,

Length@newnmatrixD − Length@newgmatrixDD;H∗Rearrange newgmatrix calculated above into
the form given in Eqn 3.11. i.e., G=H−L' IL.∗LH∗Determine L'.∗L

If@newgmatrix == 8<,
linkdashmatrix = 8<,H∗Otherwise.∗LH∗Cycle the elements of each row in newgmatrix to
the left by the number of rows in nomatrix.∗L

rgm = Table@RotateLeft@newgmatrix@@iDD, Length@nomatrixDD,8i, Length@newgmatrixD<D;H∗Use RowReduce to rearrange to HI −L'L.∗L
nrgm = RowReduce@rgmD;H∗Delete I in HI −L'L to give L'.∗L
deletetable = Flatten@Table@8i, j<,8i, Length@newgmatrixD<, 8j, Length@newgmatrixD<D, 1D;
linkdashmatrix = −Delete@nrgm, deletetableDD;H∗G=H−L',IL.∗L
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modifiedgmatrix = Table@Flatten@8−linkdashmatrix@@iDD,
IdentityMatrix@Length@linkdashmatrixDD@@iDD<D,8i, Length@linkdashmatrixD<D;H∗L.∗L

linkmatrix = Flatten@8IdentityMatrix@Length@nomatrixDD, linkdashmatrix <, 1D;H∗new S.∗L
newsmatrix =

OldToNew@Transpose@8smatrix<D, linkmatrixtransformD;H∗Output Matrix.∗L98"S¯", Flatten@newsmatrixD <,8"L¯", linkmatrix <,9"N¯0", nomatrix =,8"N¯", newnmatrix <,8"G", modifiedgmatrix <,8"LinkMatrixTransform", linkmatrixtransform <=E ê; Length@smatrixD == Length@nmatrixD »»
Message@MetabolicControlAnalysis::badarg,
"reactions andêor metabolites",
"columns andêor rows"DH∗Error message.∗LH∗MMatrix.∗L

MMatrix@smatrix_List, nmatrix_List,
vmatrix_List, p_List: 8<, opts___RuleD :=H∗See Eqn 2.83 for the definition of the MMatrix.∗L

nmatrix.
EpsilonElasticityMatrix@smatrix, nmatrix, vmatrix, p, optsDH∗NDSolveMatrix.∗L

NDSolveMatrix@smatrix_List, nmatrix_List,
vmatrix_List, initialconditions_List,
timerange_List, p_List: 8<, opts___RuleD :=

Module@8equations, pars, parvals,
nvmatrix, parameterrule, removet, smatrixnot<,H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
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parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Define the list of metabolites for which to apply
NDSolve. i.e., remove @tD index from each metabolite.∗L

removet@x_@Global`tDD := x;
smatrixnot = Map@removet, smatrixD;H∗Evaluate  v  with  parameter  rule.∗L
nvmatrix = vmatrix ê. parameterrule;H∗Express the system of ordinary differential
equations that are described by S, N, V,
and p in a form that can be used by NDSolve∗L
equations = Table@∂Global`t smatrix@@iDD ==Hnmatrix .nvmatrixL@@iDD, 8i, Length@smatrixD<D;H∗A pply NDSolve including the Options, opts.∗L
NDSolve@Flatten@8equations , initialconditions<D,
smatrixnot, timerange, optsDD ê; HLength@smatrixD == Length@nmatrixD &&
Length@vmatrixD == Length@Transpose@nmatrixDDL »»

Message@MetabolicControlAnalysis::badarg,
"reactions andêor metabolites",
"columns andêor rows"DH∗Error Message∗LH∗NMatrix.∗L

NMatrix@eqn_List, ext_List: 8<D :=

Module@8modifiedeqn0, deletetable,
modifiedeqn1, modifiedeqn2, smatrix, nmatrix<,H∗Remove reaction labels and create
modified equation matrix from the list eqn.∗L

modifiedeqn0 = Table@8−eqn@@i, Length@eqn@@iDDD, 1DD +

eqn@@i, Length@eqn@@iDDD, 2DD<, 8 i, Length@eqnD<D;H∗Delete any external parameters from the matrix,
modifiedeqn0.∗L

deletetable = Flatten@Table@Position@modifiedeqn0, ext@@iDDD,
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8i, Length@extD<D, 1D;
modifiedeqn1 = Delete@modifiedeqn0, deletetableD;H∗Generate substrate matrix.∗L
modifiedeqn2 = Flatten@modifiedeqn1 ê. Plus −> ListD;
smatrix =

Union@Delete@modifiedeqn2,
Position@modifiedeqn2, Hx_ ê; NumberQ@xDL, 2 DDD;H∗Generate nmatrix.∗L

nmatrix =

Table@
If@Position@modifiedeqn1@@jDD, smatrix@@iDDD == 8<,

0,
Coefficient@modifiedeqn1@@jDD, smatrix@@iDDD@@1DDD,8i, Length@smatrixD<, 8j, Length@modifiedeqn1D<DDH∗NSteadyState.∗L

NSteadyState@smatrix_List, nmatrix_List, vmatrix_List,
p_List: 8<, initialvalues_List, opts___RuleD :=

Module@8i, linkmatrixsolution, newsmatrix, constmatrix,
sbmatrix, samatrix, nomatrix, newgmatrix, rhs,
lhs, dmrule, newvmatrix, ss, parameterrule, pars, parvals,
crrule, newinitialvaluerule, indepinitialvaluerule,
indepinitialvaluelist, indepinitialvalueseq<,H∗Rearrange S, N, v into Eqn 3.8
using LinkMatrix.∗L

linkmatrixsolution = LinkMatrix@smatrix, nmatrixD;
newsmatrix = linkmatrixsolution@@1, 2DD;
nomatrix = linkmatrixsolution@@3, 2DD;
newgmatrix = linkmatrixsolution@@5, 2DD; H∗Eqn 3.11.∗L
samatrix = Take@newsmatrix, Length@nomatrixDD;
sbmatrix = Take@newsmatrix, −Length@newgmatrixDD;H∗Generate a replacement rule using Eqn 3.10
so that each concentration in sbmatrix can be
expressed as a function of conservation constants
and the independent metabolite concentrations.∗L

constmatrix = Array@Global`Konst, Length@newgmatrixDD ;
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rhs = constmatrix −

TakeColumns@newgmatrix, Length@nomatrixDD.samatrix ;
lhs = TakeColumns@newgmatrix, −Length@newgmatrixDD.sbmatrix;
dmrule =

Table@lhs@@iDD −> rhs@@iDD, 8i, Length@newgmatrixD<D;H∗Convert parameter list into
a replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Generate a replacement
rule so that the constants, Konst@iD,
can be expressed in terms of the constants, Const@iD,
that were determined using ConservationRelations.∗L
crrule = ConservationRelationsTransform@smatrix, nmatrixD;H∗Generate a new vmatrix using the parameter replacement
rule, the dependent metabolite replacement rule,
and the constants replacement rule. The new
vmatrix has rate expressions in terms of the
independent metabolite concentrations and
non negative conservation constants only.∗L

newvmatrix = vmatrix ê. dmrule ê. parameterrule ê. crrule;H∗Convert the steadystate estimate replacement rule list,
initialvalues, into a form that can be
used in FindRoot. And only include the
independent metabolites in this sequence.∗L

newinitialvaluerule = OldToNew@Transpose@8initialvalues<D,
linkmatrixsolution@@6, 2DDD;

indepinitialvaluerule = Take@newinitialvaluerule,
Length@nomatrixDD;

indepinitialvaluelist =

Table@8indepinitialvaluerule@@i, 1, 1DD,
indepinitialvaluerule@@i, 1, 2DD<,8i, Length@nomatrixD<D;

indepinitialvalueseq = ReplacePart@
indepinitialvaluelist, Sequence, 0D;
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H∗Use FindRoot to solve
Eqn 2.9 for the independent metabolites.∗L

ss = FindRoot@nomatrix .newvmatrix ==

Table@0, 8i, Length@samatrixD<D,
Evaluate@indepinitialvalueseqD, optsD;H∗Return the values of both the independent
and dependent metabolite concentrations.∗L

Union@ss, dmrule ê. ss ê. crruleDD ê; HLength@smatrixD == Length@nmatrixD &&
Length@vmatrixD == Length@Transpose@nmatrixDDL »»

Message@MetabolicControlAnalysis::badarg,
"reactions andêor metabolites",

"columns andêor rows"DH∗Error message.∗LH∗PartialConcResponse.∗L
PartialConcResponse@smatrix_List, nmatrix_List, vmatrix_List,
n_Integer, partp_List, p_List: 8<, opts___RuleD :=

Module@8coefmatrix, parameterrule, pars,
parvals, steadystaterule, smatrixar, partpar <,H∗Calculate the non−normalized
partial response coefficients. See Eqn 5.30.∗L

coefmatrix = ConcControlMatrix@smatrix, nmatrix,
vmatrix, p, Normalized → False, optsD@@nDD∗

PiElasticityMatrix@smatrix, nmatrix, vmatrix,
partp, p, Normalized → False, optsD;H∗Convert parameter list into a

replacement rule called parameter rule.∗L
If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;H∗Evaluate  S  with  parameters  and  concentrations  
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defined  in  steadystaterule  and  parameter  rule.∗L
smatrixar = smatrix ê. steadystaterule ê. parameterrule;H∗Evaluate  partp  with  parameter  rule.∗L
partpar = partp ê. parameterrule;H∗ Evaluate partial response
matrix with various normalization options.∗L

normalized = Normalized ê. 8opts< ê.
Options@FluxControlMatrixD;

If@normalized,H∗If normalized=True calculate normalized matrix∗L
1ê smatrixar@@nDD∗coefmatrix.DiagonalMatrix@partparD ,H∗If normalized=False return non−normalized matrix∗L
coefmatrix,H∗Otherwise calculate the normalized matrix∗L
1êsmatrixar@@nDD∗coefmatrix.DiagonalMatrix@partparDDDH∗PartialFluxResponse.∗L

PartialFluxResponse@smatrix_List, nmatrix_List, vmatrix_List,
n_Integer, partp_List, p_List: 8<, opts___RuleD :=

Module@8coefmatrix, parameterrule, pars,
parvals, steadystaterule, smatrixar, partpar <,H∗Calculate the non−

normalized partial response coefficients. See Eqn 5.30.∗L
coefmatrix = FluxControlMatrix@smatrix, nmatrix,

vmatrix, p, Normalized → False, optsD@@nDD∗

PiElasticityMatrix@smatrix, nmatrix, vmatrix,
partp, p, Normalized → False, optsD;H∗Convert parameter list into a

replacement rule called parameter rule.∗L
If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;
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H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@ConcControlMatrixD;H∗Evaluate  v  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
vmatrixar = vmatrix ê. steadystaterule ê. parameterrule;H∗Evaluate  partp  with  parameter  rule.∗L
partpar = partp ê. parameterrule;H∗ Evaluate partial response

matrix with various normalization options.∗L
normalized = Normalized ê. 8opts< ê.
Options@FluxControlMatrixD;

If@normalized,H∗If normalized=True calculate normalized matrix.∗L
1 êvmatrixar@@nDD∗coefmatrix.DiagonalMatrix@partparD ,H∗If normalized=False return non−normalized matrix.∗L

coefmatrix,H∗Otherwise calculate the normalized matrix.∗L
1 êvmatrixar@@nDD∗coefmatrix.DiagonalMatrix@partparDDDH∗PartialInternalConcResponse.∗L

PartialInternalConcResponse@
smatrix_List, nmatrix_List, vmatrix_List,
n_Integer, m_Integer, p_List: 8<, opts___RuleD :=

ConcControlMatrix@smatrix, nmatrix,
vmatrix, p, Normalized → False, optsD@@nDD∗

EpsilonElasticityMatrix@smatrix, nmatrix, vmatrix,
p, Normalized → False, optsD@@All, mDDH∗PartialInternalFluxResponse.∗L

PartialInternalFluxResponse@
smatrix_List, nmatrix_List, vmatrix_List,
n_Integer, m_Integer, p_List: 8<, opts___RuleD :=

FluxControlMatrix@smatrix, nmatrix,
vmatrix, p, Normalized → False, optsD@@nDD ∗

EpsilonElasticityMatrix@smatrix, nmatrix, vmatrix,
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p, Normalized → False, optsD@@All, mDDH∗PiElasticityMatrix.∗L
PiElasticityMatrix@smatrix_List, nmatrix_List,
vmatrix_List, partp_List, p_List: 8<, opts___RuleD :=

Module@8parameterrule, pars, parvals, steadystaterule,
normalized, pielasticitymatrix, vmatrixar, partpar<,H∗Convert parameter list into a
replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Create the steady state replacement rule.∗L
steadystaterule =

SteadyStateConc ê. 8opts< ê. Options@PiElasticityMatrixD;H∗Calculate the non−normalized pi elasticity matrixHsee Eqn 5.35 bL with parameters and concentrations
defined in steadystaterule and parameter rule.∗L

pielasticitymatrix = Outer@D, vmatrix, partpD ê.
steadystaterule ê. parameterrule;H∗Evaluate  v  with  parameters  and  concentrations  

defined  in  steadystaterule  and  parameter  rule.∗L
vmatrixar = vmatrix ê. steadystaterule ê. parameterrule;H∗Evaluate  partp  with  parameter  rule.∗L
partpar = partp ê. parameterrule;H∗Evaluate pi elasticity matrix

with various normalization options.∗L
normalized = Normalized ê. 8opts< ê.

Options@PiElasticityMatrixD;
If@normalized,H∗If normalized=

True calculate normalized matrix with Eqn 5.33 b∗L
Inverse@DiagonalMatrix@vmatrixarDD.
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pielasticitymatrix.DiagonalMatrix@partparD,H∗If normalized=False return non−normalized matrix∗L
pielasticitymatrix,H∗Otherwise delete the matrix rows defined in normalized

before normalizing the matrix. i.e., this option allows
the removal of zero fluxes before normalization.∗L

Inverse@DiagonalMatrix@Delete@vmatrixar, normalizedDDD.
Delete@pielasticitymatrix, normalizedD.
DiagonalMatrix@partparDDDH∗SMatrix.∗L

SMatrix@eqn_List, ext_List: 8<D :=

Module@8modifiedeqn0, deletetable,
modifiedeqn1, modifiedeqn2, smatrix<,H∗Remove reaction labels
and create modified equation matrix.∗L

modifiedeqn0 = Table@8−eqn@@i, Length@eqn@@iDDD, 1DD +

eqn@@i, Length@eqn@@iDDD, 2DD<, 8i, Length@eqnD<D;H∗Delete any external parameters from the matrix.∗L
deletetable = Flatten@Table@

Position@modifiedeqn0, ext@@iDDD, 8i, Length@extD<D, 1D;
modifiedeqn1 = Delete@modifiedeqn0, deletetableD;H∗Generate substrate matrix.∗L

modifiedeqn2 = Flatten@modifiedeqn1 ê. Plus −> ListD;
smatrix =

Union@Delete@modifiedeqn2,
Position@modifiedeqn2, Hx_ ê; NumberQ@xDL , 2DDDDH∗Stability.∗L

Stability@smatrix_List, nmatrix_List,
vmatrix_List, p_List: 8<, opts___RuleD :=

Module@8eigenvalues<,H∗Calculate the eigenvalues of the non−

normalized MMatrix HJacobianL.∗L
eigenvalues = Eigenvalues@MMatrix@smatrix, nmatrix,
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vmatrix, p, Normalized −> False, optsDD;H∗Test for stability.∗L
If@MemberQ@eigenvalues, z_ ê; Re@zD > 0D,H∗If any eigenvalues

are positive steady state is unstable.∗L
Print@"Asymptotically Unstable"D;
Print@eigenvaluesD,H∗If no eigenvalues are

positive then test to see if any are 0.∗L
If@MemberQ@eigenvalues, z_ ê; Re@zD == 0.D,H∗if some eigenvalues
are 0 steady state cannot be determined.∗L
Print@"Stability cannot be determined." D;

Print@eigenvaluesD,H∗Otherwise print steady state is stable.∗L
Print@"Asymptotically Stable"D;
Print@eigenvaluesDDD;DH∗SteadyState.∗L

SteadyState@smatrix_List,
nmatrix_List, vmatrix_List, p_List: 8<D :=

Module@8linkmatrixsolution, newsmatrix, constmatrix,
sbmatrix, samatrix, nomatrix, newgmatrix, rhs,
lhs, dmrule, newvmatrix,
ss, parameterrule, pars, parvals, crrule<,H∗Rearrange S, N, v into Eqn 3.8
using LinkMatrix.∗L

linkmatrixsolution = LinkMatrix@smatrix, nmatrixD;
newsmatrix = linkmatrixsolution@@1, 2DD;
nomatrix = linkmatrixsolution@@3, 2DD;
newgmatrix = linkmatrixsolution@@5, 2DD; H∗Eqn 3.11.∗L
samatrix = Take@newsmatrix, Length@nomatrixDD;
sbmatrix = Take@newsmatrix, −Length@newgmatrixDD;H∗Generate a replacement rule using Eqn 3.10
so that each concentration in sbmatrix can be
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expressed as a function of conservation constants
and the independent metabolite concentrations.∗L

constmatrix = Array@Global`Konst, Length@newgmatrixDD ;
rhs = constmatrix −

TakeColumns@newgmatrix, Length@nomatrixDD.samatrix ;
lhs = TakeColumns@newgmatrix, −Length@newgmatrixDD.sbmatrix;
dmrule =

Table@lhs@@iDD −> rhs@@iDD, 8i, Length@newgmatrixD<D;H∗Convert parameter list into
a replacement rule called parameter rule.∗L

If@p == 8<,
parameterrule = 8<,
pars = Transpose@pD@@1DD; parvals = Transpose@pD@@2DD;
parameterrule =

Table@pars@@iDD −> parvals@@iDD, 8i, Length@parsD<DD;H∗Generate a replacement
rule so that the constants, Konst@iD,
can be expressed in terms of the constants, Const@iD,
that were determined using ConservationRelations.∗L
crrule = ConservationRelationsTransform@smatrix, nmatrixD;H∗Generate a new vmatrix using the parameter replacement
rule, the dependent metabolite replacement rule,
and the constants replacement rule. The new
vmatrix has rate expressions in terms of the
independent metabolite concentrations and non−

negative conservation constants only.∗L
newvmatrix = vmatrix ê. dmrule ê. parameterrule ê. crrule;H∗Solve Eqn 2.9 for the independent metabolites.∗L
ss = Solve@nomatrix .newvmatrix ==

Table@0, 8i, Length@samatrixD<D, samatrixD;H∗Return the values of both the independent
and dependent metabolite concentrations.∗L

Table@Union@ss@@iDD, dmrule ê. ss@@iDD ê. crruleD,8i, Length@ssD<DD ê; HLength@smatrixD == Length@nmatrixD &&
Length@vmatrixD == Length@Transpose@nmatrixDDL »»

Message@MetabolicControlAnalysis::badarg,
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"reactions andêor metabolites",
"columns andêor rows"DH∗Error message.∗LH∗StoichiometryMatrix.∗L

StoichiometryMatrix@eqn_List, ext_List: 8<D :=

Module@8modifiedeqn0, deletetable,
modifiedeqn1, modifiedeqn2, reactionlist,
smatrix, nmatrix, prestoichmatrix<,H∗Remove reaction labels and create
modified equation matrix from the list eqn.∗L

modifiedeqn0 = Table@8−eqn@@i, Length@eqn@@iDDD, 1DD +

eqn@@i, Length@eqn@@iDDD, 2DD<, 8 i, Length@eqnD<D;H∗Delete any external parameters from the matrix,
modifiedeqn0.∗L

deletetable = Flatten@Table@Position@modifiedeqn0, ext@@iDDD,8i, Length@extD<D, 1D;
modifiedeqn1 = Delete@modifiedeqn0, deletetableD;H∗Generate reaction list.∗L
If@Length@eqn@@1DDD == 1,
reactionlist = Prepend@Table@i , 8i, Length@eqnD<D, "s™r"D,
reactionlist =

Prepend@Table@eqn@@i, 1DD, 8i, Length@eqnD<D, "s™r"DD;H∗Generate substrate matrix.∗L
modifiedeqn2 = Flatten@modifiedeqn1 ê. Plus −> ListD;
smatrix =

Union@Delete@modifiedeqn2,
Position@modifiedeqn2, Hx_ ê; NumberQ@xDL, 2 DDD;H∗Generate nmatrix.∗L

nmatrix =

Table@
If@Position@modifiedeqn1@@jDD, smatrix@@iDDD == 8<,

0,
Coefficient@modifiedeqn1@@jDD, smatrix@@iDDD@@1DDD,8i, Length@smatrixD<, 8j, Length@modifiedeqn1D<D;H∗Generate stoichiometry matrix.∗L
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H∗Add smatrix.∗L
prestoichmatrix =

Transpose@Prepend@Transpose@nmatrixD, smatrixDD;H∗Add reaction list.∗L
Prepend@prestoichmatrix, reactionlistDDH∗VMatrix.∗L
VMatrix@eqn_List, ext_List: 8<D :=

Module@8reactionlist<,
If@Length@eqn@@1DDD == 1,
reactionlist = Table@Global`v@i D, 8i, Length@eqnD<D,
reactionlist = Table@Global`v@eqn@@i, 1DDD, 8i, Length@eqnD<DD;
reactionlistDH∗End the private context.∗L

End@D;
H∗Protect exported symbols.∗L
Protect@ConcControlMatrix, ConcResponseMatrix,
EpsilonElasticityMatrix, FluxControlMatrix,
FluxResponseMatrix, LinkMatrix, MMatrix, NDSolveMatrix,
NMatrix, ConservationRelations, NSteadyState,
PartialConcResponse, PartialFluxResponse,
PartialInternalConcResponse, PartialInternalFluxResponse,
PiElasticityMatrix, SMatrix, Stability,
SteadyState, StoichiometryMatrix, VMatrixD;H∗End the package context.∗L

EndPackage@D
DumpSave@"MetabolicControlAnalysis "̀D
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Appendix 3 - Rate 
Equations for Enzymes 
of the Human 
Erythrocyte

The  following  is  a  list  of  the  rate  equations  which  have  been  used  to  model  the
individual metabolic reactions of the red cell. Justification for the rate equations can be
found  in  Mulquiney  and  Kuchel  (1999),  McIntyre  et  al.  (1989),  and  Thorburn  and
Kuchel (1985). Definitions of reaction names and metabolite abbreviations are found in
Fig. 7.1 Note all units are in the appropriate combinations of mol, L, and s.

A3.1 Glycolytic Enzymes

A3.1.1 Hexokinase

Parameters

Ki@hk, mgatpD = 1.0∗10^−3;
Km@hk, mgatpD = 1.0∗10^−3;
Ki@hk, glcD = 4.7∗10^−5;
Ki@hk, glc6pD = 4.7∗10^−5;
Ki@hk, mgadpD = 1.0∗10^−3;
Km@hk, mgadpD = 1.0∗10^−3;
Kdi@hk, bpgD = 4.0∗ 10^−3;
Kdi@hk, glc16p2D = 30∗10^−6;
Kdi@hk, glc6pD = 10.0∗10^−6;
Kdi@hk, gshD = 3.0∗ 10^−3;
HK = 25∗10^−9;
kcatf@hkD :=

180∗1.662
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.02L + H10^−9.55ê10^−pH1@tDL ;

kcatr@hkD :=
1.16∗1.662

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.02L + H10^−9.55ê10^−pH1@tDL ;



Rate Equation

hkrd := ikjj1 +
MgATP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, mgatpD +
Glc@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, glcD +

MgATP@tD Glc@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, glcD Km@hk, mgatpD +

MgADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, mgadpD +

Glc6P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, glc6pD +

MgADP@tD Glc6P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, glc6pD Km@hk, mgadpD +

B23PG@tD∗ Glc@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kdi@hk, bpgD Ki@hk, glcD +

Glc16P2@tD Glc@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kdi@hk, glc16p2D Ki@hk, glcD +

Glc6P@tD ∗Glc@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kdi@hk, glc6pD Ki@hk, glcD +

GSH@tD Glc@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kdi@hk, gshD Ki@hk, glcD y{zz;

v@hkD := Voli ∗
HK

$$$$$$$$$$$$$hkrd  ikjj kcatf@hkD Glc@tD MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, glcD∗ Km@hk, mgatpD −

kcatr@hkD Glc6P@tD MgADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@hk, glc6pD∗Km@hk, mgadpD y{zz;

A3.1.2 Glucose Phosphate Isomerase

Parameters

Km@gpi, glc6pD = 1.81∗10^−4;
Km@gpi, fru6pD = 7.1∗10^−5;
GPI = 2.18∗10^−7;
kcatf@gpiD = 1.47∗ 10^3;
kcatr@gpiD = 1.76∗ 10^3;

Rate Equation

gpird := ikjj1 +
Glc6P@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@gpi, glc6pD +
Fru6P@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@gpi, fru6pD y{zz;
v@gpiD :=

GPI
$$$$$$$$$$$$$$$$gpird  ikjj kcatf@gpiD Glc6P@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@gpi, glc6pD −
kcatr@gpiD Fru6P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@gpi, fru6pD y{zz;

A3.1.3 Phosphofructokinase

Parameters

Km@pfk, fru6pD = 7.5∗10^−5;
Km@pfk, mgatpD = 6.8∗10^−5;
Km@pfk, fru16p2D = 5.0∗10^−4;
Km@pfk, mgadpD = 5.4∗10^−4;
KT@pfk, atpD = 100∗ 10^−6;
KT@pfk, mgD = 4.0∗10^−3;
KT@pfk, b23pgD = 5∗ 10^−3;
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KR@pfk, ampD = 300∗ 10^−6;
KR@pfk, phosD = 30∗ 10^−3;
KR@pfk, glc16p2D = 10.0∗10^−3;
PFK = 1.1∗ 10^−7;
kcatf@pfkD = 822;
kcatr@pfkD = 36;
Ka@pfkD = 10^−7.05;
n@pfkD = 5;

Rate Equation

L@pfkD := ikjjj 10^−pH1@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ka@pfkD y{zzzn@pfkD ikjj1 +

ATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KT@pfk, atpD y{zz4 ikjj1 +

Mg@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KT@pfk, mgD y{zz4 ikjj1 +

B23PG@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KT@pfk, b23pgD y{zz4 ìikjjjjikjj1 +

Fru6P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru6pD +

Fru16P2@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru16p2D y{zz4 ikjj1 +

AMP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pfk, ampD y{zz4 ikjj1 +

Phos@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pfk, phosD y{zz4 ikjj1 +

Glc16P2@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pfk, glc16p2D y{zz4y{zzzz;

pfkrd := ikjj1 +
Fru6P@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru6pD +

MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, mgatpD +

Fru6P@tD MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru6pD Km@pfk, mgatpD

+
Fru16P2@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru16p2D +
MgADP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, mgadpD +

Fru16P2@tD MgADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru16p2D∗Km@pfk, mgadpD y{zz;

v@pfkD :=
PFK

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$H1 + L@pfkDL pfkrd
ikjj kcatf@pfkD Fru6P@tD MgATP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru6pD Km@pfk, mgatpD −

kcatf@pfkD Fru16P2@tD∗ MgADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pfk, fru16p2D Km@pfk, mgadpD y{zz;

A3.1.4 Aldolase

Parameters

Km@ald, fru16p2D = 7.1∗10^−6;
Ki@ald, fru16p2D = 19.8∗10^−6;
Km@ald, grnpD = 35∗ 10^−6;
Ki@ald, grnpD = 11∗ 10^−6;
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Km@ald, grapD = 189∗10^−6;
Ki@ald, b23pgD = 1.5∗10^−3;
ALD = 0.37∗10^−6;
kcatf@aldD = 68;
kcatr@aldD = 234;

Rate Equation

aldrd :=
ikjjj1 +

B23PG@tD + Mg$B23PG@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ald, b23pgD +

Fru16P2@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ald, fru16p2D +

Km@ald, grnpD∗ GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ald, grapD Ki@ald, grnpD  ikjjj1 +

B23PG@tD + Mg$B23PG@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ald, b23pgD y{zzz +

GrnP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ald, grnpD

+
Km@ald, grnpD Fru16P2@tD GraP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ald, fru16p2D Km@ald, grapD Ki@ald, grnpD +

GraP@tD∗GrnP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ald, grapD Ki@ald, grnpD y{zzz;

v@aldD :=

ALD
$$$$$$$$$$$$$$$$aldrd

ikjj kcatf@aldD Fru16P2@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ald, fru16p2D −

kcatr@aldD GrnP@tD GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ald, grnpD Km@ald, grapD y{zz;

A3.1.5 Triosphosphate Isomerase

Parameters

Km@tpi, grapD = 446∗10^−6;
Km@tpi, grnpD = 162.4∗10^−6;
TPI = 1.14∗10^−6;
kcatf@tpiD = 14560;
kcatr@tpiD = 1280;

Rate Equation

tpird := ikjj1 +
GraP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@tpi, grapD +
GrnP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@tpi, grnpD y{zz;
v@tpiD :=

TPI
$$$$$$$$$$$$$$$$tpird  ikjj kcatf@tpiD GraP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@tpi, grapD −
kcatr@tpiD GrnP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@tpi, grnpD y{zz;

A3.1.6 Glyceraldehyde Phosphate Dehydrogenase

Parameters

Km@gapdh, nadD = 45∗10^−6;
Ki@gapdh, nadD = 45∗10^−6;
Km@gapdh, phosD = 3.16∗10^−3;
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Ki@gapdh, phosD = 3.16∗10^−3;
Km@gapdh, grapD = 95∗10^−6;
Ki@gapdh, grapD :=

1.59∗10^−19∗2.997
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.5L + H10^−10.0ê10^−pH1@tDL ;

Kid@gapdh, grapD = 31∗10^−6;
Km@gapdh, b13pgD = 0.671∗10^−6;
Ki@gapdh, b13pgD :=

1.52∗10^−21∗2.997
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.5L + H10^−10.0ê10^−pH1@tDL

Kid@gapdh, b13pgD = 1∗10^−6;
Km@gapdh, nadhD := 3.3∗10^−6 ikjjj 10^−7.2

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$10^−pH1@tD y{zzz;
Ki@gapdh, nadhD := 10∗10^−6 ikjjj 10^−7.2

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$10^−pH1@tD y{zzz;
GDH = 7.66∗10^−6;

kcatf@gapdhD :=
232∗2.997

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.5L + H10^−10.0ê10^−pH1@tDL ;
kcatr@gapdhD :=

171∗2.997
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.5L + H10^−10.0ê10^−pH1@tDL ;

Rate Equation

gdhrd :=ikjj GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, grapD  ikjj1 +

GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kid@gapdh, grapD y{zz +

B13PG@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, b13pgD  ikjj1 +

GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kid@gapdh, grapD y{zz +

Km@gapdh, b13pgD NADH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, b13pgD Km@gapdh, nadhD +

Km@gapdh, grapD NAD@tD Phos@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, grapD Km@gapdh, nadD Ki@gapdh, phosD +

NAD@tD GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, nadD Ki@gapdh, grapD +

Phos@tD GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, phosD Ki@gapdh, grapD  ikjj1 +

GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kid@gapdh, grapD y{zz +

NAD@tD B13PG@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, nadD Ki@gapdh, b13pgD +

Km@gapdh, b13pgD Phos@tD NADH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, phosD Ki@gapdh, b13pgD Km@gapdh, nadhD +

GraP@tD NADH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, grapD Ki@gapdh, nadhD +

B13PG@tD NADH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, b13pgD Km@gapdh, nadhD +
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NAD@tD Phos@tD GraP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@gapdh, nadD Ki@gapdh, phosD Ki@gapdh, grapD +HKm@gapdh, grapD NAD@tD Phos@tD B13PG@tDL êHKi@gapdh, grapD 

Km@gapdh, nadD Ki@gapdh, phosD Kid@gapdh, b13pgDL +
Phos@tD GraP@tD NADH@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, phosD Ki@gapdh, grapD Ki@gapdh, nadhD +HKm@gapdh, b13pgD Phos@tD B13PG@tD NADH@tDLêHKi@gapdh, b13pgD Km@gapdh, nadhD
Ki@gapdh, phosD Kid@gapdh, b13pgDLy{zz;

v@gapdhD :=
GDH

$$$$$$$$$$$$$$$$gdhrd  ikjj kcatf@gapdhD GraP@tD NAD@tD Phos@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@gapdh, nadD Ki@gapdh, phosD Ki@gapdh, grapD −

kcatr@gapdhD B13PG@tD NADH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@gapdh, b13pgD Km@gapdh, nadhD y{zz;

A3.1.7 Phosphoglycerate Kinase

Parameters

Km@pgk, mgadpD = 100∗10^−6;
Ki@pgk, mgadpD = 80∗10^−6;
Km@pgk, b13pgD = 2∗ 10^−6;
Ki@pgk, b13pgD = 1.6∗10^−6;
Km@pgk, mgatpD = 1∗ 10^−3;
Ki@pgk, mgatpD = 0.186∗10^−3;
Km@pgk, p3gaD = 1.1∗10^−3;
Ki@pgk, p3gaD = 0.205∗10^−3;
PGK = 2.74∗10^−6;
kcatf@pgkD = 2290;
kcatr@pgkD = 917;

Rate Equation

pgkrd := ikjj1 +
MgADP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, mgadpD +
B13PG@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, b13pgD +

MgADP@tD B13PG@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, mgadpD Km@pgk, b13pgD +

MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, mgatpD +

P3GA@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, p3gaD +

MgATP@tD P3GA@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, mgatpD Km@pgk, p3gaD y{zz;

v@pgkD :=
PGK

$$$$$$$$$$$$$$$$pgkrd  ikjj kcatf@pgkD B13PG@tD MgADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, mgadpD Km@pgk, b13pgD −

kcatr@pgkD P3GA@tD MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@pgk, mgatpD Km@pgk, p3gaD y{zz;
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A3.1.8 Phosphoglycerate Mutase

Parameters

Km@pgm, p3gaD = 168∗10^−6;
Km@pgm, p2gaD = 25.6∗10^−6;
PGM = 410∗ 10^−9;
kcatf@pgmD = 0.795∗10^3;
kcatr@pgmD = 0.714∗10^3;

Rate Equation

pgmrd := ikjj1 +
P3GA@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pgm, p3gaD +
P2GA@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pgm, p2gaD y{zz;
v@pgmD :=

PGM
$$$$$$$$$$$$$$$$pgmrd  ikjj kcatf@pgmD P3GA@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pgm, p3gaD −
kcatr@pgmD P2GA@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@pgm, p2gaD y{zz;

A3.1.9 Enolase

Parameters

Ki@eno, p2gaD = 140∗10^−6;
Km@eno, p2gaD = 140∗10^−6;
Ki@eno, pepD = 110.5∗10^−6;
Km@eno, pepD = 110.5∗10^−6;
Ki@eno, mgD = 46∗10^−6;
Km@eno, mgD = 46∗10^−6;
ENO = 0.22∗10^−6;
kcatf@enoD = 190;
kcatr@enoD = 50;

Rate Equation

enord := ikjj1 +
P2GA@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@eno, p2gaD +
Mg@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@eno, mgD +
PEP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@eno, pepD +

P2GA@tD∗ Mg@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@eno, p2gaD Ki@eno, mgD +

Mg@tD∗PEP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@eno, pepD Km@eno, mgD y{zz;

v@enoD :=
ENO

$$$$$$$$$$$$$$$$enord  ikjj kcatf@enoD P2GA@tD Mg@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@eno, p2gaD Ki@eno, mgD −

kcatr@enoD PEP@tD Mg@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@eno, pepD Km@eno, mgD y{zz;
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A3.1.10 Pyruvate Kinase

Parameters

KT@pk, atpD = 3.39∗ 10^−3;
KR@pk, pyrD = 2.0∗10^−3;
KR@pk, pepD = 0.225∗10^−3;
KR@pk, mgatpD = 3.0∗10^−3;
KR@pk, mgadpD = 0.474∗10^−3;
KR@f16p2D = 5.0∗10^−6;
KR@g16p2D = 100∗10^−6;
PK = 87.0∗ 10^−9;
kcatf@pkD = 1386;
kcatr@pkD = 3.26;

Rate Equation

L@pkD := ikjjj 10^−6.8
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$10^−pH1@tD y{zzz ikjj1 +

ATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KT@pk, atpD y{zz4 ìikjjjjikjj1 +

PEP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pepD +

Pyr@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pyrD y{zz4 ikjj1 +

Fru16P2@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@f16p2D +

Glc16P2@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@g16p2D y{zz4y{zzzz;

pkrd :=ikjj1 +
PEP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pepD +
MgADP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, mgadpD +
PEP@tD∗ MgADP@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pepD KR@pk, mgadpD +

Pyr@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pyrD +

MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, mgatpD +

Pyr@tD∗ MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pyrD KR@pk, mgatpD y{zz;

v@pkD :=
PK

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$H1 + L@pkDL pkrd  ikjj kcatf@pkD PEP@tD∗ MgADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, pepD KR@pk, mgadpD −

kcatr@pkD Pyr@tD∗ MgATP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$KR@pk, mgatpD KR@pk, pyrD y{zz;

A3.1.11 Lactate Dehydrogenase

Parameters

Km@ldh, nadhD = 8.44∗10^−6;
Ki@ldh, nadhD = 2.45∗10^−6;
Km@ldh, nadD = 0.107∗10^−3;
Ki@ldh, nadD = 0.503∗10^−3;
Km@ldh, pyrD := 137∗10^−6 ikjjj 1 + 10^−6.8ê10^−pH1@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−6.8ê10^−7.2
y{zzz;
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Ki@ldh, pyrD := 228∗10^−6 ikjjj 1 + 10^−6.8ê10^−pH1@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−6.8ê10^−7.2

y{zzz;
Kid@ldh, pyrD = 0.101∗10^−3;
Km@ldh, lacD := 1.07∗10^−3 ikjjj 1 + 10^−pH1@tDê10^−6.8

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−7.2ê10^−6.8
y{zzz;

Ki@ldh, lacD := 7.33∗10^−3 ikjjj 1 + 10^−pH1@tDê10^−6.8
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−7.2ê10^−6.8

y{zzz;
LDH = 3.43∗10^−6;
kcatf@ldhD = 458;
kcatr@ldhD = 115;

Rate Equation

ldhrd :=ikjjikjj1 +
Km@ldh, nadhD Pyr@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD Km@ldh, pyrD +
Km@ldh, nadD Lac@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ldh, lacD Ki@ldh, nadD y{zz∗ikjj1 +
Pyr@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Kid@ldh, pyrD y{zz +
NADH@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD +

NAD@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadD +

NADH@tD Pyr@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD Km@ldh, pyrD +

Km@ldh, nadD NADH@tD Lac@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD Km@ldh, lacD Ki@ldh, nadD +

Km@ldh, nadhD Pyr@tD NAD@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD Km@ldh, pyrD Ki@ldh, nadD +

Lac@tD NAD@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ldh, lacD Ki@ldh, nadD +

NADH@tD Pyr@tD Lac@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD Km@ldh, pyrD Ki@ldh, lacD +

Pyr@tD Lac@tD NAD@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, pyrD Km@ldh, lacD Ki@ldh, nadD y{zz;

v@ldhD :=
LDH

$$$$$$$$$$$$$$$$ldhrd  ikjj kcatf@ldhD Pyr@tD NADH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadhD Km@ldh, pyrD −

kcatr@ldhD Lac@tD NAD@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Ki@ldh, nadD Km@ldh, lacD y{zz;

A3.1.12 NADPH-Dependent Lactate Dehydrogenase

Parameters

Km@ldhp, pyrD = 4.14∗10^−4;
Km@ldhp, lacD = 4.14∗10^−4;
kf@ldhpD = 3.46∗ 10^−3;
kr@ldhpD = 5.43∗ 10^−7;
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Rate Equation

ldhprd := 1 +
Pyr@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ldhp, pyrD +
Lac@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ldhp, lacD ;

v@ldhpD :=
1

$$$$$$$$$$$$$$$$$$$ldhprd  ikjj kf@ldhpD∗ Pyr@tD∗NADPH@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ldhp, pyrD −

kr@ldhpD∗Lac@tD∗NADP@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ldhp, lacD y{zz;

A3.2 Pentose Phosphate Pathway Enzymes

A3.2.1 Glucose 6-Phosphate Dehydrogenase

Parameters

k@g6pdh, 1D = 1.1∗10^8;
k@g6pdh, 2D = 8.7∗10^2;
k@g6pdh, 3D = 2.6∗10^7;
k@g6pdh, 4D = 3.0∗10^2;
k@g6pdh, 5D = 7.5∗10^2;
k@g6pdh, 6D = 2.0∗10^3;
k@g6pdh, 7D = 2.2∗10^5;
k@g6pdh, 8D = 1.1∗10^9;
k@g6pdh, 9D = 1.0∗10^4;
k@g6pdh, 10D = 1.4∗ 10^9;
G6PDH = 9.3∗10^−8;

Rate Equation

N1@g6pdhD =

k@g6pdh, 1D k@g6pdh, 3D k@g6pdh, 5D k@g6pdh, 7D k@g6pdh, 9D;
N2@g6pdhD = k@g6pdh, 2D k@g6pdh, 4D

k@g6pdh, 6D k@g6pdh, 8D k@g6pdh, 10D;
D1@g6pdhD = k@g6pdh, 2D k@g6pdh, 9D Hk@g6pdh, 4D k@g6pdh, 6D +

k@g6pdh, 4D k@g6pdh, 7D + k@g6pdh, 5D k@g6pdh, 7DL;
D2@g6pdhD =

k@g6pdh, 1D k@g6pdh, 9D Hk@g6pdh, 4D k@g6pdh, 6D +

k@g6pdh, 4D k@g6pdh, 7D + k@g6pdh, 5D k@g6pdh, 7DL;
D3@g6pdhD = k@g6pdh, 3D k@g6pdh, 5D k@g6pdh, 7D k@g6pdh, 9D;
D4@g6pdhD = k@g6pdh, 2D k@g6pdh, 4D k@g6pdh, 6D k@g6pdh, 8D;
D5@g6pdhD =

k@g6pdh, 2D k@g6pdh, 10D Hk@g6pdh, 4D k@g6pdh, 6D +

k@g6pdh, 5D k@g6pdh, 6D + k@g6pdh, 5D k@g6pdh, 7DL;
D6@g6pdhD = k@g6pdh, 1D k@g6pdh, 3D Hk@g6pdh, 5D k@g6pdh, 7D + k@g6pdh, 5D k@g6pdh, 9D +
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k@g6pdh, 6D k@g6pdh, 9D + k@g6pdh, 7D k@g6pdh, 9DL;
D7@g6pdhD = k@g6pdh, 1D k@g6pdh, 4D k@g6pdh, 6D k@g6pdh, 8D ;
D8@g6pdhD = k@g6pdh, 3D k@g6pdh, 5D k@g6pdh, 7D k@g6pdh, 10D;
D9@g6pdhD = k@g6pdh, 8D k@g6pdh, 10D Hk@g6pdh, 2D k@g6pdh, 4D + k@g6pdh, 2D k@g6pdh, 5D +

k@g6pdh, 2D k@g6pdh, 6D + k@g6pdh, 4D k@g6pdh, 6DL;
D10@g6pdhD = k@g6pdh, 1D k@g6pdh, 3D k@g6pdh, 8D Hk@g6pdh, 5D + k@g6pdh, 6DL;
D11@g6pdhD = k@g6pdh, 3D k@g6pdh, 8D
k@g6pdh, 10D Hk@g6pdh, 5D + k@g6pdh, 6DL;

v@g6pdhD := G6PDH HN1@g6pdhD Glc6P@tD NADP@tD − N2@g6pdhD P6GL@tD NADPH@tDL êHD1@g6pdhD + D2@g6pdhD NADP@tD + D3@g6pdhD Glc6P@tD +

D4@g6pdhD P6GL@tD + D5@g6pdhD NADPH@tD +

D6@g6pdhD Glc6P@tD NADP@tD + D7@g6pdhD NADP@tD P6GL@tD +

D8@g6pdhD Glc6P@tD NADPH@tD + D9@g6pdhD P6GL@tD NADPH@tD +

D10@g6pdhD Glc6P@tD NADP@tD P6GL@tD +

D11@g6pdhD P6GL@tD NADPH@tD Glc6P@tDL;
A3.2.2 6-Phosphogluconolactone Hydrolysis

 d-Gluconolactonase

Parameters

k@lactonase, 1D = 1.3∗10^7;
k@lactonase, 2D = 1.0∗10^3;
k@lactonase, 3D = 2.9∗10^1;
Lactonase = 14.0∗10^−6;

Rate Equation

Km@lactonase, p6glD =Hk@lactonase, 2D + k@lactonase, 3DL êk@lactonase, 1D;
kcatf@lactonaseD = k@lactonase, 3D;
v@lactonaseD :=

Lactonase kcatf@lactonaseD P6GL@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@lactonase, p6glD + P6GL@tD ;

Spontaneous 6-Phosphogluconolactone Hydrolysis

Parameters

k@spontaneouspglhydrolysisD = 7.1∗10^−4;
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Rate Equation

v@spontaneouspglhydrolysisD :=

+k@spontaneouspglhydrolysisD P6GL@tD;
Total 6-Phosphogluconolactone Hydrolysis

v@pglhydrolysisD := v@lactonaseD + v@spontaneouspglhydrolysisD;
A3.2.3 6-Phosphogluconate Dehydrogenase

Parameters

k@p6gdh, 1D = 2∗ 1.2∗10^6;
k@p6gdh, 2D = 4.1∗10^2;
k@p6gdh, 3D = 2∗ 1.0∗10^9;
k@p6gdh, 4D = 2.6∗10^4;
k@p6gdh, 5D = 4.8∗10^1;
k@p6gdh, 6D = 3.0∗10^1;
k@p6gdh, 7D = 6.3∗10^2;
k@p6gdh, 8D = 3.6∗10^4;
k@p6gdh, 9D = 8.0∗10^2;
k@p6gdh, 10D = 0.5∗ 4.5∗10^5;
k@p6gdh, 11D = 3.0∗ 10^2;
k@p6gdh, 12D = 0.5∗ 9.9∗10^6;
P6GDH = 2.1∗10^−6;

Rate Equation

N1@p6gdhD = k@p6gdh, 1D  k@p6gdh, 3D  

k@p6gdh, 5D  k@p6gdh, 7D  k@p6gdh, 9D  k@p6gdh, 11D;
N2@p6gdhD = k@p6gdh, 2D k@p6gdh, 4D k@p6gdh, 6D
k@p6gdh, 8D k@p6gdh, 10D k@p6gdh, 12D;

D1@p6gdhD = k@p6gdh, 2D  k@p6gdh, 9D  

k@p6gdh, 11D Hk@p6gdh, 4D k@p6gdh, 6D +

k@p6gdh, 4D k@p6gdh, 7D + k@p6gdh, 5D k@p6gdh, 7DL;
D2@p6gdhD = k@p6gdh, 1D  k@p6gdh, 9D  k@p6gdh, 11D Hk@p6gdh, 4D k@p6gdh, 6D +

k@p6gdh, 4D k@p6gdh, 7D + k@p6gdh, 5D k@p6gdh, 7DL;
D3@p6gdhD = k@p6gdh, 3D  k@p6gdh, 5D  k@p6gdh, 7D  

k@p6gdh, 9D  k@p6gdh, 11D;
D4@p6gdhD = k@p6gdh, 2D k@p6gdh, 4D
k@p6gdh, 6D k@p6gdh, 8D k@p6gdh, 11D;

D5@p6gdhD = k@p6gdh, 2D  k@p6gdh, 9D  

k@p6gdh, 12D Hk@p6gdh, 4D k@p6gdh, 6D +

k@p6gdh, 4D k@p6gdh, 7D + k@p6gdh, 5D k@p6gdh, 7DL;
D6@p6gdhD = k@p6gdh, 1D  k@p6gdh, 3D 
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Hk@p6gdh, 5D  k@p6gdh, 7D  k@p6gdh, 9D + k@p6gdh, 5D  k@p6gdh, 7D  

k@p6gdh, 11D + k@p6gdh, 5D  k@p6gdh, 9D  k@p6gdh, 11D +

k@p6gdh, 6D  k@p6gdh, 9D  k@p6gdh, 11D +

k@p6gdh, 7D  k@p6gdh, 9D  k@p6gdh, 11DL;
D7@p6gdhD = k@p6gdh, 1D k@p6gdh, 4D k@p6gdh, 6D
k@p6gdh, 8D k@p6gdh, 11D;

D8@p6gdhD = k@p6gdh, 3D  k@p6gdh, 5D  

k@p6gdh, 7D  k@p6gdh, 9D  k@p6gdh, 12D;
D9@p6gdhD = k@p6gdh, 2D k@p6gdh, 4D
k@p6gdh, 6D k@p6gdh, 8D k@p6gdh, 10D;

D10@p6gdhD = k@p6gdh, 2D k@p6gdh, 4D
k@p6gdh, 6D k@p6gdh, 8D k@p6gdh, 12D;

D11@p6gdhD = k@p6gdh, 2D  k@p6gdh, 10D  

k@p6gdh, 12D Hk@p6gdh, 4D k@p6gdh, 6D +

k@p6gdh, 4D k@p6gdh, 7D + k@p6gdh, 5D k@p6gdh, 7DL;
D12@p6gdhD = k@p6gdh, 1D  k@p6gdh, 3D  k@p6gdh, 8D  

k@p6gdh, 11D Hk@p6gdh, 5D + k@p6gdh, 6DL;
D13@p6gdhD = k@p6gdh, 1D  k@p6gdh, 3D  

k@p6gdh, 5D  k@p6gdh, 7D  k@p6gdh, 10D;
D14@p6gdhD = k@p6gdh, 1D k@p6gdh, 4D
k@p6gdh, 6D k@p6gdh, 8D k@p6gdh, 10D;

D15@p6gdhD = k@p6gdh, 3D  k@p6gdh, 5D  

k@p6gdh, 7D  k@p6gdh, 10D k@p6gdh, 12D;
D16@p6gdhD = k@p6gdh, 8D k@p6gdh, 10D k@p6gdh, 12D Hk@p6gdh, 2D k@p6gdh, 4D + k@p6gdh, 2D k@p6gdh, 5D +

k@p6gdh, 2D k@p6gdh, 6D + k@p6gdh, 4D k@p6gdh, 6DL;
D17@p6gdhD = k@p6gdh, 1D  k@p6gdh, 3D  k@p6gdh, 8D  

k@p6gdh, 10D Hk@p6gdh, 5D + k@p6gdh, 6DL;
D18@p6gdhD = k@p6gdh, 3D  k@p6gdh, 8D  k@p6gdh, 10D 

k@p6gdh, 12D Hk@p6gdh, 5D + k@p6gdh, 6DL;
v@p6gdhD := P6GDH HN1@p6gdhD P6G@tD NADP@tD − N2@p6gdhD CO2@tD Ru5P@tD NADPH@tDLêHD1@p6gdhD + D2@p6gdhD NADP@tD + D3@p6gdhD P6G@tD +

D4@p6gdhD CO2@tD + D5@p6gdhD NADPH@tD +

D6@p6gdhD P6G@tD NADP@tD + D7@p6gdhD NADP@tD CO2@tD +

D8@p6gdhD P6G@tD NADPH@tD + D9@p6gdhD CO2@tD Ru5P@tD +

D10@p6gdhD CO2@tD NADPH@tD + D11@p6gdhD Ru5P@tD NADPH@tD +

D12@p6gdhD P6G@tD NADP@tD CO2@tD +

D13@p6gdhD P6G@tD NADP@tD Ru5P@tD +

D14@p6gdhD NADP@tD CO2@tD Ru5P@tD + D15@p6gdhD P6G@tD
Ru5P@tD NADPH@tD + D16@p6gdhD CO2@tD Ru5P@tD NADPH@tD +

D17@p6gdhD P6G@tD NADP@tD CO2@tD Ru5P@tD +

D18@p6gdhD P6G@tD CO2@tD Ru5P@tD NADPH@tDL;
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A3.2.4 Glutathione Reductase

Parameters

k@gssgr, 1D = 8.5∗10^7;
k@gssgr, 2D = 5.1∗10^2;
k@gssgr, 3D = 1.0∗10^9;
k@gssgr, 4D = 7.2∗10^4;
k@gssgr, 5D = 8.1∗10^2;
k@gssgr, 6D = 1.0∗10^3;
k@gssgr, 7D = 1.0∗10^6;
k@gssgr, 8D = 5.0∗10^7;
k@gssgr, 9D = 1.0∗10^6;
k@gssgr, 10D = 5.0∗ 10^7;
k@gssgr, 11D = 7.0∗ 10^3;
k@gssgr, 12D = 1.0∗ 10^8;
GSSGR = 1.25∗10^−7;

Rate Equation

N1@gssgrD = k@gssgr, 1D k@gssgr, 3D
k@gssgr, 5D k@gssgr, 7D k@gssgr, 9D k@gssgr, 11D;

N2@gssgrD = k@gssgr, 2D k@gssgr, 4D k@gssgr, 6D
k@gssgr, 8D k@gssgr, 10D k@gssgr, 12D; D1@gssgrD =

k@gssgr, 2D Hk@gssgr, 4D k@gssgr, 6D + k@gssgr, 4D k@gssgr, 7D +

k@gssgr, 5D k@gssgr, 7DL k@gssgr, 9D k@gssgr, 11D;
D2@gssgrD = k@gssgr, 1D Hk@gssgr, 4D k@gssgr, 6D +

k@gssgr, 4D k@gssgr, 7D + k@gssgr, 5D k@gssgr, 7DL
k@gssgr, 9D k@gssgr, 11D;

D3@gssgrD = k@gssgr, 3D k@gssgr, 5D k@gssgr, 7D
k@gssgr, 9D k@gssgr, 11D;

D4@gssgrD = k@gssgr, 2D k@gssgr, 4D k@gssgr, 6D
k@gssgr, 8D k@gssgr, 11D;

D5@gssgrD = k@gssgr, 2DHk@gssgr, 4D k@gssgr, 6D + k@gssgr, 4D k@gssgr, 7D +

k@gssgr, 5D k@gssgr, 7DL k@gssgr, 9D k@gssgr, 12D;
D6@gssgrD = k@gssgr, 1D k@gssgr, 3DHk@gssgr, 5D k@gssgr, 7D k@gssgr, 9D + k@gssgr, 5D k@gssgr, 7D

k@gssgr, 11D + k@gssgr, 5D k@gssgr, 9D k@gssgr, 11D +

k@gssgr, 6D k@gssgr, 9D k@gssgr, 11D +

k@gssgr, 7D k@gssgr, 9D k@gssgr, 11DL;
D7@gssgrD = k@gssgr, 1D k@gssgr, 4D k@gssgr, 6D

k@gssgr, 8D k@gssgr, 11D;
D8@gssgrD = k@gssgr, 3D k@gssgr, 5D k@gssgr, 7D

k@gssgr, 9D k@gssgr, 12D;
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D9@gssgrD = k@gssgr, 2D k@gssgr, 4D k@gssgr, 6D
k@gssgr, 8D k@gssgr, 10D;

D10@gssgrD = k@gssgr, 2D k@gssgr, 4D
k@gssgr, 6D k@gssgr, 8D k@gssgr, 12D;

D11@gssgrD = k@gssgr, 2DHk@gssgr, 4D k@gssgr, 6D + k@gssgr, 4D k@gssgr, 7D +

k@gssgr, 5D k@gssgr, 7DL k@gssgr, 10D k@gssgr, 12D;
D12@gssgrD = k@gssgr, 1D k@gssgr, 3D Hk@gssgr, 5D + k@gssgr, 6DL
k@gssgr, 8D k@gssgr, 11D; D13@gssgrD =

k@gssgr, 1D k@gssgr, 3D k@gssgr, 5D k@gssgr, 7D k@gssgr, 10D;
D14@gssgrD = k@gssgr, 1D k@gssgr, 4D

k@gssgr, 6D k@gssgr, 8D k@gssgr, 10D;
D15@gssgrD = k@gssgr, 3D k@gssgr, 5D k@gssgr, 7D

k@gssgr, 10D k@gssgr, 12D;
D16@gssgrD = Hk@gssgr, 2D k@gssgr, 4D + k@gssgr, 2D k@gssgr, 5D +

k@gssgr, 2D k@gssgr, 6D + k@gssgr, 4D k@gssgr, 6DL
k@gssgr, 8D k@gssgr, 10D k@gssgr, 12D;

D17@gssgrD = k@gssgr, 1D k@gssgr, 3DHk@gssgr, 5D + k@gssgr, 6DL k@gssgr, 8D k@gssgr, 10D;
D18@gssgrD = k@gssgr, 3D Hk@gssgr, 5D + k@gssgr, 6DL
k@gssgr, 8D k@gssgr, 10D k@gssgr, 12D;

v@gssgrD := HGSSGRHN1@gssgrD NADPH@tD GSSG@tD − N2@gssgrD GSH@tD2 NADP@tD LLêHD1@gssgrD + D4@gssgrD GSH@tD + D9@gssgrD GSH@tD2 +

D3@gssgrD GSSG@tD + D5@gssgrD NADP@tD +

D10@gssgrD GSH@tD NADP@tD + D11@gssgrD GSH@tD NADP@tD +

D16@gssgrD GSH@tD2 NADP@tD + D8@gssgrD GSSG@tD NADP@tD +

D15@gssgrD GSH@tD GSSG@tD NADP@tD +

D18@gssgrD GSH@tD2 GSSG@tD NADP@tD +

D2@gssgrD NADPH@tD + D7@gssgrD GSH@tD NADPH@tD +

D14@gssgrD GSH@tD2 NADPH@tD + D6@gssgrD GSSG@tD NADPH@tD +

D12@gssgrD GSH@tD GSSG@tD NADPH@tD + D13@gssgrD GSH@tD
GSSG@tD NADPH@tD + D17@gssgrD GSH@tD2 GSSG@tD NADPH@tDL;

A3.2.5 Ribulose-5-Phosphate Epimerase

Parameters

k@ru5pe, 1D = 3.91∗ 10^6;
k@ru5pe, 2D = 4.38∗ 10^2;
k@ru5pe, 3D = 3.05∗ 10^2;
k@ru5pe, 4D = 1.49∗ 10^6;
Ru5PE = 4.22∗ 10^−6;
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Rate Equation

Km@ru5pe, ru5pD = Hk@ru5pe, 2D + k@ru5pe, 3DLê k@ru5pe, 1D;
Km@ru5pe, xu5pD = Hk@ru5pe, 2D + k@ru5pe, 3DLê k@ru5pe, 4D;
kcatf@ru5peD = k@ru5pe, 3D;
kcatr@ru5peD = k@ru5pe, 2D;
ru5perd := 1 +

Ru5P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ru5pe, ru5pD +

Xu5P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ru5pe, xu5pD ;

v@ru5peD :=

Ru5PE
$$$$$$$$$$$$$$$$$$$$$$ru5perd  ikjj kcatf@ru5peD Ru5P@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ru5pe, ru5pD −
kcatr@ru5peD Xu5P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@ru5pe, xu5pD y{zz ;

A3.2.6 Ribose-5-Phosphate Isomerase

Parameters

k@r5pi, 1D = 6.09∗10^4;
k@r5pi, 2D = 3.33∗10^1;
k@r5pi, 3D = 1.42∗10^1;
k@r5pi, 4D = 2.16∗10^4;
R5PI = 1.42∗10^−5;

Rate Equation

Km@r5pi, ru5pD = Hk@r5pi, 2D + k@r5pi, 3DLêk@r5pi, 1D;
Km@r5pi, rib5pD = Hk@r5pi, 2D + k@r5pi, 3DLê k@r5pi, 4D;
kcatf@r5piD = k@r5pi, 3D;
kcatr@r5piD = k@r5pi, 2D;
r5pird := 1 +

Ru5P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@r5pi, ru5pD +

Xu5P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@r5pi, rib5pD ;

v@r5piD :=

R5PI
$$$$$$$$$$$$$$$$$$$r5pird  ikjj kcatf@r5piD Ru5P@tD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@r5pi, ru5pD −
kcatr@r5piD Rib5P@tD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Km@r5pi, rib5pD y{zz ;

A3.2.7 Transketolase

Parameters

k@tk, 1D = 2.16∗10^5;
k@tk, 2D = 3.8∗10^1;
k@tk, 3D = 3.4∗10^1;
k@tk, 4D = 1.56∗10^5;
k@tk, 5D = 3.29∗10^5;
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k@tk, 6D = 1.75∗10^2;
k@tk, 7D = 4.0∗10^1;
k@tk, 8D = 4.48∗10^4;
k@tk, 9D = 2.24∗10^6;
k@tk, 10D = 1.75∗ 10^2;
k@tk, 11D = 4.0∗10^1;
k@tk, 12D = 2.13∗ 10^4;

Rate Equations

v@tk1D := +k@tk, 1D∗TK@tD∗Xu5P@tD − k@tk, 2D∗TK$Xu5P@tD ;
v@tk2D := +k@tk, 3D∗TK$Xu5P@tD − k@tk, 4D∗TKG@tD∗GraP@tD ;
v@tk3D := +k@tk, 5D∗TKG@tD∗Rib5P@tD − k@tk, 6D∗TKG$Rib5P@tD;
v@tk4D := +k@tk, 7D∗TKG$Rib5P@tD − k@tk, 8D∗TK@tD∗Sed7P@tD;
v@tk5D := +k@tk, 9D∗TKG@tD∗Ery4P@tD − k@tk, 10D∗TKG$Ery4P@tD;
v@tk6D := +k@tk, 11D∗ TKG$Ery4P@tD − k@tk, 12D∗TK@tD∗Fru6P@tD;

A3.2.8 Transaldolase

Parameters

k@ta, 1D = 5.8∗10^5;
k@ta, 2D = 4.53∗10^1;
k@ta, 3D = 1.63∗10^1;
k@ta, 4D = 1.01∗10^6;
k@ta, 5D = 4.9∗10^5;
k@ta, 6D = 6.0∗10^1;
k@ta, 7D = 1.7∗10^1;
k@ta, 8D = 7.9∗10^4;
TA = 0.69∗ 10^−6;

Rate Equations

N1@taD = k@ta, 1D k@ta, 3D k@ta, 5D k@ta, 7D;
N2@taD = k@ta, 2D k@ta, 4D k@ta, 6D k@ta, 8D;
D1@taD = k@ta, 1D k@ta, 3D Hk@ta, 6D + k@ta, 7DL;
D2@taD = k@ta, 5D k@ta, 7D H k@ta, 2D + k@ta, 3DL;
D3@taD = k@ta, 2D k@ta, 4D Hk@ta, 6D + k@ta, 7DL;
D4@taD = k@ta, 6D k@ta, 8D H k@ta, 2D + k@ta, 3DL;
D5@taD = k@ta, 1D k@ta, 5D Hk@ta, 3D + k@ta, 7DL;
D6@taD = k@ta, 4D k@ta, 8D Hk@ta, 2D + k@ta, 6DL;
D7@taD = k@ta, 5D k@ta, 8D H k@ta, 2D + k@ta, 3DL;
D8@taD = k@ta, 1D k@ta, 4D Hk@ta, 6D + k@ta, 7DL;
v@taD := TA HN1@taD Sed7P@tD  GraP@tD − N2@taD Ery4P@tD Fru6P@tDL êHD1@taD Sed7P@tD + D2@taD GraP@tD +
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D3@taD Ery4P@tD + D4@taD Fru6P@tD +

D5@taD Sed7P@tD  GraP@tD + D6@taD Ery4P@tD Fru6P@tD +

D7@taD  GraP@tD Fru6P@tD + D8@taD Sed7P@tD Ery4P@tDL;
A3.3 2,3-BPG Shunt Enzyme

A3.3.1 2,3-Bisphosphoglycerate Synthase-Phosphatase

Parameters

k@bpgsp, 1D := 0.8∗ 10^8 ikjjj 1 + 10^−6.8ê10^−7.20
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−6.8ê10^−pH1@tD y{zzz;

k@bpgsp, 2D := 4.0∗ 10^2;
k@bpgsp, 3D := 9.9 ikjjj 1 + H10^−7.2ê10^−7.17L^4

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê10^−7.17L^4 y{zzz;
k@bpgsp, 4D := 1.85∗10^8 ikjjj 1 + H10^−7.2ê10^−7.17L^4

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê 10^−7.17L^4 y{zzz;
k@bpgsp, 5D = 1.0∗10^8;
k@bpgsp, 6D := 1 ∗10^3 ikjjj 1 + H10^−7.2ê10^−7.17L^4

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H10^−pH1@tDê 10^−7.17L^4 y{zzz;
k@bpgsp, 7D = 1∗ 10^3;
k@bpgsp, 8D = 1∗ 10^4;
k@bpgsp, 9D = 0.55;
k@bpgsp, 10D = 1.979∗10^3;
k@bpgsp, 11D = 1 ∗10^−2;
k@bpgsp, 12D = 1 ∗10^3;
k@bpgsp, 13D := 1.8∗10^6 ikjjj 1 + 10^−6.8ê10^−7.20

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−6.8ê10^−pH1@tD y{zzz;
k@bpgsp, 14D = 1.0∗ 10^9;
k@bpgsp, 15D = 6.1∗ 10^5;
k@bpgsp, 16D = 0.19;

Rate Equations

v@bpgsp1D :=

+k@bpgsp, 1D ∗BPGSP@tD B13PG@tD − k@bpgsp, 2D∗BPGSP$B13PG@tD;
v@bpgsp2D := +k@bpgsp, 3D∗BPGSP$B13PG@tD;
v@bpgsp3D := +k@bpgsp, 4D∗BPGSPP@tD∗P3GA@tD −

k@bpgsp, 5D∗ BPGSPP$P3GA@tD;
v@bpgsp4D := +k@bpgsp, 6D∗BPGSPP@tD∗P2GA@tD −

k@bpgsp, 7D∗ BPGSPP$P2GA@tD;
v@bpgsp5D := +k@bpgsp, 8D∗BPGSPP$P3GA@tD −

k@bpgsp, 9D∗ BPGSP$B23PG@tD;
v@bpgsp6D := +k@bpgsp, 10D∗BPGSPP$P2GA@tD −

k@bpgsp, 11D ∗BPGSP$B23PG@tD;
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v@bpgsp7D := +k@bpgsp, 12D∗BPGSP$B23PG@tD −

k@bpgsp, 13D ∗BPGSP@tD∗B23PG@tD;
v@bpgsp8D := +k@bpgsp, 14D∗BPGSPP@tD∗Phos@tD −

k@bpgsp, 15D ∗BPGSPP$Phos@tD;
v@bpgsp9D := k@bpgsp, 16D∗BPGSPP$Phos@tD;

A3.4 Energy Consumption and Oxidative Reactions

A3.4.1 Adenylate Kinase

Parameters

K@hampD = 3.09∗ 10^6;
K@kampD = 1.8;
k@ak, 1D =

4.3∗ 10^3 H1 + 10^−pH1@tD∗K@hadpD + k@+1D∗K@kadpDL;
k@ak, 2D = 1.4∗10^3 H1 + 10^−pH1@tD∗K@hampD + k@+1D∗K@kampDL;

Rate Equation

v@akD := +k@ak, 1D ∗ MgADP@tD∗ ADP@tD − k@ak, 2D MgATP@tD AMP@tD;
A3.4.2 ATP Consuming Processes

Parameters

k@atpaseD := 5.85∗ 10^−4;
Rate Equation

v@atpaseD := +k@atpaseD MgATP@tD;
A3.4.3 Glutathione Oxidation

Parameters

k@oxD := 3.4∗ 10^−5;
Rate Equation

v@oxD := k@oxD GSH@tD;
A3.4.4 Non-Glycolytic NADH Consumption

Parameters

k@oxNADHD := 16.3∗ 10^−3;
Rate Equation

v@oxnadhD := k@oxNADHD∗NADH@tD;
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A3.5 Membrane Transport

A3.5.1 Pyruvate Transport

Parameters

k@pyrtransport, iD = 1.8∗10^−2;
k@pyrtransport, oD := k@pyrtransport, iDêr@tD∗ Vole ê Voli;

Rate Equation

v@pyrtransportD := +k@pyrtransport, oD∗Pyr@tD∗ Voli −

k@pyrtransport, iD∗Pyre@tD∗ Vole;

A3.5.2 Lactate Transport

Parameters

k@lactransport, iD = 3.6∗10^−3;
Keq@lactransportD :=H1 + 10^HpH1@tD − 3.73LLêH1 + 10^HpH1@tD − 3.73Lêr@tDL;
k@lactransport, oD :=

k@lactransport, iDê Keq@lactransportD∗ Vole ê Voli;
Rate Equation

v@lactransportD := +k@lactransport, oD∗Lac@tD∗ Voli −

k@lactransport, iD ∗Lace@tD∗ Vole;

A3.5.3 Phosphate Transport

Parameters

k@phostransport, iD = 5.6∗10^−4;
k@phostransport, oD :=

k@phostransport, iDêKeq@phostransportD∗ Vole ê Voli;
Keq@phostransportD := H1 + 10^HpH1@tD − 6.75LLêH1ê r@tD + 10^HpH1@tD − 6.75Lêr@tD^2L;

Rate Equation

v@phostransportD := +k@phostransport, oD∗Phos@tD∗ Voli −

k@phostransport, iD∗Phose@tD∗ Vole;
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A3.6 Magnesium-Metabolite Binding

A3.6.1 MgATP

Parameters

K@mgatpD = 4.32∗10^4;
K@hatpD = 9.07∗ 10^6;
K@mghatpD = 7.48∗10^2;
K@katpD = 14;
k@mgatp, aD := 3.12∗10^7 ∗8.4∗10^−5 ikjjj K@mgatpD + 10^−pH1@tD K@hatpD K@mghatpD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−pH1@tD K@hatpD + k@+1D K@katpD y{zzz;
k@mgatp, dD = 1.2∗10^3;

Rate Equation

v@mgatpD := +k@mgatp, aD∗ ATP@tD∗ Mg@tD − k@mgatp, dD∗ MgATP@tD;
A3.6.2 MgADP

Parameters

K@mgadpD = 3.29∗10^3;
K@hadpD = 5.42∗ 10^6;
K@mghadpD = 1.07∗10^2;
K@kadpD = 4.8;
k@mgadp, aD := 2.76∗10^6 ∗6.2∗10^−4 ikjjj K@mgadpD + 10^−pH1@tD K@hadpD K@mghadpD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−pH1@tD K@hadpD + k@+1D K@kadpD y{zzz;
k@mgadp, dD = 1.2∗10^3;

Rate Equation

v@mgadpD := +k@mgadp, aD∗ ADP@tD∗ Mg@tD − k@mgadp, dD∗ MgADP@tD;
A3.6.3 Mg2,3-BPG

Parameters

K@mgbpgD = 7.41∗10^3;
K@hbpgD = 1.62∗ 10^8;
K@mghbpgD = 5.13∗10^2;
K@h2bpgD = 4.27∗10^6;
K@kbpgD = 85.1;
K@khbpgD = 8.9;
mgbpgphf :=
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3.2∗ 10^−3 HK@mgbpgD + 10^−pH1@tD K@hbpgD K@mghbpgDLêH1 + 10^−pH1@tD K@hbpgD + 10^−H2∗pH1@tDL K@hbpgD K@h2bpgD +

k@+1D K@kbpgD + k@+1D∗10^−pH1@tD K@hbpgD K@khbpgDL;
k@mgbpg, aD := 8.04∗10^5 ∗ mgbpgphf;
k@mgbpg, dD = 1.2∗10^3;

Rate Equation

v@mgb23pgD :=

+k@mgbpg, aD ∗B23PG@tD∗ Mg@tD − k@mgbpg, dD∗ Mg$B23PG@tD;
A3.6.4 Mg1,3-BPG

Parameters

k@mgb13pg, aD := 2.28∗10^5 ∗ mgbpgphf;
k@mgb13pg, dD = 1.2∗10^3;

Rate Equation

v@mgb13pgD :=

+k@mgb13pg, aD∗ B13PG@tD∗ Mg@tD − k@mgb13pg, dD∗ Mg$B13PG@tD;
A3.6.5 MgFructose (1,6)-Bisphosphate

Parameters

K@mgfru16p2D = 3.63∗10^2;
K@hfD = 7.56∗ 10^6;
K@mghfD = 8.9∗10^1;
K@h2fD = 1.12∗10^6;
K@kfD = 10.7;
K@khfD = 3.3;
mgfphf :=

8.3∗ 10^−3∗HHK@mgfru16p2D + 10^−pH1@tD K@hfD K@mghfDL êH1 + 10^−pH1@tD K@hfD + 10^−H2∗ pH1@tDL K@hfD K@h2fD +

k@+1D K@kfD + k@+1D∗10^−pH1@tD K@hfD K@khfDLL;
k@mgf16p2, aD := 4.80∗10^5 ∗ mgfphf;
k@mgf16p2, dD = 1.2∗10^3;

Rate Equation

v@mgfru16p2D := +k@mgf16p2, aD∗Fru16P2@tD∗ Mg@tD −

k@mgf16p2, dD∗ Mg$Fru16P2@tD;
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A3.6.6 MgGlucose (1,6)-Bisphosphate

Rate Equation

v@mgglc16p2D := +k@mgf16p2, aD∗Glc16P2@tD∗ Mg@tD −

k@mgf16p2, dD∗ Mg$Glc16P2@tD;
A3.6.7 MgPhosphate

Parameters

K@hphosD = 5.68∗10^6;
K@kphosD = 3.0;
k@mgphos, aD :=

4.08∗10^4 ∗
1 + 10^−7.2 K@hphosD + 0.15 K@kphosD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + 10^−pH1@tD K@hphosD + k@+1D K@kphosD ;
k@mgphos, dD = 1.2∗ 10^3;

Rate Equation

v@mgphosD :=

+k@mgphos, aD∗Phos@tD∗ Mg@tD − k@mgphos, dD∗ Mg$Phos@tD;
A3.7 pH Depedendence of Hb-Metabolite Binding

Ka@hbD = 10^−6.6;

hbphf :=
1 + H2 Ka@hbDê10^−7.2L + HKa@hbDê 10^−7.2L^2

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$1 + H2 Ka@hbDê10^−pH1@tDL + HKa@hbDê 10^−pH1@tDL^2 ;

A3.8 Oxy-Haemoglobin-Metabolite Binding

A3.8.1 Hb-MgATP

Parameters

k@hbmgatp, aD := 4.68∗10^4∗hbphf;
k@hbmgatp, dD = 1.2∗10^3;

Rate Equation

v@hbmgatpD :=

+k@hbmgatp, aD∗ Hb@tD∗ MgATP@tD − k@hbmgatp, dD∗Hb$MgATP@tD;
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A3.8.2 Hb-ATP

Parameters

k@hbatp, aD := 4.32∗10^5 ∗hbphf;
k@hbatp, dD = 1.2∗10^3;

Rate Equation

v@hbatpD := +k@hbatp, aD∗ ATP@tD∗Hb@tD − k@hbatp, dD∗Hb$ATP@tD;
A3.8.3 Hb-ADP

Parameters

k@hbadp, aD := 3.0∗ 10^5∗hbphf;
k@hbadp, dD = 1.2∗10^3;

Rate Equation

v@hbadpD := +k@hbadp, aD∗ ADP@tD∗Hb@tD − k@hbadp, dD∗Hb$ADP@tD;
A3.8.4 Hb-23BPG

Parameters

k@hbbpg, aD := 3.0∗ 10^5∗hbphf;
k@hbbpg, dD = 1.2∗10^3;

Rate Equation

v@hbbpgD :=

+k@hbbpg, aD∗ Hb@tD ∗B23PG@tD − k@hbbpg, dD∗Hb$B23PG@tD;
A3.8.5 Hb-13BPG

Parameters

k@hbb13pg, aD := 3.80∗10^5∗hbphf;
k@hbb13pg, dD = 1.2∗10^3;

Rate Equation

v@hbb13pgD :=

+k@hbb13pg, aD ∗Hb@tD∗B13PG@tD − k@hbb13pg, dD∗Hb$B13PG@tD
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A3.9 Deoxy-Haemoglobin-Metabolite Binding

A3.9.1 deoxyHb-MgATP

Parameters

k@hbdmgatp, aD := 1.68∗10^5 ∗hbphf;
k@hbdmgatp, dD = 1.2∗10^3;
v@hbdmgatpD := +k@hbdmgatp, aD∗Hbd@tD∗ MgATP@tD −

k@hbdmgatp, dD∗ Hbd$MgATP@tD;
A3.9.2 deoxyHb-ATP

Parameters

k@hbdatp, aD := 3.12∗10^6∗hbphf;
k@hbdatp, dD = 1.2∗ 10^3;

Rate Equation

v@hbdatpD :=

+k@hbdatp, aD ∗ ATP@tD∗Hbd@tD − k@hbdatp, dD∗Hbd$ATP@tD;
A3.9.3 deoxyHb-ADP

Parameters

k@hbdadp, aD := 1.44∗10^6∗hbphf;
k@hbdadp, dD = 1.2∗ 10^3;

Rate Equation

v@hbdadpD :=

+k@hbdadp, aD ∗ ADP@tD∗Hbd@tD − k@hbdadp, dD∗Hbd$ADP@tD;
A3.9.4 deoxyHb-23BPG

Parameters

k@hbdbpg, aD := 6.00∗10^6∗hbphf;
k@hbdbpg, dD = 1.2∗ 10^3;

Rate Equation

v@hbdbpgD :=

+k@hbdbpg, aD ∗Hbd@tD∗B23PG@tD − k@hbdbpg, dD∗Hbd$B23PG@tD;
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A3.9.5 deoxyHb-Fructose (1,6)-bisphosphate

Parameters

k@hbdfbp, aD := 1.21∗10^6∗hbphf;
k@hbdfbp, dD = 1.2∗ 10^3;

Rate Equation

v@hbdfbpD := +k@hbdfbp, aD∗Hbd@tD∗Fru16P2@tD −

k@hbdfbp, dD ∗Hbd$Fru16P2@tD;
A3.9.6 deoxyHb-13BPG

Parameters

k@hbdb13pg, aD := 1.86∗10^6 ∗hbphf;
k@hbdb13pg, dD = 1.2∗10^3;

Rate Equation

v@hbdb13pgD := +k@hbdb13pg, aD∗Hbd@tD∗B13PG@tD −

k@hbdb13pg, dD∗ Hbd$B13PG@tD;
DumpSave@"RBCequations"D
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Appendix 4 - Initial 
Conditions and 
External Parameters for 
the Erythrocyte Model

This  appendix  contains  the  external  parameters  and  the  initial  conditions  for  the  red
blood cell model presented in Chapter 7. This appendix should be evaluated so that its
contents can be easily loaded using the command <<initialconditions'.

A4.1 External Parameters
Define intra- and extracellular volumes.

A4.1.1 Cell Water Fraction of Total Cell Volume

α =
7
#######10 ;

A4.1.2 Hematocrit

Ht =
1
####2 ;

A4.1.3 Extracellular Volume
Vole = 1 − Ht;

A4.1.4 Intracellular Volume
Voli = α Ht;

A4.1.5 Donnan Ratio
r@tD = 0.69 ;



A4.1.6 Intracelluar K+  Concentration
k@+1D = 0.15;

A4.1.7 Intracellular pH
pH1@tD = 7.2 ;

A4.1.8 Intracellular Carbon Dioxide Concentration
CO2@tD = 1.2∗ 10^−3 ;

A4.1.9 Other Metabolites (See Figure 7.1 for Abbreviations)

CO2@tD = 1.2× 10−3;
Glc@tD = 5 ×10−3 ;
Lace@tD = 1.82× 10−3 ;
Phose@tD = 1.92× 10−3 ;
Pyre@tD = 85× 10−6 ;

A4.2 Initial conditions
See Figure 7.1 for definition of abbreviations.

ic1 = 8
ADP@0D == 0.31×10−3,
AMP@0D == 30× 10−6,
ATP@0D == 2.1×10−3,
B13PG@0D == 0.7× 10−6,
B23PG@0D == 6.70×10−3,
BPGSP@0D == 3.8× 10−6,
BPGSPP@0D ( 0,
BPGSPP$P2GA@0D ( 0,
BPGSPP$P3GA@0D ( 0,
BPGSPP$Phos@0D ( 0,
BPGSP$B13PG@0D ( 0,
BPGSP$B23PG@0D ( 0,
Ery4P@0D ( 10×10−6,
Fru16P2@0D == 2.7×10−6,
Fru6P@0D == 13×10−6,
Glc16P2@0D == 122×10−6,
Glc6P@0D == 40×10−6,
GraP@0D == 5.7×10−6,

292 Appendix 4



GrnP@0D == 19.0× 10−6,
GSH@0D == 3.2× 10−3,
GSSG@0D == 0.09× 10−6,
Hb@0D == 7× 10−3,
Hb$ADP@0D ( 0,
Hb$ATP@0D ( 0,
Hb$B13PG@0D ( 0,
Hb$B23PG@0D ( 0,
Hb$MgATP@0D ( 0,
Lac@0D == 1.4∗ 10^−3,
Mg@0D == 3.0∗ 10^−3,
MgADP@0D ( 0,
MgATP@0D ( 0,
Mg$B13PG@0D ( 0,
Mg$B23PG@0D ( 0,
Mg$Fru16P2@0D ( 0,
Mg$Glc16P2@0D ( 0,
Mg$Phos@0D ( 0,
NAD@0D == 60× 10−6,
NADH@0D == 0.14× 10−6,
NADP@0D == 0.125×10−6,
NADPH@0D == 64×10−6,
P2GA@0D == 10×10−6,
P3GA@0D == 64×10−6,
P6G@0D == 1.4× 10−7,
P6GL@0D == 1.4×10−10,
PEP@0D == 23× 10−6,
Phos@0D == 1.0×10−3,
Pyr@0D == 60× 10−6,
Rib5P@0D == 10×10−6,
Ru5P@0D ( 10× 10−6,
Sed7P@0D == 10×10−6,
TK@0D == 3.3× 10−7,
TKG@0D ( 0,
TKG$Ery4P@0D ( 0,
TKG$Rib5P@0D ( 0,
TK$Xu5P@0D ( 0,
Xu5P@0D ( 1×10−6<;

DumpSave@"initialconditions"D;
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Appendix 5 - Equation 
List Describing the 
Erythrocyte Model of 
Chapters 7 and 8

This  appendix  contains  the  reaction  list  for  the  red  blood  cell  model  described  in
Chapter  7.  For  the  definition  of  each  reaction  and  metabolite  label,  see  Fig.  7.1.  This
appendix  should  be  evaluated  so  that  its  contents  can  be  easily  loaded  using  the
command <<eqns'.

eqns = 9H∗Glycolytic reactions.∗L
9hk, Glc@tD

""""""""""""""""""""""""""""""Voli + Vole +
MgATP@tD
"""""""""""""""""""""""""Voli →

Glc6P@tD
""""""""""""""""""""""""Voli +

MgADP@tD
"""""""""""""""""""""""""Voli =,

8gpi, Glc6P@tD → Fru6P@tD< ,
8pfk, Fru6P@tD + MgATP@tD → Fru16P2@tD + MgADP@tD<,
8ald, Fru16P2@tD → GrnP@tD + GraP@tD<,
8tpi, GraP@tD → GrnP@tD <,
8gapdh, GraP@tD + Phos@tD + NAD@tD → B13PG@tD + NADH@tD<,
8pgk, B13PG@tD + MgADP@tD → P3GA@tD + MgATP@tD<,
8pgm, P3GA@tD → P2GA@tD<,
8eno, P2GA@tD → PEP@tD<,
8pk, PEP@tD + MgADP@tD → Pyr@tD + MgATP@tD<,
8ldh, Pyr@tD + NADH@tD → Lac@tD + NAD@tD <,
8ldhp, Pyr@tD + NADPH@tD → Lac@tD + NADP@tD<,H∗Reactions of 2,3 BPG synthase−phosphatase.∗L
8bpgsp1, B13PG@tD + BPGSP@tD ↔ BPGSP$B13PG@tD <,
8bpgsp2, BPGSP$B13PG@tD → BPGSPP@tD + P3GA@tD<,
8bpgsp3, BPGSPP@tD + P3GA@tD → BPGSPP$P3GA@tD <,
8bpgsp4, BPGSPP@tD + P2GA@tD → BPGSPP$P2GA@tD<,
8bpgsp5, BPGSPP$P3GA@tD → BPGSP$B23PG@tD <,
8bpgsp6, BPGSPP$P2GA@tD → BPGSP$B23PG@tD <,
8bpgsp7, BPGSP$B23PG@tD → BPGSP@tD + B23PG@tD <,



8bpgsp8, BPGSPP@tD + Phos@tD → BPGSPP$Phos@tD <,
8bpgsp9, BPGSPP$Phos@tD → BPGSP@tD + 2 Phos@tD<,H∗Pentose phosphate pathway reactions.∗L
8g6pdh, Glc6P@tD + NADP@tD → P6GL@tD + NADPH@tD <,
8pglhydrolysis, P6GL@tD → P6G@tD <,
8p6gdh,
P6G@tD + NADP@tD → CO2@tD + Ru5P@tD + NADPH@tD<,

8gssgr, GSSG@tD + NADPH@tD → 2 GSH@tD + NADP@tD <,
8ru5pe, Ru5P@tD → Xu5P@tD<,
8r5pi, Ru5P@tD → Rib5P@tD<,
8tk1, TK@tD + Xu5P@tD → TK$Xu5P@tD<,
8tk2, TK$Xu5P@tD → TKG@tD + GraP@tD<,
8tk3, TKG@tD + Rib5P@tD → TKG$Rib5P@tD<,
8tk4, TKG$Rib5P@tD → TK@tD + Sed7P@tD<,
8tk5, TKG@tD + Ery4P@tD → TKG$Ery4P@tD <,
8tk6, TKG$Ery4P@tD → TK@tD + Fru6P@tD <,
8ta, Sed7P@tD + GraP@tD → Ery4P@tD + Fru6P@tD<,H∗Energy consumption and oxidative reactions.∗L
8ak, MgADP@tD + ADP@tD → MgATP@tD + AMP@tD<,
8atpase, MgATP@tD → MgADP@tD + Phos@tD<,
8ox, 2 GSH@tD → GSSG@tD <,
8oxnadh, NADH@tD → NAD@tD<,H∗Membrane transport.∗L
9lactransport, 1

"""""""""""""Voli Lac@tD →
1

"""""""""""""Vole Lace@tD=,

9pyrtransport, 1
"""""""""""""Voli Pyr@tD →

1
"""""""""""""Vole  Pyre@tD=,

9phostransport, 1
"""""""""""""Voli Phos@tD →

1
"""""""""""""Vole  Phose@tD=,

H∗Mg−metabolite binding.∗L
8mgatp, Mg@tD + ATP@tD → MgATP@tD<,
8mgadp, Mg@tD + ADP@tD → MgADP@tD<,
8mgb23pg, Mg@tD + B23PG@tD → Mg$B23PG@tD<,
8mgb13pg, Mg@tD + B13PG@tD → Mg$B13PG@tD<,
8mgfru16p2, Mg@tD + Fru16P2@tD → Mg$Fru16P2@tD<,
8mgglc16p2, Mg@tD + Glc16P2@tD → Mg$Glc16P2@tD<,
8mgphos, Mg@tD + Phos@tD → Mg$Phos@tD<,H∗Hb−metabolite binding.∗L
8hbmgatp, Hb@tD + MgATP@tD → Hb$MgATP@tD<,
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8hbatp, Hb@tD + ATP@tD → Hb$ATP@tD<,
8hbadp, Hb@tD + ADP@tD → Hb$ADP@tD<,
8hbbpg, Hb@tD + B23PG@tD → Hb$B23PG@tD<,
8hbb13pg, Hb@tD + B13PG@tD → Hb$B13PG@tD<

=;

Save@"eqns", eqnsD;
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